
UNIT 13 QUERY LANGUAGE

Objectives

After going through this unit, you should be able to :

• appreciate the nature of Query languages and their ease of use

use the correct syntax for query processing, involving variants of SELECT command

use feafures of embedded SOL in a host programming language.

•
•

Structure

13.1 Introduction

13.2 Query processing

13.3 Running queries on multiple tables

13.4 Managing data with SQL

13.5 Embedded SQL

13.6 Summ-ary

13.7 Self assess-rent exercises

13.8 Further Readings

'13.1 Introduction

SOL, previously called SEQUEL, is one of the most important relationaldata manipulation languages developed
based on the principles of relational calculus. A prototype implementation of the original version of SOL was
developed by IBM at their San Jose, California Research Laboratory as a data definition language and a data
manipulation language. Its statements can be issued interactively with a terminal or embedded in a host
programming language. The interactive commands are.processed by the ISOL (interactive SOL) processor.

In the following sections, various SOL expressions for database retrievals and updates will be illustrated. All the
examples given below will be based on the relations in referred to in the earlier unit.

An SQL query expression consists of one or more retrieval blocks called SELECT - FROM - WHERE blocks.
Each block has the following structure:

SELECT fieids

FROM relations

(WHERE logical Conditions)

The SELECT clause specifies one or more target columns to be retrieved, and the FROM clause specifies source
relations (either base table or view) from which desired columns may be obtained. The optional WHERE clause
specifies conditions for selecting rows. For example, the following SOL statement will retrieve INV-NO and QTY
for transactions made by customer CI.

SELECT

(Managing Corporate ...)~~~~~~@1)~~~~~~~~~~(M.B.A ft.
FROM TRANSACTION

WHERE CUST-ID='C1'

13.2 QUERY PROCESSING

The simplest form of SQL expressions involve operations on one relation only.

1) Selecting columns

Get INV-NAME and UNIT - PRICE of all inventory items.

SELECT INV NAME, UNIT PRICE

FROM INVENTORY

Since the WHERE clause is omitted, all rows are selected from the INVENTORY relation ..The response to the
query is:

INY-NO UNIT-PRICE

CHAIR 75.00

TABLE 259.15

DESK 399.00

2) Selecting rows

Get all INVENTORY records whose UNIT-PRICE<100.00

SELECT

FROM INVENTORY

WHERE UNIT-PRICE<1 00.00

The response is :

INY-NO
11

INV-NAME

CHAIR

UNIT-PRICE

75.00

The asterisk represents a selection of all columns from the specified relation.
J .'

3) WHERE clause involving more than one condition

Get TRANS-NO and INV-NO for all transactions made by customer C1 where the quantity of each transaction is
greater than 2.

3;' .SELECT TRANS-NO.INV-NO

(Acharya Nagarjuna University)~1~~~~Cill))=~~s:(Center for Distar)ce Education)

FROM TRANSACTION

WHERE CUST-ID = 'C1' and QTY>2

The answer, as you can verify for yourself, is :

TRANS-NO INV-NO
T1 11

This last example specifies two conditions in the WHERE clause for a horizontal subset of the TRANSACTION
relation.

4) Eliminating duplicate responses

Get INV-NO of inventory items sold after July 1.

.SELECT

FROM

DISTINCT INV-NO

TRANSACTION

WHERE DATE-OF-TRANS 01/07

The response is :

INV-NO
13
12

Referring to the sample data in section 12.2, there are two TRANSACTION records in which the inventory item,
13, was sold after July 1. However, duplicated responses will be suppressed due to the specification of the option
DISTINCT in theSELECT clause. In SYSTEM R, the key word UNIQUE is used to replace the key word DISTINCT
for suppressing duplicate answers.

In general, duplicate responses are not eliminated automatically by the system because of the cost of that
operation. Most systems leave it up to the users to decide whether a suppression of duplicate responses is
required.

5) Ordering ,retrieved records

The following SQL expression will answer the same query given in example (4) except that retrieved records will
be ordered in the ascending order of INV-NO. and duplicate responses will not be suppressed.

FROM

INV-NO

TRANSACTION

SELECT

WHERE DATE-OF- TRANS 01/07

ORDER BY INV-NO ASC

"---..,..'--.- .._--_.---

(Managing Corporate ...)~I~~~~~GMl~~~~~~~~~C M.B.A)

the answer is as follows:

INY-NO
12
13
13

13.3 RUNNING QUERIES ON MULTIPLE TABLES.

A query may involve retrieval of data from more than one table. This may be accomplished by joining tables based
on a commond field. Here are some examples of retrieving data from more than one relation.

1) Retrieving data from two relations

Get names of customers who bought inventory item 13.

SELECT

FROM

WHERE

CUST-NAME

CUSTOMER, TRANSACTION

CUSTOMER-CUST-ID = TRANSACTION. CUST-ID

AND INV-NO = '13'

Response:

CUST-NAME
DAVE
JANE

Conceptually, the above SOL retrieval may be accomplised with the following equivalent relational algebraic
operations:

STEP 1 Join the two relations by matching equal values in the CUST-ID field of each relation

STEP 2 Select from the joined relation those rows containing 13 in INV-NO.

STEP 3 Selectthe desired columns, CUST-NAME. from the joined relation,

2) Retrieving data by joining a relation with itself

Find pairs of customers who bought the same inventory items.

SELECT A CUST.lD, B.CUST-ID

FROM TRANSACTION A, TRANSACTION B

WHERE A-INV-NO = B.INV-NO

AND ATRANS-NO<B,TRANS-NO

(Acharya Nagarjuna University)~1~~~~@]):=~~=--(~ Center for Distance.Education)

Response;

A. CUSTID B. CUST-ID
C1 C3

To find the answer, two identical TRANSACTION relation as idenified by A and B are joined. In other words, the
TRANSACTION relation joins with itself. The WHERE clause specifies that records in the two identical tables are
joined over INV-NO except that the same record will not join with itself.

13.4 MANAGING· DATA WITH SQl

The SQl includes UPDATE, INSERT and DELETE statements to alter the database content. The following
examples are based on the relations in used for illustration in the preceding sections.

1) INSERT

The following INSERT command is used to insert a record, T5 13 C1.1. into the TRANSACTION relation.

INSERT INTO TRANSACTION (TRANS-NO, INV-NO, CUST-ID, aTY) VALUES ('T5, 13,C1, 1)

When the new record is inserted into the relation, the system will automatically establish necessary pointers or
indexes to accommodate the new record. Since the DATE-OF- TRANS fields is omitted in the INSERT statement,
its content will be initialized to null.

An insert statement may be issued without specifying any field names. In this case, the list of data fields
originally defined in the CREATE TABLE statement in the left-to-right order will be used.

The second type of INSERT statement involves a retrieval of a number of records from the database and a
. subsequent insertion of retrieved records into an employ relation. Suppose that an empty table, TEMP (TRANS-

NO, INV-NO), has been defined with a CREATE TABLE statement, The following INSERT statement will first
retrieve the transaction number and the inventory number of all the transactions made by customer C1 and then .
insert the retrieved data into the empty table TEMP.

INSERT INTO TEMP

SELECT TRANS - NO, INV - NO

FROM TRANSACTION

WHERE CUST - NO = 'C1'

2) Delete

A record in a relation may be deleted with a DELETE command by specifying its unique primary key. For
example. the following statement deletes a record with the TRANS-NO T1 from the TRANSACTION relation.

DELETE TRANSACTION

WHERE TRANS-NO- 'T1'

If a secondary key value is specified in the WHERE Clause. one or more records that satisfy the condtion wiUbe
deleted from the specified relation. For example:

DELETE TRANSACTION

(Managing Corporate ...~~~~~~~Cill)~~~~~~~~~(M.B.A ft
WHERE CUST-ID = 'C1'

The OE;lE;TE; statement will delete all those transactions made bycustomer C 1.

3) UPDATE

The SOL UPDATE command is used to change the content of one or more existing records in the database. For
exapmle, the unit price of an inventory item 13 can be increased by 2.00 as follows: .

UPDATE INVENTORY

SET UNIT-PRICE = UNIT-PRICE + 2

WHERE INV-NO = '13'

After the expression is executed, the unit price of 13 in the INVENTORY relation is changed from 399.00 to
401.00. However, if the field to be updated is a primary key or a foreign key, updates of the field may cause data
inconsistency if the corresponding field in its parent or child record is not simultaneously updated. Current
relational systems provide no automatic procedures to enforce referential integrity. Thus, when a connection-field
value is a relation is to be updated, the user will be responsible for updating the corresponding field in all its parent
or child records. F?r.example, if the inventory number, .13, In t18 INVENTORY relation isla be changed to 15,
then records containing 13 In the TRANSACTION relatton must all be updated to 15 :

UPDATE

SET

WHERE

UPDATE

SET

WHERE

INVENTORY

INV-NO = '15'

INV-NO = '13'

TRANSACTION

INV-NO = '15'

INV-NO = '13'
,'t.",

13.5 EMBEDDED SQL

Irl SYSTEM R. SOUDSand DB2, the SOL statementcan be issued interactively or embedded in a host programming
language such as PLl1 or COBOL. This characteristic is generally not available in network or hierarchical
database management systems.

The SOL statements embedded in an application program are first preprocessed by the DBMS, so thatthe SOL
statements will be translated into CALL statements to invoke appropriate routines in the DBMS. An application
embedded with SOL statements is first passed through a preprocessor and then through a normal compiler for
converting host language statements into machine cede ..

One of the problems with embedding SOL retrieval statements in an application program is that the host procedural
language is equipped to handle I/O only one record at a time. However, an SOL SELECT statement may retrieve
multiple records from the database. To resolve such conflicting orientation in the code of ·1/0 operations between
SOL and the conventional pogramming ianguage. some relational systems (e.g. SYSTEM R, SOLIDS and DB2)
proved a cursor mechanism to fetch records one by one from a table retrieved by an SOL command.

(Acharya NagarjunaUniversity)~~~~~@1)~·~~~C Centerfor DistanceEducation)=
13.6 SUMMARY

Structured Ouery Langljage (SOL) is a DML derived fom relational calculus. However, an SOL statement can be
translated into equivalent relational algebric steps. .

The basic consrtuct otan SOL retrieval statement involves a SELECT _ FROM-WHERE block with which object
fields and a predicate for selection criteria are specified. An SOL statement may select one or more records at a
time. Nested SELECT-FROM-WHERE blocks may be coded within an SOL expression.

Embedding SOL statements in a host programming language for batch processing is described. The 110operation
of a conventional host programming language is record oriented. while the execution of an SOL statement may
retrieve an entire table. To.accommodate such differences in the I/O processing mode, SYSTEM R,DB2and
SOL IDS all provide a cursor mechanism for application programs to process the table retrieved by an SQL
statement one record at a time.

13.7 SELF - ASSESSMENT EXERCISES

1. In the specific context of your own organisation, name one programming language you would need in
which SOL statement can be embedded .' Similarly find one which is not important for being embedded.

2. Taking the example givenin the inventory table, how would you use the UPDATE command to increase
the price of each item by 20oio

3. Why does a system, of its own accessed not automatically eliminatate duplicate responses when eliminate
duplicate responses when executing a SELECT command?

13.8 FURTHER READINGS

1. Atre S..

2. DateC.J.

3. DateC.J

4. Hawry Stkiewycz I.T.

5. Kroenke D.M.

Database Structural Techniques for Design. Performance & Management, John
.Wiley & Sons, 1980.

A Guide to DB2 Addison-Wesley. 1984

An Introduction to Database Systems, Addison-Wesley. 1981

Database Analysis and Design. SRA. 1984

Database Processing: Fundamentals, Design. Implementation 2nd Edition. SRA.
1983.

