UNIT 12 RELATIONAL DATA BASE MANAGEMENT SYSTEM

Objectives

After going through this unit, you should be able to:

- identify the relational approach as one which organizes data in tables
- enumerate various options for field type specifications
- define the meaning of relational operations such as SELECT, PROJECT, JOIN etc.
- identify and enumerate the features suggested by E.F. Codd for determining how relational a DBMS product is.

Structure

12.1	Introduction
12.2	Relational data model
12.3	Relational operations
12.4	The 12 commandments of CODD
12.5	Examples of relational data base
12.6	Summary
12.7	Self assessment exercises
12.8	Further Readings

12.1 INTRODUCTION

The relational system is a major development in database management even though full-fledged relational DBMSs became available commercially only in the early 1980s, more than a decade after the network and the hierarchical systems appeared. The relational approach is substantially different from other database approaches in terms of its logical structures and mode of I/O operations. In the relational approach, data are organised into tables called relations, each of which is implemented as a file. A row in a relation is called a tuple in the relational terminology, and it represents a record or an entity, each column in a relation represents a field or an attribute implemented as fields. For example, a CUSTOMER relation consists of a number of customer entities. The characteristics of a customer entity are described by its attributes such as customer's number, customer's name and customer's address.

The following are some relational terms and their equivalent conventional names:

Relational terms	Conventional terms
relation,base table	file
tuple	record, entity
column	field, attribute
foreigrn key	connection field

Managing Corporate ...

=(12.2)=

One of the characteristic of the relational approach is the simplicity of its logical representation. For the users, tables are much easier to understand than complex tree or nework structures.

12.2 RELATIONAL DATA MODEL

Logically, a relational data model consists of a collection of tables, each of which represents a conceptual record type. Thus, the schema for a relational system includes data definitions for a number of base tables. A base table can be described with the the SQL as follows:

CREATE TABLE base-table-name (field-name-1 data-type(NOT NULL)

field -name-n data-type (NOT NULL)

The tables given at the end of this section illustrates the relational data model. The relational data model is composed of three relations, INVENTORY, CUSTOMER and TRANSACTION. A one-to-many relationship between INVENTORY, and TRANSACTION is implicitly established by the presence of a common field (INV-NO) in both relations. Similarly, the one-to-many relationship between CUSTOMER and INVENTORY is implicitly described by the presence of the common field, CUST-ID.

The set of statements below shows the creation of the relations given above with the SQL CREATE TABLE command. The following are various options for a field type specification:

- (1) CHAR:a fixed-length character string
- (2) VARCHAR: a variable-length character string
- (3) INTEGER:a full word binary integer
- (4) FLOAT: a floating point number
- (5) DECIMAL(m,n): a decimal number of m digits with n digits after the decimal point.

INVENTORY (INV-NO, INV-NAME, UNIT-PRICE)

CUSTOMER (CUST-ID, CUST-NAME)

TRANSACTION (TRANS-NO, INV-NO, CUST-ID-, QTY, DATE-OF-TRANS)

CREATE TABLE INVENTORY

(TRANS-NO)

CHAR (5) NOT NULL. VARCHAR (15)

FLOAT

M.B.A

UNIT-PRICE

Acharya Nagarjuna University

CREATE TABLE CUSTOMER

(CUST-ID

(CUST-NAME

CHAR (4) NOT NULL.

VARCHAR (20))

CREATE TABLE TRANSACTION

(TRANS-NO INV-NO

QTY

CUST-ID

CHAR (4) NOT NULL.

CHAR (5) NOT NULL.

CHAR (4) NOT NULL.

INTEGER

DATE-OF-TRANS CHAR (4))

The NOT NULL option is used to specify that the content of a data field should not be left undefined. The primary key is not explicitly declared, but the primary key and all foreign keys must be specified at NOT NULL.

In SQL /DS or DB2, new fields may be added to an existing base table with an ALTER TABLE command. In SYSTEM R, however, an EXPAND TABLE command is used instead. For example:

SQL/DS or DB2 ALTER TABLE CUSTOMER ADD CUST-ADDR

CHAR (20)

SYSTEM R: EXPAND TABLE CUSTOMER ADD CUST-ADDR

CHAR (20)

A new field, CUST-ADDR, with a data type CHAR(20) is added to the CUSTOMER base table. These commands allow users to expand a base table even after it is loaded with data.

Once a table is defined with a CREATE TABLE command, a new empty base table is created, and the table may be loaded immediately with an interactive SQL INSERT command. For example, the following statement inserts a new record in the CUSTOMER base table:

INSERT INTO CUSTOMER VALUES ('C3', 'JANE')

In SQL/DS, a system supplied utility called Data Base Services (DBS) can be used to initially load or add rows to tables from a sequential file. In DB2, the LOAD utility is used to load base tables with sequential files.

A base table may be deleted wth a DROP TABLE statement as follows:

DROP TABLE base table name.

Managing	g Corporate)	(12.4)	Customer	M.B.A
INV - No	INV - NAME	UNIT - PRICE	CUST-ID	CUST - NAME
11	CHAIR	75.00	C1	DAVE
12	TABLE	259.15	C2	EDDIE
13	DESK	399.00	СЗ	JANE

TRANSCTION

TRANS-NO	INV-NO	CUST-ID	QTY	DATE-OF-TRANS (DD/MM)
T1	11	C1	12	O5/06
T2	13	C1	2	12/08
13	12	C2	1	25/07
14	13	C3	2	21/10

Sample data for the relations : INVENTORY, CUSTOMER and TRANSACTION.

12.3 RELATIONAL OPERATIONS

The following operations can be performed on the tables illustrated in the previous section.

1) SELECT operation

The SELECT operation is used to select rows from a table or, to select records from a file, in the conventional terminology.

2) **PROJECT** operation

A PROJECT operation is used to select desired columns (or vertical subsets) from a source relation. Duplicated tuples will be automatically eliminated from the resulting relation.

3) JOIN operation

The JOIN operation combines two tables horizontally over common values in a specified field of each relation. The two fields to be compared must have a common domain.

The JOIN operation is accomplished by comparing each record in the first table with every record in the second table for a possible match in the specified field. The two records are joined and all the records thus combined from the new relation. The JOIN operation terminates when the last record in the first table has been compared with all records in the second.

Acharya Nagarjuna University

Center for Distance Education

4)DIVISION operation

The DIVISION operation selects rows from a table based on a range of values specified in another table, To perform such an operation, we first sort the first relation on the ascending order of say CUST-ID. A CUST-ID value will be selected from the first table if its associated INV-NO values include all the INV-NO values specified in the second.

12.5

Not all commercial DBMSs can perform all the functions described above.

Set Operations

Three traditional set operators of relational algebra are UNION, DIFFERENCE and INTERSECTION. These three operators can be applied only to source relations that have compatible layouts. In other words, operand realtions must be of the same degree (same number of fields) and the corresponding columns of each relation must have the same domain. Using the two such source relations each of the three operations can be performed as follows:

(1) UNION Operation

The UNION operation merges records in two tables.

(2) DIFFERENCE Operation

The DIFFERENCE operation is similar to subtraction. It removes from a relation those records that appear in another relation.

(3) INTERSECTION Operation

The intersection of two relations produces a new relation which consists only of records which belong to both source relations.

12.4 THE 12 COMMANDMENTS OF CODD

12 COMMANDMENTS FOR DETERMINING HOW RELATIONAL A DBMS PRODUCT IS :

Informaion Rule : Tables format

Rule 1: All information in a relational data base is represented explicitly at the logical level and in exactly one way - by values in R-tables.

Guaranteed Access Rule: via combination of table name/primary key, column name

Rule 2: Each and every datum (atomic value) in a reational data base is guaranteed to be logically accessable by resorting to a combination of R-table name, primary key value and column name.

Systematic treatment of null values

Rule 3 : Indicator (distinct from the empty character string or a string of blank characters and distinct from zero or any other number) are suppoted in fully relational DBMS for representing at the logical level the fact that the information is missing (applicable and inapplicable information) in a systematic way - independent of data type. Besides the logical representation, the DBMS must support manipulative functions for these indicators and these must also be independent of the data type of the missing information.

€ Managing Corporate ...

Dynamic on-line cataligue in relational form --so users can interrogate it

Rule 4: The data base description is represented at the logical level just like ordinary data, so that authorised users can apply the same relational language to its interrogation as they apply to the regular data.

12.6

M.B.A

Comprehensive data sub-language rule --one language for every thing, data/view definition, data manipulation integrity constraints etc.

Rule 5 : A relational DBMS (no matter how many languages and what modes of terminal use it supports - for example, the fill in the blanks mode) must support at least one language (1) whose statements are expressable per some well defined syntax as character strings; and (2) which is comprehensive in supporting all of the following terms:

- 1. Data definition
- 2. View definition
- 3. Data manipulation (interactive and by program)
- 4. Integrity constraints
- 5. Authorisation
- 6. Transaction boundaries (begin, commit and roll-back)

View updating rule--all views updatable

Rule 6: The DBMS includes an algorithm for determining (at view definition time) whether that view is tupleinsertible and tuple-deletable; and whether each of its columns is updatable. It records the result of this investigation in the catalogue.

High level INSERT/UPDATE/DELETE One command updates many records.

Rule 7: The capability of handling a base relation or a derived relation as a single operand applies not only to the retrieval of data but also the insertion, update and deletion of data.

Physical data independence .. users not affected by changes to storage representation to access method

Rule 8: Application programs and terminal activities remain logically unimpaired whenever any changes are made in either storage representation or access methods.

Logical data independence .. users not affected by change to the base tables that preserve information

Rule 9: Application programs and terminal activites remain logically unimpaired when information-preserving changes of any kind that theoretically permit unimpairment are made to the base tables.

Integrity independence .. integrity constraints defined in the catalogue, not programs. Include

.. entity integrity .. no prime key rule

.. referential integrity .. a prime key exists for each non-nul foreign key

EAcharya Nagarjuna University

A OOFLIT D

Center for Distance Education

Rule 10: Integrity constraints specific to a particular relational data base must be definable in the relational data sub-language and storable in the catalogue (not in the application programs).

12.7

Distribution independence .. users not affected by distribution and re-distribution of data. All data appears local to the site.

Rule 11 : A relational DBMS has distribution independence.

Non-subversion rule..no low level interfaces to bypass integrity rules

.....

Rule 12: If a relational system has a low-level (single-record-at-a-time) language, that low level cannot be used to subvert or bypass the integrity rules and constraints expressed in the higher-level relational language (multiple-records-at-a-time).

12.5 EXAMPLES OF RELATIONAL DATA BASE

Mention of some Relational Databases has been made earlier. A number of products are now available in the market which fulfil broadly requirements of a relational database enumerated in the earlier sub-section 12.4

The number of products available worldwide may be very large, and a list of almost 50 commercial well-known products are given in alphabetically order as follows :

ACCENTR	MILLDATA
ADABAS/NATURAL	MIMER
AMBASE	MISTRESS
ARCHON:QDMS	OMNIBASE
AUTOPRO	ORACLE
BASIS-DM	PEDMS
CLIO	QDMS
CORTEX	RAMIS II
CUPID	RAPPORT
DATA BOSS/4	RDB
DATA BOSS/32	RELIANT
DM	REVEAL-DBMS
DATACOM/DB	RTFILE
DB2	SEED-DBMS
FOCUS	SEQUITUR
GEM	SIMBAD
GUVNOR	SIR
IMPRS	SYBASE

Managing Corporate	(12.8) M.B.A)=
INFO	SYSTEM 1032	
INFOCEN	SYSTEM 2000	
INFORM	TOTAL	
INFORMIX	ULTRA	
INGRES	UNIFY	
INTAC	USERII	
MAPS/DB	X-AMPLE	

When an organisation decides to go in for a relational database it adopts certain criteria, which depend on the specific need of the organisation. However, a fairly reasonable check-list to pick out the relevant criteria for short-listings relational database would be as follows :

Short - List Criteria

1.	Portability :		Must be easily transportable from machine to machine regardless of type. Must be able to run under UNIX. Software produced independent of hardware manufacturer preferable.
2.	Programmability :		Must allow for the production of maintainable application code and macros. Must have host language interface for commonly used DP languages, i.e. COBOL
3.	Query Language :	•	Must provide a query language processor.
4.	Report Writer:	¢. ₹	Must provide a report writing facility.
5.	Data Dictionary:	-	An integrated data dictionary must be provided as an integral of the system.
6.	Security / integrity :	-	Security features such as automatic out back recovery, as well as data integrity features, such as password protection and recordlocking, must be included as standard.
7.	Database :	-	Full support for relational database design techniques must be in evidence
8.	Screen generator.	-	A facility for producing data entry / retrieval / update screens must be available.
9.	User - base / Stability	-	A good user-base in the country and a good stable market position must be evident.
10.	PC Version :	-	A version of the product must be available for PC use, and must be compatible with the full version.
11.	Other:	-	Must show no bias towards a specific discipline e.g. accounting, statistics etc.

When such criteria are applied the actual product which is most appropriate for an organisation may be any of these, but the most important market players who have acquired reasonable significant share of the market players are as follows : (arranged in alphabetical order) Informix, Ingres, Oracle and Unify.

Acharya Nagarjuna University

Center for Distance Education

DOS NETWORKS like

under Unix environment.

NOVELL etc. are not available. Limited networking

Of these Oracle and Ingres are almost in neck and neck competition and each subsequent release try to inculculate features which have been found to be appreciated by the competing product. The information is based on data sheets of vendors and is meant to identify points of comparison, rather than conveying whether a product is superior.

12.9

The final choice of the most appropriate package would need a detailed consideration of technical and administrative criteria as indicated in Unit 14.

Some features of comparison between Informix and Unify given below :

	FEATURE	INFORMIX	UNIFY
1.	Program Development	Need not have to be a programmer to develop programs.	Has to be more of 'C' programmer to develop applications.
2.	Implementation	Full ANSI SQL compatible with	Limited SQL Implementation with
	n de la construction de la construcción de la construcción de la construcción de la construcción de la constru La construcción de la construcción d	- Data definitions	- No data definition statement
		- Data control	- No data control statement
	a da serie - para serie da se Serie da serie - serie da serie Serie da serie da ser	- Integrated SQL Dictionary	- No callable data dictionaries
3.	Embedded SQL Products	Available	No Embedded SQL
		- ESQL /C	Products
		- ESQL / COBOL	No dynamic capabilities
		- ESQL / ADA	Must use 'C' function library
4.	Integration with Office automation products	Full Integration between SQL and "SMART WARE" office automation tools namely	No Integration with automation products.
		 Spread Sheet with business graphics Word Processor Database Manager Communications Application generator 	

AT & T STARLAN,

TCP/1P DEC NET,

3 COM etc.

MS-NET like NOVELL,

5. Support of Networks

■ Managing Corporate ...

6. Maintenance

=12.10=

Reconfiguring of database is very simple. Automatic reconfiguration takes place while changing tables and adding Indexes.

The DBCHEK, facility helps to retrieve the corrupted table information

There is no concept of pointers

Raw I/O Installation option option bypasses UNIX for faster through puts

Multi-Screen Forms Multi-table Forms features are available.

Rollback & Forward features available

Broad - VMS / NETWORKS/ MVS / DOS / XENIX 286, 386 / UNIX

Has a wide range of products available

Default report generator available. No limit on the length of line

2.5 MB

÷ .

Unlimited

Through SQL and Data-Dictionary

Occupies 3 MB

Full 4 GL Interpreter / Debugger Have to reconfigure entire database to change tables add Indexes, change pointers etc.

Have to rebuilt entire database if single table gets corrupted

Pointers used for explicit relationships (pre-joins) becomes corrupted and has been rebuilt (REPOINTS)

Only does raw sequential reads; all writes are synchronous (very slow)

No Multi-Screen Forms and Multi-table Forms

Incomplete transaction support. No rollback

Only supported on UNIX

Does not have a wide range of products

Must start report from scratch Line length is limited to 240 characters.

4.5 MB

Indexes Limited to 255

Only through menus

Occupies 5 MB

Accell is not a 4 GL. It relies on 3rd Generation languages such as 'C', to Program

RAW I/O

7.

- 8. Forms
- 9. Transactions support
- 10. Range of environment
- 11. Other Products
- 12. REPORT Generator
- 13. DOS Program size
- 14. Indexes
- 15. Access to
- 16. Disk Space
- 17. Fourth Generation Language

M.B.A

Acharya Nagarjuna University	[12.1]	Center for Distance Education
		procedural logic in to the applications. Maintanence is difficult
18. Database Parameters	- No limit on tables - No limit on records	 Limit of 256 tables Limit of 256 fields per record
	- Record size limit 32 MB	- Record size limit 25.6 MB
19. Security Features	Locking is possible - Field level - Record Level - File Level - Database level	Only file level
Some features of comparison between	Informix and Oracle given below	
SL FUNCTION NO.	INFORMIX	ORACLE
 Features of 4GL debugger along with SQL based tools. 	Full 4GL Interpreter/ complex applications would require 3 GL interface.	Limited 4GL functions
2. Windowing capability	Displays 2 lines	Triggers several pages
3. Expanded memory	Can run without expanded memory Runs on 640 K DOS	Can not run without extended memory.
4. DOS NETWORK	NOVELL, 3 COM	No DOS Network etc. products
5. Spread Sheet	Full fledged	ORACLE-CALC has no

6. Portability

features

- 7. Currency data types
- 8. Recovery process

YES

machines.

Spread Sheet

interface with

Business Graphics

and macro are available.

Same versions run on various

Turbo module is available which is fault tolerant and

macros and limited financial functions

1

+ expensive.

Several different incompatible versions exist on various machines.

No money data type very difficult to format money in forms, reports.

Entire database reside in a single file. If any parts

	lanaging Corporate	12.12	M.B.A)=
		automatic recovery module. recover except to back up.	gets corrupted, no way to
9.	Embedded Languages	Informix provide an embedded approach to using SQL from C. The SQL statements are embedded into the source	Oracle provides a call level approach to embedding SQL in C Code (SQL statements are passed to
		code (This source code is pre- processed by a utility provided with the data manager and compiled	Oracle sub-routines as strings of character. Therefore, there is no pre- processor step however).
		and linked as normal C code)	The code is readable since the queries are burried in functions call
	•		argument lists.
10.	Exporting data files.	Easy to export data files.	Oracle's ODL facility does not provide a means of determining the actual space being consumed by an individual table.
11.	Table size	With Informix one can look at file size and get an accurate size for the tables. table.	Oracle does not provide a means of determining the actual space being consumed by an individual
12.	Database size	No limit on database size.	Pre-allocation of space is required. One has to use a trial and error approach to determine the amount of space to use.
		informix dynamically size the files associated with the database.	There is no way to shrink an oversized database, other than to export the entire database and to recreate space.
13.	Possibility of obtaining runtime versions	Runtime and development versions are separately available.	No run-time versions available.
14.	Report generation features	Superior reporting statements are available in this product. available.	All required functions of report writer are not

Large number of installations since it is designed to operate

under UNIX.

15. Market spread (UNIX)

Not much installation under UNIX.

Acharya Nagarjuna University		12.13	Center for Distance Education
16.	Graphic capability	Interface is available thru 'SMARTWARE' Spread Sheet.	Not available in UNIX environment.
17.	Availability in UNIX V.3	Runs under UNIX V.3 as of today.	UNIX V.3 is not available
18.	Security features	Database, user, table page, record and field level security features supported.	Page level security is not available.
19.	Development tools	All development tools like data base creation, report writer, query, Form generator, menu driven table creation are	Weak in report writer only SQL is available for table creation.
20.	User friendliness /learn time	Menu driven non-procedural and has English language like commands.	Not very user-friendly. Non uniform function key assignment. Forms handling is cumbersome.
21.	Integrated package	products available as one package. It is easier to upgrade. during integration	Not available as on integrated packages which could result into confusion
22.	Single screen multi-table access	Allows such an access.	Only base table is accessible from one form,
acce (Trig	essed through an gers.)		interface
23.	Docummentation quality of manuals	More examples and better structure of manuals.	Fewer examples.
24.	Product reliability UNIX world.	More user experience in environment.	Fewer installations in UNIX
40.4		(<u>(</u>)	

12.6 SUMMARY

In relational database systems, datas are organised into tables, or relations. Data relationships between relations are implicitly established via foreign keys. Each relation is implemented as a separate file called a base table or a stored table, and indexes can be created for random access of records in a table via either primary or secondary keys. A data sub-model is the relational term for an external schema. It consists of one or more views which derive data from one or more tables.

The two relational sublanguages called relational algebra and relational calculus suggested by Codd have triggered much research and development in the relational data manipulation languages. One of the unique features of the relational DML is its ability to manipulate relations in their entirely. In other words, a whole table may be retrieved as a result of a single SQL statement.

■ Managing Corporate ...

Some basic operations of the relational algebra described are SELECT, PROJECT, JOIN, DIVISION, UNION, DIFFERENCE and INTERSECT. On the other hand, the relational calculus is a nonprocedural language with which the user specified fields to be retrieved and a predicate to indicate the selection criteria. Thus, the user can specify what is needed without having to code the detailed procedural steps to achieve it.

12.14

M.B.A

12.7 SELF-ASSESSMENT EXERCISE

- 1. With reference to your own organisation, further refine the short-listing criterion given in section 12.5 to 5 most important ones.
- 2. Constant dummy data for the 3 tables show in Section 12.2 and see for yourself how you could use the INSERT statement to add one record to each of the tables.
- 3. Elaborate role 8 of codds commandments to illustrates its managerial importance and implications.

12.8 FURTHER READINGS

Database Structural Techniques for Design, Performance & Management, John Atre S. 1. Wiley & Sons, 1980 An Introduction to Database systems, Addison-Wesley, 1981 2. Date C.J. 3. Hawry Stkiewycz I.T. Database Analysis and Design, SRA, 1984 Database Design 2nd Edition, Mc Graw Hill, 1983 Weiderhold, G, 4. Handbook of Relational Database Design, Wesley, 1990 5. Ven Halle Fleming,