(DM01)

[Total No. of Pages : 02

Total No. of Questions :10] M.Sc. (Previous) DEGREE EXAMINATION, MAY-2018 **First Year**

MATHEMATICS

Algebra

Time :3 Hours Maximum Marks :70

SECTION - A Answer any five questions. All questions carry equal marks.

- **Q1**) a) State and prove Sylow's theorem for abelian groups.
 - b) If G is a group then show that A(G) the set of automorphisms of G is also a group.
- (Q2) a) Show that every group is isomorphic to a subgroup of A(s) for some appropriate S.
 - b) Show that conjugacy is an equivalence relation onG.
- **Q3)** a) Let G be a group and if G in the internal direct product of $N_1 N_2 ... N_n$ then show that G is isomorphic to $N_1 \times N_2 \times \ldots \times N_n$.
 - b) Describe all finite abelian groups of order $2^4 3^4$.
- (Q4) a) Show that a finite integral domain is a field.
 - b) If R is a commutative ring with unit element and M is an ideal R, then show that M is a maximal ideal of R if and only if R/M is a field.
- **05)** Show that every integral domain can be imbedded in a field.
- Q6) a) If L is a finite extension of K and if K is a finite extension of F, then show that L is a finite extension of F in particular [L:F] = [L:K] [K:F].
 - b) If P(x) is a polynomial in F(x) of degree n > 1 and irreducible over F then show that there is an extension E of F such that [E:F] = n in which P(x) has a root.
- **Q7)** a) Show that the polynomial f(x) EF[x] has a multiple root if and only if f(x)and f'(x) have a nontrivial common root.
 - b) If K is finite extension of F, then show that G (K, F) is a finite group with its order O(G, F) satisfie $O(G(K,F)) \leq [K:F]$.

- **Q8)** a) Show that a group G is solvable if and only if $G^{(K)} = e$ for some integer k.
 - b) Show that the general polynomial $P(x) = x^n + a_1x^n + ... + a_n$ for $n \ge 5$ is not solvable by radicals.
- Q9) a) Show that a lattice of invariant subgroups of any group is modular.
 - b) If *a* and *b* are any two elements of a modular lattice then show that the intervals I $[a \cup b, a]$ and I $[b, a \cap b]$ are isomorphic.
- **Q10)**Show that if L is a complemented modular lattice that satisfies both chain conditions, then the element 1 of L is a $1 \cup b$ of independent points and conversely if L is a modular lattice with 0 and 1 such that 1 is a $1 \cup b$ of a finite number of points then L is complemented and satisfies both chain conditions.

Total No. of Questions : 10] [Total No. of Pages : 03 M.Sc. (Previous) DEGREE EXAMINATION, MAY – 2018 First Year MATHEMATICS

Analysis

Time : 3 Hours

Maximum Marks :70

(DM02)

Answer any five of the following questions. All questions carry equal marks.

- **Q1)** a) Let A be the set of all sequences whose elements are the digits 0 and 1. Prove that this set A is uncountable.
 - b) Prove that every k-cell is compact.
- **Q2)** a) Prove that if a set E in \mathbb{R}^k has one of the following three properties, then it has the other two:
 - i. E is closed and bounded.
 - ii. E is compact.
 - iii. Every infinite subset of E has a limit point in E.
 - b) Prove that a subset E of the real line R is connected if and only if it has the following property:

If $x \in E$, $y \in E$, and x < z < y, then $z \in E$.

- **Q3)** a) Prove that $\lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n = e$ and that e is irrational.
 - b) Let $\sum a_n$ be a series of real numbers which converges, but not absolutely. Suppose

 $-\infty \leq \alpha \leq \beta \leq \infty$.

Then prove that there exists a rearrangement $\sum a'_n$ with partial sums s'_n such that $\liminf_{n \to \infty} s'_n = \alpha$, $\limsup_{n \to \infty} s'_n = \beta$.

Q4) a) Let f be a continuous mapping of a compact metric space X into a metric space Y. Then prove that f is uniformly continuous on X.

(DM02)

b) Let E be a nonempty subset of a metric space X, define the distance from x in X to E by

$$P_{E}(x) = \inf_{z \in F} d(x, z)$$

- i) Prove that $P_{E}(x) = 0$ if and only if $x \in \overline{E}$.
- ii) Prove that P_E is a uniformly continuous function on X, by showing that $|P_E(x) P_E(y)| \le d(x, y)$ for all $x \in X, y \in X$.
- **Q5)** a) Define Riemann Stieltjes integral. Prove that if f is bounded on [a,b], f has only finitely many points of discontinuity on [a, b], and α is continuous at every point at which f is discontinuous then $f \in \mathbf{R}(\alpha)$.
 - b) Suppose $f \ge 0, f$ is continuous on [a,b], and $\int_a^b f(x)dx = 0$. Prove that f(x) = 0 for all $x \in [a,b]$.
- **Q6)** a) Suppose $c_n \ge 0$ for $n = 1, 2, ..., \Sigma c_n$ converges, $\{s_n\}$ is a sequence of distinct points in(a,b), and $\alpha(x) = \sum_{n=1}^{\infty} c_n I(x-s_n)$, where I is the unit step function. Let f be continuous on [a,b] then prove that $\int_a^b f \, d\alpha = \sum_{n=1}^{\infty} c_n f(s_n)$.
 - b) Assume that $f(x) \ge 0$ and that f decreases monotonically on $[1,\infty)$. Prove that $\int_{1}^{\infty} f(x)dx$ converges if and only $\sum_{n=1}^{\infty} f(n)$ converges.
- **Q7)** a) If $\{f_n\}$ is a sequence of continuous functions on a subset E of a metric space X, and if $f_n \to f$ uniformly on E then prove that f is continuous on E.
 - b) Suppose f_n is a sequence of functions, differentiable on [a,b] and such that $\{f_n(x_0)\}$ converges for some point x_0 on [a,b]. If $\{f'_n\}$ converges uniformly on [a,b] then prove that $\{f_n\}$ converges uniformly on [a,b], to a function f, and $f'(x) = \lim_{n \to \infty} f'_n(x), a \le x \le b$.
- **Q8)** a) Prove that if $\{f_n\}$ is a pointwise bounded sequence of complex functions on a countable set E then $\{f_n\}$ has a subsequence $\{f_{n_k}\}$ such that $\{f_{n_k}(x)\}$ converges for every x in E.
 - b) State and prove Weierstrass approximation theorem.

(DM02)

- **Q9)** a) Let f and g be measurable real-valued functions defined on the measurable space X, let F be a real and continuous on \mathbb{R}^2 , and put $h(x) = F(f(x), g(x)), x \in X$. Then prove that h is measurable.
 - b) State and prove Lebesgue's monotone convergence theorem.
- **Q10)** a) State and prove Fatou's theorem.
 - b) Prove that $L^2(\mu)$ is a complete metric space.

(DM03)

Total No. of Questions : 10] [Total No. of Pages : 02 M.Sc. (Previous) DEGREE EXAMINATION, MAY – 2018 First Year

MATHEMATICS

Complex Analysis & Special Functions & Partial Differential Equations Time : 3 Hours Maximum Marks :70

Answer any five questions choosing at least two from each section. All questions carry equal marks.

SECTION - A

- **Q1)** a) Find a power series solution of the Legendre's equation $(1-x^2)y'' - 2xy' + n(n+1)y = 0$
 - b) State and prove Laplace's first and second integrals for $P_n(x)$.

Q2) a) Prove that
$$\int_{-1}^{1} x P_n(x) P_{n-1}(x) dx = \frac{2n}{4n^2 - 1}$$

b) Using Rodrigue's formula, find the values of $P_0(x)$, $P_1(x)$, $P_2(x)$ and $P_3(x)$.

Q3) a) Prove that
$$\frac{d}{dx} \{ xJ_n(x)J_{n+1}(x) \} = J_n^2(x) - J_{n+1}^2(x) .$$

b) Solve $(yz + xyz) dx + (zx + xyz) dy + (xy + xyz) dz = 0.$

- **Q4)** a) Find the general solution of $(D^2 + DD' + D' 1)z = sin(x+2y)$. b) Solve $(D^2 + 2DD' + (D')^2)z = e^{2x+3y}$.
- **Q5)** a) Solve $(D^2 D')z = 2y x^2$. b) Solve (r - s)x = (t - s)y by using Monge's method.

SECTION - B

- Q6) a) Calculate the nth roots of unity and deduce the cube roots of unity.
 - b) Prove that if G is open and connected and $f: G \to \mathbb{C}$ is differentiable with f'(z) = 0 for all z in G, then f is constant.

(DM03)

- **Q7)** a) Prove that if $\gamma : [a, b] \to \mathbb{C}$ is piecewise smooth then γ is of bounded variation and $V(\gamma) = \int_{a}^{b} |\gamma'(t)| dt$.
 - b) State and prove the fundamental theorem of algebra.
- **Q8)** a) State and prove Cauchy's integral formula, first version.
 - b) Let G be an open set and let $f: G \to \mathbb{C}$ be a differentiable function. Then prove that f is analytic on G.
- **Q9)** a) State and prove Casorati Weierstrass theorem.
 - b) Let $f(z) = \frac{1}{z(z-1)(z-2)}$; give the Laurent Expansion of f(z) in each of the following annuli :
 - i) ann(0; 0, 1);
 - ii) ann (0; 1, 2);
 - iii) ann $(0; 2, \infty)$.
- **Q10)**a) State and prove residue theorem.
 - b) Show that $\int_{0}^{\infty} \frac{\sin x}{x} dx = \frac{\Pi}{2}$.

Total No. of Questions : 10] [Total No. of Pages : 03 M.Sc. (Previous) DEGREE EXAMINATION, MAY – 2018 First Year

MATHEMATICS

Theory of Ordinary Differential Equations

Time : 3 Hours

Maximum Marks :70

<u>Answer any five questions.</u> All questions carry equal marks.

- **Q1)** a) Let $a_1, ..., a_n$ be continuous functions on an interval I. Prove that there exist n linearly independent solutions of $L(y) \equiv y^{(n)} + a_1(x)y^{(n-1)} + ... + a_n(x)y = 0$ on I.
 - b) Consider the equation $y'' + \frac{1}{x}y' \frac{1}{x^2}y = 0$ for x > 0.
 - i) Show that there is a solution of the form x^r , where *r* is a constant.
 - ii) Find two linearly independent solutions for x > 0, and prove that they are linearly independent.
 - iii) Find the two solutions ϕ_1 , ϕ_2 satisfying $\phi_1(1) = 1$, $\phi_2(1) = 0$,

$$\phi_1'(1) = 0, \ \phi_2'(1) = 1,$$

- **Q2)** a) Find all solutions of the equation $y'' \frac{2}{x^2}y = x, 0 < x < \infty$.
 - b) Find two linearly independent power series solutions (in powers of x) of the differential equation y'' xy = 0 on $-\infty < x < \infty$.
- *Q3)* a) Let M, N be two real-valued functions which have continuous first partial derivatives on some rectangle. R: $|x-x_0| \le a$, $|y-y_0| \le b$. Then prove that the equation M(x, y) + N(x, y), y' = 0 $\partial M = \partial N$

is exact in R if and only if
$$\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$$
 in R.

b) Compute the first four successive approximations $\phi_0, \phi_1, \phi_2, \phi_3$ of the equation y' = xy, y(0) = 1. Also compute the solution.

(DM04)

Q4) a) Define Lipschitz condition. Suppose S is either a rectangle $|x-x_0| \le a, |y-y_0| \le b, a, b > 0$ or a strip $|x-x_0| \le a, |y| < \infty, a > 0$

and that f is a real-valued function defined on S such that $\frac{\partial f}{\partial v}$ exists, is

continuous on S, and $\left|\frac{\partial f}{\partial y}(x-y)\right| \le K$, (x, y) in S.

for some K > 0. Then prove that f satisfies a Lipschitz condition on S with Lipschitz constant K.

- b) Let $f(x, y) = \frac{\cos y}{1 x^2}$, |x| < 1.
 - i) Show that f satisfies a Lipschitz condition on every strip $S_a : |x| \le a$ where 0 < a < 1.
 - ii) Show that every initial value problem $y' = f(x, y), y(0) = y_0, |y_0| < \infty$ has a solution which exists for |x| < 1.
- **Q5)** a) Give an example of a system of differential equations which arise in the study of dynamics of central forces and planetary motion.

b) Find a solution
$$\phi$$
 of $y'' = -\frac{1}{2y^2}$ satisfying $\phi(o) = 1$, $\phi'(o) = -1$.

Q6) a) Let \overline{f} be the vector – valued function defined on R: $|x| \le 1$, $|\overline{y}| \le 1$ (\overline{y} in C₂) by $\overline{f}(x, \overline{y}) = (y_2^2 + 1, x + y_1^2)$.

- i) Find an upper bound M for $|\overline{f}(x,\overline{y})|$ for (x,\overline{y}) in R.
- ii) Compute a Lipschitz constant K for \overline{f} on R.
- b) Consider the system
 - $y_1' = 3y_1 + xy_3$
 - $y_2' = y_2 + x^3 y_3$

$$y_3' = 2xy_1 - y_2 + e^x y_3.$$

Show that every initial value problem for this system has a unique solution which exists for all real x.

Q7) a) Find functions z(x), k(x) and m(x) such that

$$z(x)\left[x^2y''-2xy'+2y\right] = \frac{d}{dx}\left[k(x)y'+m(x)y\right]$$

and hence solve

 $x^2y'' - 2xy' + 2y = 0, x > 0.$

(DM04)

- b) Show that if z, z_1 , z_2 and z_3 are any four different solutions of the Riccati equation. $z^1 + a(x)z + b(x)z^2 + c(x) = 0$ then show that $\frac{z-z_2}{z-z_1} = \frac{z_3-z_1}{z_3-z_2} = \text{constant.}$
- **Q8)** a) Find the general solution of $y'' 3y' + 2y = f(x), -\infty < x < \infty$ where f is a continuous function and then evaluate the general solution when f(x) = x.
 - b) Given the differential equation $4x^2y'' + y = f(x)$, $1 \le x < \infty$ compute Green's function and then compute particular solution. Also, find the general solution when f(x) = x.
- *Q9)* a) State and prove Sturm separation theorem.
 - b) Discuss the oscillations of the Bessel equation $x^2y'' - xy' + (x^2 - n^2)y = 0$, Where *n* is a constant.
- *Q10)* a) Solve

$$x^{2}y'' - 2xy' + (2 + x^{2})y = 0, x > 0$$

b) State and prove Gronwall's inequality.