(DMSTT 01)

[Total No. of Pages : 02

M.Sc. DEGREE EXAMINATION, MAY – 2017

First Year

STATISTICS

Probability and Distribution Theory

Time : 3 Hours

Total No. of Questions : 10]

Maximum Marks: 70

<u>Answer any Five questions.</u> <u>All questions carry equal Marks.</u>

- **Q1**) a) Define distribution function. State and prove its properties.
 - b) State and prove Kolmogorov's inequality.
- *Q2)* a) State and prove a necessary and sufficient condition for *n* random variables to be independent.
 - b) State and prove Borel-Cantelli lemma.
- **Q3)** a) Explain modes of convergence. In the usual notation, prove $X_n \xrightarrow{P} X \Longrightarrow X_n \xrightarrow{L} X$.
 - b) State and prove Kolmogorov's strong law of large numbers for independent random variables.
- **Q4)** a) State and prove Levy and Lindberg form of central limit theorem.
 - b) Determine whether strong law of large numbers holds for the sequence of random variables $P(X_k = \pm 2^k) = \frac{1}{2^{2k+1}}$, $P(X_k = 0) = 1 \frac{1}{2^{2k}}$.
- **Q5)** a) Derive compound binomial distribution.
 - b) Define multinomial distribution. Show that the marginal p.m.f. of each X_i , $i = 1, 2, \dots, k-1$ in a multinomial distribution is binomial.
- **Q6)** a) Derive compound Poisson distribution.

b) Let $(X_1, X_2, \dots, X_{k-1})$ have a multinomial distribution with parameters $n, p_1, p_2, \dots, p_{k-1}$. Write $Y = \sum_{i=1}^{k} (X_i - np_i)^2 / np_i$, where $p_k = 1 - p_1 - p_2 - \dots - p_{k-1}$ and $X_k = n - X_1 - \dots - X_{k-1}$. Find E(Y) and V(Y).

- *Q8)* a) Define Laplace distribution. Obtain its m.g.f.b) Define logistic distribution. Obtain its characteristic function.
- *Q9*) a) Derive the distribution of t.
 - b) Derive the joint p.d.f. of $(X_{(1)}, X_{(2)}, ..., X_{(n)})$.
- **Q10**) a) Derive the distribution of non-central Chi-square.
 - b) Obtain the joint p.d.f. of $X_{(j)}$ and $X_{(k)}$, $1 \le j \le k \le n$.

(DMSTT 02) Total No. of Questions : 10] [Total No. of Pages : 02 M.Sc. DEGREE EXAMINATION, MAY – 2017 STATISTICS Statistical Inference

Time : 3 Hours

Maximum Marks: 70

<u>Answer any Five questions.</u> <u>All questions carry equal Marks.</u>

- **Q1)** a) Explain sufficiency. Obtain the general form of the distributions admitting sufficient statistic.
 - b) State and prove Cramer-Rao inequality.
- **Q2)** a) State and prove Lehmann-Scheffe theorem.
 - b) Let X_1, X_2, \dots, X_n be a random sample from the distribution with p.d.f. $f_{\theta}(x) = \frac{1}{\beta - \alpha}$ if $\alpha < x < \beta$ where $\theta = (\alpha, \beta)$ and $0 < \alpha < \beta < \infty$. Obtain the MVU estimators of $\frac{(\alpha + \beta)}{2}$ and $\beta - \alpha$.
- **Q3)** a) Explain consistency and efficiency. State and prove sufficient conditions for consistency.
 - b) Find the ML estimator of θ for random sample from $f_{\theta}(x) = \frac{1}{\theta} \exp\left(-\frac{x}{\theta}\right), 0 \le x < \infty$.
- Q4) a) Explain maximum likelihood method of estimation. State its properties.
 - b) Explain interval estimation. Let $X_1, X_2, ..., X_n$ be a random sample from $N(\mu, \sigma^2)$ where μ and σ^2 are both unknown. Obtain the confidence interval for μ .
- **Q5)** a) State and prove Neymann-Pearson lemma.
 - b) Find UMP tests for testing H₀: $\theta = \theta_0$ against one sided alternatives in N(θ, σ^2) where σ^2 unknown.

- **Q6)** Explain likelihood ratio test. Show that the likelihood ratio test is consistent under the conditions to be specified by you.
- Q7) a) Explain :
 - i) Sign test and
 - ii) Wilcoxon signed rank test.
 - b) Explain :
 - i) Two sample runs and
 - ii) Median tests.
- *Q8*) a) Explain Wilcoxon Mann Whitney U test.
 - b) Explain Kolmogorov Smirnor one sample and two sample tests.
- **Q9)** a) Explain Wald's SPRT. Obtain its OC and ASN functions.
 - b) Determine the SPR test for testing H_0 : $\theta = \theta_0$ against H_1 : $\theta = \theta_1(\theta_1 > \theta_0)$ where θ is the parameter of a Poisson distribution. Obtain OC and ASN functions of the test.
- **Q10**(a) Show that SPRT terminates with probability one.
 - b) The random variable X has $N(\mu, \sigma^2)$ where σ^2 known. Develop an SPR test for testing H_0 : $\theta = \theta_0$ against H_1 : $= \theta_1$. If $\alpha = \beta$ (in the usual notation). Prove that the ASNs under H_0 and H_1 are equal.

(DMSTT 03) Total No. of Questions : 10] [Total No. of Pages : 02 M.Sc. DEGREE EXAMINATION, MAY – 2017 First Year STATISTICS Sampling Theory

Time : 3 Hours

Maximum Marks: 70

<u>Answer any Five questions</u> <u>All questions carry equal Marks</u>

- **Q1)** a) Explain the concepts of
 - i) Sample
 - ii) Sampling frame and
 - iii) Complete enumeration survey.
 - b) Explain the organisation and functions of N.S.S.O.
- **Q2)** a) Distinguish between sampling and non-sampling errors. Describe the sources of non-sampling errors.
 - b) Explain the organisation and functions of C.S.O.
- **Q3)** a) Explain simple random sampling with and without replacements. In SRSWOR obtain the variance of the sample mean.
 - b) Explain stratified random sampling. Compare the efficiencies of the Neyman and proportional allocations with that of an unstratified random sample of the same size.
- *Q4*) a) Determine the sample size in sampling from
 - i) Attribute data and
 - ii) Variable data.
 - b) What are the advantages and disadvantages of stratified random sampling? Obtain the variance of sample mean in stratified random sampling.
- **Q5)** a) Explain systematic sampling. What are its merits and demerits? Determine the optimum cluster size for fixed cost.

- b) Obtain an unbiased estimator of population mean and its variance in cluster sampling with clusters of equal size.
- **Q6)** a) Explain
 - i) Systematic sampling and

ii) Circular systematic sampling.

Give their applications two each.

- b) Obtain the variance of sample mean in systematic sampling.
- Q7) a) Explain the procedures of selecting a p.p.s. sample and their advantages.
 - b) Obtain the variance of sample mean in two stage sampling with equal number of second stage units.
- **Q8)** a) Obtain the variance of sample total in p.p.s. sampling.
 - b) Explain two stage sampling. What are its advantages? Give any two of its applications.
- *Q9*) a) Discuss the relative efficiency of ratio and regression estimates.
 - b) Obtain the variance of the ratio estimate. Compare it with the estimate based on mean per unit.
- **Q10**(a) Compare the variances of regression estimates in stratified sampling and describe the conditions on the optimum Choices of the regression estimate.
 - b) Obtain the leading term in the bias of the ratio estimate. Derive the variance of an unbiased ratio estimator of the population total in stratified random sampling.

(DMSTT 04)

[Total No. of Pages : 02

M.Sc. DEGREE EXAMINATION, MAY – 2017

First Year

STATISTICS

Design of Experiments

Time : 3 Hours

Total No. of Questions : 10]

Maximum Marks: 70

<u>Answer any Five questions.</u> <u>All questions carry equal Marks.</u>

- *Q1*) a) Define:
 - i) Rank of a matrix.
 - ii) Inverse of a matrix.
 - iii) Idempotent matrix and
 - iv) Trace of a matrix.

Give examples one each.

b) State and prove Cauley-Hamilton theorem.

(Q2) a) State Cochran's theorem for quadratic forms. Find the rank of the following matrix: $B = \begin{bmatrix} 5 & 1 & 3 \\ 0 & 0 & 2 \\ 10 & 2 & 4 \end{bmatrix}$

b) Find the characteristic roots and vectors of A = $\begin{bmatrix} 3 & -6 & 6 \\ 2 & -4 & 4 \\ 1 & -2 & 2 \end{bmatrix}$

- **Q3)** a) Explain the
 - i) Linear model and
 - ii) Estimable functions.
 - b) State and prove Gauss-Markov theorem.
- **Q4)** a) Explain the
 - i) Generalised linear model and
 - ii) Best linear unbiased estimates.

- b) State and prove Aitken's theorem.
- Q5) a) Explain the analysis of covariance of two-way classification.
 - b) Explain the analysis of variance of one-way classification with unequal number of observations.
- *Q6*) a) Explain the analysis of covariance of one-way classification.
 - b) Explain the analysis of variance of two-way classification with unequal number of observations.
- Q7) a) Explain the missing plot technique when some observations are missing.
 - b) Explain RBD. Obtain the least squares estimates and expectations of means sums of squares.
- **Q8)** a) Explain CRD. Obtain the least squares estimates and expectations of means sums of squares.
 - b) Explain
 - i) Graeco Latin Square Design and
 - ii) Mutually orthogonal Latin squares design.
- *Q9*) a) Explain the analysis of 2^3 factorial experiment.
 - b) Explain the interblock analysis of BIBD.
- *Q10*) a) Explain the analysis of 3^2 factorial experiment.
 - b) Explain the intrablock analysis of BIBD.