(DM21)

Total No. of Questions : 10]

[Total No. of Pages : 02

M.Sc. DEGREE EXAMINATION, MAY – 2017

SECOND YEAR

MATHEMATICS

Topology and Functional Analysis

Time : 3 Hours

Maximum Marks: 70

<u>Answer any five questions</u> <u>Selecting atleast two from each section</u> <u>All questions carry equal marks</u>

SECTION - A

- *Q1*) a) Show that a subset of a topological space is closed if and only if it contains its boundary.
 - b) Let f be a one-to-one mapping of one topological space onto another. Then show that f is a homomorphism if and only if both f and f^{-1} are continuous.
- **Q2)** a) Prove that any closed subspace of a compact space is compact.
 - b) Prove that any continuous mapping of a compact metric space into a metric space is uniformly continuous.
- Q3) a) Prove that every closed and bounded subspace of the real line is compact.
 - b) Show that a compact metric space is separable.
- **Q4)** a) Show that every compact subspace of a Hausdorff space is closed. Deduce that a one-to-one continuous mapping of a compact space onto a Hausdorff space is a homomorphism.
 - b) Show that a closed subspace of a normal space is normal.
- **Q5)** a) State and prove the Urysohn's Lemma.
 - b) Show that a topological space is connected if and only if every non empty proper subset has a non empty boundary.

SECTION - B

- **Q6)** a) Let N be a non zero normed linear space. Prove that N is a Banach space if and only if $\{x: ||x|| = 1\}$ is complete.
 - b) State and prove the Hahn Banach theorem.
- **Q7)** a) Show that a non empty subset X of a normed linear space N is bounded if and only if f(x) is a bounded set of numbers for each f in N*.
 - b) State and prove the closed Graph Theorem.
- **Q8)** a) State and establish the Schwarz inequality. Deduce that the inner product in a Hilbert space is jointly continuous.
 - b) If T is an operator on a Hilbert space H, then show that the following conditions are equivalent to one another
 - i) T*T = I
 - ii) (Tx, Ty) = (x, y)for all x, y
 - iii) ||T(x)|| = ||x|| for all x
- **Q9)** a) If M and N are closed linear subspaces of a Hilbert space H such that $M \perp N$ then show that the linear subspace M + N is also closed.
 - b) If T is an operator on a Hilbert space H for which (Tx, x) = 0 for all x, then show that T = 0.
- **Q10)** a) Prove that a Hilbert space H is separable if and only if every orthonormal set in H is countable.
 - b) If $P_1, P_2, ..., P_n$ are the projections on closed linear subspace $M_1, M_2, ..., M_n$ of H then $P = P_1 + P_2 + ..., P_n$ is a projection if and only if the Pi's are pairwise orthogonal.

(DM22)

[Total No. of Pages : 02

M.Sc. DEGREE EXAMINATION, MAY – 2017

Second Year

MATHEMATICS

Measure and Integration

Time : 3 Hours

Total No. of Questions : 10]

Maximum Marks: 70

<u>Answer any five questions</u> <u>All questions carry equal marks</u>

- **Q1)** a) Define a countable set. If A is a countable set, then prove that the set of all finite sequences from A is also countable.
 - b) State and prove the Heine Borel theorem.
- **Q2)** a) Prove that a Borel set is measurable. Show in particular that each open set and each closed set is measurable.
 - b) Show that the interval (a, ∞) is measurable.
- **Q3)** a) Prove that for each extended real number α , the set $\{x: f(x) = \alpha\}$ is measurable.
 - b) If m is a countably additive, translation invariant measure defined on a σ algebra containing the set P, then prove that m [0,1) is either zero or infinite.
- *Q4*) a) State and prove the Lebesgue convergence theorem.
 - b) Let f and g be integrable over E. Then prove that

i)
$$(f+g)$$
 is integrable over E and $\int_{E} f + g = \int_{E} f + \int_{E} g$

ii) If A and B are disjoint measurable sets in E, then $\int_{A \cup B} f = \int_{A} f + \int_{B} f$.

- **Q5)** a) Show that if f is integrable over E, then so is |f| and $\left| \int_{E} f \right| \le \int_{E} |f|$. Does the integrability of |f| imply that of f? Justify your answer.
 - b) State and prove the monotone convergence theorem. Show that this theorem need not hold for decreasing sequence of functions.
- **Q6)** a) Prove that a function f is of bounded variation on [a,b] if and only if f is the difference of two monotone real valued functions on [a,b].
 - b) If f is absolutely continuous on [a,b] and f'(x) = 0 a.e, then prove that f is constant.
- Q7) a) State and prove the Holder inequality.
 - b) Prove that a normed linear space X is complete if and only if every absolutely summable series is summable.

Q8) a) Let
$$E_i \in B$$
, $\mu E_1 < \infty$ and $E_i \supset E_{i+1}$. Then show that $\mu \left(\bigcap_{i=1}^{\infty} E_i \right) = \lim_{n \to \infty} \mu E_n$.

- b) Let E be a measurable set such that $0 < \nu E < \infty$. Then show that there is a positive set A contained in E with $\nu A > 0$.
- *Q9*) a) State and prove the Hahn Decomposition Theorem.
 - b) Suppose that to each α in a dense set D of real numbers a set $B_{\alpha} \in B$ is assigned such that $B_{\alpha} \subset B_{\beta}$ for $\alpha < \beta$. Then show that there is a unique measurable extended real valued function *f* on X such that $f \leq \alpha$ on B_{α} and $f \geq \alpha$ on $X \sim B_{\alpha}$
- **Q10)** a) Prove that the set function μ^* is an outer measure.
 - b) State and prove the Caratheodary theorem.

(DM 23)

Total No. of Questions : 10] [Total No. of Pages : 02 M.Sc. DEGREE EXAMINATION, MAY – 2017 Second Year MATHEMATICS

Analytical Number Theory and Graph Theory

Time : 3 Hours

Maximum Marks: 70

Answer Any five questions selecting at least two Questions from each section.

All Questions carry equal marks.

<u>SECTION – A</u>

- **Q1)** a) State and prove Euler's Summation formula.
 - b) Prove that if *d* is a divisor function then for all $x \ge 1$

$$\sum_{n \le x} d(n) = x \log x + (2c-1)x + O(\sqrt{x}) \text{ where } c \text{ is Euler's constant.}$$

Q2) a) For x > 1 prove that

$$\sum_{n \le x} \phi(n) = \frac{3}{\pi^2} x^2 + \mathcal{O}(x \log x)$$

- b) Prove that the set of Lattice points visible from the origin has density $\frac{6}{\pi^2}$.
- **Q3)** Define Chebyshev's Ψ function and Chebyshev's θ function. Obtain the relation connecting the functions Ψ and θ given by

$$0 \le \frac{\Psi(x)}{x} - \frac{\theta(x)}{x} \le \frac{(\log x)^2}{2\sqrt{x} \cdot \log 2} \text{ for } x > 0$$

Q4) For $n \ge 2$, prove that the following inequalities hold for the functions $\pi(n)$ and log n.

$$\frac{1}{6} \frac{n}{\log n} < \pi(n) < 6 \frac{n}{\log n}.$$

SECTION - B

- **Q5)** Prove that a simple Graph with *n*-vertices and *k*-components can have at most $\frac{(n-k)(n-k+1)}{2}$ edges.
- **Q6)** Prove that a Graph G is an Eulerian graph if and only if all vertices of G are of even degree.
- **Q7)** Prove that with respect to any of its spanning tree a connected graph of *n*-vertices and *e* edges has (n-1) tree branches and e n + 1 chords.
- **Q8)** Prove that every circuit has an even number of edges in common with any cut-set.
- **Q9)** Prove that any simple planar graph can be embedded in a plane such that every edge is drawn as a straight line segment.
- **Q10**)Prove that the ring sum of two circuits in a group G is either a circuit or an edge disjoint union of circuits.

Total No. of Questions : 10] [Total No. of Pages : 03 M.Sc. DEGREE EXAMINATION, MAY – 2017

Second Year

MATHEMATICS

Rings and Modules

Time : 3 Hours

Maximum Marks: 70

Answer Any five questions.

All Questions carry equal marks.

Q1) a) Prove that a Boolean Algebra is complemented distributive lattice by defining

 $(a \lor b)' = a' \land b', 1 = 0',$

conversely a complemented distributive lattice is a Boolean algebra in which these equations hold.

- b) Prove that the subrings of a ring form a complete lattice under set inclusion.
- **Q2)** a) Define a maximal ideal and prime ideal of a ring. Prove that every maximal ideal is a prime ideal. Is the converse true. Justify your answer.
 - b) Prove that every proper ideal of a ring is contained in a maximal ideal.
- **Q3)** Prove that the following statements are equivalent
 - a) R is isomorphic to a finite direct product of rings $R_i, 1 \le i \le n$.
 - b) There exist central orthogonal idempotents $e_i \in R$ such that $1 + \sum_{i=1}^{n} e_i$ and $e_i R \cong R$.
 - c) R is a finite direct sum of ideals $K_i \cong R_i$.

- **Q4)** a) If B and C are submodules of a module A then prove that ${}^{B} + {}^{C}/{}_{B}$ is isomorphic to ${}^{C}/{}_{B \cap C}$.
 - b) Let B be a sub module of A_R . Then prove that A_R is Noetherian if and only if B and A/B are Noetherian.
- **Q5)** a) Let R be a ring and suppose that the ideal A of R is contained in a finite union of prime ideals $\bigcup_{i=1}^{n} P_i$. Show that A is contained in at least one of the P_i .
 - b) Let R be a Commutative ring. Then prove that the following conditions are equivalent.
 - i) R has a unique maximal ideal M.
 - ii) All non units of R are contained in a proper ideal in M.
 - iii) The non units form an ideal M.
- **Q6)** a) If R is a commutative ring then prove that Q(R) is regular if and only if R is semi prime.
 - b) Prove that a Boolean algebra is isomorphic to the algebra of all subsets of a set if and only if it is complete and atomic.
- **Q7)** a) Prove that the ring R is primitive if and only if there exists a faithful irreducible module A_R .
 - b) Prove that the radical is an ideal and $R/_{Rad R}$ is semi primitive.

- **Q8)** a) Prove that a ring R is completely irreducible if and only if it is isomorphic to a finite direct product of completely reducible simple rings.
 - b) Prove that the radical of right Artinian ring is nilpotent.
- *Q9*) a) Prove that every free module is projective.
 - b) Prove that every module is isomorphic to a factor module of a projective module.
- **Q10)**a) If M is the direct product of a family of modules $\{M_i / i\epsilon I\}$ then prove that M is injective if and only if each M_i is injective.
 - b) Prove that every module is isomorphic to a sub module of an injective module.

ζζζ