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FOREWORD 

Since its establishment in 1976, Acharya Nagarjuna University has been 

forging ahead in the path of progress and dynamism, offering a variety of courses 

and research contributions. I am extremely happy that by gaining ‘A+’ grade from 

the NAAC in the year 2024, Acharya Nagarjuna University is offering educational 

opportunities at the UG, PG levels apart from research degrees to students from 

over 221 affiliated colleges spread over the two districts of Guntur and Prakasam.  

The University has also started the Centre for Distance Education in 2003-

04 with the aim of taking higher education to the door step of all the sectors of the 

society. The centre will be a great help to those who cannot join in colleges, those 

who cannot afford the exorbitant fees as regular students, and even to housewives 

desirous of pursuing higher studies. Acharya Nagarjuna University has started 

offering B.Sc., B.A., B.B.A., and B.Com courses at the Degree level and M.A., 

M.Com., M.Sc., M.B.A., and L.L.M., courses at the PG level from the academic 

year 2003-2004 onwards.  

To facilitate easier understanding by students studying through the distance 

mode, these self-instruction materials have been prepared by eminent and 

experienced teachers. The lessons have been drafted with great care and expertise 

in the stipulated time by these teachers. Constructive ideas and scholarly 

suggestions are welcome from students and teachers involved respectively. Such 

ideas will be incorporated for the greater efficacy of this distance mode of 

education. For clarification of doubts and feedback, weekly classes and contact 

classes will be arranged at the UG and PG levels respectively.  

It is my aim that students getting higher education through the Centre for 

Distance Education should improve their qualification, have better employment 

opportunities and in turn be part of country’s progress. It is my fond desire that in 

the years to come, the Centre for Distance Education will go from strength to 

strength in the form of new courses and by catering to larger number of people. My 

congratulations to all the Directors, Academic Coordinators, Editors and Lesson-

writers of the Centre who have helped in these endeavors.  

Prof. K. Gangadhara Rao 

M.Tech., Ph.D., 

Vice-Chancellor I/c  

Acharya Nagarjuna University. 
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 LAB EXERCISE 1: 

 

Two sample Hotelling 2T  Statistic 
 

 

Problem: 

In the first phase of a study of the coast of transporting milk from farms to dairy plants, a 

survey was taken of firms engaged in milk transportation.  Cost data on X1=fuel, X2=repair, 

and X3=capital, all measured on a per-mile basis, are presented in below table for n1=15 

gasoline and n2=23 diesel trucks. 

 

Gasoline trucks 
Diesel trucks 

 

X1 X2 X3 X1 X2 X3 

16.44 12.43 11.23 8.50 12.26 9.11 

7.19 2.70 3.92 7.42 5.13 17.15 

9.92 1.35 9.75 10.28 3.32 11.23 

4.24 5.78 7.78 10.16 14.72 5.99 

11.20 5.05 10.67 12.79 4.17 29.28 

14.25 5.78 9.88 9.60 12.72 11.00 

13.50 10.98 10.60 6.47 8.89 19.00 

13.32 14.27 9.45 11.35 9.95 14.53 

29.11 15.09 3.28 9.15 2.94 13.68 

12.68 7.61 10.23 9.70 5.06 20.84 

7.51 5.80 8.13 9.77 17.86 35.18 

9.90 3.63 9.13 11.61 11.75 17.00 

10.25 5.07 10.17 9.09 13.25 20.66 

11.11 6.15 7.61 8.53 10.14 17.45 

12.17 14.26 14.9 8.29 6.22 16.38 

 

Test for differences in the mean cost vectors of gasoline and diesel trucks at α=5% l.o.s. by 

applying Hotelling’s T2. 
 

Aim: 

To test whether gasoline and diesel trucks have same mean cost vectors or not using two 

sample Hotelling’s 
2T statistic. 

Procedure: 

In this problem, we have to examine whether the mean vector of one MVN 

populations equations to the mean vector of another MVN populations  

 
(1) (2)

0H  : μ  = μ


  i.e.,  
(1) (2)μ  - μ  = 0


 ,     
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Now the Hotelling T2statistic for testing the above null hypothesis is given as  

       Hotelling’s 
2T =  ( ) ( )

' 2
m+n-2

mn

m+n
Y Y T

 
 
 

-1
X -  S X - 
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where  
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and the pooled sample dispersion (variance-covariance) matrix is given by   
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Now the critical value of 
2T  at    level of significance is given by                    

                                 
2

0T =
p , m+n- p -1

p(m+n- 2)
 F (α).

m+ n- p - 1  

 Conclusion: 

2 2

0 0 0If calculated T T ,  we reject H , otherwise we accept H =

 

 

 

R-CODE:  

hot2samp=function(data){ 

nc=ncol(data); 

x=subset(data[,-nc],data[,nc]==1); 

y=subset(data[,-nc],data[,nc]==2); 

cat("\n First Sample:\n"); print(x); 

cat("\n Second Sample:\n"); print(y); 

p=ncol(x);q=ncol(y); 
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m=nrow(x); n=nrow(y); 

xbar=colMeans(x); ybar=colMeans(y); 

sx=cov(x); sy=cov(y); 

s=((m-1)*sx+(n-1)*sy)/(m+n-2); 

cat("\n x-bar=[",xbar,"]"); 

cat("\n y-bar=[",ybar,"]"); 

cat("\n S-matrix:\n"); 

print(round(s,4)); 

tsq=(m*n/(m+n))*(t(xbar-ybar))%*%solve(s,xbar-ybar);  

#hot t^2 value. 

t0sq=(m+n-2)*p/(m+n-p-1)*qf(0.95,p,m+n-1); #critical T^2 

value. 

cat("\n Hotellings' calculated T^2=",tsq,"\n"); 

cat("\n Hotellings' critical T^2(5% los)=",t0sq,"\n"); 

if(tsq<=t0sq) {cat("Based on the given data we accept H0 

at 5% los \n"); 

               cat("That is we conclude that the given 

two samples have been drawn from MVN population. \n"); 

} 

if(tsq>t0sq) {cat("Based on the given data we reject H0 

at 5% los \n"); 

cat("That is we conclude that the given two samples have 

not been drawn from MVN population. \n"); 

} 

} 

data=read.csv("hotT2SAMPLES_TURTLES.csv",header=T); 

hot2samp(data); 

 

INFERENCE:  

Calculated T^2 value = 20.26095 

Critical T^2 value = 9.612036 

 Since the calculated T^2 value is greater than the critical T^2 value, we may 

conclude that the average milk transport cost of diesel trucks is different from 

gasoline trucks. 
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LAB EXERCISE 2: 

Repeated Measures Design 

 
Problem: 

Improved anesthetics are often developed by first studying their effects on animals. In one study 19 

dogs were initially given the drug pentobarbital. Each dog was then administered carbon dioxide (co2) 

at each of two pressure levels. Next halothane (H) was added and the administration of co2 was 

repeated. The response, milliseconds between heartbeats, was measured for the 4 treatments 

combinations. 

Now the treatments are as follows: 

 T1=high co2 pressure without H 

 T2=low co2 pressure without H 

 T3=high co2 pressure with H 

 T4=low co2 pressure with H 

The four measurements for each of the 19 dogs-data as follows 

 

Dogs Treatments 
 1 2 3 4 

1 426 609 566 600 

2 253 236 392 395 

3 359 433 349 367 

4 432 431 542 600 

5 415 426 513 513 

6 324 438 507 539 

7 315 312 410 456 

8 326 329 350 504 

9 375 447 540 548 

10 286 286 403 422 

11 349 382 473 457 

12 429 410 488 547 

13 348 367 447 514 

14 412 473 472 446 

15 397 326 455 468 

16 434 458 637 524 

17 394 367 432 469 

18 420 395 418 431 

19 397 566 645 625 

 

Analyze the anesthetizing effects of CO2 pressure and Halothane (H) using repeating measures 

designs. 

 
Aim:To test the equality of treatments and analyze the anesthetizing effects of CO2 presure 

and halothane (H) using repeated measures designs. 

Procedure: 

Consider a multivariate normal population ( , )pN  


. Let ‘C’ be a matrix of 

known constants  

Null hypothesis: Under Null hypothesis we have 0H  :
 
Cμ = 0


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Alternative Hypothesis: Under alternative hypothesis we have 1H  :
 
C μ  0


 

TEST STATISTIC:  To test the hypothesis we have the test statistic  

                                    
2

( ) ( ') ( ) = C C C CnT  -1
X  S X 


 2

1nT −  

 

Where    

                        

1

1

1

1
( )( )

( 1)

n

i

i

n

i i

i

n

n

=

=

=

= − −
−





X

S

x

x x x x

 

  

            

1 1  1   1

1 1  1 1

1 1 1   1

− − 
 

= − −
 
 − − 

C  

 

At  the given α  level of significance, 0H  may be rejected in favor of  1H  if 

2 2

0T  > T  , where 2

0 q-1,n-q+1

(n - 1) (q-1)
T  =   (α)

n - q+1
 F    and  

q-1,n-q+1 (α)F   is the 

upper 
th100 α  percentile of   the F-distribution and can be obtained from the F-

tables. 

 

 R-CODE: -  
 
# R-CODE FOR COMPUTING HOTELLING'S T^2 STATISTIC FOR REPEATED 

MEASURES DESIGN 

data=read.csv("rmd_dogs.csv",header=T); 

#data=data[,-1]; 

RMD=function(data){ 

X=as.matrix(data); 

n=nrow(X);q=ncol(X); 

C=matrix(c(-1,1,1,-1,-1,-1,1,1,-1,1,-1,1),3); 

cat("\n C-matrix:\n");print(C); 

xbar=colMeans(X); # COMPUTES XBAR 

cat("x-bar=[",xbar,"]\n"); 

S=cov(X);#computes S-matrix 

print("S-matrix:"); print(S);  
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CSC=C%*%S%*%t(C); 

zbar=C%*%xbar; 

Tsq=n*t(zbar)%*%solve(CSC,zbar); 

cat("Hotelling's CALCULATED T^2=",Tsq,"\n"); 

T0sq=(n-1)*(q-1)/(n-q+1)*qf(0.95,q-1,n-q+1); 

cat("Hotelling's CRITICAL T^2(5% los) =",T0sq,"\n"); 

if (Tsq<=T0sq) {cat("Based on the given data we Accept H0 AT 

5% LOS.\n"); 

cat("That is we conclude that the given TREATMENTS are 

equal\n");}  

if(Tsq>T0sq) {cat("Based on the given data we Reject H0 at 5% 

LOS.\n"); 

cat("That is we conclude that the given TREATMENTS are NOT 

equal \n");      } 

} 

RMD(data) 

 

OUTPUT: 

 

C-matrix:  

     [,1] [,2] [,3] [,4] 

[1,]   -1   -1    1    1 

[2,]    1   -1    1   -1 

[3,]    1   -1   -1    1 

x-bar=[ 373.2105 404.7895 475.7368 496.0526 ] 

[1] "S-matrix:" 

         T1       T2       T3       T4 

T1 2865.398 3292.769 2656.836 1920.488 

T2 3292.769 8147.398 5567.553 4248.012 

T3 2656.836 5567.553 7158.871 4759.848 

T4 1920.488 4248.012 4759.848 5031.386 

 

Hotelling's CALCULATED T^2= 77.22728  

Hotelling's CRITICAL T^2(5% los) = 10.93119  
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Based on the given data we Reject H0 at 5% LOS. 

That is we conclude that the given TREATMENTS are NOT equal  

 

INFERENCE: 

Hotelling's CALCULATED T^2= 77.22728  

Hotelling's CRITICAL T^2(5% los) = 10.93119  

 Thus, calculated T^2 is greater than the critical T^2   i.e., T^2(cal)>T^2(crit) 

 Therefore, we conclude that the given Treatments T1, T2, T3 and T4 are NOT equal. 
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LAB EXERCISE 3: 

 

Paired Sample in Hotelling 2T  Statistics 
 

 

 

Problem: 

Municipal waste water treatment plants are required by law to monitor their discharges into rivers and 

streams on a regular basis.  Concern about the reliability of data from one of these self monitoring 

programmers lead to a study in which samples of efficient are divided and sent to two laboratories for 

testing. One half of each sample was sent to the Wisconsin state laboratories of hygiene and another 

half was sent to a private commercial lab routinely used in the monitoring program.  Measurement of 

bio-chemical oxygen demand (BOD) and suspended solids (S.S) were obtained for n=11 samples 

splits from the two laboratories the data displayed below. 

Efficient 

Data:- 

Sample 

 

Commercial lab State Lab of hygiene 

X1
(1)(BOD) X1

(1)(S.S) X1
(2)(BOD) X1

(2)(S.S) 

1 10 27 25 15 

2 6 23 28 30 

3 15 64 36 29 

4 8 42 45 29 

5 11 30 15 36 

6 34 79 49 64 

7 28 26 48 30 

8 70 24 54 68 

9 43 54 34 56 

10 30 30 29 32 

11 25 14 35 21 

 

Does the two laboratories chemical analysis agree?  Apply Hotelling’s T2 test. 

 

Aim:To test whether the two laboratories chemical analysis agree or not by using Hotelling’s 

T^2 Statistic procedure. 

Procedure: 

Let (1)

jx


 denote the response of an individual before the test and (2)

jx


 denotes the response of 

the individual after the treatment i.e., ( )(1) (2),j jx x


 are p measurements recorded on thj unit.  

The ‘n’ differences  (1) (2)

j j j= −d x x


, j = 1,2,3,...,n represents independent observations from 

an ( , )p d dN μ


.  Now, for testing the hypothesis 
0 1: 0 : 0d dH vs H= μ μ


 we have the 

following test statistic. 

TEST STATISTIC: 

 To test the hypothesis we have the test statistic  
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                    2 1 2
1~ nd dT n S T−
−

= d d
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                           where 
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i

n
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=
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 At the given 𝛼 % level of significance, 𝐻0 may be rejected in favor of 𝐻1 if  2 2

0dT T , 

where, 

2 ( )

0 ,

( 1)

( )
p n p

n p
T F

n p



−

−
=

−
.  The upper 100 𝛼𝑡ℎ percentile of the F – distribution and can be 

obtained from the F – Tables.  

R-CODE: 

 

# R-CODE FOR COMPUTING HOTELLING'S T^2 STATISTIC IN CASE OF 

PAIRED SAMPLES  

pairedhT2=function(X,Y){ 

data=read.csv("PairedT_MUNICAPAL.csv",header=T); 

nc=ncol(data); 

data=as.matrix(data); 

X=subset(data[,-nc],data[,nc]==1); 

Y=subset(data[,-nc],data[,nc]==2); 

D=X-Y; 

n=nrow(D); 

i=rep(1,n); 

dbar=t(D)%*%i/n;# COMPUTES DBAR 

Sd=(t(D)%*%D-n*dbar%*%t(dbar))/(n-1);#computes covariance-

matrix 

p=ncol(D); 

cat("d-bar=[",dbar,"]\n"); 

print("Sample variance-covariance matrix:"); print(Sd);  

print("Inverse of the matrix:");print(solve(Sd)); 

 

Tsq=n*sum(dbar*solve(Sd,dbar));# Hotelling T^2 value 

cat("Hotelling's CALCULATED T^2=",Tsq,"\n"); 



Multivariate Analysis  1.10  Multivariate Analysis - Practical  
 

 

T0sq=(n-1)*p/(n-p)*qf(0.95,p,n-p); 

cat("Hotelling's CRITICAL T^2(5% los) =",T0sq,"\n"); 

if (Tsq<=T0sq) {cat("Based on the given data we Accept H0 AT 

5% LOS.\n"); 

cat("That is we conclude that there is NO significant 

difference between two sample mean vectors\n");}   

if(Tsq>T0sq) {cat("Based on the given data we Reject H0 at 5% 

LOS.\n"); 

cat("That is we conclude that there is SIGNIFICANT DIFFERENCE 

between two sample mean vectors\n");} 

} 

pairedhT2(X,Y) 

OUTPUT:- 

 

d-bar=[ -10.72727 0.2727273 ] 

[1] "Sample variance-covariance matrix:" 

          BOD        SS 

BOD  233.2182 -198.4818 

SS  -198.4818  385.6182 

[1] "Inverse of the matrix:" 

            BOD          SS 

BOD 0.007630241 0.003927367 

SS  0.003927367 0.004614697 

Hotelling's CALCULATED T^2= 9.409494  

Hotelling's CRITICAL T^2(5% los) = 9.458877  

Based on the given data we Accept H0 AT 5% LOS. 

That is we conclude that there is NO significant difference between two sample mean vectors 

INFERENCE:  

Hotelling's CALCULATED T^2= 9.409494  

Hotelling's CRITICAL T^2(5% los) = 9.458877  

Since, Cal T^2 < Critical T^2, we may conclude that the two laboratories (Commercial lab and 

State Lab)  chemical analysis agreed with each other. 
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LAB EXERCISE 4: 

Mahalnobis’s D2 Statistic. 

 

 

Problem: 

Researchers interested in assessing pulmonary function in no pathological populations asked 

subjects to run on a treadmill until exhaustion.  Samples of air were collected at definite 

intervals and the gas contents analyzed.  The results on 4 measures of oxygen consumption 

for 15 males and 15 females are given in below table.  The variables were 

x1 = Resting Volume O2 (L/min) 

x2 = Resting Volume O2 (mL/kg/min) 

x3 = maximum Volume O2 (L/min) 

x4 = maximum Volume O2 (mL/kg/min) 

 

 

Female Male 

x1 x2 x3 x4 x1 x2 x3 x4 

0.34 3.71 2.87 30.87 0.29 5.04 1.93 33.85 

0.39 5.08 3.38 43.85 0.28 3.95 2.51 35.82 

0.48 5.13 4.13 44.51 0.31 4.88 2.31 36.40 

0.31 3.95 3.60 46.00 0.30 5.97 1.90 37.87 

0.36 5.51 3.11 47.02 0.28 4.57 2.32 38.30 

0.33 4.07 3.95 48.50 0.11 1.74 2.49 39.19 

0.43 4.77 4.39 48.75 0.25 4.66 2.12 39.12 

0.48 6.69 3.50 48.86 0.26 5.28 1.98 39.94 

0.21 3.71 2.82 48.92 0.39 7.32 2.25 42.41 

0.32 4.35 3.59 48.38 0.37 6.22 1.71 28.97 

0.54 7.89 3.47 50.56 0.31 4.20 2.76 37.80 

0.32 5.37 3.07 51.15 0.35 5.10 2.10 31.10 

0.40 4.95 4.43 55.34 0.29 4.46 2.50 38.30 

0.31 4.97 3.56 56.67 0.33 5.60 3.06 51.80 

0.44 6.68 3.86 58.49 0.18 2.80 2.40 37.60 

 

Look for gender differences testing for equality of groups means up at 5% l.o.s.  by applying 

Mahalnobis’s D2 Statistic. 

 

Aim: To carry out Mahalnobis’s D2 Statistic for the given data. 

Procedure: Suppose  

1

2

1 11 12 1 1

2 21 22 2 2

: , ,..., ~ ( , )

: , ,..., ~ ( , )

n p

n p

X X X N

X X X N









μ

μ
 

 

 

Now our problem is test 
0 :H 1 2μ = μ


 vs 
1 :H 1 2μ μ


 

The Mahalanobis D2 Statistic is given by 
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

 

where  

                    

1

11 11 12 1 1

11

1
 Sample mean vector of , ,...,

n

n i

i

X X X X
n =

= = x


  

                    

2

12 21 22 2 2

12

1
 Sample mean vector of , ,...,

n

n i

i

X X X X
n =

= = x


    

and the pooled sample dispersion (variance-covariance) matrix is given by   

( ) ( )1 1 2 2

1 2

1 1

1

n S n S
S

n n

− + −
=

+ −
 

                                                            

1 1 1 1 1

11

2 2 2 2 2

12

1
( )( ) '

( 1)

1
( )( ) '

( 1)

m

i i

i

n

i i

i

n

n

=

=

= − −
−

= − −
−





S

S

x x x x

x x x x



  

 

1 2

2 1 2 1 2
, 1

1 2 1 2

( ) ( 2)*
, (α)

1
p n n p

n n n n p
D F

n n n n p
+ − −

+ + −


+ − −
 

R-CODE:  

 

#R CODE FOR MAHALNOBIS D^2 STATISTIC FOR TESTING EQUALITY OF 

TWO MVN POPULATION MEAN VECTORS. 

d2.test=function(data){ 

nc=ncol(data); 

x=subset(data[,-nc],data[,nc]==1); 

y=subset(data[,-nc],data[,nc]==2); 

cat("\n First Sample:\n"); print(x); 

cat("\n Second Sample:\n"); print(y); 

p=ncol(x);q=ncol(y); 

m=nrow(x); n=nrow(y); 

xbar=colMeans(x); ybar=colMeans(y); 

sx=cov(x); sy=cov(y); 

s=((m-1)*sx+(n-1)*sy)/(m+n-2); 

cat("\n x-bar=[",xbar,"]"); 

cat("\n y-bar=[",ybar,"]"); 
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cat("\n S-matrix:\n"); 

print(round(s,4)); 

dsq=t(xbar-ybar)%*%solve(s,xbar-ybar);    #mahalanobis d^2 

test statistic. 

d0sq=(m+n)/(m+n)*p/(m+n-p-1)*qf(0.95,p,m+n-p-1);    #critical 

d^2 value. 

cat("\n Mahalanobis D^2 statistic(distance)value=",dsq,"\n"); 

cat("\n Mahalanobis critical D^2 value (at 5% 

los)=",d0sq,"\n"); 

if(dsq<=d0sq) {cat("Based on the given data we accept H0 at 5% 

los \n"); 

cat("That is we conclude that the given two samples have been 

drawn from MVN population. \n");} 

if(dsq>d0sq) {cat("Based on the given data we reject H0 at 5% 

los \n"); 

cat("That is we conclude that the given two samples have not 

been drawn from MVN population. \n"); 

}  

} 

data=read.csv("MAHALANOBIS_TREADMILL.csv",header=T); 

data=as.matrix(data); 

#sink("Y24ST20024_mahalnobis"); 

d2.test(data); 

#sink(); 

 
OUTPUT: 

 
 First Sample: 

        X1   X2   X3    X4 

 [1,] 0.34 3.71 2.87 30.87 

 [2,] 0.39 5.08 3.38 43.85 

 [3,] 0.48 5.13 4.13 44.51 

 [4,] 0.31 3.95 3.60 46.00 

 [5,] 0.36 5.51 3.11 47.02 
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 [6,] 0.33 4.07 3.95 48.50 

 [7,] 0.43 4.77 4.39 48.75 

 [8,] 0.48 6.69 3.50 48.86 

 [9,] 0.21 3.71 2.82 48.92 

[10,] 0.32 4.35 3.59 48.38 

[11,] 0.54 7.89 3.47 50.56 

[12,] 0.32 5.37 3.07 51.15 

[13,] 0.40 4.95 4.43 55.34 

[14,] 0.31 4.97 3.56 56.67 

[15,] 0.44 6.68 3.86 58.49 

Second Sample: 

        X1   X2   X3    X4 

 [1,] 0.29 5.04 1.93 33.85 

 [2,] 0.28 3.95 2.51 35.82 

 [3,] 0.31 4.88 2.31 36.40 

 [4,] 0.30 5.97 1.90 37.87 

 [5,] 0.28 4.57 2.32 38.30 

 [6,] 0.11 1.74 2.49 39.19 

 [7,] 0.25 4.66 2.12 39.12 

 [8,] 0.26 5.28 1.98 39.94 

 [9,] 0.39 7.32 2.25 42.41 

[10,] 0.37 6.22 1.71 28.97 

[11,] 0.31 4.20 2.76 37.80 

[12,] 0.35 5.10 2.10 31.10 

[13,] 0.29 4.46 2.50 38.30 

[14,] 0.33 5.60 3.06 51.80 

[15,] 0.18 2.80 2.40 37.60 

 

 x-bar=[ 0.3773333 5.122 3.582 48.52467 ] 

 y-bar=[ 0.2866667 4.786 2.289333 37.898 ] 

 S-matrix: 

       X1      X2      X3      X4 

X1 0.0061  0.0831  0.0079  0.0123 

X2 0.0831  1.6212 -0.0526  1.8783 
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X3 0.0079 -0.0526  0.1878  1.2868 

X4 0.0123  1.8783  1.2868 34.0008 

 

 Mahalanobis D^2 statistic(distance)value= 9.463008  

 Mahalanobis critical D^2 value (at 5% los)= 0.4413937  

Based on the given data we reject H0 at 5% los  

INFERENCE:  

Mahalanobis D^2 statistic (distance)value= 9.463008  

 Mahalanobis critical D^2 value (at 5% los)= 0.4413937  

Based on the given data we reject H0 at 5% los  

That is, we conclude that the given two samples have not been drawn from MVN population. 
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LAB EXERCISE 5: 

MANOVA 
 

 

Problem: 

Carry out Manova for GPA and GMAT data given in the following table Admission data for 

graduate school of business.                                                                        

 

П1:Admit П2:Not Admit П3:Border line 

App 

No. 

GPA 

(X1) 

GMAT 

(X2) 

App 

No. 

GPA 

(X1) 

GMAT 

(X2) 

App 

No. 

GPA 

(X1) 

GMAT 

(X2) 

1 2.96 596 21 2.54 446 36 2.86 494 

2 3.14 473 22 2.43 425 37 2.85 496 

3 3.22 472 23 2.29 460 38 3.14 425 

4 3.59 527 24 2.36 531 39 3.28 371 

5 3.69 515 25 2.57 542 40 3.89 447 

6 3.46 693 26 2.35 416 41 3.15 313 

7 3.13 626 27 2.60 412 42 3.50 412 

8 3.19 663 28 2.51 458 43 3.00 485 

9 3.63 447 29 2.36 389 44 2.80 444 

10 3.65 598 30 2.98 482 45 3.13 430 

11 3.30 563 31 2.66 420    

12 3.40 553 32 2.68 420    

13 3.55 588 33 2.48 533    

14 3.78 591 34 2.90 519    

15 3.44 692 35 2.63 504    

16 3.48 538       

17 3.90 552       

18 3.35 520       

19 3.39 555       

20 3.35 523       

 

Aim: To investigate whether the population means vectors are same using the random 
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samples. And carryout MANOVA for the given data. 

Procedure: 

 Suppose we have ‘g’ populations each is distributed multivariate normal with mean 

vector 
1 2, ,...., g  


 respectively. Let us suppose that all populations have the same 

covariance 

matrix ∑ 

Thus, we have ‘g’ population. 

1 1

2 2

~ ( , )

~ ( , )

.

.

.

~ ( , )g g

NP

NP

NP

 

 

 













 

Now, we have a sample ‘g’ size ni from ith population 𝜋𝑖 thus, we have ‘g’ sample form ‘g’ 

population follows: 

1

2

1

1 11 12 1 1

2 21 22 2 2

1 2

: , ,..., ~ ( , )

: , ,..., ~ ( , )

.

.

.

: , ,..., ~ ( , )

n

n

g g g gn g

X X X NP

X X X NP

X X X NP

 

 

 







 

 

 

 

Null hypothesis:  

Under the Null Hypothesis we have 
0 1 2 1: .... gH   = = =


 

Alternative hypothesis: 

 Under Alternative hypothesis we have 
1 1 2: ... gH     


 

To test the hypothesis we have the test statistic is 
* W

B W


+
=  

The quantity  
*  is called Wilk’s lamda  and related to likelihood ratio criterion. 

       where, 

'

1 1

( )( )
ing

ij i ij i

i j

W X X X X
= =

= − −


 

1 1 2 2( 1) ( 1) ... ( 1)g gn S n S n S= − + − + + −  



Multivariate Analysis  1.18  Multivariate Analysis - Practical  
 

 

Where Si is sample covariance matrix of the sample 

'

1

( )( )
g

i i i

i

B n X X X X
=

= − −


 

 B+W =(n-1)s pooled 

 W = Error sum of squares 

 S = Total sum of squares 

Where ‘n’ is total number of sample pooled it’s the samples co-variance matrix of the pooled 

samples. 

The exact distribution of  
*  can be derived for the special  

cases as listed in the below. 

 

𝑝 ≥ 1, 𝑔 = 3 

 

1

*

*
2 ,2 - -21

1-
- - 2 g

i

i

g

i
p n gi

n g F

=

 
 =
 
 

   
  

     
 

 

 

R-CODE:  

# R-CODE FOR MANOVA (FOR TESTING THE EQUALITY OF SEVERAL 

MULTIVARIATE NORMAL SAMPLE MEAN VECTORS) 

data=read.csv("manova_gmat.csv",header=T); 

print(data); 

#data=data[,-1]; 

MANOVA=function(data){ 

data=as.matrix(data); 

nc=ncol(data);g=max(data[,nc]); 

W=0; 

for (i in 1:g) { 

X=subset(data[,-nc],data[,nc]==i); 

n=nrow(X); 

A=(n-1)*cov(X); 

W=W+A;} 

print("W-matrix:");print(W); 
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X=data[,-nc];n=nrow(X); 

BPW=(n-1)*cov(X); 

print("B+W-matrix:");print(BPW); 

lamda=sqrt(det(W)/det(BPW)); 

lamda=(1-lamda)/lamda*(n-g-1)/(g-1); 

cat("lamda=",lamda,"\n"); 

Fcrit=qf(0.95,2*(g-1),2*n-g-1);# critical F value 

cat("F-critical value=",Fcrit,"\n"); 

if (lamda<=Fcrit) cat(" The given samples have come from the 

same population\n") 

if(lamda>Fcrit) cat(" The given samples have come from  

different populations\n"); 

} 

MANOVA(data); 

 
OUTPUT:- 

 
> source("F:\\CHANDU MVA 2nd SEM\\MANOVA.txt") 

    GPA GMAT SAMPLES 

1  2.96  596       1 

2  3.14  473       1 

3  3.22  472       1 

4  3.59  527       1  

5  3.69  515       1 

6  3.46  693       1 

7  3.13  626       1 

8  3.19  663       1 

9  3.63  447       1 

10 3.65  598       1 

11 3.30  563       1 

12 3.40  553       1 

13 3.55  588       1 

14 3.78  591       1 

15 3.44  692       1 
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16 3.48  538       1 

17 3.90  552       1 

18 3.35  520       1 

19 3.39  555       1 

20 3.35  523       1 

21 2.54  446       2 

22 2.43  425       2 

23 2.29  460       2 

24 2.36  531       2 

25 2.57  542       2 

26 2.35  416       2 

27 2.60  412       2 

28 2.51  458       2 

29 2.36  389       2 

30 2.98  482       2 

31 2.66  420       2 

32 2.68  420       2 

33 2.48  533       2 

34 2.90  519       2 

35 2.63  504       2 

36 2.86  494       3 

37 2.85  496       3 

38 3.14  425       3 

39 3.28  371       3 

40 3.89  447       3 

41 3.15  313       3 

42 3.50  412       3 

43 3.00  485       3 

44 2.80  444       3 

45 3.13  430       3 

[1] "W-matrix:" 

           GPA       GMAT 

GPA    2.62336    -50.092 

GMAT -50.09200 155134.250 
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[1] "B+W-matrix:" 

           GPA        GMAT 

GPA    9.25592    629.6287 

GMAT 629.62867 303923.6444 

lamda= 29.60971  

F-critical value= 2.47774  

The given samples have come from different populations 

INFERENCE: 

 F-calculated value = 3.113445 

 F-critical value= 2.47774  

Therefore, the given samples are not being drawn from the same population. 
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LAB EXERCISE 6: 

 

Linear Discriminant Analysis for Two Multivariate Populations 

 

Problem: 

Jolicoueur and Mosimann studied the relationship of size and shape for painted turtles. The 

following table contains their measurements on carapaces of 23 female and 23 male turtles. 

Test whether the female turtles and male turtles have the same measurements with respect to 

carapaces by applying Hotelling’s T2at 5% l.o.s. 

 
Female Male 

Length 

(x1) 

Width 

(x2) 

Height 

(x3) 

Length 

(x1) 

Width 

(x2) 

Height 

(x3) 

98 81 40 93 74 37 

103 84 38 96 78 39 

105 86 45 101 84 39 

119 88 44 102 85 38 

123 92 50 103 81 37 

103 100 46 104 83 39 

133 99 51 111 102 39 

133 102 51 107 82 40 

133 102 51 112 89 40 

134 100 48 113 88 40 

136 102 49 114 86 40 

145 98 65 116 90 43 

138 99 51 117 90 41 

141 105 53 117 99 41 

147 108 57 119 93 41 

149 107 55 120 89 45 

153 107 56 120 93 44 

160 115 63 121 95 42 

155 117 65 125 93 45 

148 115 62 127 96 45 

159 118 63 128 103 45 

162 124 61 131 95 46 

175 132 67 135 106 47 

 

Carry out the discriminant analysis to find the Fisher’s linear discriminant. 

 

Aim: To carry out the discriminant analysis to find the linear discriminant functions and 

using these functions allocate the new observations to an appropriate group. 

 

Procedure: - 



Centre for Distance Education  1.23 Acharya Nagarjuna University 

 

 

 The linear discriminant for ith population is given by 
' '1 11ˆ ( )

2
i i id x x S x x S x− −= − +


 

th

iwhere x meanof thei sample=


 

1 1 2 2

1 2

( 1) ( 1)

2

n S n S
S

n n

− + −
=

+ −
 

1 2n n n= +  

Si = Sample dispersion matrix for ith sample 

Allocation of new observation 0x


:- using the above linear discriminant function we find linear 

discriminant scores for ith group  
' '1 1

0 0

1ˆ ( )
2

i i i id x x S x x S x− −= −


; i=1,2 

 Allocate the new observation 0x


to that group for which the discriminant score is 

maximum. 

R-CODE:  

DA2=function(data){ 

X=data;X=as.matrix(X) 

nc=ncol(X) 

X1=subset(X[,-nc],X[,nc]==1) 

X2=subset(X[,-nc],X[,nc]==2) 

cat("\n Enter new observation values:\n") 

xnew = matrix(scan(), nrow = 1) 

p=ncol(X1) 

n1=nrow(X1);x1bar=round(colMeans(X1),4);S1=cov(X1) 

n2=nrow(X2);x2bar=round(colMeans(X2),4);S2=cov(X2) 

S=((n1-1)*S1+(n2-1)*S2)/(n1+n2-2) 

cat("\n Discriminant analysis for allocating a new 

observation") 

cat("\n Between two multivariate normal populations") 

cat("\n Mean vectors of the given samples:\n") 



Multivariate Analysis  1.24  Multivariate Analysis - Practical  
 

 

cat(" X1bar=[",x1bar,"]\n") 

cat(" X2bar=[",x2bar,"]\n") 

cat(" New observation Xnew=[",xnew,"]\n") 

cat("\n Sample variance covariance matrix 

(pooled):\n");print(round(S,4)) 

w=round(solve(S,x1bar-x2bar),4) 

d1=solve(S,x1bar) 

d2=solve(S,x2bar) 

k1=-sum(x1bar*solve(S,x1bar))/2 

k2=-sum(x2bar*solve(S,x2bar))/2 

cat("\n Linear discriminant functions:\n") 

cat(" Y1=",k1) 

for(i in 1:p) if(d1[i]>0) cat("+",d1[i],names(data)[i]) 

else cat("-",-d1[i],names(data)[i]) 

cat("\n\n") 

cat(" Y2=",k2) 

for(i in 1:p) if(d2[i]>0) cat("+",d2[i],names(data)[i]) 

else cat("-",-d2[i],names(data)[i]) 

cat("\n\n") 

D1=k1+sum(xnew*d1) 

D2=k2+sum(xnew*d2) 

cat("\n Discriminant score of first population=",D1) 

cat("\n Discriminant score of second population=",D2) 

if(D1<D2) cat("\n\n Conclusion: New observation x0 is 

allocated to second MVN population\n") 
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else cat("\n\n Conclusion: New observation x0 is allocated to 

first MVN population\n") 

} 

OUT PUT:  

Discriminant analysis for allocating a new observation 

 Between two multivariate normal populations 

 Mean vectors of the given samples: 

 X1bar=[ 137.0435 103.5217 53.5217 ] 

 X2bar=[ 114.4348 90.1739 41.4348 ] 

 New observation Xnew=[ 0.45 5.75 4 40 ] 

 Sample variance covariance matrix (pooled): 

         x1       x2      x3 

x1 279.1957 159.8804 93.9575 

x2 159.8804 114.6146 54.5909 

x3  93.9575  54.5909 38.6680 

 Linear discriminant functions: 

 Y1= -50.28727- 0.42671 x1+ 1.054256 x2+ 0.9325939 x3 

 Y2= -36.92879- 0.2961669 x1+ 1.058552 x2+ 0.2967467 x3 

 Discriminant score of first population= -57.75534 

 Discriminant score of second population= -41.63508 

 Conclusion: New observation x0 is allocated to second MVN population 
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INFERENCE: 

Linear discriminant functions: 

 Y1= -50.28727- 0.42671 x1+ 1.054256 x2+ 0.9325939 x3 

 Y2= -36.92879- 0.2961669 x1+ 1.058552 x2+ 0.2967467 x3 

 Discriminant score of first population= -57.75534 

 Discriminant score of second population= -41.63508 

New observation 0x


is allocated to first MVA Population. 
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LAB EXERCISE 7: 

 

Linear discriminant Analysis for several multivariate populations 

 
 

Problem: 

In a diabetic centre the fasting blood sugar levels of three groups of patients are recorded two 

times, one before the treatment(X1) and another after the treatment(X2). 

 

Group1:<40years            

 

Group2:40-

50Years      
Group3:50+Years 

X1       X2 X1       X2 X1       X2 

162 174 

222 210 

110 206 

233 218 

356 148 

181 366 

185 215 

144 236 

250 206 

241 217 

 

329 310 

314 303 

228 343 

215 320 

159 215 

179 303 

156 130 

196 167 

253 279 

218 234 

 

110 198 

112 105 

294 328 

213 230 

221 170 

160 176 

369 319 

157 180 

186 160 

236 235 

 
 

Carry out the discriminant analysis to find the linear discriminant functions (scores) and 

using these functions (scores) allocate the new observation X=[185  200]΄ to an appropriate 

group. 

 

Aim: -To carry out discriminant analysis for the 3 groups of diabetic patient to find the linear 

discriminant functions(scores) to 3 groups and to allocate the given new observation to an 

appropriate group(population). 

Procedure:- 

 The simple linear discriminant function (score) for ith group (population) is 

given by
' '1 11ˆ ( )

2
i i id x x S x x S x− −= − +


 

where ix


= Mean of the ith sample 

1 1 2 2( 1) ( 1) ... ( 1)g gn S n S n S
S

n g

− + − + + −
=

−
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where 
1

g

i

i

n n
=

=  

Si = Sample dispersion matrix for ith sample 

Allocation of new observation 0x


:- using the above linear discriminant function we find 

linear discriminant scores for ith group  ' 1 ' 1

0 0

1ˆ ( )
2

i i i id x x S x x S x− −= −


;  i=1,2,.. 

 Allocate the new observation 0x


to that group for which the discriminant score is 

maximum. 

Conclusion:-New observation 0x


 is allocated to MVA population. 

 

R-CODE: - 

# R-CODE FOR DISCRIMINANT ANALYSIS FOR THE CASE OF SEVERAL 

MULTIVARIATE  

# NORMAL NORMAL POPULATIONS WITH EQUAL VARIANCE-COVARIANCE 

MATRIX 

data=read.csv("ldf_sugar_sugar_levels.csv",header=T); 

nc=ncol(data); 

#data=data[,-nc]; 

cat("\n ENTER NEW Observatioin x0:"); 

x0=scan(); 

DISCANA=function(data,x0){ 

k=array();D=array(); 

nc=ncol(data); 

g=max(data[,nc]); 

data1=data[,-nc] 

data=as.matrix(data); 

mean=matrix(,g,nc-1); 

d=matrix(,g,nc-1); 

S=0;N=0; 

for (i in 1:g) { 

X=subset(data[,-nc],data[,nc]==i); 

mean[i,]=colMeans(X); 

n=nrow(X);N=N+n 

S=S+(n-1)*cov(X); 
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} 

S=S/(N-g);  

cat(" MEAN VECTORS OF THE GIVEN SAMPLES:\n"); 

for (i in 1:g) cat(" [",mean[i,],"]\n"); 

cat("\n New Observation X0= [",x0,"]\n"); 

cat("\nSample Dispersion matrix (pooled):\n");print(S); 

cat("\n LINEAR DISCRIMINANT FUNCTIONS:\n"); 

cat("        const.    "); 

for (i in 1:(nc-1)) cat(names(data1)[i],"      "); 

cat("\n"); 

for (i in 1:g) { 

d[i,]=solve(S,mean[i,]); 

k[i]=-sum(mean[i,]*d[i,])/2; 

cat("LDF",i,format(round(k[i],4),width=8,nsmall=2),format(roun

d(d[i,],4),width=8,nsmall=2),"\n");  

D[i]=k[i]+sum(x0*d[i,]); 

} 

cat("\nDiscriminant scores of POPULATIONs:\n"); 

cat(round(D,4)); 

cat("\n\n CONCLUSION:\n"); 

cat(" New observation x0 is allocated to MVN 

Population",which(D==max(D)),"\n") 

} 

DISCANA(data,x0) 

 
OUTPUT:- 
 

> source("C:\\Jilani\\DA_several_pop.R") 

 

 ENTER NEW Observatioin x0:1: 185 

2: 200 

3:  

Read 2 items 

 MEAN VECTORS OF THE GIVEN SAMPLES: 

 [ 208.4 219.6 ] 
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 [ 224.7 260.4 ] 

 [ 205.8 219.1 ] 

 New Observation X0= [ 185 200 ] 

Sample Dispersion matrix (pooled): 

         X1       X2 

X1 4920.670 2050.778 

X2 2050.778 4837.915 

 LINEAR DISCRIMINANT FUNCTIONS: 

        const.    X1       X2        

LDF 1   -6.625   0.0285   0.0333  

LDF 2  -8.6208   0.0282   0.0419  

LDF 3  -6.5351   0.0279   0.0335  

Discriminant scores of POPULATIONs: 

5.3058 4.9721 5.316 

New observation x0 is allocated to MVN Population 3  

 

Inference: 

 

Discriminant scores of POPULATIONs: 

5.3058 4.9721 5.316 

New observation x0 is allocated to MVN Population 3  
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LAB EXERCISE 8: 

 

Fisher’s Linear discriminant Analysis for several multivariate populations 

 

 
Problem: 

Bhuyan and Othman(1991) utilized the data on vertebrae of  two  fish specimens belong to 

families Serranidae(1),Carangidae(2) in the Dept of Zoology, Garyounis University, Libya.  

Only 12 observations of the variables are presented on each of the  specimens of commercial 

fishes recorded The recorded data are 

X1=length of the centrum,   

 X2=width of the centrum taken from anterior, 

X3=width of the centrum taken from posterior,  

The variables are measured in mm.   

 

SLNO X1 X2 X3          FAMILY 

1 7.5 6.7 6.5 1 

2 6.8 6.2 6.1 1 

3 8.5 7.1 6.8 1 

4 5.8 6.0 6.3 1 

5 5.2 5.8 5.4 1 

6 7.0 7.2 5.9 1 

7 8.2 7.5 7.0 1 

8 6.9 7.3 6.7 1 

9 7.4 6.8 6.6 1 

10 8.4 7.3 6.7 1 

11 7.6 7.0 6.7 1 

12 9.2 7.8 6.9 1 

13 9.4 6.3 6.5 2 

14 9.2 6.0 6.2 2 

15 8.7 6.1 6.0 2 

16 7.5 5.2 6.7 2 

17 8.2 6.6 6.3 2 

18 7.2 5.3 5.8 2 

19 6.7 5.8 6.9 2 

20 7.2 5.9 6.0 2 

21 7.7 6.3 7.1 2 

22 6.7 5.2 5.9 2 

23 9.4 7.2 6.9 2 

24 8.1 6.9 7.0 2 

 

Carry out the discriminant analysis to find the Fisher’s linear discriminant and using this 

function allocate the new observation X0=[ 7.8 5.5 4.8]΄     to an appropriate group. 
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Aim:-To carry out the discriminant analysis to find the Fisher’s linear discriminant and using 

this allocate the new observation. 

Procedure: 

We have the Fisher’s linear discriminant function  

1

1 2,           where ( )y S −= = −w x w x x
                                                                              

(1)  

Let ‘m’ be the midpoint between 1 2   and   yy  and is given by  

1 2

-1

1 2 1 2

( ) / 2

    =1/2 ( ) S ( )

m y y= +

− +x x x x
                                                                                             

(2)  

Now , the allocation rule or classification rule based on Fisher’s discriminant function is 

as follows: 

Allocate 0   to 
1

x π


 ,if   

1

0 1 2 0 0( )  or  y 0y S m m−= −  − x x x


 

Allocate 0 2  to x π


 ,if  

0 0  or y 0y m m −                                                                                                          (3)  

R-CODE: -  

 

# R-CODE FOR FINDING FISHER LINEAR DISCRIMINANT IN CASE OF TWO 

MULTIVARIATE  

# POPULATIONS WITH EQUAL VARIANCE-COVARIANCE MATRIX 

# DATA OF TWO SAMPLES SHOULD BE GIVEN IN THE SAME FILE 

# R-CODE FOR FINDING FISHER LINEAR DISCRIMINANT IN CASE OF TWO 

MULTIVARIATE  

# POPULATIONS WITH EQUAL VARIANCE-COVARIANCE MATRIX 

# DATA OF TWO SAMPLES SHOULD BE GIVEN IN THE SAME FILE WITH 

SAMPLE CODES 1 & 2 

# ENTER NEW OBSERVATION AS LAST OBSERVATION IN THE SAME FILE 

WITH SAMPLE CODE 3 

FISHERLDF=function(data){ 

nc=ncol(data); 

X1=subset(data[,-nc],data[,nc]==1);X2=subset(data[,-

nc],data[,nc]==2); 
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xnew = matrix(scan(), nrow = 1) 

p=ncol(X1); 

n1=nrow(X1);x1bar=round(colMeans(X1),4);S1=cov(X1); 

n2=nrow(X2);x2bar=round(colMeans(X2),4);S2=cov(X2); 

S=((n1-1)*S1+(n2-1)*S2)/(n1+n2-2); 

#sink("FISHERLDF-OUTPUT"); 

cat("\n FISHER LINEAR DISCRIMINANT ANALYSIS FOR ALLOCATING A 

NEW OBSERVATION"); 

cat(" BETWEEN TWO MULTIVARIATE POPULATIONS");  

cat("\n MEAN VECTORS OF THE GIVEN SAMPLES:\n"); 

cat("X1bar= [",x1bar,"]\n"); 

cat("X2bar= [",x2bar,"]\n"); 

cat("New Observation X0= [",xnew,"]\n"); 

cat("\nSample Variance-Covariance matrix 

(pooled):\n");print(round(S,4)); 

w=round(solve(S,x1bar-x2bar),4); # Computes Inv(S)(x1bar-

x2bar) 

cat("\n FISHER's LINEAR DISCRIMINANT FUNCTION:\n"); 

cat(" Y=");  

for (i in 1:p) if (w[i]>0) cat("  +",w[i],"X",i) else cat("  -

",-w[i],"X",i);  

cat("\n\n"); 

y1bar=sum(w*x1bar); 

y2bar=sum(w*x2bar); 

m=(y1bar+y2bar)/2; 

y0=sum(w*xnew); 

cat("\n y1bar=",y1bar);cat("\t y2bar=",y2bar);  

cat("\n m-value=",m);cat("\t y0-value=",y0); 

if (y0>m) cat("\n\n CONCLUSION: New observation x0 is 

allocated to FIRST Multivariate  Population\n") 

if(y0<=m) cat("\n\n CONCLUSION: New observation x0 is 

allocated to  SECOND Multivariate  Population\n"); 

} 
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OUT PUT: -  

data=read.csv("FISHDATA.csv", header=TRUE) 

data 

X1  X2  X3 X 

1  7.5 6.7 6.5 1 

2  6.8 6.2 6.1 1 

3  8.5 7.1 6.8 1 

4  5.8 6.0 6.3 1 

5  5.2 5.8 5.4 1 

6  7.0 7.2 5.9 1 

7  8.2 7.5 7.0 1 

8  6.9 7.3 6.7 1 

9  7.4 6.8 6.6 1 

10 8.4 7.3 6.7 1 

11 7.6 7.0 6.7 1 

12 9.2 7.8 6.9 1 

13 9.4 6.3 6.5 2 

14 8.7 6.0 6.2 2 

15 7.5 6.1 6.0 2 

16 8.2 5.2 6.7 2 

17 7.2 6.6 6.3 2 

18 7.7 5.3 5.8 2 

19 6.7 5.8 6.9 2 

20 7.2 5.9 6.0 2 
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21 7.7 6.3 7.1 2 

22 6.7 5.2 5.9 2 

23 9.4 7.2 6.9 2 

24 8.1 6.9 7.0 2 

 

FISHERLDF(data) 

1: 7.8 

2: 5.5 

3: 4.8 

4:  

Read 3 items 

 

 FISHER LINEAR DISCRIMINANT ANALYSIS FOR ALLOCATING A NEW 

OBSERVATION BETWEEN TWO MULTIVARIATE POPULATIONS 

 MEAN VECTORS OF THE GIVEN SAMPLES: 

             X1bar= [ 7.375 6.8917 6.4667 ] 

             X2bar= [ 7.875 6.0667 6.4417 ] 

New Observation X0= [ 7.8 5.5 4.8 ] 

 

Sample Variance-Covariance matrix (pooled): 

       X1     X2     X3 

X1 1.0757 0.4444 0.2842 

X2 0.4444 0.3980 0.1883 

X3 0.2842 0.1883 0.218 

 

 FISHER's LINEAR DISCRIMINANT FUNCTION: 

     Y=  - 2.2564 X 1  + 5.3221 X 2  - 1.5415 X 3 

 

 y1bar= 10.06895         y2bar= 4.588554 

 m-value= 7.328751       y0-value= 4.27243 

 

 CONCLUSION: New observation x0 is allocated to  SECOND Multivariate  Population 
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Inference:- 

 The Fisher’s linear discriminant function is  

 
     Y= - 2.2564 X 1 + 5.3221 X 2 - 1.5415 X 3 

 y1bar= 10.06895         y2bar= 4.588554 

New Observation X0= [7.8 5.5 4.8] 

The new observation is allocated to second MV population. 
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LAB EXERCISE 9: 

 

Principle Component Analysis 

 

 
Problem: 

Jolicoueur and Mosimann studied the relationship of size and shape for painted turtles. The 

following table contains their measurements on carapaces of 23 female and 23 male turtles. 

Test whether the female turtles and male turtles have the same measurements with respect to 

carapaces.  

Female Male 

Length 

(x1) 

Width 

(x2) 

Height 

(x3) 

Length 

(x1) 

Width 

(x2) 

Height 

(x3) 

98 81 40 93 74 37 

103 84 38 96 78 39 

105 86 45 101 84 39 

119 88 44 102 85 38 

123 92 50 103 81 37 

103 100 46 104 83 39 

133 99 51 111 102 39 

133 102 51 107 82 40 

133 102 51 112 89 40 

134 100 48 113 88 40 

136 102 49 114 86 40 

145 98 65 116 90 43 

138 99 51 117 90 41 

141 105 53 117 99 41 

147 108 57 119 93 41 

149 107 55 120 89 45 

153 107 56 120 93 44 

160 115 63 121 95 42 

155 117 65 125 93 45 

148 115 62 127 96 45 

159 118 63 128 103 45 

162 124 61 131 95 46 

175 132 67 135 106 47 

 

 

Carry out the principal component analysis for the turtle data and find the first two principal 

components.  

Aim:-To carry out principal component analysis for the given data. 

Procedure: -  

 From the given data we have to calculate the sample dispersion matrix. Now, we can 

compute the first PC Y1 and its variance.  
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'

1 11 1 12 2 1 1... p pY w x w x w x w x= + + + =


 

Where '

1 1 1 11 ( )w w and Var x = =
                                                                                          

(1)  

From the following iterative equations 

1 1 1 1 1,S w w where S S= =
                                                                                                  (2)

 

Equation (2) can be written as an iterative equation is given by 

( 1) ( 1) ( )

1 1 1 ; 0,1,2,.....i i iw S w i + + = = =
                                                                                      (3)

 

From equation (3) we can compute 

( 1) ' ( 1)

1 ( 1)

1

i i

i
and w


  



+ +

+
= = 

                                                                                   (4)

 

Now, the above equation (3) will be irritated with
( )0

1

1

1

0

:

:

0
PX

w

 
 
 
 =
 
 
  


 

 

Equation (3) will be solved iteratively until two successive values of 𝜆1 (computed using eq 

(4)) do agree upto 4 decimal places the corresponding w


is the first PC and its variance is 𝜆1 

Computing 2nd PC: - 

 We have to replace the sample dispersion matrix S1 with the adjusted dispersion 

matrix S2 is given by  

'

2 1 1 1 1S S w w= −
                                                                                                                       (5)

 

Now, the 2nd PC can be computed in the same way as we computed the 1st PC by solving the 

following equations iteratively. 

2 2 2 2S w w=
                                                                                                                            (6)

 

Thus, the 2nd PC and it variance are given by 

 
'

2 2 2 2 2( )Y w x and V Y = =
                                                                                               (7)

 

Computing 3rd PC: - 

 We have to replace the matrix S2 with the adjusted matrix S3 is given by 

'

3 2 2 2 2S S w w= −
                                                                                                                    (8)

 

Now, the 3rd PC can be computed in the same way as computed the 2nd PC by solving the 

following equations iteratively.  
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3 3 3 3S w w=
                                                                                                                             (9)

 

 Thus, the 3rd PC and its variance are given below 

'

3 3 3 3( )Y w x and V Y = =
                                                                                                   (10)

 

Similarly, one can compute the remaining PC’s iteratively.  

 

R-CODE:  

# R-CODE FOR PRINCIPAL COMPONENT ANALYSIS BASED ON   

# SAMPLE VARIANCE-COVARIANCE MATRIX OF MULTIVRIATE POPULATION 

 PCA=function(data,k){ 

 vnames=names(data) 

 data=as.matrix(data); 

 p=ncol(data); 

 S=cov(data);S1=S; 

 cat("\nPC ANALYSIS BASED ON SAMPLE VARIANCE-COVARIANCE 

MATRIX:\n"); 

 cat("\nSample Variance-Covariance matrix based on the given 

data:\n");print(round(S,2)); 

 totvar=0; 

 for (i in 1:p) totvar=totvar+S[i,i]; 

 cat("\n Total variance of the original 

components=",round(totvar,2),"\n\n"); 

 for (i in 1:k) { 

 x=rep(0,p);x[i]=1; 

 lamdaold=0;lamdanew=1; 

 while(abs(lamdaold-lamdanew)>0.00001) { 

 lamdaold=lamdanew; 

 x=S%*%x; 

 lamdanew=sqrt(sum(x*x)); 

 x=x/lamdanew;} 

 cat("PC",i,": "); 

 for (j in 1:p) {if (x[j]>0) cat("+",round(x[j],2)) else 

cat(round(x[j],2)); 

 cat(" ",vnames[j]," ");} 
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 cat("\nVar(PC",i,")=",round(lamdanew,2)); 

 cat("\n% of total 

variation=",round(lamdanew/totvar*100,2),"\n\n"); 

 S=S-lamdanew*x%*%t(x); 

 } 

 } 

 data=read.table("PCA.CSV",header=T); 

 data=data[,-1]; 

 nc=ncol(data); 

 data=data[,-nc]; 

 print(data); 

 cat("\n ENTER No of PCs required:");k=scan(); 

 S=PCA(data,k); 

 

OUT PUT:  

> source("C:\\Users\\Jilani\\Desktop\\MVA\\jilani MVA 2nd SEM\\pca.R") 

 

   LENGTH WIDTH HEIGHT 

1      98    81     38 

2     103    84     38 

3     115    90     42 

4     109    88     45 

5     123    92     50 

6     113    95     46 

7     133   109     53 

8     133   102     51 

9     133   102     51 

10    134    95     48 

11    130   102     55 

12    138    95     51 

13     93    74     37 

14     96    78     35 

15    101    84     45 

16    112    75     38 
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17    103    81     37 

18    104    83     39 

19    116    83     39 

20    107    82     49 

21    112    95     40 

22    113    88     40 

23    104    86     40 

24    116    90     50 

 

ENTER No of PCs required:1: 2 

2:  

Read 1 item 

PC ANALYSIS BASED ON SAMPLE VARIANCE-COVARIANCE MATRIX: 

Sample Variance-Covariance matrix based on the given data: 

       LENGTH  WIDTH HEIGHT 

LENGTH 179.16 102.97  66.17 

WIDTH  102.97  83.21  45.13 

HEIGHT  66.17  45.13  37.26 

Total variance of the original components= 299.63  

PC[ 1 ]: [ 0.8 0.51 0.32 ] 

Var(PC[ 1 ])= 272.08 

 %of total variation= 90.8  

PC[ 2 ]: [ -0.59 0.76 0.26 ] 

Var(PC[ 2 ])= 18.26 

 %of total variation= 6.09 

 

Inference:- 

 Total variance of the original components = 299.63 

PCA of measurements of 15 trucks for: - 

PC[ 1 ]: [ 0.8 0.51 0.32 ] 

Var(PC[ 1 ])= 272.08 

 %of total variation= 90.8  

PC[ 2 ]: [ -0.59 0.76 0.26 ] 

Var(PC[ 2 ])= 18.26 

 %of total variation= 6.09 
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0 0:H  = 1 1:H  =

  

LAB EXERCISE 1: 

 

Power Curve for Most Powerful Test 
 

 

 

Problem:  Draw a power curve for the most powerful test the sample size 10 

i) 0 1: 4 vs : 4H H =   

ii) 1 1: 4 vs : 4H H =   

,   whereis the mean of normal population having   = 2 , with level of significance 5%. 

Aim: 

To draw a power curve for the most powerful test based on the sample size 10 

Procedure :- 

 

Let, the problem of testing a simple null hypothesis against a simple 

alternative hypothesis 1 1:H  = .  

The critical region is the most powerful critical region of size for  testing  

against 

 

                                                                        (1) 

 

for every other critical region , satisfying equation (1). The corresponding that is called as 

Most Powerful Test. 

 

i) R-CODE:  

 

mu0=4  

n=10  

s=2  

c=mu0+1.645*2/sqrt(10)  

cat("\n c \n",c)  

mu=seq(4.2,5,by=0.2)  

0

0

( )* /

1.645*2 /

c n

c n

 



= −

= +



0 0

1 1 1

{ / }

{ / } { / }

P x H L dx

P x H P x H



 

 

 = =

  



0 0:H  =
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z0=(c-mu)*sqrt(n)/s  

cat("\n z0 \n",z0)  

z=(-0.5+pnorm(z0))  

power=1-z  

cat("\n power \n",power)  

plot(mu,power,type="l",col="blue",lwd=0.01,xlab="mu",ylab="p

ower",main="power curve")  

 

           

 

ii) R-CODE: - 0 

 

mu0=4  

n=10  

s=2  

c=mu0-1.645*2/sqrt(10)  

cat("\n c \n",c)  

mu=seq(3.8,3,by=-0.2)  

z0=(c-mu)*sqrt(n)/s  

cat("\n z0 \n",z0)  

z=(0.5+pnorm(z0))  

power=z  
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cat("\n power \n",power)  

plot(mu,power,type="l",col="blue",lwd=0.01,xlab="mu",ylab="p

ower",main="power curve")  

 

 

Inference: 

i) Output: 

 

ii) Output : 

 

 

 

 

 

 

 

0

5.040389

1.3287772 1.012544 0.6963167 0.3800889 0.06386117

0.59191616 0.65556389 0.7431153 0.8519397 0.9745404

c

power

=

=

=



0

2.959611

1.3287772 1.012544 0.6963167 0.3800889 0.06386117

0.59191616 0.65556389 0.7431153 0.8519397 0.9745404

c

power

=

= − − − − −

=


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LAB EXERCISE 2: 

Power Curve  

 

 

 

Problem: 
Power analysis for a large sample, hypothesis test where the test statistics has no 

approximately normal distribution 

Aim: 
To draw a power curve for paver analysis for a large sample hypothesis test where the test 

statistics has an approximately normal distribution. 

Procedure:- 
Let, the problem of testing  0 0:H  = a simple null hypothesis against a simple alternative 

1 1:H  = hypothesis. 

The critical region is the most powerful critical region of   size for testing  0 0:H  =

against 1 1:H  =  

                                                               (1) 

 (2) 

 

 

 

for every other critical region , satisfying equation (1). 

 

 
 

 

       R-CODE: -  
 

sigma=5  

n=25  

theta0=0  

power=0.80  

alpha=0.01  

beta=1-power  

z.alpha=qnorm(1-alpha)  

cat("\n z.alpha:\n",z.alpha)  

0

0

( )* /

1.645*2 /

c n

c n

 



= −

= +



0 0

1 1 1

{ / }

{ / } { / }

P x H L dx

P x H P x H



 

 

 = =

  


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z.beta=qnorm(1-beta)  

cat("\n z.beta: \n",z.beta)  

curve(pnorm(sqrt(n)*(x-theta0)/sigma-z.alpha),  

from=theta0,to=theta0+3.7*sigma/sqrt(n),  

col="blue", main="POWER FUNCTION",  

xlab=expression(theta0),  

ylab=expression(gamma(theta0)), Iwd=2)  

abline(v=theta0+(z.alpha+z.beta)*sigma/sqrt(n),  

col="green", lwd=2)  

abline(h=power,col="red", lwd=2)  

 

Inference:- 

 

 

 
 

 

 

 

 

 

2.326348

0.8416212





=

=




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LAB EXERCISE 3: 

 

Kolmogrov-Smirnov Test 
 

 

 

Problem:- 

i) Let’s say you have a sample data set and you want to test if it comes from a 

normal distribution with mean 0 and standard deviation 1. 

Aim:- 

To test a sample data set and want to test if it comes from a normal distribution with mean 0 

and standard deviation 1. 

Procedure:- 

You can use ks.test() to compare your sample data against the normal distribution. 

Construct the K-S test statistics. 

 

R-CODE:  

sample data=rnorm(100)  

ks_test_result= ks.test(sample_data,"pnorm",mean=0,sd=1)  

print(ks_test_result)  

 

OUT PUT: 

Asymptotic one-sample Kolmogorov-Smirnov test  

data: sample_data  

D = 0.072, p-value = 0.6777  

alternative hypothesis: two-sided  

Inference: 

The ks test statistic (D) is 0.053159, and the p-value is 0.9401. Since the p-value is greater 

than 0.05, there is not enough evidence to reject the null hypothesis. So we might conclude 

that the sample data could come from a normal distribution with mean 0 and 

standard deviation 1. 

 

 

 

max{ :| ( ) ( ) |}x xkstest x f x F x= −
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ii) You have a sample of data set and you want to test if it follows a normal 

distribution by using ks_test. 

Aim: 

To test a sample data and want to test if it follows a normal distribution using ks_test. 

Procedure:- 

You can use ks.test() to compare your sample data against the normal distribution. 

Construct the K-S test statistics. 

 

 R-CODE: -  

sample_data=rnorm(500,mean=0,sd=1)  

ks_test=ks.test(sample_data,"pnorm",mean=mean(sample_data),sd=

sd(sample_data))  

print(ks_test)  

 

OUT PUT:  

Asymptotic one-sample Kolmogorov-Smirnov test  

data: sample_data  

D = 0.030957, p-value = 0.7241 

alternative hypothesis: two-sided 

 

Inference: 

The ks test statistic (D) is 0.030957, and the p-value is 0.7241. Since the p-value is greater 

than 0.05, there is not enough evidence to reject the null hypothesis. So we might conclude 

that the sample data could come from a normal distribution with mean 0 and 

standard deviation 1. 

 

 

 

 

 

 

 

max{ :| ( ) ( ) |}x xkstest x f x F x= −
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iii) You have a sample of data set and you want to test if it follows a normal 

distribution by using ks_test. 

Aim:- 

To test a sample data and want to test if it follows a normal distribution using ks_test. 

Procedure: 

You can use ks.test() to compare your sample data against the normal distribution. 

Construct the K-S test statistics. 

 

R-CODE:  

 

data1=rnorm(100); data2=rnorm(100)  

print(ks.test(data1, data2))  

 

OUT PUT:  

 

Asymptotic two-sample Kolmogorov-Smirnov test  

data: data1 and data2  

D = 0.1, p-value = 0.6994 

alternative hypothesis: two-sided 

 

Inference: 

The ks test statistic (D) is 0.1, and the p-value is 0.6994. Since the p-value is greater than 

0.05, there is not enough evidence to reject the null hypothesis. So we might conclude that 

the sample data could come from a normal distribution with mean 0 and standard deviation 1. 
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LAB EXERCISE 4(a): 

Kruskal Walli’s Test 

 

 

Problem: 

Assume you have a study whether you measure the effectiveness of 3 different groups. 

To test the measure of effectiveness of 3 different groups (groups 1. group 2, group 3) on 

the same subjects by using Kruskal-Walli's test. 

 

S.no Group1 Group2 Group3 

1 23 22 20 

2 45 44 42 

3 67 62 64 

4 34 33 32 

5 56 55 54 

6 78 77 76 

7 23 22 20 

8 45 44 42 

9 67 66 64 

10 34 33 32 

 
Aim: To test a study whether you measure of effectiveness of 3 different groups (groups 1. 

group 2, group 3) on the same subjects by using Kruskal-Walli's test. 

Procedure: 

Kruskal Walli's test statistic is defined on  

 

( )iThe expected sum of ranks which is The expected sum of ranks which is n 1iR N= +  

in =Total number of observations in the thi sample 

  K     : Number of groups 

  N    :Total number of observations across all groups 

In order to perform Kruskal – Walli’s test we use Kruskal.test() 
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R-CODE:  

group1=c(23,45,67,34,56,78,23,45,67,34)  

group2=c(22,44,66,33,55,77,22,44,66,33)  

group3=c(20,42,64,32,54,76,20,42,64,32)  

data=data.frame(group1,group2,group3) print(data)  

kruskall_test_result=kruskal.test(data)  

print(kruskall_test_result)  

 

OUT PUT:  

 

        group1 group2 group3  

1       23          22        20  

2       45          44        42  

3       67          66        64  

4       34          33       32  

5      56           55        54  

6      78           77        76  

7      23           22        20  

8      45           44        42  

9      67           66        64  

10     34          33        32  

Kruskal-Walli’s rank sum test data: data  

Kruskal-Walli’s chi-squared = 0.83837, df = 2, p-value = 0.6576  

 

Inference: 

The test statistic Chi-squared value=0.83837 and p-value=0.6567. As p-value is greater than 

0.05, Then we conclude that we accept the null hypothesis i.e., there is no significant 

difference between the 3 groups. 
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LAB EXERCISE 4(b): 

Friedman’s Two WayAnalysis of Variance by Ranks 

 
Problem: 

You have a study where you measure the effectiveness of 3 different treatments (A,B,C) 

on the same subjects. Each subject receives all the three treatments at different times 

and you want to compare the effectiveness of 3 treatments. 

Aim: 

To study the effectiveness of 3 different treatments (A, B, C) on the same subjects. Each 

subject receives all the 3 treatments at different times and you want to compare the 

effectiveness of 3 treatments. 

Procedure:- 

Ranks by data:- For each subject, ranks the treatments assigned ranks to the treatments, such 

that the lowest value get rank 1, the second lowest rank 2 and so on. If these are ties, assign 

the average rank to the tied values. 

Sum of the ranks for each treatment:-For each treatment, sum of ranks across all subjects. 

Calculate the mean rank for each treatment:-Compute the mean rank for each treatment. 

Sum of squares of treatment ranks:-For each treatment, calculate the squared difference 

between its mean rank & overall rank, then sum this squared difference. 

Friedman’s test statistic is given below 

 

R-CODE: -  

 

subject=factor(rep(1:5,each=3))  

treatment=factor(rep(1:3,times=5))  

response=c(10,20,30,15,25,35,12,22,32,18,28,38,16,26,36)  

data=data.frame(subject, treatment, response)  

data  

data$rank=ave(data$response, data$subject,FUN=rank)  

data  

sum_ranks=aggregate(rank~treatment, data=data, sum)  

sum_ranks  

2
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n=length(unique(data$subject))  

K=length(unique(data$treatment))  

R_j=sum_ranks$rank  

Q=(12/(n*K*(K+1)))*sum(R_j^2)-3*n*(K+1)  

df=K-1  

P_value=pchisq(Q,df,lower.tail=FALSE)  

cat("Friedman Test statistic(Q):",Q,"\n")  

cat("P_value:",P_value, "\n")  

 

OUT PUT: -  

 

Friedman Teststatistic(Q): 10  

P_value: 0.006737947 

Inference: 

Friedman chi-squared test statistic: 

The test statistic used to determine if there are differences between the treatments. 

P-value: 

Friedman test statistic is 10 and the p-value is 0.006737947. This value is less than 0.05 it 

suggests that atleast one of the treatments differ significance from the others. 
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LAB EXERCISE 5(a): 

 

Chi-Square Test for Homogeneity of Correlation Coefficient 
 

 

Problem: 

Compare the correlation coefficient for 2 groups using Fisher’s Z-transformation and 

chi-square test. 

GROUP1  GROUP2  

X1 X2 X1 X2 

10 27 25 15 

6 23 28 30 

15 64 36 29 

8 42 45 29 

11 30 15 36 

34 79 49 64 

28 26 48 30 

70 24 54 68 

43 54 34 56 

30 30 29 32 

25 14 35 21 

 

Aim: 

To compare the correlation coefficient for the two groups using Fisher’s Z-transformation 

and chi-square test. 

Procedure: 

Calculate the Pearson rank correlation coefficient for each group or sample. 

The sampling distribution of correlation coefficient is not normally distributed Fisher’s Z-

transformationis applied to each correlation coefficient. This transformation convert the 

correlation coefficient into normal distribution. 
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2
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where, 

r :- sample correlation coefficient. 

The test statistic is calculated using the transformed coefficient 

 

where, 

:Fisher's Z-transformation correlation coefficient.  

:Sample sizes of two groups. 

Conclusion: 

The calculated chi square statistic is compared to a value from the chi square distribution 

table with d.f. equals to 1. If the statistic is greater than the critical value, you reject the null 

hypothesis. 

R-CODE: -  

data=read.csv("pair.csv", header=T)  

group1=subset(data[,1:2])  

group2=subset(data[,3:4])  

r1=cor(group1$X1,group1$X2);  

r2=cor(group2$Y1,group2$Y2);  

cat("Correlation for group1:",r1)  

cat("\nCorrelation for group2:",r2)  

n1=nrow(group1)  

n2=nrow(group2)  

z1=0.5*log((1+r1)/(1-r1))  

z2=0.5*log((1+r2)/(1-r2))  

cat ("\n Fisher z transformation for group1:”, z1,"\n")  

cat ("\n Fisher z transformation for group2:", z2,"\n")  

K1=1/(n1-3)  

K2=1/(n2-3)  

chisqcal=(z1-z2)^2/(K1+K2)  

cat("chisquarecal=",chisqcal,"\n")  

p_value=pchisq(chisqcal,df=1,lower.tail=F)  

cat("p-value=",p_value, "\n")  
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if(p_value<0.05) {  

cat("Reject null hypothesis: Correlation are not 

homogeneous\n")}  

if(p_value>0.05) {  

cat("Accept null hypothesis: Correlation are homogeneous\n")}  

 

OUT PUT: -  

 

Correlation for group1: 0.04902549  

Correlation for group2: 0.5259224  

Fisherztransformation for group1: 0.04906483  

Fisher z transformation for group2: 0.5844917  

chisquarecal= 1.146728  

p-value= 0.2842352  

Accept null hypothesis: Correlation are homogeneous 

 

Inference: 

Chi-squared value=1.146728 and p-value=0.2842352 

As p-value greater than 0.05 then we accept the null hypothesis i.e., correlation coefficients 

are homogeneous. 
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LABEXERCISE 5(b): 

 

Chi-Square Test for Homogeneity of Correlation Coefficient 

 
 

Problem: 

If the correlation coefficient between sepal length &sepal width the same for different 

species of iris. 

Aim: 

To test whether the correlation between sepal length and sepal width is same for different 

species of iris. 

Procedure:- 

Calculate the Pearson rank correlation coefficient for each group or sample. 

The sampling distribution of correlation coefficient is not normally distributed Fisher’s Z-

transformation is applied to each correlation coefficient. This transformation converts the 

correlation coefficient into normal distribution. 

 

where, 

r :- sample correlation coefficient. 

The test statistic is calculated using the transformed coefficient 

 

where, 

:Fisher's Z-transformation correlation coefficient.  

:Sample sizes of two groups. 

 

Conclusion: 

The calculated chi square statistic is compared to a value from the chi square distribution 

table with d.f. equals to 1. If the statistic is greater than the critical value, you reject the null 

hypothesis. 

R-CODE:  
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data(iris)  

setosa=iris[iris$Species=="setosa",]  

versicolor=iris[iris$Species=="versicolor",]  

virginica-iris[iris$Species=="virginica",]  

r_setosa=cor(setosa$Sepal.Length,setosa$Sepal.Width)  

cat(" R_SETOSA:",r_setosa)  

r_versicolor=cor(versicolor$Sepal.Length, 

versicolor$Sepal.Width)  

cat("\n R_VERSICOLOR:",r_versicolor)  

r_virginica=cor(virginica$Sepal.Length, virginica$Sepal.Width)  

cat("\n R_VIRGINICA:",r_virginica)  

n_setosa=nrow(setosa)  

cat("\n N_SETOSA:",n_setosa)  

n_versicolor=nrow(versicolor)  

cat("\n N_VERSICOLOR:",n_versicolor)  

n_virginica=nrow(virginica)  

cat("\n N_VIRGINICA:",n_virginica)  

z_setosa=0.5*log((1+r_setosa)/(1-r_setosa))  

cat("\n Z_SETOSA:",z_setosa)  

z_versicolor=0.5*log((1+r_versicolor)/(1-r_versicolor))  

cat("\n Z_VERSICOLOR:",z_versicolor)  

z_virginica=0.5*log((1+r_virginica)/(1-r_virginica))  

cat("\n Z_VIRGINICA:",z_virginica)  

chi_square=((n_setosa-3)*(z_setosa-

(z_versicolor+z_virginica)/2)^2/(1/(n_setosa-  

3)+1/(n_versicolor-3)+1/(n_virginica-3)))  

p_value=pchisq(chi_square,df=2,lower.tail=FALSE)  

cat("\n Chi-square statistic:",chi_square, "\n")  

cat(" p-value:",p_value, "\n")  
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OUT PUT:  

 

R_SETOSA: 0.7425467  

R_VERSICOLOR: 0.5259107  

R_VIRGINICA: 0.4572278  

N_SETOSA: 50  

N_VERSICOLOR: 50  

N_VIRGINICA: 50  

Z_SETOSA: 0.9561323  

Z_VERSICOLOR: 0.5844755  

Z_VIRGINICA: 0.4938007  

Chi-square statistic: 128.0367  

p-value: 1.574675e-28 

 

Inference: 

Chi-squared value=128.0367 and p-value=1.574675e-28.As p-value greater than 0.05 then 

we accept the null hypothesis i.e., correlation coefficients are homogeneous. 
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LABEXERCISE 5(c): 

 

Chi-Square Test for Homogeneity of Correlation Coefficient 

 
 

Problem: 

Is the correlation between Miles per gallon and displacement the same for cars with 

different number of cylinders? 

Aim:- 

To test whether the correlation between miles per gallon and displacement the same for class 

with different no. of cylinders. 

Procedure:- 

Calculate the Pearson rank correlation coefficient for each group (or) sample. 

The sampling distribution of correlation coefficient is not normally distributed. Fishers z-

transformation is applied to each correlation coefficient. This transformation converts the 

correlation coefficient into a form that approximately follow a normal distribution. 

 

where, 

r = sample correlation coefficient 

The test statistic is calculated using the transformed coefficients. 

 

where, 

  = Fishers z-transformation correlation coefficient 

= Sample Sizes of the 3 groups 

 

Conclusion:- 

The calculated Chi-squared statistic is compared to a critical value of x-distribution table with 

d.f. equal to 1 

If the statistic is greater than the critical value, you reject the null hypothesis. 
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R-CODE: - 

data(mtcars)  

cyl4=mtcars[mtcars$cyl==4,]  

cyl6=mtcars[mtcars$cyl==6,]  

cyl8=mtcars[mtcars$cyl==8,]  

r4=cor(cyl4$mpg,cyl4$disp)  

cat("\n r4:",r4)  

r6=cor(cyl6$mpg,cyl6$disp)  

cat("\n r6:",r6)  

r8=cor(cyl8$mpg,cyl8$disp)  

cat("\n r8:",r8)  

n4=nrow(cyl4)  

cat("\n n4:",n4)  

n6=nrow(cyl6)  

cat("\n n6:",n6)  

n8=nrow(cyl8)  

cat("\n n8:",n8)  

z4=0.5*log((1+r4)/(1-r4))  

cat("\n z4:",z4)  

z6=0.5*log((1+r6)/(1-r6))  

cat("\n z6:",z6)  

z8=0.5*log((1+r8)/(1-r8))  

cat("\n z8:",z8)  

chi_square=((n4-3)*(z4-(z6+z8)/2)^2/(1/(n4-3)+1/(n6-3)+1/(n8-

3)))  

p_value=pchisq(chi_square,df = 2,lower.tail=FALSE)  

cat("\n Chi-Square Statistic:",chi_square,"\n")  

cat(" P-Value:",p_value,"\n")  

 

OUTPUT: - 

 

r4: -0.8052361  

r6: 0.1030827  

r8: -0.519767  
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n4: 11  

n6: 7  

n8: 14  

z4: -1.113329  

z6: 0.1034502  

z8: -0.5760205  

Chi-Square Statistic: 13.20783  

P-Value: 0.001355049 

 

Inference: 

The Chi-squared statistic is 13.20783 &p-value is 0.001355049, which is less than the 

significance level of 0.05. This indicates that the correlation between milesper gallon and 

displacement is significantly differ for different number of cylinders. 
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LABEXERCISE 6(a): 

 

F-Test to check the Homogeneity of Regression Coefficients 
 

 
Problem: 

A company wants to investigate if the relationship between the amount of money spent 

on advertising (x) and the sales (y) is the same for different regions. The company has 

data from these 3 regions: North, South & East 

Aim:- 

To investigate if the relationship between the amount of money spent on advertising (x) and 

sales (y) is the same for the three regions North, South & East. 

Procedure:- 

Step 1:Formulate the null & alternative hypothesis. 

 (regression coefficients are equal acrossgroups) 

 (regression coefficients are not equal across groups) 

 

Step2:- Estimate the regression models. 

Estimate the restricted model (assuming equal steps): 

(single regression line of all groups). 

Estimate the unrestricted model (allowing different slopes). 

(separate regression lines for each group). 

 

Step3:- Calculate the Test statistic 

Calculate the residual sum of squares for the restricted model (SSE-R) 

Calculate the residual sum of squares for the unrestricted model (SSE-U) 

Calculate the degrees of freedom for the restricted model(df-R) and unrestricted model(df-U) 

Calculate the F_statistic: 

 

Step4:- Determine the critical region and p-value: 

Choose a significance level(ex:α=0.05) 

Determine the critical value from the F-distribution table (or) using software 

Calculate the p-value associated with the F-statistic. 

( ) ( )

( )

SSE R SSE U
F

df R df U

− − −
− =

− − −

1

0y x  − = + +

1 2

0y x x x    − = + + +  + +



Centre for Distance Education  2.23 Acharya Nagarjuna University  

Step 5:- Make a decision: 

If the p-value is less than the level of significance(α), reject H₀ and conclude that the 

regression coefficients are not equal across groups. 

If the p-value is greater than the significance level(α)fail to reject H₀ and conclude that the 

regression coefficients are equal across groups. 

R-CODE: -  

 

### Step 0: Create the data 

region = c(rep("North", 10), rep("South", 10), rep("East", 

10)) 

advertising = c(10,20,30,40,50,60,70,80,90,100, 

                 15,25,35,45,55,65,75,85,95,105, 

                 20,30,40,50,60,70,80,90,100,110) 

sales = c(100,120,140,160,180,200,220,240,260,280, 

          110,130,150,170,190,210,230,250,270,290, 

          120,140,160,180,200,220,240,260,280,300) 

df = data.frame(region, advertising, sales) 

### ---------------------------------------------------- 

### Step 1: Hypothesis 

### ---------------------------------------------------- 

# H0: Relationship between advertising and sales is SAME in 

all regions. 

#     (i.e., slopes are equal) 

# H1: Relationship is DIFFERENT across regions. 

#     (i.e., slopes differ) 
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### ---------------------------------------------------- 

### Step 2: Estimate models 

### ---------------------------------------------------- 

# Restricted model: ONE regression line for all regions 

restricted_model = lm(sales ~ advertising, data = df) 

# Unrestricted model: DIFFERENT slopes for each region 

(interaction model) 

unrestricted_model = lm(sales ~ advertising * region, data = 

df) 

### ---------------------------------------------------- 

### Step 3: Calculate the Test Statistic 

### ---------------------------------------------------- 

# SSE for restricted and unrestricted models 

SSE_R = sum(residuals(restricted_model)^2) 

SSE_U = sum(residuals(unrestricted_model)^2) 

# Degrees of freedom 

df_R = df.residual(restricted_model) 

df_U = df.residual(unrestricted_model) 

# Numerator and denominator df 

df_num = df_R - df_U 

df_den = df_U 

# F-statistic 

F_stat = ((SSE_R - SSE_U) / df_num) / (SSE_U / df_den) 
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# p-value 

p_val = pf(F_stat, df_num, df_den, lower.tail = FALSE) 

### ---------------------------------------------------- 

### Step 4: Print results 

### ---------------------------------------------------- 

cat("SSE (Restricted)   =", SSE_R, "\n") 

cat("SSE (Unrestricted) =", SSE_U, "\n") 

cat("F statistic        =", F_stat, "\n") 

cat("p-value            =", p_val, "\n") 

### ---------------------------------------------------- 

### Step 5: Using built-in ANOVA comparison 

### ---------------------------------------------------- 

anova(unrestricted_model, restricted_model) 

 

OUT PUT: -  

 

Analysis of Variance Table 

 

Model 1: sales ~ advertising * region 

Model 2: sales ~ advertising 

  Res.Df        RSS Df   Sum of Sq     F Pr(>F) 

1     24 1.7073e-27                             

2     28 2.2206e-27 -4 -5.1334e-28 1.804  0.161 

 

Inference:- 

If the p-value < 0.05, slopes are NOT equal → relationship differs by region. 

If the p-value > 0.05, slopes are equal → same linear relationship. 
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LABEXERCISE 6(b): 

 

F-Test to check the Homogeneity of Regression Coefficients 

 

 
Problem: 

Suppose you have two groups of data and you want to test whether the regression slopes 

of a response variable y on a predictor variable x all the same across the two groups. 

Aim:- 

To test whether the regression slopes of a response variable y on a predictor variable x all the 

same across the two groups. 

Procedure: 

Step 1: Formulate the null & alternative hypothesis. 

 (regression coefficients are equal acrossgroups) 

 (regression coefficients are not equal across groups) 

Step2:- Estimate the regression models. 

Estimate the restricted model (assuming equal steps): 

(Single regression line of all groups). 

Estimate the unrestricted model (allowing different slopes). 

(Separate regression lines for each group). 

 

Step 3:- Calculate the Test statistic 

Calculate the residual sum of squares for the restricted model (SSE-R) 

Calculate the residual sum of squares for the unrestricted model (SSE-U) 

Calculate the degrees of freedom for the restricted model(df-R) and unrestricted model(df-U) 

Calculate the F_statistic: 

 

Step 4:- Determine the critical region and p-value: 

Choose a significance level (ex:α=0.05) 

Determine the critical value from the F-distribution table (or) using software 

Calculate the p-value associated with the F-statistic. 
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Step 5:- Make a decision: 

If the p-value is less than the level of significance (α), reject H₀ and conclude that the 

regression coefficients are not equal across groups. 

If the p-value is greater than the significance level (α) fail to reject H₀ and conclude that the 

regression coefficients are equal across groups. 

R-CODE:  

 

group = rep(c("A","B"), each = 10) 

x = c(2.1,2.3,2.7,3.0,3.2,3.5,3.8,4,4.3,4.5, 

      2,2.4,2.8,3.1,3.3,3.6,3.9,4.2,4.4,4.6) 

y = c(4.5,4.8,5.1,5.3,5.7,6,6.2,6.5,6.8,7, 

      5,5.2,5.4,5.7,6,6.3,6.5,6.8,7,7.2) 

# Separate models 

model_A = lm(y[group=="A"] ~ x[group=="A"]) 

model_B = lm(y[group=="B"] ~ x[group=="B"]) 

# Full and reduced model 

combined_model = lm(y ~ x * group)      # includes interaction 

reduced_model  = lm(y ~ x + group)      # no interaction 

# Compute statistics 

RSS_full = sum(resid(combined_model)^2) 

RSS_reduced = sum(resid(reduced_model)^2) 

 

df_interaction = length(coef(combined_model)) - 

                 length(coef(reduced_model)) 

df_error = df.residual(combined_model) 

F_stat = ((RSS_reduced - RSS_full) / df_interaction) / 

         (RSS_full / df_error) 

p_value = pf(F_stat, df_interaction, df_error, lower.tail = 

FALSE) 

cat("F_statistic:", F_stat, "\n") 

cat("P_value:", p_value, "\n") 
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OUT PUT:  

F_statistic: 10.75738  

P_vaue: 0.004715281 

Inference:- 

The p-value is less than the level of significance (α), we reject H₀ and conclude that the 

regression coefficients are not equal across groups. 
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LABEXERCISE 7(a): 

 

 Bartlett’s Test for Homogeneity of Several Variances 
 

 
Problem: 

Bartlett’s test is used to check the homogeneity of various across groups 

Aim: 

To test the Bartlett’s test this is used to check the homogeneity of variances across groups. 

Procedure: 

1)Compute the sample variance for each group 

2)Compute the pooled variance has weighted the average of sample variance. 

3)Calculate the Bartlett’s test statistic using the formula 

 

where, 

N: Total number of observations across all the groups 

k: Number of groups 

2

pS : Pooled variance 

2

i

i

S Sample variance for group i

n Numberof observations in group i

=

=
 

Compare the test statistic T with the critical value from the Chi-square distribution with k-1 

d.f. 

R-CODE: -  

 

Group1 = c(7.9, 7.6, 7.1, 6.8) 

Group2 = c(8.4, 8.6, 8.3, 8.7) 

Group3 = c(9.2, 9.4, 9.1, 9.3) 

 

K = 3 
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=
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=
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+ − 
− − − 
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var1 = var(Group1) 

var2 = var(Group2) 

var3 = var(Group3) 

 

n1 = length(Group1) 

n2 = length(Group2) 

n3 = length(Group3) 

 

N = n1 + n2 + n3 

 

# Pooled variance 

pooled_variance = ((n1-1)*var1 + (n2-1)*var2 + (n3-1)*var3) / 

(N - K) 

 

# Bartlett's test statistic (before correction factor) 

T = (N - K) * log(pooled_variance) - 

    ((n1-1)*log(var1) + (n2-1)*log(var2) + (n3-1)*log(var3)) 

 

# Correction factor 

C = 1 + (1 / (3 * (K - 1))) * ( (1/(n1-1)) + (1/(n2-1)) + 

(1/(n3-1)) - 1/(N-K) ) 

 

# Corrected test statistic 

T = T / C 

 

# p-value 

p_value = 1 - pchisq(T, K - 1) 

 

cat("Bartlett’s test statistic:", T, "\n") 

cat("P_value:", p_value, "\n") 
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OUTPUT:  

 

Bartlett'steststatistic: 5.052548 

 P_value:  0.07995639  

 

Inference: 

Bartlett’s test statistic T=5.052548 & p-value=0.07995639. As the p-value is greater than 

0.05, the we accept the null hypothesis and we conclude that the variances are not significant 

different across all groups. 
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LABEXERCISE 7(b): 

 

 Bartlett’s Test for Homogeneity of Several Variances 
 

 

Problem: 

Bartlett’s test is used to check the homogeneity of various across groups 

Aim: 

To test the Bartlett’s test which is used to check the homogeneity of variances across groups. 

Procedure: 

1) Compute the sample variance for each group 

2) Compute the pooled variance has weighted the average of sample variance. 

3) Calculate the Bartlett’s test statistic using the formula 

 

where, 

N: Total number of observations across all the groups 

k: Number of groups 

2

pS : Pooled variance 

2

i

i

S Sample variance for group i

n Numberof observations in group i

=

=
 

Compare the test statistic T with the critical value from the Chi-square distribution with k-1 

d.f. 

R-CODE:  

 

Group1=c(5.2,5.8,6.1,5.5,5.9)  

Group2=c(7.3,7.8,7.5,7.6,7.7)  

Group3=c(4.8,5,5.3,5.1,5.2)  

K=3  

var1=var(Group1)  

var2=var(Group2)  
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var3=var(Group3)  

n1=length(Group1)  

n2=length(Group2)  

n3=length(Group3)  

N=n1+n2+n3  

pooled_variance=((n1-1)*var1+(n2-1)*var2+(n3-1)*var3)/(N-K)  

T=(N-K)*log(pooled_variance)-((n1-1)*log(var1)+(n2-

1)*log(var2)+(n3-  

1)*log(var3))  

T=T/(1+(1/3*(K-1)))*(1/(n1-1)+1/(n2-1)+1/(n3-1)-1/(N-K))  

p_value=1-pchisq(T,K-1)  

cat("Bartlett’s test statistic:", T,"\n")  

cat("P_value:",p_value, "\n")  

 

OUTPUT:  

 

Bartlett’s test statistic: 0.8542849 

P_value: 0.6523706 

 

Inference: 

Bartlett’s test (T = 0.8543, p = 0.6524) shows that p > 0.05. Therefore, we fail to reject the 

null hypothesis and conclude that the variances are not significantly different across the 

groups. 
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LABEXERCISE 8(a): 

 

SPRT Binomial OC Curve 
 

Problem:- 

Draw a SPRT Binomial OC Curve. 

Aim: 

To draw a SPRT Binomial OC Curve. 

Procedure: 

Step 1:- Define parameters 0 1, , ,P P A B  

Step 2:- Calculate critical value which is used in the rule for SPRT  

 

Step 3:- Define probability values for plotting which are  

Step 4:- Define likelihood ratio. 

Step5:- Calculate h₀& h₁ 

 

 

Step 6: Calculate likelihood ratio values for plotting 

Step 7- Plot the OC Curve 
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R-CODE: - 

P0=0.1  

P1=0.3  

a=0.02  

b=0.03  

Sm=(log(1-P0)/(1-P1))/(log(P1/P0)-(log(1-P1)/(1-P0)))  

P=c(0,P0,Sm,1)  

l0=1  

lP0=1-a  

lP1=b  

l1=0  

d=c("f","f","s","f","f","s","f","f","f","f","s","f","s","s","f

","s","f","f","f","s", "f","f","s")  

h0=(log(b/(1-a)))/(log(P1/P0)-(log(1-P1)/(1-P0)))  

h1=(log((1-b)/a))/(log(P1/P0)-(log(1-P1)/(1-P0)))  

ls=h1/(h1+abs(h0))  

Ez=P*log(P1/P0)+(1-P)*log((1-P1)/(1-P0))  

lp=c(l0,lP0,lP1,l1)  

plot(P,lp,type="l",col="red", lwd=0.01,xlab="Pvalues", 

ylab="l(P)values", main="OC.CURVES")  

 

OUTPUT:  

> Sm  

> h0  

[1] -0.1006845  

[1] -2.332138  

> h1  

> ls  

[1] 2.596507  

[1] 0.5268196  

> Ez  

[1] -0.2513144 -0.1163218 -0.3872311 1.0986123  

> lp  

[1] 1.00 0.98 0.03 0.00 
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Inference: 

h₀   =   -2.332138, h₁   =     2.596507 

mS =-0.1006845 

ls=0.5268196 

Ez=-0.2513144    -0.1163218   -0.3872311    1.098612 

lp=1   0.98    0.03     0 
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LAB EXERCISE 8(b): 

 

SPRT Binomial ASN Curve 

 
Problem: 

Draw a SPRT Binomial ASN Curve. 

Aim: 

To draw a SPRT Binomial ASN Curve. 

Procedure: 

ASN-Average Sample Number 

Step1:- Define parameters a₀, a₁, a, b,d, v 

Step2:- Calculate h₀, h₁& mS  

 

 

Step 3:- Define threshold values t₁, t₂. 

Step4:- Calculate likelihood ratios for each threshold values 
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Step5:- Calculate average samples numbers 
1n

E , 
2n

E  

 

Step 6:- Combine threshold values & ASN values 

 

Step 7:- Plot the ASN curve 

R-CODE:  

P0=0.1  

P1=0.3  

a=0.02  

b=0.03  

Sm=(log(1-P0)/(1-P1))/(log(P1/P0)-(log(1-P1)/(1-P0)))  

P=c(0,P0,Sm,P1,1)  

l0=1  

lP0=1-a  

lP1=b  

l1=0  

lP=c(10,lP0,lP1,11)  

lP=c(l0,lP0,(lP0+lP1)/2,lP1,l1)  

Ez=P*log(P1/P0)+(1-P)*log((1-P1)/(1-P0))  

Em1=(lP*log(b/(1-a))+(1-lP)*log((1-b)/a))/Ez  

Em2=log(b/(1-a))*log((1-b)/a)/(log(P1/P0)*log((1-P1)/(1-P0)))  

En=Em1/Em2  

plot(P,En,type="l",col="red", lwd=2,xlab="P-values", ylab="ASN 

values", main="ASN  

CURVES")  

OUTPUT:  

> Ez  

1] 49.01359 

> Em2  

[1] -0.1006845  

( )1 0 1 1

1

1

1
2 0

*

*

m

lt h h h
En

t S

h
En h

v

− + 
=  

− 

=

3 1 2 3 1 2 1 2( , ) , ( , ) , ( , )t c t t lt c lt lt En c En En= = =



Centre for Distance Education  2.39 Acharya Nagarjuna University  

[1] 49.01359  

> Ez  

[1] -0.2513144 -0.1163218 -0.3872311 0.1536636 1.0986123  

> Em1  

[1] 13.8724832 28.7048348 -0.4151648 23.8216893 3.5331516  

> En  

[1] 0.283033423 0.585650567 -0.008470402 0.486022161 0.072085148  

 

 
 

 
Inference: 

mS =    -0.1006845 

Ez     =     -0.2513144     -0.1163218      -0.3872311       0.1536636       1.098612 

En₁   =     13.87248     28.70483     -0.4151648       23.82169       3.533152 

En₂   =      49.01359 

En     =      0.2830334    0.5856506      -0.008470402      0.4860222     0.07208515 
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LAB EXERCISE 9: 

 

SPRT Normal OC Curve 

 
 

Problem: 

Draw a SPRT Normal OC Curve. 

Aim: 

To draw a SPRT Normal OC Curve. 

Procedure: 

Step 1:- Define parameters p₀, p₁, A, B 

Step 2:- Calculate critical value mS  which is used in the rule for SPRT  

 

Step 3:- Define probability values for plotting which are  

Step 4:- Define likelihood ratio. 

Step5:- Calculate h₀ & h₁ 

 

 

Step 6: Calculate likelihood ratio values for plotting 

Step 7- Plot the OC Curve 

 

 

0

1

1 1

0 0

(1 )
log

(1 )

(1 )
log log

(1 )

m

p

p
S

p p

p p

−

−
=

  −
− 

− 

0

1 1

0 0

log
1

1
log log

1

b

a
h

p p

p p

  
  

−  =
    −

−     −    

1

1 1

0 0

1
log

1
log log

1

b

a
h

p p

p p

 − 
  

  =
    −

−     −    

0, , ,mo p S l



Centre for Distance Education  2.41 Acharya Nagarjuna University  

 
R-CODE:  

 

a0=135  

a1=150  

a=0.01  

b=0.03  

d=c(151,144,121,137,130,136,155,130,142,136,125,145,106,108)  

v=25  

t1=c(135,140,144,146,150)  

h0=(v/(a1-a0))*log(b/(1-a))  

h1=(v/(a1-a0))*log((1-b)/a)  

Sm=(h0+h1)/2  

lt1=((exp(2/v)*(Sm-t1)/h1))-1/((exp(2/v)*(Sm-t1)/h1))-

(exp(2/v)*(Sm-t1)/h0)  

t2=Sm  

lt2=(log((1-b)/a))/(log(1-b))-log(b/(1-a))  

t3=sqrt(c(t1,t2))  

lt3=c(lt1,lt2)  

plot(t3,lt3,type="l",col="red",lwd=2,xlab="P-values", 

ylab="l(p)values", main="OC CURVES")  

 

OUTPUT:  

 

> h0  

[1] -5.827513  

> h1  

[1] 7.624518  

> Sm  

[1] 0.8985028  

> lt1  

[1] -43.92895 -45.57069 -46.88399 -47.54061 -48.85380  

> lt2  

[1] -146.6949  



Testing of Hypothesis    2.42  Testing of Hypothesis - Practical  

 

> lt3  

[1] -43.92895 -45.57069 -46.88399 -47.54061 -48.85380 -146.69489  

 

                                      

 

Inference: 

 
h₀   =   -5.827513 

h₁   =     7.624518 

mS =   0.8985028 

lt₁   =    -43.92895     -45.57069     -46.88399     -47.54061      -48.8538 

lt₃   =    -43.92895     -45.57069     -46.88399     -47.54061      -48.8538     -146.6949 
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