PROGRAMMING AND PROBLEM-
SOLVING USING PYTHON

MASTER OF COMPUTER APPLICATIONS (MCA)
SEMESTER-II, PAPER-V
LESSON WRITERS

Dr. U. Surya Kameswari Dr. Neelima Guntupalli

Assistant Professor Assistant Professor

Department of CS&E Department of CS&E

Acharya Nagarjuna University Acharya Nagarjuna University

Dr. Kampa Lavanya Dr. Vasantha Rudrarnalla
Assistant Professor Faculty, Department of CS&E
Department of CS&E Acharya Nagarjuna University

Acharya Nagarjuna University

Mrs. Appikatla Pushpalatha
Faculty, Department of CS&E
Acharya Nagarjuna University

EDITOR
Dr. Kampa Lavanya
Assistant Professor
Department of CS&E
Acharya Nagarjuna University

ACADEMIC ADVISOR
Dr. Kampa Lavanya
Assistant Professor

Department of CS&E
Acharya Nagarjuna University

DIRECTOR, I/c.

Prof. V. Venkateswarlu
M.A., M.P.S., M.S.W., M.Phil., Ph.D.

Centre for Distance Education
Acharya Nagarjuna University
Nagarjuna Nagar 522 510
Ph: 0863-2346222, 2346208

0863- 2346259 (Study Material)

Website www.anucde.info
E-mail: anucdedirector@gmail.com

mailto:anucdedirector@gmail.com

MCA : Programming and Problem-Solving Using Python
First Edition : 2025

No. of Copies

© Acharya Nagarjuna University

This book is exclusively prepared for the use of students of MASTER OF COMPUTER
APPLICATIONS (MCA), Centre for Distance Education, Acharya Nagarjuna University
and this book is meant for limited circulation only.

Published by:

Prof. V. VENKATESWARLU

Director, I/c
Centre for Distance Education,
Acharya Nagarjuna University

Printed at:

FOREWORD

Since its establishment in 1976, Acharya Nagarjuna University has been
forging ahead in the path of progress and dynamism, offering a variety of courses
and research contributions. I am extremely happy that by gaining ‘A+’ grade from
the NAAC in the year 2024, Acharya Nagarjuna University is offering educational
opportunities at the UG, PG levels apart from research degrees to students from

over 221 affiliated colleges spread over the two districts of Guntur and Prakasam.

The University has also started the Centre for Distance Education in 2003-
04 with the aim of taking higher education to the door step of all the sectors of the
society. The centre will be a great help to those who cannot join in colleges, those
who cannot afford the exorbitant fees as regular students, and even to housewives
desirous of pursuing higher studies. Acharya Nagarjuna University has started
offering B.Sc., B.A., B.B.A., and B.Com courses at the Degree level and M.A.,
M.Com., M.Sc., M.B.A., and L.L.M., courses at the PG level from the academic
year 2003-2004 onwards.

To facilitate easier understanding by students studying through the distance
mode, these self-instruction materials have been prepared by eminent and
experienced teachers. The lessons have been drafted with great care and expertise
in the stipulated time by these teachers. Constructive ideas and scholarly
suggestions are welcome from students and teachers involved respectively. Such
ideas will be incorporated for the greater efficacy of this distance mode of
education. For clarification of doubts and feedback, weekly classes and contact

classes will be arranged at the UG and PG levels respectively.

It is my aim that students getting higher education through the Centre for
Distance Education should improve their qualification, have better employment
opportunities and in turn be part of country’s progress. It is my fond desire that in
the years to come, the Centre for Distance Education will go from strength to
strength in the form of new courses and by catering to larger number of people. My
congratulations to all the Directors, Academic Coordinators, Editors and Lesson-

writers of the Centre who have helped in these endeavors.

Prof. K. Gangadhara Rao
M.Tech., Ph.D.,
Vice-Chancellor I/c
Acharya Nagarjuna University.

MASTER OF COMPUTER APPLICATIONS (MCA)
Semester-11, Paper-V

205MC24: Programming and Problem-Solving Using Python

SYLLABUS
UNITI
Introduction: The Process of Computational Problem Solving, Python Programming
Language.
Python Data Types: Expressions, Variables and Assignments, Strings, List, Objects and
Classes, Python Standard Library
Imperative Programming: Python programs, Execution Control Structures, User-Defined
Functions, Python Variables and Assignments, Parameter Passing.

UNIT II

Text Files: Strings, Formatted Output, Files, Errors and Exception Handling

Execution and Control Structures: if Statement, for Loop, Two Dimensional Lists, while
Loop, More Loop Patterns, Additional Iteration Control Statements

Containers and Randomness: Dictionaries, Other Built-in Container Types, Character
Encoding and Strings, Module random, Set Data Type.

UNIT I

Object Oriented Programming: Fundamental Concepts, Defining a New Python Class,
User- Defined Classes, Designing New Container Classes, Overloaded Operators,
Inheritance, User- Defined Exceptions

Namespaces: Encapsulation in Functions, Global versus Local Namespaces, Exception
Control Flow, Modules and Namespaces.

Objects and Their Use: Software Objects, Turtle Graphics, Modular Design: Modules, Top-
Down Design, Python Modules

Recursion: Introduction to Recursion, Examples of Recursion, Run Time Analysis,
Searching, Iteration Vs Recursion, Recursive Problem Solving, Functional Language
Approach.

UNIT IV

Graphical User Interfaces: Basics of tkinter GUI Development, Event-Based tkinter
Widgets, Designing GUls, OOP for GUI,

The Web and Search: The World Wide Web, Python WWW API, String Pattern Matching,
Database Programming in Python

Prescribed Book:
Ljubomir Perkovic, "Introduction to Computing Using Python: An Application Development
Focus", Wiley, 2012.

Reference Book:
Charles Dierbach, "Introduction to Computer Science Using Python: A Computational
Problem- Solving Focus”, Wiley, 2013.

(205MC24)
M.C.A. DEGREE EXAMINATION, MODEL QUESTION PAPER
Second Semester

205MC24: Programming and Problem-Solving Using Python

Time: 3 Hours Max. Marks: 70

SECTION-A
Answer Question No.1 Compulsory 2 Marks x 7 =14 Marks
1. a) Whatis a Python variable?
b) Define tuple?
c) What is formatted output?
d) Define a set in Python?
e) What is inheritance?
f) What is a module in Python?
g) What is the purpose of the sqlite3 library?
SECTION-B
Answer ONE Question from Each Unit 4 x 14 =56 Marks
UNIT -1
2. a) Describe the features and advantages of Python as a programming language.
b) Explain expressions, variables, and assignments in Python with suitable examples.
OR
a) Explain objects and classes in Python with examples.
b) What is the Python Standard Library? Discuss any four useful modules.
UNIT -11
3. a) Explain string manipulation and file operations in Python with examples.
b) Describe error handling and exceptions in Python with appropriate code examples
OR
a) Explain control structures in Python (if, for, while, break, continue, and pass).
b) Describe the set data type and module random in Python with examples.
UNIT - 111
4. a) Explain user-defined classes and method overriding with examples.
b) Discuss namespaces in Python — global, local, and built-in — with suitable examples.
OR
a) Explain recursion and write a Python function for binary search using recursion.
b) Describe modular programming and explain how modules improve software design.
UNIT -1V
5. a) Explain the design and development of GUIs using the tkinter library.
b) Describe event-driven programming using tkinter widgets with examples.
OR
a) Explain the use of Python for Web programming and string pattern matching using regular
expressions.
b) Write a short note on database programming in Python with an example of CRUD
operations.

S.No

10

11

12

13

14

15

16

17

18

19

20

CONTENTS

TITLES
INTRODUCTION
PYTHON DATA TYPES
IMPRATIVE PROGRAMMING
STRING
FILES
EXCEPTION HANDLING
CONDITIONAL STRUCTURES
CONTROL STRUCTURES
PYTHON DICTIONARY
TUPLE
SET
RANDOMNESS
OBJECT ORIENTED PROGRAMMING
OBJECTS AND THEIR USES
RECURSION
NAMESPACES
GRAPHICAL USER INTERFACES (GUI)
THE WORLD WIDE WEB (WWW)

STRING PATTERN MATCHING

DATABASE PROGRAMMING IN PYTHON

PAGE No

1.1-1.14

2.1-2.20

3.1-3.19

4.1-4.19

5.1-5.13

6.1-6.17

7.1-7.18

8.1-8.11

9.1-9.18

10.1-10.20

11.1-11.11

12.1-12.13

13.1-13.21

14.1-14.15

15.1-15.17

16.1-16.16

17.1-17.15

18.1-18.17

19.1-19.13

20.1-20.14

LESSON- 01
INTRODUCTION

AIMS AND OBJECTIVES

The primary goal of this chapter is to understand the concepts of Computational Problem
Solving & Python Programming. The chapter began with understanding of The Process of
Computational Problem Solving and Python Programming Language. After completing this
chapter, the student will understand the complete idea about of Computational Problem
Solving & Python Programming.

STRUCTURE

1.1 Introduction
1.2 Computational Problem Solving
1.2.1 What is Computational Problem Solving?
1.2.2 Example
1.3 Python Programming Language
1.3.1 Evolution of the Python Programming Language
1.3.2 Advantages and Disadvantages of Python
1.3.3 Companies used by Python.
1.3.4 Applications of Python
1.3.5 Features of Python
1.3.6 Key Features of Python
1.4 How to Write and Run A Python Script
1.4.1 The operating system command-line or Terminal
1.4.2 The Python Program Create and Run on Interactive Shell
1.4.3 How to Run Python Program on IDLE?
1.5 Summary
1.6 Technical Terms
1.7 Self-Assessment Questions

1.8 Suggested Readings

1.1. INTRODUCTION

Python is an ideal language for computational problem solving due to its simplicity,
readability, and powerful libraries. It allows programmers to focus on developing algorithms
and logic rather than dealing with complex syntax. Python's extensive standard library and
third-party modules, such as NumPy for numerical computations and SciPy for scientific
computing, provide robust tools for tackling a wide range of problems. The language

Programming and Problem-Solving ... 1.2 Introduction

supports various programming paradigms, making it suitable for everything from small
scripts to large-scale applications. Python's dynamic typing and interactive environment
further enhance its ability to prototype and test solutions quickly, making it a preferred choice
for developers and researchers alike.

The chapter first covered the Process of Computational Problem Solving, Python
Programming Language.

1.2 COMPUTATIONAL PROBLEM SOLVING

Computational problem-solving is a cornerstone of modern programming, where we translate
real-world problems into executable computer solutions. This chapter delves into the core
aspects of computational problem solving, focusing on Python, one of the most versatile and
widely used programming languages today.

1.2.1 What is Computational Problem Solving?

e Problem Definition: Clearly defining the problem, you want to solve.

e Algorithm Design: Creating a step-by-step procedure to solve the problem.
Implementation: Writing the code to implement the algorithm.

e Testing and Debugging: Ensuring the code work as intended and fixing any issues.

e Optimization: Improving the efficiency and performance of the solution.

1.2.2 Example

The basic structure and logic for an online shopping system is explained here. By following
this plan, you can implement a functional program that allows users to browse items, add
them to a cart, view and manage their cart, and checkout. This approach ensures that the
system is user-friendly and efficient.

Problem Definition

We want to create a simple online shopping system that allows users to:
Browse items available for purchase.

Add items to a shopping cart.

View the shopping cart.

Remove items from the shopping cart.

Checkout and see the total price.

M e

Centre for Distance Education 1.3 Acharya Nagarjuna University

Browse items available
for purchase

Add itemstoa
shopping cart

View the
shopping cart

Remove items from
the shopping cart

Checkout and see
the total price

Fig 1.1 Online shopping application

Algorithm Design:

We'll design a basic algorithm to manage our online shopping system:

Step 1: Start

Step 2: Initialize Data

ITEMS =[

(1, "Award-Winning Novel 1", 350),
(2, "Award-Winning Novel 2", 280),
(3, "Award-Winning Novel 3", 300),
(4, "Award-Winning Novel 4", 275),
(5, "Award-Winning Novel 5", 400),
(6, "Award-Winning Novel 6", 325),
(7, "Award-Winning Novel 7", 290),
(8, "Award-Winning Novel 8", 310),
(9, "Award-Winning Novel 9", 340),
(10, "Award-Winning Novel 10", 360),
(11, "Award-Winning Novel 11", 295),
(12, "Award-Winning Novel 12", 315)

]
CART = empty list
Step 3: Display Menu Repeatedly

REPEAT

DISPLAY "------ ONLINE BOOK STORE ------ "
DISPLAY "1. View Items"

DISPLAY "2. Add Item to Cart"

DISPLAY "3. View Cart"

DISPLAY "4. Remove Item from Cart"

Programming and Problem-Solving ... 1.4 Introduction

DISPLAY "5. Checkout"
DISPLAY "6. Exit"
INPUT choice

Step 4: Perform Actions Based on User Choice
Case 1: View Items

FOR each item in ITEMS:
DISPLAY item number, item name, item_price

Case 2: Add Item to Cart

DISPLAY "Enter Item Number to Add:"
INPUT item_no

IF item_no is valid THEN
IF item already in CART THEN
INCREMENT quantity by 1
ELSE
ADD (item_no, item_name, price, quantity=1) to CART
ENDIF
DISPLAY "Item added to cart successfully."
ELSE
DISPLAY "Invalid item number."
ENDIF
Case 3: View Cart

IF CART is empty THEN
DISPLAY "Your cart is empty."
ELSE
DISPLAY "Items in your cart:"
FOR each item in CART:
DISPLAY item_name, quantity, (quantity * price)
END FOR
ENDIF

Case 4: Remove Item from Cart
DISPLAY "Enter Item Number to Remove:"
INPUT item_no

IF item_no exists in CART THEN
REMOVE item from CART
DISPLAY "Item removed successfully."
ELSE
DISPLAY "Item not found in cart."
ENDIF
Case 5: Checkout

IF CART is empty THEN

Centre for Distance Education 1.5 Acharya Nagarjuna University

DISPLAY "Your cart is empty."
ELSE
total =0
FOR each item in CART:
total = total + (quantity * price)
END FOR
DISPLAY "Total Amount Payable: X", total
DISPLAY "Thank you for purchasing twelve award-winning novels at a
discounted price!"
CLEAR CART
ENDIF
Case 6: Exit
DISPLAY "Exiting the system. Goodbye!"
BREAK loop

Step 5: Stop

Here’s a concise and clear table summarizing all the Python requirements for your Online
Shopping System:

Table 1: Python Requirements for online shopping application

Category Python Purpose / Use in Program
Concept /
Statement
Data Types int Store item numbers, prices, and quantities
float Represent prices with decimals (if needed)
str Store item names and messages
list Maintain collection of items and shopping cart
tuple Represent each item as (id, name, price)
Control Statements | if, elif, else Make decisions (menu options, valid input checks)
while Repeat the menu until user exits
for Traverse item lists and calculate totals
break Exit loop when user chooses to quit
Input / Output input() Take user input for menu choices and item numbers
print() Display menus, items, and messages
f-string Format output neatly (e.g., {'"I{price}")
Operators +, * Add totals and compute price X quantity
==, 1= <> Compare menu options and check item validity
and, or Combine multiple conditions
Data Structures List of Tuples | Store available novels (id, name, price)
List (Cart) Keep track of items added by the user
Functions def Create reusable modules like view items(),
(Optional) checkout()
Modules (Optional) | os Clear screen using os.system('cls' or 'clear')
time Pause execution briefly using time.sleep()
Loop Control Boolean Flag | Continue or stop the main loop (running =
True/False)

Programming and Problem-Solving ... 1.6 Introduction

1.3 PYTHON PROGRAMMING LANGUAGE

Python is a high-level, interpreted programming language known for its simplicity and
readability. Created by Guido van Rossum and first released in 1991, Python emphasizes
code readability with its notable use of significant whitespace. It supports multiple
programming paradigms, including procedural, object-oriented, and functional programming,
making it versatile for a wide range of applications. Python's extensive standard library,
dynamic typing, and ease of integration with other languages and tools have contributed to its
widespread adoption in various fields, including web development, data science, artificial
intelligence, scientific computing, and automation. The language's community-driven
development ensures continuous improvements and the availability of numerous third-party
libraries and frameworks, further enhancing its capabilities and appeal.

1.3.1. Evolution of the Python Programming Language:

Python was created by Guido van Rossum in 1980s. While in the Netherlands' National
Research Institute for Mathematics and Computer Science, he created Python, an easy-to-
read and use programming language. This programming language was called after the
Pythons from Monty Python's Flying Circus, the founder's favorite comedians.

The first version, launched in 1991, contained few built-in data types and rudimentary
capabilities. Python 1.0 was introduced in 1994 with map, lambda, and filter functions after
scientists adopted it for numerical computations and data analysis. After that, adding features
and releasing updated Python versions became popular. Python 1.0 introduced map, filter,
and reduce methods in 1994 to process lists. Unicode support and a shorter list loop were
added to Python 2.0 on October 16, 2000. Python 3.0 debuted December 3, 2008. It added
print and number division support and error handling.

Python's new features benefit developers and boost performance. Python has grown in
popularity and is a challenging programming language. It's in demand in machine learning,
Al, data analysis, web development, and more, offering high-paying jobs. Python became the
major programming language for many programmers and developers worldwide.

1.3.2 Advantages and Disadvantages of Python

Python language holds number of advantages and disadvantages which are shown in Table
3.1.

Table 1.1. Advantages and Disadvantages of Python

Advantages Disadvantages

Easy to learn, read, and understand. Restrictions in design

Versatile and open source Memory inefficient

Improves productivity. Weak mobile computing

Supports libraries. Runtime errors

Al Bl Rad I e

Huge library Slow execution speed

Strong community

A Rl Pl Il e

Interpreted language.

Centre for Distance Education 1.7 Acharya Nagarjuna University

1.3.3 Companies used by Python.

This is a list of the best companies that use Python on a regular basis. Some of the names on
the list provided below may surprise you which are shown in Figure 1.2.

Facebook
Instagram
Spotify
Reddit
Uber
Netflix
Google
Dropbox

VVVVVVYVYY

(@ Pinterest 32 Dropbox &) spotify

Google @ nstagram NETFLIX
B Youlube eventbrite @ reddit
QQuora @ the ONION

The Washington Post o Bitbucket

Fig.1.2 Companies Use Python

1.3.4 Applications of Python

Python is emerging language and is used in wide range applications and are described
detailed in below and is shown in Figure 1.3

e Web Development

Python's simplicity and features make it popular for web development. Python frameworks
allow them to build user-friendly dynamic websites. The frameworks include Django for
backend development and Flask for frontend. Because Python is easy to deploy, scalable,
and efficient, most online companies utilize it as their primary technology. Top Python
applications include web development, which is used across the business to build effective
websites.

Programming and Problem-Solving ... 1.8 Introduction

e Data Science

Python snippets help data scientists develop effective Al models. Its simplicity lets
developers design complicated algorithms. Data science creates models and neural
networks that learn like human brains but are faster. It helps organizations make decisions
by extracting patterns from prior data. This field helps organizations invest in the future.

e Artificial Intelligence and Machine Learning

Data analysis and machine learning specialists can use Pandas and TensorFlow for
statistical analysis, data manipulation, etc. One of the most popular programming languages
is Python. The language of Al and ML is Python. Python has helped this field with its many
libraries and community support. Python use will rise as artificial intelligence and machine
learning evolve significantly.

e Game Development

Python developers can use Pygame to create 2D and 3D games. Pirates of the Caribbean,
Battlefield 2, and others are popular Python games. Pygame is a Python library for making
fun games. Since the gaming industry is growing, these types of development have become
more popular. This package makes game development easy, so you can try building some
simple games.

1.3.5 Features of Python

There are several characteristics that distinguish the Python programming language from
others the main reason is its features and described below and shown in Figure 1.4.

% Popularity

Python is the fourth most popular and fastest-growing programming language, according to
the Stack Overflow Developer Survey 2022. Businesses including Google, Instagram,
Netflix, and Spotify use it.

% Interpretation
Python is an interpreted language; unlike compilers, which need the creation of machine code
from the source code before it can be executed, Python passes directly to the interpreter,
simplifying and speeding up the execution process.

Centre for Distance Education 1.9 Acharya Nagarjuna University

Data
Science

Data
Visualization

System
Development

Data
Analysis

Fig 1.3 Applications of Python

®,

¢ Open Source

The fact that Python is a free language created under an open-source license certified by OSI
1s among its strongest features.

% Portability
Major trouble comes in transferring a code from one platform to another without making
blunders in the command. Python programming language, being a portable code can easily be
transferred without making any errors.

0,

¢ Simplicity

The only programming language that is similar to English is Python. It's so simple to read and
comprehend. The Python programming language utilizes fewer keywords than C++ or Java.
As a result, developers everywhere now favor the Python language above all others.

R/

¢ A high-level language

Compared to several other programming languages, Python is more similar to human
languages. As a result, its core features, such memory management and architecture, are
unimportant to programmers.

R/

¢ An object-oriented language

Python is a programming language that supports a variety of programming styles, including
structured and functional programming, in addition to the standard object-oriented
programming paradigm.

Programming and Problem-Solving ... 1.10 Introduction

Esay Dynamically Typed

Expressive GUI Programming

Y
N

Free and Open Source Large Standard Library

Features of Python

High Level }—/ \-{ Interpreted
Portable / \‘ Embeddable
Object Oriented Extensible

Fig 1.4 Features of Python

1.4 HOW TO WRITE AND RUN A PYTHON SCRIPT

Python programmers need to be familiar with all possible script and code execution
scenarios. There is no other way to confirm that the code is functioning as intended. The
Python programs are executed by the Python interpreter. A Python interpreter is a software
that functions as a bridge between computer hardware and Python programs.

Here, we'll go over the various methods for executing Python programs. The simple program
is created using notepad is shown in Figure 1.5.

e The operating system command-line or terminal.
o The Python interactive mode.

e The IDE
=] Welcomepython = -+ - =
File Edit View €23

Welcome Program on Python
print{"welcome to python™)

Ln 1, Col1 54 characters 100%6 Windows (CRLF) UTF-8

Fig 1.5. A sample python program created and saved on notepad.

Centre for Distance Education 1.11 Acharya Nagarjuna University

1.4.1 The operating system command-line or Terminal

Since the Python shell loses all the code we write when the session is closed, we can run the
Python code using a command line. Thus, using plain text files to write Python code is an
excellent idea. The text file needs to be saved with the.py suffix.

The Python print statement is written and saved in the working directory as
welcomepython.py. We are going to use the command line to execute this file now.

To run a Python script, open a command line. To run the file, we must input the file name and
then Python. Once you press the enter key, the result will look like this if there are no errors
in the file and is shown in Figure 1.6.

:\Users\sai@@\Documents>

Fig 1.6 Command Line to Run python program.

1.4.2 The Python Program Create and Run on Interactive Shell

We can utilize the Python interactive session to write and execute the Python code. To launch
an interactive Python session, simply select a command-line or terminal from the Start menu,
type python, and hit the Enter key. It is a fantastic development tool because it enables us to
review every line of code. However, all of our written code will be lost when the session
ends. To exit the interactive shell, type quit(), exit(), or press the Ctrl+Z key.

This is an illustration of how to use an interactive shell to run Python code is shown in Figure
1.7.

1.4.3 How to Run Python Program on IDLE?

Windows and Mac Python installations contain Python IDLE. If you use Linux, you should
be able to utilize your package manager to locate and download Python IDLE. After
installation, Python IDLE can be used as a file editor or as an interactive interpreter.

Programming and Problem-Solving ... 1.12 Introduction

Python is included with DLE, an Integrated Development and Learning Environment. A
complete development environment for authoring, debugging, and testing code is offered by
IDLE.

You must do the following actions to launch a Python application on IDLE:

17 2020, A) [MSC v.19@0 64 bit (AMD64)] on win32
edits" icense" fo e information.
[Python Program™)
me to First Python Program

Fig 1.7. Create and Run python program in Interactive Shell.

Step 1: Launch the Python IDLE first. Since IDLE operates in the shell by default, this
window will appear on your screen.

Step 2: Using the IDLE, we can create and run Python scripts and see the results directly on
the screen, and is shown in Figure 1.8.

Step 3: Open a new file by selecting File — New File in order to run a whole Python
program on IDLE.

Step 4: Write your Python program in the "New File" that appears when the previous step is
completed shown in Figure 3.8.

StepS: Save your file in this step. It is saved here under the filename welcomepython.py.
Step 6: Click RUN — Run Module to start the process shown in Figure 3.9.

Step 7: The IDLE Shell will display the output.

Centre for Distance Education 1.13 Acharya Nagarjuna University
& Python 3.7.9 She - -)
File Edit She Debug Options Window Help
16:30:00) [MSC wv.1900 64 bit

Python 3.7.% (tags/v3.7.9:13c%4747c¢c7, Rug 17 2020,

(AMDE4)] on win3Z2
Type "help™, "copyright™, "credits" or
come to First Pyhon Program™)

st Pyhon Program

"license ()" for more information.

>>> print ("W
Welcome to F
>

Ln:5 Col: 4,

Fig 1.8. Create Python scripts in IDE.

You can run Python applications with ease by following the instructions in the description
above, which include utilizing text editors, IDEs, or the command line. You can become
more adept at executing Python code and utilizing its features to take on a variety of tasks

and challenges with practice and experimentation.

=

Pprint ("welcomse "y

Fig 1.9. Create and Save Python Scripts in new file of IDE.

& [}

F Edit She Debug Options Window Help

Python 3.7.92 (tags/v3.7.9:13c24747c7, Aug 17 2020, 1&:30:00) (MSC wv.1900 &4 bit
(AMDE4)] on win3z2

Type "help", "copyright", "credits" or "license ()" for more information.

e

RESTART: C:/Users/saif0/welocomepython.py

Welcome to Java Program

==

Ln: 6 Col: 4)

Fig 1.10. Run Python Scripts in IDE.

Programming and Problem-Solving ... 1.14 Introduction

One of the most important skills for anyone studying or using Python is the ability to run
programs. Knowing how to run Python code is essential, regardless of your level of
experience—whether you're a novice learning the fundamentals of the language or an expert
in creating complex apps.

1.5. SUMMARY

Computational problem solving is the process of using logical and systematic methods to
design algorithms that can be executed by a computer to achieve a desired outcome. It
involves understanding the problem, developing a step-by-step solution (algorithm), and
implementing it using a programming language. Python, a versatile and beginner-friendly
language, is widely used for this purpose because of its simple syntax, readability, and
powerful libraries. It enables programmers to focus more on problem logic rather than
complex syntax, making it ideal for tasks such as data analysis, automation, web
development, artificial intelligence, and scientific computing.

1.6 TECHNICAL TERMS

Computational Problem
Python

Command Line

IDE

Programming

1.7 SELF ASSESSMENT QUESTIONS
Essay questions:

1. Tllustrate about computational Problem using python
2. Describe about applications of Python

Short Notes:

1. Write about Evolution of python
2. Discuss about how to run python program

1.8 SUGGESTED READINGS

1. "Python Crash Course" by Eric Matthes

2. "Learning Python" by Mark Lutz

3. "Python Programming: An Introduction to Computer Science" by John Zelle

4. "Think Python: How to Think Like a Computer Scientist" by Allen B. Downey
5. "Python for Data Analysis" by Wes McKinney

Dr. U Surya Kameswari

LESSON- 02
PYTHON DATA TYPES

AIMS AND OBJECTIVES

The primary goal of this chapter is to understand the Python data types. The chapter began
with an understanding of Expressions, Variables and Assignments, Strings, List, Objects and
Classes, Python Standard Library and so on. After completing this chapter, the student will
understand the python data types in detail with suitable examples.

STRUCTURE

2.1 Introduction
2.2 Python Data Types
2.2.1 Expressions, Variables, and Assignments in Python
2.3 String in Python
2.4 Listin Python
2.5 Object and Class in Python
2.6 The Python Standard Library
2.7 Summary
2.8 Technical Terms
2.9 Self-Assessment Questions

2.10 Suggested Readings
2.1. INTRODUCTION

Python is a high-level computer language that is interpreted and object-oriented. Its semantics
change over time. Its high-level built-in data structures, along with dynamic typing and
dynamic binding, make it a great choice for Rapid Application Development. Python's
grammar is simple and easy to learn. It focuses on readability, which lowers the cost of
maintaining programs.

Python lets you use modules and packages, which makes it easier to break up programs into
smaller pieces and reuse code. For all major systems, you can get the Python interpreter and the
large standard library for free in source or binary form, and you can share them with anyone
else.

This chapter will cover the major basic concept of python programming including what is
python, history of python, advantages and disadvantages of python, applications of python etc.

Programming and Problem-Solving ... 2.2 Python Data Types

2.2 PYTHON DATA TYPES

In Python, data types define the kind of value a variable can hold and determine what
operations can be performed on that value. They form the foundation of any Python program,
allowing developers to store, manipulate, and process data efficiently. Python provides
several built-in data types such as numbers, strings, lists, tuples, sets, and dictionaries, each
designed for specific purposes. These data types make Python both flexible and powerful,
enabling programmers to handle a wide range of computational tasks — from simple
arithmetic to complex data processing — with ease and clarity.

Table 2.1. Python Data Types

Data Type Category Description
Numbers int, float, complex numeric values

String Str sequence of characters

Segquence | List, tuple sequence of items

Mapping Dict data in key-value pair

Set Set collection of unique items

Bolean True, False Return Boolean result true or false

Numbers: Based on their names, these are the types of data that store numbers: integer,
float, and complex. It can be either an int or a long int.

There are three numbers in Python:

Example:

A= 20 #Assing20to A
B =4.67 # Assign 4.67 to B

print(A) # prints 20 on screen
print(B) # prints 4.65 on screen

Output:

20

4.65
Strings : These are in Python are groups of characters that are kept in memory together, like
an array of characters. Either a single quote or two double quotes are used to show these
characters.

Example:

S = “ Happy “ #prints Happy to console

Centre for Distance Education 23 Acharya Nagarjuna University

print S[1] # prints first character to console
print S + “ Morning “ # concatenates Morning to Happy and prints on console

Output:

Happy
H

Happy Morning
% Python List

In Python, a list is a sorted list of things separated by commas (,) and enclosed in square
brackets ([]). If you access a Python list using the slicing operator [], you can change the
value of any item in it. A list in Python is like a collection. The main difference is that an
array is a collection of items that are all of the same type, while a list is a collection of items
that can be of different kinds. The Python list can be changed.

Example:
File Edit Format Run Options Window Help
Person List = [18 , 70.3, 'Sai Yogith' , 50000] # Create and Assing values to List

print (Person_List)
print (Person_List[1])
print (Person_List[3])

Output:)
File Edit She Debug Options Window Help

Python 3.7.9 (tags/w3.7.9:13c9%4747c7, Rug 17 2020, 16:30:00) [MSC v.1900 64 bit
(AMDE4)] on win32

Type "help", "copyright", "credits" or "license()" for more information.

>>>

== == = RESTART: C:/Users/sai00/Person List.py ====================
[18, 70.3, 'Sai Yogith"', 50000]
70.3
50000
>>>

The code above shows that Person_List has items that are numbers, floats, strings, and long
ints. The result shows that the whole Person List was shown first.

% Python Tuple

Python tuples are the same as Python lists. The only difference is that Python tuples are
immutable, which means that you can access the things in them but not change their values.
Besides being able to change, another big difference between tuples and lists is that lists are
defined inside square braces [], while tuples are defined inside parentheses ().

Programming and Problem-Solving ... 24 Python Data Types

Example:

File Edit Format Run Options Window Help

Person Tuple = (18 , 70.3, 'sai ', 'Yogith' ,50000) # Create and Assing values
print (Person Tuple) # Display Tuple information on screen

print (Person Tuple[0])# Display First element of Tuple on screen

print (Person Tuple[3])# Display Third element of Tuple on screen

Person Tuple[4]= 60000

Output:

File Edit Shell Debug Options Window Help

Python 3.7.9 (tags/v3.7.9:13c94747c7, Rug 17 2020, 16:30:00) [MSC v.1900 €4 bit
(2MD64)] on win32

Type "help", "copyright", "credits" or "license()" for more information.

>

= RESTART: C:/Users/sai00/Person Tuple.py =s=================
(18, 70.3, 'Sai ', 'Yogith', 50000)
18
Yogith
Traceback (most recent call last):
File "C:/Users/sai00/Person Tuple.py", line €, in <module>
Person Tuple[4]= 60000
TypeError: 'tuple' object does not support item assignment
22>

The code above shows that the items in Person_Tuple are integers, floats, strings, long
integers, and strings. The result shows the full Person_Tuple as the first item. After that The
first and fourth items were printed.

But at the end of the last line, an error is made because the fourth member of the tuple is
being changed. Based on the finding, we can say that tuple items can't be changed, but List
data types can.

Python Dictionary

A sorted list of key-value pairs is called a dictionary in Python. The dictionary's entries are
key-value pairs separated by commas. The value can always be retrieved if we know the key,
but the opposite is not true. Python dictionaries are therefore designed for data retrieval.
Python dictionaries are defined inside curly braces ({}), and the slicing operator ([]) is used
to access and assign values.

Centre for Distance Education 2.5

Acharya Nagarjuna University

Example:

z%:eeh:::.-ﬁ Users/sai00/week dic.py (3.7.9

File Edit Format Run Options Window Help

Creation of a Dictionary named Week

Week={ 'Monday’' : '"Mon',
'Tuesday' : '"Tue',
'Wednesday' : 'Wed',
'Thursday' : 'Thu' }
print (Week) # Prints Dicticnary Week

print (Week['Thursday']) # Prints Dicticnary Week third item by key

print (Week['Thu'l]) # Prints Dictionary Week third item by value

Output:

& Python 379 She

File Edit Shell Debug Options Window Help

(EMDE4)] on win32

22>

KeyError: 'Thu'
>>>

e have created a dictionary called week in the example above. In this case, the keys are
Monday, Tuesday, Wednesday, and Thursday, and the values are Monday, Tuesday,
Wednesday, and Thursday. To get the appropriate value, we employ keys. not the other way
around, though. Here, we've used the week dictionary's keys to obtain the data.
Capital_city['Thursday'] retrieves its corresponding value, Thu, since 'Thursday' is the key.
But since 'Thu' is the value assigned to the "Thursday' key, capital city['Thu'] raises an error.

% Python Set Data Type:

A set is an arbitrary grouping of distinct objects. Values inside braces {} and separated by

commas define a set.

Python 3.7.9 (tags/v3.7.9:13c9%4747c7, Rug 17 2020, 16:30:00) [MSC v.1800 64 bit
Type "help", "copyright", "credits" or "license()" for more informatiom.

—————————————————————= RESTLRT: C:/UserS/Saiﬂﬂfweek_diclpy B
{'Monday': 'Mon', 'Tuesday': 'Tue', 'Wednesday': 'Wed', 'Thursday': 'Thu'}

Thu
Traceback (most recent call last):
File "C:/Users/sai00/week dic.py", line 12, in <module>
print (Week['Thu'l) # Prints Dictionary Week third item by value

‘ Programming and Problem-Solving ... 2.6 Python Data Types

Example:
e Edit Format Run Options Window Help

Creation of a set named Student id

Hi= Im

Student_id = { 101, 102z, 103, 104 }
print (Student id) # Prints set named Student id

print (type(Student id)) # Prints type of Student id

print (Student id[2]) # Prints third item of set Student id
Output:
File Edit Shell Debug Options Window Help

Python 3.7.9 (tags/vw3.7.9:13c9%4747c7, Rug 17 2020, 16:30:00) [MSC v.19%00 64 bit
(BMD64)] on win3?2

Type "help", "copyright", "credits" or "license()" for more information.

>>>

= === === RESTART: C:/Users/sail0/set ex.py ==== ===
{104, 101, 102, 103}

<class 'set'>

Traceback (most recent call last):
File "C:/Users/sail0/set _ex.py", line 9, in <module>
print (Student id[2]) # Prints third item of set Student id
TypeError: 'set' object is not subscriptable
>

Here, four integer values have been added to a set called student id. As sets are collections
that are not ordered, indexing is meaningless. The entire set is shown first. Afterwards, trying
to access the element of the set using the slicing operator [] does not work. Similar to the
output accessing the third item with the error message generated by the index.

Boolean: The datatype which returns only 2 values either TURE or FALSE.

Example:
A=50;
Output:
>>> A ==40
>>> FALSE

2.2.1. Expressions, Variables, and Assignments in Python

In Python, expressions are combinations of values and operators that evaluate to a value.
They form the basic building blocks of any Python program, allowing for operations such as
arithmetic calculations, string manipulations, and logical comparisons. Variables are used to
store these values, acting as named references to data that can be easily accessed and
manipulated throughout a program.

Centre for Distance Education 2.7 Acharya Nagarjuna University

e Expressions

In Python, expressions are combinations of values, variables, operators, and function calls
that are evaluated to produce a new value. They can perform a variety of operations,
including arithmetic calculations, string manipulations, and logical comparisons. Expressions
are fundamental components of a Python program.

Examples of expressions

a=5+3 # Arithmetic expression

b ="Hello" + " " + "World" # String concatenation expression

c=10>5 # Comparison expression

e Variables
Variables in Python are symbolic names that reference or point to objects or values stored in
memory. They are used to store data that can be modified and accessed throughout a
program. Python uses dynamic typing, which means that you do not need to declare the type
of a variable explicitly; the type is inferred from the value assigned to it.

Examples of variables

x =10 # Integer variable

y =3.14 # Float variable

name = "Alice" # String variable

e Assignments

Assignment statements are used to assign values to variables. The assignment operator = is
used to perform assignments. The variable on the left side of the = operator is assigned the
value on the right side.

Examples of assignments

x =5 # Assigning an integer value to variable x

y =X+ 2 # Assigning the result of an expression to variable y

message = "Hello, World!" # Assigning a string value to variable message
e Python Operators
Operators are unique symbols or keywords in Python that perform operations on values and
variables. They form the foundation of expressions, which are used to work with data and
carry out calculations. Python has a number of operators, each having a distinct function. The
Python programming language supports the following types of operators:

Arithmetic Operators

Comparison (Relational) Operators
Assignment Operators

Logical Operators

Bitwise Operators

Membership Operators

SIS

o Python Arithmetic Operators
Common mathematical operations in addition modules are addition, subtraction,
multiplication, and division; additional arithmetic operations include exponential and floor

divisions are shown in Table 2.2. Expressions, variables, and integers are supported by all.

Table 2.2. Arithmetic Operations in Python

Programming and Problem-Solving ... 2.8 Python Data Types
Operator | Description Python Expression
+ Addition X+y
- Subtraction X-y
* Multiplication | x *y
/ Division x/y
% Modulus x%y
ok Exponent X **y
/l Floor Division | x//y
Example:
A
File Edit Format Run Options Window Help
1X = 40
v = &0
Addition
print ("x + v @ ", x + vy) °
Subtraction
print ("x - v @ ", X — ¥)
Multiplication
print ("= * v : ", X * y)
Division
print ("= / v : ", x/ ¥)
Modulus
print ("= ¥ v : ", a % b)
Exponent
print ("x ** y @ ", x *F y)
Floor Division
print ("x // v ", x /S W)
Output:
)
File Edit She Debug Options Window Help

Python 3.7.9 (tags/v3.7.9:13c%4747c7, mug 17 2020, 16:30:00)

(AMDE4)] on win32

[MSC v.1900 €4 bit

Type "help", "copyright™, "credits" or "license ()" for more information.

S>>

== = RESTART: C:/Users/sail0/arith.py == =
x + vy : 100

x -y =20

x %y @ 2400

x /v : 0.6666606666G66606GE6

X 5y 40

X *% y @ 13292279957849158725%036807060280344576000000000000000000000000000000000
000000000000000000000000000

x //y 0

>>>

Once the two variables "x" and "y" are defined, this code does a number of mathematical
operations, including floor division, modulus, addition, subtraction, multiplication, and

division, and reports the results.

o Python Comparison Operators

Python comparison operators are required in order to compare two values.They produce a
Boolean value (True or False) based on the comparison. The comparison operators in python

is shown in Table 2.3.

Centre for Distance Education

2.9

Acharya Nagarjuna University

Table 2.3. Comparison Operations in Python

Operator Description Python Expression
== Equal X==Yy
!= Not Equal x!=y
> Greater Than X>y
< Less Than x<y
>= Greater Than or Equal | x>=y
<= Less Than or Equal X <=y
Example:

)

File Edit Format Run Options Window Help
{x = 20

v = 10

Equal

print ("= == vy : ", ¥ == y)

Not Egual

print ("x !=y : ", x != y)

Greater Than

print ("= > v @ ", ®x > V)

Less Than

print ("s < v : ", X < ¥)

Greater Than or Egqual

print ("= »>= v : ", ®x >= V)

Less Than or Egual

print ("x <=y : ", X <= y)

_ Ln: 15 Col: 0

Output:
File Edit Shell Debug Options Window Help

Python 3.7.% (tags/v3.7.9:13c%4747c7, RBug 17 2020, 16:30:00)

(2MD64)] on win32

[M3C v.1900 64 bit

Type "help", "copyright", "credits" or "license()" for more information.
>>>
RESTRERT: C:/Users/sai00/comparision.py
¥ ==y : False
x =y : True
¥ >y : True
X £y : False
¥ >y : True
X €=y : False
>>>

o Python Assignment Operators

To assign values to Python, utilize the assignment operators. The simplest assignment
operator is the single equal symbol (=). The variable on the operator's left side is given the
value on the operator's right side. The different approaches to use assignment operator in

python is shown in Table 2.4.

DENE

Programming and Problem-Solving ... 2.10 Python Data Types

Table 2.4 Assignment Operations in Python

Operator Description Python Expression
= Equal X=y
x=x+5

x=2*x+4*5+8

Example:

File Edit Format Run Options Window Help
{# RAssignment of wvalues to variables

x = 20 14
y = 10

print ("zx = : ", X)

print ("yv = ", v)

Bssignment of result to wvariable

X ==t 5

print ("x =: ", x)

Ln: 10 Col: 0

Output:

File Edit She Debug Options Window Help

Python 3.7.9 (tags/v3.7.9:13c9%4747¢c7, Rug 17 2020, 16:30:00) [MSC w.1900 &4 bit

(AMD64)] on win32
Type "help", "copyright", "credits" or "license ()" for more information.

M
Innn

] Ln: 8 Col: 4

Above displays the assignment operators in Python. First, 'x' and 'y' have values of 20 and 10,
respectively. Afterwards, x=25 is the output of applying expression x+5 to x.

e Python Bitwise Operators : Bitwise operators in Python carry out actions on discrete
binary integer bits.They operate on each bit location logically while working with integer
binary representations.Many bitwise operations, including AND (&), OR (|), NOT (),
XOR (), left shift (), and right shift (>>), are included in Python.

Centre for Distance Education 2.11 Acharya Nagarjuna University

e Python Logical Operators
Boolean expressions are composed, and their truth values are evaluated using logical
operators in Python. They are necessary for controlling the program's execution flow and
for creating conditional statements. The three fundamental logical operators in Python are
AND, OR, and NOT.

e Python Membership Operators

To determine whether a particular value appears in a series or not, one can utilize Python
membership operators. They simplify the process of figuring out which elements belong
in many types of data structures, including sets, tuples, lists, and strings. The is and is not
operators are the two main membership operators in Python.

e Combining Expressions, Variables, and Assignments
In Python, you often use expressions, variables, and assignments together to perform
various operations and store results. This combination is essential for creating dynamic
and interactive programs.

Example combining expressions, variables, and assignments

a=10

b =20

sum_result =a+b # Assigning the result of an expression to a variable

print(sum_result) # Output: 30

greeting = "Hello"

name = "Bob"

mn

personal greeting = greeting + ", " + name + # Combining string expressions

print(personal_greeting) # Output: Hello, Bob!

Expressions, variables, and assignments are the core concepts of programming in Python.
Expressions allow you to perform operations and produce values. Variables provide a way to
store and reference these values. Assignments enable you to set and update the values of
variables. Understanding how to use these elements effectively is fundamental to writing
Python programs.

Programming and Problem-Solving ... 2.12 Python Data Types
E)
File Edit Shell Debug Options Window Help
Python 3.7.9 (tags/v3.7.9:13c%4747¢7, Rug 17 2020, 16:30:00) [MSC v.1900 64 bit (AMD64)] on win32
Type "help", "copyright", "credits™ or "license()" for more information.
>»> a = 20 # a is an integer variable assigned value 20
>>> a

20

>»> b =8.9 # b is a float variable assigned value 8.9
>>> b

8.9

>»> ¢ = " Welcome to Python World!™ # ¢ is a string variable assigned value " Welcome to Python World!"™
>>> C

' Welcome to Python World!'

>»> XK=y =2 =a

>>> X

20

S>>y

|20

22> Z

20

>»>>m=mn=>b

s
8.9
i Ln: 24 Col: 4
Fig 2.1 Example of Variable Declaration and Assignment
Python Keywords

Each language has words and rules that make sense when put together in a sentence. Also,
the computer language Python has a set of predefined words that are called Keywords. You
can't use these words anywhere else in Python because they have special meanings.
Keywords set the rules for how the code is written. That word can't be used as a variable,
function, or symbol name. The only words in Python that are written in capital letters are
True and False. Python 3.11 has 35 keywords and are’shown in Figure 2.2.

False await else import pass
MNone break except in raise
True class finally 13 return
and continue for lambda try

as def from nonlocal while
assert del global not with
async elif if ar yield

Fig 2.2 Python Kewords
2.3. STRING IN PYTHON

In Python, strings are sequences of characters enclosed in either single quotes (') or double
quotes (" "). They are immutable, meaning once a string is created, it cannot be changed.
Python provides a variety of built-in methods for string manipulation, such as len() to get the
length of a string, lower() and upper() to change the case, and split() to divide a string into a
list of substrings. Strings support indexing and slicing, allowing access to individual

Centre for Distance Education 2.13 Acharya Nagarjuna University

characters or segments of the string. Concatenation of strings can be done using the +
operator, and the in keyword is used to check for the presence of a substring within a
string.Python also supports triple quotes ("' " or """ """) for multi-line strings.

Key Points

1. Creation: Strings can be created using single quotes, double quotes, or triple quotes
for multi-line strings.

2. Concatenation: Strings can be concatenated using the + operator or various string
formatting methods such as f-strings, format(), and %-formatting.

3. Accessing Characters: Individual characters in a string can be accessed using
indexing, and substrings can be extracted using slicing.

4. Common Methods: Python provides a rich set of methods for string manipulation,
including:

upper(), lower(): Convert to uppercase or lowercase.

startswith(), endswith(): Check if a string starts or ends with a given substring.

find(): Locate the position of a substring.

replace(): Replace occurrences of a substring with another substring.

split(): Split a string into a list of substrings.

o join(): Join a list of strings into a single string.

5. String Formatting: Formatting strings can be done using f-strings (for Python 3.6+),

the format() method, and %-formatting.

0O O O O O

Example :

Here's a quick example that incorporates several of these concepts:
String creation

greeting = "Hello"

name = "Alice"

Concatenation and formatting

full greeting = " {greeting}, {name}!" # Using f-string
print(full _greeting) # Output: Hello, Alice!

String methods

upper_greeting = full _greeting.upper()
print(upper_greeting) # Output: HELLO, ALICE!

Slicing

first word = full greeting[:5]

print(first word) # Output: Hello

Programming and Problem-Solving ... 2.14 Python Data Types

Splitting and joining

words = full greeting.split(", ")

joined words =" - ".join(words)

print(joined words) # Output: Hello - Alice!

2.4.LIST IN PYTHON

lists in Python are dynamic, versatile, and powerful data structures that allow you to store and
manipulate an ordered collection of items. Understanding how to create, access, modify, and
manipulate lists is fundamental for effective programming in Python. Here's a summary of
the key points:

Key Points

Creation: Lists can be created using square brackets [] and can store elements of different
data types.

my list=[1, 2, 3, 'apple', 'banana']

Accessing Elements: You can access elements using indexing and slicing.
first element = my list[0] # 1

sub_list=my list[1:3] #][2, 3]

Modifying Lists: Lists are mutable, so you can change their content.

my _list[0] = 10

my_list.append('cherry')

my_list.insert(2, 'orange')

Removing Elements: You can remove elements using various methods.
my_list.remove('banana’)

popped_element = my_list.pop()

del my list[1]

List Operations: Lists support several operations such as concatenation, repetition, and
membership testing.

new_list=my list+ [4, 5, 6]

repeated_list =my_list * 2

Centre for Distance Education 2.15 Acharya Nagarjuna University

is_in_list ="apple' in my list
List Methods: Python provides a range of methods for list manipulation.
my _list.sort()
my _list.reverse()
index of apple = my _list.index(‘apple")
count of 10 =my list.count(10)
Iterating Over Lists: You can iterate over the elements of a list using loops.
for item in my _list:
print(item)
List Comprehensions: List comprehensions provide a concise way to create lists.
squares = [x**2 for x in range(10)]
Here's a quick example that incorporates several of these concepts:
List creation
fruits = ['apple’, 'banana’, 'cherry']
Accessing elements
first fruit = fruits[0] # apple
last two_fruits = fruits[-2:] # ['banana’, 'cherry']
Modifying lists
fruits[1] = 'blueberry’
fruits.append('date’)
fruits.insert(1, 'avocado')
Removing elements
fruits.remove('cherry')
popped_fruit = fruits.pop() # date

del fruits[0]

Programming and Problem-Solving ... 2.16

Python Data Types

List operations
more_fruits = ['elderberry’, 'fig']
all_fruits = fruits + more_fruits
doubled fruits = fruits * 2
is_elderberry in_list = 'elderberry' in all_fruits
List methods
all fruits.sort()
all_fruits.reverse()
index of fig=all fruits.index('fig")
count_of avocado = all_fruits.count('avocado')
Iterating over lists
for fruit in all_fruits:
print(fruit)
List comprehensions

lengths of fruits = [len(fruit) for fruit in all_fruits]

By mastering these list operations and methods, you can efficiently manage collections of
data in Python, enhancing your programming capabilities. If you have any specific questions

or need further assistance, feel free to ask!

2.5. OBJECT AND CLASS IN PYTHON

In Python, objects and classes are fundamental concepts of object-oriented programming

(OOP). Here's a brief overview of these concepts:

Classes

A class is a blueprint for creating objects. It defines a set of attributes and methods that the

created objects will have.

Defining a Class
class Dog:

Class attribute

Centre for Distance Education 2.17 Acharya Nagarjuna University

species = "Canis familiaris"
Initializer / Instance attributes
def init (self, name, age):
self.name = name
self.age = age
Instance method
def description(self):
return f" {self.name} is {self.age} years old"
Another instance method
def speak(self, sound):
return f"' {self.name} says {sound}"
Objects
An object is an instance of a class. It has the attributes and methods defined in the class.

Creating an Object
my_dog = Dog("Buddy", 3)

Accessing Attributes and Methods

print(my_dog.name) # Output: Buddy

print(my_dog.age) # Output: 3

print(my_dog.species) # Output: Canis familiaris
print(my_dog.description()) # Output: Buddy is 3 years old
print(my_dog.speak("Woof woof")) # Output: Buddy says Woof woof
Example

Here's a summary example that includes class definition, object creation, and method
invocation:

class Dog:

species = "Canis familiaris"

Programming and Problem-Solving ... 2.18 Python Data Types

def init (self, name, age):
self.name = name
self.age = age
def description(self):
return f"' {self.name} is {self.age} years old"
def speak(self, sound):
return " {self.name} says {sound}"
Creating an instance of the Dog class
my_dog = Dog("Buddy", 3)
Accessing attributes and methods
print(my_dog.name) # Output: Buddy
print(my_dog.description()) # Output: Buddy is 3 years old
print(my_dog.speak("Woof woof")) # Output: Buddy says Woof woof]
Understanding these concepts will enable you to leverage the power of object-oriented
programming in Python, making your code more modular, reusable, and easier to maintain. If
you have any specific questions or need further details, feel free to ask!
2.6 THE PYTHON STANDARD LIBRARY
The Python Standard Library is a collection of modules and packages that come with Python,
providing a wide range of functionality for various tasks such as file I/O, system operations,
data manipulation, and networking. Here is a brief overview of some key modules and their
uses:

Key Modules:

sys: Provides access to some variables used or maintained by the interpreter and to functions
that interact strongly with the interpreter.

import sys
print(sys.version) # Output the Python version

sys.exit() # Exit the program

os: Provides a way to use operating system-dependent functionality like reading or writing to
the file system.

import os

Centre for Distance Education 2.19 Acharya Nagarjuna University

print(os.name) # Output the name of the operating system
os.mkdir('new_directory') # Create a new directory

datetime: Supplies classes for manipulating dates and times.

from datetime import datetime
now = datetime.now()
print(now.strftime("%Y-%m-%d %H:%M:%S")) # Format the current date and time

math: Provides access to mathematical functions.

import math
print(math.sqrt(16)) # Output: 4.0
print(math.pi) # Output: 3.141592653589793

random: Implements pseudo-random number generators for various distributions.

import random
print(random.randint(1, 10)) # Output a random integer between 1 and 10

The Python Standard Library provides tools and utilities for many common programming
tasks, enabling developers to write efficient and effective code without needing to install
external libraries. If you have any specific questions or need further details, feel free to ask!

2.7 SUMMARY

Python supports a wide range of data types and programming constructs that make it both
powerful and easy to use. Expressions in Python combine values, variables, and operators to
produce new results, while variables are used to store and reference data dynamically without
explicit type declarations. Strings represent sequences of characters and support numerous
operations such as concatenation, slicing, and formatting. Lists allow storage of ordered
collections of items that can be easily modified, whereas objects and classes provide the
foundation for object-oriented programming, enabling modular and reusable code through
encapsulation and inheritance. The Python Standard Library further enhances the language by
offering a vast collection of built-in modules and functions for tasks like file handling, math
operations, data manipulation, and system interaction — making Python a comprehensive
and efficient language for solving computational problems.

2.8 TECHNICAL TERMS

Expressions
Operators
Operands
Evaluation
Variables
Objects
Classes

Programming and Problem-Solving ... 2.20 Python Data Types

2.9 SELF ASSESSMENT QUESTIONS

Essay Questions:

1. Explain the concept of expressions, variables, and assignments in Python with suitable
examples.

2. [Illustrate the various data types in Python and describe their key characteristics.

3. Describe the string data type in Python and discuss common string operations and
methods.

4. Explain lists in Python, highlighting their features, indexing, and common list operations.

5. Discuss the concepts of objects and classes in Python and explain how object-oriented
principles are implemented.

6. Write a detailed note on the Python Standard Library and its importance in program
development.

Short Notes:

1. Write short notes on Python Expressions with examples.

2. Explain the process of variable creation and assignment in Python.

3. Write about string slicing and concatenation in Python with examples.

4. Discuss any four list methods with suitable examples.

5. Write a short note on object-oriented features in Python.

6. List some commonly used modules from the Python Standard Library and their uses.

2.10 SUGGESTED READINGS

1. Steven cooper — Data Science from Scratch, Kindle edition.

2. Reemathareja — Python Programming using problem solving approach, Oxford

Publication

Think Python: How to Think like a Computer Scientist

Brown, A.- Mastering Python Modules. Publisher.

5. Ljubomir Perkovic, “Introduction to Computing Using Python: An Application
Development Focus”, Wiley, 2012.

6. Charles Dierbach, “Introduction to Computer Science Using Python: A
Computational Problem-Solving Focus”, Wiley, 2013.

W

Dr. U Surya Kameswari

LESSON- 03
IMPRATIVE PROGRAMMING

AIMS AND OBJECTIVES

The primary goal of this chapter is to introduce the concept of imperative programming and
its implementation in Python. Students will learn about program structure, control flow,
variable assignments, functions, and parameter passing mechanisms.
After completing this chapter, students will be able to write, execute, and manage Python
programs effectively using imperative programming concepts.

STRUCTURE

3.1 Introduction

3.2 Imperative Programming Concepts
3.3 Python Programs

3.4 Execution Control Structures

3.5 User-Defined Functions

3.6 Python Variables and Assignments
3.7 Parameter Passing

3.8 Summary

3.9 Technical Terms

3.10 Self-Assessment Questions

3.11 Suggested Readings

3.1 INTRODUCTION

Imperative programming is one of the most common programming paradigms that focuses on
describing how a program operates.

It uses statements that change a program's state, executing instructions step by step.
Python, being a multi-paradigm language, supports imperative programming efficiently.

This approach helps programmers control the flow of execution using variables, functions, and
control structures such as conditionals and loops.

3.2 IMPERATIVE PROGRAMMING CONCEPTS

Imperative programming is based on commands that change the state of the program.
The program is a sequence of statements that tell the computer what to do, one after another.
Examples of imperative languages include C, Java, and Python.

Characteristics of Imperative Programming:

o Uses variables to store and modify program data.

Programming and Problem-Solving ... 3.2 Imprative Programming

e Includes control structures like loops and conditionals.
e Programs are executed sequentially.
e Focuses on how to perform tasks rather than what to perform.
3.3 PYTHON PROGRAMS
A Python program is a collection of statements written to perform a specific task.
It may include variables, expressions, functions, and control structures.
Python programs can be written using any text editor and executed using the Python interpreter.

Example:

print('"Welcome to Python Programming')

x=10
y=20
sum=x+vy

print("Sum:', sum)

Output:

Welcome to Python Programming

Sum: 30

3.4 EXECUTION CONTROL STRUCTURES

Control structures determine the flow of execution in a program.
They allow the programmer to decide which statements to execute and in what order.

Types of Control Structures:

e Sequential: Executes statements in order.

o Selection: Uses conditional statements like if, elif, and else.

o [teration: Repeats execution using loops like for and while.
if STATEMENT
The if statement tests a condition; if True, its indented block executes.
Syntax
if condition:

statement_block

Example

score = 90

Centre for Distance Education 3.3

Acharya Nagarjuna University

if score >= 80:
print("Excellent performance")
Flow Description
1. Evaluate condition.
2. If True — execute block.
3. If False — skip block.

Practice

Write a program to check whether a number entered by the user is positive.

False

True

block of code

&

Fig 3.1 Flow Chart of if Statement

if-else STATEMENT
Used when two mutually exclusive paths exist.
Syntax
if condition:
block true
else:
block false
Example

num = int(input("Enter a number: "))

‘ Programming and Problem-Solving ... 3.4 Imprative Programming

if num % 2 ==0:
print("Even number")
else:
print("Odd number")
Flow Description:
If condition fails, the else block executes.
Practice
Write a program that accepts a temperature in
if-elif-else STATEMENT
When multiple conditions must be checked in order, Python uses elif.
if condition1:
eli% .condition2:
els.e“:
Ex;mple -Grade Evaluation
marks = int(input("Enter marks: "))
if marks >=75:
print("Distinction")
elif marks >= 60:
print("First Class")
elif marks >= 40:
print("Pass")
else:
print("Fail")
Output
Enter marks: 82
First Class
Practice Task
Modify the program to print “Outstanding” for marks > 90.
For Loop Statement
It 1s possible to iterate over a series of elements in Python by using the for loop, which is one
of the looping instructions contained inside the language. There are a variety of objects that

can be iterated, including a list, a tuple, a text, and any other object.

Centre for Distance Education 3.5 Acharya Nagarjuna University

Syntax:
for variable in sequence:
Code block to be executed
The preceding syntax,
e variable is a temporary variable that stores the value of each element in the sequence
during each iteration of the loop
e The code block that comes after the for statement is carried out many times for each
individual element that is included in the sequence.
Example:
fori in 10:
Code block to be executed
Total 10 time block will be repeated

The flowchart to represent for loop statement in python is shown in Figure 5.2

For loop

last YES

element?

v

Execute statements inside the
body of the for loop

Exit for loop

Fig 3.5. Flowchart of For-loop Statement

Example :

)

LF Edit Format Run Options Window Help

ile
Simple Python Program to demonstrated for loop statement.

list = ['"ARPPLE', 'BANANA', 'ORANGE']

print (index)

Ln: 9 _Col: 0

Programming and Problem-Solving ... 3.6 Imprative Programming

The code that you see above has a for loop that prints each element of the 'list' list on a new
line after iterating over each entry in the list. The output is shown on the next page.

Output:
A |

File Edit She Debug Options Window Help
Python 3.7.9 (tags/v3.7.9%:13c%4747¢7, Rug 17 2020, 16:30:00) [MSC w.1500 &4 bit

(AMDE4)] on win3z
Type "help", "copyright", "credits"™ or "license()" for more information.

>>>
=== = RESTART: C:/Users/sail0/forlist.py = =

APPLE
BANANA
ORANGE
>>>

Ln:8 Col: 4
Example 2:

! File Edit Format Run Options Window Help
Simple Python Program to sum list of items in tuples using for loop statement.

ETS

nums = (5,8,7,2)
sum nums = 0
for num in nums:

print (num)
Sum NuUmMS = Sum nums + num

print (f'sum of numbers is {sum nums}')

LmS Caol: 0

Output:

b| File Edit She Debug Options Window Help
Python 3.7.9 (tags/v3.7.9:13c%4747c7, Rug 17 2020, 16:30:00) [MSC v.1%00 €4 bit

(AMD64)] on win32
| Type "help™, "copyright", "credits"™ or "license ()" for more information.

—————— RESTART: C:/Users/sail0/forlistsum.py =====

Sum of numbers is 22
>>>
Ln: 10 Col: 4

Using the code that was just presented, the for loop will iterate over each element in the tuple
that is referred to as 'num' and then display it on a new line. In addition, the sum of each

Centre for Distance Education 3.7 Acharya Nagarjuna University

number was computed, the result was saved in the "sum nums" variable, and the sum value
was eventually printed out. In the run tuple, a sequence of distinct integers (5,8,7,2) is used,
and the result is "the sum of the numbers is 22"

According to Python, a range object is a sequence of numbers that cannot be changed. When
using a for loop, it is helpful to keep track of the number of times a block is repeated.

You can use the range() method in the following ways:

range ([start], stop, [step])

Every one of the three arguments must be an integer. The value of the [start] parameter is
always set to zero, unless an alternative number is provided. The only parameter that is
required for the function described above is stop. It is one less than the stop parameter that
the last integer in the series is. In the intervals between, the [step] value, which is set to 1 by
default, is used to increment the numbers.

Example:
T File Edit Format Run Options Window Help

S5imple Python Program to demonstration of range () function.
#range () function generates 0-% numbers

i range (10):
print (i)

#range () function generates 1-4 numbers
i range (1,5):

print (i)

#range () function generates 10-45 numbers with step 5

i range (10,50,5):
print (i)

Lm14 Col: 33

The range() method was used instead of a for loop statement in the Python code above. Three
for loop statements in all, each printing a distinct range of numbers according on the inputs
passed to the range () function.

When the first "10" value was entered into range (10) it produced numbers starting at 0 and
ending with 10-1, or 9. A for-loop statement is then given range(1,5), and values are printed
starting at 1 and ending at end 5-1, or 4. Lastly, range(10,50,5) is sent to the for-loop
expression, which outputs values starting at 10 and ending at 50-4, or 45, because step=5.

Programming and Problem-Solving ... 3.8 Imprative Programming

Output:
File Edit She Debug Options Window Help

Python 3.7.9 (tags/v3.7.9:13c%4747c¢7, Rug 17 2020, 16:30:00) [MSC w.1900 &4 bit
(AMD64)] on win32

Type "help", "copyright™, "credits" or "license()" for more information.

S>>

= RESTART: C:/Users/sail0/rangeex.py ==== =

WS OO T TN B B = S R R

N N)
(S =R W R R ST R R Wy

2>

Ln: 27 Col: 4

While Loop Statement

Another Python looping expression used to repeat a block of code until a predetermined
condition is met is the while loop.

Syntax:
The syntax of the while loop in Python is given below.

while condition:

Code block to be executed

A boolean expression called condition in this syntax is evaluated at the beginning of each
loop iteration. The while statement is followed by a code block that is periodically run until
the condition evaluates to False.

The flowchart to represent while loop statement in python is shown in Figure 5.3

Centre for Distance Education 3.9 Acharya Nagarjuna University

while loop

FALSE

Condition

h 4

Execute statements inside the
body of the while loop

Exit while loop

Fig 3.6 Flowchart of While-loop Statement

Example:

ilelistsum.py (3.7.9 — O X

% whilelistsum.py - C;/Users/sai00/wh

UFile Edit Format Run Options Window Help

Simple Python Program to demonstration of while loop statement.

sum = 0
n = int (input("Bnter n value: "));
while (sum < n):

print (sum)
sum = sum+l

print (f'Sum of numbers is {sum}"')

Ln: 8 Col: 17
i T i ol J
Output:
} Python 3.7.9 She o o x

| File Edit She Debug Options Window Help

Python 3.7.9 (tags/v3.7.9:13c%4747c7, Aug 17 2020, 16:30:00) [MSC v.1900 €4 bit =
(AMD64)] on win32

Type "help", "copyright", "credits"™ or "license ()" for more information.

>>>

RESTART: C:/Users/sai00/whilelistsum.py

Enter n wvalue: 5

= O

Sum of numbers is 5
>3

v
B __I:_n_:___1_2___CoI: 4

Programming and Problem-Solving ... 3.10 Imprative Programming

The code block is repeated here by the while loop until the sum variable is less than 5. As we
can see in the output, the sum variable is increased by 1 at each iteration, and the current
value of the sum is printed on a new line.

Nested Loop Statement

A loop inside another loop is known as a nested loop in Python. When we wish to loop over a
series of components with several degrees of nesting, we utilize it.

Syntax:
for variable in sequence:
for i _variable ini_sequence:
Code block to be executed

Variable, as used in this syntax, is a temporary variable that, for each iteration of the outer
loop, stores the value of each element in the sequence. Every time the inner loop iterates, the
value of every element in the i sequence is stored in the i variable, a temporary variable.
Every element in the inner sequence and every element in the outer sequence is subjected to
several executions of the code block that follows the inner for statement.

Example :

The code given below uses the Nested Loop.

3 e

File Edit Format Run Options Window Help
Simple Python Program to demonstration of nested for-loop statement

My Matriz = [[4, 8, 2] , [1, 3, 71 , [5, &, 9]1]
row My Matrix:
value row:
print(value)

print ("\n")

Ln: 11 Col: 13

Centre for Distance Education 3.11 Acharya Nagarjuna University

& Python 3.7.9 She — O X
File Edit She Debug Options Window Help

Python 3.7.9 (tags/v3.7.9:13c%4747c7, Rug 17 2020, 16:30:00) [MSC w.1900 64 bit
(AMDE4)] on win32

Type "help™, "copvright™, "credits™ or "license ()™ for more information.

y>>>

RESTRRT: C:/Users/sail0/nestedifmatrix.py
4
a8
2

=W

oo

>>>

Ln: 20 Col: 4

In this example, the nested loop performs an iteration over each item in the ‘matrix' list and
then prints the elements on a new line.

When one while loop is contained within another while loop, the resulting structure is
referred to as a nested while loop. We require nested loops in most of our apps.

Example:

nestedwhileloop.py - C/Users/sai00/nestedwhileloop.py (3.7.9 - O X

1]
1]

Edit Format Run Options Window Help

ile
Simple Python Program to demonstration of nested while-loop statement

H= | |

i=1
hile i<=3 :
print("outer While-loop count:",1i)
=1
while j<=3:
print ("Inner While-loop count: ™, 3)
Jj+=1

print(" ")

i+=1;

Ln:19 Col: 4

Programming and Problem-Solving ...

3.12 Imprative Programming

Output:
&
File FEdit She Debug

|-

Type
R

Python 3.7.%9
(AMDE4)] on win32
"help",

cuter
Inner
Inner
Inner

While-loop
While-loop
While-loop
While-loop

cuter
Inner
Inner
Inner

While-loop
While-loop
While-loop
While-loop

count:
count:
count:
count:

cuter
Inner
Inner
Inner

While-loop
While-loop
While-loop
While-loop

count:
count:
count:
count:

>

"copyright",

Options

1

2

1
2
3

1
2
3

[FVIN SN I]

Window Help

"credits"™

(tags/v3.7.9:13c04747c7,

or

RESTART: C:/Users/sail0/nestedwhileloop.py
count:
count:
count:
count:

Zug 17 2020, 16:30:00) [MSC w.1%00

"license ()" for more information.

€4 bit

Ln: 20 Col:4

In this example, the nested loop performs an iteration over each item in the ‘matrix' list and

then prints the elements on a new line.

Break Statement

A premature termination of the loop in Python can be accomplished with the help of the

break statement. It is utilized in situations in which we wish to exit the loop prior to it having

finished all of its iterations.

Syntax:

The syntax of the break statement in Python is as follows:

for variable in sequence:

if condition:

break

The value of each element in the sequence is stored in the variable, which is a

temporary variable, and it is used for each iteration of the loop to save the value.

The condition is a statement that receives a boolean value and is evaluated at the

beginning of each iteration of the loop. If the condition is found to be true, the break

statement is carried out, therefore bringing an end to the loop.

Centre for Distance Education 3.13 Acharya Nagarjuna University

Example:
File Edit Format Run Options Window Help
Simple Python Program to demonstration of break statement
days = ['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday'l]
for day in days:
1f day == 'Wednesday':
print (day)
Ln: 7 Col: 24

The code that you see above has a for loop that outputs each item in the "fruits" list on a new
line after iterating over each item in the list. On the other hand, the break statement is
executed, and the loop is halted when the value of the "fruit" variable is equal to "banana."

Output:
File Edit She Debug Options Window Help

Python 3.7.9 (tags/vw3.7.9:13c%4747c7, Bug 17 2020, 16:30:00) [MSC w.1%00 64 bit
(AMDE4)] on win3Z2

Type "help", "copyright", "credits"™ or "license()"™ for more information.

>>>

=== = RESTRRT: C:\Users\saiOO\breakstatement.py = ==
Monday

Tuesday

>>>

Ln:7 Col: 4]

Continue Statement
Using the continue statement in Python, one can skip the iteration of the loop that is currently

being executed. It is utilized in situations in which we wish to skip a certain component of the
sequence and proceed with the subsequent iteration of the loop onward.
Syntax:
for variable in sequence:
if condition:
continue
Code block to be executed

Programming and Problem-Solving ... 3.14 Imprative Programming

e The value of each element in the sequence is stored in the variable, which is a
temporary variable, and it is used for each iteration of the loop to save the value.

e The condition is a statement that receives a boolean value and is evaluated at the
beginning of each iteration of the loop.

Example

fad

-

ile Edit Format Run Options Window Help
Simple Python Program to demonstration of continue statement

= | |

days = ['Monday', 'Tuesday', 'Wednesday', 'Thursday','Friday','Saturday"']
for day in days:
1f day == 'Wednesday':
print (day)
_ Ln: 9 Col: 16
Output:
File Edit Shell Debug Options Window Help

Python 3.7.9 (tags/v3.7.9:13c%4747c7, Rug 17 2020, 16:30:00) [MSC v.1900 €4 bit
(RMDE4)] on win32

Type "help", "copyright", "credits" or "license()" for more information.

>>>

= RESTRRT: C:/Users/sail0/continuestatement.py =================

Monday
Tuesday
Thursday
Friday
Saturday
>>>

.Lm1U Col: 4

The for loop iterates through each item in the "fruits" list in this example, printing each one
on a new line. Nevertheless, the loop's current iteration is skipped and the continue statement
is executed when the value of the "fruit" variable equals "banana."

Centre for Distance Education 3.15 Acharya Nagarjuna University

Pass Statement

The pass statement is used as a placeholder in Python. It is used when we want to write
empty code blocks and want to come back and fill them in later. The syntax of the pass
statement in Python is given below.

Syntax:

for variable in sequence:

pass

e Every time the loop iterates, the variable—which is a temporary variable—holds the

value of every element in the sequence.

e An empty code block is created using the pass statement and is subsequently filled in.

Example:

)

1 File
 Simple Python Program to demonstration of pass statement

¥

Edit Format Run Options Window Help

days = ['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday'l]

day days:

Ln: 1 Col: 48

In this example, the pass statement is used to create an empty code block while the for loop
iterates over each element in the "fruits" list.

|:'e Edit Shell Debug Options Window Help
{Python 3.7.9 (tags/v3.7.9:13c%4747¢7, Rug 17 2020, 16:30:00) [MSC v.1900 64 bit

(RMD64)] on win32
| Type "help", "copyright", "credits"™ or "license ()" for more information.

>5>

=== == RESTART: C:/Users/sail0/passstatement.py ===

>2>

Ln:5 Col: 4

Programming and Problem-Solving ... 3.16 Imprative Programming

3.5 USER-DEFINED FUNCTIONS

Functions are reusable blocks of code designed to perform a specific task.
Python allows users to define their own functions using the def keyword.

Syntax:
def function name(parameters):
function body
return value
Example:
def greet(name):
print('"Hello', name)
greet('Lavanya')
Output:

Hello Lavanya

Built-in Functions

Python's built-in functions are already defined. A user must remember the name and
parameters of a certain function. There is no need to redefine these functions because they
have already been defined.Some of the widely used built-in functions are given below and
shown in Table 10.1:

Table 3.1 Built-in Functions in Python

Function Description

pow() Returns the power of two numbers

abs() Returns the absolute value of a number

max() Returns the largest item in a python iterable

min() Returns the largest item in a python iterable

sum() Sum() in Python returns the sum of all the items in an iterator
type() The type() in Python returns the type of a python object
Sqrt() Executes the python built-in to find sqrt of the given number

The following two example python codes shown in below demonstrate the usage of built-in
functions to fulfil the specific task. In the first example python code imported math module

https://www.scaler.com/topics/sum-in-python/
https://www.scaler.com/topics/type-in-python/

Centre for Distance Education 3.17 Acharya Nagarjuna University

and later performed the two functions pow () and sqrt() operations. The result of each
function is produced on the output.

Example

} redined.py - C:/Users,/s5ai00/predined.p 3.7.9 — O >
File Edit Format Run Options VWindow Help
Python code demonstrate predefined funtions

import package

£

mpoort math
find sguare root of a given number

The sgure root of 25 is =", ,math.sgrt (25))

find power of two numbers

print("The power of 5 & 9 =",pow(5,9))

Ln: 16 Col: O

} 3_ thon 3.7.9 She)) X

File Edit Shell Debug Options Window Help

Python 3.7.9% (tags/v3.7.9:13c%4747¢7, Rug 17 2020, 16:30:00) [MSC v.1%00 64 bit
(2MDE4)] on win32

Type "help", "copyright",

>3
=== = RESTART: C:/Users/sail0/predined.py === =
The squre root of 25 is = 5.0
The power of 5 & 9 = 1653125

>>>

"credits" or "license ()" for more information.

Ln: 7 Col: 4

Similarly, the second example also imported math module and perform the abs (), max () and
min () operations respectively. The absolute function took the -25 is a negative number and
produced the output as 25. The maximum of 5 and 9 is determined by max () and minimum is

returned by min () function.

Example

edined1.py - C:/Users/saill edined1.py (3.7.9 - O Pt

ile Edit Format Run Options Window Help

Python code demonstrate predefined funtions

import package

import math

find absclute walue of a given number
print ("The absolute walu 25 is =",abs(25))
print ("The absolute walu —-25 is =",abs(-25))
find max and min of given number

print ("The max of 5 & 9 =", max(5,9))

print ("The min of 5 & % =",min(5,98))

Ln: 11 Col: 40

Programming and Problem-Solving ... 3.18 Imprative Programming

Output:
File Edit Shell Debug Options Window Help

Python 3.7.9 (tags/v3.7.9:13c%4747¢7, mug 17 2020, 16:30:00) [MSC v.1900 é4 bit
(AMDE4)] on win32

Type "help", "copyright", "credits" or "license ()" for more information.

B3>

== = == RESTART: C:/Users/sail0/predinedl.py =
The absolute wvalu 25 is = 25

The absolute valu -25 1s = 235

The max of 5 & 9 9

The min of 35 5

3>

Ln:9 Cal:4

3.6 PYTHON VARIABLES AND ASSIGNMENTS

Variables are used to store data values. In Python, variables are created automatically when a
value is assigned. Python is dynamically typed, so there is no need to declare variable types

explicitly.
X=15
y=25

name = 'Python'’
print(x, y, name)

3.7 PARAMETER PASSING

Python supports several ways to pass parameters to functions: positional, keyword, default,
and variable-length arguments.
Example:
def add(a, b=10):
returna + b
print(add(5))
print(add(5, 15))
Output:
15
20

3.8 SUMMARY

In this chapter, we explored imperative programming concepts, Python program structure,
control flow statements, and user-defined functions.

We also discussed variable assignments and different parameter passing techniques.
Understanding these concepts helps in writing efficient and structured Python programs.

Centre for Distance Education 3.19 Acharya Nagarjuna University

3.9 TECHNICAL TERMS

o Imperative Programming
e Control Structure

e Function

e Variable

e Parameter Passing

e Sequential Execution

3.10 SELF-ASSESSMENT QUESTIONS
Essay Questions:

1. Explain the concept of Imperative Programming with suitable examples.
2. Describe different types of execution control structures in Python.
3. Discuss the types of parameter passing in Python with examples.

Short Notes:

1. Write about Python variables and assignments.
2. Discuss about user-defined functions with examples.

3.11 SUGGESTED READINGS

—

Steven cooper — Data Science from Scratch, Kindle edition.

Reemathareja — Python Programming using problem solving approach, Oxford
Publication

"Think Python: How to Think Like a Computer Scientist" by Allen Downey

"Python Cookbook" by David Beazley and Brian K. Jones

"Programming Python" by Mark Lutz

Ljubomir Perkovic, “Introduction to Computing Using Python: An Application
Development Focus”, Wiley, 2012.

7. Charles Dierbach, “Introduction to Computer Science Using Python: A Computational
Problem-Solving Focus”, Wiley, 2013.

D

A

Dr. U Surya Kameswari

LESSON- 04

STRING

The primary goal of this chapter is to grasp the concept of string in Python programming. The
chapter began with an understanding of basic definition of string, creating a string, and so on.
After completing this chapter, the student will understand how to work with string in python
in terms various methods, operations, and functions.

AIMS AND OBJECTIVES

STRUCTURE

4.1 Introduction
4.2 Python String
4.2.1 Creating a Python String
4.2.2 Applications of Python String
4.3 Accessing the String
4.3.1 Indexing
4.3.2 Negative Indexing
4.3.3 Slicing
4.4 Python String Operations
4.4.1 Concatenation Operator
4.4.2 Repetition Operator
4.4.3 Membership Operator
4.4.4 Comparison Operator
4.5 Python String Methods
4.5.1 len()
4.5.2 upper()
4.5.3 replace()
4.5.4 find()
4.6. Formatted Output
4.7 Summary
4.8 Technical Terms
4.9 Self-Assessment Questions

4.10 Suggested Readings

Programming and Problem-Solving ... 4.2 String

4.1. INTRODUCTION

Python strings, like those in many other well-known programming languages, are arrays of
bytes that represent unicode characters. Nevertheless, a single character in Python is just a
string with a length of 1. Python does not have a character data type. You can access the string's
constituents by using square brackets.

Since it is an immutable data type, you are unable to alter a string after you have created it.
Strings are extensively utilized in a wide range of applications, including the storing and
manipulation of text data as well as the representation of names, addresses, and other text-
representable data types. This chapter will cover Python strings, one of the core data types in
Python programming, and will cover Python string methods, operators and functions,
working with them, and more.

4.2. PYTHON STRING

A string is a sequence of alphabets, words, or other characters. It is one of the most basic data
structures, serving as the foundation for data manipulation. Python includes a built-in string
class called str. Python strings are "immutable," which implies they cannot be modified once
formed.

4.2.1. Creating a Python String
To create a String in python there are three different types of approaches:

o With a Single quotes
‘Welcome to the world of '"Python" keep Loving.'
e With a Double quotes.
“Welcome to the world of ' Python ' keep Loving."
e With a Triple quotes,
""" Welcome to the world of Python """, '""Keep Loving.'"'

Example:
§ A

File Edit Format Run Options Window Help
#Python Program to demonstrate String Creation.

#Using single guotes

s1 = '"Welcome to "Python" World!'"
print(sl)

#Using double guotes

s2 = "Welcome to '"Python' World!"™

print (s2)

#U=sing triple guotes
s3 = '"'"'"'"'"Welcome to Python World!''"'

print (s3)

Ln: 18 Col: 34

Centre for Distance Education 4.3 Acharya Nagarjuna University

Output:

File Edit She Debug Options Window Help

Python 3.7.9 (tags/v3.7.9:13c%4747c7, Bug 17 2020, 16:30:00) [MSC v.1900 64 bit
(BMDE4)] on win3Z2

Type "help", "copyright", "credits" or "license()" for more information.

>>>

RESTART: C:/Users/sail0/stringcreate.py =
Welcome to "Python"™ World!

Welcome to 'Python' World!

'"Welcome to Python World!

S>>

n:8 Col:4

The above example, where three strings are created namely S1,S2 and S3 in different styles

with same content. Finally displayed the three strings output is shown above.

4.2.2. Applications of Python Sting

e Use of string matching algorithms to quickly detect instances of plagiarism in both code

and text.

e Strings can be utilized for encoding and decoding purposes, ensuring the secure

movement of data from source to destination.

e We are able to offer better filters for the approximate suffix-prefix overlap problem by

utilizing strings and the techniques associated with them.

e HTTP requests and responses, among other data exchanged over networks, are encoded

and decoded using strings.

e When working with files, you'll need to know that strings are the go-to for reading and

writing file names and locations.

e Applications like sentiment analysis and natural language processing make use of strings

to glean useful insights from massive text datasets.

4.3 ACCESSING THE STRING

There are three various methods that we can get the characters from the individual String that

was already constructed in the previous section. The information is given below:

e Indexing
e Negative Indexing
e Slicing

Programming and Problem-Solving ... 4.4 String

4.3.1 Indexing

Using index values and treating strings like a list is one method. In Python, the Indexing
function can be used to retrieve specific characters from a String. The idea of indexing

technique is shown in Figure 4.1

str = "HELLO"
H E L L (o]

1 2 3

str{0] = 'H'

str[1] = 'E’

str[2] = 'L

str{3] = 'L’

str{4] = 'O’

Fig 4.1. Indexing technique to access String

Example:
EA
File Edit Format Run Options Window Help

#Python Program to demonstrate access of String with Index.

#Creation of string using single guotes

s1 = 'GOOD MOEN
#hccess of second charater in string at index 1

print(s1[1])

#hccess of second charater in string at index 5

print(s1[51)
4
Ln: 2 Col: 0

Output:

File Edit She Debug Options Window Help
Python 3.7.9 (tags/v3.7.9:13c%4747c7, Rug 17 2020, 16:30:00) [MSC w.1900 64 bit
(AMDE4)] on win32

Type "help", "copyright", "credits"™ or "license()"™ for more information.
>>>
RESTART: C:/Users/sail0/indexaccessstr.py =
o]
M
>>>

Ln: 7 Col: 4

Centre for Distance Education 4.5 Acharya Nagarjuna University

The above example illustrate the concept of indexing method, where one strings S1 is
created with the content of “GOOD MORNING” and then accessed character at index 1 and
5. Finally displayed the extracted characters output is shown above.

4.3.2 Negative Indexing

Python's string language permits negative indexing, just as that of a list. Negative address
references, such as -1 for the final character, -2 for the second last character, and so forth, can
access characters from the back of the String thanks to indexing. The idea of negative

indexing is shown in Figure 6.1.

H E L L o

g 4 -F B -

str[-1]=0
str[-2]=L
strl-4]=E

Fig 4.2. Negetive Indexing technique to access String

Example:

} ndexaccessstr.py - C/Users/sal00/indexaccessstrpy (3.7.9 - O

File Edit Format Run Options Window Help
#Python Program to demonstrate access of String with Negetive Index.

#$Creation of string using single quotes

sl = 'GOOD MORNING'

$Lceess of sixth charater in string with negetive index -6
print (s1[-6])

$Lceess of first charater in string with negetive index -12

print (s1[-127)

Ln: 12 Col: 16

Output:

JE
| File Edit She Debug Options Window Help
d Python 3.7.2 (tags/v3.7.2:13c24747c7. ARug 17 2020, 16:30:00
(AMDE4)] on win32
Type "help™, "copyright”, "credits™ or "license ()

[MSC wv.1900 &4 bit
" for more information.

RESTART: C:/Users/saill/indexaccessstr.py

Ln: 7 Col: 4

Programming and Problem-Solving ... 4.6 String

The above example illustrate the concept of negative indexing method, where one strings S1
is created with the content of “GOOD MORNING” and then accessed character at index-6
and -12. Finally displayed the extracted characters output is shown above.

4.3.3. Slicing

The String Slicing function in Python can be used to retrieve a range of characters from the
String. To slice something in a string, use a slicing operator, such as a colon (:). When
utilizing this method, bear in mind that the character at the start index is included in the
string that is returned, but the character at the last index is not.

Example:
File Edit Format Run Options Window Help
#Python Program to demonstrate access set of charaters in String with Slicing

#Creation of string using single cuotes
sl = 'GOOD MORNING'

$hccess of [3-€] charaters in string
print{s1[3:7])

$hccess of [5-13] charaters in string

print{s1[5:13]})

Ln: 12 Col: 16

Output:
File Edit She Debug Options Window Help

Python 3.7.9 (tags/w3.7.9:13c9%4747c7, Rug 17 2020, 16:30:00) [MSC w.1500 64 bit
(AMDE4)] on win3Zz
Type "help", "copyright", "credits"™ or "license()" for more information.

>>>

S— RESTRRT: C:/Users/sail0/slicingstr.py =
D Mo

MORNING

>>>

Ln: 7 Col: 4

The above example illustrate the concept of slicing method, where one strings S1 is created
with the content of “GOOD MORNING” and then accessed character with range of [3-7]
and [5-13] . Finally displayed the extracted sub string output is shown above.

Centre for Distance Education 4.7 Acharya Nagarjuna University

4.4 PYTHON STRING OPERATIONS

Python's basic string operations include doing simple arithmetic operations, verifying the
character of an existing substring, repeating a string, and much more are shown in Table 6.1.

Table 3.1. Python String Operations

Operation Python Description
Expression
. sl +s2 "Concatenation operator" is the name given to this
Concatenation C . .
operator, which is used to unite two or more stings
s*n The repetition operator is the name given to this.
Repetition There will be several copies of the same string
created by it.
in The membership operator is the name given to this.

Whether or whether a certain character or sub string
is included in the string that was supplied is returned

by it.
. not in It is also a membership operator and does the exact
Membership .) . .
reverse of in. It returns true if a particular string or
character is not present in the specified. It gives a
return value of true if the character or sub string is
not included in the string that was supplied.
Otherwise return false.
sl ==s2 Returns True if string, sl is the same as string, s2.
) Otherwise False.
Comparison

sl =52 Returns True if string, sl is not the same as string, s2.
Otherwise False.

4.4.1 Concatenation Operator

Concatenating or joining two or more strings is a common task while programming. To
connect or concatenate two strings in this sense, use the plus operator (+) and the idea is
shown in Figure 6.3. Python's concatenation operator only joins items of the same type, in
contrast to other languages like JavaScript where type coercion allows us to concatenate a
string and an integer.

Fig 4.3. Concatenate of Two Lists with ‘+’ Operator

Programming and Problem-Solving ... 4.8 String

Example:
Eri::':}'i:_-ﬁ Jsers/sai00/strconcant.py (3.7.9 — (]
File Edit Format Run Options Window Help
#Python Program to concatenate two Strings with '+' Operator

#Creation of first string using single quotes

s1 = 'GOOD MORNING'

#Creation of second string using double quotes

s2 = "WELCOME TO PYTHON"

#Concatenate of the two strings s1 & s2 and store into string s3
53 = s5l+ s2

#Display of First String sl

print(sl)

#Display of Second String s2

print(s2)

i #Display of Concatenated String s3

print(s3)

Ln: 6 Col: 6

Output:

I T
[, Python 3.7.9 She - 0
| File Edit She Debug Options Window Help
Python 3.7.9 (tags/v3.7.9:13c94747c7, Rug 17 2020, 16:30:00) [MSC v.1900 64 bit
(AMD64)] on win32
Type "help", "copyright", "credits" or "license()" for more information.
25>

== RESTART: (:/Users/sail(/strconcant.py = ==

j GOOD MORNING

WELCOME TO PYTHON

00D MORNINGWELCOME TO PYTHON
22

Ln:8 Col:4

Strings are sequences that cannot be changed, as we previously stated. Concatenating the two
strings in the previous example doesn't change either string. Rather, the process generates a
new string called "S3" from the two strings "S1" and "S2." This operator is frequently used
by beginners to add spaces between strings. This space is a string as well, but it's empty this
time.

Centre for Distance Education 4.9 Acharya Nagarjuna University

Example:
Es: concant C./Users/sai00 concant.py (3.7.9 — [} >
File Edit Format Run Options Window Help
#Python Program to concatenate two Strings with space using '+' Operator
#Creation of first string using single guotes
s1 = '"GOOD MORNING'
#Creation of second string using double guotes
52 = "WELCOME TOC PYTHON"
#Concatenate of the two strings sl & 52 and store into string s3
53 = s1 + " " + 52
#Display of First String sl
print(sl)
#Display of Second String s2
print(s2)
#Display of Concatenated String s3
print (=s3)
Ln: 16 Col: 15
Output
. et et tue e cass e siives ey ma s o
} Python 3.7.9 She — d oo

File Edit She Debug Options Window Help

Python 3.7.9 (tags/vw3.7.9:13c%4747¢7, RAug 17 2020, 16:30:00) [MSC v.1900 &4 bit |
(AMD&4)] on win3Z2 |
Type "help", "copyright"™, "credits" or "license()" for more information.

>>>

=== RESTART: C:/Users/sail0/strconcant.py ===
GO0D MORNING

WELCCME TC PYTHON

GOCD MCRNINGWELCCME TC PYTHON

>>>

=== RESTRRT: C:/Users/sail0/strconcant.py ===
GOCD MORNING

WELCCME TC PYTHON

GOCD MCRNING WELCCOME TC PYTHON

P

Ln: 13 Col: 4

4.4.2 Repetition Operator

The purpose of this operator is to return a string that has been repeated a predetermined
number of times. This string is included in the new string, and it is repeated the number of
times that was requested. This is accomplished by the utilization of the multiplication

Programming and Problem-Solving ... 4.10 String

operator (*). Take for example that we have a string S and an integer N. Doing S times N or
N times S will result in S being repeated N times. The idea is shown in Figure 6.4.

"Sono” e

Sring_1
2 "Sono" "Sono"

Fig 4.4. Repetition of Strings with ‘*’ Operator

Example:

B strrepe C:/Users/sai00/strrepet.p 3.7.9 _ =
File Edit Format Run Options Window Help

#Python Program to create "n' copies of given Strings with "*" Operator

#Creation of string using single guotes

s1 = '"GOOD MORNING! '

§ #Create the string sl into 3 copies

52 = s1 * 3

#Create the string s1 into 5 copies

53 = s1 * 5

#Display of First String sl

print (sl)

#Display of Second String s2 as 3 copies of s1
print (s2)

i
#Display of Third string =53 as 5 copies of s1

I print (53)

Ln: 2 Col: 59

Output:

E Python 3.7.9 She — O
File Edit She Debug Options Window Help
Python 3.7.9 (tags/vw3.7.9:13c%4747c7, Rug 17 2020, 16:30:00) [MSC v.18%00 €4 bit

(BMDE4)] on win32
Type "help", "copyright", "credits" or "license ()" for more information.

>>>

RESTRRT: C:/Users/sail0/strrepet.py ===

GOOD MORNING!
GCOD MORNING!GOCD MORNING!GOCD MORNING!
GCOD MORNING!GOOD MORNING!GOCD MORMING!GOOD MORNING!GOCD MOERNING!

>>>

Ln:8 Col: 4

Centre for Distance Education 4.11 Acharya Nagarjuna University

Notice the last two print functions in the preceding example. Both actually output empty
strings. The last but one step seems sense because it creates zero copies of the string, but the
last operation appears strange. However, multiplying a string by a negative number yields an
empty string.

4.4.3 Membership Operator

These operators are commonly used to determine whether or not an element or character
occurs in a specific string. The in function returns True if a character x exists in a given
string, and False otherwise. The not in function returns True if a character x does not appear

in a provided string, and False otherwise.
Example:

A&

File Edit Format Run Options Window Help

#Python Program to demonstrate membership 'in' & 'not in' Operators

1 #Creation of string using single gquotes

151 = 'GOOD MORNING!'
|
Test given character "M' is exist in String s1 with "in' Operator
if((¢ "M* 1 s1) == Tru=)
i

print (™ The Character "™M' is exist in String ' GOOD MORNING® ™)
Test given character "0' is exist in String s1 with "in' Operator
if(('"O' in s1) == Trus) :

print ("™ The Character 'M' is exist in String ' GOOD MORNING' ")
Test given character "X' is not exist in String s1 with 'not in' Operator
if({ "X' not in sl) == True) :

print (™ The Character 'X' is not exist in String ' GOOD MORNING' ")

Ln: 26 Col: 19

Output:
|
| File Edit Shel Debug Options Window Help

|Python 3.7.9 (tags/v3.7.9:13c9%4747c7, Rug 17 2020, 16:30:00) [MSC v.1900 €4 bit
(AMDE4)] on win32
1 Type "help", "copyright"™, "credits" or "license()" for more information.

>>>

RESTART: C:/Users/sail0/strmembership.py
i The Character 'M' is exist in String ' GOOD MORNING'

The Character 'M' is exist in String ' GOOD MORNING'

The Character 'X' is not exist in String ' GOOD MORNING'
>>>

Ln: 8 Col: 4

Programming and Problem-Solving ... 4.12 String

It is important to keep in mind that the membership operators are also capable of working
with substrings; that is, they can determine whether or not a substring is present in a string.

Example:

}Si "'e"'::;;'::_;,.: py - C u;;;;?-ﬁ-ﬁ strmembership_sub.py (3.7.9 . . ' - D X

File Edit Format Run Options Window Help

#Python Program to demonstrate membership 'in' & 'not in' Operators
#Creation of string using single quotes

51 = 'GOOD MORNING! WELCOME TO PYTHON'

Test given sub string 'MORNING' is exist in String sl with 'in' Operator

s52= "MORNING"
1E((52 in sl) == Trus):
print ("™ The Sub Sting %s is exist in String 'GOOD MORNING! WELCOME TO PYTHON' " % s2)

Test given sub stirng 'GOOD' is exist in String sl with 'in' Operator
52= "WELCOME TO PYTHON"
if{ (s2 in sl1) == True):

print (" The Sub Sting %5 is exist in String 'GOOD MORNING! WELCOME TO PYTHON'" % s2)

Test given sub stirng 'BAD' 1is not exist in String sl with 'not in' Operator
s52= "BAD MORINING"
1f((52 not in sl) == True):

print (" The Sub Sting %s is not exist in String 'GOOD MORNING! WELCOME TC PYTHON'" % s52)

Ln:8 Col: 0

Output:

: } Python 3.7.9 She - o X
File Edit Shell Debug Options Window Help

Python 3.7.9 (tags/v3.7.9:13c94747¢7, Aug 17 2020, 16:30:00) [MSC v.1900 64 bit (AMDE4)] on win3
2
Type "help", "copyright", "credits" or "license()" for more information.

>>>

================= RESTART: C:/Users/sai00/strmembership sub.py ========—=========

The Sub Sting MORNING is exist in String 'GOOD MORNING! WELCOME TO PYTHON'

The Sub Sting WELCOME TO PYTHON is exist in String 'GOOD MORNING! WELCOME TO PYTHON'
The Sub Sting BAD MORINING is not exist in String 'GOOD MORNING! WELCOME TO PYTHON'
>35>

Ln: 2 Col:68

4.4.4 Comparison Operator

The purpose of these operators in Python is to verify the equivalence of two operands, which
in this case are two strings.

Centre for Distance Education 4.13 Acharya Nagarjuna University

Example:
> _
} compaopequal.py - C/Users/sail0/compaopequal.py (3.7.9 — O >
File Edit Format Run Options Window Help
Python program to test the two strings with the == operator.
first = "Welcome"™
second = "Hello"™
third = "welcome"
fourth = "Hello"™
it (first == second) :
print (" The two strings are same™)
print (" The two strings are not same")
if (first == third }:
print (" The two strings are same™)
f print (" The two strings are not same")
£:f (second == fourth):
print (" The two strings are same")
print ("™ The two strings are not same"™)
Ln: 35 Col: 0

Their names also indicate that they are used for this purpose. However, because they return a
boolean, they are most utilized in conditional expressions to determine whether or not two
strings are identical. A True value is returned by the == operator when the two strings in
question are identical, whereas a False value is returned when the strings in question are not

identical.

Output

1

:_lal Fytnon 3./.4 ahe -

File Edit Shell Debug Options Window Help

b

Python 3.7.9 (tags/v3.7.9:13c%4747c7, Rug 17 2020, 16:30:00) [MSC v.1600

| (BMD64)] on win32

Type "help", "copyright"™, "credits™ or "license()" for more information.
>35>

64 bit

== RESTART: C:/Users/sai00/compaocpequal.py
The two strings are not same

The two strings are not same

The two strings are same

>>>

Ln:8 Col: 4

Programming and Problem-Solving ... 4.14

String

Example:

>

otequal.py - C:/Users/sai00/compaopnotequal.py (3.7.9 O

\

1
e Edit Format Run Options Window Help

first = "Welcome"
second = "Hello"™
third = "welcome"
1 o
fourth = "Hello"
if (first !'= second):

print (" The two strings are not same")
print (" The two strings are same™)
if (first != third):

print ("™ The two strings are not same")

print ("™ The two strings are same")
if (second != fourth):
print (" The two strings are not same")

print (" The two strings are s ")

]
=]
7

Ln: 33 Col: 36

Output:

[Python 3.7.9 She — a

File Edit She Debug Options Window Help

Python 3.7.9 (tags/v3.7.9:13c%4747¢7, RAug 17 2020, 16:30:00) [MSC v.19%00 &4 bit
(AMD6E4)] on win32

Type "help", "copyright", "credits" or "license ()" for more information.

>>>

== RESTART: C:/Users/sail0/compacpnotequal .py ==================
The two strings are not same
The two strings are not same
The two strings are same
>>>

Ln: 8 Col: 4

As shown in the preceding examples, make a comparison between the first string, the second
string, and the third string. Along the same lines, second with fourth. != is the operator that
returns. True when the two strings are equal otherwise return false.

4.5. PYTHON STRING METHODS

Python comes with several built-in methods that can be used to execute operations and
manipulations while working with strings. Listed below are several string methods that are
frequently used:

Centre for Distance Education 4.15 Acharya Nagarjuna University

4.5.1 len()

It is possible to utilize the "len()" function in order to determine the length of a string. A count
of the characters contained in the string is returned by it.

Example:
String new = “Welcome to Python!”
length = len(String_new)
print(String_new)

Output
18

The total number of characters includes space returned by the len() function i.e. 13

4.5.2 upper()

The string that is returned by the upper() method is one in which all of the characters are
capitalized.

Example:
String new = “Welcome to Python!”
String new = String new.upper()
print(String_new)

Output :
WELCOME TO PYTHON!

The upper() is called along with string object String new.upper and it returns a string where
all characters are in upper case.

4.5.3 replace()

Using the replace() method, a phrase that is supplied is replaced with another term that is also
specified.

Example:

String new = “Welcome to Python!”

String new = String new.replace(‘“Pyhton”, “PYTHON")

print(String_new)

Programming and Problem-Solving ... 4.16 String

Output:
Welcome to PYTHON!

The reverse r() is called along with old and new string and it replaces an old string
“Python” with new string “ PYHON”

4.5.4. find()

Using the find() method, one can locate the initial instance of the value that has been
supplied. However, if the value cannot be located, this procedure will return -1. This method
is essentially identical to the index() method; the only difference is that the index() method

throws an exception if the value is not found. In addition, this method is almost identical to
the index() method.

Example:
String new = “Welcome to Python!”

String new = String new.find(‘“Python”)

print(String_new)

Output:
11

4.6 FORMATTED OUTPUT

The output of a program often needs to be organized so that users can easily read and
interpret the results.

Formatted Output Using print() Function

To achieve this, Python offers several formatting techniques:
e Using the print() function.
e Using the format() method for string interpolation.

Python’s print() function provides several ways to produce formatted output. It can display
variables with separators, new lines, or in customized layouts.

Example 1 — Printing with different separators

n=>5

r=5/3

name = '[da’

print(n, r, name)
print(n, r, name, sep=";'

Centre for Distance Education 4.17 Acharya Nagarjuna University

print(n, r, name, sep="\n")

Output

5 1.66666666667 Ida
5;1.66666666667;1da
5

1.66666666667

Ida

Formatted Output with the format() Method

Python’s str.format() function allows inserting variables into a string at specific placeholders

U

Examplel:

weekday = "Wednesday'

month = 'March'

day =10

year =2010

hour =11

minute = 45

second = 33

print("{}, {} {}, {} at {}:{}:{}'.format(weekday, month, day, year, hour, minute, second))

Output
Wednesday, March 10, 2010 at 11:45:33
Explanation

In the statement above:

YUY, 4L, {3 at {3} {) format(weekday, month, day, year, hour, minute, second)

Each pair of curly braces {} is a placeholder for a variable supplied to the format()
function.Python replaces them in the same order they appear inside the parentheses.

Example2:

To illustrate the issues, let’s consider the problem of properly lining up values of func-
ions i2. i3 i for i P ; - 3
tions =, 7 and 2' for i = 1.2,3, . . . Lining up the wvalues properly is useful because it
illustrates the very different growth rates of these functions:

i i**2 i**3 2]
1 1 1 2
2 4 8 4
3 9 27 3
a 16 64 16
5 25 125 32
=] 36 216 64
T 49 343 128
8 64 512 256
b= 81 T29 512
10 100 1000 1024
11 121 1331 2048

12 144 1728 4096

Programming and Problem-Solving ... 4.18 String

Python code:

e Edit Fogrmat Run QOptions Window Help

growthrates (n) :

¢ 'prints values of below 3 functions for 1 =1, ..,n'
print (' i 1x%2 1%%3 2%%k3 ")
format str = "{0:2d} {1:ed} {2:&d} {3:&d}’
i range (2,n+1) :

print (format str.format (i, i**2, i**3, 2%*i))

n=12
growthrates (n)

Lm:8 Col: 4
Output:

A

| File Edit She Debug Options Window Help
Python 3.10.0 (tags/v3.10.0:b49%4f59%, Oct 4 2021, 19:00:18) [MSC v.1929 64 bit (
BMDG4)] on win32

, Type "help", "copyright", "credits"™ or "license ()" for more information.

>>>

RESTART: C:\Users\saiOO\python\growthrates.py

i fE%D j4%3 e
2 4 B8 4
3 9 27 B8
4 16 64 16
5 25 125 32
6 36 216 64
7 49 343 128
B8 64 512 256
9 51 729 512
10 100 1000 1024

11 121 1331 2048
12 144 1728 4056
>>>

Ln: 17 Col: 0
4.7 SUMMARY

Strings are an essential data type in Python, and they are utilized widely for activities that
involve working with textual data. In this chapter, we covered the fundamentals of creating
and manipulating strings, as well as accessing characters, string slicing, concatenation, string
length, and the different string methods that are available in Python. Your ability to work
effectively with strings in your Python programs and to handle text-based data in an efficient
manner will be directly correlated to your level of comprehension of these ideas.

4.8 TECHNICAL TERMS

String, Indexing, Negative Indexing, Concatenation, Membership, comparison and Slicing,
format,print

Centre for Distance Education 4.19 Acharya Nagarjuna University

4.9 SELF ASSESSMENT QUESTIONS

Essay questions:

1. How is a String created and called? Explain.

2. What are the various List Operations? Explain.
3. Explain about List Methods with example.

4. Tllustrate formate output with formate() function.
Short Notes:

1. Write about indexing method for sting access.
2. Discuss about applications of python string.

3. Explain about Slicing method with example.

4. Describe about format output using print().

4.10 SUGGESTED READINGS

—

Steven cooper — Data Science from Scratch, Kindle edition.

Reemathareja — Python Programming using problem solving approach, Oxford
Publication

"Python Crash Course" by Eric Matthes

"Automate the Boring Stuff with Python" by Al Sweigart

"Learning Python" by Mark Lutz

Ljubomir Perkovic, “Introduction to Computing Using Python: An Application
Development Focus”, Wiley, 2012.

7. Charles Dierbach, “Introduction to Computer Science Using Python: A
Computational Problem-Solving Focus”, Wiley, 2013.

N

SNk Ww

Dr. U Surya Kameswari

LESSON- 05

FILES

AIMS AND OBJECTIVES

The goal of this chapter is to explain how Python programs interact with files stored in a
computer’s file system.

Students will learn how to open, read, write, and close files, as well as explore the most
common patterns used to process textual data.

After completing this chapter, students will be able to:

Understand how file systems organize data.

Use Python’s built-in file handling functions.

Read and write text files efficiently.

Manage file resources properly using the with statement.
Recognize common file-handling errors and handle them safely

STRUCTURE

5.1 Introduction
5.2 Understanding the File System
5.3 Opening and Closing a File
5.4 Patterns for Reading a Text File
5.4.1 Reading the Entire File
5.4.2 Reading Line by Line
5.4.3 Using readline() and readlines()
5.4.4 Using the with Statement
5.5 Writing to a Text File
5.5.1 Writing Strings and Data
5.5.2 Appending to a File
5.5.3 Writing Lists and Formatted Data
5.6 Practical Examples of File Handling
5.7 Common File Errors
5.8 Summary
5.9 Technical Terms
5.10 Self-Assessment Questions

5.11 Suggested Readings

Programming and Problem-Solving ... 5.2 Files

5.1 INTRODUCTION

Programs often need to store information permanently, beyond the life of a single execution.
Variables and data structures reside in main memory (RAM), which is temporary; once the
program ends, that data disappears. To preserve data, we store it in files on a secondary
storage device (like a hard disk). A file is a named collection of data saved on a storage
medium. Python can read data from existing files and write new information to files. This
process is called file input and output (file I/O).

5.2 UNDERSTANDING THE FILE SYSTEM

Every computer’s operating system manages a file system, which organizes data into files
and directories (folders).Each file has a name, location (path), and a type that determines how
the contents are interpreted.

— / [~ —
Applications [bin Users ol var
N\

/ N
B N £ a N
‘ Firefox.app ‘ Python 3.1 date ‘ Shared ‘ Iperkovic ‘

example.txt chin.txt

Figure 5.1 Mac OS X file System organization

For example:

o data.txt — Text file

o sales.csv — Comma-separated values file

e image.jpg — Binary image file
File paths can be absolute (full path from the root directory) or relative (based on the current
working directory).
For example, the absolute pathname of folder Python 3.1 is

/Applications/Python 3.1
while the absolute pathname of file example.txt is
/Users/Iperkovic/example.txt
the relative pathname of file example.txt in Figure 5.1 is
Iperkovic/example.txt

Python interacts with this file system through built-in functions such as open(), read(),

write(), and close().

Centre for Distance Education 53 Acharya Nagarjuna University

5.3 OPENING AND CLOSING A FILE
Processing a file consists of these three steps:

1. Opening a file for reading or writing

2. Reading from the file and/or writing to the file
3. Closing the file

The open() function creates a connection between the program and the file:
file object = open(filename, mode)
Parameters:
o filename — The name or path of the file.

e mode — A string indicating the file access mode.

Table 5.1 Different Modes of opening a file

Mode | Meaning | Description

by Read Opens a file for reading (default).
'w' Write Opens a file for writing; existing contents are erased.
'a' Append Opens a file for writing at the end; retains existing data.

T+ Read/Write | Opens for both reading and writing.

b’ Binary Used with above modes for binary files.

After finishing, close the file using:
file_object.close()
Example:
f = open('example.txt', 'r')
data = f.read()
print(data)
f.close()

5.4 PATTERNS FOR READING A TEXT FILE
Reading data from a file can be done in several ways depending on the amount and structure

of data.

‘ Programming and Problem-Solving ... 5.4 Files

5.4.1 Reading the Entire File

f = open('poem.txt', 'r')
contents = f.read()
print(contents)

f.close()

This method reads the whole file into one string.

Use this for small text files only, because it loads everything into memory at once.

5.4.2 Reading Line by Line

A common and memory-efficient way is to iterate directly through the file object:

f = open('poem.txt’, 'r')

for line in f:

print(line.strip())

f.close()

Here each iteration reads one line until the end of the file.

5.4.3 Using readline() and readlines()

readline() reads one line at a time;

readlines() returns a list containing all lines.

f = open('data.txt', '")

linel = f.readline()

print(linel)

all lines = f.readlines()

print(all_lines)
f.close()

Method Usage

Explanation

infile.read(n)
infile.read()

infile.readline()

infile.readlines ()

outfile.write(s)
file.close()

Read n characters from the file infile or until the end of
the file is reached, and return characters read as a string
Read characters from file infile until the end of the file
and return characters read as a string

Read file infile until (and including) the new line
character or until end of file. whichever is first, and return
characters read as a string

Read file infile until the end of the file and return the
characters read as a list lines

Write string s to file outfile

Close the ﬁle|

Fig 5.2 Common File Methods in Python

Centre for Distance Education 5.5 Acharya Nagarjuna University

5.4.4 Using the with Statement
The recommended method is to use with — it automatically closes the file:
with open('story.txt', 'r') as f:
for line in f:
print(line.strip())

When the block inside with completes, Python automatically calls f.close() even if an error
occurs.

5.4. PATTERNS FOR READING A TEXT FILE

Reading data from a file can be done in several ways depending on the amount and structure
of data.

Example: Counting Lines, Words, and Characters in a Text File

The following program counts the number of lines, words, and characters in a given text
file.

def fileStats(filename):
infile = open(filename, 'r")
lines = infile.readlines()
infile.close()
num_lines = len(lines)
num_words = sum(len(line.split()) for line in lines)
num_chars = sum(len(line) for line in lines)
return num_lines, num_words, num_chars
Input File — example.txt
The 3 lines in this file end with the new line character.
There is a blank line above this line.
Output
Lines: 3
Words: 15
Characters: 96
Explanation:
o readlines() reads all lines from the file.
e len(lines) counts total lines (including blank lines).

o line.split() splits each line into words, and the total is summed for word count.
e len(line) counts the number of characters (including spaces and newline characters).

Programming and Problem-Solving ... 5.6 Files

This is a common file-reading pattern used in text processing and data analysis.
Example: Searching for a Target String in a File

Python allows searching for specific substrings in text files.
The following function myGrep() imitates the Unix grep command — it prints every line that
contains a given target string.
def myGrep(filename, target):

infile = open(filename, 'r')

for line in infile:

if target in line:
print(line.strip())

infile.close()

Input File — example.txt
The 3 lines in this file end with the new line character.
There is a blank line above this line.

Program Call
myGrep(‘example.txt', 'line")
Output
The 3 lines in this file end with the new line character.
There is a blank line above this line.
Explanation:
o The file is opened in read mode ('r').
o Each line is checked using the in operator to see if the target substring occurs in it.
o Lines containing the target word are printed after removing trailing newlines with
strip().
o The file is then closed using .close().
This simple function demonstrates pattern searching in text files — a foundational concept

for text processing, data filtering, and log analysis in Python.

Example: Replacing a Target String in a File

Sometimes, we need to modify text inside a file — for example, to replace one word with
another.

Centre for Distance Education 5.7 Acharya Nagarjuna University

The function myReplace() reads a text file line by line, replaces all occurrences of a target
string with a replacement string, and writes the modified lines to a new output file.

def myReplace(fileName, target, replacement):
infile = open(fileName, 'r')
outfile = open('new ' + fileName, 'w')

for line in infile:
new_line = line.replace(target, replacement)
outfile.write(new _line)

infile.close()
outfile.close()

Input File — example.txt
The 3 lines in this file end with the new line character.

There is a blank line above this line.
Program Call
myReplace('example.txt', 'line', 'sentence")
Output File — new_example.txt
The 3 sentences in this file end with the new sentence character.

There is a blank sentence above this sentence.

Explanation:

o The program opens the input file (example.txt) in read mode and creates a new output

file (new_example.txt) in write mode.

o Each line is processed using the replace() method, which substitutes all occurrences of

the target string with the replacement.
o The modified lines are written to the new file.
o Finally, both files are closed to ensure proper resource handling.

This example illustrates a common file-processing pattern:
1. Read from a source file.
2. Modify the content according to some rule.

3. Write the updated data into a new file.

5.5 WRITING TO A TEXT FILE

Writing data to a file is similar but uses write-enabled modes ('w', 'a', 'r+').

‘ Programming and Problem-Solving ... 5.8 Files

5.5.1 Writing Strings and Data

f = open('output.txt', 'w')

f.write("Welcome to Python file handling.\n")

f.write("This is line 2.")

f.close()

This creates (or overwrites) the file and writes the specified text.

5.5.2 Appending to a File
Appending adds new data without removing existing content:
with open(‘output.txt', 'a') as f:

f.write("\nThis line was appended later.")

5.5.3 Writing Lists and Formatted Data
Use a loop or the writelines() method:
lines = ['apple\n’, 'banana\n', 'cherry\n']
with open('fruits.txt', 'w') as f:
f.writelines(lines)
You can also format text before writing:
with open(‘marks.txt', 'w') as f:
for name, mark in [('Ravi', 85), ('Meena', 90)]:
fowrite('{}: {}\n'.format(name, mark))

Example: Writing Data to a Text File

When a program generates output that should be stored permanently, it can write data to a
text file.

Python provides the write() method to store string data into a file.

If numeric or non-string values are to be written, they must first be converted into strings.

Example: Writing to a Text File
outfile = open('test.txt', 'w")

outfile.write('l This is the first line. Still the first line...\n")
outfile.write('2 Now we are in the second line.\n')

value =5

outfile.write('3 Non string value like ' + str(value) + ' must be converted first.\n')
outfile.write('4 Non string value like ' + str(value) + ' must be converted first. WRITING TO
A TEXT FILE\n")

outfile.close()
Output File — test.txt

1 This is the first line. Still the first line...
2 Now we are in the second line.

Centre for Distance Education 59 Acharya Nagarjuna University

3 Non string value like 5 must be converted first.
4 Non string value like 5 must be converted first. WRITING TO A TEXT FILE

Explanation:

The file test.txt is opened in write mode ('w'), creating a new file in the current
working directory.

Each write() call adds one line to the file.

The \n character ensures each new line starts properly.

The numeric value 5 is first converted to a string using str(value) before being written.
Finally, close() is called to save and release the file.

Example: Appending Data to a File
Open file in append mode

outfile = open('test.txt', 'a')

outfile.write("\n5 This line is added later using append mode.")
outfile.write("\n6 File content is preserved and new data is added at the end.")

outfile.close()

Updated File — test.txt

1 This is the first line. Still the first line...

2 Now we are in the second line.

3 Non string value like 5 must be converted first.

4 Non string value like 5 must be converted first. WRITING TO A TEXT FILE
5 This line is added later using append mode.

6 File content is preserved and new data is added at the end.

Explanation:

Opening a file with 'a' does not erase its existing contents.
Every call to write() adds text to the end of the file.
This mode is ideal for logging, adding new records, or progressively storing results.

Example: Reading and Writing Together with ‘r+’
Open file for both reading and writing

file = open('test.txt', 'r+')

Read and display existing content

print('"Existing File Content:\n'")
print(file.read())

Write additional data

file.write("\n7 This line is added using r+ mode.")
file.close()
Output (on screen):

Programming and Problem-Solving ... 5.10 Files

Existing File Content:

1 This is the first line. Still the first line...

2 Now we are in the second line.

3 Non string value like 5 must be converted first.

4 Non string value like 5 must be converted first. WRITING TO A TEXT FILE
5 This line is added later using append mode.

6 File content is preserved and new data is added at the end.

Updated File — test.txt

7 This line is added using r+ mode.

Explanation:

The 'r+' mode permits both reading and writing operations.

Reading begins at the start of the file, and writing begins after the file pointer position
(which can be moved using seek() if required).

It is useful when you want to read existing content, make changes, and rewrite data
within the same file.

5.6 PRACTICAL EXAMPLES OF FILE HANDLING

Example 1: Counting Lines and Words
with open(‘essay.txt', 'r') as f:
lines = f.readlines()
print('Number of lines:', len(lines))
word_count = sum(len(line.split()) for line in lines)

print('Number of words:', word_count)

Input File — essay.txt

Python is an easy to learn programming language.
It supports multiple programming paradigms.

File handling in Python is simple and powerful.
Output

Number of lines: 3

Number of words: 18
Explanation:

readlines() reads all the lines from the file into a list.

len(lines) gives the total number of lines.

Each line is split into words using split(), and the total number of words is computed
with sum().

Example 2: Copying Contents from One File to Another
with open('source.txt', 'r") as src, open('copy.txt', 'w') as dst:
for line in src:

dst.write(line)

Centre for Distance Education 5.11 Acharya Nagarjuna University

Input File — source.txt
Learning Python is fun.
This file will be copied to another file.
Output File — copy.txt
Learning Python is fun.
This file will be copied to another file.
Explanation:
o The first file (source.txt) is opened for reading.
o The second file (copy.txt) is opened for writing.
e Each line from the source is written to the destination.
o The with statement ensures both files are properly closed after use.

Example 3: Filtering Data from a File
with open(‘'numbers.txt', 'r') as f:
for num in f:
if int(num) % 2 == 0:
print(num.strip())

Input File — numbers.txt

11

12

15

20

23

30

Output

12

20

30

Explanation:
o Each line is read as a string and converted to an integer using int(num).
e The expression int(num) % 2 == 0 checks whether the number is even.

e Only even numbers are printed after removing newline characters using .strip().

5.7 COMMON FILE ERRORS
Typical issues when dealing with files:

e File not found (FileNotFoundError)
e Permission denied (PermissionError)
e Wrong file mode or path
File Not Found (FileNotFoundError)
This error occurs when the program tries to open or read a file that does not exist in the
specified directory.
Example:

Programming and Problem-Solving ... 5.12 Files

f = open(‘'missing.txt', 'r')
Output:
FileNotFoundError: [Errno 2] No such file or directory: 'missing.txt'
Reason:
e The file missing.txt does not exist in the current working directory.
Solution:
Use a try—except block to catch the error gracefully:
try:
f = open(‘'missing.txt', 'r')
except FileNotFoundError:
print('Error: The specified file was not found.")

Permission Denied (PermissionError)
This error occurs when the program does not have the necessary permissions to access, read,
or write a file.
Example:
f = open('/system/config.txt', 'w')
Output:
PermissionError: [Errno 13] Permission denied: '/system/config.txt'
Reason:
o The user may not have permission to modify or create files in that directory.
Solution:
Ensure you have the required access rights or change the file’s location:
try:
f = open('config.txt', 'W')
except PermissionError:
print('Error: You do not have permission to modify this file.")

3. Wrong File Mode or Path
This error occurs when the file is opened using an incorrect mode (e.g., trying to read from a

file opened in write mode) or when an invalid path is provided.

Example 1: Incorrect Mode

f = open('data.txt', 'w')

print(f.read())
Output:

10.UnsupportedOperation: not readable
Reason:

o The file is opened in 'w' mode, which allows writing only, not reading.

Solution:

f = open('data.txt', ') # Open in read mode

print(f.read())

Example 2: Invalid Path

f = open('C:/wrongfolder/data.txt', 'r")

Centre for Distance Education 5.13 Acharya Nagarjuna University

Output:

FileNotFoundError: [Errno 2] No such file or directory: 'C:/wrongfolder/data.txt'

Reason:

The directory wrongfolder does not exist.

Solution:

Verify the file path or use an absolute path:
f = open('C:/Users/Y ourName/Documents/data.txt', 'r')

5.8 SUMMARY

In this chapter, you learned how to:

Work with the file system and understand file paths.

Open, read, and write files using Python’s built-in functions.

Use different reading patterns such as read(), readline(), and readlines().
Employ the with statement for automatic file management.

Write and append text efficiently.

Handle file-related errors using exceptions.

5.9 TECHNICAL TERMS
File System, File Modes, open(), close(), read(), write(), with Statement, Exception Handling

5.10 SELF-ASSESSMENT QUESTIONS
Essay Questions

1. Explain the purpose of the file system and how Python interacts with it.

2. Describe the different file access modes in Python with examples.

3. Discuss various methods for reading data from a text file.

4. Explain the use of the with statement in file operations.

5. How can you handle exceptions during file input/output operations?
Short Notes

1. Write about the readline() and readlines() methods.

2. Differentiate between write ('w') and append ('a') modes.

3. Describe how to write lists to a file using writelines().

5.11 SUGGESTED READINGS

1.

Ljubomir Perkovi¢ — Introduction to Computing Using Python, John Wiley & Sons,
2012.

Reema Thareja — Python Programming Using Problem-Solving Approach, Oxford
University Press.

Eric Matthes — Python Crash Course, No Starch Press.

Al Sweigart — Automate the Boring Stuff with Python.

Mark Lutz — Learning Python, O’Reilly Media.

Dr. Neelima Guntupalli

LESSON- 06
EXCEPTION HANDLING

AIMS AND OBJECTIVES

The objective of this chapter is to explain the nature of program errors, differentiate between
syntax and runtime errors, and introduce Python’s exception-handling mechanism for
building reliable programs.

After completing this chapter, students will be able to:

e Recognize various types of errors in Python.

o Use try, except, else, and finally blocks effectively.

o Raise and define exceptions.

o Employ debugging and logging tools.

e Develop robust programs that recover from unexpected events

STRUCTURE

6.1 Introduction

6.2 Understanding Program Errors

6.3 Syntax Errors

6.4 Runtime Errors and Exceptions

6.5 Exception Hierarchy in Python

6.6 Handling Exceptions — try and except
6.7 else and finally Blocks

6.8 Raising Exceptions with raise and assert
6.9 Creating Custom Exceptions

6.10 Multiple and Nested Handlers

6.11 Using the with Statement for Resource Management
6.12 Debugging in Python

6.13 Logging Runtime Information

6.14 Case Study — Logging File Access

6.15 Summary

6.16 Technical Terms

6.17 Self-Assessment Questions

6.18 Suggested Readings

Programming and Problem-Solving ... 6.2 Exception Handling

6.1 INTRODUCTION

Errors are an inevitable part of programming. Some errors prevent the program from running
at all, while others occur only when it executes.

Python distinguishes between:

1. Syntax Errors — mistakes in program structure detected before execution.
Runtime Errors (Exceptions) — errors that occur during execution, such as dividing by
zero or opening a missing file.

3. Logical Errors — the program runs but produces incorrect output due to faulty logic.

Exception handling provides a structured way to detect and respond to runtime problems
without halting the entire program.

6.2 UNDERSTANDING PROGRAM ERRORS

o Compile-time (syntax) errors: violate Python’s grammar rules.

o Runtime errors (exceptions): occur only when a particular statement executes.

e Logic errors: are semantic; Python cannot detect them automatically.
Good programming practice includes anticipating possible exceptions and writing code that
handles them gracefully.

6.3 SYNTAX ERRORS

A SyntaxError occurs when the Python interpreter cannot parse the code.
Missing colon
ifx>0
print("Positive")
Output
SyntaxError: expected "'
The interpreter stops immediately and points to the offending line.
These errors must be corrected before execution; they cannot be caught by try/except.

6.4 RUNTIME ERRORS AND EXCEPTIONS

A runtime error is detected while the program runs.
Python signals such problems by raising exceptions.
Example:

x=5/0
Output

ZeroDivisionError: division by zero
When an exception occurs:
1. Normal flow stops.
2. Python searches for a matching except block.
3. Ifnone is found, it prints a traceback and terminates the program.

6.5 EXCEPTION HIERARCHY IN PYTHON

All exceptions derive from the base class BaseException.

Centre for Distance Education 6.3 Acharya Nagarjuna University

The commonly used root is Exception, from which most runtime errors inherit.

BaseException
— systemExit
F—— KeyboardInterrupt
L— Exception
— ArithmeticError
— zerobDivisionError
L— overflowError
LookupError
— IndexError
L KeyError
FileNotFoundError
PermissionError
ValueError

TypeError

=
W
E]
M
m
=
3
Q
5

O5Error

m
=]
=
m
it
=
Q
5

MemoryError

rrTrrrrr1r1.—— 1

RuntimeError

Fig 6.1. Exception Hierarchy

6.6 HANDLING EXCEPTIONS — try AND except
Use try / except to catch and handle predictable exceptions. The try block is used to test a

block of code for errors.Python executes the statements inside the try block first.

Exception Explanation

KeyboardInterrupt Raised when user hits Ctrl-C, the interrupt key

OverflowError Raised when a floating-point expression evaluates
to a value that is too large

ZeroDivisionError Raised when attempting to divide by 0

I0Error Raised when an I/O operation fails for an
[/O-related reason

IndexError Raised when a sequence index is outside the range
of valid indexes

NameError Raised when attempting to evaluate an unassigned
identifier (name)

TypeError Raised when an operation of function is applied to
an object of the wrong type

ValueError Raised when operation or function has an argument

of the right type but incorrect value

Fig 6.2 Common exception types

Programming and Problem-Solving ... 6.4 Exception Handling

If no error occurs, the program skips all except blocks and continues normally.
If an error (exception) occurs, Python immediately stops the try block and looks for a
matching except

The except block is used to handle the exception that occurs in the try block.
It specifies what should happen when a particular error is detected.

try:
num = int(input("Enter an integer: "))
print(10 / num)
except ValueError:
print("Input must be an integer.")
except ZeroDivisionError:

print("Cannot divide by zero.")

Output Examples
Input: ten — Input must be an integer.
Input: 0 — Cannot divide by zero.
Multiple Except Blocks
You can use several except blocks to handle different error types separately.
try:
f = open("data.txt", "r")
n = int(f.readline())
print(10 / n)
except FileNotFoundError:
print("File not found.")
except ZeroDivisionError:
print("Cannot divide by zero.")
except ValueError:

print("Invalid data in file.")

Key Points

e The try block contains code that may cause an exception.

o The except block contains code that handles that exception.

e You can have multiple except blocks for different exception types.

e Ifno exception occurs, the except blocks are skipped.

e You can also use a generic exception handler to catch any unexpected error:

Centre for Distance Education 6.5 Acharya Nagarjuna University

except Exception as e:

print("An error occurred:", €)

6.7 ELSE AND FINALLY BLOCKS

Python provides two additional optional clauses — else and finally — that can be used with
the try—except structure to make exception handling more precise and complete.

They define what happens when no exception occurs (else) and what must always be
executed (finally).
o The else Block

The else block executes only if no exception occurs in the try block.
It is useful for placing code that should run only when the try block succeeds without
errors.

Syntax:
try:

Code that might raise an exception
except ExceptionType:

Handle the exception
else:

Code to execute if no exception occurred

Example:

try:
f = open("data.txt", "r")
content = f.read()
except FileNotFoundError:
print("Error: File not found.")
else:
print("File opened successfully.")
print(content)
f.close()

Output (if file exists):

File opened successfully.
<file contents>

Output (if file does not exist):

Error: File not found.

Programming and Problem-Solving ... 6.6 Exception Handling

Explanation:
. If open() raises a FileNotFoundError, the except block executes.
. If no error occurs, Python skips except and executes the else block.

2. The finally Block
The finally block executes no matter what happens — whether an exception occurs or not.
It is used for cleanup operations like closing files, releasing resources, or disconnecting
from databases.
Syntax:
try:
Risky operation
except ExceptionType:
Handle error
finally:
Code that always runs
Example:
try:
f = open("data.txt", "r'")
data = f.read()
print("Reading file completed.")
except FileNotFoundError:
print("File not found.")
finally:
print("Closing file (if opened).")
try:
f.close()
except:
pass
Possible Outputs:
Reading file completed.
Closing file (if opened).
or
File not found.

Closing file (if opened).

Centre for Distance Education 6.7 Acharya Nagarjuna University

Explanation:

o The finally block executes regardless of whether an exception occurs.

e Even if a return, break, or continue statement is used inside try or except, the finally
block will still run before the program exits that scope.

e It is commonly used to ensure resources (files, network connections, etc.) are released

properly.
3. Combining try, except, else, and finally
All four clauses can be combined in one structure for full control:
try:
num = int(input("Enter a number: "))
result = 10 / num
except ValueError:
print("Invalid input! Please enter a number.")
except ZeroDivisionError:
print("Cannot divide by zero.")
else:

_n

print("Division successful. Result =", result)
finally:
print("Program execution completed.")

Output 1

Enter a number: 0

Cannot divide by zero.

Program execution completed.
Output 2

Enter a number: 5

Division successful. Result = 2.0

Program execution completed.

Key Points

. else runs only if the try block has no exceptions.

. finally always executes — whether an exception occurs or not.

. finally is ideal for cleanup tasks like closing files or releasing resources.
. These clauses make programs more reliable and maintainable.

6.8 RAISING EXCEPTIONS WITH RAISE AND ASSERT

You can raise an exception manually when a condition is invalid.

def withdraw(balance, amount):

Programming and Problem-Solving ... 6.8 Exception Handling

if amount > balance:
raise ValueError("Insufficient funds")
return balance - amount
The assert statement checks logical conditions during testing.
assert 2 + 2 ==

assert 5 < 3, "Assertion failed: invalid condition"

6.9 CREATING CUSTOM EXCEPTIONS

Python allows programmers to define their own custom exceptions to handle specific error
situations that are not covered by built-in exceptions. Custom exceptions make programs
more readable, modular, and meaningful because they describe the exact problem in the
program’s domain.

A custom exception is a user-defined class that inherits from Python’s built-in Exception
class (or one of its subclasses). By creating subclasses of Exception, programmers can define
error types that are specific to their application.

Basic Syntax

class MyException(Exception):
"""Custom exception class."""
pass
The pass statement is used here because we do not need to add new behavior; the class
simply acts as a new type of exception.
Example 1: Creating and Raising a Custom Exception
class NegativeNumberError(Exception):

"""Raised when a negative number is encountered."""

pass

def square root(x):
ifx <0:
raise NegativeNumberError("Cannot compute square root of a negative number.")
else:

return X ** 0.5

try:
print(square _root(-9))

except NegativeNumberError as e:

Centre for Distance Education 6.9 Acharya Nagarjuna University

print("Error:", €)
Output
Error: Cannot compute square root of a negative number.
Explanation:

e The class NegativeNumberError extends Exception.
o When a negative value is passed, the raise statement triggers this exception.
o The except block catches and handles it gracefully.

Example 2: Adding Custom Attributes
Custom exception classes can store additional information such as error codes or variable
values.
class InsufficientFundsError(Exception):
def init (self, balance, amount):
super(). _init__ (f"Insufficient funds: Balance={balance},
Withdrawal={amount}")
self.balance = balance

self.amount = amount

def withdraw(balance, amount):
if amount > balance:
raise InsufficientFundsError(balance, amount)
else:

return balance - amount

try:
new_balance = withdraw(500, 800)
except InsufficientFundsError as e:
print("Transaction Failed!")
print(e)
print("Remaining balance:", e.balance)
Output
Transaction Failed!
Insufficient funds: Balance=500, Withdrawal=800

Remaining balance: 500

Programming and Problem-Solving ... 6.10 Exception Handling

Explanation:
e The init method initializes the exception with custom attributes.
o The super() call passes a formatted error message to the base Exception class.

o The caught exception can access e.balance or e.amount for more details.

Example 3: Multiple Custom Exceptions
You can define multiple custom exceptions to represent various application-specific errors.
class InvalidAgeError(Exception):

pass

class AgeTooHighError(Exception):

pass

def check age(age):
ifage <O0:
raise InvalidAgeError(" Age cannot be negative.")
elif age > 120:
raise AgeTooHighError("Age seems unrealistically high!")
else:

print("Valid age:", age)

try:
check age(150)
except (InvalidAgeError, AgeTooHighError) as e:
print("Error:", e)
Output
Error: Age seems unrealistically high!
Advantages of Custom Exceptions

e Clarity: Communicate the exact type of problem in user-defined domains.

e Modularity: Separate error-handling logic from main program logic.

e Hierarchy: You can organize related exceptions under a parent custom exception.

e Maintainability: Easier debugging and understanding of specific failure conditions.

Example 4: Creating a Hierarchy of Custom Exceptions

class StudentError(Exception):

Centre for Distance Education 6.11 Acharya Nagarjuna University

nmnn

"""Base class for all student-related exceptions.

pass

class InvalidIDError(StudentError):

pass

class MissingGradeError(StudentError):

pass

try:
raise MissingGradeError("Grade record not found for student ID 2025.")
except StudentError as e:
print("Student Database Error:", e)
Output
Student Database Error: Grade record not found for student ID 2025.

6.10 MULTIPLE AND NESTED HANDLERS
You can nest or chain multiple handlers for complex logic.
try:

with open(‘'numbers.txt') as f:

total = sum(int(x) for x in f)

except FileNotFoundError:

print("Missing input file.")
except ValueError:

print("File contained non-numeric data.")
else:

print("Total =", total)

By creating a hierarchy, all student-related exceptions can be caught together using the base
class StudentError.

o Custom exceptions are classes derived from Exception.

o Use the raise statement to trigger them intentionally.

e Include descriptive messages and attributes for context.

e Organize related custom exceptions using inheritance.

e Handling them separately enhances readability and error diagnostics.

Programming and Problem-Solving ... 6.12 Exception Handling

Table 6.1 Example Summary

Custom Exception Purpose
Negative Number Error Handles negative input values.
Insufficient Funds Error Raised when withdrawal exceeds balance.

Invalid Age Error, Age Too High Error | Manage age-related input errors.

Student Error Hierarchy Group of related user-defined exceptions.

6.11 USING with FOR RESOURCE MANAGEMENT

In Python, many operations involve external resources such as files, network connections,
or databases.These resources must be explicitly released after use to prevent memory leaks,
file corruption, or system slowdowns.The with statement provides a safe and elegant way to
manage such resources automatically.

The with statement is used to wrap the execution of a block of code within methods
defined by a context manager. It ensures that resources are acquired and released
properly, even if an exception occurs inside the block.

Syntax:

with expression as variable:
Code block using the resource
When the block under with finishes execution:
e The resource is automatically cleaned up (e.g., the file is closed).
e Any exceptions that occur inside the block are handled safely.

How It Works
When a file (or any object) is opened using with, Python calls two special methods of that

object:

Method Purpose

__enter_ () | Called when entering the with block; initializes the resource.

__exit () | Called automatically when leaving the with block, even if an exception occurs;

used for cleanup.

This automatic handling eliminates the need for a manual close() call.
Example 1: Using with to Handle Files
with open('example.txt', 't') as f:

contents = f.read()

print(contents)

Centre for Distance Education 6.13 Acharya Nagarjuna University

Explanation:

e The open() function returns a file object.

e The with statement calls f. _enter () to open the file.

e The file is used inside the block.

e When the block ends, f. exit () is called automatically, closing the file — even if
an error occurs.

Equivalent Code Without with:

f = open('example.txt', 'r')

try:
contents = f.read()
print(contents)
finally:
f.close()

Both versions do the same thing, but the with version is cleaner and less error-prone.

Example 2: Writing to a File Safely
with open('output.txt', 'w') as outfile:
outfile.write("This is written safely using 'with' in Python.\n")
outfile.write("File will close automatically after this block.")
Explanation:
The file output.txt is created (or overwritten) in write mode.
When the with block ends, the file is automatically closed — no explicit close() call is
required.

Advantages of Using with

o Automatic Cleanup: Resources are released even when exceptions occur.
o Simpler Syntax: No need for explicit close() calls or finally blocks.

o Readable and Safe: Encourages clean, readable, and error-free code.

o Extensible: Works with any object implementing _enter and _ exit .

Table 6.2 Example Summary with () for resource management

Use Case Code Snippet Purpose
Reading File with open('data.txt', 'r') as f: Automatically closes file after
reading

Writing File with open(‘output.txt', 'w') as f: Ensures file closure even on error
Multiple Files | with open(‘a.txt') as a, open('b.txt") as | Manage multiple files safely

b:
Custom __enter_ ()/__exit_ () methods Build your own managed resources
Context

Programming and Problem-Solving ... 6.14 Exception Handling

6.12 DEBUGGING IN PYTHON
Debugging is the process of finding and fixing defects.
Common approaches:
o Print Statements — insert temporary print() calls to track variables.
e Using the Debugger (pdb)
e import pdb
e pdb.set trace()
Allows step-by-step execution in the terminal.
o IDE Debuggers — VS Code, PyCharm, and IDLE provide breakpoints, watches, and
variable inspectors.

e Code Review and Unit Testing — systematic testing reveals logical errors early.

6.13 LOGGING RUNTIME INFORMATION

Instead of printing messages, use the built-in logging module.
import logging

logging.basicConfig(filename="app.log', level=logging.INFO)

logging.info('Program started")

try:
result=10/0

except ZeroDivisionError:
logging.exception('Division by zero encountered')

logging.info('Program ended")

app.log

INFO:root:Program started

ERROR:root:Division by zero encountered

Traceback (most recent call last):

ZeroDivisionError: division by zero
INFO:root:Program ended

Logging is essential for diagnosing production errors without interrupting program execution.

6.14 CASE STUDY - LOGGING FILE ACCESS (Brief)

Logging is a technique used to record events that occur while a program runs, such as file
openings, errors, or successful operations.

Centre for Distance Education 6.15

Acharya Nagarjuna University

Python’s logging module makes it easy to keep a record of such activities in a separate log

file.

Example: Logging File Access
import logging

logging.basicConfig(
filename="file access.log',
level=logging.INFO,

'

format="%_(asctime)s - %(levelname)s - %(message)s

def open_file(filename):
try:
with open(filename, 'r") as f:

data = f.read()

logging.info(f"File opened successfully: {filename}")

except FileNotFoundError:
logging.error(f"File not found: {filename}")
except PermissionError:
logging.error(f"Permission denied: {filename}")
Sample Output on Screen
Error: File not found: missing.txt

Contents of file_access.log

2025-10-28 17:10:03,502 - INFO - File opened successfully: notes.txt
2025-10-28 17:10:04,210 - ERROR - File not found: missing.txt

Explanation

o The logging module writes messages to a log file instead of printing them.
o Each log entry includes a timestamp, a severity level, and a message.

e Levels such as INFO, WARNING, and ERROR describe the importance of each

event.

o Logging helps trace errors, monitor program activity, and maintain system reliability.

Key Points
o logging.basicConfig() initializes log settings.

Programming and Problem-Solving ... 6.16 Exception Handling

e logging.info() records successful operations.
e logging.error() records failures.
e Logs are saved in file_access.log for later review.

Logging file access helps developers track file operations and detect errors automatically,
improving debugging, transparency, and program maintenance.

6.15 SUMMARY

In this chapter, you learned how Python handles errors and exceptions, and how to write
programs that can detect and recover from unexpected situations gracefully.

Key takeaways include:

e Errors are problems in the program that can prevent execution. They are of three
types: syntax, runtime, and logical errors.

o Syntax errors are detected by Python before execution and must be corrected.

e Runtime errors (exceptions) occur while a program is running and can be handled
using the try—except structure.

e The try block identifies risky code, while except specifies how to handle each
exception type.

e The else block runs only when no exception occurs, and the finally block always runs
for cleanup.

o The raise statement is used to generate exceptions deliberately; assert is used for
testing conditions.

e Programmers can create custom exceptions by defining new classes that inherit from
Exception.

o The with statement automates resource management, ensuring files and connections
are closed properly.

e The logging module records program events and errors for analysis and debugging.

e Combining exception handling, resource management, and logging leads to
reliable, maintainable, and professional-grade Python programs.

6.16 TECHNICAL TERMS

Error, Exception, Traceback, SyntaxError, RuntimeError, Logical Error,

try, except, else, finally, raise, assert, Custom Exception, Exception Hierarchy,

with Statement, Resource Management, Context Manager, Logging,
FileNotFoundError, ValueError, ZeroDivisionError, PermissionError, Debugging,
pdb (Python Debugger), Logging Levels (INFO, WARNING, ERROR, CRITICAL)

6.17 SELF-ASSESSMENT QUESTIONS
Essay Questions

1. Explain the difference between syntax errors, runtime errors, and logical errors with
examples.

2. Discuss the working of the try—except—else—finally structure with suitable code.

Describe how custom exceptions are created and used in Python.

4. What is the purpose of the with statement? Illustrate its use in file operations.

[98)

Centre for Distance Education 6.17 Acharya Nagarjuna University

5.
6.

7.

Explain the use of the logging module for debugging and tracking file access.

Write a short note on exception hierarchy and the importance of handling specific
exceptions.

Discuss how debugging tools like pdb can be used to find logical errors.

Short-Answer Questions

NouvhkLd =

Define try and except.

What is the difference between raise and assert statements?

List any four built-in exceptions in Python.

What happens if a file opened in read mode does not exist?

What is the purpose of the finally block?

How does with open() differ from using open() and close() manually?
Mention two advantages of using logging over print statements.

6.18 SUGGESTED READINGS

1.

whw

Ljubomir Perkovi¢ — Introduction to Computing Using Python: An Application
Development Focus, John Wiley & Sons, 2012.

Reema Thareja — Python Programming: Using Problem-Solving Approach, Oxford
University Press.

Mark Lutz — Learning Python, O’Reilly Media.

Eric Matthes — Python Crash Course, No Starch Press.

Al Sweigart — Automate the Boring Stuff with Python, No Starch Press.

Dr. Neelima Guntupalli

LESSON- 07
CONDITIONAL STRUCTURES

AIMS AND OBJECTIVES
After completing this chapter, students will be able to:

e Understand how programs make decisions using conditional logic.
o Use relational and logical operators in expressions.

e Apply if, if-else, if—elif—else, and nested if statements.

o Write programs that choose between alternative actions.

o Distinguish between simple and compound conditions.

o Use indentation correctly to represent decision structures.

STRUCTURE

7.1 Introduction

7.2 Need for Decision Making in Programs

7.3 Boolean Expressions and Relational & Logical Operators
7.4 Simple if Statement

7.5 if—else Statement

7.6 if—elif—else Statement

7.7 Nested if Statements

7.8 Conditional Expressions (Ternary Operator)
7.9 Practical Examples

7.10 Summary

7.11 Technical Terms

7.12 Self-Assessment Questions

7.13 Suggested Readings

7.1 INTRODUCTION

Every non-trivial program must be able to make decisions. A decision statement allows a
program to choose a course of action depending on whether a condition evaluates to True or
False. Python’s main decision-making construct is the if statement. Together with relational
and logical operators, it forms the basis for control flow.

Example motivation:
temperature = 37.8
if temperature > 37:
print("Fever detected")
The program executes the print() statement only when the condition temperature > 37 is True.

Programming and Problem-Solving ... 7.2 Conditional Structures

7.2 NEED FOR DECISION MAKING IN PROGRAMS

Sequential execution alone cannot handle situations requiring alternative outcomes.
Real-life decisions—granting a loan, grading a student, or controlling a machine—depend on
specific conditions.

Without Decision Control
balance = 500
print("Withdrawal allowed")
The message appears even when balance < 0.
With Decision Control
balance = 500
if balance > 0:
print("Withdrawal allowed")
else:
print("Insufficient funds")

Decision control thus makes programs intelligent and context-dependent.

7.3 BOOLEAN EXPRESSIONS AND RELATIONAL & LOGICAL OPERATORS

A Boolean expression evaluates to one of the two truth values: True or False.
Python treats True as 1 and False as 0 in numeric contexts.
Table 7.1 Relational Operators

Operator Meaning Example | Result
== equal to 5= True
I= not equal to 71=2 True
< less than 3<9 True
greater than 8>10 | False
<= less than or equal to 5<=5 True
>= greater than orequalto | 9>=5 | True

Table 7.2 Logical Operators

Operator | Description Example Result

and True if both operands are True (x>0)and (x <10) | True if x between 0
and 10

or True if at least one operand is True | (x ==0) or (y ==0) | True if any zero

not Reverses truth value not(x > 5) Trueif x <5

Centre for Distance Education 7.3 Acharya Nagarjuna University

Relational operators are often combined with logical operators to form compound conditions.
Example

age =20

if age >= 18:

print("Adult")

Example

x=35

y=10

print((x < 10) and not(y <5 or x == 7))

Evaluation order ensures predictable results.
7.4 SIMPLE IF STATEMENT

The if statement in Python is one of the conditional statements that is used the most
frequently in programming languages. In this way, it determines whether or not particular
statements are required to be executed. It performs a check to determine whether a particular
condition is satisfied; if the condition is satisfied, the set of code included within the "if"
block will be run; otherwise, it will not be executed.

Syntax:
if EXPRESSION ==TRUE) :
if- Block of code

Next statement after Block of code is executed.

rue ¥ False ¥

Execute Statement | | Skip Block
n

Inside if | | continue Mext

| ena |
Fig 7.1. Simple if statement

In the syntax presented above,

e if the expression "EXPRESSION = = TRUE" is successfully executed, then the
conditional block of code will be run

Programming and Problem-Solving ... 7.4 Conditional Structures

e Otherwise, the statement that comes after the conditional block of code will be
executed.

The flow chart of if statement is shown in Figure 7.1.

e Ifyou look at the flowchart that was just presented, you will notice that the controller
will first arrive at an if condition and then evaluate the condition.

e Ifthe condition is true, then the statements will be executed.

e if it is not true, then the code that is present outside the block will be executed.

Example: 1

File Edit Format Run Options Window Help
1x = 10
(x < 20):
print ("™ The number X is less than 20")
print ("This statement will always be executed")
Ln:6 Col: 0
Output:

2

file Edit Shell Debug Options Window Help

Python 3.7.9 (tags/v3.7.9:13c94747¢7, Bug 17 2020, 16€:30:00) [MSC v.1900 €4 bit
(AMDG4)] on win3?2

Type "help", "copyright", "credits" or "license()" for more information.

222

=== = RESTERT: C:/Users/sail0/simpleif.py ===
The number X is less than 20

This statement will always be executed

>>>

Ln:7 Col:4

The above code tests the condition "x<20." If the test is successful, a block of code will be
executed, as really seen in the output, and finally the last line, "This statement will always
be executed," will be executed. This statement is also clearly displayed in the output.

Centre for Distance Education 7.5 Acharya Nagarjuna University

Example 2:
7
File Edit Format Run Options Window Help

™
Pass Mark = int (input("Enter Pass Mark "y
{Obtained Mark = int (input("Enter Obtained Mark: "}));

Simple Python Program to print the results of exam with if statement.

1

if (Obtained Mark >= Pass Mark):

B print (" Congratualations You Passed Exam")

print("End of the Program")

|

Ln:2 Col: 70

Output:
File Edit Shell Debug Options Window Help

iPython 3.7.9 (tags/v3.7.9:13c%4747c7, Rug 17 2020, 16:30:00) [MSC v.1900 64 bit
| (RMD64)] on win32
iType "help", "copyright", "credits" or "license ()" for more information.
I>>>

=== = RESTART: C:/Users/sai00/simpleifexam.py =

Enter Pass Mark : 40

Enter Obtained Mark: 20

End of the Program

5>

=== = RESTART: C:/Users/sai00/simpleifexam.py =

Enter Pass Mark : 40

Enter Obtained Mark: 60

Congratualations You Passed Exam
End of the Program
>>>

Ln: 14 Col:4

The code condition (Obtained Mark > = Pass Mark) is tested in the previous example; if it
passes, the if-block will be executed. The code is executed twice. The first time, the
condition is not met (20 < 40), and the final message, "End of the Program," is shown.
Nevertheless, the second attempt met the success requirement (i.e., 60 > 40), printed
"Congratulations on Passing the Exam," and showed the final message, "End of the

Program."

7.5 IF-ELSE STATEMENT

if-else statements

The Boolean expression is evaluated by the if-else statement. The code in the "if" block will
be executed if the condition is TRUE; otherwise, the code in the "else" block will be

executed.

Programming and Problem-Solving ... 7.6 Conditional Structures

Syntax:

If (EXPRESSION == TRUE):
If-Statement (Body of the block)
else:

else-Statement (Body of the block)

When the syntax (EXPRESSION = = TRUE) in the following example is successfully
executed, a block of code will be executed if it is not, otherwise it will be executed.

The flow chart of if-else statement is shown in Figure 7.2.

Start

Trus ¥ False ¥

I 1
| Execute Block A | | Execute Block B |
| (if condition) | | (else condition) |
L I L I

Fig 7.2. Flow Chart of if-else Statement

According to the flow chart above, the controller will first reach the if condition and
determine if the condition is true. If it is, the statements in the if block will then be run; if not,
the "else" block will be executed, and finally the remaining code that is included outside the
"if-else" block will be executed.

Centre for Distance Education 7.7 Acharya Nagarjuna University

Example: 1

| File Edit Format Run Options Window Help
|x =10
1f o (x < 20):
print (" The number X is less than 20")
print (" The number ¥ 15 greater than 20")
.print("'i‘h'_s statement will always be executed")

Ln:5 Col: 39

The condition (x<20) is tested twice in the code above. The first time it is run, if it is
successful, a block of code will be executed, as we can see in the output. Finally, the final
statement, "This statement will always be executed," is executed, and this is also clearly
displayed in the output. Nevertheless, the second run condition failed by evaluating x=30,
executing the else-Block of code, and generating the output "X is greater than 20." The final
statement, "This statement will always be executed," is finally carried out and is likewise
displayed in the output.

Output:

4

File Edit Shell Debug Options Window Help

Python 3.7.9 (tags/v3.7.9:13c94747c7, Bug 17 2020, 16:30:00) [MSC v.1900 64 bit
(AMD64)] on win3?2

Type "help", "copyright", "credits" or "license()" for more information.

55>

=================== RESTART: C:/Users/sai(0/simpleif-else.py ==
The number ¥ is less than 20

This statement will always be executed

55>

=================== RESTART: C:/Users/sai(0/simpleif-else.py ==
The number ¥ is greater than 20

This statement will always be executed

55>

Ln: 11 Cal: 4

Programming and Problem-Solving ... 7.8 Conditional Structures

Example2:
File Edit Format Run Options Window Help

Simple Python Program to print the results of exam with if-else statement.
Pass Mark = int (input("Enter Pass Mark ")
Cbtained Mark int (input ("Enter Obtained Mark: "));

if (Obtained Mark >= Pass Mark):
print (" Congratualations You Passed Exam")

print (" Sorry Better Luck Next Time"™)

print ("End of the Program™)

Ln: 10 Col: 39
Output:
File Edit Shell Debug Options Window Help !

Python 3.7.9 (tags/v3.7.9%9:13c%4747c7, 2ug 17 2020, 16:30:00) [MSC v.1%00 64 bit
(BMDG4)] on win32
Type "help", "copyright", "credits"™ or "license ()" for more information.

>>>

Enter Pass Mark : 40

Enter Obtained Mark: 50
Congratualations You Passed Exam
End of the Program

>>>

Enter Pass Mark 30
Enter Obtained Mark: 20
Sorry Better Luck Next Time
End of the Program

B3

£
Ln; 15 Col: 4

The code condition (Obtained Mark > = Pass Mark) is tested in the previous example; if it
passes, the if-block will be executed. The code is executed twice. The first time, if the
condition is met (i.e., 50 > 40), the message "Congratulations You Passed Exam" is
displayed, and the final phrase, "End of the Program," is printed. Nevertheless, the second
time around, the condition failed (20 < 30), printing "Sorry, Better Luck Next Time" and
displaying the last sentence, "End of the Program."

7.6 ELIF STATEMENTS

"elif" statements are an additional type of conditional statement in Python. The "elif"
statement checks for multiple conditions only in the event that the supplied condition is false.
The sole distinction between it and a "if-else" expression is that the condition will be checked
in "elif" rather than "else."

Centre for Distance Education 7.9 Acharya Nagarjuna University

Syntax:
if (EXPRESSION-1 == TRUE):
If-Statement (Body of the block)
elif(EXPRESSION-2 == TRUE):
elif-Statement (Body of the block)

elif(EXPRESSION-3 = = TRUE):
elif-Statement (Body of the block)
else:

else-Statement (Body of the block)

e In the above syntax (EXPRESSION-1 = = TRUE) is executed successfully then if-
Block of code will be executed

e otherwise (EXPRESSION-2 = = TRUE) is tested, if it is executed successfully
then elif- Block of code related EXPRESSION-2 will be executed

e otherwise (EXPRESSION-3 = = TRUE) is tested, if it is executed successfully
then elif- Block of code related EXPRESSION-3 will be executed otherwise else-

Block of code will be executed.

The flow chart of else-if- lader statement is shown in Figure 7.3.

T 1
Start

v

Test Condition 1

True ¥ False ¥

I 1 I 1
| Execute Block 1 | Test Condition 2
[I
L 1

(if conditionl True)

-

Test Condition 3 (elif)

True ¥ False w

I 1 T 1
| Execute Block 3 | | Execute Block n (else)

| (elif condition Tr"Je)l | (if none are True) |
| 1 L 1

Fig 7.3. Flow Chart of else-if ladder Statement

Programming and Problem-Solving ... 7.10 Conditional Structures

Example:

In the code below, the condition (Obtained Mark >= Dist Mark) is tested; if it is successful,
the if-block of code is executed; otherwise, the following succeeding blocks are executed
based on the criteria; otherwise, the else statement and the end statement are executed. The
code is executed four times; the first time the condition is met (i.e., 50 > 40), the message
"Congratulations You Passed Exam" is displayed, and the last statement, "End of the
Program", is printed. However, the second time run condition (65 > 60) is successful and
prints "Congratulations You Passed Exam in First Class" before displaying the last line,
"End of the Program". Similarly, in the third run, the requirement (i.e., 80 > 70) is met, and
the message "Congratulations You Passed Exam in Distinction" is displayed, followed by
the final sentence "End of the Program". During the last run, if the condition (i.e., 30 < 40) is
not met, the else block is activated and the message "Sorry, Better Luck Next Time" is
written. The last statement displayed is "End of the Program".

Example:

File Edit Format Run Options Window Help

Simple Python Program to print the results of exam with elseif statement.
JDist_Mark = int (input("Enter Distinction Mark ")

First Mark = int (input("Enter First Class Mark ")

Pass Mark = int (input("Enter Pass Mark M) ;

Obtained Mark = int (input("Enter Obtained Mark: ")):

if(Obtained Mark >= Dist Mark):
print (" Congratualations You Passed Exam in Distinction")
elif(Obtained Mark »>= First Mark and Obtained Mark < Dist Mark):
print (" Congratualations You Passed Exam in First Class")
elif(Obtained Mark >= Pass Mark and Obtained Mark < First Mark):

print (" Congratualations You Passed Exam ")

print (" Sorry Better Luck Next Time")

iprint(”Enc of the Program")

Ln: 16 Col: 36

Centre for Distance Education 7.11 Acharya Nagarjuna University

Output:

) File Edit Shell Debug Options Window Help

?Python 3.7.9 (tags/v3.7.9:13c%4747c7, Rug 17 2020, 1€:30:00) [MSC v.1900 €4 bit
(BMD64)] on win32

| Type "help", "copyright", "credits"™ or "license()" for more information.

>3

============== RESTART: C:/Users/sail0/simple if-elif-else exam.py =============

Enter Distinction Mark : 70
Enter First Class Mark : 60
Enter Pass Mark ;40

Enter Obtained Mark: 50
Congratualations You Passed Exam
End of the Program

P t
============== RESTART: C:/Users/sail0/simple if-elif-else exam.py ============= |
Enter Distinction Mark 2 70 .
Enter First Class Mark : 60 t
Enter Pass Mark 140

Enter Obtained Mark: 65
Congratualations You Passed Exam in First Class
End of the Program

>>>

============== RESTART: C:/Users/sail0/simple if-elif-else exam.py =============
Enter Distinction Mark : 70

Enter First Class Mark 1 60

Enter Pass Mark ;40

Enter Obtained Mark: 80
Congratualations You Passed Exam in Distinction
End of the Program

33>

============== RESTART: C:/Users/sail0/simple if-elif-else exam.py =============
Enter Distinction Mark : 70

Enter First Class Mark T 60

Enter Pass Mark 1 40

Enter Obtained Mark: 30
Sorry Better Luck Next Time
End of the Program

22>

Ln: 35 Col: 4

7.7 NESTED IF-ELSE STATEMENTS

Nested "if-else" statements indicate that one "if" or "if-else" statement is contained within
another if or if-else block. Python has this feature as well, which allows us to verify several
conditions in a single application.

Syntax:
if (EXPRESSION-1 == TRUE):
if (EXPRESSION-2 == TRUE):
Inner-If-Statement (Body of the block)

Programming and Problem-Solving ... 7.12 Conditional Structures

else:

Inner-else-Statement (Body of the block)
else:
Outer-else-Statement (Body of the block)
The syntax used above obviously shows that the if block will include another if block, and so
on. If block can have 'n' number of if blocks within it.

e In the below flow chart, (EXPRESSION-1 = = TRUE) is executed successfully, then
(EXPRESSION-2 == TRUE) is tested,

e if it is executed successfully, then if- Block of code related EXPRESSION-2 will be
executed;

e otherwise, Block of code related EXPRESSION-2 will be executed; otherwise, Block
of code related EXPRESSION-1 will be executed.

The Flow Chart of nested if Statement is shown in Figure 7.4.

If (Condition)

True False

If (Condition)

Y Y

Body of Inner if Body of Inner else Body of outer else

Fig 7.4. Flow Chart for nested-if Statement
Example:

In the code below, the condition (Obtained Mark > = Pass Mask) is tested. If it is successful,
the inner if-statement (Obtained Mark > = First Mask and Obtained Mark < Dist Mask) is
tested. If it is successful, the block-related inner condition is executed. Otherwise, the block-
related inner condition is executed. Otherwise, the else block from the outer condition is
executed. The ensuing blocks are run based on the circumstances; otherwise, the else
statement is executed, followed by the end statement.

Centre for Distance Education 7.13 Acharya Nagarjuna University

&

| File Edit Format Run Options Window Help

Simple Python Program to print the results of exam with nested if statement.

Dist Mark = int (input("Enter Distinction Mark "))
{First Mark = int (input ("Enter First Class Mark "))
Pass_Mark = int (input ("Ent Pass Mark "))
Obtained Mark = int (input("Enter Obtained Mark: "));

17 (Obtained Mark >= Pass_Mark):

if(Obtained Mark >= First Mark and Obtained Mark < Dist Mark):

print (" Congratualations You Passed Exam in First Class")

elif(Obtained Mark >= Dist Mark):

print (" Congratualations You Passed Exam in Distintion ")

print (" Congratualations You Passed Exam ")

print (" Sorry Better Luck Next Time")

print ("End of the Program")

Ln: 23 Col: 49

The code is executed four times. The first time, the condition is successful (i.e., 80 > 40), and
the second time, the condition is likewise successful (i.e., 80 > 70), and the message
"Congratulations You Passed Exam in Distinction" is displayed, followed by the last
statement, "End of the Program". However, the condition is successful the second time
(65>40) and then tested (65>60) and printed "Congratulations You Passed Exam in First
Class" and displayed the last statement, "End of the Program". Similarly, in the third run, the
condition is successful (i.e., 50 > 40), and then tested (i.e., 50 > 40), which is successful and
prints "Congratulations You Passed Exam" and displays the last statement, "End of the
Program". If the condition is not met (i.e., 25 < 40), the else block is activated and the
message "Sorry, Better Luck Next Time" is written. The last statement displayed is "End of

the Program".

‘ Programming and Problem-Solving ... 7.14 Conditional Structures

Output:
File Edit She Debug Options Window Help]

|Python 3.7.9 (tags/v3.7.9:13c%4747c7, RAug 17 2020, 16:30:00) [MSC v.19%00 64 bit l
(AMD64)] on win32)
Type "help", "copyright", "credits" or "license()" for more information.
>>>
=================== RESTART: C:\Users\sailO\nested-if exam.py ===

Enter Distinction Mark : 70
Enter First Class Mark ;60
Enter Pass Mark ;40

Enter Obtained Mark: 80
Congratualations You Passed Exam in Distintion
End of the Program

55>

=================== RESTART: C:\Users\sail0\nested-if exam.py ===
Enter Distinction Mark : 70

Enter First Class Mark : 60

Enter Pass Mark : 40

Enter Obtained Mark: 65
Congratualations You Passed Exam in First Class
End of the Program

55>

=================== RESTART: C:\Users\sail0\nested-if exam.py ===
Enter Distinction Mark 70

Enter First Class Mark : 60

Enter Pass Mark : 40

Enter Cbtained Mark: 50
Congratualations You Passed Exam
End of the Program

>>>

=================== RESTART: C:\Users\sail0\nested-if exam.py ===
Enter Distinction Mark 70

Enter First Class Mark : el

Enter Pass Mark : 40

Enter Obtained Mark: 25
Sorry Better Luck Next Time
End of the Program

>>>

Ln:35 Col: 4

7.8 CONDITIONAL EXPRESSIONS (TERNARY OPERATOR)

In some situations, it is useful to make a simple decision in a single line rather than writing a
complete if—else structure.Python provides the conditional expression, also known as the
ternary operator, for such cases.

It evaluates a condition and returns one of two values depending on whether the condition is
True or False.

Syntax
<value if true> if <condition> else <value if false>
This expression is evaluated from left to right.
o If'the condition is True, Python returns <value if true>.

Centre for Distance Education 7.15

Acharya Nagarjuna University

o If'the condition is False, it returns <value if false>.

Example — Finding the Larger Number
a=25

b =40

larger =aifa>belse b

print("Larger number is:", larger)

Output

Larger number is: 40

Example — Even or Odd

num = int(input("Enter a number: "))
print("Even") if num % 2 == 0 else print("Odd")
Output

Enter a number: 15

Odd

Example — Voting Eligibility

age = int(input("Enter your age: "))

status = "Eligible" if age >= 18 else "Not Eligible"
print(status, "to vote.")

Output

Enter your age: 20

Eligible to vote.

Condition
L I
I
|
I : |
|
True ¥ False ¥
I 1 I 1
Value if True | | value if False |
L | L |
|
Y
1
| Result |
L 1

7.5 Flowchart for Conditional Expression

Programming and Problem-Solving ... 7.16 Conditional Structures

Advantages

e Compact and expressive for simple decisions.
o Improves code readability when used judiciously.
e Can be nested for complex choices, though readability may suffer.

7.9 PRACTICAL EXAMPLES
This section demonstrates how the various decision-making statements (if, if—else, if—elif—

else, and nested if) can be applied to solve real-world problems.

Each example shows both code and expected output to clarify control flow.

BMI (Body Mass Index) Calculator

Objective:

To implement a function myBMI() that takes a person’s height (in inches) and weight (in
pounds) and computes their Body Mass Index (BMI).

The BMI is then classified as Underweight, Normal, or Overweight based on standard health
guidelines.

Formula

weight x 703

BMI = — i eight)?

Where:
e weight — person’s weight in pounds
e height — person’s height in inches
e 703 — conversion factor for imperial units
Program
def myBMI(height, weight):
"""Compute and classify Body Mass Index (BMI)."""
bmi = (weight * 703) / (height ** 2)
print("BMI value:", round(bmi, 2))

if bmi < 18.5:
print("Underweight")

elif bmi <25:
print("Normal")

else:

Centre for Distance Education

Acharya Nagarjuna University

print("Overweight")

Example usage:

h = float(input(" Enter height (in inches): "))
w = float(input(''Enter weight (in pounds): "))

myBMI(h, w)
Explanation
1. The function myBMI() takes two inputs — height and weight.
2. The BMl is calculated using the formula.
3. Using an if—elif—else structure:
o IfBMI < 18.5 — prints Underweight.
o If18.5<BMI <25 — prints Normal.
o IfBMI > 25 — prints Overweight.
4.

The round() function is used to format the BMI to two decimal places.

Sample Runs

Example 1:

Enter height (in inches): 65
Enter weight (in pounds): 110
BMI value: 18.3
Underweight

Example 2:

Enter height (in inches): 68
Enter weight (in pounds): 150
BMI value: 22.8

Normal

Example 3:

Enter height (in inches): 63
Enter weight (in pounds): 165
BMI value: 29.2

Overweight

Programming and Problem-Solving ... 7.18 Conditional Structures

7.10 SUMMARY

Decision control statements make a program choose specific actions based on
conditions.

The constructs if, if—else, if—elif—else, and nested if allow conditional branching.
Boolean expressions use relational and logical operators and evaluate to True or
False.

The conditional (ternary) expression provides a concise single-line decision.
Correct indentation defines program structure in Python.

These statements add flexibility and intelligence to programs.

7.11 TECHNICAL TERMS

Decision Control, Conditional Statement, Boolean Expression, Relational Operator, Logical
Operator, Indentation, if Statement, Elif, else, Nested if, Conditional Expression / Ternary
Operator, Branching, Truth Table, Compound Condition, Control Flow, Condition Testing.

7.12 SELF-ASSESSMENT QUESTIONS

Essay Questions

1. Explain the need for decision control in a program with examples.
2. Describe the working of if, if—else, and if—elif—else statements.
3. Write a program to determine whether a year is a leap year.
4. Discuss how logical operators help in forming compound conditions.
5. Explain the role of indentation in decision structures.
6. What is a conditional expression? Give suitable examples.
Short Notes
1. Boolean expressions and relational operators.

nbkwn

Range checking using if—else.

Flow of control in if-elif-else.

Difference between nested if and if—elif—else.
Syntax and use of the else block.

Programming Exercises

1.

Sk

Accept three numbers and display the largest.

Write a menu-driven calculator using if—elif—else.

Determine whether a character is a vowel, consonant, or symbol.
Check if a given number is divisible by 5 and 11.

Print student grade based on marks using decision statements.
Use a conditional expression to find the smaller of two numbers.

7.13 SUGGESTED READINGS

1.

P w

Ljubomir Perkovié, Introduction to Computing Using Python: An Application
Development Focus, Wiley (2012).

Reema Thareja, Python Programming Using Problem-Solving Approach, Oxford
University Press.

Mark Lutz, Learning Python, O’Reilly Media.

Eric Matthes, Python Crash Course, No Starch Press.

Al Sweigart, Automate the Boring Stuff with Python, No Starch Press.

Dr. Neelima Guntupalli

LESSON- 08
CONTROL STRUCTURES

AIMS AND OBJECTIVES

After completing this chapter, students will be able to:
e Understand how Python executes statements repeatedly using loops.
e Distinguish between definite iteration (for loop) and indefinite iteration (while

loop).
e Use different loop patterns: iteration, counter, accumulator, and nested loops.

e Apply loops with two-dimensional lists.
e Control iteration flow using break, continue, and pass statements.
e Develop real-world programs involving repetition and data aggregation

STRUCTURE

8.1 Introduction

8.2 The for Loop and Iteration Patterns
8.2.1 Loop Pattern: Iteration Loop
8.2.2 Loop Pattern: Counter Loop
8.2.3 Loop Pattern: Accumulator Loop
8.2.4 Accumulating Different Data Types
8.2.5 Loop Pattern: Nested Loop

8.3 Two-Dimensional Lists
8.3.1 Concept of Two-Dimensional Lists
8.3.2 Nested Loop Pattern with 2-D Lists

8.4 The while Loop

8.5 More Loop Patterns
8.5.1 Sequence Loop
8.5.2 Infinite Loop
8.5.3 Loop-and-a-Half Pattern

8.6 Additional Iteration Control Statements
8.6.1 The break Statement
8.6.2 The continue Statement
8.6.3 The pass Statement

8.7 Summary

8.8 Technical Terms

8.9 Self-Assessment Questions

8.10 Suggested Readings

8.1 INTRODUCTION

Programs often require repeating a sequence of statements multiple times.

Programming and Problem-Solving ... 8.2 Control Structures

For example:
e Counting from 1 to 10,
e Summing a list of numbers,
o Printing elements of a list, or

e Reading data until the user quits.

Writing such repetitive code manually is inefficient and error-prone.
To handle repetition, Python provides looping structures, which allow a block of code to
execute repeatedly until a condition changes.

Python has two major looping statements:

Type Structure When Used

for loop Iterates over a sequence or range | When number of iterations is known

while loop | Repeats while a condition is true | When number of iterations is unknown

8.2 THE FOR LOOP AND ITERATION PATTERNS

The for loop is used to execute a block of code a fixed number of times or once for each
element in a sequence such as a list, tuple, or string.
Syntax
for variable in sequence:

statement(s)
Each element in the sequence is assigned to the loop variable, and the indented block
executes once per element.

Start Loop

I
v

Get Mext Element

I
v

I 1
Execute Body

More Elements?

Yes ¥ No ¥
(Repeat)]
| End |
—

Fig 8.1 Flowchart — Iteration Loop

Centre for Distance Education 8.3 Acharya Nagarjuna University

8.2.1 Loop Pattern — Iteration Loop

The simplest use of the for loop is to iterate through all items of a sequence.

Example — Iterating Through a List

for name in ['Ravi', 'Lina’, 'Arun']:

print("Hello,", name)

Output

Hello, Ravi

Hello, Lina

Hello, Arun
This pattern is known as an iteration loop — it processes every item in a collection.
Example:
animals = ['fish', 'cat', 'dog']

for animal in animals:

print(animal)
Output
fish
cat
dog
0 1 2
animals ‘ 'fish' ‘ . cat! ‘ ‘ 'dog'
Iteration 1: animal =
Iteration 2: animal = . cat!
Iteration 3: animal = 'dog'

Figure 6.2 Iteration through a list.
8.2.2 Loop Pattern — Counter Loop
A counter loop runs a specific number of times, typically using the range() function.

Syntax of range()

Programming and Problem-Solving ... 8.4

Control Structures

range(start, stop, step)
e start — beginning value (inclusive)
o stop — ending value (exclusive)
o step —increment (default 1)
Example -Counting Iterations
for i in range(1, 6):
print("Iteration number:", 1)
Output
Iteration number: 1
Iteration number: 2
Iteration number: 3
Iteration number: 4
Iteration number: 5

8.2.3 Loop Pattern — Accumulator Loop

An accumulator loop collects or aggregates data during each iteration.

Example — Sum of Numbers
total =0
for num in range(1, 6):
total += num
print("Sum =", total)
Output
Sum =15

The variable total is called the accumulator.

8.2.4 Accumulating Different Data Types

Loops can accumulate strings, lists, or concatenated results.

Example — String Accumulation
sentence = ""
for word in ["Python", "is", "powerful"]:
sentence += word +" "
print(sentence.strip())
Output
Python is powerful

Centre for Distance Education 8.5 Acharya Nagarjuna University

Example 8.5 — List Accumulation
squares = []
for i in range(1, 6):
squares.append(i * 1)
print(squares)
Output
[1,4,9,16,25]

8.2.5 Loop Pattern — Nested Loop
A nested loop is a loop inside another loop.
It is used for two-dimensional data (tables, matrices, grids, etc.).
Example — Multiplication Table
for i in range(1, 4):
for j in range(1, 4):
print(i * j, end="")
print()
Output
123
246
369

Each iteration of the outer loop triggers a full pass of the inner loop.

| Quter Loop Start

T
v

Initialize Inner Loop |

T
v

I

| Execute Inner Loop
| Statements
L

Inner Loop Done?

Yes ¥ Mo w

I 1
| outer Loop Next Iter.
L I

Figure 8.2 Flowchart — Nested Loop

Programming and Problem-Solving ... 8.6 Control Structures

8.3 TWO-DIMENSIONAL LISTS
Python can represent tabular data using lists of lists.
8.3.1 Concept of Two-Dimensional Lists
Example
matrix = [
[1,2,3],
[4, 5, 6],
(7,8, 9]
]
print(matrix[1][2])
Output
6

8.3.2 Nested Loop Pattern with 2-D Lists
Example
matrix = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
for row in matrix:
for value in row:
print(value, end="'")
print()
Output
123
456
789

8.4 THE WHILE LOOP
A while loop executes statements repeatedly as long as a condition is true.
Syntax

while condition:

statement(s)

Example — Simple Counting Loop

count = 1

while count <= 5:

print("Count =", count)

Centre for Distance Education 8.7 Acharya Nagarjuna University

count += 1
Output
Count =1
Count =2
Count =3
Count =4
Count =15

Start

Test Condition

Trus ¥ False ¥

I 1 I 1
Execute Body | Exit
[I L I

v

(Recheck Condition)

Fig 8.3 Flowchart — while Loop

Example — Factorial Using while
n = int(input("Enter a number: "))
fact=1
i=1
while 1 <=n:

fact *=1

i+=1

print("Factorial =", fact)

8.5 MORE LOOP PATTERNS
8.5.1 Iteration Pattern — Sequence Loop

Iterates directly through each element of a collection.

Programming and Problem-Solving ... 8.8 Control Structures

Example

for letter in "PYTHON":
print(letter)

Output

O - = < =

N
8.5.2 Infinite Loop
An infinite loop runs forever unless stopped manually or by a break condition.
Example
while True:

name = input("Enter name (type 'stop' to exit): ")

if name == "stop':

break

print("Hello,", name)

8.5.3 Loop-and-a-Half Pattern
Used when the termination condition appears in the middle of the loop.
Example
while True:
num = int(input("Enter number (-1 to quit): "))
if num == -1:
break

print("Square:", num ** 2)

8.6 ADDITIONAL ITERATION CONTROL STATEMENTS
8.6.1 break Statement
The break statement terminates the loop immediately.
Example
for i in range(1, 10):
ifi==5:

Centre for Distance Education 8.9

Acharya Nagarjuna University

break
print(i)
Output
1
2
3
4

8.6.2 continue Statement

Skips the current iteration and moves to the next.

Example
for i in range(1, 6):
ifi==3:
continue
print(i)
Output
1

2
4
5

8.6.3 pass Statement

Used as a placeholder when a statement is required syntactically but no action is desired.

Example
for 1 in range(5):
if1<3:
pass
else:
print(i)
Output
3
4

Programming and Problem-Solving ... 8.10 Control Structures

8.7 SUMMARY

Loops repeat a block of code multiple times.
The for loop handles definite iteration; the while loop handles indefinite iteration.
Common loop patterns:

o lIteration Loop — processes each element.

o Counter Loop — runs for a set number of iterations.

o Accumulator Loop — builds up totals or collections.

o Nested Loop — processes multi-dimensional structures.
Control statements (break, continue, pass) modify normal loop flow.
Two-dimensional lists are handled using nested loops.

8.8 TECHNICAL TERMS

Iteration,

Loop,

Counter Variable,
Accumulator,

Nested Loop,
Two-Dimensional List,
Infinite Loop,
Loop-and-a-Half Pattern,
break, continue, pass,
Definite Iteration,
Indefinite Iteration.

8.9 SELF-ASSESSMENT QUESTIONS

Essay Questions
1. Explain the difference between for and while loops in Python.

2. Describe and illustrate accumulator and counter loop patterns.

3. Explain nested loops with an example.

4. How are two-dimensional lists processed using nested loops?

5. What is an infinite loop? How can it be avoided?

6. Discuss how break and continue statements affect loop execution.
Short Notes

1. Sequence loop.

Loop control statements.

Loop and a half pattern.

Role of the accumulator variable.
Use of range() in for loops.

Nk

Programming Exercises

Write a program to print the first 10 natural numbers.
Compute the factorial of a given number using a while loop.
Generate a list of squares using an accumulator loop.
Display multiplication tables (1 to 5) using nested loops.

el S

Centre for Distance Education 8.11 Acharya Nagarjuna University

5. Find the sum of digits of a number using a while loop.
6. Write a program to display even numbers from 1 to 50.

8.10 SUGGESTED READINGS

1. Ljubomir Perkovi¢, Introduction to Computing Using Python: An Application
Development Focus, Wiley (2012).

2. Reema Thareja, Python Programming: Using Problem-Solving Approach, Oxford

University Press.

Mark Lutz, Learning Python, O’Reilly Media.

Eric Matthes, Python Crash Course, No Starch Press.

5. Al Sweigart, Automate the Boring Stuff with Python, No Starch Press.

B w

Dr. Neelima Guntupalli

LESSON- 09
PYTHON DICTIONARY

AIMS AND OBJECTIVES

The main aim of this chapter is understanding the concept of dictionary in Python
Programming. The discussion related to understand what dictionary and its characteristics.
After completion of this chapter, student will be able to know what dictionary, how it is
different from other data types. Also able to know operations, functions, and methods in
dictionary.

STRUCTURE

9.1 Introduction
9.2 Python Dictionary
9.2.1 The Characteristic of Dictionary
9.2.2 Creating Python Dictionary
9.3 Accessing Dictionary Elements
9.3.1 Access Dictionary by Key
9.3.2 Access dictionary by get () method.
9.3.3 Access of Nested Dictionary
9.4 Dictionary Methods
9.4.1 Update Elements Methods
9.4.2 Remove Elements Methods
9.4.3 keys () and values() Methods
9.5 Dictionary Functions
9.5.1 len() method
9.5.2 sorted () method.
9.5.3 all () method
9.5.4 any () function
9.6 A Dictionary as a Substitute for Multiway Condition
9.7 Dictionary as a Collection of Counters .
9.8 Summary
9.9 Technical Terms

9.10 Self-Assessment Questions

9.11. Suggested Readings

Programming and Problem-Solving ... 9.2 Python Dictionary

9.1. INTRODUCTION

Python, a programming language, is equipped with a wide variety of tools and functions. The
dictionary is one example of such a feature. In the Python programming language, a dictionary
is a collection of key-value pairs. Uniqueness is required for the dictionary keys. A value of any
kind could be assigned to the dictionary. Python's dictionary is a data structure that makes it
possible for us to develop code that is both simple and very effective. The fact that the keys of
this data structure can be hashed is the reason why it is referred to as a hash table in many

different languages. In a moment, we will comprehend the significance of this.

Using Python dictionaries, we can easily obtain a value that has been associated with a specific
key and then immediately access that value. It is recommended that we make use of them if we

are looking for a certain Python object, also known as a lookup method.

9.2 PYTHON DICTIONARY

A dictionary in Python is a set of objects that let's us store information in key-value pairs.
With Python dictionaries, we may rapidly obtain a value by associating it with a distinct key.
Using them whenever we need to locate (search for) a certain Python object is a good
concept. For this purpose, lists can also be used, but they operate far more slowly than

dictionaries.

9.2.1. The Characteristic of Dictionary

e In the first place, the dictionary will have information in the form of key-value pairs.
e A colon ":" sign is used to visually define the key and the values.

e The representation of an item can consist of a single key-value pair.

e [t is not permitted to have duplicate keys.

e tis possible to acknowledge duplicate values.

e Itis quite OK to use heterogeneous objects for both keys and values.

e The order of the insertion is not maintained.

e adictionary object that is capable of being altered.

¢ Dictionary entries behave in a dynamic manner.

e The notions of indexing and slicing are not applicable in this situation.

Centre for Distance Education 9.3 Acharya Nagarjuna University

9.2.2. Creating Python Dictionary

In python, a dictionary is created using the key:value pairs using the curly brackets {} and is
separated by commas. The syntax for creating dictionary is shown below:

Syntax:
my dict={

"keyl":"valuel",
"key2":"value2"

}

In the above syntax my_dict is a dictionary created with two pair of items differentiated with
different keys and values.

Example:

creating a dictionary
country capitals = {
"Germany": "Berlin",
"Canada": "Ottawa",
"England": "London"

}

In the above example country capitals is a dictionary created with three pair of items which
includes {"Germany": "Berlin"}, {"Canada": "Ottawa"} and { “England": "London"}.

9.3. ACCESSING DICTIONARY ELEMENTS
To access an element from the dictionary there are three ways and are described below:
e Access by Key
e Access by get () function
e Access of nested dictionary
9.3.1 Access Dictionary by Key
We can access the value of a dictionary item by placing the key inside square brackets. It
accesses and prints the values associated with the keys. The keys and values showcasing
can be of different data types (string and integer).
Syntax:

Value= dictionary name[‘Key’]

Programming and Problem-Solving ... 9.4 Python Dictionary

Example:
State= dic_county [‘Andhra Pradesh’]
Example:

} *diccreacc.py - C/Users/sai00/diccreacc.py (3.7.9)% - O X

File Edit Format Run Options Window Help

$# Python program to demonstrate dictionary create and access by key
Creating a dictionary

dic county = {

[a]
1]

"Tamilnadu™: "Chennai®,
"mndhra Pradesh"™: "EZmaravathi™,
"Telangana™: "Hyderabad"

}

Printing a dictionary
print("a country dictionary : ")
print(dic_county)

access element of dictionary

print (" access element of dictionary by key: ")

print("state of Telangana:", dic_county['?e;angana']]

print ("state of Andhra Pradesh:", dic_county['kndh:a Pradesh'])

Ln: 1 Col: 67
Output:

} :..:']C n 3.7.9 She — O bld
File Edit Shell Debug Options Window Help
Python 3.7.9 (tags/v3.7.9:13c%4747c7, Rug 17 2020, 16:30:00) [MSC v.1500 64 bit
(AMDE4)] on win32
Type "help", "copyright", "credits" or "license()" for more information.
>>>
=== === RESTART: C:/Users/sail0/diccreacc.py ==
a country dictionary :
{'Tamilnadu': 'Chennai', 'Andhra Pradesh': 'Emaravathi', 'Telangana': 'Hyderabad
'}
access element of dictionary by key:
state of Telangana: Hyderabad
state of Andhra Pradesh: Emaravathi
>>>

Ln: 10 Col: 4

9.3.2 Access dictionary by get() method

The code demonstrates accessing a dictionary element using the get() method. It retrieves
and prints the value associated with the key 3 in the dictionary ‘Dict’. This method provides
a safe way to access dictionary values, avoiding KeyError if the key doesn’t exist.

Centre for Distance Education 9.5 Acharya Nagarjuna University

Example:

oy - C:/Users/s
File Edit Format Run Options Window Help
Python program to demonstrate dictionary create and access by get()
Creating a dictionary

dic county = {
"Tamilnadu™: "Chennai®™,
"Andhra Pradesh™: "ABmarawvathi",

"Telangana": "Hyderabad"

Printing a dicticnary
print("a country dictionary : ")
print(dic_county)

access element of dictionary by get() method

print (" access element of dictionary by get: ")

print ("state of Telangana:", dic_pounty.get{"Telangana"))

print ("state of Andhra Pradesh:", dic county.get('Andhra Pradesh'))

Ln: 14 Col: 47

Output:

& Python 3.7.9 She - o bas
File Edit Shell Debug Options Window Help
Python 3.7.9 (tags/v3.7.9:13c%4747c7, Aug 17 2020, 16:30:00) [MSC w.1900 64 bit -

(AMDE4)] on win32
Type "help", "copyright", "credits" or "license ()" for more information.

>>>

RESTART: C:/Users/sail0/diccreaccget.py

a country dictionary
{"Tamilnadu': 'Chennai', 'Andhra Pradesh': 'Bmaravathi', 'Telangana': 'Hyderabad
'
}
access element of dictionary by get: 1
state of Telangana: Hyderabad
state of Andhra Pradesh: Amarawvathi
>
ol

Ln: 10 Col:4

9.3.3 Access of Nested Dictionary

To access the value of any key in the nested dictionary, use indexing [] syntax. It first
accesses main dictionary associated with the key and then, it accesses a specific value by

navigating through the nested dictionaries.
Example:

py - C:/Users/sa
File Edit Format Run Options Window Help

Python program to demonstrate nested dictionary create and access by get/()
Creating a nested dictionary

my dict = {'Name': 'Sai Yogith', 'DOB': {'day': 1,
"mon': 4,
'yvear':2004} ,
'"Hobby': 'Cricket', 'City': 'Vijavawada'}

using sguare brackets

print ("The complete dictionary:\n", my_dict)
print ("Name of the person:\n", my dict['Nam='])
print ("Birth month of the person:‘\n",my dict['DOB']['mon'])

Ln: 12 Col: 19

Programming and Problem-Solving ... 9.6 Python Dictionary

Output:

7]
| File Edit She Debug Options
Python 3.7.9 (tags/v3.7.9:13c%4747c¢7, Rug 17 2020,
(AMDE4)] on win32
Type "help"™, "copyright",
>>>
================== RESTART: C:/Users/sail0/diccreaccnested.py ==================
The complete dictionary:
{'"Name': 'Saili Yogith', 'DOB':
cket", 'City': 'Vijayawada'}
Name of the person:
Sai Yogith
Birth month of the person:
4
3>

Window Help |
16:30:00) [MSC v.1900 64 bit

"credits" or "license()" for more information.

{'day': 1, 'mon': 4,

Ln: 11 Col: 4

9.4 DICTIONARY METHODS

Dictionary methods are used to perform specific functionality over dictionary that may be
updating, adding, extracting a, removing and etc operations on keys and items. Some of the
functions includes in given Table 9.1.

Table 9.1. Dictionary Methods

9.4.1.

Dictionaries are subject to change. Using an assignment operator, we can add new things or

Function Description
pop() Removes the item with the specified key.
update() Adds or changes dictionary items.
clear() Remove all the items from the dictionary.
keys Returns all the dictionary's keys.
values() Returns all the dictionary's values.
get() Returns the value of the specified key.
popitem() Returns the last inserted key and value as a tuple.
copy() Returns a copy of the dictionary.

Update Elements Methods

change the value of existing items.

https://www.programiz.com/python-programming/methods/dictionary/pop
https://www.programiz.com/python-programming/methods/dictionary/update
https://www.programiz.com/python-programming/methods/dictionary/clear
https://www.programiz.com/python-programming/methods/dictionary/keys
https://www.programiz.com/python-programming/methods/dictionary/values
https://www.programiz.com/python-programming/methods/dictionary/get
https://www.programiz.com/python-programming/methods/dictionary/popitem
https://www.programiz.com/python-programming/methods/dictionary/copy

Centre for Distance Education 9.7 Acharya Nagarjuna University

Example:
E diccreaccchange.py - C/Users/sai00/diccreaccchange.py (3.7.9 — O X
File Edit Format Run Options Window Help
4 # Python program to demonstrate update dictionary
I# Creating a nested dictionary
jmy dict = {'Name': 'Sai Yogith', 'DOB': {'day': 1,
"mon': 4,
1 'year" 2004} ,
"Hobby': 'Cricket', '"City': 'Vijavawada'}
Details before updation
print (" Details before updation ‘“n")
print ("The complete dictionary:\n", my dict)
print ("Name of the person:\n", my dict['Name'])
print ("City of the person:\n", my dict['City'])
#Updating a dictionary
my dict['Name']l="Lakkakul Sai Yogith"
my dict['City'l="Bangalore'
Details after updation
print("\n Details after updation “n")
print ("The complete dictionary:\n", my dict)
print ("Name of the person:\n", my dict['Name'])
print ("City of the person:\n", my dict['City'])
L Ln: 13 Col: 0
Output:
E& Python 3.7.9 She — O >

File Edit She Debug Options Window Help
Python 3.7.9% (tags/v3.7.9:13c%4747¢7, Aug 17 2020, 16:30:00) [MSC wv.1900 64 bit

(AMDE4)] on win32
Type "help"™, "copyright", "credits" or

"license ()" for more information.

================== RESTART: C:/Users/sail0/diccreaccchange.pv
Details before updation

The complete dictionary:
{'"Name': 'Sai Yogith', 'DOB': {'day': 1, 'mon': 4, 'year': 2004},
cket', 'City': 'Vijayawada'}
Name of the person:
Sai Yogith
Ccity of the person:
vijayawada

'"Hobby': 'Cri

Details after updation

The complete dicticnary:
{'"Name': 'Lakkakul Sai Yogith', 'DCB': {'day': 1, 'mon': 4, 'year':
by': 'Cricket', 'City': 'Bangalore'}
Name of the person:
Lakkakul Sai Yogith
City of the person:
Bangalore
>>>

2004}, 'Hob

Ln: 19 Col: 20

By declaring value together with the key, for example, Dict[Key] = ‘Value’, one value at a time
can be added to a Dictionary. Another approach is to use Python’s update () function. Python’s
update () method is a built-in dictionary function that updates the key-value pairs of a
dictionary using elements from another dictionary or an iterable of key-value pairs. With
this method, you can include new data or merge it with existing dictionary entries.

Programming and Problem-Solving ... 9.8 Python Dictionary

Example:

A

File Edit Format Run Options Window Help
1# Python program to demonstrate create and sort of dictiocnary
Creating a dictionary
‘dic_county = {
lnadu™ "Chennai™,
Pradesh™: "Amaravathi™,
"Hyderabad"

dic_countyl =
"Tamilnadu"
"mndhra F esh"™: "mAR"™,
"Telangana™: "HD"

11

Printing a dictionary
print("a country dictionary : ")
print (dic county)

Update dictionary by update ()
dic_county.update (dic_countyl)

Printing a dictionary
print("a country dictionary after update : ")
rrint (dic_county)

Ln: 12 Col: 12

Output:

File Edit She Debug Options Window Help

Python 3.7.9 (tags/v3.7.9:13c9%4747c¢7, Rug 17 2020, 16:30:00) [MSC v.1500 o4 bit
(AMDE4)] on win32

Type "help", "copyright", "credits" or "license ()" for more information.

2>

RESTRERT: C:/Users/sail0/dicupdate.py

a country dictionary :

{'Tamilnadu': 'Chennai', 'Andhra Pradesh': 'Bmaravathi', 'Telangana': 'Hyderabad
'}

a country dictionary after update

{'Tamilnadu': 'CN', 'Andhra Pradesh': 'ARR', 'Telangana': 'HD'}

55>

Ln:9 Col: 4

9.4.2. Removing Elements Methods

A key can be removed from a dictionary in three ways: from an individual entry, from all
entries, or from the entire dictionary.

1. The pop () function can be used to remove a single element. The value of the key that has
been specified to be eliminated is returned by the pop () function.

2. To randomly remove any elements (key-value pairs) of the dictionary, we can use
the popitem() It returns the arbitrary key-value pair that has been removed from the
dictionary.

3. Using the clear () method, all elements can be eliminated at once. The del keyword is
used to completely delete the entire dictionary.

Centre for Distance Education 9.9 Acharya Nagarjuna University

Example:

E emovedi ment.py - C:/Users/sai00/removedic ment.py (3.7.9 — (]
e Edit Format Run Options Window Help

Python program to remove/delete elements from a dictionary

my dict = {1: 'One', 2: 'Two', 3: 'Three', 4: 'Four', 5: 'Five'}

print ('Original Dictionary:', my_dict)

m
m
m

removing single element
print (my dict.pop(4))
print ('Updated Dictionary:', my dict)

adding new value
print (my_dict.popitem())
print ('Updated Dictionary:', my dict)

remove all items
my_dict.clear()
print (my dict)

delete the dictionary itself
del my dict
print (my_dict)

Ln: 20 Col: 0

Output:

T : : : : S

File Edit She Debug Options Window Help

Python 3.7.9 (tags/v3.7.9:13c94747¢7, Rug 17 2020, 16:30:00) [MSC w.1900 €4 bit
(AMDE4)] on win32
Type "help"™, "copyright", "credits"™ or "license ()" for more information.
=
RESTART: C:/Users/sail0/removedicelement.py
Original Dictionary: {1: 'Cne', 2: "Two', 3: 'Three', 4: 'Four', 5: 'Fiwve'}
Four
Updated Dictionary: {1: 'Cne', 2: 'Two', 3: 'Three', 5: 'Five'}
(5, "Five"')
Updated Dictionary: {1: 'cne', 2: 'Two', 3: 'Three'} |
{}
Traceback (most recent call last):
File "C:/Users/sail0/removedicelement.py"™, line 129, in <module>
print (my dict)
NameError: name 'my dict' is not defined
>
Ln: 15 Col: 4

9.4.3 keys () and values() Methods

In Python, the keys () function returns a view object that contains dictionary keys, which
enables quick access and iteration across the dictionary.The values() method in Python
returns a view object that contains all of the dictionary values. This view object can be
accessed and iterated through in an effective manner within Python.

Syntax:
d = {'key": 'value'}

d.keys()

Programming and Problem-Solving ... 9.10 Python Dictionary

Syntax:
d = {'key": 'value'}

d. values ()

Example:

[e - o m ommom T PENPARPEY

f)

File Edit Format Run Options Window Help

Python program to demonstrate key() & value() method of dicticnary
Creating a dictionary

dic county = {

"Tamilnadu™: "Chennai™,
"Endhra Pradesh": "Rmaravathi",
"Telangana": "Hyderabad"
}
Printing a dictionary all keys
print ("all keys : ")

print(dic_county.keys())

$# Printing a dictionary all items
print("all values: ")
print (dic_county.values())

Ln: 16 Col: 25

In the above example , created dictionary called dic_country with three elements with the
usage of keys() and values() fucntions displayed the information related every key and values
associated with elements stored in dic_county dictionary. The reslut shown in output.

Output:

File Edit She Debug Options Window Help
Python 3.7.9 (tags/v3.7.9:13c5%4747c7, BRug 17 2020, 16:30:00) [MSC v.1500 64 bit

(AMDE4)] on win32
Type "help", "copyright", "credits"™ or "license ()" for more information.

P

=== RESTART: C:/Users/sail0/dickeyvalues.py === |

all keys
dict keys(['Tamilnadu', 'Andhra Pradesh', 'Telangana'l])

all values:
dict values(['Chennai', 'BEmaravathi', 'Hyderabad'l])

>>>

Ln:9 Col: 4

9.5 PYTHON DICTIONARY FUNCTIONS

The Python dictionary offers a wide range of methods that may be utilized to conduct operations
on key-value pairs in an easy and convenient manner. The following is a list of functions using

the Python dictionary shown in Table 9.1.

Centre for Distance Education

9.11 Acharya Nagarjuna University

Table 9.1. Python Dictionary Functions

Function Python Expression Description

len() len(my_dictionary) Returns the length of the dictionary (key
count).

sorted () | sorted (dictionary name) | Returns the dictionary with keys sorted in
ascending order.

all () all (dictionary name) Returns True if all the keys in the dictionary
are True (not 0 and False).

any () Returns True is any of the keys in the

any(dictionary name) dictionary is True.

str () str (dictionary name) Returns a string representation of the

dictionary passed as the argument.

9.5.1 len() function

Using the len() method, which returns the item count, one can determine the length of a
dictionary by its use. Printing the length of my dictionary is as follows:

Example:
A
File Edit Format Run Options Window Help

Python program to demonstrate create and find len of dictionary
Creating a dictionary
ic county = {

"Tamilnadu™: ennai"™,

"Andhra Pradesh" "Emaravathi",

"Telangana™: "Hyderabad"

[o TS

ot

Printing a dicticnary
print("a country dictionarv :
print (dic_county)

length of dictionary
print (" length of dictionary:
print (len(dic_county))

")

Ln: 17 Col: 0

Output:

A

File Edit She Debug Options Window Help

Python 3.7.9 (tags/w3.7.9:13c%4747¢7, Bug 17 2020, 16:30:00) [MSC w.1900 €4 bit
(BMDE4)] on win32

Type "help"™, "copyright™, "credits"™ or "license ()" for more information.

>>>

RESTART: C:/Users/sail0/diclen.py

a country dictionary :

{'"Tamilnadu': 'Chennai', 'Andhra Pradesh': 'BEmaravathi', 'Telangana': "Hyderabad
'}
length of dictionary:
3
>>>

Ln:9 Col: 4

Programming and Problem-Solving ... 9.12 Python Dictionary

In the above example , dic_country elements count is determined by calling the len() function
and displayed lengh of the dictionary 3 it means dictinay holds the three elemtns and reslut
shown in output.

9.5.2 sorted () function.

Sorting the dictionary can be accomplished with Python's built-in keys functions, which
include the keys () and values () functions. Any iterable can be used as an argument, and it
will return the sorted list of keys you provided. The dictionary can be arranged in ascending
order by using the keys to sort the entries. First, let's get familiar with the below example.

Example:

:%I:IIT:_- C:/Users/sai00/dicsort.py (3.7.9 — O
File Edit Format Run Options Window Help

Python program to demonstrate create and sort of dictionary

$# Creating a dictiocnary
d

1dic_county = {
"Tamilnadu": "Chennai™,

1 "Andhra Pradesh": "Rmaravathi™,
"Telangana™: "Hyderabad"

Printing a dictionary
print("a country dictionary : ")
print(dic_county)

sort of dictiocnary by keys
print (" sort of dictionary by keys: ")
print(sorted(dic county.keys()))

sort of dictionary by values
print (" sort of dictionary by values: ")
print (sorted(dic county.items()))

Ln: 19 Col: 36

Output:

1T Wil Wi MLALLIVIUGLY MY VRLUTI

;%3_1':'3'5-5'5 — O

File Edit She Debug Options Window Help

>>>
=== RESTART: C:/Users/sail0/dicsort.py ==
a country dictionary :

{'Tamilnadu': 'Chennai', 'Andhra Pradesh': 'Bmaravathi', 'Telangana': 'Hyderabad
'}

sort of dictionary by keys:

['Bndhra Pradesh', 'Tamilnadu', 'Telangana']

sort of dictiocnary by values:

[('Andhra Pradesh', 'BEmaravathi'), ('Tamilnadu', 'Chennai'), ('Telangana', 'Hyde
rabad')]

>>>

Ln:17 Col:4!

We have declared a dictionary of names in the code that was just presented. We made use of
the built-in function in conjunction with the sorted() method, which provided us with a list of

Centre for Distance Education 9.13 Acharya Nagarjuna University

the keys that had been sorted. We then proceeded to utilize the items() function in order to
obtain the dictionary in the order that it was sorted.

9.5.3 all() function

A dictionary's keys are the only elements that are examined when the all() method is applied to it;
the values are not examined. In the event that not all of the keys in the dictionary are true, the all()
method will return FALSE; but, if all of the keys are true, it will return false. In the event that the
dictionary does not consist of any entries, the all() function also returns a value of TRUE.

Example:

File Edit Format Run Options Windoww Help

Python program to demonstrate all() of dictionary

Creating a dicticnarwvy

dic_county
” mi 1

dic_county2=1{}

dic_county3={'0"':"False"'}
Printing a dicticnary all keys True
print{("all keys True : ™
Jprint(all(dic_county))
Printing a dictionary one keys False
prrint("one keys False: -
print{all{(dic countyl))
Printing an empty dictionarwy is Ture
print("empty dictionary is Ture: "
print(all (dic_countwy2))
Printing a key tyvpe of string in dictionary is Ture
print("a key type of string in dictionary is Ture: ")
print(all (dic_countw3))
Ln: 16 Col: O
Output:
.
a 1

File Edit She Debug Options Window Help

Python 3.7.9 (tags/v3.7.9:13c%4747c¢7, Rug 17 2020, 16:30:00) [MSC v.1%00 €4 bit
(BMDE4)] on win32

Type "help", "copyright"™, "credits" or "license ()" for more information.

>>>

=== == RESTRRT: C:/Users/s5ai00/dicall.py
all keys True

True

One keys False:

False

empty dictionary is Ture:

True

a key type of string in dictionary is Ture:

True

>>>

Ln: 13 Cpk4

9.5.4 any () function

The any () method only verifies the keys of a dictionary when it is applied to a dictionary; it does
not verify the values. If any of the keys associated with the dictionary are true, the any () method

Programming and Problem-Solving ... 9.14 Python Dictionary

will return TRUE; otherwise, it will return FALSE. In the event that the dictionary does not
consist of any entries, the any () function also returns FALSE.

Example:

e e 00 em oy (37 — O

W

Edit Format Run Options Window Help

m

Python program to demonstrate any () of dicticnary
Creating a dictionary
dic county = {

"Tamilnadu™: "Chennai"
lesh™: "Amaravathi™,
"Hyderabad"

}
dic_countyl = {
"Tamilnadu™: "Chennai™,
"kndhra radesh™: "Amaravathi",

a™: "Hyderabad",

dic_county2={}

dic:_c:ountsz{D: '"False', 1:"'True'}

Printing a dictionary allkeys True
print("all keys True : ")
print (any (dic_county))

Printing a dictionary few keys True
print ("few keys True: ")
print (any (dic_county3))

Printing an empty dictionary is False
print ("empty dicticnary is False: ")
print (any (dic_county2))

Printing a key type of string in dictionary is Ture
print{("a key tyvpe of string in dictionary is Ture: ™)

print (any (dic_countyl))

Ln: 36 Col: 21

Output:

Eamama e f B eonantay do et o manmaesy 2 e Loey g

:'Zg Python 3.7.9 She —]
File Edit She Debug Options Window Help
Python 3.7.9% (tags/v3.7.9:13c5%4747c7, Rug 17 2020, 16:30:00) [MSC v.1%00 64 bit

(BMDE4)] on win32
Type "help", "copyright", "credits"™ or "license ()" for more information.

x>

RESTART: C:/Users/sail0/dicany.py

all keys True :

True

few keys True:

True

empty dictionary is False:

False

a key type of string in dictionary is Ture:
True

>>>

Ln: 13 Col: 4,

9.6 A DICTIONARY AS A SUBSTITUTE FOR MULTIWAY CONDITION

When we first introduced dictionaries, we emphasized their ability to store and retrieve data
using user-defined keys.

However, dictionaries can also replace long multiway if—elif—else chains where multiple

Centre for Distance Education 9.15 Acharya Nagarjuna University

conditions are used to perform simple lookups or mappings. Let us consider a motivating
example.

Example Problem

Suppose we want to write a function complete() that accepts the two-letter abbreviation of a
weekday (e.g., 'Tu') and returns the full name of the day (e.g., "Tuesday").

Desired behavior:

>>> complete("Tu')

"Tuesday’

Traditional Implementation: Using Multiway if—elif—else
A straightforward (but lengthy) way to implement this is to use a seven-way conditional
chain:
def complete(abbreviation):
'Returns the day of the week corresponding to abbreviation'
if abbreviation == 'Mo":
return 'Monday'
elif abbreviation == 'Tu'":
return 'Tuesday’
elif abbreviation == 'We":
return "Wednesday'
elif abbreviation == "Th'":
return "Thursday'
elif abbreviation == "Fr":
return 'Friday'
elif abbreviation == 'Sa'":
return 'Saturday’
else: # abbreviation must be 'Su'
return 'Sunday’
Although correct, this implementation is inefficient, verbose, and difficult to maintain.
Each new mapping (for example, adding 'Ho' — 'Holiday') would require adding another elif

condition.

Programming and Problem-Solving ... 9.16 Python Dictionary

Improved Implementation: Using a Dictionary

A more elegant and efficient solution is to represent the mapping between abbreviations and
full day names using a dictionary.
def complete(abbreviation):

'Returns the day of the week corresponding to abbreviation'
days = {

'Mo'": 'Monday',

"Tu'": 'Tuesday’,

'We': 'Wednesday',

'"Th': '"Thursday’,

'Fr': 'Friday',

'Sa": 'Saturday’,

'Su': 'Sunday’
}

return days[abbreviation]

Explanation

e The dictionary days maps each two-letter abbreviation (the key) to the corresponding
full day name (the value).

e To find the full name, we simply index the dictionary using the abbreviation:
days[abbreviation].

e The dictionary performs this lookup instantly, without testing multiple conditions.

Sample Run

>>> complete("We')

'Wednesday'

>>> complete('Su')

'Sunday'

Benefits of the Dictionary Approach

Aspect Multiway if—elif—else Dictionary Mapping

Code length Long and repetitive Compact and readable

Efficiency Each condition is checked | Direct key lookup (constant time)
sequentially

Maintainability | Hard to update or extend Easy to modify or add key—value pairs

Concept Conditional branching Key—value mapping

Using dictionaries to replace multiway conditionals demonstrates Python’s expressive power
and data-oriented programming style.Whenever conditions correspond to a clear mapping
between keys and values, a dictionary provides a cleaner, faster, and more scalable solution.

Centre for Distance Education 9.17 Acharya Nagarjuna University

9.7 DICTIONARY AS A COLLECTION OF COUNTERS.

One of the most important and practical applications of dictionaries is counting occurrences
— also known as frequency counting.

Many programs, from search engines to data analytics tools, rely on counting how many
times specific items occur within a dataset.
Example Problem
Suppose we want to count the number of occurrences of each name in a list of student names.
students = ['Cindy’, 'John', 'Cindy', 'Adam’, 'Adam’,

'Jimmy', 'Joan', 'Cindy', 'Joan']
We need a function frequency() that will take such a list and compute how many times each
name appears.
Concept
For each distinct item in the list, we want to:

1. Create a counter initialized to zero.
2. Increment the counter each time the item occurs.
The challenge is that we don’t know in advance how many distinct items exist.

Solution: Use a Dictionary of Counters

A dictionary is ideal because it can dynamically:

e Create a new key (item) the first time it appears.

e Associate it with a counter value.

e Increment that value each subsequent time the item appears.
Implementation

def frequency(items):
'Counts occurrences of each distinct element in the list items'
counters = {}
for item in items:
if item in counters:
counters[item] += 1
else:
counters[item] = 1
return counters
Example Use
students = ['Cindy’, 'John', 'Cindy', 'Adam’, 'Adam’,
'Jimmy', 'Joan', 'Cindy', 'Joan']

print(frequency(students))

‘ Programming and Problem-Solving ... 9.18 Python Dictionary

Output
{'Cindy": 3, 'John": 1, 'Adam": 2, 'Jimmy": 1, 'Joan": 2}
Explanation
1. The empty dictionary counters = {} starts with no keys.
2. The loop visits each item in the list:
o Ifthe item already exists in the dictionary, increment its counter.

o Ifnot, create a new key with initial value 1.
3. After processing all items, the dictionary contains each unique element with its count.

9.8 SUMMARY

Python is an excellent programming language that comes with a wide variety of feature sets.
The fact that it provides a structured code makes it much simpler to comprehend. Since
Python is currently one of the most widely used programming languages in the modern day, it
is essential to have a comprehensive understanding of this programming language. This
chapter will provide you with practical experience on how to work with dictionary along
methods and functions.

9.9 TECHNICAL TERMS
Dictionary, Update, any, key, value, Get Method, Pop, Clear, and pop Items.

9.10 SELF ASSESSMENT QUESTIONS

Essay questions:

1. How is a dictionary created and called? Explain.
2. What are the various dictionary methods? Explain.
3. Explain about dictionary functions with example.

Short Notes:

1. Write about get () access method.
2. How dictionary is different form the List.

9.11 SUGGESTED READINGS

—_—

Steven cooper — Data Science from Scratch, Kindle edition.

2. Reemathareja — Python Programming using problem solving approach, Oxford
Publication

3. "Python Pocket Reference" by Mark Lutz

4. "Python Essential Reference" by David Beazley

5. "Python Programming: An Introduction to Computer Science" by John Zelle

6. "Introduction to Computation and Programming Using Python" by John Guttag

Dr. Kampa Lavanya

LESSON- 10

TUPLE

AIMS AND OBJECTIVES

The main aim of this chapter is understanding the concept of tuples in Python Programming.
The discussion related to understand what tuple and its characteristics is. After completion of
this chapter, student will be able to know what tuple is, how it is different from other data
types. Also able to know access tuples by various methods, operations, functions, and
methods in tuples.

STRUCTURE

10.1 Introduction
10.2 Python Tuple
10.2.1 Creating Python Tuple
10.2.2 Advantages of Tuple over List
10.3 Accessing Tuple
10.3.1 Indexing
10.3.2 Negative Indexing
10.3.3 Slicing
10.4 Python Tuple Operations
10.4.1 Concatenation of Tuples
10.4.2 Tuple Membership
10.5 Python Tuple Functions
10.5.1 len()
10.5.2 max()
10.5.3 min()
10.5.4 sum()
10.6 Tuple Methods
10.6.1 count() Method
10.6.2 index() Method
10.7 Class tuple
10.8 Tuple Objects Can Be Dictionary Keys
10.9 Dictionary Method items(), Revisited
10.10 Summary
10.11 Technical Terms
10.12 Self-Assessment Questions
10.13 Suggested Readings

10. 1 INTRODUCTION

Python is a popular high-level, general-purpose programming language that excels at creating
graphical user interfaces and web applications. It is also a popular choice for application

Programming and Problem-Solving ... 10.2 Tuple

development due to its dynamic type and binding features. In this chapter we'll learn about
tuples, an important data structure in Python programming.

Python tuples are a data structure that is quite like a list. The primary distinction between the
two is that tuples are immutable, which means they cannot be modified once generated. This
makes them excellent for storing non-modifiable data, such as database records. A tuple can
contain any number of objects of various types, including strings, integers, floats, lists, and so
on. Let's look at how to generate and use a tuple to make our programming work easier.

10.2 PYTHON TUPLE

A sequence of any items that are separated by commas and wrapped in parenthesis is referred
to as a tuple. We use tuples to represent fixed collections of elements since they are
immutable objects, which means they cannot be modified. Tuples are used to carry out this
function. Tuple items are placed in a specific order, cannot be altered, and permit duplicate
values. When we say that tuples are ordered, we are referring to the fact that the items in the
tuple have a predetermined order on which they will remain indefinitely. Tuples and Python
lists share some similarities in terms of indexing, nested objects, and repetition; nevertheless,
the most significant distinction between the two is that a Python tuple is immutable, whereas
a Python list is mutable. Tuples are used in Python programming languages. Since tuples are
indexed, the first item has an index of [0], the second item uses an index of [1], and so on.

10.2.1 Creating Python Tuples

It is possible to create a tuple by associated with all of the items (elements) in parentheses ()
rather than square brackets [], and by separating each element with commas. It is possible for a
tuple to include any number of objects of different types, including integers, floats, lists, strings,
and so on. In addition, you have the option of specifying nested tuples, which can include one or
more items that are either dictionaries, lists, or tuples.

The given example shows how to create simple Tuple in python:

Example:
emp tup=() # Empty Tuple

int tup=(2,8,1,6,15,3) # A Tuple with integers
mixed tup = (12, "sai", 81.3) # A Tuple with mixed data items
nested_tup = ("Python", [8,5,17,6], (2, 6, 1, 20)) # Nested Tuple

Centre for Distance Education 10.3 Acharya Nagarjuna University

We produced four different sorts of tuples in the example that was just presented: empty, int-type,
mixed type, and nested type. It is after the initialization of data items that the size of the empty
tuple is calculated. Nevertheless, the elements that are part of the int type and the mixed type are
the numbers 6 and 3. An example of a nested tuple is a special sort of tuple in which each element
also contains additional elements. A string, a list, and a tuple were the three elements that were
present in the nested tuple that was defined before.

10.2.2 Advantages of Tuple over List

Since they are so comparable, tuples and lists are applied in scenarios that are comparable.
On the other hand, there are a few benefits that come along with utilizing a tuple rather than a
list.

e In contrast to lists, the Tuples cannot be modified in any way. The addition, removal,
or replacement of a tuple is not possible.

e Tuples are often utilized for heterogeneous data kinds, which are distinct from one
another, whereas lists are typically utilized for homogeneous data types, which are
comparable to one another.

e As aresult of the immutability of tuples, iterating through them is a more efficient
process than iterating through a list. As a consequence of this, there is a slight

improvement in performance.

¢ Dictionary keys can be derived from tuples that include elements that cannot be
changed. When it comes to lists, this is not possible.

e Ifyou have data that does not change, implementing it as a tuple will ensure that it
continues to be protected from being written to.

e If you wish to make changes to the information contained in a tuple, we will first need
to transform it into a list.

10.3 ACCESSING TUPLE
A tuple's objects can be accessed in 3 different types of ways which includes:

e Indexing
e Negative Indexing

e Slicing

10.3.1 Indexing

Accessing an item within a tuple that has an index that begins at 0 can be accomplished using
the index operator []. A tuple that contains five items will have indices that range from 0 to 4,
inclusive. An index that is higher than four will be considered out of range.

| Programming and Problem-Solving ... 10.4 Tuple

Example:
I }’— py - C:/Users/sai00/tupaccess.py (3.7.9)* - a X

| File Edit Format Run Options Window Help

Python program to show how to create and access a tuple with indexing
Creating an empty tuple

emp_tup = ()

print ("Empty tuple: ", emp_tup)

A Tuple with integers

int tup = (2, &, 1, &, 15, 3)

print ("\nTuple with integers: ", int tup)

L Tuple with different data types

mixed tup = (12, "sai", 81.3)

print ("\n Tuple with different data types: ", mixed tup)
A nested tuple

nested_tup = ("python", [6&,5,17,61, (2, 6, 1, 20))
print("\n & nested tuple: ", nested tup)

print ("\n 3 element of a integer tuple: ",int tupl[3])
print ("\n 2 element of a mixed tuple: ",mixed tup[2])

print("\n 1 element of 2nd element of a nested tuple: ",nested tupll][2])

print("\n 2 element of 3rd element of a nested tuple: ",nested tupl2][3])

Ln: 1 Col: 71

The four types of tuples that have previously been constructed in the example above—empty, int-
type, mixed type, and nested type—are accessed using an index. This operator is quite helpful in
accessing particular elements from the tuple. Different elements are accessible from different
types of tuples in the code above. Three elements from the integer tuple and two from the mixed
tuple, for instance. Similar access is made using the indexing method in nested tuples.

Output:

& Python 3.7.9 She — m| P
File Edit She Debug Options Window Help [
Python 3.7.9 (tags/v3.7.9:13c%4747¢7, Aug 17 2020, 16:30:00) [MSC w.1500 €4 bit
(BMDE4)] on win32

Type "help", "copyright", "credits" or "license()" for more information.

B

RESTART: C:/Users/sail0/tupaccess.py

Empty tuple: ()

Tuple with integers: (2, 8, 1, &, 15, 3)

Tuple with different data types: (12, '"sai', 81.3)

E nested tuple: ('Python"', [8, 5, 17, €1, (2, &, 1, 20))
3 element of a integer tuple: 5]

2 element of a mixed tuple: 81.3

1l element of 2nd element of a nested tuple: 17
2 element of 3rd element of a nested tuple: 20
>>>

Ln: 20 Col: 4

Centre for Distance Education 10.5 Acharya Nagarjuna University

10.3.2 Negative Indexing

Tuple, a type of sequence object in Python, also allows negative indexing. -1 addresses the
final item in the selection, -2 addresses the second-to-last item, and so on.

Example:
| ja f— - — - ppp—
File Edit Format Run Options Window Help

Python program to show how to create and access a tuple with negative indexing
L Tuple with integers

{int tup = (2, &, 1, 6, 15, 3)

print ("\nTuple with integers: ", int tup)

4
T
4
T

|# & Tuple with different data types
mixed tup = (12, "sai", B81.3)

print ("\n Tuple with different data types: ", mixed_tup)

{print ("\n 3 element of a integer tuple with -3 index: ",int tup[-3])
|

print("\n 2 element of a mixed tuple with -1 index: ",mixed tup[-1])

Ln: 11 Col: 66

Two sorts of tuples, empty and int-type, are already constructed in the example above and are
accessed using a negative index. For instance, the -3 and -1 indexes are used to retrieve the
elements 3 and 2 of the integer and mixed tuples, respectively. In a similar vein, nested tuples can

also use this type of access.

Output:
! |
| File Edit She Debug Options Window Help

Python 3.7.9 (tags/v3.7.8:13c%4747c¢7, nug 17 2020, 16:30:00) [MSC w.1500 64 bit
| (BMDE4)] on win32
Type "help", "copyright", "credits" or "license ()" for more information.

>>>

RESTART: C:/Users/sai00/tupaccessneq.py

Tuple with integers: (2, 8, 1, &, 15, 3)
Tuple with different data types: (12, 'sai', B81.3)

3 element of a integer tuple with -3 index: 6

2 element of a mixed tuple with -1 index: 81.3
>>>

Ln: 13 Col: 4

10.3.3. Slicing

In Python, tuple slicing is a widely used technique that programmers use to solve real-world
problems. Examine a Python tuple. To access a range of a tuple's elements, slice it. One
method is to use the colon as a simple slicing operator (:).We can use the slicing operator
colon (:) to access different tuple components.

Programming and Problem-Solving ... 10.6 Tuple

Example:

1 - - — —— i —
1 E
1 e Edit Format Run Options Window Help

Python program to show how slicing works in Python tuples
Creating a tuple
tuple 1 = ("one", "Two", "three", "four", "five", "six")

1# access tuple [1:4] elements
|
1

print ("Tuple [1l:4] elemsnts ", tuple 1[1:41]1)
access tuple [:-5] elements
[print ("Tuple tuple [:-5] elements : ", tuple_ 1[:-51)

access entire tuple
g

print ("The full tuple: ", tuple_1[:1)
1
Ln: 11 Col: 23
Output:
f%;
i File Edit She Debug Options Window Help
| 2 element of a integer tuple with -2 index: &
2 element of a mixed tuple with -1 index: £1.3

>>>

RESTART: C:/Users/sail0/tupaccessslice.py
Tuple [1:3] elements : ('"Two', 'three')
Tuple tuple [:-4] elements : ("one', "Two')
The full tuple: ('one', '"Two', 'three', 'four', 'five', 'six')
>>>

RESTART: C:/Users/sail0/tupaccessslice.py
Tuple [1:4] elements : ('"Two', 'three', 'four')
Tuple tuple [:-5] elements : ('one',)
The full tuple: ('one', '"Two', 'three', 'four', 'five', 'six')
>>>

(U2 G

10.4 PYTHON TUPLE OPERATIONS

Tuple is a sequence in Python. As a result, we can use the + operator to concatenate two
tuples and the "*" operator to concatenate many copies of a tuple. Tuple objects are used by
the membership operators "in" and "not in."

Table 8.1 Python Tuple Operations

Python Expression Results Description
len((1, 2, 3)) 3 Length
(1,2,3)+(4,5,6) (1,2,3,4,5,6) Concatenation
('Hi!")) * 4 ('Hi!", 'Hi!", 'Hi!", 'Hi!") Repetition
3in (1,2, 3) True Membership
for x in (1, 2, 3): print x, 123 Iteration

Centre for Distance Education 10.7 Acharya Nagarjuna University

10.4.1 Concatenation of Tuples

The process of connecting two or more tuples is called concatenation. The operator "+" is
used for concatenation. Tuple concatenation is always performed starting at the end of the
original tuple. On tuples, other arithmetic operations are not applicable. Concatenation can
only be used to join datatypes that are the same, joining a list and a tuple result in an error.
The idea of tuple concatenation is shown in Figure 8.1.

Tuple 1 Tuple 2

1 2 3 4 Code For Code

Concatenated Tuple

1 2 3 4 Code For Code

Fig 8.1 Concatenation of Tuples in Python

Example:
)
ile Edit Format Run Options Window Help

Python program to add tuples

Creating a tuples

tuple_1 = ("one", "Two", "three", "four"™, "five"™, "six™)
tuple_2 = (4,9,3,8,5,1)

Printing first Tuple

print ("Tuple 1: ™)

print (tuple_1)

Printing first Tuple

print("\n Tuple 2: ")

print (tuple_2)

add 2 tuples

print ("\n Tuple after addition : ", tuple 1 + tuple 2)

Ln: 2 Col: 19

Two tuples of the types character and integer were constructed in the example above,
designated as tuple 1 and tuple 2. The outcome of later addition operations applied to two
tuples is reported. The result, which combines the contents of tuples 1 and 2 into a single

tuple, is displayed on screen.

Output:
A
File Edit She Debug Options Window Help

Python 3.7.9 (tags/v3.7.9:13c94747c¢7, Bug 17 2020, 16:30:00) [MSC w.19200 &4 bit

(AMDE4)] on win32
Type "help", "copyright",
>

"credits"™ or "license ()" for more information.

== RESTART: C:/Users/sai00/tupadd.py ==

Tuple 1:
("one', "Two', '"three', 'four', 'five', 'six')

Tuple 2:
(4, 8, 3, 8, 3, 1)
Tuple after addition : ('one', 'Two', 'three', 'four', 'five', 'six', 4, 9, 3,
8, 5, 1)
>>>
Ln: 12 Col: 4

Programming and Problem-Solving ...

10.8

Tuple

10.4.2 Tuple Membership

The existence of an item in a tuple can be ascertained by using the in and not in keywords.

Example:
)
File Edit Format

Printing first Tuple

print ("Tuple 1:

print (tuple 1)

print ("\n Test
print("ten" i
print(

Output:
=
File Edit She

Pyvthon 3.7.9 (tags/v3.7.9:13c24747¢7,

(AMDE4)] on wi
Type "help", ™
>

n3z

Run Options MWindow Help
")
'three® is in tuple_ 1 ")
' in tuple 1)
'three' not is in tuple
ot in tuple 1)
'ten' is in tuple_ 1 ")
in tuple_ 1)
'ten' is not in tuple 1
1ot In tuple 1)
Debug Options Window Help

copyright", "credits" or

Tuple 1:
("one', 'Two',

Test 'three'
True

Test "three'
False

'"three', 'four',

is in tuple_1

not is in tuple 1

Test 'ten' is in tuple 1

False

Test 'ten' is not in tuple 1

True
>>>

RESTARRT:

C:/Users/sail0/tupmem.py

"five"',

1

")

"license ()"

")

nug 17 2020,

"six")

for more information.

Ln: 16 Col: 13

[MSC w.1%00 €4 bit

Ln: 19 Col: 4

Applying membership procedures on the two produced tuples, tuple 1 and tuple 2, as
demonstrated in the preceding example. The results of these membership operations, such
as is and is not, are TRUE or FALSE. Verified whether the term "there" is available in the

case above. In a same manner, look up further words.

10.5 PYTHON TUPLE FUNCTIONS

Python offers a variety of functions for carrying out tasks. Functions such as cmp(), max(),
min(), and so forth are used to carry out particular tasks. Each function's explanation can be

found in Table 8.1.

Centre for Distance Education 10.9 Acharya Nagarjuna University

Table 8.1 Python Tuple Functions

Function Description
cmp(tuplel, tuple2) Compares elements of both the tuples
len(tuple) Returns the total length of the tuple
max(tuple) Returns the largest element from the tuple
min(tuple) Returns the smallest element from the tuple
tuple(seq) Converts a list into tuple

10.5.1 len()

The number of elements in a tuple can be obtained using the len() method. It accepts a tuple
as an input and outputs an integer number that is the tuple's length.

Example:
1 Ti)
File Edit Format Run Options Window Help
Python program to demonstrate tuple len() funcitons
1# Creating a tuple
|tuple 1 = ("one", "Two", "three", "four", "five", "six")

{

Printing first Tuple
print ("Tuple 1: ")
print(tuple 1)

¢ _

|4 Printing lenth of first Tuple
print ("Lenth of Tuple 1: ")
print(len(tuple 1))

Ln: 1 Col: 44

Output:
;% H
File Edit She Debug Options Window Help

Python 3.7.9 (tags/w3.7.9:13c9%4747c7, Aug 17 2020, 16:30:00) [MSC w.1900 &4 bit

(BMDE4) 1 on win32

Type "help"™, "copyright™, "credits"™ or "license ()" for more information.

>>> 1
RESTART: C:/Users/sai00/tupfun.py

Tuple 1:

(‘one', 'Two', 'three', 'four', "fiwve', 'six")
Lenth of Tuple 1:

o
>

Ln:9 Col: 4

Programming and Problem-Solving ... 10.10 Tuple

We have defined a tuple called my_tuple with five items in the example above. The length of

the tuple, which is 5, was then obtained using the len() method.

10.5.2 max ()

To get the maximum value in a tuple, use the max () function. It accepts a tuple as an input

and outputs the tuple's maximum value.

Example:

:%T.:;ﬁ”“f-:_-: Users\sai0O\tupfunmax.py (3.7.9 - O
File Edit Format Run Options Window Help

Python program to demonstrate tuple max() funcitons

Creating a tuples

tuple 1 = ("one", "Two", "three", "four", "five", "six")

tuple 2 = (4, 6, 8, 2, 16)

=3

Printing first Tuple
print ("Tuple 1: ™)
print (tuple 1)

Printing second Tuple
print ("Tuple 2: ™)
print (tuple 2)

Printing Min element of Tuple 1
print (" Max element of Tuple 1: ™)
print (max (tuple 1))

Printing Max element of Tuple 2
print ("Max element of Tuple 2: ™)
print (max (tuple 2))

Ln: 19 Col: 11

Output:

E?_T"I"E_}f"i — O
] File Edit She Debug Options Window Help
JPython 3.7.9 (tags/v3.7.9:13c94747c7, Rug 17 2020, 16:30:00) [MSC w.1900 64 bit

(BMDE4)] on win3Z2
Type "help", "copyright", "credits" or "license()" for more information.

S>>
] RESTART: C:\Users\saiOO\tupfunmax.py
Tuple 1:
('one', 'Two', 'three', 'four', 'five', 'six')
Tuple 2:

(4, 6, 8, 2, 1lg)

Max element of Tuple 1:
three

Max element of Tuple 2:
16

>>>

Ln: 13 Col: 4

We have defined a tuple called my tuple with five items in the example above. The

maximum value in the tuple, which is 9, was then obtained using the max() method.

Centre for Distance Education

10.11

Acharya Nagarjuna University

10.5.3 min ()

To get the lowest value in a tuple, use the min () function. It accepts a tuple as an input and

outputs the tuple's minimal value.

Example:
E tupfunmax.py - C:/Users/sai00/tupfunmax.p 7.9 - O
File Edit Format Run Options Window Help
Python program to demonstrate tuple min() funcitons
Creating a tuples
tuple_1 = ("one", "Two"™, "three", "four", "five", "six"™)
tuple 2 = (4, &, g8, 2, 1&)
Printing first Tuple
print {("Tuple 1: ™}
print(tuple_1)
€
Printing second Tuple
Yprint ("Tuple 2: ™)
print (tuple_2)
Printing Min element of Tuple 1
Jprint (" Min element of Tuple 1: ")
| print (min (tuple 1))
U
Printing Min element of Tuple 2
print {("min element of Tuple 2: ™)
print (min (tuple_ 2))
Ln: 19 Col: 10
Output:
} Python 3.7.9 She — (] t
File Edit She Debug Options Window Help)
Python 3.7.9 (tags/v3.7.9:13c%4747c¢c7, Rug 17 2020, 16:30:00) [MSC v.1l900 64 bit
(AMDE4)] on win32
Type "help", "copyright"™, "credits" or "license ()™ for more information.
>3
== == === RESTART: C:/Users/sail0/tupfunmax.py = == == ==
Tuple 1:
('one', '"Two', 'three', 'four', 'five', "sixz')
Tuple 2:
(4, &, 8, 2, 1l8)
Min element of Tuple 1:
TwWo 1
min element of Tuple 2: [
2
>
Ln: 13 Col: 4!

We have defined two tuples tuple 1 and tuple 2 with six and five items in the example
above. Next, we obtained the tuple's minimal values Two, and 2 by using the min() function.

10.5.4 sum ()

The sum of each element in a tuple can be obtained using the sum () function. It accepts a
tuple as an input and outputs the total of each tuple's elements.

Programming and Problem-Solving ... 10.12 Tuple

Example:
! File Edit Format Run Options Window Help

Python program to demonstrate tuple sum() funcitons
Creating a tuples
uple 2 = (4, 6, 8, 2, 1€)

ot = =

Printing second Tuple
print ("Tuple 2: ™)
print (tuple 2)

Printing sum of element of Tuple 2
print (" sum of element of Tuple 2: ")
print (sum(tuple 2))

Ln: 13 Col: 0

Output:
INUIE . Ty s, 1
File Edit She Debug Options Window Help

Python 3.7.9 (tags/vw3.7.9:13c5%4747c7, Rug 17 2020, 16:30:00) [MSC w.1900 €4 bit

(AMDE4)] on win3Z2
Type "help", "copyright", "credits" or "license ()" for more information.

22>

=== RESTART: C:/Users/sail0/tupfunsum.py

Tuple 2:
(4, &, B8, 2, lg)
sum of element of Tuple 2:
36
>>>

Ln:9 Col: 4

We have defined a tuple called tuple 2 with five items in the example above. The total of all

the elements in the tuple, which is 36, was then obtained using the sum () method.

10.6 TUPLE METHODS

Python's tuple routines offer an extensive range of functionalities for working with tuples.
Programmers can find the length, maximum or minimum value, total of all items, and create
tuples from iterables using these functions. Easy finding and counting of particular elements

within tuples is also made possible by the index() and count() operations.

10.6.1 Count () Method

A built-in Python function called count () can be used to determine how many times a certain
element appears in a tuple. The value to be counted is the only input that the method accepts.

Centre for Distance Education 10.13 Acharya Nagarjuna University

Example:
} ymetco C:/Users etco 7.9 — [} ot
File Edit Format Run Options Window Help
Python program to demonstrate tuple count () method
Creating a tuples
tuple 2 = (4, &, 2, 2, 1§€,2)

Printing second Tuple
print("Tuple 2: ™)
print (tuple_2)

Printing freqg of element of Tuple 2
print(" freg of element of Tuple 2: ")
print (tuple_2.count (2))

Ln: 3 Col: 19

} Python 3.7.9 She _ O >
File Edit Shell Debug Options Window Help
Python 3.7.9 (tags/v3.7.9:13c%4747¢7, Rug 17 2020, 16:30:00) [MSC v.1500 64 bit

(BAMDE4)] on win32
Type "help", "copyright", "credits" or "license()" for more information.

>>>

====== RESTART: C:/Users/sai00/tupmetcount.py ====================

(4, o, 2, 2, 1o, 2)
freq of element of Tuple 2:

Ln:9 Col: 4

In the above example, we first create a tuple tuple 2 with some elements. Then we use the
count () method to count the number of occurrences of the value 2 in the tuple. The method
returns the count of 2 which is 3. Finally, we print the count.

10.6.2. Index () Method
A built-in Python function called index () can be used to determine the index of a given

element's first instance in a tuple. The value to be searched in the tuple is the only input
required by the method.

Example:
L
} tupmetindex.py - C:/Users metindex.py (3.7.9 o o .
File Edit Format Run Options Window Help
Python program to demonstrate tuple index () method
Creating a tuples
tuple_2 = (4, &, 2, 2, 16,2)

Printing second Tuple
print("Tuples 2: ™)

print(tuple_2)

Printing index of element 2 of Tuple 2
print(™ index of element 2 of Tuple 2: ™)
print(tuple_2.index (2))

Printing index of element 16 of Tuple 2
print(™ index of element 16 of Tuple 2: ™)
print(tuple_2.index(16))

Ln: 15 Col: 19

Programming and Problem-Solving ... 10.14 Tuple

Output:
File Edit She Debug Options Window Help

Python 3.7.9 (tags/v3.7.9:13c94747¢7, Rug 17 2020, 16:30:00) [MSC v.1900 64 bit
(AMDE4)] on win32

Type "help", "copyright"™, "credits" or "license()" for more information.

S>>

(4, &, 2, 2, le, 2)

index of element 2 of Tuple 2:
2

index of element 16 of Tuple 2:
4

>>>

_ Lm11 Col:4

In the preceding example, we first create a tuple, tuple 2, with certain elements. Then we use
the index () method to discover the index of the tuple's first occurrence of the value 2. The
method returns the index of the first occurrence of 2 (which is 1). Finally, we will print the

index.

Tuples are widely used in Python for a variety of purposes, including returning multiple
values from a function, representing fixed groupings of data, and serving as keys in

dictionaries.

The methods discussed above make it simple to interact with tuples in Python, allowing you
to extract and change their contents. The count () function in Python is useful for determining
the number of repetitions of a certain element in a tuple. The index () function in Python is

useful for determining the index of the first occurrence of a certain element in a tuple.

10.7 CLASS TUPLE

Tuples are implemented in Python as objects of the built-in class

A tuple behaves like a list in almost every way, except that it is immutable — once created,

its contents cannot be modified.

Tuples can hold heterogeneous data, can be nested, and support operations such as indexing,

iteration, slicing, comparison, and packing/unpacking.
Tuples are commonly used to group related pieces of data.
Example

student = ('A102', 'Priya’, 21, 'BCA")

print("ID:", student[0])

print("Name:", student[1])

Centre for Distance Education 10.15 Acharya Nagarjuna University

print("Age:", student[2])
print("Course:", student[3])
Output
ID: A102
Name: Priya
Age: 21
Course: BCA
Here, the tuple represents a single structured record, similar to a row in a database.
e Tuples are instances of class tuple.
e They are immutable, ordered, and can hold mixed data.
e They are faster and more memory efficient than lists.
e Their immutability allows them to be used as dictionary keys.
10.8 TUPLE OBJECTS CAN BE DICTIONARY KEYS
A major advantage of tuples is that, unlike lists, they can be used as keys in a dictionary.
This is because tuples are immutable and hashable, while lists are mutable and
unhashable.
Let us understand this through an example.
Example — Invalid: Lists as Dictionary Keys

Suppose we want to create a phonebook where each key is a person’s name (first and last),
and the value is their phone number.

If we try to use lists as keys:

phonebook = {
['Anna’, 'Karenina']: '(123)456-78-90',
['Yu', 'Tsun']: '(901)234-56-78',

['Hans', 'Castorp']: '(321)908-76-54"

Programming and Problem-Solving ... 10.16 Tuple

Output
TypeError: unhashable type: 'list'
Explanation:

Lists are mutable, and mutable objects cannot be hashed.
A dictionary requires its keys to be immutable (unchanging), so lists are not valid keys.

Example 10.8.2 — Correct: Tuples as Dictionary Keys
We can solve this by using tuples instead of lists.
phonebook = {
("Anna', 'Karenina'): '(123)456-78-90',
('Yu', 'Tsun"): '(901)234-56-78',
('Hans', 'Castorp"): '(321)908-76-54'
}
print(phonebook)
Output
{
('Hans', 'Castorp'): '(321)908-76-54",
("Yu', '"Tsun'): '(901)234-56-78',
('Anna', 'Karenina'): '(123)456-78-90'
}
Each tuple key uniquely identifies a person by their first and last name.
Accessing a Value Using Tuple Key print(phonebook[('Hans', 'Castorp')])
Output
(321)908-76-54
Adding New Entries

phonebook[('Leo', 'Tolstoy')] = '(444)222-33-11"

Centre for Distance Education 10.17 Acharya Nagarjuna University

print(phonebook)
Output
{
(‘Hans', 'Castorp'): '(321)908-76-54',
("Yu', '"Tsun"): '(901)234-56-78',
('Anna', 'Karenina'): '(123)456-78-90',
('Leo', 'Tolstoy"): '(444)222-33-11"
}
Why Tuples Work as Keys
e A dictionary key must be immutable and hashable.

» Since tuples cannot change once created, they qualify as valid keys.
o Lists fail this property because their contents can be modified at any time.

10.9 DICTIONARY METHOD ITEMS(), REVISITED

The items() method is an important dictionary function that returns a view object containing
all key—value pairs as tuples.

Syntax
dictionary.items()

Returns:
A view of all (key, value) pairs in the dictionary.

Example — Viewing Key—Value Tuples

for entry in phonebook.items():
print(entry)

Output

(('Hans', 'Castorp'), '(321)908-76-54")

(("Yu', "Tsun'), '(901)234-56-78")

(('Anna', 'Karenina'), '(123)456-78-90")

‘ Programming and Problem-Solving ... 10.18 Tuple

((Leo, "Tolstoy"), '(444)222-33-11)

Each dictionary entry is represented as a tuple containing the key and its corresponding
value.

Example — Iterating and Unpacking Key—Value Tuples
We can extract the key and value separately during iteration.
for (first, last), number in phonebook.items():
print(f" {first} {last}: {number}")
Output
Hans Castorp: (321)908-76-54
Yu Tsun: (901)234-56-78
Anna Karenina: (123)456-78-90
Leo Tolstoy: (444)222-33-11
Explanation

o Each element of phonebook.items() is a tuple (key, value).

o The key itself is also a tuple (first, last).

o Unpacking allows direct access to both the first and last name components.
Example 10.9.3 — Converting Items to a List of Tuples
print(list(phonebook.items()))

Output

[

(('Hans', 'Castorp'), '(321)908-76-54"),
(("Yu', 'Tsun'), '(901)234-56-78"),
((Anna', 'Karenina'), '(123)456-78-90"),

((Leo', 'Tolstoy'), '(444)222-33-11")

Centre for Distance Education 10.19 Acharya Nagarjuna University

This representation shows how the dictionary internally stores key—value mappings as tuples.

Example 10.9.4 — Dictionary from a List of Tuples
A dictionary can also be created directly from a list of key—value tuples.
data = [
(('John', 'Keats'), '(222)333-44-55"),
(('Percy’, 'Shelley"), '(111)555-99-00")
]
new_phonebook = dict(data)
print(new_phonebook)
Output
{
('John', 'Keats'): '(222)333-44-55",

('Percy', 'Shelley'): '(111)555-99-00'

}

Key Points

Feature Description

items() Returns key—value pairs as tuples.

Unpacking Enables simultaneous access to keys and values.

Tuple as Key Tuples used as immutable dictionary keys.

Tuple in items() | Each pair is represented as a tuple (key, value).

Practical Use Case
You can easily iterate, search, or export structured dictionary data:
for (first, last), number in sorted(phonebook.items()):

print(f" {last}, {first} — {number}")

Programming and Problem-Solving ... 10.20 Tuple

Output

Castorp, Hans — (321)908-76-54
Karenina, Anna — (123)456-78-90
Tolstoy, Leo — (444)222-33-11
Tsun, Yu— (901)234-56-78

10.10 SUMMARY

Tuples enable integer-based indexing and duplicate elements, which improves data
organization and retrieval. They can be defined with or without parentheses; however,
without parentheses, a following comma is required to represent a tuple. Tuples are best used
for their original purpose; misapplication can result in inefficiencies, such as substituting
lists, sets, or dictionaries.

To ensure efficient data processing and manipulation, choose the suitable data structure after
carefully considering the use cases.

10.11 TECHNICAL TERMS
Tuple, Indexing, Negative Indexing, Max, Min , Count,.Index, and Slicing

10.12 SELF-ASSESSMENT QUESTIONS

Essay Questions

1. Explain the concept of tuples and how they differ from lists.

2. Discuss the advantages of using tuples in Python.

3. Why can tuples be dictionary keys, but lists cannot?

4. Explain the items() method of a dictionary with an example.

5. Write a program to create a phone directory using tuple keys and string values.

Short Notes

Write about Class tuple in Python.

Explain about Immutability and hashability.

How can Tuples as dictionary keys.

Describe about Tuple functions and methods.

Discuss about the role of items() in dictionary iteration.

Nk W=

10.13 SUGGESTED READINGS

1. Ljubomir Perkovi¢, Introduction to Computing Using Python: An Application
Development Focus, Wiley, 2012.

2. Reema Thareja, Python Programming Using Problem-Solving Approach, Oxford

University Press.

Mark Lutz, Learning Python, O’Reilly Media.

Eric Matthes, Python Crash Course, No Starch Press.

5. Al Sweigart, Automate the Boring Stuff with Python, No Starch Press.

P w

Dr. Kampa Lavanya

LESSON- 11

SET

AIMS AND OBJECTIVES
After completing this chapter, the learner will be able to:

Explain the concept and features of the Python set data type.

Create sets using curly braces {} and the set() constructor.

Apply set operators and methods to perform mathematical and logical operations.
Differentiate between mutable sets and immutable frozensets.

Use sets to remove duplicates, test membership, and compare data collections.
Implement real-world problem solutions using set operations and functions in Python.

S e

STRUCTURE

11.1 Introduction
11.2 Characteristics of Sets
11.3 Creating Sets
11.3.1 Using Curly Braces { }
11.3.2 Using the set() Constructor
11.3.3 Creating an Empty Set
11.3.4 Creating a Set from a String
11.4 Accessing Elements in a Set
11.4.1 Iteration
11.4.2 Membership Testing
11.5 Set Operators
11.5.1 Membership and Length
11.5.2 Equality and Comparison
11.5.3 Union, Intersection, Difference, and Symmetric Difference
11.6 Set Methods
11.6.1 Adding Elements using add() and update()
11.6.2 Removing Elements using remove(), discard(), and pop()
11.6.3 Clearing Set Elements using clear()
11.7 Set Relationship Methods
11.7.1 issubset()
11.7.2 issuperset()
11.7.3 1isdisjoint()
11.8 Built-in Functions with Sets
11.9 Frozen Sets (Immutable Sets)
11.10 Applications of Sets
11.11 Summary
11.12 Technical Terms
11.13 Self-Assessment Questions
11.14 Suggested Readings

Programming and Problem-Solving ... 11.2 Set

11.1 INTRODUCTION

Python’s set data type is another powerful built-in collection class used to store unordered,
unique, and immutable items.

It represents the mathematical concept of a ser — a group of elements with no repetitions.
Sets are very useful in programs that involve:

e Duplicate removal (e.g., cleaning data),

e Membership testing (checking if an element exists),

e Mathematical set operations (union, intersection, etc.),

o Fast lookups using hashing.

A set in Python is an unordered collection of unique, immutable objects enclosed in curly
braces {}.

Syntax:
set name = {elementl, element2, element3, ...}

Unlike lists or tuples, sets cannot contain duplicate elements or mutable items (like lists or
dictionaries).

Example — Creating a Simple Set
phonebook1 = {'123-45-67', '234-56-78', '345-67-89'}
print(phonebook1)
print(type(phonebook1))
Output
{'123-45-67', '234-56-78', '345-67-89'}
<class 'set™
Explanation:
e The curly braces {} indicate a set.
o The order of items may differ since sets are unordered.

e The type() function confirms that it’s a set object.

Handling Duplicates
If a set is defined with duplicate items, Python automatically removes them.
Example
phonebook1 = {'123-45-67', '234-56-78', '345-67-89",
'123-45-67','345-67-89'}
print(phonebook]1)

Centre for Distance Education 11.3 Acharya Nagarjuna University

Output
{'123-45-67','234-56-78', '345-67-89'}
Why Use Sets?
Purpose Advantage
Duplicate removal Automatically removes repeated entries

Mathematical operations | Built-in support for union, intersection, etc.

Fast lookup Membership check is faster than lists

Hashable keys Can use immutable sets (frozensets) as dictionary keys

11.2 CHARACTERISTICS OF SETS
e Unordered: The elements have no fixed order; indexing and slicing are not supported.
e No Duplicates:Each element appears only once.
e Mutable Container:You can add or remove elements after creation.

e Immutable Elements:Each element inside the set must be an immutable object such as
integers, strings, or tuples.

e Efficient Membership Testing:Checking if an element exists is very fast due to internal
hashing.

11.3 CREATING SETS
Python provides multiple ways to create sets.

11.3.1 Using Curly Braces {}
A = {10, 20, 30}

print(A)

Output

{10, 20, 30}

11.3.2 Using set() Constructor

B = set(['apple', 'banana’, 'cherry'])
print(B)

Output

{'banana’, 'cherry', 'apple'}

11.3.3 Creating an Empty Set

Empty sets must be created using the set() function, not {}.

‘ Programming and Problem-Solving ... 11.4

Set

empty = set()
print(empty)
print(type(empty))
Output

set()

<class 'set™

{} creates an empty dictionary, not a set.

11.3.4 Creating a Set from a String
chars = set(""banana")

print(chars)

Output

{'b','n', 'a'}

11.4 ACCESSING ELEMENTS
Since sets are unordered, we cannot use
We can access elements only through:

o Iteration using loops, or

e Membership testing using in / not in.

Example — Iterating Over a Set
colors = {'red, 'green’, 'blue'}
for ¢ in colors:
print(c)
Output
red
blue

green

Example — Membership Testing
colors = {'red', 'green’, 'blue'}
print('red' in colors)

print("yellow' not in colors)

indexing

or

slicing.

Centre for Distance Education

11.5

Acharya Nagarjuna University

Output
True

True

11.5 SET OPERATORS

Python implements classical set theory operations using operators.

Operation Operator | Description

Membership in, not in Check element presence

Length len() Number of elements

Equality =, I= Compare sets

Subset/Superset <, <=, >, >= | Relationship between sets

Union)

Intersection & Common elements

Difference - Elements in one but not the other

Symmetric Difference

Elements in one or the other, not both

Example — Membership and Length

phonebook! = {'123-45-67', '234-56-78', '345-67-89'}
print('123-45-67" in phonebook]1)
print('456-78-90' not in phonebook1)

print(len(phonebook1))

Output
True

True

3

Example — Equality and Comparison

A={4a,'b,'c"}

B={a,'b,'c'"}

C={a,d'}

print(A == B)

print(C < A)

print(A > C)
Output

True

Programming and Problem-Solving ... 11.6

Set

True

True

Example — Union, Intersection, Difference, Symmetric Difference

A={1,2,3}
B={3,4,5}
print(A | B)
print(A & B)
print(A - B)
print(A " B)
Output
{1,2,3,4,5}
{3}
{1, 2}
{1,2,4,5}

11.6 SET METHODS

In addition to operators, Python provides rich methods for manipulating sets.

Method

Description

add(x)

Adds an element x.

update(iterable)

Adds multiple elements.

remove(x)

Removes x; error if not found.

discard(x)

Removes x if present, no error otherwise.

pop()

Removes and returns a random element.

clear()

Removes all elements.

Example — add()

phonebook3 = {'345-67-89', '456-78-90'}

phonebook3.add('123-45-67")

print(phonebook3)

Output

Centre for Distance Education 11.7 Acharya Nagarjuna University

{'123-45-67', '345-67-89', '456-78-90'}

Example — remove() and discard()
colors = {'red, 'green’, 'blue'}
colors.remove('green')
colors.discard('yellow") # No error even if not present
print(colors)

Output
{'red', 'blue'}

Example 11.6.3 — clear()
phonebook3.clear()
print(phonebook3)

Output
set()

Example — update() and pop()

S = {10, 20}
S.update([30, 40, 507)
print(S)
print(S.pop())
print(S)

Output

{40, 10, 50, 20, 30}

40

‘ Programming and Problem-Solving ... 11.8

Set

{10, 50, 20, 30}

11.7 SET RELATIONSHIP METHODS

Description

True if all elements of s are in t

True if s contains all elements of t

True if sets have no elements in common

Method
issubset(t)
issuperset(t)
isdisjoint(t)
Example
A=1{1,2,3}
B=1{1,2,3,4}
print(A.issubset(B))
print(B.issuperset(A))

print(A.isdisjoint({5, 6}))
Output

True

True

True

11.8 BUILT-IN FUNCTIONS

Function Purpose

len(s) Number of elements
max(s) Largest element

min(s) Smallest element

sum(s) Sum of numeric elements
sorted(s) Returns sorted list

Centre for Distance Education 11.9 Acharya Nagarjuna University

Example
S={10, 2, 8, 4}
print(len(S))
print(max(S))
print(min(S))
print(sum(S))
print(sorted(S))
Output
4
10
2
24
[2,4,8,10]
11.9 FROZEN SETS

A frozenset is the immutable version of a set.

Elements cannot be added or removed after creation.
Example

A = frozenset([1, 2, 3])

B = frozenset([3, 4, 5])

print(A | B)

print(A & B)
Output

frozenset({1, 2, 3, 4, 5})

frozenset({3})

Programming and Problem-Solving ... 11.10 Set

11.10 APPLICATIONS OF SETS

1.

(98]

4,

Removing Duplicates
numbers = [1, 2, 2, 3, 3, 4]
print(set(numbers))

Common Elements
A = {'apple', 'banana'}
B = {'banana', 'mango'}
print(A & B)

Filtering Data
text = "Python is powerful and Python is easy"
unique_words = set(text.split())
print(unique_words)

Fast Membership Checking
vowels = {'a', '¢', '1', '0', 'u'}

print(‘e’ in vowels)

11.11 SUMMARY

Set is an unordered collection of unique immutable elements.

Supports mathematical operations like union, intersection, difference, and symmetric
difference.

Provides methods for addition, removal, and clearing.

frozenset is the immutable counterpart of set.

Sets are ideal for duplicate removal and membership testing.

11.12 TECHNICAL TERMS

Set, Unique Elements, Unordered, Mutable, Immutable Element, Membership Testing, Union,
Intersection, Difference, Symmetric Difference, frozenset, Hashing, Subset, Superset, Disjoint

Set

11.13 SELF-ASSESSMENT QUESTIONS

Essay Type Questions
1.

2.
3.

Explain the concept of a set in Python. How does it differ from other collection data
types such as lists and tuples?

Discuss the characteristics and properties of sets in Python with suitable examples.
Describe the various set operators available in Python. Illustrate each with a program
example.

Explain in detail the methods supported by the set class for adding, removing, and
updating elements.

What are frozen sets? How do they differ from normal sets? Give examples.

Centre for Distance Education 11.11 Acharya Nagarjuna University

Demonstrate the use of set relationships such as subset, superset, and disjoint sets with
code snippets.
Discuss the advantages and applications of sets in Python programming. Provide at
least three real-life examples.
Write a Python program to perform all set operations (union, intersection, difference,
and symmetric difference) on two given sets.
Compare the use of sets for duplicate removal versus using lists.

. Explain how membership testing works in sets and why it is more efficient compared
to lists or tuples.

Short Answer Questions

—

S0 XN LA WD

11.14

[99)

W

What are the key properties of a Python set?

Write the syntax to create an empty set and a set from a list.
Mention any four methods of the set class.

Differentiate between the remove() and discard() methods.
What does the clear() method do?

How is the len() function used with sets?

What is the difference between a set and a frozenset?

What is the purpose of the isdisjoint() method?

Explain the function of the * (symmetric difference) operator.

. What happens when duplicate elements are inserted into a set?

SUGGESTED READINGS

. Ljubomir Perkovi¢, Introduction to Computing Using Python: An Application

Development Focus, Wiley, 2012.

Reema Thareja, Python Programming: Using Problem-Solving Approach, Oxford
University Press, 2018.

Mark Lutz, Learning Python, 5th Edition, O’Reilly Media, 2013.

Eric Matthes, Python Crash Course: A Hands-On, Project-Based Introduction to
Programming, No Starch Press, 2019.

Al Sweigart, Automate the Boring Stuff with Python, No Starch Press, 2020.

Allen B. Downey, Think Python: How to Think Like a Computer Scientist, Green Tea
Press, 2015.

Charles Severance, Python for Everybody: Exploring Data in Python 3, CreateSpace
Independent Publishing, 2016.

Dr. Kampa Lavanya

LESSON- 12
RANDOMNESS

AIMS AND OBJECTIVES

After studying this chapter, the learner will be able to:
e Explain what character encoding means and why it is essential in digital text
representation.
Differentiate between ASCII, Unicode, and UTF-8 encoding systems.
Demonstrate how Python internally stores and manipulates strings using Unicode.
Apply string encoding and decoding methods in Python.
Describe the purpose of the random module in Python.
Generate random integers, floating-point numbers, and sequences.
Implement randomization in simulations, games, and sampling problems.

STRUCTURE
12.1 Introduction

12.2 Character Encodings and Strings
12.2.1 Character Encodings
12.2.2 ASCII
12.2.3 Unicode
12.2.4 UTF-8 Encoding for Unicode Characters
12.3 Working with Encoded Strings in Python
124 The random Module
12.4.1 Choosing a Random Integer
12.4.2 Choosing a Random “Real” (Floating Point Value)
12.4.3 Shuffling, Choosing, and Sampling at Random
12.5 Applications of Randomness
12.6 Summary
12.7 Technical Terms
12.8 Self-Assessment Questions

12.9 Suggested Readings

12.1 INTRODUCTION

Two fundamental areas are explored in this chapter:

1. Character Encoding, which defines how text characters are represented as numbers
inside a computer.

2. Randomness and the random Module, which allows programs to behave
unpredictably or simulate random events.

Programming and Problem-Solving ... 12.2 Randomness

Every program that processes text must deal with encodings, and every simulation or game that
imitates chance must use randomness. Python provides robust support for both its built-in
Unicode string system and the standard random library.

12.2 CHARACTER ENCODINGS AND STRINGS

A computer can store and manipulate only numbers. To represent letters, digits, and symbols,
each character must be encoded as a numeric value. This numeric representation is called a
character code.

When we write:
message = "Hello"

Python internally converts each letter of "Hello" into numerical values according to a specific
character encoding scheme.

12.2.1 Character Encodings

A character encoding is a mapping between characters and the numeric values (code points)
that represent them.

For example:

Character Decimal Code Binary (8 bits)
A 65 01000001
B 66 01000010
C 67 01000011

Each character corresponds to a unique binary pattern stored in memory or transmitted between
systems.

Without a standard encoding, computers could not exchange text reliably.
12.2.2 ASCII (American Standard Code for Information Interchange)

ASCII was one of the earliest and most influential encoding standards, developed in the 1960s.
It uses 7 bits to represent 128 characters, covering:

e Upper- and lower-case English letters
e Digits 0-9
e Basic punctuation symbols

e Control characters (e.g., newline, tab)

Centre for Distance Education 12.3 Acharya Nagarjuna University

Example — ASCII Codes

Character Decimal Binary Hexadecimal
A 65 01000001 0x41
a 97 01100001 0x61
0 48 00110000 0x30
Space 32 00100000 0x20

Python’s ord() function returns the code point of a character, and chr() converts a number back
to a character.

print(ord('A')) # 65

print(chr(65)) #'A’

ASCII served well for English text but failed to handle accented letters or non-Latin scripts.

Example — Viewing Character Codes in Different Number Systems

To understand how Python represents characters internally, we can write a small function
encoding() that accepts a string and prints each character’s ASCII (decimal), hexadecimal,
and binary code values.

def encoding(s):

print(f" {'Char:<6} {'Decimal':<10} {'Hex":<8} {'Binary'}")

for chins:
dec = ord(ch) # Decimal (Unicode code point)
hx = format(dec, '02x") # Hexadecimal representation

bin_val = format(dec, '08b") # Binary (8-bit) representation
print(f" {ch:<6} {dec:<10} {hx:<8} {bin_val}")

Program Execution

>>> encoding('dad')

Output

Char Decimal Hex Binary
d 100 64 1100100
a 97 61 1100001
d 100 64 1100100

Programming and Problem-Solving ... 12.4 Randomness

Explanation
e ord() returns the Unicode code point (integer) for each character.
For example, ord('d") = 100 and ord('a') = 97.
o format(x, '02x') converts the integer x into a 2-digit hexadecimal string.
o The value 100 in decimal equals 64 in hexadecimal.
o format(x, '08b') converts the integer into an 8-bit binary string.
o Ford, this is 1100100.
Each character in 'dad' is thus represented numerically in the computer’s memory, and these

numbers correspond to the ASCII/Unicode encoding values.

Python provides two complementary built-in functions for working with character codes:

Function Description

ord(char) Returns the numeric Unicode code point of the character char.

chr(number) | Returns the character that corresponds to the Unicode code point number.

These functions are exact inverses of each other.
That is:
chr(ord('A')) — 'A'
ord(chr(65)) — 65
Example
>>> chr(97)

a
>>> chr(65)
A"
>>> chr(8364)
e
>>> chr(937)
0

Output

Centre for Distance Education 12.5 Acharya Nagarjuna University

Explanation
e The integer 97 corresponds to the lowercase letter ‘a’ in the Unicode (and ASCII) table.
e 65 corresponds to ‘A’, the uppercase letter.
e 8364 represents the Euro symbol (€).
e 937 corresponds to the Greek capital letter Omega (£2).
These code points are defined by the Unicode standard, which allows Python to support

characters from virtually every language.

Function | Example Output | Purpose
ord("A") | Returns Unicode code point | 65 Character — Code
chr(65) | Returns character ‘Al Code — Character

You can easily build small encoding-decoding utilities in Python:
text = "ABC"
codes = [ord(c) for ¢ in text]
decoded = ".join(chr(i) for i in codes)
print(codes)
print(decoded)
Output
[65, 66, 67]
ABC
12.2.3 Unicode
To overcome ASCII’s limitations, Unicode was introduced as a universal standard that assigns
a unique number to every character in every language and symbol set.
o Each character has a code point, written as U+XXXX (hexadecimal).
e Unicode currently defines over 140,000 characters, covering scripts worldwide.

Example — Unicode Code Points

Character | Unicode Code Point | Name

A U+0041 Latin Capital Letter A

U+03A9 Greek Capital Letter Omega

U+4E2D CJK Unified Ideograph

Q
1
D) U+1F60A Smiling Face Emoji

Programming and Problem-Solving ... 12.6 Randomness

Python 3 strings (str) are Unicode by default, meaning they can represent any text from any
language.
s ="Qmega @"
print(s)
print(len(s))
Output
Qmega @
7
12.2.4 UTF-8 Encoding for Unicode Characters
Unicode specifies code points, but the computer still needs a binary representation for storage
and transmission.
UTF-8 (Unicode Transformation Format — 8-bit) is the most common encoding form used
today.
Features of UTF-8:
1. Variable-length encoding using 1 to 4 bytes.
2. Backward compatible with ASCII (0-127).
3. Efficient for English text, flexible for global scripts.

Character Code Point UTF-8 Bytes (Hex)
A U+0041 41

n U+00F1 C3 BI

€ U+20AC E2 82 AC

@ U+1F60A FO 9F 98 8A

Example — Encoding and Decoding Strings

text = "Python is fun @"

encoded = text.encode('utf-8")

print(encoded)

decoded = encoded.decode('utf-8")

print(decoded)
Output

b'Python\xe2\x80\xa2 fun\xf0\x9f\x98\x8a'

Python is fun @)

Centre for Distance Education 12.7 Acharya Nagarjuna University

12.3 WORKING WITH ENCODED STRINGS IN PYTHON

Python provides built-in methods to handle different encodings.

Method Purpose

encode(encoding) Converts a string into bytes.

decode(encoding) Converts bytes back into a string.

Example
msg = "Café"
b = msg.encode('utf-8")
print(b)
print(b.decode('utf-8"))
Output
b'Cafixc3\xa9'
Café

If the wrong encoding is used while decoding, Python raises a UnicodeDecodeError.

12.4 THE RANDOM MODULE
Programs often require random behavior—rolling dice, shuffling cards, generating random IDs,
or simulating uncertain events.
Python provides these capabilities in the random module.
To use it:
import random
All random values are pseudorandom—they come from deterministic algorithms but appear

random for most applications.

12.4.1 Choosing a Random Integer
Use random.randint(a, b) to return an integer N such that a <N <b.
import random
num = random.randint(1, 6)
print("Dice rolled:", num)
Output
Dice rolled: 4

Other related functions:

Programming and Problem-Solving ... 12.8 Randomness

Function Description

randrange(start, stop, step) | Choose integer from a range.

getrandbits(k) Return integer with k random bits.

Example
print(random.randrange(0, 10, 2)) # Even numbers 0—8
print(random.getrandbits(8)) # Random 8-bit number

Example:

import random

print("Simulating 10 dice rolls:")

for 1 in range(10):
print(random.randrange(1, 7))

Output

Simulating 10 dice rolls:

3
5
6
2
4

1
2
6
5
3

Example — Implementing a Number Guessing Game
The following program implements a simple interactive number guessing game using
Python’s random module.
The program randomly chooses a number between 0 and n - 1 and repeatedly asks the user to
guess it.
Each time the player guesses incorrectly, the program prints a hint:

e “Too low.” if the guess is smaller than the secret number.

e “Too high.” if the guess is larger.

When the player guesses correctly, the program prints “You got it.” and stops.

Centre for Distance Education 12.9 Acharya Nagarjuna University

Program: guess() Function
import random
def guess(n):
"""Interactive number guessing game."""
Step 1: Choose a random number

secret = random.randrange(0, n)

print(f"I'm thinking of a number between 0 and {n - 1}. Can you guess it?")

while True:
Step 2: Ask user for a guess

user_input = input("Enter your guess: ")

Validate input
if not user_input.isdigit():
print(""Please enter a valid integer.")

continue

guess num = int(user_input)

Step 3: Compare with secret number
if guess_num < secret:
print("Too low.")
elif guess num > secret:
print("Too high.")
else:
print("You got it!")
break
Program Execution Example
>>> guess(10)
I'm thinking of a number between 0 and 9. Can you guess it?
Enter your guess: 5
Too high.
Enter your guess: 2

Too low.

Programming and Problem-Solving ... 12.10 Randomness

Enter your guess: 3

You got it!

Step | Operation Description

1 random.randrange(0, n) Selects a random number between 0 and n—1.

2 input() Prompts user to enter a guess.

3 Comparison If guess < secret — “Too low.”; if guess > secret —
“Too high.”; else “You got it.”

4 Loop Continues until the correct number is guessed.

12.4.2 Choosing a Random “Real” (Floating Point Value)

For fractional random values:

Function

Description

random()

Returns float 0.0<x<1.0

uniform(a, b)

Returns floata<x <b

triangular(low, high, mode)

Weighted random float

Example x = random.random()

y = random.uniform(1.5, 6.5)

print("Random fraction:", x)

print("Random real number:", y)

12.4.3 Shuffling, Choosing, and Sampling at Random

The random module also handles random operations on sequences.

Function Description

choice(seq) Returns one random element.

choices(seq, k=n) | Returns list of n elements (with replacement).

sample(seq, k) Returns k unique elements (without replacement).

shuffle(seq) Randomly reorders elements of a list in place.

Example — Random Choice and Shuffle

names = ['Alice', 'Bob', 'Charlie', 'Diana']

print(random.choice(names)) # One name

random.shuffle(names)

print(names) # Shuftled order

Example — Sampling

lottery = list(range(1, 51))

Centre for Distance Education 12.11 Acharya Nagarjuna University

winners = random.sample(lottery, 6)

print("Winning numbers:", winners)
Output

Winning numbers: [7, 18, 25, 33, 42, 49]

Seeding the Random Number Generator

To reproduce the same random sequence, use random.seed(value).
random.seed(10)
print(random.randint(1, 100))

Each run with the same seed yields identical output—useful for testing and debugging.

12.5 APPLICATIONS OF RANDOMNESS

1. Games and Simulations
Rolling dice, card games, and random moves in games use random integers.
2. Monte Carlo Methods
Estimating 7 or probabilities through repeated random sampling.
3. Random Sampling in Statistics
Selecting random subsets from data for analysis.
4. Security and Token Generation
Creating random passwords or identifiers.

Example — Estimating 7 using Monte Carlo Simulation
import random, math
inside =0
n = 100000
for 1 in range(n):

x = random.random()

y = random.random()

if x**%2 + y**2 <=1

inside +=1

pi_estimate =4 * inside / n

print("Estimated mt:", pi_estimate)

Output
Estimated «: 3.1416

Programming and Problem-Solving ... 12.12 Randomness

Example — Random Password Generator
import random, string

chars = string.ascii_letters + string.digits + "!@#$%"

nn

password = "".join(random.choice(chars) for _ in range(10))

print("Random Password:", password)
Output
Random Password: aX4!qM8zT@

12.6 SUMMARY

e Character encoding maps characters to numeric code points.

e ASCII encodes 128 characters using 7 bits.

o Unicode extends this to global scripts; UTF-8 is the common binary encoding.

e Python 3 strings are Unicode by default.

e The random module generates pseudorandom integers, floats, and selections.

e Functions such as randint(), random(), choice(), and shuffle() provide flexible
randomization.

e Randomness supports games, simulations, and statistical modeling.

12.7 TECHNICAL TERMS
Character Encoding, ASCII, Unicode,UTF-8,Code Point, Byte Sequence, Encoding /

Decoding, Random Number Generator, Seed, Uniform Distribution, Sampling, Monte Carlo
Simulation, Random Shuffle, Deterministic Algorithm.
12.8 SELF-ASSESSMENT QUESTIONS

Essay Questions

1. Define character encoding. Describe the differences between ASCII, Unicode, and
UTEF-8.

2. How does Python represent Unicode characters internally?
3. Explain the importance of encoding and decoding operations with suitable examples.
4. What is the random module? Describe at least five of its functions with examples.
5. Discuss the role of random numbers in simulations and games.
6. Write a Python program to generate a random password of given length.
7. Explain how seeding affects random number generation.
8. Demonstrate how to shuffle and sample random elements from a list.
9. Compare pseudorandom and true random numbers.
10. Explain how UTF-8 ensures compatibility with ASCII.
Short Notes
1. Code Points and Bytes
2. ord() and chr() functions
3. Unicode in Python 3
4. random.randint() vs random.random()
5. random.choice() and random.sample()

Centre for Distance Education 12.13 Acharya Nagarjuna University

6. Random Seed and Reproducibility

7. UTF-8 Variable Length Encoding

8. Monte Carlo Method

12.9 SUGGESTED READINGS

1. Ljubomir Perkovié, Introduction to Computing Using Python: An Application
Development Focus, Wiley, 2012.

2. Reema Thareja, Python Programming: Using Problem-Solving Approach, Oxford
University Press.

3. Mark Lutz, Learning Python, O’Reilly Media.

4. Eric Matthes, Python Crash Course, No Starch Press.

5. Al Sweigart, Automate the Boring Stuff with Python, No Starch Press.

1. David Beazley and Brian Jones, Python Cookbook, O’Reilly Media.

Dr. Kampa Lavanya

LESSON- 13
OBJECT ORIENTED PROGRAMMING

AIMS AND OBJECTIVES

After studying this chapter, the learner will be able to:
e Explain the fundamental concepts of object-oriented programming (OOP).
e Define new Python classes and understand class structure.
e Create and use user-defined classes with attributes and methods.
e Apply constructors, instance variables, and class variables.
e Implement operator overloading to make custom classes behave like built-ins.
e Design new container classes such as a deck of cards or queue.
e Apply inheritance to derive new classes and reuse existing functionality.
e Define and use user-defined exceptions to handle program-specific errors.

STRUCTURE
13.1 Introduction — Fundamental Concepts
13.2 Defining a New Python Class
13.2.1 Methods of Class Point
13.2.2 A Class and Its Namespace
13.2.3 Every Object Has an Associated Namespace
13.2.4 Implementation of Class Point
13.2.5 [Instance Variables and Class Variables
13.2.6 Class Definition, More Generally
13.2.7 Documenting a Class (Docstrings)
13.3 Examples of User-Defined Classes
13.3.1 Overloaded Constructor Operator
13.3.2 Default Constructor
13.3.3 Playing Card Class
13.4 Designing New Container Classes
13.4.1 Class Deck of Cards
13.4.2 Queue Container Class
13.5 Overloaded Operators
13.5.1 Operators Are Class Methods
13.5.2 Making the Class Point User Friendly

13.5.3 Contract between Constructor and repr()

Programming and Problem-Solving ... 13.2 Object Oriented Programming

13.5.4 Making the Queue Class User Friendly
13.6 Inheritance

13.6.1 Inheriting Attributes of a Class

13.6.2 Overriding Superclass Methods

13.6.3 Extending Superclass Methods

13.6.4 Implementing a Queue by Inheriting from list
13.7 User-Defined Exceptions

13.7.1 Raising an Exception

13.7.2 Defining User-Defined Exception Classes
13.8 Summary
13.9 Technical Terms
13.10 Self-Assessment Questions
13.11 Suggested Readings

13.1 INTRODUCTION - FUNDAMENTAL CONCEPTS

Object-Oriented Programming (OOP) models programs as a collection of objects—entities that
combine data (attributes) and behavior (methods).

Instead of writing functions that act on global data, OOP organizes related data and operations
within classes.

Core OOP Concepts
Concept Description
Class Blueprint defining the structure and behavior of objects.

Object (Instance) | Individual entity created from a class.

Encapsulation Bundling of data and related methods into one unit.
Abstraction Hiding implementation details, showing only relevant features.
Inheritance Creating new classes that reuse attributes and methods of existing ones.

Polymorphism Ability to use the same operation on objects of different types.

13.2 DEFINING A NEW PYTHON CLASS

A Python class is defined using the keyword class, followed by the class name and a colon.
class Point:

"""Represents a point in 2D space."""

Centre for Distance Education 13.3 Acharya Nagarjuna University

def init (self, x, y):
self.x =x
selfy=y
Here, __init__ () is the constructor—a special method that runs when an object is created.
Creating Instances
pl = Point(2, 3)
p2 = Point(5, 6)
print(pl.x, pl.y)
Output
23

13.2.1 Methods of Class Point

Methods are functions defined within a class and automatically receive the instance (self) as the
first parameter.

class Point:
def init (self, x=0, y=0):
self.x =x

selfy=y

def move(self, dx, dy):
self.x += dx

self.ly +=dy

def display(self):
print(f"'({self.x}, {self.y})")
p = Point(2, 3)
p.move(l, 2)
p.display()
Output
(3,5)
13.2.2 A Class and Its Namespace

Each class defines a namespace, a mapping of names to objects—variables, constants, and
methods—Iocal to the class.

Programming and Problem-Solving ... 13.4 Object Oriented Programming

13.2.3 Every Object Has an Associated Namespace

Every object (instance) maintains its own namespace for storing instance variables.
Accessing attributes uses the dot operator: object. attribute.

13.2.4 Implementation of Class Point
class Point:
count =0 # Class variable
def init (self, x=0, y=0):
self.x =x
selfy=y

Point.count +=1

def repr (self):
return f'Point({self.x}, {self.y})"
pl =Point(1, 1)
p2 = Point(3, 4)
print(p1, p2)
print("Number of points:", Point.count)
Output
Point(1, 1) Point(3, 4)

Number of points: 2

13.2.5 Instance and Class Variables

o Instance variables (self.x) belong to individual objects.

e Class variables (Point.count) belong to the class as a whole.

Instance variables are attributes that are unique to each object created from a class.
They are defined using the prefix self. inside class methods (most commonly within the
constructor _ init_ ()).

Example
class Student:
def init (self, name, rollno):
self.name = name # instance variable

self.rollno = rollno # instance variable

Centre for Distance Education 13.5 Acharya Nagarjuna University

s1 = Student("Asha", 101)
s2 = Student("Rahul", 102)

print("Student 1:", s1.name, s1.rollno)

print("Student 2:", s2.name, s2.rollno)
Output

Student 1: Asha 101

Student 2: Rahul 102

Explanation:
e self.name and self.rollno are instance variables.
o Each object (s1, s2) has its own copy of these variables.
o Changing s1.name does not affect s2.name.
sl.name = "Anita"
print("Updated s1:", s1.name)
print("Unchanged s2:", s2.name)
Output
Updated s1: Anita
Unchanged s2: Rahul

Class variables are attributes that belong to the class itself, not to any individual instance.
They are declared outside all methods but inside the class definition.

Example
class Student:

school name = "Greenwood High" # class variable

def _init (self, name, rollno):
self.name = name # instance variable

self.rollno = rollno # instance variable

sl = Student("Asha", 101)
s2 = Student("Rahul", 102)

‘ Programming and Problem-Solving ... 13.6

Object Oriented Programming

print("Student 1 School:", s1.school name)

print("Student 2 School:", s2.school name)

print(" Accessing through class:", Student.school name)

Output

Student 1 School: Greenwood High

Student 2 School: Greenwood High

Accessing through class: Greenwood High

Explanation:

e school name is a class variable, shared by all objects.

e Any change made through the class name affects all objects.

Student.school name = "Sunrise Academy"

print(sl.school name)
print(s2.school name)
Output
Sunrise Academy

Sunrise Academy

Table 13.1 Comparative Summary

Feature Instance Variable Class Variable

Defined in Inside methods using self. Inside class, outside methods

Belongs to Each object (instance) The class (shared by all instances)

Accessed object _name.variable ClassName.variable or

using object name.variable

Storage Separate copy for every object Single shared copy for all

Use case To store unique attributes for each | To store common attributes across all
instance objects

Example

class Point:

count =0

def init (self, x, y):

self.x =x

class variable (shared)

instance variable

Centre for Distance Education 13.7 Acharya Nagarjuna University

selfy=y # instance variable

Point.count += 1 # modify class variable

pl = Point(1, 2)
p2 = Point(3, 4)

print("p1:", pl.x, pl.y)
print("p2:", p2.x, p2.y)
print("Total Points:", Point.count)
Output
pl:12
p2:34
Total Points: 2
Explanation
e xandy — Instance variables (unique to each object).
e count — Class variable (common counter shared by all instances).
o FEach time a new object is created, the constructor increases Point.count by 1.
This pattern is commonly used to track:
e The number of objects created from a class,
e Or any aggregate data shared among instances.
Best Practices

1. Use instance variables for per-object data (e.g., student names, coordinates, employee
salaries).

2. Use class variables for shared data (e.g., school name, total object count, global
configuration).

3. Access class variables through the class name (not self) when updating them to avoid
shadowing.

CLASS Point |

count = @ = class wvar

Both share Point.count = 2

def _ init (self, x, w):

self.x = x <« instance

self.y = y <« instance

Point.count += 1

[

T 1
| Objects
f !
| pl - x=1, y=2 (instance wvars) |
p2 = x=3, y=4 (instance wvars)
L 1

Fig 13.1 Instance and Class Variables

‘ Programming and Problem-Solving ... 13.8 Object Oriented Programming

13.2.6 Class Definition, More Generally
A typical class contains:
class ClassName:

"""Docstring describing purpose.

class_variable = value

def init (self, parameters):

initialize instance variables

def method1(self):

perform operation

13.2.7 Documenting a Class

nmn

Python’s docstring (""" provides built-in documentation accessible via

help(ClassName).

13.3 EXAMPLES OF USER-DEFINED CLASSES
13.3.1 Overloaded Constructor

An Overloaded Constructor refers to the concept of using a single constructor method to handle
multiple forms of object initialization, depending on the arguments passed when creating an
object.

Unlike languages such as C++ or Java, Python does not support multiple constructors (i.e.,
multiple _ init methods with different signatures).

However, constructor overloading can be simulated by providing default arguments, variable-
length arguments, or conditional logic within a single _ init () definition.

Purpose

The goal of an overloaded constructor is to:
o Allow flexible object creation, depending on the data available at runtime.
o Enable objects to be initialized with different numbers or types of parameters.
o Simplify class usage by adapting to various initialization contexts.

General Syntax

class ClassName:

def init (self, param1=None, param2=None, ...):

Centre for Distance Education 13.9 Acharya Nagarjuna University

initialization code
Here:
e Default values (None) make parameters optional.
e The constructor adapts based on which arguments are provided
Example — Constructor with Default Parameters
class Circle:
def init (self, radius=1):
self.radius = radius
cl = Circle()
c2 = Circle(5)
print(c1.radius, c2.radius)
Output
15
Example — Constructor with Conditional Logic

In some situations, the constructor must behave differently based on argument type or
number.

class Student:
def init (self, name=None, marks=None):
if name is not None and marks is not None:
self.name = name
self.marks = marks
elif name is not None:
self.name = name
self.marks =0
else:
self.name = "Unknown"
self.marks = 0
def display(self):
print(f'"Name: {self.name}, Marks: {self.marks}")

Program Execution

sl = Student("Asha", 85)

Programming and Problem-Solving ... 13.10

Object Oriented Programming

s2 = Student("Rahul")
s3 = Student()

sl.display()

s2.display()

s3.display()

Output

Name: Asha, Marks: 85
Name: Rahul, Marks: 0
Name: Unknown, Marks: 0

Explanation:

e The same constructor handles three different initialization cases.

e The if-elif-else structure allows overloaded behavior within a single init () method

Example — Constructor Using Variable-Length Arguments

You can also simulate overloading using *args (for positional arguments) and **kwargs (for

keyword arguments).
class Rectangle:
def init (self, *args):
if len(args) == 0:
self.length =1
self.breadth = 1
elif len(args) == 1:
self.length = self.breadth = args[0]
elif len(args) == 2:
self.length, self.breadth = args
else:

raise TypeError("Too many arguments")

def area(self):
return self.length * self.breadth
Program Execution

rl =Rectangle() # 1x1

Centre for Distance Education 13.11 Acharya Nagarjuna University

r2 = Rectangle(4) #4x4
r3 = Rectangle(4, 6) # 4x6

print(rl.area(), r2.area(), r3.area())

Output

11624

Explanation:

The same constructor supports multiple ways of initializing a rectangle:
o No argument — default size
o One argument — square

o Two arguments — custom dimensions

Advantages of Overloaded Constructor

1.

2
3.
4

Flexibility — Allows different initialization formats for the same class.
Convenience — Reduces need for multiple specialized constructors.
Readability — Keeps initialization logic centralized.

Error Reduction — Avoids code duplication across constructors.

Class Circle

self.radius = radius

j=
(1]
“+
m

I

| |
| |
| def _init (radius=1): |
| |
| rea(): ... |
|

Circle() uses default Circle(5) uses user value

radius=1 radius=5

Fig An Overloaded Constructor

An Overloaded Constructor in Python:

Is a single constructor method (__init) that can handle different argument lists.

Provides multiple ways to initialize objects using default, optional, or variable
arguments.

Is a key tool for building flexible and reusable classes.

Programming and Problem-Solving ... 13.12 Object Oriented Programming

13.3.2 Default Constructor
If no constructor is defined, Python provides a default one that does nothing.
Example A Class Without Constructor
class Student:
def display(self):
print("This is a student object.")
sl = Student() # Python calls the default constructor
sl.display()
Output
This is a student object.
Explanation
e The Student class does not define an __init () constructor.
e When we write sl = Student(), Python automatically calls the default constructor.

o The object is created successfully, and we can still access its methods.

Difference Between Default and User-Defined Constructors

Feature Default Constructor User-Defined Constructor

Defined by Python automatically Programmer explicitly

Takes No Yes (optional parameters possible)

Parameters

Purpose Creates object but does not initialize | Initializes object data and attributes
attributes

Overridden by | User-defined init () Not applicable

Use Case When no special initialization 1is | When attributes must be set during
required creation

13.3.3 Playing Card Class

class Card:

suits = ['Hearts', 'Diamonds', 'Clubs', 'Spades']

def init_ (self, value, suit):

self.value = value

Centre for Distance Education 13.13 Acharya Nagarjuna University

self.suit = suit

def repr (self):
return ' {self.value} of {Card.suits[self.suit]}"
¢ = Card('Ace', 0)
print(c)
Output
Ace of Hearts

13.4 DESIGNING NEW CONTAINER CLASSES

Container classes store multiple objects and provide methods to manipulate them.

A Container Class is a class designed to store multiple objects and provide methods to
access, add, remove, or manipulate those objects efficiently.

In other words, a container acts as a collection or data structure that holds other objects as its
elements.

In Python, built-in container types include:

o list

o tuple
o set

o dict

However, programmers can design user-defined container classes to implement custom data
structures (e.g., Deck of Cards, Queue, Stack, Bag, etc.) that meet specific requirements.

Purpose
Container classes:

e Organize data into structured collections.

o Allow batch operations on groups of items.

o Promote data abstraction by hiding internal details of how items are stored.
o Offer methods for adding, removing, searching, or iterating over elements.

o Simplify complex problems that involve managing multiple related objects.

Concept Illustration

Think of a container as a box that holds multiple items.
Each item can be:

e A number,

Programming and Problem-Solving ... 13.14 Object Oriented Programming

e A string,
e Or even another object (instance of a class).

We don’t interact with individual items directly; instead, we interact with the container using
its methods.

Container Class |

Stored Objects |

obj1, obj2, obj3.. |

Fig 13.3 Concept Illustration : Container Classes

Key Characteristics

Feature Description

Aggregation | Stores multiple objects (instances of possibly different classes).

Encapsulation | Manages internal data privately, accessed only through methods.

Iteration Often supports looping or traversal through stored objects.

Manipulation | Provides operations such as insertion, deletion, search, and retrieval.

Reusability Can be generalized and reused in many programs (e.g., Stack, Queue).

Example — A Simple Container Class
Let’s design a simple class to hold a collection of integers.
class NumberContainer:

def init_ (self):

self.numbers =[] # internal list container

def add(self, num):

Centre for Distance Education 13.15 Acharya Nagarjuna University

self.numbers.append(num)

def remove(self, num):
if num in self.numbers:
self.numbers.remove(num)
else:

print("Number not found.")

def display(self):
print("Numbers in container:", self.numbers)
Program Execution
¢ = NumberContainer()
c.add(10)
c.add(20)
c.add(30)
c.display()
c.remove(20)
c.display()
Output
Numbers in container: [10, 20, 30]

Numbers in container: [10, 30]

Explanation

e The class NumberContainer maintains a list of numbers internally (self.numbers).
e Methods such as add(), remove(), and display() allow controlled access to that list.

e Users of the class don’t directly manipulate the list — they call methods instead,
achieving encapsulation.
13.4.1 Deck of Cards
import random
class Deck:
def init_ (self):

self.cards = [Card(value, suit)

Programming and Problem-Solving ... 13.16 Object Oriented Programming

for suit in range(4)
for value in ['Ace','2','3','4",'5",'6','7','8",'9",'10",'Jack’,'Queen','King']]

random.shuffle(self.cards)

def draw(self):
return self.cards.pop()
deck = Deck()
print(deck.draw())
Output
7 of Clubs

13.4.2 Queue Container Class
class Queue:
def init (self):

self.items =[]

def enqueue(self, item):

self.items.append(item)

def dequeue(self):
if not self.items:
print("Queue empty.")
return None

return self.items.pop(0)

13.5 OVERLOADED OPERATORS

Python allows classes to overload operators by defining special methods (dunder methods).

Operator Method Example

+ _add__ a+b

== _eq_ a==

str() _str__ print(a)

repr() __repr__ For debugging
< e Comparison

Centre for Distance Education 13.17

Acharya Nagarjuna University

13.5.1 Operators Are Class Methods
class Point:
def init (self, x=0, y=0):
self.x, selfy =x,y
def add (self, other):
return Point(self.x + other.x, selfy + other.y)
pl = Point(2, 3)
p2 =Point(1, 1)
print(pl + p2)
Output
Point(3, 4)

13.5.2 Making Class Point User Friendly
Adding a readable string form:
def str (self):

return "'({self.x}, {self.y})"

13.5.3 Contract between Constructor and repr()
repr() should produce a string that can recreate the object:
def repr (self):

return f'Point({self.x}, {self.y})"

13.5.4 Making the Queue Class User Friendly
def repr (self):
return f'Queue({self.items})"

13.6 INHERITANCE
13.6.1 Inheriting Attributes of a Class

A subclass inherits attributes and methods from its superclass.

class Animal:
def speak(self):

print("Animal speaks")

Programming and Problem-Solving ... 13.18 Object Oriented Programming

class Dog(Animal):
def bark(self):
print("Woof!")
d =Dog()
d.speak()
d.bark()

Output

Animal speaks
Woof!

13.6.2 Overriding Superclass Methods

Method overriding occurs when a subclass (derived class) provides a new implementation of a
method that already exists in its superclass (base class).

The method in the subclass has the same name, same parameters, and same return type as the
one in the superclass, but performs a different or extended action.

When an overridden method is called on a subclass object, Python executes the version defined
in the subclass, not the superclass.

Purpose of Method Overriding

Method overriding allows subclasses to:

1.
2.
3.

Modify or customize behavior inherited from a parent class.
Replace general methods in the superclass with specific ones in the subclass.

Implement polymorphism, where the same method name behaves differently
depending on the object type.

Reuse code by building on the base class functionality while changing only what’s
needed.

Example — Basic Method Overriding

class Animal:

def speak(self):

print("The animal makes a sound.")

class Dog(Animal):

Centre for Distance Education 13.19

Acharya Nagarjuna University

def speak(self): # overriding superclass method

print("The dog barks.")

class Cat(Animal):
def speak(self): # overriding superclass method

print("The cat meows.")

Program Execution
a = Animal()

d = Dog()

c = Cat()

a.speak()
d.speak()
c.speak()
Output
The animal makes a sound.
The dog barks.
The cat meows.
13.6.3 Extending Superclass Methods
class Cat(Animal):
def speak(self):
super().speak()
print("Cat meows")
Output
Animal speaks

Cat meows

13.6.4 Implementing Queue by Inheriting from list
class Queue(list):
def enqueue(self, item):

self.append(item)

Programming and Problem-Solving ... 13.20 Object Oriented Programming

def dequeue(self):
if len(self)==0:
raise IndexError("Empty queue")

return self.pop(0)

13.7 USER-DEFINED EXCEPTIONS
13.7.1 Raising an Exception
raise ValueError("Invalid value")
13.7.2 Defining User-Defined Exception Classes

class QueueEmpty(Exception):

"""Raised when dequeue is attempted on an empty queue.

pass

class Queue(list):
def dequeue(self):
if not self:
raise QueueEmpty("Cannot dequeue from empty queue")
return self.pop(0)
Example
q = Queue()
try:
q-.dequeue()
except QueueEmpty as e:
print("Error:", e)
Output

Error: Cannot dequeue from empty queue

13.8 SUMMARY

e OOP organizes code around objects that contain data and methods.
e (lasses define the blueprint; objects are instances.

o Constructors (__init) initialize object state.

e Operator overloading enables intuitive behavior (+, ==, etc.).

o Inheritance promotes code reuse and hierarchy.

o User-defined exceptions provide customized error handling.

Centre for Distance Education 13.21 Acharya Nagarjuna University

13.9 TECHNICAL TERMS

Object, Class, Instance, Constructor, Method, Namespace, Encapsulation, Inheritance,
Polymorphism, Operator Overloading, Superclass, Subclass, Docstring, Exception Handling,
Custom Exception, Container Class.

13.10 SELF-ASSESSMENT QUESTIONS

Essay Questions

Nk L=

Explain the fundamental principles of OOP and their importance in software design.
Define a Python class with example code and explain its components.

What is the difference between class variables and instance variables?

How can we overload operators in Python? Illustrate with an example.

Discuss inheritance and method overriding with code examples.

Explain the design of a Queue or Deck container class.

Define and raise a user-defined exception.

What is the relationship between repr() and the constructor?

Short Answer Questions

PN R WD

What is encapsulation?

Give syntax of a Python class.

What are dunder (double-underscore) methods?

What is the purpose of _init ()?

Define polymorphism in your own words.

What is the output of repr() vs str()?

How is inheritance implemented in Python?

Difference between built-in and user-defined exceptions.

13.11 SUGGESTED READINGS

Eale

. Ljubomir Perkovi¢, Introduction to Computing Using Python: An Application

Development Focus, Wiley, 2012.

Reema Thareja, Python Programming: Using Problem-Solving Approach, Oxford
University Press.

Mark Lutz, Learning Python, O’Reilly Media.

Allen B. Downey, Think Python, Green Tea Press.

David Beazley & Brian Jones, Python Cookbook, O’Reilly Media.

Dr. Vasantha Rudramalla

LESSON- 14
OBJECTS AND THEIR USES

AIMS AND OBJECTIVES

After completing this chapter, learners will be able to:
o Explain what software objects are and how they are used in Python.
o Understand object references, mutability, and garbage collection.
o Utilize the turtle module to create visual simulations.
e Apply the principles of modular design in Python programs.
e Use Python’s module system to organize programs logically.

STRUCTURE
14.1 Introduction
14.2 Software Objects
14.2.1 What is an Object?
14.2.2 Object References
14.2.3 Garbage Collection
14.2.4 List Assignment and Copying
14.3 Turtle Graphics
14.3.1 Creating a Turtle Graphics Window
14.3.2 Turtle Position and Movement
14.3.3 Pen Attributes and Colors
14.3.4 Shapes, Sizes, and Speed
14.3.5 Multiple Turtles and Animation
14.4 Case Study — Horse Race Simulation
14.5 Modular Design
14.5.1 Modules and Top-Down Design
14.5.2 Python Modules and Importing
14.6 Summary
14.7 Technical Terms
14.8 Self-Assessment Questions

14.9 Suggested Readings

Programming and Problem-Solving ... 14.2 Objects and Their Uses

14.1 INTRODUCTION

In imperative programming, functions are the basic building blocks of a program.
In object-oriented programming (OOP), however, objects become the fundamental units of
design, combining both data (attributes) and behavior (methods).

The concept of “objects” originated in computer simulation, where real-world entities such as
cars, students, or bank accounts were modeled in software.

In the early 1970s, Alan Kay at Xerox PARC developed the programming language Smalltalk,
introducing object-oriented programming as we know it. This idea later inspired the
development of graphical user interfaces (GUIs) and languages such as Python, Java, and C++.

Programming Programming Paradigm Supported

Language

Procedural Object-oriented

C (early 1970s) X

Smalltalk (1980) X
C++ (mid 1980s) X X
Python (early 1990s) X X
Java (1995) X
Ruby (mid 1990s) X X
C # (2000) X X

Fig 14.1 some common used programming languages

14.2 SOFTWARE OBJECTS

In object-oriented programming, a software object is a self-contained entity that combines both
data (attributes or properties) and behavior (methods or functions).
It is modeled after real-world objects that have characteristics and actions. For example, a
student object might have data such as name, roll number, and marks, and behaviors such as
register() or calculate grade().

Objects are created (or instantiated) from classes, which serve as blueprints defining what
attributes and methods an object will have. Once created, each object maintains its own copy of
data, but all objects of a class share the same structure and behavior.

In Python, every data type — integers, strings, lists, even functions — is implemented as an
object. This is why we can perform actions like "hello".upper() or [1,2,3].append(4): these are
method calls acting on objects.

Objects interact with one another by sending and receiving messages (method calls), allowing
complex systems to be built from smaller, reusable components.

Thus, software objects make programs more modular, maintainable, and intuitive, reflecting the
real-world relationships between entities and their actions.

Centre for Distance Education 14.3 Acharya Nagarjuna University

14.2.1 What is an Object?
An object in Python is a software entity that bundles:
o Attributes — data stored in instance variables, and
e Methods — functions that define its behavior.
Every object in Python (even numbers, strings, and lists) is an instance of some class.
Example:
names_list = ['Alice', 'Bob', 'Carol']
names_list.sort()
Here:
e names_list is a list object.
e sort() is a method that operates on the list.

Calling names_list.sort() sends a message to the object saying, “Sort yourself.”

names list

Johnson

sort (1st)

AAAMAAAAAAAANA

Chen

Barlow

Fig 14.2 example software object name_list
14.2.2 Object References

In Python, variables do not hold actual data values — they hold references (memory addresses)
to objects stored elsewhere in memory.

n=10
k=n
Both n and k reference the same object (10) in memory.
We can verify this using the built-in id() function:
>>> id(n)
505498136
>>>1d(k)

Programming and Problem-Solving ... 14.4 Objects and Their Uses

505498136
Both have the same memory location, showing that n and k refer to the same object.
14.2.3 Memory Management and Garbage Collection

When no variable references an object anymore, Python automatically deallocates its memory
through a process called garbage collection.

Example:
n=20
n=40 # old value 20 no longer referenced

After this, the object 20 is marked for garbage collection and its memory becomes reusable.

40 30

7 . »| 20 n = 40
A
40 30

7 T B »0 n = 40
A

Fig 14.3 memory deallocation

Garbage collection is a method of automatically determining which locations in memory are no
longer in use and deallocating them. The garbage collection process is ongoing during the
execution of a Python program.

14.2.4 List Assignment and Copying
Assigning one list to another creates a reference, not a copy:
listl =[10, 20, 30]
list2 = listl
Changing list1[0] also affects list2[0] because both reference the same object.

To make an actual copy, use the list constructor:

Centre for Distance Education 14.5 Acharya Nagarjuna University

list2 = list(list1)
To copy nested lists completely, use:
import copy

list3 = copy.deepcopy(list1)

listl —» 10 4—— list2

20

30

Fig 14.4 List assignment and copy

The situation is different if the list contains sublists, however.

listl =[[10, 20], [20, 30],[30,40]]
list2 = list1

. 4 10 ¥
listl —> : 20 . 47% list2
D (- O
40
A 7
50
60

Fig 14.5 List assignment and copy in a different way

14.3 TURTLE GRAPHICS

Turtle Graphics is one of the most engaging and visual ways to learn programming concepts
and understand how objects work in Python.

It provides a graphics environment in which a “turtle” moves on the screen under program
control, leaving a trail as it goes — much like a pen drawing lines on paper.T he turtle can

Programming and Problem-Solving ... 14.6 Objects and Their Uses

move forward, turn, change color, and even draw shapes, all by calling its methods. This
system allows beginners to visualize program execution and directly see how object-oriented
commands affect an object’s state.

Concept of the Turtle Object
In Python, the turtle module provides a built-in Turtle class.
When we create a new turtle using:
import turtle
t = turtle. Turtle()
we are instantiating an object from the Turtle class.

This t object has attributes (such as position, direction, color, and pen state) and methods (like
forward(), left(), and circle()).

Each turtle object operates independently, allowing you to create multiple turtles on the same
screen.

Advantages of Using Turtle Graphics

Provides an intuitive, visual approach to understanding programming logic.
Encourages experimentation and creativity.

Demonstrates object behavior (state, methods, and encapsulation).

B b=

Useful for teaching loops, conditionals, and functions through graphical tasks.
5. Allows multiple objects (turtles) to illustrate interactions and concurrency.
Turtle Graphics in Python:
o Uses objects and methods to represent motion and drawing.
e Makes abstract programming concepts visual and interactive.
e Provides a practical introduction to object-oriented design through creativity and play.

o It bridges the gap between logic and visualization, making it an ideal educational tool
for new programmers.

14.3.1 Creating a Turtle Graphics Window

Turtle graphics is a fun way to introduce programming and OOP through graphics.
It uses a “turtle” that moves around a screen, drawing lines as it goes.

import turtle

turtle.setup(800, 600)

window = turtle.Screen()

window.title("My Turtle Window")

A turtle screen of 800x600 pixels is created, titled “My Turtle Window”.

Centre for Distance Education 14.7 Acharya Nagarjuna University

My First Turtle Graphics Program Q@@
(-400, 300) (400, 300)
0.0) °00
(-400, -300) (400, -300)
800
Fig 14.6 My Turtle Window

14.3.2 Turtle Position and Movement

In the turtle graphics system, every turtle object has a position and a heading (direction) that
determine where it is on the screen and which way it is facing. The position is represented by x
and y coordinates within the graphics window, where the center of the window is coordinate (0,
0). The turtle moves relative to its current position using methods such as forward(distance) and
backward(distance), which move it along its heading, and left(angle) and right(angle), which
rotate the turtle by the specified number of degrees. The movement is continuous, and if the
turtle’s pen is down (the default state), it draws a visible line as it moves.

Absolute positioning can also be achieved using the goto(x, y) method, which moves the turtle
directly to a specific location on the screen. The methods setx(x) and sety(y) move the turtle
horizontally or vertically without changing its other coordinate. The home() method returns the
turtle to the center (0, 0) with its heading facing east. By combining movement and rotation
commands within loops, complex geometric figures such as polygons and spirals can be easily
drawn.

Thus, turtle movement illustrates fundamental object behavior — the object (turtle) maintains
an internal state (position and heading) and responds to method calls that modify that state,
making the concept of object interaction both visible and intuitive.

A turtle’s position is defined by (x, y) coordinates.
t = turtle.getturtle()

Programming and Problem-Solving ... 14.8 Objects and Their Uses

t.setposition(100, 100)
The turtle moves to position (100,100), drawing a line if its pen is down.
Relative movement is done using methods such as:
t.forward(100)
t.1eft(90)
This allows shapes such as squares to be drawn.Example — Drawing a Square
for i in range(4):
t.forward(100)
t.1eft(90)

Absolute Positioning

-

Fig 14.7 Example — Drawing a Square
14.3.3 Pen Attributes and Colors

Every turtle in the Python turtle module carries a pen, which controls how and when lines are
drawn as the turtle moves. The pen’s properties — such as color, thickness, and drawing state
— can be customized through various methods that make turtle drawings more expressive and
visually distinct. By default, the pen is down, meaning the turtle draws a line whenever it
moves. The method penup() lifts the pen, allowing the turtle to move without drawing, while
pendown() lowers it again to resume drawing.

The color of the pen can be changed using pencolor(), which accepts either a color name (e.g.,
"red", "blue") or an RGB color value (e.g., (0.5, 0.2, 0.8)). To modify the thickness of the line,
the pensize() or width() method is used. For example, t.pencolor("green") and t.pensize(4) set

Centre for Distance Education 14.9 Acharya Nagarjuna University

the pen to draw thick green lines. The fill color used to shade shapes can be controlled with
fillcolor() and activated using begin_fill() and end_fill().

These attributes enable the creation of colorful and detailed designs, making programs both
interactive and visually engaging. Managing pen attributes reinforces the concept of object state
in object-oriented programming — the turtle object “remembers” its current pen color, width,
and state, and every drawing action reflects these properties.

e Penup/down:
penup() and pendown() toggle drawing.

e Line width:
pensize(5) sets the line width in pixels.

e Color:
pencolor('blue') or pencolor(255, 0, 0) (if using RGB mode).

t.pencolor('green')
t.pensize(4)
t.forward(120)
Example — Drawing a Colored Triangle with Pen Attributes

The following example demonstrates how pen color, fill color, and line width can be controlled
to create an attractive filled triangle using the turtle graphics module.

import turtle
t = turtle. Turtle()
t.pensize(4) # Set line thickness
t.pencolor("blue") # Set outline color
t.fillcolor("yellow") # Set fill color
t.begin_fill() # Start filling the shape
foriinrange(3): # Draw an equilateral triangle
t.forward(150)
t.left(120)
t.end fill() # Complete the fill
t.hideturtle()
turtle.done()
Output Description:

A blue-bordered triangle filled with yellow color is drawn at the center of the screen. The thick
border is a result of setting the pen size to 4 pixels.

Programming and Problem-Solving ... 14.10 Objects and Their Uses ‘

This simple example illustrates how pen attributes affect both the appearance and quality of
graphical output, while reinforcing the object-oriented nature of the turtle — every visual
change is a result of sending commands (messages) to the turtle object to modify its internal
drawing state.

14.3.4 Shapes, Sizes, and Speed
o Shape: 'arrow', 'turtle', 'circle', 'square’, 'triangle', 'classic’
e Resize: t.resizemode('user') and t.turtlesize(3,3) enlarge the turtle.
e Speed: t.speed(6) controls animation; t.hideturtle() speeds drawing.
Creating Custom Shapes
points = ((5,5), (10,0), (5,-5), (0,0))
turtle.register shape('mypolygon', points)
t.shape('mypolygon')
14.3.5 Multiple Turtles and Animation
You can create multiple turtles using:
t1 = turtle. Turtle()
t2 = turtle. Turtle()

Each turtle can move independently, creating animations such as bouncing balls or horse races.

14.4 CASE STUDY — HORSE RACE SIMULATION

This case study illustrates how objects, modules, and randomness combine to simulate a real-
world system.

The Problem

Simulate a horse race where each horse (turtle) moves forward a random distance until one
reaches the finish line.

Program Modules Used

o turtle — for graphics visualization

e random — for random movement

e time — to control simulation speed
Algorithm Overview

1. Create a turtle window.
Register horse images.
Position 10 horses at the starting line.

Move each horse forward by a random amount.

A

Detect when a horse crosses the finish line.

Centre for Distance Education 14.11 Acharya Nagarjuna University

6. Display the winner.
Program Snippet
import turtle, random, time

def createHorse(x, y, color):

h = turtle. Turtle()

h.shape('turtle")

h.color(color)

h.penup()

h.setposition(x, y)

h.pendown()

return h

def startRace(horses):
finish = 300
while True:
for h in horses:
h.forward(random.randint(1, 5))
if h.xcor() >= finish:
print(h.pencolor(), "wins!")

return

screen = turtle.Screen()

colors = ['red', 'blue', 'green', 'orange', "purple']

horses = [createHorse(-300, 1 * 50, colors[i]) for i in range(5)]
startRace(horses)

screen.exitonclick()

Output:
Turtles race across the screen, and the color of the winning turtle is printed in the console.

Programming and Problem-Solving ... 14.12 Objects and Their Uses

Horse Race Simulation Program

1444444444

Fig 14.7 Example — Horse Race Simulation

14.5 MODULAR DESIGN

14.5.1 Modules and Top-Down Design

Top-Down Design breaks a large problem into smaller, manageable modules.

Each module handles a single task, making programs easier to write, debug, and reuse.

Example Breakdown — Horse Race Program

Module Functionality
graphics Create screen and horses
race Move horses and determine winner
main Combine everything and run
Space
Shuttle
]
| I]
External Fuel Orbiter Solid Rocket
Tank Vehicle Boosters
|
[[| I]
Thermal Protection Electrical Power Communications Life Support System | |Landing Gear System
System System System
I
[1
Orbiter Data Network
Communications System
System

Fig 14.8 Modular Design of the NASA Space Shuttle

Centre for Distance Education 14.13 Acharya Nagarjuna University

Pytbon Code:
main.py
from power import ElectricalSystem

from control import CommunicationSystem

def main():
print("Vehicle Control Simulation Starting...")
power = ElectricalSystem()
comms = CommunicationSystem()
power.activate()
comms.initialize()
print("System Operational.")

if name ==" main_":

main()

power.py
class ElectricalSystem:
def activate(self):
print("Electrical System Activated.")

control.py
class CommunicationSystem:
def initialize(self):

print("Communication System Initialized.")

Output:
Vehicle Control Simulation Starting...
Electrical System Activated.
Communication System Initialized.

System Operational.

software systems should also be modularly structured—each module representing a
manageable part of the overall design.

Programming and Problem-Solving ... 14.14 Objects and Their Uses

This modular approach is fundamental to object-oriented programming, where each class and
module models a real-world component with clearly defined attributes and behaviors.

Modular design allows large programs to be broken down into manageable size parts, in which
each part (module) provides a clearly specified capability. It aids the software development
process by providing an effective way of separating programming tasks among various
individuals or teams. It allows modules to be individually developed and tested, and eventually
integrated as a part of a complete system. Finally, modular design facilitates program
modification since the code responsible for a given aspect of the software is localized in a small
number of modules, and not distributed through various parts of the program.

14.5.2 Python Modules and Importing

Python allows reusing code via modules.A module is simply a Python file (.py) containing
reusable functions or classes.

Creating a Module
file: math_utils.py
def square(x):
return X * X
Using the Module
import math_utils
print(math_utils.square(4))
Output
16
Selective Importing :
from math_utils import square

print(square(5))

14.6 SUMMARY
e Objects combine data and methods into a single entity.
e Variables store references to objects, not the objects themselves.
e Garbage collection reclaims unused memory automatically.
e The turtle module provides a visual introduction to object behavior.
e Modules and top-down design promote reusable, structured programming.

14.7 TECHNICAL TERMS
Object

Reference

Garbage Collection
Turtle Graphics
Module

Centre for Distance Education 14.15 Acharya Nagarjuna University

14.8 SELF-ASSESSMENT QUESTIONS

Essay Questions

1.

Explain the concept of software objects in Python.

2. Describe how garbage collection works.
3. Write a program using turtle graphics to draw a star.
4. Explain the importance of modular programming in Python.
Short Notes
1. Turtle attributes and shapes
2. Object references and id() function
3. Difference between shallow and deep copy
4. Advantages of using modules
14.9 SUGGESTED READINGS
1. Dierbach, Introduction to Computer Science Using Python, Wiley, 2013.
2. Ljubomir Perkovié, Introduction to Computing Using Python, Wiley, 2012.
3. Alan Kay, The Early History of Smalltalk, ACM, 1993.
4. Python Software Foundation, turtle — Turtle Graphics Documentation,
https://docs.python.org

Dr. Vasantha Rudramalla

LESSON- 15

RECURSION

AIMS AND OBJECTIVES

After completing this chapter, the learner will be able to:

e Understand the concept and working of recursion in problem-solving.

e Write recursive functions in Python to solve mathematical and algorithmic problems.
e Compare recursion and iteration in terms of logic and performance.

e Perform runtime analysis of recursive algorithms.

e Apply recursion to solve searching, mathematical, and divide-and-conquer problems.
e Recognize the role of functional programming concepts in recursive design.

STRUCTURE

15.1 Introduction to Recursion
15.2 Examples of Recursion
15.2.1 Factorial Function
15.2.2 Sum of Natural Numbers
15.2.3 Fibonacci Sequence
15.3 Run Time Analysis of Recursive Functions
15.4 Recursive Searching
15.4.1 Linear Search (Recursive)
15.4.2 Binary Search (Recursive)
15.5 Iteration vs Recursion
15.6 Recursive Problem Solving
15.6.1 Towers of Hanoi
15.6.2 Greatest Common Divisor (GCD)
15.7 Functional Language Approach
15.8 Summary
15.9 Technical Terms
15.10 Self-Assessment Questions
15.11 Suggested Readings

15.1 INTRODUCTION TO RECURSION

Recursion is a programming technique in which a function calls itself directly or indirectly to
solve a smaller version of the original problem.

Programming and Problem-Solving ... 15.2 Recursion

In a recursive process, each call solves a simpler subproblem, and the recursion continues until
a base case is reached — a condition where the problem can be solved directly without further
recursive calls.

Formally, recursion divides a problem into:
1. Base case — A stopping condition that prevents infinite recursion.
2. Recursive case — The part where the function calls itself to solve a smaller problem.
Example — Simple Recursive Function
def countdown(n):
ifn==0:
print("Blast off!")
else:
print(n)

countdown(n - 1)

Output:

5

4

3

2

1

Blast off!
Explanation:

e Each recursive call reduces the problem size by one.
e When n becomes 0, the base case is reached, and recursion stops.

countdown(3)
s 3

 print

I prints 2
F— calls countdown{l)
F— prints 1
L calls countdown(®)
L prints "Blast off!"

Fig 15.1 Conceptual Visualization — Recursion

Each recursive call is added to the call stack, and execution resumes backward once the base
case is reached.

Centre for Distance Education 15.3 Acharya Nagarjuna University

How does this code implement the function countdown() for input value n > 0? The
insight used in the code is this: Counting down from (positive number) n can be done by
printing n first and then counting down from n 1. This fragment of code is called the
recursive step. With the two cases resolved, we obtain the recursive function:

def countdown(n):
'counts down to ('
if n <= 0: # base case
print('Blastoff!!!")
else: # n > 0: recursive step
print(n) # print n first and then
countdown(n-1) # count down from n-1
A recursive function that terminates will always have:
1. One or more base cases, which provide the stopping condition for the recursion. In
function countdown(), the base case is the condition n <0, where 7 is the input.
2. One or more recursive calls, which must be on arguments that are “closer” to the
base case than the function input. In function countdown(), the sole recursive call

is made on n 1, which is “closer” to the base case than input 7.

def cheers(n):

"""Prints 'Hip ' n times followed by 'Hurray!!!" using recursion."""
ifn<=0: # base case

print("Hurray!!!")
else:

print("Hip ", end=") # print prefix without newline

cheers(n - 1) # recursive call

How it works
e Base case: when n <= 0 the function prints the final word Hurray!!! and stops.
o Recursive case: when n > 0 it prints the prefix Hip (note the trailing space) and
recursively calls cheers(n-1).
The printed prefixes accumulate (left-to-right) because each call prints one Hip before

delegating the remainder.

Programming and Problem-Solving ... 15.4 Recursion

Examples (interactive)

>>> cheers(0)

Hurray!!!

>>> cheers(1)

Hip Hurray!!!

>>> cheers(4)

Hip Hip Hip Hip Hurray!!!

Complexity

e Time: O(n) — one recursive call per Hip printed.

e Space: O(n) call-stack depth (recursion frames).

e If you prefer to return the string instead of printing, you can implement a version that
builds and returns the string (useful for testing).

o If you expect negative inputs and want them handled differently, replace the if n <= 0:
guard with if n == 0: and raise an error for n <0.

Recursive Function Calls and the Program Stack:

Printing Digits Vertically Using Recursion

def vertical(n):

nmn

"""Prints the digits of n vertically.

ifn<10: # base case: single-digit number
print(n)
else: # recursive case

vertical(n // 10) # print all but the last digit
print(n % 10) # print the last digit

Explanation
The function vertical(n) prints each digit of the integer n on a separate line, from most
significant digit to least significant digit.
It uses recursion to repeatedly reduce the number by removing its last digit until only one digit
remains — the base case.

o Base Case:

If n is a single-digit number (n < 10), simply print it.
e Recursive Case:

If n has two or more digits:

Centre for Distance Education 15.5 Acharya Nagarjuna University

1. Call vertical(n // 10) — this discards the last digit and recursively prints the
remaining digits.

2. After returning from recursion, print the last digit using print(n % 10).

Example Execution

>>> vertical(348)
Output:
3
4
8
Execution of Execution of Execution of Execution of

vertical(3124) 'vertical(312) 'vertical(31) vertical(3)

4 AR

/
i

I

|

|

I

I

|

|

| P
|

| /

I

|

|

|

I

|

|

|/ line7 line 7 / line7
vertical(3124) /| n=3124 YT e
m) Program stack . line 7 | line?
n = 3124 '/ n= 3124 | n =312
vertical (312)] | Program stack line 7
0 [oam
n = {312 ' | Program stack
vertical (31) [
n = 31 |I
vertical (3)
n=3
print(3)
print (1) —
(\\\J linlei"
rint(2 —
(\p)) —
, .
! line 7 line 7
rint (4 < — !
P (4) | ~ i n = 312 n = 312
\ |
: line 7 : line 7 line 7
! n = 3124 : n = 3124 n = 3124
! Program stack I Program stack Program stack

Figure 15.2 Recursive function execution.

15.2 EXAMPLES OF RECURSION

Recursion is best understood through simple, familiar problems that can naturally be defined in
terms of smaller versions of themselves. Classic examples include the computation of a
factorial, the sum of natural numbers, the Fibonacci sequence, and countdown functions.

Programming and Problem-Solving ... 15.6 Recursion

Each of these problems follows a common recursive structure: a base case that directly
provides an answer and a recursive case that reduces the problem toward that base case. For
example, the factorial function can be expressed as n! =n x (n—1)!, where the base case is 0! =
1. Similarly, the Fibonacci series is defined as F(n) = F(n—1) + F(n—2), where the sequence
builds upon previously computed results. Recursive functions like countdown(n) or sum n(n)
repeatedly call themselves with a smaller input until the simplest instance of the problem is
reached.

These examples illustrate the self-referential nature of recursion—each function call handles
part of the work and delegates the rest to a smaller, identical subproblem. Through this process,
recursion converts complex problems into simpler ones, demonstrating how powerful and
elegant recursive thinking can be when applied to mathematical and algorithmic problem-
solving.

15.2.1 Factorial Function

The factorial of a non-negative integer n is defined as:
nl=nxnh-1)xn-2)x..x1

and by definition, 0! = 1.
Recursive Implementation
def factorial(n):
ifn==0:
return 1
else:
return n * factorial(n - 1)
Example:
print(factorial(5))
Output:
120
Explanation:
Each recursive call computes n * factorial(n-1) until the base case n==0 is reached.
15.2.2 Sum of Natural Numbers

Recursive definition:
sum(n) =n 4+ sum(n — 1), sum(0) =0
def sum_n(n):

ifn==0:
return 0

Centre for Distance Education 15.7 Acharya Nagarjuna University

else:
return n +sum n(n - 1)
Example:
sum n(5)=5+4+3+2+1=15
15.2.3 Fibonacci Sequence

The Fibonacci sequence is defined recursively as:
Fn)=F(n—1)+F(n—2),F(0)=0,F(1) =1

def fibonacci(n):
ifn<=1:
return n
else:
return fibonacci(n-1) + fibonacci(n-2)
Output:
fibonacci(6) — 8

Increasing and Decreasing Sequence
The following function recursively prints a sequence of numbers from 1 up to n, and then back
down to 1.
def pattern(n):

"""Prints a recursive number pattern 1..n..1"""

ifn==0:

return
print(n, end='") # First part: descending
pattern(n - 1) # Recursive call

print(n, end='") # Second part: ascending

Example Execution
>>> pattern(4)
Output:
43211234

Programming and Problem-Solving ... 15.8 Recursion

pattern(4)
 prints 4
|— calls pattern(3)
F prints 2
|— calls pattern(2)
b prints 2
|— calls pattern(1)
 prints 1
I— calls pattern(@)
I returns, prints 1
b returns, prints 2
I returns, prints 3

I returns, prints 4

Figure 15.3 Symmetric Recursive Structure
Fractals:
In our next example of recursion, we will also print a pattern, but this time it will be a
graphical pattern drawn by a Turtle graphics object. For every nonnegative integer n, the

printed pattern will be a curve called the Koch curve Kn. For example, Figure 10.4 shows Koch

curve K5.
Koch curve turtle instructions
Ko: F
Ky: FLFRFLF

Ks: m FLFRFLFLFLFRFLFRFLFRFLFLFLFRFLF

A>"<A<

K: J‘L\JB o™

Figure 15.4 Koch curves with drawing instructions

Generating and Drawing the Koch Curve

from turtle import Screen, Turtle

def koch(n):
"""Returns turtle directions for drawing the nth Koch curve."""
ifn==0: # Base case
return 'F' # 'F' means move forward

tmp = koch(n - 1) # Recursive case: build Koch(n-1)

Centre for Distance Education 15.9 Acharya Nagarjuna University

return tmp +'L' + tmp + 'R' + tmp + 'L' + tmp

def drawKoch(n):
"""Draws the nth Koch curve using turtle graphics."""
s = Screen() # Create drawing window
t = Turtle() # Create turtle
t.speed(0) # Set fastest drawing speed
t.penup()
t.goto(-150, 0) # Position turtle for drawing
t.pendown()
directions = koch(n) # Obtain recursive directions
for move in directions: # Interpret each command

if move =="F":
t.forward(300 / (3 ** n)) # Move forward, scaled to recursion level

'

elif move =="L"

t.1eft(60) # Turn left 60 degrees
elif move =="R":
t.right(120) # Turn right 120 degrees
s.mainloop() # Keep window open

Example: draw Koch curve of level 3

drawKoch(3)

15.3 RUN TIME ANALYSIS OF RECURSIVE FUNCTIONS

Recursive functions can be analyzed in terms of time complexity and space complexity.

e Factorial function: O(n) — One recursive call per level.

o Fibonacci function: O(2") — Exponential growth due to repeated subproblems.

e Binary search: O(log n) — Divides problem size by 2 each step.
Each recursive call adds a new activation record to the call stack, consuming additional
memory.
Thus, recursion provides elegant solutions but can become inefficient without optimization
(e.g., memoization).
Koch curves Run Time Analysis

e Each level of recursion produces 4* segments.

Programming and Problem-Solving ... 15.10 Recursion

e Hence, Time Complexity = O(4")
e Space Complexity = O(n) (for recursion depth).

15.4 RECURSIVE SEARCHING

Recursion is widely used in search algorithms such as linear and binary search.

15.4.1 Linear Search (Recursive)
Linear Search is the simplest searching algorithm that sequentially checks each element of a
list until the target value is found or the end of the list is reached.

In its recursive form, the function checks one element per recursive call, reducing the problem
size by one at each step — just like iterative looping but using the call stack instead of explicit
loop control.

The recursive linear search function works as follows:

1. Base Case:
If the list is empty or the search index has reached the end, the element is not found —
return -1.
2. Recursive Case:
Compare the target element with the current list element.
o If they match, return the current index.

o Otherwise, make a recursive call on the rest of the list (or increment the index).

def linear search(lst, key, index=0):
if index == len(lst):
return -1
elif Ist[index] == key:
return index
else:
return linear_search(lst, key, index + 1)
Example:
linear_search([5, 3, 8, 6], 8) — 2
Complexity: O(n)

15.4.2 Binary Search (Recursive)
Binary Search is an efficient algorithm for finding a target value within a sorted list.

Unlike linear search, which checks each element sequentially, binary search divides the search

Centre for Distance Education 15.11 Acharya Nagarjuna University

space in half with each step.
It compares the target element to the middle element of the list:

o If'the target equals the middle element, the search is successful.
o If'the target is smaller, the search continues recursively in the left half.
o If'the target is larger, it continues recursively in the right half.
This “divide-and-conquer” approach drastically reduces the number of comparisons, making

binary search one of the most efficient search algorithms.
Recursive Definition
Binary search naturally lends itself to a recursive solution, since each recursive call works on a
smaller (half-sized) portion of the list.

1. Base Case:

If the list portion to search is empty (low > high), return -1 (element not found).
2. Recursive Case:
o Compute the middle index:

low + high

mi)

o Compare the target with list[mid].
= Ifequal — return mid.
= Ifsmaller — recursively search the left half.

= Iflarger — recursively search the right half.

Binary search applies only to sorted lists.
def binary search(lst, key, low, high):
if low > high:
return -1
mid = (low + high) // 2
if Ist[mid] == key:
return mid
elif key < Ist[mid]:
return binary_search(lIst, key, low, mid - 1)
else:

return binary _search(lst, key, mid + 1, high)

Programming and Problem-Solving ... 15.12

Recursion

Example:
binary search([1,3,5,7,9,11],7,0,5) — 3
Complexity: O(log n)

15.5 ITERATION VS RECURSION

Aspect Iteration Recursion

Definition Repeats statements using loops Function calls itself with smaller
(for, while). subproblems.

Control Loop control variable Function call stack

Mechanism

Base/End Loop termination condition Base case

Condition

Memory Use Constant Increases with recursion depth

Speed Faster (less overhead) Slower (function calls add overhead)

Elegance Less abstract, sometimes verbose | Elegant and mathematically natural

Example Loops Factorial, Fibonacci

Example comparison for factorial:
Iterative
def fact_iter(n):
result = 1
for 1 in range(1, n+1):
result *=1
return result
Recursive
def fact_rec(n):
ifn==0:
return 1
else:
return n * fact rec(n-1)

Both yield the same output, but recursion provides clearer logical structure for divide-and-

conquer problems.

Feature Linear Search

Binary Search

Data requirement Works on unsorted lists

Requires sorted list

Approach Sequential

Divide and conquer

Complexity (Time) | O(n)

O(logn)

Complexity (Space) | O(1) iterative / O(n) recursive

O(log n) recursive

Example Use Small or unsorted datasets

Large sorted datasets

Centre for Distance Education 15.13 Acharya Nagarjuna University

Recursive binary search demonstrates the power of recursion to simplify complex logic —
instead of using multiple loop conditions, it expresses the solution as repeated self-calls on
progressively smaller problems.It is a cornerstone example of how recursion can combine
mathematical elegance with computational efficiency.

15.6 RECURSIVE PROBLEM SOLVING

Recursive problem solving is a method of approaching complex problems by breaking them
down into smaller, similar subproblems that can be solved using the same technique. In this
approach, a function or algorithm calls itself with a smaller input until it reaches a base case —
a simple condition that can be solved directly without further recursion. Once the base case is
reached, the function’s intermediate results are combined as the recursion “unwinds,”
producing the final solution.

Recursion mirrors the divide-and-conquer strategy: divide the problem into manageable parts,
solve each recursively, and combine the results. This technique is especially powerful for
problems defined in terms of smaller versions of themselves — such as computing factorials,
generating Fibonacci numbers, traversing tree structures, solving the Towers of Hanoi puzzle,
and performing binary search.

Recursive problem solving encourages top-down thinking — focusing first on defining the
overall structure of the solution, then letting recursion handle the details of smaller
computations automatically. It offers elegant, mathematically consistent solutions and is widely
used in algorithms, data structures, and graphics. However, it must always include a well-
defined base case to prevent infinite recursion and excessive memory usage.

15.6.1 Towers of Hanoi

The classic Towers of Hanoi puzzle demonstrates recursion elegantly.

The problem involves moving n disks from one peg to another, following these rules:
1. Only one disk can be moved at a time.
2. A larger disk cannot be placed on top of a smaller disk.
3. Use a third peg as an auxiliary.

def hanoi(n, source, auxiliary, target):

ifn==1:
print(f"Move disk 1 from {source} to {target}")
else:
hanoi(n-1, source, target, auxiliary)
print(f'Move disk {n} from {source} to {target}")
hanoi(n-1, auxiliary, source, target)
Example:
hanoi(3,'A’, 'B','C")
Output:
Move disk 1 from A to C
Move disk 2 from A to B
Move disk 1 from C to B

Programming and Problem-Solving ... 15.14 Recursion

Move disk 3 from A to C
Move disk 1 from B to A
Move disk 2 from B to C
Move disk 1 from A to C
Complexity: O(2"— 1)

15.6.2 Greatest Common Divisor (GCD)
The Euclidean algorithm is naturally recursive:
def gcd(a, b):
ifb==0:
return a
else:

return ged(b, a % b)

Example:
gcd(48,18) — 6
Complexity: O(log n)

15.7 FUNCTIONAL LANGUAGE APPROACH

Recursion forms the foundation of functional programming, where problems are solved by
defining functions in terms of themselves rather than changing state or using loops.

In Python, recursion aligns with a declarative approach — describing what to do, not sow to
do it.

Key features:

e Functions are pure (no side effects).

o Emphasis on mathematical definition.

e No use of mutable variables.

e Enables higher-order functions such as map(), filter(), and reduce().
Example:
def factorial(n):

return 1 if n ==0 else n * factorial(n - 1)

Here, recursion replaces iteration naturally, making the function concise and closer to its
mathematical definition.
Concept of Map—Reduce

The Map—Reduce model divides computation into two primary phases:

Centre for Distance Education 15.15 Acharya Nagarjuna University

1. Map Phase:
A function is applied independently to each element in a collection (list, tuple, etc.).
The result is a new list containing the function’s output for each input element.
This corresponds to mapping a function over data — similar to recursion over lists
where each recursive call processes one element.
2. Reduce Phase:
The results of the map phase are combined into a single cumulative value using a
reducer function.
This process recursively collapses multiple results into one — for example, summing a
list of numbers or concatenating strings.
Sequential Map—Reduce Example (Word Counting)
The Map-Reduce framework processes data in two main phases — map and reduce —
following the functional programming and recursive problem-solving approach.
In this example:
>>> words = ['two', 'three', 'one', 'three', 'three', 'five', 'one', 'five']
>>> smr = SeqMapReduce(occurrence, occurrenceCount)
>>> smr.process(words)
[(‘one', 2), (‘five', 2), ('two', 1), (‘three’, 3)]
1. Map Phase:
Each word is mapped into a key—value pair — (word, 1) — representing one
occurrence.
Example: ('three’, 1)
2. Group Phase:
Intermediate pairs are grouped by key:
{'one": [1,1], 'three": [1,1,1], 'five": [1,1], 'two": [1]}
3. Reduce Phase:
The reducer function sums each list of values to count occurrences.
Final result:
[(‘one', 2), (‘five', 2), ('two', 1), (‘three’, 3)]

This example demonstrates the recursive nature of Map—Reduce — the map phase applies a
function to each element independently (like recursive traversal), and the reduce phase
combines results cumulatively (like recursive aggregation).

Thus, Map—Reduce models functional recursion — dividing, processing, and recombining
data efficiently.

‘ Programming and Problem-Solving ... 15.16 Recursion

words intermediatel intermediate?2 frequency

,W‘—»[('two', 1] B - - - > ('two', [1]) — ('two', 1)

| 'three'’ I—» [('three', 1)] S A ('three', [1,1,11) }—» ('three', 3)
'one' [C('omne', 1)1 ————/#’,Eq ('one', [1,1]1) ——— ('ome', 2)

s L
| 'three' I—» [('three', 1)] ’/,’ S o4 ('five', [1,11) }—* ('five', 2)
7 (f/JJ
'three' |—> [C('three', 1)1/ '/

y) ‘
e '

"five' [('five', 1)] |’:’ J/
J’! /
'one' [('one', 1)1 [

!

'five' —— [('five', 1)] r

Figure 15.5 MapReduce for word frequency
class SeqMapReduce(object):

nmn

""" A sequential Map—Reduce implementation.
def init (self, mapper, reducer):
"""Functions mapper and reducer are problem-specific."""
self. mapper = mapper
self.reducer = reducer

def process(self, data):

"""Runs Map—Reduce on data using the provided mapper and reducer."""
intermediate] = [self.mapper(x) for x in data] ~ # Map Phase
intermediate? = partition(intermediate1) # Group Phase

return [self.reducer(x) for x in intermediate2] # Reduce Phase

15.8 SUMMARY

e Recursion solves problems by dividing them into smaller, similar subproblems.

o Every recursive function must include a base case to stop the recursion.

o Recursive solutions can be more elegant but less efficient than iterative ones.

o Recursive algorithms are used in searching, sorting, and divide-and-conquer
methods.

e Functional programming embraces recursion as a natural expression of computation.

15.9 TECHNICAL TERMS

Term
Recursion
Base Case
Call Stack
Tail Recursion
Memoization

Centre for Distance Education 15.17 Acharya Nagarjuna University

15.10 SELF-ASSESSMENT QUESTIONS

Essay Questions

1.

Define recursion. Explain how it differs from iteration with examples.

2. Discuss runtime analysis of recursive algorithms.

3. Explain how recursion is used in searching algorithms.

4. Write and explain the recursive solution to the Towers of Hanoi problem.
Short Notes

1. Base case and recursive case

2. Functional programming and recursion

3. Binary search using recursion

4. Tail recursion

15.11 SUGGESTED READINGS

1.

Ljubomir Perkovi¢, Introduction to Computing Using Python, Wiley, 2012.

2. Dierbach, Introduction to Computer Science Using Python, Wiley, 2013.
3.
4. Python Software Foundation, Recursion and Functional Programming,

Allen Downey, Think Python: How to Think Like a Computer Scientist, O’Reilly, 2015.

https://docs.python.org.

Dr. Vasantha Rudramalla

LESSON- 16

NAMESPACES

AIMS AND OBJECTIVES

The aim of this lesson is to explain how Python manages names, variables, and their visibility
through namespaces, and how encapsulation supports modular design, error handling, and

code reuse.

After completing this lesson, the learner will be able to:

Understand the concept and purpose of namespaces and scope.

¢ Distinguish between local and global variables.
e Explain how encapsulation promotes modularity and information hiding.
e Describe how functions, modules, and classes define their own namespaces.
e Understand exceptional control flow and handle errors using try—except blocks.
e Apply namespace and exception management techniques in structured Python
programs.
STRUCTURE

16.1 Introduction

16.2 Encapsulation in Functions

16.2.1
16.2.2
16.2.3
16.2.4
16.2.5
16.2.6

Code Reuse

Modularity (Procedural Decomposition)
Encapsulation (Information Hiding)

Local Variables

Namespaces Associated with Function Calls

Namespaces and the Program Stack

16.3 Global versus Local Namespaces

16.3.1
16.3.2
16.3.3
16.3.4

Global Variables

Local Scope

Global Scope

Changing Global Variables Inside a Function

16.4 Exceptional Control Flow

16.4.1
16.4.2
16.4.3
16.4.4

Exceptions and Exceptional Control Flow
Catching and Handling Exceptions
Catching Exceptions of a Given Type
Multiple Exception Handlers

Programming and Problem-Solving ... 16.2 Namespaces

16.4.5 Controlling the Exceptional Control Flow
16.5 Modules as Namespaces

16.5.1 Module Attributes

16.5.2 What Happens During Import

16.5.3 Module Search Path

16.5.4 Top-Level Module

16.5.5 Different Ways to Import Module Attributes
16.6 Classes as Namespaces

16.6.1 A Class Is a Namespace

16.6.2 Class Methods Are Functions Defined in the Class Namespace
16.7 Summary
16.8 Technical Terms
16.9 Self-Assessment Questions

16.10 Suggested Readings

16.1 INTRODUCTION

Every Python program consists of a collection of names (variables, functions, lasses, etc.)
that refer to objects in memory.The association between a name and its corresponding object
is stored in a structure called a namespace.

Namespaces are essential for:

Organizing variables and preventing naming conflicts,

Enabling modular programming and encapsulation, and

Managing variable visibility (local vs global scope).

This chapter introduces the concept of namespaces, showing how they relate to
functions, modules, exceptions, and classes, and how they enforce information
hiding and code organization.

16.2 ENCAPSULATION IN FUNCTIONS

16.2.1 Code Reuse
Encapsulation allows a programmer to divide a large program into smaller, independent
parts.By encapsulating logic inside functions, code becomes reusable, manageable, and less
error-prone.
For instance:
def area_circle(radius):
"""Returns the area of a circle.
return 3.14159 * radius ** 2

nmn

print(area_circle(5))

Centre for Distance Education 16.3 Acharya Nagarjuna University

This function can be reused anywhere, without redefining its logic — an example of code
reuse through encapsulation.
In the example below, two functions are defined:

e jump() — performs a single well-defined action: move the turtle without drawing.

e emoticon() — uses jump() and other turtle commands to draw a complete smiley

face.

This structure illustrates how encapsulation enables clarity, reusability, and abstraction in
Python programs.

Program: Drawing a Smiley Face Using Encapsulation
def jump(t, X, y):
"""Makes turtle t jump to coordinates (x, y) without drawing."""
t.penup()
t.goto(x, y)
t.pendown()
def emoticon(t, x, y):
"""Directs turtle t to draw a smiley face with chin at (x, y)."""
t.pensize(3)
t.setheading(0)

Draw head

jump(t, X, y)
t.circle(100)

Draw right eye
jump(t, x + 35,y + 120)
t.dot(25)

Draw left eye
Jump(t, x - 35,y + 120)
t.dot(25)

Draw smile

jump(t, x - 60.62, y + 65)
t.setheading(-60)
t.circle(70, 120)

Explanation of Encapsulation
1. Encapsulated Helper Function (jump)
o Handles only one responsibility: repositioning the turtle without leaving a
trace.
o By defining it once, this logic can be reused anywhere, rather than repeating
pen-up and pen-down commands in multiple places.

Programming and Problem-Solving ... 16.4 Namespaces

o This is an example of procedural abstraction — hiding the “how” behind a
function name that describes the “what.”
2. Main Function (emoticon)
o Focuses on the higher-level concept of drawing a smiley face.
o It uses jump() without needing to know its internal implementation.
o This demonstrates encapsulation and modular design — one function calls
another to achieve its goal.

Program Output
When executed with:
import turtle
t = turtle. Turtle()
emoticon(t, 0, 0)
turtle.done()
The output is a smiley face drawn on the screen, with circular head, two eyes, and a curved
smile.

16.2.2 Modularity (Procedural Decomposition)

Modularity means breaking a large problem into smaller, more manageable procedures.
Each function handles a single responsibility, which collectively contributes to solving the
overall problem.
For example:
def input_data():
return int(input("Enter value: "))

def process_data(x):
return x * 2

def display_result(result):
print("Result:", result)
Each function has a clear boundary and can be modified independently — an essential
property of modular design.
The function jump() is independent of the function emoticon() and can be tested and
debugged independently. Once function jump() has been developed, the function emoticon()
is easier to implement.

16.2.3 Encapsulation (Information Hiding)

Encapsulation also provides information hiding: details inside a function are hidden from the
rest of the program.
This prevents unintended interference with internal variables.
def compute sum():
total = 0

Centre for Distance Education 16.5 Acharya Nagarjuna University

for i in range(5):
total +=1
return total

print(compute_sum())

Here, the variable total exists only within the function and is not visible outside.
This is achieved through local namespaces.

The developer of the function emoticon() does not need to know how function jump() works,
just that it lifts turtle t and drops it at coordinates (x, y). This simplifies the process of
developing function emoticon(). Another benefit of encapsulation is that if the
implementation of function jump() changes (and is made more efficient, for example), the
function emoticon() would not have to change.

16.2.4 Local Variables and Namespaces

When a function executes, Python creates a local namespace to store its variables.
Each function call gets its own local namespace, which disappears after the function returns.
def example():
x =10 # local variable
print(x)

example()

print(x) # NameError: x is not defined
This ensures that variables inside a function are encapsulated and do not affect other parts of
the program.

16.2.5 Namespaces Associated with Function Calls
When a function is called:
1. A new local namespace is created.
2. Function parameters and local variables are stored in it.
3. Python searches for variable names in the following order (LEGB Rule):
o L: Local (inside the current function)
o E: Enclosing (in nested functions)
G: Global (module-level)
B: Built-in (Python system functions)

o

O

Xx=35
def outer():
y=10
def inner():
z=15
print(x, y, z)
inner()
outer()
Output:
51015

Programming and Problem-Solving ... 16.6 Namespaces

Here:
e zislocal to inner().

e yis enclosing (outer function).
e xis global.

16.2.6 Namespaces and the Program Stack

Each function call adds a stack frame to the program stack, containing its local namespace.
When the function ends, that frame is removed.

Program Stack
I— main() frame
| — global x = 5
I— outer() frame
| — local y = 10
I— inner() frame

I— local z = 15

Fig 16.1 Python manages these namespaces automatically using the call stack.

Running g (3) Running h(2)
Running £(4) . .
/ g ¥
/ line 14 line 9
n=4 n=4 n =3
. Program stack —
print ('Start f') line 14
g (n_ 1) |I n=4

Program stack

n=23
print('Start g')
h(n-1) |

n =2
print('Start h')
print(1/n)
print(n)
Namespace h(2)

f

print(n)

print(n) Namespace g(3)

- . N N
Namespace £ (4) \\\j \ Backto g(3)

\\\ Back to f (4) line 9

n=3

line 14 line 14

n=4 n=4
Program stack Program stack

Figure 16.2 Execution of f(4).

Centre for Distance Education 16.7 Acharya Nagarjuna University

The following code demonstrates how functions create their own namespaces and how
Python manages function calls using the program stack.

Program Code

def h(n):
print('Start h')
print(1 / n)
print(n)

def g(n):
print('Start g')
h(n-1)
print(n)

def f(n):
print('Start ')
gn-1)
print(n)

f(3)

Program Output

Start f
Start g
Start h

0.5

2

2

3

o Every function call creates a new namespace (local environment).

e Python’s program stack keeps track of nested calls.

e When a function ends, its namespace is destroyed and the stack unwinds.

o Functions can use the same variable names independently — they don’t interfere with
one another.

o The order of return is the reverse of the order of calls — last called, first returned
(LIFO).

o Namespaces isolate each function’s variables.

o The program stack manages execution order and variable lifetime.

o Each function’s execution context is independent and temporary.

e The combination of both enables modular, predictable, and error-free function

behavior.

Programming and Problem-Solving ... 16.8 Namespaces

16.3 GLOBAL VERSUS LOCAL NAMESPACES

Thus, names assigned inside functions belong to the local namespace, while names assigned
outside functions belong to the global namespace. Python uses this separation to avoid
naming conflicts and to support encapsulation and modularity in programs.

Scope Type | Where Defined Visibility Lifetime
Local Inside a function Within that function | Created on function call,
only destroyed on return
Global At the top level Entire module Exists for the duration of the
(module/shell) program

16.3.1 Global Variables

A global variable is defined at the top level of a program or module.
It belongs to the global namespace and can be accessed by all functions within that module.
count = 0 # global variable
def increment():
global count
count +=1
increment()
print(count) # Output: 1
Using global inside a function allows modification of global variables.

16.3.2 Local Scope

Variables defined inside a function exist only while that function is executing.
def func():
local_var = "inside"
print(local_var)
func()
print(local _var) — Error: not defined
Local variables improve safety by preventing unexpected interference.

16.3.3 Global Scope

Global variables persist throughout the program.

However, excessive use of globals can cause namespace pollution and unintended
interactions between functions.

Best practice: Use function parameters and return values rather than globals whenever

possible.

16.3.4 Changing Global Variables Inside a Function
If a global variable must be changed inside a function, it must be explicitly declared as
global.

Centre for Distance Education 16.9 Acharya Nagarjuna University

Example:

total = 5

def add():
global total
total += 10

add()

print(total) # Output: 15

Without the global keyword, Python treats total as a local variable, leading to an
UnboundLocalError.

Example:

def f(b):
global a # all references to 'a' inside () refer to the global variable 'a’
a=6 # modifies the global variable 'a’

return a * b # uses the global 'a'

a=0 # this 'a' has global scope
print(‘f(3) = {}'.format(f(3)))
print(‘a is {}'.format(a))

module scope3 function £ ()

of | | [2 6

Figure 16.3 usage of Keyword global.

16.4 EXCEPTIONAL CONTROL FLOW

In Python, when an error occurs during program execution, an exception object is created.
The term exception comes from the fact that an exceptional event has occurred — one that

causes the program’s normal flow of execution to be interrupted.

Normally, a program follows a predictable control flow, proceeding step by step according to
the logic defined in its functions and loops. However, when an error arises — such as
dividing by zero, accessing an invalid index, or opening a missing file — Python creates an

exception object to represent this error condition.

Programming and Problem-Solving ... 16.10 Namespaces

Once the exception object is created, the regular (normal) control flow is suspended, and the
program enters a separate path known as the exceptional control flow.
This control flow is not part of the usual sequence of operations and typically isn’t
represented in the program’s flowchart because it occurs only when an unexpected event
happens.

If the exception is not handled by the programmer using a try—except statement, Python’s
default exceptional control flow takes over:

e The program stops execution immediately.

o The error message and stack trace associated with the exception object are printed to the
screen.
This default behavior helps identify where and why the error occurred, but it also
terminates the program abruptly.

16.4.1 Introduction

Sometimes, unexpected events occur during program execution — such as dividing by zero,
opening a missing file, or invalid user input.
These events cause exceptions that alter the program’s normal control flow.

In Figure 16.4 , we illustrate what happens when we make the function call f(2) from the
shell. The execution runs normally all the way to function call h(0). During the execution of
h(0), the value of n is 0. Therefore, an error state occurs when the expression 1/n is evaluated.
The interpreter raises a ZeroDivisionError exception and creates a ZeroDivisionError
exception object that contains information about the error.

Running shel Running £ (2)

>>> £(2) /W
K%J//////n = 2

i Running g(1)
print('Start ') N

g(n-1) /F\ir
L#/ n=1

. Running h (0)
print('Start g')

h(n-1) /_\
K/ n=20

print('Start /h')

print(1/n
£(2) <--TTTTTTTTTTTTTTTITTT T fprint (@
crashes print (n)
»>> print(n)

Figure 16.4 Execution of f(2)

Centre for Distance Education 16.11 Acharya Nagarjuna University

16.4.2 Catching and Handling Exceptions

Python allows developers to handle exceptions gracefully using try and except blocks:
Example:
try:
num = int(input("Enter a number: "))
print(10 / num)
except ZeroDivisionError:
print("Cannot divide by zero.")
except ValueError:
print("Invalid input.")
Example:
try:
try block --- executed first; if an exception occurs here,
execution immediately jumps to the corresponding except block
strAge = input('"Enter your age: ")
intAge = int(strAge)
print("You are {} years old.".format(intAge))

except:
except block --- executed only if an exception
is raised while executing the try block
print('"Enter your age using digits 0-9!")

Block | Purpose Executed When
try Contains normal code that may raise an Always executed first
exception
except | Handles errors that occur in try Only executed if an exception is raised
finally | (optional) Runs cleanup code Always executed, even if an exception
occurs

o The try—except structure prevents program crashes by catching runtime errors.
o Ifno exception occurs, the except block is skipped.
o Ifan exception occurs, Python switches to exceptional control flow and executes the

except block.
e This technique makes programs robust and user-friendly, especially when handling

invalid inputs or file I/O operations.

16.4.3 The Default Exception Handler

If no except block is defined, Python’s default exception handler terminates the program
and prints a traceback.

Enter your age: fifteen

Traceback (most recent call last):

Programming and Problem-Solving ... 16.12 Namespaces

File "/Users/me/agel.py", line 2, in <module>
intAge = int(strAge)
ValueError: invalid literal for int() with base 10: 'fifteen’

16.4.4 Catching Exceptions of a Given Type

Multiple exception types can be caught individually or grouped:
try:

except (ValueError, TypeError) as e:
print("Error:", e)
Example:
try:
try block — executed first
strAge = input('Enter your age: ")
intAge = int(strAge)
print("You are {} years old.".format(intAge))

except ValueError:
except block — executed only if a ValueError occurs
print('"Enter your age using digits 0-9!")

Example 1 — Valid Input

Enter your age: 22

You are 22 years old.

No exception occurs; the except block is skipped.

Example 2 — Invalid Input

Enter your age: twenty

Enter your age using digits 0-9!

A ValueETrror is raised; Python switches to exceptional control flow and executes the except
ValueError block.

o Use except <ExceptionType>: to handle a specific kind of error.

o It makes the program safer and more maintainable.

e Avoid a bare except: unless absolutely necessary.

o Multiple except blocks can be chained to handle different exceptions separately.

16.4.5 Multiple Exception Handlers
Each except block handles one type of error, allowing selective responses to different
exceptions.
try:
try block — may raise different kinds of exceptions
numl = int(input('Enter the numerator: "))
num?2 = int(input('Enter the denominator: '))

Centre for Distance Education 16.13 Acharya Nagarjuna University

result = num1 / num2
print('Result =, result)

except ValueError:
raised if input cannot be converted to an integer
print('"Enter both numbers using digits 0-9!")

except ZeroDivisionError:
raised if denominator is zero
print('Cannot divide by zero! Please enter a nonzero denominator.")

except:
handles any other unexpected exceptions
print('"An unexpected error occurred.")

Example 1 — Valid Input

Enter the numerator: 10

Enter the denominator: 2

Result=5.0

Normal execution; no exception occurs.

Example 2 — Invalid Input

Enter the numerator: ten

Enter the denominator: 2

Enter both numbers using digits 0-9!

A ValueError occurs while converting "ten" to integer.

Example 3 — Division by Zero

Enter the numerator: 10

Enter the denominator: 0

Cannot divide by zero! Please enter a nonzero denominator.
A ZeroDivisionError occurs during the division operation.

Example 4 — Other Unexpected Exception

Enter the numerator:

An unexpected error occurred.

A generic except block catches an unexpected error (e.g., empty input or EOF).

16.4.6 Controlling Exceptional Control Flow
Exceptions can be raised intentionally using the raise statement:
def divide(a, b):
ifb==0:
raise ValueError("Denominator cannot be zero.")
returna/b

Programming and Problem-Solving ... 16.14 Namespaces

This enforces controlled error management and promotes robust software design.
16.5 MODULES AS NAMESPACES

module to describe a file containing Python code. When the module is executed (imported),
then the module is (also) a namespace. This namespace has a name, which is the name of the
module. In this namespace will live the names that are defined in the global scope of the
module: the names of functions, values, and classes defined in the module. These names are
all referred to as the module’s attributes.

16.5.1 Modules and Attributes

A module is a Python file that serves as a separate namespace containing definitions of
variables, functions, and classes.

file: math_ops.py

defadd(x, y): return x +y

def sub(x, y): return x - y

When imported, Python creates a module object with attributes that correspond to these
definitions:

import math_ops

print(math_ops.add(5, 3))

Once a module is imported, the Python built-in function dir() can be used to view all the
module’s attributes:

>>> dir(math)

[' doc ' file ',' name ',' package ','acos',

'acosh’', 'asin’, 'asinh’, 'atan', 'atan2', 'atanh’, 'ceil’,
'copysign', 'cos', 'cosh’, 'degrees', 'e', 'exp', 'fabs',
'factorial’, 'floor', 'fmod', 'frexp', 'fsum', 'hypot', 'isinf’,
'isnan’, 'ldexp’, 'log', 'log10', 'loglp', 'modf’, 'pi', 'pow’,

'radians', 'sin', 'sinh’, 'sqrt’, 'tan’, 'tanh’, 'trunc']

16.5.2 What Happens During Import
When import is executed:

1. Python searches for the module in the module search path.
2. If found, it creates a new namespace for that module.
3. The module’s code executes, defining its internal variables.

16.5.3 Module Search Path
The search path includes:

e The current directory,
o Standard library directories,
o Custom paths defined in sys.path.

Centre for Distance Education 16.15 Acharya Nagarjuna University

You can view it using:
import sys
print(sys.path)

16.5.4 Top-Level Module

The module where execution begins is treated as the top-level module (with name

__main__").
Its global namespace becomes the program’s primary namespace.

16.5.5 Different Ways to Import

Python provides several import mechanisms:

e import math

e from math import sqrt

e from math import sin as sine
Each approach controls how names are imported into the local namespace, affecting
visibility and potential conflicts.

16.6 CLASSES AS NAMESPACES

A namespace is associated with every class. Python uses namespaces in a clever way to
implement classes and class methods.

16.6.1 A Class Is a Namespace

Each class in Python defines its own namespace, storing attributes (variables) and methods
(functions).
class Student:
school ="ANU" # class variable
def init (self, name):
self.name = name # instance variable
school belongs to the class namespace, while name belongs to the object’s namespace.

__add__ count pop sort

Namespace list

__add__Q count () pop() sort ()

Figure 16.5 The namespace list and its attributes.

‘ Programming and Problem-Solving ... 16.16 Namespaces

>>> dir(list)
[add "' class '' contains ' ' delattr ',

TPy

'index', 'insert', 'pop', 'remove', 'reverse', 'sort']

16.6.2 Class Methods Are Functions in Class Namespace

print(Student.school)
sl = Student("Lavanya")
print(s1.name)

Each object accesses class variables through the shared class namespace, ensuring consistent
structure across instances.

16.7 SUMMARY

Namespaces organize names and prevent conflicts.

Local and global scopes define variable visibility.

Encapsulation hides details and promotes modular design.

Exceptions control abnormal program flow.

Modules and classes provide hierarchical namespaces for large programs.

16.8 TECHNICAL TERMS

Namespace: Mapping from names to objects.

Scope: The region where a variable name is visible.
Encapsulation: Hiding internal data from external access.
Global variable: Defined at the module level.

Local variable: Defined inside a function.

Exception: An event that alters control flow.

Module: A file that defines its own namespace.

16.9 SELF-ASSESSMENT QUESTIONS

XN R

Define namespace.

What is encapsulation and how does it improve modularity?

Explain the difference between local and global variables.

What is the LEGB rule for variable lookup?

Write an example demonstrating try and except.

What happens during the import process?

Explain how a class serves as a namespace.

Discuss the importance of exception handling in robust programming.

16.10 SUGGESTED READINGS

Ljubomir Perkovié, Introduction to Computing Using Python: An Application
Development Focus, Wiley (2012).

Mark Lutz, Learning Python, O’Reilly Media.

Allen B. Downey, Think Python: How to Think Like a Computer Scientist, O’Reilly.

Dr. Vasantha Rudramalla

LESSON- 17
GRAPHICAL USER INTERFACES (GUI)

AIMS AND OBJECTIVES

After completing this lesson, the learner will be able to:

Understand the concept and components of Graphical User Interfaces (GUISs).
Develop basic GUI applications using the tkinter module in Python.

Use common widgets such as labels, buttons, and entry fields effectively.

Apply event-driven programming principles to handle user interactions.

Design modular and reusable GUI programs using object-oriented programming
(OOP) concepts.

e Implement a complete GUI-based application such as a calculator using tkinter.

STRUCTURE

17.1 Introduction
17.2 Basics of tkinter GUI Development
17.2.1 tkinter Overview
17.2.2 Main Window and Event Loop
17.2.3 Common Widgets
17.2.4 Geometry Management
17.2.5 Example: Simple Login Window
17.3 Event-Based tkinter Widgets
17.3.1 Event Handling and Callbacks
17.3.2 Keyboard and Mouse Events
17.3.3 Example: Interactive Counter
17.4 Designing GUIs
17.4.1 GUI Design Principles
17.4.2 Steps in GUI Design
17.4.3 Example: Temperature Converter
17.5 OOP for GUIs
17.5.1 Class-Based GUI Design
17.5.2 Advantages of OOP in GUI Design
17.6 Case Study: Developing a Calculator
17.6.1 Program Design
17.6.2 Implementation
17.6.3 Output
17.7 Summary
17.8 Technical Terms
17.9 Self-Assessment Questions
17.10 Suggested Readings

Programming and Problem-Solving ... 17.2 Graphical User Interfaces (Gui) ‘

17.1 INTRODUCTION

Most programs so far have used text-based input and output, where users type commands and
read printed responses.

However, modern applications use graphical user interfaces (GUIs) — windows with buttons,
menus, labels, and other interactive components.

A GUI allows users to interact with programs visually, making software more intuitive and
user-friendly.

Python provides a standard GUI toolkit called tkinter, which supports event-driven
programming — the foundation of modern user interfaces.

17.2 BASICS OF TKINTER GUI DEVELOPMENT

A graphical user interface (GUI) consists of basic visual building blocks such as
buttons,labels, text entry forms, menus, check boxes, and scroll bars, among others, all
packed inside a standard window. Building blocks are commonly referred to as widgets. To
develop GUISs, a developer will require a module that makes such widgets available. We will
use the module tkinter that is included in the Standard Library. In this section, we explain the
basics of GUI development using tkinter:

17.2.1 What is tkinter?

tkinter is Python’s built-in module for GUI development. It acts as a bridge between Python
and the Tcl/Tk GUI framework.
Tkinter allows developers to:

o Create windows, buttons, labels, and text boxes.

e Handle user input through events.

o Build interactive desktop applications easily.
To start using tkinter:

from tkinter import Tk, Label

root = Tk() # Create main window

Ibl = Label(root, text="Hello, GUI World!")

Ibl.pack() # Place label in window

root.mainloop() # Run event loop
Output:

A simple window appears displaying “Hello, GUI World!”.

"8 AN tk
Hello GUI world!

Figure 17.1 A text label. The Label widget created with the text argument will
display a text label.

Centre for Distance Education 17.3 Acharya Nagarjuna University

17.2.2 The Main Window and Event Loop
Every tkinter application has:
1. Root Window (Tk()) — the main window created at startup.
2. Widgets — interface elements such as Button, Label, Entry, etc.
3. Event Loop (mainloop()) — continuously listens for user actions (mouse clicks, key
presses) and updates the interface.

The call to mainloop() keeps the program running until the user closes the window.

17.2.3 Common Widgets

Widget | Purpose Example

Label | Displays text or images Label(root, text="Welcome!")

Button | Performs an action when clicked | Button(root, text="Click Me")

Entry Single-line text input Entry(root)

Text Multi-line text input Text(root)

Frame | Container for grouping widgets | Frame(root)

Canvas | For drawing shapes and graphics | Canvas(root, width=200, height=100)

17.2.4 Geometry Management
Tkinter provides layout managers to control widget placement:
e pack() — stacks widgets vertically or horizontally.
e grid() — arranges widgets in rows and columns.
e place() — positions widgets by absolute coordinates.
from tkinter import *
root = Tk()
Label(root, text="Name").grid(row=0, column=0)
Entry(root).grid(row=0, column=1)
Button(root, text="Submit").grid(row=1, column=1)
root.mainloop()

17.2.5 Example — Simple Login Window

from tkinter import *

root = Tk()

root.title("Login")

Label(root, text="Username").grid(row=0)
Label(root, text="Password").grid(row=1)
Entry(root).grid(row=0, column=1)

Entry(root, show="*").grid(row=1, column=1)
Button(root, text="Login').grid(row=2, column=1)
root.mainloop()

Programming and Problem-Solving ... 17.4 Graphical User Interfaces (Gui)

Explanation:
This simple interface uses the grid() geometry manager for organized alignment.

17.3 EVENT-BASED TKINTER WIDGETS

Widgets have an interactive behavior that needs to be programmed using a style of
programming called event-driven programming. In addition to GUI development, event-
driven programming is also used in the development of computer games and distributed
client/server applications, among others.

17.3.1 Event-Driven Programming

Traditional programs follow a sequential flow, but GUI programs are event-driven.
Events occur when the user interacts with the GUI — such as clicking a button or pressing a
key. Tkinter uses callback functions to respond to these events.

SN tk
Click it

Figure 17.2 GUI with one Button widget
>>>

Day: 07 Jul 2011

Time: 23:42:47 PM

from tkinter import Tk, Button
from time import strftime, localtime

def clicked():
'prints day and time info'
time = strftime('Day: %d %b %Y\nTime: %H:%M:%S %p\n', localtime())
print(time)

root = Tk()

create button labeled 'Click it' and event handler clicked()
button = Button(root,
text="Click it', # text displayed on the button
command=clicked) # function called when button is clicked
button.pack()
root.mainloop()

This example shows that in event-driven programming, control flow depends on user
actions (events) rather than a predefined sequence of commands.

Centre for Distance Education 17.5 Acharya Nagarjuna University

The command parameter acts as a callback function, executed only when the user interacts
with the GUI (in this case, clicks the button).

17.3.2 Binding Events

You can “bind” an event (e.g., mouse click) to a function using the command parameter or
the bind() method.
Example:
from tkinter import *
def greet():
print("Hello, User!")
root = Tk()
btn = Button(root, text="Greet", command=greet)
btn.pack()
root.mainloop()
When the user clicks the button, the greet() function executes.

17.3.3 Keyboard and Mouse Events

You can bind specific events to widgets:
def key pressed(event):
print("You pressed:", event.char)

root.bind("<Key>", key pressed)

Event patterns include:
e <Button-1> — Left mouse click
e <Button-3> — Right mouse click
o <Key> — Any key press
e <Return> — Enter key
e <Motion> — Mouse movement

Example — Handling Mouse Events in tkinter

Mouse events allow a program to respond to user interactions such as clicks, double-clicks,
and right-clicks.

In tkinter, these actions are handled by event binding, where a specific mouse action is
associated with an event-handling function.

Program: Demonstrating Mouse Click Events
import tkinter as tk

defon_click(event):
"""Called when a mouse button is pressed."""
X, y =event.x, event.y
btn = event.num # button number: 1=left, 2=middle, 3=right

‘ Programming and Problem-Solving ... 17.6 Graphical User Interfaces (Gui) ‘

Ibl.config(text=t"Clicked: Button {btn} at ({x}, {y})")
print(f"CLICK: Button {btn} at coordinates ({x}, {y})")

defon double click(event):
"""Called when the left button is double-clicked."""
Ibl.config(text=f"Double-click at ({event.x}, {event.y})")
print(f"DOUBLE CLICK at ({event.x}, {event.y})")

def on_right click(event):
"""Called when the right mouse button is pressed."""
Ibl.config(text=t"Right-click at ({event.x}, {event.y})")
print(f'"RIGHT CLICK at ({event.x}, {event.y})")

Create main window

root = tk.Tk()

root.title("Mouse Events Demo")
root.geometry("420x160")

Create label for displaying event information
Ibl = tk.Label(root, text="Click anywhere inside the window", font=("Arial", 12))
Ibl.pack(pady=15, fill="x")

Bind mouse actions to event handlers

root.bind("<Button-1>", on_click) # Left-click
root.bind("<Double-Button-1>", on_double click) # Double-click
root.bind("<Button-3>", on_right click) # Right-click

root.mainloop()

Explanation
1. Event Binding:
o The bind() function associates a mouse event with a handler (callback
function).
o Syntax:
o widget.bind("<EventPattern>", callback function)
o Example events:
= <Button-1>— Left mouse click
= <Double-Button-1>— Double left-click
= <Button-3>— Right mouse click
2. Event Object:
Each callback receives an event object that contains details such as:
o event.x, event.y — Position of the cursor within the window.
o event.num — Mouse button number.

Centre for Distance Education 17.7 Acharya Nagarjuna University

o event.widget — Widget where the event occurred.

3. Label Update:
o The label Ibl dynamically updates to show which mouse button was pressed
and the coordinates of the click.
o The same message is printed in the console for verification.

4. Window Setup:
o The Tk() function creates the main window.
o Label() displays messages to the user.
o geometry() defines the window size.
o mainloop() starts the event loop, keeping the window active.

Output
When the program runs, a window appears with the text:
Click anywhere inside the window

User Action Label Output (in GUI) Console Output
Left-click at (120, 45) | Clicked: Button 1 at (120, | CLICK: Button 1 at coordinates (120,
45) 45)

Double-click at (150, | Double-click at (150, 60) DOUBLE CLICK at (150, 60)
60)

Right-click at (100, | Right-click at (100, 30) RIGHT CLICK at (100, 30)
30)

This example demonstrates how tkinter enables event-driven programming for mouse
actions. By using bind() and handling the event object, programs can respond interactively to
user input — a fundamental concept in building responsive GUIs.

17.3.4 Example — Interactive Counter

from tkinter import *
count =0
def increase():
global count
count += 1
label.config(text=f"Count: {count}")
root = Tk()
label = Label(root, text="Count: 0")
label.pack()
Button(root, text="Add 1", command=increase).pack()
root.mainloop()
Output:
Each button click updates the counter value dynamically

Programming and Problem-Solving ... 17.8 Graphical User Interfaces (Gui)

17.4 DESIGNING GUIS

Designing a Graphical User Interface (GUI) involves creating a visual environment through
which users can interact intuitively with a program. A well-designed GUI enhances user
experience by providing clear navigation, consistent layout, and immediate feedback to user
actions. In Python, GUI design using tkinter focuses on arranging widgets logically,
managing user input, and ensuring responsiveness through event-driven behavior. Effective
GUI design balances functionality, aesthetics, and usability, ensuring that the interface not
only looks appealing but also supports the underlying logic of the application in a structured
and efficient manner.

17.4.1 GUI Design Principles

A good GUI should be:

o Intuitive: Easy to use without instructions.

o Consistent: Uses uniform fonts, colors, and layout.
o Responsive: Reacts quickly to user actions.

e Error-Tolerant: Handles invalid input gracefully.

Widget Canvas:

The Canvas widget is a fun widget that can display drawings consisting of lines and
geometrical objects. You can think of it as a primitive version of turtle graphics. (In fact,
turtle graphics is essentially a tkinter GUIL.) We illustrate the Canvas widget by building a
very simple pen drawing application.The application consists of an initially empty canvas.
The user can draw curves inside the canvas using the mouse. Pressing the left mouse button
starts the drawing of the curve.Mouse motion while pressing the button moves the pen and
draws the curve.

Example:
MMMtk
Figure 17.3 Pen drawing app.
Code:

from tkinter import Tk, Canvas

event handlers
def begin(event):

Centre for Distance Education 17.9 Acharya Nagarjuna University

global oldx, oldy
oldx, oldy = event.x, event.y # record current mouse position

def draw(event):
global oldx, oldy
canvas.create_line(oldx, oldy, event.x, event.y) # draw a line segment
oldx, oldy = event.x, event.y # update coordinates

root = Tk()
oldx, oldy =0, 0 # initialize mouse coordinates

create a canvas
canvas = Canvas(root, height=100, width=150, bg='white")

bind mouse events
canvas.bind("<Button-1>", begin) # mouse click event
canvas.bind("<B1-Motion>", draw) # mouse drag event

canvas.pack()
root.mainloop()

When the user clicks and drags the mouse over the canvas:

e A continuous line is drawn following the mouse movement.

o Releasing the mouse button stops drawing.
This forms the basis for paint applications, signature capture tools, and interactive graphics
programs.
The Canvas widget in tkinter provides a powerful area for graphics, shapes, and
interactive drawings.It supports several built-in methods for drawing and manipulating
shapes such as lines, rectangles, and ovals.Each shape drawn on the canvas is assigned a
unique item ID, which can later be used to move, modify, or delete that shape.
Some Canvas methods:

Method Description
create line(x1, y1, x2, Creates one or more line segments connecting the specified
y2,...) coordinate points (x1, y1), (x2, y2), etc. Returns the ID of the

created line item.

create_rectangle(x1, yl, | Draws a rectangle with opposite vertices at (x1, yl) and (x2, y2).

x2,y2) Returns the ID of the constructed rectangle.

create_oval(x1, yl,x2, | Creates an oval (or circle) inscribed within a rectangle defined by

y2) the corner points (x1, y1) and (x2, y2). Returns the ID of the
constructed oval.

delete(ID) Deletes the item identified by its ID from the canvas. If called

without arguments (delete('all")), it clears the entire canvas.

move(item, dx, dy) Moves a canvas item horizontally by dx units and vertically by dy
units relative to its current position.

Programming and Problem-Solving ... 17.10 Graphical User Interfaces (Gui)

17.4.2 Steps in GUI Design

Define Requirements: Identify inputs, outputs, and interactions.
Sketch Layout: Determine arrangement of widgets.

Implement Layout: Use frames and geometry managers.

Connect Functionality: Bind callbacks and logic.

Test Usability: Verify that navigation and interactions are intuitive.

MRS

17.4.3 Example — Temperature Converter

from tkinter import *
def convert():

¢ = float(celsius.get())

f=(c*9/5)+32

result label.config(text=f"{f:.2f} °F")
root = Tk()
root.title("Celsius to Fahrenheit")
Label(root, text="Celsius:").grid(row=0, column=0)
celsius = Entry(root)
celsius.grid(row=0, column=1)
Button(root, text="Convert", command=convert).grid(row=1, column=0, columnspan=2)
result_label = Label(root, text="Result: ")
result_label.grid(row=2, column=0, columnspan=2)
root.mainloop()

17.5 OOP FOR GUIS

the OOP approach to designing GUIs. This approach will make our GUI applications far
easier to reuse.

Example — Displaying Date and Time Using a Message Box
This program demonstrates how to handle a button click event and display the current date
and time using a popup message box from the tkinter.messagebox module.

Program Code

from tkinter import Tk, Button

from tkinter.messagebox import showinfo

from time import strftime, localtime

def clicked():
"""Displays the current day and time information.
time = strftime('Day: %d %b %Y\nTime: %H:%M:%S %p\n', localtime())
showinfo(message=time) # display output in a popup message box

nmn

Create main window
root = Tk()

Centre for Distance Education 17.11 Acharya Nagarjuna University

root.title("Date and Time Display")

Create button labeled 'Click it' and assign the event handler
button = Button(root,

text='Click it', # text on top of button

font=("Arial', 14),

command=clicked) # event handler function
button.pack(pady=20)

root.mainloop()

Output

When the program runs, a window appears with a single button labeled “Click it”.
When the user clicks the button:

A message box pops up showing the current date and time, for example:

Day: 29 Oct 2025

Time: 03:24:45 PM

This example illustrates how tkinter integrates GUI widgets (like buttons) with event-driven
behavior. Using showinfo(), you can make the interface more interactive and user-friendly by
displaying information directly in a popup window rather than the console.

17.5.1 Class-Based GUI Design

Using object-oriented programming (OOP), we can design modular, reusable GUI
components.
Example:
from tkinter import *
class CounterApp:
def init_ (self, root):
self.count =0
self.label = Label(root, text="Count: 0")
self.label.pack()
Button(root, text="Increase", command=self.increment).pack()
def increment(self):
self.count +=1
self.label.config(text=f"Count: {self.count}")
root = Tk()
app = CounterApp(root)
root.mainloop()
Here, the GUI’s state (count) and behavior (increment) are encapsulated within a class.

Output
When the program runs, a window appears with:
e A label showing the text:
Count: 0

Programming and Problem-Solving ... 17.12 Graphical User Interfaces (Gui) ‘

e A button labeled Increase.

User Interaction:
e Clicking the Increase button repeatedly updates the label:

e Count: 1
e Count: 2
e Count:3

This example shows how OOP concepts integrate seamlessly with tkinter GUI design.
By encapsulating interface elements and logic inside a class:

e The GUI becomes organized and scalable.

e Each object maintains its own state, allowing multiple independent GUIs if needed.
Such an approach is widely used in larger GUI projects where multiple windows, widgets, or
components interact cohesively.

17.5.2 Advantages of OOP in GUI Design

e Encapsulation: GUI logic is grouped in one class.

e Reusability: Components can be reused in other programs.
e Maintainability: Easier to debug and update.

o Scalability: Ideal for complex interfaces.

17.6 CASE STUDY — DEVELOPING A CALCULATOR

This case study demonstrates how to combine tkinter widgets, event handling, and OOP
principles to create a simple GUI Calculator.

17.6.1 Program Design
Features:
e Numeric buttons (0-9)
e Operators (+, —, X, +)
e Clear (C) and Equal (=) functions

17.6.2 Implementation
from tkinter import *

class Calculator:
def init_ (self, root):
self.expression =""
self.input_text = StringVar()

input_frame = Frame(root)
input_frame.pack()

input_field = Entry(input frame, textvariable=self.input text, width=25, font=('Arial’,
18))

Centre for Distance Education 17.13 Acharya Nagarjuna University

input_field.grid(row=0, column=0, columnspan=4)
input_field.pack(ipady=S8)

btns_frame = Frame(root)
btns_frame.pack()

buttons = [
['7','8.'9', '],
(4,56, "],
[1,2,3,],
['o,'c, =", '+

for row in buttons:
for btn in row:
Button(btns_frame, text=btn, width=5, height=2, font=("Arial', 14),
command=lambda b=btn: self.on_click(b)).pack(side="left')
Frame(btns_frame, height=2).pack()

def on_click(self, key):
if key =="'C"
self.expression =""
self.input_text.set("")
elif key =="'="
try:
result = str(eval(self.expression))
self.input_text.set(result)
self.expression = result
except:
self.input_text.set("Error")
else:
self.expression += key
self.input_text.set(self.expression)

root = Tk()

root.title("Simple Calculator")
Calculator(root)
root.mainloop()

17.6.3 Output

A fully functional calculator GUI that performs basic arithmetic operations with real-time
display updates.
When the program runs, a window appears with:

Programming and Problem-Solving ... 17.14 Graphical User Interfaces (Gui)

o A display box at the top showing the current input or result.
e Four rows of buttons for digits and arithmetic operations (+, —, X, /).
o Buttons for Clear (C) and Equals (=) operations.

Example Interaction:

User Input Display Output
T7+8*2= 23

100/4 = 25.0

9 + (Error) — "Error" | Error message displayed

This case study illustrates the practical use of tkinter for:

o Interface design

e Event handling

e OOP-based GUI architecture

e Real-time user feedback
The Calculator GUI demonstrates how Python can create interactive, user-friendly, and
maintainable applications with minimal code.

17.7 SUMMARY

e @GUIs allow visual interaction with programs.

o tkinter provides an easy, cross-platform toolkit for GUI design.

e GUIs follow an event-driven model — responding to user inputs.

o Widgets are arranged using geometry managers like pack(), grid(), and place().
e OOP simplifies GUI design by encapsulating logic and interface.

e Practical GUI applications can be built using modular, reusable code.

17.8 TECHNICAL TERMS

Term

GUI

Event

Widget

Callback

Mainloop

Geometry Manager

17.9 SELF-ASSESSMENT QUESTIONS

1. Define a GUI. How is it different from command-line interaction?
2. Explain the role of mainloop() in tkinter.

3. What are widgets? List five commonly used tkinter widgets.

4. Differentiate between pack(), grid(), and place() layout methods.

5. Describe event-driven programming with an example.

6. Explain how classes are used to design object-oriented GUIs.

7. Write a Python tkinter program to design a simple “Login” window.
8. Describe the steps involved in GUI design.

9. Explain how the command parameter is used in buttons.

10. Discuss how a calculator GUI can be implemented using tkinter.

Centre for Distance Education 17.15 Acharya Nagarjuna University

17.10 SUGGESTED READINGS

e Ljubomir Perkovi¢, Introduction to Computing Using Python: An Application
Development Focus, Wiley (2012).

e Mark Lutz, Programming Python, O’Reilly Media.

e Alan D. Moore, Python GUI Programming with Tkinter, Packt Publishing.

e John Zelle, Python Programming: An Introduction to Computer Science, Franklin,
Beedle & Associates.

Mrs. Appikatla Pushpa Latha

LESSON- 18
THE WORLD WIDE WEB (WWW)

AIMS AND OBJECTIVES

After completing this lesson, the learner will be able to:

Understand the architecture and functioning of the World Wide Web (WWW).
Explain the roles of web servers, clients, and HTTP communication protocols.
Identify the components of a URL (Uniform Resource Locator) and its purpose in
locating web resources.

Describe the structure and syntax of HTML (HyperText Markup Language).

Use Python’s urllib and html.parser modules to retrieve and analyze web content.
Apply regular expressions (regex) for pattern matching and data extraction from web

pages.

Develop simple web automation tools such as data extractors and crawlers.
Understand the design and implementation of a recursive web crawler for navigating
and analyzing web pages.

STRUCTURE

18.1 Introduction
18.2 The World Wide Web

18.2.1 Web Servers and Web Clients
18.2.2 “Plumbing” of the WWW
18.2.3 Naming Scheme: Uniform Resource Locator (URL)
18.2.4 Protocol: HyperText Transfer Protocol (HTTP)
18.2.5 HyperText Markup Language (HTML)
18.2.6 HTML Elements
18.2.7 Tree Structure of an HTML Document
18.2.8 Anchor HTML Element and Links
18.3 Python WWW API
18.3.1 Module urllib.request
18.3.2 Module html.parser
18.3.3 Overriding the HTMLParser Handlers
18.3.4 Module urllib.parse
18.4 Case Study: Web Crawler
18.4.1 Recursive Crawler — Version 0.1
18.4.2 Recursive Crawler — Version 0.2
18.4.3 Web Page Content Analysis
18.5 Summary
18.6 Technical Terms
18.7 Self-Assessment Questions
18.8 Suggested Readings

Programming and Problem-Solving ... 18.2 The World Wide Web (WWW) ‘

18.1 INTRODUCTION

The World Wide Web (WWW) is a system of interlinked hypertext documents that can be
accessed via the Internet using web browsers. It enables users to navigate information using
hyperlinks, retrieve content from remote servers, and communicate using standardized
protocols.

Python provides modules and libraries that allow programs to interact with web resources —
downloading pages, parsing HTML, following links, and even automating browsing tasks.
This lesson covers the underlying structure of the Web and explores how Python can
interface with it programmatically.

18.2 THE WORLD WIDE WEB

The World Wide Web (WWW or, simply, the web) is a distributed system of documents
linked through hyperlinks and hosted on web servers across the Internet.

18.2.1 Web Servers and Web Clients

A program that requests a resource from a web server is called a web client. The web

server receives the request and sends the requested resource (if if exists) back to the
client.Your favorite browser (whether it is Chrome, Firefox, Internet Explorer, or Safari) is a
web client. A browser has capabilities in addition to being able to request and receive web
resources. It also processes the resource and displays it, whether the resource is a web page,
text document, image, video, or other multimedia. Most important, a web browser displays
the hyperlinks contained in a web page and allows the user to navigate between web pages by
just clicking on the hyperlinks.

The Web functions through a client-server model:

e A web server stores and delivers web pages upon request.
e A web client (browser or Python script) requests resources from the server.
When a client requests a page (e.g., index.html), the server sends it using the HTTP protocol,
and the client renders it for display.
Example Flow:
1. User enters a URL in a browser.
2. Browser sends an HTTP request to the web server.
3. Server responds with the HTML content.
4. Browser interprets and displays the page.
18.2.2 “Plumbing” of the WWW
The core “plumbing” of the Web involves:
e TCP/IP: Provides the communication framework between computers.
e HTTP: Defines how requests and responses are exchanged.
e HTML: Describes the structure and content of web pages.
e DNS (Domain Name System): Maps human-readable addresses (like
www.python.org) to IP addresses.
These components work seamlessly to enable resource sharing and information exchange on
a global scale.

Centre for Distance Education 18.3 Acharya Nagarjuna University

18.2.3 Naming Scheme: Uniform Resource Locator (URL)

A URL (Uniform Resource Locator) identifies and locates a resource on the Web.
General Format:

scheme://host:port/path?query#fragment
Example:
https://www.example.com:443/articles/python.html?topic=networking#links

Component Meaning

https Protocol used (HTTP Secure).
www.example.com | Server name.

443 Port number (optional).

/articles/python.html | Path to the resource.

topic=networking | Query parameters.
#links Reference to a section within the page.

18.2.4 Protocol: HyperText Transfer Protocol (HTTP)
HTTP defines how a client and server exchange information.
Common HTTP request methods:
e GET — Retrieve data (most common).
e POST — Send data to a server (e.g., form submission).
e HEAD — Retrieve only header information.
e PUT /DELETE — Modify or remove data (less common in browsers).
18.2.5 HyperText Markup Language (HTML)
HTML is the markup language used to define the structure and content of web pages.
Example:
<IDOCTYPE html>
<htmlI>
<head>
<title>Sample Page</title>
</head>
<body>
<h1>Welcome to the Web</h1>
<p>This is a simple web page.</p>
Visit Python
</body>
</html>

https://www.example.com/articles/python.html?topic=networking#links

Programming and Problem-Solving ... 18.4 The World Wide Web (WWW)

18.2.6 HTML Elements

HTML documents are composed of tags that define elements:

Tag Purpose
<hl>...</h1> Heading text
<p>...</p> Paragraph

 | Hyperlink

 | Image
<div>...</div> | Section grouping

Each element can have attributes that provide additional information, e.g., href, src, or style.

(L HaNe) W3C Mission Summary
r W3C Mission Summary l_-j; l - M

| file:///Users/me/w3chtml v & (2§~ Q) (a](B-] |
Heading h1 o
Tt W3C MlSSlon - ek Data Line break br

g S

Paragraph ;
- i, The W3C mission is to lead the World Wide Web to its full potential <~

by developing protocols and guidelines that ensure the long-term growth of the Web.
Heading h2
— Principles
List ul ISR List items 1i
4 « Web for All o
« Web on Everything ‘

Data o
See the complete W3C Mission document. —— Anchor a

Figure 18.1 Web page w3c.html.
In general, an HTML element consists of three components:
1. A pair of tags: the start tag and the end tag
2. Optional attributes within the start tag

3. Other elements or data between the start and end tag
In HTML source file w3c.html, there is an example of an element (title) contained
inside another element (head):

<head><title>W3C Mission Summary</title></head>

18.2.7 Tree Structure of an HTML Document

An HTML document can be represented as a tree structure, where each element (node) can

have children.

Centre for Distance Education 18.5 Acharya Nagarjuna University

<htmI>

L— <body>

This hierarchical organization allows structured parsing and processing of web content.

Figure 18.2 shows all the elements in file w3c.html. The figure makes explicit what element
is contained in another and the resulting tree structure of the document. This tree structure
and the HTML elements together determine the layout of the web page.

i

[
W%C Mission document

Etle W3C Mission Principles / | N
/,’ ‘\\ : 1 \\\
br -11 .
/t t'-]C‘b ; \' Web. \—'—‘ See the complete
- . polentia Y ... We |Web on Exerything
Web for All

W3C Mission 10€

Figure 18.2 Structure of w3c.html.

18.2.8 Anchor Element and Links
The anchor tag <a> creates a hyperlink that connects documents:
Python Website
Absolute links contain full URLs, while relative links point to pages relative to the current

document’s location.

18.3 PYTHON WWW API

Python provides standard library modules to access and process web resources.

18.3.1 Module urllib.request
The urllib.request module handles opening and reading URLs.
Example — Retrieving a Web Page:

from urllib.request import urlopen

url = 'https://www.python.org'

Programming and Problem-Solving ... 18.6 The World Wide Web (WWW)

page = urlopen(url)

html = page.read().decode('utf-8")

print(html[:500]) # print first 500 characters
Explanation:

e urlopen() sends an HTTP request.

o read() returns raw bytes.

e .decode('utf-8') converts bytes into text.

18.3.2 Module html.parser

Python’s html.parser provides a class-based mechanism to analyze HTML structure.

Example:
from html.parser import HTMLParser
class MyParser(HTMLParser):
def handle_starttag(self, tag, attrs):
print("Start tag:", tag)
def handle endtag(self, tag):
print("End tag:", tag)
def handle data(self, data):
print("Data:", data)
parser = MyParser()
parser.feed("<htmI><body><h1>Hello</h1></body></htmI>")
Output:
Start tag: html
Start tag: body
Start tag: h1l
Data: Hello
End tag: hl
End tag: body
End tag: html

18.3.3 Overriding HTML Parser Handlers

You can extend HTMLParser to collect specific information such as all hyperlinks.

class LinkParser(HTMLParser):

Centre for Distance Education 18.7 Acharya Nagarjuna University

def init (self):
super(). init_ ()
self.links =[]
def handle_starttag(self, tag, attrs):
if tag =="a".
for (attr, value) in attrs:
if attr == "href":

self.links.append(value)

parser = LinkParser()
parser.feed('Example")
print(parser.links)
Output:
['https://example.com']

18.3.4 Module urllib.parse
urllib.parse provides functions to handle and decompose URLSs.
Example:
from urllib.parse import urlparse
url = 'https://www.python.org:443/doc/index.html?lang=en#section2'
components = urlparse(url)
print(components.scheme)
print(components.netloc)
print(components.path)
print(components.query)
print(components.fragment)
Output:
https
www.python.org:443
/doc/index.html
lang=en

section2

Programming and Problem-Solving ... 18.8 The World Wide Web (WWW) ‘

18.4 CASE STUDY: WEB CRAWLER

A web crawler is a program that automatically downloads web pages and extracts hyperlinks
for further exploration.

The figure 18.4 illustrates the interconnected structure of five HTML pages — one.html,
two.html, three.html, four.html, and five.html — and the frequency of specific words
found within each page.

Each rectangle represents a single web page, and the labels inside indicate keywords (e.g.,
Beijing, Paris, Chicago) along with their frequency counts. The arrows represent
hyperlinks connecting one page to another, showing how a web crawler might traverse the
web structure.

For example:

e one.html contains the words Beijing (*x3), Paris (x5), and Chicago (X5), and links to
two.html and three.html.

o three.html mentions Chicago (%3) and Beijing (x6), linking onward to four.html.

e five.html includes Nairobi (x7) and Bogota (X2), linking to four.html.

three.html five.html

Chicago x 3 Nairobi x 7
Beijing x 6 Bogota x 2

Beijing x 3 Chicago x 3
Paris x 5 Paris x 2
Chicago x 5 Nairobi x 1
one.html four.html
Bogota x 3
Beijing x 2
Paris x 1

two.html

Figure 18.4 Five linked web pages.

This web structure demonstrates how a recursive web crawler analyzes not only link
relationships but also page content by counting keyword occurrences and following
references between documents. Such analysis forms the foundation for search engine
indexing and page ranking algorithms, which assess the importance and relevance of web
pages based on their content and connectivity.

18.4.1 Recursive Crawler (Version 0.1)
This version improves upon the basic crawler by adding recursion and duplicate page
handling.

It uses a set named visited to track which web pages have already been processed, preventing
redundant crawling and infinite loops due to circular links.

Centre for Distance Education 18.9 Acharya Nagarjuna University

visited = set() # initialize visited to an empty set

def crawl2(url):
"'A recursive web crawler that calls analyze()

m

on every visited web page

add url to the set of visited pages
global visited
visited.add(url)

analyze() returns a list of hyperlink URLs in web page 'url’

links = analyze(url)

recursively continue crawl from every link in 'links'
for link in links:
follow link only if not visited
if link not in visited:
try:
crawl2(link)
except:
pass
Explanation

1. Set Initialization (visited):
A Python set is used to keep track of URLs that have already been visited.
Since sets automatically ignore duplicates, this ensures that each web page is analyzed
only once.

2. Recursive Design:
o Each time the function crawl2() is called with a new URL, that page is
analyzed (e.g., its HTML content is parsed to extract links).
o Then the crawler iterates over all hyperlinks found on that page.
o For each unvisited link, it calls itself recursively — continuing the crawl
process deeper into the link structure.

3. Avoiding Infinite Loops:
Without the visited check, the crawler could get stuck following circular links (e.g., A
— B — A).

Programming and Problem-Solving ... 18.10 The World Wide Web (WWW)

The visited set prevents this by ensuring that previously seen URLs are skipped.

4. Error Handling (try—except):
o The try block attempts to crawl a linked page.
o The except block catches any exceptions (such as connection errors or invalid
URLs) and silently ignores them.
o This keeps the crawler from stopping unexpectedly when encountering
problematic pages.

5. Global Declaration:
o The global visited declaration is optional but serves as a clear reminder that
the variable belongs to the global scope, shared across recursive calls.

Output Behavior

When the crawler starts with an initial page, say:
crawl2("https://example.com/one.html")

It performs the following actions:

1. Adds one.html to the visited set.

2. Extracts all links from one.html (e.g., two.html, three.html).

3. For each new link, recursively calls crawl2(link).

4. Continues until all reachable pages are analyzed.
Integration with analyze()

A typical implementation of the analyze() function, used in this crawler, might look like:
from urllib.request import urlopen

from html.parser import HTMLParser

class LinkCollector(HTMLParser):
def init_ (self):
super(). _init_ ()
self.links = []
def handle_starttag(self, tag, attrs):
if tag =="a":
for (attr, val) in attrs:
if attr == 'href' and val.endswith(".html'):

self.links.append(val)

def analyze(url):

Centre for Distance Education 18.11 Acharya Nagarjuna University

print(f'Analyzing: {url}")

try:
content = urlopen(url).read().decode('utf-8")
collector = LinkCollector()
collector.feed(content)
return collector.links

except:
return []

Summary

This recursive crawler version introduces three major improvements:
1. Recursion to automatically traverse linked pages.
2. A visited set to manage page tracking and prevent loops.
3. Exception handling to ensure robustness when facing inaccessible or malformed

pages.
Together, these enhancements make the crawler a practical, extensible foundation for real-
world web scraping, indexing, or search engine prototypes.

18.4.2 Recursive Crawler (Version 0.2)
The goal of Version 0.2 is to:
1. Follow every hyperlink discovered in the currently analyzed page.
2. Avoid revisiting pages that have already been processed.
3. Continue crawling until all reachable pages within a given web domain are visited.

visited = set() # initialize visited to an empty set

def crawl2(url):
"A recursive web crawler that calls analyze()

on every visited web page"

global visited # indicates the use of the global variable

visited.add(url) # mark current page as visited

analyze() returns a list of hyperlink URLs found in web page 'url'

links = analyze(url)

recursively continue crawl from every link in 'links'

for link in links:

Programming and Problem-Solving ... 18.12 The World Wide Web (WWW)

follow link only if not yet visited
if link not in visited:
try:
crawl2(link) # recursive call
except Exception as e:
safely ignore network or parsing errors
print("Skipping:", link, "Reason:", e)
pass

analyze()

The crawler depends on a separate helper function that retrieves and parses each web page:

from urllib.request import urlopen

from html.parser import HTMLParser

class LinkCollector(HTMLParser):

"""Collects all hyperlinks from an HTML page."""
def init (self):

super(). _init_ ()

self.links = []
def handle starttag(self, tag, attrs):

if tag =="a":

for (attr, value) in attrs:

if attr == 'href' and value.endswith('.html"):

self.links.append(value)

def analyze(url):
"""Returns a list of hyperlinks extracted from a given URL."""
print("Analyzing:", url)
try:
content = urlopen(url).read().decode('utf-8")
collector = LinkCollector()
collector.feed(content)
return collector.links

except:

Centre for Distance Education 18.13 Acharya Nagarjuna University

return []
Execution Flow
Suppose the program begins with:
crawl2("https://example.com/one.html")
Step-by-Step Process:
1. one.html is analyzed and added to visited.
2. analyze("one.html") returns a list of links — ['two.html', 'three.html'].
3. crawl2('two.html') is called; two.html is analyzed, producing ['four.html'].
4. The recursion continues until all reachable pages (two.html, three.html, four.html,
five.html, etc.) have been processed.
5. Each page is visited only once, even if multiple pages link back to it.

Sample Output
Analyzing: https://example.com/one.html
Analyzing: https://example.com/two.html
Analyzing: https://example.com/four.html
Analyzing: https://example.com/five.html
Analyzing: https://example.com/three.html
Advantages of Recursion in Crawling
o Simplifies the program structure by letting each call handle its own subset of links.
o Easily scalable for small to medium websites.
e Encourages modularity when combined with separate parsing and analysis functions.
Version 0.2 of the crawler demonstrates how recursion and state management can be used
to explore a network of web pages efficiently.

By integrating the analyze() function, a visited set, and exception handling, this program
forms a foundation for more advanced tools such as search-engine spiders and data-collection
bots.

18.4.3 Web Page Content Analysis

The web page analysis consists of computing (1) the frequency of every word in the web
page content (i.e., in the text data) and (2) the list of links contained in the web page. We
have already computed the list of links.
def analyze(url):

"'prints the frequency of every word in web page url and

prints and returns the list of http links, in absolute

format, in it"

print('Visiting', url) # for testing

obtain links in the web page

content = urlopen(url).read().decode()

Programming and Problem-Solving ... 18.14 The World Wide Web (WWW) ‘

collector = Collector(url)
collector.feed(content)

urls = collector.getLinks() # get list of links

compute word frequencies

content = collector.getData() # get text data as a string

freq = frequency(content)

print the frequency of every text data word in web page

print("\n{:50} {:10} {:5}'.format("URL', 'word', 'count’))

for word in freq:

print("{:50} {:10} {:5}'.format(url, word, freq[word]))

print the http links found in web page

print("\n{:50} {:10}".format('URL', 'link"))

for link in urls:

print('{:50} {:10}".format(url, link))

return urls
Supporting Components
The analyze() function depends on two important helper classes/functions:
1. The Collector Class
The Collector is a subclass of HTMLParser.
It is designed to:

o Collect all hyperlinks (tags).
e Collect visible text data for word frequency analysis.

from html.parser import HTMLParser

from urllib.parse import urljoin

class Collector(HTMLParser):

'Collects text and links from a web page'

def init_ (self, url):
HTMLParser. _init _ (self)
self.url = url
self.links = []
self.data = []

Centre for Distance Education 18.15 Acharya Nagarjuna University

def handle starttag(self, tag, attrs):
if tag =="a".
for (attr, value) in attrs:
if attr == "href":
absolute = urljoin(self.url, value)
if absolute.startswith('http'):
self.links.append(absolute)

def handle data(self, data):
self.data.append(data)

def getLinks(self):

return self.links

def getData(self):

return ' 'join(self.data)

2. The frequency() Function
The frequency() function computes the number of times each word occurs in the input text
string.
It uses a dictionary to store the results, with each word as a key and its count as a value.
def frequency(text):
'returns a dictionary with frequency of each word in text'
freq = {}
words = text.split()
for w in words:
w = w.lower()
freq[w] = freq.get(w, 0) + 1

return freq

Putting It All Together
Here is how these functions integrate into the recursive crawler:
visited = set()
def crawl2(url):

"Recursive crawler that analyzes and visits web pages

m

global visited

Programming and Problem-Solving ...

18.16 The World Wide Web (WWW)

visited.add(url)
links = analyze(url)
for link in links:
if link not in visited:
try:
crawl2(link)
except:

pass

Each time crawl2(url) visits a page, it calls analyze(url) to print the word frequencies and list

of discovered links. Then it recursively crawls those links that have not yet been visited.

Sample Output (Textbook Example)

Visiting https://example.com/one.html

URL
https://example.com/one.html
https://example.com/one.html

https://example.com/one.html

URL
https://example.com/one.html
https://example.com/one.html

https://example.com/one.html

Advantages of This Design

word count
beijing 3
paris 5
chicago 5

link
https://example.com/two.html
https://example.com/three.html
https://example.com/four.html

o Reusability: The analyze() function can be used independently to examine a single

web page.

o Transparency: The printed tables clearly show how the crawler progresses and what it

extracts.

o Extensibility: The frequency() function can easily be modified to filter stop words,
compute relative frequencies, or export data.
e Scalability: The approach can be integrated into larger search-engine style crawlers

with minimal changes.

Centre for Distance Education 18.17 Acharya Nagarjuna University

18.5 SUMMARY

The World Wide Web operates through client-server communication using the HTTP
protocol.

URLs identify resources, while HTML structures content.

Python provides modules like urllib.request, urllib.parse, and html.parser for web
automation and content retrieval.

Regular expressions enable text pattern matching for data extraction.

A web crawler automates navigation and analysis of web pages.

18.6 TECHNICAL TERMS

HTTP
URL
HTML
Parser
Crawler

18.7 SELF-ASSESSMENT QUESTIONS

PN R

What are the main components of the World Wide Web?

Explain the structure and components of a URL.

Write a Python program to download and display HTML from a website.
What is the purpose of HTMLParser?

Define regular expressions and list common regex functions.

Explain how Python’s urllib module handles HTTP requests.

Describe how to extract hyperlinks from HTML using Python.

Design a simple web crawler that follows links up to two levels deep.

18.8 SUGGESTED READINGS

Ljubomir Perkovi¢, Introduction to Computing Using Python: An Application
Development Focus, Wiley (2012).

Mark Lutz, Programming Python, O’Reilly Media.

David Beazley, Python Essential Reference, Addison-Wesley.

Jeffrey Friedl, Mastering Regular Expressions, O’Reilly Media.

Mrs. Appikatla Pushpa Latha

LESSON- 19
STRING PATTERN MATCHING

AIMS AND OBJECTIVES
After completing this lesson, the learner will be able to:

e Understand the concept of pattern matching and its importance in text mining and
data extraction.

e Explain the syntax and structure of regular expressions (regex).

e Identify and apply common regex operators and metacharacters.

e Use the Python re module for pattern-based searching, matching, replacing, and
extracting data.

e Develop programs that extract information such as emails, URLs, dates, and numbers
from text files and web content.

e Understand how regex enables data cleaning, validation, and web data mining.

STRUCTURE

19.1 Introduction to String Pattern Matching
19.2 Need for Text Mining
19.3 Regular Expressions
19.3.1 Basic Concepts and Examples
19.3.2 Common Regex Operators
19.3.3 Character Classes and Quantifiers
19.3.4 Grouping and Alternation
19.4 Python Module re
19.4.1 Regex Matching Functions
19.4.2 Examples and Applications
19.4.3 Using Regex for Data Extraction
19.5 Case Study: Extracting Links and Emails
19.6 Applications of Regular Expressions
19.7 Summary
19.8 Technical Terms
19.9 Self-Assessment Questions
19.10 Suggested Readings

19.1 INTRODUCTION TO STRING PATTERN MATCHING

To mine the text content of a web page or other text document, we need tools that help us
define text patterns and then search for strings in the text that match these text patterns.When
analyzing or mining text data (such as web pages, logs, or emails), it is often necessary to
search for patterns instead of fixed words.

Programming and Problem-Solving ... 19.2 String Pattern Matching

For example, you might need to:

Find all email addresses in a document,

Extract all URLs from a web page, or

Identify all dates in a text file.

To perform such tasks efficiently, we use regular expressions, or regex, which are
patterns describing sets of strings.

19.2 NEED FOR TEXT MINING

Text mining is a process of automatically discovering patterns, relationships, or structures in
textual data.

Using regular expressions, one can:
e Detect specific structures (e.g., phone numbers, postal codes).
Filter HTML content and extract hyperlinks.
Validate user inputs in web forms (e.g., email formats).
Analyze log files or large corpora of text.
Regular expressions are foundational tools in data preprocessing for Natural
Language Processing (NLP) and information retrieval.

19.3 REGULAR EXPRESSIONS

Regular expressions provide a compact and flexible way to match text patterns. They use
special symbols (called metacharacters) to describe text structures. Regular expressions
(regex) are patterns that describe sets of strings and are widely used for searching and text
manipulation.

19.3.1 Basic Concepts and Examples

The simplest regular expression is one that doesn’t use any regular expression operators. For
example, the regular expression best matches only one string, the string 'best'":

Regular Expression Matching String(s)
best best

'be.t' matches best, but also 'belt', 'beet', 'be3t', and 'be!t', among others:

Regular Expression Matching String(s)
be.t best, belt, beet, bezt, be3t, belt, be
t,...

Pattern: b e . t

VA
String: b e s t — 4 Match

Centre for Distance Education 19.3 Acharya Nagarjuna University

b el t — &4 Match
b e e t — [4 Match
b e ! t — |4 Match
b e t — (4] Match

Explanation:
e The dot (.) acts as a wildcard, matching any single character.
e Only strings that start with b and e, and end with t of length 4, will match.

For example, the operator * in regular expression be*t matches 0 or more repetitions of the
previous character (e). It therefore matches bt and also bet, beet, and so on:

Regular Expression Matching String(s)

be*t bt, bet, beet, beeet, beeeet, . . .
be+t bet, beet, beeet, beeeet, . . .
bee?t bet, beet

Example: be*t
Pattern: b e* t
Lo
String: bt — (zero 'e")
bet —[4
b eet — [4
b cect— 4

Flow of Matching:
Start — 'b' — zero or more 'e's — 't' — Match
Explanation:
o The * operator repeats the previous character zero or more times.
e This pattern is greedy, meaning it will match as many 'e's as possible before moving
to 't'.
Example: be+t
The pattern be+t requires at least one 'e' before 't'.
Pattern: b e+ t
U
String: bt — ¥ (no'e")
bet —
b eet —
b eeet—

Programming and Problem-Solving ... 19.4 String Pattern Matching

Flow of Matching:
Start — 'b' — one or more 'e's — 't' — Match

Example: bee?t
The pattern bee?t matches strings where 'b' is followed by one 'e' and an optional 'e' before
't
Pattern: b e e? t
String: bet — (0 extra'e")

beet — (1 extra'e")

beeet— ¥ (toomany'e)
Explanation:

e The ? operator means the previous character may occur zero or one time.

For example, regular expression hello|Hello matches strings 'hello’ and 'Hello':

Regular Expression Matching String(s)

hello|Hello hello, Hello.

a+|b+ a, b, aa, bb, aaa, bbb, aaaa, bbbb, . ..
ab+|ba+ ab, abb, abbb, . . ., and ba, baa, baaa, . ..

Example: Alternation — hello|Hello
Alternation (]) allows for either-or matching.
Pattern: hello | Hello
Lo
String: hello —
String: Hello —
String: hELLO — 3
Flow Diagram:
Start

— "hello" — Match

L— "Hello" — Match

Example: Grouping — (ab)+
Grouping () allows repetition of multiple characters as a unit.
Pattern: (ab)+

String: ab —
String: abab —
String: ababab — |4
String: a — X
String: abb — X
Flow Diagram:

Centre for Distance Education

19.5

Start — 'a' — 'b' — repeat group (ab) — Match

Example: Character Class [A-Za-z0-9 |
This matches any alphanumeric character or underscore.

Pattern: [A-Za-z0-9]+
String: Hello123 —
String: Hi!
Flow Diagram:

— & (! not in class)

Start — Accept any A—Z, a-z, 0-9, or' ' — repeat (+) — Match

Regular Expression Matching Strings

best best

be.t best, belt, beet, be3t, be t, bet
be*t bt, bet, beet, beeet, beeeet
bett bet, beet, beeet, beeeet

bee?t bet, beet

“hello Hello®

ot b

‘ab+ ba+"

Example — Find all links in a web page:

import re

html = 'Python Docs'

links = re.findall(r'href="(.*?)"", html)

print(links)
Output:
['https://python.org', '/docs']

Example: Email Extraction Regex

Pattern used:
[\W\.-[+@[\W\.-]+

Components Breakdown:

Component | Meaning

[\w\.-]+ one or more word, dot, or hyphen characters
@ literal at-symbol

[\W\.-]+ domain name part

Acharya Nagarjuna University

Programming and Problem-Solving ... 19.6 String Pattern Matching

Example Text:
Contact: userl@mail.com, info@company.org

Matches:

userl @mail.com
info@company.org
Flow Diagram:

Start

— [word/dot/hyphen]+
- '@

— [word/dot/hyphen]+
— Match

19.3.2 Common Regex Operators

Operator Interpretation

Matches any character except a new line character.

* Matches 0 or more repetitions of the regular expression immediately
preceding it. So in regular expression ab*, operator * matches 0 or
more repetitions of b, not ab.

+ Matches | or more repetitions of the regular expression immediately
preceding it.

7 Matches 0 or 1 repetitions of the regular expression immediately
preceding it.

] Matches any character in the set of characters listed within the

square brackets; a range of characters can be specified using the first

and last character in the range and putting '-' in between.

If S 1s a set or range of characters, then [~S] matches any character

not in S.

It A and B are regular expressions, AIB matches any string that is

matched by A or B.

Fig 19.1 Some regular expression operator.

19.3.3 Character Classes and Quantifiers
Character classes help define sets of characters.

Common shorthand character classes include:

Symbol | Description

\d Digit (0-9)

\D Non-digit

\w Word character (letters, digits, underscore)
\W Non-word character

\s Whitespace

\S Non-whitespace

Centre for Distance Education 19.7 Acharya Nagarjuna University

Example:
import re
pattern = r'\d+'
text = "My age is 25 and my pin code is 530003."
numbers = re.findall(pattern, text)
print(numbers)
Output:
['25','530003"]
19.4 PYTHON MODULE RE
Python’s re module implements functions for regex pattern matching.

It provides tools to search, extract, replace, and validate strings based on regular expressions.

19.4.1 Regex Matching Functions

Function Description

re.match(pattern, string) Checks if the pattern matches from the beginning of the string.

re.search(pattern, string) Searches the entire string for the first occurrence of the pattern.

re.findall(pattern, string) | Returns a list of all non-overlapping matches.

re.sub(pattern, repl, string) | Substitutes all occurrences of a pattern with another string.

re.split(pattern, string) Splits a string based on the pattern.

19.4.2 Examples and Applications

Example 1 — Find all links in a web page

import re

html = 'Python Docs'
links = re.findall(r'href="(.*?)"", html)

print(links)

Output:

['https://python.org', '/docs']

Example 2 — Extract email addresses

text = "Contact: userl @mail.com, info@company.org"
emails = re.findall(r'[\w\.-[+@[\w\.-]+', text)
print(emails)

Output:

['userl @mail.com', 'info@company.org']

Example 3 — Replace all digits
import re

text = "Order numbers: 123, 456, 789"

‘ Programming and Problem-Solving ... 19.8

String Pattern Matching

new_text = re.sub(r'\d', 'X', text)
print(new_text)

Output:
Order numbers: XXX, XXX, XXX

Example 4 — Search for a pattern

sentence = "Python programming is powerful."

if re.search(r'program’, sentence):
print("Pattern found!")

Output:

Pattern found!

19.4.3 Using Regex for Data Extraction

Regular expressions can extract structured data from unstructured text.

Common regex functions:

Function | Description

re.match() | Matches from the beginning of a string.

re.search() | Finds the first occurrence of a pattern.

re.findall() | Returns all non-overlapping matches.

re.sub() Substitutes one string for another.

Example — Extract Email Addresses:

text = "Contact: userl@mail.com, info@company.org"
emails = re.findall(r'[\w\.-[+@[\w\.-]+', text)

print(emails)
Output:
['user]l @mail.com', 'info@company.org']

Example — Extract Dates
import re

text = "Meetings on 12-05-2024 and 25/10/2025."
dates = re.findall(r"\d {2 }[-/]\d {2} [-/]\d {4}, text)

print(dates)
Output:
['12-05-2024', '25/10/2025']

Example — Validate Phone Numbers

numbers = ["+91-9876543210", "12345", "91-876543210"]

for num in numbers:

if re.match(r'""\+2\d{1,2}-\d{10}$', num):

print(num, "is valid.")

Centre for Distance Education 19.9 Acharya Nagarjuna University

Output:
+91-9876543210 is valid.

19.5 CASE STUDY — EXTRACTING LINKS AND EMAILS

The following program combines regular expressions with file processing and text extraction.
import re

html content ="'

<htmI><body>

<p>Contact: userl@mail.com</p>

Home

About

</body></htmI>

m

emails = re.findall(r'[\w\.-[+@[\w\.-]+', html content)
links = re.findall(r'href="(.*?)"', html content)

print("Emails found:", emails)

print("Links found:", links)

Output:

Emails found: ['userl @mail.com']

Links found: ['https://example.com/home’, 'https://example.com/about']

19.6 APPLICATIONS OF REGULAR EXPRESSIONS

Domain Application

Web scraping Extracting hyperlinks, image URLs, and metadata

Data cleaning Removing unwanted symbols, HTML tags, or whitespace
Validation Checking emails, phone numbers, IP addresses

Natural Language Processing | Tokenizing text, filtering stop words

Log analysis Detecting error messages or [P addresses

Security Finding SQL injection or suspicious input patterns

1. Web Scraping

Application: Extracting hyperlinks, image URLs, and metadata

Explanation:

Web scraping involves collecting data from websites. Since web pages are mostly in HTML,

Regex can be used to extract specific patterns of text such as URLs, links, or metadata.

For example:

o Extracting hyperlinks:

Programming and Problem-Solving ... 19.10 String Pattern Matching

e href="(https?://["]+)"
— This pattern matches all hyperlinks beginning with http or https.
o Extracting image URLs:
o <img[">Ttsrc="(["">+)"
— Captures all image source (src) attributes from tags.
o Extracting metadata (e.g., title, description):
e <meta\stname="description"\s+content="([""]+)"

— Extracts content of meta description tags.
@ Use case example:

In web scraping scripts using Python (e.g., with requests and re), Regex helps filter out only
the needed text from raw HTML before further processing or storing it in databases.

2. Data Cleaning
Application: Removing unwanted symbols, HTML tags, or whitespace

Explanation:

Data collected from the web or files often contains extra characters, symbols, or HTML code
that must be cleaned before analysis. Regex helps identify and remove such unwanted
patterns quickly.

Examples:

e Removing HTML tags:
o <[>+
— Removes everything between < and > (i.e., HTML tags).
o Removing special characters:
e ["a-zA-Z0-9\s]
— Keeps only alphabets, digits, and spaces.
o Trimming extra whitespace:
o \st+
— Matches multiple spaces or tabs; can be replaced with a single space.
@ Use case example:
Cleaning text data before feeding it to an NLP model or database ensures consistency and

accuracy.

3. Validation

Application: Checking emails, phone numbers, IP addresses

Centre for Distance Education 19.11 Acharya Nagarjuna University

Explanation:
Regex is widely used for input validation—to ensure data entered by users follows the correct
format.
Examples:
e Email validation:
e "Na-zA-Z0-9. %+-+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,} $
— Matches most standard email formats.
e Phone number validation (India):
o AO\HI1\-\s]?)?[6-91\d{9}$
— Matches Indian mobile numbers with or without country code.
o [P address validation:
o MN((25[0-5712[0-4Nd|[0-1IND{ 1,23\) {3 }(25[0-5]]2[0-4\d|[0-1]Nd{1,2})$
— Ensures valid IPv4 format.
@ Use case example:

Used in web forms or backend systems to reject invalid entries before saving them to

databases.

4. Natural Language Processing (NLP)
Application: Tokenizing text, filtering stop words
Explanation:
Regex helps process and analyze textual data efficiently in NLP.
Examples:

o Tokenization (splitting text into words):

o \wt
— Extracts words from text while ignoring punctuation.

o Filtering stop words:

e You can use Regex to remove common words like “the”, “is”, “at”, etc., using

patterns such as:
o \b(thelis|in|at|which|on)\b

— Removes listed stop words.

o Identifying specific word patterns:

o For instance, finding all hashtags or mentions in tweets:

o #wt or @wt

‘ Programming and Problem-Solving ... 19.12 String Pattern Matching

@ Use case example:

In preprocessing pipelines of NLP tasks such as sentiment analysis or text classification.

5. Log Analysis
Application: Detecting error messages or IP addresses
Explanation:
System and application logs contain large volumes of text data. Regex enables automatic
pattern matching to detect key information.
Examples:
o Extracting IP addresses:
e \b\d{1,3}(\\d{1,3}){3}\b
— Finds all IPv4 addresses.
o Finding error messages:
e ERROR|FATAL|EXCEPTION
— Detects critical log entries.
e Extracting timestamps:
o \d{4}-\d{2}-\d{2} \d{2}:\d{2}:\d{2}
— Captures datetime formats (e.g., 2025-10-29 20:15:30).
@ Use case example:

Used in server monitoring or debugging tools to locate issues from log files quickly.

6. Security
Application: Finding SQL injection or suspicious input patterns
Explanation:
Regex can detect potentially harmful user inputs or code injection attempts in web
applications.
Examples:

e Detecting SQL injection attempts:

o (2?2 AE:[\n\r)*2*/)|(\b(select|jupdate|delete|insert|drop|exec)\b)
— Identifies suspicious SQL keywords or comment patterns.

o Identifying cross-site scripting (XSS) attempts:

o <script.*?>*?</script>

— Matches embedded JavaScript code in inputs.

Centre for Distance Education 19.13 Acharya Nagarjuna University

Filtering special characters:

[<"%:0&H+]

— Detects characters that can be part of malicious payloads.

@ Use case example:

Used in web application firewalls (WAFs), input sanitization, and log-based intrusion

detection systems.

19.7 SUMMARY

String pattern matching enables flexible search and extraction from text.

Regular expressions (regex) are symbolic patterns that describe sets of strings.

The re module provides Python tools for searching, matching, and replacing patterns.
Common operators like ., *, +, ?, and | allow powerful pattern combinations.

Regex is vital for web mining, data validation, and text processing.

19.8 TECHNICAL TERMS

Regex (Regular Expression)
Metacharacter

Character Class

Quantifier

Capture Group

Escaping

19.9 SELF-ASSESSMENT QUESTIONS

Essay Questions

1. Define regular expressions. Explain their importance in text mining.

2. Discuss various regex operators with suitable examples.

3. Describe how the re module supports pattern matching and substitution.

4. Explain the difference between re.match(), re.search(), and re.findall().
Short Notes

1. Write a note on character classes.

2. How are grouping and alternation used in regex?

3. Explain the use of re.sub() with an example.

19.10 SUGGESTED READINGS

1.

[98)

Ljubomir Perkovié¢, Introduction to Computing Using Python: An Application
Development Focus, Wiley, 2012.

Mark Lutz, Learning Python, 5th Edition, O’Reilly, 2013.

Al Sweigart, Automate the Boring Stuff with Python, No Starch Press, 2020.

Python Official Documentation — https://docs.python.org/3/library/re.html

Mrs. Appikatla Pushpa Latha

LESSON- 20
DATABASE PROGRAMMING IN PYTHON

AIMS AND OBJECTIVES

After completing this lesson, the learner will be able to:

e Understand the concept of databases and their importance in software applications.
e Explain the structure and operations of relational databases using SQL.
e Identify the role of tables, keys, and relationships in organizing data.

e Use SQL commands such as SELECT, INSERT, UPDATE, and DELETE to manipulate
data.

Apply aggregate functions and grouping to summarize data.

Develop Python programs that interact with databases using the sqlite3 module.
Create, query, and modify databases directly from Python scripts.

Manage database transactions, handle exceptions, and ensure data consistency.
Integrate SQL queries into Python-based data analysis and application workflows.

Appreciate the role of databases in real-world applications such as data storage, reporting,
and analytics.

STRUCTURE

20.1 Databases and SQL
20.1.1 Introduction to Databases and SQL
20.1.2 Database Tables and Data Representation
20.1.3 Structured Query Language (SQL) Overview
20.1.4 Statement SELECT
20.1.5 Clause WHERE
20.1.6 Built-in SQL Functions
20.1.7 Clause GROUP BY and HAVING
20.1.8 Making SQL Queries Involving Multiple Tables
20.1.9 Statement CREATE TABLE
20.1.10 Statements INSERT, UPDATE, and DELETE
20.2 Database Programming in Python
20.2.1 Introduction to Python Database Access
20.2.2 Database Engines and SQLite
20.2.3 Creating a Database with the sqlite3 Module
20.2.4 Executing SQL Queries from Python
20.2.5 Fetching and Displaying Data

20.2.6 Parameterized Queries and User Input

Programming and Problem-Solving ... 20.2 Database Programming in Python

20.2.7 Committing Transactions and Closing Connections
20.2.8 Exception Handling in Database Programs
20.2.9 Using the with Statement for Automatic Resource Management
20.2.10 Integrating SQL with Python Data Structures (Lists, Dictionaries, Pandas)
20.2.11 Developing CRUD Applications (Create, Read, Update, Delete)
20.3 Functional Language Approach
20.3.1 List Comprehension and Functional Constructs
20.3.2 MapReduce Problem Solving Framework
20.3.3 MapReduce in the Abstract
20.3.4 Inverted Index Example
20.4 Parallel Computing
20.4.1 Introduction to Parallel Computing Concepts
20.4.2 Class Pool of the multiprocessing Module
20.4.3 Parallel Speedup and Performance
20.4.4 Parallel MapReduce Implementation
20.4.5 Comparing Parallel and Sequential MapReduce
20.5 Summary
20.6 Technical Terms
20.7 Self-Assessment Questions
20.8 Suggested Readings
20.1 DATABASES AND SQL

20.1.1 Introduction to Databases and SQL

A database is an organized collection of data designed to store, manage, and retrieve
information efficiently. Modern software systems rely heavily on databases to maintain user

records, transaction histories, inventory details, and analytical data.

A Database Management System (DBMS) provides the interface to define, create,
manipulate, and maintain databases. Among different types of DBMSs, the Relational
Database Management System (RDBMS) is the most widely used. It stores data in the form

of tables, which can be related through keys.

The Structured Query Language (SQL) is the standard language for interacting with

RDBMSs. SQL allows users to:

Create and modify database structures.
Insert, update, delete, and retrieve data.
Control access and manage transactions.

Centre for Distance Education

20.3

Acharya Nagarjuna University

20.1.2 Database Tables
A table is the fundamental structure in a relational database. It consists of:

e Rows (records) — represent individual entities.

o Columns (fields) — represent attributes of those entities.
Example: STUDENT Table

RollNo Name Branch Marks
101 Anjali CSE 87

102 Ramesh ECE 75

103 Kavya CSE 92
Key Concepts:

e Primary Key: uniquely identifies each row (e.g., RolINo)
o Foreign Key: links one table to another (e.g., RolINo in COURSE table)
o Constraints: ensure data integrity (e.g., NOT NULL, UNIQUE)

20.1.3 Structured Query Language (SQL) Overview

SQL consists of multiple categories of commands:

Category Description Examples
DDL (Data Definition Language) Defines and modifies | CREATE, ALTER,
database schema DROP

DML (Data Manipulation Language) | Manages data in tables INSERT, UPDATE,
DELETE

DQL (Data Query Language) Retrieves data SELECT

DCL (Data Control Language) Grants/revokes permissions GRANT, REVOKE

TCL (Transaction Control | Manages transactions COMMIT,

Language) ROLLBACK

20.1.4 Statement SELECT

The SELECT statement retrieves data from tables.
Syntax:

SELECT column_list

FROM table name

[WHERE condition]

[ORDER BY column_name [ASC|DESC]];

Example:

SELECT Name, Marks
FROM Student

WHERE Branch ='CSE'
ORDER BY Marks DESC;

Programming and Problem-Solving ... 20.4 Database Programming in Python
Result:

Name Marks

Kavya 92

Anjali 87

20.1.5 Clause WHERE
Filters records based on a condition.

Examples:

SELECT * FROM Student WHERE Marks > 80;

SELECT * FROM Student WHERE Branch = 'CSE' AND Marks > 85;

SELECT * FROM Student WHERE Name LIKE 'A%';

Operators Used:
e Comparison: =, >, <, >=, <= <>
e Logical: AND, OR, NOT
o Pattern Matching: LIKE, IN, BETWEEN
e NULL Checking: IS NULL, IS NOT NULL

20.1.6 Built-in SQL Functions
SQL includes aggregate and scalar functions.

Type Function Example

Aggregate | COUNT() SELECT COUNT(*) FROM Student;
AVG() SELECT AVG(Marks) FROM Student;
MAX(), MIN(), SUM()

Scalar UPPER(Name) Converts text to uppercase
LENGTH(Name) Returns string length

ROUND(Marks, 2)

Rounds numbers

20.1.7 Clause GROUP BY and HAVING

Used for grouping and filtering aggregate results.
SELECT Branch, AVG(Marks) AS AvgMarks
FROM Student

GROUP BY Branch
HAVING AVG(Marks) > 80;

Output:

Branch

AvgMarks

CSE

89.5

Centre for Distance Education 20.5 Acharya Nagarjuna University

20.1.8 SQL Queries Involving Multiple Tables

JOIN operations combine data from multiple tables.

Example:

SELECT Student.Name, Course.CourseName
FROM Student

JOIN Course

ON Student.RolINo = Course.RollNo;

JOIN Types:

INNER JOIN — Only matching rows

LEFT JOIN — All from left table + matches

RIGHT JOIN — All from right table + matches

FULL OUTER JOIN — All rows from both sides (where supported)

20.1.9 Statement CREATE TABLE

Defines the structure of a table.
CREATE TABLE Employee (
EmpID INTEGER PRIMARY KEY,
Name TEXT NOT NULL,
Department TEXT,
Salary REAL CHECK (Salary > 0)

);

20.1.10 Statements INSERT, UPDATE, and DELETE
INSERT:

INSERT INTO Employee (EmpID, Name, Department, Salary)
VALUES (101, 'Meena', 'HR', 45000);

UPDATE:

UPDATE Employee

SET Salary = Salary + 5000

WHERE Department ="'IT";

DELETE:

DELETE FROM Employee WHERE EmpID = 101;

Programming and Problem-Solving ... 20.6 Database Programming in Python

20.2 DATABASE PROGRAMMING IN PYTHON

20.2.1 Introduction

Python supports database operations through the DB-API (PEP 249) interface.
It provides a consistent way to connect to, query, and manage relational databases.

20.2.2 Database Engines and SQLite

SQLite is a built-in, lightweight, file-based relational database included with Python.
It is ideal for learning and small applications.

import sqlite3

conn = sqlite3.connect(‘university.db')

20.2.3 Creating a Database using sqlite3
import sqlite3
conn = sqlite3.connect('student.db')
cur = conn.cursor()
cur.execute(""CREATE TABLE IF NOT EXISTS Student (
RollNo INTEGER PRIMARY KEY,
Name TEXT,
Branch TEXT,
Marks INTEGER)")

conn.commit()
conn.close()

20.2.4 Executing SQL Queries from Python

cur.execute("INSERT INTO Student VALUES (101, 'Anjali', 'CSE', 87)")
cur.execute("INSERT INTO Student VALUES (102, 'Ramesh’, 'ECE', 75)")
conn.commit()

20.2.5 Fetching and Displaying Data
cur.execute("SELECT * FROM Student")
for row in cur.fetchall():

print(row)
Output:
(101, 'Anjali', 'CSE', 87)
(102, 'Ramesh’, 'ECE', 75)

20.2.6 Parameterized Queries
Prevents SQL injection:
cur.execute("SELECT * FROM Student WHERE Name=?", ('Anjali',))

20.2.7 Committing Transactions and Closing Connections
conn.commit()

Centre for Distance Education 20.7 Acharya Nagarjuna University

conn.close()

20.2.8 Exception Handling
try:
conn = sqlite3.connect('student.db')
cur = conn.cursor()
cur.execute("INSERT INTO Student VALUES (104, 'Meena', 'IT', 88)")
conn.commit()
except sqlite3.Error as e:
print("Error:", €)
finally:
conn.close()

20.2.9 Using with Statement

with sqlite3.connect('student.db') as conn:
cur = conn.cursor()
cur.execute("SELECT * FROM Student")
print(cur.fetchall())

20.2.10 Integrating SQL with Python Data Structures
Using Pandas for analysis:

import pandas as pd

conn = sqlite3.connect('student.db")

df =pd.read sql _query("SELECT * FROM Student", conn)

print(df)

20.2.11 Example CRUD Application
(Full working Python example — Create, Read, Update, Delete)
import sqlite3

def create table():
with sqlite3.connect('college.db') as conn:
conn.execute(""CREATE TABLE IF NOT EXISTS Student
(RolINo INTEGER PRIMARY KEY, Name TEXT, Branch TEXT, Marks
INTEGER)")

def insert_student(r, n, b, m):
with sqlite3.connect('college.db') as conn:
conn.execute("INSERT INTO Student VALUES (?, 2, 2, ?)", (r, n, b, m))

def view_students():
with sqlite3.connect('college.db') as conn:
for row in conn.execute("SELECT * FROM Student"):
print(row)

Programming and Problem-Solving ... 20.8 Database Programming in Python

create table()

insert_student(1, 'Anjali', 'CSE', 89)
insert_student(2, 'Ramesh', 'ECE', 78)
view_students()

20.3 FUNCTIONAL LANGUAGE APPROACH

20.3.1 List Comprehension and Functional Constructs

Functional programming emphasizes writing programs using expressions rather than
statements.

Python supports several functional programming concepts such as list comprehensions,
map(), filter(), reduce(), and lambda functions.

List Comprehensions
A list comprehension provides a concise way to create lists.
Syntax:

[expression for item in iterable if condition]

Example 1:
squares = [x*x for x in range(1, 6)]
print(squares)

Output:
[1,4,9,16,25]

Example 2: Filtering

even_numbers = [x for x in range(10) if x % 2 == 0]
print(even_numbers)

Output:
[0,2,4,6,8]

List comprehensions are faster and more readable than traditional loops.

Functional Constructs in Python
1. lambda Function:
An anonymous one-line function.
square = lambda x: x * x
print(square(5))

2. map() Function:
Applies a function to all items in an iterable.
numbers = [1, 2, 3, 4]
result = list(map(lambda x: x**2, numbers))
print(result)
Output: [1,4, 9, 16]

Centre for Distance Education 20.9 Acharya Nagarjuna University

3. filter() Function:
Selects elements that satisfy a condition.
evens = list(filter(lambda x: x % 2 == 0, numbers))
print(evens)
Output: [2, 4]

4. reduce() Function (from functools):
Combines items cumulatively.
from functools import reduce
total = reduce(lambda x, y: x +y, numbers)
print(total)
Output: 10

20.3.2 MapReduce Problem Solving Framework
MapReduce is a programming paradigm for processing large datasets in parallel across
multiple systems. It divides computation into two major phases:
1. Map Phase:
Each record (key—value pair) is processed independently to produce intermediate
results.
2. Reduce Phase:
The intermediate results are aggregated or combined to produce final output.
This model is the foundation of frameworks like Hadoop and Spark.

Example: Word Count Using MapReduce
from functools import reduce

text = "Python supports functional programming using map and reduce"
words = text.split()

Map step: Create pairs
mapped = [(w, 1) for w in words]

Reduce step: Count occurrences

def reducer(acc, item):
word, count = item
acc[word] = acc.get(word, 0) + count
return acc

word_count = reduce(reducer, mapped, {})

print(word count)

Output:

{'Python'": 1, 'supports": 1, 'functional': 1, 'programming": 1,
'using": 1, 'map": 1, 'and": 1, 'reduce': 1}

Programming and Problem-Solving ... 20.10 Database Programming in Python

20.3.3 MapReduce in the Abstract
In general, MapReduce operates on a collection of records:

Phase Input Function Output

Map (ki, vi) map() list of (kz, v2)
Shuffle (kz, v2) group by key (ka, [V21, V22, ...])
Reduce (ka, list(v2)) reduce() (ks, v3)

Conceptual Example:
data=[("A", 3), ("B", 5), ("A", 2), ("B", 7)]
Map phase - already done
Shuffle phase
shuffled = {}
for k, v in data:
shuffled.setdefault(k, []).append(v)

Reduce phase

reduced = {k: sum(vs) for k, vs in shuffled.items()}
print(reduced)

Output:

{'A":5,'B" 12}

20.3.4 Inverted Index Example
An inverted index maps words to the documents in which they appear — a key concept in
search engines.
Example:
documents = {
"doc1": "python supports functional programming",
"doc2": "functional programming enables mapreduce",

"doc3": "python and mapreduce are powerful"

b
Map Phase
mapped = []

for doc, text in documents.items():
for word in text.split():

mapped.append((word.lower(), doc))

Centre for Distance Education 20.11 Acharya Nagarjuna University

Shuffle Phase
index = {}
for word, doc in mapped:

index.setdefault(word, set()).add(doc)

Display Inverted Index

for word, docs in index.items():
print(word, ":", docs)

Output:

python : {'docl’, 'doc3'}

functional : {'docl’, 'doc2'}

mapreduce : {'doc2', 'doc3'}

This is the foundation of information retrieval systems like Google Search.

20.4 PARALLEL COMPUTING
20.4.1 Introduction to Parallel Computing Concepts

Parallel computing refers to performing multiple computations simultaneously.
It enhances performance by utilizing multiple CPU cores or processors.

Python supports parallelism through:
e The threading module (lightweight concurrency)
e The multiprocessing module (true parallelism with separate processes)

Advantages:
o Faster computation for large datasets
o Better utilization of CPU resources
o Useful in Al, image processing, and simulations

20.4.2 Class Pool of the multiprocessing Module

Python’s multiprocessing.Pool provides an easy interface for distributing work among
multiple processes.

Example:

from multiprocessing import Pool

def square(n):
return n * n
if name ==" main ":
with Pool(4) as p:
result = p.map(square, [1, 2, 3, 4, 5])

‘ Programming and Problem-Solving ... 20.12

Database Programming in Python

print(result)
Output:
[1,4,9, 16, 25]
Each process handles one element in parallel.

20.4.3 Parallel Speedup and Performance
Speedup (S):

S — Tsequentml
TparaIIeI
Tsequent:’ai .
where = time for one core,
TparaIIeI . . .

an = time with multiple cores.
Efficiency (E):
E S

N

where = number of processors.
Example:

If a task takes 10 seconds sequentially and 3 seconds on 4 cores:

—1D—333E—333—083
- 3 - . » - 4 - .

Thus, efficiency = 83%.

20.4.4 Parallel MapReduce Implementation

Parallel MapReduce distributes both mapping and reducing tasks across processors.

Example: Word Count (Parallel)
from multiprocessing import Pool
from functools import reduce

text = ["python supports mapreduce",
"mapreduce enables parallel computing",

"parallel mapreduce in python"]

def map_func(line):
return [(w, 1) for w in line.split()]

def reduce func(acc, item):

Centre for Distance Education 20.13 Acharya Nagarjuna University

word, count = item

acc[word] = acc.get(word, 0) + count
return acc

if name ==" main "

with

n "

Pool(3) as p:

mapped = p.map(map_func, text)

Flatten and reduce

pairs

= [pair for sublist in mapped for pair in sublist]

word count = reduce(reduce func, pairs, {})
print(word_count)

Output:
{'python'": 2, 'supports'": 1, 'mapreduce': 3,
'enables': 1, "parallel': 2, 'computing'”: 1, 'in": 1}

20.4.5 Comparing Parallel and Sequential MapReduce

Aspect Sequential Parallel

Execution One processor | Multiple processors

Speed Slower Faster

Resource Utilization | Single core Multi-core

Complexity Simple Requires synchronization
Use Case Small data Big data / high computation

20.5 SUMMARY

Functional programming emphasizes expressions and immutability.

List comprehensions and lambda functions make Python concise and powerful.
MapReduce divides computation into mapping and reducing phases for large data
processing.

Parallel computing executes tasks concurrently using multiple processors.

The multiprocessing module enables scalable, high-performance Python programs.

20.6 TECHNICAL TERMS

Functional Programming
List Comprehension
Lambda Function
MapReduce

Pool

Speedup

Efficiency

Programming and Problem-Solving ... 20.14 Database Programming in Python

20.7 SELF-ASSESSMENT QUESTIONS

Short Questions

R R O

Define functional programming.

Write any two examples of list comprehensions in Python.
Differentiate between the map() and filter() functions.

What is the purpose of the reduce() function?

Explain the two main phases of the MapReduce framework.

State any two advantages of parallel computing.

Write the formula for Speedup and Efficiency in parallel computing.
What is the role of the multiprocessing.Pool class in Python?
Mention any two real-world applications of parallel computing.

10 List any two differences between sequential and parallel MapReduce execution.

Essay Questions

1.

2.

10.

Explain the concept of functional programming and describe how it is supported in
Python with examples.

Discuss list comprehensions in Python and illustrate their use with appropriate
examples.

Compare and contrast the working of map(), filter(), and reduce() functions with
code illustrations.

Describe the MapReduce problem-solving framework. How does it simplify data
processing in distributed environments?

Develop a Python program that counts the frequency of words in a given text using
the MapReduce approach.

What is parallel computing? Explain its importance in high-performance and data-
intensive applications.

Write a Python program using multiprocessing.Pool to compute the cube of
numbers in parallel.

Define Speedup and Efficiency in parallel systems. Illustrate how they are used to
measure performance improvement.

Compare sequential and parallel MapReduce executions in terms of processing,
resource usage, and efficiency.

Discuss the applications of parallel computing in real-world domains such as
machine learning, data mining, and simulations.

20.8 SUGGESTED READINGS

b s

Mark Lutz, Learning Python, O’Reilly Media.

Allen B. Downey, Think Python, O’Reilly Media.

Ramez Elmasri & Shamkant Navathe, Fundamentals of Database Systems, Pearson.
Jeffrey Dean and Sanjay Ghemawat, MapReduce: Simplified Data Processing on
Large Clusters, Google Research Paper.

Python Official Documentation:
https://docs.python.org/3/library/multiprocessing.html

Mrs. Appikatla Pushpa Latha

