

PROGRAMMING AND PROBLEM-

SOLVING USING PYTHON
MASTER OF COMPUTER APPLICATIONS (MCA)

SEMESTER-II, PAPER-V

LESSON WRITERS

Dr. U. Surya Kameswari

Assistant Professor

Department of CS&E

Acharya Nagarjuna University

Dr. Neelima Guntupalli

Assistant Professor

Department of CS&E

Acharya Nagarjuna University

Dr. Kampa Lavanya

Assistant Professor

Department of CS&E

Acharya Nagarjuna University

Dr. Vasantha Rudrarnalla

Faculty, Department of CS&E

Acharya Nagarjuna University

Mrs. Appikatla Pushpalatha

Faculty, Department of CS&E

Acharya Nagarjuna University

EDITOR

Dr. Kampa Lavanya

Assistant Professor

Department of CS&E

Acharya Nagarjuna University

ACADEMIC ADVISOR

 Dr. Kampa Lavanya

Assistant Professor

Department of CS&E

Acharya Nagarjuna University

DIRECTOR, I/c.

Prof. V. Venkateswarlu
 M.A., M.P.S., M.S.W., M.Phil., Ph.D.

Centre for Distance Education

Acharya Nagarjuna University

Nagarjuna Nagar 522 510

Ph: 0863-2346222, 2346208

 0863- 2346259 (Study Material)

Website www.anucde.info

E-mail: anucdedirector@gmail.com

mailto:anucdedirector@gmail.com

MCA : Programming and Problem-Solving Using Python

First Edition : 2025

No. of Copies :

© Acharya Nagarjuna University

This book is exclusively prepared for the use of students of MASTER OF COMPUTER

APPLICATIONS (MCA), Centre for Distance Education, Acharya Nagarjuna University

and this book is meant for limited circulation only.

Published by:

Prof. V. VENKATESWARLU

Director, I/c

Centre for Distance Education,

Acharya Nagarjuna University

Printed at:

FOREWORD

Since its establishment in 1976, Acharya Nagarjuna University has been

forging ahead in the path of progress and dynamism, offering a variety of courses

and research contributions. I am extremely happy that by gaining ‘A+’ grade from

the NAAC in the year 2024, Acharya Nagarjuna University is offering educational

opportunities at the UG, PG levels apart from research degrees to students from

over 221 affiliated colleges spread over the two districts of Guntur and Prakasam.

The University has also started the Centre for Distance Education in 2003-

04 with the aim of taking higher education to the door step of all the sectors of the

society. The centre will be a great help to those who cannot join in colleges, those

who cannot afford the exorbitant fees as regular students, and even to housewives

desirous of pursuing higher studies. Acharya Nagarjuna University has started

offering B.Sc., B.A., B.B.A., and B.Com courses at the Degree level and M.A.,

M.Com., M.Sc., M.B.A., and L.L.M., courses at the PG level from the academic

year 2003-2004 onwards.

To facilitate easier understanding by students studying through the distance

mode, these self-instruction materials have been prepared by eminent and

experienced teachers. The lessons have been drafted with great care and expertise

in the stipulated time by these teachers. Constructive ideas and scholarly

suggestions are welcome from students and teachers involved respectively. Such

ideas will be incorporated for the greater efficacy of this distance mode of

education. For clarification of doubts and feedback, weekly classes and contact

classes will be arranged at the UG and PG levels respectively.

It is my aim that students getting higher education through the Centre for

Distance Education should improve their qualification, have better employment

opportunities and in turn be part of country’s progress. It is my fond desire that in

the years to come, the Centre for Distance Education will go from strength to

strength in the form of new courses and by catering to larger number of people. My

congratulations to all the Directors, Academic Coordinators, Editors and Lesson-

writers of the Centre who have helped in these endeavors.

Prof. K. Gangadhara Rao

M.Tech., Ph.D.,

Vice-Chancellor I/c

Acharya Nagarjuna University.

MASTER OF COMPUTER APPLICATIONS (MCA)

Semester-II, Paper-V

205MC24: Programming and Problem-Solving Using Python

SYLLABUS

UNIT I

Introduction: The Process of Computational Problem Solving, Python Programming

Language.

Python Data Types: Expressions, Variables and Assignments, Strings, List, Objects and

Classes, Python Standard Library

Imperative Programming: Python programs, Execution Control Structures, User-Defined

Functions, Python Variables and Assignments, Parameter Passing.

UNIT II

Text Files: Strings, Formatted Output, Files, Errors and Exception Handling

Execution and Control Structures: if Statement, for Loop, Two Dimensional Lists, while

Loop, More Loop Patterns, Additional lteration Control Statements

Containers and Randomness: Dictionaries, Other Built-in Container Types, Character

Encoding and Strings, Module random, Set Data Type.

UNIT III

Object Oriented Programming: Fundamental Concepts, Defining a New Python Class,

User- Defined Classes, Designing New Container Classes, Overloaded Operators,

lnheritance, User- Defined Exceptions

Namespaces: Encapsulation in Functions, Global versus Local Namespaces, Exception

Control Flow, Modules and Namespaces.

Objects and Their Use: Software Objects, Turtle Graphics, Modular Design: Modules, Top-

Down Design, Python Modules

Recursion: Introduction to Recursion, Examples of Recursion, Run Time Analysis,

Searching, Iteration Vs Recursion, Recursive Problem Solving, Functional Language

Approach.

UNIT IV

Graphical User Interfaces: Basics of tkinter GUI Development, Event-Based tkinter

Widgets, Designing GUls, OOP for GUI,

The Web and Search: The World Wide Web, Python WWW API, String Pattern Matching,

Database Programming in Python

Prescribed Book:

Ljubomir Perkovic, "Introduction to Computing Using Python: An Application Development

Focus", Wiley, 2012.

Reference Book:

Charles Dierbach, "Introduction to Computer Science Using Python: A Computational

Problem- Solving Focus”, Wiley, 2013.

(205MC24)

M.C.A. DEGREE EXAMINATION, MODEL QUESTION PAPER

Second Semester

205MC24: Programming and Problem-Solving Using Python

Time: 3 Hours Max. Marks: 70

SECTION-A

Answer Question No.1 Compulsory 2 Marks × 7 = 14 Marks

1. a) What is a Python variable?

 b) Define tuple?

 c) What is formatted output?

 d) Define a set in Python?

 e) What is inheritance?

 f) What is a module in Python?

 g) What is the purpose of the sqlite3 library?

SECTION-B

Answer ONE Question from Each Unit 4 × 14 = 56 Marks

UNIT – I

2. a) Describe the features and advantages of Python as a programming language.

 b) Explain expressions, variables, and assignments in Python with suitable examples.

OR

 a) Explain objects and classes in Python with examples.

 b) What is the Python Standard Library? Discuss any four useful modules.

UNIT – II

3. a) Explain string manipulation and file operations in Python with examples.

 b) Describe error handling and exceptions in Python with appropriate code examples

OR

 a) Explain control structures in Python (if, for, while, break, continue, and pass).

 b) Describe the set data type and module random in Python with examples.

UNIT – III

4. a) Explain user-defined classes and method overriding with examples.

 b) Discuss namespaces in Python — global, local, and built-in — with suitable examples.

OR

 a) Explain recursion and write a Python function for binary search using recursion.

 b) Describe modular programming and explain how modules improve software design.

UNIT – IV

5. a) Explain the design and development of GUIs using the tkinter library.

 b) Describe event-driven programming using tkinter widgets with examples.

OR

 a) Explain the use of Python for Web programming and string pattern matching using regular

expressions.

 b) Write a short note on database programming in Python with an example of CRUD

operations.

CONTENTS

S.No TITLES PAGE No

1 INTRODUCTION 1.1-1.14

2 PYTHON DATA TYPES 2.1-2.20

3 IMPRATIVE PROGRAMMING 3.1-3.19

4 STRING 4.1-4.19

5 FILES 5.1-5.13

6 EXCEPTION HANDLING 6.1-6.17

7 CONDITIONAL STRUCTURES 7.1-7.18

8 CONTROL STRUCTURES 8.1-8.11

9 PYTHON DICTIONARY 9.1-9.18

10 TUPLE 10.1-10.20

11 SET 11.1-11.11

12 RANDOMNESS 12.1-12.13

13 OBJECT ORIENTED PROGRAMMING 13.1-13.21

14

 OBJECTS AND THEIR USES
14.1-14.15

15 RECURSION 15.1-15.17

16 NAMESPACES 16.1-16.16

17 GRAPHICAL USER INTERFACES (GUI) 17.1-17.15

18 THE WORLD WIDE WEB (WWW) 18.1-18.17

19 STRING PATTERN MATCHING 19.1-19.13

20 DATABASE PROGRAMMING IN PYTHON 20.1-20.14

LESSON- 01

INTRODUCTION

AIMS AND OBJECTIVES

The primary goal of this chapter is to understand the concepts of Computational Problem

Solving & Python Programming. The chapter began with understanding of The Process of

Computational Problem Solving and Python Programming Language. After completing this

chapter, the student will understand the complete idea about of Computational Problem

Solving & Python Programming.

STRUCTURE

1.1 Introduction

1.2 Computational Problem Solving

 1.2.1 What is Computational Problem Solving?

 1.2.2 Example

1.3 Python Programming Language

 1.3.1 Evolution of the Python Programming Language

1.3.2 Advantages and Disadvantages of Python

1.3.3 Companies used by Python.

1.3.4 Applications of Python

1.3.5 Features of Python

 1.3.6 Key Features of Python

1.4 How to Write and Run A Python Script

 1.4.1 The operating system command-line or Terminal

 1.4.2 The Python Program Create and Run on Interactive Shell

 1.4.3 How to Run Python Program on IDLE?

1.5 Summary

1.6 Technical Terms

1.7 Self-Assessment Questions

1.8 Suggested Readings

1.1. INTRODUCTION

Python is an ideal language for computational problem solving due to its simplicity,

readability, and powerful libraries. It allows programmers to focus on developing algorithms

and logic rather than dealing with complex syntax. Python's extensive standard library and

third-party modules, such as NumPy for numerical computations and SciPy for scientific

computing, provide robust tools for tackling a wide range of problems. The language

Programming and Problem-Solving … 1.2 Introduction

supports various programming paradigms, making it suitable for everything from small

scripts to large-scale applications. Python's dynamic typing and interactive environment

further enhance its ability to prototype and test solutions quickly, making it a preferred choice

for developers and researchers alike.

The chapter first covered the Process of Computational Problem Solving, Python

Programming Language.

1.2 COMPUTATIONAL PROBLEM SOLVING

Computational problem-solving is a cornerstone of modern programming, where we translate

real-world problems into executable computer solutions. This chapter delves into the core

aspects of computational problem solving, focusing on Python, one of the most versatile and

widely used programming languages today.

1.2.1 What is Computational Problem Solving?

• Problem Definition: Clearly defining the problem, you want to solve.

• Algorithm Design: Creating a step-by-step procedure to solve the problem.

Implementation: Writing the code to implement the algorithm.

• Testing and Debugging: Ensuring the code work as intended and fixing any issues.

• Optimization: Improving the efficiency and performance of the solution.

1.2.2 Example

The basic structure and logic for an online shopping system is explained here. By following

this plan, you can implement a functional program that allows users to browse items, add

them to a cart, view and manage their cart, and checkout. This approach ensures that the

system is user-friendly and efficient.

Problem Definition

We want to create a simple online shopping system that allows users to:

1. Browse items available for purchase.

2. Add items to a shopping cart.

3. View the shopping cart.

4. Remove items from the shopping cart.

5. Checkout and see the total price.

Centre for Distance Education 1.3 Acharya Nagarjuna University

Fig 1.1 Online shopping application

Algorithm Design:

We'll design a basic algorithm to manage our online shopping system:

Step 1: Start

Step 2: Initialize Data

ITEMS = [

 (1, "Award-Winning Novel 1", 350),

 (2, "Award-Winning Novel 2", 280),

 (3, "Award-Winning Novel 3", 300),

 (4, "Award-Winning Novel 4", 275),

 (5, "Award-Winning Novel 5", 400),

 (6, "Award-Winning Novel 6", 325),

 (7, "Award-Winning Novel 7", 290),

 (8, "Award-Winning Novel 8", 310),

 (9, "Award-Winning Novel 9", 340),

 (10, "Award-Winning Novel 10", 360),

 (11, "Award-Winning Novel 11", 295),

 (12, "Award-Winning Novel 12", 315)

]

CART = empty list

Step 3: Display Menu Repeatedly

 REPEAT

 DISPLAY "------ ONLINE BOOK STORE ------"

 DISPLAY "1. View Items"

 DISPLAY "2. Add Item to Cart"

 DISPLAY "3. View Cart"

 DISPLAY "4. Remove Item from Cart"

Programming and Problem-Solving … 1.4 Introduction

 DISPLAY "5. Checkout"

 DISPLAY "6. Exit"

 INPUT choice

Step 4: Perform Actions Based on User Choice

Case 1: View Items

FOR each item in ITEMS:

 DISPLAY item_number, item_name, item_price

 Case 2: Add Item to Cart

DISPLAY "Enter Item Number to Add:"

INPUT item_no

IF item_no is valid THEN

 IF item already in CART THEN

 INCREMENT quantity by 1

 ELSE

 ADD (item_no, item_name, price, quantity=1) to CART

 ENDIF

 DISPLAY "Item added to cart successfully."

ELSE

 DISPLAY "Invalid item number."

ENDIF

 Case 3: View Cart

IF CART is empty THEN

 DISPLAY "Your cart is empty."

ELSE

 DISPLAY "Items in your cart:"

 FOR each item in CART:

 DISPLAY item_name, quantity, (quantity * price)

 END FOR

ENDIF

 Case 4: Remove Item from Cart

DISPLAY "Enter Item Number to Remove:"

INPUT item_no

IF item_no exists in CART THEN

 REMOVE item from CART

 DISPLAY "Item removed successfully."

ELSE

 DISPLAY "Item not found in cart."

ENDIF

 Case 5: Checkout

IF CART is empty THEN

Centre for Distance Education 1.5 Acharya Nagarjuna University

 DISPLAY "Your cart is empty."

ELSE

 total = 0

 FOR each item in CART:

 total = total + (quantity * price)

 END FOR

 DISPLAY "Total Amount Payable: ₹", total

 DISPLAY "Thank you for purchasing twelve award-winning novels at a

discounted price!"

 CLEAR CART

ENDIF

 Case 6: Exit

DISPLAY "Exiting the system. Goodbye!"

BREAK loop

 Step 5: Stop

Here’s a concise and clear table summarizing all the Python requirements for your Online

Shopping System:

Table 1: Python Requirements for online shopping application

Category Python

Concept /

Statement

Purpose / Use in Program

Data Types int Store item numbers, prices, and quantities
float Represent prices with decimals (if needed)
str Store item names and messages
list Maintain collection of items and shopping cart
tuple Represent each item as (id, name, price)

Control Statements if, elif, else Make decisions (menu options, valid input checks)
while Repeat the menu until user exits
for Traverse item lists and calculate totals
break Exit loop when user chooses to quit

Input / Output input() Take user input for menu choices and item numbers
print() Display menus, items, and messages
f-string Format output neatly (e.g., f"₹{price}")

Operators +, * Add totals and compute price × quantity
==, !=, <, > Compare menu options and check item validity
and, or Combine multiple conditions

Data Structures List of Tuples Store available novels (id, name, price)
List (Cart) Keep track of items added by the user

Functions

(Optional)

def Create reusable modules like view_items(),

checkout()

Modules (Optional) os Clear screen using os.system('cls' or 'clear')
time Pause execution briefly using time.sleep()

Loop Control Boolean Flag Continue or stop the main loop (running =

True/False)

Programming and Problem-Solving … 1.6 Introduction

1.3 PYTHON PROGRAMMING LANGUAGE

Python is a high-level, interpreted programming language known for its simplicity and

readability. Created by Guido van Rossum and first released in 1991, Python emphasizes

code readability with its notable use of significant whitespace. It supports multiple

programming paradigms, including procedural, object-oriented, and functional programming,

making it versatile for a wide range of applications. Python's extensive standard library,

dynamic typing, and ease of integration with other languages and tools have contributed to its

widespread adoption in various fields, including web development, data science, artificial

intelligence, scientific computing, and automation. The language's community-driven

development ensures continuous improvements and the availability of numerous third-party

libraries and frameworks, further enhancing its capabilities and appeal.

1.3.1. Evolution of the Python Programming Language:

Python was created by Guido van Rossum in 1980s. While in the Netherlands' National

Research Institute for Mathematics and Computer Science, he created Python, an easy-to-

read and use programming language. This programming language was called after the

Pythons from Monty Python's Flying Circus, the founder's favorite comedians.

The first version, launched in 1991, contained few built-in data types and rudimentary

capabilities. Python 1.0 was introduced in 1994 with map, lambda, and filter functions after

scientists adopted it for numerical computations and data analysis. After that, adding features

and releasing updated Python versions became popular. Python 1.0 introduced map, filter,

and reduce methods in 1994 to process lists. Unicode support and a shorter list loop were

added to Python 2.0 on October 16, 2000. Python 3.0 debuted December 3, 2008. It added

print and number division support and error handling.

Python's new features benefit developers and boost performance. Python has grown in

popularity and is a challenging programming language. It's in demand in machine learning,

AI, data analysis, web development, and more, offering high-paying jobs. Python became the

major programming language for many programmers and developers worldwide.

1.3.2 Advantages and Disadvantages of Python

Python language holds number of advantages and disadvantages which are shown in Table

3.1.

 Table 1.1. Advantages and Disadvantages of Python

Advantages Disadvantages

1. Easy to learn, read, and understand. 1. Restrictions in design

2. Versatile and open source 2. Memory inefficient

3. Improves productivity. 3. Weak mobile computing

4. Supports libraries. 4. Runtime errors

5. Huge library 5. Slow execution speed

6. Strong community

7. Interpreted language.

Centre for Distance Education 1.7 Acharya Nagarjuna University

1.3.3 Companies used by Python.

This is a list of the best companies that use Python on a regular basis. Some of the names on

the list provided below may surprise you which are shown in Figure 1.2.

➢ Facebook

➢ Instagram

➢ Spotify

➢ Reddit

➢ Uber

➢ Netflix

➢ Google

➢ Dropbox

Fig.1.2 Companies Use Python

1.3.4 Applications of Python

Python is emerging language and is used in wide range applications and are described

detailed in below and is shown in Figure 1.3

• Web Development

Python's simplicity and features make it popular for web development. Python frameworks

allow them to build user-friendly dynamic websites. The frameworks include Django for

backend development and Flask for frontend. Because Python is easy to deploy, scalable,

and efficient, most online companies utilize it as their primary technology. Top Python

applications include web development, which is used across the business to build effective

websites.

Programming and Problem-Solving … 1.8 Introduction

• Data Science

Python snippets help data scientists develop effective AI models. Its simplicity lets

developers design complicated algorithms. Data science creates models and neural

networks that learn like human brains but are faster. It helps organizations make decisions

by extracting patterns from prior data. This field helps organizations invest in the future.

• Artificial Intelligence and Machine Learning

Data analysis and machine learning specialists can use Pandas and TensorFlow for

statistical analysis, data manipulation, etc. One of the most popular programming languages

is Python. The language of AI and ML is Python. Python has helped this field with its many

libraries and community support. Python use will rise as artificial intelligence and machine

learning evolve significantly.

• Game Development

Python developers can use Pygame to create 2D and 3D games. Pirates of the Caribbean,

Battlefield 2, and others are popular Python games. Pygame is a Python library for making

fun games. Since the gaming industry is growing, these types of development have become

more popular. This package makes game development easy, so you can try building some

simple games.

1.3.5 Features of Python

There are several characteristics that distinguish the Python programming language from

others the main reason is its features and described below and shown in Figure 1.4.

❖ Popularity

Python is the fourth most popular and fastest-growing programming language, according to

the Stack Overflow Developer Survey 2022. Businesses including Google, Instagram,

Netflix, and Spotify use it.

❖ Interpretation

Python is an interpreted language; unlike compilers, which need the creation of machine code

from the source code before it can be executed, Python passes directly to the interpreter,

simplifying and speeding up the execution process.

Centre for Distance Education 1.9 Acharya Nagarjuna University

 Fig 1.3 Applications of Python

❖ Open Source

The fact that Python is a free language created under an open-source license certified by OSI

is among its strongest features.

❖ Portability

Major trouble comes in transferring a code from one platform to another without making

blunders in the command. Python programming language, being a portable code can easily be

transferred without making any errors.

❖ Simplicity

The only programming language that is similar to English is Python. It's so simple to read and

comprehend. The Python programming language utilizes fewer keywords than C++ or Java.

As a result, developers everywhere now favor the Python language above all others.

❖ A high-level language

Compared to several other programming languages, Python is more similar to human

languages. As a result, its core features, such memory management and architecture, are

unimportant to programmers.

❖ An object-oriented language

Python is a programming language that supports a variety of programming styles, including

structured and functional programming, in addition to the standard object-oriented

programming paradigm.

Programming and Problem-Solving … 1.10 Introduction

Fig 1.4 Features of Python

1.4 HOW TO WRITE AND RUN A PYTHON SCRIPT

Python programmers need to be familiar with all possible script and code execution

scenarios. There is no other way to confirm that the code is functioning as intended. The

Python programs are executed by the Python interpreter. A Python interpreter is a software

that functions as a bridge between computer hardware and Python programs.

Here, we'll go over the various methods for executing Python programs. The simple program

is created using notepad is shown in Figure 1.5.

• The operating system command-line or terminal.

• The Python interactive mode.

• The IDE

Fig 1.5. A sample python program created and saved on notepad.

Centre for Distance Education 1.11 Acharya Nagarjuna University

1.4.1 The operating system command-line or Terminal

Since the Python shell loses all the code we write when the session is closed, we can run the

Python code using a command line. Thus, using plain text files to write Python code is an

excellent idea. The text file needs to be saved with the.py suffix.

The Python print statement is written and saved in the working directory as

welcomepython.py. We are going to use the command line to execute this file now.

To run a Python script, open a command line. To run the file, we must input the file name and

then Python. Once you press the enter key, the result will look like this if there are no errors

in the file and is shown in Figure 1.6.

Fig 1.6 Command Line to Run python program.

1.4.2 The Python Program Create and Run on Interactive Shell

We can utilize the Python interactive session to write and execute the Python code. To launch

an interactive Python session, simply select a command-line or terminal from the Start menu,

type python, and hit the Enter key. It is a fantastic development tool because it enables us to

review every line of code. However, all of our written code will be lost when the session

ends. To exit the interactive shell, type quit(), exit(), or press the Ctrl+Z key.

This is an illustration of how to use an interactive shell to run Python code is shown in Figure

1.7.

1.4.3 How to Run Python Program on IDLE?

Windows and Mac Python installations contain Python IDLE. If you use Linux, you should

be able to utilize your package manager to locate and download Python IDLE. After

installation, Python IDLE can be used as a file editor or as an interactive interpreter.

Programming and Problem-Solving … 1.12 Introduction

Python is included with DLE, an Integrated Development and Learning Environment. A

complete development environment for authoring, debugging, and testing code is offered by

IDLE.

You must do the following actions to launch a Python application on IDLE:

Fig 1.7. Create and Run python program in Interactive Shell.

Step 1: Launch the Python IDLE first. Since IDLE operates in the shell by default, this

window will appear on your screen.

 Step 2: Using the IDLE, we can create and run Python scripts and see the results directly on

the screen, and is shown in Figure 1.8.

Step 3: Open a new file by selecting File → New File in order to run a whole Python

program on IDLE.

Step 4: Write your Python program in the "New File" that appears when the previous step is

completed shown in Figure 3.8.

Step5: Save your file in this step. It is saved here under the filename welcomepython.py.

Step 6: Click RUN → Run Module to start the process shown in Figure 3.9.

Step 7: The IDLE Shell will display the output.

Centre for Distance Education 1.13 Acharya Nagarjuna University

Fig 1.8. Create Python scripts in IDE.

You can run Python applications with ease by following the instructions in the description

above, which include utilizing text editors, IDEs, or the command line. You can become

more adept at executing Python code and utilizing its features to take on a variety of tasks

and challenges with practice and experimentation.

Fig 1.9. Create and Save Python Scripts in new file of IDE.

Fig 1.10. Run Python Scripts in IDE.

Programming and Problem-Solving … 1.14 Introduction

One of the most important skills for anyone studying or using Python is the ability to run

programs. Knowing how to run Python code is essential, regardless of your level of

experience—whether you're a novice learning the fundamentals of the language or an expert

in creating complex apps.

1.5. SUMMARY

Computational problem solving is the process of using logical and systematic methods to

design algorithms that can be executed by a computer to achieve a desired outcome. It

involves understanding the problem, developing a step-by-step solution (algorithm), and

implementing it using a programming language. Python, a versatile and beginner-friendly

language, is widely used for this purpose because of its simple syntax, readability, and

powerful libraries. It enables programmers to focus more on problem logic rather than

complex syntax, making it ideal for tasks such as data analysis, automation, web

development, artificial intelligence, and scientific computing.

1.6 TECHNICAL TERMS

• Computational Problem

• Python

• Command Line

• IDE

• Programming

1.7 SELF ASSESSMENT QUESTIONS

Essay questions:

1. Illustrate about computational Problem using python

2. Describe about applications of Python

 Short Notes:

1. Write about Evolution of python

2. Discuss about how to run python program

1.8 SUGGESTED READINGS

1. "Python Crash Course" by Eric Matthes

2. "Learning Python" by Mark Lutz

3. "Python Programming: An Introduction to Computer Science" by John Zelle

4. "Think Python: How to Think Like a Computer Scientist" by Allen B. Downey

5. "Python for Data Analysis" by Wes McKinney

Dr. U Surya Kameswari

LESSON- 02

PYTHON DATA TYPES

AIMS AND OBJECTIVES

The primary goal of this chapter is to understand the Python data types. The chapter began

with an understanding of Expressions, Variables and Assignments, Strings, List, Objects and

Classes, Python Standard Library and so on. After completing this chapter, the student will

understand the python data types in detail with suitable examples.

STRUCTURE

2.1 Introduction

2.2 Python Data Types

2.2.1 Expressions, Variables, and Assignments in Python

2.3 String in Python

2.4 List in Python

2.5 Object and Class in Python

2.6 The Python Standard Library

2.7 Summary

2.8 Technical Terms

2.9 Self-Assessment Questions

2.10 Suggested Readings

2.1. INTRODUCTION

Python is a high-level computer language that is interpreted and object-oriented. Its semantics

change over time. Its high-level built-in data structures, along with dynamic typing and

dynamic binding, make it a great choice for Rapid Application Development. Python's

grammar is simple and easy to learn. It focuses on readability, which lowers the cost of

maintaining programs.

Python lets you use modules and packages, which makes it easier to break up programs into

smaller pieces and reuse code. For all major systems, you can get the Python interpreter and the

large standard library for free in source or binary form, and you can share them with anyone

else.

This chapter will cover the major basic concept of python programming including what is

python, history of python, advantages and disadvantages of python, applications of python etc.

Programming and Problem-Solving … 2.2 Python Data Types

2.2 PYTHON DATA TYPES

In Python, data types define the kind of value a variable can hold and determine what

operations can be performed on that value. They form the foundation of any Python program,

allowing developers to store, manipulate, and process data efficiently. Python provides

several built-in data types such as numbers, strings, lists, tuples, sets, and dictionaries, each

designed for specific purposes. These data types make Python both flexible and powerful,

enabling programmers to handle a wide range of computational tasks — from simple

arithmetic to complex data processing — with ease and clarity.

Table 2.1. Python Data Types

Data Type Category Description

Numbers int, float, complex numeric values

String Str sequence of characters

Segquence List, tuple sequence of items

Mapping Dict data in key-value pair

Set Set collection of unique items

Bolean True, False Return Boolean result true or false

Numbers: Based on their names, these are the types of data that store numbers: integer,

float, and complex. It can be either an int or a long int.

There are three numbers in Python:

Example:

 A = 20 # Assing 20 to A

 B = 4.67 # Assign 4.67 to B

 print(A) # prints 20 on screen

print(B) # prints 4.65 on screen

Output:

 20

 4.65

Strings : These are in Python are groups of characters that are kept in memory together, like

an array of characters. Either a single quote or two double quotes are used to show these

characters.

Example:

 S = “ Happy “ #prints Happy to console

Centre for Distance Education 2.3 Acharya Nagarjuna University

 print S[1] # prints first character to console

 print S + “ Morning “ # concatenates Morning to Happy and prints on console

Output:

Happy

H

Happy Morning

❖ Python List

In Python, a list is a sorted list of things separated by commas (,) and enclosed in square

brackets ([]). If you access a Python list using the slicing operator [], you can change the

value of any item in it. A list in Python is like a collection. The main difference is that an

array is a collection of items that are all of the same type, while a list is a collection of items

that can be of different kinds. The Python list can be changed.

Example:

Output:

The code above shows that Person_List has items that are numbers, floats, strings, and long

ints. The result shows that the whole Person_List was shown first.

❖ Python Tuple

Python tuples are the same as Python lists. The only difference is that Python tuples are

immutable, which means that you can access the things in them but not change their values.

Besides being able to change, another big difference between tuples and lists is that lists are

defined inside square braces [], while tuples are defined inside parentheses ().

Programming and Problem-Solving … 2.4 Python Data Types

Example:

Output:

The code above shows that the items in Person_Tuple are integers, floats, strings, long

integers, and strings. The result shows the full Person_Tuple as the first item. After that The

first and fourth items were printed.

But at the end of the last line, an error is made because the fourth member of the tuple is

being changed. Based on the finding, we can say that tuple items can't be changed, but List

data types can.

Python Dictionary

A sorted list of key-value pairs is called a dictionary in Python. The dictionary's entries are

key-value pairs separated by commas. The value can always be retrieved if we know the key,

but the opposite is not true. Python dictionaries are therefore designed for data retrieval.

Python dictionaries are defined inside curly braces ({}), and the slicing operator ([]) is used

to access and assign values.

Centre for Distance Education 2.5 Acharya Nagarjuna University

Example:

Output:

e have created a dictionary called week in the example above. In this case, the keys are

Monday, Tuesday, Wednesday, and Thursday, and the values are Monday, Tuesday,

Wednesday, and Thursday. To get the appropriate value, we employ keys. not the other way

around, though. Here, we've used the week dictionary's keys to obtain the data.

Capital_city['Thursday'] retrieves its corresponding value, Thu, since 'Thursday' is the key.

But since 'Thu' is the value assigned to the 'Thursday' key, capital_city['Thu'] raises an error.

❖ Python Set Data Type:

A set is an arbitrary grouping of distinct objects. Values inside braces {} and separated by

commas define a set.

Programming and Problem-Solving … 2.6 Python Data Types

Example:

Output:

Here, four integer values have been added to a set called student_id. As sets are collections

that are not ordered, indexing is meaningless. The entire set is shown first. Afterwards, trying

to access the element of the set using the slicing operator [] does not work. Similar to the

output accessing the third item with the error message generated by the index.

Boolean: The datatype which returns only 2 values either TURE or FALSE.

Example:

 A = 50 ;

 Output:

 >>> A = = 40

 >>> FALSE

2.2.1. Expressions, Variables, and Assignments in Python

In Python, expressions are combinations of values and operators that evaluate to a value.

They form the basic building blocks of any Python program, allowing for operations such as

arithmetic calculations, string manipulations, and logical comparisons. Variables are used to

store these values, acting as named references to data that can be easily accessed and

manipulated throughout a program.

Centre for Distance Education 2.7 Acharya Nagarjuna University

• Expressions

In Python, expressions are combinations of values, variables, operators, and function calls

that are evaluated to produce a new value. They can perform a variety of operations,

including arithmetic calculations, string manipulations, and logical comparisons. Expressions

are fundamental components of a Python program.

Examples of expressions

a = 5 + 3 # Arithmetic expression

b = "Hello" + " " + "World" # String concatenation expression

c = 10 > 5 # Comparison expression

• Variables

Variables in Python are symbolic names that reference or point to objects or values stored in

memory. They are used to store data that can be modified and accessed throughout a

program. Python uses dynamic typing, which means that you do not need to declare the type

of a variable explicitly; the type is inferred from the value assigned to it.

Examples of variables

x = 10 # Integer variable

y = 3.14 # Float variable

name = "Alice" # String variable

• Assignments

Assignment statements are used to assign values to variables. The assignment operator = is

used to perform assignments. The variable on the left side of the = operator is assigned the

value on the right side.

Examples of assignments

x = 5 # Assigning an integer value to variable x

y = x + 2 # Assigning the result of an expression to variable y

message = "Hello, World!" # Assigning a string value to variable message

• Python Operators

Operators are unique symbols or keywords in Python that perform operations on values and

variables. They form the foundation of expressions, which are used to work with data and

carry out calculations. Python has a number of operators, each having a distinct function. The

Python programming language supports the following types of operators:

1. Arithmetic Operators

2. Comparison (Relational) Operators

3. Assignment Operators

4. Logical Operators

5. Bitwise Operators

6. Membership Operators

• Python Arithmetic Operators

Common mathematical operations in addition modules are addition, subtraction,

multiplication, and division; additional arithmetic operations include exponential and floor

divisions are shown in Table 2.2. Expressions, variables, and integers are supported by all.

Table 2.2. Arithmetic Operations in Python

Programming and Problem-Solving … 2.8 Python Data Types

Operator Description Python Expression

+ Addition x + y

- Subtraction x - y

* Multiplication x * y

/ Division x / y

% Modulus x % y

** Exponent x ** y

// Floor Division x // y

Example:

Output:

Once the two variables "x" and "y" are defined, this code does a number of mathematical

operations, including floor division, modulus, addition, subtraction, multiplication, and

division, and reports the results.

• Python Comparison Operators

Python comparison operators are required in order to compare two values.They produce a

Boolean value (True or False) based on the comparison. The comparison operators in python

is shown in Table 2.3.

Centre for Distance Education 2.9 Acharya Nagarjuna University

Table 2.3. Comparison Operations in Python

Operator Description Python Expression

= = Equal x == y

! = Not Equal x != y

> Greater Than x > y

< Less Than x < y

> = Greater Than or Equal x >= y

< = Less Than or Equal x <= y

Example:

Output:

• Python Assignment Operators

To assign values to Python, utilize the assignment operators. The simplest assignment

operator is the single equal symbol (=). The variable on the operator's left side is given the

value on the operator's right side. The different approaches to use assignment operator in

python is shown in Table 2.4.

Programming and Problem-Solving … 2.10 Python Data Types

Table 2.4 Assignment Operations in Python

Operator Description Python Expression

= Equal x = y

x=x+5

x= 2 * x + 4 * 5 + 8

Example:

Output:

Above displays the assignment operators in Python. First, 'x' and 'y' have values of 20 and 10,

respectively. Afterwards, x=25 is the output of applying expression x+5 to x.

• Python Bitwise Operators : Bitwise operators in Python carry out actions on discrete

binary integer bits.They operate on each bit location logically while working with integer

binary representations.Many bitwise operations, including AND (&), OR (|), NOT (),

XOR (), left shift (), and right shift (>>), are included in Python.

Centre for Distance Education 2.11 Acharya Nagarjuna University

• Python Logical Operators

Boolean expressions are composed, and their truth values are evaluated using logical

operators in Python. They are necessary for controlling the program's execution flow and

for creating conditional statements. The three fundamental logical operators in Python are

AND, OR, and NOT.

• Python Membership Operators

To determine whether a particular value appears in a series or not, one can utilize Python

membership operators. They simplify the process of figuring out which elements belong

in many types of data structures, including sets, tuples, lists, and strings. The is and is not

operators are the two main membership operators in Python.

• Combining Expressions, Variables, and Assignments

In Python, you often use expressions, variables, and assignments together to perform

various operations and store results. This combination is essential for creating dynamic

and interactive programs.

Example combining expressions, variables, and assignments

a = 10

b = 20

sum_result = a + b # Assigning the result of an expression to a variable

print(sum_result) # Output: 30

greeting = "Hello"

name = "Bob"

personal_greeting = greeting + ", " + name + "!" # Combining string expressions

print(personal_greeting) # Output: Hello, Bob!

Expressions, variables, and assignments are the core concepts of programming in Python.

Expressions allow you to perform operations and produce values. Variables provide a way to

store and reference these values. Assignments enable you to set and update the values of

variables. Understanding how to use these elements effectively is fundamental to writing

Python programs.

Programming and Problem-Solving … 2.12 Python Data Types

Fig 2.1 Example of Variable Declaration and Assignment

Python Keywords

Each language has words and rules that make sense when put together in a sentence. Also,

the computer language Python has a set of predefined words that are called Keywords. You

can't use these words anywhere else in Python because they have special meanings.

Keywords set the rules for how the code is written. That word can't be used as a variable,

function, or symbol name. The only words in Python that are written in capital letters are

True and False. Python 3.11 has 35 keywords and are’shown in Figure 2.2.

Fig 2.2 Python Kewords

2.3. STRING IN PYTHON

In Python, strings are sequences of characters enclosed in either single quotes (' ') or double

quotes (" "). They are immutable, meaning once a string is created, it cannot be changed.

Python provides a variety of built-in methods for string manipulation, such as len() to get the

length of a string, lower() and upper() to change the case, and split() to divide a string into a

list of substrings. Strings support indexing and slicing, allowing access to individual

Centre for Distance Education 2.13 Acharya Nagarjuna University

characters or segments of the string. Concatenation of strings can be done using the +

operator, and the in keyword is used to check for the presence of a substring within a

string.Python also supports triple quotes (''' ''' or """ """) for multi-line strings.

Key Points

1. Creation: Strings can be created using single quotes, double quotes, or triple quotes

for multi-line strings.

2. Concatenation: Strings can be concatenated using the + operator or various string

formatting methods such as f-strings, format(), and %-formatting.

3. Accessing Characters: Individual characters in a string can be accessed using

indexing, and substrings can be extracted using slicing.

4. Common Methods: Python provides a rich set of methods for string manipulation,

including:

o upper(), lower(): Convert to uppercase or lowercase.

o startswith(), endswith(): Check if a string starts or ends with a given substring.

o find(): Locate the position of a substring.

o replace(): Replace occurrences of a substring with another substring.

o split(): Split a string into a list of substrings.

o join(): Join a list of strings into a single string.

5. String Formatting: Formatting strings can be done using f-strings (for Python 3.6+),

the format() method, and %-formatting.

Example :

Here's a quick example that incorporates several of these concepts:

String creation

greeting = "Hello"

name = "Alice"

Concatenation and formatting

full_greeting = f"{greeting}, {name}!" # Using f-string

print(full_greeting) # Output: Hello, Alice!

String methods

upper_greeting = full_greeting.upper()

print(upper_greeting) # Output: HELLO, ALICE!

Slicing

first_word = full_greeting[:5]

print(first_word) # Output: Hello

Programming and Problem-Solving … 2.14 Python Data Types

Splitting and joining

words = full_greeting.split(", ")

joined_words = " - ".join(words)

print(joined_words) # Output: Hello - Alice!

2.4. LIST IN PYTHON

lists in Python are dynamic, versatile, and powerful data structures that allow you to store and

manipulate an ordered collection of items. Understanding how to create, access, modify, and

manipulate lists is fundamental for effective programming in Python. Here's a summary of

the key points:

Key Points

Creation: Lists can be created using square brackets [] and can store elements of different

data types.

my_list = [1, 2, 3, 'apple', 'banana']

Accessing Elements: You can access elements using indexing and slicing.

first_element = my_list[0] # 1

sub_list = my_list[1:3] # [2, 3]

Modifying Lists: Lists are mutable, so you can change their content.

my_list[0] = 10

my_list.append('cherry')

my_list.insert(2, 'orange')

Removing Elements: You can remove elements using various methods.

my_list.remove('banana')

popped_element = my_list.pop()

del my_list[1]

List Operations: Lists support several operations such as concatenation, repetition, and

membership testing.

new_list = my_list + [4, 5, 6]

repeated_list = my_list * 2

Centre for Distance Education 2.15 Acharya Nagarjuna University

is_in_list = 'apple' in my_list

List Methods: Python provides a range of methods for list manipulation.

my_list.sort()

my_list.reverse()

index_of_apple = my_list.index('apple')

count_of_10 = my_list.count(10)

Iterating Over Lists: You can iterate over the elements of a list using loops.

for item in my_list:

 print(item)

List Comprehensions: List comprehensions provide a concise way to create lists.

squares = [x**2 for x in range(10)]

Here's a quick example that incorporates several of these concepts:

List creation

fruits = ['apple', 'banana', 'cherry']

Accessing elements

first_fruit = fruits[0] # apple

last_two_fruits = fruits[-2:] # ['banana', 'cherry']

Modifying lists

fruits[1] = 'blueberry'

fruits.append('date')

fruits.insert(1, 'avocado')

Removing elements

fruits.remove('cherry')

popped_fruit = fruits.pop() # date

del fruits[0]

Programming and Problem-Solving … 2.16 Python Data Types

List operations

more_fruits = ['elderberry', 'fig']

all_fruits = fruits + more_fruits

doubled_fruits = fruits * 2

is_elderberry_in_list = 'elderberry' in all_fruits

List methods

all_fruits.sort()

all_fruits.reverse()

index_of_fig = all_fruits.index('fig')

count_of_avocado = all_fruits.count('avocado')

Iterating over lists

for fruit in all_fruits:

 print(fruit)

List comprehensions

lengths_of_fruits = [len(fruit) for fruit in all_fruits]

By mastering these list operations and methods, you can efficiently manage collections of

data in Python, enhancing your programming capabilities. If you have any specific questions

or need further assistance, feel free to ask!

2.5. OBJECT AND CLASS IN PYTHON

In Python, objects and classes are fundamental concepts of object-oriented programming

(OOP). Here's a brief overview of these concepts:

Classes

A class is a blueprint for creating objects. It defines a set of attributes and methods that the

created objects will have.

Defining a Class

class Dog:

 # Class attribute

Centre for Distance Education 2.17 Acharya Nagarjuna University

 species = "Canis familiaris"

 # Initializer / Instance attributes

 def __init__(self, name, age):

 self.name = name

 self.age = age

 # Instance method

 def description(self):

 return f"{self.name} is {self.age} years old"

 # Another instance method

 def speak(self, sound):

 return f"{self.name} says {sound}"

Objects

An object is an instance of a class. It has the attributes and methods defined in the class.

Creating an Object

my_dog = Dog("Buddy", 3)

Accessing Attributes and Methods

print(my_dog.name) # Output: Buddy

print(my_dog.age) # Output: 3

print(my_dog.species) # Output: Canis familiaris

print(my_dog.description()) # Output: Buddy is 3 years old

print(my_dog.speak("Woof woof")) # Output: Buddy says Woof woof

Example

Here's a summary example that includes class definition, object creation, and method

invocation:

class Dog:

 species = "Canis familiaris"

Programming and Problem-Solving … 2.18 Python Data Types

 def __init__(self, name, age):

 self.name = name

 self.age = age

 def description(self):

 return f"{self.name} is {self.age} years old"

 def speak(self, sound):

 return f"{self.name} says {sound}"

Creating an instance of the Dog class

my_dog = Dog("Buddy", 3)

Accessing attributes and methods

print(my_dog.name) # Output: Buddy

print(my_dog.description()) # Output: Buddy is 3 years old

print(my_dog.speak("Woof woof")) # Output: Buddy says Woof woof]

Understanding these concepts will enable you to leverage the power of object-oriented

programming in Python, making your code more modular, reusable, and easier to maintain. If

you have any specific questions or need further details, feel free to ask!

2.6 THE PYTHON STANDARD LIBRARY

The Python Standard Library is a collection of modules and packages that come with Python,

providing a wide range of functionality for various tasks such as file I/O, system operations,

data manipulation, and networking. Here is a brief overview of some key modules and their

uses:

Key Modules:

sys: Provides access to some variables used or maintained by the interpreter and to functions

that interact strongly with the interpreter.

import sys

print(sys.version) # Output the Python version

sys.exit() # Exit the program

os: Provides a way to use operating system-dependent functionality like reading or writing to

the file system.

import os

Centre for Distance Education 2.19 Acharya Nagarjuna University

print(os.name) # Output the name of the operating system

os.mkdir('new_directory') # Create a new directory

datetime: Supplies classes for manipulating dates and times.

from datetime import datetime

now = datetime.now()

print(now.strftime("%Y-%m-%d %H:%M:%S")) # Format the current date and time

math: Provides access to mathematical functions.

import math

print(math.sqrt(16)) # Output: 4.0

print(math.pi) # Output: 3.141592653589793

random: Implements pseudo-random number generators for various distributions.

import random

print(random.randint(1, 10)) # Output a random integer between 1 and 10

The Python Standard Library provides tools and utilities for many common programming

tasks, enabling developers to write efficient and effective code without needing to install

external libraries. If you have any specific questions or need further details, feel free to ask!

2.7 SUMMARY

Python supports a wide range of data types and programming constructs that make it both

powerful and easy to use. Expressions in Python combine values, variables, and operators to

produce new results, while variables are used to store and reference data dynamically without

explicit type declarations. Strings represent sequences of characters and support numerous

operations such as concatenation, slicing, and formatting. Lists allow storage of ordered

collections of items that can be easily modified, whereas objects and classes provide the

foundation for object-oriented programming, enabling modular and reusable code through

encapsulation and inheritance. The Python Standard Library further enhances the language by

offering a vast collection of built-in modules and functions for tasks like file handling, math

operations, data manipulation, and system interaction — making Python a comprehensive

and efficient language for solving computational problems.

2.8 TECHNICAL TERMS

• Expressions

• Operators

• Operands

• Evaluation

• Variables

• Objects

• Classes

Programming and Problem-Solving … 2.20 Python Data Types

2.9 SELF ASSESSMENT QUESTIONS

Essay Questions:

1. Explain the concept of expressions, variables, and assignments in Python with suitable

examples.

2. Illustrate the various data types in Python and describe their key characteristics.

3. Describe the string data type in Python and discuss common string operations and

methods.

4. Explain lists in Python, highlighting their features, indexing, and common list operations.

5. Discuss the concepts of objects and classes in Python and explain how object-oriented

principles are implemented.

6. Write a detailed note on the Python Standard Library and its importance in program

development.

Short Notes:

1. Write short notes on Python Expressions with examples.

2. Explain the process of variable creation and assignment in Python.

3. Write about string slicing and concatenation in Python with examples.

4. Discuss any four list methods with suitable examples.

5. Write a short note on object-oriented features in Python.

6. List some commonly used modules from the Python Standard Library and their uses.

2.10 SUGGESTED READINGS

1. Steven cooper – Data Science from Scratch, Kindle edition.

2. Reemathareja – Python Programming using problem solving approach, Oxford

Publication

3. Think Python: How to Think like a Computer Scientist

4. Brown, A.- Mastering Python Modules. Publisher.

5. Ljubomir Perkovic, “Introduction to Computing Using Python: An Application

Development Focus”, Wiley, 2012.

6. Charles Dierbach, “Introduction to Computer Science Using Python: A

Computational Problem-Solving Focus”, Wiley, 2013.

Dr. U Surya Kameswari

LESSON- 03

IMPRATIVE PROGRAMMING

AIMS AND OBJECTIVES

The primary goal of this chapter is to introduce the concept of imperative programming and

its implementation in Python. Students will learn about program structure, control flow,

variable assignments, functions, and parameter passing mechanisms.

After completing this chapter, students will be able to write, execute, and manage Python

programs effectively using imperative programming concepts.

STRUCTURE

3.1 Introduction

3.2 Imperative Programming Concepts

3.3 Python Programs

3.4 Execution Control Structures

3.5 User-Defined Functions

3.6 Python Variables and Assignments

3.7 Parameter Passing

3.8 Summary

3.9 Technical Terms

3.10 Self-Assessment Questions

3.11 Suggested Readings

3.1 INTRODUCTION

Imperative programming is one of the most common programming paradigms that focuses on

describing how a program operates.

It uses statements that change a program's state, executing instructions step by step.

Python, being a multi-paradigm language, supports imperative programming efficiently.

This approach helps programmers control the flow of execution using variables, functions, and

control structures such as conditionals and loops.

3.2 IMPERATIVE PROGRAMMING CONCEPTS

Imperative programming is based on commands that change the state of the program.

The program is a sequence of statements that tell the computer what to do, one after another.

Examples of imperative languages include C, Java, and Python.

Characteristics of Imperative Programming:

• Uses variables to store and modify program data.

Programming and Problem-Solving … 3.2 Imprative Programming

• Includes control structures like loops and conditionals.

• Programs are executed sequentially.

• Focuses on how to perform tasks rather than what to perform.

3.3 PYTHON PROGRAMS

A Python program is a collection of statements written to perform a specific task.

It may include variables, expressions, functions, and control structures.

Python programs can be written using any text editor and executed using the Python interpreter.

Example:

print('Welcome to Python Programming')

x = 10

y = 20

sum = x + y

print('Sum:', sum)

Output:

Welcome to Python Programming

Sum: 30

3.4 EXECUTION CONTROL STRUCTURES

Control structures determine the flow of execution in a program.

They allow the programmer to decide which statements to execute and in what order.

Types of Control Structures:

• Sequential: Executes statements in order.

• Selection: Uses conditional statements like if, elif, and else.

• Iteration: Repeats execution using loops like for and while.

if STATEMENT

The if statement tests a condition; if True, its indented block executes.

Syntax

if condition:

 statement_block

Example

score = 90

Centre for Distance Education 3.3 Acharya Nagarjuna University

if score >= 80:

 print("Excellent performance")

Flow Description

1. Evaluate condition.

2. If True → execute block.

3. If False → skip block.

Practice

Write a program to check whether a number entered by the user is positive.

Fig 3.1 Flow Chart of if Statement

if–else STATEMENT

Used when two mutually exclusive paths exist.

Syntax

if condition:

 block_true

else:

 block_false

Example

num = int(input("Enter a number: "))

Programming and Problem-Solving … 3.4 Imprative Programming

if num % 2 == 0:

 print("Even number")

else:

 print("Odd number")

Flow Description:

If condition fails, the else block executes.

Practice

Write a program that accepts a temperature in

if–elif–else STATEMENT

When multiple conditions must be checked in order, Python uses elif.

if condition1:

 ...

elif condition2:

 ...

else:

 ...

Example -Grade Evaluation

marks = int(input("Enter marks: "))

if marks >= 75:

 print("Distinction")

elif marks >= 60:

 print("First Class")

elif marks >= 40:

 print("Pass")

else:

 print("Fail")

Output

Enter marks: 82

First Class

Practice Task

Modify the program to print “Outstanding” for marks ≥ 90.

For Loop Statement

It is possible to iterate over a series of elements in Python by using the for loop, which is one

of the looping instructions contained inside the language. There are a variety of objects that

can be iterated, including a list, a tuple, a text, and any other object.

Centre for Distance Education 3.5 Acharya Nagarjuna University

Syntax:

 for variable in sequence:

 # Code block to be executed

The preceding syntax,

• variable is a temporary variable that stores the value of each element in the sequence

during each iteration of the loop

• The code block that comes after the for statement is carried out many times for each

individual element that is included in the sequence.

Example:

 for i in 10:

 # Code block to be executed

Total 10 time block will be repeated

The flowchart to represent for loop statement in python is shown in Figure 5.2

Fig 3.5. Flowchart of For-loop Statement

Example :

Programming and Problem-Solving … 3.6 Imprative Programming

The code that you see above has a for loop that prints each element of the 'list' list on a new

line after iterating over each entry in the list. The output is shown on the next page.

Output:

Example 2:

Output:

Using the code that was just presented, the for loop will iterate over each element in the tuple

that is referred to as 'num' and then display it on a new line. In addition, the sum of each

Centre for Distance Education 3.7 Acharya Nagarjuna University

number was computed, the result was saved in the "sum_nums" variable, and the sum value

was eventually printed out. In the run tuple, a sequence of distinct integers (5,8,7,2) is used,

and the result is "the sum of the numbers is 22"

According to Python, a range object is a sequence of numbers that cannot be changed. When

using a for loop, it is helpful to keep track of the number of times a block is repeated.

You can use the range() method in the following ways:

range ([start], stop, [step])

Every one of the three arguments must be an integer. The value of the [start] parameter is

always set to zero, unless an alternative number is provided. The only parameter that is

required for the function described above is stop. It is one less than the stop parameter that

the last integer in the series is. In the intervals between, the [step] value, which is set to 1 by

default, is used to increment the numbers.

Example:

The range() method was used instead of a for loop statement in the Python code above. Three

for loop statements in all, each printing a distinct range of numbers according on the inputs

passed to the range () function.

When the first "10" value was entered into range (10) it produced numbers starting at 0 and

ending with 10-1, or 9. A for-loop statement is then given range(1,5), and values are printed

starting at 1 and ending at end 5-1, or 4. Lastly, range(10,50,5) is sent to the for-loop

expression, which outputs values starting at 10 and ending at 50-4, or 45, because step=5.

Programming and Problem-Solving … 3.8 Imprative Programming

Output:

While Loop Statement

Another Python looping expression used to repeat a block of code until a predetermined

condition is met is the while loop.

Syntax:

The syntax of the while loop in Python is given below.

while condition:

 # Code block to be executed

A boolean expression called condition in this syntax is evaluated at the beginning of each

loop iteration. The while statement is followed by a code block that is periodically run until

the condition evaluates to False.

The flowchart to represent while loop statement in python is shown in Figure 5.3

Centre for Distance Education 3.9 Acharya Nagarjuna University

Fig 3.6 Flowchart of While-loop Statement

Example:

Output:

Programming and Problem-Solving … 3.10 Imprative Programming

The code block is repeated here by the while loop until the sum variable is less than 5. As we

can see in the output, the sum variable is increased by 1 at each iteration, and the current

value of the sum is printed on a new line.

Nested Loop Statement

A loop inside another loop is known as a nested loop in Python. When we wish to loop over a

series of components with several degrees of nesting, we utilize it.

Syntax:

for variable in sequence:

 for i_variable in i_sequence:

 # Code block to be executed

Variable, as used in this syntax, is a temporary variable that, for each iteration of the outer

loop, stores the value of each element in the sequence. Every time the inner loop iterates, the

value of every element in the i_sequence is stored in the i_variable, a temporary variable.

Every element in the inner sequence and every element in the outer sequence is subjected to

several executions of the code block that follows the inner for statement.

Example :

The code given below uses the Nested Loop.

Centre for Distance Education 3.11 Acharya Nagarjuna University

Output:

In this example, the nested loop performs an iteration over each item in the ‘matrix' list and

then prints the elements on a new line.

When one while loop is contained within another while loop, the resulting structure is

referred to as a nested while loop. We require nested loops in most of our apps.

Example:

Programming and Problem-Solving … 3.12 Imprative Programming

Output:

In this example, the nested loop performs an iteration over each item in the ‘matrix' list and

then prints the elements on a new line.

Break Statement

A premature termination of the loop in Python can be accomplished with the help of the

break statement. It is utilized in situations in which we wish to exit the loop prior to it having

finished all of its iterations.

Syntax:

The syntax of the break statement in Python is as follows:

for variable in sequence:

 if condition:

 break

• The value of each element in the sequence is stored in the variable, which is a

temporary variable, and it is used for each iteration of the loop to save the value.

• The condition is a statement that receives a boolean value and is evaluated at the

beginning of each iteration of the loop. If the condition is found to be true, the break

statement is carried out, therefore bringing an end to the loop.

Centre for Distance Education 3.13 Acharya Nagarjuna University

Example:

The code that you see above has a for loop that outputs each item in the "fruits" list on a new

line after iterating over each item in the list. On the other hand, the break statement is

executed, and the loop is halted when the value of the "fruit" variable is equal to "banana."

Output:

Continue Statement

Using the continue statement in Python, one can skip the iteration of the loop that is currently

being executed. It is utilized in situations in which we wish to skip a certain component of the

sequence and proceed with the subsequent iteration of the loop onward.

Syntax:

for variable in sequence:

 if condition:

 continue

 # Code block to be executed

Programming and Problem-Solving … 3.14 Imprative Programming

• The value of each element in the sequence is stored in the variable, which is a

temporary variable, and it is used for each iteration of the loop to save the value.

• The condition is a statement that receives a boolean value and is evaluated at the

beginning of each iteration of the loop.

Example

Output:

The for loop iterates through each item in the "fruits" list in this example, printing each one

on a new line. Nevertheless, the loop's current iteration is skipped and the continue statement

is executed when the value of the "fruit" variable equals "banana."

Centre for Distance Education 3.15 Acharya Nagarjuna University

Pass Statement

The pass statement is used as a placeholder in Python. It is used when we want to write

empty code blocks and want to come back and fill them in later. The syntax of the pass

statement in Python is given below.

Syntax:

for variable in sequence:

 pass

• Every time the loop iterates, the variable—which is a temporary variable—holds the

value of every element in the sequence.

• An empty code block is created using the pass statement and is subsequently filled in.

Example:

In this example, the pass statement is used to create an empty code block while the for loop

iterates over each element in the "fruits" list.

Programming and Problem-Solving … 3.16 Imprative Programming

3.5 USER-DEFINED FUNCTIONS

Functions are reusable blocks of code designed to perform a specific task.

Python allows users to define their own functions using the def keyword.

Syntax:

def function_name(parameters):

 # function body

 return value

Example:

def greet(name):

 print('Hello', name)

greet('Lavanya')

Output:

Hello Lavanya

Built-in Functions

Python's built-in functions are already defined. A user must remember the name and

parameters of a certain function. There is no need to redefine these functions because they

have already been defined.Some of the widely used built-in functions are given below and

shown in Table 10.1:

Table 3.1 Built-in Functions in Python

Function Description

pow() Returns the power of two numbers

abs() Returns the absolute value of a number

max() Returns the largest item in a python iterable

min() Returns the largest item in a python iterable

sum() Sum() in Python returns the sum of all the items in an iterator

type() The type() in Python returns the type of a python object

Sqrt() Executes the python built-in to find sqrt of the given number

The following two example python codes shown in below demonstrate the usage of built-in

functions to fulfil the specific task. In the first example python code imported math module

https://www.scaler.com/topics/sum-in-python/
https://www.scaler.com/topics/type-in-python/

Centre for Distance Education 3.17 Acharya Nagarjuna University

and later performed the two functions pow () and sqrt() operations. The result of each

function is produced on the output.

Example

Output

Similarly, the second example also imported math module and perform the abs (), max () and

min () operations respectively. The absolute function took the -25 is a negative number and

produced the output as 25. The maximum of 5 and 9 is determined by max () and minimum is

returned by min () function.

Example

Programming and Problem-Solving … 3.18 Imprative Programming

Output:

3.6 PYTHON VARIABLES AND ASSIGNMENTS

Variables are used to store data values. In Python, variables are created automatically when a

value is assigned. Python is dynamically typed, so there is no need to declare variable types

explicitly.

x = 5

y = 2.5

name = 'Python'

print(x, y, name)

3.7 PARAMETER PASSING

Python supports several ways to pass parameters to functions: positional, keyword, default,

and variable-length arguments.

Example:

def add(a, b=10):

 return a + b

print(add(5))

print(add(5, 15))

Output:

15

20

3.8 SUMMARY

In this chapter, we explored imperative programming concepts, Python program structure,

control flow statements, and user-defined functions.

We also discussed variable assignments and different parameter passing techniques.

Understanding these concepts helps in writing efficient and structured Python programs.

Centre for Distance Education 3.19 Acharya Nagarjuna University

3.9 TECHNICAL TERMS

• Imperative Programming

• Control Structure

• Function

• Variable

• Parameter Passing

• Sequential Execution

3.10 SELF-ASSESSMENT QUESTIONS

Essay Questions:

1. Explain the concept of Imperative Programming with suitable examples.

2. Describe different types of execution control structures in Python.

3. Discuss the types of parameter passing in Python with examples.

Short Notes:

1. Write about Python variables and assignments.

2. Discuss about user-defined functions with examples.

3.11 SUGGESTED READINGS

1. Steven cooper – Data Science from Scratch, Kindle edition.

2. Reemathareja – Python Programming using problem solving approach, Oxford

Publication

3. "Think Python: How to Think Like a Computer Scientist" by Allen Downey

4. "Python Cookbook" by David Beazley and Brian K. Jones

5. "Programming Python" by Mark Lutz

6. Ljubomir Perkovic, “Introduction to Computing Using Python: An Application

Development Focus”, Wiley, 2012.

7. Charles Dierbach, “Introduction to Computer Science Using Python: A Computational

Problem-Solving Focus”, Wiley, 2013.

Dr. U Surya Kameswari

LESSON- 04

 STRING
AIMS AND OBJECTIVES

The primary goal of this chapter is to grasp the concept of string in Python programming. The

chapter began with an understanding of basic definition of string, creating a string, and so on.

After completing this chapter, the student will understand how to work with string in python

in terms various methods, operations, and functions.

STRUCTURE

4.1 Introduction

4.2 Python String

 4.2.1 Creating a Python String

 4.2.2 Applications of Python String

4.3 Accessing the String

 4.3.1 Indexing

 4.3.2 Negative Indexing

 4.3.3 Slicing

4.4 Python String Operations

 4.4.1 Concatenation Operator

 4.4.2 Repetition Operator

 4.4.3 Membership Operator

 4.4.4 Comparison Operator

4.5 Python String Methods

 4.5.1 len()

 4.5.2 upper()

 4.5.3 replace()

 4.5.4 find()

4.6. Formatted Output

4.7 Summary

4.8 Technical Terms

4.9 Self-Assessment Questions

4.10 Suggested Readings

Programming and Problem-Solving … 4.2 String

4.1. INTRODUCTION

Python strings, like those in many other well-known programming languages, are arrays of

bytes that represent unicode characters. Nevertheless, a single character in Python is just a

string with a length of 1. Python does not have a character data type. You can access the string's

constituents by using square brackets.

Since it is an immutable data type, you are unable to alter a string after you have created it.

Strings are extensively utilized in a wide range of applications, including the storing and

manipulation of text data as well as the representation of names, addresses, and other text-

representable data types. This chapter will cover Python strings, one of the core data types in

Python programming, and will cover Python string methods, operators and functions,

working with them, and more.

4.2. PYTHON STRING

A string is a sequence of alphabets, words, or other characters. It is one of the most basic data

structures, serving as the foundation for data manipulation. Python includes a built-in string

class called str. Python strings are "immutable," which implies they cannot be modified once

formed.

4.2.1. Creating a Python String

To create a String in python there are three different types of approaches:

• With a Single quotes

 ‘Welcome to the world of "Python" keep Loving.'

• With a Double quotes.

 “Welcome to the world of ' Python ' keep Loving."

• With a Triple quotes,

 """ Welcome to the world of Python """, '''Keep Loving.'''

Example:

Centre for Distance Education 4.3 Acharya Nagarjuna University

Output:

The above example, where three strings are created namely S1,S2 and S3 in different styles

with same content. Finally displayed the three strings output is shown above.

4.2.2. Applications of Python Sting

• Use of string matching algorithms to quickly detect instances of plagiarism in both code

and text.

• Strings can be utilized for encoding and decoding purposes, ensuring the secure

movement of data from source to destination.

• We are able to offer better filters for the approximate suffix-prefix overlap problem by

utilizing strings and the techniques associated with them.

• HTTP requests and responses, among other data exchanged over networks, are encoded

and decoded using strings.

• When working with files, you'll need to know that strings are the go-to for reading and

writing file names and locations.

• Applications like sentiment analysis and natural language processing make use of strings

to glean useful insights from massive text datasets.

4.3 ACCESSING THE STRING

There are three various methods that we can get the characters from the individual String that

was already constructed in the previous section. The information is given below:

• Indexing

• Negative Indexing

• Slicing

Programming and Problem-Solving … 4.4 String

4.3.1 Indexing

Using index values and treating strings like a list is one method. In Python, the Indexing

function can be used to retrieve specific characters from a String. The idea of indexing

technique is shown in Figure 4.1

Fig 4.1. Indexing technique to access String

Example:

Output:

Centre for Distance Education 4.5 Acharya Nagarjuna University

The above example illustrate the concept of indexing method, where one strings S1 is

created with the content of “GOOD MORNING” and then accessed character at index 1 and

5. Finally displayed the extracted characters output is shown above.

4.3.2 Negative Indexing

Python's string language permits negative indexing, just as that of a list. Negative address

references, such as -1 for the final character, -2 for the second last character, and so forth, can

access characters from the back of the String thanks to indexing. The idea of negative

indexing is shown in Figure 6.1.

Fig 4.2. Negetive Indexing technique to access String

Example:

Output:

Programming and Problem-Solving … 4.6 String

The above example illustrate the concept of negative indexing method, where one strings S1

is created with the content of “GOOD MORNING” and then accessed character at index-6

and -12. Finally displayed the extracted characters output is shown above.

4.3.3. Slicing

The String Slicing function in Python can be used to retrieve a range of characters from the

String. To slice something in a string, use a slicing operator, such as a colon (:). When

utilizing this method, bear in mind that the character at the start index is included in the

string that is returned, but the character at the last index is not.

Example:

Output:

The above example illustrate the concept of slicing method, where one strings S1 is created

with the content of “GOOD MORNING” and then accessed character with range of [3-7]

and [5-13] . Finally displayed the extracted sub string output is shown above.

Centre for Distance Education 4.7 Acharya Nagarjuna University

4.4 PYTHON STRING OPERATIONS

Python's basic string operations include doing simple arithmetic operations, verifying the

character of an existing substring, repeating a string, and much more are shown in Table 6.1.

 Table 3.1. Python String Operations

Operation Python

Expression

Description

Concatenation
s1 + s2 "Concatenation operator" is the name given to this

operator, which is used to unite two or more stings

Repetition

s * n The repetition operator is the name given to this.

There will be several copies of the same string

created by it.

Membership

in The membership operator is the name given to this.

Whether or whether a certain character or sub string

is included in the string that was supplied is returned

by it.

not in It is also a membership operator and does the exact

reverse of in. It returns true if a particular string or

character is not present in the specified. It gives a

return value of true if the character or sub string is

not included in the string that was supplied.

Otherwise return false.

Comparison

s1 == s2 Returns True if string, s1 is the same as string, s2.

Otherwise False.

s1 != s2 Returns True if string, s1 is not the same as string, s2.

Otherwise False.

4.4.1 Concatenation Operator

Concatenating or joining two or more strings is a common task while programming. To

connect or concatenate two strings in this sense, use the plus operator (+) and the idea is

shown in Figure 6.3. Python's concatenation operator only joins items of the same type, in

contrast to other languages like JavaScript where type coercion allows us to concatenate a

string and an integer.

 Fig 4.3. Concatenate of Two Lists with ‘+’ Operator

Programming and Problem-Solving … 4.8 String

Example:

Output:

Strings are sequences that cannot be changed, as we previously stated. Concatenating the two

strings in the previous example doesn't change either string. Rather, the process generates a

new string called "S3" from the two strings "S1" and "S2." This operator is frequently used

by beginners to add spaces between strings. This space is a string as well, but it's empty this

time.

Centre for Distance Education 4.9 Acharya Nagarjuna University

Example:

Output:

4.4.2 Repetition Operator

The purpose of this operator is to return a string that has been repeated a predetermined

number of times. This string is included in the new string, and it is repeated the number of

times that was requested. This is accomplished by the utilization of the multiplication

Programming and Problem-Solving … 4.10 String

operator (*). Take for example that we have a string S and an integer N. Doing S times N or

N times S will result in S being repeated N times. The idea is shown in Figure 6.4.

Fig 4.4. Repetition of Strings with ‘*’ Operator

Example:

Output:

Centre for Distance Education 4.11 Acharya Nagarjuna University

Notice the last two print functions in the preceding example. Both actually output empty

strings. The last but one step seems sense because it creates zero copies of the string, but the

last operation appears strange. However, multiplying a string by a negative number yields an

empty string.

4.4.3 Membership Operator

These operators are commonly used to determine whether or not an element or character

occurs in a specific string. The in function returns True if a character x exists in a given

string, and False otherwise. The not in function returns True if a character x does not appear

in a provided string, and False otherwise.

Example:

Output:

Programming and Problem-Solving … 4.12 String

It is important to keep in mind that the membership operators are also capable of working

with substrings; that is, they can determine whether or not a substring is present in a string.

Example:

Output:

 4.4.4 Comparison Operator

The purpose of these operators in Python is to verify the equivalence of two operands, which

in this case are two strings.

Centre for Distance Education 4.13 Acharya Nagarjuna University

Example:

Their names also indicate that they are used for this purpose. However, because they return a

boolean, they are most utilized in conditional expressions to determine whether or not two

strings are identical. A True value is returned by the == operator when the two strings in

question are identical, whereas a False value is returned when the strings in question are not

identical.

Output

Programming and Problem-Solving … 4.14 String

Example:

Output:

As shown in the preceding examples, make a comparison between the first string, the second

string, and the third string. Along the same lines, second with fourth. != is the operator that

returns. True when the two strings are equal otherwise return false.

4.5. PYTHON STRING METHODS

Python comes with several built-in methods that can be used to execute operations and

manipulations while working with strings. Listed below are several string methods that are

frequently used:

Centre for Distance Education 4.15 Acharya Nagarjuna University

4.5.1 len()

It is possible to utilize the `len()` function in order to determine the length of a string. A count

of the characters contained in the string is returned by it.

Example:

String_new = “Welcome to Python!”

length = len(String_new)

print(String_new)

 Output

 18

The total number of characters includes space returned by the len() function i.e. 13

4.5.2 upper()

The string that is returned by the upper() method is one in which all of the characters are

capitalized.

Example:

String_new = “Welcome to Python!”

String_new = String_new.upper()

print(String_new)

 Output :

 WELCOME TO PYTHON!

The upper() is called along with string object String_new.upper and it returns a string where

all characters are in upper case.

4.5.3 replace()

Using the replace() method, a phrase that is supplied is replaced with another term that is also

specified.

Example:

String_new = “Welcome to Python!”

String_new = String_new.replace(“Pyhton”, “PYTHON”)

print(String_new)

Programming and Problem-Solving … 4.16 String

 Output:

 Welcome to PYTHON!

The reverse r() is called along with old and new string and it replaces an old string

“Python” with new string “ PYHON”

4.5.4. find()

Using the find() method, one can locate the initial instance of the value that has been

supplied. However, if the value cannot be located, this procedure will return -1. This method

is essentially identical to the index() method; the only difference is that the index() method

throws an exception if the value is not found. In addition, this method is almost identical to

the index() method.

Example:

String_new = “Welcome to Python!”

String_new = String_new.find(“Python”)

print(String_new)

 Output:

 11

4.6 FORMATTED OUTPUT

The output of a program often needs to be organized so that users can easily read and

interpret the results.

Formatted Output Using print() Function

To achieve this, Python offers several formatting techniques:

• Using the print() function.

• Using the format() method for string interpolation.

Python’s print() function provides several ways to produce formatted output. It can display

variables with separators, new lines, or in customized layouts.

Example 1 – Printing with different separators

n = 5

r = 5 / 3

name = 'Ida'

print(n, r, name)

print(n, r, name, sep=';')

Centre for Distance Education 4.17 Acharya Nagarjuna University

print(n, r, name, sep='\n')

Output

5 1.66666666667 Ida

5;1.66666666667;Ida

5

1.66666666667

Ida

Formatted Output with the format() Method

Python’s str.format() function allows inserting variables into a string at specific placeholders

{}.

Example1:

weekday = 'Wednesday'

month = 'March'

day = 10

year = 2010

hour = 11

minute = 45

second = 33

print('{}, {} {}, {} at {}:{}:{}'.format(weekday, month, day, year, hour, minute, second))

Output

Wednesday, March 10, 2010 at 11:45:33

Explanation

In the statement above:

'{} , {} {}, {} at {}:{}:{}'.format(weekday, month, day, year, hour, minute, second)

Each pair of curly braces {} is a placeholder for a variable supplied to the format()

function.Python replaces them in the same order they appear inside the parentheses.

Example2:

Programming and Problem-Solving … 4.18 String

Python code:

Output:

 4.7 SUMMARY

Strings are an essential data type in Python, and they are utilized widely for activities that

involve working with textual data. In this chapter, we covered the fundamentals of creating

and manipulating strings, as well as accessing characters, string slicing, concatenation, string

length, and the different string methods that are available in Python. Your ability to work

effectively with strings in your Python programs and to handle text-based data in an efficient

manner will be directly correlated to your level of comprehension of these ideas.

4.8 TECHNICAL TERMS

String, Indexing, Negative Indexing, Concatenation, Membership, comparison and Slicing,

format,print

Centre for Distance Education 4.19 Acharya Nagarjuna University

4.9 SELF ASSESSMENT QUESTIONS

Essay questions:

1. How is a String created and called? Explain.

2. What are the various List Operations? Explain.

3. Explain about List Methods with example.

4. Illustrate formate output with formate() function.

 Short Notes:

1. Write about indexing method for sting access.

2. Discuss about applications of python string.

3. Explain about Slicing method with example.

4. Describe about format output using print().

4.10 SUGGESTED READINGS

1. Steven cooper – Data Science from Scratch, Kindle edition.

2. Reemathareja – Python Programming using problem solving approach, Oxford

Publication

3. "Python Crash Course" by Eric Matthes

4. "Automate the Boring Stuff with Python" by Al Sweigart

5. "Learning Python" by Mark Lutz

6. Ljubomir Perkovic, “Introduction to Computing Using Python: An Application

Development Focus”, Wiley, 2012.

7. Charles Dierbach, “Introduction to Computer Science Using Python: A

Computational Problem-Solving Focus”, Wiley, 2013.

Dr. U Surya Kameswari

LESSON- 05

 FILES
AIMS AND OBJECTIVES

The goal of this chapter is to explain how Python programs interact with files stored in a

computer’s file system.

Students will learn how to open, read, write, and close files, as well as explore the most

common patterns used to process textual data.

After completing this chapter, students will be able to:

• Understand how file systems organize data.

• Use Python’s built-in file handling functions.

• Read and write text files efficiently.

• Manage file resources properly using the with statement.

• Recognize common file-handling errors and handle them safely

STRUCTURE

5.1 Introduction

5.2 Understanding the File System

5.3 Opening and Closing a File

5.4 Patterns for Reading a Text File

 5.4.1 Reading the Entire File

 5.4.2 Reading Line by Line

 5.4.3 Using readline() and readlines()

 5.4.4 Using the with Statement

5.5 Writing to a Text File

 5.5.1 Writing Strings and Data

 5.5.2 Appending to a File

 5.5.3 Writing Lists and Formatted Data

5.6 Practical Examples of File Handling

5.7 Common File Errors

5.8 Summary

5.9 Technical Terms

5.10 Self-Assessment Questions

5.11 Suggested Readings

Programming and Problem-Solving … 5.2 Files

5.1 INTRODUCTION

Programs often need to store information permanently, beyond the life of a single execution.

Variables and data structures reside in main memory (RAM), which is temporary; once the

program ends, that data disappears. To preserve data, we store it in files on a secondary

storage device (like a hard disk). A file is a named collection of data saved on a storage

medium. Python can read data from existing files and write new information to files. This

process is called file input and output (file I/O).

5.2 UNDERSTANDING THE FILE SYSTEM

Every computer’s operating system manages a file system, which organizes data into files

and directories (folders).Each file has a name, location (path), and a type that determines how

the contents are interpreted.

Figure 5.1 Mac OS X file System organization

For example:

• data.txt – Text file

• sales.csv – Comma-separated values file

• image.jpg – Binary image file

File paths can be absolute (full path from the root directory) or relative (based on the current

working directory).

For example, the absolute pathname of folder Python 3.1 is

/Applications/Python 3.1

while the absolute pathname of file example.txt is

/Users/lperkovic/example.txt

the relative pathname of file example.txt in Figure 5.1 is

lperkovic/example.txt

Python interacts with this file system through built-in functions such as open(), read(),

write(), and close().

Centre for Distance Education 5.3 Acharya Nagarjuna University

5.3 OPENING AND CLOSING A FILE

Processing a file consists of these three steps:

1. Opening a file for reading or writing

2. Reading from the file and/or writing to the file

3. Closing the file

The open() function creates a connection between the program and the file:

file_object = open(filename, mode)

Parameters:

• filename – The name or path of the file.

• mode – A string indicating the file access mode.

Table 5.1 Different Modes of opening a file

Mode Meaning Description

'r' Read Opens a file for reading (default).

'w' Write Opens a file for writing; existing contents are erased.

'a' Append Opens a file for writing at the end; retains existing data.

'r+' Read/Write Opens for both reading and writing.

'b' Binary Used with above modes for binary files.

After finishing, close the file using:

file_object.close()

Example:

f = open('example.txt', 'r')

data = f.read()

print(data)

f.close()

5.4 PATTERNS FOR READING A TEXT FILE

Reading data from a file can be done in several ways depending on the amount and structure

of data.

Programming and Problem-Solving … 5.4 Files

5.4.1 Reading the Entire File

f = open('poem.txt', 'r')

contents = f.read()

print(contents)

f.close()

This method reads the whole file into one string.

Use this for small text files only, because it loads everything into memory at once.

5.4.2 Reading Line by Line

A common and memory-efficient way is to iterate directly through the file object:

f = open('poem.txt', 'r')

for line in f:

 print(line.strip())

f.close()

Here each iteration reads one line until the end of the file.

5.4.3 Using readline() and readlines()

readline() reads one line at a time;

readlines() returns a list containing all lines.

f = open('data.txt', 'r')

line1 = f.readline()

print(line1)

all_lines = f.readlines()

print(all_lines)

f.close()

Fig 5.2 Common File Methods in Python

Centre for Distance Education 5.5 Acharya Nagarjuna University

5.4.4 Using the with Statement

The recommended method is to use with — it automatically closes the file:

with open('story.txt', 'r') as f:

 for line in f:

 print(line.strip())

When the block inside with completes, Python automatically calls f.close() even if an error

occurs.

5.4. PATTERNS FOR READING A TEXT FILE

Reading data from a file can be done in several ways depending on the amount and structure

of data.

Example: Counting Lines, Words, and Characters in a Text File

The following program counts the number of lines, words, and characters in a given text

file.

def fileStats(filename):

infile = open(filename, 'r')

lines = infile.readlines()

infile.close()

num_lines = len(lines)

num_words = sum(len(line.split()) for line in lines)

num_chars = sum(len(line) for line in lines)

return num_lines, num_words, num_chars

Input File – example.txt

The 3 lines in this file end with the new line character.

There is a blank line above this line.

Output

Lines: 3

Words: 15

Characters: 96

Explanation:

• readlines() reads all lines from the file.

• len(lines) counts total lines (including blank lines).

• line.split() splits each line into words, and the total is summed for word count.

• len(line) counts the number of characters (including spaces and newline characters).

Programming and Problem-Solving … 5.6 Files

This is a common file-reading pattern used in text processing and data analysis.

Example: Searching for a Target String in a File

Python allows searching for specific substrings in text files.

The following function myGrep() imitates the Unix grep command — it prints every line that

contains a given target string.

def myGrep(filename, target):

 infile = open(filename, 'r')

 for line in infile:

 if target in line:

 print(line.strip())

 infile.close()

Input File – example.txt

The 3 lines in this file end with the new line character.

There is a blank line above this line.

Program Call

myGrep('example.txt', 'line')

Output

The 3 lines in this file end with the new line character.

There is a blank line above this line.

Explanation:

• The file is opened in read mode ('r').

• Each line is checked using the in operator to see if the target substring occurs in it.

• Lines containing the target word are printed after removing trailing newlines with

.strip().

• The file is then closed using .close().

This simple function demonstrates pattern searching in text files — a foundational concept

for text processing, data filtering, and log analysis in Python.

Example: Replacing a Target String in a File

Sometimes, we need to modify text inside a file — for example, to replace one word with

another.

Centre for Distance Education 5.7 Acharya Nagarjuna University

The function myReplace() reads a text file line by line, replaces all occurrences of a target

string with a replacement string, and writes the modified lines to a new output file.

def myReplace(fileName, target, replacement):

 infile = open(fileName, 'r')

 outfile = open('new_' + fileName, 'w')

 for line in infile:

 new_line = line.replace(target, replacement)

 outfile.write(new_line)

 infile.close()

 outfile.close()

Input File – example.txt

The 3 lines in this file end with the new line character.

There is a blank line above this line.

Program Call

myReplace('example.txt', 'line', 'sentence')

Output File – new_example.txt

The 3 sentences in this file end with the new sentence character.

There is a blank sentence above this sentence.

Explanation:

• The program opens the input file (example.txt) in read mode and creates a new output

file (new_example.txt) in write mode.

• Each line is processed using the replace() method, which substitutes all occurrences of

the target string with the replacement.

• The modified lines are written to the new file.

• Finally, both files are closed to ensure proper resource handling.

This example illustrates a common file-processing pattern:

1. Read from a source file.

2. Modify the content according to some rule.

3. Write the updated data into a new file.

5.5 WRITING TO A TEXT FILE

Writing data to a file is similar but uses write-enabled modes ('w', 'a', 'r+').

Programming and Problem-Solving … 5.8 Files

5.5.1 Writing Strings and Data

f = open('output.txt', 'w')

f.write('Welcome to Python file handling.\n')

f.write('This is line 2.')

f.close()

This creates (or overwrites) the file and writes the specified text.

5.5.2 Appending to a File

Appending adds new data without removing existing content:

with open('output.txt', 'a') as f:

 f.write('\nThis line was appended later.')

5.5.3 Writing Lists and Formatted Data

Use a loop or the writelines() method:

lines = ['apple\n', 'banana\n', 'cherry\n']

with open('fruits.txt', 'w') as f:

 f.writelines(lines)

You can also format text before writing:

with open('marks.txt', 'w') as f:

 for name, mark in [('Ravi', 85), ('Meena', 90)]:

 f.write('{}: {}\n'.format(name, mark))

Example: Writing Data to a Text File

When a program generates output that should be stored permanently, it can write data to a

text file.

Python provides the write() method to store string data into a file.

If numeric or non-string values are to be written, they must first be converted into strings.

Example: Writing to a Text File

outfile = open('test.txt', 'w')

outfile.write('1 This is the first line. Still the first line...\n')

outfile.write('2 Now we are in the second line.\n')

value = 5

outfile.write('3 Non string value like ' + str(value) + ' must be converted first.\n')

outfile.write('4 Non string value like ' + str(value) + ' must be converted first. WRITING TO

A TEXT FILE\n')

outfile.close()

Output File – test.txt

1 This is the first line. Still the first line...

2 Now we are in the second line.

Centre for Distance Education 5.9 Acharya Nagarjuna University

3 Non string value like 5 must be converted first.

4 Non string value like 5 must be converted first. WRITING TO A TEXT FILE

Explanation:

• The file test.txt is opened in write mode ('w'), creating a new file in the current

working directory.

• Each write() call adds one line to the file.

• The \n character ensures each new line starts properly.

• The numeric value 5 is first converted to a string using str(value) before being written.

• Finally, close() is called to save and release the file.

Example: Appending Data to a File

Open file in append mode

outfile = open('test.txt', 'a')

outfile.write('\n5 This line is added later using append mode.')

outfile.write('\n6 File content is preserved and new data is added at the end.')

outfile.close()

Updated File – test.txt

1 This is the first line. Still the first line...

2 Now we are in the second line.

3 Non string value like 5 must be converted first.

4 Non string value like 5 must be converted first. WRITING TO A TEXT FILE

5 This line is added later using append mode.

6 File content is preserved and new data is added at the end.

Explanation:

• Opening a file with 'a' does not erase its existing contents.

• Every call to write() adds text to the end of the file.

• This mode is ideal for logging, adding new records, or progressively storing results.

Example: Reading and Writing Together with ‘r+’

Open file for both reading and writing

file = open('test.txt', 'r+')

Read and display existing content

print('Existing File Content:\n')

print(file.read())

Write additional data

file.write('\n7 This line is added using r+ mode.')

file.close()

Output (on screen):

Programming and Problem-Solving … 5.10 Files

Existing File Content:

1 This is the first line. Still the first line...

2 Now we are in the second line.

3 Non string value like 5 must be converted first.

4 Non string value like 5 must be converted first. WRITING TO A TEXT FILE

5 This line is added later using append mode.

6 File content is preserved and new data is added at the end.

Updated File – test.txt

...

7 This line is added using r+ mode.

Explanation:

• The 'r+' mode permits both reading and writing operations.

• Reading begins at the start of the file, and writing begins after the file pointer position

(which can be moved using seek() if required).

• It is useful when you want to read existing content, make changes, and rewrite data

within the same file.

5.6 PRACTICAL EXAMPLES OF FILE HANDLING

Example 1: Counting Lines and Words

with open('essay.txt', 'r') as f:

 lines = f.readlines()

print('Number of lines:', len(lines))

word_count = sum(len(line.split()) for line in lines)

print('Number of words:', word_count)

Input File – essay.txt

Python is an easy to learn programming language.

It supports multiple programming paradigms.

File handling in Python is simple and powerful.

Output

Number of lines: 3

Number of words: 18

Explanation:

• readlines() reads all the lines from the file into a list.

• len(lines) gives the total number of lines.

• Each line is split into words using split(), and the total number of words is computed

with sum().

Example 2: Copying Contents from One File to Another

with open('source.txt', 'r') as src, open('copy.txt', 'w') as dst:

 for line in src:

 dst.write(line)

Centre for Distance Education 5.11 Acharya Nagarjuna University

Input File – source.txt

Learning Python is fun.

This file will be copied to another file.

Output File – copy.txt

Learning Python is fun.

This file will be copied to another file.

Explanation:

• The first file (source.txt) is opened for reading.

• The second file (copy.txt) is opened for writing.

• Each line from the source is written to the destination.

• The with statement ensures both files are properly closed after use.

Example 3: Filtering Data from a File

with open('numbers.txt', 'r') as f:

 for num in f:

 if int(num) % 2 == 0:

 print(num.strip())

Input File – numbers.txt

11

12

15

20

23

30

Output

12

20

30

Explanation:

• Each line is read as a string and converted to an integer using int(num).

• The expression int(num) % 2 == 0 checks whether the number is even.

• Only even numbers are printed after removing newline characters using .strip().

5.7 COMMON FILE ERRORS

Typical issues when dealing with files:

• File not found (FileNotFoundError)

• Permission denied (PermissionError)

• Wrong file mode or path

File Not Found (FileNotFoundError)

This error occurs when the program tries to open or read a file that does not exist in the

specified directory.

Example:

Programming and Problem-Solving … 5.12 Files

f = open('missing.txt', 'r')

Output:

FileNotFoundError: [Errno 2] No such file or directory: 'missing.txt'

Reason:

• The file missing.txt does not exist in the current working directory.

Solution:

Use a try–except block to catch the error gracefully:

try:

 f = open('missing.txt', 'r')

except FileNotFoundError:

 print('Error: The specified file was not found.')

Permission Denied (PermissionError)

This error occurs when the program does not have the necessary permissions to access, read,

or write a file.

Example:

f = open('/system/config.txt', 'w')

Output:

PermissionError: [Errno 13] Permission denied: '/system/config.txt'

Reason:

• The user may not have permission to modify or create files in that directory.

Solution:

Ensure you have the required access rights or change the file’s location:

try:

 f = open('config.txt', 'w')

except PermissionError:

 print('Error: You do not have permission to modify this file.')

3. Wrong File Mode or Path

This error occurs when the file is opened using an incorrect mode (e.g., trying to read from a

file opened in write mode) or when an invalid path is provided.

Example 1: Incorrect Mode

f = open('data.txt', 'w')

print(f.read())

Output:

io.UnsupportedOperation: not readable

Reason:

• The file is opened in 'w' mode, which allows writing only, not reading.

Solution:

f = open('data.txt', 'r') # Open in read mode

print(f.read())

Example 2: Invalid Path

f = open('C:/wrongfolder/data.txt', 'r')

Centre for Distance Education 5.13 Acharya Nagarjuna University

Output:

FileNotFoundError: [Errno 2] No such file or directory: 'C:/wrongfolder/data.txt'

Reason:

• The directory wrongfolder does not exist.

Solution:

• Verify the file path or use an absolute path:

f = open('C:/Users/YourName/Documents/data.txt', 'r')

5.8 SUMMARY

In this chapter, you learned how to:

• Work with the file system and understand file paths.

• Open, read, and write files using Python’s built-in functions.

• Use different reading patterns such as read(), readline(), and readlines().

• Employ the with statement for automatic file management.

• Write and append text efficiently.

• Handle file-related errors using exceptions.

5.9 TECHNICAL TERMS

File System, File Modes, open(), close(), read(), write(), with Statement, Exception Handling

5.10 SELF-ASSESSMENT QUESTIONS

Essay Questions

1. Explain the purpose of the file system and how Python interacts with it.

2. Describe the different file access modes in Python with examples.

3. Discuss various methods for reading data from a text file.

4. Explain the use of the with statement in file operations.

5. How can you handle exceptions during file input/output operations?

Short Notes

1. Write about the readline() and readlines() methods.

2. Differentiate between write ('w') and append ('a') modes.

3. Describe how to write lists to a file using writelines().

5.11 SUGGESTED READINGS

1. Ljubomir Perković – Introduction to Computing Using Python, John Wiley & Sons,

2012.

2. Reema Thareja – Python Programming Using Problem-Solving Approach, Oxford

University Press.

3. Eric Matthes – Python Crash Course, No Starch Press.

4. Al Sweigart – Automate the Boring Stuff with Python.

5. Mark Lutz – Learning Python, O’Reilly Media.

Dr. Neelima Guntupalli

LESSON- 06

 EXCEPTION HANDLING

AIMS AND OBJECTIVES

The objective of this chapter is to explain the nature of program errors, differentiate between

syntax and runtime errors, and introduce Python’s exception-handling mechanism for

building reliable programs.

After completing this chapter, students will be able to:

• Recognize various types of errors in Python.

• Use try, except, else, and finally blocks effectively.

• Raise and define exceptions.

• Employ debugging and logging tools.

• Develop robust programs that recover from unexpected events

STRUCTURE

6.1 Introduction

6.2 Understanding Program Errors

6.3 Syntax Errors

6.4 Runtime Errors and Exceptions

6.5 Exception Hierarchy in Python

6.6 Handling Exceptions – try and except

6.7 else and finally Blocks

6.8 Raising Exceptions with raise and assert

6.9 Creating Custom Exceptions

6.10 Multiple and Nested Handlers

6.11 Using the with Statement for Resource Management

6.12 Debugging in Python

6.13 Logging Runtime Information

6.14 Case Study – Logging File Access

6.15 Summary

6.16 Technical Terms

6.17 Self-Assessment Questions

6.18 Suggested Readings

Programming and Problem-Solving … 6.2 Exception Handling

6.1 INTRODUCTION

Errors are an inevitable part of programming. Some errors prevent the program from running

at all, while others occur only when it executes.

Python distinguishes between:

1. Syntax Errors – mistakes in program structure detected before execution.

2. Runtime Errors (Exceptions) – errors that occur during execution, such as dividing by

zero or opening a missing file.

3. Logical Errors – the program runs but produces incorrect output due to faulty logic.

Exception handling provides a structured way to detect and respond to runtime problems

without halting the entire program.

6.2 UNDERSTANDING PROGRAM ERRORS

• Compile-time (syntax) errors: violate Python’s grammar rules.

• Runtime errors (exceptions): occur only when a particular statement executes.

• Logic errors: are semantic; Python cannot detect them automatically.

Good programming practice includes anticipating possible exceptions and writing code that

handles them gracefully.

6.3 SYNTAX ERRORS

A SyntaxError occurs when the Python interpreter cannot parse the code.

Missing colon

if x > 0

 print("Positive")

Output

SyntaxError: expected ':'

The interpreter stops immediately and points to the offending line.

These errors must be corrected before execution; they cannot be caught by try/except.

6.4 RUNTIME ERRORS AND EXCEPTIONS

A runtime error is detected while the program runs.

Python signals such problems by raising exceptions.

Example:

x = 5 / 0

Output

ZeroDivisionError: division by zero

When an exception occurs:

1. Normal flow stops.

2. Python searches for a matching except block.

3. If none is found, it prints a traceback and terminates the program.

6.5 EXCEPTION HIERARCHY IN PYTHON

All exceptions derive from the base class BaseException.

Centre for Distance Education 6.3 Acharya Nagarjuna University

The commonly used root is Exception, from which most runtime errors inherit.

Fig 6.1. Exception Hierarchy

6.6 HANDLING EXCEPTIONS – try AND except

Use try / except to catch and handle predictable exceptions. The try block is used to test a

block of code for errors.Python executes the statements inside the try block first.

Fig 6.2 Common exception types

Programming and Problem-Solving … 6.4 Exception Handling

If no error occurs, the program skips all except blocks and continues normally.

If an error (exception) occurs, Python immediately stops the try block and looks for a

matching except

The except block is used to handle the exception that occurs in the try block.

It specifies what should happen when a particular error is detected.

try:

 num = int(input("Enter an integer: "))

 print(10 / num)

except ValueError:

 print("Input must be an integer.")

except ZeroDivisionError:

 print("Cannot divide by zero.")

Output Examples

Input: ten → Input must be an integer.

Input: 0 → Cannot divide by zero.

Multiple Except Blocks

You can use several except blocks to handle different error types separately.

try:

 f = open("data.txt", "r")

 n = int(f.readline())

 print(10 / n)

except FileNotFoundError:

 print("File not found.")

except ZeroDivisionError:

 print("Cannot divide by zero.")

except ValueError:

 print("Invalid data in file.")

Key Points

• The try block contains code that may cause an exception.

• The except block contains code that handles that exception.

• You can have multiple except blocks for different exception types.

• If no exception occurs, the except blocks are skipped.

• You can also use a generic exception handler to catch any unexpected error:

Centre for Distance Education 6.5 Acharya Nagarjuna University

 except Exception as e:

 print("An error occurred:", e)

6.7 ELSE AND FINALLY BLOCKS

Python provides two additional optional clauses — else and finally — that can be used with

the try–except structure to make exception handling more precise and complete.

They define what happens when no exception occurs (else) and what must always be

executed (finally).

• The else Block

The else block executes only if no exception occurs in the try block.

It is useful for placing code that should run only when the try block succeeds without

errors.

Syntax:

try:

 # Code that might raise an exception

except ExceptionType:

 # Handle the exception

else:

 # Code to execute if no exception occurred

Example:

try:

 f = open("data.txt", "r")

 content = f.read()

except FileNotFoundError:

 print("Error: File not found.")

else:

 print("File opened successfully.")

 print(content)

 f.close()

Output (if file exists):

File opened successfully.

<file contents>

Output (if file does not exist):

Error: File not found.

Programming and Problem-Solving … 6.6 Exception Handling

Explanation:

• If open() raises a FileNotFoundError, the except block executes.

• If no error occurs, Python skips except and executes the else block.

2. The finally Block

The finally block executes no matter what happens — whether an exception occurs or not.

It is used for cleanup operations like closing files, releasing resources, or disconnecting

from databases.

Syntax:

try:

 # Risky operation

except ExceptionType:

 # Handle error

finally:

 # Code that always runs

Example:

try:

 f = open("data.txt", "r")

 data = f.read()

 print("Reading file completed.")

except FileNotFoundError:

 print("File not found.")

finally:

 print("Closing file (if opened).")

 try:

 f.close()

 except:

 pass

Possible Outputs:

Reading file completed.

Closing file (if opened).

or

File not found.

Closing file (if opened).

Centre for Distance Education 6.7 Acharya Nagarjuna University

Explanation:

• The finally block executes regardless of whether an exception occurs.

• Even if a return, break, or continue statement is used inside try or except, the finally

block will still run before the program exits that scope.

• It is commonly used to ensure resources (files, network connections, etc.) are released

properly.

3. Combining try, except, else, and finally

All four clauses can be combined in one structure for full control:

try:

 num = int(input("Enter a number: "))

 result = 10 / num

except ValueError:

 print("Invalid input! Please enter a number.")

except ZeroDivisionError:

 print("Cannot divide by zero.")

else:

 print("Division successful. Result =", result)

finally:

 print("Program execution completed.")

Output 1

Enter a number: 0

Cannot divide by zero.

Program execution completed.

Output 2

Enter a number: 5

Division successful. Result = 2.0

Program execution completed.

Key Points

• else runs only if the try block has no exceptions.

• finally always executes — whether an exception occurs or not.

• finally is ideal for cleanup tasks like closing files or releasing resources.

• These clauses make programs more reliable and maintainable.

6.8 RAISING EXCEPTIONS WITH RAISE AND ASSERT

You can raise an exception manually when a condition is invalid.

def withdraw(balance, amount):

Programming and Problem-Solving … 6.8 Exception Handling

 if amount > balance:

 raise ValueError("Insufficient funds")

 return balance - amount

The assert statement checks logical conditions during testing.

assert 2 + 2 == 4

assert 5 < 3, "Assertion failed: invalid condition"

6.9 CREATING CUSTOM EXCEPTIONS

Python allows programmers to define their own custom exceptions to handle specific error

situations that are not covered by built-in exceptions. Custom exceptions make programs

more readable, modular, and meaningful because they describe the exact problem in the

program’s domain.

A custom exception is a user-defined class that inherits from Python’s built-in Exception

class (or one of its subclasses). By creating subclasses of Exception, programmers can define

error types that are specific to their application.

Basic Syntax

class MyException(Exception):

 """Custom exception class."""

 pass

The pass statement is used here because we do not need to add new behavior; the class

simply acts as a new type of exception.

Example 1: Creating and Raising a Custom Exception

class NegativeNumberError(Exception):

 """Raised when a negative number is encountered."""

 pass

def square_root(x):

 if x < 0:

 raise NegativeNumberError("Cannot compute square root of a negative number.")

 else:

 return x ** 0.5

try:

 print(square_root(-9))

except NegativeNumberError as e:

Centre for Distance Education 6.9 Acharya Nagarjuna University

 print("Error:", e)

Output

Error: Cannot compute square root of a negative number.

Explanation:

• The class NegativeNumberError extends Exception.

• When a negative value is passed, the raise statement triggers this exception.

• The except block catches and handles it gracefully.

Example 2: Adding Custom Attributes

Custom exception classes can store additional information such as error codes or variable

values.

class InsufficientFundsError(Exception):

 def __init__(self, balance, amount):

 super().__init__(f"Insufficient funds: Balance={balance},

 Withdrawal={amount}")

 self.balance = balance

 self.amount = amount

def withdraw(balance, amount):

 if amount > balance:

 raise InsufficientFundsError(balance, amount)

 else:

 return balance - amount

try:

 new_balance = withdraw(500, 800)

except InsufficientFundsError as e:

 print("Transaction Failed!")

 print(e)

 print("Remaining balance:", e.balance)

Output

Transaction Failed!

Insufficient funds: Balance=500, Withdrawal=800

Remaining balance: 500

Programming and Problem-Solving … 6.10 Exception Handling

Explanation:

• The __init__ method initializes the exception with custom attributes.

• The super() call passes a formatted error message to the base Exception class.

• The caught exception can access e.balance or e.amount for more details.

Example 3: Multiple Custom Exceptions

You can define multiple custom exceptions to represent various application-specific errors.

class InvalidAgeError(Exception):

 pass

class AgeTooHighError(Exception):

 pass

def check_age(age):

 if age < 0:

 raise InvalidAgeError("Age cannot be negative.")

 elif age > 120:

 raise AgeTooHighError("Age seems unrealistically high!")

 else:

 print("Valid age:", age)

try:

 check_age(150)

except (InvalidAgeError, AgeTooHighError) as e:

 print("Error:", e)

Output

Error: Age seems unrealistically high!

Advantages of Custom Exceptions

• Clarity: Communicate the exact type of problem in user-defined domains.

• Modularity: Separate error-handling logic from main program logic.

• Hierarchy: You can organize related exceptions under a parent custom exception.

• Maintainability: Easier debugging and understanding of specific failure conditions.

Example 4: Creating a Hierarchy of Custom Exceptions

class StudentError(Exception):

Centre for Distance Education 6.11 Acharya Nagarjuna University

 """Base class for all student-related exceptions."""

 pass

class InvalidIDError(StudentError):

 pass

class MissingGradeError(StudentError):

 pass

try:

 raise MissingGradeError("Grade record not found for student ID 2025.")

except StudentError as e:

 print("Student Database Error:", e)

Output

Student Database Error: Grade record not found for student ID 2025.

6.10 MULTIPLE AND NESTED HANDLERS

You can nest or chain multiple handlers for complex logic.

try:

 with open('numbers.txt') as f:

 total = sum(int(x) for x in f)

except FileNotFoundError:

 print("Missing input file.")

except ValueError:

 print("File contained non-numeric data.")

else:

 print("Total =", total)

By creating a hierarchy, all student-related exceptions can be caught together using the base

class StudentError.

• Custom exceptions are classes derived from Exception.

• Use the raise statement to trigger them intentionally.

• Include descriptive messages and attributes for context.

• Organize related custom exceptions using inheritance.

• Handling them separately enhances readability and error diagnostics.

Programming and Problem-Solving … 6.12 Exception Handling

Table 6.1 Example Summary

Custom Exception Purpose

Negative Number Error Handles negative input values.

Insufficient Funds Error Raised when withdrawal exceeds balance.

Invalid Age Error, Age Too High Error Manage age-related input errors.

Student Error Hierarchy Group of related user-defined exceptions.

6.11 USING with FOR RESOURCE MANAGEMENT

In Python, many operations involve external resources such as files, network connections,

or databases.These resources must be explicitly released after use to prevent memory leaks,

file corruption, or system slowdowns.The with statement provides a safe and elegant way to

manage such resources automatically.

The with statement is used to wrap the execution of a block of code within methods

defined by a context manager. It ensures that resources are acquired and released

properly, even if an exception occurs inside the block.

Syntax:

with expression as variable:

 # Code block using the resource

When the block under with finishes execution:

• The resource is automatically cleaned up (e.g., the file is closed).

• Any exceptions that occur inside the block are handled safely.

How It Works

When a file (or any object) is opened using with, Python calls two special methods of that

object:

Method Purpose

__enter__() Called when entering the with block; initializes the resource.

__exit__() Called automatically when leaving the with block, even if an exception occurs;

used for cleanup.

This automatic handling eliminates the need for a manual close() call.

Example 1: Using with to Handle Files

with open('example.txt', 'r') as f:

 contents = f.read()

 print(contents)

Centre for Distance Education 6.13 Acharya Nagarjuna University

Explanation:

• The open() function returns a file object.

• The with statement calls f.__enter__() to open the file.

• The file is used inside the block.

• When the block ends, f.__exit__() is called automatically, closing the file — even if

an error occurs.

Equivalent Code Without with:

f = open('example.txt', 'r')

try:

 contents = f.read()

 print(contents)

finally:

 f.close()

Both versions do the same thing, but the with version is cleaner and less error-prone.

Example 2: Writing to a File Safely

with open('output.txt', 'w') as outfile:

 outfile.write("This is written safely using 'with' in Python.\n")

 outfile.write("File will close automatically after this block.")

Explanation:

The file output.txt is created (or overwritten) in write mode.

When the with block ends, the file is automatically closed — no explicit close() call is

required.

Advantages of Using with

• Automatic Cleanup: Resources are released even when exceptions occur.

• Simpler Syntax: No need for explicit close() calls or finally blocks.

• Readable and Safe: Encourages clean, readable, and error-free code.

• Extensible: Works with any object implementing __enter__ and __exit__.

Table 6.2 Example Summary with () for resource management

Use Case Code Snippet Purpose

Reading File with open('data.txt', 'r') as f: Automatically closes file after

reading

Writing File with open('output.txt', 'w') as f: Ensures file closure even on error

Multiple Files with open('a.txt') as a, open('b.txt') as

b:

Manage multiple files safely

Custom

Context

__enter__() / __exit__() methods Build your own managed resources

Programming and Problem-Solving … 6.14 Exception Handling

6.12 DEBUGGING IN PYTHON

Debugging is the process of finding and fixing defects.

Common approaches:

• Print Statements – insert temporary print() calls to track variables.

• Using the Debugger (pdb)

• import pdb

• pdb.set_trace()

Allows step-by-step execution in the terminal.

• IDE Debuggers – VS Code, PyCharm, and IDLE provide breakpoints, watches, and

variable inspectors.

• Code Review and Unit Testing – systematic testing reveals logical errors early.

6.13 LOGGING RUNTIME INFORMATION

Instead of printing messages, use the built-in logging module.

import logging

logging.basicConfig(filename='app.log', level=logging.INFO)

logging.info('Program started')

try:

 result = 10 / 0

except ZeroDivisionError:

 logging.exception('Division by zero encountered')

logging.info('Program ended')

app.log

INFO:root:Program started

ERROR:root:Division by zero encountered

Traceback (most recent call last):

 ...

ZeroDivisionError: division by zero

INFO:root:Program ended

Logging is essential for diagnosing production errors without interrupting program execution.

6.14 CASE STUDY – LOGGING FILE ACCESS (Brief)

Logging is a technique used to record events that occur while a program runs, such as file

openings, errors, or successful operations.

Centre for Distance Education 6.15 Acharya Nagarjuna University

Python’s logging module makes it easy to keep a record of such activities in a separate log

file.

Example: Logging File Access

import logging

logging.basicConfig(

 filename='file_access.log',

 level=logging.INFO,

 format='%(asctime)s - %(levelname)s - %(message)s'

)

def open_file(filename):

 try:

 with open(filename, 'r') as f:

 data = f.read()

 logging.info(f"File opened successfully: {filename}")

 except FileNotFoundError:

 logging.error(f"File not found: {filename}")

 except PermissionError:

 logging.error(f"Permission denied: {filename}")

Sample Output on Screen

Error: File not found: missing.txt

Contents of file_access.log

2025-10-28 17:10:03,502 - INFO - File opened successfully: notes.txt

2025-10-28 17:10:04,210 - ERROR - File not found: missing.txt

Explanation

• The logging module writes messages to a log file instead of printing them.

• Each log entry includes a timestamp, a severity level, and a message.

• Levels such as INFO, WARNING, and ERROR describe the importance of each

event.

• Logging helps trace errors, monitor program activity, and maintain system reliability.

Key Points

• logging.basicConfig() initializes log settings.

Programming and Problem-Solving … 6.16 Exception Handling

• logging.info() records successful operations.

• logging.error() records failures.

• Logs are saved in file_access.log for later review.

Logging file access helps developers track file operations and detect errors automatically,

improving debugging, transparency, and program maintenance.

6.15 SUMMARY

In this chapter, you learned how Python handles errors and exceptions, and how to write

programs that can detect and recover from unexpected situations gracefully.

Key takeaways include:

• Errors are problems in the program that can prevent execution. They are of three

types: syntax, runtime, and logical errors.

• Syntax errors are detected by Python before execution and must be corrected.

• Runtime errors (exceptions) occur while a program is running and can be handled

using the try–except structure.

• The try block identifies risky code, while except specifies how to handle each

exception type.

• The else block runs only when no exception occurs, and the finally block always runs

for cleanup.

• The raise statement is used to generate exceptions deliberately; assert is used for

testing conditions.

• Programmers can create custom exceptions by defining new classes that inherit from

Exception.

• The with statement automates resource management, ensuring files and connections

are closed properly.

• The logging module records program events and errors for analysis and debugging.

• Combining exception handling, resource management, and logging leads to

reliable, maintainable, and professional-grade Python programs.

6.16 TECHNICAL TERMS

Error, Exception, Traceback, SyntaxError, RuntimeError, Logical Error,

try, except, else, finally, raise, assert, Custom Exception, Exception Hierarchy,

with Statement, Resource Management, Context Manager, Logging,

FileNotFoundError, ValueError, ZeroDivisionError, PermissionError, Debugging,

pdb (Python Debugger), Logging Levels (INFO, WARNING, ERROR, CRITICAL)

6.17 SELF-ASSESSMENT QUESTIONS

Essay Questions

1. Explain the difference between syntax errors, runtime errors, and logical errors with

examples.

2. Discuss the working of the try–except–else–finally structure with suitable code.

3. Describe how custom exceptions are created and used in Python.

4. What is the purpose of the with statement? Illustrate its use in file operations.

Centre for Distance Education 6.17 Acharya Nagarjuna University

5. Explain the use of the logging module for debugging and tracking file access.

6. Write a short note on exception hierarchy and the importance of handling specific

exceptions.

7. Discuss how debugging tools like pdb can be used to find logical errors.

Short-Answer Questions

1. Define try and except.

2. What is the difference between raise and assert statements?

3. List any four built-in exceptions in Python.

4. What happens if a file opened in read mode does not exist?

5. What is the purpose of the finally block?

6. How does with open() differ from using open() and close() manually?

7. Mention two advantages of using logging over print statements.

6.18 SUGGESTED READINGS

1. Ljubomir Perković – Introduction to Computing Using Python: An Application

Development Focus, John Wiley & Sons, 2012.

2. Reema Thareja – Python Programming: Using Problem-Solving Approach, Oxford

University Press.

3. Mark Lutz – Learning Python, O’Reilly Media.

4. Eric Matthes – Python Crash Course, No Starch Press.

5. Al Sweigart – Automate the Boring Stuff with Python, No Starch Press.

Dr. Neelima Guntupalli

LESSON- 07

 CONDITIONAL STRUCTURES

AIMS AND OBJECTIVES

After completing this chapter, students will be able to:

• Understand how programs make decisions using conditional logic.

• Use relational and logical operators in expressions.

• Apply if, if–else, if–elif–else, and nested if statements.

• Write programs that choose between alternative actions.

• Distinguish between simple and compound conditions.

• Use indentation correctly to represent decision structures.

STRUCTURE

7.1 Introduction

7.2 Need for Decision Making in Programs

7.3 Boolean Expressions and Relational & Logical Operators

7.4 Simple if Statement

7.5 if–else Statement

7.6 if–elif–else Statement

7.7 Nested if Statements

7.8 Conditional Expressions (Ternary Operator)

7.9 Practical Examples

7.10 Summary

7.11 Technical Terms

7.12 Self-Assessment Questions

7.13 Suggested Readings

7.1 INTRODUCTION

Every non-trivial program must be able to make decisions. A decision statement allows a

program to choose a course of action depending on whether a condition evaluates to True or

False. Python’s main decision-making construct is the if statement. Together with relational

and logical operators, it forms the basis for control flow.

Example motivation:

temperature = 37.8

if temperature > 37:

 print("Fever detected")

The program executes the print() statement only when the condition temperature > 37 is True.

Programming and Problem-Solving … 7.2 Conditional Structures

7.2 NEED FOR DECISION MAKING IN PROGRAMS

Sequential execution alone cannot handle situations requiring alternative outcomes.

Real-life decisions—granting a loan, grading a student, or controlling a machine—depend on

specific conditions.

Without Decision Control

balance = 500

print("Withdrawal allowed")

The message appears even when balance < 0.

With Decision Control

balance = 500

if balance > 0:

 print("Withdrawal allowed")

else:

 print("Insufficient funds")

Decision control thus makes programs intelligent and context-dependent.

7.3 BOOLEAN EXPRESSIONS AND RELATIONAL & LOGICAL OPERATORS

A Boolean expression evaluates to one of the two truth values: True or False.

Python treats True as 1 and False as 0 in numeric contexts.

Table 7.1 Relational Operators

Operator Meaning Example Result

== equal to 5 == 5 True

!= not equal to 7 != 2 True

< less than 3 < 9 True

> greater than 8 > 10 False

<= less than or equal to 5 <= 5 True

>= greater than or equal to 9 >= 5 True

Table 7.2 Logical Operators

Operator Description Example Result

and True if both operands are True (x > 0) and (x < 10) True if x between 0

and 10

or True if at least one operand is True (x == 0) or (y == 0) True if any zero

not Reverses truth value not(x > 5) True if x ≤ 5

Centre for Distance Education 7.3 Acharya Nagarjuna University

Relational operators are often combined with logical operators to form compound conditions.

Example

age = 20

if age >= 18:

 print("Adult")

Example

x = 5

y = 10

print((x < 10) and not(y < 5 or x == 7))

Evaluation order ensures predictable results.

7.4 SIMPLE IF STATEMENT

The if statement in Python is one of the conditional statements that is used the most

frequently in programming languages. In this way, it determines whether or not particular

statements are required to be executed. It performs a check to determine whether a particular

condition is satisfied; if the condition is satisfied, the set of code included within the "if"

block will be run; otherwise, it will not be executed.

Syntax:

if (EXPRESSION = = TRUE) :

 if- Block of code

Next statement after Block of code is executed.

 Fig 7.1. Simple if statement

In the syntax presented above,

• if the expression "EXPRESSION = = TRUE" is successfully executed, then the

conditional block of code will be run

Programming and Problem-Solving … 7.4 Conditional Structures

• Otherwise, the statement that comes after the conditional block of code will be

executed.

The flow chart of if statement is shown in Figure 7.1.

• If you look at the flowchart that was just presented, you will notice that the controller

will first arrive at an if condition and then evaluate the condition.

• If the condition is true, then the statements will be executed.

• if it is not true, then the code that is present outside the block will be executed.

Example: 1

Output:

The above code tests the condition "x<20." If the test is successful, a block of code will be

executed, as really seen in the output, and finally the last line, "This statement will always

be executed," will be executed. This statement is also clearly displayed in the output.

Centre for Distance Education 7.5 Acharya Nagarjuna University

Example 2:

Output:

The code condition (Obtained_Mark > = Pass_Mark) is tested in the previous example; if it

passes, the if-block will be executed. The code is executed twice. The first time, the

condition is not met (20 < 40), and the final message, "End of the Program," is shown.

Nevertheless, the second attempt met the success requirement (i.e., 60 > 40), printed

"Congratulations on Passing the Exam," and showed the final message, "End of the

Program."

7.5 IF–ELSE STATEMENT

 if-else statements

The Boolean expression is evaluated by the if-else statement. The code in the "if" block will

be executed if the condition is TRUE; otherwise, the code in the "else" block will be

executed.

Programming and Problem-Solving … 7.6 Conditional Structures

Syntax:

 If (EXPRESSION == TRUE):

 If-Statement (Body of the block)

 else:

 else-Statement (Body of the block)

When the syntax (EXPRESSION = = TRUE) in the following example is successfully

executed, a block of code will be executed if it is not, otherwise it will be executed.

The flow chart of if-else statement is shown in Figure 7.2.

Fig 7.2. Flow Chart of if-else Statement

According to the flow chart above, the controller will first reach the if condition and

determine if the condition is true. If it is, the statements in the if block will then be run; if not,

the "else" block will be executed, and finally the remaining code that is included outside the

"if-else" block will be executed.

Centre for Distance Education 7.7 Acharya Nagarjuna University

Example: 1

The condition (x<20) is tested twice in the code above. The first time it is run, if it is

successful, a block of code will be executed, as we can see in the output. Finally, the final

statement, "This statement will always be executed," is executed, and this is also clearly

displayed in the output. Nevertheless, the second run condition failed by evaluating x=30,

executing the else-Block of code, and generating the output "X is greater than 20." The final

statement, "This statement will always be executed," is finally carried out and is likewise

displayed in the output.

Output:

Programming and Problem-Solving … 7.8 Conditional Structures

Example2:

Output:

The code condition (Obtained_Mark > = Pass_Mark) is tested in the previous example; if it

passes, the if-block will be executed. The code is executed twice. The first time, if the

condition is met (i.e., 50 > 40), the message "Congratulations You Passed Exam" is

displayed, and the final phrase, "End of the Program," is printed. Nevertheless, the second

time around, the condition failed (20 < 30), printing "Sorry, Better Luck Next Time" and

displaying the last sentence, "End of the Program."

 7.6 ELIF STATEMENTS

"elif" statements are an additional type of conditional statement in Python. The "elif"

statement checks for multiple conditions only in the event that the supplied condition is false.

The sole distinction between it and a "if-else" expression is that the condition will be checked

in "elif" rather than "else."

Centre for Distance Education 7.9 Acharya Nagarjuna University

Syntax:

 if (EXPRESSION-1 = = TRUE):

 If-Statement (Body of the block)

 elif(EXPRESSION-2 = = TRUE):

 elif-Statement (Body of the block)

 elif(EXPRESSION-3 = = TRUE):

 elif-Statement (Body of the block)

 else:

 else-Statement (Body of the block)

• In the above syntax (EXPRESSION-1 = = TRUE) is executed successfully then if-

Block of code will be executed

• otherwise (EXPRESSION-2 = = TRUE) is tested, if it is executed successfully

then elif- Block of code related EXPRESSION-2 will be executed

• otherwise (EXPRESSION-3 = = TRUE) is tested, if it is executed successfully

then elif- Block of code related EXPRESSION-3 will be executed otherwise else-

Block of code will be executed.

The flow chart of else-if- lader statement is shown in Figure 7.3.

Fig 7.3. Flow Chart of else-if ladder Statement

Programming and Problem-Solving … 7.10 Conditional Structures

Example:

In the code below, the condition (Obtained_Mark >= Dist_Mark) is tested; if it is successful,

the if-block of code is executed; otherwise, the following succeeding blocks are executed

based on the criteria; otherwise, the else statement and the end statement are executed. The

code is executed four times; the first time the condition is met (i.e., 50 > 40), the message

"Congratulations You Passed Exam" is displayed, and the last statement, "End of the

Program", is printed. However, the second time run condition (65 > 60) is successful and

prints "Congratulations You Passed Exam in First Class" before displaying the last line,

"End of the Program". Similarly, in the third run, the requirement (i.e., 80 > 70) is met, and

the message "Congratulations You Passed Exam in Distinction" is displayed, followed by

the final sentence "End of the Program". During the last run, if the condition (i.e., 30 < 40) is

not met, the else block is activated and the message "Sorry, Better Luck Next Time" is

written. The last statement displayed is "End of the Program".

Example:

Centre for Distance Education 7.11 Acharya Nagarjuna University

Output:

7.7 NESTED IF-ELSE STATEMENTS

Nested "if-else" statements indicate that one "if" or "if-else" statement is contained within

another if or if-else block. Python has this feature as well, which allows us to verify several

conditions in a single application.

Syntax:

 if (EXPRESSION-1 = = TRUE):

 if (EXPRESSION-2 = = TRUE):

 Inner-If-Statement (Body of the block)

Programming and Problem-Solving … 7.12 Conditional Structures

 else:

 Inner-else-Statement (Body of the block)

 else:

 Outer-else-Statement (Body of the block)

The syntax used above obviously shows that the if block will include another if block, and so

on. If block can have 'n' number of if blocks within it.

• In the below flow chart, (EXPRESSION-1 = = TRUE) is executed successfully, then

(EXPRESSION-2 = = TRUE) is tested;

• if it is executed successfully, then if- Block of code related EXPRESSION-2 will be

executed;

• otherwise, Block of code related EXPRESSION-2 will be executed; otherwise, Block

of code related EXPRESSION-1 will be executed.

The Flow Chart of nested if Statement is shown in Figure 7.4.

Fig 7.4. Flow Chart for nested-if Statement

Example:

In the code below, the condition (Obtained_Mark > = Pass_Mask) is tested. If it is successful,

the inner if-statement (Obtained_Mark > = First_Mask and Obtained_Mark < Dist_Mask) is

tested. If it is successful, the block-related inner condition is executed. Otherwise, the block-

related inner condition is executed. Otherwise, the else block from the outer condition is

executed. The ensuing blocks are run based on the circumstances; otherwise, the else

statement is executed, followed by the end statement.

Centre for Distance Education 7.13 Acharya Nagarjuna University

The code is executed four times. The first time, the condition is successful (i.e., 80 > 40), and

the second time, the condition is likewise successful (i.e., 80 > 70), and the message

"Congratulations You Passed Exam in Distinction" is displayed, followed by the last

statement, "End of the Program". However, the condition is successful the second time

(65>40) and then tested (65>60) and printed "Congratulations You Passed Exam in First

Class" and displayed the last statement, "End of the Program". Similarly, in the third run, the

condition is successful (i.e., 50 > 40), and then tested (i.e., 50 > 40), which is successful and

prints "Congratulations You Passed Exam" and displays the last statement, "End of the

Program". If the condition is not met (i.e., 25 < 40), the else block is activated and the

message "Sorry, Better Luck Next Time" is written. The last statement displayed is "End of

the Program".

Programming and Problem-Solving … 7.14 Conditional Structures

Output:

7.8 CONDITIONAL EXPRESSIONS (TERNARY OPERATOR)

In some situations, it is useful to make a simple decision in a single line rather than writing a

complete if–else structure.Python provides the conditional expression, also known as the

ternary operator, for such cases.

It evaluates a condition and returns one of two values depending on whether the condition is

True or False.

Syntax

<value_if_true> if <condition> else <value_if_false>

This expression is evaluated from left to right.

• If the condition is True, Python returns <value_if_true>.

Centre for Distance Education 7.15 Acharya Nagarjuna University

• If the condition is False, it returns <value_if_false>.

Example – Finding the Larger Number

a = 25

b = 40

larger = a if a > b else b

print("Larger number is:", larger)

Output

Larger number is: 40

Example – Even or Odd

num = int(input("Enter a number: "))

print("Even") if num % 2 == 0 else print("Odd")

Output

Enter a number: 15

Odd

Example – Voting Eligibility

age = int(input("Enter your age: "))

status = "Eligible" if age >= 18 else "Not Eligible"

print(status, "to vote.")

Output

Enter your age: 20

Eligible to vote.

7.5 Flowchart for Conditional Expression

Programming and Problem-Solving … 7.16 Conditional Structures

Advantages

• Compact and expressive for simple decisions.

• Improves code readability when used judiciously.

• Can be nested for complex choices, though readability may suffer.

7.9 PRACTICAL EXAMPLES

This section demonstrates how the various decision-making statements (if, if–else, if–elif–

else, and nested if) can be applied to solve real-world problems.

Each example shows both code and expected output to clarify control flow.

BMI (Body Mass Index) Calculator

Objective:

To implement a function myBMI() that takes a person’s height (in inches) and weight (in

pounds) and computes their Body Mass Index (BMI).

The BMI is then classified as Underweight, Normal, or Overweight based on standard health

guidelines.

Formula

Where:

• weight → person’s weight in pounds

• height → person’s height in inches

• 703 → conversion factor for imperial units

Program

def myBMI(height, weight):

 """Compute and classify Body Mass Index (BMI)."""

 bmi = (weight * 703) / (height ** 2)

 print("BMI value:", round(bmi, 2))

 if bmi < 18.5:

 print("Underweight")

 elif bmi < 25:

 print("Normal")

 else:

Centre for Distance Education 7.17 Acharya Nagarjuna University

 print("Overweight")

Example usage:

h = float(input("Enter height (in inches): "))

w = float(input("Enter weight (in pounds): "))

myBMI(h, w)

Explanation

1. The function myBMI() takes two inputs — height and weight.

2. The BMI is calculated using the formula.

3. Using an if–elif–else structure:

o If BMI < 18.5 → prints Underweight.

o If 18.5 ≤ BMI < 25 → prints Normal.

o If BMI ≥ 25 → prints Overweight.

4. The round() function is used to format the BMI to two decimal places.

Sample Runs

Example 1:

Enter height (in inches): 65

Enter weight (in pounds): 110

BMI value: 18.3

Underweight

Example 2:

Enter height (in inches): 68

Enter weight (in pounds): 150

BMI value: 22.8

Normal

Example 3:

Enter height (in inches): 63

Enter weight (in pounds): 165

BMI value: 29.2

Overweight

Programming and Problem-Solving … 7.18 Conditional Structures

7.10 SUMMARY

• Decision control statements make a program choose specific actions based on

conditions.

• The constructs if, if–else, if–elif–else, and nested if allow conditional branching.

• Boolean expressions use relational and logical operators and evaluate to True or

False.

• The conditional (ternary) expression provides a concise single-line decision.

• Correct indentation defines program structure in Python.

• These statements add flexibility and intelligence to programs.

7.11 TECHNICAL TERMS

Decision Control, Conditional Statement, Boolean Expression, Relational Operator, Logical

Operator, Indentation, if Statement, Elif, else, Nested if, Conditional Expression / Ternary

Operator, Branching, Truth Table, Compound Condition, Control Flow, Condition Testing.

7.12 SELF-ASSESSMENT QUESTIONS

Essay Questions

1. Explain the need for decision control in a program with examples.

2. Describe the working of if, if–else, and if–elif–else statements.

3. Write a program to determine whether a year is a leap year.

4. Discuss how logical operators help in forming compound conditions.

5. Explain the role of indentation in decision structures.

6. What is a conditional expression? Give suitable examples.

Short Notes

1. Boolean expressions and relational operators.

2. Range checking using if–else.

3. Flow of control in if–elif–else.

4. Difference between nested if and if–elif–else.

5. Syntax and use of the else block.

Programming Exercises

1. Accept three numbers and display the largest.

2. Write a menu-driven calculator using if–elif–else.

3. Determine whether a character is a vowel, consonant, or symbol.

4. Check if a given number is divisible by 5 and 11.

5. Print student grade based on marks using decision statements.

6. Use a conditional expression to find the smaller of two numbers.

7.13 SUGGESTED READINGS

1. Ljubomir Perković, Introduction to Computing Using Python: An Application

Development Focus, Wiley (2012).

2. Reema Thareja, Python Programming Using Problem-Solving Approach, Oxford

University Press.

3. Mark Lutz, Learning Python, O’Reilly Media.

4. Eric Matthes, Python Crash Course, No Starch Press.

5. Al Sweigart, Automate the Boring Stuff with Python, No Starch Press.

Dr. Neelima Guntupalli

LESSON- 08

 CONTROL STRUCTURES

AIMS AND OBJECTIVES

After completing this chapter, students will be able to:

• Understand how Python executes statements repeatedly using loops.

• Distinguish between definite iteration (for loop) and indefinite iteration (while

loop).

• Use different loop patterns: iteration, counter, accumulator, and nested loops.

• Apply loops with two-dimensional lists.

• Control iteration flow using break, continue, and pass statements.

• Develop real-world programs involving repetition and data aggregation

STRUCTURE

8.1 Introduction

8.2 The for Loop and Iteration Patterns

 8.2.1 Loop Pattern: Iteration Loop

 8.2.2 Loop Pattern: Counter Loop

 8.2.3 Loop Pattern: Accumulator Loop

 8.2.4 Accumulating Different Data Types

 8.2.5 Loop Pattern: Nested Loop

8.3 Two-Dimensional Lists

 8.3.1 Concept of Two-Dimensional Lists

 8.3.2 Nested Loop Pattern with 2-D Lists

8.4 The while Loop

8.5 More Loop Patterns

 8.5.1 Sequence Loop

 8.5.2 Infinite Loop

 8.5.3 Loop-and-a-Half Pattern

8.6 Additional Iteration Control Statements

 8.6.1 The break Statement

 8.6.2 The continue Statement

 8.6.3 The pass Statement

8.7 Summary

8.8 Technical Terms

8.9 Self-Assessment Questions

8.10 Suggested Readings

8.1 INTRODUCTION

Programs often require repeating a sequence of statements multiple times.

Programming and Problem-Solving … 8.2 Control Structures

For example:

• Counting from 1 to 10,

• Summing a list of numbers,

• Printing elements of a list, or

• Reading data until the user quits.

Writing such repetitive code manually is inefficient and error-prone.

To handle repetition, Python provides looping structures, which allow a block of code to

execute repeatedly until a condition changes.

Python has two major looping statements:

Type Structure When Used

for loop Iterates over a sequence or range When number of iterations is known

while loop Repeats while a condition is true When number of iterations is unknown

8.2 THE FOR LOOP AND ITERATION PATTERNS

The for loop is used to execute a block of code a fixed number of times or once for each

element in a sequence such as a list, tuple, or string.

Syntax

for variable in sequence:

 statement(s)

Each element in the sequence is assigned to the loop variable, and the indented block

executes once per element.

Fig 8.1 Flowchart – Iteration Loop

Centre for Distance Education 8.3 Acharya Nagarjuna University

8.2.1 Loop Pattern – Iteration Loop

The simplest use of the for loop is to iterate through all items of a sequence.

Example – Iterating Through a List

for name in ['Ravi', 'Lina', 'Arun']:

 print("Hello,", name)

Output

Hello, Ravi

Hello, Lina

Hello, Arun

This pattern is known as an iteration loop — it processes every item in a collection.

Example:

animals = ['fish', 'cat', 'dog']

 for animal in animals:

print(animal)

Output

fish

cat

dog

Figure 6.2 Iteration through a list.

8.2.2 Loop Pattern – Counter Loop

A counter loop runs a specific number of times, typically using the range() function.

Syntax of range()

Programming and Problem-Solving … 8.4 Control Structures

range(start, stop, step)

• start – beginning value (inclusive)

• stop – ending value (exclusive)

• step – increment (default 1)

Example -Counting Iterations

for i in range(1, 6):

 print("Iteration number:", i)

Output

Iteration number: 1

Iteration number: 2

Iteration number: 3

Iteration number: 4

Iteration number: 5

8.2.3 Loop Pattern – Accumulator Loop

An accumulator loop collects or aggregates data during each iteration.

Example – Sum of Numbers

total = 0

for num in range(1, 6):

 total += num

print("Sum =", total)

Output

Sum = 15

The variable total is called the accumulator.

8.2.4 Accumulating Different Data Types

Loops can accumulate strings, lists, or concatenated results.

Example – String Accumulation

sentence = ""

for word in ["Python", "is", "powerful"]:

 sentence += word + " "

print(sentence.strip())

Output

Python is powerful

Centre for Distance Education 8.5 Acharya Nagarjuna University

Example 8.5 – List Accumulation

squares = []

for i in range(1, 6):

 squares.append(i * i)

print(squares)

Output

[1, 4, 9, 16, 25]

8.2.5 Loop Pattern – Nested Loop

A nested loop is a loop inside another loop.

It is used for two-dimensional data (tables, matrices, grids, etc.).

Example – Multiplication Table

for i in range(1, 4):

 for j in range(1, 4):

 print(i * j, end=' ')

 print()

Output

1 2 3

2 4 6

3 6 9

Each iteration of the outer loop triggers a full pass of the inner loop.

Figure 8.2 Flowchart – Nested Loop

Programming and Problem-Solving … 8.6 Control Structures

8.3 TWO-DIMENSIONAL LISTS

Python can represent tabular data using lists of lists.

8.3.1 Concept of Two-Dimensional Lists

Example

matrix = [

 [1, 2, 3],

 [4, 5, 6],

 [7, 8, 9]

]

print(matrix[1][2])

Output

6

8.3.2 Nested Loop Pattern with 2-D Lists

Example

matrix = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]

for row in matrix:

 for value in row:

 print(value, end=' ')

 print()

Output

1 2 3

4 5 6

7 8 9

8.4 THE WHILE LOOP

A while loop executes statements repeatedly as long as a condition is true.

Syntax

while condition:

 statement(s)

Example – Simple Counting Loop

count = 1

while count <= 5:

 print("Count =", count)

Centre for Distance Education 8.7 Acharya Nagarjuna University

 count += 1

Output

Count = 1

Count = 2

Count = 3

Count = 4

Count = 5

Fig 8.3 Flowchart – while Loop

Example – Factorial Using while

n = int(input("Enter a number: "))

fact = 1

i = 1

while i <= n:

 fact *= i

 i += 1

print("Factorial =", fact)

8.5 MORE LOOP PATTERNS

8.5.1 Iteration Pattern – Sequence Loop

Iterates directly through each element of a collection.

Programming and Problem-Solving … 8.8 Control Structures

Example

for letter in "PYTHON":

 print(letter)

Output

P

Y

T

H

O

N

8.5.2 Infinite Loop

An infinite loop runs forever unless stopped manually or by a break condition.

Example

while True:

 name = input("Enter name (type 'stop' to exit): ")

 if name == 'stop':

 break

 print("Hello,", name)

8.5.3 Loop-and-a-Half Pattern

Used when the termination condition appears in the middle of the loop.

Example

while True:

 num = int(input("Enter number (-1 to quit): "))

 if num == -1:

 break

 print("Square:", num ** 2)

8.6 ADDITIONAL ITERATION CONTROL STATEMENTS

8.6.1 break Statement

The break statement terminates the loop immediately.

Example

for i in range(1, 10):

 if i == 5:

Centre for Distance Education 8.9 Acharya Nagarjuna University

 break

 print(i)

Output

1

2

3

4

8.6.2 continue Statement

Skips the current iteration and moves to the next.

Example

for i in range(1, 6):

 if i == 3:

 continue

 print(i)

Output

1

2

4

5

8.6.3 pass Statement

Used as a placeholder when a statement is required syntactically but no action is desired.

Example

for i in range(5):

 if i < 3:

 pass

 else:

 print(i)

Output

3

4

Programming and Problem-Solving … 8.10 Control Structures

8.7 SUMMARY

• Loops repeat a block of code multiple times.

• The for loop handles definite iteration; the while loop handles indefinite iteration.

• Common loop patterns:

o Iteration Loop – processes each element.

o Counter Loop – runs for a set number of iterations.

o Accumulator Loop – builds up totals or collections.

o Nested Loop – processes multi-dimensional structures.

• Control statements (break, continue, pass) modify normal loop flow.

• Two-dimensional lists are handled using nested loops.

8.8 TECHNICAL TERMS

Iteration,

Loop,

Counter Variable,

Accumulator,

Nested Loop,

Two-Dimensional List,

Infinite Loop,

Loop-and-a-Half Pattern,

break, continue, pass,

Definite Iteration,

Indefinite Iteration.

8.9 SELF-ASSESSMENT QUESTIONS

Essay Questions

1. Explain the difference between for and while loops in Python.

2. Describe and illustrate accumulator and counter loop patterns.

3. Explain nested loops with an example.

4. How are two-dimensional lists processed using nested loops?

5. What is an infinite loop? How can it be avoided?

6. Discuss how break and continue statements affect loop execution.

Short Notes

1. Sequence loop.

2. Loop control statements.

3. Loop and a half pattern.

4. Role of the accumulator variable.

5. Use of range() in for loops.

Programming Exercises

1. Write a program to print the first 10 natural numbers.

2. Compute the factorial of a given number using a while loop.

3. Generate a list of squares using an accumulator loop.

4. Display multiplication tables (1 to 5) using nested loops.

Centre for Distance Education 8.11 Acharya Nagarjuna University

5. Find the sum of digits of a number using a while loop.

6. Write a program to display even numbers from 1 to 50.

8.10 SUGGESTED READINGS

1. Ljubomir Perković, Introduction to Computing Using Python: An Application

Development Focus, Wiley (2012).

2. Reema Thareja, Python Programming: Using Problem-Solving Approach, Oxford

University Press.

3. Mark Lutz, Learning Python, O’Reilly Media.

4. Eric Matthes, Python Crash Course, No Starch Press.

5. Al Sweigart, Automate the Boring Stuff with Python, No Starch Press.

Dr. Neelima Guntupalli

LESSON- 09

PYTHON DICTIONARY

AIMS AND OBJECTIVES

The main aim of this chapter is understanding the concept of dictionary in Python

Programming. The discussion related to understand what dictionary and its characteristics.

After completion of this chapter, student will be able to know what dictionary, how it is

different from other data types. Also able to know operations, functions, and methods in

dictionary.

STRUCTURE

9.1 Introduction

9.2 Python Dictionary

 9.2.1 The Characteristic of Dictionary

 9.2.2 Creating Python Dictionary

9.3 Accessing Dictionary Elements

 9.3.1 Access Dictionary by Key

 9.3.2 Access dictionary by get () method.

 9.3.3 Access of Nested Dictionary

9.4 Dictionary Methods

 9.4.1 Update Elements Methods

 9.4.2 Remove Elements Methods

 9.4.3 keys () and values() Methods

9.5 Dictionary Functions

 9.5.1 len() method

 9.5.2 sorted () method.

 9.5.3 all () method

 9.5.4 any () function

9.6 A Dictionary as a Substitute for Multiway Condition

9.7 Dictionary as a Collection of Counters .

 9.8 Summary

 9.9 Technical Terms

 9.10 Self-Assessment Questions

9.11. Suggested Readings

Programming and Problem-Solving … 9.2 Python Dictionary

9.1. INTRODUCTION

Python, a programming language, is equipped with a wide variety of tools and functions. The

dictionary is one example of such a feature. In the Python programming language, a dictionary

is a collection of key-value pairs. Uniqueness is required for the dictionary keys. A value of any

kind could be assigned to the dictionary. Python's dictionary is a data structure that makes it

possible for us to develop code that is both simple and very effective. The fact that the keys of

this data structure can be hashed is the reason why it is referred to as a hash table in many

different languages. In a moment, we will comprehend the significance of this.

Using Python dictionaries, we can easily obtain a value that has been associated with a specific

key and then immediately access that value. It is recommended that we make use of them if we

are looking for a certain Python object, also known as a lookup method.

9.2 PYTHON DICTIONARY

A dictionary in Python is a set of objects that let's us store information in key-value pairs.

With Python dictionaries, we may rapidly obtain a value by associating it with a distinct key.

Using them whenever we need to locate (search for) a certain Python object is a good

concept. For this purpose, lists can also be used, but they operate far more slowly than

dictionaries.

9.2.1. The Characteristic of Dictionary

• In the first place, the dictionary will have information in the form of key-value pairs.

• A colon ":" sign is used to visually define the key and the values.

• The representation of an item can consist of a single key-value pair.

• It is not permitted to have duplicate keys.

• It is possible to acknowledge duplicate values.

• It is quite OK to use heterogeneous objects for both keys and values.

• The order of the insertion is not maintained.

• a dictionary object that is capable of being altered.

• Dictionary entries behave in a dynamic manner.

• The notions of indexing and slicing are not applicable in this situation.

Centre for Distance Education 9.3 Acharya Nagarjuna University

9.2.2. Creating Python Dictionary

In python, a dictionary is created using the key:value pairs using the curly brackets {} and is

separated by commas. The syntax for creating dictionary is shown below:

Syntax:

my_dict = {

 "key1":"value1",

 "key2":"value2"

 }

In the above syntax my_dict is a dictionary created with two pair of items differentiated with

different keys and values.

Example:

creating a dictionary

country_capitals = {

 "Germany": "Berlin",

 "Canada": "Ottawa",

 "England": "London"

}

In the above example country_capitals is a dictionary created with three pair of items which

includes {"Germany": "Berlin"}, {"Canada": "Ottawa"} and { “England": "London"}.

9.3. ACCESSING DICTIONARY ELEMENTS

To access an element from the dictionary there are three ways and are described below:

• Access by Key

• Access by get () function

• Access of nested dictionary

9.3.1 Access Dictionary by Key

We can access the value of a dictionary item by placing the key inside square brackets. It

accesses and prints the values associated with the keys. The keys and values showcasing

can be of different data types (string and integer).

Syntax:

 Value= dictionary_name[‘Key’]

Programming and Problem-Solving … 9.4 Python Dictionary

 Example:

 State= dic_county [‘Andhra Pradesh’]

Example:

Output:

9.3.2 Access dictionary by get() method

The code demonstrates accessing a dictionary element using the get() method. It retrieves

and prints the value associated with the key 3 in the dictionary ‘Dict’. This method provides

a safe way to access dictionary values, avoiding KeyError if the key doesn’t exist.

Centre for Distance Education 9.5 Acharya Nagarjuna University

Example:

Output:

9.3.3 Access of Nested Dictionary

To access the value of any key in the nested dictionary, use indexing [] syntax. It first

accesses main dictionary associated with the key and then, it accesses a specific value by

navigating through the nested dictionaries.

Example:

Programming and Problem-Solving … 9.6 Python Dictionary

Output:

9.4 DICTIONARY METHODS

Dictionary methods are used to perform specific functionality over dictionary that may be

updating, adding, extracting a, removing and etc operations on keys and items. Some of the

functions includes in given Table 9.1.

Table 9.1. Dictionary Methods

Function Description

pop() Removes the item with the specified key.

update() Adds or changes dictionary items.

clear() Remove all the items from the dictionary.

keys() Returns all the dictionary's keys.

values() Returns all the dictionary's values.

get() Returns the value of the specified key.

popitem() Returns the last inserted key and value as a tuple.

copy() Returns a copy of the dictionary.

9.4.1. Update Elements Methods

Dictionaries are subject to change. Using an assignment operator, we can add new things or

change the value of existing items.

https://www.programiz.com/python-programming/methods/dictionary/pop
https://www.programiz.com/python-programming/methods/dictionary/update
https://www.programiz.com/python-programming/methods/dictionary/clear
https://www.programiz.com/python-programming/methods/dictionary/keys
https://www.programiz.com/python-programming/methods/dictionary/values
https://www.programiz.com/python-programming/methods/dictionary/get
https://www.programiz.com/python-programming/methods/dictionary/popitem
https://www.programiz.com/python-programming/methods/dictionary/copy

Centre for Distance Education 9.7 Acharya Nagarjuna University

Example:

Output:

By declaring value together with the key, for example, Dict[Key] = ‘Value’, one value at a time

can be added to a Dictionary. Another approach is to use Python’s update () function. Python’s

update () method is a built-in dictionary function that updates the key-value pairs of a

dictionary using elements from another dictionary or an iterable of key-value pairs. With

this method, you can include new data or merge it with existing dictionary entries.

Programming and Problem-Solving … 9.8 Python Dictionary

Example:

Output:

9.4.2. Removing Elements Methods

A key can be removed from a dictionary in three ways: from an individual entry, from all

entries, or from the entire dictionary.

1. The pop () function can be used to remove a single element. The value of the key that has

been specified to be eliminated is returned by the pop () function.

2. To randomly remove any elements (key-value pairs) of the dictionary, we can use

the popitem() It returns the arbitrary key-value pair that has been removed from the

dictionary.

3. Using the clear () method, all elements can be eliminated at once. The del keyword is

used to completely delete the entire dictionary.

Centre for Distance Education 9.9 Acharya Nagarjuna University

Example:

Output:

9.4.3 keys () and values() Methods

In Python, the keys () function returns a view object that contains dictionary keys, which

enables quick access and iteration across the dictionary.The values() method in Python

returns a view object that contains all of the dictionary values. This view object can be

accessed and iterated through in an effective manner within Python.

Syntax:

 d = {'key': 'value'}

 d.keys()

Programming and Problem-Solving … 9.10 Python Dictionary

Syntax:

d = {'key': 'value'}

d. values ()

Example:

In the above example , created dictionary called dic_country with three elements with the

usage of keys() and values() fucntions displayed the information related every key and values

associated with elements stored in dic_county dictionary. The reslut shown in output.

Output:

9.5 PYTHON DICTIONARY FUNCTIONS

The Python dictionary offers a wide range of methods that may be utilized to conduct operations

on key-value pairs in an easy and convenient manner. The following is a list of functions using

the Python dictionary shown in Table 9.1.

Centre for Distance Education 9.11 Acharya Nagarjuna University

Table 9.1. Python Dictionary Functions

Function Python Expression Description

len() len(my_dictionary) Returns the length of the dictionary (key

count).

sorted () sorted (dictionary_name) Returns the dictionary with keys sorted in

ascending order.

all () all (dictionary_name) Returns True if all the keys in the dictionary

are True (not 0 and False).

any ()

any(dictionary_name)

Returns True is any of the keys in the

dictionary is True.

str () str (dictionary_name) Returns a string representation of the

dictionary passed as the argument.

9.5.1 len() function

Using the len() method, which returns the item count, one can determine the length of a

dictionary by its use. Printing the length of my dictionary is as follows:

Example:

Output:

Programming and Problem-Solving … 9.12 Python Dictionary

In the above example , dic_country elements count is determined by calling the len() function

and displayed lengh of the dictionary 3 it means dictinay holds the three elemtns and reslut

shown in output.

9.5.2 sorted () function.

Sorting the dictionary can be accomplished with Python's built-in keys functions, which

include the keys () and values () functions. Any iterable can be used as an argument, and it

will return the sorted list of keys you provided. The dictionary can be arranged in ascending

order by using the keys to sort the entries. First, let's get familiar with the below example.

Example:

Output:

We have declared a dictionary of names in the code that was just presented. We made use of

the built-in function in conjunction with the sorted() method, which provided us with a list of

Centre for Distance Education 9.13 Acharya Nagarjuna University

the keys that had been sorted. We then proceeded to utilize the items() function in order to

obtain the dictionary in the order that it was sorted.

9.5.3 all() function

A dictionary's keys are the only elements that are examined when the all() method is applied to it;

the values are not examined. In the event that not all of the keys in the dictionary are true, the all()

method will return FALSE; but, if all of the keys are true, it will return false. In the event that the

dictionary does not consist of any entries, the all() function also returns a value of TRUE.

Example:

Output:

9.5.4 any () function

The any () method only verifies the keys of a dictionary when it is applied to a dictionary; it does

not verify the values. If any of the keys associated with the dictionary are true, the any () method

Programming and Problem-Solving … 9.14 Python Dictionary

will return TRUE; otherwise, it will return FALSE. In the event that the dictionary does not

consist of any entries, the any () function also returns FALSE.

Example:

Output:

9.6 A DICTIONARY AS A SUBSTITUTE FOR MULTIWAY CONDITION

When we first introduced dictionaries, we emphasized their ability to store and retrieve data

using user-defined keys.

However, dictionaries can also replace long multiway if–elif–else chains where multiple

Centre for Distance Education 9.15 Acharya Nagarjuna University

conditions are used to perform simple lookups or mappings. Let us consider a motivating

example.

Example Problem

Suppose we want to write a function complete() that accepts the two-letter abbreviation of a

weekday (e.g., 'Tu') and returns the full name of the day (e.g., 'Tuesday').

Desired behavior:

>>> complete('Tu')

'Tuesday'

Traditional Implementation: Using Multiway if–elif–else

A straightforward (but lengthy) way to implement this is to use a seven-way conditional

chain:

def complete(abbreviation):

 'Returns the day of the week corresponding to abbreviation'

 if abbreviation == 'Mo':

 return 'Monday'

 elif abbreviation == 'Tu':

 return 'Tuesday'

 elif abbreviation == 'We':

 return 'Wednesday'

 elif abbreviation == 'Th':

 return 'Thursday'

 elif abbreviation == 'Fr':

 return 'Friday'

 elif abbreviation == 'Sa':

 return 'Saturday'

 else: # abbreviation must be 'Su'

 return 'Sunday'

Although correct, this implementation is inefficient, verbose, and difficult to maintain.

Each new mapping (for example, adding 'Ho' → 'Holiday') would require adding another elif

condition.

Programming and Problem-Solving … 9.16 Python Dictionary

Improved Implementation: Using a Dictionary

A more elegant and efficient solution is to represent the mapping between abbreviations and

full day names using a dictionary.

def complete(abbreviation):

 'Returns the day of the week corresponding to abbreviation'

 days = {

 'Mo': 'Monday',

 'Tu': 'Tuesday',

 'We': 'Wednesday',

 'Th': 'Thursday',

 'Fr': 'Friday',

 'Sa': 'Saturday',

 'Su': 'Sunday'

 }

 return days[abbreviation]

Explanation

• The dictionary days maps each two-letter abbreviation (the key) to the corresponding

full day name (the value).

• To find the full name, we simply index the dictionary using the abbreviation:

days[abbreviation].

• The dictionary performs this lookup instantly, without testing multiple conditions.

Sample Run

>>> complete('We')

'Wednesday'

>>> complete('Su')

'Sunday'

Benefits of the Dictionary Approach

Aspect Multiway if–elif–else Dictionary Mapping

Code length Long and repetitive Compact and readable

Efficiency Each condition is checked

sequentially

Direct key lookup (constant time)

Maintainability Hard to update or extend Easy to modify or add key–value pairs

Concept Conditional branching Key–value mapping

Using dictionaries to replace multiway conditionals demonstrates Python’s expressive power

and data-oriented programming style.Whenever conditions correspond to a clear mapping

between keys and values, a dictionary provides a cleaner, faster, and more scalable solution.

Centre for Distance Education 9.17 Acharya Nagarjuna University

9.7 DICTIONARY AS A COLLECTION OF COUNTERS .

One of the most important and practical applications of dictionaries is counting occurrences

— also known as frequency counting.

Many programs, from search engines to data analytics tools, rely on counting how many

times specific items occur within a dataset.

Example Problem

Suppose we want to count the number of occurrences of each name in a list of student names.

students = ['Cindy', 'John', 'Cindy', 'Adam', 'Adam',

 'Jimmy', 'Joan', 'Cindy', 'Joan']

We need a function frequency() that will take such a list and compute how many times each

name appears.

Concept

For each distinct item in the list, we want to:

1. Create a counter initialized to zero.

2. Increment the counter each time the item occurs.

The challenge is that we don’t know in advance how many distinct items exist.

Solution: Use a Dictionary of Counters

A dictionary is ideal because it can dynamically:

• Create a new key (item) the first time it appears.

• Associate it with a counter value.

• Increment that value each subsequent time the item appears.

Implementation

def frequency(items):

 'Counts occurrences of each distinct element in the list items'

 counters = {}

 for item in items:

 if item in counters:

 counters[item] += 1

 else:

 counters[item] = 1

 return counters

Example Use

students = ['Cindy', 'John', 'Cindy', 'Adam', 'Adam',

 'Jimmy', 'Joan', 'Cindy', 'Joan']

print(frequency(students))

Programming and Problem-Solving … 9.18 Python Dictionary

Output

{'Cindy': 3, 'John': 1, 'Adam': 2, 'Jimmy': 1, 'Joan': 2}

Explanation

1. The empty dictionary counters = {} starts with no keys.

2. The loop visits each item in the list:

o If the item already exists in the dictionary, increment its counter.

o If not, create a new key with initial value 1.

3. After processing all items, the dictionary contains each unique element with its count.

9.8 SUMMARY

Python is an excellent programming language that comes with a wide variety of feature sets.

The fact that it provides a structured code makes it much simpler to comprehend. Since

Python is currently one of the most widely used programming languages in the modern day, it

is essential to have a comprehensive understanding of this programming language. This

chapter will provide you with practical experience on how to work with dictionary along

methods and functions.

9.9 TECHNICAL TERMS

Dictionary, Update, any, key, value, Get Method, Pop, Clear, and pop Items.

9.10 SELF ASSESSMENT QUESTIONS

Essay questions:

1. How is a dictionary created and called? Explain.

2. What are the various dictionary methods? Explain.

3. Explain about dictionary functions with example.

 Short Notes:

1. Write about get () access method.

2. How dictionary is different form the List.

9.11 SUGGESTED READINGS

1. Steven cooper – Data Science from Scratch, Kindle edition.

2. Reemathareja – Python Programming using problem solving approach, Oxford

Publication

3. "Python Pocket Reference" by Mark Lutz

4. "Python Essential Reference" by David Beazley

5. "Python Programming: An Introduction to Computer Science" by John Zelle

6. "Introduction to Computation and Programming Using Python" by John Guttag

Dr. Kampa Lavanya

LESSON- 10

 TUPLE

AIMS AND OBJECTIVES

The main aim of this chapter is understanding the concept of tuples in Python Programming.

The discussion related to understand what tuple and its characteristics is. After completion of

this chapter, student will be able to know what tuple is, how it is different from other data

types. Also able to know access tuples by various methods, operations, functions, and

methods in tuples.

STRUCTURE

10.1 Introduction

10.2 Python Tuple

 10.2.1 Creating Python Tuple

 10.2.2 Advantages of Tuple over List

10.3 Accessing Tuple

 10.3.1 Indexing

 10.3.2 Negative Indexing

 10.3.3 Slicing

10.4 Python Tuple Operations

 10.4.1 Concatenation of Tuples

 10.4.2 Tuple Membership

10.5 Python Tuple Functions

 10.5.1 len()

 10.5.2 max()

 10.5.3 min()

 10.5.4 sum()

10.6 Tuple Methods

 10.6.1 count() Method

 10.6.2 index() Method

10.7 Class tuple

10.8 Tuple Objects Can Be Dictionary Keys

10.9 Dictionary Method items(), Revisited

10.10 Summary

10.11 Technical Terms

10.12 Self-Assessment Questions

10.13 Suggested Readings

10. 1 INTRODUCTION

Python is a popular high-level, general-purpose programming language that excels at creating

graphical user interfaces and web applications. It is also a popular choice for application

Programming and Problem-Solving … 10.2 Tuple

development due to its dynamic type and binding features. In this chapter we'll learn about

tuples, an important data structure in Python programming.

Python tuples are a data structure that is quite like a list. The primary distinction between the

two is that tuples are immutable, which means they cannot be modified once generated. This

makes them excellent for storing non-modifiable data, such as database records. A tuple can

contain any number of objects of various types, including strings, integers, floats, lists, and so

on. Let's look at how to generate and use a tuple to make our programming work easier.

10.2 PYTHON TUPLE

A sequence of any items that are separated by commas and wrapped in parenthesis is referred

to as a tuple. We use tuples to represent fixed collections of elements since they are

immutable objects, which means they cannot be modified. Tuples are used to carry out this

function. Tuple items are placed in a specific order, cannot be altered, and permit duplicate

values. When we say that tuples are ordered, we are referring to the fact that the items in the

tuple have a predetermined order on which they will remain indefinitely. Tuples and Python

lists share some similarities in terms of indexing, nested objects, and repetition; nevertheless,

the most significant distinction between the two is that a Python tuple is immutable, whereas

a Python list is mutable. Tuples are used in Python programming languages. Since tuples are

indexed, the first item has an index of [0], the second item uses an index of [1], and so on.

10.2.1 Creating Python Tuples

It is possible to create a tuple by associated with all of the items (elements) in parentheses ()

rather than square brackets [], and by separating each element with commas. It is possible for a

tuple to include any number of objects of different types, including integers, floats, lists, strings,

and so on. In addition, you have the option of specifying nested tuples, which can include one or

more items that are either dictionaries, lists, or tuples.

The given example shows how to create simple Tuple in python:

Example:

 emp_tup = () # Empty Tuple

 int_tup = (2, 8, 1, 6, 15, 3) # A Tuple with integers

 mixed_tup = (12, "sai", 81.3) # A Tuple with mixed data items

 nested_tup = ("Python", [8,5,17,6], (2, 6, 1, 20)) # Nested Tuple

Centre for Distance Education 10.3 Acharya Nagarjuna University

We produced four different sorts of tuples in the example that was just presented: empty, int-type,

mixed type, and nested type. It is after the initialization of data items that the size of the empty

tuple is calculated. Nevertheless, the elements that are part of the int type and the mixed type are

the numbers 6 and 3. An example of a nested tuple is a special sort of tuple in which each element

also contains additional elements. A string, a list, and a tuple were the three elements that were

present in the nested tuple that was defined before.

10.2.2 Advantages of Tuple over List

Since they are so comparable, tuples and lists are applied in scenarios that are comparable.

On the other hand, there are a few benefits that come along with utilizing a tuple rather than a

list.

• In contrast to lists, the Tuples cannot be modified in any way. The addition, removal,

or replacement of a tuple is not possible.

• Tuples are often utilized for heterogeneous data kinds, which are distinct from one

another, whereas lists are typically utilized for homogeneous data types, which are

comparable to one another.

• As a result of the immutability of tuples, iterating through them is a more efficient

process than iterating through a list. As a consequence of this, there is a slight

improvement in performance.

• Dictionary keys can be derived from tuples that include elements that cannot be

changed. When it comes to lists, this is not possible.

• If you have data that does not change, implementing it as a tuple will ensure that it

continues to be protected from being written to.

• If you wish to make changes to the information contained in a tuple, we will first need

to transform it into a list.

10.3 ACCESSING TUPLE

A tuple's objects can be accessed in 3 different types of ways which includes:

• Indexing

• Negative Indexing

• Slicing

10.3.1 Indexing

Accessing an item within a tuple that has an index that begins at 0 can be accomplished using

the index operator []. A tuple that contains five items will have indices that range from 0 to 4,

inclusive. An index that is higher than four will be considered out of range.

Programming and Problem-Solving … 10.4 Tuple

Example:

The four types of tuples that have previously been constructed in the example above—empty, int-

type, mixed type, and nested type—are accessed using an index. This operator is quite helpful in

accessing particular elements from the tuple. Different elements are accessible from different

types of tuples in the code above. Three elements from the integer tuple and two from the mixed

tuple, for instance. Similar access is made using the indexing method in nested tuples.

Output:

Centre for Distance Education 10.5 Acharya Nagarjuna University

10.3.2 Negative Indexing

Tuple, a type of sequence object in Python, also allows negative indexing. -1 addresses the

final item in the selection, -2 addresses the second-to-last item, and so on.

Example:

Two sorts of tuples, empty and int-type, are already constructed in the example above and are

accessed using a negative index. For instance, the -3 and -1 indexes are used to retrieve the

elements 3 and 2 of the integer and mixed tuples, respectively. In a similar vein, nested tuples can

also use this type of access.

Output:

10.3.3. Slicing

In Python, tuple slicing is a widely used technique that programmers use to solve real-world

problems. Examine a Python tuple. To access a range of a tuple's elements, slice it. One

method is to use the colon as a simple slicing operator (:).We can use the slicing operator

colon (:) to access different tuple components.

Programming and Problem-Solving … 10.6 Tuple

Example:

Output:

10.4 PYTHON TUPLE OPERATIONS

Tuple is a sequence in Python. As a result, we can use the + operator to concatenate two

tuples and the "*" operator to concatenate many copies of a tuple. Tuple objects are used by

the membership operators "in" and "not in."

Table 8.1 Python Tuple Operations

Python Expression Results Description

len((1, 2, 3)) 3 Length

(1, 2, 3) + (4, 5, 6) (1, 2, 3, 4, 5, 6) Concatenation

('Hi!',) * 4 ('Hi!', 'Hi!', 'Hi!', 'Hi!') Repetition

3 in (1, 2, 3) True Membership

for x in (1, 2, 3): print x, 1 2 3 Iteration

Centre for Distance Education 10.7 Acharya Nagarjuna University

10.4.1 Concatenation of Tuples

The process of connecting two or more tuples is called concatenation. The operator "+" is

used for concatenation. Tuple concatenation is always performed starting at the end of the

original tuple. On tuples, other arithmetic operations are not applicable. Concatenation can

only be used to join datatypes that are the same, joining a list and a tuple result in an error.

The idea of tuple concatenation is shown in Figure 8.1.

Fig 8.1 Concatenation of Tuples in Python

Example:

Two tuples of the types character and integer were constructed in the example above,

designated as tuple_1 and tuple_2. The outcome of later addition operations applied to two

tuples is reported. The result, which combines the contents of tuples 1 and 2 into a single

tuple, is displayed on screen.

Output:

Programming and Problem-Solving … 10.8 Tuple

10.4.2 Tuple Membership

The existence of an item in a tuple can be ascertained by using the in and not in keywords.

Example:

Output:

Applying membership procedures on the two produced tuples, tuple_1 and tuple_2, as

demonstrated in the preceding example. The results of these membership operations, such

as is and is not, are TRUE or FALSE. Verified whether the term "there" is available in the

case above. In a same manner, look up further words.

10.5 PYTHON TUPLE FUNCTIONS

Python offers a variety of functions for carrying out tasks. Functions such as cmp(), max(),

min(), and so forth are used to carry out particular tasks. Each function's explanation can be

found in Table 8.1.

Centre for Distance Education 10.9 Acharya Nagarjuna University

Table 8.1 Python Tuple Functions

Function Description

cmp(tuple1, tuple2) Compares elements of both the tuples

len(tuple) Returns the total length of the tuple

max(tuple) Returns the largest element from the tuple

min(tuple) Returns the smallest element from the tuple

tuple(seq) Converts a list into tuple

10.5.1 len()

The number of elements in a tuple can be obtained using the len() method. It accepts a tuple

as an input and outputs an integer number that is the tuple's length.

Example:

Output:

Programming and Problem-Solving … 10.10 Tuple

We have defined a tuple called my_tuple with five items in the example above. The length of

the tuple, which is 5, was then obtained using the len() method.

10.5.2 max ()

To get the maximum value in a tuple, use the max () function. It accepts a tuple as an input

and outputs the tuple's maximum value.

Example:

Output:

We have defined a tuple called my_tuple with five items in the example above. The

maximum value in the tuple, which is 9, was then obtained using the max() method.

Centre for Distance Education 10.11 Acharya Nagarjuna University

10.5.3 min ()

To get the lowest value in a tuple, use the min () function. It accepts a tuple as an input and

outputs the tuple's minimal value.

Example:

Output:

We have defined two tuples tuple_1 and tuple_2 with six and five items in the example

above. Next, we obtained the tuple's minimal values Two, and 2 by using the min() function.

10.5.4 sum ()

The sum of each element in a tuple can be obtained using the sum () function. It accepts a

tuple as an input and outputs the total of each tuple's elements.

Programming and Problem-Solving … 10.12 Tuple

Example:

Output:

We have defined a tuple called tuple_2 with five items in the example above. The total of all

the elements in the tuple, which is 36, was then obtained using the sum () method.

10.6 TUPLE METHODS

Python's tuple routines offer an extensive range of functionalities for working with tuples.

Programmers can find the length, maximum or minimum value, total of all items, and create

tuples from iterables using these functions. Easy finding and counting of particular elements

within tuples is also made possible by the index() and count() operations.

10.6.1 Count () Method

A built-in Python function called count () can be used to determine how many times a certain

element appears in a tuple. The value to be counted is the only input that the method accepts.

Centre for Distance Education 10.13 Acharya Nagarjuna University

Example:

Output:

In the above example, we first create a tuple tuple_2 with some elements. Then we use the

count () method to count the number of occurrences of the value 2 in the tuple. The method

returns the count of 2 which is 3. Finally, we print the count.

10.6.2. Index () Method

A built-in Python function called index () can be used to determine the index of a given

element's first instance in a tuple. The value to be searched in the tuple is the only input

required by the method.

Example:

Programming and Problem-Solving … 10.14 Tuple

Output:

In the preceding example, we first create a tuple, tuple_2, with certain elements. Then we use

the index () method to discover the index of the tuple's first occurrence of the value 2. The

method returns the index of the first occurrence of 2 (which is 1). Finally, we will print the

index.

Tuples are widely used in Python for a variety of purposes, including returning multiple

values from a function, representing fixed groupings of data, and serving as keys in

dictionaries.

The methods discussed above make it simple to interact with tuples in Python, allowing you

to extract and change their contents. The count () function in Python is useful for determining

the number of repetitions of a certain element in a tuple. The index () function in Python is

useful for determining the index of the first occurrence of a certain element in a tuple.

10.7 CLASS TUPLE

Tuples are implemented in Python as objects of the built-in class tuple.

A tuple behaves like a list in almost every way, except that it is immutable — once created,

its contents cannot be modified.

Tuples can hold heterogeneous data, can be nested, and support operations such as indexing,

iteration, slicing, comparison, and packing/unpacking.

Tuples are commonly used to group related pieces of data.

Example

student = ('A102', 'Priya', 21, 'BCA')

print("ID:", student[0])

print("Name:", student[1])

Centre for Distance Education 10.15 Acharya Nagarjuna University

print("Age:", student[2])

print("Course:", student[3])

Output

ID: A102

Name: Priya

Age: 21

Course: BCA

Here, the tuple represents a single structured record, similar to a row in a database.

• Tuples are instances of class tuple.

• They are immutable, ordered, and can hold mixed data.

• They are faster and more memory efficient than lists.

• Their immutability allows them to be used as dictionary keys.

10.8 TUPLE OBJECTS CAN BE DICTIONARY KEYS

A major advantage of tuples is that, unlike lists, they can be used as keys in a dictionary.

This is because tuples are immutable and hashable, while lists are mutable and

unhashable.

Let us understand this through an example.

Example – Invalid: Lists as Dictionary Keys

Suppose we want to create a phonebook where each key is a person’s name (first and last),

and the value is their phone number.

If we try to use lists as keys:

phonebook = {

 ['Anna', 'Karenina']: '(123)456-78-90',

 ['Yu', 'Tsun']: '(901)234-56-78',

 ['Hans', 'Castorp']: '(321)908-76-54'

}

Programming and Problem-Solving … 10.16 Tuple

Output

TypeError: unhashable type: 'list'

Explanation:

Lists are mutable, and mutable objects cannot be hashed.

A dictionary requires its keys to be immutable (unchanging), so lists are not valid keys.

Example 10.8.2 – Correct: Tuples as Dictionary Keys

We can solve this by using tuples instead of lists.

phonebook = {

 ('Anna', 'Karenina'): '(123)456-78-90',

 ('Yu', 'Tsun'): '(901)234-56-78',

 ('Hans', 'Castorp'): '(321)908-76-54'

}

print(phonebook)

Output

{

 ('Hans', 'Castorp'): '(321)908-76-54',

 ('Yu', 'Tsun'): '(901)234-56-78',

 ('Anna', 'Karenina'): '(123)456-78-90'

}

Each tuple key uniquely identifies a person by their first and last name.

Accessing a Value Using Tuple Key print(phonebook[('Hans', 'Castorp')])

 Output

(321)908-76-54

Adding New Entries

phonebook[('Leo', 'Tolstoy')] = '(444)222-33-11'

Centre for Distance Education 10.17 Acharya Nagarjuna University

print(phonebook)

Output

{

 ('Hans', 'Castorp'): '(321)908-76-54',

 ('Yu', 'Tsun'): '(901)234-56-78',

 ('Anna', 'Karenina'): '(123)456-78-90',

 ('Leo', 'Tolstoy'): '(444)222-33-11'

}

Why Tuples Work as Keys

• A dictionary key must be immutable and hashable.

• Since tuples cannot change once created, they qualify as valid keys.

• Lists fail this property because their contents can be modified at any time.

10.9 DICTIONARY METHOD ITEMS(), REVISITED

The items() method is an important dictionary function that returns a view object containing

all key–value pairs as tuples.

Syntax

dictionary.items()

Returns:

A view of all (key, value) pairs in the dictionary.

Example – Viewing Key–Value Tuples

for entry in phonebook.items():

 print(entry)

Output

(('Hans', 'Castorp'), '(321)908-76-54')

(('Yu', 'Tsun'), '(901)234-56-78')

(('Anna', 'Karenina'), '(123)456-78-90')

Programming and Problem-Solving … 10.18 Tuple

(('Leo', 'Tolstoy'), '(444)222-33-11')

Each dictionary entry is represented as a tuple containing the key and its corresponding

value.

Example – Iterating and Unpacking Key–Value Tuples

We can extract the key and value separately during iteration.

for (first, last), number in phonebook.items():

 print(f"{first} {last}: {number}")

Output

Hans Castorp: (321)908-76-54

Yu Tsun: (901)234-56-78

Anna Karenina: (123)456-78-90

Leo Tolstoy: (444)222-33-11

Explanation

• Each element of phonebook.items() is a tuple (key, value).

• The key itself is also a tuple (first, last).

• Unpacking allows direct access to both the first and last name components.

Example 10.9.3 – Converting Items to a List of Tuples

print(list(phonebook.items()))

Output

[

 (('Hans', 'Castorp'), '(321)908-76-54'),

 (('Yu', 'Tsun'), '(901)234-56-78'),

 (('Anna', 'Karenina'), '(123)456-78-90'),

 (('Leo', 'Tolstoy'), '(444)222-33-11')

]

Centre for Distance Education 10.19 Acharya Nagarjuna University

This representation shows how the dictionary internally stores key–value mappings as tuples.

Example 10.9.4 – Dictionary from a List of Tuples

A dictionary can also be created directly from a list of key–value tuples.

data = [

 (('John', 'Keats'), '(222)333-44-55'),

 (('Percy', 'Shelley'), '(111)555-99-00')

]

new_phonebook = dict(data)

print(new_phonebook)

Output

{

 ('John', 'Keats'): '(222)333-44-55',

 ('Percy', 'Shelley'): '(111)555-99-00'

}

Key Points

Feature Description

items() Returns key–value pairs as tuples.

Unpacking Enables simultaneous access to keys and values.

Tuple as Key Tuples used as immutable dictionary keys.

Tuple in items() Each pair is represented as a tuple (key, value).

Practical Use Case

You can easily iterate, search, or export structured dictionary data:

for (first, last), number in sorted(phonebook.items()):

 print(f"{last}, {first} — {number}")

Programming and Problem-Solving … 10.20 Tuple

Output

Castorp, Hans — (321)908-76-54

Karenina, Anna — (123)456-78-90

Tolstoy, Leo — (444)222-33-11

Tsun, Yu — (901)234-56-78

10.10 SUMMARY

Tuples enable integer-based indexing and duplicate elements, which improves data

organization and retrieval. They can be defined with or without parentheses; however,

without parentheses, a following comma is required to represent a tuple. Tuples are best used

for their original purpose; misapplication can result in inefficiencies, such as substituting

lists, sets, or dictionaries.

To ensure efficient data processing and manipulation, choose the suitable data structure after

carefully considering the use cases.

10.11 TECHNICAL TERMS

Tuple, Indexing, Negative Indexing, Max, Min , Count,.Index, and Slicing

10.12 SELF-ASSESSMENT QUESTIONS

Essay Questions

1. Explain the concept of tuples and how they differ from lists.

2. Discuss the advantages of using tuples in Python.

3. Why can tuples be dictionary keys, but lists cannot?

4. Explain the items() method of a dictionary with an example.

5. Write a program to create a phone directory using tuple keys and string values.

Short Notes

1. Write about Class tuple in Python.

2. Explain about Immutability and hashability.

3. How can Tuples as dictionary keys.

4. Describe about Tuple functions and methods.

5. Discuss about the role of items() in dictionary iteration.

10.13 SUGGESTED READINGS

1. Ljubomir Perković, Introduction to Computing Using Python: An Application

Development Focus, Wiley, 2012.

2. Reema Thareja, Python Programming Using Problem-Solving Approach, Oxford

University Press.

3. Mark Lutz, Learning Python, O’Reilly Media.

4. Eric Matthes, Python Crash Course, No Starch Press.

5. Al Sweigart, Automate the Boring Stuff with Python, No Starch Press.

Dr. Kampa Lavanya

LESSON- 11

 SET

AIMS AND OBJECTIVES

After completing this chapter, the learner will be able to:

1. Explain the concept and features of the Python set data type.

2. Create sets using curly braces {} and the set() constructor.

3. Apply set operators and methods to perform mathematical and logical operations.

4. Differentiate between mutable sets and immutable frozensets.

5. Use sets to remove duplicates, test membership, and compare data collections.

6. Implement real-world problem solutions using set operations and functions in Python.

STRUCTURE

11.1 Introduction

11.2 Characteristics of Sets

11.3 Creating Sets

 11.3.1 Using Curly Braces { }

 11.3.2 Using the set() Constructor

 11.3.3 Creating an Empty Set

 11.3.4 Creating a Set from a String

11.4 Accessing Elements in a Set

 11.4.1 Iteration

 11.4.2 Membership Testing

11.5 Set Operators

 11.5.1 Membership and Length

 11.5.2 Equality and Comparison

 11.5.3 Union, Intersection, Difference, and Symmetric Difference

11.6 Set Methods

 11.6.1 Adding Elements using add() and update()

 11.6.2 Removing Elements using remove(), discard(), and pop()

 11.6.3 Clearing Set Elements using clear()

11.7 Set Relationship Methods

 11.7.1 issubset()

 11.7.2 issuperset()

 11.7.3 isdisjoint()

11.8 Built-in Functions with Sets

11.9 Frozen Sets (Immutable Sets)

11.10 Applications of Sets

11.11 Summary

11.12 Technical Terms

11.13 Self-Assessment Questions

11.14 Suggested Readings

Programming and Problem-Solving … 11.2 Set

11.1 INTRODUCTION

Python’s set data type is another powerful built-in collection class used to store unordered,

unique, and immutable items.

It represents the mathematical concept of a set — a group of elements with no repetitions.

Sets are very useful in programs that involve:

• Duplicate removal (e.g., cleaning data),

• Membership testing (checking if an element exists),

• Mathematical set operations (union, intersection, etc.),

• Fast lookups using hashing.

A set in Python is an unordered collection of unique, immutable objects enclosed in curly

braces {}.

Syntax:

set_name = {element1, element2, element3, ...}

Unlike lists or tuples, sets cannot contain duplicate elements or mutable items (like lists or

dictionaries).

Example – Creating a Simple Set

phonebook1 = {'123-45-67', '234-56-78', '345-67-89'}

print(phonebook1)

print(type(phonebook1))

Output

{'123-45-67', '234-56-78', '345-67-89'}

 <class 'set'>

Explanation:

• The curly braces {} indicate a set.

• The order of items may differ since sets are unordered.

• The type() function confirms that it’s a set object.

Handling Duplicates

If a set is defined with duplicate items, Python automatically removes them.

Example

phonebook1 = {'123-45-67', '234-56-78', '345-67-89',

 '123-45-67', '345-67-89'}

print(phonebook1)

Centre for Distance Education 11.3 Acharya Nagarjuna University

Output

{'123-45-67', '234-56-78', '345-67-89'}

Why Use Sets?

Purpose Advantage

Duplicate removal Automatically removes repeated entries

Mathematical operations Built-in support for union, intersection, etc.

Fast lookup Membership check is faster than lists

Hashable keys Can use immutable sets (frozensets) as dictionary keys

11.2 CHARACTERISTICS OF SETS

• Unordered: The elements have no fixed order; indexing and slicing are not supported.

• No Duplicates:Each element appears only once.

• Mutable Container:You can add or remove elements after creation.

• Immutable Elements:Each element inside the set must be an immutable object such as

integers, strings, or tuples.

• Efficient Membership Testing:Checking if an element exists is very fast due to internal

hashing.

11.3 CREATING SETS

Python provides multiple ways to create sets.

11.3.1 Using Curly Braces {}

A = {10, 20, 30}

print(A)

Output

{10, 20, 30}

11.3.2 Using set() Constructor

B = set(['apple', 'banana', 'cherry'])

print(B)

Output

{'banana', 'cherry', 'apple'}

11.3.3 Creating an Empty Set

Empty sets must be created using the set() function, not {}.

Programming and Problem-Solving … 11.4 Set

empty = set()

print(empty)

print(type(empty))

Output

set()

<class 'set'>

{} creates an empty dictionary, not a set.

11.3.4 Creating a Set from a String

chars = set("banana")

print(chars)

Output

{'b', 'n', 'a'}

11.4 ACCESSING ELEMENTS

Since sets are unordered, we cannot use indexing or slicing.

We can access elements only through:

• Iteration using loops, or

• Membership testing using in / not in.

Example – Iterating Over a Set

colors = {'red', 'green', 'blue'}

for c in colors:

 print(c)

Output

red

blue

green

Example – Membership Testing

colors = {'red', 'green', 'blue'}

print('red' in colors)

print('yellow' not in colors)

Centre for Distance Education 11.5 Acharya Nagarjuna University

Output

True

True

11.5 SET OPERATORS

Python implements classical set theory operations using operators.

Operation Operator Description

Membership in, not in Check element presence

Length len() Number of elements

Equality ==, != Compare sets

Subset/Superset <, <=, >, >= Relationship between sets

Union ` `

Intersection & Common elements

Difference - Elements in one but not the other

Symmetric Difference ^ Elements in one or the other, not both

Example – Membership and Length

phonebook1 = {'123-45-67', '234-56-78', '345-67-89'}

print('123-45-67' in phonebook1)

print('456-78-90' not in phonebook1)

print(len(phonebook1))

Output

True

True

3

Example – Equality and Comparison

A = {'a', 'b', 'c'}

B = {'a', 'b', 'c'}

C = {'a', 'b'}

print(A == B)

print(C < A)

print(A > C)

Output

True

Programming and Problem-Solving … 11.6 Set

True

True

Example – Union, Intersection, Difference, Symmetric Difference

A = {1, 2, 3}

B = {3, 4, 5}

print(A | B)

print(A & B)

print(A - B)

print(A ^ B)

Output

{1, 2, 3, 4, 5}

{3}

{1, 2}

{1, 2, 4, 5}

11.6 SET METHODS

In addition to operators, Python provides rich methods for manipulating sets.

Method Description

add(x) Adds an element x.

update(iterable) Adds multiple elements.

remove(x) Removes x; error if not found.

discard(x) Removes x if present, no error otherwise.

pop() Removes and returns a random element.

clear() Removes all elements.

Example – add()

phonebook3 = {'345-67-89', '456-78-90'}

phonebook3.add('123-45-67')

print(phonebook3)

Output

Centre for Distance Education 11.7 Acharya Nagarjuna University

{'123-45-67', '345-67-89', '456-78-90'}

Example – remove() and discard()

colors = {'red', 'green', 'blue'}

colors.remove('green')

colors.discard('yellow') # No error even if not present

print(colors)

Output

{'red', 'blue'}

Example 11.6.3 – clear()

phonebook3.clear()

print(phonebook3)

Output

set()

Example – update() and pop()

S = {10, 20}

S.update([30, 40, 50])

print(S)

print(S.pop())

print(S)

Output

{40, 10, 50, 20, 30}

40

Programming and Problem-Solving … 11.8 Set

{10, 50, 20, 30}

11.7 SET RELATIONSHIP METHODS

Method Description

issubset(t) True if all elements of s are in t

issuperset(t) True if s contains all elements of t

isdisjoint(t) True if sets have no elements in common

Example

A = {1, 2, 3}

B = {1, 2, 3, 4}

print(A.issubset(B))

print(B.issuperset(A))

print(A.isdisjoint({5, 6}))

Output

True

True

True

11.8 BUILT-IN FUNCTIONS

Function Purpose

len(s) Number of elements

max(s) Largest element

min(s) Smallest element

sum(s) Sum of numeric elements

sorted(s) Returns sorted list

Centre for Distance Education 11.9 Acharya Nagarjuna University

Example

S = {10, 2, 8, 4}

print(len(S))

print(max(S))

print(min(S))

print(sum(S))

print(sorted(S))

Output

4

10

2

24

[2, 4, 8, 10]

11.9 FROZEN SETS

A frozenset is the immutable version of a set.

Elements cannot be added or removed after creation.

Example

A = frozenset([1, 2, 3])

B = frozenset([3, 4, 5])

print(A | B)

print(A & B)

Output

frozenset({1, 2, 3, 4, 5})

frozenset({3})

Programming and Problem-Solving … 11.10 Set

11.10 APPLICATIONS OF SETS

1. Removing Duplicates

numbers = [1, 2, 2, 3, 3, 4]

print(set(numbers))

2. Common Elements

A = {'apple', 'banana'}

B = {'banana', 'mango'}

print(A & B)

3. Filtering Data

text = "Python is powerful and Python is easy"

unique_words = set(text.split())

print(unique_words)

4. Fast Membership Checking

vowels = {'a', 'e', 'i', 'o', 'u'}

print('e' in vowels)

11.11 SUMMARY

• Set is an unordered collection of unique immutable elements.

• Supports mathematical operations like union, intersection, difference, and symmetric

difference.

• Provides methods for addition, removal, and clearing.

• frozenset is the immutable counterpart of set.

• Sets are ideal for duplicate removal and membership testing.

11.12 TECHNICAL TERMS

Set, Unique Elements, Unordered, Mutable, Immutable Element, Membership Testing, Union,

Intersection, Difference, Symmetric Difference, frozenset, Hashing, Subset, Superset, Disjoint

Set.

11.13 SELF-ASSESSMENT QUESTIONS

Essay Type Questions

1. Explain the concept of a set in Python. How does it differ from other collection data

types such as lists and tuples?

2. Discuss the characteristics and properties of sets in Python with suitable examples.

3. Describe the various set operators available in Python. Illustrate each with a program

example.

4. Explain in detail the methods supported by the set class for adding, removing, and

updating elements.

5. What are frozen sets? How do they differ from normal sets? Give examples.

Centre for Distance Education 11.11 Acharya Nagarjuna University

6. Demonstrate the use of set relationships such as subset, superset, and disjoint sets with

code snippets.

7. Discuss the advantages and applications of sets in Python programming. Provide at

least three real-life examples.

8. Write a Python program to perform all set operations (union, intersection, difference,

and symmetric difference) on two given sets.

9. Compare the use of sets for duplicate removal versus using lists.

10. Explain how membership testing works in sets and why it is more efficient compared

to lists or tuples.

Short Answer Questions

1. What are the key properties of a Python set?

2. Write the syntax to create an empty set and a set from a list.

3. Mention any four methods of the set class.

4. Differentiate between the remove() and discard() methods.

5. What does the clear() method do?

6. How is the len() function used with sets?

7. What is the difference between a set and a frozenset?

8. What is the purpose of the isdisjoint() method?

9. Explain the function of the ^ (symmetric difference) operator.

10. What happens when duplicate elements are inserted into a set?

11.14 SUGGESTED READINGS

1. Ljubomir Perković, Introduction to Computing Using Python: An Application

Development Focus, Wiley, 2012.

2. Reema Thareja, Python Programming: Using Problem-Solving Approach, Oxford

University Press, 2018.

3. Mark Lutz, Learning Python, 5th Edition, O’Reilly Media, 2013.

4. Eric Matthes, Python Crash Course: A Hands-On, Project-Based Introduction to

Programming, No Starch Press, 2019.

5. Al Sweigart, Automate the Boring Stuff with Python, No Starch Press, 2020.

6. Allen B. Downey, Think Python: How to Think Like a Computer Scientist, Green Tea

Press, 2015.

7. Charles Severance, Python for Everybody: Exploring Data in Python 3, CreateSpace

Independent Publishing, 2016.

Dr. Kampa Lavanya

LESSON- 12

 RANDOMNESS

AIMS AND OBJECTIVES

After studying this chapter, the learner will be able to:

• Explain what character encoding means and why it is essential in digital text

representation.

• Differentiate between ASCII, Unicode, and UTF-8 encoding systems.

• Demonstrate how Python internally stores and manipulates strings using Unicode.

• Apply string encoding and decoding methods in Python.

• Describe the purpose of the random module in Python.

• Generate random integers, floating-point numbers, and sequences.

• Implement randomization in simulations, games, and sampling problems.

STRUCTURE

12.1 Introduction

12.2 Character Encodings and Strings

 12.2.1 Character Encodings

 12.2.2 ASCII

 12.2.3 Unicode

 12.2.4 UTF-8 Encoding for Unicode Characters

12.3 Working with Encoded Strings in Python

12.4 The random Module

 12.4.1 Choosing a Random Integer

 12.4.2 Choosing a Random “Real” (Floating Point Value)

 12.4.3 Shuffling, Choosing, and Sampling at Random

12.5 Applications of Randomness

12.6 Summary

12.7 Technical Terms

12.8 Self-Assessment Questions

12.9 Suggested Readings

12.1 INTRODUCTION

Two fundamental areas are explored in this chapter:

1. Character Encoding, which defines how text characters are represented as numbers

inside a computer.

2. Randomness and the random Module, which allows programs to behave

unpredictably or simulate random events.

Programming and Problem-Solving … 12.2 Randomness

Every program that processes text must deal with encodings, and every simulation or game that

imitates chance must use randomness. Python provides robust support for both its built-in

Unicode string system and the standard random library.

12.2 CHARACTER ENCODINGS AND STRINGS

A computer can store and manipulate only numbers. To represent letters, digits, and symbols,

each character must be encoded as a numeric value. This numeric representation is called a

character code.

When we write:

message = "Hello"

Python internally converts each letter of "Hello" into numerical values according to a specific

character encoding scheme.

12.2.1 Character Encodings

A character encoding is a mapping between characters and the numeric values (code points)

that represent them.

For example:

Character Decimal Code Binary (8 bits)

A 65 01000001

B 66 01000010

C 67 01000011

Each character corresponds to a unique binary pattern stored in memory or transmitted between

systems.

Without a standard encoding, computers could not exchange text reliably.

12.2.2 ASCII (American Standard Code for Information Interchange)

ASCII was one of the earliest and most influential encoding standards, developed in the 1960s.

It uses 7 bits to represent 128 characters, covering:

• Upper- and lower-case English letters

• Digits 0–9

• Basic punctuation symbols

• Control characters (e.g., newline, tab)

Centre for Distance Education 12.3 Acharya Nagarjuna University

Example – ASCII Codes

Character Decimal Binary Hexadecimal

A 65 01000001 0x41

a 97 01100001 0x61

0 48 00110000 0x30

Space 32 00100000 0x20

Python’s ord() function returns the code point of a character, and chr() converts a number back

to a character.

print(ord('A')) # 65

print(chr(65)) # 'A'

ASCII served well for English text but failed to handle accented letters or non-Latin scripts.

Example – Viewing Character Codes in Different Number Systems

To understand how Python represents characters internally, we can write a small function

encoding() that accepts a string and prints each character’s ASCII (decimal), hexadecimal,

and binary code values.

def encoding(s):

 print(f"{'Char':<6}{'Decimal':<10}{'Hex':<8}{'Binary'}")

 for ch in s:

 dec = ord(ch) # Decimal (Unicode code point)

 hx = format(dec, '02x') # Hexadecimal representation

 bin_val = format(dec, '08b') # Binary (8-bit) representation

 print(f"{ch:<6}{dec:<10}{hx:<8}{bin_val}")

Program Execution

>>> encoding('dad')

Output

Char Decimal Hex Binary

d 100 64 1100100

a 97 61 1100001

d 100 64 1100100

Programming and Problem-Solving … 12.4 Randomness

Explanation

• ord() returns the Unicode code point (integer) for each character.

For example, ord('d') = 100 and ord('a') = 97.

• format(x, '02x') converts the integer x into a 2-digit hexadecimal string.

o The value 100 in decimal equals 64 in hexadecimal.

• format(x, '08b') converts the integer into an 8-bit binary string.

o For d, this is 1100100.

Each character in 'dad' is thus represented numerically in the computer’s memory, and these

numbers correspond to the ASCII/Unicode encoding values.

Python provides two complementary built-in functions for working with character codes:

Function Description

ord(char) Returns the numeric Unicode code point of the character char.

chr(number) Returns the character that corresponds to the Unicode code point number.

These functions are exact inverses of each other.

That is:

chr(ord('A')) → 'A'

ord(chr(65)) → 65

Example

>>> chr(97)

'a'

>>> chr(65)

'A'

>>> chr(8364)

'€'

>>> chr(937)

'Ω'

Output

'a'

'A'

'€'

'Ω'

Centre for Distance Education 12.5 Acharya Nagarjuna University

Explanation

• The integer 97 corresponds to the lowercase letter ‘a’ in the Unicode (and ASCII) table.

• 65 corresponds to ‘A’, the uppercase letter.

• 8364 represents the Euro symbol (€).

• 937 corresponds to the Greek capital letter Omega (Ω).

These code points are defined by the Unicode standard, which allows Python to support

characters from virtually every language.

Function Example Output Purpose

ord('A') Returns Unicode code point 65 Character → Code

chr(65) Returns character 'A' Code → Character

You can easily build small encoding-decoding utilities in Python:

text = "ABC"

codes = [ord(c) for c in text]

decoded = ''.join(chr(i) for i in codes)

print(codes)

print(decoded)

Output

[65, 66, 67]

ABC

12.2.3 Unicode

To overcome ASCII’s limitations, Unicode was introduced as a universal standard that assigns

a unique number to every character in every language and symbol set.

• Each character has a code point, written as U+XXXX (hexadecimal).

• Unicode currently defines over 140,000 characters, covering scripts worldwide.

Example – Unicode Code Points

Character Unicode Code Point Name

A U+0041 Latin Capital Letter A

Ω U+03A9 Greek Capital Letter Omega

中 U+4E2D CJK Unified Ideograph

 U+1F60A Smiling Face Emoji

Programming and Problem-Solving … 12.6 Randomness

Python 3 strings (str) are Unicode by default, meaning they can represent any text from any

language.

s = "Ωmega "

print(s)

print(len(s))

Output

Ωmega

7

12.2.4 UTF-8 Encoding for Unicode Characters

Unicode specifies code points, but the computer still needs a binary representation for storage

and transmission.

UTF-8 (Unicode Transformation Format – 8-bit) is the most common encoding form used

today.

Features of UTF-8:

1. Variable-length encoding using 1 to 4 bytes.

2. Backward compatible with ASCII (0–127).

3. Efficient for English text, flexible for global scripts.

Character Code Point UTF-8 Bytes (Hex)

A U+0041 41

ñ U+00F1 C3 B1

€ U+20AC E2 82 AC

 U+1F60A F0 9F 98 8A

Example – Encoding and Decoding Strings

text = "Python is fun "

encoded = text.encode('utf-8')

print(encoded)

decoded = encoded.decode('utf-8')

print(decoded)

Output

b'Python\xe2\x80\xa2fun\xf0\x9f\x98\x8a'

Python is fun

Centre for Distance Education 12.7 Acharya Nagarjuna University

12.3 WORKING WITH ENCODED STRINGS IN PYTHON

Python provides built-in methods to handle different encodings.

Method Purpose

encode(encoding) Converts a string into bytes.

decode(encoding) Converts bytes back into a string.

Example

msg = "Café"

b = msg.encode('utf-8')

print(b)

print(b.decode('utf-8'))

Output

b'Caf\xc3\xa9'

Café

If the wrong encoding is used while decoding, Python raises a UnicodeDecodeError.

12.4 THE RANDOM MODULE

Programs often require random behavior—rolling dice, shuffling cards, generating random IDs,

or simulating uncertain events.

Python provides these capabilities in the random module.

To use it:

import random

All random values are pseudorandom—they come from deterministic algorithms but appear

random for most applications.

12.4.1 Choosing a Random Integer

Use random.randint(a, b) to return an integer N such that a ≤ N ≤ b.

import random

num = random.randint(1, 6)

print("Dice rolled:", num)

Output

Dice rolled: 4

Other related functions:

Programming and Problem-Solving … 12.8 Randomness

Function Description

randrange(start, stop, step) Choose integer from a range.

getrandbits(k) Return integer with k random bits.

Example

print(random.randrange(0, 10, 2)) # Even numbers 0–8

print(random.getrandbits(8)) # Random 8-bit number

Example:

import random

print("Simulating 10 dice rolls:")

for i in range(10):

 print(random.randrange(1, 7))

Output

Simulating 10 dice rolls:

3

5

6

2

4

1

2

6

5

3

Example – Implementing a Number Guessing Game

The following program implements a simple interactive number guessing game using

Python’s random module.

The program randomly chooses a number between 0 and n - 1 and repeatedly asks the user to

guess it.

Each time the player guesses incorrectly, the program prints a hint:

• “Too low.” if the guess is smaller than the secret number.

• “Too high.” if the guess is larger.

When the player guesses correctly, the program prints “You got it.” and stops.

Centre for Distance Education 12.9 Acharya Nagarjuna University

Program: guess() Function

import random

def guess(n):

 """Interactive number guessing game."""

 # Step 1: Choose a random number

 secret = random.randrange(0, n)

 print(f"I'm thinking of a number between 0 and {n - 1}. Can you guess it?")

 while True:

 # Step 2: Ask user for a guess

 user_input = input("Enter your guess: ")

 # Validate input

 if not user_input.isdigit():

 print("Please enter a valid integer.")

 continue

 guess_num = int(user_input)

 # Step 3: Compare with secret number

 if guess_num < secret:

 print("Too low.")

 elif guess_num > secret:

 print("Too high.")

 else:

 print("You got it!")

 break

Program Execution Example

>>> guess(10)

I'm thinking of a number between 0 and 9. Can you guess it?

Enter your guess: 5

Too high.

Enter your guess: 2

Too low.

Programming and Problem-Solving … 12.10 Randomness

Enter your guess: 3

You got it!

Step Operation Description

1 random.randrange(0, n) Selects a random number between 0 and n–1.

2 input() Prompts user to enter a guess.

3 Comparison If guess < secret → “Too low.”; if guess > secret →

“Too high.”; else “You got it.”

4 Loop Continues until the correct number is guessed.

12.4.2 Choosing a Random “Real” (Floating Point Value)

For fractional random values:

Function Description

random() Returns float 0.0 ≤ x < 1.0

uniform(a, b) Returns float a ≤ x ≤ b

triangular(low, high, mode) Weighted random float

Example x = random.random()

y = random.uniform(1.5, 6.5)

print("Random fraction:", x)

print("Random real number:", y)

12.4.3 Shuffling, Choosing, and Sampling at Random

The random module also handles random operations on sequences.

Function Description

choice(seq) Returns one random element.

choices(seq, k=n) Returns list of n elements (with replacement).

sample(seq, k) Returns k unique elements (without replacement).

shuffle(seq) Randomly reorders elements of a list in place.

Example – Random Choice and Shuffle

names = ['Alice', 'Bob', 'Charlie', 'Diana']

print(random.choice(names)) # One name

random.shuffle(names)

print(names) # Shuffled order

Example – Sampling

lottery = list(range(1, 51))

Centre for Distance Education 12.11 Acharya Nagarjuna University

winners = random.sample(lottery, 6)

print("Winning numbers:", winners)

Output

Winning numbers: [7, 18, 25, 33, 42, 49]

Seeding the Random Number Generator

To reproduce the same random sequence, use random.seed(value).

random.seed(10)

print(random.randint(1, 100))

Each run with the same seed yields identical output—useful for testing and debugging.

12.5 APPLICATIONS OF RANDOMNESS

1. Games and Simulations

Rolling dice, card games, and random moves in games use random integers.

2. Monte Carlo Methods

Estimating π or probabilities through repeated random sampling.

3. Random Sampling in Statistics

Selecting random subsets from data for analysis.

4. Security and Token Generation

Creating random passwords or identifiers.

Example – Estimating π using Monte Carlo Simulation

import random, math

inside = 0

n = 100000

for i in range(n):

 x = random.random()

 y = random.random()

 if x**2 + y**2 <= 1:

 inside += 1

pi_estimate = 4 * inside / n

print("Estimated π:", pi_estimate)

Output

Estimated π: 3.1416

Programming and Problem-Solving … 12.12 Randomness

Example – Random Password Generator

import random, string

chars = string.ascii_letters + string.digits + "!@#$%"

password = "".join(random.choice(chars) for _ in range(10))

print("Random Password:", password)

Output

Random Password: aX4!qM8zT@

12.6 SUMMARY

• Character encoding maps characters to numeric code points.

• ASCII encodes 128 characters using 7 bits.

• Unicode extends this to global scripts; UTF-8 is the common binary encoding.

• Python 3 strings are Unicode by default.

• The random module generates pseudorandom integers, floats, and selections.

• Functions such as randint(), random(), choice(), and shuffle() provide flexible

randomization.

• Randomness supports games, simulations, and statistical modeling.

12.7 TECHNICAL TERMS

Character Encoding, ASCII, Unicode,UTF-8,Code Point, Byte Sequence, Encoding /

Decoding, Random Number Generator, Seed, Uniform Distribution, Sampling, Monte Carlo

Simulation, Random Shuffle, Deterministic Algorithm.

12.8 SELF-ASSESSMENT QUESTIONS

Essay Questions

1. Define character encoding. Describe the differences between ASCII, Unicode, and

UTF-8.

2. How does Python represent Unicode characters internally?

3. Explain the importance of encoding and decoding operations with suitable examples.

4. What is the random module? Describe at least five of its functions with examples.

5. Discuss the role of random numbers in simulations and games.

6. Write a Python program to generate a random password of given length.

7. Explain how seeding affects random number generation.

8. Demonstrate how to shuffle and sample random elements from a list.

9. Compare pseudorandom and true random numbers.

10. Explain how UTF-8 ensures compatibility with ASCII.

Short Notes

1. Code Points and Bytes

2. ord() and chr() functions

3. Unicode in Python 3

4. random.randint() vs random.random()

5. random.choice() and random.sample()

Centre for Distance Education 12.13 Acharya Nagarjuna University

6. Random Seed and Reproducibility

7. UTF-8 Variable Length Encoding

8. Monte Carlo Method

12.9 SUGGESTED READINGS

1. Ljubomir Perković, Introduction to Computing Using Python: An Application

Development Focus, Wiley, 2012.

2. Reema Thareja, Python Programming: Using Problem-Solving Approach, Oxford

University Press.

3. Mark Lutz, Learning Python, O’Reilly Media.

4. Eric Matthes, Python Crash Course, No Starch Press.

5. Al Sweigart, Automate the Boring Stuff with Python, No Starch Press.

1. David Beazley and Brian Jones, Python Cookbook, O’Reilly Media.

 Dr. Kampa Lavanya

LESSON- 13

 OBJECT ORIENTED PROGRAMMING

AIMS AND OBJECTIVES

After studying this chapter, the learner will be able to:

• Explain the fundamental concepts of object-oriented programming (OOP).

• Define new Python classes and understand class structure.

• Create and use user-defined classes with attributes and methods.

• Apply constructors, instance variables, and class variables.

• Implement operator overloading to make custom classes behave like built-ins.

• Design new container classes such as a deck of cards or queue.

• Apply inheritance to derive new classes and reuse existing functionality.

• Define and use user-defined exceptions to handle program-specific errors.

STRUCTURE

13.1 Introduction – Fundamental Concepts

13.2 Defining a New Python Class

 13.2.1 Methods of Class Point

 13.2.2 A Class and Its Namespace

 13.2.3 Every Object Has an Associated Namespace

 13.2.4 Implementation of Class Point

 13.2.5 Instance Variables and Class Variables

 13.2.6 Class Definition, More Generally

 13.2.7 Documenting a Class (Docstrings)

13.3 Examples of User-Defined Classes

 13.3.1 Overloaded Constructor Operator

 13.3.2 Default Constructor

 13.3.3 Playing Card Class

13.4 Designing New Container Classes

 13.4.1 Class Deck of Cards

 13.4.2 Queue Container Class

13.5 Overloaded Operators

 13.5.1 Operators Are Class Methods

 13.5.2 Making the Class Point User Friendly

 13.5.3 Contract between Constructor and repr()

Programming and Problem-Solving … 13.2 Object Oriented Programming

 13.5.4 Making the Queue Class User Friendly

13.6 Inheritance

 13.6.1 Inheriting Attributes of a Class

 13.6.2 Overriding Superclass Methods

 13.6.3 Extending Superclass Methods

 13.6.4 Implementing a Queue by Inheriting from list

13.7 User-Defined Exceptions

 13.7.1 Raising an Exception

 13.7.2 Defining User-Defined Exception Classes

13.8 Summary

13.9 Technical Terms

13.10 Self-Assessment Questions

13.11 Suggested Readings

 13.1 INTRODUCTION – FUNDAMENTAL CONCEPTS

Object-Oriented Programming (OOP) models programs as a collection of objects—entities that

combine data (attributes) and behavior (methods).

Instead of writing functions that act on global data, OOP organizes related data and operations

within classes.

Core OOP Concepts

Concept Description

Class Blueprint defining the structure and behavior of objects.

Object (Instance) Individual entity created from a class.

Encapsulation Bundling of data and related methods into one unit.

Abstraction Hiding implementation details, showing only relevant features.

Inheritance Creating new classes that reuse attributes and methods of existing ones.

Polymorphism Ability to use the same operation on objects of different types.

13.2 DEFINING A NEW PYTHON CLASS

A Python class is defined using the keyword class, followed by the class name and a colon.

class Point:

 """Represents a point in 2D space."""

Centre for Distance Education 13.3 Acharya Nagarjuna University

 def __init__(self, x, y):

 self.x = x

 self.y = y

Here, __init__() is the constructor—a special method that runs when an object is created.

Creating Instances

p1 = Point(2, 3)

p2 = Point(5, 6)

print(p1.x, p1.y)

Output

2 3

13.2.1 Methods of Class Point

Methods are functions defined within a class and automatically receive the instance (self) as the

first parameter.

class Point:

 def __init__(self, x=0, y=0):

 self.x = x

 self.y = y

 def move(self, dx, dy):

 self.x += dx

 self.y += dy

 def display(self):

 print(f"({self.x}, {self.y})")

p = Point(2, 3)

p.move(1, 2)

p.display()

Output

(3, 5)

13.2.2 A Class and Its Namespace

Each class defines a namespace, a mapping of names to objects—variables, constants, and

methods—local to the class.

Programming and Problem-Solving … 13.4 Object Oriented Programming

13.2.3 Every Object Has an Associated Namespace

Every object (instance) maintains its own namespace for storing instance variables.

Accessing attributes uses the dot operator: object. attribute.

13.2.4 Implementation of Class Point

class Point:

 count = 0 # Class variable

 def __init__(self, x=0, y=0):

 self.x = x

 self.y = y

 Point.count += 1

 def __repr__(self):

 return f"Point({self.x}, {self.y})"

p1 = Point(1, 1)

p2 = Point(3, 4)

print(p1, p2)

print("Number of points:", Point.count)

Output

Point(1, 1) Point(3, 4)

Number of points: 2

13.2.5 Instance and Class Variables

• Instance variables (self.x) belong to individual objects.

• Class variables (Point.count) belong to the class as a whole.

Instance variables are attributes that are unique to each object created from a class.

They are defined using the prefix self. inside class methods (most commonly within the

constructor __init__()).

Example

class Student:

 def __init__(self, name, rollno):

 self.name = name # instance variable

 self.rollno = rollno # instance variable

Centre for Distance Education 13.5 Acharya Nagarjuna University

s1 = Student("Asha", 101)

s2 = Student("Rahul", 102)

print("Student 1:", s1.name, s1.rollno)

print("Student 2:", s2.name, s2.rollno)

Output

Student 1: Asha 101

Student 2: Rahul 102

Explanation:

• self.name and self.rollno are instance variables.

• Each object (s1, s2) has its own copy of these variables.

• Changing s1.name does not affect s2.name.

s1.name = "Anita"

print("Updated s1:", s1.name)

print("Unchanged s2:", s2.name)

Output

Updated s1: Anita

Unchanged s2: Rahul

Class variables are attributes that belong to the class itself, not to any individual instance.

They are declared outside all methods but inside the class definition.

Example

class Student:

 school_name = "Greenwood High" # class variable

 def __init__(self, name, rollno):

 self.name = name # instance variable

 self.rollno = rollno # instance variable

s1 = Student("Asha", 101)

s2 = Student("Rahul", 102)

Programming and Problem-Solving … 13.6 Object Oriented Programming

print("Student 1 School:", s1.school_name)

print("Student 2 School:", s2.school_name)

print("Accessing through class:", Student.school_name)

Output

Student 1 School: Greenwood High

Student 2 School: Greenwood High

Accessing through class: Greenwood High

Explanation:

• school_name is a class variable, shared by all objects.

• Any change made through the class name affects all objects.

Student.school_name = "Sunrise Academy"

print(s1.school_name)

print(s2.school_name)

Output

Sunrise Academy

Sunrise Academy

Table 13.1 Comparative Summary

Feature Instance Variable Class Variable

Defined in Inside methods using self. Inside class, outside methods

Belongs to Each object (instance) The class (shared by all instances)

Accessed

using

object_name.variable ClassName.variable or

object_name.variable

Storage Separate copy for every object Single shared copy for all

Use case To store unique attributes for each

instance

To store common attributes across all

objects

 Example

class Point:

 count = 0 # class variable (shared)

 def __init__(self, x, y):

 self.x = x # instance variable

Centre for Distance Education 13.7 Acharya Nagarjuna University

 self.y = y # instance variable

 Point.count += 1 # modify class variable

p1 = Point(1, 2)

p2 = Point(3, 4)

print("p1:", p1.x, p1.y)

print("p2:", p2.x, p2.y)

print("Total Points:", Point.count)

Output

p1: 1 2

p2: 3 4

Total Points: 2

Explanation

• x and y → Instance variables (unique to each object).

• count → Class variable (common counter shared by all instances).

• Each time a new object is created, the constructor increases Point.count by 1.

This pattern is commonly used to track:

• The number of objects created from a class,

• Or any aggregate data shared among instances.

Best Practices

1. Use instance variables for per-object data (e.g., student names, coordinates, employee

salaries).

2. Use class variables for shared data (e.g., school name, total object count, global

configuration).

3. Access class variables through the class name (not self) when updating them to avoid

shadowing.

Fig 13.1 Instance and Class Variables

Programming and Problem-Solving … 13.8 Object Oriented Programming

13.2.6 Class Definition, More Generally

A typical class contains:

class ClassName:

 """Docstring describing purpose."""

 class_variable = value

 def __init__(self, parameters):

 # initialize instance variables

 def method1(self):

 # perform operation

13.2.7 Documenting a Class

Python’s docstring (""" ... """) provides built-in documentation accessible via

help(ClassName).

13.3 EXAMPLES OF USER-DEFINED CLASSES

13.3.1 Overloaded Constructor

An Overloaded Constructor refers to the concept of using a single constructor method to handle

multiple forms of object initialization, depending on the arguments passed when creating an

object.

Unlike languages such as C++ or Java, Python does not support multiple constructors (i.e.,

multiple __init__ methods with different signatures).

However, constructor overloading can be simulated by providing default arguments, variable-

length arguments, or conditional logic within a single __init__() definition.

Purpose

The goal of an overloaded constructor is to:

• Allow flexible object creation, depending on the data available at runtime.

• Enable objects to be initialized with different numbers or types of parameters.

• Simplify class usage by adapting to various initialization contexts.

General Syntax

class ClassName:

 def __init__(self, param1=None, param2=None, ...):

Centre for Distance Education 13.9 Acharya Nagarjuna University

 # initialization code

Here:

• Default values (None) make parameters optional.

• The constructor adapts based on which arguments are provided

Example – Constructor with Default Parameters

class Circle:

 def __init__(self, radius=1):

 self.radius = radius

c1 = Circle()

c2 = Circle(5)

print(c1.radius, c2.radius)

Output

1 5

Example – Constructor with Conditional Logic

In some situations, the constructor must behave differently based on argument type or

number.

class Student:

 def __init__(self, name=None, marks=None):

 if name is not None and marks is not None:

 self.name = name

 self.marks = marks

 elif name is not None:

 self.name = name

 self.marks = 0

 else:

 self.name = "Unknown"

 self.marks = 0

 def display(self):

 print(f"Name: {self.name}, Marks: {self.marks}")

Program Execution

s1 = Student("Asha", 85)

Programming and Problem-Solving … 13.10 Object Oriented Programming

s2 = Student("Rahul")

s3 = Student()

s1.display()

s2.display()

s3.display()

Output

Name: Asha, Marks: 85

Name: Rahul, Marks: 0

Name: Unknown, Marks: 0

Explanation:

• The same constructor handles three different initialization cases.

• The if-elif-else structure allows overloaded behavior within a single __init__() method

Example – Constructor Using Variable-Length Arguments

You can also simulate overloading using *args (for positional arguments) and **kwargs (for

keyword arguments).

class Rectangle:

 def __init__(self, *args):

 if len(args) == 0:

 self.length = 1

 self.breadth = 1

 elif len(args) == 1:

 self.length = self.breadth = args[0]

 elif len(args) == 2:

 self.length, self.breadth = args

 else:

 raise TypeError("Too many arguments")

 def area(self):

 return self.length * self.breadth

Program Execution

r1 = Rectangle() # 1x1

Centre for Distance Education 13.11 Acharya Nagarjuna University

r2 = Rectangle(4) # 4x4

r3 = Rectangle(4, 6) # 4x6

print(r1.area(), r2.area(), r3.area())

Output

1 16 24

Explanation:

• The same constructor supports multiple ways of initializing a rectangle:

o No argument → default size

o One argument → square

o Two arguments → custom dimensions

Advantages of Overloaded Constructor

1. Flexibility – Allows different initialization formats for the same class.

2. Convenience – Reduces need for multiple specialized constructors.

3. Readability – Keeps initialization logic centralized.

4. Error Reduction – Avoids code duplication across constructors.

Fig An Overloaded Constructor

An Overloaded Constructor in Python:

• Is a single constructor method (__init__) that can handle different argument lists.

• Provides multiple ways to initialize objects using default, optional, or variable

arguments.

• Is a key tool for building flexible and reusable classes.

Programming and Problem-Solving … 13.12 Object Oriented Programming

13.3.2 Default Constructor

If no constructor is defined, Python provides a default one that does nothing.

Example A Class Without Constructor

class Student:

 def display(self):

 print("This is a student object.")

s1 = Student() # Python calls the default constructor

s1.display()

Output

This is a student object.

Explanation

• The Student class does not define an __init__() constructor.

• When we write s1 = Student(), Python automatically calls the default constructor.

• The object is created successfully, and we can still access its methods.

Difference Between Default and User-Defined Constructors

Feature Default Constructor User-Defined Constructor

Defined by Python automatically Programmer explicitly

Takes

Parameters

No Yes (optional parameters possible)

Purpose Creates object but does not initialize

attributes

Initializes object data and attributes

Overridden by User-defined __init__() Not applicable

Use Case When no special initialization is

required

When attributes must be set during

creation

13.3.3 Playing Card Class

class Card:

 suits = ['Hearts', 'Diamonds', 'Clubs', 'Spades']

 def __init__(self, value, suit):

 self.value = value

Centre for Distance Education 13.13 Acharya Nagarjuna University

 self.suit = suit

 def __repr__(self):

 return f"{self.value} of {Card.suits[self.suit]}"

c = Card('Ace', 0)

print(c)

Output

Ace of Hearts

13.4 DESIGNING NEW CONTAINER CLASSES

Container classes store multiple objects and provide methods to manipulate them.

A Container Class is a class designed to store multiple objects and provide methods to

access, add, remove, or manipulate those objects efficiently.

In other words, a container acts as a collection or data structure that holds other objects as its

elements.

In Python, built-in container types include:

• list

• tuple

• set

• dict

However, programmers can design user-defined container classes to implement custom data

structures (e.g., Deck of Cards, Queue, Stack, Bag, etc.) that meet specific requirements.

Purpose

Container classes:

• Organize data into structured collections.

• Allow batch operations on groups of items.

• Promote data abstraction by hiding internal details of how items are stored.

• Offer methods for adding, removing, searching, or iterating over elements.

• Simplify complex problems that involve managing multiple related objects.

Concept Illustration

Think of a container as a box that holds multiple items.

Each item can be:

• A number,

Programming and Problem-Solving … 13.14 Object Oriented Programming

• A string,

• Or even another object (instance of a class).

We don’t interact with individual items directly; instead, we interact with the container using

its methods.

Fig 13. 3 Concept Illustration : Container Classes

Key Characteristics

Feature Description

Aggregation Stores multiple objects (instances of possibly different classes).

Encapsulation Manages internal data privately, accessed only through methods.

Iteration Often supports looping or traversal through stored objects.

Manipulation Provides operations such as insertion, deletion, search, and retrieval.

Reusability Can be generalized and reused in many programs (e.g., Stack, Queue).

Example – A Simple Container Class

Let’s design a simple class to hold a collection of integers.

class NumberContainer:

 def __init__(self):

 self.numbers = [] # internal list container

 def add(self, num):

Centre for Distance Education 13.15 Acharya Nagarjuna University

 self.numbers.append(num)

 def remove(self, num):

 if num in self.numbers:

 self.numbers.remove(num)

 else:

 print("Number not found.")

 def display(self):

 print("Numbers in container:", self.numbers)

Program Execution

c = NumberContainer()

c.add(10)

c.add(20)

c.add(30)

c.display()

c.remove(20)

c.display()

Output

Numbers in container: [10, 20, 30]

Numbers in container: [10, 30]

Explanation

• The class NumberContainer maintains a list of numbers internally (self.numbers).

• Methods such as add(), remove(), and display() allow controlled access to that list.

• Users of the class don’t directly manipulate the list — they call methods instead,

achieving encapsulation.

13.4.1 Deck of Cards

import random

class Deck:

 def __init__(self):

 self.cards = [Card(value, suit)

Programming and Problem-Solving … 13.16 Object Oriented Programming

 for suit in range(4)

 for value in ['Ace','2','3','4','5','6','7','8','9','10','Jack','Queen','King']]

 random.shuffle(self.cards)

 def draw(self):

 return self.cards.pop()

deck = Deck()

print(deck.draw())

Output

7 of Clubs

13.4.2 Queue Container Class

class Queue:

 def __init__(self):

 self.items = []

 def enqueue(self, item):

 self.items.append(item)

 def dequeue(self):

 if not self.items:

 print("Queue empty.")

 return None

 return self.items.pop(0)

13.5 OVERLOADED OPERATORS

Python allows classes to overload operators by defining special methods (dunder methods).

Operator Method Example

+ __add__ a + b

== __eq__ a == b

str() __str__ print(a)

repr() __repr__ For debugging

< __lt__ Comparison

Centre for Distance Education 13.17 Acharya Nagarjuna University

13.5.1 Operators Are Class Methods

class Point:

 def __init__(self, x=0, y=0):

 self.x, self.y = x, y

 def __add__(self, other):

 return Point(self.x + other.x, self.y + other.y)

p1 = Point(2, 3)

p2 = Point(1, 1)

print(p1 + p2)

Output

Point(3, 4)

13.5.2 Making Class Point User Friendly

Adding a readable string form:

def __str__(self):

 return f"({self.x}, {self.y})"

13.5.3 Contract between Constructor and repr()

repr() should produce a string that can recreate the object:

def __repr__(self):

 return f"Point({self.x}, {self.y})"

13.5.4 Making the Queue Class User Friendly

def __repr__(self):

 return f"Queue({self.items})"

13.6 INHERITANCE

13.6.1 Inheriting Attributes of a Class

A subclass inherits attributes and methods from its superclass.

class Animal:

 def speak(self):

 print("Animal speaks")

Programming and Problem-Solving … 13.18 Object Oriented Programming

class Dog(Animal):

 def bark(self):

 print("Woof!")

d = Dog()

d.speak()

d.bark()

Output

Animal speaks

Woof!

13.6.2 Overriding Superclass Methods

Method overriding occurs when a subclass (derived class) provides a new implementation of a

method that already exists in its superclass (base class).

The method in the subclass has the same name, same parameters, and same return type as the

one in the superclass, but performs a different or extended action.

When an overridden method is called on a subclass object, Python executes the version defined

in the subclass, not the superclass.

Purpose of Method Overriding

Method overriding allows subclasses to:

1. Modify or customize behavior inherited from a parent class.

2. Replace general methods in the superclass with specific ones in the subclass.

3. Implement polymorphism, where the same method name behaves differently

depending on the object type.

4. Reuse code by building on the base class functionality while changing only what’s

needed.

Example – Basic Method Overriding

class Animal:

 def speak(self):

 print("The animal makes a sound.")

class Dog(Animal):

Centre for Distance Education 13.19 Acharya Nagarjuna University

 def speak(self): # overriding superclass method

 print("The dog barks.")

class Cat(Animal):

 def speak(self): # overriding superclass method

 print("The cat meows.")

Program Execution

a = Animal()

d = Dog()

c = Cat()

a.speak()

d.speak()

c.speak()

Output

The animal makes a sound.

The dog barks.

The cat meows.

13.6.3 Extending Superclass Methods

class Cat(Animal):

 def speak(self):

 super().speak()

 print("Cat meows")

Output

Animal speaks

Cat meows

13.6.4 Implementing Queue by Inheriting from list

class Queue(list):

 def enqueue(self, item):

 self.append(item)

Programming and Problem-Solving … 13.20 Object Oriented Programming

 def dequeue(self):

 if len(self)==0:

 raise IndexError("Empty queue")

 return self.pop(0)

13.7 USER-DEFINED EXCEPTIONS

13.7.1 Raising an Exception

raise ValueError("Invalid value")

13.7.2 Defining User-Defined Exception Classes

class QueueEmpty(Exception):

 """Raised when dequeue is attempted on an empty queue."""

 pass

class Queue(list):

 def dequeue(self):

 if not self:

 raise QueueEmpty("Cannot dequeue from empty queue")

 return self.pop(0)

Example

q = Queue()

try:

 q.dequeue()

except QueueEmpty as e:

 print("Error:", e)

Output

Error: Cannot dequeue from empty queue

13.8 SUMMARY

• OOP organizes code around objects that contain data and methods.

• Classes define the blueprint; objects are instances.

• Constructors (__init__) initialize object state.

• Operator overloading enables intuitive behavior (+, ==, etc.).

• Inheritance promotes code reuse and hierarchy.

• User-defined exceptions provide customized error handling.

Centre for Distance Education 13.21 Acharya Nagarjuna University

13.9 TECHNICAL TERMS

Object, Class, Instance, Constructor, Method, Namespace, Encapsulation, Inheritance,

Polymorphism, Operator Overloading, Superclass, Subclass, Docstring, Exception Handling,

Custom Exception, Container Class.

13.10 SELF-ASSESSMENT QUESTIONS

Essay Questions

1. Explain the fundamental principles of OOP and their importance in software design.

2. Define a Python class with example code and explain its components.

3. What is the difference between class variables and instance variables?

4. How can we overload operators in Python? Illustrate with an example.

5. Discuss inheritance and method overriding with code examples.

6. Explain the design of a Queue or Deck container class.

7. Define and raise a user-defined exception.

8. What is the relationship between repr() and the constructor?

Short Answer Questions

1. What is encapsulation?

2. Give syntax of a Python class.

3. What are dunder (double-underscore) methods?

4. What is the purpose of __init__()?

5. Define polymorphism in your own words.

6. What is the output of repr() vs str()?

7. How is inheritance implemented in Python?

8. Difference between built-in and user-defined exceptions.

13.11 SUGGESTED READINGS

1. Ljubomir Perković, Introduction to Computing Using Python: An Application

Development Focus, Wiley, 2012.

2. Reema Thareja, Python Programming: Using Problem-Solving Approach, Oxford

University Press.

3. Mark Lutz, Learning Python, O’Reilly Media.

4. Allen B. Downey, Think Python, Green Tea Press.

5. David Beazley & Brian Jones, Python Cookbook, O’Reilly Media.

Dr. Vasantha Rudramalla

LESSON- 14

 OBJECTS AND THEIR USES

AIMS AND OBJECTIVES

After completing this chapter, learners will be able to:

• Explain what software objects are and how they are used in Python.

• Understand object references, mutability, and garbage collection.

• Utilize the turtle module to create visual simulations.

• Apply the principles of modular design in Python programs.

• Use Python’s module system to organize programs logically.

STRUCTURE

14.1 Introduction

14.2 Software Objects

 14.2.1 What is an Object?

 14.2.2 Object References

 14.2.3 Garbage Collection

 14.2.4 List Assignment and Copying

14.3 Turtle Graphics

 14.3.1 Creating a Turtle Graphics Window

 14.3.2 Turtle Position and Movement

 14.3.3 Pen Attributes and Colors

 14.3.4 Shapes, Sizes, and Speed

 14.3.5 Multiple Turtles and Animation

14.4 Case Study – Horse Race Simulation

14.5 Modular Design

 14.5.1 Modules and Top-Down Design

 14.5.2 Python Modules and Importing

14.6 Summary

14.7 Technical Terms

14.8 Self-Assessment Questions

14.9 Suggested Readings

Programming and Problem-Solving … 14.2 Objects and Their Uses

14.1 INTRODUCTION

In imperative programming, functions are the basic building blocks of a program.

In object-oriented programming (OOP), however, objects become the fundamental units of

design, combining both data (attributes) and behavior (methods).

The concept of “objects” originated in computer simulation, where real-world entities such as

cars, students, or bank accounts were modeled in software.

In the early 1970s, Alan Kay at Xerox PARC developed the programming language Smalltalk,

introducing object-oriented programming as we know it. This idea later inspired the

development of graphical user interfaces (GUIs) and languages such as Python, Java, and C++.

Fig 14.1 some common used programming languages

14.2 SOFTWARE OBJECTS

In object-oriented programming, a software object is a self-contained entity that combines both

data (attributes or properties) and behavior (methods or functions).

It is modeled after real-world objects that have characteristics and actions. For example, a

student object might have data such as name, roll number, and marks, and behaviors such as

register() or calculate_grade().

Objects are created (or instantiated) from classes, which serve as blueprints defining what

attributes and methods an object will have. Once created, each object maintains its own copy of

data, but all objects of a class share the same structure and behavior.

In Python, every data type — integers, strings, lists, even functions — is implemented as an

object. This is why we can perform actions like "hello".upper() or [1,2,3].append(4): these are

method calls acting on objects.

Objects interact with one another by sending and receiving messages (method calls), allowing

complex systems to be built from smaller, reusable components.

Thus, software objects make programs more modular, maintainable, and intuitive, reflecting the

real-world relationships between entities and their actions.

Centre for Distance Education 14.3 Acharya Nagarjuna University

14.2.1 What is an Object?

An object in Python is a software entity that bundles:

• Attributes – data stored in instance variables, and

• Methods – functions that define its behavior.

Every object in Python (even numbers, strings, and lists) is an instance of some class.

Example:

names_list = ['Alice', 'Bob', 'Carol']

names_list.sort()

Here:

• names_list is a list object.

• sort() is a method that operates on the list.

Calling names_list.sort() sends a message to the object saying, “Sort yourself.”

 Fig 14.2 example software object name_list

14.2.2 Object References

In Python, variables do not hold actual data values — they hold references (memory addresses)

to objects stored elsewhere in memory.

n = 10

k = n

Both n and k reference the same object (10) in memory.

We can verify this using the built-in id() function:

>>> id(n)

505498136

>>> id(k)

Programming and Problem-Solving … 14.4 Objects and Their Uses

505498136

Both have the same memory location, showing that n and k refer to the same object.

14.2.3 Memory Management and Garbage Collection

When no variable references an object anymore, Python automatically deallocates its memory

through a process called garbage collection.

Example:

n = 20

n = 40 # old value 20 no longer referenced

After this, the object 20 is marked for garbage collection and its memory becomes reusable.

 Fig 14.3 memory deallocation

Garbage collection is a method of automatically determining which locations in memory are no

longer in use and deallocating them. The garbage collection process is ongoing during the

execution of a Python program.

14.2.4 List Assignment and Copying

Assigning one list to another creates a reference, not a copy:

list1 = [10, 20, 30]

list2 = list1

Changing list1[0] also affects list2[0] because both reference the same object.

To make an actual copy, use the list constructor:

Centre for Distance Education 14.5 Acharya Nagarjuna University

list2 = list(list1)

To copy nested lists completely, use:

import copy

list3 = copy.deepcopy(list1)

 Fig 14.4 List assignment and copy

The situation is different if the list contains sublists, however.

list1 = [[10, 20] , [20, 30],[30,40]]

list2 = list1

 Fig 14.5 List assignment and copy in a different way

14.3 TURTLE GRAPHICS

Turtle Graphics is one of the most engaging and visual ways to learn programming concepts

and understand how objects work in Python.

It provides a graphics environment in which a “turtle” moves on the screen under program

control, leaving a trail as it goes — much like a pen drawing lines on paper.T he turtle can

Programming and Problem-Solving … 14.6 Objects and Their Uses

move forward, turn, change color, and even draw shapes, all by calling its methods. This

system allows beginners to visualize program execution and directly see how object-oriented

commands affect an object’s state.

Concept of the Turtle Object

In Python, the turtle module provides a built-in Turtle class.

When we create a new turtle using:

import turtle

t = turtle.Turtle()

we are instantiating an object from the Turtle class.

This t object has attributes (such as position, direction, color, and pen state) and methods (like

forward(), left(), and circle()).

Each turtle object operates independently, allowing you to create multiple turtles on the same

screen.

Advantages of Using Turtle Graphics

1. Provides an intuitive, visual approach to understanding programming logic.

2. Encourages experimentation and creativity.

3. Demonstrates object behavior (state, methods, and encapsulation).

4. Useful for teaching loops, conditionals, and functions through graphical tasks.

5. Allows multiple objects (turtles) to illustrate interactions and concurrency.

Turtle Graphics in Python:

• Uses objects and methods to represent motion and drawing.

• Makes abstract programming concepts visual and interactive.

• Provides a practical introduction to object-oriented design through creativity and play.

• It bridges the gap between logic and visualization, making it an ideal educational tool

for new programmers.

14.3.1 Creating a Turtle Graphics Window

Turtle graphics is a fun way to introduce programming and OOP through graphics.

It uses a “turtle” that moves around a screen, drawing lines as it goes.

import turtle

turtle.setup(800, 600)

window = turtle.Screen()

window.title("My Turtle Window")

A turtle screen of 800×600 pixels is created, titled “My Turtle Window”.

Centre for Distance Education 14.7 Acharya Nagarjuna University

Fig 14.6 My Turtle Window

14.3.2 Turtle Position and Movement

In the turtle graphics system, every turtle object has a position and a heading (direction) that

determine where it is on the screen and which way it is facing. The position is represented by x

and y coordinates within the graphics window, where the center of the window is coordinate (0,

0). The turtle moves relative to its current position using methods such as forward(distance) and

backward(distance), which move it along its heading, and left(angle) and right(angle), which

rotate the turtle by the specified number of degrees. The movement is continuous, and if the

turtle’s pen is down (the default state), it draws a visible line as it moves.

Absolute positioning can also be achieved using the goto(x, y) method, which moves the turtle

directly to a specific location on the screen. The methods setx(x) and sety(y) move the turtle

horizontally or vertically without changing its other coordinate. The home() method returns the

turtle to the center (0, 0) with its heading facing east. By combining movement and rotation

commands within loops, complex geometric figures such as polygons and spirals can be easily

drawn.

Thus, turtle movement illustrates fundamental object behavior — the object (turtle) maintains

an internal state (position and heading) and responds to method calls that modify that state,

making the concept of object interaction both visible and intuitive.

A turtle’s position is defined by (x, y) coordinates.

t = turtle.getturtle()

Programming and Problem-Solving … 14.8 Objects and Their Uses

t.setposition(100, 100)

The turtle moves to position (100,100), drawing a line if its pen is down.

Relative movement is done using methods such as:

t.forward(100)

t.left(90)

This allows shapes such as squares to be drawn.Example – Drawing a Square

for i in range(4):

 t.forward(100)

 t.left(90)

Fig 14.7 Example – Drawing a Square

14.3.3 Pen Attributes and Colors

Every turtle in the Python turtle module carries a pen, which controls how and when lines are

drawn as the turtle moves. The pen’s properties — such as color, thickness, and drawing state

— can be customized through various methods that make turtle drawings more expressive and

visually distinct. By default, the pen is down, meaning the turtle draws a line whenever it

moves. The method penup() lifts the pen, allowing the turtle to move without drawing, while

pendown() lowers it again to resume drawing.

The color of the pen can be changed using pencolor(), which accepts either a color name (e.g.,

"red", "blue") or an RGB color value (e.g., (0.5, 0.2, 0.8)). To modify the thickness of the line,

the pensize() or width() method is used. For example, t.pencolor("green") and t.pensize(4) set

Centre for Distance Education 14.9 Acharya Nagarjuna University

the pen to draw thick green lines. The fill color used to shade shapes can be controlled with

fillcolor() and activated using begin_fill() and end_fill().

These attributes enable the creation of colorful and detailed designs, making programs both

interactive and visually engaging. Managing pen attributes reinforces the concept of object state

in object-oriented programming — the turtle object “remembers” its current pen color, width,

and state, and every drawing action reflects these properties.

• Pen up / down:

penup() and pendown() toggle drawing.

• Line width:

pensize(5) sets the line width in pixels.

• Color:

pencolor('blue') or pencolor(255, 0, 0) (if using RGB mode).

t.pencolor('green')

t.pensize(4)

t.forward(120)

Example – Drawing a Colored Triangle with Pen Attributes

The following example demonstrates how pen color, fill color, and line width can be controlled

to create an attractive filled triangle using the turtle graphics module.

import turtle

t = turtle.Turtle()

t.pensize(4) # Set line thickness

t.pencolor("blue") # Set outline color

t.fillcolor("yellow") # Set fill color

t.begin_fill() # Start filling the shape

for i in range(3): # Draw an equilateral triangle

 t.forward(150)

 t.left(120)

t.end_fill() # Complete the fill

t.hideturtle()

turtle.done()

Output Description:

A blue-bordered triangle filled with yellow color is drawn at the center of the screen. The thick

border is a result of setting the pen size to 4 pixels.

Programming and Problem-Solving … 14.10 Objects and Their Uses

This simple example illustrates how pen attributes affect both the appearance and quality of

graphical output, while reinforcing the object-oriented nature of the turtle — every visual

change is a result of sending commands (messages) to the turtle object to modify its internal

drawing state.

14.3.4 Shapes, Sizes, and Speed

• Shape: 'arrow', 'turtle', 'circle', 'square', 'triangle', 'classic'

• Resize: t.resizemode('user') and t.turtlesize(3,3) enlarge the turtle.

• Speed: t.speed(6) controls animation; t.hideturtle() speeds drawing.

Creating Custom Shapes

points = ((5,5), (10,0), (5,-5), (0,0))

turtle.register_shape('mypolygon', points)

t.shape('mypolygon')

14.3.5 Multiple Turtles and Animation

You can create multiple turtles using:

t1 = turtle.Turtle()

t2 = turtle.Turtle()

Each turtle can move independently, creating animations such as bouncing balls or horse races.

14.4 CASE STUDY – HORSE RACE SIMULATION

This case study illustrates how objects, modules, and randomness combine to simulate a real-

world system.

The Problem

Simulate a horse race where each horse (turtle) moves forward a random distance until one

reaches the finish line.

Program Modules Used

• turtle – for graphics visualization

• random – for random movement

• time – to control simulation speed

Algorithm Overview

1. Create a turtle window.

2. Register horse images.

3. Position 10 horses at the starting line.

4. Move each horse forward by a random amount.

5. Detect when a horse crosses the finish line.

Centre for Distance Education 14.11 Acharya Nagarjuna University

6. Display the winner.

Program Snippet

import turtle, random, time

def createHorse(x, y, color):

 h = turtle.Turtle()

 h.shape('turtle')

 h.color(color)

 h.penup()

 h.setposition(x, y)

 h.pendown()

 return h

def startRace(horses):

 finish = 300

 while True:

 for h in horses:

 h.forward(random.randint(1, 5))

 if h.xcor() >= finish:

 print(h.pencolor(), "wins!")

 return

screen = turtle.Screen()

colors = ['red', 'blue', 'green', 'orange', 'purple']

horses = [createHorse(-300, i * 50, colors[i]) for i in range(5)]

startRace(horses)

screen.exitonclick()

Output:

Turtles race across the screen, and the color of the winning turtle is printed in the console.

Programming and Problem-Solving … 14.12 Objects and Their Uses

Fig 14.7 Example – Horse Race Simulation

14.5 MODULAR DESIGN

14.5.1 Modules and Top-Down Design

Top-Down Design breaks a large problem into smaller, manageable modules.

Each module handles a single task, making programs easier to write, debug, and reuse.

Example Breakdown – Horse Race Program

Module Functionality

graphics Create screen and horses

race Move horses and determine winner

main Combine everything and run

Fig 14.8 Modular Design of the NASA Space Shuttle

Centre for Distance Education 14.13 Acharya Nagarjuna University

Pytbon Code:

main.py

from power import ElectricalSystem

from control import CommunicationSystem

def main():

 print("Vehicle Control Simulation Starting...")

 power = ElectricalSystem()

 comms = CommunicationSystem()

 power.activate()

 comms.initialize()

 print("System Operational.")

if __name__ == "__main__":

 main()

power.py

class ElectricalSystem:

 def activate(self):

 print("Electrical System Activated.")

control.py

class CommunicationSystem:

 def initialize(self):

 print("Communication System Initialized.")

Output:

Vehicle Control Simulation Starting...

Electrical System Activated.

Communication System Initialized.

System Operational.

software systems should also be modularly structured—each module representing a

manageable part of the overall design.

Programming and Problem-Solving … 14.14 Objects and Their Uses

This modular approach is fundamental to object-oriented programming, where each class and

module models a real-world component with clearly defined attributes and behaviors.

Modular design allows large programs to be broken down into manageable size parts, in which

each part (module) provides a clearly specified capability. It aids the software development

process by providing an effective way of separating programming tasks among various

individuals or teams. It allows modules to be individually developed and tested, and eventually

integrated as a part of a complete system. Finally, modular design facilitates program

modification since the code responsible for a given aspect of the software is localized in a small

number of modules, and not distributed through various parts of the program.

14.5.2 Python Modules and Importing

Python allows reusing code via modules.A module is simply a Python file (.py) containing

reusable functions or classes.

Creating a Module

file: math_utils.py

def square(x):

 return x * x

Using the Module

import math_utils

print(math_utils.square(4))

Output

16

Selective Importing :

from math_utils import square

print(square(5))

14.6 SUMMARY

• Objects combine data and methods into a single entity.

• Variables store references to objects, not the objects themselves.

• Garbage collection reclaims unused memory automatically.

• The turtle module provides a visual introduction to object behavior.

• Modules and top-down design promote reusable, structured programming.

14.7 TECHNICAL TERMS

• Object

• Reference

• Garbage Collection

• Turtle Graphics

• Module

Centre for Distance Education 14.15 Acharya Nagarjuna University

14.8 SELF-ASSESSMENT QUESTIONS

Essay Questions

1. Explain the concept of software objects in Python.

2. Describe how garbage collection works.

3. Write a program using turtle graphics to draw a star.

4. Explain the importance of modular programming in Python.

Short Notes

1. Turtle attributes and shapes

2. Object references and id() function

3. Difference between shallow and deep copy

4. Advantages of using modules

14.9 SUGGESTED READINGS

1. Dierbach, Introduction to Computer Science Using Python, Wiley, 2013.

2. Ljubomir Perković, Introduction to Computing Using Python, Wiley, 2012.

3. Alan Kay, The Early History of Smalltalk, ACM, 1993.

4. Python Software Foundation, turtle — Turtle Graphics Documentation,

https://docs.python.org

Dr. Vasantha Rudramalla

LESSON- 15

 RECURSION

AIMS AND OBJECTIVES

After completing this chapter, the learner will be able to:

• Understand the concept and working of recursion in problem-solving.

• Write recursive functions in Python to solve mathematical and algorithmic problems.

• Compare recursion and iteration in terms of logic and performance.

• Perform runtime analysis of recursive algorithms.

• Apply recursion to solve searching, mathematical, and divide-and-conquer problems.

• Recognize the role of functional programming concepts in recursive design.

STRUCTURE

15.1 Introduction to Recursion

15.2 Examples of Recursion

 15.2.1 Factorial Function

 15.2.2 Sum of Natural Numbers

 15.2.3 Fibonacci Sequence

15.3 Run Time Analysis of Recursive Functions

15.4 Recursive Searching

 15.4.1 Linear Search (Recursive)

 15.4.2 Binary Search (Recursive)

15.5 Iteration vs Recursion

15.6 Recursive Problem Solving

 15.6.1 Towers of Hanoi

 15.6.2 Greatest Common Divisor (GCD)

15.7 Functional Language Approach

15.8 Summary

15.9 Technical Terms

15.10 Self-Assessment Questions

15.11 Suggested Readings

15.1 INTRODUCTION TO RECURSION

Recursion is a programming technique in which a function calls itself directly or indirectly to

solve a smaller version of the original problem.

Programming and Problem-Solving … 15.2 Recursion

In a recursive process, each call solves a simpler subproblem, and the recursion continues until

a base case is reached — a condition where the problem can be solved directly without further

recursive calls.

Formally, recursion divides a problem into:

1. Base case – A stopping condition that prevents infinite recursion.

2. Recursive case – The part where the function calls itself to solve a smaller problem.

Example – Simple Recursive Function

def countdown(n):

 if n == 0:

 print("Blast off!")

 else:

 print(n)

 countdown(n - 1)

Output:

5

4

3

2

1

Blast off!

Explanation:

• Each recursive call reduces the problem size by one.

• When n becomes 0, the base case is reached, and recursion stops.

Fig 15.1 Conceptual Visualization – Recursion

Each recursive call is added to the call stack, and execution resumes backward once the base

case is reached.

Centre for Distance Education 15.3 Acharya Nagarjuna University

How does this code implement the function countdown() for input value n > 0? The

insight used in the code is this: Counting down from (positive number) n can be done by

printing n first and then counting down from n 1. This fragment of code is called the

recursive step. With the two cases resolved, we obtain the recursive function:

def countdown(n):

 'counts down to 0'

if n <= 0: # base case

 print('Blastoff!!!')

 else: # n > 0: recursive step

 print(n) # print n first and then

 countdown(n-1) # count down from n-1

A recursive function that terminates will always have:

1. One or more base cases, which provide the stopping condition for the recursion. In

function countdown(), the base case is the condition n ≤ 0, where n is the input.

2. One or more recursive calls, which must be on arguments that are “closer” to the

base case than the function input. In function countdown(), the sole recursive call

is made on n 1, which is “closer” to the base case than input n.

def cheers(n):

 """Prints 'Hip ' n times followed by 'Hurray!!!' using recursion."""

 if n <= 0: # base case

 print("Hurray!!!")

 else:

 print("Hip ", end='') # print prefix without newline

 cheers(n - 1) # recursive call

How it works

• Base case: when n <= 0 the function prints the final word Hurray!!! and stops.

• Recursive case: when n > 0 it prints the prefix Hip (note the trailing space) and

recursively calls cheers(n-1).

The printed prefixes accumulate (left-to-right) because each call prints one Hip before

delegating the remainder.

Programming and Problem-Solving … 15.4 Recursion

Examples (interactive)

>>> cheers(0)

Hurray!!!

>>> cheers(1)

Hip Hurray!!!

>>> cheers(4)

Hip Hip Hip Hip Hurray!!!

Complexity

• Time: O(n) — one recursive call per Hip printed.

• Space: O(n) call-stack depth (recursion frames).

• If you prefer to return the string instead of printing, you can implement a version that

builds and returns the string (useful for testing).

• If you expect negative inputs and want them handled differently, replace the if n <= 0:

guard with if n == 0: and raise an error for n < 0.

Recursive Function Calls and the Program Stack:

Printing Digits Vertically Using Recursion

def vertical(n):

 """Prints the digits of n vertically."""

 if n < 10: # base case: single-digit number

 print(n)

 else: # recursive case

 vertical(n // 10) # print all but the last digit

 print(n % 10) # print the last digit

Explanation

The function vertical(n) prints each digit of the integer n on a separate line, from most

significant digit to least significant digit.

It uses recursion to repeatedly reduce the number by removing its last digit until only one digit

remains — the base case.

• Base Case:

If n is a single-digit number (n < 10), simply print it.

• Recursive Case:

If n has two or more digits:

Centre for Distance Education 15.5 Acharya Nagarjuna University

1. Call vertical(n // 10) — this discards the last digit and recursively prints the

remaining digits.

2. After returning from recursion, print the last digit using print(n % 10).

Example Execution

>>> vertical(348)

Output:

3

4

8

Figure 15.2 Recursive function execution.

15.2 EXAMPLES OF RECURSION

Recursion is best understood through simple, familiar problems that can naturally be defined in

terms of smaller versions of themselves. Classic examples include the computation of a

factorial, the sum of natural numbers, the Fibonacci sequence, and countdown functions.

Programming and Problem-Solving … 15.6 Recursion

Each of these problems follows a common recursive structure: a base case that directly

provides an answer and a recursive case that reduces the problem toward that base case. For

example, the factorial function can be expressed as n! = n × (n−1)!, where the base case is 0! =

1. Similarly, the Fibonacci series is defined as F(n) = F(n−1) + F(n−2), where the sequence

builds upon previously computed results. Recursive functions like countdown(n) or sum_n(n)

repeatedly call themselves with a smaller input until the simplest instance of the problem is

reached.

These examples illustrate the self-referential nature of recursion—each function call handles

part of the work and delegates the rest to a smaller, identical subproblem. Through this process,

recursion converts complex problems into simpler ones, demonstrating how powerful and

elegant recursive thinking can be when applied to mathematical and algorithmic problem-

solving.

15.2.1 Factorial Function

The factorial of a non-negative integer n is defined as:

and by definition, 0! = 1.

Recursive Implementation

def factorial(n):

 if n == 0:

 return 1

 else:

 return n * factorial(n - 1)

Example:

print(factorial(5))

Output:

120

Explanation:

Each recursive call computes n * factorial(n-1) until the base case n==0 is reached.

15.2.2 Sum of Natural Numbers

Recursive definition:

def sum_n(n):

 if n == 0:

 return 0

Centre for Distance Education 15.7 Acharya Nagarjuna University

 else:

 return n + sum_n(n - 1)

Example:

sum_n(5) = 5 + 4 + 3 + 2 + 1 = 15

15.2.3 Fibonacci Sequence

The Fibonacci sequence is defined recursively as:

def fibonacci(n):

 if n <= 1:

 return n

 else:

 return fibonacci(n-1) + fibonacci(n-2)

Output:

fibonacci(6) → 8

Increasing and Decreasing Sequence

The following function recursively prints a sequence of numbers from 1 up to n, and then back

down to 1.

def pattern(n):

 """Prints a recursive number pattern 1..n..1"""

 if n == 0:

 return

 print(n, end=' ') # First part: descending

 pattern(n - 1) # Recursive call

 print(n, end=' ') # Second part: ascending

Example Execution

>>> pattern(4)

Output:

4 3 2 1 1 2 3 4

Programming and Problem-Solving … 15.8 Recursion

Figure 15.3 Symmetric Recursive Structure

Fractals:

In our next example of recursion, we will also print a pattern, but this time it will be a

graphical pattern drawn by a Turtle graphics object. For every nonnegative integer n, the

printed pattern will be a curve called the Koch curve Kn. For example, Figure 10.4 shows Koch

curve K5.

Figure 15.4 Koch curves with drawing instructions

Generating and Drawing the Koch Curve

from turtle import Screen, Turtle

def koch(n):

 """Returns turtle directions for drawing the nth Koch curve."""

 if n == 0: # Base case

 return 'F' # 'F' means move forward

 tmp = koch(n - 1) # Recursive case: build Koch(n-1)

Centre for Distance Education 15.9 Acharya Nagarjuna University

 return tmp + 'L' + tmp + 'R' + tmp + 'L' + tmp

def drawKoch(n):

 """Draws the nth Koch curve using turtle graphics."""

 s = Screen() # Create drawing window

 t = Turtle() # Create turtle

 t.speed(0) # Set fastest drawing speed

 t.penup()

 t.goto(-150, 0) # Position turtle for drawing

 t.pendown()

 directions = koch(n) # Obtain recursive directions

 for move in directions: # Interpret each command

 if move == 'F':

 t.forward(300 / (3 ** n)) # Move forward, scaled to recursion level

 elif move == 'L':

 t.left(60) # Turn left 60 degrees

 elif move == 'R':

 t.right(120) # Turn right 120 degrees

 s.mainloop() # Keep window open

Example: draw Koch curve of level 3

drawKoch(3)

15.3 RUN TIME ANALYSIS OF RECURSIVE FUNCTIONS

Recursive functions can be analyzed in terms of time complexity and space complexity.

• Factorial function: O(n) – One recursive call per level.

• Fibonacci function: O(2ⁿ) – Exponential growth due to repeated subproblems.

• Binary search: O(log n) – Divides problem size by 2 each step.

Each recursive call adds a new activation record to the call stack, consuming additional

memory.

Thus, recursion provides elegant solutions but can become inefficient without optimization

(e.g., memoization).

Koch curves Run Time Analysis

• Each level of recursion produces 4ⁿ segments.

Programming and Problem-Solving … 15.10 Recursion

• Hence, Time Complexity = O(4ⁿ)

• Space Complexity = O(n) (for recursion depth).

15.4 RECURSIVE SEARCHING

Recursion is widely used in search algorithms such as linear and binary search.

15.4.1 Linear Search (Recursive)

Linear Search is the simplest searching algorithm that sequentially checks each element of a

list until the target value is found or the end of the list is reached.

In its recursive form, the function checks one element per recursive call, reducing the problem

size by one at each step — just like iterative looping but using the call stack instead of explicit

loop control.

The recursive linear search function works as follows:

1. Base Case:

If the list is empty or the search index has reached the end, the element is not found —

return -1.

2. Recursive Case:

Compare the target element with the current list element.

o If they match, return the current index.

o Otherwise, make a recursive call on the rest of the list (or increment the index).

def linear_search(lst, key, index=0):

 if index == len(lst):

 return -1

 elif lst[index] == key:

 return index

 else:

 return linear_search(lst, key, index + 1)

Example:

linear_search([5, 3, 8, 6], 8) → 2

Complexity: O(n)

15.4.2 Binary Search (Recursive)

Binary Search is an efficient algorithm for finding a target value within a sorted list.

Unlike linear search, which checks each element sequentially, binary search divides the search

Centre for Distance Education 15.11 Acharya Nagarjuna University

space in half with each step.

It compares the target element to the middle element of the list:

• If the target equals the middle element, the search is successful.

• If the target is smaller, the search continues recursively in the left half.

• If the target is larger, it continues recursively in the right half.

This “divide-and-conquer” approach drastically reduces the number of comparisons, making

binary search one of the most efficient search algorithms.

Recursive Definition

Binary search naturally lends itself to a recursive solution, since each recursive call works on a

smaller (half-sized) portion of the list.

1. Base Case:

If the list portion to search is empty (low > high), return -1 (element not found).

2. Recursive Case:

o Compute the middle index:

o Compare the target with list[mid].

▪ If equal → return mid.

▪ If smaller → recursively search the left half.

▪ If larger → recursively search the right half.

Binary search applies only to sorted lists.

def binary_search(lst, key, low, high):

 if low > high:

 return -1

 mid = (low + high) // 2

 if lst[mid] == key:

 return mid

 elif key < lst[mid]:

 return binary_search(lst, key, low, mid - 1)

 else:

 return binary_search(lst, key, mid + 1, high)

Programming and Problem-Solving … 15.12 Recursion

Example:

binary_search([1,3,5,7,9,11], 7, 0, 5) → 3

Complexity: O(log n)

15.5 ITERATION VS RECURSION

Aspect Iteration Recursion

Definition Repeats statements using loops

(for, while).

Function calls itself with smaller

subproblems.

Control

Mechanism

Loop control variable Function call stack

Base/End

Condition

Loop termination condition Base case

Memory Use Constant Increases with recursion depth

Speed Faster (less overhead) Slower (function calls add overhead)

Elegance Less abstract, sometimes verbose Elegant and mathematically natural

Example Loops Factorial, Fibonacci

Example comparison for factorial:

Iterative

def fact_iter(n):

 result = 1

 for i in range(1, n+1):

 result *= i

 return result

Recursive

def fact_rec(n):

 if n == 0:

 return 1

 else:

 return n * fact_rec(n-1)

Both yield the same output, but recursion provides clearer logical structure for divide-and-

conquer problems.

Feature Linear Search Binary Search

Data requirement Works on unsorted lists Requires sorted list

Approach Sequential Divide and conquer

Complexity (Time) O(n) O(log n)

Complexity (Space) O(1) iterative / O(n) recursive O(log n) recursive

Example Use Small or unsorted datasets Large sorted datasets

Centre for Distance Education 15.13 Acharya Nagarjuna University

Recursive binary search demonstrates the power of recursion to simplify complex logic —

instead of using multiple loop conditions, it expresses the solution as repeated self-calls on

progressively smaller problems.It is a cornerstone example of how recursion can combine

mathematical elegance with computational efficiency.

15.6 RECURSIVE PROBLEM SOLVING

Recursive problem solving is a method of approaching complex problems by breaking them

down into smaller, similar subproblems that can be solved using the same technique. In this

approach, a function or algorithm calls itself with a smaller input until it reaches a base case —

a simple condition that can be solved directly without further recursion. Once the base case is

reached, the function’s intermediate results are combined as the recursion “unwinds,”

producing the final solution.

Recursion mirrors the divide-and-conquer strategy: divide the problem into manageable parts,

solve each recursively, and combine the results. This technique is especially powerful for

problems defined in terms of smaller versions of themselves — such as computing factorials,

generating Fibonacci numbers, traversing tree structures, solving the Towers of Hanoi puzzle,

and performing binary search.

Recursive problem solving encourages top-down thinking — focusing first on defining the

overall structure of the solution, then letting recursion handle the details of smaller

computations automatically. It offers elegant, mathematically consistent solutions and is widely

used in algorithms, data structures, and graphics. However, it must always include a well-

defined base case to prevent infinite recursion and excessive memory usage.

15.6.1 Towers of Hanoi

The classic Towers of Hanoi puzzle demonstrates recursion elegantly.

The problem involves moving n disks from one peg to another, following these rules:

1. Only one disk can be moved at a time.

2. A larger disk cannot be placed on top of a smaller disk.

3. Use a third peg as an auxiliary.

def hanoi(n, source, auxiliary, target):

 if n == 1:

 print(f"Move disk 1 from {source} to {target}")

 else:

 hanoi(n-1, source, target, auxiliary)

 print(f"Move disk {n} from {source} to {target}")

 hanoi(n-1, auxiliary, source, target)

Example:

hanoi(3, 'A', 'B', 'C')

Output:

Move disk 1 from A to C

Move disk 2 from A to B

Move disk 1 from C to B

Programming and Problem-Solving … 15.14 Recursion

Move disk 3 from A to C

Move disk 1 from B to A

Move disk 2 from B to C

Move disk 1 from A to C

Complexity: O(2ⁿ − 1)

15.6.2 Greatest Common Divisor (GCD)

The Euclidean algorithm is naturally recursive:

def gcd(a, b):

 if b == 0:

 return a

 else:

 return gcd(b, a % b)

Example:

gcd(48, 18) → 6

Complexity: O(log n)

15.7 FUNCTIONAL LANGUAGE APPROACH

Recursion forms the foundation of functional programming, where problems are solved by

defining functions in terms of themselves rather than changing state or using loops.

In Python, recursion aligns with a declarative approach — describing what to do, not how to

do it.

Key features:

• Functions are pure (no side effects).

• Emphasis on mathematical definition.

• No use of mutable variables.

• Enables higher-order functions such as map(), filter(), and reduce().

Example:

def factorial(n):

 return 1 if n == 0 else n * factorial(n - 1)

Here, recursion replaces iteration naturally, making the function concise and closer to its

mathematical definition.

Concept of Map–Reduce

The Map–Reduce model divides computation into two primary phases:

Centre for Distance Education 15.15 Acharya Nagarjuna University

1. Map Phase:

A function is applied independently to each element in a collection (list, tuple, etc.).

The result is a new list containing the function’s output for each input element.

This corresponds to mapping a function over data — similar to recursion over lists

where each recursive call processes one element.

2. Reduce Phase:

The results of the map phase are combined into a single cumulative value using a

reducer function.

This process recursively collapses multiple results into one — for example, summing a

list of numbers or concatenating strings.

Sequential Map–Reduce Example (Word Counting)

The Map–Reduce framework processes data in two main phases — map and reduce —

following the functional programming and recursive problem-solving approach.

In this example:

>>> words = ['two', 'three', 'one', 'three', 'three', 'five', 'one', 'five']

>>> smr = SeqMapReduce(occurrence, occurrenceCount)

>>> smr.process(words)

[('one', 2), ('five', 2), ('two', 1), ('three', 3)]

1. Map Phase:

Each word is mapped into a key–value pair — (word, 1) — representing one

occurrence.

Example: ('three', 1)

2. Group Phase:

Intermediate pairs are grouped by key:

{'one': [1,1], 'three': [1,1,1], 'five': [1,1], 'two': [1]}

3. Reduce Phase:

The reducer function sums each list of values to count occurrences.

Final result:

[('one', 2), ('five', 2), ('two', 1), ('three', 3)]

This example demonstrates the recursive nature of Map–Reduce — the map phase applies a

function to each element independently (like recursive traversal), and the reduce phase

combines results cumulatively (like recursive aggregation).

Thus, Map–Reduce models functional recursion — dividing, processing, and recombining

data efficiently.

Programming and Problem-Solving … 15.16 Recursion

Figure 15.5 MapReduce for word frequency

class SeqMapReduce(object):

 """A sequential Map–Reduce implementation."""

 def __init__(self, mapper, reducer):

 """Functions mapper and reducer are problem-specific."""

 self.mapper = mapper

 self.reducer = reducer

 def process(self, data):

 """Runs Map–Reduce on data using the provided mapper and reducer."""

 intermediate1 = [self.mapper(x) for x in data] # Map Phase

 intermediate2 = partition(intermediate1) # Group Phase

 return [self.reducer(x) for x in intermediate2] # Reduce Phase

15.8 SUMMARY

• Recursion solves problems by dividing them into smaller, similar subproblems.

• Every recursive function must include a base case to stop the recursion.

• Recursive solutions can be more elegant but less efficient than iterative ones.

• Recursive algorithms are used in searching, sorting, and divide-and-conquer

methods.

• Functional programming embraces recursion as a natural expression of computation.

15.9 TECHNICAL TERMS

• Term

• Recursion

• Base Case

• Call Stack

• Tail Recursion

• Memoization

Centre for Distance Education 15.17 Acharya Nagarjuna University

15.10 SELF-ASSESSMENT QUESTIONS

Essay Questions

1. Define recursion. Explain how it differs from iteration with examples.

2. Discuss runtime analysis of recursive algorithms.

3. Explain how recursion is used in searching algorithms.

4. Write and explain the recursive solution to the Towers of Hanoi problem.

Short Notes

1. Base case and recursive case

2. Functional programming and recursion

3. Binary search using recursion

4. Tail recursion

15.11 SUGGESTED READINGS

1. Ljubomir Perković, Introduction to Computing Using Python, Wiley, 2012.

2. Dierbach, Introduction to Computer Science Using Python, Wiley, 2013.

3. Allen Downey, Think Python: How to Think Like a Computer Scientist, O’Reilly, 2015.

4. Python Software Foundation, Recursion and Functional Programming,

https://docs.python.org.

Dr. Vasantha Rudramalla

LESSON- 16

 NAMESPACES

AIMS AND OBJECTIVES

The aim of this lesson is to explain how Python manages names, variables, and their visibility

through namespaces, and how encapsulation supports modular design, error handling, and

code reuse.

After completing this lesson, the learner will be able to:

• Understand the concept and purpose of namespaces and scope.

• Distinguish between local and global variables.

• Explain how encapsulation promotes modularity and information hiding.

• Describe how functions, modules, and classes define their own namespaces.

• Understand exceptional control flow and handle errors using try–except blocks.

• Apply namespace and exception management techniques in structured Python

programs.

STRUCTURE

16.1 Introduction

16.2 Encapsulation in Functions

 16.2.1 Code Reuse

 16.2.2 Modularity (Procedural Decomposition)

 16.2.3 Encapsulation (Information Hiding)

 16.2.4 Local Variables

 16.2.5 Namespaces Associated with Function Calls

 16.2.6 Namespaces and the Program Stack

16.3 Global versus Local Namespaces

 16.3.1 Global Variables

 16.3.2 Local Scope

 16.3.3 Global Scope

 16.3.4 Changing Global Variables Inside a Function

16.4 Exceptional Control Flow

 16.4.1 Exceptions and Exceptional Control Flow

 16.4.2 Catching and Handling Exceptions

 16.4.3 Catching Exceptions of a Given Type

 16.4.4 Multiple Exception Handlers

Programming and Problem-Solving … 16.2 Namespaces

 16.4.5 Controlling the Exceptional Control Flow

16.5 Modules as Namespaces

 16.5.1 Module Attributes

 16.5.2 What Happens During Import

 16.5.3 Module Search Path

 16.5.4 Top-Level Module

 16.5.5 Different Ways to Import Module Attributes

16.6 Classes as Namespaces

 16.6.1 A Class Is a Namespace

 16.6.2 Class Methods Are Functions Defined in the Class Namespace

16.7 Summary

16.8 Technical Terms

16.9 Self-Assessment Questions

16.10 Suggested Readings

16.1 INTRODUCTION

Every Python program consists of a collection of names (variables, functions, lasses, etc.)

that refer to objects in memory.The association between a name and its corresponding object

is stored in a structure called a namespace.

Namespaces are essential for:

• Organizing variables and preventing naming conflicts,

• Enabling modular programming and encapsulation, and

• Managing variable visibility (local vs global scope).

• This chapter introduces the concept of namespaces, showing how they relate to

functions, modules, exceptions, and classes, and how they enforce information

hiding and code organization.

16.2 ENCAPSULATION IN FUNCTIONS

16.2.1 Code Reuse

Encapsulation allows a programmer to divide a large program into smaller, independent

parts.By encapsulating logic inside functions, code becomes reusable, manageable, and less

error-prone.

For instance:

def area_circle(radius):

 """Returns the area of a circle."""

 return 3.14159 * radius ** 2

print(area_circle(5))

Centre for Distance Education 16.3 Acharya Nagarjuna University

This function can be reused anywhere, without redefining its logic — an example of code

reuse through encapsulation.

In the example below, two functions are defined:

• jump() — performs a single well-defined action: move the turtle without drawing.

• emoticon() — uses jump() and other turtle commands to draw a complete smiley

face.

This structure illustrates how encapsulation enables clarity, reusability, and abstraction in

Python programs.

Program: Drawing a Smiley Face Using Encapsulation

def jump(t, x, y):

 """Makes turtle t jump to coordinates (x, y) without drawing."""

 t.penup()

 t.goto(x, y)

 t.pendown()

def emoticon(t, x, y):

 """Directs turtle t to draw a smiley face with chin at (x, y)."""

 t.pensize(3)

 t.setheading(0)

 # Draw head

 jump(t, x, y)

 t.circle(100)

 # Draw right eye

 jump(t, x + 35, y + 120)

 t.dot(25)

 # Draw left eye

 jump(t, x - 35, y + 120)

 t.dot(25)

 # Draw smile

 jump(t, x - 60.62, y + 65)

 t.setheading(-60)

 t.circle(70, 120)

Explanation of Encapsulation

1. Encapsulated Helper Function (jump)

o Handles only one responsibility: repositioning the turtle without leaving a

trace.

o By defining it once, this logic can be reused anywhere, rather than repeating

pen-up and pen-down commands in multiple places.

Programming and Problem-Solving … 16.4 Namespaces

o This is an example of procedural abstraction — hiding the “how” behind a

function name that describes the “what.”

2. Main Function (emoticon)

o Focuses on the higher-level concept of drawing a smiley face.

o It uses jump() without needing to know its internal implementation.

o This demonstrates encapsulation and modular design — one function calls

another to achieve its goal.

Program Output

When executed with:

import turtle

t = turtle.Turtle()

emoticon(t, 0, 0)

turtle.done()

The output is a smiley face drawn on the screen, with circular head, two eyes, and a curved

smile.

16.2.2 Modularity (Procedural Decomposition)

Modularity means breaking a large problem into smaller, more manageable procedures.

Each function handles a single responsibility, which collectively contributes to solving the

overall problem.

For example:

def input_data():

 return int(input("Enter value: "))

def process_data(x):

 return x * 2

def display_result(result):

 print("Result:", result)

Each function has a clear boundary and can be modified independently — an essential

property of modular design.

The function jump() is independent of the function emoticon() and can be tested and

debugged independently. Once function jump() has been developed, the function emoticon()

is easier to implement.

16.2.3 Encapsulation (Information Hiding)

Encapsulation also provides information hiding: details inside a function are hidden from the

rest of the program.

This prevents unintended interference with internal variables.

def compute_sum():

 total = 0

Centre for Distance Education 16.5 Acharya Nagarjuna University

 for i in range(5):

 total += i

 return total

print(compute_sum())

Here, the variable total exists only within the function and is not visible outside.

This is achieved through local namespaces.

The developer of the function emoticon() does not need to know how function jump() works,

just that it lifts turtle t and drops it at coordinates (x, y). This simplifies the process of

developing function emoticon(). Another benefit of encapsulation is that if the

implementation of function jump() changes (and is made more efficient, for example), the

function emoticon() would not have to change.

16.2.4 Local Variables and Namespaces

When a function executes, Python creates a local namespace to store its variables.

Each function call gets its own local namespace, which disappears after the function returns.

def example():

 x = 10 # local variable

 print(x)

example()

print(x) # NameError: x is not defined

This ensures that variables inside a function are encapsulated and do not affect other parts of

the program.

16.2.5 Namespaces Associated with Function Calls

When a function is called:

1. A new local namespace is created.

2. Function parameters and local variables are stored in it.

3. Python searches for variable names in the following order (LEGB Rule):

o L: Local (inside the current function)

o E: Enclosing (in nested functions)

o G: Global (module-level)

o B: Built-in (Python system functions)

x = 5

def outer():

 y = 10

 def inner():

 z = 15

 print(x, y, z)

 inner()

outer()

Output:

5 10 15

Programming and Problem-Solving … 16.6 Namespaces

Here:

• z is local to inner().

• y is enclosing (outer function).

• x is global.

16.2.6 Namespaces and the Program Stack

Each function call adds a stack frame to the program stack, containing its local namespace.

When the function ends, that frame is removed.

Fig 16.1 Python manages these namespaces automatically using the call stack.

Figure 16.2 Execution of f(4).

Centre for Distance Education 16.7 Acharya Nagarjuna University

The following code demonstrates how functions create their own namespaces and how

Python manages function calls using the program stack.

Program Code

def h(n):

 print('Start h')

 print(1 / n)

 print(n)

def g(n):

 print('Start g')

 h(n - 1)

 print(n)

def f(n):

 print('Start f')

 g(n - 1)

 print(n)

f(3)

Program Output

Start f

Start g

Start h

0.5

2

2

3

• Every function call creates a new namespace (local environment).

• Python’s program stack keeps track of nested calls.

• When a function ends, its namespace is destroyed and the stack unwinds.

• Functions can use the same variable names independently — they don’t interfere with

one another.

• The order of return is the reverse of the order of calls — last called, first returned

(LIFO).

• Namespaces isolate each function’s variables.

• The program stack manages execution order and variable lifetime.

• Each function’s execution context is independent and temporary.

• The combination of both enables modular, predictable, and error-free function

behavior.

Programming and Problem-Solving … 16.8 Namespaces

16.3 GLOBAL VERSUS LOCAL NAMESPACES

Thus, names assigned inside functions belong to the local namespace, while names assigned

outside functions belong to the global namespace. Python uses this separation to avoid

naming conflicts and to support encapsulation and modularity in programs.

Scope Type Where Defined Visibility Lifetime

Local Inside a function Within that function

only

Created on function call,

destroyed on return

Global At the top level

(module/shell)

Entire module Exists for the duration of the

program

16.3.1 Global Variables

A global variable is defined at the top level of a program or module.

It belongs to the global namespace and can be accessed by all functions within that module.

count = 0 # global variable

def increment():

 global count

 count += 1

increment()

print(count) # Output: 1

Using global inside a function allows modification of global variables.

16.3.2 Local Scope

Variables defined inside a function exist only while that function is executing.

def func():

 local_var = "inside"

 print(local_var)

func()

print(local_var) → Error: not defined

Local variables improve safety by preventing unexpected interference.

16.3.3 Global Scope

Global variables persist throughout the program.

However, excessive use of globals can cause namespace pollution and unintended

interactions between functions.

Best practice: Use function parameters and return values rather than globals whenever

possible.

16.3.4 Changing Global Variables Inside a Function

If a global variable must be changed inside a function, it must be explicitly declared as

global.

Centre for Distance Education 16.9 Acharya Nagarjuna University

Example:

total = 5

def add():

 global total

 total += 10

add()

print(total) # Output: 15

Without the global keyword, Python treats total as a local variable, leading to an

UnboundLocalError.

Example:

def f(b):

 global a # all references to 'a' inside f() refer to the global variable 'a'

 a = 6 # modifies the global variable 'a'

 return a * b # uses the global 'a'

a = 0 # this 'a' has global scope

print('f(3) = {}'.format(f(3)))

print('a is {}'.format(a))

Figure 16.3 usage of Keyword global.

16.4 EXCEPTIONAL CONTROL FLOW

In Python, when an error occurs during program execution, an exception object is created.

The term exception comes from the fact that an exceptional event has occurred — one that

causes the program’s normal flow of execution to be interrupted.

Normally, a program follows a predictable control flow, proceeding step by step according to

the logic defined in its functions and loops. However, when an error arises — such as

dividing by zero, accessing an invalid index, or opening a missing file — Python creates an

exception object to represent this error condition.

Programming and Problem-Solving … 16.10 Namespaces

Once the exception object is created, the regular (normal) control flow is suspended, and the

program enters a separate path known as the exceptional control flow.

This control flow is not part of the usual sequence of operations and typically isn’t

represented in the program’s flowchart because it occurs only when an unexpected event

happens.

If the exception is not handled by the programmer using a try–except statement, Python’s

default exceptional control flow takes over:

• The program stops execution immediately.

• The error message and stack trace associated with the exception object are printed to the

screen.

This default behavior helps identify where and why the error occurred, but it also

terminates the program abruptly.

16.4.1 Introduction

Sometimes, unexpected events occur during program execution — such as dividing by zero,

opening a missing file, or invalid user input.

These events cause exceptions that alter the program’s normal control flow.

In Figure 16.4 , we illustrate what happens when we make the function call f(2) from the

shell.The execution runs normally all the way to function call h(0). During the execution of

h(0), the value of n is 0. Therefore, an error state occurs when the expression 1/n is evaluated.

The interpreter raises a ZeroDivisionError exception and creates a ZeroDivisionError

exception object that contains information about the error.

Figure 16.4 Execution of f(2)

Centre for Distance Education 16.11 Acharya Nagarjuna University

16.4.2 Catching and Handling Exceptions

Python allows developers to handle exceptions gracefully using try and except blocks:

Example:

try:

 num = int(input("Enter a number: "))

 print(10 / num)

except ZeroDivisionError:

 print("Cannot divide by zero.")

except ValueError:

 print("Invalid input.")

Example:

try:

 # try block --- executed first; if an exception occurs here,

 # execution immediately jumps to the corresponding except block

 strAge = input('Enter your age: ')

 intAge = int(strAge)

 print('You are {} years old.'.format(intAge))

except:

 # except block --- executed only if an exception

 # is raised while executing the try block

 print('Enter your age using digits 0-9!')

Block Purpose Executed When

try Contains normal code that may raise an

exception

Always executed first

except Handles errors that occur in try Only executed if an exception is raised

finally (optional) Runs cleanup code Always executed, even if an exception

occurs

• The try–except structure prevents program crashes by catching runtime errors.

• If no exception occurs, the except block is skipped.

• If an exception occurs, Python switches to exceptional control flow and executes the

except block.

• This technique makes programs robust and user-friendly, especially when handling

invalid inputs or file I/O operations.

16.4.3 The Default Exception Handler

If no except block is defined, Python’s default exception handler terminates the program

and prints a traceback.

Enter your age: fifteen

Traceback (most recent call last):

Programming and Problem-Solving … 16.12 Namespaces

File "/Users/me/age1.py", line 2, in <module>

intAge = int(strAge)

ValueError: invalid literal for int() with base 10: 'fifteen'

16.4.4 Catching Exceptions of a Given Type

Multiple exception types can be caught individually or grouped:

try:

 ...

except (ValueError, TypeError) as e:

 print("Error:", e)

Example:

try:

 # try block — executed first

 strAge = input('Enter your age: ')

 intAge = int(strAge)

 print('You are {} years old.'.format(intAge))

except ValueError:

 # except block — executed only if a ValueError occurs

 print('Enter your age using digits 0-9!')

Example 1 — Valid Input

Enter your age: 22

You are 22 years old.

 No exception occurs; the except block is skipped.

Example 2 — Invalid Input

Enter your age: twenty

Enter your age using digits 0-9!

A ValueError is raised; Python switches to exceptional control flow and executes the except

ValueError block.

• Use except <ExceptionType>: to handle a specific kind of error.

• It makes the program safer and more maintainable.

• Avoid a bare except: unless absolutely necessary.

• Multiple except blocks can be chained to handle different exceptions separately.

16.4.5 Multiple Exception Handlers

Each except block handles one type of error, allowing selective responses to different

exceptions.

try:

 # try block — may raise different kinds of exceptions

 num1 = int(input('Enter the numerator: '))

 num2 = int(input('Enter the denominator: '))

Centre for Distance Education 16.13 Acharya Nagarjuna University

 result = num1 / num2

 print('Result =', result)

except ValueError:

 # raised if input cannot be converted to an integer

 print('Enter both numbers using digits 0-9!')

except ZeroDivisionError:

 # raised if denominator is zero

 print('Cannot divide by zero! Please enter a nonzero denominator.')

except:

 # handles any other unexpected exceptions

 print('An unexpected error occurred.')

Example 1 — Valid Input

Enter the numerator: 10

Enter the denominator: 2

Result = 5.0

 Normal execution; no exception occurs.

Example 2 — Invalid Input

Enter the numerator: ten

Enter the denominator: 2

Enter both numbers using digits 0-9!

A ValueError occurs while converting "ten" to integer.

Example 3 — Division by Zero

Enter the numerator: 10

Enter the denominator: 0

Cannot divide by zero! Please enter a nonzero denominator.

 A ZeroDivisionError occurs during the division operation.

Example 4 — Other Unexpected Exception

Enter the numerator:

An unexpected error occurred.

 A generic except block catches an unexpected error (e.g., empty input or EOF).

16.4.6 Controlling Exceptional Control Flow

Exceptions can be raised intentionally using the raise statement:

def divide(a, b):

 if b == 0:

 raise ValueError("Denominator cannot be zero.")

 return a / b

Programming and Problem-Solving … 16.14 Namespaces

This enforces controlled error management and promotes robust software design.

16.5 MODULES AS NAMESPACES

module to describe a file containing Python code. When the module is executed (imported),

then the module is (also) a namespace. This namespace has a name, which is the name of the

module. In this namespace will live the names that are defined in the global scope of the

module: the names of functions, values, and classes defined in the module. These names are

all referred to as the module’s attributes.

16.5.1 Modules and Attributes

A module is a Python file that serves as a separate namespace containing definitions of

variables, functions, and classes.

file: math_ops.py

def add(x, y): return x + y

def sub(x, y): return x - y

When imported, Python creates a module object with attributes that correspond to these

definitions:

import math_ops

print(math_ops.add(5, 3))

Once a module is imported, the Python built-in function dir() can be used to view all the

module’s attributes:

>>> dir(math)

['__doc__', '__file__', '__name__', '__package__', 'acos',

'acosh', 'asin', 'asinh', 'atan', 'atan2', 'atanh', 'ceil',

'copysign', 'cos', 'cosh', 'degrees', 'e', 'exp', 'fabs',

'factorial', 'floor', 'fmod', 'frexp', 'fsum', 'hypot', 'isinf',

'isnan', 'ldexp', 'log', 'log10', 'log1p', 'modf', 'pi', 'pow',

'radians', 'sin', 'sinh', 'sqrt', 'tan', 'tanh', 'trunc']

16.5.2 What Happens During Import

When import is executed:

1. Python searches for the module in the module search path.

2. If found, it creates a new namespace for that module.

3. The module’s code executes, defining its internal variables.

16.5.3 Module Search Path

The search path includes:

• The current directory,

• Standard library directories,

• Custom paths defined in sys.path.

Centre for Distance Education 16.15 Acharya Nagarjuna University

You can view it using:

import sys

print(sys.path)

16.5.4 Top-Level Module

The module where execution begins is treated as the top-level module (with name

'__main__').

Its global namespace becomes the program’s primary namespace.

16.5.5 Different Ways to Import

Python provides several import mechanisms:

• import math

• from math import sqrt

• from math import sin as sine

Each approach controls how names are imported into the local namespace, affecting

visibility and potential conflicts.

16.6 CLASSES AS NAMESPACES

A namespace is associated with every class. Python uses namespaces in a clever way to

implement classes and class methods.

16.6.1 A Class Is a Namespace

Each class in Python defines its own namespace, storing attributes (variables) and methods

(functions).

class Student:

 school = "ANU" # class variable

 def __init__(self, name):

 self.name = name # instance variable

school belongs to the class namespace, while name belongs to the object’s namespace.

Figure 16.5 The namespace list and its attributes.

Programming and Problem-Solving … 16.16 Namespaces

>>> dir(list)

['__add__', '__class__', '__contains__', '__delattr__',

...,

'index', 'insert', 'pop', 'remove', 'reverse', 'sort']

16.6.2 Class Methods Are Functions in Class Namespace

print(Student.school)

s1 = Student("Lavanya")

print(s1.name)

Each object accesses class variables through the shared class namespace, ensuring consistent

structure across instances.

16.7 SUMMARY

• Namespaces organize names and prevent conflicts.

• Local and global scopes define variable visibility.

• Encapsulation hides details and promotes modular design.

• Exceptions control abnormal program flow.

• Modules and classes provide hierarchical namespaces for large programs.

16.8 TECHNICAL TERMS

• Namespace: Mapping from names to objects.

• Scope: The region where a variable name is visible.

• Encapsulation: Hiding internal data from external access.

• Global variable: Defined at the module level.

• Local variable: Defined inside a function.

• Exception: An event that alters control flow.

• Module: A file that defines its own namespace.

16.9 SELF-ASSESSMENT QUESTIONS

1. Define namespace.

2. What is encapsulation and how does it improve modularity?

3. Explain the difference between local and global variables.

4. What is the LEGB rule for variable lookup?

5. Write an example demonstrating try and except.

6. What happens during the import process?

7. Explain how a class serves as a namespace.

8. Discuss the importance of exception handling in robust programming.

16.10 SUGGESTED READINGS

• Ljubomir Perković, Introduction to Computing Using Python: An Application

Development Focus, Wiley (2012).

• Mark Lutz, Learning Python, O’Reilly Media.

• Allen B. Downey, Think Python: How to Think Like a Computer Scientist, O’Reilly.

Dr. Vasantha Rudramalla

LESSON- 17

 GRAPHICAL USER INTERFACES (GUI)

AIMS AND OBJECTIVES

After completing this lesson, the learner will be able to:

• Understand the concept and components of Graphical User Interfaces (GUIs).

• Develop basic GUI applications using the tkinter module in Python.

• Use common widgets such as labels, buttons, and entry fields effectively.

• Apply event-driven programming principles to handle user interactions.

• Design modular and reusable GUI programs using object-oriented programming

(OOP) concepts.

• Implement a complete GUI-based application such as a calculator using tkinter.

STRUCTURE

17.1 Introduction

17.2 Basics of tkinter GUI Development

 17.2.1 tkinter Overview

 17.2.2 Main Window and Event Loop

 17.2.3 Common Widgets

 17.2.4 Geometry Management

 17.2.5 Example: Simple Login Window

17.3 Event-Based tkinter Widgets

 17.3.1 Event Handling and Callbacks

 17.3.2 Keyboard and Mouse Events

 17.3.3 Example: Interactive Counter

17.4 Designing GUIs

 17.4.1 GUI Design Principles

 17.4.2 Steps in GUI Design

 17.4.3 Example: Temperature Converter

17.5 OOP for GUIs

 17.5.1 Class-Based GUI Design

 17.5.2 Advantages of OOP in GUI Design

17.6 Case Study: Developing a Calculator

 17.6.1 Program Design

 17.6.2 Implementation

 17.6.3 Output

17.7 Summary

17.8 Technical Terms

17.9 Self-Assessment Questions

17.10 Suggested Readings

Programming and Problem-Solving … 17.2 Graphical User Interfaces (Gui)

17.1 INTRODUCTION

Most programs so far have used text-based input and output, where users type commands and

read printed responses.

However, modern applications use graphical user interfaces (GUIs) — windows with buttons,

menus, labels, and other interactive components.

A GUI allows users to interact with programs visually, making software more intuitive and

user-friendly.

Python provides a standard GUI toolkit called tkinter, which supports event-driven

programming — the foundation of modern user interfaces.

17.2 BASICS OF TKINTER GUI DEVELOPMENT

A graphical user interface (GUI) consists of basic visual building blocks such as

buttons,labels, text entry forms, menus, check boxes, and scroll bars, among others, all

packed inside a standard window. Building blocks are commonly referred to as widgets. To

develop GUIs, a developer will require a module that makes such widgets available. We will

use the module tkinter that is included in the Standard Library. In this section, we explain the

basics of GUI development using tkinter:

17.2.1 What is tkinter?

tkinter is Python’s built-in module for GUI development. It acts as a bridge between Python

and the Tcl/Tk GUI framework.

Tkinter allows developers to:

• Create windows, buttons, labels, and text boxes.

• Handle user input through events.

• Build interactive desktop applications easily.

To start using tkinter:

from tkinter import Tk, Label

root = Tk() # Create main window

lbl = Label(root, text="Hello, GUI World!")

lbl.pack() # Place label in window

root.mainloop() # Run event loop

Output:

 A simple window appears displaying “Hello, GUI World!”.

Figure 17.1 A text label. The Label widget created with the text argument will

display a text label.

Centre for Distance Education 17.3 Acharya Nagarjuna University

17.2.2 The Main Window and Event Loop

Every tkinter application has:

1. Root Window (Tk()) — the main window created at startup.

2. Widgets — interface elements such as Button, Label, Entry, etc.

3. Event Loop (mainloop()) — continuously listens for user actions (mouse clicks, key

presses) and updates the interface.

The call to mainloop() keeps the program running until the user closes the window.

17.2.3 Common Widgets

Widget Purpose Example

Label Displays text or images Label(root, text="Welcome!")

Button Performs an action when clicked Button(root, text="Click Me")

Entry Single-line text input Entry(root)

Text Multi-line text input Text(root)

Frame Container for grouping widgets Frame(root)

Canvas For drawing shapes and graphics Canvas(root, width=200, height=100)

17.2.4 Geometry Management

Tkinter provides layout managers to control widget placement:

• pack() — stacks widgets vertically or horizontally.

• grid() — arranges widgets in rows and columns.

• place() — positions widgets by absolute coordinates.

from tkinter import *

root = Tk()

Label(root, text="Name").grid(row=0, column=0)

Entry(root).grid(row=0, column=1)

Button(root, text="Submit").grid(row=1, column=1)

root.mainloop()

17.2.5 Example — Simple Login Window

from tkinter import *

root = Tk()

root.title("Login")

Label(root, text="Username").grid(row=0)

Label(root, text="Password").grid(row=1)

Entry(root).grid(row=0, column=1)

Entry(root, show='*').grid(row=1, column=1)

Button(root, text='Login').grid(row=2, column=1)

root.mainloop()

Programming and Problem-Solving … 17.4 Graphical User Interfaces (Gui)

Explanation:

This simple interface uses the grid() geometry manager for organized alignment.

17.3 EVENT-BASED TKINTER WIDGETS

Widgets have an interactive behavior that needs to be programmed using a style of

programming called event-driven programming. In addition to GUI development, event-

driven programming is also used in the development of computer games and distributed

client/server applications, among others.

17.3.1 Event-Driven Programming

Traditional programs follow a sequential flow, but GUI programs are event-driven.

Events occur when the user interacts with the GUI — such as clicking a button or pressing a

key. Tkinter uses callback functions to respond to these events.

Figure 17.2 GUI with one Button widget

>>>

Day: 07 Jul 2011

Time: 23:42:47 PM

from tkinter import Tk, Button

from time import strftime, localtime

def clicked():

 'prints day and time info'

 time = strftime('Day: %d %b %Y\nTime: %H:%M:%S %p\n', localtime())

 print(time)

root = Tk()

create button labeled 'Click it' and event handler clicked()

button = Button(root,

 text='Click it', # text displayed on the button

 command=clicked) # function called when button is clicked

button.pack()

root.mainloop()

This example shows that in event-driven programming, control flow depends on user

actions (events) rather than a predefined sequence of commands.

Centre for Distance Education 17.5 Acharya Nagarjuna University

The command parameter acts as a callback function, executed only when the user interacts

with the GUI (in this case, clicks the button).

17.3.2 Binding Events

You can “bind” an event (e.g., mouse click) to a function using the command parameter or

the bind() method.

Example:

from tkinter import *

def greet():

 print("Hello, User!")

root = Tk()

btn = Button(root, text="Greet", command=greet)

btn.pack()

root.mainloop()

When the user clicks the button, the greet() function executes.

17.3.3 Keyboard and Mouse Events

You can bind specific events to widgets:

def key_pressed(event):

 print("You pressed:", event.char)

root.bind("<Key>", key_pressed)

Event patterns include:

• <Button-1> → Left mouse click

• <Button-3> → Right mouse click

• <Key> → Any key press

• <Return> → Enter key

• <Motion> → Mouse movement

Example — Handling Mouse Events in tkinter

Mouse events allow a program to respond to user interactions such as clicks, double-clicks,

and right-clicks.

In tkinter, these actions are handled by event binding, where a specific mouse action is

associated with an event-handling function.

Program: Demonstrating Mouse Click Events

import tkinter as tk

def on_click(event):

 """Called when a mouse button is pressed."""

 x, y = event.x, event.y

 btn = event.num # button number: 1=left, 2=middle, 3=right

Programming and Problem-Solving … 17.6 Graphical User Interfaces (Gui)

 lbl.config(text=f"Clicked: Button {btn} at ({x}, {y})")

 print(f"CLICK: Button {btn} at coordinates ({x}, {y})")

def on_double_click(event):

 """Called when the left button is double-clicked."""

 lbl.config(text=f"Double-click at ({event.x}, {event.y})")

 print(f"DOUBLE CLICK at ({event.x}, {event.y})")

def on_right_click(event):

 """Called when the right mouse button is pressed."""

 lbl.config(text=f"Right-click at ({event.x}, {event.y})")

 print(f"RIGHT CLICK at ({event.x}, {event.y})")

Create main window

root = tk.Tk()

root.title("Mouse Events Demo")

root.geometry("420x160")

Create label for displaying event information

lbl = tk.Label(root, text="Click anywhere inside the window", font=("Arial", 12))

lbl.pack(pady=15, fill="x")

Bind mouse actions to event handlers

root.bind("<Button-1>", on_click) # Left-click

root.bind("<Double-Button-1>", on_double_click) # Double-click

root.bind("<Button-3>", on_right_click) # Right-click

root.mainloop()

Explanation

1. Event Binding:

o The bind() function associates a mouse event with a handler (callback

function).

o Syntax:

o widget.bind("<EventPattern>", callback_function)

o Example events:

▪ <Button-1> — Left mouse click

▪ <Double-Button-1> — Double left-click

▪ <Button-3> — Right mouse click

▪

2. Event Object:

Each callback receives an event object that contains details such as:

o event.x, event.y → Position of the cursor within the window.

o event.num → Mouse button number.

Centre for Distance Education 17.7 Acharya Nagarjuna University

o event.widget → Widget where the event occurred.

3. Label Update:

o The label lbl dynamically updates to show which mouse button was pressed

and the coordinates of the click.

o The same message is printed in the console for verification.

4. Window Setup:

o The Tk() function creates the main window.

o Label() displays messages to the user.

o geometry() defines the window size.

o mainloop() starts the event loop, keeping the window active.

Output

When the program runs, a window appears with the text:

Click anywhere inside the window

User Action Label Output (in GUI) Console Output

Left-click at (120, 45) Clicked: Button 1 at (120,

45)

CLICK: Button 1 at coordinates (120,

45)

Double-click at (150,

60)

Double-click at (150, 60) DOUBLE CLICK at (150, 60)

Right-click at (100,

30)

Right-click at (100, 30) RIGHT CLICK at (100, 30)

This example demonstrates how tkinter enables event-driven programming for mouse

actions. By using bind() and handling the event object, programs can respond interactively to

user input — a fundamental concept in building responsive GUIs.

17.3.4 Example — Interactive Counter

from tkinter import *

count = 0

def increase():

 global count

 count += 1

 label.config(text=f"Count: {count}")

root = Tk()

label = Label(root, text="Count: 0")

label.pack()

Button(root, text="Add 1", command=increase).pack()

root.mainloop()

Output:

Each button click updates the counter value dynamically

Programming and Problem-Solving … 17.8 Graphical User Interfaces (Gui)

17.4 DESIGNING GUIS

Designing a Graphical User Interface (GUI) involves creating a visual environment through

which users can interact intuitively with a program. A well-designed GUI enhances user

experience by providing clear navigation, consistent layout, and immediate feedback to user

actions. In Python, GUI design using tkinter focuses on arranging widgets logically,

managing user input, and ensuring responsiveness through event-driven behavior. Effective

GUI design balances functionality, aesthetics, and usability, ensuring that the interface not

only looks appealing but also supports the underlying logic of the application in a structured

and efficient manner.

17.4.1 GUI Design Principles

A good GUI should be:

• Intuitive: Easy to use without instructions.

• Consistent: Uses uniform fonts, colors, and layout.

• Responsive: Reacts quickly to user actions.

• Error-Tolerant: Handles invalid input gracefully.

Widget Canvas:

The Canvas widget is a fun widget that can display drawings consisting of lines and

geometrical objects. You can think of it as a primitive version of turtle graphics. (In fact,

turtle graphics is essentially a tkinter GUI.) We illustrate the Canvas widget by building a

very simple pen drawing application.The application consists of an initially empty canvas.

The user can draw curves inside the canvas using the mouse. Pressing the left mouse button

starts the drawing of the curve.Mouse motion while pressing the button moves the pen and

draws the curve.

Example:

Figure 17.3 Pen drawing app.

Code:

from tkinter import Tk, Canvas

event handlers

def begin(event):

Centre for Distance Education 17.9 Acharya Nagarjuna University

 global oldx, oldy

 oldx, oldy = event.x, event.y # record current mouse position

def draw(event):

 global oldx, oldy

 canvas.create_line(oldx, oldy, event.x, event.y) # draw a line segment

 oldx, oldy = event.x, event.y # update coordinates

root = Tk()

oldx, oldy = 0, 0 # initialize mouse coordinates

create a canvas

canvas = Canvas(root, height=100, width=150, bg='white')

bind mouse events

canvas.bind("<Button-1>", begin) # mouse click event

canvas.bind("<B1-Motion>", draw) # mouse drag event

canvas.pack()

root.mainloop()

When the user clicks and drags the mouse over the canvas:

• A continuous line is drawn following the mouse movement.

• Releasing the mouse button stops drawing.

This forms the basis for paint applications, signature capture tools, and interactive graphics

programs.

The Canvas widget in tkinter provides a powerful area for graphics, shapes, and

interactive drawings.It supports several built-in methods for drawing and manipulating

shapes such as lines, rectangles, and ovals.Each shape drawn on the canvas is assigned a

unique item ID, which can later be used to move, modify, or delete that shape.

Some Canvas methods:

Method Description

create_line(x1, y1, x2,

y2, …)

Creates one or more line segments connecting the specified

coordinate points (x1, y1), (x2, y2), etc. Returns the ID of the

created line item.

create_rectangle(x1, y1,

x2, y2)

Draws a rectangle with opposite vertices at (x1, y1) and (x2, y2).

Returns the ID of the constructed rectangle.

create_oval(x1, y1, x2,

y2)

Creates an oval (or circle) inscribed within a rectangle defined by

the corner points (x1, y1) and (x2, y2). Returns the ID of the

constructed oval.

delete(ID) Deletes the item identified by its ID from the canvas. If called

without arguments (delete('all')), it clears the entire canvas.

move(item, dx, dy) Moves a canvas item horizontally by dx units and vertically by dy

units relative to its current position.

Programming and Problem-Solving … 17.10 Graphical User Interfaces (Gui)

17.4.2 Steps in GUI Design

1. Define Requirements: Identify inputs, outputs, and interactions.

2. Sketch Layout: Determine arrangement of widgets.

3. Implement Layout: Use frames and geometry managers.

4. Connect Functionality: Bind callbacks and logic.

5. Test Usability: Verify that navigation and interactions are intuitive.

17.4.3 Example — Temperature Converter

from tkinter import *

def convert():

 c = float(celsius.get())

 f = (c * 9/5) + 32

 result_label.config(text=f"{f:.2f} °F")

root = Tk()

root.title("Celsius to Fahrenheit")

Label(root, text="Celsius:").grid(row=0, column=0)

celsius = Entry(root)

celsius.grid(row=0, column=1)

Button(root, text="Convert", command=convert).grid(row=1, column=0, columnspan=2)

result_label = Label(root, text="Result: ")

result_label.grid(row=2, column=0, columnspan=2)

root.mainloop()

17.5 OOP FOR GUIS

the OOP approach to designing GUIs. This approach will make our GUI applications far

easier to reuse.

Example — Displaying Date and Time Using a Message Box

This program demonstrates how to handle a button click event and display the current date

and time using a popup message box from the tkinter.messagebox module.

Program Code

from tkinter import Tk, Button

from tkinter.messagebox import showinfo

from time import strftime, localtime

def clicked():

 """Displays the current day and time information."""

 time = strftime('Day: %d %b %Y\nTime: %H:%M:%S %p\n', localtime())

 showinfo(message=time) # display output in a popup message box

Create main window

root = Tk()

Centre for Distance Education 17.11 Acharya Nagarjuna University

root.title("Date and Time Display")

Create button labeled 'Click it' and assign the event handler

button = Button(root,

 text='Click it', # text on top of button

 font=('Arial', 14),

 command=clicked) # event handler function

button.pack(pady=20)

root.mainloop()

Output

When the program runs, a window appears with a single button labeled “Click it”.

When the user clicks the button:

A message box pops up showing the current date and time, for example:

Day: 29 Oct 2025

Time: 03:24:45 PM

This example illustrates how tkinter integrates GUI widgets (like buttons) with event-driven

behavior. Using showinfo(), you can make the interface more interactive and user-friendly by

displaying information directly in a popup window rather than the console.

17.5.1 Class-Based GUI Design

Using object-oriented programming (OOP), we can design modular, reusable GUI

components.

Example:

from tkinter import *

class CounterApp:

 def __init__(self, root):

 self.count = 0

 self.label = Label(root, text="Count: 0")

 self.label.pack()

 Button(root, text="Increase", command=self.increment).pack()

 def increment(self):

 self.count += 1

 self.label.config(text=f"Count: {self.count}")

root = Tk()

app = CounterApp(root)

root.mainloop()

Here, the GUI’s state (count) and behavior (increment) are encapsulated within a class.

Output

When the program runs, a window appears with:

• A label showing the text:

Count: 0

Programming and Problem-Solving … 17.12 Graphical User Interfaces (Gui)

• A button labeled Increase.

User Interaction:

• Clicking the Increase button repeatedly updates the label:

• Count: 1

• Count: 2

• Count: 3

• ...

This example shows how OOP concepts integrate seamlessly with tkinter GUI design.

By encapsulating interface elements and logic inside a class:

• The GUI becomes organized and scalable.

• Each object maintains its own state, allowing multiple independent GUIs if needed.

Such an approach is widely used in larger GUI projects where multiple windows, widgets, or

components interact cohesively.

17.5.2 Advantages of OOP in GUI Design

• Encapsulation: GUI logic is grouped in one class.

• Reusability: Components can be reused in other programs.

• Maintainability: Easier to debug and update.

• Scalability: Ideal for complex interfaces.

17.6 CASE STUDY — DEVELOPING A CALCULATOR

This case study demonstrates how to combine tkinter widgets, event handling, and OOP

principles to create a simple GUI Calculator.

17.6.1 Program Design

Features:

• Numeric buttons (0–9)

• Operators (+, –, ×, ÷)

• Clear (C) and Equal (=) functions

17.6.2 Implementation

from tkinter import *

class Calculator:

 def __init__(self, root):

 self.expression = ""

 self.input_text = StringVar()

 input_frame = Frame(root)

 input_frame.pack()

 input_field = Entry(input_frame, textvariable=self.input_text, width=25, font=('Arial',

18))

Centre for Distance Education 17.13 Acharya Nagarjuna University

 input_field.grid(row=0, column=0, columnspan=4)

 input_field.pack(ipady=8)

 btns_frame = Frame(root)

 btns_frame.pack()

 buttons = [

 ['7', '8', '9', '/'],

 ['4', '5', '6', '*'],

 ['1', '2', '3', '-'],

 ['0', 'C', '=', '+']

]

 for row in buttons:

 for btn in row:

 Button(btns_frame, text=btn, width=5, height=2, font=('Arial', 14),

 command=lambda b=btn: self.on_click(b)).pack(side='left')

 Frame(btns_frame, height=2).pack()

 def on_click(self, key):

 if key == 'C':

 self.expression = ""

 self.input_text.set("")

 elif key == '=':

 try:

 result = str(eval(self.expression))

 self.input_text.set(result)

 self.expression = result

 except:

 self.input_text.set("Error")

 else:

 self.expression += key

 self.input_text.set(self.expression)

root = Tk()

root.title("Simple Calculator")

Calculator(root)

root.mainloop()

17.6.3 Output

A fully functional calculator GUI that performs basic arithmetic operations with real-time

display updates.

When the program runs, a window appears with:

Programming and Problem-Solving … 17.14 Graphical User Interfaces (Gui)

• A display box at the top showing the current input or result.

• Four rows of buttons for digits and arithmetic operations (+, –, ×, /).

• Buttons for Clear (C) and Equals (=) operations.

Example Interaction:

User Input Display Output

7 + 8 * 2 = 23

100 / 4 = 25.0

9 + (Error) → "Error" Error message displayed

This case study illustrates the practical use of tkinter for:

• Interface design

• Event handling

• OOP-based GUI architecture

• Real-time user feedback

The Calculator GUI demonstrates how Python can create interactive, user-friendly, and

maintainable applications with minimal code.

17.7 SUMMARY

• GUIs allow visual interaction with programs.

• tkinter provides an easy, cross-platform toolkit for GUI design.

• GUIs follow an event-driven model — responding to user inputs.

• Widgets are arranged using geometry managers like pack(), grid(), and place().

• OOP simplifies GUI design by encapsulating logic and interface.

• Practical GUI applications can be built using modular, reusable code.

17.8 TECHNICAL TERMS

• Term

• GUI

• Event

• Widget

• Callback

• Mainloop

• Geometry Manager

17.9 SELF-ASSESSMENT QUESTIONS

1. Define a GUI. How is it different from command-line interaction?

2. Explain the role of mainloop() in tkinter.

3. What are widgets? List five commonly used tkinter widgets.

4. Differentiate between pack(), grid(), and place() layout methods.

5. Describe event-driven programming with an example.

6. Explain how classes are used to design object-oriented GUIs.

7. Write a Python tkinter program to design a simple “Login” window.

8. Describe the steps involved in GUI design.

9. Explain how the command parameter is used in buttons.

10. Discuss how a calculator GUI can be implemented using tkinter.

Centre for Distance Education 17.15 Acharya Nagarjuna University

17.10 SUGGESTED READINGS

• Ljubomir Perković, Introduction to Computing Using Python: An Application

Development Focus, Wiley (2012).

• Mark Lutz, Programming Python, O’Reilly Media.

• Alan D. Moore, Python GUI Programming with Tkinter, Packt Publishing.

• John Zelle, Python Programming: An Introduction to Computer Science, Franklin,

Beedle & Associates.

Mrs. Appikatla Pushpa Latha

LESSON- 18

 THE WORLD WIDE WEB (WWW)

AIMS AND OBJECTIVES

After completing this lesson, the learner will be able to:

• Understand the architecture and functioning of the World Wide Web (WWW).

• Explain the roles of web servers, clients, and HTTP communication protocols.

• Identify the components of a URL (Uniform Resource Locator) and its purpose in

locating web resources.

• Describe the structure and syntax of HTML (HyperText Markup Language).

• Use Python’s urllib and html.parser modules to retrieve and analyze web content.

• Apply regular expressions (regex) for pattern matching and data extraction from web

pages.

• Develop simple web automation tools such as data extractors and crawlers.

• Understand the design and implementation of a recursive web crawler for navigating

and analyzing web pages.

STRUCTURE

18.1 Introduction

18.2 The World Wide Web

 18.2.1 Web Servers and Web Clients

 18.2.2 “Plumbing” of the WWW

 18.2.3 Naming Scheme: Uniform Resource Locator (URL)

 18.2.4 Protocol: HyperText Transfer Protocol (HTTP)

 18.2.5 HyperText Markup Language (HTML)

 18.2.6 HTML Elements

 18.2.7 Tree Structure of an HTML Document

 18.2.8 Anchor HTML Element and Links

18.3 Python WWW API

 18.3.1 Module urllib.request

 18.3.2 Module html.parser

 18.3.3 Overriding the HTMLParser Handlers

 18.3.4 Module urllib.parse

18.4 Case Study: Web Crawler

 18.4.1 Recursive Crawler — Version 0.1

 18.4.2 Recursive Crawler — Version 0.2

 18.4.3 Web Page Content Analysis

18.5 Summary

18.6 Technical Terms

18.7 Self-Assessment Questions

18.8 Suggested Readings

Programming and Problem-Solving … 18.2 The World Wide Web (WWW)

18.1 INTRODUCTION

The World Wide Web (WWW) is a system of interlinked hypertext documents that can be

accessed via the Internet using web browsers. It enables users to navigate information using

hyperlinks, retrieve content from remote servers, and communicate using standardized

protocols.

Python provides modules and libraries that allow programs to interact with web resources —

downloading pages, parsing HTML, following links, and even automating browsing tasks.

This lesson covers the underlying structure of the Web and explores how Python can

interface with it programmatically.

18.2 THE WORLD WIDE WEB

The World Wide Web (WWW or, simply, the web) is a distributed system of documents

linked through hyperlinks and hosted on web servers across the Internet.

18.2.1 Web Servers and Web Clients

A program that requests a resource from a web server is called a web client. The web

server receives the request and sends the requested resource (if if exists) back to the

client.Your favorite browser (whether it is Chrome, Firefox, Internet Explorer, or Safari) is a

web client. A browser has capabilities in addition to being able to request and receive web

resources. It also processes the resource and displays it, whether the resource is a web page,

text document, image, video, or other multimedia. Most important, a web browser displays

the hyperlinks contained in a web page and allows the user to navigate between web pages by

just clicking on the hyperlinks.

The Web functions through a client-server model:

• A web server stores and delivers web pages upon request.

• A web client (browser or Python script) requests resources from the server.

When a client requests a page (e.g., index.html), the server sends it using the HTTP protocol,

and the client renders it for display.

Example Flow:

1. User enters a URL in a browser.

2. Browser sends an HTTP request to the web server.

3. Server responds with the HTML content.

4. Browser interprets and displays the page.

18.2.2 “Plumbing” of the WWW

The core “plumbing” of the Web involves:

• TCP/IP: Provides the communication framework between computers.

• HTTP: Defines how requests and responses are exchanged.

• HTML: Describes the structure and content of web pages.

• DNS (Domain Name System): Maps human-readable addresses (like

www.python.org) to IP addresses.

These components work seamlessly to enable resource sharing and information exchange on

a global scale.

Centre for Distance Education 18.3 Acharya Nagarjuna University

18.2.3 Naming Scheme: Uniform Resource Locator (URL)

A URL (Uniform Resource Locator) identifies and locates a resource on the Web.

General Format:

scheme://host:port/path?query#fragment

Example:

https://www.example.com:443/articles/python.html?topic=networking#links

Component Meaning

https Protocol used (HTTP Secure).

www.example.com Server name.

443 Port number (optional).

/articles/python.html Path to the resource.

?topic=networking Query parameters.

#links Reference to a section within the page.

18.2.4 Protocol: HyperText Transfer Protocol (HTTP)

HTTP defines how a client and server exchange information.

Common HTTP request methods:

• GET – Retrieve data (most common).

• POST – Send data to a server (e.g., form submission).

• HEAD – Retrieve only header information.

• PUT / DELETE – Modify or remove data (less common in browsers).

18.2.5 HyperText Markup Language (HTML)

HTML is the markup language used to define the structure and content of web pages.

Example:

<!DOCTYPE html>

<html>

 <head>

 <title>Sample Page</title>

 </head>

 <body>

 <h1>Welcome to the Web</h1>

 <p>This is a simple web page.</p>

 Visit Python

 </body>

</html>

https://www.example.com/articles/python.html?topic=networking#links

Programming and Problem-Solving … 18.4 The World Wide Web (WWW)

18.2.6 HTML Elements

HTML documents are composed of tags that define elements:

Tag Purpose

<h1>…</h1> Heading text

<p>…</p> Paragraph

 Hyperlink

 Image

<div>…</div> Section grouping

Each element can have attributes that provide additional information, e.g., href, src, or style.

Figure 18.1 Web page w3c.html.

In general, an HTML element consists of three components:

1. A pair of tags: the start tag and the end tag

2. Optional attributes within the start tag

3. Other elements or data between the start and end tag

In HTML source file w3c.html, there is an example of an element (title) contained

inside another element (head):

<head><title>W3C Mission Summary</title></head>

18.2.7 Tree Structure of an HTML Document

An HTML document can be represented as a tree structure, where each element (node) can

have children.

Centre for Distance Education 18.5 Acharya Nagarjuna University

<html>

 └── <body>

 ├── <h1>

 └── <p>

This hierarchical organization allows structured parsing and processing of web content.

Figure 18.2 shows all the elements in file w3c.html. The figure makes explicit what element

is contained in another and the resulting tree structure of the document. This tree structure

and the HTML elements together determine the layout of the web page.

Figure 18.2 Structure of w3c.html.

18.2.8 Anchor Element and Links

The anchor tag <a> creates a hyperlink that connects documents:

Python Website

Absolute links contain full URLs, while relative links point to pages relative to the current

document’s location.

18.3 PYTHON WWW API

Python provides standard library modules to access and process web resources.

18.3.1 Module urllib.request

The urllib.request module handles opening and reading URLs.

Example — Retrieving a Web Page:

from urllib.request import urlopen

url = 'https://www.python.org'

Programming and Problem-Solving … 18.6 The World Wide Web (WWW)

page = urlopen(url)

html = page.read().decode('utf-8')

print(html[:500]) # print first 500 characters

Explanation:

• urlopen() sends an HTTP request.

• read() returns raw bytes.

• .decode('utf-8') converts bytes into text.

18.3.2 Module html.parser

Python’s html.parser provides a class-based mechanism to analyze HTML structure.

Example:

from html.parser import HTMLParser

class MyParser(HTMLParser):

 def handle_starttag(self, tag, attrs):

 print("Start tag:", tag)

 def handle_endtag(self, tag):

 print("End tag:", tag)

 def handle_data(self, data):

 print("Data:", data)

parser = MyParser()

parser.feed("<html><body><h1>Hello</h1></body></html>")

Output:

Start tag: html

Start tag: body

Start tag: h1

Data: Hello

End tag: h1

End tag: body

End tag: html

18.3.3 Overriding HTML Parser Handlers

You can extend HTMLParser to collect specific information such as all hyperlinks.

class LinkParser(HTMLParser):

Centre for Distance Education 18.7 Acharya Nagarjuna University

 def __init__(self):

 super().__init__()

 self.links = []

 def handle_starttag(self, tag, attrs):

 if tag == 'a':

 for (attr, value) in attrs:

 if attr == 'href':

 self.links.append(value)

parser = LinkParser()

parser.feed('Example')

print(parser.links)

Output:

['https://example.com']

18.3.4 Module urllib.parse

urllib.parse provides functions to handle and decompose URLs.

Example:

from urllib.parse import urlparse

url = 'https://www.python.org:443/doc/index.html?lang=en#section2'

components = urlparse(url)

print(components.scheme)

print(components.netloc)

print(components.path)

print(components.query)

print(components.fragment)

Output:

https

www.python.org:443

/doc/index.html

lang=en

section2

Programming and Problem-Solving … 18.8 The World Wide Web (WWW)

18.4 CASE STUDY: WEB CRAWLER

A web crawler is a program that automatically downloads web pages and extracts hyperlinks

for further exploration.

The figure 18.4 illustrates the interconnected structure of five HTML pages — one.html,

two.html, three.html, four.html, and five.html — and the frequency of specific words

found within each page.

Each rectangle represents a single web page, and the labels inside indicate keywords (e.g.,

Beijing, Paris, Chicago) along with their frequency counts. The arrows represent

hyperlinks connecting one page to another, showing how a web crawler might traverse the

web structure.

For example:

• one.html contains the words Beijing (×3), Paris (×5), and Chicago (×5), and links to

two.html and three.html.

• three.html mentions Chicago (×3) and Beijing (×6), linking onward to four.html.

• five.html includes Nairobi (×7) and Bogota (×2), linking to four.html.

Figure 18.4 Five linked web pages.

This web structure demonstrates how a recursive web crawler analyzes not only link

relationships but also page content by counting keyword occurrences and following

references between documents. Such analysis forms the foundation for search engine

indexing and page ranking algorithms, which assess the importance and relevance of web

pages based on their content and connectivity.

18.4.1 Recursive Crawler (Version 0.1)

This version improves upon the basic crawler by adding recursion and duplicate page

handling.

It uses a set named visited to track which web pages have already been processed, preventing

redundant crawling and infinite loops due to circular links.

Centre for Distance Education 18.9 Acharya Nagarjuna University

visited = set() # initialize visited to an empty set

def crawl2(url):

 '''A recursive web crawler that calls analyze()

 on every visited web page'''

 # add url to the set of visited pages

 global visited

 visited.add(url)

 # analyze() returns a list of hyperlink URLs in web page 'url'

 links = analyze(url)

 # recursively continue crawl from every link in 'links'

 for link in links:

 # follow link only if not visited

 if link not in visited:

 try:

 crawl2(link)

 except:

 pass

Explanation

1. Set Initialization (visited):

A Python set is used to keep track of URLs that have already been visited.

Since sets automatically ignore duplicates, this ensures that each web page is analyzed

only once.

2. Recursive Design:

o Each time the function crawl2() is called with a new URL, that page is

analyzed (e.g., its HTML content is parsed to extract links).

o Then the crawler iterates over all hyperlinks found on that page.

o For each unvisited link, it calls itself recursively — continuing the crawl

process deeper into the link structure.

3. Avoiding Infinite Loops:

Without the visited check, the crawler could get stuck following circular links (e.g., A

→ B → A).

Programming and Problem-Solving … 18.10 The World Wide Web (WWW)

The visited set prevents this by ensuring that previously seen URLs are skipped.

4. Error Handling (try–except):

o The try block attempts to crawl a linked page.

o The except block catches any exceptions (such as connection errors or invalid

URLs) and silently ignores them.

o This keeps the crawler from stopping unexpectedly when encountering

problematic pages.

5. Global Declaration:

o The global visited declaration is optional but serves as a clear reminder that

the variable belongs to the global scope, shared across recursive calls.

Output Behavior

When the crawler starts with an initial page, say:

crawl2("https://example.com/one.html")

It performs the following actions:

1. Adds one.html to the visited set.

2. Extracts all links from one.html (e.g., two.html, three.html).

3. For each new link, recursively calls crawl2(link).

4. Continues until all reachable pages are analyzed.

Integration with analyze()

A typical implementation of the analyze() function, used in this crawler, might look like:

from urllib.request import urlopen

from html.parser import HTMLParser

class LinkCollector(HTMLParser):

 def __init__(self):

 super().__init__()

 self.links = []

 def handle_starttag(self, tag, attrs):

 if tag == 'a':

 for (attr, val) in attrs:

 if attr == 'href' and val.endswith('.html'):

 self.links.append(val)

def analyze(url):

Centre for Distance Education 18.11 Acharya Nagarjuna University

 print(f"Analyzing: {url}")

 try:

 content = urlopen(url).read().decode('utf-8')

 collector = LinkCollector()

 collector.feed(content)

 return collector.links

 except:

 return []

Summary

This recursive crawler version introduces three major improvements:

1. Recursion to automatically traverse linked pages.

2. A visited set to manage page tracking and prevent loops.

3. Exception handling to ensure robustness when facing inaccessible or malformed

pages.

Together, these enhancements make the crawler a practical, extensible foundation for real-

world web scraping, indexing, or search engine prototypes.

18.4.2 Recursive Crawler (Version 0.2)

The goal of Version 0.2 is to:

1. Follow every hyperlink discovered in the currently analyzed page.

2. Avoid revisiting pages that have already been processed.

3. Continue crawling until all reachable pages within a given web domain are visited.

visited = set() # initialize visited to an empty set

def crawl2(url):

 '''A recursive web crawler that calls analyze()

 on every visited web page'''

 global visited # indicates the use of the global variable

 visited.add(url) # mark current page as visited

 # analyze() returns a list of hyperlink URLs found in web page 'url'

 links = analyze(url)

 # recursively continue crawl from every link in 'links'

 for link in links:

Programming and Problem-Solving … 18.12 The World Wide Web (WWW)

 # follow link only if not yet visited

 if link not in visited:

 try:

 crawl2(link) # recursive call

 except Exception as e:

 # safely ignore network or parsing errors

 print("Skipping:", link, "Reason:", e)

 pass

analyze()

The crawler depends on a separate helper function that retrieves and parses each web page:

from urllib.request import urlopen

from html.parser import HTMLParser

class LinkCollector(HTMLParser):

 """Collects all hyperlinks from an HTML page."""

 def __init__(self):

 super().__init__()

 self.links = []

 def handle_starttag(self, tag, attrs):

 if tag == 'a':

 for (attr, value) in attrs:

 if attr == 'href' and value.endswith('.html'):

 self.links.append(value)

def analyze(url):

 """Returns a list of hyperlinks extracted from a given URL."""

 print("Analyzing:", url)

 try:

 content = urlopen(url).read().decode('utf-8')

 collector = LinkCollector()

 collector.feed(content)

 return collector.links

 except:

Centre for Distance Education 18.13 Acharya Nagarjuna University

 return []

Execution Flow

Suppose the program begins with:

crawl2("https://example.com/one.html")

Step-by-Step Process:

1. one.html is analyzed and added to visited.

2. analyze("one.html") returns a list of links → ['two.html', 'three.html'].

3. crawl2('two.html') is called; two.html is analyzed, producing ['four.html'].

4. The recursion continues until all reachable pages (two.html, three.html, four.html,

five.html, etc.) have been processed.

5. Each page is visited only once, even if multiple pages link back to it.

Sample Output

Analyzing: https://example.com/one.html

Analyzing: https://example.com/two.html

Analyzing: https://example.com/four.html

Analyzing: https://example.com/five.html

Analyzing: https://example.com/three.html

Advantages of Recursion in Crawling

• Simplifies the program structure by letting each call handle its own subset of links.

• Easily scalable for small to medium websites.

• Encourages modularity when combined with separate parsing and analysis functions.

Version 0.2 of the crawler demonstrates how recursion and state management can be used

to explore a network of web pages efficiently.

By integrating the analyze() function, a visited set, and exception handling, this program

forms a foundation for more advanced tools such as search-engine spiders and data-collection

bots.

18.4.3 Web Page Content Analysis

The web page analysis consists of computing (1) the frequency of every word in the web

page content (i.e., in the text data) and (2) the list of links contained in the web page. We

have already computed the list of links.

def analyze(url):

 '''prints the frequency of every word in web page url and

 prints and returns the list of http links, in absolute

 format, in it'''

 print('Visiting', url) # for testing

 # obtain links in the web page

 content = urlopen(url).read().decode()

Programming and Problem-Solving … 18.14 The World Wide Web (WWW)

 collector = Collector(url)

 collector.feed(content)

 urls = collector.getLinks() # get list of links

 # compute word frequencies

 content = collector.getData() # get text data as a string

 freq = frequency(content)

 # print the frequency of every text data word in web page

 print('\n{:50} {:10} {:5}'.format('URL', 'word', 'count'))

 for word in freq:

 print('{:50} {:10} {:5}'.format(url, word, freq[word]))

 # print the http links found in web page

 print('\n{:50} {:10}'.format('URL', 'link'))

 for link in urls:

 print('{:50} {:10}'.format(url, link))

 return urls

Supporting Components

The analyze() function depends on two important helper classes/functions:

1. The Collector Class

The Collector is a subclass of HTMLParser.

It is designed to:

• Collect all hyperlinks (tags).

• Collect visible text data for word frequency analysis.

from html.parser import HTMLParser

from urllib.parse import urljoin

class Collector(HTMLParser):

 'Collects text and links from a web page'

 def __init__(self, url):

 HTMLParser.__init__(self)

 self.url = url

 self.links = []

 self.data = []

Centre for Distance Education 18.15 Acharya Nagarjuna University

 def handle_starttag(self, tag, attrs):

 if tag == 'a':

 for (attr, value) in attrs:

 if attr == 'href':

 absolute = urljoin(self.url, value)

 if absolute.startswith('http'):

 self.links.append(absolute)

 def handle_data(self, data):

 self.data.append(data)

 def getLinks(self):

 return self.links

 def getData(self):

 return ' '.join(self.data)

2. The frequency() Function

The frequency() function computes the number of times each word occurs in the input text

string.

It uses a dictionary to store the results, with each word as a key and its count as a value.

def frequency(text):

 'returns a dictionary with frequency of each word in text'

 freq = {}

 words = text.split()

 for w in words:

 w = w.lower()

 freq[w] = freq.get(w, 0) + 1

 return freq

Putting It All Together

Here is how these functions integrate into the recursive crawler:

visited = set()

def crawl2(url):

 '''Recursive crawler that analyzes and visits web pages'''

 global visited

Programming and Problem-Solving … 18.16 The World Wide Web (WWW)

 visited.add(url)

 links = analyze(url)

 for link in links:

 if link not in visited:

 try:

 crawl2(link)

 except:

 pass

Each time crawl2(url) visits a page, it calls analyze(url) to print the word frequencies and list

of discovered links. Then it recursively crawls those links that have not yet been visited.

Sample Output (Textbook Example)

Visiting https://example.com/one.html

URL word count

https://example.com/one.html beijing 3

https://example.com/one.html paris 5

https://example.com/one.html chicago 5

URL link

https://example.com/one.html https://example.com/two.html

https://example.com/one.html https://example.com/three.html

https://example.com/one.html https://example.com/four.html

Advantages of This Design

• Reusability: The analyze() function can be used independently to examine a single

web page.

• Transparency: The printed tables clearly show how the crawler progresses and what it

extracts.

• Extensibility: The frequency() function can easily be modified to filter stop words,

compute relative frequencies, or export data.

• Scalability: The approach can be integrated into larger search-engine style crawlers

with minimal changes.

Centre for Distance Education 18.17 Acharya Nagarjuna University

18.5 SUMMARY

• The World Wide Web operates through client-server communication using the HTTP

protocol.

• URLs identify resources, while HTML structures content.

• Python provides modules like urllib.request, urllib.parse, and html.parser for web

automation and content retrieval.

• Regular expressions enable text pattern matching for data extraction.

• A web crawler automates navigation and analysis of web pages.

18.6 TECHNICAL TERMS

• HTTP

• URL

• HTML

• Parser

• Crawler

18.7 SELF-ASSESSMENT QUESTIONS

1. What are the main components of the World Wide Web?

2. Explain the structure and components of a URL.

3. Write a Python program to download and display HTML from a website.

4. What is the purpose of HTMLParser?

5. Define regular expressions and list common regex functions.

6. Explain how Python’s urllib module handles HTTP requests.

7. Describe how to extract hyperlinks from HTML using Python.

8. Design a simple web crawler that follows links up to two levels deep.

18.8 SUGGESTED READINGS

• Ljubomir Perković, Introduction to Computing Using Python: An Application

Development Focus, Wiley (2012).

• Mark Lutz, Programming Python, O’Reilly Media.

• David Beazley, Python Essential Reference, Addison-Wesley.

• Jeffrey Friedl, Mastering Regular Expressions, O’Reilly Media.

Mrs. Appikatla Pushpa Latha

LESSON- 19

 STRING PATTERN MATCHING

AIMS AND OBJECTIVES

After completing this lesson, the learner will be able to:

• Understand the concept of pattern matching and its importance in text mining and

data extraction.

• Explain the syntax and structure of regular expressions (regex).

• Identify and apply common regex operators and metacharacters.

• Use the Python re module for pattern-based searching, matching, replacing, and

extracting data.

• Develop programs that extract information such as emails, URLs, dates, and numbers

from text files and web content.

• Understand how regex enables data cleaning, validation, and web data mining.

STRUCTURE

19.1 Introduction to String Pattern Matching

19.2 Need for Text Mining

19.3 Regular Expressions

 19.3.1 Basic Concepts and Examples

 19.3.2 Common Regex Operators

 19.3.3 Character Classes and Quantifiers

 19.3.4 Grouping and Alternation

19.4 Python Module re

 19.4.1 Regex Matching Functions

 19.4.2 Examples and Applications

 19.4.3 Using Regex for Data Extraction

19.5 Case Study: Extracting Links and Emails

19.6 Applications of Regular Expressions

19.7 Summary

19.8 Technical Terms

19.9 Self-Assessment Questions

19.10 Suggested Readings

19.1 INTRODUCTION TO STRING PATTERN MATCHING

To mine the text content of a web page or other text document, we need tools that help us

define text patterns and then search for strings in the text that match these text patterns.When

analyzing or mining text data (such as web pages, logs, or emails), it is often necessary to

search for patterns instead of fixed words.

Programming and Problem-Solving … 19.2 String Pattern Matching

For example, you might need to:

• Find all email addresses in a document,

• Extract all URLs from a web page, or

• Identify all dates in a text file.

• To perform such tasks efficiently, we use regular expressions, or regex, which are

patterns describing sets of strings.

19.2 NEED FOR TEXT MINING

Text mining is a process of automatically discovering patterns, relationships, or structures in

textual data.

Using regular expressions, one can:

• Detect specific structures (e.g., phone numbers, postal codes).

• Filter HTML content and extract hyperlinks.

• Validate user inputs in web forms (e.g., email formats).

• Analyze log files or large corpora of text.

• Regular expressions are foundational tools in data preprocessing for Natural

Language Processing (NLP) and information retrieval.

19.3 REGULAR EXPRESSIONS

Regular expressions provide a compact and flexible way to match text patterns. They use

special symbols (called metacharacters) to describe text structures. Regular expressions

(regex) are patterns that describe sets of strings and are widely used for searching and text

manipulation.

19.3.1 Basic Concepts and Examples

The simplest regular expression is one that doesn’t use any regular expression operators. For

example, the regular expression best matches only one string, the string 'best':

Regular Expression Matching String(s)

best best

 'be.t' matches best, but also 'belt', 'beet', 'be3t', and 'be!t', among others:

Regular Expression Matching String(s)

be.t best, belt, beet, bezt, be3t, be!t, be

t, . . .

Pattern: b e . t

 ↓ ↓ ↓ ↓

String: b e s t → Match

Centre for Distance Education 19.3 Acharya Nagarjuna University

 b e l t → Match

 b e e t → Match

 b e ! t → Match

 b e t → Match

Explanation:

• The dot (.) acts as a wildcard, matching any single character.

• Only strings that start with b and e, and end with t of length 4, will match.

For example, the operator * in regular expression be*t matches 0 or more repetitions of the

previous character (e). It therefore matches bt and also bet, beet, and so on:

Regular Expression Matching String(s)

be*t bt, bet, beet, beeet, beeeet, . . .

be+t bet, beet, beeet, beeeet, . . .

bee?t bet, beet

Example: be*t

 Pattern: b e* t

 ↓ ↓ ↓

String: b t → (zero 'e')

 b e t →

 b e e t →

 b e e e t →

Flow of Matching:

Start → 'b' → zero or more 'e's → 't' → Match

Explanation:

• The * operator repeats the previous character zero or more times.

• This pattern is greedy, meaning it will match as many 'e's as possible before moving

to 't'.

Example: be+t

The pattern be+t requires at least one 'e' before 't'.

Pattern: b e+ t

 ↓ ↓ ↓

String: b t → (no 'e')

 b e t →

 b e e t →

 b e e e t →

Programming and Problem-Solving … 19.4 String Pattern Matching

Flow of Matching:

Start → 'b' → one or more 'e's → 't' → Match

Example: bee?t

The pattern bee?t matches strings where 'b' is followed by one 'e' and an optional 'e' before

't'.

Pattern: b e e? t

String: b e t → (0 extra 'e')

 b e e t → (1 extra 'e')

 b e e e t → (too many 'e')

Explanation:

• The ? operator means the previous character may occur zero or one time.

For example, regular expression hello|Hello matches strings 'hello' and 'Hello':

Regular Expression Matching String(s)

hello|Hello hello, Hello.

a+|b+ a, b, aa, bb, aaa, bbb, aaaa, bbbb, . . .

ab+|ba+ ab, abb, abbb, . . . , and ba, baa, baaa, . . .

Example: Alternation — hello|Hello

Alternation (|) allows for either-or matching.

Pattern: hello | Hello

 ↓ ↓

String: hello →

String: Hello →

String: hELLO →

Flow Diagram:

Start

 ├── "hello" → Match

 └── "Hello" → Match

Example: Grouping — (ab)+

Grouping () allows repetition of multiple characters as a unit.

Pattern: (ab)+

String: ab →

String: abab →

String: ababab →

String: a →

String: abb →

Flow Diagram:

Centre for Distance Education 19.5 Acharya Nagarjuna University

Start → 'a' → 'b' → repeat group (ab) → Match

Example: Character Class [A-Za-z0-9_]

This matches any alphanumeric character or underscore.

Pattern: [A-Za-z0-9_]+

String: Hello123_ →

String: Hi! → ('!' not in class)

Flow Diagram:

Start → Accept any A–Z, a–z, 0–9, or '_' → repeat (+) → Match

Regular Expression Matching Strings

best best

be.t best, belt, beet, be3t, be_t, be t

be*t bt, bet, beet, beeet, beeeet

be+t bet, beet, beeet, beeeet

bee?t bet, beet

`hello Hello`

`a+ b+`

`ab+ ba+`

Example — Find all links in a web page:

import re

html = 'Python Docs'

links = re.findall(r'href="(.*?)"', html)

print(links)

Output:

['https://python.org', '/docs']

Example: Email Extraction Regex

Pattern used:

[\w\.-]+@[\w\.-]+

Components Breakdown:

Component Meaning

[\w\.-]+ one or more word, dot, or hyphen characters

@ literal at-symbol

[\w\.-]+ domain name part

Programming and Problem-Solving … 19.6 String Pattern Matching

Example Text:

Contact: user1@mail.com, info@company.org

Matches:

user1@mail.com

info@company.org

Flow Diagram:

Start

 → [word/dot/hyphen]+

 → '@'

 → [word/dot/hyphen]+

 → Match

19.3.2 Common Regex Operators

Fig 19.1 Some regular expression operator.

19.3.3 Character Classes and Quantifiers

Character classes help define sets of characters.

Common shorthand character classes include:

Symbol Description

\d Digit (0–9)

\D Non-digit

\w Word character (letters, digits, underscore)

\W Non-word character

\s Whitespace

\S Non-whitespace

Centre for Distance Education 19.7 Acharya Nagarjuna University

Example:

import re

pattern = r'\d+'

text = "My age is 25 and my pin code is 530003."

numbers = re.findall(pattern, text)

print(numbers)

Output:

['25', '530003']

19.4 PYTHON MODULE RE

Python’s re module implements functions for regex pattern matching.

It provides tools to search, extract, replace, and validate strings based on regular expressions.

19.4.1 Regex Matching Functions

Function Description

re.match(pattern, string) Checks if the pattern matches from the beginning of the string.

re.search(pattern, string) Searches the entire string for the first occurrence of the pattern.

re.findall(pattern, string) Returns a list of all non-overlapping matches.

re.sub(pattern, repl, string) Substitutes all occurrences of a pattern with another string.

re.split(pattern, string) Splits a string based on the pattern.

19.4.2 Examples and Applications

Example 1 — Find all links in a web page

import re

html = 'Python Docs'

links = re.findall(r'href="(.*?)"', html)

print(links)

Output:

['https://python.org', '/docs']

Example 2 — Extract email addresses

text = "Contact: user1@mail.com, info@company.org"

emails = re.findall(r'[\w\.-]+@[\w\.-]+', text)

print(emails)

Output:

['user1@mail.com', 'info@company.org']

Example 3 — Replace all digits

import re

text = "Order numbers: 123, 456, 789"

Programming and Problem-Solving … 19.8 String Pattern Matching

new_text = re.sub(r'\d', 'X', text)

print(new_text)

Output:

Order numbers: XXX, XXX, XXX

Example 4 — Search for a pattern

sentence = "Python programming is powerful."

if re.search(r'program', sentence):

 print("Pattern found!")

Output:

Pattern found!

19.4.3 Using Regex for Data Extraction

Regular expressions can extract structured data from unstructured text.

Common regex functions:

Function Description

re.match() Matches from the beginning of a string.

re.search() Finds the first occurrence of a pattern.

re.findall() Returns all non-overlapping matches.

re.sub() Substitutes one string for another.

Example — Extract Email Addresses:

text = "Contact: user1@mail.com, info@company.org"

emails = re.findall(r'[\w\.-]+@[\w\.-]+', text)

print(emails)

Output:

['user1@mail.com', 'info@company.org']

Example — Extract Dates

import re

text = "Meetings on 12-05-2024 and 25/10/2025."

dates = re.findall(r'\d{2}[-/]\d{2}[-/]\d{4}', text)

print(dates)

Output:

['12-05-2024', '25/10/2025']

Example — Validate Phone Numbers

numbers = ["+91-9876543210", "12345", "91-876543210"]

for num in numbers:

 if re.match(r'^\+?\d{1,2}-\d{10}$', num):

 print(num, "is valid.")

Centre for Distance Education 19.9 Acharya Nagarjuna University

Output:

+91-9876543210 is valid.

19.5 CASE STUDY — EXTRACTING LINKS AND EMAILS

The following program combines regular expressions with file processing and text extraction.

import re

html_content = '''

<html><body>

<p>Contact: user1@mail.com</p>

Home

About

</body></html>

'''

emails = re.findall(r'[\w\.-]+@[\w\.-]+', html_content)

links = re.findall(r'href="(.*?)"', html_content)

print("Emails found:", emails)

print("Links found:", links)

Output:

Emails found: ['user1@mail.com']

Links found: ['https://example.com/home', 'https://example.com/about']

19.6 APPLICATIONS OF REGULAR EXPRESSIONS

Domain Application

Web scraping Extracting hyperlinks, image URLs, and metadata

Data cleaning Removing unwanted symbols, HTML tags, or whitespace

Validation Checking emails, phone numbers, IP addresses

Natural Language Processing Tokenizing text, filtering stop words

Log analysis Detecting error messages or IP addresses

Security Finding SQL injection or suspicious input patterns

1. Web Scraping

Application: Extracting hyperlinks, image URLs, and metadata

Explanation:

Web scraping involves collecting data from websites. Since web pages are mostly in HTML,

Regex can be used to extract specific patterns of text such as URLs, links, or metadata.

For example:

• Extracting hyperlinks:

Programming and Problem-Solving … 19.10 String Pattern Matching

• href="(https?://[^"]+)"

→ This pattern matches all hyperlinks beginning with http or https.

• Extracting image URLs:

• <img[^>]+src="([^">]+)"

→ Captures all image source (src) attributes from tags.

• Extracting metadata (e.g., title, description):

• <meta\s+name="description"\s+content="([^"]+)"

→ Extracts content of meta description tags.

 Use case example:

In web scraping scripts using Python (e.g., with requests and re), Regex helps filter out only

the needed text from raw HTML before further processing or storing it in databases.

2. Data Cleaning

Application: Removing unwanted symbols, HTML tags, or whitespace

Explanation:

Data collected from the web or files often contains extra characters, symbols, or HTML code

that must be cleaned before analysis. Regex helps identify and remove such unwanted

patterns quickly.

Examples:

• Removing HTML tags:

• <[^>]+>

→ Removes everything between < and > (i.e., HTML tags).

• Removing special characters:

• [^a-zA-Z0-9\s]

→ Keeps only alphabets, digits, and spaces.

• Trimming extra whitespace:

• \s+

→ Matches multiple spaces or tabs; can be replaced with a single space.

 Use case example:

Cleaning text data before feeding it to an NLP model or database ensures consistency and

accuracy.

3. Validation

Application: Checking emails, phone numbers, IP addresses

Centre for Distance Education 19.11 Acharya Nagarjuna University

Explanation:

Regex is widely used for input validation—to ensure data entered by users follows the correct

format.

Examples:

• Email validation:

• ^[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}$

→ Matches most standard email formats.

• Phone number validation (India):

• ^(\+91[\-\s]?)?[6-9]\d{9}$

→ Matches Indian mobile numbers with or without country code.

• IP address validation:

• ^((25[0-5]|2[0-4]\d|[0-1]?\d{1,2})\.){3}(25[0-5]|2[0-4]\d|[0-1]?\d{1,2})$

→ Ensures valid IPv4 format.

 Use case example:

Used in web forms or backend systems to reject invalid entries before saving them to

databases.

4. Natural Language Processing (NLP)

Application: Tokenizing text, filtering stop words

Explanation:

Regex helps process and analyze textual data efficiently in NLP.

Examples:

• Tokenization (splitting text into words):

• \w+

→ Extracts words from text while ignoring punctuation.

• Filtering stop words:

• You can use Regex to remove common words like “the”, “is”, “at”, etc., using

patterns such as:

o \b(the|is|in|at|which|on)\b

→ Removes listed stop words.

• Identifying specific word patterns:

• For instance, finding all hashtags or mentions in tweets:

• #\w+ or @\w+

Programming and Problem-Solving … 19.12 String Pattern Matching

 Use case example:

In preprocessing pipelines of NLP tasks such as sentiment analysis or text classification.

5. Log Analysis

Application: Detecting error messages or IP addresses

Explanation:

System and application logs contain large volumes of text data. Regex enables automatic

pattern matching to detect key information.

Examples:

• Extracting IP addresses:

• \b\d{1,3}(\.\d{1,3}){3}\b

→ Finds all IPv4 addresses.

• Finding error messages:

• ERROR|FATAL|EXCEPTION

→ Detects critical log entries.

• Extracting timestamps:

• \d{4}-\d{2}-\d{2} \d{2}:\d{2}:\d{2}

→ Captures datetime formats (e.g., 2025-10-29 20:15:30).

 Use case example:

Used in server monitoring or debugging tools to locate issues from log files quickly.

6. Security

Application: Finding SQL injection or suspicious input patterns

Explanation:

Regex can detect potentially harmful user inputs or code injection attempts in web

applications.

Examples:

• Detecting SQL injection attempts:

• (?:')|(?:--)|(/*(?:.|[\n\r])*?*/)|(\b(select|update|delete|insert|drop|exec)\b)

→ Identifies suspicious SQL keywords or comment patterns.

• Identifying cross-site scripting (XSS) attempts:

• <script.*?>.*?</script>

→ Matches embedded JavaScript code in inputs.

Centre for Distance Education 19.13 Acharya Nagarjuna University

• Filtering special characters:

• [<>'"%;()&+]

→ Detects characters that can be part of malicious payloads.

 Use case example:

Used in web application firewalls (WAFs), input sanitization, and log-based intrusion

detection systems.

19.7 SUMMARY

• String pattern matching enables flexible search and extraction from text.

• Regular expressions (regex) are symbolic patterns that describe sets of strings.

• The re module provides Python tools for searching, matching, and replacing patterns.

• Common operators like ., *, +, ?, and | allow powerful pattern combinations.

• Regex is vital for web mining, data validation, and text processing.

19.8 TECHNICAL TERMS

• Regex (Regular Expression)

• Metacharacter

• Character Class

• Quantifier

• Capture Group

• Escaping

19.9 SELF-ASSESSMENT QUESTIONS

Essay Questions

1. Define regular expressions. Explain their importance in text mining.

2. Discuss various regex operators with suitable examples.

3. Describe how the re module supports pattern matching and substitution.

4. Explain the difference between re.match(), re.search(), and re.findall().

Short Notes

1. Write a note on character classes.

2. How are grouping and alternation used in regex?

3. Explain the use of re.sub() with an example.

19.10 SUGGESTED READINGS

1. Ljubomir Perković, Introduction to Computing Using Python: An Application

Development Focus, Wiley, 2012.

2. Mark Lutz, Learning Python, 5th Edition, O’Reilly, 2013.

3. Al Sweigart, Automate the Boring Stuff with Python, No Starch Press, 2020.

4. Python Official Documentation — https://docs.python.org/3/library/re.html

Mrs. Appikatla Pushpa Latha

LESSON- 20

 DATABASE PROGRAMMING IN PYTHON

AIMS AND OBJECTIVES

After completing this lesson, the learner will be able to:

• Understand the concept of databases and their importance in software applications.

• Explain the structure and operations of relational databases using SQL.

• Identify the role of tables, keys, and relationships in organizing data.

• Use SQL commands such as SELECT, INSERT, UPDATE, and DELETE to manipulate

data.

• Apply aggregate functions and grouping to summarize data.

• Develop Python programs that interact with databases using the sqlite3 module.

• Create, query, and modify databases directly from Python scripts.

• Manage database transactions, handle exceptions, and ensure data consistency.

• Integrate SQL queries into Python-based data analysis and application workflows.

• Appreciate the role of databases in real-world applications such as data storage, reporting,

and analytics.

STRUCTURE

20.1 Databases and SQL

 20.1.1 Introduction to Databases and SQL

 20.1.2 Database Tables and Data Representation

 20.1.3 Structured Query Language (SQL) Overview

 20.1.4 Statement SELECT

 20.1.5 Clause WHERE

 20.1.6 Built-in SQL Functions

 20.1.7 Clause GROUP BY and HAVING

 20.1.8 Making SQL Queries Involving Multiple Tables

 20.1.9 Statement CREATE TABLE

 20.1.10 Statements INSERT, UPDATE, and DELETE

20.2 Database Programming in Python

 20.2.1 Introduction to Python Database Access

 20.2.2 Database Engines and SQLite

 20.2.3 Creating a Database with the sqlite3 Module

 20.2.4 Executing SQL Queries from Python

 20.2.5 Fetching and Displaying Data

 20.2.6 Parameterized Queries and User Input

Programming and Problem-Solving … 20.2 Database Programming in Python

 20.2.7 Committing Transactions and Closing Connections

 20.2.8 Exception Handling in Database Programs

 20.2.9 Using the with Statement for Automatic Resource Management

 20.2.10 Integrating SQL with Python Data Structures (Lists, Dictionaries, Pandas)

 20.2.11 Developing CRUD Applications (Create, Read, Update, Delete)

20.3 Functional Language Approach

 20.3.1 List Comprehension and Functional Constructs

 20.3.2 MapReduce Problem Solving Framework

 20.3.3 MapReduce in the Abstract

 20.3.4 Inverted Index Example

20.4 Parallel Computing

 20.4.1 Introduction to Parallel Computing Concepts

 20.4.2 Class Pool of the multiprocessing Module

 20.4.3 Parallel Speedup and Performance

 20.4.4 Parallel MapReduce Implementation

 20.4.5 Comparing Parallel and Sequential MapReduce

20.5 Summary

20.6 Technical Terms

20.7 Self-Assessment Questions

20.8 Suggested Readings

20.1 DATABASES AND SQL

20.1.1 Introduction to Databases and SQL

A database is an organized collection of data designed to store, manage, and retrieve

information efficiently. Modern software systems rely heavily on databases to maintain user

records, transaction histories, inventory details, and analytical data.

A Database Management System (DBMS) provides the interface to define, create,

manipulate, and maintain databases. Among different types of DBMSs, the Relational

Database Management System (RDBMS) is the most widely used. It stores data in the form

of tables, which can be related through keys.

The Structured Query Language (SQL) is the standard language for interacting with

RDBMSs. SQL allows users to:

• Create and modify database structures.

• Insert, update, delete, and retrieve data.

• Control access and manage transactions.

Centre for Distance Education 20.3 Acharya Nagarjuna University

20.1.2 Database Tables

A table is the fundamental structure in a relational database. It consists of:

• Rows (records) – represent individual entities.

• Columns (fields) – represent attributes of those entities.

Example: STUDENT Table

RollNo Name Branch Marks

101 Anjali CSE 87

102 Ramesh ECE 75

103 Kavya CSE 92

Key Concepts:

• Primary Key: uniquely identifies each row (e.g., RollNo)

• Foreign Key: links one table to another (e.g., RollNo in COURSE table)

• Constraints: ensure data integrity (e.g., NOT NULL, UNIQUE)

20.1.3 Structured Query Language (SQL) Overview

SQL consists of multiple categories of commands:

Category Description Examples

DDL (Data Definition Language) Defines and modifies

database schema

CREATE, ALTER,

DROP

DML (Data Manipulation Language) Manages data in tables INSERT, UPDATE,

DELETE

DQL (Data Query Language) Retrieves data SELECT

DCL (Data Control Language) Grants/revokes permissions GRANT, REVOKE

TCL (Transaction Control

Language)

Manages transactions COMMIT,

ROLLBACK

20.1.4 Statement SELECT

The SELECT statement retrieves data from tables.

Syntax:

SELECT column_list

FROM table_name

[WHERE condition]

[ORDER BY column_name [ASC|DESC]];

Example:

SELECT Name, Marks

FROM Student

WHERE Branch = 'CSE'

ORDER BY Marks DESC;

Programming and Problem-Solving … 20.4 Database Programming in Python

Result:

Name Marks

Kavya 92

Anjali 87

20.1.5 Clause WHERE

Filters records based on a condition.

Examples:

SELECT * FROM Student WHERE Marks > 80;

SELECT * FROM Student WHERE Branch = 'CSE' AND Marks > 85;

SELECT * FROM Student WHERE Name LIKE 'A%';

Operators Used:

• Comparison: =, >, <, >=, <=, <>

• Logical: AND, OR, NOT

• Pattern Matching: LIKE, IN, BETWEEN

• NULL Checking: IS NULL, IS NOT NULL

20.1.6 Built-in SQL Functions

SQL includes aggregate and scalar functions.

Type Function Example

Aggregate COUNT() SELECT COUNT(*) FROM Student;
AVG() SELECT AVG(Marks) FROM Student;
MAX(), MIN(), SUM()

Scalar UPPER(Name) Converts text to uppercase
LENGTH(Name) Returns string length
ROUND(Marks, 2) Rounds numbers

20.1.7 Clause GROUP BY and HAVING

Used for grouping and filtering aggregate results.

SELECT Branch, AVG(Marks) AS AvgMarks

FROM Student

GROUP BY Branch

HAVING AVG(Marks) > 80;

Output:

Branch AvgMarks

CSE 89.5

Centre for Distance Education 20.5 Acharya Nagarjuna University

20.1.8 SQL Queries Involving Multiple Tables

JOIN operations combine data from multiple tables.

Example:

SELECT Student.Name, Course.CourseName

FROM Student

JOIN Course

ON Student.RollNo = Course.RollNo;

JOIN Types:

• INNER JOIN → Only matching rows

• LEFT JOIN → All from left table + matches

• RIGHT JOIN → All from right table + matches

• FULL OUTER JOIN → All rows from both sides (where supported)

20.1.9 Statement CREATE TABLE

Defines the structure of a table.

CREATE TABLE Employee (

 EmpID INTEGER PRIMARY KEY,

 Name TEXT NOT NULL,

 Department TEXT,

 Salary REAL CHECK (Salary > 0)

);

20.1.10 Statements INSERT, UPDATE, and DELETE

INSERT:

INSERT INTO Employee (EmpID, Name, Department, Salary)

VALUES (101, 'Meena', 'HR', 45000);

UPDATE:

UPDATE Employee

SET Salary = Salary + 5000

WHERE Department = 'IT';

DELETE:

DELETE FROM Employee WHERE EmpID = 101;

Programming and Problem-Solving … 20.6 Database Programming in Python

20.2 DATABASE PROGRAMMING IN PYTHON

20.2.1 Introduction

Python supports database operations through the DB-API (PEP 249) interface.

It provides a consistent way to connect to, query, and manage relational databases.

20.2.2 Database Engines and SQLite

SQLite is a built-in, lightweight, file-based relational database included with Python.

It is ideal for learning and small applications.

import sqlite3

conn = sqlite3.connect('university.db')

20.2.3 Creating a Database using sqlite3

import sqlite3

conn = sqlite3.connect('student.db')

cur = conn.cursor()

cur.execute('''CREATE TABLE IF NOT EXISTS Student (

 RollNo INTEGER PRIMARY KEY,

 Name TEXT,

 Branch TEXT,

 Marks INTEGER)''')

conn.commit()

conn.close()

20.2.4 Executing SQL Queries from Python

cur.execute("INSERT INTO Student VALUES (101, 'Anjali', 'CSE', 87)")

cur.execute("INSERT INTO Student VALUES (102, 'Ramesh', 'ECE', 75)")

conn.commit()

20.2.5 Fetching and Displaying Data

cur.execute("SELECT * FROM Student")

for row in cur.fetchall():

 print(row)

Output:

(101, 'Anjali', 'CSE', 87)

(102, 'Ramesh', 'ECE', 75)

20.2.6 Parameterized Queries

Prevents SQL injection:

cur.execute("SELECT * FROM Student WHERE Name=?", ('Anjali',))

20.2.7 Committing Transactions and Closing Connections

conn.commit()

Centre for Distance Education 20.7 Acharya Nagarjuna University

conn.close()

20.2.8 Exception Handling

try:

 conn = sqlite3.connect('student.db')

 cur = conn.cursor()

 cur.execute("INSERT INTO Student VALUES (104, 'Meena', 'IT', 88)")

 conn.commit()

except sqlite3.Error as e:

 print("Error:", e)

finally:

 conn.close()

20.2.9 Using with Statement

with sqlite3.connect('student.db') as conn:

 cur = conn.cursor()

 cur.execute("SELECT * FROM Student")

 print(cur.fetchall())

20.2.10 Integrating SQL with Python Data Structures

Using Pandas for analysis:

import pandas as pd

conn = sqlite3.connect('student.db')

df = pd.read_sql_query("SELECT * FROM Student", conn)

print(df)

20.2.11 Example CRUD Application

(Full working Python example — Create, Read, Update, Delete)

import sqlite3

def create_table():

 with sqlite3.connect('college.db') as conn:

 conn.execute('''CREATE TABLE IF NOT EXISTS Student

 (RollNo INTEGER PRIMARY KEY, Name TEXT, Branch TEXT, Marks

INTEGER)''')

def insert_student(r, n, b, m):

 with sqlite3.connect('college.db') as conn:

 conn.execute("INSERT INTO Student VALUES (?, ?, ?, ?)", (r, n, b, m))

def view_students():

 with sqlite3.connect('college.db') as conn:

 for row in conn.execute("SELECT * FROM Student"):

 print(row)

Programming and Problem-Solving … 20.8 Database Programming in Python

create_table()

insert_student(1, 'Anjali', 'CSE', 89)

insert_student(2, 'Ramesh', 'ECE', 78)

view_students()

20.3 FUNCTIONAL LANGUAGE APPROACH

20.3.1 List Comprehension and Functional Constructs

Functional programming emphasizes writing programs using expressions rather than

statements.

Python supports several functional programming concepts such as list comprehensions,

map(), filter(), reduce(), and lambda functions.

List Comprehensions

A list comprehension provides a concise way to create lists.

Syntax:

[expression for item in iterable if condition]

Example 1:

squares = [x*x for x in range(1, 6)]

print(squares)

Output:

[1, 4, 9, 16, 25]

Example 2: Filtering

even_numbers = [x for x in range(10) if x % 2 == 0]

print(even_numbers)

Output:

[0, 2, 4, 6, 8]

List comprehensions are faster and more readable than traditional loops.

Functional Constructs in Python

1. lambda Function:

An anonymous one-line function.

square = lambda x: x * x

print(square(5))

2. map() Function:

Applies a function to all items in an iterable.

numbers = [1, 2, 3, 4]

result = list(map(lambda x: x**2, numbers))

print(result)

Output: [1, 4, 9, 16]

Centre for Distance Education 20.9 Acharya Nagarjuna University

3. filter() Function:

Selects elements that satisfy a condition.

evens = list(filter(lambda x: x % 2 == 0, numbers))

print(evens)

Output: [2, 4]

4. reduce() Function (from functools):

Combines items cumulatively.

from functools import reduce

total = reduce(lambda x, y: x + y, numbers)

print(total)

Output: 10

20.3.2 MapReduce Problem Solving Framework

MapReduce is a programming paradigm for processing large datasets in parallel across

multiple systems. It divides computation into two major phases:

1. Map Phase:

Each record (key–value pair) is processed independently to produce intermediate

results.

2. Reduce Phase:

The intermediate results are aggregated or combined to produce final output.

This model is the foundation of frameworks like Hadoop and Spark.

Example: Word Count Using MapReduce

from functools import reduce

text = "Python supports functional programming using map and reduce"

words = text.split()

Map step: Create pairs

mapped = [(w, 1) for w in words]

Reduce step: Count occurrences

def reducer(acc, item):

 word, count = item

 acc[word] = acc.get(word, 0) + count

 return acc

word_count = reduce(reducer, mapped, {})

print(word_count)

Output:

{'Python': 1, 'supports': 1, 'functional': 1, 'programming': 1,

 'using': 1, 'map': 1, 'and': 1, 'reduce': 1}

Programming and Problem-Solving … 20.10 Database Programming in Python

20.3.3 MapReduce in the Abstract

In general, MapReduce operates on a collection of records:

Phase Input Function Output

Map (k₁, v₁) map() list of (k₂, v₂)

Shuffle (k₂, v₂) group by key (k₂, [v₂₁, v₂₂, …])

Reduce (k₂, list(v₂)) reduce() (k₃, v₃)

Conceptual Example:

data = [("A", 3), ("B", 5), ("A", 2), ("B", 7)]

Map phase - already done

Shuffle phase

shuffled = {}

for k, v in data:

 shuffled.setdefault(k, []).append(v)

Reduce phase

reduced = {k: sum(vs) for k, vs in shuffled.items()}

print(reduced)

Output:

{'A': 5, 'B': 12}

20.3.4 Inverted Index Example

An inverted index maps words to the documents in which they appear — a key concept in

search engines.

Example:

documents = {

 "doc1": "python supports functional programming",

 "doc2": "functional programming enables mapreduce",

 "doc3": "python and mapreduce are powerful"

}

Map Phase

mapped = []

for doc, text in documents.items():

 for word in text.split():

 mapped.append((word.lower(), doc))

Centre for Distance Education 20.11 Acharya Nagarjuna University

Shuffle Phase

index = {}

for word, doc in mapped:

 index.setdefault(word, set()).add(doc)

Display Inverted Index

for word, docs in index.items():

 print(word, ":", docs)

Output:

python : {'doc1', 'doc3'}

functional : {'doc1', 'doc2'}

mapreduce : {'doc2', 'doc3'}

This is the foundation of information retrieval systems like Google Search.

20.4 PARALLEL COMPUTING

20.4.1 Introduction to Parallel Computing Concepts

Parallel computing refers to performing multiple computations simultaneously.

It enhances performance by utilizing multiple CPU cores or processors.

Python supports parallelism through:

• The threading module (lightweight concurrency)

• The multiprocessing module (true parallelism with separate processes)

Advantages:

• Faster computation for large datasets

• Better utilization of CPU resources

• Useful in AI, image processing, and simulations

20.4.2 Class Pool of the multiprocessing Module

Python’s multiprocessing.Pool provides an easy interface for distributing work among

multiple processes.

Example:

from multiprocessing import Pool

def square(n):

 return n * n

if __name__ == "__main__":

 with Pool(4) as p:

 result = p.map(square, [1, 2, 3, 4, 5])

Programming and Problem-Solving … 20.12 Database Programming in Python

 print(result)

Output:

[1, 4, 9, 16, 25]

Each process handles one element in parallel.

20.4.3 Parallel Speedup and Performance

Speedup (S):

where = time for one core,

and = time with multiple cores.

Efficiency (E):

where = number of processors.

Example:

If a task takes 10 seconds sequentially and 3 seconds on 4 cores:

Thus, efficiency = 83%.

20.4.4 Parallel MapReduce Implementation

Parallel MapReduce distributes both mapping and reducing tasks across processors.

Example: Word Count (Parallel)

from multiprocessing import Pool

from functools import reduce

text = ["python supports mapreduce",

 "mapreduce enables parallel computing",

 "parallel mapreduce in python"]

def map_func(line):

 return [(w, 1) for w in line.split()]

def reduce_func(acc, item):

Centre for Distance Education 20.13 Acharya Nagarjuna University

 word, count = item

 acc[word] = acc.get(word, 0) + count

 return acc

if __name__ == "__main__":

 with Pool(3) as p:

 mapped = p.map(map_func, text)

 # Flatten and reduce

 pairs = [pair for sublist in mapped for pair in sublist]

 word_count = reduce(reduce_func, pairs, {})

 print(word_count)

Output:

{'python': 2, 'supports': 1, 'mapreduce': 3,

 'enables': 1, 'parallel': 2, 'computing': 1, 'in': 1}

20.4.5 Comparing Parallel and Sequential MapReduce

Aspect Sequential Parallel

Execution One processor Multiple processors

Speed Slower Faster

Resource Utilization Single core Multi-core

Complexity Simple Requires synchronization

Use Case Small data Big data / high computation

20.5 SUMMARY

• Functional programming emphasizes expressions and immutability.

• List comprehensions and lambda functions make Python concise and powerful.

• MapReduce divides computation into mapping and reducing phases for large data

processing.

• Parallel computing executes tasks concurrently using multiple processors.

• The multiprocessing module enables scalable, high-performance Python programs.

20.6 TECHNICAL TERMS

• Functional Programming

• List Comprehension

• Lambda Function

• MapReduce

• Pool

• Speedup

• Efficiency

Programming and Problem-Solving … 20.14 Database Programming in Python

20.7 SELF-ASSESSMENT QUESTIONS

Short Questions

1. Define functional programming.

2. Write any two examples of list comprehensions in Python.

3. Differentiate between the map() and filter() functions.

4. What is the purpose of the reduce() function?

5. Explain the two main phases of the MapReduce framework.

6. State any two advantages of parallel computing.

7. Write the formula for Speedup and Efficiency in parallel computing.

8. What is the role of the multiprocessing.Pool class in Python?

9. Mention any two real-world applications of parallel computing.

10. List any two differences between sequential and parallel MapReduce execution.

Essay Questions

1. Explain the concept of functional programming and describe how it is supported in

Python with examples.

2. Discuss list comprehensions in Python and illustrate their use with appropriate

examples.

3. Compare and contrast the working of map(), filter(), and reduce() functions with

code illustrations.

4. Describe the MapReduce problem-solving framework. How does it simplify data

processing in distributed environments?

5. Develop a Python program that counts the frequency of words in a given text using

the MapReduce approach.

6. What is parallel computing? Explain its importance in high-performance and data-

intensive applications.

7. Write a Python program using multiprocessing.Pool to compute the cube of

numbers in parallel.

8. Define Speedup and Efficiency in parallel systems. Illustrate how they are used to

measure performance improvement.

9. Compare sequential and parallel MapReduce executions in terms of processing,

resource usage, and efficiency.

10. Discuss the applications of parallel computing in real-world domains such as

machine learning, data mining, and simulations.

20.8 SUGGESTED READINGS

1. Mark Lutz, Learning Python, O’Reilly Media.

2. Allen B. Downey, Think Python, O’Reilly Media.

3. Ramez Elmasri & Shamkant Navathe, Fundamentals of Database Systems, Pearson.

4. Jeffrey Dean and Sanjay Ghemawat, MapReduce: Simplified Data Processing on

Large Clusters, Google Research Paper.

5. Python Official Documentation:

https://docs.python.org/3/library/multiprocessing.html

Mrs. Appikatla Pushpa Latha

