

WEB TECHNOLOGIES
M.Sc. Computer Science

First Year, Semester-II, Paper-V

Lesson Writers

Dr. Kampa Lavanya

Assistant Professor

Department of CS&E

Acharya Nagarjuna University

Dr. Vasantha Rudramalla
Faculty,

Department of CS&E

Acharya Nagarjuna University

Mrs. Appikatla Pushpa Latha
Faculty,

Department of CS&E

Acharya Nagarjuna University

Dr. U. Surya Kameswari
Assistant Professor

Department ofCS&E

Acharya Nagarjuna University

Editor

Dr. Neelima Guntupalli
Assistant Professor

Department of CS&E

Acharya Nagarjuna University

Academic Advisor

Dr. Kampa Lavanya
Assistant Professor

Department of CS&E

Acharya Nagarjuna University

DIRECTOR, I/c.

Prof. V. Venkateswarlu
M.A., M.P.S., M.S.W., M.Phil., Ph.D.

CENTRE FOR DISTANCE EDUCATION

ACHARYA NAGARJUNA UNIVERSITY

NAGARJUNA NAGAR 522 510
Ph: 0863-2346222, 2346208

0863- 2346259 (StudyMaterial)

Website www.anucde.info

E-mail:anucdedirector@gmail.com

mailto:anucdedirector@gmail.com

M.Sc., (Computer Science) :WEB TECHNOLOGIES

First Edition : 2025

No. of Copies :

© Acharya Nagarjuna University

This book is exclusively prepared for the use of students of M.Sc. (Computer Science),

Centre for Distance Education, Acharya Nagarjuna University and this book is meant

for limited circulation only.

Publishedby:

Prof. V. VENKATESWARLU

Director, I/c

CentreforDistanceEducation,

AcharyaNagarjunaUniversity

Printed at:

FOREWORD

Since its establishment in 1976, Acharya Nagarjuna University has been

forging ahead in the path of progress and dynamism, offering a variety of courses

and research contributions. I am extremely happy that by gaining ‘A+’ grade from

the NAAC in the year 2024, Acharya Nagarjuna University is offering educational

opportunities at the UG, PG levels apart from research degrees to students from

over 221 affiliated colleges spread over the two districts of Guntur and Prakasam.

The University has also started the Centre for Distance Education in 2003-

04 with the aim of taking higher education to the door step of all the sectors of the

society. The centre will be a great help to those who cannot join in colleges, those

who cannot afford the exorbitant fees as regular students, and even to housewives

desirous of pursuing higher studies. Acharya Nagarjuna University has started

offering B.Sc., B.A., B.B.A., and B.Com courses at the Degree level and M.A.,

M.Com., M.Sc., M.B.A., and L.L.M., courses at the PG level from the academic

year 2003-2004 onwards.

To facilitate easier understanding by students studying through the distance

mode, these self-instruction materials have been prepared by eminent and

experienced teachers. The lessons have been drafted with great care and expertise

in the stipulated time by these teachers. Constructive ideas and scholarly

suggestions are welcome from students and teachers involved respectively. Such

ideas will be incorporated for the greater efficacy of this distance mode of

education. For clarification of doubts and feedback, weekly classes and contact

classes will be arranged at the UG and PG levels respectively.

It is my aim that students getting higher education through the Centre for

Distance Education should improve their qualification, have better employment

opportunities and in turn be part of country’s progress. It is my fond desire that in

the years to come, the Centre for Distance Education will go from strength to

strength in the form of new courses and by catering to larger number of people. My

congratulations to all the Directors, Academic Coordinators, Editors and Lesson-

writers of the Centre who have helped in these endeavors.

Prof. K. Gangadhara Rao

M.Tech., Ph.D.,

Vice-Chancellor I/c

Acharya Nagarjuna University.

205CP24: WEB TECHNOLOGIES

SYLLABUS

UNIT-1

HTML common Tags: List, Tables, images, forms, Frames, Cascading Style Sheets; Java

Script: Introduction to Java Scripts, Objects in Java Script, Dynamic HTML with Java Script.

UNIT-II

XML-Document type definition, XML Schemas, Document Object model, Presenting XML,

Using XML Processors DOM and SAX.

CGI Scripting- What is CGI? - Developing CGI applications - Processing CGI - Returning a

Basic HTML page - Introduction to CGI.pm - CGL.pm methods - Creating HTML pages

dynamically.

UNIT-III

JDBC: Introduction to JDBC - Connections - Internal Database Connections - Statements -

Results Sets - Prepared Statements - Callable Statements.

Network Programming and RMI why networked Java - Basic Network Concepts - looking

up Internet Addresses - URLs and URIs - UDP Datagram's and Sockets - Remote Method

Invocation.

UNIT-IV

Web Servers, Tomcat web server, Installing the Java Software Development Kit, Tomcat

Server & Testing Tomcat, Installing the Java Software Development Kit, Tomcat Server &

Testing Tomcat.

Servlets

Introduction to ServletsLifecycle of a Servlet, JSDK, The Servlet API. The javax.servlet

Package, Reading Servlet parameters, Reading Initialization parameters. The javax servlet

HTTP package, Handling Http Request & Responses, Using Cookies-Session Tracking,

Security Issues.

UNIT-V

Introduction to JSPThe Problem with Servlet. The Anatomy of a JSP Page, JSP Processing.

JSP Application Design with MVC Setting Up and JSP Environment.

Prescribed Textbooks

1. Web Programming, building internet applications, Chris Bates 2nd edition,

WILEYDreamtech (units I, II)

2. Java Programming with JDBC ; Donald Bales, O'Reilly (Unit III)

3. Java Network Programming, elliotte Rusty Harold, 3rd Edition, O'Reilly (Unit III)

4. Java Server Pages - Hans Bergsten, SPD O'Reilly (Unit IV)

Reference Textbooks

1. Robert W. Sebesta, "Programming the World Wide Web", Third Edition, Pearson

 Education(2007).

2. Anders Moller and Michael schwartzbach, "An Introduction to XML und Web

3. Jeffrey C. Jackson, "Web Technologies - A Computer Science Perspective", Pearson

 Technologies", Addison Wesley (2006)Education (2008).

4. H.M.Deitel, P.J.Deitel. "Java How to Program", Sixth Edition, Pearson Education (2007).

205CP24

M.Sc., (Computer Science)

MODEL QUESTION PAPER

205CP24: WEB TECHNOLOGIES

Time: 3 Hours Max. Marks: 70

Answer ONE Question from each unit. (5 x 14 = 70M)

All questions carry equal marks.

UNIT – I

1. a) Explain the structure of an HTML document with suitable examples.

b) Describe various types of lists and tables in HTML with code snippets.

OR

2. a) What is JavaScript? Explain objects in JavaScript with examples.

b) Discuss the role of Dynamic HTML and demonstrate how JavaScript enhances

interactivity.

UNIT – II

3. a) What is XML Schema? Explain its structure and advantages over DTD.

b) Describe the use of DOM and SAX parsers in XML processing.

OR

4. a) What is CGI? Explain how a CGI application processes form data and returns an

HTML page.

b) Discuss the importance of CGI.pm module and list some of its common methods.

UNIT – III

5. a) Explain the steps for establishing a JDBC connection between Java and a database.

b) Write a Java program using JDBC to display all rows of a table named student.

OR

6. a) Explain UDP datagrams and sockets in Java with an example program.

b) Discuss the architecture and working of Remote Method Invocation (RMI).

UNIT – IV

7. a) Explain the life cycle of a Servlet with a neat diagram.

b) Describe how Servlets handle HTTP requests and responses.

OR

8. a) Explain the installation and configuration steps for Tomcat Web Server.

b) Discuss the concept of session tracking using cookies in Servlets.

UNIT – V

9. a) What are JSP directives? Explain different types of directives with examples.

b) Describe the role of MVC architecture in JSP application design.

OR

10. a) Explain the anatomy and processing of a JSP page.

b) Describe the steps for setting up a JSP environment with JDK and Tomcat Server.

CONTENTS

S.No. TITLE PAGE No.

1 INTRODUCTION TO HTML AND COMMON TAGS 1.1-1.11

2 CASCADING STYLE SHEETS 2.1-2.7

3
INTRODUCTION TO JAVASCRIPT AND CLIENT-SIDE

SCRIPTING
3.1-3.11

4
OBJECTS IN JAVA SCRIPTAND DYNAMIC HTML

(DHTML)
4.1-4.6

5
X XML BASICS AND DATA PROCESSING IN WEB

APPLICATIONS
5.1-5.11

6 CGI SCRIPTING 6.1-6.12

7
INTRODUCTION TO JDBC AND DATABASE

CONNECTIVITY IN JAVA
7.1-7.7

8 EXECUTING SQL WITH JDBC 8.1-8.8

9
ADVANCED JDBC: PREPARED AND CALLABLE

STATEMENTS
9.1-9.8

10
NETWORK PROGRAMMING AND REMOTE METHOD

INVOCATION (RMI)
10.1-10.11

11
INTRODUCTION TO WEB SERVERS AND THE TOMCAT

ENVIRONMENT
11.1-11.8

12 INTRODUCTION TO SERVLETS 12.1-12.8

13 UNDERSTANDING SERVLETS PACKAGE 13.1-13.8

14 COOKIES AND SECURITY IN SERVLETS 14.1-14.7

15 INTRODUCTION TO JSP 15.1-15.7

16 JSP PROCESSING AND APPLICATION DESIGN 16.1-16.6

LESSON-1

INTRODUCTION TO HTML AND COMMON TAGS

AIM AND OBJECTIVES:

➢ Understand the basic structure and purpose of HTML for web page development.

➢ Identify and apply common HTML tags to create lists, tables, and insert images.

➢ Design and implement user input forms using appropriate HTML form elements.

➢ Utilize HTML frames to organize content into multiple sections within a browser

window.

Structure:

1.1 HTML

 1.1.1 HISTORY OF HTML

1.2 COMMON TAGS

1.3 LIST

1.4 TABLES

1.5. IMAGES

1.6 FORMS

1.7 FRAMES

1.8 SUMMARY

1.9 KEY TERMS

1.10 SELF-ASSESSMENT QUESTIONS

1.11 FURTHER READINGS

1.1 HTML

INTRODUCTION

HTML (Hypertext Markup Language) is the standard language used to create web pages or

hypertext documents. It is a markup language, meaning it uses a set of instructions known as

tags, which are added to text files to format and structure content. Unlike programming

languages, HTML is strictly a formatting language - it does not include logic or control

structures.

The concept of hypertext allows users to navigate non-linearly through content, enabling easy

jumps from one point to another within a document or across multiple documents.

HTML defines the structure and layout of a web page. It is platform-independent, meaning

HTML files can be accessed and viewed on any device or operating system with a web

browser, regardless of the OS used to create or host the content. As long as there is internet

access, users can browse and download HTML files via the World Wide Web (WWW).

Centre for Distance Education 1.2 Acharya Nagarjuna University

In an HTML document, the content is structured using HTML tags, which label different

elements of the web page. These tags tell the browser how to display the text, images, and

other content. Any content that is not enclosed within tags will be directly displayed on the

webpage.

It’s important to note that HTML does not define exact page layouts or styles (like font size,

headings, etc.) as word processors like Microsoft Word do. Instead, the appearance of HTML

elements can vary across different platforms and devices. This is because the formatting is

handled by the browser, which adapts the presentation based on the platform’s capabilities.

By separating content structure from appearance, HTML allows browsers to make layout

decisions suitable for their environment.

Web browsers serve as HTML formatters, interpreting HTML code and displaying the

content accordingly on screen.

1.1.1 History of HTML

HTML was first created by Tim Berners-Lee at CERN and gained popularity through the

Mosaic browser developed at NCSA. As the Web grew rapidly in the 1990s, HTML evolved

significantly with various enhancements and updates.

To maintain consistency and compatibility among web browsers and developers,

standardized versions of HTML were introduced.

• HTML 2.0 (released in November 1995) standardized the common usage practices of

the time.

• HTML 3.0 (1995) aimed to support more complex web design features but was not

widely adopted due to implementation challenges.

Maintaining compatibility across browsers helps reduce development costs and prevents the

fragmentation of the Web into proprietary, incompatible systems—ensuring a more unified

and accessible experience for all users.

HTML's Future Vision

HTML has always been developed with a vision of universal access. It is designed to support

a wide range of devices and platforms—ranging from PCs with high-resolution displays to

mobile phones, voice-based devices, and even low-bandwidth systems—ensuring that web

content remains accessible and functional across diverse environments.

Advantages of HTML:-

1. Widely Adopted: HTML is a universally accepted standard for creating web pages,

making it highly reliable and popular.

2. Cross-Browser Support: All major web browsers support HTML, ensuring that

websites display consistently across platforms.

3. User-Friendly: HTML is easy to learn, write, and understand, even for beginners in

web development.

4. No Cost or Special Software: HTML editing requires only a basic text editor and a

web browser, both of which are typically pre-installed on most systems.

Web Technologies 1.3 Introduction to HTML and common tags

Disadvantages of HTML:

1. Static Content Only: HTML is limited to creating static pages; it cannot handle

dynamic functionality without additional technologies like JavaScript or server-side

scripting.

2. Verbose Coding: Even simple designs may require writing large amounts of

repetitive code.

3. Weak Security: HTML lacks built-in security mechanisms, making it dependent on

other technologies for secure web applications.

4. Code Complexity for Larger Pages: Managing and organizing lengthy HTML code

can become complex and error-prone as the size of the webpage increases.

Basic HTML tags:-

(1) <!doctype>:- This tag formally starts an HTML document and it also indicates the

version of HTML used.

(2) <HTML>:-

Every HTML document starts with a <html> tag and it is always the first tag in a html page

and indicates that the document is a HTML document. The end tag <html> is </html>.

Example:

<html> …….. </html>

(3) <head>:-

 It contains the head of an html document, which holds about the document such as title. Each

property defined html page should have a head which we create with <head>tag. It has

header information and it is displayed at the top of the browser. Each tag for <head>

is</head>.

<head>..……. </head>

(4) <title>:-

It contains the title of the html document which includes the content that will actually appear

in the web browser. The entire content of the web page is placed in the pages <body> tag.

The end tag <body> is </body>.

<title>……… </title>

(5) <body>:-

It contains the body of the HTML Document, which includes the content that will actual

appear in the web browser. The entire content of the webpage will be placed in the pages

<body>tag. The end tag of the <body>tag will be </body>

<body>.………</body>

STRUCTURE OF THE HTML PROGRAM:-

The HTML Program is generally divided into two sections i.e head and body. We use <head>

and <body> tags to indicate these two sections. <head> section holds the header information

of a webpage document indicated by a title that is provided by using <title> tag in the

<head>. The title helps us to refer to the webpage. <body> section contains the content which

we want to display which the webpage. Anything that is not a tag will be displayed within the

webpage.

Centre for Distance Education 1.4 Acharya Nagarjuna University

Example:

<html>

 <head>

 <title>First Webpage</title>

 </head>

 <body>

 This is my first page

 </body>

</html>

Output:

Attribute:

 An Attribute is a Keyword we use in an opening tag to give more information to the

web

browser. HTML tags tell the web browsers how to format and organize our webpages. But

we

can customize tags using attributes. The Format of an attribute is:

 <tagname Attribute=value>

Attributes of the <body> tag:

(1) Background:

The URL or a graphic file to be used in the filling the browser’s Background.

(2) Bgcolor:

The color of the browser’s background.

(3) Bgproperties:

It Indicates if the background should scroll when text does. If we set it to “FIXED”, the

background will not scroll when the text does.

(4) Bottommargin:

Specifies the bottom margin,the empty space at the bottom of the document in pixels.

(5) Id:

It is a unique alphanumeric identifier for the tag which we can use to refer to it.

(6) Language:

Web Technologies 1.5 Introduction to HTML and common tags

Scripting language used for the tag.

(7) Leftmargin:

Specifies the left margin, the empty space at the left of the document.

(8) Marginheight:

Gives the height of the margin at the top and bottom of the page in pixels.

(9) MarginWidth:

Gives the width of the left and right margins of the page in pixels.

(10) Rightmargin:

It specifies the right margin, the empty space to the right margin of the document in pixels.

(11) Scroll:

It specifies whether a vertical scrollbar appears to the right of the document can be yes

(or) no.

(12) Style:

Inline style indicating how to render the element.

(13) Text:

Color of the in the document.

(14) Topmargin:

It specifies the top margin the space at the top of the document in pixels.

(15) Link:

It specifies the color of hyperlinks that have not yet been visited.

(16) Alink:

It specifies the color of hyperlinks as they are being clicked.

(17) Vlink:

It specifies the color of hyperlinks as they have been visited.

(18)<!-- --> Comment tag:

Annotates a web page with a comment. In the HTML that we can by looking at the HTML

but it will not be displayed in the web browser.

<! ------ This is a comment --------- >

1.2 Common Tags

Common HTML Tags:

1. <html> – Root element that defines the entire HTML document.

2. <head> – Contains metadata and links to external resources like stylesheets and

scripts.

3. <title> – Specifies the title of the web page (appears in the browser tab).

4. <body> – Contains the main content of the webpage that is visible to users.

5. <h1> to <h6> – Heading tags, where <h1> is the largest and <h6> is the smallest.

6. <p> – Defines a paragraph.

7.
 – Inserts a line break.

8. <hr> – Inserts a horizontal line (thematic break).

9. <a> – Creates a hyperlink. Example: Visit

10. – Embeds an image. Example: <imgsrc="image.jpg" alt="Image">

11. – Creates an unordered (bulleted) list.

12. – Creates an ordered (numbered) list.

13. – List item (used inside or).

14. <table> – Defines a table.

15. <tr> – Defines a table row.

16. <td> – Defines a cell in a table row.

Centre for Distance Education 1.6 Acharya Nagarjuna University

17. <th> – Defines a header cell in a table.

18. <form> – Creates a form for user input.

19. <input> – Accepts user input inside a form.

20. <button> – Defines a clickable button.

1.3 Lists:

Lists lets us display information in a compact, right format. There are three kinds of lists:

1. ordered List

2.UnOrdered List

3. Definition List

Type Tag Description

Ordered
Displays list items in a specific order (numbered: 1, 2, 3… or i, ii,

iii…).

Unordered Displays items with bullet points.

Description <dl> Used for name/value pairs, like in dictionaries or glossaries.

Ordered List:

Ordered lists use a number system / lettering scheme to indicate that the items are ordered in

some ways, ordered lists are created by tag and the list items are created using tag.

Example:

<html>

<head>

<title> Creating Order List </title>

</head>

<body bgcolor=”pink”>

<h1 align=”center”> Creating Order List</h1>

<h1 align=”center”>List of branches in RGMCET</h1>

CSE

IT

ECE

EEE

CIVIL

ME

</body>

</html>

Web Technologies 1.7 Introduction to HTML and common tags

Output

Creating Customized Ordered Lists:-

We can customize the numbering system used in ordered lists by using the TYPE attribute,

which we can set to these values:

1. Default numbering system (1, 2, 3, ….)

A. Uppercase Letters (A, B, C, …..)

a. Lowercase Letters (a, b, c, …)

I. Large Roman Numerals (I, II , III, ….)

i. Small Roman Numerals (i, ii, iii, …..)

Example:

 Wake up

 Brush teeth

 Eat breakfast

Output:

1. Wake up

2. Brush teeth

3. Eat breakfast

Unordered List:

An Unordered list is a list of items that are marked with burden. The Unordered list is created

by using tag are the list items in the list are created by tag and the list items in the

list are created by tag.

List Item 1

List Item 2

Example:

 Milk

 Eggs

 Bread

Centre for Distance Education 1.8 Acharya Nagarjuna University

Output:

• Milk

• Eggs

• Bread

Creating Customized Unordered Lists:

We customized unordered lists by setting the “Type” attribute to three different values. DISC

(default), SQUARE and CIRCLE which sets the type of bullet that appears before the list

item.

Example:

<html>

<head>

<title> Creating Unorder List </title>

</head>

<body bgcolor=”pink”>

<h1 align=”center”> Creating Unorder List</h1>

<h1 align=”center”>List of Colleges in Kurnool</h1>

<ul type=”square”>

GPREC

RGMCET

GPCET

</body>

</html>

Output:

Definition List:-

These lists include both definition terms as well as their definition. To create the definition

lists we use <dl> tag. For creating definition terms we use <dt> tag and for data definitions

we use <dd> tag.

<dl>

 <dt>HTML</dt>

 <dd>HyperText Markup Language</dd>

Web Technologies 1.9 Introduction to HTML and common tags

 <dt>CSS</dt>

 <dd>Cascading Style Sheets</dd>

</dl>

❖ <dt>: Defines the term (name)

❖ <dd>: Defines the description (value)

Example:

<html>

<head>

<title>Creating Definition List</title>

</head>

<body bgcolo=”pink”>

<h1 align=”center”>Definition List</h1>

<dl>

<dt>CSE<dd>Computer Science & Engineering

<dt>ECE<dd>Electronics & Communication Engineering

<dt>IT<dd>Information Technology

<dt>EEE<dd>Electrical & Electronics Engineering

<dt>CE<dd>Civil Engineering

</dl>

</body>

</html>

Output:

Nesting Lists:-

We have the capability of nesting lists inside other lists.

Example:

<html>

<head>

<title>Nested Lists</title>

</head>

Centre for Distance Education 1.10 Acharya Nagarjuna University

<body bgcolor=”pink”>

<h1 align=”center”>List of Colleges in Kurnool</h1>

Kurnool

GPREC

BITS

GPCET

Nandyala

RGMCET

SREC

</body>

</html>

Output:

Example program:

<!DOCTYPE html>

<html>

<body>

<h2>An Unordered HTML List</h2>

 Coffee

 Tea

Web Technologies 1.11 Introduction to HTML and common

tags

 Milk

<h2>An Ordered HTML List</h2>

 Coffee

 Tea

 Milk

</body>

</html>

Output:

Creating Hyperlinks:

What makes the web so effective is the ability to define links from one page to another. In

web terms, a “hyperlinks” is a reference on the web. Hyperlinks can point to any resources on

the web. An anchor is a term used to define a hyperlink destination inside a document.

Format of anchor tag is:

 Line Text

The <a> anchor tag has the following attributes.

1. href: It holds the target URL of the hyperlink.

2. Id: A unique alphanumeric identifier for the tag, which we can use to refer to it.

3. name: It specifies an anchor name, the name we want to use when referring to enclose

items.

4. Target: This attribute defines where the linked document will be opened.

Example:

<html>

<head>

<title>Creating Hyper Links</title>

</head>

<body bgcolor="pink">

<center><h1>This is page 1</h1>

Click hereto goto page2

</center>

</body>

</html>

Centre for Distance Education 1.12 Acharya Nagarjuna University

Output:

Providing navigation with in the page:

<html>

<head>

<title>Nested Lists</title>

</head>

<body bgcolor="pink">

<center><h1>Linking to a section in a page</h1>

This is the top of the page

Click here to goto the bottomof the page

This is the bottom of the page Click here to

gototopof the page

</center>

</body>

</html>

Output:

Web Technologies 1.13 Introduction to HTML and common

tags

1.4 TABLES

Creating HML tables:

A HTML table arranges data/information in terms of rows and columns.Tables are defined in

HTML using <table>tag.A table is divided into rows and each row each divided into data

cells(columns).The rows of table are created using <tr> tag and data cells are created by <td>

tag.

<tr> - Table row

<td> - Table data

Format

<table>

<tr>

<td>row1,col1</td>

<td>row1,col2</td>

</tr>

<tr>

<td>row2,col1</td>

<td>row2,col2</td>

</tr>

</table>

❖ Heading in a table are defined with <th> tag

Format

<table>

<tr>

<th>heading 1</th>

<th>heading 2</th>

</tr>

<tr>

<td>data1</td>

<td>data2</td>

</tr>

</table>

Attributes of <table> tag:

➢ align : specifies the horizontal alignment of the table in the browser window,

 set to “left,center,right”.

➢ background : specifies the URL of a background image to be used as

 background for the table.

➢ bgcolor : sets the background color of the table cells.

➢ border : sets the border width.

➢ bordercolor : sets the external border color of the entire table.

➢ cellpadding : sets the spacing between cell walls and content.

➢ cellspacing : sets the spacing between table cells.

➢ height : sets the height of the whole table.

➢ width : sets the width of the table.

Attributes of <tr> tag:

➢ align : specifies the horizontal alignment content in the table cells set to

“left,center,right”.

➢ bgcolor : sets the background color of the table cells.

➢ bordercolor : sets the external border color of the entire table.

➢ Valign : sets the vertical alignment of data,set to top,middle,bottom.

Centre for Distance Education 1.14 Acharya Nagarjuna University

Alignment of <td> tag

➢ align : specifies the horizontal alignment content in the table cells set to

“left,center,right”.

➢ bgcolor : sets the background color of the table cells.

➢ bordercolor : sets the external border color of the entire table.

➢ colspan : indicates the how many cell columns of the table this cell should span.

➢ rowspan : indicates the how many cell rows of the table this cell should span.

Example

<html>

<head>

<title>Creating Tables</title>

</head>

<body bgcolor="pink">

<center><h1>Creating tables</h1>

<table border=”1” cellpadding=”3” cellspacing=”3”>

<tr>

<thcolspa=”2”>Websites</th>

</tr>

<tr>

<td>Mail sites</td>

<td>Job sites</td>

</tr>

<tr>

<td>Gmail.com</td>

<td>Frushersworld.com</td>

</tr>

<tr>

<td>Yahoo.com</td>

<td>Nauted.com</td>

</tr>

</center>

</table>

</body>

</html>

Output:

Web Technologies 1.15 Introduction to HTML and common

tags

Advanced Table elements :

• <caption> : the element is an ptional element and it used to provide a string which

describes,the contern of the table ,it must follow the table element.

• <thead> : The rows in a table can bcgroudated one are more time we can create a

tableby using this <thead>.

• <tbody> : creates a table body when grouping rows.

• <tfoot> : Creates a table foot when groupin rows

Example:

<html>

<head>

<title>Advance Table Elements</title>

</head>

<body bgcolor="pink">

<h1 align="center">Contents of Web Technologies</h1>

<center>

<table border="2">

<caption>Subject Description</caption>

<thead>

<tr><td colspan="2">Advance Java Programming</td>

</thead>

<tbody>

<tr>

<td>Units</td>

<td>Contents</td>

</tr>

<tr><td>I</td>

<td>HTML & CSS</td>

</tr>

<tr><td>II</td>

<td>JavaScript</td>

</tr>

<tr><td>III</td>

<td>XML</td>

</tr>

</tbody>

<tfoot align="center">

<tr>

<td colspan="2">The table foot</td>

</tr>

</tfoot>

</table>

</center>

</body>

</html>

Centre for Distance Education 1.16 Acharya Nagarjuna University

Output:

Nesting of Tables:

<html><head><title>Nesting of Tables</title></head>

<body bgcolor="pink">

<center><h1>Nested tables</h1>

<table border="1" cellpadding="3" cellspacing="3">

<tr><td>

<table border="2">

<tr><th>Mail sites</th>

<th>Job sites</th></tr><tr></tr><tr>

<td>Gmail.com</td>

<td>Frushersworld.com</td>

<td>Yahoo.com</td>

<td>Nauted.com</td>

</tr></table>

</td>

<td>

<table border="2">

<tr><th>Number</th>

<th>Words</th></tr><tr>

<th>1</th>

<th>One</th></tr><tr>

<th>2</th>

<th>Two</th></tr>

</table>

</td>

</tr>

</table>

</center>

</body>

</html>

Web Technologies 1.17 Introduction to HTML and common

tags

Output:

1.5. IMAGES

Images in HMTL:

In HTML we have the capability of displaying images in a webpage.This images must be in a

format that the web browser can handle, such as Graphics Interchange Format (GIF), Joint

Photograph Expert Group (JPEG), and for some browser Portable Network Graphics(PNG)

formats.

Displaying images in webpage is done by using tag

Format

<imgsrc=”URL of image source”>

Attributes of tag:

• alt: this attribute is used to specify text to be displayed in place of image for browser

that cannot handle graphics.

• src: specifies the URL of the image to display.

• border: sets the border for the image.

• height: indicates the height of the image.

• width: indicates the width of the image.

• hspace: sets the horizontal space around the image.

• vspace: sets the vertical space around the image.

Example :

<html>

<head>

<title>Images</title>

</head>

<body bgcolor="pink">

<center>

<h1>Images Example</h1>

<h3>Here is an image</h3>

<imgsrc="one.jpg" alt="here is an image" width="300" height="150">

</center>

</body>

</html>

Centre for Distance Education 1.18 Acharya Nagarjuna University

Output:

1.6 FORMS

Creating HTML Forms:

Form is a collection of various HTML control files , buttons ,checkboxes , radio buttons ,text

fields et., and they use to send the data to the server. There are several form elements.

• Button :<input type=”button”>:- are the standard clickable buttons.

• Checkbox :<input type=”checkbox”>:- displayed usually as a small box with a check

mark in it. The use can toggle the checkbox on or off by checking the checkbox

• Customizable Buttons :<button>:- display images one other HMTL inside itself.

• File uploading controls : <input type=”file”>:- allow the user to upload files to the

server.

• Hidden controls: store data that is not visible to users unless they view the web page

source code.

• Image controls :<input type=”image”>:- are like submit buttons except that they are

images the user can click.

• Password controls : <input type=”password”>:- are like text fields , but each typed

character displaying by an asterisk or instead any character.

• Radio buttons :<input type=”radio”>:- displaying usually as a circle which when

selected displayed a dot in the middle. These controls are much like checkboxes

except that they work in it mutually exclusive at a time.

• Reset button :<input type=”reset”>:- allow the user to clear all the data they has

entered.When the user click reset button all controls in the form are removed to that

original state displaying the data they had when they first appeared.

• Selection : Works much like drop down list boxes also called select controls Format

is:

<select>

<option>Item1</option>

<option>Item1</option>

<option>Item1</option>

</select>

• Submit button: when we click the button all the data in the form will be sent to web

server for processing.

Text area: are two dimensional text fields allowing user to enter more than one line of text.

Format is: <textarea>

Text fields : allow the user to enter one line of text also called a textbox Format is :

Web Technologies 1.19 Introduction to HTML and common

tags

<input type=”text”>

In order to create form we use <form> tag Format is:

<form>

|

|

</form>

Attributes of <form> tag:

• name: gives the name of the form so that we can return it in code. Set to an

alphanumeric string.

• target: indicates a named frame for browser to display the form results.

• method: indicates a method or protocol for sending data to the target action URL.

• action: gives the URL that that will handle the form data.

Example program:

<!DOCTYPE html>

<html>

<body>

<h1>The form element</h1>

<form action="/action_page.php">

 <label for="fname">First name:</label>

 <input type="text" id="fname" name="fname">

<label for="lname">Last name:</label>

 <input type="text" id="lname" name="lname">

 <input type="submit" value="Submit">

</form>

<p>Click the "Submit" button and the form-data will be sent to a page on the server called

"action_page.php".</p>

</body>

</html>

Output:

1.7 FRAMES

Frames in HTML are used to divide the web browser window into multiple sections, where

each section can load a separate HTML document. This allows for the display of multiple

web pages within a single browser window. Frames were commonly used to create

navigation menus that stay static while content changes in another section.

Centre for Distance Education 1.20 Acharya Nagarjuna University

Key Concepts of Frames

1. Frameset:

➢ Replaces the <body> tag in a frames-based page.

➢ Defines how the screen is split — vertically (cols) or horizontally (rows).

Syntax:

<frameset cols="30%, 70%">

<frame src="menu.html">

<frame src="content.html">

</frameset>

2. Frame:

➢ Defines each individual frame within a frameset.

➢ Uses attributes like src, name, scrolling, and frameborder.

Example:

<frame name="menu" src="menu.html" scrolling="yes" frameborder="0">

3. NoFrames:

➢ Provides alternative content for browsers that do not support frames.

Syntax:

<noframes>

 Your browser does not support frames.

</noframes>

Attributes of <frame> Tag

Attribute Description

src Specifies the HTML file to display in the frame.

name Gives the frame a name to be targeted by links.

scrolling Sets scrollbar visibility: yes, no, or auto.

frameborder Controls border visibility: 0 (no border), 1 (with border).

Advantages of Using Frames

➢ Allows independent scrolling in different parts of the screen.

➢ Useful for persistent navigation menus.

➢ Reduces the need to reload the entire page.

Disadvantages of Using Frames

➢ Deprecated in HTML5 — modern web development discourages frames.

➢ Not SEO-friendly; search engines may not index all content properly.

➢ Bookmarking specific frames is difficult.

➢ Navigation issues (e.g., back button behavior) may confuse users.

Note: While frames were once popular for building complex web layouts, they have been

largely replaced by modern techniques using CSS, JavaScript, and responsive design

principles. Frames are no longer supported in HTML5, so developers are encouraged to use

<iframe> or layout techniques like Flexbox and Grid.

Example:

Let's put above example as follows, here we replaced rows attribute by cols and changed their

width. This will create all the three frames vertically:

<!DOCTYPE html>

<html>

Web Technologies 1.21 Introduction to HTML and common

tags

<head>

<title>HTML Frames</title></head>

<frameset cols="25%,50%,25%">

<frame name="left" src="/html/top_frame.htm" />

<frame name="center" src="/html/main_frame.htm" />

<frame name="right" src="/html/bottom_frame.htm" />

<noframes>

<body>

Your browser does not support frames. </body> </noframes></frameset>

 </html>

This will produce following result:

Output:

1.8 SUMMARY

HTML is the standard language used to create and structure web pages using predefined tags.

Originally developed by Tim Berners-Lee, it evolved from SGML and gained popularity with

the Mosaic browser. HTML versions like 2.0 and 3.0 were introduced to improve browser

compatibility and standardize web content.HTML's design emphasizes universal access,

making it suitable for a wide range of devices, including those with limited bandwidth. It is

popular due to its simplicity, cross-platform support, and no cost of development. However, it

is mainly used for static content, lacks built-in security, and can become complex for large

web pages.An HTML document follows a basic structure comprising <html>, <head>, and

<body> tags. Key elements include headings (<h1> to <h6>), paragraphs (<p>), links (<a>),

images (), and forms. HTML also supports different types of lists—ordered (),

unordered (), and description (<dl>), as well as tables using tags like <table>, <tr>, <td>,

and <th>. The tag is used for images, with src and alt attributes being essential for

proper display and accessibility.HTML promotes semantic structure and accessibility by

encouraging the use of meaningful tags, ensuring content is both human- and machine-

readable.

1.9 KEY TERMS

HTML (HyperText Markup Language),SGML (Standard Generalized Markup

Language),XML (eXtensible Markup Language),Tags, Paragraph, Anchor/hyperlink, Image,

Lists, Table, Form, Frame.

1.10 Self-Assessment Questions

1. What is the purpose of a <form> tag in HTML?

2. What does the action attribute in a form specify?

Centre for Distance Education 1.22 Acharya Nagarjuna University

3. How does the method="get" work in a form?

4. When should you use the method="post"?

5. What tag is used to take user input in a form?

6. What is the difference between <input type="text"> and <textarea>?

7. What attribute is used to group form controls?

8. What is the use of the name attribute in an input field?

9. How can you prefill values in form elements?

1.11 Further Readings

1. Web Programming, building internet applications, Chris Bates 2nd edition, WILEY

Dreamtech

2. Java Programming with JDBC; Donald Bales, O'Reilly

3. Java Network Programming, elliotte Rusty Harold, 3rd Edition, O'Reilly

4. Java Server Pages - Hans Bergsten, SPD O'Reilly

5. Robert W. Sebesta, "Programming the World Wide Web", Third Edition, Pearson

Education(2007).

6. Anders Moller and Michael schwartzbach, "An Introduction to XML und Web

7. Jeffrey C. Jackson, "Web Technologies - A Computer Science Perspective",

PearsonTechnologies", Addison Wesley (2006) Education (2008).

8. H.M.Deitel, P.J.Deitel. "Java How to Program", Sixth Edition, Pearson Education

(2007).

 Dr. Kampa Lavanya

LESSON-2

CASCADING STYLE SHEETS

OBJECTIVES:

➢ To enhance the visual appearance of web pages.

➢ To separate structure (HTML) from presentation (CSS).

➢ To allow consistent styling across multiple pages.

➢ To make web development and maintenance easier and faster.

Structure:

2.1 CASCADING STYLE SHEETS (CSS)

 2.1.1. INLINE CSS

 2.1.2. INTERNAL CSS

 2.1.3. EXTERNAL CSS

 2.1.4 COMMON CSS PROPERTIES

2.2 CSS SELECTORS

2.3 BOX MODEL IN CSS

2.4 SUMMARY

2.5 KEY TERMS

2.6 SELF-ASSESSMENT QUESTIONS

2.7 FURTHER READINGS

2.1 CASCADING STYLE SHEETS:

Style sheets represent the World Wide Web consortium’s effort to improve on the tag and

attribute based style of formatting. Style sheets provide a way of customizing whole pages all

at once and in much richer detail than the simple use of tags and attributes. The format of

style sheet will be:

<style type=”text/css”>

selector{property:value;property:value;}

selector{property:value;property:value;}

</style>

Every line in <style> tag is called as a „Rule‟ and a style rule has two parts:

a. Selector.

b. Set of declarations.

A selector is used to create a link between the rule and the HTML tag. The declaration has

two parts again:

a. Property.

b. Value.

A property specifies additional information and value specifies property value. For example:

<style type=”text/css”>

Centre for Distance Education 2.2 Acharya Nagarjuna University

body {background-color: #d0e4fe;}

h1 {

color: orange;

text-align: center;

}

p {

font-family: "Times New Roman";

font-size: 20px;

}

</style>

If we add above code in the <head> element of web page, entire web page will be displayed

in various styles given in style element.

Style sheets are implemented with cascading style sheets specification. Conventionally styles

are cascaded i.e., we don’t have to use just a single set of styles inside a document, but we

can import as many styles as we like. There are three mechanisms by which we can apply

styles to our HTML documents:

1. Inline Style sheets.

2. Embedded Style sheets.

3. External Style sheets.

2.1.1 Inline Style Sheets:

Inline style sheets mix content with presentation. To use inline styles we use style attribute in

the relevant tag.

➢ Applied directly within an HTML tag using the style attribute.

➢ Affects only the specific element.

Ex: <p style="color:blue; font-size:16px;">This is inline styled text.</p>

Example:

<html>

<head>

<title>HTML Tables</table>

</head>

<body bgcolor=‟pink‟>

<center>

<h1>Creating HTML Tables</h1>

<table border=”2” cellpadding=”4” cellspacing=”4”>

<tr>

<thcolspan=”2” style=”background-color:red”>WebSites</th>

</tr>

<tr>

<th style=”background-color:blue”>MailSites</th>

<th style=”background-color:green”>JobSites</th>

</tr>

<tr>

<td style=”background-color:grey”>Gmail</td>

<td style=”background-color:aqua”>Naukri</td>

</tr>

<tr>

<td style=”background-color:yellow”>Yahoo</td>

Web Technologies 2.3 Cascading Style Sheets

<td style=”background-color:purple”>JobStreet</td>

</tr>

</table>

</center>

</body>

</html>

Output:

2.1.2 Internal (or) Embedded Style sheets:

An embedded style sheet is used when a single document has a unique style. We define

internal styles in the head section of a HTML page by using „<style>‟ tag. The styles defined

using embedded style sheets are applied throughout the page and we put the styles into one

place.

➢ Defined within a <style> tag in the <head> section of the HTML document.

➢ Affects all elements on that page.

Example-1:

<head>

 <style>

 h1

 {

color: green;

text-align: center;

 }

</style>

</head>

Example-2:

<html>

Centre for Distance Education 2.4 Acharya Nagarjuna University

<head>

<title>Embedded Style sheets</title>

<style type=”text/css”>

body{background-color:pink;}

h1 {

color:orange;

text-align:

center;

}

p {

font-family: "Times New

Roman";

font-size: 20px;

}

</style>

</head>

<body>

<h1>Embedded Style Sheets</h1>

<p>This is a paragraph

</body>

</html>

Output:

2.1.3 External Style Sheets:

External style sheets are just that the style sheets are stored separately from our web page.

These are useful especially if we are setting the styles for an entire website. When we change

the styles in external style sheet we change the styles of all pages. We use „<link>‟ element

to access the style sheet file defined into our web page. The format of <link> element is:

<link rel=”stylesheet” type=”text/css” href=”extstylesheet.css”>

➢ Written in a separate .css file and linked to HTML using the <link> tag.

➢ Can be used across multiple HTML pages.

Web Technologies 2.5 Cascading Style Sheets

Example (in HTML):

<link rel="stylesheet" type="text/css" href="style.css">

Example (style.css):

body {

background-color: #f0f0f0;

font-family: Arial;

}

Example program:

extern.css:

body {background-color: #d0e4fe;}

h1 {

color: orange; text-align: center;

}

p {

font-family: "Times New Roman"; font-size: 20px;

}

extern.html:

<html>

<head>

<title>External Style Sheets</title>

<link rel=”stylesheet” type=”text/css” href=”extern.css”>

</head>

<body>

<h1>External Style Sheets</h1>

<p>This is a paragraph

</body>

</html>

Output:

Centre for Distance Education 2.6 Acharya Nagarjuna University

Cascading Order (Priority)

When multiple styles apply to the same element, CSS follows a specific order of precedence:

1. Inline CSS (Highest priority)

2. Internal CSS

3. External CSS

4. Browser default styles (Lowest priority)

The term "cascading" refers to this order of priority.

CSS Syntax:

selector {

property: value;

property: value;

}

Selector: The HTML element you want to style.

Property: The style attribute you want to change.

Value: The value you want to assign to that property.

Example:

p {

color: red;

font-size: 14px;

}

2.1.4 Common CSS Properties

Property Description Example

color Text color color: blue;

background-color Background color background-color: yellow;

font-size Size of the text font-size: 18px;

font-family Font type font-family: Arial;

text-align Alignment of text text-align: center;

margin
Space outside the

element
margin: 20px;

padding
Space inside the

element
padding: 10px;

border Border style border: 1px solid black;

width/height Size of an element width: 100px;

2.2 CSS SELECTORS

CSS selectors are used to "select" the HTML elements you want to style.

Web Technologies 2.7 Cascading Style Sheets

1. Universal Selector:

* {

margin: 0;

}

2. Element Selector:

h1 {

color: blue;

}

3. Class Selector:

.myclass {

font-size: 18px;

}

Used in HTML like: <p class="myclass">Text</p>

4. ID Selector:

#myid {

color: green;

}

Used in HTML like: <div id="myid">Box</div>

5. Group Selector:

h1, h2, p {

color: red;

}

6. Descendant Selector:

div p {

color: orange;

}

2.3 BOX MODEL IN CSS

Every HTML element is treated as a box with four components:

1. Content – The actual text or image.

2. Padding – Space between content and border.

3. Border – Surrounds the padding (if any) and content.

4. Margin – Space outside the border.

Box Model Example:

div {

padding: 10px;

border: 1px solid black;

margin: 20px;

}

Advanced CSS Features

Pseudo-classes (e.g., :hover, :first-child)

a:hover {

color: red;

}

Pseudo-elements (e.g.,::before, ::after)

p::first-letter {

Centre for Distance Education 2.8 Acharya Nagarjuna University

font-size: 30px;

}

Media Queries (for responsive design)

@media screen and (max-width: 600px) {

body {

background-color: lightblue;

 }

}

Animations and Transitions

div {

transition: all 0.3s ease-in-out;

}

Flexbox and Grid Layouts (modern layout techniques)

Advantages of CSS

➢ Enhances presentation and user experience.

➢ Reduces repetition and saves time.

➢ Makes maintenance easier.

➢ Supports responsive web design.

➢ Allows separation of concerns (structure vs. presentation).

Disadvantages of CSS

➢ Browser compatibility issues may occur.

➢ Complex projects may require a CSS preprocessor (like SCSS/SASS).

➢ Overriding styles can be difficult in large projects.

Note: CSS is an essential part of modern web development. It provides the tools needed to

make web pages visually appealing, consistent, and responsive. With advanced features like

Flex box, Grid, animations, and media queries, CSS goes far beyond just changing colors and

fonts—it shapes the entire user experience.

Example:

<html>

<head>

<title>My Web Page</title>

<style type="text/css">

h1{font-family:mssanserif;font-size:30;font-style:italic;fontweight:

bold;color:red;background-color:blue;border:thin groove}

.m{border-width:thick;border-color:red;border-style:dashed}

.mid{font-family:BankGothicLtBT;text-decoration:link;texttransformation:uppercase;text-

indentation:60%}

</style>

</head>

<body class="m">

<h1> ANUCS</h1>

<p class="mid">Acharya Nagarjuna University Guntur</p>

</div>

</body>

</html>

Web Technologies 2.9 Cascading Style Sheets

Output

2.4 SUMMARY

Cascading Style Sheets (CSS) is a styling language developed by the World Wide Web

Consortium (W3C) to enhance the visual presentation of web pages. It allows developers to

separate content (HTML) from design, making web development more efficient and

maintainable. CSS supports a concept called "cascading," where multiple styles can apply to

the same element with a specific order of precedence: inline styles have the highest priority,

followed by internal styles, external styles, and finally the browser's default styles. There are

three main ways to apply CSS: inline (directly within HTML tags), internal or embedded

(within a <style> tag in the <head> section), and external (linked via the <link> tag to a

separate CSS file).

CSS uses a variety of selectors to target HTML elements for styling. These include the

universal selector (*), element selectors (h1, p), class selectors (.classname), ID selectors

(#idname), group selectors (h1, p), and descendant selectors (div p). One of the key concepts

in CSS is the box model, which treats each HTML element as a box composed of four parts:

content, padding (space between content and border), border (surrounds the padding), and

margin (space outside the border). This model provides developers with fine-grained control

over the layout, spacing, and design of web elements, making CSS an essential tool for

creating visually appealing and user-friendly websites.

2.5 KEY TERMS

CSS (Cascading Style Sheets),W3C (World Wide Web Consortium), Style Separation,

Cascading Priority, Inline Style, Internal/Embedded Style, External Style, <style> Tag,

<link> Tag, CSS Selectors, Box Model, Browser Default Styles.

2.6 Self-Assessment Questions

1. What is CSS? Explain its importance in web development.

2. What are the different ways to apply CSS to an HTML document? Give examples.

3. What is the cascading order of CSS, and how does it affect styling?

4. Differentiate between inline, internal, and external style sheets with examples.

5. What are CSS selectors? Explain different types of selectors with examples.

6. Write a CSS rule to set the font color of all <h1> and <p> tags to blue.

7. What is the box model in CSS? Explain its components with a neat diagram.

8. Write the syntax for linking an external CSS file to an HTML page.

9. Describe the difference between padding and margin in the CSS box model.

10. What happens when multiple CSS rules apply to the same element?

Centre for Distance Education 2.10 Acharya Nagarjuna University

11. How do browser default styles influence the appearance of a web page?

12. Design a simple HTML page using an external CSS file that styles a heading and a

paragraph.

2.7 FURTHER READINGS

1. Web Programming, building internet applications, Chris Bates 2nd edition, WILEY

Dreamtech

2. Java Programming with JDBC; Donald Bales, O'Reilly

3. Java Network Programming, elliotte Rusty Harold, 3rd Edition, O'Reilly

4. Java Server Pages - Hans Bergsten, SPD O'Reilly

5. Robert W. Sebesta, "Programming the World Wide Web", Third Edition, Pearson

Education(2007).

6. Anders Moller and Michael schwartzbach, "An Introduction to XML und Web

7. Jeffrey C. Jackson, "Web Technologies - A Computer Science Perspective",

PearsonTechnologies", Addison Wesley (2006) Education (2008).

8. H.M.Deitel, P.J.Deitel. "Java How to Program", Sixth Edition, Pearson Education

(2007).

 Dr. Kampa Lavanya

LESSON-3

INTRODUCTION TO JAVASCRIPT AND CLIENT-SIDE SCRIPTING

OBJECTIVES:

➢ Understand the basic syntax rules of JavaScript and how to declare and use variables

effectively.

➢ Learn to define and call functions to organize reusable blocks of code.

➢ Explore how to handle user interactions through JavaScript events like clicks and

form submissions.

➢ Embed JavaScript into HTML documents using <script> tags in various ways (inline,

internal, external).

➢ Implement basic client-side form validation using JavaScript to ensure correct user

input before submission.

STRUCTURE:

3.1 JAVASCRIPT

 3.1.1KEY CAPABILITIES OF JAVASCRIPT

3.2 VARIABLES IN JAVASCRIPT

3.3 FUNCTIONS

3.4 EVENTS IN JAVASCRIPT

 3.4.1. INTRODUCTION TO EVENTS IN JAVASCRIPT

 3.4.2. COMMON TYPES OF JAVASCRIPT EVENTS

 3.4.3. ADDING EVENT HANDLERS IN JAVASCRIPT

 3.4.4. EVENT OBJECT

 3.4.5. EVENT PROPAGATION

 3.4.6. EVENT DELEGATION

 3.4.7. REMOVING EVENT LISTENERS

 3.4.8. KEYBOARD AND MOUSE EVENTS

 3.4.9. FORM EVENTS

 3.4.10. BEST PRACTICES FOR USING EVENTS

3.5 EMBEDDING JAVASCRIPT IN HTML

 3.5.1. USING THE <SCRIPT> TAG

 3.5.2. TYPES OF EMBEDDING JAVASCRIPT

3.6 FORM VALIDATION BASICS

3.7. DATA TYPES

3.8 SUMMARY

3.9 KEY TERMS

Centre for Distance Education 3.2Acharya Nagarjuna University

3.10 SELF-ASSESSMENT QUESTIONS

3.11 FURTHER READINGS

3.1 JAVASCRIPT

1. Introduction

JavaScript is a high-level, interpreted programming language used primarily for creating

interactive and dynamic content on web pages. It allows developers to implement features

like image sliders, form validation, dropdown menus, modal windows, and more.

2. History

• Created by: Brendan Eich in 1995 at Netscape.

• Initially called: Mocha, then LiveScript, and finally renamed JavaScript.

• Standardized as: ECMAScript (by ECMA International) in 1997.

3. Features of JavaScript

• JavaScript was designed to add interactivity to HTML pages

• Lightweight and interpreted: No need for compilation.

• Client-side scripting: Runs in the user's browser.

• Dynamic typing: Variables do not require type declaration.

• Prototype-based OOP: Supports object-oriented programming.

• Event-driven: Reacts to user actions like clicks and input.

• Cross-platform: Works on all modern browsers and devices.

• Asynchronous programming: Supports callbacks, promises, and async/await.

What Can JavaScript Do?

JavaScript provides HTML designers with a powerful programming tool. While HTML

authors may not always be trained programmers, JavaScript is a lightweight scripting

language with simple and readable syntax, making it accessible to beginners. With just small

code snippets, JavaScript can greatly enhance a webpage's functionality.

3.1.1Key Capabilities of JavaScript

a) Add Dynamic Content to Web Pages

o JavaScript can insert dynamic text into HTML using variables.

o Example:

o document.write("<h1>" + name + "</h1>");

This writes the value of the variable name directly into the HTML page.

b) React to User Events

o JavaScript can execute specific code in response to events such as:

• Page loading

• Mouse clicks

• Keyboard inputs

o This interactivity improves the user experience.

Web Technologies3.3Introduction to Javascript…

3

c) Read and Modify HTML Elements

o JavaScript can access and manipulate the content of HTML elements using the DOM

(Document Object Model).

d) It can change text, attributes, styles, and structure of the webpage dynamically.

e) Validate Form Data

o JavaScript can check user inputs before the form is submitted to the server.

o This reduces unnecessary server load and improves performance and user

feedback.

o Example checks: Empty fields, valid email format, password strength.

f) Detect Browser Information

o JavaScript can detect the user’s browser and operating system.

o This is useful for customizing content or redirecting users to a browser-

compatible version of the site.

g) Create and Manage Cookies

o JavaScript can store, retrieve, and delete cookies on the user's computer.

o Cookies are useful for saving user preferences, login sessions, and other

personalized data.

 4. JavaScript Syntax Basics

// Variable declaration

let name = "Alice"; // ES6 syntax

var age = 25; // ES5 syntax

const pi = 3.14; // Constant

// Function

function greet() {

alert("Hello, " + name);

}

// Conditional

if (age > 18) {

console.log("Adult");

} else {

console.log("Minor");

}

3.2 VARIABLES IN JAVASCRIPT

What is a Variable?

A variable in JavaScript is a named container used to store data that can be referenced and

manipulated in a program. Variables allow developers to reuse values and manage dynamic

data.

Declaring Variables

JavaScript provides three keywords to declare variables:

Keyword Scope Reassignment Hoisting Block Scoped

var Function Yes Yes No

let Block Yes No Yes

const Block No No Yes

Centre for Distance Education 3.4Acharya Nagarjuna University

 Syntax

var x = 10;

let name = "Alice";

const PI = 3.14;

• var is function-scoped and can be redeclared.

• let is block-scoped and cannot be redeclared in the same scope.

• const is block-scoped and must be initialized during declaration. Its value cannot be

changed (immutable binding).

 Variable Naming Rules

• Names must start with a letter, underscore _, or dollar sign $.

• Cannot start with a digit.

• Are case-sensitive (Name and name are different).

• Should not use reserved JavaScript keywords (like for, if, etc.)

Valid Names:

letuserName;

let $price;

let _totalAmount;

Invalid Names:

let 2value; // Invalid: starts with a number

let if; // Invalid: reserved keyword

 Data Types Stored in Variables

Variables can hold different types of data:

let age = 25; // Number

let name = "John"; // String

letisActive = true; // Boolean

let person = {name:"Ava"}; // Object

let items = [1, 2, 3]; // Array

let result = null; // Null

let score; // Undefined

Variable Scope

1. Global Scope – Declared outside any function or block.

2. Function Scope – Declared inside a function using var.

3. Block Scope – Declared using let or const inside {} like loops, if statements.

functiontestScope() {

var a = 10; // function scoped

let b = 20; // block scoped

if (true) {

let c = 30;

 console.log(c); // 30

 }

 // console.log(c); // Error: c is not defined

}

Variable Hosting

• var declarations are hoisted to the top of their scope but not initialized.

• let and const are hoisted but stay in the temporal dead zone (TDZ) until declared.

console.log(x); // undefined (due to hoisting)

var x = 5;

Web Technologies3.5Introduction to Javascript…

5

// console.log(y); // Error: Cannot access 'y' before initialization

let y = 10;

Best Practices

• Always prefer let or const over var.

• Use const when the value should not change.

• Declare variables at the top of their scope.

• Use meaningful names (e.g., userAge instead of x).

Example Program

<!DOCTYPE html>

<html>

 <body>

<h2>JavaScript Variable Example</h2>

<p id="demo"></p>

<script>

 constfirstName = "John";

 let age = 30;

 var message = firstName + " is " + age + " years old.";

 document.getElementById("demo").innerHTML = message;

</script>

 </body>

</html>

Output:

John is 30 years old.

3.3 FUNCTIONS

What is a Function?

A function is a block of reusable code designed to perform a specific task. Functions help

organize code, reduce repetition, and improve maintainability.

Why Use Functions?

• To reuse code.

• To break down complex problems into smaller, manageable parts.

• To improve readability and maintainability.

• To execute code only when invokedorcalled.

Function Declaration (Function Statement)

function greet() {

console.log("Hello, World!");

}

greet(); // Output: Hello, World!

Function Parameters and Arguments

Functions can accept inputs called parameters, and these values passed are called

arguments.

functiongreetUser(name) {

console.log("Hello, " + name + "!");

}

greetUser("Alice"); // Output: Hello, Alice!

Return Statement

Centre for Distance Education 3.6Acharya Nagarjuna University

Functions can return a value using the return keyword.

function add(a, b) {

return a + b;

}

let result = add(5, 3); // result is 8

Function Expressions

A function can also be defined as an expression and stored in a variable.

const multiply = function(x, y) {

return x * y;

};

console.log(multiply(4, 5)); // Output: 20

Arrow Functions (ES6+)

Arrow functions provide a shorter syntax for writing functions.

const square = (n) => {

return n * n;

};

console.log(square(6)); // Output: 36

Simplified Version (one-liner):

const square = n => n * n;

Anonymous Functions

Functions without a name are called anonymous functions. Often used in event handlers or

passed as arguments.

setTimeout(function() {

console.log("Executed after 2 seconds");

}, 2000);

Immediately Invoked Function Expression (IIFE)

A function that runs immediately after it is defined.

(function() {

console.log("IIFE executed!");

})();

Nested Functions

Functions can be defined inside other functions and have access to variables in the parent

function.

function outer() {

letouterVar = "I'm outer!";

function inner() {

console.log(outerVar); // Can access outer variable

 }

inner();

}

outer();

Function Scope

• Variables declared inside a function are local to that function.

• Functions have access to global variables and to variables in their parent functions

(closures).

Rest Parameters

Allows a function to accept an indefinite number of arguments as an array.

function sum(...numbers) {

Web Technologies3.7Introduction to Javascript…

7

returnnumbers.reduce((total, num) => total + num);

}

console.log(sum(1, 2, 3, 4)); // Output: 10

Default Parameters

Set default values for parameters.

function greet(name = "Guest") {

console.log("Hello, " + name);

}

greet(); // Output: Hello, Guest

greet("Ravi"); // Output: Hello, Ravi

Example: Function in HTML

<!DOCTYPE html>

<html>

 <body>

<h2>JavaScript Function Example</h2>

<p>Click the button to see a message.</p>

<button onclick="showMessage()">Click Me</button>

 <script>

functionshowMessage() {

alert("Hello! You clicked the button.");

 }

 </script>

 </body>

</html>

Best Practices

• Use descriptive function names.

• Keep functions small and focused on a single task.

• Avoid global variables inside functions.

• Use arrow functions for shorter syntax when appropriate.

• Use const or let when assigning functions to variables.

Common Use Cases

• Input validation

• Performing calculations

• Event handling (e.g., button clicks)

• API calls

• Data manipulation

3.4 EVENTS IN JAVASCRIPT

3.4.1. Introduction to Events in JavaScript

Events in JavaScript are actions or occurrences that happen in the browser, which JavaScript

can respond to. Examples of events include:

• A user clicking a button

Centre for Distance Education 3.8Acharya Nagarjuna University

• A web page loading

• A form being submitted

• A key being pressed

JavaScript allows developers to create dynamic and interactive web applications by reacting

to these events.

3.4.2. Common Types of JavaScript Events

Event Description

click Triggered when an element is clicked

dblclick Triggered when an element is double-clicked

mouseover Triggered when the mouse pointer moves over an element

mouseout Triggered when the mouse pointer moves out of an element

keydown Triggered when a key is pressed

keyup Triggered when a key is released

load Triggered when a page or image is fully loaded

submit Triggered when a form is submitted

change Triggered when the value of a form element changes

focus Triggered when an element gains focus

blur Triggered when an element loses focus

3.4.3. Adding Event Handlers in JavaScript

JavaScript provides multiple ways to attach event handlers to elements:

a) Inline HTML Event Handling

<button onclick="alert('Button clicked!')">Click Me</button>

b) Using DOM Properties

letbtn = document.getElementById("myBtn");

btn.onclick = function () {

alert("Button clicked!");

};

c) Using addEventListener()

letbtn = document.getElementById("myBtn");

Web Technologies3.9Introduction to Javascript…

9

btn.addEventListener("click", function () {

alert("Button clicked using addEventListener!");

});

addEventListener() is the preferred method as it allows attaching multiple handlers and

supports event bubbling and capturing.

3.4.4. Event Object

When an event occurs, an event object is automatically passed to the event handler. It

contains useful information like:

• type – the type of the event

• target – the element on which the event occurred

• preventDefault() – prevents the default action

• stopPropagation() – stops the event from bubbling up

document.getElementById("myForm").addEventListener("submit", function (event) {

event.preventDefault(); // Prevents form from submitting

alert("Form submission prevented!");

});

3.4.5. Event Propagation

JavaScript events follow a three-phase propagation model:

1. Capturing Phase (trickle down)

2. Target Phase (event reaches the target)

3. Bubbling Phase (bubble up to ancestors)

element.addEventListener("click", handler, true); // Capturing

element.addEventListener("click", handler, false); // Bubbling (default)

3.4.6. Event Delegation

Instead of adding event listeners to individual elements, event delegation allows attaching a

single event listener to a parent element that handles events for its child elements.

document.getElementById("parent").addEventListener("click", function (e) {

if (e.target&&e.target.matches("button.classname")) {

alert("Button inside parent clicked");

 }

});

3.4.7. Removing Event Listeners

You can remove an event listener using removeEventListener().

function greet() {

alert("Hello");

}

btn.addEventListener("click", greet);

// To remove

btn.removeEventListener("click", greet);

Centre for Distance Education 3.10Acharya Nagarjuna University

Note: The function reference must be the same to remove it.

3.4.8. Keyboard and Mouse Events

Keyboard Events: keydown, keypress, keyup

document.addEventListener("keydown", function (e) {

console.log("Key pressed:", e.key);

});

Mouse Events: click, dblclick, mousedown, mouseup, mousemove, mouseenter, mouseleave

document.addEventListener("mousemove", function (e) {

console.log("Mouse X:", e.clientX, "Mouse Y:", e.clientY);

});

3.4.9. Form Events

Form controls support events like:

• submit

• change

• focus

• blur

document.getElementById("name").addEventListener("change", function () {

alert("Name changed!");

});

3.4.10. Best Practices for Using Events

• Prefer addEventListener() over inline handlers

• Use event delegation for dynamic or multiple elements

• Always remove unused event listeners to avoid memory leaks

• Avoid anonymous functions if the event needs to be removed

• Use preventDefault() and stopPropagation() wisely

3.4.11. Example: Simple Event Handler

<!DOCTYPE html>

<html>

<head>

<title>Event Example</title>

</head>

<body>

<button id="btn">Click Me</button>

<script>

document.getElementById("btn").addEventListener("click", function () {

alert("Button was clicked!");

 });

</script>

</body>

</html>

Web Technologies3.11Introduction to Javascript…

11

Conclusion

Events in JavaScript are crucial for creating interactive and dynamic web applications.

Mastery of events and their proper handling ensures a responsive and user-friendly

experience. Understanding concepts like event propagation, delegation, and proper use of

listeners is essential for efficient JavaScript programming.

3.5 EMBEDDING JAVASCRIPT IN HTML

JavaScript can be embedded in an HTML document to add dynamic functionality to web

pages. This is done using the <script> tag. JavaScript can be embedded in several ways:

directly within the HTML file (inline or internal), or through an external JavaScript file.

3.5.1. Using the <script> Tag

The <script> tag is used to embed JavaScript code in HTML. It can be placed in the <head>

or <body> section of an HTML document.

<script>

 // JavaScript code goes here

</script>

3.5.2. Types of Embedding JavaScript

There are three main methods of embedding JavaScript into HTML:

a) Inline JavaScript

JavaScript code can be placed directly within an HTML element’s attribute, such as the

onclick attribute of a button.

Example:

<button onclick="alert('Hello, World!')">Click Me</button>

Use Case: Best for simple tasks and demonstrations. Not recommended for complex logic or

production code.

b) Internal JavaScript (Embedded in HTML)

You can write JavaScript within a <script> tag inside the HTML file, typically in the <head>

or at the end of the <body>.

Example:

<!DOCTYPE html>

<html>

<head>

<title>Internal JavaScript</title>

<script>

functiongreetUser() {

alert("Welcome to my website!");

 }

</script>

</head>

<body>

<button onclick="greetUser()">Say Hello</button>

</body>

</html>

Centre for Distance Education 3.12Acharya Nagarjuna University

c) External JavaScript

JavaScript can be written in a separate .js file and linked to the HTML document using the src

attribute of the <script> tag.

Example:

1. HTML File (index.html)

<!DOCTYPE html>

<html>

 <head>

 <title>External JavaScript</title>

 <script src="script.js"></script>

 </head>

 <body>

 <button onclick="greetUser()">Click Me</button>

 </body>

</html>

2. JavaScript File (script.js)

functiongreetUser() {

alert("Hello from external JavaScript!");

}

Benefits:

• Cleaner HTML code

• Reusability of scripts across pages

• Easier maintenance and debugging

Script Placement in HTML

Placement Description

<head> Executes before the content loads. May delay rendering.

End of <body> Preferred for performance. Loads content first, then script.

defer Attribute used to defer script execution until after HTML parsing.

async Attribute used to download and execute script asynchronously.

Example with defer:

<script src="script.js" defer></script>

Security Note

Avoid embedding user-generated content directly into <script> tags to prevent Cross-Site

Scripting (XSS) attacks.

Table

Method Where Used Use Case Example

Inline HTML attributes Quick tests, simple interactions <button onclick="alert('Hi')">

Internal <script> tag Page-specific logic <script>function(){...}</script>

External Linked .js file Reusable and maintainable code <script src="script.js"></script>

Best Practices

Web Technologies3.13Introduction to Javascript…

13

• Always place scripts just before </body> unless required in <head>.

• Use external JavaScript for modularity and reuse.

• Avoid inline JavaScript in production.

• Use defer or async for performance optimization.

3.6 FORM VALIDATION BASICS

Form validation is the process of checking the data entered into a form to ensure it meets

certain rules before it is submitted to a server. It helps in maintaining data quality, enhancing

user experience, and improving security.

Types of Form Validation

1. Client-Side Validation

o Happens in the user's browser (before data is sent to the server).

o Uses HTML5 attributesorJavaScript.

o Provides immediate feedback.

2. Server-Side Validation

o Happens on the server after the form is submitted.

o Essential for security (users can bypass client-side validation).

o Typically done using languages like PHP, Python, Java, etc.

Common Validation Rules

o Required fields: Ensures the user has entered something.

o Data type checks: Ensures values are numbers, emails, URLs, etc.

o Length checks: Limits input to a specific number of characters.

o Pattern matching: Validates format using regular expressions (e.g., phone number,

postal code).

• Matching fields: Confirms that values in two fields are the same (e.g., password and

confirm password).

Client-Side Validation Techniques

1. HTML5 Attributes

• required: Field must be filled.

• type="email": Must be a valid email format.

• min, max, maxlength: Numeric or text length limits.

• pattern: Regular expression validation.

<form>

<input type="text" name="name" required>

<input type="email" name="email" required>

<input type="password" name="pwd" minlength="6" required>

<input type="submit">

</form>

Example

<!DOCTYPE html>

<html>

<head>

<script>

functionvalidateForm() {

let x = document.forms["myForm"]["fname"].value;

if (x == "") {

Centre for Distance Education 3.14Acharya Nagarjuna University

alert("Name must be filled out");

return false;

 }

}

</script>

</head>

<body>

<h2>JavaScript Validation</h2>

<form name="myForm" action="/action_page.php" onsubmit="return validateForm()"

method="post">

 Name: <input type="text" name="fname">

<input type="submit" value="Submit">

</form>

</body>

</html>

Output:

Common Use Cases

• Form validation

• Image sliders

• Interactive maps

• Popups/modals

• Real-time updates (chat, notifications)

• Games

• AJAX requests (load data without refreshing page)

Advantages

• Enhances user experience

• Reduces server load

• Fast client-side processing

• Wide community and support

 Limitations

• Runs in the browser – can't access server files directly

• Code visibility (can be viewed and modified by users)

• May behave differently across browsers if not standardized

 Modern JavaScript Tools and Frameworks

• Libraries: jQuery, Axios

• Frameworks: React, Angular, Vue.js

• Runtimes: Node.js (for server-side JS)

• Build tools: Webpack, Babel, ESLint

Note:

Web Technologies3.15Introduction to Javascript…

15

JavaScript is an essential language for web development. It bridges the gap between static

HTML/CSS and dynamic user interaction, making websites more functional, responsive, and

user-friendly.

Example: Change Text on Button Click

<!DOCTYPE html>

<html>

<head>

<title>JavaScript Example</title>

</head>

<body>

<p id="myParagraph">This is the initial text.</p>

<button onclick="changeText()">Click Me</button>

<script>

functionchangeText() {

document.getElementById("myParagraph").innerHTML = "This text has been changed!";

 }

</script>

</body>

</html>

Explanation of Code

1. HTML Structure:

o A paragraph element is defined with the ID myParagraph.

o A button element is provided to trigger the JavaScript function.

2. JavaScript Functionality:

o The changeText() function is defined inside a <script> tag.

o It uses document.getElementById("myParagraph") to access the paragraph.

o The innerHTML property is used to change the paragraph’s content.

3. Event Handling:

o The onclick attribute of the button is used to call the changeText() function

when the button is clicked.

4. Output:

o Initially, the paragraph displays: "This is the initial text."

o After clicking the button, the paragraph updates to: "This text has been

changed!"

Key JavaScript Concepts Demonstrated

• HTML Structure: Defines the elements to be manipulated.

• JavaScript Behavior: Provides interactivity and control logic.

• Event Handling: The onclick event responds to user actions.

• DOM Manipulation: document.getElementById() and innerHTML are used to

modify webpage content.

• Functions: Encapsulate reusable code logic that executes when triggered.

3.7DATA TYPES

Centre for Distance Education 3.16Acharya Nagarjuna University

• Primitive: String, Number, Boolean, Null, Undefined, Symbol, BigInt.

• Non-Primitive: Object, Array, Function.

Strings - are a series of letters and numbers enclosed in quotation marks. JavaScript uses the

string literally; it doesn't process it. You'll use strings for text you want displayed or values

you want passed along.

 Numbers - are values that can be processed and calculated. You don't enclose them in

quotation marks. The numbers can be either positive or negative.

Boolean (true/false) - lets you evaluate whether a condition meets or does not meet specified

criteria.

Null - is an empty value. null is not the same as 0 -- 0 is a real, calculable number, whereas

null is the absence of any value.

Data Types

3.8SUMMARY

JavaScript is a high-level, interpreted scripting language designed to make web pages

interactive and dynamic. Developed by Brendan Eich in 1995 and standardized as

ECMAScript in 1997, it supports features such as dynamic typing, prototype-based object-

oriented programming, event-driven design, and asynchronous operations. With JavaScript,

developers can manipulate HTML elements, validate form data, detect browsers, and manage

cookies, making it a key component of front-end web development.

Variables in JavaScript can be declared using var, let, or const, each offering different scope

and behavior. The language supports multiple data types and enforces specific naming rules

for identifiers. Functions—whether defined through declarations, expressions, or arrow

syntax—enable code reuse and modularity. Events are central to JavaScript, allowing

responses to user interactions like mouse clicks, keypresses, or page loads. Event handling

can be implemented inline, through DOM properties, or using the addEventListener()

method, providing flexibility in interaction management.

JavaScript can be embedded into HTML using the <script> tag, either inline, internally

within the HTML document, or externally via linked script files. External scripts encourage

cleaner, modular code. Additionally, the defer and async attributes optimize how scripts load

and execute, improving performance. Through its event-driven model, versatile syntax, and

seamless integration with HTML and CSS, JavaScript remains an essential tool for creating

modern, responsive, and interactive web applications.

Web Technologies3.17Introduction to Javascript…

17

3.9KEY TERMS

JavaScript,ECMAScript,Variable (var, let, const),DataTypes,Function,Arrow

Function,EventHandling,DOM (Document Object

Model),FormValidation,addEventListener(),EventDelegation,EventPropagation,Script Tag

(<script>),Inline/Internal/External JavaScript,Hoisting.

3.10 Self-Assessment Questions

1. What is JavaScript and where is it primarily used?

2. What is the difference between var, let, and const in JavaScript?

3. List some of the basic data types in JavaScript.

4. What is the purpose of functions in JavaScript?

5. How do arrow functions differ from regular functions in JavaScript?

6. What is the DOM in JavaScript?

7. How can JavaScript be added to an HTML document?

8. What is form validation and why is it important in JavaScript?

9. Explain the use of addEventListener() in event handling.

10. What is the difference between inline, internal, and external JavaScript?

3.11Further Readings

1. JavaScript: The Definitive Guide, Seventh Editionby David Flanagan. O'Reilly

Media.

2. Eloquent JavaScript: A Modern Introduction to Programming, Third

EditionbyMarijnHaverbeke. No Starch Press.

3. Beginning JavaScript, Fifth EditionbyJeremy McPeak. Wrox (Wiley).

4. Learning JavaScript Design Patterns, First EditionbyAddyOsmani. O'Reilly Media.

5. The complete Reference Java 2 Fifth Edition by Patrick Naughton and Herbert

Schildt. TMH

 Dr. Kampa Lavanya

LESSON-4

OBJECTS IN JAVA SCRIPTAND DYNAMIC HTML (DHTML)

AIM AND OBJECTIVES:

➢ Understand the concepts and structure of JavaScript objects, including their properties

and methods.

➢ Learn how to create, access, modify, and delete object properties using different

approaches.

➢ Explore how to use JavaScript to dynamically change HTML content, attributes, and

styles.

➢ Apply the this keyword and object methods to build real-world functionalities.

➢ Demonstrate the use of JavaScript to manipulate DOM elements for creating

interactive web pages.

STRUCTURE:

4.1 OBJECTS IN JAVASCRIPT

4.2 DYNAMIC HTML WITH JAVA SCRIPT.

 4.2.1 HOW JAVASCRIPT ENABLES DHTML

 4.2.2 DOM METHODS IN DHTML

4.3 SUMMARY

4.4 KEY TERMS

4.5 SELF-ASSESSMENT QUESTIONS

4.6 FURTHER READINGS

4.1 OBJECTS IN JAVASCRIPT

In JavaScript, objects are collections of related data and functionality. These can include

built-in objects provided by the browser (like window, document, etc.) or user-defined

objects. Objects contain properties (values) and methods (functions).

1. Window Object

The windowobject is the top-level object in the browser's JavaScript environment. It

represents the browser window or tab that displays the HTML document. Every global

Centre for Distance Education 4.2 Acharya Nagarjuna University

variable, function, or object created in JavaScript is automatically a member of the window

object.

Key Features:

• It is automatically created by the browser when a web page loads.

• Acts as the global object in browsers.

• Contains properties like location, history, navigator, etc.

• Provides methods like alert(), prompt(), confirm(), setTimeout(), and setInterval().

Note:

• The window object is global, so you usually don’t need to type window.explicitly.

• alert("Hello!"); // Equivalent to window.alert("Hello!");

• console.log(window.innerHeight); // Displays window height

Common Properties:

Property Description

window.innerWidth Width of the content area of the window

window.innerHeight Height of the content area

window.location Provides URL and navigation functions

window.document Refers to the current page's document

window.navigator Gives browser information

window.history Controls the session history

Common Methods:

Method Description

alert(message) Displays a popup alert box

confirm(message) Displays a popup with OK and Cancel

prompt(message) Displays a popup with a text input field

setTimeout(fn, time) Executes a function after a delay

Web Technologies 4.3 Objects In Java Scriptand Dynamic…..

3

Method Description

setInterval(fn, time) Repeats function execution at intervals

open(url) Opens a new browser window

close() Closes the current window

Example Usage:

// Display an alert box

window.alert("Welcome to JavaScript!");

// Set a timeout

window.setTimeout(function() {

alert("This alert appears after 3 seconds.");

}, 3000);

// Log the window dimensions

console.log("Width: " + window.innerWidth);

console.log("Height: " + window.innerHeight);

// Redirect to another URL

window.location.href = "https://www.example.com";

2. Navigator Object

The Navigator Object is a built-in object in JavaScript that contains information about the

web browser being used by the client (user). It is a property of the window object, and it

provides useful metadata about the browser's name, version, platform, and capabilities.

The navigator object is often used for browser detection and for controlling or accessing

certain browser features.

Syntax:

window.navigator

// or simply

navigator

Key Properties of Navigator Object:

Property Description

appName
Returns the name of the browser (mostly returns "Netscape" for

compatibility reasons)

Centre for Distance Education 4.4 Acharya Nagarjuna University

Property Description

appCodeName Returns the code name of the browser (usually "Mozilla")

appVersion Returns the version information of the browser

userAgent Returns the user-agent header sent by the browser to the server

platform
Returns the platform on which the browser is running (e.g., "Win32",

"Linux x86_64")

language or

languages
Returns the language preference of the browser

cookieEnabled Returns true if cookies are enabled in the browser

onLine Returns true if the browser is online

javaEnabled() Returns true if Java is enabled in the browser

plugins Returns a list of all plugins installed in the browser

mimeTypes Returns a list of all MIME types supported by the browser

hardwareConcurrency Returns the number of logical processors available to run threads

maxTouchPoints Returns the maximum number of simultaneous touch points supported

webdriver
Returns true if the browser is controlled by automation (e.g.,

Selenium)

Example: Using Navigator Object

<!DOCTYPE html>

<html>

<head>

<title>Navigator Object Example</title>

</head>

<body>

<h2>Browser Information</h2>

<script>

document.write("Browser Name: " + navigator.appName + "
");

document.write("Browser Code Name: " + navigator.appCodeName + "
");

document.write("Browser Version: " + navigator.appVersion + "
");

Web Technologies 4.5 Objects In Java Scriptand Dynamic…..

5

document.write("Platform: " + navigator.platform + "
");

document.write("User Agent: " + navigator.userAgent + "
");

document.write("Cookies Enabled: " + navigator.cookieEnabled + "
");

document.write("Online Status: " + navigator.onLine + "
");

</script>

</body>

</html>

Common Uses of Navigator Object

1. Browser Detection:

To perform actions depending on which browser is being used (though feature

detection is preferred over browser detection).

2. Language Preferences:

To customize content based on the user's preferred language.

3. Online/Offline Detection:

To check whether the user is connected to the internet.

4. Feature Availability:

Determine if Java, cookies, or other plugins are enabled or available.

Note:

Avoid relying solely on browser detection using the navigator object for functionality.

Instead, use feature detection (via libraries like Modernizer) to ensure consistent behavior

across different environments.

Table

Feature Description

Object Name navigator

Purpose Provides information about the browser and system

Important Properties userAgent, platform, language, cookieEnabled, onLine

Common Use Browser info, feature support, user customization

Key Properties:

• navigator.appName: Browser name

• navigator.appVersion: Browser version

• navigator.platform: OS platform

• navigator.language: Language setting

• navigator.onLine: Checks if the browser is online

Centre for Distance Education 4.6 Acharya Nagarjuna University

Example:

console.log("Browser Name: " + navigator.appName);

console.log("Online: " + navigator.onLine);

3. Document Object

The documentobject is a part of the Browser Object Model (BOM) and more specifically, it is

the core of the DOM (Document Object Model). It represents the webpage loaded in the

browser and acts as an entry point to access and manipulate HTML content, structure, and

styles through JavaScript.

Syntax:

window.document

// or simply

document

Purpose of Document Object

• To access elements in the HTML document.

• To modify the structure, style, and content of the webpage.

• To handle events.

• To dynamically create or delete HTML elements.

Important Properties of Document Object

Property Description

document.title Gets or sets the title of the document

document.URL Returns the complete URL of the document

document.domain Gets the domain name of the server

document.body Represents the <body> element of the document

document.head Represents the <head> element of the document

document.forms Returns a collection of all <form> elements

document.images Returns a collection of all elements

document.links Returns a collection of all <a> elements with an href

Web Technologies 4.7 Objects In Java Scriptand Dynamic…..

7

Property Description

document.cookie Gets or sets cookies for the current page

document.readyState
Returns the loading state of the document (e.g.,

"loading", "complete")

document.documentElement Returns the root <html> element

Commonly Used Methods of Document Object

Method Description

getElementById(id) Returns the element with the specified ID

getElementsByTagName(tag) Returns a collection of elements with the given tag name

getElementsByClassName(class)
Returns a collection of elements with the specified class

name

querySelector(selector) Returns the first element that matches the CSS selector

querySelectorAll(selector) Returns all elements that match the CSS selector

createElement(tag) Creates a new HTML element

createTextNode(text) Creates a new text node

appendChild(node)
Adds a node to the end of a list of children of a specified

parent

removeChild(node) Removes a child node from the document

write(text)
Writes HTML expressions or JavaScript code to the

document

open() Opens a document for writing

close() Closes a document stream opened with document.open()

Centre for Distance Education 4.8 Acharya Nagarjuna University

Example: Access and Modify Elements

<!DOCTYPE html>

<html>

<head>

<title>Document Object Example</title>

</head>

<body>

<h1 id="heading">Hello World</h1>

<p class="message">This is a paragraph.</p>

<script>

 // Access and modify content using document object

document.getElementById("heading").innerHTML = "Welcome to JavaScript!";

document.querySelector(".message").style.color = "blue";

alert("Page Title: " + document.title);

</script>

</body>

</html>

Use Cases of the Document Object

• Reading or changing the page content dynamically.

• Adding or removing HTML elements using JavaScript.

• Validating form input.

• Responding to user interactions like clicks and key presses.

• Manipulating CSS styles and classes.

Important Notes

• Changes made using the document object reflect immediately on the webpage.

• document.write() should be avoided after the page has loaded as it can overwrite the

entire document.

Table

Feature Description

Object Name document

Part of DOM (Document Object Model)

Purpose Interact with and modify the HTML structure

Common Methods getElementById(), querySelector(), createElement(), write()

Web Technologies 4.9 Objects In Java Scriptand Dynamic…..

9

Feature Description

Common Properties title, URL, body, head, forms, images

Usage Dynamic HTML manipulation, event handling, content modification

Common Methods:

• getElementById()

• getElementsByTagName()

• querySelector()

• createElement(), appendChild()

Example:

document.getElementById("demo").innerHTML = "Text changed!";

4. Form Object

Form Object in JavaScript

The Formobject in JavaScript represents an HTML <form> element. It allows JavaScript to

access, manipulate, validate, and submit form data dynamically.

Each form in an HTML document becomes a part of the document.forms collection. You can

access a form either by its index or name.

Syntax:

// Access form by index

document.forms[0]

// Access form by name (name attribute in HTML)

document.forms["formName"]

Purpose of the Form Object

• To retrieve form input values.

• To set or modify form fields.

• To validate form inputs before submission.

• To handle form submission via JavaScript.

Centre for Distance Education 4.10 Acharya Nagarjuna University

Important Properties of the Form Object

Property Description

elements Collection of all form elements (inputs, selects, buttons, etc.)

length Number of elements in the form

name The name of the form (from the name attribute)

action URL where the form data is sent (from the action attribute)

method HTTP method used when submitting the form (GET or POST)

target Specifies where to display the response (like _blank, _self)

enctype
Encoding type for submitted form data (e.g., application/x-www-form-

urlencoded)

acceptCharset Character encodings the server can handle

autocomplete Indicates whether form input fields can be auto-completed (on or off)

noValidate If present, form will not be validated on submit

Common Methods of the Form Object

Method Description

submit() Submits the form programmatically

reset() Resets all form fields to their default values

checkValidity() Returns true if the form is valid

reportValidity() Reports validity and displays error messages if invalid

Example: Accessing and Using Form Object

<!DOCTYPE html>

<html>

<head>

<title>Form Object Example</title>

</head>

Web Technologies 4.11 Objects In Java Scriptand Dynamic…..

11

<body>

<form name="myForm" action="/submit" method="post">

 Name: <input type="text" name="username">

 Email: <input type="email" name="email">

<input type="button" value="Submit" onclick="submitForm()">

</form>

<script>

functionsubmitForm() {

var form = document.forms["myForm"];

var name = form["username"].value;

var email = form["email"].value;

if (name === "" || email === "") {

alert("All fields are required!");

 } else {

alert("Form submitted with:\nName: " + name + "\nEmail: " + email);

form.submit(); // optional: submit programmatically

 }

 }

</script>

</body>

</html>

Form Validation Example

functionvalidateForm() {

var form = document.forms["myForm"];

if (!form.checkValidity()) {

alert("Form is invalid!");

 } else {

alert("Form is valid and ready to submit.");

 }

}

Accessing Form Elements

You can access individual form fields using:

document.forms["myForm"]["username"].value;

Or loop through all form elements:

var form = document.forms[0];

for (vari = 0; i<form.length; i++) {

console.log(form.elements[i].name + ": " + form.elements[i].value);

Centre for Distance Education 4.12 Acharya Nagarjuna University

}

Table

Feature Details

Object Form

Part of DOM (document.forms)

Used for Accessing and manipulating form fields

Properties elements, action, method, target, length, name

Methods submit(), reset(), checkValidity(), reportValidity()

Use Cases
Input validation, programmatic form submission, dynamic data

handling

5. Date Object

Date Object in JavaScript

The Dateobject is a built-in JavaScript object used to work with dates and times. It allows

you to create, retrieve, and manipulate date and time values such as the current date, day,

month, year, hour, minute, second, and millisecond.

Syntax:

let date = new Date(); // Current date and time

let date = new Date(milliseconds); // Date based on milliseconds since Jan 1, 1970

let date = new Date(dateString); // Date from a string (e.g., "2025-06-11")

let date = new Date(year, month, day, hours, minutes, seconds, ms);

Note: In JavaScript, months are zero-indexed (January = 0, December = 11).

Creating Date Objects

1. Current Date and Time

let now = new Date();

Web Technologies 4.13 Objects In Java Scriptand Dynamic…..

13

2. From String

let d = new Date("2025-06-11");

3. From Components

let d = new Date(2025, 5, 11, 10, 30, 0); // June 11, 2025 10:30:00

4. From Milliseconds

let d = new Date(0); // January 1, 1970 (Unix Epoch Time)

Important Date Methods

Getter Methods (to retrieve parts of the date)

Method Description

getFullYear() Returns the 4-digit year (e.g., 2025)

getMonth() Returns the month (0–11)

getDate() Returns the day of the month (1–31)

getDay() Returns the day of the week (0–6, where 0 = Sunday)

getHours() Returns the hour (0–23)

getMinutes() Returns the minutes (0–59)

getSeconds() Returns the seconds (0–59)

getMilliseconds() Returns the milliseconds (0–999)

getTime() Returns milliseconds since Jan 1, 1970

getTimezoneOffset() Returns difference from UTC in minutes

Setter Methods (to set parts of the date)

Method Description

setFullYear(year) Sets the full year

Centre for Distance Education 4.14 Acharya Nagarjuna University

Method Description

setMonth(month) Sets the month (0–11)

setDate(day) Sets the day of the month

setHours(hour) Sets the hour

setMinutes(min) Sets the minutes

setSeconds(sec) Sets the seconds

setMilliseconds(ms) Sets the milliseconds

setTime(ms) Sets the date based on milliseconds since 1970

Conversion Methods

Method Description

toDateString() Returns date as a readable string (e.g., "Wed Jun 11 2025")

toTimeString() Returns time as a readable string (e.g., "10:30:00 GMT+0530")

toISOString() Returns ISO format string (e.g., "2025-06-11T05:00:00.000Z")

toLocaleDateString() Returns date as a localized string

toLocaleTimeString() Returns time as a localized string

toUTCString() Returns UTC date string

Examples

Example 1: Get Current Date and Time

let now = new Date();

console.log(now.toString());

Example 2: Extract Date Components

let today = new Date();

console.log("Year: " + today.getFullYear());

console.log("Month: " + today.getMonth()); // 0 = January

Web Technologies 4.15 Objects In Java Scriptand Dynamic…..

15

console.log("Date: " + today.getDate());

console.log("Day: " + today.getDay()); // 0 = Sunday

Example 3: Set Custom Date

letcustomDate = new Date();

customDate.setFullYear(2026);

customDate.setMonth(11); // December

customDate.setDate(25);

console.log(customDate.toDateString()); // "Fri Dec 25 2026"

Example 4: Compare Two Dates

let d1 = new Date("2025-06-01");

let d2 = new Date("2025-06-11");

if (d1 < d2) {

console.log("d1 is earlier than d2");

}

Use Cases of Date Object

• Displaying current date and time

• Calculating date differences

• Creating countdowns or clocks

• Validating date input in forms

• Generating timestamps for logs

Important Notes

• Months are 0-indexed: January is 0, December is 11.

• Always consider time zone differences when working with global users.

• Prefer using toISOString() or toLocaleString() for consistent formatting.

Table

Feature Description

Object Date

Purpose Work with dates and times

Common Getters getFullYear(), getMonth(), getDate(), getHours()

Common Setters setFullYear(), setMonth(), setDate()

Centre for Distance Education 4.16 Acharya Nagarjuna University

Feature Description

Formats toString(), toISOString(), toLocaleString()

Use Cases Clocks, timestamps, reminders, form validations

6. String Object

The Stringobject in JavaScript is a built-in object that allows you to create, manipulate,

andwork with text (string values). Strings are sequences of characters used for storing and

manipulating text.

What is a String?

A string is a sequence of characters enclosed in:

• single quotes ('')

• double quotes ("")

• backticks (``) — for template literals

let str1 = 'Hello';

let str2 = "World";

let str3 = `Hello, ${str2}`; // Template literal

Creating String Objects

1. String Literal

let name = "JavaScript";

2. String Object Using Constructor

letnameObj = new String("JavaScript");

Note: Using string objects (new String(...)) is not recommended for regular usage. Use string

literals for simplicity and performance.

Common String Properties

Property Description

length Returns the number of characters in the string

Web Technologies 4.17 Objects In Java Scriptand Dynamic…..

17

let text = "Hello World";

console.log(text.length); // Output: 11

Common String Methods

String Inspection Methods

Method Description

charAt(index) Returns the character at a specified index

charCodeAt(index) Returns the Unicode of the character

includes(substring) Checks if the string contains a substring

startsWith(substring) Checks if the string starts with a substring

endsWith(substring) Checks if the string ends with a substring

indexOf(substring) Returns the index of the first occurrence

lastIndexOf(substring) Returns the last index of the substring

String Manipulation Methods

Method Description

concat(string2) Combines two or more strings

replace(search, replace) Replaces substring with another

replaceAll(search, replace) Replaces all occurrences

slice(start, end) Extracts part of a string

substring(start, end)
Similar to slice but does not accept negative

indices

substr(start, length) Deprecated; use slice instead

toLowerCase() Converts string to lowercase

toUpperCase() Converts string to uppercase

Centre for Distance Education 4.18 Acharya Nagarjuna University

Method Description

trim() Removes whitespace from both ends

trimStart() / trimEnd() Trims start or end spaces

String Splitting and Matching

Method Description

split(separator) Splits a string into an array

match(regex) Matches string against a regular expression

matchAll(regex) Returns all matches as an iterator

search(regex) Searches for a match using a regular expression

includes(text) Checks if text exists in the string

String Conversion Methods

Method Description

toString() Returns string representation

valueOf() Returns the primitive string value

Examples

Example 1: Basic Usage

letmsg = "Hello JavaScript";

console.log(msg.length); // 17

console.log(msg.charAt(0)); // "H"

console.log(msg.toUpperCase()); // "HELLO JAVASCRIPT"

Example 2: Searching and Replacing

let txt = "The rain in Spain";

console.log(txt.includes("rain")); // true

Web Technologies 4.19 Objects In Java Scriptand Dynamic…..

19

console.log(txt.indexOf("rain")); // 4

console.log(txt.replace("rain", "sun")); // "The sun in Spain"

Example 3: Extracting Parts of a String

letstr = "Hello, world!";

console.log(str.slice(0, 5)); // "Hello"

console.log(str.substring(7)); // "world!"

Example 4: Using Template Literals

let name = "Alice";

let greeting = `Hello, ${name}!`;

console.log(greeting); // "Hello, Alice!"

Example 5: Splitting a String

letcsv = "apple,banana,orange";

let fruits = csv.split(",");

console.log(fruits); // ["apple", "banana", "orange"]

 Use Cases of String Object

• Displaying and formatting messages

• Validating form inputs

• Searching and filtering text

• Parsing and formatting data

• Creating dynamic content (e.g., templates)

Important Notes

• Strings are immutable: operations like replace() or concat() return a new string, not

modify the original.

• Prefer using string literals instead of new String().

• For multi-line strings or embedded variables, use template literals (`) with ${}.

Table

Feature Description

Object String

Type Wrapper object for text

Centre for Distance Education 4.20 Acharya Nagarjuna University

Feature Description

Common Property Length

Common Methods charAt(), slice(), toUpperCase(), replace(), split()

Use Cases Text display, manipulation, validation, and search

Mutability Immutable – returns new string after changes

7. Array Object

The Arrayobject in JavaScript is a built-in object used to store multiple values in a

singlevariable. Arrays are versatile data structures that allow storing items like numbers,

strings, objects, and even other arrays.

What is an Array?

An array is a collection of items stored in a single variable. Each item has a numeric index,

starting from 0.

let fruits = ["Apple", "Banana", "Cherry"];

Creating Arrays

1. Array Literal (Recommended)

let colors = ["Red", "Green", "Blue"];

2. Using new Array() Constructor

let numbers = new Array(1, 2, 3, 4);

3. Creating an Empty Array

letemptyArr = [];

Avoid using new Array(size) unless you know what you are doing. It creates an empty array

of a specific length but without elements.

Web Technologies 4.21 Objects In Java Scriptand Dynamic…..

21

Array Properties

Property Description

length Returns the number of elements in the array

letarr = [10, 20, 30];

console.log(arr.length); // Output: 3

Common Array Methods

Adding & Removing Elements

Method Description

push(item) Adds item to the end

pop() Removes and returns the last item

unshift(item) Adds item to the beginning

shift() Removes and returns the first item

splice(start, deleteCount, items...) Adds/removes elements at a specific index

slice(start, end) Returns a shallow copy of a portion of the array

Searching & Testing

Method Description

indexOf(item) Returns the first index of the item

lastIndexOf(item) Returns the last index of the item

includes(item) Checks if the array contains the item

find(callback) Returns the first element that satisfies the condition

findIndex(callback) Returns the index of the first element that satisfies the condition

some(callback) Returns true if at least one element passes the test

every(callback) Returns true if all elements pass the test

Centre for Distance Education 4.22 Acharya Nagarjuna University

Iteration and Transformation

Method Description

forEach(callback) Executes a function on each element

map(callback) Creates a new array with transformed values

filter(callback) Creates a new array with elements that pass the test

reduce(callback, initialValue) Reduces array to a single value

flat(depth) Flattens nested arrays

flatMap(callback) Maps and flattens results into a new array

Sorting & Reversing

Method Description

sort(compareFunction) Sorts the array elements in-place

reverse() Reverses the order of the elements

Joining & Converting

Method Description

join(separator) Joins all elements into a string

toString() Converts array to a string (comma-separated)

Array.isArray() Checks whether a variable is an array

Examples

Example 1: Creating and Accessing Elements

let fruits = ["Apple", "Banana", "Cherry"];

console.log(fruits[0]); // Output: "Apple"

console.log(fruits.length); // Output: 3

Web Technologies 4.23 Objects In Java Scriptand Dynamic…..

23

Example 2: Adding and Removing

fruits.push("Mango");

console.log(fruits); // ["Apple", "Banana", "Cherry", "Mango"]

fruits.pop();

console.log(fruits); // ["Apple", "Banana", "Cherry"]

Example 3: Iterating Over an Array

fruits.forEach(function(item, index) {

console.log(index + ": " + item);

});

Example 4: Transforming with map()

let numbers = [1, 2, 3];

let squared = numbers.map(n => n * n);

console.log(squared); // [1, 4, 9]

Example 5: Filtering with filter()

let scores = [45, 67, 89, 30];

let passed = scores.filter(score => score >= 50);

console.log(passed); // [67, 89]

Example 6: Reducing with reduce()

let total = [10, 20, 30].reduce((acc, curr) =>acc + curr, 0);

console.log(total); // 60

Use Cases of Array Object

• Storing lists of items (names, numbers, etc.)

• Iterating and transforming data

• Filtering and sorting information

• Storing results from APIs or form data

• Creating dynamic UI components

Important Notes

• JavaScript arrays are dynamic — they grow/shrink in size.

• Arrays can store mixeddata types, but it's best to use uniform types.

• Use Array.isArray() to check if a variable is truly an array (as typeof returns "object").

Centre for Distance Education 4.24 Acharya Nagarjuna University

Table

Feature Description

Object Array

Purpose Store and manipulate ordered collections of data

Indexing Starts from 0

Property Length

Common Methods push(), pop(), map(), filter(), reduce(), sort()

Use Cases Lists, filtering, mapping, sorting, iteration, UI building

Type Check Array.isArray(var)

Overview Table

Object Purpose Example Method / Property

window Global browser context alert(), setTimeout()

navigator Browser information navigator.appName

document HTML document interaction getElementById()

form HTML form access and data document.forms

Date Dates and time manipulation getDate(), getFullYear()

String Text processing toUpperCase(), replace()

Array Collection of values push(), length, sort()

4.2 DYNAMIC HTML WITH JAVA SCRIPT

What is Dynamic HTML (DHTML)?

Dynamic HTML (DHTML) is not a language itself, but a collection of technologies used

together to create interactive and dynamic websites. DHTML allows web pages to

changeafter they are loaded, without requiring a full page reload.

DHTML Combines:

• HTML – to define structure/content

• CSS – to style and position elements

• JavaScript – to add interactivity and control behavior

• DOM (Document Object Model) – to access and manipulate HTML elements

dynamically

Web Technologies 4.25 Objects In Java Scriptand Dynamic…..

25

Purpose of DHTML

• Enhance user experience with interactive and responsive interfaces

• Create animations, dropdown menus, form validation, etc.

• Update content dynamically without reloading the entire page

Core Components of DHTML

Component Role

HTML Provides the basic structure and elements of the page

CSS Styles elements dynamically (e.g., color, font, layout)

JavaScript Adds functionality and manipulates page content

DOM Allows access and modification of elements on the fly

4.2.1 How JavaScript Enables DHTML

JavaScript is the engine behind DHTML. Using JavaScript, you can:

• Access and modify HTML elements (via DOM)

• Change CSS styles dynamically

• Respond to user events (click, hover, input, etc.)

• Insert, remove, or replace content on the page

Example: Changing Content Dynamically

<!DOCTYPE html>

<html>

<head>

<title>DHTML Example</title>

<script>

functionchangeContent() {

document.getElementById("demo").innerHTML = "Content changed using DHTML!";

 }

</script>

</head>

<body>

<h2 id="demo">Original Content</h2>

<button onclick="changeContent()">Click Me</button>

</body>

</html>

Centre for Distance Education 4.26 Acharya Nagarjuna University

Explanation:

• JavaScript accesses the element using getElementById

• The content is updated dynamically without reloading the page

DHTML Features Enabled by JavaScript

Feature Description

Event Handling Responds to user actions like clicks, keypresses, hovers

DOM Manipulation Modifies HTML structure in real-time

CSS Style Control Changes the look of elements dynamically

Animations Moves, fades, or transforms elements smoothly

Form Validation Validates user input before submission

Real-Time Content Updates Updates parts of the page based on conditions or input

4.2.2 DOM Methods in DHTML

JavaScript Method Purpose

getElementById() Access a specific element

getElementsByClassName() Access multiple elements by class

innerHTML Set or get the content inside an element

style.property Change element style (e.g., style.color)

createElement() Create new HTML elements

appendChild() Add new elements to the DOM

removeChild() Remove elements from the DOM

Dynamic Style Example

<script>

functionchangeColor() {

document.getElementById("text").style.color = "red";

Web Technologies 4.27 Objects In Java Scriptand Dynamic…..

27

 }

</script>

<p id="text">Hello, world!</p>

<button onclick="changeColor()">Change Color</button>

Event Handling Example

<script>

functionshowMessage() {

alert("You clicked the button!");

 }

</script>

<button onclick="showMessage()">Click Here</button>

Advantages of DHTML

• No page reload required for updates

• Better user interactivity and engagement

• Fast and responsive UI

• Enables advanced features like sliders, popups, drag-drop, etc.

Disadvantages of DHTML

• Complex for beginners to debug and maintain

• Not all older browsers may support advanced DHTML features

• Too much DHTML can affect page performance

Real-Life Use Cases

• Dynamic menus and tooltips

• Live form validation (email/password check)

• Content sliders and carousels

• Expandable/collapsible sections

• Interactive games and visualizations

• AJAX-powered web applications (e.g., Gmail, Facebook)

Table

Feature Description

Full Form Dynamic HTML

Key Technologies HTML, CSS, JavaScript, DOM

Centre for Distance Education 4.28 Acharya Nagarjuna University

Feature Description

Driven By JavaScript

Main Purpose Make web pages dynamic and interactive

Core Capabilities Content change, style update, event handling

Use Cases Menus, animations, form validation, pop-ups

Note:DHTML with JavaScript is a powerful combination that allows developers to build

interactive, responsive, and dynamic web applications. It forms the foundation of modern

web interactivity, and understanding how JavaScript works with HTML and CSS is key to

mastering front-end development.

4.3 SUMMARY

JavaScript provides powerful built-in objects like Window, Navigator, Document, Form,

Date, String, and Array that form the core of dynamic web development. The Window object

serves as the global object and includes properties and methods like alert(), location, and

setTimeout(). The Navigator object offers browser-specific details such as appName,

userAgent, and onLine status. The Document object allows access and manipulation of

HTML elements using methods like getElementById() and querySelector().

The Form object is used to access and validate form inputs dynamically. The Date object

enables working with dates and times through methods like getFullYear() and setDate(). The

String object allows text manipulation with methods such as toUpperCase(), replace(), and

split(). Arrays, represented by the Array object, can hold multiple values and support

powerful methods like map(), filter(), and reduce(). These objects enable developers to create

responsive, data-driven interfaces.

In addition, Dynamic HTML (DHTML) integrates HTML, CSS, JavaScript, and the DOM to

create interactive and visually dynamic web pages. JavaScript is essential to DHTML,

enabling real-time content updates, event handling, and style changes without reloading the

page.

4.4 KEY TERMS

Window Object,Navigator Object, Document Object,Form Object,Date Object,String

Object,Array Object,Dynamic HTML (DHTML),Document Object Model (DOM),Event

Handling.

Web Technologies 4.29 Objects In Java Scriptand Dynamic…..

29

4.5 SELF-ASSESSMENT QUESTIONS

1. What is the role of the Window object in JavaScript?

2. How can the Navigator object be used to detect browser information?

3. How can you access and validate form data using the Form object in JavaScript?

4. What are some useful methods of the Date object to retrieve or set date values?

5. How do String methods like replace() and split() help in text manipulation?

6. What is Dynamic HTML (DHTML), and how does JavaScript contribute to it?

4. 6 FURTHER READINGS

1. JavaScript: The Definitive Guide, Seventh Edition by David Flanagan. O'Reilly

Media.

2. Eloquent JavaScript: A Modern Introduction to Programming, Third Edition by

MarijnHaverbeke. No Starch Press.

3. Beginning JavaScript, Fifth Edition by Jeremy McPeak. Wrox (Wiley).

4. The complete Reference Java 2 Fifth Edition by Patrick Naughton and Herbert

Schildt. TMH.

 Dr. Kampa Lavanya

LESSON-5

XML BASICS AND DATA PROCESSING IN WEB

APPLICATIONS

AIM AND OBJECTIVES:

➢ Understand the purpose and syntax of Document Type Definition (DTD) for

defining the structure of XML documents.

➢ Learn how to use XML Schemas (XSD) to enforce data types and validation

rules in XML files.

➢ Explore the Document Object Model (DOM) to access, modify, and traverse

XML documents programmatically.

➢ Gain knowledge of presenting XML data using technologies like XSLT for

transformation and display.

➢ Compare and utilize XML processors such as DOMandSAX for parsing and

handling XML data efficiently.

STRUCTURE:

5.1 INTRODUCTION TO XML

 5.1.1 BASIC XML STRUCTURE

5.2 DOCUMENT TYPE DEFINITION

5.3 XML SCHEMAS

5.4 DOCUMENT OBJECT MODEL

5.5 PRESENTING XML

5.6 XML PROCESSOR

5.7 DOM AND SAX

5.8 SUMMARY

5.9 KEY TERMS

5.10 SELF-ASSESSMENT QUESTIONS

5.11 FURTHER READINGS

5.1INTRODUCTION TO XML

XML (eXtensible Markup Language) is a simplified subset of SGML (Standard Generalized

Markup Language), a powerful markup language adopted as a standard by the International

Organization for Standardization (ISO). SGML was originally developed to add structure and

formatting to data in a way that could be used across various applications.

Unlike other languages that focus on how data is displayed, XML is designed to describe

whatthe data is. It emphasizes data structure rather than presentation. XML was introduced as

Centre for Distance Education 5.2Acharya Nagarjuna University

a recommendation by the World Wide Web Consortium (W3C) to facilitate data sharing and

transportation across systems in a platform-independent manner.

Markup and Tags

In XML, markup refers to the set of instructions (called tags) used to define elements within a

document. These tags help structure the data but do not specify how it should be displayed.

XML syntax closely resembles HTML, but its purpose is different: while HTML formats data

for display, XML organizes data for storage and transport.

5.1.1 Basic XML Structure

Below is an example of a simple XML document:

<?xml version="1.0"?>

<college>

<studdetail>

<regno>05j0a1260</regno>

<name>

<firstname>karthik</firstname>

<lastname>btech</lastname>

</name>

<country name="india"/>

<branch>csit</branch>

</studdetail>

</college>

• The first line is a processing instruction that declares the file as an XML

document and specifies the version.

• <college> is the root element, and all other elements are nested within it.

Well-Formed vs Valid XML

• A well-formed XML document adheres strictly to XML syntax rules:

o All tags must be properly opened and closed.

o Tags must not overlap.

o Empty tags must be self-closed (e.g., <tag/>).

o The document must include an XML declaration at the top.

• A valid XML document is not only well-formed but also follows a defined DTD

(Document Type Definition) or XMLSchema that specifies its structure and allowed

elements. XML parsers can be used to check both well-formedness and validity.

XML Elements and Rules

XML documents are composed of:

• Elements (the core content)

• Control information (like comments and declarations)

• Entities (reusable data)

Key characteristics of XML elements include:

• Nesting Tags: XML requires proper nesting. If one tag is opened inside another, it

must be closed before the outer tag is closed.

• <parent>

• <child>Content</child>

• </parent>

Web Technologies5.3Xml Basics And Data Processing…

3

• Case Sensitivity: XML is case-sensitive. <Name> and <name> are treated as

different tags. It's a best practice to use lowercase for all tags.

• Empty Tags: Tags without content must be self-closed using a forward slash:

• <country name="india"/>

• Attributes: Elements can include attributes to hold additional information:

• <country name="india"/>

Attributes should not replace elements when the data is complex or needs further structure.

Control Information in XML

In XML, control information refers to special components that provide instructions and

structure to the document. There are three main types of control information:

1. Comments

Comments in XML are used to include notes or explanations within the document that are

ignored by the parser.

o Syntax: <!-- This is a comment -->

o XML comments are similar to those in HTML.

2. Processing Instructions (PIs)

These are special instructions intended for applications that process the XML file.

o Example: <?xml version="1.0"?>

o This declaration tells the XML processor which version of XML is being used.

3. Document Type Declarations (DOCTYPE)

A Document Type Declaration links an XML document to a DTD (Document Type

Definition), which defines its structure and the rules for validation.

o Syntax: <!DOCTYPE element SYSTEM "filename.dtd">

o Example: <!DOCTYPE cust SYSTEM "customer.dtd">

o The DTD can be either internal (within the XML) or external (in a separate file).

Entities in XML

Entities in XML are reusable content placeholders used to store small pieces of data that may

be repeated throughout the document. These help in maintaining consistency and

manageability.

For example, an XML document using control information and entities might look like this:

<?xml version="1.0"?>

<!DOCTYPE stud SYSTEM "student.dtd">

<college>

<studdetail>

<regno>mc20001</regno>

<name>

<firstname>feroz</firstname>

<lastname>pg</lastname>

</name>

<country name="india"/>

<branch>cse</branch>

</studdetail>

</college>

In this example:

• The <?xml version="1.0"?> is a processing instruction.

• The <!DOCTYPE stud SYSTEM "student.dtd"> links the XML file to an external

DTD.

Centre for Distance Education 5.4Acharya Nagarjuna University

• Elements like <college> and <studdetail> are structured using rules defined in the

DTD.

5.2 DOCUMENT TYPE DEFINITION

1. Introduction to DTD

Document Type Definition (DTD) defines the structure and the legal elements and attributes

of an XML document. It acts as a blueprint or grammar that XML documents must follow to

be considered valid.

While XML provides flexibility in data representation, DTD ensures data consistency,

validity, and structure conformity across documents.

DTD can be written as part of the XML document (internal DTD) or in a separate file

(external DTD).

2. Purpose of DTD

• To validate the structure and content of XML documents.

• To ensure data integrity and uniformity across systems.

• To define rules for:

o Elements and their hierarchy

o Attributes of elements

o Entities

o Notations

3. Types of DTD

a. Internal DTD

Defined within the XML document itself, using the <!DOCTYPE> declaration.

Syntax:

<?xml version="1.0"?>

<!DOCTYPE root-element [

<!ELEMENT element-name (child-elements)>

<!ATTLIST element-name attribute-name attribute-type #default>

]>

<root-element>

 ...

</root-element>

Example:

<?xml version="1.0"?>

<!DOCTYPE note [

<!ELEMENT note (to, from, heading, body)>

<!ELEMENT to (#PCDATA)>

<!ELEMENT from (#PCDATA)>

<!ELEMENT heading (#PCDATA)>

<!ELEMENT body (#PCDATA)>

]>

<note>

<to>Alice</to>

<from>Bob</from>

Web Technologies5.5Xml Basics And Data Processing…

5

<heading>Reminder</heading>

<body>Meeting at 10 AM</body>

</note>

b. External DTD

Stored in a separate .dtd file and referenced from the XML document.

XML Document:

<?xml version="1.0"?>

<!DOCTYPE note SYSTEM "note.dtd">

<note>

<to>Alice</to>

<from>Bob</from>

<heading>Reminder</heading>

<body>Meeting at 10 AM</body>

</note>

note.dtd (External DTD File):

<!ELEMENT note (to, from, heading, body)>

<!ELEMENT to (#PCDATA)>

<!ELEMENT from (#PCDATA)>

<!ELEMENT heading (#PCDATA)>

<!ELEMENT body (#PCDATA)>

4. DTD Components

a. Elements

Defines the allowable content of an element.

Syntax:

<!ELEMENT element-name (child-elements | #PCDATA | ANY | EMPTY)>

Examples:

<!ELEMENT title (#PCDATA)><!-- Text-only -->

<!ELEMENT book (title, author)><!-- Nested structure -->

<!ELEMENT page ANY><!-- Any content -->

<!ELEMENTimg EMPTY><!-- Empty element -->

b. Attributes

Defines attributes for elements and their data types.

Syntax:

<!ATTLIST element-name attribute-name attribute-type default-value>

Attribute Types:

• CDATA: Character data

• ID: Unique identifier

• IDREF: Reference to another ID

• IDREFS: Multiple references

• NMTOKEN: Name token

• ENUMERATION: List of allowed values

Centre for Distance Education 5.6Acharya Nagarjuna University

Default Values:

• #REQUIRED

• #IMPLIED

• #FIXED "value"

• "default value"

Example:

<!ATTLIST book isbn CDATA #REQUIRED>

<!ATTLIST book category (fiction | nonfiction | reference) "fiction">

c. Entities

Used to define constants or placeholders that can be reused.

Syntax:

<!ENTITY entity-name "replacement-text">

Example:

<!ENTITY author "ABC”

Usage in XML:

<creator>&author;</creator>

d. Comments in DTD

<!-- This is a comment -->

5. DTD Element Content Types

Type Description

#PCDATA Parsed Character Data (text)

EMPTY Element has no content

ANY Element can contain any content

Child list Defines specific child elements and their order

Modifiers:

• ? – zero or one

• – zero or more

• + – one or more

• | – choice

• , – sequence

Example:

<!ELEMENT name (first, middle?, last)>

<!ELEMENT phone (home | mobile)>

<!ELEMENT address (street, city, state, zip)>

6. Advantages of DTD

• Simplicity and ease of use

• Useful for simple validation tasks

• Wide support by XML parsers

• Promotes consistency and reusability

7. Limitations of DTD

• No support for data types beyond text (e.g., integer, date)

• Limited namespace support

• Cannot enforce constraints like min/max values or string patterns

• Written in a different syntax (not XML-based)

Web Technologies5.7Xml Basics And Data Processing…

7

Alternative: XML Schema (XSD) overcomes these limitations and is written in XML itself.

8. Validating XML with DTD

To validate an XML document:

• Use an XML parser (e.g., Xerces, DOM, SAX)

• Ensure the DOCTYPE declaration correctly references the DTD

• Check the document structure, elements, and attributes against the DTD rules

9. Table

Feature Description

Full form Document Type Definition

Purpose Validates XML structure and content

Defined in Internally in XML or externally as a .dtd file

Key components Elements, attributes, entities, content models

Limitation No support for data types or namespaces

Replacement XML Schema (XSD) for advanced validation

Library XML with DTD:

library.xml

<?xml version="1.0"?>

<!DOCTYPE library SYSTEM "library.dtd">

<library>

<book isbn="12345">

<title>XML Basics</title>

<author>John Smith</author>

</book>

</library>

library.dtd

<!ELEMENT library (book+)>

<!ELEMENT book (title, author)>

<!ATTLIST book isbn CDATA #REQUIRED>

<!ELEMENT title (#PCDATA)>

<!ELEMENT author (#PCDATA)>

5.3 XML SCHEMAS

1. Introduction to XML Schema

XML Schema Definition (XSD) is a powerful way to define the structure, content, and

semantics of XML documents. It is a recommendation by the World Wide Web Consortium

(W3C) and is considered more powerful and expressive than Document Type Definition

(DTD).

Purpose of XML Schema

• To define the structure of an XML document.

• To define the data types of elements and attributes.

• To validate whether an XML document adheres to a specific format.

• To support namespace and extensibility features.

Centre for Distance Education 5.8Acharya Nagarjuna University

2. Advantages of XML Schema over DTD

Feature DTD XML Schema (XSD)

Syntax SGML-based XML-based

Data types Not supported Strongly supported (e.g., string, int)

Namespaces Not supported Fully supported

Custom types Not available Available

Reuse of components Limited Extensive (via complex types, imports)

3. XML Schema Syntax

XML Schema documents are XML files that define:

• Elements

• Attributes

• Data types

• Element relationships

Basic Structure of XML Schema

<xs:schemaxmlns:xs="http://www.w3.org/2001/XMLSchema">

<!-- Definitions go here -->

</xs:schema>

4. Defining Elements and Attributes

Defining a Simple Element

<xs:element name="studentName" type="xs:string"/>

Defining an Attribute

<xs:attribute name="id" type="xs:integer"/>

5. Complex Types

Used to define elements that contain:

• Other elements

• Attributes

Example: Complex Type with Child Elements

<xs:element name="student">

<xs:complexType>

<xs:sequence>

<xs:element name="name" type="xs:string"/>

<xs:element name="age" type="xs:integer"/>

</xs:sequence>

</xs:complexType>

</xs:element>

Example: Complex Type with Attributes

<xs:element name="book">

<xs:complexType>

<xs:attribute name="isbn" type="xs:string" use="required"/>

</xs:complexType>

</xs:element>

6. Data Types in XML Schema

XML Schema provides many built-in data types, categorized as:

Web Technologies5.9Xml Basics And Data Processing…

9

Primitive Types

• xs:string

• xs:integer

• xs:boolean

• xs:decimal

• xs:date

• xs:time

Derived Types

• xs:positiveInteger

• xs:nonNegativeInteger

• xs:token

• xs:ID

7. Occurrence Constraints

To control the number of times an element can occur:

• minOccurs – Minimum number of occurrences

• maxOccurs – Maximum number of occurrences

Example

<xs:element name="phone" type="xs:string" minOccurs="0" maxOccurs="3"/>

8. Restriction and Facets

To place constraints on data values using facets:

Example: Restricting String Length

<xs:simpleType name="usernameType">

<xs:restriction base="xs:string">

<xs:minLength value="5"/>

<xs:maxLength value="12"/>

</xs:restriction>

</xs:simpleType>

9. Reusing Schema Components

• Named Types: Reuse custom types across the schema

• Include / Import: Modularize large schemas

Include Another Schema

<xs:includeschemaLocation="commonTypes.xsd"/>

10. Namespaces in XML Schema

Namespaces prevent element name conflicts.

Example

<xs:schemaxmlns:xs="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://www.example.com/student"

xmlns="http://www.example.com/student"

elementFormDefault="qualified">

11. Validating XML with Schema

XML files can be validated against an XSD to ensure structural and data correctness using

tools like:

Centre for Distance Education 5.10Acharya Nagarjuna University

• XML parsers (e.g., Xerces, XMLSpy)

• IDEs (e.g., Eclipse, IntelliJ)

• Java (via JAXP)

12. Example: XML and XSD

Sample XML Document

<student>

<name>John</name>

<age>21</age>

</student>

Corresponding XSD

<xs:schemaxmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="student">

<xs:complexType>

<xs:sequence>

<xs:element name="name" type="xs:string"/>

<xs:element name="age" type="xs:integer"/>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:schema>

13. Tools Supporting XML Schema

• Editors: Oxygen XML Editor, XMLSpy

• Parsers: Xerces, SAXON

• Programming APIs:

o Java: JAXP, JAXB

o .NET: XmlSchemaSet, XDocument

Note:

XML Schema is a robust and feature-rich way to define the structure and constraints of XML

documents. It supports a wide range of data types, complex content modeling, namespaces,

and extensibility, making it ideal for applications requiring strict data validation and

integration across systems.

5.4 DOCUMENT OBJECT MODEL

1. Introduction to DOM

The Document Object Model (DOM) is a W3C standard that defines a platform- and

language-neutral interface to access and manipulate the content, structure, and style of XML

or HTML documents.

• It represents a document as a tree structure.

• Each part of the document (elements, attributes, text) is a node in the tree.

• DOM allows programs and scripts to dynamically access and update the document's

content, structure, and style.

2. Key Features of DOM

• Tree Structure: Represents documents as a hierarchy of nodes.

• Language-Independent: DOM can be used in Java, JavaScript, Python, etc.

• Dynamic: Allows dynamic modification of documents.

• Standardized: Defined by the W3C DOM Specification.

Web Technologies5.11Xml Basics And Data Processing…

11

3. DOM Tree Structure

DOM views an XML/HTML document as a tree of nodes.

Types of Nodes

Node Type Description

Document Node Root of the document tree

Element Node Represents XML/HTML elements

Attribute Node Represents attributes of elements

Text Node Represents text content

Comment Node Represents comments

Processing Instruction Represents special instructions

Example XML

<student>

<name>John</name>

<age>21</age>

</student>

Corresponding DOM Tree

Document

 └── Element: student

 ├── Element: name

 │ └── Text: John

 └── Element: age

 └── Text: 21

4. DOM Levels

DOM has been standardized in multiple levels:

• DOM Level 1: Core functionalities – tree structure, basic node access.

• DOM Level 2: Adds events, style, and support for namespaces.

• DOM Level 3: Adds support for loading/saving documents, validation.

5. Accessing DOM with Java (Using JAXP)

Java provides JAXP (Java API for XML Processing) to work with DOM.

Steps to Use DOM in Java

1. Create DocumentBuilderFactory

2. Create DocumentBuilder

3. Parse the XML file to get Document

4. Traverse or modify the DOM tree

Java Example: Reading XML using DOM

importjavax.xml.parsers.*;

import org.w3c.dom.*;

import java.io.*;

public class DOMReadExample {

public static void main(String[] args) throws Exception {

 File inputFile = new File("student.xml");

DocumentBuilderFactorydbFactory = DocumentBuilderFactory.newInstance();

DocumentBuilderdBuilder = dbFactory.newDocumentBuilder();

Centre for Distance Education 5.12Acharya Nagarjuna University

 Document doc = dBuilder.parse(inputFile);

doc.getDocumentElement().normalize();

System.out.println("Root element: " + doc.getDocumentElement().getNodeName());

NodeListnodeList = doc.getElementsByTagName("student");

for (inti = 0; i<nodeList.getLength(); i++) {

 Node node = nodeList.item(i);

if (node.getNodeType() == Node.ELEMENT_NODE) {

 Element element = (Element) node;

System.out.println("Name: " +

element.getElementsByTagName("name").item(0).getTextContent());

System.out.println("Age: " +

element.getElementsByTagName("age").item(0).getTextContent());

 }

 }

 }

}

6. Common DOM Interfaces (Java - org.w3c.dom)

Interface Description

Node Base interface for all nodes

Element Represents an element

Attr Represents an attribute

Text Represents text within elements

Document Represents the entire XML/HTML document

NodeList A list of nodes

NamedNodeMap Map for attributes

7. DOM Operations

a. Traversing Nodes

• getFirstChild(), getLastChild()

• getNextSibling(), getPreviousSibling()

• getParentNode(), getChildNodes()

b. Modifying Document

• createElement(), createTextNode()

• appendChild(), removeChild()

• setAttribute(), removeAttribute()

c. Reading Data

• getNodeName(), getNodeValue(), getNodeType()

• getTextContent(), getElementsByTagName()

8. Advantages of DOM

• Random Access: Any node can be accessed anytime.

• Modifiable: Nodes can be added, updated, or deleted.

• Standard Interface: Supported across multiple languages.

• Rich Functionality: Allows full document manipulation.

9. Disadvantages of DOM

• Memory Intensive: Loads the entire document into memory.

• Slower for Large Files: Not suitable for very large XML documents.

Web Technologies5.13Xml Basics And Data Processing…

13

• More Complex: DOM API can be verbose and complex for beginners.

10. DOM vs SAX

Feature DOM SAX

Parsing Mode Loads entire document in memory Event-based (reads sequentially)

Access Random access to any part Sequential access only

Modification Supports document modification Read-only

Performance Slower for large files Faster and memory-efficient

11. DOM in Web Browsers (JavaScript)

DOM is also widely used in web browsers via JavaScript to manipulate HTML documents

dynamically.

Example (HTML + JavaScript)

<p id="demo">Hello</p>

<script>

document.getElementById("demo").innerHTML = "Hello, DOM!";

</script>

Note:

The Document Object Model (DOM) is a critical concept for working with both XML and

HTML documents. It offers a structured, object-oriented view of a document, enabling

dynamic access and manipulation. While powerful, it should be used carefully for large

documents due to memory and performance considerations.

5.5 PRESENTING XML

1. Introduction

Presenting XML refers to the methods and technologies used to display or render the data

stored in XML (eXtensible Markup Language) documents in a human-readable and visually

appealing format. By itself, XML is only a data representation format; it doesnot define how

the data should appear on screen or on paper.

To make XML content presentable, we need to use associated technologies that can transform

or style XML data into HTML, PDF, plain text, or other output formats.

2. Need for Presenting XML

• XML is self-descriptive but not inherently visual.

• For users to understand or interact with XML content, it must be transformed into a

user-friendly format.

• Enables data sharing across different platforms and presentation customization.

3. Techniques for Presenting XML

There are several technologies and methods for presenting XML data effectively:

A. Using XSLT (Extensible Stylesheet Language Transformations)

• XSLT is a W3C standard used to transform XML data into other formats such as

HTML, text, or another XML structure.

• It works by applying templates and rules to match elements in the XML file and

transform them accordingly.

Example

XML File: students.xml

<students>

Centre for Distance Education 5.14Acharya Nagarjuna University

<student>

<name>John</name>

<age>21</age>

</student>

</students>

XSLT File: students.xsl

<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="/">

<html>

<body>

<h2>Student Information</h2>

<table border="1">

<tr><th>Name</th><th>Age</th></tr>

<xsl:for-each select="students/student">

<tr>

<td><xsl:value-of select="name"/></td>

<td><xsl:value-of select="age"/></td>

</tr>

</xsl:for-each>

</table>

</body>

</html>

</xsl:template>

</xsl:stylesheet>

Linking XML with XSLT

<?xml-stylesheet type="text/xsl" href="students.xsl"?>

B. Using CSS with XML

• CSS (Cascading Style Sheets) can be used to apply basic formatting to XML

documents, just like in HTML.

• XML must be well-structured and follow a specific format for CSS to work

effectively.

• Best suited for simple styling (fonts, colors, borders).

Example

XML

<?xml-stylesheet type="text/css" href="style.css"?>

<note>

<to>Tina</to>

<from>John</from>

<body>Hello, how are you?</body>

</note>

CSS (style.css)

note {

display: block;

background-color: lightyellow;

padding: 10px;

font-family: Arial;

}

to, from, body {

Web Technologies5.15Xml Basics And Data Processing…

15

display: block;

margin: 5px 0;

}

C. Converting XML to HTML via Programming

• You can use programming languages like Java, Python, PHP, or JavaScript to read

XML data and present it as HTML.

• Commonly used in web applications and dynamic content generation.

Example: Using JavaScript

<script>

fetch('students.xml')

.then(response =>response.text())

.then(data => {

const parser = new DOMParser();

constxmlDoc = parser.parseFromString(data, "text/xml");

const name = xmlDoc.getElementsByTagName("name")[0].childNodes[0].nodeValue;

document.body.innerHTML = "<h1>Student: " + name + "</h1>";

 });

</script>

D. Converting XML to PDF or Other Formats

• XML can be converted to PDF using tools like Apache FOP (Formatting Objects

Processor)andXSL-FO (XSL Formatting Objects).

• Common in business applications where XML-based data must be printed or

archived.

Workflow

1. XML + XSL-FO → Apache FOP → PDF

4. Technologies Involved in XML Presentation

Technology Purpose

XSLT Transforms XML into HTML, text, or other XML

XSL-FO Converts XML into print formats like PDF

CSS Styles XML elements

JavaScript Dynamically reads and displays XML in web pages

Apache FOP Converts XSL-FO documents into PDF

Programming APIs Java (JAXP), Python (lxml), etc., for customized rendering

5. Presentation Best Practices

• Always validate XML before presenting.

• Use XSLT for complex formatting and CSS for simple visual enhancements.

• Ensure cross-browser compatibility when using XML on the web.

• For large documents, consider server-sidetransformation for better performance.

• Use responsive and accessible design when converting to HTML.

6. Applications of Presenting XML

• Web content management systems

• Online reporting systems

• E-commerce catalogs

• Invoice and billing systems

• Educational content presentation

• News and media feeds (RSS/Atom)

Centre for Distance Education 5.16Acharya Nagarjuna University

Presenting XML is essential to make XML data usable and understandable for human users.

Whether through XSLT, CSS, orprogramming techniques, transforming XML into a readable

format bridges the gap between raw structured data and practical user applications.

By leveraging the right tools and technologies, XML data can be presented effectively across

web, print, and mobile platforms.

5.6 XML PROCESSOR

1. Introduction

An XML Processor is a software component or engine that reads, interprets, and processes

XML documents according to defined standards (like XML 1.0 by W3C). It ensures that an

XML document is well-formed, and optionally, valid according to a DTD or XML Schema.

The XML processor is also commonly referred to as an XML parser.

2. Types of XML Processors

XML processors are categorized into two main types based on how they access and process

the document:

A. Validating Processor

• Checks both well-formedness and validity.

• Validates the document against a DTD or XML Schema.

• Reports errors if the document doesn't conform to the structure.

B. Non-Validating Processor

• Only checks for well-formedness.

• Does not validate against any DTD or Schema.

• Faster and simpler, suitable when validation isn't required.

3. Functions of an XML Processor

Function Description

Parsing Reads XML text and constructs a tree or events

Validation Checks XML against a DTD or Schema (optional)

Reporting Errors Identifies and reports syntax or structure errors

Providing Interfaces Supplies access through APIs like DOM or SAX

Data Extraction Enables retrieval of specific information from XML documents

4. Common XML Processing Models

There are two primary programming models for using XML processors:

A. DOM (Document Object Model)

• Tree-based processing.

• Loads the entire XML document into memory as a tree structure.

• Allows random access, traversal, and modification.

Pros:

• Easy to use and understand.

• Supports both reading and writing.

Cons:

• High memory usage for large documents.

B. SAX (Simple API for XML)

• Event-based processing.

• Parses the document sequentially and generates events (startElement, endElement,

etc.).

• No tree is built; ideal for read-only, forward-only access.

Pros:

• Fast and memory-efficient.

Web Technologies5.17Xml Basics And Data Processing…

17

• Good for large files.

Cons:

• More complex to code.

• No backward access or modification.

5. Popular XML Processors

Processor Language Type Description

Xerces Java, C++ Validating
Apache XML processor supporting DOM, SAX,

Schema

MSXML
C++, COM,

VB
Validating Microsoft XML Parser for Windows platforms

libxml2 C Validating
Open-source XML parser from the GNOME

project

Expat C
Non-

validating
Fast, lightweight stream-oriented parser

JAXP Java Both
Java API for XML Processing (uses DOM, SAX,

StAX)

lxml Python Validating Powerful Python binding for libxml2 and libxslt

6. Using XML Processors in Java (JAXP)

Java provides JAXP (Java API for XML Processing) which supports DOM, SAX, and StAX

models.

Example: Using DOM Parser

importjavax.xml.parsers.*;

import org.w3c.dom.*;

import java.io.*;

public class DOMParserExample {

public static void main(String[] args) throws Exception {

 File inputFile = new File("students.xml");

DocumentBuilderFactorydbFactory = DocumentBuilderFactory.newInstance();

DocumentBuilderdBuilder = dbFactory.newDocumentBuilder();

 Document doc = dBuilder.parse(inputFile);

doc.getDocumentElement().normalize();

System.out.println("Root element: " + doc.getDocumentElement().getNodeName());

 }

}

Example: Using SAX Parser

importorg.xml.sax.*;

importorg.xml.sax.helpers.DefaultHandler;

importjavax.xml.parsers.*;

public class SAXParserExample {

public static void main(String[] args) throws Exception {

SAXParserFactory factory = SAXParserFactory.newInstance();

Centre for Distance Education 5.18Acharya Nagarjuna University

SAXParsersaxParser = factory.newSAXParser();

DefaultHandler handler = new DefaultHandler() {

public void startElement(String uri, String localName, String qName, Attributes attributes) {

System.out.println("Start Element: " + qName);

 }

 };

saxParser.parse("students.xml", handler);

 }

}

7. Well-Formedness vs. Validity

Criterion Well-Formed XML Valid XML

Syntax Rules Must follow basic syntax Must follow syntax and structure

DTD or Schema Not required Required for validation

Checked by All processors Only validating processors

8. Error Handling in XML Processors

• Well-formedness errors: Missing tags, improper nesting, etc.

• Validation errors: Mismatch with DTD/Schema definitions.

• Most processors provide mechanisms to report, log, and sometimes recover from

errors.

9. Performance Considerations

Model Memory Use Speed Use Case

DOM High Medium Small to medium documents

SAX Low High Large, read-only documents

StAX Medium High Event-driven, pull-based parsing

10. Applications of XML Processors

• Web services (SOAP, REST)

• Configuration files (Spring, Maven)

• Data exchange between systems

• Digital publishing

• Document storage and retrieval

• Enterprise systems integration

Note: An XML processor is an essential tool for working with XML documents. It validates,

parses, and provides programmatic access to the data, enabling applications to read,

transform, and present XML content.

Choosing the right processor (DOM, SAX, or StAX) depends on the application

requirements, such as performance, memory constraints, and the need for validation.

5.7 DOM AND SAX

Web Technologies5.19Xml Basics And Data Processing…

19

DOM and SAX in XML Processing

1. Introduction

When working with XML documents programmatically, two primary APIs are commonly

used for parsing and processing:

• DOM (Document Object Model)

• SAX (Simple API for XML)

Both provide ways to access the data and structure of XML documents, but they do so using

different approaches suited for different use cases.

2. What is DOM (Document Object Model)?

Definition:

DOM is a tree-based parsing method. It represents the entire XML document as a hierarchical

tree of nodes in memory. This allows developers to access, navigate, and manipulate any part

of the XML document at any time.

How It Works:

• Loads the entire XML document into memory.

• Constructs a tree where each element, attribute, or text is a node.

• Provides random access to any node.

Key Features:

• Tree structure (parent-child relationships)

• Allows read and write access

• Supports navigation and modification

DOM Parser Workflow:

1. Parse the XML document.

2. Create a tree (DOM tree) in memory.

3. Access or modify nodes using methods.

DOM Example in Java:

importjavax.xml.parsers.*;

import org.w3c.dom.*;

import java.io.*;

public class DOMExample {

public static void main(String[] args) throws Exception {

 File file = new File("students.xml");

DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();

DocumentBuilder builder = factory.newDocumentBuilder();

 Document doc = builder.parse(file);

NodeList list = doc.getElementsByTagName("student");

for (inti = 0; i<list.getLength(); i++) {

 Element student = (Element) list.item(i);

System.out.println("Name: " +

student.getElementsByTagName("name").item(0).getTextContent());

 }

}

}

3. What is SAX (Simple API for XML)?

Definition:

SAX is an event-based parsing method. Instead of building a tree, it reads the XML

document sequentially and fires events (start element, end element, characters) when it

encounters different components of the document.

How It Works:

• Reads the XML document line by line.

Centre for Distance Education 5.20Acharya Nagarjuna University

• Generates events such as:

o startElement()

o characters()

o endElement()

• The application must handle these events.

Key Features:

• Does not load the entire document into memory.

• Suitable for largeXML documents.

• Fast and memory-efficient.

SAX Parser Workflow:

1. Set up a handler to listen for XML events.

2. Parse the document.

3. React to events like element starts and ends.

SAX Example in Java:

importorg.xml.sax.*;

importorg.xml.sax.helpers.DefaultHandler;

importjavax.xml.parsers.*;

public class SAXExample {

public static void main(String[] args) throws Exception {

SAXParserFactory factory = SAXParserFactory.newInstance();

SAXParser parser = factory.newSAXParser();

DefaultHandler handler = new DefaultHandler() {

public void startElement(String uri, String localName, String qName, Attributes attributes) {

if (qName.equalsIgnoreCase("name")) {

System.out.print("Name: ");

 }

 }

public void characters(char ch[], int start, int length) {

System.out.println(new String(ch, start, length));

 }

 };

parser.parse("students.xml", handler);

 }

}

1. Comparison Between DOM and SAX

Feature DOM SAX

Model Tree-based Event-based

Memory

Usage

High (loads whole XML in

memory)
Low (sequential reading)

Speed Slower for large files Faster for large files

Access Type Random access to any part Sequential access only

Modification Supports modification Read-only

Web Technologies5.21Xml Basics And Data Processing…

21

Feature DOM SAX

Complexity Easier to implement More complex due to event handling

Use Case Small to medium-sized documents Large documents, stream processing

Navigation Built-in methods (e.g., getChild)
No navigation—developer handles

flow

5. When to Use DOM

• You need to modify or update XML data.

• Random access to nodes is necessary.

• The XML document is small or medium-sized.

• You want a simpler programming model.

6. When to Use SAX

• The XML document is very large.

• You only need to read data (not modify).

• You require faster processing.

• Memory usage must be minimal.

7. Hybrid Approach

Some applications use a combination of DOM and SAX, known as StAX (Streaming API for

XML), which gives the developer more control (pull-based parsing) over the event stream.

Note:BothDOM and SAX provide powerful ways to work with XML data, but their usage

depends on the requirements:

• Use DOM when you need fullaccess, modification, and tree-based structure.

• Use SAX when you want efficient, stream-based, and lightweight processing of large

XML documents.

Understanding the difference helps in choosing the right parser for your application's

performance, memory, and complexity needs.

5.8 SUMMARY

XML (eXtensible Markup Language) is a standardized language used to structure, store, and

transport data. A Document Type Definition (DTD) defines the legal building blocks of an

XML document by specifying its structure with a list of allowed elements and attributes. In

contrast, XML Schemas are more powerful than DTDs, as they allow data type definitions,

namespaces, and detailed validation rules using XML syntax itself.

The Document Object Model (DOM) is a tree-based representation of an XML document in

memory, allowing developers to access, modify, and navigate the document structure

dynamically. Presenting XML involves transforming XML content into human-readable

formats using tools like CSS for styling and XSLT (Extensible Stylesheet Language

Transformations) for converting XML into HTML or other formats. XML data is not

typically presented directly; it requires formatting or transformation to be user-friendly.

To work with XML programmatically, XML Processors (or parsers) are used. These

processors validate the document’s structure and convert it into usable data formats for

applications. There are two main types of processors: DOM and SAX. The DOM parser reads

the entire XML into memory and builds a node tree, suitable for editing and random access.

The SAX parser, on the other hand, is event-driven, reading the document sequentially and

firing events during parsing—making it ideal for large, read-only documents. DOM is easier

for manipulation but memory-intensive, while SAX is faster and more efficient for large-

Centre for Distance Education 5.22Acharya Nagarjuna University

scale XML processing. Understanding these technologies is essential for developers working

with XML in real-world applications.

5. 9 KEY TERMS

XML, DTD, XML Schema (XSD), Well-formed XML, Valid XML, DOM, SAX, XML

Processor, XSLT, Namespace.

5. 10 SELF-ASSESSMENT QUESTIONS

1. What is the purpose of a Document Type Definition (DTD) in XML?

2. How does an XML Schema differ from a DTD?

3. What is meant by a well-formed XML document?

4. What is the role of the Document Object Model (DOM) in XML processing?

5. How does SAX process XML documents differently from DOM?

6. What is an XML Processor, and what are its main types?

7. How can XML data be presented to users in a readable format?

5.11FURTHER READINGS

1. Beginning XML, Fifth Edition by David Hunter, Jeff Rafter, and Joe Fawcett. Wiley

Publishing.

2. Learning XML, Second Edition by Erik T. Ray. O'Reilly Media.

3. XML in a Nutshell, Third Edition by Elliotte Rusty Harold and W. Scott Means.

O'Reilly Media.

4. Internet and World Wide Web: How to Program, Third Edition by Paul Deitel and

Harvey Deitel. Pearson Education.

Dr. VasanthaRudramalla

LESSON-6

CGI SCRIPTING

AIM AND OBJECTIVES:

1. Understand the fundamentals of CGI (Common Gateway Interface) and its role in

web development.

2. Learn how to develop and deploy CGI applications that interact with web servers.

3. Gain knowledge of processing client requests and handling form data using CGI

scripts.

4. Explore the use of CGI.pm and its methods for simplifying CGI programming in Perl.

5. Learn to create dynamic HTML pages that respond to user input and display

customized content.

STRUCTURE:

6.1 INTRODUCTION TO CGI

6.2 WHAT IS CGI

6.3 DEVELOPING CGI APPLICATIONS

6.4 PROCESSING CGI

6.5 RETURNING A BASIC HTML PAGE

6.6 INTRODUCTION TO CGI.PM

6.7 CGL.PM METHODS

6.8 CREATING HTML PAGES DYNAMICALLY

6.9 SUMMARY

6.10 KEY TERMS

6.11 SELF-ASSESSMENT QUESTIONS

6.12 FURTHER READINGS

Centre for Distance Education 6.2 Acharya Nagarjuna University

1. INTRODUCTION TO CGI

CGI (Common Gateway Interface) is a standard protocol used to enable web servers to

execute external programs, typically scripts, and generate dynamic content. CGI allows web

applications to interact with users, process forms, and display customized web pages. CGI

scripts can be written in Perl, Python, Bash, or other languages.

Key Points:

• CGI programs are executed by the web server and return HTML to the client browser.

• They process input from HTML forms, URL parameters, or cookies.

• CGI is language-independent; Perl is one of the most popular languages for CGI

scripting.

2. Developing CGI Applications

To develop CGI applications, you need:

1. A web server (like Apache) configured to run CGI scripts.

2. A scripting language (Perl, Python, etc.) installed on the server.

3. Proper permissions for executing the script in the server's cgi-bin directory.

Steps:

• Write the script with proper shebang line (e.g., #!/usr/bin/perl).

• Make the script executable (chmod +x script.pl).

• Place the script in the cgi-bin directory of the web server.

3. Processing CGI Input

CGI scripts often handle user input via HTML forms. The input is sent using either:

• GET method: Parameters are sent via URL query string.

• POST method: Parameters are sent in the HTTP request body (more secure for

sensitive data).

In Perl, the CGI.pm module is commonly used to process form data.

4. Returning a Basic HTML Page

A CGI script must output HTTP headers followed by HTML content.

Example: Basic HTML Page using Perl CGI

Web Technologies 6.3 CGI Scripting

#!/usr/bin/perl

use CGI qw(:standard);

print header(); # HTTP header

printstart_html("Welcome Page"); # HTML start

print h1("Hello, Welcome to CGI Scripting!"); # Header tag

print p("This page is generated using a CGI script."); # Paragraph

printend_html(); # HTML end

Output in Browser:

Hello, Welcome to CGI Scripting!

This page is generated using a CGI script.

5. Introduction to CGI.pm

CGI.pm is a Perl module that simplifies writing CGI scripts.

Common features:

• Handling GET/POST requests

• Generating HTML elements dynamically

• Managing cookies and headers

• Processing file uploads

Loading CGI.pm:

use CGI;

my $query = CGI->new();

6. CGI.pm Methods

Some useful CGI.pm methods:

• param("name") – fetch value of a form parameter

• header() – send HTTP headers

• start_html("Title") – begin HTML document

• end_html() – end HTML document

• textfield("username") – generate input field

• submit("Submit") – generate submit button

7. Creating HTML Pages Dynamically

CGI scripts can generate HTML dynamically based on user input.

Example: Processing Form Input

Centre for Distance Education 6.4 Acharya Nagarjuna University

HTML Form (form.html):

<html>

<body>

<form action="/cgi-bin/greet.pl" method="post">

 Name: <input type="text" name="username">

<input type="submit" value="Greet Me">

</form>

</body>

</html>

CGI Script (greet.pl):

#!/usr/bin/perl

use CGI qw(:standard);

my $query = CGI->new();

my $name = $query->param("username");

print header();

printstart_html("Greeting Page");

if($name){

print h1("Hello, $name!");

} else {

print h1("Hello, Guest!");

}

printend_html();

Input:

• User enters Alice in the form.

Output in Browser:

Hello, Alice!

8. Notes and Best Practices

• Always print header() before HTML content.

• Use POST method for sensitive data to avoid exposing it in the URL.

• Make scripts executable (chmod +x script.pl) and ensure correct permissions in cgi-

bin.

• Consider modern alternatives like PHP, Python Flask/Django, or Node.js for new

projects, as CGI is older and slower due to creating a new process for each request.

Web Technologies 6.5 CGI Scripting

6.2 WHAT IS CGI

CGI (Common Gateway Interface) is a standard protocol that allows web servers to

execute external programs, often scripts, and generate dynamic content for web pages. It

enables communication between a web server and a program that can process user requests,

such as form submissions, database queries, or other server-side logic.

Key Points:

• CGI scripts can be written in Perl, Python, Bash, C, or other languages.

• CGI programs generate HTML or other content and send it back to the browser.

• CGI is executed on the server-side; the user interacts via the browser.

• Every time a CGI script runs, the server starts a new process, which may impact

performance for high-traffic websites.

2. Features of CGI

• Language-independent: Can be written in any programming language.

• Handles User Input: Processes GET and POST requests from HTML forms.

• Dynamic Content: Generates dynamic web pages based on user input.

• Interactivity: Can interact with databases, files, and other server resources.

3. Developing CGI Programs

Requirements:

1. A web server configured to run CGI (like Apache).

2. A scripting language installed (Perl is common).

3. Scripts stored in the server’s cgi-bin directory.

4. Proper execution permissions (chmod +x script.pl).

6.3 DEVELOPING CGI APPLICATIONS

1. Introduction

Developing CGI (Common Gateway Interface) applications involves creating server-side

scripts that can process user requests, interact with databases or files, and return dynamic

content (usually HTML) to the browser. CGI scripts can be written in Perl, Python, PHP,

Bash, or other languages.

Purpose:

• Handle user input from HTML forms.

• Generate dynamic web pages based on user requests.

Centre for Distance Education 6.6 Acharya Nagarjuna University

• Integrate server-side logic with client-side interface.

Key Components of a CGI Application:

1. Web server capable of running CGI scripts (e.g., Apache).

2. CGI script stored in the cgi-bin directory.

3. HTML pages/forms to accept user input.

4. Backend logic (optional) like file operations, database access, or calculations.

2. Steps to Develop a CGI Application

1. Write an HTML form to collect user input.

2. Create a CGI script to process the input.

3. Set script permissions so the server can execute it (chmod +x script.pl).

4. Place the script in the server’s cgi-bin directory.

5. Test the application in a web browser.

3. Example CGI Application

Example 1: Greeting Application (Perl)

HTML Form (index.html):

<html>

<body>

<h2>Welcome to the Greeting App</h2>

<form action="/cgi-bin/greet.pl" method="post">

 Enter your name: <input type="text" name="username">

<input type="submit" value="Greet Me">

</form>

</body>

</html>

CGI Script (greet.pl):

#!/usr/bin/perl

use CGI qw(:standard);

Create a new CGI object

my $query = CGI->new();

Retrieve parameter from the form

my $name = $query->param("username");

Send HTTP header and start HTML

Web Technologies 6.7 CGI Scripting

print header();

printstart_html("Greeting Page");

Generate dynamic output

if ($name) {

print "<h1>Hello, $name! Welcome to CGI applications.</h1>";

} else {

print "<h1>Hello, Guest!</h1>";

}

printend_html();

How to Run:

1. Place index.html in your web directory.

2. Place greet.pl in cgi-bin.

3. Make greet.pl executable: chmod +x greet.pl.

4. Access index.html in a browser: http://localhost/index.html.

Input:

• User enters Alice in the form.

Output (Browser):

Hello, Alice! Welcome to CGI applications.

Example 2: Simple Calculator (Addition)

HTML Form (calculator.html):

<html>

<body>

<h2>Simple Addition Calculator</h2>

<form action="/cgi-bin/add.pl" method="post">

 Number 1: <input type="text" name="num1">

 Number 2: <input type="text" name="num2">

<input type="submit" value="Add Numbers">

</form>

</body>

</html>

CGI Script (add.pl):

#!/usr/bin/perl

Centre for Distance Education 6.8 Acharya Nagarjuna University

use CGI qw(:standard);

my $query = CGI->new();

my $num1 = $query->param("num1");

my $num2 = $query->param("num2");

print header();

printstart_html("Addition Result");

if ($num1 =~ /^\d+$/ && $num2 =~ /^\d+$/) {

my $sum = $num1 + $num2;

print "<h1>The sum of $num1 and $num2 is $sum.</h1>";

} else {

print "<h1>Please enter valid numbers.</h1>";

}

printend_html();

Input:

• Number 1: 10

• Number 2: 25

Output (Browser):

The sum of 10 and 25 is 35.

4. Notes on Developing CGI Applications

• Use POST for sensitive data (passwords, personal info) and GET for simple data.

• CGI scripts can interact with databases (MySQL, PostgreSQL) for dynamic content.

• Use CGI.pm methods (param(), header(), start_html(), end_html()) to simplify

development.

• CGI applications are simple and effective but can become slow under heavy load

since each request creates a new process.

• Modern alternatives: FastCGI, PHP, Node.js, Python Flask/Django for better

performance.

Developing CGI applications allows creating interactive web apps with dynamic content

using server-side scripts. By combining HTML forms and CGI scripts, developers can

process user input and generate custom output efficiently.

Web Technologies 6.9 CGI Scripting

6.4 Processing CGI

1. Introduction

Processing CGI (Common Gateway Interface) involves handling the input sent from a client

(usually through an HTML form), performing server-side operations (like calculations, file

handling, or database interactions), and sending a dynamic response back to the browser.

Key Concepts:

• CGI scripts run on the server and can be written in Perl, Python, or other languages.

• Data from the client is sent via GETorPOST methods.

• The CGI script parses this data, processes it, and generates output (usually HTML).

2. Steps to Process CGI Data

1. Create an HTML form to accept user input.

2. Receive input in the CGI script using query parameters.

3. Validate input to avoid errors or security risks.

4. Process the input (e.g., calculations, database queries, text processing).

5. Return dynamic output to the browser.

3. Example: Processing User Input in CGI (Perl)

Example 1: Simple Name Echo

HTML Form (nameform.html):

<html>

<body>

<h2>Enter Your Name</h2>

<form action="/cgi-bin/process_name.pl" method="post">

 Name: <input type="text" name="username">

<input type="submit" value="Submit">

</form>

</body>

</html>

CGI Script (process_name.pl):

#!/usr/bin/perl

use CGI qw(:standard);

Create CGI object

my $query = CGI->new();

Centre for Distance Education 6.10 Acharya Nagarjuna University

Retrieve input from form

my $name = $query->param("username");

Generate HTML output

print header();

printstart_html("Processing CGI Example");

if ($name) {

print "<h1>Hello, $name! Your input has been processed successfully.</h1>";

} else {

print "<h1>No input received!</h1>";

}

printend_html();

How it works:

1. User enters a name and clicks Submit.

2. Data is sent to process_name.pl.

3. CGI script retrieves the data using param().

4. Script generates HTML dynamically and returns it to the browser.

Input:

• Name: Alice

Output (Browser):

Hello, Alice! Your input has been processed successfully.

Example 2: Simple Addition Processor

HTML Form (addform.html):

<html>

<body>

<h2>Add Two Numbers</h2>

<form action="/cgi-bin/process_add.pl" method="post">

 Number 1: <input type="text" name="num1">

 Number 2: <input type="text" name="num2">

<input type="submit" value="Add">

</form>

</body>

</html>

Web Technologies 6.11 CGI Scripting

CGI Script (process_add.pl):

#!/usr/bin/perl

use CGI qw(:standard);

my $query = CGI->new();

Get input values

my $num1 = $query->param("num1");

my $num2 = $query->param("num2");

print header();

printstart_html("Addition Result");

Validate numeric input

if ($num1 =~ /^\d+$/ && $num2 =~ /^\d+$/) {

my $sum = $num1 + $num2;

print "<h1>The sum of $num1 and $num2 is $sum.</h1>";

} else {

print "<h1>Please enter valid numbers.</h1>";

}

printend_html();

Input:

• Number 1: 12

• Number 2: 8

Output (Browser):

The sum of 12 and 8 is 20.

4. Notes on Processing CGI

• GET vs POST:

o GET: Data is sent in the URL. Visible and limited in length.

o POST: Data is sent in the request body. Safer for sensitive information.

• Input Validation: Always validate input to prevent errors and security issues (e.g.,

SQL injection, script injection).

• Dynamic Output: CGI scripts can generate full HTML pages dynamically based on

input, including tables, forms, or reports.

• Use of CGI.pm: Simplifies processing with methods like:

o param() – Retrieve input values

Centre for Distance Education 6.12 Acharya Nagarjuna University

o header() – Send HTTP header

o start_html() / end_html() – Generate HTML page structure

• Execution: CGI scripts must have execute permissions (chmod +x script.pl) and be

placed in cgi-bin.

6.5 RETURNING A BASIC HTML PAGE

1. Introduction

Returning a basic HTML page from a CGI script means that the script generates an HTML

document dynamically and sends it as a response to the browser. This is the simplest form of

server-side processing, often used as the first step in learning CGI.

Key Points:

• The CGI script generates HTTP headers followed by HTML content.

• The browser interprets the HTML and displays it.

• This can be done in Perl, Python, or other languages supporting CGI.

2. Steps to Return a Basic HTML Page

1. Create a CGI script in the server’s cgi-bin directory.

2. Send the HTTP header to indicate content type (usually text/html).

3. Generate HTML content using print statements.

4. Make the script executable (chmod +x script.pl).

5. Access the script through a browser to see the HTML page.

3. Example Program in Perl (Returning a Basic HTML Page)

CGI Script (hello.pl):

#!/usr/bin/perl

use strict;

use warnings;

Send HTTP header

print "Content-type: text/html\n\n";

Generate HTML content

print "<html>\n";

print "<head><title>Basic HTML Page</title></head>\n";

print "<body>\n";

print "<h1>Welcome to My First CGI Page!</h1>\n";

print "<p>This HTML page is returned by a CGI script.</p>\n";

print "</body>\n";

Web Technologies 6.13 CGI Scripting

print "</html>\n";

Steps to Run:

1. Save the script as hello.pl in the cgi-bin directory of your web server.

2. Make it executable: chmod +x hello.pl.

3. Open a browser and navigate to: http://localhost/cgi-bin/hello.pl.

Output (Browser):

• A web page displaying:

Welcome to My First CGI Page!

This HTML page is returned by a CGI script.

4. Example Program in Python (Returning a Basic HTML Page)

CGI Script (hello.py):

#!/usr/bin/env python3

print("Content-Type: text/html\n")

print("<html>")

print("<head><title>Basic HTML Page</title></head>")

print("<body>")

print("<h1>Welcome to My First CGI Page!</h1>")

print("<p>This HTML page is returned by a CGI script written in Python.</p>")

print("</body>")

print("</html>")

Steps to Run:

1. Save the script as hello.py in cgi-bin.

2. Make it executable: chmod +x hello.py.

3. Access via browser: http://localhost/cgi-bin/hello.py.

Output (Browser):

• A web page with the heading and paragraph as defined.

5. Notes on Returning Basic HTML Pages

• HTTP Header: Every CGI script must start by sending the Content-Type: text/html

header followed by a blank line.

Centre for Distance Education 6.14 Acharya Nagarjuna University

• Dynamic Content: Even a basic HTML page can be made dynamic by embedding

variables or processing input.

• Debugging: If the browser shows raw text instead of HTML, check:

o Correct content-type header

o Script permissions

o Script path

• Escaping Special Characters: Use <,> for < and > in text to avoid HTML

rendering issues.

6.6 Introduction to CGI.pm

1. Introduction

CGI.pm is a Perl module that simplifies the creation of CGI scripts. It provides built-in

functions for:

• Handling form input (GET or POST)

• Generating HTML content dynamically

• Managing cookies and HTTP headers

• Creating query parameters and links

Key Points:

• Reduces the complexity of manually parsing query strings.

• Helps generate HTML elements like forms, tables, and lists easily.

• Makes CGI scripts more secure and maintainable.

2. Installing CGI.pm

Most modern Perl distributions include CGI.pm by default. If not, it can be installed via

CPAN:

cpan install CGI

3. Using CGI.pm

Basic Steps:

1. Include the module in the script:

use CGI;

2. Create a CGI object:

my $cgi = CGI->new;

Web Technologies 6.15 CGI Scripting

3. Generate HTTP headers and HTML content:

print $cgi->header();

print $cgi->start_html("Title of Page");

print $cgi->h1("Heading");

print $cgi->end_html();

4. Example Program: Returning a Basic HTML Page

CGI Script (hello_cgi_pm.pl):

#!/usr/bin/perl

use strict;

use warnings;

use CGI;

Create CGI object

my $cgi = CGI->new;

Send HTTP header and start HTML

print $cgi->header();

print $cgi->start_html("Welcome Page");

Add heading and paragraph

print $cgi->h1("Welcome to CGI.pm Page!");

print $cgi->p("This page is generated using Perl's CGI.pm module.");

End HTML

print $cgi->end_html();

Steps to Run:

1. Save as hello_cgi_pm.pl in the cgi-bin directory.

2. Make executable: chmod +x hello_cgi_pm.pl.

3. Access via browser: http://localhost/cgi-bin/hello_cgi_pm.pl.

Output (Browser):

• A web page displaying:

Welcome to CGI.pm Page!

This page is generated using Perl's CGI.pm module.

Centre for Distance Education 6.16 Acharya Nagarjuna University

5. Example Program: Processing Form Input

HTML Form (form.html):

<form action="/cgi-bin/process_form.pl" method="post">

 Name: <input type="text" name="username">

<input type="submit" value="Submit">

</form>

CGI Script (process_form.pl):

#!/usr/bin/perl

use strict;

use warnings;

use CGI;

my $cgi = CGI->new;

Get form input

my $name = $cgi->param('username');

Send HTML response

print $cgi->header();

print $cgi->start_html("Form Response");

print $cgi->h1("Hello, $name!");

print $cgi->end_html();

Output (Browser after submitting "Alice"):

Hello, Alice!

6. Key Methods of CGI.pm

Method Description

header() Sends HTTP headers to the browser

start_html("Title") Begins an HTML document with a title

end_html() Ends an HTML document

h1("text") Creates an <h1> heading

p("text") Creates a paragraph <p>

Web Technologies 6.17 CGI Scripting

Method Description

param('name') Retrieves form input value

textfield('name') Generates a text input field

submit('value') Generates a submit button

7. Notes

• CGI.pm is legacy but still widely used for simple Perl-based web applications.

• For large applications, frameworks like Dancer or Mojolicious are preferred.

• Always validate and sanitize form inputs to prevent security issues.

6.7 CGL.pm methods

1. Introduction

CGI.pm provides a rich set of methods to handle web-based interactions using Perl CGI

scripts. These methods are used to:

• Create HTML elements dynamically

• Handle user input from forms

• Manage HTTP headers

• Generate cookies and hyperlinks

Using CGI.pm methods makes CGI scripting more structured, readable, and secure.

2. Common CGI.pm Methods

Here are the key methods categorized by functionality:

a) HTTP Header Methods

Method Description

header() Sends the HTTP header to the browser. Can specify content type, cookies, etc.

Example:

print $cgi->header(-type => "text/html", -charset => "UTF-8");

Centre for Distance Education 6.18 Acharya Nagarjuna University

b) HTML Generation Methods

Method Description

start_html("Title") Starts an HTML page with a given title

end_html() Ends the HTML page

h1("text") Generates an <h1> heading

h2("text") Generates an <h2> heading

p("text") Creates a paragraph <p>

hr() Inserts a horizontal line <hr>

b("text") Makes text bold

i("text") Makes text italic <i>

Example:

print $cgi->start_html("My Page");

print $cgi->h1("Welcome!");

print $cgi->p("This page is created using CGI.pm.");

print $cgi->end_html();

Output:

A simple HTML page with heading “Welcome!” and a paragraph.

c) Form Handling Methods

Method Description

param('name') Retrieves the value of a form field

textfield('name') Creates a text input field

password_field('name') Creates a password input field

submit('value') Creates a submit button

reset('value') Creates a reset button

textarea('name') Creates a multi-line text area

popup_menu(-name=>'menu', -values=>['A','B']) Creates a dropdown menu

Web Technologies 6.19 CGI Scripting

Method Description

checkbox_group(-name=>'box', -values=>['X','Y']) Creates multiple checkboxes

radio_group(-name=>'radio', -values=>['Yes','No']) Creates radio buttons

Example: HTML Form using CGI.pm methods

#!/usr/bin/perl

use strict;

use warnings;

use CGI;

my $cgi = CGI->new;

print $cgi->header();

print $cgi->start_html("Form Example");

print $cgi->h1("User Feedback Form");

print $cgi->start_form(-method=>'POST', -action=>'/cgi-bin/process_form.pl');

print "Name: " . $cgi->textfield('username') . "
";

print "Feedback: " . $cgi->textarea('feedback') . "
";

print $cgi->submit('Submit');

print $cgi->end_form();

print $cgi->end_html();

Output (Browser):

A web form with fields for Name and Feedback and a Submit button.

d) Form Processing Example

process_form.pl

#!/usr/bin/perl

use strict;

use warnings;

use CGI;

my $cgi = CGI->new;

my $name = $cgi->param('username');

Centre for Distance Education 6.20 Acharya Nagarjuna University

my $feedback = $cgi->param('feedback');

print $cgi->header();

print $cgi->start_html("Form Response");

print $cgi->h1("Thank You, $name!");

print $cgi->p("Your feedback: $feedback");

print $cgi->end_html();

Output (Browser after submitting form):

Thank You, Alice!

Your feedback: Great website!

e) Other Useful CGI.pm Methods

• cookie() – To create cookies

• redirect('url') – To redirect the user to another page

• img(-src=>'image.jpg', -alt=>'My Image') – To embed images

• a({-href=>'link'}, 'text') – To create hyperlinks

• ul(li('item1'), li('item2')) – To create unordered lists

3. Notes

• CGI.pm methods abstract away HTML and HTTP handling, making scripts cleaner.

• Always validate and sanitize user input to prevent XSS or injection attacks.

• For dynamic web apps, CGI.pm is suitable for small projects; larger applications may

use frameworks like Dancer or Mojolicious.

6.8 CREATING HTML PAGES DYNAMICALLY

1. Introduction

Dynamic HTML pages are generated in real-time based on user input, database content, or

server-side logic. Unlike static HTML pages, dynamic pages change content depending on

parameters like form input, session data, or other backend computations. CGI (Common

Gateway Interface) and Perl’s CGI.pm module allow us to create these dynamic pages

efficiently.

2. Key Concepts

1. Server-side Scripting: Code runs on the server and generates HTML content

dynamically.

2. User Input Handling: Forms or URL parameters provide data to generate

personalized content.

Web Technologies 6.21 CGI Scripting

3. Database Interaction: Dynamic pages can display content from databases (e.g.,

MySQL).

4. CGI.pm Methods: Methods like param(), start_html(), end_html(), h1(), p(), etc., are

used to create HTML dynamically.

3. Example 1: Display Dynamic Greeting

Program: greeting.pl

#!/usr/bin/perl

use strict;

use warnings;

use CGI;

my $cgi = CGI->new;

Get user input from URL parameter 'name'

my $name = $cgi->param('name') || "Guest";

Generate dynamic HTML page

print $cgi->header(-type=>'text/html', -charset=>'UTF-8');

print $cgi->start_html("Dynamic Greeting Page");

print $cgi->h1("Hello, $name!");

print $cgi->p("Welcome to our dynamically generated page.");

print $cgi->end_html();

Input (URL in browser):

http://localhost/cgi-bin/greeting.pl?name=Alice

Output (Browser):

Hello, Alice!

Welcome to our dynamically generated page.

If no name is provided, it defaults to “Guest”.

4. Example 2: Dynamic Form Handling

Program: feedback_form.pl

#!/usr/bin/perl

use strict;

use warnings;

use CGI;

Centre for Distance Education 6.22 Acharya Nagarjuna University

my $cgi = CGI->new;

if ($cgi->param('submit')) {

 # Process form input dynamically

my $user = $cgi->param('username');

my $feedback = $cgi->param('feedback');

print $cgi->header();

print $cgi->start_html("Feedback Response");

print $cgi->h1("Thank you, $user!");

print $cgi->p("Your feedback: $feedback");

print $cgi->end_html();

} else {

 # Display the form dynamically

print $cgi->header();

print $cgi->start_html("Feedback Form");

print $cgi->h1("Provide Your Feedback");

print $cgi->start_form(-method=>'POST');

print "Name: " . $cgi->textfield('username') . "
";

print "Feedback: " . $cgi->textarea('feedback') . "
";

print $cgi->submit('submit','Submit');

print $cgi->end_form();

print $cgi->end_html();

}

Input (Browser):

• Name: Alice

• Feedback: Great website!

Output (Browser after submission):

Thank you, Alice!

Your feedback: Great website!

5. Example 3: Dynamic Table from Data

Program: students.pl

#!/usr/bin/perl

use strict;

use warnings;

Web Technologies 6.23 CGI Scripting

use CGI;

my $cgi = CGI->new;

Example data

my @students = (

 {id=>1, name=>'Alice', age=>14, grade=>8},

 {id=>2, name=>'Bob', age=>15, grade=>9},

 {id=>3, name=>'Charlie', age=>14, grade=>8},

);

Generate HTML page with table

print $cgi->header();

print $cgi->start_html("Student List");

print $cgi->h1("List of Students");

print "<table border='1'>";

print "<tr><th>ID</th><th>Name</th><th>Age</th><th>Grade</th></tr>";

foreach my $s (@students) {

print "<tr>";

print "<td>$s->{id}</td>";

print "<td>$s->{name}</td>";

print "<td>$s->{age}</td>";

print "<td>$s->{grade}</td>";

print "</tr>";

}

print "</table>";

print $cgi->end_html();

Output (Browser):

A dynamically generated HTML table:

ID Name Age Grade

1 Alice 14 8

2 Bob 15 9

3 Charlie 14 8

6. Notes

• Dynamic pages are useful for personalized content, dashboards, and forms.

• CGI scripts should be placed in the cgi-bin directory or configured to execute on the

server.

Centre for Distance Education 6.24 Acharya Nagarjuna University

• Always sanitize input to prevent injection attacks.

• For larger applications, consider frameworks like Dancer or Mojolicious for dynamic

web page generation.

6.9 SUMMARY

Creating HTML pages dynamically using CGI allows web applications to generate content in

real time based on user input, server-side logic, or database content. Unlike static HTML

pages, dynamic pages can change depending on parameters such as form submissions, URL

queries, or session data. CGI (Common Gateway Interface) provides a way for servers to

execute scripts and generate HTML output dynamically, and Perl’s CGI.pm module

simplifies this process with built-in methods. Key CGI.pm methods like param(),

start_html(), end_html(), h1(), p(), textfield(), textarea(), and submit() allow developers to

handle user input, generate HTML headers, and create structured page elements

programmatically.

Dynamic pages can greet users based on URL parameters, display customized responses, or

process form submissions in real time. They can also generate tables and lists from internal

arrays or database queries, providing a flexible way to present data. Typically, scripts begin

by creating a CGI object, processing input parameters, and then printing the HTTP header

followed by HTML content. For example, a greeting page can display “Hello, Alice!” if the

name parameter is provided, or default to “Guest” if no input exists. Feedback forms can

capture user data, process it, and return a confirmation page dynamically. Similarly, student

data can be displayed in a table format, allowing easy visualization of multiple records.

Dynamic pages enhance interactivity and personalization in web applications, making them

essential for modern web development. However, security is crucial—user input must be

sanitized to prevent injection attacks. CGI scripts are typically placed in the server’s cgi-bin

directory and require proper permissions to execute. For complex applications, frameworks

like Dancer or Mojolicious can further simplify dynamic HTML generation. Overall, CGI

and CGI.pm provide a foundational and efficient approach to creating dynamic, interactive,

and data-driven web pages.

6.10 KEYTERMS

CGI, CGI.pm, Dynamic, HTML, Script, Parameter, HTTP, Method, Table, Textfield,

Submit, Server.

6.11 SELF-ASSESSMENT QUESTIONS

1. What does CGI stand for in web development?

2. What is the primary purpose of a CGI script?

3. Which programming languages can be used to write CGI scripts?

4. What is the role of the CGI.pm module in Perl?

5. How do you retrieve form data using CGI.pm?

6. What is the difference between returning a static HTML page and creating a dynamic

one?

7. Name two methods provided by CGI.pm for handling HTML form inputs.

Web Technologies 6.25 CGI Scripting

8. How does a CGI script send output to the browser?

9. What is the importance of the HTTP header in CGI output?

10. How can you generate a dynamic HTML table using CGI.pm?

6.12 FURTHER READINGS

1. CGI Programming on the World Wide Web by Scott Guelich, ShishirGundavaram,

and Shishir Pal; O’Reilly Media. – Comprehensive guide to CGI, Perl CGI.pm, and

web application development.

2. Robert W. Sebesta, "Programming the World Wide Web", Third Edition, Pearson

Education (2007).

3. Jeffrey C. Jackson, "Web Technologies - A Computer Science Perspective", Pearson

Technologies", Addison Wesley (2006)Education (2008).

4. Perl and CGI for the World Wide Web by Elizabeth Castro and Jim Doxsey; Peachpit

Press. – Covers developing CGI scripts, processing form data, and dynamic HTML

generation.

5. Learning Perl by Randal L. Schwartz, Tom Phoenix, and brian d foy; O’Reilly Media.

– Includes CGI.pm usage and Perl scripting for web applications.

6. CGI Programming with Perl by Simon Cozens; Manning Publications. – Focuses on

CGI.pm methods, handling input/output, and creating dynamic web pages.

7. Programming the World Wide Web by Robert W. Sebesta; Pearson. – Discusses CGI

scripting concepts, processing CGI, and generating HTML pages dynamically.

8. Modern Perl by chromatic; O’Reilly Media. – Updated Perl practices including web

applications using CGI.pm.

 Dr. Vasantha Rudramalla

LESSON-7

INTRODUCTION TO JDBC AND DATABASE

CONNECTIVITY IN JAVA

AIMS AND OBJECTIVES:

➢ Gain insight into JDBC and recognize its role as a standardized interface for

database interaction in Java.

➢ Identify and understand the key steps required to connect Java applications

with relational databases.

➢ Investigate the different types of JDBC drivers and how they support

communication between Java and databases.

➢ Examine the inner workings and stages of a JDBC connection from initiation

to termination.

➢ Learn to create, handle, and optimize database connections efficiently within

Java-based systems.

Structure:

7.1 JDBC: INTRODUCTION TO JDBC

 7.1.1PURPOSE OF JDBC

 7.1.2 TYPES OF JDBC DRIVERS

7.2 CONNECTIONs

7.3 INTERNAL DATABASE CONNECTIONS

7.4 SUMMARY

7.5 KEY TERMS

7.6 SELF-ASSESSMENT QUESTIONS

7.7 FURTHER READINGS

7.1 JDBC: INTRODUCTION TO JDBC

JDBC (Java Database Connectivity) is a Java-based API (Application Programming

Interface) that enables Java applications to interact with databases in a platform-independent

and standardized way. Developed by Sun Microsystems (now part of Oracle Corporation),

JDBC is part of the Java Standard Edition and is widely used for building robust, data-driven

applications.

7.1.1 Purpose of JDBC

The main purpose of JDBC is to allow Java applications to perform the following operations

on relational databases:

Centre for Distance Education 7.2 Acharya Nagarjuna University

• Establish a connection to a database

• Send SQL queries and update statements

• Retrieve and process the results of SQL queries

• Handle errors and exceptions

• Perform transaction management

Need for JDBC

Before JDBC, accessing databases in Java required platform-specific and third-party APIs,

making applications less portable and harder to maintain. JDBC solves this by providing a

uniform interface for accessing different types of relational databases like MySQL, Oracle,

PostgreSQL, SQL Server, etc., using the same code structure.

JDBC Architecture

JDBC architecture consists of two layers:

1. JDBC API: This provides the application-level interface for Java developers to write

database code.

2. JDBC Driver: This handles the communication between the Java application and the

actual database. The driver translates JDBC calls into database-specific calls.

The JDBC APIutilizes a DriverManager along with database-specific drivers to enable

seamless and transparent connectivity to various types of relational databases, regardless

of vendor differences.TheDriverManager is responsible for selecting and managing the

appropriate driver for each database connection request. It supports the operation of

multiple drivers simultaneously, allowing connections to several heterogeneous databases

within a single Java application.

The following architectural figure: 7.1 illustrates the position of the DriverManager in

relation to the JDBC drivers and the Java application:

Web Technologies 7.3 Introduction to JDBC and Database…

3

Figure:7.1 the position of the DriverManager in relation to the JDBC drivers and

the Java application:

Core JDBC Components

1. DriverManager: Manages the list of database drivers and establishes a connection to

the database.

2. Connection: Represents a session with a specific database.

3. Statement: Used to execute SQL queries.

4. PreparedStatement: A subclass of Statement that allows precompiled queries with

parameters.

5. CallableStatement: Used to execute stored procedures.

6. ResultSet: Represents the result of a SQL query and allows traversal through query

results.

7. SQLException: Handles database-related exceptions and errors.

What is a JDBC Driver?

A JDBC Driver is a software component that enables Java applications to interact with a

specific database. It acts as a bridge between the Java application and the database,

translating the standard JDBC API calls into database-specific calls that the database can

understand and execute.

Since different databases (like MySQL, Oracle, SQL Server, PostgreSQL, etc.) use different

communication protocols, JDBC drivers are tailored for each type of database.

7.1.2 Types of JDBC Drivers

There are four types of JDBC drivers, also known as JDBC driver types:

1. Type 1: JDBC-ODBC Bridge Driver

In a Type 1 JDBC driver, a JDBC-ODBC bridge is used to connect Java applications to

databases through existing ODBC (Open Database Connectivity) drivers installed on each

client machine. To use this approach, the system must be configured with a Data Source

Name (DSN), which identifies the target database.When Java was first introduced, this driver

type was practical because most relational databases primarily supported ODBC for

connectivity. However, with the evolution of native JDBC drivers, the Type 1 driver is now

considered outdated and is recommended only for testing or experimental purposes or in

cases where no other driver is available.

Centre for Distance Education 7.4 Acharya Nagarjuna University

Figure: 7.2Type 1: JDBC-ODBC Bridge Driver

An example of this type of driver is the JDBC-ODBC Bridge provided with JDK 1.2.

2. Type 2:Native-API Driver

A Type 2 JDBC driver converts JDBC API calls into nativeC/C++ API calls that are specific

to the database being used. These drivers are usually provided by the database vendors and

function similarly to the JDBC-ODBC Bridge, but without relying on ODBC. However, they

require the native driver to be installed on each client machine.

Since these drivers are database-specific, switching to a different database would require

replacing the underlying native APIs, making them less portable. Although largely outdated

today, Type 2 drivers can offer better performance than Type 1 drivers by avoiding the

overhead introduced by ODBC.

Figure7.3 Type 2: Native-API Driver

A well-known example of a Type 2 driver is the Oracle Call Interface (OCI) driver.

3. Type 3:Network Protocol Driver

Web Technologies 7.5 Introduction to JDBC and Database…

5

A Type 3 JDBC driver follows a three-tier architecture to access databases. In this setup, the

JDBC client communicates with a middleware application server using standard network

sockets. The middleware server then translates these requests into database-specific calls and

forwards them to the appropriate database server.

This driver type is highly flexible and scalable, as it does not require any database-

specificcode on the client side. A single Type 3 driver can provide access to multiple types of

databases through the middleware. Essentially, the application server acts as a JDBC proxy,

handling database operations on behalf of the client.

To effectively use a Type 3 driver, you must be familiar with the configuration of the

middleware server. Internally, the server may use a Type 1, 2, or 4 driver to communicate

with the actual database, so understanding how it is set up can help optimize performance and

compatibility.

Figure: 7.4 Type 3: Network Protocol Driver

4. Type 4:Thin Driver (Pure Java driver)

A Type 4 JDBC driver is a pure Java driver that communicates directly with the

databaseserver using the database vendor’s native network protocol over a socket connection.

This type of driver offers the highest performance and is typically provided by the database

vendor.

Type 4 drivers are highly portable and easy to use, as they require no additional software

installation on either the client or server. Additionally, they can often be dynamically

downloaded at runtime, further simplifying deployment. An example of a Type 4 driver is

MySQL’s Connector/J. Due to the proprietary nature of database communication protocols,

these drivers are usually developed and maintained by the database vendors themselves.

Centre for Distance Education 7.6 Acharya Nagarjuna University

Figure 7.5: Type 4: Thin Driver (Pure Java driver)

Note:

A JDBC driver is essential for establishing communication between a Java application and a

relational database. Choosing the right driver type depends on factors like performance,

portability, and the specific use case. Type 4 drivers are typically preferred for their

simplicity and cross-platform compatibility.

Basic JDBC Workflow

1. Load the JDBC driver.

2. Establish a connection using DriverManager.getConnection().

3. Create a Statement or PreparedStatement.

4. Execute a query using executeQuery() or update using executeUpdate().

5. Process the ResultSet.

6. Close the connection and other resources.

Example Code Snippet

import java.sql.*;

public class JDBCExample {

public static void main(String[] args) {

try {

 // Load the JDBC driver

Class.forName("com.mysql.cj.jdbc.Driver");

 // Establish the connection

 Connection conn = DriverManager.getConnection(

 "jdbc:mysql://localhost:3306/mydatabase", "username", "password");

 // Create a statement

 Statement stmt = conn.createStatement();

 // Execute a query

ResultSetrs = stmt.executeQuery("SELECT * FROM students");

Web Technologies 7.7 Introduction to JDBC and Database…

7

 // Process the result set

while (rs.next()) {

System.out.println("ID: " + rs.getInt("id") + ", Name: " + rs.getString("name"));

 }

 // Close resources

rs.close();

stmt.close();

conn.close();

 } catch (Exception e) {

e.printStackTrace();

 }

 }

}

Advantages of JDBC

• Platform-independent database connectivity

• Enables connection to various databases using a uniform API

• Supports basic and advanced SQL operations

• Easy integration with enterprise Java technologies (JSP, Servlets, Spring, etc.)

• Good performance with Type 4 drivers

Note: JDBC is a powerful and essential API for Java developers who need to interact with

relational databases. It abstracts the complexity of database communication and provides a

clean, simple, and extensible framework for data access, making it a cornerstone of Java

database programming.

7.2 CONNECTIONS

Establishing a JDBC Connection in Java

Establishing a JDBC (Java Database Connectivity) connection in Java is a straightforward

process involving a few essential steps. These steps include importing the required packages,

registering the JDBC driver, formulating the database URL, creating a connection object, and

finally, closing the connection properly.

Centre for Distance Education 7.8 Acharya Nagarjuna University

Figure 7.6: Establishing a JDBC Connection in Java

Step 1: Import JDBC Packages

Before working with JDBC, you need to import the necessary classes provided by the Java

API. These imports allow your program to interact with databases by enabling operations like

querying, inserting, updating, and deleting data.

Add the following import statements at the beginning of your Java source file:

import java.sql.*; // For standard JDBC classes

importjava.math.*; // For BigDecimal and BigInteger support

Step 2: Register the JDBC Driver: Registering the JDBC driver is the process of loading

the database-specific driver class into memory. This step must be performed only once in

your program. There are two approaches to register a driver:

Approach I – Using Class.forName()

This is the most commonly used and portable method.

try {

Class.forName("oracle.jdbc.driver.OracleDriver");

} catch (ClassNotFoundException ex) {

System.out.println("Error: unable to load driver class!");

Web Technologies 7.9 Introduction to JDBC and Database…

9

System.exit(1);

}

For non-compliant JVMs, you can use newInstance() with exception handling:

try {

Class.forName("oracle.jdbc.driver.OracleDriver").newInstance();

}

catch (ClassNotFoundException ex) {

System.out.println("Error: unable to load driver class!");

System.exit(1);

}

catch (IllegalAccessException ex) {

System.out.println("Error: access problem while loading!");

System.exit(2);

}

catch (InstantiationException ex) {

System.out.println("Error: unable to instantiate driver!");

System.exit(3);

}

Approach II – Using DriverManager.registerDriver()

This method is useful for non-JDK compliant JVMs:

try {

 Driver myDriver = new oracle.jdbc.driver.OracleDriver();

DriverManager.registerDriver(myDriver);

}

catch (Exception ex) {

System.out.println("Error: unable to register driver!");

System.exit(1);

}

Step 3: Formulate the Database URL

A database URL is used to specify the location of the database to which you want to connect.

The DriverManager.getConnection() method requires this URL.

Common URL formats for various databases are:

RDBMS JDBC Driver Class URL Format

MySQL com.mysql.jdbc.Driver jdbc:mysql://hostname/databaseName

Oracle oracle.jdbc.driver.OracleDriver
jdbc:oracle:thin:@hostname:port:databaseNam

e

DB2 COM.ibm.db2.jdbc.net.DB2Driver jdbc:db2:hostname:port/databaseName

Centre for Distance Education 7.10 Acharya Nagarjuna University

RDBMS JDBC Driver Class URL Format

Sybase com.sybase.jdbc.SybDriver jdbc:sybase:Tds:hostname:port/databaseName

Note: Replace hostname, port, and databaseName with actual values based on your database

configuration.

Step 4: Create the Connection Object

To establish a connection, use one of the three overloaded versions of the

DriverManager.getConnection() method:

1. Using Database URL, Username, and Password

String URL = "jdbc:oracle:thin:@amrood:1521:EMP";

String USER = "username";

String PASS = "password";

Connection conn = DriverManager.getConnection(URL, USER, PASS);

2. Using a Database URL with Embedded Credentials

String URL = "jdbc:oracle:thin:username/password@amrood:1521:EMP";

Connection conn = DriverManager.getConnection(URL);

3. Using a Database URL and Properties Object

importjava.util.*;

String URL = "jdbc:oracle:thin:@amrood:1521:EMP";

Properties info = new Properties();

info.put("user", "username");

info.put("password", "password");

Connection conn = DriverManager.getConnection(URL, info);

Step 5: Close the Connection

After completing database operations, it is crucial to close the connection to free up database

resources. Never rely on Java’s garbage collector for this task, as it is a poor programming

practice.

Always use the close() method in a finally block to ensure the connection is properly closed:

try {

 // database operations

} finally {

if (conn != null) conn.close();

}

Closing connections properly helps avoid memory leaks and ensures efficient use of DBMS

resources.

Note:

Web Technologies 7.11 Introduction to JDBC and Database…

11

In JDBC programming, establishing a connection follows five main steps:

1. Import the required JDBC classes.

2. Register the JDBC driver.

3. Formulate the database URL correctly.

4. Create the connection using DriverManager.getConnection().

5. Close the connection properly after use.

By following this structure, your JDBC application will maintain reliability, portability, and

good resource management practices.7.3 Internal Database Connections

In Java applications, internal database connections refer to the underlying process of how a

connection is established between a Java program and a database using the JDBC API.

Internally, JDBC acts as a bridge between the Java application and the database, abstracting

the complexity of database communication through a set of well-defined interfaces and

classes.

Key Components Involved

1. DriverManager Class

o Manages a list of database drivers.

o Matches the connection request with the appropriate driver using the JDBC

URL.

o Returns a Connection object to the application.

2. Driver Interface

o Every JDBC driver must implement the java.sql.Driver interface.

o When the driver class is loaded, it automatically registers itself with

DriverManager.

3. Connection Interface

o Represents a session with the database.

o Provides methods for creating Statement, PreparedStatement, and

CallableStatement objects.

Internal Connection Flow

1. Load the JDBC Driver

2. Class.forName("com.mysql.cj.jdbc.Driver");

o Registers the driver with DriverManager.

o Enables the driver to handle future connection requests.

3. Establish the Connection

4. Connection con = DriverManager.getConnection(

5. "jdbc:mysql://localhost:3306/mydatabase", "username", "password");

o The DriverManager scans through registered drivers.

o The driver that understands the URL (jdbc:mysql://...) takes over.

6. Driver Internally Performs:

o URL Parsing: Validates if the URL is compatible.

o Authentication: Uses username and password to connect.

Centre for Distance Education 7.12 Acharya Nagarjuna University

o Socket Creation: Establishes a network socket to the database server.

o Protocol Handling: Implements database-specific communication protocol.

7. Return Connection Object

o Once the connection is successfully established, a Connection object is

returned to the Java program.

o The application can now execute SQL queries.

Example Code

importjava.sql.*;

public class InternalConnectionExample {

public static void main(String[] args) {

try {

 // Step 1: Load JDBC driver

Class.forName("com.mysql.cj.jdbc.Driver");

 // Step 2: Establish connection

 Connection con = DriverManager.getConnection(

 "jdbc:mysql://localhost:3306/mydatabase", "root", "password");

System.out.println("Connected Successfully!");

 // Close the connection

con.close();

 } catch (Exception e) {

e.printStackTrace();

 }

 }

}

Best Practices

• Always close the connection to avoid resource leakage.

• Use connection pooling (like HikariCP, Apache DBCP) for performance in enterprise

applications.

• Prefer PreparedStatement for security and efficiency over plain Statement.

Note: Internal database connections in JDBC abstract the complex mechanics of establishing

a link between a Java application and a relational database. Understanding this process helps

developers write efficient and secure database applications.

7.3 INTERNAL DATABASE CONNECTIONS

Introduction

In web technology, internal database connections refer to the behind-the-scenes process by

which a web application connects and communicates with a relational database

managementsystem (RDBMS) like MySQL, Oracle, or PostgreSQL. These connections are

crucial for storing, retrieving, and managing dynamic content in modern web applications.

Web Technologies 7.13 Introduction to JDBC and Database…

13

Key Components Involved

1. Client: The end-user interface (browser or mobile app).

2. Web Server: Handles HTTP requests and responses.

3. Application Logic: Server-side scripts or programs (e.g., Servlets, JSP, PHP,

ASP.NET).

4. Database Driver: A JDBC driver or equivalent that enables communication with the

database.

5. Database Server: Stores application data (e.g., MySQL, Oracle DB).

Step-by-Step Internal Workflow

1. Client Sends Request

The process begins when a client (usually a web browser) submits an HTTP request, such as

a login form or data entry form.

<form action="LoginServlet" method="post">

<input type="text" name="username">

<input type="password" name="password">

<input type="submit" value="Login">

</form>

2. Web Server Processes Request

The Web Server (e.g., Apache Tomcat) receives the request and forwards it to the

appropriate component (Servlet, JSP, etc.).

3. Backend Logic Extracts Input

Server-side code (e.g., a Servlet) extracts input parameters.

String uname = request.getParameter("username");

String pwd = request.getParameter("password");

4. Load JDBC Driver

Before connecting to the database, the application loads the JDBC driver.

Class.forName("com.mysql.cj.jdbc.Driver");

 Internally:

• The class loader loads the driver.

• It registers the driver with DriverManager using a static block:

static {

DriverManager.registerDriver(new com.mysql.cj.jdbc.Driver());

}

Centre for Distance Education 7.14 Acharya Nagarjuna University

5. Establish Database Connection

Use DriverManager or a DataSource to establish a connection.

Connection con = DriverManager.getConnection(

 "jdbc:mysql://localhost:3306/webapp", "root", "password");

Internally:

• DriverManager checks the URL and hands the request to the matching driver.

• A socket connection is established to the database.

• User authentication is validated.

• A Connection object is returned to the application.

6. Create SQL Statement

To perform queries, a Statement or PreparedStatement object is created.

PreparedStatementpst = con.prepareStatement(

 "SELECT * FROM users WHERE username=? AND password=?");

pst.setString(1, uname);

pst.setString(2, pwd);

 Internally:

• The SQL is precompiled (in case of PreparedStatement).

• Parameters are safely injected.

• Execution plan may be reused for performance.

7. Execute SQL Query

The query is sent to the database server.

ResultSetrs = pst.executeQuery();

 Internally:

• JDBC translates the query into native database protocol.

• The query is executed on the database engine.

• Results are streamed back to the application as a ResultSet.

8. Process Results

Results from the ResultSet are processed.

if(rs.next()) {

out.println("Login Successful");

} else {

Web Technologies 7.15 Introduction to JDBC and Database…

15

out.println("Invalid credentials");

}

 Internally:

• ResultSet manages cursor movement and type conversion.

• Data is converted from SQL types to Java types (e.g., VARCHAR to String).

7. Close Resources

Resources must be closed to release memory and database connections.

rs.close();

pst.close();

con.close();

 Internally:

• JDBC notifies the driver to release sockets, buffers, and connections.

• Connections return to the pool if pooling is used.

Connection Lifecycle Summary

Client Request

 ↓

Web Server

 ↓

Servlet/JSP → JDBC Driver → Database

 ↓

ResultSet ← Response

 ↓

Client

Connection Pooling (Advanced Approach)

In enterprise web applications, connection pooling is used to avoid the overhead of frequent

connection creation and closing.

 Example using DataSource (JNDI in a Servlet):

Context ctx = new InitialContext();

DataSource ds = (DataSource) ctx.lookup("java:comp/env/jdbc/MyDB");

Connection con = ds.getConnection();

 Internally:

• Connections are managed in a pool.

• The same physical connection is reused, improving performance.

Centre for Distance Education 7.16 Acharya Nagarjuna University

Best Practices

Practice Benefit

Use PreparedStatement Avoids SQL injection

Always close resources Prevents memory leaks

Use connection pooling Enhances performance

Validate inputs Improves security

Use MVC architecture Clean code organization

Technologies Involved

Layer Example

Client HTML, CSS, JS

Server-Side Java Servlets, JSP, Spring MVC

Database MySQL, Oracle

JDBC Driver MySQL JDBC, Oracle JDBC

Web Server Tomcat, GlassFish

Note:Internal database connections are a core part of web application architecture. They

enable dynamic content generation, user authentication, and business logic execution.

Understanding the internal workflow helps in writing efficient, secure, and scalable web

applications.

7.4 SUMMARY

JDBC (Java Database Connectivity) is a Java API that provides platform-independent access

to relational databases. It enables Java applications to connect to databases, execute SQL

queries, and process results efficiently. The key components of JDBC include

DriverManager, Connection, Statement, PreparedStatement, CallableStatement, and

ResultSet, which work together to manage database communication. JDBC drivers translate

Java calls into database-specific protocols, and there are four main types: Type 1 (ODBC

Bridge), Type 2 (Native API), Type 3 (Network Protocol), and Type 4 (Pure Java/Thin

Driver). The general workflow involves loading the driver, establishing a connection,

executing SQL queries, processing results, and closing all resources properly.

In web applications, JDBC plays a crucial role in connecting server-side components like

Servlets and JSPs with backend databases. When a client sends a request, the server processes

it by extracting user input, loading the required JDBC driver, and executing database

operations. Internally, the driver manages socket creation, protocol translation, and

Web Technologies 7.17 Introduction to JDBC and Database…

17

authentication to communicate with the database. Best practices include using

PreparedStatement to prevent SQL injection, applying connection pooling for better

performance, and ensuring proper closure of database connections.

Web technologies such as HTML, JSP, and JDBC drivers work together with web servers

like Apache Tomcat to build data-driven applications. Advanced resource management

techniques, including connection pooling through JNDI and DataSource, enhance scalability

and efficiency. Understanding JDBC architecture and its internal workflow is essential for

developing reliable and high-performance Java-based web systems.

7.5 KEY TERMS:

JDBC(Java Database Connectivity), DriverManager, Connection, Statement,

PreparedStatement, CallableStatement, ResultSet, SQLException, JDBC,Type 1 Driver, Type

2 Driver, Type 3 Driver, Type 4 Driver, Connection Pooling, DataSource.

7.6 SELF-ASSESSMENT QUESTIONS

1. What is JDBC and why is it used in Java applications?

2. List any three core components of the JDBC API.

3. What are the two main layers of JDBC architecture?

4. Why was JDBC introduced, replacing earlier third-party or platform-specific APIs?

5. What is the role of theDriverManagerclass in JDBC?

6. Differentiate betweenStatementandPreparedStatement.

7. What is a Type 4 JDBC driver and why is it widely preferred?

8. What steps are involved in establishing a JDBC connection?

9. What does theConnectioninterface represent in JDBC?

10. How does internal database connection flow work in a web application using JDBC?

7.7 FURTHER READINGS

1. Java: The Complete Reference, Twelfth Editionby Herbert Schildt. McGraw-Hill

Education.

2. Beginning Java Programming: The Object-Oriented Approach by Bart Baesens,

Aimee Backiel, and SeppevandenBroucke. Wiley.

3. Java Programming with Oracle JDBC by Donald Bales. O'Reilly Media.

4. Java EE 8 Application Development by David R. Heffelfinger. Packt Publishing.

5. Professional Java for Web Applications by Nicholas S. Williams. Wrox/Wiley

Publishing.

6. Java 2: Developer's Guide to Web Applications with JDBCby Gregory Brill. Sybex.

Dr. Vasantha Rudramalla

LESSON-8

EXECUTING SQL WITH JDBC

AIM AND OBJECTIVES:

➢ To understand the concept and purpose of JDBC as an interface between Java

applications and databases.

➢ To learn how to establish, manage, and close connections between a Java program

and a database using JDBC.

➢ To explain the working and components of JDBC, including DriverManager,

Connection, Statement, and ResultSet.

➢ To explore the internal process of how JDBC drivers communicate with the database

for query execution.

➢ To develop the ability to write and execute SQL statements in Java programs using

JDBC connections effectively.

STRUCTURE:

8.1 INTRODUCTION TO JDBC

8.2. CONNECTIONS

8.3 INTERNAL DATABASE CONNECTIONS

8.4 STATEMENTS

8.5 SUMMARY

8.6 KEY TERMS

8.7 SELF-ASSESSMENT QUESTIONS

8.8 FURTHER READINGS

8.1 INTRODUCTION TO JDBC

What is JDBC?

JDBC (Java Database Connectivity) is a Java API that allows Java applications to interact

with various databases. It provides a standard interface for connecting to relational databases,

executing SQL queries, and retrieving results.

JDBC is crucial in web technologies because many web applications need to communicate

with databases to store, retrieve, and manipulate data dynamically.

Why JDBC?

• Database Independence: JDBC abstracts the database-specific details, allowing

developers to write database-agnostic code.

• Integration: Enables Java-based web applications (Servlets, JSP, Spring, etc.) to

interact with backend databases.

Centre for Distance Education 8.2 Acharya Nagarjuna University

• Standardization: Offers a uniform API to work with different relational databases

like MySQL, Oracle, SQL Server, PostgreSQL, etc.

• Supports CRUD Operations: Create, Read, Update, Delete operations on the

database.

JDBC Architecture

The JDBC API follows a client-server model and has four main components:

1. JDBC Drivers

These are specific implementations provided by database vendors to communicate

between Java applications and the database. Types include:

o Type 1: JDBC-ODBC Bridge Driver

o Type 2: Native-API Driver

o Type 3: Network Protocol Driver

o Type 4: Thin Driver (Pure Java)

2. DriverManager

Manages the set of JDBC drivers and establishes connections to the database.

3. Connection Interface

Represents a connection session with a specific database.

4. Statement Interface

Used to execute SQL queries (Statement, PreparedStatement, CallableStatement).

5. ResultSet Interface

Represents the result set from SQL query execution, allowing navigation and retrieval

of data.

How JDBC Works in Web Technologies?

In web applications, typically the architecture looks like this:

Client (Browser) → Web Server (Servlet/JSP/Spring MVC) → JDBC Layer →

Database

Step-by-step workflow:

1. Load the JDBC Driver

This registers the driver with the DriverManager.

Class.forName("com.mysql.cj.jdbc.Driver");

2. Establish a Connection

Use DriverManager.getConnection() with a database URL, username, and password.

Connection conn = DriverManager.getConnection(

 "jdbc:mysql://localhost:3306/mydb", "root", "password");

3. Create a Statement

Create a statement object to send SQL commands.

Statement stmt = conn.createStatement();

4. Execute SQL Queries

o For SELECT queries, use executeQuery().

o For INSERT, UPDATE, DELETE, use executeUpdate().

ResultSetrs = stmt.executeQuery("SELECT * FROM users");

5. Process the Results

Iterate through the ResultSet to read data.

while(rs.next()) {

System.out.println("User: " + rs.getString("username"));

}

Web Technologies 8.3 Executing SQL with JDBC

3

6. Close Resources

Close ResultSet, Statement, and Connection to free resources.

rs.close();

stmt.close();

conn.close();

JDBC in Web Frameworks

• Servlets and JSPs: Use JDBC directly to interact with the database.

• Spring Framework: Uses JdbcTemplate for simplified database operations built on

top of JDBC.

• Hibernate / JPA: ORM frameworks that abstract JDBC, but ultimately rely on JDBC

to communicate with the database.

Benefits of Using JDBC in Web Technologies

• Enables dynamic content based on database info.

• Supports scalable, enterprise-level database applications.

• Portable across databases with minimal changes.

• Well-integrated into Java EE and Spring frameworks.

Common Challenges

• Resource Management: Forgetting to close connections can lead to memory leaks.

• SQL Injection: Must use PreparedStatement to safely pass parameters.

• Error Handling: Must handle SQLException properly.

• Connection Pooling: Needed for performance in high-traffic web applications.

Sample Code Snippet for JDBC in a Web Application

public class UserServlet extends HttpServlet {

protected void doGet(HttpServletRequest request, HttpServletResponse response)

throwsServletException, IOException {

 Connection conn = null;

PreparedStatementps = null;

ResultSetrs = null;

try {

Class.forName("com.mysql.cj.jdbc.Driver");

conn = DriverManager.getConnection(

 "jdbc:mysql://localhost:3306/mydb", "root", "password");

 String sql = "SELECT username, email FROM users WHERE status =?";

ps = conn.prepareStatement(sql);

ps.setString(1, "active");

rs = ps.executeQuery();

while (rs.next()) {

 String username = rs.getString("username");

 String email = rs.getString("email");

 // process user data or add to request attributes

 }

 } catch (Exception e) {

e.printStackTrace();

 } finally {

try { if (rs != null) rs.close(); } catch (SQLException e) { e.printStackTrace(); }

try { if (ps != null) ps.close(); } catch (SQLException e) { e.printStackTrace(); }

Centre for Distance Education 8.4 Acharya Nagarjuna University

try { if (conn != null) conn.close(); } catch (SQLException e) { e.printStackTrace(); }

 }

 }

}

Note:

• JDBC is a Java API that facilitates communication between Java web applications and

databases.

• It provides a standard way to execute SQL commands and process database results.

• It’s fundamental for dynamic, database-driven web applications.

• Used in Java Servlets, JSP, Spring, and other Java web frameworks.

• Requires proper resource management, security considerations, and may benefit from

connection pooling for high performance.

8.2. CONNECTIONS

A JDBC Connection is the link between your Java application and the database, enabling the

execution of SQL statements, retrieval of data, and management of transactions.

Purpose of JDBC Connection

The JDBC Connection object is responsible for:

• Establishing a session with the database.

• Sending SQL statements to the DB.

• Handling transactions.

• Providing access to metadata.

• Managing resources (connection closing, etc).

Basic JDBC Connection Workflow

Here’s the typical process for using JDBC:

1. Load the JDBC Driver

2. Establish the Connection

3. Create SQL Statements

4. Execute SQL Queries

5. Process Results

6. Close the Connection

JDBC Connection in Detail

 1. Loading the JDBC Driver

This step loads the JDBC driver class provided by the database vendor.

Class.forName("com.mysql.cj.jdbc.Driver"); // For MySQL

As of JDBC 4.0 (Java 6+), this step is often optional if the driver is available on the classpath.

2. Establishing a Connection

Use the DriverManager class to create a connection to the database.

Connection conn = DriverManager.getConnection(URL, USER, PASSWORD);

 Connection URL Format

jdbc:subprotocol:subname

Example (for MySQL):

jdbc:mysql://localhost:3306/mydatabase

Web Technologies 8.5 Executing SQL with JDBC

5

Component Description

jdbc Protocol

mysql Subprotocol (DB type)

localhost Hostname of DB server

3306 Port number

mydatabase Name of the database

3. Common JDBC Driver Connection URLs

Database JDBC Driver Class Example URL

MySQL com.mysql.cj.jdbc.Driver jdbc:mysql://localhost:3306/mydb

PostgreS

QL
org.postgresql.Driver jdbc:postgresql://localhost:5432/mydb

Oracle oracle.jdbc.driver.OracleDriver jdbc:oracle:thin:@localhost:1521:xe

SQL

Server

com.microsoft.sqlserver.jdbc.SQLSer

verDriver

jdbc:sqlserver://localhost:1433;databaseNa

me=mydb

4. Example Code: Establishing JDBC Connection

importjava.sql.*;

public class JdbcConnectionExample {

public static void main(String[] args) {

 String url = "jdbc:mysql://localhost:3306/mydb";

 String user = "root";

 String password = "admin";

try (Connection conn = DriverManager.getConnection(url, user, password)) {

System.out.println("Connected to database successfully!");

 } catch (SQLException e) {

e.printStackTrace();

 }

 }

}

JDBC Connection Interface Methods

The java.sql.Connection interface provides many useful methods:

Method Purpose

createStatement() Creates a basic SQL statement

prepareStatement(String sql) Creates a precompiled SQL statement

setAutoCommit(boolean) Enables/disables auto-commit mode

commit() Commits transaction manually

rollback() Rolls back transaction manually

close() Closes the connection

isClosed() Checks if connection is closed

getMetaData() Returns database metadata

Centre for Distance Education 8.6 Acharya Nagarjuna University

Transaction Management

By default, JDBC is in auto-commit mode.

Auto-Commit Mode (Default)

Each SQL statement is committed immediately after execution.

conn.setAutoCommit(true); // default

Manual Commit Mode

You can turn off auto-commit and commit manually:

conn.setAutoCommit(false);

try {

 // Execute SQL statements

conn.commit(); // Commit if all succeed

} catch (SQLException e) {

conn.rollback(); // Rollback if any fails

}

Handling Exceptions and Closing Connection

It’s important to close connections to avoid memory leaks.

Try-With-Resources (Recommended)

try (Connection conn = DriverManager.getConnection(url, user, password)) {

 // Work with connection

} catch (SQLException e) {

e.printStackTrace();

}

This automatically closes the connection at the end of the block.

JDBC Connection in Web Applications

In Java web apps (Servlets, JSPs, Spring), JDBC is commonly used for database access.

Example in a Servlet:

public class UserServlet extends HttpServlet {

protected void doGet(HttpServletRequest request, HttpServletResponse response) {

try (Connection conn = DriverManager.getConnection("jdbc:mysql://localhost:3306/mydb",

"root", "pass")) {

PreparedStatementps = conn.prepareStatement("SELECT * FROM users");

ResultSetrs = ps.executeQuery();

while (rs.next()) {

 // process data

 }

 } catch (SQLException e) {

e.printStackTrace();

 }

 }

}

JDBC Connection Pooling (Advanced)

Creating a new connection for every request is expensive. Connection pooling improves

performance by reusing existing connections.

Popular Connection Pooling Libraries:

Library Features

HikariCP Fast and lightweight

Web Technologies 8.7 Executing SQL with JDBC

7

Library Features

Apache DBCP Easy integration

C3P0 Automatic testing and recovery

Spring Boot uses HikariCP by default.

Security Tips for JDBC Connections

• Avoid hardcoding DB credentials.

• Use config files or environment variables.

• Always close your connection objects.

• Use PreparedStatement to prevent SQL Injection.

JDBC Connection Best Practices

Practice Why It's Important

Use try-with-resources Ensures connections are closed properly

Use connection pooling Improves performance for web applications

Close ResultSet and Statement Frees resources and avoids memory leaks

Avoid hardcoded credentials Improves security

Use transactions where needed Maintains data integrity

Table

Feature Description

Connection Interface to connect Java app to DB

Created By DriverManager.getConnection()

Needs Driver? Yes, specific to DB (e.g., MySQL, Oracle)

Connection URL Follows format: jdbc:subprotocol:subname

Auto-Commit Default is true, can be set to manual

Use in Web Apps JDBC connects backend to DB in Servlets, JSPs, Spring etc.

Connection Pooling Reuses DB connections, improves performance

8.3. INTERNAL DATABASE CONNECTIONS

1. Internal Database Connection

An Internal Database Connection refers to the behind-the-scenes process through which a

Java application communicates with a database via JDBC.

• It is not visible to the user but is essential for executing SQL commands, retrieving

results, and maintaining sessions.

• JDBC abstracts these internal processes, so developers focus on Java code rather than

database protocols.

2. Components Involved in Internal Connections

When a JDBC program connects to a database, several internal components work together:

Component Role

DriverManager
Maintains a registry of JDBC drivers and selects the

appropriate driver for a database URL.

JDBC Driver
Converts Java method calls into database-specific

network protocol commands.

Centre for Distance Education 8.8 Acharya Nagarjuna University

Component Role

Connection Object

Represents a live session with the database, including

metadata like database version, session info, and active

transactions.

Statement / PreparedStatement /

CallableStatement
Sends SQL queries to the database and processes results.

ResultSet Object
Stores the query results and provides methods to retrieve

data row by row.

3. How Internal Database Connections Work

Here’s a step-by-step explanation of the internal workflow when a Java program connects to

a database:

Step 1: Driver Registration

Class.forName("com.mysql.cj.jdbc.Driver");

• The JDBC driver class is loaded.

• The driver registers itself with DriverManager, making it available for connection

requests.

Step 2: Requesting a Connection

Connection con = DriverManager.getConnection(

 "jdbc:mysql://localhost:3306/world", "root", "12345");

• The DriverManager checks its list of registered drivers.

• It selects a driver that supports the provided database URL.

Step 3: Authentication and Session Creation

• The driver sends the username and password to the database server.

• The database validates credentials.

• If valid, a session is created, and a Connection object is returned to the Java program.

Step 4: SQL Query Execution

• SQL commands executed via Statement or PreparedStatement are internally

converted into database-specific requests.

• The driver handles protocol translation, sending the commands over TCP/IP to the

database server.

Step 5: Result Processing

• The database executes the query and returns results.

• The driver converts the database-specific response into a ResultSet object.

• The Java application iterates over the ResultSet to retrieve data.

Step 6: Closing the Connection

con.close();

• Closing the connection informs the driver and database to release resources.

• Internally, the session is terminated, and sockets are closed.

4. Key Features of Internal Database Connections

1. Automatic Protocol Handling: Converts Java calls into database-specific

commands.

2. Session Management: Maintains database session metadata such as user, privileges,

and active transactions.

3. Result Handling: Converts raw database results into ResultSet objects for Java

applications.

Web Technologies 8.9 Executing SQL with JDBC

9

4. Security: Handles authentication and prevents unauthorized access at the session

level.

5. Transparency: Developers don’t need to know the underlying network or protocol

details.

5. Advantages of Understanding Internal Connections

• Optimized Performance: Helps in implementing connection pooling to reuse

connections efficiently.

• Better Debugging: Understanding internal flow helps troubleshoot connection

failures or slow queries.

• Security Awareness: Explains how credentials and queries travel from Java to the

database.

• Resource Management: Encourages proper closing of connections, statements, and

result sets.

• Scalability: Enables designing multi-tier applications with minimal connection

overhead.

6. Diagram: Internal Database Connection Flow

7. Best Practices for Internal Database Connections

1. Always close connections, statements, and result sets in finally blocks or use try-with-

resources.

2. Use PreparedStatement to improve performance and prevent SQL injection.

3. Use connection pooling in enterprise applications to reduce connection overhead.

Centre for Distance Education 8.10 Acharya Nagarjuna University

4. Minimize open connections to reduce memory and server load.

5. Handle SQLException properly to catch connection or query failures.

Note:

• Internal database connections are the hidden processes that allow Java applications to

communicate with databases via JDBC.

• JDBC DriverManager + Driver + Connection + Statement + ResultSet work together

internally.

• Understanding internal connections helps with performance, security, and proper

resource management.

• While transparent to developers, this internal workflow is critical for building robust,

scalable, and secure database applications.

8.4. STATEMENTS

In Java, the Statement interface of JDBC (Java Database Connectivity) is used to create and

execute SQL queries within Java applications.JDBC provides three types of statements to

interact with the database:

• Statement ->For executing static SQL queries.

• PreparedStatement ->For executing parameterized queries.

• CallableStatement ->For executing stored procedures.

1. Statement

A Statement object is used for general-purpose access to databases and is useful for

executing static SQL statements at runtime.

Syntax:

Statement statement = connection.createStatement();

Execution Methods

• execute(String sql): Executes any SQL (SELECT, INSERT, UPDATE, DELETE).

Returns true if a ResultSet is returned.

• executeUpdate(String sql): Executes DML (INSERT, UPDATE, DELETE).

Returns number of rows affected.

• executeQuery(String sql): Executes SELECT queries. Returns a ResultSet.

Example:

importjava.sql.*;

public class JDBCExample {

public static void main(String[] args) {

try {

 // Step 1: Load the MySQL JDBC Driver

Class.forName("com.mysql.cj.jdbc.Driver");

 // Step 2: Establish a connection to the database

 Connection con = DriverManager.getConnection(

 "jdbc:mysql://localhost:3306/world", "root", "12345");

 // Step 3: Create a Statement object to send SQL queries

Web Technologies 8.11 Executing SQL with JDBC

11

 Statement stmt = con.createStatement();

 // Step 4: Define and execute an SQL SELECT query

 String query = "SELECT * FROM people";

ResultSetrs = stmt.executeQuery(query);

 // Step 5: Process the ResultSet

while (rs.next()) {

 String name = rs.getString("name");

int age = rs.getInt("age");

System.out.println("Name: " + name + ", Age: " + age);

 }

 // Step 6: Close all resources

rs.close();

stmt.close();

con.close();

 } catch (Exception e) {

e.printStackTrace();

 }

 }

}

Output: Name and age are as shown for random inputs.

8.5 SUMMARY

JDBC (Java Database Connectivity) is a Java API that allows Java applications to interact

with relational databases in a standardized and efficient way. It enables executing SQL

queries, retrieving results, and performing CRUD (Create, Read, Update, Delete) operations,

making it essential for developing dynamic, database-driven web applications. JDBC

provides a uniform interface for various databases such as MySQL, Oracle, PostgreSQL, and

SQL Server, ensuring platform and database independence. The JDBC architecture follows a

client-server model and includes key components like JDBC drivers, DriverManager,

Connection, Statement, and ResultSet. JDBC drivers act as a bridge between Java programs

and databases, converting Java calls into database-specific protocol commands, while the

Connection object establishes a session with the database, manages transactions, and provides

access to metadata.

Centre for Distance Education 8.12 Acharya Nagarjuna University

The internal database connection process in JDBC involves driver registration,

authentication, session creation, SQL execution, result processing, and resource cleanup.

Developers use Statement objects to execute SQL queries—Statement for static queries,

PreparedStatement for parameterized queries, and CallableStatement for executing stored

procedures. Among these, PreparedStatement is preferred for preventing SQL injection and

improving performance through precompilation. In web technologies, JDBC is widely used

in Servlets, JSP, Spring, and other Java-based frameworks to enable interaction between

backend databases and dynamic front-end content.

Proper resource management is vital for maintaining performance and preventing memory

leaks; therefore, connections, statements, and result sets must always be closed after use. To

enhance performance, connection pooling is employed, which reuses existing database

connections instead of creating new ones for each request. JDBC also supports transaction

management—both automatic and manual—using methods like commit() and rollback().

Understanding the internal working of JDBC connections helps developers improve security,

debugging, and optimization of database operations. Overall, JDBC provides a robust,

scalable, and secure foundation for integrating Java applications with relational databases

effectively.

8.6 KEY TERMS

JDBC (Java Database Connectivity) ,DriverManager ,Connection , JDBC Driver ,

Connection Pooling , SQL Injection,Transaction Management, Internal Database

Connection,Statement.

8.7 SELF-ASSESSMENT QUESTIONS

1. Define JDBC and explain its importance in Java web applications.

2. Explain the architecture of JDBC and describe the role of each component.

3. What are the different types of JDBC drivers? Explain with examples.

4. Describe the process of establishing a JDBC connection, including the connection

URL format.

5. Explain the difference between Statement?

6. What is an internal database connection in JDBC? Describe the workflow from driver

registration to closing the connection.

7. Explain how transaction management works in JDBC and the difference between

auto-commit and manual commit modes.

8. What are the best practices for using JDBC in web applications? Explain with

reasons.

8.8 FURTHER READINGS

1. Java: The Complete Reference, Twelfth Editionby Herbert Schildt. McGraw-Hill

Education.

2. Beginning Java Programming: The Object-Oriented Approachby Bart Baesens,

Aimee Backiel, and SeppevandenBroucke. Wiley.

3. Java Programming with Oracle JDBCby Donald Bales. O'Reilly Media.

4. Java EE 8 Application Developmentby David R. Heffelfinger. Packt Publishing.

5. Professional Java for Web Applicationsby Nicholas S. Williams. Wrox/Wiley

Publishing.

Web Technologies 8.13 Executing SQL with JDBC

13

6. Java 2: Developer's Guide to Web Applications with JDBCby Gregory Brill. Sybex.

Dr. Vasantha Rudramalla

LESSON-9

ADVANCED JDBC: PREPARED AND CALLABLE

STATEMENTS

AIM AND OBJECTIVES:

➢ Understand the purpose of Statement objects in executing SQL queries from Java

programs.

➢ Learn how ResultSet stores and allows navigation through data retrieved from a

database.

➢ Explore PreparedStatement for executing parameterized queries to prevent SQL

injection and improve performance.

➢ Understand CallableStatement for invoking stored procedures in a database from Java

applications.

➢ Develop the ability to perform database operations efficiently using different types of

JDBC statements.

STRUCTURE:

9.1 STATEMENTS

9.2 RESULTS SETS

9.3 PREPARED STATEMENTS

9.4 CALLABLE STATEMENTS

9.5 SUMMARY

9.6 KEY TERMS

9.7 SELF-ASSESSMENT QUESTIONS

9.8 FURTHER READINGS

9.1. STATEMENTS

1. Introduction

In JDBC (Java Database Connectivity), a Statement is an interface used to execute SQL

queries against a database. It allows Java programs to interact with a database, retrieve data,

and update it. Statements are best suited for static SQL queries that do not change often,

unlike PreparedStatement, which is used for dynamic queries with parameters.

Types of Statements

1. Statement – Used for simple SQL queries without parameters.

2. PreparedStatement – Used for parameterized queries (dynamic queries).

3. CallableStatement – Used to execute stored procedures in a database.

2. Key Features of Statement

• Executes SQL queries like SELECT, INSERT, UPDATE, and DELETE.

Centre for Distance Education 9.2 Acharya Nagarjuna University

• Returns ResultSet for queries that retrieve data.

• Simple to use for basic database operations.

• Not secure for dynamic user inputs (prone to SQL injection).

3. Creating a Statement

To create a Statement object, you need:

1. Load the JDBC driver.

2. Establish a connection to the database.

3. Create a Statement object.

4. Execute SQL queries using the statement.

4. Example Program Using Statement

Database Setup

Assume a database SchoolDB with table Students:

ID Name Age Grade

1 Alice 14 8

2 Bob 15 9

3 Charlie 14 8

Java Program: Statement Example

importjava.sql.*;

public class StatementExample

 {

public static void main(String[] args)

{

Try

 {

 // 1. Load JDBC driver

Class.forName("com.mysql.cj.jdbc.Driver");

 // 2. Establish connection

 Connection con = DriverManager.getConnection(

 "jdbc:mysql://localhost:3306/SchoolDB", "root", "password");

 // 3. Create Statement object

 Statement stmt = con.createStatement();

 // 4. Execute SQL query

ResultSetrs = stmt.executeQuery("SELECT * FROM Students");

 // 5. Process ResultSet

System.out.println("ID\tName\tAge\tGrade");

while(rs.next()) {

Web Technologies 9.3 Advanced JDBC: Prepared…

3

System.out.println(rs.getInt("ID") + "\t" +

rs.getString("Name") + "\t" +

rs.getInt("Age") + "\t" +

rs.getInt("Grade"));

 }

 // 6. Close connections

rs.close();

stmt.close();

con.close();

 } catch(Exception e) {

e.printStackTrace();

 }

 }

}

5. Input / Output

Input

• The program does not take dynamic input; it directly queries the Students table.

Output (Console)

ID Name Age Grade

1 Alice 14 8

2 Bob 15 9

3 Charlie 14 8

6. Executing Update Queries Using Statement

You can also execute INSERT, UPDATE, or DELETE queries using Statement.

// Insert a new student

introwsInserted = stmt.executeUpdate(

 "INSERT INTO Students (ID, Name, Age, Grade) VALUES (4, 'David', 13, 7)");

System.out.println(rowsInserted + " row(s) inserted.");

Output:

1 row(s) inserted.

7. Note:

• executeQuery() is used for SELECT queries and returns a ResultSet.

• executeUpdate() is used for INSERT, UPDATE, DELETE queries and returns the

number of affected rows.

Centre for Distance Education 9.4 Acharya Nagarjuna University

• For queries with dynamic user input, prefer PreparedStatement to avoid SQL

injection.

• Statement is simple but less secure and less efficient for repeated queries.

9.2 RESULTS SETS

1. Introduction

In JDBC, a ResultSet is an object that holds the data retrieved from a database after

executing a SELECT query using a Statement or PreparedStatement. It acts like a table in

memory, allowing you to navigate through rows of data and fetch column values.

Key Points

• Represents tabular data from a database query.

• Cursor-based: can move forward, backward (depending on type), or jump to a specific

row.

• Read-only or updatable (depending on how you create it).

• Often used with while(rs.next()) to iterate through rows.

2. Types of ResultSet

Type Description

TYPE_FORWARD_ONLY Default. Cursor moves only forward.

TYPE_SCROLL_INSENSITIVE
Cursor can move forward/backward. Changes in DB after

query execution are not visible.

TYPE_SCROLL_SENSITIVE
Cursor can move forward/backward. Reflects changes in

DB after query execution.

3. Creating a ResultSet

1. Create a Statement object.

2. Execute a SELECT query using executeQuery().

3. Store the returned data in a ResultSet.

4. Iterate through the ResultSet to process data.

4. Example Program Using ResultSet

Database Setup

Assume a database SchoolDB with table Students:

ID Name Age Grade

1 Alice 14 8

2 Bob 15 9

3 Charlie 14 8

Web Technologies 9.5 Advanced JDBC: Prepared…

5

Java Program: ResultSet Example

importjava.sql.*;

public class ResultSetExample

{

public static void main(String[] args)

 {

try

{

 // 1. Load JDBC driver

Class.forName("com.mysql.cj.jdbc.Driver");

 // 2. Establish connection

 Connection con = DriverManager.getConnection(

 "jdbc:mysql://localhost:3306/SchoolDB", "root", "password");

 // 3. Create Statement object

 Statement stmt = con.createStatement(

ResultSet.TYPE_SCROLL_INSENSITIVE,

ResultSet.CONCUR_READ_ONLY);

 // 4. Execute SELECT query

ResultSetrs = stmt.executeQuery("SELECT * FROM Students");

 // 5. Process ResultSet

System.out.println("ID\tName\tAge\tGrade");

while(rs.next())

{

// iterate forward

System.out.println(rs.getInt("ID") + "\t" +

rs.getString("Name") + "\t" +

rs.getInt("Age") + "\t" +

rs.getInt("Grade"));

 }

 // 6. Moving cursor backwards (if scrollable)

System.out.println("\nLast record:");

if(rs.last())

 {

System.out.println(rs.getInt("ID") + "\t" +

rs.getString("Name") + "\t" +

rs.getInt("Age") + "\t" +

rs.getInt("Grade"));

 }

 // 7. Close connections

rs.close();

stmt.close();

con.close();

Centre for Distance Education 9.6 Acharya Nagarjuna University

 } catch(Exception e)

{

e.printStackTrace();

 }

 }

}

5. Input / Output

Input

• The program directly queries the Students table. No dynamic input is required.

Output (Console)

ID Name Age Grade

1 Alice 14 8

2 Bob 15 9

3 Charlie 14 8

Last record:

3 Charlie 14 8

6. Updating Data Using ResultSet (Optional)

Some ResultSet objects can be updatable. Example:

Statement stmt = con.createStatement(

ResultSet.TYPE_SCROLL_SENSITIVE,

ResultSet.CONCUR_UPDATABLE);

ResultSetrs = stmt.executeQuery("SELECT * FROM Students WHERE ID=2");

if(rs.next())

{

rs.updateInt("Age", 16); // update age

rs.updateRow(); // commit changes

}

This directly updates the database without executing a separate UPDATE query.

7. Note:

• rs.getInt("columnName") or rs.getString("columnName") fetches column data.

• Always close ResultSet and Statement to free resources.

• For large datasets, consider using pagination because ResultSet loads data into

memory.

• Scrollable and updatable ResultSets are more flexible but slightly slower.

Web Technologies 9.7 Advanced JDBC: Prepared…

7

9.3 PREPARED STATEMENTS

1. Introduction

A PreparedStatement is a feature of JDBC used to execute parameterized SQL queries.

Unlike a regular Statement, which executes raw SQL strings, PreparedStatement allows

placeholders (?) for values, which are supplied at runtime.

Advantages

1. Prevents SQL Injection – User input is treated as data, not code.

2. Improves Performance – The SQL query is precompiled by the database.

3. Reusability – The same query can be executed multiple times with different inputs.

4. Type Safety – You can explicitly set the data type of parameters.

2. Syntax

PreparedStatementpstmt = con.prepareStatement("SQL query with ?");

• ? is a placeholder for a value.

• Values are set using methods like:

o setInt(index, value)

o setString(index, value)

o setDouble(index, value)

3. Example Program Using PreparedStatement

Database Setup

Assume a database SchoolDB with table Students:

ID Name Age Grade

1 Alice 14 8

2 Bob 15 9

Java Program: Insert Using PreparedStatement

importjava.sql.*;

public class PreparedStatementExample

 {

public static void main(String[] args)

{

Try

 {

 // 1. Load JDBC Driver

Class.forName("com.mysql.cj.jdbc.Driver");

 // 2. Establish Connection

Centre for Distance Education 9.8 Acharya Nagarjuna University

 Connection con = DriverManager.getConnection(

 "jdbc:mysql://localhost:3306/SchoolDB", "root", "password");

 // 3. Prepare SQL Query with placeholders

 String sql = "INSERT INTO Students (ID, Name, Age, Grade) VALUES (?, ?, ?, ?)";

PreparedStatementpstmt = con.prepareStatement(sql);

 // 4. Set parameter values

pstmt.setInt(1, 3); // ID

pstmt.setString(2, "Charlie"); // Name

pstmt.setInt(3, 14); // Age

pstmt.setInt(4, 8); // Grade

 // 5. Execute query

int rows = pstmt.executeUpdate();

System.out.println(rows + " row(s) inserted.");

 // 6. Close connection

pstmt.close();

con.close();

 }

catch(Exception e)

 {

e.printStackTrace();

 }

 }

}

4. Input / Output

Input

• Directly set in the program using pstmt.setXXX() methods.

Output

1 row(s) inserted.

• After execution, the table Students will have:

ID Name Age Grade

1 Alice 14 8

2 Bob 15 9

3 Charlie 14 8

Web Technologies 9.9 Advanced JDBC: Prepared…

9

5. Example Program: Select Using PreparedStatement

String sql = "SELECT * FROM Students WHERE Age = ?";

PreparedStatementpstmt = con.prepareStatement(sql);

pstmt.setInt(1, 14); // parameter for age

ResultSetrs = pstmt.executeQuery();

while(rs.next()) {

System.out.println(rs.getInt("ID") + "\t" +

rs.getString("Name") + "\t" +

rs.getInt("Age") + "\t" +

rs.getInt("Grade"));

}

Output

ID Name Age Grade

1 Alice 14 8

3 Charlie 14 8

6. Note:

• PreparedStatement is preferred over Statement for dynamic queries.

• Supports batchprocessing for multiple inserts efficiently:

pstmt.setInt(1, 4);

pstmt.setString(2, "David");

pstmt.setInt(3, 15);

pstmt.setInt(4, 9);

pstmt.addBatch(); // add to batch

int[] result = pstmt.executeBatch(); // execute all at once

• Always close PreparedStatement and Connection to free resources.

9.4 CALLABLE STATEMENTS

1. Introduction

A CallableStatement is used in JDBC to execute storedprocedures in a database. Stored

procedures are precompiled SQL programs stored in the database.

Advantages

1. Encapsulation – Database logic is centralized in procedures.

2. Performance – Stored procedures are precompiled.

3. Security – Reduces SQL injection risk.

4. Ease of Maintenance – Changes in logic don’t require Java code changes.

Centre for Distance Education 9.10 Acharya Nagarjuna University

2. Syntax

CallableStatementcstmt = con.prepareCall("{call procedure_name(?, ?)}");

• {callprocedure_name(?, ?)} – ? are placeholders for input/output parameters.

• Parameters can be:

o IN – Input to the procedure

o OUT – Output from the procedure

o INOUT – Input and output

Set parameters with:

• cstmt.setInt(index, value)

• cstmt.setString(index, value)

Register output parameters with:

• cstmt.registerOutParameter(index, type)

3. Example: Stored Procedure in MySQL

Create a stored procedure in MySQL SchoolDB:

DELIMITER //

CREATE PROCEDURE GetStudentByID(IN sid INT, OUT sname VARCHAR(50), OUT

sage INT)

BEGIN

 SELECT Name, Age INTO sname, sage FROM Students WHERE ID = sid;

END //

DELIMITER ;

4. Java Program Using CallableStatement

importjava.sql.*;

public class CallableStatementExample {

public static void main(String[] args) {

try {

 // 1. Load JDBC Driver

Class.forName("com.mysql.cj.jdbc.Driver");

 // 2. Establish Connection

 Connection con = DriverManager.getConnection(

 "jdbc:mysql://localhost:3306/SchoolDB", "root", "password");

Web Technologies 9.11 Advanced JDBC: Prepared…

11

 // 3. Prepare CallableStatement

CallableStatementcstmt = con.prepareCall("{call GetStudentByID(?, ?, ?)}");

 // 4. Set input parameter

cstmt.setInt(1, 1); // ID = 1

 // 5. Register output parameters

cstmt.registerOutParameter(2, Types.VARCHAR); // Name

cstmt.registerOutParameter(3, Types.INTEGER); // Age

 // 6. Execute stored procedure

cstmt.execute();

 // 7. Retrieve output

 String name = cstmt.getString(2);

int age = cstmt.getInt(3);

System.out.println("Student Name: " + name);

System.out.println("Student Age: " + age);

 // 8. Close connection

cstmt.close();

con.close();

 } catch(Exception e) {

e.printStackTrace();

 }

 }

}

5. Input / Output

Input

• ID = 1 (passed as input to stored procedure)

Output

Student Name: Alice

Student Age: 14

6. Note:

• CallableStatement can handle IN, OUT, and INOUT parameters.

• It is mainly used when complex database operations are handled inside stored

procedures.

• Example of using INOUT parameter:

CREATE PROCEDURE IncreaseAge(INOUT sid INT, IN increment INT)

BEGIN

Centre for Distance Education 9.12 Acharya Nagarjuna University

 UPDATE Students SET Age = Age + increment WHERE ID = sid;

 SELECT Age INTO sid FROM Students WHERE ID = sid;

END;

• In Java, register sid as INOUT:

cstmt.registerOutParameter(1, Types.INTEGER); // INOUT parameter

Difference between CallableStatement and PreparedStatement :

CallableStatement PreparedStatement

It is used when the stored procedures are to be

executed.

It is used when SQL query is to be executed

multiple times.

You can pass 3 types of parameter IN, OUT,

INOUT.
You can pass any type of parameters at runtime.

Used to execute functions.
Used for the queries which are to be executed

multiple times.

Performance is very high. Performance is better than Statement.

Used to call the stored procedures. Used to execute dynamic SQL queries.

It extends PreparedStatement interface. It extends Statement Interface.

No protocol is used for communication. Protocol is used for communication.

Overview of the Statement

PreparedStatementCallableStatement:

Feature Statement PreparedStatement CallableStatement

Purpose
Executes static

SQL queries

Executes

parameterized queries

Executes stored

procedures

SQL injection

protection
 No Yes Yes

Performance
Normal (re-parsed

every time)
Faster (precompiled)

Depends (executed on

DB side)

Used for Simple queries
Dynamic queries with

parameters

Stored procedures and

functions

Web Technologies 9.13 Advanced JDBC: Prepared…

13

Table for the PreparedStatementCallableStatementResultSet :

Feature PreparedStatement CallableStatement ResultSet

Main Use
Execute parameterized

SQL queries
Execute stored procedures

Hold query

results

SQL type
DML (SELECT, INSERT,

UPDATE, DELETE)
Stored procedure/function Output of a query

Parameter

Handling
Uses ? placeholders

Supports IN, OUT, INOUT

parameters

Access data via

column

names/index

Compilation Precompiled (faster)
Precompiled (DB-side

procedure)

Not compiled;

returned as data

SQL

Injection Safe
Yes Yes N/A

Return Type ResultSet or update count ResultSet or output params Data from query

Example
SELECT * FROM emp

WHERE dept=?
{callgetEmployeeByDept(?)}

Iterating over

query results

9.5 SUMMARY

In JDBC, several key objects are used to interact with databases, each serving a distinct

purpose. The Statement object is used to execute simple SQL queries such as SELECT,

INSERT, UPDATE, and DELETE. However, since it directly embeds user inputs into SQL

strings, it is vulnerable to SQL injection attacks, making it suitable only for static or simple

queries. The ResultSet object stores the data retrieved from queries and provides cursor-

based navigation to move through rows of results. Depending on its type, it can be forward-

only or scrollable, and even updatable, allowing direct modification of data within the result

set.

For more secure and efficient database operations, the PreparedStatement object is preferred.

It allows parameterized queries, preventing SQL injection and improving performance by

precompiling the SQL statement. PreparedStatements are reusable, making them ideal for

executing similar queries multiple times with different parameters. They also support batch

processing for executing multiple SQL commands efficiently. When working with stored

procedures, the CallableStatement object is used. It allows the execution of precompiled

database procedures that can accept IN, OUT, and INOUT parameters, offering better

performance, encapsulation, and security for complex operations.

Proper resource management is crucial when using these JDBC objects—closing the

ResultSet, Statement, and Connection objects ensures system efficiency and prevents

memory leaks. Overall, using the right JDBC object based on the operation type—Statement

for simple queries, PreparedStatement for dynamic queries, and CallableStatement for stored

procedures—enables developers to build robust, secure, and maintainable database

applications.

Centre for Distance Education 9.14 Acharya Nagarjuna University

9.6 KEY TERMS

Statement,PreparedStatement,CallableStatement,Result Set, SQL,

Database,Connection,Stored Procedure,Parameter,Cursor,executeQuery,executeUpdate.

9.7 SELF-ASSESSMENT QUESTIONS

1. What is the purpose of a Statement in JDBC?

2. How does PreparedStatement differ from Statement?

3. What is a CallableStatement used for?

4. What does a ResultSet represent in JDBC?

5. Name the three types of ResultSet cursors.

6. Which method is used to execute a SELECT query: execute Query() or execute

Update()?

7. How do you set values in a PreparedStatement?

8. What is the advantage of using Prepared Statement over Statement?

9. What types of parameters can a Callable Statement handle?

10. Why is it important to close Result Set, Statement, and Connection objects?

9.8 FURTHER READINGS

1. Java: The Complete Reference, Twelfth Edition by Herbert Schildt. McGraw-Hill

Education.

2. Beginning Java Programming: The Object-Oriented Approach by Bart Baesens,

Aimee Backiel, and SeppevandenBroucke. Wiley.

3. Java Programming with Oracle JDBC by Donald Bales. O'Reilly Media.

4. Java EE 8 Application Development by David R. Heffelfinger. Packt Publishing.

5. Professional Java for Web Applications by Nicholas S. Williams. Wrox/Wiley

Publishing.

6. Java 2: Developer's Guide to Web Applications with JDBC by Gregory Brill. Sybex.

Mrs. Appikatla Pushpa Latha

LESSON-10

NETWORK PROGRAMMING AND REMOTE METHOD

INVOCATION (RMI)

AIM AND OBJECTIVES:

➢ Understand the importance of networked Java for building distributed

applications.

➢ Learn basic network concepts, including protocols, IP addresses, and ports.

➢ Gain the ability to look up Internet addresses and differentiate between URLs and

URIs.

➢ Explore UDP datagrams and sockets for sending and receiving data over a

network.

➢ Understand Remote Method Invocation (RMI) to enable communication between

Java objects across different machines.

STRUCTURE:

10.1 NETWORK PROGRAMMING

10.2 WHY NETWORKED JAVA

10.3 BASIC NETWORK CONCEPTS

10.4 LOOKING UP INTERNET ADDRESSES

10.5 URLS AND URIS

10.6 UDP DATAGRAMS AND SOCKETS

10.7 REMOTE METHOD INVOCATION

10.8 SUMMARY

10.9 KEY TERMS

10.10 SELF-ASSESSMENT QUESTIONS

10.11 FURTHER READINGS

10.1 NETWORK PROGRAMMING

• It is about writing programs that can send and receive data over a network (like the

internet or a local network).

• Why needed: For client-server applications, chatting apps, online games, or

distributed systems.

• Key concepts:

o IP Address & Ports: Identify devices and communication endpoints.

o Sockets: Points where programs connect and exchange data.

o Protocols: TCP (reliable) and UDP (fast, less reliable).

o URLs and URIs: Ways to locate and access resources on the web.

Centre for Distance Education 10.2 Acharya Nagarjuna University

2

10.2 WHY NETWORKED JAVA

Networked Java refers to Java programs that communicate over a network, like the Internet

or a local network. Java is widely used for network programming because it provides built-in

support for networking via packages like java.net and java.rmi.

Reasons to use Networked Java:

1. Platform Independence: Java runs on any machine with a JVM, making networked

applications portable.

2. Built-in Networking API: Java provides classes like Socket, ServerSocket,

DatagramSocket, URL, etc., for easy network communication.

3. Supports Client-Server Architecture: You can easily build applications where a

client requests data from a server.

4. RMI (Remote Method Invocation): Java allows calling methods on remote objects,

making distributed systems easier to develop.

5. Secure Networking: Java provides SSL and security features for safe network

communication.

Basic Java Network Programming Example

1. TCP Client-Server Program

Server Program (TCP)

import java.io.*;

import java.net.*;

public class TCPServer {

public static void main(String[] args) throws IOException {

ServerSocket server = new ServerSocket(5000);

System.out.println("Server is running and waiting for a client...");

 Socket client = server.accept();

BufferedReader in = new BufferedReader(new InputStreamReader(client.getInputStream()));

PrintWriter out = new PrintWriter(client.getOutputStream(), true);

 String message = in.readLine();

System.out.println("Client says: " + message);

out.println("Hello Client! Message received.");

client.close();

server.close();

 }

}

Client Program (TCP)

import java.io.*;

import java.net.*;

public class TCPClient {

public static void main(String[] args) throws IOException {

 Socket socket = new Socket("localhost", 5000);

Web Technologies 10.3 Network Programming

3

BufferedReader in = new BufferedReader(new

InputStreamReader(socket.getInputStream()));

PrintWriter out = new PrintWriter(socket.getOutputStream(), true);

out.println("Hello Server! This is Client.");

 String response = in.readLine();

System.out.println("Server says: " + response);

socket.close();

 }

}

Input / Output Example

Client Input:

Hello Server! This is Client.

Server Output:

Server is running and waiting for a client...

Client says: Hello Server! This is Client.

Client Output:

Server says: Hello Client! Message received.

2. UDP Datagram Example

Server (UDP)

import java.net.*;

public class UDPServer {

public static void main(String[] args) throws Exception {

DatagramSocketserverSocket = new DatagramSocket(9876);

byte[] receiveData = new byte[1024];

byte[] sendData;

System.out.println("UDP Server is running...");

DatagramPacketreceivePacket = new DatagramPacket(receiveData, receiveData.length);

serverSocket.receive(receivePacket);

 String message = new String(receivePacket.getData(), 0, receivePacket.getLength());

System.out.println("Client says: " + message);

InetAddressclientAddress = receivePacket.getAddress();

intclientPort = receivePacket.getPort();

 String reply = "Message received via UDP!";

sendData = reply.getBytes();

DatagramPacketsendPacket = new DatagramPacket(sendData, sendData.length,

clientAddress, clientPort);

serverSocket.send(sendPacket);

serverSocket.close();

 }

}

Client (UDP)

import java.net.*;

Centre for Distance Education 10.4 Acharya Nagarjuna University

4

public class UDPClient

 {

public static void main(String[] args) throws Exception

{

DatagramSocketclientSocket = new DatagramSocket();

InetAddressIPAddress = InetAddress.getByName("localhost");

byte[] sendData = "Hello UDP Server!".getBytes();

byte[] receiveData = new byte[1024];

DatagramPacketsendPacket = new DatagramPacket(sendData, sendData.length, IPAddress,

9876);

clientSocket.send(sendPacket);

DatagramPacketreceivePacket = new DatagramPacket(receiveData, receiveData.length);

clientSocket.receive(receivePacket);

 String response = new String(receivePacket.getData(), 0, receivePacket.getLength());

System.out.println("Server says: " + response);

clientSocket.close();

 }

}

Input / Output Example

Client Input:

Hello UDP Server!

Server Output:

UDP Server is running...

Client says: Hello UDP Server!

Client Output:

Server says: Message received via UDP!

Note:

• Networked Java allows communication between programs over TCP or UDP.

• RMI allows calling methods on remote objects as if they were local.

• Java’s built-in networking libraries make creating client-server or distributed

applications easy and platform-independent.

10.3 BASIC NETWORK CONCEPTS

Network programming involves communication between computers over a network. Java

provides built-in support via the java.net package.

Key Concepts:

1. IP Address:

o Unique address assigned to each device on a network.

o Example: 192.168.1.1 (IPv4) or 2001:0db8:85a3::8a2e:0370:7334 (IPv6).

Web Technologies 10.5 Network Programming

5

2. Port Number:

o Used to identify a specific process/application on a device.

o Range: 0–65535 (Ports <1024 are reserved).

3. Socket:

o Endpoint for communication between two machines.

o Socket class for clients, ServerSocket class for servers.

4. TCP (Transmission Control Protocol):

o Connection-oriented protocol (reliable).

5. UDP (User Datagram Protocol):

o Connectionless protocol (faster but unreliable).

6. URL and URI:

o URL (Uniform Resource Locator) – identifies a resource on the internet.

o URI (Uniform Resource Identifier) – more general, can be a URL or just a

name.

Java Example Programs

1. Finding IP Address

import java.net.*;

public class IPAddressExample {

public static void main(String[] args) throws Exception {

InetAddress address = InetAddress.getByName("www.google.com");

System.out.println("Host Name: " + address.getHostName());

System.out.println("IP Address: " + address.getHostAddress());

 }

}

Output Example:

Host Name: www.google.com

IP Address: 142.250.72.196

2. Simple TCP Client-Server

Server (TCP)

import java.io.*;

import java.net.*;

public class SimpleTCPServer {

public static void main(String[] args) throws IOException {

ServerSocket server = new ServerSocket(6000);

System.out.println("Server waiting for connection...");

 Socket client = server.accept();

BufferedReader in = new BufferedReader(new InputStreamReader(client.getInputStream()));

PrintWriter out = new PrintWriter(client.getOutputStream(), true);

 String message = in.readLine();

System.out.println("Client says: " + message);

out.println("Message received!");

client.close();

Centre for Distance Education 10.6 Acharya Nagarjuna University

6

server.close();

 }

}

Client (TCP)

import java.io.*;

import java.net.*;

public class SimpleTCPClient {

public static void main(String[] args) throws IOException {

 Socket socket = new Socket("localhost", 6000);

BufferedReader in = new BufferedReader(new

InputStreamReader(socket.getInputStream()));

PrintWriter out = new PrintWriter(socket.getOutputStream(), true);

out.println("Hello Server!");

System.out.println("Server says: " + in.readLine());

socket.close();

 }

}

Input / Output Example

Client Input:

Hello Server!

Server Output:

Server waiting for connection...

Client says: Hello Server!

Client Output:

Server says: Message received!

3. URL Example

import java.net.*;

public class URLExample {

public static void main(String[] args) throws Exception {

 URL url = new URL("https://www.example.com");

System.out.println("Protocol: " + url.getProtocol());

System.out.println("Host: " + url.getHost());

System.out.println("File: " + url.getFile());

System.out.println("Port: " + url.getPort());

 }

}

Output Example:

Protocol: https

Host: www.example.com

File: /

Port: -1

(Port -1 means default port 443 for HTTPS)

Web Technologies 10.7 Network Programming

7

Note:

• IP & Port identify a machine and application.

• Sockets enable communication (TCP for reliability, UDP for speed).

• URLs/URIs locate resources on the internet.

• Java’s java.net makes network programming straightforward.

10.4 LOOKING UP INTERNET ADDRESSES

Looking up internet addresses in Java involves retrieving IP addressesandhost names for

computers or domain names. This is done using the InetAddress class from the java.net

package.

Key Concepts:

1. InetAddress Class:

o Represents an IP address (IPv4 or IPv6).

o Can be used to get host name and host address.

2. Methods of InetAddress:

o getByName(String host) – Returns the IP address of a given host.

o getHostName() – Returns the host name.

o getHostAddress() – Returns the IP address as a string.

o getAllByName(String host) – Returns all IP addresses associated with a host.

3. DNS Lookup:

o Java can resolve host names to IP addresses (forward lookup).

o Can also perform reverse lookup (IP → Host name).

Java Examples

1. Lookup IP Address of a Domain

import java.net.*;

public class InetAddressExample {

public static void main(String[] args) throws Exception {

InetAddress address = InetAddress.getByName("www.google.com");

System.out.println("Host Name: " + address.getHostName());

System.out.println("IP Address: " + address.getHostAddress());

 }

}

Output Example:

Host Name: www.google.com

IP Address: 142.250.72.196

(IP may vary depending on DNS and location.)

2. Get Local Host Information

import java.net.*;

public class LocalHostExample {

public static void main(String[] args) throws Exception {

InetAddress local = InetAddress.getLocalHost();

System.out.println("Local Host Name: " + local.getHostName());

System.out.println("Local IP Address: " + local.getHostAddress());

Centre for Distance Education 10.8 Acharya Nagarjuna University

8

 }

}

Output Example:

Local Host Name: MyPC

Local IP Address: 192.168.1.5

3. Get All IP Addresses of a Domain

import java.net.*;

public class AllIPAddresses

{

public static void main(String[] args) throws Exception

 {

InetAddress[] addresses = InetAddress.getAllByName("www.google.com");

System.out.println("All IP addresses for www.google.com:");

for (InetAddressaddr : addresses)

 {

System.out.println(addr.getHostAddress());

 }

 }

}

Output Example:

All IP addresses for www.google.com:

142.250.72.196

142.250.72.228

142.250.72.164

(Multiple IPs are returned because large websites use multiple servers for load balancing.)

4. Reverse DNS Lookup (IP → Hostname)

import java.net.*;

public class ReverseLookup {

public static void main(String[] args) throws Exception {

InetAddress address = InetAddress.getByName("8.8.8.8");

System.out.println("Host Name: " + address.getHostName());

System.out.println("IP Address: " + address.getHostAddress());

 }

}

Output Example:

Host Name: dns.google

IP Address: 8.8.8.8

Note:

• InetAddress class is used to lookup IP addresses and host names.

• Methods like getByName(), getHostName(), and getAllByName() help in DNS

lookups.

• You can perform forward (name → IP) and reverse (IP → name) lookups.

• Useful for networkprogramming, pinging hosts, or validating connectivity.

Web Technologies 10.9 Network Programming

9

10.5 URLS AND URIS

Introduction

In network programming, URLs and URIs are essential because they specify how to locate

resources over a network. Java provides classes in the java.net package to handle them.

• URI (Uniform Resource Identifier): Identifies a resource. Can be a URL or URN.

• URL (Uniform Resource Locator): Specifies where a resource is and how to access

it.

Example:

URL: https://www.example.com:443/index.html?user=123#section1

URI: https://www.example.com/index.html

Components of URL

1. Protocol / Scheme: http, https, ftp

2. Host / Domain: www.example.com

3. Port: Default 80 for HTTP, 443 for HTTPS

4. Path: /index.html

5. Query: ?user=123

6. Fragment: #section1

Java Classes

• java.net.URI – Represents a URI, allows parsing and constructing URIs.

• java.net.URL – Represents a URL, allows connecting to a resource.

• java.net.URLConnection – To read/write data from a URL.

4. Example Programs

Example 1: Parsing a URL

import java.net.URL;

public class URLExample {

public static void main(String[] args) {

try {

 URL url = new

URL("https://www.example.com:443/index.html?user=123#section1");

System.out.println("Protocol: " + url.getProtocol());

System.out.println("Host: " + url.getHost());

System.out.println("Port: " + url.getPort());

System.out.println("Path: " + url.getPath());

System.out.println("Query: " + url.getQuery());

System.out.println("Reference: " + url.getRef());

 } catch (Exception e) {

e.printStackTrace();

 }

Centre for Distance Education 10.10 Acharya Nagarjuna University

10

 }

}

Input: URL is hardcoded.

Output:

Protocol: https

Host: www.example.com

Port: 443

Path: /index.html

Query: user=123

Reference: section1

Example 2: Parsing a URI

importjava.net.URI;

public class URIExample {

public static void main(String[] args) {

try {

 URI uri = new URI("https://www.example.com/index.html?user=123#section1");

System.out.println("Scheme: " + uri.getScheme());

System.out.println("Host: " + uri.getHost());

System.out.println("Port: " + uri.getPort());

System.out.println("Path: " + uri.getPath());

System.out.println("Query: " + uri.getQuery());

System.out.println("Fragment: " + uri.getFragment());

 } catch (Exception e) {

e.printStackTrace();

 }

 }

}

Output:

Scheme: https

Host: www.example.com

Port: -1

Path: /index.html

Query: user=123

Fragment: section1

Note: Port -1 indicates default port is used (443 for HTTPS).

Example 3: Reading Data from a URL

import java.net.URL;

importjava.io.BufferedReader;

importjava.io.InputStreamReader;

public class URLReadExample {

public static void main(String[] args) {

try {

 URL url = new URL("https://www.example.com");

BufferedReader reader = new BufferedReader(new InputStreamReader(url.openStream()));

 String line;

Web Technologies 10.11 Network Programming

11

while ((line = reader.readLine()) != null) {

System.out.println(line);

 }

reader.close();

 } catch (Exception e) {

e.printStackTrace();

 }

 }

}

Input: URL of a website.

Output: HTML content of the page (depends on the website).

Example snippet:

<!doctype html>

<html>

<head>

<title>Example Domain</title>

</head>

<body>

<div>

<h1>Example Domain</h1>

<p>This domain is for use in illustrative examples in documents.</p>

</div>

</body>

</html>

5. Key Points

1. URLs are used to connect to resources over the network in Java.

2. URIs are used mainly for identification and parsing.

3. Java provides URL and URI classes for network programming.

4. You can also read content from URLs using URLConnection or openStream().

5. URL/URI handling is a fundamental part of network programming and web

applications.

Difference Between URI and URL

Feature URL (Uniform Resource Locator) URI (Uniform Resource Identifier)

Definition

A URL is a type of URI that specifies

the location of a resource and how to

access it.

A URI is a generic identifier of a

resource, which may or may not include

its location.

Purpose
Used to locate and access resources over

the internet.

Used to identify a resource uniquely,

without necessarily specifying how to

access it.

Components
Typically includes protocol, host, port,

path, query, fragment.

Can include scheme, path, query,

fragment, but location/access info is

optional.

Example
https://www.example.com:443/index.ht

ml?user=123#section1

https://www.example.com/index.html#s

ection1 or urn:isbn:0451450523

Centre for Distance Education 10.12 Acharya Nagarjuna University

12

Feature URL (Uniform Resource Locator) URI (Uniform Resource Identifier)

Class in Java java.net.URL java.net.URI

Main Use in

Networking

Connect to a web resource, read/write

data (e.g., HTTP requests).

Parse, manipulate, or compare resource

identifiers.

Key Point:

• All URLs are URIs, but not all URIs are URLs.

• URL = URI + access method/location.

• URI = identifier, may not point to an actual resource.

10.6 UDP DATAGRAMS AND SOCKETS

1. What is UDP?

• UDP (User Datagram Protocol) is a connectionless protocol used for sending short

messages called datagrams over the network.

• It is faster than TCP because it doesn’t establish a connection and has no guarantee of

delivery, ordering, or error checking.

• Commonly used in:

o Video streaming

o Online gaming

o DNS queries

2. UDP Concepts

Term Description

Datagram A packet of data sent over UDP

DatagramSocket Socket for sending and receiving datagrams

DatagramPacket Represents a packet to send or receive data

Port Identifies the application on a host

Connectionless
No persistent connection between client and

server

3. Java Classes for UDP

• java.net.DatagramSocket – Creates a socket to send/receive UDP packets.

• java.net.DatagramPacket – Represents data packets.

4. UDP Server Example

import java.net.*;

public class UDPServer {

public static void main(String[] args) {

try {

DatagramSocketserverSocket = new DatagramSocket(9876);

byte[] receiveData = new byte[1024];

Web Technologies 10.13 Network Programming

13

System.out.println("Server is running... Waiting for client messages.");

while (true) {

DatagramPacketreceivePacket = new DatagramPacket(receiveData, receiveData.length);

serverSocket.receive(receivePacket);

 String message = new String(receivePacket.getData(), 0,

receivePacket.getLength());

System.out.println("Received from client: " + message);

if (message.equalsIgnoreCase("exit")) {

System.out.println("Server exiting...");

break;

 }

 }

serverSocket.close();

 } catch (Exception e) {

e.printStackTrace();

 }

 }

}

5. UDP Client Example

import java.net.*;

importjava.util.Scanner;

public class UDPClient {

public static void main(String[] args) {

try {

DatagramSocketclientSocket = new DatagramSocket();

InetAddressIPAddress = InetAddress.getByName("localhost");

 Scanner sc = new Scanner(System.in);

System.out.println("Enter messages to send to the server (type 'exit' to quit):");

while (true) {

 String message = sc.nextLine();

byte[] sendData = message.getBytes();

DatagramPacketsendPacket = new DatagramPacket(sendData, sendData.length, IPAddress,

9876);

clientSocket.send(sendPacket);

if (message.equalsIgnoreCase("exit")) {

System.out.println("Client exiting...");

break;

 }

 }

Centre for Distance Education 10.14 Acharya Nagarjuna University

14

clientSocket.close();

sc.close();

 } catch (Exception e) {

e.printStackTrace();

 }

 }

}

6. Sample Input/Output

Client Input:

Hello Server

How are you?

exit

Server Output:

Server is running... Waiting for client messages.

Received from client: Hello Server

Received from client: How are you?

Received from client: exit

Server exiting...

Client Output:

Enter messages to send to the server (type 'exit' to quit):

Hello Server

How are you?

exit

Client exiting...

7. Key Points

• UDP is faster but unreliable compared to TCP.

• No connection is established; packets may arrive outoforder or getlost.

• Useful for real-timeapplications like streaming, VoIP, and gaming.

10.7 REMOTE METHOD INVOCATION

What is RMI?

• RMI (Remote Method Invocation) is a Java API that allows an object running in one

Java virtual machine (JVM) to invoke methods on an object in another JVM.

• RMI abstracts the underlying network communication, allowing remote method calls

as if they were local.

• It is part of java.rmi package.

Use Cases:

• Distributed applications

• Client-server architecture

• Remote services

Web Technologies 10.15 Network Programming

15

Key Components of RMI

Component Description

Remote

Interface
Declares the methods that can be called remotely

Remote Object Implements the remote interface and contains the actual business logic

Stub Client-side proxy for the remote object (generated automatically)

Skeleton
Server-side entity that dispatches client calls to the remote object (Java 2+

not required explicitly)

RMI Registry Service that maps names to remote objects, allowing clients to look them up

Steps to Create RMI Application

1. Define the Remote Interface (extends java.rmi.Remote)

2. Implement the Remote Interface

3. Create and start the RMI Server

4. Bind the remote object in the RMI Registry

5. Create the RMI Client to lookup and invoke methods

Example: Simple RMI – Adding Two Numbers

Step 1: Remote Interface

importjava.rmi.Remote;

importjava.rmi.RemoteException;

public interface AddInterface extends Remote {

int add(int a, int b) throws RemoteException;

}

Step 2: Remote Object Implementation

importjava.rmi.server.UnicastRemoteObject;

importjava.rmi.RemoteException;

public class AddImplementation extends UnicastRemoteObject implements AddInterface {

publicAddImplementation() throws RemoteException {

super();

 }

publicint add(int a, int b) throws RemoteException {

return a + b;

 }

}

Step 3: RMI Server

importjava.rmi.registry.LocateRegistry;

importjava.rmi.registry.Registry;

public class RMIServer {

public static void main(String[] args) {

try {

Centre for Distance Education 10.16 Acharya Nagarjuna University

16

AddImplementationaddObj = new AddImplementation();

 Registry registry = LocateRegistry.createRegistry(1099); // default port

registry.rebind("AddService", addObj);

System.out.println("Server is running...");

 } catch (Exception e) {

e.printStackTrace();

 }

 }

}

Step 4: RMI Client

importjava.rmi.registry.LocateRegistry;

importjava.rmi.registry.Registry;

public class RMIClient {

public static void main(String[] args) {

try {

 Registry registry = LocateRegistry.getRegistry("localhost");

AddInterface stub = (AddInterface) registry.lookup("AddService");

int result = stub.add(10, 20);

System.out.println("Result of addition: " + result);

 } catch (Exception e) {

e.printStackTrace();

 }

 }

}

 How to Run RMI Application

1. Compile all Java files:

javac *.java

2. Start the RMI registry:

rmiregistry

(Keep it running in the background)

3. Start the server:

javaRMIServer

4. Run the client:

 javaRMIClient

Sample Output

Server Output:

Server is running...

Client Output:

Result of addition: 30

Key Points

• RMI allows transparent communication between JVMs.

• Remote interfaces must extend java.rmi.Remote.

• Remote methods must declare throws RemoteException.

• RMI uses stubs and skeletons (proxy objects) to handle network communication.

• Useful for distributed computing and enterprise applications.

Web Technologies 10.17 Network Programming

17

10.8 SUMMARY

Network programming in Java allows applications to communicate over networks by using

classes from the java.net package. It supports both TCP (Transmission Control Protocol) and

UDP (User Datagram Protocol), catering to different communication needs—TCP for

reliable, connection-oriented data transfer, and UDP for faster, connectionless

communication. Fundamental concepts such as IP addresses, ports, and sockets are essential

in establishing communication between devices. Java provides classes like Socket and

ServerSocket for TCP-based communication and DatagramSocket and DatagramPacket for

UDP-based data exchange.

Additionally, Java simplifies working with web resources through the URL and URI classes,

enabling developers to connect to web servers, parse links, and retrieve data directly from

websites. The InetAddress class assists in resolving hostnames and IP addresses, making

DNS lookups straightforward. For applications requiring high-speed, lightweight

communication—such as gaming, live streaming, or chat systems—UDP programming is

ideal due to its low overhead and faster transmission.

For building distributed applications, Java provides RMI (Remote Method Invocation),

which allows objects running in different JVMs (Java Virtual Machines) to communicate

seamlessly as if they were local. RMI involves defining remote interfaces, implementing

them on the server, and using an RMI registry for client-server interaction. Overall, Java’s

networking features make it a powerful and platform-independent choice for developing

secure, scalable, and cross-platform networked applications.

10.9 KEY TERMS

Socket, ServerSocket, DatagramSocket, IP Address, Port Number, TCP (Transmission

Control Protocol), UDP (User Datagram Protocol), URL (Uniform Resource Locator),

InetAddress, RMI (Remote Method Invocation).

10.10 SELF-ASSESSMENT QUESTIONS

1. What is network programming and why is it used?

2. What is the purpose of an IP address in network communication?

3. What is the difference between TCP and UDP?

4. Which Java class is used to create a server that listens for client connections?

5. What is the function of the Socket class in Java?

6. What does the InetAddress class do?

7. What is the role of a port number in networking?

8. What does URL stand for, and what is it used for?

9. What is RMI and why is it important in Java network programming?

10. Name two real-world applications that use network programming.

10.11 Further Readings

1. Java: The Complete Reference, Twelfth Edition by Herbert Schildt. McGraw-Hill

Education.

2. Beginning Java Programming: The Object-Oriented Approach by Bart Baesens,

Aimee Backiel, and SeppevandenBroucke. Wiley.

Centre for Distance Education 10.18 Acharya Nagarjuna University

18

3. Java Programming with Oracle JDBC by Donald Bales. O'Reilly Media.

4. Java EE 8 Application Development by David R. Heffelfinger. Packt Publishing.

5. Professional Java for Web Applications by Nicholas S. Williams. Wrox/Wiley

Publishing.

6. Java 2: Developer's Guide to Web Applications with JDBC by Gregory Brill. Sybex.

Mrs. Appikatla Pushpa Latha

LESSON-11

INTRODUCTION TO WEB SERVERS AND THE

TOMCAT ENVIRONMENT

AIM AND OBJECTIVES:

➢ Define what a web server is and describe its basic functions.

➢ Explain the features, architecture, and components of the Apache Tomcat web server.

➢ Install and configure the Java Software Development Kit (JDK) required for running

Tomcat.

➢ Set up and configure the Apache Tomcat server environment.

➢ Test and verify the Tomcat installation using the default local host URL.

➢ Deploy a sample Java web application on Tomcat.

➢ Identify and troubleshoot common issues related to Tomcat configuration.

STRUCTURE:

11.1 WEB SERVERS

11.1.1 DEFINITION

11.1.2 FUNCTIONS OF A WEB SERVER

11.1.3 EXAMPLES

11.2 TOMCAT WEB SERVER

11.2.1 INTRODUCTION

11.2.2 FEATURES OF TOMCAT

11.2.3 INSTALLING TOMCAT

11.2.4 TOMCAT DIRECTORY STRUCTURE

11.3 JSDK

11.3.1 INTRODUCTION

11.3.2. PURPOSE OF JSDK

11.3.3. IMPORTANT PACKAGES IN JSDK

11.3.4. JSDK ARCHITECTURE

11.3.5 INSTALLING JSDK

11.4 TOMCAT SERVER & TESTING TOMCAT

11.5 SUMMARY

11.6 KEY TERMS

11.7 SELF-ASSESSMENT QUESTIONS

11.8 FURTHER READINGS

Centre for Distance Education 11.2 Acharya Nagarjuna University

Introduction

The web is the foundation of today’s online world. Every time a user accesses a website, a

web server works behind the scenes to deliver web pages, handle user requests, and manage

communication between the client and the application.

In Java-based web applications, one of the most widely used servers is the Apache Tomcat

Web Server, which provides an efficient and easy-to-use environment for running Java

Servlets and Java Server Pages (JSP).

This chapter introduces the concept of web servers, explains the role of the Tomcat server,

and provides step-by-step guidance for installing and testing a Tomcat environment.

11.1 WEB SERVERS

11.1.1 Definition

A web server is software (and sometimes hardware) that uses the HTTP (Hypertext Transfer

Protocol) to respond to client requests made through a web browser. Its main function is to

receive HTTP requests from clients and send HTTP responses containing web pages, images,

or data.

11.1.2 Functions of a Web Server

• Serving Static Content: Delivers HTML pages, CSS, images, and scripts stored on

the server.

• Dynamic Content Generation: Executes programs such as Servlets, JSP, or PHP

scripts to generate dynamic content.

• Request Handling: Manages incoming client requests and sends appropriate

responses.

• Logging and Monitoring: Keeps records of user activity and server performance.

• Security Management: Implements SSL/TLS encryption for secure communication.

11.1.3 Examples of Popular Web Servers

Web Server Developer Primary Use

Apache HTTP Server
Apache Software

Foundation
Static & dynamic content hosting

Nginx Nginx Inc. High-performance reverse proxy

Microsoft IIS Microsoft Corporation Windows-based applications

Apache Tomcat
Apache Software

Foundation
Java-based web applications

Jetty Eclipse Foundation Lightweight Java web applications

Web Technologies 11.3 Introduction to Web Servers…

3

11.2 TOMCAT WEB SERVER

11.2.1 Introduction

Apache Tomcat is an open-source web server and servlet container developed by the Apache

Software Foundation. It is used to run Java-based web applications that use technologies such

as Servlets, JSP (JavaServer Pages), and WebSocket.

Tomcat implements the Jakarta Servlet and Jakarta Server Pages (JSP) specifications and

serves as the runtime environment for executing servlets and rendering dynamic web content.

11.2.2 Key Features

• Supports Servlet and JSP specifications.

• Lightweight, easy to install, and open-source.

• Handles HTTPrequestsand responses efficiently.

• Provides an administrative GUI and management console.

• Integrates easily with IDEs like Eclipse, IntelliJ, or NetBeans.

How Tomcat Works

1. A client (web browser) sends an HTTP request (e.g., form submission).

2. Tomcat receives the request and passes it to the servlet container.

3. The servlet processes the request (e.g., accesses a database, processes data).

4. The servlet generates an HTTP response (usually HTML).

5. Tomcat sends the response back to the client’s browser.

11.2.3 Installing Tomcat

1. Download Tomcat from:https://tomcat.apache.org

2. Extract it to a folder (e.g., C:\apache-tomcat-10.1).

3. Set environment variables:

o JAVA_HOME → JDK installation path

o CATALINA_HOME → Tomcat folder

4. Run startup.bat (Windows) or startup.sh (Linux/Mac) in the bin folder.

5. Open a browser and go to:

👉http://localhost:8080

You’ll see the Tomcat welcome page if it’s running properly.

11.2.4 Tomcat Directory Structure

Example Servlet Program Using Tomcat

Step 1 – Directory Structure

Tomcat

└── webapps

 └── MyApp

 ├── WEB-INF

 │ ├── web.xml

 │ └── classes

 │ └── HelloServlet.class

 └── index.html

https://tomcat.apache.org/

Centre for Distance Education 11.4 Acharya Nagarjuna University

Step 2 – Servlet Source Code

HelloServlet.java

import java.io.*;

importjavax.servlet.*;

importjavax.servlet.http.*;

public class HelloServlet extends HttpServlet {

public void doGet(HttpServletRequest request, HttpServletResponse response)

throwsServletException, IOException {

response.setContentType("text/html");

PrintWriter out = response.getWriter();

out.println("<html><body>");

out.println("<h2>Hello from Tomcat Servlet!</h2>");

out.println("<p>This response is generated by a Java servlet running on Tomcat.</p>");

out.println("</body></html>");

 }

}

Step 3 – Deployment Descriptor

web.xml (inside WEB-INF)

<web-app>

<servlet>

<servlet-name>HelloServlet</servlet-name>

<servlet-class>HelloServlet</servlet-class>

</servlet>

<servlet-mapping>

<servlet-name>HelloServlet</servlet-name>

<url-pattern>/hello</url-pattern>

</servlet-mapping>

</web-app>

Step 4 – HTML File (Optional)

index.html

<html>

<head><title>Welcome Page</title></head>

<body>

<h1>Welcome to My Java Web Application</h1>

<p>Click here to invoke the servlet</p>

</body>

</html>

Step 5 – Compile and Deploy

1. Compile the servlet:

2. javac -classpath "C:\apache-tomcat-10.1\lib\servlet-api.jar" HelloServlet.java

3. Place HelloServlet.class inside:

C:\apache-tomcat-10.1\webapps\MyApp\WEB-INF\classes

4. Restart Tomcat.

Web Technologies 11.5 Introduction to Web Servers…

5

5. Open your browser and go to:

👉http://localhost:8080/MyApp/hello

Example Input and Output

Input (User Action)

User opens browser and visits:

http://localhost:8080/MyApp/hello

Output (Browser Display)

<html>

<body>

<h2>Hello from Tomcat Servlet!</h2>

<p>This response is generated by a Java servlet running on Tomcat.</p>

</body>

</html>

Advantages of Tomcat

• Easy to set up and lightweight.

• Excellent support for Java Servlets and JSP.

• Open-source and actively maintained.

• Can be embedded in Java applications.

• Integrates well with development tools and build systems like Maven.

Note:

• Apache Tomcat is a popular web server and servlet container for running Java web

applications.

• It processes HTTP requests and executes servlets to generate dynamic responses.

• Using Tomcat, developers can create and deploy powerful Java-based web systems

easily.

11.3 JSDK

11.3.1 Introduction

JSDK (Java Servlet Development Kit) is a toolkit provided by Sun Microsystems (now

Oracle) that contains the libraries, classes, and tools required to develop, test, and run Java

Servlets.

It was introduced to help developers build dynamic web applications before the release of full

enterprise editions like J2EE and later Jakarta EE.

Today, the JSDK’s functionality is integrated into modern Java EE / Jakarta EE servers (like

Tomcat, GlassFish, and WildFly), but understanding it remains essential for the fundamentals

of servlet development.

11.3.2. Purpose of JSDK

JSDK provides:

• APIs to develop Servlets and JSPs.

Centre for Distance Education 11.6 Acharya Nagarjuna University

• Tools for compiling, running, and testing servlets locally.

• The Servlet API classes like javax.servlet and javax.servlet.http.

• A small web server (in older versions) to test servlets.

Modern servlet containers (like Tomcat) already include these libraries, but the concept of

JSDK is foundational for understanding servlet development.

11.3.3. Important Packages in JSDK

Package Name Description

javax.servlet Contains core classes and interfaces for building servlets.

javax.servlet.http
Contains classes for HTTP-specific functionalities (GET, POST requests,

sessions, cookies).

Common Classes/Interfaces:

• Servlet – Basic interface for all servlets.

• GenericServlet – Provides a framework for non-HTTP servlets.

• HttpServlet – Provides methods for handling HTTP requests (doGet(), doPost()).

• ServletRequest, ServletResponse – Represent client request and server response

objects.

11.3.4. JSDK Architecture

A servlet works with the help of:

• Client (Browser): Sends HTTP requests.

• Web Server / Servlet Container: Runs servlets and manages the servlet lifecycle.

• Servlet: Processes requests and sends responses.

The JSDK provides the API layer that enables this communication between client and server.

Example Program Using JSDK

HelloServlet.java

import java.io.*;

importjavax.servlet.*;

importjavax.servlet.http.*;

public class HelloServlet extends HttpServlet {

public void init() throws ServletException {

System.out.println("Servlet Initialized");

 }

public void doGet(HttpServletRequest request, HttpServletResponse response)

throwsServletException, IOException {

response.setContentType("text/html");

PrintWriter out = response.getWriter();

out.println("<html><body>");

out.println("<h2>Welcome to JSDK Servlet Example</h2>");

out.println("<p>This servlet is running using the Servlet API from JSDK.</p>");

Web Technologies 11.7 Introduction to Web Servers…

7

out.println("</body></html>");

 }

public void destroy() {

System.out.println("Servlet Destroyed");

 }

}

 Deployment Descriptor (web.xml)

<web-app>

<servlet>

<servlet-name>HelloServlet</servlet-name>

<servlet-class>HelloServlet</servlet-class>

</servlet>

<servlet-mapping>

<servlet-name>HelloServlet</servlet-name>

<url-pattern>/hello</url-pattern>

</servlet-mapping>

</web-app>

Steps to Run the Example Using Tomcat (Modern Equivalent of JSDK)

1. Install Apache Tomcat.

2. Save HelloServlet.java in:

C:\apache-tomcat-10.1\webapps\MyApp\WEB-INF\classes

3. Save web.xml in:

C:\apache-tomcat-10.1\webapps\MyApp\WEB-INF

4. Compile the servlet:

5. javac -classpath "C:\apache-tomcat-10.1\lib\servlet-api.jar" HelloServlet.java

6. Start Tomcat and open browser:

👉http://localhost:8080/MyApp/hello

Example Input and Output

Input (User Action)

User opens:

http://localhost:8080/MyApp/hello

Output (Browser Display)

<html>

<body>

<h2>Welcome to JSDK Servlet Example</h2>

<p>This servlet is running using the Servlet API from JSDK.</p>

</body>

</html>

Tomcat Console Output

Servlet Initialized

When stopping the server:

Servlet Destroyed

 Explanation

Centre for Distance Education 11.8 Acharya Nagarjuna University

• The JSDK API provides the servlet classes used here (HttpServlet, ServletRequest,

ServletResponse).

• When the servlet is first requested, the container loads and initializes it by calling

init().

• Each browser request calls the doGet() method.

• When the server shuts down or redeploys the application, destroy() is called.

Modern Equivalent

Today, instead of using the old standalone JSDK, developers use:

• Apache Tomcat

• Jakarta EE (Servlet 5.0 and above)

• Maven/Gradle for dependency management, using:

• <dependency>

• <groupId>jakarta.servlet</groupId>

• <artifactId>jakarta.servlet-api</artifactId>

• <version>5.0.0</version>

• <scope>provided</scope>

• </dependency>

 Advantages of JSDK

• Simplifies servlet and JSP development.

• Provides standard API for all servlet containers.

• Promotes platform independence and code reusability.

• Lays the foundation for modern Java web frameworks.

• Allows testing servlets locally before deployment.

Note:

Aspect Description

Full Form Java Servlet Development Kit

Purpose Provides API and tools for developing servlets

Main Packages javax.servlet, javax.servlet.http

Lifecycle Methods init(), service(), destroy()

Modern Equivalent Apache Tomcat / Jakarta Servlet API

Output Dynamic HTML content via Java code

11.3.5 Installing the Java Software Development Kit

What is JDK?

JDK (Java Development Kit) is a software package that provides all the tools required to

develop and run Java applications, including:

• JVM (Java Virtual Machine) – executes Java bytecode

• JRE (Java Runtime Environment) – runtime environment for running Java programs

• Compiler (javac) – converts Java source code into bytecode

• Development tools – java, javac, jar, javadoc, etc.

Web Technologies 11.9 Introduction to Web Servers…

9

Steps to Install JDK

Step 1: Download JDK

• Visit the official Oracle website: Java SE Downloads

• Select the latest Java SE Development Kit and download for your operating system

(Windows, Mac, or Linux).

Step 2: Install JDK

• Run the downloaded installer.

• Follow instructions and choose an installation directory (e.g., C:\Program

Files\Java\jdk-21).

• Click Next and finish the installation.

Step 3: Set Environment Variables (Windows)

1. Open System Properties → Advanced → Environment Variables

2. Add a new system variable:

3. Variable name: JAVA_HOME

4. Variable value: C:\Program Files\Java\jdk-21

5. Update the PATH variable:

6. %JAVA_HOME%\bin

7. Open Command Prompt and check installation:

8. java -version

9. javac -version

 Example Output:

java version "21"

Java(TM) SE Runtime Environment (build 21+35)

Java HotSpot(TM) 64-Bit Server VM (build 21+35, mixed mode)

javac 21

Writing and Running a Java Program

Once JDK is installed, you can write and run Java programs using Command Prompt or IDE

(Eclipse, IntelliJ, NetBeans).

Step 1 – Create a Java Program

File: HelloWorld.java

// A simple Java program to display a message

public class HelloWorld {

public static void main(String[] args) {

System.out.println("Hello, Java is installed successfully!"); } }

Step 2 – Compile Java Program

1. Open Command Prompt

2. Navigate to the folder containing HelloWorld.java

3. Compile using javac:

javac HelloWorld.java

• This generates a HelloWorld.class file (Java bytecode) in the same folder.

Step 3 – Run Java Program

javaHelloWorld

Output:

Hello, Java is installed successfully!

Another Example: Add Two Numbers

https://www.oracle.com/java/technologies/javase-downloads.html

Centre for Distance Education 11.10 Acharya Nagarjuna University

File: AddNumbers.java

importjava.util.Scanner;

public class AddNumbers {

public static void main(String[] args) {

 Scanner sc = new Scanner(System.in);

System.out.print("Enter first number: ");

int a = sc.nextInt();

System.out.print("Enter second number: ");

int b = sc.nextInt();

int sum = a + b;

System.out.println("Sum = " + sum); }}

Input (from user):

Enter first number: 10

Enter second number: 20

Output:

Sum = 30

11.4 TOMCAT SERVER & TESTING TOMCAT

What is Tomcat?

Apache Tomcat is a web server and servlet container developed by Apache Software

Foundation. It is used to:

• Run Java Servlets and JavaServer Pages (JSP).

• Serve as a platform for Java-based web applications.

• Provide HTTP web server functionality without needing a separate web server like

Apache HTTPD.

Key Components:

Component Description

Catalina Servlet container

Coyote HTTP connector

Jasper JSP engine (converts JSP to Servlet)

Cluster Handles session replication for high availability

Installing Apache Tomcat

Step 1: Download Tomcat

• Visit: https://tomcat.apache.org

• Choose the latest Tomcat version (e.g., Tomcat 10.x or 9.x).

• Download Core zip or installer for your OS.

Step 2: Install Tomcat

• Windows: Extract the zip file to C:\Tomcat

• Linux/Mac: Extract to /usr/local/tomcat or preferred location.

Step 3: Set Environment Variables

• CATALINA_HOME = Tomcat installation folder (e.g., C:\Tomcat)

• Add %CATALINA_HOME%\bin to PATH.

https://tomcat.apache.org/

Web Technologies 11.11 Introduction to Web

Servers…

11

Step 4: Start Tomcat

• Windows: Run startup.bat in C:\Tomcat\bin

• Linux/Mac: Run startup.sh in terminal

Test Tomcat:

Open browser and go to:

http://localhost:8080/

You should see the Tomcat Welcome Page.

Deploying JSP Programs in Tomcat

Step 1: Tomcat Directory Structure

C:\Tomcat

│

├─ bin/ # Startup and shutdown scripts

├─ webapps/ # Place your JSP/Servlet projects here

│ └─ ROOT/ # Default web application folder

├─ conf/ # Configuration files

├─ logs/ # Log files

└─ lib/ # Library files

• JSP files should go inside webapps/ROOT/ or a subfolder like webapps/MyApp/.

Step 2: Create a Sample JSP Page

File:hello.jsp (inside C:\Tomcat\webapps\ROOT\)

<%@ page language="java" contentType="text/html; charset=UTF-8"%>

<html>

<head>

<title>Hello JSP</title>

</head>

<body>

<h2>Hello, Tomcat is working perfectly!</h2>

</body>

</html>

Step 3: Access JSP in Browser

Open:

http://localhost:8080/hello.jsp

Output:

Hello, Tomcat is working perfectly!

4. Example: JSP with Form Input

File:greet.jsp (inside ROOT/)

<%@ page import="java.util.*" %>

<html>

<head><title>Greeting Page</title></head>

<body>

<h2>Enter Your Name</h2>

<form action="greet.jsp" method="post">

<input type="text" name="username">

Centre for Distance Education 11.12 Acharya Nagarjuna University

<input type="submit" value="Submit">

</form>

<%

 String name = request.getParameter("username");

if(name != null && !name.isEmpty()) {

out.println("<h3>Welcome, " + name + "! Your JSP program is working.</h3>"); }

 %>

</body>

</html>

Input (from form): Name: Alice

Output (in browser): Welcome, Alice! Your JSP program is working.

 Stopping Tomcat

• Windows: shutdown.bat in C:\Tomcat\bin

• Linux/Mac: shutdown.sh in terminal

Folder Structure Example for JSP Project

webapps/

└─ MyApp/

 ├─ index.jsp

 ├─ hello.jsp

 ├─ greet.jsp

 └─ WEB-INF/

 ├─ web.xml

 └─ classes/

• JSP pages → MyApp/

• Servlets and Java classes → WEB-INF/classes/

• Deployment descriptor → WEB-INF/web.xml

11.5 SUMMARY

The Java Servlet Development Kit (JSDK), developed by Sun Microsystems (now Oracle),

provides the essential tools, libraries, and APIs required for building, testing, and deploying

Java servlets—programs that run on web servers to handle client requests and generate

dynamic responses. Servlets form the foundation of Java-based web applications and are

managed by servlet containers like Apache Tomcat, which implement the Servlet and JSP

specifications. The servlet lifecycle includes three key phases: initialization using init(),

request handling using service() (or doGet()/doPost() for HTTP requests), and cleanup

through destroy(). This lifecycle ensures efficient resource management and reliable request

processing across multiple clients.

Using the JSDK, developers can compile servlets, deploy them under the WEB-INF/classes

directory, and configure them in the web.xml deployment descriptor. Servlets are

significantly faster and more scalable than traditional CGI programs, as they support

multithreading—allowing multiple client requests to be processed simultaneously within the

same server process. The JSDK includes core packages such as javax.servlet and

javax.servlet.http, which define essential classes and interfaces like HttpServlet,

ServletRequest, and ServletResponse. These enable interaction between web clients and

servers, session management, and dynamic HTML generation.

Web Technologies 11.13 Introduction to Web

Servers…

13

Modern Java web development builds upon the foundation laid by JSDK, often using Apache

Tomcat, Jakarta EE, and build tools like Maven or Gradle for streamlined deployment and

dependency management. Despite advancements in frameworks, understanding servlets and

the JSDK remains essential for grasping the underlying principles of Java web technologies.

Together, they provide a robust, scalable, and maintainable framework for creating

interactive, platform-independent, and secure web applications that respond dynamically to

user input.

11.6 KEY TERMS

Web Server, Apache Tomcat, Servlet Container, JDK (Java Development Kit),

JAVA_HOME, Catalina, Coyote, Jasper, Cluster

11.7 SELF-ASSESSMENT QUESTIONS

1. Explain the architecture and working of the Apache Tomcat web server with a neat

diagram.

2. Describe the steps involved in installing and configuring the JDK and Tomcat server.

3. Discuss how to test and verify Tomcat installation and deploy a sample JSP

application.

4. Compare Apache Tomcat with other popular web servers like Apache HTTP Server

and Nginx.

5. Explain the directory structure of Tomcat and describe the purpose of each folder.

6. Explain the purpose of the JAVA_HOME environment variable.

11.8 FURTHER READINGS

1. Java: The Complete Reference, Twelfth Edition by Herbert Schildt. McGraw-Hill

Education.

2. Beginning Java Programming: The Object-Oriented Approach by Bart Baesens,

Aimee Backiel, and SeppevandenBroucke. Wiley.

3. Java Programming with Oracle JDBC by Donald Bales. O'Reilly Media.

4. Java EE 8 Application Development by David R. Heffelfinger. Packt Publishing.

5. Professional Java for Web Applications by Nicholas S. Williams. Wrox/Wiley

Publishing.

6. Java 2: Developer's Guide to Web Applications with JDBC by Gregory Brill. Sybex.

 Mrs. Appikatla Pushpa Latha

LESSON-12

INTRODUCTION TO SERVLETS

AIM AND OBJECTIVES:

➢ To provide a standardized framework for developing server-side Java programs

(Servlets).

➢ To enable dynamic content generation and client-server communication via HTTP.

➢ To support session management, cookies, and request-response handling in web

applications.

➢ To ensure platform-independent, reusable, and maintainable web application

components.

➢ To integrate easily with Java APIs like JDBC, RMI, and JSP for building robust web

applications.

STRUCTURE:

12.1 INTRODUCTION TO SERVLETS

12.2 LIFE CYCLE OF A SERVLET

12.3 JSDK (JAVA SERVLET DEVELOPMENT KIT)

12.4 THE SERVLET API

12. 5 SUMMARY

12.6 KEY TERMS

12.7 SELF-ASSESSMENT QUESTIONS

12.8 FURTHER READINGS

12.1. INTRODUCTION TO SERVLETS

A Servlet is a server-side Java program that extends the capabilities of a web server. It

dynamically processes client requests and generates responses, typically in the form of

HTML, JSON, or XML. Servlets run inside a Servlet container (e.g., Apache Tomcat),

which manages their lifecycle and provides services such as request handling, session

management, and security.

Servlets are an integral part of Java EE (Jakarta EE) for developing web applications that

follow the client-server model. They act as a bridge between a web browser (client) and

databases or other server resources.

2. Definition

A Servlet is a Java class that runs on a server and responds to client requests by generating

dynamic content.

Centre for Distance Education 12.2 Acharya Nagarjuna University

Definition (by Java):

A Servlet is a Java programming language class used to extend the capabilities of servers that

host applications accessed by means of a request-response programming model.

3. Need for Servlets

Before Servlets, web developers used CGI (Common Gateway Interface) scripts (usually in

Perl or C) to create dynamic web content. However, CGI had several disadvantages:

• Each client request created a new process — inefficient for large-scale applications.

• Platform-dependent and hard to maintain.

• Slow in performance.

Servlets overcome these limitations by:

• Running within a single process managed by the JVM.

• Using multithreading to handle multiple requests efficiently.

• Being portable, secure, and integrated with Java APIs.

4. Advantages of Servlets

1. Platform Independent:

Written in Java, Servlets are portable across different servers and operating systems.

2. Efficient and Scalable:

Use multithreading—each request is handled by a separate thread instead of a new

process.

3. Robust and Secure:

Benefit from Java’s strong exception handling and security features.

4. Integration with Java APIs:

Can interact easily with JDBC, RMI, EJB, and other APIs.

5. Persistence:

Loaded once and reused for multiple client requests.

6. Extensibility:

Servlets can be easily extended or modified as applications grow.

7. Easy to Maintain:

Since the logic is written in Java, it supports modular, object-oriented design.

5. Servlet Architecture

A Servlet follows the request-response model.

The architecture involves:

1. Client (Browser): Sends a request (usually an HTTP request).

2. Web Server / Servlet Container: (e.g., Apache Tomcat) receives and forwards the

request to the Servlet.

3. Servlet: Processes the request, interacts with databases or business logic, and

generates a response.

4. Response: Sent back to the client (typically as HTML or data).

Web Technologies 12.3 Introduction to Servlets

Diagram (Text Representation):

Client (Browser)

 |

 v

HTTP Request

 |

 v

Web Server / Servlet Container

 |

 v

Servlet (Java Class)

 |

 v

Database / Application Logic

 |

 v

Response (HTML/JSON)

 |

 v

Client (Browser)

6. Life Cycle of a Servlet

The Servlet life cycle defines the steps from creation to destruction of a Servlet instance. The

javax.servlet.Servlet interface defines the methods for these stages:

1. init()

• Called only once when the Servlet is first loaded.

• Used for initialization tasks (like loading configuration or setting up database

connections).

2. service()

• Called for each client request.

• Handles request and response objects.

• Determines the request method (GET, POST, etc.) and processes accordingly.

3. destroy()

• Called when the Servlet is unloaded or server shuts down.

• Used to release resources (like closing database connections).

4. getServletConfig()

• Returns configuration information for the Servlet.

5. getServletInfo()

• Returns information about the Servlet (version, author, etc.).

Life Cycle Diagram (Text Representation):

 +-----------------+

 | Servlet Loaded |

 +--------+--------+

 |

 init()

 |

 v

 service() <---- Multiple requests handled here

Centre for Distance Education 12.4 Acharya Nagarjuna University

 |

 v

 destroy()

 |

 v

 Servlet Unloaded

7. Types of Servlets

1. Generic Servlet

o Extends javax.servlet.GenericServlet

o Protocol-independent (can handle any request type)

o Must override the service() method.

2. HTTP Servlet

o Extends javax.servlet.http.HttpServlet

o Handles HTTP requests and responses (GET, POST, PUT, DELETE)

o Commonly used in web applications.

8. Servlet API Packages

1. javax.servlet

o Defines classes and interfaces for basic Servlet functionality.

o Key interfaces: Servlet, ServletRequest, ServletResponse, ServletConfig,

ServletContext.

2. javax.servlet.http

o Provides classes for HTTP-specific functionality.

o Important classes: HttpServlet, HttpServletRequest, HttpServletResponse,

HttpSession, Cookie.

9. Servlet Communication

Servlets communicate using the request-response mechanism:

• The client sends a request (HttpServletRequest) to the server.

• The server responds with an output (HttpServletResponse).

Example methods:

• getParameter(String name) — to get form data from a client.

• setContentType("text/html") — to define the response type.

• getWriter() — to send text output to the client.

10. Example: A Simple Servlet

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class HelloServlet extends HttpServlet {

 public void doGet(HttpServletRequest request, HttpServletResponse response)

 throws ServletException, IOException {

 response.setContentType("text/html");

 PrintWriter out = response.getWriter();

 out.println("<html><body>");

 out.println("<h2>Welcome to Java Servlets!</h2>");

 out.println("</body></html>");

 }

}

Web Technologies 12.5 Introduction to Servlets

11. Deployment Descriptor (web.xml)

The web.xml file (located in WEB-INF folder) configures Servlet mappings:

<web-app>

 <servlet>

 <servlet-name>HelloServlet</servlet-name>

 <servlet-class>HelloServlet</servlet-class>

 </servlet>

 <servlet-mapping>

 <servlet-name>HelloServlet</servlet-name>

 <url-pattern>/hello</url-pattern>

 </servlet-mapping>

</web-app>

Access URL:

http://localhost:8080/YourApp/hello

12. Limitations of Servlets

• Complex to design large-scale HTML pages (since output is generated using Java

code).

• Separation of presentation and business logic is difficult.

• JSP (Java Server Pages) was introduced to overcome these limitations.

Note: Servlets are Java programs that execute on the server side to create dynamic web

content. They provide a robust, efficient, and secure way to handle client requests compared

to older technologies like CGI. By managing requests and responses within a single JVM

process, Servlets form the backbone of modern Java web applications and frameworks like

JSP and Spring MVC.

12.2 LIFE CYCLE OF A SERVLET

1. Introduction

A Servlet life cycle represents the entire process by which a Servlet is loaded, initialized,

handles client requests, and is finally destroyed by the web container.

This cycle is managed by the Servlet Container (for example, Apache Tomcat, Jetty, or

GlassFish), which ensures that each Servlet operates efficiently and securely in response to

client requests.

Understanding the Servlet life cycle is essential for developing efficient and robust web

applications.

2. What is Servlet Life Cycle?

The Servlet Life Cycle defines the stages through which a Servlet passes, from its creation

to its destruction.

A Servlet is:

1. Loaded into memory by the container.

2. Initialized using the init() method.

3. Invoked repeatedly using the service() method to handle client requests.

Centre for Distance Education 12.6 Acharya Nagarjuna University

4. Destroyed using the destroy() method when the container shuts down or no longer

needs the Servlet.

Each of these stages corresponds to specific methods defined in the javax.servlet.Servlet

interface.

3. Servlet Life Cycle Methods

The javax.servlet.Servlet interface defines five main methods involved in the life cycle:

Method Description

init(ServletConfig config)
Called once when the Servlet is first loaded into

memory; used for initialization.

service(ServletRequest req,

ServletResponse res)

Called for every client request; processes the request

and generates the response.

destroy()
Called once when the Servlet is being removed from

service; used for cleanup.

getServletConfig() Returns configuration information about the Servlet.

getServletInfo()
Returns a string with information about the Servlet

(author, version, etc.).

4. Servlet Life Cycle Phases

Let’s explore each stage in detail:

1. Loading and Instantiation

• The Servlet container loads the Servlet class into memory when:

o The first request for the Servlet is received, or

o The web.xml file specifies <load-on-startup> (to preload the Servlet at server

startup).

• Once loaded, the container creates an instance of the Servlet class using its no-

argument constructor.

2. Initialization Phase – init() Method

• The container calls the init() method only once after creating the Servlet instance.

• It is used to initialize resources such as:

o Database connections

o Reading configuration parameters

o Setting up log files or network connections

Syntax:

public void init(ServletConfig config) throws ServletException {

 // Initialization code

}

Example:

public void init() throws ServletException {

 System.out.println("Servlet is being initialized");

}

After init() is executed successfully, the Servlet is ready to handle client requests.

3. Request Handling Phase – service() Method

• The service() method is called for each client request.

• It receives two objects:

Web Technologies 12.7 Introduction to Servlets

o ServletRequest — to get input data from the client.

o ServletResponse — to send output data back to the client.

• In the case of HTTP Servlets, this method is usually overridden by doGet() or

doPost() depending on the request type.

Syntax:

public void service(ServletRequest request, ServletResponse response)

 throws ServletException, IOException {

 // Code to process request and generate response

}

Example (for HTTP Servlet):

public void doGet(HttpServletRequest request, HttpServletResponse response)

 throws ServletException, IOException {

 response.setContentType("text/html");

 PrintWriter out = response.getWriter();

 out.println("<h3>Hello, this is from doGet() method!</h3>");

}

4. Destruction Phase – destroy() Method

• The destroy() method is called once when:

o The Servlet container is shutting down, or

o The Servlet is no longer needed.

• It allows the Servlet to release resources such as:

o Database connections

o File handles

o Network sockets

Syntax:

public void destroy() {

 // Cleanup code

}

Example:

public void destroy() {

 System.out.println("Servlet is being destroyed");

}

After this stage, the Servlet instance is eligible for garbage collection.

5. Unloading Phase

• After the destroy() method executes, the Servlet instance is removed from memory.

• The JVM’s Garbage Collector reclaims the memory.

5. Servlet Life Cycle Diagram

Here’s a textual representation of the life cycle:

 +----------------------+

 | Servlet Class |

 | Loaded by JVM |

 +----------+-----------+

 |

 v

 init() Method

 |

 v

 +---------------------+

 | service() Method | <----> Multiple Client Requests

Centre for Distance Education 12.8 Acharya Nagarjuna University

 +---------------------+

 |

 v

 destroy() Method

 |

 v

 +---------------------+

 | Servlet Unloaded |

 +---------------------+

6. Example: Servlet Life Cycle Demonstration

Program: LifecycleServlet.java

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class LifecycleServlet extends HttpServlet {

 public void init() throws ServletException {

 System.out.println("Servlet is initializing...");

 }

 public void service(HttpServletRequest request, HttpServletResponse response)

 throws ServletException, IOException {

 System.out.println("Request is being serviced...");

 response.setContentType("text/html");

 PrintWriter out = response.getWriter();

 out.println("<html><body>");

 out.println("<h2>Servlet Life Cycle Demonstration</h2>");

 out.println("<p>Request processed successfully!</p>");

 out.println("</body></html>");

 }

 public void destroy() {

 System.out.println("Servlet is being destroyed...");

 }

}

web.xml Configuration:

<web-app>

 <servlet>

 <servlet-name>LifecycleServlet</servlet-name>

 <servlet-class>LifecycleServlet</servlet-class>

 <load-on-startup>1</load-on-startup>

 </servlet>

 <servlet-mapping>

 <servlet-name>LifecycleServlet</servlet-name>

 <url-pattern>/life</url-pattern>

 </servlet-mapping>

</web-app>

Access URL:

Web Technologies 12.9 Introduction to Servlets

http://localhost:8080/MyApp/life

7. Key Interfaces and Classes Involved

Component Description

Servlet Main interface defining life cycle methods.

GenericServlet Abstract class implementing Servlet and ServletConfig.

HttpServlet Subclass of GenericServlet used for HTTP-specific handling.

ServletConfig Provides initialization parameters for a Servlet.

ServletContext Provides global information shared among all Servlets in the application.

8. Key Points to Remember

• init() → Called once when the Servlet is created.

• service() → Called for each client request.

• destroy() → Called once before the Servlet is unloaded.

• Servlet instances are not recreated for every request (unlike CGI scripts).

• service() method in HttpServlet automatically dispatches requests to doGet(),

doPost(), etc., based on the HTTP method.

•

9. Advantages of Servlet Life Cycle Management

• Automatic Resource Management: The container handles initialization and cleanup.

• Performance: Servlet instance is created once and reused for multiple requests.

• Scalability: Thread-based model supports multiple simultaneous requests.

• Security: The container ensures secure handling of requests and responses.

12.3 JSDK (JAVA SERVLET DEVELOPMENT KIT)

Introduction

The Java Servlet Development Kit (JSDK) is a set of tools, libraries, and utilities provided

by Sun Microsystems (now Oracle) to help developers create, test, and deploy Java

Servlets. It serves as the development and testing environment for servlet-based web

applications before deploying them on a full-scale web server.

The JSDK provides the Servlet API and a simple web server for running servlets, allowing

developers to learn and experiment with servlet technology easily.

Objectives of JSDK

• To provide a development environment for creating and testing servlets.

• To supply core classes and interfaces required for servlet programming.

• To enable developers to compile, load, and run servlets without requiring a

commercial web server.

• To serve as a reference implementation for servlet specification.

• To ensure portability and compatibility of servlets across all compliant web servers.

http://localhost:8080/MyApp/life

Centre for Distance Education 12.10 Acharya Nagarjuna University

Components of JSDK

JSDK mainly consists of the following components:

1. Servlet API Packages

o The JSDK includes the servlet classes and interfaces defined in:

▪ javax.servlet

▪ javax.servlet.http

o These provide the building blocks for developing servlets.

2. Web Server (Servlet Runner)

o A simple built-in web server is provided with JSDK (often called

servletrunner) for testing servlets locally.

o It can process HTTP requests and responses, enabling developers to test

servlet functionality.

3. Tools and Utilities

o JSDK provides command-line tools for:

▪ Compiling servlet programs (javac)

▪ Running servlet demos

▪ Testing servlet deployment using servletrunner

4. Servlet Examples

o Example servlet programs demonstrating various servlet features (handling

forms, cookies, sessions, etc.) are included.

Directory Structure of JSDK

After installing JSDK, you will typically find the following structure:

JSDK/

 ├── bin/ → Contains executables like servletrunner

 ├── lib/ → Contains JAR files (e.g., servlet.jar)

 ├── docs/ → API documentation and guides

 ├── examples/ → Sample servlet programs

 └── README.txt → Information about installation and usage

Setting up JSDK

To use JSDK, the environment must be configured properly:

1. Install JDK

o Make sure the Java Development Kit (JDK) is installed on your system.

o Set the JAVA_HOME environment variable.

2. Install JSDK

o Download and install JSDK from the official source.

o Note the installation directory path (e.g., C:\JSDK).

3. Set Environment Variables

o Add the JSDK bin directory to the system PATH.

o Add servlet.jar (usually in the lib folder) to your Java classpath.

o set CLASSPATH=%CLASSPATH%;C:\JSDK\lib\servlet.jar;.

4. Start the Servlet Runner

o Navigate to the JSDK bin directory.

o Run:

o servletrunner -d C:\JSDK\examples

o This starts a small HTTP server that can execute servlets.

Web Technologies 12.11 Introduction to Servlets

5. Access Servlets via Browser

o Open a web browser and type:

o http://localhost:8080/servlet/ServletName

Working of JSDK

When a servlet request is made using JSDK:

1. The servletrunner (JSDK’s lightweight server) receives the HTTP request.

2. It loads the servlet class (if not already loaded).

3. The servlet’s service() method is invoked to process the request.

4. The response is generated and sent back to the browser.

5. The servlet remains in memory for subsequent requests (until the server stops).

Advantages of JSDK

• Lightweight testing environment – ideal for development and learning.

• Portable and platform-independent – works wherever Java works.

• Includes complete Servlet API – supports all core classes and interfaces.

• Supports rapid prototyping – no need for complex web server setup.

• Good for educational and demonstration purposes.

Limitations of JSDK

• Not suitable for production environments.

• Limited performance and scalability compared to enterprise servers like Tomcat.

• No advanced features such as JSP support or servlet filters (in older versions).

• Deprecated — replaced by Tomcat and Java EE containers.

Replacement for JSDK

The JSDK has now been replaced by:

• Apache Tomcat, which implements the Servlet and JSP APIs fully.

• Jakarta EE (formerly Java EE), which provides full enterprise web application

support.

Table

Feature Description

Full Form Java Servlet Development Kit

Developed By Sun Microsystems

Purpose To develop and test servlets

Main Packages javax.servlet, javax.servlet.http

Includes Servlet API, servlet runner, examples

Replaced By Apache Tomcat and Jakarta EE

Use Educational and small-scale servlet testing

Centre for Distance Education 12.12 Acharya Nagarjuna University

12.4 THE SERVLET API

1. Introduction

The Servlet API defines a set of classes and interfaces that enable communication between

a servlet and its servlet container (web server).

It provides the necessary methods for handling client requests, generating responses,

managing sessions, and accessing server information.

The Servlet API is included in the Java Servlet Development Kit (JSDK) and now

maintained as part of the Jakarta EE (formerly Java EE) platform.

The two main packages of the Servlet API are:

1. javax.servlet

2. javax.servlet.http

2. Purpose of the Servlet API

The main purpose of the Servlet API is to:

• Allow servlets to interact with web clients and servers.

• Provide interfaces and classes for writing portable and efficient web components.

• Support HTTP-specific features such as sessions, cookies, and request/response

handling.

• Provide a standardized programming model that can run on any servlet container

(like Tomcat, Jetty, etc.).

3. The Servlet API Packages

A. javax.servlet Package

This package provides generic, protocol-independent classes and interfaces.

It defines the core features every servlet must have — regardless of the communication

protocol.

Key Interfaces:

1. Servlet

o The root interface for all servlets.

o Defines the basic lifecycle methods:

o void init(ServletConfig config)

o void service(ServletRequest req, ServletResponse res)

o void destroy()

o ServletConfig getServletConfig()

o String getServletInfo()

2. ServletRequest

o Encapsulates the client’s request information.

o Provides methods to get form data, attributes, and input streams.

o String getParameter(String name)

o Enumeration getParameterNames()

o Object getAttribute(String name)

Web Technologies 12.13 Introduction to Servlets

3. ServletResponse

o Encapsulates the server’s response to the client.

o Provides methods to send content and control output.

o PrintWriter getWriter()

o void setContentType(String type)

4. ServletConfig

o Provides configuration information to a servlet (like init parameters).

o Common methods:

o String getInitParameter(String name)

o ServletContext getServletContext()

5. ServletContext

o Represents the web application environment shared by all servlets.

o Used for inter-servlet communication and accessing application-level

resources.

o String getInitParameter(String name)

o Object getAttribute(String name)

o void setAttribute(String name, Object value)

B. javax.servlet.http Package

This package extends the javax.servlet package and provides classes specific to HTTP

protocol.

It adds more specialized interfaces and classes for handling web-based requests and

responses.

Key Interfaces and Classes:

1. HttpServlet (class)

o An abstract class extending GenericServlet.

o Provides built-in methods to handle HTTP requests:

o protected void doGet(HttpServletRequest req, HttpServletResponse res)

o protected void doPost(HttpServletRequest req, HttpServletResponse res)

o protected void doPut(HttpServletRequest req, HttpServletResponse res)

o protected void doDelete(HttpServletRequest req, HttpServletResponse res)

o Developers extend this class and override doGet() or doPost() for web apps.

2. HttpServletRequest

o Extends ServletRequest to include HTTP-specific data.

o Provides methods to read headers, cookies, session data, and form

parameters.

o String getHeader(String name)

o Cookie[] getCookies()

o HttpSession getSession()

o String getMethod()

3. HttpServletResponse

o Extends ServletResponse and provides methods to send HTTP responses.

o void addCookie(Cookie cookie)

o void sendRedirect(String location)

o void setStatus(int sc)

o void setHeader(String name, String value)

Centre for Distance Education 12.14 Acharya Nagarjuna University

4. HttpSession

o Provides session management for tracking user data across multiple requests.

o void setAttribute(String name, Object value)

o Object getAttribute(String name)

o void invalidate()

5. Cookie

o Used for managing state between client and server.

o Cookie c = new Cookie("username", "pushpa");

o res.addCookie(c);

4. Servlet API Class Hierarchy

Below is a simplified hierarchy of important classes and interfaces:

javax.servlet

 ├── Servlet (interface)

 │ └── GenericServlet (abstract class)

 │ └── javax.servlet.http.HttpServlet (abstract class)

 ├── ServletRequest (interface)

 │ └── HttpServletRequest (interface)

 ├── ServletResponse (interface)

 │ └── HttpServletResponse (interface)

 ├── ServletConfig

 └── ServletContext

5. Lifecycle Methods from Servlet API

Method Defined In Description

init() Servlet Initializes the servlet instance.

service() Servlet Handles client requests.

destroy() Servlet Cleans up resources before servlet unloads.

doGet() HttpServlet Handles HTTP GET requests.

doPost() HttpServlet Handles HTTP POST requests.

6. Example: Simple HttpServlet

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class HelloServlet extends HttpServlet {

 public void doGet(HttpServletRequest request, HttpServletResponse response)

 throws ServletException, IOException {

 response.setContentType("text/html");

 PrintWriter out = response.getWriter();

 out.println("<html><body>");

 out.println("<h2>Welcome to the Servlet API Example!</h2>");

 out.println("</body></html>");

 }

}

Web Technologies 12.15 Introduction to Servlets

7. Advantages of the Servlet API

• Provides a standardized interface for server communication.

• Enables platform-independent web application development.

• Supports session management and state tracking.

• Promotes reusability and maintainability through class-based design.

• Integrates easily with JSP and JDBC for dynamic web content.

8. Table

Aspect Description

Purpose Provides interfaces and classes for servlet–server communication.

Main Packages javax.servlet, javax.servlet.http

Core Interfaces Servlet, ServletRequest, ServletResponse, ServletConfig, ServletContext

HTTP Classes
HttpServlet, HttpServletRequest, HttpServletResponse, HttpSession,

Cookie

Lifecycle

Methods
init(), service(), destroy()

Use
Developing web applications that process requests and generate responses

dynamically.

12. 5 SUMMARY

A Servlet is a server-side Java program that extends the functionality of web servers by

processing client requests and generating dynamic responses such as HTML, JSON, or XML.

Servlets run inside a Servlet container, like Apache Tomcat, which manages their lifecycle,

session handling, and security. They replaced CGI scripts by providing a more efficient,

scalable, and platform-independent solution. Servlets handle multiple requests using

multithreading and are easily integrated with Java APIs like JDBC, RMI, and EJB. The

Servlet lifecycle consists of loading, initialization using init(), request handling via service(),

and destruction with destroy(). HTTP Servlets extend HttpServlet and override methods like

doGet() and doPost() to manage HTTP requests. The Servlet API provides packages

javax.servlet and javax.servlet.http to define classes and interfaces for requests, responses,

sessions, and cookies. Servlets communicate with clients through the request-response model

and can interact with databases or business logic. The Java Servlet Development Kit (JSDK)

offered a lightweight environment for learning and testing servlets, though it is now replaced

by servers like Tomcat. Key advantages of servlets include performance, security, scalability,

and reusability. The Servlet API supports modular and maintainable web applications while

ensuring portability across servers. Servlets remain loaded in memory to efficiently handle

multiple client requests. They provide a bridge between web browsers and server-side

resources. By managing initialization and cleanup automatically, servlets reduce developer

effort and improve application reliability. Overall, servlets form the backbone of Java-based

web applications and are essential for modern web development.

Centre for Distance Education 12.16 Acharya Nagarjuna University

12.6 KEY TERMS

Servlet, Servlet Container, HTTPServlet, init(), service(), destroy(), ServletRequest,

ServletResponse, JSDK,Session.

12.7 SELF-ASSESSMENT QUESTIONS

1. What is a Servlet?

2. Name two advantages of using Servlets over CGI.

3. What method is called when a Servlet is first loaded?

4. Which method handles client requests in a Servlet?

5. What is the purpose of the destroy() method in a Servlet?

6. Differentiate between GenericServlet and HttpServlet.

7. Name the two main packages of the Servlet API.

8. What is the role of HttpSession in Servlets?

9. What is JSDK used for in Servlet development?

10. Explain the request-response model in Servlet architecture.

12.8 FURTHER READINGS

1. Java Servlet Technology Documentation. Oracle. Retrieved from

https://docs.oracle.com/javaee/7/tutorial/servlets.htm

2. Java Servlet API Specification. Oracle. Retrieved from

https://jakarta.ee/specifications/servlet/

3. Head First Servlets & JSP by Bryan Basham, Kathy Sierra, Bert Bates. O’Reilly

Media.

4. Java Servlet Development Kit (JSDK) Guide. Oracle. Retrieved from

https://docs.oracle.com/javase/

 Mrs. Appikatla Pushpa Latha

https://docs.oracle.com/javaee/7/tutorial/servlets.htm
https://jakarta.ee/specifications/servlet/
https://docs.oracle.com/javase/

LESSON-13

UNDERSTANDING SERVLETS PACKAGE

AIM AND OBJECTIVES:

➢ Understand the purpose and functionality of the Servlet API in Java web

development.

➢ Learn the core interfaces and classes provided by the javax.servletpackage.

➢ Explore how to read client request parameters using servlet request methods.

➢ Understand how to access and use initialization parameters for servlet configuration.

➢ Study the javax.servlet.httppackage for handling HTTP-specific requests and

responses.

STRUCTURE:

13.1 THE JAVAX.SERVLET PACKAGE

13.2 READING SERVLET PARAMETERS

13.3 READING INITIALIZATION PARAMETERS

13.4 THE JAVAX.SERVLET HTTP PACKAGE

13.5 SUMMARY

13.6 KEY TERMS

13.7 SELF-ASSESSMENT QUESTIONS

13.8 FURTHER READINGS

13.1 THE JAVAX.SERVLET PACKAGE

1. What is javax.servlet?

javax.servlet is a Java package that provides classes and interfaces for building server-side

web applications — primarily Servlets and Filters — that run on a web server or application

server (like Apache Tomcat, Jetty, GlassFish, etc.).

It is part of Java EE (Jakarta EE) and used to handle HTTP requests and responses.

2. Key Components of javax.servlet Package

Component Description

Servlet Interface
Defines methods all servlets must implement (init(), service(),

destroy(), etc.).

GenericServlet

Class

Implements Servlet interface; can be extended for non-HTTP

protocols.

HttpServlet Class
Extends GenericServlet and adds HTTP-specific methods like doGet()

and doPost().

ServletRequest Represents client request; gives access to parameters, headers, etc.

Centre for Distance Education 13.2 Acharya Nagarjuna University

Component Description

ServletResponse Represents response sent back to the client.

ServletConfig Provides servlet configuration data (init parameters).

ServletContext
Provides information shared among servlets (application-wide

context).

RequestDispatcher Forwards requests to another servlet or resource.

3. Servlet Lifecycle

1. Loading and Instantiation → Servlet class is loaded.

2. Initialization (init()) → Called once.

3. Request Handling (service(), doGet(), doPost()) → Called for each request.

4. Destruction (destroy()) → Called once before servlet is destroyed.

4. Example 1 — Basic “Hello World” Servlet

Directory Structure

MyServletApp/

 ├── WEB-INF/

 │ ├── web.xml

 │ └── classes/

 │ └── HelloServlet.class

 └── index.html

 (a) HelloServlet.java

import java.io.*;

importjavax.servlet.*;

importjavax.servlet.http.*;

public class HelloServlet extends HttpServlet {

public void doGet(HttpServletRequest request, HttpServletResponse response)

throwsServletException, IOException {

response.setContentType("text/html");

PrintWriter out = response.getWriter();

out.println("<html><body>");

out.println("<h2>Hello, Welcome to the Java Servlet Example!</h2>");

out.println("</body></html>");

 }

}

 (b) web.xml (Deployment Descriptor)

<web-app xmlns="http://java.sun.com/xml/ns/javaee" version="3.0">

<servlet>

<servlet-name>hello</servlet-name>

<servlet-class>HelloServlet</servlet-class>

</servlet>

Web Technologies 13.3 Understanding Servlets Package

3

<servlet-mapping>

<servlet-name>hello</servlet-name>

<url-pattern>/hello</url-pattern>

</servlet-mapping>

</web-app>

 (c) index.html

<!DOCTYPE html>

<html>

<head><title>Servlet Test</title></head>

<body>

<h1>Click the link to test the servlet</h1>

Say Hello

</body>

</html>

 Input

User opens:

http://localhost:8080/MyServletApp/hello

Output (Browser)

<html><body>

<h2>Hello, Welcome to the Java Servlet Example!</h2>

</body></html>

 5. Example 2 — Servlet with Request Parameters (GET/POST)

 (a) FormServlet.java

import java.io.*;

importjavax.servlet.*;

importjavax.servlet.http.*;

public class FormServlet extends HttpServlet {

protected void doPost(HttpServletRequest request, HttpServletResponse response)

throwsServletException, IOException {

response.setContentType("text/html");

PrintWriter out = response.getWriter();

 String name = request.getParameter("username");

out.println("<html><body>");

out.println("<h3>Hello, " + name + "! Welcome to Servlets.</h3>");

out.println("</body></html>");

 }

}

Centre for Distance Education 13.4 Acharya Nagarjuna University

(b) form.html

<!DOCTYPE html>

<html>

<head><title>Form Example</title></head>

<body>

<form action="form" method="post">

 Enter your name: <input type="text" name="username" />

<input type="submit" value="Submit" />

</form>

</body>

</html>

(c) web.xml

<web-app xmlns="http://java.sun.com/xml/ns/javaee" version="3.0">

<servlet>

<servlet-name>formServlet</servlet-name>

<servlet-class>FormServlet</servlet-class>

</servlet>

<servlet-mapping>

<servlet-name>formServlet</servlet-name>

<url-pattern>/form</url-pattern>

</servlet-mapping>

</web-app>

 Input

User fills out form:

Enter your name: Alice

and clicks “Submit”.

 Output (Browser)

<html><body>

<h3>Hello, Alice! Welcome to Servlets.</h3>

</body></html>

 6. Common Interfaces in javax.servlet

Interface Description

Servlet Base interface for all servlets.

ServletRequest Request object (data from client).

ServletResponse Response object (data to client).

Filter Used to preprocess or postprocess requests.

RequestDispatcher Forward/include requests to another resource.

ServletContext Application-level information.

ServletConfig Servlet-specific configuration data.

7. Deployment & Execution

1. Compile .java → .class

2. Place .class files in WEB-INF/classes/

3. Add mappings in web.xml

4. Deploy project to server (like Tomcat’s webapps folder)

5. Start Tomcat → Access URL in browser.

Web Technologies 13.5 Understanding Servlets Package

5

 8. Example Output

Servlet Input Output (Browser)

HelloServlet URL /hello “Hello, Welcome to the Java Servlet Example!”

FormServlet POST form with “Alice” “Hello, Alice! Welcome to Servlets.”

9. Transition to Jakarta Servlet

Since Jakarta EE 9, the package name changed from

javax.servlet.* → jakarta.servlet.*

But functionality remains the same.

13.2 READING SERVLET PARAMETERS

 1. What Are Servlet Parameters?

Servlet parameters are data sent by a client (browser) to the server (servlet) through an

HTTPrequest.

There are two types of parameters you can read in servlets:

1. Request Parameters – Sent by the client through HTML forms, query strings, or

links.

2. Initialization Parameters – Configured in web.xml for a servlet or application.

2. Methods to Read Request Parameters

From the HttpServletRequest object:

Method Description

getParameter(String name) Returns a single parameter value (as String).

getParameterValues(String name) Returns multiple values (like checkboxes).

getParameterNames() Returns all parameter names (as Enumeration).

getParameterMap() Returns all parameters and their values (as a Map).

3. Example 1 — Reading Parameters from an HTML Form (POST Method)

 (a) form.html

<!DOCTYPE html>

<html>

<head><title>User Form</title></head>

<body>

<h2>User Registration</h2>

<form action="register" method="post">

 Name: <input type="text" name="username" />

 Email: <input type="text" name="email" />

 Gender:

<input type="radio" name="gender" value="Male"> Male

<input type="radio" name="gender" value="Female"> Female

 Hobbies:

<input type="checkbox" name="hobby" value="Reading"> Reading

<input type="checkbox" name="hobby" value="Music"> Music

Centre for Distance Education 13.6 Acharya Nagarjuna University

<input type="checkbox" name="hobby" value="Sports"> Sports

<input type="submit" value="Register" />

</form>

</body>

</html>

 (b) RegisterServlet.java

import java.io.*;

importjavax.servlet.*;

importjavax.servlet.http.*;

public class RegisterServlet extends HttpServlet {

protected void doPost(HttpServletRequest request, HttpServletResponse response)

throwsServletException, IOException {

 // Set response type

response.setContentType("text/html");

PrintWriter out = response.getWriter();

 // Reading parameters from the form

 String name = request.getParameter("username");

 String email = request.getParameter("email");

 String gender = request.getParameter("gender");

String[] hobbies = request.getParameterValues("hobby");

 // HTML Output

out.println("<html><body>");

out.println("<h2>User Registration Details</h2>");

out.println("<p>Name: " + name + "</p>");

out.println("<p>Email: " + email + "</p>");

out.println("<p>Gender: " + gender + "</p>");

if (hobbies != null) {

out.println("<p>Hobbies:</p>");

for (String h : hobbies) {

out.println("" + h + "");

 }

out.println("");

 } else {

out.println("<p>Hobbies: None selected</p>");

 }

out.println("</body></html>");

 }

}

 (c) web.xml (Deployment Descriptor)

<web-app xmlns="http://java.sun.com/xml/ns/javaee" version="3.0">

<servlet>

Web Technologies 13.7 Understanding Servlets Package

7

<servlet-name>register</servlet-name>

<servlet-class>RegisterServlet</servlet-class>

</servlet>

<servlet-mapping>

<servlet-name>register</servlet-name>

<url-pattern>/register</url-pattern>

</servlet-mapping>

</web-app>

Input (From Browser Form)

Name: Alice Johnson

Email: alice@example.com

Gender: Female

Hobbies: Reading, Music

 Output (Browser)

<html>

<body>

<h2>User Registration Details</h2>

<p>Name: Alice Johnson</p>

<p>Email: alice@example.com</p>

<p>Gender: Female</p>

<p>Hobbies:</p>

Reading

Music

</body>

</html>

 4. Example 2 — Reading Multiple Parameters Using getParameterNames()

 (a) ParameterListServlet.java

import java.io.*;

importjava.util.*;

importjavax.servlet.*;

importjavax.servlet.http.*;

public class ParameterListServlet extends HttpServlet {

protected void doGet(HttpServletRequest request, HttpServletResponse response)

throwsServletException, IOException {

response.setContentType("text/html");

PrintWriter out = response.getWriter();

 Enumeration<String>paramNames = request.getParameterNames();

out.println("<html><body>");

out.println("<h3>All Parameters Received:</h3>");

Centre for Distance Education 13.8 Acharya Nagarjuna University

out.println("");

while (paramNames.hasMoreElements()) {

 String paramName = paramNames.nextElement();

String[] values = request.getParameterValues(paramName);

out.print("" + paramName + ": ");

for (inti = 0; i<values.length; i++) {

out.print(values[i]);

if (i<values.length - 1)

out.print(", ");

 }

out.println("");

 }

out.println("</body></html>");

 }

}

 Input URL

http://localhost:8080/MyApp/params?user=Bob&city=Delhi&hobby=Music&hobby=Cricket

Output (Browser)

<html><body>

<h3>All Parameters Received:</h3>

user: Bob

city: Delhi

hobby: Music, Cricket

</body></html>

5. Table

Method Usage Example

getParameter("name") Get single value String n = req.getParameter("name");

getParameterValues("hobby") Get multiple values
String[] h =

req.getParameterValues("hobby");

getParameterNames()
Get all parameter

names

Enumeration e =

req.getParameterNames();

getParameterMap()
Get all parameters

as map
Map m = req.getParameterMap();

 6. Key Points

• Request parameters are always strings (even if numbers are entered).

• They can be sent through:

o HTML forms (GET or POST)

o Query strings (?param=value)

o AJAX requests

• You can convert numeric strings to integers with Integer.parseInt() if needed.

• For file uploads, use getPart() from javax.servlet.http.Part (Servlet 3.0+).

Web Technologies 13.9 Understanding Servlets Package

9

13.3 READING INITIALIZATION PARAMETERS

1. What Are Initialization Parameters?

Initialization parameters are configuration values defined in the web.xml file (or via

annotations in newer Java EE/Jakarta EE versions).

They are not sent by the client — instead, they are set by the developer to configure servlet

behavior, like:

• Database connection info

• File paths

• Application settings

There Are Two Types:

Type Description Accessed By

Servlet Initialization Parameters Specific to a single servlet. ServletConfig object

Context Initialization Parameters Shared across the entire web app. ServletContext object

2. Methods to Read Initialization Parameters

 From ServletConfig (for one servlet)

Method Description

getInitParameter(String name) Returns the value of a specific parameter.

getInitParameterNames() Returns all parameter names.

From ServletContext (shared for all servlets)

Method Description

getInitParameter(String name) Returns the value of a context-wide parameter.

getInitParameterNames() Returns all context-wide parameter names.

 3. Example 1 — Servlet-Specific Initialization Parameters

 (a) DatabaseServlet.java

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class DatabaseServlet extends HttpServlet {

 private String dbUrl;

 private String dbUser;

 private String dbPassword;

 public void init() throws ServletException {

 // Get initialization parameters from web.xml

 ServletConfig config = getServletConfig();

 dbUrl = config.getInitParameter("dbURL");

 dbUser = config.getInitParameter("username");

 dbPassword = config.getInitParameter("password");

Centre for Distance Education 13.10 Acharya Nagarjuna University

 }

 public void doGet(HttpServletRequest request, HttpServletResponse response)

 throws ServletException, IOException {

 response.setContentType("text/html");

 PrintWriter out = response.getWriter();

 out.println("<html><body>");

 out.println("<h2>Database Configuration Details</h2>");

 out.println("<p>Database URL: " + dbUrl + "</p>");

 out.println("<p>Username: " + dbUser + "</p>");

 out.println("<p>Password: " + dbPassword + "</p>");

 out.println("</body></html>");

 }

}

(b) web.xml

<web-app xmlns="http://java.sun.com/xml/ns/javaee" version="3.0">

<servlet>

<servlet-name>dbServlet</servlet-name>

<servlet-class>DatabaseServlet</servlet-class>

<!-- Servlet-specific initialization parameters -->

<init-param>

<param-name>dbURL</param-name>

<param-value>jdbc:mysql://localhost:3306/mydb</param-value>

</init-param>

<init-param>

<param-name>username</param-name>

<param-value>admin</param-value>

</init-param>

<init-param>

<param-name>password</param-name>

<param-value>secret123</param-value>

</init-param>

</servlet>

<servlet-mapping>

<servlet-name>dbServlet</servlet-name>

<url-pattern>/dbinfo</url-pattern>

</servlet-mapping>

</web-app>

 Input (Browser Request)

http://localhost:8080/MyApp/dbinfo

Output (Browser)

<html><body>

<h2>Database Configuration Details</h2>

<p>Database URL: jdbc:mysql://localhost:3306/mydb</p>

Web Technologies 13.11 Understanding Servlets Package

11

<p>Username: admin</p>

<p>Password: secret123</p>

</body></html>

4. Example 2 — Application-Wide Initialization Parameters (ServletContext)

These are shared across allservlets in your application.

 (a) ConfigServlet.java

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class ConfigServlet extends HttpServlet {

 public void doGet(HttpServletRequest request, HttpServletResponse response)

 throws ServletException, IOException {

 response.setContentType("text/html");

 PrintWriter out = response.getWriter();

 ServletContext context = getServletContext();

 String company = context.getInitParameter("company");

 String supportEmail = context.getInitParameter("supportEmail");

 out.println("<html><body>");

 out.println("<h2>Application Configuration</h2>");

 out.println("<p>Company Name: " + company + "</p>");

 out.println("<p>Support Email: " + supportEmail + "</p>");

 out.println("</body></html>");

 }

}

 (b) web.xml

<web-app xmlns="http://java.sun.com/xml/ns/javaee" version="3.0">

<!-- Context-wide (application) initialization parameters -->

<context-param>

<param-name>company</param-name>

<param-value>Tech Innovators Pvt. Ltd.</param-value>

</context-param>

<context-param>

<param-name>supportEmail</param-name>

<param-value>support@techinnovators.com</param-value>

</context-param>

<servlet>

<servlet-name>configServlet</servlet-name>

<servlet-class>ConfigServlet</servlet-class>

</servlet>

<servlet-mapping>

<servlet-name>configServlet</servlet-name>

Centre for Distance Education 13.12 Acharya Nagarjuna University

<url-pattern>/config</url-pattern>

</servlet-mapping>

</web-app>

Input (Browser Request)

http://localhost:8080/MyApp/config

 Output (Browser)

<html><body>

<h2>Application Configuration</h2>

<p>Company Name: Tech Innovators Pvt. Ltd.</p>

<p>Support Email: support@techinnovators.com</p>

</body></html>

 5. Comparison Table

Type Defined In
Accessed

Using
Scope Example Usage

Servlet Init

Parameter

Inside <servlet>

tag in web.xml
ServletConfig

Specific to

one servlet
DB username/password

Context Init

Parameter

At top level

<context-param>

in web.xml

ServletContext

Shared

among all

servlets

Company name, global

email, version info

6. Key Points

• init() method is called only once, when the servlet is first loaded.

• Initialization parameters are read-only.

• They are useful for configuration values that might change per deployment (like DB

URLs).

• Using ServletContext, all servlets in the web app can share the same parameters.

 7. Example Output Summary

Servlet Input (URL) Output (Browser)

DatabaseServlet /dbinfo Shows servlet-specific DB parameters

ConfigServlet /config Shows app-wide company & support info

13.4 THE JAVAX.SERVLET HTTP PACKAGE

1. What Is javax.servlet.http?

The javax.servlet.http package extends the javax.servlet package to support HTTP-specific

functionality.

It provides classes and interfaces for handling:

• HTTP requests and responses

• Cookies

• Sessions

• State management

• HTTP methods like GET, POST, PUT, DELETE, etc.

Web Technologies 13.13 Understanding Servlets Package

13

 2. Major Classes & Interfaces in javax.servlet.http

Class / Interface Description

HttpServlet
Base class for creating HTTP servlets. You extend this

class to create your own servlet.

HttpServletRequest
Represents the client’s HTTP request (headers,

parameters, cookies, etc.).

HttpServletResponse Represents the HTTP response sent to the client.

HttpSession
Used for session tracking (stores data between multiple

requests).

Cookie
Represents HTTP cookies for client-side state

management.

HttpSessionBindingListener Notified when objects are bound/unbound to a session.

HttpServletRequestWrapper /

HttpServletResponseWrapper
Used to modify requests or responses.

3. The HttpServlet Class

 Important Methods

Method Description

doGet(HttpServletRequest req, HttpServletResponse res) Handles HTTP GET requests.

doPost(HttpServletRequest req, HttpServletResponse res) Handles HTTP POST requests.

doPut(), doDelete() Handle other HTTP methods.

getServletInfo() Returns info about the servlet.

 4. Example 1 — Basic HTTP Servlet Using doGet()

 (a) HelloHttpServlet.java

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class HelloHttpServlet extends HttpServlet {

 protected void doGet(HttpServletRequest request, HttpServletResponse response)

 throws ServletException, IOException {

 // Set the content type

 response.setContentType("text/html");

 // Get output writer

 PrintWriter out = response.getWriter();

 // Write response

 out.println("<html><body>");

 out.println("<h2>Welcome to javax.servlet.http Example!</h2>");

 out.println("<p>This response is generated by doGet() method.</p>");

 out.println("</body></html>");

 }

}

Centre for Distance Education 13.14 Acharya Nagarjuna University

 (b) web.xml

<web-app xmlns="http://java.sun.com/xml/ns/javaee" version="3.0">

<servlet>

<servlet-name>helloHttp</servlet-name>

<servlet-class>HelloHttpServlet</servlet-class>

</servlet>

<servlet-mapping>

<servlet-name>helloHttp</servlet-name>

<url-pattern>/helloHttp</url-pattern>

</servlet-mapping>

</web-app>

 Input (Browser URL)

http://localhost:8080/MyApp/helloHttp

Output (Browser)

<html><body>

<h2>Welcome to javax.servlet.http Example!</h2>

<p>This response is generated by doGet() method.</p>

</body></html>

 5. Example 2 — Reading Request Data Using HttpServletRequest

 (a) UserInfoServlet.java

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class UserInfoServlet extends HttpServlet {

 protected void doPost(HttpServletRequest request, HttpServletResponse response)

 throws ServletException, IOException {

 // Set content type

 response.setContentType("text/html");

 PrintWriter out = response.getWriter();

 // Read parameters from form

 String name = request.getParameter("username");

 String city = request.getParameter("city");

 out.println("<html><body>");

 out.println("<h2>User Information</h2>");

 out.println("<p>Name: " + name + "</p>");

 out.println("<p>City: " + city + "</p>");

 out.println("</body></html>");

 }

}

 (b) form.html

<!DOCTYPE html>

<html>

<head><title>User Info</title></head>

Web Technologies 13.15 Understanding Servlets Package

15

<body>

<form action="userinfo" method="post">

 Name: <input type="text" name="username">

 City: <input type="text" name="city">

<input type="submit" value="Submit">

</form>

</body>

</html>

 (c) web.xml

<web-app xmlns="http://java.sun.com/xml/ns/javaee" version="3.0">

<servlet>

<servlet-name>userinfo</servlet-name>

<servlet-class>UserInfoServlet</servlet-class>

</servlet>

<servlet-mapping>

<servlet-name>userinfo</servlet-name>

<url-pattern>/userinfo</url-pattern>

</servlet-mapping>

</web-app>

Input

User submits the form:

Name: Alice

City: New York

Output (Browser)

<html><body>

<h2>User Information</h2>

<p>Name: Alice</p>

<p>City: New York</p>

</body></html>

 6. Example 3 — Using Cookies (javax.servlet.http.Cookie)

 (a) CookieServlet.java

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class CookieServlet extends HttpServlet {

 protected void doGet(HttpServletRequest request, HttpServletResponse response)

 throws ServletException, IOException {

 response.setContentType("text/html");

 PrintWriter out = response.getWriter();

 // Create a new cookie

 Cookie userCookie = new Cookie("username", "JohnDoe");

 userCookie.setMaxAge(60 * 60); // 1 hour

 response.addCookie(userCookie);

 out.println("<html><body>");

Centre for Distance Education 13.16 Acharya Nagarjuna University

 out.println("<h3>Cookie has been set!</h3>");

 out.println("</body></html>");

 }

}

 Input

http://localhost:8080/MyApp/cookie

Output (Browser)

<html><body>

<h3>Cookie has been set!</h3>

</body></html>

(Browser stores cookie username=JohnDoe)

 7. Example 4 — Managing Sessions (HttpSession)

 (a) SessionServlet.java

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class SessionServlet extends HttpServlet {

 protected void doGet(HttpServletRequest request, HttpServletResponse response)

 throws ServletException, IOException {

 response.setContentType("text/html");

 PrintWriter out = response.getWriter();

 HttpSession session = request.getSession();

 Integer count = (Integer) session.getAttribute("count");

 if (count == null) {

 count = 1;

 } else {

 count++;

 }

 session.setAttribute("count", count);

 out.println("<html><body>");

 out.println("<h2>Session Example</h2>");

 out.println("<p>Session ID: " + session.getId() + "</p>");

 out.println("<p>You have visited this page " + count + " times.</p>");

 out.println("</body></html>");

 }

}

Input (Repeated Browser Visits)

http://localhost:8080/MyApp/session

Web Technologies 13.17 Understanding Servlets Package

17

Output (Browser)

First visit:

<h2>Session Example</h2>

<p>Session ID: A12F5C9D2345E...</p>

<p>You have visited this page 1 times.</p>

Second visit:

<h2>Session Example</h2>

<p>Session ID: A12F5C9D2345E...</p>

<p>You have visited this page 2 times.</p>

8. Summary of javax.servlet.http Components

Class / Interface Purpose Example Usage

HttpServlet Base class for HTTP servlets Extend to create custom servlets

HttpServletRequest Access client request data req.getParameter("name")

HttpServletResponse Send data to client res.getWriter().println()

HttpSession Store user session info session.setAttribute()

Cookie Manage client-side state response.addCookie()

9. Key Points

• All HTTP servlets must extend HttpServlet.

• doGet() and doPost() handle client requests.

• HttpServletRequest gives you:

o Parameters

o Headers

o Cookies

o Session

• HttpServletResponse allows sending HTML, JSON, or file data back.

• Cookies and sessions are used for state management across multiple requests.

10. Output Summary

Servlet
Input (URL or

Form)
Output (Browser)

HelloHttpServlet /helloHttp Static HTML greeting

UserInfoServlet POST form Displays submitted name & city

CookieServlet /cookie Sets a cookie

SessionServlet /session Shows visit count per session

13.5 SUMMARY

The Servlet API is a core part of Java EE (Jakarta EE) used to create dynamic web

applications that process client requests and generate responses. It provides two main

packages — b for generic servlet functionality and javax.servlet.http for HTTP-specific

features. The Servlet interface defines the basic structure and lifecycle of a servlet, including

methods like init(), service(), and destroy(). Servlets operate within a servlet container such

as Apache Tomcat, which manages their lifecycle and communication with clients. Using

Centre for Distance Education 13.18 Acharya Nagarjuna University

ServletRequest and ServletResponse, developers can read client data and send HTML or

other types of output to the browser.

The javax.servletpackage includes key components like ServletConfig for servlet-specific

configuration and ServletContext for application-wide settings. It also supports forwarding

requests using RequestDispatcher and filtering through the Filter interface. Servlets can read

request parameters from forms using methods like getParameter(), getParameterValues(), and

getParameterNames(), allowing them to process user input efficiently. Additionally,

initialization parameters defined in web.xml provide configurable values for servlets or the

entire application through ServletConfig and ServletContext.

The javax.servlet.httppackage extends this functionality to handle HTTP requests and

responses. It introduces classes such as HttpServlet, HttpServletRequest, and

HttpServletResponse, which manage web-based interactions. It also provides HttpSession for

maintaining user sessions and Cookie for client-side state tracking. Methods like doGet() and

doPost() are used to handle different HTTP request types. Together, these APIs enable Java

developers to build secure, scalable, and interactive web applications capable of handling

sessions, cookies, and dynamic content effectively.

13.6 KEY TERMS

Servlet, ServletAPI, ServletRequest, ServletResponse, ServletConfig, ServletContext,

HttpServlet, HttpSession, Cookie, Initialization Parameters.

13.7 SELF-ASSESSMENT QUESTIONS

1. What is a Servlet?

2. Which interface do all servlets implement?

3. What is the purpose of the ServletRequest object?

4. What does the ServletResponse object do?

5. How is ServletConfig different from ServletContext?

6. What class do most HTTP servlets extend?

7. How can you store data for a user session?

8. What is a Cookie used for?

9. How do you pass initialization parameters to a servlet?

10. Which method is called first when a servlet is loaded?

13.8 FURTHER READINGS

1. Java: The Complete Reference, Twelfth Edition by Herbert Schildt. McGraw-Hill

Education.

2. Beginning Java Programming: The Object-Oriented Approach by Bart Baesens,

Aimee Backiel, and Seppe vanden Broucke. Wiley.

3. Java Programming with Oracle JDBC by Donald Bales. O'Reilly Media.

4. Java EE 8 Application Development by David R. Heffelfinger. Packt Publishing.

5. Professional Java for Web Applications by Nicholas S. Williams. Wrox/Wiley

Publishing.

6. Java 2: Developer's Guide to Web Applications with JDBC by Gregory Brill. Sybex.

 Dr. U. Surya Kameswari

LESSON-14

COOKIES AND SECURITY IN SERVLETS

AIM AND OBJECTIVES:

➢ Reading request and initialization parameters

➢ Generating HTTP responses

➢ Using cookies and session tracking

➢ Introduction to security concerns in web applications

STRUCTURE:

14.1 HANDLING HTTP REQUEST & RESPONSES

14.2 USING COOKIES-SESSION TRACKING

14.3 SECURITY ISSUES

14.4 SUMMARY

14.5 KEY TERMS

14.6 SELF-ASSESSMENT QUESTIONS

14.7 FURTHER READINGS

14.1 Handling Http Request & Responses

1. Introduction

In web applications, HTTP (HyperText Transfer Protocol) is the foundation of

communication between a client (like a web browser) and a server.

When a client sends an HTTP request to a server, the server processes it and sends back an

HTTP response.

Java provides several APIs and frameworks to handle HTTP requests and responses, most

commonly through Servlets and JSP (JavaServer Pages).

2. HTTP Request

An HTTP request is sent by a client to request data or perform an action on the server.

It consists of:

• Request Line (method, URL, version)

• Headers (metadata like Content-Type, User-Agent, etc.)

• Body (optional; contains data for POST/PUT methods)

•

Common HTTP Methods:

Method Description

GET Requests data from the server

POST Sends data to the server for processing

Centre for Distance Education 14.2 Acharya Nagarjuna University

Method Description

PUT Updates an existing resource

DELETE Deletes a resource

HEAD Retrieves headers only

OPTIONS Describes communication options

3. HTTP Response

The HTTP response is sent by the server to the client after processing the request.

It includes:

• Status Line (protocol, status code, message)

• Headers (metadata such as content type, length, etc.)

• Body (data sent to the client)

Common HTTP Status Codes:

Code Message Description

200 OK Request successful

404 Not Found Resource not found

500 Internal Server Error Server encountered an error

302 Found Redirection

403 Forbidden Access denied

4. Handling HTTP Requests and Responses using Servlets

Servlets are Java programs that run on a server and handle requests/responses dynamically.

Example 1: Handling GET Request

File: GetExampleServlet.java

import java.io.*;

importjavax.servlet.*;

importjavax.servlet.http.*;

public class GetExampleServlet extends HttpServlet {

public void doGet(HttpServletRequest request, HttpServletResponse response)

throwsServletException, IOException {

response.setContentType("text/html");

PrintWriter out = response.getWriter();

 String name = request.getParameter("username");

out.println("<html><body>");

out.println("<h2>Welcome, " + name + "!</h2>");

out.println("<p>This is a GET request example.</p>");

out.println("</body></html>");

 }

}

Web Technologies 14.3 Cookies and Security in Servlets

3

HTML Form:

<!DOCTYPE html>

<html>

<body>

<form action="GetExampleServlet" method="get">

 Enter your name: <input type="text" name="username">

<input type="submit" value="Submit">

</form>

</body>

</html>

Input:

username = ABC

Output (Browser):

Welcome, ABC!

This is a GET request example.

Example 2: Handling POST Request

File: PostExampleServlet.java

import java.io.*;

importjavax.servlet.*;

importjavax.servlet.http.*;

public class PostExampleServlet extends HttpServlet {

public void doPost(HttpServletRequest request, HttpServletResponse response)

throwsServletException, IOException {

response.setContentType("text/html");

PrintWriter out = response.getWriter();

 String user = request.getParameter("user");

 String email = request.getParameter("email");

out.println("<html><body>");

out.println("<h3>User Registration Details</h3>");

out.println("<p>Username: " + user + "</p>");

out.println("<p>Email: " + email + "</p>");

out.println("</body></html>");

 }

}

HTML Form:

<!DOCTYPE html>

<html>

<body>

<form action="PostExampleServlet" method="post">

 Username: <input type="text" name="user">

 Email: <input type="text" name="email">

<input type="submit" value="Register">

</form>

</body>

</html>

Centre for Distance Education 14.4 Acharya Nagarjuna University

Input:

user = Rani

email = rani@example.com

Output (Browser):

User Registration Details

Username: Rani

Email: rani@example.com

5. Accessing Request Data

You can access information from the request using the following methods:

Method Description

getParameter(String name) Returns the value of a form parameter

getHeader(String name) Returns the value of a request header

getMethod() Returns the HTTP method (GET/POST)

getRequestURI() Returns the requested URI

getRemoteAddr() Returns the IP address of the client

6. Setting Response Data

You can control what the server sends back to the client using:

Method Description

setContentType(String type) Sets response MIME type

setStatus(intsc) Sets the HTTP status code

addHeader(String name, String value) Adds a header to the response

getWriter()
Returns a writer to output response

text

7. Example: Using Both GET and POST

File: RequestResponseServlet.java

import java.io.*;

importjavax.servlet.*;

importjavax.servlet.http.*;

public class RequestResponseServlet extends HttpServlet {

protected void doGet(HttpServletRequest request, HttpServletResponse response)

throwsServletException, IOException {

processRequest(request, response, "GET");

 }

protected void doPost(HttpServletRequest request, HttpServletResponse response)

throwsServletException, IOException {

processRequest(request, response, "POST");

 }

private void processRequest(HttpServletRequest request, HttpServletResponse response,

String method)

throwsIOException {

Web Technologies 14.5 Cookies and Security in Servlets

5

response.setContentType("text/html");

PrintWriter out = response.getWriter();

 String name = request.getParameter("name");

out.println("<html><body>");

out.println("<h3>Request Method: " + method + "</h3>");

out.println("<p>Hello, " + name + "!</p>");

out.println("</body></html>");

 }

}

HTML Form:

<!DOCTYPE html>

<html>

<body>

<form action="RequestResponseServlet" method="post">

 Name: <input type="text" name="name">

<input type="submit" value="Send Request">

</form>

</body>

</html>

Input:

name = ABC123

Output:

Request Method: POST

Hello, ABC123!

8. Table

Concept Description

HTTP Request Data sent from client to server

HTTP Response Data sent from server to client

GET method Used to retrieve data

POST method Used to send data securely

Servlet Java class to handle request/response dynamically

Response writer Used to generate HTML or data back to client

14.2 USING COOKIES-SESSION TRACKING

1. Introduction

In web technologies, HTTP is a stateless protocol, meaning the server does not remember any

informationabout users between requests.To maintain information (like login details, user

preferences, or shopping cart items) across multiple requests, SessionTracking is used.

2. What is Session Tracking?

Session Tracking is the process of maintaining user state and data across multiple requests

between a client (browser) and a server.

Centre for Distance Education 14.6 Acharya Nagarjuna University

When a user visits a website, a session begins. During this session, the server can store user-

specific information and recall it in subsequent interactions.

3. Need for Session Tracking

HTTP is stateless, so:

• Each request from the browser is treated as independent.

• The server cannot identify whether two requests came from the same user.

To overcome this, web applications use session tracking mechanisms to identify

returningusers and retain information during their visit.

4. Session Tracking Techniques

Technique Description

Cookies Information stored on the client side (browser)

Hidden Form Fields Hidden input fields within HTML forms

URL Rewriting Adding session data in the URL

HttpSession Server-side session object managed by servlet container

Part A: Using Cookies

5. What is a Cookie?

A Cookie is a small piece of text data stored by the browser on the client’scomputer.

It helps the server recognize users during subsequent requests.

Key Properties of Cookies:

• Stored as key–value pairs.

• Sent automatically with each request to the same domain.

• Can have an expiration time (persistent or session cookies).

6. Types of Cookies

Type Description

Session Cookie Temporary; deleted when browser closes

Persistent Cookie Stored on disk until expiry date or manually deleted

7. Example 1 – Creating and Reading Cookies

HTML Form: cookie_form.html

<!DOCTYPE html>

<html>

<head>

<title>Cookie Example</title>

</head>

<body>

<h3>Enter Your Name</h3>

<form action="SetCookieServlet" method="post">

 Name: <input type="text" name="username">

<input type="submit" value="Set Cookie">

Web Technologies 14.7 Cookies and Security in Servlets

7

</form>

</body>

</html>

Servlet 1: SetCookieServlet.java

import java.io.*;

importjavax.servlet.*;

importjavax.servlet.http.*;

public class SetCookieServlet extends HttpServlet {

public void doPost(HttpServletRequest request, HttpServletResponse response)

throwsServletException, IOException {

response.setContentType("text/html");

PrintWriter out = response.getWriter();

 String name = request.getParameter("username");

 Cookie cookie = new Cookie("user", name);

response.addCookie(cookie);

out.println("<html><body>");

out.println("<h3>Cookie has been set successfully!</h3>");

out.println("Click here to read the cookie");

out.println("</body></html>");

 }

}

Servlet 2: GetCookieServlet.java

import java.io.*;

importjavax.servlet.*;

importjavax.servlet.http.*;

public class GetCookieServlet extends HttpServlet {

public void doGet(HttpServletRequest request, HttpServletResponse response)

throwsServletException, IOException {

response.setContentType("text/html");

PrintWriter out = response.getWriter();

Cookie[] cookies = request.getCookies();

 String userName = "Guest";

if (cookies != null) {

for (Cookie c : cookies) {

if (c.getName().equals("user")) {

userName = c.getValue();

 }

 }

 }

out.println("<html><body>");

out.println("<h2>Welcome Back, " + userName + "!</h2>");

out.println("</body></html>");

 }

Centre for Distance Education 14.8 Acharya Nagarjuna University

}

Sample Input:

Name = ABC

Output:

1. After submitting form:

Cookie has been set successfully!

Click here to read the cookie

2. After clicking the link:

Welcome Back, ABC!

8. Cookie Methods

Method Description

Cookie(String name, String value) Creates a cookie

getName() Returns cookie name

getValue() Returns cookie value

setMaxAge(int expiry) Sets cookie lifetime (in seconds)

response.addCookie(Cookie c) Adds cookie to response

request.getCookies() Returns cookies sent by client

Part B: Using HttpSession

9. What is an HttpSession?

HttpSession is a server-side object that stores user-specific information.

It automatically assigns a unique Session ID to each client.

Unlike cookies, session data is stored on the server, making it more secure.

10. Session Lifecycle

1. Session Created — when a user first accesses the servlet.

2. Data Stored — attributes are added using setAttribute().

3. Data Accessed — using getAttribute().

4. Session Expired — automatically after inactivity (default 30 mins).

11. Example 2 – Using HttpSession

HTML Form: session_form.html

<!DOCTYPE html>

<html>

<head>

<title>Session Tracking Example</title>

</head>

<body>

<h3>User Login</h3>

<form action="SessionServlet1" method="post">

 Name: <input type="text" name="username">

<input type="submit" value="Login">

</form>

</body>

</html>

Web Technologies 14.9 Cookies and Security in Servlets

9

Servlet 1: SessionServlet1.java

import java.io.*;

importjavax.servlet.*;

importjavax.servlet.http.*;

public class SessionServlet1 extends HttpServlet {

public void doPost(HttpServletRequest request, HttpServletResponse response)

throwsServletException, IOException {

response.setContentType("text/html");

PrintWriter out = response.getWriter();

 String name = request.getParameter("username");

HttpSession session = request.getSession();

session.setAttribute("user", name);

out.println("<html><body>");

out.println("<h3>Welcome, " + name + "!</h3>");

out.println("Go to next page");

out.println("</body></html>");

 }

}

Servlet 2: SessionServlet2.java

import java.io.*;

importjavax.servlet.*;

importjavax.servlet.http.*;

public class SessionServlet2 extends HttpServlet {

public void doGet(HttpServletRequest request, HttpServletResponse response)

throwsServletException, IOException {

response.setContentType("text/html");

PrintWriter out = response.getWriter();

HttpSession session = request.getSession(false); // don’t create a new one

 String userName = (String) session.getAttribute("user");

out.println("<html><body>");

out.println("<h2>Hello again, " + userName + "!</h2>");

out.println("<p>Your session is still active.</p>");

out.println("</body></html>");

 }

}

Sample Input:

username = Rani

Output:

Page 1:

Welcome, Rani!

Go to next page

Page 2 (after clicking link):

Hello again, Rani!

Your session is still active.

Centre for Distance Education 14.10 Acharya Nagarjuna University

12. HttpSession Methods

Method Description

request.getSession() Creates a new session if not exists

getId() Returns session ID

getCreationTime() Returns time of creation

setAttribute(String name, Object value) Stores value in session

getAttribute(String name) Retrieves stored value

invalidate() Terminates session

13. Difference Between Cookies and Sessions

Feature Cookies HttpSession

Storage Client-side Server-side

Security Less secure More secure

Capacity Limited (~4KB) Larger (server memory)

Lifetime Depends on expiry Until session timeout

Usage Lightweight info Sensitive user data

14. Example 3 – Using Cookies + Session Together

In real-world applications, cookies often store the Session ID, while the server uses that ID to

retrieve session data.

For example:

• Browser stores a cookie named JSESSIONID.

• Server uses this ID to map user data stored in the session.

15. Table

Concept Description

Cookie Small client-side storage mechanism

Session Server-side user tracking mechanism

Session ID Unique identifier for each user

Session Tracking Maintaining user data across requests

Servlet API Provides HttpSession and Cookie classes

16. Best Practices

• Use HttpSession for sensitive data.

• Set appropriate cookie expiration and security flags.

• Invalidate sessions on logout.

• Avoid storing large data in sessions.

• Encrypt cookie values if used for authentication.

Web Technologies 14.11 Cookies and Security in Servlets

11

17. Output Snapshot

Page 1:

Welcome, ABC!

Cookie has been set successfully!

Page 2:

Welcome Back, ABC!

Your session is still active.

18. Note:

Session tracking through Cookies and HttpSession is vital in building dynamic web

applications that remember users and personalize content.

They form the core of state management in web technologies, enabling features like:

• User login systems

• Shopping carts

• Personalized dashboards

14.3 SECURITY ISSUES

1. Introduction

2.

In Web Technologies, security refers to the protection of data and resources from

unauthorized access, modification, or destruction.Since web applications are accessed over

the internet, they are vulnerable to a wide range of security threats.

A secure web application ensures:

• Confidentiality – data is accessible only to authorized users

• Integrity – data cannot be altered by unauthorized users

• Availability – services are always available to legitimate users

• Authentication – verifies user identity

• Authorization – grants appropriate access based on privileges

2. Why Web Security Is Important

Web applications often handle sensitive data such as:

• Login credentials

• Banking and financial data

• Personal information (email, address, contact numbers)

If not properly protected, attackers can exploit vulnerabilities to:

• Steal data

• Alter website content

• Impersonate users

• Gain administrative control of systems

3. Common Security Threats in Web Applications

Threat Description Example

Cross-Site Scripting

(XSS)

Inserting malicious scripts into

webpages

Attacker injects JavaScript into

form fields

SQL Injection
Injecting SQL commands to

manipulate databases
OR '1'='1' in login fields

Cross-Site Request Forcing a logged-in user to Attacker uses hidden forms to

Centre for Distance Education 14.12 Acharya Nagarjuna University

Threat Description Example

Forgery (CSRF) perform unwanted actions make a user send a request

Session Hijacking
Stealing valid session ID to

impersonate users

Capturing cookies to access user

account

Broken Authentication
Weak login or password

handling
No password encryption or reuse

Data Exposure
Sending sensitive data without

encryption

Transmitting credentials over

HTTP instead of HTTPS

Denial of Service (DoS) Overloading a server to crash it
Flooding the server with fake

requests

4. Major Security Issues Explained

4.1. SQL Injection

Description:

Occurs when unvalidated input is directly used in SQL queries, allowing attackers to

manipulate database operations.

Vulnerable Example:

String user = request.getParameter("username");

String pass = request.getParameter("password");

Statement stmt = conn.createStatement();

String query = "SELECT * FROM users WHERE username='" + user + "' AND password='"

+ pass + "'";

ResultSetrs = stmt.executeQuery(query);

If input:

username = admin

password = ' OR '1'='1

Then query becomes:

SELECT * FROM users WHERE username='admin' AND password='' OR '1'='1'

This condition always returns true, allowing unauthorized access.

Secure Example (Using PreparedStatement):

String user = request.getParameter("username");

String pass = request.getParameter("password");

PreparedStatementps = conn.prepareStatement(

 "SELECT * FROM users WHERE username=? AND password=?");

ps.setString(1, user);

ps.setString(2, pass);

ResultSetrs = ps.executeQuery();

Prevents SQL Injection by treating user input as data, not code.

Sample Input:

username = admin

password = ' OR '1'='1

Web Technologies 14.13 Cookies and Security in Servlets

13

Output:

Login failed. Invalid credentials.

4.2. Cross-Site Scripting (XSS)

Description:

XSS allows attackers to inject malicious JavaScript into web pages viewed by other users.

Vulnerable Example:

String name = request.getParameter("username");

out.println("<h3>Welcome " + name + "</h3>");

Input:

<script>alert('Hacked!');</script>

Output on browser:

• A popup appears: Hacked!

Secure Example:

Use HTML encoding to sanitize user input.

String name = request.getParameter("username");

name = name.replaceAll("<", "<").replaceAll(">", ">");

out.println("<h3>Welcome " + name + "</h3>");

Input:

<script>alert('Hacked!');</script>

Output:

Welcome <script>alert('Hacked!');</script>

(Script is displayed as text, not executed)

4.3. Session Hijacking

Description:

Session Hijacking occurs when an attacker steals a valid session ID (stored in cookies) to

impersonate a legitimate user.

Prevention Techniques:

• Always use HTTPS

• Regenerate Session ID on login

• Set cookies as HttpOnly and Secure

• Invalidate sessions on logout

Example:

HttpSession session = request.getSession();

session.setAttribute("user", username);

// Set secure cookie

Cookie c = new Cookie("JSESSIONID", session.getId());

c.setHttpOnly(true);

c.setSecure(true);

response.addCookie(c);

Centre for Distance Education 14.14 Acharya Nagarjuna University

4.4. Cross-Site Request Forgery (CSRF)

Description:

An attacker tricks a logged-in user into performing actions they didn’t intend (e.g., submitting

a form).

Prevention:

• Use a CSRF token with each form submission.

Example:

In form:

<form action="TransferServlet" method="post">

<input type="hidden" name="csrfToken" value="${token}">

 Amount: <input type="text" name="amount">

<input type="submit" value="Transfer">

</form>

In servlet:

String token = (String) session.getAttribute("csrfToken");

String formToken = request.getParameter("csrfToken");

if (token != null &&token.equals(formToken)) {

out.println("Transaction Successful");

} else {

out.println("Security Error: Invalid CSRF Token");

}

4.5. Data Encryption

Description:

Sensitive data (like passwords) should never be stored or transmitted as plain text.

Example:

importjava.security.MessageDigest;

String password = request.getParameter("password");

MessageDigest md = MessageDigest.getInstance("SHA-256");

byte[] hash = md.digest(password.getBytes());

String encrypted = new String(hash);

Output (hashed password):

E99A18C428CB38D5F260853678922E03ABD8334A

5. Example Program – Secure Login Using PreparedStatement and Session

HTML Form (login.html)

<!DOCTYPE html>

<html>

<head><title>Secure Login</title></head>

<body>

<h3>User Login</h3>

<form action="LoginServlet" method="post">

 Username: <input type="text" name="username">

 Password: <input type="password" name="password">

<input type="submit" value="Login">

</form>

Web Technologies 14.15 Cookies and Security in Servlets

15

</body>

</html>

Servlet: LoginServlet.java

import java.io.*;

import java.sql.*;

importjavax.servlet.*;

importjavax.servlet.http.*;

public class LoginServlet extends HttpServlet {

public void doPost(HttpServletRequest request, HttpServletResponse response)

throwsServletException, IOException {

response.setContentType("text/html");

PrintWriter out = response.getWriter();

 String uname = request.getParameter("username");

 String pass = request.getParameter("password");

try {

Class.forName("com.mysql.jdbc.Driver");

 Connection con = DriverManager.getConnection(

 "jdbc:mysql://localhost:3306/webdb", "root", "admin");

PreparedStatementps = con.prepareStatement(

 "SELECT * FROM users WHERE username=? AND password=?");

ps.setString(1, uname);

ps.setString(2, pass);

ResultSetrs = ps.executeQuery();

if (rs.next()) {

HttpSession session = request.getSession();

session.setAttribute("user", uname);

out.println("<h3>Welcome, " + uname + "!</h3>");

 } else {

out.println("<h3>Invalid username or password</h3>");

 }

con.close();

 } catch (Exception e) {

e.printStackTrace();

 }

 }

}

Sample Input:

username = Rani

password = rani123

Output:

Welcome, Rani!

If invalid credentials:

Invalid username or password

Centre for Distance Education 14.16 Acharya Nagarjuna University

6. Best Security Practices

• Always use PreparedStatement to prevent SQL Injection.

• Validate and sanitize all userinputs.

• Use HTTPS for secure data transmission.

• Implement strongauthentication (use hashed passwords).

• Regenerate session IDs after login and invalidateon logout.

• Use HttpOnly and Secure cookies.

• Apply CSRFtokens in forms.

• Never expose sensitive data in URLs.

• Keep all frameworks and servers up to date.

• Use exception handling to avoid leaking system details.

7. Table

Security Issue Description Prevention Technique

SQL Injection Malicious SQL statements Use PreparedStatement

XSS JavaScript injection Sanitize HTML input

CSRF Unauthorized actions Use CSRF tokens

Session Hijacking Stealing session ID Secure cookies & HTTPS

Data Exposure Plain text data Encrypt sensitive data

8. Note:

Security in web applications is not optional — it’s essential.

By understanding and implementing these measures, developers can protect users from:

• Data theft

• Unauthorized access

• Financial loss

• System compromise

Secure coding, input validation, and encryption are the pillarsof safe web development.

14.4 SUMMARY

Web applications communicate through the HTTP protocol, where clients send requests and

servers respond with appropriate data. In Java, this interaction is primarily managed using

Servlets and JSP (JavaServer Pages). Common HTTP methods include GET for retrieving

information and POST for securely sending data to the server. Each server response contains

an HTTP status code, such as 200 (OK) for successful operations or 404 (Not Found) for

missing resources. Because HTTP is a stateless protocol, it does not retain user information

between requests. To overcome this, web applications use session tracking mechanisms like

Cookies and HttpSession. Cookies store small amounts of data on the client side, while

HttpSession securely maintains user details on the server, enabling features like user

authentication, personalized dashboards, and shopping carts.

Security is a critical concern in web applications, as they are vulnerable to threats such as

SQL Injection, Cross-Site Scripting (XSS), Cross-Site Request Forgery (CSRF), and Session

Hijacking. These attacks can compromise data integrity, steal credentials, or execute

malicious scripts. To mitigate such risks, developers use PreparedStatements to prevent SQL

injection, perform input validation to filter harmful data, and implement CSRF tokens and

Web Technologies 14.17 Cookies and Security in Servlets

17

secure cookies to protect session data. Using HTTPS for encrypted communication,

regenerating session IDs after login, and properly invalidating sessions after logout further

strengthen security.

By following best practices—such as sanitizing user inputs, employing secure transport

protocols, and enforcing proper authentication and authorization—developers can ensure

confidentiality, integrity, and availability of web applications. A secure and state-aware web

design not only enhances user trust but also protects sensitive information from unauthorized

access and data breaches, forming the foundation of reliable and professional web systems.

14.5 KEY TERMS

HTTP (HyperText Transfer Protocol), Servlet, HTTP Request, HTTP Response, GET

Method, POST Method, Session Tracking, Cookie, HttpSession, PreparedStatement, SQL

Injection, Cross-Site Scripting (XSS), Cross-Site Request Forgery (CSRF), Session

Hijacking, Encryption.

14.6 SELF-ASSESSMENT QUESTIONS

1. What does HTTP stand for?

2. What is the role of a Servlet in a web application?

3. Which HTTP method is used to retrieve data from the server?

4. Which HTTP method is used to send data to the server?

5. What is a Cookie used for?

6. What is an HttpSession?

7. Why do we need session tracking in web applications?

8. What is SQL Injection?

9. What is the purpose of encryption in web security?

10. Name one way to prevent Cross-Site Scripting (XSS) attacks.

14.7 FURTHER READINGS

1. Java: The Complete Reference, Twelfth Edition by Herbert Schildt. McGraw-Hill

Education.

2. Beginning Java Programming: The Object-Oriented Approach by Bart Baesens,

Aimee Backiel, and SeppevandenBroucke. Wiley.

3. Java Programming with Oracle JDBC by Donald Bales. O'Reilly Media.

4. Java EE 8 Application Development by David R. Heffelfinger. Packt Publishing.

5. Professional Java for Web Applications by Nicholas S. Williams. Wrox/Wiley

Publishing.

6. Java 2: Developer's Guide to Web Applications with JDBC by Gregory Brill. Sybex.

Dr. U. Surya Kameswari

LESSON-15

INTRODUCTION TO JSP

AIM AND OBJECTIVES:

➢ Understand the need for JSP and its relationship with Servlets.

➢ Explain the shortcomings of Servlets and how JSP overcomes them.

➢ Describe the architecture and anatomy of a JSP page.

➢ Identify and use various JSP components such as scripting elements, directives, and

implicit objects.

➢ Differentiate between scriptlets, expressions, and declarations in JSP.

➢ Develop simple JSP programs to generate dynamic web content.

STRUCTURE:

15.1 INTRODUCTION TO JSP

15.2 THE PROBLEM WITH SERVLET.

15.3 THE ANATOMY OF A JSP PAGE

 15.3.1 COMPONENTS OF A JSP PAGE

 15.3.2 DIRECTORY STRUCTURE OF JSP

 15.3.3 JSP SCRIPTING ELEMENTS

 15.3.4 JSP IMPLICIT OBJECTS

15.4 SUMMARY

15.5 KEY TERMS

15.6 SELF-ASSESSMENT QUESTIONS

15.7 FURTHER READINGS

15.1 INTRODUCTION TO JAVA SERVER PAGES (JSP)

Introduction

In modern web development, the need for dynamic and interactive web applications has led

to the evolution of several server-side technologies. Among these, Java Server Pages (JSP)

plays a vital role in creating dynamic, platform-independent, and efficient web-based

solutions. JSP is built on top of Java technology and provides a simplified way to develop

web pages that can dynamically generate content in response to client requests.

JSP was introduced by Sun Microsystems as an extension to the existing Java Servlet

technology. It overcomes the limitations associated with Servlets by providing a more

convenient and flexible approach to web page development. With JSP, developers can easily

separate presentation logic from business logic, thus improving maintainability and

readability of web applications.

Centre for Distance Education 15.2 Acharya Nagarjuna University

What is JSP?

Java Server Pages (JSP) is a server-side scripting technology used for developing dynamic

web applications. It enables developers to embed Java code within HTML pages using

special JSP tags. When a client (such as a web browser) sends a request to a JSP page, the

web server processes the page, executes the embedded Java code, and dynamically generates

the HTML response that is sent back to the client.

JSP is a part of the Java Enterprise Edition (Java EE) platform and runs on a web container

such as Apache Tomcat or Jetty. It provides a high-level abstraction for creating dynamic

web content and simplifies the process of integrating server-side logic with front-end design.

Relationship between Servlets and JSP

JSP is often described as an extension of Servlets, as both technologies are closely related and

serve complementary purposes. While Servlets are Java programs that run on the server and

generate dynamic content, JSP provides a more convenient way to achieve the same result

using HTML-like syntax.

In fact, behind the scenes, every JSP file is internally translated into a Servlet by the JSP

engine. This Servlet is then compiled and executed by the web container. Therefore, JSP and

Servlets are two sides of the same coin — JSP focuses on presentation (view), while Servlets

handle request processing and business logic (controller).

JSP enhances the Servlet model by offering additional features such as:

• Expression Language (EL) for simplifying data access.

• JSTL (JSP Standard Tag Library) for reusable tag-based programming.

• Custom Tags for extending functionality.

These features make JSP a more powerful and flexible tool for developing dynamic web

applications.

Issues in Servlet-Based Development:

Although Servlets provide a strong foundation for server-side programming in Java, they

have several limitations that make web development complex and less efficient. These

shortcomings led to the creation of JSP as a more user-friendly alternative.

a. Inability to Use IDEs for Designing HTML Views

Servlets primarily involve writing HTML content within Java code using out.println()

statements. This makes it extremely difficult to design and visualize HTML pages using

graphical Integrated Development Environments (IDEs). As a result, developers cannot use

drag-and-drop or WYSIWYG (What You See Is What You Get) tools for designing the user

interface, leading to increased development time and complexity.

b. Inability to Use HTML Designers

Since HTML content in Servlets is embedded within Java code, it becomes impossible for

non-programmers, such as web designers, to work on the presentation layer independently.

The presentation logic is tightly coupled with Java code, forcing the development team to

rely entirely on Java programmers for even minor visual changes.

Web Technologies 15.3 Introduction to JSP

c. Dependence on Web Configuration Files

Servlets are heavily dependent on web configuration settings, particularly the web.xml

deployment descriptor file. Every Servlet must be declared and mapped within this

configuration file. This dependency introduces additional overhead during the development

and deployment process, especially when the number of Servlets grows in a large web

application.

d. Recurring Recompilation and Server Restart

When any modification is made in the Servlet code, developers must manually stop the

server, recompile the source code, and restart the server to reflect the changes. This repetitive

process slows down development and testing, making Servlets less efficient for rapid

application development.

Understanding JSP Architecture

A JSP document consists of two main components:

1. HTML — used to design the static structure and layout of a web page.

2. JSP Tags and Scripting Elements — used to insert dynamic content and execute

server-side logic.

When a JSP page is requested by a client:

1. The JSP engine (part of the web server) translates the JSP page into a Servlet.

2. This translated Servlet is then compiled into bytecode and executed by the Java

Virtual Machine (JVM).

3. The output of the execution (typically HTML) is sent back to the client’s browser as

the final web page.

Thus, JSP combines the flexibility of HTML with the power of Java to create efficient,

dynamic web pages.

Advantages of JSP:

JSP offers several advantages over Servlets and other server-side technologies. Some of the

key benefits are discussed below:

a. Tag-Based Programming

JSP supports tag-based programming, where developers use JSP tags instead of embedding

raw Java code within HTML. This approach simplifies web page development and allows

even those with limited Java knowledge to create dynamic content easily.

b. Accessibility for Both Java and Non-Java Programmers

Since JSP files closely resemble standard HTML files with embedded tags, they can be easily

understood and maintained by both Java developers and non-Java designers. This promotes

collaboration between web designers and backend programmers.

c. Automatic Recognition of Modifications

When changes are made to a JSP file, the web container automatically detects and recompiles

the modified file. There is no need to stop or restart the server manually, as required in

Servlets. This feature greatly enhances productivity and efficiency.

d. Built-in Exception Handling

JSP provides mechanisms for error handling and exception management directly within the

page. Developers can use predefined error pages or the <error-page> element in configuration

files to manage exceptions gracefully.

Centre for Distance Education 15.4 Acharya Nagarjuna University

e. Separation of Presentation and Business Logic

JSP encourages the Model-View-Controller (MVC) architecture by separating presentation

logic (HTML, CSS, and JSP tags) from business logic (Java classes and Servlets). This

separation leads to more modular, maintainable, and scalable applications.

f. Enhanced Code Readability

The use of tags and Expression Language in JSP improves the readability of the code, making

it easier to debug, maintain, and extend over time.

g. Support for Built-in and Custom Tags

JSP provides a comprehensive set of built-in tags, such as those from the JSP Standard Tag

Library (JSTL), and also supports the creation of custom tags. Developers can define their

own tags or integrate third-party tag libraries to enhance functionality.

h. Session Management

JSP provides built-in session management features. Developers can easily store and retrieve

user-specific information using implicit session objects without explicitly managing session

handling code.

i. Implicit Objects

JSP offers a set of implicit objects such as request, response, session, application, out, and

others. These objects are automatically available in every JSP page, simplifying server-side

programming and data exchange between the client and the server.

Example 1: Simple JSP Program

File: hello.jsp

<html>

<head><title>Welcome Page</title></head>

<body>

<h2>Welcome to JSP!</h2>

<%

 String name = "Student";

out.println("<p>Hello, " + name + "! This is your first JSP program.</p>");

 %>

</body>

</html>

Output in Browser:

Welcome to JSP!

Hello, Student! This is your first JSP program.

Example 2: JSP with User Input

File: input.jsp

<html>

<head><title>User Input Example</title></head>

<body>

<form action="display.jsp" method="post">

 Enter your name: <input type="text" name="username">

<input type="submit" value="Submit">

</form>

</body>

</html>

File: display.jsp

<html>

Web Technologies 15.5 Introduction to JSP

<head><title>Display Page</title></head>

<body>

<%

 String user = request.getParameter("username");

if (user == null || user.trim().equals("")) {

out.println("<h3>Please enter a valid name.</h3>");

 } else {

out.println("<h3>Hello, " + user + "! Welcome to JSP programming.</h3>");

 }

 %>

</body>

</html>

Input:

User enters: John

 Output:

Hello, John! Welcome to JSP programming.

Advantages of Tag-Based Approach in JSP

• Reduces the amount of Java code embedded in HTML.

• Simplifies web application development.

• Easier to work with JavaBeans and reusable components.

• Supports separation of presentation and business logic.

• Enhances readability and maintainability of code.

Why JSP?

Servlets require writing a lot of Java code to generate HTML responses.

For example, to display a simple message using a servlet, you must write:

out.println("<html>");

out.println("<body>");

out.println("<h1>Welcome to Java Servlets</h1>");

out.println("</body>");

out.println("</html>");

This approach mixes Java code and HTML, making maintenance difficult.

JSP solves this problem by allowing you to write HTML normally and embed Java logic only

where needed.

15.2 THE PROBLEM WITH SERVLET

Servlets are Java programs that run on a web server and dynamically generate web pages.

They handle client requests and responses using Java code.

However, when building large web applications, Servlets become difficult to maintain, hard

to read, and time-consuming for web designers — mainly because they mix HTML and Java

logic together.

Typical Servlet Workflow

1. The client (browser) sends a request to the server.

2. The server calls the Servlet, which contains Java code.

3. The Servlet generates HTML output using Java code.

4. The generated HTML is sent back to the client.

Centre for Distance Education 15.6 Acharya Nagarjuna University

The Core Problem

While Servlets are powerful, they have some serious drawbacks when used to create complex

web pages.

Main Problems with Servlets:

Problem Description

1. Mixed Code (HTML +

Java)

Writing HTML inside Java out.println() statements makes the

code long and messy.

2. Poor Readability Hard for web designers to edit HTML within Java source code.

3. Maintenance Difficulty
Any small change in the webpage design requires Java

recompilation.

4. No Clear Separation Servlets combine both business logic and presentation logic.

5. Slower Development
Requires both Java and HTML knowledge for every

modification.

Example: Servlet Generating HTML Output

File: HelloServlet.java

import java.io.*;

importjavax.servlet.*;

importjavax.servlet.http.*;

public class HelloServlet extends HttpServlet {

public void doGet(HttpServletRequest request, HttpServletResponse response)

throwsServletException, IOException {

response.setContentType("text/html");

PrintWriter out = response.getWriter();

out.println("<html>");

out.println("<head><title>Servlet Example</title></head>");

out.println("<body>");

out.println("<h2>Welcome to Java Servlets!</h2>");

out.println("<p>This page is generated using Java code.</p>");

out.println("</body>");

out.println("</html>");

out.close();

 }

}

Web Deployment Descriptor (web.xml):

<web-app>

<servlet>

<servlet-name>hello</servlet-name>

<servlet-class>HelloServlet</servlet-class>

</servlet>

<servlet-mapping>

<servlet-name>hello</servlet-name>

<url-pattern>/hello</url-pattern>

</servlet-mapping>

</web-app>

Web Technologies 15.7 Introduction to JSP

Browser Request (Input):

http://localhost:8080/YourApp/hello

Output (in Browser):

Welcome to Java Servlets!

This page is generated using Java code.

It works fine — but the HTML is buried inside Java code!

Why This Problem?

Imagine the designer wants to change the HTML layout, color, or font.

They would need to open the Java file, find the out.println() lines, and modify the HTML —

then recompile and redeploy the servlet.

That’s inefficient and error-prone.

Overview-The below is a conceptual flowdiagram showing how Servlets mix business and

presentation logic:

 ↓

 Compiled & Executed

 ↓

 HTML Response Sent to Browser

Problem: The same file handles both application logic and HTML layout, which is not

modular.

Example of JSP Solution

Let’s see how JSP fixes the same problem:

File: hello.jsp

<html>

<head><title>JSP Example</title></head>

<body>

<h2>Welcome to JSP!</h2>

<p>This page is generated using JSP — HTML is clean and easy to read.</p>

</body>

</html>

Output:

Welcome to JSP!

This page is generated using JSP — HTML is clean and easy to read.

 No messy out.println() statements — only simple HTML!

Servlet Problems

Issue Explanation

Mixing of HTML & Java Reduces readability and maintainability.

Difficult Design Changes Designers can’t edit HTML without Java knowledge.

No MVC Separation Business logic and view are tightly coupled.

 Java Servlet (HelloServlet)

Business Logic (Java Code)

out.println("<html>...");

out.println("<h1>Hello User</h1>");

out.println("</html>");

Centre for Distance Education 15.8 Acharya Nagarjuna University

Issue Explanation

Compilation Overhead Every design change requires recompiling the servlet.

Comparison: Servlet vs JSP

Feature Servlet JSP

Code Type Java code with embedded HTML HTML with embedded Java

Ease of Design Difficult for web designers Easier for web designers

Maintenance Requires recompilation JSP auto-compiles

Use Case Good for backend logic Good for presentation layer

Example: To print current date in Servlets and in JSP.

1. Servlet File

// Import required classes

import java.io.*;

importjavax.servlet.*;

importjavax.servlet.http.*;

importjavax.servlet.annotation.WebServlet;

importjava.util.Date;

// Map this servlet to a URL

@WebServlet("/DateSrv")

public class DateSrv extends GenericServlet {

 // Implement service() method

public void service(ServletRequestreq, ServletResponse res)

throwsIOException, ServletException {

 // Set response content type

res.setContentType("text/html");

 // Get the PrintWriter to write response

PrintWriter pw = res.getWriter();

 // Get current date and time

 Date date = new Date();

 // Write HTML output

pw.println("<html>");

pw.println("<head><title>Display Current Date & Time</title></head>");

pw.println("<body>");

pw.println("<h2>Current Date & Time: " + date.toString() + "</h2>");

pw.println("</body>");

pw.println("</html>");

 // Close the PrintWriter

pw.close();

 }

}

Web Technologies 15.9 Introduction to JSP

2. JSP File

<%@ page import="java.util.*" %>

<html>

<head>

<title>Display Current Date & Time</title>

</head>

<body>

<h2>Current Date &Time:</h2>

<%

// Create a Date object

Datedate=newDate();

// Print current date and time

out.print(date.toString());

 %>

</body>

</html>

15.3 ANATOMY OF A JSP PAGE

A Java Server Page (JSP) file is essentially a text document that combines HTML markup

with Java code. It is used to build dynamic web pages, where the static content is written in

HTML and the dynamic content is generated using JSP elements.

Each JSP file is eventually translated into a Servlet by the web server (e.g., Apache Tomcat).

This allows the Java code to be executed on the server before sending the HTML result to the

client.

Figure: Anatomy of a JSP Page

Centre for Distance Education 15.10 Acharya Nagarjuna University

15.3.1 Components of a JSP Page

A JSP page may include the following components:

Component Description

Scripting Elements Used to insert Java code inside JSP.

Directives
Provide instructions to the JSP container on how to translate the

page.

Action Tags Used to control the behavior of the servlet engine.

Implicit Objects Predefined variables provided by the JSP engine.

Comments Used to document the code within the JSP page.

15.3.2 DIRECTORY STRUCTURE OF JSP

The directory structure of a JSP-based web application is similar to that of a Servlet

application.

MyWebApp/

│

├── WEB-INF/

│ ├── web.xml

│ └── lib/

│

├── index.html

├── home.jsp

└── images/

 Typical Directory Structure of a JSP Application

Basic Structure of a JSP Page

Here’s what a simple JSP file looks like:

<%@ page language="java" contentType="text/html" pageEncoding="UTF-8"%>

<html>

<head><title>My First JSP Page</title></head>

<body>

<h2>Welcome to JSP!</h2>

<%

 // Scriptlet: Java code inside JSP

 String name = "Student";

out.println("<p>Hello, " + name + "!</p>");

 %>

</body>

</html>

Output in Browser:

Welcome to JSP!

Hello, Student!

Web Technologies 15.11 Introduction to JSP

15.3.3 JSP Scripting Elements

Scripting elements allow Java code to be embedded directly within a JSP file. These elements

are processed by the JSP engine during page translation and converted into equivalent servlet

code.

There are three types of scripting elements in JSP:

1. Scriptlets

2. Expressions

3. Declarations

1.Scriptlet Tag (<% ... %>)

A scriptlet contains Java statements that are executed every time the JSP page is requested.

Scriptlets are enclosed between <% and %> tags.

Syntax:

<%

 // Java statements

%>

Example 1:

<html>

<body>

<% out.print("Welcome to JSP!"); %>

</body>

</html>

Explanation:

The text inside <% %> is Java code that runs during the request. The output is sent to the

client browser through the out implicit object.

Example 2: Reading Input Using Scriptlet

<!-- HTML Form -->

<form action="welcome.jsp">

<input type="text" name="uname" placeholder="Enter your name">

<input type="submit" value="Submit">

</form>

<!-- welcome.jsp -->

<html>

<body>

<%

 String name = request.getParameter("uname");

out.print("Welcome " + name);

%>

</body>

</html>

2. Expression Tag (<%= ... %>)

The expression tag is used to output values directly to the client. It evaluates the given

expression and inserts the result into the response.

Syntax:

<%= expression %>

Example:

<html>

Centre for Distance Education 15.12 Acharya Nagarjuna University

<body>

<h2>JSP Expression Example</h2>

<p>Sum of 5 and 7 is: <%= 5 + 7 %></p>

<p>Current Date: <%= new java.util.Date() %></p>

</body>

</html>

Explanation:

Anything inside <%= %> is evaluated and printed automatically, similar to out.print().

3. Declaration Tag (<%! ... %>)

A declaration tag is used to define variables and methods that are shared across multiple

service requests. It is enclosed within <%! and %>.

Syntax:

<%! dataTypevariableName; %>

<%! returnTypemethodName() { ... } %>

Example:

<html>

<body>

<%! int data = 50; %>

<%= "Value of data: " + data %>

</body>

</html>

Example with Method Declaration:

<html>

<body>

<%!

int cube(int n) {

return n * n * n;

 }

 %>

<%= "Cube of 4 is: " + cube(4) %>

</body>

</html>

Complete Example: Combining All Elements

File: anatomyExample.jsp

<%@ page import="java.util.*" %>

<%! int counter = 0; %>

<html>

<head><title>JSP Anatomy Example</title></head>

<body>

<%-- This is a JSP comment, not visible in browser --%>

<h2>Understanding JSP Components</h2>

<%

counter++;

 String user = "Alice";

 Date now = new Date();

%>

<p>Hello, <%= user %>!</p>

<p>You are visitor number <%= counter %>.</p>

<p>Current date and time: <%= now %></p>

<jsp:include page="footer.jsp" />

Web Technologies 15.13 Introduction to JSP

</body>

</html>

File: footer.jsp

<hr>

<p>Thank you for visiting our JSP demo page.</p>

Output in Browser:

Understanding JSP Components

Hello, Alice!

You are visitor number 1.

Current date and time: Wed Oct 29 13:05:10 IST 2025

Thank you for visiting our JSP demo page.

 Difference betweenScriptlet, Expression, and Declaration

Feature Scriptlet Expression Declaration

Purpose
To write logic and control

flow statements

To output values

directly

To declare variables and

methods

Syntax <% ... %> <%= ... %> <%! ... %>

Placement in

Servlet
Inside _jspService() Inside out.print() Outside _jspService()

Execution Runs for every request
Evaluated and

printed

Executed when class is

loaded

15.3.4 JSP Implicit Objects

Implicit objects are predefined variables created by the JSP container that are directly

accessible in JSP pages without explicit declaration. They simplify coding by providing

ready-to-use objects for handling requests, responses, sessions, etc.

There are nine implicit objects in JSP.

Object Class Description

request HttpServletRequest Represents the client request.

response HttpServletResponse Used to send response to client.

out JspWriter Used to send output to the browser.

config ServletConfig Provides initialization parameters.

application ServletContext Provides information about the application.

session HttpSession Used for session management.

pageContext PageContext Provides context for JSP page operations.

page Object
Refers to the current JSP page instance (similar to

this).

exception Throwable Used for exception handling in error pages.

 The request Object:

• Represents the client’s request to the server.

• Used to access form data, headers, and cookies.

• Belongs to the HttpServletRequest class.

Centre for Distance Education 15.14 Acharya Nagarjuna University

Example:

<form action="RequestDemo.jsp">

<input type="text" name="uname" placeholder="Enter Name">

<input type="submit" value="Send">

</form>

<!-- RequestDemo.jsp -->

<%

 String name = request.getParameter("uname");

out.print("Welcome " + name);

%>

 The response Object:

• Used to send data or redirect the client to another resource.

• Belongs to the HttpServletResponse class.

Example:

<form action="ResponseDemo.jsp">

<input type="text" name="query" placeholder="Search term">

<input type="submit" value="Search">

</form>

<!-- ResponseDemo.jsp -->

<%

 String search = request.getParameter("query");

response.sendRedirect("https://www.google.com/search?q=" + search);

%>

The out Object:

• Used to send output to the client browser.

• Belongs to the JspWriter class.

Common Methods:

out.print(data);

out.println(data);

Example:

<%

out.println("Hello from JSP!");

%>

The session Object:

• Represents a user’s session and stores data between multiple requests.

• Belongs to the HttpSession class.

Example:

<!-- welcome.jsp -->

<%

 String user = request.getParameter("uname");

session.setAttribute("username", user);

out.print("Welcome " + user);

%>

Next Page

<!-- next.jsp -->

Web Technologies 15.15 Introduction to JSP

<%

 String user = (String) session.getAttribute("username");

out.print("Hello again, " + user);

%>

 The exception Object:

• Used for error handling.

• Available only in JSP pages declared with isErrorPage="true".

Example:

<%@ page errorPage="error.jsp" %>

<%

int a = Integer.parseInt(request.getParameter("x"));

int b = Integer.parseInt(request.getParameter("y"));

int c = a / b;

out.print("Result: " + c);

%>

<!-- error.jsp -->

<%@ page isErrorPage="true" %>

<h2>Sorry! An Exception Occurred.</h2>

<p>Details:<%= exception %></p>

The application Object:

• Represents the entire web application.

• Used to share data among all JSP pages.

• Belongs to ServletContext.

Example:

<%

 String college = application.getInitParameter("collegeName");

out.print("Welcome to " + college);

%>

15.4 SUMMARY

Java Server Pages (JSP) is a server-side technology built on top of Java Servlets, designed to

simplify the creation of dynamic and interactive web pages. Unlike Servlets, which mix

HTML and Java code in the same file, JSP enables developers to write HTML content with

embedded Java code, making web applications easier to develop, maintain, and modify.

When a JSP page is requested by a client, the JSP engine first translates it into a Servlet, then

compiles and executes it within the Java Virtual Machine (JVM). The resulting HTML output

is then sent back to the client’s web browser. This internal translation process allows JSP to

combine the flexibility of Java with the simplicity of web page design.

JSP offers several advantages over traditional Servlets, making web development more

efficient and maintainable. It simplifies the process of creating dynamic web content by

allowing developers to embed Java code directly within HTML, thereby reducing the

complexity of mixing presentation and logic. JSP automatically recompiles pages whenever

changes are made, eliminating the need for manual deployment after minor modifications. It

also supports tag-based programming, which helps in writing cleaner and more readable

code.

Centre for Distance Education 15.16 Acharya Nagarjuna University

In addition, JSP provides a set of predefined implicit objects such as request, response, and

session, making common web development tasks easier to perform. Furthermore, built-in

exception handling ensures that applications are more reliable and robust, contributing to

improved performance and error management in dynamic web applications.

Overall, JSP separates the presentation layer (HTML) from the business logic (Java),

promoting cleaner code organization and enabling collaboration between web designers and

programmers. This separation of concerns makes JSP a powerful and efficient technology for

developing scalable, dynamic, and maintainable web applications.

15.5 KEY TERMS

JSP (Java Server Pages), Servlet, JSP Engine, Scriptlet, Expression Tag, Declaration Tag,

Implicit Objects, MVC (Model-View-Controller), JSTL (JSP Standard Tag Library), Tag-

Based Programming

15.6 SELF-ASSESSMENT QUESTIONS

1. Explain the limitations of Servlets and how JSP overcomes them.

2. Describe the architecture of JSP with a suitable diagram.

3. Differentiate between Scriptlet, Expression, and Declaration tags in JSP.

4. Explain the purpose and usage of implicit objects in JSP with examples.

5. Write and explain a JSP program that accepts user input and displays a personalized

greeting.

6. How does JSP differ from Servlets?

7. What are the advantages of using JSP over Servlets?

8. List the main components of a JSP page.

9. Define scripting elements in JSP.

10. What is the use of the <%= … %> tag?

11. Name any five implicit objects available in JSP.

15.7 FURTHER READINGS

1. Java: The Complete Reference, Twelfth Editionby Herbert Schildt. McGraw-Hill

Education.

2. Beginning Java Programming: The Object-Oriented Approachby Bart Baesens,

Aimee Backiel, and SeppevandenBroucke. Wiley.

3. Java Programming with Oracle JDBCby Donald Bales. O'Reilly Media.

4. Java EE 8 Application Development by David R. Heffelfinger. Packt Publishing.

5. Professional Java for Web Applicationsby Nicholas S. Williams. Wrox/Wiley

Publishing.

6. Java 2: Developer's Guide to Web Applications with JDBCby Gregory Brill. Sybex.

7. Beginning JSP, JSF and Tomcat Web Development: From Novice to

ProfessionalbyGiulio Zambon& Michael Sekler. Apress.

Dr. U. Surya Kameswari

LESSON-16

JSP PROCESSING AND APPLICATION DESIGN

AIM AND OBJECTIVES:

➢ Explain the concept and working of JSP as a server-side technology.

➢ Describe each phase of the JSP lifecycle — translation, compilation, initialization,

execution, and destruction.

➢ Understand how a JSP file is internally converted into a servlet.

➢ Demonstrate JSP processing through practical examples.

➢ Identify the advantages of JSP processing in web application development.

➢ Illustrate how JSP fits into the MVC architecture for separating business logic, control

logic, and presentation.

➢ Develop a simple MVC-based web application using JSP, Servlets, and JavaBeans.

STRUCTURE:

16.1 JSP PROCESSING

16.1.1 JSP PROCESSING OVERVIEW

16.1.2 JSP PROCESSING FLOW DIAGRAM

16.1.3 JSP LIFECYCLE

16.2 JSP APPLICATION DESIGN WITH MVC SETTING UP AND JSP

 ENVIRONMENT

 16.2.1 WHAT IS MVC?

 16.2.2 MVC FLOW DIAGRAM

 16.2.3 SETTING UP JSP ENVIRONMENT

16.3 SUMMARY

16.4 KEY TERMS

16.5 SELF-ASSESSMENT QUESTIONS

16.6 FURTHER READINGS

16.1 JSP PROCESSING

JSP (JavaServer Pages) is a server-side technology that allows you to create dynamic web

content by embedding Java code within HTML.

However, unlike plain HTML pages, JSPs are compiled and executed on the server before the

output (HTML) is sent to the client browser.The server handles the processing of a JSP file in

several stages — converting it into a Servlet, compiling it, and executing it to produce HTML

output.

16.1.1 JSP Processing Overview

When a client (like a web browser) requests a JSP page, theweb container (e.g., Apache

Tomcat) performs the following steps:

Center for Distance Education 16.2 Acharya Nagarjuna University

1. Translation Phase:

The JSP file is translated into a Java Servlet source file.

2. Compilation Phase:

The generated Servlet source is compiled into a .class file (bytecode).

3. Loading & Initialization Phase:

The Servlet class is loaded into memory and initialized.

4. Request Processing Phase:

The Servlet’s service() method executes, processing client requests and generating

responses.

5. Response Phase:

The output (HTML) is sent back to the client browser.

6. Destruction Phase:

When the application is stopped, the JSP Servlet is destroyed.

16.1.2 JSP Processing Flow Diagram

The complete JSP processing sequence creates a smooth transition from human-readable

.jsp code to machine-executable bytecode, ultimately producing a dynamic web response.

This powerful lifecycle serves as the foundation for all dynamic web applications

developed using JSP. As shown in below figure.

Figure: JSP Processing Flow Diagram

Web Technologies 16.3 JSP PROCESSING AND…

JSP Lifecycle Methods

Internally, a JSP page is converted into a Servlet, and the Servlet follows a defined

lifecyclemanaged by the JSP container.

JSP Lifecycle Method Description

jspInit() Called once when the JSP is initialized.

jspService() Called for each client request (contains the main logic).

jspDestroy() Called before the JSP is destroyed.

5. Step-by-Step JSP Processing Example

Let’s demonstrate JSP processing using a real example.

Example Files:

File 1:welcome.jsp

File 2:web.xml (deployment descriptor)

File: welcome.jsp

<%@ page language="java" contentType="text/html" pageEncoding="UTF-8"%>

<html>

<head><title>JSP Processing Example</title></head>

<body>

<%-- JSP comment: This will not appear in browser --%>

<%!

intvisitCount = 0;

 // This method runs once when JSP is initialized

public void jspInit() {

System.out.println("JSP Initialized...");

 }

 // This method runs when the JSP is destroyed

public void jspDestroy() {

System.out.println("JSP Destroyed...");

 }

%>

<%

 // This part executes for each request

visitCount++;

 String user = request.getParameter("name");

if (user == null || user.equals("")) {

user = "Guest";

 }

%>

<h2>Welcome to JSP Processing!</h2>

<p>Hello, <%= user %>!</p>

<p>You are visitor number: <%= visitCount %></p>

<form action="welcome.jsp" method="post">

 Enter your name: <input type="text" name="name">

<input type="submit" value="Submit">

</form>

</body>

</html>

Center for Distance Education 16.4 Acharya Nagarjuna University

Step-by-Step JSP Processing Flow:

Step 1 – Client Request

The browser requests:

http://localhost:8080/JSPApp/welcome.jsp

Step 2 – Translation Phase

The server (Tomcat) translates welcome.jsp → welcome_jsp.java

(This is an automatically generated servlet.)

Step 3 – Compilation

welcome_jsp.java → compiled into welcome_jsp.class

Step 4 – Initialization

The container calls:

jspInit();

This runs only once (prints "JSP Initialized..." on the server console).

Step 5 – Request Handling

The container calls:

_jspService(request, response);

This method executes the main JSP code — reading parameters, generating output, etc.

Step 6 – Response Generation

The generated HTML is sent back to the client browser.

Step 7 – Destruction

When the JSP is reloaded or the server stops, the container calls:

jspDestroy();

Example Input and Output

Input 1 (First Visit):

User opens the page without entering a name.

URL:

http://localhost:8080/JSPApp/welcome.jsp

Output 1:

Welcome to JSP Processing!

Hello, Guest!

You are visitor number: 1

[Text box to enter name]

Input 2 (Second Visit with Name):

User enters “Alice” in the text box and submits.

Output 2:

Welcome to JSP Processing!

Hello, Alice!

You are visitor number: 2

[Text box again for new input]

Server Console Output:

JSP Initialized...

JSP Destroyed... (when server stops or reloads)

Generated Servlet Code (Simplified View)

When Tomcat processes your JSP, it internally generates something like this:

public final class welcome_jsp extends HttpJspBase {

intvisitCount = 0;

public void jspInit() {

System.out.println("JSP Initialized...");

 }

Web Technologies 16.5 JSP PROCESSING AND…

public void _jspService(HttpServletRequest request, HttpServletResponse response)

throwsIOException, ServletException {

visitCount++;

 String user = request.getParameter("name");

if (user == null) user = "Guest";

JspWriter out = response.getWriter();

out.println("<html><body>");

out.println("<h2>Welcome to JSP Processing!</h2>");

out.println("<p>Hello, " + user + "!</p>");

out.println("<p>You are visitor number: " + visitCount + "</p>");

out.println("</body></html>");

 }

public void jspDestroy() {

System.out.println("JSP Destroyed...");

 }

}

This shows how a JSP page internally becomes a servlet that executes Java code to produce

HTML output.

16.1.3 JSP Lifecycle:

Java Server Pages (JSP) follow a well-defined life cycle managed by the JSP container.

Understanding this life cycle is crucial for developing efficient and reliable JSP applications.

The life cycle ensures that JSP pages are translated, compiled, executed, and finally destroyed

in a structured manner.

Figure: Life Cycle of JSP

Center for Distance Education 16.6 Acharya Nagarjuna University

Steps in the JSP Life Cycle:

1. Translation: The JSP page is translated into a corresponding servlet.

2. Compilation: The translated JSP file (e.g., test.java) is compiled into a class file

(test.class).

3. Class Loading: The generated servlet class is loaded into the container.

4. Instantiation: An instance of the generated servlet class is created.

5. Initialization: The container invokes the jspInit() method to initialize the servlet.

6. Request Processing: The container calls the _jspService() method to handle client

requests and generate responses.

7. Cleanup: The jspDestroy() method is invoked by the container to release resources

before the JSP is unloaded.

1. Translation of JSP Page

The first phase of the JSP life cycle is the translation phase. In this stage, the JSP container

converts the JSP document into an equivalent Java Servlet.

• The generated servlet contains Java code along with HTML/XML markup from the

JSP page.

• The container also checks the syntactic correctness of the JSP page during this phase.

• Any errors in the JSP syntax are detected here before compilation.

Example:

A JSP file Test.jsp is translated into a servlet file Test.java by the container.

2. Compilation of JSP Page

After translation, the JSP container compiles the generated Java Servlet code into Java

bytecode (class file).

• This compiled class is now ready to be loaded into the container and initialized.

• Compilation ensures that the JSP page can be executed efficiently by the JVM.

3. Class Loading

In this phase, the servlet class generated from the JSP page is loaded into the JSP container

by the class loader.

• The container keeps the class in memory, making it ready for instantiation.

• This step is managed automatically by the JSP container.

4. Instantiation

Once the servlet class is loaded, the container creates an instance of the servlet class.

• The container may maintain one or more instances to handle multiple simultaneous

requests.

• Instantiation ensures that each JSP page can process requests independently.

5. Initialization

After creating the servlet instance, the JSP container calls the jspInit() method.

• jspInit() is invoked only once in the life cycle.

• It is used to perform one-time initialization tasks, such as allocating resources,

opening database connections, or setting up configuration parameters.

• This method can be overridden in JSP if custom initialization is required.

Web Technologies 16.7 JSP PROCESSING AND…

6. Request Processing

Once initialized, the JSP page is ready to handle client requests.

• The container invokes the _jspService() method for each client request.

• This method receives the request and response objects as parameters and generates the

appropriate dynamic response.

• Important: _jspService() cannot be overridden. It is automatically generated by the

JSP container.

7. Destruction (Clean-up)

The final phase of the JSP life cycle is clean-up or destruction.

• When the JSP page is no longer needed or the container shuts down, the jspDestroy()

method is called.

• This method allows developers to perform cleanup tasks, such as closing open files,

releasing database connections, or freeing resources.

• Unlike _jspService(), jspDestroy() can be overridden to include custom cleanup logic.

 Advantages of JSP Processing

• JSP pages are compiled only once, not every time they are requested.

• Subsequent requests are faster since the compiled servlet is reused.

• Clear separation of presentation (HTML) and business logic (Java).

• Automatic servlet generation— developers focus on web design, not boilerplate Java

code.

Table:

Phase Action Description

Translation JSP → Servlet JSP converted into Java source code

Compilation Servlet → Class Compiled into bytecode

Initialization jspInit() Runs once when JSP loads

Request Handling _jspService() Runs for every request

Destruction jspDestroy() Runs when JSP unloads

16.2 JSP APPLICATION DESIGN WITH MVC SETTING UP AND JSP

 ENVIRONMENT

16.2.1 What is MVC?

16.2.2

MVC (Model–View–Controller) is a design pattern used in web development to separate an

application into three logical layers:

Component Description Technology Used

Model Contains business logic and data handling. JavaBeans / POJO classes

View Handles presentation and user interface. JSP pages

Controller Controls the flow of data between Model and View. Servlets

This separation improves code organization, reusability, and maintenance.

Center for Distance Education 16.8 Acharya Nagarjuna University

How MVC Works in JSP Applications

1. Client (Browser) sends a request (e.g., submits a form).

2. The Controller (Servlet) receives the request and processes it.

3. The Controller interacts with the Model (Java class/Bean) for data or business logic.

4. The result from the Model is sent back to the Controller.

5. The Controller forwards the data to a View (JSP page) for displaying output.

6. The JSP renders the final HTML response to the browser.

16.2.2 MVC Flow Diagram

Figure: MVC Flow Diagram.

Example Program: JSP Application using MVC

Let’s build a small MVC example where the user enters their name, and the application

displays a welcome message.

Step 1 – Model (JavaBean)

File: User.java

packagemvcapp;

public class User {

private String name;

public User() {}

public String getName() {

Web Technologies 16.9 JSP PROCESSING AND…

return name;

 }

public void setName(String name) {

 this.name = name;

 }

public String greetUser() {

return "Welcome, " + name + "! You are learning JSP with MVC.";

 }

}

Step 2 – Controller (Servlet)

File: UserServlet.java

packagemvcapp;

import java.io.*;

importjavax.servlet.*;

importjavax.servlet.http.*;

public class UserServlet extends HttpServlet {

protected void doPost(HttpServletRequest request, HttpServletResponse response)

throwsServletException, IOException {

 // Get data from the form

 String username = request.getParameter("username");

 // Create model object

 User user = new User();

user.setName(username);

 // Store model data in request scope

request.setAttribute("userData", user);

 // Forward data to the view (JSP)

RequestDispatcherrd = request.getRequestDispatcher("welcome.jsp");

rd.forward(request, response);

 }

}

Step 3 – View (JSP Page)

File:welcome.jsp

<%@ page import="mvcapp.User" %>

<html>

<head><title>Welcome Page</title></head>

<body>

<%

 User user = (User) request.getAttribute("userData");

 %>

<h2><%= user.greetUser() %></h2>

</body>

</html>

Step 4 – HTML Form (Input Page)

File: index.html

<html>

<head><title>JSP MVC Example</title></head>

<body>

<h2>Enter Your Name</h2>

<form action="UserServlet" method="post">

Center for Distance Education 16.10 Acharya Nagarjuna University

<input type="text" name="username">

<input type="submit" value="Submit">

</form>

</body>

</html>

Step 5 – Web Deployment Descriptor

File: web.xml

<web-app>

<servlet>

<servlet-name>userServlet</servlet-name>

<servlet-class>mvcapp.UserServlet</servlet-class>

</servlet>

<servlet-mapping>

<servlet-name>userServlet</servlet-name>

<url-pattern>/UserServlet</url-pattern>

</servlet-mapping>

</web-app>

Input / Output

Input (from index.html):

User enters:

John

Output (in Browser – welcome.jsp):

Welcome, John! You are learning JSP with MVC.

Advantages of MVC with JSP

• Clear separation of presentation (JSP), logic (Servlet), and data (Model).

• Easier maintenance and updates.

• Designers and developers can work independently.

• Promotes reusability and scalability.

16.2.3 Setting Up JSP Environment

To execute JSP programs, you need a proper Java web environment with the JDK and

Tomcat server.

Step 1: Install Java Development Kit (JDK)

• Download from: https://www.oracle.com/java/technologies/javase-downloads.html

• Install and set environment variables:

• JAVA_HOME = C:\Program Files\Java\jdk-<version>

• PATH = %JAVA_HOME%\bin

• Verify installation:

• java -version

Step 2: Install Apache Tomcat Server

• Download from: https://tomcat.apache.org

• Extract it to: C:\Tomcat

• Set environment variable:

• CATALINA_HOME = C:\Tomcat

• Start Tomcat:

• C:\Tomcat\bin\startup.bat

https://www.oracle.com/java/technologies/javase-downloads.html
https://tomcat.apache.org/

Web Technologies 16.11 JSP PROCESSING AND…

• Test in browser:

• http://localhost:8080/

You should see the Tomcat welcome page.

Step 3: Deploy JSP Application

1. Inside C:\Tomcat\webapps, create a folder named mvcapp.

2. Inside it, create WEB-INF folder and place:

o web.xml

o classes folder (for .class files)

3. Place index.html and welcome.jsp in the mvcapp root folder.

4. Compile Java files (User.java, UserServlet.java) and place .class files inside:

5. C:\Tomcat\webapps\mvcapp\WEB-INF\classes\mvcapp\

Step 4: Test the Application

Open your browser and go to:

http://localhost:8080/mvcapp/index.html

 Input:

Name: Alice

 Output:

Welcome, Alice! You are learning JSP with MVC.

4. Table

Step Component File Purpose

1 Model User.java Holds data & logic

2 Controller UserServlet.java Processes requests

3 View welcome.jsp Displays output

4 Configuration web.xml Maps servlet

5 Deployment Tomcat Server Runs JSP & Servlets

16. 3 SUMMARY

The JSP Processing Lifecycle defines how a JavaServer Page is transformed and executed

within a web container to generate dynamic web content. When a client requests a JSP file,

the server processes it through several systematic stages — starting with translation, where

the JSP is converted into a Java servlet source file; followed by compilation, where this

source is compiled into bytecode. The compiled servlet is then loaded and initialized, during

which the jspInit() method executes once to prepare resources. During each client request, the

_jspService() method handles input processing and generates the dynamic HTML response

sent back to the browser. Finally, when the JSP is reloaded or the server stops, the

jspDestroy() method executes to release resources and clean up. Essentially, every JSP acts as

a servlet behind the scenes — such as welcome.jsp being converted into welcome_jsp.java —

which ensures efficient execution, reusability, and high performance. This structured

lifecycle enables JSPs to deliver robust, maintainable, and dynamic web applications,

forming a vital part of Java-based web development.

JSP Application Design with MVC provides a systematic approach to developing dynamic

and maintainable web applications by separating the application into three logical

Center for Distance Education 16.12 Acharya Nagarjuna University

components — Model, View, and Controller (MVC). The Model represents the business

logic and data, usually implemented using JavaBeans or POJO classes. The View is

responsible for the presentation layer, created using JSP pages to display data to users. The

Controller, typically implemented as a Servlet, manages the flow of data between the Model

and View by handling user requests, invoking business logic, and forwarding results to the

appropriate JSP page. This separation of concerns improves code organization, simplifies

maintenance, and allows designers and developers to work independently.

16.4 KEY TERMS

JSP (JavaServer Pages), Servlet, Web Container, JSP Lifecycle ,jspInit(),_jspService(),

jspDestroy(), Translation Phase, Compilation Phase, JSP Container, MVC Architecture,

RequestDispatcher

16.5 SELF-ASSESSMENT QUESTIONS

1. Explain the complete JSP processing flow from request to response.

2. Define JSP and list its advantages over Servlets.

3. Describe the lifecycle methods of JSP with suitable examples.

4. Write and explain the steps to execute a JSP example on Apache Tomcat.

5. Compare JSP and Servlets in terms of processing and purpose.

6. Discuss the MVC architecture in JSP applications with an example.

7. Compare traditional JSP applications with MVC-based JSP applications.

8. What is the role of the Controller in the MVC architecture?

16.6 FURTHER READINGS

1. Java: The Complete Reference, Twelfth Edition by Herbert Schildt. McGraw-Hill

Education.

2. Beginning Java Programming: The Object-Oriented Approach by Bart Baesens,

Aimee Backiel, and SeppevandenBroucke. Wiley.

3. Java Programming with Oracle JDBC by Donald Bales. O'Reilly Media.

4. Java EE 8 Application Development by David R. Heffelfinger. Packt Publishing.

5. Professional Java for Web Applications by Nicholas S. Williams. Wrox/Wiley

Publishing.

6. Java 2: Developer's Guide to Web Applications with JDBC by Gregory Brill. Sybex.

7. Beginning JSP, JSF and Tomcat Web Development: From Novice to Professional by

Giulio Zambon& Michael Sekler. Apress.

 Dr. U. Surya Kameswari

