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FOREWORD

Since its establishment in 1976, Acharya Nagarjuna University has been
forging ahead in the path of progress and dynamism, offering a variety of courses
and research contributions. I am extremely happy that by gaining ‘A+’ grade from
the NAAC in the year 2024, Acharya Nagarjuna University is offering educational
opportunities at the UG, PG levels apart from research degrees to students from

over 221 affiliated colleges spread over the two districts of Guntur and Prakasam.

The University has also started the Centre for Distance Education in 2003-
04 with the aim of taking higher education to the door step of all the sectors of the
society. The centre will be a great help to those who cannot join in colleges, those
who cannot afford the exorbitant fees as regular students, and even to housewives
desirous of pursuing higher studies. Acharya Nagarjuna University has started
offering B.Sc., B.A., B.B.A., and B.Com courses at the Degree level and M.A.,
M.Com., M.Sc., M.B.A., and L.L.M., courses at the PG level from the academic
year 2003-2004 onwards.

To facilitate easier understanding by students studying through the distance
mode, these self-instruction materials have been prepared by eminent and
experienced teachers. The lessons have been drafted with great care and expertise
in the stipulated time by these teachers. Constructive ideas and scholarly
suggestions are welcome from students and teachers involved respectively. Such
ideas will be incorporated for the greater efficacy of this distance mode of
education. For clarification of doubts and feedback, weekly classes and contact

classes will be arranged at the UG and PG levels respectively.

It is my aim that students getting higher education through the Centre for
Distance Education should improve their qualification, have better employment
opportunities and in turn be part of country’s progress. It is my fond desire that in
the years to come, the Centre for Distance Education will go from strength to
strength in the form of new courses and by catering to larger number of people. My
congratulations to all the Directors, Academic Coordinators, Editors and Lesson-

writers of the Centre who have helped in these endeavors.

Prof. K. Gangadhara Rao
M.Tech., Ph.D.,
Vice-Chancellor I/c
Acharya Nagarjuna University.
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ANSWER ONE QUESTION FROM EACH UNIT
(Each question carries equal marks)
UNIT-1

Explain the Gauss—Markov model along with underlying assumptions. Also give an example of the same.
Obtain the maximum likelihood estimator of error variance in the normal linear regression model. Derive
its expectation and variance.
Show that in a general linear model the least squares estimators are BLUE.
Derive an expression for the dispersion (variance—covariance) matrix of the BLUE for the parameter
vector of the general linear model.
UNIT-1I
Explain restricted least squares estimation for a general linear model and derive the restricted
LS estimator.
State and prove Aitken’s theorem.
Give the simultaneous estimates of linear parametric functions in a general linear model.
Define estimable function and explain how estimation is modified when observations are correlated.
UNIT-III

Describe the test procedure to test the significance of a single parametric function.
Explain the general linear test procedure to test the significance of multiple hypotheses with an example.
(OR)

Explain analysis of variance for two—way classification with multiple observations per cell. Obtain the

ANOVA table.

Obtain confidence intervals for the least squares estimates in the case of a two-variable linear model.
UNIT-1V

What is simple linear regression? Explain with a suitable example and obtain the partial correlation
coefficient.

Explain the multiple regression in the three—variable case and derive the coefficient of multiple

determination.

(OR)
Define polynomial regression and explain the use of orthogonal polynomials with an example.
Write down and explain the sampling properties of regression coefficients.
UNIT-V
Explain multicollinearity with suitable examples. What are the consequences of multicollinearity and
how can it be detected?
What are ridge regression estimators? Discuss their properties and compare with ordinary least squares.
(OR)
What are principal components? Explain their use in regression analysis by a suitable example.
Explain subset selection of explanatory variables and compare major subset selection procedures.
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LESSON-1
GAUSS-MARKOYV SET-UP

OBJECTIVES:

After completing this lesson, students will be able to:
¢ Understand the Gauss—Markov linear model and its underlying assumptions.

X/

¢ Formulate regression problems using matrix notation.
¢ Derive normal equations and obtain least squares estimates of regression parameters.

X/

¢ Explain and apply the Gauss—Markov theorem and interpret the concept of BLUE.
¢ Compute and interpret variances and covariances of least squares estimators.

X/

¢ Estimate the error variance and assess model adequacy.

s Apply linear regression techniques to real-world data in social sciences, engineering,
economics, and health sciences.

+» Use statistical software to fit and interpret applied regression models.

STRUCTURE:

1.1 Introduction
1.2 Linear Statistical Model
1.3 Assumptions of the Gauss-Markov Model
1.3.1 Gauss—Markov Theorem
1.3.2 Applications of Gauss-Markov Theory
1.4 Matrix Formulation of the Model
1.5 Ordinary Least Squares Estimation
1.6  Properties of Least Squares Estimators
1.6.1 Best Linear Unbiased Estimator (BLUE)
1.6.2 Variance-Covariance Matrix of Estimators
1.7 Estimation of Error Variance and Confidence Intervals and Regions
1.8 Key words
1.9 Summary
1.10  Self-Assessment Questions

1.11  Suggested Reading

1.1 INTRODUCTION:

The Gauss—Markov set-up forms the theoretical foundation of classical linear regression
analysis. It provides a rigorous framework for estimation and inference in linear statistical
models under minimal distributional assumptions. Central to this theory is the Gauss—Markov
Theorem, which establishes the optimality of the Ordinary Least Squares (OLS) estimator
within the class of linear unbiased estimators. This framework underpins much of modern
econometrics, biostatistics, engineering analysis, and social science research.
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Description: Gauss—Markov Set-up

o The Gauss—Markov set-up forms the theoretical basis of linear regression analysis. It
considers the linear model Y = X + &,

o Where the error terms have zero mean, constant variance, and are uncorrelated.

e Under these assumptions, the ordinary least squares method is used to estimate the
unknown parameters. The resulting estimator is shown to be unbiased, and its variance—
covariance matrix can be explicitly derived. The central result of this framework is the
Gauss—Markov Theorem, which states that the least squares estimator is the Best Linear
Unbiased Estimator (BLUE) of the parameter vector.

e The Gauss—Markov set-up provides the foundation for hypothesis testing, confidence

intervals, and analysis of variance in linear models and serves as the basis for more advanced

regression methods.

1.2. LINEAR STATISTICAL MODEL:

Let y4,y,, ..., yn denote observed responses. The general linear statistical model is
y=XpB +¢
where:
e yisann X 1 vector of observations,
e Xis ann X p known design matrix of full column rank p,
e fisap X 1 vector of unknown parameters,
e c¢isann X 1 vector of random errors.
The systematic component Xp represents the mean structure, while ecaptures unexplained
variability.

1.3 ASSUMPTIONS OF THE GAUSS-MARKOV MODEL:

The Gauss—Markov set-up relies on the following assumptions:

1. Linearity: The model is linear in parameters, E(y) = Xf3.

2. Full Rank: rank(X) = p, ensuring identifiability of parameters.

3. Unbiased Errors: E(g) = 0.

4. Homoscedasticity: Var(¢) = o21,,, where 2 > 0.

5. No Correlation: Errors are uncorrelated.
Normality of errors is not required for the Gauss—Markov Theorem, but is often imposed for
exact inference.

1.3.1 GAUSS-MARKOV THEOREM:

Statement: Consider the linear statistical model

y=XpB +¢
where

E(g) = 0,Var (&) = 62l,,
and X is an n X p known matrix of full column rank p.
Then the ordinary least squares estimator

B=&X)"X'y

has minimum variance among all estimators of Sthat are linear and unbiased. Hence, 8 is the
Best Linear Unbiased Estimator (BLUE).
Proof:

Step 1: Consider the class of linear estimators
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Let S =Ay,
be any linear estimator of 5, where Ais a p X nnon-stochastic matrix.

Step 2: Impose the unbiasedness condition
E(B) =B

Now,

E(B) = AE(y) = AXp.
For this to hold for all 3,

AX = I, (1)
Step 3: Variance of a linear unbiased estimator
Since Var (y) = 021,
Var (§) = AVar (y) A' = 624AA’. )

Step 4: Variance of the OLS estimator
The OLS estimator is

p=XX)7XYy.

Therefore,
Var (B) = o?2(X' X)L (3)
Step 5: Difference of variance—covariance matrices
From (2) and (3),
Var (8) — Var (f) = 0?[44" — (X'X)"]. 4)
Step 6: Algebraic decomposition
Define
B=A-(X'X)"1Xx"
Then

BB = AA' —AX'X)"X' — (X'X)"1XA" + (X' X)X’ X (X' X)L
Using the unbiasedness condition AX = [,,,

BB' = AA — (X'X)" . (5)

Step 7: Positive semi-definiteness
Substituting (5) into (4),
Var (B) — Var (B) = 0®BB’ = 0> (A — (X'X) ' X")(A — (X'X)7'X")".

For any vector c,
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¢'BB'c = (B'c)'(B'c) = 0.

Hence,
Var (8) — Var (8) = 0
Step 8: Conclusion

The variance—covariance matrix of any linear unbiased estimator fBis greater than or equal to
that of fin the Loewner sense. Therefore,

f = (X'X)~'X'y is the BLUE.

1.3.2 APPLICATIONS OF GAUSS-MARKOYV THEORY:
e Econometric modeling
e Industrial process optimization
o Experimental design
o Biostatistical dose-response analysis
o Signal processing and calibration problems

1.4 MATRIX FORMULATION OF THE MODEL:
The expectation and variance of yare

E(y) = XB,Var(y) = oI,.
Define the projection (hat) matrix:

H=XX'X)"1Xx"
This matrix projects yonto the column space of X.

1.5 ORDINARY LEAST SQUARES ESTIMATION:

The OLS estimator minimizes the residual sum of squares

SB) = —XB)'(y — XB).

Normal Equations
Differentiating and equating to zero yields

X'XB =X'y.
OLS Estimator

Provided X'Xis nonsingular,

=Xy

1.6 PROPERTIES OF LEAST SQUARES ESTIMATORS:
Under the Gauss—Markov assumptions:

1. Unbiasedness:

EB) = B.
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2. Variance—Covariance Matrix:
Var(B) = oa?(X'X)™!
3. Linearity: Bis a linear function of y.
1.6.1 BEST LINEAR UNBIASED ESTIMATOR (BLUE):

The concept of the Best Linear Unbiased Estimator (BLUE) is central to the
Gauss—Markov theory and classical linear regression analysis. It provides a precise optimality
criterion for estimating the unknown parameter vector fin a linear statistical model.

An estimator ﬁ of B is called BLUE if it satisfies the following three properties:
1. Linearity

The estimator must be a linear function of the observed data y. That is,

B = 4y,

where A is a fixed (non-random) p X n matrix.

This requirement restricts attention to estimators that depend linearly on the observations.
2. Unbiasedness
The estimator must satisfy E(8) = B.

Unbiasedness ensures that, on average, the estimator correctly targets the true parameter
vector and does not systematically overestimate or underestimate it.

3. Best (Minimum Variance)

Among all estimators that are linear and unbiased, the estimator must have the minimum
variance—covariance matrix.

Formally, if f is any other linear unbiased estimator, then
Var (B) — Var () > 0,
meaning the difference is positive semi-definite.
Thus, BLUE is the most precise estimator within the specified class.
Class of Estimators Considered
The Gauss—Markov theorem restricts attention to the class of estimators
L={4y: AX = L,}
This condition arises from unbiasedness:

E(Ay) = AXp = B
Important implications:

o Nonlinear estimators are excluded.
o Biased estimators are excluded.

e Optimality is defined only within this class.
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Why Ordinary Least Squares is BLUE
Under the Gauss—Markov assumptions:
E(y) = XB,Var (y) = oIy,
the ordinary least squares estimator is
p =Xy

It satisfies all three BLUE conditions:

1. Linear:
Bis a linear function of y.
2. Unbiased:

E(B)=X'X)T'X'XB = .

3. Minimum Variance:
Var (B) = a?(X'X)71,
which is smaller than or equal to the variance of any other linear unbiased estimator.
Hence, OLS coincides with the BLUE.
Interpretation of the Word “Best”
The term best refers strictly to variance efficiency, not to closeness in any single sample.
Specifically:

« For any linear function c¢’f, ¢’ has the smallest possible variance among all linear
unbiased estimators of ¢’f.

e No other linear unbiased estimator can uniformly dominate OLS in terms of precision.
BLUE and Distributional Assumptions
A crucial feature of BLUE is that:
e Normality of errors is not required.
e Only the first two moments of are used.
If, in addition,
e ~N(0,021,),

then OLS is not only BLUE but also the minimum variance unbiased estimator (MVUE)
among all unbiased estimators.

BLUE and Generalized Least Squares (GLS)

When the assumption of homoscedastic and uncorrelated errors is violated, i.e.,
Var (¢) = a2V,

the OLS estimator is no longer BLUE.
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In this case, the Generalized Least Squares (GLS) estimator
Bors = X'VIX) X'V
becomes the BLUE under the new covariance structure.
An estimator fis called BLUE if:
e itislineariny,
e it is unbiased,
e it has minimum variance among all such estimators.

Under Gauss—Markov assumptions, OLS = BLUE.

1.6.2 VARIANCE—-COVARIANCE MATRIX OF ESTIMATORS:
For any linear combination c¢’f,

Var(c'f) = o2’ (X'X) .

This result is fundamental for inference on contrasts and parametric functions.

1.7 ESTIMATION OF ERROR VARIANCE:

An unbiased estimator of g?is

52— (v —Xﬁ’)’(y—Xﬁ)_

n—p
Hypothesis Testing under Gauss—Markov Set-up

Consider the general linear hypothesis:
HO: Cﬁ = d,
where C is g X p.

Test Statistic

_©R-d[c )¢~ d)/g.

F 52

Under Hy, F ~ Fy n_p.
Confidence Intervals and Regions

 Individual Confidence Interval for f;:

~

ﬁj t ta/z,n—p\/a-z[(X,X)_l]jj
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o Joint Confidence Region:
(B=BYX'X(B—B) < p6*Fynp(a).
Special Cases and Extensions
1. Simple Linear Regression: p = 2.

Regression Through Origin.

2
3. Generalized Least Squares (GLS): Var(¢) = o2V.
4. Weighted Least Squares.

5

Random Effects and Mixed Models.

1.8 KEY WORDS:

e Linear model

o Gauss—Markov assumptions

o ordinary least squares

e normal equations

o BLUE, variance—covariance matrix
e error variance

e confidence interval

« confidence region

1.9 SUMMARY:

The Gauss—Markov set-up provides the fundamental theoretical framework for
linear statistical models and regression analysis. It begins with the formulation of the
linear model Y = X + & where the response variable is expressed as a linear function of
unknown parameters and a random error term. The model relies on a set of assumptions
regarding linearity, unbiasedness of errors, constant variance, absence of correlation among
errors, and full rank of the design matrix.

Within this framework, the ordinary least squares (OLS) method is used to estimate
the unknown parameters by minimizing the sum of squared residuals. The resulting
estimators are linear functions of the observations and are unbiased. Their precision is
quantified through the variance—covariance matrix, which depends on the error variance
and the structure of the design matrix.

A central result of this theory is the Gauss—Markov Theorem, which establishes that
the OLS estimator is the Best Linear Unbiased Estimator (BLUE) of the regression
parameters. Estimation of the error variance and construction of confidence intervals and
confidence regions enable statistical inference and assessment of model reliability.

The Gauss—Markov set-up forms the cornerstone of classical linear regression
analysis. It justifies the use of ordinary least squares estimation under minimal assumptions,
without requiring normality of errors. The optimality of OLS as the BLUE makes it a
powerful and widely applicable estimation technique in both theoretical and applied contexts.
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Overall, the Gauss—Markov theory provides a strong foundation for applied regression

analysis and remains essential for modern statistical modeling and data analysis.

1.10 SELF-ASSESSMENT QUESTIONS:

1.

Nk Wb

Explain the Gauss—Markov model along with underlying assumptions. Also give an
example of the same.

State and prove the Gauss—Markov Theorem.

Explain why normality is not required for BLUE.

Derive the variance of 5.

Distinguish between OLS and GLS.

Define a linear statistical model. State the assumptions of the Gauss—Markov model.
Obtain the variance—covariance matrix of OLS estimators.

1.11 SUGGESTED READING:

1.

Draper, N. R. & Smith, H. Applied Regression Analysis

2. Montgomery, D. C., Peck, E. A., & Vining, G. G. Introduction to Linear Regression

(98]

Analysis
Rao, C. R. Linear Statistical Inference and Its Applications
Kutner, M. H. et al. Applied Linear Regression Models

Prof. V. V. Haragopal



LESSON-2
NORMAL EQUATIONS AND LEAST SQUARES

ESTIMATES
OBJECTIVES:

After studying this lesson, the student should be able to:

% Understand the theoretical basis of the least squares principle in linear models.
Derive the normal equations for simple and multiple linear regression models.
Obtain least squares estimates using scalar and matrix methods.

Interpret fitted values, residuals, and error components in regression analysis.
Examine the conditions for existence and uniqueness of least squares solutions.
Analyze the statistical properties of least squares estimators.

Apply least squares estimation techniques to practical and real-life data problems.
Use statistical software for computation and interpretation of regression estimates.

/7 X/ /7
LXK X4

X/
X4

L)

R/ X/ R/
LXK X4

STRUCTURE:

2.1 Introduction

2.2 Linear Regression Model and Assumptions

2.3 Least Squares Principle

2.4 Derivation of Normal Equations

2.5 Theorems
2.5.1 Existence and Unbiasedness of Least Squares Estimates
2.5.2 Uniqueness of Least Squares Estimates

2.6 Explicit Form of Least Squares Estimator
2.6.1 Geometrical Interpretation of Least Squares
2.6.2 Residuals and Orthogonality
2.6.3 Estimation of Error Variance

2.7 Applications

2.8 Key Words

2.9 Summary

2.10 Self-Assessment Questions

2.11 Suggested Reading

2.1 INTRODUCTION:

The method of least squares occupies a central position in statistical theory and
practice, forming the foundation of linear regression analysis and the general linear model.
Originating from the works of Gauss and Legendre, least squares provides a systematic and
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optimal procedure for estimating unknown parameters in linear models by minimizing the
discrepancy between observed and fitted values. The resulting estimating equations, known
as normal equations, yield estimators with well-established optimality properties under
standard assumptions.

This chapter develops the theory of normal equations and least squares estimators in a
rigorous and unified manner suitable for university-level study. Emphasis is placed on matrix
formulations, precise notation, formal derivations, existence and uniqueness conditions,
geometrical interpretation, and statistical properties. Applications and illustrative examples
are included to connect theory with practice.

Description

The method of least squares is a fundamental technique used in regression analysis to
estimate unknown parameters in a linear model. It is based on minimizing the sum of squared
differences between the observed values and the corresponding fitted values obtained from
the model.

In this topic, the linear regression model is expressed in matrix form, which allows the
estimation problem to be handled systematically. By applying the least squares criterion, a set
of equations known as the normal equations is obtained. Solving these equations yields the
least squares estimates of the regression parameters.

The existence and uniqueness of the least squares estimates depend on the linear
independence of the columns of the design matrix. The fitted values and residuals are then
defined using the estimated parameters, and the residuals are used to obtain an estimate of the
error variance.

This topic provides the basic mathematical foundation required for further study of
regression analysis, hypothesis testing, and analysis of variance.

2.2 LINEAR REGRESSION MODEL AND ASSUMPTIONS:

Consider a set of observations (y;1,¥,...,V,)0n a response variable and
corresponding values of pexplanatory variables.

The multiple linear regression model is
Vi =PBo+ Brxis + -+ Bpxip + €1 =12,...,n
Assumptions (Gauss—Markov Framework)

Linearity in parameters: The model is linear in By, By, ..., Bp-

Full rank (no exact multicollinearity): The regressors are linearly independent.
Zero mean errors: E(g;) = 0.

Homoscedasticity: Var(g;) = o2 forall i.

Uncorrelated errors: Cov(ei,ej) = 0fori #j.

(Optional for inference)Normality: &; ~ N (0, c2).

AN S e
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Matrix Representation of the Linear Model

V1 Bo €1
v = y:z B = b o= 5:2
Yn

Let

and the design matrix
1 x1 = X
x=[1 o x?p]
[1 Xp1 xan

Then the model is compactly written as

Y=XB+¢,
with E(g) = 0 and Var (&) = ¢2I,,.

2.3 LEAST SQUARES PRINCIPLE:
Definition

The least squares estimator minimizes the residual sum of squares

S(B) = —XB)'(y —XB)
Objective

Find B such that
S(B) = min_S(B)

Be[Rp+1
2.4 DERIVATION OF NORMAL EQUATIONS:
Expanding the sum of squares:
S(B) =y'y = 28Xy + B'X'Xp
Taking the gradient with respect to f:

o5 _ 2X'y + 2X'XfB

Setting the gradient equal to zero yields the normal equations
X'XB =X'Y

Solution of Normal Equations

1. Theorem: Least Squares Solution

Statement:

Let Y = XB + €, where Xis an n X (p + 1)design matrix. If rank (X) = p + 1, then X'Xis
nonsingular and the normal equations X'X8 = X'Y have the unique solution f = (X'X)"'X'y.
Proof :
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Step 1: Linear independence of the columns of X
Since rank (X) =p + 1,

the columns of Xare linearly independent.
Hence, for any nonzero vector a € RP*1, Xa # 0

Step 2: Positive definiteness of X'X

Consider the quadratic form a’X'Xa

This can be written as a’X'Xa = (Xa)'(Xa) =Il Xa |2
Since Xa # Oforalla # 0,a’'X'Xa> 0

Thus, X'Xis symmetric and positive definite.

Step 3: Nonsingularity of X'X
Every real symmetric positive definite matrix is nonsingular.
Therefore, (X'X) ™! exists.

Step 4: Solution of the normal equations
The normal equations are X'Xf = X'y
Premultiplying both sides by (X'X) ™!, we obtain § = (X'X) X'y

Step 5: Uniqueness
Since X'X is nonsingular, the above solution is unique.

p= XXXy

2.5 THEOREMS:

2.5.1 EXISTENCE AND UNIQUENESS OF LEAST SQUARES ESTIMATES
Theorem: Existence of Least Squares Estimates

Statement:

For the linear model y = Xf + ¢,
there exists at least one vector § € RP*that minimizes the residual sum of squares

S(B) = (y = XB)' (y = XB),

irrespective of whether the matrix X'Xis singular or nonsingular.

Proof:

The function S(f)is a quadratic form in fand can be expressed as
SB) =y'y = 2B'X'y + B'X'XB

Since X'X is symmetric and positive semidefinite, the quadratic form S(f) is bounded below.
Therefore, S(f)attains a minimum over RP*+1,

Equivalently, the normal equations
X'XB =X'Y

always admit at least one solution. When X'X is singular, solutions exist in the sense of
generalized inverses.
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Hence, a least squares estimator always exists.
2.5.2 UNIQUENESS OF LEAST SQUARES ESTIMATES:

Statement

The least squares estimator fis unique if and only if rank (X) = p + 1.

Proof:

(Sufficiency)

If rank (X) = p + 1, then the columns of Xare linearly independent. Consequently, the matrix
X'Xis symmetric and positive definite, and hence nonsingular. The normal equations therefore
have the unique solution

p =X XYy

(Necessity)

Suppose rank (X) < p + 1. Then the columns of Xare linearly dependent and X'X is singular.
In this case, the normal equations have infinitely many solutions. Specifically, if B, is a
solution, then for any nonzero vector d satisfying Xd = 0, the vector S, + dis also a
solution.

Hence, the least squares estimator is not unique.

Therefore, the least squares estimator is unique if and only if rank (X) = p + 1.

2.6 EXPLICIT FORM OF LEAST SQUARES ESTIMATOR:

The estimator is linear in y: § = Cy,C = (X'X)™'X’
Expectation E(8) = f
Variance-Covariance Matrix Var (8) = ¢?(X'X)™!

2.6.1 GEOMETRICAL INTERPRETATION OF LEAST SQUARES:

The column space C(X) © R™is the space spanned by the columns of X

Key Result

The fitted vector § = X is the orthogonal projection of yonto C(X).

The projection matrix (hat matrix) is H = X(X'X) !X’

Residuals satisfy X'é = 0, showing orthogonality between residuals and fitted values.
Properties of Least Squares Estimates

Gauss—Markov Theorem

Statement

Under the linear model

y=XB +¢ E(e) =0, Var (&) = 02,
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the least squares estimator Sis the Best Linear Unbiased Estimator (BLUE) of S3.
Proof :
Step 1: General form of a linear estimator

Any linear estimator of fcan be written as

B = Ay,
whereAis a (p + 1) X nmatrix.
Step 2: Condition for unbiasedness
E(B) = AE(y) = AXB

For unbiasedness,

E(B) =B = AX = Iy,

Step 3: Variance of a linear unbiased estimator
Var () = AVar (y)A' = g?AA’
Step 4: Least squares estimator
The least squares estimator is
B = X'X)"Xy.
Its variance is
Var (B) = a?(X'X)"..
Step 5: Variance comparison
Let
D=A-XX)"X.
Then
Var () — Var (f) = ¢2DD’,
which is positive semidefinite.

Hence,Var (8) = Var (B).

Therefore, f is BLUE.

Additional Properties of Least Squares Estimator
(i) Linearity § = (X’X)~'X'y is a linear function of y.
(i) Unbiasedness E(B) = (X'X)"X'E(y) = f.

A P
(ii1) Consistency asn — o, = .

iv) Normality, If € ~ N(0,02]), then B ~ N> (B, a2(X'X)™ 1)
y
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2.6.3 ESTIMATION OF ERROR VARIANCE:

The residual sum of squares is

RSS = g's.
An unbiased estimator of g%is
A2 RSS
- n—(p+1)

Fitted Values and Residuals

o Fitted values: § = Hy

e Residuals: € = (I—H)y
Properties:

e« E(=0

e Var(é) =c?(1-H)

2.7 APPLICATIONS:

1. Simple Linear Regression: Explicit normal equations reduce to familiar scalar
equations for slope and intercept.

2. Polynomial Regression: Linear in parameters despite nonlinear regressors.

3. Econometrics and Engineering: Parameter estimation, calibration, and prediction.

2.8 KEY WORDS:

o Least Squares Estimator
e Normal Equations

e Design Matrix

e Hat Matrix

e Residuals

e Gauss—Markov Theorem
e Projection Matrix.

2.9 SUMMARY:

The method of least squares provides a fundamental approach for estimating unknown
parameters in linear regression models. It is based on minimizing the sum of squared
deviations between observed values and the values predicted by the model. This optimization
leads to a system of equations known as the normal equations, which form the basis for
obtaining least squares estimates.

Using matrix notation, the normal equations are expressed as X'Xf = X'Y and, under
appropriate conditions, yield a unique solution for the parameter vector. The explicit form of
the least squares estimator highlights its dependence on the design matrix and observed data.

Theoretical results establish the existence, uniqueness, and unbiasedness of least
squares estimates when the design matrix has full rank. The geometrical interpretation further
clarifies that least squares estimation corresponds to the orthogonal projection of the
observation vector onto the column space of the design matrix. Residuals are shown to be
orthogonal to the fitted values and explanatory variables, reinforcing the optimality of the
fitted model.
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Estimation of the error variance using residuals provides a basis for statistical

inference, including confidence intervals and hypothesis testing. These concepts are essential
for evaluating model adequacy and reliability in applied regression analysis.

Overall, the least squares framework remains a cornerstone of applied statistics,

offering both theoretical rigor and practical relevance across diverse fields such as
economics, engineering, medicine, and social sciences.

2.10 SELF-ASSESSMENT QUESTIONS:

1.

Derive the normal equations for a multiple linear regression model using matrix
notation.

Prove the existence and unbiasedness of least squares estimates.

Discuss the uniqueness of least squares estimates and the role of the rank of the
design matrix.

Explain the geometrical interpretation of least squares estimation and the concept of
projection.

Define residuals and prove the orthogonality property of residuals with the design
matrix.

Discuss the estimation of error variance in linear regression and its importance in
inference.

2.11 SUGGESTED READING:

1.

W

Draper, N. R. & Smith, H. Applied Regression Analysis

Montgomery, D. C., Peck, E. A., & Vining, G. G. Introduction to Linear Regression
Analysis

Rao, C. R. Linear Statistical Inference and its Applications

Kutner, M. H. et al. Applied Linear Regression Models

Seber, G. A. F. and Lee, A. J., Linear Regression Analysis.

Prof. V. V. Haragopal



LESSON-3
VARIANCE AND COVARIANCE OF LEAST

SQUARES ESTIMATES

OBJECTIVES:

After studying this lesson, the student should be able to:

% Understand the need for measuring variability in least squares estimates.

¢ Define the variance of a least squares estimator and the covariance between two least
squares estimators.

¢+ Obtain the variance-covariance matrix of least squares estimates.Understand the role
of error variance in determining variances of estimators.

s Compute standard errors of least squares estimates.

% Interpret variances and covariances in regression analysis.

% Apply these concepts to assess the precision of parameter estimates.

STRUCTURE:

3.1 Introduction

3.2 Linear Regression Model and Assumptions

3.3 Least Squares Estimator
3.3.1 Variance of Least Squares Estimates
3.3.2 Covariance Between Least Squares Estimates
3.3.3 Variance—Covariance Matrix of Least Squares Estimates
3.3.4 Properties of Variances and Covariances

3.4 Estimation of Error Variance

3.5 Standard Errors of Least Squares Estimates

3.6 Interpretation of Variances and Covariances

3.7 Applications

3.8 Key Words

3.9 Summary

3.10 Self-Assessment Questions

3.11 Suggested Reading

3.1 INTRODUCTION:

An essential aspect of linear regression theory concerns the variability of the least
squares estimators. While point estimates provide fitted values of the regression parameters,
meaningful statistical inference requires an explicit understanding of their variances and
covariances. These quantities quantify estimation uncertainty, determine the precision of
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individual regression coefficients, and form the basis for hypothesis testing, confidence
intervals, and diagnostics such as multicollinearity assessment.

This lesson presents a systematic and rigorous treatment of the variances and
covariances of least squares estimates within the classical linear model framework. Emphasis
is placed on matrix-based derivations, formal theorems with proofs, interpretation of the
variance—covariance structure, and practical implications in regression analysis.

Description:

In regression analysis, least squares estimates provide point estimates of unknown
parameters. To assess the reliability and precision of these estimates, it is necessary to study
their variances and covariances.

This topic examines the variability of least squares estimates under the standard
assumptions of the linear regression model. The variance of an estimator measures the spread
of its sampling distribution, while the covariance between two estimators indicates the degree
of linear association between them.

Using the matrix formulation of the regression model, the variance-covariance matrix
of the least squares estimates is derived. This matrix plays a central role in regression
inference, as its diagonal elements represent variances and its off-diagonal elements represent
covariances.

The error variance is estimated using residuals, and this estimate is used to obtain
standard errors of the regression coefficients. These results form the basis for hypothesis
testing, confidence intervals, and interpretation of regression parameters.

3.2 LINEAR REGRESSION MODEL AND ASSUMPTIONS:

Consider the linear regression model y = Xf + ¢,
Where
e yisann X lvector of observations,
e Xisaknownn X (p + 1) design matrix of full column rank,
e [isa(p+ 1) X 1lvector of unknown parameters,
e ¢isann X 1 vector of random errors.

Standard Assumptions
1. E(e)=0
2. Var (¢) = o?l,
3. rank(X)=p+1
4. (For exact distributional results) e ~ N(0, c%1,).

3.3 LEAST SQUARES ESTIMATOR:

The least squares estimator of Sis defined as the minimizer of

S(B) = —XB)'(y — XB)

B = XXXy

Under the full-rank assumption,
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3.3.1 VARIANCE OF LEAST SQUARES ESTIMATES:

Theorem -1(Variance of the Least Squares Estimator)
Under the classical linear model assumptions, Var (8) = ¢2(X'X)!

Proof:
Since fis a linear function of y,
f=XX)TXXB+e)=F+XX)Xe
Taking variances,
Var (£) = (X'X)"1X'Var (¢)X(X'X) ™!
Using Var (&) = 021,
Var (f) = o?(X'X)"IX'X(X'X)"! = o2 (X'X) !

3.3.2 COVARIANCE BETWEEN LEAST SQUARES ESTIMATES:
Let ﬁjand Brdenote two components of 3.

Definition:

The covariance between 3 jand Bris given by the (j» k)th element of Var ().

That is,

Cov (B, Br) = a2 [(X'X) ™

Nonzero covariances indicate linear dependence among the estimators, often arising from
correlation among regressors.

Theorem-2 Covariance Between Least Squares Estimates

Statement:
Let fjand fbe the jth and kth components of 3. ThenCov (8}, i) = o2 [(X'X) 1%

Proof:

From Theorem 1, Var () = o?(X'X)™?

By definition, the (j» k)th element of the variance—covariance matrix equals Cov (ﬁj, Br)
Hence, Cov (ﬁj,ﬁk) = o2[(X'X) "k

3.3.3 VARIANCE-COVARIANCE MATRIX OF LEAST SQUARES
ESTIMATES:
The full variance—covariance matrix is

Var (B) = o2 (X'X)!
Structure
o Diagonal elements: variances of individual parameter estimates

o Off diagonal elements: covariances between parameter estimates

The matrix is symmetric and positive definite under the full-rank assumption.
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Theorem-3 (Variance-Covariance Matrix of Least Squares Estimates)
Statement:

The full variance—covariance matrix of fis Vz =o?(X'X)7,
which is symmetric and positive definite.

Proof:
o Symmetry follows since (X'X)lis symmetric.
o Positive definiteness follows from the positive definiteness of X'Xwhen rank (X) = p +
1.

3.3.4 PROPERTIES OF VARIANCES AND COVARIANCES:

1. Dependence on design: Variances depend solely on Xand 2.

2. Effect of multicollinearity: Near-linear dependence among regressors inflates
variances.

3. Orthogonality: If columns of Xare orthogonal, covariances vanish.

4. Scale sensitivity: Rescaling regressors alters variances of corresponding coefficients.

3.4 ESTIMATION OF ERROR VARIANCE:

Since o2is unknown, it is estimated by

Where ¢ =y — Xf

Theorem-4 (Unbiased Estimator of Error Variance)
Statement:

Al a

is an unbiased estimator of o 2.

The estimatoré? =
n—(p+1)

Proof :
Step 1: Express residuals
&= (I-HyH=XXX)"X'
Step 2: Residual sum of squares
&'é

y'(I — mathbfH)y
Step 3: Take expectation
Using properties of quadratic forms,
E(¢'8) =c*tr 1—H)

Step 4: Evaluate the trace

tr(H)=rank(H) =p+1Ltr(-H)=n—-(p+1)
Step 5: Conclude
E(&'8)

E(&Z) :m: 0'2.

3.5 STANDARD ERRORS OF LEAST SQUARES ESTIMATES:

The standard error of 8 18 defined as

SE (B)) = [62[(X'X)~1];
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Standard errors quantify the precision of individual regression coefficients and are
fundamental to inference procedures.

3.6 INTERPRETATION OF VARIANCES AND COVARIANCES:

o Large variances indicate imprecise estimation
o Large covariances suggest strong dependence among coefficient estimates
o Correlation coefficients between estimates can be computed as

Cov (B, Br)
Var Bvar (B

Pjk =

3.7 APPLICATIONS:

Simple Linear Regression: Closed-form expressions for Var (8,) and Var (5,).
Multicollinearity Diagnosis: Variance inflation factors derived from diagonal elements.
Experimental Design: Choice of Xto minimize estimator variances.

Construction of confidence intervals for regression coefficients

Hypothesis testing in regression models

Interpretation of regression output from software packages

3.8 KEY WORDS:

Least squares estimator
Variance

Covariance
Variance-Covariance matrix
Error Variance

Standard Error
Multicollinearity
Regression Inference

3.9 SUMMARY:

In linear models and applied regression analysis, the study of the variance and
covariance of least squares estimates is essential for understanding the reliability and
precision of estimated regression coefficients. While least squares estimation provides point
estimates of parameters, their usefulness depends on how much these estimates vary across
repeated samples.

Under the standard linear regression assumptions, the least squares estimator is linear
and unbiased, and its variability is fully described by the variance-covariance matrix. The
variances of individual regression coefficients measure their precision, while the covariances
describe the degree of association between different parameter estimates. These quantities
depend on the error variance and the structure of the design matrix, highlighting the role of
data configuration and multicollinearity.

Estimation of the error variance using residuals enables practical computation of
variances, covariances, and standard errors. These measures form the basis for constructing
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confidence intervals, conducting hypothesis tests, and interpreting regression output in
applied work.

The variance and covariance of least squares estimates provide the statistical
foundation for inference in linear regression models. They allow researchers to assess the
accuracy and stability of parameter estimates and to understand the relationships among
estimated coefficients.

A clear understanding of these concepts enables:

o Evaluation of the precision and significance of regression coefficients

e Detection of issues such as multicollinearity and inefficient model design

e Proper interpretation of regression results in real-world applications

Overall, the analysis of variances and covariances complements least squares

estimation by transforming point estimates into meaningful inferential statements. It is a
crucial component of linear models and applied regression analysis across diverse scientific
and practical domains.

3.10 SELF-ASSESSMENT QUESTIONS:

1. Derive the variance—covariance matrix of least squares estimators in a multiple linear
regression model.

2. Explain the properties of variances and covariances of least squares estimates.

. Discuss the estimation of error variance and its role in regression inference.

4. Explain how variances and covariances of regression coefficients are used in
constructing confidence intervals and hypothesis tests.

5. Discuss the interpretation of variance and covariance of least squares estimates with
suitable examples.

6. For a regression model, explain how multicollinearity affects the variances and
covariances of least squares estimates. Illustrate with a suitable example.

(O8]

3.11 SUGGESTED READING:

. Draper, N. R. & Smith, H. Applied Regression Analysis

. Montgomery, D. C., Peck, E. A., & Vining, G. G. Introduction to Linear Regression
Analysis

. Rao, C. R. Linear Statistical Inference and its Applications

. Kutner, M. H. et al. Applied Linear Regression Models

Seber, G. A. F. and Lee, A. J., Linear Regression Analysis.
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LESSON -4
ESTIMATION OF ERROR VARIANCE

OBJECTIVES:

¢ Understand the role of error variance in linear regression models
Derive the unbiased estimator of error variance under the linear model framework
Explain the relationship between residuals and error variance estimation
Analyze the effect of model assumptions on the estimation of error variance
Use error variance estimates to compute standard errors of regression coefficients
Apply error variance estimation in constructing confidence intervals and hypothesis
tests
Interpret error variance estimates in applied regression problems
Implement error variance estimation using statistical software
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STRUCTURE:

4.1 Introduction

4.2 Error Term and its Assumptions

4.3 Residuals and Error Decomposition

4.4  Sums of Squares for Error

4.5 Degrees of Freedom and Mean Square Error

4.6 Estimation of Error Variance

4.7 Sampling Properties of the Variance Estimator
4.7.1 Role of Error Variance in Statistical Inference

4.8 Key Words

4.9 Summary

4.10 Self-Assessment Questions

4.11 Suggested Reading

4.1 INTRODUCTION:

In linear regression analysis, the variability observed in the response variable cannot be
completely explained by the systematic component of the model. This unexplained variation
is attributed to random disturbances, collectively represented by the error term. Quantifying
this variability is fundamental to statistical inference in regression, as it governs the precision
of parameter estimates, the construction of confidence intervals, and the validity of
hypothesis tests.

The estimation of error variance, denoted by ¢, is therefore a central problem in regression
theory. This chapter develops the theoretical framework for estimating o2under the classical
linear regression model, derives its estimators, examines their sampling properties, and
highlights their role in statistical inference.

Description: Estimation of error variance

Estimation of error variance is a core statistical topic focused on quantifying the inherent,
unexplained variability (¢2) in a model (like regression), crucial for hypothesis testing,
confidence intervals, and model evaluation, often achieved by dividing the residual sum of
squares (SSE) by its degrees of freedom (n-p) to get the Mean Squared Error (MSE), an
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unbiased estimator, though complex high-dimensional or small-sample scenarios require
advanced methods like adaptive lasso or cross-validation for accurate results.

4.2 ERROR TERM AND ITS ASSUMPTIONS:

Error Term (€)
Consider the multiple linear regression model
y=Xf +¢

Where

e yisann X 1 vector of observations

e Xisann X p design matrix of full rank p

e [isap X 1vector of unknown parameters

e cisann X 1 vector of random errors.
The error term ¢; represents the combined effect of omitted variables, measurement error, and
inherent randomness.

Variance of the Error Term (0?)
It is assumed that
Var (¢) = 0?1,

where g2 > 0 is an unknown constant representing the common variance of the errors.
Assumptions about Error Variance
The classical regression model imposes the following assumptions on the error structure:
1. E(e)=0
2. Var (¢) = a?l,
3. & and g; are uncorrelated for i # j
4. (For exact inference) € ~ N(0,021,)

Homoscedasticity
Homoscedasticity refers to the assumption that the variance of the error term is constant
across all observations:

Var (g;) = o2Vi
Violation of this assumption (heteroscedasticity) leads to biased variance estimates and
invalid inference.

Constant Error Variance Assumption
The assumption Var(e) = o?l ensures that ordinary least squares estimators are efficient
under the Gauss—Markov theorem and permits unbiased estimation of ¢ 2.

4.3 RESIDUALS AND ERROR DECOMPOSITION:

Residuals
The ordinary least squares (OLS) estimator of 8 is
B = (xXN)7IX'y

The vector of residuals is defined as
e=y—-9J=y—XpB
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Fitted Residuals
Residuals are observable quantities and serve as estimates of the unobservable errors €. They
satisfy
e=(I-H)y
where H = X(X'X) !X’ is the hat matrix.

Relationship between Errors and Residuals
Residuals differ from true errors due to parameter estimation. Specifically,
E(e) = 0,Var (e) = a?(1 — H).

Thus, residuals are correlated and have unequal variances, even when errors are
homoscedastic.

4.4 SUMS OF SQUARES FOR ERROR:

Residual Sum of Squares (RSS)
The residual sum of squares is defined as
RSS = ¢€’e

Error Sum of Squares (SSE)
In regression analysis, RSS and SSE are used interchangeably:

n

SSE = ) ¢

i=1
Relationship between SSE and o2
Using properties of quadratic forms,

E(SSE) = (n — p)o?

This result forms the basis for unbiased estimation of the error variance.
4.5 DEGREES OF FREEDOM AND MEAN SQUARE ERROR:

Degrees of Freedom for Error (n — p)
The number of independent pieces of information available to estimate o2is reduced by the
estimation of pregression parameters.

Mean Square Error (MSE)

The mean square error is defined as
SSE

n—p

MSE =

Estimated Standard Deviation of Errors
The estimator of the standard deviation of the errors is

6 = VMSE
4.6 ESTIMATION OF ERROR VARIANCE:
Estimator of Error Variance

An estimator of ¢2is any statistic based on the sample that approximates the true variance of
the errors.
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Unbiased Estimator of a?

Proof of Unbiasedness

E"ZzLESSEz2
(67) = 5 E(SSE) = 0

Maximum Likelihood Estimator (MLE) of ¢>
Under normality,

SSE
G2 =—
n
Comparison: MLE vs Unbiased Estimator

Property MLE Unbiased Estimator
Bias Biased downward Unbiased
Variance Smaller Larger
Used in inference No Yes

4.7 SAMPLING PROPERTIES OF THE VARIANCE ESTIMATOR:

Sampling Distribution of MSE
If € ~ N(0,52]), then

(n—p)é*
Q7 " Xa-p

Properties of Error Variance Estimator

. Unbiased
. Consistent
. Scaled chi-square distribution

Consistency of a2Estimator

~2 P 2
6% > o%asn >

Efficiency of Estimator
Among unbiased estimators based on residuals, 62has minimum variance under normality.

Effect of Model Degrees of Freedom
As pincreases, n — pdecreases, inflating the variance of 62.

4.7.1 ROLE OF ERROR VARIANCE IN STATISTICAL INFERENCE:

Use of MSE in Inference
MSE is used to estimate the covariance matrix of f:
Var (B) = o2 (X'X)!
Role in Confidence Intervals
Confidence intervals for regression coefficients depend directly on 62.
Role in Hypothesis Testing
Test statistics (t and F) use MSE as the denominator, making accurate variance estimation
essential.
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4.8 SUMMARY:

In linear models and applied regression analysis, the error variance represents the portion of
variability in the response variable that is not explained by the regression model. Accurate
estimation of this variance is essential because it quantifies random error and underpins all
procedures of statistical inference.

The estimation of error variance is based on residuals, which measure the differences
between observed and fitted values. By using the residual sum of squares (RSS) and adjusting
for the loss of degrees of freedom due to parameter estimation, an unbiased estimator of the
error variance is obtained. This adjustment ensures that the estimator correctly reflects the
true variability of the error term.

Under standard model assumptions, particularly normality of errors, the estimator of error
variance has well-defined sampling properties, including a chi-square distribution. These
properties allow for interval estimation and hypothesis testing related to both model
parameters and overall model adequacy.

A sound understanding of error variance estimation enables analysts to:

. Evaluate model fit and unexplained variability
. Perform valid statistical inference on regression parameters
. Compare competing models and assess predictive performance

In practice, careful estimation and interpretation of error variance are essential for meaningful
and reliable regression analysis across scientific, economic, and engineering applications.

4.9 KEY WORDS:

Error term

Residuals

Error sum of squares
Mean square error
Degrees of freedom
Error variance
Sampling distribution
Chi-square distribution
Statistical inference

4.10 SELF-ASSESSMENT QUESTIONS:

Define error variance and explain its importance.

State the assumptions of the error term in a linear regression model.
Derive the estimator of error variance.

Explain the role of degrees of freedom in variance estimation.

State the sampling distribution of the error variance estimator.

How is error variance used in hypothesis testing?

A
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4.11 SUGGESTED READING:

1.

Nk

Montgomery, D.C., Peck, E.A., Vining, G.G. Introduction to Linear Regression
Analysis, Wiley

Weisberg, S. Applied Linear Regression, Wiley

Graybill, F.A. Matrices with Applications in Statistics, Wadsworth

Rao, C.R. Linear Statistical Inference and Its Applications, Wiley

Draper, N.R., Smith, H. Applied Regression Analysis, Wiley.

Prof. V. V. Haragopal



LESSON-5
ESTIMATED WITH CORELATED
OBSERVATIONS

OBJECTIVES:

After studying this Lesson, the learner will be able to:
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Understand the concept of correlated observations arising in regression and other
statistical models.

Identify the consequences of violating the independence assumption.

Explain autocorrelation and correlated error structures, including common models
(AR(1), MA(1), compound symmetry).

Apply Generalized Least Squares (GLS) for parameter estimation when observations
are correlated.

Use Maximum Likelihood Estimation (MLE) for models with correlated errors.
Estimate variance and construct confidence intervals under correlated observations.
Compare estimation efficiency between independent-error models and correlated-
error models.

Apply methods to real situations such as time-series and repeated-measures data.

STRUCTURE:

5.1 Introduction

5.2 Concept of Correlated Observations

5.3 Notations and Definitions

5.3.1 Variance-Covariance Matrix of Errors

5.3.2 Common Correlation Structures

5.3.3 Problems Caused by Correlated Errors

5.3.4 Generalized Least Squares (GLS) Estimator

5.3.5 Maximum Likelihood Estimation with Correlated Errors

5.4 Bias and Mean Square Error

5.4.1 Estimation of Variance and Confidence Intervals

5.4.2 Autocorrelation Models in Regression
5.4.3 AR(1) Model

5.4.4 Other Time-Series Error Structures

5.5 Estimation in Repeated-Measure or Clustered Data

5.6 Comparison with Ordinary Least Squares (OLS)

5.7 Summary

5.8 Key Words
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5.9 Self-Assessment Questions

5.10 Suggested Reading

5.1 INTRODUCTION:

In many statistical modelling situations-especially in regression analysis, time-series data,
longitudinal designs, and clustered sampling-the assumption of independence of errors is
unrealistic. Observations collected sequentially or within similar groups often exhibit
correlation. When correlation among errors is ignored, the classical ordinary least squares
(OLS) estimator becomes inefficient and its variance estimates become biased, leading to
invalid statistical inference.

The study of estimation under correlated observations therefore extends classical linear
model theory by allowing the error vector to follow a general variance-covariance structure.
This framework is essential in econometrics, biostatistics, engineering, and the analysis of
repeated measures.

Description

In some data sets, observations are correlated due to time effects, spatial relationships, or
repeated measurements. In such cases, the assumption of independent errors in the regression
model is violated. Although the ordinary least squares estimator remains unbiased, it is not
efficient and gives incorrect standard errors. To obtain efficient estimates and valid inference,
Generalized Least Squares (GLS) is used, which accounts for the correlation among
observations.

5.2 CONCEPT OF CORRELATED OBSERVATIONS:

Let
Y =(Y,...Y)
be the observed response vector. Observations are said to be correlated if
Cov (V;,Y;) # Ofor some i # j.
Correlation arises from:
Time dependence (autocorrelation),
Cluster-wise dependence,
Spatial dependence,
Repeated measurements on the same subject,
e Measurement error propagation.
In such cases the classical assumptionCov(e) = o1, is violated.

5.3 NOTATIONS AND DEFINITIONS:

Consider the general linear model
Y=X[F+¢
where
e Yisann X 1vector
e Xisann X p design matrix of full rank p
e [isap X 1 vector of unknown parameters
e cisann X 1 error vector
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Definition (Correlated Error Model):
Errors follow
E(e)=0,Cov(e) =X
where X is a known or specified positive definite matrix, not necessarily proportional to the
identity matrix.

Definition (Generalized Least Squares Problem)
Given correlated errors, find an estimator of fminimizing the generalized quadratic form

QB = —XB)T™'(Y - XpB)
5.3.1 Variance-Covariance Matrix Of Errors:

The structure of ¥ = Var(e) determines the nature of correlation.
General form:

011 012 O1n

021 022 O2n
Z = H

On1 On2 Onn

Properties:

e symmetric

e positive definite

e invertible
Examples: Time-series matrices are Toeplitz, while cluster-based matrices show block-
diagonal structure.

5.3.2 Common Correlation Structures:

(1) Compound Symmetry (CS)
2= 02[(1 - p)ln + p]n]
(i1) Autoregressive of order 1 (AR(1))
Eij — 0.2p|i—j|
(ii1)) Moving Average MA (1)

a?(1+6?%), i=j,
Lj={ o?%0, li—jl=1,
0, otherwise.

(iv) Block-diagonal (Cluster correlation)
E = dlag (21,22, ...,Zk)

5.3.3 Problems Caused By Correlated Errors:

If OLS is applied:
1. Estimator remains unbiased:

E(BoLs) =B
2. Variance is no longer minimal:
Var (BoLs) = o2(X'X)"1X'2X(X'X) ™!
Inefficient estimators (not BLUE)
4. Standard errors are incorrect, leading to:
o invalid t-tests
o invalid F-tests

(98]
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o wrong confidence intervals
5.3.4 Generalized Least Squares (Gls) Estimator:

Theorem - 1 (Generalized Least Squares Estimator)
Statement: Consider the linear model Y = Xf + &, where

e Yisnxl1
e Xisn X pwithrank p
e E(e)=0

e Var(¢) =c?V
where V is a known positive definite n X n matrix.
The GLS estimator of Sis

Bers = X'VIX)IX'V-1y

Proof :
Step 1: Define the GLS objective function
GLS minimizes the generalized sum of squares
QB =Y —XB)Y'VH(Y —XB)

This is a quadratic function in S.

Step 2: Expand Q(f)Multiply the terms:
QB =Y VIY—-YVIXg-p' X'V Iy + p'X'VIXpB
Since all terms are scalars,
Y'VIXp =p'X'V-ly
Thus,
QB =Y'Vy = 28'X'V7 Iy + B'X'V71XpB

Step 3: Differentiate w.r.t. §
Use matrix derivative:

. % (B'AB) = 2ABwhen Ais symmetric
d o
2B =b
Here X'V ~1Xis symmetric.
Derivative:
90

— = =2X'V7lY +2X'VIX
B p

Step 4: Equate derivative to zero
=2X'V7IYy + 2X'V71Xp =0

Divide by 2:
XV IXg=Xx'v-1ly

Step 5: Solve for 8
Since X'V ~1Xis nonsingular (rank p):
Bors = X'VIX)T'X'VlY
Conclusion, |Bs = X'VIX)"IX'V-ly
This completes the proof.
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Theorem 2. (Unbiasedness and Variance of GLS Estimator)
Statement: Under the model

Y =XB +¢&E(e) =0,Var (¢) = o2V
the GLS estimator satisfies:

1. Unbiasedness |E (B¢s) = B
Variance |Var (Bg.s) = 02(X'V™1X)™1

Proof :
Step 1: Write GLS estimator

g =XV IX)"IX'V-ly
Part A: Unbiasedness

Step 2: Take expectation

EB) = X'V IX)"IX'VIE(Y)
Since
E(Y) = Xp, substitute:

EB) = X'V X'V (XB)

Step 3: Simplify using associativity
EB)=XVIN)TXVIOB
Step 4: Use inverse property
XvX)TN(XVTX) =1,
Thus, EB)=LB=p
Conclusion (Unbiasedness) E (BsLs) =

Part B: Variance

Step 5: Use formula
Var (8) = (X'V-1X)"1X'V-Var (Y)V1X(X'V-1x)"?

Step 6: Substitute Var (Y) = a2V
= X'V IX) X'V (V) VIx(x'v-ix)T?

Step 7: Simplify V-1yy-t =y~1
= 2(X'VIX) XV (XY X))

Step 8: Collapse the middle terms
Xx'v-1
cancels with one of its inverses:
— 0.2 (XIV—1X)—1
Conclusion (Variance)

Var (Bgrs) = o2(X'V1x)™?

Theorem - 3 (GLS is BLUE - Generalized Gauss-Markov)
Statement: Among all linear unbiased estimators of the formf = CY that satisfyE(f) = f3,
the GLS estimator has minimum variance.
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Proof:
Step 1: General linear estimator
Letf = CY

where C is any p X n matrix.

Step 2: Impose unbiasedness

E(B)=CE(Y)=CXB=p

Thus,

o
This is the unbiasedness condition.

Step 3: Variance of any linear unbiased estimator
Var () = C(a?V)C' = a?CVC’

Step 4: Write GLS estimator

g =XV 1IX)"IX'V-ly
Thus GLS corresponds to

Co=XVIx)"1x'v-1t

Step 5: Compare variance matrices
We need to prove:
CVC' — CyVCy is positive semi — definite
Equivalent to showing:
Var () — Var (Bgs) = 0

Step 6: Use unbiasedness constraint
LetC=Cy+D
Using condition (1):
CX=1,=>(Cy+D)X =1,
But CoX = Ip(can be shown by
Thus: DX = 0 (2)

Step 7: Expand variance of 8
Var (8) = a%(Cy + D)V(Cy + D)’
Expand:= a2(C,VCq + CoVD' + DVCs+ DVD')

Step 8: Show cross-terms vanish
We show:

CoVD' = 0andDVCy = 0
Using (2):

DX=0

One can show that C,V = (X'V~1X)71x’
Thus,CoVD' = (X'V7IX)"1X'D' = (X'V1X)"1(DX) =0
Similarly for the transpose.
Thus variance reduces to:Var (8) = a2(C,VC4 + DVD")

substitution).
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Step 9: Subtract variance of GLS
Var (8) — Var (B¢s) = 02DVD’

Step 10: Show DV D'is positive semidefinite
For any vector a,
a'(DVD")a = (D'a)'V(D'a) 2 0
since V is positive definite.
Thus:DVD' = 0
Conclusion

Var (B) = Var (Bg.s)
Hence GLS is the Best Linear Unbiased Estimator (BLUE)
This completes the proof.

Corollary - Reduction to OLS
IfX = 21, then X'S1X = %X’X and
Bors = X'EX)TIX'ETY = (X' X)TIX'Y = foys

> Properties of GLS:

1. Unbiased:E (Bss) = B

2. Variance:Var (Bg.s) = (X'Z71X) 7!

3. BLUE (Gauss—Markov Theorem Extension): Among all linear unbiased estimators,

GLS has minimum variance.

5.3.5 Maximum Likelihood Estimation With Correlated Errors:

Assume € ~ N(0,X)
Likelihood

1 1
L") = Gy P -5 (0 = XS = X))

MLE of 8
Maximization w.r.t. 8 yields exactly the same estimator:

) BuLe = ﬁGLS
MLE of o

1 R "
6% = " (Y —XPBs1s)' 7Y — XBers)
5.4 BIAS AND MEAN SQUARE ERROR (MSE):

Bias

Bias (ﬁcLs) =0
MSE

MSE (BeLs) = Var (Bors) = (X'271X)71
GLS has strictly smaller MSE than OLS when errors are correlated.

5.4.1 Estimation of Variance and Confidence Intervals:

Estimator of Variance
52 = (Y — XBers) T (Y — XPsrs)
n—p
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Confidence Interval
For the j-th component of f3:

Bj + tn—p, a/2 /(X’Z_lx);jl

5.4.2 Auto Correlation Models In Regression:

When errors follow
E = PE—1 T Ut
the covariance structure becomes Toeplitz.

5.4.3 Ar (1) Model:

Error Structure
Lj=o2ppl<1
Transformation Method
Let Tbe the Cholesky factor such that
T'T =371
Define
Y*=TY,X*"=TX
Then apply OLS to the transformed model
Y*=X"B+¢&" Var (") =1
This yields GLS.

5.4.4 OTHER TIME-SERIES ERROR STRUCTURES:

AR(p)
ARMA(p,q)
Random walk errors
o State-space errors
For each case, GLS remains valid with appropriate £ 1

5.5 ESTIMATION IN REPEATED-MEASURE OR CLUSTERED DATA:

If observations belong to groups with random subject effects:

!

Yij = xiiB + b; + &,

where

. b;introduces within-subject correlation,
. Var (b;) = 12

. Var (g;;) = o?

Then

3 =0l +1Y
GLS or Mixed Model Estimation (REML) is applied.



Centre for Distance Education 59 Acharya Nagarjuna University

5.6 COMPARISON WITH ORDINARY LEAST SQUARES (OLS):

Feature HOLS HGLS

Error assumption H Y =021 HArbitrary positive definite X
Efficiency HNot efficient under correlationHEfﬁcient

Variance formula HIncorrect if T # g%l HCorrect

BLUE? HOnly under independence HAlways under known X
Computational complexity|Simple More complex (needs =71)

5.7 SUMMARY:

In this unit, the concept of estimation with correlated observations has been systematically
developed within the framework of linear models and applied regression analysis. Unlike the
classical regression setting, where error terms are assumed to be independent, many real-
world data structures such as time-series, longitudinal, repeated-measure, and clustered data
exhibit correlation among observations. Ignoring such correlation leads to inefficient
estimators and invalid statistical inference.

The unit began with an introduction to the nature and sources of correlated observations,
highlighting situations where the independence assumption of errors is violated. Appropriate
notations and definitions, particularly the variance-covariance matrix of the error vector, were
introduced to formally represent correlation among errors. Common correlation structures,
including compound symmetry, autoregressive, and block-diagonal forms, were discussed
along with the practical problems caused by correlated errors, such as biased standard errors
and misleading hypothesis tests.

To address these issues, the Generalized Least Squares (GLS) estimator was introduced as a
natural extension of Ordinary Least Squares. The GLS estimator accounts for the known
variance—covariance structure of the errors and was shown to be the Best Linear Unbiased
Estimator (BLUE) under correlated error assumptions. When the error covariance matrix is
unknown, the Maximum Likelihood Estimation (MLE) approach and feasible estimation
procedures provide practical solutions.

The unit further examined bias, mean square error, and efficiency of estimators under
correlated errors, emphasizing the superiority of GLS over OLS in terms of variance
reduction. Methods for estimating error variance and constructing confidence intervals under
correlation were also discussed. Special attention was given to autocorrelation models,
particularly the AR(1) process, and other time-series error structures commonly encountered
in regression analysis.

Estimation techniques for repeated-measure and clustered data were explored, illustrating
how correlation within clusters affects estimation and inference. A detailed comparison
between OLS and GLS highlighted that while OLS estimators remain unbiased under
correlated errors, they are no longer efficient, and their associated inferential procedures
become unreliable.

In conclusion, this unit establishes that proper modeling of correlation in regression errors is
essential for valid estimation and inference. The use of GLS and related methods ensures
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efficiency and correctness of results in the presence of correlated observations. These
concepts form a crucial foundation for advanced topics in econometrics, biostatistics,
longitudinal data analysis, and applied statistical modeling.

5.8 KEY WORDS:

Correlated observations
Variance—covariance matrix
Generalized Least Squares (GLS)
Autocorrelation

AR(1) process

Multivariate normality
Toeplitz matrix

Cholesky transformation
Compound symmetry
Clustered data

Linear model
Gauss—Markov theorem

5.9 SELF-ASSESSMENT QUESTIONS:

1. Define correlated observations. Give two real-life examples. State and prove the GLS
estimator for 3.

2. Explain estimation under linear restrictions. Derive the restricted LS estimator for a
general linear constraint.

3. Why is OLS inefficient when errors are correlated? Explain the structure of the AR(1)
covariance matrix.

4. Derive the variance of the GLS estimator. Show that GLS reduces to OLS when X =
a?l.

5. State the likelihood function under correlated normal errors. Derive the MLE of
o?under correlated errors.

6. What is compound symmetry? Give its covariance matrix. Explain the Cholesky
transformation method for GLS estimation.

7. Compare OLS and GLS in terms of variance and efficiency. Describe the covariance
structure in repeated-measure models.

5.10 SUGGESTED READINGS:

1. Graybill, F.A. (1983): Matrices with Applications in Statistics. Wadsworth.

2. Draper, N.R. & Smith, H. (1998): Applied Regression Analysis, 3rd Ed. Wiley.

3. Montgomery, Peck & Vining (2012): Introduction to Linear Regression Analysis,
5th Ed. Wiley.

4. Goon, Gupta & Das Gupta (2003): An Outline of Statistical Theory, Vol. II, World Press.

5. Weisberg, S. (2013): Applied Linear Regression, 4th Ed. Wiley.
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LESSON-6
LEAST SQUARES ESTIMATES WITH

RESTRICTION ON PARAMETERS
OBJECTIVES :

After completing this unit, students will be able to:
Understand the need for parameter restrictions
Formulate linear models with restricted parameters
Derive the Restricted Least Squares (RLS) estimator
Study the statistical properties of restricted estimators
Compare restricted and unrestricted estimators
Perform hypothesis testing using parameter restrictions
Apply restricted least squares in practical situations.
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STRUCTURE:

6.1 Introduction

6.2 Review of Ordinary Least Squares (OLS)

6.3 Introduction to Parameter Restrictions

6.4 Least Squares Estimation with Restrictions

6.5 Properties of Restricted Least Squares Estimators
6.6 Testing the Validity of Restrictions

6.7 Applications and Examples

6.8 Key Words

6.9 Summary

6.10 Self-Assessment Questions

6.11 Suggested Reading

6.1 INTRODUCTION:

In many statistical modeling situations, particularly in regression and ANOVA, one may
encounter a priori restrictions on the regression parameters. These restrictions can arise from:

e theoretical considerations,

e structural constraints (e.g., sum-to-zero),

e cconomic identities (e.g., budget constraints), or

¢ identifiability requirements in coded models.
The ordinary least squares (OLS) estimator does not directly incorporate such constraints.
Therefore, Restricted Least Squares (RLS) provides a framework to estimate parameters
subject to known linear restrictions.

This chapter develops theory, methods, proofs, and applications of least squares estimation
with linear restrictions of the form: R = r
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Description:

Least Squares Estimation (LSE) is the most fundamental method used in regression analysis

to estimate the unknown parameters of a linear model. In the standard linear model
Y=XB+¢

the goal is to obtain estimates of the regression coefficients B that describe how the response

variable varies with one or more predictor variables. The method of least squares selects

parameter estimates by minimizing the sum of squared deviations between observed

responses and the fitted values.

Both references—Montgomery, Peck & Vining (2012) and Weisberg (Applied Linear
Regression)—emphasize that least squares methods are grounded in geometry, optimization,
and probability theory. The fitted regression vector

Y =Xp
represents the orthogonal projection of the observed data onto the column space of the design
matrix X.

6.2 REVIEW OF ORDINARY LEAST SQUARES (OLS):

Consider the classical linear model:
Y=XF+¢

where

e Yisann X 1 vector of observations

e Xisann X p full column-rank design matrix

e fisap X 1vector of unknown parameters

e ¢isann X 1 vector of random errors
Assumptions:

E(e) = 0,Var(¢) = 621,

OLS Estimator
The OLS estimator minimizes the residual sum of squares:

SB) =¥ =XB)'(Y —XB)
Theorem 1 (OLS estimator)

Claim. The vector Sthat minimizes the residual sum of squares

SB) = -XB)'(Y = XB)

Is| f=X'X)"'X'Y

Proof:
1. Write the objective in expanded form
SBH=Y-XB'Y-XB)=Y'Y=2Y'XB+B'X'XB
This is a scalar quadratic function in the vector .

2. Compute the gradient with respect to £.
Use standard matrix derivatives (derivative of B'ABis (A + A")Band derivative of a
linear form c’pis c). Since X' Xis symmetric,

as(B) _ , ,
T 2X'Y +2X'XB
3. Set the gradient to zero (first-order necessary condition).
—2X'Y +2X'XB=0=X'XB =X'Y
These are the normal equations.
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4. Solve the normal equations (existence and uniqueness)

Because Xhas full column rank, X'Xis invertible. Multiply both sides by (X'X)~!

B=XX)"X'Y

This is the unique solution because the objective S(f)is strictly convex (its Hessian is 2X'X,

positive definite when X'Xis positive definite).

5. Second-order condition (confirm minimum)

The Hessian of S(f)is 2X'X. Since X'Xis positive definite, the stationary point is a

strict global minimum.

Remarks:

The derivation did not require probabilistic assumptions — only matrix algebra and full rank
of X. Under usual stochastic assumptions (e.g. Ee = 0), fhas the familiar sampling

properties.

Properties of OLS
1. Unbiasedness

E() =P

Var(B) = o2(X'X)~!

2. Variance

3. Orthogonality
Residuals are orthogonal to the column space of X:
X'(Y-XB)=0
4. Gauss—Markov
f is BLUE (Best Linear Unbiased Estimator).

6.3 INTRODUCTION TO PARAMETER RESTRICTIONS

Why Restrictions Occur

e Economic constraints (e.g., sum of shares equals 1)
ANOVA coding (sum of treatment effects = 0)
Identifiability in dummy variable regression
Theoretical structure in time series or econometric models

Types of Restrictions

1. Equality constraints

P+ B=1
2. Linear constraints General form:
RB =7

where

e Risaq X p known restriction matrix of rank q,

e risagq X 1vector of constants.

6.4 LEAST SQUARES ESTIMATION WITH RESTRICTIONS:

Objective

Minimize S(B) = (Y — XB)'(Y — XB)
subjectto R =1

This is a constrained optimization problem.

Condition

Theorem
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Method 1: Lagrange Multiplier Approach
Define the Lagrangian:
LB,A) =X =XB)' (Y = XB) + 2A'(RB — 1)

where Ais a ¢ X 1vector of Lagrange multipliers.

First-Order Conditions
1. Derivative w.r.t. S:
—2X'(Y-XB)+2R'A=0
>X'XB-XY+RA=0 (1)
2. Derivative w.r.t. A:
RB =r (2)
Solving the System
From (1):
X'XB=X'Y—-R'2
Thusf = f — (X'X)"'R'A
Substitute into (2):
RE—R(X'X)"'R'A=r
Hence,
A=[RX'X)TRIT(RE =)
Substitute back:

Theorem 2 (Restricted Least Squares estimator) - detailed proof

Minimize S(B) = (Y — XB)'(Y — XB)subject to linear constraints RS = r, where Ris q X
pof rank gand ris g X 1.

Claim. The unique constrained minimizer is

Pr=P - X'X)'R[RX'X)'R']'(RB —1)
where = (X'X)"1X'Yis the unrestricted OLS estimator and R(X'X)~'R’is invertible
because Rhas rank gq.

Proof:
Constrained quadratic minimization over an affine subspace is classically handled by
Lagrange multipliers. Form the Lagrangian
LB =X =XB) (Y —XB)+ 21 (RB —1)
with 4 € RY the Lagrange multiplier vector (the factor 2 is conventional and simplifies
expressions). Stationarity with respect to § yields
=2X'Y +2X'XB +2R'A=0
ie.
X'XB+R'A=X'Y (A)
Stationarity w.r.t. A just returns the constraint Rf§ = r. Solve (A) for fin terms of A:
B=XX)X'Y-XX)'RA=8—-X'X)"'R'A
Substituting this expression into the constraint RS = r gives the linear system for A:
RE—R(X'X)"'R'A=r
Because R(X'X)1R’is q X qand full-rank, it is invertible; hence
A=[RX'X)'RT (R —1)
Substituting this Aback into B = f — (X'X) 'R'Ayields the closed-form expression for
Brclaimed above.
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Interpretation. The formula shows frequals the unconstrained OLS Sminus a correction that
enforces the restriction RB = r. If the unrestricted Balready satisfies the restriction, i.e. Rf =
r, the correction vanishes and B = . Algebraically the correction is the projection (in the
metric induced by X'X) of Bonto the affine subspace {8: RB = r}.

6.5 PROPERTIES OF RESTRICTED ESTIMATORS:

1. BiasE(Bg) =B — (X'X)"'R'[R(X'X)"*R']"Y(RB — 1)
Thus:
e If true restrictions hold (Rf =)
PBris unbiased.

e Ifrestrictions are false, estimator becomes biased, but may have lower variance.

2. Variance

Var(Br) = o2[(X'X)"' — (X'X)"'R'[R(X'X)"'R'T'R(X'X)"1].

3. Efficiency
e When restrictions are correct — RLS is more efficient than OLS.
e When restrictions are incorrect — OLS may be preferable.

4. Distribution

Under normality:

BR ~ N (B, Var(BR))
6.6 TESTING THE VALIDITY OF RESTRICTIONS:

Goal: Test the hypothesis
Hy:RfB =rvs.Hi:RB #1
Let
e RSS,=Restricted residual sum of squares
e RSS;= Unrestricted residual sum of squares
Theorem 3 (F-Test for Linear Restrictions)
_ (RSS, —RSS1)/q
~ORSS/(n-p) TP

Proof:

Step 1 : Notation and projection matrices
Define the usual projection (hat) matrix and residual projector for the unrestricted model:
P=XX'X)"X'M=1,—-P
For any estimator Swith fitted values X3, its residual sum of squares is
RSS(B) =I'Y — XB II?
In particular, for the OLS (unrestricted) fit 3
RSS, =IlY = XB I?=Y'MY

Step 2 : Restricted estimator and its properties

Let Srdenote the restricted least squares estimator (minimizer of || Y — Xf |I?subject to RS =

7). From Lagrange multiplier solution we have the explicit formula
Pr=B—XX)"R'[RX'X)RT (R~ 1)
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Define the g X gmatrix A = R(X'X)~1R’(invertible since rank (R) = q)

Step 3 : Identity for RSS difference (key algebraic identity)
We claim and will use the identity

RSSy —RSS; = (B—=PBr)X'X(B—Br) = RB—71)'A"(RB~-T) (%)
Derivation (short): start from the expression of RSS as Y'Y —2Y'XB + B'X'Xffor f =
Br,B. Subtract and use X'Xf = X'Y(normal equations) to reduce the difference to (8 —
Br)'X'X(B — Br). Substituting f — fr = (X'X)"*R'A™*(RS — r) yields the second equality.
(You may expand the algebra step if you want it inserted verbatim; the identity is standard
and follows by direct substitution.)

Step 4 : Sampling distribution of RS
Since f = (X'X)~'X'Yis linear in Yand Var (Y) = ¢2I,

Var (B) = a?(X'X) ™1
Therefore the linear transform RfBhas

RB ~ N(RB, a%A)

Under Hy: RB =1, we get

RB —1 ~ N(0, 6%A)
Step 5 :Numerator is chi-square
Using (%) and the previous distribution

RSS; —RSS; (R —1)'A*(RB —1)
a? B a? -

(Quadratic form of N (0, o?A)with A™'yields x7)
So

2
q

2

RSS, —RSS; 1

qo? q
Step 6 : Denominator is chi-square
The unrestricted residuals e = Y — X = MY satisfy e ~ N(0,02M)since M is idempotent of
rank n — p. Therefore
RSS; e'e Y'MY

— =~ X7
0-2 0—2 0—2 n-p

So
RSS;/(n—p) B RSS; 1

o2/(n—p) (n—p)o? n—p

Step 7 : Independence of numerator and denominator
To form an F statistic we require independence of the two chi-square quantities. This follows
because the two quadratic forms are based on orthogonal projection matrices.

Reason: The quadratic for the numerator can be written as Y'AY where Ais symmetric
idempotent of rank gprojecting onto the subspace of variation captured by releasing the g
constraints (equivalently A = H, — H,, difference between the projection matrices of
restricted and unrestricted fits). The denominator quadratic is Y'MY where M is the residual
projector of rank n — p. One can show AM = 0 (the projection subspaces are orthogonal).
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For a Gaussian vector Y ~ N(Xf,02I), quadratic forms Y'AYand Y'MY with AM = 0 are
independent. Hence the two chi-square variables are independent.

(If you prefer: expand both as functions of ¢; they are quadratic forms in ewith coefficient
matrices that multiply to zero, which implies independence under normality.)

Step 8 : Construct the F statistic and its distribution
Given independence and the chi-square results:

o (RSSy —RSSy)/0% ~ 1.

® RSSl/O-Z ~ X%l—p:

e independent,
the ratio

((RSSy — RSS1)/0%)/q _ (RSSy —RSS1)/q
(RSS1/0%)/(n—p) RSS,/(n —p)
is the ratio of an independent yZ/qgand x3_,/(n — p), hence has the F, ,_,,
~ Fynp
RSS5:/(n —p) '

distribution. Thus

under H,
Step 9 : Decision rule For significance level a:

o Reject Hoif Foy > Fgn_p,1-q» Where Fy,_p,.1_gdenotes the 1 — aquantile of the
F,; n—pdistribution.

e Otherwise do not reject H.

e Equivalently compute the p-value P(F, ;,_, = Fey)and reject when p-value < a.

e Step 10 : Interpretation

o If F_,is large (reject Hy), the increase in residual sum of squares produced by
imposing R = ris too big relative to sampling variability; thus the restrictions are
inconsistent with the data.

o If F_is not large (fail to reject Hy), the data are compatible with the restrictions;
enforcing them does not degrade fit more than can be explained by sampling
variability.

e Step 11 : Special cases and connections

e If g = 1(single linear restriction), the numerator reduces to a squared t-statistic and
F =t2

e The same F—test is the general linear hypothesis test for nested linear models:
unrestricted model (larger) vs restricted (nested) model.

e Step 12 : Caveats

e Exact validity of the F-distribution requires the normality assumption & ~ N (0, o21).
Without normality, the test is approximately valid asymptotically (large n) under mild
conditions.

e Ensure n — p > Oand R(X'X) 1R'invertible (independent restrictions).

(RSS, — RS5)/q
Fy = ~ F, ,_punder Hy: R} =

Decision: Reject Hyiff Foy > Fgppi1—q-
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6.7 APPLICATIONS:

1. Economic Models with Budget Constraints
Demand share equations:

Br+B+pB3=1

R =[111],r = [1]
2. ANOVA Models with Sum-to-Zero Constraints
For treatment effects:

Thus,

k

a; = 0
i=1
This ensures identifiability of parameters.
3. Regression Models with Equality Restrictions
Example: Parallel-line regression with equal slopes:

B2 = B3
R =[01—-10],r = [0]

6.8 KEY WORDS:

Ordinary Least Squares (OLS)
Restricted Least Squares (RLS)
Linear Restrictions

Hypothesis Testing

General Linear Hypothesis
F-Test

Efficiency

ANOVA Constraints
Econometric Restrictions
Lagrange Multiplier

Bias, Variance, Mean Square Error

6.9 SUMMARY:

In this lesson, the concept of restricted least squares estimation has been studied as an
extension of the ordinary least squares (OLS) method when prior information or theoretical
constraints on regression parameters are available. Such restrictions commonly arise in
economics, experimental design, and applied regression problems where parameters are
known to satisfy linear relationships.

The lesson began with a review of the ordinary least squares estimator, highlighting its
optimal properties under the standard linear model assumptions. The need for parameter
restrictions was then motivated by situations where exact linear constraints of the form Rf =
r

are imposed on the regression coefficients.

The restricted least squares estimator (RLSE) was derived using the method of Lagrange
multipliers, and its explicit matrix form was obtained. The estimator was shown to
incorporate both the sample information and the imposed restrictions, thereby modifying the
OLS estimator to satisfy the given constraints.
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The statistical properties of the restricted estimator were discussed in detail. When the
restrictions are correct, the restricted estimator remains unbiased and has a smaller variance
than the unrestricted OLS estimator, leading to improved efficiency. However, incorrect
restrictions may introduce bias, emphasizing the importance of testing the validity of
restrictions before their adoption.

Methods for testing linear restrictions using appropriate test statistics were presented,
allowing formal comparison between restricted and unrestricted models. Practical
applications illustrated how restricted least squares estimation can simplify models, improve
precision, and enhance interpretability.

Restricted least squares provides a systematic way to incorporate prior information
into regression estimation.

When restrictions are correct, RLS estimators are more efficient than OLS estimators.
Incorrect restrictions can lead to biased estimates, making testing of restrictions
essential.

Restricted estimation plays a crucial role in model validation, econometric analysis,
and experimental studies.

Overall, least squares estimation with restrictions enhances both the theoretical rigor and
practical applicability of linear regression models.

6.10 SELF-ASSESSMENT QUESTIONS:

1.

(O8]

7.

State the restricted least squares estimator and derive it using the Lagrange multiplier
method.

. Explain the difference between OLS and RLS estimators in terms of bias and variance.
. Give two practical situations where linear restrictions arise.

. Prove that if R = ris true, then fgis unbiased. Derive the variance of the restricted

estimator.
How do you test whether restrictions R = rare valid?

. In ANOVA, why is Ya; = Oimposed? Show that the restricted estimator has smaller

variance than OLS when restrictions are valid.
Derive the distribution of Srunder normality assumptions.

6.11 SUGGESTED READING:

MRS

Rao, C. R. Linear Statistical Inference and Its Applications

Seber & Lee, Linear Regression Analysis

Graybill, F.A. (1983): Matrices with Applications in Statistics. Wadsworth

Draper, N.R. & Smith, H. (1998): Applied Regression Analysis, 3rd Ed. Wiley
Montgomery, Peck & Vining (2012): Introduction to Linear Regression Analysis,
5th Ed. Wiley

Goon, Gupta & Das Gupta (2003): An Outline of Statistical Theory, Vol. II, World
Press

Weisberg, S. (2013): Applied Linear Regression, 4th Ed. Wiley.
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LESSON-7

SIMULTANEOUS ESTIMATES OF LINEAR

PARAMETRIC FUNCTIONS

OBJECTIVES :

After completing this lesson, students will be able to:

R/
A X4

R/
A X4

X/
°

Understand linear parametric functions - Define and interpret linear functions of
regression parameters.

Formulate simultaneous estimation problems - Express multiple linear parametric
functions in matrix form.

Derive estimators for linear parametric functions - Obtain estimators using least
squares principles.

Study variance—covariance structure - Compute and interpret the joint variance—
covariance matrix of simultaneous estimators.

Apply simultaneous inference techniques - Construct confidence regions and perform
joint hypothesis tests.

Understand efficiency and optimality - Identify conditions under which estimators are
unbiased and minimum variance.

Relate simultaneous estimation to hypothesis testing - Connect estimation of
parametric functions with general linear hypotheses.

Apply concepts to practical problems - Use simultaneous estimation in ANOVA,
regression contrasts, and applied data analysis.

STRUCTURE:

7.1 Introduction

7.2 Linear Parametric Functions

7.3 Simultaneous Estimation Problem

7.4 Notations & Definitions

7.5 Theorems
7.5.1.1 Joint confidence region
7.5.1.2 Bonferroni simultaneous intervals
7.5.1.3 Scheffe confidence intervals
7.5.1.4 Examples

7.6  Comparison of Methods

7.7 Summary

7.8 Key Words

7.9  Self-Assessment Questions

7.10 Suggested Reading
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7.1. INTRODUCTION:

In regression analysis, interest often lies not in individual regression coefficients, but in linear
parametric functions of these coefficients. Common examples include treatment contrasts,
rates of change, and combined effects of predictors. When several such linear functions are
estimated simultaneously, classical single-parameter confidence intervals are inadequate,
because the overall probability of making at least one incorrect inference increases with the
number of intervals constructed.

To remedy this, statistical theory provides simultaneous inference procedures, such as the
joint confidence region, Bonferroni method, and Scheff¢ method, that control the overall
family-wise error rate and provide valid inference for multiple linear functions. These
methods form a central part of higher-level regression analysis and multivariate statistical
inference. They are extensively presented in standard sources such as Montgomery et al.
(2012), Draper and Smith (1998), Weisberg (2005), and Rao (2002).

Description:

In linear regression, we often need to estimate several functions of model parameters at the
same time. These quantities, called linear parametric functions (such as a’pf), include
regression coefficients, contrasts, and predicted responses. Constructing separate confidence
intervals for each function can lead to an inflated overall error rate. Simultaneous estimation
provides methods to control this error and maintain a specified joint confidence level for all
functions considered together.

Three major approaches are used:
e Joint confidence regions, based on the multivariate normal distribution of least-
squares estimators.
e Bonferroni simultaneous intervals, which are simple to apply and guarantee overall
confidence.
e Scheffé’s method, which gives valid intervals for all possible linear combinations of
parameters.
Simultaneous estimation is essential for reliable inference when studying multiple parameter
relationships in regression and experimental design.

7.2. Linear Parametric Functions:

Consider the classical linear regression model
Y=X[+¢
where
Y is an n X 1 vector of observations,
X is an n X pfull-rank design matrix,
f is a p X 1vector of unknown regression parameters, and £ ~ N(0, 62L,).
A linear parametric function of the regression parameters is defined as
L=a'p

where a is a known p X 1 constant vector.
Examples include:

e Contrasts: f; — S,

e Weighted combinations: 23; + 58
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e A predicted value at a design point x,, where a = x,,
The estimator of Lis given by

L=ap
with sampling variance
Var (L) = o%a’'(X'X)"'a

This result follows from linear properties of least squares estimators
(see Montgomery et al., 2012, Ch. 3; and Weisberg, 2005, Sec. 3.4.4).

7.3. SIMULTANEOUS ESTIMATION PROBLEM:

Suppose we wish to estimate mlinear parametric functions
Li=aB,i=12,..,m
with simultaneous confidence levels.
If each function is estimated separately using al — a confidence interval, the joint confidence
that all intervals are correct is less than 1 — a. Specifically,
P(all intervals correct) <1 —ma

Thus, special procedures are required to maintain a prescribed family-wise confidence level
1 — a. The three most widely used are:

1. Joint confidence region

2. Bonferroni simultaneous intervals

3. Schefté simultaneous intervals.

7.4. NOTATIONS & DEFINITIONS:

e [ =(X'X)"1X'Y: least squares estimator

2 — %_(py—xﬁ): unbiased estimator of ¢?

e t,,: t-distribution quantile with vdegrees of freedom,
® F,n_p.e: upper a-point of F-distribution with (p, n — p)degrees of freedom
e Family-wise error rate (FWER): probability of at least one false rejection.

(9}

7. 5. THEOREMS:
7. 5.1 joint confidence region:
Notation / model reminders (used throughout)
Y =XB+¢¢e~N(0,0%,)
X 1s n X p of full column rank p. Ordinary least squares estimator:
B =XX)X'Y
and the unbiased estimator of g2
o XD —XB)
n—p

Key facts used below:

. B~N@B X' X))

. Residual sum of squares RSS = (Y — X[?)’(Y - Xﬁ)satisﬁes % ~ )(%_p and is
independent of f3.

Theorem -1 :
Joint confidence region for f Claim. A 100(1 — a)% joint confidence region for £ is

(ﬁ_ﬁ),(X’X)(ﬁ_ﬁ) = psz Fp,n—p;a
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Proof:
1.

2.

Multip

5.

Distribution of the centered estimator in quadratic form.
From f ~ N(B,0%(X'X)™1), set
u=o'X'X)*(B-B)
Then u ~ N(0, I,). Hence the sum of squares
L _B=-B'XXNB-B)
u'u =

g2

has the yjdistribution:
B-B)'X'X)B-B) )
o2 ~ Xp
Distribution of RSS/o%and independence
As noted, RSS/0* ~ x5 _pand it is independent of f(thus independent of the
quadratic form above).

Form an F ratio
The standard construction using two independent chi-square variates gives
1 (B-B'X'X)(B-B)

P o2 _B=-B'X'XB-B/p
1 RSS - ~ By n—p-
— . RSS/(n—p) ’
n-p o?
Replace  unknown o¢%by s%= % and invert the F  inequality.

For the upper a - point F, ,,_,.,, we have

3 —B)' (X'X)(B —
P((ﬁ B)'( SZ)(b’ B)/p <Fppp)=1-a

ly both sides by p s*to obtain the confidence region:
P(B-BX'X)B—P)<ps’Hnpa)=1-a
Interpretation

The set of all Ssatisfying the displayed inequality is an ellipsoid centered at 3. This is
the joint 100(1 — a)% confidence region.

7.5.2 bonferroni simultaneous confidence intervals:

Theorem - 2 : Bonferroni simultaneous confidence intervals

Claim.

form a

Proof:
1.

For mspecified linear functions L; = a;B(i = 1, ..., m), the intervals

L+ thpajom S /a{(X’X)‘lai(i =1,..,m)

100(1 — a)% simultaneous confidence system; i.e.
P(Vi, L; lies in its interval) 21—«

Sampling distribution of each standardized estimate.
For a fixed i,
Li=ap
and
Var (L)) = o%a}(X'X) ta;
Therefore
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~

L -1

sya;(X'X) la;
has a Student t-distribution with n — p degrees of freedom (because the numerator is
normal and independent of s2).
2. Individual 1 — a;interval.
For any chosen «;, an individual two-sided 100(1 — ;)% Cl is

L; £ th-p;ai/2 S ’ag(X’X)_lai

3. Use Bonferroni inequality to control family-wise error.

Let A;be the event “interval icontains L;”. We want P(N}%,4;). By Bonferroni (union

bound)

Ti =

PN, A = 1= P(UIZAD = 1— ) P(4D)
i=1

If we choose each interval to have coverage 1 — a/m(i.e. a; = a/m), then P(A}) =
a/m and therefore

m
a
P(ﬂﬁlAl) = 1—ZE: 11—«
i=1

4. Conclusion
Thus the mintervals constructed with individual tail probability a/(2m)(two-sided)
guarantee overall coverage at least 1 — a. This is the Bonferroni simultaneous CI
construction. (Reference and discussion: Montgomery / Draper & Smith, and standard
texts on multiple comparisons.)

Remarks: The Bonferroni bound is conservative (inequality), since it ignores correlations
among the tests. When the L; are positively correlated the bound may be loose; but it is
simple and guaranteed.

7.5.3 scheffe simultaneous confidence intervals:

Theorem-3 : Scheffé simultaneous confidence intervals
Claim. For any linear parametric function L = a'f(with arbitrary a), the interval
L+ pEupasVyaXX)ta
is a 100(1 — a)% simultaneous confidence interval valid simultaneously for all a. In other
words, the stated multiplier guarantees that the stated interval contains L for every linear
combination awith probability at least 1 — a.
Proof:
1. Start from the joint confidence ellipsoid.
By Theorem 1 (joint region), with probability 1 — «,
(B - ,B),(X,X)(B - .3) =p 52 Fp,n—p;a
This describes an ellipsoid of admissible 8 around £.
2. Relate scalar deviations to the quadratic form (Cauchy—Schwarz).
For any fixeda,



Linear Models and Applied Regression .... 7.6 Simultaneous Estimates of Linear...

@B = BN* = (&)™ 2al [(X'X)V2(B = HD? <I X'X)"2a |1?
I (X' X)Y2(B = B) I? (Cauchy — Schwarz)
=dX'X)ta - (B-B)X'X)B-B)
Thus the squared scalar error (L — L)? is bounded by the quadratic form times the factor
a'(X'X) ta.
3. Insert the joint region bound
On the event that the joint ellipsoid inequality holds
L-Ly?<dX'X)'a ps’Enpa
4. Take square roots and rearrange to an interval
Therefore, with probability at least 1 — a, for every a:
|L— LIS \PEnpa SVaX'X) la
which is exactly the Scheffé interval claim:
LEL+\PEnpasVa (X' X)ta]
simultaneously for all a.

5. Interpretation/justification
Schefté’s multiplier arises because the worst-case scalar error across all directions a is
controlled by the largest possible projection of the joint ellipsoid along that direction;
Cauchy—Schwarz gives the necessary inequality. This yields an interval valid for
infinitely many linear combinations (all a), not only a finite prespecified set. See
Draper & Smith, Rao, and Montgomery for details and geometric discussion.

7.5.4 example:

1. Consider a three-parameter regression model
Y = Bo+ B1xs + Baxz + €
We wish to estimate simultaneously:
Ly =P+ Ba Ly =201 — B>

1. Construct Bonferroni intervals using significance level a /4

2. Construct Scheffé interval using p = 3

3. Compare widths and discuss efficiency
(Instructor can insert numerical data and matrix computations.)

7.6 COMPARISON OF METHODS:

Method Purpose Protection Interval Width
Bonferroni Finite set of mfunctions Good Narrower

Schefté All possible linear functions | Very strong Usually wider
Joint region Geometric interpretation Global Not interval-based

Scheffé is recommended when the number of potential linear combinations is large or not
predetermined (e.g., contrasts in ANOVA). Bonferroni is preferred when there are only a few
specific linear functions to be tested (e.g., pairwise comparisons).
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7.7 KEY WORDS:
e Linear model
e Contrast
e Confidence ellipsoid
e F-distribution

Bonferroni procedure

e Scheffé method

e Family-wise error rate

e Quadratic form

e Least squares estimation

7.8 SUMMARY:

This unit focused on the theory and application of simultaneous estimation of linear
parametric functions within the framework of linear models. A linear parametric function is
any function of the regression parameters that can be expressed as a linear combination, such
as contrasts, differences of means, or predicted values.

The concept of simultaneous estimation arises when interest lies not in a single parameter or
function, but in several linear functions of the parameters considered jointly. Estimating these
functions simultaneously allows proper assessment of their joint variability and correlation,
leading to valid statistical inference.

The unit demonstrated that linear parametric functions can be conveniently expressed in
matrix form, and their estimators are obtained directly from the least squares estimator of the
parameter vector. The variance—covariance matrix of the estimators plays a central role in
understanding the precision and dependence among estimated functions.

Emphasis was placed on simultaneous confidence regions and joint hypothesis testing,
highlighting the inadequacy of separate (individual) confidence intervals when multiple
inferences are made. Methods such as F-tests and Wald tests were shown to provide
appropriate tools for testing sets of linear hypotheses.

Theoretical results established that simultaneous estimators retain desirable properties such as
unbiasedness and minimum variance, provided the underlying linear model assumptions are
satisfied. The unit also illustrated how these methods are applied in practice, particularly in
analysis of variance, regression contrasts, and prediction problems.

In conclusion, simultaneous estimation of linear parametric functions provides a powerful
and unified framework for making joint inferences in linear models. It enhances the
reliability of conclusions drawn from regression and experimental data and forms a critical
link between estimation theory and applied statistical analysis.

7.9 SELF-ASSESSMENT QUESTIONS:

1. Define a linear parametric function and provide two examples. Explain why
simultaneous estimation is necessary in regression inference.

2. Derive the variance of L = a’f and prove the Scheffé simultaneous confidence theorem.
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3.
4.
3.

Discuss estimation when observations are correlated and provide an example.
Compare Bonferroni and Scheffé methods in terms of family-wise error control.
Provide a numerical example of simultaneous intervals using real or simulated data.

7.10 SUGGESTED READING:

1.
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2. Draper, N.R. and Smith, H. (1998): Applied Regression Analysis. Wiley-Blackwell.
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. Montgomery, D.C., Peck, E.A. and Vining, G.G. (2012): Introduction to Linear

Regression Analysis, 5Sth Ed. Wiley.
Bapat, R.B. (2012): Linear Algebra and Linear Models. Springer.

. Rao, C.R. (2002): Linear Statistical Inference and Its Applications. 2nd Ed. Wiley-

Blackwell.
Weisberg, S. (2013): Applied Linear Regression, 4th Ed. Wiley.
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LESSON-8
TEST OF HYPOTHESES FOR ONE AND MORE

THAN ONE LINEAR PARAMETRIC FUCTIONS

OBJECTIVES:

After studying this lesson, the learner will be able to:
% Understand the role of linear parametric functions in statistical inference under the
general linear model.
% Identify and verify the estimability of single and multiple linear parametric functions
using matrix rank and row space conditions.
% Formulate null and alternative hypotheses involving one or more linear parametric
functions of regression parameters.
*» Derive and apply appropriate test statistics for testing hypotheses on linear parametric
functions.
¢ Distinguish between tests based on single restrictions (t-tests) and multiple linear
restrictions (F-tests).

STRUCTURE:

8.1 Introduction
8.2  Concept of Linear Parametric Functions
8.2.1.1 General Linear Model
8.2.1.2 Definition
8.2.1.3 Estimability and Theorems
8.3  Hypothesis Testing for One Linear Parametric Function
8.4  Hypothesis Testing for More Than One Linear Parametric Function
8.5 Bias and Mean Square Error (MSE)
8.6  Applications and Examples
8.7  Confidence Regions for Multiple Parameters
8.8 Key Words
8.9  Summary
8.10 Self-Assessment Questions

8.11 Suggested Reading

8.1. INTRODUCTION:

In the theory of linear models, statistical inference concerning unknown parameters occupies
a central role. After estimation, the next fundamental task is testing statistical hypotheses
about model parameters or functions thereof. In many practical situations, interest does not
lie directly in the individual regression coefficients but rather in linear parametric functions of
the form L[, where f denotes the vector of unknown parameters. Examples include testing
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the equality of regression coefticients, testing the significance of subsets of regressors, and
testing linear restrictions arising from scientific or economic theory.

This chapter develops hypothesis testing procedures for:

e asingle linear parametric function, and

o several linear parametric functions simultaneously
within the framework of the General Linear Model (GLM). The treatment emphasizes matrix
formulation, distributional results, exact tests (t- and F-tests), and connections with
estimation theory. The exposition follows classical developments found in Graybill, Rao,
Draper and Smith, Montgomery-Peck-Vining, and related standard references.

Description

This lesson presents a systematic treatment of hypothesis testing for one and more than one
linear parametric function under the general linear model. Emphasis is placed on the
formulation of linear hypotheses, estimability conditions, and the derivation of exact
t-and F-tests based on least squares estimation. The equivalence between the general linear
hypothesis and the extra sum of squares principle is highlighted, along with the construction
of confidence intervals and confidence regions. The chapter provides a theoretical foundation
for testing linear restrictions commonly encountered in regression analysis and related
statistical applications.

8.2. CONCEPT OF LINEAR PARAMETRIC FUNCTION:

8.2.1 general linear model:
Consider the general linear model

where:

. Y is an n X 1 random vector of observations

. X is a known n X p design matrix of rank r < p
. p is a p X 1 vector of unknown parameters

. £ ~ N,(0,02I,)

8.2.2 definition:

A linear parametric function is any function of the form
6=Lp

where L is a known g X p matrix of constants.

Special cases:

. q = 1: one linear parametric function

. q > 1: several linear parametric functions

8.2.3 estimability:
A linear parametric function LS is said to be estimable if there exists a linear estimator
a'Y such that E(a’Y) = LB
Theorem 1: Estimability of a Linear Parametric Function
Statement
A linear parametric function Lfis estimable under the general linear model
Y=X[F+¢

if and only if each row of Lbelongs to the row space of the design matrix X
Proof
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Step 1: Definition of estimability
A parametric function LBis estimable if there exists a linear estimator a Ysuch that

E(aY)=Lp
Step 2: Evaluate the expectation
Since E(Y)=Xp

E(aY)=aXp
Step 3: Necessary condition
For
aXB =Lp
to hold for all £, we must have
aX=1L

Step 4: Interpretation
The equality a'’X = L implies that each row of L is a linear combination of the rows of X.
Hence, the rows of L lie in the row space of X.

Step 5: Sufficiency
Conversely, if the rows of L lie in the row space of X, then there exists a vector asuch that
a' X = L. Therefore,
E(aY)=Lp
and Lp is estimable.

Hence proved.
| |

Theorem 2: Unbiasedness of the Least Squares Estimator of an Estimable Function
Statement:
If LB is estimable, then the least squares estimator L is an unbiased estimator of Lp.

Proof:
Step 1: Least squares estimator
The least squares estimator of 5 is
f=XX)XY
where (X' X)™ is a generalized inverse

Step 2: Take expectation
EB)=XX)XEY)=XX)XXB

Step 3: Use estimability condition
Since L is estimable, there exists a matrix C such that
L=CX
Step 4: Evaluate expectation of L
E(LR) =LEB) = CX(X'X)"X'XB = CXB = LB

Thus,

Bias(Lf) = 0

|Hence proved. |

Theorem 3: Variance of an Estimable Linear Parametric Function
Statement:
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Var (LB) = ¢?L(X'X)"L'.
Proof:
Step 1: Variance of the least squares estimator

Var (B) = a2 (X' X)".

Step 2: Linear transformation rule
For any constant matrix L,
Var (Lf) = LVar (B)L.

Step 3: Substitution
Var (Lf) = o2L(X'X)"L.
|Hence proved. |

Theorem 5: F-Distribution for Multiple Linear Parametric Functions

Statement
Under the hypothesis Hy: LS = c,

(LB - LX) LI'ALp —c)

qo?

Fq, n-r-

Proof:

Step 1: Distribution of L

L follows a multivariate normal distribution with mean LB and covariance matrix
dlL(X'X)"L

Step 2: Quadratic form
Under Hy, the quadratic form
(LB — LX) LT (LA ~ )

follows a o2 yZdistribution.

Step 3: Error sum of squares

Independently,
SSE
2

? ~ Xn-r
Step 4: Ratio of independent chi-square variables
The ratio of two independent chi-square variables divided by their degrees of freedom
follows an F-distribution.

Hence proved.
| |

8.3 HYPOTHESIS TESTING FOR ONE LINEAR PARAMETRIC FUNCTION

8.3.1 statement of hypothesis
Let & = ' Bbe an estimable linear parametric function. Consider testing

Hy:UB =1Byvs.Hy: B # I,
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8.3.2 estimator and distribution
Let f be the least squares estimator. Then
6=1p
is unbiased with variance
Var (0) = c?l'(X' X)"1
where (X'X)~ denotes a generalized inverse.
Moreover,
i ~ N(0,1)
oI
8.3.3 test statistic:
Replacing oby its unbiased estimator 2 = SSE/(n — r), the test statistic is

_ 015

8.3.4 decision rule
Reject Hy at level a if

84 HYPOTHESIS TESTING FOR MORE THAN ONE LINEAR
PARAMETRIC FUNCTION:

8.4.1 general linear hypothesis
Let L be a ¢ X p matrix of rank q. Consider testing

Hy: LB = cvs.Hy: LP # ¢
This is known as the general linear hypothesis Quadratic Form
Define Q = (LB — ) [L(X X)"LT (LS —¢)
Then q%

2 Fq,n—r

8.4.3 f-test statistic
Replacing o2 by 62, the test statistic becomes

1 A , , , A
F= W(Lﬁ —O[LXX)"L]TH(LE — o)

Reject H if
F > Fpqn-r

8.4.4 connection with extra sum of squares

The general linear hypothesis test is equivalent to the extra sum of squares principle:
_ (SSEg —SSEp)/q
~ SSEp/(n—r)

where R and F denote the reduced and full models, respectively.

8.5 BIAS AND MEAN SQUARE ERROR (MSE):
8.5.1 bias
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An estimator Gof Ohas bias
Bias(@) = E() — 0

For least squares estimators of estimable linear parametric functions
Bias(I'f) =0

8.5.2 mean square error
MSE(0) = Var (8) + [Bias(0)]?
Thus, for unbiased estimators
MSE(l'B) = a?I' (X' X)"1

8.6 APPLICATIONS AND EXAMPLES:

Example 1: Testing a Single Regression Coefficient
In a multiple regression model, test Hy: ﬁj = 0. This is a special case with l'= @, ...,1,..,0).

Example 2: Equality of Two Coefficients
Test Hy: B = B3, equivalently Hy: (1,—1,0, ...,0)5 = 0.

Example 3: Joint Significance of Predictors
Test Hy:f, = f3 = 4 = 0, a multivariate linear hypothesis commonly used in model
adequacy assessment.

8.7 CONFIDENCE REGIONS FOR MULTIPLE PARAMETERS:

A (1—a)confidence region for LBis given by

(LA = LB [LX'X)"LT ' (LB — LB) < q8%Fgn-—r
This region is an ellipsoid in RY.

8.8 KEY WORDS:

e General Linear Model

e Linear Parametric Function
o Estimability

e Least Squares Estimator

e General Linear Hypothesis
o t-test

o F-test

e Extra Sum of Squares

e Mean Square Error

o Confidence Region

8.9 SUMMARY:

This lesson focused on hypothesis testing for linear parametric functions within the
framework of the General Linear Model (GLM). A linear parametric function, expressed as a
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linear combination of regression parameters, plays a central role in statistical inference in
linear models.

The concept of estimability was emphasized as a prerequisite for meaningful inference.
Conditions and theorems ensuring estimability were discussed, highlighting that only
estimable functions of parameters can be unbiasedly estimated and tested.

For a single linear parametric function, hypothesis testing procedures were developed using t-
tests, relying on the least squares estimator and its variance. These tests allow researchers to
assess the significance of specific linear combinations of parameters.

For multiple linear parametric functions, joint hypothesis testing was introduced using F-tests
(or equivalently Wald tests). This approach enables simultaneous testing of several
restrictions, ensuring control over the overall error rate and providing a unified framework for
multivariate inference.

The role of bias and mean square error (MSE) in hypothesis testing was examined,
demonstrating how estimator efficiency affects test performance. The construction of
confidence intervals and confidence regions further complemented hypothesis testing by
providing interval-based inference for one or more parametric functions.

Applications illustrated how these tests are widely used in regression analysis, analysis of
variance, econometrics, and experimental design, where practical decisions often depend on
testing single or multiple parameter functions simultaneously.

In conclusion, hypothesis testing for linear parametric functions forms a fundamental bridge
between estimation and inference in linear models. Mastery of these methods equips students
with the tools required for rigorous statistical analysis and sound decision-making in applied
research.

8.10 SELF ASSESSMENT QUESTIONS:

1. Explain the concept of linear parametric functions with suitable examples.

2. Discuss the estimability of linear functions and state the relevant theorems.

3. Derive the test statistic for testing a single linear parametric function in the general linear
model.

4. Explain the procedure for testing more than one linear parametric function
simultaneously.

5. Describe the F-test for general linear hypotheses.

6. Explain how bias and mean square error (MSE) are related to hypothesis testing in linear
models.

7. Discuss the construction of confidence regions for multiple linear parametric functions.

8. Explain the importance of testing linear parametric functions in applied regression
analysis.



Linear Models and Applied Regression ... 8.8  Test of Hypotheses For One and More..

8.10 SUGGESTED READING:

1.
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Rao, C. R. (1973), Linear Statistical Inference and Its Applications, 2nd Edition,
Wiley.

(Classic reference for estimability and general linear hypotheses)

Graybill, F. A. (1976), Theory and Application of the Linear Model, Duxbury Press.
Draper, N. R. & Smith, H. (1998), Applied Regression Analysis, 3rd Edition, Wiley.
Kutner, M. H., Nachtsheim, C. J., Neter, J., & Li, W. (2005), Applied Linear
Statistical Models, McGraw-Hill.

Seber, G. A. F. & Lee, A. J. (2003), Linear Regression Analysis, 2nd Edition, Wiley.
Montgomery, D. C., Peck, E. A., & Vining, G. G. (2012), Introduction to Linear
Regression Analysis, Wiley.

Dr. U. RamKkiran



LESSON-9

CONFIDENCE INTERVALS AND
CONFIDENCE REGIONS

OBJECTIVES:

After completing this lesson, learners will be able to:

Understand the fundamental ideas of interval estimation, including the interpretation of
confidence levels.

Construct confidence intervals for key population parameters such as the mean,
proportion, variance, and regression coefficients.

Apply sampling distributions (normal, t, chi-square, F) in deriving interval estimators.
Explain the concept of confidence regions and develop joint confidence regions for
multiple parameters using matrix notation and multivariate distributions.

Interpret the geometric meaning of elliptical confidence regions in regression and
multivariate analysis.

Compare marginal and joint confidence intervals and evaluate the precision of estimates
based on interval width and coverage.

STRUCTURE:
9.1 Introduction
9.2 Concept of Confidence Intervals

9.3
9.4

9.5

9.6
9.7
9.8
9.9

9.2.1 Basic Definitions and Notation
9.2.2 Confidence Interval for Mean
9.2.3 Confidence Interval for Proportion
Confidence Interval for Variance / Standard Deviation
Confidence Intervals in Regression Models
9.4.1 CI for Regression Coefficients
9.4.2 CI for Mean Response
9.4.3 CI for Prediction of a New Observation
Concept of Confidence Regions
9.5.1 Ellipsoidal Confidence Regions (Multivariate Case)
9.5.2 Interpretation and Geometric Meaning
Theorems with examples
Summary
Key Words

Self-Assessment Questions

9.10 Suggested Reading
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9.1 INTRODUCTION:

Statistical estimation involves providing plausible values for unknown population parameters.
Point estimators give single values but lack information on their reliability. Confidence
Intervals (Cls) extend this idea by providing an interval estimate with a specified probability
of containing the true parameter.

In regression analysis (Montgomery et al., 2012; Weisberg, 2005), confidence intervals and
confidence regions form a crucial part of statistical inference-helping quantify uncertainty
associated with estimated regression coefficients, mean responses, and predictions.

Description:

< Confidence intervals and confidence regions form a central part of statistical inference,
providing a range of plausible values for unknown population parameters rather than a
single-point estimate. A confidence interval uses the sampling distribution of an estimator
to specify an interval that contains the true parameter with a stated probability (commonly
95% or 99%). These intervals are developed using distributions such as the normal, t, chi-
square, and F distributions depending on the parameter of interest and the assumptions
involved.

< In many practical applications—especially in regression analysis and multivariate
statistics-multiple parameters must be estimated simultaneously. In such cases,
confidence regions extend the idea of interval estimation to higher dimensions. These
regions, often taking the form of ellipses or ellipsoids, account for the correlation between
parameter estimates and provide a more accurate joint assessment of uncertainty.

< This topic introduces the theoretical foundation, mathematical formulation, and practical
interpretation of both confidence intervals and confidence regions. It emphasizes the role
of sampling distributions, matrix algebra, and geometric representation, enabling students
to apply these tools rigorously in statistical modeling and data analysis.

9.2 CONCEPT OF CONFIDENCE INTERVALS:

A confidence interval is an interval of plausible parameter values constructed in such a way
that it will contain the true parameter with a pre-specified probability (confidence level).

A 95% CI means: If the procedure is repeated many times, then 95% of the constructed
intervals will contain the true parameter.

It does not mean a 95% probability that the specific interval contains the parameter.
CIs are derived using sampling distributions of estimators.

9.2.1 basic definitions and notation:

e Population mean: U

« Population variance: a2
o Population proportion: p

e Sample mean: X

» Sample variance: s?

e Sample proportion: P
o Regression coefficients: g, By, ..., Bp
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o Estimated coefficients: Sy, By, ..., ﬁp

e Design matrix: X

e Error variance: o2

9.2.2 confidence interval for mean:

Case 1: Population variance known
2

- g
X~ N(/,L,?)
A 100(1-a)% CT is:
E[X—z 2 X4z i]
u a/2 \/ﬁl a/Z\/ﬁ

Case 2: Population variance unknown

Use Student’s t-distribution:
_ s - S

pLeEX-— ta/2n-1 ﬁ' + ta/2n-1 ﬁ]

9.2.3 confidence interval for proportion:

For sample proportion p = %z

Approximate CI:

p(1—p)

}3 + Za/z n

For small samples, exact binomial Cls are recommended (Clopper—Pearson)
9.3 CONFIDENCE INTERVAL FOR VARIANCE / STANDARD DEVIATION

Using chi-square distribution:
(n—1)s?
B

2
n-1

Thus Cl is:

[(n - 1Ds? (n— 1)52]

2 T2
X1-a/zn-1 Xaj2n-1
CI for gis obtained by square root.

9.4 CONFIDENCE INTERVALS IN REGRESSION MODELS:

Consider multiple regression:
Y=XB +¢&¢e~N(0,0%)
Least squares estimator:
f=XX)XY
Variance:
Var(f) = a2(X'X)™?
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9.4.1 ci for regression coefficients
For the jth coefficient:

Bj + ta/2,n-p /Var(ﬁj)

9.4.2 ci for mean response:

At predictor vector x:
Y = xéﬁ
CL

Yo £ tay, n-pV 0226 (XX) "1xg
9.4.3 ci for prediction of new observation:

Prediction variance includes error variance:

?0 i ta/Z, n—p\/az(l + x(’)(XIX)_le)
9.5 CONCEPT OF CONFIDENCE REGIONS:

A confidence region generalizes confidence intervals to multiple parameters simultaneously.

For regression:
B =B *XX)TB - B) S PFpnp(l—a)

This defines an ellipsoidal region in p-dimensional space.
9.5.1 ellipsoidal confidence regions (multivariate case):

The joint distribution of Sis:
B~ Ny(B,0*(X'X)™)
Using Hotelling’s T2:
Confidence region:
B=-BYXX)B =B <ps*Fnp(l-a)

This geometrically corresponds to a p-dimensional ellipsoid centered at /3.
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9.5.2 interpretation and geometric meaning

e Single-parameter CI — line segment
e Two parameters — ellipse
e p parameters — ellipsoid
The shape reflects:
e Variances (lengths of axes)

e Covariances (tilt of the ellipsoid)

Overlap of two confidence regions indicates similarity of parameter sets.

9.6 THEOREMS WITH EXAMPLES :

Notation & standing assumptions (used in many proofs)

e Scalars: n=sample size, p= number of regression parameters (including intercept).

e For IID sample X, ..., X, from N (u, 0?)we use Xand s?as usual.

e For regression: model Y = Xf + ewith Yn X1, Xn X pfull column rank, &~

N(0,021,). OLS estimator § = (X’X)"1X'Y. Residual sum of squares RSS = (Y —
XB)' (Y — Xp). Estimate 62 = RSS/(n — p).

e z,=normal quantile = Student-t quantile with v = chi-square quantile wi
” 1 quantile, t, ,,= Student-t quantile with vdf, x; ,= chi-sq quantile with

vdf, K, ,,(y)= F-quantile.

Cochran’s theorem / standard normal quadratic-form results will be invoked where

appropriate (the independence of certain quadratic forms and chi-square results).

THEOREM 1 — Student’s ¢ Confidence Interval for a Mean (unknown variance)

Statement: Let X, ..., X,,be iid N(u, 02). Then a 100(1 — a)%confidence interval for uis

X t+ ta/z, n-1

S

Vn

where X = %in and s2 = ﬁZ(Xi — X)?

Assumptions. IID normal observations; i, 62 unknown

Proof : Distribution of the sample mean. For normal samples
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X~N o
(u,n)

Therefore

X—u
a/\n

1. Distribution of the sample variance (chi-square). Define

n
1 i,
2 — X. — X 2
=g ) D)
=1
By Cochran’s theorem (or standard normal orthogonal decomposition),

(n—1)s?
0-2

Z =

~N(0,1) (1)

U

~ )(31—1 (2)

2. Independence. For normal samples Xand s2are independent (again from Cochran’s
theorem or properties of the multivariate normal). Thus Zand Uare independent.
3. Form the studentized pivot. Consider
X—u

Z
s/Nn - JU/(n—=1)

Because Z ~ N(0,1) and U ~ y2_; independent, the ratio has a Student-t

T =

distribution with n — 1 degrees of freedom:
T~th (3)
1. Inversion to CI. By symmetry of the t-distribution
PE:’:}(_t(x/Z,n—l <T< ta/z,n—l) =1l-a
Substituting the definition of T'and solving for ugives
. s s
a/2n-1 \/ﬁ \/ﬁ

Hence the stated interval is a 100(1 — a)%confidence interval for p.

P(X— SMS)Z-I'ta/Z,n—l )=1_a

Remark. Exact under normality. For large n, to /2 n-1 = Zg/2.

THEOREM 2 — Chi-square Confidence Interval for Variance

Statement: Under the same normal model, a 100(1 — a)%CI for o2 is

(n—1)s? (n—1)s?

2 2
Xl—a/z, n-1 Xa/z, n-1

Assumptions. X; ~ iidN (u, 02).
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Proof :
1. Start with the known pivot:

y o - Ds*

0_2 ~ X%’l—l' (A)

Use chi-square quantiles. By definition of quantiles,
P (Xé/z,n—l U< Xlz—a/z,n—l) =1l-a
Substitute Uand solve for o2:

(n—1)s?

2
P (Xa/z,n—l = o2

Invert each side (inequalities reverse when dividing by positive quantities appropriately) to

= X%—a/z,n—l) =1l-a

get
n—1)s?
(2—)S02S2—)=1—a.
Xi-a/2n-1 Xa/2n-1
This is the desired interval.

Remark. CI for a(std dev) is the square-root of the endpoints above.
THEOREM 3 — ¢-Confidence Interval for a Regression Coefficient

Statement: In the linear model Y = Xf + ewith & ~ N(0,02%I,), the OLS estimator
Bsatisfies

B~ Np(B,0?(X'X)™)
and for the j-th component ;a 100(1 — a)%Cl is

~

Bi £ tajo,np 6yvj; |vj; = [X'X)7H];

where 62 = RSS/(n — p)

Assumptions: Linear model with Gaussian errors; Xfull column rank.

Proof :
1. Distribution of f. Standard OLS theory (or properties of the multivariate normal)
gives
B=XX)X'Y =B+ X'X) X',
SO

B~ N, (Bo*(X'X)7H). (B)

Marginal for ;. From (B), the marginal distribution of component jis normal:



Linear Models and Applied Regression ... 9.8 Confidence Intervals and Confidence...

Bj ~ N (B, avyy).
Residual variance chi-square and independence. The residual vector e = Y — X = MY with
M = I — P(projection onto orthogonal complement) has e’ e = RSSand

(n—p)6? RSS
o2 oz

2
Xn-p-

By Cochran’s theorem (or properties of normal projections), (hence ,[?j) is independent of

RSS(hence independent of 62).

2. Form the studentized statistic. Define

A

Bj — B;

Tj = —
ijj

Writing f; — B; = Zwhere Z ~ N(0,2v;;)and using independence with (n —p)6?/a? ~

Xh—p» We get

_ Z[(ayvy) N .
= = ~tnp
(n-p)52 2 n—
\/%/(n _py) Vi/(=p)
3. Invert to obtain CI. By t,,_,quantiles

p (_ta/z,n—p <T; < ta/z,n—p) =1l-a
which after algebra yields
P(Bj = tajan—p0yvij < By < B + tajan-p0\vjj) =1-a
Thus the stated interval is the 100(1 — a)%CI for g;

Remark: This reduces to Theorem 1 in the simple regression intercept/slope special cases;

degrees of freedom are n — p.

THEOREM 4 — Hotelling’s T2(Ellipsoidal) Confidence Region for 8
Statement: Under the linear model with normal errors, a 100(1 — a)%joint confidence

region for the vector Sis the ellipsoid

(B - ﬁ)’X’X(ﬁA - ﬁ) < p62 Fp,n—p(1 - a)

Equivalently,
B-B)E*X XD B =B <pFnyp(l—a)
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Assumptions. Linear model Y = X + ¢, € ~ N(0,0%I), Xfull rank.

Proof :
1. Distribution of the quadratic form. From Theorem 3 (B),
B — B ~ Ny(0,0%(X'X)™1).

Consider the quadratic form
1 . N
= ;(ﬁ - B)'X'X(B - B)
Because (8 — B) = o(X'X)~Y2Zfor Z ~ N,(0,1), it follows that Q ~ x2 (This is the usual
fact: if W ~ N, (0, Dthen W'W ~ x})

2. Replace a2by 62and form an F pivot. The residual sum of squares gives
(n—p)é*> RSS
o2 = g2 An-p

and this is independent of 8 — B(Cochran). Hence the ratio

(@/p) _p
((n—p)6?/a?)/(n —p) - 62/g2 p,n-p

Multiplying both numerator and denominator by o2yields

B-BYXXB-B)/®Y)

1 pn-p

So

B-BXXB-P) _

P( > 57 SEipl-a)=1-a

Rearrange to the ellipsoid form. Multiply both sides by p 6%to obtain

P(B=BYX'XB-B)<p&®Fp,(l-a)=1-a

which is the stated ellipsoidal confidence region for

Remark: (geometry). The set {8:(8 — 8)'X'X(B — B) < c}is an ellipsoid centered at .
Axis directions are eigenvectors of (X'X)™1, axis lengths scale with Gand the F-quantile.

This region gives simultaneous coverage for all components or linear combinations of 3.

Regression Coefficient CI
Simple regression:Y = o + f1x + €

Given:
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e B =25

. se(f) =04

e n=20=df =18

o 95%level: ty 92518 = 2.101
CL:2.5+ 2.101(0.4) = [1.659,3.341]

Interpretation: The slope is significantly positive

9.7 KEY WORDS:

e Confidence Interval

e Confidence Level

e Margin of Error

e Sampling Distribution

o Regression Coefficient

e Mean Response

e Prediction Interval

o Confidence Region
 Ellipsoidal Region

e Variance—Covariance Matrix
e Multivariate Normal Distribution
e Linear Model

9.8 SUMMARY:

This lesson focused on the construction, interpretation, and application of confidence
intervals and confidence regions in statistical inference, particularly within the framework of
linear models and regression analysis. The concept of confidence intervals was introduced as
a range of plausible values for an unknown population parameter, reflecting sampling
variability and uncertainty.

Beginning with basic definitions and notation, confidence intervals for means, proportions,
and variances were discussed using appropriate sampling distributions such as the normal, t,
chi-square, and F distributions. These ideas were then extended to regression models, where
confidence intervals were developed for regression coefficients, the mean response, and the
prediction of a new observation, highlighting the distinction between estimation and
prediction.

The concept of confidence regions was introduced to handle simultaneous inference for
multiple parameters. Ellipsoidal confidence regions in the multivariate case were derived and
interpreted geometrically, emphasizing their dependence on the variance—covariance
structure of the estimators. Relevant theorems supporting the validity of these intervals and
regions were presented with illustrative examples.

Overall, this unit provides a comprehensive framework for quantifying uncertainty and
making statistically valid inferences in both univariate and multivariate settings within linear
models.
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9.9 SELF-ASSESSMENT QUESTIONS:

1.

2.

XNk

Define a confidence interval and explain its interpretation. Derive the CI for a population
mean with known variance.

Obtain confidence intervals for the least squares estimates in the case of a two-variable
linear model.

Explain why Student’s t-distribution is used when variance is unknown. Construct a 95%
CI for a proportion with example data.

Derive the chi-square CI for variance. State the matrix form of the variance of 3.

Derive CI for a regression coefficient using least squares theory.

Distinguish between CI for mean response and prediction interval.

Define a confidence region and explain why it is ellipsoidal.

Explain the role of the F-distribution in constructing multivariate confidence regions.

9.10 SUGGESTED READING:

1.

raper, N. R. and Smith, H. (1998). Applied Regression Analysis, Wiley.

2. Montgomery, D. C., Peck, E. A., and Vining, G. G. (2012). Introduction to Linear

[ I SN

Regression Analysis, Wiley.

. Rao, C. R. (1973). Linear Statistical Inference and Its Applications, Wiley.
. Seber, G. A. F. and Lee, A. J. (2003). Linear Regression Analysis, Wiley.
. Kutner, M. H., Nachtsheim, C. J., Neter, J., and Li, W. (2005). Applied Linear Statistical

Models, McGraw-Hill.

Dr. U. RamKkiran



LESSON-10
ANALYSIS OF VARIANCE

OBJECTIVES:

After studying this lesson, the student will be able to:

R/
L X4

Understand the fundamental concept of ANOVA - Explain the rationale of analysis of
variance and its role in comparing multiple population means.

Relate ANOVA to linear statistical models - Interpret ANOVA as a special case of the
general linear model.

Identify sources of variation - Decompose total variation into between-group and
within-group components.

Apply one-way and two-way ANOVA models - Formulate and analyze fixed-effects
ANOVA models.

Derive and interpret ANOVA test statistics - Compute sums of squares, mean squares,
and F-statistics.

Test hypotheses using ANOVA - Perform hypothesis testing for equality of means
under various experimental designs.

Interpret ANOVA results in applied contexts - Draw meaningful conclusions from
ANOVA tables in real-life data analysis.

Develop analytical skills for experimental data - Apply ANOVA techniques to
problems in agriculture, industry, social sciences, and biomedical research.

STRUCTURE:

Introduction

10.1 General Linear Model Framework

10.3. Partitioning of Total Variation
10.3.1.0ne-Way , Two way Analysis of Variance

10.3 ANOVA Through Regression

10.4 Matrix Approach to ANOVA
10.5.1.Applications of ANOVA

10.5 Assumptions and Diagnostics
10.6.1.Remedies for Assumption Violations

10.6 Theorems

10.7 Key Words

10.8  Summary

10.9 Self-Assessment Questions

10.10 Suggested Reading
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10.1 INTRODUCTION:

Analysis of Variance (ANOVA) is the framework for testing whether several population
means are equal. It partitions total observed variation into components attributable to factors
(treatments, groups) and random error, and uses the F-ratio (treatment mean square over error
mean square) to test hypotheses. ANOVA is both a modeling and an inferential device closely
related to the general linear model (regression) formulation of mean functions. Classic
treatments and matrix derivations appear in Montgomery et al. and Weisberg.

Description

This lesson introduces Analysis of Variance (ANOVA) as a fundamental statistical tool used
to analyze experiments and regression models by decomposing total variation into
meaningful components. Drawing from the structure presented in Montgomery, Peck &
Vining and the matrix-based treatment of Weisberg, the chapter develops both the classical
ANOVA framework and its natural extension within the general linear model.

The chapter begins with the model

Y=XF+¢
which serves as the mathematical foundation for all ANOVA procedures. Using this model,
the total variation in the response is partitioned into components explained by the fitted
model (regression or treatment effects) and unexplained random variation (error). The
derivation of sums of squares, degrees of freedom, and mean squares follows the same
approach as in Montgomery’s regression ANOVA chapters.

The lesson then addresses assumption diagnostics, including graphical and analytical
methods for assessing normality, homogeneity of variance, independence, leverage, and
influence. These align with the standard residual analysis presented in both PDFs and your
DOCX lesson file.

Finally, practical applications and interpretation are emphasized. Examples include
completely randomized designs, randomized block designs, and factorial experiments,
consistent with the style of examples in your provided materials.

10.2 GENERAL LINEAR MODEL FRAMEWORK:

We view ANOVA as a special case of the general linear model
Y =XB +¢&,¢e~N(0,02)
Each ANOVA design has a specific X. For one-way ANOVA with g groups, a common

parameterization is
g

yl'j :,Ll+Tl' +€ij,ZTi =0
i=1

or equivalently the cell means parameterization y;; = y; + &;;. The linear model view allows
use of projection matrices, sums of squares as quadratic forms, derivation of distributions
(chi-square, F) via Cochran’s theorem, and extensions to unbalanced designs and mixed
models.
10.3 PARTITIONING OF TOTAL VARIATION:
Fundamental identity (one-way case):
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2

g 7
SS, =% 3 (y,-7) =SS, +55,

i=1 j=1
2

- - g 7 _
whereSSg = ¥in; (i — 7)*and 55, =33 (5, - 7)

i=1 j=1
Degrees of freedom partition:
n-1=@-H+Mm-g)
Mean squares: MSg = SSg/(g — 1), MSg = SSg/(n — g)
Interpretation: SSymeasures variation due to differences among group means; SSymeasures
within-group (random) variation.

10.3.1 ONE-WAY ANALYSIS OF VARIANCE:
Model and Hypotheses
Model:

Yij = U+ T+ &y, &5 ~ iidN(O.O'Z),Z‘L'i =0
i

Test:
Hy:ty = 1, = -+ = 14 = 0(all group means equal)vsHy:not all 7; = 0
Derivation of the F-test
1. Compute SSzand SSgas above. Under H,, the between-group variation arises solely
from sampling error.
2. Under the model with normal errors and the constraint )'7; = 0, Cochran’s theorem
gives:

SSg 2
o2 ~ An-g
SSp

2 . .
o — Xg-1if Hois true (or more generally has noncentral chi-square under

o

alternatives), and
o SSpand SSgare independent

(This follows because SSzand SSpare quadratic forms in normal variables
corresponding to orthogonal projections onto complementary subspaces.)

3. Form the ratio

MSp  SSp/(g—1)

MSg  SSg/(n—g)

Under Hythis has an exact Fy_; ,_ gdistribution

F =

4. Decision rule: reject Hoif Fey > Fy_14-g,q- Equivalently compute p-value
P(Fg—l,n—g = Fcal)-

Remarks: For balanced designs SSzhas the simple algebraic form above. For unbalanced
designs, SSgand SSgpare defined similarly but the correctness of the test uses the appropriate
model matrix Xand projections (Type III/III sums of squares discussions).
See Montgomery/Weisberg for details on unbalanced cases and choice of sum-of-squares

type.
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TWO-WAY ANOVA (FIXED EFFECTS) — WITH / WITHOUT INTERACTION:

Consider two factors A(levels i = 1, ...,a) and B(levels j = 1, ..., b). Observations y;jat cell
(L,J), k =1, ...,n;. Fixed effects model (no replication or with replication):

Yijk = u+a;+ B+ (af);; + 8ijk»z a; = Zﬁ’j = Z(aﬁ)ij = Z(aﬁ)ii = 0.
i J i J

l

Objectives: test main effects a;, B;, and interaction (af);;.
ANOVA table (balanced replication, n;; = ny):

Source |df SS |[MS F

A a—1 SSp || MSy=S8S5,/(a—1) | MSy/MSg
B b—-1 SSp MSg MSg/MSg
AxB (a=1D(b—-1) ||SSss MS,p MS,p/MSE
Error ab(ny—1) SSg MSg

Total abny, — 1 SSt

Derivations use projection matrices and Cochran’s theorem to establish null distributions of
mean squares (see Montgomery for derivations). For unbalanced designs use the general
linear model and appropriate contrasts.

10.4 ANOVA THROUGH REGRESSION (INDICATOR VARIABLES)

Equivalently, represent factor levels by dummy (indicator) variables in Xand fit Y = Xf + €.
For one-way ANOVA with ggroups, one can encode g — 1dummies (with intercept) and test
the joint significance of the dummy coefficients using an F-test equivalent to the ANOVA F.
This perspective:
e unifies ANOVA with regression
e handles covariates (ANCOVA)
e allows complex contrasts and hypothesis testing for linear functions of f.
See Weisberg §6 and Montgomery §3 for worked examples and the mapping between
sums of squares and regression projections.

10.5 MATRIX APPROACH TO ANOVA (CONCISE DERIVATION)

LetY € R", model Y = XB + €. Define projection matrices:
o Py = X(X'X)"1X'(fitted space)
e My = I — Px(residual projector)

Sums of squares are quadratic forms:
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®  SSpeg =Il PxY — Y1 |I>(model/treatment SS)
o SSpes = Y'MyY(residual SS)
By Cochran’s theorem (and properties of idempotent matrices) if € ~ N(0, 21):

SSRes 2
o2 ~ XH—P
SSReg
0—2
o independence holds between orthogonal quadratic forms. Hence the F-test arises as

. ~ )(f,_lunder null of no effect (or noncentral otherwise)

ratio of scaled chi-squares:
_ (SSReg/(p - 1))

B (SSRes/(n - P))
This derivation is the most general and covers unbalanced/complex designs. See Appendix C
(Montgomery) for details on SSR/SSRes relationships and proofs.

F F,

p-1n-p

10.5.1 APPLICATIONS OF ANOVA:

e Experimental comparisons (agriculture, industry) — compare treatment means.

o Factorial experiments (study main effects and interactions).

o Blocked designs (randomized block ANOVA) to remove nuisance variation.

e ANCOVA — ANOVA with covariates (combine regression and ANOVA).

e Random effects models and variance component estimation (mixed models). See
examples and practice problems in both Montgomery and Weisberg.

10.6 ASSUMPTIONS & DIAGNOSTICS:

Classical ANOVA assumptions (same as linear model):

5. Linearity (mean structure correct)

6. Errors g;;are independent

7. Homoscedasticity: Var (g;;) = o?(constant variance across cells)

8. Normality: &; ~ N (0, a2)(for exact small-sample inference)
Diagnostics: residual plots vs fitted values, normal probability plots of residuals,
Levene/Bartlett tests for homogeneity, interaction plots for factorials, influence diagnostics
for outliers. See Weisberg Chap. 8 and Montgomery Chap. 4 for detailed diagnostic
procedures and graphical examples.

10.6.1 remedies for assumption violations

o Nonconstant variance: transform the response (Box—Cox), use weighted least squares;
consider variance-stabilizing transforms (square root, log).

e Nonnormality / outliers: robust methods, trimmed means, or bootstrap inference.

e Unbalanced designs / missing cells: use general linear model, Type IVIII sums of
squares, or mixed models (REML) for random effects. Montgomery recommends
REML for unbalanced random/mixed models.
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10.7 THEOREMS & PROOFS (KEY RESULTS YOU MUST INCLUDE):

THEOREM 1. Partitioning identity (one—way ANOVA)

Claim.
Z()’ij —-y)? = z n (i —y)? + 2()’1’1' — )% (i — )%
J i J
i i
Interpretation. Total corrected sum of squares = between—groups SS + within—groups (error)
SS.
Proof (algebraic).
1. Start with the left-hand side, expand each term by inserting y;:
Yii—y = iy —y)+ @i —¥)

2. Square and sum over all i, j:

> -9 = E D1y =70+ G- 9P
J J

3. Expand the square:
Z()’ij - 9)? = Z()’ij - 7)?
j j
i i
+2 Z()’ij -0 —¥)
J
i
D EYC R
j
i
4.  Simplify each term:

The first term is E Z (yij — ¥:)*(that will become SS).
e
l

The third term: Z Zj(j/i —y)? = X, (7 — y)*because y; — ydoes not depend
i

on jand there are n;observations in group i.
. The middle term: use that for each i,

n;
Z(yij -y)=0
=

(by definition of group mean), therefore



Centre for Distance Education 10.7 Acharya Nagarjuna University

Z(Yij -7 —y) = Z(J-’i - 5’)2()’1’1' -5 =0.
J i j

i
5. Putting pieces together,

ZZ(}/U y)? = 22()&, yi)? +an(yl ¥)?,

which is the desned identity.

THEOREM II Distribution of sums—of—squares under normality (via Cochran’s theorem)
One—way ANOVA model

y" = U; + El’jlgij ~ lldN(O 0'2)

Let SS; = E Z (v = 90? and $S5 = 3, (G = )2

Under Hy: ptq = -+ = ug = u, we have the standard null model with common mean.
Claims
e Under HO, ~ Xh-g

e Under HO, ? ~ )(g_l

e Moreover SSgand SSgare independent.

Proof :
Vector form and projections. Stack observations into Y € R™. Under Hythe mean vector is
pland the errors vector € ~ N(0,021,). Consider subspaces:
o &; = span (1)(overall mean subspace, dimension 1)
o &, = {vectors constant on each group, with sum zero across groups} the between—
group subspace orthogonal to 1 describing deviations of group means from the grand
mean; dim (S,) = g—1
o &3 =the within—group residual subspace (vectors with each group sum zero);
dim(83)=n—g

These three subspaces are pairwise orthogonal and their direct sum is R"
1. Quadratic forms as projections. Let P;denote the orthogonal projector onto S3. Then
SSg =l PsY I’=Y'PY

Similarly, P,(projector onto S,) gives
S$Sg =l P,Y I1’=Y'P,Y

And the total corrected SS is Y'(P; + P, + P;)Ywith P;projector onto §;
2. Cochran’s theorem application. Cochran’s theorem states: if Y ~ N(0,021,)and
Ay, ..., Apare symmetric idempotent matrices with ranks 7y, ..., i such that
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i1 A; = I, then the quadratic forms Y'A;Y /o %are independent and Y'A;Y /o2 ~ xZ.

In our ANOVA decomposition we have projectors Py, P,, P;summing to I,,on the centered

data space, with ranks 1, (g — 1), (n — g)respectively. Hence Cochran’s theorem applies.

3. Conclude distributions and independence. Under Hy(so the mean structure is in ),
with Y — pulplaying the role of random normal vector centered at 0, we obtain:

o SSg/o? =Y'PY /0% ~ x%_,
o SSp/o* =Y'PY [0 ~ x5 _4,
o andSSgzand SSgpare independent because P,P; = 0O(orthogonal projectors onto
orthogonal subspaces).
Remarks.

e If an alternative (nonnull) model holds, the distribution of $Sg/0? becomes a
noncentral chi—square with noncentrality determined by the true group means;
SSg/o? remains central chi-square if homoscedastic normal errors hold.

e The geometric / projector viewpoint and Cochran’s theorem are the standard rigorous
route — see Montgomery for this exposition.

THEOREM II1 F-test (ratio of scaled chi—squares)
Claim.Under H,, the statistic

MSp _ SSp/(g—1)
MSg 5Sg/(n—g)
has an F-distribution with (g — 1,n — g)degrees of freedom:
F~F

F =

9-1,n-g
Proof (straightforward from II)
1. By II, under H,,
SSp , S5g )
? ~ Xg—lf? ~ Xn-g

and the two are independent.
2. The definition of an F-distributed variable: if U ~ )(fland V ~ )(rzzare independent,
then
(U/r) ~F
V/iry) 7
3. Apply the definition with U = SSg /02, V = §S; /6%, 1, =g — 1,7, =n— g. Then
(SSs/9)/(g =1 _
(SSg/o®)/(n—g) 9T
4. Cancel o%in numerator and denominator to get
SSg/(g—1) N
SSg/(n—g)

Fg—l,n—g

which is the desired result.
Decision rule. Reject Hyat level aif Fypg > Fy_1n-g;1-a

THEOREM 1V Equivalence of ANOVA Fand regression F(SSR = SSgand orthogonality)
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Claim.Fitting the one—way ANOVA model by ordinary least squares using dummy (indicator)
variables yields the same model sum of squares as the classical ANOVA between—groups SS.
Thus the ANOVA F-test is algebraically identical to the regression F-test for testing the joint
significance of the dummy coefficients.

Proof
1.

Regression encoding. Let there be ggroups. One standard regression parameterization
is:

Yij = Bo + B2diz + Badiz + - + Bydig + &5
whered;;, = 1if observation is in group k, else 0; group 1 serves as baseline
(so there are g — 1dummies plus intercept). The design matrix X has columns: a
column of ones (intercept) and g — 1dummy columns. Full rank p = g.

Model fitted values and group means. For this design, the fitted value for any
observation in group iequals the estimated group mean fi;. (Because the OLS solution
sets the fitted value constant within each group equal to the group sample mean when
using cell means parameterization or equivalent dummy coding.) Concretely, the
fitted vector Y = PyYis piecewise constant on the groups, with value ¥;for
observations in group i.

Regression SSR equals ANOVA between—groups SS. The regression sum of squares
(SSR or SSReg) is

n
SSkeg = ) B =902 = ) m(i = )?
k=1 i

l
becausey,, = y;for observations in group i. But the right side is exactly SSgfrom the

ANOVA algebraic identity. Thus SSg.; = $S5

4. Residual (error) SS equality. The residual sum of squares from regression is

n
SSpes = Z(yk —9)? = E Z(yij — ¥:)? =SSgType equation here.
k=1 - i
]

This also follows from the partition SS7 = SSg.4 + SSges and the partition identity in 1.

5.

Orthogonality / independence viewpoint. In matrix language, the model subspace
spanned by the columns of X equals the span of group—indicator vectors (which is the
sum of the grand—mean subspace and the between—group subspace). The residual
projector My = I — Py projects onto the within—group subspace; hence regression
residuals are orthogonal to the columns of X, which yields orthogonality of SSR and
SSE quadratic forms. This is the same geometry underlying Cochran’s theorem used
in IL.
Equivalence of Ftests. In regression one tests the null that the g — 1 dummy
coefficients are all zero (i.e. only intercept remains). The standard regression Ffor the
model with p = gparameters is

_ SSReg/(p - 1) _ SSB/(g - 1)

SSRes/(n - p) SSE/(” - g)




\Linear Models and Applied Regression Analysts  10.10 Analysis of Variance\

which is exactly the ANOVA Fderived earlier. Thus the tests are algebraically
identical.

Conclusion:

ANOVA can be viewed as a special case of the general linear model; sums of squares and
tests coincide when factors are encoded by dummy variables. For elaboration and examples
see Weisberg and Montgomery.

10.8 KEY WORDS:

e Analysis of Variance (ANOVA)
Total Sum of Squares (TSS)
Treatment Sum of Squares (TrSS)
Error Sum of Squares (ESS)
Mean Square

F-statistic

One-Way ANOVA

Two-Way ANOVA

Fixed Effects Model

Random Effects Model

General Linear Model

ANOVA Table

Degrees of Freedom

Null Hypothesis

Homogeneity of Variance
Additivity

Interaction Effects

Matrix Approach to ANOVA
ANOVA through Regression

10.9 SUMMARY:

Analysis of Variance (ANOVA) is a fundamental statistical technique used to compare means
of two or more populations by decomposing total variability in the data into meaningful
components attributable to different sources. Within the general linear model framework,
ANOVA is shown to be a special case of regression analysis, thereby unifying regression and
experimental data analysis.

The unit begins with the formulation of ANOVA under the general linear model,
emphasizing the role of design matrices and parameter interpretation. The partitioning of total
variation into treatment (explained) and error (unexplained) components forms the basis for
hypothesis testing using the F-statistic. One-way and two-way ANOVA models illustrate how
factor effects and interactions influence response variability.

ANOVA is further developed through a regression and matrix approach, which provides a
compact and powerful representation for estimation, testing, and interpretation. This
approach highlights connections between sums of squares, projections, and estimability of
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effects. Practical applications of ANOVA demonstrate its usefulness in agriculture, industry,
economics, medicine, and social sciences.

The unit also stresses the importance of model assumptions-normality, independence, and
homoscedasticity-and introduces diagnostic tools for detecting violations. Appropriate
remedial measures, such as transformations and alternative modeling strategies, are discussed
to ensure valid inference.

In conclusion, ANOVA serves as a cornerstone of linear models by:

e Providing a systematic method for comparing multiple means,

e Linking experimental design with regression analysis,

e Offering a matrix-based framework for estimation and testing,

e Supporting sound statistical inference through diagnostics and assumptions.
A solid understanding of ANOVA equips students with essential tools for analyzing
structured data and lays the foundation for advanced topics in linear and mixed models.

10.10 SELF-ASSESSMENT QUESTIONS:

1. Derive the one-way ANOVA partition SST = SSB + SSEfrom first principles.

2. Show step-by-step that under the normal error model SS;/c? ~ )(,Zl_g. (Use Cochran’s
theorem.)

3. Explain analysis of variance for two—way classification with multiple observations per
cell. Obtain the ANOVA table.

4. Show equivalence between the ANOVA F-test and the regression Ftest for group
indicators.

5. Given an unbalanced one-way design, explain differences among Type I/IVIII sums of
squares and when each is appropriate.

6. Given residual diagnostics showing increasing variance with fitted values, propose
remedial steps and justify them.

10.11 SUGGESTED READING:

1. Graybill, F.A. (1983): Matrices with Applications in Statistics. Wadsworth.

2. Draper, N.R. and Smith, H. (1998): Applied Regression Analysis. Wiley-Blackwell.

3. Montgomery, D.C., Peck, E.A. and Vining, G.G. (2012): Introduction to Linear

Regression Analysis, 5th Ed. Wiley.

4. Bapat, R.B. (2012): Linear Algebra and Linear Models. Springer.

. Rao, C.R. (2002): Linear Statistical Inference and Its Applications. 2nd Ed. Wiley-
Blackwell.

6. Weisberg, S. (2013): Applied Linear Regression, 4th Ed. Wiley.

9]

Dr. U. Ramkiran



LESSON -11

SIMPLE LINEAR REGRESSION

OBJECTIVES:

After completing this lesson, students will be able to:

Interpret regression coefficients in practical contexts

STRUCTURE:

11.1 INTRODUCTION
11.2 SIMPLE LINEAR REGRESSION MODEL
11.2.1 Assumptions of Simple Linear Regression
11.2.2 Interpretation of Regression Parameters
11.3 LEAST SQUARES ESTIMATION
11.3.1 Estimation of Regression Coefficients
11.3.2 Properties of Least Squares Estimators
11.4 STATISTICAL INFERENCE
11.4.1 Tests of Hypotheses on Regression Parameters
11.4.2 Confidence Intervals for Regression Coefficients
11.5 GOODNESS OF FIT
11.5.1 Coefficient of Determination (R?)
11.6 CONCLUSION
11.7 SELF ASSESSMENT QUESTIONS
11.8 FURTHER READINGS

11.1 INTRODUCTION

Understand the structure and assumptions of the simple linear regression model
Derive and compute least squares estimators of regression parameters

Perform hypothesis testing and construct confidence intervals for parameters
Evaluate model adequacy using coefficient of determination (R?)

In many real-world situations, understanding how one measurable quantity changes in
response to another is essential for scientific analysis and decision-making. Such situations
frequently arise in economics, agriculture, engineering, medicine, environmental studies, and
social sciences. When the relationship between two quantitative variables is of interest,
statistical modeling provides a systematic approach to describe, analyze, and interpret this
relationship. Among the various statistical tools available, simple linear regression is one of

the most fundamental and widely applied techniques.
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Simple linear regression focuses on studying the relationship between two variables, where
one variable depends on the other. The variable whose value is to be explained or predicted is
called the response or dependent variable, while the variable used to explain or predict
changes is known as the explanatory or independent variable. The primary objective of
regression analysis is not only to identify whether a relationship exists but also to quantify the
nature and strength of that relationship.

The fundamental idea of simple linear regression is to represent the dependence of the
response variable on the explanatory variable through a straight-line relationship. This
linear form is chosen for its simplicity, interpretability, and usefulness in practical
applications. Although many real-world relationships may be complex, linear regression
often serves as an effective first approximation that captures the overall trend in the data.
Once such a model is established, it can be used to predict future values of the response
variable for given values of the explanatory variable.

An important feature of regression analysis is the recognition of random variation. In
practice, observed data rarely follow a perfect deterministic relationship. Various unobserved
factors, measurement errors, and natural variability introduce randomness into the observed
values. Simple linear regression accounts for this uncertainty by incorporating a random error
term into the model. This allows the analyst to separate the systematic component of the
relationship from random fluctuations and to make probabilistic statements about model
parameters and predictions.

Regression analysis differs from correlation analysis in its objective. While correlation
measures the degree of association between two variables, regression aims to establish a
functional relationship that enables explanation and prediction. In simple linear regression,
the direction of dependence is clearly defined: changes in the explanatory variable are
assumed to influence the response variable, not vice versa. This distinction is crucial in
applications such as forecasting, policy analysis, and experimental studies.

The simplicity of the linear regression model also allows for meaningful interpretation of its
parameters. The slope of the regression line indicates the average rate of change of the
response variable with respect to the explanatory variable, while the intercept provides a
baseline level of the response variable under specific conditions. These interpretations make
the model particularly useful for conveying results to practitioners and decision-makers who
may not have a strong background in statistics.

Another important role of simple linear regression is its function as a foundation for more
advanced models. Concepts such as least squares estimation, hypothesis testing, confidence
interval construction, and model diagnostics are first introduced in the context of the simple
linear regression model. These ideas are later extended to multiple regression, generalized
linear models, and other advanced statistical techniques. Therefore, a clear understanding of
simple linear regression is essential for further study in statistical modeling and data analysis.
In addition, simple linear regression plays a vital role in empirical research. Researchers use
it to test theoretical relationships, validate assumptions, and generate insights from data. By
quantifying relationships and assessing their statistical significance, regression analysis
supports evidence-based conclusions across a wide range of disciplines.

In summary, simple linear regression provides a powerful yet accessible framework for
studying relationships between variables. Its practical relevance, conceptual clarity, and
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methodological importance make it an indispensable tool in statistics and applied research. A
thorough understanding of this technique enables students and practitioners to model real-
world phenomena effectively and to progress toward more sophisticated analytical methods.

11.2 SIMPLE LINEAR REGRESSION MODEL

In regression analysis, the objective is to study the relationship between a response
(dependent) variable, whose value is unknown, and one or more explanatory
(independent) variables, whose values are known or observed. When the model involves a
single response variable Y and only one explanatory variable X, the resulting linear
relationship

Y=B8+BX+¢

where:

B0 = intercept of the regression line

B1 = slope of the regression line

¢ = random error term

The model assumes that the mean value of Y changes linearly with X, while random
disturbances are captured by the error term.

Examples

1. Predicting sales of the product based on advertisement;

Y (Sales) = 3, + B, X (Advertisements) + &

2. Estimating exam scores based on study hours of PG Students;
Y (Exam Score) = 3, + B, X (Study hour)+& 11.2.1 Assumptions of Simple Linear

Regression

For the simple linear regression model to produce reliable estimates and valid statistical
inferences, certain underlying assumptions must be satisfied. These assumptions describe the
behavior of the relationship between the variables and the random error component of the
model.

Linearity

The expected value of the response variable is assumed to be a linear function of the
explanatory variable. This means that changes in the independent variable lead to
proportional changes in the mean of the dependent variable. The relationship between the two
variables can therefore be adequately represented by a straight line.

Independence of Errors

The random error terms associated with different observations are assumed to be independent
of one another. This implies that the error corresponding to one observation does not
influence or provide information about the error of another observation. Independence is
particularly important when data are collected over time or across units.

Zero Mean of Error Terms

The error term is assumed to have an expected value of zero for all values of the independent
variable. This condition ensures that the regression line represents the average relationship
between the variables and that the model does not systematically overestimate or
underestimate the response variable.
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Constant Variance (Homoscedasticity)

The variability of the error term is assumed to remain constant for all levels of the
independent variable. In other words, the spread of the residuals around the regression line
should be approximately the same across the entire range of the explanatory variable. This
assumption ensures efficiency and reliability of the parameter estimates.

Normality of Error Terms

For purposes of hypothesis testing and interval estimation, the error terms are assumed to
follow a normal distribution. While this assumption is not strictly necessary for parameter
estimation, it is essential for constructing confidence intervals and performing significance
tests using standard statistical methods.

1. Modelling temperature and cool drinks sales in the city;
Y (Cool drink Sales) = 3, + p, X (Temperature) + &

To complete the model in (1), we make the following assumptions:
1. E(&)=0 orequivalently, E(Y)=2,+8X

2. V(g): o or equivalently, V(Y ): o’
3. Cov(ge;)=0 Vi#j orequivalently, Cov(Y,Y;)=0

11.2.1 Assumptions of Simple Linear Regression

For the simple linear regression model to produce reliable estimates and valid statistical
inferences, certain underlying assumptions must be satisfied. These assumptions describe the
behavior of the relationship between the variables and the random error component of the
model.

Linearity

The expected value of the response variable is assumed to be a linear function of the
explanatory variable. This means that changes in the independent variable lead to
proportional changes in the mean of the dependent variable. The relationship between the two
variables can therefore be adequately represented by a straight line.

Independence of Errors

The random error terms associated with different observations are assumed to be independent
of one another. This implies that the error corresponding to one observation does not
influence or provide information about the error of another observation. Independence is
particularly important when data are collected over time or across units.

Zero Mean of Error Terms

The error term is assumed to have an expected value of zero for all values of the independent
variable. This condition ensures that the regression line represents the average relationship
between the wvariables and that the model does not systematically overestimate or
underestimate the response variable.

Constant Variance (Homoscedasticity)
The variability of the error term is assumed to remain constant for all levels of the
independent variable. In other words, the spread of the residuals around the regression line
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should be approximately the same across the entire range of the explanatory variable. This
assumption ensures efficiency and reliability of the parameter estimates.

Normality of Error Terms

For purposes of hypothesis testing and interval estimation, the error terms are assumed to
follow a normal distribution. While this assumption is not strictly necessary for parameter
estimation, it is essential for constructing confidence intervals and performing significance
tests using standard statistical methods.

11.2.2 Interpretation of Regression Parameters

e Intercept (Bo): Represents the expected value of Y when X=0.

e Slope (B1): Measures the average change in Y for a one-unit increase in X.
A positive slope indicates a direct relationship, while a negative slope indicates an inverse
relationship.

11.3 LEAST SQUARES ESTIMATION

The method of least squares is used to estimate the unknown regression parameters. The
principle is to choose estimators that minimize the sum of squared deviations between
observed values and fitted values.

11.3.1 Estimation of Regression Coefficients

The estimators of B0 and 1 are given by:
DX E-T

B1= wxi-X)?

Bo=Y._piX

The fitted regression line is:

¥ —Bo+ P1X

11.3.2 Properties of Least Squares Estimators

Under the standard assumptions, the least squares estimators have the following properties:

e Unbiasedness: E(P) = p0 and E(B1) = B:

e Minimum Variance: They have the smallest variance among all linear unbiased
estimators

e Consistency: Estimators converge to true parameter values as sample size increases

e Efficiency: They achieve the Gauss—Markov optimality condition

11.4 STATISTICAL INFERENCE

Statistical inference in regression analysis focuses on drawing conclusions about the
unknown parameters of a regression model based on sample data. Once the regression
coefficients are estimated, inferential procedures are used to determine whether the estimated
relationships are statistically meaningful and to assess the precision of these estimates.




Linear Models and Applied Regression ... 11.6 Simple Linear Regression

One important aspect of statistical inference is hypothesis testing. Hypotheses are
formulated to test assumptions about regression parameters, particularly to examine whether
an explanatory variable has a significant effect on the response variable. A common null
hypothesis states that a regression coefficient is equal to zero, implying no linear relationship
between the variables. Test statistics are computed using the estimated coefficients and their
standard errors, and decisions are made by comparing these values with appropriate critical
values.

Another key component of regression inference is the construction of confidence intervals
for the model parameters. Confidence intervals provide a range of plausible values for the
true regression coefficients and indicate the level of uncertainty associated with the estimates.
A wider interval reflects greater uncertainty, while a narrower interval suggests more precise
estimation.

Statistical inference also allows for assessing the overall adequacy of the regression model.
By combining hypothesis tests and confidence intervals, researchers can evaluate the
reliability of parameter estimates and the strength of the relationship between variables.
These inferential tools support informed conclusions and enable effective prediction and
decision-making based on the regression model.

11.4.1 Tests of Hypotheses on Regression Parameters

A commonly tested hypothesis is:
Ho:B1=0vs Hi:1 # 0
The test statistic is:
Bl
t = SE(B1)
If the calculated t-value exceeds the critical value, the null hypothesis is rejected, indicating a
significant linear relationship.

11.4.2 Confidence Intervals for Regression Coefficients

A (1-a)*100% confidence interval for B is:

BL. ta2,n2XSE (B])

Similarly, confidence intervals can be constructed for Bo.

11.5 GOODNESS OF FIT

Goodness of fit refers to the extent to which a regression model is able to explain the
observed variation in the response variable using the explanatory variable. It provides a
quantitative measure of how accurately the fitted regression equation represents the
underlying data. A model with a good fit closely follows the observed data points, while a
poor fit indicates that the model does not adequately capture the relationship between the
variables.

In regression analysis, the total variation in the response variable can be separated into two
components: the variation explained by the regression model and the variation due to random
error. Goodness-of-fit measures evaluate the proportion of total variation that is explained by
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the fitted model. A higher proportion of explained variation indicates that the model
successfully captures the systematic relationship between the variables.

Assessing goodness of fit is essential for understanding the usefulness and reliability of a
regression model. Even if the estimated regression coefficients are statistically significant, the
model may still perform poorly if it explains only a small portion of the variability in the
data. Therefore, goodness-of-fit measures complement statistical inference by providing
insight into the practical effectiveness of the model.

Graphical methods such as residual plots are often used alongside numerical measures of
goodness of fit. These plots help detect patterns, outliers, or deviations from model
assumptions that may reduce the quality of the fit. A well-fitted model typically shows
residuals that are randomly scattered without any systematic structure.

Overall, goodness of fit plays a crucial role in evaluating regression models. It helps
determine whether the model is suitable for interpretation, prediction, and decision-making.
By examining goodness-of-fit measures, analysts can compare competing models and select
the one that best represents the relationship between the variables while maintaining
simplicity and accuracy.

11.5.1 Coefficient of Determination (R?)
The coefficient of determination is defined as:

Explained Sum of Squares
R2= Total Sum of Squares

Its value lies between 0 and 1. A higher value of R? indicates that a greater proportion of
variation in Y is explained by X.

11.6 CONCLUSION

Simple linear regression is one of the most important and widely used techniques in statistical
analysis for examining the relationship between two quantitative variables. By expressing this
relationship through a linear model, it enables researchers and practitioners to describe
patterns, quantify associations, and make predictions based on observed data. Its simplicity,
interpretability, and broad applicability make it a foundational tool in both theoretical and
applied statistics.

A major strength of simple linear regression lies in its ability to estimate unknown model
parameters using observed sample data. These estimates provide meaningful numerical
summaries that describe how the response variable changes with respect to the explanatory
variable. In addition to parameter estimation, the method offers a structured approach for
testing hypotheses, allowing analysts to determine whether the observed relationship is
statistically significant or likely due to random variation.

Another important aspect of simple linear regression is the evaluation of model fit. Measures
of goodness of fit help assess how effectively the model explains variability in the data, while
diagnostic tools highlight potential limitations or violations of assumptions. Together, these
techniques ensure that conclusions drawn from the model are not only statistically valid but
also practically relevant.
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The reliability of regression analysis depends heavily on the validity of its underlying
assumptions. Assumptions such as linearity, independence, constant variance, and normality
of errors form the basis for accurate estimation and inference. Careful examination and
validation of these assumptions enhance the credibility of the results and reduce the risk of
misleading interpretations.

In summary, simple linear regression provides a comprehensive framework for understanding
relationships between variables, making predictions, and supporting data-driven decisions.
When properly applied and interpreted, it serves as a powerful analytical tool that lays the
groundwork for more advanced regression techniques and statistical modeling approaches.

11.7 SELF ASSESSMENT QUESTIONS

Define the simple linear regression model and explain its components.
State and explain the assumptions of simple linear regression.

Derive the least squares estimators of regression coefficients.

Explain the significance test for the regression slope.

What is the importance of the coefficient of determination?

11.8 FURTHER READINGS

e Draper, N.R. and Smith, H., Applied Regression Analysis, Wiley.

e Montgomery, D.C., Peck, E.A., and Vining, G.G., Introduction to Linear Regression
Analysis, Wiley.

e Rao, C.R., Linear Statistical Inference and Its Applications, Wiley.

o Weisberg, S., Applied Linear Regression, Wiley.

Dr. U. RamKkiran



LESSON -12
MULTIPLE REGRESSION

OBJECTIVES:

By the end of this lesson, students will be able to:
e Formulate and analyze multiple linear regression models
e Apply matrix methods to estimate regression coefficients
e Interpret partial regression coefficients
e Conduct t-tests and F-tests for model and parameter significance
e Assess goodness of fit and analyze residuals

STRUCTURE

12.1 INTRODUCTION
12.2 MULTIPLE LINEAR REGRESSION MODEL
12.2.1 Assumptions of Multiple Regression
12.2.2 Interpretation of Regression Coefficients
12.3 ESTIMATION OF PARAMETERS
12.3.1 Least Squares Estimation
12.3.2 Matrix Approach to Multiple Regression
12.4 TESTS OF SIGNIFICANCE
12.4.1 t-test for Individual Regression Coefficients
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12.1 INTRODUCTION

In many real-life situations, the behavior of a response variable cannot be explained
adequately by a single influencing factor. Instead, outcomes are usually determined by the
combined effect of several explanatory variables acting simultaneously. For example,
agricultural yield may depend on rainfall, soil quality, fertilizer usage, and temperature;
economic growth may be influenced by investment, labor, inflation, and government policies;
and patient recovery in medical studies may depend on age, treatment type, dosage, and
health conditions. In such cases, analyzing the effect of one variable at a time may lead to
incomplete or misleading conclusions. Multiple linear regression provides a systematic

statistical framework to study such complex relationships.
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Multiple linear regression extends the concept of simple linear regression by allowing the
response variable to be expressed as a linear function of more than one independent
variable. This extension enables the model to account for the simultaneous influence of
several predictors on an outcome. By incorporating multiple explanatory variables within a
single model, it captures the combined and individual effects of predictors more effectively.
As a result, it offers a more realistic representation of real-world phenomena where outcomes
are rarely driven by a single factor.

A key advantage of multiple linear regression lies in its ability to isolate the effect of each
explanatory variable while holding other variables constant. This characteristic is especially
valuable in observational studies where controlled experiments may not be feasible. By
controlling for the influence of other predictors, the model allows researchers to determine
the unique contribution of each variable to the response. This helps in identifying important
predictors, understanding cause-and-effect relationships, and making informed decisions
based on statistical evidence.

Multiple linear regression also plays an important role in prediction and forecasting. When
several relevant explanatory variables are available, a multiple regression model typically
provides more accurate predictions than models based on a single predictor. The inclusion of
additional meaningful variables reduces unexplained variability and improves the precision of
predicted values. This makes multiple regression particularly useful in applications such as
demand forecasting, risk assessment, quality control, and policy analysis.

Another significant feature of multiple linear regression is its flexibility. The model can
accommodate both quantitative and categorical variables through appropriate coding
techniques. This allows analysts to study a wide range of practical problems involving
diverse types of data. Furthermore, multiple regression forms the foundation for many
advanced statistical methods, including analysis of covariance, logistic regression, and
machine learning regression techniques. Understanding multiple linear regression is therefore
essential for further study in applied statistics and data science.

The use of multiple linear regression requires careful attention to model assumptions and
diagnostics. Assumptions regarding linearity, independence of errors, constant variance, and
the absence of strong multicollinearity must be examined to ensure reliable results.
Diagnostic tools such as residual analysis help assess the validity of the model and guide
improvements when assumptions are violated. Proper model evaluation enhances the
credibility and interpretability of regression results.

In summary, multiple linear regression is a powerful and widely used statistical technique for
analyzing relationships involving several explanatory variables. It provides deeper insights
into complex data structures, improves predictive accuracy, and supports evidence-based
decision-making across various disciplines. By enabling the study of multiple factors
simultaneously, it serves as an indispensable tool for researchers, analysts, and practitioners
dealing with real-world data.

12.2 MULTIPLE LINEAR REGRESSION MODEL

The multiple linear regression model expresses the response variable Y as a linear function of
several explanatory variables X1,X2,...,Xk:
Yi=p0+ B1Xi1 + B2Xip +--++ PkXix + €,1=1,2,...,n
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where

B0 is the intercept,

B1,B2,...,Bk are regression coefficients,

€l is the random error term.

Each coefficient measures the effect of its corresponding explanatory variable on the
response variable, assuming other variables remain fixed.

12.2.1 Assumptions of Multiple Regression

The multiple regression model relies on the following assumptions:

Assumptions of Multiple Linear Regression

For multiple linear regression to yield reliable parameter estimates and valid statistical
inferences, certain fundamental assumptions must be satisfied. These assumptions describe
the nature of the relationship between the response variable and the explanatory variables, as
well as the behavior of the random error component of the model. Careful verification of
these assumptions is essential for correct interpretation and effective application of regression
results.

1. Linearity

The multiple linear regression model assumes that the mean of the response variable is a
linear function of the explanatory variables. This does not require the variables themselves to
be linearly related, but it assumes that the expected value of the response can be expressed as
a weighted sum of the predictors plus a constant term. Each explanatory variable contributes
to the response in an additive manner, and the effect of a variable is measured through its
regression coefficient.

Linearity simplifies both interpretation and estimation, allowing each coefficient to represent
the average change in the response for a unit change in the corresponding predictor, assuming
other variables remain constant. Although real-world relationships may be complex, linear
models often provide an adequate approximation over limited ranges of the data.

2. Independence of Observations and Error Terms

Another important assumption is that the observations, and consequently the error terms, are
statistically independent. This means that the value of the error associated with one
observation does not influence the error of another observation. Independence is particularly
relevant in data collected over time or space, where patterns such as autocorrelation may
occur.

Violations of this assumption can result in biased estimates of standard errors, leading to
incorrect conclusions in hypothesis testing. Ensuring independence improves the reliability of
statistical inference and the validity of conclusions drawn from the model.

3. Zero Mean of Error Terms

The regression model assumes that the expected value of the error term is zero for all
combinations of the explanatory variables. This condition implies that the model is correctly
specified in the sense that it does not systematically overestimate or underestimate the
response variable.

A zero mean error ensures that the regression line passes through the center of the data and
that the estimated coefficients are unbiased. If this assumption is violated, it indicates that
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important variables may be missing from the model or that the functional form of the
relationship is not properly specified.

4. Constant Variance (Homoscedasticity)

Homoscedasticity refers to the assumption that the variance of the error term remains
constant across all observations. In other words, the spread of the residuals around the
regression surface should be approximately the same for all values of the explanatory
variables.

When this assumption holds, the least squares estimators are efficient and have minimum
variance. If the variance of errors changes with the level of the predictors, a condition known
as heteroscedasticity arises. This can distort standard errors and reduce the effectiveness of
statistical tests, making it essential to diagnose and address when present.

5. No Perfect Multicollinearity

Multiple linear regression requires that the explanatory variables are not exact linear
combinations of one another. This assumption ensures that each regression coefficient can
be uniquely estimated. Perfect multicollinearity occurs when one predictor can be expressed
exactly as a linear combination of others, making the estimation of coefficients impossible.
Although perfect multicollinearity is rare in practice, high levels of correlation among
predictors can still cause instability in coefficient estimates. Avoiding or addressing
multicollinearity improves interpretability and numerical reliability of the regression results.
Importance of Assumptions

The validity of regression results depends strongly on how well these assumptions are
satisfied. When the assumptions hold, the estimated coefficients are unbiased, consistent, and
efficient, and standard hypothesis tests and confidence intervals are valid. Diagnostic tools
such as residual plots and variance measures help assess these assumptions in applied work.
Conclusion

The assumptions of multiple linear regression form the foundation for reliable estimation and
meaningful inference. Linearity, independence, zero mean errors, constant variance, and
absence of perfect multicollinearity collectively ensure that the model accurately represents
the underlying data-generating process. Careful examination and validation of these
assumptions are crucial for drawing sound conclusions and making effective predictions
using multiple linear regression.

12.2.2 Interpretation of Regression Coefficients

In multiple linear regression analysis, regression coefficients play a central role in explaining
the relationship between the response variable and the explanatory variables. Each coefficient
provides a quantitative measure of how the response variable is expected to change as a
specific explanatory variable changes, while all other variables in the model are held
constant. This interpretation allows researchers to study the individual contribution of each
predictor within a multivariable framework.

The coefficient associated with a particular explanatory variable represents the marginal
effect of that variable on the response. Specifically, it measures the expected change in the
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response variable resulting from a one-unit increase in the explanatory variable, assuming
that all remaining variables in the model remain unchanged. This “holding other variables
constant” condition is essential, as it allows the effect of one variable to be isolated from the
influence of others, which is particularly important when explanatory variables are correlated.
The sign of a regression coefficient indicates the direction of the relationship between the
explanatory variable and the response variable. A positive coefficient suggests that, on
average, an increase in the explanatory variable leads to an increase in the response variable,
provided other variables are fixed. Conversely, a negative coefficient implies an inverse
relationship, where an increase in the explanatory variable is associated with a decrease in the
response variable. The sign therefore provides immediate qualitative insight into the nature of
the relationship.

The magnitude of a regression coefficient reflects the strength of the relationship. Larger
absolute values indicate a stronger effect of the explanatory variable on the response variable,
while smaller values suggest a weaker influence. However, the magnitude must be interpreted
carefully, as it depends on the scale and units of measurement of the variables involved. For
meaningful comparisons among coefficients, variables often need to be standardized or
appropriately transformed.

Regression coefficients also carry important contextual meaning depending on the variables
used in the model. For continuous explanatory variables, the coefficient describes the
expected change in the response per unit change of the predictor. When categorical variables
are included through indicator or dummy variables, the coefficients represent differences in
the mean response relative to a reference category. Thus, correct interpretation requires an
understanding of how each variable is defined and measured.

Another important aspect of interpreting regression coefficients is the distinction between
statistical significance and practical significance. A coefficient may be statistically
significant, indicating strong evidence of an association, yet have a small magnitude that
limits its practical importance. Conversely, a coefficient with a large magnitude may not be
statistically significant if the data exhibit substantial variability. Therefore, both the size of
the coefficient and its statistical significance must be considered together.

Regression coefficients are also influenced by the presence of other variables in the model.
Adding or removing explanatory variables can change coefficient estimates, particularly
when predictors are correlated. This highlights the importance of careful model specification
and awareness of multicollinearity, which can inflate standard errors and make coefficient
estimates unstable.

In applied analysis, interpretation of regression coefficients supports decision-making and
policy formulation. By quantifying the effect of individual variables while controlling for
others, multiple regression enables analysts to identify key drivers of an outcome and assess
potential impacts of changes in explanatory variables.

Regression coefficients provide meaningful and interpretable measures of the relationship
between explanatory variables and the response variable in multiple linear regression. Their
sign indicates the direction of influence, their magnitude reflects the strength of the effect,
and their interpretation depends on both the model structure and the measurement scale.
Proper understanding of regression coefficients is essential for drawing valid conclusions and
making informed decisions based on regression analysis.
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12.3 Estimation of parameters

In multiple linear regression analysis, the unknown parameters of the model are typically
estimated using the method of least squares. This method provides a systematic and
objective approach to determine the values of regression coefficients that best represent the
relationship between the response variable and the set of explanatory variables. The central
idea of least squares estimation is to minimize the discrepancy between the observed values
of the response variable and the values predicted by the regression model.

The discrepancy between an observed value and its corresponding predicted value is known
as a residual. For each observation, the residual represents the portion of the response
variable that is not explained by the regression model. Least squares estimation seeks to
determine the regression coefficients such that the sum of the squared residuals across all
observations is as small as possible. Squaring the residuals ensures that both positive and
negative deviations are treated equally and gives greater weight to larger errors.

Mathematically, the multiple linear regression model can be expressed as a linear
combination of explanatory variables along with a random error term. The fitted model
generates predicted values for the response variable, and the difference between the observed
and predicted values forms the residuals. The least squares criterion minimizes the aggregate
of these squared residuals, thereby producing parameter estimates that provide the closest
possible fit to the observed data in the sense of minimizing overall error.

One of the important features of least squares estimation is its analytical convenience. Under
standard regression assumptions, the minimization problem yields a set of normal equations
that can be solved to obtain explicit expressions for the regression coefficients. These
equations ensure that the resulting estimates balance the deviations in the data and satisfy
optimality conditions. The least squares estimators are therefore well-defined and
computationally efficient, even when multiple explanatory variables are involved.

Another key advantage of the least squares method is its statistical optimality. When the
assumptions of linearity, independence, zero mean of errors, and constant variance are
satisfied, least squares estimators possess desirable properties. They are unbiased, meaning
that their expected values equal the true parameter values. They are also efficient in the sense
that they have the smallest variance among all linear unbiased estimators. As sample size
increases, the estimators become more precise, making them reliable for large datasets.

Least squares estimation also serves as the foundation for statistical inference in regression
analysis. Once parameter estimates are obtained, their sampling distributions can be studied
to conduct hypothesis tests and construct confidence intervals. This enables analysts to assess
whether individual explanatory variables have significant effects on the response variable and
to quantify the uncertainty associated with the estimated coefficients.

In practice, least squares estimation is closely tied to model evaluation and diagnostics. The
residuals obtained from the fitted model are used to assess the validity of model assumptions
and to identify potential issues such as outliers, non-linearity, or unequal variance. Thus, the
estimation process not only provides parameter estimates but also supports model refinement
and validation.
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In summary, the method of least squares is a fundamental and widely used technique for
estimating the parameters of the multiple linear regression model. By minimizing the sum of
squared residuals, it produces efficient and interpretable estimates that form the basis for
inference, prediction, and decision-making. Its mathematical simplicity, optimal properties,
and practical usefulness make it an essential tool in regression analysis.

12.3.1 Least Squares Estimation

A multiple linear regression model predicts the value of a dependent variable (Y) using
multiple independent variables

(X, X, X, X, Xs.... X))

Y=8+LX +BX,+ X, +......... +B.X, +¢

Whereas B0 = Intercept;

Regression coefficients (parameters) and

¢ = Random error term

To estimate the unknown coefficients S, B, B,, B; B,....... 5, from observed data using least

squares method.

Method of Least Squares Estimation:
We find estimates 3., 3., 3, ,[;’3’ B,......[3, that minimize the sum of squared errors (SSE)

SSE=Y(Y =Yy =X(Y =S, + X, + X, + BX, +.corre..e. +BX)
Matrix Form for Estimation; The model can be written in matrix form: Y=Xf+¢

Whereas:
e Y =(nx1) vector of responses
e X = (nxk) matrix of predictors (with a column of 1s for intercept)
e [ =(kx1) vector of parameters
e ¢=(nx1) Error vector

~ -1
Least Squares Estimator: f :(X 'X ) X'y ; It gives the best linear unbiased estimator

(BLUE) under classical regression assumptions.

12.3.2 Matrix Approach to Multiple Regression

The multiple regression model can be expressed in matrix form as:
A -1
Least Squares Estimator: S :(X ‘X ) X'y ; Tt gives the best linear unbiased estimator

(BLUE) under classical regression assumptions.
The matrix formulation simplifies computation and forms the basis for theoretical analysis
and extension to advanced regression models.

12.4 TESTS OF SIGNIFICANCE

Statistical tests play a crucial role in multiple linear regression analysis by determining
whether the explanatory variables have a meaningful influence on the response variable.
While parameter estimation provides numerical values for regression coefficients, statistical
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testing helps assess whether these estimated effects are statistically significant or could have
arisen due to random variation in the data.

In regression analysis, significance testing is primarily concerned with evaluating hypotheses
about the regression parameters. The most common approach is to test whether the
coefficient of an explanatory variable is equal to zero. A zero coefficient implies that the
variable has no linear effect on the response variable when other variables in the model are
held constant. Statistical tests allow researchers to decide whether there is sufficient evidence
to reject this assumption.

Two main types of tests are widely used in multiple linear regression. Individual
significance tests, such as the t-test, examine the contribution of each explanatory variable
separately. These tests help identify which variables are important predictors of the response
variable and which may be excluded from the model without substantially reducing its
explanatory power. This is especially useful in models with many predictors, where some
variables may not have a significant impact.

In addition to individual tests, overall model significance tests, such as the F-test, are used
to evaluate the regression model as a whole. The F-test determines whether the set of
explanatory variables collectively provides a better explanation of the response variable than
a model with no predictors. A significant result indicates that at least one explanatory
variable has a non-zero effect on the response variable.

Statistical tests also support model building and validation. By examining significance
levels, analysts can refine models, compare competing models, and avoid including
unnecessary variables. This leads to simpler, more interpretable models without
compromising predictive performance.

It is important to note that statistical significance does not always imply practical importance.
A variable may be statistically significant but have a small effect size that is of limited
practical relevance. Therefore, significance tests should be interpreted alongside regression
coefficients, confidence intervals, and subject-matter knowledge.

In summary, statistical tests in multiple linear regression provide a formal framework for
evaluating the influence of explanatory variables on the response variable. They help
distinguish genuine relationships from random noise, support sound model selection, and
enhance the reliability of conclusions drawn from regression analysis.

12.4.1 t-test for Individual Regression Coefficients

The t-test examines whether a particular regression coefficient differs significantly from zero.
The null hypothesis is: HO: fj =0

If the calculated t-value exceeds the critical value, the null hypothesis is rejected, indicating
that the variable has a significant effect on the response.

12.4.2 F-test for Overall Model Significance

The F-test assesses whether the regression model as a whole is statistically significant. It tests
whether at least one explanatory variable has a non-zero effect on the response variable. A
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significant F-value implies that the model provides a better fit than a model without
explanatory variables.

12.5 MODEL ADEQUACY AND DIAGNOSTICS

Model adequacy refers to the extent to which a regression model appropriately represents the
underlying data and satisfies the assumptions on which the regression analysis is based. An
adequate model not only fits the observed data reasonably well but also provides reliable
estimates, valid inferences, and meaningful predictions. Evaluating model adequacy is
therefore a critical step in regression analysis.

A regression model is considered adequate when it captures the systematic relationship
between the response variable and the explanatory variables without leaving important
patterns unexplained. If the model is poorly specified, estimates of regression coefficients
may be biased or inefficient, leading to incorrect conclusions. Thus, assessing model
adequacy helps determine whether the chosen model structure is suitable for the data under
study.

One important aspect of model adequacy is the verification of regression assumptions.
Assumptions such as linearity, independence of errors, constant variance, normality of errors,
and absence of strong multicollinearity must be reasonably satisfied. Violations of these
assumptions can affect the accuracy of parameter estimates and the validity of hypothesis
tests. Diagnostic checks help identify such problems and guide necessary model
improvements.

Another key component of model adequacy is the analysis of residuals. Residuals represent
the differences between observed and fitted values and provide valuable information about
model performance. Patterns in residual plots may indicate issues such as non-linearity,
unequal variance, or outliers. A well-fitted model typically shows residuals that are randomly
scattered around zero without any systematic structure.

Numerical measures also play an important role in assessing model adequacy. Measures such
as the coefficient of determination indicate how much of the variability in the response
variable is explained by the model. While a higher value generally suggests a better fit, it
must be interpreted carefully and in conjunction with other diagnostic tools.

In summary, model adequacy ensures that a regression model is both statistically sound and
practically useful. By examining residuals, checking assumptions, and evaluating goodness-
of-fit measures, analysts can confirm whether the model provides a reliable representation of
the data. Careful assessment of model adequacy strengthens confidence in the conclusions
drawn from regression analysis and improves the quality of predictions.

12.5.1 Coefficient of Multiple Determination
The coefficient of multiple determination, denoted by R2R"2R2, measures the proportion of

total variation in the response variable explained by all explanatory variables together. A
higher value of R2ZR"2R2 indicates better explanatory power of the model.
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12.5.2 Residual Analysis

Residual analysis involves studying the residuals to detect violations of model assumptions.
Plots of residuals are used to identify non-linearity, unequal variances, outliers, and
influential observations. Proper residual analysis enhances the reliability of regression results.

12.6 CONCLUSION

Multiple linear regression is a powerful extension of simple regression that allows the study
of relationships involving several explanatory variables. By estimating parameters, testing
statistical significance, and assessing model adequacy, it provides deeper insight into
complex data structures. Proper application and validation of assumptions ensure meaningful
interpretation and effective prediction.

12.7 SELF ASSESSMENT QUESTIONS

Define multiple linear regression and explain its importance.
State the assumptions of the multiple regression model.
Explain the interpretation of regression coefficients.
Describe the t-test and F-test used in multiple regression.
Discuss the role of residual analysis in model diagnostics.

12.8 FURTHER READINGS

e Draper, N. R. and Smith, H., Applied Regression Analysis, Wiley.

e Montgomery, D. C., Peck, E. A., and Vining, G. G., Introduction to Linear Regression
Analysis, Wiley.

e Rao, C. R., Linear Statistical Inference and Its Applications, Wiley.

o Weisberg, S., Applied Linear Regression, Wiley.

Dr. GV S R Anjaneyulu



LESSON -13
POLYNOMIAL REGRESSION AND

ORTHOGONAL POLYNOMIALS

OBJECTIVES:

By the end of this lesson, students will be able to:
e Polynomial Regression Model
Fitting of Polynomial Regression Models
Problems of Multicollinearity in Polynomial Regression
Introduction to Orthogonal Polynomials
Construction of Orthogonal Polynomials
Advantages of Orthogonal Polynomials

STRUCTURE:

13.1 INTRODUCTION
13.2 POLYNOMIAL REGRESSION
13.2.1 Polynomial Regression Model
13.2.2 Estimation of Polynomial Regression Coefficients
13.3 PROBLEMS IN POLYNOMIAL REGRESSION
13.3.1 Multicollinearity
13.3.2 Numerical Instability
13.4 ORTHOGONAL POLYNOMIALS
13.4.1 Concept and Construction of Orthogonal Polynomials
13.4.2 Use of Orthogonal Polynomials in Regression
13.5 ADVANTAGES OF ORTHOGONAL POLYNOMIALS
13.6 CONCLUSION
13.7 SELF ASSESSMENT QUESTIONS
13.8 FURTHER READINGS

13.1 INTRODUCTION

In many practical situations, the relationship between a response variable and an explanatory
variable cannot be adequately represented by a straight line. Although linear and multiple
linear regression models are effective for describing simple trends, real-world data often
display more complex patterns such as curvature, increasing or decreasing rates of change,
and turning points. These nonlinear patterns commonly arise in fields such as agriculture,
economics, engineering, environmental studies, and the biological sciences. When such
behavior is present, linear models may fail to provide an accurate or meaningful description

of the underlying relationship.
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To address this limitation, polynomial regression serves as a valuable extension of linear
regression. Polynomial regression allows the inclusion of higher-degree powers of the
explanatory variable, enabling the model to capture curvature and more flexible trends in the
data. Despite involving nonlinear functions of the explanatory variable, the model remains
linear in its parameters. This important property allows the use of standard estimation
techniques while enhancing the model’s ability to represent complex relationships.

Polynomial regression is particularly useful when exploratory analysis or scatter plots suggest
that the effect of the explanatory variable on the response changes at different levels. For
example, growth processes may accelerate or decelerate, demand may rise at a decreasing
rate, or physical systems may exhibit peak or saturation effects. By incorporating squared,
cubic, or higher-order terms, polynomial regression can model such behavior more accurately
than simple linear regression.

Another advantage of polynomial regression is its interpretability within a familiar regression
framework. The fitted model can be analyzed using established tools such as least squares
estimation, hypothesis testing, confidence intervals, and goodness-of-fit measures. This
makes polynomial regression both accessible and practical for analysts who are already
familiar with linear regression techniques.

However, the inclusion of higher-order polynomial terms introduces certain challenges. One
of the major difficulties is multicollinearity, which arises because the powers of the
explanatory variable are often highly correlated with one another. This correlation can inflate
the variances of estimated coefficients, leading to unstable estimates and difficulties in
interpreting individual effects. Additionally, polynomial regression may suffer from
numerical instability, particularly when high-degree polynomials are fitted or when the
range of the explanatory variable is large. Small changes in the data may result in large
variations in coefficient estimates, reducing the reliability of the model.

To overcome these computational and interpretational issues, orthogonal polynomials are
commonly employed in polynomial regression. Orthogonal polynomials are constructed in
such a way that each polynomial term is uncorrelated with the others over the observed data.
This property effectively eliminates multicollinearity among polynomial terms and leads to
more stable and efficient parameter estimates.

The use of orthogonal polynomials preserves the fitted values of the regression model while
improving numerical behavior and simplifying model assessment. By ensuring that each
polynomial term contributes independently to the model, orthogonal polynomials allow
clearer identification of the degree of the polynomial that best fits the data. This makes it
easier to determine whether additional higher-order terms significantly improve the model or
merely add unnecessary complexity.

In practical applications, polynomial regression combined with orthogonal polynomials
provides a balanced approach to modeling nonlinear relationships. It offers greater flexibility
than simple linear regression while maintaining the interpretability and analytical strengths of
linear models. When properly applied, this approach supports accurate representation of
complex trends, reliable parameter estimation, and meaningful inference.

In summary, polynomial regression extends the scope of regression analysis by enabling the
modeling of nonlinear relationships within a linear framework. While higher-order
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polynomial terms can introduce multicollinearity and numerical instability, the use of
orthogonal polynomials addresses these issues effectively. Together, they form a powerful
and reliable methodology for analyzing curved trends and complex patterns in real-world
data.

13.2 POLYNOMIAL REGRESSION

Polynomial regression is an extension of simple linear regression that is used when the
relationship between the response variable and an explanatory variable cannot be adequately
described by a straight line. Instead of restricting the model to a single linear term,
polynomial regression includes higher-order powers of the explanatory variable, allowing the
model to capture curvature and more complex trends in the data.

In polynomial regression, the response variable is expressed as a function of the explanatory
variable raised to different powers, such as squared or cubic terms. This enables the model to
represent nonlinear patterns like increasing or decreasing rates of change and turning points.
Although the fitted curve may appear nonlinear when plotted, the model is linear in its
parameters. This means that the coefficients enter the model in a linear manner and can be
estimated using standard least squares techniques.

The linearity in parameters is an important advantage of polynomial regression. It allows the
use of well-established methods for estimation, hypothesis testing, and model diagnostics that
are commonly applied in linear regression. As a result, polynomial regression combines
flexibility in modeling nonlinear relationships with the simplicity and interpretability of
linear regression models.

Polynomial regression is particularly useful in situations where exploratory analysis suggests
that a straight-line model is inadequate but the underlying relationship can still be
approximated smoothly. By choosing an appropriate degree for the polynomial, the model
can achieve a good balance between capturing the true pattern in the data and avoiding
unnecessary complexity.

In summary, polynomial regression provides a practical and effective approach for modeling
nonlinear relationships. By incorporating powers of the explanatory variable while remaining
linear in parameters, it extends the capabilities of linear regression without sacrificing
analytical convenience and statistical rigor.

13.2.1 Polynomial Regression Model

Modelling the relationship between a dependent variable (Y) and an independent variable (X)
using powers of X is known as polynomial fitting. Polynomial models for one variable may
consists in

1. Orthogonal polynomials

2. Piecewise Polynomial.

Examples:
1. This is useful when the relationship between X and Y is non-linear. Assume we aim
to model the relationship between crop yield and the quantity of fertilizer applied. The
relationship may be curved, small amounts help, but too much fertilizer reduces yield.
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A quadratic polynomial fit Y=/, + S,X + 8,X” + ¢ like can model this better than a
straight line.

2. We fit a model like: Y=8,+BX+p,X*+B,X +& is a polynomial regression
model in one variable and is called a cubic model. The coefficients £, , #, and p,

are called the linear effect parameter and cubic effect parameters respectively.
3. The k™ order polynomial model in one variable is given

byY=8,+BX+BX +BX +..... +B8 X" +e;If X=X foralli=1,2, ...,k
then the model is multiple linear regression model in k explanatory variables. So the
linear regression model includes Y =X+ ¢ the polynomial regression model. Thus

the techniques for fitting linear regression model can be used for fitting the
polynomial regression model.

Polynomial Models

A. Order of the polynomial model: £ <2
B. Strategy for polynomial Model building: forward selection: start with linear models

Y=8,+BX+¢

Y=B8+BX+BX +¢&

Y=B,+BX+BX +BX +¢&

Y=B,+BX+LX +BX +.... +B.X" +¢&; Successive fit model of increasing order

unit the t-test for the highest order term is non-significant.

C. Ill-Conditioning: as the order of the polynomial increases, the (X 0.4 ) matrix becomes ill-

conditioned, that is (X 'X )_l calculation becomes inaccurate. Then /3 =(X 'X )_1 X'y does

not exists. If the value of X are limited to a narrow range in columns of X.

Example: Let us consider polynomial model

Y=B,+BX+BX +BX +..... +B.X" +¢

I x x’

1 0.11 0.0121
1 0.12 0.0144
I 0.13 0.0169

Centring the data may remove ill-conditioning. We fit the model
y_)_’ =5 +ﬁ1(x_)_c)+:82(x_3—5)2 +&
Instead of Y=8,+ X+ B, X +¢

Orthogonal Polynomials:
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suppose we wish to fit the polynomial regression

model Y=8,+BX +BX° + X" +.......... +B.X"+& ; If we wish to add another term
1 x x* *x,

B X that is we must recalculate (X 'X )_] and estimates of

lower order parameters /3, ﬁl,ﬁz,ﬁl B,......[5, will change. For this kind problems we use

orthogonal polynomials. If we construct polynomials B, (X),R(X),.......P (X) with the

property that they are orthogonal polynomials. > P, (X,)P.(X,)=0,r#s=1()k ; we can
i=l1

rewrite the model as ¥, =8, + BX, + B, X + B, X] +...c..... +B,X/" +¢,; Where P (Xl.)is the

' ordered orthogonal polynomial.

13.2.2 Estimation of Polynomial Regression Coefficients

Consider the polynomial model of order k is one variable as
Y= +BX, +LX + X+, +B.X +e; Vi=1,2,...k

When writing this model as Y =X/ +¢ the columns of X will not be orthogonal. If we add

-1
another term X" then the matrix | X' X | has to be recomputed and consequently, the
k1 p q y

B, will also change.

lower order parameters 3, S, S,
Consider the fitting of the following model:

Y =6,F(X,)+0F(X,)+6,B(X,)+ ceercrrnenes +0. B (X )+e foralli=12........ n
In the context of Y=X/+¢ , the X-matrix, in this case, is given by

B(X) R(X) B(X)ewn R(X)
(R(X) R(X) B(X ) R(X)

R(X,) R(X,) B(X,)ww B(X,)

Since this X-matrix has orthogonal columns, so X! X matrix becomes

Y B (X,) 0 0

vyl O D BHX) 0
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A -1
The ordinary least squares estimator is 0=(X 'X ) X'yand its variance is obtained from

V(é)= o’ (X ‘X )71When o’ is unknown, it can be estimated from the analysis of variance

table.

13.2.2 Estimation of Polynomial Regression Coefficients

The coefficients of a polynomial regression model are estimated using the method of least
squares. The objective is to minimize the sum of squared deviations between observed
values and fitted values of the response variable.

Although the model includes nonlinear terms of X, it is linear in parameters and therefore
standard least squares techniques apply. The normal equations derived from minimizing the
residual sum of squares yield estimates of the regression coefficients.

13.3 PROBLEMS IN POLYNOMIAL REGRESSION

While polynomial regression can model complex relationships, it may lead to certain
practical difficulties.

13.3.1 Multicollinearity

Multicollinearity arises when explanatory variables are highly correlated with one another. In
polynomial regression, this problem is common because higher powers of X are often
strongly correlated.
High multicollinearity can result in:

e Unstable coefficient estimates

e Large standard errors

¢ Difficulty in interpreting individual regression coefficients

13.3.2 Numerical Instability

Numerical instability occurs when computations become sensitive to small changes in data,
particularly when high-degree polynomials are used. Large powers of X can cause rounding
errors and lead to unreliable estimates.

This issue becomes more severe when X values are large or unevenly spaced, making it
difficult to obtain accurate and stable regression coefficients.

13.4 ORTHOGONAL POLYNOMIALS

To overcome the problems of multicollinearity and numerical instability in polynomial
regression, orthogonal polynomials are employed.

13.4.1 Concept and Construction of Orthogonal Polynomials
Orthogonal polynomials are a set of polynomial functions that are mutually uncorrelated with

respect to a given inner product or weighting scheme. This means that the cross-products of
different polynomial terms sum to zero over the observed data.
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These polynomials are usually constructed by applying orthogonalization techniques to
ordinary polynomial terms. As a result, each term contributes independently to the regression
model.

13.4.2 Use of Orthogonal Polynomials in Regression

When orthogonal polynomials are used as regressors:

e Multicollinearity among polynomial terms is eliminated

e Parameter estimates become more stable

e Numerical computation becomes more reliable
The fitted values of the model remain unchanged, but the interpretation and estimation of
coefficients improve significantly.

13.5 ADVANTAGES OF ORTHOGONAL POLYNOMIALS

Orthogonal polynomials offer several advantages in regression analysis:

e Reduction of multicollinearity

e Improved numerical stability

e Independent contribution of each polynomial term

e Easier identification of the effective degree of the polynomial

e Reliable parameter estimation for higher-degree models
These advantages make orthogonal polynomials particularly useful in practical data analysis
involving polynomial relationships.

13.6 CONCLUSION

Polynomial regression extends linear regression by allowing curved relationships between
variables while maintaining linearity in parameters. However, the use of higher-degree
polynomial terms may introduce multicollinearity and numerical instability. Orthogonal
polynomials provide an effective solution to these problems by producing stable and reliable
estimates. Together, polynomial regression and orthogonal polynomials form important tools
for modeling complex nonlinear trends in data.

13.7 SELF ASSESSMENT QUESTIONS

What is polynomial regression and how does it differ from simple linear regression?
Write the general form of a polynomial regression model.

Explain the problem of multicollinearity in polynomial regression.

What is numerical instability and why does it occur?

Define orthogonal polynomials and explain their use in regression.

13.8 FURTHER READINGS

Draper, N. R. and Smith, H., Applied Regression Analysis, Wiley.

Montgomery, D. C., Peck, E. A., and Vining, G. G., Introduction to Linear Regression
Analysis, Wiley.

® Rao, C. R, Linear Statistical Inference and Its Applications, Wiley.

® Weisberg, S., Applied Linear Regression, Wiley.

Dr. GV S R Anjaneyulu



LESSON -14
MULTICOLLINEARITY

OBJECTIVES:

By the end of this lesson, students will be able to:
e Multicollinearity
Introduction to Multicollinearity
Causes of Multicollinearity
Effects of Multicollinearity on Regression Estimates
Detection of Multicollinearity
Correlation Matrix
Variance Inflation Factor (VIF)
Condition Index
Remedies for Multicollinearity

STRUCTURE

14.1 INTRODUCTION
14.2 MULTICOLLINEARITY
14.2.1 Meaning and Nature of Multicollinearity
14.2.2 Causes of Multicollinearity
14.3 EFFECTS OF MULTICOLLINEARITY
14.3.1 Impact on Regression Coefficients
14.3.2 Effect on Standard Errors and Tests of Significance
14.4 DETECTION OF MULTICOLLINEARITY
14.4.1 Correlation Matrix
14.4.2 Variance Inflation Factor (VIF)
14.4.3 Condition Index
14.5 REMEDIES FOR MULTICOLLINEARITY
14.6 CONCLUSION
14.7 SELF ASSESSMENT QUESTIONS
14.8 FURTHER READINGS

14.1 INTRODUCTION

Multiple linear regression is widely used to analyze relationships in which a response
variable depends on several explanatory variables simultaneously. This approach allows
researchers and analysts to understand how different factors jointly influence an outcome
while controlling for the effect of other variables. For multiple linear regression to function
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effectively, certain assumptions must be satisfied. One of the most critical among these is the
requirement that the explanatory variables should not be highly correlated with one another.

When this assumption is violated, a situation known as multicollinearity arises.
Multicollinearity refers to the presence of strong linear relationships among two or more
explanatory variables included in a regression model. In such cases, it becomes difficult to
separate the individual effect of each variable on the response. This problem is especially
common in applied data analysis, where explanatory variables often originate from related
measurements, shared underlying processes, or constructed variables.

Multicollinearity frequently occurs when variables are related by nature. For example,
economic indicators such as income, savings, and expenditure are often interrelated.
Similarly, in agricultural or biological studies, measurements like rainfall, humidity, and soil
moisture may show strong association. Additionally, multicollinearity commonly arises in
models that include polynomial terms or interaction variables, as higher powers or
combined terms of a variable are naturally correlated with the original variable.

Another important cause of multicollinearity is poor study design or data limitations. When
data lack sufficient variation or when too many explanatory variables are included relative to
the sample size, the regression model may exhibit near-linear dependence among predictors.
This situation results in unstable estimation and reduces the clarity of interpretation.

A key feature of multicollinearity is that, despite its adverse effects on parameter estimation,
it does not necessarily reduce the overall predictive ability of the regression model. The
fitted values and predictions may remain accurate, and overall goodness-of-fit measures such
as the coefficient of determination may still appear satisfactory. However, the reliability of
individual regression coefficients is significantly affected. Coefficients may have large
standard errors, unexpected signs, or magnitudes that are inconsistent with theoretical
expectations.

Because of inflated standard errors, explanatory variables that are genuinely important may
appear statistically insignificant in hypothesis tests. This can lead to incorrect conclusions
about which variables influence the response. Moreover, small changes in the data or model
specification may cause large fluctuations in the estimated coefficients, making the model
unstable and difficult to interpret.

Understanding multicollinearity is therefore essential for proper regression analysis. Analysts
must be able to identify its presence, assess its severity, and decide on appropriate corrective
measures. Diagnostic tools such as correlation matrices, variance inflation factors, and
condition indices are commonly used to detect multicollinearity. Once identified, various
strategies can be employed, including variable selection, transformation, or the use of
alternative estimation techniques such as ridge regression and principal component
regression.

In summary, multicollinearity is a common and important issue in multiple linear regression
analysis. While it does not impair the model’s ability to predict the response variable, it
undermines the reliability and interpretability of individual regression coefficients. Therefore,
careful attention to the detection and treatment of multicollinearity is essential for drawing
meaningful conclusions and ensuring the effectiveness of regression-based decision-making.
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14.2 MULTICOLLINEARITY

Multicollinearity refers to a situation in multiple linear regression where two or more
explanatory variables exhibit strong linear relationships among themselves. In such cases,
one explanatory variable can be approximately expressed as a linear combination of one or
more other explanatory variables. This lack of independence among the predictors creates
difficulties in estimating and interpreting regression coefficients accurately.

When explanatory variables are highly correlated, the regression model faces challenges in
distinguishing the individual effect of each variable on the response. Although the combined
effect of these variables may be meaningful, their separate contributions become uncertain.
As a result, the estimated regression coefficients may become unstable and sensitive to small
changes in the data.

Multicollinearity can exist in two forms: perfect multicollinearity and imperfect
multicollinearity. Perfect multicollinearity occurs when one explanatory variable is an exact
linear combination of other variables, making it impossible to estimate unique regression
coefficients. Imperfect multicollinearity, which is more common in real-world data, involves
strong but not exact linear relationships among explanatory variables. While estimation is
still possible in this case, the results may lack precision and reliability.

It is important to note that multicollinearity does not necessarily affect the overall fit or
predictive performance of the regression model. Measures such as the coefficient of
determination may remain high even in the presence of multicollinearity. However,
hypothesis testing and interpretation of individual regression coefficients become problematic
due to inflated standard errors and reduced statistical significance.

In practical data analysis, multicollinearity often arises due to the inclusion of related
variables, polynomial terms, or interaction effects, as well as limitations in data collection.
Recognizing the presence of multicollinearity is therefore essential for conducting
meaningful regression analysis.

14.2.1 Meaning and Nature of Multicollinearity

Multicollinearity occurs when two or more explanatory variables are highly correlated,
meaning that one variable can be approximately expressed as a linear combination of others.
Multicollinearity arises in multiple linear regression when two or more explanatory variables
exhibit a strong linear relationship among themselves. In such situations, one explanatory
variable can be closely approximated by a linear combination of the other variables included
in the model. This lack of independence among the predictors reduces the model’s ability to
clearly distinguish the individual contribution of each explanatory variable to the response
variable.

In extreme situations, known as perfect multicollinearity, an explanatory variable is an
exact linear combination of other variables, making it impossible to obtain unique estimates
of the regression coefficients. In practice, multicollinearity is usually imperfect, but it may
still be strong enough to introduce considerable instability into the estimation process. As a
consequence, the estimated regression coefficients may exhibit unreasonable magnitudes or
incorrect signs and may change substantially with small variations in the data, even though
overall goodness-of-fit measures indicate that the model fits the data satisfactorily.
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14.2.2 Causes of Multicollinearity

e Multicollinearity can arise due to several reasons, including:

e Inherent relationship among variables — Variables measuring similar characteristics
tend to be correlated.

e Use of polynomial or interaction terms — Higher-order terms highly correlated with
X.

e Data collection methods — Poor experimental design or lack of variation in data.

e Over-specification of the model — Including too many related explanatory variables.

e Dummy variable trap — Inclusion of all categories of a categorical variable without
omitting a reference level.

14.3 EFFECTS OF MULTICOLLINEARITY

Multicollinearity significantly affects the stability and interpretability of results obtained from
a multiple linear regression model. Although the presence of multicollinearity does not
violate the basic form of the regression model or necessarily reduce its predictive power, it
introduces several practical difficulties that can undermine the usefulness of regression
analysis for interpretation and inference.

One of the primary effects of multicollinearity is the instability of regression coefficient
estimates. When explanatory variables are highly correlated, small changes in the data or in
the model specification can lead to large changes in the estimated coefficients. This
sensitivity makes the regression coefficients unreliable, as they may vary considerably from
one sample to another. Consequently, the estimated coefficients may not accurately reflect
the true relationship between individual explanatory variables and the response variable.

Another important consequence of multicollinearity is the inflation of standard errors
associated with the regression coefficients. High correlations among explanatory variables
increase the variability of coefficient estimates, leading to larger standard errors. As a result,
the calculated t-statistics for individual regression coefficients may be smaller in absolute
value, making statistically significant variables appear insignificant. This can lead to
incorrect conclusions regarding the importance of explanatory variables.

Multicollinearity also complicates the interpretation of regression coefficients. In the
presence of strong correlations among predictors, it becomes difficult to interpret the effect of
one variable while holding the others constant. This is because changes in one variable are
often associated with changes in another, violating the practical meaning of ceteris paribus
interpretation. Even when coefficients are statistically significant, their practical
interpretation may be unclear or misleading.

Despite these issues, it is important to note that multicollinearity does not necessarily reduce
the overall goodness of fit of the model. Measures such as the coefficient of determination
may remain high, indicating that the model explains a large proportion of variability in the
response variable. However, a good overall fit can be deceptive if individual coefficients are
unstable or unreliable.

Another effect of multicollinearity is its impact on model selection and inference. When
explanatory variables are strongly correlated, it becomes difficult to determine which
variables should be retained or removed from the model. Different subset selection methods
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may lead to different models, and conclusions drawn from hypothesis tests may lack
robustness. This uncertainty weakens the confidence in regression-based decisions.

Multicollinearity can also obscure the underlying relationships in the data. Variables that are
theoretically important may be excluded due to insignificance caused by inflated standard
errors, while less relevant variables may appear important due to chance correlations. This
distortion can misguide researchers and practitioners who rely on regression results for policy
formulation or scientific interpretation.

In summary, while multicollinearity does not bias the least squares estimates or invalidate the
regression model as a whole, it adversely affects the precision, stability, and interpretability
of individual regression coefficients. Careful diagnosis and appropriate remedial measures
are therefore essential when multicollinearity is present. Addressing this problem improves
the reliability of regression analysis and enhances the clarity of conclusions drawn from the
model.

14.3.1 Impact on Regression Coefficients

When multicollinearity is present:
e Regression coefficients may become unstable and sensitive to small changes in data.
e Estimated coefficients may have unexpected signs or magnitudes.
e Individual coefficients become difficult to interpret, even if they are theoretically
important.
e Although the fitted values of the model may remain accurate, the individual
regression coefficients lose their reliability.

14.3.2 Effect on Standard Errors and Tests of Significance

Multicollinearity leads to:

Inflated standard errors of regression coefficients.

Reduced t-statistics, causing important variables to appear statistically insignificant.
Difficulty in identifying truly influential explanatory variables.

As aresult, hypothesis tests and confidence intervals become unreliable.

14.4 DETECTION OF MULTICOLLINEARITY
Several diagnostic tools are available to detect multicollinearity in a regression model.
14.4.1 Correlation Matrix

A simple method of detecting multicollinearity is examining the correlation matrix of
explanatory variables. High pairwise correlations indicate potential multicollinearity.
However, this method may fail to detect complex multivariate relationships.

14.4.2 Variance Inflation Factor (VIF)

The Variance Inflation Factor measures the extent to which the variance of a regression
coefficient is inflated due to multicollinearity.

. 1
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where Rjzis the coefficient of determination obtained by regressing the j® explanatory
variable on all other explanatory variables.

VIF =1: No multicollinearity

VIF > 10: Serious multicollinearity

14.4.3 Condition Index

Condition Index

The condition index is an important diagnostic measure used to detect the presence and
severity of multicollinearity in a multiple linear regression model. It is based on the
eigenvalues of the correlation matrix (or equivalently, the cross-product matrix) of the
explanatory variables. By examining how the explanatory variables relate to one another at
a multivariate level, the condition index provides deeper insight than simple pairwise
correlations.

The condition index is calculated by taking the square root of the ratio of the largest
eigenvalue of the correlation matrix to each individual eigenvalue. Mathematically, it is
expressed as
Amax

i
where Amax is the largest eigenvalue and Ai is the i-th eigenvalue of the correlation matrix. A
small eigenvalue indicates that some linear combination of the explanatory variables
contributes very little independent information, which is a sign of multicollinearity.

Condition Index;=

Large values of the condition index suggest strong dependencies among explanatory
variables. Generally, condition index values below 10 indicate weak or no multicollinearity,
values between 10 and 30 suggest moderate multicollinearity, and values exceeding 30 are
taken as evidence of severe multicollinearity. Very high condition index values imply that the
regression coefficients may be highly unstable and sensitive to small changes in the data.

Unlike simple correlation measures, the condition index is capable of detecting complex
multicollinearity involving more than two explanatory variables. It therefore provides a
comprehensive diagnostic tool when explanatory variables are related in a multivariate
manner rather than just in pairs.

In summary, the condition index is a valuable method for diagnosing multicollinearity in
multiple regression analysis. By relying on eigenvalues of the explanatory variable
correlation matrix, it identifies hidden linear dependencies and helps assess the reliability and
stability of regression coefficient estimates.

e Values less than 10 indicate weak dependence.

e Values above 30 suggest severe multicollinearity.

14.5 REMEDIES FOR MULTICOLLINEARITY

Possible remedial measures include:

Removing or combining highly correlated variables
Increasing sample size

Centering variables in polynomial regression
Using ridge regression
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Applying principal component regression
e Selecting an appropriate subset of explanatory variables
e The choice of remedy depends on the objective of the analysis and the nature of the
data.

14.6 CONCLUSION

Multicollinearity represents a significant challenge in multiple regression analysis because it
directly affects the stability, precision, and interpretability of regression coefficients. When
explanatory variables are highly correlated, the regression model encounters difficulty in
isolating the individual effects of each predictor on the response variable. As a result,
estimated coefficients may become unstable, exhibit unexpected signs or magnitudes, and
change substantially with small modifications in the data. Although multicollinearity does not
necessarily reduce the predictive accuracy or overall goodness of fit of the regression model,
it greatly undermines the reliability of individual parameter estimates. Inflated standard errors
lead to unreliable hypothesis tests, often causing statistically important variables to appear
insignificant. This weakens the confidence in inferential conclusions and complicates
decision-making based on the regression results.

Effective regression analysis therefore requires careful diagnosis of multicollinearity using
appropriate diagnostic tools such as correlation matrices, variance inflation factors, and
condition indices. Once detected, suitable corrective measures—such as variable selection,
transformation of variables, or alternative estimation techniques—should be employed. By
properly addressing multicollinearity, researchers and analysts can ensure that regression
models yield meaningful, stable, and dependable results for interpretation and practical
application.

14.7 SELF ASSESSMENT QUESTIONS

Define multicollinearity and explain its nature.

List the causes of multicollinearity.

Discuss the effects of multicollinearity on regression coefficients.
Explain the Variance Inflation Factor (VIF).

Suggest remedies for multicollinearity.

14.8 FURTHER READINGS

e Draper, N. R. and Smith, H., Applied Regression Analysis, Wiley.

e Montgomery, D. C., Peck, E. A., and Vining, G. G., Introduction to Linear Regression
Analysis, Wiley.

e Rao, C. R., Linear Statistical Inference and Its Applications, Wiley.

o Weisberg, S., Applied Linear Regression, Wiley.
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LESSON -15
RIDGE REGRESSION AND PRINCIPAL

COMPONENT REGRESSION

OBJECTIVES:

By the end of this lesson, students will be able to:

Understand the limitations of ordinary least squares estimation under
multicollinearity.

Explain the concept and motivation behind ridge regression.

Derive and interpret the ridge regression estimator.

Analyze the role and selection of the ridge parameter in regression modeling.

Describe the concept of principal components and their use in regression analysis.
Construct a principal component regression model.

Compare ridge regression and principal component regression in terms of
methodology, advantages, and limitations.

Apply ridge regression and PCR techniques to improve model stability and predictive
performance in the presence of multicollinearity.

STRUCTURE

15.1 INTRODUCTION
15.2 RIDGE REGRESSION

15.2.1 Need for Ridge Regression
15.2.2 Ridge Regression Estimator
15.2.3 Choice of Ridge Parameter
15.2.4 Properties of Ridge Regression

15.3 PRINCIPAL COMPONENT REGRESSION (PCR)

15.3.1 Concept of Principal Components
15.3.2 Construction of PCR Model
15.3.3 Advantages and Limitations of PCR

15.4 COMPARISON OF RIDGE REGRESSION AND PCR
15.5 CONCLUSION

15.6 SELF ASSESSMENT QUESTIONS

15.7 FURTHER READINGS

15.1 INTRODUCTION

In multiple linear regression analysis, the method of least squares is widely used to estimate
regression coefficients because of its simplicity and desirable statistical properties. Under
standard assumptions, least squares estimators are unbiased and have minimum variance
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among all linear unbiased estimators. However, these favorable properties rely heavily on the
assumption that explanatory variables are not highly correlated with one another. When this
assumption is violated, serious practical difficulties arise in the estimation and interpretation
of regression coefficients.

A common problem encountered in applied regression analysis is multicollinearity, which
occurs when two or more explanatory variables exhibit strong linear relationships among
themselves. In the presence of multicollinearity, the matrix involved in least squares
estimation becomes nearly singular. As a result, the least squares estimators tend to have
large variances, making them highly sensitive to small changes in the data. This instability
leads to coefficient estimates that may fluctuate widely across different samples and may
even possess signs or magnitudes that are inconsistent with theoretical expectations.

Although multicollinearity does not necessarily reduce the overall goodness of fit of the
regression model or its predictive ability, it substantially weakens statistical inference.
Inflated variances lead to large standard errors, causing important explanatory variables to
appear statistically insignificant in hypothesis tests. Consequently, interpretation of individual
regression coefficients becomes unreliable, and decision-making based on such results may
be misleading.

To overcome these limitations of the least squares method under multicollinearity, several
alternative estimation techniques have been developed. Among these, Ridge Regression and
Principal Component Regression (PCR) are two of the most important and widely used
approaches. These methods modify the estimation process in different ways to reduce the
harmful effects of multicollinearity, with the objective of producing more stable and reliable
regression estimates.

Ridge regression addresses the multicollinearity problem by introducing a small amount of
bias into the estimation process. This is achieved by adding a penalty term to the least squares
objective function, which shrinks the regression coefficients toward zero. Although the
resulting estimators are biased, their variances are substantially reduced, often leading to a
lower mean squared error compared to ordinary least squares estimators. Ridge regression
therefore represents a trade-off between bias and variance, emphasizing stability and
predictive accuracy over strict unbiasedness.

Principal Component Regression takes a different approach by transforming the original
explanatory variables into a new set of uncorrelated variables called principal components.
These components are obtained as linear combinations of the original variables and are
ordered according to the amount of variation they explain. By selecting only a subset of
principal components for regression, PCR effectively eliminates multicollinearity and reduces
dimensionality. While this method improves numerical stability, it may reduce
interpretability because the principal components may not have direct physical or practical
meaning.

Both ridge regression and principal component regression aim to stabilize regression
estimates while retaining good predictive performance. They are particularly valuable in
situations where explanatory variables are highly correlated and where reliable estimation of
individual regression coefficients is important. The choice between these methods depends on
the objectives of the analysis, the importance of interpretability, and the nature of the data.
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In summary, when multicollinearity undermines the reliability of least squares estimators,
alternative methods such as ridge regression and principal component regression provide
effective solutions. By modifying the estimation process, these techniques enhance stability,
reduce variance, and support meaningful inference, making them essential tools in advanced
regression analysis.

15.2 RIDGE REGRESSION

Ridge regression is a biased estimation technique developed to overcome the difficulties
caused by multicollinearity in multiple linear regression models. In ordinary least squares
estimation, when explanatory variables are highly correlated, the estimated regression
coefficients tend to have large variances and become highly unstable. This instability makes
the coefficients sensitive to small changes in the data, leading to unreliable estimation and
weak statistical inference. Ridge regression addresses this issue by deliberately introducing a
small amount of bias into the estimation process in order to achieve a substantial reduction in
variance.

The basic idea behind ridge regression is to modify the least squares estimation procedure so
that extreme coefficient values are discouraged. This is done by adding a penalty term to the
least squares objective function. The penalty restricts the size of the regression coefficients by
shrinking them toward zero. Although this shrinkage introduces bias, it reduces the variability
of the estimates, resulting in more stable and reliable coefficient values. This trade-off
between bias and variance is central to the motivation of ridge regression.

From a practical perspective, ridge regression is particularly useful in situations where
multicollinearity makes ordinary least squares estimates unreliable, even though the overall
regression model fits the data well. In such cases, ridge regression improves numerical
stability and produces coefficient estimates that are less sensitive to sampling fluctuations. As
a result, predictions obtained from ridge regression are often more accurate than those from
ordinary least squares, especially in datasets with highly correlated predictors.

Another important feature of ridge regression is that it retains all explanatory variables in the
model. Unlike variable selection techniques that remove predictors, ridge regression keeps all
variables but controls their influence through shrinkage. This is advantageous when all
variables are considered theoretically important and should be included in the model, despite
being correlated.

The effectiveness of ridge regression depends on the appropriate selection of the ridge
parameter, which determines the strength of the penalty applied to the coefficients. A small
value of the ridge parameter introduces little bias and closely resembles ordinary least
squares estimation, while a larger value increases shrinkage, reducing variance at the cost of
greater bias. Choosing an optimal ridge parameter is essential to balance stability and
accuracy.

In summary, ridge regression provides a practical solution to the problem of multicollinearity
by introducing bias deliberately to reduce variance. By stabilizing coefficient estimates and
improving predictive performance, ridge regression enhances the reliability and usefulness of
regression analysis in the presence of highly correlated explanatory variables. It represents an
important extension of ordinary least squares estimation and plays a key role in modern
regression methodology.
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15.2.1 Need for Ridge Regression

When explanatory variables are highly correlated, the matrix involved in least squares
estimation becomes nearly singular. This results in large variances of regression coefficients
and unstable estimates. Ridge regression was introduced to overcome this problem by
shrinking regression coefficients toward zero.
The primary motivation for ridge regression is to:

e Reduce variance of regression coefficients

e Improve numerical stability

e Enhance predictive performance in the presence of multicollinearity

15.2.2 Ridge Regression Estimator

In ridge regression, the least squares objective function is modified by adding a penalty term
proportional to the square of the regression coefficients. The ridge estimator is given by:

B ridge=(XTX+kI)'XTY

where

K >0 is the ridge parameter,

I is the identity matrix.

The addition of kI ensures that the matrix is well-conditioned, allowing stable estimation
even when multicollinearity is present.

15.2.3 Choice of Ridge Parameter

The value of the ridge parameter k controls the degree of shrinkage applied to the
coefficients.

e When k=0, ridge regression reduces to ordinary least squares.

e Askincreases, coefficients are increasingly shrunk toward zero.
The optimal value of k is usually chosen using techniques such as:

e Ridge trace plots

e Cross-validation

e Mean squared error minimization

15.2.4 Properties of Ridge Regression

Important properties of ridge regression include:
e Ridge estimators are biased but have smaller variance
e Mean squared error may be lower than least squares estimates
e Regression coefficients are more stable under multicollinearity
e Improved prediction accuracy compared to OLS in collinear data

15.3 PRINCIPAL COMPONENT REGRESSION (PCR)

Principal Component Regression (PCR) is a statistical technique developed to overcome the
limitations of ordinary least squares regression when multicollinearity is present among
explanatory variables. Multicollinearity arises when two or more predictors are strongly
correlated, leading to unstable regression coefficient estimates and unreliable statistical



Centre for Distance Education 15.5 Acharya Nagarjuna University

inference. Principal Component Regression addresses this issue by combining principal
component analysis (PCA) with regression modeling.

The key idea behind PCR is to transform the original set of correlated explanatory variables
into a new set of uncorrelated variables known as principal components. These components
are constructed as linear combinations of the original variables and are ordered according to
the amount of variation they explain in the data. The first principal component explains the
maximum possible variance, followed by the second principal component, which explains the
maximum remaining variance subject to being uncorrelated with the first, and so on.

Once the principal components are obtained, regression is performed using a selected subset
of these components rather than the original explanatory variables. By excluding components
associated with small eigenvalues, PCR removes directions in the data that contribute little
information and are often responsible for multicollinearity. As a result, regression coefficient
estimates become more stable, and the effects of correlated predictors are effectively
eliminated.

An important advantage of principal component regression is that it improves numerical
stability without requiring the removal of original explanatory variables. Instead, PCR
replaces the original correlated predictors with a smaller number of uncorrelated components.
This leads to a reduction in dimensionality and simplifies the regression problem while
retaining most of the important information contained in the data.

Another benefit of PCR is its ability to reduce variance in regression estimates. Although
PCR introduces bias by discarding some components, the overall mean squared error of the
estimates may be reduced due to the substantial decrease in variance. This bias—variance
trade-off is particularly beneficial in situations where multicollinearity is severe and least
squares estimation performs poorly.

Despite its advantages, PCR has certain limitations. One major drawback is the loss of
interpretability. Since principal components are linear combinations of the original variables,
they often lack a clear physical or practical meaning. Consequently, it may be difficult to
interpret the relationship between individual explanatory variables and the response variable.
Additionally, the principal components are constructed solely based on variability in the
explanatory variables and do not take into account the response variable. As a result,
components that explain large variance in predictors may not necessarily be the most relevant
for predicting the response.

The selection of the number of principal components to include in the regression model is a
crucial step in PCR. Choosing too few components may exclude important information,
leading to poor predictions, while choosing too many components may reintroduce noise and
reduce the benefits of dimensionality reduction. Techniques such as scree plots, cumulative
variance criteria, and cross-validation are commonly used to determine the appropriate
number of components.

In practical applications, principal component regression is particularly useful when the
primary objective is prediction rather than interpretation. It is widely used in fields such as
chemometrics, economics, engineering, and bioinformatics, where datasets often contain a
large number of highly correlated predictors. In such contexts, PCR provides a reliable and
effective alternative to ordinary least squares regression.
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In summary, principal component regression is a powerful approach that combines PCA with
regression analysis to handle multicollinearity. By transforming correlated explanatory
variables into uncorrelated principal components, PCR enhances the stability and reliability
of regression estimates. While it may sacrifice interpretability, its ability to improve
prediction accuracy and numerical robustness makes it an important tool in advanced
regression analysis.

15.3.1 Concept of Principal Components

Principal components are new variables obtained as linear combinations of the original
explanatory variables. These components:

e Are mutually uncorrelated

e (Capture maximum variance in descending order

e Reduce dimensionality while retaining essential information

15.3.2 Construction of PCR Model

The PCR procedure involves the following steps:

Standardize explanatory variables

Perform principal component analysis

Select a subset of principal components

Regress the response variable on selected components

By excluding components associated with small eigenvalues, PCR eliminates
multicollinearity and stabilizes regression estimates.

15.3.3 Advantages and Limitations of PCR

Eliminates Multicollinearity

One of the major advantages of Principal Component Regression is its ability to eliminate
multicollinearity among explanatory variables. Since principal components are constructed to
be mutually uncorrelated, the problem of strong linear dependence among predictors is
completely removed. As a result, regression coefficients obtained from PCR are not affected
by instability arising from correlated variables, leading to more reliable estimation.

Reduces Dimensionality

Principal Component Regression effectively reduces the dimensionality of the regression
problem by replacing a large set of explanatory variables with a smaller number of principal
components. These components retain most of the variability present in the original data
while discarding redundant or less informative information. Dimensionality reduction
simplifies the regression model, improves computational efficiency, and is particularly useful
when dealing with large datasets or many predictors.

Improves Numerical Stability

By removing near-linear dependencies among explanatory variables, PCR improves the
numerical stability of the regression estimation process. The transformation of correlated
predictors into orthogonal components ensures that matrix inversion required for estimation
is well-conditioned. This leads to stable coefficient estimates that are less sensitive to small
changes in data and reduces the risk of numerical errors.
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Enhances Prediction Accuracy

Although PCR introduces bias by excluding some components, it often reduces the variance
of estimates substantially. This trade-off frequently results in lower mean squared error
compared to ordinary least squares estimation under multicollinearity. Consequently, PCR
often provides better prediction performance, especially when predictors are highly
correlated.

Useful for Complex and High-Dimensional Data

PCR is particularly advantageous in applications involving many explanatory variables, such
as econometrics, engineering, chemometrics, and bioinformatics. It allows analysts to handle
complex datasets efficiently while retaining the most important structural information.

Lack of Interpretability of Principal Components

One of the major limitations of Principal Component Regression is that the principal
components used as predictors often lack direct interpretability. Each principal component is
a linear combination of several original explanatory variables, making it difficult to associate
the regression results with specific predictors. This reduces the usefulness of the model in
situations where understanding the individual effect of explanatory variables is important for
decision-making or policy analysis.

Possible Exclusion of Important Predictors

In PCR, principal components are selected based on the amount of variation they explain in
the explanatory variables, not on their relationship with the response variable. As a result,
components that explain relatively little variance in the predictors—but may still be strongly
related to the response—can be excluded from the model. This may lead to the omission of
important predictive information and reduce model effectiveness.

Need for Careful Selection of Components

The performance of PCR depends critically on the number of principal components included
in the regression model. Selecting too few components may result in loss of important
information, leading to poor predictions, while including too many components may
reintroduce noise and reduce the advantages of dimensionality reduction. Therefore, careful
and informed selection of components using appropriate criteria is essential.

Bias in Estimation

Since PCR discards some principal components, the resulting estimators are biased. Although
this bias may be acceptable when it leads to a reduction in variance, it must be considered
when interpreting regression results, particularly in inferential studies.

Limited Suitability for Interpretive Analysis

Because of the emphasis on variance rather than explanatory power, PCR is more suitable for
prediction-focused applications than for models aimed at interpretation of individual
variables.
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15.4 COMPARISON OF RIDGE REGRESSION AND PCR

‘Aspect “Ridge Regression HPrincipal Component Regressionl

|Approach “Penalized regressionHDimension reduction |

‘Use of predictors HUses all predictors HUses selected components ‘

‘Bias HBiased estimation HBiased estimation ‘

‘Interpretability HModerate HLOW ‘

|Hand1ing multicollinearitylIReduces effect HEliminates effect |
15.5 CONCLUSION

Ridge regression and principal component regression provide effective alternatives to
ordinary least squares estimation when multicollinearity is present in multiple linear
regression models. Multicollinearity undermines the stability and reliability of least squares
estimates by inflating variances and producing unstable regression coefficients. Both ridge
regression and PCR address this problem, though they adopt different strategies to achieve
stability and improved performance.

Ridge regression controls multicollinearity by shrinking regression coefficients toward zero
through the introduction of a penalty term in the estimation process. This shrinkage reduces
the variance of the estimates at the cost of introducing a small amount of bias. As a result,
ridge regression produces more stable and reliable coefficients while retaining all explanatory
variables in the model. It is particularly useful when interpretability of predictors is still
important and when all variables are theoretically relevant.

Principal component regression, on the other hand, removes multicollinearity by transforming
the original correlated explanatory variables into a new set of uncorrelated principal
components. Regression is then performed using a selected subset of these components. By
eliminating linear dependence among predictors and reducing dimensionality, PCR improves
numerical stability and often enhances predictive accuracy. However, the use of principal
components may reduce interpretability, as these components are linear combinations of the
original variables.

The choice between ridge regression and principal component regression depends on the
objectives of the analysis. If the primary goal is prediction and numerical stability in the
presence of severe multicollinearity, both methods are suitable. Ridge regression is generally
preferred when maintaining the original explanatory variables is important, while PCR is
advantageous when dimensionality reduction is desired. Careful consideration of
interpretability, predictive performance, and model objectives is essential when selecting the
appropriate method.

In summary, ridge regression and principal component regression are powerful tools in
advanced regression analysis. By effectively addressing the challenges posed by
multicollinearity, they enhance the stability, reliability, and usefulness of regression models
in practical applications.
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15.6 SELF ASSESSMENT QUESTIONS

Explain the need for ridge regression.

Derive the ridge regression estimator.

What is the role of the ridge parameter?

Describe the steps involved in principal component regression.
Compare ridge regression and PCR.

15.7 FURTHER READINGS

e Draper, N. R. and Smith, H., Applied Regression Analysis, Wiley.

e Montgomery, D. C., Peck, E. A., and Vining, G. G., Introduction to Linear Regression
Analysis, Wiley.

e Rao, C. R., Linear Statistical Inference and Its Applications, Wiley.

e Weisberg, S., Applied Linear Regression, Wiley.
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LESSON -16
SUBSET SELECTION OF EXPLANATORY

VARIABLES

OBJECTIVES:

By the end of this lesson, students will be able to:
e After completing this lesson, students will be able to:
e Understand the need for variable selection in multiple linear regression models.
e Explain the concept and importance of subset selection of explanatory variables.
e Describe various subset selection methods such as best subset selection, forward
selection, backward elimination, and stepwise regression

STRUCTURE :
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16.3 SUBSET SELECTION METHODS
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16.3.2 Forward Selection
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16.3.4 Stepwise Regression
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16.5 PRACTICAL ISSUES IN VARIABLE SELECTION

16.6 CONCLUSION

16.7 SELF ASSESSMENT QUESTIONS

16.8 FURTHER READINGS

16.1 INTRODUCTION

In multiple linear regression analysis, it is common to encounter situations where a large
number of explanatory variables are available to model a response variable. Advances in data
collection and storage have made it easier to gather many potential predictors, but the
presence of a large number of variables does not necessarily improve the quality of a
regression model. In fact, including all available variables may lead to several statistical and
practical difficulties, making the regression model less reliable and harder to interpret.
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One important issue arising from the inclusion of many explanatory variables is the
introduction of unnecessary complexity. A complex model with many predictors may fit the
observed data well, but it often lacks interpretability. Understanding the role and contribution
of each variable becomes difficult, especially when predictors are correlated or when their
effects overlap. Such models may also perform poorly when applied to new data, a
phenomenon known as overfitting.

Another major concern is multicollinearity, which occurs when explanatory variables are
highly correlated with one another. Including several related variables in the same regression
model can inflate the variances of regression coefficient estimates, resulting in unstable and
unreliable coefficients. This instability weakens statistical inference and makes it difficult to
identify which variables are truly influential.

Some explanatory variables may contribute little or no useful information in explaining the
response variable. These variables act mainly as noise and can obscure the effects of more
important predictors. Including such irrelevant variables increases estimation variance
without providing meaningful improvement in model performance. Consequently, hypothesis
tests may become less powerful, and confidence intervals may become wider than necessary.

To address these challenges, subset selection of explanatory variables is used as an
essential tool in multiple regression analysis. Subset selection involves identifying a smaller
group of explanatory variables that adequately explains the response variable while excluding
redundant or unimportant predictors. The purpose is not merely to reduce the number of
variables, but to improve the overall effectiveness, stability, and interpretability of the
regression model.

The central objective of subset selection is to achieve an appropriate balance between model
fit and model complexity. A good regression model should explain the data well, but it
should also be as simple as possible. Simpler models are easier to interpret, often more stable,
and tend to generalize better to new data. By excluding irrelevant or redundant predictors,
subset selection reduces the risk of overfitting and enhances the predictive performance of the
model.

Subset selection also plays an important role in improving the precision of parameter
estimation. When fewer but more relevant explanatory variables are included, regression
coefficients tend to have smaller variances and greater stability. This leads to more reliable
hypothesis testing and more meaningful confidence intervals. As a result, conclusions drawn
from the regression analysis become more trustworthy.

From a practical standpoint, subset selection can also reduce data collection and
computational costs. In many applications, obtaining measurements for certain variables
may be expensive, time-consuming, or difficult. Identifying a subset of important predictors
allows analysts to focus resources efficiently while still maintaining acceptable model
performance. This is particularly valuable in fields such as economics, engineering, medicine,
and environmental studies.

It is important to note that subset selection is not a purely mechanical process. While
statistical criteria and automated procedures provide useful guidance, subject-matter
knowledge and practical considerations must also be incorporated. A variable that appears
statistically insignificant in one dataset may still be important from a theoretical or practical
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perspective. Therefore, variable selection should be carried out carefully, combining
statistical evidence with expert judgment.

In summary, subset selection of explanatory variables is a crucial step in multiple linear
regression analysis when many potential predictors are available. By identifying a smaller
and more relevant set of variables, subset selection enhances model interpretability, reduces
multicollinearity, improves estimation accuracy, and supports better prediction. The ultimate
goal is to construct a regression model that is both statistically sound and practically useful,
achieving an effective balance between simplicity and explanatory power.

16.2 NEED FOR VARIABLE SELECTION

The need for variable selection arises due to the following reasons:
e Improved interpretability: Models with fewer variables are easier to understand and
explain.
¢ Reduction of multicollinearity: Removing redundant variables helps reduce
correlation among predictors.
e Improved estimation accuracy: Eliminating irrelevant variables reduces variance of
estimates.
e Better prediction performance: Simpler models often generalize better to new data.
e Cost and efficiency: Collecting and processing fewer variables saves time and
resources.
Therefore, selecting an appropriate subset of explanatory variables is essential for reliable
and meaningful regression analysis.

16.3 SUBSET SELECTION METHODS

Several systematic procedures are available for selecting appropriate subsets of explanatory
variables in multiple linear regression. These procedures are designed to identify a set of
predictors that provides a good balance between model accuracy and simplicity. Since
different explanatory variables may contribute differently to explaining the response variable,
subset selection methods offer structured approaches to determine which variables should be
included in the regression model.

One widely used approach is best subset selection, which involves fitting regression models
for all possible combinations of explanatory variables. For each subset size, the best-
performing model is selected based on predefined evaluation criteria. Although this method is
comprehensive and often yields optimal models, it becomes computationally infeasible when
the number of explanatory variables is large.

Another commonly applied procedure is forward selection. This method begins with an
empty model and sequentially adds explanatory variables that contribute most significantly to
improving the model fit. Forward selection is computationally efficient and easy to
implement, but it may fail to identify the optimal subset when important combinations of
variables are overlooked.

Backward elimination takes the opposite approach by starting with the full model
containing all explanatory variables. Variables are then removed one at a time based on
statistical insignificance until a satisfactory model is obtained. This method is effective when
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the sample size is large enough to support estimation of the full model, but it cannot be
applied if the number of variables exceeds the number of observations.

Stepwise regression combines features of both forward selection and backward elimination.
At each stage, variables may be added or removed depending on their contribution to model
performance. Stepwise regression offers flexibility and adaptability but may yield different
results depending on the chosen selection criteria.

These systematic procedures provide practical tools for variable selection, but their results
should be interpreted carefully. Selection methods often depend on the data and criteria used,
and different procedures may lead to different subsets. Therefore, statistical techniques
should be complemented with subject-matter knowledge to ensure meaningful and reliable
regression models.

16.3.1 Best Subset Selection

Best subset selection involves fitting regression models for all possible combinations of
explanatory variables. For each subset size, the best-performing model is identified based on
a chosen criterion.

Features:
e Evaluates all possible subsets
e Provides optimal subsets for each size
e Computationally expensive for large numbers of variables
e Best subset selection is ideal when the number of predictors is small.

16.3.2 Forward Selection

Forward selection begins with an empty model containing no explanatory variables.
Variables are added one at a time based on their contribution to improving model fit.
Procedure:

e Start with no predictors

e Add the variable that gives the greatest improvement

e Continue until no significant improvement is possible

e This method is computationally efficient but may miss the best overall model.

16.3.3 Backward Elimination

Backward elimination starts with the full model that includes all explanatory variables.
Variables are removed one by one based on lack of statistical significance.
Procedure:

e Fit the full model

e Remove the least significant variable

e Continue until all remaining variables are significant

e Backward elimination requires a reasonably large sample size.

16.3.4 Stepwise Regression

Stepwise regression combines features of forward selection and backward elimination.



Centre for Distance Education 16.5 Acharya Nagarjuna University

Characteristics:
e Variables can be added or removed at each step
e Dynamic and flexible approach
e Popular in applied data analysis
e However, results may depend on the chosen significance levels.

16.4 MODEL SELECTION CRITERIA

In multiple linear regression analysis, it is common to obtain several competing models
through different subset selection procedures. Each model may differ in the number of
explanatory variables included as well as in its goodness of fit. To select the most appropriate
model among these alternatives, model selection criteria are used. These criteria provide
objective measures to compare models and help identify a model that offers an optimal
balance between accuracy and simplicity.

One of the most widely used criteria is the adjusted coefficient of determination. Unlike the
ordinary coefficient of determination, which always increases when more variables are
added, the adjusted measure accounts for the number of explanatory variables in the model. It
increases only when a newly added variable improves the model more than would be
expected by chance. This property makes it useful for comparing models with different
numbers of predictors.

Another important criterion is the Akaike Information Criterion (AIC), which evaluates
models based on a trade-off between goodness of fit and model complexity. AIC penalizes
the inclusion of additional variables and helps prevent overfitting. Models with smaller AIC
values are preferred, as they are considered to provide a better balance between fit and
complexity.

The Bayesian Information Criterion (BIC) is similar in spirit to AIC but imposes a stronger
penalty for model complexity, particularly when the sample size is large. As a result, BIC
generally favors more parsimonious models. It is especially useful when the primary goal is
to identify the most relevant set of explanatory variables rather than to maximize predictive
accuracy.

Mallows’ Cp is another useful criterion that compares the bias and variance of competing
models. It evaluates how well a subset model approximates the full model. Models with Cp
values close to the number of explanatory variables are usually considered desirable, as they
indicate a good balance between model fit and parsimony.

In summary, model selection criteria play a crucial role in evaluating competing regression
models. By considering both goodness of fit and model complexity, these criteria help in
selecting models that are not only statistically sound but also simple, stable, and suitable for
practical application.

16.4.1 Adjusted Coefficient of Determination

Adjusted R? accounts for the number of explanatory variables in the model. The Adjusted
Coefficient of Determination, denoted asR?, is an important statistical measure used to
evaluate the goodness of fit of a multiple regression model while accounting for the number
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of explanatory variables included in the model. It is a modified version of the ordinary
coefficient of determination R? which measures the proportion of total variation in the
response variable explained by the regression model.

Adiusted R2 = L®SS/(n-p-1)
: TSS/(n-1)

It increases only when a new variable improves the model beyond chance.

16.4.2 Akaike Information Criterion (AIC)

The Akaike Information Criterion (AIC) is one of the most widely used statistical
measures for comparing and selecting regression models. It is designed to balance model fit
and model complexity, helping to identify a model that explains the data well without
including unnecessary explanatory variables. The fundamental idea behind AIC is that a good
model should achieve high explanatory power while remaining as simple as possible.

AIC is based on the concept of information loss. When a statistical model is used to represent
the true data-generating process, some amount of information is inevitably lost. The AIC
provides an estimate of this information loss, and models with smaller AIC values are
considered to be closer to the true underlying process.

AIC balances model fit and complexity:
AIC = nIn(RSS/n)+2p
where

e n is the sample size,

e RSS is the residual sum of squares, and

e pis the number of estimated parameters in the model.
The first term measures the lack of fit of the model, while the second term introduces a
penalty for model complexity. As the number of explanatory variables increases, the penalty
term increases, discouraging the inclusion of unnecessary variables.

An important feature of AIC is that it allows comparison among competing models, even
when they are not nested. The model with the lowest AIC value is preferred. However, AIC
does not test a model in an absolute sense; it only ranks models relative to one another. AIC
is particularly useful in subset selection problems, where many candidate models are
available. By penalizing excessive complexity, it helps reduce the risk of overfitting and
encourages the selection of models that are more likely to perform well on new data.

In summary, the Akaike Information Criterion is a powerful and practical tool for model
selection. By balancing goodness of fit with simplicity, AIC supports the construction of
regression models that are both efficient and reliable for inference and prediction. Smaller
AIC values indicate better models.

16.4.3 Bayesian Information Criterion (BIC)

The Bayesian Information Criterion (BIC) is a widely used statistical criterion for model
selection in regression analysis. Like the Akaike Information Criterion (AIC), BIC aims to
evaluate competing models by balancing model fit and model complexity. However, BIC
imposes a stronger penalty for model complexity, especially as the sample size increases,
and therefore tends to favor simpler and more parsimonious models.
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BIC is derived from Bayesian principles and provides an approximate measure for selecting
the most probable model among a set of candidate models, given the observed data.
BIC introduces a heavier penalty for model complexity:
BIC = nIn(RSS/n) +p
where

e nis the sample size,

e RSS is the residual sum of squares, and

e p is the number of estimated parameters in the model.
The first term measures how well the model fits the data, while the second term penalizes the
inclusion of additional parameters. The penalty term in BIC, plni/onp \In nplnn, increases
more rapidly than the penalty term in AIC as the sample size grows. As a result, BIC places
greater emphasis on simplicity.

An important property of BIC is that it tends to select the true model, assuming it is among
the candidate models and certain regularity conditions are satisfied, as the sample size
becomes large. This property makes BIC especially attractive in problems where the goal is
to identify a parsimonious model rather than maximize predictive accuracy.

Like AIC, BIC is used for relative comparison of models. The model with the smallest BIC
value is preferred. Differences in BIC values can be interpreted as evidence in favor of one
model over another, with larger differences indicating stronger support.

In summary, the Bayesian Information Criterion is an effective tool for model selection that
emphasizes simplicity and interpretability. By imposing a stronger penalty for complexity,
BIC helps prevent overfitting and supports the selection of regression models that are stable,
efficient, and theoretically sound.

16.4.4 Mallows’ Cp

Mallows’ Cp is a widely used statistical criterion for model selection in multiple linear
regression, particularly in the context of subset selection of explanatory variables. It is
designed to assess the trade-off between bias and variance in a regression model and to
determine how well a subset model approximates the full regression model.

The basic idea behind Mallows’ Cp is to evaluate whether a regression model with a selected
subset of explanatory variables provides an adequate fit without unnecessary complexity.
Unlike criteria that focus only on goodness of fit, Mallows’ Cp explicitly accounts for the
number of variables included in the model, thereby helping to identify parsimonious models.

Mallows’ Cp assesses the trade-off between bias and variance:

RSS
==~ (n2p)

Models with Cp = p are preferred.
where
e RSSp is the residual sum of squares for the model containing ppp explanatory
variables,
e §’is an estimate of the error variance obtained from the full model, and
e nis the sample size.

A desirable property of Mallows’ Cp is that it provides guidance on both model adequacy
and simplicity. Models with Cp values close to p (the number of explanatory variables) are
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generally considered satisfactory. Such models achieve a good balance between bias and
variance and are likely to provide reliable estimates.

If the value of Cp is much larger than p, it suggests that the model may be missing important
explanatory variables, leading to bias. On the other hand, a very small value of Cp may
indicate overfitting, where unnecessary variables have been included in the model.

Mallows’ Cp is particularly useful in best subset selection procedures, where many
competing models are evaluated simultaneously. By comparing Cp values across models,
analysts can identify subsets that approximate the full model closely while using fewer
variables.

In summary, Mallows’ Cp is an effective criterion for selecting regression models that
balance accuracy and simplicity. By considering both the goodness of fit and the number of
explanatory variables, it supports the identification of models that are stable, efficient, and
well-suited for inference and prediction.

16.5 PRACTICAL ISSUES IN VARIABLE SELECTION

While performing variable selection, the following issues must be considered:
¢ Risk of overfitting

Instability due to correlated predictors

Dependence on sample size

Ignoring domain knowledge

Different methods may yield different subsets

Sound judgment and subject-matter expertise are essential.

16.6 CONCLUSION

Subset selection of explanatory variables is a crucial step in multiple regression analysis,
particularly when a large number of potential predictors are available. Including all
explanatory variables in a regression model often leads to unnecessary complexity, reduced
interpretability, and potential statistical issues such as multicollinearity and overfitting. By
carefully identifying an appropriate subset of predictors, a regression model can be made
more efficient, stable, and meaningful.

Selecting a suitable subset of explanatory variables enhances interpretability by focusing
attention on the most influential predictors and clarifying their relationship with the response
variable. Simpler models are easier to understand and communicate, especially in applied
fields where practical interpretation is as important as statistical accuracy. In addition,
reducing the number of variables often leads to more stable parameter estimates with smaller
variances, thereby improving the reliability of statistical inference.

Subset selection also plays an important role in improving predictive performance. Models
that avoid unnecessary variables tend to generalize better to new data, as they are less prone
to overfitting. By balancing model fit with model simplicity, subset selection methods help
construct regression models that perform well both on observed data and in future
predictions.
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A variety of systematic selection methods—such as best subset selection, forward selection,
backward elimination, and stepwise regression—along with model selection criteria like
adjusted coefficient of determination, AIC, BIC, and Mallows’ Cp, provide valuable
guidance in identifying appropriate models. However, no single method is universally
optimal, and different approaches may lead to different subsets of variables.

Therefore, thoughtful application of subset selection techniques is essential. Statistical criteria
should be used in conjunction with subject-matter knowledge and practical considerations to
ensure that selected models are not only statistically sound but also meaningful in real-world
contexts. When applied carefully, subset selection contributes significantly to the
development of reliable, interpretable, and effective multiple regression models.

16.7 SELF ASSESSMENT QUESTIONS

Why is variable selection important in multiple regression?
Explain best subset selection and its limitations.

Differentiate between forward selection and backward elimination.
Explain AIC and BIC.

What is Mallows’ Cp?

16.8 FURTHER READINGS
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