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FOREWORD 

Since its establishment in 1976, Acharya Nagarjuna University has been 

forging ahead in the path of progress and dynamism, offering a variety of courses 

and research contributions. I am extremely happy that by gaining ‘A+’ grade from 

the NAAC in the year 2024, Acharya Nagarjuna University is offering educational 

opportunities at the UG, PG levels apart from research degrees to students from 

over 221 affiliated colleges spread over the two districts of Guntur and Prakasam.  

The University has also started the Centre for Distance Education in 2003-

04 with the aim of taking higher education to the door step of all the sectors of the 

society. The centre will be a great help to those who cannot join in colleges, those 

who cannot afford the exorbitant fees as regular students, and even to housewives 

desirous of pursuing higher studies. Acharya Nagarjuna University has started 

offering B.Sc., B.A., B.B.A., and B.Com courses at the Degree level and M.A., 

M.Com., M.Sc., M.B.A., and L.L.M., courses at the PG level from the academic 

year 2003-2004 onwards.  

To facilitate easier understanding by students studying through the distance 

mode, these self-instruction materials have been prepared by eminent and 

experienced teachers. The lessons have been drafted with great care and expertise 

in the stipulated time by these teachers. Constructive ideas and scholarly 

suggestions are welcome from students and teachers involved respectively. Such 

ideas will be incorporated for the greater efficacy of this distance mode of 

education. For clarification of doubts and feedback, weekly classes and contact 

classes will be arranged at the UG and PG levels respectively.  

It is my aim that students getting higher education through the Centre for 

Distance Education should improve their qualification, have better employment 

opportunities and in turn be part of country’s progress. It is my fond desire that in 

the years to come, the Centre for Distance Education will go from strength to 

strength in the form of new courses and by catering to larger number of people. My 

congratulations to all the Directors, Academic Coordinators, Editors and Lesson-

writers of the Centre who have helped in these endeavors.  

Prof. K. Gangadhara Rao 

M.Tech., Ph.D., 

Vice-Chancellor I/c  

Acharya Nagarjuna University. 
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204ST24 :: LINEAR MODELS AND APPLIED REGRESSION ANALYSIS 
(w.e.f. 2024-2025 Academic Year admitted batch)  

       Time: 3 hours                                                                                                       Maximum: 70 marks        

                              ANSWER ONE QUESTION FROM EACH UNIT 

(Each question carries equal marks) 

UNIT–I 

 

1. (a) Explain the Gauss–Markov model along with underlying assumptions. Also give an example of the same. 

 (b) Obtain the maximum likelihood estimator of error variance in the normal linear regression model. Derive 

its expectation and variance. 

2 (a) Show that in a general linear model the least squares estimators are BLUE. 

 (b) Derive an expression for the dispersion (variance–covariance) matrix of the BLUE for the parameter 

vector of the general linear model. 

  UNIT–II 

3 (a) Explain restricted least squares estimation for a general linear model and derive the restricted 

LS estimator. 

 (b) State and prove Aitken’s theorem. 

4 (a) Give the simultaneous estimates of linear parametric functions in a general linear model. 

 (b) Define estimable function and explain how estimation is modified when observations are correlated. 

  UNIT–III 

 

5 (a) Describe the test procedure to test the significance of a single parametric function. 

 (b) Explain the general linear test procedure to test the significance of multiple hypotheses with an example. 

  (OR) 

6 (a) Explain analysis of variance for two–way classification with multiple observations per cell. Obtain the 

ANOVA table. 

 (b) Obtain confidence intervals for the least squares estimates in the case of a two-variable linear model. 

  UNIT–IV 

7 (a)   (a) What is simple linear regression? Explain with a suitable example and obtain the partial correlation 

coefficient. 

 (b) Explain the multiple regression in the three–variable case and derive the coefficient of multiple 

determination. 

  (OR) 

8 (a) Define polynomial regression and explain the use of orthogonal polynomials with an example. 

 (b) Write down and explain the sampling properties of regression coefficients. 

  UNIT–V 

9 (a) Explain multicollinearity with suitable examples. What are the consequences of multicollinearity and 

how can it be detected? 

 (b) What are ridge regression estimators? Discuss their properties and compare with ordinary least squares. 

  (OR) 

10 (a) What are principal components? Explain their use in regression analysis by a suitable example. 

 (b) Explain subset selection of explanatory variables and compare major subset selection procedures. 
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LESSON-1 

GAUSS-MARKOV SET-UP 
 

OBJECTIVES: 

 

After completing this lesson, students will be able to: 

❖ Understand the Gauss–Markov linear model and its underlying assumptions. 

❖ Formulate regression problems using matrix notation. 

❖ Derive normal equations and obtain least squares estimates of regression parameters. 

❖ Explain and apply the Gauss–Markov theorem and interpret the concept of BLUE. 

❖ Compute and interpret variances and covariances of least squares estimators. 

❖ Estimate the error variance and assess model adequacy. 

❖ Apply linear regression techniques to real-world data in social sciences, engineering, 

economics, and health sciences. 

❖ Use statistical software to fit and interpret applied regression models. 

 

STRUCTURE: 

 

1.1 Introduction 

1.2 Linear Statistical Model 

1.3  Assumptions of the Gauss-Markov Model 

1.3.1 Gauss–Markov Theorem 

         1.3.2 Applications of Gauss-Markov Theory 

1.4 Matrix Formulation of the Model 

1.5 Ordinary Least Squares Estimation 

1.6 Properties of Least Squares Estimators 

1.6.1 Best Linear Unbiased Estimator (BLUE) 

1.6.2 Variance-Covariance Matrix of Estimators 

1.7  Estimation of Error Variance and Confidence Intervals and Regions 

1.8  Key words 

1.9  Summary 

1.10  Self-Assessment Questions 

1.11  Suggested Reading 

 

1.1  INTRODUCTION:  

 

The Gauss–Markov set-up forms the theoretical foundation of classical linear regression 

analysis. It provides a rigorous framework for estimation and inference in linear statistical 

models under minimal distributional assumptions. Central to this theory is the Gauss–Markov 

Theorem, which establishes the optimality of the Ordinary Least Squares (OLS) estimator 

within the class of linear unbiased estimators. This framework underpins much of modern 

econometrics, biostatistics, engineering analysis, and social science research. 
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Description: Gauss–Markov Set-up 

 

• The Gauss–Markov set-up forms the theoretical basis of linear regression analysis. It 

considers the linear model 𝐘 = 𝐗𝜷 + 𝜺, 
• Where the error terms have zero mean, constant variance, and are uncorrelated. 

• Under these assumptions, the ordinary least squares method is used to estimate the 

unknown parameters. The resulting estimator is shown to be unbiased, and its variance–

covariance matrix can be explicitly derived. The central result of this framework is the 

Gauss–Markov Theorem, which states that the least squares estimator is the Best Linear 

Unbiased Estimator (BLUE) of the parameter vector. 

• The Gauss–Markov set-up provides the foundation for hypothesis testing, confidence 

intervals, and analysis of variance in linear models and serves as the basis for more advanced 

regression methods. 

 

1.2. LINEAR STATISTICAL MODEL: 

 

Let 𝑦1, 𝑦2, … , 𝑦𝑛 denote observed responses. The general linear statistical model is 

y = 𝑋𝛽 + 𝜀, 
where: 

• yis an 𝑛 × 1 vector of observations, 

• 𝑋is an 𝑛 × 𝑝 known design matrix of full column rank 𝑝, 

• 𝛽is a 𝑝 × 1 vector of unknown parameters, 

• 𝜀is an 𝑛 × 1 vector of random errors. 

The systematic component  𝑋𝛽 represents the mean structure, while 𝜀captures unexplained 

variability. 

 

1.3  ASSUMPTIONS OF THE GAUSS-MARKOV MODEL: 

The Gauss–Markov set-up relies on the following assumptions: 

1. Linearity: The model is linear in parameters, 𝐸(y) = 𝑋𝛽. 

2. Full Rank: rank(𝑋) = 𝑝, ensuring identifiability of parameters. 

3. Unbiased Errors: 𝐸(𝜀) = 0. 

4. Homoscedasticity: Var(𝜀) = 𝜎2𝐼𝑛, where 𝜎2 > 0. 

5. No Correlation: Errors are uncorrelated. 

Normality of errors is not required for the Gauss–Markov Theorem, but is often imposed for 

exact inference. 

 

1.3.1 GAUSS-MARKOV THEOREM:  

Statement: Consider the linear statistical model 

y = 𝑋𝛽 + 𝜀, 
where 

                                                                𝐸(𝜀) = 0, Var (𝜀) = 𝜎2𝐼𝑛, 
and 𝑋 is an 𝑛 × 𝑝 known matrix of full column rank  𝑝. 

Then the ordinary least squares estimator 

𝛽̂ = (𝑋′𝑋)−1𝑋′y 

has minimum variance among all estimators of 𝛽that are linear and unbiased. Hence, 𝛽̂  is the 

Best Linear Unbiased Estimator (BLUE). 

Proof: 

Step 1: Consider the class of linear estimators 
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Let      𝛽 = 𝐴y, 
be any linear estimator of 𝛽, where 𝐴is a 𝑝 × 𝑛non-stochastic matrix. 

Step 2: Impose the unbiasedness condition 

𝐸(𝛽) = 𝛽. 

Now, 

𝐸(𝛽) = 𝐴𝐸(y) = 𝐴𝑋𝛽. 

For this to hold for all 𝛽, 

𝐴𝑋 = 𝐼𝑝. (1) 

Step 3: Variance of a linear unbiased estimator 

Since Var (y) = 𝜎2𝐼𝑛, 

Var (𝛽) = 𝐴 Var (y) 𝐴′ = 𝜎2𝐴𝐴′. (2) 
 

Step 4: Variance of the OLS estimator 

The OLS estimator is 

𝛽̂ = (𝑋′𝑋)−1𝑋′y. 

Therefore, 

Var (𝛽̂) = 𝜎2(𝑋′𝑋)−1. (3) 

Step 5: Difference of variance–covariance matrices 

From (2) and (3), 

Var (𝛽̃) − Var (𝛽̂) = 𝜎2[𝐴𝐴′ − (𝑋′𝑋)−1]. (4) 

Step 6: Algebraic decomposition 

Define 

𝐵 = 𝐴 − (𝑋′𝑋)−1𝑋′. 

Then 

𝐵𝐵′ = 𝐴𝐴′ − 𝐴(𝑋′𝑋)−1𝑋′ − (𝑋′𝑋)−1𝑋𝐴′ + (𝑋′𝑋)−1𝑋′𝑋(𝑋′𝑋)−1. 

Using the unbiasedness condition 𝐴𝑋 = 𝐼𝑝, 

𝐵𝐵′ = 𝐴𝐴′ − (𝑋′𝑋)−1. (5) 
 

Step 7: Positive semi-definiteness 

Substituting (5) into (4), 

Var (𝛽) − Var (𝛽̂) = 𝜎2𝐵𝐵′ = 𝜎2(𝐴 − (𝑋′𝑋)−1𝑋′)(𝐴 − (𝑋′𝑋)−1𝑋′)′. 
 

For any vector c, 
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c′𝐵𝐵′c = (𝐵′c)′(𝐵′c) ≥ 0. 
 

Hence, 

Var (𝛽) − Var (𝛽̂) ⪰ 0 

 Step 8: Conclusion 

The variance–covariance matrix of any linear unbiased estimator 𝛽is greater than or equal to 

that of 𝛽̂in the Loewner sense. Therefore, 

𝛽̂ = (𝑋′𝑋)−1𝑋′y is the BLUE.  

1.3.2 APPLICATIONS OF GAUSS-MARKOV THEORY: 

• Econometric modeling 

• Industrial process optimization 

• Experimental design 

• Biostatistical dose–response analysis 

• Signal processing and calibration problems 

 

1.4 MATRIX FORMULATION OF THE MODEL: 

The expectation and variance of yare 

𝐸(y) = 𝑋𝛽,Var(y) = 𝜎2𝐼𝑛. 
Define the projection (hat) matrix: 

                                                          𝐻 = 𝑋(𝑋′𝑋)−1𝑋′. 
This matrix projects yonto the column space of 𝑋. 

1.5 ORDINARY LEAST SQUARES ESTIMATION: 

The OLS estimator minimizes the residual sum of squares 

𝑆(𝛽) = (y − 𝑋𝛽)′(y − 𝑋𝛽). 
Normal Equations 

Differentiating and equating to zero yields 

𝑋′𝑋𝛽̂ = 𝑋′y. 
OLS Estimator 

Provided 𝑋′𝑋is nonsingular, 

𝛽̂ = (𝑋′𝑋)−1𝑋′y  

 

1.6 PROPERTIES OF LEAST SQUARES ESTIMATORS: 

Under the Gauss–Markov assumptions: 

1. Unbiasedness: 

𝐸(𝛽̂) = 𝛽. 
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2. Variance–Covariance Matrix: 

Var(𝛽̂) = 𝜎2(𝑋′𝑋)−1 

3. Linearity: 𝛽̂is a linear function of y. 

1.6.1 BEST LINEAR UNBIASED ESTIMATOR (BLUE): 

The concept of the Best Linear Unbiased Estimator (BLUE) is central to the                   

Gauss–Markov theory and classical linear regression analysis. It provides a precise optimality 

criterion for estimating the unknown parameter vector 𝛽in a linear statistical model. 

An estimator 𝜷̂ of 𝜷 is called BLUE if it satisfies the following three properties: 

1. Linearity  

   The estimator must be a linear function of the observed data y.  That is, 

 𝛽̂ = 𝐴y, 

   where 𝐴 is a fixed (non-random) 𝑝 × 𝑛 matrix. 

   This requirement restricts attention to estimators that depend linearly on the observations. 

2. Unbiasedness 

The estimator must satisfy  𝐸(𝛽̂) = 𝛽. 

Unbiasedness ensures that, on average, the estimator correctly targets the true parameter 

vector and does not systematically overestimate or underestimate it. 

3. Best (Minimum Variance) 

Among all estimators that are linear and unbiased, the estimator must have the minimum 

variance–covariance matrix. 

Formally, if 𝛽 is any other linear unbiased estimator, then 

Var (𝛽) − Var (𝛽̂) ⪰ 0, 

meaning the difference is positive semi-definite. 

Thus, BLUE is the most precise estimator within the specified class. 

Class of Estimators Considered 

The Gauss–Markov theorem restricts attention to the class of estimators 

ℒ = {𝐴y  :  𝐴𝑋 = 𝐼𝑝} 

This condition arises from unbiasedness: 

𝐸(𝐴y) = 𝐴𝑋𝛽 = 𝛽 
Important implications: 

• Nonlinear estimators are excluded. 

• Biased estimators are excluded. 

• Optimality is defined only within this class. 
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Why Ordinary Least Squares is BLUE 

Under the Gauss–Markov assumptions: 

𝐸(y) = 𝑋𝛽, Var (y) = 𝜎2𝐼𝑛, 

the ordinary least squares estimator is 

𝛽̂ = (𝑋′𝑋)−1𝑋′y 

It satisfies all three BLUE conditions: 

1. Linear: 

𝛽̂is a linear function of y. 

2. Unbiased: 

𝐸(𝛽̂) = (𝑋′𝑋)−1𝑋′𝑋𝛽 = 𝛽. 
 

3. Minimum Variance: 

Var (𝛽̂) = 𝜎2(𝑋′𝑋)−1, 

which is smaller than or equal to the variance of any other linear unbiased estimator. 

Hence, OLS coincides with the BLUE. 

Interpretation of the Word “Best” 

The term best refers strictly to variance efficiency, not to closeness in any single sample. 

Specifically: 

• For any linear function c′𝛽, c′𝛽̂ has the smallest possible variance among all linear 

unbiased estimators of c′𝛽. 

• No other linear unbiased estimator can uniformly dominate OLS in terms of precision. 

BLUE and Distributional Assumptions 

A crucial feature of BLUE is that: 

• Normality of errors is not required. 

• Only the first two moments of 𝜀are used. 

If, in addition, 

𝜀 ∼ 𝑁(0, 𝜎2𝐼𝑛), 

then OLS is not only BLUE but also the minimum variance unbiased estimator (MVUE) 

among all unbiased estimators. 

BLUE and Generalized Least Squares (GLS) 

When the assumption of homoscedastic and uncorrelated errors is violated, i.e., 

Var (𝜀) = 𝜎2𝑉, 

the OLS estimator is no longer BLUE. 
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In this case, the Generalized Least Squares (GLS) estimator 

𝛽̂𝐺𝐿𝑆 = (𝑋′𝑉−1𝑋)−1𝑋′𝑉−1y 

becomes the BLUE under the new covariance structure. 

An estimator 𝛽̂is called BLUE if: 

• it is linear in y, 

• it is unbiased, 

• it has minimum variance among all such estimators. 

Under Gauss–Markov assumptions, OLS = BLUE. 

 

1.6.2 VARIANCE–COVARIANCE MATRIX OF ESTIMATORS: 

For any linear combination c′𝛽, 

Var(c′𝛽̂) = 𝜎2c′(𝑋′𝑋)−1c. 
 

This result is fundamental for inference on contrasts and parametric functions. 

 

1.7 ESTIMATION OF ERROR VARIANCE: 

An unbiased estimator of 𝜎2is 

𝜎̂2 =
(y − 𝑋𝛽̂)′(y − 𝑋𝛽̂)

𝑛 − 𝑝
. 

Hypothesis Testing under Gauss–Markov Set-up 

Consider the general linear hypothesis: 

𝐻0: 𝐶𝛽 = d, 

where 𝐶 is 𝑞 × 𝑝. 

Test Statistic 

𝐹 =
(𝐶𝛽̂ − d)′[𝐶(𝑋′𝑋)−1𝐶′]−1(𝐶𝛽̂ − d)/𝑞

𝜎̂2
. 

 

Under 𝐻0, 𝐹 ∼ 𝐹𝑞,𝑛−𝑝. 

Confidence Intervals and Regions 

• Individual Confidence Interval for 𝛽𝑗: 

𝛽̂𝑗 ± 𝑡𝛼/2,𝑛−𝑝√𝜎̂2[(𝑋′𝑋)−1]𝑗𝑗 
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• Joint Confidence Region: 

(𝛽 − 𝛽̂)′𝑋′𝑋(𝛽 − 𝛽̂) ≤ 𝑝𝜎̂2𝐹𝑝,𝑛−𝑝(𝛼). 

Special Cases and Extensions 

1. Simple Linear Regression: 𝑝 = 2. 

2. Regression Through Origin. 

3. Generalized Least Squares (GLS): Var(𝜀) = 𝜎2𝑉. 

4. Weighted Least Squares. 

5. Random Effects and Mixed Models. 

 

1.8 KEY WORDS: 

 

• Linear model 

• Gauss–Markov assumptions  

• ordinary least squares 

• normal equations 

• BLUE, variance–covariance matrix 

• error variance 

• confidence interval 

• confidence region 

 

1.9  SUMMARY: 

 

The Gauss–Markov set-up provides the fundamental theoretical framework for 

linear statistical models and regression analysis. It begins with the formulation of the 

linear model 𝐘 = 𝐗𝜷 + 𝜺 where the response variable is expressed as a linear function of 

unknown parameters and a random error term. The model relies on a set of assumptions 

regarding linearity, unbiasedness of errors, constant variance, absence of correlation among 

errors, and full rank of the design matrix. 

 

Within this framework, the ordinary least squares (OLS) method is used to estimate 

the unknown parameters by minimizing the sum of squared residuals. The resulting 

estimators are linear functions of the observations and are unbiased. Their precision is 

quantified through the variance–covariance matrix, which depends on the error variance 

and the structure of the design matrix. 

 

A central result of this theory is the Gauss–Markov Theorem, which establishes that 

the OLS estimator is the Best Linear Unbiased Estimator (BLUE) of the regression 

parameters. Estimation of the error variance and construction of confidence intervals and 

confidence regions enable statistical inference and assessment of model reliability. 

 

The Gauss–Markov set-up forms the cornerstone of classical linear regression 

analysis. It justifies the use of ordinary least squares estimation under minimal assumptions, 

without requiring normality of errors. The optimality of OLS as the BLUE makes it a 

powerful and widely applicable estimation technique in both theoretical and applied contexts. 
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Overall, the Gauss–Markov theory provides a strong foundation for applied regression 

analysis and remains essential for modern statistical modeling and data analysis. 

 

1.10  SELF-ASSESSMENT QUESTIONS: 

1. Explain the Gauss–Markov model along with underlying assumptions. Also give an 

example of the same. 

2. State and prove the Gauss–Markov Theorem. 

3. Explain why normality is not required for BLUE. 

4. Derive the variance of 𝛽̂. 

5. Distinguish between OLS and GLS. 

6. Define a linear statistical model. State the assumptions of the Gauss–Markov model. 

7. Obtain the variance–covariance matrix of OLS estimators. 

 

1.11 SUGGESTED READING: 

 

1. Draper, N. R. & Smith, H. Applied Regression Analysis 

2. Montgomery, D. C., Peck, E. A., & Vining, G. G. Introduction to Linear Regression 

Analysis 

3. Rao, C. R. Linear Statistical Inference and Its Applications 

4. Kutner, M. H. et al. Applied Linear Regression Models 

 

 

Prof. V. V. Haragopal 

 



 LESSON-2 

NORMAL EQUATIONS AND LEAST SQUARES 

ESTIMATES 
 

OBJECTIVES:  

 

After studying this lesson, the student should be able to: 

❖ Understand the theoretical basis of the least squares principle in linear models. 

❖ Derive the normal equations for simple and multiple linear regression models. 

❖ Obtain least squares estimates using scalar and matrix methods. 

❖ Interpret fitted values, residuals, and error components in regression analysis. 

❖ Examine the conditions for existence and uniqueness of least squares solutions. 

❖ Analyze the statistical properties of least squares estimators. 

❖ Apply least squares estimation techniques to practical and real-life data problems. 

❖ Use statistical software for computation and interpretation of regression estimates. 

 

STRUCTURE: 

2.1 Introduction 

2.2 Linear Regression Model and Assumptions 

2.3 Least Squares Principle 

2.4 Derivation of Normal Equations 

2.5 Theorems 

2.5.1 Existence and Unbiasedness of Least Squares Estimates 

2.5.2 Uniqueness of Least Squares Estimates 

2.6  Explicit Form of Least Squares Estimator 

2.6.1 Geometrical Interpretation of Least Squares 

2.6.2 Residuals and Orthogonality 

2.6.3 Estimation of Error Variance 

2.7  Applications  

2.8  Key Words 

2.9  Summary 

2.10  Self-Assessment Questions 

2.11  Suggested Reading 

 

2.1 INTRODUCTION: 

The method of least squares occupies a central position in statistical theory and 

practice, forming the foundation of linear regression analysis and the general linear model. 

Originating from the works of Gauss and Legendre, least squares provides a systematic and 
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optimal procedure for estimating unknown parameters in linear models by minimizing the 

discrepancy between observed and fitted values. The resulting estimating equations, known 

as normal equations, yield estimators with well-established optimality properties under 

standard assumptions. 

 

This chapter develops the theory of normal equations and least squares estimators in a 

rigorous and unified manner suitable for university-level study. Emphasis is placed on matrix 

formulations, precise notation, formal derivations, existence and uniqueness conditions, 

geometrical interpretation, and statistical properties. Applications and illustrative examples 

are included to connect theory with practice. 

 

Description  

The method of least squares is a fundamental technique used in regression analysis to 

estimate unknown parameters in a linear model. It is based on minimizing the sum of squared 

differences between the observed values and the corresponding fitted values obtained from 

the model. 

 

In this topic, the linear regression model is expressed in matrix form, which allows the 

estimation problem to be handled systematically. By applying the least squares criterion, a set 

of equations known as the normal equations is obtained. Solving these equations yields the 

least squares estimates of the regression parameters. 

 

The existence and uniqueness of the least squares estimates depend on the linear 

independence of the columns of the design matrix. The fitted values and residuals are then 

defined using the estimated parameters, and the residuals are used to obtain an estimate of the 

error variance. 

 

This topic provides the basic mathematical foundation required for further study of 

regression analysis, hypothesis testing, and analysis of variance. 

 

2.2  LINEAR REGRESSION MODEL AND ASSUMPTIONS: 

Consider a set of observations (𝑦1, 𝑦2, … , 𝑦𝑛) on a response variable and 

corresponding values of 𝑝explanatory variables.  

The multiple linear regression model is 

𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖1 + ⋯+ 𝛽𝑝𝑥𝑖𝑝 + 𝜀𝑖, 𝑖 = 1,2, … , 𝑛 

Assumptions (Gauss–Markov Framework) 

1. Linearity in parameters: The model is linear in 𝛽0, 𝛽1, … , 𝛽𝑝. 

2. Full rank (no exact multicollinearity): The regressors are linearly independent. 

3. Zero mean errors: 𝐸(𝜀𝑖) = 0. 

4. Homoscedasticity: Var(𝜀𝑖) = 𝜎2 for all 𝑖. 

5. Uncorrelated errors: Cov(𝜀𝑖, 𝜀𝑗) = 0 for 𝑖 ≠ 𝑗. 

6. (Optional for inference)Normality: 𝜀𝑖 ∼ 𝑁(0, 𝜎2). 
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Matrix Representation of the Linear Model 

Let 

𝑌 = [

𝑦1

𝑦2

⋮
𝑦𝑛

] , 𝛽 = [

𝛽0

𝛽1

⋮
𝛽𝑝

] , 𝜀 = [

𝜀1

𝜀2

⋮
𝜀𝑛

] 

and the design matrix 

X =

[
 
 
 
1 𝑥11 ⋯ 𝑥1𝑝

1 𝑥21 ⋯ 𝑥2𝑝

⋮ ⋮
1 𝑥𝑛1 ⋯ 𝑥𝑛𝑝]

 
 
 

 

Then the model is compactly written as 

Y = X𝛽 + 𝜀, 
with 𝐸(𝜀) = 0 and Var (𝜀) = 𝜎2I𝑛. 

 

2.3 LEAST SQUARES PRINCIPLE: 

Definition 

The least squares estimator minimizes the residual sum of squares 

𝑆(𝛽) = (y − X𝛽)′(y − X𝛽) 
Objective 

Find 𝛽̂ such that 

𝑆(𝛽̂) = min 
𝛽∈ℝ𝑝+1

𝑆(𝛽) 

 

2.4  DERIVATION OF NORMAL EQUATIONS: 

Expanding the sum of squares: 

𝑆(𝛽) = y′y − 2𝛽′X′y + 𝛽′X′X𝛽̂ 
Taking the gradient with respect to 𝛽: 

∂𝑆

∂𝛽
= −2X′y + 2X′X𝛽̂ 

Setting the gradient equal to zero yields the normal equations 

X′X𝛽̂ = X′Y 
 

Solution of Normal Equations 

 

1. Theorem: Least Squares Solution 

Statement: 

Let Y = X𝛽 + 𝜀, where X is an 𝑛 × (𝑝 + 1)design matrix. If rank (X) = 𝑝 + 1, then X′X is 

nonsingular and the normal equations X′X𝛽̂ = X′Y have the unique solution 𝛽̂ = (X′X)−1X′y. 
Proof : 
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Step 1: Linear independence of the columns of X 

Since rank (X) = 𝑝 + 1, 
the columns of Xare linearly independent. 

Hence, for any nonzero vector a ∈ ℝ𝑝+1, Xa ≠ 0 
 

Step 2: Positive definiteness of X′X 

Consider the quadratic form a′X′Xa 
This can be written as a′X′Xa = (Xa)′(Xa) =∥ Xa ∥2 
Since Xa ≠ 0for all a ≠ 0, a′X′Xa > 0 
Thus, X′Xis symmetric and positive definite. 

 

Step 3: Nonsingularity of X′X 

Every real symmetric positive definite matrix is nonsingular. 

Therefore, (X′X)−1 exists. 
 

Step 4: Solution of the normal equations 

The normal equations are X′X𝛽 = X′y 

Premultiplying both sides by (X′X)−1, we obtain 𝛽̂ = (X′X)−1X′y 
 

Step 5: Uniqueness 

Since X′X is nonsingular, the above solution is unique. 

𝛽̂ = (X′X)−1X′y  

 

2.5 THEOREMS: 

2.5.1 EXISTENCE AND UNIQUENESS OF LEAST SQUARES ESTIMATES 

Theorem: Existence of Least Squares Estimates 

Statement: 

For the linear model y = X𝛽 + 𝜀, 

there exists at least one vector 𝛽̂ ∈ ℝ𝑝+1that minimizes the residual sum of squares 

𝑆(𝛽) = (y − X𝛽)′(y − X𝛽), 
irrespective of whether the matrix X′Xis singular or nonsingular. 

Proof: 

The function 𝑆(𝛽)is a quadratic form in 𝛽and can be expressed as 

𝑆(𝛽) = y′y − 2𝛽′X′y + 𝛽′X′X𝛽 

Since X′X is symmetric and positive semidefinite, the quadratic form 𝑆(𝛽) is bounded below. 

Therefore, 𝑆(𝛽)attains a minimum over ℝ𝑝+1. 

Equivalently, the normal equations 

X′X𝛽̂ = X′Y 

always admit at least one solution. When X′X  is singular, solutions exist in the sense of 

generalized inverses. 
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Hence, a least squares estimator always exists. 

2.5.2  UNIQUENESS OF LEAST SQUARES ESTIMATES: 

Statement 

The least squares estimator 𝛽̂is unique if and only if rank (X) = 𝑝 + 1. 
 

Proof: 

(Sufficiency) 

If rank (X) = 𝑝 + 1, then the columns of Xare linearly independent. Consequently, the matrix 

X′Xis symmetric and positive definite, and hence nonsingular. The normal equations therefore 

have the unique solution 

𝛽̂ = (X′X)−1X′y 

(Necessity) 

Suppose rank (X) < 𝑝 + 1. Then the columns of Xare linearly dependent and X′X is singular. 

In this case, the normal equations have infinitely many solutions. Specifically, if 𝛽0 is a 

solution, then for any nonzero vector 𝑑 satisfying Xd = 0,  the vector 𝛽0 + d is also a 

solution. 

Hence, the least squares estimator is not unique. 

Therefore, the least squares estimator is unique if and only if rank (X) = 𝑝 + 1. 

 

2.6  EXPLICIT FORM OF LEAST SQUARES ESTIMATOR: 

The estimator is linear in y: 𝛽̂ = Cy, C = (X′X)−1X′ 

Expectation  𝐸(𝛽̂) = 𝛽 

Variance-Covariance Matrix Var (𝛽̂) = 𝜎2(X′X)−1 

 

2.6.1 GEOMETRICAL INTERPRETATION OF LEAST SQUARES: 

The column space 𝒞(𝐗) ⊂ ℝ𝑛is the space spanned by the columns of  X 

Key Result 

The fitted vector  ŷ = X𝛽̂ is the orthogonal projection of 𝐲onto 𝒞(𝐗). 

The projection matrix (hat matrix) is H = X(X′X)−1X′ 

Residuals satisfy X′𝜀̂ = 0, showing orthogonality between residuals and fitted values. 

Properties of Least Squares Estimates 

Gauss–Markov Theorem 

Statement 

Under the linear model 

y = X𝛽 + 𝜀, 𝐸(𝜀) = 0, Var (𝜀) = 𝜎2I, 
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the least squares estimator 𝛽̂is the Best Linear Unbiased Estimator (BLUE) of 𝛽. 

Proof : 

Step 1: General form of a linear estimator 

Any linear estimator of 𝛽can be written as 

𝛽 = Ay, 

whereAis a (𝑝 + 1) × 𝑛matrix. 

Step 2: Condition for unbiasedness 

𝐸(𝛽) = A𝐸(y) = AX𝛽 

For unbiasedness, 

𝐸(𝛽) = 𝛽 ⇒ AX = I𝑝+1 

 

Step 3: Variance of a linear unbiased estimator 

Var (𝛽) = AVar (y)A′ = 𝜎2AA′ 

Step 4: Least squares estimator 

The least squares estimator is 

𝛽̂ = (X′X)−1X′y. 

Its variance is 

Var (𝛽̂) = 𝜎2(X′X)−1. 

Step 5: Variance comparison 

Let 

D = A − (X′X)−1X′. 

Then 

Var (𝛽) − Var (𝛽̂) = 𝜎2DD′, 

which is positive semidefinite. 

Hence,Var (𝛽) ≥ Var (𝛽̂). 

Therefore, 𝛽̂ is BLUE.  

Additional Properties of Least Squares Estimator 

(i) Linearity 𝛽̂ = (X′X)−1X′y is a linear function of y. 

(ii) Unbiasedness  𝐸(𝛽̂) = (X′X)−1X′𝐸(y) = 𝛽. 

(iii) Consistency as 𝑛 → ∞, 𝛽̂ →
𝑃

𝛽. 

(iv) Normality, If 𝜀 ∼ 𝑁(0, 𝜎2I), then  𝛽̂ ∼ 𝑁 ⁣(𝛽, 𝜎2(X′X)−1) 
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2.6.3 ESTIMATION OF ERROR VARIANCE: 

The residual sum of squares is 

RSS = 𝜺̂′𝜺̂. 
An unbiased estimator of 𝜎2is 

𝜎̂2 =
RSS

𝑛−(𝑝+1)
 

Fitted Values and Residuals 

• Fitted values: ŷ = Hy 

• Residuals: 𝜀̂ = (I − H)y 

Properties: 

• 𝐸(𝜀̂) = 0 

• Var (𝜀̂) = 𝜎2(I − H) 

 

2.7 APPLICATIONS: 

1. Simple Linear Regression: Explicit normal equations reduce to familiar scalar 

equations for slope and intercept. 

2. Polynomial Regression: Linear in parameters despite nonlinear regressors. 

3. Econometrics and Engineering: Parameter estimation, calibration, and prediction. 

 

2.8  KEY WORDS: 

 

• Least Squares Estimator 

• Normal Equations 

• Design Matrix 

• Hat Matrix 

• Residuals 

• Gauss–Markov Theorem 

• Projection Matrix. 

 

2.9  SUMMARY: 

 

The method of least squares provides a fundamental approach for estimating unknown 

parameters in linear regression models. It is based on minimizing the sum of squared 

deviations between observed values and the values predicted by the model. This optimization 

leads to a system of equations known as the normal equations, which form the basis for 

obtaining least squares estimates. 

 

Using matrix notation, the normal equations are expressed as  X′X𝛽̂ = X′𝑌 and, under 

appropriate conditions, yield a unique solution for the parameter vector. The explicit form of 

the least squares estimator highlights its dependence on the design matrix and observed data. 

 

Theoretical results establish the existence, uniqueness, and unbiasedness of least 

squares estimates when the design matrix has full rank. The geometrical interpretation further 

clarifies that least squares estimation corresponds to the orthogonal projection of the 

observation vector onto the column space of the design matrix. Residuals are shown to be 

orthogonal to the fitted values and explanatory variables, reinforcing the optimality of the 

fitted model. 
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Estimation of the error variance using residuals provides a basis for statistical 

inference, including confidence intervals and hypothesis testing. These concepts are essential 

for evaluating model adequacy and reliability in applied regression analysis. 

 

   Overall, the least squares framework remains a cornerstone of applied statistics, 

offering both theoretical rigor and practical relevance across diverse fields such as 

economics, engineering, medicine, and social sciences. 

 

 2.10 SELF-ASSESSMENT QUESTIONS: 

 

1. Derive the normal equations for a multiple linear regression model using matrix 

notation. 

2. Prove the existence and unbiasedness of least squares estimates. 

3. Discuss the uniqueness of least squares estimates and the role of the rank of the 

design matrix. 

4. Explain the geometrical interpretation of least squares estimation and the concept of 

projection. 

5. Define residuals and prove the orthogonality property of residuals with the design 

matrix. 

6. Discuss the estimation of error variance in linear regression and its importance in 

inference. 

 

2.11  SUGGESTED READING: 

1. Draper, N. R. & Smith, H. Applied Regression Analysis 

2. Montgomery, D. C., Peck, E. A., & Vining, G. G. Introduction to Linear Regression 

Analysis 

3. Rao, C. R. Linear Statistical Inference and its Applications 

4. Kutner, M. H. et al. Applied Linear Regression Models 

5. Seber, G. A. F. and Lee, A. J., Linear Regression Analysis. 

 

 

Prof. V. V. Haragopal 

 

 

 



LESSON-3 

VARIANCE AND COVARIANCE OF LEAST 

SQUARES ESTIMATES 
 

OBJECTIVES:  

 

After studying this lesson, the student should be able to: 

❖ Understand the need for measuring variability in least squares estimates. 

❖ Define the variance of a least squares estimator and the covariance between two least 

squares estimators. 

❖ Obtain the variance-covariance matrix of least squares estimates.Understand the role 

of error variance in determining variances of estimators. 

❖ Compute standard errors of least squares estimates. 

❖ Interpret variances and covariances in regression analysis.  

❖ Apply these concepts to assess the precision of parameter estimates. 

 

STRUCTURE: 

 

3.1  Introduction 

3.2  Linear Regression Model and Assumptions 

3.3  Least Squares Estimator 

3.3.1 Variance of Least Squares Estimates 

3.3.2 Covariance Between Least Squares Estimates 

3.3.3 Variance–Covariance Matrix of Least Squares Estimates 

3.3.4 Properties of Variances and Covariances 

3.4  Estimation of Error Variance 

3.5  Standard Errors of Least Squares Estimates 

3.6  Interpretation of Variances and Covariances 

3.7 Applications  

3.8  Key Words 

3.9  Summary 

3.10  Self-Assessment Questions 

3.11  Suggested Reading 

 

3.1 INTRODUCTION: 

 

An essential aspect of linear regression theory concerns the variability of the least 

squares estimators. While point estimates provide fitted values of the regression parameters, 

meaningful statistical inference requires an explicit understanding of their variances and 

covariances. These quantities quantify estimation uncertainty, determine the precision of 
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individual regression coefficients, and form the basis for hypothesis testing, confidence 

intervals, and diagnostics such as multicollinearity assessment. 

 

This lesson presents a systematic and rigorous treatment of the variances and 

covariances of least squares estimates within the classical linear model framework. Emphasis 

is placed on matrix-based derivations, formal theorems with proofs, interpretation of the 

variance–covariance structure, and practical implications in regression analysis. 

 

Description: 

In regression analysis, least squares estimates provide point estimates of unknown 

parameters. To assess the reliability and precision of these estimates, it is necessary to study 

their variances and covariances. 

 

This topic examines the variability of least squares estimates under the standard 

assumptions of the linear regression model. The variance of an estimator measures the spread 

of its sampling distribution, while the covariance between two estimators indicates the degree 

of linear association between them. 

 

Using the matrix formulation of the regression model, the variance-covariance matrix 

of the least squares estimates is derived. This matrix plays a central role in regression 

inference, as its diagonal elements represent variances and its off-diagonal elements represent 

covariances. 

 

The error variance is estimated using residuals, and this estimate is used to obtain 

standard errors of the regression coefficients. These results form the basis for hypothesis 

testing, confidence intervals, and interpretation of regression parameters. 

 

3.2 LINEAR REGRESSION MODEL AND ASSUMPTIONS:  

 

Consider the linear regression model  y = X𝛽 + 𝜀, 
Where  

• y is an 𝑛 × 1vector of observations, 

• X is a known 𝑛 × (𝑝 + 1) design matrix of full column rank, 

• 𝛽 is a (𝑝 + 1) × 1vector of unknown parameters, 

• 𝜀 is an 𝑛 × 1 vector of random errors. 

 

Standard Assumptions 

1. 𝐸(𝜀) = 0 

2. Var (𝜀) = 𝜎2I𝑛 

3. rank (X) = 𝑝 + 1 

4. (For exact distributional results) 𝜀 ∼ 𝑁(0, 𝜎2I𝑛). 

 

3.3 LEAST SQUARES ESTIMATOR:  

 

The least squares estimator of 𝛽is defined as the minimizer of 

𝑆(𝛽) = (y − X𝛽)′(y − X𝛽) 
Under the full-rank assumption, 

𝛽̂ = (X′X)−1X′y 
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3.3.1 VARIANCE OF LEAST SQUARES ESTIMATES:  

 

Theorem -1(Variance of the Least Squares Estimator) 

Under the classical linear model assumptions, Var (𝛽̂) = 𝜎2(X′X)−1 

 

Proof: 

Since 𝛽̂is a linear function of y, 

𝛽̂ = (X′X)−1X′(X𝛽 + 𝜀) = 𝛽 + (X′X)−1X′𝜀 
Taking variances, 

Var (𝛽̂) = (X′X)−1X′Var (𝜀)X(X′X)−1 
Using Var (𝜀) = 𝜎2I𝑛, 

Var (𝛽̂) = 𝜎2(X′X)−1X′X(X′X)−1 = 𝜎2(X′X)−1 

 

 

 

3.3.2 COVARIANCE BETWEEN LEAST SQUARES ESTIMATES: 

 

Let 𝛽̂𝑗and 𝛽̂𝑘denote two components of 𝛽̂. 

 

Definition: 

The covariance between 𝛽̂𝑗and 𝛽̂𝑘is given by the (𝑗, 𝑘)th element of Var (𝛽̂). 

That is, 

Cov (𝛽̂𝑗, 𝛽̂𝑘) = 𝜎2[(X′X)−1]𝑗𝑘 

Nonzero covariances indicate linear dependence among the estimators, often arising from 

correlation among regressors. 

 

Theorem-2 Covariance Between Least Squares Estimates 

 

Statement: 

Let 𝛽̂𝑗and 𝛽̂𝑘be the 𝑗th and 𝑘th components of 𝛽̂. ThenCov (𝛽̂𝑗, 𝛽̂𝑘) = 𝜎2[(X′X)−1]𝑗𝑘 

 

Proof: 

From Theorem 1, Var (𝛽̂) = 𝜎2(X′X)−1 

By definition, the (𝑗, 𝑘)th element of the variance–covariance matrix equals Cov (𝛽̂𝑗, 𝛽̂𝑘) 

Hence, Cov (𝛽̂𝑗, 𝛽̂𝑘) = 𝜎2[(X′X)−1]𝑗𝑘 

 

3.3.3  VARIANCE-COVARIANCE MATRIX OF LEAST SQUARES 

          ESTIMATES: 

The full variance–covariance matrix is 

Var (𝛽̂) = 𝜎2(X′X)−1 

 

Structure 

• Diagonal elements: variances of individual parameter estimates 

• Off diagonal elements: covariances between parameter estimates 

 

The matrix is symmetric and positive definite under the full-rank assumption. 
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Theorem-3 (Variance-Covariance Matrix of Least Squares Estimates) 

Statement: 

The full variance–covariance matrix of 𝛽̂is V𝛽̂ = 𝜎2(X′X)−1, 

which is symmetric and positive definite. 

 

Proof: 

• Symmetry follows since (X′X)−1is symmetric. 

• Positive definiteness follows from the positive definiteness of X′Xwhen rank (X) = 𝑝 +
1. 

 

3.3.4 PROPERTIES OF VARIANCES AND COVARIANCES: 

 

1. Dependence on design: Variances depend solely on Xand 𝜎2. 

2. Effect of multicollinearity: Near-linear dependence among regressors inflates 

variances. 

3. Orthogonality: If columns of Xare orthogonal, covariances vanish. 

4. Scale sensitivity: Rescaling regressors alters variances of corresponding coefficients. 

 

3.4 ESTIMATION OF ERROR VARIANCE:  

 

Since 𝜎2is unknown, it is estimated by 

𝜎̂2 =
𝜀̂′𝜀̂

𝑛−(𝑝+1)
, 

Where 𝜀̂ = y − X𝛽̂ 

 

Theorem-4 (Unbiased Estimator of Error Variance) 

Statement: 

The estimator𝜎̂2 =
𝜀̂′𝜀̂

𝑛−(𝑝+1)
  is an unbiased estimator of 𝜎2. 

Proof : 

Step 1: Express residuals 

𝜀̂ = (I − H)y, H = X(X′X)−1X′ 

Step 2: Residual sum of squares 

𝜀̂′𝜀̂ = y′(I − 𝑚𝑎𝑡ℎ𝑏𝑓𝐻)y 

Step 3: Take expectation 

Using properties of quadratic forms, 

𝐸(𝜀̂′𝜀̂) = 𝜎2tr (I − H) 

Step 4: Evaluate the trace 

tr (H) = rank (H) = 𝑝 + 1, tr (I − H) = 𝑛 − (𝑝 + 1) 
 

Step 5: Conclude 

𝐸(𝜎̂2) =
𝐸(𝜀̂′𝜀̂)

𝑛 − (𝑝 + 1)
= 𝜎2. 

 

3.5 STANDARD ERRORS OF LEAST SQUARES ESTIMATES:  

 

The standard error of 𝛽̂𝑗is defined as 

SE (𝛽̂𝑗) = √𝜎̂2[(X′X)−1]𝑗𝑗 
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Standard errors quantify the precision of individual regression coefficients and are 

fundamental to inference procedures. 

 

3.6 INTERPRETATION OF VARIANCES AND COVARIANCES: 

 

• Large variances indicate imprecise estimation 

• Large covariances suggest strong dependence among coefficient estimates 

• Correlation coefficients between estimates can be computed as 

𝜌𝑗𝑘 =
Cov (𝛽̂𝑗, 𝛽̂𝑘)

√Var (𝛽̂𝑗)Var (𝛽̂𝑘)

 

 

3.7 APPLICATIONS:   

 

• Simple Linear Regression: Closed-form expressions for Var (𝛽̂0) and Var (𝛽̂1). 

• Multicollinearity Diagnosis: Variance inflation factors derived from diagonal elements. 

• Experimental Design: Choice of Xto minimize estimator variances. 

• Construction of confidence intervals for regression coefficients 

• Hypothesis testing in regression models 

• Interpretation of regression output from software packages 

 

3.8 KEY WORDS:   

 

• Least squares estimator 

• Variance 

• Covariance 

• Variance-Covariance matrix 

• Error Variance 

• Standard Error 

• Multicollinearity  

• Regression Inference 

 

3.9 SUMMARY: 

 

In linear models and applied regression analysis, the study of the variance and 

covariance of least squares estimates is essential for understanding the reliability and 

precision of estimated regression coefficients. While least squares estimation provides point 

estimates of parameters, their usefulness depends on how much these estimates vary across 

repeated samples. 

 

Under the standard linear regression assumptions, the least squares estimator is linear 

and unbiased, and its variability is fully described by the variance-covariance matrix. The 

variances of individual regression coefficients measure their precision, while the covariances 

describe the degree of association between different parameter estimates. These quantities 

depend on the error variance and the structure of the design matrix, highlighting the role of 

data configuration and multicollinearity. 

 

Estimation of the error variance using residuals enables practical computation of 

variances, covariances, and standard errors. These measures form the basis for constructing 
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confidence intervals, conducting hypothesis tests, and interpreting regression output in 

applied work. 

 

The variance and covariance of least squares estimates provide the statistical 

foundation for inference in linear regression models. They allow researchers to assess the 

accuracy and stability of parameter estimates and to understand the relationships among 

estimated coefficients. 

 

A clear understanding of these concepts enables: 

• Evaluation of the precision and significance of regression coefficients 

• Detection of issues such as multicollinearity and inefficient model design 

• Proper interpretation of regression results in real-world applications 

Overall, the analysis of variances and covariances complements least squares 

estimation by transforming point estimates into meaningful inferential statements. It is a 

crucial component of linear models and applied regression analysis across diverse scientific 

and practical domains. 

 

3.10  SELF-ASSESSMENT QUESTIONS: 

 

1. Derive the variance–covariance matrix of least squares estimators in a multiple linear 

regression model. 

2. Explain the properties of variances and covariances of least squares estimates. 

3. Discuss the estimation of error variance and its role in regression inference. 

4. Explain how variances and covariances of regression coefficients are used in 

constructing confidence intervals and hypothesis tests. 

5. Discuss the interpretation of variance and covariance of least squares estimates with 

suitable examples. 

6. For a regression model, explain how multicollinearity affects the variances and 

covariances of least squares estimates. Illustrate with a suitable example. 

 

3.11  SUGGESTED READING: 

 

1. Draper, N. R. & Smith, H. Applied Regression Analysis 

2. Montgomery, D. C., Peck, E. A., & Vining, G. G. Introduction to Linear Regression 

Analysis 

3. Rao, C. R. Linear Statistical Inference and its Applications 

4. Kutner, M. H. et al. Applied Linear Regression Models 

5. Seber, G. A. F. and Lee, A. J., Linear Regression Analysis. 
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LESSON – 4 

ESTIMATION OF ERROR VARIANCE 
 

OBJECTIVES: 

❖ Understand the role of error variance in linear regression models 

❖ Derive the unbiased estimator of error variance under the linear model framework 

❖ Explain the relationship between residuals and error variance estimation 

❖ Analyze the effect of model assumptions on the estimation of error variance 

❖ Use error variance estimates to compute standard errors of regression coefficients 

❖ Apply error variance estimation in constructing confidence intervals and hypothesis 

tests 

❖ Interpret error variance estimates in applied regression problems 

❖ Implement error variance estimation using statistical software 

 

STRUCTURE: 

 

4.1   Introduction 

4.2   Error Term and its Assumptions 

4.3   Residuals and Error Decomposition 

4.4   Sums of Squares for Error 

4.5   Degrees of Freedom and Mean Square Error 

4.6   Estimation of Error Variance 

4.7   Sampling Properties of the Variance Estimator 

4.7.1  Role of Error Variance in Statistical Inference 

4.8    Key Words 

4.9   Summary 

4.10   Self-Assessment Questions 

4.11   Suggested Reading 

 

4.1  INTRODUCTION: 

 

In linear regression analysis, the variability observed in the response variable cannot be 

completely explained by the systematic component of the model. This unexplained variation 

is attributed to random disturbances, collectively represented by the error term. Quantifying 

this variability is fundamental to statistical inference in regression, as it governs the precision 

of parameter estimates, the construction of confidence intervals, and the validity of 

hypothesis tests. 

 

The estimation of error variance, denoted by 𝜎2, is therefore a central problem in regression 

theory. This chapter develops the theoretical framework for estimating 𝜎2under the classical 

linear regression model, derives its estimators, examines their sampling properties, and 

highlights their role in statistical inference. 

 

Description: Estimation of error variance 

Estimation of error variance is a core statistical topic focused on quantifying the inherent, 

unexplained variability (𝜎2) in a model (like regression), crucial for hypothesis testing, 

confidence intervals, and model evaluation, often achieved by dividing the residual sum of 

squares (SSE) by its degrees of freedom (n-p) to get the Mean Squared Error (MSE), an 
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unbiased estimator, though complex high-dimensional or small-sample scenarios require 

advanced methods like adaptive lasso or cross-validation for accurate results. 

 

4.2 ERROR TERM AND ITS ASSUMPTIONS: 

 

Error Term (𝜺) 

Consider the multiple linear regression model 

y = X𝛽 + 𝜀 
Where 

• y is an 𝑛 × 1 vector of observations 

• X is an 𝑛 × 𝑝 design matrix of full rank 𝑝 

• 𝛽 is a 𝑝 × 1 vector of unknown parameters 

• 𝜀 is an 𝑛 × 1 vector of random errors. 

The error term 𝜀𝑖 represents the combined effect of omitted variables, measurement error, and 

inherent randomness. 

 

Variance of the Error Term (𝝈𝟐) 

It is assumed that 

Var (𝜀) = 𝜎2I𝑛 

 

where 𝜎2 > 0 is an unknown constant representing the common variance of the errors. 

Assumptions about Error Variance 

The classical regression model imposes the following assumptions on the error structure: 

1. 𝐸(𝜀) = 0 

2. Var (𝜀) = 𝜎2I𝑛 

3. 𝜀𝑖 and 𝜀𝑗 are uncorrelated for 𝑖 ≠ 𝑗 

4. (For exact inference) 𝜀 ∼ 𝑁(0, 𝜎2I𝑛) 

 

Homoscedasticity 

Homoscedasticity refers to the assumption that the variance of the error term is constant 

across all observations: 

Var (𝜀𝑖) = 𝜎2∀𝑖 
Violation of this assumption (heteroscedasticity) leads to biased variance estimates and 

invalid inference. 

 

Constant Error Variance Assumption 

The assumption Var(𝜀) = 𝜎2I ensures that ordinary least squares estimators are efficient 

under the Gauss–Markov theorem and permits unbiased estimation of 𝜎2. 

 

4.3 RESIDUALS AND ERROR DECOMPOSITION: 

 

Residuals 

The ordinary least squares (OLS) estimator of 𝛽 is 

𝛽̂ = (X′X)−1X′y 
 

The vector of residuals is defined as 

e = y − ŷ = y − X𝛽̂ 
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Fitted Residuals 

Residuals are observable quantities and serve as estimates of the unobservable errors 𝜺. They 

satisfy 

e = (I − H)y 

where H = X(X′X)−1X′ is the hat matrix. 

 

Relationship between Errors and Residuals 

Residuals differ from true errors due to parameter estimation. Specifically, 

𝐸(e) = 0, Var (e) = 𝜎2(I − H). 
 

Thus, residuals are correlated and have unequal variances, even when errors are 

homoscedastic. 

 

4.4 SUMS OF SQUARES FOR ERROR: 

 

Residual Sum of Squares (RSS) 

The residual sum of squares is defined as 

RSS = e′e 

Error Sum of Squares (SSE) 

In regression analysis, RSS and SSE are used interchangeably: 

SSE = ∑ 𝑒𝑖
2

𝑛

𝑖=1

 

Relationship between SSE and 𝝈𝟐 

Using properties of quadratic forms, 

𝐸(SSE) = (𝑛 − 𝑝)𝜎2 
 

This result forms the basis for unbiased estimation of the error variance. 

 

4.5  DEGREES OF FREEDOM AND MEAN SQUARE ERROR: 

 

Degrees of Freedom for Error (𝒏 − 𝒑) 

The number of independent pieces of information available to estimate 𝜎2is reduced by the 

estimation of 𝑝regression parameters. 

 

Mean Square Error (MSE) 

The mean square error is defined as 

MSE =
SSE

𝑛 − 𝑝
 

 

Estimated Standard Deviation of Errors 

The estimator of the standard deviation of the errors is 

𝜎̂ = √MSE 
 

4.6  ESTIMATION OF ERROR VARIANCE: 

 

Estimator of Error Variance 

An estimator of 𝜎2is any statistic based on the sample that approximates the true variance of 

the errors. 
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Unbiased Estimator of 𝝈𝟐 

𝜎̂2 =
SSE

𝑛 − 𝑝
 

 

Proof of Unbiasedness 

𝐸(𝜎̂2) =
1

𝑛 − 𝑝
𝐸(SSE) = 𝜎2 

 

Maximum Likelihood Estimator (MLE) of 𝝈𝟐 

Under normality, 

𝜎̃2 =
SSE

𝑛
 

Comparison: MLE vs Unbiased Estimator 

Property       MLE      Unbiased Estimator 

Bias Biased downward           Unbiased 

Variance     Smaller             Larger 

Used in inference          No                Yes 

 

4.7  SAMPLING PROPERTIES OF THE VARIANCE ESTIMATOR: 

 

Sampling Distribution of MSE 

If 𝜀 ∼ 𝑁(0, 𝜎2I), then 

(𝑛 − 𝑝)𝜎̂2

𝜎2
∼ 𝜒𝑛−𝑝

2  

 

Properties of Error Variance Estimator 

• Unbiased 

• Consistent 

• Scaled chi-square distribution 

Consistency of 𝝈𝟐Estimator 

𝜎̂2 →
𝑝

𝜎2as 𝑛 → ∞ 
 

Efficiency of Estimator 

Among unbiased estimators based on residuals, 𝜎̂2has minimum variance under normality. 

 

Effect of Model Degrees of Freedom 

As 𝑝increases, 𝑛 − 𝑝decreases, inflating the variance of 𝜎̂2. 

 

4.7.1  ROLE OF ERROR VARIANCE IN STATISTICAL INFERENCE: 

 

Use of MSE in Inference 

MSE is used to estimate the covariance matrix of 𝛽̂: 

Var (𝛽̂) = 𝜎2(X′X)−1 
Role in Confidence Intervals 

Confidence intervals for regression coefficients depend directly on 𝜎̂2. 

Role in Hypothesis Testing 

Test statistics (t and F) use MSE as the denominator, making accurate variance estimation 

essential. 
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4.8  SUMMARY: 

 

In linear models and applied regression analysis, the error variance represents the portion of 

variability in the response variable that is not explained by the regression model. Accurate 

estimation of this variance is essential because it quantifies random error and underpins all 

procedures of statistical inference. 

 

The estimation of error variance is based on residuals, which measure the differences 

between observed and fitted values. By using the residual sum of squares (RSS) and adjusting 

for the loss of degrees of freedom due to parameter estimation, an unbiased estimator of the 

error variance is obtained. This adjustment ensures that the estimator correctly reflects the 

true variability of the error term. 

 

Under standard model assumptions, particularly normality of errors, the estimator of error 

variance has well-defined sampling properties, including a chi-square distribution. These 

properties allow for interval estimation and hypothesis testing related to both model 

parameters and overall model adequacy. 

 

A sound understanding of error variance estimation enables analysts to: 

• Evaluate model fit and unexplained variability 

• Perform valid statistical inference on regression parameters 

• Compare competing models and assess predictive performance 

In practice, careful estimation and interpretation of error variance are essential for meaningful 

and reliable regression analysis across scientific, economic, and engineering applications. 

 

4.9  KEY WORDS: 

 

• Error term 

• Residuals 

• Error sum of squares  

• Mean square error 

• Degrees of freedom 

• Error variance 

• Sampling distribution 

• Chi-square distribution  

• Statistical inference 

 

4.10  SELF-ASSESSMENT QUESTIONS: 

 

1. Define error variance and explain its importance. 

2. State the assumptions of the error term in a linear regression model. 

3. Derive the estimator of error variance. 

4. Explain the role of degrees of freedom in variance estimation. 

5. State the sampling distribution of the error variance estimator. 

6. How is error variance used in hypothesis testing? 

 

 

 

 

 



Linear Models and Applied Regression Analysts 4.6           Estimation Of Error Variance   

 

4.11  SUGGESTED READING: 

 

1. Montgomery, D.C., Peck, E.A., Vining, G.G. Introduction to Linear Regression 

Analysis, Wiley 

2. Weisberg, S. Applied Linear Regression, Wiley 

3. Graybill, F.A. Matrices with Applications in Statistics, Wadsworth 

4. Rao, C.R. Linear Statistical Inference and Its Applications, Wiley 
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LESSON-5 

ESTIMATED WITH CORELATED 

OBSERVATIONS 
 

OBJECTIVES: 

 

After studying this Lesson, the learner will be able to: 

❖ Understand the concept of correlated observations arising in regression and other 

statistical models. 

❖ Identify the consequences of violating the independence assumption. 

❖ Explain autocorrelation and correlated error structures, including common models 

(AR(1), MA(1), compound symmetry). 

❖ Apply Generalized Least Squares (GLS) for parameter estimation when observations 

are correlated. 

❖ Use Maximum Likelihood Estimation (MLE) for models with correlated errors. 

❖ Estimate variance and construct confidence intervals under correlated observations. 

❖ Compare estimation efficiency between independent-error models and correlated-

error models. 

❖ Apply methods to real situations such as time-series and repeated-measures data. 

 

STRUCTURE: 

 

5.1  Introduction 

5.2  Concept of Correlated Observations 

5.3   Notations and Definitions 

        5.3.1  Variance-Covariance Matrix of Errors 

        5.3.2  Common Correlation Structures 

        5.3.3   Problems Caused by Correlated Errors 

        5.3.4   Generalized Least Squares (GLS) Estimator 

        5.3.5   Maximum Likelihood Estimation with Correlated Errors 

5.4  Bias and Mean Square Error 

       5.4.1  Estimation of Variance and Confidence Intervals 

       5.4.2  Autocorrelation Models in Regression 

       5.4.3  AR(1) Model 

       5.4.4  Other Time-Series Error Structures 

5.5  Estimation in Repeated-Measure or Clustered Data 

5.6  Comparison with Ordinary Least Squares (OLS) 

5.7  Summary 

5.8  Key Words 
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5.9  Self-Assessment Questions 

5.10 Suggested Reading 

 

5.1  INTRODUCTION: 

 

In many statistical modelling situations-especially in regression analysis, time-series data, 

longitudinal designs, and clustered sampling-the assumption of independence of errors is 

unrealistic. Observations collected sequentially or within similar groups often exhibit 

correlation. When correlation among errors is ignored, the classical ordinary least squares 

(OLS) estimator becomes inefficient and its variance estimates become biased, leading to 

invalid statistical inference. 

 

The study of estimation under correlated observations therefore extends classical linear 

model theory by allowing the error vector to follow a general variance-covariance structure. 

This framework is essential in econometrics, biostatistics, engineering, and the analysis of 

repeated measures. 

 

Description  

In some data sets, observations are correlated due to time effects, spatial relationships, or 

repeated measurements. In such cases, the assumption of independent errors in the regression 

model is violated. Although the ordinary least squares estimator remains unbiased, it is not 

efficient and gives incorrect standard errors. To obtain efficient estimates and valid inference, 

Generalized Least Squares (GLS) is used, which accounts for the correlation among 

observations. 

 

5.2  CONCEPT OF CORRELATED OBSERVATIONS: 

 

Let 

𝑌 = (𝑌1, … , 𝑌𝑛)
′ 

be the observed response vector. Observations are said to be correlated if 

Cov⁡(𝑌𝑖, 𝑌𝑗) ≠ 0for some 𝑖 ≠ 𝑗. 

Correlation arises from: 

• Time dependence (autocorrelation), 

• Cluster-wise dependence, 

• Spatial dependence, 

• Repeated measurements on the same subject, 

• Measurement error propagation. 

In such cases the classical assumptionCov(𝜀) = 𝜎2𝐼𝑛⁡is violated. 

 

5.3  NOTATIONS  AND DEFINITIONS: 

 

Consider the general linear model 

𝑌 = 𝑋𝛽 + 𝜀 

where 

• 𝑌⁡is an 𝑛 × 1⁡vector 

• 𝑋⁡is an 𝑛 × 𝑝⁡design matrix of full rank 𝑝 

• 𝛽⁡is a 𝑝 × 1⁡vector of unknown parameters 

• 𝜀⁡is an 𝑛 × 1⁡error vector 
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Definition (Correlated Error Model): 

Errors follow 

𝐸(𝜀) = 0, Cov⁡(𝜀) = Σ 
where⁡Σ⁡is a known or specified positive definite matrix, not necessarily proportional to the 

identity matrix. 

 

Definition (Generalized Least Squares Problem) 

Given correlated errors, find an estimator of 𝛽minimizing the generalized quadratic form 

𝑄(𝛽) = (𝑌 − 𝑋𝛽)′Σ−1(𝑌 − 𝑋𝛽) 
 

5.3.1 Variance-Covariance Matrix Of Errors: 

 

The structure of ⁡Σ = Var(𝜀)⁡determines the nature of correlation. 

General form: 

Σ = (

𝜎11 𝜎12 ⋯ 𝜎1𝑛
𝜎21 𝜎22 ⋯ 𝜎2𝑛
⋮ ⋮ ⋱ ⋮

𝜎𝑛1 𝜎𝑛2 ⋯ 𝜎𝑛𝑛

) 

Properties: 

• symmetric 

• positive definite 

• invertible 

Examples: Time-series Σmatrices are Toeplitz, while cluster-based matrices show block-

diagonal structure. 

 

5.3.2  Common Correlation Structures: 

 

(i) Compound Symmetry (CS) 

Σ = 𝜎2[(1 − 𝜌)𝐼𝑛 + 𝜌𝐽𝑛] 
(ii) Autoregressive of order 1 (AR(1)) 

Σ𝑖𝑗 = 𝜎2𝜌∣𝑖−𝑗∣ 

(iii) Moving Average MA (1) 

Σ𝑖𝑗 = {
𝜎2(1 + 𝜃2), 𝑖 = 𝑗,

𝜎2𝜃, ⁡⁡⁡⁡⁡⁡∣ 𝑖 − 𝑗 ∣= 1,
0, otherwise.

 

(iv) Block-diagonal (Cluster correlation) 

Σ = diag⁡(Σ1, Σ2, … , Σ𝑘) 
 

5.3.3  Problems Caused By Correlated Errors: 

 

If OLS is applied: 

1. Estimator remains unbiased: 

𝐸(𝛽̂𝑂𝐿𝑆) = 𝛽 

2. Variance is no longer minimal: 

Var⁡(𝛽̂𝑂𝐿𝑆) = 𝜎2(𝑋′𝑋)−1𝑋′Σ𝑋(𝑋′𝑋)−1 

3. Inefficient estimators (not BLUE) 

4. Standard errors are incorrect, leading to: 

o invalid t-tests 

o invalid F-tests 
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o wrong confidence intervals 

 

5.3.4  Generalized Least Squares (Gls) Estimator: 

 

Theorem - 1 (Generalized Least Squares Estimator) 

Statement: Consider the linear model⁡𝑌 = 𝑋𝛽 + 𝜀,⁡where 

• 𝑌⁡is 𝑛 × 1 

• 𝑋⁡is 𝑛 × 𝑝⁡with rank 𝑝 

• 𝐸(𝜀) = 0 

• Var⁡(𝜀) = 𝜎2𝑉 

where ⁡𝑉⁡is a known positive definite 𝑛 × 𝑛⁡matrix. 

The GLS estimator of 𝛽is 

𝛽̂𝐺𝐿𝑆 = (𝑋′𝑉−1𝑋)−1𝑋′𝑉−1𝑌  

Proof : 

Step 1: Define the GLS objective function 

GLS minimizes the generalized sum of squares 

𝑄(𝛽) = (𝑌 − 𝑋𝛽)′𝑉−1(𝑌 − 𝑋𝛽) 
This is a quadratic function in 𝛽. 

 

Step 2: Expand 𝑄(𝛽)Multiply the terms: 

𝑄(𝛽) = 𝑌′𝑉−1𝑌 − 𝑌′𝑉−1𝑋𝛽 − 𝛽′𝑋′𝑉−1𝑌 + 𝛽′𝑋′𝑉−1𝑋𝛽 

Since all terms are scalars, 

𝑌′𝑉−1𝑋𝛽 = 𝛽′𝑋′𝑉−1𝑌 

Thus, 

𝑄(𝛽) = 𝑌′𝑉−1𝑌 − 2𝛽′𝑋′𝑉−1𝑌 + 𝛽′𝑋′𝑉−1𝑋𝛽 

 

Step 3: Differentiate w.r.t. 𝛽 

Use matrix derivative: 

• 
∂

∂𝛽
(𝛽′𝐴𝛽) = 2𝐴𝛽when 𝐴is symmetric 

• 
∂

∂𝛽
(𝑏′𝛽) = 𝑏 

Here 𝑋′𝑉−1𝑋is symmetric. 

Derivative: 
∂𝑄

∂𝛽
= −2𝑋′𝑉−1𝑌 + 2𝑋′𝑉−1𝑋𝛽 

 

Step 4: Equate derivative to zero 

−2𝑋′𝑉−1𝑌 + 2𝑋′𝑉−1𝑋𝛽 = 0 
 

Divide by 2: 

𝑋′𝑉−1𝑋𝛽 = 𝑋′𝑉−1𝑌 
 

Step 5: Solve for 𝛽 

Since 𝑋′𝑉−1𝑋is nonsingular (rank 𝑝): 

𝛽̂𝐺𝐿𝑆 = (𝑋′𝑉−1𝑋)−1𝑋′𝑉−1𝑌 

Conclusion, 𝛽̂𝐺𝐿𝑆 = (𝑋′𝑉−1𝑋)−1𝑋′𝑉−1𝑌  

This completes the proof. 
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Theorem 2. (Unbiasedness and Variance of GLS Estimator) 

Statement: Under the model 

𝑌 = 𝑋𝛽 + 𝜀, 𝐸(𝜀) = 0, Var⁡(𝜀) = 𝜎2𝑉 

the GLS estimator satisfies: 

1. Unbiasedness⁡ 𝐸(𝛽̂𝐺𝐿𝑆) = 𝛽  

Variance⁡ Var⁡(𝛽̂𝐺𝐿𝑆) = 𝜎2(𝑋′𝑉−1𝑋)−1  

 

Proof : 

Step 1: Write GLS estimator 

𝛽̂ = (𝑋′𝑉−1𝑋)−1𝑋′𝑉−1𝑌 
Part A: Unbiasedness 

 

Step 2: Take expectation 

𝐸(𝛽̂) = (𝑋′𝑉−1𝑋)−1𝑋′𝑉−1𝐸(𝑌) 
Since 

𝐸(𝑌) = 𝑋𝛽,⁡⁡substitute: 

𝐸(𝛽̂) = (𝑋′𝑉−1𝑋)−1𝑋′𝑉−1(𝑋𝛽) 
 

Step 3: Simplify using associativity 

𝐸(𝛽̂) = (𝑋′𝑉−1𝑋)−1(𝑋′𝑉−1𝑋)𝛽 
 

Step 4: Use inverse property 

(𝑋′𝑉−1𝑋)−1(𝑋′𝑉−1𝑋) = 𝐼𝑝 

Thus,  𝐸(𝛽̂) = 𝐼𝑝𝛽 = 𝛽 

Conclusion (Unbiasedness) 𝐸(𝛽̂𝐺𝐿𝑆) = 𝛽  

 

Part B: Variance 

 

Step 5: Use formula 

Var⁡(𝛽̂) = (𝑋′𝑉−1𝑋)−1𝑋′𝑉−1Var⁡(𝑌)𝑉−1𝑋(𝑋′𝑉−1𝑋)−1 
 

Step 6: Substitute Var⁡(𝑌) = 𝜎2𝑉 

= (𝑋′𝑉−1𝑋)−1𝑋′𝑉−1(𝜎2𝑉)𝑉−1𝑋(𝑋′𝑉−1𝑋)−1 

 

Step 7: Simplify 𝑉−1𝑉𝑉−1 = 𝑉−1 

= 𝜎2(𝑋′𝑉−1𝑋)−1𝑋′𝑉−1𝑋(𝑋′𝑉−1𝑋)−1 
 

Step 8: Collapse the middle terms 

𝑋′𝑉−1 
cancels with one of its inverses: 

= 𝜎2(𝑋′𝑉−1𝑋)−1 

Conclusion (Variance) 

Var⁡(𝛽̂𝐺𝐿𝑆) = 𝜎2(𝑋′𝑉−1𝑋)−1  

 

Theorem - 3 (GLS is BLUE - Generalized Gauss-Markov) 

Statement:  Among all linear unbiased estimators of the form𝛽 = 𝐶𝑌⁡that satisfy𝐸(𝛽) = 𝛽, 
the GLS estimator has minimum variance. 
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Proof : 

Step 1: General linear estimator 

Let𝛽 = 𝐶𝑌 

 

where 𝐶⁡is any 𝑝 × 𝑛⁡matrix. 

 

Step 2: Impose unbiasedness 

𝐸(𝛽̃) = 𝐶𝐸(𝑌) = 𝐶𝑋𝛽 = 𝛽 
 

Thus, 

𝐶𝑋 = 𝐼𝑝 ⁡⁡⁡⁡(1) 

This is the unbiasedness condition. 

Step 3: Variance of any linear unbiased estimator 

Var⁡(𝛽̃) = 𝐶(𝜎2𝑉)𝐶′ = 𝜎2𝐶𝑉𝐶′ 
 

Step 4: Write GLS estimator 

𝛽̂ = (𝑋′𝑉−1𝑋)−1𝑋′𝑉−1𝑌 
Thus GLS corresponds to 

𝐶0 = (𝑋′𝑉−1𝑋)−1𝑋′𝑉−1 
 

Step 5: Compare variance matrices 

We need to prove: 

𝐶𝑉𝐶′ − 𝐶0𝑉𝐶0
′  is⁡positive⁡semi − definite 

Equivalent to showing: 

Var⁡(𝛽) − Var⁡(𝛽̂𝐺𝐿𝑆) ⪰ 0 
 

Step 6: Use unbiasedness constraint 

Let⁡𝐶 = 𝐶0 + 𝐷 

Using condition (1): 

𝐶𝑋 = 𝐼𝑝 ⇒ (𝐶0 +𝐷)𝑋 = 𝐼𝑝 

But 𝐶0𝑋 = 𝐼𝑝(can be shown by substitution). 

Thus:⁡𝐷𝑋 = 0⁡(2) 
 

Step 7: Expand variance of 𝛽 

Var⁡(𝛽) = 𝜎2(𝐶0 + 𝐷)𝑉(𝐶0 + 𝐷)′ 
Expand:= 𝜎2(𝐶0𝑉𝐶0

′ + 𝐶0𝑉𝐷
′ + 𝐷𝑉𝐶0

′ + 𝐷𝑉𝐷′) 
 

Step 8: Show cross-terms vanish 

We show: 

𝐶0𝑉𝐷
′ = 0and𝐷𝑉𝐶0

′ = 0 
Using (2): 

𝐷𝑋 = 0 
One can show that 𝐶0𝑉 = (𝑋′𝑉−1𝑋)−1𝑋′ 

Thus,𝐶0𝑉𝐷
′ = (𝑋′𝑉−1𝑋)−1𝑋′𝐷′ = (𝑋′𝑉−1𝑋)−1(𝐷𝑋)′ = 0 

Similarly for the transpose. 

Thus variance reduces to:Var⁡(𝛽) = 𝜎2(𝐶0𝑉𝐶0
′ + 𝐷𝑉𝐷′) 
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Step 9: Subtract variance of GLS 

Var⁡(𝛽) − Var⁡(𝛽̂𝐺𝐿𝑆) = 𝜎2𝐷𝑉𝐷′ 

 

Step 10: Show 𝐷𝑉𝐷′is positive semidefinite 

For any vector 𝑎, 

𝑎′(𝐷𝑉𝐷′)𝑎 = (𝐷′𝑎)′𝑉(𝐷′𝑎) ≥ 0 
since 𝑉⁡is positive definite. 

Thus:𝐷𝑉𝐷′ ⪰ 0 
Conclusion 

Var⁡(𝛽)   ⪰   Var⁡(𝛽̂𝐺𝐿𝑆)  

Hence GLS is the Best Linear Unbiased Estimator (BLUE) 

This completes the proof. 

 

Corollary - Reduction to OLS 

If Σ = 𝜎2𝐼𝑛, then 𝑋′Σ−1𝑋 =
1

𝜎2
𝑋′𝑋⁡and 

𝛽̂𝐺𝐿𝑆 = (𝑋′Σ−1𝑋)−1𝑋′Σ−1𝑌 = (𝑋′𝑋)−1𝑋′𝑌 = 𝛽̂𝑂𝐿𝑆 

➢ Properties of GLS: 

1. Unbiased:𝐸(𝛽̂𝐺𝐿𝑆) = 𝛽 

2. Variance:Var⁡(𝛽̂𝐺𝐿𝑆) = (𝑋′Σ−1𝑋)−1 

3. BLUE (Gauss–Markov Theorem Extension): Among all linear unbiased estimators, 

GLS has minimum variance. 

 

5.3.5 Maximum Likelihood Estimation With Correlated Errors: 

 

Assume 𝜀 ∼ 𝑁(0, Σ) 
Likelihood 

𝐿(𝛽, 𝜎2) =
1

(2𝜋)𝑛/2 ∣ Σ ∣1/2
exp⁡[−

1

2
(𝑌 − 𝑋𝛽)′Σ−1(𝑌 − 𝑋𝛽)] 

MLE of 𝛽 

Maximization w.r.t. 𝛽⁡yields exactly the same estimator: 

𝛽̂𝑀𝐿𝐸 = 𝛽̂𝐺𝐿𝑆 
MLE of 𝜎2 

𝜎̂2 =
1

𝑛
(𝑌 − 𝑋𝛽̂𝐺𝐿𝑆)

′Σ−1(𝑌 − 𝑋𝛽̂𝐺𝐿𝑆) 

 

5.4  BIAS AND MEAN SQUARE ERROR (MSE): 

 

Bias 

Bias⁡(𝛽̂𝐺𝐿𝑆) = 0 

MSE 

MSE⁡(𝛽̂𝐺𝐿𝑆) = Var⁡(𝛽̂𝐺𝐿𝑆) = (𝑋′Σ−1𝑋)−1 

GLS has strictly smaller MSE than OLS when errors are correlated. 

 

5.4.1 Estimation of Variance and Confidence Intervals: 

 

Estimator of Variance 

𝜎̂2 =
(𝑌 − 𝑋𝛽̂𝐺𝐿𝑆)

′Σ−1(𝑌 − 𝑋𝛽̂𝐺𝐿𝑆)

𝑛 − 𝑝
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Confidence Interval 

For the 𝑗-th component of 𝛽: 

𝛽̂𝑗 ± 𝑡𝑛−𝑝, 𝛼/2√(𝑋′Σ−1𝑋)𝑗𝑗
−1 

 

5.4.2 Auto Correlation Models In Regression: 

 

When errors follow 

𝜀𝑡 = 𝜌𝜀𝑡−1 + 𝑢𝑡  
the covariance structure becomes Toeplitz. 

 

5.4.3  Ar (1) Model: 

 

Error Structure 

Σ𝑖𝑗 = 𝜎2𝜌∣𝑖−𝑗∣, ∣ 𝜌 ∣< 1 

Transformation Method 

Let 𝑇be the Cholesky factor such that 

𝑇′ 𝑇 = Σ−1 
Define 

𝑌∗ = 𝑇𝑌, 𝑋∗ = 𝑇𝑋 
Then apply OLS to the transformed model 

𝑌∗ = 𝑋∗𝛽 + 𝜀∗, Var⁡(𝜀∗) = 𝐼 
This yields GLS. 

 

5.4.4  OTHER TIME-SERIES ERROR STRUCTURES:  

 

• AR(p) 

• ARMA(p,q) 

• Random walk errors 

• State-space errors 

For each case, GLS remains valid with appropriate Σ−1 

 

5.5 ESTIMATION IN REPEATED-MEASURE OR CLUSTERED DATA: 

 

If observations belong to groups with random subject effects: 

𝑌𝑖𝑗 = 𝑥𝑖𝑗
′ 𝛽 + 𝑏𝑖 + 𝜀𝑖𝑗, 

where 

• 𝑏𝑖introduces within-subject correlation, 

• Var⁡(𝑏𝑖) = 𝜏2 

• Var⁡(𝜀𝑖𝑗) = 𝜎2 

Then 

Σ𝑖 = 𝜎2𝐼 + 𝜏2𝐽 
GLS or Mixed Model Estimation (REML) is applied. 
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5.6  COMPARISON WITH ORDINARY LEAST SQUARES (OLS): 

 

Feature OLS GLS 

Error assumption Σ = 𝜎2𝐼 Arbitrary positive definite Σ 

Efficiency Not efficient under correlation Efficient 

Variance formula Incorrect if Σ ≠ 𝜎2𝐼 Correct 

BLUE? Only under independence Always under known Σ 

Computational complexity Simple More complex (needs Σ−1) 

 

5.7  SUMMARY:  

 

In this unit, the concept of estimation with correlated observations has been systematically 

developed within the framework of linear models and applied regression analysis. Unlike the 

classical regression setting, where error terms are assumed to be independent, many real-

world data structures such as time-series, longitudinal, repeated-measure, and clustered data 

exhibit correlation among observations. Ignoring such correlation leads to inefficient 

estimators and invalid statistical inference. 

 

The unit began with an introduction to the nature and sources of correlated observations, 

highlighting situations where the independence assumption of errors is violated. Appropriate 

notations and definitions, particularly the variance-covariance matrix of the error vector, were 

introduced to formally represent correlation among errors. Common correlation structures, 

including compound symmetry, autoregressive, and block-diagonal forms, were discussed 

along with the practical problems caused by correlated errors, such as biased standard errors 

and misleading hypothesis tests. 

 

To address these issues, the Generalized Least Squares (GLS) estimator was introduced as a 

natural extension of Ordinary Least Squares. The GLS estimator accounts for the known 

variance–covariance structure of the errors and was shown to be the Best Linear Unbiased 

Estimator (BLUE) under correlated error assumptions. When the error covariance matrix is 

unknown, the Maximum Likelihood Estimation (MLE) approach and feasible estimation 

procedures provide practical solutions. 

 

The unit further examined bias, mean square error, and efficiency of estimators under 

correlated errors, emphasizing the superiority of GLS over OLS in terms of variance 

reduction. Methods for estimating error variance and constructing confidence intervals under 

correlation were also discussed. Special attention was given to autocorrelation models, 

particularly the AR(1) process, and other time-series error structures commonly encountered 

in regression analysis. 

 

Estimation techniques for repeated-measure and clustered data were explored, illustrating 

how correlation within clusters affects estimation and inference. A detailed comparison 

between OLS and GLS highlighted that while OLS estimators remain unbiased under 

correlated errors, they are no longer efficient, and their associated inferential procedures 

become unreliable. 

 

In conclusion, this unit establishes that proper modeling of correlation in regression errors is 

essential for valid estimation and inference. The use of GLS and related methods ensures 
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efficiency and correctness of results in the presence of correlated observations. These 

concepts form a crucial foundation for advanced topics in econometrics, biostatistics, 

longitudinal data analysis, and applied statistical modeling. 

 

5.8  KEY WORDS: 

 

Correlated observations 

Variance–covariance matrix 

Generalized Least Squares (GLS) 

Autocorrelation 

 AR(1) process 

Multivariate normality 

Toeplitz matrix 

Cholesky transformation  

Compound symmetry 

Clustered data 

Linear model 

Gauss–Markov theorem 

 

5.9  SELF-ASSESSMENT QUESTIONS: 

 

1. Define correlated observations. Give two real-life examples. State and prove the GLS 

estimator for 𝛽. 

2. Explain estimation under linear restrictions. Derive the restricted LS estimator for a 

general linear constraint. 

3. Why is OLS inefficient when errors are correlated? Explain the structure of the AR(1) 

covariance matrix. 

4. Derive the variance of the GLS estimator. Show that GLS reduces to OLS when Σ =
𝜎2𝐼. 

5. State the likelihood function under correlated normal errors. Derive the MLE of 

𝜎2under correlated errors. 

6. What is compound symmetry? Give its covariance matrix. Explain the Cholesky 

transformation method for GLS estimation. 

7. Compare OLS and GLS in terms of variance and efficiency. Describe the covariance 

structure in repeated-measure models. 
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LESSON-6 

LEAST SQUARES ESTIMATES WITH 

RESTRICTION ON PARAMETERS 
 

OBJECTIVES : 

 

After completing this unit, students will be able to: 

❖ Understand the need for parameter restrictions 

❖ Formulate linear models with restricted parameters 

❖ Derive the Restricted Least Squares (RLS) estimator 

❖ Study the statistical properties of restricted estimators 

❖ Compare restricted and unrestricted estimators 

❖ Perform hypothesis testing using parameter restrictions 

❖ Apply restricted least squares in practical situations.  

 

STRUCTURE: 

 

6.1  Introduction 

6.2  Review of Ordinary Least Squares (OLS) 

6.3  Introduction to Parameter Restrictions 

6.4  Least Squares Estimation with Restrictions 

6.5  Properties of Restricted Least Squares Estimators 

6.6  Testing the Validity of Restrictions 

6.7  Applications and Examples 

6.8  Key Words 

6.9  Summary 

6.10  Self-Assessment Questions 

6.11  Suggested Reading 

 

6.1 INTRODUCTION:  

 

In many statistical modeling situations, particularly in regression and ANOVA, one may 

encounter a priori restrictions on the regression parameters. These restrictions can arise from: 

• theoretical considerations, 

• structural constraints (e.g., sum-to-zero), 

• economic identities (e.g., budget constraints), or 

• identifiability requirements in coded models. 

The ordinary least squares (OLS) estimator does not directly incorporate such constraints. 

Therefore, Restricted Least Squares (RLS) provides a framework to estimate parameters 

subject to known linear restrictions. 

 

This chapter develops theory, methods, proofs, and applications of least squares estimation 

with linear restrictions of the form: 𝑅𝛽 = 𝑟 
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Description: 

Least Squares Estimation (LSE) is the most fundamental method used in regression analysis 

to estimate the unknown parameters of a linear model. In the standard linear model 

𝒀 = 𝑿𝜷 + 𝜺 

the goal is to obtain estimates of the regression coefficients β that describe how the response 

variable varies with one or more predictor variables. The method of least squares selects 

parameter estimates by minimizing the sum of squared deviations between observed 

responses and the fitted values. 

 

Both references—Montgomery, Peck & Vining (2012) and Weisberg (Applied Linear 

Regression)—emphasize that least squares methods are grounded in geometry, optimization, 

and probability theory. The fitted regression vector 

𝑌̂ = 𝑋𝛽̂ 

represents the orthogonal projection of the observed data onto the column space of the design 

matrix 𝑋. 

 

6.2 REVIEW OF ORDINARY LEAST SQUARES (OLS): 

 

Consider the classical linear model: 

𝑌 = 𝑋𝛽 + 𝜀 
where 

• 𝑌 is an 𝑛 × 1 vector of observations 

• 𝑋 is an 𝑛 × 𝑝 full column-rank design matrix 

• 𝛽 is a 𝑝 × 1 vector of unknown parameters 

• 𝜀 is an 𝑛 × 1 vector of random errors 

Assumptions: 

𝔼(𝜀) = 0, Var(𝜀) = 𝜎2𝐼𝑛 
 

OLS Estimator 

The OLS estimator minimizes the residual sum of squares: 

𝑆(𝛽) = (𝑌 − 𝑋𝛽)′(𝑌 − 𝑋𝛽) 

Theorem 1 (OLS estimator) 

Claim. The vector 𝛽̂that minimizes the residual sum of squares 

𝑆(𝛽) = (𝑌 − 𝑋𝛽)′(𝑌 − 𝑋𝛽) 

Is   𝛽̂ = (𝑋′𝑋)−1𝑋′𝑌    

 

Proof: 

1. Write the objective in expanded form 

𝑆(𝛽) = (𝑌 − 𝑋𝛽)′(𝑌 − 𝑋𝛽) = 𝑌′𝑌 − 2𝑌′𝑋𝛽 + 𝛽′𝑋′𝑋𝛽 

This is a scalar quadratic function in the vector 𝛽. 

 

2. Compute the gradient with respect to 𝛽. 

Use standard matrix derivatives (derivative of 𝛽′𝐴𝛽is (𝐴 + 𝐴′)𝛽and derivative of a 

linear form 𝑐′𝛽is 𝑐). Since 𝑋′𝑋is symmetric, 
∂𝑆(𝛽)

∂𝛽
= −2𝑋′𝑌 + 2𝑋′𝑋𝛽 

3. Set the gradient to zero (first-order necessary condition). 

−2𝑋′𝑌 + 2𝑋′𝑋𝛽̂ = 0 ⟹ 𝑋′𝑋𝛽̂ = 𝑋′𝑌 

These are the normal equations. 
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4. Solve the normal equations (existence and uniqueness) 

Because 𝑋has full column rank, 𝑋′𝑋is invertible. Multiply both sides by (𝑋′𝑋)−1 

𝛽̂ = (𝑋′𝑋)−1𝑋′𝑌 

This is the unique solution because the objective 𝑆(𝛽)is strictly convex (its Hessian is 2𝑋′𝑋, 

positive definite when 𝑋′𝑋is positive definite). 

 

5. Second-order condition (confirm minimum) 

The Hessian of 𝑆(𝛽)is 2𝑋′𝑋. Since 𝑋′𝑋is positive definite, the stationary point is a 

strict global minimum. 

 

Remarks: 

 The derivation did not require probabilistic assumptions — only matrix algebra and full rank 

of 𝑋. Under usual stochastic assumptions (e.g. 𝔼𝜀 = 0), 𝛽̂has the familiar sampling 

properties. 

 

Properties of OLS 

1. Unbiasedness 

𝔼(𝛽̂) = 𝛽 

2. Variance 

Var(𝛽̂) = 𝜎2(𝑋′𝑋)−1 

3. Orthogonality Condition 

Residuals are orthogonal to the column space of 𝑋: 

𝑋′(𝑌 − 𝑋𝛽̂) = 0 

4. Gauss–Markov Theorem 

𝛽 ̂is BLUE (Best Linear Unbiased Estimator). 

 

6.3  INTRODUCTION TO PARAMETER RESTRICTIONS 

 

Why Restrictions Occur 

• Economic constraints (e.g., sum of shares equals 1) 

• ANOVA coding (sum of treatment effects = 0) 

• Identifiability in dummy variable regression 

• Theoretical structure in time series or econometric models 

 

Types of Restrictions 

1. Equality constraints 

𝛽1 + 𝛽2 = 1 

2. Linear constraints General form: 

𝑅𝛽 = 𝑟 

where 

• 𝑅 is a 𝑞 × 𝑝 known restriction matrix of rank 𝑞, 

• 𝑟 is a 𝑞 × 1 vector of constants. 

 

6.4  LEAST SQUARES ESTIMATION WITH RESTRICTIONS: 

 

Objective 

Minimize  𝑆(𝛽) = (𝑌 − 𝑋𝛽)′(𝑌 − 𝑋𝛽) 

subject to 𝑅𝛽 = 𝑟 
This is a constrained optimization problem. 
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Method 1: Lagrange Multiplier Approach 

Define the Lagrangian: 

𝐿(𝛽, 𝜆) = (𝑌 − 𝑋𝛽)′(𝑌 − 𝑋𝛽) + 2𝜆′(𝑅𝛽 − 𝑟) 

where 𝜆is a 𝑞 × 1vector of Lagrange multipliers. 

 

First-Order Conditions 

1. Derivative w.r.t. 𝛽: 

−2𝑋′(𝑌 − 𝑋𝛽) + 2𝑅′𝜆 = 0 
⇒ 𝑋′𝑋𝛽 − 𝑋′𝑌 + 𝑅′𝜆 = 0 (1) 

2. Derivative w.r.t. 𝜆: 

𝑅𝛽 = 𝑟                        (2) 

Solving the System 

From (1): 

𝑋′𝑋𝛽 = 𝑋′𝑌 − 𝑅′𝜆 

Thus𝛽 = 𝛽̂ − (𝑋′𝑋)−1𝑅′𝜆 

Substitute into (2): 

𝑅𝛽̂ − 𝑅(𝑋′𝑋)−1𝑅′𝜆 = 𝑟 

Hence, 

𝜆 = [𝑅(𝑋′𝑋)−1𝑅′]−1(𝑅𝛽̂ − 𝑟) 
Substitute back: 

 

Theorem 2 (Restricted Least Squares estimator) - detailed proof 

 

Minimize 𝑆(𝛽) = (𝑌 − 𝑋𝛽)′(𝑌 − 𝑋𝛽)subject to linear constraints 𝑅𝛽 = 𝑟, where 𝑅is 𝑞 ×
𝑝of rank 𝑞and 𝑟is 𝑞 × 1. 

Claim. The unique constrained minimizer is 

  𝛽̂𝑅 = 𝛽̂ − (𝑋′𝑋)−1𝑅′[ 𝑅(𝑋′𝑋)−1𝑅′ ]−1(𝑅𝛽̂ − 𝑟)    

where 𝛽̂ = (𝑋′𝑋)−1𝑋′𝑌is the unrestricted OLS estimator and 𝑅(𝑋′𝑋)−1𝑅′is invertible 

because 𝑅has rank 𝑞. 

 

Proof: 

Constrained quadratic minimization over an affine subspace is classically handled by 

Lagrange multipliers. Form the Lagrangian 

ℒ(𝛽, 𝜆) = (𝑌 − 𝑋𝛽)′(𝑌 − 𝑋𝛽) + 2𝜆′(𝑅𝛽 − 𝑟) 

with 𝜆 ∈ ℝ𝑞 the Lagrange multiplier vector (the factor 2 is conventional and simplifies 

expressions). Stationarity with respect to 𝛽 yields 

−2𝑋′𝑌 + 2𝑋′𝑋𝛽 + 2𝑅′𝜆 = 0 

i.e. 

𝑋′𝑋𝛽 + 𝑅′𝜆 = 𝑋′𝑌 (A) 

Stationarity w.r.t. 𝜆 just returns the constraint 𝑅𝛽 = 𝑟. Solve (A) for 𝛽in terms of 𝜆: 

𝛽 = (𝑋′𝑋)−1𝑋′𝑌 − (𝑋′𝑋)−1𝑅′𝜆 = 𝛽̂ − (𝑋′𝑋)−1𝑅′𝜆 

Substituting this expression into the constraint 𝑅𝛽 = 𝑟 gives the linear system for 𝜆: 

𝑅𝛽̂ − 𝑅(𝑋′𝑋)−1𝑅′𝜆 = 𝑟 

Because 𝑅(𝑋′𝑋)−1𝑅′is 𝑞 × 𝑞and full-rank, it is invertible; hence 

𝜆 = [𝑅(𝑋′𝑋)−1𝑅′]−1(𝑅𝛽̂ − 𝑟) 

Substituting this 𝜆back into 𝛽 = 𝛽̂ − (𝑋′𝑋)−1𝑅′𝜆 yields the closed-form expression for 

𝛽̂𝑅claimed above. 
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Interpretation. The formula shows 𝛽̂𝑅equals the unconstrained OLS 𝛽̂minus a correction that 

enforces the restriction 𝑅𝛽 = 𝑟. If the unrestricted 𝛽̂already satisfies the restriction, i.e. 𝑅𝛽̂ =

𝑟, the correction vanishes and 𝛽̂𝑅 = 𝛽̂. Algebraically the correction is the projection (in the 

metric induced by 𝑋′𝑋) of 𝛽̂onto the affine subspace {𝛽: 𝑅𝛽 = 𝑟}. 

 

6.5  PROPERTIES OF RESTRICTED ESTIMATORS: 

 

1. Bias 𝔼(𝛽̂𝑅) = 𝛽 − (𝑋′𝑋)−1𝑅′[𝑅(𝑋′𝑋)−1𝑅′]−1(𝑅𝛽 − 𝑟) 

Thus: 

• If true restrictions hold (𝑅𝛽 = 𝑟) 

𝛽̂𝑅is unbiased. 

• If restrictions are false, estimator becomes biased, but may have lower variance. 

2. Variance 

Var(𝛽̂𝑅) = 𝜎2[(𝑋′𝑋)−1 − (𝑋′𝑋)−1𝑅′[𝑅(𝑋′𝑋)−1𝑅′]−1𝑅(𝑋′𝑋)−1]. 
3. Efficiency 

• When restrictions are correct → RLS is more efficient than OLS. 

• When restrictions are incorrect → OLS may be preferable. 

4. Distribution 

     Under normality: 

𝛽̂𝑅 ∼ 𝑁(𝛽𝑅 , Var(𝛽̂𝑅)) 

 

6.6  TESTING THE VALIDITY OF RESTRICTIONS: 

 

Goal: Test the hypothesis 

𝐻0: 𝑅𝛽 = 𝑟vs.𝐻1: 𝑅𝛽 ≠ 𝑟 

Let 

• 𝑅𝑆𝑆0= Restricted residual sum of squares 

• 𝑅𝑆𝑆1= Unrestricted residual sum of squares 

Theorem 3 (F-Test for Linear Restrictions) 

𝐹 =
(𝑅𝑆𝑆0 − 𝑅𝑆𝑆1)/𝑞

𝑅𝑆𝑆1/(𝑛 − 𝑝)
∼ 𝐹𝑞, 𝑛−𝑝 

Proof: 

 

Step 1 : Notation and projection matrices 

Define the usual projection (hat) matrix and residual projector for the unrestricted model: 

𝑃 = 𝑋(𝑋′𝑋)−1𝑋′, 𝑀 = 𝐼𝑛 − 𝑃 

For any estimator 𝛽with fitted values 𝑋𝛽, its residual sum of squares is 

𝑅𝑆𝑆(𝛽̃) =∥ 𝑌 − 𝑋𝛽 ∥2 

In particular, for the OLS (unrestricted) fit 𝛽̂ 

𝑅𝑆𝑆1 =∥ 𝑌 − 𝑋𝛽̂ ∥2= 𝑌′𝑀𝑌 

 

Step 2 : Restricted estimator and its properties 

Let 𝛽̂𝑅denote the restricted least squares estimator (minimizer of ∥ 𝑌 − 𝑋𝛽 ∥2subject to 𝑅𝛽 =

𝑟). From Lagrange multiplier solution we have the explicit formula 

𝛽̂𝑅 = 𝛽̂ − (𝑋′𝑋)−1𝑅′[𝑅(𝑋′𝑋)−1𝑅′]−1(𝑅𝛽̂ − 𝑟) 
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Define the 𝑞 × 𝑞matrix Δ = 𝑅(𝑋′𝑋)−1𝑅′(invertible since rank (𝑅) = 𝑞) 

 

Step 3 : Identity for RSS difference (key algebraic identity) 

We claim and will use the identity 

 𝑅𝑆𝑆0 − 𝑅𝑆𝑆1   =   (𝛽̂ − 𝛽̂𝑅)′𝑋′𝑋(𝛽̂ − 𝛽̂𝑅)   =   (𝑅𝛽̂ − 𝑟)′ Δ−1 (𝑅𝛽̂ − 𝑟)  (★) 

Derivation (short): start from the expression of RSS as 𝑌′𝑌 − 2𝑌′𝑋𝛽 + 𝛽′𝑋′𝑋𝛽for 𝛽 =

𝛽̂𝑅 , 𝛽̂. Subtract and use 𝑋′𝑋𝛽̂ = 𝑋′𝑌(normal equations) to reduce the difference to (𝛽̂ −

𝛽̂𝑅)′𝑋′𝑋(𝛽̂ − 𝛽̂𝑅). Substituting 𝛽̂ − 𝛽̂𝑅 = (𝑋′𝑋)−1𝑅′Δ−1(𝑅𝛽̂ − 𝑟) yields the second equality. 

(You may expand the algebra step if you want it inserted verbatim; the identity is standard 

and follows by direct substitution.) 

Step 4 : Sampling distribution of 𝑅𝛽̂ 

Since 𝛽̂ = (𝑋′𝑋)−1𝑋′𝑌is linear in 𝑌and Var (𝑌) = 𝜎2𝐼𝑛 

Var (𝛽̂) = 𝜎2(𝑋′𝑋)−1 

Therefore the linear transform 𝑅𝛽̂has 

𝑅𝛽̂ ∼ 𝑁(𝑅𝛽,  𝜎2Δ) 

Under 𝐻0: 𝑅𝛽 = 𝑟, we get 

𝑅𝛽̂ − 𝑟 ∼ 𝑁(0,  𝜎2Δ) 

Step 5 :Numerator is chi-square 

Using (★) and the previous distribution 

𝑅𝑆𝑆0 − 𝑅𝑆𝑆1

𝜎2
=

(𝑅𝛽̂ − 𝑟)′Δ−1(𝑅𝛽̂ − 𝑟)

𝜎2
∼ 𝜒𝑞

2 

(Quadratic form of 𝑁(0, 𝜎2Δ)with Δ−1yields 𝜒𝑞
2) 

So 

𝑅𝑆𝑆0 − 𝑅𝑆𝑆1

𝑞𝜎2
∼

1

𝑞
𝜒𝑞

2 

Step 6 : Denominator is chi-square 

The unrestricted residuals 𝑒 = 𝑌 − 𝑋𝛽̂ = 𝑀𝑌 satisfy 𝑒 ∼ 𝑁(0, 𝜎2𝑀)since 𝑀 is idempotent of 

rank 𝑛 − 𝑝. Therefore 

𝑅𝑆𝑆1

𝜎2
=

𝑒′𝑒

𝜎2
=

𝑌′𝑀𝑌

𝜎2
∼ 𝜒 𝑛−𝑝

2  

So 
𝑅𝑆𝑆1/(𝑛 − 𝑝)

𝜎2/(𝑛 − 𝑝)
=

𝑅𝑆𝑆1

(𝑛 − 𝑝)𝜎2
∼

1

𝑛 − 𝑝
𝜒 𝑛−𝑝

2  

 

Step 7 : Independence of numerator and denominator 

To form an F statistic we require independence of the two chi-square quantities. This follows 

because the two quadratic forms are based on orthogonal projection matrices. 

 

Reason: The quadratic for the numerator can be written as 𝑌′𝐴𝑌 where 𝐴is symmetric 

idempotent of rank 𝑞projecting onto the subspace of variation captured by releasing the 𝑞 

constraints (equivalently 𝐴 = 𝐻0 − 𝐻1, difference between the projection matrices of 

restricted and unrestricted fits). The denominator quadratic is 𝑌′𝑀𝑌 where 𝑀 is the residual 

projector of rank 𝑛 − 𝑝. One can show 𝐴𝑀 = 0 (the projection subspaces are orthogonal). 
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For a Gaussian vector 𝑌 ∼ 𝑁(𝑋𝛽, 𝜎2𝐼), quadratic forms 𝑌′𝐴𝑌and 𝑌′𝑀𝑌 with 𝐴𝑀 = 0 are 

independent. Hence the two chi-square variables are independent. 

 

(If you prefer: expand both as functions of 𝜀; they are quadratic forms in 𝜀with coefficient 

matrices that multiply to zero, which implies independence under normality.) 

 

Step 8 : Construct the F statistic and its distribution 

Given independence and the chi-square results: 

• (𝑅𝑆𝑆0 − 𝑅𝑆𝑆1)/𝜎2 ∼ 𝜒𝑞
2, 

• 𝑅𝑆𝑆1/𝜎2 ∼ 𝜒 𝑛−𝑝
2 , 

• independent, 

the ratio 

((𝑅𝑆𝑆0 − 𝑅𝑆𝑆1)/𝜎2)/𝑞

(𝑅𝑆𝑆1/𝜎2)/(𝑛 − 𝑝)
   =   

(𝑅𝑆𝑆0 − 𝑅𝑆𝑆1)/𝑞

𝑅𝑆𝑆1/(𝑛 − 𝑝)
 

is the ratio of an independent 𝜒𝑞
2/𝑞and 𝜒𝑛−𝑝

2 /(𝑛 − 𝑝), hence has the 𝐹𝑞,𝑛−𝑝 distribution. Thus 

  𝐹   =   
(𝑅𝑆𝑆0 − 𝑅𝑆𝑆1)/𝑞

𝑅𝑆𝑆1/(𝑛 − 𝑝)
   ∼   𝐹𝑞, 𝑛−𝑝    

under 𝐻0 

 

Step 9 : Decision rule For significance level 𝛼: 

 

• Reject 𝐻0if 𝐹cal > 𝐹𝑞,𝑛−𝑝; 1−𝛼, where 𝐹𝑞,𝑛−𝑝; 1−𝛼denotes the 1 − 𝛼quantile of the 

𝐹𝑞,𝑛−𝑝distribution. 

• Otherwise do not reject 𝐻0. 

• Equivalently compute the p-value 𝑃(𝐹𝑞,𝑛−𝑝 ≥ 𝐹cal)and reject when p-value ≤ 𝛼. 

• Step 10 : Interpretation 

• If 𝐹calis large (reject 𝐻0), the increase in residual sum of squares produced by 

imposing 𝑅𝛽 = 𝑟is too big relative to sampling variability; thus the restrictions are 

inconsistent with the data. 

• If 𝐹calis not large (fail to reject 𝐻0), the data are compatible with the restrictions; 

enforcing them does not degrade fit more than can be explained by sampling 

variability. 

• Step 11 : Special cases and connections 

• If 𝑞 = 1(single linear restriction), the numerator reduces to a squared t-statistic and 

𝐹 = 𝑡2. 

• The same F–test is the general linear hypothesis test for nested linear models: 

unrestricted model (larger) vs restricted (nested) model. 

• Step 12 : Caveats 

• Exact validity of the 𝐹-distribution requires the normality assumption 𝜀 ∼ 𝑁(0, 𝜎2𝐼). 

Without normality, the test is approximately valid asymptotically (large 𝑛) under mild 

conditions. 

• Ensure 𝑛 − 𝑝 > 0and 𝑅(𝑋′𝑋)−1𝑅′invertible (independent restrictions). 

 

  𝐹cal   =   
(𝑅𝑆𝑆0 − 𝑅𝑆𝑆1)/𝑞

𝑅𝑆𝑆1/(𝑛 − 𝑝)
   ∼   𝐹𝑞, 𝑛−𝑝under 𝐻0: 𝑅𝛽 = 𝑟    

Decision: Reject 𝐻0iff 𝐹cal > 𝐹𝑞,𝑛−𝑝;1−𝛼. 
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6.7 APPLICATIONS: 

 

1. Economic Models with Budget Constraints 

Demand share equations: 

𝛽1 + 𝛽2 + 𝛽3 = 1 

Thus, 

𝑅 = [111], 𝑟 = [1] 
2. ANOVA Models with Sum-to-Zero Constraints 

For treatment effects: 

∑ 𝛼𝑖

𝑘

𝑖=1

= 0 

This ensures identifiability of parameters. 

3. Regression Models with Equality Restrictions 

Example: Parallel-line regression with equal slopes: 

𝛽2 = 𝛽3 
𝑅 = [01 − 10], 𝑟 = [0] 

 

6.8  KEY WORDS:  

 

• Ordinary Least Squares (OLS) 

• Restricted Least Squares (RLS) 

• Linear Restrictions 

• Hypothesis Testing 

• General Linear Hypothesis 

• F-Test 

• Efficiency 

• ANOVA Constraints 

• Econometric Restrictions 

• Lagrange Multiplier 

• Bias, Variance, Mean Square Error 

 

6.9  SUMMARY: 

 

In this lesson, the concept of restricted least squares estimation has been studied as an 

extension of the ordinary least squares (OLS) method when prior information or theoretical 

constraints on regression parameters are available. Such restrictions commonly arise in 

economics, experimental design, and applied regression problems where parameters are 

known to satisfy linear relationships. 

 

The lesson began with a review of the ordinary least squares estimator, highlighting its 

optimal properties under the standard linear model assumptions. The need for parameter 

restrictions was then motivated by situations where exact linear constraints of the form  𝑅𝛽 =
𝑟 

are imposed on the regression coefficients. 

The restricted least squares estimator (RLSE) was derived using the method of Lagrange 

multipliers, and its explicit matrix form was obtained. The estimator was shown to 

incorporate both the sample information and the imposed restrictions, thereby modifying the 

OLS estimator to satisfy the given constraints. 
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The statistical properties of the restricted estimator were discussed in detail. When the 

restrictions are correct, the restricted estimator remains unbiased and has a smaller variance 

than the unrestricted OLS estimator, leading to improved efficiency. However, incorrect 

restrictions may introduce bias, emphasizing the importance of testing the validity of 

restrictions before their adoption. 

 

Methods for testing linear restrictions using appropriate test statistics were presented, 

allowing formal comparison between restricted and unrestricted models. Practical 

applications illustrated how restricted least squares estimation can simplify models, improve 

precision, and enhance interpretability. 

 

• Restricted least squares provides a systematic way to incorporate prior information 

into regression estimation. 

• When restrictions are correct, RLS estimators are more efficient than OLS estimators. 

• Incorrect restrictions can lead to biased estimates, making testing of restrictions 

essential. 

• Restricted estimation plays a crucial role in model validation, econometric analysis, 

and experimental studies. 

•  

 Overall, least squares estimation with restrictions enhances both the theoretical rigor and 

practical applicability of linear regression models. 

 

6.10  SELF-ASSESSMENT QUESTIONS:  

 

1. State the restricted least squares estimator and derive it using the Lagrange multiplier 

method. 

2. Explain the difference between OLS and RLS estimators in terms of bias and variance. 

3. Give two practical situations where linear restrictions arise. 

4. Prove that if 𝑅𝛽 = 𝑟is true, then 𝛽̂𝑅is unbiased. Derive the variance of the restricted 

estimator. 

5. How do you test whether restrictions 𝑅𝛽 = 𝑟are valid? 

6. In ANOVA, why is ∑𝛼𝑖 = 0imposed? Show that the restricted estimator has smaller 

variance than OLS when restrictions are valid. 

7. Derive the distribution of 𝛽̂𝑅under normality assumptions. 
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LESSON-7 

SIMULTANEOUS ESTIMATES OF LINEAR 

PARAMETRIC FUNCTIONS 
 

OBJECTIVES : 

 

After completing this lesson, students will be able to: 

❖ Understand linear parametric functions - Define and interpret linear functions of 

regression parameters. 

❖ Formulate simultaneous estimation problems - Express multiple linear parametric 

functions in matrix form. 

❖ Derive estimators for linear parametric functions - Obtain estimators using least 

squares principles. 

❖ Study variance–covariance structure - Compute and interpret the joint variance–

covariance matrix of simultaneous estimators. 

❖ Apply simultaneous inference techniques - Construct confidence regions and perform 

joint hypothesis tests. 

❖ Understand efficiency and optimality - Identify conditions under which estimators are 

unbiased and minimum variance. 

❖ Relate simultaneous estimation to hypothesis testing - Connect estimation of 

parametric functions with general linear hypotheses. 

❖ Apply concepts to practical problems - Use simultaneous estimation in ANOVA, 

regression contrasts, and applied data analysis. 

 

STRUCTURE:  

 

7.1 Introduction 

7.2 Linear Parametric Functions 

7.3 Simultaneous Estimation Problem 

7.4 Notations & Definitions 

7.5 Theorems 

7.5.1.1 Joint confidence region 

7.5.1.2 Bonferroni simultaneous intervals 

7.5.1.3 Scheffe confidence intervals 

7.5.1.4 Examples 

7.6  Comparison of Methods 

7.7  Summary 

7.8  Key Words 

7.9  Self-Assessment Questions 

7.10 Suggested Reading 
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7.1. INTRODUCTION: 

 

In regression analysis, interest often lies not in individual regression coefficients, but in linear 

parametric functions of these coefficients. Common examples include treatment contrasts, 

rates of change, and combined effects of predictors. When several such linear functions are 

estimated simultaneously, classical single-parameter confidence intervals are inadequate, 

because the overall probability of making at least one incorrect inference increases with the 

number of intervals constructed. 

 

To remedy this, statistical theory provides simultaneous inference procedures, such as the 

joint confidence region, Bonferroni method, and Scheffé method, that control the overall                  

family-wise error rate and provide valid inference for multiple linear functions. These 

methods form a central part of higher-level regression analysis and multivariate statistical 

inference. They are extensively presented in standard sources such as Montgomery et al. 

(2012), Draper and Smith (1998), Weisberg (2005), and Rao (2002). 

 

Description: 

In linear regression, we often need to estimate several functions of model parameters at the 

same time. These quantities, called linear parametric functions (such as 𝑎𝑇𝛽), include 

regression coefficients, contrasts, and predicted responses. Constructing separate confidence 

intervals for each function can lead to an inflated overall error rate. Simultaneous estimation 

provides methods to control this error and maintain a specified joint confidence level for all 

functions considered together. 

 

Three major approaches are used: 

• Joint confidence regions, based on the multivariate normal distribution of least-

squares estimators. 

• Bonferroni simultaneous intervals, which are simple to apply and guarantee overall 

confidence. 

• Scheffé’s method, which gives valid intervals for all possible linear combinations of 

parameters. 

Simultaneous estimation is essential for reliable inference when studying multiple parameter 

relationships in regression and experimental design. 

 

7.2. Linear Parametric Functions: 

 

Consider the classical linear regression model 

𝑌 = 𝑋𝛽 + 𝜀 

where 

𝑌 is an 𝑛 × 1 vector of observations, 

𝑋 is an 𝑛 × 𝑝full-rank design matrix, 

𝛽 is a 𝑝 × 1vector of unknown regression parameters, and 𝜀 ∼ 𝑁(0, 𝜎2𝐼𝑛). 

A linear parametric function of the regression parameters is defined as 

𝐿 = 𝑎′𝛽 

where 𝑎 is a known 𝑝 × 1 constant vector. 

Examples include: 

• Contrasts: 𝛽1 − 𝛽2 

• Weighted combinations: 2𝛽1 + 5𝛽3 
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• A predicted value at a design point 𝑥0, where 𝑎 = 𝑥0 

The estimator of 𝐿is given by 

𝐿̂ = 𝑎′𝛽̂ 

with sampling variance 

𝑉𝑎𝑟 (𝐿̂) = 𝜎2𝑎′(𝑋′𝑋)−1𝑎 

 

This result follows from linear properties of least squares estimators 

(see Montgomery et al., 2012, Ch. 3; and Weisberg, 2005, Sec. 3.4.4). 

 

7.3. SIMULTANEOUS ESTIMATION PROBLEM: 

 

Suppose we wish to estimate 𝑚linear parametric functions 

𝐿𝑖 = 𝑎𝑖
′𝛽, 𝑖 = 1,2, … , 𝑚 

with simultaneous confidence levels. 

If each function is estimated separately using a1 − 𝛼 confidence interval, the joint confidence 

that all intervals are correct is less than 1 − 𝛼. Specifically, 

𝑃(𝑎𝑙𝑙 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡) ≤ 1 − 𝑚𝛼 

Thus, special procedures are required to maintain a prescribed family-wise confidence level 

1 − 𝛼. The three most widely used are: 

1. Joint confidence region 

2. Bonferroni simultaneous intervals 

3. Scheffé simultaneous intervals. 

 

7.4. NOTATIONS & DEFINITIONS: 

 

• 𝛽̂ = (𝑋′𝑋)−1𝑋′𝑌: least squares estimator 

• 𝑠2 =
(𝑌−𝑋𝛽̂)′(𝑌−𝑋𝛽̂)

𝑛−𝑝
: unbiased estimator of 𝜎2 

• 𝑡𝑣,𝛼: 𝑡-distribution quantile with 𝑣degrees of freedom, 

• 𝐹𝑝,𝑛−𝑝;𝛼: upper 𝛼-point of 𝐹-distribution with (𝑝, 𝑛 − 𝑝)degrees of freedom 

• Family-wise error rate (FWER): probability of at least one false rejection. 

 

7. 5. THEOREMS: 

7. 5.1 joint confidence region: 

Notation / model reminders (used throughout) 

𝑌 = 𝑋𝛽 + 𝜀, 𝜀 ∼ 𝑁(0, 𝜎2𝐼𝑛) 

𝑋 is 𝑛 × 𝑝 of full column rank 𝑝. Ordinary least squares estimator: 

𝛽̂ = (𝑋′𝑋)−1𝑋′𝑌 

and the unbiased estimator of 𝜎2 

𝑠2 =
(𝑌 − 𝑋𝛽̂)′(𝑌 − 𝑋𝛽̂)

 𝑛 − 𝑝 
. 

Key facts used below: 

● 𝛽̂ ∼ 𝑁(𝛽, 𝜎2(𝑋′𝑋)−1) 

● Residual sum of squares 𝑅𝑆𝑆 = (𝑌 − 𝑋𝛽̂)′(𝑌 − 𝑋𝛽̂)satisfies 
𝑅𝑆𝑆

𝜎2 ∼ 𝜒 𝑛−𝑝
2  and is 

independent of  𝛽̂.  

Theorem -1 :  

Joint confidence region for 𝛽 Claim. A 100(1 − 𝛼)%  joint confidence region for 𝛽 is 

(𝛽̂ − 𝛽)′(𝑋′𝑋)(𝛽̂ − 𝛽)    ≤   𝑝 𝑠2 𝐹𝑝, 𝑛−𝑝; 𝛼 
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Proof: 

1. Distribution of the centered estimator in quadratic form. 

From 𝛽̂ ∼ 𝑁(𝛽, 𝜎2(𝑋′𝑋)−1), set 

𝑢 = 𝜎−1(𝑋′𝑋)1/2(𝛽̂ − 𝛽) 

           Then 𝑢 ∼ 𝑁(0, 𝐼𝑝). Hence the sum of squares 

𝑢′𝑢 =
(𝛽̂ − 𝛽)′(𝑋′𝑋)(𝛽̂ − 𝛽)

𝜎2
 

           has the 𝜒𝑝
2distribution: 

(𝛽̂ − 𝛽)′(𝑋′𝑋)(𝛽̂ − 𝛽)

𝜎2
∼ 𝜒𝑝

2 

2. Distribution of 𝑅𝑆𝑆/𝜎2and independence 

As noted, 𝑅𝑆𝑆/𝜎2 ∼ 𝜒 𝑛−𝑝
2 and it is independent of 𝛽̂(thus independent of the 

quadratic form above).  

 

 

3. Form an F ratio 

The standard construction using two independent chi-square variates gives 
1

𝑝
⋅

(𝛽̂−𝛽)′(𝑋′𝑋)(𝛽̂−𝛽)

𝜎2

1

 𝑛−𝑝 
⋅

𝑅𝑆𝑆

𝜎2

   =   
(𝛽̂ − 𝛽)′(𝑋′𝑋)(𝛽̂ − 𝛽)/𝑝

𝑅𝑆𝑆/(𝑛 − 𝑝)
∼ 𝐹𝑝, 𝑛−𝑝. 

4. Replace unknown 𝜎2 by 𝑠2 =
𝑅𝑆𝑆

𝑛−𝑝
  and invert the F inequality. 

For the upper 𝛼 - point 𝐹𝑝,𝑛−𝑝;𝛼, we have 

𝑃 (
(𝛽̂ − 𝛽)′(𝑋′𝑋)(𝛽̂ − 𝛽)/𝑝

𝑠2
≤ 𝐹𝑝,𝑛−𝑝;𝛼) = 1 − 𝛼 

Multiply both sides by 𝑝 𝑠2to obtain the confidence region: 

𝑃 ((𝛽̂ − 𝛽)′(𝑋′𝑋)(𝛽̂ − 𝛽) ≤ 𝑝 𝑠2𝐹𝑝,𝑛−𝑝;𝛼) = 1 − 𝛼 

5. Interpretation 

The set of all 𝛽satisfying the displayed inequality is an ellipsoid centered at 𝛽̂. This is 

the joint 100(1 − 𝛼)% confidence region.  

 

7.5.2 bonferroni simultaneous confidence intervals: 

 

Theorem - 2 : Bonferroni simultaneous confidence intervals 

Claim. For 𝑚specified linear functions 𝐿𝑖 = 𝑎𝑖
′𝛽(𝑖 = 1, … , 𝑚), the intervals 

𝐿̂𝑖 ± 𝑡𝑛−𝑝; 𝜶/(2𝑚)  𝑠  √𝑎𝑖
′(𝑋′𝑋)−1𝑎𝑖(𝑖 = 1, … , 𝑚) 

form a 100(1 − 𝛼)% simultaneous confidence system; i.e. 

𝑃(∀𝑖,   𝐿𝑖  𝑙𝑖𝑒𝑠 𝑖𝑛 𝑖𝑡𝑠 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙) ≥ 1 − 𝛼 

Proof: 

1. Sampling distribution of each standardized estimate. 

For a fixed 𝑖, 

𝐿̂𝑖 = 𝑎𝑖
′𝛽̂ 

and 

𝑉𝑎𝑟 (𝐿̂𝑖) = 𝜎2𝑎𝑖
′(𝑋′𝑋)−1𝑎𝑖 

Therefore 
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𝑇𝑖    =   
𝐿̂𝑖 − 𝐿𝑖

 𝑠√𝑎𝑖
′(𝑋′𝑋)−1𝑎𝑖  

 

has a Student 𝑡-distribution with 𝑛 − 𝑝 degrees of freedom (because the numerator is 

normal and independent of 𝑠2).  

2. Individual 1 − 𝛼𝑖interval. 

For any chosen 𝛼𝑖, an individual two-sided 100(1 − 𝛼𝑖)% CI is 

𝐿̂𝑖 ± 𝑡𝑛−𝑝; 𝜶𝑖/2  𝑠√𝑎𝑖
′(𝑋′𝑋)−1𝑎𝑖 

3. Use Bonferroni inequality to control family-wise error. 

Let 𝐴𝑖be the event “interval 𝑖contains 𝐿𝑖”. We want 𝑃(⋂𝑖=1
𝑚 𝐴𝑖). By Bonferroni (union 

bound) 

𝑃(⋂𝑖=1
𝑚 𝐴𝑖) = 1 − 𝑃(⋃𝑖=1

𝑚 𝐴𝑖
𝑐) ≥ 1 − ∑ 𝑃(𝐴𝑖

𝑐)

𝑚

𝑖=1

 

If we choose each interval to have coverage 1 − 𝛼/𝑚(i.e. 𝛼𝑖 = 𝛼/𝑚), then 𝑃(𝐴𝑖
𝑐) =

𝛼/𝑚  and therefore 

𝑃(⋂𝑖=1
𝑚 𝐴𝑖) ≥ 1 − ∑

𝛼

𝑚

𝑚

𝑖=1

= 1 − 𝛼 

4. Conclusion 

Thus the 𝑚intervals constructed with individual tail probability 𝛼/(2𝑚)(two-sided) 

guarantee overall coverage at least 1 − 𝛼. This is the Bonferroni simultaneous CI 

construction. (Reference and discussion: Montgomery / Draper & Smith, and standard 

texts on multiple comparisons.) 

  

Remarks: The Bonferroni bound is conservative (inequality), since it ignores correlations 

among the tests. When the 𝐿̂𝑖  are positively correlated the bound may be loose; but it is 

simple and guaranteed.  

 

7.5.3  scheffe simultaneous confidence intervals:  

 

Theorem-3 : Scheffé simultaneous confidence intervals 

Claim. For any linear parametric function 𝐿 = 𝑎′𝛽(with arbitrary 𝑎), the interval 

𝐿̂  ±  √𝑝 𝐹𝑝,𝑛−𝑝; 𝜶  𝑠  √𝑎′(𝑋′𝑋)−1𝑎 

is a 100(1 − 𝛼)% simultaneous confidence interval valid simultaneously for all 𝑎. In other 

words, the stated multiplier guarantees that the stated interval contains 𝐿 for every linear 

combination 𝑎with probability at least 1 − 𝛼. 

Proof: 

1. Start from the joint confidence ellipsoid. 

By Theorem 1 (joint region), with probability 1 − 𝛼, 

(𝛽̂ − 𝛽)′(𝑋′𝑋)(𝛽̂ − 𝛽) ≤ 𝑝 𝑠2 𝐹𝑝,𝑛−𝑝;𝛼 

This describes an ellipsoid of admissible 𝛽 around 𝛽̂. 

2. Relate scalar deviations to the quadratic form (Cauchy–Schwarz). 

For any fixed𝑎, 
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(𝑎′(𝛽̂ − 𝛽))2 = ([(𝑋′𝑋)−1/2𝑎]′ [(𝑋′𝑋)1/2(𝛽̂ − 𝛽)])2 ≤∥ (𝑋′𝑋)−1/2𝑎 ∥2 

∥ (𝑋′𝑋)1/2(𝛽̂ − 𝛽) ∥2 (𝐶𝑎𝑢𝑐ℎ𝑦 − 𝑆𝑐ℎ𝑤𝑎𝑟𝑧)

= 𝑎′(𝑋′𝑋)−1𝑎 ⋅  (𝛽̂ − 𝛽)′(𝑋′𝑋)(𝛽̂ − 𝛽) 

Thus the squared scalar error (𝐿̂ − 𝐿)2  is bounded by the quadratic form times the factor 

𝑎′(𝑋′𝑋)−1𝑎. 

3. Insert the joint region bound 

On the event that the joint ellipsoid inequality holds 

(𝐿̂ − 𝐿)2 ≤ 𝑎′(𝑋′𝑋)−1𝑎 ⋅  𝑝 𝑠2 𝐹𝑝,𝑛−𝑝;𝛼 

4. Take square roots and rearrange to an interval 

Therefore, with probability at least 1 − 𝛼, for every 𝑎: 

∣ 𝐿̂ − 𝐿 ∣≤ √𝑝 𝐹𝑝,𝑛−𝑝;𝛼  𝑠  √𝑎′(𝑋′𝑋)−1𝑎 

     which is exactly the Scheffé interval claim: 

𝐿 ∈ [𝐿̂ ± √𝑝 𝐹𝑝,𝑛−𝑝;𝛼  𝑠  √𝑎′(𝑋′𝑋)−1𝑎] 

    simultaneously for all 𝑎. 

5. Interpretation/justification 

Scheffé’s multiplier arises because the worst-case scalar error across all directions 𝑎 is 

controlled by the largest possible projection of the joint ellipsoid along that direction; 

Cauchy–Schwarz gives the necessary inequality. This yields an interval valid for 

infinitely many linear combinations (all 𝑎), not only a finite prespecified set. See 

Draper & Smith, Rao, and Montgomery for details and geometric discussion. 

 

7.5.4  example:  

 

1. Consider a three-parameter regression model 

𝑌 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝜀 

We wish to estimate simultaneously: 

𝐿1 = 𝛽1 + 𝛽2, 𝐿2 = 2𝛽1 − 𝛽2 

1. Construct Bonferroni intervals using significance level 𝛼/4 

2. Construct Scheffé interval using 𝑝 = 3 

3. Compare widths and discuss efficiency 

(Instructor can insert numerical data and matrix computations.) 

 

7.6  COMPARISON OF METHODS: 

 

Method Purpose Protection Interval Width 

Bonferroni Finite set of 𝑚functions Good Narrower 

Scheffé All possible linear functions Very strong Usually wider 

Joint region Geometric interpretation Global Not interval-based 

Scheffé is recommended when the number of potential linear combinations is large or not 

predetermined (e.g., contrasts in ANOVA). Bonferroni is preferred when there are only a few 

specific linear functions to be tested (e.g., pairwise comparisons). 
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7.7 KEY WORDS:  

 

• Linear model 

• Contrast  

• Confidence ellipsoid 

• F-distribution 

• Bonferroni procedure 

• Scheffé method 

• Family-wise error rate 

• Quadratic form 

• Least squares estimation 

 

7.8  SUMMARY: 

 

This unit focused on the theory and application of simultaneous estimation of linear 

parametric functions within the framework of linear models. A linear parametric function is 

any function of the regression parameters that can be expressed as a linear combination, such 

as contrasts, differences of means, or predicted values. 

 

The concept of simultaneous estimation arises when interest lies not in a single parameter or 

function, but in several linear functions of the parameters considered jointly. Estimating these 

functions simultaneously allows proper assessment of their joint variability and correlation, 

leading to valid statistical inference. 

 

The unit demonstrated that linear parametric functions can be conveniently expressed in 

matrix form, and their estimators are obtained directly from the least squares estimator of the 

parameter vector. The variance–covariance matrix of the estimators plays a central role in 

understanding the precision and dependence among estimated functions. 

 

Emphasis was placed on simultaneous confidence regions and joint hypothesis testing, 

highlighting the inadequacy of separate (individual) confidence intervals when multiple 

inferences are made. Methods such as F-tests and Wald tests were shown to provide 

appropriate tools for testing sets of linear hypotheses. 

 

Theoretical results established that simultaneous estimators retain desirable properties such as 

unbiasedness and minimum variance, provided the underlying linear model assumptions are 

satisfied. The unit also illustrated how these methods are applied in practice, particularly in 

analysis of variance, regression contrasts, and prediction problems. 

 

In conclusion, simultaneous estimation of linear parametric functions provides a powerful 

and unified framework for making joint inferences in linear models. It enhances the 

reliability of conclusions drawn from regression and experimental data and forms a critical 

link between estimation theory and applied statistical analysis. 

 

7.9  SELF-ASSESSMENT QUESTIONS:  

 

1. Define a linear parametric function and provide two examples. Explain why 

simultaneous estimation is necessary in regression inference. 

2. Derive the variance of 𝐿̂ = 𝑎′𝛽̂ and prove the Scheffé simultaneous confidence theorem. 
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3. Discuss estimation when observations are correlated and provide an example. 

4. Compare Bonferroni and Scheffé methods in terms of family-wise error control. 

5. Provide a numerical example of simultaneous intervals using real or simulated data. 

 

7.10 SUGGESTED READING:  

 

1. Graybill, F.A. (1983): Matrices with Applications in Statistics. Wadsworth. 

2. Draper, N.R. and Smith, H. (1998): Applied Regression Analysis. Wiley-Blackwell. 

3. Montgomery, D.C., Peck, E.A. and Vining, G.G. (2012): Introduction to Linear 

Regression Analysis, 5th Ed. Wiley. 

4. Bapat, R.B. (2012): Linear Algebra and Linear Models. Springer. 

5. Rao, C.R. (2002): Linear Statistical Inference and Its Applications. 2nd Ed. Wiley-

Blackwell. 

6. Weisberg, S. (2013): Applied Linear Regression, 4th Ed. Wiley. 
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LESSON-8 

TEST OF HYPOTHESES FOR ONE AND MORE 

THAN ONE LINEAR PARAMETRIC FUCTIONS 
 

OBJECTIVES:  

 

After studying this lesson, the learner will be able to: 

❖ Understand the role of linear parametric functions in statistical inference under the 

general linear model. 

❖ Identify and verify the estimability of single and multiple linear parametric functions 

using matrix rank and row space conditions. 

❖ Formulate null and alternative hypotheses involving one or more linear parametric 

functions of regression parameters. 

❖ Derive and apply appropriate test statistics for testing hypotheses on linear parametric 

functions. 

❖ Distinguish between tests based on single restrictions (t-tests) and multiple linear 

restrictions (F-tests). 

 

STRUCTURE: 

 

8.1   Introduction 

8.2   Concept of Linear Parametric Functions  

8.2.1.1  General Linear Model 

8.2.1.2  Definition 

8.2.1.3  Estimability and Theorems 

8.3   Hypothesis Testing for One Linear Parametric Function  

8.4   Hypothesis Testing for More Than One Linear Parametric Function 

8.5   Bias and Mean Square Error (MSE)  

8.6   Applications and Examples 

8.7   Confidence Regions for Multiple Parameters 

8.8   Key Words 

8.9   Summary  

8.10   Self-Assessment Questions  

8.11 Suggested Reading 

 

8.1. INTRODUCTION: 

 

In the theory of linear models, statistical inference concerning unknown parameters occupies 

a central role. After estimation, the next fundamental task is testing statistical hypotheses 

about model parameters or functions thereof. In many practical situations, interest does not 

lie directly in the individual regression coefficients but rather in linear parametric functions of 

the form 𝐿𝛽, where 𝛽 denotes the vector of unknown parameters. Examples include testing 
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the equality of regression coefficients, testing the significance of subsets of regressors, and 

testing linear restrictions arising from scientific or economic theory. 

 

This chapter develops hypothesis testing procedures for: 

• a single linear parametric function, and 

• several linear parametric functions simultaneously 

within the framework of the General Linear Model (GLM). The treatment emphasizes matrix 

formulation, distributional results, exact tests (𝑡- and 𝐹-tests), and connections with 

estimation theory. The exposition follows classical developments found in Graybill, Rao, 

Draper and Smith, Montgomery-Peck-Vining, and related standard references. 

 

Description 

This lesson presents a systematic treatment of hypothesis testing for one and more than one 

linear parametric function under the general linear model. Emphasis is placed on the 

formulation of linear hypotheses, estimability conditions, and the derivation of exact                         

t-and F-tests based on least squares estimation. The equivalence between the general linear 

hypothesis and the extra sum of squares principle is highlighted, along with the construction 

of confidence intervals and confidence regions. The chapter provides a theoretical foundation 

for testing linear restrictions commonly encountered in regression analysis and related 

statistical applications. 

 

8.2. CONCEPT OF LINEAR PARAMETRIC FUNCTION: 

 

8.2.1 general linear model: 

Consider the general linear model 

 

where: 

• Y is an  𝑛 × 1 random vector of observations 

• 𝑋 is a known 𝑛 × 𝑝 design matrix of rank 𝑟 ≤ 𝑝 

• 𝛽 is a 𝑝 × 1 vector of unknown parameters 

• 𝜀 ∼ 𝑁𝑛(0, 𝜎2𝐼𝑛) 

 

8.2.2  definition: 

A linear parametric function is any function of the form 

𝜃 = 𝐿𝛽 
where 𝐿 is a known 𝑞 × 𝑝 matrix of constants. 

Special cases: 

• 𝑞 = 1: one linear parametric function 

• 𝑞 > 1: several linear parametric functions 

 

8.2.3  estimability:  

A linear parametric function 𝐿𝛽 is said to be estimable if there exists a linear estimator 

𝑎′𝑌 such that 𝐸(𝑎′𝑌) = 𝐿𝛽 

Theorem 1: Estimability of a Linear Parametric Function 

Statement 

A linear parametric function 𝐿𝛽is estimable under the general linear model 

𝑌 = 𝑋𝛽 + 𝜀 
 

if and only if each row of 𝐿belongs to the row space of the design matrix 𝑋 

Proof 
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Step 1: Definition of estimability 

A parametric function 𝐿𝛽is estimable if there exists a linear estimator 𝑎′𝑌such that 

𝐸(𝑎′𝑌) = 𝐿𝛽 
 

Step 2: Evaluate the expectation 

Since                                                                  𝐸(𝑌) = 𝑋𝛽 

𝐸(𝑎′𝑌) = 𝑎′𝑋𝛽 
 

Step 3: Necessary condition 

For 

𝑎′𝑋𝛽 = 𝐿𝛽 
to hold for all 𝛽, we must have 

𝑎′𝑋 = 𝐿 
 

Step 4: Interpretation 

The equality 𝑎′𝑋 = 𝐿 implies that each row of 𝐿 is a linear combination of the rows of 𝑋. 

Hence, the rows of 𝐿 lie in the row space of 𝑋. 

 

Step 5: Sufficiency 

Conversely, if the rows of 𝐿 lie in the row space of 𝑋, then there exists a vector 𝑎such that 

𝑎′𝑋 = 𝐿. Therefore, 

𝐸(𝑎′𝑌) = 𝐿𝛽 

and 𝐿𝛽 is estimable. 

Hence proved.  

 

Theorem 2: Unbiasedness of the Least Squares Estimator of an Estimable Function 

Statement: 

If 𝐿𝛽 is estimable, then the least squares estimator 𝐿𝛽 ̂is an unbiased estimator of  𝐿𝛽. 

 

Proof: 

Step 1: Least squares estimator 

The least squares estimator of 𝛽 is 

𝛽̂ = (𝑋′𝑋)−𝑋′𝑌 
where (𝑋′𝑋)− is a generalized inverse 

 

Step 2: Take expectation 

𝐸(𝛽̂) = (𝑋′𝑋)−𝑋′𝐸(𝑌) = (𝑋′𝑋)−𝑋′𝑋𝛽 
 

Step 3: Use estimability condition 

Since 𝐿𝛽 is estimable, there exists a matrix 𝐶 such that 

𝐿 = 𝐶𝑋 

Step 4: Evaluate expectation of 𝐿𝛽̂ 

𝐸(𝐿𝛽̂) = 𝐿𝐸(𝛽̂) = 𝐶𝑋(𝑋 ′𝑋)−𝑋′𝑋𝛽 = 𝐶𝑋𝛽 = 𝐿𝛽 
Thus, 

Bias(𝐿𝛽̂) = 0 

Hence proved.  

Theorem 3: Variance of an Estimable Linear Parametric Function 

Statement: 
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𝐕𝐚𝐫 (𝑳𝜷̂) = 𝝈𝟐𝑳(𝑿′𝑿)−𝑳′. 
Proof: 

Step 1: Variance of the least squares estimator 

Var (𝛽̂) = 𝜎2(𝑋′𝑋)−. 
 

 

Step 2: Linear transformation rule 

For any constant matrix 𝐿, 

Var (𝐿𝛽̂) = 𝐿Var (𝛽̂)𝐿′. 
 

Step 3: Substitution 

Var (𝐿𝛽̂) = 𝜎2𝐿(𝑋′𝑋)−𝐿′. 

Hence proved.  

 

 

Theorem 5: F-Distribution for Multiple Linear Parametric Functions 

 

Statement 

Under the hypothesis 𝐻0: 𝐿𝛽 = 𝑐, 

(𝐿𝛽̂ − 𝑐)′[𝐿(𝑋′𝑋)−𝐿′]−1(𝐿𝛽̂ − 𝑐)

𝑞𝜎2
∼ 𝐹𝑞, 𝑛−𝑟 . 

Proof: 

Step 1: Distribution of 𝐿𝛽̂ 

𝐿𝛽̂ follows a multivariate normal distribution with mean 𝐿𝛽 and covariance matrix 

𝜎2𝐿(𝑋′𝑋)−𝐿′ 

 

Step 2: Quadratic form 

Under 𝐻0, the quadratic form 

(𝐿𝛽̂ − 𝑐)′[𝐿(𝑋′𝑋)−𝐿′]−1(𝐿𝛽̂ − 𝑐) 

follows a 𝜎2𝜒𝑞
2distribution. 

 

Step 3: Error sum of squares 

Independently, 
SSE

𝜎2
∼ 𝜒𝑛−𝑟

2  

 

Step 4: Ratio of independent chi-square variables 

The ratio of two independent chi-square variables divided by their degrees of freedom 

follows an F-distribution. 

Hence proved.  

 

8.3 HYPOTHESIS TESTING FOR ONE LINEAR PARAMETRIC FUNCTION 

 

8.3.1 statement of hypothesis 

Let 𝜃 = 𝑙′𝛽be an estimable linear parametric function. Consider testing 

𝐻0: 𝑙′𝛽 = 𝑙′𝛽0vs.𝐻1: 𝑙′𝛽 ≠ 𝑙′𝛽0 
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8.3.2  estimator and distribution 

Let 𝛽̂ be the least squares estimator. Then 

𝜃 = 𝑙′𝛽̂ 

is unbiased with variance 

Var (𝜃) = 𝜎2𝑙′(𝑋′𝑋)−𝑙 

where (𝑋′𝑋)− denotes a generalized inverse. 

Moreover, 

𝜃 − 𝑙′𝛽

𝜎√𝑙′(𝑋′𝑋)−𝑙
∼ 𝑁(0,1) 

 

8.3.3  test statistic: 

Replacing 𝜎2by its unbiased estimator 𝜎̂2 = SSE/(𝑛 − 𝑟), the test statistic is 

𝑇 =
𝜃 − 𝑙′𝛽0

𝜎̂√𝑙′(𝑋′𝑋)−𝑙
∼ 𝑡𝑛−𝑟 

 

8.3.4  decision  rule 

Reject 𝐻0 at level 𝛼 if 
 

8.4 HYPOTHESIS TESTING FOR MORE THAN ONE LINEAR         

      PARAMETRIC FUNCTION:  

 

8.4.1 general linear hypothesis 

Let 𝐿 be a 𝑞 × 𝑝 matrix of rank 𝑞. Consider testing 

𝐻0: 𝐿𝛽 = 𝑐vs.𝐻1: 𝐿𝛽 ≠ 𝑐 

This is known as the general linear hypothesis Quadratic Form 

Define  𝑄 = (𝐿𝛽̂ − 𝑐)′[𝐿(𝑋′𝑋)−𝐿′]−1(𝐿𝛽̂ − 𝑐) 

Then  
𝑄

𝑞𝜎2 ∼ 𝐹𝑞, 𝑛−𝑟 

 

8.4.3  f-test statistic 

Replacing 𝜎2 by 𝜎̂2, the test statistic becomes 

𝐹 =
1

𝑞𝜎̂2
(𝐿𝛽̂ − 𝑐)′[𝐿(𝑋′𝑋)−𝐿′]−1(𝐿𝛽̂ − 𝑐) 

 

Reject 𝐻0 if 
𝐹 > 𝐹𝛼;𝑞, 𝑛−𝑟 

 

8.4.4  connection with extra sum of squares 

The general linear hypothesis test is equivalent to the extra sum of squares principle: 

𝐹 =
(SSE𝑅 − SSE𝐹)/𝑞

SSE𝐹/(𝑛 − 𝑟)
 

where 𝑅 and 𝐹 denote the reduced and full models, respectively. 

 

8.5  BIAS AND MEAN SQUARE ERROR (MSE): 

8.5.1  bias 
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An estimator 𝜃of 𝜃has bias 

Bias(𝜃) = 𝐸(𝜃) − 𝜃 

 

For least squares estimators of estimable linear parametric functions 

Bias(𝑙′𝛽̂) = 0 

 

8.5.2  mean square error 

MSE(𝜃) = Var (𝜃) + [Bias(𝜃)]2 

Thus, for unbiased estimators 

MSE(𝑙′𝛽̂) = 𝜎2𝑙′(𝑋′𝑋)−𝑙 
 

 

8.6  APPLICATIONS  AND EXAMPLES: 

 

Example 1: Testing a Single Regression Coefficient 

In a multiple regression model, test 𝐻0: 𝛽𝑗 = 0. This is a special case with 𝑙′ = (0, … ,1, … ,0). 

 

Example 2: Equality of Two Coefficients 

Test 𝐻0: 𝛽1 = 𝛽2, equivalently 𝐻0: (1, −1,0, … ,0)𝛽 = 0. 

 

Example 3: Joint Significance of Predictors 

Test 𝐻0: 𝛽2 = 𝛽3 = 𝛽4 = 0, a multivariate linear hypothesis commonly used in model 

adequacy assessment. 

 

8.7 CONFIDENCE REGIONS FOR MULTIPLE PARAMETERS: 

 

A (1−𝛼)confidence region for 𝐿𝛽is given by 

(𝐿𝛽̂ − 𝐿𝛽)′[𝐿(𝑋′𝑋)−𝐿′]−1(𝐿𝛽̂ − 𝐿𝛽) ≤ 𝑞𝜎̂2𝐹𝛼;𝑞,𝑛−𝑟 

This region is an ellipsoid in ℝ𝑞. 

 

8.8  KEY WORDS: 

 

• General Linear Model 

• Linear Parametric Function 

• Estimability 

• Least Squares Estimator 

• General Linear Hypothesis 

• t-test  

• F-test 

• Extra Sum of Squares 

• Mean Square Error 

• Confidence Region 

 

8.9 SUMMARY: 

 

This lesson focused on hypothesis testing for linear parametric functions within the 

framework of the General Linear Model (GLM). A linear parametric function, expressed as a 
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linear combination of regression parameters, plays a central role in statistical inference in 

linear models. 

 

The concept of estimability was emphasized as a prerequisite for meaningful inference. 

Conditions and theorems ensuring estimability were discussed, highlighting that only 

estimable functions of parameters can be unbiasedly estimated and tested. 

 

For a single linear parametric function, hypothesis testing procedures were developed using t-

tests, relying on the least squares estimator and its variance. These tests allow researchers to 

assess the significance of specific linear combinations of parameters. 

 

For multiple linear parametric functions, joint hypothesis testing was introduced using F-tests    

(or equivalently Wald tests). This approach enables simultaneous testing of several 

restrictions, ensuring control over the overall error rate and providing a unified framework for 

multivariate inference. 

 

The role of bias and mean square error (MSE) in hypothesis testing was examined, 

demonstrating how estimator efficiency affects test performance. The construction of 

confidence intervals and confidence regions further complemented hypothesis testing by 

providing interval-based inference for one or more parametric functions. 

 

Applications illustrated how these tests are widely used in regression analysis, analysis of 

variance, econometrics, and experimental design, where practical decisions often depend on 

testing single or multiple parameter functions simultaneously. 

 

In conclusion, hypothesis testing for linear parametric functions forms a fundamental bridge 

between estimation and inference in linear models. Mastery of these methods equips students 

with the tools required for rigorous statistical analysis and sound decision-making in applied 

research. 

 

8.10  SELF ASSESSMENT QUESTIONS: 

 

1. Explain the concept of linear parametric functions with suitable examples. 

2. Discuss the estimability of linear functions and state the relevant theorems. 

3. Derive the test statistic for testing a single linear parametric function in the general linear 

model. 

4. Explain the procedure for testing more than one linear parametric function 

simultaneously. 

5. Describe the F-test for general linear hypotheses. 

6. Explain how bias and mean square error (MSE) are related to hypothesis testing in linear 

models. 

7. Discuss the construction of confidence regions for multiple linear parametric functions. 

8. Explain the importance of testing linear parametric functions in applied regression 

analysis. 
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LESSON-9 

CONFIDENCE INTERVALS AND 

CONFIDENCE REGIONS 

 
OBJECTIVES: 

 

After completing this lesson, learners will be able to: 

❖ Understand the fundamental ideas of interval estimation, including the interpretation of 

confidence levels. 

❖ Construct confidence intervals for key population parameters such as the mean, 

proportion, variance, and regression coefficients. 

❖ Apply sampling distributions (normal, t, chi-square, F) in deriving interval estimators. 

❖ Explain the concept of confidence regions and develop joint confidence regions for 

multiple parameters using matrix notation and multivariate distributions. 

❖ Interpret the geometric meaning of elliptical confidence regions in regression and 

multivariate analysis. 

❖ Compare marginal and joint confidence intervals and evaluate the precision of estimates 

based on interval width and coverage. 

 

STRUCTURE: 

 

9.1   Introduction 

9.2   Concept of Confidence Intervals 

9.2.1 Basic Definitions and Notation 

9.2.2 Confidence Interval for Mean 

9.2.3 Confidence Interval for Proportion 

9.3 Confidence Interval for Variance / Standard Deviation 

9.4 Confidence Intervals in Regression Models 

 9.4.1 CI for Regression Coefficients 

 9.4.2 CI for Mean Response 

 9.4.3  CI for Prediction of a New Observation 

9.5 Concept of Confidence Regions 

            9.5.1 Ellipsoidal Confidence Regions (Multivariate Case) 

            9.5.2 Interpretation and Geometric Meaning 

9.6  Theorems with examples 

9.7  Summary 

9.8  Key Words 

9.9  Self-Assessment Questions 

9.10 Suggested Reading 
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9.1  INTRODUCTION:  

 

Statistical estimation involves providing plausible values for unknown population parameters. 

Point estimators give single values but lack information on their reliability. Confidence 

Intervals (CIs) extend this idea by providing an interval estimate with a specified probability 

of containing the true parameter. 

 

In regression analysis (Montgomery et al., 2012; Weisberg, 2005), confidence intervals and 

confidence regions form a crucial part of statistical inference-helping quantify uncertainty 

associated with estimated regression coefficients, mean responses, and predictions. 

 

Description: 

❖ Confidence intervals and confidence regions form a central part of statistical inference, 

providing a range of plausible values for unknown population parameters rather than a 

single-point estimate. A confidence interval uses the sampling distribution of an estimator 

to specify an interval that contains the true parameter with a stated probability (commonly 

95% or 99%). These intervals are developed using distributions such as the normal, t, chi-

square, and F distributions depending on the parameter of interest and the assumptions 

involved. 

❖ In many practical applications—especially in regression analysis and multivariate 

statistics-multiple parameters must be estimated simultaneously. In such cases, 

confidence regions extend the idea of interval estimation to higher dimensions. These 

regions, often taking the form of ellipses or ellipsoids, account for the correlation between 

parameter estimates and provide a more accurate joint assessment of uncertainty. 

❖ This topic introduces the theoretical foundation, mathematical formulation, and practical 

interpretation of both confidence intervals and confidence regions. It emphasizes the role 

of sampling distributions, matrix algebra, and geometric representation, enabling students 

to apply these tools rigorously in statistical modeling and data analysis. 

 

9.2  CONCEPT OF CONFIDENCE INTERVALS:  

 

A confidence interval is an interval of plausible parameter values constructed in such a way 

that it will contain the true parameter with a pre-specified probability (confidence level). 

 

A 95% CI means: If the procedure is repeated many times, then 95% of the constructed 

intervals will contain the true parameter. 

 

It does not mean a 95% probability that the specific interval contains the parameter. 

CIs are derived using sampling distributions of estimators. 

 

9.2.1 basic definitions and notation: 

 

• Population mean:  𝜇 

• Population variance:  𝜎2 

• Population proportion: 𝑝 

• Sample mean:    𝑋̄ 

• Sample variance:  𝑠2 

• Sample proportion: 𝑝̂ 

• Regression coefficients: 𝛽0, 𝛽1, … , 𝛽𝑝 
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• Estimated coefficients: 𝛽̂0, 𝛽̂1, … , 𝛽̂𝑝 

• Design matrix: 𝐗 

• Error variance: 𝜎2 

 

9.2.2  confidence interval for mean: 

 

Case 1: Population variance known 

𝑋̄ ∼ 𝑁(𝜇,
𝜎2

𝑛
) 

A 100(1–α)% CI is: 

𝜇 ∈ [𝑋̄ − 𝑧𝛼/2

𝜎

√𝑛
, 𝑋̄ + 𝑧𝛼/2

𝜎

√𝑛
] 

 

 

 

Case 2: Population variance unknown 

Use Student’s t-distribution: 

𝜇 ∈ [𝑋̄ − 𝑡𝛼/2,𝑛−1

𝑠

√𝑛
, 𝑋̄ + 𝑡𝛼/2,𝑛−1

𝑠

√𝑛
] 

 

9.2.3  confidence interval for proportion: 

 

For sample proportion 𝑝̂ =
𝑥

𝑛
: 

Approximate CI: 

𝑝̂ ± 𝑧𝛼/2√
𝑝̂(1 − 𝑝̂)

𝑛
 

For small samples, exact binomial CIs are recommended (Clopper–Pearson) 

 

9.3  CONFIDENCE INTERVAL FOR VARIANCE / STANDARD  DEVIATION 

 

Using chi-square distribution: 

(𝑛 − 1)𝑠2

𝜎2
∼ 𝜒𝑛−1

2  

Thus CI is: 

[
(𝑛 − 1)𝑠2

𝜒1−𝛼/2,𝑛−1
2 ,

(𝑛 − 1)𝑠2

𝜒𝛼/2,𝑛−1
2 ] 

CI for 𝜎is obtained by square root. 

 

9.4  CONFIDENCE INTERVALS IN REGRESSION MODELS: 

 

Consider multiple regression: 

Y = X𝛽 + 𝜀, 𝜀 ∼ 𝑁(0, 𝜎2𝐼) 

Least squares estimator: 

𝛽̂ = (X′X)−1X′Y 

Variance: 

Var(𝛽̂) = 𝜎2(X′X)−1 
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9.4.1  ci for regression coefficients 

 

For the jth coefficient: 

𝛽̂𝑗 ± 𝑡𝛼/2, 𝑛−𝑝√Var̂(𝛽̂𝑗) 

 

9.4.2  ci for mean response: 

 

At predictor vector 𝑥0: 

𝑌̂0 = 𝑥0
′ 𝛽̂ 

CI: 

𝑌̂0 ± 𝑡𝛼/2, 𝑛−𝑝√𝜎2𝑥0
′ (X′X)−1𝑥0 

 

9.4.3  ci for prediction of new observation: 

 

Prediction variance includes error variance: 

𝑌̂0 ± 𝑡𝛼/2, 𝑛−𝑝√𝜎2(1 + 𝑥0
′ (X′X)−1𝑥0) 

 

9.5  CONCEPT OF CONFIDENCE REGIONS: 

 

A confidence region generalizes confidence intervals to multiple parameters simultaneously. 

For regression: 

(𝛽̂ − 𝛽)′[𝜎2(X′X)−1]−1(𝛽̂ − 𝛽) ≤ 𝑝𝐹𝑝, 𝑛−𝑝(1 − 𝛼) 

This defines an ellipsoidal region in p-dimensional space. 

 

9.5.1  ellipsoidal confidence regions (multivariate case): 

 

The joint distribution of 𝛽̂is: 

𝛽̂ ∼ 𝑁𝑝(𝛽, 𝜎2(X′X)−1) 

Using Hotelling’s 𝑇2: 

Confidence region: 

(𝛽̂ − 𝛽)′(X′X)(𝛽̂ − 𝛽) ≤ 𝑝 𝑠2 𝐹𝑝,𝑛−𝑝(1 − 𝛼) 

This geometrically corresponds to a p-dimensional ellipsoid centered at 𝛽̂. 
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9.5.2  interpretation and geometric meaning 

 

• Single-parameter CI → line segment 

• Two parameters → ellipse 

• p parameters → ellipsoid 

The shape reflects: 

• Variances (lengths of axes) 

• Covariances (tilt of the ellipsoid) 

Overlap of two confidence regions indicates similarity of parameter sets. 

 

9.6   THEOREMS WITH EXAMPLES : 

 

Notation & standing assumptions (used in many proofs) 

• Scalars: 𝑛= sample size, 𝑝= number of regression parameters (including intercept). 

• For IID sample 𝑋1, … , 𝑋𝑛from 𝑁(𝜇, 𝜎2)we use 𝑋̄and 𝑠2as usual. 

• For regression: model 𝑌 = 𝑋𝛽 + 𝜀with 𝑌𝑛 × 1, 𝑋𝑛 × 𝑝full column rank, 𝜀 ∼

𝑁(0, 𝜎2𝐼𝑛). OLS estimator 𝛽̂ = (𝑋′𝑋)−1𝑋′𝑌. Residual sum of squares 𝑅𝑆𝑆 = (𝑌 −

𝑋𝛽̂)′(𝑌 − 𝑋𝛽̂). Estimate 𝜎̂2 = 𝑅𝑆𝑆/(𝑛 − 𝑝). 

• 𝑧𝛾= normal quantile, 𝑡𝛾,𝜈= Student-t quantile with 𝜈df, 𝜒𝛾,𝜈
2 = chi-square quantile with 

𝜈df, 𝐹𝜈1,𝜈2
(𝛾)= 𝐹-quantile. 

Cochran’s theorem / standard normal quadratic-form results will be invoked where 

appropriate (the independence of certain quadratic forms and chi-square results). 

 

THEOREM 1 — Student’s t Confidence Interval for a Mean (unknown variance) 

Statement: Let 𝑋1, … , 𝑋𝑛be iid 𝑁(𝜇, 𝜎2). Then a 100(1 − 𝛼)%confidence interval for 𝜇is 

  𝑋̄ ± 𝑡𝛼/2, 𝑛−1 
𝑠

√𝑛
    

where 𝑋̄ =
1

𝑛
∑𝑋𝑖 and 𝑠2 =

1

𝑛−1
∑(𝑋𝑖 − 𝑋̄)2 

Assumptions. IID normal observations; 𝜇, 𝜎2 unknown 

 

Proof : Distribution of the sample mean. For normal samples 
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𝑋̄ ∼ 𝑁 (𝜇,
𝜎2

𝑛
) 

Therefore 

𝑍 ≡
𝑋̄ − 𝜇

𝜎/√𝑛
∼ 𝑁(0,1)                      (1) 

1. Distribution of the sample variance (chi-square). Define 

𝑠2 =
1

𝑛 − 1
∑(𝑋𝑖 − 𝑋̄)2

𝑛

𝑖=1

 

By Cochran’s theorem (or standard normal orthogonal decomposition), 

𝑈 ≡
(𝑛 − 1)𝑠2

𝜎2
∼ 𝜒 𝑛−1

2 (2) 

2. Independence. For normal samples 𝑋̄and 𝑠2are independent (again from Cochran’s 

theorem or properties of the multivariate normal). Thus 𝑍and 𝑈are independent. 

3. Form the studentized pivot. Consider 

𝑇 ≡
𝑋̄ − 𝜇

𝑠/√𝑛
=

𝑍

√𝑈/(𝑛 − 1)
 

Because 𝑍 ∼ 𝑁(0,1) and  𝑈 ∼ 𝜒𝑛−1
2  independent, the ratio has a Student-𝑡 

distribution with    𝑛 − 1  degrees of freedom: 

𝑇 ∼ 𝑡 𝑛−1                          (3) 

1. Inversion to CI. By symmetry of the 𝑡-distribution 

𝑃 ⁣(−𝑡𝛼/2,𝑛−1 ≤ 𝑇 ≤ 𝑡𝛼/2,𝑛−1) = 1 − 𝛼 

Substituting the definition of 𝑇and solving for 𝜇gives 

𝑃 (𝑋̄ − 𝑡𝛼/2,𝑛−1

𝑠

√𝑛
≤ 𝜇 ≤ 𝑋̄ + 𝑡𝛼/2,𝑛−1

𝑠

√𝑛
) = 1 − 𝛼 

Hence the stated interval is a 100(1 − 𝛼)%confidence interval for 𝜇. 

Remark. Exact under normality. For large 𝑛, 𝑡𝛼/2,𝑛−1 → 𝑧𝛼/2. 

 

THEOREM 2 — Chi-square Confidence Interval for Variance 

Statement: Under the same normal model, a 100(1 − 𝛼)%CI for 𝜎2 is 

  (
(𝑛 − 1)𝑠2

𝜒1−𝛼/2, 𝑛−1
2 ,

(𝑛 − 1)𝑠2

𝜒𝛼/2, 𝑛−1
2 )    

Assumptions. 𝑋𝑖 ∼ 𝑖𝑖𝑑𝑁(𝜇, 𝜎2). 
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Proof : 

1. Start with the known pivot: 

𝑈 =
(𝑛 − 1)𝑠2

𝜎2
∼ 𝜒 𝑛−1

2 . (A) 

Use chi-square quantiles. By definition of quantiles, 

𝑃 (𝜒𝛼/2,𝑛−1
2 ≤ 𝑈 ≤ 𝜒1−𝛼/2,𝑛−1

2 ) = 1 − 𝛼. 

Substitute 𝑈and solve for 𝜎2: 

𝑃 (𝜒𝛼/2,𝑛−1
2 ≤

(𝑛 − 1)𝑠2

𝜎2
≤ 𝜒1−𝛼/2,𝑛−1

2 ) = 1 − 𝛼. 

Invert each side (inequalities reverse when dividing by positive quantities appropriately) to 

get 

𝑃 
(𝑛 − 1)𝑠2

𝜒1−𝛼/2,𝑛−1
2 ≤ 𝜎2 ≤

(𝑛 − 1)𝑠2

𝜒𝛼/2,𝑛−1
2 ) = 1 − 𝛼. 

This is the desired interval. 

Remark. CI for 𝜎(std dev) is the square-root of the endpoints above. 

 

THEOREM 3 —  t-Confidence Interval for a Regression Coefficient 

 

Statement: In the linear model 𝑌 = 𝑋𝛽 + 𝜀with 𝜀 ∼ 𝑁(0, 𝜎2𝐼𝑛), the OLS estimator 

𝛽̂satisfies 

𝛽̂ ∼ 𝑁𝑝(𝛽, 𝜎2(𝑋′𝑋)−1) 

and for the 𝑗-th component 𝛽𝑗a 100(1 − 𝛼)%CI is 

  𝛽̂𝑗 ± 𝑡𝛼/2, 𝑛−𝑝  𝜎̂√𝑣𝑗𝑗     𝑣𝑗𝑗 ≡ [(𝑋′𝑋)−1]𝑗𝑗 

where 𝜎̂2 = 𝑅𝑆𝑆/(𝑛 − 𝑝) 

 

Assumptions: Linear model with Gaussian errors; 𝑋full column rank. 

Proof : 

1. Distribution of 𝛽̂. Standard OLS theory (or properties of the multivariate normal) 

gives 

𝛽̂ = (𝑋′𝑋)−1𝑋′𝑌 = 𝛽 + (𝑋′𝑋)−1𝑋′𝜀, 

so 

𝛽̂ ∼ 𝑁𝑝 (𝛽, 𝜎2(𝑋′𝑋)−1). (B) 

Marginal for 𝛽̂𝑗. From (B), the marginal distribution of component 𝑗is normal: 
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𝛽̂𝑗 ∼ 𝑁 (𝛽𝑗 , 𝜎2𝑣𝑗𝑗). 

Residual variance chi-square and independence. The residual vector 𝑒 = 𝑌 − 𝑋𝛽̂ = 𝑀𝑌with 

𝑀 = 𝐼 − 𝑃(projection onto orthogonal complement) has 𝑒′ 𝑒 = 𝑅𝑆𝑆and 

(𝑛 − 𝑝)𝜎̂2

𝜎2
=

𝑅𝑆𝑆

𝜎2
∼ 𝜒 𝑛−𝑝

2 . 

By Cochran’s theorem (or properties of normal projections), 𝛽̂(hence 𝛽̂𝑗) is independent of 

𝑅𝑆𝑆(hence independent of 𝜎̂2). 

 

2. Form the studentized statistic. Define 

𝑇𝑗 ≡
𝛽̂𝑗 − 𝛽𝑗

𝜎̂√𝑣𝑗𝑗

. 

Writing 𝛽̂𝑗 − 𝛽𝑗 = 𝑍where 𝑍 ∼ 𝑁(0, 𝜎2𝑣𝑗𝑗)and using independence with (𝑛 − 𝑝)𝜎̂2/𝜎2 ∼

𝜒𝑛−𝑝
2 , we get 

𝑇𝑗 =
𝑍/(𝜎√𝑣𝑗𝑗)

√
(𝑛−𝑝)𝜎̂2

𝜎2 /(𝑛 − 𝑝)

=
𝑁(0,1)

√𝜒𝑛−𝑝
2 /(𝑛 − 𝑝)

∼ 𝑡 𝑛−𝑝 

 

3. Invert to obtain CI. By 𝑡𝑛−𝑝quantiles 

𝑃 (−𝑡𝛼/2,𝑛−𝑝 ≤ 𝑇𝑗 ≤ 𝑡𝛼/2,𝑛−𝑝) = 1 − 𝛼 

which after algebra yields 

𝑃(𝛽̂𝑗 − 𝑡𝛼/2,𝑛−𝑝𝜎̂√𝑣𝑗𝑗 ≤ 𝛽𝑗 ≤ 𝛽̂𝑗 + 𝑡𝛼/2,𝑛−𝑝𝜎̂√𝑣𝑗𝑗) = 1 − 𝛼 

Thus the stated interval is the 100(1 − 𝛼)%CI for 𝛽𝑗 

 

Remark: This reduces to Theorem 1 in the simple regression intercept/slope special cases; 

degrees of freedom are 𝑛 − 𝑝. 

 

THEOREM 4 — Hotelling’s 𝑇2(Ellipsoidal) Confidence Region for 𝛽 

Statement: Under the linear model with normal errors, a 100(1 − 𝛼)%joint confidence 

region for the vector 𝛽is the ellipsoid 

  (𝛽̂ − 𝛽)′𝑋′𝑋(𝛽̂ − 𝛽) ≤ 𝑝 𝜎̂2 𝐹𝑝, 𝑛−𝑝(1 − 𝛼)    

Equivalently, 

(𝛽̂ − 𝛽)′[𝜎̂2(𝑋′𝑋)−1]−1(𝛽̂ − 𝛽) ≤ 𝑝 𝐹𝑝,𝑛−𝑝(1 − 𝛼) 
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Assumptions. Linear model 𝑌 = 𝑋𝛽 + 𝜀, 𝜀 ∼ 𝑁(0, 𝜎2𝐼), 𝑋full rank. 

 

Proof : 

1. Distribution of the quadratic form. From Theorem 3 (B), 

𝛽̂ − 𝛽 ∼ 𝑁𝑝(0, 𝜎2(𝑋′𝑋)−1). 

Consider the quadratic form 

𝑄 ≡
1

𝜎2
(𝛽̂ − 𝛽)′𝑋′𝑋(𝛽̂ − 𝛽) 

Because (𝛽̂ − 𝛽) = 𝜎(𝑋′𝑋)−1/2𝑍for 𝑍 ∼ 𝑁𝑝(0, 𝐼), it follows that 𝑄 ∼ 𝜒 𝑝
2  (This is the usual 

fact: if 𝑊 ∼ 𝑁𝑝(0, 𝐼)then 𝑊′𝑊 ∼ 𝜒𝑝
2) 

 

2. Replace 𝜎2by 𝜎̂2and form an F pivot. The residual sum of squares gives 

(𝑛 − 𝑝)𝜎̂2

𝜎2
=

𝑅𝑆𝑆

𝜎2
∼ 𝜒 𝑛−𝑝

2  

and this is independent of 𝛽̂ − 𝛽(Cochran). Hence the ratio 

(𝑄/𝑝)

((𝑛 − 𝑝)𝜎̂2/𝜎2)/(𝑛 − 𝑝)
=

𝑄/𝑝

𝜎̂2/𝜎2
∼ 𝐹𝑝, 𝑛−𝑝 

Multiplying both numerator and denominator by 𝜎2yields 

(𝛽̂ − 𝛽)′𝑋′𝑋(𝛽̂ − 𝛽)/(𝑝 𝜎̂2)

1
∼ 𝐹𝑝,𝑛−𝑝 

So 

𝑃 (
(𝛽̂ − 𝛽)′𝑋′𝑋(𝛽̂ − 𝛽)

𝑝 𝜎̂2
≤ 𝐹𝑝,𝑛−𝑝(1 − 𝛼)) = 1 − 𝛼 

Rearrange to the ellipsoid form. Multiply both sides by 𝑝 𝜎̂2to obtain 

𝑃 ((𝛽̂ − 𝛽)′𝑋′𝑋(𝛽̂ − 𝛽) ≤ 𝑝 𝜎̂2 𝐹𝑝,𝑛−𝑝(1 − 𝛼)) = 1 − 𝛼 

which is the stated ellipsoidal confidence region for 𝛽 

 

Remark:  (geometry). The set {𝛽: (𝛽̂ − 𝛽)′𝑋′𝑋(𝛽̂ − 𝛽) ≤ 𝑐}is an ellipsoid centered at 𝛽̂. 

Axis directions are eigenvectors of (𝑋′𝑋)−1, axis lengths scale with 𝜎̂and the 𝐹-quantile. 

This region gives simultaneous coverage for all components or linear combinations of 𝛽. 

 

Regression Coefficient CI 

Simple regression:𝑌 = 𝛽0 + 𝛽1𝑥 + 𝜀 

Given: 
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• 𝛽̂1 = 2.5 

• 𝑠𝑒(𝛽̂1) = 0.4 

• 𝑛 = 20 ⇒ 𝑑𝑓 = 18 

• 95% level: 𝑡0.025,18 = 2.101 

CI:2.5 ± 2.101(0.4) = [1.659,3.341] 

Interpretation: The slope is significantly positive 

 

9.7  KEY WORDS:  

 

• Confidence Interval 

• Confidence Level 

• Margin of Error 

• Sampling Distribution 

• Regression Coefficient 

• Mean Response 

• Prediction Interval 

• Confidence Region 

• Ellipsoidal Region 

• Variance–Covariance Matrix 

• Multivariate Normal Distribution 

• Linear Model 

 

9.8  SUMMARY: 

 

This lesson focused on the construction, interpretation, and application of confidence 

intervals and confidence regions in statistical inference, particularly within the framework of 

linear models and regression analysis. The concept of confidence intervals was introduced as 

a range of plausible values for an unknown population parameter, reflecting sampling 

variability and uncertainty. 

 

Beginning with basic definitions and notation, confidence intervals for means, proportions, 

and variances were discussed using appropriate sampling distributions such as the normal, t, 

chi-square, and F distributions. These ideas were then extended to regression models, where 

confidence intervals were developed for regression coefficients, the mean response, and the 

prediction of a new observation, highlighting the distinction between estimation and 

prediction. 

The concept of confidence regions was introduced to handle simultaneous inference for 

multiple parameters. Ellipsoidal confidence regions in the multivariate case were derived and 

interpreted geometrically, emphasizing their dependence on the variance–covariance 

structure of the estimators. Relevant theorems supporting the validity of these intervals and 

regions were presented with illustrative examples. 

 

Overall, this unit provides a comprehensive framework for quantifying uncertainty and 

making statistically valid inferences in both univariate and multivariate settings within linear 

models. 
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9.9  SELF-ASSESSMENT QUESTIONS:  

 

1. Define a confidence interval and explain its interpretation. Derive the CI for a population 

mean with known variance. 

2. Obtain confidence intervals for the least squares estimates in the case of a two-variable 

linear model. 

3. Explain why Student’s t-distribution is used when variance is unknown. Construct a 95% 

CI for a proportion with example data. 

4. Derive the chi-square CI for variance. State the matrix form of the variance of 𝛽̂. 

5. Derive CI for a regression coefficient using least squares theory. 

6. Distinguish between CI for mean response and prediction interval. 

7. Define a confidence region and explain why it is ellipsoidal. 

8. Explain the role of the F-distribution in constructing multivariate confidence regions. 

 

9.10  SUGGESTED READING: 

 

1. raper, N. R. and Smith, H. (1998). Applied Regression Analysis, Wiley. 

2. Montgomery, D. C., Peck, E. A., and Vining, G. G. (2012). Introduction to Linear 

Regression Analysis, Wiley. 

3. Rao, C. R. (1973). Linear Statistical Inference and Its Applications, Wiley. 

4. Seber, G. A. F. and Lee, A. J. (2003). Linear Regression Analysis, Wiley. 

5. Kutner, M. H., Nachtsheim, C. J., Neter, J., and Li, W. (2005). Applied Linear Statistical 

Models, McGraw-Hill. 

 

 

 

                 Dr. U. Ramkiran 



LESSON-10 

ANALYSIS OF VARIANCE 
 

OBJECTIVES:  

 

After studying this lesson, the student will be able to: 

❖ Understand the fundamental concept of ANOVA - Explain the rationale of analysis of 

variance and its role in comparing multiple population means. 

❖ Relate ANOVA to linear statistical models - Interpret ANOVA as a special case of the 

general linear model. 

❖ Identify sources of variation - Decompose total variation into between-group and 

within-group components. 

❖ Apply one-way and two-way ANOVA models - Formulate and analyze fixed-effects 

ANOVA models. 

❖ Derive and interpret ANOVA test statistics - Compute sums of squares, mean squares, 

and F-statistics. 

❖ Test hypotheses using ANOVA - Perform hypothesis testing for equality of means 

under various experimental designs. 

❖ Interpret ANOVA results in applied contexts - Draw meaningful conclusions from 

ANOVA tables in real-life data analysis. 

❖ Develop analytical skills for experimental data - Apply ANOVA techniques to 

problems in agriculture, industry, social sciences, and biomedical research. 

 

STRUCTURE: 

 

Introduction 

10.1 General Linear Model Framework 

10.3.    Partitioning of Total Variation 

10.3.1.One-Way , Two way Analysis of Variance 

10.3 ANOVA Through Regression 

10.4 Matrix Approach to ANOVA 

10.5.1.Applications of ANOVA 

10.5 Assumptions and Diagnostics 

10.6.1.Remedies for Assumption Violations 

10.6  Theorems  

10.7  Key Words 

10.8  Summary 

10.9 Self-Assessment Questions 

10.10 Suggested Reading  
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10.1 INTRODUCTION:  

 

Analysis of Variance (ANOVA) is the framework for testing whether several population 

means are equal. It partitions total observed variation into components attributable to factors 

(treatments, groups) and random error, and uses the 𝐹-ratio (treatment mean square over error 

mean square) to test hypotheses. ANOVA is both a modeling and an inferential device closely 

related to the general linear model (regression) formulation of mean functions. Classic 

treatments and matrix derivations appear in Montgomery et al. and Weisberg. 

 

Description 

This lesson introduces Analysis of Variance (ANOVA) as a fundamental statistical tool used 

to analyze experiments and regression models by decomposing total variation into 

meaningful components. Drawing from the structure presented in Montgomery, Peck & 

Vining and the matrix-based treatment of Weisberg, the chapter develops both the classical 

ANOVA framework and its natural extension within the general linear model. 

 

The chapter begins with the model 

𝑌 = 𝑋𝛽 + 𝜀 

which serves as the mathematical foundation for all ANOVA procedures. Using this model, 

the total variation in the response is partitioned into components explained by the fitted 

model (regression or treatment effects) and unexplained random variation (error). The 

derivation of sums of squares, degrees of freedom, and mean squares follows the same 

approach as in Montgomery’s regression ANOVA chapters. 

 

The lesson then addresses assumption diagnostics, including graphical and analytical 

methods for assessing normality, homogeneity of variance, independence, leverage, and 

influence. These align with the standard residual analysis presented in both PDFs and your 

DOCX lesson file. 

 

Finally, practical applications and interpretation are emphasized. Examples include 

completely randomized designs, randomized block designs, and factorial experiments, 

consistent with the style of examples in your provided materials. 

 

10.2 GENERAL LINEAR MODEL FRAMEWORK: 

 

We view ANOVA as a special case of the general linear model 

𝑌 = 𝑋𝛽 + 𝜀, 𝜀 ∼ 𝑁(0, 𝜎2𝐼) 

Each ANOVA design has a specific 𝑋. For one-way ANOVA with 𝑔 groups, a common 

parameterization is 

𝑦𝑖𝑗 = 𝜇 + 𝜏𝑖 + 𝜀𝑖𝑗, ∑ 𝜏𝑖

𝑔

𝑖=1

= 0 

or equivalently the cell means parameterization 𝑦𝑖𝑗 = 𝜇𝑖 + 𝜀𝑖𝑗. The linear model view allows 

use of projection matrices, sums of squares as quadratic forms, derivation of distributions                              

(chi-square, 𝐹) via Cochran’s theorem, and extensions to unbalanced designs and mixed 

models.  

10.3  PARTITIONING OF TOTAL VARIATION:  

Fundamental identity (one-way case):  
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( )
2

1 1

ing

T ij B E
i j

SS y y SS SS
= =

= − = +   

where𝑆𝑆𝐵 = ∑ 𝑛𝑖𝑖 (𝑦̄𝑖 − 𝑦̄)2and ( )
2

1 1

ing

E ij
i j

SS y y
= =

= −   

Degrees of freedom partition: 

𝑛 − 1 = (𝑔 − 1) + (𝑛 − 𝑔) 

Mean squares: 𝑀𝑆𝐵 = 𝑆𝑆𝐵/(𝑔 − 1), 𝑀𝑆𝐸 = 𝑆𝑆𝐸/(𝑛 − 𝑔) 

Interpretation: 𝑆𝑆𝐵measures variation due to differences among group means; 𝑆𝑆𝐸measures 

within-group (random) variation. 

 

10.3.1 ONE-WAY ANALYSIS OF VARIANCE: 

Model and Hypotheses 

Model: 

𝑦𝑖𝑗 = 𝜇 + 𝜏𝑖 + 𝜀𝑖𝑗, 𝜀𝑖𝑗 ∼ 𝑖𝑖𝑑𝑁(0, 𝜎2), ∑ 𝜏𝑖

𝑖

= 0 

Test: 

𝐻0: 𝜏1 = 𝜏2 = ⋯ = 𝜏𝑔 = 0(all group means equal)vs𝐻𝐴:not all 𝜏𝑖 = 0 

Derivation of the 𝐹-test  

1. Compute 𝑆𝑆𝐵and 𝑆𝑆𝐸as above. Under 𝐻0, the between-group variation arises solely 

from sampling error. 

2. Under the model with normal errors and the constraint ∑𝜏𝑖 = 0, Cochran’s theorem 

gives: 

o 
𝑆𝑆𝐸

𝜎2 ∼ 𝜒𝑛−𝑔
2  

o 
𝑆𝑆𝐵

𝜎2 ∼ 𝜒𝑔−1
2 if 𝐻0is true (or more generally has noncentral chi-square under 

alternatives), and 

o 𝑆𝑆𝐵 and 𝑆𝑆𝐸are independent 

(This follows because 𝑆𝑆𝐵and 𝑆𝑆𝐸are quadratic forms in normal variables 

corresponding to orthogonal projections onto complementary subspaces.)  

3. Form the ratio 

𝐹 =
𝑀𝑆𝐵

𝑀𝑆𝐸
=

𝑆𝑆𝐵/(𝑔 − 1)

𝑆𝑆𝐸/(𝑛 − 𝑔)
 

Under 𝐻0this has an exact 𝐹𝑔−1, 𝑛−𝑔distribution 

4. Decision rule: reject 𝐻0if 𝐹cal > 𝐹𝑔−1,𝑛−𝑔; 𝛼. Equivalently compute 𝑝-value 

𝑃(𝐹𝑔−1,𝑛−𝑔 ≥ 𝐹cal). 

 

Remarks: For balanced designs 𝑆𝑆𝐵has the simple algebraic form above. For unbalanced 

designs, 𝑆𝑆𝐵and 𝑆𝑆𝐸are defined similarly but the correctness of the test uses the appropriate 

model matrix 𝑋and projections (Type I/II/III sums of squares discussions).                                           

See Montgomery/Weisberg for details on unbalanced cases and choice of sum-of-squares 

type. 
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TWO-WAY ANOVA (FIXED EFFECTS) — WITH / WITHOUT INTERACTION: 

 

Consider two factors 𝐴(levels 𝑖 = 1, … , 𝑎) and 𝐵(levels 𝑗 = 1, … , 𝑏). Observations 𝑦𝑖𝑗𝑘at cell 

(𝑖, 𝑗), 𝑘 = 1, … , 𝑛𝑖𝑗. Fixed effects model (no replication or with replication): 

𝑦𝑖𝑗𝑘 = 𝜇 + 𝛼𝑖 + 𝛽𝑗 + (𝛼𝛽)𝑖𝑗 + 𝜀𝑖𝑗𝑘, ∑ 𝛼𝑖

𝑖

= ∑ 𝛽𝑗

𝑗

= ∑(𝛼𝛽)𝑖𝑗

𝑖

= ∑(𝛼𝛽)𝑖𝑗

𝑗

= 0. 

 

Objectives: test main effects 𝛼𝑖, 𝛽𝑗, and interaction (𝛼𝛽)𝑖𝑗. 

ANOVA table (balanced replication, 𝑛𝑖𝑗 = 𝑛0): 

 

Source df SS MS 𝐹 

A 𝑎 − 1 𝑆𝑆𝐴 𝑀𝑆𝐴 = 𝑆𝑆𝐴/(𝑎 − 1) 𝑀𝑆𝐴/𝑀𝑆𝐸 

B 𝑏 − 1 𝑆𝑆𝐵 𝑀𝑆𝐵 𝑀𝑆𝐵/𝑀𝑆𝐸 

AxB (𝑎 − 1)(𝑏 − 1) 𝑆𝑆𝐴𝐵 𝑀𝑆𝐴𝐵 𝑀𝑆𝐴𝐵/𝑀𝑆𝐸 

Error 𝑎𝑏(𝑛0 − 1) 𝑆𝑆𝐸 𝑀𝑆𝐸  

Total 𝑎𝑏𝑛0 − 1 𝑆𝑆𝑇   

 

Derivations use projection matrices and Cochran’s theorem to establish null distributions of 

mean squares (see Montgomery for derivations). For unbalanced designs use the general 

linear model and appropriate contrasts.  

 

10.4 ANOVA THROUGH REGRESSION (INDICATOR VARIABLES) 

 

Equivalently, represent factor levels by dummy (indicator) variables in 𝑋and fit 𝑌 = 𝑋𝛽 + 𝜀. 

For one-way ANOVA with 𝑔groups, one can encode 𝑔 − 1dummies (with intercept) and test 

the joint significance of the dummy coefficients using an 𝐹-test equivalent to the ANOVA 𝐹. 

This perspective: 

• unifies ANOVA with regression 

• handles covariates (ANCOVA) 

• allows complex contrasts and hypothesis testing for linear functions of 𝛽. 

See Weisberg §6 and Montgomery §3 for worked examples and the mapping between 

sums of squares and regression projections. 

 

10.5   MATRIX APPROACH TO ANOVA (CONCISE DERIVATION) 

 

Let 𝑌 ∈ ℝ𝑛, model 𝑌 = 𝑋𝛽 + 𝜀. Define projection matrices: 

• 𝑃𝑋 = 𝑋(𝑋′𝑋)−1𝑋′(fitted space) 

• 𝑀𝑋 = 𝐼 − 𝑃𝑋(residual projector) 

Sums of squares are quadratic forms: 
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• 𝑆𝑆𝑅𝑒𝑔 =∥ 𝑃𝑋𝑌 − 𝑌̄𝟏 ∥2(model/treatment SS) 

• 𝑆𝑆𝑅𝑒𝑠 = 𝑌′𝑀𝑋𝑌(residual SS) 

By Cochran’s theorem (and properties of idempotent matrices) if 𝜀 ∼ 𝑁(0, 𝜎2𝐼): 

• 
𝑆𝑆𝑅𝑒𝑠

𝜎2
∼ 𝜒𝑛−𝑝

2  

• 
𝑆𝑆𝑅𝑒𝑔

𝜎2 ∼ 𝜒𝑝−1
2 under null of no effect (or noncentral otherwise) 

• independence holds between orthogonal quadratic forms. Hence the 𝐹-test arises as 

ratio of scaled chi-squares: 

𝐹 =
(𝑆𝑆𝑅𝑒𝑔/(𝑝 − 1))

(𝑆𝑆𝑅𝑒𝑠/(𝑛 − 𝑝))
∼ 𝐹𝑝−1,𝑛−𝑝 

This derivation is the most general and covers unbalanced/complex designs. See Appendix C 

(Montgomery) for details on SSR/SSRes relationships and proofs.  

 

10.5.1  APPLICATIONS OF ANOVA: 

 

• Experimental comparisons (agriculture, industry) — compare treatment means. 

• Factorial experiments (study main effects and interactions). 

• Blocked designs (randomized block ANOVA) to remove nuisance variation. 

• ANCOVA — ANOVA with covariates (combine regression and ANOVA). 

• Random effects models and variance component estimation (mixed models). See 

examples and practice problems in both Montgomery and Weisberg. 

 

10.6  ASSUMPTIONS & DIAGNOSTICS: 

 

Classical ANOVA assumptions (same as linear model): 

5. Linearity (mean structure correct) 

6. Errors 𝜀𝑖𝑗are independent 

7. Homoscedasticity: Var (𝜀𝑖𝑗) = 𝜎2(constant variance across cells) 

8. Normality: 𝜀𝑖𝑗 ∼ 𝑁(0, 𝜎2)(for exact small-sample inference) 

Diagnostics: residual plots vs fitted values, normal probability plots of residuals, 

Levene/Bartlett tests for homogeneity, interaction plots for factorials, influence diagnostics 

for outliers. See Weisberg Chap. 8 and Montgomery Chap. 4 for detailed diagnostic 

procedures and graphical examples. 

 

10.6.1  remedies for assumption violations 

 

• Nonconstant variance: transform the response (Box–Cox), use weighted least squares; 

consider variance-stabilizing transforms (square root, log).  

• Nonnormality / outliers: robust methods, trimmed means, or bootstrap inference. 

• Unbalanced designs / missing cells: use general linear model, Type II/III sums of 

squares, or mixed models (REML) for random effects. Montgomery recommends 

REML for unbalanced random/mixed models.  
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10.7  THEOREMS & PROOFS (KEY RESULTS YOU MUST INCLUDE): 

 

THEOREM I. Partitioning identity (one–way ANOVA) 

Claim. 

∑ ∑(𝑦𝑖𝑗 − 𝑦̄)2  

𝑗

𝑖

  =    ∑ 𝑛𝑖(𝑦̄𝑖 − 𝑦̄)2

𝑖

  +    ∑ ∑(𝑦𝑖𝑗 − 𝑦̄𝑖)2

𝑗

(𝑦𝑖𝑗 − 𝑦̄𝑖)2.

𝑖

 

Interpretation. Total corrected sum of squares = between–groups SS + within–groups (error) 

SS. 

 

Proof (algebraic). 

1. Start with the left–hand side, expand each term by inserting 𝑦̄𝑖: 

𝑦𝑖𝑗 − 𝑦̄   =   (𝑦𝑖𝑗 − 𝑦̄𝑖) + (𝑦̄𝑖 − 𝑦̄) 

2. Square and sum over all 𝑖, 𝑗: 

∑ ∑(𝑦𝑖𝑗 − 𝑦̄)2

𝑗

𝑖

= ∑ ∑[(𝑦𝑖𝑗 − 𝑦̄𝑖) + (𝑦̄𝑖 − 𝑦̄)]2

𝑗

𝑖

 

 

 

3. Expand the square: 

∑ ∑(𝑦𝑖𝑗 − 𝑦̄)2

𝑗

𝑖

= ∑ ∑(𝑦𝑖𝑗 − 𝑦̄𝑖)
2

𝑗

𝑖

+2 ∑ ∑(𝑦𝑖𝑗 − 𝑦̄𝑖)(𝑦̄𝑖 − 𝑦̄)

𝑗

𝑖

+ ∑ ∑(𝑦̄𝑖 − 𝑦̄)2

𝑗

.

𝑖

 

4. Simplify each term: 

• The first term is ∑ ∑ (𝑦𝑖𝑗 − 𝑦̄𝑖)
2

𝑗
𝑖

(that will become 𝑆𝑆𝐸). 

• The third term: ∑ ∑ (𝑦̄𝑖 − 𝑦̄)2
𝑗

𝑖
= ∑ 𝑛𝑖(𝑦̄𝑖 − 𝑦̄)2

𝑖
because 𝑦̄𝑖 − 𝑦̄does not depend 

on 𝑗and there are 𝑛𝑖observations in group 𝑖. 
• The middle term: use that for each 𝑖, 

∑(𝑦𝑖𝑗 − 𝑦̄𝑖)

𝑛𝑖

𝑗=1

= 0 

(by definition of group mean), therefore 
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∑ ∑(𝑦𝑖𝑗 − 𝑦̄𝑖)(𝑦̄𝑖 − 𝑦̄)

𝑗

𝑖

= ∑(𝑦̄𝑖 − 𝑦̄)

𝑖

∑(𝑦𝑖𝑗 − 𝑦̄𝑖)

𝑗

= 0. 

5. Putting pieces together, 

∑ ∑(𝑦𝑖𝑗 − 𝑦̄)2

𝑗

𝑖

= ∑ ∑(𝑦𝑖𝑗 − 𝑦̄𝑖)
2

𝑗

𝑖

+ ∑ 𝑛𝑖(𝑦̄𝑖 − 𝑦̄)2

𝑖

, 

which is the desired identity. 

 

THEOREM II Distribution of sums–of–squares under normality (via Cochran’s theorem) 

One–way ANOVA model 

𝑦𝑖𝑗 = 𝜇𝑖 + 𝜀𝑖𝑗, 𝜀𝑖𝑗 ∼ 𝑖𝑖𝑑𝑁(0, 𝜎2) 

Let 𝑆𝑆𝐸 = ∑ ∑ (𝑦𝑖𝑗 − 𝑦̄𝑖)
2

𝑗
𝑖

  and 𝑆𝑆𝐵 = ∑ 𝑛𝑖(𝑦̄𝑖 − 𝑦̄)2
𝑖

 

Under 𝐻0: 𝜇1 = ⋯ = 𝜇𝑔 = 𝜇, we have the standard null model with common mean. 

Claims 

• Under 𝐻0, 
𝑆𝑆𝐸

𝜎2 ∼ 𝜒 𝑛−𝑔
2  

• Under 𝐻0, 
𝑆𝑆𝐵

𝜎2 ∼ 𝜒 𝑔−1
2  

• Moreover 𝑆𝑆𝐸and 𝑆𝑆𝐵are independent. 

 

Proof : 

Vector form and projections. Stack observations into 𝑌 ∈ ℝ𝑛. Under 𝐻0the mean vector is 

𝜇1and the errors vector 𝜀 ∼ 𝑁(0, 𝜎2𝐼𝑛). Consider subspaces: 

o 𝒮1 = span (𝟏)(overall mean subspace, dimension 1) 

o 𝒮2 = {vectors constant on each group, with sum zero across groups} the between–

group subspace orthogonal to 𝟏 describing deviations of group means from the grand 

mean; dim (𝒮2) = 𝑔 − 1 

o 𝒮3 =the within–group residual subspace (vectors with each group sum zero); 

dim (𝒮3) = 𝑛 − 𝑔 

 

These three subspaces are pairwise orthogonal and their direct sum is ℝ𝑛 

1. Quadratic forms as projections. Let 𝑃3denote the orthogonal projector onto 𝒮3. Then 

𝑆𝑆𝐸 =∥ 𝑃3𝑌 ∥2= 𝑌′𝑃3𝑌 

 

Similarly, 𝑃2(projector onto 𝒮2) gives 

𝑆𝑆𝐵 =∥ 𝑃2𝑌 ∥2= 𝑌′𝑃2𝑌 

 

And the total corrected SS is 𝑌′(𝑃1 + 𝑃2 + 𝑃3)𝑌with 𝑃1projector onto 𝒮1 

2. Cochran’s theorem application. Cochran’s theorem states: if 𝑌 ∼ 𝑁(0, 𝜎2𝐼𝑛)and 

𝐴1, … , 𝐴𝑘are symmetric idempotent matrices with ranks 𝑟1, … , 𝑟𝑘such that  



Linear Models and Applied Regression Analysts 10.8       Analysis of Variance  
 

∑𝑘
𝑖=1 𝐴𝑖 = 𝐼𝑛, then the quadratic forms 𝑌′𝐴𝑖𝑌/𝜎2are independent and 𝑌′𝐴𝑖𝑌/𝜎2 ∼ 𝜒𝑟𝑖

2 . 

In our ANOVA decomposition we have projectors 𝑃1, 𝑃2, 𝑃3summing to 𝐼𝑛on the centered 

data space, with ranks 1, (𝑔 − 1), (𝑛 − 𝑔)respectively. Hence Cochran’s theorem applies. 

3. Conclude distributions and independence. Under 𝐻0(so the mean structure is in 𝒮1), 

with 𝑌 − 𝜇1playing the role of random normal vector centered at 0, we obtain: 

o 𝑆𝑆𝐸/𝜎2 = 𝑌′𝑃3𝑌/𝜎2 ∼ 𝜒 𝑛−𝑔
2 , 

o 𝑆𝑆𝐵/𝜎2 = 𝑌′𝑃2𝑌/𝜎2 ∼ 𝜒 𝑔−1
2 , 

o and𝑆𝑆𝐸and 𝑆𝑆𝐵are independent because 𝑃2𝑃3 = 0(orthogonal projectors onto 

orthogonal subspaces). 

Remarks. 

• If an alternative (nonnull) model holds, the distribution of 𝑆𝑆𝐵/𝜎2 becomes a 

noncentral chi–square with noncentrality determined by the true group means; 

𝑆𝑆𝐸/𝜎2  remains central chi–square if homoscedastic normal errors hold. 

• The geometric / projector viewpoint and Cochran’s theorem are the standard rigorous 

route — see Montgomery for this exposition. 

 

THEOREM III  F–test (ratio of scaled chi–squares) 

Claim.Under 𝐻0, the statistic 

𝐹   =   
𝑀𝑆𝐵

𝑀𝑆𝐸
   =   

𝑆𝑆𝐵/(𝑔 − 1)

𝑆𝑆𝐸/(𝑛 − 𝑔)
 

has an 𝐹-distribution with (𝑔 − 1, 𝑛 − 𝑔)degrees of freedom: 

𝐹 ∼ 𝐹 𝑔−1,  𝑛−𝑔 

Proof (straightforward from II) 

1. By II, under 𝐻0, 

𝑆𝑆𝐵

𝜎2
∼ 𝜒 𝑔−1

2 ,
𝑆𝑆𝐸

𝜎2
∼ 𝜒 𝑛−𝑔

2  

and the two are independent. 

2. The definition of an 𝐹-distributed variable: if 𝑈 ∼ 𝜒𝑟1
2 and 𝑉 ∼ 𝜒𝑟2

2 are independent, 

then 

(𝑈/𝑟1)

(𝑉/𝑟2)
∼ 𝐹𝑟1,𝑟2

 

3. Apply the definition with 𝑈 = 𝑆𝑆𝐵/𝜎2, 𝑉 = 𝑆𝑆𝐸/𝜎2, 𝑟1 = 𝑔 − 1, 𝑟2 = 𝑛 − 𝑔. Then 

(𝑆𝑆𝐵/𝜎2)/(𝑔 − 1)

(𝑆𝑆𝐸/𝜎2)/(𝑛 − 𝑔)
∼ 𝐹𝑔−1,𝑛−𝑔 

4. Cancel 𝜎2in numerator and denominator to get 

𝑆𝑆𝐵/(𝑔 − 1)

𝑆𝑆𝐸/(𝑛 − 𝑔)
∼ 𝐹𝑔−1,𝑛−𝑔 

which is the desired result. 

Decision rule. Reject 𝐻0at level 𝛼if 𝐹obs > 𝐹𝑔−1,𝑛−𝑔;1−𝛼 

 

THEOREM IV Equivalence of ANOVA 𝐹and regression 𝐹(SSR = 𝑆𝑆𝐵and orthogonality) 
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Claim.Fitting the one–way ANOVA model by ordinary least squares using dummy (indicator) 

variables yields the same model sum of squares as the classical ANOVA between–groups SS. 

Thus the ANOVA 𝐹-test is algebraically identical to the regression 𝐹-test for testing the joint 

significance of the dummy coefficients. 

Proof  

1. Regression encoding. Let there be 𝑔groups. One standard regression parameterization 

is: 

𝑦𝑖𝑗 = 𝛽0 + 𝛽2𝑑𝑖2 + 𝛽3𝑑𝑖3 + ⋯ + 𝛽𝑔𝑑𝑖𝑔 + 𝜀𝑖𝑗 

where𝑑𝑖𝑘 = 1 if observation is in group 𝑘, else 0; group 1 serves as baseline                                        

(so there are 𝑔 − 1dummies plus intercept). The design matrix 𝑋 has columns: a 

column of ones (intercept) and 𝑔 − 1dummy columns. Full rank 𝑝 = 𝑔. 

 

2. Model fitted values and group means. For this design, the fitted value for any 

observation in group 𝑖equals the estimated group mean 𝜇̂𝑖. (Because the OLS solution 

sets the fitted value constant within each group equal to the group sample mean when 

using cell means parameterization or equivalent dummy coding.) Concretely, the 

fitted vector 𝑌̂ = 𝑃𝑋𝑌is piecewise constant on the groups, with value 𝑦̄𝑖for 

observations in group 𝑖. 

3. Regression SSR equals ANOVA between–groups SS. The regression sum of squares 

(SSR or SSReg) is 

𝑆𝑆𝑅𝑒𝑔 = ∑(𝑦̂𝑘 − 𝑦̄)2

𝑛

𝑘=1

= ∑ 𝑛𝑖(𝑦̄𝑖 − 𝑦̄)2

𝑖

 

because𝑦̂𝑘 = 𝑦̄𝑖for observations in group 𝑖. But the right side is exactly 𝑆𝑆𝐵from the 

ANOVA algebraic identity. Thus 𝑆𝑆𝑅𝑒𝑔 = 𝑆𝑆𝐵 

4. Residual (error) SS equality. The residual sum of squares from regression is 

𝑆𝑆𝑅𝑒𝑠 = ∑(𝑦𝑘 − 𝑦̂𝑘)2

𝑛

𝑘=1

= ∑ ∑(𝑦𝑖𝑗 − 𝑦̄𝑖)
2 =

𝑖
𝑗

𝑆𝑆𝐸Type equation here. 

       This also follows from the partition 𝑆𝑆𝑇 = 𝑆𝑆𝑅𝑒𝑔 + 𝑆𝑆𝑅𝑒𝑠 and the partition identity in I. 

5. Orthogonality / independence viewpoint. In matrix language, the model subspace 

spanned by the columns of 𝑋 equals the span of group–indicator vectors (which is the 

sum of the grand–mean subspace and the between–group subspace). The residual 

projector 𝑀𝑋 = 𝐼 − 𝑃𝑋 projects onto the within–group subspace; hence regression 

residuals are orthogonal to the columns of 𝑋, which yields orthogonality of SSR and 

SSE quadratic forms. This is the same geometry underlying Cochran’s theorem used 

in II. 

6. Equivalence of 𝐹tests. In regression one tests the null that the 𝑔 − 1 dummy 

coefficients are all zero (i.e. only intercept remains). The standard regression 𝐹for the 

model with 𝑝 = 𝑔parameters is 

𝐹 =
𝑆𝑆𝑅𝑒𝑔/(𝑝 − 1)

𝑆𝑆𝑅𝑒𝑠/(𝑛 − 𝑝)
=

𝑆𝑆𝐵/(𝑔 − 1)

𝑆𝑆𝐸/(𝑛 − 𝑔)
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which is exactly the ANOVA 𝐹derived earlier. Thus the tests are algebraically 

identical. 

 

Conclusion: 

ANOVA can be viewed as a special case of the general linear model; sums of squares and 

tests coincide when factors are encoded by dummy variables. For elaboration and examples 

see Weisberg and Montgomery. 

 

10.8  KEY WORDS:  

 

• Analysis of Variance (ANOVA) 

• Total Sum of Squares (TSS) 

• Treatment Sum of Squares (TrSS) 

• Error Sum of Squares (ESS) 

• Mean Square 

• F-statistic 

• One-Way ANOVA 

• Two-Way ANOVA 

• Fixed Effects Model 

• Random Effects Model 

• General Linear Model 

• ANOVA Table 

• Degrees of Freedom 

• Null Hypothesis 

• Homogeneity of Variance 

• Additivity 

• Interaction Effects 

• Matrix Approach to ANOVA 

• ANOVA through Regression 

 

10.9  SUMMARY: 

 

Analysis of Variance (ANOVA) is a fundamental statistical technique used to compare means 

of two or more populations by decomposing total variability in the data into meaningful 

components attributable to different sources. Within the general linear model framework, 

ANOVA is shown to be a special case of regression analysis, thereby unifying regression and 

experimental data analysis. 

 

The unit begins with the formulation of ANOVA under the general linear model, 

emphasizing the role of design matrices and parameter interpretation. The partitioning of total 

variation into treatment (explained) and error (unexplained) components forms the basis for 

hypothesis testing using the F-statistic. One-way and two-way ANOVA models illustrate how 

factor effects and interactions influence response variability. 

 

ANOVA is further developed through a regression and matrix approach, which provides a 

compact and powerful representation for estimation, testing, and interpretation. This 

approach highlights connections between sums of squares, projections, and estimability of 
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effects. Practical applications of ANOVA demonstrate its usefulness in agriculture, industry, 

economics, medicine, and social sciences. 

 

The unit also stresses the importance of model assumptions-normality, independence, and 

homoscedasticity-and introduces diagnostic tools for detecting violations. Appropriate 

remedial measures, such as transformations and alternative modeling strategies, are discussed 

to ensure valid inference. 

 

In conclusion, ANOVA serves as a cornerstone of linear models by: 

• Providing a systematic method for comparing multiple means, 

• Linking experimental design with regression analysis, 

• Offering a matrix-based framework for estimation and testing, 

• Supporting sound statistical inference through diagnostics and assumptions. 

A solid understanding of ANOVA equips students with essential tools for analyzing 

structured data and lays the foundation for advanced topics in linear and mixed models. 

 

10.10  SELF-ASSESSMENT QUESTIONS: 

 

1. Derive the one-way ANOVA partition 𝑆𝑆𝑇 = 𝑆𝑆𝐵 + 𝑆𝑆𝐸from first principles. 

2. Show step-by-step that under the normal error model 𝑆𝑆𝐸/𝜎2 ∼ 𝜒𝑛−𝑔
2 . (Use Cochran’s 

theorem.) 

3. Explain analysis of variance for two–way classification with multiple observations per 

cell. Obtain the  ANOVA table. 

4. Show equivalence between the ANOVA 𝐹-test and the regression 𝐹test for group 

indicators. 

5. Given an unbalanced one-way design, explain differences among Type I/II/III sums of 

squares and when each is appropriate. 

6. Given residual diagnostics showing increasing variance with fitted values, propose 

remedial steps and justify them. 
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LESSON -11 

SIMPLE LINEAR REGRESSION 
  

OBJECTIVES: 

 

After completing this lesson, students will be able to: 

• Understand the structure and assumptions of the simple linear regression model 

• Derive and compute least squares estimators of regression parameters 

• Interpret regression coefficients in practical contexts 

• Perform hypothesis testing and construct confidence intervals for parameters 

• Evaluate model adequacy using coefficient of determination (R²) 

 

STRUCTURE: 

 

11.1 INTRODUCTION 

11.2 SIMPLE LINEAR REGRESSION MODEL 

11.2.1 Assumptions of Simple Linear Regression 

 11.2.2 Interpretation of Regression Parameters 

11.3 LEAST SQUARES ESTIMATION 

11.3.1 Estimation of Regression Coefficients 

 11.3.2 Properties of Least Squares Estimators 

11.4 STATISTICAL INFERENCE 

11.4.1 Tests of Hypotheses on Regression Parameters 

 11.4.2 Confidence Intervals for Regression Coefficients 

11.5 GOODNESS OF FIT 

11.5.1 Coefficient of Determination (R²) 

11.6 CONCLUSION 

11.7 SELF ASSESSMENT QUESTIONS 

11.8 FURTHER READINGS 

 

11.1 INTRODUCTION 
 

In many real-world situations, understanding how one measurable quantity changes in 

response to another is essential for scientific analysis and decision-making. Such situations 

frequently arise in economics, agriculture, engineering, medicine, environmental studies, and 

social sciences. When the relationship between two quantitative variables is of interest, 

statistical modeling provides a systematic approach to describe, analyze, and interpret this 

relationship. Among the various statistical tools available, simple linear regression is one of 

the most fundamental and widely applied techniques. 
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Simple linear regression focuses on studying the relationship between two variables, where 

one variable depends on the other. The variable whose value is to be explained or predicted is 

called the response or dependent variable, while the variable used to explain or predict 

changes is known as the explanatory or independent variable. The primary objective of 

regression analysis is not only to identify whether a relationship exists but also to quantify the 

nature and strength of that relationship. 

 

The fundamental idea of simple linear regression is to represent the dependence of the 

response variable on the explanatory variable through a straight-line relationship. This 

linear form is chosen for its simplicity, interpretability, and usefulness in practical 

applications. Although many real-world relationships may be complex, linear regression 

often serves as an effective first approximation that captures the overall trend in the data. 

Once such a model is established, it can be used to predict future values of the response 

variable for given values of the explanatory variable. 

 

An important feature of regression analysis is the recognition of random variation. In 

practice, observed data rarely follow a perfect deterministic relationship. Various unobserved 

factors, measurement errors, and natural variability introduce randomness into the observed 

values. Simple linear regression accounts for this uncertainty by incorporating a random error 

term into the model. This allows the analyst to separate the systematic component of the 

relationship from random fluctuations and to make probabilistic statements about model 

parameters and predictions. 

 

Regression analysis differs from correlation analysis in its objective. While correlation 

measures the degree of association between two variables, regression aims to establish a 

functional relationship that enables explanation and prediction. In simple linear regression, 

the direction of dependence is clearly defined: changes in the explanatory variable are 

assumed to influence the response variable, not vice versa. This distinction is crucial in 

applications such as forecasting, policy analysis, and experimental studies. 

 

The simplicity of the linear regression model also allows for meaningful interpretation of its 

parameters. The slope of the regression line indicates the average rate of change of the 

response variable with respect to the explanatory variable, while the intercept provides a 

baseline level of the response variable under specific conditions. These interpretations make 

the model particularly useful for conveying results to practitioners and decision-makers who 

may not have a strong background in statistics. 

 

Another important role of simple linear regression is its function as a foundation for more 

advanced models. Concepts such as least squares estimation, hypothesis testing, confidence 

interval construction, and model diagnostics are first introduced in the context of the simple 

linear regression model. These ideas are later extended to multiple regression, generalized 

linear models, and other advanced statistical techniques. Therefore, a clear understanding of 

simple linear regression is essential for further study in statistical modeling and data analysis. 

In addition, simple linear regression plays a vital role in empirical research. Researchers use 

it to test theoretical relationships, validate assumptions, and generate insights from data. By 

quantifying relationships and assessing their statistical significance, regression analysis 

supports evidence-based conclusions across a wide range of disciplines. 

 

In summary, simple linear regression provides a powerful yet accessible framework for 

studying relationships between variables. Its practical relevance, conceptual clarity, and 
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methodological importance make it an indispensable tool in statistics and applied research. A 

thorough understanding of this technique enables students and practitioners to model real-

world phenomena effectively and to progress toward more sophisticated analytical methods. 

 

11.2 SIMPLE LINEAR REGRESSION MODEL 
 

In regression analysis, the objective is to study the relationship between a response 

(dependent) variable, whose value is unknown, and one or more explanatory 

(independent) variables, whose values are known or observed. When the model involves a 

single response variable Y and only one explanatory variable X, the resulting linear 

relationship 

0 1Y X  = + +    

where: 

β0 = intercept of the regression line 

β1 = slope of the regression line 

ε = random error term 

The model assumes that the mean value of Y changes linearly with X, while random 

disturbances are captured by the error term. 

Examples  

1. Predicting sales of the product based on advertisement; 

0 1( ) ( )Y Sales X Advertisements  = + +  

2. Estimating exam scores based on study hours of PG Students; 

0 1( ) ( )Y Exam Score X Study hour  = + + 11.2.1 Assumptions of Simple Linear 

Regression 

For the simple linear regression model to produce reliable estimates and valid statistical 

inferences, certain underlying assumptions must be satisfied. These assumptions describe the 

behavior of the relationship between the variables and the random error component of the 

model. 

 

Linearity 

The expected value of the response variable is assumed to be a linear function of the 

explanatory variable. This means that changes in the independent variable lead to 

proportional changes in the mean of the dependent variable. The relationship between the two 

variables can therefore be adequately represented by a straight line. 

 

Independence of Errors 

The random error terms associated with different observations are assumed to be independent 

of one another. This implies that the error corresponding to one observation does not 

influence or provide information about the error of another observation. Independence is 

particularly important when data are collected over time or across units. 

 

Zero Mean of Error Terms 

The error term is assumed to have an expected value of zero for all values of the independent 

variable. This condition ensures that the regression line represents the average relationship 

between the variables and that the model does not systematically overestimate or 

underestimate the response variable. 
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Constant Variance (Homoscedasticity) 

The variability of the error term is assumed to remain constant for all levels of the 

independent variable. In other words, the spread of the residuals around the regression line 

should be approximately the same across the entire range of the explanatory variable. This 

assumption ensures efficiency and reliability of the parameter estimates. 

 

Normality of Error Terms 

For purposes of hypothesis testing and interval estimation, the error terms are assumed to 

follow a normal distribution. While this assumption is not strictly necessary for parameter 

estimation, it is essential for constructing confidence intervals and performing significance 

tests using standard statistical methods. 

 

1. Modelling temperature and cool drinks sales in the city; 

0 1( ) ( )Y Cool drink Sales X Temperature  = + +  

To complete the model in (1), we make the following assumptions:  

1. ( ) 0E  =  or equivalently, ( ) 0 1E Y X = +  

2. ( ) 2V  =  or equivalently, ( ) 2V Y =  

3. ( ) 0i jCov   =  i j   or equivalently, ( ) 0i jCov YY =  

 

11.2.1 Assumptions of Simple Linear Regression 
 

For the simple linear regression model to produce reliable estimates and valid statistical 

inferences, certain underlying assumptions must be satisfied. These assumptions describe the 

behavior of the relationship between the variables and the random error component of the 

model. 

 

Linearity 

The expected value of the response variable is assumed to be a linear function of the 

explanatory variable. This means that changes in the independent variable lead to 

proportional changes in the mean of the dependent variable. The relationship between the two 

variables can therefore be adequately represented by a straight line. 

 

Independence of Errors 

The random error terms associated with different observations are assumed to be independent 

of one another. This implies that the error corresponding to one observation does not 

influence or provide information about the error of another observation. Independence is 

particularly important when data are collected over time or across units. 

 

Zero Mean of Error Terms 

The error term is assumed to have an expected value of zero for all values of the independent 

variable. This condition ensures that the regression line represents the average relationship 

between the variables and that the model does not systematically overestimate or 

underestimate the response variable. 

 

Constant Variance (Homoscedasticity) 

The variability of the error term is assumed to remain constant for all levels of the 

independent variable. In other words, the spread of the residuals around the regression line 
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should be approximately the same across the entire range of the explanatory variable. This 

assumption ensures efficiency and reliability of the parameter estimates. 

 

Normality of Error Terms 

For purposes of hypothesis testing and interval estimation, the error terms are assumed to 

follow a normal distribution. While this assumption is not strictly necessary for parameter 

estimation, it is essential for constructing confidence intervals and performing significance 

tests using standard statistical methods. 

 

11.2.2 Interpretation of Regression Parameters 
 

• Intercept (β0): Represents the expected value of Y when X=0. 

• Slope (β1): Measures the average change in Y for a one-unit increase in X. 

A positive slope indicates a direct relationship, while a negative slope indicates an inverse 

relationship. 

 

11.3 LEAST SQUARES ESTIMATION 
 

The method of least squares is used to estimate the unknown regression parameters. The 

principle is to choose estimators that minimize the sum of squared deviations between 

observed values and fitted values. 

 

11.3.1 Estimation of Regression Coefficients 

 

The estimators of β0 and β1 are given by: 

1 =  

0 =  - 1  

The fitted regression line is: 

 = 0 + 1  

 

11.3.2 Properties of Least Squares Estimators 
 

Under the standard assumptions, the least squares estimators have the following properties: 

• Unbiasedness: E( 0) = β0 and E( 1) = β1 

• Minimum Variance: They have the smallest variance among all linear unbiased 

estimators 

• Consistency: Estimators converge to true parameter values as sample size increases 

• Efficiency: They achieve the Gauss–Markov optimality condition 

 

11.4 STATISTICAL INFERENCE 

 

Statistical inference in regression analysis focuses on drawing conclusions about the 

unknown parameters of a regression model based on sample data. Once the regression 

coefficients are estimated, inferential procedures are used to determine whether the estimated 

relationships are statistically meaningful and to assess the precision of these estimates. 
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One important aspect of statistical inference is hypothesis testing. Hypotheses are 

formulated to test assumptions about regression parameters, particularly to examine whether 

an explanatory variable has a significant effect on the response variable. A common null 

hypothesis states that a regression coefficient is equal to zero, implying no linear relationship 

between the variables. Test statistics are computed using the estimated coefficients and their 

standard errors, and decisions are made by comparing these values with appropriate critical 

values. 

 

Another key component of regression inference is the construction of confidence intervals 

for the model parameters. Confidence intervals provide a range of plausible values for the 

true regression coefficients and indicate the level of uncertainty associated with the estimates. 

A wider interval reflects greater uncertainty, while a narrower interval suggests more precise 

estimation. 

 

Statistical inference also allows for assessing the overall adequacy of the regression model. 

By combining hypothesis tests and confidence intervals, researchers can evaluate the 

reliability of parameter estimates and the strength of the relationship between variables. 

These inferential tools support informed conclusions and enable effective prediction and 

decision-making based on the regression model. 

 

11.4.1 Tests of Hypotheses on Regression Parameters 

 

A commonly tested hypothesis is: 

H0:β1 = 0 vs H1:β1 ≠ 0  

The test statistic is: 

t =   

If the calculated t-value exceeds the critical value, the null hypothesis is rejected, indicating a 

significant linear relationship. 

 

11.4.2 Confidence Intervals for Regression Coefficients 

 

A (1−α)×100% confidence interval for β1 is: 

± tα/2, n−2×SE ( ) 

Similarly, confidence intervals can be constructed for β0. 

 

11.5 GOODNESS OF FIT 

 

Goodness of fit refers to the extent to which a regression model is able to explain the 

observed variation in the response variable using the explanatory variable. It provides a 

quantitative measure of how accurately the fitted regression equation represents the 

underlying data. A model with a good fit closely follows the observed data points, while a 

poor fit indicates that the model does not adequately capture the relationship between the 

variables. 

 

In regression analysis, the total variation in the response variable can be separated into two 

components: the variation explained by the regression model and the variation due to random 

error. Goodness-of-fit measures evaluate the proportion of total variation that is explained by 
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the fitted model. A higher proportion of explained variation indicates that the model 

successfully captures the systematic relationship between the variables. 

 

Assessing goodness of fit is essential for understanding the usefulness and reliability of a 

regression model. Even if the estimated regression coefficients are statistically significant, the 

model may still perform poorly if it explains only a small portion of the variability in the 

data. Therefore, goodness-of-fit measures complement statistical inference by providing 

insight into the practical effectiveness of the model. 

 

Graphical methods such as residual plots are often used alongside numerical measures of 

goodness of fit. These plots help detect patterns, outliers, or deviations from model 

assumptions that may reduce the quality of the fit. A well-fitted model typically shows 

residuals that are randomly scattered without any systematic structure. 

 

Overall, goodness of fit plays a crucial role in evaluating regression models. It helps 

determine whether the model is suitable for interpretation, prediction, and decision-making. 

By examining goodness-of-fit measures, analysts can compare competing models and select 

the one that best represents the relationship between the variables while maintaining 

simplicity and accuracy. 

 

11.5.1 Coefficient of Determination (R²) 

 

The coefficient of determination is defined as: 

R² =   

Its value lies between 0 and 1. A higher value of R²  indicates that a greater proportion of 

variation in Y is explained by X. 

 

11.6 CONCLUSION 

 

Simple linear regression is one of the most important and widely used techniques in statistical 

analysis for examining the relationship between two quantitative variables. By expressing this 

relationship through a linear model, it enables researchers and practitioners to describe 

patterns, quantify associations, and make predictions based on observed data. Its simplicity, 

interpretability, and broad applicability make it a foundational tool in both theoretical and 

applied statistics. 

 

A major strength of simple linear regression lies in its ability to estimate unknown model 

parameters using observed sample data. These estimates provide meaningful numerical 

summaries that describe how the response variable changes with respect to the explanatory 

variable. In addition to parameter estimation, the method offers a structured approach for 

testing hypotheses, allowing analysts to determine whether the observed relationship is 

statistically significant or likely due to random variation. 

 

Another important aspect of simple linear regression is the evaluation of model fit. Measures 

of goodness of fit help assess how effectively the model explains variability in the data, while 

diagnostic tools highlight potential limitations or violations of assumptions. Together, these 

techniques ensure that conclusions drawn from the model are not only statistically valid but 

also practically relevant. 
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The reliability of regression analysis depends heavily on the validity of its underlying 

assumptions. Assumptions such as linearity, independence, constant variance, and normality 

of errors form the basis for accurate estimation and inference. Careful examination and 

validation of these assumptions enhance the credibility of the results and reduce the risk of 

misleading interpretations. 

 

In summary, simple linear regression provides a comprehensive framework for understanding 

relationships between variables, making predictions, and supporting data-driven decisions. 

When properly applied and interpreted, it serves as a powerful analytical tool that lays the 

groundwork for more advanced regression techniques and statistical modeling approaches. 

 

11.7 SELF ASSESSMENT QUESTIONS 
 

• Define the simple linear regression model and explain its components. 

• State and explain the assumptions of simple linear regression. 

• Derive the least squares estimators of regression coefficients. 

• Explain the significance test for the regression slope. 

• What is the importance of the coefficient of determination? 

 

11.8 FURTHER READINGS 

 

• Draper, N.R. and Smith, H., Applied Regression Analysis, Wiley. 

• Montgomery, D.C., Peck, E.A., and Vining, G.G., Introduction to Linear Regression 

Analysis, Wiley. 

• Rao, C.R., Linear Statistical Inference and Its Applications, Wiley. 

• Weisberg, S., Applied Linear Regression, Wiley. 

 

 

Dr. U. Ramkiran 



LESSON -12 

MULTIPLE REGRESSION 
OBJECTIVES:  

 

By the end of this lesson, students will be able to: 

• Formulate and analyze multiple linear regression models 

• Apply matrix methods to estimate regression coefficients 

• Interpret partial regression coefficients 

• Conduct t-tests and F-tests for model and parameter significance 

• Assess goodness of fit and analyze residuals 

 

STRUCTURE 

 

12.1 INTRODUCTION 

12.2 MULTIPLE LINEAR REGRESSION MODEL 

12.2.1 Assumptions of Multiple Regression 

 12.2.2 Interpretation of Regression Coefficients 

12.3 ESTIMATION OF PARAMETERS 

12.3.1 Least Squares Estimation 

 12.3.2 Matrix Approach to Multiple Regression 

12.4 TESTS OF SIGNIFICANCE 

12.4.1 t-test for Individual Regression Coefficients 

 12.4.2 F-test for Overall Model Significance 

12.5 MODEL ADEQUACY AND DIAGNOSTICS 

12.5.1 Coefficient of Multiple Determination 

 12.5.2 Residual Analysis 

12.6 CONCLUSION 

12.7 SELF ASSESSMENT QUESTIONS 

12.8 FURTHER READINGS 

 

12.1 INTRODUCTION 

 

In many real-life situations, the behavior of a response variable cannot be explained 

adequately by a single influencing factor. Instead, outcomes are usually determined by the 

combined effect of several explanatory variables acting simultaneously. For example, 

agricultural yield may depend on rainfall, soil quality, fertilizer usage, and temperature; 

economic growth may be influenced by investment, labor, inflation, and government policies; 

and patient recovery in medical studies may depend on age, treatment type, dosage, and 

health conditions. In such cases, analyzing the effect of one variable at a time may lead to 

incomplete or misleading conclusions. Multiple linear regression provides a systematic 

statistical framework to study such complex relationships. 
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Multiple linear regression extends the concept of simple linear regression by allowing the 

response variable to be expressed as a linear function of more than one independent 

variable. This extension enables the model to account for the simultaneous influence of 

several predictors on an outcome. By incorporating multiple explanatory variables within a 

single model, it captures the combined and individual effects of predictors more effectively. 

As a result, it offers a more realistic representation of real-world phenomena where outcomes 

are rarely driven by a single factor. 

 

A key advantage of multiple linear regression lies in its ability to isolate the effect of each 

explanatory variable while holding other variables constant. This characteristic is especially 

valuable in observational studies where controlled experiments may not be feasible. By 

controlling for the influence of other predictors, the model allows researchers to determine 

the unique contribution of each variable to the response. This helps in identifying important 

predictors, understanding cause-and-effect relationships, and making informed decisions 

based on statistical evidence. 

 

Multiple linear regression also plays an important role in prediction and forecasting. When 

several relevant explanatory variables are available, a multiple regression model typically 

provides more accurate predictions than models based on a single predictor. The inclusion of 

additional meaningful variables reduces unexplained variability and improves the precision of 

predicted values. This makes multiple regression particularly useful in applications such as 

demand forecasting, risk assessment, quality control, and policy analysis. 

 

Another significant feature of multiple linear regression is its flexibility. The model can 

accommodate both quantitative and categorical variables through appropriate coding 

techniques. This allows analysts to study a wide range of practical problems involving 

diverse types of data. Furthermore, multiple regression forms the foundation for many 

advanced statistical methods, including analysis of covariance, logistic regression, and 

machine learning regression techniques. Understanding multiple linear regression is therefore 

essential for further study in applied statistics and data science. 

 

The use of multiple linear regression requires careful attention to model assumptions and 

diagnostics. Assumptions regarding linearity, independence of errors, constant variance, and 

the absence of strong multicollinearity must be examined to ensure reliable results. 

Diagnostic tools such as residual analysis help assess the validity of the model and guide 

improvements when assumptions are violated. Proper model evaluation enhances the 

credibility and interpretability of regression results. 

 

In summary, multiple linear regression is a powerful and widely used statistical technique for 

analyzing relationships involving several explanatory variables. It provides deeper insights 

into complex data structures, improves predictive accuracy, and supports evidence-based 

decision-making across various disciplines. By enabling the study of multiple factors 

simultaneously, it serves as an indispensable tool for researchers, analysts, and practitioners 

dealing with real-world data. 

 

12.2 MULTIPLE LINEAR REGRESSION MODEL 

 

The multiple linear regression model expresses the response variable Y as a linear function of 

several explanatory variables X1,X2,…,Xk: 

Yi = β0 + β1Xi1 + β2Xi2 +⋯+ βkXik + εi,i=1,2,…,n 
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where 

β0 is the intercept, 

β1,β2,…,βk are regression coefficients, 

εi is the random error term. 

Each coefficient measures the effect of its corresponding explanatory variable on the 

response variable, assuming other variables remain fixed. 

 

12.2.1 Assumptions of Multiple Regression 

 

The multiple regression model relies on the following assumptions: 

Assumptions of Multiple Linear Regression 

For multiple linear regression to yield reliable parameter estimates and valid statistical 

inferences, certain fundamental assumptions must be satisfied. These assumptions describe 

the nature of the relationship between the response variable and the explanatory variables, as 

well as the behavior of the random error component of the model. Careful verification of 

these assumptions is essential for correct interpretation and effective application of regression 

results. 

 

1. Linearity 

The multiple linear regression model assumes that the mean of the response variable is a 

linear function of the explanatory variables. This does not require the variables themselves to 

be linearly related, but it assumes that the expected value of the response can be expressed as 

a weighted sum of the predictors plus a constant term. Each explanatory variable contributes 

to the response in an additive manner, and the effect of a variable is measured through its 

regression coefficient. 

 

Linearity simplifies both interpretation and estimation, allowing each coefficient to represent 

the average change in the response for a unit change in the corresponding predictor, assuming 

other variables remain constant. Although real-world relationships may be complex, linear 

models often provide an adequate approximation over limited ranges of the data. 

 

2. Independence of Observations and Error Terms 

Another important assumption is that the observations, and consequently the error terms, are 

statistically independent. This means that the value of the error associated with one 

observation does not influence the error of another observation. Independence is particularly 

relevant in data collected over time or space, where patterns such as autocorrelation may 

occur. 

 

Violations of this assumption can result in biased estimates of standard errors, leading to 

incorrect conclusions in hypothesis testing. Ensuring independence improves the reliability of 

statistical inference and the validity of conclusions drawn from the model. 

 

3. Zero Mean of Error Terms 

The regression model assumes that the expected value of the error term is zero for all 

combinations of the explanatory variables. This condition implies that the model is correctly 

specified in the sense that it does not systematically overestimate or underestimate the 

response variable. 

 

A zero mean error ensures that the regression line passes through the center of the data and 

that the estimated coefficients are unbiased. If this assumption is violated, it indicates that 
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important variables may be missing from the model or that the functional form of the 

relationship is not properly specified. 

 

4. Constant Variance (Homoscedasticity) 

Homoscedasticity refers to the assumption that the variance of the error term remains 

constant across all observations. In other words, the spread of the residuals around the 

regression surface should be approximately the same for all values of the explanatory 

variables. 

 

When this assumption holds, the least squares estimators are efficient and have minimum 

variance. If the variance of errors changes with the level of the predictors, a condition known 

as heteroscedasticity arises. This can distort standard errors and reduce the effectiveness of 

statistical tests, making it essential to diagnose and address when present. 

 

5. No Perfect Multicollinearity 

Multiple linear regression requires that the explanatory variables are not exact linear 

combinations of one another. This assumption ensures that each regression coefficient can 

be uniquely estimated. Perfect multicollinearity occurs when one predictor can be expressed 

exactly as a linear combination of others, making the estimation of coefficients impossible. 

Although perfect multicollinearity is rare in practice, high levels of correlation among 

predictors can still cause instability in coefficient estimates. Avoiding or addressing 

multicollinearity improves interpretability and numerical reliability of the regression results. 

Importance of Assumptions 
 

The validity of regression results depends strongly on how well these assumptions are 

satisfied. When the assumptions hold, the estimated coefficients are unbiased, consistent, and 

efficient, and standard hypothesis tests and confidence intervals are valid. Diagnostic tools 

such as residual plots and variance measures help assess these assumptions in applied work. 

Conclusion 
 

The assumptions of multiple linear regression form the foundation for reliable estimation and 

meaningful inference. Linearity, independence, zero mean errors, constant variance, and 

absence of perfect multicollinearity collectively ensure that the model accurately represents 

the underlying data-generating process. Careful examination and validation of these 

assumptions are crucial for drawing sound conclusions and making effective predictions 

using multiple linear regression. 

 

12.2.2 Interpretation of Regression Coefficients 

 

In multiple linear regression analysis, regression coefficients play a central role in explaining 

the relationship between the response variable and the explanatory variables. Each coefficient 

provides a quantitative measure of how the response variable is expected to change as a 

specific explanatory variable changes, while all other variables in the model are held 

constant. This interpretation allows researchers to study the individual contribution of each 

predictor within a multivariable framework. 

 

The coefficient associated with a particular explanatory variable represents the marginal 

effect of that variable on the response. Specifically, it measures the expected change in the 
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response variable resulting from a one-unit increase in the explanatory variable, assuming 

that all remaining variables in the model remain unchanged. This “holding other variables 

constant” condition is essential, as it allows the effect of one variable to be isolated from the 

influence of others, which is particularly important when explanatory variables are correlated. 

The sign of a regression coefficient indicates the direction of the relationship between the 

explanatory variable and the response variable. A positive coefficient suggests that, on 

average, an increase in the explanatory variable leads to an increase in the response variable, 

provided other variables are fixed. Conversely, a negative coefficient implies an inverse 

relationship, where an increase in the explanatory variable is associated with a decrease in the 

response variable. The sign therefore provides immediate qualitative insight into the nature of 

the relationship. 

 

The magnitude of a regression coefficient reflects the strength of the relationship. Larger 

absolute values indicate a stronger effect of the explanatory variable on the response variable, 

while smaller values suggest a weaker influence. However, the magnitude must be interpreted 

carefully, as it depends on the scale and units of measurement of the variables involved. For 

meaningful comparisons among coefficients, variables often need to be standardized or 

appropriately transformed. 

 

Regression coefficients also carry important contextual meaning depending on the variables 

used in the model. For continuous explanatory variables, the coefficient describes the 

expected change in the response per unit change of the predictor. When categorical variables 

are included through indicator or dummy variables, the coefficients represent differences in 

the mean response relative to a reference category. Thus, correct interpretation requires an 

understanding of how each variable is defined and measured. 

 

Another important aspect of interpreting regression coefficients is the distinction between 

statistical significance and practical significance. A coefficient may be statistically 

significant, indicating strong evidence of an association, yet have a small magnitude that 

limits its practical importance. Conversely, a coefficient with a large magnitude may not be 

statistically significant if the data exhibit substantial variability. Therefore, both the size of 

the coefficient and its statistical significance must be considered together. 

 

Regression coefficients are also influenced by the presence of other variables in the model. 

Adding or removing explanatory variables can change coefficient estimates, particularly 

when predictors are correlated. This highlights the importance of careful model specification 

and awareness of multicollinearity, which can inflate standard errors and make coefficient 

estimates unstable. 

 

In applied analysis, interpretation of regression coefficients supports decision-making and 

policy formulation. By quantifying the effect of individual variables while controlling for 

others, multiple regression enables analysts to identify key drivers of an outcome and assess 

potential impacts of changes in explanatory variables. 

 

Regression coefficients provide meaningful and interpretable measures of the relationship 

between explanatory variables and the response variable in multiple linear regression. Their 

sign indicates the direction of influence, their magnitude reflects the strength of the effect, 

and their interpretation depends on both the model structure and the measurement scale. 

Proper understanding of regression coefficients is essential for drawing valid conclusions and 

making informed decisions based on regression analysis. 
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12.3 Estimation of parameters 

 

In multiple linear regression analysis, the unknown parameters of the model are typically 

estimated using the method of least squares. This method provides a systematic and 

objective approach to determine the values of regression coefficients that best represent the 

relationship between the response variable and the set of explanatory variables. The central 

idea of least squares estimation is to minimize the discrepancy between the observed values 

of the response variable and the values predicted by the regression model. 

 

The discrepancy between an observed value and its corresponding predicted value is known 

as a residual. For each observation, the residual represents the portion of the response 

variable that is not explained by the regression model. Least squares estimation seeks to 

determine the regression coefficients such that the sum of the squared residuals across all 

observations is as small as possible. Squaring the residuals ensures that both positive and 

negative deviations are treated equally and gives greater weight to larger errors. 

 

Mathematically, the multiple linear regression model can be expressed as a linear 

combination of explanatory variables along with a random error term. The fitted model 

generates predicted values for the response variable, and the difference between the observed 

and predicted values forms the residuals. The least squares criterion minimizes the aggregate 

of these squared residuals, thereby producing parameter estimates that provide the closest 

possible fit to the observed data in the sense of minimizing overall error. 

 

One of the important features of least squares estimation is its analytical convenience. Under 

standard regression assumptions, the minimization problem yields a set of normal equations 

that can be solved to obtain explicit expressions for the regression coefficients. These 

equations ensure that the resulting estimates balance the deviations in the data and satisfy 

optimality conditions. The least squares estimators are therefore well-defined and 

computationally efficient, even when multiple explanatory variables are involved. 

 

Another key advantage of the least squares method is its statistical optimality. When the 

assumptions of linearity, independence, zero mean of errors, and constant variance are 

satisfied, least squares estimators possess desirable properties. They are unbiased, meaning 

that their expected values equal the true parameter values. They are also efficient in the sense 

that they have the smallest variance among all linear unbiased estimators. As sample size 

increases, the estimators become more precise, making them reliable for large datasets. 

 

Least squares estimation also serves as the foundation for statistical inference in regression 

analysis. Once parameter estimates are obtained, their sampling distributions can be studied 

to conduct hypothesis tests and construct confidence intervals. This enables analysts to assess 

whether individual explanatory variables have significant effects on the response variable and 

to quantify the uncertainty associated with the estimated coefficients. 

 

In practice, least squares estimation is closely tied to model evaluation and diagnostics. The 

residuals obtained from the fitted model are used to assess the validity of model assumptions 

and to identify potential issues such as outliers, non-linearity, or unequal variance. Thus, the 

estimation process not only provides parameter estimates but also supports model refinement 

and validation. 
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In summary, the method of least squares is a fundamental and widely used technique for 

estimating the parameters of the multiple linear regression model. By minimizing the sum of 

squared residuals, it produces efficient and interpretable estimates that form the basis for 

inference, prediction, and decision-making. Its mathematical simplicity, optimal properties, 

and practical usefulness make it an essential tool in regression analysis. 

 

12.3.1 Least Squares Estimation 

 

A multiple linear regression model predicts the value of a dependent variable (Y) using 

multiple independent variables  

( 1 2 3 4 5..... kX X X X X X ) 

0 1 1 2 2 3 3 .......... k kY X X X X     = + + + + + +  

Whereas β0 = Intercept;  

 Regression coefficients (parameters) and  

ε = Random error term 

To estimate the unknown coefficients 0 1 2 3, 4, , , ....... k      from observed data using least 

squares method. 

 

Method of Least Squares Estimation:  

We find estimates
0 1 2 3, 4

ˆ ˆ ˆ ˆ ˆ ˆ, , , ....... k       that minimize the sum of squared errors (SSE) 

2 2

0 1 1 2 2 3 3( ) ( ......... )ˆ . k kX X X XSSE Y Y Y     = + + + + += −  −  

Matrix Form for Estimation; The model can be written in matrix form: Y X = +  

Whereas: 

• Y = (n×1) vector of responses 

• X = (n×k) matrix of predictors (with a column of 1s for intercept) 

• β = (k×1) vector of parameters 

• ε = (n×1) Error vector 

Least Squares Estimator: ( )
1

1 1ˆ X X X y
−

= ; It gives the best linear unbiased estimator 

(BLUE) under classical regression assumptions. 

 

12.3.2 Matrix Approach to Multiple Regression 

 

The multiple regression model can be expressed in matrix form as: 

Least Squares Estimator: ( )
1

1 1ˆ X X X y
−

= ; It gives the best linear unbiased estimator 

(BLUE) under classical regression assumptions. 

The matrix formulation simplifies computation and forms the basis for theoretical analysis 

and extension to advanced regression models. 

 

12.4 TESTS OF SIGNIFICANCE 

 

Statistical tests play a crucial role in multiple linear regression analysis by determining 

whether the explanatory variables have a meaningful influence on the response variable. 

While parameter estimation provides numerical values for regression coefficients, statistical 
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testing helps assess whether these estimated effects are statistically significant or could have 

arisen due to random variation in the data. 

 

In regression analysis, significance testing is primarily concerned with evaluating hypotheses 

about the regression parameters. The most common approach is to test whether the 

coefficient of an explanatory variable is equal to zero. A zero coefficient implies that the 

variable has no linear effect on the response variable when other variables in the model are 

held constant. Statistical tests allow researchers to decide whether there is sufficient evidence 

to reject this assumption. 

 

Two main types of tests are widely used in multiple linear regression. Individual 

significance tests, such as the t-test, examine the contribution of each explanatory variable 

separately. These tests help identify which variables are important predictors of the response 

variable and which may be excluded from the model without substantially reducing its 

explanatory power. This is especially useful in models with many predictors, where some 

variables may not have a significant impact. 

 

In addition to individual tests, overall model significance tests, such as the F-test, are used 

to evaluate the regression model as a whole. The F-test determines whether the set of 

explanatory variables collectively provides a better explanation of the response variable than 

a model with no predictors. A significant result indicates that at least one explanatory 

variable has a non-zero effect on the response variable. 

 

Statistical tests also support model building and validation. By examining significance 

levels, analysts can refine models, compare competing models, and avoid including 

unnecessary variables. This leads to simpler, more interpretable models without 

compromising predictive performance. 

 

It is important to note that statistical significance does not always imply practical importance. 

A variable may be statistically significant but have a small effect size that is of limited 

practical relevance. Therefore, significance tests should be interpreted alongside regression 

coefficients, confidence intervals, and subject-matter knowledge. 

 

In summary, statistical tests in multiple linear regression provide a formal framework for 

evaluating the influence of explanatory variables on the response variable. They help 

distinguish genuine relationships from random noise, support sound model selection, and 

enhance the reliability of conclusions drawn from regression analysis. 

 

12.4.1 t-test for Individual Regression Coefficients 

 

The t-test examines whether a particular regression coefficient differs significantly from zero. 

The null hypothesis is: H0: βj = 0  

If the calculated t-value exceeds the critical value, the null hypothesis is rejected, indicating 

that the variable has a significant effect on the response. 

 

12.4.2 F-test for Overall Model Significance 

 

The F-test assesses whether the regression model as a whole is statistically significant. It tests 

whether at least one explanatory variable has a non-zero effect on the response variable. A 
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significant F-value implies that the model provides a better fit than a model without 

explanatory variables. 

 

12.5 MODEL ADEQUACY AND DIAGNOSTICS 

 

Model adequacy refers to the extent to which a regression model appropriately represents the 

underlying data and satisfies the assumptions on which the regression analysis is based. An 

adequate model not only fits the observed data reasonably well but also provides reliable 

estimates, valid inferences, and meaningful predictions. Evaluating model adequacy is 

therefore a critical step in regression analysis. 

 

A regression model is considered adequate when it captures the systematic relationship 

between the response variable and the explanatory variables without leaving important 

patterns unexplained. If the model is poorly specified, estimates of regression coefficients 

may be biased or inefficient, leading to incorrect conclusions. Thus, assessing model 

adequacy helps determine whether the chosen model structure is suitable for the data under 

study. 

 

One important aspect of model adequacy is the verification of regression assumptions. 

Assumptions such as linearity, independence of errors, constant variance, normality of errors, 

and absence of strong multicollinearity must be reasonably satisfied. Violations of these 

assumptions can affect the accuracy of parameter estimates and the validity of hypothesis 

tests. Diagnostic checks help identify such problems and guide necessary model 

improvements. 

 

Another key component of model adequacy is the analysis of residuals. Residuals represent 

the differences between observed and fitted values and provide valuable information about 

model performance. Patterns in residual plots may indicate issues such as non-linearity, 

unequal variance, or outliers. A well-fitted model typically shows residuals that are randomly 

scattered around zero without any systematic structure. 

 

Numerical measures also play an important role in assessing model adequacy. Measures such 

as the coefficient of determination indicate how much of the variability in the response 

variable is explained by the model. While a higher value generally suggests a better fit, it 

must be interpreted carefully and in conjunction with other diagnostic tools. 

 

In summary, model adequacy ensures that a regression model is both statistically sound and 

practically useful. By examining residuals, checking assumptions, and evaluating goodness-

of-fit measures, analysts can confirm whether the model provides a reliable representation of 

the data. Careful assessment of model adequacy strengthens confidence in the conclusions 

drawn from regression analysis and improves the quality of predictions. 

 

12.5.1 Coefficient of Multiple Determination 

 

The coefficient of multiple determination, denoted by R2R^2R2, measures the proportion of 

total variation in the response variable explained by all explanatory variables together. A 

higher value of R2R^2R2 indicates better explanatory power of the model. 
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12.5.2 Residual Analysis 

 

Residual analysis involves studying the residuals to detect violations of model assumptions. 

Plots of residuals are used to identify non-linearity, unequal variances, outliers, and 

influential observations. Proper residual analysis enhances the reliability of regression results. 

 

12.6 CONCLUSION 

 

Multiple linear regression is a powerful extension of simple regression that allows the study 

of relationships involving several explanatory variables. By estimating parameters, testing 

statistical significance, and assessing model adequacy, it provides deeper insight into 

complex data structures. Proper application and validation of assumptions ensure meaningful 

interpretation and effective prediction. 

 

12.7 SELF ASSESSMENT QUESTIONS 

 

• Define multiple linear regression and explain its importance. 

• State the assumptions of the multiple regression model. 

• Explain the interpretation of regression coefficients. 

• Describe the t-test and F-test used in multiple regression. 

• Discuss the role of residual analysis in model diagnostics. 

 

12.8 FURTHER READINGS 

 

• Draper, N. R. and Smith, H., Applied Regression Analysis, Wiley. 

• Montgomery, D. C., Peck, E. A., and Vining, G. G., Introduction to Linear Regression 

Analysis, Wiley. 

• Rao, C. R., Linear Statistical Inference and Its Applications, Wiley. 

• Weisberg, S., Applied Linear Regression, Wiley. 

 

 

Dr. G V S R Anjaneyulu 

 



LESSON -13 

POLYNOMIAL REGRESSION AND 

ORTHOGONAL POLYNOMIALS 
 

OBJECTIVES:  

 

By the end of this lesson, students will be able to: 

• Polynomial Regression Model 

• Fitting of Polynomial Regression Models 

• Problems of Multicollinearity in Polynomial Regression 

• Introduction to Orthogonal Polynomials 

• Construction of Orthogonal Polynomials 

• Advantages of Orthogonal Polynomials 

 

STRUCTURE: 
 

13.1 INTRODUCTION 

13.2 POLYNOMIAL REGRESSION 

13.2.1 Polynomial Regression Model 

 13.2.2 Estimation of Polynomial Regression Coefficients 

13.3 PROBLEMS IN POLYNOMIAL REGRESSION 

13.3.1 Multicollinearity 

 13.3.2 Numerical Instability 

13.4 ORTHOGONAL POLYNOMIALS 

13.4.1 Concept and Construction of Orthogonal Polynomials 

 13.4.2 Use of Orthogonal Polynomials in Regression 

13.5 ADVANTAGES OF ORTHOGONAL POLYNOMIALS 

13.6 CONCLUSION 

13.7 SELF ASSESSMENT QUESTIONS 

13.8 FURTHER READINGS 

 

13.1 INTRODUCTION 

 

In many practical situations, the relationship between a response variable and an explanatory 

variable cannot be adequately represented by a straight line. Although linear and multiple 

linear regression models are effective for describing simple trends, real-world data often 

display more complex patterns such as curvature, increasing or decreasing rates of change, 

and turning points. These nonlinear patterns commonly arise in fields such as agriculture, 

economics, engineering, environmental studies, and the biological sciences. When such 

behavior is present, linear models may fail to provide an accurate or meaningful description 

of the underlying relationship. 
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To address this limitation, polynomial regression serves as a valuable extension of linear 

regression. Polynomial regression allows the inclusion of higher-degree powers of the 

explanatory variable, enabling the model to capture curvature and more flexible trends in the 

data. Despite involving nonlinear functions of the explanatory variable, the model remains 

linear in its parameters. This important property allows the use of standard estimation 

techniques while enhancing the model’s ability to represent complex relationships. 

 

Polynomial regression is particularly useful when exploratory analysis or scatter plots suggest 

that the effect of the explanatory variable on the response changes at different levels. For 

example, growth processes may accelerate or decelerate, demand may rise at a decreasing 

rate, or physical systems may exhibit peak or saturation effects. By incorporating squared, 

cubic, or higher-order terms, polynomial regression can model such behavior more accurately 

than simple linear regression. 

 

Another advantage of polynomial regression is its interpretability within a familiar regression 

framework. The fitted model can be analyzed using established tools such as least squares 

estimation, hypothesis testing, confidence intervals, and goodness-of-fit measures. This 

makes polynomial regression both accessible and practical for analysts who are already 

familiar with linear regression techniques. 

 

However, the inclusion of higher-order polynomial terms introduces certain challenges. One 

of the major difficulties is multicollinearity, which arises because the powers of the 

explanatory variable are often highly correlated with one another. This correlation can inflate 

the variances of estimated coefficients, leading to unstable estimates and difficulties in 

interpreting individual effects. Additionally, polynomial regression may suffer from 

numerical instability, particularly when high-degree polynomials are fitted or when the 

range of the explanatory variable is large. Small changes in the data may result in large 

variations in coefficient estimates, reducing the reliability of the model. 

 

To overcome these computational and interpretational issues, orthogonal polynomials are 

commonly employed in polynomial regression. Orthogonal polynomials are constructed in 

such a way that each polynomial term is uncorrelated with the others over the observed data. 

This property effectively eliminates multicollinearity among polynomial terms and leads to 

more stable and efficient parameter estimates. 

 

The use of orthogonal polynomials preserves the fitted values of the regression model while 

improving numerical behavior and simplifying model assessment. By ensuring that each 

polynomial term contributes independently to the model, orthogonal polynomials allow 

clearer identification of the degree of the polynomial that best fits the data. This makes it 

easier to determine whether additional higher-order terms significantly improve the model or 

merely add unnecessary complexity. 

 

In practical applications, polynomial regression combined with orthogonal polynomials 

provides a balanced approach to modeling nonlinear relationships. It offers greater flexibility 

than simple linear regression while maintaining the interpretability and analytical strengths of 

linear models. When properly applied, this approach supports accurate representation of 

complex trends, reliable parameter estimation, and meaningful inference. 

 

In summary, polynomial regression extends the scope of regression analysis by enabling the 

modeling of nonlinear relationships within a linear framework. While higher-order 
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polynomial terms can introduce multicollinearity and numerical instability, the use of 

orthogonal polynomials addresses these issues effectively. Together, they form a powerful 

and reliable methodology for analyzing curved trends and complex patterns in real-world 

data. 

 

13.2 POLYNOMIAL REGRESSION 

 

Polynomial regression is an extension of simple linear regression that is used when the 

relationship between the response variable and an explanatory variable cannot be adequately 

described by a straight line. Instead of restricting the model to a single linear term, 

polynomial regression includes higher-order powers of the explanatory variable, allowing the 

model to capture curvature and more complex trends in the data. 

 

In polynomial regression, the response variable is expressed as a function of the explanatory 

variable raised to different powers, such as squared or cubic terms. This enables the model to 

represent nonlinear patterns like increasing or decreasing rates of change and turning points. 

Although the fitted curve may appear nonlinear when plotted, the model is linear in its 

parameters. This means that the coefficients enter the model in a linear manner and can be 

estimated using standard least squares techniques. 

 

The linearity in parameters is an important advantage of polynomial regression. It allows the 

use of well-established methods for estimation, hypothesis testing, and model diagnostics that 

are commonly applied in linear regression. As a result, polynomial regression combines 

flexibility in modeling nonlinear relationships with the simplicity and interpretability of 

linear regression models. 

 

Polynomial regression is particularly useful in situations where exploratory analysis suggests 

that a straight-line model is inadequate but the underlying relationship can still be 

approximated smoothly. By choosing an appropriate degree for the polynomial, the model 

can achieve a good balance between capturing the true pattern in the data and avoiding 

unnecessary complexity. 

 

In summary, polynomial regression provides a practical and effective approach for modeling 

nonlinear relationships. By incorporating powers of the explanatory variable while remaining 

linear in parameters, it extends the capabilities of linear regression without sacrificing 

analytical convenience and statistical rigor. 

 

13.2.1 Polynomial Regression Model 

 

Modelling the relationship between a dependent variable (Y) and an independent variable (X) 

using powers of X is known as polynomial fitting. Polynomial models for one variable may 

consists in  

1. Orthogonal polynomials  

2. Piecewise Polynomial.  

 

Examples:  

1. This is useful when the relationship between X and Y is non-linear. Assume we aim 

to model the relationship between crop yield and the quantity of fertilizer applied. The 

relationship may be curved, small amounts help, but too much fertilizer reduces yield. 
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A quadratic polynomial fit 
2

0 1 2Y X X   = + + + like  can model this better than a 

straight line. 

2. We fit a model like: 
2 3

0 1 2 3Y X X X    = + + + +  is a polynomial regression 

model in one variable and is called a cubic model. The coefficients 1  , 2   and 3  

are called the linear effect parameter and cubic effect parameters respectively. 

3. The kth order polynomial model in one variable is given 

by
2 3

0 1 2 3 .......... k

kY X X X X     = + + + + + +  ; If   X = Xi for all i= 1, 2, ..., k 

then the model is multiple linear regression model in k explanatory variables.  So the 

linear regression model includesY X = +  the polynomial regression model. Thus 

the techniques for fitting linear regression model can be used for fitting the 

polynomial regression model. 

 

Polynomial Models  

 

A. Order of the polynomial model: 2k   

B. Strategy for polynomial Model building: forward selection: start with linear models 

0 1Y X  = + +  

2

0 1 2Y X X   = + + +  

2 3

0 1 2 3Y X X X    = + + + +  

2 3

0 1 2 3 .......... k

kY X X X X     = + + + + + + ; Successive fit model of increasing order 

unit the t-test for the highest order term is non-significant. 

C. Ill-Conditioning: as the order of the polynomial increases, the ( )1X X matrix becomes ill-

conditioned, that is ( )
1

1X X
−

 calculation becomes inaccurate. Then ( )
1

1 1ˆ X X X y
−

=  does 

not exists.  If the value of X are limited to a narrow range in columns of X.  

Example: Let us consider polynomial model 

 
2 3

0 1 2 3 .......... k

kY X X X X     = + + + + + +  

21 ..

1 0.11 0.0121 ..

1 0.12 0.0144 ..

1 0.13 0.0169 ..

x x 
 
 
 
 
 

 

Centring the data may remove ill-conditioning. We fit the model  

2

0 1 2( ) ( )y y x x x x   − = + − + − +  

  Instead of 2

0 1 2Y X X   = + + +  

Orthogonal Polynomials:  
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suppose we wish to fit the polynomial regression 

model
2 3

0 1 2 3 .......... k

kY X X X X     = + + + + + + ; If we wish to add another term 

1

1

k

k X +

+  that is

2

11 ......... k

kx x x x +
 
 
 
 
 
 

we must recalculate ( )
1

1X X
−

 and estimates of 

lower order parameters 
0 1 2 3, 4

ˆ ˆ ˆ ˆ ˆ ˆ, , , ....... k       will change. For this kind problems we use 

orthogonal polynomials. If we construct polynomials ( ) ( ) ( )0 1, ,....... KP X P X P X  with the 

property that they are orthogonal polynomials. ( ) ( )
1

0, 1(1)
n

n i s i

i

P X P X r s k
=

=  = ; we can 

rewrite the model as 
2 3

0 1 2 3 .......... k

i i i i k i iY X X X X     = + + + + + + ; Where ( )n iP X is the 

rth ordered orthogonal polynomial. 

13.2.2 Estimation of Polynomial Regression Coefficients 

Consider the polynomial model of order k is one variable as  

2 3

0 1 2 3 .......... k

i i i i k i iY X X X X     = + + + + + + ; 1,2,.....i k =  

When writing this model as Y X = +  the columns of X will not be orthogonal.  If we add 

another term 1

1

k

k X +

+  then the matrix 
1

1X X
−

    has to be recomputed and consequently, the 

lower order parameters 0, 1, 2, ............ k     will also change. 

Consider the fitting of the following model: 

( ) ( ) ( ) ( )0 0 1 1 2 2 ................i i i i k k i iY P X P X P X P X    = + + + + +      ; for all i= 1,2……..n 

In the context of Y X = +  , the X-matrix, in this  case, is given by 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

0 1 1 1 2 1 1

0 2 1 2 2 2 2

0 1 2

.......

.......

.......

k

k

n n n k n

P X P X P X P X

P X P X P X P X
X

P X P X P X P X

 
 
 =
 − −− −−− −−− −−−
 
  

 

Since this X-matrix has orthogonal columns, so   X1 X matrix becomes 

( )

( )

( )

2

0

2

11

2

0 ....... 0

0 ....... 0

0 0 .......

i

i

k i

P X

P X
X X

P X

 
 
 =
 −−− −−− −−− −−−
 
  





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The ordinary least squares estimator is ( )
1

1 1ˆ X X X y
−

= and its variance is obtained from 

( ) ( )
1

2 1ˆV X X 
−

= When 2  is unknown, it can be estimated from the analysis of variance 

table. 

13.2.2 Estimation of Polynomial Regression Coefficients 

 

The coefficients of a polynomial regression model are estimated using the method of least 

squares. The objective is to minimize the sum of squared deviations between observed 

values and fitted values of the response variable. 

Although the model includes nonlinear terms of X, it is linear in parameters and therefore 

standard least squares techniques apply. The normal equations derived from minimizing the 

residual sum of squares yield estimates of the regression coefficients. 

 

13.3 PROBLEMS IN POLYNOMIAL REGRESSION 

 

While polynomial regression can model complex relationships, it may lead to certain 

practical difficulties. 

 

13.3.1 Multicollinearity 

 

Multicollinearity arises when explanatory variables are highly correlated with one another. In 

polynomial regression, this problem is common because higher powers of X are often 

strongly correlated. 

High multicollinearity can result in: 

• Unstable coefficient estimates 

• Large standard errors 

• Difficulty in interpreting individual regression coefficients 

 

13.3.2 Numerical Instability 

 

Numerical instability occurs when computations become sensitive to small changes in data, 

particularly when high-degree polynomials are used. Large powers of X can cause rounding 

errors and lead to unreliable estimates. 

This issue becomes more severe when X values are large or unevenly spaced, making it 

difficult to obtain accurate and stable regression coefficients. 

 

13.4 ORTHOGONAL POLYNOMIALS 

 

To overcome the problems of multicollinearity and numerical instability in polynomial 

regression, orthogonal polynomials are employed. 

 

13.4.1 Concept and Construction of Orthogonal Polynomials 

 

Orthogonal polynomials are a set of polynomial functions that are mutually uncorrelated with 

respect to a given inner product or weighting scheme. This means that the cross-products of 

different polynomial terms sum to zero over the observed data. 
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These polynomials are usually constructed by applying orthogonalization techniques to 

ordinary polynomial terms. As a result, each term contributes independently to the regression 

model. 

 

13.4.2 Use of Orthogonal Polynomials in Regression 

 

When orthogonal polynomials are used as regressors: 

• Multicollinearity among polynomial terms is eliminated 

• Parameter estimates become more stable 

• Numerical computation becomes more reliable 

The fitted values of the model remain unchanged, but the interpretation and estimation of 

coefficients improve significantly. 

 

13.5 ADVANTAGES OF ORTHOGONAL POLYNOMIALS 

 

Orthogonal polynomials offer several advantages in regression analysis: 

• Reduction of multicollinearity 

• Improved numerical stability 

• Independent contribution of each polynomial term 

• Easier identification of the effective degree of the polynomial 

• Reliable parameter estimation for higher-degree models 

These advantages make orthogonal polynomials particularly useful in practical data analysis 

involving polynomial relationships. 

 

13.6 CONCLUSION 

 

Polynomial regression extends linear regression by allowing curved relationships between 

variables while maintaining linearity in parameters. However, the use of higher-degree 

polynomial terms may introduce multicollinearity and numerical instability. Orthogonal 

polynomials provide an effective solution to these problems by producing stable and reliable 

estimates. Together, polynomial regression and orthogonal polynomials form important tools 

for modeling complex nonlinear trends in data. 

 

13.7 SELF ASSESSMENT QUESTIONS 

 

⚫ What is polynomial regression and how does it differ from simple linear regression? 

⚫ Write the general form of a polynomial regression model. 

⚫ Explain the problem of multicollinearity in polynomial regression. 

⚫ What is numerical instability and why does it occur? 

⚫ Define orthogonal polynomials and explain their use in regression. 

 

13.8 FURTHER READINGS 

 

⚫ Draper, N. R. and Smith, H., Applied Regression Analysis, Wiley. 

⚫ Montgomery, D. C., Peck, E. A., and Vining, G. G., Introduction to Linear Regression 

Analysis, Wiley. 

⚫ Rao, C. R., Linear Statistical Inference and Its Applications, Wiley. 

⚫ Weisberg, S., Applied Linear Regression, Wiley. 

 

Dr. G V S R Anjaneyulu 



LESSON -14 

MULTICOLLINEARITY 
 

OBJECTIVES:  

 

By the end of this lesson, students will be able to: 

• Multicollinearity 

• Introduction to Multicollinearity 

• Causes of Multicollinearity 

• Effects of Multicollinearity on Regression Estimates 

• Detection of Multicollinearity 

• Correlation Matrix 

• Variance Inflation Factor (VIF) 

• Condition Index 

• Remedies for Multicollinearity 

 

STRUCTURE  

 

14.1 INTRODUCTION 

14.2 MULTICOLLINEARITY 

14.2.1 Meaning and Nature of Multicollinearity 

 14.2.2 Causes of Multicollinearity 

14.3 EFFECTS OF MULTICOLLINEARITY 

14.3.1 Impact on Regression Coefficients 

 14.3.2 Effect on Standard Errors and Tests of Significance 

14.4 DETECTION OF MULTICOLLINEARITY 

14.4.1 Correlation Matrix 

 14.4.2 Variance Inflation Factor (VIF) 

 14.4.3 Condition Index 

14.5 REMEDIES FOR MULTICOLLINEARITY 

14.6 CONCLUSION 

14.7 SELF ASSESSMENT QUESTIONS 

14.8 FURTHER READINGS 

 

14.1 INTRODUCTION 

 

Multiple linear regression is widely used to analyze relationships in which a response 

variable depends on several explanatory variables simultaneously. This approach allows 

researchers and analysts to understand how different factors jointly influence an outcome 

while controlling for the effect of other variables. For multiple linear regression to function 
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effectively, certain assumptions must be satisfied. One of the most critical among these is the 

requirement that the explanatory variables should not be highly correlated with one another. 

 

When this assumption is violated, a situation known as multicollinearity arises. 

Multicollinearity refers to the presence of strong linear relationships among two or more 

explanatory variables included in a regression model. In such cases, it becomes difficult to 

separate the individual effect of each variable on the response. This problem is especially 

common in applied data analysis, where explanatory variables often originate from related 

measurements, shared underlying processes, or constructed variables. 

 

Multicollinearity frequently occurs when variables are related by nature. For example, 

economic indicators such as income, savings, and expenditure are often interrelated. 

Similarly, in agricultural or biological studies, measurements like rainfall, humidity, and soil 

moisture may show strong association. Additionally, multicollinearity commonly arises in 

models that include polynomial terms or interaction variables, as higher powers or 

combined terms of a variable are naturally correlated with the original variable. 

 

Another important cause of multicollinearity is poor study design or data limitations. When 

data lack sufficient variation or when too many explanatory variables are included relative to 

the sample size, the regression model may exhibit near-linear dependence among predictors. 

This situation results in unstable estimation and reduces the clarity of interpretation. 

 

A key feature of multicollinearity is that, despite its adverse effects on parameter estimation, 

it does not necessarily reduce the overall predictive ability of the regression model. The 

fitted values and predictions may remain accurate, and overall goodness-of-fit measures such 

as the coefficient of determination may still appear satisfactory. However, the reliability of 

individual regression coefficients is significantly affected. Coefficients may have large 

standard errors, unexpected signs, or magnitudes that are inconsistent with theoretical 

expectations. 

 

Because of inflated standard errors, explanatory variables that are genuinely important may 

appear statistically insignificant in hypothesis tests. This can lead to incorrect conclusions 

about which variables influence the response. Moreover, small changes in the data or model 

specification may cause large fluctuations in the estimated coefficients, making the model 

unstable and difficult to interpret. 

 

Understanding multicollinearity is therefore essential for proper regression analysis. Analysts 

must be able to identify its presence, assess its severity, and decide on appropriate corrective 

measures. Diagnostic tools such as correlation matrices, variance inflation factors, and 

condition indices are commonly used to detect multicollinearity. Once identified, various 

strategies can be employed, including variable selection, transformation, or the use of 

alternative estimation techniques such as ridge regression and principal component 

regression. 

 

In summary, multicollinearity is a common and important issue in multiple linear regression 

analysis. While it does not impair the model’s ability to predict the response variable, it 

undermines the reliability and interpretability of individual regression coefficients. Therefore, 

careful attention to the detection and treatment of multicollinearity is essential for drawing 

meaningful conclusions and ensuring the effectiveness of regression-based decision-making. 
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14.2 MULTICOLLINEARITY 

 

Multicollinearity refers to a situation in multiple linear regression where two or more 

explanatory variables exhibit strong linear relationships among themselves. In such cases, 

one explanatory variable can be approximately expressed as a linear combination of one or 

more other explanatory variables. This lack of independence among the predictors creates 

difficulties in estimating and interpreting regression coefficients accurately. 

 

When explanatory variables are highly correlated, the regression model faces challenges in 

distinguishing the individual effect of each variable on the response. Although the combined 

effect of these variables may be meaningful, their separate contributions become uncertain. 

As a result, the estimated regression coefficients may become unstable and sensitive to small 

changes in the data. 

 

Multicollinearity can exist in two forms: perfect multicollinearity and imperfect 

multicollinearity. Perfect multicollinearity occurs when one explanatory variable is an exact 

linear combination of other variables, making it impossible to estimate unique regression 

coefficients. Imperfect multicollinearity, which is more common in real-world data, involves 

strong but not exact linear relationships among explanatory variables. While estimation is 

still possible in this case, the results may lack precision and reliability. 

 

It is important to note that multicollinearity does not necessarily affect the overall fit or 

predictive performance of the regression model. Measures such as the coefficient of 

determination may remain high even in the presence of multicollinearity. However, 

hypothesis testing and interpretation of individual regression coefficients become problematic 

due to inflated standard errors and reduced statistical significance. 

 

In practical data analysis, multicollinearity often arises due to the inclusion of related 

variables, polynomial terms, or interaction effects, as well as limitations in data collection. 

Recognizing the presence of multicollinearity is therefore essential for conducting 

meaningful regression analysis. 

 

14.2.1 Meaning and Nature of Multicollinearity 

 

Multicollinearity occurs when two or more explanatory variables are highly correlated, 

meaning that one variable can be approximately expressed as a linear combination of others. 

Multicollinearity arises in multiple linear regression when two or more explanatory variables 

exhibit a strong linear relationship among themselves. In such situations, one explanatory 

variable can be closely approximated by a linear combination of the other variables included 

in the model. This lack of independence among the predictors reduces the model’s ability to 

clearly distinguish the individual contribution of each explanatory variable to the response 

variable. 

 

In extreme situations, known as perfect multicollinearity, an explanatory variable is an 

exact linear combination of other variables, making it impossible to obtain unique estimates 

of the regression coefficients. In practice, multicollinearity is usually imperfect, but it may 

still be strong enough to introduce considerable instability into the estimation process. As a 

consequence, the estimated regression coefficients may exhibit unreasonable magnitudes or 

incorrect signs and may change substantially with small variations in the data, even though 

overall goodness-of-fit measures indicate that the model fits the data satisfactorily. 
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14.2.2 Causes of Multicollinearity 

 

• Multicollinearity can arise due to several reasons, including: 

• Inherent relationship among variables – Variables measuring similar characteristics 

tend to be correlated. 

• Use of polynomial or interaction terms – Higher-order terms  highly correlated with 

X. 

• Data collection methods – Poor experimental design or lack of variation in data. 

• Over-specification of the model – Including too many related explanatory variables. 

• Dummy variable trap – Inclusion of all categories of a categorical variable without 

omitting a reference level. 

 

14.3 EFFECTS OF MULTICOLLINEARITY 

 

Multicollinearity significantly affects the stability and interpretability of results obtained from 

a multiple linear regression model. Although the presence of multicollinearity does not 

violate the basic form of the regression model or necessarily reduce its predictive power, it 

introduces several practical difficulties that can undermine the usefulness of regression 

analysis for interpretation and inference. 

 

One of the primary effects of multicollinearity is the instability of regression coefficient 

estimates. When explanatory variables are highly correlated, small changes in the data or in 

the model specification can lead to large changes in the estimated coefficients. This 

sensitivity makes the regression coefficients unreliable, as they may vary considerably from 

one sample to another. Consequently, the estimated coefficients may not accurately reflect 

the true relationship between individual explanatory variables and the response variable. 

 

Another important consequence of multicollinearity is the inflation of standard errors 

associated with the regression coefficients. High correlations among explanatory variables 

increase the variability of coefficient estimates, leading to larger standard errors. As a result, 

the calculated t-statistics for individual regression coefficients may be smaller in absolute 

value, making statistically significant variables appear insignificant. This can lead to 

incorrect conclusions regarding the importance of explanatory variables. 

 

Multicollinearity also complicates the interpretation of regression coefficients. In the 

presence of strong correlations among predictors, it becomes difficult to interpret the effect of 

one variable while holding the others constant. This is because changes in one variable are 

often associated with changes in another, violating the practical meaning of ceteris paribus 

interpretation. Even when coefficients are statistically significant, their practical 

interpretation may be unclear or misleading. 

 

Despite these issues, it is important to note that multicollinearity does not necessarily reduce 

the overall goodness of fit of the model. Measures such as the coefficient of determination 

may remain high, indicating that the model explains a large proportion of variability in the 

response variable. However, a good overall fit can be deceptive if individual coefficients are 

unstable or unreliable. 

 

Another effect of multicollinearity is its impact on model selection and inference. When 

explanatory variables are strongly correlated, it becomes difficult to determine which 

variables should be retained or removed from the model. Different subset selection methods 
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may lead to different models, and conclusions drawn from hypothesis tests may lack 

robustness. This uncertainty weakens the confidence in regression-based decisions. 

 

Multicollinearity can also obscure the underlying relationships in the data. Variables that are 

theoretically important may be excluded due to insignificance caused by inflated standard 

errors, while less relevant variables may appear important due to chance correlations. This 

distortion can misguide researchers and practitioners who rely on regression results for policy 

formulation or scientific interpretation. 

 

In summary, while multicollinearity does not bias the least squares estimates or invalidate the 

regression model as a whole, it adversely affects the precision, stability, and interpretability 

of individual regression coefficients. Careful diagnosis and appropriate remedial measures 

are therefore essential when multicollinearity is present. Addressing this problem improves 

the reliability of regression analysis and enhances the clarity of conclusions drawn from the 

model. 

 

14.3.1 Impact on Regression Coefficients 

 

When multicollinearity is present: 

• Regression coefficients may become unstable and sensitive to small changes in data. 

• Estimated coefficients may have unexpected signs or magnitudes. 

• Individual coefficients become difficult to interpret, even if they are theoretically 

important. 

• Although the fitted values of the model may remain accurate, the individual 

regression coefficients lose their reliability. 

 

14.3.2 Effect on Standard Errors and Tests of Significance 

 

Multicollinearity leads to: 

• Inflated standard errors of regression coefficients. 

• Reduced t-statistics, causing important variables to appear statistically insignificant. 

• Difficulty in identifying truly influential explanatory variables. 

• As a result, hypothesis tests and confidence intervals become unreliable. 

 

14.4 DETECTION OF MULTICOLLINEARITY 

 

Several diagnostic tools are available to detect multicollinearity in a regression model. 

 

14.4.1 Correlation Matrix 

 

A simple method of detecting multicollinearity is examining the correlation matrix of 

explanatory variables. High pairwise correlations indicate potential multicollinearity. 

However, this method may fail to detect complex multivariate relationships. 

 

14.4.2 Variance Inflation Factor (VIF) 

 

The Variance Inflation Factor measures the extent to which the variance of a regression 

coefficient is inflated due to multicollinearity. 

VIFj = 
1

1-Rj
2  
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where Rj
2

is the coefficient of determination obtained by regressing the jth explanatory 

variable on all other explanatory variables. 

VIF =1: No multicollinearity 

VIF > 10: Serious multicollinearity 

 

14.4.3 Condition Index 

 

Condition Index 

The condition index is an important diagnostic measure used to detect the presence and 

severity of multicollinearity in a multiple linear regression model. It is based on the 

eigenvalues of the correlation matrix (or equivalently, the cross-product matrix) of the 

explanatory variables. By examining how the explanatory variables relate to one another at 

a multivariate level, the condition index provides deeper insight than simple pairwise 

correlations. 

 

The condition index is calculated by taking the square root of the ratio of the largest 

eigenvalue of the correlation matrix to each individual eigenvalue. Mathematically, it is 

expressed as 

Condition Indexi= √
λmax

λi
   

where λmax is the largest eigenvalue and λi is the i-th eigenvalue of the correlation matrix. A 

small eigenvalue indicates that some linear combination of the explanatory variables 

contributes very little independent information, which is a sign of multicollinearity. 

 

Large values of the condition index suggest strong dependencies among explanatory 

variables. Generally, condition index values below 10 indicate weak or no multicollinearity, 

values between 10 and 30 suggest moderate multicollinearity, and values exceeding 30 are 

taken as evidence of severe multicollinearity. Very high condition index values imply that the 

regression coefficients may be highly unstable and sensitive to small changes in the data. 

 

Unlike simple correlation measures, the condition index is capable of detecting complex 

multicollinearity involving more than two explanatory variables. It therefore provides a 

comprehensive diagnostic tool when explanatory variables are related in a multivariate 

manner rather than just in pairs. 

 

In summary, the condition index is a valuable method for diagnosing multicollinearity in 

multiple regression analysis. By relying on eigenvalues of the explanatory variable 

correlation matrix, it identifies hidden linear dependencies and helps assess the reliability and 

stability of regression coefficient estimates. 

• Values less than 10 indicate weak dependence. 

• Values above 30 suggest severe multicollinearity. 

 

14.5 REMEDIES FOR MULTICOLLINEARITY 

 

• Possible remedial measures include: 

• Removing or combining highly correlated variables 

• Increasing sample size 

• Centering variables in polynomial regression 

• Using ridge regression 
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Applying principal component regression 

• Selecting an appropriate subset of explanatory variables 

• The choice of remedy depends on the objective of the analysis and the nature of the 

data. 

 

14.6 CONCLUSION 

 

Multicollinearity represents a significant challenge in multiple regression analysis because it 

directly affects the stability, precision, and interpretability of regression coefficients. When 

explanatory variables are highly correlated, the regression model encounters difficulty in 

isolating the individual effects of each predictor on the response variable. As a result, 

estimated coefficients may become unstable, exhibit unexpected signs or magnitudes, and 

change substantially with small modifications in the data. Although multicollinearity does not 

necessarily reduce the predictive accuracy or overall goodness of fit of the regression model, 

it greatly undermines the reliability of individual parameter estimates. Inflated standard errors 

lead to unreliable hypothesis tests, often causing statistically important variables to appear 

insignificant. This weakens the confidence in inferential conclusions and complicates 

decision-making based on the regression results. 

 

Effective regression analysis therefore requires careful diagnosis of multicollinearity using 

appropriate diagnostic tools such as correlation matrices, variance inflation factors, and 

condition indices. Once detected, suitable corrective measures—such as variable selection, 

transformation of variables, or alternative estimation techniques—should be employed. By 

properly addressing multicollinearity, researchers and analysts can ensure that regression 

models yield meaningful, stable, and dependable results for interpretation and practical 

application. 

 

14.7 SELF ASSESSMENT QUESTIONS 

 

• Define multicollinearity and explain its nature. 

• List the causes of multicollinearity. 

• Discuss the effects of multicollinearity on regression coefficients. 

• Explain the Variance Inflation Factor (VIF). 

• Suggest remedies for multicollinearity. 

 

14.8 FURTHER READINGS 

 

• Draper, N. R. and Smith, H., Applied Regression Analysis, Wiley. 

• Montgomery, D. C., Peck, E. A., and Vining, G. G., Introduction to Linear Regression 

Analysis, Wiley. 

• Rao, C. R., Linear Statistical Inference and Its Applications, Wiley. 

• Weisberg, S., Applied Linear Regression, Wiley. 

 

 

 

Dr. G. Madhu Sudan 

 



LESSON -15 

RIDGE REGRESSION AND PRINCIPAL 

COMPONENT REGRESSION 
 

OBJECTIVES:  

 

By the end of this lesson, students will be able to: 

• Understand the limitations of ordinary least squares estimation under 

multicollinearity. 

• Explain the concept and motivation behind ridge regression. 

• Derive and interpret the ridge regression estimator. 

• Analyze the role and selection of the ridge parameter in regression modeling. 

• Describe the concept of principal components and their use in regression analysis. 

• Construct a principal component regression model. 

• Compare ridge regression and principal component regression in terms of 

methodology, advantages, and limitations. 

• Apply ridge regression and PCR techniques to improve model stability and predictive 

performance in the presence of multicollinearity. 

 
STRUCTURE  

 

15.1 INTRODUCTION 

15.2 RIDGE REGRESSION 

15.2.1 Need for Ridge Regression 

15.2.2 Ridge Regression Estimator 

15.2.3 Choice of Ridge Parameter 

15.2.4 Properties of Ridge Regression 

15.3 PRINCIPAL COMPONENT REGRESSION (PCR) 

15.3.1 Concept of Principal Components 

15.3.2 Construction of PCR Model 

15.3.3 Advantages and Limitations of PCR 

15.4 COMPARISON OF RIDGE REGRESSION AND PCR 

15.5 CONCLUSION 

15.6 SELF ASSESSMENT QUESTIONS 

15.7 FURTHER READINGS 

 

15.1 INTRODUCTION 

 

In multiple linear regression analysis, the method of least squares is widely used to estimate 

regression coefficients because of its simplicity and desirable statistical properties. Under 

standard assumptions, least squares estimators are unbiased and have minimum variance 
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among all linear unbiased estimators. However, these favorable properties rely heavily on the 

assumption that explanatory variables are not highly correlated with one another. When this 

assumption is violated, serious practical difficulties arise in the estimation and interpretation 

of regression coefficients. 

 

A common problem encountered in applied regression analysis is multicollinearity, which 

occurs when two or more explanatory variables exhibit strong linear relationships among 

themselves. In the presence of multicollinearity, the matrix involved in least squares 

estimation becomes nearly singular. As a result, the least squares estimators tend to have 

large variances, making them highly sensitive to small changes in the data. This instability 

leads to coefficient estimates that may fluctuate widely across different samples and may 

even possess signs or magnitudes that are inconsistent with theoretical expectations. 

 

Although multicollinearity does not necessarily reduce the overall goodness of fit of the 

regression model or its predictive ability, it substantially weakens statistical inference. 

Inflated variances lead to large standard errors, causing important explanatory variables to 

appear statistically insignificant in hypothesis tests. Consequently, interpretation of individual 

regression coefficients becomes unreliable, and decision-making based on such results may 

be misleading. 

 

To overcome these limitations of the least squares method under multicollinearity, several 

alternative estimation techniques have been developed. Among these, Ridge Regression and 

Principal Component Regression (PCR) are two of the most important and widely used 

approaches. These methods modify the estimation process in different ways to reduce the 

harmful effects of multicollinearity, with the objective of producing more stable and reliable 

regression estimates. 

 

Ridge regression addresses the multicollinearity problem by introducing a small amount of 

bias into the estimation process. This is achieved by adding a penalty term to the least squares 

objective function, which shrinks the regression coefficients toward zero. Although the 

resulting estimators are biased, their variances are substantially reduced, often leading to a 

lower mean squared error compared to ordinary least squares estimators. Ridge regression 

therefore represents a trade-off between bias and variance, emphasizing stability and 

predictive accuracy over strict unbiasedness. 

 

Principal Component Regression takes a different approach by transforming the original 

explanatory variables into a new set of uncorrelated variables called principal components. 

These components are obtained as linear combinations of the original variables and are 

ordered according to the amount of variation they explain. By selecting only a subset of 

principal components for regression, PCR effectively eliminates multicollinearity and reduces 

dimensionality. While this method improves numerical stability, it may reduce 

interpretability because the principal components may not have direct physical or practical 

meaning. 

 

Both ridge regression and principal component regression aim to stabilize regression 

estimates while retaining good predictive performance. They are particularly valuable in 

situations where explanatory variables are highly correlated and where reliable estimation of 

individual regression coefficients is important. The choice between these methods depends on 

the objectives of the analysis, the importance of interpretability, and the nature of the data. 
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In summary, when multicollinearity undermines the reliability of least squares estimators, 

alternative methods such as ridge regression and principal component regression provide 

effective solutions. By modifying the estimation process, these techniques enhance stability, 

reduce variance, and support meaningful inference, making them essential tools in advanced 

regression analysis. 

 

15.2 RIDGE REGRESSION 

 

Ridge regression is a biased estimation technique developed to overcome the difficulties 

caused by multicollinearity in multiple linear regression models. In ordinary least squares 

estimation, when explanatory variables are highly correlated, the estimated regression 

coefficients tend to have large variances and become highly unstable. This instability makes 

the coefficients sensitive to small changes in the data, leading to unreliable estimation and 

weak statistical inference. Ridge regression addresses this issue by deliberately introducing a 

small amount of bias into the estimation process in order to achieve a substantial reduction in 

variance. 

 

The basic idea behind ridge regression is to modify the least squares estimation procedure so 

that extreme coefficient values are discouraged. This is done by adding a penalty term to the 

least squares objective function. The penalty restricts the size of the regression coefficients by 

shrinking them toward zero. Although this shrinkage introduces bias, it reduces the variability 

of the estimates, resulting in more stable and reliable coefficient values. This trade-off 

between bias and variance is central to the motivation of ridge regression. 

 

From a practical perspective, ridge regression is particularly useful in situations where 

multicollinearity makes ordinary least squares estimates unreliable, even though the overall 

regression model fits the data well. In such cases, ridge regression improves numerical 

stability and produces coefficient estimates that are less sensitive to sampling fluctuations. As 

a result, predictions obtained from ridge regression are often more accurate than those from 

ordinary least squares, especially in datasets with highly correlated predictors. 

 

Another important feature of ridge regression is that it retains all explanatory variables in the 

model. Unlike variable selection techniques that remove predictors, ridge regression keeps all 

variables but controls their influence through shrinkage. This is advantageous when all 

variables are considered theoretically important and should be included in the model, despite 

being correlated. 

 

The effectiveness of ridge regression depends on the appropriate selection of the ridge 

parameter, which determines the strength of the penalty applied to the coefficients. A small 

value of the ridge parameter introduces little bias and closely resembles ordinary least 

squares estimation, while a larger value increases shrinkage, reducing variance at the cost of 

greater bias. Choosing an optimal ridge parameter is essential to balance stability and 

accuracy. 

 

In summary, ridge regression provides a practical solution to the problem of multicollinearity 

by introducing bias deliberately to reduce variance. By stabilizing coefficient estimates and 

improving predictive performance, ridge regression enhances the reliability and usefulness of 

regression analysis in the presence of highly correlated explanatory variables. It represents an 

important extension of ordinary least squares estimation and plays a key role in modern 

regression methodology. 
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15.2.1 Need for Ridge Regression 

 

When explanatory variables are highly correlated, the matrix involved in least squares 

estimation becomes nearly singular. This results in large variances of regression coefficients 

and unstable estimates. Ridge regression was introduced to overcome this problem by 

shrinking regression coefficients toward zero. 

The primary motivation for ridge regression is to: 

• Reduce variance of regression coefficients 

• Improve numerical stability 

• Enhance predictive performance in the presence of multicollinearity 

 

15.2.2 Ridge Regression Estimator 

 

In ridge regression, the least squares objective function is modified by adding a penalty term 

proportional to the square of the regression coefficients. The ridge estimator is given by: 

β̂ ridge=(X⊤X+kI)−1X⊤Y 

where 

K > 0 is the ridge parameter, 

I is the identity matrix. 

The addition of kI ensures that the matrix is well-conditioned, allowing stable estimation 

even when multicollinearity is present. 

 

15.2.3 Choice of Ridge Parameter 

 

The value of the ridge parameter k controls the degree of shrinkage applied to the 

coefficients. 

• When k=0, ridge regression reduces to ordinary least squares. 

• As k increases, coefficients are increasingly shrunk toward zero. 

The optimal value of k is usually chosen using techniques such as: 

• Ridge trace plots 

• Cross-validation 

• Mean squared error minimization 

 

15.2.4 Properties of Ridge Regression 

 

Important properties of ridge regression include: 

• Ridge estimators are biased but have smaller variance 

• Mean squared error may be lower than least squares estimates 

• Regression coefficients are more stable under multicollinearity 

• Improved prediction accuracy compared to OLS in collinear data 

 

15.3 PRINCIPAL COMPONENT REGRESSION (PCR) 

 

Principal Component Regression (PCR) is a statistical technique developed to overcome the 

limitations of ordinary least squares regression when multicollinearity is present among 

explanatory variables. Multicollinearity arises when two or more predictors are strongly 

correlated, leading to unstable regression coefficient estimates and unreliable statistical 
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inference. Principal Component Regression addresses this issue by combining principal 

component analysis (PCA) with regression modeling. 

 

The key idea behind PCR is to transform the original set of correlated explanatory variables 

into a new set of uncorrelated variables known as principal components. These components 

are constructed as linear combinations of the original variables and are ordered according to 

the amount of variation they explain in the data. The first principal component explains the 

maximum possible variance, followed by the second principal component, which explains the 

maximum remaining variance subject to being uncorrelated with the first, and so on. 

 

Once the principal components are obtained, regression is performed using a selected subset 

of these components rather than the original explanatory variables. By excluding components 

associated with small eigenvalues, PCR removes directions in the data that contribute little 

information and are often responsible for multicollinearity. As a result, regression coefficient 

estimates become more stable, and the effects of correlated predictors are effectively 

eliminated. 

 

An important advantage of principal component regression is that it improves numerical 

stability without requiring the removal of original explanatory variables. Instead, PCR 

replaces the original correlated predictors with a smaller number of uncorrelated components. 

This leads to a reduction in dimensionality and simplifies the regression problem while 

retaining most of the important information contained in the data. 

 

Another benefit of PCR is its ability to reduce variance in regression estimates. Although 

PCR introduces bias by discarding some components, the overall mean squared error of the 

estimates may be reduced due to the substantial decrease in variance. This bias–variance 

trade-off is particularly beneficial in situations where multicollinearity is severe and least 

squares estimation performs poorly. 

 

Despite its advantages, PCR has certain limitations. One major drawback is the loss of 

interpretability. Since principal components are linear combinations of the original variables, 

they often lack a clear physical or practical meaning. Consequently, it may be difficult to 

interpret the relationship between individual explanatory variables and the response variable. 

Additionally, the principal components are constructed solely based on variability in the 

explanatory variables and do not take into account the response variable. As a result, 

components that explain large variance in predictors may not necessarily be the most relevant 

for predicting the response. 

 

The selection of the number of principal components to include in the regression model is a 

crucial step in PCR. Choosing too few components may exclude important information, 

leading to poor predictions, while choosing too many components may reintroduce noise and 

reduce the benefits of dimensionality reduction. Techniques such as scree plots, cumulative 

variance criteria, and cross-validation are commonly used to determine the appropriate 

number of components. 

 

In practical applications, principal component regression is particularly useful when the 

primary objective is prediction rather than interpretation. It is widely used in fields such as 

chemometrics, economics, engineering, and bioinformatics, where datasets often contain a 

large number of highly correlated predictors. In such contexts, PCR provides a reliable and 

effective alternative to ordinary least squares regression. 
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In summary, principal component regression is a powerful approach that combines PCA with 

regression analysis to handle multicollinearity. By transforming correlated explanatory 

variables into uncorrelated principal components, PCR enhances the stability and reliability 

of regression estimates. While it may sacrifice interpretability, its ability to improve 

prediction accuracy and numerical robustness makes it an important tool in advanced 

regression analysis. 

 

15.3.1 Concept of Principal Components 

 

Principal components are new variables obtained as linear combinations of the original 

explanatory variables. These components: 

• Are mutually uncorrelated 

• Capture maximum variance in descending order 

• Reduce dimensionality while retaining essential information 

 

15.3.2 Construction of PCR Model 

 

• The PCR procedure involves the following steps: 

• Standardize explanatory variables 

• Perform principal component analysis 

• Select a subset of principal components 

• Regress the response variable on selected components 

• By excluding components associated with small eigenvalues, PCR eliminates 

multicollinearity and stabilizes regression estimates. 

 

15.3.3 Advantages and Limitations of PCR 

 

Eliminates Multicollinearity 

One of the major advantages of Principal Component Regression is its ability to eliminate 

multicollinearity among explanatory variables. Since principal components are constructed to 

be mutually uncorrelated, the problem of strong linear dependence among predictors is 

completely removed. As a result, regression coefficients obtained from PCR are not affected 

by instability arising from correlated variables, leading to more reliable estimation. 

 

Reduces Dimensionality 

Principal Component Regression effectively reduces the dimensionality of the regression 

problem by replacing a large set of explanatory variables with a smaller number of principal 

components. These components retain most of the variability present in the original data 

while discarding redundant or less informative information. Dimensionality reduction 

simplifies the regression model, improves computational efficiency, and is particularly useful 

when dealing with large datasets or many predictors. 

 

Improves Numerical Stability 

By removing near-linear dependencies among explanatory variables, PCR improves the 

numerical stability of the regression estimation process. The transformation of correlated 

predictors into orthogonal components ensures that matrix inversion required for estimation 

is well-conditioned. This leads to stable coefficient estimates that are less sensitive to small 

changes in data and reduces the risk of numerical errors. 
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Enhances Prediction Accuracy 

Although PCR introduces bias by excluding some components, it often reduces the variance 

of estimates substantially. This trade-off frequently results in lower mean squared error 

compared to ordinary least squares estimation under multicollinearity. Consequently, PCR 

often provides better prediction performance, especially when predictors are highly 

correlated. 

 

Useful for Complex and High-Dimensional Data 

PCR is particularly advantageous in applications involving many explanatory variables, such 

as econometrics, engineering, chemometrics, and bioinformatics. It allows analysts to handle 

complex datasets efficiently while retaining the most important structural information. 

 

Lack of Interpretability of Principal Components 

One of the major limitations of Principal Component Regression is that the principal 

components used as predictors often lack direct interpretability. Each principal component is 

a linear combination of several original explanatory variables, making it difficult to associate 

the regression results with specific predictors. This reduces the usefulness of the model in 

situations where understanding the individual effect of explanatory variables is important for 

decision-making or policy analysis. 

 

Possible Exclusion of Important Predictors 

In PCR, principal components are selected based on the amount of variation they explain in 

the explanatory variables, not on their relationship with the response variable. As a result, 

components that explain relatively little variance in the predictors—but may still be strongly 

related to the response—can be excluded from the model. This may lead to the omission of 

important predictive information and reduce model effectiveness. 

 

Need for Careful Selection of Components 

The performance of PCR depends critically on the number of principal components included 

in the regression model. Selecting too few components may result in loss of important 

information, leading to poor predictions, while including too many components may 

reintroduce noise and reduce the advantages of dimensionality reduction. Therefore, careful 

and informed selection of components using appropriate criteria is essential. 

 

Bias in Estimation 

Since PCR discards some principal components, the resulting estimators are biased. Although 

this bias may be acceptable when it leads to a reduction in variance, it must be considered 

when interpreting regression results, particularly in inferential studies. 

 

Limited Suitability for Interpretive Analysis 

Because of the emphasis on variance rather than explanatory power, PCR is more suitable for 

prediction-focused applications than for models aimed at interpretation of individual 

variables. 
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15.4 COMPARISON OF RIDGE REGRESSION AND PCR 
 

Aspect Ridge Regression Principal Component Regression 

Approach Penalized regression Dimension reduction 

Use of predictors Uses all predictors Uses selected components 

Bias Biased estimation Biased estimation 

Interpretability Moderate Low 

Handling multicollinearity Reduces effect Eliminates effect 

 

15.5 CONCLUSION 

 

Ridge regression and principal component regression provide effective alternatives to 

ordinary least squares estimation when multicollinearity is present in multiple linear 

regression models. Multicollinearity undermines the stability and reliability of least squares 

estimates by inflating variances and producing unstable regression coefficients. Both ridge 

regression and PCR address this problem, though they adopt different strategies to achieve 

stability and improved performance. 

 

Ridge regression controls multicollinearity by shrinking regression coefficients toward zero 

through the introduction of a penalty term in the estimation process. This shrinkage reduces 

the variance of the estimates at the cost of introducing a small amount of bias. As a result, 

ridge regression produces more stable and reliable coefficients while retaining all explanatory 

variables in the model. It is particularly useful when interpretability of predictors is still 

important and when all variables are theoretically relevant. 

 

Principal component regression, on the other hand, removes multicollinearity by transforming 

the original correlated explanatory variables into a new set of uncorrelated principal 

components. Regression is then performed using a selected subset of these components. By 

eliminating linear dependence among predictors and reducing dimensionality, PCR improves 

numerical stability and often enhances predictive accuracy. However, the use of principal 

components may reduce interpretability, as these components are linear combinations of the 

original variables. 

 

The choice between ridge regression and principal component regression depends on the 

objectives of the analysis. If the primary goal is prediction and numerical stability in the 

presence of severe multicollinearity, both methods are suitable. Ridge regression is generally 

preferred when maintaining the original explanatory variables is important, while PCR is 

advantageous when dimensionality reduction is desired. Careful consideration of 

interpretability, predictive performance, and model objectives is essential when selecting the 

appropriate method. 

 

In summary, ridge regression and principal component regression are powerful tools in 

advanced regression analysis. By effectively addressing the challenges posed by 

multicollinearity, they enhance the stability, reliability, and usefulness of regression models 

in practical applications. 
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15.6 SELF ASSESSMENT QUESTIONS 

 

• Explain the need for ridge regression. 

• Derive the ridge regression estimator. 

• What is the role of the ridge parameter? 

• Describe the steps involved in principal component regression. 

• Compare ridge regression and PCR. 

 

15.7 FURTHER READINGS 

 

• Draper, N. R. and Smith, H., Applied Regression Analysis, Wiley. 

• Montgomery, D. C., Peck, E. A., and Vining, G. G., Introduction to Linear Regression 

Analysis, Wiley. 

• Rao, C. R., Linear Statistical Inference and Its Applications, Wiley. 

• Weisberg, S., Applied Linear Regression, Wiley. 
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LESSON -16 

SUBSET SELECTION OF EXPLANATORY 

VARIABLES 
 

OBJECTIVES:  

 

By the end of this lesson, students will be able to: 

• After completing this lesson, students will be able to: 

• Understand the need for variable selection in multiple linear regression models. 

• Explain the concept and importance of subset selection of explanatory variables. 

• Describe various subset selection methods such as best subset selection, forward 

selection, backward elimination, and stepwise regression 

 

STRUCTURE : 

 

16.1 INTRODUCTION 

16.2 NEED FOR VARIABLE SELECTION 

16.3 SUBSET SELECTION METHODS 

16.3.1 Best Subset Selection 

 16.3.2 Forward Selection 

 16.3.3 Backward Elimination 

 16.3.4 Stepwise Regression 

16.4 MODEL SELECTION CRITERIA 

16.4.1 Adjusted Coefficient of Determination 

 16.4.2 Akaike Information Criterion (AIC) 

 16.4.3 Bayesian Information Criterion (BIC) 

 16.4.4 Mallows’ Cp 

16.5 PRACTICAL ISSUES IN VARIABLE SELECTION 

16.6 CONCLUSION 

16.7 SELF ASSESSMENT QUESTIONS 

16.8 FURTHER READINGS 

 

16.1 INTRODUCTION 

 

In multiple linear regression analysis, it is common to encounter situations where a large 

number of explanatory variables are available to model a response variable. Advances in data 

collection and storage have made it easier to gather many potential predictors, but the 

presence of a large number of variables does not necessarily improve the quality of a 

regression model. In fact, including all available variables may lead to several statistical and 

practical difficulties, making the regression model less reliable and harder to interpret. 
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One important issue arising from the inclusion of many explanatory variables is the 

introduction of unnecessary complexity. A complex model with many predictors may fit the 

observed data well, but it often lacks interpretability. Understanding the role and contribution 

of each variable becomes difficult, especially when predictors are correlated or when their 

effects overlap. Such models may also perform poorly when applied to new data, a 

phenomenon known as overfitting. 

 

Another major concern is multicollinearity, which occurs when explanatory variables are 

highly correlated with one another. Including several related variables in the same regression 

model can inflate the variances of regression coefficient estimates, resulting in unstable and 

unreliable coefficients. This instability weakens statistical inference and makes it difficult to 

identify which variables are truly influential. 

 

Some explanatory variables may contribute little or no useful information in explaining the 

response variable. These variables act mainly as noise and can obscure the effects of more 

important predictors. Including such irrelevant variables increases estimation variance 

without providing meaningful improvement in model performance. Consequently, hypothesis 

tests may become less powerful, and confidence intervals may become wider than necessary. 

 

To address these challenges, subset selection of explanatory variables is used as an 

essential tool in multiple regression analysis. Subset selection involves identifying a smaller 

group of explanatory variables that adequately explains the response variable while excluding 

redundant or unimportant predictors. The purpose is not merely to reduce the number of 

variables, but to improve the overall effectiveness, stability, and interpretability of the 

regression model. 

 

The central objective of subset selection is to achieve an appropriate balance between model 

fit and model complexity. A good regression model should explain the data well, but it 

should also be as simple as possible. Simpler models are easier to interpret, often more stable, 

and tend to generalize better to new data. By excluding irrelevant or redundant predictors, 

subset selection reduces the risk of overfitting and enhances the predictive performance of the 

model. 

Subset selection also plays an important role in improving the precision of parameter 

estimation. When fewer but more relevant explanatory variables are included, regression 

coefficients tend to have smaller variances and greater stability. This leads to more reliable 

hypothesis testing and more meaningful confidence intervals. As a result, conclusions drawn 

from the regression analysis become more trustworthy. 

 

From a practical standpoint, subset selection can also reduce data collection and 

computational costs. In many applications, obtaining measurements for certain variables 

may be expensive, time-consuming, or difficult. Identifying a subset of important predictors 

allows analysts to focus resources efficiently while still maintaining acceptable model 

performance. This is particularly valuable in fields such as economics, engineering, medicine, 

and environmental studies. 

 

It is important to note that subset selection is not a purely mechanical process. While 

statistical criteria and automated procedures provide useful guidance, subject-matter 

knowledge and practical considerations must also be incorporated. A variable that appears 

statistically insignificant in one dataset may still be important from a theoretical or practical 
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perspective. Therefore, variable selection should be carried out carefully, combining 

statistical evidence with expert judgment. 

 

In summary, subset selection of explanatory variables is a crucial step in multiple linear 

regression analysis when many potential predictors are available. By identifying a smaller 

and more relevant set of variables, subset selection enhances model interpretability, reduces 

multicollinearity, improves estimation accuracy, and supports better prediction. The ultimate 

goal is to construct a regression model that is both statistically sound and practically useful, 

achieving an effective balance between simplicity and explanatory power. 

 

16.2 NEED FOR VARIABLE SELECTION 

 

The need for variable selection arises due to the following reasons: 

• Improved interpretability: Models with fewer variables are easier to understand and 

explain. 

• Reduction of multicollinearity: Removing redundant variables helps reduce 

correlation among predictors. 

• Improved estimation accuracy: Eliminating irrelevant variables reduces variance of 

estimates. 

• Better prediction performance: Simpler models often generalize better to new data. 

• Cost and efficiency: Collecting and processing fewer variables saves time and 

resources. 

Therefore, selecting an appropriate subset of explanatory variables is essential for reliable 

and meaningful regression analysis. 

 

16.3 SUBSET SELECTION METHODS 

 

Several systematic procedures are available for selecting appropriate subsets of explanatory 

variables in multiple linear regression. These procedures are designed to identify a set of 

predictors that provides a good balance between model accuracy and simplicity. Since 

different explanatory variables may contribute differently to explaining the response variable, 

subset selection methods offer structured approaches to determine which variables should be 

included in the regression model. 

 

One widely used approach is best subset selection, which involves fitting regression models 

for all possible combinations of explanatory variables. For each subset size, the best-

performing model is selected based on predefined evaluation criteria. Although this method is 

comprehensive and often yields optimal models, it becomes computationally infeasible when 

the number of explanatory variables is large. 

 

Another commonly applied procedure is forward selection. This method begins with an 

empty model and sequentially adds explanatory variables that contribute most significantly to 

improving the model fit. Forward selection is computationally efficient and easy to 

implement, but it may fail to identify the optimal subset when important combinations of 

variables are overlooked. 

 

Backward elimination takes the opposite approach by starting with the full model 

containing all explanatory variables. Variables are then removed one at a time based on 

statistical insignificance until a satisfactory model is obtained. This method is effective when 
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the sample size is large enough to support estimation of the full model, but it cannot be 

applied if the number of variables exceeds the number of observations. 

 

Stepwise regression combines features of both forward selection and backward elimination. 

At each stage, variables may be added or removed depending on their contribution to model 

performance. Stepwise regression offers flexibility and adaptability but may yield different 

results depending on the chosen selection criteria. 

 

These systematic procedures provide practical tools for variable selection, but their results 

should be interpreted carefully. Selection methods often depend on the data and criteria used, 

and different procedures may lead to different subsets. Therefore, statistical techniques 

should be complemented with subject-matter knowledge to ensure meaningful and reliable 

regression models. 

 

16.3.1 Best Subset Selection 

 

Best subset selection involves fitting regression models for all possible combinations of 

explanatory variables. For each subset size, the best-performing model is identified based on 

a chosen criterion. 

 

Features: 

• Evaluates all possible subsets 

• Provides optimal subsets for each size 

• Computationally expensive for large numbers of variables 

• Best subset selection is ideal when the number of predictors is small. 

 

16.3.2 Forward Selection 

 

Forward selection begins with an empty model containing no explanatory variables. 

Variables are added one at a time based on their contribution to improving model fit. 

Procedure: 

• Start with no predictors 

• Add the variable that gives the greatest improvement 

• Continue until no significant improvement is possible 

• This method is computationally efficient but may miss the best overall model. 

 

16.3.3 Backward Elimination 

 

Backward elimination starts with the full model that includes all explanatory variables. 

Variables are removed one by one based on lack of statistical significance. 

Procedure: 

• Fit the full model 

• Remove the least significant variable 

• Continue until all remaining variables are significant 

• Backward elimination requires a reasonably large sample size. 

 

16.3.4 Stepwise Regression 

 

Stepwise regression combines features of forward selection and backward elimination. 
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Characteristics: 

• Variables can be added or removed at each step 

• Dynamic and flexible approach 

• Popular in applied data analysis 

• However, results may depend on the chosen significance levels. 

 

16.4 MODEL SELECTION CRITERIA 

 

In multiple linear regression analysis, it is common to obtain several competing models 

through different subset selection procedures. Each model may differ in the number of 

explanatory variables included as well as in its goodness of fit. To select the most appropriate 

model among these alternatives, model selection criteria are used. These criteria provide 

objective measures to compare models and help identify a model that offers an optimal 

balance between accuracy and simplicity. 

 

One of the most widely used criteria is the adjusted coefficient of determination. Unlike the 

ordinary coefficient of determination, which always increases when more variables are 

added, the adjusted measure accounts for the number of explanatory variables in the model. It 

increases only when a newly added variable improves the model more than would be 

expected by chance. This property makes it useful for comparing models with different 

numbers of predictors. 

 

Another important criterion is the Akaike Information Criterion (AIC), which evaluates 

models based on a trade-off between goodness of fit and model complexity. AIC penalizes 

the inclusion of additional variables and helps prevent overfitting. Models with smaller AIC 

values are preferred, as they are considered to provide a better balance between fit and 

complexity. 

 

The Bayesian Information Criterion (BIC) is similar in spirit to AIC but imposes a stronger 

penalty for model complexity, particularly when the sample size is large. As a result, BIC 

generally favors more parsimonious models. It is especially useful when the primary goal is 

to identify the most relevant set of explanatory variables rather than to maximize predictive 

accuracy. 

 

Mallows’ Cp is another useful criterion that compares the bias and variance of competing 

models. It evaluates how well a subset model approximates the full model. Models with Cp 

values close to the number of explanatory variables are usually considered desirable, as they 

indicate a good balance between model fit and parsimony. 

 

In summary, model selection criteria play a crucial role in evaluating competing regression 

models. By considering both goodness of fit and model complexity, these criteria help in 

selecting models that are not only statistically sound but also simple, stable, and suitable for 

practical application. 

 

16.4.1 Adjusted Coefficient of Determination 

 

Adjusted R2 accounts for the number of explanatory variables in the model.The Adjusted 

Coefficient of Determination, denoted asR2, is an important statistical measure used to 

evaluate the goodness of fit of a multiple regression model while accounting for the number 
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of explanatory variables included in the model. It is a modified version of the ordinary 

coefficient of determination R2, which measures the proportion of total variation in the 

response variable explained by the regression model. 

Adjusted R2 = 
1-(RSS/(n-p-1))

TSS/(n-1)
 

It increases only when a new variable improves the model beyond chance. 

 

16.4.2 Akaike Information Criterion (AIC) 

 

The Akaike Information Criterion (AIC) is one of the most widely used statistical 

measures for comparing and selecting regression models. It is designed to balance model fit 

and model complexity, helping to identify a model that explains the data well without 

including unnecessary explanatory variables. The fundamental idea behind AIC is that a good 

model should achieve high explanatory power while remaining as simple as possible. 

 

AIC is based on the concept of information loss. When a statistical model is used to represent 

the true data-generating process, some amount of information is inevitably lost. The AIC 

provides an estimate of this information loss, and models with smaller AIC values are 

considered to be closer to the true underlying process. 

 

AIC balances model fit and complexity: 

AIC = nln(RSS/n)+2p  

where 

• n is the sample size, 

• RSS is the residual sum of squares, and 

• p is the number of estimated parameters in the model. 

The first term measures the lack of fit of the model, while the second term introduces a 

penalty for model complexity. As the number of explanatory variables increases, the penalty 

term increases, discouraging the inclusion of unnecessary variables. 

 

An important feature of AIC is that it allows comparison among competing models, even 

when they are not nested. The model with the lowest AIC value is preferred. However, AIC 

does not test a model in an absolute sense; it only ranks models relative to one another. AIC 

is particularly useful in subset selection problems, where many candidate models are 

available. By penalizing excessive complexity, it helps reduce the risk of overfitting and 

encourages the selection of models that are more likely to perform well on new data. 

 

In summary, the Akaike Information Criterion is a powerful and practical tool for model 

selection. By balancing goodness of fit with simplicity, AIC supports the construction of 

regression models that are both efficient and reliable for inference and prediction. Smaller 

AIC values indicate better models. 

 

16.4.3 Bayesian Information Criterion (BIC) 

 

The Bayesian Information Criterion (BIC) is a widely used statistical criterion for model 

selection in regression analysis. Like the Akaike Information Criterion (AIC), BIC aims to 

evaluate competing models by balancing model fit and model complexity. However, BIC 

imposes a stronger penalty for model complexity, especially as the sample size increases, 

and therefore tends to favor simpler and more parsimonious models. 
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BIC is derived from Bayesian principles and provides an approximate measure for selecting 

the most probable model among a set of candidate models, given the observed data. 

BIC introduces a heavier penalty for model complexity: 

BIC = nln(RSS/n) +p 

where 

• n is the sample size, 

• RSS is the residual sum of squares, and 

• p is the number of estimated parameters in the model. 

The first term measures how well the model fits the data, while the second term penalizes the 

inclusion of additional parameters. The penalty term in BIC, pln⁡np \ln nplnn, increases 

more rapidly than the penalty term in AIC as the sample size grows. As a result, BIC places 

greater emphasis on simplicity. 

 

An important property of BIC is that it tends to select the true model, assuming it is among 

the candidate models and certain regularity conditions are satisfied, as the sample size 

becomes large. This property makes BIC especially attractive in problems where the goal is 

to identify a parsimonious model rather than maximize predictive accuracy. 

 

Like AIC, BIC is used for relative comparison of models. The model with the smallest BIC 

value is preferred. Differences in BIC values can be interpreted as evidence in favor of one 

model over another, with larger differences indicating stronger support. 

 

In summary, the Bayesian Information Criterion is an effective tool for model selection that 

emphasizes simplicity and interpretability. By imposing a stronger penalty for complexity, 

BIC helps prevent overfitting and supports the selection of regression models that are stable, 

efficient, and theoretically sound. 

 

16.4.4 Mallows’ Cp 

 

Mallows’ Cp is a widely used statistical criterion for model selection in multiple linear 

regression, particularly in the context of subset selection of explanatory variables. It is 

designed to assess the trade-off between bias and variance in a regression model and to 

determine how well a subset model approximates the full regression model. 

 

The basic idea behind Mallows’ Cp is to evaluate whether a regression model with a selected 

subset of explanatory variables provides an adequate fit without unnecessary complexity. 

Unlike criteria that focus only on goodness of fit, Mallows’ Cp explicitly accounts for the 

number of variables included in the model, thereby helping to identify parsimonious models. 

Mallows’ Cp assesses the trade-off between bias and variance: 

Cp = 
RSSp

σ̂
2  − (n−2p) 

Models with Cp ≈ p are preferred. 

where 

• RSSp is the residual sum of squares for the model containing ppp explanatory 

variables, 

• σ̂2 is an estimate of the error variance obtained from the full model, and 

• n is the sample size. 

A desirable property of Mallows’ Cp  is that it provides guidance on both model adequacy 

and simplicity. Models with Cp values close to p (the number of explanatory variables) are 
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generally considered satisfactory. Such models achieve a good balance between bias and 

variance and are likely to provide reliable estimates. 

 

If the value of Cp is much larger than p, it suggests that the model may be missing important 

explanatory variables, leading to bias. On the other hand, a very small value of Cp may 

indicate overfitting, where unnecessary variables have been included in the model. 

 

Mallows’ Cp is particularly useful in best subset selection procedures, where many 

competing models are evaluated simultaneously. By comparing Cp values across models, 

analysts can identify subsets that approximate the full model closely while using fewer 

variables. 

 

In summary, Mallows’ Cp is an effective criterion for selecting regression models that 

balance accuracy and simplicity. By considering both the goodness of fit and the number of 

explanatory variables, it supports the identification of models that are stable, efficient, and 

well-suited for inference and prediction. 

 

16.5 PRACTICAL ISSUES IN VARIABLE SELECTION 

 

While performing variable selection, the following issues must be considered: 

• Risk of overfitting 

• Instability due to correlated predictors 

• Dependence on sample size 

• Ignoring domain knowledge 

• Different methods may yield different subsets 

• Sound judgment and subject-matter expertise are essential. 

 

16.6 CONCLUSION 

 

Subset selection of explanatory variables is a crucial step in multiple regression analysis, 

particularly when a large number of potential predictors are available. Including all 

explanatory variables in a regression model often leads to unnecessary complexity, reduced 

interpretability, and potential statistical issues such as multicollinearity and overfitting. By 

carefully identifying an appropriate subset of predictors, a regression model can be made 

more efficient, stable, and meaningful. 

 

Selecting a suitable subset of explanatory variables enhances interpretability by focusing 

attention on the most influential predictors and clarifying their relationship with the response 

variable. Simpler models are easier to understand and communicate, especially in applied 

fields where practical interpretation is as important as statistical accuracy. In addition, 

reducing the number of variables often leads to more stable parameter estimates with smaller 

variances, thereby improving the reliability of statistical inference. 

 

Subset selection also plays an important role in improving predictive performance. Models 

that avoid unnecessary variables tend to generalize better to new data, as they are less prone 

to overfitting. By balancing model fit with model simplicity, subset selection methods help 

construct regression models that perform well both on observed data and in future 

predictions. 

 



Centre for Distance Education   16.9        Acharya Nagarjuna University  

 

A variety of systematic selection methods—such as best subset selection, forward selection, 

backward elimination, and stepwise regression—along with model selection criteria like 

adjusted coefficient of determination, AIC, BIC, and Mallows’ Cp, provide valuable 

guidance in identifying appropriate models. However, no single method is universally 

optimal, and different approaches may lead to different subsets of variables. 

 

Therefore, thoughtful application of subset selection techniques is essential. Statistical criteria 

should be used in conjunction with subject-matter knowledge and practical considerations to 

ensure that selected models are not only statistically sound but also meaningful in real-world 

contexts. When applied carefully, subset selection contributes significantly to the 

development of reliable, interpretable, and effective multiple regression models. 

 

16.7 SELF ASSESSMENT QUESTIONS 

 

• Why is variable selection important in multiple regression? 

• Explain best subset selection and its limitations. 

• Differentiate between forward selection and backward elimination. 

• Explain AIC and BIC. 

• What is Mallows’ Cp? 
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