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FOREWORD

Since its establishment in 1976, Acharya Nagarjuna University has been forging
ahead in the path of progress and dynamism, offering a variety of courses and research
contributions. I am extremely happy that by gaining ‘A*’ grade from the NAAC in the
year 2024, Acharya Nagarjuna University is offering educational opportunities at the UG,
PG levels apart from research degrees to students from over 221 affiliated colleges spread

over the two districts of Guntur and Prakasam.

The University has also started the Centre for Distance Education in 2003-04 with
the aim of taking higher education to the doorstep of all the sectors of the society. The
centre will be a great help to those who cannot join in colleges, those who cannot afford
the exorbitant fees as regular students, and even to housewives desirous of pursuing
higher studies. Acharya Nagarjuna University has started offering B.Sc., B.A., B.B.A.,
and B.Com courses at the Degree level and M.A., M.Com., M.Sc., M.B.A., and L.L.M.,
courses at the PG level from the academic year 2003-2004 onwards.

To facilitate easier understanding by students studying through the distance mode,
these self-instruction materials have been prepared by eminent and experienced teachers.
The lessons have been drafted with great care and expertise in the stipulated time by these
teachers. Constructive ideas and scholarly suggestions are welcome from students and
teachers involved respectively. Such ideas will be incorporated for the greater efficacy of
this distance mode of education. For clarification of doubts and feedback, weekly classes

and contact classes will be arranged at the UG and PG levels respectively.

It is my aim that students getting higher education through the Centre for
Distance Education should improve their qualification, have better employment
opportunities and in turn be part of country’s progress. It is my fond desire that in the
years to come, the Centre for Distance Education will go from strength to strength in the
form of new courses and by catering to larger number of people. My congratulations to
all the Directors, Academic Coordinators, Editors and Lesson-writers of the Centre who

have helped in these endeavors.

Prof. K.GangadharaRao

M.Tech.,Ph.D.,
Vice-Chancellor I/c

Acharya Nagarjuna University
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CODE:204MA24
M.Sc DEGREE EXAMINATION

Second Semester Mathematics :: Paper IV-INTEGRAL EQUATIONS
MODEL QUESTION PAPER

Time: Three hours Maximum:70 Marks

Answer ONE question from each unit (5x14=70)

UNIT-I
1. (a) Form an integral equation corresponding to the differential equation
y' ' +xy'+y =0
with the initial conditions, y(0) = 1,y¥'(0) = 0
(b) Find the resolvent kernel of the Volterra integral equation with kernel
K(x,t) = x —t.

Or
2. (a) Using the method of successive approximations, solve the integral

px) =1+ f;(p(t) dt , taking @o(x) = 0.
(b) Solve the integral equation,

X

p(x) = sinx + 2 f cos(x —t)p(t) dt.
0

UNIT-II
3. (a) Solve the integro-differential equation,
o"(x) + o(x) + f;c sinh(x — t) (t)dt + f;c cosh(x — t) ¢’ (t)dt = coshx;

@(0) = -1, ¢'(0) = 1, by using the Laplace Transformation.

(b) Solve the integral equation, @(x) = cosx + fxoo e* =g (t)dt.
Or

1
4. (a) Solve, fox":/(%t: 2

(b) Solve, 2¢(x) — f;cq)(t)(p(x —t)dt = sinx
UNIT-III
5. (a) Show that the function (p(x)=sin§ is a solution of the Fredholm-type
2
integral equation, (p(x)-% fol K(x,t)o(t) dt=§ .
(b) Find the iterated kernels of the following kernel for specified a and b.

K(x, t)=e*cost; a=0, b=r.
Or



6. (a) Solve the given integral equation with a degenerate kernel,

I

1
o(x)-\A f tan to(t) dt=cotx

1
(b) Find the eigenfunction and the corresponding characteristic numbers of the

equation, ¢ (x) = Af_”ﬂ cos?(x — t) ¢(t) dt.

UNIT-1V

(a) Solve the following homogeneous integral equation:

7.
o(x)+6 fol (x2-2xt) @(t) dt=0.

(b) Solve the homogeneous symmetric integral equation:
9(0) + [ K(x,6) p(t) de = xe,
sinhx sinh (¢ — 1)
0<x<t

_ sinh1
KCxt) = sinht sinh (x — 1) fcr<1
x < 1.

sinh1

Or
Construct Green’s function for the homogeneous boundary value problem

y"(x) =0,

8.

y(©)=y'(0) = 0}
y@=y'(W)=0J

UNIT-V

9. (a) Reduce the boundary value problem,
y'+ Ay = x, y(0) =y G) =0 to an integral equation.

(b) Show that the integral equation ¢@(x) = 1 fooo I (2\/9&)<p(t)dt has
characteristic number A = +1 of infinite multiplicity and find the
associated eigenfunctions. [where J,(z) is a Bessel function of the first kind.]

Or

—t2

. . 1 o0 ZH .
10. (a) Solve the integral equation = fo e @(t)dt = 2x — sinhx.

(b) Use the Bubnov-Galerkin method to solve the equation
1
o) =x+ [ xo)dt.
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LESSON - 1
VOLTERRA INTEGRAL EQUATIONS

OBJECTIVES:
e To identify the Integral equations
e To classify the types of integral equations
e To verify that the given function is a solution of the integral equation
e To convert the given Initial value problem and Boundary value problem to an

equivalent integral equation

STRUCTURE:

1.1 Introduction

1.2 Integral Equations

1.3 Linear and Non-linear Integral Equations

1.4 Classification of Linear Integral Equations

1.5 Solution of the Integral Equation

1.6 Solved Examples

1.7 Differentiation of a Function Under an Integral Sign

1.8 Relationship Between Linear Differential Equations and Volterra Integral
Equations

1.9 Summary

1.10 Technical Terms

1.11 Self-Assessment Questions

1.12 Suggested Readings

1.1 INTRODUCTION:

and engineering. They also arise as representation formulae for the solution of differential
equations. There is a relation between the solutions of initial value problems and boundary

value problems; differential equations with initial and boundary conditions can be

Integral equations arise in the modeling of physical situations in science, technology,

equivalently represented as integral equations.

1.2 INTEGRAL EQUATIONS:

An integral equation is an equation in which an unknown function, to be determined,

appears under one or more integral signs.
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For example, fora < x < b,a < t < b, the equations

b
J K(x, t)pt)dt = f(x), (1.1)

b
o() — A f K, Op®)dt = fG)  (12)

and

b
o(x) = f K (x, Olp@®]2 dt, (1.3)

where the function @ (x), is the unknown function, while the functions f(x) and K(x, t) are
known functions and 4, a, and b are constants, are all integral equations. These functions may

be complex-valued functions of the real variables x and t.
1.3 LINEAR AND NON-LINEAR INTEGRAL EQUATIONS:

An integral equation is called linear if only linear operations are performed in it upon the
unknown function. An integral equation that is not linear is known as a non-linear integral

equation. By writing either

b b
L(p) = j K(x, O9(0)dt (o) L(g) = ¢(x)- A j K (x, )9 (t)dt

we can easily verify that L is a linear operator. In fact, for any constants ¢; and c¢,, we have:
L{c1p:(0) + c20:(0)} = 1 L{p1(x)} + c2L{g2(x)},

which is a well-known general criterion for a linear operator. For example, the integral

equations (1.1) and (1.2) of Section 1.2 are linear integral equations, while the integral

equation (1.3) is a non-linear integral equation. The most general type of linear integral

equation is of the form:
aGpW) = F0O+ 4 [ K, 0p@de,  (1.4)
Q

where the upper limit may be either variable x or constant. The functions a(x), f(x) and
K (x, t) are known functions while ¢(x) is to be determined; A is a non-zero real or complex

parameter. The function K (x, t) is known as the kernel of the integral equation.

1.4 CLASSIFICATION OF LINEAR INTEGRAL EQUATIONS:

1.4.1 Volterra Integral Equation:
An integral equation is said to be a Volterra integral equation if the upper limit of integration

is a variable x.
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The general form is:
aGg@) = F0+ 2 [ K oe©de

(i) When a = 0, the equation involves the unknown function ¢ appearing only under the

integral sign and nowhere else in the equation, then

fx)=—-2 fo(x, te(t)dt, a> —oo,

is called the Volterra's integral equation of the first kind.
(ii)) When ¢ = 1, the equation involves the unknown function ¢ both inside and outside the

integral sign, then

mm:ﬂw+ajK@ammu

is called the Volterra's integral equation of the second kind.

(iii) When @ = 1 and f(x) = 0, the equation reduces to

px) = Af K(x, t)p(t)dt

is called the homogeneous Volterra's integral equation of the second kind.

1.4.2 Fredholm Integral Equation:
An integral equation is said to be a Fredholm integral equation if the domain of integration )

is fixed,

b
a(x)px) = f(x)+ /1[ K(x,t)p(t)dt.

(1) When a = 0, the equation involves the unknown function ¢ only under the integral sign,

then

b
fx) = Af K(x,t)p(t)dt,a < x < b

is called the Fredholm integral equation of first kind.
(ii)) When a = 1, the equation involves the unknown function ¢, both inside as well as

outside the integral sign, then

b
px) = f(x)+ A f K(x,t)p(t)dt,a < x < b

is called the non-homogeneous Fredholm integral equation of second kind.

(iii) When a = 1, f(x) = 0, the equation reduced to
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b
px)= 2 f K(x,t)pt)dt,a < x < b

called the homogeneous Fredholm integral equation of the second kind.

In this lesson, we mainly focus on the Volterra integral equations.

1.5 SOLUTION OF AN INTEGRAL EQUATION:
Consider the linear Volterra integral equations:

b
a(@)e() = FGO) + f K, e®dt  (L5)

and

b
a()px) = f(x)+ Af K(x, t)p(t)dt. (1.6)

A solution of the integral equation (1.5) or (1.6) is a continuous function ¢(x), which, when

substituted into the equation, reduces it to an identity (with respect to x).

1.6 SOLVED EXAMPLES:

Example 1.1 Show that the function

p(x) = 3
(14 x2)2

is a solution of the Volterra integral equation

() = — f L ot
P E TR o 1+ x? ¢ '

Solution. Given that the integral equation is

1 X
o) =17 fo oz e@de. (A7)
Also, given
3
p(x) = (1+x?)72. (1.8)

Then, RHS of (1.7)

_ 1 x t 2 _3 )
- 1+x2 - 0 1+x2 (1 +t ) 2 dt' uSIHg (1.8)
1 1

x _3
ot +t?)2de

T 14x2 1+a2
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1 1 X 31
= — _E — 1 2 — =
172 112 fo (1+w > du (by putting t u and 2tdt du)
1 1 11%°
- + 1+ ‘f]
T+x2 ' 1+x2 [( w2
1 1
- 2 1
1+4+x (1+x2)2
1
- 3
(14 x2)2

= ¢(x). (by(1.8))
Hence, (1.8) is a solution of the given integral equation (1.7).

Example 1.2 Verify the given function
X
px) =——73
(14 x?)2
is the solution of the integral equation

3x + 2x3 fx(Bx + 2x3 —1t)
3(1 + x2)2 0 (1 + x2)2

p(t)dt.

px) =

Solution. Given integral equation is

3 x 3 _
px) = 33?1:52);2 - fo (3x(1++2;cz)2 2 p®)dt.  (1.9)
Also, given
() =———  (1.10)
(1+x2)2
Then RHS of (1.9) =
_ 3+ fx(3x + 20— 1) Y lat, using (1.10)
3(1 + x?)? (1 + x?)? 1+ tz)g
3x + 2x3  13x + 2x3 (¥ 2t 1 X 2

d dt

JECETOLNI RO ((1+t2)§> GO 0 (1+t2)§

1
HECET D

(x4 2x%)  13x + 2x° 1

= = ~1
31+292 13U T0)2

x3 0]
3 3
(1+x2)2 (1 +x2)2

3x + 2x3 x3

7 7
3(1+x2)z2 3(1+x?)2
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X

- 1+ xz)g
= o(x).

Thus, ¢(x) = X isasolution of the given integral equation (1.9).

(1+x2)2

1.7 DIFFERENTIATION OF A FUNCTION UNDER AN INTEGRAL SIGN:

Consider the function I,,(x) defined by the relation

X
W = [ G- pedn,
a
where 77 is a positive integer and a is a constant.

We know that

dp(x)
dx ’

q(x) q(x) d
[ cemin= [ ojxoemyars 6xaco) 19 _ 6, p0)

which is valid if G and dG /dx are continuous of both x, 1 and the first derivative of p(x) and
q(x) are continuous.

Differentiating (1.11) under the integral sign, we have

ar. x d
L= (-1 f (x = "2 f) dn+ [Gc = M fD]yr 5= ()
d
=[x = " f(M)]y=a E(a)
dl,
E —_ (n_ 1)In_1,n > 1 (112)

From the relation (1.11), we have

x dl
hw = [ i =T = fe0 @13)

Differentiating (1.12) successively m times, we have

d™I,

o = m—-1Dn-2)...n—m)l,_,,, n > m.

In particular, we have

dn 1l

— = = DULAG)

d [d"1I, dl,

- = — 1121 = -1

P [dx"‘l] (n—1)! P (n—1D! f(x). (1.14)

Thus, we have
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L(x) = f f(x)dxy

dl,

dx =15 = faf(xﬂd?ﬁ

L(x) = J: szf(xl)dxldxz.

In general, we have
X rXn X3 [Xg

I,(x) = (n— 1)![ f f f f(x)dx, dxy ... dx,_1dx, . (1.15)
a a a a

From the relations (1.11) and (1.15), we have

Jax jaxn LX3szf(x1)dx1 dxy...dxp_1dx, = o ! 1)11 (%)

- oo | G - o an
ie.,

X n—-1
[ renan = j %f(n)dn

1.8 RELATIONSHIP BETWEEN LINEAR DIFFERENTIAL EQUATIONS AND
VOLTERRA INTEGRAL EQUATIONS:

The solution of the linear differential equation

dny n—-1

e + a,(x) —— P +...+a,(x)y = F(x) (1.16)
with continuous coefficients a;(x) (i = 1, 2,...,n), given initial conditions

y(0) = Co,y'(0) = Cp,...,y™(0) = Cpy (1.17)

may be reduced to a solution of a Volterra integral equation of the second kind.
Let us demonstrate this in the case of a differential equation of the second order.

Let

d?y

Pl al(x)z—z + a,(x)y = F(x), (1.18)
y(0) = Co,y'(0) = C;.  (1.19)
Put
d?y
dx?
Integrating both sides of (1.20) from 0 to x, we have

= @(x). (1.20)
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dy1* x
[E . = ,[0 p(t)dt
dy x

&Y= [ e

dy—C+thdt 1.21
dx_ 1 0(p() " (' )

Integrating both sides of (1.21) from 0 to x, we have
X X
Y = ¥ = G + [ [ otdn d
0o o

X(y _ )1
y(x) = Cy + C;x + f % pt)dt. (1.22)
0 !

2
Putting the values of %,Z—z andy given by (1.20),(1.21) and (1.22) respectively in

(1.18), we get

X

000 + a (O[C; + f P(Odt] + az () [Co + Gy x + j x — Dp(D)dt] = F(x)
0

0
p(x) = F(x) — C1a1(x) — Coay(x) — Cyxay(x) — f [a;(x) + a;(x)(x — )] () dt
0
(or)
pxX)=f(x)+ 21 f K(x, t)p(t)dt, (1.23)
0

where f(x) = F(x) — C; a;(x) — Cyay(x) — Cy x a, (x), (1.24)
A= -1, (1.25)
and K(x,t) = a,(x) + a,(x)(x —t), (1.26)
which represents the Volterra integral integral equation of the second kind.

The existence of a unique solution of equation (1.23) follows from the existence and
uniqueness of solution of the Cauchy problem (1.18) — (1.19) for a linear differential
equation with continuous coefficients in the neighborhood of the point x = 0.

Conversely, solving the integral equation (1.23) with f,A1 and K determined from
(1.24),(1.25) and (1.26), and substituting the expression obtained for @(x) into the
equation (1.22), we get a unique solution to equation (1.18) which satisfies the initial

conditions (1.19).

Example 1.3 Form an integral equation corresponding to the differential equation

Yy +xy+y =0
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with the initial conditions
y(0) = 1,y'(0) = 0.
Solution: The given differential equation is
y'+xy'+y =0 (1.20)
subject to the initial conditions:
y(0)= 1,y'(0) = 0. (1.21)
Suppose that

d?y
e o (x). (1.22)

Integrating both sides of (1.22) from 0 to x, we have

dy1”* x

2] - [woa
0

dxl,

dy , B X
2y —focp(t)dt

dy (*
== fo o(t) dt. (1.23)

Integrating both sides of (1.23) from 0 to x, we have

X t
Yo — ()] = j j o(t)dt, dt
0 0

yx)=1+ fx(x —tp(t)dt. (1.24)
0

Putting the values Of%'% and y given by (1.22), (1.23) and (1.24) respectively in (1.20),
we get
X X
p(x)+ x U q)(t)dt] + 1+ f (x—t)e)dt= 0
0 0
X
o) = -1 - | [x + - 0lp@de
0
X
px)= -1 - f (2x — ) e(t)dt
0
X
0() = f()+ 1| KGuopds
0
where f(x) = —1, A = —1,K(x,t) = 2x —t, which represents the Volterra integral

equation of the second kind.
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Example 1.4: Form an integral equation corresponding to the differential equation
y'" —3xy =0

with the initial conditions

1 ! n
y(0) =2,y'(0) = y'(0) = 1.
Solution:
Given differential equation is:
y"—3xy =0 (1.25)
subject to the initial conditions:
y(0) = 1/2,y'(0) = y"(0) = 1. (1.26)
Suppose that:
d3y
Integrating both sides of (1.27) from 0 to x, we have:
—| =] @) dt
|:dx2 0 0
dZy x
0= [ o
dZy X
— =1+ f (t) dt. (1.28)
dx? o

Integrating both sides of (1.28) from 0 to x, we have:

dy x pt
dx o Jo
(or)
dy x
v 1+x + fo (x — ep(t)dt.

Integrating both sides of (1.29) from 0 to x, we have

t2

x x pt opty
Y00 - y(0) = [£§ + Hf | ] etanana

1
y(x):§+x+—+ T

2 X _ 2
xZ f C=9 de. (130)
0

Putting the values of % and y given by (1.27) and (1.30) respectively in (1.25), we have

1 x? X(x —1t)?
o(x) — 3x [—+x+—+JO T

> > (p(t)dt] =0
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_3x(x+1)* 3

+ —fxx(x —t)%p(t)dt
0

@(x) 3 3

o) = F0O + A f K(x,t) p(0)dt,
0
where

fx) = ;x(x+ 1)?%,1 = ;K(x,t) = x(x —t)?

which represents the Volterra integral equation of the second kind.

1.9 SUMMARY:

This lesson provided the basic concepts of the integral equations, namely, linear, non-
linear, homogeneous, non-homogeneous, and different kinds of integral equations. In this
unit, we are mainly focusing on the Volterra integral equations. Next, we explain the relation
between linear differential equations and Volterra integral equations. Finally, we have given
examples and self-assessment problems that we included for better understanding of the
readers.

1.10 TECHNICAL TERMS:

Integral equation, linear, non-linear, homogenous, non-homogeneous, Volterra integral

equation, Fredholm integral equation.
1.11 SELF-ASSESSMENT QUESTIONS:

(1a) Verify that the given functions are solutions of the corresponding integral

equations:

1. p(x) = e*(cose* — e* sine®);

p(x) =1 — xe**)cos1 — e*sinl + fx[l — (x — eFe(t)dt.
0

X
2. p(x) = xe*;9p(x) = e*sinx + 2 f cos(x — t) @(t) dt.
0
3

3. p(x) = x —x—; p(x) = x —fxsinh(x — t) p(t)dt.
6 0

4. p(x) = 1 — x;J e* o) dt = x.
0

5. 0(kx) = 3;x3 = fx(x — t)? p(t) dt.
0
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6. p(x) = 1/ (2Vx); J X(p(t)/\/(x — t)dt = Vx.
0

7. @(x) 1/(7T\/x);fx<p(t)/\/(x — t)dt = 1.
0

(1b) Form the integral equations corresponding to the following differential equations

with the given initial conditions:

l.y" +y =0; y(0) = 0,y'(0) = 1.

y -y =0y0 =1

y' +y = cosx; y(0) = y'(0) = 0.

y" =5y + 6y = 0; y(0) = 0,y'(0) = 1.

"+ vy = cosx; y(0) = 0,y'(0) = 1.

y'—y'sinx + e*y = x; y(0) = 1,y'(0) = —1.

y' '+ (1 + x®)y = cosx; y(0) = 0,y'(0) = 2.

y"' +xy" + (x* = x)y = xe* + 1; y(0) = y'(0) = 1,y"(0) = 0.

r 1 ! n
y" = 2xy = 0;y(00) =5,5(0) = y'(0) = L

e A T o B
<

N

Solutions to Self-Assessment Questions:

Exercise (1b):

Loo() =—x+ [t —0)e®)dt

2. 9(x) =1+ [, p(t)dt

3. () =cosx— [ (x — Do(t)dt

4. 9(x) =5—6x+ [ [5—6(x — D]p(t)dt

5. @(x) =cosx —x— [ (x — p(t)dt

6. 9(x) =x—sinx+e*(x —1) + [[sinx — e*(x — O)]p()dt

7. o) = cosx —2x(1+x%) — [ (1 +x2)(x — De(t)dt

8. () =xe* +1-x(x* = 1) — [} [x +1 (% = ) (x — %] p(B)alt

9. () =x(x+1)%+ [; x(x — )2p(t)dt
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- Prof. K. Rajendra Prasad




LESSON -2
SOLUTION OF INTEGRAL EQUATION BY

USING RESOLVENT KERNEL
OBJECTIVES:

To determine the resolvent kernel by the method of iterated kernel
To determine the resolvent kernel if the kernel is a polynomial in ¢
To determine the resolvent kernel if the kernel is a polynomial in x
To determine the resolvent kernel if the kernel takes the form K(x — t)

STRUCTURE:

2.1 Finding Resolvent Kernel using Iterated Kernels

2.2 Determination of Resolvent Kernel
Method 1: If K(x,t) is a polynomial of degreen — 1 in t
Method 2: If K(x,t) is a polynomial of degreen — 1 in x
Method 3: If K(x,t) is of the form K(x — t)

2.3 Summary

2.4 Technical Terms

2.5 Self-Assessment Questions

2.6 Suggested Readings

2.1 FINDING RESOLVENT KERNEL USING ITERATED KERNELS:
Consider the Volterra integral equation of second kind:
X
() = f)+ 4 | K@ 0p(de, 2.1)
0

where the kernel K(x, t) is a continuous function for 0 < t < x,0 < x < a and the function
f(x)is continuous for 0 <t < x,0 < x < a.

Consider an infinite power series in ascending powers of A as:

() = @o() + 191(0) + X,(0) + -+ () + . (2.2)

Let the series (2.2) is a solution of the integral equation (1), then
Po(0) + 101(0) + 220,(x) + A 9, (x) + = fG) + A [ K(x,t) [@o(t) +
A2p1(0) + 229,(8) 4 - A" @, (8) + -+ ]dt. (2.3)

Equating the coefficients of like powers of A, we get

Po(x) = f(x)
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X

9100 = f K (x, 9o (0)dt
0

0200 = j K(x, )1 ()dt
0

Pu(0) = [; K, )1 (D)dt. (2.4)
Thus, it yields a method for the successive approximation of the functions ¢, (x). It may be
shown that the series (2.2) converges uniformly in x and A for any A and x € [0, a], under
these assumptions with regard to f(x) and K(x,t), its sum is a unique solution of the
equation (2.1). Further, from (2.4), it follows that
91 () = [§ K(x, O (B)dt,

0200 = [y Ko ) {[g K(t, ) (tr)dts fd.
Here,t; =0,t; =t;t =0,t = x.

By interchanging the order of integration, we have

@o(x) = f f(t)dt, {f K(x, t)K(t, t1) dt}
0 t

1

02(x) = [} K> (x, t)f (&) dty, (2.5)
where
Ky(x, t;) = f:K(x, K (t,t,) dt. (2.6)
In general, we have
0n(0) = [y Ko, Of()dt, n=123,~-. (27)

The functions K, (x, t) are called iterated kernels, which can readily be shown that
Ki(x,t) = K(x,t)
and K, (x, t), K3(x, t) etc., are defined recursively by the formulas
X
Knii(x, t) = f K(x,z)K,(z,t)dz,n =123,---. (2.8)
t

The relation (2.2), which represents the solution of the integral equation (2.1) can therefore

be written as

0 =+ 27 [ KGor©de  (29)
v=1 0

0@ = F+ [ Y K, G0f Ot
0 v=1
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px) =f(x) +f R(x, t; A)f (t)dt, (2.10)
0

where
R(x, ;1) = Yo AV 1K, (x, t). (2.11)
The function R(x,t; 1) is called the resolvent kernel or reciprocal kernel of the integral
equation (2.1). Series (2.11) converges absolutely and uniformly in the case of a continuous
kernel K (x, t).
Iterated kernels and also the resolvent kernel do not depend on the lower limit in an
integral equation.

The resolvent kernel R (x, t; A) satisfies the following functional equation:
X
R(x,t; 1) = K(x,t) + /1[ K(x,s)R(s,t; 1)ds. (2.12)
t

With the aid of the resolvent kernel, the solution of the integral equation (2.1) may be written

in the form,

px) =f(x)+ Afo(x, t; A)f()dt.  (2.13)
0

Example 2.1:
Find the resolvent kernel of the Volterra integral equation with kernel k(x,t) = 1.
Solution.

We know that the iterated kernels K, (x, t) are given by:

Ki(x,t) = K(x,0), (2.14)

K,(x,t) = JxK(x,z)Kn_l(z, t)dz, n = 2,3,---. (2.15)
Given

K(x,t) = 1. (2.16)

From (2.14) and (2.16),
K (x,t) = K(x,t) = 1. (2.17)
Putting n = 2 in (2.15) and using (2.17), we have:

xK(x, 2)K,(z,t)dz = Jxl l-dz=[z]f =x — t. (2.18)
t

K,(x,t) = J

t

Next, putting n = 3 in (2.15), we have:

xK(x, 2)K,(z,t)dz = fxl - (z —t)dz (using (2.17) and (2.18))

t

K;(x, t) = f

t
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—_ 271" 2
=[(Z t)] _x-o7 (2.19)

2 2!

t
And so, putting n = 4 in (2.15), we have:
(z —0)?
2l

K,(x,t) = fo(x, 2)K5(z,t)dz = fx 1 dz (using (2.17) and (2.19))

t

1 [z=-0% (-3
_5[ 3 ]t_ 3

(x—t)"t

X
K,(x,t) = Jt K(x,2z)K,_1(z,t)dz :W' forn = 1,23,
Thus, by definition of the resolvent kernel
R(x,t; ) = Z ALK (x,0)
n=1

(x — t)n—l

R(x,t; 1) =z/1n—1 TR
n=1

Therefore, the resolvent kernel is R(x, t; 1) = eAx—0),

Example 2.2:
Find the resolvent kernel of the Volterra integral equation with kernel K (x,t) = x —t.
Solution.

We know that the iterated kernels K, (x, t) are given by:

Kl (X, t) = K(x' t), (220)
K,(x,t) = fo(x, 2)K,_1(z,t)dz, n = 2,3,---. (2.21)
¢
Given
K(x,t) =x —t. (2.22)
From (2.20) and (2.22),
K (x,t) = K(x,t) = x — t. (2.23)

Putting n = 2 in (2.21) and using (2.23), we have:

K,(x,t) = Jxk(x, 2)K,(z,t)dz

= fx(x —2)(z—t)dz
t
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= fx[—z2 + (x+t)z —xt]ldz

1
= g(x3 — 3x%t + 3xt? — t3).

Thus,

Kt = & ;t)g. (2.24)

Next, putting n = 3 in (2.21), we have:

Ki(x,t) = ftx k(x,z)K,(z,t)dz

X _ 3
— f (x—2)- (z 3't) dz (using (2.22)and (2.24))
‘ !

_@-0°
~ 5
Next, putting n = 4 in (2.21), we have:

(2.25)

K, (x,t) = ka(x, z)K5(z, t)dz

x _ 5
= f (x—2)- (z S't) dz (using (2.22)and (2.25))
. !

(x —t)7
-7

' ,forn = 1,23,

K, (x, 1) = f k(DK (2,0d2 ===

Thus, by definition of the resolvent kernel

[ee]

RCx,t;2) = Z K (x, )

n=1

R(X, t; A) = Zln_l((znfl)!.
n=1

Therefore, the resolvent kernel is R(x, t; 1) = \/%sinh[\//l(x — t)], 1>0.

2.2 DETERMINATION OF RESOLVENT KERNEL:

Method (1):
Let the kernel K (x, t) be in the form of a polynomial of degree (n — 1) in t such that it may

be represented in the form:
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K(x,t) = ag(x)+ a;(x)(x—t) + ... + ?;ll%l(lx))!(x -t (2.26)

where the coefficients a; (x) are continuous in [0,a], k = 0,1,---,n — 1.

Let the auxiliary function be:

( _ )n 1
x,t; A x—t"1+/1fth/1—dz 2.27
9060 = G0 (26:2) <= dz  (227)
with the conditions:
dg dn—Zg dn—l g
Ilx=¢ = lx=¢ =...= Wh: 0and ——~ Py lx=¢ = 1. (2.28)
In addition, we have:
1d"g(x,t; 1)
R(x,t; A B R 2.29
(6, t5) — (229)
Since the resolvent kernel satisfies the functional equation:
x d"g(z,t; /1)
R(X,t;ﬂ) = K(X,t)-l—l J; K(X, d—n (230)
From (2.29) and (2.30), we have:
d"g(x,t; A) * d"g(z ¢t /1)
T—)\K(x,t)+ Aft K(x, d—n (231)
dn
mg(x, t;A) =
AK(x,t) +
g 0K(x,z) d"2%g
[K(X Z) dzn-1 9z dz"2 ot
a1k (x,2) %%
W]Z t (2.32)
using (2.26) and (2.28), the relation (2.32) reduces to
d"g n—1g dn—zg z=x
ﬂ_)‘ [ O(x) T+ al(x) +...+a,_1(x) g . (2.33)
z=t

The function g(x,t;A) is therefore the integral of the solution of the differential equation
(2.33).

Thus, we have an expression for the resolvent kernel as:

n

1d
R(xt/l)_ld"

g(x, t; 1).

Method (2):
Assume that the kernel K(x,t) is a polynomial of degree (n — 1) in x such that it may be

represented in the form:
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b,_(t
K(x,t) = bo(t) + b))t —x) + ... + (7:_1(1))| (t—x)"1 (2.34)
where the coefficients b, (t) are continuous in [0,a],v = 0,1,--,n — 1.
Consider,
1d™g(t,x; A)
R(x,t; ) = ——————, 2.35
(x,t; 1) 1 dm (2.35)
The auxiliary function g(t,x;A) satisfies the following conditions:
dg dn—Zg dn—l g
Ile=x = I le=x =+ = Wlt:x =0and Flt:x =1 (236)
Therefore, the functional relation reduces to
I =AK(Q,t)+ A ft K(x,z)ﬁg(t,z;ﬂ)dz. (2.37)

Using the expression (2.35) and (2.36) and integrating by parts to the integral on R.H.S., we

have

dng dn—lg dn—Zg
W +1 bo(t) W + bl(t) W +... +bn_1(t) gl (238)

The function g(t,x; ) is therefore the integral of the solution of the differential equation
(2.38).

Hence, the resolvent of the kernel is

n

R(x,t; 1) = —%;?g(t,x;/l). (2.39)
Example. 2.3:
Find the resolvent kernel for the integral equation with the following kernel
=1
Kx,t) =2—-(x — t).
Solution. Here K(x,t) =2 — (x — t),A = 1.

Comparing with the relation

K1) = ao(0) + a(®)x — )+ + ?;l“_l(f))! x - O,
we have ay(x) = 2, a;(x) = —1, and all the other a,(x) = 0.

Thus, the equation
dng dn—lg dn—zg
dxm -1 ao(x)m+a1(x)m+---+an_1(x)g =0

reduces to
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d’g _dg

——2— =0, 2.40

dx? dx tg (2.40)
with the condition g = 0 at x = t,Z—i =latx =t¢. (2.41)

The solution of equation (2.40) is given by
g = [A(t) + B(t)x]et. (2.42)
From (2.41) and (2.42), we obtain
g=9gxt1)=x-te* L

Thus, the resolvent kernel is given by

2

1d
R(x,t; 1) = 7 gl t; 1) =(x—t+2)e* L.

dx?
Example 2.4:

Find the resolvent kernel for the integral equation
X
o(x) = (cosx —x—2) + f (t —x)p(t)dt.
0

Solution. Here f(x) = cosx —x —2,A=1and K(x,t) =t — x.
Comparing with the relation

b1 (t)

TRV 2

K(x,t) = bo(t) + by ()t —x) + - +

we have b, (t) = 1, and all the other b, (t) = 0.

Thus, the equation

n n—-1 d(n—z)

d"g g g
W +1 bo(t)W + bl(t)w + -+ bn—l(t)g =0
reduces to
g +g=0 2.43
with the conditions
dg
g=Oatt=xandE=1att=x. (2.44)

The solution of the equation (2.43) is given by
g(t,x; 1) = A(x)cos t + B(x)sin t. (2.45)
From (2.44) and (2.45), we obtain
g(t,x; 1) = sin(t — x).

Hence, the resolvent kernel becomes




Integral Equations 2.9 Solution of Integral Equation...

2

1d
R(x, t;1) = —zﬁg(t,x; 1) = sin(t — x).

Method (3):
Result: Suppose we have a Volterra-type integral equation, the kernel of which is dependent

solely on the difference of the arguments.

px) =f(x) +J K(x —t)p(t)dt,(1=1). (2.45)
0

Show that for the equation (2.44) all iterated kernels and the resolvent kernel are also
dependent solely on the difference x — t.
Proof: Let the functions f(x) and K(x) in (2.45) be original functions. Taking the Laplace
transform of both sides of (2.45) and employing the product theorem (transform of a
convolution), we get
®(p) = F(p) + Kp)® (),

where

L{p(x)} = 2(p),

L{f ()} = F(p),

L{K ()} = K(p).

F(p)
1- K@)
We can write the solution of the integral equation (2.45) in the form

p(x) = f(x) + [, R(x — Df (B)d, (2.47)

where R(x — t) is the resolvent kernel for the integral equation (2.45).

Hence, @(p) = K@) # 1. (2.46)

Taking the Laplace transform of both sides of the equation (2.47)

@(p) = F(p) + R)F(p),
where L{R(x)} = R(p).

Hence
< ®(p) — F(p)
R(p) =—"F—— 2.48
P F(p) (248)
Substituting into (2.47) the expression for @(p) from (2.45), we obtain
. K(p)
R(p) = ——. (2.49)
1 -K()

Apply the inverse Laplace on both sides, we get R(x).
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Resolvent kernel for the integral equation (2.45) is
R(x,t; 1) = R(x — t).
Example 2.5:
Find the resolvent kernel for a Volterra integral equation K(x,t) = sin(x —t), 1 = 1.
Solution: Given that K(x,t) = sin(x — t),A = 1. Then, K(x) = sin(x).
Apply the Laplace transform on both sides, we get
LK()} = Lisin(x)}

_ 1
K(p) = 1507
Since
- K®
1
T2
R o7 “’1)
1= <1+p2)
1
T p?
- 1

Apply the Laplace inverse transform on both sides, we get
~ 1
LHRE) = 1

R(x) = x
Resolvent kernel R(x,t; 1) = R(x —t) = x —t.

Example 2.6:
Find the resolvent kernel for the Volterra integral equation K (x,t) = e~ 1 =1.
Solution: Given that K(x,t) = e~ *"9,1 = 1, then
K(x) = e™™.
Apply the Laplace transform on both sides, we get
L{K(x)} = L{e™}

- 1

K(p) = T T

Since
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1
~ _ K _ p+1 _1
_ 1

Apply the Laplace inverse transform on both sides, we get

LRe) =1 )
R(x) = 1.

~ Resolvent kernel R(x,t; 1) = R(x —t) = 1.

Example 2.7:

With the aid of the resolvent kernel, find the solution of the integral equation

X

px) = ¥ + J e** =t p(t)dt.
0

Solution. Given that

X
p(x) = e + f e** =t p(t)dt, (2.50)
0
where f(x) = ¥, K(x,t) = e* "t 1 = 1.
Iterated kernels K, (x, t) are given by
Ki(x,t) = K(x,t) (2.51)
and

X
K,(x,t) = f K(x,2)K,_1(z,t)dz , n = 2,3,---. (2.52)

t
Given K(x,t) = e*~ ¢,

Puttingn = 2 in (2.52), we have

X

Ko(x,t) = J K(x,z) K1(z,t) dz

t

X
2_.2 .2_ 42
=fex e "z
t

x2— 2 x
=e 1dz
t

242 (x — )t
=e —
Next, puttingn = 3 in (2.52), we have
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Kz(x,t) = fo(x,Z) Ky(z,t)dz

= X'~ t* fx—(z — O dz
T
(x — t)?
2! '

2_ 42
= e¥*-t

Similarly,
X
K,(x,t) = f K(x,z)K,_1(z,t) dz
t
X n—2
_ X2 72 242 (z —1t) d
J; e e CEY z
_ 2_42 (x — !
Kn(x, t) = e* W
Thus, by the definition of the resolvent kernel
R(x,t; A) = Zan-l K, (x, )
g |

_ \n-1
RG,6 1) = Z(l)“ Wt (x(n _ti).

— p¥’-t z(l)nl _t);ll

R(x, t; 1) = eX - t? gx—t,

The solution of the integral equation (2.50) is

0() = f() + 4 [ RGuts ) f(0) de
0

— ,x2 ¥ x2-t? px—t ot? g

px)=ce +Joe e et dt

X
2 2 —_
= e* +ex+xje tdt
0

2

= ¥ 4 ex2+x[_e—t]g = pXitx.

Note 1. The unique solvability of Volterra-type integral equations of the second kind
X
o) = f@)+ 4 | Kex,0p@ds (253)
0

holds under considerably more general assumptions with respect to the function f(x) and the

kernel K (x, t) than their continuity.
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The L? space is a special case of an LP space, which is also known as the Lebesgue space

Definition: Let X be a measure space. Given a complex function f, we say f € L? on X if f

is (Lebesgue) measurable and if
[ 17 < +eo
b'e

Then the function f is also said to be square—integrable. In other words, L? is the set of
square—integrable functions.

For

1
2

fe ( J |f|2du)

We call ||f]| the L?(u) norm of f.

Theorem: The Volterra integral equation of the second kind (2.53) whose kernel K (x, t) and
function f(x) belong, respectively, to spaces L, ({)y) and L,(0, a), has one and only one
solution in the space L, (0, a).

This solution is given by the formula

X
0() = () + 2 | RGutDF Ot (254)
0
where the resolvent kernel R(x, t; 1) is determined by means of the series
R(x,t; 1) = Z A"K, 1 (x, D) (2.55)
v=0

which is made up of iterated kernels and converges almost everywhere.

Note 2. In questions of uniqueness of solution of an integral equation, an essential role is
played by the class of functions in which the solution is sought (the class of summable,
quadratically summable, continuous, etc., functions).

Thus, if the kernel K(x,t) of a Volterra equation is bounded when x varies in some finite
interval (a, b) so that |[K(x,t)| < M, M =const,x € (a,b) and the constant term of f(x) is
summable in the interval (a, b), then the Volterra equation has, for any value of A, a unique
summable solution ¢ (x) in the interval (a, b).

However, if we give up the requirement of summability of the solution, then the uniqueness
theorem ceases to hold in the sense that the equation can have nonsummable solutions along

with summable solutions.
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P. S. Uryson constructed elegant examples of integral equations (see Examples 1 and 2
below) which have summable and nonsummable solutions even when the kernel K (x, t) and
the function f(x) are continuous.

For simplicity, we consider f(x) = 0 and examine the integral equation

@(x) :f K(x,t)p(t) dt (2.56)
0

where K (x,t) is a continuous function.

The only summable solution of the equation (2.56) is ¢(x) = 0.

Example 2.8:
Let
1 1
tex? ', 0<t<xe %,
- 1
K(x,t) ‘ xR <t<x, (2.57)
0, t > x.

The kernel K(x,t) is bounded in the square Q, {0 < x,t < 1},since 0 < K(x,t) < x < 1.
What is more, it is continuous for 0 < t < x. In this case, the equation (2.56) has an
obviously summable solution ¢(x) = 0 and by virtue of what has been said, this equation
does not have any other summable solutions.

On the other hand, direct verification convinces us that equation (2.56) has an infinity of

nonsummable solutions in (0, 1) in the form
C
go(x) - ;l
where C is an arbitrary constant and x # 0.
Indeed, taking into account expression (2.57) for the kernel K(x,t), we find

1__
xe x?

1.,C x C
tex? ~—dt + 1 x—dt
t ) t

X
f K(x,t)p(t) dt =f
0 0 x2
14
= Cx + Cx1nex?
Cc

X

Thus, we obtain

RO

E (x = 0).
x

This means that ¢(x) = g is a nonsummable solution of equation (2.56).
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Example 2.9:
Let0 < t< x < a(a > 0,inparticulara = +00),

xt?

T (x6 + t2)°

The function K(x,t) is even holomorphic everywhere, except at the point (0, 0). However,

K(x,t) = (2.58)

equation (2.56) with kernel (2.58) admits nonsummable solutions. Indeed, the equation

2

2 arctan x
0w = 2 [ o YOd - 2s9)
has a summable solution since the function
2 arctan x?
f0 = ———5

is bounded and continuous everywhere except at the point x = 0.
The function
0, x =0,

PU(x) + Xi, x>0, (2.60)

px) = {

where 1 (x) is a solution of (2.59) will now be a nonsummable solution of (2.56) with kernel
(2.58).
Indeed, for x > 0 we have

K g =2 _* g +2[ - _a el
J(’) (x,t)q)(t) t —EJ(’) mlp(t) t+;J;)c‘5—4-152 t. ( )

By virtue of equation (2.57), the first term on the right of (2.59) is

o) + 2 arctanx?
Vi T x?
The second term yields
2 (* xdt 2 /1 e\ 2 1
- f oL 2 - (—Zarctan—3) = —Zarctan (x > 0).
)y x°+ t T \X xX°/le=g X
Thus,
JxK t tdt—()+2arcwnxz+2 t 1—()+1—()
. ) @) dt = Pl +——3 —arctan— = P(x) +— = o),

which means that the function ¢ (x) defined by (2.60) is a nonsummable solution of equation

with kernel (2.58).
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Example 2.10:

The equation

X

p(x) = fotx‘t p)dt (0 < x,t <1)

has a unique continuous solution ¢ (x) = 0. By direct substitution, we see that this equation
also has an infinity of discontinuous solutions of the form
p(x) = Cx*71,

where C is an arbitrary constant.

2.3 SUMMARY:

In this lesson, we find the resolvent kernel by using the iterated kernels and different types of
methods. Finally, we have given examples and self-assessment problems that we included for

better understanding of the readers.

2.4 TECHNICAL TERMS:

Integral equation, kernel, resolvent kernel, iterated kernel.

2.5 SELF-ASSESSMENT QUESTIONS:

(2a): Find the resolvents for the Volterra-type integral equations with the following kernels:
1. K(x,t) = x — t.
2. K(x,t) = e* ¢,
3. K(x,t) = e ~t%

1+ x?

4. K(x't)—le-
5. K(x’t)=2+cosx'
2+cost

h

6. K(x,t) = =22

cosht

7. K(x,t) = a*t (a > 0).

(2b): Find the resolvent kernels of integral equations with the following kernels (4 = 1):
1. K(x,t) =2 — (x — ).
2. K(x,t) = =2 + 3(x — ¢t).
3. K(x,t) = 2x.

4x -2 8(x —t)
2x +1 2x+1°

4. K(x,t) =
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(2¢): Find the resolvent kernels for Volterra-type integral equations with the kernels
(A=1):
1. K(x,t) = sinh(x —t).
K(x,t) = e"&70,
K(x,t) = e D sin(x — ).
K(x,t) = cosh(x —t).
K(x,t) = 2cos(x —t).

A

(2d): Using the results of the preceding examples, find (by means of resolvent kernels)

solutions of the following integral equations:

1. px) = e* + foxex‘t p(t)dt.
2. p(x) = sinx + 2 f;ex_tfp(t) dt.
3. @(x) = x3% — [3% L p(t)dt.

X2+ cosx
0 2+cost (1) dt.
5. 9(x) =1 — 2x — foxexz‘tz @(t) dt.

4. o(x) = e*sinx +

6. p(x) = X'+ 4 2 foxe"z‘t2 @(t) dt.

_ 2 x 1+ x?
7. p(x) =1+ x*+ | 0

o(t) dt.

4 f;sin(x —t) @(t) dt.

1+ x2

8. ¢o(x) =
XZ
9. p(x) = xez + f;e‘("‘t) @(t) dt.

10. o (x)

e ™ + foxe_(x_t) sin(x —t) @(t) dt.

Solutions to Self-Assessment Questions:
Exercise (2a)
L

i sinhvVA(x — t) (1 > 0)

2. e(1+l)(x—t)

—

3. e/l(x—t)exz —t2

4 X G-t

1+t2

2+cos x —
5 ZreosX el(x t)
2+cost
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6 cosh x el(x—t)
" cosht
7. q¥teAlx-t)
Exercise (2b)
L e t'(x—t+2)
2. lex—t _2,-3(x-0)
4 4
3. 2xe*’~t
(4t2+1) 8 D
4. 2(2t+1)2 [(4t2+1) 4et ) (x t)]

Exercise (2¢)

1. %sinh\/f(x—t)
2.1
3. (x—t)e @0
x=t V5 1 . .5
4. ez [cosh > (x—1t)+ T§51nh7(x —-t)]
5. 2t (1+x—1t)
Exercise (2d)

1. @(x)=e?*

_ 1 3x_1 2.
2. q)(x)—se SCosx +-sinx
3. p(x)=3x(1—e7%)
4. p(x) =e*sinx + (2 + cos x)e" lnﬁ
5. p(x) = eX' =% _ 2x
6. @(x) = X’ *2%(1 + 2x)
7. o(x) =e*(1+x?)

__1 _1 2
8. o) = —— txarctanx — In(1 + x*4)

x2

9. p(x) =ez(x+1)—-1

10. p(x) = e™™ (? + 1)
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2.6 SUGGESTED READINGS:
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Shanti Swarup and Shiv Raj Singh.

3. Integral Equations and Boundary Value Problems, S. Chand & Company PVT. LTD,
New Delhi-110055, India, 2007, by Dr. M.D. Raisinghania.

4. Integral Equations and their Applications, WIT Press, 25 Bridge Street, Billerica, MA
01821, USA, by M. Rahman.

5. Introduction to Integral Equations with Applications, John Wiley & Sons, 1999, by
Jerri, A.

6. Linear Integral Equation, Theory and Techniques, Academic Press, 2014, by Kanwal
R. P.

- Prof. K. Rajendra Prasad




LESSON- 3
SOLUTION OF VOLTERRA-TYPE INTEGRAL

EQUATION BY USING THE METHOD OF
SUCCESSIVE APPROXIMATIONS

OBJECTIVES:

e To identify linear and non-linear Volterra integral equations
e To determine the solution of the Volterra linear integral equation
e To determine the solution of the Volterra non-linear integral equation

STRUCTURE:

3.1 Method of successive approximations for solving Volterra-type linear integral
equations

3.2 Method of successive approximations for non-linear Volterra-type non-linear
integral equation

3.3 Summary
3.4 Technical Terms
3.5 Self-Assessment Questions

3.6 Suggested Readings

3.1 METHOD OF SUCCESSIVE APPROXIMATIONS FOR SOLVING VOLTERRA
TYPE LINER INTEGRAL EQUATION:

Suppose we have a Volterra-type integral equation of the second kind:

px) = f(x) +/1f0 K(x,t)p(t)dt. 3.1)

We assume that f(x) is continuous in [0, a] and the kernel K(x,t) is continuous for 0 <
x<a 0t <
Take some function @ (x) continuous in [0, a].

Putting the function @o(x) into the right side of (3.1) in place of ¢ (x), we get

p1(x) = f(x) +/1f K(x, t)po(t)dt.
0

The thus defined function ¢4(x) is also continuous in the interval [0, a]. Continuing the
process, we obtain a sequence of functions

00 (), 1 (), , Py (), -+

where



Centre for Distance Education 3.2 Acharya Nagarjuna University

on(x) = f(x) + 4 f K(x, t)@,_,(t)dt.
0

Under the assumptions with respect to f(x) and K (x, t), the sequence {¢, (x)} converges, as
n — oo, to the solution ¢ (x) of the integral equation (3.1).

In particular, if for ¢o(x) we take f(x), then ¢, (x) will be the partial sums of the series
(2.2), of Lesson II, which defines the solution of the integral equation (3.1). A suitable
choice of the "zero" approximation @q(x) can lead to a rapid convergence of the sequence

{¢,(x)} to the solution of the integral equation.

Example 3.1: Using the method of successive approximations, solve the integral

X

px) =1+ f e(t)dt
0

taking @o(x) = 0.

Solution: Since @o(x) = 0, it follows that

x x
p1(x) = 1 + f po(t)dt =1 +f 0dt =1.
0 0
Then
X
<pz(x)=1+f1dt =1+ x
0
X xz
p3(x) =1+ J(1+t)dt =1+x+—,
0
x t2 x2 53
p,(x) =1+ JO <1 +t+?>dt =1+ x+—+5
Obviously
x  x? X1
=14+—=+—=++... !
Pn(x) EETR TR sy
Thus, @, (x) is the n'h partial sum of the series
le
=0T = e*

Hence, it follows that
@,(x) > e* as n - oo,

Thus, the function @(x) = e* is a solution of the given integral equation.

Example 3.2: Using the method of successive approximations, solve the integral

000 = x - f (x — £) () dt, go(x) = 0.
0
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Solution:

Given the integral equation is

X
px) = x — J (x — te(t)dt.
0
By using the method of successive approximation,

i€ @re(@) = f(X) + A [) K@, D () dt ,n = 0,1,2,...

Since @o(x) = 0. Then,
X
0 = = [ -0 de
0
= X
X
020 =3~ | (=000 de
0
X
:x—f (x—=1t)(t)dt
0
= x — ?
X t3
03 = - [ k-0 - P
. .
x3 x°
=X — i-l-a
Obviously,
x3 5 2n+1
= —_— PR I I Y £
on(¥) = x = Frt g =V Gy

Thus, ¢, (x) is the n™ partial sum of the series

had x2n+1
-1D)"——— = sinx.
Z( Gy - Sx
n=0
Hence, it follows that

@n(x) > sinx asn - .

Thus, the function @(x) = sin x is a solution of the given integral equation.

3.2 METHOD OF SUCCESSIVE APPROXIMATIONS FOR NON-LINEAR
VOLTERRA-TYPE NON-LINER INTEGRAL EQUATION

The method of successive approximations can also be applied to the solution of nonlinear

Volterra integral equations of the form
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X

Y@ = yo + f Flt,y(Oldt  (3.2)

0

or the more general equations

px) = f(x) +J F(x, t,(p(t))dt 3.3)
0

under extremely broad assumptions with respect to the functions F(x,t,z) and f(x). The
problem of solving the differential equation

dy
E = F(x,y), Vlx=0 = Yo

reduces to an equation of the type (3.2). As in the case of linear integral equations, we shall
seek the solution of the equation (3.3) as the limit of the sequence { ¢, (x)}where, for
example, @q(x) = f(x), and the following elements ¢ (x) are computed successively from

the formula

X

pr(x) = f(x) +f F(e,t,pp-p@®dt, (k=1,2,...). (3.4)
0

If f(x) and F(x, t, z) are quadratically summable and satisfy the conditions

|F(xl t'ZZ) - F(X, tlzl)l < a(x't)|zz - le (35)

< n(x) (3.6)

JxF(x, t,f(t))dt
0

where the functions a(x, t) and n(x) are such that in the main domain (0 < t < x < a)

a a X
f n?(x)dx < N?, f dx f a’(x,t)dt < A*> (3.7)
0 0 0

it follows that the nonlinear Volterra integral equation of the second kind (3.3) has a unique
solution @ (x) € L,(0,a) which is defined as the limit of ¢, (x) as n — co:

@() = lim ¢n(x)
where the functions ¢, (x) are found from the recursion formulas (3.4). For ¢y(x) we can
take any function in L,(0,a) (in particular, a continuous function), for which the condition
(3.6) is fulfilled. Note that an apt choice of the zero approximation can facilitate solution of

the integral equation.

Example 3.3: Using the method of successive approximations, solve the integral equation

1+ ¢*()
= — 2 4t
9 (x) fo 1+ t2

taking as the zero approximation:

(@) o(x) = 0,(b) Po(x) = x.
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Solution. (a) Let ¢o(x) = 0. Then
X 1 + 2 t X
@5(8) dt = f
0

dt = arctan x,

1 (x) = f

o 1+t 1+ t?
_fxl"“l’%(t) _fx1+arctan2t b = aret .\ s
4’2(95) = . 1 + t2 = . 1+ ¢2 = arctan x 3 arctand x
1 2
1+ @%(t) 1 + (arctant +§arctan3t)
(p3(X) =f 1 .2 dt:f 2 dt
o 1+t 0 1+t
2 1

= arctan x +— arctan®x + arctan® x + arctan’ x
3 3x5 7%X 9

2
Pu(x) = [FE0 gy

0 1+1¢2
1 3 5 17 ;
= arctan x +§ arctan® x + 3I%E arctan® x + m arctan’x
38 5 134 11
+—5 X 7 % 92 arctan’x +9 X 11 X 21 X 25 arctan-x
4 13 1 15
+ 3 X5 x 7 x9 x 13 arctan—x +—72 X 92 x 15 arctan=x, ---.
Since tanx=x+x—3+ix5+ix7+---, lx| <=
3 15 315 2

we observe that
@, (x) > tan(arctanx) = xasn — oo,

Thus, the function ¢ (x) = x is a solution of the given integral equation.

(b) Let ¢o(x) = x. Then

X1 + @3(t) X1 4 ¢t?
(pl(x):f 1 2 :f 2
o +t o 1+t

In a similar fashion, we find ¢, (x) = x (n = 2,3,...).
Thus, the sequence {¢,(x)} is a stationary sequence {x}, the limit of which is ¢(x) = x.

The solution of this integral equation is obtained directly:

o) = x.
3.3 SUMMARY:

In this lesson, find the solution of Volterra integral equations by using the method of
successive approximations and the convolution theorem. Finally, we have given examples
and self-assessment problems that we included for better understanding of the readers.
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3.4 TECHNICAL TERMS:

Integral equation, linear, non-linear, Volterra integral equation, convolution theorem.

3.5 SELF-ASSESSMENT QUESTIONS:

(3a): Using the method of successive approximations, solve the following integral equations:
Lok =x — f;‘(x —te(t) dt ,pe(x) = 0.
2.0(x) =1 — fox(x— De)dt ,py(x) = 0.
o) =1+ [ (x—p(t) dt ,@o(x) = 1.
9 =x + 1 - [le®adt;
(@ @o(x) = 1, (b) po(x) = x+ 1.

x? 1
S.p(x) =5 +x - J,e@® dt ;

98]

N

x2

(@) po(x) = 1, (D) @o(x) = x, () po(x) = > + x.

[©)

() =1+ x + [[(x —De®)dt, po(x) = 1.
7.0(x) = 2x + 2 —fox @(t) dt;

(@ po(x) = 1, (b) po(x) = 2.
Lp(x) = 2x2 + 2 — [Tx o(t) dt;

(@) po(x) = 2, (b) po(x) = 2x.

10.9(0) =5 - 2x = [ p(Odt,po(x) = ¥

O

(3b):
1. Using the method of successive approximations to solve the following integral equations

(" te®
o(x) = fo 1+t+ ¢(t) dt.

2. Using the method of successive approximations to find a second approximation ¢, (x) to

the solution of the integral equation

X

px) =1+ f [p%(t) + te(t) + t?] dt.
0

3. Using the method of successive approximations to find a third approximation ¢5(x) to the

solution of the integral equation
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o(x) = f [t0?(D) — 1] dt.
0

Solutions to Self-Assessment Questions:

Exercise (3a):

—

A e o B

p(x) =sinx

@(x) =cosx

@(x) = coshx
px) =1

px) =x

p(x) =e”
p(x) =2

p(x) =2

p(x) =x?—2x

Exercise (3b):

1.
2.

3.

(p(x) =0 3 4 13 1 1 1
P () =1+x+=x+-x3+=x*+-x>+—=x°+=x’
2 3 24 4 18 63
4 7 10
0300 = —x+5 — 3, + 1

4 14 160

3.6 SUGGESTED READINGS:

1.

2.

Problems and Exercises in Integral Equations, MIR Publishers, Moscow, 1971, by M.
Krasnov, A. Kiselev and G. Makarenko.

Integral equations, Krishna’s Educational Publishers, Meerut- 250001, India, 1975, by
Shanti Swarup and Shiv Raj Singh.

. Integral Equations and Boundary Value Problems, S. Chand & Company PVT. LTD,

New Delhi-110055, India, 2007, by Dr. M.D. Raisinghania.
Integral Equations and their Applications, WIT press, 25 Bridge Street, Billerica, MA
01821, USA, by M. Rahman.

. Introduction to Integral Equations with Applications, John Wiley & Sons, 1999, by

Jerri, A.
Linear Integral Equation, Theory and Techniques, Academic Press, 2014, by Kanwal
R. P.

- Prof. K. Rajendra Prasad




LESSON- 4
SOLUTION OF VOLTERRA-TYPE INTEGRAL

EQUATION BY USING CONVOLUTION THEOREM
OBJECTIVES:

e To apply the convolution theorem in Laplace transformations to an integral equation to
determine the solution of the Volterra integral equation.

e To apply the convolution theorem in Laplace transformations to integral equations to
determine the solution for a system of Volterra integral equations.

STRUCTURE:

4.1 Solution of Volterra Integral Equation by using the Convolution Theorem.

4.2 Solution of System of Volterra Integral Equations by using the Convolution
Theorem.

4.3 Summary

4.4 Technical Terms

4.5 Self-Assessment Questions

4.6 Suggested Readings

4.1 SOLUTION OF VOLTERRA INTEGRAL EQUATION BY USING THE
CONVOLUTION THEOREM:

Let ¢,(x) and ¢,(x) be two continuous functions defined for x = 0. The convolution of

these two functions is the function ¢5(x) defined by the equation

X
03 = [ 0.6 = D0 . (41)
0
This function, defined for x > 0, will also be a continuous function. If ¢;(x) and ¢, (x) are
original functions for the Laplace transformation, then
Llps] = Llps] - Llp.]  (4.2)
i.e., the transform of a convolution is equal to the product of the transforms of the functions

(convolution theorem). Let us consider the Volterra-type integral equation of the second kind

o) = f0) + f KGx—tp®de  (43)

the kernel of which is dependent solely on the difference x — t. We shall call equation (4.3)
an integral equation of the convolution type.
Let f(x) and K(x) be sufficiently smooth functions which, as x — oo, do not grow faster

than the exponential function, so that
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lfCOl < My e,  |[K(x)| < Mye®*.  (44)
Applying the method of successive approximations, we can show that in this case, the
function ¢ (x) will also satisfy an upper bound of type (4.4):
lpC)| < M3 es™.
Consequently, the Laplace transform of the functions f(x), K(x) and ¢ (x) can be found (it
will be defined in the half-plane Re p = s > max (54, S, S3))-
Let
LIf)] = F(p), Llp®]=¢®), LIKx]= K().

Taking the Laplace transform of both sides of (4.3) and employing the convolution theorem,

we find
o) = F) + K@e(®). (45)
Hence,
_ F(p)
d(p) = 1_—M'(K(P) * 1).

Apply the inverse Laplace transform to both sides, we get the solution of the integral equation

(4.3).

Example 4.1:

Solve the integral equation

X

p(x) = sinx + 2 f cos(x —t)p(t) dt.
0

Solution. Given that the integral equation is

X

p(x) = sinx + 2 f cos(x —t)p(t) dt (4.6)
0

where f(x) = sinx,A = 2,K(x,t) = K(x — t) = cos(x — t).
Apply the Laplace transform on both sides of the equation (4.6) and taking account of the

convolution theorem (transform of a convolution), we get

Llp()] = Llsinx] + 2 (L[cos(x)] - L[¢(x)])

1 2p
2p 11
c|>(p)[1 _p2+1 Cp2+ 1

(or)

¢(p) = G- D




Integral Equations 4.3 Solution of Volterra...

Apply the Laplace inverse transformation on both sides
1

L o@)] =L [(p——l)z]

p(x) =e*L?! [piz] (by using the shifting operator)

p(x) = xe*.
Hence, the solution of the given integral equation is

p(x) = xe*.

Example 4.2:

Solve the integral equation

X

p(x) = e* — f e* "t o(t) dt.
0

Solution. Given that the integral equation is

X

p(x) = e* — j e*to(t)dt (4.7)

0
where f(x) = e¥, A= —1,K(x,t) = K(x — t) = e* L.
Apply the Laplace transform on both sides of the equation (4.7) and taking account of the

convolution theorem (transform of a convolution), we get

Llo()] = Lle*] = L[e*] - Llp(x)]

11
d(p) = 1 pTlfb(P)

1455 =5
¢(p) p—1l - p—1
(or)
1

¢(p) =—.
p

Apply the Laplace inverse transform on both sides
1
LG = 17 ||

p(x) =1.

Hence, the solution of the given integral equation is

p(x) = 1.
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4.2: SOLUTION OF THE SYSTEM OF VOLTERRA INTEGRAL EQUATIONS BY
USING THE CONVOLUTION THEOREM:

The Laplace transformation method may be employed in finding the solution of a system of

Volterra integral equations of the type
S X
P = fi()+ Y [ Kyle=09;0de (i = 1,2,,9)  (48)
j=1"0

where K;;(x), f; (x) are known continuous functions having Laplace transforms.

Taking the Laplace transform of both sides of (4.8), we get
S
b (p) = Fi(p)+ ) Ky(p)dy(p) (i = 1,2,,9) (49)
j=1

This is a system of linear algebraic equations in ¢;(p ). Solving it, we find ¢;(p), the

original functions of which will be the solution of the original system of integral equations
(4.8).

Example 4.3: Solve the system of integral equations,

X

X
e2x=Yg (t)dt + j @,(t)dt,

0

p1(x) = 1—2f

0
X

X

02(x) = dx — j o1(t)dt + 4f (x — t) @, (t)dt.
0 0

Solution. Given the system of integral equations

X

o(x)=1-2 jxez(x_t)<p1(t)dt + f 0,(£)dt,  (410)

0
X

p,(x) = 4x — f @, (t)dt + 4fx(x — t)e,(t)dt. (4.11)
0 0

Equations (4.10) and (4.11) can be written as

X

e2 =Ygy (t)dt + fx(x — )%, (t)dt, (4.12)
0

(pl(x)=1—2f

0
(pz(x)=4x—j (x—t)ofpl(t)dt+4f (x—t)@,(O)dt. (413)

Applying the Laplace transform on both sides and using the convolution theorem for

equations (4.12) and (4.13) respectively, we get:
2

1 1
¢1(p) = Tp=2 ¢1(p) +E d2(p)

2 1 1
Bt +5=5] =S b=
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= p? c|>1(p) - (p - 2)<I>z(p) =p-2, (414)

¢(p) == — = ¢1(P) + ¢2(P)

S )+ [1 ——] 6:0) = =

=p <b1(p) + (= DPo(p) = 4 (4.15)
Solving the equations (4.14) and (4.15), we get:
D 1 1
= = — , 4.16
3p+2 8 1 1 1 8 1

$2(p) = (4.17)

- —. 4= —_ . .
p-2)p+1? 9 p-2 3 (p+1? 9 p+1
Apply the Laplace inverse transform on both sides of the equation (4.16), we get

L. (p)] = L7 [ ] [(p + 1)2]

0 =it 4

p?
p1(x) =e™* —xe™*.
Apply the Laplace inverse transform on both sides of the equation (4.17) we get
1
P =517 ] 45 ] -5
8 2x 1 —xy-1|1|_8 ,-x
P2 (x) ;e T e L [pz] 5
8 1 8
— _ . p2x - X _ _ . p,—X
<p2(x)—9e +3xe 5 ¢

The functions ¢4(x), @,(x) are solutions of the system of integral equations (4.10) and

(4.11) respectively.

4.3 SUMMARY:

In this lesson, we find the solution to the Volterra integral equation by using the convolution
theorem. Next, we find the solution to the system of Volterra integral equations by using the
convolution theorem. Finally, we have given examples and self-assessment problems that we
included for better understanding of the readers.

4.4 TECHNICAL TERMS:

Integral equation, Volterra integral equation, Laplace transformation, inverse Laplace

transformation, convolution theorem, system of equations.
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4.5 SELF-ASSESSMENT QUESTIONS:

(4a): Solve the following integral equations:
L.ox)=x — fgex‘t @ (t)dt.
p(x) = e + [ et p(t)d.

P(x) = x — [, (x - e(t)dt.

2.
3.

4.

7.

8.

(4b): Solve the following systems of integral equations:

px) =
px) =
px) =

px) =

cos(x) — fox(x — t)cos(x — t)p(t)dt.

1+ x+ foxe‘z(x‘t)fp(t)dt.

x + [ sin(x — He(D)dt.
sin(x) + [ (x — o()dt.
p(x) = x — [; sinh(x — t) p(t)dt.
9. p(x) =1—-2x —4x* + [7[3-6(x —1) —4(x — 1)2] g (t)dt
10. ¢ (x)
11. ¢ (x)
12. ¢ (x)

13.¢ (x) = cosx +f0x<p(t)dt.

sinh x — fox cosh(x — 1) ¢ (t)dt.
1+ Zf:cos(x — 1)@ (t)dt.

e* + Zf:cos(x — 1)@ (t)dt.

1. ¢, (x) = sinx + fox @, (t)dt,

3.01(x) = €* + [, @i(Ddt — [ e*~t @, (t)d,
92(x) = —x — [ (x — e, (Ddt + [, @ (t)dt.
4.9,(x) = e* — [ @ (dt +4 [ ¥t g, (t)dt,

9.(x) =1—cosx — [ @,(t)dt.
2.¢0:(x) = e?* + fox @, (t)dt,

92(x) = 1 — [ e2*D g, ().

P(x) =1- fget_x
5. 0:(x) =x + fox P, (t)dt,

0.(x) =1— [ o, (Dt

@1 (Ddt + [, @ (Dd.

—_ . 1 *
@3(x) = sinx + 5-];) (x —t) @, (t)dt.
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Solution of Volterra...

6. p1(x) =1- fox @, (t)dt,

@,(x) =cosx — 1+ j p5(t)dt,

0
X

@3(x) = cosx +f @, (t)dt,
0

7. g(x)=x+1+ f: @5 (t)dt,
X

p(x) = —x +f (x — t) p,(t)dt.

0
X

@2(x) = cosx —1— f @, (t)dt.
0

Solutions to Self-Assessment Questions:

Exercise (4a):

2

p(x) =x—=

—

2. o(x) = %(3e2x 1)

3. p(x) =sinx

4. @(x) =§(2 cosV3x + 1)
5. p(x) =2x+1

6. p(x) =x+ %

7. p(x) = %sinx + %sinhx

3

8. ¢(x) =x—%

9. p(x) =¢€*
10. p(x) = % sinhg X - e_g

1. p(x) =1 + 2xe*
12. p(x) = e*(1 + x)?

eX+cos x+sinx
13.9(x) = () = £
Exercise (4b):

. ¢:(x) =sinx,p,(x)=0
2. @1(x) =3e* —2,¢,(x) = 3e* — 2e?*
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3. @1(x) = e**, 9y (x) = 1_29296
@1 (x) = (x + 2)sinx + (2x + 1)cos x,
{(pz (%) =22i CoS X —% sin x
5. ¢1(x) =2sinx, @,(x) =2cosx —1,¢95(x) =x
6. @1(x) =cosx,p,(x) =sinx,p3(x) =sinx + cosx
((pl(x) = (1 + g) cos x +% COSX,
7. Sp(x)=1—x+ %sinx - (1 + g) CoSX,

@3(x) =cosx—1— (1 +§) sinx

4.6 SUGGESTED READINGS:

1. Problems and Exercises in Integral Equations, MIR Publishers, Moscow, 1971, by M.
Krasnov, A. Kiselev and G. Makarenko.

2. Integral equations, Krishna’s Educational Publishers, Meerut- 250001, India, 1975, by
Shanti Swarup and Shiv Raj Singh.

3. Integral Equations and Boundary Value Problems, S. Chand & Company PVT. LTD,
New Delhi-110055, India, 2007, by Dr. M.D. Raisinghania.

4. Integral Equations and their Applications, WIT Press, 25 Bridge Street, Billerica, MA
01821, USA, by M. Rahman.

5. Introduction to Integral Equations with Applications, John Wiley & Sons, 1999, by
Jerri, A.

6. Linear Integral Equation, Theory and Techniques, Academic Press, 2014, by Kanwal R.
P.

- Prof. K. Rajendra Prasad




LESSON- 5
INTEGRO-DIFFERENTIAL EQUATIONS

OBJECTIVES:

e To learn about the integro-differential equations
e To determine the solutions to the integro-differential equations using Laplace transforms

STRUCTURE:

5.1 Introduction
5.2 Integro-differential equations

5.3 Solution of Integro-differential equations with the aid of the
Laplace Transformations

5.4 Summary
5.5 Technical Terms
5.6 Self-Assessment Questions

5.7 Suggested Readings
5.1. INTRODUCTION:

This lesson deals with one of the most applied problems in the engineering sciences. It
concerns integro-differential equations, where both differential and integral operators appear
in the same equation. Volterra introduced this type of equation for the first time in the early
1900s. Volterra investigated population growth, focusing his study on hereditary influences,
where, through his research work, the topic of integro-differential equations was established.

5.2. INTEGRO-DIFFERENTIAL EQUATIONS:

5.2.1. Definition: An integral equation is an equation in which an unknown function to be
determined appears under one or more integral signs. If the derivatives of the function are
involved, it is called an integro-differential equation.

PM () = f(x) + A [, K(x,Do(t)dt,
where ¢ ™ (x) = 29 and K (x, t) be the kernel.

dx™’
The above equation is the combination of a differential operator and an integral operator;
therefore, it is necessary to define initial conditions ¢(0),¢’(0),...,™ 1 (0) for the

determination of the particular solution ¢ (x) of the integro-differential equation.

5.2.2. Note: There are mainly two types of linear integro-differential equations:
(i) Volterra integro-differential equation
(i) Fredholm integro-differential equation
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5.2.3. Definition: A Volterra integro-differential equation is defined as if the upper limit of
the integral of the integro-differential equation is a variable.

5.2.4. Definition: Fredholm integro-differential equation is defined as if the limits of the
integral of the integro-differential equation are fixed constants.

5.2.5. Examples: Consider the following examples,

9’ () = () — [ (x — Dp(t)dt, ¢(0)=0 (1)
9"(x) =g + [y (x —De®)dt, 9(0)=0,9'0)=-1 @
¢'(x) = e* —x + [ xtp(t)dt,  ¢(0) =0 G
0" (x) = h(x) + [ to'(B)dt, 9(0) =0,¢'(0) =1 )

It is clear from the above examples that the unknown function @ (x) or one of its derivatives
appears under the integral sign, and the other derivatives appear outside the integral sign as
well. Equations (1) and (2) are Volterra-type integro-differential equations, and equations (3)
and (4) are Fredholm-type integro-differential equations. It is to be noted that these equations
are linear integro-differential equations. However, nonlinear integro-differential equations
also arise in many scientific and engineering problems. To obtain a solution of the integro-
differential equation, we need to specify the initial conditions to determine the unknown
constants.

5.2.6. Note: One quick source of integro-differential equations can be clearly seen when we
convert the differential equation to an integral equation by using Leibniz rule, i.e.,

a b(x)
dx Ja(x)

F(x,t)dt = fb(x) OFCD g 4 db(x)F(x, b(x)) _ da) F(x,a(x))

a(x) ox dx dx

5.2.7. Note: In the electrical engineering problem, the current /(t) flowing in a closed circuit
can be obtained in the form of the following integro-differential equation,

L% +RI+ [ 1@dr = (). 1(0) =1,

where, L is the inductance, R the resistance, C the capacitance, and f(t) the applied voltage.

5.2.8. Definition: If the kernel K (x, t) of the integral equation is defined as a function of the
difference (x,t), i.e.,

K(x,t) = K(x—1t)
where K is a certain function of one variable.
Now, we recall some important definitions and properties of the Laplace and inverse Laplace
transforms, which are essential for the study of further concepts.
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Integro-Differential Equations

5.2.9. Laplace Transformation and its properties:

Definition: Consider a function ¢ in terms of x and its Laplace transformation will be a
function @ in terms of p i.e., L{p(x)} = ®(p) (or) ¢(x) = ®(p).

Properties: If L{p(x)} = ®(p) then,
(1) L{e™p(x)} = ¢(p — a),
2) L{e™™ ()} =d(p +a)
(3) Lip(ax)} =-o®)
4) L{p'(x)} = pL{p ()} — ¢(0)
(5) L{g" ()} = p*L{p(x)} — pp(0) — ¢'(0)
(6) Lixgp()} = 2 @(p)

() Lix"p (@)} = (-1 22 b(p)

(8) The convolution of two functions ¢(x) and ¥ (x) is defined

as, p(x) * P(x) = [y p(O) Y(x — )dt = [ p(x — 1) Y(D)dt

1

©) L}=-

(10) L{sinax} =

a
a?+p?

(11) L{cosax} = =*—

a?+p?
(12) L} =5
(13) L{e™} = =
(14) L{sinhax} = oz
(15) L{coshax} = Dz
O
(17) L{x e®} = (p_la)z

5.2.10. Inverse Laplace Transformation and its properties:

Consider a function @ in terms of p then its inverse Laplace transformation will be ¢ in

terms of x, i.e., L™H{®(p)} = @ (x)

Properties: If L™1{®(p)} = ¢ (x), then,
-1{1] _
(18) L {p} =1

a

(19) L™ {a2+p2} = sinax
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(20) L1 {azipz} = cosax
(21)L‘1{1% = x

(22) L1 {p%a} = eax

23) L pZiaZ} = sinhax
(24) L1 {pzz_)aZ} = coshax
C5) 1 Gt = S

26) L{ (p_la)z} = x e
Q@7) If L{p(x)} = @(p) and L{p(x)} = ¥(p) then,
L o)} = [; px =) P(D)dt = ¢ ¢
(or)
L Ho)p)} = [, o) p(x — )dt = @+

known as the convolution theorem.

@8) 1 om) =5

n!

5.3 SOLUTION OF INTEGRO-DIFFERENTIAL EQUATIONS WITH THE AID OF
THE LAPLACE TRANSFORMATIONS:

A linear integro-differential equation is an equation of the form
ag(D)™(x) + a; ()™ 1 (x) + -+ an (D (X) + T fy Km(r, @™ (D)dt = £ (x)
(D
Here,ag(x),...,a, (%), f (x), Ky (x,t) (m = 0,1,2, ..., s)are known functions and ¢ (x) is the
unknown function. Unlike the case of integral equations, when solving integro-differential
equations (1), initial conditions of the form
9(0) = 9o, ¢'(0) = @f, .., ™" D(0) = g™ )

are imposed on the unknown function ¢ (x). In (1), let the coefficients a, (x) = constant
(k=0,1,..,n) and let K, (x, t) = K,,,(x —t)(m = 0,1, ..., s), that is, all the K,,, depend
solely on the difference (x — t) of arguments. Without loss of generality, we can take
ay = 1. Then equation (1) assumes the form

") + a9 V() + -+ 49 (0) + Do Jy Km(x — D™ @dt = f(x)  (3)
where a4, ..., a, are constants.
Also, let the functions f(x) and K,,, (x) be original functions,

f(x) = F(p), Knx) =K,(p) (m=012,..,5)

Then the function ¢ (x) will also have the Laplace transform

p(x) = P(p)
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Take the Laplace transform of both sides of (3). By virtue of the theorem on the transform of
a derivative,

e® () = p* o) —p Lo —p* 2y~ — oy TV (k=012,..,n) (4
By the convolution theorem,
[y K = D™ (D)t = K@) [p"0®) = p™ 20 — = 9" ] (m=012,..,5)

)

Equation (3) will therefore become

P@)[p" + ap" T+ + ay + Lo K@) p™] = A) (6)
where, A(p) is some known function of p.

From (6) we find @ (p), which is an operator solution of the problem. Finding the original
function for ®(p), we get the solution ¢ (x) of the integro-differential equation (3) that
satisfies the initial conditions (2).

5.3.1. Example: Solve the integro-differential equation,
9" (x) + [ e2* g (t)dt = e?*,  9(0) = ¢'(0) =0
by using the Laplace Transformation.
Solution: Consider the given integro-differential equation,
0" () + [; e (Dde = e*,  9(0) = ¢'(0) =0
Let us take the Laplace Transformation defined as, L{p(x)} = ®(p)
Also, we have,
L{p'(x)} = pL{p(x)} — ¢(0)
L{g" (x)} = p*L{p(x)} — pp(0) — ¢'(0)
From the given conditions, ¢ (0) = ¢'(0) = 0,
the above two equations will become,
L{p'(x)} = pL{p(x)}
=p2(p)
L{p" ()} = p*L{p(x)} — pe(0) — ¢'(0)
=p’®(p)
Consider the given equation and apply the Laplace Transformation on both sides,
L{p" (x)} + L{foxez("_t)fp’(t)dt} = L{e?}
L{p" (0} + L{e** x ¢’ ()} = L{e*} [Property-8]
L{e" ()} + L{e**} = L{p' ()} = L{e**}
Now, substitute the above values in this equation, we get,

p*®(p) + (p%) pe() ==
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o (p) [—"(”I X)=-L

p—2
*(p) = p(p 1)2

L{p(x)} = p(p B

@) =L" {p(pil)z}

By using partial fractions, we get,

o) =L~ {'J’pL (- 1)2}

() =L"" { }"‘L_ { } {(p 1)2}

px)=1—e*+xe* [Properties-18, 22, 26]

Hence, this is the required solution for the given integro-differential equation.

5.3.2. Example: Solve the integro-differential equation,
9'(x) — () + [, (x — D' ()t — [} p()dt = x;  (0) = —
by using the Laplace Transformation.
Solution: Consider the given integro-differential equation,
9' () — o) + [ (x — D' (Ddt — [y p(Ddt = x;  ¢(0) = —
Let us take the Laplace Transformation defined as, L{gp(x)} = ®(p)
Also, we have,
L{p'(0)} = pL{p(x)} — ¢(0)
From the given condition, ¢(0) = —1, the above equation will become,
L{g' ()} = pL{p()} +1
=p®(p) +1
Consider the Laplace Transformation on both sides,
L{p' ()} — L{p@)} + L{J; (x — D¢’ (dt} — L{f; p(D)dt} = L{x}
L{p' ()} — L{p ()} + L{x * 9" (x)} — L{1 * p(x)} = L{x}
[Property-8]
L{g' ()} - Lip()} + LIx}L{p' ()} — L{IL{p(0)} = L{x}
Now, substitute the above values in this equation, we get
pd(p) +1-2@) + ~[p®®) + 1] - - cI>(p)

p¢(p)+1—<l>(p)+q’(”)+p—z ?iﬁ

pP(p)+1-P(p) =0
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P(Pp-1=-1
o (p) = p_—_ll
Llp()} = —
o0 =17 {—=}

p(x) = —e* [Property-22]

Hence, this is the required solution for the given integro-differential equation.

5.3.3. Example: Solve the integro-differential equation,
@"(x) = 20" (x) + p(x) + 2 fox cos(x —t) @" (t)dt + 2 fox sin(x — t) @' (t)dt = cosx;
¢(0) = ¢'(0) = 0, by using the Laplace Transformation.
Solution: Consider the given integro-differential equation,
@"(x) —2¢0'(x) + p(x) + 2 f; cos(x —t) @" (t)dt + 2 fox sin(x — t) @' (t)dt =
cosx; @(0)=¢'(0)=0
Let us take the Laplace Transformation defined as, L{¢(x)} = ®(p)
Also, we have,

L{g'(x)} = pL{p(x)} — ¢(0)

L{p" ()} = p*L{e(x)} — p9(0) — ¢'(0)
From the given conditions, ¢ (0) = ¢'(0) = 0,
the above two equations will become,

L{g' ()} = pL{p(x)}
=p®(®)
L{p" ()} = p*L{e(x)}
=p’®([®)

Consider the given equation and apply the Laplace Transformation on both sides,

L{ep" ()} — 2L{p' ()} + L{p(x)} + ZL{fox cos(x — )" (t)dt + ZL{fox sin (x —
t)e'(t)dt} = L{cosx}
L{p" ()} — 2L{p" ()} + L{p(x)} + 2L{cosx = ¢"' (x)} + 2L{sinx = ¢'(x)} = L{cosx}

[Property-8]
L{p" (x)} — 2L{p' (x)} + L{p(x)} + 2L{cosx}L{p" (x)} + 2L{sinx}L{¢p'(x)}= L{cosx}
Now, substitute the above values in this equation, we get,
p
1+ p?

1
[p?@(p)] + ZTPZ [pP()] =

p
2p(p) — 2p®(p) + ®(p) + 2
p*®(p) — 2 p@(p) + (p) 157
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2p? 2p ] %

@ (p) [p4 ;ip;; 1] =1 fpz
O®) =
Lip()} = ﬁ
Lip()} = (pz’ﬁ
pQ) =L7" {ﬁ}
o(x) = = [Property-25]

2

Hence, this is the required solution for the given integro-differential equation.

5.3.4. Example: Solve the integro-differential equation,
" (x) + p(x) + fox sinh(x —t) (t)dt + f; cosh(x — t) ¢’ (t)dt = coshx; ¢(0) = —1,
¢'(0) =1,
by using the Laplace Transformation.
Solution: Consider the given integro-differential equation,
@"(x) + o(x) + fox sinh(x — t) p(t)dt + f;c cosh(x — t) ¢’ (t)dt = coshx; ¢(0) =
—1,¢'(0)=1
Let us take the Laplace Transformation defined as, L{p(x)} = ®(p)
Also, we have
L{g'(x)} = pL{p(x)} — ¢(0)
L{p" ()} = p*L{p(x)} — pe(0) — ¢'(0)
From the given conditions, ¢(0) = —1,¢'(0) =1,
the above two equations will become,
L{g'(x)} = pL{p(x)} + 1
=p®(p) +1
L{p" ()} = p*L{p()} +p — 1
=p?®()+p-1

Consider the given equation and apply the Laplace transformation on both sides,

L{p" (@)} + L{p()} + L{fox sinh(x — t) p(t)dt} + L{f; cosh(x — t) @' (t)dt} =
L{coshx}
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L{e" ()} + L{e(x)} + L{sinh(x) * ¢ (x)} + L{cosh(x) * ¢'(x)}

= L{coshx}
[Property-8]
L{p" ()} + L{p(x)} + L{sinh(x)} L{fp(x)}+L{cosh(X)} L{y’ (X)} = L{Coshx}
p*®(p) +p ~
2¢KP)+p-1+¢Kp)+¢@1 ;jf)+pil=p54
o) [p? 2] =1-p

o) [2] =1-p

(1-p(p*-1)
*() = (*+p?)
_ -p3+plip-1
*®) == zmn
By taking partial fractions, we get,

1 2p 2

q)(p) __F_p2+1 p2+1

_1 1 2p 2
L{(p(x)} _;_F_p2+1+p2+1

o0 = Q-1 (- )+ ()

@(x) =1—x— 2cosx + 2sinx

[Properties-18, 21, 20, 19]
p(x) =1—x+ 2(sinx — cosx)
Hence, this is the required solution for the given integro-differential equation.

5.3.5. Applications:

(1) Scientists and engineers encounter integro-differential equations through their research
work in heat and mass diffusion processes, electric circuit problems, neutron diffusion,
and biological species coexisting with increasing and decreasing rates of generation.

(2) The integro-differential equations in electro-magnetic theory, dispersive waves, and
ocean circulations are enormous.

(3) These equations can be found in physics, biology, and engineering applications
as well as in the advanced literature on integral equations.

5.4 SUMMARY:

In this lesson, we have discussed the integro-differential equations and their classification. The
method of solving integro-differential equations using the Laplace transform was discussed in
detail. In this regard, we recall some essential properties of the Laplace and inverse Laplace
transforms. Certain examples and self-assessment problems related to integro-differential

equations were discussed for a better understanding of the reader.
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5.5 TECHNICAL TERMS:

Integro-differential equations: If the derivatives of the function are involved, it is called an
Integro-differential equation.

™M (x) = F(x) + 1 [} K(x, De(t)dt,

where, ™ (x) = e and K(x,t) be the kernel.

dxm’

Kernel: If the kernel K (x, t) of the integral equation is defined as a function of the difference
(x,t),1.e.,K(x,t) = K(x —t) where K is a certain function of one variable.
Laplace Transform: A function ¢ in terms of x and its Laplace transformation will be a

function @ in terms of p i.e., L{p(x)} = ®(p) (or) p(x) = ©(p).

ie.l{p()}=["e™® p(x)dx =D (p)
5.6 SELF-ASSESSMENT QUESTIONS:

Exercise (5.1): Solve the following integro-differential equations:
L @"() + [} e?* D ¢'(t)dt = *; (0) = 0,¢'(0) = 1
2. @"(x)+2¢'(x)—2 fox sin(x — t) @' (t)dt = cosx; (0) = ¢'(0) =0
3. ¢"(x) +p(x) + fox sinh(x — t) @(t)dt + fox cosh(x —t) @' (t)dt =
coshx; (0) =¢'(0) =0
Solutions to Exercise (5.1):
(Dpkx)=e"-1
Q)px)=1—e*—xe™*
3) p(x) =1 —cosx

5.7 SUGGESTED READINGS:

1. M. Rahman, Integral equations and their applications, WIT Press, Southampton,
Boston, 2007.

2. M.D. Raisinghania, Integral equations and Boundary Value Problems, S. Chand and

Company Pvt. Ltd., 2007.

Shanti Swarup, Integral equations, Krishna Prakashan Pvt Ltd, Meerut, 2003.

4. M. Krasnov, A. Kiselev, G. Makarenko, Problems and Exercises in Integral
Equations, MIR Publishers, Moscow, 1971.
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- Prof. M. Vijaya Santhi




LESSON- 6
VOLTERRA INTEGRAL EQUATION WITH LIMITS

(x, +00)
OBJECTIVES:

e To learn about the Volterra integral equation with limits (x, +0)
e To discuss the Volterra integral equations of the first kind

STRUCTURE:

6.1. Introduction

6.2. Volterra Integral Equation

6.3. Volterra Integral Equation with Limits (x, +)
6.4. Volterra Integral Equations of the First Kind
6.5 Summary

6.6 Technical Terms

6.7 Self-Assessment Questions

6.8 Suggested Readings
6.1. INTRODUCTION:

This lesson deals with the Volterra integral equations and their solution techniques. The
principal investigators of the theory of integral equations are Vito Volterra (1860—1940) and
Ivar Fredholm (1866-1927), together with David Hilbert (1862—1943) and Erhard Schmidt
(1876-1959). Volterra was the first to recognize the importance of the theory and study it
systematically.

6.2. VOLTERRA INTEGRAL EQUATION:
The most standard form of Volterra Linear Integral equations is of the form

a(x)e(x) = F(x) + Af;cl((x, He(t)dt

where the limits of integration are the function of x and the unknown function ¢ (x) appears

linearly under the integral sign.

If the function a(x) = 1, then the above equation simply becomes

@(x) = F(x) + A [ K(x, Do(t)dt
and this equation is known as the Volterra integral equation of the second kind;

whereas if a(x) = 0, then the equation becomes
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F() + A [T K(x,)p)dt = 0,

which is known as the Volterra integral equation of the first kind.

6.3. VOLTERRA INTEGRAL EQUATIONS WITH LIMITS (x, +):

Integral equations of the form,
P(x) = () + [ K(x,)e(t)dt )

which arise in a number of problems in physics can also be solved by means of the Laplace
transformation. For this purpose, we establish the convolution theorem for the expressions.

L7 K, De()dt )
It is known that for the Fourier transformation,
F{T7 gx — OP(©)dt} = V2r6 (DY (D) 3)

where G(1), W(4) are the Fourier transforms of the functions g(x) and ¥ (x) respectively.
Put g(x) = K_(x), i.e.,

0, x>0
9(0) = {K(x), x<0
@ =0, = {00 2 @)
Then (3) can be rewritten as
FU" Kx - Do)dt} = V2rR_ ()P, (A); (5)

(here and henceforward, the subscripts F or £ will mean that the Fourier transform or the
Laplace transform of the function is taken).

To pass from the Fourier transform to the Laplace transform, observe that

Fr(p) = V2r[F,(ip)]# (6)
Hence, from (5) and (6) we get

L{f; K(x = Do (®)dt} = V2r[K_(ip)] [P+ ()], 7
We now express [V2mK_(ip)].. in terms of the Laplace transform:
[V2rR_(ip)], = [°, K(x)e P¥dx = [,° K(-x)eP*dx
Putting K (—x) = K (x), we get
[V2rR_(ip)],. = K (—p) = J; K(-x)eP*dx

And so




Integral Equations 6.3 Volterra Integral Equation...

L{[7K(x - e(t)dt} = Ky (—p) 2. (p) (8)

Let us now return to the integral equation (1). Taking the Laplace transform of both sides of
(1), we obtain

®(p) = F(p) + K (—p)P(p) )

(dropping the subscript £) or

_  F() e
*M) =15 KEPED (10)
where, K(—p) = [" K(—x)eP*dx (11)

The function, ¢(x) = ﬁ ;:l;o % eP*dp (12)

is a particular solution of the integral equation (1). It must be stressed that the solution (9) or
(12) is meaningful only if the domains of analyticity of K (—p) and F(p) overlap.

6.3.1. Note:
(i) L{f ()} = F(p)
(ii) L{fxw K(x —tet)dt} = (fooo K(—x)eP*dx)®(p)
6.3.2. Note: Cauchy integral formula for residues can be expressed as,
[ f(p)dp = 2mi(sum of all residues)
= [ f(p)dp = sum of all residues

2mi

6.3.3. Note: If f(p) has a pole of order k at p = p, then

1. ak-1
Res[f, po] = Gz limp-p, e [ = Po)*f ()]
(1) If f(p) has a pole of order 1, i.e., k = 1 at p = p, then,
Res[f,po] = lim (p = po)f (P)

(i1) If f(p) has a pole of order 2, i.e., k = 2 at p = p, then,
Res[f, po] = limy,_p, 2 [(@ = Po)f (P)]
6.3.4. Example: Solve the integral equation, ¢(x) = x + fxoo e?(=Dy(t)dt.
Solution: Consider the given integral equation, @(x) = x + fxoo e?C=Dgp(t)dt.
Compare the above equation with the general form, ¢ (x) = f(x) + fxm K(x,t)p(t)dt

Then we have, f(x) = x, K(x,t) = 27D,
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So, K(x) = e?*, then K(—x) = e~ ?*¥
Now, apply the Laplace transform on both sides of the given equation,

L{p(x)} = L{x} + L{fxm e2=Dp(t)dt}
d(p) = z% + (fooo e~ eP*dx)d(p)

[*We know that, L{p(x)} = ®(p), and from Property-12 in 5.2.9 also from (ii) in 6.3.1]

)] = ! ! )]
(P)—?‘*’ﬂ )

1

@ [1-5] ==

_ _ b2
*(p) = p2(p-1)

From (12) in section 6.3, we get,

_ 1 (ytico p-2 px
900 = 5 f) L s ePrdp (A)

The above integral can be evaluated by using the Cauchy integral formula with residues. The
integrand function has a double pole at p = 0 and a simple pole at p = 1.

Now, calculate the residue for the pole p = 0 of order 2,

. a p-2
= lim - [ 2 ep"]
P05, IP 2o
. d -2

dp Lp—-1

— lim |P=2 opx px( 1 ]
zljl_r)r(l)[p_le x+e (p—1)2)

=2x+1

Also, calculate the residue for the pole p = 1 of order 1,

— _ P=2  px
lim [0 = ) 7555 e

. -2
=lim [p—ep"]
p—1 p?

Now, using 6.3.2 in equation (A), we get,
px)=2x+1—¢e*

Hence, this is the required solution for the given integral equation.
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6.3.5. Example: Solve the integral equation, @(x) = e ™ + fxm e* tp(t)dt
Solution: Consider the given integral equation, ¢(x) = e™* + fxm e* tp(t)dt
Compare the above equation with the general form, @(x) = f(x) + fxm K(x, t)p(t)dt
Here, f(x) = e, K(x,t) =e**t
So, K(x) = e*,then K(—x) = e™*
Now, apply the Laplace Transform on both sides of the given equation,

L{p()} = L{e™} + L{[, e L p(t)dt}

@(p) = ﬁ + (fooo e *eP*dx)d(p)

[We know that, L{p(x)} = ®(p), and from property-13 in 5.2.9 also from (ii) in 6.3.1]
1 o _
d(p) = ot (J, e eP*dx)®(p)

D(p) = — — —d(p)

p+1 p—-1
P
o) [1+5] =
_ b1
*(p) = p(p+1)

From (12) in section 6.3, we get,

_L y+ico p-1 px
9(x) = 5 [} S ePrdp (A)

The above integral can be evaluated by using the Cauchy integral formula with residues. The
integrand function has the simple poles at p = 0 and p = —1.

Now, calculate the residue for the pole p = 0 of order 1.

=limlp 5o e

. -1
=lim [p—ep"]
p—-0 Lp+1

= -1

Also, calculate the residue for the pole p = —1 of order 1,

— 1 p—1 px
pll)ll‘ll [(p+1) p(p+1)e ]
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Now, using 6.3.2 in equation (A), we get,
px) =—-1+4+2e7*
Hence, this is the required solution for the given integral equation.

6.3.6. Example: Solve the integral equation, @(x) = 1 + fxoo e =Dy (t)dt, (a>0)

Solution: Consider the given integral equation, ¢(x) = 1 + fxoo e**=Dy(t)dt
Compare the above equation with the general form, ¢ (x) = f(x) + fxoo K(x,t)p(t)dt

Here, f(x) = 1, K(x,t) = e**~0)
So, K(x) = 9%, then K (—x) = e~

Now, apply the Laplace transform on both sides of the given equation,
L{p(0)} = L{1} + L{J” e““ D (t)dt}

d(p) = §+ (foooe‘“"epxdx)q)(p)

[*We know that, L{p(x)} = ®(p), and from Property-9 in 5.2.9 also from (ii) in 6.3.1]

®(p) = % - p%acb(p)

1

o1+ =

_ b—a
*(p) = plp—(a-1)]

From (12) in section 6.3, we get,

. y+ico p-a oPX
o) =), e ap (A)

The above integral can be evaluated by using the Cauchy integral formula with residues. The
integrand function has the simple polesatp =0 andp = a — 1.

Now, calculate the residue for the pole p = 0 of order 1,

— i p—a px
1171_r>r(1) [p p[p—(a—l)]e ]

pl—r}(l) [p—(a—l) px]

Also, calculate the residue for pole p = @ — 1 of order 1,

= hm [[p—(“‘ )]p[p (a- 1>]epx]
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= lim [ﬂ ep"]

p—oa-1L P
-1 —

— e(a 1x
a-1

Now, using 6.3.2 in equation (A), we get,
1 —
00 =5 me

Hence, this is the required solution for the given integral equation.

6.4. VOLTERRA INTEGRAL EQUATIONS OF THE FIRST KIND:

Suppose we have a Volterra integral equation of the first kind,

[ K e@®dt = f(x), f(0) =0 (1)

where, @ (x) is the unknown function.

Suppose that K(x, t), aKa(jz’t) ,f(x) and f'(x) are continuous for 0 < x <a,0<t <x.

Differentiating both sides of equation (1) with respect to x, we obtain

K@, 0900 + [ Z2 o) dt = f'(x) @)

The above equation can be obtained by using the Leibniz rule in 5.2.6.

Any continuous solution ¢(x) of equation (1), for 0 < x < a,obviously satisfies equation (2)
as well. Conversely, any continuous solution of equation (2), for 0 < x < a, satisfies
equation (1) too.

If K(x,x) does not vanish at any point of the basic interval [0, a], then equation (2) can be
rewritten as,

f, K,x vt
900 = L2 — [FEEID o (0)dt 3)

which means it reduces to a Volterra-type integral equation of the second kind.

If K(x,x) = 0, then it is sometimes useful to differentiate (2) once again with respect to x
and so on.

6.4.1. Example: Solve the integral equation, fox cos(x —t) (t)dt = x.

Solution: Consider the given integral equation, f;c cos(x —t) p(t)dt = x.

Compare the given equation with the general form, [ ;C K(x,t)p(t)dt = f(x).

Here the functions f(x) = x, K(x,t) = cos(x — t), satisfy the conditions of continuity and
differentiability.

Differentiating both sides of the given equation with respect to x by using Leibniz's rule, we
get




Centre for Distance Education 6.8 Acharya Nagarjuna University

=[5 sin(x — £) p()dt + cos(x — x) p(x)(1) = cos(x — 0) p(0)(0) = 1
- fox sin(x — t) @(t)dt + cos(0) p(x) =1

— fox sin (x — t) p(t)dt + p(x) =1
px)=1+ f; sin (x — t) @(t)dt
The above equation is an integral equation of the second kind of the convolution type.

We find its solution by applying the Laplace transformation,

L{p(x)} = L{1} + L{f; sin (x — t) @ (t)dt}

L{p(x)} = L{1} + L{sinx * ¢ (x)} [Property-8]
Lip()} = L{1} + L{sinx} * L{p(x)}
d(p) = % + pjﬂ d(p) [Properties-9, 10]

CI)(p) [1 B p21+1] - %

241

®(p) ="
101
P =2+5
101
L{(p(x)}=;+;

_7-1(1 -1(1
px) =1L 2 p} +L {p3}
@) =1+ [Properties-18,28]

Hence, it is the required solution.

6.4.2. Example: Solve the integral equation, fox e to(t)dt = sinx.
Solution: Consider the given integral equation, fox e to(t)dt = sinx.

Compare the given equation with the general form, | (;C K(x,t)e(t)dt = f(x).
Here the functions f(x) = sinx, K(x,t) = e** satisfy the conditions of continuity and
differentiability.
Differentiating both sides of the given equation with respect to x, by using Leibniz's rule, we
get,

fox e¥ tp(t)dt + e* *p(x)(1) — e* %9 (0)(0) = cosx

f;c e* to(t)dt + ¢(x) = cosx
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o(x) = cosx — fox e to(t)dt

The above equation is an integral equation of the second kind of the convolution type.
We find the solution by applying the Laplace transformation,

L{p(x)} = L{cosx} — L{fox e*~t p(t)dt}

L{p(x)} = L{cosx} — L{e* * p(x)} [Property-8]
L{p(x)} = L{cosx} — L{e"} * L{p(x)}
O(p) =~ - ﬁq)(p) [Properties-11, 13]
o®) [1+55] =5
o(p) = L
D(p) = - ——

pZ+1  pZ+1

Lip(x)} =2 — —

pZ+1  pZ+1

p(x)=L"1 {#} - {p21+1}

@(x) = cosx — sinx [Properties 20, 19]

Hence, it is the required solution.

x2

6.4.3. Example: Solve the integral equation, fox(l —x2+t)et)dt = -

2
Solution: Consider the given integral equation, f;‘ (1 —x? +t)e(t)dt = x?

Compare the given equation with the general form, [ (;C K(x,t)p(t)dt = f(x).

2
Here the functions f(x) = x?, K(x,t) = (1 — x? + t?) satisfy the conditions of continuity

and differentiability.
Differentiating both sides of the given equation with respect to x by using Leibniz's rule, we

get [ (1—x? +2) p(B)dt + (1 — 22 + 22)p()(1) — (1 — x% + 09)(0) (0) = 5 (2x)

[ =2xp®)dt + p(x) = x

px)=x+2 foxx (t)dt

The above equation is an integral equation of the second kind of the convolution type.
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By the method of successive approximation (3.1 in Lesson 3), we have,
fx)=x, K(x,t) =x, 1 =2
So,  @o(x) = f(x)
=x

01 (x) = [3 K (x, o (t)de

02 () = Jy K(x, ) (t)dt

= f(;cx;dt

x (t‘*)"
2 \4 0

and so on...
Now, @(x) = @o(x) + A9, (x) + 12, (x) + -+ + 1@, (x)
2 < 8
=x+x3+ "7 + o

=x(1+x2+x*+-)

_ 2 (=)
=x(1 +?+T+ )
2 3
= xe*’ [“eX=1+=+=++]
1 20 3l
Hence, it is the required solution.

6.4.4. Example: Solve the integral equation, fox 2+ x?2 —t)e(t)dt = x?
Solution: Consider the given integral equation, f;‘ (2 + x? —t2)e(t)dt = x?

Compare the given equation with the general form,
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Jy K@, Do (t)dt = f(x)

Here the functions f(x) = x2, K(x,t) = (2 + x? — t2) satisfy the conditions of continuity
and differentiability.

Differentiating both sides of the given equation with respect to x by using Leibniz's rule, we
get,

fg%(Z +x2 =t e®)dt + (2 + x* —x*)p(x)(1) — (2 + x* = 0)(0)(0) = 2x

fg 2x @(t)dt + 2¢(x) — 0 = 2x
fg 2x @(t)dt + 2¢(x) = 2x
Ji xo®dt + ¢(x) = x
9() =x =[x p(t)dt
The above equation is an integral equation of the second kind of the convolution type.
By the method of successive approximation (3.1 in Lesson 3), we have,
fx)=x, K(x,t) =x, 1=-1
Now, @o(x) = f(x)
=X
91(x) = J; K(x, Oo(t)de

= [ xtdt

=x(3),
=5@*-0)
-5

92 (x) = [ K(x, ) (t)dt

= fyx(5)a

-5,
=3@* -0

)
and so on...
Now, ¢(x) = @o(x) + 191 (x) + 220, (x) + -+ + 1", (x)

=x+ (-1 (L) + DL+
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=X 1——+ +..
1! 2!
2 3
. 2 et =l
Px) =xe 2 ' 2 3
e*=1-+>-Z+
1! 2! 3!

Hence, it is the required solution.
6.5 SUMMARY:

In this section, we explore the Volterra integral equation with limits (x,+). Here, we
discuss the procedure for finding solutions to Volterra integral equations of the first kind in
detail. A few examples and self-assessment questions are provided to enhance the reader's
understanding.

6.6 TECHNICAL TERMS:

Volterra Integral Equation of First Kind:
The most standard form of Volterra linear integral equations is,

a(@Xp(x) = F(x) + 1 [, K(x, Do(t)ds,

ifa=0,then F(x) + A f; K(x,t)@(t)dt = 0 is the Volterra integral equation of the first
kind.

Residue: If f(p) has a pole of order k at p = p, then,

1, ak-1
Res[f: Po] = mhmp—mo W [(p - po)kf(p)]

6.7 SELF-ASSESSMENT QUESTIONS:
Exercise (6.1): Solve the integral equations:
D) () =e*+ [7 p(O)dt
(2) p(x) = cosx + fxoo eFDp(t)dt
3) [ 3* tp(t)dt = x

@) [ a*te(t)dt = f(x), f(0) =0

x2

(5) foxsin(x —te(t)dt =ez — 1

Solutions to Exercise (6.1):
(Do) =1 —x)e™
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(2) p(x) = cosx — sinx
(3) p(x) =1 —xIn3
@) o) =f'(x) - f(x)lna

) px) = exz_z(x2 +2)-1

6.8 SUGGESTED READINGS:
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LESSON-7
EULER INTEGRALS AND ABEL’S

INTEGRAL EQUATIONS
OBJECTIVES:

e To learn about Euler integrals
e To discuss Abel’s problem and Abel’s integral equation
e To learn the concept of generalizations of Abel’s integral equation

STRUCTURE:

7.1 Euler Integrals

7.2 Abel’s Problem and Abel’s Integral Equation
7.3 Generalizations of Abel’s Integral Equation
7.4 Summary

7.5 Technical Terms

7.6 Self-Assessment Questions

7.7 Suggested Readings

7.1. Euler Integrals:

The gamma function or Euler’s integral of the second kind is the function I'(x) defined by
the equality,

T(x) = [ e " dt (1)

where, x is any complex number, Re(x) > 0.
For x = 1, we get
r()=fetdt=1 (2

Integrating by parts, we obtain from (1)
— 1™, -t
I'x) = ;fo e~ t¥dt
_ F(x+1)(3)

X
This equation expresses the basic property of a gamma function

F'x+1)=x'(x) &

Using (2), we get
re)=r1+1)=1rQ1)=1,
rck)=r@2+1)=2r1()=2!
r4)=r3+1)=3.r1@3)=3!
and generally for positive integral n,

I'n) =(Mm-1)! (5
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We know that,

0 _.2 VT
foe"deT

1
Putting x = t2 here, we obtain,

o 1_
fo etttz dt =i

Taking into account expression (1) for the gamma function, we can write this equation as,

Also, we can obtain

and so on.

Generally, it will readily be seen that the following equality holds:

F( 1)_1><3><5...(2n—1)

n+3)= 2" vr

(n is a positive integer).

Knowing the value of the gamma function for some value of the argument, we can compute,
from (3), the value of the function for an argument diminished by unity. For example,

D=5yt

For this reason,

Acting in a similar fashion, we find

2 —t -1
2 2
3 -1
ERCRR R
2 2
-5
(@)-" G

and so on.

It is easy to verify that,
F(O) = F(—l) Err— F(_n) = ... = 00,
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Above we defined I'(x) for Re(x) > 0. The indicated method for computing I'(x) extends
this function into the left half-plane, where I'(x) is defined everywhere except at the points
x = —n (n is a positive integer and 0).

Note also the following relations:

FEOTQA —x) = sinmx

r(x)r (x + %) = Zl_zxn%F(Zx)

and generally,
n—1

r(x)r (x + %) r (x + %) T (x + ) = (ZH)HT_ln%_n I'(nx)

(Gauss-Legendre Multiplication theorem).

The gamma function was represented by Weierstrass by means of the equation,

—_ = ze?? | oy {(1 + i) e_Tz} (6)

I'(z)

where,

1 1 1
y = lim (1+—+—+--~+——lnm) =0.57721 ...
2 m

m—oo 3

is Euler’s constant. From (6), it is evident that the function I'(z) is analytic everywhere
exceptatz =0, z = —1, z = —2, ..., where it has simple poles.

The following is Euler’s formula, which is obtained from (6);

=3[ 1{0) 0+

n=1
It holds everywhere exceptatz =0, z = -1, z = -2, ...

7.1.1. Example: Show that for Re(z) > 0
! z-1

r'(z) =f(ln%) dx

0
Solution:

Let us define gamma function as,
— [ —tyz—-1
[(z) = [, e7't"'dt (1)
Now, we have to show that,
1
z-1

r'(z) =f(ln%) dx

0
Consider RHS of above equation,

RHS = [ (In %)H dx(2)

Let us assume that, log% =t

Rk
I
o
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x=¢et

dx = —e~tdt
The limits of integration will change as undert = o asx =0andt =0 asx = 1.

Now, substitute all the above values in equation (2), which gives
1 1\Z-1
RHS = [} (In2)"  dx
= [Ptz (—et)dt
= foooe‘ttz‘ldt ( f;f(x)dx = — fbaf(x)dx)

= I'(z)(~ equation (1))
=LHS

z—-1
Hence, I'(z) = fol (lni) dx.
7.1.2. Note:

We introduce Euler’s integral of the first kind B(p, q), so-called beta function:
1

B(p,q) = fx”‘l(l —x)¥'dx (Rep >0,Req>0)
0

The following equality holds (it establishes a relationship between the Euler integrals of the
first and second kinds):

_I'(»mr(g)

B(p,q) —m

Also, we have some alternate definitions of the beta function,

© xp—l
B(p,q) =fmdx
0

7
B(p,q) = ZfsinZP_le cos?119de
0

B Fxpl a1
B(p,q) = A+ 0ra X
0

Also, we have,

b4

fsinpe cos?0 do = %
o o ()

7.1.3. Example: Show that, B(p,q) = B(q,p)

Solution: Let us define the beta function as,
B(p,q) = fol xP71(1-x)71dx (Rep>0,Req>0) (1)
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Consider the LHS of the given expression, i.c.,

B(p,q) = f01 xP71(1 —x)9'dx (~ Equation (1))
= 11 -0P (1 -1 -0)" dx
(- foaf(x)dx = foaf(a — x)dx)
= f01(1 — x)P~1x971dx
= folxq_l(l —x)P~ldx

= B(q' P)
Hence, B(p,q) = B(q,p).

7.1.4. Example: Show that,
Blp.q)=B(p+1,9)+B@q+1)
Solution: Let us define the beta function as,

_ I'(mrq
B,q) = T'(p+q) M

Now, consider the RHS of the given expression as,
_ T+ (q) , T(p)r(q+1)
Bp+1L@) +B(p,q+1) =1t Toram
(~+ Equation (1))

_ _pr®r@ I'(p)alr(q)
(p+@T(p+q)  (P+T(p+q)
_ITor@(» , a
T T(p+q) (p+q+p+q)
_I'»ra (M)
[(p+q) \p+q
_ r'(p)r'(q)
T(p+q)

=B(p,q) (~ Equation (1))

Hence, B(p,q) =B(p +1,q9) + B(p,q + 1).
7.1.5. Example: Show that,

S+ 0P (1 - 09 dx = 2P B(p, )
Solution: Consider the LHS of the given equation,
LHS = [ (1 + )P (1 — %)  dx (1)
Let us assume that, 1 + x = 2t then dx = 2dt

The limits of integration will change asundert = 0asx = —landt =1asx = 1.

Now, substitute all the above values in equation (1),
LHS = [120)P~*(1 - (2t — 1)) 2de
= [, )P~ (2 — 2t)97 2dt

= [ 2P~ 7120711 — )9 2d¢
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= 2P+t [FePl(1 — )9 de

= 2P+a-1B(p, q) ( B(p,q) = fol xP~1(1 — x)91dx )
=RHS
Hence, f_ll(l +x)P71(1 — x)9 L dx = 2P 1B(p, q).

7.1.6. Example: Evaluate the integral,

I = [zcos™ 'xsin®*xdx (Rem>0,Ren>0).
Solution: Consider the given integral,

n-1

I = [7cos™ 'x sin™ 'x dx

Now, compare with the general form,

f%sin”é cosi0 df = ;)

Here, we have
p=n—1,qg=m-1

Hence, given the integral becomes,
n—-1+1 m—1+1
(e

21.,(n—1+m—1 +2)

2
rEr)
2r(*57)
Hence, it is the required solution.

I =

7.2. ABEL’S PROBLEM AND ABEL’S INTEGRAL EQUATION:

7.2.1. Definition:

An integral equation is called a singular integral equation if one or both limits of integration
become infinite, or if the kernel K(x,t) of the equation becomes infinite at one or more
points in the interval of integration. To be specific, the integral equation of the first kind,

fG) = 1] K(x, )p®)dt (1)

or the integral equation of the second kind
b
() =f(x) + A [, K(x,)p)dt 2

is called singular if a, b or both limits of integration are infinite. Equation (1) or (2) is also
called a singular equation if the kernel K (x,t) becomes infinite at one or more points in the
domain of integration.

Consider the following examples,

fG) = J; = e®at (3)
f@) =[5 Gogre@at 4)

The above integral equations (3) and (4) are called Abel’s problem and generalized Abel’s
integral equation, respectively.
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One of the simplest forms of singular integral equations, which arises in mechanics, is Abel’s
integral equation

fo) =[F (x_lt)“q)(t)dt, 0<a<l1 (5)

where ¢(t) is an unknown function to be determined and f(x) is a known function.

Multiplying (5) both sides by (u — x)~(~® and integrate with regard to x from 0 to u, we
have

u () _ru dx x ()
fo (u_x)—(l—a)d - x:O(u_x)l—aftZO(x_t)adt

By changing the order of integration, we have

u_ f&® _ [u u dx
Jo Gmo-ma dx = s oWt [ i mae (6)
Consider,
—ux
T ou-t
dx = —(u—1t)dz
Then,
fu dx
x=t (u—x)1-%(x-t)®
= = [0 [z = 017 (u = )7L = 2)™(u — t)dz
_rt -1 _
— Jz=0 Za (1 - Z) adZ
_ s
" sinam
From relations (6) and (7), we have
U f(x) n
fO (u-x)~(-® ax = en ftzo p)dt (8)

Differentiating the relation (8) with regard to u and then changing u by t, we obtain
sinam d

p(O) = R [ () - )% 2dx],

which determines the solution of the given equation (5).

7.2.2. Relation between Laplace Transformation and Gamma function:

I'(n+1) n! .
(1) L{x"} = ST = gD ifnez*t

n

O e ey 1
3Lz =1L ()=l [r
(4)L_1{\/iﬁ} - 7':\/}

7.2.3. Example: Solve the integral equation,

x @(t)dt
Js P MO0<a<1)

Solution: Consider the given integral equation,

~|

pi2 P
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xe)dt _ _,
f() (x-t) =X

Now, applying the Laplace transform on both sides, we get,
x p(t)dt
L {fo (x— t)“} = L&
L {x— x (p(x)} = L{x"} (+ Property-8 in 5.2.9)
L{e) * Llp@)} = L&x™)
L{x"“}Ap(x)} = L{x"}

r( +1) r'(n+1) I'(n+1)
0 e = (v Ly = TarD)

L{g@(—a+1) = % —a
L{g()T(—a+ 1) = “n_j)
Lip(0} = s e
00 =i )
@x) = %L—l {pn+:_1+1}

xn+a—1

__ I'(n+1)
(p(x) T I(1-a) F(n+a—1+1)

_ T(n+1) x"te?
(p(x) T r(i-a) I'(n+a)

Hence, it is the required solution.

7.2.4. Example: Solve the integral equation,
fx @(t)dt

0 = = Sinx

Solution: Consider the given integral equation,
fx—(P(t)dt = sinx
0 Vx-t

Now, applying the Laplace transform on both sides, we get,
L {fo} = L{sinx}

L{—O* ;(Tt)} 1+p2 (+ Property-8 in 5.2.9)
L{F Lo} =
J_ Lip(x )}—1+p2 (+7.2.2)

Lip()} = f i

Lip()) = mﬂ,z

He 0} = (Gamm)
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¢ = _71:L 1{%1:0 }
0@ == G )
(%) —\/—E(ﬁcosx) (+7.2.2and 5.2.10)
px) = %(\%Cosx)
o0 =11 2 )

Hence, it is the required solution.

7.2.5. Example: Solve the integral equation,
xp®)dt L
fo Va—t xz
Solution: Consider the given integral equation,
Jy S =
Now, applying the Laplace transform on both sides, we get,

Ly = L)
L+ 00} =1{x)

L{L} Lo} = L{x3)

jlwun—wz

< 7.22 and L{xz} = FE) :2—2)
Lip@)} =5
px) = {%}
1

=3 =)

7.3. GENERALIZATIONS OF ABEL'S INTEGRAL EQUATION:

Hence, it is the required solution.

Consider the integral equation,
Jy e = 0 p(Ddt = x* )

(=0, B>—-1isreal),
which in a sense is a further generalization of Abel’s equation (5) in 7.2.1.

Multiply both sides of equation (1) by (z — x)* (u > —1) and integrate with respect to x
from 0 to z:

iz =0"(f; (x = P pDdt)dx = [Fx*(z —x)dx  (2)
Putting x = pz in the integral on the right side of (2), we obtain

[ 3% (z = x)Fdx = 2441 [T pA(1 — p)Hdp
=zMHHIBA+1,u+1)
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— ,A+p+1 TAFDI (4D
z s Atp+1>220) ()

Changing the order of integration on the left side of (2), we get,

fg(f;‘(z —x)H(x — )P p(t)dt)dx =
U =0k = DF dx)p®)dt “)
In the inner integral on the right of (4) put
x=t+p(z-—1t)
Then,
[z =0k — 0 dx = (2 — 48+ [ pB (1 = p)dp

Jiz =0 (x —)Pdx = (z = O*FHIBB+ Lp+ 1)

r(B+1)r(pu+1
ftZ(Z —x)H(x - t)de =(z- t)’“—ﬁ“ ﬁ (5)

Taking into account (3), (4), (5), we obtain from (2),
fz ((Z _ t)u+/§+1 F(B+1)F(H+1)) e®)dt = ZAtutl T+ Dru+1)
0

T(B+u+2) F(A+p+2)
CE+DIWAD) (2.~ uipet _ 1 TGt D)
r(B+p+2) -1 e(Hdt =z TO+t2)

TB+D)  rz,, _ yu+B+1 — SA+p+1 _TA4D)
F(B+u+2)f0 (z-1) ¢(Ddt =z T(A+u+2) ©)

Choose u so that 4 + § + 1 = n (a non-negative integer). Then from (6) we will have
Ml foz (z — )" @(t)dt = —LFD_ pa+n—p

r(n+1) T(A+n—B+1)
z (z—t)" _ r(A+1) A+n—p
fo nl ¢(Ddt = T(B+1)I(A+n—pF+1) z

(+T(n+1)=nh @)
Differentiating both sides of (7) (n + 1) times with respect to z, we obtain

_ TO+) =B G+n—p=1)..(0—p) _1-p-1
¢(2) = r(B+1)(A+n—p+1) z ®)

orforA-f+k+0(k=0,1,..,n)

_ r(+1) 1-B-1
*() = Groran? ©)

This is the solution of the integral equation (1).

7.3.1. Example: Solve the integral equation,
Jy (x = Dp®dt = x?
Solution: Consider the given integral equation,
Jy (x = DpDdt = x?
Compare the given integral equation with,
Jy e = p(D)dt = x*
Here,A =2,6 = 1.

SinceA—f+k+0(k=0,1, 2,3,..,n), it follows from the general formula that,

_ r(a+1) 1-B-1
02 = s 2
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_ e+ 2-1-1
¢(x) = r(1+1)r(2—1)x

ORI
rorm
2!
p(x) =2
Hence, it is the required solution.

p(x) =

7.3.2. Example: Solve the integral equation,
1 4
f;‘(x —t)3p(t)dt = x3 — x?
Solution: Consider the given integral equation,
1 4
fg(x —t)3p(t)dt = x3 — x?
Compare the given integral equation with,
f;‘(x — P p(t)dt = x*
Here, A, = %,Az =2,0= §
Since, A; =B +k#0, ,—f+k#+0k=0,1, 2,3,...,n),
it follows from the general formula that,

_ r(a+1) 1-B-1
¢ = s
For this problem we have two A4 values, so the solution will be,

_ T(A4+1) A —B— I'(A;+1) Ao—B—

0@ = i 2 i TG i
(x) = r %“) x§—§—1 __ T(+D 2-1

LTV rG+re-p

_ @) e 2
7= T G

i1"(1) 2! 2

—3\3)
PO = o
<p(x)=§— 2

Hence, it is the required solution.

7.3.3. Example: Solve the integral equation,

1
fox(x — t)zp(t)dt = mx.
Solution: Consider the given integral equation,

1
x —t)zp(t)dt = nx
Jy G = )2p(t)d
Compare the given integral equation with,
Jy e = O p(Ddt = x*

Here,A =1, = %

Since, A-f+k#0(k=0,1, 2,3,...,n), it follows from the general formula that,
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_ r(a+1) A-B-1
?(@) = (e
[ r(1+1) 1_1_1_
X =TT\ 2
¢(x) »r(%+1)r(1—%)

[ ra+ 1-1q]
X)) =T |—————— 2
¢ (x) r(+1)ra—)
.
r(1+1) 171

o) =m r(+1)ra—)

_ | 1
PO =TGR

o0 =g
(@) =r(t1) =1 =)
SR

p(x) ==

Hence, it is the required solution.
7.4 SUMMARY:

This lesson provides a detailed description of Euler integrals. Later deals with the concepts of
Abel’s problem and Abel’s integral equation. Also, discussed the generalizations of Abel’s
integral equation. Certain examples of all these concepts are provided to enhance the reader's
understanding.

7.5 TECHNICAL TERMS:

Euler Integrals:
(1) Euler’s integral of the second kind I'(x) is called gamma function and is defined by,

I'(x) = fow e~ 't¥1dt
where, x is any complex number, Re(x) > 0.

(2) Euler’s integral of the first kind B(p, q) is called the beta function and is defined by,
B(,q) = f, xP"'(1—x)?""dx (Rep > 0,Re q > 0)

Relation between Euler integrals of the first and second kind:
B(p,q) = r'(p)r'(q)
’ T'(p+q)
Abel’s Integral Equation: The simplest form of singular integral equations, which arises in
mechanics, is Abel’s integral equation.
1

X
f@) = Jy Gogee®dt, 0<a<1
where ¢ (t) is an unknown function to be determined and f(x) is a known function.
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Generalizations of Abel's Integral Equation: The integral equation,
f;‘(x - fp)dt =x* (1=>0, f>—1isreal)
which, in a sense, is a generalization of the Abel integral equation.

7.6 SELF ASSESSMENT QUESTIONS:

Exercise (7.1): Solve the following:
(1) Show that, I'"(1) = —y
r'(y)

) Show that 22 — &) _ 5 1
ow that, == ) = .In

. 1.2...(n-1) 2
(3) Prove that, I'(z) = lim,,_, D) D)

(4) Show that, B(p + 1,9) = ZB(p,q + 1)

Exercise(7.2): Solve the integral equations:
1
(l)fox(x —t)zp(t)dt = x + x2
@)y (x = D2p(t)dt = x°
1%y — )2 _ 14
3) zfo (x —t)?@p(t)dt = cosx — 1 + .

x @(t)dt
4 [, == e*

Solutions to Exercise(7.2):
3
I |
o= Lc)x% 8

@eG)=3
3) p(x) = sinx

11 x g2t
(4)(p(x)—;($+exfo e tZdt)
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LESSON- 8

VOLTERRA INTEGRAL EQUATIONS OF THE

CONVOLUTION TYPE

OBJECTIVES:

To learn about Volterra integral equations of the first kind of the convolution type

To know the necessary conditions for the existence of a solution of an integral equation

To discuss Volterra integral equations of the first kind with a logarithmic kernel
To learn about the non-linear Volterra integral equations with
convolution type

STRUCTURE:

8.1.
8.2.
8.3.
8.4.
8.5
8.6
8.7
8.8

8.1.

8.1.

Volterra Integral Equations of the First Kind of the Convolution Type
Necessary Condition for the Existence of a Solution of an Integral Equation
Volterra Integral Equations of the First Kind with Logarithmic Kernel
Non-Linear Volterra Integral Equations with Convolution Type

Summary

Technical Terms

Self-Assessment Questions

Suggested Readings

VOLTERRA INTEGRAL EQUATIONS OF THE FIRST KIND OF THE
CONVOLUTION TYPE:

1. Definition: An integral equation of the first kind,

Jy K@ — Do(t)dt = f(x) (1)

whose kernel K (x, t) is dependent solely on the difference (x — t) of arguments, will be
called an integral equation of the first kind of the convolution type. This class of equations
includes, for instance, the generalized Abel's equation.

Let us consider a problem that leads to a Volterra integral equation of the convolution type.

8.1.2. Problem: A shop buys and sells a variety of commodities. It is assumed that,

(1)
2)
)

It is

buying and selling are continuous processes, and purchased goods are put on sale at
once;

the shop acquires each new lot of any type of goods in quantities which it can sell in a
time interval T, the same for all purchases;

each new lot of goods is sold uniformly over time T, the total cost of which is unity.

required to find the law ¢(t) by which it should make purchases so that the cost of goods

on hand should be constant.
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Solution: Let the cost of the original goods on hand at time t be equal to K(t) where,

t
—_— <
K(t) ——{1 T’ t=T
0, t>T

Let us suppose that in the time interval between t and 7 + dt

goods are bought, amounting to the sum of @ (t)dz. This reserve diminishes (due to sales) in
such a manner that the cost of the remaining goods at the time t > 7 is equal to
K(t — t)@p(tr)dr. Therefore, the cost of the unsold part of goods acquired via purchases will,

at any time t be equal to
[ Kt — Dop(D)dr
Thus, ¢ (t) should satisfy the integral equation
1-K(t) = [, K(t - D)g(r)de
We have thus obtained a Volterra integral equation of the first kind of the convolution type.

Let f(x) and K (x) be original functions and let
f(x) = F(),K(x) = K(), ¢(x) = O(p)

Taking the Laplace Transform of both sides of equation (1) and utilizing the convolution

theorem, we will have

K(p) @(p) = F(p) 2)
o) = 25 (R(p) # 0) 3)

The original function ¢ (x) for the function ®(p) defined by equation (3) will be a solution
of the integral equation (1).

8.1.3. Example: Solve the integral equation,
f;cex‘tw(t)dt =x
Solution: Consider the given integral equation,
f;ex‘tw(t)dt =x
Compare the given integral equation with the general form,
Jy K= Dp(0de = f(x)
Here, f(x) =x, K(x —t) = e*t
So, K(x) = e*

Now, take the Laplace transform on both sides of the given equation, we get,
L{[; e*tp(D)dt} = L{x}
L{e* * ¢(x)} = L{x} (~“Properties -5.2.9)
L{e*}{p(x)} = L{x}
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1 _1 - ies -
Ecp(p) == (~ Properties -5.2.9)
-1
o) ="
1 1
®(p)=--
11
g} =2-1;

p(x)=1-x (- Properties -5.2.10)
Hence, it is the required solution
8.1.4. Example: Solve the integral equation,
f; cos(x — t) p(t)dt = sinx
Solution: Consider the given integral equation,
fg cos (x — t)p(t)dt = sinx
Compare the given integral equation with the general form,
J; K(x = Dp(dt = f(x)
Here, f(x) = sinx, K(x —t) = cos (x — t)
So, K(x) = cosx
Now, take the Laplace transform on both sides of the given equation, we get,
L{fox cos (x — t)p(t)dt} = L{sinx}
L{cosx * ¢(x)} = L{sinx}
(*+ Properties -5.2.9)
L{cosx}L{p(x)} = L{sinx}

14 1 .. .
T d(p) = e (~+ Properties -5.2.9)
1
®(p) = =
1
L)} =7
px) =1 (~+ Properties -5.2.10)

Hence, it is the required solution.

8.1.5. Example: Solve the integral equation,

fox(x - t)%qo(t)dt = x%

Solution: Consider the given integral equation,

fox(x - t)%qo(t)dt = x%
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Compare the given integral equation with the general form,
Jy K= De(0)dt = f(x)
5 1
Here, f(x) =x2, K(x —t) = (x — t)2

1
So, K(x) = x2

Now, take the Laplace transform on both sides of the given equation, we get
L {fox(x — t)%(p(t)dt} =1L {xg}
L {x% * <p(x)} =L {xg}
L {x%} L{p(x)} =1L {xg}

) ) |
= L{p)} =—%~ ( Properties -7.2.2)
pE"'l PE+1
ip(L Sp(S
1oy = 21
p2 p2
1w ENEN
5 L{p(x)} =%
p2 p2
Exz 3
L{p(x)} =47 x 2p?
p2
5 3
L{p(x)} = = x 2p>
8p2
15 p%
o)} =—x=
pZ
15
Lp(o} =22
15,1 (1
o) = 4 L {pz}
px) = 1:5x (+ Properties -5.2.10)

Hence, it is the required solution.

8.1.6. Example: Solve the integral equation,
fg cos(x — t) p(t)dt = x + x?
Solution: Consider the given integral equation,
fox cos(x — t) (t)dt = x + x?
Compare the given integral equation with the general form,

Jy K@ = g(®)dt = f(x)
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Here, f(x) = x +x2, K(x —t) = cos(x — t)
So, K(x) = cosx
Now, take the Laplace transform on both sides of given equation, we get,
L{fox cos(x — t) p(t)dt} = L{x + x?}
L{cosx * p(x)} = L{x + x?} ( Properties -5.2.9)
L{cosx}L{p(x)} = L{x} + L{x?}

p 142 - ies -
T o(p) = T ( Properties -5.2.9)
_ (1,2 1+p?

o(p) = - (M) + 2 (1)

p P>\ p
o =53 4) + 5 +0)

1 1 2
PB) = ettt
1 1 2 2
L{¢(x)}:F+;+F+F

o0 =i (2}t et i) o )
p(x) = "2—2 +1+ 2’%3 +2x (- Properties -5.2.9)

2 3
<p(x)=1+2x+x7+%

Hence, it is the required solution.

8.1.7. Example: Solve the integral equation,
foxez(x_t)(p(t)dt = sinx

Solution: Consider the given integral equation,
f(;cez(x_t)q)(t)dt = sinx

Compare the given integral equation with the general form,
Jy K = Dp(0de = f(x)

Here, f(x) = sinx, K(x —t) = e?*~1
So, K(x) = e?*
Now, take the Laplace transform on both sides of the given equation, we get,

L{fgcez(x_t)q)(t)dt} = L{sinx}

L{e? x p(x)} = L{sinx} ( Properties -5.2.9)
L{e*}L{p(x)} = L{sinx}
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1

2z ®(p) = I +p2 (~ Properties -5.2.9)
®(p) = 1+p2
2
CI)(p) - 1+p2 B 1+p?
L{p(x)} = -

1+1:12 1+p?
@(x) = cosx — 2sinx ( Properties -5.2.10)

Hence, it is the required solution.

8.2. NECESSARY CONDITION FOR THE EXISTENCE OF A SOLUTION OF AN
INTEGRAL EQUATION:

A necessary condition for the existence of a continuous solution of an integral equation of the
form,

[FE o (oydt = f(x) (1)

(n-1)!
consists in the function f (x) having continuous derivatives up to the n" order inclusive and in
all its n — 1 first derivatives vanishing for x = 0. This model equation (1) points to the

necessity of matching the orders of vanishing of the kernel for ¢t = x and of the right side
f(x) for x = 0 (the right side must exceed the left by at least unity).

To find the solution ¢ (x) of equation (1), apply the Laplace transform on both sides of the
given equation. Then assume ¢ (x) as §(x), i.e.,

@(x) = ().

This is made clear by direct verification if we take into account that the convolution of the J-
function and any other smooth function g(x) is defined as,

g(x) *6(x) = g(x)
§WX) xg(x) =g® ) (k=12,..)
Indeed, in our case g(x) = K(x) and

Jy K(x =) 8(t)dt = K(x).

8.2.1. Example: Solve the integral equation,
fox(x —te)dt =x>+x—1
Solution: Consider the given integral equation,
f;c(x —te)dt=x?+x—-1
Now, take the Laplace Transform on both sides of the given equation,

L{J (x — Dpdt} = L{x? + x — 1}
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L{x * ()} = L{x*} + L{x} — L{1}
(*+ Properties -5.2.9)
L{x}{p()} = L{x?} + L{x} — L{1}

1 2 1 1

Fq)(p)_zﬁ—i_pz p
(2,1 _1\ 2

q)(p) - (p3 + pz p)p

Lp(}=2+1-p
=1 1241
p(x) =L {p+1 p}
—y-1(2 -111 _ j-1
000 = L7 2+ 171} - 17 )
9o =207 H 4+ 1711} - 17 p)
@(x) =2(1) +6(x) — 6" (x)
Y £ -1011 — -1 — S
(+ 2= 1 M =), P = 8'@)
p(x) =2+6(x) — 6" (x)
Hence, it is the required solution.
8.2.2. Example: Solve the integral equation,
fox(x —t)e(t)dt = sinx
Solution: Consider the given integral equation,
f;‘(x —te(t)dt = sinx
Now, take the Laplace Transform on both sides of the given equation,
L{f;(x — D (t)dt} = L{sinx}
L{x * p(x)} = L{sinx}

(*+ Properties -5.2.9)
L{x}L{p(x)} = L{sinx}

1 1 .
p—ZCD(p) =T (+ Properties -5.2.9)
2
o(p) =7
241-1
() =" >

1

P)=1-15
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1

Lp()}=1- 1
o) =L {1 - 5]
() = L) - 17 {

p(x) = 6(x) — sinx
[+ L71{1} = §(x), Properties-5.2.10]

Hence, it is the required solution.

8.2.3. Example: Solve the integral equation,
fox(x —t)%p(t)dt = x? + x3
Solution: Consider given integral equation,
f;‘(x —t)2pt)dt = x* + x3
Now, take the Laplace Transform on both sides of given equation,
L{x?x p(x)} = L{x? + x3} (++ Properties -5.2.9)
L{x*}L{p(x)} = L{x?} + L{x®}

2 2 6 .
> d(p) = > + 1 (- Properties -5.2.9)
2 6
o) =
»3
Op)=1+>

Lip} =1+
p)=L"1 {1 + %}

o(x) = L1} + L1 {%}

(o) = 1711} + 3171 {3}

px) =6(x)+3

( L1} =6(), L7 {%} =1 ) Hence, it is the required solution.

8.2.4. Example: Solve the integral equation,
fox sin(x —t) p(t)dt =x + 1
Solution: Consider the given integral equation,

fox sin (x — t)p®)dt =x + 1
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Now, take the Laplace Transform on both sides of the given equation,
L{fox sin (x — t)p(t)dt} = L{x + 1}
L{sinx * ¢(x)} = L{x + 1} (~ Properties -5.2.9)
L{sinx}L{p(x)} = L{x} + L{1}

: o(p) = piz + % (+ Properties -5.2.9)

1+p?

®@) = (+7) A +p?)

1+p? = 14p?
p? p

1 1
() =+1+5+p

®(p) =

1
Lip()}=+1+-+p

o(x) = L1 {z%} + LY} + Lt {%} + L Yp}
p(x)=x+5(x)+1+6(x)
[ Properties -5.2.10, L™1{1} = §(x), L™ {p} = 6’ (x)]
p(x)=14+x+6x)+6(x)

Hence, it is the required solution.

8.3. VOLTERRA INTEGRAL EQUATIONS OF THE FIRST KIND WITH
LOGARITHMIC KERNEL:

Integral equations of the first kind with logarithmic kernel,
[ e@®In(x — ) dt = f(x), £(0)=0 (1)

can also be solved by means of the Laplace transformation.

We know that

. T(v+1
v = [+
pv+1

(Rev >-1) 2)

Differentiate relation (2) with respect to v:

v . 1 dr(wv+1) 1 1
xVInx = T R +pv+1lan‘(v +1)
F+1) dr(v+1) L
v _rw " v 1
xVInx = o [F(v+1) + lnp] 3)
For v = 0, we have,
ra _
r(n

where y is Euler’s constant, and formula (3) takes the form
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Inp+y
p

4
Let o(x) = ®(p), f(x) = F(p). Taking the Laplace transform of both sides of (1) and

Inx = %(—y —Inp) =

utilizing formula (4), we get

~0(p) "2 = F(p)

o(p) = — 22 (5)

Inp+

Let us write ®(p) in the form

_ _PF@-f'0 _ f'©
*(p) = p(Inp+y) p(Inp+y) ©)

Since f(0) = 0, it follows that
p*F(p) — f'(0) = f" (%) (7

Let us return to formula (2) and write it in the form
e ®)
[(v+1) = pv+l

Integrate both sides of (8) with respect to v from 0 to oo. This yields

o x¥ . oo dv 1
[ dv = [ =
0 r'(v+1) 0 pvtl plnp

By the similarity theorem

foo xVa~? . 1 _ 1
0 T(v+1) o pln(ap) - p(Inp+lna)
If we put a = e?, then

oo xVe~ YV . 1
fO T(v+1) dv = p(Inp+y) (9)

Take advantage of equality (6). By virtue of (9)

_flo oo xVe VY
p(Inp+y) =f( )f F(v+1)

Taking into account (7) and (9), the first term on the right of (6) may be regarded as a product
of transforms. To find its original function, take advantage of the convolution theorem

p*F(p)-f' (0) " (x=t)’e™¥?
p(Inp+y) f f (t) (f r(v+1) dv )dt

Thus, the solution ¢ (x) of the integral equation (1) will have the form

ooxey

0@ == [ 1O (Jy G dv) de = £1(0) f} e

where, y is Euler’s constant.

In particular, for f(x) = x we get
0 xve—yv
0 T(v+1)

px) = —
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8.4. NON-LINEAR VOLTERRA INTEGRAL EQUATIONS WITH CONVOLUTION
TYPE:

The convolution theorem can also be used for solving non-linear Volterra integral equations
of the type

P(x) = f(x) + 1 [; p(De(x — t)dt (1)

Let, o (x) = @(p), f(x) = F(p)
Then, by virtue of equation (1)
®(p) = F(p) + 10*(p)
AD*(p) — @(p) + F(p) =0
Compare the quadratic equation with the general form,
ax? + bx + ¢ = 0. Then,
_ —b+VbZ-4ac

2a

X

SO, q)(p) _ 1+/1-42F(p)

21

The original function of ®(p), if it exists, will be a solution of the integral equation (1).

8.4.1. Example: Solve the integral equation,

o —ndr =%

Solution: Consider the given integral equation,
x x3
Jy 9@®p(x —)dt =—
Compare the given equation with the general form,
@) = f() + 1, p(Oe(x — D)dt,
px) =@(p), f(x)=F(p)
Now, applying the Laplace transform on both sides of the given equation, we get,
x x3
L{Jy (o — dt} = L{=}
Lip@) + o)} = L{Z}
206)) = {2
Lip?(0)} = L{Z}

D2(p) = p—14 (+ Properties -5.2.9)

P(p) = \/;
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O(p) = £
Lip(} =+

(1
o) = +17 )
p(x) = +x (+ Properties -5.2.10)

Hence, the functions ¢4 (x) = x and ¢,(x) = —x, will be solutions of the given equation.

8.4.2. Example: Solve the integral equation,
2¢0(x) — foxtp(t)q)(x —t)dt = sinx
Solution: Consider the given integral equation,
20(x) — f(f(p(t)(p(x —t)dt = sinx
Compare the given equation with the general form,

P(x) = f(x) + 2 [; p(De(x — t)dt,
o(x) = 0(),  f(x)=F®)

Now, applying the Laplace transform on both sides of the given equation, we get,

2L{p(x)} — L{fgcq)(t)(p(x — t)dt} = L{sinx}
2L{p(x)} — L{p(x) * p(x)} = L{sinx}
(*+ Properties -5.2.9)

1

20(p) = L{g*(0)} =

20(p) ~ 0*(p) = 1

2(p) — 1 _
P*(p) = 20(p) + =0

Compare with quadratic equation with the general form,
ax?+bx+c=0.

Then,

__ —btVb?-4ac
- 2a

2+ /4—4x1x L
So, ®(p) = L — 12

2Xx1

X

2+ [4-——
14p

o(p) = %




Integral Equations 8.13 Volterra Integral Equations...

p2
P(p)=1% |7
®(p) = 1J_rJ%p2

Since @ (x) is bounded, we take the negative sign.

Thus,
P(p)=1- \/%pz
_ J1+p*-p
o(p) = it

Now, multiply and divide by /1 + p? + p, we get,
1+p?-p v J1+p2+p

J1+p? Ji+p2+p

d(p) =
_ 14p2—p?
*®) = ) ameen)

1

PO = )

D(p) = HEE

®(p) = % — T

P(p) = J%pz v
L0} = o=~ 1

@) =L {J%pz - 1+ppz}

o= (et} 2
@(x) = Jo(x) — cosx
p(x) =1 (x)

Hence, it is the required solution.

8.4.3. Example: Solve the integral equation,
p(x) = %foxq)(t)(p(x —t)dt — %sinhx

Solution: Consider the given integral equation,
p(x) = %f()xq)(t)(p(x —t)dt — %sinhx

Compare the given equation with the general form,
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0(x) = f() + 2 [, (Do (x - D)dt,
px) =@(p), f(x)=F(p)
Now, applying the Laplace transform on both sides of the given equation, we get,

Llp(0} = 5 L{Jy e — )t} 3 Lisinhx)

Lp@)} =35 L{p(0) « 00} 37

(*+ Properties -5.2.9)

Lp()} = 5 L? ()} — 7
O(p) =392 () ~ 35
20(p) = ®*(p) - pzl_l
¢2@)—2¢@)—pil

Compare with the quadratic equation with the general form,

ax? + bx + ¢ = 0. Then,

__ —btVb2-4ac
x= 2a
21 [4-4x1x—5—
— pT-1
SO, q)(p) - 2%1
2% [447
(p) =
2
242 [14——
®(p) = ——
_ , 1
d(p)=1+% |1+ 1
_ p?-1+1
q)(p) - 1 i pz_l

Since, ¢ (x) is bounded, we take the negative sign.

Thus,

() =1-7=
L{p(x)}=1- J%
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px)=1L"1 {1 S }

p2-1

oG = 171y -1 2]

0() = 8() - =171 {2
0 (x) = 8(x) — = (Io(x))
P() = 6(x) — L (x)

Hence, it is the required solution.

8.5 SUMMARY:

In this section, we explore the Volterra integral equations of the first kind of the convolution
type. In connection with this, we have thoroughly discussed the necessary conditions for the
existence of a solution to an integral equation. Apart from this, we have discussed the
Volterra integral equations of the first kind with a logarithmic kernel and non-linear Volterra
integral equations with convolution type. A few examples in each category have been
provided to enhance the reader's understanding.

8.6 TECHNICAL TERMS:

Volterra Integral Equations of the First Kind of the Convolution Type:
An integral equation of the first kind,

Jy K@ — Do(t)dt = f(x) (1)

whose kernel K (x, t) is dependent solely on the difference (x — t) of arguments will be
called an integral equation of the first kind of the convolution type.

Necessary condition for the existence of a solution of an integral equation: A necessary
condition for the existence of a continuous solution of an integral equation of the form,

Jr 2 p(0de = £ ()

Non-linear Volterra Integral Equations with Convolution Type: The non-linear Volterra

integral equation with convolution type is of the form,

P(x) = f(x) + A [, p(De(x — t)dt (1)
8.7 SELF-ASSESSMENT QUESTIONS:

Exercise (8.1): Solve the integral equations:
(l)foxex‘t(p(t)dt = sinhx

(Z)fgcex‘tq)(t)dt = x?
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(3) fox cos (x — t)@(t)dt = xsinx
4) fox sinh(x — t)@(t)dt = x3e™*
() f; Jo(x — He(t)dt = sinx

(6) fox cosh(x — t)e(t)dt = x

() fy % = t)p)dt = =

(8) [F(x? — dxt + 3t (0)dt ==

(9) 5 J (% — 4t + 3t (D)dt = x°]4(2%)

(10) [ (x - 20)p()dt = =

(11) fox sin(x — ) (t)dt = 1 — cosx

Solutions to Exercise(8.1):
(D ex)=e™*
(2) p(x) = 2x — x?
(3) p(x) = 2sinx
4) p(x) = 3! (xe™ — x%e™%)
3 o) = Jo(x)
©) ) =1-%

N o) =

®)px)=C—x

(9) p(x) = C +Jo(2Vx)
(10) p(x) =C+x
(1D k) =1
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LESSON- 9
FREDHOLM EQUATIONS OF THE SECOND KIND

OBJECTIVE:

e To understand the fundamental concepts of Fredholm integral equations and their
classifications.

e To explore important theorems, such as Fredholm’s theorem and its implications.

e To learn various solution methods, including the use of resolvent kernels and numerical
techniques.

STRUCTURE:

9.1 Introduction

9.2 Fundamentals

9.3 The Method of Fredholm Determinants Resolvent Kernels
9.4 Summary

9.5 Technical Terms

9.6 Self-Assessment Questions

9.7 Suggested Readings

9.1 INTRODUCTION:

Fredholm integral equations, introduced in 1903 by Swedish mathematician Erik Ivar
Fredholm, are fundamental in mathematical physics, engineering, and applied sciences. These
equations, which express unknown functions through integrals involving a kernel function,
laid the groundwork for modern functional analysis and operator theory. They are categorized
into two types: the first kind, where the unknown appears only under the integral, and the
second kind, where it appears both inside and outside the integral. Widely applied in quantum
mechanics, signal processing, and boundary value problems, Fredholm equations have driven
advances in both analytical and numerical methods for solving complex equations, making
them essential in fields like heat conduction, fluid dynamics, and computational mechanics

The study of Fredholm integral equations has led to significant developments in numerical
and analytical methods for solving complex integral and differential equations. Today, these
equations are indispensable tools in various scientific and engineering applications, including
heat conduction, potential theory, and fluid dynamics, computational mechanics.

9.2 FUNDAMENTALS:

Now we recollect some important definitions and examples which are essential in the study of
this Lesson.
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9.2.1 Definition: A Fredholm integral equation is an integral equation in which the
unknown function ¢@(x) appears inside an integral over a finite domain [a, b]. It is
classified into two types:

Fredholm integral equation of the first kind:

b

[ ke ve@ar = r@ ©.1)

a

Fredholm integral equation of the second kind:

b
o) — 4 f K(x, o @©)dt = f(x), ©9.2)

where @(x) is an unknown function, K(x,t) and f(x) are known functions, x and t are real
variables varying in the interval (a, b), and A is a numerical factor. The function K(x,t) is
called the kernel of the integral equations (9.1) and (9.2).

If f(x) # 0, equation (9.2) is nonhomogeneous. However, if f(x) = 0, then (9.2) takes the

form

b
o(0) — f K(x, ¢@©)dt = 0, ©9.3)

which is called homogeneous Fredholm integral equation of the second kind. The limits of

integration, a and b in equations (9.1), (9.2) and (9.3) can be either finite or infinite.

9.2.2 Show that the function ¢@(x) = sin”z—x is a solution of the Fredholm-type integral

equation

1
2
0() — f K Dp(0dt =5
0

where the kernel is of the form
x(2—-1t)

2
t(2 —x)

, t=
2
Solution. Write the left-hand side of the equation as

K(x,t) =
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L.H.S.= p(x)
1

1
—%ZofK(x. t) o(t) dt = o(x) —%ZUO K(x,t) o(t) dt+LK(x' £) o(t) dt}

2 X¢(2 — 1 2 —
= (p(x) _T[T{f t(z—x) QD(t) dt + f ¥ QD(t) dt}
0 X

2 2 — X 1
=(p(x)—%{Txf t(p(t)dt+%f (Z—t)fp(t)dt}
0 X

Substituting the function sinnz—x in place of ¢ (x) in to this expression, we get

. Tt , 1t
x 1l x sin—- 1 sin—-
n——— - t dt 2—t dt» =
sin—-—— (2 x)J0 5 +xfx( ) >

oM w2 @ )( t nt+2 _nt>t=x+ [ 2—t nt 2 _nt]t=1
=sin——~ x —Cos— + 5 sin— - x ——C0s — — —sin— .
x

=—=R.H.S.

2

Thus, @(x) = sin™ is a solution of the given integral equation.
@ > g g q

9.2.3 Example: Show that the function ¢(x) =1 is a solution of the Fredholm-type

integral equation
1
) + f x(e*t — Do(t)dt = e* —x
0
Solution. Write the left-hand side of the equation as

1

L.H.S.=p(x)+ Jx(ext —De@®)dt =1 +J
0
0

L eX—1—x
=1+x J(e’“—l)dt :1+x<T>=ex—x=R.H.S.
0

Therefore ¢(x) = 1 is a solution of the given integral equation.

1 1
x(e** —-1))dt =1+ xJ (e*' — 1Ddt
0

9.3 THE METHOD OF FREDHOLM DETERMINANTS AND RESOLVENT
KERNELS:
Here we can observe the definitions of Fredholm resolvent kernel, Fredholm minor,

Fredholm determinant and finding the solution of the Fredholm equation of second kind as
follows:
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9.3.1 Definition: The solution of the Fredholm equation of the second kind

b
o) =1 [ KCu0p@de = ), ©.4)

is given by the formula

b
px) =f(x)+2 f R(x,t; Df (t)dt, 9.5)

where the function R(x, t; A) is called the Fredholm resolvent kernel of equation (9.4) and

is defined by the equation
D(x,t; 1) (9.6)
R(x,t;A) = WO
provided that D(1) # 0.

Note: In the equation (9.6), D(x, t; 1) and D(A) are expressed as power series in A as given

below.
="
D(x,t; 1) = K(x,t) + — Ba(x, 02, 9.7)
n=1
o (1" .
D) =1+ ZTCn(x, O, 08
n=1
whose coefficients are given by the formulas
K(xl t) K(xl tl) K(xl tn)
b b K(tllt) K(tlltl) o K(tll tn)
BuGot) = [ [ K0 Kayt) - Kyt det,
a a
K(tn: t) K(tn: tl) b K(tn: tn)
and
Bo(x,t) = K(x,t)
K(tll tl) K(tll tZ) o K(tll tn)
b p|[K(ts, t1) K(ty, t) -+ K(tty,)
C, = f f Kt t) Kty -~ K(tst))| de - de,
a a

K(tn:tl) K(tn:tz) K(tn:tn)
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9.3.2 Definition: The function D(x, t; 1) as defined in the equation (9.7) is called
Fredholm minor, and D(X) is called Fredholm determinant.
Note:
e Ifthe kernel K(x, t) is bounded or the integral

b (b
f f K?(x,t) dx dt
a a

has a finite value, then the functions D(4) and D(x, t: A) are converge for all
values of 1 and, hence, these functions are entire analytic functions of A.

e The resolvent kernel
D(x,t; 1)
D(A)

is analytic function of A, except for those values of 4 where D(1) = 0; These

R(x,t; 1) =

values are called poles of R(x, t; A).

9.3.3 Example: Using Fredholm determinants, find the resolvent kernel of the kernel
K(x,t) =xet;a=0,b=1.
Solution. We have B, (x,t) = xe’ Further,

1 t t
xet xeh
Bi(x,t) = =0,
o= [ |xe el
1| xet ti xet2
B,(x,t) = ff tiet tle tiefz|dt,dt, = 0
0 lt,et tyelr tyet2

since the determinants under the integral sign are zero. It is obvious that all

subsequent B, (x, t) = 0. Now we find the coefficients Cy,:

1 1
C, = fK(tl,tl)dtl ftletldtlzl,

e [

Obviously, all subsequent C,, are also equal to zero.

tle tle
tze 1

|dtidt, =0

In our case, by the formulas of D(x, t; 1) and D(1), we have
D(x,t; ) = K(x,t) =xet; DA)=1-2

Thus,
D(x,t,A) xet

D) 1-2

Let us apply the result obtained to solving the integral equation

R(x,t,A) =
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1
o) =1 [ xetp@dt = () A% 1)

0

By using the formula (9.5) we get,

p(x) =

In particular, for f(x) = e ™ we get

—-X

px)=e 1_Ax.

9.3.4 Example: Using Fredholm determinants, find the resolvent kernel of the kernel
K,t)=2x—t;0<x<1,0<t<1.
Solution. We have By (x,t) = 2x — t.

Further,

Y12x -t 2x —t4

2
2t —t t, dt; = —x + 2xt + = — t,

Bi(x,t) = f 3

0

B, (x, t)—f fo

In a similar way, all subsequent B,,(x,t) = 0. Now we find the coefficients C,,:

-t 2x—t,
Ztl - t tl 2t1 - tz
2t, —t 2t,—t; t,

dtldtz = 0

1 1 1
C, = f K(ty,t)dt; = f 2t — tydty = =,
0 0 2

2t1_ 2

d 1
t, 2=3

3

tl - tz Ztl - t3
2t2 -t t, 2t, — t3
2t —t; 2t; —t, ts

dtldtzdt3 = 0

CzHL

Obviously, all subsequent C,, are also equal to zero.

In our case, by the formulas of D(x, t; 1) and D (1), we have
2
D(x,t; 1) = 2x —t) + A(x — 2xt — §+ t);

A2
D) =1-2+=—.
o)) >t

Thus,

D(x,t,2) 2x—t+/1(x—2xt—%+t)

R(x,t,A) =
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9.3.5 Note: In very rare cases is it possible to compute the coefficients B, (x, t) and C,, of
the series D(x, t; A) and D (1), However, these formulas it is possible to obtain the
following recursion relations:

b
B,(x,t) = C,K(x,t) — nf K(x,s)B,_1(s, t)ds, ©9)

b
C, = f B,,_,(s,s)ds

), (9.10)
Where, the coefficient Cy, = 1 and By(x,t) = K(x,t), we can use formulas (9.9) and (9.10)

to successively compute the next terms C; By (x,t), C, B,(x,t), C3 and so on.

9.3.6 Example: Using formulas (9.9) and (9.10), find the resolvent kernel of the kernel
K(x,t) =x—2t,where0 <x <1,0<t<1.

Solution. We have C, = 1 and By(x,t) = x — 2t. Using formula (9.10), we find

1

1
C, = f (—s)ds = -3
0

By formula (9.9) we get
x — 2t

Bl(x,t) = — 2 -

1

2

f(x—ZS)(s—Zt)ds=—x—t+2xt+§
0

We further obtain

o —Jl( 2 +22+2)d -1
2—0 S S 3 5—3

x — 2t

0

! 2
By(x,t) = —ZJ(x—ZS)(—s—t+25t+§)ds
0

C3=C,=+=0,B3(x,t) =B,(x,t) =--=0

Hence,

A A2 2
D(/U=1+E+€; D(x,t;l)=x—2t+(x+t—2xt—§>l

The resolvent kernel of the given kernel is

D(x,t, 1) x—2t+(x+t—2xt—g)/1

3
- 2
D) 14444

9.3.7 Example: Using the recursion relations (9.9) and (9.10), find the resolvent kernels of
the kernel K(x,t) =x+t+1, -1<x<1 —-1<t<1.

R(x,t; 1) =

Solution. We have C, = 1 and By(x,t) = x + t + 1. Using formula (9.10), we find
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1
C; =f (2s+ 1)ds = 2.
-1
By formula (9.9) we get

1

2

Bl(x,t):2(x+t+1)—J (x+s+1)(s+t+1)ds=—2xt—§
-1

We further obtain

(oY
= — —_— § = ——
27 3 3

1

Bz(x,t)z—g(x+t+1)—f (x+s+1)<—25t—§>ds=0
1

C3=C,=+=0,B3(x,t) =B,(x,t) =--=0
Hence,
422
DA)=1-22 -3

1
D(x,t; 1) =x+t+1+2(xt+§>l

The resolvent kernel of the given kernel is

1
D(x,t’l)_x+t+1+2(xt+§)/1

D@ 1-22 -2

R(x,t; 1) =

9.4 SUMMARY:

This unit provides the fundamental idea of the Fredholm integral equations of first and second
kind. The method of Fredholm determinants is used to find the resolvent kernels that helps us in
obtaining the solutions of various integral equations.

9.5 TECHNICAL TERMS:

e Fredholm Integral Equation of the Second Kind: An equation of the form
b

f K(x, O9@)dt = f (),

a

Where the unknown function appears both inside and outside the integral.
o Kernel: The kernel K(x, t) is a given function in a Fredholm integral equation and is
referred to as the kernel of the equation.

¢ Homogeneous Integral Equation: A Fredholm equation where f(x) = 0, resulting
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b

fK(x, t)p(t)dt =0,

a

is called homogeneous integral equation.

e Non-Homogeneous Integral Equation: A Fredholm equation where f(x) # 0, so
the right-hand side remains a known non-zero function.

¢ Fredholm Determinant: A special function D (1), constructed using the kernel, used
to determine whether the equation has a unique solution.

e Fredholm Minor: The function D(x,t:A) that appears in the definition of the

resolvent kernel

D(x,t:1)

e Resolvent Kernel: The function R(x, t; 1) = o)

, which helps solve the integral

equation explicitly.

9.6 SELF-ASSESSMENT QUESTIONS:

Exercise (9a): check whether the given functions are the solutions of the indicated integral

equations:

L9 =e*(2x-2)
1

o)+ 2 f e*t @(t) dt = 2xe”*.
0

2sinx

T
1-=
2

2. p(x)=1-

px) — f cos(x +t) p(t) dt = 1.
0
3. o) =,
1
p(x) — f K(x,t)p(t)dt = x/§+%(4x3/2 - 7).
0
x(2-1)

K@Q:tQ{@'

, U=
2
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4. p(x) =e”,
1
o(x) +/1f sinxt @(t)dt = 1.
0
5. ¢(x) = cosx,
n
px) — f(x2 +t)cost @(t)dt = sinx.
0

6. p(x) =xe ™%,

(o]

p(x) — 4J e e (t)dt = (x — 1)e™™.
0
7. @(x) = cos 2x,

A

px)—3 f K(x,t)p(t)dt = cos x.
0
K, t) = {

sinxcost, 0<x<t,
sintcosx, t<x<Tm.

ac . . .
8. o) = —sinx, where ¢ is an arbitrary constant,

oo

1102

) 4[_ sin
o(x - sinx

t
. p(t)dt = 0.
0

Exercise (9b):

Using the Fredholm determinants, find the resolvent kernels of the following kernels:

1. K(x,t) =x%t —xt?%; 0<xt<l.
2. K(x,t) =sinxcost; 0<x,t<2m
3. K(x,t) =sinx —sint; 0<xt<2m.

Using the recursion relations (9.9) and (9.10), find the resolvent kernels of the following
kernels:

4. K(x,t) =1+ 3xt; 0<x,t<1.

5. K(x,t) = 4xt — x?; 0<xt<l.

6. K(x,t) =e* ¢ 0<x,t<1.

7. K(x,t) =sin(x +t) 0<x,t<2m.

8. K(x,t)=x—sinht;—-1<ux,t<1.
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Exercise (9¢):

Using the resolvent kernel, solve the following integral equations:

1.
2
p(x) — Af sin(x +t)p(t)dt =1
0
2.
1 x
0() -1 | @x-0p@dt =%
0
3.
21
@(x) —J sinx cos t (t)dt = cos 2x
0
4.
1
o (x) +f e* tp(t)dt = e*.
0
5.

1
p(x) — Af (4xt — x?) p(t)dt = x.
0

9.7 SELF-ASSESSMENT ANSWERS:

Exercise (9b)

x%t—xt?+x (x—H—x—t—i)A
1. R(x,t2) = s
1+

240
2. R(x,t; 1) = sinx cost.

sinx—sint— (1+2sinxsin )A.

3. R(x,t;A) = YT
1+43xt+(35-3xt-1)2
4. R(x,t; 1) = 2
1—Zl+zﬂ.2
axt—x?—(2x2t—2x2 +x—2xt )2
5. R(x,t2) = (oo uet
1—A+E
=
6. R(x,t; 1) = -
. __ sin(x+t)+mA cos (x—t)
7. R(x,t; 1) = o
8. R(x,t;1) = x—sinh t-2(e~+x sinh t)/l.

1+4e~ 172
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Exercise (9¢)

1. ¢(x) =1.

2 900 =3 [r+ )
3. ¢(x) = cos2x.

4. ¢p(x) = %ex.

3x(2A-3Ax+6)
A2-181+18

5. ¢(x) =
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LESSON- 10
ITERATED KERNELS

OBJECTIVE:

e To understand the concept and significance of iterated kernels in the context of Fredholm
integral equations.

e To learn the method of constructing iterated kernels and their use in building the
resolvent kernel

e To explore the convergence criteria for Neumann series and conditions under which a
solution exists.

e To study examples that illustrate the construction and application of iterated kernels.

STRUCTURE:

10.1 Introduction
10.2 Definition and Formation of Iterated Kernels

10.3 Construction of the Resolvent Kernel using Iterated Kernels and Convergence of
Neumann Series

10.4 Construction of the Resolvent Kernel to the Orthogonal kernels
10.5 Summary

10.6 Technical Terms

10.7 Self-Assessment Questions

10.8 Suggested Readings

10.1 INTRODUCTION:

In integral equations, iterated kernels play a key role in the construction of the resolvent
kernel, which is used to obtain solutions to Fredholm integral equations of the second kind.
By defining successive approximations of the solution, we form a series where each term
involves an iterated kernel derived from the original kernel. These concepts provide powerful
analytical tools for examining the behavior and solvability of integral equations under various
conditions.

10.2 DEFINITION AND FORMATION OF ITERATED KERNELS:

We define degenerate kernels and formulate the integral equation using degenerate
kernels.

10.2.1 Formation of Iterated Kernels: Consider the Fredholm integral equation of second
kind

b
0(6) — 1 f K(x, p(0)dt = f(x). (10.1)
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As in the case of the Volterra equations, the integral equation (10.1) may be solved by the

method of successive approximations. In order to solve the equation, we represent ¢ (x) as
follows:

00 = FG) + ) (DT,
n=1

(10.2)
Where the function ,,(x) are determined from the formulas
b
@) = [ K@ orod,
b b
$200 = [ KGO 9ade = [ K G070
b b
$300 = [ KGO 9,0 = [ K07 Ot
and so on. Here
b
K,(x,t) = J K(x,z)K,(z,t)dz,
b
Ks(x,t) = f K(x,z)K,(z,t)dz,
and generally,
b
K,(x,t) = f K(x,2)K,_1(z,t)dz, (10.3)

a

n = 2,3,..,and K;(x,t) = K(x,t).

10.2.2 Definition: The functions K, (x, t) determined from

K,(x,t) = f: K(x,z)K,_1(z,t)dz are called iterated Kernels and the following

relation holds for these functions
b
K,(x,t) = JKm(x, S)Kp—m(s, t)ds, (10.4)
a

where m is any natural number less than n.
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10.3 CONSTRUCTION OF THE RESOLVENT KERNEL USING ITERATED
KERNELS AND CONVERGENCE OF NEUMANN SERIES

We shall construct the resolvent kernel of the integral equation (10.1) is determined in terms
of iterated kernels by using the formula

R(x,t; 1) = z Ky (x, )AL, (10.5)
n=1

10.3.1 Definition: The series on the right side of the resolvent kernel R(x,t; 1) =

Yo Kn(x, t)(x)A" 1 is the Neumann series of the kernel K (x, t). It converges for

4] < =
B’ (10.6)

where B = Jf: f: K2(x,t)dxdt.

10.3.2 Note:
1. The solution of the Fredholm equation of the second kind (10.1) is expressed by the

formula

b
0() = () + 2 [ ROt DF Ot (10,

The boundary (10.6) is essential for convergence of the series (10.5). However, a
solution of equation (10.1) can exist for values of || > % as well. Consider an example

as

1
o(x) — Af p(®)dt =1 (10.
0

Here K(x,t) =1, and hence

11 11
BZ=ffK2(x,t)dxdt=ffdxdt=1
00 00

Thus, the condition (10.6) gives that the series (10.5) converges for|A| < 1. Solving
(10.8) as an equation with a degenerate kernel, we get (1 — A)C =1,

where C = [ 01 @(t)dt. For A = 1 the integral equation (10.8) does not have any solution.
However, equation (10.8) is solvable for |A| > 1. Indeed, if A # 1, then the function

px) = ﬁ is a solution of the given equation.
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2. From the above discussion we can observe that in a circle of radius greater than unity,
successive approximation cannot converge for (10.8)
3. For some Fredholm equations the Neumann series (10.5) converges for the resolvent

kernel for any values of 4

10.3.3 Definition: Let K(x,t) and L(x,t) are two kernels are said to be orthogonal, if the

following two conditions are satisfied for any admissible values of x and ¢:
b b

fK(x, z)L(z,t)dz = 0, fL(x, z)K(z,t)dz = 0. (10.9)

a a
Example: The kernels K (x, t) = xt and L(x,t) = x?t? are orthogonal on [—1, 1].

Certainly,
1

1
f(xz)(zztz)dz = xt? fz3dz =0,
21 21

1

1
f(xzzz)(zt)dz =x?t fz3dz =0.
-1 -1
10.3.4 Note: There exist kernels which are orthogonal to themselves. For such kernels,
K,(x,t) = 0, where K, (x, t) is the second iterated kernel. It is obvious that in this case
all subsequent iterated kernels are also equal to zero and the resolvent kernel coincides

with the kernel K (x, t). We can observe from following example

10.3.5 Example: K(x,t) = sin(x — 2t) ; is orthogonal itself where 0 < x,t < 2.
We have

2
f sin(x — 22) sin(z — 2t) dz

0
1 2T
= Ef [cos(x + 2t —3z) —cos(x — 2t — z)] dz
0

Z=2T

=0.

z=0

17 1
=3 [—gsin(x + 2t — 3z) + sin(x — 2t — Z)]

Thus, in this case the resolvent kernel of the kernel is equal to the kernel itself:
R (x,t; A) = sin (x — 2t)

so that the Neumann series (10.5) consists of one term and, obviously, converges for any A.
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10.3.6 Note: The iterated kernels K, (x,t) can be expressed directly in terms of the given
kernel K (x, t) by the formula

b b b
K, (x,t) =f f f K(x,51)K:(51,83)...K(Sp_1, t)dsy...dsp_4
a Ja a (10.1¢

e Alliterated kernels K, (x, t), beginning with K, (x, t) will be continuous functions in
the square a < x < b, a <t < b if the initial kernel K (x, t) is quadratically
summable in this square.

e Ifthe given kernel K (x, t) is symmetric, then all iterated kernels K,,(x, t) are also
symmetric.

10.4 CONSTRUCTION OF THE RESOLVENT KERNEL TO THE ORTHOGONAL
KERNELS:

The following are some examples in finding iterated kernels.
10.4.1 Find the iterated kernels for the kernel K (x,t) = x —t wherea =0, b = 1.

Solution. Using formulas (10.3), we find in succession as follows:

Ki(x,t) =x —t,

L X+t 1
Kz(x,t)zf (x—8)(s—t)ds=————xt — =,

o 2 3
Ky t)_fl( )(s+t . 1>d _x—t
3(x,t) = i xX—S 5 s 3 s = 7

1 (! 1 1 /x+t 1
Ky(x,t) = —— — —t)ds = ——K,(x,t :——( - t——),
(0 =35 [ =9 (- 0ds =~ ka0 =~ 55 (x5
Ko £) = 111( )(s+t . 1>d 3 11{( t)_x—t
sOE =T ) TV T T ) e T T T e

1 (! K(x,t) 1 /x+t 1
K6(x't)_ﬁ,fo (X—S)(S—t)dS—T—ﬁ( > —Xt—g).
From this it follows that iterated kernels are of the form:

(1) forn=2k -1
GOR
KZk—l(x:t):W (x—10)

(2) forn = 2k

where k = 1,2,3, ...
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10.4.2 Find the iterated kernels K; (x, t) and K, (x, t) if
K(x,t) = eminx 8 g =0 p=1.

Solution. By definition we have
. X, if0<x<t,
mm(x't)_{t, ift<x<1

and for this reason, the given kernel may be written as
e”, if0<x<t,
K(x,t) = { .
et, ift<x<1

This kernel, as may easily be verified, is symmetric, i.e.,
K(x,t) = K(t,x)

We have K, (x,t) = K(x,t). We find the second iterated kernel

1 1

K,(x,t) = fK(x, S)K,(s,t)ds = fK(x, S)K(s,t)ds

0 0

Here
e*, if 0 <x<s,
K(x's)_{eS, ifs<x<1
eS, if0<s<t,

K(s,) ={ef, ift<s<i1

Since the given kernel K (x, t) is symmetric, it is sufficient to find K, (x, t) only for

x > t.
b & + i J
a 5 t - !
L } & ! —
a t s by o !
k } } *—|
a t I s 7
Fig. 2

From Fig 2, we have to find K, (x, t) as follows:

X X

fK(x, s)K (s, t)ds = fesetds = g¥tt — g2t

t t
t X 1

K, (x,t) :fK(x,s)K(s, t)ds +fK(x,s)K(s, t)ds+fK(x,s)K(s, t)ds.

0 t X
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In the interval (0,t) we have s < t < x, and therefore

t t t

fK(x,s)K(s, t)ds = fesesds = fezsds =

0 0 0

et —1
2

In the interval (¢, x) we have t < s < x, and therefore
X X
fK(x, S)K(s, t)ds = f eSelds = e*tt — g2t
t t
In the interval (x, 1) we have s > x > t, and therefore
1 1
fK(x, S)K(s,t)ds = fe"etds = (1 —x)e*tt
X X

Adding the integrals thus found, we obtain

1+ e?t
2

K,(x,t) = (2 —x)e*tt — (x >1t)

We will find the expression for K, (x, t) for x < t if we interchange the arguments x and 7 in

the expression K, (x, t) for x > t:

2t

K,(x,t) = (2 —x)e*tt — (x<t)
Therefore, the second iterated kernel is of the form
1+ e?*
((2 —t)eXtt — R if0<x<t,
K,(x,t) =
2(%, 1) 1+ e _
(2 — x)e**t — > ift<x<1.

10.4.2.1 Note: If the kernel K (x, t), which is specified in the square

a<x< b, a<t< b by various analytic expressions, is not symmetric, then one should

consider the case x < t separately.

&sxt ?

N T
N
e
o~
ol

2
8+
&
u:
L O

Fig. 3
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From Fig. 3 we can observe the case x < t and we can compute K, (x, t) as

b x

K, (x,t) =fK(x,s)K(s,t)ds:J+f+f.
a x t

a

10.4.3 Example: Find the iterated kernels K; (x,t) and K,(x,t) when a =0, b = 1 and

_(x+t, if0<x<t,
K(x’t)_{x—t, ift<x<1

Solution. We have K, (x,t) = K(x,t),
1

K,(x,t) = JK(x, $)K(s,t)ds,

0

_(x+s,if0<x<s, _(s+t if0<s<t,
K(x’s)_{x—s, if s<x<1, K(S’t)_{s—t, ift<s<l.

Since the given kernel K (x, t) is not symmetric, we consider two cases separately when
finding K, (x,t): (1) x < tand (2) x > t.
(1) For first case: Let x < t. Then from Fig. 3
KO0t =L+1+1;

Where,
x 3 2
X x“t
L= |- t)ds = —+ —,
1 J(x s)(s + t)ds 6+2
0
t
; _f( L9+ 0d _51:3 5x3+3xt2 3x2t
2= JH TS THES =TT T T 2
X
1
1—f(+)( Dds == 4 XLyl
3= (x+5s)(s 5—6 > X > 313
t

Adding these integrals, we obtain
x—t

1
> +§ (x <t).

2
K,(x,t) = t3 —§x3 — X%t + 2xt? — xt +

(2) For first case: Let x > t, from Fig. 2

Kz(x, t) = 11 + 12 + 13.
Where
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3xt? 5t
2 6’

t
I, = J(x—s)(s+t)ds =
0

X

I_J( ) — O)d _x3 t3 x2t+xt2
2= XTSI ST "6 2 "2
t

1

I—J(+)( Dds = — 23Xt X £t
3= | (x+5s)(s s=-— > > Xt + 3.

X
Adding these integlals, we obtain
x—t

1
5 +§ (x > t).

2
K,(x,t) = —§x3 —t3 +x%t + 2xt? — xt +

Therefore, the second iterated kernel is of the form

2 3 ) ) x—t 1 |
—=x° 4+t —x°t + 2xt —xt+T+§ if0<x<t),

K ) =4 3

3 3 2 2 x—t 1 .
—§x —t° 4+ x“t+ 2xt —xt+T+§, ift<x<l1.

The other iterated kernels K,,(x,t) (n = 3,4, ...) are found in similar fashion.

10.4.4 Example: Find the iterated kernels for the kernel K (x, t) = xe®;
wherea =0, b = 1.
Solution. By using formulas (10.3), we find iterated kernels as

K (x,t) = xet,

1

K,(x,t) = f (xe®) (set)ds = xet,
0
1

K;(x,t) = f (xed) (se)ds = xet,
0

1

K,(x,t) = f (xed) (set)ds = xet,
0
1

Ks(x,t) = f (xe®) (seb)ds = xet,
0

From this it follows that iterated kernels are of the form:

1
K,(x,t) = f (xed) (set)ds = xet,
0

wheren = 1,2,3, ...
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10.4.5 We now present an example of how to construct the resolvent kernel of an integral

equation using iterated kernels. Consider the following integral equation:

1
o (x) —Afxup(t)dt = f(x) (10.11
0

Here K(x,t) = xt; a =0, b = 1. We iteratively find
K;(x,t) = xt,

1
K, (e, t) = f (x2)(28)dz = %t
0

1 7 xt
K;(x,t) = §f(xz)(zt)dz =32
0

xt

K,(x,t) = F'

According to formula (10.5)
R(x, t; ) = il{ HA = ti (/1)71_1 _
X, L, - . n(x') =X 3 _B_A

n=

n=1

where [1] < 3.

By applying the formula (10.7) the solution of the integral equation (10.11) will be written as

g 3xt
06 = )+ [ 5 f (e
0

In particular, for f(x) = x we get

px) = % where A1 # 3.

10.4.6 Example: Construct resolvent kernels for the kernel K(x,t) = e**t for a = 0 and
b=1.
Solution. We have K (x,t) = e**t; a = 0, b = 1. We iteratively find
Ki(x,t) = e*™,

e? -1
2 )

1
Kz(x, t) = f(ex+2)(ez+t)dz = X+t
0
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1
e? -1 e? —1)?
Ks(x,t) :f( > ex+z> (eZH)dZ:( = ) pXtt

0

2 -1
(e —1" x+t

Kn(x' t) = 2n_1 )

According to formula (10.5)

- e2—1 \"" 2extt
. = n-1 _ ox+t =
R(x,t; 2) ElKn(x, A e E ( > /1> 2= (=D
n=

n=1

8

2
. . e2-1
This series converges when |TA| <1,

2
e2—-1"

ie., |1 <

10.4.7 Constructing Resolvent Kernels for Two Orthogonal Kernels

We now construct the resolvent kernels to the orthogonal kernels as follows:

If M(x,t) and N(x,t) are two orthogonal kernels, then the resolvent kernel R (x,t; 1)
corresponding to the kernel K(x,t) = M + N, is equal to the sum of the resolvent kernels
R;(x,t; 1) and R,(x, t; A) which correspond to each of these kernels. Consider the following

example:

10.4.7.1 Example: Find the resolvent kernel for the kernel K (x, t) = xt + x%t?, a = —1,
b=1.

Solution. As was shown above, the kernels M(x, t) = xt and N(x,t) = x*t? are orthogonal
on [-1, 1]. For this reason, the resolvent kernel of the kernel K (x, t) is equal to the sum of the
resolvent kernels of the kernels M (x, t) and N(x, t). Utilizing the results of problems 4 and 5

(in Exercise (10b)), we obtain

3xt N 5x2%t?
—21 5-24

3
where 1] < >

10.4.7.2 Notes:

1. Even though we can construct resolvent kernels for pairwise orthogonal as follows:
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If the kernels M@ (x, t), M@ (x, t),..., M™ (x,t) are pairwise orthogonal, then the

resolvent kernel corresponding to their sum,
n
K@D = ) M™ (0
m=1

is equal to the sum of the resolvent kernels corresponding to each of the terms.

2. Let us use the term “nt" trace’” of the kernel K (x, t) for the quantity
b
An = fKn(x,x)dx, (n: 1,2,) (1012)

a

Where K, (x, x) is the n*" iterated kernel for the kernel K (x, t).

3. The following formula holds for the Fredholm determinant D (4):

D) O,
1)(/1)__;‘4"’1 ' (10.13)

The radius of convergence of the power series (10.13) is equal to the smallest of the moduli
of the characteristic numbers.

10.5 SUMMARY:

This lesson introduces iterated kernels as a fundamental tool for solving Fredholm integral
equations of the second kind. It describes how these kernels are systematically constructed
from the original kernel and how they contribute to the Neumann series representation of the
resolvent kernel. Conditions for convergence of the series are discussed, and several
illustrative examples are presented. The role of kernel symmetry and orthogonality in
simplifying computation is also explored.

10.6 TECHNICAL TERMS:

e Iterated Kernel: Functions generated recursively from an initial kernel, used in
constructing the resolvent kernel.

o Resolvent Kernel: A kernel expressed as a series involving iterated kernels, which is
used to find the solution of a Fredholm equation.

e Neumann Series: An infinite series used to represent the resolvent kernel; its
convergence is essential for the validity of the solution.

e Orthogonal Kernels: Kernels whose mixed integrals vanish, simplifying the
computation of the resolvent kernel.

10.7 SELF-ASSESSMENT QUESTIONS:

Exercise (10a): Find the iterated kernels of the following kernels for specified a and b.

1. K(x,t)=x—t; a=-1, b=1.
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2. K(x,t):sin(x—t);a=0,bzg(n:2,3).
3. K(x,t) =(x—t)>a=-1, b=1(n=2,3).
4. K(x,t) =x+sint; a=-m, b=m.
5. K(x,t) =e*cost; a=0, b=m.

In the following problems, find K, (x, t):
6. K(x,t) =e*th a=0, b=1.
7. K(x,t) =el*t; g =—1, b =1.

Exercise (10b): Construct resolvent kernels for the following kernels:

1. K(x,t) = sinx cost; a=0, b=§.

2. K(x,t) = xet; a=-1 b=1.
3. K(x,t) =1 +x)(1 —1t); a=-1, b=0.
4. K(x,t) = x?t?; a=-1, b=1.
5. K(x,t) = xt; a=-1, b=1.

Exercise (10c): Find resolvent kernels for the following kernels:
1. K(x,t) =sinxcost + cos2xsin2t; a =0, b = 2m.

2. K(x,t) =1+ (2x—-1)(2t—-1); a=0, b =1.

Exercise (10d):
1. Show that for the Volterra equation

o(0) — f K(x, 9(0)dt = f(x)
0

the Fredholm determinant D (1) = e 414 and, consequently, the resolvent kernel for the
Volterra equation is an entire analytic function of A.
2. Let R(x,t; A) be the resolvent kernel for some kernel K (x, t).

Show that the resolvent kernel of the equation
b

o) — 1 f R t; Do@®)dt = f(x)

a
isequal to R(x,t; 1+ )
3. Let

b b
f f K? (x,t)dxdt = B?
a a
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b b
f f K2 (x,t)dxdt = B2
a a

Where K, (x, t) is the n*"iterated kernel for the kernel K (x, t). Prove that if B, = B2, then for

any n we will have B, = B™.

SELF-ASSESSMENT ANSWERS:

Exercise (10a)

L Ka(e ) = (-2 @ -0,

n-—1

Ky (x,8) = 2(—1)" (g) (xt + %)(n —123,..).

sin(x+t)
2

2. K,(x,t) = — % cos(x — t),

16
_ 2 2 2,2 4 2
3. Kz(x,t)—g(x+t) + 2x°t +oxt+,

K3(x,t) =

sin(x —t.)

56 8 32 8
Ki(x,t) = E(x2 +t2) +§x2t2 - Fxt + R

4, Kyp_q1(x,t) = 2m)?"2(x + sint)
Kn(x,t) = 2n)?" " 1(1 + xsint),(n = 1,2, ...)

e™+1
2

5. K,(x,t) = (—1)"‘1( )n_l e*cost

ex+t+e2—x—t

6. K,(x,t) 2

ex+t+ez—x—t

+(t—x—-1et¥0<x<t
- +x—t—1De*tt<x<1
e2+1 t—x

7. Ky(x,£){ 2
eTHe”x,OSxS1

,—1<x<0

Exercise (10b):

2sinx cost

I. R(x, ;1) = 1 Al <2
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2 Rt ) =2 ;1<
3. R(xt;2) =220 5 < 2
4 R =21 1<
5. R(x,t; 1) = 33_’“23; 12| <§

Exercise (10c¢):

1. R(x,t; 1) = sinx cost + cos 2x sin 2t

3(2x—-1)(2t—1)

2. R t1) = +>——=

1Al <1

10.8 SUGGESTED READINGS:
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F. G. Tricomi, Integral Equations, Dover Publications, 1985. ISBN-978-0486648286.
Rainer Kress, Linear Integral Equations, Springer, 2014 (Third Edition). ISBN-978-
1447171474.

I. G. Petrovsky, Lectures on Partial Differential Equations, Dover Publications, 2012.
ISBN-978-0486659640.

M. A. Krasnoselskii, Integral Equations of the First Kind: Invariant Imbedding Method
and Applications, CRC Press, 1994. ISBN-978-2884490651.

- Prof. P. Vijaya Laxmi



LESSON- 11

INTEGRAL EQUATIONS WITH DEGENERATE

KERNELS

OBJECTIVE:

To understand the fundamental concepts of degenerate kernels.

To use degenerate kernels to simplify integral equation making it easier to analyse and
solve.

To provide several examples to understand the solving of integral equations in different
ways

STRUCTURE:

11.1
11.2
11.3
11.4
11.5
11.6
11.7
11.8

11.1

11.2

11.2

1.e.,

Introduction

Formation of Integral Equations with Degenerate Kernels
Hammerstein-Type Equation

Examples

Summary

Technical Terms

Self-Assessment Questions

Suggested Readings

INTRODUCTION:

Integral equations with degenerate kernels are a specific type where the kernel function
simplifies to a form that allows the integral equation to be reduced to a finite system of
linear equations. This reduction is possible because the kernel can be written as a finite
sum of products of functions, each depending on only one variable. Such kernels make
the analysis and solution of the equation more tractable and are often used to
approximate more complicated kernels in both theoretical and practical problems.

FORMATION OF INTEGRAL EQUATIONS WITH DEGENERATE
KERNELS:

We define degenerate kernels and formulate the integral equation using degenerate
kernels.

.1 Definition: The kernel K (x, t) of a Fredholm integral equation of the second kind is
called degenerate if it is the sum of a finite number of products of functions of x
alone by functions of 7 alone;

if it is of the form

n

K(x,t) = z a4, )by (1), L1

k=1
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We shall consider the functions a(x) and b, (t) (k =1,2,..,n) continuous in the basic

square a < x,t < b and linearly independent.

11.2.2 Note:

e The integral equation with degenerate kernel (11.1)

brn
0t -4 [ [Z 0, (b (D) | @(O)dt = f(x) 112)
a k=1
is solved in the following manner:
Rewrite (11.2) as
n b
o) = () +1 ) @) [ b@p@de (113)
k=1 a
and introduce the notation
b
a
Then (11.3) becomes
n
00 = F)+1 ) @) (113)
k=1

where C), are unknown constants, since the function ¢ (x) is unknown.
Thus, the solution of an integral equation with degenerate kernel reduces to finding the
constants C;, (k =1, 2, ...,n). Putting the expression (11.5) into the integral equation (11.2),

we get

Zn: Cm—fbm(t)

m=1

f)+21) Ca (t)] dt pa,(x) =0
kz:l KAk

Whence it follows, by virtue of the linear independence of the functions

an(x) (m=1,2,...,n) that

b
Cm —me(t)

f&)+21 ) Cra (t)]dt=0
kz=1 k“k

or
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n b b
Co =2 C | @b, (Ddt = [ b, (OF (Ot (m=1,2,..,n)
S

For the sake of brevity, we introduce the notations
b b

Qo = f by (D)t fr = f b (®f (Ddt

a

and find that

n
c, —AZ @emCi = fr (M =1,2,..,m)
k=1

or, in expanded form,

(1 —2a11)C; — a5, — -+ — Ay, Gy = f,
—Aaz:C1 + (1 = 2a2)C — -+ = Aagn Gy = f (11.6

—Aan,1C; — Ay Cy — -+ (1 = Aapn)Cr = fr
For finding the unknowns C;, we have a linear system of n algebraic equations in »

unknowns. The determinant of this system is

1-— Aall 00— /16112 00— Aaln
Ay = [0 A 1A 0= A, i
0—Aa,; 0—Aa,, - 1-2Aa,, '

If A(1) # 0 then the system (11.6) has a unique solution C;, C5, ..., C,, which is obtained from

Cramer's formulas

j1—Aay; - —Adp-1fi — Ak 0 0= Aduqj
C, = 1 [0-2az; - —Aazk_1f; — Aazpsr - 0—Aay,
A T o 0—2Aaz, (11.8)
0- Aanl _Aank—lfn - Aank+ e 1= Aann

where (k = 1,2, ...,n)
The solution of the integral equation (11.2) is the function ¢(x) defined by the equality

00 = () +2 ) Cay(x)
k=1

where the coefficients C, (k = 1, 2, ..., n) are determine from formulas (11.8).
e The system (11.6) may be obtained if both sides of (11.5) are consecutively multiplied
by a;(x), a,(x),...,a,(x) and integrated from a to b or if we put (11.5) into (11.4)
for ¢ (x), replacing x by .
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11.2.3 Example: Solve the integral equation

s
px)—2 f(xcos t+t?sinx + cosx sint )p(t)dt = x (11.9)
-

Solution. Write the equation in the following form:

T Y Vs
p(x) = Ax J(p(t)cos tdt + Asinx ftzw(t)dt + Acosx J(p(t) sintdt +x
-1 -1 -1

We introduce the notations

3 Y Y
C, = f(p(t) costdt; C, = ftzfp(t)dt; C; = fgo(t) sintdt (11.10)
- - -

where C; C,, C3 are unknown constants. Then equation (11.9) assumes the form

@(x) = C1Ax + CyAsinx + C3Acosx + x (11.11)

Substituting expression (11.11) into (11.10), we get

s

C, = f(Cl/lt + C,Asint +C3Acost + t) cost dt,

—T1T

s
C, = f(Cl/lt + C,Asint + C3Acost + t)t2dt,

-1

Vs
Cs = J(Clxlt + C,Asint + C3Acost + t)sint dt
-
or

s s

Vs Y
ci|1-2 f tcostdt | —C,A | sintcostdt — C34 f cos?tdt = J tcos tdt
—T1T -1 —T1T —T1T

s s

Y Y
—Cllljt3dt+cz 1—Ajtzsintdt —C3/1ft2costdt= ft3dt,

- -7 - -
Vs Y Y s

- ftsintdt — CA fsinztdt +C3|1—-2 fcos tsint dt | = ftsint dt
- -1 -7 -

By evaluating the integrals that enter into this system we obtain a system of algebraic

equations for finding the unknowns Cy, C;, Cs:
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C;,— AnC3 =0
CZ + 4‘AT[C3 = 0
—2ATC, — ACy + C3 = 27 (11.12)
The determinant of this system is
1 0 —An
AN =] 0 1 4am|=1+422%12%0
—2Ar —Am 1
The system (11.12) has a unique solution
2m2A 8m2a 2m

= (C, = — ; C3 =
YT 14222027 2T 14 24%m2° 0T 1+ 222n2
Substituting the values of C;, C,, C; thus found into (11.11), we obtain the solution of the

given integral equation

2mA

152022 (mAx — 4mAsinx + cos x) + x.

p(x) =

11.3 HAMMERSTEIN-TYPE EQUATION:

The canonical form of the Hammerstein-type equation is
b

mw=fK@ﬂf@¢@Mt (11.13)

a

where K (x, t), f(t,u) are given functions and ¢ (x) is the unknown function.

The following equations readily reduce to equations of type (11.13):
b

p(x) = JK(x. t) f(t, 0(®))dt + Pp(x) (11.14)

a
where P (x) is the known function, so that the difference between homogeneous and
nonhomogeneous equations, which is important in the linear case, is almost of no importance

in the nonlinear case. We shall call the function K (x, t) the kernel of equation (11.13).

11.3.1 Note: Let K(x, t) be a degenerate kernel, i. e.,

m
K@) = ) a(ob(®)
i=1 (11.1:
Then equation (11.13) takes the form
m b

() = Y @@ [ biOf o)t

£ (11.1¢
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Put

b
C; = fbi(t)f(t,q)(t))dt i=1,2,..,m) (11.17)
a
where the C; are as yet unknown constants. Then, by virtue of (11.16), we will have
m
@(x) =ZCiai(x) (11.18)
i=1

Substituting into (11.17) the expression (11.18) for ¢(x), we get m equations (generally,

transcendental) containing m unknown quantities Cy, Cs, ..., Cp,:

C; =1;(C1,Cp ., Cy) (i =1,2,...,m) (11.19)

When f(t,u) is a polynomial in u,
f@tw) =po() + pr(Du+ -+ pr (U™ (11.20)

where py(t), p1(t), ..., po(t) are, for instance, continuous functions of 7 on the interval [a, b],
the system (11.19) is transformed into a system of algebraic equations in Cy, Cy, ..., Cp. If
there exists a solution of the system (11.19), that is, if there exist m numbers

cP,c,...ch
such that their substitution into (11.19) reduces the equations to identities, then there exists a

solution of the integral equation (11.16) defined by the equality (11.18):

00 = ) Clay(x)
i=1

It is obvious that the number of solutions (generally, complex) of the integral equation

(11.16) is equal to the number of solutions -of the system (11.19).

11.3.2 Solve the integral equation

1
o(x) = Afxupz(t)dt (11.2]
0
where A is a parameter.
Solution. Put
1
C =ftq)2(t)dt (11.22
0

Then
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p(x) = CAx (11.2:

Substituting ¢ (x) in the form (11.23) into the relation (11.22), we get
1

C =ft/12C2t2dt

Whence
/12
C=—C2 (11.2¢
4
Equation (11.24) has two solutions
4
C1 = 0, CZ = ﬁ

Consequently, integral equation (11.21) also has two solutions for any 4 # 0:

4
P1(x) =0, (%) = 7%

There exist simple nonlinear integral equations which do not have real solutions at all.

Consider, for example, the equation

1
p(x) = %f exTH (14 ¢2(t))dt

5 (11.25)
Put
1
117t 5
0
Then
o(x) = Ce? (11.27)

For a determination of the constant C, we obtain the equation

3 1
(e7—1)02—3c+3(e7—1>=0
(11.28)

It is easy to verify that equation (11.28) does not have real roots and, hence, the integral
equation (11.25) has no real solutions.
On the other hand, let us consider the equation

1

p(x) = OJ a(x)a(t)e(t)sin (%) dt (11.29)

(a(t) > 0 forall t € [0,1])
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In order to determine the constant C, we arrive at the equation
1
1= J a?(t)dt.sinC

) (11.30)

If
1
f a(t)dt > 1,
0

then equation (11.30) and, hence, the original integral equation (11.29) as well, has an infinite

number of real solutions.

11.4 EXAMPLES:

We can explore several illustrative examples that demonstrate the methods and solution
strategies in detail. These examples provide deeper insight into solving integral equations,
especially those involving degenerate kernels and nonlinear terms.

11.4.1 Solve the given integral equation with degenerate kernels

s

2
(x)—4fsin2xq)(t) dt=2x—m (11.31)
0

Solution. Write the equation in the following form:

T

2

@(x) = 4 sin? xf pt)dt+2x—m
0
Where

Ci= | p®)dt (11.32)

R

where C; is unknown constants. Then equation (11.31) assumes the form

p(x) =4sin’?xC,+2x—m (11.33)

Substituting expression (11.33) into (11.32), we get

T

2
C, = f(%l sin®t + 2t —m) dt
0
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C, (1 - 4fsin2 t dt) = ff(Zt —m)dt

2

—TT
C1(1 - T[) = T
Thus,
c= "
4(r—1) (11.34)

Substituting the value of C;, thus found into (11.33), we obtain the solution of the given

integral equation

2

T -
sin“x+2x —m
T—1

p(x) =

11.4.2 Solve the given integral equation with degenerate kernels

T

4
p(x) =2 Jtantq)(t) dt = cotx (11.35)
T

4

Solution. Write the equation in the following form:

Where
T
3
px) =21 f tan t ¢(t) dt + cotx
Vs
2
Take,

Ci= | tante(t)dt (11.3¢

|
AR Iy

where C; is unknown constants. Then equation (11.35) assumes the form

@(x) = AC; + cotx (11.37)

Substituting expression (11.37) into (11.36), we get

T

4

C; = ftan t (AC; + cott)

T

4
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T
3 \ n
4
Ci{1-1 ftant dt =fﬂtant cottdt

(o L)

)
Thus,

c T
T2 (11.38)

Substituting the value of C;, thus found into (11.37), we obtain the solution of the given

integral equation

i
@(x) = A=+ cotx.

2
11.4.3 Solve the integral equation
1
p(x) =2 f xt @3(t) dt (11.39)
0
Solution.
1
o =ft<p3(t)dt (11.40)
0
Then
@(x) = 2Cx (11.41)

Substituting ¢ (x) in the form (11.41) into the relation (11.40), we get
1
Cc =8c3 f tdt
0
Whence

8
C = £ c3 (11.42)
Equation (11.42) has two solutions

5
C,=0, Cpz=1=|=
1 2,3 - |8

Consequently, integral equation (11.39) also has two solutions for any

5
p1(x) =0, @23(x) = i\/;x
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11.4.4 Solve the integral equation

1
o(x) = J(l + @?(t) )dt (11.43)
0
Solution.
1
C = J(l + (pz(t) )dt (1144)
0
Then
px)=C
(11.45)

Substituting ¢ (x) in the form (11.45) into the relation (11.44), we get
1

C=J(1+ C2)dt
0
hence
C=1+cC? (11.46)

Which implies no real solutions.
11.5 SUMMARY:

Integral equations with degenerate kernels are a special class of integral equations where the
kernel can be expressed as a finite sum of separable functions. This simplification allows the
integral equation to be reduced to a system of linear equations, making it much easier to solve
analytically or numerically. These equations often arise in physics and engineering problems,
particularly in systems with symmetric or structured interactions.

11.6 TECHNICAL TERMS:

Degenerate of the Kernel:

The kernel K(x,t) is called degenerate if it can be written as a finite sum of number of
products of functions of x alone by functions of t alone;

i.e., if it is of the form
a

K(x,t) = Z 4, )by (6)
k=1
Hammerstein-Type Equation:
A Hammerstein type equation is a kind of nonlinear integral equation that typically has the

form:
b

p(x) = J K(x,t) f(t, p(t)dt

a
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where K (x,t), f(t,u) are given functions and ¢ (x) is the unknown function.

11.7 SELF-ASSESSMENT QUESTIONS:

Exercise (11a): Solve the following integral equations with degenerate kernels:

1. o) — f_11 e3resinX i ($)dt = tan x.

2. p(x) — /1f01 cos(q Int) p(t)dt = 1.
3. o(x) — /1f01 arc cost (t)dt = ﬁ

4. 90 -1f) (n) p@dr =1 (p > -1).

5. o(x) — /1f01 (xInt—tinx)e(t)dt = g(l — 4x).

6. @(x) —Af(?sinxcostq)(t)dt = sinx.

7. o(x) — Afozn | — t|sinx @(t)dt = x.

8. o) — Afon sin(x — t) @(t)dt = cos x.

9. p(x)— fozn (sin x cos t — sin 2x cos 2t + sin 3x cos 3t) ¢(t)dt = cos x.

10.000) = 1, [ =532 = D] +3tGx? - D p(t)de = 1.

Exercise (11b): Solve the following integral equations:
1o = 1 (xt + x2t2) @ (D).
2. o(x) = folxztz(p3(t)dt.

1 t
3. QD(X) = f—lﬁdt'

4. Show that the integral equation
1

1
0() =5 [ aa®(1+9?®) dt

0
(a(x) > 0 for all x € [0,1])

has no real solutions if fol a?(x)dx > 1.

Self-Assessment Answers:
Exercise (11a)
1. ¢(x) =tanux.

1+q2
1+q2-1’

2. p(x) =
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98]

8.
9.

w22 1
px) =— s T = AF L
1
p(x) = 1-AT(p+1)’
22e+(Lta)n g
Pp(x) = ——z— +;(1 - 4x).

+—22
48

o) = %sinx, A+ 2.

@(x) = An3sinx + x.

(p(x) -2 (2 cosx+mAsin )

441272

¢(x) = mAsinx + cos x.

15 5
10. QD(X) = E(X + 1)2 +EI

Exercise (11b)

1.

2.
3.

7 15 5
01(x) =0, g,(x) = Exz. (P3,4(X) = i4—ﬁx +sz'

91(x) =0, ¢, 3(x) = +3x2
px) =0.

11.8 SUGGESTED READINGS:
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K. F. Riley, M. P. Hobson, and S. J. Bence, Mathematical Methods for Physics and
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F. G. Tricomi, Integral Equations, Dover Publications, 1985. ISBN-978-0486648286.
Rainer Kress, Linear Integral Equations, Springer, 2014 (Third Edition). ISBN-978-
1447171474.

I. G. Petrovsky, Lectures on Partial Differential Equations, Dover Publications, 2012.
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. M. A. Krasnoselskii, Integral Equations of the First Kind: Invariant Imbedding

Method and Applications, CRC Press, 1994. ISBN-978-2884490651.
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LESSON- 12
CHARACTERISTIC NUMBERS AND

EIGENFUNCTIONS OF FREDHOLM INTEGRAL
EQUATIONS

OBJECTIVE:

e To understand the concept of characteristic numbers and eigenfunctions for Fredholm
integral equations.

e To explore both degenerate and general kernel cases in finding eigenfunctions and
corresponding eigenvalues.

e To study properties of symmetric and skew-symmetric kernels and their implications on
solutions.

e To examine bifurcation points in nonlinear integral equations and their significance in

applications like stability analysis.
STRUCTURE:
12.1 Introduction
12.2 Fundamentals of Characteristic Numbers and Eigenfunctions
12.3 Fredholm Integral Equations with Difference Kernels
12.4 Extremal Properties of Characteristic Numbers and Eigenfunctions
12.5 Bifurcation Points
12.6 Summary:
12.7 Technical Terms:
12.8 Self-Assessment questions

12.9 Suggested Readings

12.1 INTRODUCTION:

In solving integral equations, the analysis of characteristic numbers and eigenfunctions
provides key insights into the solution structure. Such spectral properties inform us about the
solvability of homogeneous equations and the stability of physical systems modelled by such
equations. This lesson introduces methods for deriving these values and explores advanced
topics like bifurcation theory and kernel symmetry.

12.2 FUNDAMENTALS OF CHARACTERISTIC NUMBERS AND
EIGENFUNCTIONS:

We introduce the fundamental definitions of characteristic numbers, eigenfunctions, and the
index associated with integral equations. The characteristic numbers and their corresponding

eigenfunctions are then determined for specific types of integral equations.

Consider the homogeneous Fredholm integral equation of the second kind
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b
() — Af K(x,t)p(t)dt = 0 (12.1)

always has the obvious solution ¢ (x) = 0, which is called the zero (trivial) solution.

12.2.1 Definition:
The values of the parameter A for which the integral equation (12.1) admits nontrivial
solutions @(x) # 0 are called the characteristic numbers of the equation or of the
kernel K(x,t). Any such nonzero solution ¢(x) # 0 corresponding to a characteristic
number A is referred to as an eigenfunction.

e If the kernel K(x,t) is continuous in the square Q{a < x,t < b}, or is quadratically
summable in (), and the numbers a and b are finite, then for every characteristic
number A , there exists only a finite set of linearly independent eigenfunctions; the
number of such functions is called the index of the characteristic number. Different
characteristic numbers can have different indices.

12.2.2 Note:
e For an equation with degenerated kernel

brn
0@ -4 [ [Z ac (b (1)

p(t)dt =0 (12.2)

k=1

the characteristic numbers are roots of the algebraic equation

1-— Aall —/16112 —Aaln
-1 1-2 e —A
AQQ) = a21 ,.azz ..C.lzn =0 (12.3)
_Aanl —Aanz T 1 - Aann

the degree of which is p <n. Here, A(A) is the determinant of the linear
homogeneous system

(1—-2ay1)C —Aa,C, — -+ — 1a1,C, = 0
—/1(1216‘1 + (1 - /1(122)6‘2 — et AaZnCn =0
a6, — Aa,C, — -+ (1 — Aap,)C, =0
where the quantities a,,, and C,,, (k,m = 1,2,---,n) have the same meaning as
in the preceding section.

e If equation (12.3) has p roots 1 < p <n, then the integral equation (12.2) has p
characteristic numbers; to each characteristic number 4,, (m=1,2, ...,p) there
corresponds a nonzero solution

¢, cV,oocP oy,
¢, P P sy,

c?, ¢, .. P -2,
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of the system (12.4). The nonzero solutions of the integral equation (12.2) corresponding to
these solutions, i.e., the eigenfunctions, will be of the form

n
00 = Y Va0,
k=1

n n
00 = Y (P @), 0 = Y (Payx)
k=1 k=1

e An integral equation with degenerate kernel has at most n characteristic
numbers and (corresponding to them) eigenfunctions.

e In the case of an arbitrary (nondegenerate) kernel, the characteristic numbers
are zeros of the Fredholm determinant D(1), i.e., are poles of the resolvent
kernel R(x,t; A). It then follows, in particular, that the Volterra integral
equation

p(x) — AJ K(x,t)p(t)dt =0
0

where K (x,t) € L,(£,) has no characteristic numbers.

e Eigenfunctions are determined to within a multiplicative constant; that is, if ¢(x) is
an eigenfunction corresponding to some characteristic number A, then C¢(x), where
C is an arbitrary constant, is also an eigenfunction which corresponds to the same
characteristic number A.

12.2.3 Example: Find the characteristic numbers and eigenfunctions of the integral equation

s
p(x) — /1[ (cos? x cos 2t + cos 3x cos3t) p(t)dt = 0.
0

Solution. We have
T T

px) =21 coszxf @(t) cos 2t dt + Acos 3xf @ (t)cos3tdt

0 0
Introducing the notations
s Y
C, = J @(t) cos 2t dt, C, = f @ (t)cos3tdt (12.5)
0 0
we get
@ (x) = C;Acos*x + C,A cos 3x (12.6)

Substituting (12.6) into (12.5), we obtain a linear system of homogeneous equations:
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n 7 3 (12.7)
C, 1—/1fcosztcos 2t dt —Cz/lfcos3tc052tdt:0
0 0

~~

T T
—CMJ cos®tdt + C, 1—AJ cos3tcos3tdt | =0
0 0
But since

Vs T

T
J cos’t cos 2t dt = T f cos 3t cos2tdt = 0,
0 0

s s

T
f cos® tdt = O,I cos3t cos 3t dt = 3

0 0
it follows that system (12.7) takes the form

(-2)c =0

(1-5)c. -0
The equation for finding characteristic numbers will be

1/171 0
4

0

(12.8)

/17120

8
. 4 8
The characteristic numbers are A; = = A, = -~

For A = %, system (12.8) becomes

0.C, =0,
1
E.CZ =0

whence C, = 0, C; is arbitrary. The eigenfunction will be ¢, (x) = C;Acos?x or setting
C;A =1 we get ¢, (x) = cos?x.
For A = %, system (12.4) is of the form
(-1.¢, =0,
{ 0.C, =0

Whence C; = 0, C, is arbitrary and, hence, the eigenfunction will be ¢,(x) = C,A cos 3x, or
assuming C,A = 1, we get ¢,(x) = cos 3x.
Thus, the characteristic numbers are

A= é Ay = §

1= 77," 2 = 77,'.

and the corresponding eigenfunctions are
@1(x) = cos®x,  @,(x) = cos 3x.

12.2.4 Note: A homogeneous Fredholm integral equation may, generally, have no
characteristic numbers and eigenfunctions, or it may not have any real characteristic
numbers and eigenfunctions.

12.2.5 Example: The homogeneous integral equation
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1
p(x) — AJ(3x —2)tet)dt=0
0

has no characteristic numbers and eigenfunctions. Indeed, we have

1
p(x) =A3Bx—-2) J tp(t)dt
0

Putting

1

C =ft(p(t)dt (12.9)
0

we get

p(x) = CA(3x —2) (12.10)
Substituting (12.10) into (12.9), we get

1
1—Af(3t2—2t)dt =0 (12.11)
0

equation (12.11) yields C = 0 and, hence, ¢(x) = 0.

And so, for any A, this homogeneous equation has only one zero solution ¢(x) = 0 and,
hence, it does not have any characteristic numbers or eigenfunctions.

12.2.6 Example: The equation

1
o) =1 [ (Ve = VEx) o0t = 0
0

does not have real characteristic numbers and eigenfunctions.

We have
p(x) = C;Ax — CyAx (12.12)

where

1

1
C, =ftq)(t)dt, C, = fﬁ¢(t)dt (12.13)
0 0

Substituting (12.12) into (12.13), we get (after some simple manipulations) the system- of
algebraic equations
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22 A
(1__>C1+_C2 =0,

5 3
A 22 (12.14)
The determinant of this system is
1 22 A
-— = 2
— 5 3 _ A
A =1 1+2,1‘1+150
2 5

For real 4, it does not vanish, so that from (12.14) we get C; = 0 and C, = 0 and, hence, for
all real A the equation has only one solution, namely, the zero solution ¢(x) = 0. Thus,
equation (12.12) does not have real characteristic numbers or eigenfunctions.

12.2.7 Example: Find the characteristic numbers and eigenfunctions for the homogeneous
integral equations with degenerate kernels

i
o(x) — Af sin? x@(t)dt = 0 (12.15)
0

Solution. We can rewrite the equation (12.15) as
@(x) = Asin® x C (12.16)

where

(12.17)

C=\] e()dt

e —— a3

Substituting (12.16) into (12.17), we get

Vs

4
C=ACJ sin? t dt

0

Implies
T—2

C=AC

for a nontrivial solution (C # 0), we get
_ 8
=2

and corresponding eigenfunction is ¢ (x) = sin? x.

A

12.2.8 Note: If the n™" iterated kernel K, (x,t) of the kernel K(x,t) is symmetric, then it
may be asserted that K(x,t) has at least one characteristic number (real or complex)
and that the n™ degrees of all characteristic numbers are real numbers. In particular,
for the skew-symmetric kernel K(x,t) = —K(t, x) all characteristic numbers are pure
imaginary A = i, where [ is real

12.2.9 Definition: The kernel K (x, t) of the integral equation (12.1) is called symmetric if
the condition K (x,t) = K(t,x) (a < x,t < b) is satisfied.
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12.2.10 Theorems: The following theorems hold for the Fredholm integral equation (12.1)
with symmetric kernel K (x, t):

12.2.10.1 Theorem 1. Equation (12.1) has at least one real characteristic number.

12.2.10.2 Theorem 2. To every characteristic number A there corresponds a finite number g
of linearly independent eigenfunctions of equation (12.1), and

Sup q < A*B?

where,

b b
B? =ffK2(x,t)dxdt
a a

The number q is called the index or multiplicity of the characteristic number.

12.2.10.3 Theorem 3. Every pair of ecigenfunctions ¢,(x), ¢,(x) corresponding to
different characteristic numbers, A; # A,, is orthogonal; i.e.,
b

J%(x)wz(x)dx =0

a

12.2.10.4 Theorem: There is a finite number of characteristic numbers in every finite
interval of the 4 —axis. The upper bound for a number m of characteristic numbers
lying in an interval —I < A <l is defined by the inequality
m < [?B?

12.2.10.5 Note: When the kernel K(x,t) of the integral equation (12.1) is the Green's
function of some homogeneous Sturm-Liouville problem, finding the characteristic
numbers and eigenfunctions reduces to the solution of the indicated Sturm-Liouville
problem.

12.2.11 Example: Find the characteristic numbers and eigenfunctions of the homogeneous
equation

p(x) — /1[ K(x,t)p(t)dt =0
0
where,

cosxsint, ifo<x<t,
costsinx, ift<x<m

K(x,t) = {

Solution. Represent the equation in the form

p(x) = AJ K(x,t)p(t)dt + AJ K(x,t)p(t)dt
0 X

or
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X s

o) = Asinxjw(t) costdt +Acosxj o(t)sintdt (12.18)

X

0

Differentiating both sides of (12.18), we get
X

¢'(x) = Acos xj @(t) costdt + Asinx cosx @(x)

0
s

— Asinxf @(t) sintdt — Asinx cos x @(x)

X

or
X Vs
p'(x) = Acosxf @(t) costdt — Asinxf p(t) sintdt (12.19)
0 X
differentiating again, we get
X s

p"'(x) = —Asinxf @(t) costdt + Acos? x p(x) — Acosxf p(t)sintdt

X

0
+ Asin?x ¢(x)

X Y
@"'® =2p(x) - [Asinxf @(t) costdt + Acosxf o(t) sintdt]
0 x

The expression in the square brackets is equal to ¢(x) so that
@"(x) = Ap(x) — 9 (x)
From (12.18) and (12.19) we find that
p(m) =0, ¢'(0)=0

Thus, the given integral equation reduces to the following boundary-value problem:

p"(x)—(A—Depk) =0 (12.20)
@ =0, ¢'(0)=0 (12.21)
The three following cases are possible:

1. 1—1=0 ora=1. Equation (12.20) takes the form ¢"'(x) = 0. Its general solution will
be ¢(x) = C;x + C,. Utilizing the boundary conditions (12.21), we obtain the system

{C17T+ CZ = 0,
C1 =0

which has a unique solution: C; = 0, C, = 0, and hence the integral equation has only the
trivial solution

p(x) =0
2. A—=1>0 orA > 1. The general solution of equation (12.20) is of the form

@(x) = CycoshVvA — 1x + C,sinhVA — 1x
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whence
o'(x) = M(Clsinth + Czcoshmx)
For finding the values of C; and C,, the boundary conditions yield the system
{Cl coshiVA—1+ C,sinhnVi—1=0,
C,=0

The system has a unique solution: C; = 0,C, = 0 The integral equation has the trivial
solution @(x) = 0. Thus, for A > 1 the integral equation has no characteristic numbers and,
hence, no eigenfunctions.

3. 1—=1<0 orA < 1. The general solution of equation (12.20) is of the form

p(x) = CycosV1 — Ax + CysinV1 — Ax
whence
p'(x) = \/E(—Clsin\/Ex + CZCOS\/Hx)
In this case, for finding C,; and C, the boundary conditions (12.21) yield the system

CicosnVl—A+C,sinnVvl—21=0,
VT=7¢, =0 (12.22)

The determinant of this system is

Al = |cosn\/1 -1 sinnVl—/1|
0 vi—4

Setting it equal to zero, we get an equation for finding the characteristic numbers:

cosTV1l— 24 sinnVl—/1|:0
0 Vi1 (12.23)
or V1 —A4 cosmv1l—A1=0.Byassumption V1 — A # 0 and so cosmv1 — A = 0. Whence

we find that TVl — A = §+ nn, where n is any integer. All the roots of equation (12.23) are

given by the formula
132
Ap=1- (n + E)
For values 4 = 4,, the system (12.22) takes the form

{Cl.O:O,
Cz =0

It has an infinite number of nonzero solutions

{C1=C,
C2:0
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where C is an arbitrary constant. Hence, the original integral equation also has an infinity of
solutions of the form

1
@(x) = Ccos (n + E)x
which are eigenfunctions of this equation. Hence, the characteristic numbers and
eigenfunctions of the given integral equation will be
1) 1
Ap=1- <n+§) , op(x) = cos(n+§>x

where 7 is any integer.

12.2.12 Example: Find the characteristic numbers and eigenfunctions of the homogeneous
equation

1
o(x) — AJ K(x,t)p(t)dt =0
0

where,

t(x—1), t<x<l1.

K@0={

Solution. Represent the equation in the form

1

px) =21 lf t(x — De(t)dt + f x(t — De(t)dt
0

X

Differentiating on both sides we get

X 1
o'(x) = Af t (t)dt + Af(t — De(t)dt
0 x

Differentiating again, we get
0" @ = Axp(x) — 2(x — Do (x)
@"(x) — Ap(x) =0
Thus, the given integral equation reduces to the following boundary-value problem:
@"(x) = Ap(x) =0
p0)=0, @)=0
The three following cases are possible:

1. IfA=0, then @' (x) = 0.
Its general solution will be ¢@(x) = C; + C,x. Utilizing the boundary conditions we get
C, = 0,C, = 0, which is trivial (¢(x) = 0)

2. If A =k? The general solution is of the form
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o(x) = Cie** + Ce™*
Which is also trivial solution.
3. If 1 = —k?, the general solution is of the form
@(x) = C, coskx + C, sinkx
Hence by using boundary conditions we get,

{61:0,
C, # 0

It has an infinite number of nonzero solutions

{C1=0,
C2=C

where C is an arbitrary constant. Hence, the original integral equation also has an infinity of
solutions of the form

@(x) = Csin (nm) x

which are eigenfunctions of this equation. Hence, the characteristic numbers and
eigenfunctions of the given integral equation will be

2.2

Ay = —n?m?, @,(x) = sin (nm) x
where 7 is any integer.
12.3 FREDHOLM INTEGRAL EQUATIONS WITH DIFFERENCE KERNELS:
We define difference kernels and show that their characteristic numbers are the Fourier

coefficients of even kernels, with suitable examples.

Suppose we have the integral equation

px) =2 f K(x,0)p(t)de (12.24)

where the kernel K(x) (—m < x < m) is an even function which is periodically extended to
the entire x-axis so that

Kx—t)=K({t—x) (12.25)

It can be shown that the eigenfunctions of equation (12.24) are

oM (x) = cosnx (n=1,2, )}

0P (x) = sinnx (n=1,2,...). (12.26)
and the corresponding characteristic numbers are
h=— (@=12..) (12.27)
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where a,, are the Fourier coefficients of the function K (x):

T

1
tp = — J K(x)cosnxdx (n=1,2,..) (12.28)
-7
Thus, to every value of A, there correspond two linearly independent eigenfunctions cos nx,
sinnx so that each 4,, is a double characteristic number. The function ¢,(x) = 1 is also an
eigenfunction of equation (12.24) corresponding to the characteristic number

A

1
Ao=—— ay=— fK(x)dx
Tay T
-1

We shall now show that, for example, cos nx is an eigenfunction of the integral equation

T
-1

p(x) = 7;— K(x — t)p(t)dt (12.29)

Where

T
1
a, = JK(x) cosnx dx

-7

Making the substitution x — t = z, we find

Vs X—T1
fK(x—t)cosntdtz— f K(z)cosn(x —z)dz
-1 X+
xX+1 xX+T1
= cosnx f K(z) cosnz dz + sinnx f K(z)sinnz dz
X—T X—TC
= A, COSNx

since by virtue of the evenness of K(x) the second integral is zero, and the first integral is a
Fourier coefficient a,, multiplied by 7 in the expansion of the even function K (x).

Thus,
Vs
1
cosnx = — f K(x —t) cosntdt
Tay,
-

and this means that cos nx is an eigenfunction of equation (12.29).

Similarly, we establish the fact that sin nx is an eigenfunction of the integral equation (12.29)
corresponding to the same characteristic number %

an

12.3.1 Find the eigenfunction and the corresponding characteristic numbers of the equation
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o) =1 costx =0 p)
Solution. o
where the kernel K (x, t) = cos?(x — t) is an even function i. e.,
cos?(x — t) = cos?(t — x)

Implies K(x,t) = % + %cos( 2(x —t)). The function @y(x) = 1 is also an eigenfunction of

the given integral equation corresponding to the characteristic number 4, = %,

where,
T

ao =% -[K(x)dx

-7t
Y

1 1 1
a0=—f<§+§cos(2x))dx=1
—T1T

and the corresponding characteristic numbers are

1
L= @m=12.)

where a,, are the Fourier coefficients of the function K (x):

a1:a3:a5:---:0’

_1[(1_}_1 5 ) 2% d 1
az—n > 2cos( X) cosxx—2
-7

It can be shown that the eigenfunctions of given integral equation are

po(x) = 1; (pl(l)(x) = cos 2x, (piz)(x) = sin 2x.

12.4 EXTREMAL PROPERTIES OF CHARACTERISTIC NUMBERS AND
EIGENFUNCTIONS:

We define the concept of the maximum value of a double integral equation and provide
examples to demonstrate the process of determining this maximum

Consider the double integral (Hilbert’s integral) equation

b b
Ko, p| = ffK(x,t)¢(x)¢(t)dxdt (12.30)

where K (x,t) = K(t,x) is a symmetric kernel of some integral equation, on the set of
normalized functions ¢ (x), i.e.,

b
(p, ) = f<p2(x)dx =1

has a maximum equal to
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1
Ko, @] = —
max|Ke, ¢l = - (12.31)

where 4, is the least (in absolute value) characteristic number of the kernel K (x, t). The
maximum is attained for ¢ (x) = ¢;(x), which is the eigenfunction of the kernel
corresponding to A;.

12.4.1 Example: Find the maximum of

Ko, p| =

ffK(x,t)q)(x)(p(t)dxdt
0 0

provided

T

(p, ) = f P*(x)dx =1

0
If

K(x,t) = cosxcos 2t + cost cos2x + 1.
Solution. Solving the homogeneous integral equation

T
px) = Af(cosx cos 2t + cost cos 2x + 1) p(t)dt
0

. . . . 1
as an equation with a degenerate kernel, we find the characteristic umbers 4, = - and

Aydy =+ % and the corresponding eigenfunctions ¢, (x) = Cy, ¢, (x) = C,(cos x + cos 2x),

@3(x) = C3(cos x — cos 2x), where C;, C, and C5 are arbitrary constants.

The smallest (in absolute value) characteristic number is 4; = %, to which corresponds the
eigenfunction ¢;(x) = C;. From the normalization condition (¢,¢) =1, we find C; =

1
+ N Hence

max

mT T
f f(cosxcos 2t + costcos2x + 1) (t)dt| = 2n
0 0

.. . . 1
and it is attained on the functions ¢(x) = + =

12.4.2 Find the maximum of

1 1
e f f K (x, )9 () () dxdt
00

provided
1

(0, 0) = j P (D) dx = 1

0
if
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K(x,t) = xt.
Solution. Solving the homogeneous integral equation
1

o(0) = j D) ()dt
0

It can be rewritten as
p(x) = AxC

Where
1

C = f t p(t)dt
° 1
as an equation with a degenerate kernel, we find the characteristic umbers 4 = 3 and the

corresponding eigenfunctions ¢ (x) = EC .
The characteristic number is 1 = é, to which corresponds the eigenfunction ¢(x) = C. From

the normalization condition (¢, @) = 1, we find C = +3+/3. Hence
11
3
max Jj(xt)q)(t)dt =2
00

and it is attained on the functions ¢(x) = +v3x.

12.5 BIFURCATION POINTS:

Suppose we have a nonlinear integral equation

b
px) = Af K(x,t, p(t))dt (12.32)

Let ¢(x) = 0 be a solution of the equation, and
K(x,t,0) =0

By analogy with linear integral equations, the nonzero solutions ¢@(x) =0 of equation
(12.32) are called eigenfunctions and the corresponding values of the parameter A are called
characteristic numbers of the equation.

12.5.1 Definition: The number A, is called a bifurcation point of the nonlinear equation
(12.32) if for any € > 0 there is a characteristic number A of equation (12.32) such
that |1 — Ay| < €, and to this characteristic number there corresponds at least one
eigenfunction @(x) (¢ (x) # 0) with norm less than €: ||@]| < e.

12.5.2 Note: In problems of technology and physics involving conditions of stability,
bifurcation points determine critical forces. Thus, the problem of the. bending of a
rectilinear rod of unit length and variable rigidity p(x) under the action of a force P
leads to the solution of the following nonlinear integral equation:
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1 2

1
0(0) = Pp(x) f Kz, (0 |1 - f Ki(x, Oe@)dt| dt
0 0

(12.32)

where ¢(x) is the unknown function. For small P, equation (12.32) has a unique zero solution
in the space C [0,1]. This means that for small P the rod does not bend. However, a
deflection occurs for forces greater than the so-called critical force of Euler. Euler's critical
force is the bifurcation value.

12.5.3 Example: To illustrate how to find bifurcation points, let us consider the following
nonlinear equation

1
0(0) = f (D) + 9*(D]dt (1233)
0

Put

C= f [o() + *(®©)]dt
0

Then
px) =CA (12.34)

and equation (12.33) reduces to the algebraic equation

C =AC + A3¢3 (12.35)
From (12.35) we get
1-2
C,=0,C3=1= 13
whence, by (12.34),
_ B 1-2
P1=0U, @3 == 1

Thus, for any 0 < A < 1, equation (12.33) admits real nonzero solutions. For 4 =1 it has
only the zero solution ¢ = 0

Thus, for any 0 < &€ <1, the number A =1—¢ is a characteristic number of equation
(12.33) to which there correspond two eigenfunctions:

_ Ve _ Ve
Lt LR

where ¢ = 1 — 1 Hence, the point A; = 1 is a bifurcation point of equation (12.33). One can
also speak of bifurcation points of nonzero solutions of nonlinear integral equations.

12.5.4 Example: Find bifurcation points of the zero solution of the integral equation

1
p(x) = Afxt [p(t) + @3(t)]dt (12.36)
0

Put
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1

¢= f tlo®) + 9*(©)]dt

0
Then

p(x) = AxC (12.37)

and equation (12.36) reduces to the algebraic equation

co 5AC + 323¢3 (12.38)
- 15
From (12.38) we get
€ =0,Cpy =+ |22
1 =003 =X 773
whence, by (12.37),
~ 0 _ . 15 —-54
P1 =V, @3 =T 31

Thus, for any 0 < A < 3, equation (12.36) admits real nonzero solutions. For 4 = 3 it has
only the zero solution ¢ = 0

Thus, for any 0 < € < 3, the number A =3 — ¢ is a characteristic number of equation
(12.36) to which there correspond two eigenfunctions:

LN TP L e

where ¢ = 3 — 1 Hence, the point A; = 3 is a bifurcation point of equation (12.36). One can
also speak of bifurcation points of nonzero solutions of nonlinear integral equations.

12.6 SUMMARY:

This lesson delves into the spectral theory of Fredholm integral equations, focusing on the
concepts of characteristic numbers and eigenfunctions. It covers both degenerate and non-
degenerate kernels, showing how these lead to systems of algebraic equations. It also presents
symmetric and skew-symmetric kernels and explores bifurcation theory, where small changes
in parameters cause the emergence of new solutions. Theoretical results and concrete
examples highlight the link between integral equations and physical phenomena like stability.

12.7 TECHNICAL TERMS:

e Characteristic Number: Also called eigenvalue; a value of 4 for which the Fredholm
equation has non-trivial solutions.
¢ Eigenfunction: A non-zero solution corresponding to a characteristic number.
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e Degenerate Kernel: A kernel that is a finite sum of separable functions, simplifying the
integral equation.

e Symmetric Kernel: A kernel K(x,t) = K(t,x); such kernels have real characteristic
numbers.

e Bifurcation Point: A critical value of a parameter where the number or type of solutions
to an equation changes.

12.8 SELF-ASSESSMENT QUESTIONS:

Exercise (12a): Find the characteristic numbers and eigenfunctions for the following
homogeneous integral equations with degenerate kernels:

1.
21
px) — /1[ sinxcost @(t)dt = 0.
0
2.
21
o(x) — Af sinxsint @(t)dt = 0.
0
3.
s
o) — AJ cos(x +t) o(t)dt = 0.
0
4,
1
o(x) — AJ(45x2 Int —9t? Inx) p(t)dt = 0.
0
5.
1
p(x) — Af(th —4x2) @(t)dt = 0.
0
6.
1
p(x)—2 J(Sxt3 + 4x?%t) p(t)dt = 0.
21
7.
1
px)—21 f(Sxt3 + 4x?%t + 3xt) @(t)dt = 0.
1
8.

1
px)—21 J(x cosht —t sinh x) @(t)dt = 0.

-1
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1
p(x) -2 f(x cosh t — t? sinh x) @(t)dt = 0.
21

10.
1
p(x)—2 f(x cosht —t cosh x) p(t)dt = 0.
-1

Exercise (12b): Find the characteristic numbers and eigenfunctions of the homogeneous
integral equations if their kernels are of the following form:

_(tlx+1), 0<x<t,
I K(x’t)_{x(t+1), t<x<l.
((x+D(-2), 0<x<t
2 K(x’t)_{(t+1)(x—2), t<x<1.
sinxcost, 0<x<t,
3. K(xt) = sintcosx, thS%.
sinxcost, 0<x<t,
4. K(x’t)_{sintcosx, t<x<m.
_(sinxsin(t—1), —m<x<t,
> K(x’t)_{sintsin(x—l), t<x<m.
sin(x+£)sin(t—£), 0<x<t,
4 4
6. K(x,t) = _ ~ -
sm(t+z)sm(x—z), t<x<m.
7. K(x,t) =e Pt 0<x<1, 0<t<1.
_(—e7tsinhx, 0<x<t,
8. Kbt = {—e‘x sinht, t<x<1.

9. Show that if A,,1,,4; # A, are characteristic numbers of the kernel K(x,t), then the

eigenfunctions of the equations
b

wm—afxmo¢@m=o

a

b

Y(x) — A, f K(x,t)e(t)dt =0
a
are orthogonal, i.e.,
b
[ ocowede =0
a
10. Show that if K(x,t) is a symmetric kernel, then the second iterated kernel K, (x,t)
has only positive characteristic numbers.
11. Show that if the kernel K (x, t) is skew-symmetric, that is, K(t,x) = —K(x, t) then all
its characteristic numbers are pure imaginaries.
12. If the kernel K (x, t) is symmetric, then
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A

o 1
2—:Am (m=23.)
n=1

Where A,, are characteristic numbers and A,,, are the m*™ traces of the kernel K (x, t).

Taking advantage of the results of Problems 3 an 7 find the sums of the series:

» 1
a) Zn=1F
- 1
b) Xn=1Gmye
) 1
C) anlm;

: 1
where p,, are the roots of the equation 2 cotp = pu — "

13. Find the eigenfunctions of the integral equations who resolvent kernels are defined by

the following formulas:
a) R(xt; 1) = 230 der-1@-)

A2—-42+3
. _ (15-6)xt+(15-10)x?%t?
b) R(x,t; 1) = e _
- _ _ - 2 -
¢) R(x,t; 1) = 4(5-22)[3-22+(3—-6M)xt]+5(44%2—82+3)(3x%-1)(3t?-1)

4(1-22)(3-22)(5-22)
Exercise (12¢):

1. Show that the symmetric kernel

1 1 —h?
K(x,t) =

- —n<xt<
21— 2hcos(x — t) + h? (r<x )

has for |h| < 1 the eigenfunctions 1, sin nx, cos nx, which correspond to the characteristic
1
numbers 1,hi

n’pn

2. Find the characteristic numbers and eigenfunctions of the integral equation

o(0) = j K(x — Do(t)dt

where K (x) = x?(—m < x < 1) is a periodic function with period 27.

Exercise (12d):
1. Find the maximum of

b b
ffK(x, t)p(x)@(t)dxdt

provided that
b

f(pz(x)dx =1
a
ifK(x,t) = xt + x%t?, —-1<x,t<1;
2. Find the maximum of
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b b
Jf]((x, o (x)p(t)dxdt

provided that

b

f(pz(x)dx =1
a
(x+1Dt, 0<x<t,

iFK G0 = {(t +1)x, t<x<l.

3. Find the bifurcation points of the zero solutions of the

integral equations:

1
o) =1 [ Gx =2t 00 + 9> ©)dt
0

Self-Assessment Answers:
Exercise (12a)

1. There are no real characteristic numbers and eigenfunctions
2. A = %,(pl(x) = sinx

3. A4 = —%,/12 = %, @1(x) =sinx, @,(x) = cosx
4. There are no real characteristic numbers and eigenfunctions
5. 4y =21, =-3, p(x) = x — 2x?
6 1

7

8

9.

5 10
A= 5"!’1(95) = 5x+?x2

1 3
=00 =2x +x?
A= —g,q)l(x) = sinh x
None
10. There are no real characteristic numbers and eigenfunctions

Exercise (12b)

1. g =1; ¢y =e*; A, = —n?n?; @,(x) = sinnmx + nw cosnmx
2
2. Ay =-— ”3—"; @, (x) = sinu, x + u, cos u, x, where p, are roots of the equation
1
——=2cot
H= u

3. 4,=4n*>-1; ¢,(x) =sin2nx (n=1,2,-)
z . 1
4. /1n = (n +%) - 1, (pn(x) = Sln (n + E)x

2
5. lp=— Loka @n(x) =siny, (r+x)(n = 1,2,--+), where u, are roots of the

sin

equation tan 2ru = —ptanl
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2@ M- (©

Ap =1 —u2; @,(x) = sinpu, x + u, cos u, x, where u, are roots of the equation
1
2cotmu =pu——
cotmu = ==

1+uf
2 )

Ap=— @, (x) = sin u, x + u, cos p, x, where p,, are roots of the equation

2c0tu=u—i

Ap = =1 —uZ; @, (x) = sinu,x, where u, are roots of the equation tan u = pu(u >
0)
1+e~?

8

13. (@e1(x) =1, (x) =2x—1;

(B)p1(x) = x, @, (x) = x%;
@p1(x) =1, 0,(x) = x, p3(x) =3x* -1

Exercise (12¢)

2.

3 2 .
Ao = %,q)o(x) =12, = (—1)"Z—n,g0,(ll)(x) = Cosnx,(p,(lz)(x) = sinnx

Exercise (12d)

1.

2.
3.

2 - 3
E' (p(X) - i\/;x

. — 2 X
1 o(x) == /ez_le

There are no bifurcation points

12.9 SUGGESTED READINGS:

1.
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F. G. Tricomi, Integral Equations, Dover Publications, 1985. ISBN-978-0486648286.
Rainer Kress, Linear Integral Equations, Springer, 2014 (Third Edition). ISBN-978-
1447171474.
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- Prof. P. Vijaya Laxmi



LESSON- 13
SOLUTION OF HOMOGENEOUS INTEGRAL

EQUATIONS WITH DEGENERATE KERNEL

OBJECTIVES:
Learn to solve Homogeneous Integral Equations with Degenerate Kernel.
STRUCTURE:

13.1 Integral Equation

13.2 Degenerate Kernel in Integral Equations

13.3 Homogeneous Fredholm Integral Equation with Degenerate
Kernel/ Separable Kernel

13.4 Summary

13.5 Technical Terms

13.6 Self -Assessment Questions

13.7 Suggested Readings

13.1 INTEGRAL EQUATION:

An equation is an integral equation in which an unknown function appears under the integral
sign.

Example: ¢(x) = f: K(x,t) p(t)dt
13.2 DEGENERATE KERNEL IN INTEGRAL EQUATIONS:

A degenerate kernel (also called a separable kernel) is a special type of kernel in an integral
equation that can be expressed as a finite sum of products of functions of separate variables:

K(x, t) = [Xre1 ar(x)by (t)]

13.3 HOMOGENEOQOUS FREDHOLM INTEGRAL EQUATIODEGENERATE
KERNEL/ SEPARABLE KERNEL:

A homogeneous Fredholm integral equation of the second kind with a degenerate kernel is a special
type of integral equation of the form:

o) = A [, K(x,t) p(t)dt (i)

where
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¢ (x) is a unknown function to solve for,
A is a scalar parameter (real or complex),
K (x,t) is a kernel (degenerate kernel),

Remarks: The number 4 is not an eigenvalue since for 1 = 0, (i) yield y(x) = 0, which is a
zero solution.

Remarks: If the kernel K (x, t) is continuous in the rectangle R:a < x < b,a <t < band
the number a and b are finite, then to every eigenvalue A there exists a finite number of
linearly independent eigenfunctions.

13.3.1 Example 1: Solve the equation
(x) — Afon(coszx cos 2t + cos3t cos 3x) (t)dt = 0

Solution: The homogeneous integral equation is

(x) — Afon(coszx cos 2t + cos3t cos 3x) (t)dt = 0 (1)

2

and the given kernel K (x,t) = cos?x cos 2t + cos3t cos 3x is a degenerate kernel

@ (x) = A[cos*x fon cos 2t p(t)dt + cos 3x fon cos3t p(t)dt] (2)
@(x) = A[cos?xC; + cos 3x Cy] (3)
where C; = fon cos 2t @(t)dt and

C, = fon cos3t p(t)dt 4)

Substituting equation (3) in equation (4), we get
s
C, = f cos 2t A[cos?tC; + cos 3t C,]dt
0
s
C, = f cos3t A[cos?tCy + cos 3t C,]dt
0
or

Y Y
C, [1 — AJ cos 2t cosztdt] - CZAJ cos2tcos3tdt =0
0 0

s s
—Cl/lf cos’t dt + C, [1 — /1[ cos 3t cos3tdt] =0
0 0

Evaluating the integrals, we obtain a linear system of homogeneous equations:
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(1—%”)@:0,(1—%”)62:0 (5)

The determinant of the eigenvalues will be

e . . 4 8 :
The characteristic numbers of this equation are 4; = - and 4, = - the corresponding
eigenfunctions are of the form

@(x) = Cycos?x, if A, ==

TL"
@(x) = C, cos 3x,if A, :%,

. 4 8
& p(x) = 0,if 4 #~and 2, # —,

where C; and C, are arbitrary constants. The last zero solution is obtained from the general
solutions for C; = 0 and C, = 0.

13.3.2 Example 2:

Solve the homogeneous integral equation

px) — Af”cos (x +t) p(t)dt = 0.
0

Solution:
Given homogeneous integral equation is

o(x) = Afon cos (x +t) p(t)dt
px) = Afon(cosx cost — sinxsint) @(t)dt (1)

and the kernel K(x,t) = cosx cost — sin x sint is a degenerate kernel
ie., p(x) = A[cosx fon cost @(t)dt —sinx fon sint @(t)dt] (2)
@(x) = Acosx C; — Asinx C,, 3)
where C; = fon cost @(t)dt and

C, = fon sint @(t)dt “4)

substituting equation (3) in equation (4), we get

Vs
C; = J cost (AC; cost — AC, sint)dt
0
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s
C, = J sint (AC; cost — AC, sint)dt
0
or
s 2 YA .
Ci[1 =2 [ cos?tdt] + C,A [ costsintdt =0
—CyA f) sintcostdt+C,[1 + A [ sin?t dt] = 0.

Evaluating the integrals, we obtain a linear system of homogeneous equations:

At A
(1—7)cl=0,(1+7)cz=0 (5)
The determinant of the eigenvalues is
Am
(1-3) o 2
0,=>4A=+%
A s
0 (1 + 7)

For A =+ % (1 - %g) C; = 0 = (; can be any non-zero arbitrary constant
2m
(1+23)c,=0> ¢, =0.
2 2m
Fora=-2(1+25)c,=0= ¢, =0

(1 - %g) C, = 0 > (, can be any non-zero arbitrary constant.

If C, = 0, and Cj;is arbitrary then, the eigenfunction will be
@(x) = Cy cosx (or) (x) = C cosx.

Is C; = 0, and C, is arbitrary then the eigenfunction will be
@(x) = —C, sinx (or) p(x) = —Csinx

The eigenfunctions are ¢(x) = C cosx and ¢(x) = —C sin x, corresponding to the

. 2 2
eigenvalues — and —-.
s s

13.4 SUMMARY:

This unit provided the fundamental idea of the integral equation in particular homogeneous
Fredholm integral equations. Definition and calculations of degenerate kernel were discussed.
The method to solve the homogeneous Fredholm integral equations by using degenerate
kernel is explained thoroughly with the help of numerous examples. For better understanding
of readers few examples and self-assessment problems related to degenerate kernel were
included.

13.5 TECHNICAL TERMS:

Integral Equation: An equation is an integral equation in which an unknown function
appears under the integral sign

Example: ¢(x) = f; K(x,t) p(t)dt
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Degenerate Kernel: A degenerate kernel (also called a separable kernel) is a special type of
kernel in an integral equation that can be expressed as a finite sum of products of functions of
separate variables:

K(x,t) = [Xl=1 ax () by ()]
Homogeneous Fredholm Integral Equation with Degenerate Kernel: A homogeneous
Fredholm integral equation of the second kind with a degenerate kernel is a special type of integral
equation of the form

b
o) =2 [ K t) p(0)dt
13.6 SELF- ASSESSMENT QUESTIONS:

Solve the following homogeneous integral equations:
1. o(x) — /1f01 arc cosx (t) dt =0

Z o) _
2. (p(x) - 2f04m dt=20

3.0 =1, | xl@(®) dt =0
4. p(x) + 6f01(x2 —2xt) p(t)dt =0

Answers:

1 o(x) = {C arccosx, A =1
A ) A#1

2.0p(x)=C

3. p(x) = Clx|

4.9(x) = (x —x?)

13.7 SUGGESTED READINGS:

1. Problems and Exercises in Integral Equations, MIR Oybkusgers, Moscow, 1971 by M.
Krsnov, A. Kiselev and G. Makarendo.

2. Integral Equations and their Applications, John wiley & Sons, 1999, by Jerri, A.

3. Linear Integral Equation, Theory and Techniques, Academic Press, 2014 by kanwal
R.P.

4. A first course in Integral Equations, 2" edition, World Scientific Publishing Co. 2015
by Wazwaz, A.M.

5. Integral equations, Krishna Prakashan Media(P) Ltd., Meerut.

- Dr. Vinutha Tummala




LESSON- 14
NON-HOMOGENEOUS SYMMETRIC INTEGRAL
EQUATIONS & FREDHOLM ALTERNATIVE

OBJECTIVES:
Learn to Non-Homogeneous Integral Equations and Fredholm-Alternative.

STRUCTURE:

14.1 INTRODUCTION

14.2 NON HOMOGENEOUS SYMMETRIC EQUATION
14.3 FREDHOLM ALTERNATIVE

14.4 SUMMARY

14.5 TECHNICAL TERMS

14.6 SELF-ASSESSMENT QUESTIONS

14.7 SUGGESTED READINGS

14.1 INTRODUCTION:

A non-homogeneous symmetric integral equation is a type of integral equation that includes a
non-zero term outside the integral, which distinguishes it from a homogeneous equation.
In mathematics, the Fredholm alternative, named after Ivar Fredholm, is one of Fredholm's
theorems resulting in Fredholm theory.

14.2 NON HOMOGENEOUS SYMMETRIC EQUATION:

The non-homogeneous Fredholm integral equation of the second kind is

o(x) — A [ K(x,t) p(t)dt = f(x) (1)

where ¢(x) is an unknown function
K (x,t) is the symmetric kernel i.e., K(x,t) = K(t,x)
f(x) is a known function
A 1s a parameter

If £ (x) is continuous and the parameter A does not match with any characteristic numbers 4,
(n = 1,2,3, ...) of the corresponding homogeneous integral equation.

b
() =2 [ K(xt)p(t)dt =0 @)
then the equation (1) has a unique continuous solution.

If the kernel is symmetric, the solution can be expressed as
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9() = f() = AZ71 375 @a(0) 3)

@n(x) are eigenfunctions of the homogeneous equation (2).

a, are coefficients of the homogeneous equation,

an = [, () pn(x)dx (4)

The series on the right hand side of (3) converges absolutely and uniformly in the square
a<xt<h.

But if the parameter A coincides with the one of the characteristic numbers,say A = A, of

index ¢ (multiplicity of the number A1), then equation(1) will not, generally speaking, have
any solutions. Solutions exist if and only if the ¢ conditions are fulfilled:

b
(f, em)=0 (o) [, f(x) or(x)dx =0, (m = 1,2.....q) )
that is, if the function f(x) is orthogonal to all eigenfunctions belonging to the characteristic

number 4. In this case (1) has an infinity of solutions which contain q arbitrary constants
and are given by the formula

p(x) =f(x) - /12;.10=q+1£_2n(pn(x) + C101(x) + Co02(x) + -+ + Capq(x) (6)
where €y, C3,....C,4 are arbitrary constants.
In case of the degenerate kernel
K(x,t) = Xty ar () by (8),
formulas (3) and (6) will contain finite sums in place of series in their right-hand members.

When the right-hand side of equation (1), i.e., the function f(x), is orthogonal to all
eigenfunctions ¢,,(x) of equation (2), the function itself will be a solution of equation (1):

p(x) = f(x).
14.2.1 Example 1: Solve the equation
1
o () — A] K(x,6) o(t)dt = x,
0

x(t—1), if 0<x <t

where K(x,t) = {t(x -1, ift<x<1

Solution: Rewrite the equation as

o(x) =x + 1 [f(j‘t(x ~Do®dt+ [, x(t - 1) (p(t)dt] (1)
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Consider the homogeneous integral equation as

o) = A[f; ttc— D@t + [ x(t — 1) p(t)dt]

p(x) =[x = 1) [} to@®dt +x [ (¢ — 1) p(t)dt] )

Differentiate the equation (2) with respect to ‘x” on both sides, we have

0'(0) =4[} to(®)dt + x(x = Dp(x) + [}t — 1) p(8)dt — x(x = 1) (x)]

() = A[f; to(®)de + [t — 1) p(O)dt] 3)

Again differentiate the equation (3) with respect to “x” on both sides, we get

@"(x) = Alxp(x) — (x = De(x)]

= ¢"(x) —29(x) =0 4

with the boundary conditions ¢ (0) = 0, and ¢(1) =0 ®)

Let us consider the following cases:

(1)

When A = 0. Then equation (4) reduces to ¢''(x) = 0. Its general solution is

@(x) = Cix + C;
@(0) =0thenC, = 0and ¢(1) =0thenC; =0

Thus ¢ (x)=0, which is not an eigenfunction corresponding to an eigenvalue A = 0.

(ii)

(iii)

When A is positive ie., A =pu?,u# 0
The differential equation (4) is reduced to ¢"' (x) — u?@(x) =0
then p(x) = C e + C,e™™*
Since p(0) =0=>C;+C, = 0and (1) = 0= Ciet + Cre ™ =0
Then we get C; = 0 = C,
Hence ¢ (x)=0, which is not an eigenfunction corresponding to an eigenvalue 1 > 0.

When A is negative i.e., A = —u?,u # 0

The differential equation (4) is reduced to ¢"'(x) + u?@(x) =0

Whose solution is given by

@(x) = C; cos ux + C, sin ux

Since (0) =0=C; =0and (1) = 0= C,sinu=0=> u = nm,C, # 0,
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where n is any integer

Thus the required eigenvalue is given as A = —n?m?,n = 1,2,3 ...
The corresponding eigenfunctions ¢, (x) are given by

@, (x) = sinnmx,n = 1,2,3 ...; C, = 1(let).

The normalized eigenfunctions @, (x) are given by

X sinnmx
@, (x) = ¢n(x) = — = V2 sinnnx.
Uy TpnGO12dx} ™ {[] sin’nmx dx} "
Hence
1
Fo= [ F@ @ ax
0
1
= I =f x. (V2 sinnmx.) dx
0
xcosnmx\! 1 (1
= F= \/E{— (—) + — | cosnmx dx}
nm o Nnml,
—-1)" 1 —1)"+1,/2
= F, =2 —( ) + (sinnmx)} :L
nwr  n?m? nw
The given integral equation contains a unique solution as
oo Fn
@(x) =F(x)+/12 Dy (), £ Ay
] Ap—4
n=

= (—1D)™V2 V2sinnmx
:(p(x)=x+Az — Sy
n=1
21+ (—1)"sinnmx
= @0 =x+r (P 7).

n=

Again, when 1 = 1,, = —n?n?,n = 1,2,3, ... then the integral equation does not possess any
solution.

14.2.2 Example 2: Solve the equation
1

o(x) — Af K(x,t) ¢(t)dt = cosmx,
0

(x+1Dt, 0<x<t

where K(x, ¢) = {(t +1Dx, t<x<1

Solution: Rewrite the equation as
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@(x) =cosmx + A [f;c(t + Dx (t)dt + fxl(x + 1t (p(t)dt] (1)
Consider the homogeneous integral equation as

1
p(x) = A|[; (¢ + Dx p(t)dt + [ (x + Dt p(t)t]

p(x) =2 [x fox(t + D p®)dt+ (x+ 1) fxlt (p(t)dt] (2)

Differentiate the equation (2) with respect to ‘x” on both sides, we have
1 1
o' (x) =2 [f;c(t + 1) p(O)dt + x(x + Dp(x) + [t o(t)dt — x(x + 1)go(x)]

9'(0) = A[f; (£ + Do®dt + [t p(t)dt] 3)
Again differentiate the equation (3) with respect to ‘x” on both sides, we get
@"(x) = Al(x + D (x) — xp(x)]
= ¢"(x) —29(x) =0 (4)

The characteristic numbers are 15 = 1,4, 272, then the solution of the given equation
will have the form ¢, (x) = e*, ¢, (x) = sinnnx + nwcosnwx (n = 1,2, ...)

If 1 # 1 and 2 # —n?m?, then the solution of the given equation will have the form

aoe

@(x) =cos mx — A [ + X Mi—’;nz (sinnmx + nm cos nnx)]

and since

1+e
1+m2

1
ap = [, e* cosmxdx = —

2,n=1

: 0,n#1
Ap- f cosx (sinnmx + nmw cos nmx)dx = {7
0
it follows that

1+e e*
1472 A—1 2(,1+ 12)

p(x) =cosmx + A [ (sinmx + m cos nx)]

For A = 1 and A = —m?(n = 1) the equation has no solutions since its right-hand side, that
is, the function cos mx, is not orthogonal to the corresponding eigenfunctions

Po(x) = e*

¢1(x) = sinmx + mcos mx
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Butif A = —n?m?, where n = 2,3, ..., then the given equation has an infinity of solutions
which are given by formula (6):

1+e e* s
1+nm2A-1 21+ m?)
+ C(sinmx + 7 cos x)

p(x) =cosmx + A (sinmx + m cos nx)]

where C is an arbitrary constant.

In certain cases, a nonhomogeneous symmetric integral equation can be reduced to a
nonhomogeneous boundary-value problem. This is possible when the kernel K (x,t) of the
integral equation is a Green’s function of some linear differential operator.

14.2.3 Example 3: Solve the equation

1
o(x) - j K(x,©) p()dt = e,

sinh x sinh(t—1)

sinh 1 y0=sx=t
where K(x,t) =< _. :
’ sinht sinh(x—1
#, t<x<1.
sinh 1

Solution: Rewrite the equation as
o(x) = e* +Af011{(x, t) p(t)dt (1)
@(x) = e* + A [T K(x, ) p(t)dt + A [ K(x,t) p(t)dt

(p(x) — ¥ +/1fx smhl:ssllri1 (x—-1) (t)dt+ ﬂfl smhxsmh(t 1) (t)dt

sinh x

p(x) =e* + Awf sinh ¢ p(t)dt + 2=

f sinh (t — 1) p(t)dt (2)
The boundary conditions of equation (2) as
p(0)=1,9(1)=e 3)

Differentiate the equation (2) with respect to x on both sides, we have

A smh(x 1)

p'(x) =e*+ AMI sinht @(t)dt + ———sinhxe (x) + ACOth f sinh (t —
1) p(t)dt — mn—;xl)smh xp(x)
p'(x) =e*+ A%K sinht @(t)dt + ACOth f sinh (t — 1) (t)dt 4)

Differentiate the equation (4) with respect to x on both sides, we have
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" inh(x-1) x . h(x-1) . inhx (1 .
p'"(x) =e*+ A:;ﬁfg sinht @(t)dt + A%smhx @ (x) + A:r;hj J, sinh(t —
1) p(t)dt — A:j xsinh(x — 1) p(x)

") = e* + AERED Foin he o (B)dt + 122X [ sinh(t — 1) p(t)dt +
(pl sinh 1 0 4 sinh 1 “x 4

@(x)[cosh (x — 1) sinh x — cosh x sinh(x — 1)]

si
@"'(x) =e* + () + Ap(x)
@"'(x) —(A+ Do) =e* )
Let us consider the following cases:
(1) A+ 1) =00raA=-1
Equation (5) is of the form
p(x) = Cix + C,+e*

Taking into the boundary conditions (3), we get the following system for finding the
constants C; and C,

{ C,+1=1,
C1+C2+e=e

Its solution is of the form C; = 0,C, = 0, and, hence,

p(x) =e*
(i1) (A+ 1) >0,0orA>—1,1 # 0. The general solution of equation (5) is ¢ (x) =
€, cosh /(1 + A)x + G sinh /(1 + Dx -5
The boundary conditions (3) yield the following system for finding C; and C5:

1
Cl_zzll

e
C, cosh+/(1+ 1) + C, sinh (1+/1)—Z =e

whence
_ 1 __e—cosh{/(1+4) 1
€ = (1 T A)’CZ " sinhJ(1+2) (1 N /1)

Then the general solution is
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. 1 e—cosh/(1+4) 1 . .
() = (1+7).cosh T+ Dx + 222 (147 sinh /(L + Dx
eX

A

_ 1 sinh/(1+4).(1—-x) e
o(x) = (1 T /1)' sinh /(1+1) P

(i) A+ 1)<0,0ord< —1,1+1 = —pu?. The general solution of equation (5) is

X

14+ u?

@(x) = Cy cosux + C, sinux +

The boundary conditions (3) yield the following system for finding C; and C5:

1

Cl + 1+H2 = 1,
| y (6)
Cicosu+Cysinpy =e T

In turn, two cases are possible here:

(a) p is not a root of the equation sin u = 0.

u? (e—cos )u?
€ = ylp = T
1+u? (1+u?)sinu
and, hence,
(x) = K [cos x + =Fsin x] +
4 T 14p2 H sin u H 1+u?’
where yu =+v—-4-—1.

(b) u is aroot of the equation sin u = 0, i.e., u = nw (n = 1,2, ...). System (6) is
inconsistence and, consequently, the given equation (1) has no solutions.

In this case, the corresponding homogeneous integral equation
p(x) + (1 +n?n?) f01 K(x,t) (t)dt =0 (7)

will have an infinity of nontrivial solutions, that is, the number 4,, = —(1 + n?n?) are
characteristic numbers and their associated solutions ¢, (x) = sinnmx are eigenfunctions of
equation (7).

14.2.4 Problem: Solve the equation
m? (1 X
o) - [ ke pode =3,
0
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x(2-t)

K(x, t) = t(zz_x)

,0<x<t

,t<x<1

Solution: The equation can be written as

900 =2+ Z[[FED p)ae + [ XD o () dr (1)

Differentiating the equation (1) with respect to ‘x’ on both sides, we get

900 =2+ Z @2 - 090 - Z[[FLp@at + [ Zp@)dt].

, 1 2 t (2-v) 12—t (2-t)
0'(x) =2+ |- [ omadt + T2 000 + [ p(0)dt - 222 o (x)]

9’00 =2+ 2 [= [FLo@at + [} o] @)

X
Again differentiating the equation (2) with respect to ‘x’ on both sides, we get

2

0" (1) =[S0 - o)

2

0"(0) =2 [-20) - p(0) +Z ()]

9"() +Z[p(0] = 0. 3)
The general solution of the above differential equation (3) is

p(x) =C; cosnz—x + C, sinnz—x (4)
and the boundary conditions are

@(0) = C;cos0+C,sin0=>C; =0

s T
(1) = ¢ cos§+ C, sin = C,=1

The required function ¢(x) which is a solution of the non homogeneous boundary value
problem is

@(x) = sin %x
14.3 FREDHOLM ALTERNATIVE:

In mathematics, the Fredholm alternative, named after Ivar Fredholm, is one of Fredholm's
theorems resulting in Fredholm theory. It may be expressed in several ways, as a theorem
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of linear algebra, a theorem of integral equations, or as a theorem on Fredholm operators. Part
of the result states that a non-zero complex number in the spectrum of a compact operator is
an eigen value.

14.3.1 Theorem 1 (Fredholm Alternative):

Either the non-homogeneous linear equation of the second kind
b
() —AJ, K(x, t) p(t)dt = f(x). ey

has a unique solution for any function f(x) (in some sufficiently broad class) or the
corresponding homogeneous equation

b

() =2 [ K(xt) p(t)dt = 0. (2)
has at least one nontrivial (that is, not identically zero) solution.

14.3.2 Theorem 2:

If the first alternative holds true for equation (1), then it holds true for the associated equation
b
Y(x)—A[, Kt x)P(t)dt = g(x). (3)

as well. The homogeneous integral equation (2) and its associated equation
W(x) — A [) K(t,x) P(t)dt = 0. 4)

have one and the same finite number of linearly independent solutions.
14.3.2.1 Note:

If the functions ¢4 (x), @, (x), ... , @, (x), are solutions of the homogeneous equation (2), then
their linear combination

00 = 11 (0, +Cop2() + -+ + Copn () = D Ci i)
k=1

where the C,(k = 1,2, ..., n) are arbitrary constants, is also a solution of the equation.

14.3.3 Theorem 3:

A necessary and sufficient condition for the existence of a solution ¢(x) of the non-
homogeneous equation (1) in the latter case of all the alternative is the condition of
orthogonality of the right side of the equation, i.e., of the function f(x), to any solutions
¥ (x) of the homogeneous equation (4) associated with equation (2):

[ ¥(x)dx =0 5)
14.3.3.1 Note:

When condition (5) is fulfilled, equation (1) will have an infinite number of solutions, since
this equation will be satisfied by any function of the form ¢(x) + @(x), where @(x) is some
solution of equation (1) and ¢@(x) is any solution of the corresponding homogeneous
equation (2). Besides, if equation (1) is satisfied by the function ¢;(x) and ¢,(x), then by
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virtue of the linearity of the equation the difference ¢, (x) — ¢,(x), is a solution of the
corresponding homogeneous equation (2).

The Fredholm alternative is particularly important in practical situations. Instead of
proving that a given integral equation (1) has a solution, it is often simpler to prove that the
appropriate homogeneous equation (2) or its associated equation (4) has only trivial solutions.
Whence it follows, by virtue of the alternative, that equation (1) indeed has a solution.

14.3.3.2 Remarks:
(1) If the kernel K (x,t) of the integral equation (1) is a symmetric, that is, K(x,t) =
K (t,x), then the associated homogeneous equation (4) coincides with the

homogeneous equation (2) which corresponds to equation (1).
(2) In the case of non-homogeneous integral equation with a degenerate kernel

b n
ot -1 [Z @ (b, ()] 9@t = ()
@ lk=1

the orthogonality condition (5) of the right side of this equation yields n equalities

[P F©be(®)dt = 0 (k = 12,...,n)

14.3.4 Example 1: Solve

1

o(x) — Af (5x% = 3)t? p(t)dt = e*
0

Solution: Given integral equation is
o(x) — Afol(sz —3)t2 p(t) dt = e*

From which, we have
@(x) = CA(5x* — 3)+e”, €y
where C = fol t2 @(t) dt (2)

From (1) and (2), we get
1
C = f t2[C A(5t% — 3) + e'] dt
0

C = [, CA(5t* — 3t%) | dt+], t2et dt

Whence, C = e — 2
For any A, the given equation has a unique solution:
p(x) = (e — 2)A(5x% — 3)+e*

and the corresponding homogeneous equation
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o(x) — Afl(sz —3)t?2p(t)dt=0
0

has a unique zero solution @(x) = 0.
14.3.5 Example 2: Solve ¢(x) — 1 fol sinlnx @(t) dt = 2x
Solution:
We have, ¢(x) = 2x + Afol sinln x @(t) dt
@(x) =2x+ Asinlnx C

where C = | 01 @(t) dt. Substituting the expression ¢(t) into the integral, we obtain
C=CA fol sinlnt dt+1
whence C (1 + &) =1

2

If A # —2, then the given equation has a unique solution

2

px) =2x+ ﬁ sin In x; the corresponding homogeneous equation ¢(x) —

Afol sinlnx @(t) dt =0
has only the zero solution @(x) = 0.

But if A = —2, then the given equation does not have any solutions since the right side
f(x) = 2x is not orthogonal to the function sin In x; the homogeneous equation has an
infinity of solutions since it follows from the equation defining C, 0.C = 0, that C is an

arbitrary constant; all these solutions are given by the formula ¢(x) = C sinlnx (C =
—20)

14.3.6 Example 3: Solve
o(x) — Afon cos(x + t) @(t) dt = cos 3x

Solution: Rewrite the equation in the form

s
p(x) — Af (cosxcost —sinxsint) ¢(t) dt = cos 3x
0

Whence we have
@(x) = CiAcosx — C,Asinx + cos 3x (1)

{ C, = fon(p(t) costdt,
where

C,= [, p(t)sintdt (2)

Substituting (1) into (2), we get
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Vs
C, = f (CiAcost — CyAsint + cos 3t) cos t dt,
OTL'
C, = f (CiAcost — CyAsint + cos 3t) sint dt
0

whence

c,(1- /’lfon cos?tdt) + CyA fon sintcost dt = fon cos 3t cost dt,

or
- (A fon costsintdt + C, (1 + Afon sin?tdt) = fon cos 3t sint dt,

¢ (1-23) =0,

¢ (1+23)=0 ®

The determinant of the system is

1-—A= 0 2

A 2 l=1-2—

4
0 1+1=
2

(1) IfA+ i%(A(A) # 0), then system (3) has a unique solution C; = 0,C, = 0 and,

hence, the given equation has the unique solution ¢(x) = cos3x and the
corresponding homogeneous equation

p(x) — Afon cos(x +t) p(t) dt =0 4)

only has the zero solution ¢ (x) = 0.

C,.0 =0,

. _2
(i1) IfA= ~ then system (3) takes the form { C,.2=0

Whence it follows that C, = 0 and C; = C, where C is an arbitrary constant. The given
equation will have an infinity of solution which are given by the formula

2
p(x) = ;Ccosx + cos 3x

or

A . 2C
¢@(x) = C cosx + cos 3x, (C = ?),

the corresponding homogeneous equation (4) has an infinity of solutions:
@(x) = Ccosx

(i) Ifd=- %, then system (3) takes the form
{2. C; =0,
0.C, =0
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whence C; = 0,C, = C, where C is an arbitrary constant. The general solution of the given
equation is of the form

~ . 2C
@(x) = Csinx + cos 3x (C :?);

In this example, the kernel K(x,t) = cos(x +t) of the given equation is symmetric:
K(x,t) = K(t,x); the right side of the equation [that is, the function f(x) = cos3x] is
orthogonal to the functions cos x and sin x on the interval [0, rr].

14.3.7 Example 4:

Solve ¢ (x) — Afon cos?(x)p(t) dt =1

Solution:

We have,p(x) = 1 + A cos?x fon(p(t) dt (1)
= ¢(x) =1+ A cos?xC ()
where C=f0n p(t) dt. 3)

Substituting (2) into (3), we get

C=["(1+ A cos?tC) dt

C=f0n dt + %fon(l + cos 2t) dt
21

Whence C= )

Case (1): If 4 # %, then the given equation has a unique solution given by

21A

2
COS™Xx
(2—Am)

px)=1+

and the corresponding homogeneous equation

T

o(x) — Af cos?(x) p(t)dt =0
0

has the zero solution,¢@(x) = 0.
Case (ii): If 4 = %, then the given equation does not has any solution.

( 2wl
1+ ﬁ COSZX, A+
wpx) = i (2= 4m)

has no solution, A=
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14.4 SUMMARY:

This chapter provided the basic idea of the non-homogeneous symmetric equation and a
theorem namely Fredholm alternative along with its proof. Few more theorems and their
proofs related to this topic were given in detail with appropriate examples. By making use of
these results and example problems the reader will get a clear idea on how to solve non-
homogeneous symmetric integral equations. Finally same self-assessment problems were
provided for practice.

14.5 TECHNICAL TERMS:

Non Homogeneous Symmetric Equation:
The non-homogeneous Fredholm integral equation of the second kind is

90 — 2 [ K(x,©) p(8)dt = f(x).

where @ (x) is an unknown function
K (x,t) is the symmetric kernel i.e., K(x,t) = K(¢,x)
f(x) is a known function
A 1s a parameter

Fredholm Alternative Theorem:
Either the non-homogeneous linear equation of the second kind

90 — 2] K(x,t) p(B)dt = f(x). €y

has a unique solution for any function f(x) (in some sufficiently broad class) or the
corresponding homogeneous equation

o(x) — 1 [, K(x,t) p(t)dt = 0. 2)

has at least one nontrivial (that is, not identically zero) solution.

14.6 SELF-ASSESSMENT QUESTIONS:

Section-A:
Solve the following homogeneous symmetric integral equations:

1. p(x) + fol K(x,t) o(t) dt = xe”*,

sinhx sinh (t—1)

sinh1 y0=x=t,
K(x,t) =<_..°%
’ sinht sinh (x—1
#, t<x<1.
sinh1

2.0(0) = A[, Kx, ) p(t) dt =x — 1,

x—t 0<x<t,
t—x, t<x<1.

K(x,t) = {
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3.90(x) — 2 J2K(x, 1) p(t) dt = cos2x,

sinx cost, 0 <x <t
K(x,t) = sint cosx, thsg.

4.9(x) = A [ K(x,0) p(t) dt =1,

sinxcost, 0 <x <t,
KCx,t) = {sintcosx,t <x<m.
5.0(0) = [, K(x,t) (t) dt = x,

_((x+D(t-3),0<x<t,
K(at) _{(t+1)(x—3), t<x<1.

6.p(x) — AfOnK(x, t) p(t) dt = sinx,

sin(x + D)sin(t —2),0 < x < t,
K(x,t) = { 4 4

sin(t + %) sin(x — %), t<x<m.
7. p(x) — Afoll{(x, t) @(t) dt = sinh x,

e tsinhx,0 <x <t
e *sinht, t<x <1

KGot) ={~

8. p(x) — Afoll{(x, t) o(t) dt = coshx,

coshx cosh (t—1) 0<x<t

K(x, t) — sinh
cosht(fosh (x—l)' t<x<1.
sinh
T
9.0(x) =1 [, | x —t|o(t) dt = 1.
Section-B

Investigate the solvability of the following integral equations (for different values of the
parameter 1):

1. op(x) — Af_ll xet @(t) dt = x.

2.¢(x) — Afozn |x — | p(t) dt = x

3. 0(x) — Afol(th —4xH) ) dt =1—2x

4. p(x) — Af_ll(xz —2xt) p(t) dt = x3 —x

5.0(x)—2 fozn(% cosx cost + %sian sin2t) @(t)dt = sinx

6. p(x) — A [, K(x,t) p(t) dt = 1

where
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K(x,t) = {coshx.sinht, 0<x<t,
! cosht.sinhx, t <x < 1.

Answers to Self- Assessment Questions:

Section-A:
l.o(x) =x—2+2e*

sin ux+sin u(x—1)—u cos ux

,A>0,

3 H o Hint
2u cos 2(cos ST sin 2)
— J sinux+sin u(x+1)—p cos ux
2.0(x) = A 1<0
2u cos;(cos;—sm;)

where u =221

nsin2

3.p(x) =cos2x+ 44X, 1 (4n2-1)(4n?2-3)

AcosvVA+1(m—x)+cosvVA+1lm
( (A+1) cosmVA+1 ! A>-1,
4. — JAcoshv-4- 1(m—x)+coshVv-A-17
QD(X) (A+1) cosmvV—A—1 A< -1
x? mx + 1, A=-1
3(sin h u+pu cosh ux)+sinh (x—1)—2u cosh u(x—1)
( (1+2u2) sinhu+3puc !
B A>0(u = 2V2)
5.90(36) 3(sinp+pcosp )+sinu(x—1)-2pco  (x—1)
(1+2u?)sin u+3ucosh
A<0(u=2v=-21)
6.p(x)=-1
e.sinhv2x

7. (p(x) = sinhv/2++v2 coshv2

—sinh 1. cos ux
usinu v
—sinhl.coshux
usinhu
no solutinsif A =1
cosh u(x-5) _
coshﬂ—ﬂsiihﬂ ifu=+24,1>0
— 2 2 2
9. ¢(x) = cosu(x-2)
—wrm o ifu=+-241<0

oS5 81Ny
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@(x) = 1if 1 = 0; wis not a root of the equations cosh”z—n - uz_n sinh“z—n =0,

pr_pm . MT
COS2 2511’12—.

Section-B:

l.okx) = e_ejx,l * g No solutions for 1 = —2.

_ 212 2| x—m| 1 . _ 1
2.¢(x) = x + ——5-—,1 # —. No solution for 1 = —

3x(24%2x—214%2-51—6)+(1+3)?
(1+3)?

3.0(x) = ,A # —3.No solutions for A = —3.

x
4 o(x) = 5(42+3)
#x) x3—%x+Cx2ifA=§

ifA£2 1+ —2
2 4

3 .
For A = " there are no solution.

sinxif A #1
Cicosx + Cysin2x +sinx ifA =1

5.0(x) = {

2 3 . 21 h 1
6.p(x) = —x?+ P tanh1if A = —1; p(x) = {cosﬁ‘;_uz;:#fx + 1}E

if 2 = pu? — 1, where u is not a root of the equation cosh u = usinhutanh1; ¢(x) =
i{ (u?+1) cos px _ 1}

u? \cos u—p sin u tanh

if 1 = —(u? — 1), where u is not a root of the equation cosh u + u sinh g tanh 1 = 0. In the
remaining cases there are no solutions.
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LESSON- 15
CONSTRUCTION OF GREEN’S FUNCTION FOR

ORDINARY DIFFERENTIAL EQUATIONS

OBJECTIVES:

Learn to Construct Green’s Function for Ordinary Differential Equations.
STRUCTURE:

15.1 Introduction

15.2 Definition of Green’s Function
15.3 Summary

15.4 Technical Terms

15.5 Self-Assessment Questions

15.6 Suggested Readings

15.1 INTRODUCTION:

Green's function provides a method to solve non-homogeneous ordinary differential
equations (ODEs) by finding the solution to the equation with a delta function forcing term,
which allows for solving more complex problems by superposition.

15.2 DEFINITION OF GREEN’S FUNCTION:

Consider the homogeneous differential equation of order ‘n’ is L[y] = Py(x)y™ +
Pi()y" 4+ P(x)y =0 (1)

where the function Py(x), P;(x), ...., B,(x)are continuous on [a, b] ,P,(x) # 0 on [a, b] and
the boundary conditions are V;(y) = 0

Vi(y) = By "ty @) + X BTy (D), 2)
where the linear forms Vi, V5, ..., V, in y(a), vy’ (a) ...y VY (a), y(b), ...,y D (b)

are linearly independent.

If the homogeneous boundary value problem given by equation (1) and equation (2) has only
a trivial solution y(x) = 0.

15.2.1 Construction of Green’s Function: The Green’s function G (x, £), constructed for
any point &, a < & < b, for a boundary value problem which has the following properties:

1. In each of the intervals [a, §) and (§, b] the function G (x, §) considered as a function
of x, is a solution of equation (1) is L[G] = 0.
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2. G(x,€) is continuous in x for fixed & and has continuous derivatives with respect to x
upto order (n — 2) inclusive fora < x < b.
3. (n— 1) derivative of G (x, &) with respect to x at x = & has the discontinuity of the

first kind, and the jump being equal to ;,
Po(x)

n-—1 an—l 1

dxn—1 (%) ~ gxn1 G(x5) x=£—0 N ml

x=&+0

4. G(x,¢) satisfies the boundary conditions (2): V;(G) =0, (i = 1,2,...,n)

i.e.,

15.2.2. Theorem: If the boundary value problem
Lly] = Po()y™ + P()y" ™ + -+ + Py (x)y = 0, (1)

Vi(y) =3t oy @) + Sk, By (b) 2)

has only the trivial solution y(x) = 0, then the operator L has one and only one Green’s
function G (x, §).

Proof:

Let y;(x), y2(x), ..., yn(x) be linearly independent solutions of the equation L[y] = 0.

Then, by virtue of property (1), the unknown function G (x, §) must have the following
representation on the intervals [a, §) and (&, b]:

G(x, &) = a;y1(x) + azy,(x) + -+ apyp(x) fora < x < §
and G(x,&) = byy;(x) + by, (x) + -+ by, (x) forE < x < b

Here, a4, ay, ...,an, by, by, ..., by, are some functions of &. The continuity of the function
G(x, &) and of its first n — 2 derivatives with respect to x at the point x = € yields the
relations

[D1y1(®) + -+ + bpyn )] — [a1¥1(®) + -+ + anyn (D] = 0,
[b1Y1'(E) + -+ bnyn’(E)] - [alyll(E) + o+ anyn’(E)] = Oa

[b171 @2 @)+ + by * (@] = [a1y1 TP E) + - + any, ()] =0
and property (3) takes the form

1
Py ()

Letus put ¢;(§) = b;(§) — a;(¢) (i = 1,2, ...,n), then we get a system of linear equations in

¢ (8):

[b1y1 D) + -+ by @I ®)] = [ay @ TE) + -+ @y TV E)] =
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c1y1 (&) +c2y2 (@) ++cnyn(§)=0

e17' ®tery! Pesccreny ® =

...................................................................................... (3)

Clyl(n—Z)(E)+Czy2 (n-2) (E)+...+Cnyn(n—2)(z)=0
Clyl(n_l) (E)+C2_’y2 (n—l) (§)+...+Cnyn(n—1) (E)=P01(E)

The determinant of system (3) is equal to the value of the Wronskian W(yy, y,, ..., ,) at the
point x = € and is therefore different from zero. For this reason, system (3) uniquely defines
the functions ¢;(§) (i =1,2,...,n). To determine the functions a;(§) and b;(§) let us take
advantage of the boundary conditions (2). We write V;(y) in the form

Vi(y) = A;(y) + Bi(y) 4)

where

A(y) =¢; y(@) +o; P y'(a) + -+ +oq 7D y (= (g),
Bi(y) = Biy(®) + £y (B) + -+ + ;" y @D (b,
Then, by property (4), we get

Vi(G) = a;4;(y1) + -+ + and;i(Vn)

+b:B;(y1) + b,B;(y,) + -+ b,B;(y,) =0 (i=12,..,n)

Taking into consideration that a; = b; — c;, we will have
(b1 — c))A;(y1) + (b2 — c2)Ai(y2) + -+ + (bp — c)Ai (V)

+b1Bi(y1) + b;Bi(y2) + -+ bpBi(y,) =0 (i=12,..,n)
Whence, by virtue of (4),
biVi(y1) + bVi(y2) + -+ bpVi(m) = ¢14;(y1) + c24;(y2) + -+ + cpA; (V)
(i=12,..,n) (5)
Note that system (5) is linear in the quantities by, by, ..., b,.

The determinant of the system is different from zero:

Vilyv) Viyz) .. Vi)
Vo(y1) Vo(y2) oo Vo) +0 (6)
hOn) Va0 e Vel

by virtue of our assumption concerning the linear independence of the forms V;, V5, ..., V,.

Consequently, the system of equations (5) has a unique solution in by (%), b, (§), ..., b, (§), and
since a; (&) = b; (&) — ¢;(&), it follows that the quantities a;(€) (i = 1,2, ...,n) are defined
uniquely. Thus, the existence and uniqueness of Green’s function G (x, ) have been proved
and a method has been given for constructing the function.

Note 1: If the boundary value problem
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LIyl = Py(x)y™ + PL(x)y" " + -+ + B (x)y = 0,

Vi) = T @™y @) + Xk Y (0)
is self-adjoint, then Green’s function is symmetric, i.e., G(x, &) = G (&, x)
The converse is true as well.

Note 2: If at one of the extremities of an interval [a, b] the coefficient of the highest
derivative vanishes, for example py(a) = 0, then the natural boundary condition for
boundedness of the solution at x = a is imposed, and at the other extremity, the ordinary
boundary condition is specified (see example 2 below).

15.2.3 An important special case:

Let us consider the construction of Green’s function for a second order differential equation
of the form

® @y +q(x)y =0,
p (x) # 0onla,b], p(x) € CMV[a,b] (D

with boundary conditions

y(@)=y(b)=0 (2)
Suppose that y, (x) is a solution of equation (1) defined by the initial conditions
y1(@)=0, y;(@)=a # 0 3)

Generally speaking, this solution need not necessarily satisfy the second boundary condition;
we will therefore assume that y; (b) #0. But functions of the form C;y; (x), where C; is an
arbitrary constant, are obviously solutions of equation (1) and satisfy the boundary condition

y(@) =0

Similarly, we find the nonzero solution y,(x) of equation (1), such that it should satisfy the
second boundary condition, i.e.,

y2(b) =0 4

This same condition will be satisfied by all solutions of the family C,y,(x), where C,is an
arbitrary constant.

We now seek Green’s function for the problem (1) - (2) in the form,

Ciy1(x) for a<x<E¢

G(x,§) = { C,y,(x) for E<x<b

()

and we shall choose the constants C; and C, so that the properties (2) and (3) are fulfilled,
i.e., so that the function G (x, &) is continuous in x for fixed &, in particular, continuous at the
point x = ¢&;

C1y1(§) = Cy,(8)
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1 "

and so that G,'(x, &) has a jump, at the point x = & , equal to ok

EY — Cov () =
Cy2' (&) — iy (f)—p(a

—Cy1(E) + Cy,(6) =0

—C1y,' (&) + Gy, (§) = % (6)

Rewrite the last two equalities as

The determinant of system (6) is the Wronskian W [y, (x), y2(x)] = W(x) computed at the
point x = ¢ for linearly independent solutions y, (x) and y,(x)of equation (1), and, hence, it
is different from zero:

W) #0

So that the quantities C; and C, of the system (6) are determined at once:

_ %09 _ 1
L7 pwey C2 = PEWE) )

Substituting the expressions for C; and C,into (5), we finally get

¥1(x).y2 (&)

_vewe
G(x,§) = 10209 ¢ < 5 <
PEOW ) T

fora<x<¢

(8)

Note 1. The solution y,(x) and y,(x) of equation (1) that we have chosen are linearly
independent by virtue of the assumption that y; (b) # 0.

Indeed, all solutions are linearly dependent on y; (x) have the form C;y;(x) and,
consequently, for C; # 0, do not vanish at the point x = b at which, according to our choice,
the solution y,(x) vanishes.

Note 2. The boundary value problem for a second order equation of the form

y" () +p1(0)y' () + p.(x)y(x) = 0 )
and boundary conditions y(a) = A,y(b) = B (10)
reduces to the above considered problem (1)-(2) as follows:

(1) The linear equation (9) is reduced to (1) by multiplying (9) by p(x) =
eJ P10)4X [y have to take p(x)p,(x) for q(x)].

(i1) The boundary conditions (10) reduced to zero conditions (2) by linear change of
variables

z(x) =y(x)—b (x—a)—A

The linearity of equation (9) is preserved in this change, but unlike equation (1), we now
obtain the non-homogeneous equation L(z) = f(x), where

fo) = =4+ (x - a)| q(x) — =2 p(x)
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However, we construct Green’s function for the homogeneous boundary value problem
L[z] = 0,z(a) = z(b) = 0, which entirely coincides with the problem (1) — (2).

15.2.3.1 Example 1: Construct Green’s function for the homogeneous boundary value
problem

yV(x) =0 (D
y(0)=y'(0)=0
y(1)=y’(1)=o} (2)

Solution: We shall first show that the boundary value problem (1) - (2) has only a trivial
solution. Indeed, the fundamental system of solutions for equation (1) is

y1(x) = 1, y,(x) = x,y3(x) = x%,y,(x) = x°, 3)
so that general solution is of the form
y(x) = A+ Bx + Cx? + Dx3,

where A, B, C, D are arbitrary constants. The boundary conditions (2) give us four relations
for determining A, B, C, D:
y(0)=A4=0,

y'(0)=B =0,
y(1)=A+B+C+D=0
y'(1)=B+2C+3D=0
Whence, wehave A=B=C=D=0

Thus, the problem (1) - (2) has only a zero solution y(x) = 0, and, hence, for it we can
construct a (unique) Green’s function G (x, £).

We now construct the Green’s function. Utilizing the fundamental system of solutions (3),
represent the unknown Green’s function G (x, §) in the form

G(x,8) = a;.1+a,.x+az.x?>+a,x3 for 0<x<E 4)
G(x,f): b1.1+b2.x+b3.x2+b4.x3 fOI‘ ESXSl (5)

where a4, a,, as, a,, by, by, b3, b, are as yet unknown functions of €. Put ¢; (§) = b; (§) —
a; (%) (i = 1,2,3,4) and write out the system of linear equations for finding the functions c; ()

c1y1 (@) +c2y2 (&) ++cnyn(§)=0

e17' @ty @ pevcteny @ =g

see the S stem ......................................................................................
g c171M=2) () +c2y2, M2 (&) ++cnyn M=2)(H)=0

c1y1 M= D (®) +coy, =D ()4 tenyn -1 (E)=P01(§)

Therefore, we get




\Integral Equations 15.7

Construction of Green's Function...

€1+ & + 382 +,83 =0,
Cy + 2c38+ 3¢,82 =0,
2c3 + 6048 =0,
6c, = 1.

Solving the system, we get

AGEEFENAGERS
c3(§) = —3&,c(§) =+

(6)

(7)

We further take advantage of property (4) of Green’s function, namely, that it must satisfy the

boundary conditions (2), i.e.,

G(0,§) =0,G,'(0,§) =0
G(1,§) =0,G,'(1,§) =0

In our case, these relations take the form

b1+b2+b3+b4=0
b2+2b3+3b4=0

(8)

Taking advantage of the fact that ¢, = by, — ax(k=1, 2, 3, 4), we find from (7) and (8) that

1 1
a;=0; a,=0; by = —=&% b, =282 )
1 1 1
b3=553_€2; b4=552_§€3;

1

1 1 1 1
az=2§—§+-8% a,=——+28 -8

)

Putting the values of the coefficients a4, a,, ..., b, from (9) into (4) and (5), we obtain the

desired Green’s function:

1 1 1 1 1
[ (GE-e3e)e - (38 +38)7
0<x<§
Gd=31 1 1 1 1.1
BIREARR A LR VU T ES
L E<x<1

This expression is readily transformed to

1 1 1 1 1
GCx,§) = (Ex—xz +§x3)§2 —(g—gxz +§x

So that G(x,¢&) = G(¢,x), i.e., Green’s function is symmentric. This was evident from the
start since the boundary- value problem (1)-(2) was self-adjoint.

15.2.3.2 Example 2. Construct Green’s function for the differential equation

xy"+y'=0

(1)
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For the following conditions:
y(x) bounded as x — 0,
y(1) =ay'(1),a #0 ()

Solution. First find the general solution of equation (1) and convince yourself that the conditions (2)
are fulfilled only when y(x) =0
1

Indeed, denoting y'(x) = z(x) we get xz' +z = 0, whenceInz =Inc¢; —Inx,z = % and, hence,

y(x) =c;Inx + ¢, (3)

It is clear that y(x) defined by formula (3) satisfies the conditions (2) only for ¢; = ¢, = 0, and,
hence, Green’s function can be constructed for the problem (1)-(2).

Let us write down G (x, &) formally as

_(aytazlnx for0<x<¢,
G(x'f)_{b1+b21nx foré<x<1 )

From the continuity of G (x, ) for x = £ we obtain
b1 +b21n€_a1_a21n€ =0

and the jump G',(x, &) at the point x = ¢ is equal to % so that

Puttlng Cl = bl - al, Cz = bz - az (5)
we will have

{c1+c21n§ =0,
C2=1

whence
ci=—In¢ c;=1 (0)

Now let us use conditions (2). The boundedness of G(x, §) as x = 0 gives us a, = 0, and
from the condition G (x, &) == aG'(x,§) we get b; = ab,. Taking into account (5) and (6),
we get the values of all coefficients in (4):

a;=a+Iné a, =0, by=a, b =1
Thus

_(a+In¢ 0<x< ¢,
G(x'f)_{a+lnx, E<x<1

15.2.3.3 Example 3. Find Green’s function for the boundary-value problem
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y'(x) +k*y =0
y(0)=y(1)=0

Solution. It is easy to see that the solution y; (x) = sin kx satisfies the boundary condition
v1(0) = 0, and the solution y,(x) = sin k(x — 1) satisfies the condition y,(1) = 0; they are
linearly independent. Let us find the value of the Wronskian for sin kx and sin k(x — 1) at
the point x = ¢&:

_ | sinké  sink(§—1)
WC) =k coske kcosk(é -1
= k[sinké cosk(é —1) —sink (§¢ — 1) coské] = ksink

Noting, in addition, that in our example p(x) = 1, we get, by (8) from 15.2.3,

sink(é — 1) sinkx

<x<
G(Xf)z ksink ’ O_X_E’
’ sinkésink (x — 1) cy<1
ksink rSs=X=

15.2.3.3 Example 4: Find the Green’s function for the boundary value problem
y" =0;y(0) =y'(1),y'(0) = y(D).

Solution:
Given homogeneous differential equation is y"' = 0 (1)
The general solution of the differential equation (1) is

y(x) = A+ Bx,A & B are arbitrary constants. 2)
Applying the given boundary conditions in equation (2), we get A = 0 and B = 0,
Thus , the solution of equation (1) is y(x) = 0.
Construction of Green’s function: G (x, &)

_(a;+ax,0<x<¢
G(x,¢) _{b1+b2x,§SxS 1,

where a4, a,, by, b, are functions of €.
Since G (x, ) must be continuous at x= &, we get
a; + a§ = by + by¢ (3)

and the jump condition for G, (x, &) (* from the definition of Green’s function, the derivative
has a unique jump at x= ) gives

b, —a; =1 4)
using the boundary conditions

G(0,¢) =G,(1,8) > a; = b,
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Gx(0,§) = G(1,§) > a; =by + b, (5)
Solve the coefficients a4, a,, by, b,, from equations (3), (4), & (5). i.e.,

substitute a; = b, into the continuity equation b, + a,¢ = by + b,¢,

using jump condition b, = a, +1=>a,+1=b; + ¢

using a, = b; + b, > b, =& — 1.

Sincea; = by,ay = £ —1

using b, —a, =1, wegeta, = & — 2.

using a, = b; + b, = by = -1

. _(E-D+(¢—-2)x, 0=x=<¢
) G(x'f)_{—lﬂf—l)x, F<x<1

15.3 SUMMARY:

This chapter(lesson) provided the definition of Green’s function and its construction. It is
observed that the Green’s function provides a method to solve homogeneous ODE’s by
finding the solution to the equation with a delta function forcing terms. A theorem related to
the solution of the BVP and green’s function is stated along with its proof. The procedure is
explained well with the help of few examples and self-assessment problems were given at the
end.

15.4 TECHNICAL TERMS:

Green’s Function: Consider the homogeneous differential equation of order ‘n’ is L[y] =
Py()y™ + P (x)y™t + -+ B(x)y = 0 (1)

where the function Py(x), P;(x), ...., B,(x) are continuous on [a, b] ,Py(x) # 0 on [a, b] and
the boundary conditions are V;(y) = 0

Vi) =Tk, @y N @) + B, BTy D), 2)
where the linear forms V3, V5, ..., V,, in y(a), y*(a) ...y"* *(a), y(b), ...,y 1(b)

are linearly independent.

If the homogeneous boundary value problem given by equation (1) and equation (2) has only
a trivial solution y(x) = 0.

15.5 SELF-ASSESSMENT QUESTIONS:

Construct Green’s function for the following boundary value problem
Ly"=0;y(0) =y(D), y'(0) = y'(D).
2.9"+y=0;y(0) = y(m) = 0.
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3.V =0;y(0) =y'(0) =y"(1) = y""(1) = 0.

4.y" = 0;y(0) = y'(1) = 0;¥°(0) = y(D).

5. =0;y(0) =y(1) = 0;y"(0) = y'(1).

6.y" =0;y(0) =0, y(1) = y'(1).

7.y"+y" = 0;y(0) = y(1),y'(0) = y'(D).

8.y" —k*y =0(k # 0); y(0) =y(1) = 0.

9.¥" +y=0;y(0) = y(1),y'(0) = y'(1).

10.y™" = 0;y(0) = y(1) = 0,y'(0) + y'(1) = 0.

11.y" = 0;¥'(0) = hy(0),y'(1) = —Hy(1).

12. x2y" + 2xy' = 0; y(x) is bounded for x - 0,y(1) = ay’(1).

13. x3yV + 6x2y"" + 6xy" = 0; y(x) is bounded as x — 0,y(1) = y'(1) =0
14.y" + xy' —y = 0; y(x) is bounded forx - 0,y(1) =0

15.xy" +y' — iy = 0; y(0) is finite, y(1) =0

16. x%y" + xy' — n?y = 0; y(0) is finite, y(1) =0

17. x*(Inx — 1)y" —xy' +y = 0; y(0) is finite, y(1) =0

18.5-[(1 = 22| = 0;¥(0) = 0,y(1) is finite.

19.xy™ + y! = 0; y(0) is bounded, y(1) = 0,

20.y™ —y = 0; y(0) = y1(0),y(D) + 2y'(1) = 0.(consider the cases: A =1, =-1,| 1| # 1)

Answers:

1. It is obvious that the equation y"'(x) = 0 has an infinity of solutions y(x) = C under the
conditions y(0) = y(1),y'(0) = y'(1). Therefore, Green’s function does not exist for this
boundary-value problem.

2. Green’s function does not exist.

%(35—@,0952

3.6(x, &) = ;
—Bx-§,f<x<1
x(§-1)
4.G(x, &) = zl(x—x§+2§), 0<x<Et

[x(2-x)(E—2)+E, E<x<1

N low
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x(x-§HE-1)

— 2 '
36008 =) e
2

0<x<§

E<x<1

)

6. Green’s function does not exist.

7. Green’s function does not exist

sinh k(§-1) sinhkx

_ ksi
8.G(x,¢) = sin k€ sinh k(x—-1)

k sinh

10. Green’s function does not exist.

(hx+1)[H(§-1)-1]

11. G(x,§) = h+H+hH ,0<5x<¢
. ) - (hf‘l‘l)[H(x_l)_l] E<x<1
h+H+hH 1SS X =
a+1—%’osxsz
12.G(x, &) =
a+l-f<x<1
g-Ing—1- "8 0<x <t
13. G(x, &) =
(xf) % —lnx — 1 E(x-1) E<x<1
2x
14.G(x, &) {g(l—giZJOstz
. X, =
1 1
E(x—;),Est1
1
H(6-3) 0=x<t
15.G(x, &) = s(x_l) f<x<1
2 ) oS XS

16. G(x, &) =
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xIn

——xh _o<x<k
_ §2(In§-1)2’
76O =1 “NEY -
TR
“In==,0<x <%
18. G(x, &) = "
: Inr<x<1
2 1+4%
In?,0<x <k
19.6(x,8) =4, .
-In=,f<x <1
2 l
20. G(x, &) =
1-21 1
— T 52 _Zefler0<x<E (U #£1
2a+ S 28 e 0sx=g (d=1)
1-21 1
AT e oEx <x<l
20+ ° ¢ Fsxs

ForA=1,G(x,¢§) = — Le=17=¢l does not depend on /.
2

For A = —1, Green’s function does not exist
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LESSON- 16
USING GREEN’S FUNCTION IN THE SOLUTION
OF BOUNDARY-VALUE PROBLEMS

OBJECTIVES:
Learn to Solve Boundary Value Problems by Using Green’s Function.

STRUCTURE:
16.1 Introduction
16.2 Summary
16.3 Technical Terms
16.4 Self-Assessment Questions
16.5 Suggested Readings
16.1 INTRODUCTION:
Let there be given a non-homogeneous differential equation
LIyl = po(x)y ™ (x) + p1(0)y "D )+ + pp(0)y(x) = f(x) (1)
and the boundary conditions

Vl()/) = 0! VZ(Y) = 0! an(y) = 0, (2)

As in lesson (15), we consider that the linear form V3, V,, ..., V;, in
y(a),y'(a) ..y® Y (a),y(b),y'(h) ...,y V(b) are linear independent.

16.1.1 Theorem:

If G(x, §) Green’s function of the homogeneous boundary value problem L[y] =0, V;(y) =
0,(k =1,2,3,...,n).

then the solution of the boundary value problem (1)-(2) is given by the formula
y@) = [ 6068 £(8) dé 3)
16.1.2 Example 1:
Using Green’s function, solve the boundary value problem
y'(x) —y(x) =x, (1)

y(0)=y(1)=0 )
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Solution: a) Let us first find out whether Green’s function exists for the corresponding
homogeneous boundary value problem

y'(x) —y(x) =0, (19
y(©0) =y(1) =0 (2"

It is obvious that y; (x) = e*, y,(x) = e™* is the fundamental system of solutions of the
equation (1"). Hence, the general solution of the equation is

y(x) = Ae* + Be™

The boundary conditions (2) are satisfied if and only if A = B = 0, i.e., y(x) = 0. Thus,
Green’s function exists.

b) It can readily be verified that

sinh x sinh(§-1)

6.0) pry , 0<x<§ 3)
X = . .
’ sinh ¢ sinh(x—1)

—n E<x<1

is Green’s function for the boundary value problem (1) - (2").

c) We write the solution of the boundary value problem (1) - (2) in the form
1
Y = [} G(x, ) € d¢, )
where G (x, ¢)is defined by formula (3).

Splitting up the interval of integration into two parts and substituting from (3) into (4) the
expression for Green’s function, we obtain

_ (¥sinh¢sinh(x — 1) Lsinh x sinh(¢ — 1)
y() = j;) sinh 1 § dé + L sinh 1 §ds
y(x) =oE (e sinh § d + 20— [ Esinh (£ — 1) d€ (5)

sinh

But fox & sinh & dé = x cosh x — sinh x,
1
f &sinh (6§ —1)dé =1 —xcosh(x — 1) + sinh (x — 1)
X

and therefore

1
y(x) " sinh1

{sin h(x — 1) [x cos hx — sin hx] +
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sinh x
sinh 1 x

sinhx [1 — x cosh(x — 1) + sinh(x — 1)]} =

Here, we take advantage of the formula

sinh(a + ) = sinha cosh § + cosh a sinh 8
and also the oddness of the function sinh x.
Direct verification convinces us that the function

_ sinh x
" sinh1 x

y(x)
satisfies equation (1) and the boundary conditions (2).

16.1.3 Example 2:

Reduce to an integral equation the following boundary-value problem for the nonlinear
differential equation:

y"'(x) = f(x,y(x)), (1)
y(0)=y(1)=0 (2)
Solution:

Constructing Green’s function for the problem

y'(x) =0, 3)
y(©0)=y(1) =0 2)
the general solution of the equation (3) is

y(x) = A+ Bx
and we find Green’s function is

_(E=Dx, 0<x<%
G(x'f)_{(x—l)f, E<x<1

Regarding the right side of equation (1) as the known function, we get

y(@) = [ 6 OF (& () d& )

Thus, the solution of the boundary value problem (1) — (2) reduces to the solution of a
nonlinear integral equation of the Hammerstein type (see section ), the kernel of which is
Green’s function for the problem (3)-(2). The significance of the Hammerstein- type integral
equations lies precisely in the fact that the solution of many boundary value problems for
nonlinear differential equations reduces to the solution of integral equations of this type.
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16.1.4 Example 3:

Solve the boundary value problem using Green’s functiony”’ +y = x, y(0) =y (E) =0

Solution: The boundary value problem is
y't+y=x,
Y
y(0) =y (;) =0
Consider the boundary value problem is

y'+y=0,
y(©0) =y(3)=0

The general solution of equation (3) is
y(x) = Acosx + Bsinx

and we find Green’s function as
A, cosx + Bysinx, for

0<x<¢
G(x, ) = A, cosx + B, sinx, forESxS%

Applying boundary conditions,

we obtain G(0,¢) = G (g,f) =0

thus,
B;sinx, for0<x <¢
G(x,$) = {Az cosx, for<x <=

n,
2

since G (x, &) is continuous at x = ¢&.

16.2 SUMMARY:

2

(D
(2)

3)
(2)

(4)

This lesson is the extension of the topics discussed in the previous lesson. This lesson
provides a method to solve Boundary value problem by using Green’s function. Few
examples were given to illustrate the method to convert a given BVP to its equivalent integral
equation and there by its solution is obtained by using Green’s function. To help the reader in
better understanding of the discussed topics self-assessment problems were provided at the

end and their answers for checking.

16.3 TECHNICAL TERMS:

GREEN’S FUNCTION: Consider the homogeneous differential equation of order ‘n’ is

Lly]l = Po(x)y™ + PL(x)y" 't + -+ B (x)y = 0 (1)

where the function Py(x), P, (x), ..., B,(x) are continuous on [a, b] ,Py(x) # 0 on [a, b] and
the boundary conditions are V;(y) = 0

Vi(y) = Ty a" " N @) + 2 BTy (D), 2)
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where the linear forms V3, V5, ..., V,, in y(a), y*(a) ...y* *(a), y(b), ...,y 1(b)

are linearly independent.

If the homogeneous boundary value problem given by equation (1) and equation (2) has only
a trivial solution y(x) = 0.

16.4 SELF-ASSESSMENT QUESTIONS:

Solve the following boundary value problems using Green’s function:

Ly =1y0) =y@=y"()=y"@®)=0.

2.xy" +y ' =x;y(1) =y(e) = 0.

3.y"+m2y = cosmx ;y(0) = y(1),y'(0) = y'(1).
4,y" —y =2sinh1; y(0) = y(1) =0,

59" —y=-2e%y(0)=y (0),yD)+y () =0.

6.y +y=x%y(0) =y (3)=0.

Answers:

.X'Z 2
1.y=z(x —4x + 6)

2.y

=%[(1—ez)1nx+x2—1]

3.y = i[(Zx — 1) sinmx

4.y = 2[sinh x — sinh(x — 1) — sinh 1]

5.y =sinhx + (I — x)e*

2
6.y=2cosx+(2—%)sinx+x2—2.

16.5 SUGGESTED READINGS:

1.

W

Problems and Exercises in Integral Equations, MIR Oybkusgers, Moscow, 1971 by M.
Krsnov, A. Kiselev and G. Makarendo.

Integral Equations and their Applications, John wiley & Sons, 1999, by Jerri, A.

Linear Integral Equation, Theory and Techniques, Academic Press, 2014 by kanwal R.P.
A first course in Integral Equations, 2" edition, World Scientific Publishing Co. 2015 by
Wazwaz, A.M.

Integral equations, Krishna Prakashan Media(P) Ltd., Meerut.

- Dr. Vinutha Tummala



LESSON- 17
BOUNDARY VALUE PROBLEMS CONTAINING
A PARAMETER:
REDUCING THEM TO INTEGRAL EQUATIONS

OBJECTIVES:

e To learn about BVPs containing a Parameter.
e Reducing BVPs with parameters to Integral Equations.

STRUCTURE:

17.1 Introduction

17.2 Boundary Value Problems containing a parameter:
Reducing them to Integral Equations

17.3 Summary

17.4 Technical Terms

17.5 Self-Assessment Questions

17.6 Suggested Readings

17.1 INTRODUCTION:

Integral equations form one of the most useful techniques in many branches of pure analysis,
such as the theory of functional analysis and stochastic processes.

It is one of the most important branches of mathematical analysis, for its importance in
BVPs in ODEs and PDEs. They occur in many fields of mechanics and mathematical
physics. Integral equations come from many physical problems, such as the radiation transfer
problem and the neutron diffusion problem. They also come as a representation formula for
the solution of differential equations. The differential equation can be replaced by an integral
equation with the help of initial and boundary conditions. Each solution to the integral
equation automatically satisfies the BCs.

17.1.1 Integral Equation: An integral equation is an equation in which an unknown
function, to be determined, appears under one or more integral signs.

An integral equation is called linear if only linear operations are performed in it upon the
known functions. For Example,

y(x) = £() + 4[] K, E)y(©) de )

b
ﬂ@=lfK&fW®ﬁE @
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17.1.2 Singular Integral Equation: When one or both limits of Integration become infinite,
or the kernel becomes infinite at one or more points within the range of integration, the
integral equation is called a singular integral equation. For example,

Yo = () +2 j e ¢l y (&) de

and f(x) = [(x — )% y(§) d¢, 0<a<l.

are called singular integral equations. The second equation represents Abel’s Integral
equation for a = —1/2.

17.2 BOUNDARY VALUE PROBLEMS CONTAINING A PARAMETER: REDUCING
THEM TO INTEGRAL EQUATIONS:

Many situations require the consideration of a boundary-value problem of the following type:
Lyl = Ay + h(x), (1)
V@) =0 (k=1,2,..,n) (2)

where

L(y) = po ()y™(x) +p()y™ V() + -+ p, (0)y(x)
V(@) = axy(@+a, Py (@) + -+ D yg ¢
B y0) 4By B) + -+ + BV y DB (k = 1,2, ...,m)

(the linear forms V;, V5, ..., 1}, are linearly independent); h(x) is a given continuous function
of x; A is some numerical parameter. For h(x) = 0, we have the homogeneous boundary—
value problem

Lly] = Ay, } 3)

V(@)=0(k=1,2,..,n)

Those values of A for which the boundary value problem (3) has nontrivial solutions y(x)
are called the eigenvalues of the boundary value problems (3); the nontrivial solutions are
called the associated eigenfunctions.

17.2.1. Theorem: If the boundary-value problem

Lly] =0, » }

V) =0 (k=12,.., O)

has the Green’s function G (x, §), then the boundary value problem (1) — (2) is equivalent
to the Fredholm integral equation

b
Yoy f GeoOYE dE +f(x)  (5)

where
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b
f) = f G (x, EM(E) dé ©)

In particular, the homogenecous boundary value problem (3) is equivalent to the
homogeneous integral equation

b
y@) = A f G(x, E)y(€) dE @

17.2.2. Note: Since G(x,¢) is a continuous kernel, the Fredholm theory is applicable to the
integral equation. Therefore, the homogeneous integral equation (7) can have at most a
countable number of characteristic numbers 4,,4,, ..., 4, ... which do not have a finite limit
point. For all values of A different from the characteristic values, the nonhomogeneous
equation (5) has a solution for any continuous right side f(x). This solution is given by the
formula

b
y(@) = A f RGo&DF(E) dE + F(x) ®)

Where R(x,&; A) is the resolvent kernel of the kernel G (x, £). Here, for any fixed values of x
and ¢ in [a, b] the function R(x,&; A) is a meromorphic function of 4; only characteristic
numbers of the homogeneous integral equation (7) may be the poles of this function.

17.2.3 Example: Reduce the boundary value problem
y'+ 2y = x, (D

y(©0) =y (3) =0 )
2
to an integral equation.

Solution: First, find the Green’s function G(x,&) for the corresponding homogeneous
problem:

y"(x) =0,

— (™= (3)
y(0) =y (5) =0
Since the function y;(x) =x and y,(x) = x —g are, respectively, linearly independent

solutions of the equation y"(x) = 0 that satisfy the conditions y(0) = 0 and y G) =0, we

seek Green’s function in the form

y1 (%) y2 ()
—_ 0<x<
GCx,¢) = 3’1(?;(52)( ) f
ZI8) T 20X) <y < =
14C S(—x—z

where

W) = ‘f §=3
1 1
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Thus,

<E€—1>x, 0<x<¢

G(x, &) =4 I (4)

(2e-1)e  exsl

Further, taking advantage of Green’s function (4) as the kernel of an integral equation, we
got the following integral equation for y(x):

L
2

() = F(0) — f G (x, E)y(©) dé

3
fo) = j G (x, )€ dE
0

= [ (Z-1)edg+ fx§(§—1)§d5= Ly Ty

Thus, the boundary value problem(1) — (2) has been reduced to the integral equation

s 1 2
Y +2A[7 GOy d§ = x* — —x
17.2.4 Example: Reduce the boundary value problem y"' = Ay + x2, y(0) =y (g) =0 to
the integral equation.

Solution: First, we find the Green’s function G(x,¢&) for the corresponding homogeneous

problem
T
y'() =0, y0=0=y(3)

y'(x)=¢
y(x) = Cix + G,

Now y(O) = 61(0) + Cz - Cz =0

y'(0) =Cy = C =1
yi(x) =x
() =6+

0o =a()+a
e

y'(E)z C, = (=1
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Boundary Value Problems...
y2(x) = x —g
Wronskian:
_ y1(&) (&) _ ' _

v =§-5 = WO =1

Green’s Function:

y1(X)y2($)

] Tw®
G008 = 1y @y

w($)

o
IA
=

IA

o
INA
=
IA
NS

( x(fn_g) 0<x<¢
_ 2
if(x—g)

Now, we reduce the integral equation to the required equation

/2
ye) = fe =4[ 6 y©ds
Here f(x) = x?

A A

() + 1 f 2608 y (©)de = f P60 £2de
0 0

I= fo TG00 O dE+ f a6 e
L= Jy(E-1)¢ gdg

= (2%—1)[{3 dé

= (-1
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= &-1)[]
hoEox

S ST

I =] Gy (x,§)§%d¢

A
2

= J:
2x m/2 /2
= 2 dg —x [ g2 dg

2y 54175/2 F_3-11/2

(2-1)xg?dg

T

=Tl 3
X 44X
mt 3
_ 2x|Tg x* g x°
T T e
4 5 3
]2=x__x__"_x
3 21 9
I=1+1,
x* s
~12 9%

Y@ + [P 68 y@©dE= T~ Tx.

9%
17.2.5 Example: Reduce the boundary value problem y" + Ay =e*, y(0) = y'(0),
y(1) = y'(1) to the integral equation.

Solution: First, we find the Green’s function G(x,§) for the corresponding homogeneous
problem

y'(x)=0 ,y(0)=y"(0), y(1) =y'(1)
y'(x) =4
y(x) =Ax+B
y(0) = A(0) + B then y(0) =B, y'(0)=Athen A=B, y;(x) =x+1
y(1) =A+Btheny'(1) =A, A=A+BthenB =0, y,(x) =x

Wronskian:

y1(©) ¥yl

Green’s Function:
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Y1(:V)(3;2)(x) 0<x<é
(08 = Ny ©r© e
w(®) s=x
(x+1) ¢ 0<x< ¢
G(x,¢) {(§+1)x F<x< 1

Now, we reduce to an integral equation
y() = f00) =1 [; 6 Oy@) dE,
f(x) = e*

1
I= | Gx,&)eéd
L (x, ©)ef de
=[0G (x,9efds + [ G, (x,&efdE
I, = fxx(§+1)§efdf
0

= x[ [, et dg + [; et dg]
= x[({eE - ef]z + [ef]z

= x[xe*]

1 1
12=f E(x + 1e’dé = (x+1)f febd¢

= (x + D[Eef — €]
= (x + 1)[—xe* + e*]
= —x2%e* +e*

[= 1 +1,= e

Y + A f, 6, OY(&) dE = e*.
17.3 SUMMARY:

In this section, we learnt about converting the BVPs containing a numerical parameter A to a
Fredholm integral equation with the help of Green’s function. A few examples and the
fundamental theorem related to BVPs with Green’s function, which is equivalent to the
Fredholm integral equation, were discussed for the better understanding of the reader.
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17.4 TECHNICAL TERMS:

Green’s function, Fredholm integral equation.
17.5 SELF-ASSESSMENT QUESTIONS:

Reduce the following boundary value problems to integral equations.

Loy"+dy=2x+1, y(0)=y'(1), y'(0) =y(D).
2 ymr =y +1, y(()) = y'(O) =0, y”(l) = y”'(l) = 0.
2
3. "+ Ty =y +cos=, y(=1) =y(1), y'(-1) =y'(1).
4. yIII + Ay — Zx, y(O) — y(l) = O’ y’(O) = y’(l)

Answers to Self-Assessment Questions:

1 y() = —Af; 6(x,) y(@) d +3(2x® +3x2 —17x - 5),
_(E-x+E-1, 0<x<¢
G(x,f)—{ E-Dx-1, é<x<1

2. y(@) = A[; 6O y(©) dé + L (x? — 4x +6),

2

%(BE—x), 0<x<¢
52
3(336—5), fSXSl

G(x,8) =

X

3. y(x) = Af_llG(x,f) y(&) dé +£ sin”z—x+%cos7,
lsinz({—x), —1<x<¢

G ) _Jm 2
(:5) %sin% x=¢§), ¢&<x<1

4 y(x) =-1[) 6§ ydE + —x(x - DE?+x - 1),

“x(x—E-1), 0<x<¢

G(x, =
Ot —0- 1, £<x <1

17.6 SUGGESTED READINGS:

1. M. D. Raisinghania, Integral equations and Boundary Value Problems, S. Chand and
Company Pvt. Ltd., 2007.

2. Shanti Swarup, Integral equations, Krishna Prakashan Pvt Ltd, Meerut, 2003.

3. M. Krasnov, A. Kiselev, G Makarenko, Problems and Exercises in Integral Equations,
MIR Publishers, Moscow, 1971.

4. M. Rahman, Integral equations and their applications, WIT Press, Southampton,
Boston, 2007.

- Dr. Madhusmita Tripathy



LESSON- 18
SINGULAR INTEGRAL EQUATIONS

OBJECTIVE:

e To learn about singular integral equations.
¢ Finding eigenvalues and eigen functions of singular integral equations.

STRUCTURE:

18.1 Introduction

18.2 Eigenvalues and Eigenfunctions of Singular Integral Equation
18.3 Summary

18.4 Technical Terms

18.5 Self-Assessment Questions

18.6 Suggested Readings

18.1 INTRODUCTION:

This section is concerned with singular integral equations that has enormous applications in
problems including fluid mechanics, bio-mechanics, and electromagnetic theory. An integral
equation is called a singular integral equation if one or both limits of integration becomes
infinite, or if the kernel K (x, t), of the equation becomes infinite at one or more points in the
interval of integration.

18.2 EIGENVALUES AND EIGENFUNCTIONS OF SINGULAR INTEGRAL
EQUATION:

The following integral equation

b
P(x) = f(x) +/1f K(x,t) o(t) dt (1

is singular if the interval of integration (a,b) is infinite or the kernel K(x,t) is non-
integrable in the sense of L, (£1).

In case of singular integral equations, if the kernel K (x, t) is continuous in Q { a < x,t < b}
and a and b are finite, then the spectrum of the integral equation is the set of characteristic
numbers and for every characteristic number there corresponds at most a finite number of
linearly independent eigenfunctions (the characteristic numbers can have a finite
multiplicity). For singular Integral equations, the spectrum may be continuous. It means that,
the characteristic numbers may fill the whole intervals, and there may be characteristic
numbers of infinite multiplicity. We will discuss this through an example.

Considering the Lalesco-Picard equation
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000 = 2 f et () at @

The kernel of this equation, K (x,t) = e”™~tl | possesses an infinite norm,

400 400 +00 ~+00 + o0
J f Kz(x,t)dxdt=J f e‘2|x‘t|dxdt=J dx

If the function ¢(x) is twice differentiable, then the integral equation (2), can be written in
the form

px) = 2 [e"‘ Jx et p(t)dt + e* J+we‘t<p(t) dt]
- x

which is equivalent to the differential equation

@"(x)+ (22 = Do) =0 (3
The general solution of equation (3) is of the form

px) = Cie™ + Ce™™ (4)
with C;,C, arbitrary constants, and

r=v1-21 (5)

For the integral in the right hand side of equation (2) to exist, it is necessary that |Re r| <
1, thatis, A > 0 for real A. Hence, in the domain of real numbers the spectrum of equation
(2) fills the infinite interval 0 < A < 4+o0o. Every point of this interval is a characteristic
number of equation (2) of multiplicity 2. However, the associated eigenfunctions do not
belong to the class L, (—o, + ).

It follows from equation (4) that for A > %, the eigenfunctions are
sin v24A —1x,cos V24 — 1 x.

For 4 =%,WC obtain ¢(x) =C; + C;x. Thus, we conclude that for A > =

, the

N

eigenfunctions are bounded in (—o0, +00).

However, if the real part v1 — 21 is positive and less than unity, then formula (4) is valid,
for any choice of the constants, C; ,C, (CZ + CZ? # 0) solution of the integral equation (2)
unbounded on (—oo, + ).

The above example illustrates the essential role of the class of functions in which the solution
of the integral equation is sought.
Thus, if we seek the solution of equation (2) in the class of bounded functions, then values of

1 ..
1> Sare characteristic.

But if the solution of equation (2) is sought in the class of L, (—oo, + o) functions. Then,
for any values of 4 equation (2) has only the trivial solution ¢(x) = 0, i.e., not one of the
values of A is characteristic for solution in L, (—o0, + o0).
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Let F(x) be a continuous function which is absolutely integrable on [0, +o0] and having a
finite number of maxima and minima on any finite interval of the x-axis.

Constructing the Fourier cosine transform of this functions:

FL(A) = \/% f0+°°F(x) cos Ax dx

Then

F(x) = \E [, Fy(2) cos Ax dA

Adding these two formulas, we get

FL(x)+ F(x) = \/gjo Oo[Fl(t) + F(t)] cosxt dt

That is, for any choice of the function F(x) satisfying the above indicated conditions, the
function @(x) = F;(x) + F(x) is an eigenfunction of the integral equation

px) =2 fo+°° @(t) cosxt dt (6)
corresponding to the characteristic value A = \/%

Since F(x) is an arbitrary function, it follows that for the indicated value of A, as given in
sequation (6) has an infinite number of linearly independent eigenfunctions.

18.2.1 Example: Consider the integral equation
9(x) = 1[, @(t) cosxt dt (7)

Taking F(x) = e~ (a > 0), Then F;(x) = ﬁ foooe‘“t cosxt dt = [> =2

m a?+x2’

a

)

T a?+x?

So, 9(x) = F(x)+F, (x) = e~ + \F

Substituting ¢ (x) int equation (7), we have

2 a 0 2 (®acos xt
e~ax 4 - = A f e %cos xtdt + _f 2 2 dt (9)
T a’+x 0 mJ a’+t

As already has been pointed out

f e~ cosxt dt = ——
0 ac+x

The second integral on the right of (9) may be found by using Cauchy’s theorem on residues:
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—ax

f"" cos xt ds — T
az + t2 " 2a

From (9) we thus obtain

oy 22 _ |-t 4 [Fear (10)
Ta?+x2 | |a?+ x2 2

IfA = \/% , then the function

2 a
Py =t +\/;a2+x2 0

will be a solution of the integral equation (7). Hence, 1 = \/;15 a characteristic number of

—a 2 a
px)=e"* + j;m )

is the corresponding eigenfunction. Since a is any number greater than 0, the characteristic

(7), and the function

number A = \E is associated with an infinity of linearly independent eigenfunctions (8).

Similarly, we can show that equation (7) has a characteristic number 4 = — \E associated

—ax 2 a
N @>0

18.2.2 Example: Show that the integral equation ¢@(x) =41 foooq)(t) sinxt dt has

with the eigenfunctions

characteristic number A= + \/% of infinite multiplicity and find the associated eigen
functions.

Solution: Let us consider the integral equation

pkx) = Afmq)(t) sinxt dt (D
0

We take F(x) = e~ * (a > 0),then F;(x) = \/%fome—at sinxt dt = \/% X

a?+x?

X

Further, ¢(x) = F(x) + F;(x) = e ™ + \F

m aZ+x?’

Substituting ¢ (x) into equation (1), we have
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_ax X —at oo t sinxt
+ \/; pE —A[fo sinxt dt +If e ]

We know that the first term f e % sinxt dt =

2+X2 ‘
Second term (by standard integral table [ O°° % = ge‘“" .

- 2 x x N
Thus,e“x+\/: > 2=/1[2 2+\/:~—e ax].
T a“+x a“+x T 2
. 2 x
—-ax 2
1.C. e - =
’ + \/; a?+x? [az+x2 + ]

Now comparing coefficient of e~** on both the sides, we have A - @ =1l.ie, 1= %

Similarly, comparing the coefficient of aL on both the sides, we obtain 4 = \E So, we

24 x2

conclude that the chosen function ¢ () satisfies the integral equation exactly when 4 = \/% .

X

Hence A = \/% is a characteristic number and the function @(x) = e™* + I

T a?+x?

0 will be the solution of the integral equation (1).

B

In a similar manner, we can show that equation (1) has a characteristic number A = —

x
a?+x2’

. . : . _ 2
associated with the eigenfunctions e~%* — \/;

18.2.3 Example: Show that the integral equation ¢(x) = A fooo Jo (2vxt)p(0)dt has

characteristic number A= +1 of infinite multiplicity and find the associated
eigenfunctions. [where J,(z) is a Bessel function of the first kind.]

Solution: Given ¢ (x) = 4 fom]v (2,/xt) p(t)dt

Using the orthogonality result for the Hankel Kernel

[ 1 @, 2yt = o~

This means that ¢(t) = /t ],,(2\/&) are eigenfunctions of the operator

T(p)(x) = fooo ]U(Z\/H)(p(t)dt with the corresponding eigenvalue 1 = 1.

As Tt J,(2vat) = Vx],(2v/ax) and we define ¢(t) =Vt ,J,(2Vat), a>0
So, fy Jo(2Vx0) p(0)dt = Vx J,(2vax ) = ¢().
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Hence ¢(x) = fooo I (ZM)<p(t)dt for A = 1. As the integral operator is self-adjoint, the
negative eigenvalue is symmetric for real K. If 1 =1 is an eigen value, then A= —1is
also an eigenvalue. An the corresponding eigenfunctionis ¢(t) = /t ],,(2\/%), Va>O0.

18.3 SUMMARY:

In this section, we learnt about singular integral equations. Here, we try to find eigenvalues
and eigenfunctions of singular integral equations. Few examples are discussed for the better
understanding of the reader. In computing the eigenfunctions we take the help pf Fourier
transform and Cauchy integral equations.

18.4 TECHNICAL TERMS:

Eigenvalues, Eigen functions, Hankel Kernel, Spectrum, Fourier transform, Cauchy
integral equation.

18.5 SELF-ASSESSMENT QUESTIONS:

1. Show that for the integral equation ¢(x) = A fxoo (x;_'t)n @(t)dt, any number A for which

one of the values "3/ has a positive real part is a characteristic number.

2. Show that the Volterra integral equation ¢@(x) = A fox (l - %) @(t)dt, has an infinity of

t
characteristic numbers A = & + in, where the point (§,1) lies outside the parabola

§+n*=0.
18.6 SUGGESTED READINGS:

1. M. D. Raisinghania, Integral equations and Boundary Value Problems, S. Chand and
Company Pvt. Ltd., 2007.

2. Shanti Swarup, Integral equations, Krishna Prakashan Pvt Ltd, Meerut, 2003.

3. M Krasnov, A Kiselev, G Makarenko, Problems and Exercises in Integral Equations,
MIR Publishers, Moscow, 1971.

4. M Rahman, Integral equations and their applications, WIT Press, Southampton, Boston,
2007.

5. Erwin Kreyszig, Advanced Engineering Mathematics, Wiley International Publication,
2010.

6. J.B. Conway, Functions of One Complex Variable, Narosa Publication, 1973.

7. R. V Churchill, J. W. Brown, Complex variables an Applications, McGraw Hill
Publication, 1990.

- Dr. Madhusmita Tripathy



LESSON- 19
SOLUTION OF SINGULAR INTEGRAL

EQUATIONS

OBJECTIVE:

e To learn about the solution of singular integral equations.

e Use Efros theorem as generalized product rule to get solution of singular integral
equation.

e To use Mellin Transform for solution of certain singular integral equations.

STRUCTURE:

19.1 Introduction

19.2 Efros Rule for Singular Integral Equations

19.3 Mellin Transform Method for Singular Integral Equation
19.4 Summary

19.5 Technical Terms

19.6 Self-Assessment Questions

19.7 Suggested Readings

19.1 INTRODUCTION:

In this section, we will learn about two important techniques for solving a certain type of
singular integral equations. The first type uses the generalized product rule by Efros to
obtain the solution of the singular integral equation. The second method is based on Mellin
transform to extract the solution of the singular integral equation.

19.2 EFROS RULE FOR SINGULAR INTEGRAL EQUATIONS:

19.2.1 Theorem (Generalized product rule by Efros):

Let @(x) = ®(p), u(x,7) = U(p)e ™®,

where U(p) and g(p) are analytic functions.

Then ®(q, @))U(p) = ;" @(Dulx, 7)dr ¢y

Ifu(x,7) = u(x — 1), then g(p) = p and we obtain the ordinary product
PG = | p@ut - e
0

_TZ
If Ulp) = %, q(p) = \/5, then u(x,7) = \/%_xeﬂ, 2)
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Therefore, if ®(p) = @(x), then by the Efro’s theorem, we find the original function for
20P) s
VP

o(Jp) _ ]
Jp v

19.2.2 Example: Solve the integral equation

p()eir - ar (3)

1 © ;2
\/ﬁjo e4x o(t)dt =1 4

Solution: Let ¢(x) = ®(p). Taking the Laplace transform of both sides of equation (4),
we get, by formula (3),

o(Jp) _1
Jp P
Whence

*@) _ 1 —1_
= op O ®(p) S 1

Hence, ¢(x) = 1 is a solution of equation (4).

. R _
19.2.3 Example: Solve the integral equation = fo e @(t)dt = e™*

Solution: Let ¢(x) = ®(p)

—¢2

Given Fe wxe(t)dt = e”* (5

Taking the Laplace transform on both sides of equation (5), we obtain

L [L ejl—ifp(t)dtl = Lle™™]

VX
_¢2 .
But we know that ‘{)_ \/_f esx@(t)dtand Lle ] = -

oGp) 1
\/5 Cs+1

S=\/§=> p= s

D(p) 1 -1 [
— = = CcOSX L
P p+12 oL

52+a2] = cosat ]

So, @(x) = cosx is the required solution.

: .1 o =t .
19.2.4 Example: Solve the integral equation = fo e+ @(t)dt = 2x — sinhx
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Solution: Let ¢p(x) = ®(p)
(9] ~t?
Given \/%fo e @(t)dt = 2x — sinhx (6)

Taking Laplace transform on both the sides of equation (6), we obtain

—t2

L L/%_x,];)w e4x (p(t)dtl = L[2x — sinhx |

o(G/p) 2 1

Jo  p? p?-1

®(p) 2 1

14 p* p*-1

2p p

o) = =~
p _ps p4—1

D) = - ——t
P B T - D@+ 1)

p _ Ap+B Cp+D
(P2-1)(P2+1)  (p?-1)  (p?+1)

Consider
p=Ap+B)p*+1)+(Cp+D)@P*-1)
p=UA+C)p*+A@—-Cp+(B+D)p?+B—-D

2 p/z ) p/z
p* @®*-1) @*+1)

= x* — % (coshx — cosx), which is the desired solution.

19.2.5 Note: It is known that

n _1
tz J,(2vt) = pnlﬂ e? (n=012,...) (7)
Where J,,(z) is a Bessel function of the first kind of order n. In particular,
. 1
Jo(2vt) = er 8)

By virtue of the similarity theorem
Jo(2Vxt) =-e ©9)

It follows from Efro’s theorem that q(p) = % .
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19.2.6 Example: Solve the integral equation
o(x) = xe~¥ + Af J(VEe®d: (A=D1  (10)
0

Solution: Let ¢(x) = ®(p). Taking the Laplace transform of both sides of (10) and
considering the Efros theorem, we find

®(p) ! +,11c1><1) (11)
p = — [— —_
®+1* p \p
Replacing p by %, we get
1 p?
® (—) =L L pop (12)
p/ (p+1)°

From equation (11) and (12), we find

O(p) = +i[ L cb()]
P+ "plo+n2z TP

or

o) = 1 1 Ap
) =17 [(p+1)2 + (p+1)2]

Hence, ¢(x) =e™* (L + -2

T /12) is the desire solution.

19.2.7 Example: Solve the following integral equation

@(x) = cosx + Afoojo (2vxt)p(t)dt
0

Solution: Given that ¢(x) = cosx + A fooojo (2vxt)p(t)dt (13)
Taking Laplace transform of both sides in equation (13), we obtain

p
p*+1

D(p) = 42 %CD (1) (14)

p
Replacing p by 1/p in (14), we obtain

o (D)= o2+ ap@(p).

P 1/p?+1
y_ _p
@(3) = 7+ a0 20 (15)

Now using equation (15) in (14), we have

p n p
p?+1 pll+p?

d(p) = + Ap @(p)
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O() = P+ o+ 2O(p)
P p?+1 1+ p? P
p A
1-29)d(p) = +
A=@) = S+

Applying inverse Laplace Transform, we obtain the require solution as,

p(x) =

1
T [cosx + Asinx].

19.2.8 Example: Solve the following integral equation

@ (x) = sinx +/1fw\/§]1(2\/ﬁ)<p(t) dt
0

Solution: Given that

@ [x
p(x) = sinx + Af \E}l(zvxt )go(t) dt (16)
0
Applying Laplace transform to both the sides, we obtain
O(p) = — +/1<1)c1>(1) 17

Replace p by 1/p in equation (2), we get

2
®(2) = ==+ 220() = L+ Ap*®(p)

— 241
pZ+1 P

(18)

Using equation (18) in (17), we obtain

®(p) =

1 p? 5

D) = —— + —2—+ 12d(p)

p?+1  p?+1

O(p) — 12 (p) = (A + 1) (m)

A= 10@) = 2+ D ()

Applying inverse Laplace transform on both sides of the above equation, we get
p(x) = % sinx = % as the require solution of the integral equation.
19.3 MELLIN TRANSFORM METHOD FOR SINGULAR INTEGRAL EQUATION:

Let a function f(t) be defined for positive t and let it satisfy the conditions
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1 [oe)
f IF(O)] £971 dt < +oo, j IF(O)] £72 71 dt + oo (1)

for a proper choice of the numbers o; and o0,. The function
F(s) = fooof(t)ts_ldt (s=o0+it,00 <0 <o0y) (2)

is the Mellin transform of the function f(t). The inversion formula of the Mellin
transformation is

1 o +i o
f@) = ﬁf F(s)t™Sds (t>0,00 <0 <03) (3)
o —ic

Where the integral is taken along the straight line [: Res = ¢ parallel to the imaginary axis
of the s plane and is understood to be the principal value. When the behaviour of the
function f(t) ast — 0 and t — oo is known, say from physical reasoning, then the
boundaries of the strip (o;,0, ) may be established from the conditions of the absolute
convergence of the integral (2). But if the behaviour of f(t) is only known at one end of the
interval (0, +0), say as t — 0, then only gy is defined, the straight line of integration [ in
(3) must be chosen to the right of the straight line ¢ = ¢ and to the left of the closest
singularity of the function F(s).

The Mellin transformation is closely associated with the transformations of Fourier and
Laplace, and many theorems which refer to the Mellin transformation can be obtained from
the corresponding theorems for the Fourier and Laplace transformations by means of a
change of variables. The convolution theorem for the Mellin transformation is of the form

u{ [ rwe () = ror 0 @

From this, we can conclude that the Mellin transformation is convenient for the solution of
integral equations of the form
* o x dt
= K(=)p(t)— 5
00 = £+ | K(F)e®F (5)
Let the function @(x), f(x) and K(x) admit the Mellin transformation, and let ¢(x) —
®(s), f(x) — F(s),K(x) — K(s); the domains of analyticity of F(s) and K(s) have a

common strip o7 < 0 < 0y. Taking the Mellin transform of both sides of equation (5) and
utilizing the convolution theorem (4), we obtain

®(s) = F(s) + K(s) - @(s) (6)
Whence
F(s) -
®(s) = 1_—1,55(5)(1((5) £ 1) %)

This is the operator solution of the integral equation (5). Using the inverse formula (3), we
find the solution ¢ (x) of this equation:
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1 (o F(s)
p(x) = i s 1R E(s)x ds (8

19.3.1 Example: Solve the integral equation

—ax , 1o X dt
P =e" T +1 [Tt oL (a>0) )
Solution: Applying the Mellin transform to both sides of equation (9), we obtain

M{e~®} = [“e xS"ldx = a7 [“e 225" dz = %E F(s),

L —1r =K 0
M{Ee }_5 (s) = R(s)(Res > 0)

so that the domain of analyticity of F(s) and K(s) coincide. The operator equation
corresponding to equation (9) will have the form

O %F(s)@(s) (10)

P(s) = e

Whence
I'(s)
as [1 — %F(s)]

d(s) =

Using the inverse formula (8) we obtain

) 1 [°F°  T(s) ds
X)) =5— :

(o> 0) (11)

We find the integral (11) with the aid of Cauchy’s integral formula.

For ax > 1, we include in the contour of integration the semicircle lying in the right half-
plane. In this case, the sole singularity of the integrand lies at the point s = 3 at which

1
1—5 I'(s)=0

Then
O =gy

Where 1(3) is the logarithmic derivative of the I' function at the point s = 3:

_r'e) 3 . )
Y(3) = Ta —2 YV Euler’s constant.

For ax < 1, the singularities of the integrand are the negative roots of the function 1 —
% I'(s), so that
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- 1
p(x) =-2 ,Z:l—(ax)sk 0G0 ax <1

where Y(s,) are values of the logarithmic derivative I'(s) at the points s = s; (k =
1,2,..).,

Finally, we obtain the solution as,

4
| e @t
p(x) = °° 1
-2 Z —_—, ax <1
L (@) (s
19.3.2 Example: Solve the integral equation
0() =)+ | KGuDe@de (12)
0

Solution: Multiplying both sides of (12) by x°~1 and integrating with respect to x between
the limits 0 and oo, we get

o)

p(t)dt fooK(xt) x5 ldx

0

j°° p(X)x*tdx = joof(x)xs‘ldx +f

Denoting the Mellin transform of the functions ¢@(x), f(x),K(x) by &(s),
F(s), K(s), respectively, we obtain,

b (s) = F(s) + R(s) f "ot t-sdt (13)

It is easy to see that | Ooo () t=Sdt = ®(1 —s) so that equation (13) will be written in the

form
d(s) = F(s) + ®(1 —s)K(s) (14)
Replacing s by 1 — s in (14), we get
®(1—s)=F(1—5s)+P()K( —s) (15)
From (14) and (15) we find
®(s) = F(s) + F(1 —s)K(s) + (s)K(s) - K(1—s)
Whence

_F(s)+F(1—59)K(s)
T 1-K(s)- K(1—5)

d(s) (16)

This is the operator solution of equation (1). Using the inverse Mellin formula, we find

1 [(H°F(s)+F(1-9)K(s) _,

YO =) T-R®RA=5)

ds 17
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which is a solution of the integral equation (1).

19.3.3 Example: Solve the integral equation

px) = f(x) +/1\/§fm(p(t) cos xt dt (18)
Ty

Solution: We have

~ 2 (®
K(s) = Aj;f x571 cosx dx (19)
0

To compute the integral (19), we take advantage of the fact that
f e *x?71 dx = I'(2) (20)
0

If in formula (20) we turn the ray of integration up to the imaginary axis, then using Jordan
lemma for 0 < z < 1, we arrive at the formula

f e ¥ x?ldx = e 2 I['(2).
0
Separating the real and imaginary parts, we get

°° nz
f x?7 1 cos x dx = cos 7.1‘(2), (21)
0

« nz
f x? 1 sin xdx = sinT.F(z) (22)
0

Thus, by virtue of equation (19) and (21), we get

K(s) = A\/% I'(s) cos % (23)

~ ~ 2 s 2 S
K(s)-K(1—s)= A [—T(s)cos —-A |-T(1 —5)sin —
T 2 T 2

A2 S S
=— 2cos — sin —T(s)T(1—5s) =A?
T 2 2

since I'(s) - T'(1 —5) = ﬁ Hence, if M{f(x)} = F(s), then by formula (16) (for |A| #
1)

Also,

F(s)+F(1-5)K(s)

(D(S) = 1- A2

and therefore
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p\xX) = 27_[1(1 _ /12) —ico S S T S) CoS 2 X s =
— 1 . L g+ico —s
T 1-12 2mi Yo—io F(s) xSds+
A E L og+ioco ms B .
1- 22 \|m 2miYo—i F(S) cos 2 F(l S)x ds (24)

In the second integral on the right of (24) replacing F(1—s) by |, Ooo f()t™ dt and we have
1—.fa+ioo F(s) x~Sds = f(x).

2mi Jo—io
Then formula (24) can be rewritten as

f(x)

o - LA 2
PO =TT eI 2

m 2mi

o+ico s 0
f ['(s) cos — (xt)~5ds f f(t)dt (25)
o—ioo 2 0

By Mellin’s inversion formula,
1 g+ioco S
o . I'(s) cos 7(xt)‘5ds = cos xt

So finally, we have

A 2 (*®
p(x) = 1f_(xiz + - AZ\/; f f(t) cosxtdt, (|A| # 1).
0

19.3.4 Example: Solve the following integral equation

px) =f(x)+ /1\/% fomtp(t)sinxt dt

P 4 _ E © o1 .. _ E ®© o 1 ..
Solution: We have K(s) = A\/;fo xS tsinxt dt = A\/;fo xS lsinx dx  (26)
To compute the integral (26) we take advantage of the fact that
fooo e ™ x? ldx =T(s) (27)

In equation (27), extending the ray of integration up to the imaginary axis and using Jordan
lemma for 0 < z < 1, we arrive at the formula

” —iX 4.z—1 — Zinz
e ¥ xildx = e 2 T(s) (28)
0

Now, separating the real and imaginary parts, we get

o -1 _ 4
J, X" tcosx dx = cos —T'(s) (29)
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fooo x* tsinxdx = sin% T(s) (30)
Thus, from equations (26) and (30)

R(s) =22 1(s) sinZ -
E(S)K(l —5) = ﬂ,\/% I'(s) sin%s . /1\/7 T'(1—s)sin (n(l s))

2
= ATZF(S)F(l —5) sin?sin(900 - ?)

_ A2 sm— cos = F(s)F(l —5)

A%, b4
= —SINTS | —
T sinms

= )2

If M{ f(x)} = F(s) then known formula (for || # 1)

F(s) + F(1 —s) K(s)

®(s) = 1- 22

1 o+ico 2 TS
p(x) = —f F(s)+ F(1—=5) |[-T(s) sin—|x"%ds
2mi ) T 2

og—ico

1 1 g+ico o+ico -
= [ —S . i _ _s
1—A?2mi L_. F(s)x™ds + — 2 2mi f ['(s)sin > F(1—s5s)x7%ds

Loo

In the second integral replace F(1 —s) by fooo f(Ht™%dt.

19.3.5 Note: —f"*‘°°F( Yx~Sds = f(x)

g—1Ll

Then we can write

p(x) = ffxiﬁl_l PE j%z;. L jmr(s) sm—(xt) Sds ] f®)de

By Mellin’s inversion formula,

g+ico

S
— I'(s)sin— (xt)™5 ds = sinxt
2T ) 5_ oo 2

p(x) = 1f£x;2 + T _A/lz\/% jooof(t) cosxtdt (|A] #1)

is the required solution.
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1
1+x2

19.3.6 Example: Solve the integral equation ¢@(x) = + \/iﬁ ) Ooo @(t) cos(xt) dt.
Solution: We write the equation in the form

1
1+x2°

() =f(x)+ 2 \/% J, @) cos(xt) dt, where f(x) =

A % = \/% then A = % and the kernel of the integral equation is cos(xt).

The solution of this type of equation is
A 2 poo
p(x) = % + m\/;fo f(t) cos(xt) dt

Substituting A = = and A% = %

Sl

We obtain the required equation @(x) = 2f(x) + 2 \/% fooo f(t) cos(xt) dt

2 4 o0 1
e ==+ |7J, mzcostxt)dt (32)
Solving fooo 1+1t2 cos(xt) dt by Fourier cosine transforms,

F.(x) = foof(t) cos(xt) dt
0

, x>0

j°° cos(xt) mw _,
= = —e
o 1+t 2

L[ ! ]—jw e gt =T >0
1+e2l~ ), 1ve2™72° 0 °

* cos(xt) ® glxt
[0, [
o 1+t o 1+1t2

S = —ix

“ cos(xt) s
f dt e ™
o 1+t?

™|

Putting in equation (32), we obtain

+ Jme™

() = 1+ x?

19.4 SUMMARY:

In this section, we discussed two different methods for the solution of certain type of
singular integral equations. The first type is based on Efros rule with Laplace transform
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technique to obtain the solution of singular integral equation. And the second method is
based on Mellin transform method. Few examples are discussed for the better understanding
of the reader.

19.5 TECHNICAL TERMS:

Efros product rule, Mellin Transform, Fourier transform, Laplace Transform, Gamma
Function, Bessel function.

19.6 SELF-ASSESSMENT QUESTIONS:

Solve the following integral equations:

w -t 2
\/%fo e @(t)dt = x3 + e,

o) ~t?
\/%—xfo esx @(t)dt = 5x — coshx.

) =—e*+ \/%fooo(p(t) cos(xt) dt.
Ce(x) =4x+ A\/%fooo @(t)sinxt dt.

. p(x) =e* + Afooo \/%]1(2\/5 )o(t) dt.
. @(x) = cosx + Afooojz (2vxt)p(t)dt.

Answers to Self-Assessment Questions:

')

1. p(x) = 3—x3 + cosh2x

5 ¢(x) =

6. ¢(x) =

1
1-A2

[eX* —A(e* —1)]

1
1-22

(cosx + Asinx)

19.7 SUGGESTED READINGS:
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MIR Publishers, Moscow, 1971.

M Rahman, Integral equations and their applications, WIT Press, Southampton, Boston,
2007.
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2010.
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LESSON- 20
APPROXIMATE METHODS

OBJECTIVE:

e To learn about three different approximation methods for solving integral equations.

e Replacing the kernel by a degenerate kernel and taking few terms of the Taylor series
expansion of the kernel, we approximate the integral. Also, we estimate the error in the
approximation.

o Method of successive approximation is used with a sequence of functions as an
approximation to the solution.

e Bubnov Galerkin method is used by choosing a system of complete functions which are
linearly independent as an approximation to the true solution.

STRUCTURE:

20.1 Introduction

20.2 Replacing the Kernel by a Degenerate Kernel
20.3 Method of Successive Approximation.

20.4 Bubnov-Galerkin method

20.5 Summary

20.6 Technical Terms

20.7 Self-Assessment Questions

20.8 Suggested Readings

20.1 INTRODUCTION:

In this chapter, we will learn about different types of approximation methods use to solve the
integral equations. Our focus will be on three different methods. The first method is based on
replacing the kernel with a degenerate kernel and using a Taylor series expansion. In the
second method, we choose a suitable sequence of functions successively as an approximation
to the integral equation. The third approximation method is the Bubnov-Galerkin method, in
which a suitable sequence of complete linearly independent functions is selected as an
approximation to the integral equation.

20.2 REPLACING THE KERNEL BY A DEGENERATE KERNEL:

Suppose we have an integral equation

b
o) = f() + A j K(x, ) o(t) dt )

with an arbitrary kernel K(x,t). The simplicity of finding a solution to an equation with a
degenerate kernel led to thinking of replacing the given arbitrary kernel K(x,t)
approximately by a degenerate kernel L(x,t) and taking the solution @(x) of the new
equation as
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b
wm=ﬁwwwam0¢@m: @

is also an approximation to the solution of the original equation (1). For the degenerate
kernel L(x, t) close to the given kernel K(x,t), we can take a partial sum of Taylor’s series
for the function K (x,t), a partial sum of the Fourier series for K(x,t), with respect to any
complete system of functions {u, (x)} which are orthonormal in L,(a, b). We shall indicate
some error estimates in the solution (1) that occur when replacing a given kernel by a
degenerate kernel.

Let there be given two kernels L(x,t) and K(x,t) and let it be known that f;lK (x,t) —
L(x,t)| dt <h

and that the resolvent kernel R; (x,t; 1) of the equation with the kernel L(x,t) satisfies the
inequality

b
f IR,(x,t; 1) dt <R
a

and, that |f(x) — fi(x)| < n. Then, if the condition 1 — [A|h(1 + |h|R) > 0, is satisfied,
then the equation

b
¢@)=4[K@mwa>m+f@)

has a unique solution @(x) and the difference between this solution and the approximate
solution @(x) of the equation

b
ﬂm=ﬁ&H%fLmﬂ¢@dt

does not exceed

N|A|(1 + |1|R)?h
1— (1 + |AIR)

lp(x) — @(x)] < (3)

where N is the upper bound of |f (x)].

For the degenerate kernel L(x, t), the resolvent kernel R (x, t; A) is found in the evaluation of
the integrals. If L(x, t) = Y31 X (x) Ty (t), then, putting

b
[ 1G0T dx = ase
a
We get
D(x,t; 1)

Ri(x,t;1) = DY)

4)

where



Integral Equations 20.3 Approximate Methods

0 X)) v Xa(®)
;)= | 1® 1=Aau - —Aay | )
T, (t) —Aan w1 —Aayg,
1-2Aa;;, —Aaq, - —Adag,
D) = | 1 1-Adp Ay | (6
—Aanq —Aan, - 1= Aayy,

The roots of D(A) are the characteristic numbers of the kernel L(x, t). Let
K(x,t) = L(x, t) + Alx, t) (7)

where L(x,t) is a degenerate kernel and A(x,t) has a small norm in some metric. Let
Ry (x,t), R, (x,t) be the resolvent kernels of the kernels K (x,t) and L(x,t), respectively,
and ||A]l, || Rell, Il Ryl be the norms of the operators with corresponding kernels. Then

o) = @COIl < AN L+ 1T R lD - L+ 1T RAD - £l 8)

The norm in the above formula (8) can be taken in any function space. The following
estimate holds true for the norm of the resolvent kernel R of any kernels K (x, t):

Il

IRl < ——
1— ] IK]].

©)

Let the function space C (0, 1) of continuous functions defined on the interval [0,1], then
1
Il = max [ kG0 de
osxs1 ),

Ifll = max|f @)l (10)

In the space of quadratically summable functions over the domain Q = {a < x,t < b},

1

b b 3
||K||S<f sz(x,t)dxdt>2,

1

b 2
11l < ( j £2 (x)dx) (11)

20.2.1 Example: Solve the following equation by replacing its kernel with a degenerate
kernel and estimate the error.

1
o(x) = sinx + J (1 —xcos xt) p(t) dt (D
0

Solution: Expanding the kernel K(x,t) = 1 — xcos xt in Taylor series, we get
x3t? x5t
K(x,t)=1—x+T— 24 + .- (2)
Considering the first three terms of the expansion (2) for the degenerate kernel L(x, t),
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x3t?
L) =1-x+ —— (3)
and solving the new equation
1 x3¢2
P(x) = sinx + f (1 —-x+ > > @(t) dt (4)
0
From equation (4), we have
@(x) = sinx + C;(1 — x) + C,x3 (5)
where
1 1 1
€= J @(t)dt, C; = E_f t2@(t)dt (6)
0 0

Substituting (5) in (6), we get a system of equations for determining the values of C; and C,.
We have

! 1.1
C1 =J [Slnt+ Cl(l_t)‘l' C2t3]dt = EC1+ZC2+1_COS 1,
0

1 1
C, = Ef [t2sin t + C,(t% — t3) + Cpt5] dt
0

1 1 _ 1
=—C; +—=C, +sin 1_1+E cos 1.

24 12
or
1C 1C =1 1
1T 2= cos 1, @
e+ 2, —sin14scos1-1
oz Gt G =sin 5 €os
Solving the above system, we get
¢, = 1.0031, C, =0.1674

and substituting these values in equation (5), we obtain
@(x) = 1.0031(1 — x) + 0.1674x3 + sinx .

The exact solution of the equation is ¢(x) = 1.
So, let us estimate || ¢ — @|| using the formula

o=@l <Al L+ RelD) - X+ 1T RLID - NIf ] ®
in the metric of the L, space. We obtain )

1( 2 1 1

Al Sﬁ{fo foxlotsdxdt} = 72\/H< 538
1

1.1 3
||K||S{f f[l—xcos xt]zdxdt}
0 Jo
={2cosl—16052+isin2—5}5<§,
8 6 6 5
1 1 x3t22 E 5 3
L|| < 1- dxdt; = |—<-=,
wis{[ [ a-reSpaal - [F<
1

_ 1 .5 2 _ V2-sin2
Il = {fo sin (x)dx} ==

<3,
5
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Finally, we estimate the norms of the resolvent kernels R, and R;, using the formulas as

K| IILIl

Rl £ ————————, |IR|| £ —————————
Rl < T3 "R = T3

where |A| = 1. Hence, ||Ry|| < %, IR.| < % and
~ 1 3 3\ 3
le-all < - (1+3)(1+3)-2<0.016.

20.2.2 Example: Find the solution of the integral equation by substituting a degenerate
kernel and estimate the error.

p(x) =e* —x— folx(ext — Dep(t)dt

Solution: Given that ¢(x) = e* — x — folx(ext — D (t)dt . We aim to approximate the
kernel K (x,t) = x(e** — 1) with a degenerate kernel K(x,t) = YN_; a,(x)b, (t)

(xt)? n (xt)3

T - + ..

Let e*=1+4xt+

(xt)? n CHONCHN
2 6 24

e —1= xt+

x3t2  x4t3
2 6

K(x,t) = x(e*t —t) = x?t +

x3t2  x*t3  xStt

Keep up to 4" order K (x, t) = x2t+T+T s

1 3t2 4t3
Then @ (x) = e* —x — fo (xzt +xT+xT) p(t)dt
_ x 2l 1x3t2 1x*t3
= e*—x—x fo t p(t)dt —fo T(p(t) dt — fo T(p(t)dt
= e* —x—x2 [ to(t)dt — ";fol t2 p(t)dt — "Efol t3 p(t)dt

@(t) = 1 for first iteration
[ear=[5] -2
. 2], 2
Jltzdt _[E 1— !
o 3], 3

. 78
x%2 1x3 x*

= x— —————— —
o) = e’ —x———s5 -7

o(x) = e¥ —x —0.5x% — 0.1667x3 — 0.0417x*

Error Estimate Formula:
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llp — <Z’II< AT -+ [[RelD CL+HRLID - ]I

|A||_—ff((xt4 )dedt

<zi(/, [

\]f x10 dx - t8dt

INA

Kernel:

K]l =

2
x10¢8dx dt)

_

24 9.95

238

K(x,t) = x(e*t — 1)

(i fiee — ) dx dt)
= (fo1 fol (xzt T xsz_tz)z dx dt )
= (fol fol (x‘*t2 + xz—tdt + x5t3) dx dt )

We obtain [ [ x*t2dt dx = [[x*dx- [) t2dt = 22 ==
I Jy
I s

1
2

2

N =

15
1
x°t3dt dx = —
24
1 x6t% 1

—d dx = —
140

So, || K|| = (E+Z+L)E= (97)1_0340<—
Kernel L(x, t):

140 840

. 2 232 x*t3
L(x,t)—(xt+ —+ 6) 1
5 1
LIl = (folfol (xz ki +x47t3) dx dt>2
We obtain,
1 1 1
J jx‘*tzdxdt: —
o Jo 15
1 (1,644 1
J. J~ dx dt = i:ﬁi
1 8t6
dx dt = ——
f f * 2268
1 842

L% =

L,

15 T 140 T 2268 :3 2268
IL|| = V0.07425 = 0.272 < 2

We have f(x) =

1
1 2
Il = (J (ex—x)ZdX>
0

X _ )2 — x? % ~ xt
Now (e* — x) _(1+2+6...) ~1+%

— X.

2

Acharya Nagarjuna University
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1
1 x* 2 21 4
= (5 (14 2)an) = B |
| Rill < s » With 121 = 1, we obtain || R| = 05 < 3
| R,|| < ,with |A] = 1 then || Ry|| = 03736 < >

L]
Hence, we have the error estimate as

1=|A-{I L]
[l — @] < %(1 + 0.5)(1 + 0.3736) - 1.05 = 0.009 < 0.16

20.2.3 Example: Find the solution of the Integral equation by substituting a degenerate
kernel K and estimate the error.

1 R
p(x) = E(e_x +3x—1) +f (e™™" — Dx dt
0

. . 1 — 1, _,¢2
Solution: Given that ¢(x) = Z(e™ +3x—1) + Jo (e = Dxdt (D
x%t* x3t®  x*¢®

3! 40
x2t*  x3t6 x*t8
2 3+4 3 4:6 4 58
2 x3t4 x*t6 x5t
(7 —1)x = —x2t2 +—— + e 2
2 3! 4!

Substituting equation (2) in (1), we have

1 1 x
p(x) = E(e"‘ +3x—1)+ f —x2t? +

where e ¥ =1 — xt? +

e ¥ — 1= —xt? +

x4t

2 3!

3t4

> p(t)dt
0

Using approximate estimate ¢ (x) = 1.

x2

We have, fol —x2t2p(t)dt = —x? fol t? dt = -=

1x3t* _ox3 1y _x_3
0 p(t)dt = Zfot dt =

1x4t6 X4 1 X4
- tdt =—— | ttdt= ——
fo 3 0 6f0 42

1
px) = E(e_x +3x — 1) — 0.333x2 + 0.1x3 — 0.0238x*

Using the error estimate Formula,
o —@ll < IIAIl- (X + [IRelD (1+ ”RLIH) £

1 1 1 1 2
IIE ﬁ||x5t8||=ﬁ<f fxwtw) dx dt
0 Yo

- L /i.i:i ’L: 0.0030
24411 17 244/ 187

Kernel K (x,t) = (e‘"t2 —1)x
1

I K|| = <f01 fol(xe-’“z —x)dx dt >E

. 1,1, 4.4 ﬁ_ 2x5¢t6 2
KN = (f; fyGetet + T dx dt )
(Lt 1)
1Kl = (zs_i_mos1 66)
K1 = (0.0258)z = 0.1606 < =.
Degenerate Kernel L(x,t):

1

_ 2,2 X3t4 X4t6
L(x,t) = —x“t +T_ ”
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L] = (fol Ji (=202 + 25— x;)z dx dt )
_ (f [ (x t4 + Ts+"83’5612)dxdt)2

(0.044849)2
0.211775 < %

f= %(e"‘+3x—1)
I fll =y Jy3(e™ +3x — 1)? dx

2 3
Weknowthate‘x—l—x+x—,—%...
2 3
So, x+3x—1—2x+—'—%...
x3
f—2x +——;
1

1A= (i +3x 1))
(1-'_%__-}_120)E

_ (134)2
— \120

1
= (1.1166)z = 1.0566 < g

[K]| 3
< — = = 2
|| Rel] < AL K] where |4 = 1then || R|| = 0.19132 < -
| R.|| < %where |A] = 1 then || R,|| = —0.1758 < >
[l — @|| < 0.0030(1 +0.1913)(1 — 0.1758) - (1.0566)
< (0.00357)(0.87084) < 0.003.
20.3 METHOD OF SUCCESSIVE APPROXIMATION:
Considering an integral equation
b
@) = f() + 1), K(x,De()dt €Y)

We construct a sequence of functions {¢,, (x)} with the recursion formula

Pn(0) = () + A [ K(x,6) 9y (D)t )

The functions ¢, (x), (n = 1,2, ...) are considered as approximations to the desired solution
of the equation (1). The zero approximation ¢, (x) may be chosen arbitrarily.

Under certain conditions

1 b b
1Al <, B = fa fa K2 (x,t)dx dt (3)

The sequence in equation (2) converges to the solution of equation (1). The magnitude of the
error of the (m + 1)th approximation is given by the inequality
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|)\B|m+1
1 — |AB]

, b ’ b
F = ffz(x)dx ) b= f(p% (x)dx,

b
C, = \/maxf K2(x,t) dt
asxs<b a

20.3.1 Observation: The basic difficulty in applying the method of successive
approximations consists in computing the integrals as given in formula (2). As a rule, it is
performed with the formulas of approximate integration. Therefore, it is advisable to replace
the given kernel by a degenerate kernel with the help of a Taylor expansion and then
introduce the iteration method.

| (p(X) - (pm+1(x)| < F‘C]‘B_1 + CDCIB_1|AB|m+1 (4)

where

20.3.2 Example: Solve the following problem using the method of successive approximation
ox) =1+ folxtzq)(t)dt.
Solution: Given that ¢@(x) =1+ f01 xt2p(t)dt

This is a linear Fredholm integral equation of the second kind with a separable kernel
K(x,t) = xt?.

Step 1: initial approximation: @, (x) = 1.

Step 2: Recursive Formula: ¢,,,,(x) =1+ x fol t2 @, (t)dt .
. 1 2 t3 1 X
Iteration 1: 1 (x) = 1+ x [ t* - 1 dt = 1+x[?] =1+5=1+03x
0
Iteration 2: @,(x) = 1+ x f01 t2 (1 + %) dt

=1+xf01(t2+§)dt

e

=1+2=1+0416x.
12
Iteration 3: @3(x) =1+ x fol t? (1 + %) dt

=1+x[§+g]:

:1+x[E+i]
48 48

=1 +x[i—;] =1+ 0.4375x

. 4
This seems to convergence to @(x) =1+ 3%
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So,
fl t2<1+4t)dt— (1+4 1)_ (1+1>_ 4
o 9) = \379'2) 7" 379/ 9

20.3.3 Example: Solve the following equations using the method of successive
approximations

px) = gx + %fol xto(t)dt
Solution: Given that ¢ (x) = gx + % ) 01 xto(t)dt, the separable kernel K(x,t) = xt.
Iteration Approximation: ¢4(x) = 0.

Recursive formula: ¢,,,,(x) = szx + %x fol to, (t)dt.

Iteration 1: @o4q(x) = S?x+%xfolt .0dt = gx .

Iteration 2: @,(x) = gx + %x f01 t- %t dt

. 5 135
Iteration 3: ¢3(x) = £ x +%xf0 %tzdt

5 1_ 35
=-x+-x—
6 27 108

_ 215

T 2167

. 5 1215
Iteration 4: ¢, (x) = Zx + %x N %tz dt

5 1 215
=-x+-x—
6 2 648

_ 129.6(5)+2.15(6)
1296(6)

__ 7770

= X
7776
p(x) =x

Verification:
5 1 1
@ (x) —Ex+5xf0 t-tdt

p(x) = §x+§xfolt2 dt
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1
5 1_[¢e3

= —x+—x[—]
6 2713l

5 1_J1

= —x+—xH= X
6 2713

p(x) = x.

20.4 BUBNOV-GALERKIN METHOD:

An approximate solution of the integral equation

b
<mm:fu)+4[xum)Mﬂdt )

by means of the Bubnov- Galerkin method is sought in the following manner. First, we
choose a system of functions {u,(x)}, which is complete in L,(a,b). For any n the
sequence of functions uy(x), u,(x),...,u,(x) are linearly independent and we seek the
approximate solution @, (x) in the form

n

oal0) = ) @) @)

k=1

The coefficients a;, (k = 1,2, ...,n) are found from the following linear system:

b
(e (), we(x)) = (f(x) ue(x)) +/1(f K(x,t) @n(0) dt, uk(x)>

k=12,....00 (3)

Where the inner product (f,g) stands for fab f(x)g(x)dx and in place of @,(x) we have
to substitute Y7_; a u(x). If the value of A in (1) is not a characteristic value, then the
system in (3) is uniquely solvable for sufficiently large values of n, as n — oo. The
approximate solution ¢,,(x) tends to the exact solution @(x) in L,(a,b).

20.4.1 Example: Use the Bubnov-Galerkin method to solve the equation

1

ex)=x+ f xt @(t)dt 4)
-1
Solution: Here, for a complete system of functions on [—1,1] , we choose the system of
Legendre polynomials P,(x) (n =0,1,2,...). We look for the approximate solution ¢,,(x)
of equation (4) in the form

3x2 -1
@;(x) =a;-1+a,x+a, 5

Substituting @ (x) in place of @(x) in equation (4), we get

3x2 -1 1 3t2—1
a; +axx + az( > )=x+f xt|a; + axt +as > dt
-1
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or

3x2—1 2
)=x+x§a2 (5

a; +a,x + az(

3x2%—

Multiplying both sides of equation (5) successively by 1,x, ! respectively, and

integrating with respect to x between the limits —1 and 1. We obtain

2a1=0,
2 2 4
5232 ::§-+-E;a2,

2 =0

5% 7

When a; = 0,a, = 3,a3 = 0, then @3(x) = 3x, It is easy to verify that this is the exact
solution of equation (4).

20.4.2 Note: Bubnov - Galerkin method yields an exact solution for degenerate kernels; for
the general case, it is equivalent to replacing the kernel K(x,t) by the degenerate kernel
L(x,t).

20.4.3 Example: Solve the following integral equations by using Bubnov Galerkin method

p(x) =1+ f_ll(xt + x2)@(t)dt

Solution: For the complete system of functions on [—1,1], we choose the system of
Legendre polynomials p,(x) (n =0,1,2,3 ........). We seek the approximate solution
@n(x) of the equation in the form

Rodriques formula:  p,(x) = ﬁ : ;—;1 (x2—1)"

Derivation of p,(x) :

Letn = 0.

1 0
— . 2 _ 0 _
Po(®) = Zoo 5 (P - 10 = 1

Derivation of p;(x) :

Letn=1

1 d
p1(x) = o1 u'a(xz -1

pi(x) = s (x?—1)

p1(x) =x

Derivation of p,(x) :
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Approximate Methods
Letn =2
-1 @ 2 qy2
pZ(x) - 2221 dx2 (x 1)
pa(x) = < (4x> —4x)!
pa(x) = = (12x — 4)
3x%—
p2(x) = x2 -,
3x2 -1
P3(x) = a; + az(x) + as —
1
px) =1 +f (xt + x*)p(t)dt
-1
1 1
px)=1+x f to(t) dt + xzf p(t)dt
-1 -1
p(x) =1+ xC; +x%C,
2_
We know that @ (t) = a; + a,(t) + a3 (3t > 1)
1
€1 = [ to(t)dt
1 3t2-1
= f_lt(a1+a2t+a3( 2 )) dt
2_
= [La®dt+ [ at?dt+ [ as (“2 1)dt
We know that an odd function is zero.
2
€1 = 3%
1 1 3t2-
C, = f_l(p(t)dt = f_l (a1 + a,t + ag ( tz 1)) dt =2a,
2
Spl)=1+ 3% + x%2a, (1)
as;3x?  as as 3a;
@3(x) = a; + azx + > —7=(a1—7)+ a2x+7x2 2)

Comparing equations (1) and (2), we get a; =3, a, =0, az = 4.
Substituting these values, we get @(x) = 6x% + 1.

20.4.4 Example: Solve the integral equation by using the Bubnov-Galerkin method
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1
px)=1+ gx + f_l(xt2 —x)o(t) dt

Solution: Using a 3-term Galerkin expansion in Legendre polynomials

3x%-1

p(x) = a; +ay(x) + az( > )

We write @(x) = 1+ 2x +x 1 (2 = Do (t) dt
=1 +§x + xc

1
— 2 _
C= L(t 1) o(t) dt

3t?-1

)

p(t) = ay +a,(t) + as(

1 3t2-
= [¢*-1) <a1 + ayt + as ( = 1)) dt

1 3t4—4t?+1
= [Lla (-1 +a,(t—t) +ay (T) dt

_ 4_2 4as
q)(x)—1+[3 3a1+ 15]x

Now ¢(x) = a; + a,x +%(3x2 -1) = (al - %) + a,x +% x?
Comparing the coefficients of x, x2, constants, we geta; = 1, a, = 0,a3 = 0
Now we get p(x) =1

Hence @ (x) = 1 is the exact solution.

20.5 SUMMARY:

In this section, we learnt about three different approximation methods for solving integral
equations. In the first approximation method, we replace the kernel by a degenerate kernel
and take a few terms of the Taylor series expansion of the kernel, we approximate the
integral. Also, we estimate the error of the exact to the approximate solution in a suitable
norm. The second kind of method is successive approximation, where we use a sequence of
functions as an approximation to the solution. The third type of method is Bubnov Galerkin
method, which is based on choosing a system of complete functions which are linearly
independent as an approximation to the true solution. Few examples in each category have
been discussed for the better understanding of the reader.

20.6 TECHNICAL TERMS:

Taylor series, Bubnov-Galerkin Method, degenerate kernel
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20.7 SELF-ASSESSMENT QUESTIONS:

1. Solve the following equations by replacing its kernel with a degenerate kernel and
estimate the error.

1

(@) p(x) = x + cosx + J x(sinxt — 1) ¢(t) dt.
0

sinx
2

1
(i) p(x) = ; + + f (1 — cosx t?) x @(t) dt.
0

2. Solve the following equations using the method of successive approximations.
1

(De(x) =3 +J xt3p(t)dt.

0
1

(i))ep(x) =5x + %L xto(t)dt.

3. Solve the following integral equations by Bubnov- Galerkin method
1

Dex)=1—x(e*—e™) + J x2e*to(t) dt.
-1

(it) @(x) = 3x + [ (xt — x»)gp(t)dt.
Answers to Self-Assessment Questions:

1. (i) ¢(x) = cosx + ;—9 [78 — 78 sinl — 24cos1 + x(84sin1 + 108cos1 — 84)];

| — @| < 0.040 ; The exact solutionis ¢(x) =1

i G(x) =%+ Lsi 58 _16.im1 =22 3. 10 — & .
(i) ¢(x) = >+ Ssinx + (9 S sinl —— Cosl)x ;o — @ <0.0057;

The exact solution is ¢(x) = x.
2. (Hepkx)=3 +Zx.

3. (i) p3(x) = 1is the exact solution.
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