
 

INTEGRAL EQUATIONS 
M.Sc., MATHEMATICS First Year 

Semester – II, Paper-IV 

 

Lesson Writers 
 

    Prof. Dr.K.Rajendra Prasad 
                  Department of Applied Mathematics      
                    Andhra University  
 
 
                  Dr.T.Vinutha  
                    Department of Applied Mathematics      
                    Andhra University  

Prof. Dr.P.Vijaya Laxmi 
                    Department of Applied Mathematics      
                    Andhra University  

 
 

Dr.Madhusmita Tripathy 
                     Department of Applied Mathematics      
                     Andhra University  

 
Editor & Lesson Writer: 

  
Prof. Dr. M.Vijaya Santhi 

Associate Professor 
Department of Applied Mathematics 

Andhra University 
 
 

 

Academic Advisor: 
 

Prof. R. Srinivasa Rao 

Department of Mathematics 

Acharya Nagarjuna University 

 
 

Director I/c 

Prof. V.VENKATESWARLU 
MA., M.P.S., M.S.W., M.Phil., Ph.D. 

CENTRE FOR DISTANCE EDUCATION 
ACHARAYANAGARJUNAUNIVERSITY  

NAGARJUNANAGAR – 522510 
Ph:0863-2346222,2346208, 

0863-2346259(Study Material) 
Website: www.anucde.info 

e-mail:anucdedirector@gmail.com 



M.Sc., MATHEMATICS – INTEGRAL EQUATIONS 
 
 
 

 
First Edition 2025 

No. of Copies : 

 
 
 
 

 
©Acharya Nagarjuna University 
 
 
 
 
This book is exclusively prepared for the use of students of M.SC.( Mathematics) Centre 

for Distance Education, Acharya Nagarjuna University and this book is meant for 
limited Circulation only. 

 
 
 
 
 
 
 
 

 
Published by: 

Prof. V.VENKATESWARLU, 
Director  I/C 
Centre for Distance Education, Acharya 
Nagarjuna University 
 
 
 

 
Printed at: 



FOREWORD 
Since its establishment in 1976, Acharya Nagarjuna University has been forging 

ahead in the path of progress and dynamism, offering a variety of courses and research 

contributions. I am extremely happy that by gaining ‘A+’ grade from the NAAC in the 

year 2024, Acharya Nagarjuna University is offering educational opportunities at the UG, 

PG levels apart from research degrees to students from over 221 affiliated colleges spread 

over the two districts of Guntur and Prakasam. 

The University has also started the Centre for Distance Education in 2003-04 with 

the aim of taking higher education to the doorstep of all the sectors of the society. The 

centre will be a great help to those who cannot join in colleges, those who cannot afford 

the exorbitant fees as regular students, and even to housewives desirous of pursuing 

higher studies. Acharya Nagarjuna University has started offering B.Sc., B.A., B.B.A., 

and B.Com courses at the Degree level and M.A., M.Com., M.Sc., M.B.A., and L.L.M., 

courses at the PG level from the academic year 2003-2004 onwards. 

To facilitate easier understanding by students studying through the distance mode, 

these self-instruction materials have been prepared by eminent and experienced teachers. 

The lessons have been drafted with great care and expertise in the stipulated time by these 

teachers. Constructive ideas and scholarly suggestions are welcome from students and 

teachers involved respectively. Such ideas will be incorporated for the greater efficacy of 

this distance mode of education. For clarification of doubts and feedback, weekly classes 

and contact classes will be arranged at the UG and PG levels respectively. 

It is my aim that students getting higher education through the Centre for 

Distance Education should improve their qualification, have better employment 

opportunities and in turn be part of country’s progress. It is my fond desire that in the 

years to come, the Centre for Distance Education will go from strength to strength in the 

form of new courses and by catering to larger number of people. My congratulations to 

all the Directors, Academic Coordinators, Editors and Lesson-writers of the Centre who 

have helped in these endeavors. 

Prof. K.GangadharaRao 
M.Tech.,Ph.D., 

   Vice-Chancellor I/c  

        Acharya Nagarjuna University 
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CODE:204MA24 
M.Sc DEGREE EXAMINATION 

Second Semester Mathematics :: Paper IV-INTEGRAL EQUATIONS 

MODEL QUESTION PAPER 

Time: Three hours Maximum:70 Marks 

Answer ONE question from each unit (5x14=70) 
 

UNIT-I 
 

1. (a) Form an integral equation corresponding to the differential equation 
   𝑦′′ +  𝑥𝑦′ +  𝑦 =  0 

          with the initial conditions,  𝑦(0)  =  1, 𝑦′(0)  =  0 
 

        (b) Find the resolvent kernel of the Volterra integral equation with kernel           

𝐾(𝑥, 𝑡)  =  𝑥 − 𝑡. 

Or 
2. (a) Using the method of successive approximations, solve the integral 

𝜑(𝑥)  =  1 +  ∫ 𝜑(𝑡) 𝑑𝑡
௫

଴
 , taking 𝜑₀(𝑥)  =  0. 

        (b) Solve the integral equation, 

𝜑(𝑥) =  𝑠𝑖𝑛 𝑥 +  2 න  𝑐𝑜𝑠(𝑥 − 𝑡)𝜑(𝑡) 
௫

଴

𝑑𝑡. 

                                                                

UNIT-II 

3. (a) Solve the integro-differential equation, 

  𝜑ᇱᇱ(𝑥) + 𝜑(𝑥) + ∫ sinh(𝑥 − 𝑡)
௫

଴
𝜑(𝑡)𝑑𝑡 + ∫ cosh(𝑥 − 𝑡)

௫

଴
𝜑ᇱ(𝑡)𝑑𝑡 = 𝑐𝑜𝑠ℎ𝑥;  

  𝜑(0) = −1, 𝜑ᇱ(0) = 1, by using the Laplace Transformation. 
 

(b) Solve the integral equation, 𝜑(𝑥) = 𝑐𝑜𝑠𝑥 + ∫ 𝑒(௫ି௧)𝜑(𝑡)𝑑𝑡
ஶ

௫
. 

Or 

4. (a) Solve,  ∫
ఝ(௧)ௗ௧

√௫ି௧
= 𝑥

భ

మ
௫

଴
 

(b) Solve,  2𝜑(𝑥) − ∫ 𝜑(𝑡)𝜑(𝑥 − 𝑡)𝑑𝑡 = 𝑠𝑖𝑛𝑥
௫

଴
 

 

UNIT-III 
 

5. (a) Show that the function φ(𝑥)=sin
πx

2
  is a solution of the Fredholm-type      

integral equation, φ(𝑥)-
π2

4
∫ K(𝑥,t)φ(t)dt=

௫

2

1

0
  . 

        (b) Find the iterated kernels of the following kernel for specified a and b. 

K(𝑥, t)=e௫cost; a=0,  b=π. 

Or 

 

 



6. (a) Solve the given integral equation with a degenerate kernel, 

φ(𝑥)-λ න tan t φ(t) dt= cot 𝑥

π
4

ି -
π
4

 

(b) Find the eigenfunction and the corresponding characteristic numbers of the  

equation, 𝜑(𝑥) = 𝜆 ∫ cosଶ(𝑥 − 𝑡) 𝜑(𝑡)
గ

ିగ
𝑑𝑡. 

  
  

                                                                      UNIT-IV 
 

7. (a) Solve the following homogeneous integral equation: 

 φ(𝑥)+6 ∫ (𝑥2-2xt)
1

0
φ(t) dt=0. 

 
        (b) Solve the homogeneous symmetric integral equation: 

             𝜑(𝑥) + ∫ 𝐾(𝑥, 𝑡)
ଵ

଴
𝜑(𝑡) 𝑑𝑡 = 𝑥𝑒௫, 

𝐾(𝑥, 𝑡) = ൞

sinh𝑥 sinh (𝑡 − 1)

sinh1
, 0 ≤ 𝑥 ≤ 𝑡,

sinh𝑡 sinh (𝑥 − 1)

sinh1
, 𝑡 ≤ 𝑥 ≤ 1.

 

 

Or 

8. Construct Green’s function for the homogeneous boundary value problem  
 𝑦ூ௏(𝑥) = 0,      

௬(଴) ୀ ௬ᇲ(଴) ୀ ଴

௬(ଵ) ୀ ௬ᇲ(ଵ) ୀ ଴
ቅ.  

                                                       

UNIT-V 
 

9. (a) Reduce the boundary value problem, 

𝑦ᇱᇱ + 𝜆𝑦 =  𝑥,         𝑦(0) = 𝑦 ቀ
஠

ଶ
ቁ  = 0      to an integral equation. 

(b) Show that the integral equation 𝜑(𝑥) = 𝜆 ∫ 𝐽௩
ஶ

଴
൫2√𝑥𝑡൯𝜑(𝑡)𝑑𝑡 has  

characteristic number  𝜆 =  ±1   of infinite multiplicity and find the  
associated eigenfunctions. [where  𝐽௩(𝑧) is a Bessel function of the first kind.] 

 

Or 

10. (a) Solve the integral equation 
ଵ

√గ௫
∫ 𝑒

ష೟మ

రೣ
ஶ

଴
𝜑(𝑡)𝑑𝑡 =  2𝑥 − 𝑠𝑖𝑛ℎ𝑥. 

 
        (b) Use the Bubnov-Galerkin method to solve the equation 

  φ(𝑥) = 𝑥 + ∫ 𝑥
ଵ

ିଵ
φ(t)𝑑𝑡 . 
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LESSON - 1 

VOLTERRA INTEGRAL EQUATIONS 
 
OBJECTIVES: 
 
 To identify the Integral equations 
 To classify the types of integral equations 
 To verify that the given function is a solution of the integral equation 
 To convert the given Initial value problem and Boundary value problem to an 

equivalent integral equation 
 
STRUCTURE: 
 

1.1    Introduction 

1.2    Integral Equations 

1.3    Linear and Non-linear Integral Equations 

1.4    Classification of Linear Integral Equations  

1.5    Solution of the Integral Equation 

1.6    Solved Examples 

1.7    Differentiation of a Function Under an Integral Sign 

1.8    Relationship Between Linear Differential Equations and Volterra Integral    
         Equations  
 

1.9    Summary 

1.10  Technical Terms 

1.11  Self-Assessment Questions  

1.12  Suggested Readings 

 

1.1 INTRODUCTION:  
 

        Integral equations arise in the modeling of physical situations in science, technology, 

and engineering. They also arise as representation formulae for the solution of differential 

equations. There is a relation between the solutions of initial value problems and boundary 

value problems; differential equations with initial and boundary conditions can be 

equivalently represented as integral equations. 

 

1.2 INTEGRAL EQUATIONS: 
 

        An integral equation is an equation in which an unknown function, to be determined, 

appears under one or more integral signs. 
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For example, for 𝑎 ≤  𝑥 ≤  𝑏, 𝑎 ≤  𝑡 ≤  𝑏, the equations 

න 𝐾(𝑥, 𝑡)𝜑(𝑡)𝑑𝑡
௕

௔

= 𝑓(𝑥),                            (1.1) 

𝜑(𝑥) −  𝜆 න 𝐾(𝑥, 𝑡)𝜑(𝑡)𝑑𝑡
௕

௔

 =  𝑓(𝑥)       (1.2) 

       and                                  

  𝜑(𝑥) =  න 𝐾(𝑥, 𝑡)[𝜑(𝑡)]ଶ 𝑑𝑡,
௕

௔

                  (1.3) 

where the function 𝜑(𝑥), is the unknown function, while the functions 𝑓(𝑥) and 𝐾(𝑥, 𝑡) are 

known functions and 𝜆, 𝑎, and 𝑏 are constants, are all integral equations. These functions may 

be complex-valued functions of the real variables 𝑥 and 𝑡. 

 

1.3  LINEAR AND NON-LINEAR INTEGRAL EQUATIONS: 

 

        An integral equation is called linear if only linear operations are performed in it upon the 

unknown function. An integral equation that is not linear is known as a non-linear integral 

equation. By writing either 

𝐿(𝜑) =  න 𝐾(𝑥, 𝑡)𝜑(𝑡)𝑑𝑡
௕

௔

 (𝑜𝑟)  𝐿(𝜑) =  𝜑(𝑥)–  𝜆 න 𝐾(𝑥, 𝑡)𝜑(𝑡)𝑑𝑡
௕

௔

 

we can easily verify that 𝐿 is a linear operator. In fact, for any constants 𝑐ଵ and 𝑐ଶ, we have: 

𝐿{𝑐ଵ𝜑ଵ(𝑥) + 𝑐ଶ𝜑ଶ(𝑥)}  =  𝑐ଵ𝐿{𝜑ଵ(𝑥)}  +  𝑐ଶ𝐿{𝜑ଶ(𝑥)}, 

which is a well-known general criterion for a linear operator. For example, the integral 

equations (1.1) and  (1.2) of Section 1.2 are linear integral equations, while the integral 

equation (1.3) is a non-linear integral equation. The most general type of linear integral 

equation is of the form: 

𝛼(𝑥)𝜑(𝑥) =  𝑓(𝑥) +  𝜆 න 𝐾(𝑥, 𝑡)𝜑(𝑡)𝑑𝑡,
ஐ

        (1.4)      

where the upper limit may be either variable 𝑥 or constant. The functions 𝛼(𝑥), 𝑓(𝑥) and 

𝐾(𝑥, 𝑡) are known functions while 𝜑(𝑥) is to be determined; 𝜆 is a non-zero real or complex 

parameter. The function 𝐾(𝑥, 𝑡) is known as the kernel of the integral equation. 

 

1.4  CLASSIFICATION OF LINEAR INTEGRAL EQUATIONS: 
 

1.4.1 Volterra Integral Equation: 

An integral equation is said to be a Volterra integral equation if the upper limit of integration 

is a variable 𝑥.  
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The general form is: 

𝛼(𝑥)𝜑(𝑥) =  𝑓(𝑥) +  𝜆 න 𝐾(𝑥, 𝑡)𝜑(𝑡)𝑑𝑡
௫

௔

. 

(i) When 𝛼 ≡  0, the equation involves the unknown function 𝜑 appearing only under the 

integral sign and nowhere else in the equation, then 

𝑓(𝑥) = − 𝜆 න 𝐾(𝑥, 𝑡)𝜑(𝑡)𝑑𝑡
௫

௔

, 𝑎 > −∞, 

 

is called the Volterra's integral equation of the first kind. 

(ii) When 𝛼 ≡  1, the equation involves the unknown function 𝜑 both inside and outside the 

integral sign, then 

𝜑(𝑥) =  𝑓(𝑥) +  𝜆 න 𝐾(𝑥, 𝑡)𝜑(𝑡)𝑑𝑡
௫

௔

 

is called the Volterra's integral equation of the second kind. 

(iii) When 𝛼 ≡ 1 and 𝑓(𝑥) ≡  0, the equation reduces to 

𝜑(𝑥) =  𝜆 න 𝐾(𝑥, 𝑡)𝜑(𝑡)𝑑𝑡
௫

௔

 

is called the homogeneous Volterra's integral equation of the second kind. 

 

1.4.2 Fredholm Integral Equation: 

An integral equation is said to be a Fredholm integral equation if the domain of integration Ω 

is fixed, 

𝛼(𝑥)𝜑(𝑥) =  𝑓(𝑥) +  𝜆 න 𝐾(𝑥, 𝑡)𝜑(𝑡)𝑑𝑡.
௕

௔

 

(i) When 𝛼 ≡  0, the equation involves the unknown function 𝜑 only under the integral sign, 

then 

𝑓(𝑥) =  𝜆 න 𝐾(𝑥, 𝑡)𝜑(𝑡)𝑑𝑡
௕

௔

, 𝑎 ≤  𝑥 ≤  𝑏   

 is called the Fredholm integral equation of first kind.    

(ii) When 𝛼 ≡  1, the equation involves the unknown function 𝜑, both inside as well as 

outside the integral sign, then  

𝜑(𝑥) =  𝑓(𝑥) +  𝜆  න 𝐾(𝑥, 𝑡)𝜑(𝑡)𝑑𝑡
௕

௔

, 𝑎 ≤  𝑥 ≤  𝑏 

 is called the non-homogeneous Fredholm integral equation of second kind.    

(iii) When 𝛼 ≡ 1, 𝑓(𝑥) = 0, the equation reduced to  
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𝜑(𝑥) =  𝜆  න 𝐾(𝑥, 𝑡)𝜑(𝑡)𝑑𝑡
௕

௔

, 𝑎 ≤  𝑥 ≤  𝑏   

called the homogeneous Fredholm integral equation of the second kind.    

 

In this lesson, we mainly focus on the Volterra integral equations.   

 

1.5  SOLUTION OF AN INTEGRAL EQUATION:   
 

Consider the linear Volterra integral equations:  

𝛼(𝑥)𝜑(𝑥) =  𝑓(𝑥) +  𝜆 න 𝐾(𝑥, 𝑡)𝜑(𝑡)𝑑𝑡
௕

௔

        (1.5)   

 and 

𝛼(𝑥)𝜑(𝑥) =  𝑓(𝑥) +  𝜆 න 𝐾(𝑥, 𝑡)𝜑(𝑡)𝑑𝑡.
௕

௔

       (1.6)    

A solution of the integral equation (1.5) or (1.6) is a continuous function 𝜑(𝑥), which, when 

substituted into the equation, reduces it to an identity (with respect to 𝑥).    

 

1.6  SOLVED EXAMPLES:   

 

Example 1.1 Show that the function 

𝜑(𝑥) =
1

(1 + 𝑥ଶ)
ଷ
ଶ

 

is a solution of the Volterra integral equation   

𝜑(𝑥) =
1

1 + 𝑥ଶ
−  න

𝑡

1 + 𝑥ଶ
   𝜑(𝑡)𝑑𝑡

௫

଴

.   

Solution. Given that the integral equation is  

𝜑(𝑥) =
1

1 + 𝑥ଶ
−  න

𝑡

1 + 𝑥ଶ
   𝜑(𝑡)𝑑𝑡.

௫

଴

        (1.7) 

Also, given 

𝜑(𝑥) =  (1 + 𝑥ଶ)ି
ଷ
ଶ .            (1.8) 

Then, RHS of (1.7)  

=
ଵ

ଵା௫మ  −  ∫
௧

ଵା௫మ   
௫

଴
(1 + 𝑡ଶ)ି

య

మ 𝑑𝑡, using (1.8) 

 =
ଵ

ଵା௫మ −
ଵ

ଵା௫మ  ∫ 𝑡
௫

଴
(1 + 𝑡ଶ)ି

య

మ 𝑑𝑡 
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=
1

1 + 𝑥ଶ
 −

1

1 + 𝑥ଶ
 න (1 + 𝑢)ି

ଷ
ଶ

௫మ

଴

 
1

2
 𝑑𝑢  (by putting 𝑡ଶ  =  𝑢 and 2𝑡𝑑𝑡 =  𝑑𝑢) 

=
1

1 + 𝑥ଶ
 +

1

1 + 𝑥ଶ
 ൤(1 + 𝑢)ି

ଵ
ଶ൨

଴

௫మ

 

=
1

1 + 𝑥ଶ
 ൥

1

(1 + 𝑥ଶ)
ଵ
ଶ

൩ 

=
1

(1 + 𝑥ଶ)
ଷ
ଶ

 

= 𝜑(𝑥).   (by (1.8)) 

Hence, (1.8) is a solution of the given integral equation (1.7).   

 

Example 1.2 Verify the given function 

𝜑(𝑥) =
𝑥

(1 + 𝑥ଶ)
ହ
ଶ

   

is the solution of the integral equation  

 𝜑(𝑥) =
3𝑥 +  2𝑥ଷ

3(1 + 𝑥ଶ)ଶ
 −  න

(3𝑥 +  2𝑥ଷ − 𝑡)

(1 + 𝑥ଶ)ଶ
  𝜑(𝑡)𝑑𝑡

௫

଴

. 

Solution. Given integral equation is  

𝜑(𝑥) =
3𝑥 +  2𝑥ଷ

3(1 + 𝑥ଶ)ଶ
 − න

(3𝑥 +  2𝑥ଷ − 𝑡)

(1 + 𝑥ଶ)ଶ
  𝜑(𝑡)𝑑𝑡.

௫

଴

        (1.9) 

 Also, given  

𝜑(𝑥) =
𝑥

(1 + 𝑥ଶ )
ହ
ଶ

.          (1.10) 

Then RHS of (1.9) =  

=
3𝑥 +  2𝑥ଷ

3(1 + 𝑥ଶ)ଶ
  −  න

(3𝑥 +  2𝑥ଷ − 𝑡)

(1 + 𝑥ଶ)ଶ
  

௫

଴

൥
𝑡

(1 + 𝑡ଶ)
ହ
ଶ

൩  𝑑𝑡, using      (1.10) 

=
3𝑥 +  2𝑥ଷ

3(1 + 𝑥ଶ)ଶ
  −

1

2

3𝑥 +  2𝑥ଷ

(1 + 𝑥ଶ)ଶ
 න

2𝑡

൬(1 + 𝑡ଶ)
ହ
ଶ൰

 𝑑𝑡
௫

଴

 +
1

(1 + 𝑥ଶ)ଶ
 න

𝑡ଶ

(1 + 𝑡ଶ)
ହ
ଶ

 𝑑𝑡
௫

଴

    

=
(3𝑥 +  2𝑥ଷ)

3(1 + 𝑥ଶ)ଶ
 +

1

3

3𝑥 +  2𝑥ଷ

(1 + 𝑥ଶ)ଶ
 ൥

1

(1 + 𝑥ଶ)
ଷ
ଶ

 −  1൩ +
1

3(1 + 𝑥ଶ)ଶ
 ൥

𝑥ଷ

(1 + 𝑥ଶ)
ଷ
ଶ

 −  0൩   

=
3𝑥 +  2𝑥ଷ

3(1 + 𝑥ଶ)
଻
ଶ

 +
𝑥ଷ

3(1 + 𝑥ଶ)
଻
ଶ
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=
𝑥

(1 + 𝑥ଶ)
ହ
ଶ

    

=  𝜑(𝑥). 

Thus,  𝜑(𝑥) =
௫

(ଵା௫మ )
ఱ
మ

     is a solution of the given integral equation (1.9).    

 

1.7  DIFFERENTIATION OF A FUNCTION UNDER AN INTEGRAL SIGN:   
 

Consider the function 𝐼௡(𝑥) defined by the relation   

𝐼௡(𝑥)  =  න (𝑥 −  𝜂)௡ିଵ 𝑓(𝜂)𝑑𝜂,
௫

௔

          (1.11) 

 where 𝜂 is a positive integer and 𝑎 is a constant. 

We know that  

𝑑

𝑑𝑥
 න 𝐺(𝑥, 𝜂) 𝑑𝜂

௤(௫)

௣(௫)

=  න 𝜕/𝜕𝑥 {𝐺(𝑥, 𝜂)} 𝑑𝜂
௤(௫)

௣(௫)

+  𝐺൫𝑥, 𝑞(𝑥)൯
𝑑𝑞(𝑥)

𝑑𝑥
  −  𝐺൫𝑥, 𝑝(𝑥)൯

𝑑𝑝(𝑥)

𝑑𝑥
,  

which is valid if 𝐺 and 𝜕𝐺/𝜕𝑥 are continuous of both 𝑥, 𝜂 and the first derivative of 𝑝(𝑥) and 

𝑞(𝑥) are continuous.   

Differentiating (1.11) under the integral sign, we have  

𝑑𝐼௡

𝑑𝑥
 =  (𝑛 − 1) න (𝑥 −  𝜂)௡ିଶ 𝑓(𝜂) 𝑑𝜂

௫

௔

+  [(𝑥 −  𝜂)௡ିଵ 𝑓(𝜂)]ఎୀ௫  
𝑑

𝑑𝑥
(𝑥)  

−  [(𝑥 −  𝜂)௡ିଵ𝑓(𝜂)]ఎୀ௔  
𝑑

𝑑𝑥
(𝑎)  

 
𝑑𝐼௡

𝑑𝑥
 =  (𝑛 − 1)𝐼௡ିଵ , 𝑛 >  1.          (1.12)   

From the relation (1.11), we have  

𝐼ଵ(𝑥) =  න 𝑓(𝜂) 𝑑𝜂
௫

௔

 =>
𝑑𝐼ଵ

𝑑𝑥
 =  𝑓(𝑥)        (1.13)  

Differentiating (1.12) successively 𝑚 times, we have  

𝑑௠𝐼௡

𝑑𝑥௠
 =  (𝑛 − 1)(𝑛 − 2). . . (𝑛 − 𝑚)𝐼௡ି௠ , 𝑛 >  𝑚.   

In particular, we have   

𝑑௡ିଵ𝐼௡

𝑑𝑥௡ିଵ
  =  (𝑛 − 1)! 𝐼ଵ(𝑥) 

𝑑

𝑑𝑥
 ቈ

𝑑௡ିଵ𝐼௡

𝑑𝑥௡ିଵ
቉ =  (𝑛 − 1)!

𝑑𝐼ଵ

𝑑𝑥
 =  (𝑛 − 1)!  𝑓(𝑥).          (1.14) 

Thus, we have 
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𝐼ଵ(𝑥)  =  න 𝑓(𝑥ଵ)𝑑𝑥ଵ

௫

௔

 

𝑑𝐼ଶ

𝑑𝑥
 =  𝐼ଵ  =  න 𝑓(𝑥ଵ)𝑑𝑥ଵ

௫

௔

   

 𝐼ଶ(𝑥) = න න 𝑓(𝑥ଵ)𝑑𝑥ଵ𝑑𝑥ଶ.
௫ଶ

௔

 
௫

௔

     

In general, we have  

𝐼௡(𝑥)  =  (𝑛 − 1)! න න … න න 𝑓(𝑥ଵ)𝑑𝑥ଵ 𝑑𝑥ଶ . . . 𝑑𝑥௡ିଵ𝑑𝑥௡

௫మ

௔

.
௫య

௔

 
௫೙

௔

  
௫

௔

         (1.15)  

 From the relations (1.11) and (1.15), we have   

න න … න න 𝑓(𝑥ଵ)𝑑𝑥ଵ 𝑑𝑥ଶ . . . 𝑑𝑥௡ିଵ𝑑𝑥௡

௫మ

௔

 
௫య

௔

=
1

(𝑛 − 1)!
𝐼௡(𝑥)  

௫೙

௔

௫

௔

=  
1

(𝑛 − 1)!
 න (𝑥 −  𝜂)௡ିଵ 𝑓(𝜂) 𝑑𝜂

௫

௔

.   

               i.e.,   

න 𝑓(𝜂)𝑑𝜂௡ = 
௫

௔

 න
(𝑥 −  𝜂)௡ିଵ

(𝑛 − 1)!
 𝑓(𝜂)𝑑𝜂.

௫

௔

 

 

1.8  RELATIONSHIP BETWEEN LINEAR DIFFERENTIAL EQUATIONS AND   

       VOLTERRA INTEGRAL EQUATIONS:   
 

The solution of the linear differential equation   

𝑑௡𝑦

𝑑𝑥௡
 +  𝑎ଵ(𝑥)

𝑑௡ିଵ𝑦

𝑑𝑥௡ିଵ
   + . . . + 𝑎௡(𝑥) 𝑦 =  𝐹(𝑥)              (1.16)    

with continuous coefficients 𝑎௜(𝑥) (𝑖 = 1, 2, . . . , 𝑛), given initial conditions   

𝑦(0) =  𝐶଴, 𝑦ᇱ(0) =  𝐶ଵ, . . . , 𝑦(௡ିଵ)(0) =  𝐶௡ିଵ            (1.17)   

may be reduced to a solution of a Volterra integral equation of the second kind.    

Let us demonstrate this in the case of a differential equation of the second order.    

Let 

𝑑ଶ𝑦

𝑑𝑥ଶ
 + 𝑎ଵ(𝑥)

𝑑𝑦

𝑑𝑥
  +  𝑎ଶ(𝑥)𝑦 =  𝐹(𝑥),          (1.18)  

𝑦(0) =  𝐶଴, 𝑦ᇱ(0) =  𝐶ଵ.        (1.19) 

Put 

𝑑ଶ𝑦

𝑑𝑥ଶ
 =  𝜑(𝑥).             (1.20) 

 Integrating both sides of (1.20) from 0 to 𝑥, we have    



Centre for Distance Education   1.8       Acharya Nagarjuna University  

൤
𝑑𝑦

𝑑𝑥
൨

଴

௫

 =  න 𝜑(𝑡) 𝑑𝑡
௫

଴

 

𝑑𝑦

𝑑𝑥
 −  𝑦′(0)  =  න 𝜑(𝑡) 𝑑𝑡

௫

଴

 

𝑑𝑦

𝑑𝑥
 =  𝐶ଵ  + න 𝜑(𝑡) 𝑑𝑡

௫

଴

.         (1.21)   

Integrating both sides of (1.21) from 0 to 𝑥, we have   

𝑦(𝑥)  −  𝑦(0)  =  𝐶ଵ [𝑡]଴
௫  + න න 𝜑(𝑡ଵ)𝑑𝑡ଵ

௫

଴

𝑑𝑡
௫

଴

 

𝑦(𝑥) =  𝐶଴  +  𝐶ଵ 𝑥 +  න
(𝑥 −  𝑡)ଵ

1!
 𝜑(𝑡)𝑑𝑡

௫

଴

.      (1.22) 

Putting the values of  
ௗమ௬

ௗ௫మ ,
ௗ௬

ௗ௫
 and 𝑦 given by (1.20), (1.21) and (1.22)  respectively in 

(1.18), we get 

 𝜑(𝑥) + 𝑎ଵ(𝑥)[𝐶ଵ + න 𝜑(𝑡)𝑑𝑡
௫

଴

] + 𝑎ଶ(𝑥) [𝐶଴ + 𝐶ଵ 𝑥 +  න (𝑥 −  𝑡)𝜑(𝑡)𝑑𝑡
௫

଴

] = 𝐹(𝑥) 

𝜑(𝑥) = 𝐹(𝑥) − 𝐶ଵ𝑎ଵ(𝑥) − 𝐶଴𝑎ଶ(𝑥) − 𝐶ଵ𝑥𝑎ଶ(𝑥) − න [𝑎ଵ(𝑥) + 𝑎ଶ(𝑥)(𝑥 −  𝑡)] 𝜑(𝑡) 𝑑𝑡 
௫

଴

  

(or) 

𝜑(𝑥) = 𝑓(𝑥) + 𝜆 න  𝐾(𝑥, 𝑡)𝜑(𝑡)𝑑𝑡,
௫

଴

        (1.23) 

 where 𝑓(𝑥) =  𝐹(𝑥) −  𝐶ଵ 𝑎ଵ(𝑥) −  𝐶଴ 𝑎ଶ(𝑥) −  𝐶ଵ 𝑥 𝑎ଶ (𝑥),        (1.24)   

𝜆 =  −1,         (1.25) 

                             and 𝐾(𝑥, 𝑡) =  𝑎ଵ(𝑥) +  𝑎ଶ(𝑥)(𝑥 − 𝑡),           (1.26) 

which represents the Volterra integral integral equation of the second kind.  

     The existence of a unique solution of equation (1.23) follows from the existence and 

uniqueness of solution of the Cauchy problem (1.18) − (1.19) for a linear differential 

equation with continuous coefficients in the neighborhood of the point 𝑥 = 0.  

      Conversely, solving the integral equation (1.23) with 𝑓, 𝜆 and 𝐾 determined from 

(1.24), (1.25) and (1.26), and substituting the expression obtained for φ(𝑥) into the 

equation (1.22), we get a unique solution to equation (1.18) which satisfies the initial 

conditions (1.19).  
 

Example 1.3 Form an integral equation corresponding to the differential equation 

   𝑦′′ +  𝑥𝑦′ +  𝑦 =  0 
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 with the initial conditions 

𝑦(0)  =  1, 𝑦′(0)  =  0. 

Solution: The given differential equation is  

𝑦ᇱᇱ +  𝑥𝑦ᇱ +  𝑦 =  0            (1.20)  

subject to the initial conditions: 

𝑦(0) =  1, 𝑦ᇱ(0) =  0.          (1.21) 

Suppose that  

𝑑ଶ𝑦

𝑑𝑥ଶ
    = 𝜑(𝑥).         (1.22)  

Integrating both sides of (1.22) from 0 to 𝑥, we have  

൤
𝑑𝑦

𝑑𝑥
൨

଴

௫

 = න 𝜑(𝑡) 𝑑𝑡 
௫

଴

  

𝑑𝑦

𝑑𝑥
−  𝑦′(0)  = න φ(𝑡) 𝑑𝑡

௫

଴

    

                   
𝑑𝑦

𝑑𝑥
 = න 𝜑(𝑡) 𝑑𝑡.

௫

଴

            (1.23)  

Integrating both sides of (1.23) from 0 to 𝑥, we have  

[𝑦(𝑥) −  𝑦(0)] =  න න 𝜑(𝑡ଵ)𝑑𝑡ଵ

௧

଴

௫

଴

𝑑𝑡  

𝑦(𝑥) =  1 +  න (𝑥 − 𝑡)𝜑(𝑡)𝑑𝑡.
௫

଴

        (1.24) 

Putting the values of 
ௗమ௬

ௗ௫మ ,
ௗ௬

ௗ௫
 and 𝑦 given by (1.22), (1.23) and (1.24) respectively in (1.20), 

we get  

𝜑(𝑥) +  𝑥 ቈන 𝜑(𝑡)𝑑𝑡
௫

଴

቉ +  1 +  න (𝑥 − 𝑡)𝜑(𝑡)𝑑𝑡
௫

଴

=  0  

𝜑(𝑥) =  −1 − න [𝑥 +  (𝑥 − 𝑡)]𝜑(𝑡)𝑑𝑡
௫

଴

  

𝜑(𝑥) =  −1 − න (2𝑥 − 𝑡)𝜑(𝑡)𝑑𝑡
௫

଴

  

φ(𝑥) =  𝑓(𝑥) +  λ න 𝐾(𝑥, 𝑡)φ(𝑡)𝑑𝑡
୶

଴

, 

where 𝑓(𝑥)  =  −1, 𝜆 =  −1, 𝐾(𝑥, 𝑡) =  2𝑥 − 𝑡, which represents the Volterra integral 

equation of the second kind.  
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Example 1.4: Form an integral equation corresponding to the differential equation 

𝑦′′′ −  3𝑥𝑦 =  0   

 with the initial conditions  

𝑦(0) =
1

2
, 𝑦′(0)  =  𝑦′′(0)  =  1.   

 Solution:  

Given differential equation is: 

𝑦ᇱᇱᇱ −  3𝑥𝑦 =  0       (1.25) 

subject to the initial conditions:  

𝑦(0)  =  1/2, 𝑦′(0)  =  𝑦′′(0)  =  1.     (1.26)  

 Suppose that:  

𝑑ଷ𝑦

𝑑𝑥ଷ
= 𝜑(𝑥).         (1.27) 

Integrating both sides of (1.27) from 0 to 𝑥, we have:  

ቈ
𝑑ଶ𝑦

𝑑𝑥ଶ
቉

଴

௫

=  න 𝜑(𝑡)
௫

଴

 𝑑𝑡  

𝑑ଶ𝑦

𝑑𝑥ଶ
− 𝑦ᇱᇱ(0) =  න 𝜑(𝑡)

௫

଴

 𝑑𝑡  

𝑑ଶ𝑦

𝑑𝑥ଶ
=  1 +  න 𝜑(𝑡)

௫

଴

 𝑑𝑡.         (1.28) 

 Integrating both sides of (1.28) from 0 to 𝑥, we have:  

𝑑𝑦

𝑑𝑥
=  1 + 𝑥 +  න න 𝜑(𝑡ଵ) 𝑑𝑡ଵ𝑑𝑡

௧

଴

          (1.29)
௫

଴

 

(or) 

𝑑𝑦

𝑑𝑥
=  1 + 𝑥 + න (𝑥 − 𝑡)𝜑(t)𝑑𝑡

௫

଴

. 

Integrating both sides of (1.29) from 0 to 𝑥, we have   

𝑦(𝑥) −  𝑦(0) =  [𝑡]଴
௫ + ቈ

𝑡ଶ

2
቉

଴

௫

+  න න න 𝜑(𝑡ଶ)𝑑𝑡ଶ𝑑𝑡ଵ𝑑𝑡
௧భ

଴

௧

଴

௫

଴

 

𝑦(𝑥) =
1

2
+  𝑥 +

𝑥ଶ

2
+ න

(𝑥 − 𝑡)ଶ

2!
𝜑(𝑡)𝑑𝑡.

௫

଴

     (1.30) 

Putting the values of 
ௗయ௬

ௗ௫య
 and 𝑦 given by (1.27) and (1.30) respectively in  (1.25), we have   

𝜑(𝑥) −  3𝑥 ቈ
1

2
+  𝑥 +

𝑥ଶ

2
+ න

(𝑥 − 𝑡)ଶ

2!
𝜑(𝑡)𝑑𝑡

௫

଴

቉ =  0 
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 𝜑(𝑥) =
3𝑥(𝑥 + 1)ଶ

2
+

3

2
න 𝑥(𝑥 − 𝑡)ଶ𝜑(𝑡)𝑑𝑡

௫

଴

  

𝜑(𝑥) =  𝑓(𝑥) +  𝜆 න 𝐾(𝑥, 𝑡)
௫

଴

𝜑(𝑡)𝑑𝑡,  

where 

𝑓(𝑥) =  
3

2
𝑥(𝑥 + 1)ଶ, 𝜆 =  

3

2
, 𝐾(𝑥, 𝑡) =  𝑥(𝑥 − 𝑡)ଶ, 

  which represents the Volterra integral equation of the second kind.  

 

1.9  SUMMARY: 

 

     This lesson provided the basic concepts of the integral equations, namely, linear, non-
linear, homogeneous, non-homogeneous, and different kinds of integral equations. In this 
unit, we are mainly focusing on the Volterra integral equations. Next, we explain the relation 
between linear differential equations and Volterra integral equations. Finally, we have given 
examples and self-assessment problems that we included for better understanding of the 
readers. 
 

1.10  TECHNICAL TERMS: 

 

 Integral equation, linear, non-linear, homogenous, non-homogeneous, Volterra integral    

 equation, Fredholm integral equation. 
 

1.11  SELF-ASSESSMENT QUESTIONS: 
 

(1a)  Verify that the given functions are solutions of the corresponding integral    

equations:    

 

1.  𝜑(𝑥) =  𝑒௫(𝑐𝑜𝑠𝑒௫  −  𝑒௫  𝑠𝑖𝑛𝑒௫);                  

     𝜑(𝑥) = (1 −  𝑥𝑒ଶ௫)𝑐𝑜𝑠 1 − 𝑒௫  𝑠𝑖𝑛 1 +  න [1 −  (𝑥 −  𝑡)𝑒ଶ௫]𝜑(𝑡)𝑑𝑡
௫

଴

. 

2.  𝜑(𝑥) =  𝑥𝑒௫; 𝜑(𝑥)  =  𝑒௫  𝑠𝑖𝑛 𝑥 +  2  න  𝑐𝑜𝑠(𝑥 −  𝑡) 𝜑(𝑡) 𝑑𝑡.
௫

଴

 

3.  𝜑(𝑥) =  𝑥 −
𝑥ଷ

6
;  𝜑(𝑥)  =  𝑥 − න 𝑠𝑖𝑛ℎ(𝑥 −  𝑡) 𝜑(𝑡) 𝑑𝑡

௫

଴

. 

4.  𝜑(𝑥)  =  1 −  𝑥; න  𝑒௫ି௧ 𝜑(𝑡) 𝑑𝑡
௫

଴

 =  𝑥. 

5.  𝜑(𝑥) =  3; 𝑥ଷ  =  න (𝑥 −  𝑡)ଶ 𝜑(𝑡) 𝑑𝑡
௫

଴

. 
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6.  𝜑(𝑥)  =  1 / (2√𝑥); න 𝜑(𝑡)/√(𝑥 −  𝑡) 𝑑𝑡
୶

଴

=  √𝑥. 

7.  𝜑(𝑥)  =  1 / (𝜋√𝑥); න 𝜑(𝑡) / √(𝑥 −  𝑡) 𝑑𝑡
୶

଴

 =  1. 

(1b)  Form the integral equations corresponding to the following differential equations    

         with the given initial conditions: 

 

1. 𝑦′′ +  𝑦 =  0;  𝑦(0)  =  0, 𝑦′(0)  =  1.  

2. 𝑦′ −  𝑦 =  0;  𝑦(0)  =  1.  

3. 𝑦′′ +  𝑦 =  𝑐𝑜𝑠 𝑥;  𝑦(0)  =  𝑦′(0)  =  0.  

4. 𝑦′′ −  5𝑦′ +  6𝑦 =  0;  𝑦(0)  =  0, 𝑦′(0)  =  1.  

5. 𝑦′′ +  𝑦 =  𝑐𝑜𝑠 𝑥;  𝑦(0)  =  0, 𝑦′(0)  =  1.  

6. 𝑦ᇱᇱ − 𝑦ᇱ sin 𝑥 +  𝑒௫𝑦 =  𝑥;  𝑦(0) =  1, 𝑦ᇱ(0) =  −1.  

7. 𝑦′′ +  (1 +  𝑥ଶ) 𝑦 =  𝑐𝑜𝑠 𝑥;  𝑦(0)  =  0, 𝑦′(0)  =  2.  

8. 𝑦′′′ +  𝑥𝑦′′ +  (𝑥ଶ  −  𝑥) 𝑦 =  𝑥𝑒௫  +  1;  𝑦(0)  =  𝑦′(0)  =  1, 𝑦′′(0)  =  0.  

9. 𝑦ᇱᇱᇱ −  2𝑥𝑦 =  0;  𝑦(0) =
ଵ

ଶ
, 𝑦′(0)  =  𝑦′′(0)  =  1.  

Solutions to Self-Assessment Questions:  

Exercise (1b): 

1. 𝜑(𝑥) = −𝑥 + ∫ (𝑡 − 𝑥)𝜑(𝑡)𝑑𝑡
௫

଴
 

2. 𝜑(𝑥) = 1 + ∫ 𝜑(𝑡)𝑑𝑡
௫

଴
 

3. 𝜑(𝑥) = 𝑐𝑜𝑠 𝑥 − ∫ (𝑥 − 𝑡)𝜑(𝑡)𝑑𝑡
௫

଴
 

4. 𝜑(𝑥) = 5 − 6 𝑥 + ∫ [5 − 6(𝑥 − 𝑡)]𝜑(𝑡)𝑑𝑡
௫

଴
 

5. 𝜑(𝑥) = 𝑐𝑜𝑠 𝑥 − 𝑥 − ∫ (𝑥 − 𝑡)𝜑(𝑡)𝑑𝑡  
௫

଴
 

6. 𝜑(𝑥) = 𝑥 − 𝑠𝑖𝑛 𝑥 + 𝑒௫(𝑥 − 1) + ∫ ൣ𝑠𝑖𝑛 𝑥 − 𝑒௫(𝑥 − 𝑡)൧𝜑(𝑡)𝑑𝑡 
௫

଴
 

7. 𝜑(𝑥) = 𝑐𝑜𝑠 𝑥 − 2𝑥(1 + 𝑥ଶ) − ∫ (1 + 𝑥ଶ)(𝑥 − 𝑡)𝜑(𝑡)𝑑𝑡  
௫

଴
 

8. 𝜑(𝑥) = 𝑥𝑒௫ + 1 − 𝑥(𝑥ଶ − 1) − ∫ ቂ𝑥 +
ଵ

ଶ
(𝑥ଶ − 𝑥)(𝑥 − 𝑡)ଶቃ 𝜑(𝑡)𝑑𝑡

௫

଴
 

9. 𝜑(𝑥) = 𝑥(𝑥 + 1)ଶ + ∫ 𝑥(𝑥 − 𝑡)ଶ𝜑(𝑡)𝑑𝑡 
௫

଴
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LESSON - 2 

SOLUTION OF INTEGRAL EQUATION BY 
USING RESOLVENT KERNEL 

 
OBJECTIVES:  
 
 To determine the resolvent kernel by the method of iterated kernel 
 To determine the resolvent kernel if the kernel is a polynomial in 𝑡 
 To determine the resolvent kernel if the kernel is a polynomial in 𝑥 
 To determine the resolvent kernel if the kernel takes the form 𝐾(𝑥 − 𝑡) 

 

STRUCTURE: 
 

2.1  Finding Resolvent Kernel using Iterated Kernels 

2.2  Determination of Resolvent Kernel  

       Method 1: If  𝑲(𝒙, 𝒕) is a polynomial of degree 𝒏 − 𝟏  in   𝒕 

       Method 2: If  𝑲(𝒙, 𝒕) is a polynomial of degree 𝒏 − 𝟏  in   𝒙 

       Method 3: If  𝑲(𝒙, 𝒕) is of the form 𝑲(𝒙 − 𝒕) 

2.3  Summary 

2.4  Technical Terms 

2.5  Self-Assessment Questions  

2.6  Suggested Readings 
 

2.1 FINDING RESOLVENT KERNEL USING ITERATED KERNELS:  
 

Consider the Volterra integral equation of second kind: 

                               𝜑(𝑥) =  𝑓(𝑥) +  𝜆 න 𝐾(𝑥, 𝑡)𝜑(𝑡)𝑑𝑡,                               (2.1)   
௫

଴

   

where the kernel 𝐾(𝑥, 𝑡) is a continuous function for 0 ≤ 𝑡 ≤ 𝑥, 0 ≤ 𝑥 ≤ 𝑎 and the function 

𝑓(𝑥) is continuous for 0 ≤ 𝑡 ≤ 𝑥, 0 ≤ 𝑥 ≤ 𝑎. 

Consider an infinite power series in ascending powers of  𝜆 as: 

    𝜑(𝑥) =  𝜑଴(𝑥) +  𝜆 𝜑ଵ(𝑥) +  𝜆ଶ𝜑ଶ(𝑥) + ⋯ + 𝜆௡ 𝜑௡(𝑥) +  ⋯.          (2.2) 

Let the series (2.2)  is a solution of the integral equation (1), then 

 𝜑଴(𝑥) +  𝜆 𝜑ଵ(𝑥) +  𝜆ଶ𝜑ଶ(𝑥) + ⋯ 𝜆௡ 𝜑௡(𝑥) +  ⋯ =  𝑓(𝑥) +  𝜆 ∫ 𝐾(𝑥, 𝑡)
௫

଴
[𝜑଴(𝑡) +

                                             𝜆 𝜑ଵ(𝑡) + 𝜆ଶ𝜑ଶ(𝑡) + ⋯ 𝜆௡ 𝜑௡(𝑡) + ⋯ ]𝑑𝑡.                    (2.3) 

Equating the coefficients of like powers of 𝜆, we get 

                                                    𝜑଴(𝑥) = 𝑓(𝑥) 
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𝜑ଵ(𝑥) = න 𝐾(𝑥, 𝑡)𝜑଴(𝑡)𝑑𝑡
௫

଴

 

𝜑ଶ(𝑥) = න 𝐾(𝑥, 𝑡)𝜑ଵ(𝑡)𝑑𝑡
௫

଴

 

⋮ 

                                                    𝜑௡(𝑥) = ∫ 𝐾(𝑥, 𝑡)𝜑௡ିଵ(𝑡)𝑑𝑡
௫

଴
.                           (2.4) 

Thus, it yields a method for the successive approximation of the functions 𝜑௡(𝑥). It may be 

shown that the series (2.2) converges uniformly in 𝑥 and 𝜆 for any 𝜆 and 𝑥 ∈ [0, 𝑎], under 

these assumptions with regard to 𝑓(𝑥) and 𝐾(𝑥, 𝑡), its sum is a unique solution of the 

equation (2.1). Further, from (2.4), it follows that  

                                             𝜑ଵ(𝑥) = ∫ 𝐾(𝑥, 𝑡)𝑓(𝑡)𝑑𝑡
௫

଴
, 

                                             𝜑ଶ(𝑥) = ∫ 𝐾(𝑥, 𝑡) ቄ∫ 𝐾(𝑡, 𝑡ଵ)𝑓(𝑡ଵ)𝑑𝑡ଵ
௧

଴
ቅ 𝑑𝑡

௫

଴
. 

Here, 𝑡ଵ = 0, 𝑡ଵ = 𝑡; 𝑡 = 0, 𝑡 = 𝑥. 

By interchanging the order of integration, we have 

𝜑ଶ(𝑥) = න 𝑓(𝑡ଵ)𝑑𝑡ଵ ቊන 𝐾(𝑥, 𝑡)𝐾(𝑡, 𝑡ଵ)
௫

௧భ

𝑑𝑡ቋ
௫

଴

 

                                      𝜑ଶ(𝑥) = ∫ 𝐾ଶ(𝑥, 𝑡ଵ)𝑓(𝑡ଵ)𝑑𝑡ଵ,                                (2.5)
௫

଴
 

where  

                                  𝐾ଶ(𝑥, 𝑡ଵ) = ∫ 𝐾(𝑥, 𝑡)𝐾(𝑡, 𝑡ଵ)
௫

௧భ
𝑑𝑡.                               (2.6) 

In general, we have  

                                       𝜑௡(𝑥) = ∫ 𝐾௡(𝑥, 𝑡)𝑓(𝑡)𝑑𝑡,    𝑛 = 1,2,3, ⋯.      (2.7)
௫

଴
 

The functions 𝐾௡(𝑥, 𝑡)  are called iterated kernels, which can readily be shown that 

𝐾ଵ(𝑥, 𝑡) = 𝐾(𝑥, 𝑡) 

and 𝐾ଶ(𝑥, 𝑡), 𝐾ଷ(𝑥, 𝑡) etc., are defined recursively by the formulas  

  𝐾௡ାଵ(𝑥, 𝑡) = න 𝐾(𝑥, 𝑧)𝐾௡(𝑧, 𝑡)
௫

௧

𝑑𝑧, 𝑛 = 1,2,3, ⋯.     (2.8) 

The relation (2.2), which represents the solution of the integral equation (2.1) can therefore 

be written as  

                                     𝜑(𝑥) = 𝑓(𝑥) + ෍ 𝜆௩ିଵ න 𝐾௩(𝑥, 𝑡)𝑓(𝑡)𝑑𝑡
௫

଴

ஶ

௩ୀଵ

            (2.9) 

                                     𝜑(𝑥) = 𝑓(𝑥) + න ෍ 𝜆௩ିଵ

ஶ

௩ୀଵ

𝐾௩(𝑥, 𝑡)𝑓(𝑡)𝑑𝑡
௫

଴
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                                     𝜑(𝑥) = 𝑓(𝑥) + න 𝑅(𝑥, 𝑡; 𝜆)𝑓(𝑡)𝑑𝑡,
௫

଴

                        (2.10) 

where 

                                             𝑅(𝑥, 𝑡; 𝜆) = ∑ 𝜆௩ିଵஶ
௩ୀଵ 𝐾௩(𝑥, 𝑡).                        (2.11)  

The function 𝑅(𝑥, 𝑡; 𝜆) is called the resolvent kernel or reciprocal kernel of the integral 

equation (2.1). Series (2.11) converges absolutely and uniformly in the case of a continuous 

kernel 𝐾(𝑥, 𝑡).  

     Iterated kernels and also the resolvent kernel do not depend on the lower limit in an 

integral equation. 

The resolvent kernel 𝑅(𝑥, 𝑡; 𝜆) satisfies the following functional equation:  

   𝑅(𝑥, 𝑡; 𝜆) = 𝐾(𝑥, 𝑡) + 𝜆 න 𝐾(𝑥, 𝑠)𝑅(𝑠, 𝑡; 𝜆)𝑑𝑠.      (2.12)
௫

୲

 

With the aid of the resolvent kernel, the solution of the integral equation (2.1) may be written 

in the form, 

𝜑(𝑥) = 𝑓(𝑥) + λ න 𝑅(𝑥, 𝑡; 𝜆)𝑓(𝑡)𝑑𝑡.
௫

଴

      (2.13) 

 

Example 2.1:  

Find the resolvent kernel of the Volterra integral equation with kernel 𝑘(𝑥, 𝑡)  ≡  1. 

Solution. 

We know that the iterated kernels 𝐾௡(𝑥, 𝑡) are given by: 

                             𝐾ଵ(𝑥, 𝑡) =  𝐾(𝑥, 𝑡),                                                                 (2.14) 

𝐾௡(𝑥, 𝑡) =  න 𝐾(𝑥, 𝑧)𝐾௡ିଵ(𝑧, 𝑡)𝑑𝑧,
௫

௧

    𝑛 =  2,3, ⋯.       (2.15) 

Given 

                             𝐾(𝑥, 𝑡) =  1.                                                                              (2.16) 

From (2.14) and (2.16), 

                                                    𝐾ଵ(𝑥, 𝑡) =  𝐾(𝑥, 𝑡) =  1.                                  (2.17) 

Putting 𝑛 = 2 in (2.15) and using (2.17), we have: 

𝐾ଶ(𝑥, 𝑡) = න 𝐾(𝑥, 𝑧)𝐾ଵ(𝑧, 𝑡)
௫

௧

𝑑𝑧 = න 1 ∙ 1 ∙ 𝑑𝑧
௫

௧

= [𝑧]௧
௫ = 𝑥 −  𝑡.      (2.18) 

Next, putting 𝑛 = 3 in (2.15), we have: 

𝐾ଷ(𝑥, 𝑡) = න 𝐾(𝑥, 𝑧)𝐾ଶ(𝑧, 𝑡)𝑑𝑧
௫

௧

= න 1 ⋅ (𝑧 − 𝑡)𝑑𝑧
௫

௧

  (using (2.17) and (2.18)) 
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                                            =  ቈ
(𝑧 − 𝑡)ଶ

2
 ቉

௧

௫

=
(𝑥 − 𝑡)ଶ

2!
.          (2.19) 

And so, putting 𝑛 = 4 in (2.15), we have: 

𝐾ସ(𝑥, 𝑡) =  න 𝐾(𝑥, 𝑧)𝐾ଷ(𝑧, 𝑡)𝑑𝑧
௫

௧

  =  න 1 ⋅
(𝑧 − 𝑡)ଶ

2!
  𝑑𝑧

௫

௧

  (using (2.17) and (2.19)) 

=
1

2!
 ቈ

(𝑧 − 𝑡)ଷ

3
቉

௧

௫

=
(𝑥 − 𝑡)ଷ

3!
         

⋮ 

𝐾௡(𝑥, 𝑡) = න 𝐾(𝑥, 𝑧)𝐾௡ିଵ(𝑧, 𝑡)𝑑𝑧 =
௫

௧

(𝑥 − 𝑡)௡ିଵ

(𝑛 − 1)!
, 𝑓𝑜𝑟 𝑛 =  1, 2, 3, ⋯. 

Thus, by definition of the resolvent kernel  

𝑅(𝑥, 𝑡; 𝜆) = ෍ 𝜆௡ିଵ 𝐾௡(𝑥, 𝑡)

ஶ

௡ୀଵ

   

𝑅(𝑥, 𝑡;  𝜆) = ෍ 𝜆௡ିଵ  
(𝑥 − 𝑡)௡ିଵ

(𝑛 − 1)!

ஶ

௡ୀଵ

. 

Therefore, the resolvent kernel is 𝑅(𝑥, 𝑡;  𝜆)  =  𝑒ఒ(௫ି௧). 

 

Example 2.2: 

Find the resolvent kernel of the Volterra integral equation with kernel 𝐾(𝑥, 𝑡)  =  𝑥 − 𝑡. 

Solution. 

We know that the iterated kernels 𝐾௡(𝑥, 𝑡) are given by: 

                            𝐾ଵ(𝑥, 𝑡) =  𝐾(𝑥, 𝑡),                                                                  (2.20) 

                            𝐾௡(𝑥, 𝑡) =  න 𝐾(𝑥, 𝑧)𝐾௡ିଵ(𝑧, 𝑡)𝑑𝑧,
௫

௧

    𝑛 =  2,3, ⋯.       (2.21) 

Given 

                             𝐾(𝑥, 𝑡) = 𝑥 − 𝑡.                                                                      (2.22) 

From (2.20) and (2.22), 

                            𝐾ଵ(𝑥, 𝑡) = 𝐾(𝑥, 𝑡) =  𝑥 − 𝑡.                                                 (2.23) 

Putting 𝑛 = 2 in (2.21) and using (2.23), we have: 

                            𝐾ଶ(𝑥, 𝑡) = න 𝑘(𝑥, 𝑧)𝐾ଵ(𝑧, 𝑡)
௫

௧

𝑑𝑧  

                                            = න (𝑥 − 𝑧)(𝑧 − 𝑡)𝑑𝑧
௫

௧
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                                            = න [−𝑧ଶ +  (𝑥 + 𝑡)𝑧 − 𝑥𝑡]
௫

௧

𝑑𝑧 

                                            =
1

6
(𝑥ଷ − 3𝑥ଶ𝑡 + 3𝑥𝑡ଶ − 𝑡ଷ). 

Thus, 

                            𝐾ଶ(𝑥, 𝑡) =
(𝑥 − 𝑡)ଷ

3!
.                                                            (2.24) 

Next, putting 𝑛 = 3 in (2.21), we have: 

                         𝐾ଷ(𝑥, 𝑡) =  ∫ 𝑘(𝑥, 𝑧)𝐾ଶ(𝑧, 𝑡)𝑑𝑧
௫

௧
    

                        =  න  (𝑥 − 𝑧) ⋅  
(𝑧 − 𝑡)ଷ

3!
 𝑑𝑧

௫

௧

  ൫using (2.22)and (2.24)൯ 

                                             =
(𝑥 − 𝑡)ହ

5!
.                                                            (2.25) 

Next, putting 𝑛 = 4 in (2.21), we have: 

                          𝐾ସ(𝑥, 𝑡) =  න 𝑘(𝑥, 𝑧)𝐾ଷ(𝑧, 𝑡)𝑑𝑧
௫

௧

    

                                          =  න  (𝑥 − 𝑧) ⋅  
(𝑧 − 𝑡)ହ

5!
 𝑑𝑧

௫

௧

  ൫using (2.22)and (2.25)൯ 

                                          =
(𝑥 − 𝑡)଻

7!
       

                                                ⋮ 

                          𝐾௡(𝑥, 𝑡) =  න 𝑘(𝑥, 𝑧)𝐾௡ିଵ(𝑧, 𝑡)𝑑𝑧 =
௫

௧

(𝑥 − 𝑡)ଶ௡ିଵ

(2𝑛 − 1)!
, 𝑓𝑜𝑟 𝑛 =  1, 2, 3, ⋯. 

Thus, by definition of the resolvent kernel  

𝑅(𝑥, 𝑡; 𝜆) = ෍ 𝜆௡ିଵ 𝐾௡(𝑥, 𝑡)

ஶ

௡ୀଵ

   

  𝑅(𝑥, 𝑡;  𝜆)  = ෍ 𝜆௡ିଵ
(𝑥 − 𝑡)ଶ௡ିଵ

(2𝑛 − 1)!
.

ஶ

௡ୀଵ

 

Therefore, the resolvent kernel is 𝑅(𝑥, 𝑡;  𝜆) =
ଵ

√ఒ
sinhൣ√𝜆(𝑥 − 𝑡)൧, 𝜆 > 0. 

 

2.2 DETERMINATION OF RESOLVENT KERNEL: 

 

Method (1): 

Let the kernel 𝐾(𝑥, 𝑡) be in the form of a polynomial of degree (𝑛 − 1) in 𝑡 such that it may 

be represented in the form: 



Centre for Distance Education   2.6       Acharya Nagarjuna University  

   𝐾(𝑥, 𝑡) =  𝑎଴(𝑥) +  𝑎ଵ(𝑥)(𝑥 − 𝑡) +  … +  
𝑎௡ିଵ(𝑥)

(𝑛 − 1)!
(𝑥 − 𝑡)௡ିଵ          (2.26)   

where the coefficients 𝑎௞(𝑥) are continuous in [0, 𝑎], 𝑘 = 0,1, ⋯ , 𝑛 − 1. 

Let the auxiliary function be: 

𝑔(𝑥, 𝑡; 𝜆) =  
1

(𝑛 − 1)!
(𝑥 − 𝑡)௡ିଵ + 𝜆 න 𝑅(𝑧, 𝑡; 𝜆) 

(𝑥 − 𝑧)௡ିଵ

(𝑛 − 1)!
 𝑑𝑧 

௫

௧

     (2.27)   

with the conditions: 

 𝑔 |௫ୀ௧  =
𝑑𝑔

𝑑𝑥
  |௫ୀ௧  = . . . =  

𝑑௡ିଶ𝑔

𝑑𝑥௡ିଶ
 |௫ୀ௧  =  0 𝑎𝑛𝑑 

𝑑௡ିଵ 𝑔

𝑑𝑥௡ିଵ
 |௫ୀ௧  =  1.   (2.28)  

In addition, we have: 

𝑅(𝑥, 𝑡; 𝜆) =
1

𝜆

𝑑௡𝑔(𝑥, 𝑡; 𝜆)

𝑑𝑥௡
.          (2.29)   

Since the resolvent kernel satisfies the functional equation: 

                       𝑅(𝑥, 𝑡; 𝜆) =  𝐾(𝑥, 𝑡) + 𝜆 න 𝐾(𝑥, 𝑧)
𝑑௡𝑔(𝑧, 𝑡; 𝜆)

𝑑𝑧௡
𝑑𝑧

௫

௧

.                     (2.30)   

From (2.29) and (2.30), we have: 

                  
𝑑௡𝑔(𝑥, 𝑡; 𝜆)

𝑑𝑥௡
= λ 𝐾(𝑥, 𝑡) +  𝜆 න 𝐾(𝑥, 𝑧) 

𝑑௡𝑔(𝑧, 𝑡; 𝜆)

𝑑𝑧௡
𝑑𝑧

௫

௧

                  (2.31) 

                
ௗ೙

ௗ௫೙ 𝑔(𝑥, 𝑡; 𝜆) =

𝜆 𝐾(𝑥, 𝑡) +

𝜆 ቂ𝐾(𝑥, 𝑧)
ௗ೙షభ௚

ௗ௭೙షభ −
డ௄(௫,௭)

డ௭

ௗ೙షమ௚

ௗ௭೙షమ  + ⋯ +

                                                                             
డ೙షభ௄(௫,௭)

డ௭೙షభ
ቃ

௭ୀ௧

௭ୀ௫

                                       (2.32)    

using (2.26) and (2.28), the relation (2.32) reduces to  

       
𝑑௡𝑔

𝑑𝑥௡
− 𝜆 ቈ𝑎଴(𝑥)

𝑑௡ିଵ𝑔

𝑑𝑥௡ିଵ
+  𝑎ଵ(𝑥)

𝑑௡ିଶ𝑔

𝑑𝑥௡ିଶ
 + . . . +𝑎௡ିଵ(𝑥) 𝑔቉

௭ୀ௧

௭ୀ௫

.   (2.33)   

The function 𝑔(𝑥, 𝑡; 𝜆) is therefore the integral of the solution of the differential equation 

(2.33). 

Thus, we have an expression for the resolvent kernel as: 

𝑅(𝑥, 𝑡; 𝜆) =
1

𝜆

𝑑௡

𝑑𝑥௡
𝑔(𝑥, 𝑡; 𝜆).           

Method (2): 

Assume that the kernel 𝐾(𝑥, 𝑡) is a polynomial of degree (𝑛 − 1) in 𝑥 such that it may be 

represented in the form: 
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𝐾(𝑥, 𝑡) =  𝑏଴(𝑡) +  𝑏ଵ(𝑡)(𝑡 − 𝑥) +  … +  
𝑏௡ିଵ(𝑡)

(𝑛 − 1)!
(𝑡 − 𝑥)௡ିଵ           (2.34)   

where the coefficients 𝑏௩(𝑡) are continuous in [0, 𝑎], 𝑣 = 0,1, ⋯ , 𝑛 − 1. 

Consider, 

                                                       𝑅(𝑥, 𝑡; 𝜆) = −
1

𝜆

𝑑௡𝑔(𝑡, 𝑥; 𝜆)

𝑑𝑡௡
.                                (2.35)   

The auxiliary function    𝑔(𝑡, 𝑥; 𝜆)  satisfies the following conditions: 

𝑔 |௧ୀ௫ =
𝑑𝑔

𝑑𝑡
  |௧ୀ௫ = ⋯ =

𝑑௡ିଶ𝑔

𝑑𝑡௡ିଶ
 |௧ୀ௫ = 0 and 

𝑑௡ିଵ 𝑔

𝑑𝑡௡ିଵ
 |௧ୀ௫ = 1.         (2.36)  

Therefore, the functional relation reduces to  

                                
𝑑௡𝑔

𝑑𝑡௡
= λ 𝐾(𝑥, 𝑡) +  𝜆 න 𝐾(𝑥, 𝑧)

𝑑௡

𝑑𝑧௡
𝑔(𝑡, 𝑧; 𝜆)𝑑𝑧.

௫

௧

                 (2.37)      

Using the expression (2.35) and (2.36) and integrating by parts to the integral on R.H.S., we 

have 

𝑑௡𝑔

𝑑𝑥௡
+ 𝜆 ቈ𝑏଴(𝑡)

𝑑௡ିଵ𝑔

𝑑𝑡௡ିଵ
+  𝑏ଵ(𝑡)

𝑑௡ିଶ𝑔

𝑑𝑡௡ିଶ
 + . . . +𝑏௡ିଵ(𝑡) 𝑔቉.          (2.38)   

The function 𝑔(𝑡, 𝑥; 𝜆) is therefore the integral of the solution of the differential equation 

(2.38). 

Hence, the resolvent of the kernel is 

                                            𝑅(𝑥, 𝑡; 𝜆) = −
1

𝜆

𝑑௡

𝑑𝑡௡
𝑔(𝑡, 𝑥; 𝜆).                                    (2.39)   

 

Example. 2.3: 

Find the resolvent kernel for the integral equation with the following kernel     

 (𝜆 = 1) 

𝐾(𝑥, 𝑡) = 2 − (𝑥 −  𝑡). 

Solution. Here 𝐾(𝑥, 𝑡) = 2 − (𝑥 −  𝑡), 𝜆 = 1. 

Comparing with the relation 

𝐾(𝑥, 𝑡)  =  𝑎଴(𝑥) +  𝑎ଵ(𝑥)(𝑥 −  𝑡) + ⋯ +
𝑎௡ିଵ(𝑥)

(𝑛 − 1)!
 (𝑥 −  𝑡)௡ିଵ, 

we have 𝑎଴(𝑥)  =  2, 𝑎ଵ(𝑥)  =  −1, and all the other 𝑎௩(𝑥)  =  0. 

Thus, the equation 

𝑑௡𝑔

𝑑𝑥௡ 
− 𝜆 ቈ𝑎଴(𝑥)

𝑑௡ିଵ𝑔

𝑑𝑥௡ିଵ
+ 𝑎ଵ(𝑥)

𝑑௡ିଶ𝑔

𝑑𝑥௡ିଶ
+ ⋯ + 𝑎௡ିଵ(𝑥)𝑔቉ = 0 

reduces to 
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𝑑ଶ𝑔

𝑑𝑥ଶ
− 2

𝑑𝑔

𝑑𝑥
+ 𝑔 =  0,                                       (2.40) 

with the condition 𝑔 = 0 at  𝑥 = 𝑡,
ௗ௚

ௗ௫
= 1 at 𝑥 = 𝑡.                                        (2.41)  

The solution of equation (2.40) is given by 

                                                   𝑔 =  [𝐴(𝑡) +  𝐵(𝑡)𝑥]𝑒௧ .                                     (2.42) 

From (2.41) and (2.42), we obtain 

                                              𝑔 = 𝑔(𝑥, 𝑡; 1) = (𝑥 − 𝑡)𝑒௫ ି ௧. 

Thus, the resolvent kernel is given by 

𝑅(𝑥, 𝑡;  1) =
1

𝜆

𝑑ଶ

𝑑𝑥ଶ
 𝑔(𝑥, 𝑡;  1) = (𝑥 − 𝑡 + 2)𝑒௫ ି ௧ . 

 

Example 2.4:   

Find the resolvent kernel for the integral equation 

𝜑(𝑥) = (cos 𝑥 − 𝑥 − 2) + න (𝑡 − 𝑥)𝜑(𝑡)𝑑𝑡
௫

଴

.  

Solution. Here 𝑓(𝑥) = 𝑐𝑜𝑠𝑥 − 𝑥 − 2, 𝜆 = 1 𝑎𝑛𝑑 𝐾(𝑥, 𝑡) = 𝑡 − 𝑥. 

Comparing with the relation 

𝐾(𝑥, 𝑡) =  𝑏଴(𝑡) + 𝑏ଵ(𝑡)(𝑡 − 𝑥) + ⋯ +
𝑏௡ିଵ(𝑡)

(𝑛 − 1)!
(𝑡 − 𝑥)௡ିଵ 

we have 𝑏ଵ(𝑡) = 1, and all the other 𝑏௩(𝑡) = 0. 

Thus, the equation 

𝑑௡𝑔

𝑑𝑡௡
+ 𝜆 ቈ𝑏଴(𝑡)

𝑑௡ିଵ𝑔

𝑑𝑡௡ିଵ
+ 𝑏ଵ(𝑡)

𝑑(௡ିଶ)𝑔

𝑑𝑡௡ିଶ
+ ⋯ + 𝑏௡ିଵ(𝑡)𝑔቉ = 0 

reduces to 

                                                                
𝑑ଶ𝑔

𝑑𝑡ଶ
 + 𝑔 = 0                                               (2.43) 

with the conditions  

                                            𝑔 = 0 at 𝑡 = 𝑥 and
𝑑𝑔

𝑑𝑡
= 1 at 𝑡 = 𝑥.                        (2.44) 

The solution of the equation (2.43) is given by 

                                          𝑔(𝑡, 𝑥;  1) = 𝐴(𝑥)𝑐𝑜𝑠 𝑡 + 𝐵(𝑥)𝑠𝑖𝑛 𝑡.                          (2.45) 

From (2.44) and (2.45), we obtain 

                                                    𝑔(𝑡, 𝑥; 1) = 𝑠𝑖𝑛(𝑡 − 𝑥). 

Hence, the resolvent kernel becomes 
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𝑅(𝑥, 𝑡; 1) = −
1

𝜆

𝑑ଶ

𝑑𝑡ଶ
𝑔(𝑡, 𝑥; 1) = 𝑠𝑖𝑛(𝑡 − 𝑥).  

 

Method (3): 

Result: Suppose we have a Volterra-type integral equation, the kernel of which is dependent 

solely on the difference of the arguments. 

                                          𝜑(𝑥) = 𝑓(𝑥) + න 𝐾(𝑥 − 𝑡)𝜑(𝑡)𝑑𝑡
௫

଴

, (𝜆 = 1).         (2.45) 

Show that for the equation (2.44) all iterated kernels and the resolvent kernel are also 

dependent solely on the difference 𝑥 − 𝑡. 

Proof: Let the functions 𝑓(𝑥) and 𝐾(𝑥) in (2.45) be original functions. Taking the Laplace 

transform of both sides of (2.45) and employing the product theorem (transform of a 

convolution), we get 

𝛷(𝑝) = 𝐹(𝑝) + 𝐾෩(𝑝)𝛷(𝑝), 

where 

                                                                     𝐿{𝜑(𝑥)} = 𝛷(𝑝), 

𝐿{𝑓(𝑥)} = 𝐹(𝑝), 

𝐿{𝐾(𝑥)} = 𝐾෩(𝑝). 

 

                                   Hence, 𝛷(𝑝) =
𝐹(𝑝)

1 – 𝐾෩(𝑝)
,   𝐾෩(𝑝) ≠ 1.                       (2.46) 

We can write the solution of the integral equation (2.45) in the form 

                                                    𝜑(𝑥) = 𝑓(𝑥) + ∫ 𝑅(𝑥 − 𝑡)𝑓(𝑡)𝑑𝑡,
௫

଴
                 (2.47)  

where  𝑅(𝑥 − 𝑡) is the resolvent kernel for the integral equation (2.45). 

Taking the Laplace transform of both sides of the equation (2.47) 

𝛷(𝑝) = 𝐹(𝑝) + 𝑅෨(𝑝)𝐹(𝑝), 

where  𝐿{𝑅(𝑥)} =  𝑅෨(𝑝). 

Hence  

                                          𝑅෨(𝑝) =
𝛷(𝑝) −  𝐹(𝑝)

𝐹(𝑝)
.                               (2.48) 

Substituting into (2.47) the expression for 𝛷(𝑝) from (2.45), we obtain 

                                            𝑅෨(𝑝) =
𝐾෩(𝑝)

1 −  𝐾෩(𝑝)
.                                   (2.49) 

Apply the inverse Laplace on both sides, we get 𝑅(𝑥). 
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Resolvent kernel for the integral equation (2.45) is 

𝑅(𝑥, 𝑡;  1) = 𝑅(𝑥 − 𝑡). 

Example 2.5: 

Find the resolvent kernel for a Volterra integral equation 𝐾(𝑥, 𝑡) = 𝑠𝑖𝑛(𝑥 − 𝑡), 𝜆 =  1. 

Solution: Given that 𝐾(𝑥, 𝑡) = 𝑠𝑖𝑛(𝑥 − 𝑡), 𝜆 = 1. Then, 𝐾(𝑥) =  𝑠𝑖𝑛(𝑥). 

Apply the Laplace transform on both sides, we get 

     𝐿{𝐾(𝑥)}  =  𝐿{𝑠𝑖𝑛(𝑥)} 

     𝐾෩(𝑝) =
1

1 + 𝑝ଶ
. 

Since                                                                

          𝑅෨(𝑝) =
𝐾෩(𝑝)

1 − 𝐾෩(𝑝)
 

                 𝑅෨(𝑝) =
൬

1
1 + 𝑝ଶ൰

1 −  ൬
1

1 + 𝑝ଶ൰
 

               =
1

𝑝ଶ 
 

∴ 𝑅෨(𝑝) =
1

𝑝ଶ
. 

     Apply the Laplace inverse transform on both sides, we get 

     𝐿⁻¹{𝑅෨(𝑝)}  =  𝐿⁻¹ ൜
1

𝑝ଶ
ൠ 

   𝑅(𝑥) =  𝑥 

     Resolvent kernel 𝑅(𝑥, 𝑡;  1)  =  𝑅(𝑥 − 𝑡)  =  𝑥 − 𝑡. 

 

Example 2.6:  

Find the resolvent kernel for the Volterra integral equation 𝐾(𝑥, 𝑡) =  𝑒ି(௫ି௧), 𝜆 = 1. 

Solution: Given that 𝐾(𝑥, 𝑡)  =  𝑒ି(௫ି௧), 𝜆 =  1, then  

𝐾(𝑥) =  𝑒ି௫. 

Apply the Laplace transform on both sides, we get 

𝐿{𝐾(𝑥)}  =  𝐿{𝑒ି௫} 

    𝐾෩(𝑝) =
1

𝑝 + 1
. 

Since 
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  𝑅෨(𝑝) =
𝐾෩(𝑝)

1 −  𝐾෩(𝑝)
=

1
𝑝 + 1

1 − ቀ
1

𝑝 + 1
ቁ

 =
1

𝑝
 

                                                                      ∴ 𝑅෨(𝑝) =
1

𝑝
. 

Apply the Laplace inverse transform on both sides, we get 

                                                                 𝐿⁻¹{𝑅෨(𝑝)} = 𝐿⁻¹ ൜
1

𝑝
ൠ 

                                                                           𝑅(𝑥) = 1. 

∴ Resolvent kernel 𝑅(𝑥, 𝑡;  1)  =  𝑅(𝑥 − 𝑡)  =  1. 

 

Example 2.7:   

With the aid of the resolvent kernel, find the solution of the integral equation 

𝜑(𝑥)  =  𝑒௫మ
 + න  𝑒௫మି ௧మ

 𝜑(𝑡)𝑑𝑡.
௫

଴

 

Solution. Given that 

             𝜑(𝑥) =  𝑒௫మ
 +  න  𝑒௫మି ௧మ

 𝜑(𝑡)𝑑𝑡,
௫

଴

                   (2.50) 

where 𝑓(𝑥)  =  𝑒௫మ
,   𝐾(𝑥, 𝑡)  =  𝑒௫మି ௧మ

, 𝜆 =  1. 

Iterated kernels 𝐾௡(𝑥, 𝑡) are given by 

                                                       𝐾₁(𝑥, 𝑡)  =  𝐾(𝑥, 𝑡)                                     (2.51) 

and 

𝐾௡(𝑥, 𝑡) =  න 𝐾(𝑥, 𝑧)𝐾௡ିଵ(𝑧, 𝑡)𝑑𝑧
௫

௧

 ,   𝑛 =  2, 3, ⋯.     (2.52) 

Given    𝐾(𝑥, 𝑡) =  𝑒௫మି ௧మ
. 

Putting 𝑛 =  2 in (2.52), we have 

                              𝐾₂(𝑥, 𝑡)  =  න 𝐾(𝑥, 𝑧) 𝐾₁(𝑧, 𝑡) 𝑑𝑧
௫

௧

  

                                                =  න 𝑒௫మି ௭మ
𝑒௭మି ௧మ

𝑑𝑧 
௫

௧

 

                                                = 𝑒௫మି ௧మ
 න 1 𝑑𝑧

௫

௧

 

                                                =  𝑒௫మି ௧మ (𝑥 −  𝑡)ଵ

1!
. 

Next, putting 𝑛 =  3 in (2.52), we have 
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                              𝐾₃(𝑥, 𝑡)  =  න 𝐾(𝑥, 𝑧) 𝐾₂(𝑧, 𝑡) 𝑑𝑧
௫

௧

  

                                               =  𝑒௫మି ௧మ
 න

(𝑧 −  𝑡)ଵ

1!
 𝑑𝑧

௫

௧

   

                                               =  𝑒௫మି ௧మ (𝑥 −  𝑡)ଶ

2!
. 

Similarly, 

                             𝐾௡(𝑥, 𝑡)  =  න 𝐾(𝑥, 𝑧)𝐾௡ିଵ(𝑧, 𝑡) 𝑑𝑧
௫

௧

  

                                              =  න 𝑒௫మି ௭మ
 𝑒௭మି ௧మ      (𝑧 −  𝑡)௡ିଶ

(𝑛 − 2)!
 𝑑𝑧

௫

௧

  

                             𝐾௡(𝑥, 𝑡)  =  𝑒௫మି ௧మ (𝑥 −  𝑡)௡ିଵ

(𝑛 − 1)!
. 

Thus, by the definition of the resolvent kernel 

𝑅(𝑥, 𝑡;  𝜆)  = ෍ 𝜆௡ିଵ 𝐾௡(𝑥, 𝑡)

ஶ

௡ୀଵ

   

𝑅(𝑥, 𝑡;  1)  =  ෍(1)௡ିଵ 𝑒௫మି ௧మ (𝑥 −  𝑡)௡ିଵ

(𝑛 − 1)!

ஶ

௡ୀଵ

  

                     = 𝑒௫మି ௧మ
෍(1)௡ିଵ  

(𝑥 −  𝑡)௡ିଵ

(𝑛 − 1)!

ஶ

௡ୀଵ

  

                                            𝑅(𝑥, 𝑡;  1) =  𝑒௫మି ௧మ
 𝑒௫ ି ௧. 

The solution of the integral equation (2.50) is 

 𝜑(𝑥)  =  𝑓(𝑥)  +  𝜆 න 𝑅(𝑥, 𝑡;  𝜆) 𝑓(𝑡) 𝑑𝑡
௫

଴

  

𝜑(𝑥) =  𝑒௫మ
 +  න 𝑒௫మି ௧మ

 𝑒௫ ି ௧ 𝑒௧మ
 𝑑𝑡

௫

଴

  

   =  𝑒௫మ
 +  𝑒௫మା ௫   න  𝑒ି ௧  𝑑𝑡

௫

଴

 

                   =  𝑒௫మ
 + 𝑒௫మା ௫ [−𝑒ି௧]଴

௫  =  𝑒௫మା௫.  
 

Note 1. The unique solvability of Volterra-type integral equations of the second kind 

                                         𝜑(𝑥) =  𝑓(𝑥) +  𝜆 න 𝐾(𝑥, 𝑡)𝜑(𝑡)𝑑𝑡
௫

଴

                         (2.53) 

holds under considerably more general assumptions with respect to the function 𝑓(𝑥) and the 

kernel 𝐾(𝑥, 𝑡) than their continuity. 
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The 𝐿ଶ space is a special case of an 𝐿௣ space, which is also known as the Lebesgue space 
 

Definition: Let 𝑋 be a measure space. Given a complex function 𝑓, we say 𝑓 ∈ 𝐿ଶ on 𝑋 if 𝑓  

is (Lebesgue) measurable and if  

න |𝑓|ଶ𝑑𝜇 < +∞.
௑

 

Then the function 𝑓 is also said to be square–integrable.  In other words, 𝐿ଶ is the set of 

square–integrable functions.  

For 

𝑓 ∈ ቆන |𝑓|ଶ𝑑𝜇
௑

ቇ

ଵ
ଶ

. 

We call ‖𝑓‖ the 𝐿ଶ(𝜇) norm of 𝑓.  

 

Theorem: The Volterra integral equation of the second kind (2.53) whose kernel 𝐾(𝑥, 𝑡) and 

function 𝑓(𝑥) belong, respectively, to spaces 𝐿ଶ (Ω଴) 𝑎𝑛𝑑 𝐿ଶ(0, 𝑎), has one and only one 

solution in the space 𝐿ଶ(0, 𝑎). 

This solution is given by the formula 

                                           𝜑(𝑥) = 𝑓(𝑥) + 𝜆 න 𝑅(𝑥, 𝑡; 𝜆)𝑓(𝑡)𝑑𝑡
௫

଴

                          (2.54) 

where the resolvent kernel 𝑅(𝑥, 𝑡; 𝜆) is determined by means of the series 

                                                   𝑅(𝑥, 𝑡; 𝜆) = ෍ 𝜆௩𝐾௩ାଵ(𝑥, 𝑡)

ஶ

௩ୀ଴

                                 (2.55) 

which is made up of iterated kernels and converges almost everywhere. 
 

Note 2. In questions of uniqueness of solution of an integral equation, an essential role is 

played by the class of functions in which the solution is sought (the class of summable, 

quadratically summable, continuous, etc., functions).  

Thus, if the kernel 𝐾(𝑥, 𝑡) of a Volterra equation is bounded when 𝑥 varies in some finite 

interval (𝑎, 𝑏) so that |𝐾(𝑥, 𝑡)| ≤  𝑀, 𝑀 =const, 𝑥 ∈  (𝑎, 𝑏) and the constant term of 𝑓(𝑥) is 

summable in the interval (𝑎, 𝑏), then the Volterra equation has, for any value of 𝜆, a unique 

summable solution 𝜑(𝑥) in the interval (𝑎, 𝑏). 

However, if we give up the requirement of summability of the solution, then the uniqueness 

theorem ceases to hold in the sense that the equation can have nonsummable solutions along 

with summable solutions. 
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P. S. Uryson constructed elegant examples of integral equations (see Examples 1 and 2 

below) which have summable and nonsummable solutions even when the kernel 𝐾(𝑥, 𝑡) and 

the function 𝑓(𝑥) are continuous.  

For simplicity, we consider 𝑓(𝑥) ≡  0 and examine the integral equation 

                                                           𝜑(𝑥) = න 𝐾(𝑥, 𝑡)𝜑(𝑡) 𝑑𝑡 
௫

଴

                             (2.56) 

where 𝐾(𝑥, 𝑡) is a continuous function. 

The only summable solution of the equation (2.56) is 𝜑(𝑥) ≡  0. 

 

Example 2.8: 

Let 

                                        𝐾(𝑥, 𝑡) = ൞
𝑡𝑒

ଵ
௫మିଵ

 ,   0 ≤ 𝑡 ≤ 𝑥𝑒
ଵି

ଵ
௫మ ,

𝑥,             𝑥𝑒
ଵି

ଵ
௫మ ≤ 𝑡 ≤ 𝑥,

0,             𝑡 > 𝑥.                   

                                (2.57)  

The kernel 𝐾(𝑥, 𝑡) is bounded in the square  Ω଴ {0 ≤ 𝑥, 𝑡 ≤ 1}, since 0 ≤ 𝐾(𝑥, 𝑡) ≤ 𝑥 ≤ 1. 

What is more, it is continuous for 0 ≤  𝑡 ≤  𝑥. In this case, the equation (2.56) has an 

obviously summable solution 𝜑(𝑥) ≡  0 and by virtue of what has been said, this equation 

does not have any other summable solutions. 

     On the other hand, direct verification convinces us that equation (2.56) has an infinity of 

nonsummable solutions in (0, 1) in the form 

𝜑(𝑥) =
𝐶

𝑥
, 

where 𝐶 is an arbitrary constant and 𝑥 ≠  0. 

Indeed, taking into account expression (2.57) for the kernel  𝐾(𝑥, 𝑡), we find 

න 𝐾(𝑥, 𝑡)𝜑(𝑡) 𝑑𝑡 
௫

଴

= න 𝑡𝑒
ଵ

௫మିଵ 𝐶

𝑡
𝑑𝑡

 ௫௘
భష

భ

ೣమ

଴

+ න 𝑥
𝐶

𝑡
𝑑𝑡  

௫

௫௘
భష

భ

ೣమ  

 

                                                                 = 𝐶𝑥 + 𝐶𝑥 ln 𝑒
ଵ

௫మିଵ
 

                                                                 =
𝐶

𝑥
. 

Thus, we obtain 

                                                          
𝐶

𝑥
  ≡  

𝐶

𝑥
  (𝑥 ≠  0). 

This means that 𝜑(𝑥)  =  
஼

௫
 is a nonsummable solution of equation (2.56). 
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Example 2.9: 

Let 0 ≤  𝑡 ≤  𝑥 <  𝑎 (𝑎 >  0, in particular 𝑎 =  +∞), 

                                                      𝐾(𝑥, 𝑡) =
2

𝜋

𝑥𝑡ଶ

(𝑥଺  +  𝑡ଶ)
.                                       (2.58) 

The function 𝐾(𝑥, 𝑡) is even holomorphic everywhere, except at the point (0, 0). However, 

equation (2.56) with kernel (2.58) admits nonsummable solutions. Indeed, the equation 

                               𝜓(𝑥) =  
2

𝜋
න

𝑥𝑡ଶ

(𝑥଺  +  𝑡ଶ)

௫

଴

 𝜓(𝑡)𝑑𝑡 −
2

𝜋

arctan 𝑥ଶ

𝑥ଶ
              (2.59) 

has a summable solution since the function 

                                                       𝑓(𝑥) = −
2

𝜋

arctan 𝑥ଶ

𝑥ଶ
 

is bounded and continuous everywhere except at the point 𝑥 =  0. 

The function 

                                                  φ(x) = ൝
0,                 𝑥 = 0,

ψ(x) +
1

xଶ
, 𝑥 > 0,

                                   (2.60) 

where 𝜓(𝑥) is a solution of (2.59) will now be a nonsummable solution of (2.56) with kernel 

(2.58). 

Indeed, for 𝑥 >  0 we have 

න 𝐾(𝑥, 𝑡)𝜑(𝑡)𝑑𝑡
௫

଴

  =
2

𝜋
න

𝑥𝑡ଶ

(𝑥଺  +  𝑡ଶ)
𝜓(𝑡) 𝑑𝑡

௫

଴

 +
2

𝜋
න

𝑥

𝑥଺  +  𝑡ଶ

௫

଴

 𝑑𝑡.       (2.61) 

By virtue of equation (2.57), the first term on the right of (2.59) is 

                                                           𝜓(𝑥) +
2

𝜋

𝑎𝑟𝑐𝑡𝑎𝑛𝑥ଶ

𝑥ଶ
 

The second term yields 

2

𝜋
න

𝑥𝑑𝑡

𝑥଺ + 𝑡ଶ

௫

଴

 =  
2

𝜋
  ൬

1

𝑥ଶ 
arctan

𝑡

𝑥ଷ
൰ฬ

௧ୀ଴

௧ୀ௫

 =
2

𝜋𝑥ଶ
arctan

1

𝑥ଶ 
   (𝑥 >  0). 

 

Thus, 

න 𝐾(𝑥, 𝑡) 𝜑(𝑡) 𝑑𝑡
௫

଴

 =  𝜓(𝑥) +
2

𝜋

𝑎𝑟𝑐𝑡𝑎𝑛 𝑥ଶ

𝑥ଶ
    +

2

𝜋𝑥ଶ
𝑎𝑟𝑐𝑡𝑎𝑛

1

𝑥ଶ
 =  𝜓(𝑥) +

1

𝑥ଶ
 =  𝜑(𝑥), 

which means that the function 𝜑(𝑥) defined by (2.60) is a nonsummable solution of equation 

with kernel (2.58). 

 

 



Centre for Distance Education   2.16       Acharya Nagarjuna University  

Example  2.10:  

The equation 

𝜑(𝑥)  =  න 𝑡௫ି௧ 𝜑(𝑡) 𝑑𝑡
௫

଴

  (0 ≤  𝑥, 𝑡 ≤  1) 

has a unique continuous solution 𝜑(𝑥)  ≡  0.  By direct substitution, we see that this equation 

also has an infinity of discontinuous solutions of the form 

𝜑(𝑥) =  𝐶𝑥௫ିଵ, 

where 𝐶 is an arbitrary constant. 

 

2.3  SUMMARY: 
 

In this lesson, we find the resolvent kernel by using the iterated kernels and different types of 

methods. Finally, we have given examples and self-assessment problems that we included for 

better understanding of the readers. 

 

2.4  TECHNICAL TERMS: 
 

Integral equation, kernel, resolvent kernel, iterated kernel. 

 

2.5  SELF-ASSESSMENT QUESTIONS: 
 

 (2a): Find the resolvents for the Volterra-type integral equations with the following kernels: 

1. 𝐾(𝑥, 𝑡) =  𝑥 −  𝑡. 

2. 𝐾(𝑥, 𝑡) =  𝑒௫ି௧ . 

3. 𝐾(𝑥, 𝑡)  =  𝑒௫మ ି ௧మ. 

4. 𝐾(𝑥, 𝑡) =
ଵ ା ௫మ

ଵ ା ௧మ . 

5. 𝐾(𝑥, 𝑡) =
ଶ ା ௖௢௦ ௫  

ଶ ା ௖௢௦ ௧
. 

6. 𝐾(𝑥, 𝑡) =
௖௢௦௛ ௫

௖௢௦௛ ௧
. 

7. 𝐾(𝑥, 𝑡) =  𝑎௫ି௧  (𝑎 >  0). 

 

(2b): Find the resolvent kernels of integral equations with the following kernels (𝜆 = 1): 

1. 𝐾(𝑥, 𝑡)  =  2 −  (𝑥 −  𝑡). 

2. 𝐾(𝑥, 𝑡)  =  −2 +  3(𝑥 −  𝑡). 

3. 𝐾(𝑥, 𝑡)  =  2𝑥. 

4. 𝐾(𝑥, 𝑡)  =  −
ସ௫ ି ଶ

ଶ௫ ା ଵ
 +

଼(௫ ି ௧)

ଶ௫ ା ଵ
. 
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(2c):  Find the resolvent kernels for Volterra-type integral equations with the kernels  

          (λ = 1): 

1. 𝐾(𝑥, 𝑡)  =  𝑠𝑖𝑛ℎ(𝑥 − 𝑡). 

2. 𝐾(𝑥, 𝑡)  =  𝑒ି(௫ି௧). 

3. 𝐾(𝑥, 𝑡)  =  𝑒ି(௫ି௧) 𝑠𝑖𝑛(𝑥 − 𝑡). 

4. 𝐾(𝑥, 𝑡)  =  𝑐𝑜𝑠ℎ(𝑥 − 𝑡). 

5. 𝐾(𝑥, 𝑡)  =  2 𝑐𝑜𝑠(𝑥 − 𝑡). 
 

 

(2d): Using the results of the preceding examples, find (by means of resolvent kernels)    

         solutions of the following integral equations: 
 

1. 𝜑(𝑥)  =  𝑒௫  + ∫ 𝑒௫ି௧ 𝜑(𝑡) 𝑑𝑡
௫

଴
 . 

2. 𝜑(𝑥)  =  𝑠𝑖𝑛 𝑥 +  2 ∫ 𝑒௫ି௧ 𝜑(𝑡) 𝑑𝑡
௫

଴
 . 

3. 𝜑(𝑥)  =  𝑥 3௫  − ∫ 3௫ି௧ 𝜑(𝑡) 𝑑𝑡
௫

଴
 . 

4. 𝜑(𝑥) =  𝑒௫  𝑠𝑖𝑛 𝑥 +  ∫
ଶ ା ௖௢௦ ௫

ଶ ା ௖௢௦ ௧
 𝜑(𝑡) 𝑑𝑡

௫

଴
. 

5. 𝜑(𝑥)  =  1 −  2𝑥 − ∫ 𝑒௫మି ௧మ
 𝜑(𝑡) 𝑑𝑡

௫

଴
 . 

6. 𝜑(𝑥)  =  𝑒௫మା ଶ௫  +  2 ∫ 𝑒௫మି ௧మ
 𝜑(𝑡) 𝑑𝑡

௫

଴
 . 

7. 𝜑(𝑥) =  1 +  𝑥ଶ +  ∫
ଵ ା ௫మ

ଵ ା ௧మ  𝜑(𝑡) 𝑑𝑡
௫

଴
. 

8. 𝜑(𝑥) =
ଵ

ଵ ା ௫మ  +  ∫ 𝑠𝑖𝑛(𝑥 − 𝑡) 𝜑(𝑡) 𝑑𝑡
௫

଴
 . 

9. 𝜑(𝑥)  =  𝑥 𝑒
ೣమ

మ  +  ∫ 𝑒ି(௫ି௧) 𝜑(𝑡) 𝑑𝑡
௫

଴
 . 

10. 𝜑(𝑥)  =  𝑒ି௫ +  ∫ 𝑒ି(௫ି௧) 𝑠𝑖𝑛(𝑥 − 𝑡) 𝜑(𝑡) 𝑑𝑡
௫

଴
 . 

 

Solutions to Self-Assessment Questions: 

Exercise (2a) 

1. 
ଵ

√ఒ
 𝑠𝑖𝑛ℎ√𝜆(𝑥 − 𝑡) (𝜆 > 0) 

2. 𝑒(ଵାఒ)(௫ି௧) 

3. 𝑒ఒ(௫ି௧)𝑒௫ଶ ି௧ଶ 

4. 
ଵା௫మ

ଵା௧మ 𝑒ఒ(௫ି௧) 

5. 
ଶା௖௢௦ ௫

ଶା௖௢௦ ௧
 𝑒ఒ(௫ି௧) 
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6. 
௖௢௦௛ ௫

௖௢௦௛௧ 
 𝑒ఒ(௫ି௧) 

7. 𝑎௫ି௧𝑒ఒ(௫ି௧) 

Exercise (2b) 

1. 𝑒௫ି௧(𝑥 − 𝑡 + 2) 

2. 
ଵ

ସ
𝑒௫ି௧ −

ଽ

ସ
𝑒ିଷ(௫ି௧) 

3. 2𝑥𝑒௫మି௧మ
 

4. 
൫ସ௧మାଵ൯

ଶ(ଶ௧ାଵ)మ ቂ
଼

(ସ௧ଶାଵ)
− 4𝑒(ିଶ)(𝑥 − 𝑡)ቃ 

Exercise (2c) 

1. 
ଵ

√ଶ
𝑠𝑖𝑛ℎ √2(𝑥 − 𝑡) 

2. 1 

3. (𝑥 − 𝑡)𝑒ି(௫ି௧) 

4. 𝑒
ೣష೟

మ  [𝑐𝑜𝑠ℎ 
√ହ

ଶ
 (𝑥 − 𝑡) +

ଵ

√ହ
𝑠𝑖𝑛ℎ

√ହ

ଶ
(𝑥 − 𝑡)] 

5. 2𝑒௫ି௧(1 + 𝑥 − 𝑡) 

Exercise (2d) 

1. 𝜑(𝑥) = 𝑒ଶ௫ 

2. 𝜑(𝑥) =
ଵ

ହ
𝑒ଷ௫ −

ଵ

ହ
𝑐𝑜𝑠 𝑥 +

ଶ

ହ
𝑠𝑖𝑛 𝑥 

3. 𝜑(𝑥) = 3𝑥(1 − 𝑒ି௫ ) 

4. 𝜑(𝑥) = 𝑒௫𝑠𝑖𝑛 𝑥 + ൫2 + 𝑐𝑜𝑠 𝑥൯𝑒௫ ln
ଷ

ଶା௖௢௦ ௫
     

5. 𝜑(𝑥) = 𝑒௫మି௫ − 2𝑥   

6. 𝜑(𝑥) = 𝑒௫మାଶ௫(1 + 2𝑥) 

7. 𝜑(𝑥) = 𝑒௫(1 + 𝑥ଶ) 

8. 𝜑(𝑥) =
ଵ

ଵା௫మ + 𝑥 𝑎𝑟𝑐𝑡𝑎𝑛 𝑥 −
ଵ

ଶ
ln(1 + 𝑥ଶ) 

9. 𝜑(𝑥) = 𝑒
ೣమ

మ (𝑥 + 1) − 1 

10. 𝜑(𝑥) = 𝑒ି௫  ቀ
௫మ

ଶ
+ 1ቁ 
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2.6  SUGGESTED READINGS: 

 

1. Problems and Exercises in Integral Equations, MIR Publishers, Moscow, 1971, by M. 

Krasnov, A. Kiselev, and G. Makarenko. 

2. Integral equations, Krishna’s Educational Publishers, Meerut- 250001, India, 1975, by 

Shanti Swarup and Shiv Raj Singh. 

3. Integral Equations and Boundary Value Problems, S. Chand & Company PVT. LTD, 

New Delhi-110055, India, 2007, by Dr. M.D. Raisinghania. 

4. Integral Equations and their Applications, WIT Press, 25 Bridge Street, Billerica, MA 

01821, USA, by M. Rahman. 

5. Introduction to Integral Equations with Applications, John Wiley & Sons, 1999, by 

Jerri, A. 

6. Linear Integral Equation, Theory and Techniques, Academic Press, 2014, by Kanwal 

R. P. 

- Prof. K. Rajendra Prasad 



LESSON- 3 

SOLUTION OF VOLTERRA-TYPE INTEGRAL 
EQUATION BY USING THE METHOD OF 

SUCCESSIVE APPROXIMATIONS 
 
OBJECTIVES: 
 

 To identify linear and non-linear Volterra integral equations 
 To determine the solution of the Volterra linear integral equation  
 To determine the solution of the Volterra non-linear integral equation 

 
STRUCTURE: 
 

3.1  Method of successive approximations for solving Volterra-type linear integral   
       equations    
 

3.2  Method of successive approximations for non-linear Volterra-type non-linear   
       integral equation    
 

3.3  Summary 

3.4  Technical Terms 

3.5  Self-Assessment Questions  

3.6  Suggested Readings 
 

3.1  METHOD OF SUCCESSIVE APPROXIMATIONS FOR SOLVING VOLTERRA  

       TYPE LINER INTEGRAL EQUATION:    

Suppose we have a Volterra-type integral equation of the second kind: 

𝜑(𝑥)  =  𝑓(𝑥)  + 𝜆 න 𝐾(𝑥, 𝑡)𝜑(𝑡)𝑑𝑡.
௫

଴

         (3.1)  

We assume that 𝑓(𝑥) is continuous in [0, 𝑎] and the kernel 𝐾(𝑥, 𝑡) is continuous for  0 ≤

 𝑥 ≤  𝑎, 0 ≤  𝑡 ≤  𝑥. 

Take some function 𝜑₀(𝑥) continuous in [0, 𝑎]. 

Putting the function 𝜑₀(𝑥) into the right side of (3.1) in place of 𝜑(𝑥), we get 

𝜑₁(𝑥) =  𝑓(𝑥) + 𝜆 න 𝐾(𝑥, 𝑡)𝜑଴(𝑡)𝑑𝑡
௫

଴

. 

The thus defined function 𝜑₁(𝑥) is also continuous in the interval [0, 𝑎]. Continuing the 

process, we obtain a sequence of functions 

𝜑଴(𝑥), 𝜑ଵ(𝑥), ⋯ , 𝜑௡(𝑥), ⋯ 

where 
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𝜑௡(𝑥) =  𝑓(𝑥) + 𝜆 න 𝐾(𝑥, 𝑡)𝜑௡ିଵ(𝑡)𝑑𝑡
௫

଴

. 

Under the assumptions with respect to 𝑓(𝑥) and 𝐾(𝑥, 𝑡), the sequence {𝜑௡(𝑥)} converges, as 

𝑛 → ∞, to the solution 𝜑(𝑥) of the integral equation (3.1). 

In particular, if for 𝜑₀(𝑥) we take 𝑓(𝑥), then 𝜑௡(𝑥) will be the partial sums of the series 

(2.2), of  Lesson II, which defines the solution of the integral equation (3.1). A suitable 

choice of the "zero" approximation 𝜑₀(𝑥) can lead to a rapid convergence of the sequence 

{𝜑௡(𝑥)} to the solution of the integral equation. 
 

Example 3.1: Using the method of successive approximations, solve the integral 

𝜑(𝑥)  =  1 +  න 𝜑(𝑡) 𝑑𝑡
௫

଴

  

taking 𝜑₀(𝑥)  =  0. 

Solution: Since 𝜑₀(𝑥)  =  0, it follows that  

𝜑₁(𝑥)  =  1 +  න 𝜑଴(𝑡) 𝑑𝑡
௫

଴

= 1 + න 0 𝑑𝑡
௫

଴

 = 1. 

 Then 

𝜑₂(𝑥)  =  1 +  න 1 𝑑𝑡
௫

଴

  =  1 +  𝑥, 

𝜑ଷ(𝑥) =  1 +   න (1 +  𝑡)𝑑𝑡
௫

଴

  =  1 +  𝑥 +
𝑥ଶ

2
, 

𝜑ସ(𝑥) =  1 +   න ቆ1 +  𝑡 +
𝑡ଶ

2
ቇ 𝑑𝑡

௫

଴

  =  1 +  𝑥 +
𝑥ଶ

2!
 +

𝑥ଷ

3!
. 

Obviously 

𝜑௡(𝑥) =  1 +
𝑥

1!
 +

𝑥ଶ

2!
 + . . . +

𝑥௡ିଵ

(𝑛 − 1)!
. 

Thus, 𝜑௡(𝑥) is the 𝑛th partial sum of the series  

𝛴௡ୀ଴
ஶ

𝑥௡

𝑛!
 =  𝑒௫ . 

Hence, it follows that 

 𝜑௡(𝑥) →  𝑒௫   as  𝑛 → ∞. 

Thus, the function 𝜑(𝑥) = 𝑒௫ is a solution of the given integral equation. 
 

Example 3.2: Using the method of successive approximations, solve the integral 

𝜑(𝑥)  =  𝑥 −  න (𝑥 −  𝑡) 𝜑(𝑡) 𝑑𝑡
௫

଴

, 𝜑₀(𝑥)  =  0. 
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Solution: 

Given the integral equation is 

𝜑(𝑥) =  𝑥 −  න (𝑥 −  𝑡)𝜑(𝑡)𝑑𝑡
௫

଴

.  

By using the method of successive approximation,  

i.e. 𝜑௡ାଵ(𝑥)  =  𝑓(𝑥)  +  𝜆 ∫ 𝐾(𝑥, 𝑡)𝜑௡(𝑡) 𝑑𝑡
௫

଴
 , 𝑛 =  0, 1, 2, . .. 

Since 𝜑଴(𝑥)  =  0. Then, 

𝜑ଵ(𝑥)  =  𝑥 − න (𝑥 − 𝑡)𝜑଴(𝑡) 𝑑𝑡
௫

଴

  

                                                                   =  𝑥 

𝜑ଶ(𝑥) = 𝑥 − න (𝑥 − 𝑡)𝜑ଵ(𝑡) 𝑑𝑡
௫

଴

  

         = 𝑥 − න (𝑥 − 𝑡) (𝑡) 𝑑𝑡
௫

଴

  

                                                                   =  𝑥 −  
𝑥ଷ

3!
 

𝜑ଷ(𝑥)  =  𝑥 − න (𝑥 − 𝑡) (𝑡 −  
𝑡ଷ

3!
) 𝑑𝑡

௫

଴

  

                                                                = 𝑥 −  
𝑥ଷ

3!
+

𝑥ହ

5!
. 

Obviously, 

𝜑௡(𝑥) =  𝑥 −  
𝑥ଷ

3!
+

𝑥ହ

5!
− . . . +(−1)௡

𝑥ଶ௡ାଵ

(2𝑛 + 1)!
. 

Thus, 𝜑௡(𝑥) is the 𝑛th partial sum of the series 

෍(−1)௡
𝑥ଶ௡ାଵ

(2𝑛 + 1)!

ஶ

௡ୀ଴

  =  𝑠𝑖𝑛 𝑥. 

Hence, it follows that 

𝜑௡(𝑥) →  𝑠𝑖𝑛 𝑥  as 𝑛 → ∞. 

Thus, the function 𝜑(𝑥) = 𝑠𝑖𝑛 𝑥 is a solution of the given integral equation. 
 

3.2 METHOD OF SUCCESSIVE APPROXIMATIONS FOR NON-LINEAR   

      VOLTERRA-TYPE NON-LINER INTEGRAL EQUATION    

The method of successive approximations can also be applied to the solution of nonlinear 

Volterra integral equations of the form 
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𝑦(𝑥) =  𝑦଴  + න 𝐹[𝑡, 𝑦(𝑡)]𝑑𝑡
௫

଴

     (3.2)  

or the more general equations 

𝜑(𝑥) =  𝑓(𝑥) + න 𝐹൫𝑥, 𝑡, 𝜑(𝑡)൯𝑑𝑡
௫

଴

       (3.3)  

under extremely broad assumptions with respect to the functions 𝐹(𝑥, 𝑡, 𝑧) and 𝑓(𝑥). The 

problem of solving the differential equation 

𝑑𝑦

𝑑𝑥
 =  𝐹(𝑥, 𝑦), 𝑦 |௫ୀ଴  =  𝑦଴ 

reduces to an equation of the type (3.2). As in the case of linear integral equations, we shall 

seek the solution of the equation (3.3) as the limit of the sequence { 𝜑௡(𝑥)}where, for 

example, 𝜑଴(𝑥)  =  𝑓(𝑥), and the following elements 𝜑௞(𝑥) are computed successively from 

the formula 

𝜑௞(𝑥) =  𝑓(𝑥) + න 𝐹(𝑥, 𝑡, 𝜑(௞ିଵ)(𝑡)𝑑𝑡,
௫

଴

  (𝑘 = 1, 2, . . . ).     (3.4) 

If 𝑓(𝑥) and 𝐹(𝑥, 𝑡, 𝑧) are quadratically summable and satisfy the conditions 

|𝐹(𝑥, 𝑡, 𝑧ଶ) −  𝐹(𝑥, 𝑡, 𝑧ଵ)| ≤  𝑎(𝑥, 𝑡)|𝑧ଶ  −  𝑧ଵ|     (3.5) 

ቤන 𝐹(𝑥, 𝑡, 𝑓(𝑡)) 𝑑𝑡
௫

଴

ቤ ≤  𝑛(𝑥)    (3.6) 

where the functions 𝑎(𝑥, 𝑡) and 𝑛(𝑥) are such that in the main domain (0 ≤  𝑡 ≤  𝑥 ≤  𝑎) 

න 𝑛ଶ(𝑥)𝑑𝑥
௔

଴

 ≤  𝑁ଶ, න 𝑑𝑥
௔

଴

  න 𝑎ଶ(𝑥, 𝑡)𝑑𝑡
௫

଴

 ≤  𝐴ଶ      (3.7) 

it follows that the nonlinear Volterra integral equation of the second kind (3.3) has a unique 

solution 𝜑(𝑥) ∈  𝐿ଶ(0, 𝑎) which is defined as the limit of 𝜑௡(𝑥) as 𝑛 → ∞: 

𝜑(𝑥) = lim
௡→ஶ

𝜑௡(𝑥) 

where the functions 𝜑௡(𝑥) are found from the recursion formulas (3.4). For 𝜑଴(𝑥) we can 

take any function in 𝐿ଶ(0, 𝑎) (in particular, a continuous function), for which the condition 

(3.6) is fulfilled. Note that an apt choice of the zero approximation can facilitate solution of 

the integral equation. 
 

Example 3.3: Using the method of successive approximations, solve the integral equation 

𝜑(𝑥)  = න
1 +  𝜑ଶ(𝑡)

1 + 𝑡ଶ
  

௫

଴

𝑑𝑡 

taking as the zero approximation: 

 (a) 𝜑଴(𝑥)  =  0, (b) 𝜑଴(𝑥)  =  𝑥. 
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Solution. (a) Let 𝜑଴(𝑥)  =  0. Then 

        𝜑ଵ(𝑥) = න
1 +  𝜑଴

ଶ(𝑡)

1 +  𝑡ଶ
  𝑑𝑡

௫

଴

=   න
1 

1 +  𝑡ଶ
  𝑑𝑡

௫

଴

=  𝑎𝑟𝑐𝑡𝑎𝑛 𝑥, 

 𝜑ଶ(𝑥)  = න
1 + 𝜑ଵ

ଶ(𝑡)

1 + 𝑡ଶ
  𝑑𝑡

௫

଴

= න
1 +  𝑎𝑟𝑐𝑡𝑎𝑛ଶ 𝑡

1 +  𝑡ଶ

௫

଴

   𝑑𝑡 =  𝑎𝑟𝑐𝑡𝑎𝑛 𝑥 +
1

3
 𝑎𝑟𝑐𝑡𝑎𝑛ଷ 𝑥 

𝜑ଷ(𝑥) = න
1 +  𝜑ଶ

ଶ(𝑡)

1 + 𝑡ଶ
  𝑑𝑡

௫

଴

= න
1 + ቀ𝑎𝑟𝑐𝑡𝑎𝑛 𝑡 +

1
3

𝑎𝑟𝑐𝑡𝑎𝑛ଷ𝑡ቁ
ଶ

1 +  𝑡ଶ
 

௫

଴

 𝑑𝑡 

=  𝑎𝑟𝑐𝑡𝑎𝑛 𝑥 +
1

3
 𝑎𝑟𝑐𝑡𝑎𝑛ଷ 𝑥 +

2

3 × 5
 𝑎𝑟𝑐𝑡𝑎𝑛ହ 𝑥 +

1

7 ×  9
𝑎𝑟𝑐𝑡𝑎𝑛଻ 𝑥 

        𝜑ସ(𝑥) = ∫
ଵ ା ఝయ

మ(௧)

ଵ ା ௧మ   𝑑𝑡
௫

଴
  

      = arctan 𝑥 +
1

3
 𝑎𝑟𝑐𝑡𝑎𝑛ଷ 𝑥 +

2

3 × 5
 𝑎𝑟𝑐𝑡𝑎𝑛ହ 𝑥 +  

17

5 ×  7 ×  9
  𝑎𝑟𝑐𝑡𝑎𝑛଻𝑥 

+
38

 5 ×  7 ×   9ଶ 
 𝑎𝑟𝑐𝑡𝑎𝑛ଽ𝑥 +

134

9 ×  11 ×  21 ×  25
 𝑎𝑟𝑐𝑡𝑎𝑛ଵଵ𝑥 

+
4

 3 ×  5 ×  7 ×  9 ×  13
 𝑎𝑟𝑐𝑡𝑎𝑛ଵଷ𝑥 +

1

7ଶ  ×  9ଶ  ×  15
 𝑎𝑟𝑐𝑡𝑎𝑛ଵହ𝑥, ⋯. 

Since 𝑡𝑎𝑛𝑥 = 𝑥 +
௫య

ଷ
+

ଶ

ଵହ
𝑥ହ +

ଵ଻

ଷଵହ
𝑥଻ + ⋯,   |𝑥| <

గ

ଶ
 

we observe that 

𝜑௡ (𝑥) →  𝑡𝑎𝑛(𝑎𝑟𝑐𝑡𝑎𝑛 𝑥) =  𝑥 as 𝑛 → ∞. 

Thus, the function 𝜑(𝑥) = 𝑥 is a solution of the given integral equation. 

 

(b) Let 𝜑₀(𝑥)  =  𝑥. Then 

𝜑ଵ(𝑥) =  න
1 +  𝜑଴

ଶ(𝑡)

1 +  𝑡ଶ
  𝑑𝑡

௫

଴

= න
1 + 𝑡ଶ

1 + 𝑡ଶ
 𝑑𝑡

௫

଴

 =  𝑥 

In a similar fashion, we find 𝜑௡(𝑥)  =  𝑥 (𝑛 =  2, 3, . . . ). 

Thus, the sequence {𝜑௡(𝑥)} is a stationary sequence {𝑥}, the limit of which is 𝜑(𝑥)  =  𝑥. 

The solution of this integral equation is obtained directly: 

𝜑(𝑥)  =  𝑥. 

 

3.3  SUMMARY: 
 

In this lesson, find the solution of Volterra integral equations by using the method of 
successive approximations and the convolution theorem. Finally, we have given examples 
and self-assessment problems that we included for better understanding of the readers. 
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3.4  TECHNICAL TERMS:  
 

Integral equation, linear, non-linear, Volterra integral equation, convolution theorem. 

 

3.5  SELF-ASSESSMENT QUESTIONS: 
  

(3a): Using the method of successive approximations, solve the following integral equations: 

 1. 𝜑(𝑥)  =  𝑥 − ∫ (𝑥 − 𝑡)𝜑(𝑡) 𝑑𝑡
௫

଴
 , 𝜑଴(𝑥)  =  0. 

 2. 𝜑(𝑥)  =  1 − ∫ (𝑥 − 𝑡)𝜑(𝑡)𝑑𝑡
௫

଴
 , 𝜑଴(𝑥)  =  0. 

 3. 𝜑(𝑥)  =  1 + ∫ (𝑥 − 𝑡)𝜑(𝑡) 𝑑𝑡
௫

଴
 , 𝜑଴(𝑥)  =  1. 

 4. 𝜑(𝑥)  =  𝑥 +  1 − ∫ 𝜑(𝑡) 𝑑𝑡
௫

଴
 ; 

       (𝑎) 𝜑଴(𝑥) =  1,   (𝑏) 𝜑଴(𝑥)  =  𝑥 + 1. 

 5. 𝜑(𝑥)  =  
௫మ

ଶ
 +  𝑥 − ∫ 𝜑(𝑡) 𝑑𝑡

ଵ

଴
 ; 

        (𝑎) 𝜑଴(𝑥) =  1, (𝑏) 𝜑଴(𝑥) =  𝑥, (𝑐) 𝜑଴(𝑥) =
𝑥ଶ

2
 +  𝑥. 

 6. 𝜑(𝑥) =  1 +  𝑥 + ∫ (𝑥 − 𝑡)𝜑(𝑡)𝑑𝑡
௫

଴
, 𝜑଴(𝑥)  =  1. 

 7. 𝜑(𝑥)  =  2𝑥 +  2 − ∫  𝜑(𝑡) 𝑑𝑡;
௫

଴
 

        (𝑎) 𝜑଴(𝑥)  =  1,   (𝑏) 𝜑଴(𝑥)  =  2. 

 9. 𝜑(𝑥)  =  2𝑥ଶ  +  2 − ∫ 𝑥 𝜑(𝑡) 𝑑𝑡
௫

଴
; 

      (𝑎) 𝜑଴(𝑥)  =  2, (𝑏) 𝜑଴(𝑥)  =  2𝑥. 

 10. 𝜑(𝑥) =
௫య

ଷ
 −  2𝑥 − ∫ 𝜑(𝑡)𝑑𝑡

௫

଴
, 𝜑଴(𝑥)  =  𝑥ଶ. 

  

 (3b):  

1. Using the method of successive approximations to solve the following integral equations 

𝜑(𝑥) =  න
𝑡𝜑(𝑡)

1 + 𝑡 + 𝜑(𝑡)

௫

଴

 𝑑𝑡. 

2. Using the method of successive approximations to find a second approximation 𝜑ଶ(𝑥)  to  

     the solution of the integral equation  

𝜑(𝑥) = 1 +  න [𝜑ଶ(𝑡) + 𝑡𝜑(𝑡) + 𝑡ଶ]
௫

଴

 𝑑𝑡. 

3. Using the method of successive approximations to find a third approximation 𝜑ଷ(𝑥)  to the  

    solution of the integral equation  
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𝜑(𝑥) =  න [𝑡𝜑ଶ(𝑡) − 1]
௫

଴

 𝑑𝑡. 

Solutions to Self-Assessment Questions: 
 

Exercise (3a): 

1. 𝜑(𝑥) = 𝑠𝑖𝑛 𝑥 

2. 𝜑(𝑥) = 𝑐𝑜𝑠 𝑥 

3. 𝜑(𝑥) = 𝑐𝑜𝑠ℎ 𝑥 

4. 𝜑(𝑥) = 1 

5. 𝜑(𝑥) = 𝑥 

6. 𝜑(𝑥) = 𝑒௫ 

7. 𝜑(𝑥) = 2 

8. 𝜑(𝑥) = 2 

9. 𝜑(𝑥) = 𝑥ଶ − 2𝑥 
 

Exercise (3b): 

1. 𝜑(𝑥) ≡ 0 

2. 𝜑ଶ (𝑥) = 1 + 𝑥 +
ଷ

ଶ
𝑥ଶ +

ସ

ଷ
𝑥ଷ +

ଵଷ

ଶସ
𝑥ସ +

ଵ

ସ
𝑥ହ +

ଵ

ଵ଼
𝑥଺ +

ଵ

଺ଷ
𝑥଻ 

3. 𝜑ଷ(𝑥) = −𝑥 +
௫ర

ସ
−

௫ళ

ଵସ
+

௫భబ

ଵ଺଴
 

 

3.6   SUGGESTED READINGS: 
 

1. Problems and Exercises in Integral Equations, MIR Publishers, Moscow, 1971, by M. 
Krasnov, A. Kiselev and G. Makarenko. 

2. Integral equations, Krishna’s Educational Publishers, Meerut- 250001, India, 1975, by 
Shanti Swarup and Shiv Raj Singh. 

3. Integral Equations and Boundary Value Problems, S. Chand & Company PVT. LTD, 
New Delhi-110055, India, 2007, by Dr. M.D. Raisinghania. 

4. Integral Equations and their Applications, WIT press, 25 Bridge Street, Billerica, MA 
01821, USA, by M. Rahman. 

5. Introduction to Integral Equations with Applications, John Wiley & Sons, 1999, by 
Jerri, A. 

6. Linear Integral Equation, Theory and Techniques, Academic Press, 2014, by Kanwal 
R. P. 

 

-  Prof. K. Rajendra Prasad 

 



 

 

LESSON- 4 

SOLUTION OF VOLTERRA-TYPE INTEGRAL 
EQUATION BY USING CONVOLUTION THEOREM 

 
OBJECTIVES: 
 
 To apply the convolution theorem in Laplace transformations to an integral equation to 

determine the solution of the Volterra integral equation. 
 To apply the convolution theorem in Laplace transformations to integral equations to 

determine the solution for a system of Volterra integral equations. 
 
STRUCTURE: 
 

4.1  Solution of Volterra Integral Equation by using the Convolution Theorem. 

4.2  Solution of System of Volterra Integral Equations by using the Convolution   
       Theorem. 
 

4.3  Summary 

4.4  Technical Terms 

4.5  Self-Assessment Questions  

4.6  Suggested Readings 
 

4.1 SOLUTION OF VOLTERRA INTEGRAL EQUATION BY USING THE   
      CONVOLUTION THEOREM: 
 
Let 𝜑ଵ(𝑥) and 𝜑ଶ(𝑥) be two continuous functions defined for 𝑥 ≥  0. The convolution of 

these two functions is the function 𝜑ଷ(𝑥) defined by the equation 

𝜑ଷ(𝑥) = න 𝜑ଵ(𝑥 − 𝑡)𝜑ଶ(𝑡)
௫

଴

𝑑𝑡.   (4.1) 

This function, defined for 𝑥 ≥  0, will also be a continuous function. If 𝜑ଵ(𝑥) and 𝜑ଶ(𝑥) are 

original functions for the Laplace transformation, then 

𝐿[𝜑ଷ]  =  𝐿[𝜑ଵ] ⋅ 𝐿[𝜑ଶ]      (4.2) 

i.e., the transform of a convolution is equal to the product of the transforms of the functions 

(convolution theorem). Let us consider the Volterra-type integral equation of the second kind 

𝜑(𝑥) =  𝑓(𝑥) + න 𝐾(𝑥 − 𝑡)𝜑(𝑡)
௫

଴

𝑑𝑡         (4.3) 

the kernel of which is dependent solely on the difference 𝑥 − 𝑡. We shall call equation (4.3) 

an integral equation of the convolution type. 

     Let 𝑓(𝑥) and 𝐾(𝑥) be sufficiently smooth functions which, as 𝑥 → ∞, do not grow faster 

than the exponential function, so that 
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|𝑓(𝑥)| ≤  𝑀ଵ 𝑒௦భ௫, |𝐾(𝑥)| ≤  𝑀ଶ 𝑒௦మ௫.        (4.4) 

Applying the method of successive approximations, we can show that in this case, the 

function 𝜑(𝑥) will also satisfy an upper bound of type (4.4): 

|𝜑(𝑥)| ≤  𝑀ଷ 𝑒௦య௫. 

Consequently, the Laplace transform of the functions 𝑓(𝑥), 𝐾(𝑥) and 𝜑(𝑥) can be found (it 

will be defined in the half-plane 𝑅𝑒 𝑝 =  𝑠 >  𝑚𝑎𝑥 (𝑠ଵ, 𝑠ଶ, 𝑠ଷ)).  

Let 

𝐿[𝑓(𝑥)] =  𝐹(𝑝), 𝐿[𝜑(𝑥)] = ϕ(𝑝), 𝐿[𝐾(𝑥)] =  𝐾෩(𝑝). 

Taking the Laplace transform of both sides of (4.3) and employing the convolution theorem, 

we find 

ϕ(𝑝) =  𝐹(𝑝) +  𝐾෩(𝑝)ϕ(𝑝).       (4.5) 

Hence, 

ϕ(𝑝) =
𝐹(𝑝)

1 − 𝐾෩(𝑝)
, (𝐾෩(𝑝) ≠ 1).  

Apply the inverse Laplace transform to both sides, we get the solution of the integral equation 

(4.3). 
 

Example  4.1: 

Solve the integral equation 

𝜑(𝑥) =  𝑠𝑖𝑛 𝑥 +  2 න  𝑐𝑜𝑠(𝑥 − 𝑡)𝜑(𝑡) 
௫

଴

𝑑𝑡. 

Solution.  Given that the integral equation is  

𝜑(𝑥) =  𝑠𝑖𝑛 𝑥 +  2 න  𝑐𝑜𝑠(𝑥 − 𝑡)𝜑(𝑡) 
௫

଴

𝑑𝑡     (4.6) 

where 𝑓(𝑥) = 𝑠𝑖𝑛𝑥, 𝜆 = 2, 𝐾(𝑥, 𝑡) = 𝐾(𝑥 − 𝑡) = cos(𝑥 − 𝑡). 

Apply the Laplace transform on both sides of the equation (4.6) and taking account of the 

convolution theorem (transform of a convolution), we get 

L[𝜑(𝑥)] =  𝐿[𝑠𝑖𝑛 𝑥]  +  2 (𝐿[cos(𝑥)] ⋅ 𝐿[𝜑(𝑥)]) 

 ϕ(𝑝)  =
1

𝑝ଶ + 1
+

2𝑝

𝑝ଶ  +  1
ϕ(𝑝) 

ϕ(𝑝) ൤1 −
2𝑝

𝑝ଶ +  1
൨ =

1

𝑝ଶ +  1
  

                                                            (or) 

                                                         ϕ(𝑝) =
1

(𝑝 −  1)ଶ
.  
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Apply the Laplace inverse transformation on both sides 

𝐿ିଵ[ϕ(𝑝)] = 𝐿ିଵ ൤
1

(𝑝 −  1)ଶ
൨ 

                                                            𝜑(𝑥)  = 𝑒௫𝐿ିଵ ቂ
ଵ

௣మ
ቃ (by using the shifting operator) 

                                                                    𝜑(𝑥) = 𝑥𝑒௫. 

Hence, the solution of the given integral equation is 

                                                                    𝜑(𝑥) =  𝑥𝑒௫. 

 

Example  4.2: 

Solve the integral equation 

𝜑(𝑥) =  𝑒௫  −  න 𝑒௫ି௧ 𝜑(𝑡)
௫

଴

𝑑𝑡. 

Solution.  Given that the integral equation is  

𝜑(𝑥) =  𝑒௫  −  න 𝑒௫ି௧ 𝜑(𝑡)
௫

଴

𝑑𝑡      (4.7) 

where 𝑓(𝑥) = 𝑒௫, 𝜆 = −1, 𝐾(𝑥, 𝑡) = 𝐾(𝑥 − 𝑡) = 𝑒௫ି௧. 

Apply the Laplace transform on both sides of the equation (4.7) and taking account of the 

convolution theorem (transform of a convolution), we get 

𝐿[𝜑(𝑥)] =  𝐿[𝑒௫] − 𝐿 [𝑒௫] ⋅ 𝐿[𝜑(𝑥)] 

                                                    ϕ(𝑝) =
1

𝑝 − 1
−

1

𝑝 − 1
ϕ(𝑝) 

                                                    ϕ(𝑝) ൤1 +
1

𝑝 − 1
൨ =

1

𝑝 − 1
 

                                                     (or) 

                                                     ϕ(𝑝) =
1

𝑝
.  

Apply the Laplace inverse transform on both sides 

𝐿ିଵ[ϕ(𝑝)] = 𝐿ିଵ ൤
1

𝑝
൨ 

                                                                  𝜑(𝑥)  = 1.  

Hence, the solution of the given integral equation is 

𝜑(𝑥)  =  1. 
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4.2:  SOLUTION OF THE SYSTEM OF VOLTERRA INTEGRAL EQUATIONS BY   
       USING THE CONVOLUTION THEOREM:  
 

The Laplace transformation method may be employed in finding the solution of a system of 

Volterra integral equations of the type 

𝜑௜( 𝑥 ) =  𝑓௜ ( 𝑥 ) + ෍ න 𝐾௜௝(𝑥 − 𝑡)
௫

଴

௦

௝ୀଵ

𝜑௝(𝑡)𝑑𝑡  ( 𝑖 =  1 , 2 , ⋯ , 𝑠)              ( 4.8 ) 

where 𝐾௜௝(𝑥), 𝑓௜ ( 𝑥 ) are known continuous functions having Laplace transforms.                                                                                                                             

Taking the Laplace transform of both sides of (4.8), we get 

ϕ௜  ( 𝑝 ) =  𝐹௜ ( 𝑝 ) + ෍ 𝐾෩௜௝( 𝑝 )ϕ௝( 𝑝 )

௦

௝ୀଵ

 ( 𝑖 =  1 , 2 , ⋯ , 𝑠)                          (4.9) 

This is a system of linear algebraic equations in ϕ௝( 𝑝 ).  Solving it, we find ϕ௝( 𝑝 ), the 

original functions of which will be the solution of the original system of integral equations 

(4.8).         
 

Example 4.3: Solve the system of integral equations, 

 𝜑ଵ( 𝑥 ) =  1 − 2 න 𝑒  ଶ(௫ ି ௧)𝜑ଵ( 𝑡 )𝑑𝑡 
௫

଴

+  න 𝜑ଶ( 𝑡 )𝑑𝑡,
௫

଴

 

𝜑ଶ( 𝑥 ) =  4𝑥 −  න 𝜑ଵ( 𝑡 )𝑑𝑡
௫

଴

+    4 න ( 𝑥 −  𝑡 )
௫

଴

𝜑ଶ( 𝑡 )𝑑𝑡. 

Solution. Given the system of integral equations 

𝜑ଵ( 𝑥 ) =  1 − 2 න 𝑒  ଶ(௫ ି ௧)𝜑ଵ( 𝑡 )𝑑𝑡 
௫

଴

+  න 𝜑ଶ( 𝑡 )𝑑𝑡,
௫

଴

           (4.10) 

𝜑ଶ( 𝑥 ) =  4𝑥 −  න 𝜑ଵ( 𝑡 )𝑑𝑡
௫

଴

+    4 න ( 𝑥 −  𝑡 )
௫

଴

𝜑ଶ( 𝑡 )𝑑𝑡.     (4.11) 

Equations (4.10) and (4.11) can be written as  

𝜑ଵ(𝑥) = 1 − 2 න 𝑒  ଶ(௫ ି ௧)𝜑ଵ(𝑡)𝑑𝑡
௫

଴

+ න (𝑥 − 𝑡)଴𝜑ଶ(𝑡)𝑑𝑡,
௫

଴

       (4.12) 

𝜑ଶ(𝑥) = 4𝑥 − න (𝑥 − 𝑡)଴𝜑ଵ(𝑡)𝑑𝑡
௫

଴

+ 4 න (𝑥 − 𝑡 )
௫

଴

𝜑ଶ(𝑡)𝑑𝑡.     (4.13) 

Applying the Laplace transform on both sides and using the convolution theorem for 

equations (4.12) and (4.13) respectively, we get: 

                                          ϕଵ(𝑝) =
1

𝑝
 −

2

𝑝 − 2
 ϕଵ(𝑝) +

1

𝑝
 ϕ₂(𝑝) 

                                          ϕ₁(𝑝) ൤1 +
2

𝑝 − 2
൨  −

1

𝑝
 ϕଶ(𝑝) =

1

𝑝
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⇒ 𝑝² ϕ₁(𝑝)  −  (𝑝 − 2)ϕଶ(𝑝)  =  𝑝 − 2,          (4.14) 

                                          ϕଶ(𝑝) =
4

𝑝ଶ
 −

1

𝑝
 ϕ₁(𝑝)  +

4

𝑝ଶ
 ϕ₂(𝑝) 

                                           
1

𝑝
 ϕଵ(𝑝) +  ൤1 −

4

𝑝ଶ
൨ ϕଶ(𝑝) =

4

𝑝ଶ
 

                                     ⇒ 𝑝 ϕଵ(𝑝) +  (𝑝ଶ −  4)ϕଶ(𝑝) =  4.               (4.15) 

Solving the equations (4.14) and (4.15), we get: 

ϕଵ(𝑝) =
𝑝

(𝑝 + 1)ଶ
=

1

𝑝 + 1
−

1

(𝑝 + 1)ଶ
,         (4.16) 

ϕଶ(𝑝) =
3𝑝 + 2

(𝑝 − 2)(𝑝 + 1)ଶ
=

8

9
⋅

1

𝑝 − 2
+

1

3
⋅

1

(𝑝 + 1)ଶ
−

8

9
⋅

1

𝑝 + 1
.        (4.17) 

Apply the Laplace inverse transform on both sides of the equation (4.16), we get  

𝐿ିଵ[ϕଵ(𝑝)] = 𝐿ିଵ ൤
1

𝑝 + 1
൨ − 𝐿ିଵ ൤

1

(𝑝 + 1)ଶ
൨ 

                                             𝜑ଵ(𝑥) = 𝑒ି௫ − 𝑒ି௫𝐿ିଵ ൤
1

𝑝ଶ
൨ 

                                             𝜑ଵ(𝑥) = 𝑒ି௫ − 𝑥𝑒ି௫ . 

Apply the Laplace inverse transform on both sides of the equation (4.17), we get  

𝐿ିଵ[ϕଶ(𝑝)] =
8

9
⋅ 𝐿ିଵ ൤

1

𝑝 − 2
൨ +

1

3
⋅ 𝐿ିଵ ൤

1

(𝑝 + 1)ଶ
൨ −

8

9
⋅ 𝐿ିଵ ൤

1

𝑝 + 1
൨ 

                             𝜑ଶ(𝑥) =
଼

ଽ
⋅ 𝑒ଶ௫ +

ଵ

ଷ
⋅ 𝑒ି௫𝐿ିଵ ቂ

ଵ

௣మ
ቃ −

଼

ଽ
⋅ 𝑒ି௫ 

                                 𝜑ଶ(𝑥) =
8

9
⋅ 𝑒ଶ௫ +

1

3
𝑥 ⋅ 𝑒ି௫ −

8

9
⋅ 𝑒ି௫ . 

The functions  𝜑ଵ(𝑥),  𝜑ଶ(𝑥) are solutions of the system of integral equations (4.10) and 

(4.11) respectively. 

 

4.3  SUMMARY: 
 

In this lesson, we find the solution to the Volterra integral equation by using the convolution 
theorem. Next, we find the solution to the system of Volterra integral equations by using the 
convolution theorem. Finally, we have given examples and self-assessment problems that we 
included for better understanding of the readers. 
 

4.4  TECHNICAL TERMS: 
 

 Integral equation, Volterra integral equation, Laplace transformation, inverse Laplace 

transformation, convolution theorem, system of equations. 
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4.5  SELF-ASSESSMENT QUESTIONS:  
 

(4a): Solve the following integral equations: 

 1. 𝜑(𝑥) =  𝑥 −  ∫ 𝑒௫ି௧ 𝜑(𝑡)𝑑𝑡
௫

଴
.   

 2.  𝜑(𝑥)  =  𝑒ଶ௫  + ∫ 𝑒௧ି௫ 𝜑(𝑡)𝑑𝑡.
௫

଴
  

 3.  𝜑(𝑥) =  𝑥 −  ∫ (𝑥 − 𝑡)𝜑(𝑡)𝑑𝑡
௫

଴
.  

 4.  𝜑(𝑥)  =  𝑐𝑜𝑠(𝑥)  −  ∫ (𝑥 − 𝑡)𝑐𝑜𝑠(𝑥 − 𝑡)𝜑(𝑡)𝑑𝑡.
௫

଴
  

 5.  𝜑(𝑥)  =  1 +  𝑥 +  ∫ 𝑒ିଶ(௫ି௧) 𝜑(𝑡)𝑑𝑡.
௫

଴
  

 6.  𝜑(𝑥)  =  𝑥 +  ∫ 𝑠𝑖𝑛(𝑥 − 𝑡)𝜑(𝑡)𝑑𝑡.
௫

଴
  

 7.  𝜑(𝑥)  =  𝑠𝑖𝑛(𝑥)  +  ∫ (𝑥 − 𝑡)𝜑(𝑡)𝑑𝑡.
௫

଴
  

 8.  𝜑(𝑥) =  𝑥 −  ∫ sinh(𝑥 − 𝑡) 𝜑(𝑡)𝑑𝑡
௫

଴
.  

9.  𝜑 ( 𝑥 )  =  1 − 2𝑥 −  4𝑥² + ∫ [ 3 − 6 ( 𝑥 −  1 )  − 4 ( 𝑥 −  1 ) ² ] 𝜑 ( 𝑡 ) 𝑑𝑡
௫

଴
. 

10. 𝜑 ( 𝑥 )  =  𝑠𝑖𝑛ℎ 𝑥 −  ∫  𝑐𝑜𝑠ℎ ( 𝑥 −  1 ) 𝜑 ( 𝑡 ) 𝑑𝑡.
௫

଴
 

11. 𝜑 ( 𝑥 )  =  1 +  2 ∫ 𝑐𝑜𝑠 ( 𝑥 −  1 ) 𝜑 ( 𝑡 ) 𝑑𝑡
௫

଴
. 

12. 𝜑 ( 𝑥 )  =  𝑒௫  +  2 ∫ 𝑐𝑜𝑠 ( 𝑥 −  1 ) 𝜑 ( 𝑡 ) 𝑑𝑡
௫

଴
.                                                                                                                     

 13. 𝜑 ( 𝑥 )  =  𝑐𝑜𝑠𝑥 + ∫ 𝜑 ( 𝑡 ) 𝑑𝑡
௫

଴
. 

 

(4b): Solve the following systems of integral equations: 

1. 𝜑ଵ(𝑥) = 𝑠𝑖𝑛𝑥 + ∫  𝜑ଶ(𝑡)𝑑𝑡,
௫

଴
 

    𝜑ଶ(𝑥) = 1 − 𝑐𝑜𝑠𝑥 − ∫  𝜑ଵ(𝑡)𝑑𝑡
௫

଴
. 

2. 𝜑ଵ(𝑥) = 𝑒ଶ௫ + ∫  𝜑ଶ(𝑡)𝑑𝑡,
௫

଴
 

    𝜑ଶ(𝑥) = 1 − ∫ 𝑒ଶ(௫ି௧) 𝜑ଵ(𝑡)𝑑𝑡
௫

଴
. 

3. 𝜑ଵ(𝑥) = 𝑒௫ + ∫  𝜑ଵ(𝑡)𝑑𝑡 − ∫ 𝑒௫ି௧ 𝜑ଶ(𝑡)𝑑𝑡,
௫

଴

௫

଴
 

    𝜑ଶ(𝑥) = −𝑥 − ∫ (𝑥 − 𝑡)𝜑ଵ(𝑡)𝑑𝑡
௫

଴
+ ∫  𝜑ଶ(𝑡)𝑑𝑡

௫

଴
. 

4. 𝜑ଵ(𝑥) = 𝑒௫ − ∫  𝜑ଵ(𝑡)𝑑𝑡 + 4 ∫ 𝑒௫ି௧ 𝜑ଶ(𝑡)𝑑𝑡,
௫

଴

௫

଴
 

    𝜑ଶ(𝑥) = 1 − ∫ 𝑒௧ି௫𝜑ଵ(𝑡)𝑑𝑡
௫

଴
+ ∫  𝜑ଶ(𝑡)𝑑𝑡

௫

଴
. 

5.  𝜑ଵ(𝑥) = 𝑥 + ∫  𝜑ଶ(𝑡)𝑑𝑡,
௫

଴
 

    𝜑ଶ(𝑥) = 1 − ∫  𝜑ଵ(𝑡)𝑑𝑡
௫

଴
, 

    𝜑ଷ(𝑥) = 𝑠𝑖𝑛𝑥 +
1

2
න (𝑥 − 𝑡) 𝜑ଵ(𝑡)𝑑𝑡

௫

଴

. 
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6.  𝜑ଵ(𝑥) = 1 − ∫  𝜑ଶ(𝑡)𝑑𝑡
௫

଴
, 

𝜑ଶ(𝑥) = 𝑐𝑜𝑠𝑥 − 1 + න  𝜑ଷ(𝑡)𝑑𝑡,
௫

଴

 

𝜑ଷ(𝑥) = 𝑐𝑜𝑠𝑥 + න  𝜑ଵ(𝑡)𝑑𝑡,
௫

଴

 

7.   𝜑ଶ(𝑥) = 𝑥 + 1 + ∫  𝜑ଷ(𝑡)𝑑𝑡,
௫

଴
 

 𝜑ଶ(𝑥) = −𝑥 + න (𝑥 − 𝑡) 𝜑ଵ(𝑡)𝑑𝑡
௫

଴

. 

𝜑ଶ(𝑥) = 𝑐𝑜𝑠𝑥 − 1 − න  𝜑ଵ(𝑡)𝑑𝑡.
௫

଴

 

Solutions to Self-Assessment Questions:  

Exercise (4a): 

1. 𝜑(𝑥) = 𝑥 −
௫మ

ଶ
 

2. 𝜑(𝑥) =
ଵ

ଶ
(3𝑒ଶ௫ − 1) 

3. 𝜑(𝑥) = 𝑠𝑖𝑛 𝑥 

4. 𝜑(𝑥) =
ଵ

ଷ
൫2 𝑐𝑜𝑠 √3𝑥 + 1൯ 

5. 𝜑(𝑥) = 2𝑥 + 1 

6. 𝜑(𝑥) = 𝑥 +
௫య

଺
 

7. 𝜑(𝑥) =
ଵ

ଶ
𝑠𝑖𝑛 𝑥 +

ଵ

ଶ
𝑠𝑖𝑛ℎ 𝑥 

8. 𝜑(𝑥) = 𝑥 −
௫య

଺
 

9. 𝜑(𝑥) = 𝑒௫ 

10. 𝜑(𝑥) =
ଶ

√ହ
sinh

√ହ

ଶ
  𝑥 ⋅ 𝑒ି

ೣ

మ 

11. 𝜑(𝑥) = 1 + 2𝑥𝑒௫ 

12. 𝜑(𝑥) = 𝑒௫(1 + 𝑥)ଶ 

13. 𝜑(𝑥) = 𝜑(𝑥) =
௘ೣା௖௢௦ ௫ା௦௜௡ ௫

ଶ
 

Exercise (4b): 

1. 𝜑ଵ(𝑥) = 𝑠𝑖𝑛 𝑥, 𝜑ଶ(𝑥) = 0 

2. 𝜑ଵ(𝑥) = 3𝑒௫ − 2, 𝜑ଶ(𝑥) = 3𝑒௫ − 2𝑒ଶ௫ 
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3. 𝜑ଵ(𝑥) = 𝑒ଶ௫, 𝜑ଶ(𝑥) =
ଵି௘మೣ

ଶ
 

4. ቊ
𝜑ଵ (𝑥) = (𝑥 + 2)𝑠𝑖𝑛 𝑥 + (2𝑥 + 1)𝑐𝑜𝑠 𝑥,

𝜑ଶ (𝑥) =
ଶା௫

ଶ
 𝑐𝑜𝑠 𝑥 −

ଶ௫ାଵ

ଶ
 𝑠𝑖𝑛 𝑥              

 

5. 𝜑ଵ(𝑥) = 2 𝑠𝑖𝑛 𝑥, 𝜑ଶ(𝑥) = 2 𝑐𝑜𝑠 𝑥 − 1, 𝜑ଷ(𝑥) = 𝑥 

6. 𝜑ଵ(𝑥) = 𝑐𝑜𝑠 𝑥, 𝜑ଶ(𝑥) = 𝑠𝑖𝑛 𝑥, 𝜑ଷ(𝑥) = 𝑠 𝑖𝑛 𝑥 + 𝑐𝑜𝑠 𝑥 

7. 

⎩
⎪
⎨

⎪
⎧𝜑ଵ(𝑥) = ቀ1 +

௫

ଶ
ቁ 𝑐𝑜𝑠 𝑥 +

ଵ

ଶ
 𝑐𝑜𝑠𝑥,             

𝜑ଶ(𝑥) = 1 − 𝑥 +
ଵ

ଶ
𝑠𝑖𝑛𝑥 − ቀ1 +

௫

ଶ
ቁ 𝑐𝑜𝑠𝑥,

𝜑ଷ(𝑥) = 𝑐𝑜𝑠 𝑥 − 1 − ቀ1 +
௫

ଶ
ቁ 𝑠𝑖𝑛𝑥          

 

4.6  SUGGESTED READINGS: 
 

1. Problems and Exercises in Integral Equations, MIR Publishers, Moscow, 1971, by M. 
Krasnov, A. Kiselev and G. Makarenko. 

2. Integral equations, Krishna’s Educational Publishers, Meerut- 250001, India, 1975, by 
Shanti Swarup and Shiv Raj Singh. 

3. Integral Equations and Boundary Value Problems, S. Chand & Company PVT. LTD, 
New Delhi-110055, India, 2007, by Dr. M.D. Raisinghania. 

4. Integral Equations and their Applications, WIT Press, 25 Bridge Street, Billerica, MA 
01821, USA, by M. Rahman. 

5. Introduction to Integral Equations with Applications, John Wiley & Sons, 1999, by 
Jerri, A. 

6. Linear Integral Equation, Theory and Techniques, Academic Press, 2014, by Kanwal R. 
P. 

 
- Prof. K. Rajendra Prasad 

 



                              LESSON- 5 

INTEGRO-DIFFERENTIAL EQUATIONS 
 

OBJECTIVES: 
 

 To learn about the integro-differential equations 
 To determine the solutions to the integro-differential equations using Laplace transforms 

 

STRUCTURE: 

5.1  Introduction 

5.2  Integro-differential equations 

5.3  Solution of Integro-differential equations with the aid of the   
       Laplace Transformations 
 

5.4  Summary 

5.5  Technical Terms 

5.6  Self-Assessment Questions 

5.7  Suggested Readings 

 

5.1. INTRODUCTION: 
 
This lesson deals with one of the most applied problems in the engineering sciences. It 
concerns integro-differential equations, where both differential and integral operators appear 
in the same equation. Volterra introduced this type of equation for the first time in the early 
1900s. Volterra investigated population growth, focusing his study on hereditary influences, 
where, through his research work, the topic of integro-differential equations was established. 

 
5.2. INTEGRO-DIFFERENTIAL EQUATIONS: 

 
5.2.1. Definition: An integral equation is an equation in which an unknown function to be 
determined appears under one or more integral signs. If the derivatives of the function are 
involved, it is called an integro-differential equation.    

                                  𝜑(௡)(𝑥) = 𝑓(𝑥) + 𝜆 ∫ 𝐾(𝑥, 𝑡)𝜑(𝑡)𝑑𝑡
௕

௔
,  

where 𝜑(௡)(𝑥) =
ௗ೙ఝ

ௗ௫೙,     and     𝐾(𝑥, 𝑡) be the kernel. 

The above equation is the combination of a differential operator and an integral operator; 

therefore, it is necessary to define initial conditions 𝜑(0), 𝜑ᇱ(0), … , 𝜑(௡ିଵ)(0) for the 
determination of the particular solution 𝜑(𝑥) of the integro-differential equation. 

 
5.2.2. Note: There are mainly two types of linear integro-differential equations: 
             (i)  Volterra integro-differential equation 
 (ii)  Fredholm integro-differential equation  
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5.2.3. Definition: A Volterra integro-differential equation is defined as if the upper limit of 
the integral of the integro-differential equation is a variable. 

 
5.2.4. Definition: Fredholm integro-differential equation is defined as if the limits of the 
integral of the integro-differential equation are fixed constants. 
 
5.2.5. Examples: Consider the following examples, 
 

𝜑ᇱ(𝑥) = 𝑓(𝑥) − ∫ (𝑥 − 𝑡)𝜑(𝑡)𝑑𝑡,    𝜑(0) = 0
௫

଴
                            (1) 

𝜑ᇱᇱ(𝑥) = 𝑔(𝑥) + ∫ (𝑥 − 𝑡)𝜑(𝑡)𝑑𝑡,   𝜑(0) = 0
௫

଴
, 𝜑ᇱ(0) = −1 (2) 

𝜑ᇱ(𝑥) = 𝑒௫ − 𝑥 + ∫ 𝑥𝑡𝜑(𝑡)𝑑𝑡
ଵ

଴
,         𝜑(0) = 0                            (3) 

𝜑ᇱᇱ(𝑥) = ℎ(𝑥) + ∫ 𝑡𝜑ᇱ(𝑡)𝑑𝑡,              𝜑(0) = 0, 𝜑ᇱ(0) = 1
ଵ

଴
             (4) 

 

It is clear from the above examples that the unknown function 𝜑(𝑥) or one of its derivatives 
appears under the integral sign, and the other derivatives appear outside the integral sign as 
well. Equations (1) and (2) are Volterra-type integro-differential equations, and equations (3) 
and (4) are Fredholm-type integro-differential equations. It is to be noted that these equations 
are linear integro-differential equations. However, nonlinear integro-differential equations 
also arise in many scientific and engineering problems. To obtain a solution of the integro-
differential equation, we need to specify the initial conditions to determine the unknown 
constants. 
 
5.2.6. Note: One quick source of integro-differential equations can be clearly seen when we 
convert the differential equation to an integral equation by using Leibniz rule, i.e., 

 

                            
ௗ

ௗ௫
∫ 𝐹(𝑥, 𝑡)𝑑𝑡   = ∫

డி(௫,௧)

డ௫
𝑑𝑡 +

ௗ௕(௫)

ௗ௫
𝐹൫𝑥, 𝑏(𝑥)൯ −  

ௗ௔(௫)

ௗ௫
𝐹(𝑥, 𝑎(𝑥))

௕(௫)

௔(௫)

௕(௫)

௔(௫)
 

 
5.2.7. Note: In the electrical engineering problem, the current 𝐼(𝑡) flowing in a closed circuit 
can be obtained in the form of the following integro-differential equation, 

 

                           𝐿
ௗூ

ௗ௧
+ 𝑅𝐼 +

ଵ

஼
∫ 𝐼(𝜏)𝑑𝜏 = 𝑓(𝑡)

௧

଴
,         𝐼(0) = 𝐼଴ 

where, 𝐿 is the inductance, 𝑅 the resistance, 𝐶 the capacitance, and 𝑓(𝑡) the applied voltage. 
 

5.2.8. Definition:  If the kernel 𝐾(𝑥, 𝑡) of the integral equation is defined as a function of the 
difference (𝑥, 𝑡), i.e., 
                                            𝐾(𝑥, 𝑡) = 𝐾(𝑥 − 𝑡)    

where 𝐾 is a certain function of one variable. 
Now, we recall some important definitions and properties of the Laplace and inverse Laplace 
transforms, which are essential for the study of further concepts. 
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5.2.9. Laplace Transformation and its properties: 
Definition: Consider a function 𝜑 in terms of 𝑥 and its Laplace transformation will be a 
function Φ in terms of 𝑝 i.e.,  𝐿{𝜑(𝑥)} = Φ(𝑝)  (or)  𝜑(𝑥) ≓ Φ(𝑝). 

 
Properties: If 𝐿{𝜑(𝑥)} = Φ(𝑝) then, 
                      (1)  𝐿{𝑒௔௫𝜑(𝑥)} = Φ(𝑝 − 𝑎),        

                      (2)  𝐿{𝑒ି௔௫𝜑(𝑥)} = Φ(𝑝 + 𝑎) 

                      (3)  𝐿{𝜑(𝑎𝑥)} =
ଵ

௔
Φ(

௣

௔
) 

                      (4)  𝐿{𝜑ᇱ(𝑥)} = 𝑝𝐿{𝜑(𝑥)} − 𝜑(0) 

                      (5)  𝐿{𝜑ᇱᇱ(𝑥)} = 𝑝ଶ𝐿{𝜑(𝑥)} − 𝑝𝜑(0) − 𝜑ᇱ(0) 

                      (6)  𝐿{𝑥𝜑(𝑥)} =
ିௗ

ௗ௣
Φ(𝑝) 

                      (7) 𝐿{𝑥௡𝜑(𝑥)} = (−1)௡ ௗ೙

ௗ௣೙ Φ(𝑝) 

                      (8) The convolution of two functions 𝜑(𝑥) and 𝜓(𝑥) is defined     

                        as, 𝜑(𝑥) ∗ 𝜓(𝑥) = ∫ 𝜑(𝑡) 𝜓(𝑥 − 𝑡)𝑑𝑡 = ∫ 𝜑(𝑥 − 𝑡) 𝜓(𝑡)𝑑𝑡 
௫

଴

௫

଴
 

                       (9)    𝐿{1} =
ଵ

௣
 

                      (10)  𝐿{𝑠𝑖𝑛𝑎𝑥} =
௔

௔మା௣మ 

                      (11)  𝐿{𝑐𝑜𝑠𝑎𝑥} =
௣

௔మା௣మ 

                      (12)  𝐿{𝑥} =
ଵ

௣మ 

                      (13) 𝐿{𝑒௔௫} =
ଵ

௣ି௔
 

                      (14) 𝐿{𝑠𝑖𝑛ℎ𝑎𝑥} =
௔

௣మି௔మ 

                      (15) 𝐿{𝑐𝑜𝑠ℎ𝑎𝑥} =
௣

௣మି௔మ 

                      (16) 𝐿 ቄ
௫௦௜௡௔௫

ଶ௔
ቅ =

௣

(௣మା௔మ)మ 

                      (17) 𝐿{𝑥 𝑒௔௫} =
ଵ

(௣ି௔)మ 

5.2.10. Inverse Laplace Transformation and its properties: 
Consider a function Φ in terms of 𝑝 then its inverse Laplace transformation will be 𝜑 in 
terms of 𝑥, i.e.,  𝐿ିଵ{Φ(𝑝)} = 𝜑(𝑥) 
 
Properties: If 𝐿ିଵ{Φ(𝑝)} = 𝜑(𝑥), then, 

                  (18) 𝐿ିଵ ቄ
ଵ

௣
ቅ = 1 

                        (19) 𝐿ିଵ ቄ
௔

௔మା௣మቅ = 𝑠𝑖𝑛𝑎𝑥 
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                        (20) 𝐿ିଵ ቄ
௣

௔మା௣మቅ = 𝑐𝑜𝑠𝑎𝑥 

                        (21) 𝐿ିଵ ቄ
ଵ

௣మቅ = 𝑥 

                  (22) 𝐿ିଵ ቄ
ଵ

௣ି௔
ቅ = 𝑒௔௫  

                         (23) 𝐿ିଵ ቄ
௔

௣మି௔మቅ = 𝑠𝑖𝑛ℎ𝑎𝑥 

                         (24) 𝐿ିଵ ቄ
௣

௣మି௔మቅ = 𝑐𝑜𝑠ℎ𝑎𝑥 

                         (25)  𝐿ିଵ ቄ
௣

(௣మା௔మ)మ
ቅ =

௫௦௜௡௔௫

ଶ௔
 

                         (26)  𝐿ିଵ ቄ
ଵ

(௣ି௔)మ
ቅ = 𝑥 𝑒௔௫ 

                        (27) If 𝐿{𝜑(𝑥)} = Φ(𝑝) and 𝐿{𝜓(𝑥)} = Ψ(𝑝) then, 

                                 𝐿ିଵ{𝜑(𝑥)𝜓(𝑥)} = ∫ 𝜑(𝑥 − 𝑡) 𝜓(𝑡)𝑑𝑡 
௫

଴
=  𝜑 ∗ 𝜓 

                                       (or) 

    𝐿ିଵ{𝜑(𝑥)𝜓(𝑥)} = ∫ 𝜑(𝑡) 𝜓(𝑥 − 𝑡)𝑑𝑡 
௫

଴
=  𝜑 ∗ 𝜓 

                               known as the convolution theorem. 

                        (28)  𝐿ିଵ ቄ
ଵ

௣೙శభቅ =
௫೙

௡!
 

 

5.3  SOLUTION OF INTEGRO-DIFFERENTIAL EQUATIONS WITH THE AID OF  
       THE LAPLACE TRANSFORMATIONS: 
 

A linear integro-differential equation is an equation of the form 

𝑎଴(𝑥)𝜑௡(𝑥) + 𝑎ଵ(𝑥)𝜑௡ିଵ(𝑥) + ⋯ + 𝑎௡(𝑥)𝜑(𝑥) + ∑ ∫ 𝐾௠(𝑥, 𝑡)𝜑(௠)(𝑡)𝑑𝑡 = 𝑓(𝑥)
௫

଴
௦
௠ୀ଴                         

(1) 
Here,𝑎଴(𝑥),...,𝑎௡(𝑥), 𝑓(𝑥), 𝐾௠(𝑥, 𝑡) (𝑚 = 0,1,2, … , 𝑠)are known functions and 𝜑(𝑥) is the 
unknown function. Unlike the case of integral equations, when solving integro-differential 
equations (1), initial conditions of the form 

                   𝜑(0) = 𝜑଴, 𝜑
ᇱ(0) = 𝜑଴

ᇱ , … , 𝜑(௡ିଵ)(0) = 𝜑଴
(௡ିଵ)                                   (2)      

are imposed on the unknown function 𝜑(𝑥). In (1), let the coefficients 𝑎௞(𝑥) = constant 
(𝑘 = 0,1, … , 𝑛) and let 𝐾௠(𝑥, 𝑡) = 𝐾௠(𝑥 − 𝑡)(𝑚 = 0,1, … , 𝑠), that is, all the 𝐾௠ depend 
solely on the difference (𝑥 − 𝑡) of arguments. Without loss of generality, we can take 
𝑎଴ = 1. Then equation (1) assumes the form 

    𝜑௡(𝑥) + 𝑎ଵ𝜑(௡ିଵ)(𝑥) + ⋯ + 𝑎௡𝜑(𝑥) + ∑ ∫ 𝐾௠(𝑥 − 𝑡)𝜑(௠)(𝑡)𝑑𝑡
௫

଴
௦
௠ୀ଴ = 𝑓(𝑥)        (3) 

where 𝑎ଵ, … , 𝑎௡ are constants.            
Also, let the functions 𝑓(𝑥) and 𝐾௠(𝑥) be original functions,            

𝑓(𝑥) ≓ 𝐹(𝑝), 𝐾௠(𝑥) ≓ 𝐾෩௠(𝑝)    (𝑚 = 0,1,2, … , 𝑠) 
Then the function 𝜑(𝑥) will also have the Laplace transform 

𝜑(𝑥) ≓ Φ(𝑝)  
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Take the Laplace transform of both sides of (3). By virtue of the theorem on the transform of 
a derivative, 

      𝜑(௞)(𝑥) ≓ 𝑝௞Φ(𝑝) − 𝑝௞ିଵ𝜑଴ − 𝑝௞ିଶ𝜑଴
ᇱ − ⋯ − 𝜑଴

(௞ିଵ)
    (𝑘 = 0,1,2, … , 𝑛) (4)            

By the convolution theorem, 

 ∫ 𝐾௠(𝑥 − 𝑡)𝜑(௠)(𝑡)𝑑𝑡 ≓
௫

଴
𝐾෩௠(𝑝)ቂ𝑝௠Φ(𝑝) − 𝑝௠ିଵ𝜑଴ − ⋯ −  𝜑଴

(௠ିଵ)
ቃ      (𝑚 = 0,1,2, … , 𝑠)               

(5)  
Equation (3) will therefore become 

Φ(𝑝)ൣ𝑝௡ + 𝑎ଵ𝑝௡ିଵ + ⋯ + 𝑎௡ + ∑ 𝐾෩(𝑝)௦
௠ୀ଴ 𝑝௠൧ = 𝐴(𝑝)  (6)                       

where, 𝐴(𝑝) is some known function of 𝑝. 
 

From (6) we find Φ(𝑝), which is an operator solution of the problem. Finding the original 
function for Φ(𝑝), we get the solution 𝜑(𝑥) of the integro-differential equation (3) that 
satisfies the initial conditions (2).   

 

5.3.1. Example: Solve the integro-differential equation, 

                    𝜑ᇱᇱ(𝑥) + ∫ 𝑒ଶ(௫ି௧)𝜑ᇱ(𝑡)𝑑𝑡 = 𝑒ଶ௫௫

଴
,      𝜑(0) = 𝜑ᇱ(0) = 0  

by using the Laplace Transformation. 

 Solution: Consider the given integro-differential equation, 

                   𝜑ᇱᇱ(𝑥) + ∫ 𝑒ଶ(௫ି௧)𝜑ᇱ(𝑡)𝑑𝑡 = 𝑒ଶ௫௫

଴
,      𝜑(0) = 𝜑ᇱ(0) = 0       

 Let us take the Laplace Transformation defined as, 𝐿{𝜑(𝑥)} = Φ(𝑝) 

 Also, we have, 

                                               𝐿{𝜑ᇱ(𝑥)} = 𝑝𝐿{𝜑(𝑥)} − 𝜑(0) 

                                              𝐿{𝜑ᇱᇱ(𝑥)} = 𝑝ଶ𝐿{𝜑(𝑥)} − 𝑝𝜑(0) − 𝜑ᇱ(0) 

From the given conditions, 𝜑(0) = 𝜑ᇱ(0) = 0,  

the above two equations will become,                                                             

                                                𝐿{𝜑ᇱ(𝑥)} = 𝑝𝐿{𝜑(𝑥)} 

                                                                = 𝑝Φ(𝑝) 

                                               𝐿{𝜑ᇱᇱ(𝑥)} = 𝑝ଶ𝐿{𝜑(𝑥)} − 𝑝𝜑(0) − 𝜑ᇱ(0) 

                                                                = 𝑝ଶΦ(𝑝) 

Consider the given equation and apply the Laplace Transformation on both sides,                                                    

        𝐿{𝜑ᇱᇱ(𝑥)} + 𝐿൛∫ 𝑒ଶ(௫ି௧)𝜑ᇱ(𝑡)𝑑𝑡
௫

଴
ൟ = 𝐿{𝑒ଶ௫} 

                  𝐿{𝜑ᇱᇱ(𝑥)} + 𝐿{𝑒ଶ௫ ∗ 𝜑ᇱ(𝑥)} = 𝐿{𝑒ଶ௫}                           [Property-8] 

             𝐿{𝜑ᇱᇱ(𝑥)} + 𝐿{𝑒ଶ௫} ∗ 𝐿{𝜑ᇱ(𝑥)} = 𝐿{𝑒ଶ௫} 

Now, substitute the above values in this equation, we get,   

                        𝑝ଶΦ(𝑝) + ቀ
ଵ

௣ିଶ
ቁ 𝑝Φ(𝑝) =

ଵ

௣ିଶ
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                                         Φ(𝑝) ቂ
௣(௣ିଵ)మ

௣ିଶ
ቃ =

ଵ

௣ିଶ
 

                                                 Φ(𝑝) =
ଵ

௣(௣ିଵ)మ 

                                                  𝐿{𝜑(𝑥)} =
ଵ

௣(௣ିଵ)మ 

                                                  𝜑(𝑥) = 𝐿ିଵ ቄ
ଵ

௣(௣ିଵ)మ
ቅ 

 By using partial fractions, we get, 

                                                 𝜑(𝑥) = 𝐿ିଵ ቄ
ଵ

௣
+

ଵ

௣ିଵ
+

ଵ

(௣ିଵ)మቅ 

                         𝜑(𝑥) = 𝐿ିଵ ቄ
ଵ

௣
ቅ + 𝐿ିଵ ቄ

ଵ

௣ିଵ
ቅ + 𝐿ିଵ ቄ

ଵ

(௣ିଵ)మ
ቅ           

                                                 𝜑(𝑥) = 1 − 𝑒௫ + 𝑥𝑒௫                          [Properties-18, 22, 26] 

Hence, this is the required solution for the given integro-differential equation. 
 

5.3.2. Example: Solve the integro-differential equation, 

𝜑ᇱ(𝑥) − 𝜑(𝑥) + ∫ (𝑥 − 𝑡)𝜑ᇱ(𝑡)𝑑𝑡 − ∫ 𝜑(𝑡)𝑑𝑡 = 𝑥;   
௫

଴

௫

଴
  𝜑(0) = −1,  

by using the Laplace Transformation. 

Solution: Consider the given integro-differential equation, 

 𝜑ᇱ(𝑥) − 𝜑(𝑥) + ∫ (𝑥 − 𝑡)𝜑ᇱ(𝑡)𝑑𝑡 − ∫ 𝜑(𝑡)𝑑𝑡 = 𝑥;
௫

଴

௫

଴
     𝜑(0) = −1 

Let us take the Laplace Transformation defined as, 𝐿{𝜑(𝑥)} = Φ(𝑝) 

Also, we have, 

                       𝐿{𝜑ᇱ(𝑥)} = 𝑝𝐿{𝜑(𝑥)} − 𝜑(0) 

From the given condition,  𝜑(0) = −1, the above equation will become, 

                       𝐿{𝜑ᇱ(𝑥)} = 𝑝𝐿{𝜑(𝑥)} + 1 

                                    = 𝑝Φ(𝑝) + 1 

Consider the Laplace Transformation on both sides, 

       𝐿{𝜑ᇱ(𝑥)} − L{𝜑(𝑥)} + 𝐿{∫ (𝑥 − 𝑡)𝜑ᇱ(𝑡)𝑑𝑡} − 𝐿{∫ 𝜑(𝑡)𝑑𝑡} = 𝐿{𝑥}
௫

଴

௫

଴
 

                       𝐿{𝜑ᇱ(𝑥)} − L{𝜑(𝑥)} + 𝐿{𝑥 ∗ 𝜑ᇱ(𝑥)} − 𝐿{1 ∗ 𝜑(𝑥)} = 𝐿{𝑥}                 

[Property-8] 

                 𝐿{𝜑ᇱ(𝑥)} − L{𝜑(𝑥)} + 𝐿{𝑥}𝐿{𝜑ᇱ(𝑥)} − 𝐿{1}𝐿{𝜑(𝑥)} = 𝐿{𝑥} 

Now, substitute the above values in this equation, we get, 

                        𝑝Φ(𝑝) + 1 − Φ(𝑝) +
ଵ

௣మ
[𝑝Φ(𝑝) + 1] −

ଵ

௣
 Φ(𝑝) =

ଵ

௣మ 

                        𝑝Φ(𝑝) + 1 − Φ(𝑝) +
஍(௣)

௣
+

ଵ

௣మ −
஍(௣)

௣
=

ଵ

௣మ 

                        𝑝Φ(𝑝) + 1 − Φ(𝑝) = 0 
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                        Φ(𝑝)[𝑝 − 1] = −1 

                        Φ(𝑝) =
ିଵ

௣ିଵ
 

                        𝐿{𝜑(𝑥)} =
ିଵ

௣ିଵ
 

                         𝜑(𝑥) = 𝐿ିଵ ቄ
ିଵ

௣ିଵ
ቅ 

                         𝜑(𝑥) = −𝑒௫                   [Property-22]       

  Hence, this is the required solution for the given integro-differential equation. 
 

5.3.3. Example: Solve the integro-differential equation, 

 𝜑ᇱᇱ(𝑥) − 2𝜑ᇱ(𝑥) + 𝜑(𝑥) + 2 ∫ cos(𝑥 − 𝑡)
௫

଴
𝜑ᇱᇱ(𝑡)𝑑𝑡 + 2 ∫ sin(𝑥 − 𝑡)

௫

଴
𝜑ᇱ(𝑡)𝑑𝑡 = 𝑐𝑜𝑠𝑥;  

 𝜑(0) = 𝜑ᇱ(0) = 0, by using the Laplace Transformation. 

Solution: Consider the given integro-differential equation, 

 𝜑ᇱᇱ(𝑥) − 2𝜑ᇱ(𝑥) + 𝜑(𝑥) + 2 ∫ cos(𝑥 − 𝑡)
௫

଴
𝜑ᇱᇱ(𝑡)𝑑𝑡 + 2 ∫ sin(𝑥 − 𝑡)

௫

଴
𝜑ᇱ(𝑡)𝑑𝑡 =

𝑐𝑜𝑠𝑥;   𝜑(0) = 𝜑ᇱ(0) = 0  

Let us take the Laplace Transformation defined as,  𝐿{𝜑(𝑥)} = Φ(𝑝) 

Also, we have, 

                  𝐿{𝜑ᇱ(𝑥)} = 𝑝𝐿{𝜑(𝑥)} − 𝜑(0) 

                 𝐿{𝜑ᇱᇱ(𝑥)} = 𝑝ଶ𝐿{𝜑(𝑥)} − 𝑝𝜑(0) − 𝜑ᇱ(0) 

From the given conditions, 𝜑(0) = 𝜑ᇱ(0) = 0,  

the above two equations will become, 

               𝐿{𝜑ᇱ(𝑥)} = 𝑝𝐿{𝜑(𝑥)} 

                                  = 𝑝Φ(𝑝) 

                 𝐿{𝜑ᇱᇱ(𝑥)} = 𝑝ଶ𝐿{𝜑(𝑥)} 

     = 𝑝ଶΦ(𝑝) 

Consider the given equation and apply the Laplace Transformation on both sides,  
    
𝐿{𝜑ᇱᇱ(𝑥)} − 2𝐿{𝜑ᇱ(𝑥)} + 𝐿{𝜑(𝑥)} + 2𝐿{∫ 𝑐𝑜𝑠(𝑥 −  𝑡)𝜑ᇱᇱ(𝑡)𝑑𝑡 +                2𝐿{∫ sin (𝑥 −

௫

଴

௫

଴

𝑡)𝜑ᇱ(𝑡)𝑑𝑡} = 𝐿{𝑐𝑜𝑠𝑥} 
     𝐿{𝜑ᇱᇱ(𝑥)} − 2𝐿{𝜑ᇱ(𝑥)} + 𝐿{𝜑(𝑥)} +  2𝐿{𝑐𝑜𝑠𝑥 ∗ 𝜑ᇱᇱ(𝑥)} + 2𝐿{𝑠𝑖𝑛𝑥 ∗ 𝜑ᇱ(𝑥)} = 𝐿{𝑐𝑜𝑠𝑥} 

                         [Property-8] 

    𝐿{𝜑ᇱᇱ(𝑥)} − 2𝐿{𝜑ᇱ(𝑥)} + 𝐿{𝜑(𝑥)} +  2𝐿{𝑐𝑜𝑠𝑥}𝐿{𝜑ᇱᇱ(𝑥)} + 2𝐿{𝑠𝑖𝑛𝑥}𝐿{𝜑ᇱ(𝑥)}= 𝐿{𝑐𝑜𝑠𝑥} 

Now, substitute the above values in this equation, we get, 

𝑝ଶΦ(𝑝) − 2 𝑝Φ(𝑝) + Φ(𝑝) + 2
𝑝

1 + 𝑝ଶ
[𝑝ଶΦ(𝑝)] + 2

1

1 + 𝑝ଶ
[𝑝Φ(𝑝)] =

𝑝

1 + 𝑝ଶ
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Φ(𝑝) ቈ𝑝ଶ − 2𝑝 + 1 +
2𝑝ଷ

1 + 𝑝ଶ
+

2𝑝

1 + 𝑝ଶ
቉ =

𝑝

1 + 𝑝ଶ
 

Φ(𝑝) ቈ
𝑝ସ + 2𝑝ଶ + 1

1 + 𝑝ଶ
቉ =

𝑝

1 + 𝑝ଶ
 

Φ(𝑝) =
𝑝

𝑝ସ + 2𝑝ଶ + 1
 

𝐿{𝜑(𝑥)} =
𝑝

𝑝ସ + 2𝑝ଶ + 1
 

𝐿{𝜑(𝑥)} =
𝑝

(𝑝ଶ + 1)ଶ
 

𝜑(𝑥) = 𝐿ିଵ ൜
𝑝

(𝑝ଶ + 1)ଶ
ൠ 

𝜑(𝑥) =
௫௦௜௡௫

ଶ
                        [Property-25] 

Hence, this is the required solution for the given integro-differential equation. 
 

5.3.4. Example: Solve the integro-differential equation, 

 𝜑ᇱᇱ(𝑥) + 𝜑(𝑥) + ∫ sinh(𝑥 − 𝑡)
௫

଴
𝜑(𝑡)𝑑𝑡 + ∫ cosh(𝑥 − 𝑡)

௫

଴
𝜑ᇱ(𝑡)𝑑𝑡 = 𝑐𝑜𝑠ℎ𝑥;   𝜑(0) = −1,

𝜑ᇱ(0) = 1,  

by using the Laplace Transformation. 

Solution: Consider the given integro-differential equation, 

 𝜑ᇱᇱ(𝑥) + 𝜑(𝑥) + ∫ sinh(𝑥 − 𝑡)
௫

଴
𝜑(𝑡)𝑑𝑡 + ∫ cosh(𝑥 − 𝑡)

௫

଴
𝜑ᇱ(𝑡)𝑑𝑡 = 𝑐𝑜𝑠ℎ𝑥;  𝜑(0) =

−1, 𝜑ᇱ(0) = 1 

Let us take the Laplace Transformation defined as, 𝐿{𝜑(𝑥)} = Φ(𝑝)    

Also, we have 

                                     𝐿{𝜑ᇱ(𝑥)} = 𝑝𝐿{𝜑(𝑥)} − 𝜑(0) 

                                    𝐿{𝜑ᇱᇱ(𝑥)} = 𝑝ଶ𝐿{𝜑(𝑥)} − 𝑝𝜑(0) − 𝜑ᇱ(0) 

From the given conditions, 𝜑(0) = −1, 𝜑ᇱ(0) = 1,  

the above two equations will become, 

                             𝐿{𝜑ᇱ(𝑥)} = 𝑝𝐿{𝜑(𝑥)} + 1 

                                             = 𝑝Φ(𝑝) + 1 

                            𝐿{𝜑ᇱᇱ(𝑥)} = 𝑝ଶ𝐿{𝜑(𝑥)} + 𝑝 − 1 

                                             = 𝑝ଶΦ(𝑝) + 𝑝 − 1 

Consider the given equation and apply the Laplace transformation on both sides,    
 𝐿{𝜑ᇱᇱ(𝑥)} + 𝐿{𝜑(𝑥)} + 𝐿൛∫ sinh(𝑥 − 𝑡)

௫

଴
𝜑(𝑡)𝑑𝑡ൟ + 𝐿൛∫ cosh(𝑥 − 𝑡)

௫

଴
𝜑ᇱ(𝑡)𝑑𝑡ൟ =

𝐿{𝑐𝑜𝑠ℎ𝑥}  
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 𝐿{𝜑ᇱᇱ(𝑥)} + 𝐿{𝜑(𝑥)} + 𝐿{sinh(𝑥) ∗ 𝜑(𝑥)} + 𝐿{cosh(𝑥) ∗ 𝜑ᇱ(𝑥)}
= 𝐿{𝑐𝑜𝑠ℎ𝑥}                            

[Property-8]  
  𝐿{𝜑ᇱᇱ(𝑥)} + 𝐿{𝜑(𝑥)} + 𝐿{sinh(𝑥)} 𝐿{𝜑(𝑥)}+𝐿{cosh(𝑥)} 𝐿{𝜑ᇱ(𝑥)} = 𝐿{𝑐𝑜𝑠ℎ𝑥} 

                𝑝ଶΦ(𝑝) + 𝑝 − 1 + Φ(𝑝) +
ଵ

௣మିଵ
Φ(𝑝)+

௣

௣మିଵ
[𝑝Φ(𝑝) + 1] =

௣

௣మିଵ
 

                                   𝑝ଶΦ(𝑝) + 𝑝 − 1 + Φ(𝑝) +
஍(௣)

௣మିଵ
 + 

௣మ஍(௣)

௣మିଵ
 + 

௣

௣మିଵ
=

௣

௣మିଵ
 

                                                             Φ(𝑝) ቂ𝑝ଶ + 1 +
ଵ

௣మିଵ
+

௣మ

௣మିଵ
ቃ = 1 − 𝑝 

                                                                                       Φ(𝑝) ቂ
௣రା௣మ

௣మିଵ
ቃ = 1 − 𝑝 

                                                                                                   Φ(𝑝) =
(ଵି௣)൫௣మିଵ൯

(௣రା௣మ)
 

                                                                                                   Φ(𝑝) =
ି௣యା௣మା௣ିଵ

௣మ(௣మାଵ)
 

               By taking partial fractions, we get,          

                                      Φ(𝑝) =
ଵ

௣
−

ଵ

௣మ −
ଶ௣

௣మାଵ
+

ଶ

௣మାଵ
 

                                         𝐿{𝜑(𝑥)} =
ଵ

௣
−

ଵ

௣మ −
ଶ௣

௣మାଵ
+

ଶ

௣మାଵ
 

                                              𝜑(𝑥) = 𝐿ିଵ ቄ
ଵ

௣
ቅ − 𝐿ିଵ ቄ

ଵ

௣మቅ − 𝐿ିଵ ቄ
ଶ௣

௣మାଵ
ቅ + 𝐿ିଵ ቄ

ଶ

௣మାଵ
ቅ 

                                              𝜑(𝑥) = 1 − 𝑥 − 2𝑐𝑜𝑠𝑥 + 2𝑠𝑖𝑛𝑥                          

            [Properties-18, 21, 20, 19] 

                                              𝜑(𝑥) = 1 − 𝑥 + 2(𝑠𝑖𝑛𝑥 − 𝑐𝑜𝑠𝑥) 

Hence, this is the required solution for the given integro-differential equation. 

5.3.5. Applications: 
(1)  Scientists and engineers encounter integro-differential equations through their research 

work in heat and mass diffusion processes, electric circuit problems, neutron diffusion, 
and biological species coexisting with increasing and decreasing rates of generation. 

(2)  The integro-differential equations in electro-magnetic theory, dispersive waves, and 
ocean circulations are enormous. 

(3)  These equations can be found in physics, biology, and engineering applications   
       as well as in the advanced literature on integral equations.    
 

5.4  SUMMARY: 
 

In this lesson, we have discussed the integro-differential equations and their classification. The 
method of solving integro-differential equations using the Laplace transform was discussed in 
detail. In this regard, we recall some essential properties of the Laplace and inverse Laplace 
transforms. Certain examples and self-assessment problems related to integro-differential 
equations were discussed for a better understanding of the reader. 
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5.5  TECHNICAL TERMS: 

Integro-differential equations: If the derivatives of the function are involved, it is called an 
Integro-differential equation. 

 𝜑(௡)(𝑥) = 𝑓(𝑥) + 𝜆 ∫ 𝐾(𝑥, 𝑡)𝜑(𝑡)𝑑𝑡
௕

௔
,  

where, 𝜑(௡)(𝑥) =
ௗ೙ఝ

ௗ௫೙ ,     and     𝐾(𝑥, 𝑡) be the kernel. 

Kernel: If the kernel 𝐾(𝑥, 𝑡) of the integral equation is defined as a function of the difference 

(𝑥, 𝑡), i.e.,𝐾(𝑥, 𝑡) = 𝐾(𝑥 − 𝑡)   where 𝐾 is a certain function of one variable. 

Laplace Transform: A function 𝜑 in terms of 𝑥 and its Laplace transformation will be a 

function Φ in terms of 𝑝 i.e., 𝐿{𝜑(𝑥)} = Φ(𝑝)  (or)  𝜑(𝑥) ≓ Φ(𝑝). 

               i.e.,𝐿{𝜑(𝑥)} = ∫ 𝑒ି௣ 𝜑(𝑥)𝑑𝑥 =
ஶ

଴
Φ(𝑝) 

 

5.6  SELF-ASSESSMENT QUESTIONS: 
 

Exercise (5.1): Solve the following integro-differential equations: 

1. 𝜑ᇱᇱ(𝑥) + ∫ 𝑒ଶ(௫ି௧)௫

଴
𝜑ᇱ(𝑡)𝑑𝑡 = 𝑒ଶ௫;      𝜑(0) = 0, 𝜑ᇱ(0) = 1  

2. 𝜑ᇱᇱ(𝑥) + 2𝜑ᇱ(𝑥) − 2 ∫ sin(𝑥 − 𝑡)
௫

଴
𝜑ᇱ(𝑡)𝑑𝑡 = 𝑐𝑜𝑠𝑥;  𝜑(0) = 𝜑ᇱ(0) = 0  

3. 𝜑ᇱᇱ(𝑥) + 𝜑(𝑥) + ∫ sinh(𝑥 − 𝑡)
௫

଴
𝜑(𝑡)𝑑𝑡 + ∫ cosh(𝑥 − 𝑡)

௫

଴
𝜑ᇱ(𝑡)𝑑𝑡 =

𝑐𝑜𝑠ℎ𝑥;  𝜑(0) = 𝜑ᇱ(0) = 0  

Solutions to Exercise (5.1): 

                      (1) 𝜑(𝑥) = 𝑒௫ − 1 

                      (2) 𝜑(𝑥) = 1 − 𝑒ି௫ − 𝑥𝑒ି௫ 

                      (3) 𝜑(𝑥) = 1 − 𝑐𝑜𝑠𝑥 
      

5.7 SUGGESTED READINGS:  

1. M. Rahman, Integral equations and their applications, WIT Press, Southampton, 
Boston, 2007. 

2. M.D. Raisinghania, Integral equations and Boundary Value Problems, S. Chand and 
Company Pvt. Ltd., 2007. 

3. Shanti Swarup, Integral equations, Krishna Prakashan Pvt Ltd, Meerut, 2003. 
4. M. Krasnov, A. Kiselev, G. Makarenko, Problems and Exercises in Integral 

Equations, MIR Publishers, Moscow, 1971. 
 
 

- Prof. M. Vijaya Santhi 



LESSON- 6 

VOLTERRA INTEGRAL EQUATION WITH LIMITS 
(𝒙, +∞) 

 
OBJECTIVES:  
 
 To learn about the Volterra integral equation with limits (𝑥, +∞) 
 To discuss the Volterra integral equations of the first kind 
 
STRUCTURE: 
 

6.1. Introduction 

6.2. Volterra Integral Equation 

6.3. Volterra Integral Equation with Limits (𝒙, +∞) 

6.4. Volterra Integral Equations of the First Kind 

6.5  Summary 

6.6  Technical Terms 

6.7  Self-Assessment Questions 

6.8  Suggested Readings 

 

6.1. INTRODUCTION:  
 
This lesson deals with the Volterra integral equations and their solution techniques. The 
principal investigators of the theory of integral equations are Vito Volterra (1860–1940) and 
Ivar Fredholm (1866–1927), together with David Hilbert (1862–1943) and Erhard Schmidt 
(1876–1959). Volterra was the first to recognize the importance of the theory and study it 
systematically. 
 
6.2. VOLTERRA INTEGRAL EQUATION: 
 
The most standard form of Volterra Linear Integral equations is of the form 
 
                                            α(𝑥)𝜑(𝑥) = 𝐹(𝑥) + 𝜆 ∫ 𝐾(𝑥, 𝑡)𝜑(𝑡)𝑑𝑡

௫

௔
 

where the limits of integration are the function of 𝑥 and the unknown function 𝜑(𝑥) appears 

linearly under the integral sign. 

 If the function α(𝑥) = 1, then the above equation simply becomes 

                                                 𝜑(𝑥) = 𝐹(𝑥) + 𝜆 ∫ 𝐾(𝑥, 𝑡)𝜑(𝑡)𝑑𝑡
௫

௔
 

and this equation is known as the Volterra integral equation of the second kind; 

whereas if α(𝑥) = 0, then the equation becomes 
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                                                     𝐹(𝑥) + 𝜆 ∫ 𝐾(𝑥, 𝑡)𝜑(𝑡)𝑑𝑡
௫

௔
= 0, 

which is known as the Volterra integral equation of the first kind. 

 

6.3. VOLTERRA INTEGRAL EQUATIONS WITH LIMITS (𝒙, +∞): 
 

Integral equations of the form, 

                                 𝜑(𝑥) = 𝑓(𝑥) + ∫ 𝐾(𝑥, 𝑡)𝜑(𝑡)𝑑𝑡
ஶ

௫
                                                       (1)                                

which arise in a number of problems in physics can also be solved by means of the Laplace 
transformation. For this purpose, we establish the convolution theorem for the expressions. 

                     ∫ 𝐾(𝑥, 𝑡)𝜑(𝑡)𝑑𝑡
ஶ

௫
                                                                     (2) 

It is known that for the Fourier transformation, 

       ℱ൛∫ 𝑔(𝑥 − 𝑡)𝜓(𝑡)𝑑𝑡
ାஶ

ିஶ
ൟ = √2𝜋𝐺(𝜆)Ψ(𝜆)                                          (3) 

where 𝐺(𝜆), Ψ(𝜆) are the Fourier transforms of the functions 𝑔(𝑥) and 𝜓(𝑥) respectively. 
Put  𝑔(𝑥) = 𝐾ି(𝑥), i.e.,  
 

                                             𝑔(𝑥) = ൜
0,                𝑥 > 0
𝐾(𝑥),         𝑥 < 0

  

𝜓(𝑥) = 𝜑ା(𝑥) = ൜
𝜑(𝑥),          𝑥 > 0
0,                𝑥 < 0

                                                             (4) 

Then (3) can be rewritten as 

ℱ൛∫ 𝐾(𝑥 − 𝑡)𝜑(𝑡)𝑑𝑡
ାஶ

௫
ൟ = √2𝜋𝐾෩ି(𝜆)ℱΦ෩ ା(𝜆)ℒ                                        (5) 

(here and henceforward, the subscripts ℱ or ℒ will mean that the Fourier transform or the 
Laplace transform of the function is taken). 

To pass from the Fourier transform to the Laplace transform, observe that 

              𝐹ℒ(𝑝) = √2𝜋[𝐹ା(𝑖𝑝)]ℱ                                                                  (6) 

Hence, from (5) and (6) we get                                                                                                          

ℒ൛∫ 𝐾(𝑥 − 𝑡)𝜑(𝑡)𝑑𝑡
ஶ

௫
ൟ = √2𝜋ൣ𝐾෩ି(𝑖𝑝)൧

ℱ
[Φା(𝑝)]ℒ                                    (7) 

We now express  ൣ√2𝜋𝐾෩ି(𝑖𝑝)൧
ℱ

 in terms of the Laplace transform: 

                       ൣ√2𝜋𝐾෩ି(𝑖𝑝)൧
ℱ

= ∫ 𝐾(𝑥)𝑒ି௣௫𝑑𝑥 =
଴

ିஶ
∫ 𝐾(−𝑥)𝑒௣௫𝑑𝑥

ஶ

଴
 

Putting 𝐾(−𝑥) = 𝒦(𝑥), we get 

                           ൣ√2𝜋𝐾෩ି(𝑖𝑝)൧
ℱ

= 𝒦෩ℒ(−𝑝) = ∫ 𝐾(−𝑥)𝑒௣௫𝑑𝑥
ஶ

଴
 

And so 
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ℒ൛∫ 𝐾(𝑥 − 𝑡)𝜑(𝑡)𝑑𝑡
ஶ

௫
ൟ = 𝒦෩ℒ(−𝑝)Φℒ(𝑝)                                                (8) 

Let us now return to the integral equation (1). Taking the Laplace transform of  both sides of 
(1), we obtain 

         Φ(𝑝) = 𝐹(𝑝) + 𝒦෩ (−𝑝)Φ(𝑝)                                                         (9) 

(dropping the subscript ℒ) or  

                             Φ(𝑝) =
ி(௣)

ଵି 𝒦෪(ି௣)
        (𝒦෩ (−𝑝) ≠ 1)                                                   (10) 

where,  𝒦෩(−𝑝) = ∫ 𝐾(−𝑥)𝑒௣௫𝑑𝑥
ஶ

଴
                                                        (11) 

  The function, 𝜑(𝑥) =
ଵ

ଶగ௜
∫

ி(௣)

ଵି𝒦෩ (ି௣)

ఊା௜ஶ

ఊି௜ஶ
𝑒௣௫𝑑𝑝                                                             (12) 

 is a particular solution of the integral equation (1). It must be stressed that the solution (9) or 

(12) is meaningful only if the domains of analyticity of 𝒦෩ (−𝑝) and 𝐹(𝑝) overlap. 

 6.3.1. Note:   

   (i) ℒ{𝑓(𝑥)} = 𝐹(𝑝) 

 (ii) ℒ൛∫ 𝐾(𝑥 − 𝑡)𝜑(𝑡)𝑑𝑡
ஶ

௫
ൟ = ൫∫ 𝐾(−𝑥)𝑒௣௫𝑑𝑥

ஶ

଴
൯Φ(𝑝) 

 6.3.2. Note: Cauchy integral formula for residues can be expressed as, 

             ∫ 𝑓(𝑝)𝑑𝑝 = 2𝜋𝑖(sum of all residues) 

        
ଵ

ଶగ௜
∫ 𝑓(𝑝)𝑑𝑝 = sum of all residues 

6.3.3. Note:  If 𝑓(𝑝) has a pole of order 𝑘 at 𝑝 = 𝑝଴ then                 

                              Res[𝑓, 𝑝଴] =
ଵ

(௞ିଵ)!
lim௣→௣బ

ௗೖషభ

ௗ௣ೖషభ
[(𝑝 − 𝑝଴)௞𝑓(𝑝)] 

(i) If 𝑓(𝑝) has a pole of order 1, i.e., 𝑘 = 1 at 𝑝 = 𝑝଴ then, 

                                      Res[𝑓, 𝑝଴] = lim
௣→௣బ

(𝑝 − 𝑝଴)𝑓(𝑝) 

 

             (ii)         If 𝑓(𝑝) has a pole of order 2, i.e., 𝑘 = 2 at 𝑝 = 𝑝଴ then, 

           Res[𝑓, 𝑝଴] = lim௣→௣బ

ௗ

ௗ௣
[(𝑝 − 𝑝଴)ଶ𝑓(𝑝)] 

6.3.4. Example: Solve the integral equation, 𝜑(𝑥) = 𝑥 + ∫ 𝑒ଶ(௫ି௧)𝜑(𝑡)𝑑𝑡
ஶ

௫
. 

Solution: Consider the given integral equation, 𝜑(𝑥) = 𝑥 + ∫ 𝑒ଶ(௫ି௧)𝜑(𝑡)𝑑𝑡
ஶ

௫
. 

 Compare the above equation with the general form, 𝜑(𝑥) = 𝑓(𝑥) + ∫ 𝐾(𝑥, 𝑡)𝜑(𝑡)𝑑𝑡
ஶ

௫
 

Then we have, 𝑓(𝑥) = 𝑥,  𝐾(𝑥, 𝑡) = 𝑒ଶ(௫ି௧). 
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So, 𝐾(𝑥) = 𝑒ଶ௫, then 𝐾(−𝑥) = 𝑒ିଶ௫ 

Now, apply the Laplace transform on both sides of the given equation, 

                                     ℒ{𝜑(𝑥)} = ℒ{𝑥} + ℒ{∫ 𝑒ଶ(௫ି௧)𝜑(𝑡)𝑑𝑡
ஶ

௫
} 

                                          Φ(𝑝) =
ଵ

௣మ + ൫∫ 𝑒ିଶ௫𝑒௣௫𝑑𝑥
ஶ

଴
൯Φ(𝑝) 

[∵We know that, ℒ{𝜑(𝑥)} = Φ(𝑝), and from Property-12 in 5.2.9 also from (ii) in 6.3.1] 

Φ(𝑝) =
1

𝑝ଶ
+

1

2 − 𝑝
Φ(𝑝) 

                                Φ(𝑝) ቂ1 −
ଵ

ଶି௣
ቃ =

ଵ

௣మ 

                                       Φ(𝑝) =
௣ିଶ

௣మ(௣ିଵ)
 

From (12) in section 6.3, we get, 

𝜑(𝑥) =
ଵ

ଶగ௜
∫

௣ିଶ

௣మ(௣ିଵ)

ఊା௜ஶ

ఊି௜ஶ
𝑒௣௫𝑑𝑝                                                  (A) 

The above integral can be evaluated by using the Cauchy integral formula with residues. The 
integrand function has a double pole at 𝑝 = 0 and a simple pole at 𝑝 = 1. 

   Now, calculate the residue for the pole 𝑝 = 0 of order 2,  

                               = lim௣→଴
ௗ

ௗ௣
ቂ𝑝ଶ ௣ିଶ

௣మ(௣ିଵ)
𝑒௣௫ቃ 

         = lim௣→଴
ௗ

ௗ௣
ቂ

௣ିଶ

௣ିଵ
𝑒௣௫ቃ 

                                      = lim
௣→଴

ቂ
௣ିଶ

௣ିଵ
𝑒௣௫𝑥 + 𝑒௣௫ ቀ

ଵ

(௣ିଵ)మቁቃ 

                                      = 2𝑥 + 1 

   Also, calculate the residue for the pole 𝑝 = 1 of order 1, 

                                        = lim
௣→ଵ

ቂ(𝑝 − 1) 
௣ିଶ

௣మ(௣ିଵ)
𝑒௣௫ቃ 

                                        = lim
௣→ଵ

ቂ
௣ିଶ

௣మ 𝑒௣௫ቃ 

                                        = −𝑒௫ 

    Now, using 6.3.2 in equation (A), we get, 

                         𝜑(𝑥) = 2𝑥 + 1 − 𝑒௫ 

   Hence, this is the required solution for the given integral equation. 
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6.3.5. Example: Solve the integral equation, 𝜑(𝑥) = 𝑒ି௫ + ∫ 𝑒௫ି௧𝜑(𝑡)𝑑𝑡
ஶ

௫
 

Solution: Consider the given integral equation, 𝜑(𝑥) = 𝑒ି௫ + ∫ 𝑒௫ି௧𝜑(𝑡)𝑑𝑡
ஶ

௫
 

Compare the above equation with the general form, 𝜑(𝑥) = 𝑓(𝑥) + ∫ 𝐾(𝑥, 𝑡)𝜑(𝑡)𝑑𝑡
ஶ

௫
 

Here, 𝑓(𝑥) = 𝑒ି௫,  𝐾(𝑥, 𝑡) = 𝑒௫ି௧ 

 So, 𝐾(𝑥) = 𝑒௫, then 𝐾(−𝑥) = 𝑒ି௫ 

Now, apply the Laplace Transform on both sides of the given equation, 

                                ℒ{𝜑(𝑥)} = ℒ{𝑒ି௫} + ℒ{∫ 𝑒௫ି௧𝜑(𝑡)𝑑𝑡
ஶ

௫
} 

         Φ(𝑝) =
ଵ

௣ାଵ
+ ൫∫ 𝑒ି௫𝑒௣௫𝑑𝑥

ஶ

଴
൯Φ(𝑝) 

[We know that, ℒ{𝜑(𝑥)} = Φ(𝑝), and from property-13 in 5.2.9  also from (ii) in 6.3.1] 

                                Φ(𝑝) =
ଵ

௣ାଵ
+ ൫∫ 𝑒ି௫𝑒௣௫𝑑𝑥

ஶ

଴
൯Φ(𝑝) 

                                     Φ(𝑝) =
ଵ

௣ାଵ
−

ଵ

௣ିଵ
Φ(𝑝) 

                     Φ(𝑝) ቂ1 +
ଵ

௣ିଵ
ቃ =

ଵ

௣ାଵ
 

                                     Φ(𝑝) =
௣ିଵ

௣(௣ାଵ)
 

From (12) in section 6.3, we get, 

                                    𝜑(𝑥) =
ଵ

ଶగ௜
∫

௣ିଵ

௣(௣ାଵ)

ఊା௜ஶ

ఊି௜ஶ
𝑒௣௫𝑑𝑝                                                        (A) 

The above integral can be evaluated by using the Cauchy integral formula with residues. The 
integrand function has the simple poles at 𝑝 = 0 and  𝑝 = −1. 

Now, calculate the residue for the pole 𝑝 = 0 of order 1. 

                                        = lim
௣→଴

ቂ𝑝 
௣ିଵ

௣(௣ାଵ)
𝑒௣௫ቃ 

                                        = lim
௣→଴

ቂ
௣ିଵ

௣ାଵ
𝑒௣௫ቃ 

                                        = −1 

Also, calculate the residue for the pole 𝑝 = −1 of order 1, 

                                        = lim
௣→ିଵ

ቂ(𝑝 + 1)
௣ିଵ

௣(௣ାଵ)
𝑒௣௫ቃ 

                                        = lim
௣→ିଵ

ቂ
௣ିଵ

௣
𝑒௣௫ቃ 

                                        = 2𝑒ି௫ 
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Now, using 6.3.2 in equation (A), we get, 

                         𝜑(𝑥) = −1 + 2𝑒ି௫ 

Hence, this is the required solution for the given integral equation.      

6.3.6. Example: Solve the integral equation, 𝜑(𝑥) = 1 + ∫ 𝑒ఈ(௫ି௧)𝜑(𝑡)𝑑𝑡
ஶ

௫
,   (𝛼 > 0) 

Solution: Consider the given integral equation, 𝜑(𝑥) = 1 + ∫ 𝑒ఈ(௫ି௧)𝜑(𝑡)𝑑𝑡
ஶ

௫
 

Compare the above equation with the general form, 𝜑(𝑥) = 𝑓(𝑥) + ∫ 𝐾(𝑥, 𝑡)𝜑(𝑡)𝑑𝑡
ஶ

௫
 

Here, 𝑓(𝑥) = 1,  𝐾(𝑥, 𝑡) = 𝑒ఈ(௫ି௧) 
So, 𝐾(𝑥) = 𝑒ఈ௫, then 𝐾(−𝑥) = 𝑒ିఈ௫  

Now, apply the Laplace transform on both sides of the given equation, 

                         ℒ{𝜑(𝑥)} = ℒ{1} + ℒ{∫ 𝑒ఈ(௫ି௧)𝜑(𝑡)𝑑𝑡
ஶ

௫
} 

      Φ(𝑝) =
ଵ

௣
+ ൫∫ 𝑒ିఈ௫𝑒௣௫𝑑𝑥

ஶ

଴
൯Φ(𝑝) 

[∵We know that, ℒ{𝜑(𝑥)} = Φ(𝑝), and from Property-9 in 5.2.9  also from (ii) in 6.3.1] 

                                 Φ(𝑝) =
ଵ

௣
−

ଵ

௣ିఈ
Φ(𝑝) 

                 Φ(𝑝) ቂ1 +
ଵ

௣ିఈ
ቃ =

ଵ

௣
 

                                Φ(𝑝) =
௣ିఈ

௣[௣ି(ఈିଵ)]
 

From (12) in section 6.3, we get, 

                                𝜑(𝑥) =
ଵ

ଶగ
∫

௣ିఈ

௣[௣ି(ఈିଵ)]

ఊା௜ஶ

ఊି௜ஶ
𝑒௣௫𝑑𝑝                                                    (A)     

The above integral can be evaluated by using the Cauchy integral formula with residues. The 
integrand function has the simple poles at 𝑝 = 0 and 𝑝 = 𝛼 − 1. 

Now, calculate the residue for the pole 𝑝 = 0 of order 1, 

                                  = lim
௣→଴

ቂ𝑝 
௣ିఈ

௣[௣ି(ఈିଵ)]
𝑒௣௫ቃ 

                                         = lim
௣→଴

ቂ
௣ିఈ

௣ି(ఈିଵ)
𝑒௣௫ቃ 

                                        =
ఈ

ఈିଵ
 

Also, calculate the residue for pole 𝑝 = 𝛼 − 1 of order 1, 

                                        = lim
௣→ఈିଵ

ቈ[𝑝 − (𝛼 − 1)]
௣ିఈ

௣[௣ି(ఈିଵ)]
𝑒௣௫቉ 
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                                        =  lim
௣→ఈିଵ

ቂ
௣ିఈ

௣
𝑒௣௫ቃ 

                                       =
ିଵ

ఈିଵ
𝑒(ఈିଵ)௫ 

Now, using 6.3.2 in equation (A), we get, 

                              𝜑(𝑥) =
ఈ

ఈିଵ
−

ଵ

ఈିଵ
𝑒(ఈିଵ)௫    

Hence, this is the required solution for the given integral equation. 
 

6.4. VOLTERRA INTEGRAL EQUATIONS OF THE FIRST KIND: 

Suppose we have a Volterra integral equation of the first kind,    
                             
                 ∫ 𝐾(𝑥, 𝑡)𝜑(𝑡)𝑑𝑡 = 𝑓(𝑥)

௫

଴
,   𝑓(0) = 0                                                                    (1)      

where, 𝜑(𝑥) is the unknown function. 
 

Suppose that 𝐾(𝑥, 𝑡),
డ௄(௫,௧)

డ௫
, 𝑓(𝑥) and 𝑓ᇱ(𝑥) are continuous for   0 ≤ 𝑥 ≤ 𝑎, 0 ≤ 𝑡 ≤ 𝑥. 

Differentiating both sides of equation (1) with respect to 𝑥, we obtain 

             𝐾(𝑥, 𝑥)𝜑(𝑥) + ∫
డ௄(௫,௧)

డ௫
𝜑(𝑡)𝑑𝑡 =

௫

଴
𝑓ᇱ(𝑥)                                                                  (2) 

The above equation can be obtained by using the Leibniz rule in 5.2.6. 

Any continuous solution 𝜑(𝑥) of equation (1), for 0 ≤ 𝑥 ≤ 𝑎,obviously satisfies equation (2) 
as well. Conversely, any continuous solution of equation (2), for 0 ≤ 𝑥 ≤ 𝑎, satisfies 
equation (1) too. 

If 𝐾(𝑥, 𝑥) does not vanish at any point of the basic interval [0, a], then equation (2) can be 
rewritten as, 

     𝜑(𝑥) =
௙ᇲ(௫)

௄(௫,௫)
− ∫

௄ᇲ
ೣ(௫,௧)

௄(௫,௫)
𝜑(𝑡)𝑑𝑡

௫

଴
                                                             (3) 

which means it reduces to a Volterra-type integral equation of the second kind. 

If 𝐾(𝑥, 𝑥) ≡ 0, then it is sometimes useful to differentiate (2) once again with respect to 𝑥 
and so on. 

 

6.4.1. Example: Solve the integral equation, ∫ cos(𝑥 − 𝑡) 𝜑(𝑡)𝑑𝑡 = 𝑥
௫

଴
. 

 
Solution: Consider the given integral equation, ∫ cos(𝑥 − 𝑡) 𝜑(𝑡)𝑑𝑡 = 𝑥

௫

଴
. 

Compare the given equation with the general form, ∫ 𝐾(𝑥, 𝑡)𝜑(𝑡)𝑑𝑡 = 𝑓(𝑥)
௫

଴
. 

Here the functions 𝑓(𝑥) = 𝑥,   𝐾(𝑥, 𝑡) = cos(𝑥 − 𝑡), satisfy the conditions of continuity and 

differentiability. 

Differentiating both sides of the given equation with respect to 𝑥 by using Leibniz's rule, we 
get 



Centre for Distance Education   6.8        Acharya Nagarjuna University  

     − ∫ sin(𝑥 − 𝑡)
௫

଴
𝜑(𝑡)𝑑𝑡 + cos(𝑥 − 𝑥) 𝜑(𝑥)(1) −  cos(𝑥 − 0) 𝜑(0)(0) = 1 

                                               − ∫ sin(𝑥 − 𝑡)
௫

଴
𝜑(𝑡)𝑑𝑡 + cos(0) 𝜑(𝑥) = 1 

                                                                   − ∫ sin (𝑥 − 𝑡)
௫

଴
𝜑(𝑡)𝑑𝑡 + 𝜑(𝑥) = 1 

                                                                            𝜑(𝑥) = 1 + ∫ sin (𝑥 − 𝑡)
௫

଴
𝜑(𝑡)𝑑𝑡 

The above equation is an integral equation of the second kind of the convolution type. 

We find its solution by applying the Laplace transformation, 

                           𝐿{𝜑(𝑥)} = 𝐿{1} + 𝐿൛∫ sin (𝑥 − 𝑡)
௫

଴
𝜑(𝑡)𝑑𝑡ൟ 

   𝐿{𝜑(𝑥)} = 𝐿{1} + 𝐿{𝑠𝑖𝑛𝑥 ∗ 𝜑(𝑥)}                                             [Property-8]        

   𝐿{𝜑(𝑥)} = 𝐿{1} + 𝐿{𝑠𝑖𝑛𝑥} ∗ 𝐿{𝜑(𝑥)} 

        Φ(𝑝) =
ଵ

௣
+

ଵ

௣మାଵ
Φ(𝑝)                                                    [Properties-9, 10] 

       Φ(𝑝) ቂ1 −
ଵ

௣మାଵ
ቃ =

ଵ

௣
 

                                               Φ(𝑝) =
௣మାଵ

௣య
 

                                               Φ(𝑝) =
ଵ

௣
+

ଵ

௣య
 

                                          𝐿{𝜑(𝑥)} =
ଵ

௣
+

ଵ

௣య 

                                               𝜑(𝑥) = 𝐿ିଵ ቄ
ଵ

௣
ቅ + 𝐿ିଵ ቄ

ଵ

௣యቅ 

                  𝜑(𝑥) = 1 +
௫మ

ଶ
                                                  [Properties-18,28]   

Hence, it is the required solution. 

6.4.2. Example: Solve the integral equation, ∫ e௫ି௧𝜑(𝑡)𝑑𝑡 = 𝑠𝑖𝑛𝑥
௫

଴
. 

Solution: Consider the given integral equation, ∫ e௫ି௧𝜑(𝑡)𝑑𝑡 = 𝑠𝑖𝑛𝑥.
௫

଴
 

Compare the given equation with the general form, ∫ 𝐾(𝑥, 𝑡)𝜑(𝑡)𝑑𝑡 = 𝑓(𝑥)
௫

଴
. 

Here the functions 𝑓(𝑥) = 𝑠𝑖𝑛𝑥,   𝐾(𝑥, 𝑡) = e௫ି௧ satisfy the conditions of continuity and 

differentiability. 

Differentiating both sides of the given equation with respect to 𝑥, by using Leibniz's rule, we 

get, 

        ∫ e௫ି௧௫

଴
𝜑(𝑡)𝑑𝑡 + e௫ି௫𝜑(𝑥)(1) − e௫ି଴𝜑(0)(0) = 𝑐𝑜𝑠𝑥 

                                                 ∫ e௫ି௧௫

଴
𝜑(𝑡)𝑑𝑡 + 𝜑(𝑥) = 𝑐𝑜𝑠𝑥 
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                        𝜑(𝑥) = 𝑐𝑜𝑠𝑥 − ∫ e௫ି௧௫

଴
𝜑(𝑡)𝑑𝑡 

The above equation is an integral equation of the second kind of the convolution type. 
We find the solution by applying the Laplace transformation, 
   

               𝐿{𝜑(𝑥)} = 𝐿{𝑐𝑜𝑠𝑥} − 𝐿൛∫ e௫ି௧௫

଴
𝜑(𝑡)𝑑𝑡ൟ 

                  𝐿{𝜑(𝑥)} = 𝐿{𝑐𝑜𝑠𝑥} − 𝐿{e௫ ∗ 𝜑(𝑥)}                                                  [Property-8]                       

                  𝐿{𝜑(𝑥)} = 𝐿{𝑐𝑜𝑠𝑥} − 𝐿{e௫} ∗ 𝐿{𝜑(𝑥)} 

                       Φ(𝑝) =
௣

௣మାଵ
−

ଵ

௣ିଵ
Φ(𝑝)                                                    [Properties-11, 13]        

                       Φ(𝑝) ቂ1 +
ଵ

௣ିଵ
ቃ =

௣

௣మାଵ
 

                       Φ(𝑝) =
௣ିଵ

௣మାଵ
 

                       Φ(𝑝) =
௣

௣మାଵ
−

ଵ

௣మାଵ
 

                  𝐿{𝜑(𝑥)} =
௣

௣మାଵ
−

ଵ

௣మାଵ
 

                       𝜑(𝑥) = 𝐿ିଵ ቄ
௣

௣మାଵ
ቅ − 𝐿ିଵ ቄ

ଵ

௣మାଵ
ቅ 

                       𝜑(𝑥) = 𝑐𝑜𝑠𝑥 − 𝑠𝑖𝑛𝑥                                                           [Properties 20, 19]  

Hence, it is the required solution. 

6.4.3. Example: Solve the integral equation, ∫ (1 − 𝑥ଶ + 𝑡ଶ)𝜑(𝑡)𝑑𝑡 =
௫మ

ଶ

௫

଴
 

Solution: Consider the given integral equation, ∫ (1 − 𝑥ଶ + 𝑡ଶ)𝜑(𝑡)𝑑𝑡 =
௫మ

ଶ

௫

଴
 

Compare the given equation with the general form, ∫ 𝐾(𝑥, 𝑡)𝜑(𝑡)𝑑𝑡 = 𝑓(𝑥)
௫

଴
. 

Here the functions  𝑓(𝑥) =
௫మ

ଶ
,   𝐾(𝑥, 𝑡) = (1 − 𝑥ଶ + 𝑡ଶ) satisfy the conditions of continuity 

and differentiability. 

Differentiating both sides of the given equation with respect to 𝑥 by using Leibniz's rule, we 

get  ∫
డ

డ௫
(1 − 𝑥ଶ + 𝑡ଶ)

௫

଴
𝜑(𝑡)𝑑𝑡 + (1 − 𝑥ଶ + 𝑥ଶ)𝜑(𝑥)(1) − (1 − 𝑥ଶ + 0ଶ)𝜑(0)(0) =

ଵ

ଶ
(2𝑥) 

                                                                               ∫ −2𝑥
௫

଴
𝜑(𝑡)𝑑𝑡 + 𝜑(𝑥) = 𝑥 

                                                                               𝜑(𝑥) = 𝑥 + 2 ∫ 𝑥
௫

଴
𝜑(𝑡)𝑑𝑡 

The above equation is an integral equation of the second kind of the convolution type. 



Centre for Distance Education   6.10        Acharya Nagarjuna University  

By the method of successive approximation (3.1 in Lesson 3), we have, 

                             𝑓(𝑥) = 𝑥, 𝐾(𝑥, 𝑡) = 𝑥, 𝜆 = 2  

So,      𝜑଴(𝑥) = 𝑓(𝑥) 

                        = 𝑥 

            𝜑ଵ(𝑥) = ∫ 𝐾(𝑥, 𝑡)𝜑଴(𝑡)𝑑𝑡
௫

଴
 

                       = ∫ 𝑥𝑡𝑑𝑡
௫

଴
 

                       = 𝑥 ቀ
௧మ

ଶ
ቁ

଴

௫

 

                      = 𝑥 ቀ
௫మ

ଶ
− 0ቁ 

                      = 
௫య

ଶ
 

           𝜑ଶ(𝑥) = ∫ 𝐾(𝑥, 𝑡)𝜑ଵ(𝑡)𝑑𝑡
௫

଴
 

                      = ∫ 𝑥
௧య

ଶ
𝑑𝑡

௫

଴
     

                     =
௫

ଶ
ቀ

௧ర

ସ
ቁ

଴

௫

 

                     =
௫

ଶ
ቀ

௫ర

ସ
− 0ቁ 

                     =
௫ఱ

଼
 

 and so on...  

Now,   𝜑(𝑥) = 𝜑଴(𝑥) + 𝜆𝜑ଵ(𝑥) + 𝜆ଶ𝜑ଶ(𝑥) + ⋯ + 𝜆௡𝜑௡(𝑥) 

                   = 𝑥 + 2
௫య

ଶ
+ 2ଶ ௫ఱ

଼
+ ⋯ 

                   = 𝑥 + 𝑥ଷ +
௫ఱ

ଶ
+ ⋯ 

                   = 𝑥(1 + 𝑥ଶ + 𝑥ସ + ⋯ ) 

                   = 𝑥(1 +
௫మ

ଵ!
+

൫௫మ൯
మ

ଶ!
+ ⋯) 

                   = 𝑥𝑒௫మ
                                            [ ∵ 𝑒௫ = 1 +

௫

ଵ!
+

௫మ

ଶ!
+

௫య

ଷ!
+ ⋯ ] 

Hence, it is the required solution. 
 

6.4.4. Example: Solve the integral equation, ∫ (2 + 𝑥ଶ − tଶ)𝜑(𝑡)𝑑𝑡 =
௫

଴
𝑥ଶ 

Solution: Consider the given integral equation, ∫ (2 + 𝑥ଶ − tଶ)𝜑(𝑡)𝑑𝑡 =
௫

଴
𝑥ଶ 

Compare the given equation with the general form, 



Integral Equations      6.11          Volterra Integral Equation…  

                                    ∫ 𝐾(𝑥, 𝑡)𝜑(𝑡)𝑑𝑡 = 𝑓(𝑥)
௫

଴
 

Here the functions 𝑓(𝑥) = 𝑥ଶ,   𝐾(𝑥, 𝑡) = (2 + 𝑥ଶ − tଶ) satisfy the conditions of continuity 
and differentiability. 

Differentiating both sides of the given equation with respect to 𝑥 by using Leibniz's rule, we 
get, 

             ∫
ப

ப୶
(2 + 𝑥ଶ − tଶ)

௫

଴
𝜑(𝑡)𝑑𝑡 + (2 + 𝑥ଶ − 𝑥ଶ)𝜑(𝑥)(1) − (2 + 𝑥ଶ − 0)𝜑(0)(0) = 2𝑥             

                                                 ∫ 2𝑥
௫

 ଴
𝜑(𝑡)𝑑𝑡 + 2𝜑(𝑥) − 0 = 2𝑥 

                           ∫ 2𝑥
௫

 ଴
𝜑(𝑡)𝑑𝑡 + 2𝜑(𝑥) = 2𝑥 

                                ∫ 𝑥
௫

଴
𝜑(𝑡)𝑑𝑡 + 𝜑(𝑥) = 𝑥 

                                                                                     𝜑(𝑥) = 𝑥 − ∫ 𝑥
௫

଴
𝜑(𝑡)𝑑𝑡 

The above equation is an integral equation of the second kind of the convolution type. 

By the method of successive approximation (3.1 in Lesson 3), we have, 

                             𝑓(𝑥) = 𝑥, 𝐾(𝑥, 𝑡) = 𝑥, 𝜆 = −1  

Now,   𝜑଴(𝑥) = 𝑓(𝑥) 
                     =  𝑥 

            𝜑ଵ(𝑥) = ∫ 𝐾(𝑥, 𝑡)𝜑଴(𝑡)𝑑𝑡
௫

଴
 

                     = ∫ 𝑥𝑡𝑑𝑡
௫

଴
 

                         = 𝑥 ቀ
௧మ

ଶ
ቁ

଴

௫

 

                         =
௫

ଶ
(𝑥ଶ − 0) 

                         =
௫య

ଶ
 

              𝜑ଶ(𝑥) = ∫ 𝐾(𝑥, 𝑡)𝜑ଵ(𝑡)𝑑𝑡
௫

଴
 

                         = ∫ 𝑥 ቀ
௧య

ଶ
ቁ

௫

଴
𝑑𝑡 

                         =
௫

ଶ
ቀ

௧ర

ସ
ቁ

଴

௫

 

                         =
௫

଼
(𝑥ସ − 0) 

                         =
௫ఱ

଼
 

and so on...  
Now, 𝜑(𝑥) = 𝜑଴(𝑥) + 𝜆𝜑ଵ(𝑥) + 𝜆ଶ𝜑ଶ(𝑥) + ⋯ + 𝜆௡𝜑௡(𝑥) 

                     = 𝑥 + (−1) ቀ
௫య

ଶ
ቁ + (−1)ଶ ௫ఱ

଼
+ ⋯ 

                     = 𝑥 −
௫య

ଶ
+

௫ఱ

଼
+ ⋯ 

                     = 𝑥 ቀ1 −
௫మ

ଶ
+

௫ర

଼
+ ⋯ ቁ 
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                     = 𝑥 ቌ1 −
൬

ೣమ

మ
൰

ଵ!
+

൬
ೣమ

మ
൰

మ

ଶ!
+ ⋯ ቍ 

            𝜑(𝑥) = 𝑥𝑒
షೣమ

మ              ቎
∵ 𝑒௫ = 1 +

௫

ଵ!
+

௫మ

ଶ!
+

௫య

ଷ!
+ ⋯

𝑒ି௫ = 1 −
௫

ଵ!
+

௫మ

ଶ!
−

௫య

ଷ!
+ ⋯

቏ 

Hence, it is the required solution. 

 
6.5  SUMMARY:  
 
In this section, we explore the Volterra integral equation with limits (𝑥, +∞). Here, we 
discuss the procedure for finding solutions to Volterra integral equations of the first kind in 
detail. A few examples and self-assessment questions are provided to enhance the reader's 
understanding.  
 
6.6  TECHNICAL TERMS: 

 

Volterra Integral Equation of First Kind: 
The most standard form of Volterra linear integral equations is,  

                                α(𝑥)𝜑(𝑥) = 𝐹(𝑥) + 𝜆 ∫ 𝐾(𝑥, 𝑡)𝜑(𝑡)𝑑𝑡
௫

௔
, 

 if α = 0, then 𝐹(𝑥) + 𝜆 ∫ 𝐾(𝑥, 𝑡)𝜑(𝑡)𝑑𝑡
௫

௔
= 0 is the Volterra integral equation of the first 

kind. 

Residue: If 𝑓(𝑝) has a pole of order 𝑘 at 𝑝 = 𝑝଴ then, 

                        Res[𝑓, 𝑝଴] =
ଵ

(௞ିଵ)!
lim௣→௣బ

ௗೖషభ

ௗ௣ೖషభ
[(𝑝 − 𝑝଴)௞𝑓(𝑝)] 

 

6.7  SELF-ASSESSMENT QUESTIONS: 

Exercise (6.1): Solve the integral equations: 

            (1) 𝜑(𝑥) = 𝑒ି௫ + ∫ 𝜑(𝑡)𝑑𝑡
ஶ

௫
 

           (2) 𝜑(𝑥) = 𝑐𝑜𝑠𝑥 + ∫ 𝑒(௫ି௧)𝜑(𝑡)𝑑𝑡
ஶ

௫
 

           (3) ∫ 3௫ି௧𝜑(𝑡)𝑑𝑡 = 𝑥
௫

଴
 

           (4) ∫ a௫ି௧𝜑(𝑡)𝑑𝑡 = 𝑓(𝑥), 𝑓(0) = 0
௫

଴
 

           (5) ∫ 𝑠𝑖𝑛(𝑥 − t)𝜑(𝑡)𝑑𝑡 =
௫

଴
e

ೣమ

మ − 1 

Solutions to Exercise (6.1): 
         (1) 𝜑(𝑥) = (1 − 𝑥)𝑒ି௫ 
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         (2) 𝜑(𝑥) = 𝑐𝑜𝑠𝑥 − 𝑠𝑖𝑛𝑥 

         (3) 𝜑(𝑥) = 1 − 𝑥𝑙𝑛3 

         (4)  𝜑(𝑥) = 𝑓 ′(𝑥) − 𝑓(𝑥)𝑙𝑛𝑎 

         (5) 𝜑(𝑥) = e
ೣమ

మ (𝑥ଶ + 2) − 1 
 

6.8  SUGGESTED READINGS:  
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MIR Publishers, Moscow, 1971. 
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LESSON- 7 

EULER INTEGRALS AND ABEL’S  
INTEGRAL EQUATIONS  

 
OBJECTIVES: 
  
 To learn about Euler integrals 
 To discuss Abel’s problem and Abel’s integral equation 
 To learn the concept of generalizations of Abel’s integral equation 

   
STRUCTURE: 

7.1  Euler Integrals            

7.2  Abel’s Problem and Abel’s Integral Equation             

7.3  Generalizations of Abel’s Integral Equation 

7.4  Summary   

7.5  Technical Terms 

7.6  Self-Assessment Questions 

7.7  Suggested Readings 

 

7.1. Euler Integrals: 
 
The gamma function or Euler’s integral of the second kind is the function Γ(𝑥) defined by 
the equality, 

 
Γ(𝑥) = ∫ eି୲t௫ିଵdt

∞

଴
                                   (1) 

 
where, 𝑥 is any complex number, Re(𝑥) > 0. 

For 𝑥 = 1, we get 
Γ(1) = ∫ eି୲dt = 1

∞

଴
    (2) 

 
Integrating by parts, we obtain from (1) 

                 Γ(𝑥) =
ଵ

௫
∫ eି୲t௫dt

∞

଴
 

                          =
Γ(௫ାଵ)

௫
(3) 

This equation expresses the basic property of a gamma function             
Γ(𝑥 + 1) = 𝑥Γ(𝑥)     (4) 
 

Using (2), we get 
              Γ(2) = Γ(1 + 1) = 1. Γ(1) = 1, 

Γ(3) = Γ(2 + 1) = 2. Γ(2) = 2! 
Γ(4) = Γ(3 + 1) = 3. Γ(3) = 3! 

and generally for positive integral n, 
Γ(𝑛) = (n − 1)!  (5) 
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We know that, 

                                       ∫ 𝑒ି௫మ
𝑑𝑥 =

√గ

ଶ

∞

଴
 

 Putting 𝑥 = 𝑡
భ

మ here, we obtain, 

                                  ∫ 𝑒ି௧𝑡
భ

మ
ିଵ∞

଴
𝑑𝑡 = √𝜋 

Taking into account expression (1) for the gamma function, we can write this equation as, 

Γ ൬
1

2
൰ = √𝜋 

Also, we can obtain 

Γ ൬
3

2
൰ =

1

2
Γ ൬

1

2
൰ =

1

2
√𝜋 

Γ ൬
5

2
൰ =

3

2
Γ ൬

3

2
൰ =

1 × 3

2ଶ √𝜋 

and so on. 
 
Generally, it will readily be seen that the following equality holds: 

Γ ൬n +
1

2
൰ =

1 × 3 × 5 … (2𝑛 − 1)

2௡ √𝜋 

(n is a positive integer). 
 

Knowing the value of the gamma function for some value of the argument, we can compute, 
from (3), the value of the function for an argument diminished by unity. For example, 

Γ ൬
3

2
൰ =

1

2
Γ ൬

1

2
൰ =

1

2
√𝜋 

 
For this reason, 

Γ ൬
1

2
൰ =

Γ ቀ
ଵ

ଶ
+ 1ቁ

ଵ

ଶ

=
Γ ቀ

ଷ

ଶ
ቁ

ଵ

ଶ

= √𝜋 

 
Acting in a similar fashion, we find 

Γ ൬
−1

2
൰ =

Γ ቀ
ିଵ

ଶ
+ 1ቁ

ିଵ

ଶ

=
Γ ቀ

ଵ

ଶ
ቁ

ିଵ

ଶ

= −2√𝜋 

Γ ൬
−3

2
൰ =

Γ ቀ
ିଷ

ଶ
+ 1ቁ

ିଷ

ଶ

=
Γ ቀ

ିଵ

ଶ
ቁ

ିଷ

ଶ

=
4

3
√𝜋 

Γ ൬
−5

2
൰ =

Γ ቀ
ିହ

ଶ
+ 1ቁ

ିହ

ଶ

=
Γ ቀ

ିଷ

ଶ
ቁ

ିହ

ଶ

=
−8

15
√𝜋 

and so on.  
 

It is easy to verify that, 
Γ(0) = Γ(−1) = ⋯ = Γ(−𝑛) = ⋯ = ∞.  
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Above we defined Γ(𝑥) for Re(𝑥) > 0. The indicated method for computing Γ(𝑥) extends 
this function into the left half-plane, where Γ(𝑥) is defined everywhere except at the points 
𝑥 = −𝑛 (𝑛 is a positive integer and 0). 

 
Note also the following relations: 

Γ(𝑥)Γ(1 − 𝑥) =
𝜋

sin𝜋𝑥
 

Γ(𝑥)Γ ൬𝑥 +
1

2
൰ = 2ଵିଶ௫𝜋

భ

మΓ(2𝑥) 

and generally, 

Γ(𝑥)Γ ൬𝑥 +
1

𝑛
൰ Γ ൬𝑥 +

2

𝑛
൰ … Γ ൬𝑥 +

𝑛 − 1

𝑛
൰ = (2π)

౤షభ

మ n
భ

మ
ି୬ Γ(𝑛𝑥) 

(Gauss-Legendre Multiplication theorem). 
 

The gamma function was represented by Weierstrass by means of the equation, 
ଵ

୻(௭)
= 𝑧𝑒ఊ௭ ∏ ቄቀ1 +

௭

௡
ቁ 𝑒

ష೥

೙ ቅஶ
௡ୀଵ    (6)   

 
where, 

𝛾 = lim
௠→ஶ

൬1 +
1

2
+

1

3
+ ⋯ +

1

𝑚
− ln 𝑚൰ = 0.57721 … 

 
is Euler’s constant. From (6), it is evident that the function Γ(𝑧) is analytic everywhere 
except at 𝑧 = 0, 𝑧 = −1, 𝑧 = −2, …, where it has simple poles. 

 
The following is Euler’s formula, which is obtained from (6); 

Γ(𝑧) =
1

z
ෑ ቊ൬1 +

1

𝑛
൰

௭

ቀ1 +
𝑧

𝑛
ቁ

ିଵ

ቋ

ஶ

௡ୀଵ

 

 
It holds everywhere except at 𝑧 = 0, 𝑧 = −1, 𝑧 = −2, … 

 
7.1.1. Example: Show that for 𝑅𝑒(𝑧) > 0 

𝛤(𝑧) = න ൬𝑙𝑛
1

𝑥
൰

௭ିଵ

𝑑𝑥

ଵ

଴

 

Solution: 
Let us define gamma function as,                            

Γ(𝑧) = ∫ eି୲t௭ିଵdt
ஶ

଴
      (1) 

Now, we have to show that, 

𝛤(𝑧) = න ൬𝑙𝑛
1

𝑥
൰

௭ିଵ

𝑑𝑥

ଵ

଴

 

Consider RHS of above equation, 

RHS = ∫ ቀ𝑙𝑛
ଵ

௫
ቁ

௭ିଵ

𝑑𝑥
ଵ

଴
(2) 

 

Let us assume that, 𝑙𝑜𝑔
ଵ

௫
= 𝑡 

1

𝑥
= 𝑒௧ 
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𝑥 = 𝑒ି௧ 
𝑑𝑥 = −𝑒ି௧𝑑𝑡 

 
The limits of integration will change as under 𝑡 = ∞ as 𝑥 = 0 and 𝑡 = 0 as 𝑥 = 1. 

 
Now, substitute all the above values in equation (2), which gives 

RHS = ∫ ቀ𝑙𝑛
ଵ

௫
ቁ

௭ିଵ
𝑑𝑥

ଵ

଴
 

         = ∫ 𝑡௭ିଵ(−𝑒ି௧)𝑑𝑡
଴

ஶ
 

         = ∫ 𝑒ି௧𝑡௭ିଵ𝑑𝑡
ஶ

଴
ቀ∵  ∫ 𝑓(𝑥)𝑑𝑥 = − ∫ 𝑓(𝑥)𝑑𝑥

௔

௕

௕

௔
ቁ 

         =  Γ(𝑧)(∵   equation (1)) 
         = LHS 

Hence,  𝛤(𝑧) = ∫ ቀ𝑙𝑛
ଵ

௫
ቁ

௭ିଵ

𝑑𝑥
ଵ

଴
. 

 
7.1.2. Note: 

 
We introduce Euler’s integral of the first kind 𝐵(𝑝, 𝑞), so-called beta function: 

𝐵(𝑝, 𝑞) = න 𝑥௣ିଵ(1 − 𝑥)௤ିଵ𝑑𝑥     (𝑅𝑒 𝑝 > 0, 𝑅𝑒 𝑞 > 0)

ଵ

଴

 

  
The following equality holds (it establishes a relationship between the Euler integrals of the 
first and second kinds): 

𝐵(𝑝, 𝑞) =
Γ(𝑝)Γ(𝑞)

Γ(𝑝 + 𝑞)
 

 
Also, we have some alternate definitions of the beta function, 

𝐵(𝑝, 𝑞) = න
𝑥௣ିଵ

(1 + 𝑥)௣ା௤
𝑑𝑥

ஶ

଴

 

𝐵(𝑝, 𝑞) = 2 න 𝑠𝑖𝑛ଶ௣ିଵ𝜃

ഏ

మ

଴

𝑐𝑜𝑠ଶ௤ିଵ𝜃𝑑𝜃 

𝐵(𝑝, 𝑞) = න
𝑥௣ିଵ + 𝑥௤ିଵ

(1 + 𝑥)௣ା௤
𝑑𝑥

ଵ

଴

 

Also, we have, 

න 𝑠𝑖𝑛௣𝜃 𝑐𝑜𝑠௤𝜃 𝑑𝜃 =
Γ ቀ

௣ାଵ

ଶ
ቁ Γ ቀ

௤ାଵ

ଶ
ቁ

2Γ ቀ
௣ା௤ାଶ

ଶ
ቁ

ഏ

మ

଴

 

 
7.1.3. Example: Show that, 𝐵(𝑝, 𝑞) = 𝐵(𝑞, 𝑝) 
 
Solution: Let us define the beta function as, 

𝐵(𝑝, 𝑞) = ∫ 𝑥௣ିଵ(1 − 𝑥)௤ିଵ𝑑𝑥     (𝑅𝑒 𝑝 > 0, 𝑅𝑒 𝑞 > 0)
ଵ

଴
     (1)  

 



Integral Equations     7.5           Euler Integrals and Abel`s... 

 Consider the LHS of the given expression, i.e., 
 

 𝐵(𝑝, 𝑞) = ∫ 𝑥௣ିଵ(1 − 𝑥)௤ିଵ𝑑𝑥   
ଵ

଴
(∵   Equation (1)) 

               = ∫ (1 − 𝑥)௣ିଵ൫1 − (1 − 𝑥)൯
௤ିଵ

𝑑𝑥 
ଵ

଴
 

                                                ൫∵ ∫ 𝑓(𝑥)𝑑𝑥 = ∫ 𝑓(𝑎 − 𝑥)𝑑𝑥
௔

଴

௔

଴
൯ 

           = ∫ (1 − 𝑥)௣ିଵ𝑥௤ିଵ𝑑𝑥 
ଵ

଴
 

           = ∫ 𝑥௤ିଵ(1 − 𝑥)௣ିଵ𝑑𝑥 
ଵ

଴
 

           = 𝐵(𝑞, 𝑝) 
Hence, 𝐵(𝑝, 𝑞) = 𝐵(𝑞, 𝑝). 

 
7.1.4. Example: Show that, 

𝐵(𝑝, 𝑞) = 𝐵(𝑝 + 1, 𝑞) + 𝐵(𝑝, 𝑞 + 1) 
Solution: Let us define the beta function as, 

                𝐵(𝑝, 𝑞) =
୻(௣)୻(௤)

୻(௣ା௤)
                                                     (1) 

 
Now, consider the RHS of the given expression as, 

 𝐵(𝑝 + 1, 𝑞) + 𝐵(𝑝, 𝑞 + 1) =
୻(௣ାଵ)୻(௤)

୻(௣ା௤ାଵ)
+

୻(௣)୻(௤ାଵ)

୻(௣ା௤ାଵ)
              

                        (∵   Equation (1)) 

       =
௣୻(௣)୻(௤)

(୮ା୯)୻(௣ା௤)
+

୻(௣)୯୻(௤)

(௣ା୯)୻(௣ା௤)
 

       =
୻(௣)୻(௤)

୻(௣ା௤)
ቀ

௣

௣ା௤
+

௤

௣ା௤
ቁ 

       =
୻(௣)୻(௤)

୻(௣ା௤)
ቀ

௣ା௤

௣ା௤
ቁ 

       =
୻(௣)୻(௤)

୻(௣ା௤)
 

       = 𝐵(𝑝, 𝑞)                                             (∵   Equation (1)) 

                           
Hence,  𝐵(𝑝, 𝑞) = 𝐵(𝑝 + 1, 𝑞) + 𝐵(𝑝, 𝑞 + 1). 

 
7.1.5. Example: Show that,  
 

            ∫ (1 + 𝑥)௣ିଵ(1 − 𝑥)௤ିଵଵ

ିଵ
𝑑𝑥 = 2௣ା௤ିଵ𝐵(𝑝, 𝑞) 

Solution: Consider the LHS of the given equation,  

 LHS = ∫ (1 + 𝑥)௣ିଵ(1 − 𝑥)௤ିଵଵ

ିଵ
𝑑𝑥                       (1) 

Let us assume that, 1 + 𝑥 = 2𝑡 then 𝑑𝑥 = 2𝑑𝑡 
 

The limits of integration will change as under 𝑡 = 0 as 𝑥 = −1 and 𝑡 = 1 as 𝑥 = 1. 
 

Now, substitute all the above values in equation (1), 
 

LHS = ∫ (2𝑡)௣ିଵ൫1 − (2𝑡 − 1)൯
௤ିଵଵ

଴
2𝑑𝑡 

        = ∫ (2𝑡)௣ିଵ(2 − 2𝑡)௤ିଵଵ

଴
2𝑑𝑡 

        = ∫ 2௣ିଵଵ

଴
𝑡௣ିଵ2௤ିଵ(1 − 𝑡)௤ିଵ2𝑑𝑡 
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        = 2௣ା௤ିଵ ∫ 𝑡௣ିଵ(1 − 𝑡)௤ିଵ𝑑𝑡
ଵ

଴
 

        = 2௣ା௤ିଵ𝐵(𝑝, 𝑞) ቀ∵ 𝐵(𝑝, 𝑞) = ∫ 𝑥௣ିଵ(1 − 𝑥)௤ିଵ𝑑𝑥  
ଵ

଴
ቁ                               

        = RHS  

Hence,   ∫ (1 + 𝑥)௣ିଵ(1 − 𝑥)௤ିଵଵ

ିଵ
𝑑𝑥 = 2௣ା௤ିଵ𝐵(𝑝, 𝑞). 

 
7.1.6. Example: Evaluate the integral, 

          𝐼 = ∫ 𝑐𝑜𝑠௠ିଵ𝑥 𝑠𝑖𝑛௡ିଵ𝑥 𝑑𝑥
ഏ

మ
଴

   (𝑅𝑒 𝑚 > 0, 𝑅𝑒 𝑛 > 0). 
Solution: Consider the given integral, 

          𝐼 = ∫ 𝑐𝑜𝑠௠ିଵ𝑥 𝑠𝑖𝑛௡ିଵ𝑥 𝑑𝑥
ഏ

మ
଴

 
 

Now, compare with the general form, 

      ∫ 𝑠𝑖𝑛௣𝜃 𝑐𝑜𝑠௤𝜃 𝑑𝜃 =
୻ቀ

೛శభ

మ
ቁ୻ቀ

೜శభ

మ
ቁ

ଶ୻ቀ
೛శ೜శమ

మ
ቁ

ഏ

మ
 ଴

 

 

Here, we have 
               𝑝 = 𝑛 − 1, 𝑞 = 𝑚 − 1 
 

Hence, given the integral becomes, 

              𝐼 =
୻ቀ

೙షభశభ

మ
ቁ୻ቀ

೘షభశభ

మ
ቁ

ଶ୻ቀ
೙షభశ೘షభ శమ

మ
ቁ

 

              𝐼 =
୻ቀ

೙

మ
ቁ୻ቀ

೘

మ
ቁ

ଶ୻ቀ
೘శ೙

మ
ቁ
 

Hence, it is the required solution. 
 
7.2. ABEL’S PROBLEM AND ABEL’S INTEGRAL EQUATION: 

  
7.2.1. Definition: 
An integral equation is called a singular integral equation if one or both limits of integration 
become infinite, or if the kernel 𝐾(𝑥, 𝑡) of the equation becomes infinite at one or more 
points in the interval of integration. To be specific, the integral equation of the first kind, 

𝑓(𝑥) = 𝜆 ∫ 𝐾(𝑥, 𝑡)𝜑(𝑡)𝑑𝑡
௕

௔
                                                 (1) 

 

or the integral equation of the second kind 

𝜑(𝑥) = 𝑓(𝑥) + 𝜆 ∫ 𝐾(𝑥, 𝑡)𝜑(𝑡)𝑑𝑡
௕

௔
                                     (2) 

 
is called singular if a, b or both limits of integration are infinite. Equation (1) or (2) is also 
called a singular equation if the kernel 𝐾(𝑥, 𝑡) becomes infinite at one or more points in the 
domain of integration. 

 
Consider the following examples, 

𝑓(𝑥) = ∫
ଵ

√௫ି௧
𝜑(𝑡)𝑑𝑡

௫

଴
                                                          (3) 

𝑓(𝑥) = ∫
ଵ

(௫ି௧)ഀ
𝜑(𝑡)𝑑𝑡

௫

଴
                                                          (4) 

The above integral equations (3) and (4) are called Abel’s problem and generalized Abel’s 
integral equation, respectively. 



Integral Equations     7.7           Euler Integrals and Abel`s... 

One of the simplest forms of singular integral equations, which arises in mechanics, is Abel’s 
integral equation 

               𝑓(𝑥) = ∫
ଵ

(௫ି௧)ഀ 𝜑(𝑡)𝑑𝑡
௫

଴
,   0 < 𝛼 < 1                      (5) 

 
 where 𝜑(𝑡) is an unknown function to be determined and 𝑓(𝑥) is a known function. 

 

Multiplying (5) both sides by (𝑢 − 𝑥)ି(ଵିఈ) and integrate with regard to 𝑥 from 0 to 𝑢, we 
have 

      ∫
௙(௫)

(௨ି௫)ష(భషഀ)

௨

଴
𝑑𝑥 = ∫

ௗ௫

(௨ି௫)భషഀ ∫
ఝ(௧)

(௫ି௧)ഀ 𝑑𝑡
௫

௧ୀ଴

௨

௫ୀ଴
 

 
By changing the order of integration, we have 

∫
௙(௫)

(௨ି௫)ష(భషഀ)

௨

଴
𝑑𝑥 = ∫ 𝜑(𝑡)𝑑𝑡

௨

௧ୀ଴
∫

ௗ௫

(௨ି௫)భషഀ(௫ି௧)ഀ

௨

௫ୀ௧
        (6) 

 
Consider, 
                                         𝑧 =

௨ି௫

௨ି௧
 

                                       𝑑𝑥 = −(𝑢 − 𝑡)𝑑𝑧 
Then,  

               ∫
ௗ௫

(௨ି௫)భషഀ(௫ି௧)ഀ

௨

௫ୀ௧
 

       = − ∫ [𝑧(𝑢 − 𝑡)]ఈିଵ(𝑢 − 𝑡)ିఈ(1 − 𝑧)ିఈ(𝑢 − 𝑡)𝑑𝑧
଴

௭ୀଵ
 

       = ∫ 𝑧ఈିଵ(1 − 𝑧)ିఈ𝑑𝑧
ଵ

௭ୀ଴
 

       =
గ

௦௜௡ఈగ
 

       = 𝐵(𝛼, 1 − 𝛼)                                                           (7) 

From relations (6) and (7), we have 

∫
௙(௫)

(௨ି௫)ష(భషഀ)

௨

଴
𝑑𝑥 =

గ

௦௜௡ఈగ
∫ 𝜑(𝑡)𝑑𝑡

௨

௧ୀ଴
                                  (8) 

 
Differentiating the relation (8) with regard to 𝑢 and then changing 𝑢 by 𝑡, we obtain 

𝜑(𝑡) =
௦௜௡ఈగ

గ

ௗ

ௗ௧
ቂ∫ 𝑓(𝑥)(𝑡 − 𝑥)ఈିଵ𝑑𝑥

௧

଴
ቃ, 

which determines the solution of the given equation (5). 
 

7.2.2. Relation between Laplace Transformation and Gamma function: 
 

                        (1) 𝐿{𝑥௡} =
୻(୬ାଵ)

௣೙శభ =
௡!

௣೙శభ,   if 𝑛𝜖𝑧ା 

                        (2) 𝐿ିଵ ቄ
ଵ

௣೙శభቅ =
௫೙

୻(୬ାଵ)
 

                        (3) 𝐿 ቄ
ଵ

√௫
ቅ = 𝐿 ቄ𝑥

షభ

మ ቅ =
୻(ଵି

భ

మ
)

௣
భష

భ
మ

= ට
గ

௣
 

                        (4)𝐿ିଵ ቄ
ଵ

√௣
ቅ =

ଵ

ඥగ√௫
 

 
7.2.3. Example: Solve the integral equation, 

                   ∫
ఝ(௧)ௗ௧

(௫ି௧)ഀ = 𝑥௡௫

଴
(0 < 𝛼 < 1) 

 Solution: Consider the given integral equation, 
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                    ∫
ఝ(௧)ௗ௧

(௫ି௧)ഀ
= 𝑥௡௫

 ଴
 

 

 Now, applying the Laplace transform on both sides, we get, 

              𝐿 ቄ∫
ఝ(௧)ௗ௧

(௫ି௧)ഀ

௫

଴
ቅ = 𝐿{𝑥௡} 

                                    𝐿 ቄ
ଵ

௫ഀ ∗ 𝜑(𝑥)ቅ = 𝐿{𝑥௡}            (∵ Property-8 in 5.2.9 ) 

                               𝐿 ቄ
ଵ

௫ഀቅ ∗ 𝐿{𝜑(𝑥)} = 𝐿{𝑥௡} 

                                 𝐿{𝑥ିఈ}𝐿{𝜑(𝑥)} = 𝐿{𝑥௡} 

                                
 ୻(ିఈାଵ)

௣షഀశభ 𝐿{𝜑(𝑥)} =
୻(୬ାଵ)

௣೙శభ        ቀ∵ 𝐿{𝑥௡} =
୻(୬ାଵ)

௣೙శభ ቁ 

     

     𝐿{𝜑(𝑥)}Γ(−𝛼 + 1) =
୻(୬ାଵ)

௣೙௣
𝑝ିఈ𝑝 

      𝐿{𝜑(𝑥)}Γ(−𝛼 + 1) =
୻(୬ାଵ)

௣೙శഀ
 

              𝐿{𝜑(𝑥)} =
୻(୬ାଵ)

୻(ଵିఈ)

ଵ

௣೙శഀ 

                              𝜑(𝑥) =
୻(୬ାଵ)

୻(ଵିఈ)
𝐿ିଵ ቄ

ଵ

௣೙శഀቅ 

                              𝜑(𝑥) =
୻(୬ାଵ)

୻(ଵିఈ)
𝐿ିଵ ቄ

ଵ

௣೙శഀషభశభቅ 

                              𝜑(𝑥) =
୻(୬ାଵ)

୻(ଵିఈ)

௫೙శഀషభ

୻(௡ାఈିଵାଵ)
 

                              𝜑(𝑥) =
୻(୬ାଵ)

୻(ଵିఈ)

௫೙శഀషభ

୻(௡ାఈ)
 

Hence, it is the required solution. 
   

7.2.4. Example: Solve the integral equation, 

                        ∫
ఝ(௧)ௗ௧

√௫ି௧
= 𝑠𝑖𝑛𝑥

௫

଴
 

Solution: Consider the given integral equation, 

                         ∫
ఝ(௧)ௗ௧

√௫ି௧
= 𝑠𝑖𝑛𝑥

௫

଴
 

 

Now, applying the Laplace transform on both sides, we get, 

                 𝐿 ቄ∫
ఝ(௧)ௗ௧

√௫ି௧

௫

଴
ቅ = 𝐿{𝑠𝑖𝑛𝑥} 

               𝐿 ቄ
ଵ

√௫
∗ 𝜑(𝑥)ቅ =

ଵ

ଵା௣మ                (∵ Property-8 in 5.2.9) 

             𝐿 ቄ
ଵ

√௫
ቅ 𝐿{𝜑(𝑥)} =

ଵ

ଵା௣మ
 

                  ට
గ

௣
𝐿{𝜑(𝑥)} =

ଵ

ଵା௣మ
                     (∵7.2.2 ) 

                       𝐿{𝜑(𝑥)} = ට
௣

గ

ଵ

ଵା௣మ
 

                       𝐿{𝜑(𝑥)} =
ଵ

√గ

√௣

ଵା௣మ
 

                       𝐿{𝜑(𝑥)} =
ଵ

√గ
ቀ

௣

√௣(ଵା௣మ)
ቁ 
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                            𝜑(𝑥) =
ଵ

√గ
𝐿ିଵ ቄ

ଵ

√௣

௣

ଵା௣మቅ 

                            𝜑(𝑥) =
ଵ

√గ
ቀ𝐿ିଵ ቄ

ଵ

√௣
ቅ 𝐿ିଵ ቄ

௣

ଵା௣మቅቁ 

                                                    𝜑(𝑥) =
ଵ

√గ
ቀ

ଵ

√గ√௫
𝑐𝑜𝑠𝑥ቁ      (∵ 7.2.2 and 5.2.10 ) 

                                                    𝜑(𝑥) =
ଵ

గ
ቀ

ଵ

√௫
𝑐𝑜𝑠𝑥ቁ 

                                                    𝜑(𝑥) =
ଵ

గ
ቀ∫

௖௢௦௧

√௫ି௧
𝑑𝑡

௫

଴
ቁ 

Hence, it is the required solution.  
 
7.2.5. Example: Solve the integral equation, 

                                                              ∫
ఝ(௧)ௗ௧

√௫ି௧
= 𝑥

భ

మ
௫

଴
 

Solution: Consider the given integral equation, 

                               ∫
ఝ(௧)ௗ௧

√௫ି௧
=

௫

଴
𝑥

భ

మ 

Now, applying the Laplace transform on both sides, we get, 

                         𝐿 ቄ∫
ఝ(௧)ௗ௧

√௫ି௧

௫

଴
ቅ = 𝐿 ቄ𝑥

భ

మቅ 

                       𝐿 ቄ
ଵ

√௫
∗ 𝜑(𝑥)ቅ = 𝐿 ቄ𝑥

భ

మቅ 

                     𝐿 ቄ
ଵ

√௫
ቅ 𝐿{𝜑(𝑥)} = 𝐿 ቄ𝑥

భ

మቅ 

                          ට
గ

௣
𝐿{𝜑(𝑥)} =

√గ

ଶ௣
య
మ

 

                                            ቆ∵ 7.2.2 𝑎𝑛𝑑 𝐿 ቄ𝑥
భ

మቅ =
୻ቀ

య

మ
ቁ

௣
య
మ

=
√గ

ଶ௣
య
మ

ቇ 

                                𝐿{𝜑(𝑥)} =
ଵ

ଶ௣
 

𝜑(𝑥) =
1

2
𝐿ିଵ ൜

1

𝑝
ൠ 

                                     𝜑(𝑥) =
ଵ

ଶ
ቀ∵  𝐿ିଵ ቄ

ଵ

௣
ቅ = 1ቁ 

Hence, it is the required solution. 
 

7.3. GENERALIZATIONS OF ABEL'S INTEGRAL EQUATION: 
 
Consider the integral equation, 

              ∫ (𝑥 − 𝑡)ఉ𝜑(𝑡)𝑑𝑡 = 𝑥ఒ௫

଴
                                        (1) 

 
(𝜆 ≥ 0,   𝛽 > −1 𝑖𝑠 𝑟𝑒𝑎𝑙 ),  

which in a sense is a further generalization of Abel’s equation (5) in 7.2.1.  
 

Multiply both sides of equation (1) by (𝑧 − 𝑥)ఓ (𝜇 > −1) and integrate with respect to 𝑥 
from 0 to 𝑧: 

∫ (𝑧 − 𝑥)ఓ൫∫ (𝑥 − 𝑡)ఉ𝜑(𝑡)𝑑𝑡
௫

଴
൯𝑑𝑥 = ∫ 𝑥ఒ(𝑧 − 𝑥)ఓ𝑑𝑥

௭

଴

௭

଴
       (2) 

Putting 𝑥 = 𝜌𝑧 in the integral on the right side of (2), we obtain 
 

                         ∫ 𝑥ఒ௭

଴
(𝑧 − 𝑥)ఓ𝑑𝑥 = 𝑧ఒାఓାଵ ∫ 𝜌ఒ(1 − 𝜌)ఓ𝑑𝜌

ଵ

଴
 

                    = 𝑧ఒାఓାଵ𝐵(𝜆 + 1, 𝜇 + 1) 
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                    = 𝑧ఒାఓାଵ ୻(ఒାଵ)୻(ఓାଵ)

୻(ఒାఓାଶ)
  (𝜆 + 𝜇 + 1 > 𝜆 ≥ 0)      (3) 

 Changing the order of integration on the left side of (2), we get, 
 

                             ∫ ൫∫ (𝑧 − 𝑥)ఓ(𝑥 − 𝑡)ఉ𝜑(𝑡)𝑑𝑡
௫

଴
൯𝑑𝑥 =

௭

 ଴
 

                                                    ∫ ൫∫ (𝑧 − 𝑥)ఓ(𝑥 − 𝑡)ఉ𝑑𝑥
௭

௧
൯𝜑(𝑡)𝑑𝑡

௭

଴
             (4) 

In the inner integral on the right of (4) put 
𝑥 = 𝑡 + 𝜌(𝑧 − 𝑡) 

                      Then, 
  ∫ (𝑧 − 𝑥)ఓ(𝑥 − 𝑡)ఉ𝑑𝑥

௭

௧
= (𝑧 − 𝑡)ఓାఉାଵ ∫ 𝜌ఉ(1 − 𝜌)ఓ𝑑𝜌

ଵ

଴
 

  ∫ (𝑧 − 𝑥)ఓ(𝑥 − 𝑡)ఉ𝑑𝑥
௭

௧
= (𝑧 − 𝑡)ఓାఉାଵB(β + 1, μ + 1) 

  ∫ (𝑧 − 𝑥)ఓ(𝑥 − 𝑡)ఉ𝑑𝑥
௭

௧
= (𝑧 − 𝑡)ఓାఉାଵ ୻(ஒାଵ)୻(ஜାଵ)

୻(ஒାஜାଶ)
                   (5) 

Taking into account (3), (4), (5), we obtain from (2), 

  ∫ ቀ(𝑧 − 𝑡)ఓାఉାଵ ୻(ஒାଵ)୻(ஜାଵ)

୻(ஒାஜାଶ)
ቁ φ(t)dt = 𝑧𝜆+𝜇+1 Γ(𝜆+1)Γ(𝜇+1)

Γ(𝜆+𝜇+2)

୸

଴
 

     
 ୻(ஒାଵ)୻(ஜାଵ)

୻(ஒାஜାଶ)
∫ (𝑧 − 𝑡)ఓାఉାଵ௭

଴
 φ(t)dt = 𝑧𝜆+𝜇+1 Γ(𝜆+1)Γ(𝜇+1)

Γ(𝜆+𝜇+2)
 

            
୻(ஒାଵ)

୻(ஒାஜାଶ)
∫ (𝑧 − 𝑡)ఓାఉାଵ௭

଴
 φ(t)dt = 𝑧𝜆+𝜇+1 Γ(𝜆+1)

Γ(𝜆+𝜇+2)
       (6) 

Choose 𝜇 so that 𝜇 + 𝛽 + 1 = 𝑛 (a non-negative integer). Then  from (6) we will have 

     
 ୻(ఉାଵ)

୻(௡ାଵ)
∫ (𝑧 − 𝑡)௡௭

଴
φ(t)dt =

Γ(𝜆+1)

Γ(𝜆+𝑛−𝛽+1)
𝑧𝜆+𝑛−𝛽 

                    ∫
(௭ି௧)೙

௡!

௭

଴
φ(t)dt =

Γ(𝜆+1)

Γ(β+1)Γ(𝜆+𝑛−𝛽+1)
𝑧𝜆+𝑛−𝛽 

                                                               (∵ Γ(𝑛 + 1) = 𝑛!)         (7) 

Differentiating both sides of (7) (𝑛 + 1) times with respect to 𝑧, we obtain 

𝜑(𝑧) =
Γ(𝜆+1)(𝜆+𝑛−𝛽)(𝜆+𝑛−𝛽−1)…(𝜆−𝛽)

Γ(𝛽+1)(𝜆+𝑛−𝛽+1)
𝑧ఒିఉିଵ                 (8) 

                        or for 𝜆 − 𝛽 + 𝑘 ≠ 0 (𝑘 = 0, 1, … , 𝑛) 

𝜑(𝑧) =
Γ(𝜆+1)

Γ(𝛽+1)Γ(𝜆−𝛽)
𝑧ఒିఉିଵ                                          (9) 

This is the solution of the integral equation (1). 

 7.3.1. Example: Solve the integral equation, 
                    ∫ (𝑥 − 𝑡)𝜑(𝑡)𝑑𝑡 = 𝑥ଶ௫

଴
 

Solution: Consider the given integral equation, 
                   ∫ (𝑥 − 𝑡)𝜑(𝑡)𝑑𝑡 = 𝑥ଶ௫

଴
 

 Compare the given integral equation with, 
                 ∫ (𝑥 − 𝑡)ఉ𝜑(𝑡)𝑑𝑡 = 𝑥ఒ௫

଴
 

                        Here, 𝜆 = 2, 𝛽 = 1.  

Since,𝜆 − 𝛽 + 𝑘 ≠ 0 (𝑘 = 0, 1, 2, 3, … , 𝑛), it follows from the general formula that, 

                                       𝜑(𝑧) =
Γ(𝜆+1)

Γ(𝛽+1)Γ(𝜆−𝛽)
𝑧ఒିఉିଵ 
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                                       𝜑(𝑥) =
Γ(2+1)

Γ(1+1)Γ(2−1)
𝑥ଶିଵିଵ 

                               𝜑(𝑥) =
Γ(3)

Γ(2)Γ(1)
𝑥଴ 

                               𝜑(𝑥) =
ଶ!

(ଵ)(ଵ)
(1) 

                               𝜑(𝑥) = 2 
Hence, it is the required solution. 

 
7.3.2. Example: Solve the integral equation, 

                     ∫ (𝑥 − 𝑡)
భ

య𝜑(𝑡)𝑑𝑡 = 𝑥
ర

య − 𝑥ଶ௫

଴
 

Solution: Consider the given integral equation, 

                      ∫ (𝑥 − 𝑡)
భ

య𝜑(𝑡)𝑑𝑡 = 𝑥
ర

య − 𝑥ଶ௫

 ଴
 

 Compare the given integral equation with, 
                     ∫ (𝑥 − 𝑡)ఉ𝜑(𝑡)𝑑𝑡 = 𝑥ఒ௫

଴
 

 Here, 𝜆ଵ =
ସ

ଷ
, 𝜆ଶ = 2, 𝛽 =

ଵ

ଷ
.    

 Since, 𝜆ଵ − 𝛽 + 𝑘 ≠ 0, 𝜆ଶ − 𝛽 + 𝑘 ≠ 0(𝑘 = 0, 1, 2, 3, … , 𝑛),                   
 it follows from the general formula that, 

                𝜑(𝑧) =
Γ(𝜆+1)

Γ(𝛽+1)Γ(𝜆−𝛽)
𝑧ఒିఉିଵ 

For this problem we have two 𝜆 values, so the solution will be, 

                                       𝜑(𝑧) =
Γ(ఒభ+1)

Γ(𝛽+1)Γ(ఒభ−𝛽)
𝑧ఒభିఉିଵ −

Γ(ఒమ+1)

Γ(𝛽+1)Γ(ఒమ−𝛽)
𝑧ఒమିఉିଵ 

               𝜑(𝑥) =
Γቀ

ర

య
+1ቁ

Γቀ
1

3
+1ቁΓ(

ర

య
−

1

3
)
𝑥

ర

య
ି

భ

య
ିଵ −

Γ(ଶ+1)

Γቀ
1

3
+1ቁΓ(ଶ−

1

3
)
𝑥ଶି

భ

య
ିଵ 

                                       𝜑(𝑥) =
Γቀ

ళ

య
ቁ

Γቀ
4

3
ቁΓ(ଵ)

𝑥଴ −
Γ(ଷ)

Γቀ
4

3
ቁΓ(

5

3
)
𝑥

మ

య 

                                       𝜑(𝑥) =
ర

య
୻ቀ

ర

య
ቁ

Γቀ
4

3
ቁ

−
ଶ!

Γቀ
4

3
ቁΓቀ

5

3
ቁ

𝑥
మ

య 

                                       𝜑(𝑥) =
ସ

ଷ
−

ଶ

Γቀ
4

3
ቁΓቀ

5

3
ቁ

𝑥
మ

య 

 Hence, it is the required solution. 

7.3.3. Example:  Solve the integral equation, 

                       ∫ (𝑥 − 𝑡)
భ

మ𝜑(𝑡)𝑑𝑡 = 𝜋𝑥
௫

଴
. 

Solution: Consider the given integral equation, 

                       ∫ (𝑥 − 𝑡)
భ

మ𝜑(𝑡)𝑑𝑡 = 𝜋𝑥
௫

଴
 

Compare the given integral equation with, 
                                               ∫ (𝑥 − 𝑡)ఉ𝜑(𝑡)𝑑𝑡 = 𝑥ఒ௫

଴
 

                       Here, 𝜆 = 1, 𝛽 =
ଵ

ଶ
.  

Since, 𝜆 − 𝛽 + 𝑘 ≠ 0 (𝑘 = 0, 1, 2, 3, … , 𝑛), it follows from the general formula that, 
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                      𝜑(𝑧) =
Γ(𝜆+1)

Γ(𝛽+1)Γ(𝜆−𝛽)
𝑧ఒିఉିଵ 

                      𝜑(𝑥) = 𝜋 ቈ
Γ(1+1)

Γቀ
1

2
+1ቁΓ(1−

1

2
)
𝑥ଵି

భ

మ
ିଵ቉ 

                      𝜑(𝑥) = 𝜋 ቈ
Γ(1+1)

Γቀ
1

2
+1ቁΓ(1−

1

2
)
𝑥ଵି

భ

మ
ିଵ቉ 

                      𝜑(𝑥) = 𝜋 ቈ
Γ(1+1)

Γቀ
1

2
+1ቁΓ(1−

1

2
)
𝑥ଵି

భ

మ
ିଵ቉ 

                      𝜑(𝑥) = 𝜋 ቈ
Γ(2)

Γቀ
3

2
ቁΓ(

1

2
)

ଵ

√௫
቉ 

                     𝜑(𝑥) = 𝜋 ቈ
ଵ

భ

మ
√గ√గ

ଵ

√௫
቉ 

                                       ቀ∵ Γ ቀ
3

2
ቁ = Γ ቀ

1

2
+ 1ቁ =

ଵ

ଶ
Γ ቀ

1

2
ቁ =

1

2
√𝜋ቁ 

                     𝜑(𝑥) = 𝜋 ቂ
ଶ

గ√௫
ቃ 

                     𝜑(𝑥) =
ଶ

√௫
 

Hence, it is the required solution. 
 

7.4  SUMMARY:  
 
This lesson provides a detailed description of Euler integrals. Later deals with the concepts of 
Abel’s problem and Abel’s integral equation. Also, discussed the generalizations of Abel’s 
integral equation. Certain examples of all these concepts are provided to enhance the reader's 
understanding.  

 
7.5  TECHNICAL TERMS: 
 
Euler Integrals:  
(1) Euler’s integral of the second kind Γ(𝑥) is called gamma function and is defined by,          

                        Γ(𝑥) = ∫ eି୲t௫ିଵdt
∞

଴
          

where, 𝑥 is any complex number, Re(𝑥) > 0. 
 

(2) Euler’s integral of the first kind 𝐵(𝑝, 𝑞) is called the beta function and is defined by, 

         𝐵(𝑝, 𝑞) = ∫ 𝑥௣ିଵ(1 − 𝑥)௤ିଵ𝑑𝑥     (𝑅𝑒 𝑝 > 0, 𝑅𝑒 𝑞 > 0)
ଵ

଴
 

 
Relation between Euler integrals of the first and second kind: 

                                       𝐵(𝑝, 𝑞) =
୻(௣)୻(௤)

୻(௣ା௤)
 

Abel’s Integral Equation: The simplest form of singular integral equations, which arises in 
mechanics, is Abel’s integral equation. 

                         𝑓(𝑥) = ∫
ଵ

(௫ି௧)ഀ 𝜑(𝑡)𝑑𝑡
௫

଴
,   0 < 𝛼 < 1   

where 𝜑(𝑡) is an unknown function to be determined and 𝑓(𝑥) is a known function. 
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Generalizations of Abel's Integral Equation: The integral equation, 
     ∫ (𝑥 − 𝑡)ఉ𝜑(𝑡)𝑑𝑡 = 𝑥ఒ௫

଴
     (𝜆 ≥ 0,   𝛽 > −1 𝑖𝑠 𝑟𝑒𝑎𝑙 )            

 which, in a sense, is a generalization of the Abel integral equation.  
 

7.6  SELF ASSESSMENT QUESTIONS: 
 

Exercise (7.1): Solve the following: 
(1) Show that, Γᇱ(1) = −𝛾 

(2) Show that,
୻ᇲ(ଵ)

୻(ଵ)
−

୻ᇲቀ
భ

మ
ቁ

୻ቀ
భ

మ
ቁ

= 2. 𝑙𝑛2 

(3) Prove that, Γ(z) = lim௡→ஶ
ଵ.ଶ…..(௡ିଵ)

௭(௭ାଵ)…….(௭ା௡ିଵ)
𝑛௭ 

(4) Show that, 𝐵(𝑝 + 1, 𝑞) =
௣

௤
𝐵(𝑝, 𝑞 + 1) 

 
 Exercise(7.2): Solve the integral equations: 

 (1)∫ (𝑥 − 𝑡)
భ

ర𝜑(𝑡)𝑑𝑡 = 𝑥 + 𝑥ଶ௫

଴
 

 (2)∫ (𝑥 − 𝑡)ଶ𝜑(𝑡)𝑑𝑡 = 𝑥ଷ௫

଴
 

 (3) 
ଵ

ଶ
∫ (𝑥 − 𝑡)ଶ𝜑(𝑡)𝑑𝑡 = 𝑐𝑜𝑠𝑥 − 1 +

௫మ

ଶ

௫

଴
 

 (4) ∫
ఝ(௧)ௗ௧

√௫ି௧
= 𝑒௫௫

଴
 

 
Solutions to Exercise(7.2): 

  

(1) 𝜑(𝑥) =
ଵ

୻ቀ
ఱ

ర
ቁ

൥
ଵ

୻ቀ
య

ర
ቁ௫

భ
ర

+
ଶ௫

య
ర

୻ቀ
ళ

ర
ቁ
൩ 

  (2) 𝜑(𝑥) = 3 
  (3) 𝜑(𝑥) = 𝑠𝑖𝑛𝑥 

  (4) 𝜑(𝑥) =
ଵ

గ
ቀ

ଵ

√௫
+ 𝑒௫ ∫ 𝑒ି௧𝑡

షభ

మ 𝑑𝑡
௫

଴
ቁ 
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LESSON- 8 

VOLTERRA INTEGRAL EQUATIONS OF THE 
CONVOLUTION TYPE 

 
OBJECTIVES: 
 
 To learn about Volterra integral equations of the first kind of the   convolution type 
 To know the necessary conditions for the existence of a solution of an integral equation 
 To discuss Volterra integral equations of the first kind with a logarithmic kernel 
 To learn about the non-linear Volterra integral equations with   
 convolution type 

 

STRUCTURE: 
 

8.1. Volterra Integral Equations of the First Kind of the Convolution Type 

8.2. Necessary Condition for the Existence of a Solution of an Integral Equation 

8.3. Volterra Integral Equations of the First Kind with Logarithmic Kernel 

8.4. Non-Linear Volterra Integral Equations with Convolution Type 

8.5  Summary 

8.6  Technical Terms 

8.7  Self-Assessment Questions 

8.8  Suggested Readings 
 

8.1. VOLTERRA INTEGRAL EQUATIONS OF THE FIRST KIND OF THE   

       CONVOLUTION TYPE: 
 

 8.1.1. Definition: An integral equation of the first kind, 

                   ∫ 𝐾(𝑥 − 𝑡)𝜑(𝑡)𝑑𝑡 = 𝑓(𝑥)
௫

଴
                                  (1) 

 whose kernel 𝐾(𝑥, 𝑡) is dependent solely on the difference (𝑥 − 𝑡) of arguments, will be 
called an integral equation of the first kind of the convolution type. This class of equations 
includes, for instance, the generalized Abel's equation. 
Let us consider a problem that leads to a Volterra integral equation of the convolution type. 
 
8.1.2. Problem: A shop buys and sells a variety of commodities. It is assumed that, 
(1) buying and selling are continuous processes, and purchased goods are put on sale at   
       once; 
(2) the shop acquires each new lot of any type of goods in quantities which it can sell in a  
       time interval T, the same for all purchases; 
(3) each new lot of goods is sold uniformly over time T, the total cost of which is unity. 
 
It is required to find the law 𝜑(𝑡) by which it should make purchases so that the cost of goods 
on hand should be constant. 
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Solution: Let the cost of the original goods on hand at time 𝑡 be equal to 𝐾(𝑡) where, 

                  𝐾(𝑡) = ቊ
1 −

௧

்
,          𝑡 ≤ 𝑇

0,                   𝑡 > 𝑇
  

Let us suppose that in the time interval between 𝜏 and 𝜏 + 𝑑𝜏 

goods are bought, amounting to the sum of 𝜑(𝜏)𝑑𝜏. This  reserve  diminishes (due to sales) in 
such a manner that the cost  of the remaining goods at the time 𝑡 > 𝜏 is equal to  
𝐾(𝑡 − 𝜏)𝜑(𝜏)𝑑𝜏.  Therefore, the cost of the unsold part of goods acquired via purchases will, 

at any time 𝑡 be equal to 

                         ∫ 𝐾(𝑡 − 𝜏)𝜑(𝜏)𝑑𝜏
௧

 ଴
 

Thus, 𝜑(𝑡) should satisfy the integral equation 

                                         1 − 𝐾(𝑡) = ∫ 𝐾(𝑡 − 𝜏)𝜑(𝜏)𝑑𝜏
௧

଴
 

We have thus obtained a Volterra integral equation of the first kind of the convolution type. 
  

                        Let 𝑓(𝑥) and 𝐾(𝑥) be original functions and let 

𝑓(𝑥) ≓ 𝐹(𝑝), 𝐾(𝑥) ≓ 𝐾෩(𝑝), 𝜑(𝑥) ≓ Φ(𝑝) 

Taking the Laplace Transform of  both sides of equation (1) and utilizing the convolution 

theorem, we will have 

                                                 𝐾෩ (𝑝) Φ(𝑝) =  𝐹(𝑝)                                            (2) 

                                               Φ(𝑝) =
ி(௣)

௄෩(௣)
൫𝐾෩(𝑝) ≠ 0൯                                      (3) 

The original function 𝜑(𝑥) for the  function Φ(𝑝) defined by  equation (3) will be a solution 
of the integral equation (1). 
 

8.1.3. Example: Solve the integral equation, 

                        ∫ 𝑒௫ି௧𝜑(𝑡)𝑑𝑡 = 𝑥
௫

଴
 

Solution: Consider the given integral equation, 

                         ∫ 𝑒௫ି௧𝜑(𝑡)𝑑𝑡 = 𝑥
௫

଴
 

Compare the given integral equation with the general form, 

                  ∫ 𝐾(𝑥 − 𝑡)𝜑(𝑡)𝑑𝑡 = 𝑓(𝑥)
௫

଴
 

  Here,  𝑓(𝑥) = 𝑥, 𝐾(𝑥 − 𝑡) = 𝑒௫ି௧ 

  So, 𝐾(𝑥) = 𝑒௫ 

Now, take the Laplace transform on both sides of the given equation, we get, 
 

               𝐿൛∫ 𝑒௫ି௧𝜑(𝑡)𝑑𝑡
௫

଴
ൟ = 𝐿{𝑥} 

                       𝐿{𝑒௫ ∗ 𝜑(𝑥)} =  𝐿{𝑥}         (∵Properties -5.2.9) 

                                             𝐿{𝑒௫}𝐿{𝜑(𝑥)} = 𝐿{𝑥} 
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ଵ

 ௣ିଵ
Φ(𝑝) =

ଵ

௣మ               (∵ Properties -5.2.9) 

                                    Φ(𝑝) =
௣ିଵ

௣మ  

                                    Φ(𝑝) =
ଵ

௣
−

ଵ

௣మ 

                               𝐿{𝜑(𝑥)} =
ଵ

௣
−

ଵ

௣మ              

                                   𝜑(𝑥) = 1 − 𝑥       (∵ Properties -5.2.10) 

                         Hence, it is the required solution 
 

8.1.4. Example: Solve the integral equation, 

                 ∫ cos(𝑥 − 𝑡) 𝜑(𝑡)𝑑𝑡 = 𝑠𝑖𝑛𝑥
௫

଴
 

Solution: Consider the given integral equation, 

                  ∫ cos (𝑥 − 𝑡)𝜑(𝑡)𝑑𝑡 = 𝑠𝑖𝑛𝑥
௫

 ଴
 

Compare the given integral equation with the general form, 

                                              ∫ 𝐾(𝑥 − 𝑡)𝜑(𝑡)𝑑𝑡 = 𝑓(𝑥)
௫

଴
 

                      Here,  𝑓(𝑥) = 𝑠𝑖𝑛𝑥, 𝐾(𝑥 − 𝑡) = cos (𝑥 − 𝑡) 

                         So, 𝐾(𝑥) = 𝑐𝑜𝑠𝑥 

 Now, take the Laplace transform on both sides of the given equation, we get, 

                                𝐿൛∫ cos (𝑥 − 𝑡)𝜑(𝑡)𝑑𝑡
௫

଴
ൟ = 𝐿{𝑠𝑖𝑛𝑥} 

                       𝐿{𝑐𝑜𝑠𝑥 ∗ 𝜑(𝑥)} = 𝐿{𝑠𝑖𝑛𝑥}       

                                                                     (∵ Properties -5.2.9)       

                     𝐿{𝑐𝑜𝑠𝑥}𝐿{𝜑(𝑥)} =  𝐿{𝑠𝑖𝑛𝑥} 

                                
௣

ଵା௣మ Φ(𝑝) =
ଵ

ଵା௣మ        (∵ Properties -5.2.9) 

                                        Φ(𝑝) =
ଵ

௣
 

                                   𝐿{𝜑(𝑥)} =
ଵ

௣
 

                                        𝜑(𝑥) = 1           (∵ Properties -5.2.10) 

Hence, it is the required solution. 
 

8.1.5. Example: Solve the integral equation, 

                           ∫ (𝑥 − 𝑡)
భ

మ𝜑(𝑡)𝑑𝑡 = 𝑥
ఱ

మ
௫

଴
 

Solution: Consider the given integral equation, 

                           ∫ (𝑥 − 𝑡)
భ

మ𝜑(𝑡)𝑑𝑡 = 𝑥
ఱ

మ
௫

଴
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Compare the given integral equation with the general form, 

                         ∫ 𝐾(𝑥 − 𝑡)𝜑(𝑡)𝑑𝑡 = 𝑓(𝑥)
௫

଴
 

                       Here,  𝑓(𝑥) = 𝑥
ఱ

మ, 𝐾(𝑥 − 𝑡) = (𝑥 − 𝑡)
భ

మ 

                       So, 𝐾(𝑥) = 𝑥
భ

మ 

Now, take the Laplace transform on both sides of the given equation, we get                   

                                    𝐿 ቄ∫ (𝑥 − 𝑡)
భ

మ𝜑(𝑡)𝑑𝑡
௫

଴
ቅ = 𝐿 ቄ𝑥

ఱ

మቅ 

                                                 𝐿 ቄ𝑥
భ

మ ∗ 𝜑(𝑥)ቅ = 𝐿 ቄ𝑥
ఱ

మቅ 

                                               𝐿 ቄ𝑥
భ

మቅ 𝐿{𝜑(𝑥)} = 𝐿 ቄ𝑥
ఱ

మቅ 

                                               
୻ቀ

భ

మ
ାଵቁ

௣
భ
మ

శభ
𝐿{𝜑(𝑥)} =

୻ቀ
ఱ

మ
ାଵቁ

௣
ఱ
మ

శభ
          (∵ Properties -7.2.2) 

                                                 
భ

మ
୻ቀ

భ

మ
ቁ

௣
య
మ

𝐿{𝜑(𝑥)} =
ఱ

మ
୻ቀ

ఱ

మ
ቁ

௣
ళ
మ

 

                        
 
భ

మ
√గ

௣
య
మ

𝐿{𝜑(𝑥)} =
ఱ

మ
×

య

ర
√గ

௣
ళ
మ

 

                              𝐿{𝜑(𝑥)} =
ఱ

మ
×

య

ర

௣
ళ
మ

 × 2𝑝
య

మ 

                              𝐿{𝜑(𝑥)} =
ଵହ

଼௣
ళ
మ

× 2𝑝
య

మ 

                              𝐿{𝜑(𝑥)} =
ଵହ

ସ
×

௣
య
మ

௣
ళ
మ

 

                              𝐿{𝜑(𝑥)} =
ଵହ

ସ௣మ 

                                   𝜑(𝑥) =
ଵହ

ସ
𝐿ିଵ ቄ

ଵ

௣మቅ 

                                   𝜑(𝑥) =
ଵହ

ସ
𝑥            (∵ Properties -5.2.10) 

 Hence, it is the required solution. 
 

 8.1.6. Example: Solve the integral equation, 

                 ∫ cos(𝑥 − 𝑡) 𝜑(𝑡)𝑑𝑡 = 𝑥 + 𝑥ଶ௫

 ଴
 

 Solution: Consider the given integral equation, 

                ∫ cos(𝑥 − 𝑡) 𝜑(𝑡)𝑑𝑡 = 𝑥 + 𝑥ଶ௫

଴
 

Compare the given integral equation with the general form, 

                                           ∫ 𝐾(𝑥 − 𝑡)𝜑(𝑡)𝑑𝑡 = 𝑓(𝑥)
௫

଴
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 Here,  𝑓(𝑥) = 𝑥 + 𝑥ଶ, 𝐾(𝑥 − 𝑡) = cos(𝑥 − 𝑡) 

 So, 𝐾(𝑥) = 𝑐𝑜𝑠𝑥 

Now, take the Laplace transform on both sides of given equation, we get, 

                           𝐿൛∫ cos(𝑥 − 𝑡) 𝜑(𝑡)𝑑𝑡
௫

଴
ൟ = 𝐿{𝑥 + 𝑥ଶ} 

                                         𝐿{𝑐𝑜𝑠𝑥 ∗ 𝜑(𝑥)} = 𝐿{𝑥 + 𝑥ଶ}        (∵ Properties -5.2.9) 

                                       𝐿{𝑐𝑜𝑠𝑥}𝐿{𝜑(𝑥)} = 𝐿{𝑥} + 𝐿{𝑥ଶ} 

                                                 
௣

ଵା௣మ Φ(𝑝) =
ଵ

௣మ +
ଶ

௣య            (∵ Properties -5.2.9) 

                                                        Φ(𝑝) = ቀ
ଵ

௣మ
+

ଶ

௣య
ቁ

ଵା௣మ

௣
                                                                              

                                                                Φ(𝑝) =
ଵ

௣మ ቀ
ଵା௣మ

௣
ቁ +

ଶ

௣య ቀ
ଵା௣మ

௣
ቁ 

                    Φ(𝑝) =
ଵ

௣మ ቀ
ଵ

௣
+ 𝑝ቁ +

ଶ

௣య ቀ
ଵ

௣
+ 𝑝ቁ 

                    Φ(𝑝) =
ଵ

௣య
+

ଵ

௣
+

ଶ

௣ర
+

ଶ

௣మ
 

               𝐿{𝜑(𝑥)} =
ଵ

௣య +
ଵ

௣
+

ଶ

௣ర +
ଶ

௣మ 

                    𝜑(𝑥) = 𝐿ିଵ ቄ
ଵ

௣య
ቅ + 𝐿ିଵ ቄ

ଵ

௣
ቅ + 𝐿ିଵ ቄ

ଶ

௣ర
ቅ + 𝐿ିଵ ቄ

ଶ

௣మ
ቅ 

                    𝜑(𝑥) =
௫మ

ଶ
+ 1 + 2

௫య

଺
+ 2𝑥     (∵ Properties -5.2.9) 

                    𝜑(𝑥) = 1 + 2𝑥 +
௫మ

ଶ
+

௫య

ଷ
 

Hence, it is the required solution. 
 

8.1.7. Example: Solve the integral equation, 

                    ∫ 𝑒ଶ(௫ି௧)𝜑(𝑡)𝑑𝑡 = 𝑠𝑖𝑛𝑥
௫

଴
 

Solution: Consider the given integral equation, 

                     ∫ 𝑒ଶ(௫ି௧)𝜑(𝑡)𝑑𝑡 = 𝑠𝑖𝑛𝑥
௫

଴
 

Compare the given integral equation with the general form, 

                  ∫ 𝐾(𝑥 − 𝑡)𝜑(𝑡)𝑑𝑡 = 𝑓(𝑥)
௫

଴
 

Here,  𝑓(𝑥) = 𝑠𝑖𝑛𝑥, 𝐾(𝑥 − 𝑡) = 𝑒ଶ(௫ି௧) 

So, 𝐾(𝑥) = 𝑒ଶ௫ 

Now, take the Laplace transform on both sides of the given equation, we get, 

                                 𝐿൛∫ 𝑒ଶ(௫ି௧)𝜑(𝑡)𝑑𝑡
௫

଴
ൟ = 𝐿{𝑠𝑖𝑛𝑥}  

                                           𝐿{𝑒ଶ௫ ∗ 𝜑(𝑥)} = 𝐿{𝑠𝑖𝑛𝑥}              (∵ Properties -5.2.9) 

                                         𝐿{𝑒ଶ௫}𝐿{𝜑(𝑥)} = 𝐿{𝑠𝑖𝑛𝑥} 
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ଵ

௣ିଶ
Φ(𝑝) =

ଵ

ଵା௣మ                    (∵ Properties -5.2.9)                                  

                                                         Φ(𝑝) =
௣ିଶ

ଵା௣మ 

                                                         Φ(𝑝) =
௣

ଵା௣మ −
ଶ

ଵା௣మ 

                                                    𝐿{𝜑(𝑥)} =
௣

ଵା௣మ −
ଶ

ଵା௣మ 

                                                         𝜑(𝑥) = 𝑐𝑜𝑠𝑥 − 2𝑠𝑖𝑛𝑥    (∵ Properties -5.2.10) 

                        Hence, it is the required solution. 
 

8.2. NECESSARY CONDITION FOR THE EXISTENCE OF A SOLUTION OF AN   

       INTEGRAL EQUATION: 
 

A necessary condition for the existence of a continuous solution of an integral equation of the 
form, 

                      ∫
(௫ି௧)೙షభ

(௡ିଵ)!
𝜑(𝑡)𝑑𝑡 = 𝑓(𝑥)

௫

଴
                                 (1) 

consists in the function 𝑓(𝑥) having continuous derivatives up to the nth order inclusive and in 

all its 𝑛 − 1 first derivatives  vanishing for 𝑥 = 0. This model equation (1) points to the     

necessity of matching the orders of vanishing of the kernel for   𝑡 = 𝑥 and of the right side 
𝑓(𝑥) for 𝑥 = 0 (the right side must  exceed the left by at least unity). 
 

To find the solution 𝜑(𝑥) of equation (1), apply the Laplace  transform on both sides of the 

given equation. Then assume  𝜑(𝑥) as 𝛿(𝑥), i.e.,        

                          𝜑(𝑥) = 𝛿(𝑥). 

This is made clear by direct verification if we take into account that the convolution of the 𝛿-
function and any other smooth  function 𝑔(𝑥) is defined as, 
                      𝑔(𝑥) ∗ 𝛿(𝑥) = 𝑔(𝑥) 

                 𝛿(௞)(𝑥) ∗ 𝑔(𝑥) = 𝑔(௞)(𝑥)   (𝑘 = 1, 2, … ) 

Indeed, in our case 𝑔(𝑥) = 𝐾(𝑥) and  

        ∫ 𝐾(𝑥 − 𝑡)
௫

଴
𝛿(𝑡)𝑑𝑡 = 𝐾(𝑥). 

 

8.2.1. Example: Solve the integral equation, 

                      ∫ (𝑥 − 𝑡)𝜑(𝑡)𝑑𝑡 = 𝑥ଶ + 𝑥 − 1
௫

଴
 

Solution: Consider the given integral equation, 

                      ∫ (𝑥 − 𝑡)𝜑(𝑡)𝑑𝑡 = 𝑥ଶ + 𝑥 − 1
௫

଴
 

Now, take the Laplace Transform on both sides of the given  equation, 

                 𝐿൛∫ (𝑥 − 𝑡)𝜑(𝑡)𝑑𝑡
௫

଴
ൟ = 𝐿{𝑥ଶ + 𝑥 − 1} 
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                               𝐿{𝑥 ∗ 𝜑(𝑥)} = 𝐿{𝑥ଶ} + 𝐿{𝑥} − 𝐿{1}  

                                                                      (∵ Properties -5.2.9) 

                             𝐿{𝑥}𝐿{𝜑(𝑥)} = 𝐿{𝑥ଶ} + 𝐿{𝑥} − 𝐿{1} 

                                     
ଵ

௣మ Φ(𝑝) =
ଶ

௣య +
ଵ

௣మ −
ଵ

௣
 

                                         Φ(𝑝) = ቀ
ଶ

௣య
+

ଵ

௣మ
−

ଵ

௣
ቁ 𝑝ଶ 

                                                                 Φ(𝑝) =
ଶ

௣
+ 1 − 𝑝 

                        𝐿{𝜑(𝑥)} =
ଶ

௣
+ 1 − 𝑝 

                             𝜑(𝑥) = 𝐿ିଵ ቄ
ଶ

௣
+ 1 − 𝑝ቅ 

                             𝜑(𝑥) = 𝐿ିଵ ቄ
ଶ

௣
ቅ + 𝐿ିଵ{1} − 𝐿ିଵ{𝑝} 

                            𝜑(𝑥) = 2𝐿ିଵ ቄ
ଵ

௣
ቅ + 𝐿ିଵ{1} − 𝐿ିଵ{𝑝} 

                            𝜑(𝑥) = 2(1) + 𝛿(𝑥) − 𝛿ᇱ(𝑥) 

                   ቀ∵  𝐿ିଵ ቄ
ଵ

௣
ቅ = 1, 𝐿ିଵ{1} = 𝛿(𝑥), 𝐿ିଵ{𝑝} = 𝛿ᇱ(𝑥)ቁ 

                            𝜑(𝑥) = 2 + 𝛿(𝑥) − 𝛿ᇱ(𝑥) 

                           Hence, it is the required solution. 
 

8.2.2. Example: Solve the integral equation, 

                     ∫ (𝑥 − 𝑡)𝜑(𝑡)𝑑𝑡 = 𝑠𝑖𝑛𝑥
௫

଴
 

Solution: Consider the given integral equation, 

                     ∫ (𝑥 − 𝑡)𝜑(𝑡)𝑑𝑡 = 𝑠𝑖𝑛𝑥
௫

଴
 

Now, take the Laplace Transform on both sides of the given equation, 

               𝐿൛∫ (𝑥 − 𝑡)𝜑(𝑡)𝑑𝑡
௫

଴
ൟ = 𝐿{𝑠𝑖𝑛𝑥} 

                            𝐿{𝑥 ∗ 𝜑(𝑥)} = 𝐿{𝑠𝑖𝑛𝑥}               

                                                                     (∵ Properties -5.2.9) 

                          𝐿{𝑥}𝐿{𝜑(𝑥)} = 𝐿{𝑠𝑖𝑛𝑥} 

                                   
ଵ

௣మ Φ(𝑝) =
ଵ

ଵା௣మ         (∵ Properties -5.2.9) 

                                       Φ(𝑝) =
௣మ

ଵା௣మ 

                                       Φ(𝑝) =
௣మାଵିଵ

ଵା௣మ
 

                                                               Φ(𝑝) = 1 −
ଵ

ଵା௣మ 
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                                                           𝐿{𝜑(𝑥)} = 1 −
ଵ

ଵା௣మ  

                                                              𝜑(𝑥) = 𝐿ିଵ ቄ1 −
ଵ

ଵା௣మቅ 

                                                               𝜑(𝑥) = 𝐿ିଵ{1} − 𝐿ିଵ ቄ
ଵ

ଵା௣మ
ቅ 

                                                               𝜑(𝑥) = 𝛿(𝑥) − 𝑠𝑖𝑛𝑥    

                                                                   [∵ 𝐿ିଵ{1} = 𝛿(𝑥), Properties-5.2.10] 

                        Hence, it is the required solution. 
 

8.2.3. Example: Solve the integral equation, 

                        ∫ (𝑥 − 𝑡)ଶ𝜑(𝑡)𝑑𝑡 = 𝑥ଶ + 𝑥ଷ௫

଴
 

Solution: Consider given integral equation, 

                        ∫ (𝑥 − 𝑡)ଶ𝜑(𝑡)𝑑𝑡 = 𝑥ଶ + 𝑥ଷ௫

଴
 

Now, take the Laplace Transform on both sides of given equation,  

                𝐿{𝑥ଶ ∗ 𝜑(𝑥)} = 𝐿{𝑥ଶ + 𝑥ଷ}        (∵ Properties -5.2.9) 

              𝐿{𝑥ଶ}𝐿{𝜑(𝑥)} = 𝐿{𝑥ଶ} + 𝐿{𝑥ଷ} 

                        
ଶ

௣య Φ(𝑝) =
ଶ

௣య +
଺

௣ర                (∵ Properties -5.2.9) 

                            Φ(𝑝) =
൬

మ

೛యା
ల

೛ర൰

మ

೛య

 

                            Φ(𝑝) = 1 +
ଷ

௣
 

                       𝐿{𝜑(𝑥)} = 1 +
ଷ

௣
 

                            𝜑(𝑥) = 𝐿ିଵ ቄ1 +
ଷ

௣
ቅ 

                            𝜑(𝑥) = 𝐿ିଵ{1} + 𝐿ିଵ ቄ
ଷ

௣
ቅ 

                            𝜑(𝑥) = 𝐿ିଵ{1} + 3𝐿ିଵ ቄ
ଵ

௣
ቅ 

                            𝜑(𝑥) = 𝛿(𝑥) + 3 

                                      ቀ∵  𝐿ିଵ{1} = 𝛿(𝑥), 𝐿ିଵ ቄ
ଵ

௣
ቅ = 1  ቁ Hence, it is the required solution. 

 

8.2.4. Example: Solve the integral equation, 

                   ∫ sin(𝑥 − 𝑡) 𝜑(𝑡)𝑑𝑡 = 𝑥 + 1
௫

଴
 

Solution: Consider the given integral equation, 

                   ∫ sin (𝑥 − 𝑡)𝜑(𝑡)𝑑𝑡 =
௫

଴
𝑥 + 1 
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Now, take the Laplace Transform on both sides of the given   equation, 

  𝐿൛∫ sin (𝑥 − 𝑡)𝜑(𝑡)𝑑𝑡
௫

଴
ൟ = 𝐿{𝑥 + 1} 

                 𝐿{𝑠𝑖𝑛𝑥 ∗ 𝜑(𝑥)} = 𝐿{𝑥 + 1}        (∵ Properties -5.2.9) 

𝐿{𝑠𝑖𝑛𝑥}𝐿{𝜑(𝑥)} = 𝐿{𝑥} + 𝐿{1} 

                       
ଵ

 ଵା௣మ Φ(𝑝) =
ଵ

௣మ +
ଵ

௣
             (∵ Properties -5.2.9)                                      

                               Φ(𝑝) = ቀ
ଵ

௣మ +
ଵ

௣
ቁ (1 + 𝑝ଶ) 

                               Φ(𝑝) =
ଵା௣మ

௣మ +
ଵା௣మ

௣
 

                               Φ(𝑝) =
ଵ

௣మ + 1 +
ଵ

௣
+ 𝑝 

                          𝐿{𝜑(𝑥)} =
ଵ

௣మ + 1 +
ଵ

௣
+ 𝑝 

                           𝜑(𝑥) = 𝐿ିଵ ቄ
ଵ

௣మቅ + 𝐿ିଵ{1} + 𝐿ିଵ ቄ
ଵ

௣
ቅ + 𝐿ିଵ{𝑝} 

𝜑(𝑥) = 𝑥 + 𝛿(𝑥) + 1 + 𝛿ᇱ(𝑥) 

           [∵ Properties -5.2.10, 𝐿ିଵ{1} = 𝛿(𝑥), 𝐿ିଵ{𝑝} =  𝛿ᇱ(𝑥)]                      

𝜑(𝑥) = 1 + 𝑥 + 𝛿(𝑥) + 𝛿ᇱ(𝑥) 

                        Hence, it is the required solution. 
 

8.3. VOLTERRA INTEGRAL EQUATIONS OF THE FIRST KIND WITH  

       LOGARITHMIC KERNEL: 
 

 Integral equations of the first kind with logarithmic kernel, 

            ∫ 𝜑(𝑡) ln(𝑥 − 𝑡) 𝑑𝑡 = 𝑓(𝑥),     𝑓(0) = 0
௫

଴
                (1) 

can also be solved by means of the Laplace transformation. 
 

We know that 

                     𝑥௩ ≓
୻(௩ାଵ)

௣ೡశభ
            (𝑅𝑒 𝑣 > −1)                     (2) 

                        Differentiate relation (2) with respect to 𝑣: 

                                       𝑥௩𝑙𝑛𝑥 ≓
ଵ

௣ೡశభ

ௗ୻(௩ାଵ)

ௗ௩
+

ଵ

௣ೡశభ 𝑙𝑛
ଵ

௣
Γ(𝑣 + 1) 

                                      𝑥௩𝑙𝑛𝑥 ≓
୻(௩ାଵ)

௣ೡశభ
ቈ

೏౳(ೡశభ)

೏ೡ

୻(௩ାଵ)
+ 𝑙𝑛

ଵ

௣
቉         (3) 

                          For 𝑣 = 0, we have, 

                                                 
୻ᇲ(ଵ)

୻(ଵ)
= −𝛾 

                        where 𝛾 is Euler’s constant, and formula (3) takes the form   
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                                𝑙𝑛𝑥 ≓
ଵ

௣
(−𝛾 − 𝑙𝑛𝑝) = −

௟௡௣ାఊ

௣
               (4) 

Let 𝜑(𝑥) ≓ Φ(𝑝), 𝑓(𝑥) ≓ F(𝑝). Taking the Laplace transform of both sides of (1)  and 

utilizing formula (4), we get 

                   −Φ(𝑝)
௟௡௣ା

௣
= F(𝑝) 

                               Φ(𝑝) = −
௣୊(௣)

௟௡௣ା
                                        (5) 

Let us write Φ(𝑝) in the form 

                 Φ(𝑝) = −
௣మி(௣)ି௙ᇲ(଴)

௣(௟௡௣ାఊ)
−

௙ᇲ(଴)

௣(௟௡௣ାఊ)
                           (6) 

 

Since 𝑓(0) = 0, it follows that 

                    𝑝ଶ𝐹(𝑝) − 𝑓ᇱ(0) ≓ 𝑓ᇱᇱ(𝑥)                                    (7) 

  
Let us return to formula (2) and write it in the form 

                              
௫ೡ

୻(௩ାଵ)
≓

ଵ

௣ೡశభ                                              (8) 

Integrate both sides of (8) with respect to 𝑣 from 0 to ∞. This yields 

                   ∫
௫ೡ

୻(௩ାଵ)
𝑑𝑣

ஶ

଴
≓ ∫

ௗ௩

௣ೡశభ =
ଵ

௣௟௡௣

ஶ

଴
 

 By the similarity theorem 

                    ∫
௫ೡ௔షೡ

୻(௩ାଵ)
𝑑𝑣

ஶ

଴
≓

ଵ

௣௟௡(௔௣)
=

ଵ

௣(௟௡௣ା௟௡௔)
 

 

If we put 𝑎 = 𝑒ఊ, then 

                   ∫
௫ೡ௘షംೡ

୻(௩ାଵ)
𝑑𝑣

ஶ

଴
≓

ଵ

௣(௟௡௣ାఊ)
                                       (9) 

Take advantage of equality (6). By virtue of (9) 

                                                   
௙ᇲ(଴)

௣(௟௡௣ାఊ)
≓ 𝑓ᇱ(0) ∫

௫ೡ௘షംೡ

୻(௩ାଵ)
𝑑𝑣

ஶ

଴
 

Taking into account (7) and (9), the first term on the right of (6) may be regarded as a product 
of transforms. To find its original function, take advantage of the convolution theorem 

                    
௣మி(௣)ି௙ᇲ(଴)

௣(௟௡௣ାఊ)
≓ ∫ 𝑓ᇱᇱ(𝑡) ቀ∫

(௫ି௧)ೡ௘షംೡ

୻(௩ାଵ)
𝑑𝑣

ஶ

଴
ቁ 𝑑𝑡

௫

଴
 

 

Thus, the solution 𝜑(𝑥) of the integral equation (1) will have  the form  

      𝜑(𝑥)  = − ∫ 𝑓ᇱᇱ(𝑡)
௫

଴
ቀ∫

(௫ି௧)ೡ௘షംೡ

୻(௩ାଵ)
𝑑𝑣

ஶ

଴
ቁ 𝑑𝑡 − 𝑓ᇱ(0) ∫

௫ೡ௘షംೡ

୻(௩ାଵ)
𝑑𝑣

ஶ

଴
 

where, 𝛾 is Euler’s constant. 

                        In particular, for 𝑓(𝑥) = 𝑥 we get 

                                               𝜑(𝑥) = − ∫
௫ೡ௘షംೡ

୻(௩ାଵ)
𝑑𝑣

ஶ

଴
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 8.4. NON-LINEAR VOLTERRA INTEGRAL EQUATIONS WITH CONVOLUTION   

        TYPE: 
 

The convolution theorem can also be used for solving non-linear Volterra integral equations 
of the type 
               𝜑(𝑥) = 𝑓(𝑥) + 𝜆 ∫ 𝜑(𝑡)𝜑(𝑥 − 𝑡)𝑑𝑡

௫

଴
                      (1)                   

 

Let, 𝜑(𝑥) ≓ Φ(𝑝), 𝑓(𝑥) ≓ 𝐹(𝑝) 

Then, by virtue of equation (1) 

        Φ(𝑝) = 𝐹(𝑝) + 𝜆Φଶ(𝑝) 

                              𝜆Φଶ(𝑝) − Φ(𝑝) + 𝐹(𝑝) = 0 

Compare the quadratic equation with the general form, 

                       𝑎𝑥ଶ + 𝑏𝑥 + 𝑐 = 0. Then,   

                           𝑥 =
ି௕±√௕మିସ௔௖

ଶ௔
 

So,    Φ(𝑝) =
ଵ±ඥଵିସఒி(௣)

ଶఒ
 

The original function of Φ(𝑝), if it exists, will be a solution of the integral equation (1). 
 

8.4.1. Example: Solve the integral equation,  

               ∫ 𝜑(𝑡)𝜑(𝑥 − 𝑡)𝑑𝑡 =
௫య

଺

௫

଴
 

 Solution: Consider the given integral equation, 

               ∫ 𝜑(𝑡)𝜑(𝑥 − 𝑡)𝑑𝑡 =
௫య

଺

௫

଴
 

Compare the given equation with the general form, 

          𝜑(𝑥) = 𝑓(𝑥) + 𝜆 ∫ 𝜑(𝑡)𝜑(𝑥 − 𝑡)𝑑𝑡
௫

଴
,    

𝜑(𝑥) ≓ Φ(𝑝), 𝑓(𝑥) ≓ 𝐹(𝑝) 
 

 Now, applying the Laplace transform on both sides of the given  equation, we get, 

                 𝐿൛∫ 𝜑(𝑡)𝜑(𝑥 − 𝑡)𝑑𝑡
௫

଴
ൟ = 𝐿 ቄ

௫య

଺
ቅ 

                           𝐿{𝜑(𝑥) ∗ 𝜑(𝑥)} = 𝐿 ቄ
௫య

଺
ቅ 

                                     𝐿{𝜑ଶ(𝑥)} = 𝐿 ቄ
௫య

଺
ቅ 

                                          Φଶ(𝑝) =
ଵ

௣ర
        (∵ Properties -5.2.9) 

                                            Φ(𝑝) = ට
ଵ

௣ర 
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                                                                    Φ(𝑝) = ±
ଵ

௣మ 

                                                               𝐿{𝜑(𝑥)} = ±
ଵ

௣మ 

                                                                    𝜑(𝑥) = ±𝐿ିଵ ቄ
ଵ

௣మቅ 

                                                                    𝜑(𝑥) = ±𝑥          (∵ Properties -5.2.10) 

Hence, the functions 𝜑ଵ(𝑥) = 𝑥 and 𝜑ଶ(𝑥) = −𝑥, will be solutions of the given equation. 
 

8.4.2. Example: Solve the integral equation,  

                   2𝜑(𝑥) − ∫ 𝜑(𝑡)𝜑(𝑥 − 𝑡)𝑑𝑡 = 𝑠𝑖𝑛𝑥
௫

଴
 

 

Solution: Consider the given integral equation,  

                   2𝜑(𝑥) − ∫ 𝜑(𝑡)𝜑(𝑥 − 𝑡)𝑑𝑡 = 𝑠𝑖𝑛𝑥
௫

଴
 

Compare the given equation with the general form, 

            𝜑(𝑥) = 𝑓(𝑥) + 𝜆 ∫ 𝜑(𝑡)𝜑(𝑥 − 𝑡)𝑑𝑡
௫

଴
,           

𝜑(𝑥) ≓ Φ(𝑝), 𝑓(𝑥) ≓ 𝐹(𝑝) 

Now, applying the Laplace transform on both sides of the given equation,  we get, 

           2𝐿{𝜑(𝑥)} − 𝐿൛∫ 𝜑(𝑡)𝜑(𝑥 − 𝑡)𝑑𝑡
௫

଴
ൟ = 𝐿{𝑠𝑖𝑛𝑥} 

                      2𝐿{𝜑(𝑥)} − 𝐿{𝜑(𝑥) ∗ 𝜑(𝑥)} = 𝐿{𝑠𝑖𝑛𝑥}     

                                                                     (∵ Properties -5.2.9) 

                                     2Φ(𝑝) − 𝐿{𝜑ଶ(𝑥)} =
ଵ

ଵା௣మ 

                                         2Φ(𝑝) − Φଶ(𝑝) =
ଵ

ଵା௣మ
 

                              Φଶ(𝑝) − 2Φ(𝑝) +
ଵ

ଵା௣మ = 0 

 Compare with quadratic equation with the general form, 

              𝑎𝑥ଶ + 𝑏𝑥 + 𝑐 = 0. 

 Then,  

                𝑥 =
ି௕±√௕మିସ௔௖

ଶ௔
 

So,   Φ(𝑝) =
ଶ±ටସିସ×ଵ×

భ

భశ೛మ

ଶ×ଵ
 

          Φ(𝑝) =
ଶ±ටସି

ర

భశ೛మ

ଶ
 

                                  Φ(𝑝) =
ଶ±ଶටଵି

భ

భశ೛మ

ଶ
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                                  Φ(𝑝) = 1 ± ට1 −
ଵ

ଵା௣మ 

                                  Φ(𝑝) = 1 ± ට
௣మ

ଵା௣మ 

                                  Φ(𝑝) = 1 ±
௣

ඥଵା௣మ
 

                        Since 𝜑(𝑥) is bounded, we take the negative sign.  

Thus, 

          Φ(𝑝) = 1 −
௣

ඥଵା௣మ
 

          Φ(𝑝) =
ඥଵା௣మି௣

ඥଵା௣మ
 

Now, multiply and divide by ඥ1 + 𝑝ଶ + 𝑝, we get, 

                                  Φ(𝑝) =
ඥଵା௣మି௣

ඥଵା௣మ
×

ඥଵା௣మା௣

ඥଵା௣మା௣
 

                                  Φ(𝑝) =
ଵା௣మି௣మ

ቀඥଵା௣మቁቀඥଵା௣మା௣ቁ
 

                                            Φ(𝑝) =
ଵ

ቀඥଵା௣మቁቀඥଵା௣మା௣ቁ
 

                                            Φ(𝑝) =
ඥଵା௣మି௣

ଵା௣మ
 

                                            Φ(𝑝) =
ඥଵା௣మ

ଵା௣మ −
௣

ଵା௣మ 

                                            Φ(𝑝) =
ଵ

ඥଵା௣మ
−

௣

ଵା௣మ 

                                       𝐿{𝜑(𝑥)} =
ଵ

ඥଵା௣మ
−

௣

ଵା௣మ 

                                            𝜑(𝑥) = 𝐿ିଵ ൜
ଵ

ඥଵା௣మ
−

௣

ଵା௣మൠ 

                                            𝜑(𝑥) = 𝐿ିଵ ൜
ଵ

ඥଵା௣మ
ൠ − 𝐿ିଵ ቄ

௣

ଵା௣మቅ 

                                            𝜑(𝑥) = 𝐽଴(𝑥) − 𝑐𝑜𝑠𝑥 

                                            𝜑(𝑥) = 𝐽ଵ(𝑥) 

                       Hence, it is the required solution. 

8.4.3. Example: Solve the integral equation,  

              𝜑(𝑥) =
ଵ

ଶ
∫ 𝜑(𝑡)𝜑(𝑥 − 𝑡)𝑑𝑡 −

ଵ

ଶ
𝑠𝑖𝑛ℎ𝑥

௫

଴
 

Solution: Consider the given integral equation,  

               𝜑(𝑥) =
ଵ

ଶ
∫ 𝜑(𝑡)𝜑(𝑥 − 𝑡)𝑑𝑡 −

ଵ

ଶ
𝑠𝑖𝑛ℎ𝑥

௫

଴
 

Compare the given equation with the general form, 
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           𝜑(𝑥) = 𝑓(𝑥) + 𝜆 ∫ 𝜑(𝑡)𝜑(𝑥 − 𝑡)𝑑𝑡
௫

଴
,            

𝜑(𝑥) ≓ Φ(𝑝), 𝑓(𝑥) ≓ 𝐹(𝑝) 

Now, applying the Laplace transform on both sides of the given equation, we get, 

          𝐿{𝜑(𝑥)} =
ଵ

ଶ
𝐿൛∫ 𝜑(𝑡)𝜑(𝑥 − 𝑡)𝑑𝑡

௫

଴
ൟ −

ଵ

ଶ
𝐿{𝑠𝑖𝑛ℎ𝑥} 

          𝐿{𝜑(𝑥)} =
ଵ

ଶ
𝐿{𝜑(𝑥) ∗ 𝜑(𝑥)} −

ଵ

ଶ

ଵ

௣మିଵ
    

                                                                     (∵ Properties -5.2.9) 

                                  𝐿{𝜑(𝑥)} =
ଵ

ଶ
𝐿{𝜑ଶ(𝑥)} −

ଵ

ଶ

ଵ

௣మିଵ
 

               Φ(𝑝) =
ଵ

ଶ
Φଶ(𝑝) −

ଵ

ଶ

ଵ

௣మିଵ
 

             2Φ(𝑝) = Φଶ(𝑝) −
ଵ

௣మିଵ
 

                                      Φଶ(𝑝) − 2Φ(𝑝) −
ଵ

௣మିଵ
 

Compare with the quadratic equation with the general form, 

𝑎𝑥ଶ + 𝑏𝑥 + 𝑐 = 0. Then,  

                             𝑥 =
ି௕±√௕మିସ௔௖

ଶ௔
 

                         So,  Φ(𝑝) =
ଶ±ටସିସ×ଵ×

షభ

೛మషభ

ଶ×ଵ
 

                        Φ(𝑝) =
ଶ±ටସା

ర

೛మషభ

ଶ
 

                        Φ(𝑝) =
ଶ±ଶටଵା

భ

೛మషభ

ଶ
 

                        Φ(𝑝) = 1 ± ට1 +
ଵ

௣మିଵ
 

                        Φ(𝑝) = 1 ± ට
௣మିଵାଵ

௣మିଵ
 

                        Φ(𝑝) = 1 ± ට
௣మ

௣మିଵ
 

                        Φ(𝑝) = 1 ±
௣

ඥ௣మିଵ
 

Since, 𝜑(𝑥) is bounded, we take the negative sign.  

Thus, 

                         Φ(𝑝) = 1 −
𝑝

ඥ𝑝2−1
 

                    𝐿{𝜑(𝑥)} = 1 −
௣

ඥ௣మିଵ
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                         𝜑(𝑥) = 𝐿ିଵ ൜1 −
௣

ඥ௣మିଵ
ൠ 

                         𝜑(𝑥) = 𝐿ିଵ{1} − 𝐿ିଵ ൜
௣

ඥ௣మିଵ
ൠ 

                         𝜑(𝑥) = 𝛿(𝑥) −
ௗ

ௗ௫
𝐿ିଵ ൜

ଵ

ඥ௣మିଵ
ൠ 

                         𝜑(𝑥) = 𝛿(𝑥) −
ௗ

ௗ௫
൫𝐼଴(𝑥)൯ 

                         𝜑(𝑥) = 𝛿(𝑥) − 𝐼ଵ(𝑥) 

Hence, it is the required solution. 
 

8.5  SUMMARY:  
 

In this section, we explore the Volterra integral equations of the first kind of the convolution 
type. In connection with this, we have thoroughly discussed the necessary conditions for the 
existence of a solution to an integral equation. Apart from this, we have discussed the 
Volterra integral equations of the first kind with a logarithmic kernel and non-linear Volterra 
integral equations with convolution type. A few examples in each category have been 
provided to enhance the reader's understanding. 
 

8.6  TECHNICAL TERMS: 
 

Volterra Integral Equations of the First Kind of the Convolution Type: 

An integral equation of the first kind, 

                      ∫ 𝐾(𝑥 − 𝑡)𝜑(𝑡)𝑑𝑡 = 𝑓(𝑥)
௫

଴
                               (1) 

 whose kernel 𝐾(𝑥, 𝑡) is dependent solely on the difference (𝑥 − 𝑡) of arguments will be 
called an integral equation of the first kind of the convolution type.  
 
Necessary condition for the existence of a solution of an integral equation: A necessary 
condition for the existence of a continuous solution of an integral equation of the form, 
 

                                          ∫
(௫ି௧)೙షభ

(௡ିଵ)!
𝜑(𝑡)𝑑𝑡 = 𝑓(𝑥)

௫

଴
           

Non-linear Volterra Integral Equations with Convolution Type: The non-linear Volterra 

integral equation with convolution type is of the form,    

              𝜑(𝑥) = 𝑓(𝑥) + 𝜆 ∫ 𝜑(𝑡)𝜑(𝑥 − 𝑡)𝑑𝑡
௫

଴
                     (1)                   

 

                    
8.7  SELF-ASSESSMENT QUESTIONS: 
 

Exercise (8.1): Solve the integral equations: 

    (1)∫ 𝑒௫ି௧𝜑(𝑡)𝑑𝑡 = 𝑠𝑖𝑛ℎ𝑥
௫

଴
 

    (2)∫ 𝑒௫ି௧𝜑(𝑡)𝑑𝑡 = 𝑥ଶ௫

଴
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    (3) ∫ cos (𝑥 − 𝑡)𝜑(𝑡)𝑑𝑡 = 𝑥𝑠𝑖𝑛𝑥
௫

଴
 

    (4) ∫ sinh(𝑥 − 𝑡)𝜑(𝑡)𝑑𝑡 = 𝑥ଷ𝑒ି௫௫

଴
 

    (5) ∫ J୭(𝑥 − 𝑡)𝜑(𝑡)𝑑𝑡 = 𝑠𝑖𝑛𝑥
௫

଴
 

    (6) ∫ cosh(𝑥 − 𝑡)𝜑(𝑡)𝑑𝑡 = 𝑥
௫

଴
 

    (7) ∫ (𝑥ଶ − 𝑡ଶ)𝜑(𝑡)𝑑𝑡 =
௫య

ଷ

௫

଴
 

    (8) ∫ (𝑥ଶ − 4𝑥𝑡 + 3𝑡ଶ)𝜑(𝑡)𝑑𝑡 =
௫ర

ଵଶ

௫

଴
 

    (9) 
ଵ

ଶ
∫ (𝑥ଶ − 4𝑥𝑡 + 3𝑡ଶ)𝜑(𝑡)𝑑𝑡 = 𝑥ଶ𝐽ସ(2√𝑥)

௫

଴
 

    (10) ∫ (𝑥 − 2𝑡)𝜑(𝑡)𝑑𝑡 =
ି௫య

଺

௫

଴
 

    (11) ∫ sin(𝑥 − t)𝜑(𝑡)𝑑𝑡 = 1 − 𝑐𝑜𝑠𝑥
௫

଴
 

 

Solutions to Exercise(8.1): 

    (1) 𝜑(𝑥) = 𝑒ି௫ 

    (2) 𝜑(𝑥) = 2𝑥 − 𝑥ଶ 

    (3) 𝜑(𝑥) = 2sin𝑥 

    (4) 𝜑(𝑥) = 3! (𝑥𝑒ି௫ − 𝑥ଶ𝑒ି௫) 

    (5) 𝜑(𝑥) =  J୭(𝑥) 

    (6) 𝜑(𝑥) = 1 −
௫మ

ଶ
 

    (7) 𝜑(𝑥) =
ଵ

ଶ
 

    (8) 𝜑(𝑥) = C − 𝑥 

    (9) 𝜑(𝑥) = 𝐶 + 𝐽଴(2√𝑥) 

                            (10) 𝜑(𝑥) = C + 𝑥 

                            (11) 𝜑(𝑥) = 1 
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LESSON-  9 

FREDHOLM EQUATIONS OF THE SECOND KIND 
 
OBJECTIVE: 
 
 To understand the fundamental concepts of Fredholm integral equations and their 

classifications. 
 To explore important theorems, such as Fredholm’s theorem and its implications. 
 To learn various solution methods, including the use of resolvent kernels and numerical 

techniques. 
 

 STRUCTURE: 
 
9.1  Introduction 

9.2  Fundamentals 

9.3  The Method of Fredholm Determinants Resolvent Kernels 

9.4  Summary 

9.5  Technical Terms 

9.6  Self-Assessment Questions 

9.7  Suggested Readings 
 

9.1  INTRODUCTION: 

 

Fredholm integral equations, introduced in 1903 by Swedish mathematician Erik Ivar 
Fredholm, are fundamental in mathematical physics, engineering, and applied sciences. These 
equations, which express unknown functions through integrals involving a kernel function, 
laid the groundwork for modern functional analysis and operator theory. They are categorized 
into two types: the first kind, where the unknown appears only under the integral, and the 
second kind, where it appears both inside and outside the integral. Widely applied in quantum 
mechanics, signal processing, and boundary value problems, Fredholm equations have driven 
advances in both analytical and numerical methods for solving complex equations, making 
them essential in fields like heat conduction, fluid dynamics, and computational mechanics 
 
The study of Fredholm integral equations has led to significant developments in numerical 
and analytical methods for solving complex integral and differential equations. Today, these 
equations are indispensable tools in various scientific and engineering applications, including 
heat conduction, potential theory, and fluid dynamics, computational mechanics. 
 

9.2  FUNDAMENTALS: 
 
Now we recollect some important definitions and examples which are essential in the study of 
this Lesson.  
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9.2.1 Definition: A 𝐹𝑟𝑒𝑑ℎ𝑜𝑙𝑚 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 is an integral equation in which the 
unknown function 𝜑(𝑥) appears inside an integral over a finite domain [𝑎, 𝑏]. It is 
classified into two types: 

 
Fredholm integral equation of the first kind: 
 

න 𝐾(𝑥, 𝑡)𝜑(𝑡)𝑑𝑡 = 𝑓(𝑥)

௕

௔

 
 

(9.1) 

 

Fredholm integral equation of the second kind:                            

𝜑(𝑥) − 𝜆 න 𝐾(𝑥, 𝑡)𝜑(𝑡)𝑑𝑡 = 𝑓(𝑥),

௕

௔

 
 

(9.2) 

    

where 𝜑(𝑥) is an unknown function, 𝐾(𝑥, 𝑡) and 𝑓(𝑥) are known functions, 𝑥 and 𝑡 are real 

variables varying in the interval (𝑎, 𝑏), and 𝜆 is a numerical factor. The function 𝐾(𝑥, 𝑡) is 

called the kernel of the integral equations (9.1) and (9.2). 

If 𝑓(𝑥) ≢ 0, equation (9.2) is 𝑛𝑜𝑛ℎ𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑜𝑢𝑠. However, if 𝑓(𝑥) ≡ 0, then (9.2) takes the 

form 

𝜑(𝑥) − 𝜆 න 𝐾(𝑥, 𝑡)𝜑(𝑡)𝑑𝑡 = 0

௕

௔

, 
 

(9.3) 

which is called ℎ𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑜𝑢𝑠 Fredholm integral equation of the second kind. The limits of 

integration, 𝑎 and 𝑏 in equations (9.1), (9.2) and (9.3) can be either finite or infinite.  

 

9.2.2  Show that the function 𝜑(𝑥) = 𝑠𝑖𝑛
గ௫

ଶ
 is a solution of the Fredholm-type integral 

equation   

𝜑(𝑥) −
𝜋ଶ

4
න 𝐾(𝑥, 𝑡)𝜑(𝑡)𝑑𝑡 =

𝑥

2

ଵ

଴

 

where the kernel is of the form  

𝐾(𝑥, 𝑡) = ൞

𝑥(2 − 𝑡)

2
,   0 ≤ 𝑥 ≤ 𝑡,

𝑡(2 − 𝑥)

2
,   𝑡 ≤ 𝑥 ≤ 1.

  

Solution. Write the left-hand side of the equation as  
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𝐿. 𝐻. 𝑆. = 𝜑(𝑥)

−
𝜋ଶ

4
න 𝐾(𝑥, 𝑡) 𝜑(𝑡) 𝑑𝑡 = 𝜑(𝑥) −

𝜋ଶ

4
ቊන 𝐾(𝑥, 𝑡) 𝜑(𝑡) 𝑑𝑡 + න 𝐾(𝑥, 𝑡) 𝜑(𝑡) 𝑑𝑡

ଵ

௫

௫

଴

ቋ

ଵ

଴

= 𝜑(𝑥) −
𝜋ଶ

4
ቊන

𝑡(2 − 𝑥)

2
 𝜑(𝑡) 𝑑𝑡 + න

𝑥(2 − 𝑡)

2
 𝜑(𝑡) 𝑑𝑡

ଵ

௫

௫

଴

ቋ

= 𝜑(𝑥) −
𝜋ଶ

4
ቊ

2 − 𝑥

2
න 𝑡 𝜑(𝑡) 𝑑𝑡 +

𝑥

2
න (2 − 𝑡) 𝜑(𝑡) 𝑑𝑡

ଵ

௫

௫

଴

ቋ 

 

Substituting the function 𝑠𝑖𝑛
గ௫

ଶ
 in place of 𝜑(𝑥) in to this expression, we get 

𝑠𝑖𝑛
𝜋𝑥

2
−

𝜋ଶ

4
ቐ(2 − 𝑥) න 𝑡 

𝑠𝑖𝑛
𝜋𝑡
2

2
 𝑑𝑡 + 𝑥 න (2 − 𝑡) 

𝑠𝑖𝑛
𝜋𝑡
2

2
𝑑𝑡

ଵ

௫

௫

଴

ቑ = 

 

= 𝑠𝑖𝑛
𝜋𝑥

2
−

𝜋ଶ

4
ቊ (2 − 𝑥) ൬−

𝑡

𝜋
𝑐𝑜𝑠

𝜋𝑡

2
+

2

𝜋ଶ
𝑠𝑖𝑛

𝜋𝑡

2
൰ฬ

௧ୀ଴

௧ୀ௫

+  𝑥 ൤−
2 − 𝑡

𝜋
𝑐𝑜𝑠

𝜋𝑡

2
−

2

𝜋ଶ
𝑠𝑖𝑛

𝜋𝑡

2
൨ฬ

௧ୀ௫

௧ୀଵ

ቋ 

=
𝑥

2
= 𝑅. 𝐻. 𝑆. 

Thus, 𝜑(𝑥) = 𝑠𝑖𝑛
గ௫

ଶ
 is a solution of the given integral equation.  

 

9.2.3  Example:  Show that the function 𝜑(𝑥) = 1 is a solution of the Fredholm-type 

integral equation   

𝜑(𝑥) + න 𝑥(𝑒௫௧ − 1)𝜑(𝑡)𝑑𝑡 = 𝑒௫ − 𝑥

ଵ

଴

 

Solution. Write the left-hand side of the equation as  

𝐿. 𝐻. 𝑆. = 𝜑(𝑥) + න 𝑥(𝑒௫௧ − 1)𝜑(𝑡)𝑑𝑡 = 1 + න 𝑥(𝑒௫௧ − 1)(1)𝑑𝑡
ଵ

଴

ଵ

଴

= 1 + 𝑥 න (𝑒௫௧ − 1)𝑑𝑡
ଵ

଴

= 1 + 𝑥 ቆන (𝑒௫௧ − 1)𝑑𝑡
ଵ

଴

ቇ = 1 + 𝑥 ൬
𝑒௫ − 1 − 𝑥

𝑥
൰ = 𝑒௫ − 𝑥 = 𝑅. 𝐻. 𝑆. 

Therefore 𝜑(𝑥) = 1 is a solution of the given integral equation.  
 

9.3  THE METHOD OF FREDHOLM DETERMINANTS AND RESOLVENT   

 KERNELS: 
 

Here we can observe the definitions of Fredholm resolvent kernel, Fredholm minor, 
Fredholm determinant and finding the solution of the Fredholm equation of second kind as 
follows: 



Centre for Distance Education   9.4       Acharya Nagarjuna University  

9.3.1  Definition: The solution of the Fredholm equation of the second kind  

𝜑(𝑥) − 𝜆 න 𝐾(𝑥, 𝑡)𝜑(𝑡)𝑑𝑡 = 𝑓(𝑥)

௕

௔

, 
 

(9.4) 

is given by the formula  

𝜑(𝑥) = 𝑓(𝑥) + 𝜆 න 𝑅(𝑥, 𝑡;  𝜆)𝑓(𝑡)𝑑𝑡

௕

௔

, 
 

(9.5) 

where the function 𝑅(𝑥, 𝑡; 𝜆) is called the 𝐹𝑟𝑒𝑑ℎ𝑜𝑙𝑚 𝑟𝑒𝑠𝑜𝑙𝑣𝑒𝑛𝑡 𝑘𝑒𝑟𝑛𝑒𝑙 of equation (9.4) and 

is defined by the equation  

𝑅(𝑥, 𝑡; 𝜆) =
𝐷(𝑥, 𝑡; 𝜆)

𝐷(𝜆)
, 

(9.6) 

provided that 𝐷(𝜆) ≠ 0.  

Note: In the equation (9.6), 𝐷(𝑥, 𝑡; 𝜆) and 𝐷(𝜆) are expressed as power series in 𝜆 as given 

below. 

𝐷(𝑥, 𝑡; 𝜆) = 𝐾(𝑥, 𝑡) + ෎
(−1)௡

𝑛!
𝐵௡(𝑥, 𝑡)𝜆௡

ஶ

௡ୀଵ

, 

 

(9.7) 

  

𝐷(𝜆) = 1 + ෍
(−1)௡

𝑛!
𝐶௡(𝑥, 𝑡)𝜆௡

ஶ

௡ୀଵ

, 
 

(9.8) 

 

whose coefficients are given by the formulas  

𝐵௡(𝑥, 𝑡) = න ⋯ න
ተ

ተ

𝐾(𝑥, 𝑡) 𝐾(𝑥, 𝑡ଵ)

𝐾(𝑡ଵ, 𝑡) 𝐾(𝑡ଵ, 𝑡ଵ)
⋯ 𝐾(𝑥, 𝑡௡)

⋯ 𝐾(𝑡ଵ, 𝑡௡)

𝐾(𝑡ଶ, 𝑡) 𝐾(𝑡ଶ, 𝑡ଵ)
⋯
⋯

𝐾(𝑡௡, 𝑡)

⋯
⋯

𝐾(𝑡௡, 𝑡ଵ)

⋯ 𝐾(𝑡ଶ, 𝑡௡)
⋯
⋯
⋯

⋯
⋯

𝐾(𝑡௡, 𝑡௡)

ተ

ተ
 𝑑𝑡ଵ ⋯ 𝑑𝑡௡

௕

௔

௕

௔

 

 

and  

𝐵଴(𝑥, 𝑡) = 𝐾(𝑥, 𝑡) 

𝐶௡ = න ⋯ න
ተ

ተ

𝐾(𝑡ଵ, 𝑡ଵ) 𝐾(𝑡ଵ, 𝑡ଶ)

𝐾(𝑡ଶ, 𝑡ଵ) 𝐾(𝑡ଶ, 𝑡ଶ)
⋯ 𝐾(𝑡ଵ, 𝑡௡)

⋯ 𝐾(𝑡ଶ, 𝑡௡)

𝐾(𝑡ଷ, 𝑡ଵ) 𝐾(𝑡ଷ, 𝑡ଶ)
⋯
⋯

𝐾(𝑡௡, 𝑡ଵ)

⋯
⋯

𝐾(𝑡௡, 𝑡ଶ)

⋯ 𝐾(𝑡ଷ, 𝑡௡)
⋯
⋯
⋯

⋯
⋯

𝐾(𝑡௡, 𝑡௡)

ተ

ተ
 𝑑𝑡ଵ ⋯ 𝑑𝑡௡

௕

௔

௕

௔
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9.3.2  Definition: The function 𝐷(𝑥, 𝑡; 𝜆) as defined in the equation (9.7) is called  

𝐹𝑟𝑒𝑑ℎ𝑜𝑙𝑚 𝑚𝑖𝑛𝑜𝑟, and 𝐷(𝜆) is called 𝐹𝑟𝑒𝑑ℎ𝑜𝑙𝑚 𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑛𝑡.  

Note: 

 If the kernel 𝐾(𝑥, 𝑡) is bounded or the integral 

න න 𝐾ଶ(𝑥, 𝑡) 𝑑𝑥 𝑑𝑡
௕

௔

௕

௔

 
 

 

has a finite value, then the functions 𝐷(𝜆) and 𝐷(𝑥, 𝑡: 𝜆) are converge for all 

values of 𝜆 and, hence, these functions are entire analytic functions of 𝜆.  

 The resolvent kernel 

𝑅(𝑥, 𝑡; 𝜆) =
𝐷(𝑥, 𝑡;  𝜆)

𝐷(𝜆)
 

 

is analytic function of 𝜆, except for those values of 𝜆 where 𝐷(𝜆) = 0; These 

values are called poles of 𝑅(𝑥, 𝑡;  𝜆). 
 

9.3.3  Example: Using Fredholm determinants, find the resolvent kernel of the kernel 

𝐾(𝑥, 𝑡) = 𝑥𝑒௧; 𝑎 = 0, 𝑏 = 1. 

Solution. We have 𝐵଴(𝑥, 𝑡) = 𝑥𝑒௧ Further,  

𝐵ଵ(𝑥, 𝑡) = න ฬ
𝑥𝑒௧ 𝑥𝑒௧భ

𝑡ଵ𝑒௧ 𝑡ଵ𝑒௧భ
ฬ

ଵ

଴

𝑑𝑡ଵ = 0, 
 

 

 𝐵ଶ(𝑥, 𝑡) = න න ቮ
𝑥𝑒௧ 𝑥𝑒௧భ 𝑥𝑒௧మ

𝑡ଵ𝑒௧ 𝑡ଵ𝑒௧భ 𝑡ଵ𝑒௧మ

𝑡ଶ𝑒௧ 𝑡ଶ𝑒௧భ 𝑡ଶ𝑒௧మ

ቮ
ଵ

଴

ଵ

଴

𝑑𝑡ଵ𝑑𝑡ଶ = 0 
 

since the determinants under the integral sign are zero. It is obvious that all 

subsequent 𝐵௡(𝑥, 𝑡) = 0. Now we find the coefficients 𝐶௡: 

𝐶ଵ = න 𝐾(𝑡ଵ, 𝑡ଵ)𝑑𝑡ଵ = න 𝑡ଵ𝑒௧భ𝑑𝑡ଵ = 1,
ଵ

଴

ଵ

଴

 

𝐶ଶ = න න ฬ
𝑡ଵ𝑒௧భ 𝑡ଵ𝑒௧మ

𝑡ଶ𝑒௧భ 𝑡ଶ𝑒௧మ
ฬ 𝑑𝑡ଵ𝑑𝑡ଶ = 0

ଵ

଴

ଵ

଴

 

 

 

Obviously, all subsequent 𝐶௡ are also equal to zero. 

In our case, by the formulas of 𝐷(𝑥, 𝑡; 𝜆) and 𝐷(𝜆), we have 

𝐷(𝑥, 𝑡; 𝜆) = 𝐾(𝑥, 𝑡) = 𝑥𝑒௧;     𝐷(𝜆) = 1 − 𝜆 
 

Thus,  

𝑅(𝑥, 𝑡, 𝜆) =
𝐷(𝑥, 𝑡, 𝜆)

𝐷(𝜆)
=

𝑥𝑒௧

1 − 𝜆
 

 

Let us apply the result obtained to solving the integral equation  
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𝜑(𝑥) − 𝜆 න 𝑥𝑒௧𝜑(𝑡)𝑑𝑡 = 𝑓(𝑥)  (𝜆 ≠ 1)
ଵ

଴

 
 

 

By using the formula (9.5) we get, 

𝜑(𝑥) = 𝑓(𝑥) + 𝜆 න
𝑥𝑒௧

1 − 𝜆
𝑓(𝑡)𝑑𝑡

ଵ

଴

 

 

 

 

 

 

In particular, for 𝑓(𝑥) = 𝑒ି௫ we get  

𝜑(𝑥) = 𝑒ି௫ +
𝜆

1 − 𝜆
𝑥. 

 

 

9.3.4 Example: Using Fredholm determinants, find the resolvent kernel of the kernel 

𝐾(𝑥, 𝑡) = 2𝑥 − 𝑡; 0 ≤ 𝑥 ≤ 1, 0 ≤ 𝑡 ≤ 1. 

Solution. We have 𝐵଴(𝑥, 𝑡) = 2𝑥 − 𝑡. 

 Further,  

𝐵ଵ(𝑥, 𝑡) = න ฬ
2𝑥 − 𝑡 2𝑥 − 𝑡ଵ

2𝑡ଵ − 𝑡 𝑡ଵ
ฬ

ଵ

଴

𝑑𝑡ଵ = −𝑥 + 2𝑥𝑡 +
2

3
− 𝑡, 

 

 

 𝐵ଶ(𝑥, 𝑡) = න න อ
2𝑥 − 𝑡 2𝑥 − 𝑡ଵ 2𝑥 − 𝑡ଶ

2𝑡ଵ − 𝑡 𝑡ଵ 2𝑡ଵ − 𝑡ଶ

2𝑡ଶ − 𝑡 2𝑡ଶ − 𝑡ଵ 𝑡ଶ

อ
ଵ

଴

ଵ

଴

𝑑𝑡ଵ𝑑𝑡ଶ = 0 
 

In a similar way, all subsequent 𝐵௡(𝑥, 𝑡) = 0. Now we find the coefficients 𝐶௡: 

𝐶ଵ = න 𝐾(𝑡ଵ, 𝑡ଵ)𝑑𝑡ଵ = න 2𝑡ଵ − 𝑡ଵ𝑑𝑡ଵ =
1

2
,

ଵ

଴

ଵ

଴

 

𝐶ଶ = න න ฬ
𝑡ଵ 2𝑡ଵ − 𝑡ଶ

2𝑡ଶ − 𝑡ଵ 𝑡ଶ
ฬ 𝑑𝑡ଵ𝑑𝑡ଶ =

1

3

ଵ

଴

ଵ

଴

 

𝐶ଷ = න න න อ

𝑡ଵ 2𝑡ଵ − 𝑡ଶ 2𝑡ଵ − 𝑡ଷ

2𝑡ଶ − 𝑡ଵ 𝑡ଶ 2𝑡ଶ − 𝑡ଷ

2𝑡ଷ − 𝑡ଵ 2𝑡ଷ − 𝑡ଶ 𝑡ଷ

อ
ଵ

଴

𝑑𝑡ଵ𝑑𝑡ଶ𝑑𝑡ଷ = 0
ଵ

଴

ଵ

଴

 

 

 

Obviously, all subsequent 𝐶௡ are also equal to zero. 

In our case, by the formulas of 𝐷(𝑥, 𝑡; 𝜆) and 𝐷(𝜆), we have 

𝐷(𝑥, 𝑡; 𝜆) = (2𝑥 − 𝑡) + 𝜆(𝑥 − 2𝑥𝑡 −
2

3
+ 𝑡);     

𝐷(𝜆) = 1 −
𝜆

2
+

𝜆ଶ

6
. 

 

 

Thus,  

𝑅(𝑥, 𝑡, 𝜆) =
𝐷(𝑥, 𝑡, 𝜆)

𝐷(𝜆)
=

2𝑥 − 𝑡 + 𝜆(𝑥 − 2𝑥𝑡 −
2
3

+ 𝑡)

1 −
𝜆
2

+
𝜆ଶ

6

. 
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9.3.5 Note: In very rare cases is it possible to compute the coefficients 𝐵௡(𝑥, 𝑡) and 𝐶௡ of 

the series 𝐷(𝑥, 𝑡; 𝜆) and 𝐷(𝜆), However, these formulas it is possible to obtain the 

following recursion relations:  

𝐵௡(𝑥, 𝑡) = 𝐶௡𝐾(𝑥, 𝑡) − 𝑛 න 𝐾(𝑥, 𝑠)𝐵௡ିଵ(𝑠, 𝑡)𝑑𝑠,
௕

௔

 
 

(9.9) 

𝐶௡ = න 𝐵௡ିଵ(𝑠, 𝑠)𝑑𝑠
௕

௔

 
 

(9.10)

Where, the coefficient 𝐶଴ = 1 and 𝐵଴(𝑥, 𝑡) = 𝐾(𝑥, 𝑡), we can use formulas (9.9) and (9.10) 

to successively compute the next terms 𝐶ଵ, 𝐵ଵ(𝑥, 𝑡), 𝐶ଶ, 𝐵ଶ(𝑥, 𝑡), 𝐶ଷ and so on. 

 

9.3.6  Example: Using formulas (9.9) and (9.10), find the resolvent kernel of the kernel 

𝐾(𝑥, 𝑡) = 𝑥 − 2𝑡, where 0 ≤ 𝑥 ≤ 1, 0 ≤ 𝑡 ≤ 1. 

𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛. We have 𝐶଴ = 1 and 𝐵଴(𝑥, 𝑡) = 𝑥 − 2𝑡. Using formula (9.10), we find  

𝐶ଵ = න (−𝑠)𝑑𝑠 = −
1

2

ଵ

଴

 

By formula (9.9) we get 

𝐵ଵ(𝑥, 𝑡) = −
𝑥 − 2𝑡

2
− න (𝑥 − 2𝑠)

ଵ

଴

(𝑠 − 2𝑡)𝑑𝑠 = −𝑥 − 𝑡 + 2𝑥𝑡 +
2

3
 

We further obtain 

𝐶ଶ = න ൬−2𝑠 + 2𝑠ଶ +
2

3
൰

ଵ

଴

𝑑𝑠 =
1

3
 

 

𝐵ଶ(𝑥, 𝑡) =
𝑥 − 2𝑡

3
− 2 න (𝑥 − 2𝑠)

ଵ

଴

൬−𝑠 − 𝑡 + 2𝑠𝑡 +
2

3
൰ 𝑑𝑠 = 0 

𝐶ଷ = 𝐶ସ = ⋯ = 0, 𝐵ଷ(𝑥, 𝑡) = 𝐵ସ(𝑥, 𝑡) = ⋯ = 0 

Hence,  

𝐷(𝜆) = 1 +
𝜆

2
+

𝜆ଶ

6
;   𝐷(𝑥, 𝑡; 𝜆) = 𝑥 − 2𝑡 + ൬𝑥 + 𝑡 − 2𝑥𝑡 −

2

3
൰ 𝜆 

The resolvent kernel of the given kernel is  

𝑅(𝑥, 𝑡; 𝜆) =
𝐷(𝑥, 𝑡, 𝜆)

𝐷(𝜆)
=

𝑥 − 2𝑡 + ቀ𝑥 + 𝑡 − 2𝑥𝑡 −
2
3

ቁ 𝜆

1 +
𝜆
2

+
𝜆ଶ

6

. 

9.3.7 Example: Using the recursion relations (9.9) and (9.10), find the resolvent kernels of 

the kernel 𝐾(𝑥, 𝑡) = 𝑥 + 𝑡 + 1;     −1 ≤ 𝑥 ≤ 1,   − 1 ≤ 𝑡 ≤ 1. 

𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛. We have 𝐶଴ = 1 and 𝐵଴(𝑥, 𝑡) = 𝑥 + 𝑡 + 1. Using formula (9.10), we find  
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𝐶ଵ = න (2𝑠 + 1)𝑑𝑠 = 2.
ଵ

ିଵ

 

By formula (9.9) we get 

𝐵ଵ(𝑥, 𝑡) = 2(𝑥 + 𝑡 + 1) − න (𝑥 + 𝑠 + 1)
ଵ

ିଵ

(𝑠 + 𝑡 + 1)𝑑𝑠 = −2𝑥𝑡 −
2

3
 

 

We further obtain 

𝐶ଶ = න ൬−2𝑠ଶ −
2

3
൰

ଵ

ିଵ

𝑑𝑠 = −
8

3
 

𝐵ଶ(𝑥, 𝑡) = −
8

3
(𝑥 + 𝑡 + 1) − න (𝑥 + 𝑠 + 1)

ଵ

ିଵ

൬−2𝑠𝑡 −
2

3
൰ 𝑑𝑠 = 0 

𝐶ଷ = 𝐶ସ = ⋯ = 0, 𝐵ଷ(𝑥, 𝑡) = 𝐵ସ(𝑥, 𝑡) = ⋯ = 0 

Hence,  

𝐷(𝜆) = 1 − 2𝜆 −
4𝜆ଶ

3
  

 𝐷(𝑥, 𝑡; 𝜆) = 𝑥 + 𝑡 + 1 + 2 ൬𝑥𝑡 +
1

3
൰ 𝜆 

The resolvent kernel of the given kernel is  

𝑅(𝑥, 𝑡; 𝜆) =
𝐷(𝑥, 𝑡, 𝜆)

𝐷(𝜆)
=

𝑥 + 𝑡 + 1 + 2 ቀ𝑥𝑡 +
1
3

ቁ 𝜆

1 − 2𝜆 −
4𝜆ଶ

3

. 

 

9.4  SUMMARY:  
 

This unit provides the fundamental idea of the Fredholm integral equations of first and second 
kind. The method of Fredholm determinants is used to find the resolvent kernels that helps us in 
obtaining the solutions of various integral equations. 
 
9.5  TECHNICAL TERMS: 

 
 Fredholm Integral Equation of the Second Kind:  An equation of the form   

න 𝐾(𝑥, 𝑡)𝜑(𝑡)𝑑𝑡 = 𝑓(𝑥),

௕

௔

 
 

 

Where the unknown function appears both inside and outside the integral. 

 Kernel: The kernel 𝐾(𝑥, 𝑡) is a given function in a Fredholm integral equation and is 

referred to as the kernel of the equation. 

 Homogeneous Integral Equation: A Fredholm equation where 𝑓(𝑥) = 0, resulting  
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න 𝐾(𝑥, 𝑡)𝜑(𝑡)𝑑𝑡 = 0,

௕

௔

 

     is called homogeneous integral equation. 

 Non-Homogeneous Integral Equation: A Fredholm equation where 𝑓(𝑥) ≠ 0, so 

the right-hand side remains a known non-zero function. 

 Fredholm Determinant: A special function 𝐷(𝜆), constructed using the kernel, used 

to determine whether the equation has a unique solution. 

 Fredholm Minor: The function 𝐷(𝑥, 𝑡: 𝜆) that appears in the definition of the 

resolvent kernel 

 Resolvent Kernel: The function 𝑅(𝑥, 𝑡; 𝜆) =
 ஽(௫,௧:ఒ)

஽(ఒ)
, which helps solve the integral 

equation explicitly. 

 

9.6  SELF-ASSESSMENT QUESTIONS: 
 

Exercise (9a): check whether the given functions are the solutions of the indicated integral 

equations:  

1. 𝜑(𝑥) = 𝑒௫ ቀ2𝑥 −
ଶ

ଷ
ቁ,   

  𝜑(𝑥) + 2 න 𝑒௫ି௧  𝜑(𝑡) 𝑑𝑡 = 2𝑥𝑒௫ .

ଵ

଴

 

2. 𝜑(𝑥) = 1 −
ଶ ୱ୧୬ ௫

ଵି
ഏ

మ

,   

  𝜑(𝑥) − න cos(𝑥 + 𝑡) 𝜑(𝑡) 𝑑𝑡 = 1.

గ

଴

 

3. 𝜑(𝑥) = √𝑥,   

 𝜑(𝑥) − න 𝐾(𝑥, 𝑡)𝜑(𝑡)𝑑𝑡 = √𝑥 +
𝑥

15
൫4𝑥ଷ ଶ⁄ − 7൯.

ଵ

଴

 

𝐾(𝑥, 𝑡) = ൞

𝑥(2 − 𝑡)

2
, 0 ≤ 𝑥 ≤ 𝑡,

𝑡(2 − 𝑥)

2
, 𝑡 ≤ 𝑥 ≤ 1.
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4. 𝜑(𝑥) = 𝑒௫ , 

𝜑(𝑥) + 𝜆 න sin 𝑥𝑡 𝜑(𝑡)𝑑𝑡 = 1.

ଵ

଴

 

5. 𝜑(𝑥) = cos 𝑥,    

𝜑(𝑥) − න(𝑥ଶ + 𝑡) cos 𝑡 𝜑(𝑡)𝑑𝑡 = sin 𝑥 .

గ

଴

 

6. 𝜑(𝑥) = 𝑥𝑒ି௫, 

𝜑(𝑥) − 4 න 𝑒ି(௫ା௧)𝜑(𝑡)𝑑𝑡 = (𝑥 − 1)𝑒ି௫.

ஶ

଴

 

7. 𝜑(𝑥) = cos 2𝑥, 

 𝜑(𝑥) − 3 න 𝐾(𝑥, 𝑡)𝜑(𝑡)𝑑𝑡 = cos 𝑥 .

గ

଴

 

𝐾(𝑥, 𝑡) = ቄ
sin 𝑥 cos 𝑡, 0 ≤ 𝑥 ≤ 𝑡,
sin 𝑡 cos 𝑥 , 𝑡 ≤ 𝑥 ≤ 𝜋.

  

8. 𝜑(𝑥) =
ସ஼

గ
sin 𝑥, where 𝑐 is an arbitrary constant, 

𝜑(𝑥) −
4

𝜋
න sin 𝑥

sinଶ 𝑡

𝑡
𝜑(𝑡)𝑑𝑡 = 0.

ஶ

଴

 

 

Exercise (9b):  

Using the Fredholm determinants, find the resolvent kernels of the following kernels: 

1. 𝐾(𝑥, 𝑡) = 𝑥ଶ𝑡 − 𝑥𝑡ଶ;              0 ≤ 𝑥, 𝑡 ≤ 1.   

2. 𝐾(𝑥, 𝑡) = 𝑠𝑖𝑛 𝑥 𝑐𝑜𝑠 𝑡;             0 ≤ 𝑥, 𝑡 ≤ 2𝜋.   

3. 𝐾(𝑥, 𝑡) = 𝑠𝑖𝑛 𝑥 − 𝑠𝑖𝑛 𝑡;         0 ≤ 𝑥, 𝑡 ≤ 2𝜋. 

Using the recursion relations (9.9) and (9.10), find the resolvent kernels of the following 

kernels: 

4. 𝐾(𝑥, 𝑡) = 1 + 3𝑥𝑡;           0 ≤ 𝑥, 𝑡 ≤ 1.  

5. 𝐾(𝑥, 𝑡) = 4𝑥𝑡 − 𝑥ଶ;         0 ≤ 𝑥, 𝑡 ≤ 1. 

6. 𝐾(𝑥, 𝑡) = 𝑒௫ି௧;                0 ≤ 𝑥, 𝑡 ≤ 1. 

7. 𝐾(𝑥, 𝑡) = sin(𝑥 + 𝑡)     0 ≤ 𝑥, 𝑡 ≤ 2𝜋. 

8. 𝐾(𝑥, 𝑡) = 𝑥 − 𝑠𝑖𝑛 ℎ 𝑡 ; −1 ≤ 𝑥, 𝑡 ≤ 1. 
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Exercise (9c):  

Using the resolvent kernel, solve the following integral equations: 

1.   

𝜑(𝑥) − 𝜆 න 𝑠𝑖𝑛 (𝑥 + 𝑡)𝜑(𝑡)𝑑𝑡
ଶగ

଴

= 1 

2.   

𝜑(𝑥) − 𝜆 න (2𝑥 − 𝑡)𝜑(𝑡)𝑑𝑡
ଵ

଴

=
𝑥

6
 

3.  

𝜑(𝑥) − න 𝑠𝑖𝑛 𝑥 𝑐𝑜𝑠 𝑡 𝜑(𝑡)𝑑𝑡
ଶగ

଴

= 𝑐𝑜𝑠 2𝑥 

4.  

𝜑(𝑥) + න 𝑒௫ି௧𝜑(𝑡)𝑑𝑡
ଵ

଴

= 𝑒௫ . 

5.  

𝜑(𝑥) − 𝜆 න (4𝑥𝑡 − 𝑥ଶ) 𝜑(𝑡)𝑑𝑡
ଵ

଴

= 𝑥. 

 

 

 

 

 

 

9.7  SELF-ASSESSMENT ANSWERS: 

Exercise (9b) 

1. 𝑅(𝑥, 𝑡; 𝜆) =
௫మ௧ି௫௧మା௫ ቀ

ೣశ೟

ర
ି

ೣ೟

య
ି

భ

ఱ
ቁఒ

ଵା
ഊమ

మరబ

. 

2. 𝑅(𝑥, 𝑡; 𝜆) = 𝑠𝑖𝑛𝑥 𝑐𝑜𝑠𝑡. 

3. 𝑅(𝑥, 𝑡; 𝜆) =
ୱ୧୬ ௫ିୱ୧୬ ௧ି (ଵାଶ ୱ୧୬ ௫ ୱ୧୬ )ఒ.

ଵାଶగమఒమ
 

4.  𝑅(𝑥, 𝑡; 𝜆) =
ଵାଷ௫௧ାቀଷ

ೣశ೟

మ
ିଷ௫௧ିଵቁఒ

ଵିଶఒା
భ

ర
ఒమ

. 

5. 𝑅(𝑥, 𝑡; 𝜆)  =  
ସ௫௧ି௫మିቀଶ௫మ௧ି

ర

య
௫మା௫ି

ర

య
௫௧ቁఒ

ଵିఒା
ഊమ

భఴ

. 

6. 𝑅(𝑥, 𝑡; 𝜆) =
௘ೣష೟

ଵିఒ
. 

7. 𝑅(𝑥, 𝑡; 𝜆) =
ୱ୧୬(௫ା௧)ାగఒ ୡ୭ୱ (௫ି௧)

ଵିగమఒమ . 

8. 𝑅(𝑥, 𝑡; 𝜆) =
௫ିୱ୧୬୦ ௧ିଶ൫௘షభା௫ ୱ୧୬୦ ௧൯ఒ

ଵାସ௘షభఒమ . 
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Exercise (9c) 

1. 𝜙(𝑥) = 1. 

2. 𝜙(𝑥) =
ଵ

଺
ቂ𝑥 +

(଺௫ିଶ)ఒିఒమ௫

ఒమିଷఒା଺
ቃ. 

3. 𝜙(𝑥) = cos 2𝑥. 

4. 𝜙(𝑥) =
ଵ

ଶ
𝑒௫ . 

5. 𝜙(𝑥) =
ଷ௫(ଶఒିଷఒ௫ା଺)

ఒమିଵ଼ఒାଵ଼
. 

9.8  SUGGESTED READINGS: 
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LESSON- 10 

ITERATED KERNELS 
 
OBJECTIVE: 
 
 To understand the concept and significance of iterated kernels in the context of Fredholm 

integral equations. 
 To learn the method of constructing iterated kernels and their use in building the 

resolvent kernel 
 To explore the convergence criteria for Neumann series and conditions under which a 

solution exists. 
 To study examples that illustrate the construction and application of iterated kernels. 

 
STRUCTURE: 
 
10.1 Introduction 

10.2 Definition and Formation of Iterated Kernels 

10.3 Construction of the Resolvent Kernel using Iterated Kernels and Convergence of   
   Neumann Series 

10.4 Construction of the Resolvent Kernel to the Orthogonal kernels 

10.5  Summary  

10.6  Technical Terms 

10.7  Self-Assessment Questions 

10.8  Suggested Readings  

 

10.1 INTRODUCTION: 
 

In integral equations, iterated kernels play a key role in the construction of the resolvent 
kernel, which is used to obtain solutions to Fredholm integral equations of the second kind. 
By defining successive approximations of the solution, we form a series where each term 
involves an iterated kernel derived from the original kernel. These concepts provide powerful 
analytical tools for examining the behavior and solvability of integral equations under various 
conditions. 

 
10.2   DEFINITION AND FORMATION OF ITERATED KERNELS: 

 
  We define degenerate kernels and formulate the integral equation using degenerate   
  kernels.  
 

10.2.1  Formation of Iterated Kernels: Consider the Fredholm integral equation of second 
kind  

𝜑(𝑥) − 𝜆 න 𝐾(𝑥, 𝑡)𝜑(𝑡)𝑑𝑡 = 𝑓(𝑥)

௕

௔

. 
 

  (10.1) 
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As in the case of the Volterra equations, the integral equation (10.1) may be solved by the 
method of successive approximations. In order to solve the equation, we represent 𝜑(𝑥) as 
follows: 

𝜑(𝑥) = 𝑓(𝑥) + ෍ 𝜓௡(𝑥)𝜆௡

ஶ

௡ୀଵ

, 
 

(10.2) 
 

 

 

 

Where the function 𝜓௡(𝑥) are determined from the formulas  

𝜓ଵ(𝑥) = න 𝐾(𝑥, 𝑡)𝑓(𝑡)𝑑𝑡,

௕

௔

 

𝜓ଶ(𝑥) = න 𝐾(𝑥, 𝑡) 𝜓ଵ(𝑡)𝑑𝑡 = න 𝐾ଶ(𝑥, 𝑡)𝑓(𝑡)𝑑𝑡,

௕

௔

௕

௔

 

𝜓ଷ(𝑥) = න 𝐾(𝑥, 𝑡) 𝜓ଶ(𝑡)𝑑𝑡 = න 𝐾ଷ(𝑥, 𝑡)𝑓(𝑡)𝑑𝑡,

௕

௔

௕

௔

 

and so on. Here  

𝐾ଶ(𝑥, 𝑡) = න 𝐾(𝑥, 𝑧)𝐾ଵ(𝑧, 𝑡)𝑑𝑧,

௕

௔

 

𝐾ଷ(𝑥, 𝑡) = න 𝐾(𝑥, 𝑧)𝐾ଶ(𝑧, 𝑡)𝑑𝑧,

௕

௔

 

and generally, 

𝐾௡(𝑥, 𝑡) = න 𝐾(𝑥, 𝑧)𝐾௡ିଵ(𝑧, 𝑡)𝑑𝑧

௕

௔

, 
 

(10.3)

𝑛 =  2, 3, . . ., and 𝐾ଵ(𝑥, 𝑡) ≡ 𝐾(𝑥, 𝑡).  

 

10.2.2 Definition: The functions 𝐾௡(𝑥, 𝑡) determined from 

𝐾௡(𝑥, 𝑡) = ∫ 𝐾(𝑥, 𝑧)𝐾௡ିଵ(𝑧, 𝑡)𝑑𝑧
௕

௔
 are called iterated Kernels and the following 

relation holds for these functions 

𝐾௡(𝑥, 𝑡) = න 𝐾௠(𝑥, 𝑠)𝐾௡ି௠(𝑠, 𝑡)𝑑𝑠

௕

௔

, 
 

(10.4)

where m is any natural number less than n.  
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10.3 CONSTRUCTION OF THE RESOLVENT KERNEL USING ITERATED     

     KERNELS AND CONVERGENCE OF NEUMANN SERIES 
 

We shall construct the resolvent kernel of the integral equation (10.1) is determined in terms 
of iterated kernels by using the formula  

𝑅(𝑥, 𝑡;  𝜆) = ෍ 𝐾௡(𝑥, 𝑡)𝜆௡ିଵ

ஶ

௡ୀଵ

. 

 

 

(10.5)

10.3.1 Definition: The series on the right side of the resolvent kernel 𝑅(𝑥, 𝑡;  𝜆) =

∑ 𝐾௡(𝑥, 𝑡)(𝑥)𝜆௡ିଵஶ
௡ୀଵ  is the Neumann series of the kernel 𝐾(𝑥, 𝑡). It converges for 

|𝜆| <
1

𝐵
, 

 

(10.6)

where 𝐵 = ට∫ ∫ 𝐾ଶ(𝑥, 𝑡)𝑑𝑥𝑑𝑡
௕

௔

௕

௔
. 

 

 

10.3.2 Note: 

1. The solution of the Fredholm equation of the second kind (10.1) is expressed by the 

formula  

𝜑(𝑥) = 𝑓(𝑥) + 𝜆 න 𝑅(𝑥, 𝑡;  𝜆)𝑓(𝑡)𝑑𝑡

௕

௔

. 
 

(10.7)

The boundary (10.6) is essential for convergence of the series (10.5). However, a 

solution of equation (10.1) can exist for values of |𝜆| >
ଵ

஻
  as well. Consider an example 

as  

𝜑(𝑥) − 𝜆 න 𝜑(𝑡)𝑑𝑡 = 1

ଵ

଴

 
 

(10.8

            Here  𝐾(𝑥, 𝑡) ≡ 1, and hence  

𝐵ଶ = න න 𝐾ଶ(𝑥, 𝑡)𝑑𝑥 𝑑𝑡 = න න 𝑑𝑥 𝑑𝑡 = 1

ଵ

଴

ଵ

଴

ଵ

଴

ଵ

଴

 

Thus, the condition (10.6) gives that the series (10.5) converges for|𝜆| < 1. Solving 

(10.8) as an equation with a degenerate kernel, we get (1 − 𝜆)𝐶 = 1,  

where 𝐶 = ∫ 𝜑(𝑡)𝑑𝑡.
ଵ

଴
 For 𝜆 = 1 the integral equation (10.8) does not have any solution. 

However, equation (10.8) is solvable for |𝜆| > 1. Indeed, if 𝜆 ≠ 1, then the function 

𝜑(𝑥) =
ଵ

ଵିఒ
 is a solution of the given equation. 
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2. From the above discussion we can observe that in a circle of radius greater than unity, 

successive approximation cannot converge for (10.8) 

3. For some Fredholm equations the Neumann series (10.5) converges for the resolvent 

kernel for any values of 𝜆 
 

10.3.3 Definition: Let 𝐾(𝑥, 𝑡) and 𝐿(𝑥, 𝑡) are two kernels are said to be orthogonal, if the 

following two conditions are satisfied for any admissible values of 𝑥 and 𝑡: 

න 𝐾(𝑥, 𝑧)𝐿(𝑧, 𝑡)𝑑𝑧

௕

௔

= 0,   න 𝐿(𝑥, 𝑧)𝐾(𝑧, 𝑡)𝑑𝑧

௕

௔

= 0. 
 

(10.9)

Example: The kernels 𝐾(𝑥, 𝑡) = 𝑥𝑡 and 𝐿(𝑥, 𝑡) = 𝑥ଶ𝑡ଶ are orthogonal on [−1, 1].  

Certainly, 

න(𝑥𝑧)(𝑧ଶ𝑡ଶ)𝑑𝑧

ଵ

ିଵ

= 𝑥𝑡ଶ න 𝑧ଷ𝑑𝑧

ଵ

ିଵ

= 0, 

න(𝑥ଶ𝑧ଶ)(𝑧𝑡)𝑑𝑧

ଵ

ିଵ

= 𝑥ଶ𝑡 න 𝑧ଷ𝑑𝑧

ଵ

ିଵ

= 0. 

 

 

 

10.3.4 Note: There exist kernels which are orthogonal to themselves. For such kernels, 

𝐾ଶ(𝑥, 𝑡) ≡ 0, where 𝐾ଶ(𝑥, 𝑡) is the second iterated kernel. It is obvious that in this case 

all subsequent iterated kernels are also equal to zero and the resolvent kernel coincides 

with the kernel 𝐾(𝑥, 𝑡). We can observe from following example 
 

10.3.5 Example: 𝐾(𝑥, 𝑡) = sin(𝑥 − 2𝑡) ;  is orthogonal itself where 0 ≤ 𝑥, 𝑡 ≤ 2𝜋. 

We have  

න sin(𝑥 − 2𝑧) sin(𝑧 − 2𝑡) 𝑑𝑧

ଶగ

଴

=
1

2
න [cos(𝑥 + 2𝑡 − 3𝑧) − cos(𝑥 − 2𝑡 − 𝑧)] 𝑑𝑧

ଶగ

଴

=  1

2
൤−

1

3
sin(𝑥 + 2𝑡 − 3𝑧) + sin(𝑥 − 2𝑡 − 𝑧)൨ฬ

௭ୀ଴

௭ୀଶగ

= 0. 

Thus, in this case the resolvent kernel of the kernel is equal to the kernel itself:     

𝑅 (𝑥, 𝑡;  𝜆) ≡ 𝑠𝑖𝑛 (𝑥 − 2𝑡)  

so that the Neumann series (10.5) consists of one term and, obviously, converges for any 𝜆. 
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10.3.6 Note: The iterated kernels 𝐾௡(𝑥, 𝑡) can be expressed directly in terms of the given 

kernel 𝐾 (𝑥, 𝑡) by the formula 

  

𝐾௡(𝑥, 𝑡) = න න . . . න 𝐾(𝑥, 𝑠ଵ)𝐾ଵ(𝑠ଵ, 𝑠ଶ)
௕

௔

. . .
௕

௔

𝐾(𝑠௡ିଵ, 𝑡)𝑑𝑠ଵ

௕

௔

. . . 𝑑𝑠௡ିଵ 
 

(10.10

 All iterated kernels 𝐾௡(𝑥, 𝑡), beginning with 𝐾ଶ(𝑥, 𝑡) will be continuous functions in 

the square 𝑎 ≤ 𝑥 ≤  𝑏, 𝑎 ≤ 𝑡 ≤  𝑏 if the initial kernel 𝐾(𝑥, 𝑡) is quadratically 

summable in this square. 

 If the given kernel 𝐾(𝑥, 𝑡) is symmetric, then all iterated kernels 𝐾௡(𝑥, 𝑡) are also 

symmetric. 
 

10.4 CONSTRUCTION OF THE RESOLVENT KERNEL TO THE ORTHOGONAL    
    KERNELS: 

 

The following are some examples in finding iterated kernels.   
 

10.4.1 Find the iterated kernels for the kernel 𝐾(𝑥, 𝑡) = 𝑥 − 𝑡 where 𝑎 = 0, 𝑏 = 1. 

Solution. Using formulas (10.3), we find in succession as follows: 

𝐾ଵ(𝑥, 𝑡) = 𝑥 − 𝑡, 

𝐾ଶ(𝑥, 𝑡) = න (𝑥 − 𝑠)
ଵ

଴

(𝑠 − 𝑡)𝑑𝑠 =
𝑥 + 𝑡

2
− 𝑥𝑡 −

1

3
, 

𝐾ଷ(𝑥, 𝑡) = න (𝑥 − 𝑠)
ଵ

଴

൬
𝑠 + 𝑡

2
− 𝑠𝑡 −

1

3
൰ 𝑑𝑠 = −

𝑥 − 𝑡

12
, 

𝐾ସ(𝑥, 𝑡) = −
1

12
න (𝑥 − 𝑠)

ଵ

଴

(𝑠 − 𝑡)𝑑𝑠 = −
1

12
𝐾ଶ(𝑥, 𝑡) = −

1

12
൬

𝑥 + 𝑡

2
− 𝑥𝑡 −

1

3
൰ , 

𝐾ହ(𝑥, 𝑡) = −
1

12
න (𝑥 − 𝑠)

ଵ

଴

൬
𝑠 + 𝑡

2
− 𝑠𝑡 −

1

3
൰ 𝑑𝑠 = −

1

12
𝐾ଷ(𝑥, 𝑡) =

𝑥 − 𝑡

12ଶ
, 

𝐾଺(𝑥, 𝑡) =
1

12ଶ
න (𝑥 − 𝑠)

ଵ

଴

(𝑠 − 𝑡)𝑑𝑠 =
𝐾ଶ(𝑥, 𝑡)

12ଶ
=

1

12ଶ
൬

𝑥 + 𝑡

2
− 𝑥𝑡 −

1

3
൰. 

From this it follows that iterated kernels are of the form: 

(1) for 𝑛 = 2𝑘 − 1 

𝐾ଶ௞ିଵ(𝑥, 𝑡) =
(−1)

12௞ିଵ

௞

(𝑥 − 𝑡) 

(2) for 𝑛 = 2𝑘  

𝐾ଶ௞(𝑥, 𝑡) =
(−1)

12௞ିଵ

௞ିଵ

൬
𝑥 + 𝑡

2
− 𝑥𝑡 −

1

3
൰ 

where 𝑘 =  1, 2, 3, … 
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10.4.2 Find the iterated kernels 𝐾

 𝐾(𝑥, 𝑡) = 𝑒୫୧୬(௫,   ௧), 𝑎 = 0, 𝑏 =

Solution. By definition we have 

𝑚𝑖𝑛

and for this reason, the given kernel may be written as

𝐾(

This kernel, as may easily be verified, is symmetric, i.e.,

We have 𝐾ଵ(𝑥, 𝑡) = 𝐾(𝑥, 𝑡). We find the second iterated kernel

𝐾ଶ(𝑥, 𝑡) = න

ଵ

଴

Here 

𝐾(𝑥, 𝑠)

𝐾(𝑠, 𝑡) = ൜

 

Since the given kernel 𝐾(𝑥, 𝑡) is symmetric, it is sufficient to find 

𝑥 > 𝑡.  

From Fig 2, we have to find 𝐾ଶ(𝑥

න 𝐾(𝑥, 𝑠)𝐾(𝑠,

௫

௧

𝐾ଶ(𝑥, 𝑡) = න 𝐾(𝑥, 𝑠)𝐾(𝑠, 𝑡)𝑑𝑠

௧

଴
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𝐾ଵ(𝑥, 𝑡) and 𝐾ଶ(𝑥, 𝑡) if  

= 1. 

By definition we have  

𝑚𝑖𝑛(𝑥, 𝑡) = ൜
𝑥, 𝑖𝑓 0 ≤ 𝑥 ≤ 𝑡,
𝑡, 𝑖𝑓 𝑡 ≤ 𝑥 ≤ 1

  

and for this reason, the given kernel may be written as 

(𝑥, 𝑡) = ൜
𝑒௫, 𝑖𝑓 0 ≤ 𝑥 ≤ 𝑡,

𝑒௧, 𝑖𝑓 𝑡 ≤ 𝑥 ≤ 1
  

This kernel, as may easily be verified, is symmetric, i.e., 

𝐾(𝑥, 𝑡) = 𝐾(𝑡, 𝑥) 

We find the second iterated kernel 

න 𝐾(𝑥, 𝑠)𝐾ଵ(𝑠, 𝑡)𝑑𝑠

ଵ

= න 𝐾(𝑥, 𝑠)𝐾(𝑠, 𝑡)𝑑𝑠

ଵ

଴

 

) = ൜
𝑒௫, 𝑖𝑓 0 ≤ 𝑥 ≤ 𝑠,

𝑒௦, 𝑖𝑓 𝑠 ≤ 𝑥 ≤ 1
  

൜
𝑒௦, 𝑖𝑓 0 ≤ 𝑠 ≤ 𝑡,

𝑒௧, 𝑖𝑓 𝑡 ≤ 𝑠 ≤ 1
  

 

 

is symmetric, it is sufficient to find 𝐾ଶ(𝑥, 𝑡) only for 

 

Fig. 2 

(𝑥, 𝑡) as follows: 

( , 𝑡)𝑑𝑠 = න 𝑒௦𝑒௧𝑑𝑠

௫

௧

= 𝑒௫ା௧ − 𝑒ଶ௧ 

)𝑑𝑠 + න 𝐾(𝑥, 𝑠)𝐾(𝑠, 𝑡)𝑑𝑠

௫

௧

+ න 𝐾(𝑥, 𝑠)𝐾(𝑠, 𝑡)𝑑𝑠

ଵ

௫

. 
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only for  

)  
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In the interval (0, 𝑡) we have 𝑠 <

න 𝐾(𝑥, 𝑠)𝐾(𝑠, 𝑡)𝑑𝑠

௧

଴

In the interval (𝑡, 𝑥) we have 𝑡 <

න 𝐾(𝑥, 𝑠)𝐾(𝑠,

௫

௧

In the interval (𝑥, 1) we have 𝑠 >

න 𝐾(𝑥, 𝑠)𝐾(𝑠, 𝑡

ଵ

௫

Adding the integrals thus found, we obtain 

𝐾ଶ(𝑥, 𝑡) = (2

We will find the expression for 𝐾

the expression 𝐾ଶ(𝑥, 𝑡) for 𝑥 > 𝑡

𝐾ଶ(𝑥, 𝑡) = (2

Therefore, the second iterated kernel is of the form

𝐾ଶ(𝑥, 𝑡) =

⎩
⎨

⎧(2 − 𝑡

(2 − 𝑥

 

10.4.2.1  Note: If the kernel 𝐾(𝑥, 𝑡

𝑎 ≤ 𝑥 ≤  𝑏, 𝑎 ≤ 𝑡 ≤  𝑏 by various analytic expressions, is not symmetric, the

consider the case 𝑥 < 𝑡 separately. 

  10.7        Iterated Kernels

< 𝑡 < 𝑥, and therefore 

)𝑑𝑠 = න 𝑒௦𝑒௦𝑑𝑠

௧

଴

= න 𝑒ଶ௦𝑑𝑠 =
𝑒ଶ௧ − 1

2

௧

଴

 

< 𝑠 < 𝑥, and therefore 

( 𝑡)𝑑𝑠 = න 𝑒௦𝑒௧𝑑𝑠

௫

௧

= 𝑒௫ା௧ − 𝑒ଶ௧ 

> 𝑥 > 𝑡, and therefore 

( 𝑡)𝑑𝑠 = න 𝑒௫𝑒௧𝑑𝑠

ଵ

௫

= (1 − 𝑥)𝑒௫ା௧ 

Adding the integrals thus found, we obtain  

(2 − 𝑥)𝑒௫ା௧ −
1 + 𝑒ଶ௧

2
   (𝑥 > 𝑡) 

𝐾ଶ(𝑥, 𝑡) for 𝑥 < 𝑡 if we interchange the arguments 

𝑡: 

(2 − 𝑥)𝑒௫ା௧ −
1 + 𝑒ଶ௧

2
   (𝑥 < 𝑡) 

, the second iterated kernel is of the form 

𝑡)𝑒௫ା௧ −
1 + 𝑒ଶ௫

2
 , 𝑖𝑓 0 ≤ 𝑥 ≤ 𝑡,

𝑥)𝑒௫ା௧ −
1 + 𝑒ଶ௧

2
, 𝑖𝑓 𝑡 ≤ 𝑥 ≤ 1.

  

𝑡), which is specified in the square  

by various analytic expressions, is not symmetric, the

separately.  

 

Fig. 3 

Iterated Kernels 

 

 

 

 

 

 

 

if we interchange the arguments x and t in 

 

 

 

 

by various analytic expressions, is not symmetric, then one should 
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From Fig. 3 we can observe the case 𝑥 < 𝑡 and we can compute 𝐾ଶ(𝑥, 𝑡) as    

𝐾ଶ(𝑥, 𝑡) = න 𝐾(𝑥, 𝑠)𝐾(𝑠, 𝑡)𝑑𝑠 = න + න + න.

௕

௧

௧

௫

௫

௔

௕

௔

 
 

 

 

10.4.3 Example: Find the iterated kernels 𝐾ଵ(𝑥, 𝑡) and 𝐾ଶ(𝑥, 𝑡) when   𝑎 = 0, 𝑏 = 1 and 

 

𝐾(𝑥, 𝑡) = ൜
𝑥 + 𝑡, 𝑖𝑓 0 ≤ 𝑥 < 𝑡,
𝑥 − 𝑡, 𝑖𝑓 𝑡 < 𝑥 ≤ 1

 . 
 

 

Solution.  We have 𝐾ଵ(𝑥, 𝑡) = 𝐾(𝑥, 𝑡), 

𝐾ଶ(𝑥, 𝑡) = න 𝐾(𝑥, 𝑠)𝐾(𝑠, 𝑡)𝑑𝑠

ଵ

଴

, 

where, 

 𝐾(𝑥, 𝑠) = ൜
𝑥 + 𝑠, 𝑖𝑓 0 ≤ 𝑥 < 𝑠,
𝑥 − 𝑠, 𝑖𝑓 𝑠 < 𝑥 ≤ 1,

    𝐾(𝑠, 𝑡) = ൜
𝑠 + 𝑡, 𝑖𝑓 0 ≤ 𝑠 < 𝑡,
𝑠 − 𝑡, 𝑖𝑓 𝑡 < 𝑠 ≤ 1.

  

Since the given kernel 𝐾(𝑥, 𝑡) is not symmetric, we consider two cases separately when 

finding 𝐾ଶ(𝑥, 𝑡):  (1) 𝑥 <  𝑡 and (2) 𝑥 > 𝑡. 

(1) For first case: Let 𝑥 < 𝑡. Then from Fig. 3  

𝐾ଶ(𝑥, 𝑡) = 𝐼ଵ + 𝐼ଶ + 𝐼ଷ.  

Where, 

𝐼ଵ = න(𝑥 − 𝑠)(𝑠 + 𝑡)𝑑𝑠 =
𝑥ଷ

6
+

𝑥ଶ𝑡

2

௫

଴

, 

𝐼ଶ = න(𝑥 + 𝑠)(𝑠 + 𝑡)𝑑𝑠 =
5𝑡ଷ

6
−

5𝑥ଷ

6
+

3𝑥𝑡ଶ

2
−

3𝑥ଶ𝑡

2
,

௧

௫

 

𝐼ଷ = න(𝑥 + 𝑠)(𝑠 − 𝑡)𝑑𝑠 =
𝑡ଷ

6
+

𝑥𝑡ଶ

2
− 𝑥𝑡 +

𝑥

2
−

𝑡

2
+

1

3

ଵ

௧

. 

 

 

 

 

 

 

Adding these integrals, we obtain  

𝐾ଶ(𝑥, 𝑡) = 𝑡ଷ −
2

3
𝑥ଷ − 𝑥ଶ𝑡 + 2𝑥𝑡ଶ − 𝑥𝑡 +

𝑥 − 𝑡

2
+

1

3
   (𝑥 < 𝑡). 

 

(2) For first case: Let 𝑥 > 𝑡, from Fig. 2 

𝐾ଶ(𝑥, 𝑡) = 𝐼ଵ + 𝐼ଶ + 𝐼ଷ. 

Where  
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𝐼ଵ = න(𝑥 − 𝑠)(𝑠 + 𝑡)𝑑𝑠 =
3𝑥𝑡ଶ

2
−

5𝑡ଷ

6
,

௧

଴

 

𝐼ଶ = න(𝑥 − 𝑠)(𝑠 − 𝑡)𝑑𝑠 =
𝑥ଷ

6
−

𝑡ଷ

6
−

𝑥ଶ𝑡

2
+

𝑥𝑡ଶ

2
,

௫

௧

 

𝐼ଷ = න(𝑥 + 𝑠)(𝑠 − 𝑡)𝑑𝑠 = −
5𝑥ଷ

6
+

3𝑥ଶ𝑡

2
+

𝑥 − 𝑡

2
− 𝑥𝑡 +

1

3
.

ଵ

௫

 

 

 

 

 

 

Adding these integ1als, we obtain 

𝐾ଶ(𝑥, 𝑡) = −
2

3
𝑥ଷ − 𝑡ଷ + 𝑥ଶ𝑡 + 2𝑥𝑡ଶ − 𝑥𝑡 +

𝑥 − 𝑡

2
+

1

3
   (𝑥 > 𝑡). 

 

 

Therefore, the second iterated kernel is of the form  

𝐾ଶ(𝑥, 𝑡) = ൞
−

2

3
𝑥ଷ + 𝑡ଷ − 𝑥ଶ𝑡 + 2𝑥𝑡ଶ − 𝑥𝑡 +

𝑥 − 𝑡

2
+

1

3
   𝑖𝑓 0 ≤ 𝑥 < 𝑡),

−
2

3
𝑥ଷ − 𝑡ଷ + 𝑥ଶ𝑡 + 2𝑥𝑡ଶ − 𝑥𝑡 +

𝑥 − 𝑡

2
+

1

3
,   𝑖𝑓 𝑡 < 𝑥 ≤ 1.

  

 

 

The other iterated kernels 𝐾௡(𝑥, 𝑡) (𝑛 =  3, 4, … ) are found in similar fashion. 
 

10.4.4 Example: Find the iterated kernels for the kernel 𝐾(𝑥, 𝑡) = 𝑥𝑒௧; 

 where 𝑎 = 0, 𝑏 = 1. 

Solution. By using formulas (10.3), we find iterated kernels as  

𝐾ଵ(𝑥, 𝑡) = 𝑥𝑒௧ , 

𝐾ଶ(𝑥, 𝑡) = න (𝑥𝑒௦)
ଵ

଴

(𝑠𝑒௧)𝑑𝑠 = 𝑥𝑒௧ , 

𝐾ଷ(𝑥, 𝑡) = න (𝑥𝑒௦)
ଵ

଴

(𝑠𝑒௧)𝑑𝑠 = 𝑥𝑒௧ , 

𝐾ସ(𝑥, 𝑡) = න (𝑥𝑒௦)
ଵ

଴

(𝑠𝑒௧)𝑑𝑠 = 𝑥𝑒௧ , 

𝐾ହ(𝑥, 𝑡) = න (𝑥𝑒௦)
ଵ

଴

(𝑠𝑒௧)𝑑𝑠 = 𝑥𝑒௧ , 

From this it follows that iterated kernels are of the form: 

𝐾௡(𝑥, 𝑡) = න (𝑥𝑒௦)
ଵ

଴

(𝑠𝑒௧)𝑑𝑠 = 𝑥𝑒௧, 

where 𝑛 =  1, 2, 3, … 

 



Centre for Distance Education   10.10       Acharya Nagarjuna University 

10.4.5 We now present an example of how to construct the resolvent kernel of an integral 

equation using iterated kernels. Consider the following integral equation:  

𝜑(𝑥) − 𝜆 න 𝑥𝑡𝜑(𝑡)𝑑𝑡 = 𝑓(𝑥)

ଵ

଴

 
 

(10.11)

Here 𝐾(𝑥, 𝑡) = 𝑥𝑡;  𝑎 = 0, 𝑏 = 1. We iteratively find 

𝐾ଵ(𝑥, 𝑡) = 𝑥𝑡, 

𝐾ଶ(𝑥, 𝑡) = න(𝑥𝑧)(𝑧𝑡)𝑑𝑧 =
𝑥𝑡

3
,

ଵ

଴

 

𝐾ଷ(𝑥, 𝑡) =
1

3
න(𝑥𝑧)(𝑧𝑡)𝑑𝑧 =

𝑥𝑡

3ଶ
,

ଵ

଴

 

… … … … . 

𝐾௡(𝑥, 𝑡) =
𝑥𝑡

3௡ିଵ
, 

According to formula (10.5)  

𝑅(𝑥, 𝑡;  𝜆) = ෍ 𝐾௡(𝑥, 𝑡)𝜆௡ିଵ

ஶ

௡ୀଵ

= 𝑥𝑡 ෍  ൬
𝜆

3
൰

௡ିଵ

=

ஶ

௡ୀଵ

3𝑥𝑡

3 − 𝜆
 

 

 

 

where |𝜆| < 3. 

By applying the formula (10.7) the solution of the integral equation (10.11) will be written as 

𝜑(𝑥) = 𝑓(𝑥) + 𝜆 න
3𝑥𝑡

3 − 𝜆
𝑓(𝑡)𝑑𝑡

ଵ

଴

 

In particular, for 𝑓(𝑥) = 𝑥 we get 

𝜑(𝑥) =
ଷ௫

ଷିఒ
  where 𝜆 ≠ 3. 

 

10.4.6 Example: Construct resolvent kernels for the kernel 𝐾(𝑥, 𝑡) = 𝑒௫ା௧ for  𝑎 = 0 and 

𝑏 = 1. 

Solution.  We have 𝐾(𝑥, 𝑡) = 𝑒௫ା௧;  𝑎 = 0, 𝑏 = 1. We iteratively find 

𝐾ଵ(𝑥, 𝑡) = 𝑒௫ା௧ , 

𝐾ଶ(𝑥, 𝑡) = න(𝑒௫ା௭)(𝑒௭ା௧)𝑑𝑧 = 𝑒௫ା௧
𝑒ଶ − 1

2
,

ଵ

଴
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𝐾ଷ(𝑥, 𝑡) = න ቆ
𝑒ଶ − 1

2
𝑒௫ା௭ቇ (𝑒௭ା௧)𝑑𝑧 =

(𝑒ଶ − 1)ଶ

2ଶ
𝑒௫ା௧

ଵ

଴

 

… … … … . 

𝐾௡(𝑥, 𝑡) =
(𝑒ଶ − 1)௡ିଵ

2௡ିଵ
𝑒௫ା௧ , 

According to formula (10.5)  

𝑅(𝑥, 𝑡;  𝜆) = ෍ 𝐾௡(𝑥, 𝑡)𝜆௡ିଵ

ஶ

௡ୀଵ

= 𝑒௫ା௧ ෍  ቆ
𝑒ଶ − 1

2
𝜆ቇ

௡ିଵ

=

ஶ

௡ୀଵ

2𝑒௫ା௧

2 − (𝑒ଶ − 1)𝜆
. 

 

 

 

This series converges when ቚ
௘మିଵ

ଶ
𝜆ቚ < 1,  

i.e., |𝜆| <
ଶ

௘మିଵ
. 

 

10.4.7 Constructing Resolvent Kernels for Two Orthogonal Kernels 

We now construct the resolvent kernels to the orthogonal kernels as follows: 

If 𝑀(𝑥, 𝑡) and 𝑁(𝑥, 𝑡) are two orthogonal kernels, then the resolvent kernel 𝑅 (𝑥, 𝑡;  𝜆) 

corresponding to the kernel 𝐾(𝑥, 𝑡) = 𝑀 + 𝑁, is equal to the sum of the resolvent kernels 

𝑅ଵ(𝑥, 𝑡;  𝜆) and 𝑅ଶ(𝑥, 𝑡;  𝜆) which correspond to each of these kernels. Consider the following 

example: 
 

10.4.7.1  Example: Find the resolvent kernel for the kernel 𝐾(𝑥, 𝑡) = 𝑥𝑡 + 𝑥ଶ𝑡ଶ, 𝑎 = −1,

𝑏 = 1.    

Solution. As was shown above, the kernels 𝑀(𝑥, 𝑡) = 𝑥𝑡 and 𝑁(𝑥, 𝑡) = 𝑥ଶ𝑡ଶ are orthogonal 

on [-1, 1]. For this reason, the resolvent kernel of the kernel 𝐾(𝑥, 𝑡) is equal to the sum of the 

resolvent kernels of the kernels 𝑀(𝑥, 𝑡) and 𝑁(𝑥, 𝑡). Utilizing the results of problems 4 and 5 

(in Exercise (10b)), we obtain  

𝑅௄(𝑥, 𝑡;  𝜆) = 𝑅ெ(𝑥, 𝑡;  𝜆) + 𝑅ே(𝑥, 𝑡;  𝜆) =
3𝑥𝑡

3 − 2𝜆
+

5𝑥ଶ𝑡ଶ

5 − 2𝜆
 

where |𝜆| <
ଷ

ଶ
. 

 

10.4.7.2 Notes: 

1.  Even though we can construct resolvent kernels for pairwise orthogonal as follows: 



Centre for Distance Education   10.12       Acharya Nagarjuna University 

 If the kernels 𝑀(ଵ)(𝑥, 𝑡), 𝑀(ଶ)(𝑥, 𝑡), . . . , 𝑀(௡)(𝑥, 𝑡)   are pairwise orthogonal, then the 

resolvent kernel corresponding to their sum, 

𝐾(𝑥, 𝑡) = ෍ 𝑀(௠)(𝑥, 𝑡)

௡

௠ୀଵ

 

is equal to the sum of the resolvent kernels corresponding to each of the terms. 

2. Let us use the term ``𝑛௧௛ traceᇱᇱ of the kernel 𝐾(𝑥, 𝑡) for the quantity 

𝐴௡ = න 𝐾௡(𝑥, 𝑥)𝑑𝑥, (𝑛 = 1, 2, … )

௕

௔

 
 

(10.12) 

     Where 𝐾௡(𝑥, 𝑥) is the 𝑛௧௛ iterated kernel for the kernel 𝐾(𝑥, 𝑡). 

3. The following formula holds for the Fredholm determinant 𝐷(𝜆):  

𝐷′(𝜆)

𝐷(𝜆)
= − ෍ 𝐴௡𝜆௡ିଵ 

ஶ

௡ୀଵ

 
 

(10.13) 

The radius of convergence of the power series (10.13) is equal to the smallest of the moduli 
of the characteristic numbers. 
 
10.5  SUMMARY:  
 
This lesson introduces iterated kernels as a fundamental tool for solving Fredholm integral 
equations of the second kind. It describes how these kernels are systematically constructed 
from the original kernel and how they contribute to the Neumann series representation of the 
resolvent kernel. Conditions for convergence of the series are discussed, and several 
illustrative examples are presented. The role of kernel symmetry and orthogonality in 
simplifying computation is also explored. 
 
10.6  TECHNICAL TERMS: 
 
 Iterated Kernel: Functions generated recursively from an initial kernel, used in 

constructing the resolvent kernel. 
 Resolvent Kernel: A kernel expressed as a series involving iterated kernels, which is 

used to find the solution of a Fredholm equation. 
 Neumann Series: An infinite series used to represent the resolvent kernel; its 

convergence is essential for the validity of the solution. 
 Orthogonal Kernels: Kernels whose mixed integrals vanish, simplifying the 

computation of the resolvent kernel. 
 

10.7  SELF-ASSESSMENT QUESTIONS: 
 

Exercise (10a): Find the iterated kernels of the following kernels for specified a and b. 

1. 𝐾(𝑥, 𝑡) = 𝑥 − 𝑡;  𝑎 = −1, 𝑏 = 1. 
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2. 𝐾(𝑥, 𝑡) = sin(𝑥 − 𝑡) ;  𝑎 = 0, 𝑏 =
௡

ଶ
 (𝑛 = 2, 3). 

3. 𝐾(𝑥, 𝑡) = (𝑥 − 𝑡)ଶ;  𝑎 = −1, 𝑏 = 1 (𝑛 = 2, 3). 

4. 𝐾(𝑥, 𝑡) = 𝑥 + sin 𝑡 ;  𝑎 = −𝜋, 𝑏 = 𝜋. 

5. 𝐾(𝑥, 𝑡) = 𝑒௫𝑐𝑜𝑠𝑡;  𝑎 = 0, 𝑏 = 𝜋. 

In the following problems, find 𝐾ଶ(𝑥, 𝑡): 

6. 𝐾(𝑥, 𝑡) = 𝑒|௫ି௧|;  𝑎 = 0, 𝑏 = 1. 

7. 𝐾(𝑥, 𝑡) = 𝑒|௫|ା௧;  𝑎 = −1, 𝑏 = 1. 
 

Exercise (10b): Construct resolvent kernels for the following kernels: 

1. 𝐾(𝑥, 𝑡) = sin 𝑥 𝑐𝑜𝑠𝑡;                         𝑎 = 0, 𝑏 =
గ

ଶ
. 

2. 𝐾(𝑥, 𝑡) = 𝑥𝑒௧;                                     𝑎 = −1, 𝑏 = 1. 

3. 𝐾(𝑥, 𝑡) = (1 + 𝑥)(1 − 𝑡);                𝑎 = −1, 𝑏 = 0. 

4. 𝐾(𝑥, 𝑡) = 𝑥ଶ𝑡ଶ;                                   𝑎 = −1, 𝑏 = 1. 

5. 𝐾(𝑥, 𝑡) = 𝑥𝑡;                                       𝑎 = −1, 𝑏 = 1. 
 

Exercise (10c): Find resolvent kernels for the following kernels: 

1. 𝐾(𝑥, 𝑡) = sin 𝑥 𝑐𝑜𝑠𝑡 + 𝑐𝑜𝑠2𝑥𝑠𝑖𝑛2𝑡;  𝑎 = 0, 𝑏 = 2𝜋. 

2. 𝐾(𝑥, 𝑡) = 1 + (2𝑥 − 1)(2𝑡 − 1);  𝑎 = 0, 𝑏 = 1. 
 

Exercise (10d):  

1. Show that for the Volterra equation 

𝜑(𝑥) − 𝜆 න 𝐾(𝑥, 𝑡)𝜑(𝑡)𝑑𝑡 = 𝑓(𝑥)

௫

଴

 

the Fredholm determinant 𝐷(𝜆) = 𝑒ି஺భఒ and, consequently, the resolvent kernel for the 

Volterra equation is an entire analytic function of 𝜆. 

2. Let 𝑅(𝑥, 𝑡;  𝜆) be the resolvent kernel for some kernel 𝐾(𝑥, 𝑡). 

Show that the resolvent kernel of the equation 

𝜑(𝑥) − 𝜇 න 𝑅(𝑥, 𝑡;  𝜆)𝜑(𝑡)𝑑𝑡 = 𝑓(𝑥)

௕

௔

 

is equal to 𝑅(𝑥, 𝑡;  𝜆 + 𝜇) 

3. Let  

න න 𝐾ଶ
௕

௔

(𝑥, 𝑡)𝑑𝑥𝑑𝑡 =
௕

௔

𝐵ଶ 
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න න 𝐾௡
ଶ

௕

௔

(𝑥, 𝑡)𝑑𝑥𝑑𝑡 =
௕

௔

𝐵௡
ଶ 

Where 𝐾௡(𝑥, 𝑡) is the 𝑛௧௛iterated kernel for the kernel 𝐾(𝑥, 𝑡). Prove that if 𝐵ଶ = 𝐵௡
ଶ, then for 

any n we will have 𝐵௡ = 𝐵௡.  

 

SELF-ASSESSMENT ANSWERS: 

Exercise (10a) 

1. 𝐾ଶ௡ିଵ(𝑥, 𝑡) = ቀ−
ସ

ଷ
ቁ

௡ିଵ
(𝑥 − 𝑡), 

 𝐾ଶ௡(𝑥, 𝑡) = 2(−1)௡ ൬
4

3
൰

௡ିଵ

൬𝑥𝑡 +
1

3
൰ , (𝑛 = 1,2,3, … ). 

2. 𝐾ଶ(𝑥, 𝑡) =
ୱ୧୬(௫ା௧)

ଶ
−

గ

ସ
cos(𝑥 − 𝑡), 

𝐾ଷ(𝑥, 𝑡) =
4 − 𝜋2

16
𝑠𝑖𝑛(𝑥 − 𝑡. ) 

3. 𝐾ଶ(𝑥, 𝑡) =
ଶ

ଷ
(𝑥 + 𝑡)ଶ + 2𝑥ଶ𝑡ଶ +

ସ

ଷ
𝑥𝑡 +

ଶ

ହ
, 

 𝐾ଷ(𝑥, 𝑡) =
56

15
(𝑥ଶ + 𝑡ଶ) +

8

3
𝑥ଶ𝑡ଶ −

32

9
𝑥𝑡 +

8

15
. 

4. 𝐾ଶ௡ିଵ(𝑥, 𝑡) = (2𝜋)ଶ௡ିଶ(𝑥 + 𝑠𝑖𝑛𝑡) 

    𝐾ଶ௡(𝑥, 𝑡) = (2𝜋)ଶ௡ିଵ(1 + xsin 𝑡), (𝑛 = 1,2, … ) 

5. 𝐾௡(𝑥, 𝑡) = (−1)௡ିଵ ቀ
௘ഏାଵ

ଶ
ቁ

௡ିଵ

𝑒௫𝑐𝑜𝑠𝑡 

6. 𝐾ଶ(𝑥, 𝑡) ቐ

௘ೣశ೟ା௘మషೣష೟

ଶ
+ (𝑡 − 𝑥 − 1)𝑒௧ି௫ , 0 ≤ 𝑥 ≤ 𝑡

௘ೣశ೟ା௘మషೣష೟

ଶ
+ (𝑥 − 𝑡 − 1)𝑒௫ି௧ , 𝑡 ≤ 𝑥 ≤ 1

  

7. 𝐾ଶ(𝑥, 𝑡) ቐ

௘మାଵ

ଶ
𝑒௧ି௫ , −1 ≤ 𝑥 ≤ 0

௘మାଵ

ଶ
𝑒௧ା௫ , 0 ≤ 𝑥 ≤ 1

  

Exercise (10b): 

1. 𝑅(𝑥, 𝑡; 𝜆) =
ଶ௦௜௡௫ ௖௢௦௧

ଶିఒ
; |𝜆| < 2 
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2. 𝑅(𝑥, 𝑡; 𝜆) =
௫௘೟శభ

௘ିଶఒ
; |𝜆| <

௘

ଶ
 

3. 𝑅(𝑥, 𝑡; 𝜆) =
ଷ(ଵା௫)(ଵି௧)

ଷିଶఒ
; |𝜆| <

ଶ

ଷ
 

4. 𝑅(𝑥, 𝑡; 𝜆) =
ହ௫మ௧మ

ହିଶఒ
;   |𝜆| <

ହ

ଶ
 

5. 𝑅(𝑥, 𝑡; 𝜆) =
ଷ௫௧

ଷିଶఒ
;  |𝜆| <

ଷ

ଶ
 

Exercise (10c): 

1. 𝑅(𝑥, 𝑡; 𝜆) = 𝑠𝑖𝑛𝑥 𝑐𝑜𝑠𝑡 + 𝑐𝑜𝑠 2𝑥 𝑠𝑖𝑛 2𝑡 

2. 𝑅(𝑥, 𝑡; 𝜆) =
ଵ

ଵିఒ
+

ଷ(ଶ௫ିଵ)(ଶ௧ିଵ)

ଷିఒ
; |𝜆| < 1 
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LESSON- 11 

INTEGRAL EQUATIONS WITH DEGENERATE 
KERNELS 

 
OBJECTIVE: 
 

 To understand the fundamental concepts of degenerate kernels. 
 To use degenerate kernels to simplify integral equation making it easier to analyse and 

solve. 
 To provide several examples to understand the solving of integral equations in different 

ways 
 
STRUCTURE: 
 
11.1  Introduction 

11.2  Formation of Integral Equations with Degenerate Kernels 

11.3  Hammerstein-Type Equation 

11.4  Examples 

11.5   Summary 

11.6   Technical Terms 

11.7   Self-Assessment Questions 

11.8   Suggested Readings  
 

11.1   INTRODUCTION: 

Integral equations with degenerate kernels are a specific type where the kernel function 
simplifies to a form that allows the integral equation to be reduced to a finite system of 
linear equations. This reduction is possible because the kernel can be written as a finite 
sum of products of functions, each depending on only one variable. Such kernels make 
the analysis and solution of the equation more tractable and are often used to 
approximate more complicated kernels in both theoretical and practical problems. 
 

11.2   FORMATION OF INTEGRAL EQUATIONS WITH DEGENERATE    
  KERNELS: 

 
         We define degenerate kernels and formulate the integral equation using degenerate   
         kernels. 
 

11.2.1 Definition: The kernel 𝐾(𝑥, 𝑡) of a Fredholm integral equation of the second kind is 
called degenerate if it is the sum of a finite number of products of functions of x 
alone by functions of t alone; 

 i.e., if it is of the form 

𝐾(𝑥, 𝑡) = ෍ 𝑎௞(𝑥)𝑏௞(𝑡).

௡

௞ୀଵ

  (11.1)
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We shall consider the functions 𝑎௞(𝑥) and 𝑏௞(𝑡)  (𝑘 = 1, 2, … , 𝑛)  continuous in the basic 

square 𝑎 ≤ 𝑥, 𝑡 ≤ 𝑏  and linearly independent. 
 

11.2.2 Note:  

 The integral equation with degenerate kernel (11.1) 

𝜑(𝑥) − 𝜆 න ൥෍ 𝑎௞(𝑥)𝑏௞(𝑡)

௡

௞ୀଵ

൩ 𝜑(𝑡)𝑑𝑡 = 𝑓(𝑥)

௕

௔

   (11.2) 

is solved in the following manner:  

Rewrite (11.2) as 

𝜑(𝑥) = 𝑓(𝑥) + 𝜆 ෍ 𝑎௞(𝑥)

௡

௞ୀଵ

න 𝑏௞(𝑡)𝜑(𝑡)𝑑𝑡

௕

௔

 (11.3)

and introduce the notation 

න 𝑏௞(𝑡)𝜑(𝑡)𝑑𝑡

௕

௔

= 𝐶௞   , 1 ≤ 𝑘 ≤ 𝑛. 
 

 (11.4) 

 

 

Then (11.3) becomes  

𝜑(𝑥) = 𝑓(𝑥) + 𝜆 ෍ 𝐶௞𝑎௞(𝑥)

௡

௞ୀଵ

 (11.5)

where 𝐶௞ are unknown constants, since the function 𝜑(𝑥) is unknown. 

Thus, the solution of an integral equation with degenerate kernel reduces to finding the 

constants 𝐶௞    (𝑘 = 1, 2, … , 𝑛). Putting the expression (11.5) into the integral equation (11.2), 

we get  

෍ ቐ𝐶௠ − න 𝑏௠(𝑡) ൥𝑓(𝑡) + 𝜆 ෍ 𝐶௞𝑎௞(𝑡)

௡

௞ୀଵ

൩ 𝑑𝑡

௕

௔

ቑ 𝑎௠(𝑥) =

௡

௠ୀଵ

0 

Whence it follows, by virtue of the linear independence of the functions       

 𝑎௠(𝑥) (𝑚 = 1, 2, … , 𝑛) that                                                                            

𝐶௠ − න 𝑏௠(𝑡) ൥𝑓(𝑡) + 𝜆 ෍ 𝐶௞𝑎௞(𝑡)

௡

௞ୀଵ

൩ 𝑑𝑡

௕

௔

= 0 

or 
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𝐶௠ − 𝜆 ෍ 𝐶௞

௡

௞ୀଵ

න 𝑎௞(𝑡)𝑏௠(𝑡)𝑑𝑡 = න 𝑏௠(𝑡)𝑓(𝑡)𝑑𝑡

௕

௔

௕

௔

  (𝑚 = 1, 2, … , 𝑛) 

For the sake of brevity, we introduce the notations  

𝑎௞௠ = න 𝑎௞(𝑡)𝑏௠(𝑡)𝑑𝑡

௕

௔

, 𝑓௠ = න 𝑏௠(𝑡)𝑓(𝑡)𝑑𝑡

௕

௔

 

and find that 

𝐶௠ − 𝜆 ෍ 𝑎௞௠𝐶௞ = 𝑓௠

௡

௞ୀଵ

   (𝑚 = 1, 2, … , 𝑛) 

or, in expanded form,  

(1 − 𝜆𝑎ଵଵ)𝐶ଵ − 𝜆𝑎ଵଶ𝐶ଶ − ⋯ − 𝜆𝑎ଵ௡𝐶௡ = 𝑓ଵ,

−𝜆𝑎ଶଵ𝐶ଵ + (1 − 𝜆𝑎ଶଶ)𝐶ଶ − ⋯ − 𝜆𝑎ଶ௡𝐶௡ = 𝑓ଶ

… … … … … … … … … … … … … … … … … .
−𝜆𝑎௡ଵ𝐶ଵ − 𝜆𝑎௡ଶ𝐶ଶ − ⋯ + (1 − 𝜆𝑎௡௡)𝐶௡ = 𝑓௡

  (11.6)

For finding the unknowns 𝐶௞ we have a linear system of n algebraic equations in n 

unknowns. The determinant of this system is 

Δ(𝜆) = ተ

1 − 𝜆𝑎ଵଵ 0 − 𝜆𝑎ଵଶ

0 − 𝜆𝑎ଶଵ 1 − 𝜆𝑎ଶଶ

⋯ 0 − 𝜆𝑎ଵ௡

⋯ 0 − 𝜆𝑎ଶ௡
⋯ ⋯

0 − 𝜆𝑎௡ଵ 0 − 𝜆𝑎௡ଶ

⋯ ⋯
⋯ 1 − 𝜆𝑎௡௡

ተ 
 

 (11.7)

If ∆(𝜆) ≠ 0 then the system (11.6) has a unique solution 𝐶ଵ, 𝐶ଶ, … , 𝐶௡ which is obtained from 

Cramer's formulas 
 

𝐶௞ =
1

∆(𝜆)
ተተ

1 − 𝜆𝑎ଵଵ ⋯
0 − 𝜆𝑎ଶଵ ⋯

−𝜆𝑎ଵ௞ିଵ𝑓ଵ − 𝜆𝑎ଵ௞ାଵ ⋯ 0 − 𝜆𝑎ଵ௡

−𝜆𝑎ଶ௞ିଵ𝑓ଶ − 𝜆𝑎ଶ௞ାଵ ⋯ 0 − 𝜆𝑎ଶ௡

⋯ ⋯
0 − 𝜆𝑎௡ଵ ⋯

⋯ ⋯ 0 − 𝜆𝑎ଶ௡

−𝜆𝑎௡௞ିଵ𝑓௡ − 𝜆𝑎௡௞ା ⋯ 1 − 𝜆𝑎௡௡

ተተ 
  (11.8) 

where (𝑘 = 1, 2, … , 𝑛) 

The solution of the integral equation (11.2) is the function 𝜑(𝑥) defined by the equality 

𝜑(𝑥) = 𝑓(𝑥) + 𝜆 ෍ 𝐶௞𝑎௞(𝑥)

௡

௞ୀଵ

 

where the coefficients 𝐶௞  (𝑘 = 1, 2, … , 𝑛) are determine from formulas (11.8). 

 The system (11.6) may be obtained if both sides of (11.5) are consecutively multiplied 

by  𝑎ଵ(𝑥), 𝑎ଶ(𝑥), … , 𝑎௡(𝑥) and integrated from a to b or if we put (11.5) into (11.4) 

for 𝜑(𝑥), replacing x by t. 
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11.2.3 Example: Solve the integral equation 

𝜑(𝑥) − 𝜆 න(𝑥𝑐𝑜𝑠 𝑡 + 𝑡ଶ sin 𝑥 + cos 𝑥 𝑠𝑖𝑛 𝑡 )𝜑(𝑡)𝑑𝑡 = 𝑥

గ

ିగ

   (11.9) 

Solution. Write the equation in the following form: 

𝜑(𝑥) = 𝜆𝑥 න 𝜑(𝑡)𝑐𝑜𝑠 𝑡𝑑𝑡 + 𝜆 sin 𝑥 න 𝑡ଶ𝜑(𝑡)𝑑𝑡 + 𝜆 cos 𝑥 න 𝜑(𝑡) sin 𝑡 𝑑𝑡 +

గ

ିగ

గ

ିగ

𝑥

గ

ିగ

 

We introduce the notations  

𝐶ଵ = න 𝜑(𝑡) cos 𝑡 𝑑𝑡;  𝐶ଶ

గ

ିగ

= න 𝑡ଶ𝜑(𝑡)𝑑𝑡;

గ

ିగ

 𝐶ଷ = න 𝜑(𝑡) sin 𝑡 𝑑𝑡

గ

ିగ

  (11.10) 

where 𝐶ଵ 𝐶ଶ, 𝐶ଷ are unknown constants. Then equation (11.9) assumes the form 

𝜑(𝑥) = 𝐶ଵ𝜆𝑥 + 𝐶ଶ𝜆 sin 𝑥 + 𝐶ଷ𝜆 cos 𝑥 + 𝑥 (11.11) 

Substituting expression (11.11) into (11.10), we get  

𝐶ଵ = න(𝐶ଵ𝜆𝑡 + 𝐶ଶ𝜆 sin 𝑡 + 𝐶ଷ𝜆 cos 𝑡 + 𝑡) cos 𝑡 𝑑𝑡,

గ

ିగ

 

𝐶ଶ = න(𝐶ଵ𝜆𝑡 + 𝐶ଶ𝜆 sin 𝑡 + 𝐶ଷ𝜆 cos 𝑡 + 𝑡)𝑡ଶ𝑑𝑡,

గ

ିగ

 

𝐶ଷ = න(𝐶ଵ𝜆𝑡 + 𝐶ଶ𝜆 sin 𝑡 + 𝐶ଷ𝜆 cos 𝑡 + 𝑡) sin 𝑡 𝑑𝑡 

గ

ିగ

 

or 

𝐶ଵ ቌ1 − 𝜆 න 𝑡𝑐𝑜𝑠 𝑡 𝑑𝑡

గ

ିగ

ቍ − 𝐶ଶ𝜆 න sin 𝑡 cos 𝑡 𝑑𝑡 − 𝐶ଷ𝜆 න 𝑐𝑜𝑠ଶ 𝑡 𝑑𝑡 = න  𝑡𝑐𝑜𝑠 𝑡𝑑𝑡

గ

ିగ

గ

ିగ

గ

ିగ

 

−𝐶ଵ𝜆 න  𝑡ଷ𝑑𝑡 + 𝐶ଶ ቌ1 − 𝜆 න  𝑡ଶ sin 𝑡 𝑑𝑡

గ

ିగ

ቍ − 𝐶ଷ𝜆 න  𝑡ଶ cos 𝑡 𝑑𝑡 = න 𝑡ଷ𝑑𝑡,

గ

ିగ

గ

ିగ

గ

ିగ

 

 

−𝐶ଵ𝜆 න 𝑡𝑠𝑖𝑛 𝑡 𝑑𝑡

గ

ିగ

− 𝐶ଶ𝜆 න 𝑠𝑖𝑛ଶ𝑡 𝑑𝑡

గ

ିగ

+ 𝐶ଷ ቌ1 − 𝜆 න 𝑐𝑜𝑠 𝑡 sin 𝑡  𝑑𝑡

గ

ିగ

ቍ = න 𝑡 sin 𝑡  𝑑𝑡

గ

ିగ

 

By evaluating the integrals that enter into this system we obtain a system of algebraic 

equations for finding the unknowns 𝐶ଵ, 𝐶ଶ, 𝐶ଷ: 
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𝐶ଵ −  𝜆𝜋𝐶ଷ = 0
𝐶ଶ + 4𝜆𝜋𝐶ଷ = 0

−2𝜆𝜋𝐶ଵ − 𝜆𝜋𝐶ଶ + 𝐶ଷ = 2𝜋
 

 

 (11.12) 

The determinant of this system is 

∆(𝜆) = อ
1 0 − 𝜆𝜋
0 1 4𝜆𝜋

−2𝜆𝜋 − 𝜆𝜋 1
อ = 1 + 2𝜆ଶ𝜋ଶ ≠ 0 

The system (11.12) has a unique solution 

𝐶ଵ =
2𝜋ଶ𝜆

1 + 2𝜆ଶ𝜋ଶ
;  𝐶ଶ = −

8𝜋ଶ𝜆

1 + 2𝜆ଶ𝜋ଶ
;  𝐶ଷ =

2𝜋

1 + 2𝜆ଶ𝜋ଶ
 

Substituting the values of  𝐶ଵ, 𝐶ଶ, 𝐶ଷ  thus found into (11.11), we obtain the solution of the 

given integral equation 

𝜑(𝑥) =
2𝜋𝜆

1 + 2𝜆ଶ𝜋ଶ
(𝜋𝜆𝑥 − 4𝜋𝜆 sin 𝑥 + cos 𝑥) + 𝑥. 

 

11.3  HAMMERSTEIN-TYPE EQUATION: 

 

The canonical form of the Hammerstein-type equation is 

𝜑(𝑥) = න K(𝑥, 𝑡) 𝑓(𝑡, 𝜑(𝑡))𝑑𝑡

௕

௔

  (11.13) 

 where 𝐾(𝑥, 𝑡), 𝑓(𝑡, 𝑢) are given functions and 𝜑(𝑥) is the unknown function. 

The following equations readily reduce to equations of type (11.13): 

𝜑(𝑥) = න K(𝑥, 𝑡) 𝑓൫𝑡, 𝜑(𝑡)൯𝑑𝑡

௕

௔

+ 𝜓(𝑥)    (11.14) 

where 𝜓(𝑥) is the known function, so that the difference between homogeneous and 

nonhomogeneous equations, which is important in the linear case, is almost of no importance 

in the nonlinear case. We shall call the function 𝐾(𝑥, 𝑡) the kernel of equation (11.13). 
 

11.3.1  Note: Let 𝐾(𝑥, 𝑡) be a degenerate kernel, i. e.,  

𝐾(𝑥, 𝑡) = ෍ 𝑎௜(𝑥)𝑏௜(𝑡)

௠

௜ୀଵ

 
 

  (11.15)

Then equation (11.13) takes the form  

𝜑(𝑥) = ෍ 𝑎௜(𝑥)

௠

௜ୀଵ

න 𝑏௜(𝑡)𝑓(𝑡, 𝜑(𝑡))𝑑𝑡

௕

௔

 
 

  (11.16)
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Put 

 𝐶௜ = න 𝑏௜(𝑡)𝑓൫𝑡, 𝜑(𝑡)൯𝑑𝑡     (𝑖 = 1,

௕

௔

 2, … , 𝑚)  (11.17) 

where the 𝐶௜ are as yet unknown constants. Then, by virtue of (11.16), we will have 

𝜑(𝑥) = ෍ 𝐶௜𝑎௜(𝑥)

௠

௜ୀଵ

   (11.18) 

 Substituting into (11.17) the expression (11.18) for 𝜑(𝑥), we get m equations (generally, 

transcendental) containing m unknown quantities 𝐶ଵ, 𝐶ଶ, … , 𝐶௠: 

𝐶௜ = 𝜓௜(𝐶ଵ, 𝐶ଶ, … , 𝐶௠)  (𝑖 = 1, 2, … , 𝑚)  (11.19) 

When 𝑓(𝑡, 𝑢) is a polynomial in u,  

𝑓(𝑡, 𝑢) = 𝑝଴(𝑡) + 𝑝ଵ(𝑡)𝑢 + ⋯ + 𝑝௡(𝑡)𝑢௡ (11.20) 

where 𝑝଴(𝑡), 𝑝ଵ(𝑡), … , 𝑝௡(𝑡) are, for instance, continuous functions of t on the interval [𝑎, 𝑏], 

the system (11.19) is transformed into a system of algebraic equations in  𝐶ଵ, 𝐶ଶ, … , 𝐶௠. If 

there exists a solution of the system (11.19), that is, if there exist m numbers 

𝐶ଵ
଴, 𝐶ଶ

଴, … , 𝐶௠
଴  

such that their substitution into (11.19) reduces the equations to identities, then there exists a 

solution of the integral equation (11.16) defined by the equality (11.18): 

𝜑(𝑥) = ෍ 𝐶௜
଴𝑎௜(𝑥)

௠

௜ୀଵ

 

It is obvious that the number of solutions (generally, complex) of the integral equation 

(11.16) is equal to the number of solutions -of the system (11.19). 

 

11.3.2 Solve the integral equation  

𝜑(𝑥) = 𝜆 න 𝑥𝑡𝜑ଶ(𝑡)𝑑𝑡

ଵ

଴

 (11.21)

where 𝜆 is a parameter. 

Solution. Put  

𝐶 = න 𝑡𝜑ଶ(𝑡)𝑑𝑡

ଵ

଴

 (11.22)

Then 
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𝜑(𝑥) = 𝐶𝜆𝑥 (11.23)

Substituting 𝜑(𝑥) in the form (11.23) into the relation (11.22), we get 

𝐶 = න 𝑡𝜆ଶ𝐶ଶ𝑡ଶ𝑑𝑡

ଵ

଴

 

Whence 

𝐶 =
𝜆ଶ

4
𝐶ଶ (11.24)

Equation (11.24) has two solutions 

𝐶ଵ = 0, 𝐶ଶ =
4

𝜆ଶ
 

Consequently, integral equation (11.21) also has two solutions for any 𝜆 ≠ 0: 

𝜑ଵ(𝑥) ≡ 0, 𝜑ଶ(𝑥) =
4

𝜆
𝑥 

There exist simple nonlinear integral equations which do not have real solutions at all. 

Consider, for example, the equation 

𝜑(𝑥) =
1

2
න 𝑒

௫ା௧
ଶ

ଵ

଴

൫1 + 𝜑ଶ(𝑡)൯𝑑𝑡 
 

  (11.25)

Put 

𝐶 =
1

2
න 𝑒

௧
ଶ

ଵ

଴

൫1 + 𝜑ଶ(𝑡)൯𝑑𝑡 
 

(11.26) 

  

Then  

𝜑(𝑥) = 𝐶𝑒
௫
ଶ (11.27) 

For a determination of the constant 𝐶, we obtain the equation 

൬𝑒
ଷ
ଶ − 1൰ 𝐶ଶ − 3𝐶 + 3 ൬𝑒

ଵ
ଶ − 1൰ = 0 

 

(11.28)  
 

 

It is easy to verify that equation (11.28) does not have real roots and, hence, the integral 
equation (11.25) has no real solutions. 
On the other hand, let us consider the equation 

𝜑(𝑥) = න 𝑎(𝑥)𝑎(𝑡)𝜑(𝑡)sin ቆ
𝜑(𝑡)

𝑎(𝑡)
ቇ 𝑑𝑡

ଵ

଴

 (11.29) 

 (𝑎(𝑡) > 0 for all 𝑡 ∈ [0, 1]) 
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In order to determine the constant C, we arrive at the equation 

1 = න 𝑎ଶ(𝑡)𝑑𝑡. sin 𝐶

ଵ

଴

 
 

 (11.30) 

If  

 න 𝑎ଶ(𝑡)𝑑𝑡 > 1

ଵ

଴

, 

then equation (11.30) and, hence, the original integral equation (11.29) as well, has an infinite 

number of real solutions. 
 

11.4  EXAMPLES:  
 

We can explore several illustrative examples that demonstrate the methods and solution 
strategies in detail. These examples provide deeper insight into solving integral equations, 
especially those involving degenerate kernels and nonlinear terms.  
 
11.4.1 Solve the given integral equation with degenerate kernels 

(𝑥) − 4 න sinଶ 𝑥𝜑(𝑡) 𝑑𝑡 = 2𝑥 − 𝜋

గ
ଶ

଴

 

 

(11.31) 

Solution. Write the equation in the following form: 

𝜑(𝑥) = 4 sinଶ 𝑥 න 𝜑(𝑡) 𝑑𝑡 + 2𝑥 − 𝜋

గ
ଶ

଴

 

Where  

𝐶ଵ = න 𝜑(𝑡)𝑑𝑡

గ
ଶ

଴

 

 

(11.32) 

where 𝐶ଵ  is unknown constants. Then equation (11.31) assumes the form 

𝜑(𝑥) = 4 sinଶ 𝑥 𝐶ଵ + 2𝑥 − 𝜋 (11.33) 

Substituting expression (11.33) into (11.32), we get  

𝐶ଵ = න(4𝐶ଵ sinଶ 𝑡 + 2𝑡 − 𝜋)

గ
ଶ

଴

 𝑑𝑡 
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𝐶ଵ

⎝

⎛1 − 4 න sinଶ 𝑡  𝑑𝑡

గ
ଶ

଴
⎠

⎞ = න (2𝑡 − 𝜋)𝑑𝑡

గ
ଶ

଴

 

𝐶ଵ(1 − 𝜋) =
−𝜋ଶ

4
 

Thus,  

𝐶ଵ =
𝜋ଶ

4(𝜋 − 1)
 

 

(11.34) 
 

Substituting the value of  𝐶ଵ,  thus found into (11.33), we obtain the solution of the given 

integral equation 

𝜑(𝑥) =
𝜋ଶ

𝜋 − 1
sinଶ 𝑥 + 2𝑥 − 𝜋 

11.4.2  Solve the given integral equation with degenerate kernels 

𝜑(𝑥) − 𝜆 න 𝑡𝑎𝑛 𝑡 𝜑(𝑡) 𝑑𝑡 = cot 𝑥

గ
ସ

ି
గ
ସ

 

 

(11.35) 

Solution. Write the equation in the following form:   

Where  

𝜑(𝑥) = 𝜆 න 𝑡𝑎𝑛 𝑡 𝜑(𝑡) 𝑑𝑡 + cot 𝑥

గ
ସ

ି
గ
ସ

 

Take,  

𝐶ଵ = න 𝑡𝑎𝑛 𝑡 𝜑(𝑡) 𝑑𝑡

గ
ସ

ି
గ
ସ

 

 

(11.36)

where 𝐶ଵ  is unknown constants. Then equation (11.35) assumes the form 

𝜑(𝑥) = 𝜆𝐶ଵ + cot 𝑥 (11.37) 

  

Substituting expression (11.37) into (11.36), we get  

𝐶ଵ = න tan 𝑡 (𝜆𝐶ଵ + cot 𝑡)

గ
ସ

ି
గ
ସ
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𝐶ଵ

⎝

⎛1 − 𝜆 න 𝑡𝑎𝑛 𝑡  𝑑𝑡

గ
ସ

ି
గ
ସ ⎠

⎞ = න 𝑡𝑎𝑛 𝑡  cot 𝑡 𝑑𝑡

గ
ସ

ି
గ
ସ

 

Thus,  

𝐶ଵ =
𝜋

2
 

 

 (11.38) 

Substituting the value of  𝐶ଵ,  thus found into (11.37), we obtain the solution of the given 

integral equation 

𝜑(𝑥) = 𝜆
𝜋

2
+ cot 𝑥. 

11.4.3 Solve the integral equation  

𝜑(𝑥) = 2 න 𝑥𝑡 𝜑ଷ(𝑡) 𝑑𝑡

ଵ

଴

   (11.39) 

Solution. 

𝐶 = න 𝑡𝜑ଷ(𝑡)𝑑𝑡

ଵ

଴

 (11.40) 

Then 

𝜑(𝑥) = 2𝐶𝑥 (11.41) 

Substituting 𝜑(𝑥) in the form (11.41) into the relation (11.40), we get 

𝐶 = 8𝐶ଷ න 𝑡ସ𝑑𝑡

ଵ

଴

 

Whence  

𝐶 =
8

5
𝐶ଷ (11.42) 

Equation (11.42) has two solutions 

𝐶ଵ = 0, 𝐶ଶ,ଷ = ±ඨ
5

8
 

Consequently, integral equation (11.39) also has two solutions for any 

𝜑ଵ(𝑥) ≡ 0, 𝜑ଶ,ଷ(𝑥) = ±ඨ
5

2
𝑥 
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11.4.4 Solve the integral equation   

𝜑(𝑥) = න(1 + 𝜑ଶ(𝑡) )𝑑𝑡

ଵ

଴

 (11.43) 

Solution.  

𝐶 = න(1 +  𝜑ଶ(𝑡) )𝑑𝑡

ଵ

଴

 (11.44) 

Then 
𝜑(𝑥) = 𝐶 

   (11.45) 

Substituting 𝜑(𝑥) in the form (11.45) into the relation (11.44), we get 

𝐶 = න(1 +  𝐶ଶ )𝑑𝑡

ଵ

଴

 

hence 
𝐶 = 1 + 𝐶ଶ  (11.46) 

Which implies no real solutions. 
 

11.5  SUMMARY:  
 

Integral equations with degenerate kernels are a special class of integral equations where the 
kernel can be expressed as a finite sum of separable functions. This simplification allows the 
integral equation to be reduced to a system of linear equations, making it much easier to solve 
analytically or numerically. These equations often arise in physics and engineering problems, 
particularly in systems with symmetric or structured interactions.  
 
11.6  TECHNICAL TERMS:  
 

Degenerate of the Kernel: 

The kernel 𝐾(𝑥, 𝑡) is called degenerate if it can be written as a finite sum of number of 
products of functions of 𝑥 alone by functions of t alone;  
i.e., if it is of the form 

𝐾(𝑥, 𝑡) = ෍ 𝑎௞(𝑥)𝑏௞(𝑡)

௔

௞ୀଵ

 

                                                           
Hammerstein-Type Equation: 

A Hammerstein type equation is a kind of nonlinear integral equation that typically has the 

form: 

𝜑(𝑥) = න K(𝑥, 𝑡) 𝑓(𝑡, 𝜑(𝑡))𝑑𝑡

௕

௔
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where 𝐾(𝑥, 𝑡), 𝑓(𝑡, 𝑢) are given functions and 𝜑(𝑥) is the unknown function. 

 

11.7  SELF-ASSESSMENT QUESTIONS: 
   

Exercise (11a): Solve the following integral equations with degenerate kernels: 

1. 𝜑(𝑥) − ∫ 𝑒ୟ୰ୡୱ୧୬ ௫  𝜑(𝑡)𝑑𝑡
ଵ

ିଵ
= tan 𝑥. 

2. 𝜑(𝑥) − 𝜆 ∫ cos(𝑞 𝑙𝑛 𝑡) 𝜑(𝑡)𝑑𝑡
ଵ

଴
= 1. 

3. 𝜑(𝑥) − 𝜆 ∫ 𝑎𝑟𝑐 cos 𝑡 𝜑(𝑡)𝑑𝑡
ଵ

଴
=

ଵ

√ଵି௫మ
. 

4. 𝜑(𝑥) − 𝜆 ∫ ቀln
ଵ

௧
ቁ

௣
𝜑(𝑡)𝑑𝑡

ଵ

଴
= 1  (𝑝 > −1). 

5. 𝜑(𝑥) − 𝜆 ∫ (𝑥 𝑙𝑛 𝑡 − 𝑡 𝑙𝑛 𝑥) 𝜑(𝑡)𝑑𝑡
ଵ

଴
=

଺

ହ
(1 − 4𝑥). 

6. 𝜑(𝑥) − 𝜆 ∫ sin 𝑥 cos 𝑡 𝜑(𝑡)𝑑𝑡
ഏ

మ
଴

= sin 𝑥. 

7. 𝜑(𝑥) − 𝜆 ∫ |𝜋 − 𝑡|sin 𝑥 𝜑(𝑡)𝑑𝑡
ଶగ

଴
= 𝑥. 

8. 𝜑(𝑥) − 𝜆 ∫ sin(𝑥 − 𝑡) 𝜑(𝑡)𝑑𝑡
గ

଴
= cos 𝑥. 

9. 𝜑(𝑥) − ∫ (sin 𝑥 cos 𝑡 − sin 2𝑥 cos 2𝑡 + sin 3𝑥 𝑐𝑜𝑠 3𝑡) 𝜑(𝑡)𝑑𝑡 = cos 𝑥.
ଶగ

଴
 

10. 𝜑(𝑥) −
ଵ

ଶ
∫ ቚ𝑥 −

ଵ

ଶ
(3𝑡ଶ − 1)ቚ +

ଵ

ଶ
𝑡(3𝑥ଶ − 1) 𝜑(𝑡)𝑑𝑡

ଵ

ିଵ
= 1. 

 

Exercise (11b): Solve the following integral equations: 

1. 𝜑(𝑥) = ∫ (𝑥𝑡 + 𝑥ଶ𝑡ଶ)𝜑ଶ(𝑡)𝑑𝑡.
ଵ

ିଵ
 

2. 𝜑(𝑥) = ∫ 𝑥ଶ𝑡ଶ𝜑ଷ(𝑡)𝑑𝑡.
ଵ

଴
  

3. 𝜑(𝑥) = ∫
௫௧

ଵାఝమ(௧)
𝑑𝑡.

ଵ

ିଵ
  

4. Show that the integral equation  

𝜑(𝑥) =
1

2
න 𝑎(𝑥)𝑎(𝑡)൫1 + 𝜑ଶ(𝑡)൯ 𝑑𝑡

ଵ

଴

 

(𝑎(𝑥) > 0 for all 𝑥 ∈ [0, 1]) 

has no real solutions if  ∫ 𝑎ଶ(𝑥)𝑑𝑥 > 1.
ଵ

଴
 

Self-Assessment Answers: 

Exercise (11a)  

1. 𝜑(𝑥) = tan 𝑥. 

2. 𝜑(𝑥) =
ଵା௤మ

ଵା௤మିఒ
. 
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3. 𝜑(𝑥) = −
గమఒ

଼(ఒିଵ)
+

ଵ

√ଵି௫మ
, 𝜆 ≠ 1.  

4. 𝜑(𝑥) =
ଵ

ଵିఒ௰(௣ାଵ)
. 

5. 𝜑(𝑥) =
ଶఒమ௫ା൬

ഊమ

ర
ାఒ൰ ୪୬

ଵା
మవ

రఴ
ఒమ

+
଺

ହ
(1 − 4𝑥). 

6. 𝜑(𝑥) =
ଶ

ଶିఒ
sin 𝑥, 𝜆 ≠ 2.   

7. 𝜑(𝑥) =  𝜆𝜋ଷ sin 𝑥 + 𝑥. 

8. 𝜑(𝑥) = 2 ቀ
ଶ ୡ୭ୱ ௫ାగఒ ୱ୧୬

ସାగమఒమ ቁ. 

9. 𝜑(𝑥) = 𝜋𝜆 sin 𝑥 + cos 𝑥.   

10. 𝜑(𝑥) =
ଵହ

ଷଶ
(𝑥 + 1)ଶ +

ହ

ଵ଺
. 

Exercise (11b)  

1. 𝜑ଵ(𝑥) ≡ 0, 𝜑ଶ(𝑥) =
଻

ଶ
𝑥ଶ, 𝜑ଷ,ସ(𝑥) = ±

ଵହ

ସ√଻
𝑥 +

ହ

ସ
𝑥ଶ. 

2. 𝜑ଵ(𝑥) ≡ 0, 𝜑ଶ,ଷ(𝑥) = ±3𝑥ଶ.  

3. 𝜑(𝑥) ≡ 0. 
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LESSON- 12 

CHARACTERISTIC NUMBERS AND 
EIGENFUNCTIONS OF FREDHOLM INTEGRAL 

EQUATIONS 
 

OBJECTIVE: 

 To understand the concept of characteristic numbers and eigenfunctions for Fredholm 
integral equations. 

 To explore both degenerate and general kernel cases in finding eigenfunctions and 
corresponding eigenvalues.  

 To study properties of symmetric and skew-symmetric kernels and their implications on 
solutions. 

 To examine bifurcation points in nonlinear integral equations and their significance in 
applications like stability analysis. 

 

 STRUCTURE: 

12.1 Introduction 

12.2 Fundamentals of Characteristic Numbers and Eigenfunctions 

12.3 Fredholm Integral Equations with Difference Kernels 

12.4 Extremal Properties of Characteristic Numbers and Eigenfunctions 

12.5 Bifurcation Points 

12.6  Summary: 

12.7  Technical Terms:  

12.8  Self-Assessment questions 

12.9   Suggested Readings 

 

12.1 INTRODUCTION: 
 
In solving integral equations, the analysis of characteristic numbers and eigenfunctions 
provides key insights into the solution structure. Such spectral properties inform us about the 
solvability of homogeneous equations and the stability of physical systems modelled by such 
equations. This lesson introduces methods for deriving these values and explores advanced 
topics like bifurcation theory and kernel symmetry. 

 
12.2 FUNDAMENTALS OF CHARACTERISTIC NUMBERS AND    

    EIGENFUNCTIONS: 
 

We introduce the fundamental definitions of characteristic numbers, eigenfunctions, and the 
index associated with integral equations. The characteristic numbers and their corresponding 
eigenfunctions are then determined for specific types of integral equations.  
 
Consider the homogeneous Fredholm integral equation of the second kind 
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𝜑(𝑥) − 𝜆 න 𝐾(𝑥, 𝑡)𝜑(𝑡)𝑑𝑡 = 0

௕

௔

 
 
   (12.1) 

always has the obvious solution 𝜑(𝑥) ≡ 0, which is called the zero (trivial) solution. 
 
12.2.1  Definition:  

The values of the parameter 𝜆 for which the integral equation (12.1) admits nontrivial 
solutions 𝜑(𝑥) ≢ 0 are called the characteristic numbers of the equation or of the 
kernel 𝐾(𝑥, 𝑡). Any such nonzero solution 𝜑(𝑥) ≢ 0 corresponding to a characteristic 
number 𝜆 is referred to as an eigenfunction. 
 

 If the kernel 𝐾(𝑥, 𝑡) is continuous in the square Ω{𝑎 ≤ 𝑥, 𝑡 ≤ 𝑏}, or is quadratically 
summable in Ω, and the numbers 𝑎 and 𝑏 are finite, then for every characteristic 
number 𝜆 , there exists only a finite set of linearly independent eigenfunctions; the 
number of such functions is called the index of the characteristic number. Different 
characteristic numbers can have different indices. 
 

12.2.2 Note:  
 For an equation with degenerated kernel 

𝜑(𝑥) − 𝜆 න ൥෍ 𝑎௞(𝑥)𝑏௞(𝑡)

௡

௞ୀଵ

൩ 𝜑(𝑡)𝑑𝑡 = 0

௕

௔

 
 
(12.2) 

the characteristic numbers are roots of the algebraic equation 

∆(𝜆) = ተ
 
1 − 𝜆𝑎ଵଵ −𝜆𝑎ଵଶ …

−𝜆𝑎ଶଵ 1 − 𝜆𝑎ଶଶ …
… … …

 
−𝜆𝑎ଵ௡

−𝜆𝑎ଶ௡

…  
−𝜆𝑎௡ଵ      −𝜆𝑎௡ଶ … 1 − 𝜆𝑎௡௡

ተ = 0 

 
 
   (12.3) 

the degree of which is 𝑝 ≤ 𝑛. Here,  ∆(𝜆) is the determinant of the linear 
homogeneous system 

 

(1 − 𝜆𝑎ଵଵ)𝐶ଵ − 𝜆𝑎ଵଶ𝐶ଶ − ⋯ − 𝜆𝑎ଵ௡𝐶௡ = 0

−𝜆𝑎ଶଵ𝐶ଵ + (1 − 𝜆𝑎ଶଶ)𝐶ଶ − ⋯ − 𝜆𝑎ଶ௡𝐶௡ = 0
… … … … … … … … … … … … … … … … … .

−𝜆𝑎௡ଵ𝐶ଵ − 𝜆𝑎௡ଶ𝐶ଶ − ⋯ + (1 − 𝜆𝑎௡௡)𝐶௡ = 0

ൢ 

 
 
(12.4) 

where the quantities 𝑎௠௞ and 𝐶௠ (𝑘, 𝑚 = 1, 2, ⋯ , 𝑛)  have the same meaning as 
in the preceding section. 

 If equation (12.3) has 𝑝 roots 1 ≤ 𝑝 ≤ 𝑛, then the integral equation (12.2) has 𝑝 
characteristic numbers; to each characteristic number 𝜆௠  (𝑚 = 1, 2, … , 𝑝) there 
corresponds a nonzero solution 

𝐶ଵ
(ଵ)

, 𝐶ଶ
(ଵ)

, … 𝐶௡
(ଵ)

→ 𝜆ଵ,

𝐶ଵ
(ଶ)

, 𝐶ଶ
(ଶ)

… 𝐶௡
(ଶ)

→ 𝜆ଶ,
… … … …

𝐶ଵ
(௣)

, 𝐶ଶ
(௣)

, … 𝐶௡
(௣)

→ 𝜆௣.
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of the system (12.4). The nonzero solutions of the integral equation (12.2) corresponding to 
these solutions, i.e., the eigenfunctions, will be of the form 

𝜑ଵ(𝑥) = ෍ 𝐶௞
(ଵ)

𝑎௞(𝑥),

௡

௞ୀଵ

 

𝜑ଶ(𝑥) = ෍ 𝐶௞
(ଶ)

𝑎௞(𝑥),

௡

௞ୀଵ

 ⋯ , 𝜑௣(𝑥) = ෍ 𝐶௞
(௣)

𝑎௞(𝑥)

௡

௞ୀଵ

 

 
 
 
 
 

 An integral equation with degenerate kernel has at most n characteristic 
numbers and (corresponding to them) eigenfunctions. 

 In the case of an arbitrary (nondegenerate) kernel, the characteristic numbers 
are zeros of the Fredholm determinant 𝐷(𝜆), i.e., are poles of the resolvent 
kernel 𝑅(𝑥, 𝑡;  𝜆) . It then follows, in particular, that the Volterra integral 
equation 

𝜑(𝑥) − 𝜆 න 𝐾(𝑥, 𝑡)𝜑(𝑡)𝑑𝑡 = 0

௫

଴

 
 
 

where 𝐾(𝑥, 𝑡) ∈ 𝐿ଶ(Ω଴) has no characteristic numbers. 

 Eigenfunctions are determined to within a multiplicative constant; that is, if 𝜑(𝑥) is 
an eigenfunction corresponding to some characteristic number 𝜆, then  𝐶𝜑(𝑥), where 
C is an arbitrary constant, is also an eigenfunction which corresponds to the same 
characteristic number 𝜆. 
 

12.2.3  Example: Find the characteristic numbers and eigenfunctions of the integral equation 
   

𝜑(𝑥) − 𝜆 න (𝑐𝑜𝑠ଶ 𝑥 𝑐𝑜𝑠 2𝑡 + 𝑐𝑜𝑠 3𝑥 𝑐𝑜𝑠ଷ𝑡) 𝜑(𝑡)𝑑𝑡 = 0

గ

଴

. 

 
 

Solution. We have  

𝜑(𝑥) = 𝜆 𝑐𝑜𝑠ଶ𝑥 න 𝜑(𝑡) 𝑐𝑜𝑠 2𝑡 𝑑𝑡 + 𝜆 𝑐𝑜𝑠 3𝑥 න 𝜑(𝑡)𝑐𝑜𝑠ଷ𝑡𝑑𝑡

గ

଴

గ

଴

 

Introducing the notations 
   

𝐶ଵ = න 𝜑(𝑡) 𝑐𝑜𝑠 2𝑡 𝑑𝑡

గ

଴

, 𝐶ଶ = න 𝜑(𝑡)𝑐𝑜𝑠ଷ𝑡𝑑𝑡

గ

଴

 

 
 
  (12.5) 
 

we get 
  𝜑(𝑥) = 𝐶ଵ𝜆𝑐𝑜𝑠ଶ𝑥 + 𝐶ଶ𝜆 𝑐𝑜𝑠 3𝑥  (12.6) 

 

Substituting (12.6) into (12.5), we obtain a linear system of homogeneous equations:  
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𝐶ଵ ቌ1 − 𝜆 න 𝑐𝑜𝑠ଶ𝑡 𝑐𝑜𝑠 2𝑡 𝑑𝑡

గ

଴

ቍ − 𝐶ଶ𝜆 න cos 3𝑡 𝑐𝑜𝑠 2𝑡 𝑑𝑡

గ

଴

= 0

−𝐶ଵ𝜆 න  𝑐𝑜𝑠ହ𝑡 𝑑𝑡 + 𝐶ଶ ቌ1 − 𝜆 න  𝑐𝑜𝑠ଷ𝑡 𝑐𝑜𝑠 3𝑡 𝑑𝑡

గ

଴

ቍ = 0

గ

଴ ⎭
⎪⎪
⎬

⎪⎪
⎫

 

 (12.7) 
 

  But since   

න 𝑐𝑜𝑠ଶ𝑡 𝑐𝑜𝑠 2𝑡 𝑑𝑡

గ

଴

=
𝜋

4
,     න cos 3𝑡 𝑐𝑜𝑠 2𝑡 𝑑𝑡

గ

଴

= 0,  

න  𝑐𝑜𝑠ହ 𝑡 𝑑𝑡 = 0

గ

଴

, න  𝑐𝑜𝑠ଷ𝑡 𝑐𝑜𝑠 3𝑡 𝑑𝑡

గ

଴

=  
𝜋

8
           

it follows that system (12.7) takes the form  

   
ቀ1 −

ఒగ

ସ
ቁ 𝐶ଵ = 0,

ቀ1 −
ఒగ

଼
ቁ 𝐶ଶ = 0

ቑ 
 
 (12.8) 
 

The equation for finding characteristic numbers will be 

ተ
1 −

𝜆𝜋

4
0

0 1 −
𝜆𝜋

8

ተ = 0 

The characteristic numbers are  𝜆ଵ =
ସ

గ
, 𝜆ଶ =

଼

గ
.  

For  𝜆 =
ସ

గ
, system (12.8) becomes 

൝

0. 𝐶ଵ = 0,
1

2
. 𝐶ଶ = 0

  

whence 𝐶ଶ = 0, 𝐶ଵ is arbitrary. The eigenfunction will be 𝜑ଵ(𝑥) = 𝐶ଵ𝜆𝑐𝑜𝑠ଶ𝑥 or setting  
𝐶ଵ𝜆 = 1 we get 𝜑ଵ(𝑥) = 𝑐𝑜𝑠ଶ𝑥. 

For  𝜆 =
଼

గ
, system (12.4) is of the form 

൜
(−1). 𝐶ଵ = 0,

0. 𝐶ଶ = 0
  

Whence 𝐶ଵ = 0, 𝐶ଶ is arbitrary and, hence, the eigenfunction will be 𝜑ଶ(𝑥) = 𝐶ଶ𝜆 𝑐𝑜𝑠 3𝑥, or 
assuming 𝐶ଶ𝜆 = 1, we get 𝜑ଶ(𝑥) = 𝑐𝑜𝑠 3𝑥. 
Thus, the characteristic numbers are  

𝜆ଵ =
4

𝜋
, 𝜆ଶ =

8

𝜋
. 

and the corresponding eigenfunctions are 

𝜑ଵ(𝑥) = 𝑐𝑜𝑠ଶ𝑥,        𝜑ଶ(𝑥) = 𝑐𝑜𝑠 3𝑥. 

12.2.4 Note: A homogeneous Fredholm integral equation may, generally, have no 
characteristic numbers and eigenfunctions, or it may not have any real characteristic 
numbers and eigenfunctions.  

 
12.2.5 Example: The homogeneous integral equation 
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𝜑(𝑥) − 𝜆 න(3𝑥 − 2) 𝑡 𝜑(𝑡)𝑑𝑡 = 0

ଵ

଴

 

has no characteristic numbers and eigenfunctions. Indeed, we have  

𝜑(𝑥) = 𝜆(3𝑥 − 2) න 𝑡 𝜑(𝑡)𝑑𝑡

ଵ

଴

 

Putting  

𝐶 = න 𝑡 𝜑(𝑡)𝑑𝑡

ଵ

଴

 

 

 
 (12.9) 
 

we get 

𝜑(𝑥) = 𝐶𝜆(3𝑥 − 2)   (12.10)
 

Substituting (12.10) into (12.9), we get 

቎1 − 𝜆 න(3𝑡ଶ − 2𝑡) 𝑑𝑡

ଵ

଴

቏ . 𝐶 = 0 
 
  (12.11)
 

equation (12.11) yields C = 0 and, hence, 𝜑(𝑥) ≡ 0. 

And so, for any 𝜆, this homogeneous equation has only one zero solution  𝜑(𝑥) ≡ 0 and, 
hence, it does not have any characteristic numbers or eigenfunctions. 

12.2.6 Example: The equation 

𝜑(𝑥) − 𝜆 න൫√𝑥𝑡 − √𝑡𝑥൯ 𝜑(𝑡)𝑑𝑡 = 0

ଵ

଴

 

 

 
 

does not have real characteristic numbers and eigenfunctions. 

We have 

𝜑(𝑥) = 𝐶ଵ𝜆√𝑥 − 𝐶ଶ𝜆𝑥 (12.12) 

where 

𝐶ଵ = න 𝑡 𝜑(𝑡)𝑑𝑡

ଵ

଴

,   𝐶ଶ = න √𝑡 𝜑(𝑡)𝑑𝑡

ଵ

଴

 
 
  (12.13) 
 

Substituting (12.12) into (12.13), we get (after some simple manipulations) the system· of 
algebraic equations 
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൬1 −

2𝜆

5
൰ 𝐶ଵ +

𝜆

3
𝐶ଶ = 0,

−
𝜆

2
𝐶ଵ + ൬1 +

2𝜆

5
൰ 𝐶ଶ = 0

ൢ 

 
 
(12.14) 
 

The determinant of this system is  

∆(𝜆) = ተ
1 −

2𝜆

5

𝜆

3

−
𝜆

2
1 +

2𝜆

5

ተ = 1 +
𝜆ଶ

150
 

For real 𝜆, it does not vanish, so that from (12.14) we get 𝐶ଵ = 0 and 𝐶ଶ = 0 and, hence, for 
all real 𝜆 the equation has only one solution, namely, the zero solution 𝜑(𝑥) ≡ 0. Thus, 
equation (12.12) does not have real characteristic numbers or eigenfunctions. 

12.2.7 Example: Find the characteristic numbers and eigenfunctions for the homogeneous 
integral equations with degenerate kernels 

𝜑(𝑥) − 𝜆 න sinଶ 𝑥𝜑(𝑡)𝑑𝑡 = 0

గ
ସ

଴

 
 
 (12.15) 
 

Solution. We can rewrite the equation (12.15) as 
𝜑(𝑥) = 𝜆sinଶ 𝑥 𝐶 (12.16) 

where 

𝐶 = න  𝜑(𝑡)𝑑𝑡

గ
ସ

଴

 

 
(12.17) 
 

Substituting (12.16) into (12.17), we get  

𝐶 = 𝜆𝐶 න  sinଶ 𝑡 𝑑𝑡

గ
ସ

଴

 

 

Implies   

𝐶 = 𝜆𝐶
𝜋 − 2

8
 

for a nontrivial solution (𝐶 ≠ 0), we get   

𝜆 =
8

𝜋 − 2
 

and corresponding eigenfunction is 𝜑(𝑥) = sinଶ 𝑥. 

12.2.8 Note: If the 𝑛୲୦ iterated kernel 𝐾௡(𝑥, 𝑡) of the kernel 𝐾(𝑥, 𝑡) is symmetric, then it  
may be asserted that 𝐾(𝑥, 𝑡) has at least one characteristic number (real or complex) 
and that the 𝑛୲୦  degrees of all characteristic numbers are real numbers. In particular, 
for the skew-symmetric kernel 𝐾(𝑥, 𝑡) = −𝐾(𝑡, 𝑥) all characteristic numbers are pure 
imaginary 𝜆 = 𝛽𝑖, where 𝛽 is real 
 

12.2.9 Definition: The kernel 𝐾(𝑥, 𝑡) of the integral equation (12.1) is called symmetric if    
   the condition 𝐾(𝑥, 𝑡) = 𝐾(𝑡, 𝑥) (𝑎 ≤ 𝑥, 𝑡 ≤ 𝑏) is satisfied.   
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12.2.10 Theorems: The following theorems hold for the Fredholm integral equation (12.1)                                                        
             with symmetric kernel 𝐾(𝑥, 𝑡): 

12.2.10.1 Theorem 1. Equation (12.1) has at least one real characteristic number. 
 

12.2.10.2 Theorem 2. To every characteristic number 𝜆 there corresponds a finite number 𝑞  
      of linearly independent eigenfunctions of equation (12.1), and 
 

𝑆𝑢𝑝 𝑞 ≤ 𝜆ଶ𝐵ଶ  

where, 

𝐵ଶ = න න 𝐾ଶ(𝑥, 𝑡)𝑑𝑥𝑑𝑡

௕

௔

௕

௔

 

The number 𝑞 is called the index or multiplicity of the characteristic number. 

12.2.10.3 Theorem 3. Every pair of eigenfunctions 𝜑ଵ(𝑥),    𝜑ଶ(𝑥) corresponding to 
different characteristic numbers, 𝜆ଵ ≠ 𝜆ଶ, is orthogonal; i.e., 

න 𝜑ଵ(𝑥)𝜑ଶ(𝑥)𝑑𝑥

௕

௔

= 0 

 
12.2.10.4 Theorem: There is a finite number of characteristic numbers in every finite 

interval of the 𝜆 −axis. The upper bound for a number m of characteristic numbers 
lying in an interval  −𝑙 < 𝜆 < 𝑙  is defined by the inequality 

𝑚 ≤ 𝑙ଶ𝐵ଶ 

12.2.10.5 Note: When the kernel 𝐾(𝑥, 𝑡) of the integral equation (12.1) is the Green's 
function of some homogeneous Sturm-Liouville problem, finding the characteristic 
numbers and eigenfunctions reduces to the solution of the indicated Sturm-Liouville 
problem. 

 
12.2.11 Example: Find the characteristic numbers and eigenfunctions of the homogeneous 

equation 

𝜑(𝑥) − 𝜆 න 𝐾(𝑥, 𝑡)𝜑(𝑡)𝑑𝑡 = 0

గ

଴

 

where, 

𝐾(𝑥, 𝑡) = ൜
𝑐𝑜𝑠 𝑥 𝑠𝑖𝑛 𝑡 , 𝑖𝑓 0 ≤ 𝑥 ≤ 𝑡,
𝑐𝑜𝑠 𝑡 𝑠𝑖𝑛 𝑥 , 𝑖𝑓 𝑡 ≤ 𝑥 ≤ 𝜋

  

Solution. Represent the equation in the form 

𝜑(𝑥) = 𝜆 න 𝐾(𝑥, 𝑡)𝜑(𝑡)𝑑𝑡 + 𝜆 න 𝐾(𝑥, 𝑡)𝜑(𝑡)𝑑𝑡

గ

௫

௫

଴

 

or 
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𝜑(𝑥) = 𝜆 𝑠𝑖𝑛 𝑥 න 𝜑(𝑡) 𝑐𝑜𝑠 𝑡 𝑑𝑡 + 𝜆 𝑐𝑜𝑠 𝑥 න 𝜑(𝑡) 𝑠𝑖𝑛 𝑡 𝑑𝑡

గ

௫

௫

଴

 
 
(12.18) 

Differentiating both sides of (12.18), we get 

𝜑′(𝑥) = 𝜆 𝑐𝑜𝑠 𝑥 න 𝜑(𝑡) 𝑐𝑜𝑠 𝑡 𝑑𝑡 + 𝜆 𝑠𝑖𝑛 𝑥 𝑐𝑜𝑠 𝑥 𝜑(𝑥)

௫

଴

− 𝜆 𝑠𝑖𝑛 𝑥 න 𝜑(𝑡) 𝑠𝑖𝑛 𝑡 𝑑𝑡 − 𝜆 𝑠𝑖𝑛 𝑥 𝑐𝑜𝑠 𝑥 𝜑(𝑥)

గ

௫

 

or  

𝜑′(𝑥) = 𝜆 𝑐𝑜𝑠 𝑥 න 𝜑(𝑡) 𝑐𝑜𝑠 𝑡 𝑑𝑡 − 𝜆 𝑠𝑖𝑛 𝑥 න 𝜑(𝑡) 𝑠𝑖𝑛 𝑡 𝑑𝑡

గ

௫

௫

଴

 
 
(12.19) 

differentiating again, we get  

𝜑′′(𝑥) = −𝜆 𝑠𝑖𝑛 𝑥 න 𝜑(𝑡) 𝑐𝑜𝑠 𝑡 𝑑𝑡 + 𝜆 𝑐𝑜𝑠ଶ 𝑥 𝜑(𝑥) − 𝜆 𝑐𝑜𝑠 𝑥 න 𝜑(𝑡) 𝑠𝑖𝑛 𝑡 𝑑𝑡

గ

௫

௫

଴

+ 𝜆 𝑠𝑖𝑛ଶ 𝑥 𝜑(𝑥) 

𝜑ᇱᇱ(௫) = 𝜆 𝜑(𝑥) − ൥𝜆 𝑠𝑖𝑛 𝑥 න 𝜑(𝑡) 𝑐𝑜𝑠 𝑡 𝑑𝑡 + 𝜆 𝑐𝑜𝑠 𝑥 න 𝜑(𝑡) 𝑠𝑖𝑛 𝑡 𝑑𝑡

గ

௫

௫

଴

൩ 

The expression in the square brackets is equal to 𝜑(𝑥) so that 

𝜑′′(𝑥) = 𝜆𝜑(𝑥) − 𝜑(𝑥) 

From (12.18) and (12.19) we find that  

𝜑(𝜋) = 0, 𝜑′(0) = 0 

Thus, the given integral equation reduces to the following boundary-value problem: 

𝜑ᇱᇱ(𝑥) − (𝜆 − 1)𝜑(𝑥) = 0 
𝜑(𝜋) = 0, 𝜑′(0) = 0 

(12.20) 
(12.21) 

The three following cases are possible: 

1. 𝜆 − 1 = 0  or 𝜆 = 1. Equation (12.20) takes the form 𝜑ᇱᇱ(𝑥) = 0. Its general solution will 
be 𝜑(𝑥) = 𝐶ଵ𝑥 + 𝐶ଶ. Utilizing the boundary conditions (12.21), we obtain the system 

൜
𝐶ଵ𝜋 + 𝐶ଶ = 0,

𝐶ଵ = 0
  

which has a unique solution: 𝐶ଵ = 0, 𝐶ଶ = 0 , and hence the integral equation has only the 
trivial solution 

𝜑(𝑥) ≡ 0 

2. 𝜆 − 1 > 0  or 𝜆 > 1. The general solution of equation (12.20) is of the form 

𝜑(𝑥) = 𝐶ଵ𝑐𝑜𝑠ℎ√𝜆 − 1𝑥 + 𝐶ଶ𝑠𝑖𝑛ℎ√𝜆 − 1𝑥 
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whence  

𝜑′(𝑥) = √𝜆 − 1൫𝐶ଵ𝑠𝑖𝑛ℎ√𝜆 − 1𝑥 + 𝐶ଶ𝑐𝑜𝑠ℎ√𝜆 − 1𝑥൯ 

For finding the values of 𝐶ଵ and 𝐶ଶ, the boundary conditions yield the system 

൜
𝐶ଵ 𝑐𝑜𝑠ℎ 𝜋 √𝜆 − 1 + 𝐶ଶ 𝑠𝑖𝑛ℎ 𝜋 √𝜆 − 1 = 0,
                                                               𝐶ଶ = 0

  

The system has a unique solution: 𝐶ଵ = 0, 𝐶ଶ = 0 The integral equation has the trivial 
solution 𝜑(𝑥) ≡ 0. Thus, for 𝜆 ≥ 1 the integral equation has no characteristic numbers and, 
hence, no eigenfunctions. 

3. 𝜆 − 1 < 0  or 𝜆 < 1. The general solution of equation (12.20) is of the form 

𝜑(𝑥) = 𝐶ଵ𝑐𝑜𝑠√1 − 𝜆𝑥 + 𝐶ଶ𝑠𝑖𝑛√1 − 𝜆𝑥 

whence  

𝜑′(𝑥) = √1 − 𝜆൫−𝐶ଵ𝑠𝑖𝑛√1 − 𝜆𝑥 + 𝐶ଶ𝑐𝑜𝑠√1 − 𝜆𝑥൯ 

In this case, for finding   𝐶ଵ and 𝐶ଶ the boundary conditions (12.21) yield the system 

 𝐶ଵ 𝑐𝑜𝑠 𝜋 √1 − 𝜆 + 𝐶ଶ 𝑠𝑖𝑛 𝜋 √1 − 𝜆 = 0,

√1 − 𝜆𝐶ଶ = 0
ቋ 

 
(12.22) 

The determinant of this system is 

∆𝜆 = ฬ𝑐𝑜𝑠 𝜋 √1 − 𝜆 𝑠𝑖𝑛 𝜋 √1 − 𝜆

0 √1 − 𝜆
ฬ 

Setting it equal to zero, we get an equation for finding the characteristic numbers: 

ฬ𝑐𝑜𝑠 𝜋 √1 − 𝜆 𝑠𝑖𝑛 𝜋 √1 − 𝜆

0 √1 − 𝜆
ฬ = 0 

 
  (12.23) 

or  √1 − 𝜆 𝑐𝑜𝑠 𝜋 √1 − 𝜆 = 0. By assumption  √1 − 𝜆 ≠ 0 and so 𝑐𝑜𝑠 𝜋 √1 − 𝜆 = 0. Whence 

we find that  𝜋√1 − 𝜆 =
గ

ଶ
+ 𝜋𝑛, where n is any integer. All the roots of equation (12.23) are 

given by the formula 

𝜆௡ = 1 − ൬𝑛 +
1

2
൰

ଶ

 

For values 𝜆 = 𝜆௡ the system (12.22) takes the form 

൜
𝐶ଵ. 0 = 0,

𝐶ଶ = 0
  

It has an infinite number of nonzero solutions 

൜
𝐶ଵ = 𝐶,
𝐶ଶ = 0
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where C is an arbitrary constant. Hence, the original integral equation also has an infinity of 
solutions of the form 

𝜑(𝑥) = 𝐶 𝑐𝑜𝑠 ൬𝑛 +
1

2
൰ 𝑥 

which are eigenfunctions of this equation. Hence, the characteristic numbers and 
eigenfunctions of the given integral equation will be 

𝜆௡ = 1 − ൬𝑛 +
1

2
൰

ଶ

,    𝜑௡(𝑥) = 𝑐𝑜𝑠 ൬𝑛 +
1

2
൰ 𝑥 

where n is any integer. 

12.2.12 Example: Find the characteristic numbers and eigenfunctions of the homogeneous  
     equation 

𝜑(𝑥) − 𝜆 න 𝐾(𝑥, 𝑡)𝜑(𝑡)𝑑𝑡 = 0

ଵ

଴

 

where, 

𝐾(𝑥, 𝑡) = ൜
𝑥(𝑡 − 1), 0 ≤ 𝑥 ≤ 𝑡,

𝑡(𝑥 − 1), 𝑡 ≤ 𝑥 ≤ 1.
  

Solution. Represent the equation in the form 

𝜑(𝑥) = 𝜆 ቎න 𝑡(𝑥 − 1)𝜑(𝑡)𝑑𝑡 + න 𝑥(𝑡 − 1)𝜑(𝑡)𝑑𝑡

ଵ

௫

௫

଴

቏ 

Differentiating on both sides we get 

𝜑′(𝑥) = 𝜆 න 𝑡 𝜑(𝑡)𝑑𝑡 + 𝜆 න(𝑡 − 1)𝜑(𝑡)𝑑𝑡

ଵ

௫

௫

଴

 

Differentiating again, we get  

𝜑ᇱᇱ(௫) = 𝜆𝑥𝜑(𝑥) − 𝜆(𝑥 − 1)𝜑(𝑥) 

𝜑ᇱᇱ(𝑥) − 𝜆𝜑(𝑥) = 0 

Thus, the given integral equation reduces to the following boundary-value problem: 

𝜑ᇱᇱ(𝑥) − 𝜆𝜑(𝑥) = 0 

𝜑(0) = 0, 𝜑(1) = 0 

The three following cases are possible: 

1. If 𝜆 = 0,  then 𝜑ᇱᇱ(𝑥) = 0.  
Its general solution will be 𝜑(𝑥) = 𝐶ଵ + 𝐶ଶ𝑥. Utilizing the boundary conditions we get 
𝐶ଵ = 0, 𝐶ଶ = 0, which is trivial (𝜑(𝑥) ≡ 0) 

2. If 𝜆 = 𝑘ଶ, The general solution is of the form 
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𝜑(𝑥) = 𝐶ଵ𝑒௞௫ + 𝐶ଶ𝑒ି௞  

Which is also trivial solution. 

3. If 𝜆 = −𝑘ଶ, the general solution is of the form 

𝜑(𝑥) = 𝐶ଵ cos 𝑘𝑥 + 𝐶ଶ sin 𝑘𝑥 

Hence by using boundary conditions we get,  

൜
𝐶ଵ = 0,
𝐶ଶ ≠ 0

  

It has an infinite number of nonzero solutions 

൜
𝐶ଵ = 0,
𝐶ଶ = 𝐶

  

where C is an arbitrary constant. Hence, the original integral equation also has an infinity of 
solutions of the form 

𝜑(𝑥) = 𝐶 sin (𝑛𝜋) 𝑥 

which are eigenfunctions of this equation. Hence, the characteristic numbers and 
eigenfunctions of the given integral equation will be 

𝜆௡ = −𝑛ଶ𝜋ଶ,    𝜑௡(𝑥) = sin (𝑛𝜋) 𝑥 

where n is any integer. 

12.3 FREDHOLM INTEGRAL EQUATIONS WITH DIFFERENCE KERNELS: 
 
We define difference kernels and show that their characteristic numbers are the Fourier 
coefficients of even kernels, with suitable examples. 

Suppose we have the integral equation 

𝜑(𝑥) = 𝜆 න 𝐾(𝑥, 𝑡)𝜑(𝑡)𝑑𝑡

గ

ିగ

 
 
    (12.24) 

where the kernel 𝐾(𝑥)  (−𝜋 ≤ 𝑥 ≤ 𝜋) is an even function which is periodically extended to 
the entire 𝑥-axis so that 

𝐾(𝑥 − 𝑡) = 𝐾(𝑡 − 𝑥)  (12.25) 

It can be shown that the eigenfunctions of equation (12.24) are 

 𝜑௡
(ଵ)(𝑥) = cos 𝑛𝑥   (𝑛 = 1, 2, … ),

𝜑௡
(ଶ)(𝑥) = sin 𝑛𝑥   (𝑛 = 1, 2, … ).

ቋ  
 
 (12.26) 

and the corresponding characteristic numbers are 

𝜆௡ =
ଵ

గ௔೙
      (𝑛 = 1, 2, … )      (12.27) 
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where 𝑎௡ are the Fourier coefficients of the function 𝐾(𝑥): 

𝑎௡ =
1

𝜋
න 𝐾(𝑥) cos 𝑛𝑥 𝑑𝑥     (𝑛 = 1, 2, … )

గ

ିగ

 
 
      (12.28) 

Thus, to every value of  𝜆௡ there correspond two linearly independent eigenfunctions cos 𝑛𝑥, 
sin 𝑛𝑥 so that each 𝜆௡ is a double characteristic number. The function 𝜑଴(𝑥) ≡ 1 is also an 
eigenfunction of equation (12.24) corresponding to the characteristic number 

𝜆଴ =
1

𝜋𝑎଴
,     𝑎଴ =

1

𝜋
න 𝐾(𝑥)𝑑𝑥

గ

ିగ

 
 
  

We shall now show that, for example, cos 𝑛𝑥 is an eigenfunction of the integral equation 

𝜑(𝑥) =
𝜋ିଵ

𝑎௡
න 𝐾(𝑥 − 𝑡)𝜑(𝑡)𝑑𝑡

గ

ିగ

 
 
   (12.29)  

Where 

𝑎௡ =
1

𝜋
න 𝐾(𝑥) cos 𝑛𝑥 𝑑𝑥

గ

ିగ

 

 

 
  

Making the substitution 𝑥 − 𝑡 = 𝑧, we find 

 

න 𝐾(𝑥 − 𝑡) cos 𝑛𝑡 𝑑𝑡

గ

ିగ

= − න 𝐾(𝑧) cos 𝑛(𝑥 − 𝑧) 𝑑𝑧

௫ିగ

௫ାగ

 

= cos 𝑛𝑥 න 𝐾(𝑧) cos 𝑛𝑧 𝑑𝑧 + sin 𝑛𝑥 න 𝐾(𝑧) sin 𝑛𝑧 𝑑𝑧

௫ାగ

௫ିగ

௫ାగ

௫ିగ

 

= 𝜋𝑎௡ cos 𝑛𝑥 

since by virtue of the evenness of 𝐾(𝑥) the second integral is zero, and the first integral is a 
Fourier coefficient 𝑎௡ multiplied by 𝜋 in the expansion of the even function 𝐾(𝑥). 

Thus, 

cos 𝑛𝑥 =
1

𝜋𝑎௡
න 𝐾(𝑥 − 𝑡) cos 𝑛𝑡 𝑑𝑡

గ

ିగ

 

and this means that cos 𝑛𝑥 is an eigenfunction of equation (12.29). 

Similarly, we establish the fact that sin 𝑛𝑥 is an eigenfunction of the integral equation (12.29) 

corresponding to the same characteristic number  
ଵ

గ௔೙
. 

12.3.1 Find the eigenfunction and the corresponding characteristic numbers of the equation   
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𝜑(𝑥) = 𝜆 න cosଶ(𝑥 − 𝑡) 𝜑(𝑡)
గ

ିగ

 
 

Solution.  

where the kernel 𝐾(𝑥, 𝑡) = cosଶ(𝑥 − 𝑡)  is an even function i. e., 

cosଶ(𝑥 − 𝑡) = cosଶ(𝑡 − 𝑥)  

Implies 𝐾(𝑥, 𝑡) =
ଵ

ଶ
+

ଵ

ଶ
cos( 2(𝑥 − 𝑡)). The function 𝜑଴(𝑥) ≡ 1 is also an eigenfunction of 

the given integral equation corresponding to the characteristic number 𝜆଴ =
ଵ

గ
,   

where, 

𝑎଴ =
1

𝜋
න 𝐾(𝑥)𝑑𝑥

గ

ିగ

 

𝑎଴ =
1

𝜋
න ൬

1

2
+

1

2
cos( 2𝑥) ൰ 𝑑𝑥 = 1

గ

ିగ

 

and the corresponding characteristic numbers are 

𝜆ଶ =
ଵ

ଶగ
      (𝑛 = 1, 2, … )     

where 𝑎௡ are the Fourier coefficients of the function 𝐾(𝑥): 

𝑎ଵ = 𝑎ଷ = 𝑎ହ = ⋯ = 0, 

𝑎ଶ =
1

𝜋
න ൬

1

2
+

1

2
cos( 2𝑥) ൰ cos 2𝑥 𝑑𝑥 =

1

2
   

గ

ିగ

 

 
  

It can be shown that the eigenfunctions of given integral equation are 

𝜑଴(𝑥) ≡ 1; 𝜑ଵ
(ଵ)(𝑥) = cos 2𝑥, 𝜑ଵ

(ଶ)(𝑥) = sin 2𝑥. 
 

12.4 EXTREMAL PROPERTIES OF CHARACTERISTIC NUMBERS AND  
    EIGENFUNCTIONS: 
 

We define the concept of the maximum value of a double integral equation and provide 
examples to demonstrate the process of determining this maximum 

Consider the double integral (Hilbert’s integral) equation 

|𝐾𝜑, 𝜑| =  ቮන න 𝐾(𝑥, 𝑡)𝜑(𝑥)𝜑(𝑡)𝑑𝑥𝑑𝑡

௕

௔

௕

௔

ቮ 
  

       (12.30) 

where 𝐾(𝑥, 𝑡) = 𝐾(𝑡, 𝑥) is a symmetric kernel of some integral equation, on the set of 
normalized functions 𝜑(𝑥),  i.e.,  

(𝜑, 𝜑) = න 𝜑ଶ(𝑥)𝑑𝑥

௕

௔

= 1 

has a maximum equal to  
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𝑚𝑎𝑥|𝐾𝜑, 𝜑| =  
1

|𝜆ଵ|
 

  
       (12.31) 

where 𝜆ଵ is the least (in absolute value) characteristic number of the kernel 𝐾(𝑥, 𝑡). The 
maximum is attained for 𝜑(𝑥) = 𝜑ଵ(𝑥), which is the eigenfunction of the kernel 
corresponding to 𝜆ଵ. 

12.4.1  Example: Find the maximum of 

|𝐾𝜑, 𝜑| =  อන න 𝐾(𝑥, 𝑡)𝜑(𝑥)𝜑(𝑡)𝑑𝑥𝑑𝑡

గ

଴

గ

଴

อ 

provided 

(𝜑, 𝜑) = න 𝜑ଶ(𝑥)𝑑𝑥

గ

଴

= 1 

If  
𝐾(𝑥, 𝑡) = cos 𝑥 cos 2𝑡 + cos 𝑡 cos 2𝑥 + 1. 

Solution. Solving the homogeneous integral equation 

𝜑(𝑥) = 𝜆 න(cos 𝑥 cos 2𝑡 + cos 𝑡 cos 2𝑥 + 1)𝜑(𝑡)𝑑𝑡

గ

଴

 

as an equation with a degenerate kernel, we find the characteristic umbers 𝜆ଵ =
ଵ

గ
  and  

𝜆ଶ, 𝜆ଷ = ±
ଶ

గ
 and the corresponding eigenfunctions 𝜑ଵ(𝑥) = 𝐶ଵ, 𝜑ଶ(𝑥) = 𝐶ଶ(cos 𝑥 + cos 2𝑥),

𝜑ଷ(𝑥) = 𝐶ଷ(cos 𝑥 − cos 2𝑥), where 𝐶ଵ, 𝐶ଶ and 𝐶ଷ are arbitrary constants. 

The smallest (in absolute value) characteristic number is 𝜆ଵ =
ଵ

గ
, to which corresponds the 

eigenfunction 𝜑ଵ(𝑥) = 𝐶ଵ. From the normalization condition (𝜑, 𝜑) = 1, we find 𝐶ଵ =

±
ଵ

√ଶగ
.  Hence 

𝑚𝑎𝑥 อන න(cos 𝑥 cos 2𝑡 + cos 𝑡 cos 2𝑥 + 1)𝜑(𝑡)𝑑𝑡

గ

଴

గ

଴

อ = 2𝜋 

and it is attained on the functions  𝜑(𝑥) = ±
ଵ

√ଶగ
 . 

12.4.2  Find the maximum of 

|𝐾𝜑, 𝜑| =  ቮන න 𝐾(𝑥, 𝑡)𝜑(𝑥)𝜑(𝑡)𝑑𝑥𝑑𝑡

ଵ

଴

ଵ

଴

ቮ 

provided 

(𝜑, 𝜑) = න 𝜑ଶ(𝑥)𝑑𝑥

ଵ

଴

= 1 

if 
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𝐾(𝑥, 𝑡) = 𝑥𝑡. 
Solution. Solving the homogeneous integral equation 

𝜑(𝑥) = 𝜆 න(𝑥𝑡)𝜑(𝑡)𝑑𝑡

ଵ

଴

 

It can be rewritten as  
𝜑(𝑥) = 𝜆𝑥𝐶 

Where 

𝐶 = න 𝑡 𝜑(𝑡)𝑑𝑡

ଵ

଴

 

as an equation with a degenerate kernel, we find the characteristic umbers 𝜆 =
ଵ

ଷ
  and  the 

corresponding eigenfunctions 𝜑(𝑥) =
௫

ଷ
𝐶. 

The characteristic number is 𝜆 =
ଵ

ଷ
, to which corresponds the eigenfunction 𝜑(𝑥) = 𝐶. From 

the normalization condition (𝜑, 𝜑) = 1, we find 𝐶 = ±3√3.  Hence 

𝑚𝑎𝑥 ቮන න(𝑥𝑡)𝜑(𝑡)𝑑𝑡

ଵ

଴

ଵ

଴

ቮ =
3

4
 

and it is attained on the functions  𝜑(𝑥) = ±√3𝑥 . 
 

12.5 BIFURCATION POINTS:  

Suppose we have a nonlinear integral equation 

𝜑(𝑥) = 𝜆 න 𝐾(𝑥, 𝑡, 𝜑(𝑡))𝑑𝑡

௕

௔

 
  

        (12.32) 

Let 𝜑(𝑥) ≡ 0  be a solution of the equation, and 

𝐾(𝑥, 𝑡, 0) ≡ 0 

By analogy with linear integral equations, the nonzero solutions 𝜑(𝑥) ≡ 0 of equation 
(12.32) are called eigenfunctions and the corresponding values of the parameter 𝜆 are called 
characteristic numbers of the equation. 

12.5.1 Definition: The number 𝜆଴ is called a bifurcation point of the nonlinear equation 
(12.32) if for any 𝜀 > 0 there is a characteristic number 𝜆 of equation (12.32) such 
that |𝜆 − 𝜆଴| < 𝜀, and to this characteristic number there corresponds at least one 
eigenfunction 𝜑(𝑥) (𝜑(𝑥) ≢ 0) with norm less than 𝜀: ‖𝜑‖ < 𝜀.  

 
12.5.2 Note: In problems of technology and physics involving conditions of stability, 

bifurcation points determine critical forces. Thus, the problem of the. bending of a 
rectilinear rod of unit length and variable rigidity 𝜌(𝑥) under the action of a force P 
leads to the solution of the following nonlinear integral equation: 
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𝜑(𝑥) = 𝑃𝜌(𝑥) න 𝐾(𝑥, 𝑡)𝜑(𝑡)ඩ1 − ቎න 𝐾௫
ᇱ (𝑥, 𝑡)𝜑(𝑡)𝑑𝑡

ଵ

଴

቏

ଶ

 𝑑𝑡

ଵ

଴

 

  
      (12.32)  

where 𝜑(𝑥) is the unknown function. For small P, equation (12.32) has a unique zero solution 
in the space 𝐶 [0, 1]. This means that for small P the rod does not bend. However, a 
deflection occurs for forces greater than the so-called critical force of Euler. Euler's critical 
force is the bifurcation value. 

12.5.3 Example: To illustrate how to find bifurcation points, let us consider the following 
nonlinear equation 

𝜑(𝑥) = 𝜆 න[𝜑(𝑡) + 𝜑ଷ(𝑡)]𝑑𝑡

ଵ

଴

 
  

(12.33)  

Put  

𝐶 = න[𝜑(𝑡) + 𝜑ଷ(𝑡)]𝑑𝑡

ଵ

଴

 

Then  
𝜑(𝑥) = 𝐶𝜆   (12.34)  

and equation (12.33) reduces to the algebraic equation 
𝐶 = 𝜆𝐶 + 𝜆ଷ𝐶ଷ   (12.35)  

From (12.35) we get   

𝐶ଵ = 0, 𝐶ଶ,ଷ = ±ඨ
1 − 𝜆

𝜆ଷ
 

whence, by (12.34), 

𝜑ଵ ≡ 0,   𝜑ଶ,ଷ = ±ඨ
1 − 𝜆

𝜆
 

Thus, for any 0 < 𝜆 < 1, equation (12.33) admits real nonzero solutions. For 𝜆 = 1 it has 
only the zero solution 𝜑 ≡ 0  
Thus, for any 0 < 𝜀 < 1, the number  𝜆 = 1 − 𝜀 is a characteristic number of equation 
(12.33) to which there correspond two eigenfunctions:   

𝜑ଵ =
√𝜀

√1 − 𝜀
;                  𝜑ଶ = −

√𝜀

√1 − 𝜀
 

where 𝜀 = 1 − 𝜆 Hence, the point 𝜆଴ = 1 is a bifurcation point of equation (12.33). One can 
also speak of bifurcation points of nonzero solutions of nonlinear integral equations. 

12.5.4  Example: Find bifurcation points of the zero solution of the integral equation 

𝜑(𝑥) = 𝜆 න 𝑥𝑡 [𝜑(𝑡) + 𝜑ଷ(𝑡)]𝑑𝑡

ଵ

଴

 
  

  (12.36)  

Put  
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𝐶 = න 𝑡 [𝜑(𝑡) + 𝜑ଷ(𝑡)]𝑑𝑡

ଵ

଴

 

Then  

𝜑(𝑥) = 𝜆𝑥𝐶  (12.37)  

and equation (12.36) reduces to the algebraic equation 

𝐶 =
5𝜆𝐶 + 3𝜆ଷ𝐶ଷ

15
 

 (12.38)  

From (12.38) we get   

𝐶ଵ = 0, 𝐶ଶ,ଷ = ±ඨ
15 − 5𝜆

3𝜆ଷ
 

whence, by (12.37), 

𝜑ଵ ≡ 0,   𝜑ଶ,ଷ = ±ඨ
15 − 5𝜆

3𝜆
 

Thus, for any 0 < 𝜆 < 3, equation (12.36) admits real nonzero solutions. For 𝜆 = 3 it has 
only the zero solution 𝜑 ≡ 0  

Thus, for any 0 < 𝜀 < 3, the number  𝜆 = 3 − 𝜀 is a characteristic number of equation 
(12.36) to which there correspond two eigenfunctions:   

𝜑ଵ =
√5𝜀

ඥ3(3 − 𝜀)
;                  𝜑ଶ = −

√5𝜀

ඥ3(3 − 𝜀)
 

where 𝜀 = 3 − 𝜆 Hence, the point 𝜆଴ = 3 is a bifurcation point of equation (12.36). One can 
also speak of bifurcation points of nonzero solutions of nonlinear integral equations. 
 

12.6  SUMMARY: 
 

This lesson delves into the spectral theory of Fredholm integral equations, focusing on the 
concepts of characteristic numbers and eigenfunctions. It covers both degenerate and non-
degenerate kernels, showing how these lead to systems of algebraic equations. It also presents 
symmetric and skew-symmetric kernels and explores bifurcation theory, where small changes 
in parameters cause the emergence of new solutions. Theoretical results and concrete 
examples highlight the link between integral equations and physical phenomena like stability. 
 

12.7  TECHNICAL TERMS:  

 Characteristic Number: Also called eigenvalue; a value of 𝜆 for which the Fredholm 
equation has non-trivial solutions. 

 Eigenfunction: A non-zero solution corresponding to a characteristic number. 
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 Degenerate Kernel: A kernel that is a finite sum of separable functions, simplifying the 
integral equation. 

 Symmetric Kernel: A kernel 𝐾(𝑥, 𝑡) = 𝐾(𝑡, 𝑥); such kernels have real characteristic 
numbers. 

 Bifurcation Point: A critical value of a parameter where the number or type of solutions 
to an equation changes. 

12.8  SELF-ASSESSMENT QUESTIONS: 

Exercise (12a): Find the characteristic numbers and eigenfunctions for the following 
homogeneous integral equations with degenerate kernels: 

1.  

𝜑(𝑥) − 𝜆 න 𝑠𝑖𝑛 𝑥 𝑐𝑜𝑠 𝑡  𝜑(𝑡)𝑑𝑡 = 0.

ଶగ

଴

 

2.  

𝜑(𝑥) − 𝜆 න 𝑠𝑖𝑛 𝑥 𝑠𝑖𝑛 𝑡  𝜑(𝑡)𝑑𝑡 = 0.

ଶగ

଴

 

3.  
 

𝜑(𝑥) − 𝜆 න 𝑐𝑜𝑠(𝑥 + 𝑡)  𝜑(𝑡)𝑑𝑡 = 0.

గ

଴

 

 
 

4.  

𝜑(𝑥) − 𝜆 න(45𝑥ଶ 𝑙𝑛 𝑡 − 9𝑡ଶ 𝑙𝑛 𝑥) 𝜑(𝑡)𝑑𝑡 = 0.

ଵ

଴

 

5.  

𝜑(𝑥) − 𝜆 න(2𝑥𝑡 − 4𝑥ଶ) 𝜑(𝑡)𝑑𝑡 = 0.

ଵ

଴

 

6.  

𝜑(𝑥) − 𝜆 න(5𝑥𝑡ଷ + 4𝑥ଶ𝑡) 𝜑(𝑡)𝑑𝑡 = 0.

ଵ

ିଵ

 

7.  

𝜑(𝑥) − 𝜆 න(5𝑥𝑡ଷ + 4𝑥ଶ𝑡 + 3𝑥𝑡) 𝜑(𝑡)𝑑𝑡 = 0.

ଵ

ିଵ

 

8.  

𝜑(𝑥) − 𝜆 න(𝑥 𝑐𝑜𝑠ℎ 𝑡 − 𝑡 𝑠𝑖𝑛ℎ 𝑥) 𝜑(𝑡)𝑑𝑡 = 0.

ଵ

ିଵ

 

9.  
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𝜑(𝑥) − 𝜆 න(𝑥 𝑐𝑜𝑠ℎ 𝑡 − 𝑡ଶ 𝑠𝑖𝑛ℎ 𝑥) 𝜑(𝑡)𝑑𝑡 = 0.

ଵ

ିଵ

 

10.  

𝜑(𝑥) − 𝜆 න(𝑥 𝑐𝑜𝑠ℎ 𝑡 − 𝑡 𝑐𝑜𝑠ℎ 𝑥) 𝜑(𝑡)𝑑𝑡 = 0.

ଵ

ିଵ

 

Exercise (12b): Find the characteristic numbers and eigenfunctions of the homogeneous 
integral equations if their kernels are of the following form: 

1. 𝐾(𝑥, 𝑡) = ൜
𝑡(𝑥 + 1),   0 ≤ 𝑥 ≤ 𝑡,
𝑥(𝑡 + 1),    𝑡 ≤ 𝑥 ≤ 1.

  

2. 𝐾(𝑥, 𝑡) = ൜
(𝑥 + 1)(𝑡 − 2), 0 ≤ 𝑥 ≤ 𝑡,
(𝑡 + 1)(𝑥 − 2),   𝑡 ≤ 𝑥 ≤ 1.

  

3. 𝐾(𝑥, 𝑡) = ቊ
𝑠𝑖𝑛 𝑥 𝑐𝑜𝑠 𝑡 ,    0 ≤ 𝑥 ≤ 𝑡,

𝑠𝑖𝑛 𝑡 𝑐𝑜𝑠 𝑥 ,    𝑡 ≤ 𝑥 ≤
గ

ଶ
.
  

4. 𝐾(𝑥, 𝑡) = ቄ
𝑠𝑖𝑛 𝑥 𝑐𝑜𝑠 𝑡 ,    0 ≤ 𝑥 ≤ 𝑡,
𝑠𝑖𝑛 𝑡 𝑐𝑜𝑠 𝑥 ,    𝑡 ≤ 𝑥 ≤ 𝜋.

  

5. 𝐾(𝑥, 𝑡) = ൜
𝑠𝑖𝑛 𝑥 𝑠𝑖𝑛 (𝑡 − 1) ,   − 𝜋 ≤ 𝑥 ≤ 𝑡,

𝑠𝑖𝑛 𝑡 𝑠𝑖𝑛 (𝑥 − 1) ,    𝑡 ≤ 𝑥 ≤ 𝜋.
  

6. 𝐾(𝑥, 𝑡) = ቐ
𝑠𝑖𝑛 ቀ𝑥 +

గ

ସ
ቁ 𝑠𝑖𝑛 ቀ𝑡 −

గ

ସ
ቁ ,    0 ≤ 𝑥 ≤ 𝑡,

𝑠𝑖𝑛 ቀ𝑡 +
గ

ସ
ቁ 𝑠𝑖𝑛 ቀ𝑥 −

గ

ସ
ቁ ,    𝑡 ≤ 𝑥 ≤ 𝜋.

  

7. 𝐾(𝑥, 𝑡) = 𝑒ି|௫ି௧|,   0 ≤ 𝑥 ≤ 1,    0 ≤ 𝑡 ≤ 1. 

8. 𝐾(𝑥, 𝑡) = ൜
−𝑒ି௧ 𝑠𝑖𝑛ℎ 𝑥 ,    0 ≤ 𝑥 ≤ 𝑡,
−𝑒ି௫ 𝑠𝑖𝑛ℎ 𝑡 ,    𝑡 ≤ 𝑥 ≤ 1.

  

9. Show that if 𝜆ଵ, 𝜆ଶ, 𝜆ଵ ≠ 𝜆ଶ are characteristic numbers of the kernel  𝐾(𝑥, 𝑡), then the 
eigenfunctions of the equations 

𝜑(𝑥) − 𝜆ଵ න 𝐾(𝑥, 𝑡)𝜑(𝑡)𝑑𝑡 = 0

௕

௔

 

𝜓(𝑥) − 𝜆ଶ න 𝐾(𝑥, 𝑡)𝜑(𝑡)𝑑𝑡 = 0

௕

௔

 

are orthogonal, i.e., 

න 𝜑(𝑥)𝜓(𝑥)𝑑𝑡 = 0

௕

௔

 

10. Show that if 𝐾(𝑥, 𝑡) is a symmetric kernel, then the second iterated kernel  𝐾ଶ(𝑥, 𝑡) 
has only positive characteristic numbers. 

11. Show that if the kernel 𝐾(𝑥, 𝑡) is skew-symmetric, that is, 𝐾(𝑡, 𝑥) = −𝐾(𝑥, 𝑡) then all 
its characteristic numbers are pure imaginaries. 

12. If the kernel 𝐾(𝑥, 𝑡) is symmetric, then 
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෍
1

𝜆௡
௠

ஶ

௡ୀଵ

= 𝐴௠       (𝑚 = 2, 3, … ) 

      Where 𝜆௡ are characteristic numbers and 𝐴௠ are the 𝑚୲୦ traces of the kernel 𝐾(𝑥, 𝑡).  

      Taking advantage of the results of Problems 3 an 7 find the sums of the series: 

a) ∑
ଵ

௡ర
ஶ
௡ୀଵ  

b) ∑
ଵ

(ସ௡మିଵ)మ
ஶ
௡ୀଵ  

c) ∑
ଵ

൫ଵାఓ೙
మ ൯

మ
ஶ
௡ୀଵ , 

           where 𝜇௡ are the roots of the equation 2 𝑐𝑜𝑡 𝜇 = 𝜇 −
ଵ

ఓ
. 

13. Find the eigenfunctions of the integral equations who resolvent kernels are defined by 
the following formulas: 

a) 𝑅(𝑥, 𝑡;  𝜆) =
ଷିఒାଷ(ଵିఒ)(ଶ௫ିଵ)(ଶ௧ିଵ)

ఒమିସఒାଷ
. 

b) 𝑅(𝑥, 𝑡;  𝜆) =
(ଵହି଺ఒ)௫௧ା(ଵହିଵ଴ఒ)௫మ௧మ

ସఒమିଵ଺ఒା
. 

c) 𝑅(𝑥, 𝑡;  𝜆) =
ସ(ହିଶఒ)[ଷିଶఒା(ଷି଺ఒ)௫௧]ାହ൫ସఒమି଼ఒାଷ൯൫ଷ௫మିଵ൯൫ଷ௧మିଵ൯

ସ(ଵିଶఒ)(ଷିଶఒ)(ହିଶఒ)
 

Exercise (12c):  

1. Show that the symmetric kernel 

𝐾(𝑥, 𝑡) =
1

2𝜋

1 − ℎଶ

1 − 2ℎ cos(𝑥 − 𝑡) + ℎଶ
    (−𝜋 ≤ 𝑥, 𝑡 ≤ 𝜋) 

has for |ℎ| < 1 the eigenfunctions l, 𝑠𝑖𝑛 𝑛𝑥, 𝑐𝑜𝑠 𝑛𝑥, which correspond to the characteristic 

numbers 1,
ଵ

௛೙
,

ଵ

௛೙
· 

2.  Find the characteristic numbers and eigenfunctions of the integral equation 

𝜑(𝑥) = 𝜆 න 𝐾(𝑥 − 𝑡)𝜑(𝑡)𝑑𝑡

గ

ିగ

 

where 𝐾(𝑥) =  𝑥ଶ(−𝜋 ≤ 𝑥 ≤ 𝜋) is a periodic function with period 2𝜋. 

Exercise (12d):  
1.  Find the maximum of 

ቮන න 𝐾(𝑥, 𝑡)𝜑(𝑥)𝜑(𝑡)𝑑𝑥𝑑𝑡

௕

௔

௕

௔

ቮ 

provided that 

න 𝜑ଶ(𝑥)𝑑𝑥

௕

௔

= 1 

if 𝐾(𝑥, 𝑡) = 𝑥𝑡 + 𝑥ଶ𝑡ଶ, −1 ≤ 𝑥, 𝑡 ≤ 1; 
2.  Find the maximum of 
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ቮන න 𝐾(𝑥, 𝑡)𝜑(𝑥)𝜑(𝑡)𝑑𝑥𝑑𝑡

௕

௔

௕

௔

ቮ 

provided that 

න 𝜑ଶ(𝑥)𝑑𝑥

௕

௔

= 1 

if 𝐾(𝑥, 𝑡) = ൜
(𝑥 + 1)𝑡,   0 ≤ 𝑥 ≤ 𝑡,
(𝑡 + 1)𝑥,    𝑡 ≤ 𝑥 ≤ 1.

  

3. Find the bifurcation points of the zero solutions of the 

integral equations: 

𝜑(𝑥) = 𝜆 න(3𝑥 − 2)𝑡൫ 𝜑(𝑡) + 𝜑ଷ(𝑡)൯𝑑𝑡

ଵ

଴

 

Self-Assessment Answers: 

Exercise (12a) 

1. There are no real characteristic numbers and eigenfunctions 

2. 𝜆ଵ =
ଵ

గ
, 𝜑ଵ(𝑥) = sin 𝑥 

3. 𝜆ଵ = −
ଶ

గ
, 𝜆ଶ =

ଶ

గ
, 𝜑ଵ(𝑥) = sin 𝑥, 𝜑ଶ(𝑥) = cos 𝑥 

4. There are no real characteristic numbers and eigenfunctions 
5. 𝜆ଵ = 𝜆ଶ = −3, 𝜑(𝑥) = 𝑥 − 2𝑥ଶ 

6. 𝜆ଵ =
ଵ

ଶ
, 𝜑ଵ(𝑥) =

ହ

ଶ
𝑥 +

ଵ଴

ଷ
𝑥ଶ 

7. 𝜆ଵ =
ଵ

ସ
, 𝜑ଵ(𝑥) =

ଷ

ଶ
𝑥 + 𝑥ଶ 

8. 𝜆ଵ = −
௘

ଶ
, 𝜑ଵ(𝑥) = sinh 𝑥 

9. None 
10. There are no real characteristic numbers and eigenfunctions 

Exercise (12b) 

1. 𝜆଴ = 1; 𝜑଴ = 𝑒௫;  𝜆௡ = −𝑛ଶ𝜋ଶ;  𝜑௡(𝑥) = sin 𝑛𝜋𝑥 + 𝑛𝜋 cos 𝑛𝜋𝑥 

2. 𝜆௡ = −
ఓ೙

మ

ଷ
;  𝜑௡(𝑥) = sin 𝜇௡ 𝑥 + 𝜇௡ cos 𝜇௡ 𝑥 , where 𝜇௡ are roots of the equation 

𝜇 −
ଵ

ఓ
= 2 cot 𝜇 

3. 𝜆௡ = 4𝑛ଶ − 1; 𝜑௡(𝑥) = sin 2𝑛 𝑥 (𝑛 = 1, 2, ⋯ ) 

4. 𝜆௡ = ቀ𝑛 +
ଵ

ଶ
ቁ

ଶ

− 1; 𝜑௡(𝑥) = sin ቀ𝑛 +
ଵ

ଶ
ቁ 𝑥 

5. 𝜆௡ = −
ଵିఓ೙

మ

ୱ୧୬
;  𝜑௡(𝑥) = sin 𝜇௡ (𝜋 + 𝑥)(𝑛 = 1,2, ⋯ ), where 𝜇௡ are roots of the 

equation tan 2𝜋𝜇 = −𝜇 tan 1 
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6. 𝜆௡ = 1 − 𝜇௡
ଶ ;  𝜑௡(𝑥) = sin 𝜇௡ 𝑥 + 𝜇௡ cos 𝜇௡ 𝑥 , where 𝜇௡ are roots of the equation 

2 cot 𝜋𝜇 = 𝜇 −
ଵ

ఓ
 

7. 𝜆௡ = −
ଵାఓ೙

మ

ଶ
;  𝜑௡(𝑥) = sin 𝜇௡ 𝑥 + 𝜇௡ cos 𝜇௡ 𝑥 , where 𝜇௡ are roots of the equation 

2 cot 𝜇 = 𝜇 −
ଵ

ఓ
 

8. 𝜆௡ = −1 − 𝜇௡
ଶ;  𝜑௡(𝑥) = sin 𝜇௡𝑥 , where 𝜇௡ are roots of the equation tan 𝜇 = 𝜇(𝜇 >

0) 

12. (𝑎)
గర

ଽ଴
;   (𝑏)

గమ

ଵ଺
−

ଵ

ଶ
;   (𝑐)

ଵା௘షమ

଼
 

13. (𝑎)𝜑ଵ(𝑥) = 1, 𝜑ଶ(𝑥) = 2𝑥 − 1;  
          (𝑏)𝜑ଵ(𝑥) = 𝑥, 𝜑ଶ(𝑥) = 𝑥ଶ;  
         (𝑐)𝜑ଵ(𝑥) = 1, 𝜑ଶ(𝑥) = 𝑥, 𝜑ଷ(𝑥) = 3𝑥ଶ − 1  

Exercise (12c) 

2. 𝜆଴ =
ଷ

ଶగయ , 𝜑଴(𝑥) = 1; 𝜆௡ = (−1)௡ ௡మ

ସగ
, 𝜑௡

(ଵ)(𝑥) = cos 𝑛𝑥 , 𝜑௡
(ଶ)(𝑥) = sin 𝑛𝑥   

Exercise (12d) 

1. 
ଶ

ଷ
;  𝜑(𝑥) = ±ට

ଷ

ଶ
𝑥 

2. 1;  𝜑(𝑥) = ±ට
ଶ

௘మିଵ
𝑒௫ 

3. There are no bifurcation points 

12.9  SUGGESTED READINGS: 
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2. F. G. Tricomi, Integral Equations, Dover Publications, 1985. ISBN-978-0486648286. 
3. Rainer Kress, Linear Integral Equations, Springer, 2014 (Third Edition). ISBN-978-

1447171474. 
4. I. G. Petrovsky, Lectures on Partial Differential Equations, Dover Publications, 2012. 
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5. M. A. Krasnoselskii, Integral Equations of the First Kind: Invariant Imbedding 

Method and Applications, CRC Press, 1994. ISBN-978-2884490651. 
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LESSON- 13 

SOLUTION OF HOMOGENEOUS INTEGRAL 
EQUATIONS WITH DEGENERATE KERNEL 

 
OBJECTIVES:  
 
Learn to solve Homogeneous Integral Equations with Degenerate Kernel. 
 
STRUCTURE: 
 
13.1  Integral Equation 

13.2  Degenerate Kernel in Integral Equations 

13.3  Homogeneous Fredholm Integral Equation with Degenerate   

         Kernel/ Separable Kernel 

13.4  Summary 

13.5  Technical Terms 

13.6  Self -Assessment Questions 

13.7  Suggested Readings 

 
13.1 INTEGRAL EQUATION: 

An equation is an integral equation in which an unknown function appears under the integral 
sign. 

Example: 𝜑(𝑥) = ∫ 𝐾(𝑥, 𝑡)
௕

௔
𝜑(𝑡)𝑑𝑡 

13.2  DEGENERATE KERNEL IN INTEGRAL EQUATIONS: 

A degenerate kernel (also called a separable kernel) is a special type of kernel in an integral 
equation that can be expressed as a finite sum of products of functions of separate variables: 

𝐾(𝑥, 𝑡) = [∑ 𝑎௞(𝑥)𝑏௞
௡
௞ୀଵ (𝑡)] 

 
13.3  HOMOGENEOUS FREDHOLM INTEGRAL EQUATIODEGENERATE 

KERNEL/ SEPARABLE KERNEL: 
 
A homogeneous Fredholm integral equation of the second kind with a degenerate kernel is a special 
type of integral equation of the form:  

𝜑(𝑥) = 𝜆 ∫ 𝐾(𝑥, 𝑡)
௕

௔
𝜑(𝑡)𝑑𝑡        (i) 

where 
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𝜑(𝑥) is a unknown function to solve for, 

 𝜆 is a scalar parameter (real or complex), 

𝐾(𝑥, 𝑡) is a kernel (degenerate kernel), 

Remarks: The number 𝜆 is not an eigenvalue since for 𝜆 = 0 , (i) yield 𝑦(𝑥) = 0, which is a 
zero solution. 

Remarks: If the kernel 𝐾(𝑥, 𝑡) is continuous in the rectangle R: 𝑎 ≤ 𝑥 ≤ 𝑏, 𝑎 ≤ 𝑡 ≤ 𝑏 and 
the number 𝑎  and 𝑏 are finite, then to every eigenvalue  λ there exists a finite number of 
linearly independent eigenfunctions. 

13.3.1 Example 1: Solve the equation  

𝜑(𝑥) − 𝜆 ∫ (cosଶ𝑥 cos 2𝑡 + cosଷ𝑡 cos 3𝑥)
గ

଴
𝜑(𝑡)𝑑𝑡 = 0  

Solution: The homogeneous integral equation is 

𝜑(𝑥) − 𝜆 ∫ (cosଶ𝑥 cos 2𝑡 + cosଷ𝑡 cos 3𝑥)
గ

଴
𝜑(𝑡)𝑑𝑡 = 0       (1) 

and the given kernel 𝐾(𝑥, 𝑡) = cosଶ𝑥 cos 2𝑡 + cosଷ𝑡 cos 3𝑥 is a degenerate kernel 

𝜑(𝑥) = 𝜆[cosଶ𝑥 ∫ cos 2𝑡
గ

଴
𝜑(𝑡)𝑑𝑡 + cos 3𝑥 ∫ cosଷ𝑡

గ

଴
𝜑(𝑡)𝑑𝑡]  (2) 

𝜑(𝑥) = 𝜆[cosଶ𝑥𝐶ଵ + cos 3𝑥 𝐶ଶ]       (3) 

where 𝐶ଵ = ∫ cos 2𝑡
గ

଴
𝜑(𝑡)𝑑𝑡 and  

 𝐶ଶ = ∫ cosଷ𝑡
గ

଴
𝜑(𝑡)𝑑𝑡       (4) 

Substituting equation (3) in equation (4), we get 

𝐶ଵ = න cos 2𝑡
గ

଴

𝜆[cosଶ𝑡𝐶ଵ + cos 3𝑡 𝐶ଶ]𝑑𝑡 

𝐶ଶ = න cosଷ𝑡
గ

଴

𝜆[cosଶ𝑡𝐶ଵ + cos 3𝑡 𝐶ଶ]𝑑𝑡 

or 

𝐶ଵ ቈ1 − 𝜆 න cos 2𝑡
గ

଴

cosଶ𝑡𝑑𝑡቉ − 𝐶ଶ𝜆 න cos 2𝑡
గ

଴

cos 3𝑡 𝑑𝑡 = 0 

−𝐶ଵ𝜆 න cosହ𝑡
గ

଴

𝑑𝑡 + 𝐶ଶ ቈ1 − 𝜆 න cos 3𝑡
గ

଴

cosଷ𝑡𝑑𝑡቉ = 0 

Evaluating the integrals, we obtain a linear system of homogeneous equations: 
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ቀ1 −
ఒగ

ସ
ቁ 𝐶ଵ = 0, ቀ1 −

ఒగ

଼
ቁ 𝐶ଶ = 0         (5) 

The determinant of the eigenvalues will be 

ተ
൬1 −

𝜆𝜋

4
൰ 0

0 ൬1 −
𝜆𝜋

8
൰

ተ = 0, ⇒ 𝜆ଵ =
4

𝜋
 and  𝜆ଶ =

8

𝜋
 

The characteristic numbers of this equation are 𝜆ଵ =
ସ

గ
 and 𝜆ଶ =

଼

గ
; the corresponding 

eigenfunctions are of the form   

𝜑(𝑥) = 𝐶ଵcosଶ𝑥, if  𝜆ଵ =
ସ

గ
 , 

𝜑(𝑥) = 𝐶ଶ cos 3𝑥 , if  𝜆ଶ =
଼

గ
 , 

&  𝜑(𝑥) = 0, if  𝜆ଵ ≠
ସ

గ
 and 𝜆ଶ ≠

଼

గ
 , 

where  𝐶ଵ and 𝐶ଶ are arbitrary constants. The last zero solution is obtained from the general 
solutions for 𝐶ଵ = 0 and 𝐶ଶ = 0. 
 
13.3.2 Example 2: 
 
Solve the homogeneous integral equation  

𝜑(𝑥) − 𝜆 න cos (𝑥 + 𝑡)
గ

଴

𝜑(𝑡)𝑑𝑡 = 0. 

Solution: 
Given homogeneous integral equation is 

𝜑(𝑥) = 𝜆 ∫ cos (𝑥 + 𝑡)
గ

଴
𝜑(𝑡)𝑑𝑡  

𝜑(𝑥) = 𝜆 ∫ (cos 𝑥 cos 𝑡  − sin 𝑥 sin 𝑡)
గ

଴
𝜑(𝑡)𝑑𝑡      (1) 

and the kernel 𝐾(𝑥, 𝑡) = cos 𝑥 cos 𝑡 − sin 𝑥 sin 𝑡 is a degenerate kernel 

i.e., 𝜑(𝑥) = 𝜆[cos 𝑥 ∫ cos 𝑡
గ

଴
𝜑(𝑡)𝑑𝑡 − sin 𝑥 ∫ sin 𝑡

గ

଴
𝜑(𝑡)𝑑𝑡]   (2) 

𝜑(𝑥) = 𝜆 cos 𝑥 𝐶ଵ − 𝜆 sin 𝑥 𝐶ଶ,       (3) 

where 𝐶ଵ = ∫ cos 𝑡
గ

଴
𝜑(𝑡)𝑑𝑡 and  

 𝐶ଶ = ∫ sin 𝑡
గ

଴
𝜑(𝑡)𝑑𝑡        (4) 

substituting equation (3) in equation (4), we get 

𝐶ଵ = න cos 𝑡
గ

଴

(𝜆𝐶ଵ cos 𝑡 − 𝜆𝐶ଶ sin 𝑡)𝑑𝑡 
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𝐶ଶ = න sin 𝑡
గ

଴

(𝜆𝐶ଵ cos 𝑡 − 𝜆𝐶ଶ sin 𝑡)𝑑𝑡 

or 

𝐶ଵൣ1 − 𝜆 ∫ cosଶ𝑡
గ

଴
𝑑𝑡൧ + 𝐶ଶ𝜆 ∫ cos 𝑡

గ

଴
sin 𝑡 𝑑𝑡 = 0  

−𝐶ଵ𝜆 ∫ sin 𝑡 cos 𝑡
గ

଴
𝑑𝑡+𝐶ଶൣ1 + 𝜆 ∫ sinଶ𝑡

గ

଴
𝑑𝑡൧ = 0.  

Evaluating the integrals, we obtain a linear system of homogeneous equations: 

ቀ1 −
ఒగ

ଶ
ቁ 𝐶ଵ = 0, ቀ1 +

ఒగ

ଶ
ቁ 𝐶ଶ = 0          (5) 

The determinant of the eigenvalues is 

ተ
൬1 −

𝜆𝜋

2
൰ 0

0 ൬1 +
𝜆𝜋

2
൰

ተ = 0, ⇒ 𝜆 = ±
2

𝜋
. 

For 𝜆 = +
ଶ

గ
, ቀ1 −

ଶ

గ

గ

ଶ
ቁ 𝐶ଵ = 0 ⇒ 𝐶ଵ can be any non-zero arbitrary constant 

  ቀ1 +
ଶ

గ

గ

ଶ
ቁ 𝐶ଶ = 0 ⇒  𝐶ଶ = 0. 

For 𝜆 = −
ଶ

గ
, ቀ1 +

ଶ

గ

గ

ଶ
ቁ 𝐶ଶ = 0 ⇒  𝐶ଵ = 0 

  ቀ1 −
ଶ

గ

గ

ଶ
ቁ 𝐶ଶ = 0 ⇒  𝐶ଶ can be any non-zero arbitrary constant. 

If 𝐶ଶ = 0, and 𝐶ଵis arbitrary then, the eigenfunction will be 

𝜑(𝑥) = 𝐶ଵ cos 𝑥 (or) 𝜑(𝑥) = 𝐶 cos 𝑥. 

Is Cଵ = 0, and Cଶ is arbitrary then the eigenfunction will be 

𝜑(𝑥) = −𝐶ଶ sin 𝑥 (or) 𝜑(𝑥) = −𝐶 sin 𝑥 

The eigenfunctions  are 𝜑(𝑥) = 𝐶 cos 𝑥  and 𝜑(𝑥) = −𝐶 sin 𝑥, corresponding to the 

eigenvalues  
ଶ

గ
  and −

ଶ

గ
. 

13.4  SUMMARY: 
 
This unit provided the fundamental idea of the integral equation in particular homogeneous 
Fredholm integral equations. Definition and calculations of degenerate kernel were discussed. 
The method to solve the homogeneous Fredholm integral equations by using degenerate 
kernel is explained thoroughly with the help of numerous examples. For better understanding 
of readers few examples and self-assessment problems related to degenerate kernel were 
included. 
 
13.5 TECHNICAL TERMS: 
 
Integral Equation: An equation is an integral equation in which an unknown function 
appears under the integral sign 

Example: 𝜑(𝑥) = ∫ 𝐾(𝑥, 𝑡)
௕

௔
𝜑(𝑡)𝑑𝑡 
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Degenerate Kernel: A degenerate kernel (also called a separable kernel) is a special type of 
kernel in an integral equation that can be expressed as a finite sum of products of functions of 
separate variables: 

𝐾(𝑥, 𝑡) = [∑ 𝑎௞(𝑥)𝑏௞
௡
௞ୀଵ (𝑡)] 

Homogeneous Fredholm Integral Equation with Degenerate Kernel: A homogeneous 
Fredholm integral equation of the second kind with a degenerate kernel is a special type of integral 
equation of the form  

𝜑(𝑥) = 𝜆 ∫ 𝐾(𝑥, 𝑡)
௕

௔
𝜑(𝑡)𝑑𝑡  

 
13.6  SELF- ASSESSMENT QUESTIONS: 
 
Solve the following homogeneous integral equations: 

1. 𝜑(𝑥) − 𝜆 ∫ 𝑎𝑟𝑐 cos 𝑥
ଵ

଴
𝜑(𝑡) 𝑑𝑡 = 0 

2. 𝜑(𝑥) − 2 ∫
ఝ(௧)

ଵାୡ୭ୱ ଶ௧

ഏ

ర
଴

 𝑑𝑡 = 0 

3. 𝜑(𝑥) −
ଵ

ସ
∫ | 𝑥

ଶ

ିଶ
|𝜑(𝑡) 𝑑𝑡 = 0 

4. 𝜑(𝑥) + 6 ∫ (𝑥ଶ − 2𝑥𝑡)
ଵ

଴
𝜑(𝑡) 𝑑𝑡 = 0 

Answers: 

1. 𝜑(𝑥) = ൜
𝐶 𝑎𝑟𝑐 cos 𝑥 , 𝜆 = 1 

0,                 𝜆 ≠ 1
  

2. 𝜑(𝑥)= 𝐶 
3. 𝜑(𝑥) = 𝐶|𝑥|  
4. 𝜑(𝑥) = (𝑥 − 𝑥ଶ) 
 
 

13.7  SUGGESTED READINGS: 
 

1. Problems and Exercises in Integral Equations, MIR Oybkusgers, Moscow, 1971 by M. 
Krsnov, A. Kiselev and G. Makarendo. 

2. Integral Equations and their Applications, John wiley & Sons, 1999, by Jerri, A. 
3. Linear Integral Equation, Theory and Techniques, Academic Press, 2014 by kanwal 

R.P. 
4. A first course in Integral Equations, 2nd edition, World Scientific Publishing Co. 2015 

by Wazwaz, A.M. 
5. Integral equations, Krishna Prakashan Media(P) Ltd., Meerut. 
 

-  Dr. Vinutha Tummala 

 

 



LESSON- 14 

NON-HOMOGENEOUS SYMMETRIC INTEGRAL  
EQUATIONS & FREDHOLM ALTERNATIVE 

 
OBJECTIVES: 
 
Learn to Non-Homogeneous Integral Equations and Fredholm-Alternative. 
 
STRUCTURE: 
 

14.1  INTRODUCTION 

14.2  NON HOMOGENEOUS SYMMETRIC EQUATION 

14.3  FREDHOLM ALTERNATIVE 

14.4   SUMMARY 

14.5  TECHNICAL TERMS  

14.6  SELF-ASSESSMENT QUESTIONS 

14.7  SUGGESTED READINGS 
 

14.1 INTRODUCTION: 
 

A non-homogeneous symmetric integral equation is a type of integral equation that includes a 
non-zero term outside the integral, which distinguishes it from a homogeneous equation. 
In mathematics, the Fredholm alternative, named after Ivar Fredholm, is one of Fredholm's 
theorems resulting in Fredholm theory. 
 
14.2  NON HOMOGENEOUS SYMMETRIC EQUATION: 

The non-homogeneous Fredholm integral equation of the second kind is 

𝜑(𝑥) − 𝜆 ∫ 𝐾(𝑥, 𝑡)
௕

௔
𝜑(𝑡)𝑑𝑡 = 𝑓(𝑥)      (1) 

where 𝜑(𝑥) is an unknown function 

         𝐾(𝑥, 𝑡) is the symmetric kernel i.e., 𝐾(𝑥, 𝑡) = 𝐾(𝑡, 𝑥) 

 𝑓(𝑥) is a known function 

 λ is a parameter 

If 𝑓(𝑥) is continuous and the parameter λ does not match with any characteristic numbers  𝜆௡ 
(𝑛 = 1,2,3, …) of the corresponding homogeneous integral equation. 

𝜑(𝑥) − 𝜆 ∫ 𝐾(𝑥, 𝑡)
௕

௔
𝜑(𝑡)𝑑𝑡 = 0       (2) 

then the equation (1) has a unique continuous solution. 

If the kernel is symmetric, the solution can be expressed as  
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𝜑(𝑥) = 𝑓(𝑥) − 𝜆 ∑
௔೙

ఒିఒ೙

ஶ
௡ୀଵ 𝜑௡(𝑥)       (3) 

𝜑௡(𝑥) are eigenfunctions of the homogeneous equation (2). 

𝑎௡ are coefficients of the homogeneous equation,  

𝑎௡ = ∫ 𝑓(𝑥)
௕

௔
𝜑௡(𝑥)𝑑𝑥        (4) 

The series on the right hand side of (3) converges absolutely and uniformly in the square 

 𝑎 ≤ 𝑥, 𝑡 ≤ 𝑏. 

But if the parameter 𝜆 coincides with the one of the characteristic numbers,say 𝜆 = 𝜆௞, of 
index q (multiplicity of the number 𝜆௞), then equation(1) will not, generally speaking, have 
any solutions. Solutions exist if and only if the q conditions are fulfilled:                        

(𝑓, 𝜑௠)= 0  (or) ∫ 𝑓(𝑥)
௕

௔
𝜑௠(𝑥)𝑑𝑥 = 0, (𝑚 = 1,2 … . 𝑞)    (5)  

that is, if the function 𝑓(𝑥) is orthogonal to all eigenfunctions belonging to the characteristic 
number 𝜆௞. In this case (1) has an infinity of solutions which contain 𝑞 arbitrary constants 
and are given by the formula 

𝜑(𝑥) = 𝑓(𝑥) − 𝜆 ∑
௔೙

ఒିఒ೙

ஶ
௡ୀ௤ାଵ 𝜑௡(𝑥) + 𝐶ଵ𝜑ଵ(𝑥) + 𝐶ଶ𝜑ଶ(𝑥) + ⋯ + 𝐶௤𝜑௤(𝑥) (6) 

where 𝐶ଵ, 𝐶ଶ,….𝐶௤ are arbitrary constants. 

In case of the degenerate kernel 

𝐾(𝑥, 𝑡) = ∑ 𝑎௞(𝑥)𝑏௞
௠
௞ୀଵ (𝑡), 

formulas (3) and (6) will contain finite sums in place of series in their right-hand members. 

When the right-hand side of equation (1), i.e., the  function 𝑓(𝑥), is orthogonal to all 
eigenfunctions  𝜑௡(𝑥) of equation (2), the function itself will be a solution of equation (1): 

 𝜑(𝑥) = 𝑓(𝑥). 

14.2.1 Example 1: Solve the equation  

𝜑(𝑥) − 𝜆 න 𝐾(𝑥, 𝑡)
ଵ

଴

𝜑(𝑡)𝑑𝑡 = 𝑥, 

where 𝐾(𝑥, 𝑡) = ൜
𝑥(𝑡 − 1), 𝑖𝑓 0 ≤ 𝑥 ≤ 𝑡

𝑡(𝑥 − 1), 𝑖𝑓 𝑡 ≤ 𝑥 ≤ 1
 

Solution: Rewrite the equation as  

𝜑(𝑥) = 𝑥 + 𝜆 ቂ∫ 𝑡(𝑥 − 1)
௫

଴
𝜑(𝑡)𝑑𝑡 + ∫ 𝑥(𝑡 − 1)

ଵ

௫
𝜑(𝑡)𝑑𝑡ቃ    (1) 
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Consider the homogeneous integral equation as  

𝜑(𝑥) = 𝜆 ቂ∫ 𝑡(𝑥 − 1)
௫

଴
𝜑(𝑡)𝑑𝑡 + ∫ 𝑥(𝑡 − 1)

ଵ

௫
𝜑(𝑡)𝑑𝑡ቃ  

𝜑(𝑥) = 𝜆 ቂ(𝑥 − 1) ∫ 𝑡
௫

଴
𝜑(𝑡)𝑑𝑡 + 𝑥 ∫ (𝑡 − 1)

ଵ

௫
𝜑(𝑡)𝑑𝑡ቃ    (2)  

Differentiate the equation (2) with respect to ‘x’ on both sides, we have 

𝜑′(𝑥) = 𝜆 ቂ∫ 𝑡
௫

଴
𝜑(𝑡)𝑑𝑡 + 𝑥(𝑥 − 1)𝜑(𝑥) + ∫ (𝑡 − 1)

ଵ

௫
𝜑(𝑡)𝑑𝑡 − 𝑥(𝑥 − 1)𝜑(𝑥)ቃ  

𝜑′(𝑥) = 𝜆 ቂ∫ 𝑡
௫

଴
𝜑(𝑡)𝑑𝑡 + ∫ (𝑡 − 1)

ଵ

௫
𝜑(𝑡)𝑑𝑡ቃ     (3) 

Again differentiate the equation (3) with respect to ‘x’ on both sides, we get 

𝜑ᇱᇱ(𝑥) = 𝜆[𝑥𝜑(𝑥) − (𝑥 − 1)𝜑(𝑥)] 

⟹ 𝜑ᇱᇱ(𝑥) − 𝜆𝜑(𝑥) = 0       (4) 

with the boundary conditions 𝜑(0) = 0, and 𝜑(1) = 0    (5) 

Let us consider the following cases: 

(i) When 𝜆 = 0. Then equation (4) reduces to 𝜑ᇱᇱ(𝑥) = 0. Its general solution is  

𝜑(𝑥) = 𝐶ଵ𝑥 + 𝐶ଶ 

𝜑(0) = 0 then 𝐶ଶ = 0 and 𝜑(1) = 0 then 𝐶ଵ = 0 

Thus 𝜑(𝑥)=0, which is not an eigenfunction corresponding to an eigenvalue 𝜆 = 0. 

(ii) When 𝜆 is positive  i.e., 𝜆 = 𝜇ଶ, 𝜇 ≠ 0 

The differential equation (4) is reduced to 𝜑ᇱᇱ(𝑥) − 𝜇ଶ𝜑(𝑥) = 0 

then 𝜑(𝑥) = 𝐶ଵ𝑒ఓ௫ + 𝐶ଶ𝑒ିఓ௫ 

Since 𝜑(0) = 0 ⇒ 𝐶ଵ+𝐶ଶ = 0 and 𝜑(1) = 0 ⇒ 𝐶ଵ𝑒ఓ + 𝐶ଶ𝑒ିఓ = 0 

Then we get 𝐶ଵ = 0 = 𝐶ଶ 

Hence 𝜑(𝑥)=0, which is not an eigenfunction corresponding to an eigenvalue 𝜆 > 0. 

(iii) When 𝜆 is negative i.e., 𝜆 = −𝜇ଶ, 𝜇 ≠ 0 

The differential equation (4) is reduced to 𝜑ᇱᇱ(𝑥) + 𝜇ଶ𝜑(𝑥) = 0 

Whose solution is given by 

𝜑(𝑥) = 𝐶ଵ cos 𝜇𝑥 + 𝐶ଶ sin 𝜇𝑥 

Since 𝜑(0) = 0 ⇒ 𝐶ଵ = 0 and 𝜑(1) = 0 ⇒ 𝐶ଶ sin 𝜇=0 ⇒ 𝜇 = 𝑛𝜋, 𝐶ଶ ≠ 0, 
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where n is any integer 

Thus the required eigenvalue is given as 𝜆 = −𝑛ଶ𝜋ଶ, 𝑛 = 1,2,3 … 

The corresponding eigenfunctions  𝜑௡(𝑥) are given by 

 𝜑௡(𝑥) = sin 𝑛𝜋𝑥, 𝑛 = 1,2,3 … ; 𝐶ଶ = 1(let). 

The normalized eigenfunctions 𝛷௡(𝑥) are given by 

𝛷௡(𝑥) =
𝜑௡(𝑥)

{∫ [𝜑௡(𝑥)]ଶ𝑑𝑥}
ଵ

଴

ଵ
ଶൗ

=
sin 𝑛𝜋𝑥

{∫ sinଶ𝑛𝜋𝑥 𝑑𝑥}
ଵ

଴

ଵ
ଶൗ

= √2 sin 𝑛𝜋𝑥. 

Hence   

𝐹௡ = න 𝐹(𝑥)
ଵ

଴

𝛷௡(𝑥) 𝑑𝑥 

⇒  𝐹௡ = න 𝑥. (√2 sin 𝑛𝜋𝑥.)
ଵ

଴

 𝑑𝑥 

⇒  𝐹௡ = √2 ቊ− ቀ
𝑥 cos 𝑛𝜋𝑥

𝑛𝜋
ቁ

଴

ଵ

+
1

𝑛𝜋
න cos 𝑛𝜋𝑥

ଵ

଴

𝑑𝑥ቋ 

⇒ 𝐹௡ = √2 ቊ−
(−1)௡

𝑛𝜋
+

1

𝑛ଶ𝜋ଶ
(sin 𝑛𝜋𝑥)଴

ଵቋ  =
(−1)௡ାଵ√2

𝑛𝜋
 

The given integral equation contains a unique solution as  

𝜑(𝑥) = 𝐹(𝑥) + 𝜆 ෍
𝐹௡

𝜆௡ − 𝜆

ஶ

௡ୀଵ

. 𝛷௡(𝑥), 𝜆 ≠ 𝜆௡  

⇒ 𝜑(𝑥) = 𝑥 + 𝜆 ෍
(−1)௡ାଵ√2

𝑛𝜋

ஶ

௡ୀଵ

.
√2 sin 𝑛𝜋𝑥

−𝑛ଶ𝜋ଶ − 𝜆
 

⇒ 𝜑(𝑥) = 𝑥 +
2𝜆

𝜋
෍

(−1)௡ sin 𝑛𝜋𝑥

𝑛(𝑛ଶ𝜋ଶ + 𝜆)

ஶ

௡ୀଵ

. 

Again, when 𝜆 = 𝜆௡ = −𝑛ଶ𝜋ଶ, 𝑛 = 1,2,3, … then the integral equation does not possess any 
solution. 

14.2.2 Example 2: Solve the equation  

𝜑(𝑥) − 𝜆 න 𝐾(𝑥, 𝑡)
ଵ

଴

𝜑(𝑡)𝑑𝑡 = cos 𝜋𝑥, 

where 𝐾(𝑥, 𝑡) = ൜
(𝑥 + 1)𝑡, 0 ≤ 𝑥 ≤ 𝑡
(𝑡 + 1)𝑥, 𝑡 ≤ 𝑥 ≤ 1

 

Solution:  Rewrite the equation as  
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𝜑(𝑥) = cos 𝜋𝑥 + 𝜆 ቂ∫ (𝑡 + 1)𝑥
௫

଴
𝜑(𝑡)𝑑𝑡 + ∫ (𝑥 + 1)𝑡

ଵ

௫
𝜑(𝑡)𝑑𝑡ቃ   (1) 

Consider the homogeneous integral equation as  

𝜑(𝑥) = 𝜆 ቂ∫ (𝑡 + 1)𝑥
௫

଴
𝜑(𝑡)𝑑𝑡 + ∫ (𝑥 + 1)𝑡

ଵ

௫
𝜑(𝑡)𝑑𝑡ቃ  

𝜑(𝑥) = 𝜆 ቂ𝑥 ∫ (𝑡 + 1)
௫

଴
𝜑(𝑡)𝑑𝑡 + (𝑥 + 1) ∫ 𝑡

ଵ

௫
𝜑(𝑡)𝑑𝑡ቃ    (2)  

Differentiate the equation (2) with respect to ‘x’ on both sides, we have 

𝜑′(𝑥) = 𝜆 ቂ∫ (𝑡 + 1)
௫

଴
𝜑(𝑡)𝑑𝑡 + 𝑥(𝑥 + 1)𝜑(𝑥) + ∫ 𝑡

ଵ

௫
𝜑(𝑡)𝑑𝑡 − 𝑥(𝑥 + 1)𝜑(𝑥)ቃ  

𝜑′(𝑥) = 𝜆 ቂ∫ (𝑡
௫

଴
+ 1)𝜑(𝑡)𝑑𝑡 + ∫ 𝑡

ଵ

௫
𝜑(𝑡)𝑑𝑡ቃ      (3) 

Again differentiate the equation (3) with respect to ‘x’ on both sides, we get 

𝜑ᇱᇱ(𝑥) = 𝜆[(𝑥 + 1)𝜑(𝑥) − 𝑥𝜑(𝑥)] 

⟹ 𝜑ᇱᇱ(𝑥) − 𝜆𝜑(𝑥) = 0       (4) 

The characteristic numbers are 𝜆଴ = 1, 𝜆௡ = −𝑛ଶ𝜋ଶ, then the solution of the given equation 
will have the form 𝜑଴(𝑥) = 𝑒௫, 𝜑௡(𝑥) = sin 𝑛𝜋𝑥 + 𝑛𝜋 cos 𝑛𝜋𝑥 (𝑛 = 1,2, … ) 

If 𝜆 ≠ 1 and 𝜆 ≠ −𝑛ଶ𝜋ଶ, then the solution of the given equation will have the form 

𝜑(𝑥) = 𝑐𝑜𝑠 𝜋𝑥 − 𝜆 ቂ 
௔బ௘ೣ

ఒିଵ
+ ∑

௔೙

ఒା௡మగమ
(sin 𝑛𝜋𝑥 + 𝑛𝜋 cos 𝑛𝜋𝑥)ஶ

௡ୀଵ ቃ   

and since 

 𝑎଴ = ∫ 𝑒௫ cos 𝜋𝑥𝑑𝑥 = −
ଵା௘

ଵାగమ

ଵ

଴
 

𝑎௡ୀ න cos 𝜋𝑥

ଵ

଴

(sin 𝑛𝜋𝑥 + 𝑛𝜋 cos 𝑛𝜋𝑥)𝑑𝑥 = ൝
0, 𝑛 ≠ 1,
𝜋

2
, 𝑛 = 1

 

it follows that 

𝜑(𝑥) = cos 𝜋𝑥 +  𝜆 ቂ
ଵା௘

ଵାగమ

௘ೣ

ఒିଵ
−

గ

ଶ(ఒାగమ)
(sin 𝜋𝑥 + 𝜋 cos 𝜋𝑥)ቃ  

For 𝜆 = 1 and 𝜆 = −𝜋ଶ(𝑛 = 1) the equation has no solutions since its right-hand side, that 
is, the function cos 𝜋𝑥, is not orthogonal to the corresponding eigenfunctions 

𝜑଴(𝑥) = 𝑒௫, 

                                                                𝜑ଵ(𝑥) = sin 𝜋𝑥 + 𝜋 cos 𝜋𝑥 
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But if  𝜆 = −𝑛ଶ𝜋ଶ, where 𝑛 = 2,3, …, then the given equation has an infinity of solutions 
which are given by formula (6): 

𝜑(𝑥) = cos 𝜋𝑥 +  𝜆 ൤
1 + 𝑒

1 + 𝜋ଶ

𝑒௫

𝜆 − 1
−

𝜋

2(𝜆 + 𝜋ଶ)
(sin 𝜋𝑥 + 𝜋 cos 𝜋𝑥)൨

+ 𝐶(sin 𝜋𝑥 + 𝜋 cos 𝜋𝑥) 

where  C is an arbitrary constant. 

In certain cases, a nonhomogeneous symmetric integral equation can be reduced to a 
nonhomogeneous boundary-value problem. This is possible when the kernel 𝐾(𝑥, 𝑡) of the 
integral equation is a Green’s function of some linear differential operator.  

14.2.3 Example 3: Solve the equation  

𝜑(𝑥) − 𝜆 න 𝐾(𝑥, 𝑡)
ଵ

଴

𝜑(𝑡)𝑑𝑡 = 𝑒௫, 

where 𝐾(𝑥, 𝑡) = ቐ

ୱ୧୬୦ ௫ ୱ୧୬୦(௧ିଵ) 

ୱ୧୬୦ ଵ
, 0 ≤ 𝑥 ≤ 𝑡,

ୱ୧୬୦ ௧ ୱ୧୬୦(௫ିଵ) 

ୱ୧୬୦ ଵ
, 𝑡 ≤ 𝑥 ≤ 1.

 

Solution: Rewrite the equation as 

𝜑(𝑥) = 𝑒௫ + 𝜆 ∫ 𝐾(𝑥, 𝑡)
ଵ

଴
𝜑(𝑡)𝑑𝑡       (1) 

𝜑(𝑥) = 𝑒௫ + 𝜆 ∫ 𝐾(𝑥, 𝑡)
௫

଴
𝜑(𝑡)𝑑𝑡 +  𝜆 ∫ 𝐾(𝑥, 𝑡)

ଵ

௫
𝜑(𝑡)𝑑𝑡  

𝜑(𝑥) = 𝑒௫ + 𝜆 ∫
ୱ୧୬୦ ௧ ୱ୧୬  (௫ିଵ)

ୱ୧୬୦

௫

଴
𝜑(𝑡)𝑑𝑡 +  𝜆 ∫

ୱ୧୬୦ ௫ ୱ୧୬୦(௧ିଵ)

ୱ୧

ଵ

௫
𝜑(𝑡)𝑑𝑡  

𝜑(𝑥) = 𝑒௫ + 𝜆
ୱ୧୬୦ (௫ିଵ)

ୱ୧୬୦ ଵ
∫ sinh 𝑡

௫

଴
𝜑(𝑡)𝑑𝑡 +  𝜆

ୱ୧୬୦ ௫ 

ୱ୧୬୦ ଵ
∫ sinh (𝑡 − 1)

ଵ

௫
𝜑(𝑡)𝑑𝑡 (2) 

The boundary conditions of equation (2) as 

𝜑(0) = 1, 𝜑(1) = 𝑒         (3) 

Differentiate the equation (2) with respect to x on both sides, we have  

𝜑ᇱ(𝑥) = 𝑒௫ + 𝜆
ୡ୭ୱ୦ (௫ିଵ)

ୱ୧୬୦ ଵ
∫ sinh 𝑡

௫

଴
𝜑(𝑡)𝑑𝑡 +

ఒ ୱ୧୬୦(௫ିଵ)

ୱ୧୬୦ ଵ
sinh 𝑥𝜑 (𝑥) +  𝜆

ୡ୭ୱ୦ ௫ 

ୱ୧
∫ sinh (𝑡 −

ଵ

௫

1) 𝜑(𝑡)𝑑𝑡 −
ఒୱ୧୬ (௫ିଵ)

ୱ୧୬୦
sinh 𝑥𝜑(𝑥)  

𝜑ᇱ(𝑥) = 𝑒௫ + 𝜆
ୡ୭ୱ୦ (௫ିଵ)

ୱ୧୬୦ ଵ
∫ sinh 𝑡

௫

଴
𝜑(𝑡)𝑑𝑡 +  𝜆

ୡ୭ୱ୦ ௫ 

ୱ୧୬୦ ଵ
∫ sinh (𝑡 − 1)

ଵ

௫
𝜑(𝑡)𝑑𝑡 (4) 

Differentiate the equation (4) with respect to x on both sides, we have  
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𝜑ᇱ′(𝑥) = 𝑒௫ + 𝜆
ୱ୧୬୦(௫ିଵ)

ୱ୧୬୦ ଵ
∫ sinh 𝑡

௫

଴
𝜑(𝑡)𝑑𝑡 + 𝜆

ୡ୭ୱ୦ (௫ିଵ)

ୱ୧୬୦ ଵ
sinh 𝑥 𝜑 (𝑥) +  𝜆

ୱ୧୬୦ ௫ 

ୱ୧୬୦ ଵ
∫ sinh(𝑡 −

ଵ

௫

1) 𝜑(𝑡)𝑑𝑡 − 𝜆
ୡ୭ୱ୦ ௫

ୱ୧୬
sinh(𝑥 − 1) 𝜑(𝑥)  

𝜑ᇱ′(𝑥) = 𝑒௫ + 𝜆
ୱ୧୬୦(௫ିଵ)

ୱ୧୬୦ ଵ
∫ sin ℎ𝑡

௫

଴
𝜑(𝑡)𝑑𝑡 +  𝜆

ୱ୧୬୦ ௫

ୱ୧୬୦ ଵ
∫ sinh(𝑡 − 1)

ଵ

௫
𝜑(𝑡)𝑑𝑡 +

ఒ

ୱ୧
𝜑(𝑥)[cosh (𝑥 − 1) sinh 𝑥 − cosh 𝑥 sinh(𝑥 − 1)]  

𝜑ᇱ′(𝑥) = 𝑒௫ + 𝜑(𝑥) +  𝜆𝜑(𝑥)  

𝜑ᇱ′(𝑥) − (𝜆 +  1)𝜑(𝑥) = 𝑒௫        (5) 

Let us consider the following cases: 

(i) (𝜆 +  1) = 0, or 𝜆 = − 1 

Equation (5) is of the form  

𝜑(𝑥) =  𝐶ଵ𝑥 + 𝐶ଶ+𝑒௫ 

Taking into the boundary conditions (3), we get the following system for finding the 
constants 𝐶ଵ and 𝐶ଶ 

൜
       𝐶ଶ + 1 = 1,
𝐶ଵ + 𝐶ଶ + 𝑒 = 𝑒

 

Its solution is of the form 𝐶ଵ = 0, 𝐶ଶ = 0, and, hence,  

𝜑(𝑥) = 𝑒௫ 

(ii) (𝜆 +  1) > 0, or 𝜆 > − 1, 𝜆 ≠ 0. The general solution of equation (5) is 𝜑(𝑥) =

𝐶ଵ cosh ඥ(1 + 𝜆)𝑥 + 𝐶ଶ sinh ඥ(1 + 𝜆)𝑥  −
௘

ఒ

௫
 

The boundary conditions (3) yield the following system for finding 𝐶ଵ and 𝐶ଶ: 

൞
                                                                 𝐶ଵ −

1

𝜆
= 1,

𝐶ଵ cosh ඥ(1 + 𝜆) + 𝐶ଶ sinh ඥ(1 + 𝜆) −
𝑒

𝜆

 

= 𝑒
 

whence  

𝐶ଵ = ቀ1 +
ଵ

ఒ
ቁ , 𝐶ଶ =

௘ିୡ୭ୱ୦ ඥ(ଵାఒ)

ୱ୧୬୦ ඥ(ଵାఒ)
ቀ1 +

ଵ

ఒ
ቁ  

Then the general solution is  
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𝜑(𝑥) = ቀ1 +
ଵ

ఒ
ቁ . cosh ඥ(1 + 𝜆)𝑥 +

௘ିୡ୭ୱ୦ ඥ(ଵାఒ)

ୱ୧୬୦ ඥ(ଵାఒ)
ቀ1 +

ଵ

ఒ
ቁ . sinh ඥ(1 + 𝜆)𝑥 −

௘

ఒ

௫
  

𝜑(𝑥) = ቀ1 +
ଵ

ఒ
ቁ .

ୱ୧୬୦ ඥ(ଵାఒ).(ଵି௫)

ୱ୧୬୦ ඥ(ଵାఒ)
 −

௘

ఒ

௫

.  

(iii) (𝜆 +  1) < 0, or 𝜆 < − 1, 𝜆 + 1 = −𝜇ଶ. The general solution of equation (5) is  

 

𝜑(𝑥) = 𝐶ଵ cos 𝜇𝑥 + 𝐶ଶ sin 𝜇𝑥 +
𝑒௫

1 + 𝜇ଶ

 

 

The boundary conditions (3) yield the following system for finding 𝐶ଵ and 𝐶ଶ: 

                      𝐶ଵ +
ଵ

ଵାఓమ
= 1,

                        

𝐶ଵ cos 𝜇 + 𝐶ଶ sin 𝜇 = 𝑒
ఓమ

ଵାఓమ

ൢ  (6)  

In turn, two cases are possible here: 

(a) 𝜇 is not a root of the equation sin 𝜇 = 0. 

𝐶ଵ =
ఓమ

ଵାఓమ
, 𝐶ଶ =

(௘ିୡ୭ୱ )ఓమ

(ଵାఓమ) ୱ୧୬ ఓ
  

and, hence,  

𝜑(𝑥) =
ఓమ

ଵାఓమ
ቂcos 𝜇𝑥 +

௘ିୡ୭ୱ ఓ

ୱ୧୬ ఓ
sin 𝜇𝑥ቃ +

௘ೣ

ଵାఓమ
.  

  

where  𝜇 = √−𝜆 − 1. 

(b) 𝜇  is a root of the equation sin 𝜇 = 0, i.e., 𝜇 = 𝑛𝜋 (𝑛 = 1,2, … ).  System (6) is 
inconsistence and, consequently, the given equation (1) has no solutions. 

In this case, the corresponding homogeneous integral equation  

𝜑(𝑥) + (1 + 𝑛ଶ𝜋ଶ) ∫ 𝐾(𝑥, 𝑡)
ଵ

଴
 𝜑(𝑡)𝑑𝑡 = 0      (7) 

will have an infinity of nontrivial solutions, that is, the number 𝜆௡ = −(1 + 𝑛ଶ𝜋ଶ) are 
characteristic numbers and their associated solutions 𝜑௡(𝑥) = sin 𝑛𝜋𝑥 are eigenfunctions of 
equation (7). 

14.2.4  Problem: Solve the equation  

𝜑(𝑥) −
𝜋ଶ

4
න 𝐾(𝑥, 𝑡)

ଵ

଴

𝜑(𝑡)𝑑𝑡 =
𝑥

2
 , 
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    𝐾(𝑥, 𝑡) = ቐ

௫(ଶି௧)

ଶ
, 0 ≤ 𝑥 ≤ 𝑡

௧(ଶି௫)

ଶ
,   𝑡 ≤ 𝑥 ≤ 1

. 

Solution: The equation can be written as 

𝜑(𝑥) =
௫

ଶ
+

గమ

ସ
ቂ∫

௧(ଶି௫)

ଶ

௫

଴
𝜑(𝑡)𝑑𝑡 + ∫

௫(ଶି௧)

ଶ

ଵ

௫
𝜑(𝑡)𝑑𝑡ቃ    (1) 

Differentiating the equation (1) with respect to ‘x’ on both sides, we get 

𝜑ᇱ(𝑥) =
ଵ

ଶ
+

గమ

ସ
(2 − 𝑥)𝜑(𝑥) −

గమ

ସ
ቂ∫

௧

ଶ

௫

଴
𝜑(𝑡)𝑑𝑡 + ∫

௫

ଶ

ଵ

௫
𝜑(𝑡)𝑑𝑡ቃ.    

𝜑ᇱ(𝑥) =
ଵ

ଶ
+

గమ

ସ
ቂ− ∫

௧

ଶ

௫

଴
𝜑(𝑡)𝑑𝑡 +

௫(ଶି௧)

ଶ
𝜑(𝑥) + ∫

ଶି௧

ଶ

ଵ

௫
𝜑(𝑡)𝑑𝑡 −

௫(ଶି௧)

ଶ
𝜑(𝑥)ቃ  

𝜑ᇱ(𝑥) =
ଵ

ଶ
+

గమ

ସ
ቂ− ∫

௧

ଶ

௫

଴
𝜑(𝑡)𝑑𝑡 + ∫

ଶି௧

ଶ

ଵ

௫
𝜑(𝑡)𝑑𝑡ቃ     (2) 

Again differentiating the equation (2) with respect to ‘x’ on both sides, we get 

𝜑ᇱᇱ(𝑥) =
గమ

ସ
ቂ−

௫

ଶ
𝜑(𝑥) −

ଶି௫

ଶ
𝜑(𝑥)ቃ  

𝜑ᇱᇱ(𝑥) =
గమ

ସ
ቂ−

௫

ଶ
𝜑(𝑥) − 𝜑(𝑥) +

௫

ଶ
𝜑(𝑥)ቃ  

𝜑ᇱᇱ(𝑥) +
గమ

ସ
[𝜑(𝑥)] = 0.        (3)  

The general solution of the above differential equation (3) is  

 𝜑(𝑥) = 𝐶ଵ cos
గ௫

ଶ
+ 𝐶ଶ sin

గ௫

ଶ
       (4) 

and the boundary conditions are  

𝜑(0) =  𝐶ଵ cos 0 + 𝐶ଶ sin 0 ⇒ 𝐶ଵ = 0 

𝜑(1) =  𝐶ଵ cos
𝜋

2
+ 𝐶ଶ sin

𝜋

2
⇒ 𝐶ଶ = 1 

The required function 𝜑(𝑥) which is a solution of the non homogeneous boundary value 
problem is 

  𝜑(𝑥) = sin
గ௫

ଶ
. 

14.3 FREDHOLM ALTERNATIVE: 

In mathematics, the Fredholm alternative, named after Ivar Fredholm, is one of Fredholm's 
theorems resulting in Fredholm theory. It may be expressed in several ways, as a theorem 
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of linear algebra, a theorem of integral equations, or as a theorem on Fredholm operators. Part 
of the result states that a non-zero complex number in the spectrum of a compact operator is 
an eigen value. 

14.3.1 Theorem 1 (Fredholm Alternative): 

 Either the non-homogeneous linear equation of the second kind  

𝜑(𝑥) − 𝜆 ∫ 𝐾(𝑥, 𝑡)
௕

௔
𝜑(𝑡)𝑑𝑡 = 𝑓(𝑥).        (1) 

has a unique solution for any function 𝑓(𝑥) (in some sufficiently broad class) or the 
corresponding homogeneous equation 

𝜑(𝑥) − 𝜆 ∫ 𝐾(𝑥, 𝑡)
௕

௔
𝜑(𝑡)𝑑𝑡 = 0.        (2) 

has at least one nontrivial (that is, not identically zero) solution. 

14.3.2 Theorem 2:  

If the first alternative holds true for equation (1), then it holds true for the associated equation 

𝛹(𝑥) − 𝜆 ∫ 𝐾(𝑡, 𝑥)
௕

௔
𝛹(𝑡)𝑑𝑡 = 𝑔(𝑥).        (3) 

as well. The homogeneous integral equation (2) and its associated equation 

𝛹(𝑥) − 𝜆 ∫ 𝐾(𝑡, 𝑥)
௕

௔
𝛹(𝑡)𝑑𝑡 = 0.       (4) 

have one and the same finite number of linearly independent solutions. 

14.3.2.1 Note: 

If the functions 𝜑ଵ(𝑥), 𝜑ଶ(𝑥), … , 𝜑௡(𝑥), are solutions of the homogeneous equation (2), then 
their linear combination  

𝜑(𝑥) = Cଵ𝜑ଵ(𝑥), +Cଶ𝜑ଶ(𝑥) + ⋯ + C୬𝜑௡(𝑥) = ෍ C௞

௡

௞ୀଵ

𝜑௞(𝑥) 

where the C௞(𝑘 = 1,2, … , n) are arbitrary constants, is also a solution of the equation. 

14.3.3 Theorem 3: 

 A necessary and sufficient condition for the existence of a solution 𝜑(𝑥)  of the non-
homogeneous equation (1) in the latter case of all the alternative is the condition of 
orthogonality of the right side of the equation, i.e., of the function 𝑓(𝑥), to any solutions 
𝛹(𝑥) of the homogeneous equation (4) associated with equation (2): 

∫ 𝑓(𝑥)
௕

௔
𝛹(𝑥)𝑑𝑥 = 0        (5) 

14.3.3.1 Note:  

When condition (5) is fulfilled, equation (1) will have an infinite number of solutions, since 
this equation will be satisfied by any function of the form 𝜑(𝑥) + 𝜑ത(𝑥), where 𝜑(𝑥) is some 
solution of equation (1) and  𝜑ത(𝑥)  is any solution of the corresponding homogeneous 
equation (2). Besides, if equation (1) is satisfied by the function 𝜑ଵ(𝑥) and 𝜑ଶ(𝑥), then by 
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virtue of the linearity of the equation the difference 𝜑ଵ(𝑥) − 𝜑ଶ(𝑥), is a solution of the 
corresponding homogeneous equation (2). 

The Fredholm alternative is particularly important in practical situations. Instead of 
proving that a given integral equation (1) has a solution, it is often simpler to prove that the 
appropriate homogeneous equation (2) or its associated equation (4) has only trivial solutions. 
Whence it follows, by virtue of the alternative, that equation (1) indeed has a solution. 

14.3.3.2 Remarks:  

(1) If the kernel 𝐾 (𝑥, 𝑡) of the integral equation (1) is a symmetric, that is, 𝐾(𝑥, 𝑡)  =
 𝐾 (𝑡, 𝑥), then the associated homogeneous equation (4) coincides with the 
homogeneous equation (2) which corresponds to equation (1). 

(2) In the case of non-homogeneous integral equation with a degenerate kernel 

𝜑(𝑥) − 𝜆 න ൥෍ 𝑎௞(𝑥)𝑏௞

௡

௞ୀଵ

(𝑡)൩
௕

௔

𝜑(𝑡)𝑑𝑡 = 𝑓(𝑥) 

the orthogonality condition (5) of the right side of this equation yields n equalities 

 ∫ 𝑓(𝑡)𝑏௞(𝑡)𝑑𝑡 = 0 (𝑘 = 1,2, … , 𝑛)
௕

௔
 

14.3.4 Example 1: Solve  

𝜑(𝑥) − 𝜆 න (5𝑥ଶ − 3)𝑡ଶ
ଵ

଴

𝜑(𝑡)𝑑𝑡 = 𝑒௫ 

Solution: Given integral equation is  

 𝜑(𝑥) − 𝜆 ∫ (5𝑥ଶ − 3)𝑡ଶଵ

଴
𝜑(𝑡) 𝑑𝑡 = 𝑒௫ 

From which, we have 

𝜑(𝑥) = 𝐶𝜆(5𝑥ଶ − 3)+𝑒௫,        (1) 

where 𝐶 = ∫ 𝑡ଶଵ

଴
𝜑(𝑡) 𝑑𝑡        (2) 

From (1) and (2), we get  

𝐶 = න 𝑡ଶ[𝐶 𝜆(5𝑡ଶ − 3) + 𝑒௧]
ଵ

଴

𝑑𝑡 

𝐶 = ∫ 𝐶 𝜆(5𝑡ସ − 3𝑡ଶ) ]
ଵ

଴
𝑑𝑡+∫ 𝑡ଶ𝑒௧ଵ

଴
𝑑𝑡 

Whence, 𝐶 = 𝑒 − 2 

For any 𝜆, the given equation has a unique solution: 

 𝜑(𝑥) = (𝑒 − 2)𝜆(5𝑥ଶ − 3)+𝑒௫ 

and the corresponding homogeneous equation 
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𝜑(𝑥) − 𝜆 න (5𝑥ଶ − 3)𝑡ଶ
ଵ

଴

𝜑(𝑡) 𝑑𝑡 = 0 

has a unique zero solution 𝜑(𝑥) = 0. 

14.3.5 Example 2:  Solve 𝜑(𝑥) − 𝜆 ∫ sin ln 𝑥
ଵ

଴
𝜑(𝑡) 𝑑𝑡 = 2𝑥 

Solution: 

We have, 𝜑(𝑥) = 2𝑥 + 𝜆 ∫ sin ln 𝑥
ଵ

଴
𝜑(𝑡) 𝑑𝑡 

𝜑(𝑥) = 2𝑥 + 𝜆 sin ln 𝑥 𝐶 

where 𝐶 = ∫ 𝜑(𝑡)
ଵ

଴
 𝑑𝑡. Substituting the expression 𝜑(𝑡) into the integral, we obtain 

𝐶 = 𝐶𝜆 ∫ sin ln 𝑡
ଵ

଴
𝑑𝑡+1 

whence 𝐶 ቀ1 +
ఒ

ଶ
ቁ = 1 

If 𝜆 ≠ −2, then the given equation has a unique solution  

𝜑(𝑥) = 2𝑥 +
ଶఒ

ଶାఒ
sin ln 𝑥; the corresponding homogeneous equation 𝜑(𝑥) −

𝜆 ∫ sin ln 𝑥
ଵ

଴
𝜑(𝑡) 𝑑𝑡 = 0 

has only the zero solution 𝜑(𝑥) ≡ 0. 

But if 𝜆 = −2, then the given equation does not have any solutions since the right side 
𝑓(𝑥) = 2𝑥 is not orthogonal to the function sin ln 𝑥; the homogeneous equation has an 
infinity of solutions since it follows from the equation defining 𝐶, 0. 𝐶 = 0, that 𝐶 is an 
arbitrary constant; all these solutions are given by the formula 𝜑(𝑥) = 𝐶 ෩ sin ln 𝑥 (𝐶 ෩ =
−2𝐶)  

14.3.6 Example 3: Solve 

 𝜑(𝑥) − 𝜆 ∫ cos(𝑥 + 𝑡)
గ

଴
𝜑(𝑡) 𝑑𝑡 = cos 3𝑥 

Solution:  Rewrite the equation in the form 

𝜑(𝑥) − 𝜆 න (cos 𝑥 cos 𝑡 − sin 𝑥 sin 𝑡)
గ

଴

𝜑(𝑡) 𝑑𝑡 = cos 3𝑥 

Whence we have  

𝜑(𝑥) = 𝐶ଵ𝜆 cos 𝑥 − 𝐶ଶ𝜆 sin 𝑥 + cos 3𝑥      (1) 

where ൝
 𝐶ଵ = ∫ 𝜑(𝑡)

గ

଴
cos 𝑡 𝑑𝑡,

𝐶ଶ = ∫ 𝜑(𝑡)
గ

଴
sin 𝑡 𝑑𝑡

       (2) 

Substituting (1) into (2), we get 
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⎩
⎪
⎨

⎪
⎧ 𝐶ଵ = න (𝐶ଵ𝜆 cos 𝑡 − 𝐶ଶ𝜆 sin 𝑡 + cos 3𝑡)

గ

଴

cos 𝑡 𝑑𝑡,

𝐶ଶ = න (𝐶ଵ𝜆 cos 𝑡 − 𝐶ଶ𝜆 sin 𝑡 + cos 3𝑡)
గ

଴

sin 𝑡 𝑑𝑡

 

whence  

൝
 𝐶ଵ(1 − 𝜆 ∫ cosଶ 𝑡 𝑑𝑡) + 𝐶ଶ𝜆 ∫ sin

గ

଴
𝑡 cos 𝑡 𝑑𝑡 = ∫ cos

గ

଴
3𝑡

గ

଴
cos 𝑡 𝑑𝑡,

− 𝐶ଵ𝜆 ∫ cos 𝑡 sin
గ

଴
𝑡 𝑑𝑡 + 𝐶ଶ (1 + 𝜆 ∫ 𝑠𝑖𝑛ଶ 𝑡 𝑑𝑡) = ∫ cos

గ

଴
3𝑡

గ

଴
sin 𝑡 𝑑𝑡,

 or 

ቐ
 𝐶ଵ ቀ1 − 𝜆

గ

ଶ
ቁ = 0,

𝐶ଶ ቀ1 + 𝜆
గ

ଶ
ቁ = 0

         (3) 

The determinant of the system is 

∆(𝜆) ተ
1 − 𝜆

𝜋

2
0

0 1 + 𝜆
𝜋

2

ተ = 1 − 𝜆ଶ
𝜋ଶ

4
 

(i) If 𝜆 ≠ ±
ଶ

గ
 (∆(𝜆) ≠ 0), then system (3) has a unique solution 𝐶ଵ = 0, 𝐶ଶ = 0 and, 

hence, the given equation has the unique solution 𝜑(𝑥) = cos 3𝑥 and the 
corresponding homogeneous equation 

𝜑(𝑥) − 𝜆 ∫ cos(𝑥 + 𝑡)
గ

଴
𝜑(𝑡) 𝑑𝑡 = 0      (4) 

only has the zero solution 𝜑(𝑥) = 0. 

(ii) If 𝜆 =
ଶ

గ
, then system (3) takes the form ൜

𝐶ଵ. 0 = 0,
𝐶ଶ. 2 = 0

 

Whence it follows that 𝐶ଶ = 0 and 𝐶ଵ = 𝐶, where 𝐶 is an arbitrary constant. The given 
equation will have an infinity of solution which are given by the formula 

𝜑(𝑥) =
2

𝜋
𝐶 cos 𝑥 + cos 3𝑥  

or 

𝜑(𝑥) = 𝐶ሚ cos 𝑥 + cos 3𝑥, ൬𝐶ሚ =
2𝐶

𝜋
൰ ; 

the corresponding homogeneous equation (4) has an infinity of solutions: 

𝜑(𝑥) = 𝐶ሚ cos 𝑥 

(iii) If 𝜆 = −
ଶ

గ
, then system (3) takes the form 

൜
2. 𝐶ଵ = 0,
0. 𝐶ଶ = 0
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whence 𝐶ଵ = 0, 𝐶ଶ = 𝐶, where 𝐶 is an arbitrary constant. The general solution of the given 
equation is of the form  

𝜑(𝑥) = 𝐶ሚ sin 𝑥 + cos 3𝑥 ൬𝐶ሚ =
2𝐶

𝜋
൰ ; 

In this example, the kernel 𝐾(𝑥, 𝑡) = cos(𝑥 + 𝑡)  of the given equation is symmetric: 
𝐾(𝑥, 𝑡) = 𝐾(𝑡, 𝑥);  the right side of the equation [that is, the function 𝑓(𝑥) = cos 3𝑥]  is 
orthogonal to the functions cos 𝑥  and sin 𝑥 on the interval [0, 𝜋]. 

14.3.7 Example 4: 

Solve 𝜑(𝑥) − 𝜆 ∫ cosଶ(𝑥)
గ

଴
𝜑(𝑡) 𝑑𝑡 = 1 

Solution: 

We have,𝜑(𝑥) = 1 + 𝜆 cosଶ𝑥 ∫ 𝜑(𝑡)
గ

଴
 𝑑𝑡       (1) 

⇒ 𝜑(𝑥) = 1 + 𝜆 cosଶ𝑥𝐶        (2) 

where C=∫ 𝜑(𝑡)
గ

଴
 𝑑𝑡.         (3) 

Substituting (2) into (3), we get  

C=∫ (1 + 𝜆 cosଶ𝑡𝐶)
గ

଴
 𝑑𝑡   

C=∫ 𝑑𝑡
గ

଴
+

ఒ஼

ଶ
∫ (1 + cos 2𝑡)

గ

଴
𝑑𝑡 

Whence C=
ଶగ

(ଶିఒగ)
 

Case (i): If 𝜆 ≠
ଶ

గ
, then the given equation has a unique solution given by 

 𝜑(𝑥) = 1 +
ଶగఒ

(ଶିఒగ)
 cosଶ𝑥 

and the corresponding homogeneous equation  

𝜑(𝑥) − 𝜆 න cosଶ(𝑥)
గ

଴

𝜑(𝑡) 𝑑𝑡 = 0 

has the zero solution,𝜑(𝑥) = 0. 

Case (ii): If 𝜆 =
ଶ

గ
, then the given equation does not has any solution. 

∴  𝜑(𝑥) =

⎩
⎨

⎧1 +
2𝜋𝜆

(2 − 𝜆𝜋)
 cosଶ𝑥, 𝜆 ≠

2

𝜋
 

has no solution,                𝜆 =
2

𝜋
 

. 
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14.4  SUMMARY: 

This chapter provided the basic idea of the non-homogeneous symmetric equation and a 
theorem namely Fredholm alternative along with its proof. Few more theorems and their 
proofs related to this topic were given in detail with appropriate examples. By making use of 
these results and example problems the reader will get a clear idea on how to solve non-
homogeneous symmetric integral equations. Finally same self-assessment problems were 
provided for practice. 

14.5  TECHNICAL TERMS: 
 
Non Homogeneous Symmetric Equation:  
The non-homogeneous Fredholm integral equation of the second kind is 

𝜑(𝑥) − 𝜆 ∫ 𝐾(𝑥, 𝑡)
௕

௔
𝜑(𝑡)𝑑𝑡 = 𝑓(𝑥). 

where 𝜑(𝑥) is an unknown function 

         𝐾(𝑥, 𝑡) is the symmetric kernel i.e., 𝐾(𝑥, 𝑡) = 𝐾(𝑡, 𝑥) 

 𝑓(𝑥) is a known function 

 λ is a parameter 

Fredholm Alternative Theorem:  
Either the non-homogeneous linear equation of the second kind  

𝜑(𝑥) − 𝜆 ∫ 𝐾(𝑥, 𝑡)
௕

௔
𝜑(𝑡)𝑑𝑡 = 𝑓(𝑥).        (1) 

has a unique solution for any function 𝑓(𝑥) (in some sufficiently broad class) or the 
corresponding homogeneous equation 

𝜑(𝑥) − 𝜆 ∫ 𝐾(𝑥, 𝑡)
௕

௔
𝜑(𝑡)𝑑𝑡 = 0.        (2) 

has at least one nontrivial (that is, not identically zero) solution. 
 

14.6  SELF-ASSESSMENT QUESTIONS: 

Section-A: 
Solve the following homogeneous symmetric integral equations: 

1. 𝜑(𝑥) + ∫ 𝐾(𝑥, 𝑡)
ଵ

଴
𝜑(𝑡) 𝑑𝑡 = 𝑥𝑒௫, 

 𝐾(𝑥, 𝑡) = ቐ

ୱ୧୬୦௫ ୱ୧୬୦ (௧ିଵ)

ୱ୧୬୦ଵ
, 0 ≤ 𝑥 ≤ 𝑡,

ୱ୧୬୦௧ ୱ୧୬୦ (௫ିଵ)

ୱ୧୬୦ଵ
, 𝑡 ≤ 𝑥 ≤ 1.

 

2. 𝜑(𝑥) − 𝜆 ∫ 𝐾(𝑥, 𝑡)
ଵ

଴
𝜑(𝑡) 𝑑𝑡 = 𝑥 − 1, 

 𝐾(𝑥, 𝑡) = ቄ
𝑥 − 𝑡, 0 ≤ 𝑥 ≤ 𝑡,
𝑡 − 𝑥, 𝑡 ≤ 𝑥 ≤ 1.
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3. 𝜑(𝑥) − 2 ∫ 𝐾(𝑥, 𝑡)
ഏ

మ
଴

𝜑(𝑡) 𝑑𝑡 = cos2𝑥, 

 𝐾(𝑥, 𝑡) = ቊ
sin 𝑥  cos 𝑡,   0 ≤ 𝑥 ≤ 𝑡,

sin 𝑡 cos 𝑥 , 𝑡 ≤ 𝑥 ≤
గ

ଶ
.  

4. 𝜑(𝑥) − 𝜆 ∫ 𝐾(𝑥, 𝑡)
గ

଴
𝜑(𝑡) 𝑑𝑡 = 1, 

𝐾(𝑥, 𝑡) = ቄ
sin 𝑥 cos 𝑡,   0 ≤ 𝑥 ≤ 𝑡,
sin 𝑡 cos 𝑥 , 𝑡 ≤ 𝑥 ≤ 𝜋.

 

5. 𝜑(𝑥) − 𝜆 ∫ 𝐾(𝑥, 𝑡)
ଵ

଴
𝜑(𝑡) 𝑑𝑡 = 𝑥, 

 𝐾(𝑥, 𝑡) = ൜
 (𝑥 + 1)(𝑡 − 3), 0 ≤ 𝑥 ≤ 𝑡,

(𝑡 + 1)(𝑥 − 3), 𝑡 ≤ 𝑥 ≤ 1.
 

6. 𝜑(𝑥) − 𝜆 ∫ 𝐾(𝑥, 𝑡)
గ

଴
𝜑(𝑡) 𝑑𝑡 = sin𝑥, 

 𝐾(𝑥, 𝑡) = ൝
sin(𝑥 +

గ

ସ
)sin(𝑡 −

గ

ସ
), 0 ≤ 𝑥 ≤ 𝑡,

sin(𝑡 +
గ

ସ
) sin(𝑥 −

గ

ସ
), 𝑡 ≤ 𝑥 ≤ 𝜋.

 

7. 𝜑(𝑥) − 𝜆 ∫ 𝐾(𝑥, 𝑡)
ଵ

଴
𝜑(𝑡) 𝑑𝑡 = sinh 𝑥, 

 𝐾(𝑥, 𝑡) = ൜
−𝑒ି௧ sinh 𝑥 , 0 ≤ 𝑥 ≤ 𝑡,
−𝑒ି௫ sinh 𝑡 , 𝑡 ≤ 𝑥 ≤ 1

 

8. 𝜑(𝑥) − 𝜆 ∫ 𝐾(𝑥, 𝑡)
ଵ

଴
𝜑(𝑡) 𝑑𝑡 = cosh 𝑥, 

 𝐾(𝑥, 𝑡) = ቐ

ୡ୭ୱ୦ ௫ ୡ୭ୱ୦ (௧ିଵ)

ୱ୧୬୦
, 0 ≤ 𝑥 ≤ 𝑡,

ୡ୭ୱ୦ ௧ ୡ୭ୱ୦ (௫ିଵ)

ୱ୧୬୦
, 𝑡 ≤ 𝑥 ≤ 1.

 

9. φ(𝑥) − λ ∫ | 𝑥 − 𝑡 |
π

଴
φ(𝑡)  𝑑𝑡 = 1. 

Section-B 
Investigate the solvability of the following integral equations (for different values of the 
parameter 𝜆): 

1. 𝜑(𝑥) − 𝜆 ∫ 𝑥𝑒௧ଵ

ିଵ
𝜑(𝑡) 𝑑𝑡 = 𝑥. 

2. 𝜑(𝑥) − 𝜆 ∫ |𝑥 − 𝜋|
ଶగ

଴
𝜑(𝑡) 𝑑𝑡 = 𝑥 

3. 𝜑(𝑥) − 𝜆 ∫ (2𝑥𝑡 − 4𝑥ଶ)
ଵ

଴
𝜑(𝑡) 𝑑𝑡 = 1 − 2𝑥 

4. 𝜑(𝑥) − 𝜆 ∫ (𝑥ଶ − 2𝑥𝑡)
ଵ

ିଵ
𝜑(𝑡) 𝑑𝑡 = 𝑥ଷ − 𝑥 

5. 𝜑(𝑥) − 𝜆 ∫ (
ଵ

గ
cos𝑥 cos𝑡 +

ଵ

గ
sin2𝑥 sin2𝑡)

ଶగ

଴
𝜑(𝑡)𝑑𝑡 = sin𝑥 

6. 𝜑(𝑥) − 𝜆 ∫ 𝐾(𝑥, 𝑡)
ଵ

଴
𝜑(𝑡) 𝑑𝑡 = 1 

where 
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 𝐾(𝑥, 𝑡) = ൜
cosh𝑥. sinh𝑡, 0 ≤ 𝑥 ≤ 𝑡,
cosh𝑡. sinh𝑥, 𝑡 ≤ 𝑥 ≤ 1.

 

Answers to Self- Assessment Questions: 

Section-A: 

1. 𝜑(𝑥) = 𝑥 − 2 + 2𝑒௫ 

2. 𝜑(𝑥) =

⎩
⎪
⎨

⎪
⎧

ୱ୧୬ ఓ௫ାୱ୧୬ ఓ(௫ିଵ)ିఓ ୡ୭ୱ ఓ௫

ଶఓ ୡ୭ୱ
ഋ

 మ
(ୡ୭ୱ

ഋ

 మ
ା

ഋ

 మ
ୱ୧୬

ഋ

 మ
)

, 𝜆 > 0,

ୱ୧୬ ఓ௫ାୱ୧୬ ఓ(௫ାଵ)ିఓ ୡ୭ୱ ఓ௫

ଶఓ ୡ୭ୱ
ഋ

 మ
(ୡ୭ୱ

ഋ

 మ
ିୱ୧୬

ഋ

 మ
)

, 𝜆 < 0,

where 𝜇 = √2𝜆

 

3. 𝜑(𝑥) = cos 2 𝑥 + 4 ∑
௡ ୱ୧୬ ଶ

(ସ௡మିଵ)(ସ௡మିଷ)
ஶ
௡ୀଵ  

4. 𝜑(𝑥) =

⎩
⎪
⎨

⎪
⎧

ఒ ୡ୭ୱ √ఒାଵ(గି௫)ାୡ୭ୱ √ఒାଵ గ

(ఒାଵ) ୡ୭ୱ గ√ఒାଵ 
,         𝜆 > −1,

ఒ ୡ୭ୱ ௛√ିఒିଵ(గି௫)ାୡ୭ୱ ௛√ିఒିଵ గ

(ఒାଵ) ୡ୭ୱ గ√ିఒିଵ 
, 𝜆 < −1,

௫మ

ଶ
− 𝜋𝑥 + 1,                               𝜆 = −1

 

5.𝜑(𝑥) =

⎩
⎪
⎨

⎪
⎧

ଷ(ୱ୧୬ ୦ ఓାఓ ୡ୭ୱ୦ ఓ௫)ାୱ୧୬୦ (௫ିଵ)ିଶఓ ୡ୭ୱ୦ ఓ(௫ିଵ)

(ଵାଶఓమ) ୱ୧୬ ௛ఓାଷఓ ୡ
,

                                                 𝜆 > 0(𝜇 = 2√𝜆)
ଷ(ୱ୧୬ ఓାఓ ୡ୭ୱ ఓ )ାୱ୧୬ ఓ(௫ିଵ)ିଶఓ ୡ୭ (௫ିଵ)

(ଵାଶఓమ) ୱ୧୬ ఓାଷఓ ୡ୭ୱ ௛
,

                                              𝜆 < 0(𝜇 = 2√−𝜆)

  

6. 𝜑(𝑥) = −1 

7. 𝜑(𝑥) =
௘.ୱ୧୬୦ √ଶ௫

ୱ୧୬୦ √ଶା√ଶ ୡ୭ୱ୦ √ଶ
 

8. 𝜑(𝑥) = 

⎩
⎪
⎨

⎪
⎧

− sinh 1. cos 𝜇𝑥

𝜇 sin 𝜇
, 𝜆 > 1  ൫𝜇 = √𝜆 − 1 ൯

− sin h 1. cos h 𝜇 𝑥

𝜇 sin h 𝜇
, 𝜆 < 1  ൫𝜇 = √1 − 𝜆 ൯

no solutins if 𝜆 = 1

 

9. 𝜑(𝑥) =

⎩
⎨

⎧
ୡ୭ୱ୦ ఓ(௫ି

ഏ

మ
)

ୡ୭ୱ୦
ഋഏ

మ
ି

ഋഏ

మ
ୱ୧୬୦

ഋഏ

మ

  if 𝜇 = ඥ2𝜆, 𝜆 > 0

ୡ୭ୱ ఓ(௫ି
ഏ

మ
)

ୡ୭ୱ
ഋഏ

మ
ି

ഋഏ

మ
ୱ୧୬

ഋഏ

మ

  if 𝜇 = ඥ−2𝜆, 𝜆 < 0
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𝜑(𝑥) ≡ 1 if 𝜆 = 0;  𝜇 is not a root of the equations cosh
ఓగ

ଶ
−

ఓగ

ଶ
sinh

ఓగ

ଶ
= 0, 

cos
𝜇𝜋

2
−

𝜇𝜋

2
sin

𝜇𝜋

2
= 0. 

Section-B: 

1. 𝜑(𝑥) =
௘

௘ିଶఒ
𝑥, 𝜆 ≠

௘

ଶ
. No solutions for 𝜆 = −

௘

ଶ
. 

2. 𝜑(𝑥) = 𝑥 +
ଶగమఒ|௫ି஠|

ଵିగమఒ
, 𝜆 ≠

ଵ

గమ
. No solution for 𝜆 =

ଵ

గమ
 

3. 𝜑(𝑥) =  
ଷ௫൫ଶఒమ௫ିଶఒమିହఒି଺൯ା(ఒାଷ)మ

(ఒାଷ)మ
, 𝜆 ≠ −3. No solutions for 𝜆 = −3. 

4. 𝜑(𝑥) = ቐ
𝑥ଷ −

ଷ(ସఒାହ).௫ 

ହ(ସఒାଷ)
if 𝜆 ≠

ଷ

ଶ
, 𝜆 ≠ −

ଷ

ସ

𝑥ଷ −
ଵଵ 

ଵହ
𝑥 + 𝐶𝑥ଶ if 𝜆 =

ଷ

ଶ

 

For 𝜆 =
ଷ

ସ
 there are no solution. 

5. 𝜑(𝑥) = ൜
sin 𝑥 if  𝜆 ≠ 1

𝐶ଵ cos 𝑥 + 𝐶ଶ sin 2𝑥 + sin 𝑥  if 𝜆 = 1
 

6.𝜑(𝑥) = −
௫మ

ଶ
+

ଷ

ଶ
− tanh 1 if 𝜆 = −1;  𝜑(𝑥) = ቄ

൫ఓమିଵ൯ ୡ୭ୱ୦ ఓ௫

ୡ୭ୱ୦ ఓିఓ ୱ୧୬୦ ఓ ୲
+ 1ቅ

ଵ

ఓమ
 

if 𝜆 = 𝜇ଶ − 1, where 𝜇 is not a root of the equation cosh 𝜇 =  𝜇 sinh 𝜇 tanh 1; 𝜑(𝑥) =
ଵ

ఓమ
ቄ

൫ఓమାଵ൯ ୡ୭ୱ ఓ௫

ୡ୭ୱ ఓିఓ ୱ୧୬ ఓ ୲ୟ୬୦
− 1ቅ 

if 𝜆 = −(𝜇ଶ − 1), where 𝜇 is not a root of the equation cosh 𝜇 + 𝜇 sinh 𝜇 tanh 1 = 0. In the 
remaining cases there are no solutions.  

14.7 SUGGESTED READINGS: 

1. Problems and Exercises in Integral Equations, MIR Oybkusgers, Moscow, 1971 by 
M. Krsnov, A. Kiselev and G. Makarendo. 

2. Integral Equations and their Applications, John wiley & Sons, 1999, by Jerri, A. 
3. Linear Integral Equation, Theory and Techniques, Academic Press, 2014 by kanwal 

R.P. 
4. A first course in Integral Equations, 2nd edition, World Scientific Publishing Co. 2015 

by Wazwaz, A.M. 
5. Integral equations, Krishna Prakashan Media(P) Ltd., Meerut. 

 
-  Dr. Vinutha Tummala 



LESSON- 15 

CONSTRUCTION OF GREEN’S FUNCTION FOR 
ORDINARY DIFFERENTIAL EQUATIONS 

 
OBJECTIVES: 
 

Learn to Construct Green’s Function for Ordinary Differential Equations. 
 

STRUCTURE: 
 
15.1  Introduction 

15.2  Definition of Green’s Function 

15.3  Summary 

15.4  Technical Terms  

15.5  Self-Assessment Questions 

15.6  Suggested Readings 

 

15.1 INTRODUCTION: 
 
 Green's function provides a method to solve non-homogeneous ordinary differential 
equations (ODEs) by finding the solution to the equation with a delta function forcing term, 
which allows for solving more complex problems by superposition.  

15.2 DEFINITION OF GREEN’S FUNCTION:  

Consider the homogeneous differential equation of order ‘n’ is 𝐿[𝑦] ≡ 𝑃଴(𝑥)𝑦௡ +
𝑃ଵ(𝑥)𝑦௡ିଵ + ⋯ + 𝑃௡(𝑥)𝑦 = 0                 (1) 

where the function 𝑃଴(𝑥), 𝑃ଵ(𝑥), … . , 𝑃௡(𝑥)are continuous on [𝑎, 𝑏] ,𝑃଴(𝑥) ≠ 0 on [𝑎, 𝑏] and 
the boundary conditions are 𝑉௜(𝑦) = 0 

𝑉௜(𝑦) = ∑ 𝛼௜
௡ିଵ𝑦௡ିଵ(𝑎) +௡

௜ୀଵ ∑ 𝛽௜
௡ିଵ𝑦௡ିଵ(𝑏)௡

௜ୀଵ ,            (2) 

where the linear forms 𝑉ଵ, 𝑉ଶ, … , 𝑉௡ in 𝑦(𝑎), 𝑦ᇱ(𝑎) … 𝑦(௡ିଵ)(𝑎), 𝑦(𝑏), … , 𝑦(௡ିଵ)(𝑏) 

are linearly independent. 

If the homogeneous boundary value problem given by equation (1) and equation (2) has only 
a trivial solution 𝑦(𝑥) ≡ 0. 

15.2.1 Construction of Green’s Function: The Green’s function 𝐺(𝑥, 𝜉), constructed for 
any point ξ, 𝑎 < ξ < 𝑏, for a boundary value problem which has the following properties: 

1. In each of the intervals [𝑎 , ξ) and (ξ , 𝑏] the function 𝐺(𝑥, 𝜉) considered as a function 
of 𝑥, is a solution of equation (1) is 𝐿[𝐺] = 0. 
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2. 𝐺(𝑥, 𝜉) is continuous in 𝑥 for fixed 𝜉 and has continuous derivatives with respect to 𝑥 
upto order (𝑛 − 2) inclusive for 𝑎 ≤ 𝑥 ≤ 𝑏. 

3. (𝑛 − 1)௧௛ derivative of 𝐺(𝑥, 𝜉) with respect to 𝑥 at 𝑥 =  𝜉 has the discontinuity of the 

first kind, and the jump being equal to 
ଵ

௉బ(௫)
, 

i. e.,
𝜕௡ିଵ

𝜕𝑥௡ିଵ
 𝐺(𝑥, 𝜉)቉

௫ୀకା଴

−
𝜕௡ିଵ

𝜕𝑥௡ିଵ
 𝐺(𝑥, 𝜉)቉

௫ୀకି଴

=
1

𝑃଴(𝜉)
. 

4. 𝐺(𝑥, 𝜉) satisfies the boundary conditions (2): 𝑉௜(𝐺) = 0 , (𝑖 = 1,2, … , 𝑛)       

15.2.2. Theorem: If the boundary value problem  

𝐿[𝑦] ≡ 𝑃଴(𝑥)𝑦௡ + 𝑃ଵ(𝑥)𝑦௡ିଵ + ⋯ + 𝑃௡(𝑥)𝑦 = 0,      (1) 

𝑉௜(𝑦) = ∑ 𝛼௜
௡ିଵ𝑦௡ିଵ(𝑎) + ௡

௜ୀଵ ∑ 𝛽௜
௡ିଵ𝑦௡ିଵ(𝑏)௡

௜ୀଵ       (2) 

has only the trivial solution 𝑦(𝑥) ≡ 0, then the operator L has one and only one Green’s 
function 𝐺(𝑥, 𝜉). 

Proof:  

Let 𝑦ଵ(𝑥), 𝑦ଶ(𝑥), … , 𝑦௡(𝑥) be linearly independent solutions of the equation 𝐿[𝑦] = 0. 

Then, by virtue of property (1), the unknown function 𝐺(𝑥, 𝜉) must have the following 
representation on the intervals [𝑎, ξ) and (ξ, 𝑏]: 

𝐺(𝑥, 𝜉) = 𝑎ଵ𝑦ଵ(𝑥) + 𝑎ଶ𝑦ଶ(𝑥) + ⋯ + 𝑎௡𝑦௡(𝑥) for 𝑎 ≤ 𝑥 < ξ 

and 𝐺(𝑥, 𝜉) = 𝑏ଵ𝑦ଵ(𝑥) + 𝑏ଶ𝑦ଶ(𝑥) + ⋯ + 𝑏௡𝑦௡(𝑥) for ξ ≤ 𝑥 < 𝑏 

Here, 𝑎ଵ, 𝑎ଶ, …,𝑎௡, 𝑏ଵ, 𝑏ଶ, … , 𝑏௡ are some functions of  ξ. The continuity of the function 
𝐺(𝑥, 𝜉) and of its first 𝑛 − 2 derivatives with respect to 𝑥 at the point 𝑥 = ξ yields the 
relations 

[𝑏ଵ𝑦ଵ(ξ) + ⋯ + 𝑏௡𝑦௡(ξ)] − [𝑎ଵ𝑦ଵ(ξ) + ⋯ + 𝑎௡𝑦௡(ξ)] = 0, 
[𝑏ଵ𝑦ଵ′(ξ) + ⋯ + 𝑏௡𝑦௡′(ξ)] − [𝑎ଵ𝑦ଵ′(ξ) + ⋯ + 𝑎௡𝑦௡′(ξ)] = 0, 
………………………………………………… 

ൣ𝑏ଵ𝑦ଵ
(௡ିଶ)(ξ) + ⋯ + 𝑏௡𝑦௡

(௡ିଶ)(ξ)൧ − ൣ𝑎ଵ𝑦ଵ
(௡ିଶ)(ξ) + ⋯ + 𝑎௡𝑦௡

(௡ିଶ)(ξ)൧ = 0 

and property (3) takes the form 

ൣ𝑏ଵ𝑦ଵ
(௡ିଵ)(ξ) + ⋯ + 𝑏௡𝑦௡

(௡ିଵ)(ξ)൧ − ൣ𝑎ଵ𝑦ଵ
(௡ିଵ)(ξ) + ⋯ + 𝑎௡𝑦௡

(௡ିଵ)(ξ)൧ =
1

𝑃଴(ξ)
 

Let us put 𝑐௜(𝜉) = 𝑏௜(𝜉) − 𝑎௜(𝜉) (𝑖 = 1,2, … , 𝑛); then we get a system of linear equations in 
𝑐௜(ξ): 
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೎భ೤భ(ಖ)శ೎మ೤మ(ಖ)శ⋯శ೎೙೤೙(ಖ)సబ

೎భ೤భ
ᇲ(ಖ)

శ೎మ೤మ
ᇲ(ಖ)

శ⋯శ೎೙೤೙
ᇲ(ಖ)

సబ
…………………………………………………………………………..

೎భ೤భ
(೙షమ)(ಖ)శ೎మ೤మ

(೙షమ)(ಖ)శ⋯శ೎೙೤೙
(೙షమ)(ಖ)సబ

೎భ೤భ
(೙షభ)(ಖ)శ೎మ೤మ

(೙షభ)(ಖ)శ⋯శ೎೙೤೙
(೙షభ)(ಖ)స

భ
ುబ(ಖ)⎭

⎬

⎫
     (3)  

 

The determinant of system (3) is equal to the value of the Wronskian W(𝑦ଵ, 𝑦ଶ, … , 𝑦௡) at the 
point 𝑥 = ξ and is therefore different from zero. For this reason, system (3) uniquely defines 
the functions 𝑐௜(ξ) (i = 1,2, … , n). To determine the functions 𝑎௜(𝜉) and 𝑏௜(𝜉) let us take 
advantage of the boundary conditions (2). We write 𝑉௜(𝑦) in the form  

𝑉௜(𝑦) = 𝐴௜(𝑦) + 𝐵௜(𝑦)        (4) 

where 

𝐴௜(𝑦) =∝௜ 𝑦(𝑎) +∝௜
(ଵ) 𝑦ᇱ(𝑎) + ⋯ +∝௜

(௡ିଵ) 𝑦(௡ିଵ)(𝑎),     

𝐵௜(𝑦) = 𝛽௜𝑦(𝑏) + 𝛽௜
(ଵ)

𝑦ᇱ(𝑏) + ⋯ + 𝛽௜
(௡ିଵ)

𝑦(௡ିଵ)(𝑏). 

Then, by property (4), we get 

𝑉௜(𝐺) = 𝑎ଵ𝐴௜(𝑦ଵ) + ⋯ + 𝑎௡𝐴௜(𝑦௡) 

+𝑏ଵ𝐵௜(𝑦ଵ) + 𝑏ଶ𝐵௜(𝑦ଶ) + ⋯ + 𝑏௡𝐵௜(𝑦௡) = 0  (𝑖 = 1,2, … , 𝑛) 

Taking into consideration that 𝑎௜ = 𝑏௜ − 𝑐௜, we will have  
(𝑏ଵ − 𝑐ଵ)𝐴௜(𝑦ଵ) + (𝑏ଶ − 𝑐ଶ)𝐴௜(𝑦ଶ) + ⋯ + (𝑏௡ − 𝑐௡)𝐴௜(𝑦௡) 

+𝑏ଵ𝐵௜(𝑦ଵ) + 𝑏ଶ𝐵௜(𝑦ଶ) + ⋯ + 𝑏௡𝐵௜(𝑦௡) = 0  (𝑖 = 1,2, … , 𝑛) 

Whence, by virtue of (4), 

𝑏ଵ𝑉௜(𝑦ଵ) + 𝑏ଶ𝑉௜(𝑦ଶ) + ⋯ + 𝑏௡𝑉௜(𝑦௡) = 𝑐ଵ𝐴௜(𝑦ଵ) + 𝑐ଶ𝐴௜(𝑦ଶ) + ⋯ + 𝑐௡𝐴௜(𝑦௡) 

(𝑖 = 1,2, … , 𝑛)        (5) 

Note that system (5) is linear in the quantities 𝑏ଵ, 𝑏ଶ, … , 𝑏௡. 

The determinant of the system is different from zero: 

ተ

𝑉ଵ(𝑦ଵ) 𝑉ଵ(𝑦ଶ) … 𝑉ଵ(𝑦௡)

𝑉ଶ(𝑦ଵ) 𝑉ଶ(𝑦ଶ) … 𝑉ଶ(𝑦௡)
… … … …

𝑉௡(𝑦ଵ) 𝑉௡(𝑦ଶ) … 𝑉௡(𝑦௡)

ተ ≠ 0         (6) 

by virtue of our assumption concerning the linear independence of the forms 𝑉ଵ, 𝑉ଶ, … , 𝑉௡. 

Consequently, the system of equations (5) has a unique solution in 𝑏ଵ(ξ), 𝑏ଶ(ξ), … , 𝑏௡(ξ), and 
since 𝑎௜(𝜉) = 𝑏௜(𝜉) − 𝑐௜(𝜉), it follows that the quantities 𝑎௜(ξ) (𝑖 = 1,2, … , 𝑛) are defined 
uniquely. Thus, the existence and uniqueness of Green’s function 𝐺(𝑥, 𝜉) have been proved 
and a method has been given for constructing the function. 

Note 1: If the boundary value problem  
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𝐿[𝑦] ≡ 𝑃଴(𝑥)𝑦௡ + 𝑃ଵ(𝑥)𝑦௡ିଵ + ⋯ + 𝑃௡(𝑥)𝑦 = 0,     

𝑉௜(𝑦) = ∑ 𝛼௜
௡ିଵ𝑦௡ିଵ(𝑎) +௡

௜ୀଵ ∑ 𝛽௜
௡ିଵ𝑦௡ିଵ(𝑏)௡

௜ୀଵ   

is self-adjoint, then Green’s function is symmetric, i.e., 𝐺(𝑥, 𝜉) = 𝐺(𝜉, 𝑥)  

The converse is true as well. 

Note 2: If at one of the extremities of an interval [𝑎, 𝑏 ] the coefficient of the highest 
derivative vanishes, for example 𝑝଴(𝑎) = 0 , then the natural boundary condition for 
boundedness of the solution at 𝑥 = 𝑎 is imposed, and at the other extremity, the ordinary 
boundary condition is specified (see example 2 below). 

15.2.3 An important special case: 

Let us consider the construction of Green’s function for a second order differential equation 
of the form 

(𝑝 (𝑥)𝑦ᇱ)ᇱ + 𝑞(𝑥) 𝑦 =  0, 

𝑝 (𝑥)  ≠ 0 on [𝑎, 𝑏], 𝑝(𝑥) ∈ 𝐶(ଵ)[𝑎, 𝑏]      (1) 

with boundary conditions 

 𝑦(𝑎) =  𝑦 (𝑏) = 0            (2) 

Suppose that 𝑦ଵ(𝑥) is a solution of equation (1) defined by the initial conditions 

𝑦ଵ(𝑎)=0, 𝑦ଵ
ᇱ (𝑎)=𝛼 ≠ 0        (3) 

Generally speaking, this solution need not necessarily satisfy the second boundary condition; 
we will therefore assume that 𝑦ଵ(𝑏) ≠0. But functions of the form 𝐶ଵ𝑦ଵ(𝑥), where 𝐶ଵ is an 
arbitrary constant, are obviously solutions of equation (1) and satisfy the boundary condition  

𝑦(𝑎)  =  0 

Similarly, we find the nonzero solution 𝑦ଶ(𝑥) of equation (1), such that it should satisfy the 
second boundary condition, i.e.,  

  𝑦ଶ(𝑏) = 0        (4) 

This same condition will be satisfied by all solutions of the family 𝐶ଶ𝑦ଶ(𝑥), where 𝐶ଶis an 
arbitrary constant. 

We now seek Green’s function for the problem (1) - (2) in the form, 

𝐺(𝑥, 𝜉) = ൜
𝐶ଵ𝑦ଵ(𝑥)    for   𝑎 ≤ 𝑥 ≤ ξ

 𝐶ଶ𝑦ଶ(𝑥)    for   ξ ≤ 𝑥 ≤ 𝑏 
        (5) 

and we shall choose the constants 𝐶ଵ and 𝐶ଶ so that the properties (2) and (3) are fulfilled, 
i.e., so that the function 𝐺(𝑥, 𝜉) is continuous in 𝑥 for fixed 𝜉, in particular, continuous at the 
point 𝑥 =  𝜉; 

𝐶ଵ𝑦ଵ(𝜉) = 𝐶ଶ𝑦ଶ(𝜉) 
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and so that 𝐺௫′(𝑥, 𝜉) has a jump, at the point 𝑥 =  𝜉 , equal to 
ଵ

௣(ஞ)
: 

𝐶ଶ𝑦ଶ′(𝜉) − 𝐶ଵ𝑦ଵ′(𝜉) =
1

𝑝(ξ)
 

Rewrite the last two equalities as    
−𝐶ଵ𝑦ଵ(𝜉) + 𝐶ଶ𝑦ଶ(𝜉) = 0

−𝐶ଵ𝑦ଵ′(𝜉) + 𝐶ଶ𝑦ଶ′(𝜉) =
ଵ

௣(ஞ)

ൡ                (6) 

The determinant of system (6) is the Wronskian W [𝑦ଵ(𝑥), 𝑦ଶ(𝑥)] = W(𝑥) computed at the 
point 𝑥 =  𝜉 for linearly independent solutions 𝑦ଵ(𝑥) 𝑎𝑛𝑑 𝑦ଶ(𝑥)of equation (1), and, hence, it 
is different from zero: 

W(𝜉) ≠ 0 

So that the quantities 𝐶ଵ and 𝐶ଶ of the system (6) are determined at once: 

𝐶ଵ =
௬మ(క)

௣(ஞ)ௐ(ஞ)
, 𝐶ଶ =

௬భ(క)

௣(ஞ)ௐ(ஞ)
           (7) 

Substituting the expressions for 𝐶ଵ and 𝐶ଶinto (5), we finally get  

𝐺(𝑥, 𝜉) = ቐ

௬భ(௫).௬మ(క)

௣(ஞ)ௐ(ஞ)
 for 𝑎 ≤ 𝑥 ≤ ξ

௬భ(క).௬మ(௫)

௣(ஞ)ௐ(ஞ)
 for ξ ≤ 𝑥 ≤ 𝑏 

             (8) 

Note 1. The solution  𝑦ଵ(𝑥) and 𝑦ଶ(𝑥) of equation (1) that we have chosen are linearly 
independent by virtue of the assumption that 𝑦ଵ(𝑏) ≠ 0. 

 Indeed, all solutions are linearly dependent on 𝑦ଵ(𝑥) have the form 𝐶ଵ𝑦ଵ(𝑥) and, 
consequently, for 𝐶ଵ ≠ 0, do not vanish at the point 𝑥 = 𝑏 at which, according to our choice, 
the solution 𝑦ଶ(𝑥) vanishes. 

Note 2. The boundary value problem for a second order equation of the form 

𝑦ᇱᇱ(𝑥) + 𝑝ଵ(𝑥)𝑦ᇱ(𝑥) + 𝑝ଶ(𝑥)𝑦(𝑥) = 0             (9) 

and boundary conditions 𝑦(𝑎) = 𝐴, 𝑦(𝑏) = 𝐵        (10) 

reduces to the above considered problem (1)-(2) as follows: 

(i) The linear equation (9) is reduced to (1) by multiplying (9) by 𝑝(𝑥) =

𝑒∫ ௣భ(௫)ௗ௫ [we have to take 𝑝(𝑥)𝑝ଶ(𝑥) 𝑓𝑜𝑟 𝑞(𝑥)]. 
(ii) The boundary conditions (10) reduced to zero conditions (2) by linear change of 

variables 

𝑧(𝑥) = 𝑦(𝑥) −
𝐵 − 𝐴

𝑏 − 𝑎
(𝑥 − 𝑎) − 𝐴 

The linearity of equation (9) is preserved in this change, but unlike equation (1), we now 
obtain the non-homogeneous equation 𝐿(𝑧) = 𝑓(𝑥), where  

  𝑓(𝑥) =  − ቂ𝐴 +
஻ି஺

௕ି௔
(𝑥 − 𝑎)ቃ 𝑞(𝑥) −

஻ି஺

௕ି௔
𝑝(𝑥)  
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However, we construct Green’s function for the homogeneous boundary value problem 
𝐿[𝑧] = 0, 𝑧(𝑎) = 𝑧(𝑏) = 0, which entirely coincides with the problem (1) – (2). 

15.2.3.1 Example 1: Construct Green’s function for the homogeneous boundary value 
problem  

 𝑦ூ௏(𝑥) = 0          (1) 

௬(଴)ୀ௬ᇲ(଴)ୀ଴

௬(ଵ)ୀ௬ᇲ(ଵ)ୀ଴
ቅ          (2) 

𝐒𝐨𝐥𝐮𝐭𝐢𝐨𝐧: We shall first show that the boundary value problem (1) - (2) has only a trivial 
solution. Indeed, the fundamental system of solutions for equation (1) is  

 𝑦ଵ(𝑥) = 1, 𝑦ଶ(𝑥) = 𝑥, 𝑦ଷ(𝑥) = 𝑥ଶ, 𝑦ସ(𝑥) = 𝑥ଷ,      (3) 

so that general solution is of the form 

𝑦(𝑥) = 𝐴 + 𝐵𝑥 + 𝐶𝑥ଶ + 𝐷𝑥ଷ, 

where 𝐴, 𝐵, 𝐶, 𝐷 are arbitrary constants. The boundary conditions (2) give us four relations 
for determining 𝐴, 𝐵, 𝐶, 𝐷: 
      𝑦(0) = 𝐴 = 0,  

     𝑦ᇱ(0) = 𝐵 = 0, 

    𝑦(1) = 𝐴 + 𝐵 + 𝐶 + 𝐷 = 0 

  𝑦ᇱ(1) = 𝐵 + 2𝐶 + 3𝐷 = 0 

Whence, we have 𝐴 = 𝐵 = 𝐶 = 𝐷 = 0 

Thus, the problem (1) - (2) has only a zero solution 𝑦(𝑥) ≡ 0,  and, hence,  for it we can 
construct a (unique) Green’s function 𝐺(𝑥, 𝜉). 

We now construct the Green’s function. Utilizing the fundamental system of solutions (3), 
represent the unknown Green’s function 𝐺(𝑥, 𝜉) in the form  

𝐺(𝑥, 𝜉) =  𝑎ଵ. 1 + 𝑎ଶ. 𝑥 + 𝑎ଷ. 𝑥ଶ + 𝑎ସ. 𝑥ଷ  for  0 ≤ 𝑥 ≤ ξ         (4) 

𝐺(𝑥, 𝜉) =  𝑏ଵ. 1 + 𝑏ଶ. 𝑥 + 𝑏ଷ. 𝑥ଶ + 𝑏ସ. 𝑥ଷ   for  ξ ≤ 𝑥 ≤ 1    (5) 

where 𝑎ଵ, 𝑎ଶ, 𝑎ଷ, 𝑎ସ, 𝑏ଵ, 𝑏ଶ, 𝑏ଷ, 𝑏ସ are as yet unknown functions of ξ. Put 𝑐௜(ξ) = 𝑏௜(ξ) −
𝑎௜(ξ) (𝑖 = 1,2,3,4) and write out the system of linear equations for finding the functions 𝑐௜(ξ)  

see the system 

೎భ೤భ(ಖ)శ೎మ೤మ(ಖ)శ⋯శ೎೙೤೙(ಖ)సబ

೎భ೤భ
ᇲ(ಖ)

శ೎మ೤మ
ᇲ(ಖ)

శ⋯శ೎೙೤೙
ᇲ(ಖ)

సబ
…………………………………………………………………………..

೎భ೤భ
(೙షమ)(ಖ)శ೎మ೤మ

(೙షమ)(ಖ)శ⋯శ೎೙೤೙
(೙షమ)(ಖ)సబ

೎భ೤భ
(೙షభ)(ಖ)శ೎మ೤మ

(೙షభ)(ಖ)శ⋯శ೎೙೤೙
(೙షభ)(ಖ)స

భ
ುబ(ಖ)⎭

⎬

⎫
 

Therefore, we get 



Integral Equations     15.7         Construction of Green`s Function…
   

𝑐ଵ + 𝑐ଶ𝜉 + 𝑐ଷ𝜉ଶ + 𝑐ସ𝜉ଷ = 0,

𝑐ଶ + 2𝑐ଷξ + 3𝑐ସξଶ = 0,
2𝑐ଷ + 6𝑐ସξ = 0,

6𝑐ସ = 1. ⎭
⎬

⎫
       (6) 

Solving the system, we get  

𝑐ଵ(𝜉) = −
ଵ

଺
𝜉ଷ, 𝑐ଶ(𝜉) =

ଵ

ଶ
𝜉ଶ

𝑐ଷ(𝜉) = −
ଵ

ଶ
𝜉, 𝑐ସ(𝜉) =

ଵ

଺

ቑ       (7) 

We further take advantage of property (4) of Green’s function, namely, that it must satisfy the 
boundary conditions (2), i.e., 

𝐺(0, 𝜉) = 0, 𝐺௫′(0, 𝜉) = 0   

𝐺(1, 𝜉) = 0, 𝐺௫′(1, 𝜉) = 0 

In our case, these relations take the form 

                            𝑎ଵ = 0
                            𝑎ଶ = 0
𝑏ଵ + 𝑏ଶ + 𝑏ଷ + 𝑏ସ = 0
    𝑏ଶ + 2𝑏ଷ + 3𝑏ସ = 0

ൢ         (8) 

Taking advantage of the fact that 𝑐௞ = 𝑏௞ − 𝑎௞(k=1, 2, 3, 4), we find from (7) and (8) that  

𝑎ଵ = 0; 𝑎ଶ = 0; 𝑏ଵ = −
ଵ

଺
𝜉ଷ; 𝑏ଶ =

ଵ

ଶ
𝜉ଶ;

𝑏ଷ =
ଵ

ଶ
𝜉ଷ − 𝜉ଶ;  𝑏ସ =

ଵ

ଶ
𝜉ଶ −

ଵ

ଷ
𝜉ଷ;

𝑎ଷ =
ଵ

ଶ
𝜉 − 𝜉ଶ +

ଵ

ଶ
𝜉ଷ;  𝑎ସ = −

ଵ

଺
+

ଵ

ଶ
𝜉ଶ −

ଵ

ଷ
𝜉ଷ

⎭
⎪
⎬

⎪
⎫

        (9) 

Putting the values of the coefficients 𝑎ଵ, 𝑎ଶ, … , 𝑏ସ from (9) into (4) and (5), we obtain the 
desired Green’s function: 

𝐺(𝑥, 𝜉) =

⎩
⎪
⎨

⎪
⎧ ൬

1

2
𝜉 − 𝜉ଶ +

1

2
𝜉ଷ൰ 𝑥ଶ − ൬

1

6
−

1

2
𝜉ଶ +

1

3
𝜉ଷ൰ 𝑥ଷ,

  0 ≤ 𝑥 ≤ ξ

−
1

6
𝜉ଷ +

1

2
𝜉ଶ𝑥 + ൬

1

2
𝜉ଷ − 𝜉ଶ൰ 𝑥ଶ + ൬

1

2
𝜉ଶ −

1

3
𝜉ଷ൰ 𝑥ଷ,

 ξ ≤ 𝑥 ≤ 1 

 

This expression is readily transformed to  

𝐺(𝑥, 𝜉) = ቀ
ଵ

ଶ
𝑥 − 𝑥ଶ +

ଵ

ଶ
𝑥ଷቁ 𝜉ଶ − ቀ

ଵ

଺
−

ଵ

ଶ
𝑥ଶ +

ଵ

ଷ
𝑥ଷቁ 𝜉ଷ     for    ξ ≤ 𝑥 ≤ 1 

So that 𝐺(𝑥, 𝜉) = 𝐺(𝜉, 𝑥), i.e., Green’s function is symmentric. This was evident from the 
start since the boundary- value problem (1)-(2) was self-adjoint. 

15.2.3.2 Example 2. Construct Green’s function for the differential equation 

𝑥𝑦ᇱᇱ + 𝑦ᇱ = 0          (1) 
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For the following conditions: 

𝑦(𝑥) bounded as 𝑥 → 0, 

𝑦(1) = 𝛼𝑦ᇱ(1), 𝛼 ≠ 0       (2) 

Solution. First find the general solution of equation (1) and convince yourself that the conditions (2) 
are fulfilled only when 𝑦(𝑥) ≡ 0 

Indeed, denoting 𝑦ᇱ(𝑥) = 𝑧(𝑥) we get 𝑥𝑧ᇱ + 𝑧 = 0, whence ln 𝑧 = ln 𝑐ଵ − ln 𝑥, 𝑧 =
௖భ

௫
  and, hence, 

𝑦(𝑥) = 𝑐ଵ ln 𝑥 + 𝑐ଶ        (3) 

It is clear that 𝑦(𝑥) defined by formula (3) satisfies the conditions (2) only for 𝑐ଵ = 𝑐ଶ = 0, and, 
hence, Green’s function can be constructed for the problem (1)-(2). 

Let us write down 𝐺(𝑥, 𝜉) formally as 

𝐺(𝑥, 𝜉) = ൜
𝑎1 + 𝑎2 ln 𝑥    for 0 < 𝑥 ≤ 𝜉,    
𝑏1 + 𝑏2 ln 𝑥    for 𝜉 ≤ 𝑥 ≤ 1    

      (4) 

From the continuity of 𝐺(𝑥, 𝜉) for 𝑥 = 𝜉 we obtain  

𝑏ଵ + 𝑏ଶ ln 𝜉 − 𝑎ଵ − 𝑎ଶ ln 𝜉 = 0 

and the jump 𝐺′௫(𝑥, 𝜉) at the point 𝑥 = 𝜉 is equal to 
ଵ

క
 so that  

𝑏ଶ.
ଵ

క
− 𝑎ଶ.

ଵ

క
=

ଵ

క
   

Putting 𝑐ଵ = 𝑏ଵ − 𝑎ଵ,   𝑐ଶ = 𝑏ଶ − 𝑎ଶ        (5) 

we will have 

൜
𝑐ଵ + 𝑐ଶ ln 𝜉 = 0,
                𝑐ଶ = 1

 

whence 

𝑐ଵ = − ln 𝜉,    𝑐ଶ = 1         (6) 

Now let us use conditions (2). The boundedness of 𝐺(𝑥, 𝜉) as 𝑥 → 0 gives us 𝑎ଶ = 0, and 
from the condition 𝐺(𝑥, 𝜉) == 𝛼𝐺ᇱ

௫(𝑥, 𝜉) we get 𝑏ଵ = 𝛼𝑏ଶ. Taking into account (5) and (6), 
we get the values of all coefficients in (4): 

𝑎ଵ = 𝛼 + ln 𝜉,   𝑎ଶ = 0,   𝑏ଵ = 𝛼,   𝑏ଶ = 1 

Thus  

𝐺(𝑥, 𝜉) = ൜
𝛼 + ln 𝜉,   0 < 𝑥 ≤  𝜉,
𝛼 + ln 𝑥,   𝜉 ≤ 𝑥 ≤ 1 

 

15.2.3.3 Example 3. Find Green’s function for the boundary-value problem 
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𝑦′′(𝑥) + 𝑘ଶ𝑦 = 0

𝑦(0) = 𝑦(1) = 0
 

Solution. It is easy to see that the solution 𝑦ଵ(𝑥) = sin 𝑘𝑥 satisfies the boundary condition 
𝑦ଵ(0) = 0, and the solution 𝑦ଶ(𝑥) = sin 𝑘(𝑥 − 1) satisfies the condition 𝑦ଶ(1) = 0; they are 
linearly independent. Let us find the value of the Wronskian for sin 𝑘𝑥 and sin 𝑘(𝑥 − 1) at 
the point 𝑥 =  𝜉: 

𝑊(𝜉) = ฬ
sin 𝑘𝜉 sin 𝑘(𝜉 − 1)

𝑘 cos 𝑘𝜉 𝑘 cos 𝑘(𝜉 − 1
ฬ

= 𝑘[sin 𝑘𝜉 cos 𝑘(𝜉 − 1) − sin 𝑘 (𝜉 − 1) cos 𝑘𝜉] = 𝑘 sin 𝑘 

Noting, in addition, that in our example 𝑝(𝑥) = 1, we get, by (8) from 15.2.3, 

𝐺(𝑥, 𝜉) = ൞

sin 𝑘(𝜉 − 1) sin 𝑘𝑥

𝑘 sin 𝑘
,   0 ≤ 𝑥 ≤ 𝜉,

sin 𝑘𝜉 sin 𝑘 (𝑥 − 1)

𝑘 sin 𝑘
,   𝜉 ≤ 𝑥 ≤ 1

 

15.2.3.3 Example 4: Find the Green’s function for the boundary value problem  

𝑦ᇱᇱ = 0; 𝑦(0) = 𝑦ᇱ(1), 𝑦ᇱ(0) = 𝑦(1). 

Solution:  

Given homogeneous differential equation is 𝑦ᇱᇱ = 0     (1) 

The general solution of the differential equation (1) is  

 𝑦(𝑥) = 𝐴 + 𝐵𝑥, 𝐴 & 𝐵  are arbitrary constants.     (2) 

Applying the given boundary conditions in equation (2), we get 𝐴 = 0 and 𝐵 = 0, 

Thus , the solution of equation (1) is 𝑦(𝑥) = 0. 

Construction of Green’s function: 𝐺(𝑥, 𝜉) 

𝐺(𝑥, 𝜉) = ൜
𝑎ଵ + 𝑎ଶ𝑥, 0 ≤ 𝑥 ≤ 𝜉
𝑏ଵ + 𝑏ଶ𝑥, 𝜉 ≤ 𝑥 ≤ 1,

 

where 𝑎ଵ, 𝑎ଶ, 𝑏ଵ, 𝑏ଶ are functions of 𝜉. 

Since 𝐺(𝑥, 𝜉) must be continuous at x= 𝜉, we get 

 𝑎ଵ + 𝑎ଶ𝜉 = 𝑏ଵ + 𝑏ଶ𝜉        (3) 

and the jump condition for 𝐺௫(𝑥, 𝜉) (∵ from the definition of Green’s function, the derivative 
has a unique jump at x= 𝜉) gives 

 𝑏ଶ − 𝑎ଶ = 1         (4)  

using the boundary conditions 

𝐺(0, 𝜉) = 𝐺௫(1, 𝜉) ⇒  𝑎ଵ = 𝑏ଶ 
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𝐺௫(0, 𝜉) =  𝐺(1, 𝜉) ⇒ 𝑎ଶ = 𝑏ଵ + 𝑏ଶ                     (5) 

Solve the coefficients 𝑎ଵ, 𝑎ଶ, 𝑏ଵ, 𝑏ଶ, from equations (3), (4), & (5). i.e.,  

substitute 𝑎ଵ = 𝑏ଶ into the continuity equation 𝑏ଶ + 𝑎ଶ𝜉 = 𝑏ଵ + 𝑏ଶ𝜉, 

using jump condition 𝑏ଶ = 𝑎ଶ + 1 ⇒ 𝑎ଶ + 1 = 𝑏ଵ + 𝜉 

using 𝑎ଶ = 𝑏ଵ + 𝑏ଶ ⇒ 𝑏ଶ = 𝜉 − 1. 

Since 𝑎ଵ = 𝑏ଶ, 𝑎ଵ =  𝜉 − 1 

using 𝑏ଶ − 𝑎ଶ = 1, we get 𝑎ଶ =  𝜉 − 2. 

using 𝑎ଶ = 𝑏ଵ + 𝑏ଶ ⇒ 𝑏ଵ = −1 

∴  𝐺(𝑥, 𝜉) = ൜
(𝜉 − 1) + (𝜉 − 2)𝑥, 0 ≤ 𝑥 ≤ 𝜉

−1 + (𝜉 − 1)𝑥,                  𝜉 ≤ 𝑥 ≤ 1
. 

15.3  SUMMARY: 

This chapter(lesson) provided the definition of Green’s function and its construction. It is 
observed that the Green’s function provides a method to solve homogeneous ODE’s by 
finding the solution to the equation with a delta function forcing terms. A theorem related to 
the solution of the BVP and green’s function is stated along with its proof. The procedure is 
explained well with the help of few examples and self-assessment problems were given at the 
end. 

15.4  TECHNICAL TERMS: 

Green’s Function: Consider the homogeneous differential equation of order ‘n’ is 𝐿[𝑦] ≡
𝑃଴(𝑥)𝑦௡ + 𝑃ଵ(𝑥)𝑦௡ିଵ + ⋯ + 𝑃௡(𝑥)𝑦 = 0                                          (1) 

where the function 𝑃଴(𝑥), 𝑃ଵ(𝑥), … . , 𝑃௡(𝑥) are continuous on [𝑎, 𝑏] ,𝑃଴(𝑥) ≠ 0 on [𝑎, 𝑏] and 
the boundary conditions are 𝑉௜(𝑦) = 0 

𝑉௜(𝑦) = ∑ 𝛼௜
௡ିଵ𝑦௡ିଵ(𝑎) +௡

௜ୀଵ ∑ 𝛽௜
௡ିଵ𝑦௡ିଵ(𝑏)௡

௜ୀଵ ,           (2) 

where the linear forms 𝑉ଵ, 𝑉ଶ, … , 𝑉௡ in 𝑦(𝑎), 𝑦ଵ(𝑎) … 𝑦௡ିଵ(𝑎), 𝑦(𝑏), … , 𝑦௡ିଵ(𝑏) 

are linearly independent. 

If the homogeneous boundary value problem given by equation (1) and equation (2) has only 
a trivial solution 𝑦(𝑥) ≡ 0. 
 

15.5  SELF-ASSESSMENT QUESTIONS: 

Construct Green’s function for the following boundary value problem 

1. 𝑦ᇱᇱ = 0; 𝑦(0) = 𝑦(1),  𝑦ᇱ(0) = 𝑦′(1).  

2. 𝑦ᇱᇱ + 𝑦 = 0; 𝑦(0) = 𝑦(𝜋) = 0. 
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3. 𝑦୍୚ = 0; 𝑦(0) = 𝑦ᇱ(0) = 𝑦ᇱᇱ(1) = 𝑦ᇱᇱᇱ(1) = 0. 

4. 𝑦ᇱᇱᇱ = 0; 𝑦(0) = 𝑦ᇱ(1) = 0; 𝑦ᇱ(0) = 𝑦(1). 

5. 𝑦ᇱᇱᇱ = 0; 𝑦(0) = 𝑦(1) = 0; 𝑦ᇱ(0) = 𝑦′(1). 

6. 𝑦ᇱᇱ = 0; 𝑦(0) = 0, 𝑦(1) = 𝑦′(1). 

7. 𝑦ᇱᇱ + 𝑦ᇱ = 0; 𝑦(0) = 𝑦(1), 𝑦ᇱ(0) = 𝑦ᇱ(1). 

8. 𝑦ᇱᇱ − 𝑘ଶ𝑦 = 0(𝑘 ≠ 0); 𝑦(0) = 𝑦(1) = 0. 

9. 𝑦ᇱᇱ + 𝑦 = 0; 𝑦(0) = 𝑦(1), 𝑦ᇱ(0) = 𝑦ᇱ(1). 

10. 𝑦ᇱᇱᇱ = 0; 𝑦(0) = 𝑦(1) = 0, 𝑦ᇱ(0) + 𝑦ᇱ(1) = 0. 

11. 𝑦ᇱᇱ = 0; 𝑦ᇱ(0) = ℎ𝑦(0), 𝑦ᇱ(1) = −𝐻𝑦(1). 

12. 𝑥ଶ𝑦ᇱᇱ + 2𝑥𝑦ᇱ = 0; 𝑦(𝑥)  is bounded for 𝑥 → 0, 𝑦(1) = 𝛼𝑦ᇱ(1). 

13. 𝑥ଷ𝑦ூ௏ + 6𝑥ଶ𝑦ᇱᇱᇱ + 6𝑥𝑦ᇱᇱ = 0; 𝑦(𝑥) is bounded as 𝑥 → 0, 𝑦(1) = 𝑦ᇱ(1) = 0 

14. 𝑦ᇱᇱ + 𝑥𝑦ᇱ − 𝑦 = 0; 𝑦(𝑥)  is bounded for 𝑥 → 0, 𝑦(1) = 0 

15. 𝑥𝑦ᇱᇱ + 𝑦ᇱ −
ଵ

௫
𝑦 = 0; 𝑦(0) is finite,  𝑦(1) = 0 

16. 𝑥ଶ𝑦ᇱᇱ + 𝑥𝑦ᇱ − 𝑛ଶ𝑦 = 0;  𝑦(0) is finite,  𝑦(1) = 0 

17. 𝑥ଶ(𝑙𝑛 𝑥 − 1)𝑦′′ − 𝑥𝑦′ + 𝑦 = 0;  𝑦(0) is finite,  𝑦(1) = 0 

18.
ௗ

ௗ௫
ቂ(1 − 𝑥ଶ)

ௗ௬

ௗ௫
ቃ = 0; 𝑦(0) = 0, 𝑦(1) is finite.. 

19. 𝑥𝑦௡ + 𝑦ଵ = 0; 𝑦(0) is bounded, 𝑦(𝑙) = 0, 

20. 𝑦௡ − 𝑦 = 0; 𝑦(0) = 𝑦ଵ(0), 𝑦(𝑙) + 𝜆𝑦ᇱ(𝑙) = 0.(consider the cases: 𝜆 =1, 𝜆 =-1, | 𝜆 | ≠ 1) 

Answers: 

1. It is obvious that the equation 𝑦ᇱᇱ(𝑥) = 0 has an infinity of solutions 𝑦(𝑥) = 𝐶 under the 
conditions 𝑦(0) = 𝑦(1), 𝑦ᇱ(0) = 𝑦ᇱ(1). Therefore, Green’s function does not exist for this 
boundary-value problem. 

2. Green’s function does not exist. 

3. 𝐺(𝑥, 𝜉) = ቐ

௫మ

଺
(3𝜉 − 𝑥), 0 ≤ 𝑥 ≤ ξ

కమ

଺
(3𝑥 − 𝜉), ξ ≤ 𝑥 ≤ 1

 

4. 𝐺(𝑥, 𝜉) = ቐ

௫(కିଵ)

ଶ
(𝑥 − 𝑥ξ + 2ξ),      0 ≤ 𝑥 ≤ ξ

ஞ

ଶ
[𝑥(2 − 𝑥)(ξ − 2) + ξ], ξ ≤ 𝑥 ≤ 1
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5. 𝐺(𝑥, 𝜉) = ቐ

௫(௫ିక)(కିଵ)

ଶ
,      0 ≤ 𝑥 ≤ ξ

ିక(కି௫)(௫ିଵ)

ଶ
, ξ ≤ 𝑥 ≤ 1

 

6. Green’s function does not exist. 

7.  Green’s function does not exist 

8.𝐺(𝑥, 𝜉) = ቐ

ୱ୧୬୦ ௞(కିଵ) ୱ୧୬୦௞௫ 

௞ ୱ୧
 , 0 ≤ 𝑥 ≤ ξ

ୱ୧୬ ௞క ୱ୧୬୦ ୩(௫ିଵ)

௞ ୱ୧୬୦
 , ξ ≤ 𝑥 ≤ 1

 

9. 𝐺(𝑥, 𝜉) =

⎩
⎪
⎨

⎪
⎧ୡ୭ୱ (௫ିஞା

భ

మ
)

ଶ ୱ୧୬
భ

మ

, 0 ≤ 𝑥 ≤ ξ

ୡ୭ୱ (ஞି௫ା
భ

మ
)

ଶ ୱ୧୬  
భ

మ

, ξ ≤ 𝑥 ≤ 1

 

10. Green’s function does not exist. 

11. 𝐺(𝑥, 𝜉) = ቐ

(௛௫ାଵ)[ு(కିଵ)ିଵ]

௛ାுା௛ு
, 0 ≤ 𝑥 ≤ ξ

(௛కାଵ)[ு(௫ିଵ)ିଵ]

௛ାுା௛ு
, ξ ≤ 𝑥 ≤ 1

 

12. 𝐺(𝑥, 𝜉) = ቐ
𝛼 + 1 −

ଵ

ஞ
, 0 ≤ 𝑥 ≤ ξ

𝛼 + 1 −
ଵ

௫
, ξ ≤ 𝑥 ≤ 1

 

13. G(𝑥, 𝜉) = ቐ
ξ − lnξ − 1 −

௫(ஞିଵ)మ

ଶஞ
, 0 ≤ 𝑥 ≤ ξ

𝑥 − ln𝑥 − 1 −
ஞ(௫ିଵ)మ

ଶ௫
, ξ ≤ 𝑥 ≤ 1

 

14. 𝐺(𝑥, 𝜉) = ቐ

௫

ଶ
ቀ1 −

ଵ

ஞమ
ቁ , 0 ≤ 𝑥 ≤ ξ

ଵ

ଶ
ቀ𝑥 −

ଵ

௫
ቁ , ξ ≤ 𝑥 ≤ 1

 

15. 𝐺(𝑥, 𝜉) = ቐ

௫

ଶ
ቀξ −

ଵ

ஞ
ቁ , 0 ≤ 𝑥 ≤ ξ

ஞ

ଶ
ቀ𝑥 −

ଵ

௫
ቁ , ξ ≤ 𝑥 ≤ 1

 

16. 𝐺(𝑥, 𝜉) = ቐ

ଵ

ଶ௡ஞ
[(𝑥ξ)௡ − ቀ

௫

ஞ
ቁ

௡

, 0 ≤ 𝑥 ≤ ξ

ଵ

ଶ௡ஞ
[(𝑥ξ)௡ − ቀ

ஞ

௫
ቁ

௡

, ξ ≤ 𝑥 ≤ 1
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17. 𝐺(𝑥, 𝜉) = ቐ
−

௫ ୪୬

ஞమ(୪୬ ஞିଵ)మ
, 0 ≤ 𝑥 ≤ ξ

−
୪୬ ௫

ஞ(୪୬ ஞିଵ)మ
, ξ ≤ 𝑥 ≤ 1

 

18. 𝐺(𝑥, 𝜉) = ቐ

ଵ

ଶ
ln

ଵି௫

ଵା௫
, 0 ≤ 𝑥 ≤ ξ

ଵ

ଶ
ln

ଵିஞ

ଵାஞ
, ξ ≤ 𝑥 ≤ 1

 

19. 𝐺(𝑥, 𝜉) = ቐ
ln

ஞ

௟
, 0 ≤ 𝑥 ≤ ξ

ଵ

ଶ
ln

௫

௟
, ξ ≤ 𝑥 ≤ 𝑙

 

20. 𝐺(𝑥, 𝜉) = 

⎩
⎪
⎨

⎪
⎧൤

1 − 𝜆

2(1 + 𝜆)
eஞିଶ௟ −

1

2
eିஞ൨ e௫ , 0 ≤ 𝑥 ≤ ξ   (|𝜆| ≠ 1)

1 − 𝜆

2(1 + 𝜆)
eஞିଶ௟ −

1

2
eஞି௫, ξ ≤ 𝑥 ≤ 𝑙

 

For 𝜆 = 1, 𝐺(𝑥, 𝜉) = −
ଵ

ଶ
eି|௫ିక| does not depend on l. 

For 𝜆 = −1, Green’s function does not exist 

15.6  SUGGESTED READINGS: 

1. Problems and Exercises in Integral Equations, MIR Oybkusgers, Moscow, 1971 by 
M. Krsnov, A. Kiselev and G. Makarendo. 

2. Integral Equations and their Applications, John wiley & Sons, 1999, by Jerri, A. 
3. Linear Integral Equation, Theory and Techniques, Academic Press, 2014 by kanwal 

R.P. 
4. A first course in Integral Equations, 2nd edition, World Scientific Publishing Co. 2015 

by Wazwaz, A.M. 
5. Integral equations, Krishna Prakashan Media(P) Ltd., Meerut. 

-  

-  Dr. Vinutha Tummala 

 

 

 

 

 



LESSON- 16 

USING GREEN’S FUNCTION IN THE SOLUTION 
OF BOUNDARY-VALUE PROBLEMS 

 
OBJECTIVES:  
 
Learn to Solve Boundary Value Problems by Using Green’s Function. 
 
STRUCTURE: 
 

16.1  Introduction 

16.2  Summary 

16.3  Technical Terms  

16.4  Self-Assessment Questions 

16.5  Suggested Readings 

16.1 INTRODUCTION:  

Let there be given a non-homogeneous differential equation 

𝐿[𝑦] = 𝑝଴(𝑥)𝑦(௡)(𝑥) + 𝑝ଵ(𝑥)𝑦(௡ିଵ)(𝑥)+ ⋯ + 𝑝௡(𝑥)𝑦(𝑥) = 𝑓(𝑥)   (1) 

and the boundary conditions  

𝑉ଵ(𝑦) = 0, 𝑉ଶ(𝑦) = 0, … , 𝑉௡(𝑦) = 0,               (2) 

As in lesson (15), we consider that the linear form 𝑉ଵ, 𝑉ଶ, … , 𝑉௡ in 
             𝑦(𝑎), 𝑦ᇱ(𝑎) … 𝑦(௡ିଵ)(𝑎), 𝑦(𝑏), 𝑦ᇱ(𝑏) … , 𝑦(௡ିଵ)(𝑏) are linear independent. 

16.1.1 Theorem:  

If 𝐺(𝑥, 𝜉) Green’s function of the homogeneous boundary value problem 𝐿[𝑦] =0, 𝑉௞(𝑦) =
0, (𝑘 = 1,2,3, … , 𝑛). 

then the solution of the boundary value problem (1)-(2) is given by the formula 

𝑦(𝑥) = ∫ 𝐺(𝑥, 𝜉) 𝑓(
௕

௔
𝜉) 𝑑𝜉                 (3) 

16.1.2 Example 1:  

Using Green’s function, solve the boundary value problem  

 𝑦ᇱᇱ(𝑥) − 𝑦(𝑥) = 𝑥,           (1) 

 𝑦(0) = 𝑦(1) = 0              (2) 
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Solution: a) Let us first find out whether Green’s function exists for the corresponding 
homogeneous boundary value problem 

𝑦ᇱᇱ(𝑥) − 𝑦(𝑥) = 0,              (1′) 

𝑦(0) = 𝑦(1) = 0              (2′) 

It is obvious that 𝑦ଵ(𝑥) = 𝑒௫, 𝑦ଶ(𝑥) = 𝑒ି௫ is the fundamental system of solutions of the 
equation (1′). Hence, the general solution of the equation is 

𝑦(𝑥) = 𝐴𝑒௫ + 𝐵𝑒ି௫ 

The boundary conditions (2) are satisfied if and only if 𝐴 = 𝐵 = 0, i.e., 𝑦(𝑥) ≡ 0. Thus, 
Green’s function exists. 

 b) It can readily be verified that 

𝐺(𝑥, 𝜉) = ቐ

ୱ୧୬୦ ௫ ୱ୧୬୦(కିଵ)  

ୱ୧୬୦
 , 0 ≤ 𝑥 ≤ ξ

ୱ୧୬୦ క ୱ୧୬୦(௫ିଵ)  

ୱ୧୬୦
 , ξ ≤ 𝑥 ≤ 1

          (3) 

is Green’s function for the boundary value problem (1′) - (2′). 

 c) We write the solution of the boundary value problem (1) - (2) in the form  

𝑦(𝑥) = ∫ 𝐺(𝑥, 𝜉)
ଵ

଴
𝜉 𝑑𝜉 ,       (4)                                  

where 𝐺(𝑥, 𝜉)is defined by formula (3). 

Splitting up the interval of integration into two parts and substituting from (3) into (4) the 
expression for Green’s function, we obtain 

𝑦(𝑥) = න
sinh 𝜉 sinh(𝑥 − 1)

sinh 1

௫

଴

𝜉 𝑑𝜉 + න
sinh 𝑥 sinh(𝜉 − 1)

sinh 1

ଵ

௫

𝜉 𝑑𝜉 

𝑦(𝑥) =
ୱ୧୬୦(௫ିଵ)

ୱ୧୬୦
∫ 𝜉 sinh 𝜉

௫

଴
 𝑑𝜉 + 

ୱ୧୬୦

ୱ୧
∫ 𝜉 sinh (𝜉 − 1)

ଵ

௫
 𝑑𝜉      (5) 

But   ∫ 𝜉 sinh 𝜉
௫

଴
𝑑𝜉 = 𝑥 cosh 𝑥 − sinh 𝑥, 

න 𝜉 𝑠inh (𝜉 − 1)
ଵ

௫

𝑑𝜉 = 1 − 𝑥 cosh(𝑥 − 1) + sinh (𝑥 − 1) 

and therefore 

𝑦(𝑥) =
ଵ

ୱ୧୬ ௛ଵ
{𝑠𝑖𝑛 ℎ(𝑥 − 1) [𝑥 cos ℎ𝑥 − sin ℎ𝑥] + 
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sinh 𝑥 [1 − 𝑥 cosh(𝑥 − 1) + sinh(𝑥 − 1)]} =  
sinh 𝑥

sinh 1
− 𝑥 

Here, we take advantage of the formula  

sinh(𝛼 ± 𝛽) = sinh 𝛼 cosh 𝛽 ± cosh 𝛼 sinh 𝛽 

and also the oddness of the function sinh 𝑥. 

Direct verification convinces us that the function 

𝑦(𝑥) =
sinh 𝑥

sinh 1
− 𝑥 

satisfies equation (1) and the boundary conditions (2). 

16.1.3 Example 2: 

 Reduce to an integral equation the following boundary-value problem for the nonlinear 
differential equation: 

𝑦ᇱᇱ(𝑥) = 𝑓൫𝑥, 𝑦(𝑥)൯,                                 (1) 

𝑦(0) = 𝑦(1) = 0          (2) 

Solution: 

 Constructing Green’s function for the problem  

𝑦ᇱᇱ(𝑥) = 0,               (3)                                                        

𝑦(0) = 𝑦(1) = 0          (2) 

the general solution of the equation (3) is 
𝑦(𝑥) = 𝐴 + 𝐵𝑥 

and we find Green’s function is  

𝐺(𝑥, 𝜉) = ൜
(𝜉 − 1)𝑥,   0 ≤ 𝑥 ≤ ξ
(𝑥 − 1)𝜉,   ξ ≤ 𝑥 ≤ 1

 

Regarding the right side of equation (1) as the known function, we get  

𝑦(𝑥) = ∫ 𝐺(𝑥, 𝜉)𝑓൫𝜉, 𝑦(𝜉)൯
ଵ

଴
 𝑑𝜉        (4) 

Thus, the solution of the boundary value problem (1) – (2) reduces to the solution of a 
nonlinear integral equation of the Hammerstein type (see section  ), the kernel of which is 
Green’s function for the problem (3)-(2). The significance of the Hammerstein- type integral 
equations lies precisely in the fact that the solution of many boundary value problems for 
nonlinear differential equations reduces to the solution of integral equations of this type. 
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16.1.4 Example 3: 

 Solve the boundary value problem using Green’s function 𝑦ᇱᇱ + 𝑦 = 𝑥, 𝑦(0) = 𝑦 ቀ
గ

ଶ
ቁ = 0 

Solution: The boundary value problem is 

𝑦ᇱᇱ + 𝑦 = 𝑥,         (1) 

    𝑦(0) = 𝑦 ቀ
గ

ଶ
ቁ = 0          (2) 

Consider the boundary value problem is 

𝑦ᇱᇱ + 𝑦 = 0,           (3) 

 𝑦(0) = 𝑦 ቀ
గ

ଶ
ቁ = 0            (2) 

The general solution of equation (3) is 
𝑦(𝑥) = 𝐴𝑐𝑜𝑠𝑥 + 𝐵𝑠𝑖𝑛𝑥 

and we find Green’s function as  

𝐺(𝑥, 𝜉) = ቊ
𝐴ଵ cos 𝑥 + 𝐵ଵ sin 𝑥 , 𝑓𝑜𝑟 0 ≤ 𝑥 ≤ ξ

𝐴ଶ cos 𝑥 + 𝐵ଶ sin 𝑥 , 𝑓𝑜𝑟 ξ ≤ 𝑥 ≤
గ

ଶ

      (4) 

Applying boundary conditions,  

we obtain 𝐺(0, 𝜉) = 𝐺 ቀ
గ

ଶ
, 𝜉ቁ = 0 

thus,  

𝐺(𝑥, 𝜉) = ቊ
𝐵ଵ sin 𝑥 , 𝑓𝑜𝑟 0 ≤ 𝑥 ≤ ξ

𝐴ଶ cos 𝑥 , 𝑓𝑜𝑟 ξ ≤ 𝑥 ≤
గ

ଶ

, 

since 𝐺(𝑥, 𝜉) is continuous at 𝑥 =  𝜉. 

16.2  SUMMARY:  

This lesson is the extension of the topics discussed in the previous lesson. This lesson 
provides a method to solve Boundary value problem by using Green’s function. Few 
examples were given to illustrate the method to convert a given BVP to its equivalent integral 
equation and there by its solution is obtained by using Green’s function. To help the reader in 
better understanding of the discussed topics self-assessment problems were provided at the 
end and their answers for checking. 

16.3  TECHNICAL TERMS: 

GREEN’S FUNCTION: Consider the homogeneous differential equation of order ‘n’ is 
𝐿[𝑦] ≡ 𝑃଴(𝑥)𝑦௡ + 𝑃ଵ(𝑥)𝑦௡ିଵ + ⋯ + 𝑃௡(𝑥)𝑦 = 0                                          (1) 

where the function 𝑃଴(𝑥), 𝑃ଵ(𝑥), … . , 𝑃௡(𝑥) are continuous on [𝑎, 𝑏] ,𝑃଴(𝑥) ≠ 0 on [𝑎, 𝑏] and 
the boundary conditions are 𝑉௜(𝑦) = 0 

𝑉௜(𝑦) = ∑ 𝛼௜
௡ିଵ𝑦௡ିଵ(𝑎) +௡

௜ୀଵ ∑ 𝛽௜
௡ିଵ𝑦௡ିଵ(𝑏)௡

௜ୀଵ ,           (2) 
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where the linear forms 𝑉ଵ, 𝑉ଶ, … , 𝑉௡ in 𝑦(𝑎), 𝑦ଵ(𝑎) … 𝑦௡ିଵ(𝑎), 𝑦(𝑏), … , 𝑦௡ିଵ(𝑏) 

are linearly independent. 

If the homogeneous boundary value problem given by equation (1) and equation (2) has only 
a trivial solution 𝑦(𝑥) ≡ 0. 

16.4 SELF-ASSESSMENT QUESTIONS: 

Solve the following boundary value problems using Green’s function:  

1. 𝑦ூ௏ = 1; 𝑦(0) = 𝑦′(଴) = 𝑦ᇱᇱ(1) = 𝑦′′′(1) = 0. 

2. 𝑥𝑦ᇱᇱ + 𝑦ᇱ = 𝑥; 𝑦(1) = 𝑦(𝑒) = 0. 

3. 𝑦′′ + 𝜋ଶ𝑦 = cos 𝜋𝑥  ; 𝑦(0) = 𝑦(1), 𝑦ᇱ(0) = 𝑦ᇱ(1). 

4. 𝑦ᇱᇱ − 𝑦 = 2 sinh 1 ;  𝑦(0) =  𝑦(1) = 0, 

5. 𝑦’’ −  𝑦 = −2𝑒௫; 𝑦(0) = 𝑦′ (0), 𝑦(𝑙) + 𝑦′ (𝑙) = 0. 

6. 𝑦′′ + 𝑦 = 𝑥ଶ; 𝑦(0) = 𝑦 ቀ
గ

ଶ
ቁ = 0. 

Answers: 

1.𝑦 =
௫మ

ଶସ
(𝑥ଶ − 4𝑥 + 6) 

2. 𝑦 =
ଵ

ସ
[(1 − 𝑒ଶ) ln 𝑥 + 𝑥ଶ − 1] 

3. 𝑦 =
ଵ

ସగ
[(2𝑥 − 1) sin 𝜋𝑥 

4. 𝑦 = 2[sinh 𝑥 − sinh(𝑥 − 1) − sinh 1] 

5. 𝑦 = sinh 𝑥 + (𝑙 − 𝑥)𝑒௫ 

6. 𝑦 = 2 cos 𝑥 + ቀ2 −
గమ

ସ
ቁ sin 𝑥 + 𝑥ଶ − 2. 

16.5  SUGGESTED READINGS: 

1. Problems and Exercises in Integral Equations, MIR Oybkusgers, Moscow, 1971 by M. 
Krsnov, A. Kiselev and G. Makarendo. 

2. Integral Equations and their Applications, John wiley & Sons, 1999, by Jerri, A. 
3. Linear Integral Equation, Theory and Techniques, Academic Press, 2014 by kanwal R.P. 
4. A first course in Integral Equations, 2nd edition, World Scientific Publishing Co. 2015 by 

Wazwaz, A.M. 
5. Integral equations, Krishna Prakashan Media(P) Ltd., Meerut. 

 
-  Dr. Vinutha Tummala  



LESSON- 17 

BOUNDARY VALUE PROBLEMS CONTAINING  
A PARAMETER: 

REDUCING THEM TO INTEGRAL EQUATIONS 
 
 OBJECTIVES: 
 

 To learn about BVPs containing a Parameter. 
 Reducing BVPs with parameters to Integral Equations. 

 
STRUCTURE: 
 
17.1  Introduction 

17.2 Boundary Value Problems containing a parameter:  

         Reducing them to Integral Equations   

17.3  Summary 

17.4  Technical Terms 

17.5  Self-Assessment Questions 

17.6  Suggested Readings 
 

17.1 INTRODUCTION: 

Integral equations form one of the most useful techniques in many branches of pure analysis, 
such as the theory of functional analysis and stochastic processes. 

      It is one of the most important branches of mathematical analysis, for its importance in 
BVPs in ODEs and PDEs. They occur in many fields of mechanics and mathematical 
physics. Integral equations come from many physical problems, such as the radiation transfer 
problem and the neutron diffusion problem. They also come as a representation formula for 
the solution of differential equations. The differential equation can be replaced by an integral 
equation with the help of initial and boundary conditions. Each solution to the integral 
equation automatically satisfies the BCs. 
 

17.1.1 Integral Equation: An integral equation is an equation in which an unknown 
function, to be determined, appears under one or more integral signs. 

   An integral equation is called linear if only linear operations are performed in it upon the 
known functions. For Example, 

                        𝑦(𝑥) = 𝑓(𝑥) + 𝜆 ∫ 𝐾(𝑥, 𝜉)𝑦(𝜉) 𝑑𝜉                                    (1)
௕

௔
  

   𝑦(𝑥) = 𝜆 න 𝐾(𝑥, 𝜉)𝑦(𝜉) 𝑑𝜉                                   (2)
௕

௔
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17.1.2 Singular Integral Equation: When one or both limits of Integration become infinite, 
or the kernel becomes infinite at one or more points within the range of integration, the 
integral equation is called a singular integral equation. For example, 

     𝑦(𝑥) =  𝑓(𝑥) + 𝜆 න 𝑒ି|௫ିక| 𝑦(𝜉)  𝑑𝜉                                      
ஶ

ିஶ

 

and 𝑓(𝑥) = ∫ (𝑥 − 𝜉)ିఈ 𝑦(𝜉) 𝑑𝜉,              0 < 𝛼 < 1.                                    
௫

௔
   

are called singular integral equations. The second equation represents Abel’s Integral 
equation for 𝛼 = −1/2. 
 

17.2 BOUNDARY VALUE PROBLEMS CONTAINING A PARAMETER: REDUCING                  
        THEM TO INTEGRAL EQUATIONS: 
 
Many situations require the consideration of a boundary-value problem of the following type: 

𝐿[𝑦] =  𝜆𝑦 + ℎ(𝑥),                                      (1)    

                                    𝑉௞ (𝑦) = 0    (𝑘 = 1, 2, … , 𝑛)                        (2) 

where 

𝐿(𝑦)  ≡   𝑝଴ (𝑥)𝑦(௡)(𝑥) + 𝑝ଵ(𝑥)𝑦(௡ିଵ)(𝑥) + ⋯ +  𝑝௡  (𝑥)𝑦(𝑥) 

                       𝑉௞(𝑦)  ≡   𝛼௞ 𝑦(𝑎)+𝛼௞
(ଵ) 𝑦ᇱ (𝑎) + ⋯ + 𝛼௞

(௡ିଵ) 𝑦(௡ିଵ)𝑎 +

𝛽௞ 𝑦(𝑏)+𝛽௞
(ଵ)

 𝑦ᇱ (𝑏) + ⋯ + 𝛽௞
(௡ିଵ)

 𝑦(௡ିଵ)(𝑏) (𝑘 = 1, 2, … , 𝑛) 

(the linear forms 𝑉ଵ, 𝑉ଶ , … , 𝑉௡  are linearly independent);  ℎ(𝑥) is a given continuous function 
of 𝑥;  𝜆 is some numerical parameter. For ℎ(𝑥) ≡ 0,  we have the homogeneous boundary–
value problem 

       𝐿[𝑦] =  𝜆𝑦,                                       

𝑉௞(𝑦) = 0  ( 𝑘 = 1, 2, … , 𝑛)
ൠ                     (3) 

Those values of 𝜆 for which the boundary value problem (3) has nontrivial solutions  𝑦(𝑥) 
are called the eigenvalues of the boundary value problems (3);  the nontrivial solutions are 
called the associated eigenfunctions. 

17.2.1. Theorem:    If the boundary-value problem 

       𝐿[𝑦] =  0,                                       

𝑉௞(𝑦) = 0  ( 𝑘 = 1,2, … , 𝑛)
ൠ                     (4) 

has the Green’s function 𝐺(𝑥, 𝜉), then the boundary value problem (1) − (2)   is equivalent 
to the Fredholm integral equation 

𝑦(𝑥) =  𝜆 න 𝐺(𝑥, 𝜉)𝑦(𝜉) 𝑑𝜉 + 𝑓(𝑥)
௕

௔

             (5) 

where  
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𝑓(𝑥) =  න 𝐺(𝑥, 𝜉)ℎ(𝜉) 𝑑𝜉                                (6)
௕

௔

 

In particular, the homogeneous boundary value problem (3) is equivalent to the 
homogeneous integral equation 

𝑦(𝑥) =  𝜆 න 𝐺(𝑥, 𝜉)𝑦(𝜉) 𝑑𝜉                                (7)
௕

௔

 

17.2.2. Note:   Since  𝐺(𝑥, 𝜉) is a continuous kernel, the Fredholm theory is applicable to the 
integral equation. Therefore, the homogeneous integral equation (7) can have at most a 
countable number of characteristic numbers 𝜆ଵ , 𝜆ଶ , … , 𝜆௡, … which do not have a finite limit 
point. For all values of 𝜆  different from the characteristic values, the nonhomogeneous 
equation (5) has a solution for any continuous right side 𝑓(𝑥). This solution is given by the 
formula 

𝑦(𝑥) =  𝜆 න 𝑅(𝑥, 𝜉; 𝜆)𝑓(𝜉) 𝑑𝜉 + 𝑓(𝑥)
௕

௔

                (8) 

Where 𝑅(𝑥, 𝜉; 𝜆) is the resolvent kernel of the kernel 𝐺(𝑥, 𝜉). Here, for any fixed values of 𝑥 
and 𝜉 in [𝑎, 𝑏] the function 𝑅(𝑥, 𝜉; 𝜆) is a meromorphic function of 𝜆; only characteristic 
numbers of the homogeneous integral equation (7) may be the poles of this function. 

17.2.3 Example: Reduce the boundary value problem 

𝑦ᇱᇱ + 𝜆𝑦 =  𝑥,                                             (1)          

    𝑦(0) = 𝑦 ቀ
π

2
ቁ  = 0                                       (2)                

to an integral equation. 

Solution: First, find the Green’s function  𝐺(𝑥, 𝜉) for the corresponding homogeneous 
problem: 

 𝑦ᇱᇱ(𝑥) = 0,

𝑦(0) =   𝑦 ቀ
π

2
ቁ = 0    

ൡ                    (3) 

Since the function 𝑦ଵ(𝑥) = 𝑥  and 𝑦ଶ(𝑥) = 𝑥 −
గ

ଶ
 are, respectively, linearly independent 

solutions of the equation 𝑦ᇱᇱ(𝑥) = 0  that satisfy the conditions 𝑦(0) = 0 and 𝑦 ቀ
஠

ଶ
ቁ = 0, we 

seek Green’s function in the form 

                                            𝐺(𝑥, 𝜉) =  ቐ

௬భ (௫) ௬మ (క)

ௐ(క)
,        0 ≤ 𝑥 ≤ 𝜉

௬భ(഍) ௬మ(ೣ)

ௐ(క)
,        𝜉 ≤ 𝑥 ≤  

஠

ଶ

  

where    

                                                   𝑊(𝜉) =  ቤ
𝜉 𝜉 −  

஠

ଶ

1 1
 ቤ =  

஠

ଶ
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Thus,  

       𝐺(𝑥, 𝜉) = ൞
൬ 

2

𝜋
 𝜉 − 1൰ 𝑥,        0 ≤ 𝑥 ≤ 𝜉

൬ 
2

𝜋
 𝑥 − 1൰ 𝜉,           𝜉 ≤ 𝑥 ≤  

π

2

                 (4)   

Further, taking advantage of Green’s function (4) as the kernel of an integral equation, we 
got the following integral equation for 𝑦(𝑥): 

 𝑦(𝑥) = 𝑓(𝑥) − 𝜆 න 𝐺(𝑥, 𝜉)𝑦(𝜉) 𝑑𝜉

 
஠
ଶ

଴

 

    𝑓(𝑥) =  න 𝐺(𝑥, 𝜉)𝜉 𝑑𝜉                                         

 
஠
ଶ

଴

 

                                       =  ∫ ቀ
ଶ௫

గ
− 1 ቁ 𝜉ଶ  𝑑𝜉 +  ∫ ቀ

ଶక

గ
− 1 ቁ

 
ಘ

మ
௫

௫

଴
𝜉𝑑𝜉 =  

ଵ

଺
𝑥ଷ −  

గమ

ଶସ
𝑥   

Thus, the boundary value problem(1) − (2) has been reduced to the integral equation  

                           𝑦(𝑥) + 𝜆 ∫ 𝐺(𝑥, 𝜉)𝑦(𝜉) 𝑑𝜉 =   
ଵ

଺
𝑥ଷ −  

గమ

ଶସ
𝑥 

 
ಘ

మ
଴

 

17.2.4 Example: Reduce the boundary value problem 𝑦ᇱᇱ = 𝜆𝑦 + 𝑥ଶ,    𝑦(0) = 𝑦 ቀ
గ

ଶ
ቁ = 0  to 

the integral equation. 

Solution: First, we find the Green’s function   𝐺(𝑥, 𝜉) for the corresponding homogeneous 
problem 

𝑦ᇱᇱ(𝑥) = 0 , 𝑦(0) = 0 =  𝑦 ቀ
𝜋

2
ቁ 

𝑦ᇱ(𝑥) = 𝐶ଵ 

𝑦(𝑥) =  𝐶ଵ𝑥 + 𝐶ଶ 

          Now       𝑦(0) = 𝐶ଵ(0) + 𝐶ଶ   ⟹  𝐶ଶ = 0  

                         𝑦ᇱ(0) = 𝐶ଵ                  ⟹  𝐶ଵ = 1  

                        𝑦ଵ(𝑥) = 𝑥 

                       𝑦 ቀ
గ

ଶ
ቁ = 𝐶ଵ ቀ

గ

ଶ
ቁ + 𝐶ଶ 

                         0      =  𝐶ଵ ቀ
గ

ଶ
ቁ + 𝐶ଶ 

                       𝐶ଶ       =  −𝐶ଵ ቀ
గ

ଶ
ቁ 

                      𝑦ᇱ ቀ
గ

ଶ
ቁ =  𝐶ଵ    ⟹    𝐶ଵ = 1            
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                     𝑦ଶ(𝑥) = 𝑥 −
గ

ଶ
 

Wronskian: 

𝑤(𝜉)   =       ฬ
𝑦ଵ(𝜉) 𝑦ଶ(𝜉)

𝑦ଵ
ᇱ (𝜉) 𝑦ଶ

ᇱ (𝜉)
ฬ    ,      𝑦ଵ(𝜉) =  𝜉  ⟹  𝑦ଵ

ᇱ (𝜉) = 1,     

 𝑦ଶ(𝜉) =  𝜉 −
𝜋

2
     ⟹  𝑦ଶ

ᇱ (𝜉) = 1.     

                                 𝑤(𝜉)   =        ቤ
𝜉 𝜉 −

గ

ଶ

1 1
ቤ  =   

గ

ଶ
    

Green’s Function: 

𝐺(𝑥, 𝜉) =   

⎩
⎪
⎨

⎪
⎧ 𝑦ଵ(𝑥)𝑦ଶ(𝜉)

𝑤(𝜉)
                0 ≤ 𝑥 ≤ 𝜉

𝑦ଵ(𝜉)𝑦ଶ(𝑥)

𝑤(𝜉)
                  𝜉 ≤ 𝑥 ≤

𝜋

2
 

 

                                            =    

⎩
⎨

⎧
௫(కି

ഏ

మ
)

ഏ

మ

                0 ≤ 𝑥 ≤ 𝜉

క(௫ି
ഏ

మ
)

ഏ

మ

                  𝜉 ≤ 𝑥 ≤
గ

ଶ
 

 

=  ൞

2𝑥𝜉

𝜋
− 𝑥                0 ≤ 𝑥 ≤ 𝜉

2𝑥𝜉

𝜋
− 𝜉                  𝜉 ≤ 𝑥 ≤

𝜋

2
 

 

Now, we reduce the integral equation to the required equation 

𝑦(𝑥) = 𝑓(𝑥) − 𝜆 න 𝐺(𝑥, 𝜉)   𝑦 (𝜉)𝑑𝜉
గ/ଶ

଴

 

 Here 𝑓(𝑥) =  𝑥ଶ 

𝑦(𝑥) + 𝜆 න 𝐺(𝑥, 𝜉)   𝑦 (𝜉)𝑑𝜉

గ
ଶ

଴

=  න 𝐺(𝑥, 𝜉)   𝜉ଶ𝑑𝜉

గ
ଶ

଴

 

𝐼 =  න 𝐺ଵ(𝑥, 𝜉)𝜉ଶ  𝑑𝜉 +  න 𝐺ଶ(𝑥, 𝜉)   𝜉ଶ𝑑𝜉
గ/ଶ

௫

௫

଴

 

𝐼ଵ =   ∫ ቀ
ଶ௫

గ
− 1ቁ 𝜉 ⋅ 𝜉ଶ𝑑𝜉

௫

଴
  

     =  ൬
2𝑥

𝜋
− 1൰ න 𝜉ଷ  𝑑𝜉

௫

଴

 

     =  ቀ
ଶ௫

గ
− 1ቁ ቂ

కర

ସ
ቃ

଴

௫
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     =   ቀ
ଶ௫

గ
− 1ቁ ቂ

௫ర

ସ
ቃ 

 𝐼ଵ =  
௫ఱ

ଶగ
−  

௫ర

ସ
 

𝐼ଶ =  න 𝐺ଶ

గ
ଶ

௫

(𝑥, 𝜉)𝜉ଶ𝑑𝜉 

    =  ∫ ቀ
ଶక

గ
− 1ቁ 𝑥𝜉ଶ 𝑑𝜉

ഏ

మ
௫

 

   =  
ଶ௫

గ
∫ 𝜉ଷ 𝑑𝜉

గ/ଶ

௫
− 𝑥 ∫ 𝜉ଶగ/ଶ

௫
𝑑𝜉 

   =   
2𝑥

𝜋
ቈ
𝜉ସ

4
቉

௫

గ/ଶ

− 𝑥 ቈ
𝜉ଷ

3
቉

௫

గ/ଶ

 

  =   
2𝑥

𝜋
൦

𝜋ସ

16
4

−  
𝑥ସ

4
൪ − 𝑥 ൦

𝜋ଷ

8
3

−  
𝑥ଷ

3
൪ 

 𝐼ଶ =  
௫ర

 ଷ
−  

௫ఱ

ଶగ
−

గయ

ଽ଺
𝑥 

𝐼 =  𝐼ଵ +  𝐼ଶ 

𝐼 =
𝑥ସ

12
−  

𝜋ଷ

96
𝑥 

𝑦(𝑥) +  𝜆 ∫ 𝐺(𝑥, 𝜉)   𝑦 (𝜉)𝑑𝜉
గ/ଶ

଴
=  

௫ర

ଵଶ
− 

గయ

ଽ଺
𝑥. 

 

17.2.5 Example: Reduce the boundary value problem 𝑦ᇱᇱ + 𝜆𝑦 = 𝑒௫ ,   𝑦(0) = 𝑦ᇱ(0),

𝑦(1) = 𝑦ᇱ(1)  to the integral equation. 

Solution: First, we find the Green’s function 𝐺(𝑥, 𝜉) for the corresponding homogeneous 
problem 

                          𝑦ᇱᇱ(𝑥) = 0   , 𝑦(0) = 𝑦ᇱ(0), 𝑦(1) = 𝑦ᇱ(1)  

                        𝑦ᇱ(𝑥) = 𝐴   

                          𝑦(𝑥) = 𝐴𝑥 + 𝐵 

𝑦(0) = 𝐴(0) + 𝐵 𝑡ℎ𝑒𝑛  𝑦(0) = 𝐵, 𝑦ᇱ(0) = 𝐴 𝑡ℎ𝑒𝑛  𝐴 = 𝐵  ,   𝑦ଵ(𝑥) = 𝑥 + 1 

𝑦(1) = 𝐴 + 𝐵 𝑡ℎ𝑒𝑛 𝑦ᇱ(1) = 𝐴 ,   𝐴 = 𝐴 + 𝐵 𝑡ℎ𝑒𝑛 𝐵 = 0,   𝑦ଶ(𝑥) = 𝑥  

Wronskian: 

                    𝑤(𝜉)   =       ฬ
𝑦ଵ(𝜉) 𝑦ଶ(𝜉)

𝑦ଵ
ᇱ (𝜉) 𝑦ଶ

ᇱ (𝜉)
ฬ =     ቚ

𝜉 + 1 𝜉
1 1

ቚ = 1 

Green’s Function: 
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𝐺(𝑥, 𝜉) =   

⎩
⎪
⎨

⎪
⎧ 𝑦ଵ(𝑥)𝑦ଶ(𝑥)

𝑤(𝜉)
                0 ≤ 𝑥 ≤ 𝜉

𝑦ଵ(𝜉)𝑦ଶ(𝜉)

𝑤(𝜉)
                  𝜉 ≤ 𝑥 ≤ 1

 

                         𝐺(𝑥, 𝜉)    =     ൜
(𝑥 + 1)  𝜉             0 ≤ 𝑥 ≤  𝜉

  (𝜉 + 1) 𝑥                𝜉 ≤ 𝑥 ≤  1   
         

Now, we reduce to an integral equation 

𝑦(𝑥) = 𝑓(𝑥) − 𝜆 ∫ 𝐺(𝑥, 𝜉)𝑦(𝜉) 𝑑𝜉
ଵ

଴
, 

      𝑓(𝑥) =  𝑒௫ 

𝐼 =  න 𝐺(𝑥, 𝜉)𝑒క  𝑑𝜉
ଵ

଴

 

 𝐼 = ∫ 𝐺ଵ(𝑥, 𝜉)𝑒క𝑑𝜉 +    ∫ 𝐺ଶ
ଵ

௫

௫

଴
(𝑥, 𝜉)𝑒క𝑑𝜉 

𝐼ଵ =  න 𝑥(𝜉 + 1)𝜉
௫

଴

𝑒క𝑑𝜉 

    = 𝑥ൣ∫ 𝜉𝑒క 𝑑𝜉 +  ∫ 𝑒క௫

଴

௫

଴
 𝑑𝜉൧  

    =   𝑥ൣ(𝜉𝑒క − 𝑒క൧
଴

௫
+  ൣ𝑒క൧

଴

௫
 

    = 𝑥[𝑥𝑒௫] 

 𝐼ଵ =  𝑥ଶ 𝑒௫ 

𝐼ଶ = න 𝜉(𝑥 + 1)𝑒క𝑑𝜉 =   (𝑥 + 1) න 𝜉𝑒క
ଵ

௫

ଵ

௫

𝑑𝜉 

     = (𝑥 + 1)ൣ(𝜉𝑒క − 𝑒క൧
௫

ଵ
 

     = (𝑥 + 1)[−𝑥𝑒௫ + 𝑒௫] 

     =  −𝑥ଶ𝑒௫ + 𝑒௫ 

𝐼 =  𝐼ଵ + 𝐼ଶ =  𝑒௫ 

𝑦(𝑥) + 𝜆 ∫ 𝐺(𝑥, 𝜉)𝑦(𝜉) 𝑑𝜉
ଵ

଴
=  𝑒௫. 

 

17.3  SUMMARY: 
 

In this section, we learnt about converting the BVPs containing a numerical parameter 𝜆 to a 
Fredholm integral equation with the help of Green’s function. A few examples and the 
fundamental theorem related to BVPs with Green’s function, which is equivalent to the 
Fredholm integral equation, were discussed for the better understanding of the reader. 
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17.4  TECHNICAL TERMS: 

 Green’s function, Fredholm integral equation. 
s 

17.5  SELF-ASSESSMENT QUESTIONS: 
 

 Reduce the following boundary value problems to integral equations. 

1. 𝑦ᇱᇱ + 𝜆𝑦 = 2𝑥 + 1 ,    𝑦(0) = 𝑦ᇱ(1), 𝑦ᇱ(0) = 𝑦(1). 
2. 𝑦ᇱᇱᇱᇱ = 𝜆𝑦 + 1 ,    𝑦(0) = 𝑦ᇱ(0) = 0, 𝑦ᇱᇱ(1) = 𝑦ᇱᇱᇱ(1) = 0. 

3. 𝑦ᇱᇱ +
గమ

ସ
𝑦 = 𝜆𝑦 + 𝑐𝑜𝑠

గ௫

ଶ
,    𝑦(−1) = 𝑦(1), 𝑦ᇱ(−1) = 𝑦ᇱ(1). 

4. 𝑦ᇱᇱᇱ + 𝜆𝑦 = 2𝑥 ,    𝑦(0) = 𝑦(1) = 0, 𝑦ᇱ(0) = 𝑦ᇱ(1).   

Answers to Self-Assessment Questions:  

1. 𝑦(𝑥) =  −𝜆 ∫ 𝐺(𝑥, 𝜉) 𝑦(𝜉) 𝑑𝜉
ଵ

଴
+

ଵ

଺
(2𝑥ଷ + 3𝑥ଶ − 17𝑥 − 5) ,  

𝐺(𝑥, 𝜉) =  ൜
(𝜉 − 2)𝑥 + 𝜉 − 1, 0 ≤ 𝑥 ≤ 𝜉 

(𝜉 − 1)𝑥 − 1,     𝜉 ≤ 𝑥 ≤ 1    
 

2. 𝑦(𝑥) = 𝜆 ∫ 𝐺(𝑥, 𝜉) 𝑦(𝜉)
ଵ

଴
𝑑𝜉 +  

௫మ

ଶସ
(𝑥ଶ − 4𝑥 + 6), 

𝐺(𝑥, 𝜉) =

⎩
⎨

⎧
𝑥ଶ

6
(3𝜉 − 𝑥),   0 ≤ 𝑥 ≤ 𝜉 

𝜉ଶ

6
(3𝑥 − 𝜉),   𝜉 ≤ 𝑥 ≤ 1

 

3. 𝑦(𝑥) = 𝜆 ∫ 𝐺(𝑥, 𝜉) 𝑦(𝜉)
ଵ

ିଵ
𝑑𝜉 +

௫

గ
 𝑠𝑖𝑛

గ௫

ଶ
+

ଶ

గమ
cos

గ௫

ଶ
 , 

                                                 𝐺(𝑥, 𝜉) = ቐ

ଵ

గ
sin

గ 

ଶ
(𝜉 − 𝑥 ) ,    − 1 ≤ 𝑥 ≤ 𝜉

ଵ

గ
sin

గ 

ଶ
 (𝑥 − 𝜉),        𝜉 ≤ 𝑥 ≤ 1

  

4. 𝑦(𝑥) = −𝜆 ∫ 𝐺(𝑥, 𝜉) 𝑦(𝜉)𝑑𝜉 +  
ଵ

ଵଶ

ଵ

଴
𝑥(𝑥 − 1)(𝑥ଶ + 𝑥 − 1) , 

                                             𝐺(𝑥, 𝜉) = ቐ

ଵ

ଶ
𝑥(𝑥 − 𝜉)(𝜉 − 1),    0 ≤ 𝑥 ≤ 𝜉

−
ଵ

ଶ
𝜉(𝜉 − 𝑥)(𝑥 − 1), 𝜉 ≤ 𝑥 ≤ 1   
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3. M. Krasnov, A. Kiselev, G Makarenko, Problems and Exercises in Integral Equations, 

MIR Publishers, Moscow, 1971. 
4. M. Rahman, Integral equations and their applications, WIT Press, Southampton, 

Boston, 2007. 
- Dr. Madhusmita Tripathy 



LESSON- 18 

SINGULAR INTEGRAL EQUATIONS 
 
OBJECTIVE: 
 

 To learn about singular integral equations. 
 Finding eigenvalues and eigen functions of singular integral equations. 

 
STRUCTURE: 
 

18.1  Introduction 

18.2  Eigenvalues and Eigenfunctions of Singular Integral Equation 

18.3  Summary 

18.4  Technical Terms 

18.5   Self-Assessment Questions 

18.6  Suggested Readings 
 

18.1 INTRODUCTION:  

This section is concerned with singular integral equations that has enormous applications in 
problems including fluid mechanics, bio-mechanics, and electromagnetic theory. An integral 
equation is called a singular integral equation if one or both limits of integration becomes 
infinite, or if the kernel K (x, t), of the equation becomes infinite at one or more points in the 
interval of integration.  

18.2  EIGENVALUES AND EIGENFUNCTIONS OF SINGULAR INTEGRAL   
         EQUATION: 
  
The following integral equation 

𝜑(𝑥) = 𝑓(𝑥) + 𝜆 න 𝐾(𝑥, 𝑡) 𝜑(𝑡) 𝑑𝑡
௕

௔

                                      (1) 

is singular if the interval of integration (𝑎, 𝑏) is infinite or the kernel  𝐾(𝑥, 𝑡) is non- 
integrable in the sense of 𝐿ଶ (Ω). 

In case of singular integral equations, if the kernel 𝐾(𝑥, 𝑡) is continuous in Ω { 𝑎 ≤ 𝑥, 𝑡 ≤ 𝑏} 
and a and b are finite, then the spectrum of the integral equation is the set of characteristic 
numbers and for every characteristic number there corresponds at most a finite number of 
linearly independent eigenfunctions (the characteristic numbers can have a finite 
multiplicity). For singular Integral equations, the spectrum may be continuous. It means that, 
the characteristic numbers may fill the whole intervals, and there may be characteristic 
numbers of infinite multiplicity. We will discuss this through an example. 

Considering the Lalesco-Picard equation 
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𝜑(𝑥) =  𝜆 න 𝑒ି|௫ି௧| 𝜑(𝑡) 𝑑𝑡                         (2)
ାஶ

ିஶ

 

The kernel of this equation,  𝐾(𝑥, 𝑡) = 𝑒ି|௫ି௧| ,  possesses an infinite norm, 

න න 𝐾ଶ (𝑥, 𝑡) 𝑑𝑥 𝑑𝑡 =    න න 𝑒ିଶ|௫ି௧| 𝑑𝑥 𝑑𝑡 =  න 𝑑𝑥
ାஶ

ିஶ

ାஶ

ିஶ

ାஶ

ିஶ

ାஶ

ିஶ

ାஶ

ିஶ

                        

If the function 𝜑(𝑥) is twice differentiable, then the integral equation (2), can be written in 
the form 

𝜑(𝑥)  =  𝜆 ቈ𝑒ି௫  න 𝑒௧
௫

ିஶ

 𝜑(𝑡) 𝑑𝑡 +  𝑒௫  න 𝑒ି௧ 𝜑(𝑡) 𝑑𝑡 
ାஶ

௫

቉       

which is equivalent to the differential equation 

𝜑ᇱᇱ(𝑥) + (2𝜆 −  1)𝜑(𝑥)  =  0                                   (3) 

The general solution of equation (3) is of the form 

𝜑(𝑥)  =  𝐶ଵ 𝑒
௥௫  +  𝐶ଶ𝑒ି௥௫                                           (4) 

with 𝐶ଵ , 𝐶ଶ   arbitrary constants, and 

𝑟 = √1 − 2𝜆                                                                     (5) 

For the integral in the right hand side of equation (2) to exist, it is necessary that |𝑅𝑒 𝑟|  <

 1,  that is,  𝜆 > 0 for real 𝜆.  Hence, in the domain of real  numbers the spectrum of equation 
(2) fills the infinite interval 0 < 𝜆 < +∞.  Every point of this interval is a characteristic 
number of equation (2) of multiplicity 2. However, the associated eigenfunctions do not 
belong to the class 𝐿ଶ (−∞,   + ∞).  

It follows from equation (4) that for 𝜆 >  
ଵ

ଶ
 ,    the eigenfunctions are  

sin √2𝜆 − 1 𝑥, cos √2𝜆 − 1 𝑥. 

For 𝜆 =
ଵ

ଶ
 , we obtain 𝜑(𝑥) = 𝐶ଵ + 𝐶ଶ 𝑥.  Thus, we conclude that for 𝜆 ≥

ଵ

ଶ
 , the 

eigenfunctions are bounded in (−∞, +∞). 

However, if the real part √1 −  2𝜆  is positive and less than unity, then formula (4) is valid, 
for any choice of the constants, 𝐶ଵ , 𝐶ଶ (𝐶ଵ

ଶ +  𝐶ଶ  
ଶ ≠  0 ) solution of the integral equation (2) 

unbounded on (−∞, + ∞). 

The above example illustrates the essential role of the class of functions in which the solution 
of the integral equation is sought. 

Thus, if we seek the solution of equation (2) in the class of bounded functions, then values of 

𝜆 >
ଵ

ଶ
 are characteristic. 

But if the solution of equation (2) is sought in the class of   𝐿ଶ (−∞,   +  ∞) functions. Then, 
for any values of 𝜆 equation (2) has only the trivial solution 𝜑(𝑥) ≡ 0, i.e., not one of the 
values of 𝜆 is characteristic for solution in 𝐿ଶ (−∞,   +  ∞).  
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Let 𝐹(𝑥) be a continuous function which is absolutely integrable on [0, +∞] and having a 
finite number of maxima and minima on any finite interval of the x-axis. 

Constructing the Fourier cosine transform of this functions: 

                                                     𝐹ଵ (𝜆) =  ට
ଶ

గ
 ∫ 𝐹(𝑥) cos 𝜆𝑥  𝑑𝑥 

ାஶ

଴
   

Then 

                                                   𝐹 (𝑥) =  ට
ଶ

గ
 ∫ 𝐹ଵ(𝜆) cos 𝜆𝑥  𝑑𝜆

ାஶ

଴
  

Adding these two formulas, we get 

𝐹ଵ (𝑥) +  𝐹(𝑥)  = ඨ
2

𝜋
 න [𝐹ଵ(𝑡) + 𝐹(𝑡)]  cos 𝑥𝑡   𝑑𝑡

ାஶ

଴

 

That is, for any choice of the function 𝐹(𝑥) satisfying the above indicated conditions, the 
function  𝜑(𝑥) =  𝐹ଵ(𝑥) + 𝐹(𝑥) is an eigenfunction of the integral equation 

                                               𝜑(𝑥) = 𝜆 ∫ 𝜑(𝑡) cos 𝑥𝑡  𝑑𝑡 
ାஶ

଴
               (6) 

corresponding to the characteristic value 𝜆 =  ට
ଶ

గ
. 

Since  𝐹(𝑥)  is an arbitrary function, it follows that for the indicated value of 𝜆,  as given in 
sequation (6) has an infinite number of linearly independent eigenfunctions. 

18.2.1 Example: Consider the integral equation 

                              𝜑(𝑥) = 𝜆 ∫ 𝜑(𝑡) cos 𝑥𝑡  𝑑𝑡                                          (7)
ஶ

଴
 

Taking   𝐹(𝑥) = 𝑒ି௔௫ (𝑎 > 0), Then  𝐹ଵ(𝑥) =  ට
ଶ

గ
 ∫ 𝑒ି௔௧ஶ

଴
cos 𝑥𝑡  𝑑𝑡 =  ට

ଶ

గ
 

௔

௔మା௫మ. 

So,   𝜑(𝑥)  =  𝐹(𝑥) + 𝐹ଵ (𝑥)  =  𝑒ି௔௫ +  ට
ଶ

గ
 

௔

௔మା௫మ                        (8)     

Substituting 𝜑(𝑥) int equation (7), we have  

  𝑒ି௔௫ +  ඨ
2

𝜋
 .

𝑎

𝑎ଶ + 𝑥ଶ
=  𝜆 ቎න 𝑒ି௔௧𝑐𝑜𝑠 𝑥𝑡 𝑑𝑡  +  ඨ

2

𝜋

ஶ

଴

 න
𝑎 𝑐𝑜𝑠  𝑥𝑡 

𝑎ଶ + 𝑡ଶ

ஶ

଴

 𝑑𝑡቏        (9)    

As already has been pointed out 

න 𝑒ି௔௧
ஶ

଴

𝑐𝑜𝑠 𝑥𝑡  𝑑𝑡  =   
𝑎

𝑎ଶ + 𝑥ଶ
 

The second integral on the right of (9) may be found by using Cauchy’s theorem on residues: 
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න
𝑐𝑜𝑠 𝑥𝑡

𝑎ଶ + 𝑡ଶ
 𝑑𝑡 = 

ஶ

଴

𝜋

2𝑎
𝑒ି௔௫ 

From (9) we thus obtain  

                             𝑒ି௔௫ + ඨ
2

𝜋
 

𝑎

𝑎ଶ + 𝑥ଶ
 =  𝜆 ቈ

𝑎

𝑎ଶ + 𝑥ଶ
+  ට

𝜋

2
𝑒ି௔௫ ቉                                      (10)  

If 𝜆 = ට
ଶ

గ
 , then the function 

𝜑(𝑥) = 𝑒ି௔ +  ඨ
2

𝜋

𝑎

𝑎ଶ + 𝑥ଶ
 ≢ 0  

will be a solution of the integral equation (7). Hence,  𝜆 =  ට
ଶ

గ
 is a characteristic number of 

(7), and the function  

                             𝜑(𝑥) = 𝑒ି௔ +  ඨ
2

𝜋
 

𝑎

𝑎ଶ + 𝑥ଶ
                                        (8)    

is the corresponding eigenfunction. Since 𝑎  is any number greater than 0, the characteristic 

number 𝜆 = ට
ଶ

గ
 is associated with an infinity of linearly independent eigenfunctions (8). 

Similarly, we can show that equation (7) has a characteristic number 𝜆 = −ට
ଶ

గ
  associated 

with the eigenfunctions 

         𝑒ି௔௫    −  ඨ
2

𝜋
 

𝑎

𝑎ଶ + 𝑥ଶ
                   (𝑎 > 0) 

18.2.2 Example: Show that the integral equation 𝜑(𝑥) = 𝜆 ∫ 𝜑(𝑡) 𝑠𝑖𝑛𝑥𝑡 𝑑𝑡 
ஶ

଴
 has 

characteristic number  𝜆 =  ± ට
ଶ

గ
 of infinite multiplicity and find the associated eigen 

functions. 

Solution: Let us consider the integral equation  

𝜑(𝑥) = 𝜆 න 𝜑(𝑡) 𝑠𝑖𝑛𝑥𝑡 𝑑𝑡                              (1)
ஶ

଴

 

 We take 𝐹(𝑥) =  𝑒ି௔௫    (𝑎 > 0) , then 𝐹ଵ(𝑥) =  ට
ଶ

గ
∫ 𝑒ି௔௧ ஶ

଴
 𝑠𝑖𝑛𝑥𝑡 𝑑𝑡 = ට

ଶ

గ
 

௫

௔మା௫మ  

Further,   𝜑(𝑥) = 𝐹(𝑥) + 𝐹ଵ(𝑥) =  𝑒ି௔௫ + ට
ଶ

గ
 

௫

௔మା௫మ. 

Substituting 𝜑(𝑥) into equation (1), we have  
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         𝑒ି௔௫ +  ට
ଶ

గ
⋅

௫

௔మା௫మ = 𝜆 ቈ∫ 𝑒ି௔௧ ஶ

଴
𝑠𝑖𝑛𝑥𝑡  𝑑𝑡 + ට

ଶ

గ
 ∫

௧ ௦௜௡௫௧ 

௔మା௫మ

ஶ

଴
 𝑑𝑡 ቉ 

We know that the first term ∫ 𝑒ି௔௧ ஶ

଴
sin 𝑥𝑡 𝑑𝑡 =  

௫

௔మା௫మ .  

Second term (by standard integral table  ∫
௧ ௦௜௡௫௧ 

௔మା௧మ

ஶ

଴
=  

గ

ଶ
𝑒ି௔௫ .  

Thus,  𝑒ି௔௫ +  ට
ଶ

గ
 

௫

௔మା௫మ = 𝜆 ቈ
௫

௔మା௫మ + ට
ଶ

గ
⋅  

గ

ଶ
𝑒ି௔௫ ቉. 

i.e.,    𝑒ି௔௫ +  ට
ଶ

గ
 

௫

௔మା௫మ = 𝜆 ቂ
௫

௔మା௫మ + √2𝜋 ⋅  
ଵ

ଶ
𝑒ି௔  ቃ. 

Now comparing coefficient of  𝑒ି௔௫ on both the sides, we have  𝜆 ⋅  
√ଶగ

ଶ
= 1. i.e.,  𝜆 =  ට

ଶ

గ
. 

Similarly, comparing the coefficient of  
௫

௔మା௫మ
    on both the sides, we obtain  𝜆 =  ට

ଶ

గ
. So, we 

conclude that the chosen function 𝜑(𝑥) satisfies the integral equation exactly when 𝜆 =  ට
ଶ

గ
 . 

Hence 𝜆 =  ට
ଶ

గ
 is a characteristic number and the function 𝜑(𝑥) =  𝑒ି௔௫ + ට

ଶ

గ
 

௫

௔మା௫మ  ≢

0 will be the solution of the integral equation (1). 

In a similar manner, we can show that equation (1) has a characteristic number 𝜆 = −ට
ଶ

గ
 

associated with the eigenfunctions  𝑒ି௔௫ − ට
ଶ

గ
 

௫

௔మା௫మ . 

18.2.3 Example: Show that the integral equation 𝜑(𝑥) = 𝜆 ∫ 𝐽௩
ஶ

଴
൫2√𝑥𝑡൯𝜑(𝑡)𝑑𝑡 has 

characteristic number  𝜆 =  ±1   of infinite multiplicity and find the associated 
eigenfunctions. [where  𝐽௩(𝑧) is a Bessel function of the first kind.] 

Solution:  Given 𝜑(𝑥) = 𝜆 ∫ 𝐽௩
ஶ

଴
(2ඥ𝑥𝑡) 𝜑(𝑡)𝑑𝑡  

Using the orthogonality result for the Hankel Kernel  

න 𝐽௩

ஶ

଴

൫2√𝑥𝑡൯√𝑡 𝐽௩  ൫2ඥ𝑡𝑦൯𝑑𝑡 =  𝛿(𝑥 − 𝑦) 

This means that  𝜑(𝑡) =  √𝑡 𝐽௩൫2√𝑎𝑡൯ are eigenfunctions of the operator 

 𝑇(𝜑)(𝑥) =  ∫ 𝐽௩൫2√𝑥𝑡൯φ(t)𝑑𝑡 
ஶ

଴
 with the corresponding eigenvalue 𝜆 = 1. 

As   𝑇(√𝑡  𝐽௩൫2√𝑎𝑡൯ =  √𝑥 𝐽௩(2√𝑎𝑥) and we define 𝜑(𝑡) = √𝑡 , 𝐽௩൫2√𝑎𝑡൯,   𝑎 > 0   

So,  ∫ 𝐽௩(2√𝑥𝑡
ஶ

଴
) 𝜑(𝑡)𝑑𝑡 =  √𝑥 𝐽௩൫2√𝑎𝑥 ൯ =  𝜑(𝑥). 



Centre for Distance Education   18.6       Acharya Nagarjuna University  

Hence 𝜑(𝑥) =  ∫ 𝐽௩
ஶ

଴
൫2√𝑥𝑡൯𝜑(𝑡)𝑑𝑡   for  𝜆 = 1 . As the integral operator is self-adjoint, the 

negative eigenvalue is symmetric for real 𝐾 .   If 𝜆 = 1  is an eigen value, then  𝜆 = −1 is 

also an eigenvalue. An the corresponding eigenfunction is  𝜑(𝑡) =  √𝑡 𝐽௩൫2√𝑎𝑡൯, ∀ 𝑎 > 0.  

18.3  SUMMARY:  

In this section, we learnt about singular integral equations. Here, we try to find eigenvalues 
and eigenfunctions of singular integral equations. Few examples are discussed for the better 
understanding of the reader. In computing the eigenfunctions we take the help pf Fourier 
transform and Cauchy integral equations.  

18.4  TECHNICAL TERMS: 

Eigenvalues, Eigen functions, Hankel Kernel, Spectrum, Fourier transform, Cauchy       
integral equation. 

18.5  SELF-ASSESSMENT QUESTIONS: 

1. Show that for the integral equation  𝜑(𝑥) = 𝜆 ∫
(௫ି௧)೙

௡!

ஶ

௫
𝜑(𝑡)𝑑𝑡,  any number 𝜆 for which 

one of the values √𝜆
೙శభ

  has a positive real part is a characteristic number. 

2. Show that the Volterra integral equation  𝜑(𝑥) = 𝜆 ∫ ቀ
ଵ

௧
−

ଵ

௫
ቁ

௫

଴
𝜑(𝑡)𝑑𝑡, has an infinity of 

characteristic numbers  𝜆 = 𝜉 + 𝑖𝜂, where the point (𝜉, 𝜂) lies outside the parabola 
𝜉 + 𝜂ଶ = 0. 

 

18.6  SUGGESTED READINGS:  
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 LESSON- 19 

SOLUTION OF SINGULAR INTEGRAL 
EQUATIONS   

 
OBJECTIVE: 
 

 To learn about the solution of singular integral equations. 
 Use Efros theorem as generalized product rule to get solution of singular integral 

equation. 
 To use Mellin Transform for solution of certain singular integral equations. 

 
STRUCTURE: 
 
19.1 Introduction 

19.2 Efros Rule for Singular Integral Equations 

19.3 Mellin Transform Method for Singular Integral Equation 

19.4  Summary 

19.5  Technical Terms 

19.6  Self-Assessment Questions 

19.7  Suggested Readings 
 

19.1 INTRODUCTION:  

In this section, we will learn about two important techniques for solving a certain type of 
singular integral equations. The first type uses the generalized product rule by Efros to 
obtain the solution of the singular integral equation. The second method is based on Mellin 
transform to extract the solution of the singular integral equation. 
 

19.2 EFROS RULE FOR SINGULAR INTEGRAL EQUATIONS: 
 

19.2.1 Theorem (Generalized product rule by Efros): 

Let   φ(𝑥) ≓ Φ(𝑝),  𝑢(𝑥, 𝜏) ≓ 𝑈(𝑝)𝑒ିఛ௤(௣), 

where  𝑈(𝑝) and 𝑞(𝑝) are analytic functions.  

Then  Φ൫𝑞, (𝑝)൯𝑈(𝑝) ≓ ∫ φ(𝜏)𝑢(𝑥, 𝜏)𝑑𝜏             
ஶ

଴
                        (1) 

If 𝑢(𝑥, 𝜏)  =  𝑢( 𝑥 −  𝜏),  then 𝑞(𝑝) ≡ 𝑝 and we obtain the ordinary product  

Φ(𝑝)𝑈(𝑝) ≓ න 𝜙(𝜏)𝑢(𝑥 − 𝜏)𝑑𝜏
ஶ

଴

 

If  𝑈(𝑝) =
ଵ

√௣
, 𝑞(𝑝) = ඥ𝑝,   then  𝑢(𝑥, 𝜏) =

ଵ

√గ௫
𝑒

షഓమ

రೣ  .                  (2)   
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Therefore, if  Φ(𝑝) ≓ 𝜑(𝑥), then by the Efro’s theorem, we find the original function for 

 
 ஍(√௣)

√௣
 as 

         
Φ൫ඥ𝑝൯

ඥ𝑝
≓

1

√𝜋𝑥
න 𝜑(𝜏)𝑒

ିఛమ

ସ௫

ஶ

଴

𝑑𝜏                         (3)     

19.2.2 Example: Solve the integral equation  

          
1

√𝜋𝑥
න 𝑒

ି௧మ

ସ௫

ஶ

଴

𝜑(𝑡)𝑑𝑡 = 1                                     (4)     

 

Solution:  Let  𝜑(𝑥) ≓ Φ(p). Taking the Laplace transform of both sides of equation (4), 
we get, by formula (3), 

Φ൫ඥ𝑝൯

ඥ𝑝
=

1

𝑝
  

Whence  

               
஍(୮)

௣
=

ଵ

௣మ 
,    or    Φ(p) =

ଵ

௣
≓ 1 

Hence,  𝜑(𝑥) ≡ 1 is a solution of equation (4). 

19.2.3 Example: Solve the integral equation 
ଵ

√గ௫
∫ 𝑒

ష೟మ

రೣ
ஶ

଴
𝜑(𝑡)𝑑𝑡 =  𝑒ି௫ 

Solution:  Let 𝜑(𝑥) = Φ(𝑝) 

        Given 
ଵ

√గ௫
𝑒

ష೟మ

రೣ 𝜑(𝑡)𝑑𝑡 =  𝑒ି௫                 (5) 

Taking the Laplace transform on both sides of equation (5), we obtain  

𝐿 ቈ
1

√𝜋𝑥
𝑒

ି௧మ

ସ௫ 𝜑(𝑡)𝑑𝑡቉ = 𝐿[𝑒ି௫] 

But we know that 
஍(ඥ௣)

√௣
=  

ଵ

√గ௫
∫ 𝑒

ష೟మ

రೣ 𝜑(𝑡)𝑑𝑡
ஶ

଴
 and     𝐿[𝑒ି௧] =  

ଵ

௦ାଵ
 

Φ(ඥ𝑝)

ඥ𝑝
=

1

𝑠 + 1
 

S= ඥ𝑝  ⇒   𝑝 =  𝑠ଶ 

஍(௣)

௣
=  

ଵ

௣మାଵమ
= 𝑐𝑜𝑠𝑥 , [   ∵  𝐿ିଵ ቂ

ௌ

ௌమା௔మ
ቃ = 𝑐𝑜𝑠𝑎𝑡 ] 

So,  𝜑(𝑥) = 𝑐𝑜𝑠𝑥 is the required solution. 

19.2.4 Example: Solve the integral equation 
ଵ

√గ௫
∫ 𝑒

ష೟మ

రೣ
ஶ

଴
𝜑(𝑡)𝑑𝑡 =  2𝑥 − 𝑠𝑖𝑛ℎ𝑥 
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Solution: Let  𝜙(𝑥) = Φ(𝑝) 

Given    
ଵ

√గ௫
∫ 𝑒

ష೟మ

రೣ
ஶ

଴
𝜑(𝑡)𝑑𝑡 = 2𝑥 − 𝑠𝑖𝑛ℎ𝑥                   (6) 

Taking Laplace transform on both the sides of equation (6), we obtain  

𝐿 ቈ
1

√𝜋𝑥
න 𝑒

ି௧మ

ସ௫

ஶ

଴

𝜑(𝑡)𝑑𝑡 ቉ = 𝐿[2𝑥 − 𝑠𝑖𝑛ℎ𝑥 ] 

Φ(ඥ𝑝)

ඥ𝑝
=

2

𝑝ଶ
−  

1

𝑝ଶ − 1 
 

Φ(𝑝)

𝑝
=  

2

𝑝ସ
−

1

𝑝ସ − 1
 

Φ(𝑝) =
2𝑝

𝑝ସ
−

𝑝

𝑝ସ − 1
 

Φ(𝑝) =
2

𝑝ଷ
−

𝑝

𝑝ସ − 1
 

                        Φ(𝑝)  =
2

𝑝ଷ
−

𝑝

(𝑝ଶ − 1)(𝑝ଶ + 1)
 

Consider                
௣

(௣మିଵ)(௣మାଵ)
=  

஺௣ା஻

(௣మିଵ)
+

஼௣ା஽

(௣మାଵ)
 

𝑝 = (𝐴𝑝 + 𝐵)(𝑝ଶ + 1) + (𝐶𝑝 + 𝐷) (𝑝ଶ − 1) 

𝑝 = (𝐴 + 𝐶)𝑝ଷ + (𝐴 − 𝐶)𝑝 + (𝐵 + 𝐷)𝑝ଶ + 𝐵 − 𝐷 

   =   ൥
2

𝑝ଷ
−  

𝑝
2ൗ

(𝑝ଶ − 1)
− 

𝑝
2ൗ

(𝑝ଶ + 1)
൩ 

  =  𝑥2 −
ଵ

ଶ
(𝑐𝑜𝑠ℎ𝑥 − 𝑐𝑜𝑠𝑥) ,  which is the desired solution. 

 

19.2.5 Note: It is known that  

                          𝑡
೙

మ  𝐽௡൫2√𝑡൯ ≓
ଵ

௣೙శభ
𝑒

ି
భ

೛   (𝑛 = 0,1,2, … . )                 (7) 

Where 𝐽௡(𝑧) is a Bessel function of the first kind of order n. In particular, 

                                                𝐽଴൫2√𝑡൯ ≓
ଵ

௣
𝑒

ି
భ

೛                             (8) 

By virtue of the similarity theorem 

                                                     𝐽଴൫2√𝑥𝑡൯ ≓
ଵ

௣
𝑒

ି
ೣ

೛                        (9) 

It follows from Efro’s theorem that  𝑞(𝑝) ≡
ଵ

௣
  . 
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19.2.6 Example: Solve the integral equation 

                            𝜑(𝑥) = 𝑥𝑒ି௫ + 𝜆 න 𝐽଴൫2√𝑥𝑡൯𝜑(𝑡)𝑑𝑡
ஶ

଴

            (|𝜆| ≠ 1)       (10)  

Solution: Let 𝜑(𝑥) ≓ Φ(p). Taking the Laplace transform of both sides of (10) and 
considering the Efros theorem, we find  

                                           Φ(p) =
1

(𝑝 + 1)ଶ 
+ 𝜆

1

𝑝
Φ ൬

1

𝑝
൰                                     (11)  

Replacing  𝑝 by  
ଵ

௣
,  we get  

Φ ൬
1

𝑝
൰ =

𝑝ଶ

(𝑝 + 1)ଶ 
+ 𝜆𝑝Φ(p)                                                                                    (12) 

From equation (11) and (12), we find  

Φ(p) =
1

(𝑝 + 1)ଶ 
+

𝜆

𝑝
ቈ

𝑝ଶ

(𝑝 + 1)ଶ 
+ 𝜆𝑝Φ(p)቉ 

or   

Φ(p) =
1

1 − 𝜆ଶ 
൤

1

(𝑝 + 1)ଶ 
+  

𝜆𝑝

(𝑝 + 1)ଶ 
൨ 

Hence,  𝜑(𝑥) = 𝑒ି௫ ቀ
௫

ଵାఒ
+

ఒ

ଵିఒమ 
ቁ is the desire solution. 

19.2.7 Example: Solve the following integral equation  

𝜑(𝑥) = 𝑐𝑜𝑠𝑥 + 𝜆 න 𝐽଴

ஶ

଴

൫2√𝑥𝑡൯𝜑(𝑡)𝑑𝑡  

Solution: Given that  𝜑(𝑥) = 𝑐𝑜𝑠𝑥 + 𝜆 ∫ 𝐽଴
ஶ

଴
൫2√𝑥𝑡൯𝜑(𝑡)𝑑𝑡                     (13) 

Taking Laplace transform of both sides in equation (13), we obtain 

           Φ(𝑝) =  
𝑝

𝑝ଶ + 1
+ 𝜆 

1

𝑝
Φ ൬

1

𝑝
൰                                                                   (14)     

        Replacing p by  1/𝑝  in  (14), we obtain 

                  Φ ቀ
ଵ

௣
ቁ =  

ଵ
௣ൗ

ଵ/௣మାଵ
+ 𝜆𝑝 Φ(𝑝),  

                   Φ ቀ
ଵ

௣
ቁ =  

௣

௣మାଵ
+ 𝜆𝑝 Φ(𝑝)                                                                       (15)  

Now using equation (15) in (14), we have 

Φ(𝑝) =  
𝑝

𝑝ଶ + 1
+ 𝜆

1

𝑝
൤

𝑝

1 + 𝑝ଶ
+ 𝜆𝑝 Φ(𝑝) ൨ 
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Φ(𝑝) =
𝑝

𝑝ଶ + 1
+

𝜆

1 + 𝑝ଶ
+ 𝜆ଶΦ(𝑝)  

(1 − 𝜆ଶ)Φ(𝑝) =
𝑝

𝑝ଶ + 1
+

𝜆

1 + 𝑝ଶ
 

Applying inverse Laplace Transform, we obtain the require solution as, 

𝜑(𝑥) =  
1

1 − 𝜆ଶ
[cos 𝑥 + 𝜆 𝑠𝑖𝑛𝑥 ]. 

 

19.2.8 Example: Solve the following integral equation  

𝜑(𝑥) = 𝑠𝑖𝑛𝑥 + 𝜆 න ට
𝑥

𝑡

ஶ

଴

𝐽ଵ൫2√𝑥𝑡  ൯𝜑(𝑡) 𝑑𝑡 

Solution: Given that     

 𝜑(𝑥) = 𝑠𝑖𝑛𝑥 + 𝜆 න ට
𝑥

𝑡

ஶ

଴

𝐽ଵ൫2√𝑥𝑡  ൯𝜑(𝑡) 𝑑𝑡                                 (16)  

Applying Laplace transform to both the sides, we obtain 

Φ(𝑝) =  
1

𝑝ଶ + 1
+ 𝜆 ൬

1

𝑝ଶ
൰  Φ ൬

1

𝑝
൰                                                   (17) 

    Replace 𝑝  𝑏𝑦  1/𝑝  in equation (2), we get 

           Φ ቀ
ଵ

௣
ቁ =  

ଵ
భ

೛మశభ

+ 𝜆𝑝ଶΦ(𝑝) =  
௣మ

௣మାଵ
+ 𝜆𝑝ଶΦ(𝑝)                                          (18)          

         

Using equation (18) in (17), we obtain 

  Φ(𝑝) =  
1

𝑝ଶ + 1
+  𝜆 ൬

1

𝑝ଶ
൰ ቈ

𝑝ଶ

𝑝ଶ + 1
+ 𝜆𝑝ଶΦ(𝑝)቉  

                                                  Φ(𝑝) =  
ଵ

௣మାଵ
+

ఒ

௣మାଵ
+ 𝜆ଶΦ(𝑝) 

    Φ(𝑝) − 𝜆ଶ Φ(𝑝) = (𝜆 + 1) ൬
1

𝑝ଶ + 1
൰, 

(1 − 𝜆ଶ)Φ(𝑝) = (𝜆 + 1) ൬
1

𝑝ଶ + 1
൰. 

    Applying inverse Laplace transform on both sides of the above equation, we get 

      𝜑(𝑥) =
(ఒାଵ)

(ଵିఒమ)
𝑠𝑖𝑛𝑥 =

௦௜௡௫ 

ଵିఒ
    as the require solution of the integral equation. 

 

19.3 MELLIN TRANSFORM METHOD FOR SINGULAR INTEGRAL EQUATION: 

Let a function 𝑓(𝑡) be defined for positive 𝑡 and let it satisfy the conditions 
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න |𝑓(𝑡)| 𝑡ఙభ ିଵ
ଵ

଴

𝑑𝑡 < +∞, න |𝑓(𝑡)| 𝑡ఙమ ିଵ 
ஶ

ଵ

𝑑𝑡 + ∞              (1) 

for a proper choice of the numbers 𝜎ଵ and 𝜎ଶ. The function 

      𝐹(𝑠) = ∫ 𝑓(𝑡)𝑡௦ିଵ𝑑𝑡
ஶ

଴
(𝑠 = 𝜎 + 𝑖𝜏, 𝜎ଵ < 𝜎 < 𝜎ଶ)                                         (2)    

is the Mellin transform of the function 𝑓(𝑡). The inversion formula of the Mellin 
transformation is  

𝑓(𝑡) =
1

2𝜋𝑖
න 𝐹(𝑠)𝑡ି௦𝑑𝑠 

ఙ ା௜ ஶ

ఙ ି௜ ஶ

(𝑡 > 0, 𝜎ଵ < 𝜎 < 𝜎ଶ)                  (3) 

Where the integral is taken along the straight line 𝑙: 𝑅𝑒𝑠 =  𝜎  parallel to the imaginary axis 
of the 𝑠 plane and is understood to be the principal value. When the behaviour of the 
function 𝑓(𝑡) as 𝑡 ⟶  0  and  𝑡 ⟶  ∞ is known, say from physical reasoning, then the 
boundaries of the strip (𝜎ଵ , 𝜎ଶ ) may be established from the conditions of the absolute 
convergence of the integral (2). But if the behaviour of 𝑓(𝑡) is only known at one end of the 
interval (0, +∞), say as 𝑡 ⟶  0 , then only 𝜎ଵ is defined, the straight line of integration 𝑙 in 
(3) must be chosen to the right of the straight line 𝜎 =  𝜎ଵ and to the left of the closest 
singularity of the function 𝐹(𝑠). 

The Mellin transformation is closely associated with the transformations of Fourier and 
Laplace, and many theorems which refer to the Mellin transformation can be obtained from 
the corresponding theorems for the Fourier and Laplace transformations by means of a 
change of variables. The convolution theorem for the Mellin transformation is of the form 

𝑀 ቊන 𝑓(𝑡)𝜑 ቀ
𝑥

𝑡
ቁ

ஶ

଴

𝑑𝑡

𝑡
ቋ = 𝐹(𝑠). Φ(s)                                            (4) 

From this, we can conclude that the Mellin transformation is convenient for the solution of 
integral equations of the form  

𝜑(𝑥) = 𝑓(𝑥) + න 𝐾 ቀ
𝑥

𝑡
ቁ

ஶ

଴

𝜑(𝑡)
𝑑𝑡

𝑡
                                                (5) 

Let the function 𝜑(𝑥), 𝑓(𝑥) and 𝐾(𝑥) admit the Mellin transformation, and let  𝜑(𝑥) ⟶

Φ(s), f(x) ⟶ 𝐹(𝑠), 𝐾(𝑥) ⟶ 𝐾෩(𝑠); the domains of analyticity of  𝐹(𝑠) and 𝐾෩(𝑠) have a 
common strip 𝜎ଵ <   𝜎 < 𝜎ଶ. Taking the Mellin transform of both sides of equation (5) and 
utilizing the convolution theorem (4), we obtain 

         Φ(s) = F(s) + 𝐾෩(𝑠) ⋅ Φ(s)                                                                              (6)    

Whence   

Φ(s) =
𝐹(𝑠)

1 −  𝐾෩(𝑠)
൫𝐾෩(𝑠) ≠ 1൯                                                      (7) 

This is the operator solution of the integral equation (5). Using the inverse formula (3), we 
find the solution 𝜑(𝑥) of this equation: 
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𝜑(𝑥) =
1

2𝜋𝑖
න

𝐹(𝑠)

1 − 𝐾෩(𝑠)

ఙା௜ஶ

ఙି௜ஶ

𝑥ି௦𝑑𝑠                                     (8) 

19.3.1 Example: Solve the integral equation  

𝜑(𝑥) = 𝑒ିఈ௫ +
ଵ

ଶ
∫ 𝑒ି

ೣ

೟  
ஶ

଴
𝜑(𝑡)

ௗ௧

௧
    (𝛼 > 0)                                                     (9)      

Solution: Applying the Mellin transform to both sides of equation (9), we obtain 

           𝑀{𝑒ିఈ௫} =  ∫ 𝑒ିఈ௫ஶ

଴
𝑥௦ିଵ𝑑𝑥 =  𝛼ି௦ ∫ 𝑒ି௭𝑧௦ିଵஶ

଴
 𝑑𝑧 =  

୻(ୱ)

ఈೞ
≡  𝐹(𝑠),     

𝑀 ൜
1

2
𝑒ି௫ൠ =

1

2
Γ(s) ≡ 𝐾෩(𝑠)(𝑅𝑒𝑠 > 0) 

so that the domain of analyticity of 𝐹(𝑠) and 𝐾෩(𝑠) coincide. The operator equation 
corresponding to equation (9) will have the form 

              Φ(s) =
Γ(s)

𝛼௦
+

1

2
Γ(s)Φ(s)                                          (10)    

Whence  

  Φ(s) =
Γ(s)

𝛼௦ ቂ1 −
1
2

Γ(s)ቃ
 

Using the inverse formula (8) we obtain  

𝜑(𝑥) =
1

2𝜋𝑖
න

Γ(𝑠)

1 −
1
2

Γ(𝑠)

ఙା௜ஶ

ఙି௜ஶ

⋅
𝑑𝑠

(𝛼𝑥)௦
(𝜎 > 0)              (11) 

We find the integral (11) with the aid of Cauchy’s integral formula. 

For 𝛼𝑥 > 1, we include in the contour of integration the semicircle lying in the right half- 
plane. In this case, the sole singularity of the integrand lies at the point   𝑠 = 3  at which  

1 −
1

2
 Γ(𝑠) = 0 

Then  

     𝜑(𝑥) =
2

(𝛼𝑥)ଷ𝜓(3)
 ,          𝛼𝑥 > 1 

Where 𝜓(3) is the logarithmic derivative of the Γ function at the point 𝑠 = 3:  

                                           𝜓(3) =
୻ᇲ(ଷ)

୻(ଷ)
=

ଷ

ଶ
− 𝛾 ,  𝛾 is Euler’s constant. 

 For 𝛼𝑥 < 1, the singularities of the integrand are the negative roots of the function  1 −
ଵ

ଶ
 Γ(𝑠), so that  
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          𝜑(𝑥) = −2 ෍
1

(𝛼𝑥)௦ೖ 𝜓(𝑠௞)

ஶ

௞ୀଵ

    ,    𝛼𝑥 < 1                 

where  𝜓(𝑠௞) are values of the logarithmic derivative Γ(𝑠) at the points 𝑠 = 𝑠௞  (𝑘 =

1,2, … )., 

Finally, we obtain the solution as, 

𝜑(𝑥) =

⎩
⎪
⎨

⎪
⎧

    

4

(3 − 2𝛾)(𝛼𝑥)ଷ
 ,      𝛼𝑥 > 1,

−2 ෍
1

(𝛼𝑥)௦ೖ 𝜓(𝑠௞)

ஶ

௞ୀଵ

,     𝛼𝑥 < 1         

 

19.3.2 Example: Solve the integral equation  

             𝜑(𝑥) = 𝑓(𝑥) + න 𝐾(𝑥, 𝑡)𝜑(𝑡)
ஶ

଴

𝑑𝑡                                                    (12) 

Solution: Multiplying both sides of (12) by 𝑥௦ିଵ and integrating with respect to 𝑥 between 
the limits 0 and ∞, we get 

න     𝜑(𝑥)𝑥௦ିଵ𝑑𝑥 =
ஶ

଴

 න 𝑓(𝑥)𝑥௦ିଵ𝑑𝑥 + න 𝜑(𝑡)𝑑𝑡 න 𝐾(𝑥𝑡)
ஶ

଴

ஶ

଴

ஶ

଴

𝑥௦ିଵ𝑑𝑥 

Denoting the Mellin transform of the functions 𝜑(𝑥), 𝑓(𝑥), 𝐾(𝑥) by Φ(s),

𝐹(𝑠),  𝐾෩ (𝑠), respectively, we obtain, 

                          Φ(s) = 𝐹(𝑠) + 𝐾෩(𝑠) න 𝜑(𝑡)
ஶ

଴

𝑡ି௦𝑑𝑡                                       (13)    

It is easy to see that  ∫ 𝜑(𝑡)
ஶ

଴
𝑡ି௦𝑑𝑡 =  Φ(1 − s)  so that equation (13) will be written in the 

form 

                   Φ(s) = 𝐹(𝑠) + Φ(1 − s)𝐾෩(𝑠)                                                       (14)     

Replacing 𝑠 by 1 − 𝑠 in (14), we get  

        Φ(1 − s) = 𝐹(1 − 𝑠) + Φ(s)𝐾෩(1 − 𝑠)                                                  (15)       

From (14) and (15) we find  

          Φ(s) = 𝐹(𝑠) + 𝐹(1 − 𝑠)𝐾෩(𝑠) + Φ(s)𝐾෩(𝑠) ⋅  𝐾෩(1 − 𝑠)  

Whence  

                 Φ(s) =
𝐹(𝑠) + 𝐹(1 − 𝑠)𝐾෩(𝑠)

1 − 𝐾෩(𝑠) ⋅  𝐾෩(1 − 𝑠)
                                                       (16)      

This is the operator solution of equation (1). Using the inverse Mellin formula, we find  

  𝜑(𝑥) =
1

2𝜋𝑖
න

𝐹(𝑠) + 𝐹(1 − 𝑠)𝐾෩(𝑠)

1 − 𝐾෩(𝑠) 𝐾෩(1 − 𝑠)

௖ା௜ஶ

௖ି௜ஶ

𝑥ି௦ 𝑑𝑠                               (17) 
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which is a solution of the integral equation (1). 

19.3.3 Example: Solve the integral equation 

               𝜑(𝑥) = 𝑓(𝑥) + 𝜆ඨ
2

𝜋
න 𝜑(𝑡)

ஶ

଴

 𝑐𝑜𝑠 𝑥𝑡 𝑑𝑡                                (18)   

Solution: We have  

                 𝐾෩(𝑠) =  𝜆ඨ
2

𝜋
න 𝑥௦ିଵ 

ஶ

଴

𝑐𝑜𝑠𝑥 𝑑𝑥                                                   (19)      

    To compute the integral (19), we take advantage of the fact that  

                    න 𝑒ି௫ 𝑥௭ିଵ 
ஶ

଴

 𝑑𝑥 =  Γ(𝑧)                                                    (20)   

If in formula (20) we turn the ray of integration up to the imaginary axis, then using Jordan 
lemma for 0 < 𝑧 < 1, we arrive at the formula  

න 𝑒ି௜௫
ஶ

଴

𝑥௭ିଵ 𝑑𝑥 =  𝑒ି
௜గ௭

ଶ
 Γ(𝑧). 

Separating the real and imaginary parts, we get  

                  න 𝑥௭ିଵ 
ஶ

଴

𝑐𝑜𝑠 𝑥 𝑑𝑥 = 𝑐𝑜𝑠 
𝜋𝑧

2
. Γ(𝑧),                                    (21)   

            න 𝑥௭ିଵ 
ஶ

଴

𝑠𝑖𝑛  𝑥 𝑑𝑥 = 𝑠𝑖𝑛
𝜋𝑧

2
. Γ(𝑧)                                         (22)  

Thus, by virtue of equation (19) and (21), we get 

                          𝐾෩(𝑠) =  𝜆ඨ
2

𝜋
 Γ(𝑠) 𝑐𝑜𝑠 

𝜋𝑠

2
                                             (23)    

Also, 

              𝐾෩(𝑠) ⋅ 𝐾෩(1 −  𝑠) =  𝜆 ඨ
2

𝜋
 Γ(𝑠) 𝑐𝑜𝑠 

𝜋𝑠

2
⋅ 𝜆ඨ

2

𝜋
Γ(1 − 𝑠) 𝑠𝑖𝑛  

𝜋𝑠

2

=
𝜆

𝜋

ଶ

2 𝑐𝑜𝑠 
𝜋𝑠

2
 𝑠𝑖𝑛 

𝜋𝑠

2
 Γ(𝑠) Γ(1 − 𝑠)  = 𝜆ଶ 

since Γ(𝑠) ⋅ Γ(1 − 𝑠) =  
గ

௦௜௡ గ௦
⋅ Hence, if 𝑀{𝑓(𝑥)} = 𝐹(𝑠), then by formula (16) (for |𝜆| ≠

1 ) 

                                                             Φ(s) =  
ி(௦)ାி(ଵି௦)௄෩(௦)

ଵି ఒమ
 

 and therefore  
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𝜑(𝑥) =  
1

2𝜋𝑖(1 −  𝜆ଶ)
න ቎𝐹(𝑠) + 𝐹(1 − 𝑠)𝜆ඨ

2

𝜋
 Γ(𝑠) 𝑐𝑜𝑠 

𝜋𝑠

2
቏

ఙା௜ஶ

ఙି௜ஶ

𝑥ି௦ 𝑑𝑠 = 

                  =  
ଵ

ଵି ఒమ
⋅

ଵ

ଶగ௜
 ∫ 𝐹(𝑠)

ఙା௜ஶ

ఙି௜ஶ
 𝑥ି௦ 𝑑𝑠 + 

                  +  
ఒ

ଵି ఒమ
 ට

ଶ

గ
 

ଵ

ଶగ௜
∫  Γ(𝑠) 𝑐𝑜𝑠 

గ௦

ଶ
𝐹(1 − 𝑠)𝑥ି௦𝑑𝑠                  (24)

ఙା௜ஶ

ఙି௜ஶ
   

 In the second integral on the right of (24) replacing F(1−s) by ∫ 𝑓(𝑡)𝑡ି௦ஶ

଴
 𝑑𝑡  and we have 

ଵ 

ଶగ௜
∫  F(𝑠) 𝑥ି௦𝑑𝑠 = 𝑓(𝑥).

ఙା௜ஶ

ఙି௜ஶ
   

Then formula (24) can be rewritten as  

𝜑(𝑥) =
𝑓(𝑥)

1 −  𝜆ଶ
+

𝜆

1 −  𝜆ଶ
ඨ

2

𝜋
 

1

2𝜋𝑖
න  Γ(𝑠) 𝑐𝑜𝑠 

𝜋𝑠

2
(𝑥𝑡)ି௦𝑑𝑠  න 𝑓(𝑡)𝑑𝑡   

ஶ

଴

       (25)  
ఙା௜ஶ

ఙି௜ஶ

 

By Mellin’s inversion formula, 

1

2𝜋𝑖
 න  Γ(𝑠) 𝑐𝑜𝑠 

𝜋𝑠

2
(𝑥𝑡)ି௦𝑑𝑠 = 𝑐𝑜𝑠 𝑥𝑡        

ఙା௜ஶ

ఙି௜ஶ

 

So finally, we have  

𝜑(𝑥) =
𝑓(𝑥)

1 − 𝜆ଶ
+

𝜆

1 −  𝜆ଶ
ඨ

2

𝜋
 න 𝑓(𝑡)  𝑐𝑜𝑠 𝑥𝑡 𝑑𝑡,   (|𝜆|

ஶ

଴

≠ 1). 

 

19.3.4 Example: Solve the following integral equation  

𝜑(𝑥) = 𝑓(𝑥) + 𝜆ඨ
2

𝜋
න 𝜑(𝑡)𝑠𝑖𝑛𝑥𝑡  𝑑𝑡

ஶ

଴

 

Solution:  We have 𝐾෩(𝑠) = 𝜆ට
ଶ

గ
∫ 𝑥௦ିଵ𝑠𝑖𝑛𝑥𝑡  𝑑𝑡

ஶ

଴
= 𝜆ට

ଶ

గ
∫ 𝑥௦ିଵ𝑠𝑖𝑛𝑥  𝑑𝑥         (26)

ஶ

଴
 

To compute the integral (26) we take advantage of the fact that 

 ∫ 𝑒ି௫ஶ

଴
𝑥௭ିଵ𝑑𝑥 = Γ(𝑠)                                                 (27) 

In equation (27), extending the ray of integration up to the imaginary axis and using Jordan 
lemma for 0 < 𝑧 < 1, we arrive at the formula  

න 𝑒ି௜௫
ஶ

଴

𝑥௭ିଵ𝑑𝑥 =  𝑒
ି௜గ௭

ଶ  Γ(𝑠)                                                                               (28) 

Now, separating the real and imaginary parts, we get 

                                  ∫ 𝑥௭ିଵ 𝑐𝑜𝑠𝑥 
ஶ

଴
𝑑𝑥 =  cos

గ௭

ଶ
Γ(𝑠)                                                (29) 



Integral Equations     19.11    Solution of Singular Integral… 

                               ∫ 𝑥௭ିଵ 𝑠𝑖𝑛𝑥
ஶ

଴
𝑑𝑥 = 𝑠𝑖𝑛

గ௭

ଶ
  Γ(𝑠)                                           (30)                 

Thus, from equations (26) and (30) 

                                𝐾෩(𝑠) = 𝜆ට
ଶ

గ
 Γ(𝑠) sin

గ௭

ଶ
                                                        (31)          

𝐾෩(𝑠)𝐾෩(1 − 𝑠) = 𝜆ට
ଶ

గ
Γ(𝑠) sin

గ௦

௭
⋅ 𝜆ට

ଶ

గ
Γ(1 − 𝑠) sin ቀ

గ(ଵି௦)

ଶ
ቁ 

                               =
ఒమଶ

గ
Γ(𝑠)Γ(1 − 𝑠) sin

గ௦

ଶ
sin(90଴ −

గ௦

ଶ
) 

                              =  
ఒమଶ

గ
sin

గ௦

ଶ
 cos 

గ௦

ଶ
 Γ(𝑠)Γ(1 − 𝑠) 

                              =  
ఒమ

గ
sin 𝜋𝑠 ቀ

గ

ୱ୧୬ గ௦
ቁ 

                             = 𝜆ଶ 

If 𝑀{ 𝑓(𝑥)} =   𝐹(𝑠)  then known formula (for |𝜆| ≠ 1) 

Φ(𝑠) =  
𝐹(𝑠) + 𝐹(1 − 𝑠) 𝐾෩(𝑠)

1 − 𝜆ଶ
 

 𝜑(𝑥) =  
1

2𝜋𝑖
න ቎𝐹(𝑠) + 𝐹(1 − 𝑠)ඨ

2

𝜋
Γ(𝑠) 𝑠𝑖𝑛

𝜋𝑠

2
቏

ఙା௜ஶ

ఙି௜ஶ

𝑥ି௦𝑑𝑠 

=
1

1 − 𝜆ଶ

1

2𝜋𝑖
න 𝐹(𝑠)𝑥ି௦

ఙା௜ஶ

ఙି௜ஶ

𝑑𝑠 +
𝜆

1 − 𝜆ଶ
 ⋅

1

2𝜋𝑖
ඨ

2

𝜋
න Γ(𝑠)𝑠𝑖𝑛

𝜋𝑠

2

ఙା௜ஶ

ఙି௜ஶ

 𝐹(1 − 𝑠)𝑥ି௦𝑑𝑠 

In the second integral replace 𝐹(1 − 𝑠)  𝑏𝑦  ∫ 𝑓(𝑡)𝑡ି௦𝑑𝑡
ஶ

଴
. 

 19.3.5  Note: 
ଵ

ଶగ௜
∫ 𝐹(𝑠)𝑥ି௦𝑑𝑠 = 

ఙା௜ஶ

ఙି௜ஶ
𝑓(𝑥) 

Then we can write  

𝜑(𝑥) =
𝑓(𝑥)

1 − 𝜆ଶ
+

𝜆

1 − 𝜆ଶ
ඨ

2

𝜋

1

2𝜋𝑖
 න Γ(𝑠) 𝑠𝑖𝑛

𝜋𝑠

2

ఙା௜ஶ

ఙି௜ஶ

(𝑥𝑡)ି௦𝑑𝑠 න 𝑓(𝑡)𝑑𝑡 
ஶ

଴

 

By Mellin’s inversion formula, 

1

2𝜋𝑖
න Γ(𝑠)𝑠𝑖𝑛

𝜋𝑠

2

ఙା௜ஶ

ఙି௜ஶ

(𝑥𝑡)ି௦ 𝑑𝑠 =  𝑠𝑖𝑛𝑥𝑡  

𝜑(𝑥) =
𝑓(𝑥)

1 − 𝜆ଶ
+

𝜆

1 − 𝜆ଶ
ඨ

2

𝜋
 න f(𝑡) cos 𝑥𝑡

ஶ

଴

𝑑𝑡     (|𝜆| ≠ 1) 

is the required solution. 
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19.3.6  Example: Solve the integral equation  𝜑(𝑥) =
ଵ

ଵା௫మ
+

ଵ

√గ
∫ 𝜑(𝑡) cos(𝑥𝑡)  𝑑𝑡

ஶ

଴
. 

Solution:  We write the equation in the form  

𝜑(𝑥) = 𝑓(𝑥) + 𝜆ට
ଶ

గ
∫ 𝜑(𝑡) cos(𝑥𝑡)  𝑑𝑡

ஶ

଴
, where 𝑓(𝑥) =  

ଵ

ଵା௫మ
. 

           𝜆ට
ଶ

గ
=

ଵ

√గ 
   𝑡ℎ𝑒𝑛 𝜆 =

ଵ

√ଶ
  and the kernel of the integral equation is 𝑐𝑜𝑠(𝑥𝑡).  

The solution of this type of equation is  

           𝜑(𝑥) =  
௙(௫)

ଵିఒమ
+

ఒ

ଵିఒమ
ට

ଶ

గ
∫ 𝑓(𝑡) cos(𝑥𝑡) 𝑑𝑡 

ஶ

଴
 

Substituting 𝜆 =
ଵ

√ଶ
   𝑎𝑛𝑑  𝜆ଶ =

ଵ

ଶ
 

We obtain the required equation  𝜑(𝑥) = 2𝑓(𝑥) + √2ට
ଶ

గ
∫ 𝑓(𝑡) cos(𝑥𝑡)

ஶ

଴
 𝑑𝑡 

                                    𝜑(𝑥) =
ଶ

ଵା௫మ
+  ට

ସ

ଵଵ
∫

ଵ

ଵା௧మ

ஶ

଴
cos(𝑥𝑡) 𝑑𝑡                  (32)  

Solving ∫
ଵ

ଵା௧మ
cos(𝑥𝑡)  𝑑𝑡  𝑏𝑦  

ஶ

଴
Fourier cosine transforms, 

𝐹஼(𝑥) = න 𝑓(𝑡) cos(𝑥𝑡)  𝑑𝑡
ஶ

଴

 

                                                          =  න
cos(𝑥𝑡)

1 + 𝑡ଶ

ஶ

଴

=  
𝜋

2
𝑒ି௫ ,       𝑥 > 0                       

 

𝐿 ൤
1

1 + 𝑡ଶ
൨ =  න

𝑒ି௦௧

1 + 𝑡ଶ

ஶ

଴

𝑑𝑡 =
𝜋

2
𝑒ି௦ ,          𝑠 > 0 

න
cos(𝑥𝑡)

1 + 𝑡ଶ

ஶ

଴

𝑑𝑡 = 𝑅 ቈන
𝑒௜௫௧

1 + 𝑡ଶ

ஶ

଴

 𝑑𝑡 ቉ 

𝑠 = −𝑖𝑥 

න
cos(𝑥𝑡)

1 + 𝑡ଶ
 𝑑𝑡 =  

𝜋

2

ஶ

଴

𝑒ି௫ 

     Putting in equation (32), we obtain  

𝜑(𝑥) =  
2

1 + 𝑥ଶ
+  √𝜋 𝑒ି௫ 

19.4  SUMMARY:  

In this section, we discussed two different methods for the solution of certain type of 
singular integral equations. The first type is based on Efros rule with Laplace transform 
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technique to obtain the solution of singular integral equation. And the second method is 
based on Mellin transform method. Few examples are discussed for the better understanding 
of the reader.  
 

19.5 TECHNICAL TERMS: 
 

Efros product rule, Mellin Transform, Fourier transform, Laplace Transform, Gamma 
Function, Bessel function. 
 

19.6  SELF-ASSESSMENT QUESTIONS: 
 

 Solve the following integral equations: 

1.   
ଵ

√గ௫
∫ 𝑒

ష೟మ

రೣ
ஶ

଴
𝜑(𝑡)𝑑𝑡 = 𝑥

మ

య + 𝑒ସ௫. 

2.  
ଵ

√గ௫
∫ 𝑒

ష೟మ

రೣ
ஶ

଴
𝜑(𝑡)𝑑𝑡 =  5𝑥 − 𝑐𝑜𝑠ℎ𝑥. 

3. 𝜑(𝑥) = −𝑒ି௫ +
ଶ

√గ
∫ 𝜑(𝑡) cos(𝑥𝑡) 𝑑𝑡

ஶ

଴
. 

4. 𝜑(𝑥) = 4𝑥 + 𝜆ට
ଶ

గ
∫ 𝜑(𝑡)𝑠𝑖𝑛𝑥𝑡  𝑑𝑡

ஶ

଴
. 

5. 𝜑(𝑥) = 𝑒௫ + 𝜆 ∫ ට
௫

௧

ஶ

଴
𝐽ଵ൫2√𝑥𝑡  ൯𝜑(𝑡) 𝑑𝑡. 

6. 𝜑(𝑥) = 𝑐𝑜𝑠𝑥 + 𝜆 ∫ 𝐽ଶ
ஶ

଴
൫2√𝑥𝑡൯𝜑(𝑡)𝑑𝑡. 

 

Answers to Self-Assessment Questions: 

1.   𝜑(𝑥) =  
୻ቀ

ఱ

మ
ቁ

ଷ!
𝑥ଷ + 𝑐𝑜𝑠ℎ2𝑥 

5.   𝜑(𝑥) =
ଵ

ଵିఒమ
[𝑒௫ − 𝜆(𝑒௫ − 1)] 

6.   𝜑(𝑥) =
ଵ

ଵିఒమ
(𝑐𝑜𝑠𝑥 + 𝜆𝑠𝑖𝑛𝑥 ) 

 

19.7  SUGGESTED READINGS:  
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MIR Publishers, Moscow, 1971. 
3. M Rahman, Integral equations and their applications, WIT Press, Southampton, Boston, 

2007. 
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2010.  
5. J.B. Conway, Functions of One Complex Variable, Narosa Publication, 1973. 
6. R. V Churchill, J. W. Brown, Complex variables and Applications, McGraw-Hill 
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LESSON- 20 

APPROXIMATE METHODS 
 
OBJECTIVE: 
 
 To learn about three different approximation methods for solving integral equations. 
 Replacing the kernel by a degenerate kernel and taking few terms of the Taylor series 

expansion of the kernel, we approximate the integral. Also, we estimate the error in the 
approximation. 

 Method of successive approximation is used with a sequence of functions as an 
approximation to the solution.  

 Bubnov Galerkin method is used by choosing a system of complete functions which are 
linearly independent as an approximation to the true solution. 

 
STRUCTURE: 
 
20.1  Introduction 

20.2  Replacing the Kernel by a Degenerate Kernel 

20.3  Method of Successive Approximation. 

20.4  Bubnov-Galerkin method 

20.5  Summary 

20.6  Technical Terms 

20.7  Self-Assessment Questions 

20.8  Suggested Readings 

 
20.1 INTRODUCTION: 

In this chapter, we will learn about different types of approximation methods use to solve the 
integral equations. Our focus will be on three different methods. The first method is based on 
replacing the kernel with a degenerate kernel and using a Taylor series expansion. In the 
second method, we choose a suitable sequence of functions successively as an approximation 
to the integral equation. The third approximation method is the Bubnov-Galerkin method, in 
which a suitable sequence of complete linearly independent functions is selected as an 
approximation to the integral equation. 
 

20.2 REPLACING THE KERNEL BY A DEGENERATE KERNEL: 

Suppose we have an integral equation 

       𝜑(𝑥) = 𝑓(𝑥) + 𝜆 න 𝐾(𝑥, 𝑡) 𝜑(𝑡)
௕

௔

 𝑑𝑡                                 (1) 

with an arbitrary kernel  𝐾(𝑥, 𝑡). The simplicity of finding a solution to an equation with a 
degenerate kernel led to thinking of replacing the given arbitrary kernel 𝐾(𝑥, 𝑡) 
approximately by a degenerate kernel 𝐿(𝑥, 𝑡) and taking the solution 𝜑෤(𝑥) of the new 
equation as 
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                       𝜑෤(𝑥) = 𝑓ଵ(𝑥) + 𝜆 න 𝐿(𝑥, 𝑡) 𝜑෤(𝑡)
௕

௔

𝑑𝑡                         (2)   

is also an approximation to the solution of the original equation (1). For the degenerate 
kernel 𝐿(𝑥, 𝑡) close to the given kernel 𝐾(𝑥, 𝑡), we can take a partial sum of Taylor’s series 
for the function 𝐾(𝑥, 𝑡), a partial sum of the Fourier series for 𝐾(𝑥, 𝑡), with respect to any 
complete system of functions {𝑢௡(𝑥)} which are orthonormal in 𝐿ଶ(𝑎, 𝑏). We shall indicate 
some error estimates in the solution (1) that occur when replacing a given kernel by a 
degenerate kernel. 

Let there be given two kernels 𝐿(𝑥, 𝑡) and 𝐾(𝑥, 𝑡) and let it be known that ∫ |𝐾(𝑥, 𝑡) −
௕

௔

𝐿(𝑥, 𝑡)|  𝑑𝑡 < ℎ 

and that the resolvent kernel 𝑅௅(𝑥, 𝑡; 𝜆) of the equation with the kernel 𝐿(𝑥, 𝑡) satisfies the 
inequality  

න |𝑅௅(𝑥, 𝑡; 𝜆)|
௕

௔

𝑑𝑡 < 𝑅 

and, that |𝑓(𝑥) − 𝑓ଵ(𝑥)| < 𝜂. Then, if the condition 1 − |𝜆|ℎ(1 + |ℎ|𝑅) > 0, is satisfied, 
then the equation 

 𝜑(𝑥) = 𝜆 න 𝐾(𝑥, 𝑡)𝜑(𝑡)  𝑑𝑡 + 𝑓(𝑥)
௕

௔

 

has a unique solution 𝜑(𝑥) and the difference between this solution and the approximate 
solution 𝜑෤(𝑥) of the equation 

 𝜑෤(𝑥) = 𝑓ଵ(𝑥) + 𝜆 න 𝐿(𝑥, 𝑡) 𝜑෤(𝑡) 𝑑𝑡
௕

௔

 

does not exceed 

                    |𝜑(𝑥) − 𝜑෤(𝑥)| <
𝑁|𝜆|(1 + |𝜆|𝑅)ଶℎ

1 − |𝜆|ℎ(1 + |𝜆|𝑅)
+ 𝜂                              (3) 

where N is the upper bound of |𝑓(𝑥)|. 

For the degenerate kernel 𝐿(𝑥, 𝑡), the resolvent kernel 𝑅௅(𝑥, 𝑡; 𝜆) is found in the evaluation of 
the integrals. If 𝐿(𝑥, 𝑡) = ∑ 𝑋௞(𝑥) 𝑇௞(𝑡)௡

௞ୀଵ , then, putting 

න 𝑋௞(𝑥) 𝑇௦(𝑥)
௕

௔

𝑑𝑥 =  𝑎௦௞ 

We get 

                                           𝑅௅(𝑥, 𝑡; 𝜆) =
𝐷(𝑥, 𝑡; 𝜆) 

𝐷(𝜆)
                                           (4)    

where 
 



Integral Equations     20.3         Approximate Methods 

                 𝐷(𝑥, 𝑡; 𝜆) =  ተ  

0 𝑋ଵ(𝑡) ⋅⋅⋅⋅
𝑇ଵ(𝑡) 1 − 𝜆𝑎ଵଵ ⋅⋅⋅⋅

⋅⋅⋅⋅
𝑇௡(𝑡)

⋅⋅⋅⋅
−𝜆𝑎௡ଵ

⋅⋅⋅⋅
⋅⋅⋅⋅

  

𝑋௡(𝑥)
−𝜆𝑎ଵ௡

⋅⋅⋅⋅
1 − 𝜆𝑎௡௡

 ተ ,                (5)   

 

                           𝐷(𝜆) =  ተ  

1 − 𝜆𝑎ଵଵ −𝜆𝑎ଵଶ ⋅⋅⋅⋅
−𝜆𝑎ଶଵ 1 − 𝜆𝑎ଶଶ ⋅⋅⋅⋅

⋅⋅⋅⋅
−𝜆𝑎௡ଵ

⋅⋅⋅⋅
−𝜆𝑎௡ଶ

⋅⋅⋅⋅
⋅⋅⋅⋅

  

−𝜆𝑎ଵ௡

−𝜆𝑎ଶ௡
⋅⋅⋅⋅

1 − 𝜆𝑎௡௡

 ተ ,           (6)   

The roots of 𝐷(𝜆) are the characteristic numbers of the kernel 𝐿(𝑥, 𝑡). Let  

𝐾(𝑥, 𝑡) = 𝐿(𝑥, 𝑡) + Λ(𝑥, 𝑡)                                                             (7)    

where 𝐿(𝑥, 𝑡) is a degenerate kernel and Λ(𝑥, 𝑡) has a small norm in some metric. Let 
 𝑅௞(𝑥, 𝑡),  𝑅௅(𝑥, 𝑡) be the resolvent kernels of the kernels 𝐾(𝑥, 𝑡) and 𝐿(𝑥, 𝑡), respectively, 
and  ‖Λ‖, ‖ 𝑅௞‖, ‖ 𝑅௅‖ be the norms of the operators with corresponding kernels. Then 

              ‖𝜑(𝑥) − 𝜑෤(𝑥)‖ ≤ ‖Λ‖ ⋅ (1 + ‖ 𝑅௞‖) ⋅ (1 + ‖ 𝑅௅‖) ⋅ ‖𝑓‖               (8) 

The norm in the above formula (8) can be taken in any function space. The following 
estimate holds true for the norm of the resolvent kernel 𝑅 of any kernels 𝐾(𝑥, 𝑡): 

                                            ‖𝑅‖ ≤
‖𝑘‖

1 − |𝜆| ⋅ ‖𝐾‖.
                                                   (9)     

Let the function space 𝐶(0, 1) of continuous functions defined on the interval [0,1], then 

‖𝐾‖ ∶=  max
଴ஸ௫ஸଵ

න |𝐾(𝑥, 𝑡)| 𝑑𝑡
ଵ

଴

 

                                           ‖𝑓‖ ∶=  max
଴ஸ௫ஸଵ

|𝑓(𝑥)|                                                       (10)  

In the space of quadratically summable functions over the domain   Ω = {𝑎 ≤ 𝑥, 𝑡 ≤ 𝑏}, 

‖𝐾‖ ≤ ቆ  න න 𝐾ଶ(𝑥, 𝑡)𝑑𝑥 𝑑𝑡
௕

௔

௕

௔

ቇ

ଵ
ଶ

, 

                                    ‖𝑓‖ ≤ ቆ  න 𝑓ଶ
௕

௔

(𝑥)𝑑𝑥 ቇ

ଵ
ଶ

                                               (11)    

20.2.1 Example: Solve the following equation by replacing its kernel with a degenerate 
kernel and estimate the error. 

                𝜑(𝑥) = 𝑠𝑖𝑛𝑥 + න (1 − 𝑥 𝑐𝑜𝑠 𝑥𝑡)
ଵ

଴

 𝜑(𝑡) 𝑑𝑡                        (1)   

  
Solution: Expanding the kernel 𝐾(𝑥, 𝑡) = 1 − 𝑥𝑐𝑜𝑠 𝑥𝑡  in Taylor series, we get 

                              𝐾(𝑥, 𝑡) = 1 − 𝑥 +
𝑥ଷ𝑡ଶ

2
−  

𝑥ହ𝑡ସ

24
+ ⋯                               (2) 

Considering the first three terms of the expansion (2) for the degenerate kernel 𝐿(𝑥, 𝑡), 
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 𝐿(𝑥, 𝑡) = 1 − 𝑥 +  
𝑥ଷ𝑡ଶ

2
                                                      (3)     

and solving the new equation  

  𝜑෤(𝑥) = 𝑠𝑖𝑛𝑥 +  න ቆ1 − 𝑥 +  
𝑥ଷ𝑡ଶ

2
 ቇ

ଵ

଴

 𝜑෤(𝑡) 𝑑𝑡                                           (4)      

From equation (4), we have  
                   𝜑෤(𝑥) = 𝑠𝑖𝑛𝑥 + 𝐶ଵ(1 − 𝑥) + 𝐶ଶ𝑥ଷ                                               (5)   
where  

𝐶ଵ =  න 𝜑෤(𝑡)𝑑𝑡,           
ଵ

଴

  𝐶ଶ =  
1

2
න 𝑡ଶ𝜑෤(𝑡)𝑑𝑡      

ଵ

଴

                                        (6) 

Substituting (5) in (6), we get a system of equations for determining the values of  𝐶ଵ and 𝐶ଶ. 
We have  

             𝐶ଵ = න [𝑠𝑖𝑛𝑡 +  𝐶ଵ(1 − 𝑡) +  𝐶ଶ𝑡ଷ]𝑑𝑡 =   
1

2

ଵ

଴

𝐶ଵ +
1

4
𝐶ଶ + 1 − 𝑐𝑜𝑠 1, 

 𝐶ଶ =  
1

2
න [𝑡ଶ

ଵ

଴

sin 𝑡 +  𝐶ଵ(𝑡ଶ − 𝑡ଷ) + 𝐶ଶ𝑡ହ] 𝑑𝑡

=
1

24
𝐶ଵ +

1

12
𝐶ଶ + sin 1 − 1 +

1

2
 cos 1 .        

or  

                    

1

2
𝐶ଵ −

1

4
𝐶ଶ = 1 − 𝑐𝑜𝑠 1,

−1

24
𝐶ଵ +

11

12
𝐶ଶ = 𝑠𝑖𝑛 1 +

1

2
𝑐𝑜𝑠 1 − 1

        ൢ                            (7)      

 

Solving the above system, we get  
𝐶ଵ = 1.0031,           𝐶ଶ = 0.1674 

and substituting these values in equation (5), we obtain 

𝜑෤(𝑥) = 1.0031(1 − 𝑥) + 0.1674𝑥ଷ + 𝑠𝑖𝑛𝑥 . 

The exact solution of the equation is  𝜑(𝑥) ≡ 1. 

So, let us estimate ‖ 𝜑 − 𝜑෤‖ using the formula  

‖ 𝜑 − 𝜑෤‖ ≤ ‖Λ‖ ⋅ (1 + ‖ 𝑅௞‖) ⋅ (1 + ‖ 𝑅௅‖) ⋅ ‖𝑓‖                            (8) 

in the metric of the  𝐿ଶ  space. We obtain 

‖Λ‖ ≤
1

24
ቊන න 𝑥ଵ଴

ଵ

଴

ଵ

଴

𝑡଼ 𝑑𝑥 𝑑𝑡 ቋ

ଵ
ଶ

=  
1

72√11
<  

1

238
   , 

‖K‖ ≤ ቊන න [1 − 𝑥 cos  𝑥𝑡
ଵ

଴

ଵ

଴

]ଶ𝑑𝑥 𝑑𝑡 ቋ

ଵ
ଶ

 

                                                  = ቄ2 𝑐𝑜𝑠 1 −
ଵ

଼
 𝑐𝑜𝑠 2 + 

ଵ

ଵ଺
 𝑠𝑖𝑛 2 −

ହ

଺
ቅ

భ

మ
<

ଷ

ହ
  , 

‖L‖ ≤ ቊන න [1 − 𝑥 +
𝑥ଷ𝑡ଶ

2
]ଶ

ଵ

଴

ଵ

଴

𝑑𝑥 𝑑𝑡ቋ

ଵ
ଶ

=  ඨ
5

14
<

3

5
  , 

‖f‖ =  ቄ∫ 𝑠𝑖𝑛ଶ(𝑥)𝑑𝑥 
ଵ

଴
ቅ

భ

మ
=  

√ଶି௦௜௡ ଶ

ଶ
<

ଷ

ହ
 . 
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Finally, we estimate the norms of the resolvent kernels 𝑅௞ and 𝑅௅ using the formulas as 

‖𝑅௞‖ ≤  
‖𝐾‖

1 − |𝜆| ⋅ ‖𝐾‖
,   ‖𝑅௅‖ ≤  

‖𝐿‖

1 − |𝜆| ⋅ ‖𝐿‖
   

where |𝜆| = 1. Hence, ‖𝑅௞‖ ≤  
ଷ

ଶ
,    ‖𝑅௅‖ ≤  

ଷ

ଶ
  and 

‖ 𝜑 − 𝜑෤‖ <  
ଵ

ଶଷ଼
ቀ1 +

ଷ

ଶ
ቁ ቀ1 +

ଷ

ଶ
ቁ ⋅

ଷ

ହ
< 0.016. 

20.2.2 Example: Find the solution of the integral equation by substituting a degenerate 
kernel and estimate the error. 

                              𝜑(𝑥) = 𝑒௫ − 𝑥 − ∫ 𝑥(𝑒௫௧ − 1)𝜑(𝑡)𝑑𝑡 
ଵ

଴
 

Solution: Given that 𝜑(𝑥) = 𝑒௫ − 𝑥 − ∫ 𝑥(𝑒௫௧ − 1)𝜑(𝑡)𝑑𝑡 
ଵ

଴
. We aim to approximate the 

kernel 𝐾(𝑥, 𝑡) = 𝑥(𝑒௫௧ − 1) with a degenerate kernel  𝐾(𝑥, 𝑡) =  ∑ 𝑎௡(𝑥)𝑏௡
ே
௡ୀଵ (𝑡) 

    Let      𝑒௫௧ = 1 + 𝑥𝑡 +
(௫௧)మ

ଶ!
+

(௫௧)య

ଷ!
+ ⋯ 

                  𝑒௫௧ − 1 =  𝑥𝑡 +
(௫௧)మ

ଶ
+

(௫௧)య

଺
+

(௫௧)ర

ଶସ
 

            𝐾(𝑥, 𝑡) = 𝑥(𝑒௫௧ − 𝑡) =  𝑥ଶ𝑡 +
௫య௧మ

ଶ
+

௫ర௧య

଺
+ ⋯ 

    Keep up to  4௧௛ order 𝐾(𝑥, 𝑡) =  𝑥ଶ𝑡 +
௫య௧మ

ଶ
+

௫ర௧య

଺
+

௫ఱ௧ర

ଶସ
… 

Then 𝜑(𝑥) =  𝑒௫ − 𝑥 − ∫ ቀ𝑥ଶ𝑡 +
௫య௧మ

ଶ
+

௫ర௧య

଺
ቁ  𝜑(𝑡)𝑑𝑡 

ଵ

଴
 

                   =  𝑒௫ − 𝑥 − 𝑥ଶ ∫ 𝑡 𝜑(𝑡)𝑑𝑡 −
ଵ

଴
∫

௫య௧మ

ଶ
𝜑(𝑡)

ଵ

଴
𝑑𝑡 − ∫

௫ర௧య

଺
𝜑(𝑡)𝑑𝑡

ଵ

଴
  

                  =   𝑒௫ − 𝑥 − 𝑥ଶ ∫ 𝑡𝜑(𝑡)𝑑𝑡 −  
௫య

ଶ

ଵ

଴
∫ 𝑡ଶଵ

଴
𝜑(𝑡)𝑑𝑡 −

௫ర

଺
∫ 𝑡ଷଵ

଴
𝜑(𝑡)𝑑𝑡 

𝜑(𝑡) ≃ 1 for first iteration 

න 𝑡 𝑑𝑡 =  ቈ
𝑡ଶ

2
቉

଴

ଵ

=  
1

2

ଵ

଴

 

න 𝑡ଶ𝑑𝑡 
ଵ

଴

= ቈ
𝑡ଷ

3
቉

଴

ଵ

=  
1

3
 

න 𝑡ଷ𝑑𝑡 
ଵ

଴

= ቈ
𝑡ସ

4
቉

଴

ଵ

=
1

4
 

𝜑(𝑥) =  𝑒௫ − 𝑥 −
𝑥ଶ

2
−

1

3

𝑥ଷ

2
−

𝑥ସ

24
 

𝜑(𝑥) =  𝑒௫ − 𝑥 − 0.5𝑥ଶ − 0.1667𝑥ଷ − 0.0417𝑥ସ 

Error Estimate Formula: 
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||𝜑 − 𝜑෤|| ≤  || Λ || ⋅ (1 +  ||𝑅௞||) ( 1 + ||𝑅௅||) ⋅ ||𝑓|| 

|| Λ || ≤  
1

24
න න ((𝑥ହ𝑡ସ  )ଶ)

ଵ
ଶ

 ଵ

଴

ଵ

଴

𝑑𝑥 𝑑𝑡 

           ≤  
1

24
ቆන න 𝑥ଵ଴

ଵ

଴

ଵ

଴

𝑡଼𝑑𝑥 𝑑𝑡ቇ

ଵ
ଶ

  

           ≤  
ଵ

ଶସ
ට∫ 𝑥ଵ଴ଵ

଴
𝑑𝑥 ⋅  ∫ 𝑡଼𝑑𝑡 

ଵ

଴
 

           ≤  
ଵ

ଶସ
ට

ଵ

ଽଽ
 

           ≤  
ଵ

ଶସ
⋅

ଵ

ଽ.ଽହ
 ≃

ଵ

ଶଷ଼
 

Kernel:   𝐾(𝑥, 𝑡) = 𝑥(𝑒௫௧ − 1) 

      ||𝐾|| =  ቀ∫ ∫ [𝑥(𝑒௫௧ − 1)]
ଵ

଴

ଵ

଴

ଶ
𝑑𝑥 𝑑𝑡 ቁ

భ

మ
 

                =  ൬∫ ∫ ቀ𝑥ଶ𝑡 +
௫య௧మ

ଶ
ቁ

ଵ

଴

ଵ

଴

ଶ

𝑑𝑥 𝑑𝑡 ൰

భ

మ

  

               =  ቀ∫ ∫ ቀ𝑥ସ𝑡ଶ +
௫ల௧ర

ସ
+ 𝑥ହ𝑡ଷቁ 𝑑𝑥 𝑑𝑡 

ଵ

଴

ଵ

଴
ቁ

భ

మ
 

We obtain    ∫ ∫ 𝑥ସ𝑡ଶଵ

଴

ଵ

଴
𝑑𝑡 𝑑𝑥 =  ∫ 𝑥ସ𝑑𝑥

ଵ

଴
⋅ ∫ 𝑡ଶ𝑑𝑡

ଵ

଴
=  

ଵ

ହ
⋅

ଵ

ଷ
=

ଵ

ଵହ
. 

                         ∫ ∫ 𝑥ହ𝑡ଷଵ

଴

ଵ

଴
𝑑𝑡 𝑑𝑥 =

ଵ

ଶସ
 

                          ∫ ∫
௫ల௧ర

ସ

ଵ

଴

ଵ

଴
𝑑𝑡 𝑑𝑥 =  

ଵ

ଵସ଴
 

 So,  || 𝐾|| ≃  ቀ
ଵ

ଵହ
+

ଵ

ଶସ
+

ଵ

ଵସ଴
ቁ

భ

మ
=  ቀ

ଽ଻

଼ସ଴
ቁ

భ

మ
= 0.340 <

ଷ

ହ
 

Kernel 𝐿(𝑥, 𝑡): 

   𝐿(𝑥, 𝑡) =  ቀ𝑥ଶ𝑡 +
௫య௧మ

ଶ
+

௫ర௧య

଺
ቁ 

  ||𝐿|| =  ൬∫ ∫ ቀ𝑥ଶ +
௫య௧మ

ଶ
+

௫ర௧య

଺
ቁ

ଶ

𝑑𝑥 𝑑𝑡
ଵ

଴

ଵ

଴
൰

భ

మ

 

We obtain, 

න න 𝑥ସ𝑡ଶ 𝑑𝑥 𝑑𝑡 =   
1

15

ଵ

଴

ଵ

଴

 

න න
𝑥଺𝑡ସ

4
 𝑑𝑥 𝑑𝑡 =   

1

140

ଵ

଴

ଵ

଴

 

න න
𝑥଼𝑡଺

36
  𝑑𝑥 𝑑𝑡 =   

1

2268

ଵ

଴

ଵ

଴

 

|| 𝐿||ଶ =  
1

15
+

1

140
+

1

2268
=  

842

2268
 

||𝐿|| ≃ √0.07425 = 0.272 <
ଷ

ହ
  

We have 𝑓(𝑥) =  𝑒௫ − 𝑥. 

||𝑓|| =  ቆන (𝑒௫ − 𝑥)ଶ 𝑑𝑥 
ଵ

଴

ቇ

ଵ
ଶ

 

Now (𝑒௫ − 𝑥)ଶ = ቀ1 +
௫మ

ଶ
+

௫య

଺
… ቁ

ଶ

≃ 1 +
௫ర 

ସ
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  ||𝑓|| =  ቀ∫ ቀ1 +
௫ర

ସ
ቁ 𝑑𝑥

ଵ

଴
ቁ

భ

మ
=  

ଶଵ

ଶ଴
<  

ସ

ଷ
 

|| 𝑅௞|| ≤  
||௄||

ଵି|ఒ|⋅|| ௄||
 , with |𝜆| = 1, 𝑤𝑒 𝑜𝑏𝑡𝑎𝑖𝑛  || 𝑅௞|| = 0.5 <  

ଷ

ଶ
    

|| 𝑅௅|| ≤  
||௅||

ଵି|ఒ|⋅|| ௅||
 , with |𝜆| = 1 𝑡ℎ𝑒𝑛 || 𝑅௅|| = 0.3736 <  

ଷ

ଶ
    

Hence, we have the error estimate as 

||𝜑 − 𝜑෤|| <  
ଵ

ଶଷ଼
(1 + 0.5)(1 + 0.3736) ⋅ 1.05 = 0.009 < 0.16   . 

20.2.3 Example: Find the solution of the Integral equation by substituting a degenerate 
kernel 𝐾 and estimate the error. 

𝜑(𝑥) =  
1

2
(𝑒ି௫ + 3𝑥 − 1) + න (𝑒ି௫௧మ

− 1
ଵ

଴

)𝑥 𝑑𝑡              

 Solution: Given that    𝜑(𝑥) =  
ଵ

ଶ
(𝑒ି௫ + 3𝑥 − 1) + ∫ (𝑒ି௫௧మ

− 1
ଵ

଴
)𝑥 𝑑𝑡                      (1)     

where  𝑒ି௫௧మ
= 1 − 𝑥𝑡ଶ +

௫మ௧ర

ଶ
−

௫య௧ల

ଷ!
+

௫ర௧ఴ

ସ!
… 

     𝑒ି௫௧మ
− 1 =  −𝑥𝑡ଶ +

௫మ௧ర

ଶ
−

௫య௧ల

ଷ!
+

௫ర௧ఴ

ସ!
… 

 ൫𝑒ି௫௧మ
− 1൯𝑥 =  −𝑥ଶ𝑡ଶ +

௫య௧ర

ଶ
−

௫ర௧ల

ଷ!
+

௫ఱ௧ఴ

ସ!
+ ⋯                                                              (2) 

 Substituting equation (2) in (1), we have 

𝜑(𝑥) =
1

2
(𝑒ି௫ + 3𝑥 − 1) + න ቆ−𝑥ଶ𝑡ଶ +

𝑥ଷ𝑡ସ

2
−

𝑥ସ𝑡଺

3!
ቇ

ଵ

଴

𝜑(𝑡)𝑑𝑡 

 Using approximate estimate 𝜑(𝑥) ≃ 1 . 

We have,  ∫ −𝑥ଶଵ

଴
𝑡ଶ𝜑(𝑡)𝑑𝑡 = −𝑥ଶ ∫ 𝑡ଶଵ

଴
 𝑑𝑡 =  −

௫మ

ଷ
 

 ∫
௫య௧ర

ଶ

ଵ

଴
𝜑(𝑡)𝑑𝑡 =  

௫య

ଶ
∫ 𝑡ସଵ

଴
 𝑑𝑡 =

௫య

ଵ଴
 

− න
𝑥ସ𝑡଺

3!

ଵ

଴

𝜑(𝑡)𝑑𝑡 = −
𝑥ସ

6
න 𝑡଺

ଵ

଴

𝑑𝑡 =  −
𝑥ସ

42
 

𝜑(𝑥) =  
1

2
(𝑒ି௫ + 3𝑥 − 1) − 0.333𝑥ଶ + 0.1𝑥ଷ − 0.0238𝑥ସ 

Using the error estimate Formula, 
||𝜑 − 𝜑෤|| ≤  || Λ || ⋅ (1 +  ||𝑅௞||) ( 1 + ||𝑅௅||) ⋅ ||𝑓|| 

|| Λ || ≤  
1

24
|| 𝑥ହ𝑡଼|| =

1

24
ቆන න 𝑥ଵ଴𝑡ଵ଺

ଵ

଴

ଵ

଴

ቇ

ଵ
ଶ

𝑑𝑥 𝑑𝑡  

           =   
ଵ

ଶସ
ට

ଵ

ଵଵ
⋅

ଵ

ଵ଻
=

ଵ

ଶସ
ට

ଵ

ଵ଼଻
=  0.0030 

             

Kernel 𝐾(𝑥, 𝑡) = ൫𝑒ି௫௧మ
− 1൯𝑥 

|| 𝐾|| =  ቆන න ൫𝑥𝑒ି௫௧మ
− 𝑥൯

ଶ
𝑑𝑥 𝑑𝑡 

ଵ

଴

ଵ

଴

ቇ

ଵ
ଶ

 

   ||𝐾||  = ቀ∫ ∫ (𝑥ସ𝑡ସ +
௫ల௧ఴ

ସ

ଵ

଴

ଵ

଴
−  

ଶ௫ఱ௧ల

ଶ
 𝑑𝑥 𝑑𝑡 ቁ

భ

మ
 

  ||𝐾||  = ቀ
ଵ

ଶହ
+

ଵ

ଵ଴଴଼
−  

ଵ

଺଺
ቁ

భ

మ 

    ||𝐾||  = (0.0258)
భ

మ = 0.1606 <  
ଷ

ହ
. 

   Degenerate Kernel  𝐿(𝑥, 𝑡): 

               𝐿(𝑥, 𝑡) =  −𝑥ଶ𝑡ଶ +
௫య௧ర

ଶ!
−

௫ర௧ల

ଷ!
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   || 𝐿|| =  ൬∫ ∫ ቀ−𝑥ଶ𝑡ଶ +
௫య௧ర

ଶ
−

௫ర௧ల

ଷ!
ቁ

ଶ

𝑑𝑥 𝑑𝑡 
ଵ

଴

ଵ

଴
൰

భ

మ

 

             =  ቀ∫ ∫ ቀ𝑥ସ𝑡ସ +
௫ల௧ఴ

ସ
+

௫ఴ௧భమ

ଷ଺
ቁ 𝑑𝑥 𝑑𝑡 

ଵ

଴

ଵ

଴
ቁ

భ

మ
   

             =  (0.044849)
భ

మ 

             =   0.211775 <
ଵ

ଶ
 

 

  𝑓 =  
ଵ

ଶ
(𝑒ି௫ + 3𝑥 − 1) 

 || 𝑓|| =  ∫ ∫
ଵ

ଶ
(𝑒ି௫ + 3𝑥 − 1)ଶ 𝑑𝑥

ଵ

଴

ଵ

଴
  

We know that 𝑒ି௫ = 1 − 𝑥 +
௫మ

ଶ!
−

௫య

ଷ!
… 

So,  𝑒ି௫ + 3𝑥 − 1 = 2𝑥 +
௫మ

ଶ!
−

௫య

ଷ!
… 

      𝑓 = 2𝑥ଶ +
௫మ

ଶ
−

௫య

ଷ!
 

               || 𝑓|| =  ቀ∫ (𝑒ି௫ + 3𝑥 − 1)
ଵ

଴

ଶ
ቁ

భ

మ
 

               =  ቀ1 +
ଵ

଺
−

ଵ

ଶସ
+

ଵ

ଵଶ଴
ቁ

భ

మ 

              =   ቀ
ଵଷସ

ଵଶ଴
ቁ

భ

మ 

             = (1.1166)
భ

మ = 1.0566 <
ସ

ଷ
. 

|| 𝑅௞|| ≤  
||௄||

ଵି|ఒ|⋅|| ௄||
 where |𝜆| = 1 𝑡ℎ𝑒𝑛 || 𝑅௞|| = 0.19132 <  

ଷ

ଶ
    

|| 𝑅௅|| ≤  
||௅||

ଵି|ఒ|⋅|| ௅||
 where |𝜆| = 1 𝑡ℎ𝑒𝑛 || 𝑅௅|| = −0.1758 <  

ଷ

ଶ
   

||𝜑 − 𝜑෤|| ≤  0.0030(1 + 0.1913)(1 − 0.1758) ⋅ (1.0566)  
                   ≤ (0.00357)(0.87084) ≤  0.003. 
 

20.3 METHOD OF SUCCESSIVE APPROXIMATION:  

Considering an integral equation  

                             𝜑(𝑥) = 𝑓(𝑥) + 𝜆 ∫ 𝐾(𝑥, 𝑡)𝜑(𝑡)𝑑𝑡                                 (1)   
௕

௔
 

We construct a sequence of functions {𝜑௡(𝑥)} with the recursion formula 

                                𝜑௡(𝑥) = 𝑓(𝑥) + 𝜆 ∫ 𝐾(𝑥, 𝑡) 𝜑௡ିଵ
௕

௔
(𝑡)𝑑𝑡                         (2)           

The functions 𝜑௡(𝑥), (𝑛 = 1,2, … ) are considered as approximations to the desired solution 
of the equation (1). The zero approximation 𝜑଴(𝑥) may be chosen arbitrarily. 

Under certain conditions 

                                  |𝜆| <
ଵ

஻
,               𝐵 = ට∫ ∫ 𝐾ଶ௕

௔

௕

௔
(𝑥, 𝑡)𝑑𝑥 𝑑𝑡                     (3)    

The sequence in equation (2) converges to the solution of equation (1). The magnitude of the 
error of the (𝑚 + 1)𝑡ℎ approximation is given by the inequality 
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               | φ(x) − 𝜑௠ାଵ(𝑥)| ≤ 𝐹𝐶ଵ𝐵ିଵ
|λB|௠ାଵ

1 − |𝜆B|
+  Φ𝐶ଵ𝐵ିଵ|𝜆𝐵|௠ାଵ          (4) 

where  

𝐹 = ඨන 𝑓ଶ(𝑥)𝑑𝑥
௕

௔

   ,             Φ =  ඨන φ଴
ଶ

௕

௔

 (𝑥)𝑑𝑥 ,   

𝐶ଵ =  ඨ max
௔ஸ௫ஸ௕

න 𝐾ଶ(𝑥, 𝑡)  𝑑𝑡
௕

௔

 

20.3.1 Observation: The basic difficulty in applying the method of successive 
approximations consists in computing the integrals as given in formula (2). As a rule, it is 
performed with the formulas of approximate integration. Therefore, it is advisable to replace 
the given kernel by a degenerate kernel with the help of a Taylor expansion and then 
introduce the iteration method. 

20.3.2 Example: Solve the following problem using the method of successive approximation 

𝜑(𝑥) = 1 + ∫ 𝑥𝑡ଶ𝜑(𝑡)𝑑𝑡.
ଵ

଴
 

Solution:   Given that  𝜑(𝑥) = 1 + ∫ 𝑥𝑡ଶ𝜑(𝑡)𝑑𝑡 
ଵ

଴
 

This is a linear Fredholm integral equation of the second kind with a separable kernel 
 𝐾(𝑥, 𝑡) = 𝑥𝑡ଶ. 

 Step 1: initial approximation: 𝜑଴(𝑥) = 1. 

Step 2: Recursive Formula: 𝜑௡ାଵ(𝑥) = 1 + 𝑥 ∫ 𝑡ଶଵ

଴
𝜑௡(𝑡)𝑑𝑡 . 

Iteration 1: 𝜑ଵ(𝑥) = 1 + 𝑥 ∫ 𝑡ଶଵ

଴
⋅ 1 𝑑𝑡 = 1 + 𝑥 ቂ

௧య

ଷ
ቃ

଴ 

ଵ

= 1 +
௫

ଷ
= 1 + 0.3𝑥. 

Iteration 2: 𝜑ଶ(𝑥) = 1 + 𝑥 ∫ 𝑡ଶ ቀ1 +
௧

ଷ
ቁ

ଵ

଴
𝑑𝑡 

                                          = 1 + 𝑥 ∫ ቀ𝑡ଶ +
௧య

ଷ
ቁ

ଵ

଴
𝑑𝑡  

                                           = 1 + 𝑥 ቂ
ଵ

ଷ
+

ଵ

ଵଶ
ቃ 

                                           = 1 +
ହ௫

ଵଶ
= 1 + 0.416𝑥. 

Iteration 3: 𝜑ଷ(𝑥) = 1 + 𝑥 ∫ 𝑡ଶଵ

଴
ቀ1 +

ହ௧

ଵଶ
ቁ 𝑑𝑡 

                                           = 1 + 𝑥 ቂ
௧య

ଷ
+

ହ௧ర

ସ଼
ቃ

଴

ଵ

 

                                            = 1 + 𝑥 ቂ
ଵ଺

ସ଼
+

ହ

ସ଼
ቃ 

                                             = 1 + 𝑥 ቂ
ଶଵ

ସ଼
ቃ = 1 + 0.4375𝑥 

This seems to convergence to  𝜑(𝑥) = 1 +
ସ

ଽ
𝑥.  
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So, 

න 𝑥𝑡ଶ
ଵ

଴

൬1 +
4𝑡

9
൰ 𝑑𝑡 = 𝑥 ൬

1

3
+

4

9
⋅

1

4
൰ = 𝑥 ൬

1

3
+

1

9
൰ = 𝑥 ⋅

4

9
 

                                     𝜑(𝑥) = 1 +
ସ௫

ଽ
. 

20.3.3 Example: Solve the following equations using the method of successive 
approximations 

      𝜑(𝑥) =
ହ

଺
𝑥 +

ଵ

ଶ
∫ 𝑥𝑡𝜑(𝑡)𝑑𝑡

ଵ

଴
 

Solution: Given that 𝜑(𝑥) =
ହ

଺
𝑥 +

ଵ

ଶ
∫ 𝑥𝑡𝜑(𝑡)𝑑𝑡

ଵ

଴
, the separable kernel  𝐾(𝑥, 𝑡) = 𝑥𝑡. 

Iteration Approximation: 𝜑଴(𝑥) = 0. 

Recursive formula: 𝜑௡ାଵ(𝑥) =  
ହ௫

଺
+

ଵ

ଶ
𝑥 ∫ 𝑡𝜑௡

ଵ

଴
(𝑡)𝑑𝑡. 

Iteration 1:   𝜑଴ାଵ(𝑥) =  
ହ௫

଺
+

ଵ

ଶ
𝑥 ∫ 𝑡

ଵ

଴
⋅ 0 𝑑𝑡 =

ହ

଺
𝑥  . 

Iteration 2: 𝜑ଶ(𝑥) =  
ହ

଺
𝑥 +

ଵ

ଶ
𝑥 ∫ 𝑡

ଵ

଴
⋅

ହ

଺
𝑡 𝑑𝑡 

                                        =
ହ

଺
𝑥 +

ଵ

ଶ
𝑥 ቂ

ହ

଺
.

ଵ

ଷ
ቃ 

                                        =
ହ

଺
𝑥 +

ହ

ଷ଺
𝑥 

                                        =  
ଷହ

ଷ଺
𝑥. 

Iteration 3: 𝜑ଷ(𝑥) =
ହ

଺
𝑥 +

ଵ

ଶ
𝑥 ∫

ଷହ

ଷ଺

ଵ

଴
𝑡ଶ𝑑𝑡 

                                    =
ହ

଺
𝑥 +

ଵ

ଶ
𝑥

ଷହ

ଵ଴଼
 

                                    =
ଶଵହ

ଶଵ଺
𝑥. 

Iteration 4: 𝜑ସ(𝑥) =
ହ

଺
𝑥 +

ଵ

ଶ
𝑥 ∫

ଶଵହ 

ଶଵ଺

ଵ

଴
𝑡ଶ 𝑑𝑡 

                                    = 
ହ

଺
𝑥 +

ଵ

ଶ
𝑥

ଶଵହ

଺ସ଼
 

                                    =  
ଵଶଽ.଺(ହ)ାଶ.ଵହ(଺)

ଵଶଽ଺(଺)
 𝑥 

                                    =
଻଻଻଴

଻଻଻଺
 𝑥 

                       ∴    𝜑(𝑥) = 𝑥 

 Verification: 

              𝜑(𝑥) =
ହ

଺
𝑥 +

ଵ

ଶ
𝑥 ∫ 𝑡

ଵ

଴
⋅ 𝑡 𝑑𝑡 

             𝜑(𝑥) =  
ହ

଺
𝑥 +

ଵ

ଶ
𝑥 ∫ 𝑡ଶ  

ଵ

଴
𝑑𝑡 
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                       =  
ହ

଺
𝑥 +

ଵ

ଶ
𝑥 ቂ

௧య

ଷ
ቃ

଴

ଵ

 

                        =  
ହ

଺
𝑥 +

ଵ

ଶ
𝑥 ቂ

ଵ

ଷ
ቃ =  𝑥 

                     𝜑(𝑥) = 𝑥. 
 

20.4  BUBNOV-GALERKIN METHOD: 

An approximate solution of the integral equation 

                             φ(x) = 𝑓(𝑥) + 𝜆 න 𝐾(𝑥, 𝑡)
௕

௔

 φ(t) 𝑑𝑡                              (1)        

by means of the Bubnov- Galerkin method is sought in the following manner. First, we 
choose a system of functions {𝑢௡(𝑥)}, which is complete in 𝐿ଶ(𝑎, 𝑏 ). For any  𝑛 the 
sequence of functions    𝑢ଵ(𝑥), 𝑢ଶ(𝑥), … , 𝑢௡(𝑥) are linearly independent and we seek the 
approximate solution  φ௡(𝑥) in the form  

φ௡(𝑥) =  ෍ 𝑎௞

௡

௞ୀଵ

𝑢௞(𝑥)                                                                   (2)   

The coefficients 𝑎௞(𝑘 = 1,2, … , 𝑛) are found from the following linear system:     

  (φ௡(𝑥),   u௞(𝑥)) = ൫𝑓(𝑥)  u௞(𝑥)൯ + 𝜆 ቆන 𝐾(𝑥, 𝑡)  φ௡(𝑡)
௕

௔

𝑑𝑡,   u௞(𝑥) ቇ 

                                                                                      (𝑘 = 1,2, … . . , 𝑛)       (3)  

Where the inner product  (𝑓, 𝑔)  stands for ∫ 𝑓(𝑥)𝑔(𝑥)𝑑𝑥
௕

௔
  and in place of  φ௡(𝑥) we have 

to substitute  ∑ 𝑎௞
௡
௞ୀଵ 𝑢௞(𝑥).  If  the value of   𝜆  in (1) is not a characteristic value, then the 

system in (3)  is uniquely solvable for sufficiently large values of   𝑛, as 𝑛 ⟶ ∞. The 
approximate solution   φ௡(𝑥) tends  to the exact solution  φ(x)  in 𝐿ଶ(𝑎, 𝑏 ). 

20.4.1 Example: Use the Bubnov-Galerkin method to solve the equation 

                                 φ(x) = 𝑥 + න 𝑥𝑡
ଵ

ିଵ

φ(t)𝑑𝑡                                                         (4) 

Solution: Here, for a complete system of functions on [−1,1] , we choose the system of 
Legendre polynomials 𝑃௡(𝑥)  (𝑛 = 0,1,2, … ). We look for the approximate solution  φ௡(𝑥) 
of equation (4) in the form  

φଷ(𝑥) = aଵ ⋅ 1 + aଶ𝑥 + aଷ ቆ
3𝑥ଶ − 1

2
ቇ 

Substituting φଷ(𝑥) in place of φ(x) in equation (4), we get  

aଵ + aଶ𝑥 + aଷ(
3𝑥ଶ − 1

2
) = 𝑥 + න 𝑥𝑡 ቆ𝑎ଵ + 𝑎ଶ𝑡 + 𝑎ଷ

3𝑡ଶ − 1

2
ቇ

ଵ

ିଵ

𝑑𝑡 
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or 

                   aଵ + aଶ𝑥 + aଷ(
3𝑥ଶ − 1

2
) = 𝑥 + 𝑥

2

3
𝑎ଶ                                             (5)     

Multiplying both sides of equation (5) successively by 1, 𝑥,
 ଷ௫మିଵ

ଶ
 respectively, and 

integrating with respect to x between the limits −1 and 1. We obtain  

2aଵ = 0, 

2

3
aଶ =

2

3
+

4

9
aଶ , 

2

5
aଷ = 0 

When aଵ = 0, aଶ = 3, aଷ = 0, then φଷ(𝑥) = 3𝑥,  It is easy to verify that this is the exact 
solution of equation (4). 

20.4.2 Note: Bubnov - Galerkin method yields an exact solution for degenerate kernels; for 
the general case, it is equivalent to replacing the kernel 𝐾(𝑥, 𝑡) by the degenerate kernel 
𝐿(𝑥, 𝑡). 

20.4.3 Example: Solve the following integral equations by using Bubnov Galerkin method 

         𝜑(𝑥) = 1 + ∫ (𝑥𝑡 + 𝑥ଶ)𝜑(𝑡)𝑑𝑡
ଵ

ିଵ
 

Solution:  For the complete system of functions on [−1, 1 ], we choose the system of 
Legendre     polynomials 𝑝௡(𝑥) (𝑛 = 0, 1,2,3 … … . . ). We seek the approximate solution 
𝜑௡(𝑥) of the equation in the form  

Rodriques formula:       𝑝௡(𝑥) =  
ଵ

ଶ೙௡!
⋅

ௗ೙

ௗ௫೙ (𝑥ଶ − 1)௡ 

Derivation of  𝑝௡(𝑥) ∶ 

Let 𝑛 = 0. 

𝑝଴(𝑥) =  
1

2଴ 0!
⋅

𝑑଴

𝑑𝑥଴
(𝑥ଶ − 1)଴ =   1 

 

Derivation of  𝑝ଵ(𝑥) ∶ 

Let 𝑛 = 1 

  𝑝ଵ(𝑥) =  
ଵ

ଶభ ଵ!
⋅

ௗ

ௗ௫
(𝑥ଶ − 1)  

  𝑝ଵ(𝑥)  =   
ଵ

ଶ

ௗ

ௗ௫
(𝑥ଶ − 1) 

   𝑝ଵ(𝑥)  = 𝑥 

Derivation of  𝑝ଶ(𝑥) ∶ 
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    Let 𝑛 = 2 

   𝑝ଶ(𝑥) =  
ଵ

ଶమଶ!
⋅

ௗమ

ௗ௫మ
(𝑥ଶ − 1)ଶ  

   𝑝ଶ(𝑥)  =   
ଵ

଼
(4𝑥ଷ − 4𝑥)ଵ 

    𝑝ଶ(𝑥)  =  
ଵ

଼
(12𝑥ଶ − 4) 

    𝑝ଶ(𝑥) =   
ଷ௫మିଵ

ଶ
. 

𝜑ଷ(𝑥) = 𝑎ଵ + 𝑎ଶ(𝑥) + 𝑎ଷ ቆ
3𝑥ଶ − 1 

2
ቇ 

𝜑(𝑥) = 1 + න (𝑥𝑡 + 𝑥ଶ
ଵ

ିଵ

)𝜑(𝑡)𝑑𝑡 

𝜑(𝑥) = 1 + 𝑥 න 𝑡𝜑(𝑡) 𝑑𝑡 
ଵ

ିଵ

+ 𝑥ଶ න 𝜑(𝑡)𝑑𝑡
ଵ

ିଵ

 

𝜑(𝑥) = 1 + 𝑥𝐶ଵ + 𝑥ଶ𝐶ଶ                                      

We know that 𝜑(𝑡) =  𝑎ଵ + 𝑎ଶ(𝑡) + 𝑎ଷ ቀ
ଷ௧మିଵ 

ଶ
ቁ 

                   𝐶ଵ =  ∫ 𝑡𝜑(𝑡)𝑑𝑡 
ଵ

ିଵ
 

                         =  ∫ 𝑡 ቆ𝑎ଵ + 𝑎ଶ𝑡 + 𝑎ଷ ቀ
ଷ௧మିଵ 

ଶ
ቁቇ  𝑑𝑡  

ଵ

ିଵ
 

                         =    ∫ 𝑎ଵ(𝑡)𝑑𝑡 + ∫ 𝑎ଶ
ଵ

ିଵ

ଵ

ିଵ
𝑡ଶ𝑑𝑡 + ∫ 𝑎ଷ ቀ

ଷ௧మିଵ 

ଶ
ቁ

ଵ

ିଵ
𝑑𝑡  

                We know that an odd function is zero. 

            𝐶ଵ =  
ଶ

ଷ
𝑎ଶ 

            𝐶ଶ =  ∫ 𝜑(𝑡)𝑑𝑡 
ଵ

ିଵ
=   ∫ ቆ𝑎ଵ + 𝑎ଶ𝑡 + 𝑎ଷ ቀ

ଷ௧మିଵ

ଶ
ቁቇ

ଵ

ିଵ
𝑑𝑡 =2𝑎ଵ 

∴  𝜑(𝑥) = 1 +
2

3
𝑎ଶ𝑥 + 𝑥ଶ2𝑎ଵ                               (1) 

  

        𝜑ଷ(𝑥) = 𝑎ଵ + 𝑎ଶ𝑥 +
𝑎ଷ 3𝑥ଶ

2
−  

𝑎ଷ

2
= ቀ𝑎ଵ −  

𝑎ଷ

2
ቁ +  𝑎ଶ𝑥 +

3𝑎ଷ

2
𝑥ଶ             (2) 

 Comparing equations (1) and (2), we get  𝑎ଵ = 3, 𝑎ଶ = 0, 𝑎ଷ = 4.  

 Substituting these values, we get  𝜑(𝑥) =  6𝑥ଶ + 1. 

20.4.4 Example:  Solve the integral equation by using the Bubnov-Galerkin method  
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𝜑(𝑥) = 1 +
4

3
𝑥 + න (𝑥𝑡ଶ − 𝑥)𝜑(𝑡) 𝑑𝑡 

ଵ

ିଵ

 

Solution:  Using a 3-term Galerkin expansion in Legendre polynomials  

 𝜑(𝑥) =   𝑎ଵ + 𝑎ଶ(𝑥) + 𝑎ଷ(
ଷ௫మିଵ 

ଶ
) 

  We write 𝜑(𝑥) = 1 +
ସ

ଷ
𝑥 + 𝑥 ∫ (𝑡ଶ − 1)𝜑(𝑡) 𝑑𝑡 

ଵ

ିଵ
 

                               = 1 +
ସ

ଷ
𝑥 + 𝑥𝑐 

𝐶 =  න (𝑡ଶ
ଵ

ିଵ

− 1) 𝜑(𝑡) 𝑑𝑡  

  𝜑(𝑡) =   𝑎ଵ + 𝑎ଶ(𝑡) + 𝑎ଷ(
ଷ௧మିଵ 

ଶ
)  

            =   ∫ (𝑡ଶ − 1)
ଵ

ିଵ
ቆ𝑎ଵ + 𝑎ଶ𝑡 + 𝑎ଷ ቀ

ଷ௧మିଵ

ଶ
ቁቇ 𝑑𝑡 

           =  ∫ 𝑎ଵ
ଵ

ିଵ
(𝑡ଶ − 1) + 𝑎ଶ(𝑡ଷ − 𝑡) + 𝑎ଷ ቀ

ଷ௧రିସ௧మାଵ

ଶ
ቁ 𝑑𝑡  

            =  −
ସ

ଷ
𝑎ଵ +

௔య

ଶ

଼

ଵହ
 

    𝜑(𝑥) = 1 + ቂ
ସ

ଷ
−

ସ

ଷ
𝑎ଵ +

ସ௔య

ଵହ
ቃ 𝑥 

    Now 𝜑(𝑥) =  𝑎ଵ + 𝑎ଶ𝑥 +
௔య

ଶ
(3𝑥ଶ − 1) =  ቀ𝑎ଵ −  

௔య

ଶ
ቁ + 𝑎ଶ𝑥 +

ଷ௔య

ଶ
 𝑥ଶ 

 Comparing the coefficients of 𝑥, 𝑥ଶ, constants, we get 𝑎ଵ = 1, 𝑎ଶ = 0, 𝑎ଷ = 0 

  Now we get 𝜑(𝑥) = 1 

  Hence 𝜑(𝑥) = 1  is the exact solution. 
 

20.5  SUMMARY:  

In this section, we learnt about three different approximation methods for solving integral 
equations. In the first approximation method, we replace the kernel by a degenerate kernel 
and take a few terms of the Taylor series expansion of the kernel, we approximate the 
integral. Also, we estimate the error of the exact to the approximate solution in a suitable 
norm. The second kind of method is successive approximation, where we use a sequence of 
functions as an approximation to the solution. The third type of method is Bubnov Galerkin 
method, which is based on choosing a system of complete functions which are linearly 
independent as an approximation to the true solution. Few examples in each category have 
been discussed for the better understanding of the reader. 
 

20.6  TECHNICAL TERMS: 

Taylor series, Bubnov-Galerkin Method, degenerate kernel 
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20.7  SELF-ASSESSMENT QUESTIONS: 

1. Solve the following equations by replacing its kernel with a degenerate kernel and 
estimate the error. 

 (𝑖) 𝜑(𝑥) = 𝑥 + 𝑐𝑜𝑠𝑥 + න 𝑥(sin 𝑥𝑡 − 1)
ଵ

଴

 𝜑(𝑡) 𝑑𝑡. 

     (𝑖𝑖)  𝜑(𝑥) =
𝑥

2
+

sin 𝑥

2
+ න (1 − cos 𝑥 𝑡ଶ)

ଵ

଴

𝑥 𝜑(𝑡) 𝑑𝑡. 

2. Solve the following equations using the method of successive approximations.                    

(𝑖)𝜑(𝑥) = 3 + න   𝑥𝑡ଷ𝜑( 𝑡)𝑑𝑡.
ଵ

଴

 

(𝑖𝑖)𝜑(𝑥) = 5𝑥 +
7

4
න 𝑥𝑡𝜑( 𝑡)𝑑𝑡.

ଵ

଴

 

 
3. Solve the following integral equations by Bubnov- Galerkin method 

(𝑖) 𝜑(𝑥) = 1 − 𝑥(𝑒௫ − 𝑒ି௫) + න 𝑥ଶ𝑒௫௧𝜑(𝑡) 𝑑𝑡.
ଵ

ିଵ

  

                                (𝑖𝑖)  𝜑(𝑥) = 3𝑥 + ∫ (𝑥𝑡 − 𝑥ଶ)𝜑(𝑡)𝑑𝑡
ଵ

ିଵ
. 

Answers to Self-Assessment Questions: 

1. (i)  𝜑෤(𝑥) = 𝑐𝑜𝑠𝑥 +
௫

଼ଽ
[78 − 78 𝑠𝑖𝑛1 − 24𝑐𝑜𝑠1 + 𝑥(84 sin 1 + 108𝑐𝑜𝑠1 − 84)]; 

|𝜑 − 𝜑෤| < 0.040 ; The exact solution is  𝜑(𝑥) ≡ 1 

(ii) 𝜑෤(𝑥) =
௫

ଶ
+  

ଵ

ଶ
sin 𝑥 + ቀ

ହ଼

ଽ
−

ଵ଺

ଷ
𝑠𝑖𝑛1 −

ହଶ

ଵହ
𝑐𝑜𝑠1ቁ 𝑥ଷ; |𝜑 − 𝜑෤| < 0.0057;  

The exact solution is  𝜑(𝑥) = 𝑥. 

2. (𝑖) 𝜑(𝑥) = 3 +
ଷ

ସ
𝑥 . 

                 

3.  (𝑖) 𝜑ଷ(𝑥) =  1 is the exact solution.  
 

20.8  SUGGESTED READINGS:  
 

1. M. D. Raisinghania, Integral equations and Boundary Value Problems, S. Chand and 
Company Pvt. Ltd., 2007. 

2. Shanti Swarup, Integral equations, Krishna Prakashan Pvt Ltd, Meerut, 2003. 
3. M. Krasnov, A. Kiselev, G. Makarenko, Problems and Exercises in Integral Equations, 

MIR Publishers, Moscow, 1971. 
4. M Rahman, Integral equations and their applications, WIT Press, Southampton, Boston, 

2007. 
 

- Dr. Madhusmita Tripathy  

 

 


