COMPUTER NETWORKS

M.Sc. Computer Science
First Year, Semester-1I, Paper-1V

Lesson Writers

Dr. Kampa Lavanya Dr. Neelima Guntupalli
Assistant Professor Assistant Professor
Department of CS&E Department of CS&E
Acharya Nagarjuna University Acharya Nagarjuna University
Dr. U. Surya Kameswari Dr. Vasantha Rudramalla
Assistant Professor Assistant Professor

Department of CS&E Faculty, Department of CS&E
Acharya Nagarjuna University Acharya Nagarjuna University

Mrs. Appikatla Pushpa Latha

Assistant Professor
Faculty, Deponent of CS&E
Acharya Nagarjuna University

Editor

Dr. U. Surya Kameswari

Assistant Professor
Department of CS&E
Acharya Nagarjuna University

Academic Advisor

Dr. Kampa Lavanya
Assistant Professor
Department of CS&E
Acharya Nagarjuna University

DIRECTOR, I/c.
Prof. V. Venkateswarlu
M.A., M.P.S., M.S.W., M.Phil., Ph.D.
CENTRE FOR DISTANCE EDUCATION
ACHARYA NAGARJUNA UNIVERSITY
NAGARJUNA NAGAR 522 510
Ph: 0863-2346222, 2346208
0863- 2346259 (Study Material)
Website www.anucde.info
E-mail: anucdedirector@gmail.com

mailto:anucdedirector@gmail.com

M.Sc., (Computer Science) : COMPUTER NETWORKS

First Edition : 2025

No. of Copies

© Acharya Nagarjuna University

This book is exclusively prepared for the use of students of M.Sc. (Computer Science),
Centre for Distance Education, Acharya Nagarjuna University and this book is meant
for limited circulation only.

Published by:

Prof. V. VENKATESWARLU
Director, I/c

Centre for Distance Education,
Acharya Nagarjuna University

Printed at:

FOREWORD

Since its establishment in 1976, Acharya Nagarjuna University has been
forging ahead in the path of progress and dynamism, offering a variety of courses
and research contributions. I am extremely happy that by gaining ‘A+’ grade from
the NAAC in the year 2024, Acharya Nagarjuna University is offering educational
opportunities at the UG, PG levels apart from research degrees to students from

over 221 affiliated colleges spread over the two districts of Guntur and Prakasam.

The University has also started the Centre for Distance Education in 2003-
04 with the aim of taking higher education to the door step of all the sectors of the
society. The centre will be a great help to those who cannot join in colleges, those
who cannot afford the exorbitant fees as regular students, and even to housewives
desirous of pursuing higher studies. Acharya Nagarjuna University has started
offering B.Sc., B.A., B.B.A., and B.Com courses at the Degree level and M.A.,
M.Com., M.Sc., M.B.A., and L.L.M., courses at the PG level from the academic
year 2003-2004 onwards.

To facilitate easier understanding by students studying through the distance
mode, these self-instruction materials have been prepared by eminent and
experienced teachers. The lessons have been drafted with great care and expertise
in the stipulated time by these teachers. Constructive ideas and scholarly
suggestions are welcome from students and teachers involved respectively. Such
ideas will be incorporated for the greater efficacy of this distance mode of
education. For clarification of doubts and feedback, weekly classes and contact

classes will be arranged at the UG and PG levels respectively.

It is my aim that students getting higher education through the Centre for
Distance Education should improve their qualification, have better employment
opportunities and in turn be part of country’s progress. It is my fond desire that in
the years to come, the Centre for Distance Education will go from strength to
strength in the form of new courses and by catering to larger number of people. My
congratulations to all the Directors, Academic Coordinators, Editors and Lesson-

writers of the Centre who have helped in these endeavors.

Prof. K. Gangadhara Rao
M.Tech., Ph.D.,
Vice-Chancellor I/c
Acharya Nagarjuna University.

204CP24 COMPUTER NETWORKS
SYLLABUS

UNIT 1

Introduction: Uses of Computer Networks - Business Applications, Home Applications, Mobile
Users, Social Issues. Network Hardware - Local Area Networks - Metropolitan Area Networks Wide
Area Networks - Wireless Networks - Home Networks - Internetworks. Network Software - Protocol
Hierarchies - Design Issues for the Layers - Connection Oriented and Connectionless Services -
Service Primitives - The relationship of Services to protocols. Reference Models - The OSI Reference
Model - The TCP/IP Referlnce Model - A Comparison of OSI and TCP/iP reference Model - A
Critique of the OSI Model and protocols - A Critique of the TCP/IP reference model. Example
Networks - The Internet - Connection Oriented Networksx.25, Frame Relay, and ATM - Ethernet -
Wireless LANs Network Standardization Who's who in the Telecommunication World - Who's who
in the International Standards World- Who's who in the Internet Standards World.

Physical Layer: Guided Transmission Media - Magnetic Media - Twisted Pair - Coaxial Cable- Fiber
Optics

Data Link Layer: Data Link Layer Design Issues - Services Provided to the Network Layer Framing
- Error Control - Flow Control. Error Detection and Correction - Error correcting Codes - Error
Detecting Codes. Elementary Data Link Protocols - An unrestricted Simplex Protocol- A simplex
Stop-and-wait Protocol - A simplex Protocol for a Noisy channel. Sliding Window Protocols - A one-
bit sliding Window Protocol - A Protocol using Go Back N - A Protocol using selective Repeat.
Example Data Link Protocols - HDLC - The bata Link Laver in the Internet

UNIT-I1

The Medium Access Control Sublayer: Ethernet -Ethernet Cabling - Manchester Encoding The
Ethernet MAC sublayer Protocol - The Binary Exponential backoff Algorithm - Ethernet Performance
- Switched Ethernet - Fast Ethernet - Gigabit Ethernet - IEEE 802.2 Logical Link Control -
Retrospective on Ethernet. WIRELESS LANS- The 802.11 protocol Stack - The 802'11 Physical Layer
The 802.11 MAC sublayer Protocol - The 802.11 Frame Structure. BLUETOOTH - Bluetooth
Architecture - Bluetooth Applications - The Bluetooth Protocol Stack - The Bluetooth Radio Layer -
The Bluetooth Baseband Layer - The Bluetooth L2CAP layer - The Bluetooth Frame Structure. Data
Link Layer Switching - Bridges from 802.x to 802.y - Local Internetworking - Spanning Tree Bridges
- Remote bridges J Repeaters, Hubs, Bridges, Switches, Routers and Gateways - Virtual LANs.

UNIT - 111

The Network Layer: Network Layer Design Issues - Store-and- Forward packet Switching Services
Provided to the Transport Layer - Implementation of Connectionless Services Implementation of
Connection Oriented Services - -Comparison Of Virtual Circuit and Datagram subnets. Routing
Algorithms - The Optimality Principle - Shortest path Routing - Flooding Distance Vector Routing -
Link State Routing - Hierarchical Routing - Broad-cast Routing Multicast Routing - Routing for
Mobile Hosts. Internet Working - How Networks Differ - How Networks can be connected -
Concatenated Virtual Circuits - Connectionless Internetworking Tunneling - Internet work Routing -
Fragmentation. The Network Layer in the Internet - The IP Protocol - 1P address - Internet Control
Protocols - OSPF - The Internet Gateway Routing Protocol - BGP - The Exterior Gateway Routing
Protocol.

UNIT - IV

The Transport Layer: The Transport Service - Services provided to the Upper Layers Transport
Services Primitives - Berkeley Sockets. Elements of Transport Protocols - Addressing- Connection
Establishment - Connection Release - Flow Control and Buffering - Multiplexing- Crash Recovery.
The Intemet Transport Protocols : UDP

Introduction to UDP -

Remote Procedure Call- The Real Time Transport Protocol. The Internet Transport Protocols : TCP -
Introduction to TCP - The TCP Service Model- the TCP Protocol The TCP segment header - TCP
connection establishment - TCP connection release - Modeling TCP connection management- TCP
Transmission Policy - TCP congestion Control - TCP Timer Management - Wireless TCP and UDP -
Transactional TCP.

UNIT _V

The Application Layer: The Domain Name System - The DNS Name Space - Resource Records -
Name Servers. Electronic Mail - Architecture and Services - The User Agent Message Formats -
Message Transfer - Final Delivery. The World Wide Web - Architecture Overview - Static Web
Documents - Dynamic Web Documents - HTTP - The Hyper Text Transfer Protocol - Performance
Enhancements - The Wireless Web. Multimedia - Introduction to Digital Audio - Audio Compression
- Streaming Audio - Internet Radio - Voice Over IP Introduction to Video - Video Compression -
Video on Demand.

Prescribed Book

Andrew S. Tanenbaum, "Computer Networks", Fourth Edition, PHIL
chapters 1.1 to 1.6,2.2,3.1 to 3.4,3.6,4.3,4.4,4.6.4.7,5.1,5.2.1t05.2.9,5.5,5.6.1t0 5.6.5,6.1.1 t0 6.1.3, 6.2,
64,65,71t07.4

Reference Books

1. James F.Kurose, Keith W.Ross, "Computer Networking", Third Edition. Pearson Education
2. Behrouz A Forouzan, "Data Communications and Networking", Fourth Edition, TMH (2007)
3. MichaelA. Gallo, William M. Hancock, "Computer Communications and Networking
Technologies", Cengage Learning (2008).

204CP24
M.Sc., (Computer Science)

MODEL QUESTION PAPER
204CP24 COMPUTER NETWORKS
Time: 3 Hours Max. Marks: 70
Answer ONE Question from Each Unit 5 x 14 =70 Marks
Answer ONE Question from each unit 5x14=70 M
UNIT -1

1. a). Explain about the OSI reference model.
b). Explain about the TCP/IP reference model.
(OR)
2. a). Write about the data link layer design issues.
b). Explain about sliding window protocols.

UNIT - 11
3. a). Explain Switched Ethernet.
b). Give and explain 802.11 frame structure, services.
(OR)
4. a). Describe architecture, applications, protocol stack of Bluetooth.
b). Explain Spanning Tree Bridges.

UNIT —III

5. a). Discuss about Flooding routing algorithm.
b). Explain Distance Vector Routing Algorithm.
(OR)
6. a). Discuss about Tunneling and Fragmentation.
b). Explain about IP Header Format and IP addresses.

UNIT -1V

7. a).Discuss about elements of transport protocols.
b). Discuss about remote procedure call.

(OR)
8. a).Write about the TCP Protocol.
b). Explain TCP Congestion Control.
UNIT-V
9. a) Explain about DNS.
b) Write about URL’s.
(OR)

10. a) Explain about Electronic Mail.
b) Discuss JPEG Compression mechanism.

CONTENTS

S.No. TITLE PAGE No.

1 INTRODUCTION 1.1-1.6

2 NETWORK HARDWARE AND SOFTWARE 2.1-2.16

3 REFERENCE MODELS 3.1-3.10

4 EXAMPLE NETWORKS 4.1-4.8

5 NETWORK STANDARIZATION 5.1-5.8

6 GUIDED TRANSMISSION MEDIA 6.1-6.9

7 DATA LINK LAYER DESIGN ISSUES 7.1-7.8

8 ERROR DETECTION AND CORRECTION 8.1-8.7

9 ELMENTARY DATA LINK PROTOCOLS 91-9.8

10 SLIDING WINDOW PROTOCOLS AND STANDARD 10.1-10.9
DATA LINK LAYER PROTOCOLS

11 ETHERNET 11.1-11.13

12 WIRELESS LANs AND BLUETOOTH 12.1-12.17

13 DATA LINK LAYER SWITCHING 13.1-13.10

14 THE NETWORK LAYER DESIGN ISSUES 14.1-14.9

15 ROUTING ALGORITHMS 15.1-15.16

16 INTERNETWORKING AND INTERNET PROTOCOL SUITE | 16.1-16.10

17 THE TRANSPORT LAYER SERVICES AND 17.1-17.9
PROTOCOL MECHANISMS

18 THE INTERNET TRANSPORT PROTOCOLS TCP AND UDP | 18.1-18.19

19 DOMAIN NAME SYSTEM 19.1-19.9

20

THE WORLD WIDE WEB AND MULTIMEDIA

20.1-20.11

LESSON- 1
INTRODUCTION

OBJECTIVES:

After going through this lesson, you will be able to
= Understand the basic concept of computer networks.
= Identify major business applications of networks.
= Describe common home uses of computer networks.
= Recognize the role of mobile users in networking.
= Discuss key social issues related to network use.

STRUCTURE OF THE LESSON:

1.1 INTRODUCTION

1.2 USES OF COMPUTER NETWORKS
1.2.1 BUSINESS APPLICATIONS
1.2.2 HOME APPLICATION
1.2.3 MOBILE USERS
1.2.4 SOCIAL ISSUES

1.3 SUMMARY

1.4 TECHNICAL TERMS

1.5 SELF-ASSESSMENT QUESTIONS

1.6 FURTHER READINGS

1.1 INTRODUCTION

The 18th, 19th, and 20th centuries each witnessed the emergence of transformative
technologies that defined their eras. The 18th century was characterized by mechanical
systems and marked the beginning of the Industrial Revolution. The 19th century saw the rise
of the steam engine, a driving force for transportation and manufacturing. In the 20th century,
the spotlight shifted to information—its collection, processing, and dissemination. This era
gave birth to global telephone networks, radio, television, computers, communication
satellites, and the Internet. These innovations reshaped how societies functioned and
interacted. Moving into the 21st century, the previously distinct fields of data collection,
transmission, storage, and processing are converging rapidly. Technological integration
allows organizations with vast geographical footprints to access real-time data from any
location with ease. This rapid advancement has fueled a growing demand for increasingly
sophisticated information systems.

Computers, despite being a relatively new technology compared to industries like automobile
manufacturing or aviation, have evolved at an astonishing pace. Initially, computers were
massive, centralized machines housed in specialized rooms, often behind glass walls for
public admiration. In the early days, even large institutions had only a few of these machines.

Centre for Distance Education 1.2 Acharya Nagarjuna University

Yet, in less than half a century, computers have shrunk dramatically in size and exploded in
power, leading to compact, powerful devices manufactured in the billions. This revolution
has been further amplified by the fusion of computing and communication technologies,
fundamentally altering how computing systems are structured. The outdated model of a
single, centralized computer has given way to networks of interconnected systems, known as
computer networks. These networks consist of multiple autonomous computers linked
through various technologies such as copper wire, fiber optics, microwaves, infrared, or
satellites. Whether small or large, these networks often interconnect to form even larger
systems, with the Internet being the most prominent example of a global network of
networks.

To clarify, a "computer network" is a group of independent computers that can exchange data
through a common communication medium. It is important not to confuse this with a
"distributed system." While both involve multiple computers, a distributed system operates in
a way that appears as a unified whole to users. This illusion is created by middleware—a
software layer that harmonizes the individual computers into a single user experience. A good
example of a distributed system is the World Wide Web, which operates on the Internet but
presents content uniformly as web documents or pages. In contrast, a computer network does
not attempt to create a unified system image. The underlying differences in hardware,
operating systems, and system behavior remain visible to users. For instance, if someone
needs to use a program on a remote computer in a network, they must directly access that
specific machine and run the program there. Essentially, while a distributed system overlays a
cohesive software environment on a network, a basic computer network simply provides the
infrastructure for communication and data exchange between machines.

1.2 USES OF COMPUTER NETWORKS
1.2.1 Business Applications

Most modern companies rely heavily on a significant number of computers to perform daily
operations such as designing products, preparing documents, and managing payroll. Initially,
these computers might have operated independently, but over time, the need to distribute and
share information efficiently across the organization leads to connecting them into a network.
This setup supports the broader objective of resource sharing, allowing employees to access
software, data, and devices regardless of their physical location. For instance, instead of
providing each employee with a separate printer, a single high-performance networked
printer can serve an entire office, saving both costs and maintenance efforts.

Beyond sharing physical resources, the true strength of computer networks lies in their ability
to facilitate information sharing. In today’s information-driven environment, data such as
customer records, product specifications, inventory databases, and financial documents are
vital for day-to-day operations. If a company loses access to its computerized information
systems, it can suffer significant operational disruptions — banks may fail to function within
minutes, and automated factories could halt instantly. Even small businesses like travel
agencies or law firms heavily depend on networked systems to allow employees instant
access to essential information.

Computer Networks 1.3 Introduction

Sarver
\'\n, ~,
==
(T
I‘hllll
- | i |

Figure 1.1 A network with two clients and one server

While small companies might host all their computers in one office or building, large
enterprises are usually spread across various locations — sometimes even in different
countries. Employees in distant locations, like a salesperson in New York needing access to a
database in Singapore, depend on Virtual Private Networks (VPNs) to connect various
geographically separated branches into one cohesive network. This arrangement allows
remote users to access data as if it were stored locally, thus overcoming the limitations
imposed by physical distance — often referred to as ending the "tyranny of geography."

In a simplified representation, a company's information infrastructure typically involves a
centralized database hosted on powerful computers called servers. Employees, using their
own desktop or laptop computers — known as clients — interact with these servers to access
or update information, such as data used in spreadsheets. These client and server machines
communicate via a network. While the client is the system requesting data or services, the
server responds by providing the necessary resources. This interaction model is known as the
client-server model and is fundamental to how modern networks operate.

This model is extensively applied in various domains, the most popular being web
applications. In such applications, the client (user’s web browser) sends a request to a server,
which then processes the request — possibly using its internal database — and sends back a
web page in response. The model works equally well whether the server and client are
located in the same building or across the globe. For example, when someone browses a
website from home, their computer functions as a client while the distant website’s host acts
as the server. Importantly, a single server is typically capable of managing communication
with hundreds or even thousands of clients simultaneously, making this a highly scalable and
efficient architecture.

When we examine the client-server model more closely, it becomes evident that it involves
two distinct processes operating on separate machines — one on the client side and one on
the server side. These processes are essentially running programs that communicate across
the network. The communication begins when the client process initiates a message, known
as a request, which is transmitted over the network to the server process. Once the server
process receives this request, it processes the information or carries out the necessary action,
and then returns a corresponding reply back to the client. This interaction between client and
server — request and response — is central to the functioning of many network-based
applications and services.

Centre for Distance Education 1.4 Acharya Nagarjuna University

Client machine Server machine

Request s
aul 72 N e
*}_JL____:'\ o _____A____AN_;/'
/ T Heply \

Client process Server process

Figure 1.2. the client-server model involves requests and replies.

Beyond the exchange of data and the execution of programs, networks play a crucial role in
facilitating communication among people. Most organizations today, regardless of their size,
have adopted email as a standard communication tool, allowing employees to send and
receive messages with ease. Email has become so pervasive in office culture that managing a
high volume of messages — some of which may be trivial or unnecessary — is a common
workplace complaint. Nevertheless, email significantly enhances internal communication,
reducing the need for in-person meetings or memos.

Networks also support voice communication through technologies like IP telephony or Voice
over IP (VoIP), which enable phone calls to be conducted over the Internet rather than
traditional telephone lines. This allows companies to make cost-effective voice calls using
VolIP-enabled phones or even computer microphones and speakers. Furthermore, richer
communication experiences are made possible by the integration of audio and video. Video
conferencing enables real-time face-to-face meetings between geographically distant
colleagues, eliminating the need for travel and saving both time and resources. Similarly,
desktop sharing allows multiple users to view and interact with the same computer screen,
facilitating collaborative tasks such as editing documents or presentations. These features
enable teams in different parts of the world to collaborate as if they were in the same room,
with immediate updates and feedback. In advanced cases, such capabilities are being
extended to fields like telemedicine, where healthcare providers can remotely monitor
patients or consult on treatments from afar. These developments suggest a future where
digital communication might surpass the need for physical travel altogether.

Another significant objective for companies in deploying computer networks is to engage in
electronic business, particularly with external parties like customers and suppliers. This
practice, known as e-commerce, has expanded rapidly due to its convenience and efficiency.
Many industries — from airlines to retail — have embraced online platforms where
consumers can browse products, compare options, and place orders without leaving their
homes. Similarly, manufacturers who rely on parts from multiple suppliers use computer
networks to coordinate their procurement processes. Orders can be placed electronically on
demand, minimizing the need to maintain large inventories and improving overall
productivity. In essence, networks are revolutionizing not only how companies operate
internally but also how they conduct business with the outside world.

Computer Networks 1.5 Introduction

1.2.2 Home Application

The section discusses the various uses of computer networks in modern life. Initially,
personal computers were used for tasks like word processing and games, but now their
primary value lies in Internet connectivity. Computer networks enable access to vast remote
information (e.g., websites, digital libraries), support person-to-person communication (e.g.,
email, messaging, video calls), and drive social networking and collaborative platforms.

They also power electronic commerce, including online shopping, banking, and auctions.
Entertainment has shifted online through music, video streaming, and multiplayer gaming.
Lastly, with ubiquitous computing, everyday devices like smart appliances and sensors are
now networked, leading to innovations such as smart homes and the Internet of Things (IoT),
where even simple objects like cameras and showers can communicate over networks.

e AR /

Figure 1.3 in a peer -to-peer system there are no fixed clients and servers

Computer networks have transformed the role of personal computers from standalone tools
used for basic tasks like word processing or gaming into powerful gateways to the global
digital world. Today, the real value of computers lies in their ability to connect to the Internet
and tap into an immense reservoir of information and services. Networks provide access to
countless remote resources such as websites, online encyclopedias, digital libraries, and
educational content that can be reached instantly from anywhere in the world. In addition to
accessing information, networks have become the backbone of human communication in the
digital age. They support various forms of interpersonal interaction — including email,
instant messaging, audio calls, and video conferencing — that allow people to communicate
seamlessly across the globe, whether for personal or professional purposes.

Furthermore, the advent of social media platforms has enabled users not just to communicate
but also to share their lives, collaborate on projects, and form digital communities. Beyond
communication and information, networks have revolutionized how we conduct business
through e-commerce. Consumers can now shop online, transfer money via digital banking,
and participate in online auctions, all from the comfort of their homes. The entertainment
industry has also undergone a radical shift, with music, movies, television shows, and
multiplayer online games all being streamed or played over the Internet.

Perhaps most revolutionary is the integration of networks into everyday physical devices.
With the rise of ubiquitous computing and the Internet of Things (IoT), an increasing number
of appliances — from refrigerators and washing machines to security cameras and smart
showers — are now equipped with sensors and network connectivity. These smart devices

Centre for Distance Education 1.6 Acharya Nagarjuna University

can collect data, communicate with one another, and be remotely controlled or automated,
giving rise to intelligent environments such as smart homes. In such settings, users can
manage lighting, temperature, security, and even daily routines using their smartphones or
voice commands, marking a significant leap in convenience and efficiency driven entirely by
computer networks.

1.2.3 Mobile Users

Mobile computers, such as laptops, tablets, and smartphones, have become indispensable in
modern life due to the flexibility they provide in accessing digital content and online services
from nearly any location. People rely on these devices to perform everyday activities such as
checking emails, streaming videos, browsing the web, using social media, and even
completing professional work on the go. In many situations—such as inside vehicles,
airplanes, public parks, or other areas where wired infrastructure is impractical or
unavailable—wireless communication becomes essential. Technologies like Wi-Fi, cellular
networks (3G, 4G, 5G), and satellite communication allow mobile devices to maintain
Internet connectivity and perform real-time data transactions efficiently and reliably.

The influence of mobile computing extends across various industries and public services. In
the transportation sector, wireless systems help taxi fleets with real-time dispatching and
routing, while rental car agencies use handheld devices to track vehicle returns and
availability. In retail, mobile point-of-sale systems and inventory scanners streamline
customer service and stock management. Mobile devices also play a significant role in
military operations and healthcare, where quick access to data and communication can be
critical. Smartphones in particular have evolved from simple communication tools into
sophisticated computing platforms. Equipped with high-resolution cameras, GPS receivers,
accelerometers, and secure payment options through technologies like NFC (Near Field
Communication) and RFID (Radio Frequency Identification), they support a wide range of
services—from turn-by-turn navigation and mobile banking to barcode scanning for price
comparisons and contactless purchases.

The development of mobile and wireless computing has also led to the rise of advanced
technologies like sensor networks and wearable or implantable computing devices. These
innovations allow for remote monitoring and automation in applications such as wildlife
tracking, smart parking systems, and telemedicine. For example, wearable health devices can
transmit patient data to doctors in real time, while sensors embedded in the environment or in
equipment can optimize energy use or detect anomalies. As mobile and wireless technologies
continue to evolve, their integration into everyday life is expected to deepen, fostering new
levels of convenience, efficiency, and interconnectivity that will fuel further innovations in
areas we are only beginning to imagine.

1.2.4 Social Issues

Computer networks have revolutionized modern communication, enabling ordinary
individuals to distribute and access content in unprecedented ways—much like the printing
press did centuries ago. This transformation has empowered users across the globe to freely
express their views, share information, and engage in collaborative efforts online. While this
democratization of content creation and sharing has opened up countless positive avenues—
such as educational discussions, hobby forums, and knowledge exchange—it also introduces
complex and unresolved social, political, and ethical challenges.

6

Computer Networks 1.7 Introduction

One significant issue arises from the type of content shared online. While sharing neutral or
niche interests, like gardening or technology, rarely causes disputes, the landscape becomes
far more contentious when discussions involve sensitive topics such as politics, religion, or
sex. People can easily publish text, images, and videos that others may find offensive or
inflammatory. Some users advocate for freedom of expression under any circumstances,
whereas others call for strict content regulation or censorship, especially when the material is
seen as hateful, obscene, or politically incorrect. However, opinions vary widely across
cultures and countries, making global regulation of online content nearly impossible. This
ongoing tension has sparked heated debates about censorship, freedom of speech, and the
responsibility of network operators.

Legal complications further complicate the matter. Individuals and organizations have
attempted to hold network operators accountable for the content transmitted over their
infrastructure, likening them to publishers who are responsible for what they distribute. In
contrast, operators argue that they are more like telephone companies or postal services—
merely conduits that should not be held liable for the messages their users send. Nevertheless,
some network providers have taken steps to restrict or shape traffic for business reasons. For
example, users of peer-to-peer (P2P) file-sharing applications have found their connections
throttled or cut off entirely because these applications consume large amounts of bandwidth.
This selective treatment of traffic has led to a fierce debate over "network neutrality,”" a
principle asserting that all Internet traffic should be treated equally, regardless of its source,
destination, or content. Advocates for neutrality argue that preferential treatment could
undermine the open and fair nature of the Internet.

Adding to this complex mix is the widespread issue of copyright infringement, especially
through file-sharing services. P2P networks became notorious for enabling the illegal
distribution of music, movies, and other copyrighted content. This angered rights holders,
prompting legal battles and the development of automated systems to monitor and respond to
violations. In the U.S., these efforts include DMCA takedown notices, which inform users
and service providers of alleged copyright breaches. Despite such mechanisms, identifying
infringers reliably remains difficult, leading to an ongoing cat-and-mouse game between
enforcers and violators.

Privacy concerns are another major consequence of widespread networking. The same
technologies that make communication seamless also make surveillance easier. Employers
often monitor their employees’ emails and online activity—sometimes even messages sent
from personal devices outside of work hours—raising concerns about the balance between
corporate rights and individual privacy. On a broader scale, governments have developed
sophisticated surveillance tools to monitor email and Internet activity. For instance, the FBI
once used a system called "Carnivore" (later renamed DCS1000) to scan incoming and
outgoing emails for signs of criminal activity. Critics argue such systems infringe upon
constitutional rights, such as the Fourth Amendment in the United States, which prohibits
unreasonable searches and seizures without a warrant. Nevertheless, these programs often
operate under a veil of secrecy and questionable legality.

Private companies also play a significant role in compromising user privacy. Web services
and browsers track users using small files called cookies, which collect data about browsing
habits and personal information. This data is often used for targeted advertising or sold to
third parties, raising ethical concerns about consent and data security. Services like Gmail
scan user emails to deliver personalized ads, and companies accumulate vast amounts of user

Centre for Distance Education 1.8 Acharya Nagarjuna University

data, giving them the power to create detailed behavioral profiles. The rise of mobile devices
has added another layer to this issue: location tracking. To function, mobile networks must
know a user’s location, enabling operators to build detailed logs of where individuals go,
when, and how often—information that can be sensitive or intrusive.

On the flip side, computer networks can enhance privacy in certain cases. Tools for sending
anonymous messages allow whistleblowers—such as employees, students, or citizens—to
report illegal or unethical conduct without fear of retaliation. This form of anonymity can be
crucial in authoritarian regimes or hostile environments. However, it also poses challenges
for the legal system. In many democracies, an accused individual has the right to confront
their accuser, making anonymous accusations inadmissible in court. Balancing anonymity for
protection with accountability for fairness remains an unresolved issue.

Despite the Internet’s convenience, the quality and accuracy of information online can vary
wildly. While valuable resources from reputable experts are available, misinformation and
false content are equally rampant. Users often encounter medical advice or legal information
that is incorrect or dangerous. Compounding the issue is spam—unwanted electronic junk
mail that clogs inboxes and consumes bandwidth. Spammers exploit email databases to send
unsolicited messages, though spam filters now attempt to mitigate this problem with varying
levels of success.

More dangerous still are malicious uses of the Internet, including cybercrime. Emails and
websites with embedded active content—scripts, macros, or programs—can infect a user’s
computer with viruses. These may be used to steal personal data, access bank accounts, or
hijack machines into botnets used for further attacks. Phishing is another serious threat, in
which attackers impersonate trusted entities, like banks, to trick users into revealing sensitive
information. This form of fraud contributes to identity theft, where criminals gather enough
personal data to pose as someone else and commit financial crimes.

A unique challenge on the Internet is verifying whether someone is human. To combat bots
pretending to be people—for instance, during online registrations or ticket purchases—
developers use CAPTCHAs, which require users to solve simple puzzles or recognize
distorted text. This approach is inspired by the Turing Test, which evaluates whether a
machine can mimic human behavior convincingly. While effective, such tests also highlight
the difficulty of distinguishing between real users and automated systems in a digital
environment.

Many of the issues outlined above stem from a lack of serious commitment to computer
security. Although technologies like encryption and authentication are available and mature,
they are not widely implemented. Hardware and software vendors often prioritize adding new
features over improving security, resulting in bloated, bug-ridden software vulnerable to
attacks. Introducing penalties for buggy or insecure products might help—but such measures
are unlikely to be accepted widely and could devastate the software industry.

Finally, legal complications arise when digital actions intersect with outdated laws. A notable
example is online gambling. While gambling may be banned in some countries, it is legal in
others, and online casinos hosted abroad create complex jurisdictional dilemmas. When a
user, server, and casino operator are located in different legal territories, enforcing any
particular nation’s laws becomes extraordinarily difficult. As a result, the legal system
struggles to keep pace with the realities of global computer networks.

8

Computer Networks 1.9 Introduction

1.3 SUMMARY

Computer networks connect devices to share data and resources efficiently. They are widely
used in business for communication, online services, and data management; in homes for
internet access, entertainment, and smart devices; and by mobile users for wireless
connectivity on the go. However, increased network use also brings social issues such as
privacy risks, security threats, and digital inequality.

1.4 TECHNICAL TERMS

Computer Networks, Smart devices, Wireless, Internet access

1.5 SELF ASSESSMENT QUESTIONS

Essay questions:

Explain the business applications of computer networks.
Describe various home applications of computer networks.
Discuss the importance of mobile users in networking.

Explain the major social issues caused by network usage.
Compare business, home, and mobile network applications

M

Short Questions:

What is a computer network?

Mention any two uses of networks in business.

Write two examples of home applications of networks.
Who are mobile users?

List two social issues arising from computer networks.

Nk W=

1.6 FURTHER READINGS

1. Andrew S. Tanenbaum, “Computer Networks”, Fourth Edition, PHI.
James F.Kurose, Keith W.Ross, “Computer Networking”, Third Edition, Pearson
Education

3. Behrouz A Forouzan, “Data Communications and Networking”, Fourth Edition, TMH
(2007)

4. Michael A. Gallo, William M. Hancock, “Computer Communications and
NetworkingTechnologies”, Cengage Learning (2008)

Dr. Kampa Lavanya

LESSON- 2
NETWORK HARDWARE AND SOFTWARE

OBJECTIVES:

After going through this lesson, you will be able to

e Understand the types and functions of network hardware.
Differentiate LAN, MAN, WAN, and wireless networks.
Describe the concept of internetworks and their importance.
Explain network software and protocol hierarchies.
Understand the relationship between services and protocols.

STRUCTURE OF THE LESSON:

2.1 NETWORK HARDWARE

2.2 PERSONAL AREA NETWORK

2.3 LOCAL AREA NETWORK

24 METROPOLITAN AREA NETWORK

2.5 WIDE AREA NETWORK

2.6 INTERNETWORKS

2.7 NETWORK SOFTWARE

2.8 PROTOCOL HIERARCHIES

29 DESIGN ISSUES FOR LAYERS

2.10 CONNECTION-ORIENTED VS CONNECTIONLESS SERVICE
2.11 SERVICE PRIMITIVES

2.12 THE RELATIONSHIP OF SERVICES TO PROTOCOL
2.13 SUMMARY

2.14 TECHNICAL TERMS

2.15 SELF-ASSESSMENT QUESTIONS

2.16 FURTHER READINGS

2.1 NETWORK HARDWARE

This section shifts focus from the social aspects of networking to the technical foundations,
particularly transmission technology and network scale. There are two main types of
transmission: point-to-point, where individual machines are connected directly and data may
travel through intermediate nodes (unicast), and broadcast, where all machines share the
communication channel and packets are received by all, though only the intended recipient
processes it. Broadcast networks can also support broadcasting (to all machines) and
multicasting (to selected groups). Networks are also classified by scale, ranging from
Personal Area Networks (PANs) for a single user, to Local Area Networks (LANSs),

Centre for Distance Education 2.2 Acharya Nagarjuna University

Metropolitan Area Networks (MANs), and Wide Area Networks (WANs). Connecting
multiple networks forms an internetwork, with the Internet being the most prominent
example. Future developments may even extend to the Interplanetary Internet, linking
networks across space.

Interprocessor Processors Example
distance located in same
1m Square meter Personal area network
10m Room
100 m Building Local area network
1 km Campus
10 km City Metropolitan area network
100 km Country
Wide area network
1000 kmi Continent
10,000 kmi Planet The Intemet

Figure 2.1 classification of interconnected processors by scale
2.2. PERSONAL AREA NETWORK

Personal Area Networks (PANs) are small-scale networks designed to enable communication
between devices located within the direct proximity of an individual, usually within a range
of a few meters. These networks allow personal devices to share data and resources without
requiring complex infrastructure. The primary purpose of a PAN is to support the
connectivity needs of a single user, enabling seamless interaction among personal devices
such as smartphones, laptops, tablets, wearables, and peripherals.

One of the most common wireless technologies used in PANs is Bluetooth. Bluetooth
removes the need for physical cables by allowing devices to communicate wirelessly. For
instance, a computer can connect to a mouse, keyboard, speakers, or printer via Bluetooth,
creating a convenient and clutter-free working environment. The Bluetooth communication
model typically operates using a master-slave configuration, where one device acts as the
master (often the computer or smartphone), controlling and coordinating communication with
multiple slave devices. This structure ensures efficient and orderly data exchange among
connected devices.

Figure 2.2 Bluetooth PAN configuration.

Computer Networks 2.3 Network Hardware and Software

Bluetooth technology extends beyond computers and office peripherals. It is widely used in
mobile applications, such as connecting smartphones to wireless headsets, earbuds,
smartwatches, car infotainment systems, and fitness trackers. In the healthcare domain,
Bluetooth plays a crucial role in medical monitoring devices, such as pacemakers, glucose
monitors, and fitness sensors, enabling real-time data transmission to user interfaces or
healthcare providers. These applications highlight Bluetooth’s importance in supporting
mobility, accessibility, and user convenience.

Other short-range wireless technologies also contribute to PANs. Radio-Frequency
Identification (RFID) is another popular technology used in scenarios where automatic
identification and tracking are required. RFID is commonly used in smartcards, contactless
payment systems, library book tracking, tollgate systems, and access control environments.
Unlike Bluetooth, RFID does not necessarily require active user participation and can operate
with minimal power, making it suitable for embedded or tag-based systems. Together,
Bluetooth and RFID demonstrate the versatility of PANs in everyday life, enabling seamless
and efficient communication across a variety of personal and professional applications.

2.3 LOCAL AREA NETWORK

A Local Area Network (LAN) is a privately managed communication network that connects
multiple devices within a relatively small geographical area, such as a home, office, school,
or a single building. The primary purpose of a LAN is to enable connected devices to share
resources—including files, printers, software applications, and internet connectivity—and to
facilitate fast and efficient communication. Because of its limited coverage area, a LAN
typically offers high data transfer speeds and reliable performance compared to networks
spanning larger regions.

LANSs can be established using either wired or wireless technologies. Wired LANs usually
rely on Ethernet cables, switches, and routers. They are known for their high speed, stable
connections, low latency, and low susceptibility to interference. Due to these features, wired
LANSs are often preferred in environments where performance and reliability are critical, such
as offices, laboratories, and data centers. On the other hand, wireless LANs (WLANS),
typically implemented using Wi-Fi and access points, provide greater flexibility and
convenience. Wireless networks eliminate the need for physical cables, making them ideal for
homes, public spaces, and workplaces where mobility and ease of installation are important.

Access | To wired network

point Ports

Ethernet
switch

To rest of
network

AR

Figure 2.3 Wireless and wired LANs. (a) 802.11 (b) Switched Ethernet

Centre for Distance Education 24 Acharya Nagarjuna University

LANS can be scaled and managed using various networking devices and techniques. Switches
allow more devices to be added to the network without compromising performance, while
Virtual LANs (VLANSs) enable logical segmentation of the network for better organization,
security, and traffic management. VLANSs are particularly useful in large organizations where
different departments or groups need isolated network environments while still sharing the
same physical infrastructure.

In modern homes, the importance of LANSs has increased significantly due to the rise of smart
devices, including smart TVs, gaming consoles, IoT appliances, and home automation
systems. However, setting up and maintaining a LAN still presents challenges, especially for
non-technical users. Factors such as affordability, ease of installation, network security, and
user-friendly configuration play a crucial role in widespread adoption. To address these
challenges, alternative networking solutions like power-line communication networks are
emerging. These networks utilize existing electrical wiring to transmit data, offering a cost-
effective and convenient solution for extending connectivity without installing new cables.
Such advancements continue to enhance the usability and accessibility of LANs in everyday
environments.

2.4 METROPOLITAN AREA NETWORK

A Metropolitan Area Network (MAN) is a type of network that covers a larger geographic
area than a Local Area Network (LAN), typically spanning an entire city or a large campus.
MANs are designed to provide high-speed connectivity across urban environments,
connecting multiple LANs together to form a unified network infrastructure. They are
commonly used by organizations, government agencies, and service providers to support data
communication, Internet access, and distributed services across various locations within a
metropolitan region. MANs play an important role in enabling efficient communications,
especially in densely populated areas where reliable and widespread network coverage is
essential.

One of the earliest and most recognizable examples of a MAN is the cable television
network. Cable TV systems originated as community antenna networks, where a shared
antenna was installed to improve television reception for areas with poor broadcast signal
quality. Over time, these systems expanded and developed into city-wide distribution
networks operated by cable service providers under government regulation. As technology
advanced, cable networks began to utilize unused frequency bands in their coaxial cables to
support two-way data transmission. This innovation allowed cable companies not only to
deliver television programming but also to offer broadband Internet services, effectively
transforming cable TV networks into large-scale MANSs serving millions of users.

Another important modern example of a MAN is WiMAX, based on the IEEE 802.16
standard. WiMAX provides wireless broadband connectivity across large urban and suburban
areas, making it suitable for delivering Internet access to locations where wired infrastructure
is difficult or expensive to install. Unlike Wi-Fi, which is typically limited to smaller local
areas, WiMAX can cover distances of several kilometers, offering high-speed data services to
homes, businesses, and public hotspots. This capability makes WiMAX a powerful solution
for expanding digital access, improving communication infrastructure, and supporting smart
city applications.

Computer Networks 2.5 Network Hardware and Software

2.5 WIDE AREA NETWORK

A Wide Area Network (WAN) is designed to connect computers and networks over large
geographical distances, often spanning cities, states, countries, or even continents. WANs
allow organizations with multiple branches or remote locations to share data and
communicate as though they were part of a single unified network. For example, a business
with offices in Perth, Melbourne, and Brisbane may use a WAN to link those offices together
so employees can collaborate and access shared systems seamlessly. Within each branch,
individual computers (hosts) carry out user tasks, while the underlying communication
infrastructure—known as the subnet—transmits data between locations. This subnet consists
of transmission lines, such as fiber-optic cables, copper wires, or radio links, and routers that
direct data packets across the network.

A key characteristic of WANSs is that their components often have different ownership. The
hosts (like company laptops and desktops) are owned and controlled by the organization,
while the transmission lines and sometimes even the routing infrastructure are typically
operated by telecommunications companies. Businesses frequently lease bandwidth or
dedicated lines from network carriers to enable long-distance communication. Furthermore,
WANs commonly interconnect multiple local area networks (LANSs), creating larger
internetworks that support diverse communication technologies. Routers play a crucial role
here by linking different network types, such as office Ethernet networks with long-distance

fiber-based carrier systems.

box w
Antenna - = - - - - - =
.ilhi‘ ‘EH‘ ‘HH‘ .HH‘
EE fil] il & #a fil &l HE #al fal &l
A‘ Head end D

£ il il il

Figure 2.4 A metropolitan area network based on cable TV

WANs may be implemented in different ways depending on organizational needs. One
common approach is the use of a Virtual Private Network (VPN), where secure, encrypted
communication "tunnels" are created over the public Internet. VPNs offer flexibility and cost
savings because they do not require renting dedicated physical lines, but they depend on the
performance of the public Internet, which may sometimes limit reliability or bandwidth
control. Another approach is to use a WAN provided and managed directly by an Internet
Service Provider (ISP), which owns and operates the subnet infrastructure. In this model, the
ISP connects customers to each other and to the broader global network.

Centre for Distance Education 2.6 Acharya Nagarjuna University

Routing and forwarding are critical processes in WAN operations. The routing algorithm
determines the best path that data should follow from source to destination, while the
forwarding process is carried out by routers, which move packets step-by-step through the
network. WANs may also include wireless technologies. Satellite-based networks provide
broad geographic coverage and are useful in remote or rural regions, while cellular networks
use base stations with ranges of several kilometers. These cellular networks have evolved
through multiple generations, beginning with analog voice (1G), advancing to digital voice
(2G), adding mobile data (3G), and later offering high-speed broadband data services (4G
and beyond). Although cellular data rates are typically lower than those of wireless LANS,
their coverage areas are much larger.

Together, these technologies and network structures form the communication backbone that
supports global connectivity. Each WAN implementation involves trade-offs among
performance, cost, reliability, and scalability, and organizations choose their WAN setups
based on their operational requirements and service needs.

2.6 INTERNETWORKS

An internetwork, commonly referred to as an internet (with a small "i"), is created when
multiple individual networks are connected to enable communication across them. These
networks may vary in size, structure, and underlying technology. The most prominent and
globally recognized example of such an internetwork is the Internet (with a capital "I"),
which interconnects millions of networks worldwide. The concept of internetworking allows
users and devices located in different regions and operating in different environments to
exchange information as if they were part of the same network.

In understanding internetworks, it is helpful to distinguish between the terms network and
subnet. A network typically includes both the hosts—such as computers, smartphones,
servers, and other devices used by end users—and the communication system connecting
them. The communication system itself, which consists of routers, switches, communication
links, and transmission technologies, is called the subnet. The subnet's role is to carry data
from one host to another, whether across a room or across continents.

Internetworks are particularly important when networks are owned, managed, or maintained
by different organizations or when they use different communication technologies. For
example, a wired office LAN, a wireless campus network, and a cellular network operated by
a telecom provider may all be interconnected to enable seamless communication. Because
these networks are heterogeneous, specialized devices are needed to link them together. The
devices used to connect and translate between different networks are called gateways.

Among gateway devices, routers are the most commonly used. Routers operate at the
network layer of the OSI model, which allows them to make forwarding decisions based on
IP addresses rather than hardware characteristics. This independence from physical
technology makes routers well-suited for integrating different types of networks, whether
wired, wireless, or satellite-based. By examining the destination address of each data packet
and determining the best available route, routers ensure that data is transmitted efficiently
between networks, enabling global communication regardless of underlying differences in
hardware, network structure, or application software.

Computer Networks 2.7 Network Hardware and Software

2.7NETWORK SOFTWARE

In the early days of computer networking, the primary focus was on developing the hardware
components required to transmit digital data across communication channels. Software
played only a minor role and was often considered after the physical devices were in place.
However, as networks grew in size, complexity, and application diversity, it became apparent
that hardware alone could not efficiently manage the wide range of communication tasks.
This led to the development of network software, which provides structure, control,
reliability, and flexibility to communication systems.

Modern computer networks are now designed with a highly organized approach to software,
using layered architectures. Each layer is responsible for a specific set of functions and
interacts with the layers above and below it. This modular approach allows network systems
to be designed, implemented, updated, and managed more efficiently. It also encourages
interoperability across different hardware platforms, operating systems, and vendors.

This chapter explores the foundational concepts that make up network software. It begins
with protocol hierarchies, which describe how communication tasks are divided into layers.
Then, it addresses design issues that must be considered when creating layered network
systems. It also explains the difference between connectionoriented and connectionless
communication services, which define how communication occurs between devices. The
chapter further discusses service primitives, which describe how network services are
invoked by programs, and concludes with the relationship between services and protocols,
clarifying how they work together to achieve seamless data communication.

2.8 PROTOCOL HIERARCHIES

To simplify the design and management of complex networks, most network systems are
built using a layered architecture. In this structure, the complete networking functionality is
divided into multiple layers, where each layer focuses on a specific set of tasks. The main
idea behind this approach is to divide large, complex problems into smaller, manageable
parts. Each layer provides certain services to the layer above it and relies on the layer below it
to perform more basic operations. What is important is that each layer performs its role
independently, without needing to know the internal details of how other layers work. This
separation ensures clarity, maintainability, and ease of troubleshooting.

Communication in such layered systems happens in two ways. On one hand, layers
communicate horizontally with their corresponding layers on another machine using
protocols. A protocol is a strict set of rules that govern how data is formatted, transmitted,
received, and interpreted. For example, two transportlayer protocols on different devices must
agree on how to establish connections, detect errors, and manage data flow. On the other
hand, actual data movement occurs vertically within a single system, from one layer to the
next. As data moves down the layers for transmission, each layer may add control
information in the form of headers (and sometimes trailers) which help the receiving system
process the data correctly.

Centre for Distance Education 2.8 Acharya Nagarjuna University

Host 1 Host 2
Layer 5 protocol
an,E......... SR ---Law,--:lrE
—_— 1
Layer 4/5 interface ' I
| 1 Layer 4 protocol r
I et = Layerd

Layer 34 interface ;

Layer 3 pratocol
L Layer 3

Layer 273 interface :

Layer 2 protocol

Layer 2 fe-=c-ccccccccacccccana = Layer2
— L]
Layer 172 interface ! I
[] Layer 1 pratocol T 1
Laver] fe-=-emm e e e = Layer 1

L]

Physical medium |

Figure 2.5 Layers ,protocols and interface.

The point where two layers meet is known as an interface. This interface clearly defines what
services the lower layer provides to the upper one and how those services can be accessed.
Importantly, it does not reveal how the services are implemented internally—this allows
technology to evolve without affecting the whole network. A network architecture is the
complete set of layers along with their functions and interactions. The collection of all
protocols used across these layers is known as the protocol stack. Wellknown examples
include the TCP/IP protocol stack used on the Internet and the OSI reference model
commonly used for understanding network concepts.

For example, when two users on different machines communicate, the sender’s data starts at
the topmost layer and travels downward. Each layer adds its own header containing control
information, such as addressing details or errorchecking codes. The data is then transmitted
through physical media to the destination machine. On the receiving end, this process occurs
in reverse: as data travels upward through the layers, each layer removes its corresponding
header and processes the information. This structured approach not only simplifies network
design but also makes it easy to modify or upgrade individual layers without affecting the
entire system—as long as the interfaces between layers remain unchanged.

2.9 DESIGN ISSUES FOR LAYERS

When designing layered network systems, several important issues must be considered to
ensure smooth and efficient communication. One of the primary concerns is reliability.
Networks often operate over channels that may introduce noise, interference, or packet loss.
To ensure that data reaches its destination correctly, mechanisms such as error detection,
error correction, and automatic retransmission are used. Additionally, networks may have
multiple possible paths between devices, so alternate routing techniques can be used to
reroute data if one path fails, thereby enhancing fault tolerance.

Another crucial issue is scalability, which refers to the network’s ability to expand without
suffering performance degradation. As more devices, users, and data flows are added, the
network must continue to operate efficiently. Proper addressing mechanisms help support
large numbers of devices by assigning unique identifiers to senders and receivers. Addressing
also allows routers and switches to correctly forward data to the intended destination.

Computer Networks 2.9 Network Hardware and Software

Modern networks consist of different types such as LANs, WANSs, and wireless networks.
Internetworking ensures that these diverse networks can communicate seamlessly. Protocols
and gateways are often required to translate formats and manage differences in transmission
rates and addressing schemes.

Resource allocation is another key design issue. Since network bandwidth is limited, it must
be shared efficiently among multiple users and applications. Techniques such as flow control
prevent a fast sender from overwhelming a slow receiver, while congestion control helps
avoid overload in the network itself. Methods like statistical multiplexing allow multiple data
streams to share capacity dynamically, improving utilization of network resources.

Networks must also consider Quality of Service (QoS), especially for applications like video
streaming, voice calls, and online gaming. QoS mechanisms help ensure timely delivery,
minimize delays, reduce packet loss, and maintain consistent performance according to the
needs of each application.

Finally, security is an essential design consideration. Data transmitted across networks may
be exposed to threats such as eavesdropping, tampering, identity spoofing, or malicious
attacks. To defend against these risks, techniques such as encryption protect confidentiality,
while authentication verifies identity, and integrity checks ensure that transmitted data has
not been altered.

2.10 CONNECTION-ORIENTED VS CONNECTIONLESS SERVERS

Network communication services are generally classified into two categories: connection-
oriented and connectionless services. In a connection-oriented service, a communication path
is first established between the sender and the receiver before any data transfer takes place.
This is similar to making a telephone call, where the caller and receiver are connected first,
and only then does the conversation begin. Once the connection is set up, data is transmitted
in a reliable and sequential manner, ensuring that packets arrive in the correct order and
without errors. If a packet is lost or corrupted, the system detects it and retransmits the
packet. This type of service is suitable for applications that require high reliability and data
integrity, such as file transfer, remote login, or audio/video streaming where correct and
ordered delivery of data is essential.

In contrast, a connectionless service does not establish any dedicated path before sending
data. Each message, called a datagram, is sent independently, much like sending postal mail.
There is no guarantee that the data will arrive at the destination, arrive in the correct order, or
arrive only once. Because of this, connectionless services are often referred to as unreliable
services. However, connectionless communication has the advantage of speed and low
overhead, as it does not require connection setup or maintenance. This makes it highly
efficient for applications where quick delivery is more important than perfect accuracy, such
as broadcasts, live audio/video calls, or sensor networks. In some cases, reliability can still be
added to connectionless communication through the use of acknowledgements and
retransmission mechanisms, but this is optional and depends on application requirements.

Centre for Distance Education 2.10 Acharya Nagarjuna University ‘

’ Service Example
Connection- Reliable message stream Sequence of pages
Opnec Reliable byte stream Movie download
Unreliable connection Voice over IP
> Unreliable datagram Electronic junk mail
Connectli::s: < Acknowledged datagram Text messaging
Request-reply Database query
\

Figure 2.6 Six different types of service

Figure 2.6 illustrates that network services can vary widely in terms of reliability, ordering,
and delivery guarantees. Some services provide reliable, ordered delivery, while others offer
best-effort delivery with no guarantees. Both connection-oriented and connectionless services
coexist because different applications have different needs. For example, voice and video
conferencing require fast delivery even if some data is lost, whereas activities like bank
transactions and file downloads require perfect accuracy and sequencing. Therefore, choosing
the appropriate type of service depends on the nature and requirements of the application.

2.11 SERVICE PRIMITIVES

To enable communication between applications over a network, the operating system
provides a set of basic operations known as service primitives. These primitives act as an
interface between the network software and user-level programs, allowing them to request
network services. In a connection-oriented service, these primitives are used to establish a
connection, exchange data, and then properly terminate the connection. The most commonly
used primitives are LISTEN, CONNECT, ACCEPT, SEND, RECEIVE, and DISCONNECT.

Primitive Meaning
LISTEM " Block waiting for an incoming connection
CONMNECT " Establish a connection with a waiting peer
ACCEPT Accept an incoming connection from a peer
RECEIVE Block waiting for an incoming message
SEMD Send a message to the peer
DISCOMMNECT | Terminate a connection

Figure 2.7 Six service primitives that provide a simple connection

In a typical client—server model, the server begins by executing the LISTEN primitive, which
instructs the server to wait for incoming connection requests. Meanwhile, the client uses the
CONNECT primitive to request a connection with the server. Once the request arrives, the
server responds by executing the ACCEPT primitive, which formally establishes the

Computer Networks 2.11 Network Hardware and Software

connection. At this point, a communication channel is ready, and both client and server can
exchange data.

The data transmission takes place using the SEND and RECEIVE primitives. The SEND
primitive allows a program to transmit data to the other side, while the RECEIVE primitive
retrieves incoming data. These operations ensure that both parties can communicate back and
forth in an orderly manner. After the communication is complete, either side can invoke the
DISCONNECT primitive to close the connection and free network resources.

This process is very similar to how a telephone conversation works: a call is first established,
conversation takes place, and finally the call is ended properly. Although connectionless
communication requires fewer steps—since data is sent without establishing a prior
connection—it lacks the reliability and ordering that many applications require. For tasks
such as remote login, file transfer, and database transactions, connection-oriented
communication using service primitives ensures accurate, sequential, and error-free data
delivery.

2.12 THE RELATIONSHIP OF SERVICES TO PROTOCOL

In layered network architectures, it is essential to clearly distinguish between services and
protocols. A service refers to the functionality that a lower layer provides to the layer above
it. It defines what operations can be performed, usually described in terms of service
primitives such as connect, send, receive, or disconnect. Importantly, a service specifies what
is available, but not how the operations are implemented. This creates a stable and consistent
interface, allowing the upper layers to use the service without needing to know the internal
workings of the lower layer.

A protocol, by contrast, defines the rules and conventions used by corresponding layers
(called peer entities) on different machines to communicate. Protocols describe the format,
meaning, and order of messages exchanged between peers to ensure that data is transmitted
correctly. These rules include how errors are detected, how data is acknowledged, how flow
is controlled, and how messages are sequenced. Protocols operate horizontally across the
network, enabling machines to coordinate and interpret each other's data.

Layer k + 1 Layer k + 1
]Ser'.rice provided by layer kK I
Protocol
Layerk |=------cccoeononomnnnnicnneenoom| Layer k
Layer k - 1 Layerk-1

Figure 2.8 The relationship between a service and a protocol

The key idea is that services and protocols are conceptually separate. Services define the
interface between layers within the same machine, while protocols define the communication
mechanism between equivalent layers on different machines. Because of this separation,
protocols can be modified or optimized (for example, to improve efficiency, reliability, or

Centre for Distance Education 2.12 Acharya Nagarjuna University

performance) without changing the service interface seen by the higher layers. Likewise,
different protocols may provide the same service, as long as the expected service behavior
remains consistent.

An analogy helps clarify this distinction: a service is like an abstract data type or API that
specifies available operations, while a protocol is the behind-the-scenes implementation logic
that makes those operations work. Earlier network designs often mixed these two concepts,
making networks harder to modify or troubleshoot. Modern layered network architectures
maintain a clear separation, which enhances flexibility, modularity, and maintainability.

2.13 SUMMARY

This chapter explains the hardware and software components of computer networks. It
introduces different types of network hardware such as LANs, MANs, WANs, wireless
networks, home networks, and internetworks, each serving different geographical areas and
communication needs. On the software side, the chapter covers protocol hierarchies, layer
design issues, and the distinction between connection-oriented and connectionless services. It
also describes service primitives and explains how services and protocols work together to
ensure reliable communication between networked systems.

2.14 TECHNICAL TERMS

LAN, WAN, MAN, Connection-oriented, Connectionless, Protocol
2.15 SELF ASSESSMENT QUESTIONS
Essay Questions:

1. Explain different types of network hardware: LAN, MAN, WAN, and wireless
networks.

Describe the architecture and components of home and internetworks.

Explain protocol hierarchies and the design issues for network layers.

Differentiate between connection-oriented and connectionless services with examples.
Discuss service primitives and how services relate to protocols in network
communication.

il

Short Questions:

What is a Local Area Network (LAN)?

Define a Wide Area Network (WAN).

What is meant by a protocol hierarchy?

Distinguish between connection-oriented and connectionless services.
What is the relationship between services and protocols?

MRS

Computer Networks 2.13 Network Hardware and Software

2.16 FURTHER READINGS

1.

Andrew S. Tanenbaum, “Computer Networks”, Fourth Edition, PHI.

2. James F.Kurose, Keith W.Ross, “Computer Networking”, Third Edition, Pearson

Education
Behrouz A Forouzan, “Data Communications and Networking”, Fourth Edition, TMH

(2007)
Michael A. Gallo, William M. Hancock, “Computer Communications and
NetworkingTechnologies”, Cengage Learning (2008).

Dr. Kampa Lavanya

LESSON- 3
REFERENCE MODELS

OBJECTIVES:

After going through this lesson, you will be able to

Understand the concept of network reference models.
Describe the OSI reference model and its seven layers.
Explain the structure and layers of the TCP/IP model.
Compare the OSI and TCP/IP reference models.

Discuss the critiques and real-world relevance of both models.

STRUCTURE OF THE LESSON:

31
3.2

33

3.4
35
3.6
3.7
3.8
3.9
3.10

REFERENCE MODELS

OSI REFERENCE MODEL

3.2.1 THE PHYSICAL LAYER

3.2.2 THE DATA LINK LAYER

3.2.3 THE NETWORK LAYER

3.24 THE TRANSPORT LAYER

3.2.5 THE SESSION LAYER

3.2.6 THE PRESENTATION LAYER

3.2.7 THE APPLICATION LAYER

THE TCP/IP REFERENCE MODEL

3.3.1 THE LINK LAYER

3.3.2 THE INTERNET LAYER

3.3.3. THE TRANSPORT LAYER

3.3.4 THE APPLICATION LAYER

THE COMPARISON OF OSI AND TCP/IP REFERENCE MODEL
A CRITIQUE OF OSI REFERENCE MODEL AND PROTOCOL
A CRITIQUE OF TCP/IP REFERENCE MODEL
SUMMARY

TECHNICAL TERMS

SELF-ASSESSMENT QUESTIONS

FURTHER READINGS

Centre for Distance Education 3.2 Acharya Nagarjuna University ‘

3.1 REFERENCE MODELS

This section introduces two key network architectures: the OSI model and the TCP/IP model.
The OSI model is valuable for understanding concepts and design, even though its protocols
are outdated. In contrast, the TCP/IP model is widely used in real-world networks, though its
structure is less formal. Studying both provides a complete understanding—highlighting
practical success (TCP/IP) and conceptual clarity (OSI), as well as lessons from each model’s
strengths and weaknesses.

3.2 OSI REFERENCE MODEL

The OSI model is a seven-layer reference model developed by the ISO to standardize how
open systems communicate over a network. It outlines what each layer should do, not how to
do it, making it a conceptual framework rather than a concrete architecture. The layers, from
bottom to top, are: Physical, Data Link, Network, Transport, Session, Presentation, and
Application. Each layer performs a specific function, and the model was designed to support
international protocol standards, reduce complexity, and clearly separate concerns. Though
the OSI protocols are rarely used today, the model remains influential in understanding
network design.

Layer MName of unit
exchanged
- Application protocol -
7 Application |=------------"---mee e = Application | APDU
i
Interface I |
Presentation protocol
6 | Presentation |=------------ P = Presentation| PFDU

5 Saession |w------ssss-sssss-sSossssessmoomoooos =| Saession SPDU

4 Transpont |(w=========-= Transport protocol - = Transport TPDU
i Communication subnel boundary
l 4 Internal subnet protocol ™ I

3 Metwork ==t Network e Stee| Metwork fe-{--e Metwork Packet

[[
' 1

2 Data link |=- Data ink === Data link - Data link Frame

1
i
1

1 Physical =141+« Physical [«---=| Physical [=-{--+= Physical Bit

Host A Router Router Host B
o A

Matwork layer host-router protocol
Data link layer host-router protocol
Physical layer host-router protocol

Figure 3.1 The OSI reference model

Computer Networks 33 Reference Models

3.2.1 The Physical Layer

The physical layer is responsible for the actual transmission of raw bits over a
communication medium. It ensures that a bit sent (like a 1) is received correctly as the same
bit on the other end. Key concerns at this layer include the electrical or optical signal
representation of bits, bit timing, direction of transmission (simplex, half-duplex, or full-
duplex), and the setup and termination of physical connections. It also addresses the physical
aspects such as connectors, pin configurations, and the characteristics of the transmission
medium itself.

Protocols/Standards:
Ethernet (Physical specifications), RS-232, DSL, USB, Bluetooth, IEEE 802.11 (physical
aspects).

Unit of Data:
Bit — the smallest unit of data representing binary Os and 1s.

3.2.2 The Data Link Layer

The data link layer ensures reliable communication over a physical link by detecting and
correcting transmission errors. It breaks data into frames, sends them sequentially, and often
expects acknowledgments to confirm receipt. It also handles flow control to prevent a fast
sender from overwhelming a slow receiver. In broadcast networks, it includes a medium
access control (MAC) sublayer to regulate access to the shared communication medium,
ensuring that devices transmit without collisions.

Protocols/Standards:
Ethernet, PPP (Point-to-Point Protocol), Frame Relay, HDLC, ARP, MAC.

Unit of Data:
Frame — contains source and destination MAC addresses and error-checking information

3.2.3 The Network Layer

The network layer manages the movement of packets across the communication subnet,
determining how data is routed from source to destination. It handles routing—either
statically, dynamically, or per conversation—and addresses issues like congestion control,
ensuring efficient data flow and quality of service. When packets move between different
networks, the network layer deals with incompatibilities in addressing, packet size, and
protocols to ensure interoperability. In broadcast networks, where routing is simpler, the
network layer may be minimal or omitted altogether.

Protocols/Standards:

IP (Internet Protocol), ICMP, IGMP, OSPF, BGP, RIP.

Unit of Data:

Packet — includes logical address information and routing details.

Centre for Distance Education 34 Acharya Nagarjuna University

3.2.4 The Transport Layer

The transport layer is responsible for reliable, end-to-end delivery of data between source and
destination processes. It breaks data from the upper layers into smaller units, passes them to
the network layer, and ensures all pieces arrive correctly and in order. It provides different
types of services, such as reliable, ordered delivery or fast, unordered delivery, based on
application needs. Unlike the lower layers that manage hop-by-hop communication, the
transport layer operates across the entire network path, maintaining a connection directly
between the communicating applications on different machines.

Protocols/Standards:
TCP (Transmission Control Protocol), UDP (User Datagram Protocol), SCTP.

Unit of Data:
Segment / TPDU (Transport Protocol Data Unit) — contains port numbers and sequencing
information for end-to-end communication.

3.2.5 The Session Layer

The session layer enables users on different machines to establish and manage sessions,
which are prolonged interactions between applications. It provides services like dialog
control (to coordinate communication direction), token management (to avoid simultaneous
access to critical resources), and synchronization (to insert checkpoints in long data transfers
so that progress can be saved and resumed after a failure).

Protocols/Standards:

NetBIOS, RPC (Remote Procedure Call), SQL session protocols.

Unit of Data:

SPDU (Session Protocol Data Unit) — used to maintain session control information.

3.2.6 The Presentation Layer

The presentation layer focuses on the syntax and semantics of the data exchanged between
systems, rather than just its movement. It ensures that data sent by one system is readable and
properly interpreted by another, even if they use different internal data formats. This is done
by defining abstract data structures and standard encodings, allowing consistent
communication—for example, in sharing complex structures like banking records.

Protocols/Standards:
SSL/TLS, MIME, JPEG, MPEG, ASCII, EBCDIC.

Unit of Data:
PPDU (Presentation Protocol Data Unit) — represents formatted or transformed data for
application use.

3.2.7 The Application Layer
The application layer is the topmost layer and provides protocols directly used by end users
for network services. It includes widely used protocols like HTTP for web browsing, where a

Computer Networks 3.5 Reference Models

browser requests web pages from a server. Other important application layer protocols
support services like file transfer, email, and network news, enabling user-level
communication over the network.

Protocols/Standards:
HTTP, HTTPS, FTP, SMTP, DNS, SNMP, Telnet.

Unit of Data:
APDU (Application Protocol Data Unit) — represents the actual user data exchanged
between applications.

3.3 THE TCP/IP REFERENCE MODEL

This passage introduces the TCP/IP Reference Model, developed from the ARPANET, the
first major wide-area computer network funded by the U.S. Department of Defense. The
model was created to solve interconnection problems among different kinds of networks (like
satellite, radio, and wired).

Key design goals of the TCP/IP model were:

e Robustness: Keep communications alive even if parts of the network are damaged
(e.g., during war).

o Inter-networking: Seamlessly connect multiple, diverse networks.

o Flexibility: Support different applications—from file transfers to real-time
communication (like voice).

The model is named after its two main protocols: TCP (Transmission Control Protocol) and
IP (Internet Protocol).

3.3.1The Link Layer

The TCP/IP model uses a packet-switching approach with a connectionless internet layer that
can work across different types of networks. The lowest part, called the link layer, defines
how physical connections like Ethernet or serial lines interact with the internet layer. Unlike
traditional layers, the link layer acts more like an interface between the host and the physical
transmission medium. Early descriptions of TCP/IP didn’t focus much on this layer.

Protocols/Standards:
Ethernet, ARP (Address Resolution Protocol), PPP, Frame Relay, Token Ring, Wi-Fi (IEEE
802.11).

Unit of Data:
Frame / Bit — data transmitted over the physical medium.

3.3.2 The Internet Layer
The internet layer in the TCP/IP model is crucial because it connects different networks and

makes sure packets can travel independently from the source to the destination, even if they
arrive out of order. It roughly corresponds to the OSI network layer.

Centre for Distance Education 3.6 Acharya Nagarjuna University

Think of it like sending letters through the mail: you drop a batch of letters in one country’s
mailbox, and they get delivered internationally, passing through different postal systems
without you worrying about their details.

0S| TCF/IP
7 Application Application
G Presentation +—_ Not present
5 Session f,—f‘7 in the model
4 Transport Transport /
3 Metwork Internet
2 Data link Link /
1 Physical ’

Figure 3.2 The TCP/IP Reference Model

This layer defines the Internet Protocol (IP) for addressing and routing packets, and also uses
ICMP to help manage and troubleshoot the network. Its main job is to get packets to their
destinations, though managing congestion isn’t its strong suit.

Protocols/Standards:
IP (Internet Protocol — IPv4/IPv6), ICMP (Internet Control Message Protocol), ARP, RARP,
IGMP.

Unit of Data:
Packet — includes source and destination IP addresses.

3.3.3. The Transport Layer

The TCP/IP transport layer enables direct communication between programs on source and
destination hosts. It uses two main protocols: TCP, which provides reliable, connection-
oriented delivery by breaking data into segments, ensuring they arrive correctly and in order,
and managing flow control; and UDP, a simpler, connectionless protocol that offers faster but
less reliable delivery, suitable for applications like streaming or quick queries where speed is
prioritized over accuracy. Together, these protocols work on top of the internet layer to
support different types of data transmission needs.

Protocols/Standards:
TCP (Transmission Control Protocol), UDP (User Datagram Protocol).

Unit of Data:
Segment (TCP) or Datagram (UDP) — includes port numbers and sequence information.

Computer Networks 3.7 Reference Models

3.3.4 The Application Layer

The TCP/IP model doesn’t include separate session or presentation layers because these
functions are handled within the applications themselves, which has proven effective in
practice.

i
Application I HTTP | | sMTP I RTP [DMS
I | J .
Transport TCP | upe | - \
Layers -{ -__:_____'.' Protocols
I
Internet P | | IcMp | - /
Link ’ DSL ‘ ’ SONET ’ B02.11] Ethernet
L | . J

Figure 3.3 The TCP/IP model with some protocols we will study

Above the transport layer sits the application layer, which contains all the high-level
protocols used by applications. Early protocols included TELNET for virtual terminals, FTP
for file transfer, and SMTP for email. Over time, many more were added, such as DNS for
translating domain names to IP addresses, HTTP for web pages, and RTP for real-time media
like voice and video.

Protocols/Standards:
HTTP, HTTPS, FTP, SMTP, DNS, SNMP, Telnet, SSH.

Unit of Data:
Message / Data — actual application-level information exchanged between programs

3.4 THE COMPARISION OF OSI AND TCP/IP REFERENCE MODEL

The OSI and TCP/IP reference models share a common structure as layered protocol stacks,
with similar functionality up to the transport layer, which provides an end-to-end
communication service. Both models separate lower layers focused on network transport
from upper layers that use this service for applications. However, they differ significantly in
philosophy and design. The OSI model clearly distinguishes three key concepts—services
(what a layer does), interfaces (how layers are accessed), and protocols (how layers internally
operate)—making it very modular and adaptable. This aligns well with modern object-
oriented ideas, allowing protocols within a layer to change without affecting others.

In contrast, TCP/IP did not originally separate these concepts clearly; its model was created
to describe existing protocols rather than to define an abstract framework, making it tightly
coupled to TCP/IP protocols and less flexible for other networks. The OSI model has seven
layers, while TCP/IP has four, and they differ in support for connection-oriented and
connectionless communication: OSI supports both modes in the network layer and only
connection-oriented transport, whereas TCP/IP uses only connectionless networking but

Centre for Distance Education

3.8

Acharya Nagarjuna University

offers both connectionless and connection-oriented options at the transport layer, catering to
different application needs.

Table 3.1 Comparison between TCP/IP and OSI Reference Models

Feature / Basis of
Comparison
Developed By

Year of Development
Number of Layers
Layer Names (Top to
Bottom)

Concept

Primary Function
Approach

Layered Structure
Reliability

Model Type

Error Handling and
Flow Control
Examples of
Protocols

Data Unit Names
(Top to Bottom)
Dependency

Usage

Flexibility and Speed

Example of
Application

OSI Reference Model

ISO (International Organization
for Standardization)

1978

7 Layers

Application, Presentation,
Session, Transport, Network,
Data Link, Physical
Theoretical model defining
ideal communication
framework

Standardizes communication
functions between systems
Protocol-independent, general-
purpose reference

Distinct and detailed layers
with clear separation
Conceptual model; not directly
implemented

Generic model — suitable for all
network types

Done at Data Link and
Transport Layers

HTTP, FTP, SMTP, TCP, IP,
Ethernet

APDU, PPDU, SPDU, TPDU,
Packet, Frame, Bit

Model is protocol-independent

Used as a reference framework
for understanding networking
More conceptual and layered
(less efficient for practical use)
Used in education,
standardization, and design

TCP/IP Reference Model

DoD (U.S. Department of
Defense)

1974

4 Layers

Application, Transport, Internet,
Network Interface (Link)

Practical model for real-world
Internet communication

Enables internetworking and
Internet-based communication
Protocol-specific, focused on
TCP/IP suite

Layers are broader and combined
(some OSI layers merged)
Implemented model used in real
networks

Practical model — specific to
Internet communication

Done at Transport Layer (TCP)

HTTP, FTP, TCP, IP, UDP, ARP

Data, Segment/Datagram, Packet,
Frame/Bit

Model is protocol-dependent
(based on TCP/IP suite)

Used in actual implementation of
the Internet

More streamlined and efficient
for implementation

Used in all Internet-based systems
today

3.5 A CRITIQUE OF OSI REFERENCE MODEL AND PROTOCOL

Here’s a brief summary of the criticisms of the OSI model and protocols:
The OSI model and its protocols faced several major challenges that prevented them from
becoming the dominant networking standard.

Computer Networks 3.9 Reference Models

First, bad timing played a key role: the OSI standards appeared after TCP/IP had already
gained significant traction in universities and early networks, so vendors were reluctant to
support OSI, leading to a deadlock where no one adopted it first.

Billion dollar

Research imvestmant
i 1 L
Py
£
] Siandards

L
Tume - -

Figure 3.4 The apocalypse of the two elephants

Second, bad technology was a problem—OSI’s seven-layer model was overly complex and
included redundant features (like repeated error control across layers), making the protocols
difficult to understand, implement, and inefficient to run.

Third, bad implementations hurt OSI’s reputation early on; the initial OSI software was
large, slow, and cumbersome, while TCP/IP implementations (like Berkeley UNIX’s) were
smaller, free, and effective, leading to rapid adoption and community improvement.

Finally, bad politics also played a part: OSI was associated with bureaucratic government
bodies and viewed as a forced, top-down standard, whereas TCP/IP was linked to the open,
academic UNIX culture, giving TCP/IP a more grassroots and trusted image. Together, these
factors led to OSI’s limited success despite its conceptual strengths.

3.6 A CRITIQUE OF TCP/IP REFERENCE MODEL

The TCP/IP model has several drawbacks. First, it does not clearly separate services,
interfaces, and protocols, unlike the OSI model, which makes it less useful as a guide for
designing new networks or technologies. Second, TCP/IP is not very general and struggles to
describe protocols outside its own stack, like Bluetooth. Third, the so-called link layer in
TCP/IP isn’t really a true layer but more of an interface, which blurs important distinctions.
Fourth, TCP/IP does not separate the physical and data link layers, though these have distinct
roles in transmission and framing. Finally, while core protocols like IP and TCP were well-
designed, many other protocols were developed in an ad hoc manner by students and became
entrenched due to wide, free distribution—even when outdated. For example, TELNET was
built for slow, text-only terminals but remains in use long after graphical interfaces became
common.

3.7 SUMMARY

This chapter focuses on the reference models that define how computer networks operate.
The OSI model divides network communication into seven layers—from physical
transmission to application services—providing a standardized framework. The TCP/IP
model, used by the Internet, has fewer layers and emphasizes practical implementation over

Centre for Distance Education 3.10 Acharya Nagarjuna University

theoretical design. A comparison highlights that OSI is more conceptual, while TCP/IP is
more implementation-oriented. The chapter also critiques both models, noting OSI’s limited
adoption and TCP/IP’s lack of clear layer separation, concluding with the Internet as the best
real-world example of the TCP/IP model in action

3.8 TECHNICAL TERMS

Transmission Control Protocol, Internet Protocol, TCP/IP, OSI, Layer

3.9 SELF ASSESSMENT QUESTIONS

Essay questions:

Nk W=

Explain the OSI reference model and describe the function of each layer.

Describe the TCP/IP reference model and its key layers.

Compare the OSI and TCP/IP models in terms of structure and usage.

Write a critique of the OSI and TCP/IP reference models.

Explain the role of the Internet as an example network based on the TCP/IP model.

Short Questions:

MRS

What is a reference model in networking?

Name the seven layers of the OSI model.

How many layers are there in the TCP/IP model?

Mention one major difference between OSI and TCP/IP models.
What is the main purpose of the Internet in networking?

3.10 FURTHER READINGS

1.

Andrew S. Tanenbaum, “Computer Networks”, Fourth Edition, PHI.

2. James F.Kurose, Keith W.Ross, “Computer Networking”, Third Edition, Pearson

Education

Behrouz A Forouzan, “Data Communications and Networking”, Fourth Edition, TMH
(2007)

Michael A. Gallo, William M. Hancock, “Computer Communications and
Networking Technologies”, Cengage Learning (2008)

Dr. Kampa Lavanya

LESSON- 4
EXAMPLE NETWORKS

OBJECTIVES:

After going through this lesson, you will be able to

= Understand the concept of connection-oriented networks.

= Learn about X.25, Frame Relay, and ATM technologies.

= Study the working of Ethernet in local area networks.

= Recognize the features and importance of wireless LANSs.

= Compare wired and wireless connection-oriented communication

STRUCTURE OF THE LESSON:

4.1 THE INTERNET

4.2 THIRD-GENERATION MOBILE PHONE NETWORKS
4.3 WIRELESS LANS: 802.11

4.4 RFID AND SENSOR NETWORKS

4.5 SUMMARY

4.6 TECHNICAL TERMS

4.7 SELF-ASSESSMENT QUESTIONS

4.8 FURTHER READINGS

This section introduces the diverse world of computer networking, highlighting that networks
vary widely in goals, size, and technology. It outlines the plan to explore different types of
networks: starting with the well-known Internet, covering its history and technology; then the
mobile phone network, which is quite different technically from the Internet; followed by
IEEE 802.11, the main wireless LAN standard; and finally RFID and sensor networks, which
extend networking to everyday physical objects.

4.1 THE INTERNET

The Internet is actually a huge collection of different networks that share common protocols
and services, rather than a single network. What makes it unique is that it wasn’t planned or
controlled by any one person or organization. To understand it better, it helps to look at its
history and how it evolved over time. For a detailed and enjoyable history, John Naughton’s
2000 book is highly recommended. There are also many technical books about the Internet
and its protocols, such as Maufer (1999), for those seeking deeper knowledge.

THE ARPANET

The Internet began as a project by the U.S. Department of Defense during the Cold War to
create a communication network that could survive a nuclear attack. The existing telephone
system was vulnerable because it relied on a centralized hierarchy of switching offices.

Centre for Distance Education 4.2 Acharya Nagarjuna University ‘

Switching
office "=,

(a) (b)

Figure 4.1 (a) Structure of the telephone system (b) Baran’s proposed distributed
switching system

Paul Baran proposed a distributed, fault-tolerant network using digital packet switching, but
his ideas were initially rejected by AT&T.In response to Sputnik and inter-service conflicts,
the government created ARPA, which funded research into networking.

—_ Host-host protocol
P |~ Host

Host-IMP_ 7
protocol “‘“" - . .

d —
/— Swm 1MF o ﬁestﬂmnn iMF' pn;mc e
mnﬂ‘:"'

- MPIMP prorocor

Figure 4.2 The original ARPANET design

Larry Roberts at ARPA developed the concept of the ARPANET, a packet-switched network
connecting different computers through Interface Message Processors (IMPs). The first
ARPANET nodes went live in 1969, quickly expanding across the U.S. Experiments with
satellite and mobile networks highlighted the need for protocols that could connect different
types of networks.

Computer Networks 4.3 EXAMPLE NETWORKS

sl UTAH SHI UTAH MIT SRI UTAH ILLINCIS MIT LIMNCOLN CASE
A -

L

CARMN
- L T !
5
UCLA LA HAMD BBN LCLA RAND BEN HARVARD BURROUGHS
ia) (b} ic)
ERI LEL MICLELLAN UTAH ILLINDIS BT

ur it

MCCLELLAN AMES TIP

SHI UTAH NCAR GWC LIMCOLN CASE
{3

Lk L

AMES IMP

ILLIMCHE

QUCSE SUCSD

UCLA RAMD TIMEER BEN HARVARD NES

WCLA SDC UsC NOAA GWC CASE
(d) ie)
Figure 4.3 Growth of the ARPANET (a) December 1969 (b) July 1970 (c) March 1971
(d) April 1972 (e) September 1972

This led to the creation of TCP/IP in the 1970s, which was widely adopted with the help of
Berkeley UNIX. As the network grew, the Domain Name System (DNS) was introduced in
the 1980s to simplify finding hosts by translating domain names into IP addresses. The
Internet evolved from this foundation into the vast, interconnected network we use today.

NSFNET

By the late 1970s, the National Science Foundation (NSF) recognized the ARPANET’s
significant impact on university research but noted that access was limited to institutions with
Department of Defense contracts. To widen access, NSF funded the Computer Science
Network (CSNET) in 1981, linking computer science departments and research labs to
ARPANET. Later, NSF created NSFNET, a TCP/IP-based backbone network connecting six
supercomputer centers via leased lines and regional networks, enabling thousands of
institutions to communicate.

Centre for Distance Education 4.4 Acharya Nagarjuna University ‘

2 NSF Supercomputer centar
@ NSF Midlevel network
& Both

Figure 4.4 The NSFNET backbone in 1988

NSFNET quickly became overloaded, leading to upgrades and eventual commercialization.
To transition from government to commercial operation, Network Access Points (NAPs)
were established to foster competition among backbone providers. Meanwhile, similar
national research networks emerged globally. The Internet then grew rapidly in the 1990s
with the rise of the World Wide Web, expanding from academic email and file sharing to
include rich media, social networks, and real-time communications, continually changing the
dominant types of Intenet.

The Architecture of the Internet
The Internet connects users through ISPs using technologies like DSL, cable, fiber, or mobile
networks. Data travels from the user’s device to the ISP’s network and, if needed, to other

networks via Internet Exchange Points (IXPs), where ISPs share traffic.

=
Lata Tier 1 ISP

center =
iy gl T Backbone

1‘ _ a—Router
oC
-

3G mobile
phone i

at IXP
Fiber T
e -hl {FTTH]

n Dialup _H_
Ll L _.'n.n
ﬂ_ Cable
ns DSLAM Data modem
1' path
DSL modem

Figure 4.5 Overview of the Internet architecture

Large Tier 1 ISPs form the Internet’s backbone. Companies like Google host services in
powerful data centers for faster access. Over time, virtualization and shared IP addresses have

Computer Networks 4.5 EXAMPLE NETWORKS

changed how we define being “on the Internet.” Many businesses also use private internal
networks called intranets that function like the Internet but are only for internal use.

4.2 THIRD-GENERATION MOBILE PHONE NETWORKS

Mobile phone networks have evolved significantly over time, starting from 1G analog
systems to 2G digital systems like GSM,

Figure 4.6 Cellular design of mobile phone networks
and then to 3G systems like UMTS that support both voice and high-speed data. These
networks use radio spectrum, a limited resource, which is managed by dividing coverage into

cells for efficient frequency reuse.

Adr

interface siocie B Access
. . "qh aﬁd’- L:] ! Gong
(U} i 4 %\ﬁ 1o intertace
\: ~ RNG \)
1 - |
1
1 I —_—
1 I
b T ! MsC/ | GMSC N\
Circuits h PSTN
‘h\ 1 {
~f Cops! MGW ! MGW)
1 __I
1 — RNC
& bt
: _g r} \\
! - Packets | SGSN GGSN Internat
CwPS) F‘I kit "“k-,,_.,-—-"’lI
ackels
- T <N g il
Radio access network Core network

Figure 4.7 Architecture of the UMTS 3G mobile phone network

The architecture includes a radio access network (base stations and controllers) and a core
network that handles call/data routing. Initially, voice used circuit-switched systems, while
data used packet-switched systems, but newer networks increasingly use IP-based packet
switching for everything

Centre for Distance Education 4.6 Acharya Nagarjuna University ‘

(a) (b)
Figure 4.8 Mobile phone handover (a) before (b) after

Features like handover support mobility, while SIM cards ensure user authentication and
security. Mobile networks are now more focused on data services, driving the development of
faster 4G (LTE) and competing technologies like WiMAX.

4.3 WIRELESS LANs: 802.11

The development of wireless LANs began with the desire for laptops to connect to the
Internet without wires, leading to the use of short-range radio communication.

Access | To wired network !
pcunl

WAL /N
BeE E-&

Figure 4.9 (a) Wireless network with an access point (b) Ad hoc network

Initially, different vendors used incompatible systems, prompting the IEEE to standardize
wireless LANs as 802.11, commonly known as WiFi. 802.11 operates in unlicensed ISM
bands and consists of clients (like laptops) and access points that connect to a wired network.

_. Multiple paths i
MNon-faded signal
w|rclcss
transmitber

Faded signal

Rnilm:mr Wirelass

'i receiver

Figure 4.10 Multipath fading

Computer Networks 4.7 EXAMPLE NETWORKS

It can also function in ad hoc mode, where clients communicate directly. Wireless signals
face challenges like multipath fading, which are managed using techniques such as OFDM
and multiple antennas. Over time, newer versions like 802.11b, a/g, and n improved data
rates significantly.

Figure 4.11 The range of a single radio may not cover the entire system

802.11 uses a CSMA protocol to avoid transmission collisions, but hidden terminal problems
can still cause issues. For mobility, devices can switch between access points within a
network. Security began with WEP but later moved to WPA and WPA2 due to
vulnerabilities. Today, 802.11 is widely used in various settings, making wireless
connectivity nearly ubiquitous.

4.4 RFID AND SENSOR NETWORKS

RFID (Radio Frequency Identification) extends computer networking to everyday objects
using small tags with unique identifiers and antennas. These tags, often passive (without
batteries), are powered by radio waves from RFID readers that query them when in range.
RFID is used in supply chains, passports, credit cards, and more.

RFID
tag - [Ty

—__
-

RFID \:;:
reader

Figure 4.12 RFID used to network everyday objects

UHF RFID (902-928 MHz) uses backscatter for longer ranges, while HF RFID (13.56 MHz)
uses induction for short-range applications. A challenge with RFID is managing multiple tags
at once, which is handled using randomized response times, similar to 802.11 networks.
However, RFID poses privacy concerns due to weak security and easy tracking.

Centre for Distance Education 4.8 Acharya Nagarjuna University

Wireless
hop
i R - Sensor
\ node

ﬁa];\ﬁ//;—x\

Data
collection
point

Figure 4.13 Multidrop topology of a sensor network

Meanwhile, sensor networks, composed of small, battery-powered devices with
environmental sensors, self-organize into multihop networks to monitor physical conditions
like temperature and vibration. These networks are used in science and industry, and the
convergence of RFID and sensors suggests a future with even more integrated and intelligent
monitoring systems.

4.5 SUMMARY

This chapter discusses connection-oriented networks, where a dedicated path is established
before data transfer. It explains X.25, an early reliable packet-switched network; Frame
Relay, a faster version optimized for digital connections; and ATM (Asynchronous Transfer
Mode), which supports high-speed data, voice, and video transmission using fixed-size cells.
The chapter also covers Ethernet, the most common LAN technology that provides efficient
wired communication, and Wireless LANs (Wi-Fi), which offer mobility and flexibility
without physical cables. Together, these technologies form the backbone of both wired and
wireless communication networks

4.6 TECHNICAL TERMS
Connection oriented, X.25, ATM, Wireless LAN , Ethernet

SELF ASSESSMENT QUESTIONS

Essay questions:
1. Explain the architecture and operation of the X.25 network.
Describe Frame Relay and how it improves over X.24.
Discuss the main features and advantages of ATM technology.
Explain the working of Ethernet and its importance in LAN communication.
Describe the structure, benefits, and applications of Wireless LANS.

Nk

Short Questions:
1. What is a connection-oriented network?
Name the three main connection-oriented technologies.
What is the main purpose of X.25?
Define Ethernet and its basic function.
What is a Wireless LAN?

Nk

Computer Networks 4.9 EXAMPLE NETWORKS

FURTHER READINGS
1. Andrew S. Tanenbaum, “Computer Networks”, Fourth Edition, PHIL
2. James F.Kurose, Keith W.Ross, “Computer Networking”, Third Edition, Pearson
Education
3. Behrouz A Forouzan, “Data Communications and Networking”, Fourth Edition, TMH
(2007)
4. Michael A. Gallo, William M. Hancock, “Computer Communications and

NetworkingTechnologies”, Cengage Learning (2008)

Dr. Kampa Lavanya

LESSON- 5
NETWORK STANDARIZATION

OBJECTIVES:

After going through this lesson, you will be able to

= Understand the need for network standardization.

= Identify key organizations involved in telecommunication standards.
= Recognize international and Internet standardization bodies.

= recognize the organizations involved in defining Internet standards

STRUCTURE OF THE LESSON:

5.1 NETWORK STANDARDIZATION

5.2 WHO’S WHO IN THE TELECOMMUNICATION WORLD

5.3 WHO’S WHO IN THE INTERNATIONAL STANDARDS WORLD
5.4 WHO’S WHO IN THE INTERNET STANDARDS WORLD

5.5 SUMMARY

5.6 TECHNICAL TERMS

5.7 SELF-ASSESSMENT QUESTIONS

5.8 FURTHER READINGS

5.1 NETWORK STANDARDIZATION

In the vast and rapidly evolving world of computer networks, multiple vendors and
developers often design systems and equipment based on their unique technologies and
proprietary approaches. Without a unifying framework, this diversity can lead to chaos,
incompatibility, and inefficiency, as devices from different manufacturers might fail to
communicate effectively. To overcome this challenge, network standards play a critical role.
These standards define the rules, formats, and protocols necessary for devices and systems to
work together seamlessly, regardless of their origin.

By ensuring interoperability, standards enable users to mix and match components—routers,
switches, cables, and software—from various vendors without worrying about compatibility
issues. Moreover, standardized protocols foster healthy competition and market expansion, as
manufacturers can produce devices at scale for a global market. This not only reduces
production costs but also enhances performance, reliability, and user satisfaction. For
instance, Ethernet and Wi-Fi became dominant in networking largely due to the widespread
adoption of common standards, allowing users to connect devices effortlessly.

5.1.1. The Scope and Flexibility of Standards

Contrary to popular belief, standards do not specify every detail of how systems must be
implemented. Instead, they focus only on what is necessary to ensure interoperability

Centre for Distance Education 5.2 Acharya Nagarjuna University

between different systems. This design philosophy preserves flexibility and innovation,
allowing companies to develop products with unique features or performance optimizations
while still maintaining compatibility.

A good example of this is the IEEE 802.11 Wi-Fi standard, which defines multiple data
transmission rates such as 11 Mbps, 54 Mbps, and beyond. The standard specifies that
devices must support these rates but does not dictate the specific algorithm or conditions
under which a device should switch between them. This freedom lets product designers
optimize for factors like signal strength, power efficiency, or user experience. However, this
flexibility sometimes leads to inconsistencies in how different products behave. To address
such issues, organizations like the Wi-Fi Alliance certify devices to ensure that even with
diverse implementations, they remain interoperable and meet quality expectations. Thus,
while standards set the foundation, industry alliances ensure uniformity in practice.

5.1.2 Protocol Standards and Interface Design

Network protocol standards primarily define how data is transmitted and received between
systems rather than how internal software or hardware components should be designed. For
instance, the TCP/IP protocol suite focuses on reliable data communication over networks—
specifying packet formats, addressing schemes, and error-handling mechanisms. However, it
does not dictate how these functions should be implemented inside an operating system or
networking device.

This approach allows different systems—Windows, Linux, macOS, or embedded routers—to
communicate effortlessly, even though their internal architectures may differ significantly.
Over time, some internal interfaces, although not officially standardized, become de facto
industry standards due to their practicality and widespread use. An example is the Berkeley
Sockets API, developed at the University of California, Berkeley. It provides a consistent
programming interface for network communication, simplifying application development and
becoming an essential tool for programmers across platforms. Thus, clear separation between
protocol standards and implementation design encourages both interoperability and
innovation.

5.1.3 Types of Standards: De Facto and De Jure
Standards can be broadly categorized into two types—de facto and de jure.

De facto standards emerge naturally through widespread use rather than formal approval.
These standards often become popular because they solve real-world problems effectively or
are backed by influential companies. A classic example is HTTP (Hypertext Transfer
Protocol), the foundation of the World Wide Web. Initially developed by Tim Berners-Lee
and his team at CERN, it gained rapid acceptance through web browsers like Mosaic and
Netscape, eventually becoming the universal protocol for web communication. Similarly,
Bluetooth began as a proprietary technology developed by Ericsson but gained global
acceptance due to its convenience and support from major device manufacturers.

De jure standards, on the other hand, are officially approved and ratified by recognized
standardization organizations. These may include governmental treaty-based bodies such as
the International Telecommunication Union (ITU) or voluntary international organizations
like the International Organization for Standardization (ISO), Internet Engineering Task

‘ Computer Networks 5.3 NETWORK STANDARIZATION

Force (IETF), and Institute of Electrical and Electronics Engineers (IEEE). These bodies
establish and maintain formal standards through a rigorous review and consensus process,
ensuring global reliability and consistency across technologies.

5.1.4 Collaboration and Evolution in Standardization

The relationship between companies, technologies, and standardization organizations is
intricate and dynamic. Often, a successful de facto standard—developed and proven in
practice—is later adopted and formalized by a standards body, ensuring its long-term stability
and broader acceptance. For instance, many Internet protocols, originally developed by
research groups and adopted widely by the community, were later standardized by the IETF.

In modern times, the process of developing standards has become highly collaborative and
business-driven. Industry alliances and consortia are formed to address specific technological
areas and to speed up the standardization process. A prime example is the 3rd Generation
Partnership Project (3GPP), which unites several telecommunication standardization bodies
across the world to create unified mobile communication standards, including 3G, 4G LTE,
and 5G. This cooperative model ensures that emerging technologies evolve in harmony with
both industry requirements and user expectations. As a result, network standards today not
only ensure interoperability but also serve as catalysts for innovation and global connectivity.

5.2 WHO’S WHO IN THE TELECOMMUNICATION WORLD
5.2.1 Diversity in Global Telecommunication Structures

The legal and organizational structure of telephone services varies significantly across
countries, shaped by historical, political, and economic influences. In some nations,
telecommunications evolved as a public utility controlled by the government, while others
embraced a marketdriven, privatized model.

In the United States, the telecommunication system developed as a highly decentralized
network. Over 2,000 independent telephone companies operate across the country, most of
which are privately owned and serve specific localities. This fragmentation can be traced
back to America’s early emphasis on private enterprise and competition. A defining moment
in U.S. telecommunications history came in 1984, when the AT&T monopoly, which once
controlled nearly 80% of all U.S. telephone services, was dismantled under antitrust law. The
breakup resulted in the creation of several regional “Baby Bell” companies and fostered
innovation by allowing new entrants into the market.

Further restructuring occurred with the Telecommunications Act of 1996, which was the first
major overhaul of U.S. telecommunications law in over 60 years. This act promoted open
competition, reduced regulatory restrictions, and encouraged convergence between telephone,
cable, and Internet services. Together, these reforms transformed the American
telecommunications landscape into one of the most dynamic and competitive in the world.

5.2.2. Government Controlled Systems and the PTT Model

In contrast, many other countries historically maintained stateowned monopolies over their
communication systems. Governments often combined postal services, telegraphy, telephony,

Centre for Distance Education 54 Acharya Nagarjuna University

and later, broadcasting under a single national authority known as the PTT (Post, Telegraph,
and Telephone Administration).

Under the PTT model, the government was responsible for every aspect of
telecommunications —from infrastructure construction and maintenance to service delivery
and pricing. While this centralized system ensured nationwide connectivity and uniform
service quality, it often limited competition and slowed technological innovation due to
bureaucratic constraints.

In recent decades, however, global trends have shifted toward liberalization and privatization.
Many countries in Europe and Asia have moved away from the traditional PTT model. For
example, British Telecom (BT) in the United Kingdom and Deutsche Telekom in Germany
were once governmentrun entities but have since been privatized. Even so, some nations,
especially in the developing world, continue to rely on staterun systems as they gradually
transition toward a mixed or fully privatized telecommunications framework.

5.2.3 The Need for International Compatibility

The growing number of telecommunication providers and the diversification of national
policies have made international compatibility an essential concern. Individuals, businesses,
and governments all require seamless communication across borders, whether through voice
calls, data exchange, or Internetbased applications.

This necessity for interoperability is not a modern phenomenon. As early as 1865, European
nations recognized the importance of standardizing communication systems and founded a
cooperative organization to harmonize telegraph networks. This body later evolved into the
International Telecommunication Union (ITU), the world’s oldest international organization
still in existence. The ITU’s mission expanded over time from telegraphy to include
telephone, radio, television, and modern digital communications, setting the foundation for
global telecommunication cooperation.

5.2.4. The Role and Membership of the International Telecommunication Union

The International Telecommunication Union (ITU) became a specialized agency of the
United Nations in 1947. Today, it is one of the most influential organizations in global
telecommunications, comprising over 200 member states. The ITU provides a neutral
platform where countries collaborate to establish global standards, allocate radio frequencies,
and promote equitable access to communication technologies.

In the United States, where no centralized national telecommunication body like a PTT
exists, representation in the ITU is managed by the U.S. Department of State. The ITU’s
membership extends beyond governments—it also includes more than 700 privatesector
companies and academic institutions as sector or associate members.

Prominent members include telecommunication giants such as AT&T, Vodafone, and
Verizon, equipment manufacturers like Cisco, Nokia, and Ericsson, chipmakers such as Intel
and Texas Instruments, and major corporations involved in digital communication
technologies like Microsoft, Toshiba, Boeing, and CBS. This inclusive model ensures that the
ITU reflects both public and private interests in shaping the global telecommunication
environment.

Computer Networks 5.5 NETWORK STANDARIZATION

5.2.5 Organizational Structure of the ITU

The ITU is divided into three main sectors, each responsible for a distinct area of
telecommunications:

1. ITUT (Telecommunication Standardization Sector) — This sector formulates
international standards (known as Recommendations) for telephony and data
communication systems. Until 1993, ITUT was known as CCITT (Comité Consultatif
International Téléphonique et Télégraphique).

2. ITUR (Radiocommunication Sector) — Responsible for managing the global
radiofrequency spectrum and satellite orbits, which are essential for services like
broadcasting, mobile communications, and GPS.

3. ITUD (Development Sector) — Focused on promoting telecommunications
development in developing countries, bridging the digital divide, and ensuring
universal access to modern ICT infrastructure.

This sectorbased structure enables the ITU to effectively address both technical and
developmental aspects of telecommunications.

5.2.6 ITUT Recommendations and Global Adoption

The core responsibility of ITUT is to develop technical recommendations that act as global
standards for telecommunication interfaces, signaling systems, and data protocols. Although
these recommendations are not legally binding, they are widely adopted worldwide to ensure
interoperability. A nation or company that ignores ITU standards risks isolation from the
global communication network.

For example, if a country uses incompatible frequency bands or signaling methods, it could
not easily connect to international systems. While such isolation might be acceptable in
highly controlled environments (e.g., North Korea), it would cause severe economic and
technological disadvantages for most countries. Therefore, adherence to ITUT
recommendations is a practical necessity for global integration.

5.2.7. Study Groups and Technical Work within ITUT
The ITUT’s standardization work is carried out by Study Groups (SGs)—expert committees
focusing on specific telecommunication domains. Currently, there are 10 active Study
Groups, each composed of specialists from governments, academia, and industry. Their areas
of work include:

e Broadband and nextgeneration networks
Multimedia services and video communication
Cybersecurity and data protection
Network architecture and infrastructure
Billing, numbering, and service management

Each Study Group is divided into Working Parties, which are further subdivided into Expert
Teams and temporary Ad Hoc Groups to address specific issues. This hierarchical framework
ensures that complex technical problems are studied and resolved efficiently through
collaboration among global experts.

Centre for Distance Education 5.6 Acharya Nagarjuna University

5.2.8 Major Achievements and Standard Contributions

Despite its complex structure, ITUT has been highly productive. Since its inception, it has
issued over 3,000 recommendations, many of which underpin the modern telecommunication
landscape. Notable examples include:

Recommendation H.264 (MPEG4 AVC) — A video compression standard widely used in
digital television, online streaming platforms like YouTube, and Bluray discs.
Recommendation X.509 — The foundation for digital certificates used in secure web
browsing (HTTPS) and online authentication systems.

These standards have become integral to daily life, enabling secure communication,
multimedia sharing, and efficient use of network resources worldwide.

5.2.9. The Future of Global Telecommunications Standardization

As the world transitions toward 5G, 6G, satellite Internet, and the Internet of Things (IoT),
international coordination has become even more critical. The ITU, along with other bodies
like 3GPP, IETF, and IEEE, plays a vital role in ensuring that emerging technologies are
compatible across countries and ecosystems.

Moreover, modern standardization is increasingly collaborative and inclusive, involving not
only governments and corporations but also research institutions and regional alliances. This
collective approach ensures that the benefits of global communication technologies extend to
all nations—advancing connectivity, fostering economic development, and narrowing the
digital divide.

5.3 WHO’S WHO IN THE INTERNATIONAL STANDARDS WORLD

5.3.1 Decentralized Telecommunications in the United States

The legal and organizational setup of telephone services varies significantly across countries,
reflecting differences in historical development, political systems, and economic
philosophies. In the United States, the telecommunications sector is characterized by
decentralization and private ownership. More than 2,000 independent and mostly small-scale
private telephone companies operate across the nation, reflecting America’s strong
commitment to free enterprise and competition.

Historically, the U.S. telecommunications industry was dominated by AT&T (American
Telephone and Telegraph Company), which had grown into one of the world’s largest
corporations, controlling approximately 80% of the nation’s telephone services. However,
this monopoly was dismantled in 1984, when the U.S. government intervened under antitrust
law to promote competition and innovation. The breakup resulted in the creation of several
regional “Baby Bell” companies, each responsible for local telephone services.

Further reforms arrived with the Telecommunications Act of 1996, the first major overhaul of
U.S. communications law since 1934. This act sought to open markets to competition, reduce
regulatory barriers, and encourage convergence between telephony, broadcasting, and
Internet services. The result was a more dynamic and technologically diverse

Computer Networks 5.7 NETWORK STANDARIZATION

telecommunications environment, paving the way for advancements such as broadband
Internet and mobile communication.

5.3.2 Centralized and Government-Controlled Systems

In contrast to the U.S. model, many other nations historically maintained centralized,
government-controlled systems. These systems were typically managed by a national
organization known as the PTT (Post, Telegraph, and Telephone Administration), which
operated all communication services — including postal operations, telegraphy, telephony,
and, in many cases, broadcasting.

Under the PTT framework, the government was responsible for every aspect of
communication: constructing infrastructure, providing services, setting tariffs, and managing
customer relations. This model ensured uniform service coverage and strategic national
control, especially important during the early and mid-20th century when communications
were viewed as essential public utilities.

However, as technology advanced and globalization increased, many nations realized that
government monopolies could not adapt quickly to changing technological and market
conditions. Consequently, the last few decades have witnessed widespread liberalization and
privatization. For instance, the United Kingdom transformed its British Post Office
Telecommunications into British Telecom (BT), a privatized entity, while France Télécom
and Deutsche Telekom underwent similar reforms. Despite these trends, the pace of
transformation has not been uniform—some countries continue to retain partial or full
governmental control while cautiously moving toward privatization.

5.3.3 The Need for Global Compatibility and Standardization

With so many diverse national systems and regulatory frameworks, international
compatibility became a critical necessity. Seamless cross-border communication requires
common technical standards for hardware, signaling, and protocols, ensuring that systems
developed in one country can interconnect with those in another.

This need for harmonization was recognized as early as 1865, when representatives from
several European nations met to standardize telegraph operations. Their efforts led to the
formation of a cooperative body that would later evolve into the International
Telecommunication Union (ITU). Over time, the ITU expanded its scope beyond telegraphy
to encompass telephone, radio, television, and eventually digital communications.

In 1947, the ITU officially became a specialized agency of the United Nations, dedicated to
coordinating international standards, allocating global radio frequencies, and promoting
equitable access to communication technologies. Today, the ITU represents over 200 member
states, virtually encompassing every nation, and collaborates with more than 700 associate
and sector members from the private sector. These include global industry leaders such as
AT&T, Vodafone, Cisco, Intel, Microsoft, Nokia, and Boeing, as well as media organizations
like CBS. The diverse membership ensures that the ITU’s standards reflect both
governmental priorities and private-sector innovation, fostering interoperability across the
global communication ecosystem.

Centre for Distance Education 5.8 Acharya Nagarjuna University

5.3.4 Structure and Functions of the ITU

The ITU’s work is divided into three main sectors, each focusing on a distinct domain of
telecommunications:

1. ITU-T (Telecommunication Standardization Sector):

Formerly known as CCITT (Comité Consultatif International Téléphonique et
Télégraphique), this sector is responsible for developing international standards and technical
recommendations for telephone and data communication systems. Its work ensures
interoperability across equipment and networks produced by different vendors and used in
different nations.

2. ITU-R (Radiocommunication Sector):

This sector manages the global radio-frequency spectrum and satellite orbits, both of which
are essential for mobile communication, broadcasting, and satellite-based services. By
coordinating frequency allocation, ITU-R prevents interference and ensures efficient global
communication.

3. ITU-D (Development Sector):

Focused on bridging the digital divide, ITU-D helps developing nations expand their
communication infrastructure and adopt modern technologies, ensuring equitable access to
information and connectivity worldwide.

Among these, the ITU-T is particularly crucial because it develops the technical foundations
for how communication networks operate. Although its recommendations are not legally
binding, they are almost universally adopted since non-compliance would result in technical
isolation from the global telecommunication network—a disadvantage that most nations
cannot afford. Only a few highly restricted systems, such as North Korea’s closed networks,
operate outside of ITU frameworks.

Standardization through ITU-T Study Groups

To manage its extensive scope, the ITU-T organizes its work through specialized Study
Groups, each focusing on a specific technical area such as:

Broadband and next-generation networks

Network security and cybersecurity

Multimedia and video communication services
Cloud computing and IoT infrastructure

Billing, numbering, and service management systems

Each Study Group consists of hundreds of experts from around the world and is further
divided into Working Parties, Expert Teams, and ad hoc groups to address complex issues
efficiently. This structure allows for collaborative problem-solving and continuous innovation
in global telecommunications.

Computer Networks 5.9 NETWORK STANDARIZATION

Over the decades, the ITU-T has published more than 3,000 Recommendations, many of
which have become cornerstones of modern communication. Prominent examples include:
Recommendation H.264 (MPEG-4 AVC): A widely used video compression standard
essential for digital TV, video streaming, and Blu-ray discs.

Recommendation X.509: The foundation for digital certificates used in secure web
communications (HTTPS), ensuring authentication and encryption across the Internet.

Global Collaboration and the Future of Telecommunications

As telecommunications rapidly evolve through innovations like 5G networks, satellite-based
Internet systems, and the Internet of Things (IoT), the importance of international
standardization continues to grow. The ITU, along with other bodies such as 3GPP (Third
Generation Partnership Project), IETF (Internet Engineering Task Force), and IEEE (Institute
of Electrical and Electronics Engineers), plays a vital role in ensuring that emerging
technologies are interoperable, secure, and globally accessible.

Moreover, the standardization process has become increasingly collaborative, involving
governments, private companies, research institutions, and business consortia. This shared
responsibility ensures that new technologies contribute to a cohesive, inclusive, and
sustainable global communication network, enabling innovation while preserving
interoperability and equity among nations.

5.4 WHO’S WHO IN THE INTERNET STANDARDS WORLD

Internet standardization differs fundamentally from traditional formal organizations like
ITUT and ISO, both in procedure and culture. Traditional bodies emphasize bureaucracy,
consensus, and corporate or governmental representation, while Internet standardization—
driven by engineers and researchers—values openness, practicality, and informal
collaboration. This ethos is best captured by David Clark’s phrase, “rough consensus and
running code,” emphasizing working solutions over theoretical ideals.

Early Internet standardization began with the Internet Activities Board (IAB) in 1983, formed
under the U.S. Department of Defense to coordinate ARPANET and Internet research.
Standards were documented through publicly available RFCs (Requests for Comments),
which remain central to Internet governance today.

As the Internet expanded in the late 1980s, this informal system was reorganized into three
main entities:

IAB (Internet Architecture Board) — oversight and coordination.

IRTF (Internet Research Task Force) — focused on longterm research.

IETF (Internet Engineering Task Force) — responsible for practical Internet standards.

The IETF, composed of numerous working groups, became the primary standardization body.
Its standards process includes stages: Proposed Standard, Draft Standard, and finally Internet
Standard, with implementation testing by independent groups before approval.

For the World Wide Web, a distinct body—the World Wide Web Consortium (W3C)—was
founded in 1994 by Tim BernersLee. The W3C develops and maintains key web technologies
such as HTML, CSS, XML, and web privacy standards. Together, IETF and W3C represent a

Centre for Distance Education 5.10 Acharya Nagarjuna University

collaborative, decentralized model that mirrors the Internet’s distributed structure and ensures
interoperability and openness globally.

5.5 SUMMARY

This chapter highlights the importance of network standardization to ensure compatibility and
interoperability among global communication systems. It introduces key organizations such
as the ITU and IEEE in the telecommunication world, ISO in international standardization,
and bodies like the IETF and W3C in Internet standard development. The chapter also covers
the Physical Layer, which deals with the actual transmission of bits over physical media. It
explains various guided transmission media—including magnetic media, twisted pair cables,
coaxial cables, and fiber optics—describing how each medium carries data with different
speed, cost, and reliability characteristics.

5.6 TECHNICAL TERMS

IUT, IEEE, W3C, ISO, IETF, IRTF

5.7 SELF ASSESSMENT QUESTIONS
Essay questions:

1. Explain the roles of major telecommunication standard organizations.

2. Describe the international bodies involved in developing network standards.

3. Discuss the Internet standardization process and the key organizations responsible.
4. Compare the characteristics of various standards.

Short Questions:

1. What is the main purpose of network standardization?
2. Name any two organizations involved in telecommunication standards.
3. What are Internet standards, and who maintains them?

5.8 FURTHER READINGS

1. Andrew S. Tanenbaum, “Computer Networks”, Fourth Edition, PHIL
James F.Kurose, Keith W.Ross, “Computer Networking”, Third Edition, Pearson
Education

3. Behrouz A Forouzan, “Data Communications and Networking”, Fourth Edition, TMH
(2007)

4. Michael A. Gallo, William M. Hancock, “Computer Communications and
NetworkingTechnologies”, Cengage Learning (2008)

Dr. Neelima Guntupalli

LESSON- 6
GUIDED TRANSMISSION MEDIA

OBJECTIVES:

After going through this lesson, you will be able to

Define guided transmission media and differentiate it from unguided media.
Describe the types and characteristics of twisted pair, coaxial, and optical fiber
cables.

Compare the advantages, limitations, and applications of various guided media.
Understand signal attenuation, noise, and methods to improve transmission quality.
Explore modern applications and trends in high-speed guided communication
networks

STRUCTURE OF THE LESSON:

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9

MAGNETIC MEDIA

TWISTED PAIRS

COAXIAL CABLE

POWER LINES

FIBER OPTICS

SUMMARY

TECHNICAL TERMS
SELF-ASSESSMENT QUESTIONS
FURTHER READINGS

The physical layer is responsible for transmitting raw bits from one machine to another using
various transmission media. These media differ in bandwidth, delay, cost, and ease of
installation and maintenance. They are broadly categorized into guided media, like copper
wires and fiber optics, where signals follow a physical path, and unguided media, like
wireless, satellite, and laser, where signals travel through open space.

Transmission media is the part of the physical layer that provides a path through which data
is transmitted from one place to another in computer networks. It is also known as a
transmission channel, Communication media, or communication channel.

The amount of data that can be transferred through a communication medium in a unit of
time is called bandwidth.

The bandwidth of the digital signal is measured in bits per second or bytes per second.
The bandwidth of Analog’s signal is measured in cycles per second or Hertz

Centre for Distance Education 6.2 Acharya Nagarjuna University

/ Transmission Channel /

A A

Sender Receiver

Figure 6.1 Transmission media in Computer Networks
6.1 MAGNETIC MEDIA

One of the simplest yet surprisingly efficient methods for transferring large amounts of data
between computers involves writing the data onto physical storage media—such as magnetic
tapes or recordable DVDs—and then physically transporting these to the destination where
they are read back into a machine. While this may seem rudimentary compared to advanced
technologies like communication satellites, it is often far more cost-effective, particularly for
applications where high bandwidth and low cost per bit are critical. This practicality becomes
clearer when we consider a concrete example. An Ultrium magnetic tape, which is commonly
used in industry, has a storage capacity of 800 gigabytes. A cubic box with dimensions 60 cm
on each side can hold about 1000 such tapes, which translates to a total of 800 terabytes or
6.4 petabits of data. If this box is shipped overnight anywhere in the United States using
courier services like FedEx, the effective data transmission rate is about 70 gigabits per
second. If the destination is only an hour’s drive away, the effective bandwidth soars to over
1700 gigabits per second. No current computer network, regardless of how advanced, can
rival this level of data transfer speed, especially across such distances.

When examining cost, the picture is similarly striking. Each Ultrium tape costs around $40
when bought in bulk, and each tape can be reused at least ten times. This means the cost of
the tapes for a single use is around $4000 per shipment. Adding in an estimated shipping cost
of $1000, the total expense to move 800 terabytes comes to about $5000. This works out to a
cost of just over half a cent per gigabyte transferred—an extremely economical rate that no
digital network can match. This example highlights the often-overlooked but crucial truth
that, in certain contexts, physical data transport using conventional logistics can outpace and
outprice even the most high-tech digital networks. As humorous as it may sound, the lesson
to take away is that one should never underestimate the effective bandwidth of a station
wagon full of data tapes speeding down the highway.

6.2 TWISTED PAIRS

While magnetic tape offers impressive bandwidth for data transfer, it suffers significantly in
terms of delay. Data transmission using tapes takes minutes or even hours, making it
unsuitable for applications that require real-time or near-instantaneous communication. In
such scenarios, online connections become essential. One of the oldest and most widely used
transmission media for online communication is the twisted pair. This medium consists of
two insulated copper wires, typically around one millimeter in diameter, twisted together in a
helical shape resembling the structure of DNA. The purpose of twisting the wires is to reduce
electromagnetic interference. When wires are simply laid out in parallel, they can act as
antennas, picking up unwanted signals. Twisting them causes electromagnetic waves from
different twists to cancel each other out, which reduces radiation and improves noise

Computer Networks 6.3 GUIDED TRANSMISSION MEDIA

immunity. The signal is transmitted as a voltage difference between the two wires, and since
external noise tends to affect both wires similarly, the signal integrity is preserved.

Twisted pair cables are most commonly used in the telephone system. They are the primary
medium connecting individual telephones to the telephone company’s central office, and they
also support ADSL-based Internet connections. These cables can carry signals for several
kilometers without amplification, but beyond that, the signal weakens and repeaters are
required. When multiple twisted pairs are used together, as in the case of all the lines from an
apartment complex heading to a telephone exchange, they are bundled and enclosed in a
protective outer sheath. Without the twisting, the wires in such a bundle would interfere with
each other. In areas where telephone lines are suspended on poles, it is common to see thick
bundles containing many twisted pairs. Twisted pair cables can carry both analog and digital
signals, and their bandwidth depends on factors such as the cable thickness and the
transmission distance. Generally, these cables can support several megabits per second over a
few kilometers, making them a popular and cost-effective choice for many communication
needs. Because of their practicality and performance, twisted pair cables are expected to
remain in use for the foreseeable future.

There are various types of twisted pair cables. A widely used variant in office environments
is the Category 5 (Cat 5) cable, which contains four pairs of insulated wires gently twisted
together and encased in a plastic sheath for protection and organization. Different LAN
standards utilize these wires in various ways. For instance, 100-Mbps Ethernet typically uses
two of the four pairs, with each pair handling data in one direction. In contrast, 1-Gbps
Ethernet employs all four pairs for bidirectional communication, requiring sophisticated
receivers that can separate outgoing and incoming signals. Communication links also differ in
terms of directionality. Full-duplex links can transmit data in both directions simultaneously,
much like a two-lane road. Half-duplex links allow data transmission in either direction but
not at the same time, resembling a single-track railway. Simplex links, on the other hand,
only allow data to travel in one direction, like a one-way street.

/

e

Twisted pair

e
fé'f _
\-—'——-—"'.-_-—-—'__._._--"'-

,_11‘

Figure 6.2 Category 5 UTP cable with four twisted pairs

As technology evolved, Cat 5 cables replaced the earlier Category 3 standard by
incorporating more twists per meter, which reduced signal crosstalk and allowed for higher-
quality transmissions over longer distances—especially for 100-Mbps and 1-Gbps Ethernet
networks. Modern installations are more likely to use Category 6 or even Category 7 cables.
These newer categories offer enhanced specifications to support higher bandwidths. Category
6 cables can handle signals up to 500 MHz and are capable of supporting 10-Gbps
transmission speeds. Up to Category 6, these cables are classified as UTP, or Unshielded
Twisted Pair, meaning they consist only of insulated wires without any additional shielding.
Category 7 cables, however, introduce shielding for each twisted pair and for the entire cable

Centre for Distance Education 6.4 Acharya Nagarjuna University

assembly within the outer sheath. This extra protection reduces external interference and
crosstalk from adjacent cables, making them suitable for more demanding communication
environments. Interestingly, this approach mirrors IBM's early use of shielded twisted pair
cables in the 1980s, which did not gain much popularity outside IBM at the time. However,
with today’s growing demands for higher data rates and cleaner signal transmission, shielded
cables are making a comeback.

6.3 COAXIAL CABLE

Coaxial cable, commonly referred to as "coax," is another widely used transmission medium
that offers superior shielding and bandwidth capabilities compared to unshielded twisted pair
cables. Its construction allows it to support higher speeds over longer distances, making it
suitable for various digital and analog communication applications. Coaxial cables are
broadly categorized into two main types based on their impedance. The 50-ohm coaxial cable
is typically used for digital transmission, having been designed with data communication in
mind from the outset. In contrast, the 75-ohm coaxial cable is traditionally used for analog
signals and is prevalent in cable television systems. The historical preference for 75-ohm
cables in television applications can be traced back to the impedance characteristics of early
antennas and the convenience of using available impedance-matching transformers.
However, with the evolution of technology and services, 75-ohm coaxial cables have taken
on a more prominent role in data communications, particularly since the 1990s when cable
television companies began offering broadband Internet services over the same infrastructure.

Braided Protective
outer plastic
conductor COVEring

Insulating
material

Copper
Core

Figure 6.3 A Coaxial cable

The physical structure of a coaxial cable consists of a solid copper core that acts as the central
conductor. This core is surrounded by an insulating layer, which in turn is encased in a
cylindrical outer conductor made of a woven braided mesh that provides shielding from
electromagnetic interference. The entire assembly is then protected by an external plastic
sheath that offers durability and environmental resistance. This layered construction enables
the coaxial cable to achieve a robust balance between high bandwidth capacity and strong
noise immunity. Depending on the quality and length of the cable, coaxial systems can
support frequencies up to several gigahertz, making them suitable for high-speed
transmissions.

Although coaxial cables were once a staple in the telephone industry for long-distance
communication, their role in such applications has diminished significantly with the advent
and widespread adoption of fiber optic technology, which offers even higher bandwidth and
lower signal degradation over long distances. Nonetheless, coaxial cables remain important in
specific domains. They continue to be widely used for distributing cable television signals to
households and buildings and also serve as a backbone for some metropolitan area networks
(MANS). Their reliability, ease of installation, and compatibility with existing infrastructure

Computer Networks 6.5 GUIDED TRANSMISSION MEDIA

ensure that coaxial cables will continue to play a valuable role in communication systems for
years to come.

6.4 POWER LINES

Electrical power lines, commonly used to deliver electricity to homes and distribute it
through internal wiring, are also being explored for data communication. This idea is not
entirely new—power companies have long used power lines for low-speed communication
tasks like remote metering and home automation through standards such as X10. However,
recent developments have renewed interest in using these lines for high-speed data
communication, particularly within homes to create local area networks (LANs) and even for
broadband Internet access.

One of the major advantages of using power lines for networking is their ubiquity and
convenience. Every home is already equipped with power outlets in virtually every room,
eliminating the need for additional wiring. Devices such as televisions and media players
already need to be plugged into power outlets, so enabling them to communicate over the
same wires simplifies installation and setup. The system works by superimposing a high-
frequency data signal onto the low-frequency 50—60 Hz power signal carried by the active
wire, allowing both signals to coexist on the same electrical path. This setup is
straightforward and requires no additional networking infrastructure like Ethernet cables or
wireless routers.

Electric cable — Drata signal
\ A
¥ -

%@:@ NN NN
. . \ {1 | III llll | |

- Power signal

Figure 6.4 A network that uses household electrical wiring

However, using electrical wiring for data transmission comes with significant technical
challenges. Household wiring was designed exclusively for carrying low-frequency power,
not high-frequency data. As a result, it performs poorly when tasked with transmitting signals
in the MHz range, which are essential for high-speed communication. Signal quality is highly
inconsistent because the electrical characteristics of household wiring differ from one home
to another and fluctuate depending on which appliances are in use. When devices are turned
on or off, they introduce electrical noise and sudden surges that disrupt the data signal.
Moreover, since household wiring lacks the shielding and twisting found in specialized
communication cables, it acts like an antenna—absorbing unwanted external signals and
emitting interference that can disrupt other devices.

Another complication is that data signals must avoid using frequency bands that are already
licensed, such as those used by amateur radio operators. This requirement limits the range of
usable frequencies and adds to the technical complexity. Despite these challenges, it is still
feasible to achieve data rates of 100 Mbps or more over standard home electrical wiring. This

Centre for Distance Education 6.6 Acharya Nagarjuna University

is made possible by using advanced communication techniques that can withstand noise,
frequency disturbances, and bursts of errors. While many current power-line networking
products rely on proprietary standards, international organizations are working to develop
universal standards to ensure compatibility and reliability across devices and regions.

6.5 FIBER OPTICS

The rate of advancement in computer technology has been a source of immense pride within
the industry, often highlighted by Moore’s Law, which suggests that the number of transistors
on a chip doubles approximately every two years. This prediction has translated into
remarkable improvements in computing performance. For instance, the original IBM PC,
introduced in 1981, operated at a clock speed of 4.77 MHz. Over the course of nearly three
decades, this evolved into computers running multiple-core processors at speeds of around 3
GHz. This increase represents a performance gain of roughly 2500 times, or about sixteenfold
per decade, which is indeed an impressive achievement.

During the same time frame, the progress in wide-area communication has been equally
extraordinary. Communication speeds rose from 45 Mbps, as seen in traditional T3 telephone
lines, to 100 Gbps in modern long-distance connections. This progress, matching the scale of
advancement in computing, also reflects a similar rate of sixteen times per decade.
Additionally, there has been a drastic reduction in transmission errors, with bit error rates
decreasing from one in 100,000 to nearly zero. While computing is approaching physical
limitations that constrain performance enhancements, such as those related to chip size and
heat dissipation, communication through fiber optic technology still offers vast untapped
potential. The theoretical bandwidth of fiber optics exceeds 50,000 Gbps (or 50 Tbps), which
remains far above current practical transmission capabilities.

The practical limit in communication speeds today is not due to the fiber itself but the
inability to perform rapid electrical-to-optical signal conversions. To bypass this limitation,
multiple channels are transmitted in parallel through a single fiber. As a result,
communication technology, particularly through fiber optics, may eventually surpass
computing in terms of scalability and potential. This shift could change the prevailing
mindset among engineers and computer scientists, who have traditionally focused on
conserving bandwidth due to the limitations of copper wires and the low Shannon limits. In
contrast, fiber optics could enable an era of virtually unlimited bandwidth.

However, the scenario is more complex when costs are considered. Installing fiber optic
cables to reach every household, especially in the last-mile segment, involves substantial
financial investment. Furthermore, the energy cost of moving data over networks is often
higher than that of performing computations locally. This economic and energy cost
imbalance suggests that while some areas of the network may have access to abundant
bandwidth, others will continue to rely more heavily on computation and storage to optimize
data usage. For example, on the user side of the Internet, heavy use of caching and
compression helps manage limited bandwidth effectively. Meanwhile, in core networks,
large-scale data transfers are used strategically by companies like Google to take advantage
of cheaper storage and computational resources in different geographic locations.

Fiber optics are widely used in long-distance backbone transmission, high-speed local area
networks, and Internet access technologies like Fiber to the Home (FttH). A fiber optic
transmission system typically consists of a light source, the fiber medium, and a light

Computer Networks 6.7 GUIDED TRANSMISSION MEDIA

detector. Data is transmitted by converting electrical signals into pulses of light, where the
presence of light represents a binary 1 and its absence a binary 0. These light pulses travel
through a thin strand of glass, and at the receiving end, the light detector converts the signal
back into electrical form. This process allows for high-speed, long-distance data transmission
with minimal signal degradation.

The efficiency of fiber optic communication relies on a physical phenomenon known as total
internal reflection. When light passes from one medium to another—for example, from glass
to air—it bends, or refracts. If the angle of incidence exceeds a certain critical threshold, the
light reflects entirely within the glass medium, rather than escaping. This reflection enables
light to travel through the fiber with very little loss over long distances. While many rays may
reflect internally at various angles, a fiber that supports multiple paths or modes is called a
multimode fiber.

To further improve performance, the diameter of the fiber can be reduced to a few
wavelengths of light, allowing the light to travel in a straight path without bouncing. This
configuration is known as a single-mode fiber. Though more expensive, single-mode fibers
are ideal for long-distance communication and are capable of transmitting data at speeds of
up to 100 Gbps over distances of 100 kilometers without amplification. Experimental setups
have even achieved higher speeds over shorter distances, demonstrating the immense
potential of this technology for future communication systems.

Air
Airfsilica Total internal

b-nunda\r',.r % ng/ rl’: /reflecllun.
A A AN /*/\/\/\A

/ Ly (i g

Silica Light source
(a) (o)

Figure 6.5 (a) Three examples of a light ray form inside a silica fiber impinging on the
air/silica boundary at different angles. (b) Light trapped by total internal reflection

Transmission of light through fiber

Optical fibers are made from glass, a material derived from sand, which is both inexpensive
and abundantly available in nature. Although glassmaking is an ancient skill, known even to
the Egyptians, early glass was limited in thickness and transparency. It wasn't until the
Renaissance that techniques were developed to create glass clear enough for use in windows.
Modern optical fiber glass, however, has achieved an extraordinary level of transparency—so
much so that if oceans were filled with it instead of water, the seabed would appear as clearly
from the surface as the earth does from an airplane on a clear day. This exceptional clarity is
crucial for transmitting light signals across long distances with minimal loss.

The degree to which light attenuates, or weakens, as it passes through glass depends on both
the physical properties of the glass and the wavelength of the light. Attenuation is usually
expressed in decibels per kilometer, representing the logarithmic ratio of the input to the

Centre for Distance Education 6.8 Acharya Nagarjuna University

output power of the signal. A signal power loss by a factor of two corresponds to 3 dB of
attenuation. In practical optical fiber communication, light in the near-infrared part of the
electromagnetic spectrum is used rather than visible light, which spans from approximately
0.4 to 0.7 microns in wavelength. For fiber optics, the preferred wavelengths are centered
around 0.85, 1.30, and 1.55 microns, which fall in the near-infrared range. Each of these
wavelength bands supports a very wide frequency spectrum—about 25,000 to 30,000 GHz—
making them highly suitable for high-speed data transmission.

Among the three bands, the 0.85-micron band was the first to be used. Although it has higher
attenuation and is therefore less efficient over long distances, it offered the advantage that
both the lasers and electronic components could be made from the same material, gallium
arsenide, simplifying early development. The other two bands, particularly the 1.55-micron
band, offer much lower attenuation—Iess than 5% loss per kilometer—and are now more
widely used. In fact, the 1.55-micron band is commonly employed in modern fiber optic
systems, often in conjunction with erbium-doped fiber amplifiers that can boost the signal
directly in the optical domain without the need for conversion to electrical signals.

As light pulses travel through a fiber, they tend to spread out—a phenomenon known as
chromatic dispersion. This spreading is wavelength dependent and can lead to overlapping
pulses, which degrades signal clarity and limits transmission speed. One straightforward way
to counteract this is by increasing the distance between the pulses, but this approach also
reduces the overall data rate. A more sophisticated solution lies in shaping the light pulses in
a special mathematical form related to the reciprocal of the hyperbolic cosine function. These
specially shaped pulses, known as solitons, have the remarkable property of resisting
dispersion as they travel. As a result, they maintain their shape over very long distances,
allowing for high-speed communication without significant distortion. Although still largely
experimental, solitons hold great promise for the future of ultra-long-distance optical
communication, and significant research is ongoing to bring them from laboratory
environments into practical, real-world applications.

Fiber cables

Fiber optic cables are constructed similarly to coaxial cables but without the braided outer
conductor. At the center of a fiber optic cable lies a glass core through which light signals
travel. In multimode fibers, this core is about 50 microns in diameter—roughly the thickness
of a human hair—while in single-mode fibers, the core diameter is only around 8 to 10
microns. Surrounding the core is a layer of glass called the cladding, which has a lower
refractive index than the core. This difference in refractive indices ensures that light remains
confined within the core by reflecting internally along the fiber's length. Outside the cladding
is a protective plastic jacket, and typically, several of these fiber strands are bundled together
and covered by an outer sheath for additional protection.

These fiber optic cables are usually installed underground at shallow depths, where they can
be vulnerable to damage from construction equipment or burrowing animals. Underwater
cables that connect continents are buried near coastlines using specialized machines called
seaplows, but in deeper oceanic regions, the cables are left to rest directly on the seabed. In
such environments, they face threats from fishing operations and even large marine creatures.
Fiber optic cables can be connected in three main ways. The first is through the use of
connectors, which allow fibers to be plugged into sockets. While this method results in some
light loss—typically between 10 to 20 percent—it allows for easy reconfiguration of systems.

Computer Networks 6.9 GUIDED TRANSMISSION MEDIA

The second method involves mechanical splicing, where two fibers are precisely aligned and
clamped together in a sleeve. Light is passed through the junction to fine-tune the alignment,
and though the process takes a few minutes and results in about 10% light loss, it provides a
reliable connection. The third and most seamless method is fusion splicing, where the fiber
ends are melted and fused into a single, solid piece. Fusion splices have minimal attenuation
and are nearly as efficient as a continuous fiber strand. However, all splicing techniques may
introduce reflections at the joint, which can interfere with signal quality.

Sheath - Jacket

Coare
(glass)

Cladding Jacket
(glass) (plastic) Core Cladding
(&) (o)

Figure 6.6 (a) side view of a single fiber (b) End view of a sheath with three fibers

The light sources used in fiber optic systems are typically either LEDs (Light Emitting
Diodes) or semiconductor lasers. LEDs are more suitable for lower data rates and shorter
distances and are primarily used with multimode fibers. They have long lifespans, are
inexpensive, and exhibit minimal sensitivity to temperature changes. On the other hand,
semiconductor lasers can support higher data rates and longer distances and can be used with
both multimode and single-mode fibers. However, they are more expensive, have shorter
lifespans, and are more sensitive to temperature variations. The wavelength of the light they
emit can be precisely tuned using devices such as Fabry-Perot and Mach-Zehnder
interferometers. Fabry-Perot interferometers use two parallel mirrors to form a resonant
cavity that filters specific wavelengths. Mach-Zehnder interferometers, meanwhile, split light
into two beams, allow them to travel different distances, and then recombine them to select
specific wavelengths based on phase interference.

ltem - LED Semiconductor laser
Data rate Low High
Fiber type Multi-mode | Multi-mode or single-mode
Distance Short Long
Lifetime Long life Short life
Temperature sensitivity Minor Substantial
Cost Low cost Expensive

Figure 6.7 A comparison of semiconductor diodes and LEDs as light sources

At the receiving end of a fiber optic link, photodiodes are used to detect the incoming light
pulses and convert them back into electrical signals. These photodiodes are limited by their
response time, capping practical data rates at around 100 Gbps. Additionally, thermal noise
can interfere with detection, so the light pulses must carry enough energy to be reliably
sensed. By ensuring that each pulse has sufficient power, the error rate can be minimized to

Centre for Distance Education 6.10 Acharya Nagarjuna University

extremely low levels, enabling highly reliable and efficient communication over long
distances.

Comparison of fiber optics and copper wire

Fiber optic cables offer a range of advantages over traditional copper cables, making them
highly suitable for modern high-speed communication networks. One of the most significant
benefits of fiber is its ability to support much higher bandwidths than copper. This makes it
an ideal choice for high-end networks that require rapid data transmission. Another major
advantage is its low signal attenuation, which means that repeaters—devices used to
regenerate signals—are needed far less frequently. While copper cables require repeaters
approximately every 5 kilometers, fiber optics only need them about every 50 kilometers.
This difference results in considerable cost savings for long-distance communication
infrastructure.

Fiber optics are also immune to a range of environmental and electrical disturbances. Unlike
copper, they are not affected by electromagnetic interference, power surges, or electrical
failures. They are also resistant to corrosive chemicals in the atmosphere, which is
particularly beneficial in industrial or factory settings where such conditions are common.
Interestingly, telephone companies have embraced fiber not just for its technical superiority,
but also for its physical characteristics. Fiber cables are much thinner and lighter than copper
cables, which is crucial in urban settings where existing underground ducts are already
crowded. Replacing bulky copper cables with slim fiber optic lines frees up space in these
ducts and offers the additional benefit of reclaiming the copper, which has high resale value
due to its purity.

The weight difference between the two is also striking. A bundle of 1,000 twisted copper
pairs extending one kilometer weighs about 8,000 kilograms. In contrast, just two fiber
strands with significantly more data-carrying capacity weigh only around 100 kilograms. This
substantial reduction in weight minimizes the need for heavy-duty support systems, further
lowering maintenance and infrastructure costs. Fiber also excels in terms of security. Because
it does not emit electromagnetic signals and is extremely difficult to tap without detection, it
offers strong resistance to eavesdropping.

However, despite these advantages, fiber optics do come with a few drawbacks. The
technology is less familiar to many engineers, which means specialized skills and training are
required for installation and maintenance. The physical nature of fiber makes it more fragile
than copper, as it can be damaged if bent too sharply. Additionally, because optical
transmission is inherently unidirectional, two-way communication demands either two
separate fibers or the use of different frequency bands on a single fiber. Furthermore, the
interfaces used with fiber optics are typically more expensive than those used with electrical
systems. Nonetheless, despite these challenges, fiber optics clearly represent the future of
fixed long-distance data communication due to their superior performance and overall cost-
effectiveness.

6.6 SUMMARY

This chapter highlights the importance of network standardization to ensure compatibility and
interoperability among global communication systems. It introduces key organizations such
as the ITU and IEEE in the telecommunication world, ISO in international standardization,

Computer Networks 6.11 GUIDED TRANSMISSION MEDIA

and bodies like the IETF and W3C in Internet standard development. The chapter also covers
the Physical Layer, which deals with the actual transmission of bits over physical media. It
explains various guided transmission media—including magnetic media, twisted pair cables,
coaxial cables, and fiber optics—describing how each medium carries data with different
speed, cost, and reliability characteristics.

6.7 TECHNICAL TERMS
IUT, IEEE, W3C, ISO, IETF, IRTF

6.8 SELF ASSESSMENT QUESTIONS

Essay questions:

1. Explain different guided transmission media: magnetic media, twisted pair, coaxial
cable, and fiber optics.

2. Compare the characteristics, advantages, and limitations of various guided
transmission media.

(98]

Describe twisted pair cables applications in communication networks.

4. Discuss the structure, working principle, and performance of fiber optic cables.

Short Questions:

1.

2.
3.

What is magnetic media, and where is it commonly used in communication
systems?

List any two types of guided transmission media.

Write any two differences between coaxial cable and twisted pair cable.

4. What is fiber attenuation, and why is it a concern in optical fiber transmission?
6.9 FURTHER READINGS
1. Andrew S. Tanenbaum, “Computer Networks”, Fourth Edition, PHIL.

James F.Kurose, Keith W.Ross, “Computer Networking”, Third Edition, Pearson
Education

Behrouz A Forouzan, “Data Communications and Networking”, Fourth Edition,
TMH (2007)

Michael A. Gallo, William M. Hancock, “Computer Communications and
NetworkingTechnologies”, Cengage Learning (2008).

Dr. Neelima Guntupalli

LESSON- 7
DATA LINK LAYER DESIGN ISSUES

OBJECTIVES:
After going through this lesson, you will be able to

= Understand the functions of the data link layer.

= Learn the services provided to the network layer.

= Explain the concept and methods of framing.

= Describe error detection and correction mechanisms.

= Understand flow control and its importance in data transmission.

STRUCTURE OF THE LESSON:

71 INTRODUCTION

7.2 FRAMING

7.3 ERROR CONTROL

74 FLOW CONTROL

7.5 SUMMARY

7.6 TECHNICAL TERMS

7.7 SELF-ASSESSMENT QUESTIONS
7.8 FURTHER READINGS

7.1 INTRODUCTION

The data link layer is the second layer in the OSI (Open Systems Interconnection) model, and
it plays a critical role in ensuring that data is transferred reliably and efficiently across a
physical communication channel. It builds upon the raw transmission capability provided by
the physical layer, which is responsible only for transmitting individual bits over a medium
such as a wire, fiber optic cable, or wireless link. While the physical layer focuses on sending
these bits as electrical signals, light pulses, or radio waves, it does not understand the
structure or meaning of the data. That responsibility falls to the data link layer.

One of the primary functions of the data link layer is to provide a well-defined interface to
the network layer, which is the layer above it. This means that the network layer should not
have to worry about how data is transmitted across the physical medium. The data link layer
takes care of that complexity and presents the network layer with a reliable service, allowing
it to send and receive complete data units, or packets, without dealing with the noise and
errors of the physical medium.

Centre for Distance Education 7.2 Acharya Nagarjuna University

Sending machine Receiving maching
Packet Packet
Frame {

Header | Payload field | Traler Header | Fayload field | Trailer

\)

Figure 7.1 Relationship between packets and frames

Another crucial role of the data link layer is error handling. Physical transmission is often
prone to noise, interference, and other factors that can result in bit errors (i.e., a 0 being
received as a 1 or vice versa). To detect and sometimes even correct these errors, the data link
layer uses techniques like checksums, cyclic redundancy checks (CRC), or parity bits. These
error detection mechanisms are implemented in the frame trailer, which is part of the
structured format used by the data link layer.

In addition to error control, the data link layer also manages flow control. This refers to
mechanisms that regulate the rate of data transmission between a sender and a receiver. If a
fast sender transmits data at a speed that a slow receiver cannot keep up with, it may lead to
buffer overflow and data loss. The data link layer prevents this by ensuring that the sender
only sends data when the receiver is ready to accept it, often using techniques such as stop-
and-wait or sliding window protocols.

To perform these functions effectively, the data link layer groups bits into structured data
units called frames. When a packet is passed down from the network layer, the data link layer
encapsulates it into a frame. This frame includes a header, a payload field, and a trailer. The
header contains information like source and destination MAC addresses, frame type, and
control information. The payload field carries the actual data or packet from the network
layer. The trailer, typically, includes the error-detection bits such as the checksum or CRC.
On the receiving side, the frame is decoded, the payload is extracted and passed to the
network layer, and the header/trailer are processed or discarded after performing their
functions.

The diagram referred to in Figure 7.1 (though not shown here) typically illustrates the
encapsulation process: the network layer sends a packet to the data link layer, which wraps it
with a header and a trailer to form a frame. This frame is what is actually transmitted over the
physical medium. When the frame reaches the destination, the data link layer on the receiving
machine checks it for errors, removes the header and trailer, and forwards the packet up to the
network layer.

Although the discussion is centered on the data link layer, it's important to note that the
concepts of reliability, error control, and flow control appear in other layers too—especially
in the transport layer. That’s because achieving end-to-end reliability in data communication
is a shared responsibility across all layers of the network stack. Some networks rely heavily
on the data link layer for these functions, while others delegate most of them to the upper

Computer Networks 7.3 DATA LINK LAYER DESIGN ISSUES

layers. Regardless of where these mechanisms are implemented, their fundamental principles
remain consistent across layers.

In fact, many of these mechanisms are often found in their simplest and most fundamental
forms at the data link layer, making it an excellent place to study and understand them. The
straightforward and well-defined environment at this layer allows learners to grasp the core
concepts of reliable communication, which are later built upon and extended in the upper
layers of the network architecture

7.2 SERVICES PROVIDED TO THE NETWORK LAYER

The primary function of the data link layer is to provide communication services to the
network layer, which resides immediately above it in the OSI model. Its core responsibility is
to transfer data from the network layer of the source machine to the network layer of the
destination machine in a reliable and efficient manner. At the source, a process in the network
layer generates a packet, which is handed down to the data link layer. This layer then
manages the transmission of the packet across the physical medium. Upon reaching the
destination, the data is passed up to the network layer of the receiving machine.
Conceptually, we often model this interaction as if two peer processes in the data link layer—
one at the sender and one at the receiver—are directly communicating with each other using a
data link protocol, even though in reality, the bits travel across the physical layer as shown in
the actual communication path.

To meet the needs of different types of communication and environments, the data link layer
can be designed to offer multiple types of services. These services are not fixed and can vary
depending on the specific data link protocol in use. The three main types of services that a
data link protocol may provide are:

1. Unacknowledged Connectionless Service,
2. Acknowledged Connectionless Service, and
3. Acknowledged Connection-Oriented Service.

Host 1 Host 2 Host 1 Host 2
—

! | ! -

i T T T T T I I
4 4 4 4
3 3 3 [] » 3

t Virtual)

h
5 data pat 3 5 5
1 1 1 1
Actual
data path —fF——
e F /
(a) (b)

Figure 7.2 (a) Virtual communication (b) Actual communication

Centre for Distance Education 7.4 Acharya Nagarjuna University

7.2.1. Unacknowledged Connectionless Service

This is the simplest and least reliable service provided by the data link layer. In this mode, the
sender transmits independent frames to the destination without expecting or receiving any
form of acknowledgement. There is no logical connection established between the sender and
receiver before data transfer begins, nor is there any procedure to release a connection
afterward. If a frame is lost during transmission—say, due to noise or interference—the data
link layer does not attempt any recovery. This type of service is ideal for environments where
the likelihood of error is very low, such as high-quality wired networks. It is also well-suited
for real-time applications, such as audio or voice transmission, where receiving delayed data
is worse than receiving slightly corrupted data. An example of a system using this service is
Ethernet, which prioritizes speed and simplicity over guaranteed delivery.

7.2.2 Acknowledged Connectionless Service

The next level of reliability is provided by acknowledged connectionless service. Like the
unacknowledged version, this service also does not involve setting up a dedicated logical
connection. However, in this case, each frame is individually acknowledged by the receiver.
This feedback allows the sender to detect whether a frame has been lost or corrupted. If an
acknowledgment is not received within a specified time period, the sender can retransmit the
frame, ensuring better reliability. This service is particularly useful in environments with
higher error rates, such as wireless communication systems. A common example of this
service is found in 802.11 Wi-Fi protocols, where wireless signals are more prone to
disruption, and acknowledgements help ensure the successful delivery of data.

It is important to understand that adding acknowledgements at the data link layer is optional
and often seen as an optimization rather than a strict necessity. The network layer, which sits
above, can also handle acknowledgements by managing timers and retransmissions itself.
However, relying solely on the network layer can be inefficient, especially because it is
unaware of the physical characteristics of the communication channel, such as frame size
limits or propagation delays. For example, if the network layer sends a large packet that is
broken into several frames and some of those frames are lost, it would have to retransmit the
entire packet, not just the missing frames. In contrast, the data link layer, with its
understanding of frame sizes and local errors, can retransmit only the lost frames, saving time
and bandwidth. This optimization becomes especially valuable on unreliable links, such as
wireless channels, where frame loss is more common.

7.2.3 Acknowledged Connection-Oriented Service

The most sophisticated and reliable service offered by the data link layer is the acknowledged
connection-oriented service. In this mode, a logical connection is established between the
source and destination data link layer processes before any data is transmitted. During this
connection establishment phase, both ends initialize necessary variables, buffers, and
sequence counters. Once the connection is set up, data can be exchanged in the form of
numbered frames, which ensures that the receiver can detect duplicates, reorder frames if
needed, and confirm successful delivery. This service guarantees that every frame sent is
received exactly once and in the correct order. After the data transfer is complete, the
connection is properly terminated, and resources are freed.

Computer Networks 7.5 DATA LINK LAYER DESIGN ISSUES

This type of service is particularly well-suited for long-distance or unreliable links, such as
satellite communications or telephone circuits, where errors and delays are more likely to
occur. Unlike the acknowledged connectionless mode, which might result in repeated
transmissions due to lost acknowledgements, connection-oriented service maintains more
robust state information, allowing it to manage retransmissions, acknowledgements, and
sequencing in a coordinated way. While this adds complexity and overhead, the benefits are
significant in terms of reliability, especially over noisy or high-latency channels.

7.2 FRAMING

To deliver services to the network layer, the data link layer depends on the services offered
by the physical layer. The physical layer is responsible for accepting a raw stream of bits and
attempting to transmit them over a communication channel to the destination. However, the
physical layer operates in a noisy and error-prone environment—especially in wireless
channels and even in some wired links—which means that despite any redundancy
mechanisms built into the physical signal encoding, errors are still possible. The physical
layer may attempt to reduce the bit error rate by adding redundancy (such as error-correcting
codes), but it does not guarantee error-free delivery. As a result, the bit stream received by
the data link layer may be corrupted, with altered bits or a different number of bits than what
was sent.

This is where the data link layer's responsibilities begin. One of its key roles is to detect and,
when possible, correct errors in the incoming data. To do this, the data link layer breaks the
continuous incoming bit stream into discrete units called frames. For each frame, it computes
a short value known as a checksum, using a predefined algorithm. The checksum is then
appended to the frame before transmission. When the frame arrives at the receiver’s data link
layer, it recalculates the checksum based on the received data. If the newly calculated
checksum matches the one sent in the frame, the data is considered valid; otherwise, it is
assumed to be corrupted. In such cases, the data link layer may discard the faulty frame and
possibly send back an error message or request a retransmission, depending on the protocol in
use.

However, framing—the process of segmenting the bit stream into frames—is more
challenging than it may appear. A robust framing strategy must allow the receiver to
accurately identify where each frame begins and ends, and it should do this efficiently,
without consuming too much of the available bandwidth. Over time, engineers have
developed four main framing techniques to achieve this:

7.2.1. Byte Count Method

The byte count method is the simplest way to implement framing. In this approach, a field in
the header of each frame explicitly states the number of bytes that follow. Using this
information, the receiver can determine where the frame ends. For example, a frame header
may contain the number 5, indicating that the next 5 bytes belong to the payload. While this
technique works in error-free environments, it has a major drawback: if the byte count is
corrupted, the receiver loses synchronization and cannot determine where the next frame
begins. Even if the checksum indicates that the current frame is invalid, the receiver has no
reliable way to realign itself with the incoming stream, as the corrupted length makes
skipping to the next frame impossible. This issue makes the byte count method unreliable for
noisy channels, and as a result, it is rarely used alone in modern data link protocols.

Centre for Distance Education 7.6 Acharya Nagarjuna University

/ / \ Byte count —\ C!ln\el:yte

(5] 1]2]a[4]s]e|7]8[9]s]o[1]2]3]4]5[6]8]7[8][a[0]1]2]3]

Frame 1 Frame 2 Frame 3 Frame 4
5 bytes 5 bytes B bytes 8 bytes
(a)
Error

[s[1]2]af[4]7|e[7]e]o[8fo[1]2]a[4]5]6]8[7[a[a]o[1][2]3]

Frame 1 Frame 2 Mow a byte
(Wrong) count

[{=3]

Figure 3-3. A byte stream. {a) Without errors. (b) With one error.

Figure 7.3 A byte stream (a) without errors (b) With one error
7.2.2 Flag Bytes with Byte Stuffing

To overcome the synchronization problem of byte counts, the flag byte method is used. In
this approach, each frame begins and ends with a special byte pattern, typically known as the
flag byte (for example, 0x7E). The receiver scans the incoming byte stream for these flags.
When it detects two consecutive flags, it interprets the first as the end of the previous frame
and the second as the start of the next. This ensures that even if part of a frame is lost or
corrupted, the receiver can resynchronize by locating the next pair of flags.

However, a new problem arises: what if the flag byte appears in the actual data? For instance,
when transmitting images, music files, or other binary content, the data may unintentionally
contain the flag byte. To distinguish between real frame delimiters and flag bytes in the data,
the sender uses a method called byte stuffing. Whenever a flag byte appears in the payload,
the sender inserts an escape byte (ESC) before it. If an actual ESC byte appears in the data, it
is also escaped by inserting another ESC byte before it. At the receiver end, the ESC byte is
used as a signal to unescape the following byte—either restoring a flag byte or an ESC
byte—and thus recover the original data. This approach allows the receiver to maintain
accurate framing boundaries while ensuring that the original data remains intact.

7.2.3 Flag Bits with Bit Stuffing

Although byte stuffing works well, it assumes that the transmission is organized into 8-bit
bytes. To support devices or media that operate at the bit level, protocols like HDLC (High-
Level Data Link Control) use bit stuffing instead. In this approach, frames start and end with
a special bit pattern, commonly 01111110 (Ox7E in hexadecimal). To prevent this bit pattern
from appearing inside the actual data, the sender inserts a 0 bit after any sequence of five
consecutive 1 bits in the payload. This extra 0 ensures that the special pattern never occurs
within the frame data.

At the receiver side, the process is reversed. Upon detecting five 1s followed by a 0, the
receiver removes (destuffs) the 0, restoring the original bit stream. If it sees five 1s followed
by another 1, and then a 0, it recognizes this sequence as the frame delimiter. Like byte
stuffing, bit stuffing is transparent to the network layer—it does not alter the original data

Computer Networks 7.7 DATA LINK LAYER DESIGN ISSUES

content but guarantees clear boundaries between frames. This method is not only effective for
maintaining synchronization but also ensures that there are enough signal transitions to help
the physical layer maintain clock synchronization during transmission.

FLAG| Header Payload field [Trailar FLAG|
(a}
Original bytes AHer stuffing
A FLAG B —_— A ESC | |FLAG B
A ESC B —_— | A ESC | | ESC B

A ESC FI.AGI B ‘_- A ESC || ESC | | ESC ‘FLAG B |

B —_— A ESC || ESC | | ESC

A ESC | | ESC

ESC B

(b}
Figure 7.4 (a) A Frame delimited by flag bytes (b) Four examples of byte sequences
before and after byte stuffing

7.2.4. Physical Layer Coding Violations

Another clever framing method leverages redundancy in the physical layer’s signal encoding
scheme. Many line coding schemes, such as 4B/5B encoding, translate blocks of 4 data bits
into 5 signal bits. This creates unused or invalid signal combinations that don’t map to valid
data. These "coding violations" can be used to mark frame boundaries. When the receiver
detects a signal that violates the standard encoding rules, it interprets this as the start or end of
a frame.

The beauty of this method is that no additional bytes or bits are added to the data stream. The
special codes used to delimit frames are reserved and never appear in the user data, which
eliminates the need for byte or bit stuffing. This technique is highly efficient and works well
when supported by the physical layer. Some protocols combine this approach with preambles
or headers for extra robustness.

@ 0110111111111 11111110010

) 01101111101 11110111 11010010
Stuffed bits

fc) 0110111111111 11111110010

Figure 7.5 Bit Stuffing (a) The original data (b) The data as they appear on the line.
(c) The data as they are stored in the receiver’s memory after destuffing

Centre for Distance Education 7.8 Acharya Nagarjuna University

Framing in Real-World Protocols

In practice, real-world protocols often combine multiple framing techniques for improved
reliability and synchronization. For instance, Ethernet and IEEE 802.11 (Wi-Fi) frames begin
with a well-defined preamble—a special pattern (often 72 bits long in 802.11) that helps the
receiver synchronize its clock with the incoming bit stream. This is followed by a length field
that helps determine the end of the frame. These combined approaches ensure that frames are
both easily detected and accurately interpreted, even in the presence of noise or data
corruption.

7.3 ERROR CONTROL

Once the data link layer has successfully solved the problem of framing—that is, correctly
identifying where each frame starts and ends—it faces another critical challenge: ensuring
that all frames are reliably delivered to the destination’s network layer and in the correct
order. This is especially important in connection-oriented services, where reliability and
sequencing are crucial. For unacknowledged connectionless service, reliability isn't
guaranteed, and the sender simply transmits frames without expecting confirmation.
However, such an approach is unacceptable when applications require dependable
communication.

To provide reliable transmission, the data link layer uses feedback mechanisms that allow the
receiver to communicate back to the sender. These feedback signals are typically in the form
of control frames known as acknowledgements (ACKs) or negative acknowledgements
(NAKSs). When a frame is received correctly, the receiver sends a positive acknowledgement
(ACK), letting the sender know the frame arrived safely. If an error is detected in the frame
(e.g., through a failed checksum), a negative acknowledgement (NAK) may be sent,
indicating the need for retransmission.

However, data transmission over networks is not always perfect. It is possible for a frame to
completely vanish due to issues like noise bursts, signal loss, or hardware malfunctions. In
such cases, the receiver won't send an acknowledgement because it never received the frame
in the first place. Similarly, the acknowledgement frame itself could be lost while traveling
back to the sender. If the protocol only relied on waiting for ACKs or NAKs, the sender
would be stuck indefinitely, unsure of whether the frame was successfully received or not.
This situation would cause the protocol to hang and data delivery to fail.

To handle such uncertainties, the data link layer employs a mechanism called a timer. Every
time the sender transmits a frame, it simultaneously starts a timer. This timer is set for a
duration that allows enough time for the frame to reach the receiver, be processed, and for the
acknowledgement to return. If the timer expires before an acknowledgement is received, the
sender assumes something went wrong—either the original frame or the acknowledgement
was lost—and it proceeds to retransmit the frame.

While retransmissions solve the problem of lost frames, they introduce another issue: the
receiver might mistakenly accept a duplicate frame. For instance, suppose the receiver gets a
frame and sends an acknowledgement, but that acknowledgement is lost. The sender,
unaware that the frame was actually received, resends the same frame. If the receiver accepts
the duplicate as new, it would deliver the same data twice to the network layer, violating the
principle of exactly-once delivery.

Computer Networks 7.9 DATA LINK LAYER DESIGN ISSUES

To address this problem, the data link layer uses sequence numbers. Each frame sent is
assigned a unique sequence number, which the receiver can use to identify duplicates. If a
frame with the same sequence number arrives more than once, the receiver knows it's a
retransmission and can discard it rather than delivering it again. This technique helps
maintain the integrity and correctness of the data flow.

In summary, the combined use of acknowledgements, timers, and sequence numbers enables
the data link layer to ensure that each frame is delivered exactly once to the receiving
network layer. This careful coordination helps prevent data loss, duplication, and reordering,
which are essential requirements for reliable communication. Later sections of the chapter
will explore how these mechanisms are implemented through various protocol designs,
progressively building more robust and efficient systems for error control and flow
regulation.

7.4 FLOW CONTROL

Another significant design issue that arises in the data link layer, and in higher layers as well,
is the problem of flow control—specifically, how to prevent a fast sender from overwhelming
a slower receiver. This mismatch can occur when, for example, a powerful computer or
server is sending data to a relatively slower device such as a smartphone. Even if the
connection is reliable and error-free, the receiver might not be able to process incoming
frames quickly enough. As a result, it might lose frames simply because its processing speed
or buffer capacity is insufficient to keep up with the transmission rate of the sender.

To handle this, flow control mechanisms are implemented to regulate the rate at which data is
transmitted. There are two fundamental approaches to flow control. The first is called
feedback-based flow control, where the receiver sends control information back to the sender,
indicating either how much data it can currently handle or whether it is ready to receive more
frames. This method allows for dynamic adjustment based on the real-time state of the
receiver. The second approach is known as rate-based flow control, which does not rely on
receiver feedback. Instead, the protocol imposes an intrinsic limit on the rate at which the
sender can transmit data, regardless of the receiver’s state. This form of control is more
common in the transport layer and less so in the data link layer.

In the context of the data link layer, the focus is primarily on feedback-based flow control.
These systems are widely used because they are more adaptable to different transmission
conditions and hardware capabilities. In many modern networks, especially those with high-
speed hardware such as Network Interface Cards (NICs), the data link layer is designed to
operate at “wire speed,” meaning that it can handle frames as quickly as they arrive. In such
cases, frame loss due to overflow is unlikely to occur at the data link layer, and any residual
flow control responsibilities are typically shifted to higher layers, such as the transport layer.

Despite this, flow control at the data link layer remains essential in many practical scenarios.
Feedback-based schemes usually rely on protocol rules that determine when the sender is
permitted to send the next frame. These rules can vary in complexity but generally involve
the receiver explicitly or implicitly granting permission to the sender. For instance, during the
setup of a communication session, the receiver might specify, “You are allowed to send me n
frames at once, but after that, you must wait for my signal before sending more.” This
approach helps avoid overwhelming the receiver and ensures smooth and efficient
communication.

Centre for Distance Education 7.10 Acharya Nagarjuna University

Overall, flow control is a critical feature in data link protocols, ensuring that data is delivered
at a rate the receiver can handle without loss or congestion. By using feedback-based control,
the data link layer adds a layer of robustness to the communication process, adapting
dynamically to varying network conditions and maintaining reliable transmission even in the
presence of performance disparities between sender and receiver.

7.5 SUMMARY

This chapter explains the data link layer, which ensures reliable communication between
directly connected devices. It provides essential services to the network layer, such as
framing, error control, and flow control. Framing divides the data stream into manageable
units for transmission. Error control detects and corrects transmission errors, ensuring data
integrity. Flow control manages the data transmission rate between sender and receiver to
prevent buffer overflow. Together, these mechanisms enable smooth, reliable, and efficient
data transfer across network links.

7.6 TECHNICAL TERMS
Data link layer, Frame, connected devices, flow control, error control

7.7 SELF ASSESSMENT QUESTIONS
Essay questions:

What is the main function of the data link layer?

List any two services provided by the data link layer to the network layer.
What is framing in the data link layer?

Define error control.

What is the purpose of flow control?

MRS

Short Questions:

1. Explain the services that the data link layer provides to the network layer.

2. Describe the process of framing and different framing methods.

3. Discuss error control techniques used at the data link layer.

4. Explain flow control and its role in reliable data transmission.

5. Discuss how the data link layer ensures reliable and efficient communication.
7.8 FURTHER READINGS

1. Andrew S. Tanenbaum, “Computer Networks”, Fourth Edition, PHIL
James F.Kurose, Keith W.Ross, “Computer Networking”, Third Edition, Pearson
Education

3. Behrouz A Forouzan, “Data Communications and Networking”, Fourth Edition, TMH
(2007)

4. Michael A. Gallo, William M. Hancock, “Computer Communications and
NetworkingTechnologies”, Cengage Learning (2008).

Dr. Neelima Guntupalli

LESSON- 8
ERROR DETECTION AND CORRECTION

OBJECTIVES:

After going through this lesson, you will be able to

= Understand the need for error detection and correction in data transmission.
= Learn the concept of error-correcting codes.

= Understand error-detecting codes and their working principles.

= Differentiate between error detection and error correction methods.

= Recognize common techniques used for reliable communication

STRUCTURE OF THE LESSON:

8.1 INTRODUCTION
8.2 ERROR CORRECTING CODES
8.2.1 HAMMING CODES
8.2.2 BINARY CONVOLUTIONAL CODES
8.2.3 REED-SOLOMON CODES
8.2.4 LOW-DENSITY PARITY CHECK (LDPC) CODES
8.3 ERROR DETECTING CODES
8.3.1 CHECKSUMS
8.3.2 CRCS
8.4 SUMMARY
8.5 TECHNICAL TERMS
8.6 SELF-ASSESSMENT QUESTIONS
8.7 FURTHER READINGS

8.1 INTRODUCTION

Communication channels, as discussed earlier, vary widely in their reliability. Some
channels, such as optical fibers used in telecommunications, experience extremely low error
rates, making transmission errors a rare occurrence. On the other hand, channels like wireless
links and aging telephone lines are far more prone to errors, often suffering from significantly
higher error rates. For these error-prone channels, errors cannot be completely avoided
without incurring substantial costs or compromising performance. As a result, the reality of
communication systems is that transmission errors are inevitable, and network designers must
find ways to manage and mitigate them effectively.

To address this challenge, two primary strategies have been developed. Both involve adding
redundant bits to the original data being transmitted. One strategy adds enough redundancy to

Centre for Distance Education 8.2 Acharya Nagarjuna University

enable the receiver to infer the original message even if some bits are received in error. This
approach is called error correction, and the codes used are known as error-correcting codes,
or more formally, Forward Error Correction (FEC). The second strategy adds only enough
redundancy to detect the presence of an error. If an error is detected, the receiver requests that
the sender retransmit the data. These are called error-detecting codes. Each of these
approaches is suitable in different scenarios depending on the nature of the channel and the
expected error characteristics.

On highly reliable communication links, such as those using optical fiber, it is more efficient
to use error-detecting codes and retransmit data only when necessary. However, in
environments like wireless communication, where errors are frequent and retransmissions
may also be affected by errors, FEC becomes a better choice. By enabling the receiver to
correct errors without needing a retransmission, FEC improves performance in noisy
conditions. Nevertheless, neither technique is foolproof. The additional redundant bits are
subject to the same channel conditions as the original data, meaning they can also be
corrupted. Therefore, the strength of the code must be carefully chosen based on the expected
type and frequency of errors.

Two general models are used to describe how errors occur. One assumes that errors are
random and isolated, caused by brief spikes in thermal noise that disrupt individual bits. The
other assumes errors occur in bursts, often due to physical disturbances like deep fades in
wireless signals or transient electrical interference in wired systems. Both error models have
practical relevance and different implications. Interestingly, burst errors, despite being more
difficult to correct, can sometimes be advantageous. For example, if data is transmitted in
blocks of 1000 bits and the bit error rate is 0.001, random errors might affect nearly every
block. But if errors occur in bursts of 100 bits, only one out of every 100 blocks would be
affected, on average.

Other error types include cases where the system knows the location of an error but not its
value. This scenario is called an erasure channel and occurs when a received signal deviates
so far from what is expected that the system cannot determine whether the bit wasa O ora 1.
Erasures are easier to correct than general bit errors because the error’s location is known,
even if the actual value is not. However, most communication systems cannot rely on
erasures being clearly identified and must treat all errors as unknown and unpredictable.

Error codes are primarily addressed in the data link layer because this is the first layer
responsible for ensuring the reliable transmission of data packets. However, their usage is not
limited to this layer. Error-correcting codes are also found in the physical layer, especially in
channels with high noise levels, and in the higher layers, where they support real-time media
and the distribution of digital content. Error-detecting codes, on the other hand, are widely
used across the link, network, and transport layers to support error checking and reliable
transmission.

Finally, it is important to recognize that error codes are rooted in applied mathematics,
involving concepts such as Galois fields and matrix operations. Creating effective error codes
requires a deep understanding of these mathematical principles. For this reason, most systems
rely on well-established and thoroughly tested codes provided by standards bodies or
developed by experts. Protocol standards tend to reuse proven codes across different
applications, and it is recommended to adopt these established methods rather than
attempting to design new codes from scratch. In practice, this approach leads to robust

Computer Networks 8.3 ERROR DETECTION AND CORRECTION

systems capable of handling the wide wvariety of errors encountered in real-world
communication networks.

8.2 ERROR CORRECTING CODES

Error detection and correction is a crucial aspect of reliable data transmission, especially over
noisy or unreliable channels. To achieve this, various coding techniques are employed, all of
which introduce redundancy into the data. This redundancy helps in detecting and correcting
errors at the receiver’s end. There are multiple types of codes used for this purpose, such as

Hamming codes.

Binary convolutional codes.
Reed-Solomon codes.
Low-Density Parity Check codes.

L=

All of these codes follow a fundamental idea: a message or data block of m bits is extended
with r check or redundant bits, resulting in a total block length of n = m + r bits. This block is
referred to as a codeword. In block codes, these check bits are derived purely as a function of
the data bits. A systematic code sends the original data bits along with the check bits, making
it easy to extract the message without decoding. In linear codes, which are the focus of most
practical systems, the check bits are computed using linear functions like XOR, which
simplifies both encoding and decoding processes. The effectiveness of these codes is
measured by the Hamming distance, which is the number of differing bits between two
codewords. A code with a higher Hamming distance can detect and correct more errors. For
example, to correct d errors, a code must have a Hamming distance of at least 2d + 1.

8.2.1 Hamming Codes

Hamming codes, one of the earliest and simplest forms of error-correcting codes, were
designed to correct single-bit errors. They are systematic linear block codes that place check
bits at positions that are powers of two in the codeword. These check bits are calculated such
that certain groups of bits, including the check bit itself, have even parity. When a codeword
is received, the parity of these groups is recalculated, and the results form a binary number
known as the syndrome. If the syndrome is zero, no error has occurred; if not, it pinpoints the
location of the erroneous bit, which can then be flipped to correct the error. For instance, in
an (11,7) Hamming code, 7 data bits are sent along with 4 check bits. If a single-bit error
occurs, the receiver can detect and correct it using the computed syndrome. However,
Hamming codes are limited in their error correction capabilities as they can only correct
single-bit errors and detect double-bit errors. This makes them suitable for applications where
errors are relatively rare, such as error-correcting memory systems.

Check Syndrome
bits 0101 — Flip
bit 5
/ I"..) = Check
F Thit results
o error
A Py Pz My By Mg Mg My Rg Mg Mg Myy - A
10001 —=0 0100001001 —— 0 0101/001001 =—=1000001
v | Channel . i
T
Message Sent Received Message
codeword codeword

Figure 8.1 Example of an (11,7) Hamming code correcting a single-bit error

Centre for Distance Education 8.4 Acharya Nagarjuna University

8.2.2 Binary Convolutional Codes

Convolutional codes differ significantly from block codes in that they do not work with
fixed-size message blocks. Instead, they encode data as a continuous stream, with the output
depending not only on the current input bit but also on several previous input bits, defined by
the constraint length. This gives convolutional codes a memory-like behavior. A well-known
example is the NASA convolutional code used in satellite communication and IEEE 802.11
wireless standards. In this system, for every input bit, two output bits are generated based on
XOR operations involving the input bit and the internal memory state, leading to a code rate
of 1/2. Because of their structure, convolutional codes are typically decoded using the Viterbi
algorithm, which traces all possible paths the input could have taken and selects the most
likely one by minimizing the total number of errors. This approach is efficient and effective
for small constraint lengths and can even handle signal uncertainty through soft-decision
decoding, where received signal levels are considered to estimate the most probable
transmitted bits. Convolutional codes are especially effective at correcting isolated bit errors
and are widely used in mobile and satellite communication systems.

— "IE\' Output
bit 1

Cutput
bit 2

Figure 8.2 The NASA binary convolutional code used in 802.11
8.2.3 Reed-Solomon Codes

Reed-Solomon (RS) codes are another powerful family of error-correcting codes that are
widely used in practical systems, particularly for correcting burst errors. Unlike Hamming
codes, RS codes operate on symbols made up of multiple bits, typically bytes (8-bit symbols),
and use polynomial mathematics over finite fields. They are systematic linear block codes
and work by fitting polynomials to a number of data points. Additional check symbols are
generated by evaluating the same polynomial at extra points. When errors occur during
transmission, the original data can be recovered by identifying and discarding erroneous
symbols and refitting the polynomial to the remaining valid points. A common configuration
is the (255, 233) RS code, where 233 data symbols are extended with 22 check symbols,
allowing the correction of up to 11 symbol errors. These codes are particularly effective
against burst errors because a burst that affects several bits within a symbol still counts as a
single symbol error. RS codes are extensively used in storage media like CDs and DVDs,
DSL, and satellite communication. They are often combined with other codes, such as
convolutional codes, to enhance error correction capabilities in different types of channels—
handling both isolated and burst errors effectively.

Computer Networks 8.5 ERROR DETECTION AND CORRECTION

8.2.4 Low-Density Parity Check (LDPC) Codes

Low-Density Parity Check (LDPC) codes are among the most advanced error-correcting
codes in use today. Although proposed in the 1960s, they only became practical in the 1990s
due to improvements in computing power. LDPC codes are linear block codes represented by
sparse matrices, meaning that most of the entries in the parity-check matrix are zeros. This
sparsity makes both encoding and decoding more efficient. LDPC decoding uses an iterative
approximation algorithm, often called belief propagation, which incrementally refines its
estimate of the transmitted message by comparing received data with possible valid
codewords and updating beliefs about bit values based on inconsistencies. LDPC codes can
achieve performance very close to the theoretical limits of error correction defined by
Shannon's theorem, especially with large block sizes. They are now used in high-performance
systems such as 10 Gbps Ethernet, digital television broadcasting (DVB), power-line
communication systems, and newer versions of Wi-Fi (IEEE 802.11). Their excellent error
correction capability and scalability make them a promising standard for the future of data
communication systems.

8.3 ERROR DETECTING CODES

Error-correcting codes play a critical role in ensuring the reliability of data transmission,
especially over unreliable communication channels like wireless links, where noise and
interference can introduce frequent errors. These codes help detect and sometimes correct
errors without the need for retransmission. However, in high-quality transmission media such
as fiber optics or quality copper wires, where error rates are significantly lower, using error-
detecting codes combined with retransmission mechanisms is often more efficient. In this
context, three main types of linear, systematic block error-detecting codes are commonly
used: parity bits, checksums, and Cyclic Redundancy Checks (CRCs).

Parity bits are the simplest form of error detection. A single bit is added to a block of data to
make the total number of 1s either even (even parity) or odd (odd parity). This method can
detect any single-bit error by verifying if the parity still holds after transmission. However, it
cannot detect errors that affect two bits in such a way that the parity remains unchanged.
Parity checking is very efficient in terms of overhead, especially when the bit error rate is
low. For instance, adding just one bit per 1000-bit block results in minimal redundancy, and
any detected error can be corrected by retransmitting the entire block. Nevertheless, its
limitation lies in its inability to reliably detect multi-bit or burst errors, which are more
complex and frequent in noisy environments.

To improve upon simple parity, more advanced strategies such as using a rectangular matrix
of bits are employed. Here, parity bits are calculated for both rows and columns of the data
block, enhancing the ability to detect multiple errors spread across different areas of the
block. Even better results are achieved through a technique called interleaving, where the
order of bits is rearranged during transmission, so a burst error affecting a continuous
sequence of bits in the transmission gets spread across various rows and columns in the
matrix. This method ensures that the likelihood of undetected burst errors is significantly
reduced, as each column gets its own parity bit, and the burst error is unlikely to affect all
columns simultaneously.

Centre for Distance Education 8.6 Acharya Nagarjuna University

= | FAnsmit

N 1001110 order N 1001110
e 1100101 ¢ +— Burs!
t 1110100 | 10T et
w 1110111 w 1110111
o 1101111 Channel o 1101111
r 1110010 r 1110010
k 1101011 k 1101011
AAAAAL) LAAAAAR
1011110 100777
I_'_l
Parity bils Parity errors

Figure 8.3 Interleaving of parity bits to detect a burst error
8.3.1 Checksums

Checksums represent a broader category of error-detecting techniques and are commonly
found in higher-level protocols such as those used on the Internet. A checksum is typically
computed as a running sum of the data words (not bits), and then its complement is appended
to the message. When the receiver computes the sum of the received data plus the checksum,
the result should be zero if no error occurred. Unlike parity checks, which work on individual
bits, checksums are effective against errors that parity might miss, like two-bit errors
occurring in different locations that cancel each other out. The Internet checksum is an
example that operates on 16-bit words and uses one’s complement arithmetic, which
enhances error detection coverage and allows convenient representation of a “null
checksum.”

Despite their simplicity, checksums have limitations, especially in detecting certain structured
errors, such as swapped sections of data or the insertion of zeroes. To overcome these
weaknesses, more sophisticated checksum variants like Fletcher’s checksum include a
positional component, where each data word’s position in the message is factored into the

sum, significantly improving the error detection ability for certain types of errors.

Frame: 1 1 0101 11 11
Generator: 1 011

11 L] 1 1 1 0 =— Quotient (thrown away)
10011 ll"‘l 101011 1110 00 0=— Frame with four zeros appended
100114 8 IR
Too0 11 s
10011 % ¢! I
coo001 o F sy L
00000y ;o odod
ooo1 1 ! oFb o1
00000 & @ &0
oo 1 11 : ;70
OO0 0 00 ¥ i i 4!
o1 1113 @ 13
o000 oy o3l
111 10 : : i
10011 § & 3
11 01 O 7 3}
1001 1 4
100 10
100 1 1 ¥
oo 01 0
o0 0 0 0
1 0 =— Remainder
Transmitted frame: 1101 a1 11 11 001 0= Frame with four zeros appended

minus remaindear

Figure 8.4 Example calculation of the CRC

Computer Networks 8.7 ERROR DETECTION AND CORRECTION

8.3.2 CRCs

Cyclic Redundancy Checks, are among the most robust and widely used error-detecting
codes at the data link layer. They treat the binary message as a polynomial, where each bit
represents a coefficient (either O or 1). Using polynomial division in modulo-2 arithmetic, a
remainder is computed by dividing the message polynomial, extended with zero bits, by a
fixed generator polynomial agreed upon by both sender and receiver. This remainder is then
appended to the original data. At the receiving end, the entire message (data plus remainder)
is divided by the same generator polynomial. If the result is not divisible (i.e., the remainder
is nonzero), an error has occurred.

CRCs can detect a wide variety of error types, including all single-bit errors, all double-bit
errors (assuming appropriate generator polynomial selection), all odd numbers of bit errors,
and all burst errors up to a certain length. For example, a generator polynomial with a degree
of r will detect all burst errors of length < r, and will detect longer bursts with a high
probability. Carefully chosen generator polynomials, such as the standard CRC-32 used in
IEEE 802 networks, are designed to offer strong error-detecting properties for typical
message sizes and transmission environments.

8.4 SUMMARY

This chapter explains how error detection and correction maintain data accuracy during
transmission. Error-correcting codes not only detect but also fix errors at the receiver end,
ensuring reliability without retransmission. Error-detecting codes, such as parity bits,
checksums, and CRC, identify transmission errors so data can be resent. Together, these
methods protect information integrity and enhance communication reliability across noisy or
unreliable network channels.

8.5 TECHNICAL TERMS
Error detection, error correction, parity bit, check sum, CRC

8.6 SELF ASSESSMENT QUESTIONS
Essay questions:

Explain the concept of error detection and correction in data communication.
Describe different types of error-correcting codes with examples.

Discuss the working of error-detecting codes such as parity and checksum.
Compare error detection and error correction methods.

Explain how error control ensures reliable data transfer across networks.

Nk W=

Short Questions:

What is the purpose of error detection and correction?
Define an error-correcting code.

What is an error-detecting code?

Mention one technique used for error detection.
Mention one method used for error correction.

M

Centre for Distance Education 8.8 Acharya Nagarjuna University

8.7 FURTHER READINGS
1. Andrew S. Tanenbaum, “Computer Networks”, Fourth Edition, PHIL
2. James F.Kurose, Keith W.Ross, “Computer Networking”, Third Edition, Pearson
Education
3. Behrouz A Forouzan, “Data Communications and Networking”, Fourth Edition, TMH
(2007)
4. Michael A. Gallo, William M. Hancock, “Computer Communications and

NetworkingTechnologies”, Cengage Learning (2008)

Dr. Neelima Guntupalli

LESSON-9
ELMENTARY DATA LINK PROTOCOLS

OBJECTIVES:

After going through this lesson, you will be able to

= Understand the concept of data link layer protocols.
= Learn about the unrestricted simplex protocol.

= Study the simplex stop-and-wait protocol.

= Understand the simplex protocol for a noisy channel.
= Compare different elementary data link protocols.

STRUCTURE OF THE LESSON:

9.1
9.2
9.3

9.4
9.5
9.6
9.7
9.8

INTRODUCTION

THE UTOPIAN SIMPLEX PROTOCOL

A SIMPLEX STOP-AND-WAIT PROTOCOL FOR AN ERROR- FREE
CHANNEL

A SIMPLEX STOP AND WAIT PROTOCOL FOR A NOISY CHANNEL
SUMMARY

TECHNICAL TERMS

SELF-ASSESSMENT QUESTIONS

FURTHER READINGS

9.1 INTRODUCTION

This section introduces the foundational model for data link layer protocols by assuming that
the physical, data link, and network layers operate as independent processes that
communicate through message passing. Typically, part of this functionality is handled by
hardware (like the NIC), while the rest runs in software on the main CPU. The sender
(machine A) is assumed to always have data ready to send to the receiver (machine B) over a
reliable, connection-oriented service, and machines do not crash. A packet is passed from the
network layer to the data link layer, which encapsulates it into a frame with a header and
trailer before sending it across the physical layer. Key C structures and procedures are
defined to handle events (e.g., frame arrival, timeout), manage timers, and ensure modular
interaction between layers.

Centre for Distance Education 9.2 Acharya Nagarjuna University

+—— Computer

Applicati;D

—— Operating system

Metwork

— Driver
; Metwork Interface
e ,— Cad(NI)
PHY
L

Cable (medium)

Figure 9.1 Implementation of the physical, data link and network layers

Importantly, the network layer is unaware of frame headers, allowing for clean separation
and easier system updates or changes. This setup supports building and analyzing simple to
complex data link protocols in a modular and event-driven way.

9.2 THE UTOPIAN SIMPLEX PROTOCOL

The "Utopia" protocol is a simple, one-way data link layer protocol designed to illustrate the
basic structure of communication between sender and receiver, assuming perfect conditions.
It assumes that the channel never loses or corrupts frames, both the sender and receiver are
always ready, and there is infinite buffer space and processing speed. The sender
continuously fetches packets from the network layer, encapsulates them into frames, and
sends them out without any flow control or error checking. On the other side, the receiver
waits for frame arrival, retrieves the frame from the physical layer, and passes its data to the
network layer. Since no sequence numbers or acknowledgments are used, this protocol
reflects an idealized model that lacks the robustness needed for real-world communication.

/= Protocol 1 (Utopia) provides for data transmission in one direction only, from
sander to receiver. The communication channel is assumed to be error free
and the receiver is assumed to be able to process all the input infinitely quickly.
Consequently, the sender just sits in a loop pumping data out onto the line as
fast as it can. =/

typedef enum {frame_arrival} event_type;
#include "protocol.h”

woid sender! (void)

{
frame s; /= butfer for an outbound frame =/
packeat buffar; f+ buffer for an outbound packat =/

while (rue) {

from_network_layer{&buffer); /= go get something to send «/
s.info = buffer; f* copy it into s for ransmission +/
to_physical _layer(&s); /= send it on its way =/

¥ I+ Tomaorrow, and tomorrow, and tomorrow,
Creeps in this petty pace from day to day
To the last syllable of recorded time.
— Macbeth, WV, v =/
1

wvoid receiver! (void)

frame r;

event_type event; /= filled in by wait, but not used here =/

whiile (true) {
wait for event(&event); /= only possibility is frame arrival =/
from_physical layern(&r); /= go get the inbound frame «/f
to_network_layer(&r.info); /= pass the data to the network layer «/

Figure 9.2 A utopian simplex protocol

Computer Networks 9.3 ELEMENTARY DATA LINK PROTOOCLS

The Utopia protocol is a basic and highly idealized example of a data link layer protocol used
to illustrate core concepts without involving any complexity. In this protocol, data
transmission 1is strictly one-way, from sender to receiver, with several unrealistic
assumptions: both ends are always ready, there is no processing delay, infinite buffer space is
available, and the channel is perfect, meaning no data loss or corruption ever occurs. As such,
the protocol requires no acknowledgements or sequence numbers, and the only event the
receiver handles is the arrival of a correct frame. The sender simply sends frames
continuously, while the receiver immediately delivers each received frame to the network
layer. Although completely impractical, Utopia serves as a foundation to understand how
more realistic protocols build upon this simple structure.

The Utopia protocol represents the simplest form of a data link layer protocol, operating
under ideal conditions with no errors, no lost frames, infinite buffer space, and immediate
readiness of both the sender and receiver. In this protocol, the sender runs in an infinite loop
where it continuously fetches packets from the network layer, constructs frames using only
the data field (info), and sends them to the physical layer without any concern for
acknowledgements, sequence numbers, or retransmissions. On the receiving end, the receiver
also operates in an infinite loop, waiting for frames to arrive. Once a frame is received, it
extracts the data from the frame and passes it to the network layer, then returns to waiting for
the next frame. This protocol illustrates the basic structure of a data link layer protocol in a
perfect environment, serving as a foundation for understanding more realistic protocols that
handle errors and flow control.

9.3 A SIMPLEX STOP-AND-WAIT PROTOCOL FOR AN ERROR- FREE
CHANNEL

To address the problem of a fast sender overwhelming a slower receiver, a flow control
mechanism is introduced using a protocol called stop-and-wait. Unlike the earlier "Utopia"
protocol, where the sender sent frames without restriction, this protocol ensures that the
sender sends one frame and then waits for an acknowledgment from the receiver before
sending the next. Although the data itself flows only from sender to receiver (simplex),
acknowledgments travel back, requiring the communication channel to support bidirectional
transfer. After processing a received frame and passing its data to the network layer, the
receiver sends an acknowledgment frame to the sender. This handshake-like process ensures
the receiver isn’t flooded and represents a simple yet effective form of flow control.

To prevent the sender from overwhelming the receiver with frames faster than it can
handle—a common and important practical issue—the text considers a few strategies.
Although the communication channel is assumed to be error-free and the data flow is simplex
(one-way), problems still arise if the receiver cannot process incoming frames quickly
enough. One naive solution is to build the receiver to be extremely fast and powerful, capable
of handling a continuous stream of back-to-back frames without delay. This would require it
to have ample buffering and high processing speeds, enabling it to pass received frames to the
network layer as fast as they arrive. However, this approach is inefficient and unrealistic in
many cases. It demands expensive, dedicated hardware and wastes resources when traffic
load is low. Worse, it doesn’t truly solve the problem—it simply shifts the burden from the
data link layer to the network layer. Thus, a more balanced and scalable solution is needed to
manage flow control effectively.

Centre for Distance Education 94 Acharya Nagarjuna University

To prevent the sender from overwhelming the receiver, a stop-and-wait protocol is used. In
this method, after sending one frame, the sender waits for an acknowledgement from the
receiver before sending the next frame. The receiver, after receiving and processing a frame,
sends back a simple acknowledgement frame. This ensures the receiver can keep up with the
sender, preventing buffer overflow. Even though data flows in one direction,
acknowledgement frames flow back, so the channel must support two-way communication.
This method provides basic flow control in an error-free communication environment.

9.4 A SIMPLEX STOP AND WAIT PROTOCOL FOR A NOISY CHANNEL

This section introduces the stop-and-wait ARQ (Automatic Repeat reQuest) protocol, which
improves upon previous protocols by handling errors in transmission such as lost or damaged
frames. In this protocol, the sender attaches a sequence number (0 or 1) to each frame. When
a frame is received correctly, the receiver acknowledges it and updates its expectation to the
next sequence number. If the frame is damaged or a duplicate (same sequence number as the
previous one), it is discarded, and the last valid acknowledgement is resent. The sender starts
a timer after sending a frame; if no acknowledgement is received before the timer expires, it
retransmits the frame. This method ensures that frames are delivered reliably and exactly
once, even over unreliable channels. Using a 1-bit sequence number suffices because the only
ambiguity that needs to be resolved is between a frame and its immediate predecessor. This
simple yet powerful mechanism ensures correctness while enabling basic error and flow
control in one-way data transmission.

In real-world communication channels, errors such as damaged or lost frames can occur.
Typically, damaged frames are detected using a checksum mechanism. If a frame is corrupted
but still passes the checksum (rare but possible), it may lead to incorrect delivery of data. A
seemingly simple solution is to enhance the stop-and-wait protocol by adding a timer: the
sender waits for an acknowledgment (ACK), and if it doesn't arrive within a certain time, it

resends the frame.

/= Protocol 2 (Stop-and-wait) also provides for a one-directional flow of data from
sender to receiver. The communication channel is once again assumed to be emor
free, as in protocol 1. However, this time the receiver has only a finite buffer
capacity and a finite processing speed, 50 the protocol must explicitly prevent
the sender from flooding the receiver with data faster than it can be handled. =/

typedef enum {frame_arrival} event_type;
#include “protocol.h®

wvoid sender2(void)

{

frame s; f« buffer for an cutbound frame «/
packet buffer; f+ buffer for an cutbound packet =/
event_type event; f= frame_arrival is the only possibility =/

while (true) {

from_network_layer(&buffer); f+ go get something to send «/

s.info = buffer; f= copy it into s for transmission =/
to_physical_layer(&s),; = bye-bye little frame =/
wait_for_ewvent(&eawvent); f= do not proceed until given the go ahead =/

b
}

woid receiver2(void)
{

frame r, s; f= puffers for frames =/

event_type event; f= frame_arrival is the only possibility =/

while (true) {
wait_for_event(&avent); f+ anly possibility is frame_arrival «/
from_physical_layer(&r); f= go get the inbound frame =/
to_network_layer(&r.info); /+ pass the data 1o the network layer /
to_physical_layer(&s); f= send a dummy frame to awaken sender «/

Figure 9.3 A simple stop-and-wait protocol

Computer Networks 9.5 ELEMENTARY DATA LINK PROTOOCLS

However, this approach has a critical flaw. Suppose the receiver gets a frame and processes it
correctly, but the ACK is lost on the way back. The sender then retransmits the frame,
thinking it was lost. The receiver, unaware it's a duplicate, processes and delivers it again to
the network layer, resulting in duplicate data delivery.

This violates the core responsibility of the data link layer: to ensure error-free, in-order, non-
duplicated delivery to the network layer. To fix this issue, frames must include sequence
numbers so the receiver can detect duplicates and discard them, ensuring reliable and
accurate communication.

Consider the following scenario:

1. Packet 1 is sent by machine A and correctly received by machine B. B then passes it
to its network layer and sends an acknowledgement (ACK) back to A.

2. The ACK is lost in the communication channel. Since the channel is unreliable, it can
drop control frames (ACKs) just like data frames.

3. After waiting for a while, A does not receive the ACK, so it assumes the packet was
lost and resends packet 1.

4. Machine B, seeing a valid packet, assumes it's new and delivers it again to its network
layer, causing duplicate delivery.

This is a protocol failure: B’s network layer ends up with two copies of the same packet. If A
was sending a file, B would get some part of the file twice, corrupting the output.

Solution:

To fix this, we need to identify duplicates, which is done by adding sequence numbers to the
frames. This way, the receiver can detect that a frame it has already processed is being
repeated and ignore it, thus preventing duplication and ensuring reliable, ordered delivery.

To ensure reliable communication over a channel that may lose or damage frames, the
protocol needs a way for the receiver to tell whether an incoming frame is new or a
retransmission of a previously received frame. Without this distinction, the receiver might
mistakenly deliver duplicate packets to the network layer, causing errors such as repeated
data. The common solution is for the sender to include a sequence number in each frame’s
header. This sequence number allows the receiver to identify each frame uniquely and decide
whether to accept or discard it.

A key design question is how many bits the sequence number needs. Since the header size
affects the efficiency of the protocol, the sequence number field should be as small as
possible while still preventing errors. Interestingly, in a simple stop-and-wait protocol, only a
1-bit sequence number is necessary. This bit alternates between 0 and 1 for consecutive
frames. At any time, the receiver expects a frame with a specific sequence number. When a
frame with that number arrives, it accepts the frame, passes the data to the network layer, and
sends an acknowledgement. The expected sequence number then flips to the other value (0
becomes 1, or 1 becomes 0).

The reason one bit suffices is that the only possible confusion occurs between a frame and its
immediate predecessor or successor. The sender only sends the next frame after receiving an
acknowledgement for the current one, ensuring no overlap beyond adjacent frames. If an
acknowledgement is lost, the sender will retransmit the same frame, and the receiver will

Centre for Distance Education 9.6 Acharya Nagarjuna University

recognize it as a duplicate by its sequence number and discard it. This simple use of sequence
numbers helps the protocol provide reliable, error-free communication over an imperfect
channel.

This protocol (called ARQ) ensures reliable data transfer by having the sender wait for an
acknowledgement before sending the next frame. Both sender and receiver use sequence
numbers to track frames and detect duplicates.

The sender starts a timer after sending a frame and waits for an acknowledgement. If the
timer expires or a damaged acknowledgement arrives, the sender retransmits the frame. If a
valid acknowledgement arrives, the sender moves on to the next frame.

The receiver accepts frames with the expected sequence number, delivers them to the
network layer, and sends acknowledgements. Duplicate or damaged frames are ignored, but
the receiver still sends acknowledgements to keep the sender informed. This process helps
handle lost or damaged frames and acknowledgements, ensuring correct data delivery.

9.5 SUMMARY

This chapter introduces elementary data link protocols used for reliable communication
between two directly connected devices. The unrestricted simplex protocol assumes an ideal
channel with no errors or flow control needs. The simplex stop-and-wait protocol adds
synchronization by allowing the sender to wait for an acknowledgment before sending the
next frame. The simplex protocol for a noisy channel further enhances reliability by including
error detection and retransmission mechanisms. These protocols form the foundation for
understanding more advanced communication techniques.

9.6 TECHNICAL TERMS
Simplex protocol, Unrestricted simplex protocol, stop-and-wait protocol, frame,

9.7 SELF ASSESSMENT QUESTIONS

Essay questions:

1. Explain the working of an unrestricted simplex protocol.

2. Describe the operation of the simplex stop-and-wait protocol with an example.

3. Discuss the design and working of a simplex protocol for a noisy channel.

4. Compare unrestricted simplex, stop-and-wait, and noisy channel protocols.

5. Explain how these elementary protocols contribute to reliable data communication.
Short Questions:

1. What is a simplex communication channel?

2. Define an unrestricted simplex protocol.

3. What is the main idea of the stop-and-wait protocol?

4. How does a noisy channel affect data transmission?

5. What is the purpose of acknowledgments in data link protocols?

Computer Networks 9.7 ELEMENTARY DATA LINK PROTOOCLS

9.8 FURTHER READINGS
1. Andrew S. Tanenbaum, “Computer Networks”, Fourth Edition, PHI.
2. James F.Kurose, Keith W.Ross, “Computer Networking”, Third Edition, Pearson
Education
3. Behrouz A Forouzan, “Data Communications and Networking”, Fourth Edition, TMH
(2007)
4. Michael A. Gallo, William M. Hancock, “Computer Communications and

NetworkingTechnologies”, Cengage Learning (2008)

Dr. U. Surya Kameswari

LESSON- 10
SLIDING WINDOW PROTOCOLS AND STANDARD
DATA LINK LAYER PROTOCOLS

OBJECTIVES:

After going through this lesson, you will be able to

Understand the concept of sliding window protocols for reliable data transfer.
Learn the one-bit sliding window protocol.

Study the Go-Back-N protocol and its working.

Understand the selective repeat protocol.

Examine example data link protocols such as HDLC and the Internet data link
layer.

STRUCTURE OF THE LESSION:

10.1 INTRODUCTION

10.2 A ONE BIT SLIDING WINDOWS PROTOCOL
10.3 A PROTOCOL USING GO-BACK-N

10.4 A PROTOCOL USING SELECTIVE REPEAT
10.5 HDLC

10.6 SUMMARY

10.7 TECHNICAL TERMS

10.8 SELF-ASSESSMENT QUESTIONS

10.9 FURTHER READINGS

10.1 INTRODUCTION

Earlier protocols only sent data in one direction, which is often impractical because most
communications require two-way (full-duplex) data transfer. One simple solution is to run
two separate one-way protocols—one for each direction—but this wastes the capacity of the
reverse channel, which mainly carries acknowledgements.

A more efficient approach is to use the same communication link for data going both ways.
Since acknowledgements and data frames both travel over the same link, the receiver
distinguishes between them by checking the frame’s header. This way, data and
acknowledgements are interleaved on a single channel, making better use of the available
capacity.

Interleaving data and control frames on the same link is an improvement, but it can be made
even more efficient through piggybacking. Instead of sending a separate acknowledgement
frame immediately when a data frame arrives, the receiver waits until it has its own data to

Centre for Distance Education 10.2 Acharya Nagarjuna University

send back. Then it attaches the acknowledgement to that outgoing data frame in the header’s
ack field.

Piggybacking improves channel bandwidth use because the acknowledgement only adds a
few bits to the data frame header, whereas a separate acknowledgement frame requires a full
header, checksum, and processing. This reduces the number of frames sent and eases the
receiver’s processing load. Typically, the piggyback field is just 1 bit in size, making it a very
lightweight and efficient method.

Piggybacking introduces a timing challenge: the data link layer must decide how long to wait
for a new outgoing data packet to attach the acknowledgement to. If it waits too long—Ilonger
than the sender’s timeout period—the sender will retransmit the frame unnecessarily,
defeating the purpose of piggybacking.

Since the data link layer cannot predict when the next packet will arrive, it uses a practical
approach like waiting a fixed short time. If a new packet comes in quickly, the
acknowledgement is piggybacked onto it; otherwise, a separate acknowledgement frame is
sent after the timeout.

Following this, the text introduces sliding window protocols, which are bidirectional and
more efficient. These protocols use sequence numbers for frames, typically fitting into an n-
bit field, allowing for multiple outstanding frames. The simplest sliding window protocol is
the stop-and-wait with just one-bit sequence numbers (0 and 1), while more advanced ones
use larger sequence numbers for greater efficiency.

Sliding window protocols work by having the sender keep track of a “sending window,”
which is a set of sequence numbers representing frames it is allowed to send. At the same
time, the receiver keeps a “receiving window,” representing the frames it is ready to accept.
These windows control which frames can be sent and received at any given moment. The size
and position of these windows can be fixed or dynamic, depending on the protocol.

Even with this flexibility, the protocols still ensure that packets reach the network layer in the
correct order, maintaining a “wire-like” behaviour where frames arrive in the same sequence
they were sent.

The sender’s window includes frames that have either been sent but not yet acknowledged or
are allowed to be sent. When a new packet arrives from the network layer, it is assigned the
next sequence number, and the upper edge of the sending window moves forward. When the
sender receives an acknowledgement, the lower edge of the window advances, effectively
sliding the window forward. This way, the sender keeps track of unacknowledged frames.

Because frames within the sending window might get lost or damaged, the sender must keep
copies of all these unacknowledged frames in memory so they can be retransmitted if needed.
If the window reaches its maximum size (meaning all buffers are full), the sender must pause
accepting new packets from the network layer until some acknowledgements free up buffer
space.

Computer Networks 10.3 SLIDING WINDOW PROTOCOL...

Sender 7 0 7 o 7 0 7 o
E—I_/\'(11 E—{_)(/— ><_|:1 E—[_)(- l><_'=,_1 E+P(—~>§:|_1
5\()gz SX"—I—’XZ 534__4_/%2 5X_+J>/z

Recaiver

S I R
0 0 £

{a) {b) (ch {d)

Figure 10.1 A sliding window of size 1, with a 3-bit sequence number (a) Initially, (b)
After the first frame has been sent. (c) After the first frame has been received. (d) After the
first acknowledgment has been received

LA

40
£ |

o

. x*‘x .

The receiver’s data link layer maintains a “receiving window” that defines which frames it is
allowed to accept. Any frame whose sequence number falls inside this window is stored in
the receiver’s buffer. When the receiver gets the frame that matches the lower edge (the next
expected sequence number) of the window, it passes that frame up to the network layer and
then slides the window forward by one position. Frames that arrive outside this window are
discarded because they are either duplicates or out of order.

The receiver sends acknowledgements to inform the sender about which frames it has
successfully received, helping the sender decide what to do next.

If the window size is 1, the receiver only accepts frames strictly in order. However, for larger
window sizes, the receiver can accept out-of-order frames and buffer them until the missing
frames arrive, ensuring the network layer always receives data in the correct order.

Unlike the sender’s window, which can grow and shrink, the receiver’s window size remains
fixed but “rotates” as frames are accepted and delivered to the network layer.

This code implements Protocol 3, a simple stop-and-wait Automatic Repeat reQuest (ARQ)
protocol for reliable unidirectional data transmission over an unreliable channel. The sender
maintains a sequence number (either 0 or 1) for each frame it sends and waits for a positive
acknowledgement before sending the next frame. When the sender transmits a frame, it starts
a timer and waits for an acknowledgement. If the acknowledgement matches the sequence
number of the sent frame, the sender stops the timer, increments the sequence number,
fetches the next packet from the network layer, and sends the next frame. If no valid
acknowledgement arrives before the timer expires, the sender retransmits the same frame. On
the receiving side, the receiver keeps track of the expected sequence number. When it
receives a frame with the expected sequence number, it delivers the data to the network layer
and sends back an acknowledgement indicating the last correctly received frame. Frames
with unexpected sequence numbers are discarded as duplicates. This protocol ensures reliable
and ordered delivery of data frames despite possible loss or corruption in the transmission

Centre for Distance Education

10.4

Acharya Nagarjuna University ‘

channel, using only a single-bit sequence number to differentiate between new frames and

retransmissions.

/= Protocol 3 (PAR) allows unidirectional data flow over an unreliable channel, =/

#defing MAX_SEQ 1

J= must ba 1 for protocol 3 «/

typedef enum {frame_arrival, cksum efr, timeout) evenl type:

finclude "protocol h*

void sender3jvoid)
{
seq_nr next_frame_to_send;
frame s;
packet buffor;
event type avent;

naxt_frama_to_send = 0;
from_natwork_layor|{&buffor);
while (trua) |
s.info = buffer;
5.58q = next_frame_to send;
to_physical layer(&s);
start_timer(s.seq):
wait_for_event{&event);
it (event == frame_arrival) {
from_physical layer{&s):
if (s.ack == next_frame_lo_send) |
stop_timer|s.ack);
trom_network_layer{&butter):
inc{next_frame_to_send);

}
}

i

voll recaiver3|vosd)

{
sog._nr frame_oxpected;
frameé r, 8
evenl_typs event;

frame_expected = 0;
while (trua) {
walt_for_avent|&avent);
if (event == frame_arrival) |
from_physical_layor(&r);
if (r.aoq == framo_sxpectad) |
io_network layer & nfo);
inc{irame_expactad];
)
s.ack = 1 = frame_expected;
to_physical layenis);

/= gag number of next outgoing frame =/
J= scratch varable =/
J= buffer for an outbound packet =/

J+ inftialize cutbound sequence numbers =/
/= fotch first packet =/

J= construct & frame for tranamission =f
J= insert sequence numbear in frame */

J+ send it on its way =/

J* if answor takes too long, time out =/

J= frame_arrival, cksum_err, imeoul =/

/« get tha acknowledgement =/

J= turm the timer off =/
fu gﬂ‘t thé naxt oné 1o send =/
/= invarl next_frama_to_send */

/= possibilities: frame_arrival, cksum_esir =/
/= a valid frame has armived =/

/+ go gat the newly arived frama =/

J* this is what we have boen waiting for =/
/+ pass the data to the network layer s/

/= naxt time expact the other segquence nr +/

J* tall which frame is being acked */
f+ send acknowledgement =/

Fioure 314 A sosinve schsowledsement with fetfanumicng seolocal

Figure 10.2 A positive acknowledgement with retransmission protocol

10.2 A ONE BIT SLIDING WINDOWS PROTOCOL

This passage explains a sliding window protocol with a window size of 1, which essentially
operates as a stop-and-wait protocol. In this setup, the sender transmits one frame and then
waits for its acknowledgement before sending the next frame. At the start, only one side
initiates transmission by sending the first frame outside the main loop. The receiver checks
incoming frames to detect duplicates; if the frame is the expected one, it passes the data to the
network layer and slides its receiving window forward. The acknowledgement sent back

Computer Networks 10.5 SLIDING WINDOW PROTOCOL...

contains the sequence number of the last correctly received frame. The sender uses this
acknowledgement to decide whether to move on to the next packet or to retransmit the same
frame if the acknowledgement does not match. Whenever a frame is received, an
acknowledgement frame is also sent in return.

The passage then discusses potential issues with this protocol in a two-way communication
scenario (Protocol 4). For example, if both computers A and B simultaneously send frame 0
to each other, and A’s timeout is too short, A might repeatedly resend the same frame before
receiving a valid acknowledgement. The receiver (B) will accept the first frame, update its
expected sequence number, and reject all subsequent duplicate frames. B will keep sending
acknowledgements for the last correctly received frame until A eventually gets the correct
acknowledgement and moves on. This ensures the protocol is reliable—it prevents duplicates,
dropped packets, or deadlocks.

Asends (0.1, AD]H"‘H—-—. A sands (0, 1, AD) B sends (0, 1, BO)
B geis (0.1, AD)* B gets (0, 1, AD)"
f#_#,_. B sends [ﬂ-.I:I.BJI:I] B sends (0, 0, E]cl}
A gets (0, 0, BO)* "
A gets (0, 1, BO)
A sends (1, 0, m]"‘“'-—-—. Bgets (1,0 AE. A sends (0, 0, AD)
B zends (1, 1, B1) B gats (0, 0, AQ)
iqgtsd“r'DLPE;]ﬁ A gets (0, 0, BO) B sends (10,81
sends (0, 1, gets (@, 0,
—_— B gels (0, 1, AZ)" A sands (1,0, A1) 8) A
ats {1, 0, A1)°
igetsd{nr. o, Bir o Beends{0,0,B2) B sands (1.1, [-.‘?1]
sends (1, 0, A3 &
' — B gets (1, 0, A3)" A gets (1, 0, B1)

; A sends (1,1, A1
B sends (1, 1, B3) { — Bgets (1,1, A1)
B =ands (0, 1, B2)

'
a) Time (b)
Figure 10.3 Two scenarios for protocol 4. (a) Normal case. (b) Abnormal case. The
notation is (seq.ack, packget number). An asterisk indicates where a network layer accepts

a packet.

However, the text also highlights a subtle synchronization problem when both sides start
transmitting at exactly the same time. Their frames may cross paths, causing duplicate frames
to appear even though there are no transmission errors. This can waste bandwidth due to
multiple retransmissions triggered by premature timeouts, showing how timing and protocol
interactions can complicate even seemingly straightforward communication processes.

This code snippet illustrates Protocol 4, a simple 1-bit sliding window protocol used for
bidirectional communication. It works with sequence numbers limited to 0 and 1, which
keeps track of the frames being sent and received.

e Variables:
o next frame to send indicates the sequence number of the next frame the sender wants
to transmit.
o frame expected indicates the sequence number the receiver is waiting for. Both are
either O or 1.

Centre for Distance Education 10.6 Acharya Nagarjuna University

e Sending:

Initially, the sender fetches a packet from the network layer, creates a frame with the current
next frame to send sequence number, and includes an acknowledgement (ack) for the last
correctly received frame from the other side. It then sends the frame and starts a timer.

I+ Protocol 4 (Sliding window) is bidirectional. =/

idefine MAX_SEQ 1

I+ must be 1 for protocal 4 +/

typedef enum {frame_arrival, cksum_err, timeout} event_type;

#include “protocol.h”
void protocold (void)

{
seq nr next frame to_send;
seq_nr frame_expected;
frame r, s;
packet buffer;
event_type event;

next_frame_to_send = 0;
frame_expected = O;
from_network_layer|{&buffer);
s.info = buffer;
5580 = next_frame_to_send;
s.8ck = 1 - frame_expected;
to physical layer{&s);
start_timer(s.seq);
while {true) {
wait_for event{&event);
if (event == frame_arrival) {
from_physical_layer(&r);
if (r.seq == frame_expected) {
to_network_layer(&r.info);
inciframe_expected);
}

if (r.ack == next_frame_to_send) {
stop_timer{r.ack);

from_network_layer(&buffer);

inc{next_frame_to_send);

}

s.info = buffer;

s.seq = next_frame_to_send;
s.ack = 1 - frame_expected;
to physical layeri&s);
start_timer(s.seq);

f+ 0 or 1 only +/

I+ 0 or 1 only +/

!+ scrateh variables +/

[+ current packet being sent =/

i+ next frame on the outbound stream =/
[+ frame expected next =/

I+ fetch a packet from the network layer +/
[+ prepare to send the initial frame +/

/* insert sequence number into frame =/
[+ piggybacked ack */

[+ transmit the frame +/

[+ start the timer running +/

/* frame_arrival, cksum_err, or timeout =/
[+ a frame has arrived undamaged =/

I+ go getit =/

i+ handle inbound frame stream =/

[+ pass packet to network layer +/

I+ invert seq number expected next +/

/* handle outbound frame stream =/
[+ turn the timer off =/

I+ fetch new phkt from network layer +/
[* invert sender's sequence number =/

/* ponstruct outbound frame */

/* insert sequence number into it =/

/* seq number of last received frame =/
[+ transmit a frame */

I+ start the timer running */

Figure 10.4 A 1-bit sliding window protocol

e Receiving:

When a frame arrives without errors, the receiver checks if its sequence number matches

frame expected. If yes, it delivers the data to the network layer and

e increments frame expected. It also checks the acknowledgement field in the received

frame; if the ack matches next frame to send, it stops the timer and fetches
 a new packet to send, incrementing the sequence number.

« Bidirectional flow:

Each frame carries both data and an acknowledgement (piggybacking), so
communication happens simultaneously in both directions on the same link.

Computer Networks 10.7 SLIDING WINDOW PROTOCOL...

e Timer:
The timer ensures retransmission if an acknowledgement is not received in time, handling
potential frame loss or errors.

In summary, this protocol maintains simple flow control and reliable delivery by sending
frames one at a time, acknowledging received frames, and resending if necessary — all while
supporting simultaneous two-way communication.

10.3 A PROTOCOL USING GO-BACK-N

This passage discusses a major limitation of stop-and-wait protocols—their inefficiency over
high-delay links, such as satellite channels. The key problem arises when the round-trip time
(RTT) is significant compared to the transmission time of a single frame. For example,
consider sending 1000-bit frames over a 50-kbps satellite link with a 500-millisecond round-
trip delay. When the sender transmits a frame, it finishes sending in 20 milliseconds, but the
receiver doesn't get it until 270 ms, and the acknowledgement returns only after 520 ms. This
means that the sender is blocked (i.e., waiting idle) for 500 out of every 520 milliseconds—
wasting 96% of the available bandwidth.

The root cause is the stop-and-wait approach, where the sender waits for an
acknowledgement before sending the next frame. To fix this, the protocol must allow the
sender to transmit multiple frames before needing to stop. This is achieved using sliding
window protocols, where the sender can transmit up to w frames before blocking.

To choose an efficient value for w, we calculate the bandwidth-delay product (BD)—the
number of bits that can "fit" in the channel at one time. BD is computed as
BD = bandwidth (in bits/sec) x one-way propagation delay (in sec)

Dividing BD by the number of bits per frame gives the number of frames that can be in
transit. The optimal window size is then:

w=2xBD+1

The 2 x BD accounts for round-trip propagation, and the +1 ensures the sender always has
something to do while waiting for acknowledgements. This approach dramatically improves
bandwidth utilization, especially on long-delay or high-speed links.

The technique of pipelining, where multiple frames are sent without waiting for individual
acknowledgements, greatly improves efficiency but also introduces complex reliability
challenges over unreliable communication channels. A key issue arises when a frame in the
middle of the transmission is lost or damaged. Because the sender continues to transmit
additional frames before receiving feedback, the receiver might get many correct frames after
the lost one.

However, the receiver cannot deliver these subsequent frames to the network layer
immediately, even if they are error-free. This is because frames must be delivered in order,
and the one that was lost or damaged creates a gap in the sequence. Therefore, the receiver is
forced to discard or buffer the correct frames that follow until the missing one is properly
retransmitted and received.

This situation emphasizes the complexity of pipelined communication—it requires
sophisticated mechanisms for error detection, acknowledgement, retransmission, and buffer

Centre for Distance Education 10.8 Acharya Nagarjuna University

management, all while ensuring that packet order is preserved for delivery to higher layers.
These challenges are addressed by advanced sliding window protocols such as Go-Back-N
and Selective Repeat, which differ in how they handle errors and out-of-order frames.

| Timaout |nl:nr-.-al—-|

QNNMRRRRR

0 D [2] |] [e] [7] [g]

Errur Frarnus dlE-C.iI’d-Erd by data link layer

”ﬁ\i

I1_

Timg ———e

(a)

(SRAARARAR,

KA

Tr‘
ﬁhﬂﬂﬂ@@@@

¢

)

Ermr Frames buffered
by data link layer

(b}

Figure 10.5 Pipelining and error recovery. Effect of an error when (a) receiver’s window
size is 1 and (b) receiver’s window size is large

The diagram discusses two major strategies for handling errors in sliding window protocols
when multiple frames are in transit, known as Go-Back-N and Selective Repeat.

In the Go-Back-N strategy, the receiver only accepts frames in order, effectively maintaining
a receive window of size 1. If a frame is lost or damaged, the receiver discards that frame and
all subsequent ones until the missing frame is correctly received. It doesn’t send
acknowledgements for the discarded frames, causing the sender to eventually time out and
retransmit all unacknowledged frames starting from the lost one. This approach is simple but
can be inefficient, especially when the error rate is high, as it wastes bandwidth by resending
frames that were already received correctly but not acknowledged due to one earlier error.

In contrast, the Selective Repeat protocol uses a larger receive window and is more efficient.
If a frame is lost or damaged, the receiver discards just that frame but buffers all subsequent
correct frames. It sends a Negative Acknowledgement (NAK) for the missing frame,
prompting the sender to retransmit only the missing frame. Once it is received, the buffered
frames can be delivered to the network layer in order. This approach makes better use of
bandwidth but requires more memory at the receiver to store out-of-order frames.

The choice between Go-Back-N and Selective Repeat involves a trade-off between
bandwidth efficiency and memory usage. Go-Back-N is simpler and uses less memory but
can lead to more retransmissions, while Selective Repeat is more complex and memory-
intensive but reduces unnecessary retransmissions. Additionally, mechanisms like NAK and
flow control (e.g., using enable network layer () and disable network layer () functions)

Computer Networks 10.9 SLIDING WINDOW PROTOCOL...

help manage when the sender can send new packets, ensuring the protocol doesn't overwhelm
the receiver or violate window limits.

Protocol 5 introduces a more efficient approach to sliding window communication by
allowing multiple frames to be in transit at once, but it still faces the challenge of buffer
management. Although it doesn't require the receiver to buffer out-of-order frames (as in
Selective Repeat), the sender must retain copies of all unacknowledged frames because they
may need to be retransmitted if an error occurs. A key feature of this protocol is its use of
cumulative acknowledgements, where receiving an ACK for frame n implies that all frames
up to n have also been successfully received. This is particularly useful when some ACKs
have been lost or corrupted — the receipt of any later ACK can still trigger the release of
earlier frames from the sender’s buffer. This helps free up space in the sender's window,
allowing the network layer to send more packets.

f+ Protocol 5 (Go-back-n) allows multiple outstanding frames. The sender may transmit up
to MAX_SEQ frames without waiting for an ack. In addition, unlike in the previous
protocols, the network layer is not assumed to have a new packet all the time. Instead,
the network layer causes a network_layer_ready event when there is a packet to send. =/

#define MAX_SEQ 7
typedef enum {frame_arrival, cksum_err, timeout, network_layer_ready} event_type;
#include “protocol.h®

static boolean between(seg nr a, seq nr b, seg nr c)
{
f* Return true if a <= b < c circularly; false otherwise. +/
if ({((a<=b)&&(b<c))ll((c<=a)&&(a==Db)) Il (b =c)&& (c=a)))
return(true);
else
return(false);

static void send_data(seg_nr frame_nr, seq_nr frame_expected, packet buffer(])

{

M+ Construct and send a data frame. */

frame s; f+ scratch variable +/

s.info = buffer[frame_nr); /* insert packet into frame */

s.5eq = frame_nr; /* insert sequence number into frame =/
s.ack = (frame expected + MAX _SEQ) % (MAX _SEQ + 1);/+ piggyback ack =/
to_physical_layer(&s); [+ transmit the frame +/
start_timer(frame _nr); /+ start the timer running +/

}

void protocolS{void)

{

seg_nr next_frame_to_send; M MAX_SEQ = 1; used for outbound stream =/
saq nr ack expected; /+ oldest frame as yet unacknowledged =/
seq_nr frame_expected; f+ next frame expacted on inbound stream =/
frame r; f* scratch variable +/

packet buffer[MAX SECQ + 1]; I+ buffers for the outbound stream */

seq_nr nbuffered; M+ number of output buffers currently in use =/
seq_nri; f* used to index into the buffer array =/

event_type event;

enable network layer(); * allow network_layer _ready events =/
ack _expected = 0; M next ack expected inbound */
next_frame_to_send = O; M+ naxt frame going out +/

frame expected = 0; /* number of frame expected inbound */
nbuffered = 0; /* initially no packets are buffered =/

while (true) {
wail_for_event{&event); /* four possibilities: see event_type above =/

Centre for Distance Education 10.10 Acharya Nagarjuna University ‘

switch(event) {
case network layer ready: /+ the network layer has a packet to send */
/* Accept, save, and transmit a new frame. */
from_network_layer(&buffer[next_frame_to_send]); /= fetch new packet +/

nbuffered = nbuffered + 1; /+ expand the sender’'s window */
send_data(next_frame_to_send, frame_expected, buffer),/* transmit the frame =*/
inc(next frame to send); /+ advance sender’s upper window edge */
break;

case frame_armival: /+ a data or control frame has arrived */
from_physical layer(&r); /* get incoming frame from physical layer +/

if (r.seq == frame_expected) {
/= Frames are accepted only in order. */
to_network_layer(&r.info); /+ pass packet to network layer +/
inc(frame_expected); /+ advance lower edge of receiver's window */

}

/= Ack nimplies n - 1, n - 2, etc. Check for this. */
while (between(ack expected, r.ack, next frame to send)) {
/* Handle piggybacked ack. */

nbuffered = nbuffered - 1; /+ one frame fewer buffered */
stop_timer(ack_expected); /+ frame arrived intact; stop timer »/
inc(ack_expected); /* contract sender’s window */
}
break;
case cksum_err: break; /* just ignore bad frames */
case timeout: /* trouble; retransmit all outstanding frames */

next_frame_to_send = ack_expected; /+ start retransmitting here */

for (i = 1; i <= nbuffered; i++) {
send_data(next_frame_to_send, frame_expected, buffer),/* resend frame */
inc(next frame to send); /» prepare to send the next one */

}

if (nbuffered < MAX_SEQ)
enable_network_layer();
else

disable_network_layer();

Figure 10.6 A sliding window protocol using go-back-n

Unlike Protocol 4, which relies on a frame being sent in response to each frame received,
Protocol 5 assumes there is always reverse traffic (traffic in the opposite direction) to
piggyback acknowledgements. This assumption improves efficiency but might not hold in
one-way communication scenarios, which will be addressed in the next protocol.

Computer Networks 10.11 SLIDING WINDOW
PROTOCOL...

Since multiple frames can be outstanding, Protocol 5 requires a way to track timeouts
individually for each one. Instead of needing a separate hardware timer for each frame, this
can be efficiently simulated in software using a single hardware clock and a linked list of
pending timeouts. Each node in the list holds the time remaining for the frame, its sequence
number, and a pointer to the next node, allowing the system to manage retransmissions
effectively with minimal hardware resources.

Real

/tima
|| 10:00:00.000] || 10:00:00.00 |

(s 1] el e] =] 3 JE S IEDY

Pointer to next timeout
Frame being timed
Ticks to go

(a) io)

Figure 10.7 Simulation of multiple timers in software (a) The queued timeouts. (b) The
situation after the first timeout has expired.

In Protocol 5, each frame needs its own timer since multiple frames can be sent before getting
acknowledgements. Instead of using separate hardware timers for each frame, the system uses
one hardware clock and manages all timers in a software list. Each timer is stored as a node
in a list with the time left, the frame number, and a pointer to the next timer.

Every time the clock ticks (e.g., every 1 millisecond), the timer at the head of the list is
decreased. When it reaches zero, that frame times out, and its timer is removed. This method
saves resources and is efficient because only the first timer is updated on every tick, and new
timers can be added or removed by scanning the list when needed.

10.4 A PROTOCOL USING SELECTIVE REPEAT

The Go-Back-N protocol is efficient when transmission errors are rare but wastes bandwidth
on retransmissions over unreliable links. The Selective Repeat protocol overcomes this
limitation by allowing the receiver to accept and buffer correctly received frames that follow
a lost or damaged one. Both sender and receiver maintain windows: the sender’s window
grows dynamically up to a predefined maximum, while the receiver’s window remains fixed.
Each receiver buffer has an arrived flag indicating whether the slot is full. When a frame with
a sequence number within the window arrives and has not been received before, it is stored
but not delivered to the network layer until all preceding frames are received in sequence.

Allowing out-of-order reception introduces tighter constraints on sequence numbering. For
example, with a 3-bit sequence number, the sender can transmit seven frames (0—6) before
awaiting acknowledgements. If all arrive correctly, the receiver shifts its window to accept
frames 7-5. If all acknowledgements are lost, the sender retransmits frame 0, which now falls
within the receiver’s new window and is incorrectly accepted as new, causing the network
layer to receive a duplicate packet.

Centre for Distance Education 10.12 Acharya Nagarjuna University

This ambiguity arises because the receiver’s new window overlaps the previous one, making
it impossible to distinguish old retransmissions from new data. To avoid overlap, the
maximum window size must be at most half the sequence number range. With 3-bit
numbering (0-7), the sender may have only four outstanding frames. Thus, when frames 03
are acknowledged, frames 4—7 are the next valid set. In general, the window size is limited to
(MAX SEQ + 1)/2.

The receiver requires a number of buffers equal to the window size. Frames outside the
window are discarded. For a 3-bit system, four buffers (0—3) are sufficient, with frame *i*
stored in buffer i mod 4. Although i and (i + 4) mod 4 share the same buffer, they never
coexist within the window. The number of timers equals the number of buffers, as each
buffer is associated with a retransmission timer.

Protocol 6 removes the dependence on heavy reverse traffic assumed in Go-Back-N. When
reverse traffic is sparse, acknowledgements may be delayed, blocking transmission. An
auxiliary acknowledgement timer ensures progress by sending standalone ACKs if no reverse
data frames appear before timeout. This timer’s duration must be significantly shorter than
the data-frame timeout to prevent unnecessary retransmissions.

Selective Repeat also employs Negative Acknowledgements (NAKs) for faster error
recovery. A NAK is sent when a damaged or unexpected frame is received, requesting
retransmission of the missing frame. The variable no_nak prevents duplicate NAKs for the
same sequence number. Lost NAKs are harmless since the sender’s timeout eventually
triggers retransmission. If a NAK is lost and an out-of-order frame arrives, the auxiliary ACK
timer resynchronizes sender and receiver.

Sender 0123456|(7 0123456|7 01234567 |)0123|4567

Receiver |0 12345 6|7 D1E.’145Eu 01234567 01234567

a) (b) () (d)

Figure 10.8 (a) Initial situation with a window of size . (b) After 7 frames have been sent
and received but not acknowledged (c) Initial situation with a window size of 4. (d) After 4
frames have been sent and received but not acknowledged.

Timer configuration depends on delay variability. When round-trip times are nearly constant,
the sender’s timer can be tightly set. In channels with high delay variance, the timer must be
loose to avoid false retransmissions, though this can increase idle time. In such environments,
NAKSs accelerate recovery, improving channel utilization.

Identifying which frame caused a timeout is complex since multiple frames may be
outstanding. Unlike Go-Back-N, where the oldest frame always times out first, Selective
Repeat maintains independent timers. If frames 0—4 are sent and 0, 1, 2 time out while new
frames 5 and 6 are transmitted, the outstanding list may be 3405126. Each timer ensures that

Computer Networks 10.13 SLIDING WINDOW
PROTOCOL...

retransmissions occur only for the specific frame whose timeout expires, maintaining
correctness and efficiency.

10.5 HDLC (High-Level Data Link Control)

The High-Level Data Link Control (HDLC) protocol and its derivatives—SDLC, ADCCP,
LAP, and LAPB—form a family of bit-oriented protocols derived from IBM’s Synchronous
Data Link Control (SDLC). IBM submitted SDLC to ANSI and ISO, resulting in ADCCP
and HDLC, respectively. Later, CCITT adapted HDLC for LAP and LAPB within the X.25
standard. Though differing in details, these protocols share common principles: they are bit-
oriented, employ bit stuffing for transparency, and use similar frame formats (Fig. 10.9).

Bits 8 a 8 =0 16 8

01111110 | Address | Control |Dala | Checksum | 01111110

Figure 10.9 Frame format for a bit oriented protocols

All bit-oriented protocols use a standardized frame structure consisting of an Address,
Control, Data, and Checksum field, delimited by flag sequences (01111110). The Address
field identifies the terminal on multi-drop lines, while in point-to-point links it may
distinguish commands from responses. The Control field carries sequence numbers,
acknowledgements, and control information. The Data field can be of variable length, and the
Checksum field employs Cyclic Redundancy Check (CRC). On idle lines, flag sequences are
transmitted continuously. The minimum frame consists of 32 bits excluding flags.

Bits 1 3 1 3
(a)| O Seq P/F MNext
B 1 0 | Type P/F Next
fc) | 1 1 ‘ Type PIF Modifier

Figure 10.10 Control field of (a) an information frame, (b) a supervisory frame, (c) an
unnumbered frame

There are three types of frames: Information, Supervisory, and Unnumbered (Fig. 10.10). The
protocol uses a sliding window with 3-bit sequence numbers, allowing up to seven
unacknowledged frames. In Information frames, Seq specifies the frame number and Next
indicates the next expected frame (i.e., the first not yet received). The P/F bit (Poll/Final) is
used for polling terminals or forcing the peer to send a Supervisory frame immediately.

Supervisory frames are of four types:

Type 0 (Receive Ready) — acknowledges all frames up to Next and indicates readiness to
receive.

Type 1 (Reject) — requests retransmission starting from Next, similar to Go-Back-N.

Centre for Distance Education 10.14 Acharya Nagarjuna University

Type 2 (Receive Not Ready) — acknowledges all frames up to Next but instructs the sender
to pause, used during temporary receiver congestion.

Type 3 (Selective Reject) — requests retransmission of a specific frame, similar to Selective
Repeat. This is supported in HDLC and ADCCP but not in SDLC and LAPB.

The Unnumbered frame type serves for control functions and sometimes for connectionless
data transmission. Within this class, several control commands are defined. DISC
(Disconnect) allows a device to terminate a session, while SNRM (Set Normal Response
Mode) initializes a master-slave link. To support peer-to-peer operation, HDLC and LAPB
include SABM (Set Asynchronous Balanced Mode), which establishes a symmetric
relationship. SNRME and SABME are extended versions using 7-bit sequence numbers.

The FRMR (Frame Reject) command reports syntactically valid but semantically invalid
frames, such as illegal control codes or out-of-window acknowledgements. The FRMR frame
includes 24 bits of diagnostic information, including the faulty control field and status flags.
Since control frames can also be lost or corrupted, they require acknowledgement through
UA (Unnumbered Acknowledgement) frames. Only one control frame can be outstanding at
a time, avoiding ambiguity. Other unnumbered control frames support initialization, polling,
and link status reporting. The UI (Unnumbered Information) frame carries control
information for the data link layer itself, not for higher layers.

Despite its maturity and widespread use, HDLC has known limitations and complexities in
implementation and error handling (Fiorini et al., 1994). Nevertheless, it remains the
foundation for many modern data link control procedures and network interface standards.

10.6 SUMMARY

This chapter explains sliding window protocols, which improve efficiency and reliability in
data transfer by allowing multiple frames to be sent before waiting for acknowledgments. The
one-bit sliding window protocol is the simplest form, suitable for reliable channels. Go-Back-
N allows multiple outstanding frames but retransmits all frames after an error. Selective
Repeat retransmits only erroneous frames, improving efficiency.

10.7 TECHNICAL TERMS

Sliding window protocol, go-back-N protocol, HDLC
10.8 SELF ASSESSMENT QUESTIONS

Essay questions:

Explain the operation of the one-bit sliding window protocol.

Describe the Go-Back-N protocol with an example.

Explain the selective repeat protocol and its advantages over Go-Back-N.

Discuss HDLC as an example of a sliding window protocol.

Describe how the data link layer in the Internet implements reliable communication
using these protocols.

M

Computer Networks 10.15 SLIDING WINDOW
PROTOCOL...

Short Questions:

1. What is a sliding window protocol?

2. Define the one-bit sliding window protocol.

3. What is the key idea behind the Go-Back-N protocol?

4. How does the selective repeat protocol differ from Go-Back-N?

5. Name one example of a data link protocol using sliding windows.
10.9 FURTHER READINGS

1. Andrew S. Tanenbaum, “Computer Networks”, Fourth Edition, PHIL

2. James F.Kurose, Keith W.Ross, “Computer Networking”, Third Edition, Pearson

Education

Behrouz A Forouzan, “Data Communications and Networking”, Fourth Edition, TMH
(2007)

Michael A. Gallo, William M. Hancock, “Computer Communications and
Networking Technologies”, Cengage Learning (2008)

Dr. U. Surya Kameswari

LESSON- 11
ETHERNET

OBJECTIVES:

After going through this lesson, you will be able to

Understand Ethernet cabling and physical layer encoding.

Learn about Manchester encoding and its role in Ethernet.

Describe the Ethernet MAC sublayer protocol.

Study Ethernet performance, including backoff algorithms.

Explore advanced Ethernet types: Switched, Fast, and Gigabit Ethernet.

STRUCTURE OF THE LESSON:

11.1
11.2
11.3
11.4
11.5
11.6
11.7
11.8
11.9

INTRODUCTION

CLASSIC ETHERNET PHYSICAL LAYER

CLASSIC ETHERNET MAC SUBLAYER PROTOCOL
ETHERNET PERFORMANCE

SWITCHED ETHERNET

FAST ETHERNET

GIGABIT ETHERNET

10-GIGABIT ETHERNET

RETROSPECTIVE ON ETHERNET

11.10 SUMMARY

11.11 TECHNICAL TERMS

11.12 SELF-ASSESSMENT QUESTIONS
11.13 FURTHER READINGS

11.1 INTRODUCTION

The IEEE 802 standards define how different types of networks operate, including Ethernet
(802.3) and Wi-Fi (802.11), which are the most widely used today. While many IEEE 802
protocols were created, only a few remain popular. Ethernet exists in two main forms: classic
Ethernet, which used shared communication and operated at 3—10 Mbps, and switched
Ethernet, which uses switches for faster and more efficient connections, now running at
speeds up to 10 Gbps. Although both are called Ethernet, switched Ethernet is the modern

standard, and the terms "Ethernet" and "802.3" are often used interchangeably.

Centre for Distance Education 11.2 Acharya Nagarjuna University

11.2 CLASSIC ETHERNET PHYSICAL LAYER

Ethernet was developed in the 1970s by Bob Metcalfe, inspired by his exposure to the
ALOHA system during his studies at Harvard and a summer spent in Hawaii with its creator,
Norman Abramson. At Xerox PARC, Metcalfe and David Boggs designed the first Ethernet
system to connect personal computers, using a thick coaxial cable and running at 3 Mbps.
They named it "Ethernet" after the old scientific concept of the "ether" through which
electromagnetic waves were once thought to travel. The system’s success led to the creation
of a 10-Mbps standard by DEC, Intel, and Xerox in 1978, known as the DIX standard, which
became the IEEE 802.3 standard in 1983. Despite inventing Ethernet, Xerox failed to
capitalize on it, leading Metcalfe to start 3Com, a company that sold millions of Ethernet
adapters and helped popularize the technology.

LiE Lig LiE L
— ==] = —
Tral'IS':EQ'T; "N Interface

i T T
Ether E s

[

I |

Figure 11.1 Architecture of classic Ethernet

Classic Ethernet used a single long coaxial cable that ran through the building, connecting all
computers along it. The first version, called thick Ethernet, was a stiff, yellow cable marked
every 2.5 meters for connections. It was later replaced by thin Ethernet, which was more
flexible and cheaper, but supported shorter distances (185 meters vs. 500 meters) and fewer
machines per segment (30 vs. 100). To build larger networks, multiple segments were
connected using repeaters—devices that regenerate and retransmit signals to maintain
strength. Ethernet used Manchester encoding for data transmission, and the network design
limited the maximum distance between transceivers to 2.5 km and allowed only up to four
repeaters per path to ensure the MAC protocol functioned correctly.

11.3 CLASSIC ETHERNET MAC SUBLAYER PROTOCOL

In classic Ethernet (IEEE 802.3), each frame starts with an 8-byte preamble. The first 7 bytes
contain the repeating bit pattern 10101010, which helps the receiver synchronize its clock
with the sender's signal using Manchester encoding. The 8th byte, known as the Start of
Frame Delimiter (SFD), ends with 11, signaling the start of the actual frame data. This setup
ensures reliable detection and timing alignment before the transmission of meaningful data
begins.

Bytas 8 [i] [i] 2 0=1500 0=45 4
.I.I'.I.
Destination| Source Chack-
{a) Preamble addrass adddracs Type Data Pad sum
T
S| Destination| Source N Check-
(b} Preamble : addrass J— Length Data Pad s

Figure 11.2 Frame formats (a) Ehternet (DIX). (b) IEEE 802.3

Computer Networks 11.3 ETHERNET ‘

In Ethernet frames, after the preamble, there are two 6-byte address fields: the destination and
source addresses. The destination address begins with a 0 for unicast (single receiver) or 1 for
group addresses (multicast). A special address of all 1s is used for broadcasting, meaning
every station on the network receives the frame. Source addresses are globally unique 48-bit
identifiers assigned by manufacturers, who receive address blocks from the IEEE.

After the addresses comes a Type or Length field: Ethernet uses it to indicate the protocol
type (e.g., IPv4), while IEEE 802.3 originally used it to indicate the frame length, with
protocol type handled by an extra LLC header. To resolve this confusion, a rule was
adopted—values above 1536 (0x600) are treated as Type, while values below are treated as
Length—allowing both standards to coexist.

Ethernet frames contain a data field of up to 1500 bytes, a limit set in 1978 due to RAM
constraints in transceivers. There's also a minimum frame size of 64 bytes (including
addresses and checksum) to distinguish valid frames from noise caused by collisions and to
ensure collision detection works correctly.

If the actual data is less than 46 bytes, padding is added. A minimum frame length is crucial
to allow a collision signal (jam) from a distant station to reach the sender before it finishes
transmitting, thus detecting the collision. At 10 Mbps, this means frames must last at least
512 bits (64 bytes).

Finally, a 32-bit CRC checksum at the end checks for transmission errors; if any are found,
the frame is discarded.

Packat starts Packet almost
’r.fa.Hlmﬁl.'.l alBah-g'x‘
[t+——= =
|

(a) b

Molse burst gats

’/nackm.ﬁ.atzfr

ic) Collision at -— ()
timea

Figure 11.3 Collision detection can take as long as 2t
CSMA/CD with Binary Exponential Backoff

Classic Ethernet uses the 1-persistent CSMA/CD protocol, where a station with data to send
listens to the channel and transmits immediately when the channel is idle. While transmitting,
it monitors for collisions. If a collision is detected, it sends a jam signal, stops transmission,
and waits a random backoff time before retrying. This time is calculated using exponential
backoff: after the first collision, it waits O or 1 time slots (each slot is 512 bit times or 51.2
us). After each subsequent collision, the range of slots doubles (0 to 2i—1, for the i-th
collision), up to a cap at 1023 slots. If 16 collisions occur for the same frame, the
transmission is aborted and reported as a failure.

Centre for Distance Education 11.4 Acharya Nagarjuna University

The binary exponential backoff algorithm in Ethernet helps efficiently manage collisions. If
only a few stations collide, the backoff time is short, keeping delay low. But if many stations
collide, the random wait time increases exponentially, reducing the chance of repeated
collisions. This dynamic adjustment balances speed and fairness. The backoff caps at 1023
slots to avoid excessive delays. Ethernet does not use acknowledgements, assuming reliable
delivery due to low error rates on wired media. Any errors are detected by CRC, and recovery
is handled by higher network layers.

11.4 ETHERNET PERFORMANCE

Under heavy and constant load, classic Ethernet performance is affected by how many
stations are trying to send data and how long the cable is. To understand this, Metcalfe and
Boggs proposed a simplified model using a constant probability of retransmission in each
time slot. They found that the optimal condition for successful transmission occurs when each
of the k stations transmits with probability 1/k, which leads to a maximum efficiency of about
1/e (~37%). The average time spent in contention (waiting due to collisions) increases with
cable length, as it depends on the round-trip signal time (2t). The channel efficiency, or how
well the network uses its bandwidth, decreases as either the bandwidth (B) or cable length (L)
increases relative to the frame size (F). In formula terms, the efficiency becomes worse when
2BLe/cF grows, where c is the speed of signal propagation. This means classic Ethernet is not
ideal for high-speed or long-distance networks, which is why newer implementations were
developed.

10—

0.9 — 1024-byte frames

0.8
512-byte frames

0.7 =

256-byte |
o7 K yte frames
0.5

x 128-byte frames

04 -

Channel efficiency

0.3 - G4-byte frames

0.2

0.1

| | | | | | l |
0 1 2 4 B 16 a2 64 128 258

Mumber of stations trying to send

Figure 11.4 Efficiency of Ethernet at 10 Mbps with 512-bit slot times

Classic Ethernet performance under heavy load is evaluated using probability models. When
multiple stations try to send data at once, they wait random time intervals (based on binary
exponential backoff) to reduce collisions. Efficiency depends on frame size and network
length — small frames cause more collisions and lower efficiency, while larger frames (like
1024 bytes) can achieve up to 85% efficiency.

The channel efficiency decreases if the product of bandwidth and cable length increases
without increasing frame size. Although theoretical models predict poor performance under
high load, real-world experiments show Ethernet works well even at moderately high traffic

Computer Networks 11.5 ETHERNET

levels. Also, traffic patterns are not always random (Poisson); they’re often bursty, which
affects performance analysis.

11.5 SWITCHED ETHERNET

Ethernet evolved from the original single long cable setup due to practical challenges like
detecting cable breaks and connection issues. A more manageable approach was introduced
where each station connects directly to a central hub via its own cable. This configuration
makes it easier to maintain and troubleshoot the network. These hubs use twisted pair wiring,
often reusing existing telephone lines, but this limits cable lengths to about 100-200 meters.

However, while hubs simplify physical setup, they do not increase network capacity—all
connected devices still share the same bandwidth, just like in classic Ethernet. As more

devices are added, network performance degrades due to increased competition for
bandwidth.

To solve this, switched Ethernet was introduced. A switch looks like a hub externally but
works differently internally. It uses a high-speed internal backplane to directly connect ports,
allowing multiple simultaneous conversations between devices. This drastically improves
network performance because devices no longer share a single communication channel.
Switches also maintain the maintenance simplicity of hubs—faulty connections typically only
affect one device, and switches can be replaced easily if they fail.

Classic Ethernet evolved from using a single long cable to using hubs and then switches for
better performance and reliability. A hub simply connects all devices, acting like one big
shared cable—so collisions happen often.

Port

qut\\ ______________ .

Line B ___5_,;;;? _____
{a) {b)
Figure 11. 5 (a) Hub (b) Switch

A switch, however, is smarter. It sends each Ethernet frame only to the correct destination
port, not to all devices. This means:

No collisions (especially with full-duplex cables),

Multiple devices can send/receive at the same time, increasing speed,

Better security, since data isn’t shared with all devices.

Inside a switch, Ethernet frames are handled much more intelligently than in a hub. When a
switch receives a frame on one of its ports, it checks the destination Ethernet (MAC) address
and sends the frame only to the specific port that corresponds to that address. This selective
forwarding is possible because the switch maintains an internal table that maps MAC
addresses to switch ports.

Centre for Distance Education 11.6 Acharya Nagarjuna University

Switch : A

0000

RPARC

—Fﬁﬁ. Switch ports
[T e

f’l

Figure 11.6 An Ethernet switch

The switch uses a high-speed internal backplane—often several Gbps—to move the frame
from the input port to the destination port. This backplane uses proprietary methods and
doesn't need to follow Ethernet standards because it's entirely internal. Once the frame
reaches the destination port, it's transmitted over the wire to the target device. Importantly,
other ports are unaware of the frame, which boosts both performance and security.

Switches also use buffers to handle multiple frames and support hubs on some ports, though
hubs are now mostly outdated due to cheaper switches. Modern networks mostly use
switched Ethernet for high efficiency and reliability.

11.6 FAST ETHERNET

As FEthernet usage grew, the 10 Mbps speed became insufficient due to increasing data
demand. To handle this, many networks used combinations of repeaters, hubs, and
switches—but each computer was still limited by its cable speed.

To address this, the IEEE formed the 802.3u committee in 1992 to develop a faster Ethernet.
After some debate, the committee decided to keep the existing Ethernet design but increase
the speed—Ieading to the creation of Fast Ethernet (802.3u), approved in 1995. It was fully
backward compatible, using the same frame formats and procedures, but running at 100
Mbps instead of 10 Mbps.

Fast Ethernet used twisted-pair wiring (not the old coaxial cables), especially Category 5
cables, which could reliably support 100 Mbps over 100 meters. To remain flexible, support
was also added for Category 3 twisted pair (with enhancements) and fiber optics, allowing
fast Ethernet deployment without needing to rewire office buildings.

Name Cable Max. segment Advantages
100Base-T4 | Twisted pair | 100 m | Uses category 3 UTP
100Base-TX | Twisted pair 100 m Full duplex at 100 Mbps (Cat 5 UTP)
100Base-FX | Fiber optics 2000 m Full duplex at 100 Mbps; long runs

Figure 11.7 The original fast Ethernet cabling

The 100Base-T4 standard used Category 3 twisted pair wiring and achieved 100 Mbps by
using four twisted pairs, with a complex signalling scheme involving three voltage levels.
This allowed offices with existing telephone wiring (which usually has four pairs) to upgrade
without rewiring, though at the cost of dedicating those wires solely for networking (no
phone line).

Computer Networks 11.7 ETHERNET

However, 100Base-T4 was soon replaced by 100Base-TX, which uses Category 5 cables with
just two twisted pairs, simpler signalling (4B/5B encoding at 125 MHz), and supports full
duplex (simultaneous send and receive at 100 Mbps).

Another option, 100Base-FX, uses fiber optics for longer distances (up to 2 km) and full
duplex communication.

To maintain Ethernet’s collision detection rules (CSMA/CD) at higher speeds, cable lengths
had to be shortened proportionally. For 100 Mbps, maximum cable lengths were reduced, and
longer fiber links must operate in full duplex mode to avoid collisions.

Fast Ethernet switches support both 10 Mbps and 100 Mbps devices and use auto-negotiation
to automatically choose the best speed and duplex settings, although this sometimes causes
duplex mismatch problems if not all devices negotiate properly.

11.7 GIGABIT ETHERNET

Gigabit Ethernet (standardized as IEEE 802.3ab in 1999) was designed to increase Ethernet
speed to 1 Gbps (1000 Mbps) while staying fully compatible with previous Ethernet
standards (same addressing, frame formats, and unacknowledged datagram service).

Switch or hub
Etharnet

Computar

— |
—]
Etharmet

(a) it}

Figure 11.8 (a) A two-station Ehternet (b) A multistation Ethernet

It uses point-to-point links, meaning each cable connects exactly two devices — either
directly between two computers or between a computer and a switch/hub.

Like fast Ethernet, gigabit Ethernet supports full-duplex (send and receive at the same time)
and half-duplex modes, but full duplex is the common setup with switches.

In full-duplex mode, devices can send frames whenever they want without worrying about
collisions or checking if the line is free, so CSMA/CD is not needed.

Because collisions don’t happen in full duplex, cable length limits are based on signal quality,
not collision detection timing.

Gigabit Ethernet switches support auto negotiation to automatically select the best speed
among 10 Mbps, 100 Mbps, and 1 Gbps.

Centre for Distance Education 11.8 Acharya Nagarjuna University

Half-duplex mode is used when devices connect through a hub instead of a switch. Unlike
switches, hubs don’t buffer data — they just electrically connect all devices on one shared
line, so collisions can happen.

Because gigabit Ethernet transmits data 100 times faster than classic 10 Mbps Ethernet, the
maximum cable length in halt-duplex mode has to shrink proportionally — from 2500 meters
down to 25 meters — to make sure collision detection (CSMA/CD) still works properly.

This 25-meter limit is often too short for practical use, so the standard added two features to
extend the cable length to 200 meters, suitable for most offices:

Carrier extension: The hardware adds padding to extend short frames (64 bytes) to 512 bytes,
allowing collision detection timing to work over longer cables. But this wastes bandwidth
because many bytes sent are just padding.

Frame bursting: Allows sending multiple frames back-to-back as one burst, making
transmission more efficient than carrier extension by reducing overhead.

In reality, hubs are rarely used with gigabit Ethernet now because switches are cheaper and
better. Most modern computers support all speeds (10, 100, 1000 Mbps) and automatically
negotiate the best option, including full duplex.

Gigabit Ethernet Cabling Types (Fig. 11.9):

Mame Cable Max. segment Advantages
I 1000Base-3X | Fiber optics I 550 m | Multimode fiber (50, 62.5 microns)
' 1000Base-LX | Fiber optics I 5000 m | Single (10 u) or multimode (50, 62.5 1)
1000Base-CX | 2 Pairs of STP 25 m | Shielded twisted pair
1000Base-T 4 Pairs of UTP 100 m | Standard category 5 UTP

Figure 11.9 Gigabit Ethernet cabling

Signaling Details:

Speed & Encoding:

Gigabit Ethernet signals at around 1 Gbps, meaning sending a bit every nanosecond. This
requires very precise and efficient encoding.

Optical Fiber Versions:
1000Base-SX: Uses short wavelength (0.85 microns) LEDs on multimode fiber; good for up
to 500 m inside buildings.

1000Base-LX: Uses long wavelength (1.3 microns) lasers on single-mode or multimode
fiber; can go up to 5 km, suitable for campus backbones.

Encoding Scheme (8B/10B):

To maintain signal integrity and clock recovery, data is encoded using 8B/10B encoding,
which converts every 8 bits into a 10-bit codeword. This coding balances zeros and ones and
ensures enough transitions for synchronization.

Computer Networks 11.9 ETHERNET

This adds a 25% overhead in bandwidth (sending 10 bits to represent 8 bits), which is much
better than Manchester coding’s 100% overhead.

Copper Cabling Challenges:

Initially, the faster signaling required new cables (shielded or fiber). But since Category 5
UTP wiring was widely deployed, a new version, 1000Base-T, was created to run Gigabit
Ethernet over standard Cat 5 UTP cables.

1000Base-T Signaling:

Uses all 4 twisted pairs simultaneously, each running in both directions at once (full duplex
on each pair) using sophisticated digital signal processing to separate send and receive
signals.

Uses 5 voltage levels per pair, encoding 2 bits per symbol at 125 million symbols per second.
The encoding involves scrambling and error correction to improve reliability.

Flow Control & Jumbo Frames:

At 1 Gbps, a receiver overwhelmed or busy for even 1 millisecond can accumulate nearly
2000 frames waiting to be processed, causing buffer overruns.

To manage this, flow control was introduced using PAUSE frames:
Special Ethernet frames with type 0x8808 tell the sender to pause transmission for a specified
duration.

The pause time units are multiples of 512 nanoseconds, allowing pauses up to about 33.6
milliseconds.

Jumbo Frames:

Allow frames larger than the standard 1500 bytes (up to 9 KB).

Not part of the official standard (proprietary), but widely supported.

Bigger frames reduce CPU overhead by decreasing the number of frames processed per
second, which improves efficiency at gigabit speeds.

11.8 10-GIGABIT ETHERNET

After gigabit Ethernet was standardized, the IEEE 802 committee moved quickly to develop
10-gigabit Ethernet (10GbE), which offers speeds 1000 times faster than the original
Ethernet. This extremely high speed is primarily needed in data centres to connect high-
performance routers, switches, and servers, as well as in long-distance metropolitan area
networks using fiber optic cables. While long-distance connections rely on fiber, shorter
connections can use either fiber or copper cables.

All versions of 10GbE operate in full-duplex mode only, meaning data can be sent and
received simultaneously, eliminating collisions and the need for the CSMA/CD protocol.
Devices support auto negotiation to fall back to the highest speed both ends support,
maintaining compatibility. The standard focuses heavily on the physical layer to achieve
these high speeds.

Centre for Distance Education 11.10 Acharya Nagarjuna University

Name Cable Max. segment Advantages
10GBase-SR Fiber optics Upto 300m | Multimode fiber (0.8511)
10GBase-LR Fiber optics 10 km | Single-mode fiber (1.3W1)
10GBase-ER Fiber optics 40 km | Single-mode fiber (1.50)
10GBase-CX4 | 4 Pairs of twinax 15 m | Twinaxial copper

10GBase-T | 4 Pairs of UTP 100m | Category 6a UTP

Figure 11.10 10-Gigabit Ethernet cabling

Several cabling options exist for 10GbE. Fiber optic versions include 10GBase-SR for short
distances over multimode fiber, 10GBase-LR for up to 10 km over single-mode fiber, and
10GBase-ER for distances up to 40 km. Copper options include 10GBase-CX4, which uses
twinax cables for short connections, and 10GBase-T, which runs 10 Gbps over standard
twisted pair cables (Category 6a or better) for up to 100 meters.

Technically, 10GbE uses advanced encoding and signalling techniques. Data is scrambled
and encoded with a 64B/66B code to reduce overhead compared to earlier methods. The
copper version, 10GBase-T, uses complex modulation with 16 voltage levels and
sophisticated error correction to transmit high-speed data reliably over twisted pair cables.

Finally, the IEEE committee is already working on even faster Ethernet standards operating
at 40 and 100 Gbps to meet future networking demands in backbone and data centre
environments. These faster standards are still under development, but some proprietary
solutions are already available.

11.9 RETROSPECTIVE ON ETHERNET

Ethernet has remained dominant for over 30 years because of its simplicity, flexibility, and
reliability. Its straightforward design makes it cheap, easy to maintain, and highly
dependable—qualities that encourage users to keep existing Ethernet infrastructure rather
than replace it. Ethernet’s use of inexpensive twisted-pair wiring and minimal configuration
keeps costs low and setup easy, while adding new devices is as simple as plugging them in.
Another key factor is Ethernet’s seamless compatibility with the TCP/IP protocol suite,
which is connectionless and pairs naturally with Ethernet’s connectionless design. This
compatibility helped Ethernet outlast competing technologies like ATM, FDDI, and Fibre
Channel, which were more complex, incompatible, and costly. Interestingly, Ethernet
incorporated some of their innovations, such as advanced encoding methods, to boost its own
performance.

Looking ahead, Ethernet continues to evolve and expand its applications. The introduction of
10-gigabit Ethernet overcame previous distance limits, and carrier-grade Ethernet is being
developed for reliable, high-quality services over metropolitan and wide area networks.
Additionally, very high-speed Ethernet finds use inside large routers and servers,
demonstrating Ethernet’s adaptability beyond traditional office networking.

11.10 SUMMARY
This chapter focuses on Ethernet, a widely used LAN technology. It covers Ethernet cabling

and Manchester encoding, which ensures proper signal timing. The MAC sublayer protocol
manages access to the shared medium using CSMA/CD and the Binary Exponential Backoff

Computer Networks 11.11 ETHERNET

Algorithm to handle collisions. Ethernet performance is enhanced with Switched Ethernet,
Fast Ethernet, and Gigabit Ethernet, providing higher speeds and reduced congestion. The
chapter also introduces IEEE 802.2 Logical Link Control, which separates addressing and

control
system

from physical transmission, offering a structured and efficient LAN communication

11.11 TECHNICAL TERMS
LAN, CSMA/CD, Ethernet, Fast Ethernet, Gigabit Ethernet, IEEE 802.2

11.12

SELF ASSESSMENT QUESTIONS

Essay questions:

1.

Explain Ethernet cabling and Manchester encoding in detail.

2. Describe the Ethernet MAC sublayer protocol and how it handles collisions.

3.

4.
5.

Discuss the Binary Exponential Backoff Algorithm and its role in network
performance.

Compare standard Ethernet, Fast Ethernet, and Gigabit Ethernet.

Explain the IEEE 802.2 Logical Link Control and its relation to Ethernet.

Short Questions:

MRS

What type of cabling is commonly used in Ethernet?
Define Manchester encoding.

What is the purpose of the Ethernet MAC sublayer?
What is the Binary Exponential Backoff Algorithm?
Name two advanced versions of Ethernet

11.13 FURTHER READINGS

1.

Andrew S. Tanenbaum, “Computer Networks”, Fourth Edition, PHI.

2. James F.Kurose, Keith W.Ross, “Computer Networking”, Third Edition, Pearson

Education

Behrouz A Forouzan, “Data Communications and Networking”, Fourth Edition, TMH
(2007)

Michael A. Gallo, William M. Hancock, “Computer Communications and
NetworkingTechnologies”, Cengage Learning (2008)

Dr. Uduga Surya Kameswari

LESSON- 12
WIRELESS LANs AND BLUETOOTH

OBJECTIVES:

After going through this lesson, you will be able to

Understand the 802.11 wireless LAN protocol stack and architecture.
Learn about the 802.11 physical layer and MAC sublayer.

Describe the 802.11 frame structure and communication process.
Understand Bluetooth architecture, layers, and applications.

Study the Bluetooth protocol stack and frame structure.

STRUCTURE OF THE LESSON:

12.1 INTRODUCTION

12.2 THE 802.11 ARCHITECTURE AND PROTOCOL STACK
12.3 THE 802.11 PHYSICAL LAYER

12.4 THE 802.11 MAC SUBLAYER PROTOCOL
12.5 THE 802.11 FRAME STRUCTURE

12.6 SERVICES

12.7 BLUETOOTH

12.8 BLUETOOTH ARCHITECTURE

12.9 BLUETOOTH APPLICATIONS

12.10 THE BLUETOOTH PROTOCOL STACK
12.11 THE BLUETOOTH RADIO LAYER

12.12 THE BLUETOOTH LINK LAYERS

12.13 THE BLUETOOTH FRAME STRUCTURE
12.14 SUMMARY

12.15 TECHNICAL TERMS

12.16 SELF-ASSESSMENT QUESTIONS

12.17 FURTHER READINGS

12.1 INTRODUCTION

Wireless LANs (Local Area Networks) have become increasingly popular in various places
like homes, offices, cafes, airports, and even public spaces such as zoos, allowing devices
like computers, smartphones, and PDAs to connect to the Internet without cables. They also
enable nearby devices to communicate directly without needing an Internet connection. The
main technology behind wireless LANs is the IEEE 802.11 standard, commonly known as
Wi-Fi. While an overview of this was provided earlier in the text, this section takes a deeper

Centre for Distance Education 12.2 Acharya Nagarjuna University

look into its key components, including the protocol stack, radio transmission methods at the
physical layer, the MAC (Medium Access Control) sublayer protocol, the structure of data
frames, and the different services 802.11 provides. For more detailed information, readers are
referred to Gast (2005), a widely cited source on the subject.

12.2 THE 802.11 ARCHITECTURE AND PROTOCOL STACK

- w
Access e x-\ To network o .

point T Y - - 1
& T,
-H?‘i "..] # ~ - I'.
N A i et -
’ L H
1 1

“';'II

“‘gﬁ OV Q“‘l;,

-

-+‘|‘

Clian -

(b}

Figure 12.1 802.11 architecture (a) Infrastructure mode (b) Ad-hoc mode

802.11 networks can operate in two modes: infrastructure mode and ad hoc mode. In the
more common infrastructure mode, devices like laptops and smartphones connect to an
Access Point (AP), which is further linked to a larger network such as the Internet or a
company intranet. Multiple APs can be connected through a distribution system, allowing
communication between clients via their respective APs. In contrast, ad hoc mode involves
devices connecting directly to each other without any AP, forming a peer-to-peer network,
though this mode is less popular due to limited Internet access. The 802.11 protocol stack,
used by both clients and APs, follows the general structure of other IEEE 802 protocols. It
includes a physical layer, which aligns with the OSI model’s physical layer, and a data link
layer that is divided into two sublayers: the MAC (Medium Access Control) sublayer, which
manages channel access, and the LLC (Logical Link Control) sublayer, which provides
protocol identification and ensures consistency across different 802 variants.

In 802.11 networks, the physical layer closely aligns with the OSI physical layer, handling
the actual transmission of bits over the air. However, the data link layer is divided into two
sublayers: MAC (Medium Access Control) and LLC (Logical Link Control).

] Uppar
layers
Logical link layer *
___ Data link
MAC layer
sublayer
B02.11 (lagacy)
Frequency | 802.11a | B0211b | gg5 444 | 802110 Physical
hopping OFDM Spread | sepp MIMO layer
and infrared spectrum OFDM
-y
Release date: 1997-1999 1999 1999 2003 2009

Figure 12.2 Part of the 802.11 protocol stack

Computer Networks 12.3 WIRELESS LANs AND BLUETOOTH

The MAC sublayer is responsible for managing access to the shared wireless channel,
deciding which device gets to transmit next. Above it, the LLC sublayer works to hide the
technical differences among various 802 protocols, making them appear uniform to the
network layer. While this could have been a complex role, the LLC is now mainly a simple
"glue" layer that identifies which protocol, such as IP, is being carried in the 802.11 frame.

12.3 THE 802.11 PHYSICAL LAYER

The wireless transmission techniques used in 802.11 (Wi-Fi) networks. All these methods
enable the transmission of MAC frames between devices using short-range radio signals,
typically in the 2.4 GHz or 5 GHz ISM frequency bands. These bands are popular because
they are unlicensed, meaning anyone can use them within certain power limits, but they are
also crowded due to interference from devices like microwave ovens and cordless phones.
The 5 GHz band, though less congested, has a shorter range than 2.4 GHz. Each 802.11
transmission technique supports multiple data rates, allowing devices to adapt the rate based
on signal quality—Ilow rates in poor conditions and high rates when the signal is strong. This
is known as rate adaptation, but the specific method for it is not standardized. The passage
focuses particularly on 802.11b, a spread-spectrum technique supporting speeds of 1, 2, 5.5,
and 11 Mbps. It uses a Barker sequence for spreading, which helps receivers identify the start
of a transmission. Lower speeds use BPSK or QPSK modulation, while higher speeds rely on
CCK (Complementary Code Keying) for efficient encoding of bits into chip sequences.

The evolution of 802.11 wireless standards and the technologies they use to improve speed
and reliability. 802.11a operates in the 5-GHz ISM band and supports data rates up to 54
Mbps using OFDM (Orthogonal Frequency Division Multiplexing), which is efficient and
resists signal issues like multipath interference. Although 802.11a was developed before
802.11b, it was released later due to technical challenges. In contrast, 802.11b, which uses
spread-spectrum techniques in the 2.4-GHz band, became popular earlier due to its longer
range. Later, 802.11g combined the high speed of 802.11a with the wide compatibility and
longer range of 802.11b by using OFDM in the 2.4-GHz band. To reduce customer
confusion, many network interface cards (NICs) support 802.11a/b/g standards together. The
next major upgrade was 802.11n, ratified in 2009, which aimed for throughput over 100
Mbps by doubling the channel width (from 20 MHz to 40 MHz), reducing overhead, and
most importantly, using MIMO (Multiple Input Multiple Output) technology. MIMO allows
multiple data streams to be sent simultaneously using multiple antennas, boosting speed,
range, and reliability. This innovation, alongside OFDM, represents a significant leap in
wireless communication technology.

12.4 THE 802.11 MAC SUBLAYER PROTOCOL

The 802.11 MAC sublayer protocol handles wireless communication differently from
Ethernet, mainly due to the limitations of radio transmission. Unlike Ethernet, wireless radios
are typically half-duplex, meaning they can't transmit and receive at the same time. This
makes collision detection—used in Ethernet—impractical, because the transmitted signal
overwhelms any incoming signals.

Centre for Distance Education 12.4 Acharya Nagarjuna University

Station {—.-5. sonds to D rD acks A

& | Daa || Ack|

|
|
|
B ready to send |
1

Bzandsto D ',- Dacks B

B ' ! [Data || Ack]
'_Y_;':'L_Y_JL v jll__T_,l
Wait for idle :Eacknff Walt for idle i Rest of backoff
C ready to send ! rC sends to D r: D acks C
I
c L i | Data | Ack]

]
"—wr—‘ LTJ
Wait for idle Backoff

Tirg ——

Figure 12.3 Sending a frame with CSMA/CA

Instead, 802.11 uses CSMA/CA (Carrier Sense Multiple Access with Collision Avoidance).
In this protocol, before sending, a station first senses if the channel is idle. If it is, the station
waits for a short time (called DIFS) and then starts a random backoff countdown to avoid
collisions. If another frame is transmitted during the countdown, the station pauses and
resumes after the channel is idle again. When the countdown reaches zero, the station sends
its frame. If the transmission is successful, the destination sends an acknowledgment (ACK).
If no ACK is received, the sender assumes a collision or error occurred and retries, doubling
the backoff window (exponential backoff), similar to Ethernet. The passage also describes a
timeline where multiple stations coordinate their transmissions using this method to avoid
collisions and ensure smooth communication.

Compared to Ethernet, the 802.11 wireless protocol has two major differences. First, it uses
collision avoidance rather than collision detection. This is necessary because in wireless
communication, collisions are expensive—the entire frame is lost—and cannot be detected
during transmission due to the half-duplex nature of radios. So, 802.11 uses early backoftf and
acknowledgements (ACKs) to avoid and infer collisions. This operation mode is called DCF
(Distributed Coordination Function), where each station operates independently. An optional
mode, PCF (Point Coordination Function), allows the access point to control all traffic, but it
is rarely used due to interference from nearby networks.

A wants to send to B Bwantstosendto C
but cannot hear that but mistakenly thinks
B is busy the transmission will fad

P
’

Range' ange
S/ ofC's \ of A's
/ radio \) radio
5") ,/
s ‘|| .' :l‘
A \\B c \ A B8 c
Cis 4 Als
N \liz_msmnmn_g// lr_insmmm_g

(a) (b)

Figure 12.4 (a) The hidden terminal problem (b) The exposed terminal problem

Computer Networks 12.5 WIRELESS LANs AND BLUETOOTH

The second major issue in wireless networks is the uneven transmission range of devices,
leading to problems like the hidden terminal problem—where one station cannot detect
another's transmission, causing unintended collisions—and the exposed terminal problem,
where a station refrains from sending due to sensing another transmission that actually
wouldn't interfere. These range-related issues don't exist in Ethernet, where all nodes are
connected via cable and can detect each other's signals reliably.

When a station like C hears the RTS frame from A, it knows the channel will be busy for a
certain time and updates its Network Allocation Vector (NAV) to stay silent during that
period. Similarly, station D, which may only hear the CTS from B, also updates its NAV and
defers transmission. These NAV updates are internal timers that help prevent collisions.
However, in practice, the RTS/CTS mechanism is rarely used because it adds overhead,
especially for short frames or when the access point controls the channel, which all devices
can hear anyway. RTS/CTS mainly helps with hidden terminals but does not solve exposed
terminal problems.

Awanistosendto B Bwantstosendto C
but cannot hear that but mistakenly thinks
B Is busy the transmission will fail

Y Range
\ of A's
\ radio
A \' B I/ A B Cc
\\ Cis /' Als
,gansm|lt1n_g,,/ lr:ansmnzang |/

(a) (b)

Figure 12.5 Virtual channel sensing using CSMA/CA

The core of 802.11 is CSMA/CA combined with physical and virtual sensing, but wireless
networks face challenges due to interference and noise, making transmissions unreliable. To
improve reliability, stations often reduce their transmission rates, using more robust
modulations that work better in noisy environments. They may also send shorter frames,
since shorter frames have a higher chance of being received without errors, reducing the need
for retransmissions and improving overall network performance.

802.11 improves reliability by breaking large frames into smaller fragments, each
acknowledged separately, reducing errors. For power saving, devices can sleep and wake up
periodically to check buffered data from the access point, using beacon signals and
mechanisms like APSD for efficient two-way traffic. To maintain quality of service, 802.11
prioritizes delay-sensitive traffic like voice calls over less urgent data to avoid delays and
ensure smooth performance.

Centre for Distance Education 12.6 Acharya Nagarjuna University

r—GDmrnl frame or next fragment may be sent here
*-SIFS== o High-priority frama here
e — L P
= Ragular DCF frama hore
- DIFS =

Low-priarity frama hore
- : - AIFS,
Bad frame recovery done -

B
+ [1 -EIFS- -‘

(K |

Time -

Figure 12.6 Interframe spacing in 802.11

The 802.11e extension improves quality of service by using different wait times between
frames to prioritize traffic. Shorter wait times (like SIFS) let important frames like
acknowledgments or voice data go first, while longer wait times delay less important
background traffic. This way, high-priority data, such as voice or video, gets transmitted
faster.

Also, 802.11e introduces Transmission Opportunities (TXOPs), allowing stations to send
multiple frames during their turn. This helps fix the "rate anomaly" problem where slow
senders reduce the overall network speed. By giving each station equal airtime instead of
equal frame counts, faster stations achieve higher throughput, improving overall performance
and fairness.

12.5 THE 802.11 FRAME STRUCTURE

The 802.11 standard defines three types of frames: data, control, and management, each with
its own header fields used by the MAC sublayer. Focusing on the data frame, its header starts
with a Frame Control field, which includes several subfields. These specify the protocol
version, frame type (data, control, or management), and subtype (such as RTS or CTS). Other
important bits indicate whether the frame is going to or coming from the distribution system
(network connected to the access point), if more fragments will follow, if it’s a
retransmission, and whether the sender is entering power-save mode. Additional bits signal if
more data is pending, if the frame is encrypted, and whether frames need to be processed in
order. This header helps manage and control the flow and security of data over the wireless
network.

The second field in the data frame is the Duration field, which indicates how long the current
frame and its acknowledgement will occupy the wireless channel, measured in microseconds.
This helps stations manage the Network Allocation Vector (NAV) to avoid collisions.

Next are three addresses: the receiver’s address, the transmitter’s address, and a third address
that represents the final destination or source beyond the access point (AP). Since the AP acts
as a relay between clients and the wider network, this third address identifies the distant
endpoint.

Computer Networks 12.7 WIRELESS LANs AND BLUETOOTH

Bytes 2 Z B i} B 2 0=2312 4
Frame . Address 1| Address 2 . Check
control Dirstion {reciplent) | {transmitter) Addrese 3 Sequance Dals saquance

Version| Type | Subtype | To |From|More Pwr. | More
=00 | =10 = =0000 | DS | DS |frag. mgl. | data

Bits 2 2 4 1 1 1 1 1 1 1 1
Figure 12.7 Format of the 802.11 data frame

Retry Protected|Order

The Sequence field numbers the frames and fragments to detect duplicates and manage
reassembly. The main Data field carries the payload (up to 2312 bytes), starting with an LLC
header that helps identify the higher-layer protocol, such as IP.

Finally, the Frame Check Sequence (FCS) provides error detection using a 32-bit cyclic
redundancy check (CRC).

Management frames have a similar format but contain different types of data depending on
their subtype (e.g., beacon frames). Control frames are shorter, containing only essential
fields like Frame Control, Duration, and FCS, usually with one address and no data payload;
their subtype (e.g., ACK, RTS, CTS) carries most of the control information.

12.6 SERVICES

Association: When a mobile device comes in range, it connects to an Access Point (AP) by
learning its capabilities (data rates, security, power-saving, QoS). The device sends an
association request, which the AP can accept or reject.

Reassociation: Allows a device to switch from one AP to another within the same network
(like a handover) without losing data.

Disassociation: Either the device or AP can break their connection when leaving the network
or for maintenance.

Authentication: Devices must prove they are allowed to connect. WPA2 is the recommended,
secure method using a password or credentials checked by an authentication server. Older
WEP method is insecure and discouraged.

Distribution service: Once the AP receives frames, it routes them locally or forwards them to
the wired network.

Integration service: Handles communication between the wireless LAN and other networks,
like the Internet.

Data delivery service: Manages sending and receiving data over the wireless LAN but does
not guarantee perfect reliability; upper layers handle errors.

Centre for Distance Education 12.8 Acharya Nagarjuna University

Privacy service: Encrypts data for confidentiality using AES encryption with keys established
during authentication.

Quality of Service (QoS) service: Prioritizes important traffic like voice and video over
regular or background traffic.

Transmit Power Control: Helps devices comply with regional power limits.

Dynamic Frequency Selection (DFS): Helps devices avoid interfering with radar signals in
certain frequency bands.

Together, these services enable robust, secure, and efficient wireless networking for mobile
clients.

12.7 BLUETOOTH

In 1994, Ericsson sought to connect its mobile phones wirelessly to other devices like
laptops, leading to the formation of a Special Interest Group (SIG) in 1998 with IBM, Intel,
Nokia, and Toshiba to develop a short-range, low-power wireless standard called Bluetooth,
named after the Viking king Harald Bluetooth. Bluetooth 1.0 was released in 1999, enabling
devices to pair and securely transfer data without cables. Since then, Bluetooth has become
widely adopted in consumer electronics such as phones, headsets, keyboards, and more. The
technology has evolved through several versions: Bluetooth 2.0 introduced higher data rates
in 2004; Bluetooth 3.0 in 2009 combined Bluetooth pairing with faster data transfer using
802.11 Wi-Fi; and Bluetooth 12.0, also released in 2009, added low-power operation to
extend battery life in devices. These advancements have made Bluetooth a standard for
convenient, wireless communication across a wide range of devices.

12.8 BLUETOOTH ARCHITECTURE

Bluetooth technology is designed to enable short-range wireless communication between
devices using small networks called piconets. Each piconet has one master device and up to
seven active slave devices that are connected within a range of about 10 meters. The master
device acts as the coordinator and controls how communication happens within the piconet.
In addition to these active slaves, a piconet can also have up to 255 parked devices. These
parked devices are essentially in a low-power or standby mode to conserve battery life. While
parked, these devices do not actively communicate but remain synchronized with the master
so they can be quickly reactivated when needed. There are also two other intermediate
power-saving modes called hold and sniff, which reduce power consumption while
maintaining some level of responsiveness.

When multiple piconets operate in the same area, they can overlap and interconnect through a
special device called a bridge that participates in multiple piconets. This interconnection
forms a larger network known as a scatternet. The scatternet allows more devices to
communicate across a broader network beyond the limits of a single piconet.

The master-slave architecture of Bluetooth is intentional to keep the system simple and cost-
effective. Because the slaves are “dumb” devices, meaning they follow strict instructions
from the master, Bluetooth chips can be manufactured cheaply (often under $5). The master

Computer Networks 12.9 WIRELESS LANs AND BLUETOOTH

controls the clock and manages which device can transmit data during specific time slots,
using a

Picaomet 1 Piconet 2
1 /
2]
/ /

i

i) 1

e
f/f " | I H\Q\E\
Active ; "L';]{ Parked

slave JI 5 II'; slave
] |

Bridge slave

Figure 12.8 Two piconets can be connected to form a scatternet

Centralized time-division multiplexing (TDM) system. This design ensures organized
communication without collisions.

Importantly, Bluetooth communication only occurs between the master and individual slaves.
Slaves cannot directly talk to each other; instead, any data sent from one slave to another
must first go through the master device. This central control simplifies the protocol but limits
peer-to-peer interactions within a piconet.

Overall, this design balances simplicity, low cost, and efficient use of the limited wireless
spectrum for short-range device connectivity. It enables Bluetooth to be widely used in
consumer electronics such as phones, headsets, keyboards, and more.

12.9 BLUETOOTH APPLICATIONS

Unlike many network protocols that simply provide a communication channel and leave
applications up to developers, Bluetooth defines a wide range of specific applications called
profiles—currently about 25 of them. These profiles cover various uses like audio and video
streaming (e.g., walkie-talkie style phone calls, hands-free headsets, music streaming),
connecting keyboards and mice, sending images between devices, and even using phones as
remote controls for TVs. Other profiles support networking functions, such as forming
personal area networks or connecting laptops to phones for internet access.

Each profile has its own protocol stack tailored to its specific use, which adds complexity.
This complexity arose because different working groups independently developed profiles for
their specific needs, leading to many specialized stacks rather than a simpler unified
approach. This situation reflects Conway’s Law, which states that software structure often
mirrors the organizational structure of the teams that create it. In hindsight, Bluetooth might
have functioned well with far fewer profiles and protocol stacks.

Centre for Distance Education 12.10 Acharya Nagarjuna University

12.10 THE BLUETOOTH PROTOCOL STACK

The Bluetooth standard organizes its many protocols into layers, but unlike typical models
like OSI or TCP/IP, its structure is unique. At the bottom is the physical radio layer, which
handles the actual radio transmission and modulation, focusing on keeping costs low for
mass-market devices.

Applications
Upper
Sarvice layers
RAFcomim discovery
= 2 =2
= = |l = =5
5| 2|l B
o o a L2CAP

Host-controller

interface T =] - |, Datalink
Link manager layer

Link contral W,
(S R SR S (Baseband)
Physical
Radio layer

Figure 12.9 The Bluetooth protocol architecture

Above that i1s the link control (or baseband) layer, similar to a MAC sublayer but also
handling some physical layer tasks. It manages how the master device controls timing,
organizing communication into time slots and frames.

Next, two key protocols run on top of the baseband:

The link manager manages logical connections, handling pairing, encryption, power
management, and quality of service. It operates below the Host Controller Interface (HCI),
which separates the Bluetooth chip’s low-level functions from the higher-level device
functions.

Above the HCI is the L2CAP (Logical Link Control and Adaptation Protocol), which
packages variable-length data messages and can provide reliability. Many other protocols use
L2CAP, including utility protocols like:

Service Discovery Protocol (SDP) to find services on devices RFCOMM, which emulates a
serial port to connect peripherals like keyboards and modems.

At the top layer are the profiles, each representing a specific application and defining which
protocols they use. For example, a headset profile might use only what’s necessary for
streaming audio, skipping other protocols.

Computer Networks 12.11 WIRELESS LANs AND BLUETOOTH

12.11 THE BLUETOOTH RADIO LAYER

The Bluetooth radio layer handles the actual transmission of bits between the master and
slave devices. It’s designed to be low power and has a typical range of about 10 meters. It
operates in the 2.4 GHz ISM band, the same band used by Wi-Fi (802.11), which is divided
into 79 channels, each 1 MHz wide.

To avoid interference and coexist with other devices in this crowded band, Bluetooth uses
frequency hopping spread spectrum — rapidly switching (up to 1600 times per second)
across different channels in a pseudorandom sequence controlled by the master device. All
devices in the piconet hop together, synchronized by the master’s timing.

Initially, Bluetooth and Wi-Fi signals interfered with each other, causing problems. The
solution, called adaptive frequency hopping, lets Bluetooth detect which channels are busy
with other signals and avoid them, reducing interference.

Bluetooth uses different modulation schemes to send data:

The basic method is frequency shift keying (FSK), sending 1 bit per microsecond, resulting in
1 Mbps data rate.

Later versions (Bluetooth 2.0 and onward) added phase shift keying (PSK), allowing 2 or 3
bits per symbol, increasing data rates to 2 or 3 Mbps. These faster rates are used only for the
data parts of transmissions.

12.12 THE BLUETOOTH LINK LAYERS

The Bluetooth link control, or baseband layer, manages how devices share the
communication channel by dividing time into 625-microsecond slots. The master transmits in
even slots, and slaves transmit in odd slots, using time-division multiplexing. Frames can last
1, 3, or 5 slots, with longer frames being more efficient due to fixed overhead costs.
Frequency hopping between channels happens only between frames to reduce interference,
and data can be encrypted for security.

Above this, the link manager protocol establishes logical connections called links between
paired devices. Pairing ensures devices are authorized to communicate, initially using simple
PINs but now using a more secure passkey confirmation method. Two main link types carry
data: SCO links for real-time voice with fixed time slots, and ACL links for irregular, packet-
based data delivered on a best-effort basis.

The L2CAP layer handles large packets by breaking them into smaller frames and
reassembling them on reception. It multiplexes multiple protocols over one link, manages
error control by retransmitting lost packets, and enforces quality of service. Together, these
layers allow Bluetooth devices to communicate efficiently and securely over short distances.

Centre for Distance Education 12.12 Acharya Nagarjuna University

12.13 THE BLUETOOTH FRAME STRUCTURE

Bluetooth defines several frame formats, with the most important including an access code
that identifies the master device so slaves can distinguish their traffic. The frame header is 54
bits long and repeated three times to ensure reliability in noisy environments using simple
hardware. This header contains fields like address, frame type, flow control,
acknowledgment, and sequencing bits.

At the basic data rate, frames carry up to 2744 bits of data in a five-slot transmission, or 240
bits in a single slot. Enhanced data rates increase the data portion by sending 2 or 3 bits per
symbol instead of 1, but the access code and header remain at the basic rate. Enhanced frames
also include guard fields and synchronization patterns for the faster data transmission.

Bits 72 a4 0=2744

Access code Headear Data (at 1X rata)

Addr | Type [F|A|S| CRC |Repaated 3 times

\ #
Bits 72 . 54 PRT 0-8184 2
Accass code Header |Guard/Syne Data (at 2X or 3X rate) Trailer
- 5 % 675 microsec slots -
(a) Basic rate data frama, top (b} Enhanced rate data frame, bottom

12.10 Typical Bluetooth data frame at (a) basic and (b) enhanced, data rates.

The data payload differs for ACL and SCO frames. SCO frames carry fixed-size payloads
designed for voice data, with error correction built in. Despite Bluetooth’s raw 1 Mbps
bandwidth, overhead from headers, error correction, and radio settling time reduce the
effective data capacity to about 64,000 bps per direction — enough for a single full-duplex
uncompressed voice channel. This efficiency limitation motivates the use of enhanced rates
and longer frames in modern Bluetooth versions.

12.14 SUMMARY

This chapter covers wireless communication technologies such as 802.11 WLANs and
Bluetooth. The 802.11 standard defines a protocol stack, including a physical layer and MAC
sublayer, managing wireless access and frame structure for efficient communication.
Bluetooth enables short-range wireless connectivity for devices, with a layered protocol stack
including the radio layer, baseband, and L2CAP, supporting various applications like audio
streaming, file transfer, and device networking. Both technologies provide flexible, wireless
data transmission with structured protocols and frame formats to ensure reliable
communication.

Computer Networks 12.13 WIRELESS LANs AND BLUETOOTH

12.15 TECHNICAL TERMS
802.11 Wireless LAN, L2CAP

12.16 SELF ASSESSMENT QUESTIONS
Essay questions:

Explain the 802.11 protocol stack and the role of each layer.

Describe the 802.11 physical layer and MAC sublayer protocol in detail.

Discuss the 802.11 frame structure and its components.

Explain the Bluetooth architecture and its major applications.

Describe the Bluetooth protocol stack, including the radio, baseband, and L2CAP
layers, and explain the frame structure

MRS

Short Questions:

What is the 802.11 protocol stack?

Name two functions of the 802.11 MAC sublayer.
What does the 802.11 frame structure include?
List one application of Bluetooth.

Name two layers of the Bluetooth protocol stack.

Nk W=

12.17 FURTHER READINGS

1. Andrew S. Tanenbaum, “Computer Networks”, Fourth Edition, PHI.

2. James F.Kurose, Keith W.Ross, “Computer Networking”, Third Edition, Pearson
Education

3. Behrouz A Forouzan, “Data Communications and Networking”, Fourth Edition, TMH
(2007)

4. Michael A. Gallo, William M. Hancock, “Computer Communications and
NetworkingTechnologies”, Cengage Learning (2008)

Dr. Uduga Surya Kameswari

LESSON- 13
DATA LINK LAYER SWITCHING

OBJECTIVES:
After going through this lesson, you will be able to

Understand the concept of data link layer switching.

Learn about bridges and their role in connecting LANS.

Describe the spanning tree algorithm and its application.

Understand different network devices: repeaters, hubs, bridges, switches, routers,
and gateways.

= Study Virtual LANs (VLANSs) and their purpose.

STRUCTURE OF THE LESSON:

13.1 INTRODUCTION

13.2 USES OF BRIDGES

13.3 LEARNING BRIDGES

13.4 SPANNING TREE BRIDGES

13.5 REPEATERS, HUBS, BRIDGES, SWITCHES, ROUTERS AND GATEWAYS
13.6 VIRTUAL LANS

13.7 SUMMARY

13.8 TECHNICAL TERMS

13.9 SELF-ASSESSMENT QUESTIONS

13.10 FURTHER READINGS

13.1 INTRODUCTION

Organizations often need to connect multiple LANSs to create a larger, unified network, and
this can be done using devices called bridges or switches (modern bridges). These devices
operate at the data link layer, where they examine MAC addresses to forward frames between
LANs without looking into the data itself, making them capable of handling various network
protocols like IP or AppleTalk. Unlike routers, which work at the network layer and forward
packets based on IP addresses, switches are protocol-independent and focus only on frame
delivery. By using bridges or switches, multiple physical LANs can be joined into a single
logical LAN. Additionally, VLANs (Virtual LANs) allow a single physical LAN to be
divided into multiple logical networks, providing greater flexibility in managing and securing
network traffic.

Centre for Distance Education 13.2 Acharya Nagarjuna University

13.2 USES OF BRIDGES

Organizations often find themselves with multiple LANs for various reasons, and bridges (or
switches) are essential for connecting these LANs into a cohesive network. One common
reason is departmental independence—different departments within a university or
corporation may set up their own LANs to support their specific needs and devices like PCs,
printers, and servers. Since each department acts autonomously, there is no coordination in
network setup. However, over time, the need for interdepartmental communication arises,
making it necessary to use bridges to interconnect these independent LANS.

Another reason is geographical separation. When an organization spans several buildings,
running a single LAN across all of them can be impractical or costly. Ethernet cables have
physical length limitations (e.g., 200 meters for twisted-pair gigabit Ethernet), so connecting
distant buildings requires separate LANs linked by long-distance cables and bridges. This
setup extends the network’s physical reach without violating cable length constraints and
reduces signal loss and delay.

A third reason is scalability and performance. Large institutions like universities or
corporations may have thousands of workstations, which exceeds the capacity of a single
Ethernet LAN or hub. Even if physically possible, placing all devices on one LAN would
lead to performance issues, as all devices share the same limited bandwidth. By splitting the
network into multiple LANs and connecting them with bridges, the system can support more
devices and double the bandwidth, as each LAN operates independently at full speed. Bridges
also enhance reliability by isolating faults; a malfunctioning node on one LAN won’t disrupt
the entire network.

For maximum ease and flexibility, bridges are designed to be transparent. Ideally, a bridge
should work instantly when plugged in—without requiring changes to existing hardware,
software, or configurations. Stations on the network should not be able to tell whether they
are part of a single LAN or a bridged LAN, and devices should be easily movable within the
network. This plug-and-play functionality is made possible by two main algorithms: the
backward learning algorithm, which ensures traffic is sent only where it is needed, and the
spanning tree algorithm, which prevents network loops that could occur when multiple paths
exist between bridges. Together, these algorithms allow bridges to manage traffic efficiently
and maintain network stability.

13.3 LEARNING BRIDGES

Bridges (or Ethernet switches) are used to connect multiple LANs and can work with
different network topologies, such as classic shared Ethernet or modern point-to-point links
with hubs. In modern setups, switches usually replace hubs for better performance. Bridges
work by listening to all incoming frames (promiscuous mode) and use the destination MAC
address to decide whether to forward or discard a frame.

Computer Networks 13.3 DATA LINK LAYER SWITCHING

@

(a) (b)

Figure 13.1 (a) Bridge connecting two multidrop LANs (b) Bridge (and a hub)
connecting seven point-to-point stations

At first, bridges know nothing about device locations, so they flood unknown-destination
frames to all ports. Over time, they use backward learning by observing the source addresses
of frames to build a table that maps each device to a specific port. This helps send future
frames only where needed, reducing traffic.

Bridges also adapt to changes in the network. If a device is moved or unplugged, its table
entry is removed after some time. When the device becomes active again, the bridge learns its
new location automatically. This self-learning and updating makes bridges efficient, flexible,
and 1deal for managing dynamic networks.

This section explains how bridges forward Ethernet frames using a simple 3-step algorithm:

1. If the destination port is the same as the source port, the bridge discards the frame
since it is already on the correct segment.

2. If the destination port is different, the bridge forwards the frame to that port.

3. If the destination is unknown, the bridge uses flooding, sending the frame to all ports
except the incoming one.

This logic even applies when hubs are used, as shown in the example where stations E and F
are connected via hub H1 to bridge B2. If E sends a frame to F, the hub sends it both to F and
to bridge B2. Since the frame already reached the right segment, B2 discards it.

The forwarding process is typically implemented in hardware using special-purpose VLSI
chips to ensure very fast decisions. This allows cut-through switching, where forwarding can
start as soon as the destination address is read—before the full frame is received—reducing
delay and buffering needs.

Centre for Distance Education 13.4 Acharya Nagarjuna University

Station A Station D
| i
MNetwork m Bridge
f
Se | [E]Packet Eth | Packet)° /Y Eih | Packet Eth
]] T 1
Physical | | Eth | Packet Eth |Packet Eth |Packet E’Ith‘an:kel
| L)
Wire Wire

Figure 13.2 Protocol processing at a bridge

Bridges function strictly at the data link layer. They only examine Ethernet MAC headers,
never the contents (like IP headers), preserving the integrity of the protocol stack. A bridge
with k ports maintains k instances of MAC and physical layers. In the protocol stack view, a
frame from station A to D is received by the bridge at its MAC layer, processed, and then
sent out via the MAC layer of the appropriate output port, without altering the higher-layer
content.

13.4 SPANNING TREE BRIDGES

Redundant links between bridges improve network reliability by providing backup paths if
one link fails. However, they can also create loops in the network. When a frame is sent to an
unknown destination, bridges flood it across all ports. If multiple paths exist, the same frame
may circulate endlessly, causing a broadcast storm.

To solve this, the Spanning Tree Protocol (STP) is used. STP disables some redundant links
to form a loop-free logical topology called a spanning tree, ensuring only one path exists
between any two devices. Bridges communicate using special configuration messages to
agree on this tree. Once established, only the active links in the tree are used for forwarding,
preventing loops and ensuring stable communication.

Frame F,
—
A g
. F1 '_r"'- Ll
— -7
i F -] —
I : S
L <E” >|::=—- Fs <EE>)
e 1 -] s
T Fy I
| Bridge Lo

Redundant links
Figure 13.3 Bridges with two parallel links

Computer Networks 13.5 DATA LINK LAYER SWITCHING

To build a spanning tree, all bridges must first agree on one bridge to serve as the root. Each
bridge sends configuration messages containing its own identifier (based on its MAC
address) and the identifier of the bridge it currently believes to be the root. Since MAC
addresses are globally unique, they serve as reliable identifiers. The bridge with the lowest
MAC address becomes the root. In the example, bridge B1 has the lowest identifier and is
chosen as the root.

Once the root is selected, each bridge calculates the shortest path to the root. For ties—where
two paths are equal in length—the path through the bridge with the lower identifier is
selected. Bridges then disable any ports not on the shortest path to the root, effectively
removing redundant links to prevent loops. Although all bridges are part of the spanning tree,
not all links are used.

Q |; q/!ﬂ? D |fja— Station

Roat
. —==i B1 B3 Bs
bridge c/ Y /
TN
| -{f .
Ir'-- - Bridge
o
Rz
—'\ - Link that is not part
B2 B4 r” of the spanning tree

Ao A0

Figure 13.4 A spanning tree connecting five bridges. The dashed lines are links that are
not part of the spanning tree.

The algorithm continues running even after the tree is built to adapt to network changes. This
Spanning Tree Algorithm was invented by Radia Perlman, who famously wrote a poem about
it. The algorithm became an industry standard as IEEE 802.1D, and later revisions improved
its speed in reacting to topology changes.

13.5 REPEATERS, HUBS, BRIDGES, SWITCHES, ROUTERS AND GATEWAYS

This section compares different network devices—repeaters, hubs, bridges, switches, routers,
and gateways—based on the layer of the OSI model in which they operate and the type of
data they handle. Each device functions at a different layer, using specific information to
make forwarding decisions.

At the physical layer, we find repeaters and hubs. A repeater is an analog device that
amplifies and regenerates electrical signals, allowing data to travel longer distances. It does
not understand frames or addresses—it simply boosts the signal. A hub is slightly more
advanced, connecting multiple lines and broadcasting incoming frames to all other ports. Like
repeaters, hubs don’t examine or use link-layer addresses, and they also work at the physical
layer.

At the data link layer, we find bridges and switches. These devices understand frame
structures and use MAC addresses to forward frames to the correct port. Unlike hubs, bridges
isolate traffic, reducing collisions and allowing different speeds on different ports. They can

Centre for Distance Education 13.6 Acharya Nagarjuna University

buffer incoming frames and forward them as needed, but this buffering may run into
limitations if traffic overloads the bridge. Switches are essentially high-speed bridges with
many ports and are commonly used in modern LANs.

Bridges were initially intended to connect different types of LANSs, like Ethernet and Token
Ring. However, this proved difficult due to incompatible frame formats, different frame
lengths, and reformatting requirements, which often caused data loss or errors. In practice,
bridges work best when connecting similar LANSs.

Network devices like repeaters, hubs, bridges, switches, routers, and gateways differ based on
the OSI layer they operate in and how they handle data. Understanding these layers helps
explain their functions and decisions in forwarding data.

Application layer Application gateway

Transport layer Transport gateway Packet (supplied by netwark layer)
Frame | Packet | TCP User
Network layer Fouter header | header | header data CRG
Data link layer Bridge, switch Frame (built by data link layer)
Physical layer Hepeater, hub
(a) (o)

Figure 13.5 (a) Which device is in which layer (b) Frames, packets, and headers

Repeaters and hubs operate at the physical layer. A repeater simply amplifies and regenerates
electrical signals to extend the distance a signal can travel. Hubs are similar but connect
multiple lines and broadcast incoming signals to all ports. Both devices do not understand or
use frame or address information—they only deal with raw signals.

Bridges and switches function at the data link layer. They can read frame headers and use
MAC addresses to forward frames to the correct destination port, reducing unnecessary
traffic. Switches are high-speed, multi-port bridges commonly used in modern networks.
These devices isolate traffic between ports and can handle different network speeds.
However, if data arrives faster than it can be sent out, they may run out of buffer space and
start dropping frames.

Bridges were initially designed to connect different types of LANSs, like Ethernet and Token
Ring. However, due to issues like incompatible frame formats and maximum frame sizes, this
approach was unreliable. In practice, bridges are best used to connect similar LANs.

13.6 VIRTUAL LANs

In the early days, LANs were set up based on physical layout—computers were connected as
they were physically close, regardless of organizational structure. Later, with twisted pair
cables and centralized hubs (later switches), it became possible to configure LANs based on
logical groupings like departments.

‘ Computer Networks 13.7 DATA LINK LAYER SWITCHING

This logical setup is useful for several reasons. Security is improved by isolating sensitive
departments (like HR) from public servers. Load management becomes easier, as heavy users
(like researchers) can be kept separate from others to prevent network slowdowns. Broadcast
traffic is also reduced, which improves performance, since broadcasts go to all devices on a
LAN and grow with network size.

= = Hub
™~ ™~
g

.
| " Switch

| |
s | aims

rHub

Twisted pair-f/i Office
to a hub

Figure 13.6 A building with centralized wiring using hubs and a switch

However, even with bridges and switches, some broadcasts still need to pass between LANs
to maintain transparency. So, careful LAN design is important to keep networks secure,
efficient, and stable.

This section introduces the concept of VLANs (Virtual LANs), which were developed to
solve the limitations of organizing networks purely based on physical layout. In traditional
LAN setups, computers were grouped by physical location, but as companies grew and
changed, this became inefficient. For example, employees from the same department might
be in different buildings, or departments might grow or shrink, creating mismatches with
available switch ports. Constantly replugging cables to reassign LANs became a burden for
administrators.

To address this, VLANSs allow logical grouping of computers across physical locations using
software, rather than physical cabling. Using VLAN-aware switches, administrators can
assign each port to a specific VLAN. These VLANs can be configured based on department,
function, or other logical groupings—regardless of where the machines are physically
located. This simplifies reorganization, improves flexibility, and enhances management.

Centre for Distance Education 13.8 Acharya Nagarjuna University

Gray station I:I Gray and |:|

White port
G\ G| G / W W
GW

B1 B

\
o

Gray port

Brdge

// White port

White station

G/ G| G G /W

[] [

Figure 13.7 Two VLANSs, gray and white, on a bridged LAN

In a VLAN setup, when a frame is received on a port, the switch forwards it only to ports that
belong to the same VLAN. For example, in the illustrated network, machines in the gray
VLAN (G) and white VLAN (W) are spread across different switches. When a gray machine
sends a frame, it is only forwarded to ports marked “G,” preventing it from reaching white
VLAN machines. This separation ensures traffic isolation and efficient broadcast control, all
while allowing centralized software-based network management.

The IEEE 802.1Q standards

To implement VLANSs, network devices need a way to identify which VLAN each Ethernet
frame belongs to. Since the original Ethernet frame format didn’t include any space for
VLAN information, the IEEE introduced the 802.1Q standard in 1998. This standard adds a
special VLAN tag inside the Ethernet frame header. This tag tells VLAN-aware switches
which VLAN the frame is part of, allowing them to properly separate and forward traffic
based on VLAN membership.

Tagged

" im

\ - Lega
VLAN-aware B g =y

host and bridge

Figure 13.8 Bridged LAN that is only partly VLAN aware. The shaded symbols are VLAN
aware. The empty ones are not.

Importantly, existing Ethernet hardware didn’t need to be discarded because only VLAN-
aware switches add and interpret these tags. Frames traveling between VLAN-aware switches
carry these tags, but frames sent to regular (legacy) devices do not include them, so those
devices continue to function normally.

The VLAN tag slightly increases the maximum Ethernet frame size from 1518 bytes to 1522
bytes, but only VLAN-aware devices must support this larger size. This approach allows
organizations to introduce VLANs incrementally and maintain compatibility with older
devices, making VLAN deployment practical and flexible.

Computer Networks 13.9 DATA LINK LAYER SWITCHING

L%

al
Destination| Source Check-
802.3 address | address Length Uata Pad UM
i1
k)
5
Destination| Source Check-
802.10 address | address P Tag |Length Data rad SUm
11
1l
[

Pri |F [VLANM ldentifier
I

VLAN protocol
IC {08100}

Figure 13.9 The 802.3 (legacy) and 802.1Q Ethernet frame formats

The 802.1Q VLAN tag adds a second 2-byte field with three parts. The most important is the
12-bit VLAN identifier, which marks the frame’s VLAN “color” so switches know how to
forward it properly.

There’s also a 3-bit priority field for quality of service (QoS), helping prioritize time-
sensitive traffic like voice or video over regular data.

The last part is the Canonical Format Indicator (CFI), originally meant to indicate bit order in
MAC addresses but now mostly signals special token ring frames carried inside Ethernet.
This part isn’t related to VLANSs but got included due to standards politics.

When a tagged frame reaches a VLAN-aware switch, the switch uses the VLAN ID to look
up which ports to forward it to. These forwarding tables aren’t manually set but are learned
dynamically by observing incoming tagged frames (e.g., a VLAN 4 frame arriving on port 3
tells the switch VLAN 4 is reachable via port 3).

Interestingly, VLANs add a connection-like element to Ethernet switching: forwarding is
based on VLAN IDs (like connection labels) rather than just destination addresses, marking a
shift toward connection-oriented behavior in an otherwise connectionless network.

13.7 SUMMARY

This chapter focuses on data link layer switching and the devices that facilitate
communication between networks. Bridges connect different LAN segments, using spanning
tree protocols to prevent loops. Remote bridges extend connections over larger distances. The
chapter also distinguishes common networking devices: repeaters regenerate signals, hubs
broadcast frames, switches forward frames intelligently, routers direct traffic across
networks, and gateways translate protocols. Virtual LANs (VLANs) allow logical
segmentation of networks, improving security, efficiency, and management within LAN
environments

13.8 TECHNICAL TERMS
Bridges, Virtual LANSs, switches, routers, frames, network traffic

Centre for Distance Education 13.10 Acharya Nagarjuna University

13.9 SELF ASSESSMENT QUESTIONS

Essay questions:

MRS

Explain how bridges connect different 802.x LANs and support local internetworking.
Describe the spanning tree protocol and its importance in preventing loops.

Explain the functions of repeaters, hubs, bridges, switches, routers, and gateways.
Discuss remote bridges and their role in wide-area networking.

Explain the concept, benefits, and working of Virtual LANs (VLANS).

Short Questions:

M

13.10

N —

What is a data link layer switch?

Define a network bridge.

What is the purpose of the spanning tree algorithm?
Name two network devices used to connect LANSs.
What is a VLAN?

FURTHER READINGS

Andrew S. Tanenbaum, “Computer Networks”, Fourth Edition, PHI.

. James F.Kurose, Keith W.Ross, “Computer Networking”, Third Edition, Pearson

Education

Behrouz A Forouzan, “Data Communications and Networking”, Fourth Edition, TMH
(2007)

Michael A. Gallo, William M. Hancock, “Computer Communications and
NetworkingTechnologies”, Cengage Learning (2008)

Dr. Vasantha Rudramalla

LESSON- 14
THE NETWORK LAYER DESIGN ISSUES

OBJECTIVES:
After going through this lesson, you will be able to

e Understand the key design issues of the network layer.

e Learn the concept of store-and-forward packet switching.

e Describe the services provided to the transport layer.

e Understand implementation of connectionless and connection-oriented services.
e Compare virtual circuit and datagram subnet approaches

STRUCTURE OF THE LESSON:

14.1 STORE AND FORWARD PACKET SWITCHING

14.2 SERVICES PROVIDED TO THE TRANSPORT LAYER

143 IMPLEMENTATION OF CONNECTIONLESS SERVICES

144 IMPLEMENTATION OF CONNECTION-ORIENTED SERVICES

145 COMPARISON OF VIRTUAL CIRCUITS AND DATAGRAM NETWORKS
14.6 SUMMARY

14.7 TECHNICAL TERMS

14.8 SELF-ASSESSMENT QUESTIONS

14.9 FURTHER READINGS

14.1 STORE AND FORWARD PACKET SWITCHING

The network layer and its functions, it is important to understand the broader environment in
which network layer protocols operate. This environment typically consists of two major
components: the Internet Service Provider’s (ISP’s) infrastructure and the customer's
equipment. These components are often depicted in diagrams such as Figure 14.1, where the
ISP’s network is represented inside a shaded oval, encompassing several routers
interconnected via transmission lines. On the other hand, customer devices like personal
computers or local networks are located outside this oval.

For instance, consider two hosts: H1 and H2. Host H1 could be a simple home computer
directly connected to one of the ISP’s routers (labeled A) through a DSL modem. This type
of connection typically represents a residential broadband setup. In contrast, Host H2 might
be part of a more complex local area network (LAN), such as an office Ethernet. This LAN is
connected to a router (labeled F), which is owned and managed by the customer. Router F,
although it is physically located on the customer’s premises and managed by them, is
considered part of the ISP’s network for the purposes of studying network layer behavior.
This is because router F runs the same routing algorithms and protocols as the routers owned
by the ISP.

Centre for Distance Education 14.2 Acharya Nagarjuna University

Router I5P's equipment
Process P1 P2

Figure 14.1 The environment of the network layer protocols

The communication process begins when a host, such as H1 or H2, wants to send a data
packet. The packet is first sent to the nearest router. This can happen either through a point-
to-point link—Ilike the connection between H1 and router A—or via a shared LAN as is the
case with H2. Once the packet arrives at the router, it undergoes a process called store-and-
forward packet switching. In this mechanism, the router waits for the entire packet to arrive
before it processes it. One key step in this process includes verifying the packet’s checksum
to ensure it hasn't been corrupted during transmission.

After the verification is complete, the router determines the next hop based on its routing
table and forwards the packet to the next router along the path toward the destination. This
process continues from router to router until the packet finally reaches the destination host,
such as H2. The store-and-forward model, therefore, involves temporary storage at each hop
and makes use of routing algorithms that determine the optimal path through the network.

By examining this setup, we gain a clearer understanding of how the network layer functions
in real-world scenarios, handling responsibilities such as routing, addressing, and packet
forwarding across a distributed infrastructure involving both ISP-controlled and customer-
managed devices

14.2 SERVICES PROVIDED TO THE TRANSPORT LAYER

The network layer plays a crucial role in the overall architecture of computer networks by
providing essential services to the transport layer. The interface between these two layers—
the network layer/transport layer interface—is where the services of the network layer
become visible to the transport layer. One of the key design questions in networking is
determining what kind of services the network layer should offer to the transport layer. To
answer this, designers must keep several critical goals in mind while creating the network
layer's service specifications.

First and foremost, the services should be independent of the underlying router technology.
This means the services must work uniformly regardless of the internal workings or designs
of the routers in the network. Secondly, the transport layer should remain unaware of the
number, types, or interconnections (topology) of routers present in the network. It should see
only a simple, abstract service and not have to deal with the network’s internal complexity.
Thirdly, the network addressing scheme must be consistent and uniform, regardless of
whether the communication occurs over a local area network (LAN) or a wide area network

‘ Computer Networks 14.3 NETWORK LAYER DESIGN ISSUES

(WAN). A uniform addressing approach simplifies the design of transport protocols and
makes them more portable across different network environments.

Given these design principles, network architects have significant flexibility in defining the
specific services that the network layer offers. However, this freedom has historically led to
deep disagreement among experts, resulting in a long-standing debate between two major
schools of thought. The central issue is whether the network layer should provide connection-
oriented services or connectionless services.

One faction, often associated with the Internet community, advocates for a connectionless
model. According to this group, the main responsibility of the network layer is simply to
deliver packets from one point to another. Based on decades of practical experience with the
Internet, they argue that networks are naturally unreliable and that attempts to make them
perfectly reliable are often futile. Therefore, the hosts themselves should handle
responsibilities like error detection, error correction, and flow control. From this viewpoint,
the network layer should only offer basic primitives such as SEND PACKET and RECEIVE
PACKET, without guarantees about delivery order or reliability. Since each packet is treated
independently, it must carry the full destination address to ensure correct delivery, regardless
of what came before or after it.

This approach exemplifies the well-known end-to-end argument, a fundamental design
principle in network architecture. The end-to-end argument suggests that certain functions,
such as reliability and security, are best implemented at the endpoints of a communication
system (i.e., the hosts), rather than in the intermediate network. This principle has profoundly
influenced the design of the modern Internet.

In contrast, the opposing faction—traditionally represented by telephone companies—
advocates for a connection-oriented network service. Drawing on over a century of
experience with the reliable global telephone system, they argue that providing a stable,
predictable, and high-quality service requires explicit connections within the network. This is
especially true for real-time applications like voice and video, where packet delay, jitter, and
loss can severely impact performance. In their view, quality of service (QoS) is paramount,
and QoS is difficult to guarantee without some form of connection establishment and
management.

This debate has persisted for decades. In the early years of networking, many widely used
protocols like X.25 (from the 1970s) and Frame Relay (from the 1980s) followed the
connection-oriented model. However, over time, the connectionless model gained massive
popularity, particularly due to the rise of the ARPANET and the Internet. The Internet
Protocol (IP), which embodies the connectionless philosophy, became a universal standard
and a symbol of success. Despite the introduction of advanced, connection-oriented
technologies like ATM (Asynchronous Transfer Mode) in the 1980s—which was expected to
replace [IP—IP continued to thrive, while ATM faded into niche applications.

Interestingly, the story does not end there. As modern applications increasingly demand
guaranteed performance, even the Internet, based on a connectionless model, has started
adopting connection-oriented features. Examples of this include technologies like MPLS
(MultiProtocol Label Switching) and VLANSs (Virtual Local Area Networks). These solutions
aim to combine the flexibility and scalability of connectionless networking with the
performance guarantees typically associated with connection-oriented systems. This hybrid

Centre for Distance Education 14.4 Acharya Nagarjuna University

evolution illustrates how the networking world continues to seek a balance between
reliability, simplicity, and performance.

1. Connectionless service (Internet view):

e The network’s job is simply to move packets, and the network itself is unreliable.

e Error control and flow control are handled by the hosts (end systems), not the
network.

e The network layer offers simple primitives like SEND PACKET and RECEIVE
PACKET, with no guarantees about ordering or delivery.

e [Each packet carries a full destination address and is routed independently (no
connections).

e This approach follows the end-to-end argument—tasks are best handled at the
endpoints, not inside the network.

2. Connection-oriented service (Telephone companies’ view):

e The network should provide reliable, connection-based services.

e Connections help ensure quality of service (QoS), which is important for real-time
traffic like voice and video.

e This view is based on the success of the telephone system, which uses connections to
manage calls reliably.

Historically, early networks like X.25 and Frame Relay used connection-oriented models.
However, the Internet’s connectionless IP protocol has become dominant and successful,
even overtaking some connection-oriented technologies like ATM.

Still, modern networks are incorporating connection-oriented features (e.g., MPLS and
VLAN:Ss) to improve QoS while keeping the Internet’s basic connectionless nature.

In short, the network layer balances between simple, flexible connectionless service and more
complex, reliable connection-oriented service depending on needs and technology trends.

14.3 IMPLEMENTATION OF CONNECTIONLESS SERVICES

After exploring the two major types of services that the network layer can offer—
connectionless and connection-oriented—it becomes necessary to understand how the
network layer operates internally. The internal organization of the network layer depends
heavily on the kind of service it provides. In a connectionless network, packets are
transmitted into the network individually, with each one being routed independently of the
others. There is no need to establish a pre-arranged path before communication begins. In
such a system, the packets are referred to as datagrams, drawing a parallel with telegrams,
which are also delivered individually and possibly out of order. Networks that operate this
way are called datagram networks.

On the other hand, if the network layer offers connection-oriented service, it requires the
establishment of a specific path—called a Virtual Circuit (VC)—from the source to the
destination before any actual data is transmitted. This setup resembles the way telephone
systems operate by setting up a physical circuit before a call begins. Networks using this

Computer Networks 14.5 NETWORK LAYER DESIGN ISSUES

approach are known as virtual-circuit networks. In this section, the focus is on how datagram
networks function, and the discussion of virtual-circuit networks follows afterward.

To illustrate the working of a datagram network, consider a scenario shown in Figure 14.2.
Suppose process P1 on host H1 wants to send a long message to process P2 on host H2. P1
passes the message to the transport layer, specifying that it should be delivered to P2 on H2.
The transport layer, which typically operates within the operating system on HI, adds a
transport header to the message and hands it over to the network layer.

Assume that the original message is four times longer than the maximum allowable packet
size in the network. Consequently, the network layer must fragment the message into four
separate packets: 1, 2, 3, and 4. These packets are then transmitted individually to router A
using a point-to-point protocol such as PPP (Point-to-Point Protocol). At this point, the ISP's
routers take control of the packet forwarding process.

Router I5P’s eguipment
Process P1 F2

Hz

A's table (initially) A's table (later) C's table E's table
Al - A - A A Al C
B|B B|B B | A B|D
C|C cl|C C| - Cl|C
D|B DB D|E D|D
E|lC E|B E|E E| -
FlC F|B F|E F|F

e
Dest. Line

Figure 14.2 Routing within a datagram network

Each router in the network maintains an internal routing table that indicates where to send
packets based on their destination address. Every entry in the routing table is a pair consisting
of a destination and an outgoing line to reach that destination. Importantly, routers can only
send packets over lines to which they are directly connected. For example, in the network
depicted in Figure 14.2, router A has two outgoing links—one to router B and one to router
C. Therefore, any packet arriving at A must be forwarded through one of these two routers,
even if its final destination is much further away.

As packets 1, 2, and 3 arrive at router A, they are briefly stored so their checksums can be
verified to ensure they were not corrupted during transmission. After verification, router A
forwards each packet based on its routing table. Initially, A’s table directs these packets to
router C. From C, the packets proceed to router E, then to router F, and finally across the
LAN to host H2, where process P2 resides. All three packets follow this same path.

Centre for Distance Education 14.6 Acharya Nagarjuna University

However, when packet 4 arrives at router A, something different happens. Instead of
forwarding it through the path used by the previous packets, A sends packet 4 to router B.
This change in routing behavior may have occurred because router A updated its routing table
after discovering congestion or failure on the previous path (ACE). This example highlights
one of the key features of datagram networks: routing decisions are made independently for
each packet, and routes can change dynamically. This flexibility helps networks adapt to real-
time conditions such as traffic jams or failed links.

The logic that determines how routers update and use their routing tables is governed by the
routing algorithm, which is a central topic in the study of the network layer. Different routing
algorithms have different properties, goals, and behaviors, and they form the backbone of
efficient data delivery in packet-switched networks.

A real-world example of a datagram-based connectionless service is the Internet Protocol
(IP), which underpins the entire Internet. In IP networks, each packet carries its own
destination address, allowing routers to process and forward it independently. IP comes in
two major versions: IPv4, which uses 32-bit addresses, and IPv6, which uses 128-bit
addresses to accommodate the growing number of devices on the Internet. The detailed
mechanics of IP will be discussed later in the chapter.

14.4 IMPLEMENTATION OF CONNECTION-ORIENTED SERVICES

To provide connection-oriented service, the network layer must operate using a virtual-circuit
network. Unlike the connectionless model where each packet finds its own route through the
network, virtual circuits are designed to establish a fixed path between the source and
destination before any data packets are transmitted. This means that during the connection
setup phase, the routers involved determine and store a route in their routing tables, which
will be used for all packets in that communication session. Once the communication is
complete and the connection is released, the virtual circuit is terminated, and the related
entries in the routers' tables are discarded. This model is very similar to how traditional
telephone systems work.

In a virtual-circuit network, each packet does not carry a full destination address. Instead, it
includes a connection identifier that refers to the established path. Each router uses this
identifier to forward the packet along the predefined route. This approach reduces overhead
and speeds up routing, since the path is fixed and known in advance.

To understand this mechanism, consider the example illustrated in Figure 14.3. Suppose host
H1 wants to communicate with host H2. It begins by establishing a connection—referred to
as connection 1. This connection is then recorded in the routing tables of all routers along the
path from H1 to H2. For example, router A's table contains an entry stating that if it receives
a packet with connection ID 1 from H1, it should forward that packet to router C, keeping the
same connection ID. Similarly, router C forwards the packet to E, and from E it finally
reaches F and then H2.

However, now suppose another host, H3, also wants to establish a connection to H2. Since
H3 1is just initiating communication, it selects connection ID 1 for its side of the
communication. This introduces a potential conflict, because routers such as C may now
receive multiple packets with the same connection identifier (1), one from H1 and another
from H3. Since the connection ID must be unique on each incoming interface but can differ

Computer Networks 14.7 NETWORK LAYER DESIGN ISSUES

across routers, this problem is resolved by allowing routers to assign new identifiers to
outgoing traffic. In this case, when the packet from H3 passes through router A, A changes
the identifier from 1 to a different value (say, 2) before forwarding it to C. This method
enables routers to avoid conflicts by performing label translation at each hop.

This capability of assigning and switching labels (or identifiers) as packets move from one
hop to the next is often referred to as label switching. A widely used example of a label
switching, connection-oriented technology is MPLS (MultiProtocol Label Switching). MPLS
is commonly used within ISP networks and works by attaching a 20-bit label to IP packets.
These labels serve as connection identifiers, allowing for fast, efficient routing based on
predetermined paths.

‘ Router ISP’s equipment

A’s table C’s table E's table
HE C1 YE E |1 C1 HE
Hal1||[cl2 ala2||E!2 cla||[Fl2
In Out

Figure 14.3 Routing within a virtual circuit network

Although MPLS operates beneath the traditional IP layer and is often invisible to end users, it
is a powerful tool for traffic engineering and quality of service (QoS) management within
service provider networks. ISPs can set up long-lived MPLS paths to handle high-volume or
delay-sensitive traffic (such as voice and video), ensuring better performance and network
efficiency. While we will explore the technical details of MPLS later in the chapter, it is
important to note here that virtual-circuit techniques like MPLS are essential when
guaranteed service quality and efficient traffic management are required.

14.5 COMPARISION OF VIRTUAL CIRCUITS AND DATAGRAM NETWORKS

Both datagram and virtual-circuit networks are widely used in computer networking, and
each approach has its own set of advantages and drawbacks. The debate between their
supporters centers on how each handles routing, addressing, setup, fault tolerance, and quality
of service. Understanding the trade-offs between these two methods is crucial for network
designers and architects who need to select the most appropriate model for their applications.

Centre for Distance Education

14.8

Acharya Nagarjuna University

Issue

Datagram network

Virtual-circuit network

 Circuit setup
Addressing

State information
Routing

. Effect of router failures

Mot needed

Each packet contains the full
source and destination address
Routers do not hold state
information about connections

Each packet is routed
independently

None, except for packets
lost during the crash

| Required
Each packet contains a
short VC number
Each VC requires router
table space per connection

Route chosen when VC is
| set up; all packets follow it
All VCs that passed
through the failed
| router are terminated

Quality of service Difficult Easy if enough resources
can be allocated in
advance for each VC

Congestion control Difficult Easy if enough resources

can be allocated in
advance for each VC

Figure 14.4 Comparison of datagram and virtual-circuit networks

One of the fundamental differences lies in the need for circuit setup. In datagram networks,
no setup is required before sending packets. Each packet is treated independently and routed
dynamically through the network based on its destination address. In contrast, virtual-circuit
networks require an initial setup phase, during which a fixed path from the source to the
destination is established. This path remains in place for the duration of the communication,
and all packets follow it in sequence. Once the connection is complete, the virtual circuit is
terminated, and the allocated resources are released.

The way packets carry addressing information also differs significantly. In a datagram
network, each packet must carry the complete source and destination address since it may
take a different path than other packets from the same message. This adds to packet overhead,
particularly when packets are small. On the other hand, virtual-circuit networks require only a
short virtual circuit identifier to be included in the packet header. This identifier is used by
routers to forward the packet along the pre-established route, reducing header size and
simplifying processing.

Another key difference is the handling of state information by routers. In datagram networks,
routers remain stateless; they do not maintain any record of ongoing connections. Each
routing decision is made afresh for every packet. However, in virtual-circuit networks,
routers must store state information for every active connection. This state includes the
mapping between incoming and outgoing virtual circuit numbers and interfaces, consuming
memory and processing resources.

Routing behavior further distinguishes the two approaches. In a datagram network, routing
decisions are made independently for each packet, allowing for dynamic adjustment to
changing network conditions like congestion or link failure. In contrast, virtual-circuit
networks use static routing for the duration of a connection, as the path is fixed during setup.
While this improves consistency and ordering, it reduces flexibility.

Computer Networks 14.9 NETWORK LAYER DESIGN ISSUES

One of the major strengths of datagram networks is their resilience to router failures. If a
router crashes, only the packets currently being processed by that router may be lost. New
packets can be rerouted dynamically through alternate paths. In virtual-circuit networks,
however, a single router failure can terminate all virtual circuits passing through it, disrupting
ongoing communications. Even if the router comes back online quickly, the connection
information stored in its memory is lost.

When it comes to quality of service (QoS) and congestion control, virtual-circuit networks
offer better capabilities. Since a path is established before communication begins, resources
such as buffer space, bandwidth, and CPU cycles can be reserved in advance. This makes it
easier to guarantee service levels for applications like video streaming or VolIP. Datagram
networks, with their lack of prior setup, struggle to offer similar guarantees, making QoS
management more difficult and often reactive rather than proactive.

There are additional practical considerations as well. In virtual-circuit networks, the setup
phase introduces some delay and consumes processing time, but packet forwarding becomes
faster and more efficient once the connection is established. In datagram networks, there is no
initial delay, but each packet requires more complex address lookup, which increases per-
packet processing time. Moreover, longer addresses in datagram packets contribute to higher
bandwidth usage, particularly in networks where packet sizes are small.

Another aspect is router memory usage. Datagram routers must maintain routing entries for
all possible destinations, which could be a large number. Virtual-circuit routers only need
entries for active connections, which could be fewer, depending on the traffic pattern.
However, this perceived advantage can be misleading because even virtual-circuit setup
messages require full destination addresses to be routed initially—just like datagrams.

In terms of application suitability, datagram networks are well-suited for short, bursty
communication where setting up and tearing down a connection would be inefficient. For
example, in credit card verification systems where each transaction is brief, the overhead of a
virtual circuit would outweigh the benefits. On the other hand, long-term communications,
such as VPNs connecting branch offices, benefit from virtual circuits. These can be
established manually and maintained over long periods, offering stability and performance
for sustained data flows.

Lastly, fault tolerance and traffic balancing also favor datagram networks. If a link or router
fails, new routes can be computed immediately for subsequent packets, ensuring continuity.
Also, because each packet is routed independently, traffic can be dynamically balanced
across the network to avoid congestion. Virtual circuits lack this flexibility; they are tied to
specific paths, and rerouting requires establishing a new connection, which can be disruptive.

14.6 SUMMARY

This chapter covers the network layer design issues, focusing on how data is delivered across
networks. Store-and-forward packet switching ensures each packet is temporarily stored at
intermediate nodes before forwarding. The network layer provides essential services to the
transport layer, supporting either connectionless or connection-oriented communication. The
chapter compares virtual circuit subnets, which establish a dedicated path, and datagram
subnets, which route packets independently, highlighting their trade-offs in efficiency,
reliability, and complexity

Centre for Distance Education 14.10 Acharya Nagarjuna University

14.7 TECHNICAL TERMS
Switching, packet switching, connectionless communication, connection-oriented
communication, Virtual circuit.

14.8 SELF ASSESSMENT QUESTIONS
Essay questions:

Explain the design issues of the network layer in detail.

Describe the concept and working of store-and-forward packet switching.

Discuss the implementation of connectionless services in the network layer.

Explain how connection-oriented services are implemented in the network layer.
Compare virtual circuit and datagram subnets in terms of performance and reliability.

Nk W=

Short Questions:

What is the main function of the network layer?

Define store-and-forward packet switching.

Name two services provided by the network layer to the transport layer.
What is a connectionless service?

What is a virtual circuit subnet?

Nk W=

14.9 FURTHER READINGS

1. Andrew S. Tanenbaum, “Computer Networks”, Fourth Edition, PHI.

2. James F.Kurose, Keith W.Ross, “Computer Networking”, Third Edition, Pearson
Education

3. Behrouz A Forouzan, “Data Communications and Networking”, Fourth Edition, TMH
(2007)

4. Michael A. Gallo, William M. Hancock, “Computer Communications and
NetworkingTechnologies”, Cengage Learning (2008)

Dr. Vasantha Rudramalla

LESSON- 15
ROUTING ALGORITHMS

OBJECTIVES:

After going through this lesson, you will be able to

Understand the key principles of routing in networks.
Learn about shortest path and optimality in routing.
Study distance vector and link-state routing algorithms.
Understand hierarchical, broadcast, and multicast routing.
Learn about routing challenges for mobile hosts.

STRUCTURE OF THE LESSON:

15.1 INTRODUCTION

15.2 THE OPTIMALITY PRINCIPLE
15.3 SHORTEST PATH ALGORITHM
154 FLOODING

15.5 DISTANCE VECTOR ROUTING
15.6 LINK STATE ROUTING

15.7 THE HIERARCHICAL ROUTING
15.8 BROADCAST ROUTING

15.9 MULTICAST ROUTING

15.10 ANYCAST ROUTING

15.11 ROUTING FOR MOBILE HOSTS
15.12 ROUTING IN AD HOC NETWORKS
15.13 SUMMARY

15.14 TECHNICAL TERMS

15.15 SELF-ASSESSMENT QUESTIONS

15.16 FURTHER READINGS

Centre for Distance Education 15.2 Acharya Nagarjuna University

15.1 INTRODUCTION

The network layer’s job is to route packets from a source to a destination—often across
multiple hops—and forward each packet by consulting routing tables to determine the correct
outgoing interface. In connectionless (datagram) networks, routing decisions are made for
every packet to adapt to topology changes, while in connection-oriented (virtual-circuit)
networks, a route is established once per session and packets follow that fixed path. Routing
algorithms (e.g., link-state and distance-vector) build and maintain these tables for
correctness, efficiency, and robustness, while forwarding is the actual per-packet lookup and
send operation performed at line speed.

K SRR SN (& r
| | |

A B' c

Figure 15.1 Network with a conflict between fairness and efficiency

A stable routing algorithm converges quickly to a consistent set of paths and remains there—
avoiding endless fluctuations—because ongoing route instability can disrupt communication
until equilibrium is reached. Fairness (treating all flows reasonably) often conflicts with
efficiency (maximizing overall throughput); for example, shutting off a saturated flow may
boost total traffic but be unfair to that flow. Simple solutions include optimizing hop counts
or path length to strike a balance: fewer hops both reduce per-packet delay and free up
bandwidth, improving throughput while maintaining relative fairness. Lastly, routing can be
nonadaptive (static)—paths are preconfigured and never change—or adaptive (dynamic)—
routes evolve in response to topology or traffic changes, using metrics like distance, delay, or
load to adjust routing decisions.

15.2 THE OPTIMALITY PRINCIPLE

The optimality principle (Bellman, 1957) asserts that if router J lies on the optimal path from
I to K, then the segment of that path from J to K must also be optimal; otherwise, a better
overall path could be found—contradicting the assumption of optimality.

Computer Networks 15.3 ROUTING ALGORITHMS

(a) ib)
Figure 15.2 (a) Network (b) A sink tree for router B

Consequently, the collection of optimal paths from all sources to a particular destination
forms a sink tree rooted at that destination—a loop-free structure ensuring finite delivery.
While sink trees are not always unique (multiple equal-cost paths may exist, forming a
DAG), they provide a standard benchmark for routing algorithms. In real networks, issues
such as link failures, topology changes, and inconsistent knowledge across routers complicate
discovering and maintaining these ideal structures.

15.3 SHORTEST PATH ALGORITHM

Dijkstra’s algorithm is a classic method for computing shortest (optimal) paths in a fully
known network: model routers as nodes and links as weighted edges (e.g., hops, delay, cost),
initialize all distances from a source as infinity except the source itself (zero), then repeatedly
select the unvisited node with the smallest tentative distance, mark it as permanent, and
update its neighbours’ distances if a shorter path is found via it. This greedy process
continues until all nodes are settled, producing a shortest-path tree rooted at the source—
perfectly aligning with the optimality principle and serving as the foundation for link-state
routing protocols like OSPF and IS-IS.

Centre for Distance Education 15.4 Acharya Nagarjuna University

B2 A) C ==,)

B (2, A) C(9.B) B(2, A) C (9, B)

G (6, A) H (=, =) G (5, E) H (=2,)
(c) (d)
B (2, A) C(9.B) B(2, A) C(9,B)
A E (4, B) ™ Do A E (4, B) D[m. }
G (5, E) H (9, G) G (5, E) /‘ H (B, F)

(e) ()

Figure 15.3 The first six steps used in computing the shortest path from A to D. The arrows indicate the
working done.

Dijkstra’s algorithm works like this: start at node A, mark it permanent, and tentatively label
its neighbors (e.g. B, E) with their distances from A, noting A as their predecessor. Then,
repeat: choose the tentatively labelled node with the smallest distance (say B), mark it
permanent, and relax its neighbors by updating labels and predecessors if shorter paths are
found through B. Continue picking the next smallest tentative node, making it permanent, and
relaxing its neighbors until all nodes are permanent. By always extending the frontier via the
closest tentative node, the algorithm ensures correctness—the key insight being that any
shorter path to a permanent node would have already been found—ultimately producing a
shortest-path tree (or sink tree) from A to every destination.

15.4 FLOODING

Flooding is a simple, local (nonadaptive) routing method where each router forwards every
received packet on all outgoing links except the one it arrived on. To prevent infinite
duplication, controlled flooding adds mechanisms such as a hop-count (TTL) that decrements
at each hop until the packet is dropped, and sequence-number based suppression, where
routers remember packets by (source, sequence) pairs and drop repeats. More advanced
refinements include reverse-path forwarding (RPF)—forwarding only if the packet arrives on
the router’s shortest-path link back to the source—and selective flooding, which restricts
forwarding to links roughly directed toward the destination. This method guarantees delivery
along the shortest available path and is highly resilient, but it incurs substantial overhead in

Computer Networks 15.5 ROUTING ALGORITHMS

bandwidth and packet processing, making it best suited for broadcasts, route discovery, or
protocol updates rather than routine unicast forwarding.

Flooding is a simple, local, non-adaptive routing method where each router forwards every
incoming packet on all outgoing links except the one it arrived on. Since uncontrolled
flooding produces an infinite number of duplicates and broadcast storms, controlled flooding
is used—techniques like hop-count (TTL) to limit packet lifespan, sequence-number
suppression to discard duplicates, and reverse-path forwarding (RPF) to ensure packets only
travel if they arrive via the router’s shortest-path interface. A further refinement, selective
flooding, restricts forwarding to links roughly pointing toward the destination. Flooding
guarantees delivery over any existing path (often the shortest), requires minimal setup—
routers need only know their neighbors—and is extremely robust, though it incurs high
overhead in bandwidth and processing, making it best suited for broadcasts, route discovery,
or protocol updates rather than routine unicast forwarding.

15.5 DISTANCE VECTOR ROUTING

Distance vector routing is a dynamic routing algorithm where each router maintains a table
listing the best-known distance to every destination and the link to use to reach it. Routers
exchange these tables with their immediate neighbors at regular intervals. Using the received
information, each router updates its table by calculating the total distance to each destination
via each neighbor and choosing the shortest one. This process continues until all routers have
consistent and accurate routing information. The algorithm is based on the Bellman-Ford
method and was used in early networks like ARPANET and in protocols like RIP.

Mew estimated

Router delay from J
A B c D To A | H K t Line
1 i AlD 24| |20] |21 8| A
B|12 36 31 28 20| A
[18 19 36 281 |
s $ H pl40] [27] [8] [24] [=20]H
El14 7 30 22 17 1
F (23 20 19 40 300 |
G |18 3 G 31 18| H
'I X . 4 H|17 20 0 19 12| H
I[21] 14 22 1071 |
J[8 11 7 10 0
K| 24 22 22 0 G | K
L[29 33 a 9 15| K
JA Ul JH UK -
delay delay delay delay Mew
is is is is routing
8 10 12 6 table
. o g for J
Vectors received from
J's four neighbors
(a) (b}

Figure 15.4 (a) A Network (b) Input from A, I, H, K and the new routing table for J

Centre for Distance Education 15.6 Acharya Nagarjuna University

This picture describes how a router (J) updates its routing table using the distance vector
routing algorithm. Router J receives delay information (distance vectors) from its neighbors
A, I, H, and K. It also knows the delay to reach each neighbor: 8 ms to A, 10 ms to I, 12 ms
to H, and 6 ms to K. To find the best route to a destination like router G, J calculates the total
delay through each neighbor: via A it's 26 ms (8 + 18), via [it's 41 ms, via H it's 18 ms, and
via K it's 37 ms. Since the lowest delay is through H (18 ms), J updates its table to show that
the best route to G is via H with a delay of 18 ms. J repeats this process for all other
destinations to build an updated routing table.

The count to infinity problem

The concept of convergence in distance vector routing, which is the process of routers
gradually updating their tables until the best paths are known throughout the network. While
this method is simple and effective, it has a major drawback: it responds quickly to
improvements (good news), but slowly to failures or worse routes (bad news). For example,
if a router suddenly hears from a neighbor that a destination is now closer, it quickly updates
its table. However, if a destination becomes unreachable, the update spreads much more
slowly. To illustrate this, consider a linear five-node network where node A is initially down
and all routers have recorded infinite delay to A. When A comes back online, B (its
immediate neighbor) detects this in the first vector exchange and updates its table to reflect
that A is one hop away. However, the rest of the routers still think A is down until the
updated information reaches them in subsequent exchanges. This shows how good news
spreads quickly in one round, while bad news may take multiple rounds to fully propagate.

A B c D E A B c D E
- - - - - 9 - - L
L . L o |nitially 1 2 3 4 Inialhy
1 - . * After 1 exchange 3 2 3 4 After 1 exchange
1 2 L » After 2 exchanges 3 4 3 4 After 2 exchanges
1 2 3 & After 3 exchanges 5 4 5 4 After 3 exchanges
1 2 3 4 After 4 exchanges 5 6 5 & After 4 exchanges
7 6 7 & After 5 exchanges
7 8 7 8 After 6 exchanges
L] L] L] L]

(a) (b)

Figure 15.5 The count-to-infinity problem

The count-to-infinity problem occurs in distance vector routing when routers react slowly to
bad news, such as a node or link failure. For example, if router A goes down, B may
incorrectly believe A is still reachable via C—unaware that C’s route actually loops back
through B. This incorrect path gets passed along, with each router increasing the hop count
by one in each exchange. Eventually, the count reaches "infinity," marking the destination as
unreachable, but this can take many exchanges. The problem arises because routers lack full
path awareness and update based only on neighbors' information. Techniques like split
horizon with poisoned reverse try to help but don’t fully solve the issue.

Computer Networks 15.7 ROUTING ALGORITHMS

15.6 LINK STATE ROUTING

Distance vector routing was used in the ARPANET until 1979 but was eventually replaced by
link state routing due to slow convergence caused by the count-to-infinity problem. Link state
routing overcomes this issue by giving every router a complete view of the network.

It works in five steps:

(1) each router discovers its neighbour and their addresses
(2) measures the cost to each neighbor

(3) creates a packet with this information

(4) sends and receives such packets from all routers

(5) computes the shortest paths using Dijkstra’s algorithm.

Modern protocols like OSPF and IS-IS are based on this method and are widely used in
today’s networks.

Learning about the neighbours

When a router starts up, its first job is to identify its neighbors. It does this by sending a
HELLO packet on each link. The neighboring router responds with its unique name, which
helps avoid confusion later when building the network map. In networks with broadcast
LANSs (like Ethernet), simply treating the LAN as many point-to-point links between routers
would complicate the topology and increase message overhead. Instead, the LAN is modeled
as a single virtual node (e.g., node N), with all connected routers linking to it. One router on
the LAN is designated to represent this virtual node in the routing process. This way,
connections like A to C via the LAN are represented as paths like A-N—-C, simplifying link
state routing on shared media.

Setting link costs

In link state routing, each link must have a cost metric to help routers find the shortest paths.
This cost can be set manually or determined automatically. A common method is to make the
cost inversely proportional to the link’s bandwidth, so faster links (e.g., 1 Gbps) have lower
costs than slower ones (e.g., 100 Mbps). In geographically large networks, link delay can also
be included in the cost. Routers estimate delay by sending a special ECHO packet, which the
neighbor immediately returns. By measuring the round-trip time and dividing it by two, the
router estimates the link's delay and uses it in cost calculations.

Building link state packets

After a router gathers all the necessary data about its neighbors and link costs, it creates a link
state packet. This packet includes the router’s identity, a sequence number, an age, and a list
of its neighbors along with the cost to reach each one. These packets are shared across the
network to inform all routers of the current topology. Creating the packets is straightforward,
but deciding when to create them is more challenging. They can be generated either
periodically or when significant changes occur—Ilike a link going down or coming back up,
or if its cost changes notably.

Centre for Distance Education 15.8 Acharya Nagarjuna University

Distributing the link state packets

In link state routing, once routers create their link state packets, they must be flooded across
the network quickly and reliably so all routers maintain a consistent view of the topology.
Each packet includes a sequence number and age to avoid loops and outdated data. Routers
track received packets using the source and sequence number; new packets are forwarded,
duplicates discarded, and older ones ignored.

Send flags ACK flags
n‘_'-h‘ﬁ r'_'JL‘—\

Source Senq. Age & C F A C F Data
A 21 G0 o1 (1 1|10 (0
E 21 80 |11 |ofo|o]1
E 21 558 o101 (0|1
C 20 G0 101|010
] 21 59 1o flo o1 |1

Figure 15.6 The packet buffer for router B in Figure 15.5 (a)

An Age field ensures stale packets eventually expire. To improve reliability, packets are
acknowledged and may be delayed briefly before being forwarded, allowing updates to be
merged. Routers maintain a packet buffer that includes flags for forwarding and
acknowledging packets, ensuring efficient and accurate propagation throughout the network.

Computing the new routes

Once a router has received all link state packets, it can build the complete network graph,
since each router shares its links and costs. Each link appears twice—once in each
direction—which may have different costs. The router then runs Dijkstra’s algorithm to find
the shortest paths to all destinations and updates its routing table accordingly.

Compared to distance vector routing, link state routing uses more memory and processing
power. In a network with n routers and k neighbors per router, storage needs are proportional
to kn, and computation time increases even faster. Still, link state routing converges much
faster and avoids the count-to-infinity problem, making it suitable for large networks.

Two major link state protocols are:

e IS-IS: Originally for DEC net and later expanded to support multiple protocols like IP
and AppleTalk.

e OSPF: Developed by the IETF with features like self-stabilizing updates and
designated routers. It primarily supports IP but lacks IS-IS’s multiprotocol flexibility.

Computer Networks 15.9 ROUTING ALGORITHMS

Finally, all routing algorithms depend on correct behaviour of routers. A faulty router—due
to hardware/software issues, incorrect link data, memory failures, or miscalculations—can
disrupt the entire network. As networks scale, occasional router failures become more likely.
Thus, robust design and error containment are critical, as discussed in depth by Perlman
(1988).

15.7 THE HIERARCHICAL ROUTING

As networks expand, maintaining a flat routing structure—where each router stores routes to
every other router—becomes impractical. The memory required to store routing tables, the
CPU time needed to process them, and the bandwidth consumed for routing updates all
increase rapidly. To manage this growth, hierarchical routing is used, where routers are
grouped into regions. Each router maintains detailed routes only within its region and keeps
summarized information for reaching other regions.

Full table for 14 Hierarchical table for 1A
Dest. Line Hops Dest. Line Hops
Region 1 Region 2 14 - - 14 = =
AT SO 2B, 18| 1B 1 18| 1B 1
s A s v
{1 A r: ic| 1C 1 1C : E ;
«\\ o lop 251 1B 2 2
- 2B| 1B 3 3l 1c 2
ac| 1B 3 4| 1C 3
2D| 1B 4 5| 1C 4
’;’3 A 5C 3A| 1C 3
! ! 38| 1C 2
N AN AN §D 4A| 1C 3
T T Mgl 48| 1C 4
Region 3 Region 4 Region 5
=4 J 9 ac[1c | 2
5A| 1C 4
58| 1C 5
sC| 1B 5
50| 1C 6
5E| 1C 5
(a) (k) ic)

Figure 15.7 Hierarchical routing

In hierarchical routing, inter-region routing is simplified. For example, in a multi-region
setup, a router may know the exact path to local routers but treat all routers in another region
as reachable through a single gateway router. This reduces the routing table size significantly.
However, this simplification comes at the cost of potentially longer routes, since the most
direct path might be ignored in favor of a more generalized one.

Centre for Distance Education 15.10 Acharya Nagarjuna University

In large global networks, multilevel hierarchies can be applied. For instance, a packet from
Berkeley (California) to Malindi (Kenya) may be routed first within California, then to a
national gateway (e.g., Los Angeles), then to an international gateway (e.g., New York), and
finally to Kenya. Each level of the hierarchy handles routing within its scope.

Quantitatively, using a two-level hierarchy in a network of 17 routers can reduce a routing
table from 17 entries to just 7. In even larger networks, such as one with 720 routers, a three-
level hierarchy can reduce the number of required entries per router from 720 to as few as
215. According to research by Kamoun and Kleinrock, the optimal number of hierarchical
levels in a network is roughly the natural logarithm of the number of routers, with each router
needing only e In(N) entries. Although hierarchical routing may slightly increase the average
path length, the benefits in scalability and manageability usually outweigh this drawback.

15.8 BROADCAST ROUTING

In some network applications, a host needs to send messages to many or all other hosts. This
is called broadcasting and is useful for services like weather updates or live streams. One
basic method is to send a separate packet to each destination. While simple, this approach is
inefficient and requires the sender to know every destination. A better method is Multi
destination routing, where a packet contains a list or bitmap of destinations. Routers examine
the packet, split it as needed, and forward it along appropriate paths. Though more efficient in
bandwidth, it still requires complex processing and complete destination knowledge at the
source. Another method is flooding, where routers forward new packets on all outgoing links.
It ensures delivery to all nodes but can create redundant traffic.

B ¢
r—I-___
~—
E i i
y
i
H

%

Figure 15.8 Reverse path forwarding (a) A Network (b) A sink tree (c) The tree built by reverse path
forwarding

-+
{
L

A
o
K-
M

(a) (b} (c)

Reverse Path Forwarding (RPF) improves on flooding. A router forwards a broadcast packet
only if it arrives on the link it would normally use to reach the source. This prevents
duplicates and ensures efficient broadcasting using the existing shortest-path routing
information. An example of reverse path forwarding (RPF) is illustrated in a network setup.
Initially, router I sends packets to its direct neighbors—F, H, J, and N. These routers receive
the packet through their preferred path back to I, which means the packet is forwarded
further. In the second hop, these routers generate eight new packets. All of these reach new
routers, and five of them arrive via the correct reverse path. By the third hop, six packets are

Computer Networks 15.11 ROUTING ALGORITHMS

created, but only three arrive through the preferred paths—others are duplicates.
Broadcasting finishes after five hops and 24 packets, although an exact sink tree would have
only needed four hops and 14 packets. The key benefit of RPF is that it uses bandwidth
efficiently and is easy to implement. Like flooding, each link is used just once per direction,
but RPF doesn't need complex tracking like sequence numbers or destination lists—it only
requires routing knowledge.

A further improvement uses spanning trees. A spanning tree includes all routers but no loops.
If each router knows which links are part of the tree, it can forward the packet on all of them
except the incoming one. This method minimizes the total packets sent. For instance, using
the sink tree in the example, only 14 packets are needed. The downside is that routers must
know the spanning tree, which is feasible with link state routing but harder with distance
vector routing.

15.9 MULTICAST ROUTING

Some applications, such as multiplayer games or live sports streaming, need to send data to
multiple recipients simultaneously. Sending a separate packet to each recipient becomes
inefficient as the group size increases. On the other hand, broadcasting to the entire network
wastes resources when most nodes aren't interested. This is where multicasting comes in—it
allows data to be sent to a selected group of receivers that is large but still a small fraction of
the whole network.

Multicast routing uses specialized routing algorithms to deliver messages only to the intended
group members, without flooding the entire network. These routers must know which groups
they belong to, and each group is identified by a multicast address. While group creation and
membership management are separate concerns, multicast routing focuses on how to
efficiently deliver packets using methods similar to broadcast routing.

For dense groups, where many routers belong to the group, broadcasting can initially be used,
and then pruning techniques remove unnecessary paths—those that don’t lead to group
members. This creates a more efficient multicast spanning tree. For example, a full spanning
tree might have 10 links, but after pruning, a multicast tree for one group might only use 7,
and another might use just 5, depending on the members' locations. If routers use link state
routing, each has full knowledge of the network and group memberships. This allows them to
compute pruned spanning trees effectively. One protocol that uses this method is MOSPF
(Multicast OSPF), which is an extension of the OSPF link state protocol designed for
multicast routing.

Centre for Distance Education 15.12 Acharya Nagarjuna University

Figure 15.9 (a) A Network (b) A spanning tree for the leftmost router (c) A multicast tree for group 1. (d) A
multicast tree for group 2.

In distance vector routing, multicast can be made more efficient using reverse path
forwarding with pruning. When a router receives a multicast message for a group in which it
has no interested hosts and no downstream routers needing it, it sends a PRUNE message to
its upstream neighbor. This tells the sender not to forward more packets for that group. If a
router receives PRUNE messages on all its multicast lines, it also sends a PRUNE, effectively
recursively pruning the tree. This results in a minimized multicast tree. An example protocol
using this method is DVMRP (Distance Vector Multicast Routing Protocol).

Pruning helps reduce bandwidth usage, but comes with a cost: each router may need to store
many multicast trees. If there are n groups and each has m members, each router could store
up to mn trees. This leads to high storage and processing overhead, especially in large-scale
networks with many groups and senders. To address this, core-based trees are used. In this
approach, routers agree on a core or rendezvous point for each multicast group. A single
shared spanning tree is formed by sending messages from each group member to the core.
When a sender wants to transmit, it sends the packet to the core, which then forwards it down
the tree. This method is shown in Fig. 15.10.

Computer Networks 15.13 ROUTING ALGORITHMS

—h

z’l/\l-x-x

/.f I || Core
|'
1 .
1
(a)

Figure 15.10 (a) Core-based tree for group 1 (b) Sending to group 1

A benefit of core-based trees is that each router needs to maintain only one tree per group,
reducing memory and computation. However, shared trees may not always be optimal. For
example, a packet from a sender might travel a longer path through the core than if it had
gone directly to the destination. Despite this inefficiency, it is a practical trade-off for sparse
groups, especially when storage and efficiency matter. Protocols like PIM (Protocol
Independent Multicast) use this method for multicast in the Internet.

15.10 ANYCAST ROUTING

Anycast is a network communication method where data is sent from a source to the nearest
node in a group of potential receivers that all share the same address. Unlike unicast (which
targets one specific destination), broadcast (which targets all nodes), or multicast (which
targets a group of specific nodes), anycast focuses on delivering data to the closest member of
a group based on routing distance. This model is particularly useful for services where it
doesn’t matter which node replies, as long as the response is correct. Examples include
services like DNS, CDNs (Content Delivery Networks), or time synchronization, where
multiple servers can provide the same data or service. With anycast, a user automatically
connects to the server that is topologically closest, improving response time and reducing
overall network load.

1
N B
.1 e . .

SR —
\-./T
f
[]
1 a8 l
1
(a) (b)

Figure 15.11 (a) Anycast routes to group 1. (b) Topology seen by the routing protocol

Centre for Distance Education 15.14 Acharya Nagarjuna University

Interestingly, anycast does not require new routing protocols. Traditional routing algorithms
like distance vector and link state can be used. All nodes providing the same service are
assigned the same destination address. As routers calculate the shortest path to that address,
the protocol naturally directs traffic to the nearest available server. The routing system treats
all instances as one destination, making anycast both efficient and easy to implement using
existing infrastructure.

15.11 ROUTING FOR MOBILE HOSTS

Millions of people use computers while on the move, in both mobile situations (like using
wireless devices in cars) and nomadic ones (such as using laptops in different locations).
These are collectively referred to as mobile hosts, in contrast to stationary hosts that do not
move. With the increasing demand for constant connectivity regardless of location, a key
challenge arises: how to route data packets to a host that keeps changing its network location.
In the model under discussion, each host has a permanent home address and home location,
much like a phone number reveals country and area. The goal is to ensure packets sent to a
mobile host's fixed home address can still reach it wherever it is.

Recomputing routes every time a mobile host moves would overwhelm the network with
constant updates. Instead, by using home addresses and assigning a home agent (a server at
the host’s home location), the network can manage mobility more efficiently. The mobile
host, upon moving, obtains a temporary local address known as a care-of address. It then
informs its home agent about this new address through a control message. When someone
sends a data packet to the mobile host’s permanent address, it reaches the home agent. The
home agent then encapsulates this packet and forwards it to the care-of address—a technique
known as tunneling. This approach allows seamless communication with mobile hosts while
reducing the overhead of constantly updating routing tables.

L]
% i hn_‘"'h-i?ﬂdm

Sender II"-,\ 'h-._h_?f"_?i_
"'.'I.I". 4: Reply
5: Tunnal I"'.I"- to sender

to care of)
address E'\"-,I

Home agent at
home address

Mobile host at
care of address

Figure 15.12 Packet routing for mobile hosts

When the encapsulated packet reaches the care-of address, the mobile host decapsulates
(unwraps) it to retrieve the original message from the sender. It then sends a reply directly
back to the sender. This results in what is called triangle routing—a potentially inefficient

Computer Networks 15.15 ROUTING ALGORITHMS

path, especially if the mobile host is far from its home location. However, during this
exchange, the sender may learn the mobile host's care-of address. In that case, future packets
can be sent directly to the care-of address using tunnelling, skipping the home agent and
making communication more efficient. Still, if direct communication fails (e.g., if the host
moves again), the sender can always fall back to using the permanent home address.

Security is a key concern in this setup. Since messages like "Send all of Stephany's messages
to me" could be misused, cryptographic mechanisms are included to authenticate and verify
such messages. These security protocols ensure that only legitimate changes in location are
acted upon.

Various mobile routing techniques exist. The method described here is based on IPv6
mobility, used in modern Internet and cellular networks such as UMTS. While the
explanation assumes the sender is stationary, the protocol supports both sender and receiver
being mobile. It can even handle entire mobile networks, such as on airplanes, without
requiring individual mobile devices to take action.

Some versions of mobile routing use a foreign agent at the host’s temporary location, much
like the Visitor Location Register (VLR) in cellular systems. But modern systems often
eliminate the need for a separate foreign agent, letting the mobile host handle this role itself.
In all cases, only a small set of entities (typically the mobile host, its home agent, and any
active senders) are aware of the mobile host’s temporary location, keeping the rest of the
network unaffected and avoiding the need to constantly recalculate routes.

15.12 ROUTING IN AD HOC NETWORKS

So far, we’ve looked at routing where mobile hosts move, but the routers themselves remain
fixed. A more dynamic and complex scenario arises when the routers themselves are mobile.
This situation occurs in environments like disaster recovery zones, military operations, fleets
of ships, or groups of people with laptops in areas lacking wireless infrastructure. In such
cases, each device communicates wirelessly and serves both as a host and as a router. These
self-organizing, infrastructure-less networks are called ad hoc networks, or MANETSs (Mobile
Ad hoc NETworks).

What sets ad hoc networks apart is the highly unpredictable and ever-changing topology.
Unlike wired networks, where routing paths remain stable unless a rare failure occurs, ad hoc
network paths can break or become suboptimal suddenly as nodes move or go offline. This
makes routing far more challenging than in traditional, fixed networks.

Numerous routing algorithms have been designed for ad hoc networks, though they haven’t
seen widespread deployment yet. One well-known example is AODV (Ad hoc On-demand
Distance Vector), an algorithm that builds on the traditional distance vector approach but is
specially adapted for mobile environments with limited bandwidth and battery power. Let’s
now look into how AODYV discovers and maintains routes in such dynamic networks.

Centre for Distance Education 15.16 Acharya Nagarjuna University

Route discovery

In AODV (Ad hoc On-demand Distance Vector) routing, routes are discovered only when
they are needed—on demand. This approach conserves bandwidth and processing power by
avoiding the maintenance of routes that may quickly become outdated due to frequent
topology changes. At any given moment, an ad hoc network can be represented as a graph of
nodes, where a direct connection (or an edge) exists between two nodes if they are within
each other’s wireless transmission range. A simple but effective model assumes that every
node can communicate with all others within a fixed-radius coverage circle. While real-world
conditions like buildings, terrain, and uneven transmitter power may cause asymmetric links
(where node A can reach B, but not vice versa), for simplicity, we assume all links are
symmetric.

To understand how AODV works, consider a newly formed ad hoc network. Suppose node A
wants to send a packet to node I. Each node maintains a distance vector table that stores
routes keyed by destination, including the next hop to use. Node A checks its table and finds
no entry for I, which means it does not yet know how to reach the destination. It now needs to
discover a route to node I. This need-driven behaviour—discovering routes only when
necessary—is the core principle behind the on-demand nature of the AODYV protocol.

(d)

Figure 15.13 (a) Range of A’s broadcast. (b) After B and D receive it. (c) After C, F, and G receive it. (d)
After E, H, and I receive it. The shaded nodes are new recipients. The dashed lines show possible reverse
routes. The solid lines show the discovered route.

To find a route to the destination node I, node A creates a ROUTE REQUEST (RREQ)
packet and broadcasts it using flooding. This means the packet is sent to all neighboring
nodes—in this case, nodes B and D. Each node that receives the RREQ rebroadcasts it,
spreading it throughout the network. For example, the request reaches nodes F, G, and C, and
then further reaches H, E, and finally I. To prevent the same request from being processed
multiple times, a sequence number is included with the RREQ. Each node checks this number
and ignores duplicates. For instance, node D discards a duplicate RREQ from node B if it has
already forwarded the same request earlier.

Computer Networks 15.17 ROUTING ALGORITHMS |

When the destination node I receives the RREQ, it sends back a ROUTE REPLY (RREP)
packet. This reply is unicast (sent directly) back to the source node A by retracing the reverse
path taken by the request. For this to work, each intermediate node along the way must
remember the node it received the request from, effectively building a reverse route. These
nodes also count the number of hops from the destination as the reply travels back. Each node
updates its routing table with the best route it receives—choosing the path with the fewest
hops. When the RREP reaches node A, a complete route (e.g, A > D - G —) is
established.

While effective, this flooding-based route discovery can generate a lot of overhead in large
networks, even for nearby destinations. To minimize unnecessary broadcasts, AODV uses the
Time to Live (TTL) field in the IP header. TTL is initialized by the sender and decremented
by one at each hop. When it reaches zero, the packet is discarded. AODV uses this feature to
perform an expanding ring search: it starts with a ROUTE REQUEST with TTL = 1. If no
reply is received, it tries again with TTL = 2, then 3, and so on. This approach limits flooding
to progressively larger areas, reducing overall broadcast traffic.

Route maintenance

Since nodes in an ad hoc network can move or be switched off at any time, the network
topology can change unpredictably. For example, in a previously discovered route like A —
D — G — 1, if node G is turned off, node A won’t immediately know that the route is now
broken. To handle such dynamic changes, AODV uses a mechanism where each node
periodically sends out Hello messages. These are short broadcasts to nearby nodes, and
neighbors are expected to respond. If a neighbor doesn’t respond or fails to acknowledge a
packet, the node concludes that the neighbor is no longer reachable.

When a node detects that a neighbor is no longer reachable, it updates its routing table to
remove any routes that depended on that neighbor. Each node keeps track of its active
neighbors for each destination—those that have recently sent packets through it. If a neighbor
becomes unreachable, the node identifies which routes relied on it and informs all its active
neighbors to purge those routes from their own tables. This notification process continues
recursively until all affected nodes have removed the invalid routes.

Once invalid routes are cleared, new valid routes can be discovered using the regular on-
demand route discovery process. However, this can be tricky, as traditional distance vector
algorithms may suffer from slow convergence or count-to-infinity problems, mistaking stale
routes for valid ones. To solve this, AODV uses sequence numbers managed by the
destination node. Every time a destination sends a new ROUTE REPLY, it increments its
sequence number. When a source requests a route, it includes the sequence number of the last
known route. The request is broadcast until a route with a newer sequence number is found,
ensuring up-to-date routing information. Intermediate nodes store only the routes with either
the highest sequence number or the lowest hop count for a given sequence number.

Centre for Distance Education 15.18 Acharya Nagarjuna University

To preserve bandwidth and battery life—important in mobile environments—AODYV only
stores active routes (those currently being used). Any other routing data learned through
broadcast messages is discarded after a short timeout, unlike traditional distance vector
protocols that maintain full routing tables.

Also, route discovery and maintenance are shared when routes overlap. For example, if node
B wants to send data to I and node D already has a valid route to I, B can use D’s knowledge
and avoid initiating a new discovery. This reduces unnecessary network traffic.

Apart from AODYV, other ad hoc routing protocols exist. DSR (Dynamic Source Routing) is
another on-demand protocol, and GPSR (Greedy Perimeter Stateless Routing) uses
geographic information instead of routing tables. In GPSR, packets are forwarded toward the
geographic location of the destination, making routing decisions based on physical position
rather than route discovery. Which protocol becomes dominant in real-world ad hoc networks
will depend on practical use cases and network conditions.

15.13 SUMMARY

This chapter explains routing algorithms, which determine optimal paths for data delivery
across networks. It covers shortest path routing guided by the optimality principle, and
flooding, where packets are sent to all neighbors. Distance vector and link-state algorithms
provide efficient routing through periodic updates or complete network views. The chapter
also addresses hierarchical routing to scale large networks, broadcast and multicast routing
for one-to-many communication, and special considerations for routing in mobile host
networks, where dynamic topology requires adaptive techniques for reliability and efficiency.

15.14 TECHNICAL TERMS
Routing, distance vector algorithm, link-state algorithm, multicast routing.
15.15 SELF ASSESSMENT QUESTIONS

Essay questions:

Explain the optimality principle and shortest path routing with examples.
Describe flooding and its advantages and disadvantages.

Discuss distance vector and link-state routing algorithms in detail.

Explain hierarchical, broadcast, and multicast routing methods.

Describe the challenges and techniques for routing in mobile host networks

MRS

Short Questions:

What is the optimality principle in routing?

Define shortest path routing.

What is flooding in network routing?

Mention one key feature of distance vector routing.
What is multicast routing?

Nk W=

Computer Networks 15.19 ROUTING ALGORITHMS

15.16 FURTHER READINGS

N —

Andrew S. Tanenbaum, “Computer Networks”, Fourth Edition, PHI.

. James F.Kurose, Keith W.Ross, “Computer Networking”, Third Edition, Pearson

Education

. Behrouz A Forouzan, “Data Communications and Networking”, Fourth Edition, TMH

(2007)
Michael A. Gallo, William M. Hancock, “Computer Communications and
NetworkingTechnologies”, Cengage Learning (2008).

Dr. Vasantha Rudramalla

LESSON- 16
INTERNETWORKING AND INTERNET PROTOCOL SUITE

OBJECTIVES:

After going through this lesson, you will be able to

Understand differences between networks and how they can be connected.
Learn about concatenated virtual circuits and connectionless internetworking.
Study tunneling, internetwork routing, and fragmentation.

Understand the IP protocol, addressing, and Internet control protocols.

Learn about OSPF, EGP, BGP, and Internet gateway routing

STRUCTURE OF THE LESSON:

16.1 INTRODUCTION

16.2 HOW NETWORKS DIFFER

16.3 HOW NETWORKS CAN BE CONNECTED
16.4 TUNNELING

16.5 INTERNETWORK ROUTING

16.6 PACKET FRAGMENTATION

16.7 SUMMARY

16.8 TECHNICAL TERMS

16.9 SELF-ASSESSMENT QUESTIONS

16.10 FURTHER READINGS

16.1 INTRODUCTION

So far, we’ve been thinking as if all computers are connected through one big network using
the same rules and protocols. But in the real world, that’s not true at all. There are many
different types of networks—Ilike home networks (PANSs), office networks (LANSs), city-wide
networks (MANSs), and even global ones (WANSs). Each of these uses different technologies
and different communication rules. For example, Ethernet, Wi-Fi, mobile networks, and cable
Internet all work differently. Connecting all these different networks together is called
internetworking.

It would be easier if everyone used the same kind of network, but that’s unlikely to happen.
Different networks solve different problems—what works well in an office might not work in
a moving vehicle or on a satellite. Also, many systems were built long ago using phone lines

Centre for Distance Education 16.2 Acharya Nagarjuna University

or power lines, and we still use them today. So, we have to accept that networks will always
be different.

Even though networks are different, we still want them to work together. That’s because the
more computers that are connected, the more useful the whole system becomes. This idea is
called Metcalfe’s Law, which says that a network becomes more valuable as more devices
are connected to it. That’s why people want to connect small networks together to make one
big network—Iike the Internet.

The Internet is the best example of many networks working together. When you get Internet
service from an ISP, you’re paying not just to connect to their network, but to be able to talk
to any device in the world that’s also online. This global connection is what makes the
Internet so powerful.

But connecting different networks isn’t easy. There are many challenges—Ilike making
different systems understand each other and handling the huge size of the global network. To
solve these problems, we use the Internet Protocol (IP), which is specially designed to
connect different types of networks. IP includes features like tunnelling, routing, and
breaking large packets into smaller ones (called fragmentation), which help make the whole
system work smoothly.

16.2 HOW NETWORKS DIFFER

Different networks can vary in many ways. Some differences, like how signals are sent
(modulation) or the format of frames, happen at the lower layers (physical and data link
layers) and don’t usually affect how the network layer works. But other differences do matter
at the network layer, and these are the ones that make internetworking—connecting different
networks—more complicated than just working within one network.

When a packet travels from one network, through other networks, and finally to the
destination on a different network, many problems can occur at the boundaries between these
networks. One of the first issues is addressing—how can a computer on an Ethernet network
send a packet to a device on a WiMAX network, for example? Even if the destination can be
identified, there’s a bigger challenge: Ethernet is connectionless (it just sends packets), while
WiMAX might be connection-oriented (it sets up a path first). That means before the packet
can move forward, a connection might need to be created, which takes time and adds extra
steps—especially if only a few packets are being sent.

ltem Some Possibilities
Service offered Connectionless versus connection criented
Addressing [Different sizes, flat or hierarchical
Broadcasting | Present or absent (also multicast)
Packet size | Every network has its own maximum
Ordering Ordered and unordered delivery
Cuality of service Present or absent; many different kinds
Reliability Different levels of loss
Security | Privacy rules, encryption, etc.
Parameters | Different timeouts, flow specifications, etc.
Accounting By connect time, packet, byte, or not at all

Figure 16.1 Some of the many ways networks can differ.

Computer Networks 16.3 INTERNETWORKING AND INTERNET...

There are also many smaller technical issues to handle. For instance, what if we want to send
a packet to a group of devices (multicast) but some of those devices are on a network that
doesn’t support multicast? These kinds of mismatches between network features are what
make internetworking so tricky.

Different networks often support different maximum packet sizes. For example, an 8000-byte
packet from one network may need to pass through another that only allows 1500 bytes. In
such cases, the large packet must be broken into smaller pieces, sent separately, and
reassembled later—a process called fragmentation.

Other problems arise when connection-oriented networks send packets through
connectionless networks. Packets may arrive out of order, which can confuse receivers
expecting them in sequence. These issues can be handled by gateways that split large packets,
reorder them, or create multiple packets for destinations when multicast is not supported.

However, some differences are harder to fix. A major one is quality of service (QoS). If one
network guarantees speed and reliability while another doesn’t, it's impossible to ensure
smooth, end-to-end performance—especially for real-time traffic like video or voice.
Similarly, inconsistent security features across networks can create vulnerabilities, although
encryption can be added later.

Finally, differences in accounting and billing between networks can lead to unexpected costs.
For example, mobile users may face high charges when roaming, even if their usage seems
normal.

16.3 HOW NETWORKS CAN BE CONNECTED

A data packet travels across different types of networks, such as Wi-Fi (802.11), MPLS, and
Ethernet. Each network may have different addressing methods and limitations, so the packet
carries a network layer address (like an IP address) that helps it reach the correct destination
across these networks.

Initially, the packet is sent over a Wi-Fi (802.11) network, which is connectionless. It is
encapsulated in a Wi-Fi frame and sent to the first router. At the router, the Wi-Fi header is
removed, and the router examines the IP address to decide the next hop. The packet is then
sent into an MPLS network, which is connection-oriented. To cross this network, a virtual
circuit must be set up, and the packet is wrapped with MPLS headers. At the exit of the
MPLS network, these headers are removed.

Next, the packet enters an Ethernet network. Since Ethernet may support smaller frame sizes
than Wi-Fi, the packet might be too large and must be split into fragments. Each fragment is
placed in a separate Ethernet frame and sent to the destination. At the destination, the
Ethernet headers are removed, and the fragments are reassembled to reconstruct the original
packet.

Centre for Distance Education 16.4 Acharya Nagarjuna University
/,- Packet — Virtual circuit
— =y
L 80211 Es%ed MPLS [Es*=4 Ethemet %
%______ N N R
Source Router Router Destination
(a)
— Data from

transport layer

=G

[oz.11)1P| |\meLeiP] |

Gl
502.11|IP

=" |5

meLs|e| |

1

| Physical f

1
] L

(b)

Figure 16. 2 (a) A packet crossing different networks. (b) Network and link layer protocol
processing.

Finally, the routers use the IP address in the packet to make forwarding decisions, extracting
the packet from its frame. In contrast, switches or bridges forward entire frames based on
MAC addresses and do not need to understand the network layer.

Internetworking, which is the process of connecting different types of networks to allow
smooth communication between them, is more difficult than it may initially seem. In the
early days, bridges were introduced with the goal of connecting different LANs (Local Area
Networks), even if they had different characteristics. The idea was that bridges would
translate frames from one type of LAN to another. However, this approach proved to be
ineffective due to significant differences among LANSs, such as varying maximum packet
sizes, frame formats, and features like priority classes. These differences made it hard to
perform reliable and complete translations. As a result, bridges are now mainly used to
connect similar networks at the link layer, while routers are used to connect different
networks at the network layer.

Despite these challenges, internetworking has been largely successful due to the widespread
adoption of a common network layer protocol—the Internet Protocol (IP). While there were
once many competing network protocols, such as IPX, SNA, and AppleTalk, most of these
have now faded away, with IP becoming the standard. However, even within IP, issues exist.
For instance, IPv4 and IPv6 are two versions of IP, but they are not directly compatible. This
incompatibility creates a challenge for seamless communication, making the transition to
[Pv6 more complex and slower than expected.

To support multiple protocols, multiprotocol routers were developed. These routers can either
translate between different network protocols or pass the responsibility to higher protocol
layers like TCP. But both options have downsides. Relying on TCP only works if all
networks support it, and it limits communication to applications that use TCP, excluding
many real-time services like voice or video. On the other hand, translating packets between
different network protocols is very difficult, especially when their address formats and

Computer Networks 16.5 INTERNETWORKING AND INTERNET...

structure differ significantly—for example, converting a 128-bit IPv6 address to a 32-bit [Pv4
address is impossible without losing crucial information.

Due to these limitations, protocol translation is rarely attempted in practice. Instead, IP has
succeeded globally by acting as a “lowest common denominator”—it demands very little
from the networks it runs on and, in return, provides a best-effort service. This means it tries
to deliver packets but does not guarantee delivery, order, or quality. While this approach has
enabled massive global connectivity, it also reflects the compromises made to achieve
interoperability across diverse systems.

16.4 TUNNELING

Internetworking between different types of networks is usually complex, but there is a special
case that can be handled more easily. This occurs when the source and destination hosts are
on the same type of network (e.g., IPv6), but the path between them includes a different
network type (e.g., [IPv4). For example, an international bank might have an IPv6 network in
Paris and another in London, connected through the [Pv4 Internet.

— T T ——___

[] IPVE \\// IPv4 \\\//f IPv6 []
=n === ‘E:% - ------- ===
e, A —— == .
Faris ———— Router - ——" HRouter T———— London

IPvE packet IPwd |IPvE packet IPvE packet

Figure 16.3 Tunneling a packet from Paris to London

To enable communication in this case, a technique called tunneling is used. Here, the source
host in Paris creates a regular IPv6 packet addressed to the destination in London. When this
packet reaches the multiprotocol router that connects to the IPv4 Internet, the router
encapsulates the IPv6 packet inside an IPv4 packet. This new IPv4 packet is then sent across
the IPv4 network.

Once the packet reaches the router in London that connects back to the IPv6 network, the
outer IPv4 header is removed, and the original IPv6 packet is delivered to the destination.
This entire process creates a "tunnel" through the IPv4 network, making it look like a direct
[Pv6 connection between the two locations. The hosts in Paris and London are unaware of the
IPv4 network in between—only the routers need to understand both protocols.

Internetworking between different types of networks is usually complex, but there is a special
case that can be handled more easily. This occurs when the source and destination hosts are
on the same type of network (e.g., IPv6), but the path between them includes a different
network type (e.g., [Pv4). For example, an international bank might have an IPv6 network in
Paris and another in London, connected through the IPv4 Internet.

‘ Centre for Distance Education 16.6 Acharya Nagarjuna University ‘

/ English Channel

Figure 16.4 Tunneling a car from France to England

To enable communication in this case, a technique called tunneling is used. Here, the source
host in Paris creates a regular [IPv6 packet addressed to the destination in London. When this
packet reaches the multiprotocol router that connects to the IPv4 Internet, the router
encapsulates the IPv6 packet inside an IPv4 packet. This new IPv4 packet is then sent across
the IPv4 network.

Once the packet reaches the router in London that connects back to the IPv6 network, the
outer IPv4 header is removed, and the original IPv6 packet is delivered to the destination.
This entire process creates a "tunnel" through the IPv4 network, making it look like a direct
IPv6 connection between the two locations. The hosts in Paris and London are unaware of the
IPv4 network in between—only the routers need to understand both protocols.

16.5 INTERNETWORK ROUTING

Routing across an internet, which is made up of many interconnected networks, is similar to
routing within a single network but comes with extra challenges. Different networks may use
different internal routing algorithms—for example, one may use link state routing while
another uses distance vector routing. These differences make it difficult to compute
consistent shortest paths across the entire internet.

Further complications arise when networks are operated by different organizations or Internet
Service Providers (ISPs). Each operator may prioritize different routing goals—one might
focus on minimizing delay, while another might aim to reduce cost. Since the criteria for
choosing routes vary and are not comparable (like delay vs. money), defining a universal
shortest path becomes impossible. Also, operators may not want to share details about their
network structure or routing metrics, as that information can be commercially sensitive.

Another challenge is the sheer scale of the internet, which is much larger than any individual
network. This requires routing algorithms that can scale well, often by organizing routing into
a hierarchy. To handle all these issues, the internet uses a two-level routing approach. Within
each network (also called an Autonomous System or AS), an intradomain routing protocol is
used—such as OSPF or a link state protocol. Between different ASes, a separate interdomain
routing protocol is used. On the Internet, this protocol is BGP (Border Gateway Protocol).

Each AS is an independently managed network—usually an ISP or part of one—and can use
any internal routing method it prefers. Interdomain routing, on the other hand, must follow a
common protocol like BGP. This structure allows for scalability, policy control, and privacy
between networks. It avoids comparing routing metrics across different domains and prevents
exposure of sensitive routing information.

Computer Networks 16.7 INTERNETWORKING AND INTERNET...

Finally, route selection across ASes isn’t only based on technical factors like performance.
Business agreements between ISPs—such as who pays whom for traffic—play a major role.
In addition, legal constraints, such as privacy laws in some countries, may restrict how traffic
is routed internationally. All these influences—technical, business, and legal—are
collectively managed through routing policies, which determine how routes are chosen in the
real-world Internet.

16.6 PACKET FRAGMENTATION

In internetworking, one major challenge is dealing with packet size limitations across
different types of networks. Each network or communication link has a Maximum
Transmission Unit (MTU), which is the largest packet size it can handle. These MTU limits
are imposed by several factors. For example, hardware like Ethernet restricts packet size to
1500 bytes, while 802.11 allows 2272 bytes. Operating systems might have internal buffer
size limitations, some protocols define size limits within their headers, and international
standards may set specific maximums. Additionally, smaller packet sizes may be chosen to
reduce the impact of errors and avoid allowing a single packet to monopolize the
transmission channel for too long.

In general, hosts prefer to send large packets because they reduce overhead: fewer headers are
needed, and transmission becomes more efficient. However, when a large packet must travel
through a network with a smaller MTU, it creates problems. This is especially difficult in a
connectionless network like the Internet, where packets may take different paths to the same
destination. As a result, a sender does not always know the smallest MTU along the path—a
value known as the Path MTU. Even if the path MTU were known, dynamic routing means
the path (and its MTU) might change unpredictably.

One solution is fragmentation, where routers split larger packets into smaller fragments so
they can pass through networks with smaller MTUs. There are two main strategies for this.
The first is transparent fragmentation, where a router fragments a large packet and
reassembles it at the exit point of the small-packet network before forwarding it further. This
method hides the fragmentation process from the rest of the network. However, it introduces
several issues: routers need to keep track of fragments, know when all have arrived, and
buffer them while waiting. It also forces all fragments to follow the same route to ensure
proper reassembly, which restricts routing flexibility and can lead to inefficient paths.

MNetwork 1 Nelwork 2
Packet o _w
{’ —

2 (=8 —=)
A G, — G,

G, fragments reassembles Gy frﬂg""'ents reassembles

a large packet the fragments again again

(a)

Packet (/_/[—I_J - \ - !,/_"f ‘-\\
([e]g8—I[=l) g8 — ([=] —-E

0coa

ULLL
W—I'"I

0coa
0aa

N —— A S
G, fragments The fragments are ru:|-l reassembled
a large packet until the final destination (a host) is reached
(e}

Figure 16.5 (a) Transparent fragmentation. (b) Nontransparent fragmentation.

Centre for Distance Education 16.8 Acharya Nagarjuna University ‘

The second method is nontransparent fragmentation, used by the Internet Protocol (IP). In
this strategy, once a packet is fragmented, the fragments are treated as independent packets
and travel separately to the final destination, where they are reassembled by the receiving
host. This method simplifies router design since routers do not need to manage reassembly.
IP assigns each fragment a packet number, a byte offset, and an end-of-packet flag. These
allow the destination to reassemble the data correctly even if fragments arrive out of order.
Fragments can be further fragmented if they encounter another network with a smaller MTU,
and retransmissions can use different fragmentation patterns.

Despite its advantages, fragmentation has significant drawbacks. First, each fragment carries
a header, increasing overhead. More importantly, if any single fragment is lost, the entire
original packet must be retransmitted. This creates inefficiencies, especially for large packets,
and places more processing burden on the receiving host. These issues led researchers to
conclude that fragmentation should be avoided inside the network whenever possible.

Number of the first elementary fragment in this packet

Packet End of
number packet bit 1 byte
e
27|l o1l A|B|C|DJ|E F|IG|H | J
e T
Header
(a)
2T | 0O (0l A | B |C |D|E FIG|H 27 8 1] | J
l\—\,—f '\-\—\,—a
Header Header
(b)
27| o 0| A | B |C|D|E 27T 5|10 F| G| H 27| 8111 | J
Header Header Header
(c)

Figure 16.6 Fragmentation when the elementary data size is 1 byte. (a) Original packet,

containing 10 data bytes. (b) Fragments after passing through a network with maximum

packet size of 8 payload bytes plus header. (c) Fragments after passing through a size 5
gateway.

To address these problems, the Path MTU Discovery technique was developed. In this
approach, the source sets the “Don’t Fragment” (DF) flag in the IP header. If a router receives
a packet that exceeds its MTU and the DF flag is set, it drops the packet and sends an ICMP
error message back to the source, indicating the maximum size it can handle. The source then
adjusts the packet size accordingly and tries again. If another router along the path has an
even smaller MTU, it repeats the process. This continues until the packet is small enough to
pass through the entire path without fragmentation.

Computer Networks 16.9 INTERNETWORKING AND INTERNET...

Packet (with length)

ﬁl?lv

=y =l
Euurie‘ Ty 12007~ Ty 00—~ Destination

-
T - il

igure 16.7 Path MTU discovery

The advantage of Path MTU Discovery is that it eliminates the need for routers to perform
fragmentation, reducing their processing load and simplifying network operation. It also
ensures that packets are sized correctly for the entire path, improving performance. This
method is typically used in TCP/IP, where the transport and network layers work together to
adapt packet sizes.

However, Path MTU Discovery has its own downsides. It can cause initial delays in data
transmission because multiple trial-and-error attempts may be needed before the source finds
the correct MTU size. Additionally, if any routers block ICMP messages (as some firewalls
do), the source might never receive the needed error message, leading to failed transmissions.
In theory, better designs might exist. For instance, one idea is to have routers truncate packets
that exceed their MTU and forward the truncated data, allowing the destination to learn the
MTU and receive at least part of the data immediately. However, such a design introduces its
own complexities and has not been widely adopted.

In summary, managing packet sizes across diverse networks is a complex and persistent issue
in internetworking. Fragmentation provides a way to cope with size mismatches but
introduces overhead and performance concerns. Path MTU Discovery offers a cleaner, more
modern approach by pushing the responsibility of adapting packet size to the sender, but it
comes with its own set of limitations.

16.7 SUMMARY

This chapter covers internetworking, explaining how different networks with varying
technologies can be connected. It discusses concatenated virtual circuits, connectionless
internetworking, tunneling, and fragmentation to manage packet delivery across diverse
networks. The chapter also examines the Internet network layer, focusing on the IP protocol,
IP addressing, and control protocols that manage routing and reliability. Key routing
protocols such as OSPF, BGP, and other exterior gateway protocols ensure efficient and
scalable routing across the global Internet.

16.8 TECHNICAL TERMS
Internetworking, IP addressing, OSPF, BGP, gateway protcols.

Centre for Distance Education 16.10 Acharya Nagarjuna University

16.9 SELF ASSESSMENT QUESTIONS
Essay questions:

Explain the differences between networks and the methods to connect them.

Describe connectionless internetworking and concatenated virtual circuits.

Discuss tunneling and fragmentation in internetworking.

Explain the IP protocol, IP addressing, and key Internet control protocols.

Describe OSPF, BGP, and the role of exterior gateway routing protocols in the
Internet.

MRS

Short Questions:

What is internetworking?

Define concatenated virtual circuits.

What is tunneling in networks?

What is the purpose of the IP protocol?
Name one exterior gateway routing protocol

Nk W=

16.10 FURTHER READINGS

1. Andrew S. Tanenbaum, “Computer Networks”, Fourth Edition, PHI.
James F.Kurose, Keith W.Ross, “Computer Networking”, Third Edition, Pearson
Education

3. Behrouz A Forouzan, “Data Communications and Networking”, Fourth Edition, TMH
(2007)

4. Michael A. Gallo, William M. Hancock, “Computer Communications and
NetworkingTechnologies”, Cengage Learning (2008)

Dr. Vasantha Rudramalla

LESSON- 17
THE TRANSPORT LAYER SERVICES AND
PROTOCOL MECHANISMS

OBJECTIVES:

After going through this lesson, you will be able to

= Understand the role and functions of the transport layer.

= Learn the services provided by the transport layer to upper layers.

= Study transport service primitives and their operations.

= Understand the concept and usage of Berkeley sockets.

= Recognize how transport protocols support reliable communication

STRUCTURE OF THE LESSON:

17.1 THE TRANSPORT SERVICES

17.2 SERVICES PROVIDED TO THE UPPER LAYER

17.3 TRANSPORT SERVICE PRIMITIVES

174 BERKELEY SOCKETS

175 AN EXAMPLE OF SOCKET PROGRAMMING: AN INTERNET FILE
SERVER

17.6 SUMMARY

17.7 TECHNICAL TERMS

17.8 SELF-ASSESSMENT QUESTIONS

17.9 FURTHER READINGS

17.1 THE TRANSPORT SERVICES

The transport layer, along with the network layer, forms the core of the protocol stack. While
the network layer handles end-to-end packet delivery between machines, the transport layer
ensures reliable data transfer between processes running on those machines. It provides
essential services like reliability, flow control, and error handling, allowing applications to
communicate smoothly without needing to know the details of the underlying network. This
layer enables consistent and efficient communication, regardless of the physical networks in
use. In this chapter, key transport layer topics such as TCP, UDP, reliability, congestion
control, and API design will be explored.

The upcoming sections introduce the transport service by explaining the type of
communication it offers to the application layer. To make this concept clearer, two sets of
transport layer primitives will be discussed. The first is a simple, hypothetical set meant to
illustrate the fundamental ideas behind transport services. The second is the actual interface
used in the Internet, showing how real-world applications interact with the transport layer to
send and receive data.

Centre for Distance Education 17.2 Acharya Nagarjuna University

17.2 SERVICES PROVIDED TO THE UPPER LAYER

The main goal of the transport layer is to offer efficient, reliable, and cost-effective data
transmission to its users, typically the processes in the application layer. To do this, the
transport layer builds upon the services provided by the network layer. The part of the system
that performs transport functions is called the transport entity, which can reside in the
operating system kernel, in a user-space library, or even in the network interface card—
though most commonly it’s in the OS or a linked library.

There are two types of transport services: connection-oriented and connectionless, mirroring
the two network service types. Connection-oriented services involve setup, data transfer, and
connection release, and include mechanisms for addressing and flow control. Connectionless
services send data without establishing a connection first. However, it's difficult to implement
a connectionless transport service on top of a connection-oriented network service, because
it’s inefficient to set up and tear down connections just to send one packet.

A natural question arises: if transport services are so similar to network services, why are
both layers needed? The key difference lies in where each layer operates. The network layer
typically runs on routers owned by carriers, while the transport layer runs entirely on the end-
user’s machines. Users can’t control or fix the network layer if it offers poor service (like
dropping packets or crashing). Instead, they rely on the transport layer to detect and correct
errors, such as through retransmissions. This is why a separate transport layer is essential—it
compensates for the limitations of the network layer and ensures better communication
quality for applications.

Host 1 Host 2
Application Application
(or session) Applicationftransport (or session)
layor Transport | interface layer
_ &~ address | o
l Segment g l 1
Transp-ﬁrtl o 9 X _ | Transport
entity I Transport entity
protacol 1
Metwork — ™. =
address Transportnetwork
Metwork layer intertace Network layer

Figure 17.1 The network ,transport, and application layers.

The transport layer plays a critical role in ensuring reliable communication, especially when
the underlying network layer is unreliable. For example, if a connection-oriented network
fails during data transmission, the transport entity can establish a new connection and query
the receiving end to find out which data was successfully received. This allows it to resume
transmission without data loss, making the overall communication more robust than the
network itself.

Computer Networks 17.3 THE TRANSPORT LAYER SERVICES

This added reliability is a key benefit of the transport layer. It acts as a buffer between
applications and the network, providing a consistent interface regardless of what type of
network is being used—be it connectionless like Ethernet or connection-oriented like
WiMAX. By using a standard set of transport service primitives, application programs
become independent of the specific network details, making them more portable and easier to
develop and maintain.

In practice, networks are far from perfect, and their protocols and technologies vary widely.
The transport layer shields the application layer from these complexities and imperfections.
Without it, programmers would have to tailor their applications to every possible network
environment. Thanks to the transport layer, they can write software once and run it anywhere.
Because of this, networking professionals often draw a distinction between layers 1 to 4,
which provide transport services, and the layers above 4, which use those services. The
transport layer sits at the critical boundary, acting as the interface between service provider
and user. It is the layer most visible to applications and plays a central role in enabling
reliable, standardized communication across diverse networks.

17.3 TRANSPORT SERVICE PRIMITIVES

To enable application programs to communicate across a network, the transport layer offers a
set of operations known as the transport service interface. This interface acts as a bridge
between the application layer and the transport layer, giving programs the ability to interact
with the transport services directly. While the network service aims to reflect the capabilities
of real-world networks (including their flaws such as packet loss), the transport layer is
designed to hide these imperfections and offer reliable communication. This reliability is
especially crucial in connection-oriented transport services, which ensure data is delivered
accurately and in the correct sequence, despite underlying network issues.

To illustrate this, consider two processes communicating via a UNIX pipe. These processes
expect a flawless connection where data input at one end is received at the other without
worrying about packet loss, errors, or retransmissions. Similarly, the transport layer emulates
this kind of seamless communication between processes running on different machines by
correcting errors, managing acknowledgements, and handling lost data behind the scenes.
While the transport layer can also provide unreliable datagram services (similar to what the
network layer offers), such services are simpler and mostly used in specific scenarios like
streaming multimedia or client-server communication, where speed is prioritized over
reliability. However, the primary focus remains on the reliable, connection-oriented transport
service, as it is more widely used and complex.

Another significant distinction lies in the intended users of the services. The network service
is accessed by transport entities and is mostly hidden from end-user applications. On the
other hand, the transport service is directly exposed to application programmers. This
necessitates that transport interfaces be user-friendly and practical, offering essential
operations to establish, utilize, and terminate connections easily.

A minimal transport interface might include five key primitives (as mentioned in the
referenced Fig. 6-2): primitives for connection establishment, data transfer, and connection
release. Although basic, such a set of operations is adequate to support many real-world
applications that require reliable data communication.

Centre for Distance Education 17.4 Acharya Nagarjuna University

Primitive | Packet sent | Meaning
LISTEN | (none) | Block until some process tries to connect |
CONMNECT CONMNECTION REQ. Actively attempt to establish a connection
SEND . DATA | Send information
RECEIVE (none) Block until a DATA packet arrives
DISCONNECT DISCONNECTION REQ. Request a release of the connection

Figure 17.2 The primitives for a simple transport service

To understand the practical use of transport service primitives, consider a typical client-server
application. The server begins by executing a LISTEN primitive, which usually involves
calling a system-level function that blocks the server, keeping it idle and waiting for a client
connection. This means the server is passively waiting for a connection request. When a
remote client wants to initiate communication, it issues a CONNECT primitive. This action
also invokes a library routine or system call, which causes the client process to block
temporarily while the transport layer sends a connection request to the server. This request is
encapsulated in a transport layer message, also known as a segment, and sent across the
network to the server’s transport entity.

At this point, it's important to clarify the terminology used in networking. The message
exchanged between transport entities (i.e., the sender’s and receiver’s transport layers) is
called a segment. This term is widely used in modern protocols such as TCP (Transmission
Control Protocol) and UDP (User Datagram Protocol). In contrast, older networking literature
sometimes refers to such messages as TPDU (Transport Protocol Data Unit), though this term
is now largely obsolete.

The transport segment is encapsulated within a network layer packet, which is, in turn,
embedded within a data link layer frame. This hierarchical wrapping of data units forms a
core concept of layered protocol design. When a frame arrives at a destination machine, the
data link layer first examines its header to determine whether it is addressed to the local
machine. If it is, the payload of the frame is extracted and passed up to the network layer,
which performs a similar check on the packet. Once validated, the payload of the packet,
which is the transport segment, is handed over to the transport layer. This step-by-step
unwrapping of the communication unit illustrates the layered encapsulation model. It is
typically shown in a diagram such as Fig. 6-3, where each layer encapsulates and
decapsulates its respective protocol data units.

Frame Packet Segment
header header header

/ / s

f ——=

.
Segment payload
- Packet payload -
Frame payload -

Figure 17.3 Nesting of segments , packets, and frames

Computer Networks 17.5 THE TRANSPORT LAYER SERVICES

Understanding Transport Layer Primitives Through a Client-Server Model

In the world of networking, the transport layer is crucial for enabling communication between
processes on different machines. This is especially evident in client-server applications,
where transport service primitives define how two processes initiate, manage, and terminate a
connection reliably. Let's walk through a complete example—from connection establishment
to termination—while emphasizing the internal workings of the transport layer.

1. Connection Establishment: LISTEN and CONNECT

The communication starts when a server process prepares itself to accept connections. It does
this by issuing the LISTEN primitive. This is usually implemented as a blocking system
call—meaning the server waits (or “sleeps”) until a connection request arrives. The transport
entity associated with the server stores this state internally and listens for connection attempts
from any client.

On the client side, a process wishing to communicate with the server issues the CONNECT
primitive. This is also typically a blocking system call. The client's transport layer builds a
special segment called a CONNECTION REQUEST, which includes information such as the
source and destination addresses, port numbers, and possibly some sequence numbers for
reliability mechanisms.

This segment is passed down to the network layer, encapsulated in a packet, and further into a
frame at the data link layer before being physically sent across the network. This
encapsulation hierarchy follows the OSI model, where each layer adds its own header to the
data.

2. Server Acknowledges: CONNECTION ACCEPTED

When the server’s transport entity receives the CONNECTION REQUEST segment, it first
verifies whether the server process is currently in the LISTEN state. If it is, the server accepts
the connection. The transport layer then does two things:

1. It unblocks the server process, allowing it to continue and handle the client.
2. It sends back a CONNECTION ACCEPTED segment to the client.

This segment travels the same path in reverse—encapsulated in a packet and frame—until it
reaches the client.

When the CONNECTION ACCEPTED segment arrives, the client is unblocked. Now, both
the client and server know that the connection is officially established. Internally, both
transport entities store connection state information, such as sequence numbers,
acknowledgment status, and window sizes (in case of flow control).

3. Data Exchange: SEND and RECEIVE
Once the connection is up, the two parties can now exchange data using the SEND and
RECEIVE primitives.

= The SEND primitive allows an application to push data into the transport layer.

= The RECEIVE primitive is used to extract incoming data from the transport layer.

Centre for Distance Education 17.6 Acharya Nagarjuna University

In simple transport protocols, these primitives may block the calling process. For example, if
a process calls RECEIVE but no data has arrived yet, it will wait until a DATA segment is
received.

The data flow works like this:

1. Application A (client or server) calls SEND(data).
The data is broken into segments by the transport layer (if needed), and sent across the
network.

3. When the segment reaches Application B’s host, its transport layer verifies integrity
(checksums), confirms the sequence number, sends back an acknowledgment (ACK),
and finally delivers the data to the application via a RECEIVE.

Even though applications use high-level, clean primitives, underneath, the transport entities
manage many tasks:

= Acknowledging received data

= Retransmitting lost segments

= Detecting duplicates

* Managing timers

= Preserving ordering of segments

All these complexities are invisible to the transport user, who simply sees a reliable, ordered
stream of bytes, also known as a “reliable bit pipe.” This abstraction is one of the greatest
achievements of the layered protocol model—it hides the messy details of unreliable physical
and network layers.

4. Disconnection: DISCONNECT Primitive

Once communication is complete, the connection must be gracefully terminated to reclaim
resources (such as memory buffers and state tables) inside the transport entities. This process
is initiated using the DISCONNECT primitive.

There are two disconnection models:

a. Asymmetric Disconnection:
e Either party (client or server) can call DISCONNECT.
e The transport layer sends a DISCONNECT segment to the other side.
e Upon receiving it, the peer transport entity releases the connection and unblocks its
local process.
e This is simple but sudden—the connection ends as soon as one party initiates
disconnection.
b. Symmetric Disconnection:
More graceful and controlled.
Each side independently signals that it has no more data to send by issuing DISCONNECT.
o However, it can still receive data until the peer also issues a DISCONNECT.
o The connection is only fully closed once both sides have called DISCONNECT.
e This model resembles TCP’s half-close mechanism, where one side can finish sending
while still accepting input from the other.

Computer Networks 17.7 THE TRANSPORT LAYER SERVICES

5. Connection State Diagram (Figure 6-4)

To clearly represent the flow of events during connection setup and teardown, we can refer to

a state diagram like Figure 6-4. Here's a simplified explanation of what this diagram includes:

o States like: CLOSED, LISTEN, CONNECTING, ESTABLISHED,
DISCONNECTING, and CLOSED.

e Transitions triggered by primitives (CONNECT, LISTEN, DISCONNECT) or
incoming segments (CONNECTION REQUEST, CONNECTION ACCEPTED,
DISCONNECT).

e In a symmetric disconnection model, the client initiates disconnection, and the server
later follows. The connection only truly ends when both sides reach the CLOSED
state.

17.4 BERKELEY SOCKETS

Sockets are a set of transport layer primitives introduced in Berkeley UNIX 4.2BSD in 1983
to support communication over the Internet. Since their release, they have become the
standard programming interface for building networked applications. The socket interface
provides a structured way for applications to create, configure, and manage connections over
a network, particularly using TCP (Transmission Control Protocol) for reliable, connection-
oriented communication. Unlike the simplified conceptual primitives like CONNECT,
SEND, RECEIVE, and DISCONNECT discussed earlier, socket primitives offer more
granularity, flexibility, and control, making them better suited for real-world use cases where
multiple clients, error handling, and concurrent operations are common.

Creating a Communication Endpoint with SOCKET

The first step in any socket-based application is to create a socket, which is accomplished
using the SOCKET primitive. This function call sets up a communication endpoint in the
transport layer. It allocates internal resources within the transport entity and returns a file
descriptor (an integer value) that uniquely identifies the socket within the process. This file
descriptor can later be used with other primitives to configure the socket, send or receive
data, or close the connection. The parameters passed to the SOCKET call specify the address
family (like IPv4), the socket type (e.g., SOCK STREAM for TCP), and the protocol
(usually O to choose the default for the given type). Importantly, this primitive does not
assign a network address to the socket—it simply creates an unbound endpoint that can later
be configured.

Assigning an Address Using BIND

Once a socket is created, servers must bind the socket to a specific network address and port
number, which is done using the BIND primitive. This step is crucial because it allows
remote clients to know where to reach the server. The BIND primitive associates the socket
with a well-known IP address and port number, essentially giving it a "mailing address" on
the network. This separation between SOCKET and BIND is intentional. It allows developers
to reuse socket creation code for different roles, and to provide flexibility—some applications
require known addresses (like web servers on port 80), while others prefer dynamic or
system-assigned addresses. Clients usually skip this step because they don’t care about their
source port; the system assigns an ephemeral port for them during connection.

Centre for Distance Education 17.8 Acharya Nagarjuna University

Preparing for Connections with LISTEN

After binding the address, the server uses the LISTEN primitive to indicate readiness to
accept incoming connections. This primitive transforms the socket into a passive listening
socket and allocates space for a queue of pending connection requests. This is especially
useful when multiple clients attempt to connect simultaneously—the operating system can
queue their requests and handle them in order. Unlike the abstract LISTEN primitive from
earlier models, the socket version of LISTEN is not a blocking call. It simply prepares the
socket for incoming connections and tells the operating system how many connections can be
queued. The actual blocking behavior happens in the next primitive: ACCEPT.

Handling Clients with ACCEPT

To block and wait for a client connection, the server calls the ACCEPT primitive. When a
CONNECTION REQUEST segment arrives from a client (which would have issued a
CONNECT call), the transport layer checks the listening socket’s queue and processes the
request. Upon successful connection, the system creates a new socket—essentially a clone of
the original one but dedicated to this specific client. The ACCEPT call then returns a new file
descriptor, which the server uses for communicating with the client. This allows the original
listening socket to remain open and continue accepting other incoming requests. A common
practice in server applications is to create a new process or thread to handle each accepted
connection using the new socket, allowing the server to handle many clients simultaneously.

Client Connection with CONNECT

On the client side, the process also begins with a SOCKET call, creating a communication
endpoint. However, clients usually do not invoke BIND, as their local address is not
important—they are interested only in reaching the server. To initiate a connection, the client
uses the CONNECT primitive, which actively starts the connection setup process. This is a
blocking call: the client process is suspended until the connection is either successfully
established or fails. Internally, this results in a CONNECTION REQUEST segment being
sent to the server. If the server accepts the request, it sends a CONNECTION ACCEPTED
segment back to the client, which causes the CONNECT call to return and the client to
continue execution with a fully established connection.

Data Exchange with SEND, RECEIVE, READ, and WRITE

Once a connection is established, full-duplex data communication can begin. Both the client
and server can send and receive data simultaneously. The socket interface provides specific
primitives: SEND to transmit data and RECEIVE to accept incoming data. These primitives
are more feature-rich than their conceptual counterparts—they allow options such as sending
out-of-band data, toggling blocking behavior, or specifying flags for behavior control.
However, most socket implementations also support standard UNIX system calls—READ
and WRITE—on socket file descriptors. This makes sockets behave like regular files,
maintaining the UNIX philosophy of “everything is a file.” In practice, developers can
choose between the more flexible SEND/RECEIVE or the simpler READ/WRITE based on
application needs.

Computer Networks 17.9 THE TRANSPORT LAYER SERVICES

Termination and Cleanup with CLOSE or SHUTDOWN

Though not explicitly mentioned in the previous passage, closing a socket connection is
essential to free system resources and notify the peer that communication has ended. This is
done using the CLOSE system call or the more selective SHUTDOWN call, which allows
one to terminate just the sending, just the receiving, or both directions independently. This
corresponds to the DISCONNECT primitive in theoretical models and supports both
asymmetric and symmetric disconnection. TCP ensures a graceful connection teardown by
exchanging FIN (finish) and ACK (acknowledgment) segments to confirm that both sides
have closed properly.

Connection reguest Connect primitive
segmeant received executed
T m e mn e IDLE]
]
¥ _ .
PASSIVE ACTIVE
ESTABLISHMENT ESTABLISHMENT
PEMDING PEMDING
T
: Connect primitive Connection accepled
l\ __________ executed | oo cuen segment received
T
i
Disconmection ! Disconnect
request segment ! primitive
PASSIVE received) exacuted ACTIVE
DISCOMMECT [m=====ccememaaas DISCOMMECT
PENDING PENDING
T
]
]
[]
[
5 J
o - |
Diseonnact DLE ‘ Dvisconnection request
primitive executed segmeant received

Figure 17.4 A state diagram for a simple connection management scheme. Transitions
labeled in italics are caused by packet arrivals. The solid lines show the client’s state
sequence. The dashed lines show the server’s state sequence.

Sockets have become the foundational programming interface for network communication,
particularly in applications that rely on the TCP/IP protocol suite. One of the core features of
socket-based communication is the symmetric nature of connection release. In TCP, both
communicating parties must explicitly issue a CLOSE primitive to fully terminate the
connection. This symmetric closing ensures that all data has been properly transmitted,
acknowledged, and that neither side is left uncertain about the connection’s status. It adheres
to TCP’s four-step connection termination process, which is designed to maintain the
integrity and order of data flow even during disconnection. This careful and deliberate
closure mechanism further emphasizes the reliability that TCP—and by extension, sockets—
promise to application developers.

The popularity of sockets stems from their ability to abstract the complexities of transport
layer services into a consistent, flexible, and widely supported API. Originally introduced in
Berkeley UNIX as part of the 4.2BSD release, the socket interface was designed to provide

Centre for Distance Education 17.10 Acharya Nagarjuna University ‘

access to TCP’s connection-oriented services. These services manifest as a reliable byte
stream, which can be thought of as a dependable, ordered, error-free pipeline between two
processes, whether on the same machine or across the globe. What makes sockets particularly
powerful is that this same API can be used with other transport protocols as well. For
instance, while TCP uses sockets to establish a reliable stream, the same socket functions can
be used with UDP to support connectionless communication. In such scenarios, a call to
CONNECT does not establish a persistent session like in TCP, but rather sets the destination
address for future SEND and RECEIVE operations. This model allows sockets to function
efficiently even in lightweight communication tasks, such as DNS lookups or live media
streaming.

Additionally, the socket API can be extended to support message-oriented communication
through primitives like SENDTO and RECEIVEFROM. These primitives are particularly
useful in connectionless services, allowing each message to specify its destination or source
independently. This is ideal for applications that need to communicate with multiple peers
without establishing dedicated connections for each one. The socket interface is also
compatible with newer transport protocols that introduce additional features, such as
congestion control without reliability, or message-based communication rather than byte
streams. For example, the Datagram Congestion Control Protocol (DCCP) builds on UDP by
adding congestion control mechanisms, making it suitable for applications like real-time
video where timely delivery is more critical than guaranteed delivery. Despite sharing the
same socket interface, the behaviors of these protocols differ significantly. Thus, it is crucial
for developers to understand the nature of the transport service they are employing, even if
the API appears uniform.

However, as the demands of modern networked applications evolve, the limitations of the
traditional socket interface become apparent. One significant limitation is its approach to
handling multiple simultaneous data streams between the same pair of hosts. In contemporary
applications like web browsers, which often request numerous objects from a single server,
each object typically necessitates a separate socket connection. This leads to inefficient use of
resources and fragmented congestion control, since each connection is managed
independently by the transport layer. Consequently, the burden of coordinating multiple
streams falls on the application itself, making the overall design less efficient and more
complex. This shortcoming has led to the development of newer transport protocols and APIs
that better support grouped or structured streams.

Two notable examples that attempt to overcome these limitations are SCTP (Stream Control
Transmission Protocol) and SST (Structured Stream Transport). SCTP, defined in RFC 4960,
introduces the concept of multi-streaming within a single connection, allowing multiple data
flows to be managed under a unified congestion control mechanism. This not only improves
efficiency but also ensures faster recovery from individual stream failures. Similarly, SST
extends the transport interface to support complex stream hierarchies, multiplexed
connections, and even hybrid models that combine connection-oriented and connectionless
traffic. These advanced capabilities require enhancements to the traditional socket API, as the
one-stream-per-socket model is no longer sufficient to express such interactions. In addition,
these protocols introduce support for features like multi-homing and multipath routing,
enabling data to flow over multiple network interfaces for improved reliability and
performance. Whether or not these newer models will gain widespread adoption remains to
be seen, but they clearly indicate that while the socket interface has been remarkably
successful, it is not the final word in the design of transport service APIs. As applications

Computer Networks 17.11 THE TRANSPORT LAYER SERVICES

grow increasingly complex and performance-sensitive, the need for more expressive and
efficient interfaces will continue to shape the evolution of network programming.

17.5 AN EXAMPLE OF SOCKET PROGRAMMING: AN INTERNET FILE SERVER

a very basic client-server architecture using real socket function calls in C on a UNIX system,
offering an excellent opportunity to understand how transport layer communication translates
into actual code. The program is a primitive Internet file server coupled with a client that
connects to it, requests a file, and receives the file contents. While the example is
intentionally simplified to focus on the core idea rather than production-level robustness, it
demonstrates the essential components of socket programming: creation, binding, listening,
accepting, connecting, sending, and receiving data. The notable aspect of this example is its
portability across UNIX-based systems on the Internet. A server running the program can be
hosted on any such system, and a client on a remote machine anywhere in the world can
connect to it, provided there are no firewall or network restrictions. When the client runs, it
fetches the specified file and outputs the contents to standard output, allowing users to
redirect the stream to a file or pipe, effectively simulating a basic download mechanism.

Examining the server code reveals several crucial steps that align closely with the theoretical
understanding of socket primitives. The program starts by including standard C library
headers, particularly those that handle system calls, data types, and socket structures
(<stdio.h>, <stdlib.h>, <unistd.h>, <sys/socket.h>, <netinet/in.h>, and <arpa/inet.h>). These
are essential for defining the networking elements such as socket addresses and data buffers.
Following the headers is the definition of a server port, chosen arbitrarily as 12345. This
number is critical because clients will use it to reach the server. Port numbers above 1024 are
commonly used for user applications, while those below 1024 are reserved for system-level
(privileged) services such as SSH or HTTP. The code assumes no conflict exists on port
12345. If another process is already bound to that port, the server would fail to bind, causing
it to exit with an error. Therefore, selecting an available port is essential in real deployment.

After the port definition, two constants are set to guide how the server behaves. The first
constant typically defines the buffer size for reading chunks of data during file transmission.
This buffer controls how much data is read or written in one I/O operation. A standard chunk
size might be 1024 bytes (1 KB), balancing performance with memory efficiency. The
second constant determines the maximum number of queued incoming connections,
corresponding to the backlog parameter in the LISTEN call. If more clients attempt to
connect while this limit is reached, the server drops the new connections until space becomes
available. This mechanism ensures that the server can control its workload and not be
overwhelmed by simultaneous incoming requests. These two constants help structure how the
server handles data and client load, even though the logic in this specific example is basic and
lacks advanced features like concurrency, input validation, authentication, or logging.

Despite its limitations, the example serves as a fundamental template for learning how
sockets function in a real application. It shows the transformation from abstract ideas like
“connection,” “send,” and “receive” into tangible C function calls like socket(), bind(),
listen(), accept(), connect(), read(), and write(). This is a valuable step in bridging the gap
between network theory and programming practice. It also implicitly demonstrates the
importance of choosing appropriate parameters, error checking, and the sequencing of socket
operations to maintain a predictable and stable communication channel. Once compiled and
executed, the server listens on a known port, the client initiates a connection with the server’s

Centre for Distance Education 17.12 Acharya Nagarjuna University

IP and port, and upon successful establishment, the requested file is read in chunks by the
server and sent to the client, which writes it to output. Though simple, this process embodies
the essence of what transport services aim to offer—a reliable channel for sending and
receiving data between distributed processes.

The provided example delves into the detailed workings of a very simple Internet file server
and its corresponding client, implemented using sockets in C on a UNIX system. Despite its
simplicity and numerous limitations, this implementation serves as an excellent educational
tool to understand real-world usage of socket primitives and the lifecycle of a basic client-
server interaction over TCP. The server begins by declaring necessary local variables and
proceeds to initialize a data structure representing the server’s IP address and port. The
memset call is used to zero out the structure to ensure a clean initialization. The server’s port
is filled in using the htons function to ensure the correct byte order across different
architectures (little-endian vs big-endian), ensuring network interoperability. The server then
creates a socket with the socket() system call and checks for errors, a crucial step in real
systems where robustness is key. To allow reuse of the server port for repeated use without
delay, it uses the setsockopt() call. This is particularly useful for development or rapid
restarts, preventing the “address already in use” error. After this, the socket is bound to the IP
address using bind(), and any failure here leads to termination. Finally, the server calls
listen() to begin waiting for incoming client requests, and it specifies a backlog size (queue
limit) that determines how many incoming connections can wait while the server is busy.

Once initialization is complete, the server enters its main execution loop, which continues
indefinitely until the server process is externally killed. Inside this loop, the accept() call is
used to block the server until a client requests a connection. When this happens, a new socket
descriptor is returned, distinct from the original listening socket, and this new socket is used
for two-way communication with the client. Unlike traditional UNIX pipes which are one-
way, sockets support full duplex (bidirectional) communication, enabling both reading and
writing on the same descriptor. After the connection is established, the server reads the file
name sent by the client. If the data is not immediately available, the read() call blocks. Once
the file name is received, the server attempts to open the file. If successful, it enters a loop
where it reads the file in chunks (as per the defined buffer size) and writes each chunk to the
socket, thus transmitting the file to the client. Once the entire file is sent, the server closes
both the file and the connection socket and then returns to the top of the loop to wait for the
next client connection. This approach, although functional, is inherently sequential; the server
handles only one client at a time and is blocked during all /O operations. It lacks
concurrency, multithreading, or asynchronous I/O, all of which are essential in real
production-grade servers.

Turning to the client, it begins by checking if the program has received exactly three
arguments: the program name, the server’s hostname (like flits.cs.vu.nl), and the desired file
path on the server machine. The client uses the gethostbyname() function to resolve the given
hostname into an IP address using DNS, a service which will be explained further in the
book’s later chapter on DNS. Then, the client creates a socket and attempts to establish a TCP
connection to the server using the connect() call. This operation blocks until the connection is
successfully established or fails. If the server is running, listening on the correct port, and has
room in its listen queue, the connection proceeds. The client then sends the file name to the
server using a write() system call, sending one extra byte (a null character \0) to signal the
end of the file name string, ensuring the server knows when the name ends. After this, the
client enters a loop where it reads data from the socket in blocks and writes it directly to the

Computer Networks 17.13 THE TRANSPORT LAYER SERVICES

standard output (stdout). Because UNIX allows standard output to be redirected, the received
file data can be saved to a local file or piped into another process, effectively making this
client a basic file retrieval tool.

The fatal() function, defined in the client code but referenced in both, is a simple utility that
prints an error message and exits the program. The server would also need such a function for
consistent error handling, though it’s not included in the printed snippet for brevity. It’s
important to understand that this example has many flaws. It lacks proper error checking and
reporting, cannot handle concurrent clients, and doesn’t include any form of access control,
authentication, or security. It assumes the file name fits entirely within a fixed buffer and that
the transmission is atomic, which may not be true in all environments or under all network
conditions. These simplifications are intentional for educational clarity but would be
unacceptable in a real-world application. Nonetheless, the program does illustrate the
fundamental operations and structure of a basic TCP-based file server-client architecture.
Readers are encouraged to improve upon it—by adding multithreading, better error handling,
or protocol refinements—as part of their learning process. Further guidance on these topics is
available in supplemental resources such as Donahoo and Calvert’s socket programming
books, which explore advanced socket programming practices in greater detail.

17.6 SUMMARY

This chapter introduces the transport layer, which provides reliable, end-to-end
communication between processes on different hosts. It describes the services offered to
upper layers, including connection establishment, error control, and flow control. Transport
service primitives define operations like connect, send, receive, and disconnect, enabling
communication between applications. The chapter also covers Berkeley sockets, a practical
API that allows applications to use network services easily. Overall, the transport layer acts
as a bridge between the network layer and application layer, ensuring efficient and
dependable data transfer.

17.7 TECHNICAL TERMS

Transport layer, Sockets, Berkeley sockets

17.8 SELF ASSESSMENT QUESTIONS

Essay questions:

Explain the services provided by the transport layer to upper layers.

Describe transport service primitives and their role in connection management.
Discuss the concept and functions of Berkeley sockets.

Explain how the transport layer ensures reliable data transmission.
Compare the transport layer’s role with that of the network layer.

MRS

Short Questions:
1. What is the main function of the transport layer?
Name two services provided by the transport layer to upper layers.
What are transport service primitives?
What is a Berkeley socket?
Why is the transport layer important for reliable communication?

Nk

Centre for Distance Education 17.14 Acharya Nagarjuna University

17.9 FURTHER READINGS

1.

Andrew S. Tanenbaum, “Computer Networks”, Fourth Edition, PHI.

2. James F.Kurose, Keith W.Ross, “Computer Networking”, Third Edition, Pearson

Education

. Behrouz A Forouzan, “Data Communications and Networking”, Fourth Edition, TMH

(2007)
Michael A. Gallo, William M. Hancock, “Computer Communications and
NetworkingTechnologies”, Cengage Learning (2008).

Mrs. Appikatla Pushpa Latha

LESSON- 18

THE INTERNET TRANSPORT PROTOCOLS TCP AND UDP

OBJECTIVES:

After going through this lesson, you will be able to

Understand the features and purpose of UDP.

Learn about Remote Procedure Call (RPC) and Real-Time Transport Protocol (RTP).
Study TCP, its service model, and protocol structure.

Learn TCP connection management, congestion control, and timer management.
Understand variations like wireless TCP, UDP, and transactional TCP.

STRUCTURE OF THE LESSON:

18.1
18.2
18.3
18.4
18.5
18.6
18.7
18.8
18.9
18.10
18.11
18.12
18.13
18.14
18.15
18.16
18.17
18.18
18.19

INTRODUCTION

INTRODUCTION TO UDP

REMOTE PROCEDURE CALL

REAL TIME TRANSPORT PROTOCOLS

THE INTERNET TRANSFER PROTOCOLS: TCP
THE TCP SERVICE MODEL

THE TCP PROTOCOL

THE TCP SEGMENT HEADER

TCP CONNECTION ESTABLISHMENT

TCP CONNECTION RELEASE

TCP CONNECTION MANAGEMENT MODELLING
TCP SLIDING WINDOW

TCP TIMER MANAGEMENT

TCP CONGESTION CONTROL

THE FUTURE OF TCP

SUMMARY

TECHNICAL TERMS

SELF-ASSESSMENT QUESTIONS

FURTHER READINGS

Centre for Distance Education 18.2 Acharya Nagarjuna University

18.1 INTRODUCTION

The Internet’s transport layer includes two main protocols: UDP and TCP, which serve
different purposes and complement each other. UDP (User Datagram Protocol) is a
connectionless protocol that provides minimal services—mainly sending packets from one
application to another without establishing a connection or guaranteeing delivery. It leaves
reliability and flow control to the application itself, offering speed and low overhead for use
cases like streaming or DNS.

On the other hand, TCP (Transmission Control Protocol) is connection-oriented and provides
much more functionality. It ensures reliable data delivery through acknowledgements and
retransmissions, manages flow control to prevent overwhelming the receiver, and controls
congestion to avoid network overload. TCP handles these complexities so applications don't
have to.

Because UDP is simpler, it is introduced first when studying transport protocols. Although
UDP-based protocols often run in user space and may appear as applications, their
mechanisms (like multiplexing or basic reliability) are fundamental and common enough to
be treated as part of transport services.

18.2 INTRODUCTION TO UDP

The Internet protocol suite includes two primary transport layer protocols: one is
connectionless, and the other is connection-oriented. These protocols serve different purposes
and are designed to complement each other. The connectionless protocol is UDP, or User
Datagram Protocol, which offers a minimal and lightweight service by allowing applications
to send IP datagrams without the overhead of establishing and maintaining a connection. On
the other hand, the connection-oriented protocol is TCP, the Transmission Control Protocol,
which provides a comprehensive suite of services such as reliable data delivery, connection
setup and teardown, flow control, congestion control, and ordered delivery. TCP handles all
the complexities involved in reliable communication so that applications do not need to
manage them themselves.

Source port Destination port ‘

UDP length UDP checksum ‘

Figure 18.2 The UDP header

UDP, as described in RFC 768, is designed to be a very simple protocol that allows
applications to send messages, called datagrams, to other hosts without the need for prior
communications to set up special transmission channels or data paths. It transmits segments
composed of an 8-byte header followed by the actual data payload. This header includes the
source and destination port numbers, a length field, and a checksum. The ports are used to
identify specific processes within the source and destination hosts, which allows multiple
applications to use UDP simultaneously without interfering with each other. The ports serve
as demultiplexing points so that when a datagram arrives, the operating system can examine

Computer Networks 18.3 The Transport Protocols TCP and UDP

the destination port number and deliver the data to the appropriate receiving process. This
mechanism is similar to each application having its own mailbox for receiving messages.

The length field in the UDP header specifies the total length of the segment, including the 8-
byte header and the data portion. This length has a minimum value of 8 bytes and a maximum
of 65,515 bytes. The optional checksum provides basic error detection for the segment. It is
calculated over the entire UDP segment, including a pseudoheader that contains information
from the IP layer such as source and destination IP addresses, the protocol number, and the
UDP segment length. This inclusion of the pseudoheader enhances the reliability of detecting
misdelivered packets, although it slightly violates the principle of strict layer separation in
protocol design. The checksum is calculated using one's complement arithmetic, where the
sum of all 16-bit words is complemented. If the result at the receiver is not zero, the packet is
assumed to be corrupted. If no checksum is used, the field is set to zero; however, omitting
the checksum is typically discouraged unless the application is tolerant of data corruption,
such as in some forms of real-time multimedia transmission.

- 32 Bits -

Source address

Destination address

00000000 Protocol = 17 UDP length

Figure 18.2 The IPv4 pseudoheader included in the UDP checksum

Despite the useful addition of ports and an optional checksum, UDP is a very limited protocol
in terms of functionality. It does not include mechanisms for flow control, congestion control,
data ordering, or retransmissions. This means that if a datagram is lost, duplicated, arrives out
of order, or is corrupted, UDP does not correct the problem. These tasks are left entirely up to
the application layer. The absence of these features makes UDP lightweight and efficient,
especially suitable for applications where simplicity, speed, and low overhead are more
critical than guaranteed delivery. This trade-off is especially useful in environments where
some packet loss can be tolerated or quickly corrected at the application level.

UDP is particularly advantageous in client-server applications where only a small exchange
of messages is required. A typical use case involves a client sending a single short request
and receiving a short reply from a server. This kind of communication does not warrant the
overhead of TCP’s connection setup and management. UDP enables such communication to
occur with a minimum number of packets—often just one in each direction. If either packet is
lost, the client can detect the problem via a timeout and simply resend the request. This
simplicity reduces protocol overhead and often improves performance in such scenarios.

A well-known application of UDP is the Domain Name System (DNS), which translates
human-readable domain names into IP addresses. When a client wants to resolve a domain
like www.example.com, it sends a UDP packet containing the domain name to a DNS server.
The server responds with a UDP packet containing the corresponding IP address. This
exchange involves only two messages and avoids the overhead of a TCP connection, making

Centre for Distance Education 18.4 Acharya Nagarjuna University

it fast and efficient. This use of UDP exemplifies its value in quick request-reply protocols,
especially when reliability can be managed by higher-level logic or when minor data loss is
acceptable.

In summary, UDP provides a minimal transport service that offers datagram transmission
with port-based demultiplexing and optional error detection. Its simplicity and low overhead
make it ideal for applications where speed and efficiency matter more than reliability, such as
DNS lookups, real-time multimedia, or simple network services. However, for more
demanding applications that require reliable data transmission, flow control, and congestion
management, the connection-oriented TCP is the preferred choice. The existence of both
UDP and TCP in the Internet protocol suite allows developers to choose the right tool for the
specific needs of their applications.

18.3 REMOTE PROCEDURE CALL

Sending a message to a remote host and receiving a reply is conceptually very similar to
invoking a function or procedure in a programming language, where you supply parameters
and expect a result in return. This similarity has inspired the development of programming
models that treat network communication like procedure calls, abstracting away the
complexities of the underlying transport mechanisms. One significant advantage of this
approach is that it greatly simplifies the development of network applications by hiding the
intricate details of message construction, transmission, and reception from the programmer.
For instance, instead of a developer explicitly crafting a UDP packet to query a DNS server,
they could simply use a function like getIPAddress(hostname), which internally handles the
network communication. If the reply does not arrive quickly enough, the function can
automatically retry, making the entire interaction feel like a typical local function call.

The most influential contribution in this area was made by Birrell and Nelson in 1984. They
proposed a mechanism that allows a process on one machine to call a procedure on another
machine as if it were local. In their model, when a process on one computer invokes a
procedure residing on another computer, the invoking process is temporarily suspended while
the called procedure executes on the remote machine. Data can be transmitted from the client
to the server in the form of parameters, and results are returned in the same fashion. This
mechanism, known as Remote Procedure Call (RPC), hides the details of network
communication from the programmer, providing a clean and intuitive programming model.
Typically, the caller is referred to as the client, while the callee is called the server.

To implement RPC, both the client and server programs are supplemented with additional
components known as stubs. The client stub resides in the client’s address space and acts as a
proxy for the server procedure. It has the same name as the remote procedure and is
responsible for packaging the parameters into a network message—a process known as
marshaling. On the server side, a server stub receives the message, unpacks the parameters
(unmarshaling), and invokes the actual server procedure with the correct arguments.

The flow of an RPC starts when the client program makes a call to the client stub, just as it
would for a local procedure. The client stub then marshals the parameters and makes a system
call to send the request message over the network. The client's operating system handles the
transmission of the message to the server machine. Upon arrival, the server's operating
system passes the message to the server stub, which unmarshals the parameters and calls the
server procedure. The return path follows the reverse sequence, delivering the result back to

Computer Networks 18.5 The Transport Protocols TCP and UDP

the original caller. This entire process is seamless to the programmer, who simply perceives it
as a standard function call.

While RPC presents a very elegant abstraction, it also introduces certain challenges, one of
the most significant being the handling of pointer parameters. In traditional local procedure
calls, pointers can be safely passed because both the caller and callee reside in the same
virtual address space. However, with RPC, the client and server operate in separate address
spaces, often on different physical machines. As a result, pointers become meaningless
outside their originating address space and cannot be directly passed. This limitation requires
developers to avoid pointer-based data structures or to use serialization mechanisms that
convert complex data into a transmittable format.

Client CPU Server CPU
. Client Server.
TN stub stub TN
Client b |server
2 4
Operating system T A Operating system
L 3 y
Metwork

Figure 18.3 Steps in making a remote procedure call. The stubs are shaded.

In conclusion, RPC provides a powerful model for building distributed systems by enabling
developers to write networked code in a style that mimics conventional local programming.
Despite its simplicity and usefulness, it requires careful consideration of data formats and
memory management to ensure correct operation across different systems and environments.

In some situations, clever methods can be employed to make it appear that pointer parameters
can be passed across a network in remote procedure calls. For example, if the first parameter
to a remote procedure is a pointer to an integer, the client stub can marshal the value being
pointed to—say, the integer k—and transmit it to the server. Upon receiving it, the server
stub reconstructs a pointer to this copied value and provides it to the server procedure, which
then behaves as if it had received a legitimate pointer. After the server procedure completes
its execution, any changes it made to k are copied back by the server stub and sent to the
client stub, which overwrites the old value with the new one. This process essentially mimics
call-by-reference behavior by using a call-by-copy-restore mechanism. Although this trick
can successfully simulate pointer passing in simple cases, it does not scale well for complex
data structures. If a pointer refers to a graph or another elaborate memory structure with
dynamic references, this method breaks down, as it becomes extremely difficult to
reconstruct the relationships and content remotely. Consequently, practical implementations
of remote procedure calls must restrict the types of parameters that can be passed, especially
when dealing with pointers.

Centre for Distance Education 18.6 Acharya Nagarjuna University

Another significant challenge arises in languages that are not strongly typed, such as C. In
such languages, it is common to write procedures that take arrays or vectors without
specifying their length, instead relying on conventions such as special terminating values.
These conventions work fine locally but pose serious problems for marshaling data in RPCs
because the stub has no way to determine the actual size of the array. Without a known
boundary or count, the client stub cannot decide how many bytes to send, potentially leading
to incomplete or incorrect data transfers.

A third complication concerns procedures with variable or dynamic parameter types. A
classic example is the printf function in C, which can accept a wide variety of parameter
types and numbers—integers, floats, strings, and more—all based on the format string.
Because of this flexibility, it is nearly impossible to automate the marshaling of parameters
for such functions without knowing their exact types at runtime. This makes them unsuitable
candidates for remote procedure calls unless the language or development environment
imposes strict type constraints. While one could argue for using RPC only with strongly
typed languages to avoid these issues, such a restriction would likely be unpopular, especially
with the large developer base using C and C++.

There is also the problem of global variables. In traditional local function calls, procedures
can communicate indirectly via global variables, which are accessible throughout the
program. But when a function is called remotely on another machine, these global variables
are no longer shared between the client and server, breaking the implicit communication
pathway. This difference in memory scope necessitates avoiding or rethinking the use of
global variables in programs designed to use RPC.

Despite these limitations, RPC remains a practical and powerful paradigm, widely adopted in
distributed systems. The key to its success is in establishing certain constraints and adhering
to disciplined programming practices. For simple and fast client-server interactions,
especially those that fit into a single request-response cycle, UDP is a good transport protocol
to use as a base for RPC. Its lightweight nature and minimal setup requirements allow
requests and replies to be encapsulated in single packets, minimizing latency and overhead.

However, any real-world RPC implementation built on UDP must handle the potential for
message loss. Since neither the request nor the reply is guaranteed to arrive, the client must
be equipped with a timer to trigger retransmissions if no reply is received within a certain
time frame. It is also worth noting that a successful reply acts as an implicit acknowledgment
of the request, which simplifies the protocol. Yet, when requests or responses exceed the
maximum UDP payload size, mechanisms are needed to handle message fragmentation and
reassembly. Furthermore, in systems that support concurrent calls, each request must carry a
unique identifier so that replies can be correctly matched to their originating request,
especially when responses may arrive out of order.

A final and important consideration in RPC design is the nature of the procedure being called.
Some procedures are idempotent, meaning they can be executed multiple times without
adverse effects—for example, looking up a DNS record. These operations are safe to repeat if
a reply is lost, as resending the same request results in the same answer, assuming the data
hasn't changed in the meantime. But not all operations are idempotent. For example, a
procedure that updates a record, increments a counter, or charges a customer account cannot
be executed multiple times without causing inconsistencies or harm. For such operations,
relying on UDP's best-effort delivery is risky. Instead, a more reliable protocol like TCP

Computer Networks 18.7 The Transport Protocols TCP and UDP

should be used, as it ensures that data is delivered exactly once in the correct order, which is
essential for operations with side effects. By using TCP, one can establish a connection,
manage acknowledgements, and ensure that sensitive operations are performed safely and
correctly.

18.4 REAL TIME TRANSPORT PROTOCOLS

Client-server RPC is a well-known area where UDP sees extensive use due to its speed and
low overhead, especially for simple request-reply interactions. Another major domain in
which UDP is widely used is real-time multimedia communication. Applications like Internet
radio, video conferencing, video-on-demand, music streaming, and IP telephony all demand
low latency and timely delivery of data. As these applications evolved, it became clear that
they were all building their own versions of transport mechanisms tailored to real-time data.
To streamline this process and avoid redundancy, a standardized protocol was developed—
RTP (Real-time Transport Protocol), defined in RFC 3550.

RTP is now the de facto protocol used in multimedia applications for handling real-time data
like audio and video streams. It runs in user space over UDP, giving developers flexibility
while leveraging UDP’s minimal transmission delay. In this setup, the multimedia application
handles multiple streams (such as audio and video), which are then passed to the RTP library
in user space. This library takes care of multiplexing the streams, formatting them into RTP
packets, and sending them through the UDP socket to the network layer. The receiver side
performs the reverse process: the RTP library extracts the audio and video streams, and the
application handles the playback.

Although RTP is implemented at the application level, it functions like a transport protocol. It
provides essential transport-like services such as sequencing, timestamping, and payload
identification, all critical for correct media playback. Due to this hybrid nature, RTP is often
described as a transport protocol implemented in the application layer. This design allows it
to remain generic and reusable across various multimedia applications while taking
advantage of UDP’s speed and simplicity.

RTP: The Real-Time Transport Protocol

The main role of the Real-time Transport Protocol (RTP) is to multiplex multiple real-time
data streams into a single stream of UDP packets, which can be delivered either to one
destination (unicasting) or to multiple destinations (multicasting). Since RTP is built on top
of standard UDP, it inherits UDP’s simplicity and lack of reliability. As a result, RTP packets
are treated just like any other UDP packets by the network, without any special quality-of-
service guarantees unless explicitly enabled through IP-layer mechanisms. This means that
RTP packets may suffer from the usual issues of network communication, such as delays,
corruption, and loss, but these conditions are tolerated within the protocol design, especially
considering the nature of multimedia traffic.

To help receivers manage the challenges of real-time multimedia transmission, RTP includes
features that allow for better synchronization and error detection. One of these is the use of
sequence numbers in the RTP header. Each RTP packet is assigned a number that is
incremented by one from the previous packet. This makes it possible for the receiver to detect
if any packets are missing. However, unlike reliable protocols, RTP does not support
retransmissions, as retransmitted packets are often useless for real-time playback. Instead, the

Centre for Distance Education 18.8 Acharya Nagarjuna University

application must decide how to handle losses—by skipping frames in video, or interpolating
audio samples, for example.

RTP also allows the payload of each packet to contain one or more samples, with the format
determined by the application. To support compatibility, RTP defines several profiles, each
of which may allow multiple encoding formats. This means audio data, for instance, could be
encoded using PCM, GSM, MP3, or other codecs. RTP itself doesn’t manage encoding; it
simply provides a way for the sender to indicate which encoding is being used via a header
field.

- 32 hits -
A) O B O
Ver. |P|X cC M Payload type Sequence number
Timestamp

Synchronization source identifier

Figure 18.4 The RTP header

Timestamping is another essential feature provided by RTP, enabling the destination to play
out audio or video streams at the correct time intervals. Each packet includes a timestamp
indicating when the first sample in the packet should be played, relative to the start of the
stream. This allows the receiver to buffer incoming packets and then reproduce the stream
smoothly, even if the packets arrive irregularly. Furthermore, timestamping makes it possible
to synchronize multiple streams, such as audio and video tracks or multiple language audio
streams. If the timestamps are derived from a single common counter, playback can remain in
sync even if the streams take different paths through the network or are received at different
tumes.

The structure of the RTP header supports all these functions. It consists of three 32-bit words
with optional extensions. The first word includes fields like the version number (currently 2),
a padding bit (P), and an extension bit (X). Padding is used when the payload must align to a
multiple of four bytes, and the X bit signals the presence of an additional header extension,
whose format is flexible and meant to accommodate future needs. These design choices
ensure RTP is both robust and extensible for the evolving demands of real-time multimedia
communication.

RTCP: The Real-Time Transfer Control Protocol
RTCP, or the Real-time Transport Control Protocol, is a companion protocol to RTP and is

defined alongside it in RFC 3550. Unlike RTP, which is responsible for transporting actual
media data such as audio or video streams, RTCP serves auxiliary but essential functions like

Computer Networks 18.9 The Transport Protocols TCP and UDP

feedback, synchronization, and user interface support. It does not carry any media samples
itself, but it helps optimize the delivery and quality of those samples.

One of the key roles of RTCP is to provide feedback about the network conditions to the
sources of media. This feedback can include measurements of delay, delay variation (jitter),
available bandwidth, and network congestion. By receiving such continuous updates, the
media source or encoder can dynamically adjust its behavior to match the current network
situation. For instance, if the network bandwidth is high and stable, the sender might switch
to a higher-quality encoding format like MP3. Conversely, during network congestion or
reduced bandwidth, it may fall back to simpler, more compact formats such as 8-bit PCM or
delta encoding. RTP includes a Payload type field to inform receivers of the encoding method
used in each packet, enabling the seamless switch between formats as needed.

However, one complication with feedback in group settings is scalability. In multicast
scenarios with many participants, if each receiver were to send RTCP reports at a fixed rate,
the total control traffic would become excessive. To prevent this, RTCP includes mechanisms
to throttle the rate of reports. The general guideline is to limit RTCP traffic to no more than
about 5% of the total session bandwidth. Each participant adjusts its reporting rate based on
the total estimated number of participants and the overall media bandwidth, which it learns
from the session's sender and other RTCP messages.

RTCP also contributes to synchronizing multiple data streams. This is important because
different media streams—such as audio and video—may be generated by different devices,
using clocks with different granularities and drift characteristics. RTCP helps keep these
streams aligned so that playback remains smooth and coordinated. For instance, in a video
conference, it ensures that the speaker’s voice and facial expressions stay synchronized.

Lastly, RTCP enables sources to be identified using human-readable names, typically in
ASCII text. This identification feature can be useful in user interfaces, for example, to show
the name of the current speaker in a video meeting or to indicate the source of a stream in a
multimedia application.

Altogether, RTCP complements RTP by improving the media delivery experience without
introducing significant overhead, especially in large and dynamic communication
environments.

Playout with Buffer and Jitter Control

Once media data reaches the receiver, it must be played at the correct time to maintain a
smooth and synchronized user experience. However, due to the nature of packet-switched
networks, packets often experience varying amounts of delay during transit, a phenomenon
known as jitter. Even if packets are sent at regular intervals from the sender, they might arrive
at irregular intervals at the receiver. This inconsistency in arrival times can cause issues like
stuttering video or garbled audio if the data is played immediately upon arrival.

Centre for Distance Education 18.10 Acharya Nagarjuna University

Packet departs source EI EI EI EI EI EI

Packet arrives at buffer H El

Time in buffer ig!

Packet remowved from buffer I" — FEl E| E| |E| |E| i
L1 I TR |

=+ Gap in playback
I 1 | L L] A 1 'l A 1 | I. J

0 5 10 15 20
Time (sac)

Figure 18.5 Smoothing the output stream by buffering packets

To overcome jitter, receivers use buffering, where incoming packets are temporarily stored
before being played out. For example, a receiver might start buffering media from the
moment the first packet arrives and delay actual playback by a few seconds. This buffer
absorbs the variation in arrival times and ensures that media can be played at regular
intervals, regardless of minor network delays. A diagram in the text shows packets being sent
and received over time, with playback beginning only after several packets have arrived and
are buffered. This creates a steady stream of data for playback, even if some packets arrive
slightly later than others.

However, excessive delay can still cause problems. For example, if a packet is delayed too
much and does not arrive in time for its scheduled playback, the application must decide
whether to skip it or pause the playback. Skipping is common in real-time applications like
voice or video calls, where waiting would be disruptive. In contrast, media players for
streaming content might pause and resume once the delayed packet arrives. This can be
managed by increasing the buffer size, commonly to about 10 seconds for non-live streaming,
which allows the player to handle most network variations smoothly. In contrast, live
applications need smaller buffers to maintain responsiveness, which makes them more
susceptible to jitter.

Determining the playback point—how long the receiver should wait before starting
playback—is crucial. This decision is based on measuring the amount of jitter. Applications
can compare RTP timestamps with actual arrival times to calculate delay samples. These
values can change over time as network conditions fluctuate, so applications often adapt the
playback point dynamically. However, changes in playback timing must be handled carefully
to avoid glitches or noticeable jumps in playback. For instance, adapting the playback point
between talkspurts in a voice conversation, rather than during speech, can help mask any
transitions from the user.

Computer Networks 18.11 The Transport Protocols TCP and UDP

i L]
k- $
or F
(14} 1]
[=8 [= 8
L] B
c =
L] =
3 g
s High jitter i -
== \=— Low jitter
Minimiinm Delay —= Delay —=
delay
{due to speed of light)
(a) (b)

Figure 18.6 (a) High jitter (b) low jitter

If the overall network delay is too long, particularly for live applications, it negatively
impacts performance. Since the actual propagation delay (based on the physical distance and
speed of signal transmission) is unavoidable, reducing jitter becomes the primary means of
minimizing the total delay. This may involve improving the underlying network quality, such
as by using better Quality of Service (QoS) settings like expedited forwarding in
differentiated services. In such cases, enhancing the network infrastructure is the only viable
long-term solution for minimizing jitter and ensuring timely media playback.

18.5 THE INTERNET TRANSFER PROTOCOLS: TCP

UDP is a simple protocol and it has some very important uses, such as client server
interactions and multimedia, but for most Internet applications, reliable, sequenced delivery is
needed. UDP cannot provide this, so another protocol is re quired. It is called TCP and is the
main workhorse of the Internet. Let us now study it in detail.

TCP, or Transmission Control Protocol, was designed with the goal of providing a reliable,
end-to-end communication service across unreliable and heterogeneous internetworks. Unlike
a single homogeneous network, an internetwork might consist of links and nodes with
drastically varying characteristics in terms of topology, bandwidth, latency, and even the size
of data packets it can handle. Given this variability, TCP was developed to be highly
adaptable and capable of maintaining reliability despite differing and unstable conditions
across the path. It is a protocol specifically engineered to detect, handle, and recover from
various forms of network failure, ensuring data delivery in the correct order without
duplication or loss.

The original definition of TCP was given in RFC 793 back in 1981. Since its introduction, it
has undergone numerous enhancements and refinements to improve functionality, robustness,
and performance. These enhancements have been documented in a series of additional RFCs
(Request for Comments), which together outline the modern TCP standard. These include
clarifications and bug fixes (RFC 1122), improvements for high-speed networks (RFC 1323),
support for selective acknowledgements (RFC 2018), introduction of congestion control
algorithms (RFC 2581), repurposing TCP header fields for quality of service (RFC 2873),
improved handling of retransmission timers (RFC 2988), and support for explicit congestion

Centre for Distance Education 18.12 Acharya Nagarjuna University

notification (RFC 3168). Because of the large number of updates and related documents, a
guide to TCP's many RFCs was created in the form of yet another RFC—RFC 4614.

Every computer that supports TCP includes a TCP transport entity. This component might
exist as a library function, a user-space process, or more commonly, a part of the operating
system’s kernel. The TCP entity is responsible for managing TCP connections, interfacing
with the IP layer, and providing reliable delivery of data to applications. When a user
application passes data to TCP, the transport entity splits this data stream into manageable
segments—typically around 1460 bytes to fit within a single Ethernet frame—and then
encapsulates each segment in a TCP header before handing it over to the IP layer for delivery
as an individual IP datagram.

Upon receiving incoming datagrams from the network, the TCP entity at the destination
machine reassembles them into the original byte stream in the correct order, even if some
packets arrive out of sequence. This is necessary because the underlying IP layer offers no
guarantees of delivery, order, or duplication control. IP does not manage congestion either,
and it has no built-in mechanism to notify higher layers when datagrams are lost. All of this
responsibility falls to TCP, which implements features like timeouts, retransmissions,
sequencing, acknowledgement, and congestion control.

As a result, TCP delivers the reliable, ordered, and congestion-aware service that is required
by most networked applications, compensating for the deficiencies of IP. It is this reliability
and adaptive nature that has made TCP the backbone of many crucial Internet services such
as web browsing, email, and file transfers.

18.6 THE TCP SERVICE MODEL

To make use of TCP services, both the sender and receiver must create endpoints known as
sockets. A socket is defined by a combination of an IP address and a 16-bit port number that
1s unique to the host. In essence, this socket acts as the address at which a process can send or
receive data. The communication between two machines using TCP requires an explicit
connection to be established between a socket on the source machine and a socket on the
destination machine. These sockets act as the communication interface, and the connection is
uniquely identified by the combination of both sockets' identifiers—specifically, the pair
(socketl, socket2). No additional identifiers such as virtual circuit numbers are needed to
distinguish connections.

Interestingly, a single socket can handle multiple connections simultaneously. This is
possible because TCP distinguishes connections not just by the local socket, but by the entire
socket pair—meaning it includes both local and remote IP addresses and ports. This ability
allows servers to manage numerous concurrent sessions with different clients, even if all the
sessions connect to the same port on the server.

Computer Networks 18.13 The Transport Protocols TCP and UDP

. Port Protocol Use
20,21 | FTP File transfer
22 | S5H | Remote login, replacement for Telnet

25 | SMTP Email

80 | HTTP | World Wide Web

110 POP-3 Remote email access

143 | IMAP Remote email access

443 | HTTPS Secure Web (HTTP over SSLTLS)
543 _ RTSP _ Media player control

631 | IPP Printer sharing

Figure 18.7 Some assigned ports

TCP uses port numbers to identify different services on a host. Ports numbered below 1024
are known as well-known ports and are reserved for standard services such as web browsing,
email, file transfer, and remote login. These services include ports like 20 and 21 for FTP, 22
for SSH, 25 for SMTP, 80 for HTTP, and 443 for HTTPS. Since these ports are typically
associated with critical services, they are usually only accessible by privileged users (such as
the root user in UNIX systems). The Internet Assigned Numbers Authority (IANA) maintains
the registry of these well-known ports, and hundreds have been officially designated.

For services or applications developed by non-privileged users, ports in the range of 1024 to
49151 can be used. Some applications may choose their ports independently of TANA
registration; for instance, BitTorrent commonly uses ports 6881-6887, though it may operate
on others as well.

Instead of having every service-specific daemon running and listening on its designated port
at all times—which would consume unnecessary memory and CPU resources—UNIX
systems often employ a centralized service called inetd (Internet daemon). This daemon
listens on multiple ports simultaneously. When a connection request is received on one of the
ports, inetd forks a new process and launches the appropriate daemon (such as the FTP or
SSH daemon) to handle the request. This method keeps the system resource-efficient by
activating specific daemons only when necessary. The configuration of inetd is typically
controlled via a configuration file where system administrators define which ports inetd
should monitor.

TCP connections are full duplex, meaning that data can flow in both directions
simultaneously. Furthermore, TCP connections are point-to-point, involving exactly two
endpoints. Unlike UDP, TCP does not support multicasting or broadcasting, so it is limited to
unicast communication, which fits its purpose of reliable, end-to-end, connection-oriented
data transfer.

A notable characteristic of TCP is that it operates as a byte stream rather than a message
stream. This means that when an application writes data into a TCP connection, the boundary
of each message or write operation is not preserved by TCP. For example, if a sender writes
four separate chunks of 512 bytes each, TCP might deliver them to the receiver as four 512-
byte chunks, two 1024-byte chunks, or even one 2048-byte chunk. The receiving process
cannot detect how the data was originally divided by the sender. The data is treated as a

Centre for Distance Education 18.14 Acharya Nagarjuna University

continuous sequence of bytes, much like reading from a UNIX file, where there's no inherent
way to know how the data was originally written.

TCP header

N/

IP header

Py
=]

/C‘ ‘AD A B CD

(a) (b)

Figure 18.8 (a) Four 512-byte segments sent as separate IP datagrams. (b) The 2048 byts
of data delivered to the application in a single READ call.

TCP has no understanding of the content of the byte stream—it doesn’t care whether the
bytes represent text, numbers, or anything else. Its only concern is to ensure the reliable,
ordered delivery of the byte stream from the sender to the receiver. This abstraction
simplifies the protocol and provides flexibility, but also shifts the responsibility of message
parsing to the application layer.

When data is passed from the application to TCP, TCP has discretion over when to actually
send the data. It might send it immediately or buffer it to accumulate a larger segment, aiming
for efficiency in network usage. However, there are cases where applications require data to
be sent instantly—such as real-time games or interactive applications—where delays can
disrupt the user experience. For such needs, TCP introduced the PUSH flag, which was
originally designed to prompt TCP to send data without delay. In practice, applications
cannot directly set this flag. Instead, modern operating systems offer options like
TCP_NODELAY to disable TCP's Nagle algorithm and force immediate transmission of
small packets.

TCP also includes a lesser-known and rarely used feature called urgent data. This mechanism
allows an application to mark certain bytes as urgent (such as a CTRL-C key press to
interrupt a remote operation) using the URGENT flag. When urgent data is sent, TCP halts
buffering and transmits all accumulated data immediately. Upon arrival, the receiving side is
notified—typically via an interrupt or signal—so it can handle the urgent data promptly. The
end of the urgent data is marked in the stream, but the beginning is not, requiring the
application to locate it on its own.

Despite its design, urgent data never gained widespread use due to inconsistencies across
implementations and the lack of strong use cases. As a result, its usage is now generally
discouraged. Developers are instead encouraged to implement application-level signaling
when urgent or control information needs to be transmitted out-of-band. Future transport
protocols may offer more robust and consistent mechanisms for signaling and control.

18.7 THE TCP PROTOCOL

TCP is fundamentally designed around the concept of reliable data delivery, and at the heart
of this reliability lies the use of 32-bit sequence numbers assigned to each byte transmitted
over a TCP connection. This approach ensures that every byte can be tracked individually as
it moves through the network. Originally, when the Internet's backbone links operated at just
56 kbps, it would take more than a week for a sender to exhaust the sequence number space
at full speed. However, with the massive increase in data rates on modern networks, sequence

Computer Networks 18.15 The Transport Protocols TCP and UDP

numbers can now be consumed extremely rapidly, making their management even more
critical.

Data is transmitted in segments, with each TCP segment consisting of a 20-byte header and
an optional data field that may include zero or more bytes of payload. The size of these
segments is determined by the TCP software, which may choose to collect several writes
from the application into one segment or split a single large write across multiple segments.
However, segment sizes are subject to two major constraints: they must fit within the 65,515-
byte IP payload limit and within the MTU of the network path. The MTU—Maximum
Transmission Unit—is typically 1500 bytes on Ethernet networks, and this effectively limits
how large a TCP segment can be without risking fragmentation.

Fragmentation is highly undesirable in TCP, as it degrades performance and introduces
complexity. To avoid it, modern TCP implementations utilize path MTU discovery, a
technique that relies on ICMP error messages to identify the smallest MTU along the
transmission path. Once this value is known, TCP adjusts its segment size accordingly,
thereby ensuring that all segments fit through the smallest link on the route without being
broken apart.

The underlying mechanism TCP uses for flow control and reliability is a sliding window
protocol with a variable window size. When a segment is sent, the sender sets a timer and
waits for an acknowledgement from the receiver. This acknowledgement includes the
sequence number of the next expected byte and information about the remaining window
size. If the sender does not receive an acknowledgement before the timer expires, it
retransmits the segment.

Managing TCP transmissions becomes complex because segments can arrive out of order or
be delayed in transit. For example, a segment carrying bytes 3072—4095 might arrive before
the segment carrying bytes 2048-3071. In such cases, TCP cannot acknowledge the received
data until the missing earlier bytes arrive. Delays can also result in unnecessary
retransmissions, possibly with slightly different byte ranges. The uniqueness of each byte’s
sequence number allows TCP to handle these situations gracefully, but it requires meticulous
bookkeeping to ensure data integrity and to avoid duplicate processing.

Considerable engineering effort has gone into making TCP robust and high-performing, even
under challenging network conditions. Numerous refinements and algorithms have been
incorporated into modern TCP implementations to address these real-world issues, many of
which are built upon the basic principles discussed here.

18.8 THE TCP SEGMENT HEADER

Every TCP segment begins with a fixed-format 20-byte header that contains crucial
information necessary for reliable communication between sender and receiver. Following
this fixed header, additional header options may be included, and then the actual data, if any,
is appended. The total size of a TCP segment is limited to a maximum of 65,535 bytes, out of
which 20 bytes are reserved for the IP header and another 20 for the fixed TCP header,
leaving up to 65,495 bytes for the payload.

Centre for Distance Education 18.16 Acharya Nagarjuna University

At the beginning of the header are two 16-bit fields identifying the source and destination
ports. These ports represent the endpoints of the connection, where a port number combined
with the host’s IP address uniquely defines a connection endpoint. Together, the source and
destination IP addresses and ports, along with the protocol identifier (TCP), form a 5-tuple
that uniquely identifies a TCP connection.

- 32 Bits -

Source port Destination port

Sequence number

Acknowledgemeant number

TCP CIE|UlA|P|R|S|F
header WICIR|C|S|S|Y| I Window size
length RIEIGIK|H[T|N[N
Checksum Urgent pointer
= Options (0 or more 32-bit words) =

= Data (optional) Py

L T

Figure 18.9 The TCP header

The next two fields are the 32-bit sequence number and acknowledgement number. The
sequence number represents the byte number of the first byte in the segment’s data payload.
Every byte transmitted over a TCP connection is numbered individually, which enables
precise tracking and reliable data transfer. The acknowledgement number indicates the next
expected byte from the sender, thus serving as a cumulative acknowledgement. If this field is
set, it confirms the successful receipt of all prior bytes in sequence.

The header length field, expressed in 32-bit words, tells where the actual data starts within
the segment. This is necessary because the options field is of variable length, so the overall
TCP header size is not fixed beyond the initial 20 bytes. There are four reserved bits
immediately following the header length field, which have largely remained unused for over
three decades, showcasing the robustness and foresight in the original TCP design.

Following the reserved bits are eight 1-bit flags that control various aspects of TCP operation.
These include the CWR (Congestion Window Reduced) and ECE (ECN Echo) flags, which
are used in Explicit Congestion Notification. The ECE flag informs the sender that
congestion has been detected, prompting it to reduce its sending rate, while the CWR flag
tells the receiver that the sender has done so. The URG flag indicates that the urgent pointer
field is being used to mark urgent data within the segment. However, this mechanism is
rarely used in practice due to implementation differences.

The ACK flag, which is set in most TCP segments, signals that the acknowledgement number
field is valid. The PSH (push) flag requests that the receiver immediately pass the data to the
application without waiting for the buffer to fill up. The RST (reset) flag is used to abruptly

Computer Networks 18.17 The Transport Protocols TCP and UDP

terminate a connection, often in response to errors or invalid segment receipt. SYN is used to
initiate a connection, typically sent with ACK set to 0 in the initial request and then with
ACK set to 1 in the corresponding reply. Lastly, the FIN flag indicates that the sender has
finished sending data and wishes to gracefully close the connection.

TCP implements flow control through a variable-size sliding window mechanism. The
window size field in the header specifies how many bytes beyond the acknowledged byte the
sender is allowed to transmit. A window size of zero is valid and tells the sender to stop
sending data until further notice, providing a mechanism for the receiver to manage its buffer.
This decoupling of acknowledgement and flow control, unlike in earlier protocols with fixed
window sizes, allows for more flexibility and efficiency in managing data streams.

The checksum field provides error detection by verifying the integrity of the TCP segment. It
includes not just the header and data but also a pseudoheader derived from IP fields like
source and destination addresses. This ensures that accidental corruption during transmission
can be detected.

The urgent pointer field, only relevant when the URG flag is set, indicates the byte offset of
the last urgent byte in the data stream. While originally intended to support interrupt-style
communication, its use has declined due to its limited utility and inconsistent
implementations.

Finally, the options field offers a way to extend TCP functionality. Many useful features,
such as Maximum Segment Size (MSS), window scaling, and timestamping, are implemented
using this field. These options vary in length and follow a Type-Length-Value format.
Together, these header fields make TCP a highly reliable, flexible, and efficient protocol for
managing end-to-end communication in an internetworked environment.

A number of TCP options have been introduced to enhance performance and efficiency,
especially on modern high-speed networks. One commonly used option is the Maximum
Segment Size (MSS) option. This allows each host to specify the largest segment of data
(excluding the header) it can accept. Larger segments are more efficient because they reduce
header overhead, but smaller or resource-limited devices might require smaller segments. If
MSS is not explicitly specified during connection setup, it defaults to 536 bytes of data.
However, all TCP/IP hosts must accept at least 556-byte segments (including the TCP
header).

Another useful option is window scaling, which addresses the limitation of TCP’s 16-bit
window size field. A 16-bit field can represent up to 65,535 bytes, which is too small for
high-bandwidth or long-delay networks. For example, on a fast optical link with a large
round-trip time, the sender would spend most of its time waiting for acknowledgements
unless the window size is increased. The window scale option allows the window size to be
expanded up to 2302"{30} bytes by shifting the window value left by up to 14 bits. This
negotiation happens during the connection setup phase.

The timestamp option adds a timestamp to each segment and echoes it back in
acknowledgements. This helps measure the round-trip time more accurately and detect lost
packets. It also assists with sequence number wrapping in high-speed environments, using a
method called PAWS (Protection Against Wrapped Sequence numbers) to reject old,
potentially duplicated packets.

Centre for Distance Education 18.18 Acharya Nagarjuna University

Finally, Selective Acknowledgement (SACK) improves TCP’s reliability and efficiency
when packet loss occurs. Normally, TCP’s acknowledgement only tells the sender which data
was received in order. SACK goes further by allowing the receiver to inform the sender of
exactly which blocks of data have arrived, even if they’re out of order. This lets the sender
retransmit only the missing parts, not everything after a lost packet, which saves bandwidth
and improves performance. SACK is now widely implemented in modern TCP stacks.

18.9 TCP CONNECTION ESTABLISHMENT

TCP establishes connections using a process known as the three-way handshake. In this
process, one machine (often the server) waits passively for incoming connections by invoking
the LISTEN and ACCEPT primitives. It may be open to connections from any client or be
configured to accept only from a specific address. On the other hand, the client actively
initiates a connection using the CONNECT primitive. This primitive specifies the
destination's IP address and port number, the maximum segment size the client can accept,
and may include some optional data, such as a password or login credentials. As part of this
process, the client sends a TCP segment with the SYN (synchronize) flag set and waits for a
response.

Host 1 Host 2 Host 1 Host 2
s
—SYN(SEQ=y) —SYN(sEQ-)
T R
gYN (SEQ=X—
.-'_'_'_'_'_‘_'_
E aok=xr
il eYN(SEQ =Y T—
~ e
)
(SEQ =«
RO LACKy)

[a) {b)

Figure 18.10 (a) TCP connection establishment in the normal case (b) Simultaneous
connection establishment on both sides

When the SYN segment arrives at the server, the TCP entity checks if there is a process
listening on the specified port. If no such listener exists, the server responds with a segment
containing the RST (reset) flag to reject the connection attempt. If a listening process is
found, the server may accept the connection, in which case it responds with a segment
containing both the SYN and ACK (acknowledgement) flags set. This segment acknowledges
the client’s initial SYN and initiates its own SYN request to the client. The client then
completes the handshake by sending a final segment with the ACK flag set, acknowledging
the server’s SYN. At this point, the connection is fully established. It’s important to note that
even the SYN segments use up one byte in the sequence number space to ensure proper
sequencing and acknowledgement.

In rare scenarios, both hosts may try to initiate a connection with each other simultaneously
using the same port numbers. In this case, each sends a SYN segment, and both respond with
SYN-ACKSs. The result is a single, shared connection, because TCP connections are uniquely

Computer Networks 18.19 The Transport Protocols TCP and UDP

identified by a 5-tuple that includes the protocol (TCP), source IP and port, and destination IP
and port.

The selection of the initial sequence number (ISN) is critical. Rather than using a fixed value
like 0, TCP employs a mechanism where the ISN is derived from a clock that ticks every few
microseconds. This approach helps prevent issues caused by delayed duplicate packets from
old connections that could otherwise interfere with new ones.

However, this handshake mechanism can be exploited in what is known as a SYN flood
attack. In such an attack, a malicious client sends many SYN segments to a server without
completing the handshake. The server, trying to be helpful, allocates resources for each
partial connection and waits for the final ACK, which never arrives. This can exhaust the
server’s resources, preventing it from handling legitimate connections. To mitigate this threat,
TCP can use SYN cookies. With SYN cookies, the server encodes the initial sequence
number using a cryptographic function that incorporates the client's IP, port number, and a
secret key. The server does not store any state. When the client responds with an ACK, the
server recalculates the expected sequence number using the same function to verify the
response. If it matches, the connection proceeds. This technique allows the server to verify
and establish connections without allocating memory until it is sure the client is legitimate,
although it may not support all TCP options during such verification.

18.10 TCP CONNECTION RELEASE

Although TCP connections operate in full duplex mode—meaning that data can flow
simultaneously in both directions—it is helpful to conceptualize them as two independent
simplex connections (one for each direction) when examining how connections are
terminated. Either side of the connection can initiate the closure by sending a TCP segment
with the FIN (finish) flag set, which indicates that it has no more data to send. Once the
receiving end acknowledges this FIN segment, that direction of the data flow is considered
closed. However, the opposite direction remains open and data can continue to flow until it
too is explicitly closed with a FIN.

Typically, closing a TCP connection involves four segments: the initiating side sends a FIN,
the other side acknowledges it with an ACK, then sends its own FIN, which is subsequently
acknowledged. This four-step process ensures a graceful shutdown where both parties
confirm that all pending data has been transmitted and acknowledged. However, in some
cases, the ACK of the first FIN and the second FIN itself can be combined into a single TCP
segment, reducing the total number of packets exchanged during closure to three.

There are also scenarios where both sides send their FIN segments at the same time, similar
to both parties in a phone conversation saying “goodbye” simultaneously. These FINs are
independently acknowledged, and the connection is closed just as effectively. This
simultaneous release is handled gracefully by TCP and is not fundamentally different from
the sequential release.

To guard against issues like the two-army problem—where both sides wait indefinitely for
final confirmation—TCP employs timers. If no response is received for a FIN within twice
the maximum expected packet lifetime, the sender assumes the connection is no longer active
and proceeds to release it. Eventually, the other side will also detect the silence, time out, and
close its end. While not foolproof (since theoretical perfection is impossible), this pragmatic

Centre for Distance Education 18.20 Acharya Nagarjuna University

solution works reliably in practice and rarely causes problems in real-world network
communication.

18.11 TCP CONNECTION MANAGEMENT MODELLING

In TCP (Transmission Control Protocol), managing a connection between two hosts involves
a precise sequence of events that ensure reliable and ordered communication. This entire
process is represented by a finite state machine (FSM), where each TCP connection is
associated with a particular state that evolves based on the events occurring at each end. The
FSM consists of 11 distinct states, each representing a step in the connection's life cycle.

At the beginning, every TCP connection starts in the CLOSED state. This means that there is
no active or pending connection. A connection can move out of this state in one of two ways,
depending on whether the host is acting as a client or a server.

If the host is a server, it performs a passive open operation by executing the LISTEN system
call. This transition changes the state from CLOSED to LISTEN. At this point, the server is
waiting for incoming connection requests on a specific port.

State | Description
CLOSED | Mo connection is active or pending
LISTEN The server is waiting for an incoming call
SYN RCVD | A connection request has arrived; wait for ACK
SYN SENT | The application has started to open a connection |
ESTABLISHED | The normal data transfer state
FIN WAIT 1 + The application has said it is finished
FIN WAIT 2 | The other side has agreed to release
TIME WAIT | Wait for all packets to die off
CLOSING | Both sides have tried to close simultaneously
CLOSE WAIT The other side has initiated a release
LAST ACK | Wait for all packets to die off

Figure 18.11 The states used in the TCP connection management finite state machine

On the other hand, a client wishing to initiate a connection performs an active open by calling
CONNECT, specifying the destination’s IP address and port number. This causes the client’s
TCP state to move from CLOSED to SYN SENT, and it sends a SYN (synchronize) segment
to the server. This is step one of the three-way handshake, which is the standard mechanism
TCP uses to establish a connection.

When the server receives this SYN segment, if it is listening on the requested port, it sends
back a SYN + ACK segment (step two of the handshake) and transitions to the SYN RCVD
state. The client, upon receiving the SYN + ACK, replies with an ACK (step three),
completing the handshake. The client’s state then transitions to ESTABLISHED, and so does
the server’s, after it receives the final ACK. At this point, the connection is fully established
and data transfer can begin. This entire handshake process ensures both parties agree to the
connection parameters, including sequence numbers and optional settings.

Computer Networks 18.21 The Transport Protocols TCP and UDP

Once in the ESTABLISHED state, both ends can send and receive data freely. TCP ensures
reliability through acknowledgements, retransmissions, and proper sequencing of data using
the sequence number and acknowledgement fields in the TCP header.

Eventually, one of the hosts decides to terminate the connection. Let’s say the client wants to
close the connection. It does so by calling the CLOSE primitive. This sends a FIN (finish)
segment to the server and transitions the client to the FIN WAIT 1 state. The FIN segment
indicates that the sender has finished sending data but is still willing to receive data.

(Start)
CONNECT/SYN (Step 1 of the 3-way handshake)
CLOSED ™
L{*L— CLOSE/- N
LISTEN/- } | CLOSE/-
L

SYN/SYN + ACK
(Step 2 .;"-:':f the 3-way handshake) LISTEN
1

i RST/- } k END/SYM
SYM S s s - SYN
RGVD SYMN/ISYM + ACK (simultaneous open) ENT

- s
L}
]
L}
i (Data transfer state)
N ACK/~ SYN + ACK/ACK _/
""""""""" =| ESTABLISHED (Step 3 of the 3-way handshake)
CLOSE/FIM E
CLOSEFIN L FINJACK
((Active close) {Passiv.r;‘v-. close)
""""" D -
FiN FINACK i i CL‘;SE i
WAIT 1 CLOSING : WAIT :
i ! H i
ACK/- ACK/- E | | CLOSE/FIN!
] i
: : t :
FIN + ACK/ACK ! - | '
FIN TIME ! ! ':gg :
walT 2 FINJACK WAIT i i : i
__ ; SR I
(Timeout/) '
i
ACK/- /
CLOSED |w=mmmmmmmmcmmmmmmmmmes ’

(Go back to start)

Figure 18.12 TCP connection management finite state machine. The heavy solid line is the
normal path for a client. The heavy dashed line is the normal path for a server. The light
lines are unusual events. Each transition is labelled with the event causing it and the
action resulting from it, separated by a slash.

When the server receives this FIN, it sends back an ACK and moves to the CLOSE WAIT
state. The client, having received this ACK, now moves to FIN WAIT 2, meaning it has
finished sending and is waiting for the server to finish as well. The server, once it’s ready,

Centre for Distance Education 18.22 Acharya Nagarjuna University

calls its own CLOSE and sends a FIN back to the client. This causes the server to enter the
LAST ACK state, where it waits for an acknowledgement of its FIN.

When the client receives this second FIN, it responds with an ACK and enters the TIME
WAIT state. This is a crucial step: the TIME WAIT state ensures that any delayed or
duplicate packets from the connection are allowed to expire in the network before the
connection is considered truly closed. The client remains in this state for twice the maximum
packet lifetime (2 MSL) before finally transitioning to the CLOSED state and deleting the
connection record. The server, upon receiving the final ACK, also moves to CLOSED and
clears the connection.

There are special cases TCP must handle. One such situation is simultaneous connection
establishment, where both sides attempt to connect to each other at the same time using the
same sockets. Both ends send SYNs simultaneously and receive SYNs from each other. TCP
handles this by creating a single connection identified by the same 5-tuple (protocol, source
IP, source port, destination IP, destination port). This ensures that no duplicate connections
are created.

Another special case is simultaneous close, where both hosts attempt to close the connection
at the same time. Both send FINs, which are acknowledged normally, and the connection is
closed properly. TCP is designed to handle such symmetrical behavior robustly.

TCP also uses timers to handle scenarios where segments might be lost. For instance, if a FIN
segment does not receive an ACK within a certain timeout period (twice the maximum packet
lifetime), TCP assumes the other end has died or the segment is lost and proceeds to close the
connection anyway. This use of timers addresses the two-army problem, where perfect
reliability in connection termination is theoretically impossible.

To protect against denial-of-service attacks like the SYN flood—where attackers send large
numbers of SYN segments without completing the handshake—TCP can employ SYN
cookies. This mechanism allows the server to respond to a SYN without committing
resources, by encoding state information in the sequence number and verifying it only if the
handshake completes. While this makes it difficult to support TCP options (which are not
remembered in this approach), it allows a server to continue functioning under attack.

In summary, the TCP finite state machine provides a precise and reliable mechanism to
manage the entire life cycle of a connection—from establishment to data transfer and finally
to safe termination. Each transition is governed by specific events and responses, with built-
in protection against network failures, attacks, and errors. This model has made TCP one of
the most robust and enduring protocols in networking.

18.12 TCP SLIDING WINDOW

TCP’s window management mechanism plays a crucial role in regulating the flow of data
between a sender and receiver. It decouples two important concerns: confirming the correct
receipt of segments through acknowledgements and managing the availability of the
receiver's buffer. For instance, suppose a receiver has a 4096-byte buffer. If it receives a
2048-byte segment correctly, it will acknowledge that segment but advertise a window size of
only 2048 bytes, which reflects the remaining space in the buffer. This ensures the sender
does not overwhelm the receiver.

Computer Networks 18.23 The Transport Protocols TCP and UDP

Sender Heceiver Hecevers
Application | buffar
i?‘?:aE-KB—- a 4 KE
—
—
LS
EQ=F
—
T el
» — |ACK= 2048 WiN =2088}———
Application
does a 2-KB ———=
write B QHE[_ “SEG = 2045
- o
d—f'- 1
Sander iz ~ ____ﬂ" Application
4 __'_,__,—'—"_Qgﬁ WHN o R — -
blocked MCW — reads 2 KB
- - mw‘ﬂ
[ROR=40= [Tzxe)
Sendar may -
sond up to 2-KB —=
—
{1 kBT ==
—~ T —
4

Figure 18.13 Window management in TCP

As data continues to be sent and acknowledged, the receiver updates the advertised window.
Once the receiver’s buffer becomes full—say, after another 2048-byte segment—the window
size drops to zero, and the sender must pause. The sender cannot resume transmission until
the receiver's application reads data from the buffer, creating free space. This pause is crucial
to preventing data loss. To avoid deadlocks when a zero-window condition exists, TCP
allows two exceptions: sending urgent data and sending a 1-byte window probe segment to
force the receiver to resend the window size. This ensures communication continues even if a
window update is lost.

To improve efficiency, TCP implementations are not obligated to send data or
acknowledgements immediately. For example, a sender may choose to wait until enough data
has accumulated to fill a large segment, rather than sending small ones. Similarly, a receiver
might delay sending acknowledgements for up to 500 milliseconds in hopes of piggybacking
them on a segment carrying data in the opposite direction. This optimization is known as
delayed acknowledgement, and it helps reduce overhead, especially in interactive
applications like SSH or Telnet where data is typically sent a byte at a time. Without
optimization, typing a single character could trigger four separate packets totaling 162
bytes—a huge inefficiency for just 1 byte of useful data.

To further reduce overhead caused by many small packets, Nagle’s algorithm is used. It
ensures that when data comes in byte-by-byte, the sender transmits the first byte immediately
and then buffers any subsequent bytes until the first one is acknowledged. This drastically
cuts down the number of small segments and improves bandwidth utilization. However,
Nagle’s algorithm may introduce latency in real-time or interactive applications like online
games, where rapid communication is essential. In such cases, Nagle’s algorithm can be

Centre for Distance Education 18.24 Acharya Nagarjuna University

turned off using the TCP_NODELAY option. Still, care must be taken because Nagle’s
algorithm can interact negatively with delayed acknowledgements, causing temporary

deadlocks.
()
Receiver's buffer is full |
|
Application reads 1 byte
| |=—— Room for one more byte |
|
_@ Window update segment sent
. New byte arrives
/ l
1Bye Receiver's buffer is full]
N y

Figure 18.14 Silly window syndrome

A related issue is the silly window syndrome, where the receiver’s application reads only a
tiny amount of data at a time, say 1 byte. As soon as a byte is read from the full buffer, the
receiver sends a window update indicating that it can accept just 1 byte, prompting the sender
to transmit another single byte. This cycle can repeat indefinitely, causing an inefficient
trickle of tiny segments. To mitigate this, Clark’s solution suggests that receivers should not
send window updates unless they can accept a sizable amount of data—typically half the
buffer size or one maximum segment size. Senders, in turn, should refrain from sending data
until they can transmit either a full segment or at least one that fills half of the receiver’s
buffer.

Together, Nagle’s algorithm (for the sender) and Clark’s solution (for the receiver)
complement each other, tackling inefficiencies from both ends. The sender avoids flooding
the network with small packets, while the receiver avoids requesting tiny segments
unnecessarily. These measures ensure efficient use of bandwidth and reduce overhead,
especially on networks with limited capacity.

Furthermore, the receiver may implement its own data buffering strategies. Instead of
handing off data immediately to the application, it can accumulate a larger chunk before
doing so. This reduces the number of READ system calls and processing overhead, especially
in applications like file transfers, where throughput is more important than latency. For
interactive applications, however, responsiveness is prioritized over efficiency.

Lastly, TCP must also deal with out-of-order segment arrival. If segments 0, 1, 2, 4, 5, 6, and
7 arrive, the receiver can only acknowledge data up to segment 2, because cumulative
acknowledgements require all prior data to be present. Segments 4—7 are buffered but not
acknowledged until segment 3 arrives. This approach prevents gaps in the data stream passed
to the application and avoids unnecessary retransmissions while ensuring correctness.

Computer Networks 18.25 The Transport Protocols TCP and UDP

Altogether, TCP’s window management, acknowledgement strategies, congestion controls,
and optimization techniques are designed to balance efficiency, reliability, and
responsiveness. These features allow TCP to perform well across a wide range of network
types and usage scenarios.

18.13 TCP TIMER MANAGEMENT

TCP employs a sophisticated system of timers to ensure reliable data transmission over
unpredictable and variable networks like the Internet. The most critical of these is the
Retransmission TimeOut (RTO) timer. When a segment is transmitted, TCP starts a timer to
track how long it takes for an acknowledgment to return. If the acknowledgment arrives
before the timer expires, the timer is stopped. However, if it doesn’t arrive in time, TCP
assumes the segment was lost and retransmits it, restarting the timer. The main challenge lies
in deciding the appropriate timeout interval. If the timeout is too short, TCP might retransmit
segments unnecessarily, leading to increased network congestion. On the other hand, if the
timeout is too long, the connection’s performance can degrade due to the delay in
retransmissions.

This problem is more complex at the transport layer than at the data link layer, like in 802.11
protocols. At the data link layer, delays are generally short and predictable, so timers can be
set just slightly above the expected round-trip time. In contrast, TCP experiences much
higher and more variable round-trip times. Delays can change rapidly due to varying levels of
congestion, making it difficult to determine a fixed timeout. Therefore, TCP adopts a
dynamic algorithm to adapt the timeout interval based on ongoing network performance.

0.3 T 03 L Ta
" | |
| | [
| I [
| 1 [
I I [
0.2 | 02 | :
=] = | [
= l = : :
.3 | E | [
=]] o 1 [
o | o 1 [
0.1 ! 0.1 - :
i 1 I
| 1 [
| | 1
| 1 [
) k.: /\ |
| | [

0 |]] 1 0]] 1 1 |

0 10 20 30 40 50 0 10 20 30 40 50
Round-trip time (microseconds) Round-trip time (milliseconds)

ia) (b)

Figure 18.15 (a) Probability density of acknowledgment arrival times in the data link
layer. (b) Probability density of acknowledgement arrival times for TCP

The algorithm TCP uses was developed by Jacobson and relies on measuring and updating
the Smoothed Round-Trip Time (SRTT). Each time an acknowledgment is received, TCP
measures the round-trip time (R) and updates SRTT using an exponentially weighted moving
average (EWMA) formula:

Centre for Distance Education 18.26 Acharya Nagarjuna University

SRTT =a x SRTT + (1 —a) xR,
where a is typically set to 7/8. This approach smooths out short-term fluctuations in delay,
providing a stable average over time. But since the round-trip time may vary widely,
Jacobson’s method also tracks the Round-Trip Time Variation (RTTVAR) using another
EWMA:

RTTVAR =B x RTTVAR + (1 —B) X |SRTT —R|,
where f is typically 3/4. TCP then sets the timeout value as:

RTO =SRTT +4 x RTTVAR.

This formula accounts not only for the average delay but also for its variability, reducing the
risk of premature or delayed retransmissions.

One practical issue is distinguishing whether an acknowledgment corresponds to the original
transmission or a retransmission. If TCP uses that acknowledgment to update SRTT
incorrectly, it can corrupt future timeout estimates. To handle this, Karn’s algorithm proposes
ignoring round-trip samples from retransmitted segments. Instead, the timeout value is
exponentially backed off (usually doubled) with each retransmission until an
acknowledgment comes back from a non-retransmitted segment. This approach avoids
contaminating the timing data and adjusts more cautiously in uncertain situations.

TCP uses several other timers for robust connection management. One of them is the
persistence timer, which helps resolve deadlock situations when the receiver’s advertised
window size drops to zero. If the receiver later increases the window size but the window
update is lost, both sender and receiver might wait indefinitely. To break this deadlock, the
sender uses the persistence timer to periodically send a window probe to the receiver. If the
receiver replies with a nonzero window size, the sender resumes data transmission; otherwise,
the timer is reset to try again later.

Another useful mechanism is the keepalive timer, which checks whether an idle connection is
still active. If a connection remains silent for too long, the timer triggers the sending of a
keepalive probe. If the peer doesn’t respond after a few retries, TCP assumes the connection
is broken and terminates it. This feature helps identify half-open connections (e.g., due to
crashed hosts or severed links), though it's considered controversial because it consumes
extra resources and may terminate functioning connections during temporary network issues.
Finally, TCP employs a TIME-WAIT timer during connection termination. After both sides
have agreed to close the connection, TCP keeps the connection state alive for twice the
maximum segment lifetime (typically about 2 minutes). This precaution ensures that any
delayed packets still circulating in the network won’t accidentally interfere with new
connections that might reuse the same port numbers and IP addresses. Only after this waiting
period does TCP fully delete the connection record and release all associated resources.

Together, these timers make TCP robust and adaptive in handling retransmissions, preventing
deadlocks, verifying connection health, and safely terminating sessions. The elegant blend of
statistical estimation, adaptive timeout strategies, and defensive mechanisms makes TCP one
of the most reliable transport protocols in networking history.

Computer Networks 18.27 The Transport Protocols TCP and UDP

18.14 TCP CONGESTION CONTROL

TCP plays a crucial role in congestion control, ensuring that the Internet remains stable and
efficient under varying load conditions. When a network is overwhelmed with more data than
it can handle, congestion builds up, leading to increasing queue lengths at routers and
ultimately packet loss. While the network layer detects and attempts to handle congestion by
dropping packets, it is up to the transport layer—specifically TCP—to respond to these
signals and reduce its transmission rate accordingly. Thus, TCP is not only responsible for
providing reliable data transport but also for regulating the flow of data to prevent
congestion.

The foundational principle behind TCP’s congestion control is the AIMD (Additive Increase,
Multiplicative Decrease) algorithm. This method ensures a fair and efficient distribution of
bandwidth across multiple connections. In practice, TCP maintains a congestion window that
dictates the number of bytes it can have in the network at any given moment. This window
size, combined with the round-trip time, determines the effective data rate. TCP dynamically
adjusts this window: it increases the window size incrementally to probe for available
bandwidth and decreases it rapidly when signs of congestion, such as packet loss, are
detected.

The congestion window operates alongside the flow control window, which reflects the
receiving host’s ability to accept more data. TCP transmits data based on the smaller of these
two windows. For example, if the receiver can handle 64 KB but the network begins
dropping packets after 32 KB, TCP limits itself to 32 KB. Conversely, if the sender can
transmit 128 KB smoothly and the receiver allows 64 KB, it sends up to the permitted 64 KB.
This dual-window mechanism ensures both receiver limitations and network conditions are
respected.

Modern congestion control in TCP began with the work of Van Jacobson in the late 1980s.
Following a period of congestion collapse caused by rapidly increasing Internet use, Jacobson
proposed incorporating congestion avoidance mechanisms into TCP without altering its
packet formats. He recognized that packet loss was a reliable indicator of congestion. While
the signal is slightly delayed—arriving only after the network is already under strain—it is
consistent, especially on wired links where transmission errors are rare. The assumption that
packet loss signifies congestion underlies TCP’s design.

1: Burst of packets 2: Burst queues at router
sent on fast link Fast link B and drains onto slow link Slow link —
oD D ————— / (bottieneck)
£= ESHES)
g - - Ju-- 4 %
Sender \ d .G N < Receiver
4. Acks preserve slow 3: Receive acks packets

link timing at sender Ack clock at slow link rate

Figure 18.16 A burst of packets from a sender and the returning ack clock.

To act on congestion signals, TCP needs an accurate retransmission timer. This timer relies
on precise measurements of round-trip times. Jacobson improved this process by
incorporating both the average and variation in round-trip time measurements to calculate a
reliable retransmission timeout. Once equipped with an accurate timeout, TCP could monitor

Centre for Distance Education 18.28 Acharya Nagarjuna University

how many bytes were outstanding (sent but not yet acknowledged) and adjust its sending rate
accordingly. This adjustment follows the AIMD pattern: TCP gradually increases its
congestion window with each successful acknowledgement and reduces it sharply when a
packet loss is detected.

Despite the simplicity of AIMD in principle, its implementation is complex. One challenge is
the need to match the sender’s burstiness with the characteristics of the entire network path. If
a sender transmits a large burst over a high-speed link that feeds into a much slower link,
such as a 1-Gbps Ethernet into a 1-Mbps DSL, the burst could overwhelm the slower link,
causing delays or packet loss. To avoid this, TCP uses small packet bursts, which allow
routers to queue and forward data more gracefully, thereby preventing congestion from
escalating.

In such a setup, sending a burst of a few packets allows for controlled queuing at the
bottleneck router without causing it to overflow. The slower link naturally stretches the
packets in time due to its lower transmission rate, giving the network more breathing room.
This practice maintains high throughput while minimizing the risk of congestion. Hence,
TCP’s congestion control adapts both to network feedback and to variations in network speed
across different segments of the path. By combining these techniques—accurate timers,
adaptive windowing, and intelligent pacing—TCP provides robust, scalable, and fair
congestion control across the diverse and expansive environment of the Internet.

When TCP sender packets finally reach the receiver, they are acknowledged in the order and
timing in which they arrived after traversing the slowest link in the network path. This arrival
timing is reflected in the acknowledgements themselves. As these acknowledgements make
their way back to the sender, they carry this time-spacing information, essentially
reproducing the delay characteristics of the network path. The most critical insight from this
process is that the acknowledgements return to the sender at approximately the rate allowed
by the slowest link in the path. This returning rate acts as a natural pacing mechanism for the
sender, guiding it on how quickly new packets can be injected into the network without
causing congestion. This mechanism is known as "ack clocking," and it is a fundamental
behavior of TCP. By aligning its transmission rate to the rate of returning acknowledgements,
TCP manages to keep queues in the network shallow and avoids unnecessary packet loss due
to congestion.

However, simply relying on additive increase behavior from a small congestion window can
be slow to reach an optimal operating point, especially in fast networks. For instance,
consider a connection with a 10 Mbps capacity and a round-trip time of 100 milliseconds.
The ideal window size for such a connection—determined by the bandwidth-delay product—
is 1 megabit, or roughly 100 packets of 1250 bytes each. If TCP started with a window of one
packet and increased it by just one packet per round-trip time, it would take 100 round-trip
times (or 10 seconds) to reach the optimal window size. This slow ramp-up time can
significantly delay data transfers. Increasing the initial window to something large, like 50
packets, would reduce startup latency but would overwhelm slower links, causing immediate
congestion. Thus, the solution Jacobson designed balances these needs using a hybrid
strategy known as slow start.

In slow start, when a TCP connection begins, the sender initializes the congestion window to
a small value—typically no more than four segments, as outlined in RFC 3390. The sender
transmits this initial burst of packets and then waits for acknowledgements. For each

Computer Networks 18.29 The Transport Protocols TCP and UDP

acknowledgement received, the congestion window is increased by one segment’s worth of
data. Since each acknowledgement both permits a new packet to be sent and triggers the
window to grow, the number of packets in the network doubles every round-trip time.
Though it is called "slow start," this algorithm actually increases the congestion window
exponentially—far faster than linear growth—and allows the connection to quickly ramp up
toward its optimal transmission rate without immediately overloading the network.

The timing of packet arrivals and the corresponding acknowledgements play a crucial role in
regulating slow start. When the sender is connected to a high-speed network, it may transmit
packets very closely spaced. But as those packets move through the network, especially
across slower links, the spacing between them widens. For example, on a 100 Mbps Ethernet,
each 1250-byte packet takes only 100 microseconds to send. But on a 1 Mbps ADSL line, it
takes 10 milliseconds. This means that packets originally sent back-to-back will arrive at the
receiver with much greater spacing. This widened spacing is preserved in the
acknowledgements, and the sender uses this spacing as a guide—thanks to the ack clock—to
inject new packets into the network at a sustainable rate.

Despite its benefits, slow start's exponential growth cannot continue indefinitely. Eventually,
the congestion window will become too large, causing more packets to be sent than the
network can handle. When this happens, queues will fill up and packets will be dropped. If
the TCP sender fails to receive an acknowledgement for a packet—indicating that it was
lost—it will trigger a retransmission timeout. This packet loss is a clear signal that the
congestion window has grown beyond the path’s capacity. In the example given, after a few
round-trip times, the congestion window may reach eight packets, even though the network
path might only be able to handle four packets per round-trip time without queuing. The
overflow of packets builds up in router queues and causes delays or loss, thereby triggering
TCP’s congestion response.

To prevent such uncontrolled growth, TCP implements a safeguard in the form of a threshold
called the slow start threshold. Initially set to a large value (typically the flow control window
size), this threshold limits how much the congestion window is allowed to grow during slow
start. Once the congestion window exceeds this threshold, TCP switches to a different phase
called congestion avoidance, where the window grows linearly rather than exponentially.

TCP sender TCP receiver

cwnd = 1 . ——— Data
Acknowledgement————_
s 1 RTT, 1 packet
cwnd =2
1 RTT, 2 packets
cwnd =3 } P
cwnd = 4

cwnd=5
cwnd =6
cwnd=7
cwnd =8

} 1 RTT, 4 packets

‘i' 1 RTT, 4 packets
: (pipe is full)

Figure 18.17 Slow start from an initial congestion window of one segment.

Centre for Distance Education 18.30 Acharya Nagarjuna University

If a timeout occurs—indicating packet loss due to congestion—the slow start threshold is
halved, and the congestion window is reset to its initial value. This adaptive response ensures
that TCP probes for the network’s capacity, backs off when congestion is detected, and grows
cautiously thereafter. The threshold ensures the window doesn’t expand too aggressively,
balancing the need for rapid ramp-up with the necessity of avoiding congestion collapse.
Thus, slow start and the threshold mechanism work together to allow TCP to efficiently
utilize available bandwidth while reacting sensitively to changing network conditions.

Once the slow start threshold is exceeded, TCP shifts from exponential growth to linear
growth, known as additive increase. In this phase, the congestion window grows more
slowly—by roughly one segment per round-trip time—based on how many packets are
acknowledged. Rather than waiting an entire RTT to make this adjustment, TCP
incrementally increases the window by a small amount for each acknowledgement it receives.
A common method is to increment the window by (MSS x MSS)/cwnd for each segment
acknowledged, which results in a linear overall increase. This ensures that TCP remains close
to the optimal window size: large enough to maintain high throughput, but not so large as to
risk congestion. Compared to the rapid pace of slow start, additive increase proceeds
cautiously and is much slower to reach large window sizes, which is ideal once the network is
operating near capacity.

TCP sender TCP receiver

cwnd = 1 ———— Data

Acknowledgement———
cwnd =2

-

o } 1 RTT, 1 packet

1 RTT, 2 packets
cwnd =3

cwnd =4
1 RTT, 4 packets

} 1 RTT, 3 packets

cwnd =5 [
- 1 RTT, 4 packets
.

L1 (pipeis full)

Figure 18.18 Additive increase form an initial congestion window of one segment

Despite this careful behavior, waiting for a timeout to detect packet loss can significantly
impact performance. Retransmission timeouts are necessarily conservative and can cause
TCP to pause transmission for an extended period. This is problematic because, during this
pause, the sender is essentially idle while waiting for the timer to expire. An improvement
over relying solely on timeouts is the use of duplicate acknowledgements. When a packet is
lost but others beyond it continue to arrive at the receiver, the receiver sends back multiple
acknowledgements for the same last correctly received packet. These are known as duplicate
acknowledgements. TCP uses a heuristic: upon receiving three duplicate acknowledgements
for the same data, it infers that a packet has likely been lost and retransmits it immediately—
before the timer expires. This method, known as fast retransmission, allows TCP to recover
more quickly from a single lost packet.

Computer Networks 18.31 The Transport Protocols TCP and UDP

After fast retransmission, TCP adjusts its congestion control parameters. The slow start
threshold is reduced to half the current congestion window, and the congestion window itself
is reset to a small value. Traditionally, this would cause TCP to re-enter slow start, increasing
its congestion window exponentially again. This behavior forms the basis of TCP Tahoe,
named after the 4.2BSD Tahoe release where it was introduced. As shown in Tahoe’s
operation, whenever packet loss occurs and is detected via timeout or duplicate
acknowledgements, the window is reduced dramatically and starts over. The window then
increases rapidly up to the threshold, after which it grows linearly. This cycle repeats,
forming a kind of sawtooth pattern in window size over time, with alternating exponential
growth, packet loss, and recovery.

Although Tahoe was a significant improvement, Jacobson recognized it could be made even
more efficient. He introduced a method called fast recovery to avoid restarting from a tiny
window after every packet loss. During fast recovery, when duplicate acknowledgements are
received, they are interpreted as signs that packets are still flowing—just not in the correct
order. TCP can use this stream of duplicates to keep the ack clock running and maintain a
steady flow of data. Instead of reducing the congestion window all the way to one, fast
recovery sets it to the new threshold (half of the previous congestion window) and continues
sending new packets for each duplicate acknowledgement received. This keeps the pipeline
of packets moving, shortens the pause in transmission, and avoids unnecessary slow starts.

This enhanced version of TCP is called TCP Reno, named after the 4.3BSD Reno release that
introduced it. Reno incorporates fast retransmission and fast recovery on top of Tahoe’s base.
The result is a more efficient and responsive congestion control mechanism. Reno’s behavior
can be visualized as a smooth sawtooth pattern: the congestion window increases linearly
over time, until a loss is detected via duplicate acknowledgements. At that point, Reno
performs a fast retransmission, enters fast recovery, and then resumes from the new
threshold, avoiding slow start unless a timeout occurs. Thus, Reno spends most of its time
near the optimal congestion window, making efficient use of available bandwidth.

Retransmit 2 and 5! fmst packets w

6> 15> [© 2D

Sender 4 q{ 4 {] Receive
ACK: 1 ACK: 1 ACK: 1 ACK: 1
SACK:3 SACK:3-4 SACK:6,3-4

Figure 18.19 Selective acknowledgements

Over the years, TCP Reno has been extended and refined. One important enhancement is
Selective Acknowledgements (SACK), which improves TCP’s ability to recover from
multiple losses in a single window. Standard cumulative acknowledgements do not tell the
sender which specific packets were lost, only the last one that arrived in sequence. With
SACK, the receiver includes additional information about which out-of-order packets it has
received. This allows the sender to pinpoint exactly which packets were lost and retransmit
them selectively. To use SACK, both sender and receiver must agree during connection
setup. Once enabled, SACK options are included in acknowledgements, listing up to three

Centre for Distance Education 18.32 Acharya Nagarjuna University

byte ranges of received data. These byte ranges help the sender identify which packets to
retransmit, improving recovery from complex loss scenarios. SACK is now widely supported
and has become an essential part of modern TCP implementations.

Another major addition is Explicit Congestion Notification (ECN). Instead of waiting for
packets to be dropped, ECN allows routers to signal impending congestion by marking
packets. When the sender and receiver support ECN, they signal this capability during
connection setup. Once enabled, ECN-capable packets are flagged in the IP header. When a
router experiences congestion, it marks the packet instead of dropping it. The receiver, upon
detecting the mark, informs the sender using the ECN Echo (ECE) flag. The sender then
acknowledges this signal by setting the Congestion Window Reduced (CWR) flag and
responds by reducing its congestion window, just as it would in response to packet loss. The
advantage of ECN is that it allows for early congestion detection without losing packets,
improving performance especially in networks where packet loss is expensive or undesirable.
Together, these mechanisms—slow start, additive increase, fast retransmission, fast recovery,
SACK, and ECN—form the backbone of TCP’s congestion control. They allow TCP to adapt
dynamically to changing network conditions, avoid congestion collapse, and maintain high
throughput while minimizing packet loss. Over decades, TCP’s congestion control has
evolved into a sophisticated system that balances performance, fairness, and stability across a
vast, heterogeneous Internet.

18.15 THE FUTURE OF TCP

TCP has long been the foundational protocol for reliable transport on the Internet, powering
countless applications ranging from web browsing to email and file transfers. Over the
decades, it has been refined to adapt to changing network conditions and extended to
maintain strong performance across various types of links and environments. Nonetheless, as
the Internet continues to evolve, so do the demands placed on transport protocols like TCP.
Developers have introduced various tweaks and versions of TCP to better handle specific
challenges, particularly around congestion control and resilience to network anomalies or
attacks. Yet, even with these advances, TCP is not without limitations, and it is increasingly
clear that it cannot perfectly address all modern networking needs.

One area where TCP falls short is in the transport semantics it offers to applications. TCP
provides a reliable byte stream, but this abstraction does not always align well with what
applications require. Some applications are designed to work with discrete messages or
records and would benefit from having their boundaries preserved, something that TCP does
not inherently support. Others involve multiple parallel conversations, such as a web browser
fetching different parts of a webpage, which are not efficiently handled by TCP’s stream-
oriented model. Additionally, applications that wish to exert finer control over the network
paths their traffic takes cannot do so easily through TCP’s standard socket interface. These
limitations have led to the development of alternative transport protocols designed to offer
different interfaces or behaviors. Notable examples include SCTP (Stream Control
Transmission Protocol), which provides message-oriented delivery and multihoming, and
SST (Structured Stream Transport), which addresses some of TCP’s structural constraints.
However, deploying new protocols faces strong resistance due to TCP’s widespread adoption
and proven reliability. There is an ongoing debate between those advocating for newer, more
flexible transport layers and those who believe the current system works well enough to avoid
risking destabilization.

Computer Networks 18.33 The Transport Protocols TCP and UDP

The second major issue facing TCP 1is congestion control. Despite the sophisticated
mechanisms TCP has developed—Iike slow start, additive increase, fast retransmission, and
fast recovery—congestion control remains an active area of research and improvement.
Traditional TCP congestion control relies on packet loss as the main indicator that congestion
is occurring in the network. This approach works reasonably well under many conditions, but
it begins to falter in high-speed networks. Studies have shown that for TCP to maintain high
throughput on such networks, packet loss must be exceedingly rare. For instance, sustaining a
1 Gbps connection over a link with a 100 ms round-trip time and typical 1500-byte packets
requires that fewer than one packet be lost every 10 minutes. This loss rate—around 2 x
10*—is so low that even minimal transmission errors on the network can cause TCP to
mistakenly assume congestion is occurring, throttling the connection unnecessarily and
preventing full bandwidth utilization.

This situation has led many in the networking community to reconsider how congestion
should be signaled and managed. Alternative signals to packet loss are being explored, such
as using changes in round-trip time (RTT) as an early indicator of congestion. As RTT
increases, it typically means queues are forming in the network, which is a precursor to
packet loss. This principle is employed by protocols like FAST TCP, which adapts its
transmission rate based on RTT measurements rather than waiting for losses to occur. Other
strategies also exist, including variants of TCP like CUBIC and Compound TCP, which
attempt to address these scaling limitations through different congestion window growth
functions. Ultimately, while TCP remains a robust and highly adaptable protocol, its
limitations—especially in handling ultra-high-speed links and evolving application
requirements—ensure that the pursuit of better transport solutions remains an ongoing and
dynamic area of innovation.

18.6 SUMMARY

This chapter explains the Internet transport protocols, focusing on UDP and TCP. UDP
provides a simple, connectionless service for applications like DNS and streaming,
supporting Remote Procedure Call (RPC) and Real-Time Transport Protocol (RTP). TCP
offers a reliable, connection-oriented service with mechanisms for connection establishment
and release, segmentation, flow and congestion control, and timer management. Variants
such as wireless TCP/UDP and transactional TCP address specific challenges in mobile and
transaction-based communications, ensuring efficient and reliable data transport across the
Internet

18.7 TECHNICAL TERMS
User Datagram Protocol, Transmission Control Protocol, Remote Procedure Call, Real-Time
Transport Protocol

18.8 SELF ASSESSMENT QUESTIONS

Essay questions:

1. Explain UDP and its applications in network communication.
Describe Remote Procedure Call (RPC) and the Real-Time Transport Protocol (RTP).
Explain the TCP service model and the structure of a TCP segment.
Describe TCP connection establishment, release, and modeling of TCP connections.
Discuss TCP transmission policies, congestion control, timer management, and
variations like wireless TCP/UDP and transactional TCP.

Nk

‘ Centre for Distance Education 18.34 Acharya Nagarjuna University

Short Questions:
1. What is UDP and its main characteristics?
2. Define Remote Procedure Call (RPC).
3. What is the purpose of TCP?
4. Name two TCP connection management processes.
5. What is TCP congestion control?
18.9 FURTHER READINGS
1. Andrew S. Tanenbaum, “Computer Networks”, Fourth Edition, PHI.
2. James F.Kurose, Keith W.Ross, “Computer Networking”, Third Edition, Pearson
Education
3. Behrouz A Forouzan, “Data Communications and Networking”, Fourth Edition, TMH
(2007)
4. Michael A. Gallo, William M. Hancock, “Computer Communications and

NetworkingTechnologies”, Cengage Learning (2008).

Mrs. Appikatla Pushpa Latha

LESSON- 19
DOMAIN NAME SYSTEM

OBJECTIVES:
After going through this lesson, you will be able to
= Understand the purpose and structure of the Domain Name System (DNS).
= Learn about the DNS name space and hierarchical organization.
= Study DNS resource records and name servers.
= Understand the architecture and services of electronic mail.
= Learn about message formats, transfer, and final delivery in email systems.
STRUCTURE OF THE LESSON:
19.1 INTRODUCTION
19.2 THE DNS NAMESPACE
19.3 DOMAIN RESOURCE RECORDS
194 NAME SERVERS
19.5 E-MAIL
19.6 SUMMARY
19.7 TECHNICAL TERMS
19.8 SELF-ASSESSMENT QUESTIONS
19.9 FURTHER READINGS
19.1 INTRODUCTION

In the early days of the Internet, although it was technically possible for programs to refer to
web pages, email addresses, and other online resources by using numerical network identifiers
such as IP addresses, this method posed significant usability challenges. IP addresses are
inherently difficult for humans to remember, making them impractical for widespread use.
Moreover, if a server changed its IP address—for example, due to a company migrating its
website to a different machine—every user would need to be informed of the new address. To
address these limitations, more intuitive, human-readable names were introduced to provide a
level of abstraction between machine names and their actual IP addresses. This allowed people
to access resources through easily memorable names like www.cs.washington.edu, regardless
of the physical machine or IP address hosting the service.

Despite the convenience of human-readable names, the underlying network infrastructure
operates solely on numerical IP addresses. Therefore, a system was required to bridge the gap
between user-friendly names and machine-understandable IPs. Initially, this was accomplished

Centre for Distance Education 19.2 Acharya Nagarjuna University

through a simple mechanism: a file called hosts.txt that listed all known computer names and
their corresponding IP addresses. Every host on the network downloaded this file from a central
location each night. While this solution was manageable for a small network comprising a few
hundred machines, it was clearly not scalable to the millions of devices that would later join
the Internet. As the network expanded, maintaining a centralized file became impractical, and
issues such as name conflicts and update latency became increasingly problematic.

To overcome these challenges, the Domain Name System (DNS) was developed in 1983. DNS
introduced a hierarchical, distributed naming architecture that could scale with the growing
Internet. Rather than depending on a centralized text file, DNS employs a decentralized
database to manage the mapping of names to IP addresses. This system not only enhances
scalability and efficiency but also reduces the risk of name conflicts through coordinated
domain registration. DNS operates using a domain-based naming structure in which each
domain name corresponds to a specific path in the hierarchy, allowing for organized and
systematic address resolution.

In practice, when an application needs to resolve a hostname into an IP address, it invokes a
library function known as a resolver, such as the gethostbyname function seen in earlier
discussions. This resolver constructs a DNS query with the target name and sends it to a local
DNS server, typically provided by the user’s internet service provider or institution. The server
then searches its database—or queries other DNS servers if necessary—and returns the
appropriate IP address. This result is then relayed back to the application by the resolver. The
entire exchange typically takes place over the User Datagram Protocol (UDP), which is suitable
for the quick, small messages used in DNS lookups. Once the application has obtained the IP
address, it can proceed with its intended operation, whether that means opening a TCP
connection or sending a UDP packet to the resolved address. This elegant and efficient
architecture makes DNS an indispensable component of modern networking.

19.2 THE DNS NAMESPACE

Managing a vast and ever-evolving collection of names in a global network like the Internet is
a complex task. Drawing a parallel with the postal system, which avoids confusion by using a
hierarchical structure—such as country, city, and street—the Internet adopted a similar naming
scheme through the Domain Name System (DNS). This system ensures uniqueness and clarity,
so different individuals or entities can coexist with similar names but in distinct contexts, much
like people with the same name living in different cities.

| Generic - . Countriegs —————————a=|
aero COMm edu gov musaum org net --- au i uk us nl -
cisco washington acm ieee edu ac co WU oce
eng cs eng jack jill uwa keio nec cs law
robot cs csl fits fluit

Figure 19.1 A portion of the Internet domain name space

Computer Networks 19.3 DOMAIN NAME SYSTE AND EMAIL

At the highest level of DNS management is ICANN, the Internet Corporation for Assigned
Names and Numbers, established in 1998 to oversee the global coordination of the DNS. The
DNS organizes names into a tree structure composed of over 250 top-level domains, each of
which can be further divided into subdomains. These top-level domains fall into two categories:
generic domains like .com or .org, and country-specific domains like .us, .jp, or .nl. This
structure allows the Internet to scale efficiently, supporting millions of hosts and users across
the world. Each leaf in this tree represents a domain that contains individual machines or
services.

Obtaining a second-level domain—such as example.com—is relatively straightforward.
Registrars authorized by ICANN manage these top-level domains and can assign names to
entities upon request, provided the desired name is available and does not infringe on existing
trademarks. However, as the Internet became more commercial, naming disputes became
increasingly common. The process of assigning names has sparked debates over who qualifies
for restricted domains (e.g., .pro for professionals), and even geopolitical and ethical
controversies have emerged—such as those surrounding the .xxx domain for adult content.

In addition to ethical and procedural issues, domain names have become valuable assets. Some
entities, such as the country of Tuvalu, have profited immensely by leasing their country code
top-level domain—.tv—which is ideal for television websites. This commercial value has led
to practices like cybersquatting, where individuals register popular or trademarked names
solely to sell them at a profit. Despite being legally permissible under certain conditions, these
practices have necessitated ongoing policy development to manage conflicts and protect
legitimate interests.

The hierarchical nature of DNS also allows for clear and conflict-free domain naming. Each
domain is identified by tracing its path upward from its position in the DNS tree, with
components separated by periods. For example, the domain eng.cisco.com refers to the
engineering department of Cisco and is distinct from similarly named domains under other
parent nodes, such as eng.washington.edu. Domains can be absolute, ending with a period, or
relative, depending on the context in which they're used. Domain names are not case-sensitive,
and while individual components can be up to 63 characters long, the entire name must not
exceed 255 characters.

| Domain Intended use Start date | Restricted? |
| com Commearcial 1985 | MNo
edu Educational institutions 1985 Yes
| gov Government 1985 . Tes
int International organizations 1988 wes
| il Military 1985 | Wes
met MNetwork prowviders 1985 MNo
| org MNon-profit organizations 1985 | MNo
| aero Ajr transport 2001 | Yes
| biz Businesses 2001 | Mo
| coop Cooperatives 2001 . Yes
| info Informational 2002 | No
| mMuseumn Museums 2002 | Yes
narme People 2002 Mo
| pro Professionals 2002 | ves
| cat Catalan 2005 | Yes
jobs Employment 2005 Yes
| mobi Mobile devices 2005 . Yes
| tel Contact details 2005 | wWes
travel Travel industry 2005 Yes
j MK Sex industry 2010 | ™o

Figure 19.2 Generic top-level domains

Centre for Distance Education 19.4 Acharya Nagarjuna University

Globally, domain names can reside under generic or country-specific domains. In practice,
most U.S.-based organizations use generic domains like .edu or .com, whereas entities in other
countries often fall under their national domains. Nevertheless, there's flexibility, and large
organizations frequently register under multiple top-level domains—for instance, Sony may
own sony.com, sony.net, and sony.nl.

Control over subdomains lies with the parent domain. If a new group within an organization—
like a VLSI research group at a university—wants its own subdomain, it must obtain
permission from the domain's manager. However, once a subdomain is created, it can
independently manage its own namespace. This distributed control structure ensures both
scalability and autonomy while preserving the integrity of the overall naming system.

Finally, the logical structure of domain names is based on organizational relationships, not
physical network topology. This means that departments within the same building may belong
to separate domains, while geographically distributed units of the same department may share
a domain. This reflects the abstract nature of domain naming, which focuses on administrative
and functional boundaries rather than physical infrastructure.

19.3 DOMAIN RESOURCE RECORDS

On the Internet, each domain name—whether it's a simple host like a single machine or a broad
domain like .com—has a set of associated resource records. These records form the contents
of the DNS (Domain Name System) database, which is the core of how name resolution
happens on the Internet. When an application or user wants to access a resource by its domain
name (like visiting www.google.com), the DNS helps resolve that name into something the
network can understand, like an [P address. What DNS essentially does is return these resource
records when given a domain name, allowing computers to map friendly names to actionable
network data.

A resource record is made up of five key fields: the domain name, time to live (TTL), class,
type, and value. While these are stored in a binary format for computers to process efficiently,
they are typically displayed as human-readable ASCII text when viewed in configuration files
or documentation. The domain name field indicates which name this record belongs to and
serves as the main key for looking up the record in the DNS database. Each domain can have
many such records—for instance, one record for the IP address, another for the mail server,
and others for different services or aliases.

Type [Meaning Value
SOA | Start of authority Parameters for this zone
A IPv4 address of a host 32-Bit integer
ABAA | IPvE address of a host 128-Bit integer
X | Mail exchange Priority, domain willing to accept email
NS Mame server Mame of a server for this domain
CHNAME | Canonical name: Domain name
PTR . Pointer Alias for an IP address
SPF | Sender policy framework Text encoding of mail sending policy
SRV | Service Host that provides it
TXT | Text Descriptive ASCII text

Figure 19.3 The principal DNS resource record types

Computer Networks 19.5 DOMAIN NAME SYSTE AND EMAIL

The time to live field defines how long this record can be kept in a DNS cache before it should
be discarded or re-validated. This is critical for optimizing performance and reducing the load
on DNS servers. If a record rarely changes—Ilike the IP address of a large website's home
server—it can have a high TTL value, such as 86400 seconds (which is one day). But for
records that are subject to frequent updates, such as temporary services or development servers,
a shorter TTL (like 60 seconds) is more appropriate to ensure clients always get the latest
information.

The class field of the record specifies the protocol family to which the record belongs. In nearly
all common DNS uses today, this class is simply "IN," which stands for "Internet." Other
classes exist for non-Internet uses, such as "CH" for Chaosnet or "HS" for Hesiod, but they are
largely obsolete or used in very niche environments. So, in practice, the class field almost
always has the value IN.

The type field is one of the most important parts of the resource record. It specifies what kind
of information is being stored. The most frequently encountered type is the A record, which
maps a domain name to a 32-bit IPv4 address. For example, www.example.com might map to
93.184.216.34. For IPv6 addresses, there is the AAAA record ("quad-A"), which stores the
128-bit address. Both are essential because every host on the Internet needs at least one IP
address to be reached.

One especially useful type of record is the MX (Mail Exchange) record, which identifies mail
servers that handle emails for a domain. For example, emails sent to user@example.com are
routed based on the MX records of example.com. These records not only indicate the
hostnames of mail servers but also assign them priorities using numerical values. The mail-
sending system tries the lowest-numbered priority server first; if it's unavailable, it tries the
next, and so on. This redundancy ensures more reliable email delivery.

Another important record is the NS (Name Server) record, which identifies the authoritative
name servers for a domain. These are the servers that hold the actual DNS records for the
domain and respond to queries from other DNS servers. If you register a domain, your domain
registrar will ask you for your NS records so the Internet knows where to look when resolving
your domain name.

The CNAME (Canonical Name) record allows domains to act as aliases for others. This is
helpful in many scenarios. For instance, www.example.com might just be a CNAME pointing
to webhost123.example.com, meaning that whenever someone accesses www.example.com,
the DNS system internally redirects them to the canonical domain. This enables organizations
to change server details in the background without affecting public-facing URLs.

The PTR (Pointer) record is used in reverse DNS lookups, where the goal is to resolve an IP
address back into a domain name. This is the reverse of what a standard DNS query does. PTR
records are especially useful for verifying the source of incoming emails or for security logging.
More modern types of DNS records have been introduced to accommodate advanced
networking needs. The SRV (Service) record allows specification of a particular server that
offers a certain service, such as SIP or LDAP. This is more flexible than older methods, as it
can include both hostname and port information. The SPF (Sender Policy Framework) record
is crucial in the fight against email spam and spoofing. It defines which servers are allowed to
send email on behalf of a domain, helping receiving mail servers detect forged messages.

Centre for Distance Education 19.6 Acharya Nagarjuna University

The TXT (Text) record was originally designed to let administrators include arbitrary text in
DNS entries, such as contact information or server descriptions. However, in modern usage,
TXT records are most often used to store structured data like SPF policies or domain ownership
verification codes for services like Google Workspace or Microsoft 365.

To illustrate how these records appear in real DNS configurations, consider a simplified DNS
database for the domain cs.vu.nl. This domain might have several entries in its DNS zone file.
There would be an SOA (Start of Authority) record providing the administrative information
and serial numbers used for synchronization among DNS servers. There might be two MX
records specifying that email for cs.vu.nl should go first to the host zephyr and then to top if
zephyr is unavailable. An NS record would list star as the authoritative name server.

Following this, there would be A records mapping the domain names star, zephyr, and top to
their respective IP addresses. These ensure that other computers can contact them over the
network. For user convenience, the domain could have CNAME records for www.cs.vu.nl and
ftp.cs.vu.nl pointing to specific machines, so users don’t have to remember complicated or
changeable machine names.

A host like flits.cs.vu.nl might have two A records if it has two network interfaces (or belongs
to two networks), and it could also have multiple MX records indicating mail delivery
preferences. Other hosts like rowboat.cs.vu.nl would have a single A record for its IP address
and perhaps MX records for mail routing. Even devices like printers, such as laserjet.cs.vu.nl,
might have A records so users can print over the network.

Altogether, these records work in harmony to provide a flexible, scalable, and robust naming
infrastructure for the Internet. DNS allows domain names to be assigned and resolved in a way
that is understandable to humans, yet highly efficient for computers. Its design supports a
massive, decentralized, and continually evolving Internet, while also ensuring backward
compatibility and consistent global behavior.

19.4 NAME SERVERS

In an idealized world, a single name server could maintain the entire Domain Name System
(DNS) database and respond to all queries. However, this setup would be highly impractical in
reality. Such a central server would be overwhelmed with traffic, and any failure in it would
cripple the Internet’s naming infrastructure. To address this, DNS is designed to be distributed
and hierarchical. The name space is divided into nonoverlapping zones, each managed by its
own administrative authority. These zones correspond to subtrees of the DNS hierarchy and
may cover as little as a single machine or as much as an entire top-level domain. The decision
about how to divide these zones and where to place their boundaries is made by administrators
and often depends on operational and administrative needs.

Each zone in the DNS is managed by one or more name servers. These servers hold the database
for their respective zones. Typically, a zone has a primary name server, which holds the original
data files, and one or more secondary servers that replicate the primary's data. These secondary
servers fetch zone data from the primary through a process called zone transfer. To ensure high
reliability and accessibility, some name servers may be located outside the zone they serve.
When a domain name needs to be resolved, the query process begins by consulting a local name
server, which may either have the answer or must look it up remotely.

Computer Networks 19.7 DOMAIN NAME SYSTE AND EMAIL

Genearic -

[1

f= Counfrigs —————=|

CiSCOo @ @-
ang keio) (nec
cs | | csl flits fluit

Figure 19.4 Part of the DNS name space divided into zones (which are circled)

When a name like robot.cs.washington.edu is queried from a host such as flits.cs.vu.nl, and no
local cached information is available, the resolution must proceed through a chain of DNS
queries. The process starts with a query from the originator to its local name server, including
the domain name, query type (such as A for address), and class (IN for Internet). If the local
name server cannot resolve the name directly, it begins by contacting a root name server. These
root servers are crucial because they know the authoritative name servers for all top-level
domains like .com, .edu, or country-specific domains like .nl or .uk.

Each name server holds a configuration file containing information about the root servers.
These are not single machines but are actually replicated systems using anycast routing to direct
queries to the nearest available instance. There are thirteen named root servers (a.root-
servers.net through m.root-servers.net), and each is backed by dozens of physical instances
around the world. This replication strategy enhances both performance and fault tolerance.

After contacting a root server, the local name server receives a referral to the name server for
the .edu domain. The local server then contacts the .edu name server, which in turn refers it to
the washington.edu name server, and then to cs.washington.edu, which finally provides the
authoritative IP address for the host robot. This entire multi-step journey is necessary because
the DNS system is a distributed and delegated system; no single server holds all the
information. Each step returns part of the answer, gradually narrowing down the search until
the exact host is located.

There are two key mechanisms used in these queries: recursive and iterative. When the original
host sends a request to its local name server, it expects a complete answer in return. This is
known as a recursive query. The local name server takes on the responsibility of continuing the
resolution process through multiple iterative queries to other name servers, each of which
returns only partial information—such as the next server to contact. Root and intermediate
servers typically do not handle recursive queries due to the high load it would impose; they
rely on the querying server to perform subsequent steps.

Caching plays a vital role in improving the performance and efficiency of DNS. Each time a
name server receives a response—whether a full or partial one—it stores that result in a cache
for later use. This reduces the number of external queries that must be made for repeated

Centre for Distance Education 19.8 Acharya Nagarjuna University

requests, especially when multiple queries concern hosts in the same domain. If the information
is already cached, future queries can be answered immediately. However, caching introduces
the risk of outdated information being used. To manage this, each resource record includes a
Time To Live (TTL) value, which specifies how long the information should be retained before
being considered stale. Volatile data may have a TTL of just a few seconds or minutes, while
stable data may be cached for hours or even days.

All DNS queries and responses are transmitted over the UDP protocol. This choice is made for
performance reasons since UDP is connectionless and incurs less overhead than TCP. DNS
messages are small enough to fit within the size limits of UDP packets. To maintain robustness,
DNS clients are designed to retry queries using different servers if no response is received
within a short time. Each query includes a unique 16-bit identifier that helps match responses
to the correct outstanding query, especially when multiple queries are sent simultaneously.

-ﬁ‘ Root name server
(a.root-servers.net)

¥ Edu name server

" auety
‘ a.Qv8 —u (a.edu-servers.net)
: que —aton-
l | ooy - 5;\“35“‘\'\9
B rr—
 robot.cs.washington.edu
filts.cs.vu.nl 00 m‘ uw
9

6: Query
Originator (cs.vu.n) aShmgyo"'edu
8.
“%,

name server name server

“ro,

b
==V name server
Figure 19.5. Example of a resolver looking up a remote name in 10 steps.

DNS, though conceptually simple, is a massive and intricate distributed system composed of
millions of name servers globally. It serves as the critical bridge between user-friendly domain
names and machine-readable IP addresses. Its hierarchical structure, combined with replication
and caching, ensures that the system is scalable, fault-tolerant, and fast. However, because DNS
is so central to Internet functionality, it also poses significant security challenges. A malicious
actor who can alter DNS responses could redirect users to fraudulent sites. To address such
threats, security extensions like DNSSEC have been developed, which add cryptographic
signatures to DNS data to ensure its authenticity and integrity.

Additionally, modern Internet applications demand even more flexible name resolution
mechanisms. For example, rather than locating a specific machine, users might want to find the
nearest server that hosts a specific piece of content, like a movie. This approach shifts the focus
from machine identity to content availability. Systems like Content Distribution Networks
(CDNs) build upon DNS to provide such functionality, directing users to geographically
optimal servers that host the desired content, thereby enhancing speed and reducing network
load. DNS, therefore, continues to evolve to meet the growing and changing demands of global
Internet users.

Computer Networks 19.9 DOMAIN NAME SYSTE AND EMAIL

19.5 EMAIL

Electronic mail, or email, has been one of the most popular Internet applications for more than
three decades. It is faster and cheaper than traditional paper mail and has been widely used
since the early days of the Internet. Before 1990, email was mainly limited to academic use,
but during the 1990s, it became a global communication tool. Today, the number of emails sent
daily far exceeds that of regular mail. Despite the rise of other communication methods like
instant messaging and voice-over-IP, email remains the backbone of Internet communication,
especially for business and organizational use across the world. Unfortunately, a major issue
with email is spam—unwanted junk messages—which make up nearly 90% of all emails.
Email communication is informal and accessible to everyone, often breaking social barriers
related to rank or position. It is rich in abbreviations (e.g., BTW, ROTFL, IMHO) and uses
emoticons like “:-)” to express tone and emotion, helping users convey meaning beyond plain
text.

Over time, email protocols and systems have evolved significantly. Early email systems were
simple file transfer mechanisms where the recipient’s address appeared on the first line of a
message. Gradually, more advanced features were introduced, such as sending messages to
multiple recipients and supporting multimedia attachments like images and documents. As
email became mainstream in the 1990s, user interfaces improved from text-based to graphical
formats, making email easier and more interactive. Modern email systems also enable users to
access their mail from any location or device. With the growing problem of spam, both mail
clients and mail transfer protocols now incorporate filtering and security mechanisms to detect
and remove unwanted messages. In this context, understanding how mail messages move
between users is more essential than focusing on the interface design of email programs.

19.5.1 Architecture and Services
Email systems consist of two main subsystems — User Agents (UAs) and Message Transfer
Agents (MTAs) (Fig. 19.). User Agents allow users to compose, send, receive, and organize

emails.

Message Transfer Agents move messages between mail servers using the Simple Mail

Transfer Protocol (SMTP).
Mailbox
"_‘-n.\‘l
T
B X R— & <— I

Message SMTP Message
Sandear Transfer Agent Tranzfar Agent Racaive
el
User Ageni Usar Agent
1: Mall 2: Message 3: Final
submission transzfar delivery

Figure 19.6 Architecture of the email system User Agents

Centre for Distance Education 19.10 Acharya Nagarjuna University ‘

A User Agent provides either a graphical or text-based interface for sending and reading emails.
It enables message composition, replying, organizing (by filing, searching, or deleting), and
sending (mail submission).

Modern user agents may include features like spam filtering, auto-replies, and message
prioritization. They run on the user’s local system and interact with mail servers for sending
and retrieving messages.

Message Transfer Agents

Message Transfer Agents (MTAs) are background processes running on mail servers that
handle message movement across the network. Using SMTP (defined in RFC 5321), they
ensure reliable message transfer and delivery status reporting.

MTASs support additional features like mailing lists, carbon copies (CC), blind carbon copies
(BCC), encryption, priority levels, and alternate recipients.

Mailboxes and Message Format

Mailboxes are maintained by mail servers to store received emails. User agents communicate
with these servers to view, delete, or organize emails—this step is called final delivery. A single
mailbox can be accessed through multiple user agents.

Email mesages follow a standard format (originally RFC 822, now RFC 5322) and support
multimedia through MIME. Messages have two key parts: the envelope and the message.

The Envelope contains transport information (destination, priority, and security).

The Message has two components:

Header — control information for the

user agent (e.g., sender, receiver, subject).

Body — the actual message content for the recipient.

Figure 19.7 illustrates the difference between an envelope and a message for both paper and
electronic mail.

@ T Mame: Mr. Danial Dumkopf
= Streat: 18 Willow Lane
Mir. Daniel Dumkopf =2 ggmwh?::.e Fialns . Envelope
18 Willow Lane = Zip code: 10604
White Plains, NY 10604 i Priarity: Urgant
1 Encryption: Mone)
2
- From: United Giznmo
:.I;gi:‘:la(i?:zsr:m .I Address: 180 Main St.
= Location: Boston, MA 02120
= *
Boston, MA 02120 Z Date: Sept. 1, 2010
Sept. 1, 2010 =+ Subject: Irvoice 1081
Subject: Invoice 1081 l
Drear Mr. Dumkopd, Daar Mr. Dumkopf,
Owur computer records Our computar records
show that you still have show 1_hat you still hzwe = Massage
not paid the abowve invoice not paid the above imwoice
of $0.00. Please send us a = of $0.00. Pleasa send us a
check for $0.00 prompily. § check for 50.00 promptly.
Yours truby “ours trulby
United Gizmo United Gizmio
L -
(a) (b}

Figure 19.7 Envelopes and messages. (a) Paper mail. (b) Electronic mail.

Computer Networks 19.11 DOMAIN NAME SYSTE AND EMAIL

19.5.2 The User Agent

A User Agent (UA), also called an email reader, is a program that allows users to compose,
receive, reply to, and organize email messages. Popular examples include Gmail, Microsoft
Outlook, Mozilla Thunderbird, and Apple Mail. While modern user agents have graphical or
touch-based interfaces, older ones like Elm, mh, and Pine used text-based interfaces.

Interface Features

A typical user agent displays a summary of messages in the user’s mailbox (Fig. 7-9). Each
line usually shows the From, Subject, and Received fields, allowing users to identify the sender,
topic, and time. Icons may indicate unread mail, attachments, or high-priority messages.
Messages can be sorted by time, sender, or subject, and users can customize these preferences.

Message Viewing and Disposition

User agents let users preview and read messages, reformat content, and convert formats (e.g.,
audio to text). After reading, users can decide on message disposition — such as deleting,
replying, forwarding, or saving a message. Saved messages are usually organized in folders
like Inbox, Junk Mail, or custom folders.

Automatic Filing and Spam Filtering

Many user agents can automatically classify incoming mail based on predefined rules or spam
filters. Internet service providers and organizations assist this process by labeling spam using
collective data across users. Automatic filing helps separate legitimate mail from junk
efficiently.

Mailbox Search

Modern user agents provide search tools to quickly locate messages by keyword, sender, or
date. These advanced tools help manage large mailboxes that can store gigabytes of data and
thousands of emails.

Automatic Responses

Some messages trigger automatic responses. For example, forwarding agents can redirect
emails to other addresses, while vacation agents send auto-replies like “I’m away until August
24.” These responses usually run on mail servers since the user agent may not always be active.

Mail Composition

Mail composition involves creating and sending new messages or replies. User agents assist
with addressing, filling header fields, appending signatures, checking spelling, and adding
digital signatures for authenticity. The most important part of the outgoing message is the
envelope, which includes the destination address in the format user@domain.

Addressing Formats

Besides DNS-style addresses, some systems use X.400 addresses (ISO standard), written as
attribute-value pairs, e.g.:

/C=US/ST=MASSACHUSETTS/L=CAMBRIDGE/PA=360 MEMORIAL DR./CN=KEN
SMITH/®

Although less convenient, user agents simplify this through aliases or nicknames, allowing
users to send mail without typing long addresses.

Centre for Distance Education 19.12 Acharya Nagarjuna University

Mailing Lists

Mailing lists allow sending a single message to multiple recipients. Lists may be:

Local lists, maintained by the user agent (sending separate messages to each recipient), or
Remote lists, maintained by a mail server, where messages sent to a list address (e.g.,
birders@meadowlark.arizona.edu) are
automatically distributed to all members.

19.5.3 Message Formats

After studying the user agent interface, we now focus on the format of email messages
themselves. Messages created by the user agent must follow a standardized format so that the
message transfer agents (MTAs) can correctly deliver them. Two major standards govern
message formats:

1. RFC 5322 — The Internet Message Format (for text-based messages), and
2. MIME — Multipurpose Internet Mail Extensions (for multimedia and non-ASCII
content).

(a) RFC 5322 — The Internet Message Format
RFC 5322 is the current standard defining the structure of Internet email messages. It is an

updated version of the original RFC 822.
A standard email message consists of:

1. An envelope (defined by SMTP — RFC 5321)
2. Header fields

3. A blank line

4. The message body

Each header field contains a field name, a colon, and a value (e.g., Subject: Meeting Agenda).
Message Transport Headers
The main transport-related headers are shown in Figure 19.8

Header Meaning

To: Email address(es) of primary recipient(s)

Cc: Secondary recipients (Carbon copy)

Bcec: Blind carbon copy recipients (not visible to others)
From: Person(s) who created the message

Sender: Actual sender (may differ from the author)
Received: Added by each transfer agent; shows routing path
Return-Path: Path back to the sender or return address

Figure 19.8 RFC 5322 header fields related to message transport

The To, Cc, and Bcc fields specify recipients. While Cc is visible to all recipients, Bcc hides its
addresses.

The From and Sender fields identify the author and the person who actually transmitted the
message. Each mail server that handles the message adds a Received line with time and server

mailto:birders@meadowlark.arizona.edu)

Computer Networks 19.13 DOMAIN NAME SYSTE AND EMAIL

details. The Return-Path field is typically filled by the last server to indicate how replies or
delivery errors can reach the sender.

User and Display Headers
RFC 5322 also defines headers used mainly for user-level processing (Figure 19.9).

Header Meaning

Date: Date and time the message was sent
Reply-To: Address for sending replies

Message-ID: Unique identifier for the message
In-Reply-To: Message-ID of the message being replied to
References: Related message identifiers

Keywords: User-chosen keywords

Subject: Short summary of the message
Figure 19.9 Some fields used in the RFC 5322 message header

The Message-ID uniquely identifies a message and helps in organizing threads of replies. The
Reply-To field can direct replies to a different address (e.g., for marketing or multi-account
scenarios).

Additionally, users may define custom headers prefixed with “X-” (e.g., X-Priority: or
humorous fields like X-Fruit-of-the-Day:).

After all headers, a blank line separates them from the message body, which can contain text,
signatures, or other user content.

(b) MIME — Multipurpose Internet Mail Extensions

Originally, email systems supported only plain ASCII text messages. With the rise of the
Internet and global communication, users needed to send messages in multiple languages,
character sets, and media formats (such as images, audio, and documents).

To address this, MIME was developed. It extends RFC 822/5322 to support multimedia email
content while remaining compatible with existing email protocols.

MIME is defined in RFCs 2045-2049 and 4288-4289.

MIME Message Headers

MIME adds five additional headers (Figure 19.10).
‘Header HMeaning ‘
‘MIME-Version: HIdentiﬁes MIME version used ‘
‘Content-Description: HShort description of message content ‘
‘Content-ID: HUnique identifier for the content ‘
‘Content-Transfer-Encoding:HEncoding method for message body ‘
‘Content-Type: HType and format of the message content\

Figure 19.10 Messages headers added by MIME

Centre for Distance Education 19.14 Acharya Nagarjuna University

Content-Transfer-Encoding defines how non-ASCII data is encoded for safe transmission
over SMTP (which was originally 7-bit).

Common encoding methods include:
e 7-bit ASCII: For plain text
e 8-bit: For extended character sets
e Binary: For raw binary files (e.g., executables)
e Base64: Encodes binary data as ASCII characters (common for attachments)
¢ Quoted-Printable: Efficient for mostly text messages with occasional special
characters

The Content-Type header describes the nature and structure of the message body

Type Example Subtypes Description

text plain, html, xml, css Text content in various formats
image gif, jpeg, tiff Still images

audio basic, mpeg, mp4 Sound data

video mpeg, mp4, quicktime |Moving pictures

model Vrml 3D models

applicationpdf, javascript, zip Application-specific data
message |http, rfc822 Encapsulated messages
multipart mixed, alternative, digestMessages with multiple parts

Figure 19.11 Message headers added by MIME

Multipart Messages
MIME’s multipart type enables a single message to contain multiple parts, such as a text
message with image or document attachments.

e multipart/mixed: Combines different types (e.g., text + attachments).
e multipart/alternative: Same message in different formats (e.g., plain text and HTML).
e multipart/parallel: For synchronized data (e.g., audio and video).
e multipart/digest: Collection of multiple messages (e.g., mailing list summaries).
Example
A birthday greeting email might be sent as a multipart/alternative message — one part

containing an HTML message and another an audio file (audio/basic). If the recipient’s system
supports audio playback, it plays the sound; otherwise, the HTML text is displayed.

19.6 SUMMARY

This chapter covers DNS and electronic mail, two critical Internet services. DNS translates
human-readable domain names into [P addresses, using a hierarchical name space, resource
records, and distributed name servers for resolution. Electronic mail involves a layered
architecture with a user agent, mail servers, and defined message formats. Messages are
transferred between servers and ultimately delivered to recipients, providing reliable and
standardized communication across the Internet.

Computer Networks 19.15 DOMAIN NAME SYSTE AND EMAIL

19.7 TECHNICAL TERMS
Domain Name System, IP address, Email

19.8 SELF ASSESSMENT QUESTIONS
Essay questions:

Explain the DNS name space and hierarchical structure.

Describe DNS resource records and the function of name servers.
Discuss the architecture and services of electronic mail.

Explain message formats and the process of message transfer.
Describe final delivery of email and the role of various mail servers.

MRS

Short Questions:

What is the purpose of DNS?

Define the DNS name space.

What are resource records in DNS?

Name the main components of an email system.
What is the role of the user agent in email?

M

19.9 FURTHER READINGS

1. Andrew S. Tanenbaum, “Computer Networks”, Fourth Edition, PHI.

2. James F.Kurose, Keith W.Ross, “Computer Networking”, Third Edition, Pearson
Education

3. Behrouz A Forouzan, “Data Communications and Networking”, Fourth Edition, TMH
(2007)

4. Michael A. Gallo, William M. Hancock, “Computer Communications and
NetworkingTechnologies”, Cengage Learning (2008)

Mrs. Appikatla Pushpa Latha

LESSON- 20
THE WORLD WIDE WEB AND MULTIMEDIA

OBJECTIVES:
After going through this lesson, you will be able to

= Understand the architecture of the World Wide Web (WWW).

= Learn the difference between static and dynamic web documents.

= Study the HTTP protocol and web performance enhancements.

= Understand the basics of digital audio and video in networking.

= Learn multimedia applications such as streaming, Internet radio, VoIP, and video
on demand

STRUCTURE OF THE LESSION:

20.1 INTRODUCTION

20.2 ARCHITECTURAL OVERVIEW

20.3 STATIC WEB PAGES

204 DYNAMIC WEB PAGES AND WEB APPLICATIONS
20.5 HTTP- THE HYPERTEXT TRANSFER PROTOCOL
20.6 THE MOBILE WEB

20.7 WEB SEARCH

20.8 SUMMARY

209 TECHNICAL TERMS

20.10 SELF-ASSESSMENT QUESTIONS

20.11 FURTHER READINGS

20.1 INTRODUCTION

The Web, often referred to as the World Wide Web, is a vast architectural framework
designed to allow seamless access to interconnected content distributed across millions of
machines around the globe. In a remarkably short span of just ten years, it transformed from a
tool to support scientific collaboration in high-energy physics research to the primary
application that many people now equate with the entire Internet. Its widespread adoption and
massive popularity are largely due to its user-friendly interface and the ability it provides
users to navigate an immense wealth of information in a highly visual and intuitive manner.
Regardless of the topic—ranging from animals like aardvarks to distant cultures such as the
Zulus—the Web offers accessible and engaging content to users with even minimal technical
expertise.

The origin of the Web can be traced back to 1989 at CERN, the European Center for Nuclear
Research. At the time, the primary motivation was to facilitate collaboration among large,

Centre for Distance Education 20.2 Acharya Nagarjuna University

geographically dispersed teams of scientists working on complex particle physics
experiments. These teams produced and needed to access a growing collection of evolving
documents such as reports, diagrams, drawings, and photographs. Tim Berners-Lee, a
physicist at CERN, proposed a system of linked hypertext documents to address this
challenge. Within 18 months, a basic, text-only prototype of the system was operational,
allowing users to navigate linked documents with ease. The concept was formally presented
at the Hypertext '91 conference, where it captured the interest of researchers beyond the
physics community. This exposure eventually led to the development of Mosaic—the first
graphical web browser—by Marc Andreessen at the University of Illinois, which was
released in February 1993.

The release of Mosaic marked a major turning point in the Web's evolution. Its graphical
interface made the Web dramatically more appealing to the general public and significantly
lowered the barrier to entry for new users. Mosaic’s success led Andreessen to leave the
university and establish Netscape Communications Corporation, a company aimed at
commercializing Web software. What followed was the infamous "browser war" of the mid-
1990s, a fierce competition between Netscape Navigator and Microsoft Internet Explorer.
Both companies raced to release new versions of their browsers, each introducing a flood of
features—often at the expense of stability and security—in their bid to dominate the new
digital frontier.

As the Web matured through the late 1990s and 2000s, the number of Web pages and
websites expanded exponentially. What had started as a relatively modest system of linked
documents quickly exploded into a sprawling ecosystem of billions of pages. Among these, a
select group of websites gained immense popularity and helped shape how users interacted
with the Web. Companies such as Amazon, which began in 1994 as an online bookstore and
later expanded to become a global e-commerce giant, and eBay, founded in 1995 as a digital
flea market, emerged as early success stories. Google, which was founded in 1998 by two
Stanford students, Sergey Brin and Larry Page, revolutionized online search and quickly
became one of the most valuable companies in the world. Social networking also found its
footing on the Web, with Facebook—Ilaunched in 2004 by Harvard student Mark
Zuckerberg—quickly growing into a global social media powerhouse. These platforms not
only defined the user experience of the Web but also shaped global communication,
commerce, and culture in profound ways.

The late 1990s also saw the rise and fall of countless Web-based startups in what became
known as the dot-com era. During this time, companies with little more than an idea and a
catchy domain name attracted enormous investment and skyrocketed in value, only to
collapse soon after when their business models proved unsustainable. Despite this turbulent
period, the Web continued to evolve, and new innovations continued to emerge—often from
student-led initiatives and academic projects. The Web proved to be an open arena for
creativity and disruption, with the potential to turn a simple idea into the next big thing on a
global scale.

To ensure the continued growth and interoperability of the Web, CERN and the
Massachusetts Institute of Technology (M.L.T.) signed an agreement in 1994 to establish the
World Wide Web Consortium (W3C). This organization, directed by Tim Berners-Lee, was
tasked with developing Web standards, promoting universal protocols, and fostering
compatibility across the global Web ecosystem. Over the years, W3C has grown to include

Computer Networks 20.3 THE WORLD WIDE AND WEB...

hundreds of universities, research institutions, and commercial companies, all contributing to
the ongoing development of the Web.

20.2 ARCHITECTURAL OVERVIEW

The Web presents itself to users as an enormous and interconnected repository of
information, encompassing millions of web pages hosted across servers all over the world.
Each of these pages, often referred to simply as “pages,” can include embedded references, or
links, to any other pages, whether they reside on the same server or one located on the
opposite side of the globe. Users interact with this system through a simple mechanism:
clicking on hyperlinks, which initiates the process of retrieving and displaying the linked
page, enabling a seamless browsing experience. This model of interconnected pages, now
called hypertext, was conceived by Vannevar Bush in 1945, decades before the actual
implementation of the Internet. His visionary idea was based on the notion of information
retrieval and navigation through related documents, which became a reality only with the
development of modern computer networks.

Users access and navigate web content using programs known as browsers—examples
include Firefox, Chrome, and Internet Explorer. These browsers are responsible for fetching
requested pages from remote servers, interpreting their contents, and rendering them in a
visually coherent manner for users. The content retrieved might consist of a mixture of text,
images, video, and interactive scripts, giving each web page a rich and dynamic nature. A
graphical representation of a page—such as the homepage of the Computer Science &
Engineering department at the University of Washington—typically displays a combination
of text and images, some of which are configured as hyperlinks. When users click on these
hyperlinks, the browser initiates a request to retrieve the corresponding target page, providing
an interactive and intuitive method of exploration. The hyperlink could appear as underlined
text, a button, an image, or even a dynamic visual element that changes when hovered over
with a mouse. The choice of how the link appears is entirely up to the web page designer, and
thoughtful design is crucial to ensure users understand what is clickable.

Web navigation is designed to be transparent to the user. A page might contain content that
originates from multiple servers, and the browser’s job is to integrate all this data into a
single unified display. This process is illustrated in an example involving the
cs.washington.edu homepage, where the page includes not just university content, but also an
embedded video served by youtube.com and analytics information fetched from google-
analytics.com. All these elements come together in the browser’s rendering process without
requiring the user to know or do anything about their distinct origins. This integration of
content from multiple servers is made possible through a well-defined communication
protocol known as HTTP—HyperText Transfer Protocol. HTTP operates over TCP and is a
simple, text-based request-response mechanism. When a user navigates to a page, the
browser sends an HTTP request to the relevant server(s), which then respond with the
requested content. This content might be static or dynamic. A static page is one that remains
the same for all users, whereas a dynamic page changes based on user interaction,
preferences, or data retrieved at the time of the request.

| Centre for Distance Education 20.4 Acharya Nagarjuna University

B ooe g s S 4 gy it TR\
g g) \ Document
1 Program

\
W‘w \
’ Computer Sc<ce w.. s \ Database

| HTTP Request

7 =) HTTP Response Web server

“ Web www.cs.washington.edu
gra: \

e - "'*'-"{ biscecrin- google-analytics.com
Lo A Aohermat o B Cumen §5de W
e ———"

Figure 20.1 Architecture of the Web

Dynamic pages enable personalized experiences, which is increasingly important in the
modern Web. For instance, when a user visits an online bookstore, the front page might adapt
itself based on their past purchases. A reader who frequently buys mystery novels will likely
see new thrillers featured prominently, while another interested in cooking might be greeted
by the latest cookbooks. This customization is achieved through mechanisms such as cookies,
which help the website remember user preferences and tailor content accordingly. This
personalization capability is a key reason behind the Web’s effectiveness as a medium for e-
commerce, education, and entertainment.

As web pages become more complex and feature-rich, the browser must handle not just the
basic task of rendering static documents, but also executing scripts, interacting with media
content like videos, and incorporating data from third-party services. For instance, an
embedded video from YouTube might play directly within a page hosted by a university,
while analytics scripts running invisibly in the background collect data about how the user
interacts with the site. These behind-the-scenes processes contribute to both the functionality
and the business models of many modern websites. The seamless integration of varied
content and the use of user behavior tracking tools exemplify the evolving sophistication of
the Web. In this way, the Web remains not only a platform for accessing information but also
a dynamic environment for interaction, customization, and innovation.

Client side

A Web browser is a specialized program designed to display web pages and manage user
interactions such as mouse clicks on hyperlinks. When a user clicks on a link, the browser
interprets the selected element as a command to fetch the target page, initiating a series of
behind-the-scenes processes. These processes ensure that the appropriate content is retrieved
from the correct location and presented in a readable, interactive format. This seemingly
simple operation involves several critical steps and systems working in unison, especially

Computer Networks 20.5 THE WORLD WIDE AND WEB...

given the complexities of naming and locating information in a globally distributed network
like the Web.

At the core of web navigation is the need to name and locate web pages unambiguously. This
challenge arises because merely assigning unique identifiers to web pages is insufficient; one
must also be able to locate the resource and determine how to access it. To illustrate, a person
in the United States may have a unique social security number, which serves as an identifier.
However, without an address or communication language, knowing this number alone
provides little actionable information. The Web faces a parallel dilemma. It's not enough to
uniquely identify a page; there must also be mechanisms to locate it and determine the
protocol for retrieval and communication.

The solution to this tri-fold problem lies in the concept of the Uniform Resource Locator, or
URL. A URL encapsulates all three critical components necessary to locate and retrieve a
web resource. First, it includes the protocol to be used for accessing the resource, such as
HTTP. Second, it specifies the DNS name of the machine hosting the resource. Third, it
includes a path to the specific file or application on the host machine. For instance, the URL
http://www.cs.washington.edu/index.html breaks down into the HTTP protocol, the domain
name of the host server, and the path to the file being requested. The path may appear
hierarchical, reflecting a directory structure, though this is not strictly enforced and its
interpretation is left to the server's configuration.

When a user selects a hyperlink, the browser undergoes a structured sequence of actions to
retrieve the associated page. First, it extracts the URL of the selected hyperlink. Then, it
contacts the Domain Name System (DNS) to resolve the domain name—Ilike
www.cs.washington.edu—into its corresponding IP address. Upon receiving the IP address
(e.g., 128.208.3.88), the browser initiates a TCP connection to that address on port 80, which
is the standard port for HTTP. Once the connection is established, the browser sends an
HTTP request to the server, asking for the specific resource—in this case, /index.html.

The server responds by transmitting the requested page as an HTTP response. If the retrieved
page contains embedded references to other resources, such as images, scripts, or videos, the
browser initiates additional HTTP requests to fetch those as well. These additional resources
might come from the same server or entirely different domains. For example, the page might
include images hosted on the same university server, a video from YouTube, and tracking
scripts from Google Analytics. All of these are fetched in parallel by the browser and
integrated seamlessly into the final display. Once all necessary components are retrieved, the
browser renders the page for the user to view. After a brief idle period without further
requests, the TCP connections are typically released to free up resources.

Modern browsers often display real-time feedback about these steps in a status bar or loading
indicator. This transparency helps users understand performance issues, such as whether
delays are due to DNS lookup problems, server unavailability, or slow data transfer. The
structured and modular nature of URL design makes it easy to support multiple protocols, not
just HTTP. Over time, the URL schema has been extended to accommodate a variety of
resource types and access methods.

http://www.cs.washington.edu—into/

Centre for Distance Education 20.6 Acharya Nagarjuna University

In addition to HTTP, other common URL protocols include HTTPS for secure
communication, FTP for file transfers, FILE for accessing local files, and MAILTO for
initiating email composition. For instance, HTTPS provides encrypted data transfer and is
used extensively by banks and e-commerce platforms to protect sensitive information. FTP is
a legacy protocol used for downloading files from public repositories, and the Web provides
a graphical interface to these resources, simplifying access compared to traditional command-
line clients. The FILE protocol allows browsers to render local HTML files directly from a
user’s device, bypassing the need for a web server. MAILTO links facilitate the sending of
emails directly from web pages by launching the user’s default mail client pre-filled with a
recipient address.

There are also protocols designed for media streaming and communication. RTSP (Real-
Time Streaming Protocol) is used for establishing and controlling media streams, such as
video or audio, while SIP (Session Initiation Protocol) is used for initiating and managing
multimedia communication sessions, including voice and video calls. Browsers also use
special schemes like ABOUT to display internal information. For example, about:plugins
shows details about installed plugins that handle specific types of content. These additional
protocols extend the capabilities of URLs far beyond simple page retrieval, unifying many
internet-based services within the familiar interface of a web browser.

The Web's reliance on URLs as a universal addressing system integrates a wide array of
services and protocols into a single, cohesive user experience. This unified approach
eliminates the need for separate user interfaces for various services, such as email clients,
FTP applications, or streaming players. The browser becomes a one-stop portal to the entire
Internet, dramatically enhancing usability and accessibility. This elegant design was the
brainchild of Tim Berners-Lee, a British physicist working at CERN in Switzerland, whose
idea ultimately revolutionized the way information is accessed and shared.

Despite its strengths, the URL system has a notable limitation: it ties a resource to a specific
location, which can be inefficient or impractical in certain contexts. For example, high-
demand pages might benefit from being hosted in multiple locations worldwide to balance
traffic and reduce latency. However, traditional URLs cannot express a request for a resource
irrespective of its location. This leads to a challenge where users are forced to access a
specific server, even if a nearby server could serve the same content more efficiently.

Name | Used for , Example
 http | Hypertext (HTML) | http://www_ee.uwa.edu/~rob/
. https . Hypertext with security ‘ hitps://www_bank.com/accounts/
fip | FTP | ftp:/iftp.cs.vu.nl/pub/minix/README
file | Local file | file:///usr/suzanne/prog.c
mailto | Sending email mailto:JohnUser @ acm.org
nsp | Streaming media , rtsp://youtube.com/montypython.mpg |
| sip Multimedia calls sip:eve @adversary.com
| about Browser information about:plugins

Figure 20.2 Some common URLschemes

Computer Networks 20.7 THE WORLD WIDE AND WEB... |

To address this limitation, the concept of Uniform Resource Identifiers (URIs) was
introduced. URIs generalize URLs by distinguishing between two classes: locators and
names. URLs, which we’ve been discussing, are a subset of URIs that specify how to locate a
resource. Uniform Resource Names (URNs), on the other hand, provide a unique name for a
resource without specifying where or how to retrieve it. This abstraction allows for more
flexible and distributed architectures where the resolution of a name to a location can happen
dynamically. The formal syntax and usage of URIs are specified in RFC 3986, and the list of
registered URI schemes is maintained by the Internet Assigned Numbers Authority (IANA).
Although many URI schemes exist, the protocols listed earlier continue to dominate the Web
due to their widespread support and integration.

In summary, the Web browser operates as a sophisticated and flexible client capable of
retrieving, interpreting, and displaying a wide variety of content from diverse sources. Its
reliance on the URL system enables precise, universal access to resources while remaining
open to further extensions and protocols. This architecture supports a broad range of use
cases—from simple static pages to dynamic, interactive applications—and continues to
evolve as the foundation of the modern Internet experience.

The MIME type

To ensure that browsers can correctly display web pages, it is crucial that they understand the
format in which the content is delivered. This is achieved through a standardized language
known as HTML (HyperText Markup Language), which has become the universal language
of the web. HTML defines the structure and layout of a web page using various tags and
elements. Although web browsers primarily serve as HTML interpreters, they are equipped
with many additional features to facilitate smooth navigation. For example, users can easily
move back to previously viewed pages, advance to the next pages, return to their home page,
or manage bookmarks for future reference.

Web pages are no longer restricted to just text and hyperlinks. They may also contain videos,
PDFs, images, songs, and many other types of multimedia files. As a result, browsers often
encounter files they do not inherently know how to display. To manage this, web servers send
supplementary information along with each file, including the MIME (Multipurpose Internet
Mail Extensions) type. The MIME type tells the browser what kind of file it is dealing with,
such as text/html for an HTML document, image/jpeg for a photo, or application/pdf for a
PDF. If a browser encounters a MIME type it cannot interpret on its own, it refers to an
internal table to find the correct way to handle the file. This table maps MIME types to either
plug-ins or helper applications that extend the browser’s capabilities.

Plug-ins are small software modules that integrate directly into the browser and run within its
process space. They allow browsers to display or interact with content types they do not
natively support. For instance, plug-ins exist for displaying PDF documents or playing
embedded videos. These plug-ins must implement a specific set of functions that the browser
can invoke to pass the data for rendering. Conversely, the browser provides certain services
that plug-ins can call, such as memory allocation or user messaging. Plug-ins are typically
installed manually by users, who download them from the web and register them with the
browser. Many browsers come with commonly used plug-ins pre-installed to save users time
and effort.

Centre for Distance Education 20.8 Acharya Nagarjuna University

Helper applications, unlike plug-ins, operate as separate programs outside the browser. When
a browser encounters a file it cannot display directly, it may launch a helper application to
handle the content. For example, clicking on a PowerPoint file might open Microsoft
PowerPoint to display it. Helper applications receive the name of a temporary file from the
browser and handle the rendering independently. These applications often correspond to
specific MIME types, such as application/vnd.ms-powerpoint for PowerPoint files. Since
these helpers are independent programs, they are usually more powerful and complex than
plug-ins and are not limited by the browser's environment.

Helper
application

| Browser Plug-in/ | Browser /

Process

;

Process

- .

o]

(a) (b)
Figure 20.3 A browser plug-in A helper application

Browsers can support an unlimited variety of file types through the use of MIME-type
associations. Web servers are typically configured with hundreds of type and subtype
combinations to accommodate the wide variety of content available online. However,
complications can arise when multiple programs register for the same MIME type. In such
cases, the last program installed often overwrites the previous association, potentially
changing how the browser handles a particular type of file. This can be inconvenient and
confusing for users, especially if a preferred application is suddenly replaced.

Browsers are also capable of opening local files, without involving any network
communication. In such cases, the browser relies on the file extension to determine the
MIME type, which is mapped to a specific plug-in or helper application. For instance, a file
named report.pdf might automatically open in the browser using a PDF plug-in, while
document.doc might launch Microsoft Word as a helper application. However, the same
issues with conflicting file associations can arise here as well, with newly installed programs
potentially hijacking file types during installation. Advanced installation programs often
allow users to select which MIME types they wish to associate with the application, while
simpler installations aimed at non-technical users may seize control of all supported types
without asking.

While the flexibility to extend browser functionality is valuable, it also introduces significant
security risks. For example, if a browser automatically executes an .exe file upon download,
it could open the door to malicious attacks. A deceptive web page could present seemingly
harmless images or videos that, when clicked, actually trigger the download and execution of
harmful software. To mitigate this, most modern browsers, especially Firefox and Chrome,
are configured to be cautious when dealing with unknown file types. They generally require
explicit user confirmation before executing any downloaded program. Nonetheless, some
users may prioritize convenience over caution, potentially exposing their systems to malware
and other threats.

Computer Networks 20.9 THE WORLD WIDE AND WEB...

This complex yet powerful system of MIME types, plug-ins, and helper applications allows
modern browsers to handle an incredibly diverse range of content types seamlessly. However,
it also demands awareness and careful configuration from users to maintain a secure and
reliable browsing experience.

The Server Side

When a user enters a URL or clicks on a hyperlink in a web browser, the browser first parses
the URL and identifies the section between “http://” and the next slash as the domain name. It
then performs a DNS lookup to retrieve the IP address corresponding to that domain. Using
this IP address, the browser establishes a TCP connection to the web server, typically on port
80. It sends an HTTP command containing the rest of the URL, which is essentially the path
to the specific file or page on the server. Upon receiving this command, the server processes
it and returns the requested content, allowing the browser to display it. This process is
fundamentally similar to a simple server loop that accepts TCP connections, retrieves files
based on provided paths, sends them over the network, and then releases the connection. For
dynamic content, instead of fetching a static file, the server may execute a program to
generate the content dynamically. While this simple model works, modern web servers are
designed with more sophistication to handle the heavy demand of multiple concurrent
requests and to optimize performance.

One of the main limitations of the basic design is that disk access tends to be a major
bottleneck. Disk operations are far slower compared to the speed of CPU executions, and if
the same files are accessed repeatedly, relying on the disk for every request becomes highly
inefficient. Additionally, handling one request at a time is inadequate for high-traffic
environments, especially if a large file is being transmitted and other requests are blocked
until the transfer completes. To address this, modern servers implement caching mechanisms
that store the most frequently or recently accessed files in main memory. Before attempting a
disk read, the server checks the cache. If the requested content is found in memory, it is
served directly, which significantly reduces response time and system load. Although
maintaining and managing a cache requires additional memory and logic, the performance
benefits far outweigh the associated costs.

To further enhance performance and support multiple concurrent clients, web servers often
adopt a multithreaded architecture. In one such design, the server consists of a front-end
module responsible for accepting requests and several processing modules that handle the
actual request processing. All these threads run within the same process and can access
shared memory resources, such as the cache. When a new request arrives, the front end
accepts it and hands off a descriptor of the request to an available processing module. This
module then checks the cache, retrieves the file if it is cached, or initiates a disk read if it is
not. Once retrieved, the content is both added to the cache and sent back to the client. The
major advantage of this multithreaded setup is that while some threads are blocked waiting
for disk or network operations to complete, others can continue processing new incoming
requests. With multiple processing threads, the server’s throughput can improve significantly,
although actual performance gains also depend on hardware constraints such as disk speed
and network bandwidth.

Centre for Distance Education 20.10 Acharya Nagarjuna University

Modern web servers go beyond merely fetching files from disk and returning them. The
processing of HTTP requests can be quite involved, depending on the nature of the request.
Once a TCP connection is established, often accompanied by secure transport mechanisms
such as SSL or TLS, the server executes a sequence of processing steps. The first task is
resolving the name of the requested resource. This may not be a literal filename but a
symbolic URL that requires translation into an actual file path using configured rules. For
instance, a request to a domain with an empty path often defaults to loading a file like
“index.html,” and URLs referencing a user directory might be mapped to that user’s web
folder. Some web servers also tailor content delivery based on browser preferences and
language settings to serve a more customized experience.

I Processing Ty
I module
' (thread)
|
]

Request

Response

Client

i

|
I
I
I
I
|
|
I
Cache |== :
I
|
I
I
I
I
|
|
I

Figure 20.4 A multithreaded Web server with a font end processing modules

Access control is another important aspect of request processing. Not all resources are meant
to be publicly available. The server evaluates whether the requesting client is authorized to
access the requested content. This decision might rely on authentication methods such as
usernames and passwords, or be based on the client’s IP address or domain. Configuration
files like “.htaccess” are commonly used in systems like Apache to define access rules for
directories and pages. After confirming access rights, the server determines whether the
requested page can be served from the cache. For dynamically generated pages, caching
might be avoided to ensure fresh output is delivered. In such cases, input parameters for
dynamic programs are extracted from the URL or HTTP request.

Following this, the server decides on additional elements of the HTTP response. One such
element is the MIME type, which indicates the nature of the content being served. The MIME
type can be inferred from the file extension, initial content of the file, configuration settings,
or other heuristics. Once this metadata is determined, the server sends the response back to
the client. To improve efficiency, a persistent TCP connection may be used for multiple
requests between the client and server, requiring the server to map responses appropriately.
Finally, the server logs the transaction, capturing details that can later be analyzed for system
management, security, or understanding user behavior. These logs are invaluable for tracking
usage patterns and optimizing content delivery strategies.

Cookies
In the early stages of the web, each interaction between a user's browser and a web server was

entirely independent, with no mechanism for maintaining continuity between visits. When a
user requested a web page, the server would respond with the requested data and then forget

Computer Networks 20.11 THE WORLD WIDE AND WEB...

everything about the client, effectively treating each request as if it came from a completely
new visitor. This stateless model was sufficient for browsing publicly available documents
but proved inadequate for more complex interactions that required maintaining context across
multiple requests. For example, websites that required user registration or payment needed a
way to distinguish between returning users and new visitors. Similarly, e-commerce sites had
to keep track of what a user placed in their shopping cart as they browsed, and personalized
portals needed a mechanism to show tailored content based on user preferences. This raised
the need for a method to persist user information between multiple interactions, without
relying on unreliable or insecure methods like tracking IP addresses, which could be shared
among multiple users or change frequently due to technologies like NAT and DHCP.

To address this challenge, web developers introduced cookies—small pieces of data sent
from a web server to a user's browser, which the browser stores and sends back with future
requests to the same server. Cookies enable servers to maintain stateful information about
users across multiple interactions. These cookies are just strings, limited in size (usually up to
4 KB), and stored on the client’s disk, often persisting even after the browser is closed, unless
they are explicitly deleted or marked as nonpersistent. While they are not executable and
generally considered safe, malicious actors can exploit browser vulnerabilities to misuse
them. A typical cookie includes several fields such as the domain from which it originated, a
path indicating the portion of the site it applies to, a name-value pair for storing custom
information, an expiration date that determines whether it is persistent or not, and a secure
flag indicating that it should only be sent over encrypted connections like HTTPS.

Cookies serve a wide variety of purposes. For instance, a gambling site might assign a unique
customer ID to each user through a cookie, enabling the server to present personalized game
options on return visits. An online store could use cookies to track items placed in a shopping
cart as the customer browses, adding each item’s product code to the cookie and updating it
dynamically. When the user proceeds to checkout, the full shopping list is already known to
the server via the cookie. A web portal could store user preferences for news categories, stock
tickers, or sports teams in a cookie so that a personalized homepage can be quickly generated
on subsequent visits. Since cookies are returned with every request to their originating
domain, they provide a convenient way for servers to recall previous interactions without
storing large amounts of user-specific data on the server itself.

However, the power of cookies also leads to significant privacy concerns, particularly when
they are used for tracking users across multiple websites. Advertising networks often embed
cookies in seemingly unrelated websites by including their content—Ilike image ads—hosted
on their own servers. When a user visits any such website, their browser fetches the ad image
and receives a tracking cookie from the advertising server. As the user browses to different
sites using the same advertising network, the cookie is sent again, allowing the ad network to
build a comprehensive profile of the user’s browsing habits. Over time, this can reveal a
surprising amount of personal information. If the user ever provides identifying information,
such as their name or email, to any site cooperating with the tracker, the anonymous
browsing data can be linked to a real-world identity and potentially sold or misused.

One particularly stealthy tracking method involves invisible elements such as 1x1 pixel
images (often called tracking pixels) that are the same color as the background and thus not
visible to users. Despite being imperceptible, these elements function like any other content:

Centre for Distance Education 20.12 Acharya Nagarjuna University

they must be fetched from a server, which enables that server to drop or read cookies from
the user’s browser, further enhancing its ability to track user behavior. Because of this,
cookies—especially third-party cookies set by domains other than the one the user is actively
visiting—have become a flashpoint in discussions about digital privacy. Many users are
unaware that such extensive tracking is even happening, leading to calls for greater
transparency and control.

To mitigate these issues, browsers offer various privacy settings. Some users choose to block
all cookies, though this can interfere with legitimate website functionality such as login
sessions or shopping carts. A more common approach is to block only third-party cookies,
which helps to prevent cross-site tracking while allowing necessary cookies from the main
site to function properly. Additionally, browser extensions and privacy tools give users more
granular control over which cookies are accepted and retained. In response to growing
concerns, companies have begun drafting privacy policies that purport to limit data sharing,
though such policies are often vague and self-serving. The statement that a company may use
collected data “in the conduct of our business” can include a wide range of activities,
including selling personal information to third parties. Ultimately, while cookies play a
critical role in enabling many of the web’s most useful features, their potential for abuse
continues to fuel ongoing debates about how to balance functionality with user privacy.

20.3 STATIC WEB PAGES

The fundamental operation that underlies the World Wide Web is the transfer of web pages
from servers to clients, typically initiated when a user clicks a hyperlink or enters a URL in
their browser. This client-server interaction enables users to access a vast array of online
content. In the simplest and earliest implementation of this model, the pages delivered from
the server are static. A static web page is a fixed file residing on a web server that is
transmitted to the client exactly as it is stored, without any modification or interaction with
back-end databases or scripts. When a user requests such a page, the server simply reads the
file from its disk and sends it to the browser, where it is rendered and displayed. Every time
the page is requested, the server provides the same content, making the experience identical
for all users and consistent across time—unless the actual file on the server is manually
updated by the webmaster or administrator.

Despite the term "static," these pages are not necessarily dull or limited in functionality.
Static web pages can include rich media elements such as images, animations, audio, and
even video content that is embedded within the page. These elements can be interacted with
or played back on the client side through the browser’s built-in capabilities or plugins.
Therefore, even though the underlying page does not change dynamically with user input or
real-time data, it can still offer an engaging experience. Many educational, informational, and
personal websites rely on static content for simplicity, security, and ease of maintenance,
especially when the content does not require frequent updates or user interaction.

The primary language used to build and structure these static pages is HTML, or HyperText
Markup Language. HTML is the foundational markup language of the Web, used to define
the structure, layout, and content of web documents. It allows developers to organize text,
insert links, include images, and apply formatting using tags and attributes. For instance, a
basic HTML document includes elements like headings, paragraphs, tables, and lists, all of
which help to present information in a readable and organized manner. HTML is

Computer Networks 20.13 THE WORLD WIDE AND WEB...

complemented by CSS (Cascading Style Sheets) for styling and JavaScript for adding
interactivity, but in a purely static site, JavaScript is often minimal or completely absent.

Static HTML pages are especially common among personal websites, academic homepages,
and other sites where the content remains relatively unchanged over time. For example, a
university professor’s homepage might consist of a static HTML file listing their research
interests, published papers, office hours, and contact information. Such a page doesn’t require
server-side logic or databases because the content is straightforward and updates only
occasionally. Static pages are also favored for their simplicity, faster loading times, and better
security posture compared to dynamic pages, which involve more complex backend
infrastructure and are more susceptible to vulnerabilities like SQL injection or cross-site
scripting.

On the other hand, corporate websites, commercial platforms, and modern web applications
typically rely on dynamic content to deliver personalized, interactive, and real-time
experiences. These pages are generated on the fly by server-side scripts and can change based
on user behavior, preferences, and current system data. While static HTML is sufficient for
many use cases, it forms only the foundational layer of web development. As user
expectations and the complexity of online services have evolved, the need for dynamic and
responsive content has become more pronounced, leading to the widespread adoption of
dynamic web technologies. Nonetheless, understanding static HTML remains essential for
grasping how the web functions at its most basic level and serves as a critical stepping stone
toward learning more advanced topics such as dynamic content generation, scripting, and
web services.

HTML - Hyper Text Markup Language

HTML, or HyperText Markup Language, was developed specifically for the Web to enable
users to create documents that are not only text-based but also rich with multimedia and
interactivity. These documents, called web pages, can include a variety of elements such as
formatted text, graphics, videos, and links to other web resources. As a markup language,
HTML focuses on structuring content and defining how it should be displayed by a browser.
The term “markup” itself originates from the traditional publishing industry, where editors
would annotate manuscripts with instructions for typesetters on how the text should appear in
print. Similarly, HTML embeds formatting instructions within the document itself. For
example, placing before and after a word will instruct the browser to render it in
bold. This structured formatting makes it easy for any web browser to interpret the HTML
content and render it appropriately, regardless of the device or display size.

One of the primary strengths of HTML is that it separates content from its presentation.
Instead of hardcoding visual details directly into the content, HTML uses tags that tell the
browser how to present the material. This allows for greater flexibility and consistency,
especially as web pages must adapt to a variety of screen sizes and devices—from high-
resolution desktops to compact mobile phones. Because HTML uses standard tags and
follows a universal structure, any modern browser can read and display content accurately
even if it was written years ago or by someone using a completely different device. This
compatibility is essential for the Web to function smoothly on a global scale. Writing HTML
can be done manually using a simple text editor, but there are also specialized HTML editors

Centre for Distance Education 20.14 Acharya Nagarjuna University

and web design tools that simplify the process by generating code automatically as the user
designs a page visually.

HTML tags can also include attributes, which provide additional information about how the
element should behave or appear. For instance, the tag is used to embed images and
often includes attributes like src for the image source URL and alt for alternate text in case
the image cannot be displayed. Attributes are always named and can be listed in any order
within the tag. Because the HTML standard allows for flexibility, tags can be written in either
uppercase or lowercase, although lowercase is generally preferred for compatibility. Extra
spaces, line breaks, and indentation in the HTML code do not affect how the browser renders
the content, which makes it easier for developers to format their code for readability.

HTML also includes tags for creating lists and hyperlinks, two features that are central to the
Web's functionality. Unordered lists, which appear as bulleted points, are created using the
 tag with individual items wrapped in tags. Ordered lists, which appear numbered,
use the tag instead. Hyperlinks, which allow users to navigate from one page to another,
are created using the <a> tag with the href attribute pointing to the destination URL.

The clickable text appears between the opening <a> and closing tags. Hyperlinks can
even be wrapped around images or other elements to create interactive buttons and visual
links. Additional tags like <h1> to <h6> define heading levels, while and <i> are used
for bold and italic text, respectively. Tags like <p> begin a new paragraph, and although an
ending </p> is technically required, many browsers will handle its omission gracefully.

<html>
<head> <title> AMALGAMATED WIDGET, INC. </title> </head>
<body> <h1> Welcome to AWI's Home Page </h1>

We are so happy that you have chosen to visit Amalgamated Widget's
home page. We hope <i> you </i> will find all the information you need here.
<p>Below we have links to information about our many fine products.
You can order electronically (by WWW), by telephone, or by email. </p>
<hr>
<h2> Product information </h2>

 Big widgets
 Little widgets

<h2> Contact information </h2>

 By telephone: 1-800-WIDGETS <«/li>
 By email: info @amalgamated-widget.com

</body>
</html>

Computer Networks 20.15 THE WORLD WIDE AND WEB...

Welcome to AWI's Home Page

0,

]

Ra o

We are s0 happy that you have chosan lo visit Amalgamated Widget's home page. We hopea
you will find all the information you need hare.

Below we have links to information about our many fine products. You can order alectronically
(b WA, by telephane, or by amail.

Product Information
» Bl widgels
= Little widgels

Contact information
« By telephone: 1-800-WIDGETS
= By email: info@amalgamated-widgel.com

Figure 20.5 (a) The HTML for a sample Web page(b) The formatted page

Over time, HTML has evolved through several versions to support new capabilities. Early
versions such as HTML 1.0 and 2.0 provided only basic functionality—text formatting, links,
and images. With HTML 3.0, tables and more advanced formatting became possible. HTML
4.0 added features like accessibility support for users with disabilities, object embedding
(extending beyond simple images), and scripting capabilities using JavaScript. HTML 5, the
most recent major standard, marked a significant shift. It introduced support for rich media,
including native video and audio playback without requiring external plugins. It also added
capabilities for interactive graphics through vector-based drawing (using <canvas>), offline
storage, background computational threads, and better support for complex application-like
behavior directly in the browser. HTML 5 reflects the web's evolution from static document
sharing to fully interactive applications that run in the browser and rival traditional desktop
software.

One particularly valuable aspect of HTML is its backward compatibility and openness. A
web page created years ago using basic HTML will still display correctly in modern
browsers, thanks to the consistent and well-documented behavior of HTML tags. For users or
developers interested in learning HTML, most browsers include a “View Source” option,
allowing anyone to examine the HTML code behind any webpage. This transparency and
simplicity helped HTML become one of the most widely understood and utilized languages
in the world. Its open nature, combined with continued improvements and the ability to
integrate with technologies like CSS and JavaScript, ensures HTML remains the foundation
of modern web development, empowering both novice users and professional developers to
build and share content across the globe.

Inputs and Forms
HTML initially allowed users to passively view content, but as the web evolved, it became

necessary for users to interact with web pages, sending information such as search queries,
registration data, or purchase orders back to the server. This functionality marked the

Centre for Distance Education 20.16 Acharya Nagarjuna University

transition from a one-way to a two-way communication model. To enable this, two key
elements were introduced: first, the HTTP protocol was enhanced to support methods like
POST, which allows data to be submitted to a server; second, HTML was expanded to
include forms, which provide graphical user interface elements such as text boxes,
checkboxes, radio buttons, and submit buttons. Forms are enclosed within <form> tags, and
although they are part of static HTML content, they enable interactive user behavior. When a
user fills in a form and submits it, the browser collects all the data, encodes it using a simple
scheme (where & separates fields and + represents spaces), and sends it to a designated server
URL for processing.

A typical HTML form might include several input elements for collecting user information.
For example, text input boxes allow users to enter their name, address, city, and other
personal data. These are created using the <input> tag with type set to "text" and can include
size attributes to define how much space is displayed. For choices among options, radio
buttons are used, which belong to the same group if they share the same name attribute—
clicking one will deselect the others, just like the buttons on a car radio. For example, users
may choose between Mastercard or Visa for payment using such buttons. If there is a binary
option, like whether to use express shipping, checkboxes are employed. These allow for
independent selection, meaning multiple boxes can be checked or left unchecked as desired.

<html>

<head> <title> AWI CUSTOMER ORDERING FORM «</title> </head>
<body>

<h1> Widget Order Form </h1>

<form ACTION="http://widget.com/cgi-bin/order.cgi" method=POST>
<p> Name <input name="customer" size=46> </p>

<p> Street address <input name="address" size=40> </p>

<p> City <input name="city" size=20> State <input name="state" size =4>
Country <input name="country" size=10> </p>

<p> Credit card # <input name="cardno" size=10>

Expires <input name="expires" size=4>

M/C <input name="cc" type=radio value="mastercard">

VISA <input name="cc" type=radio value="visacard"> </p>

<p> Widget size Big <input name="product" type=radio value="expensive">
Little <input name="product" type=radio value="cheap">

Ship by express courier <input name="express" type=checkbox> </p>
<p=<input type=submit value="Submit order"> </p>

Thank you for ordering an AWI| widget, the best widget money can buy!
</form>

</body>

</html>

Widget Order Form

Name]

Street address |

City | | State [] coumy[]
Creditcard# [| Expires[| MC() visa()

Widget size Big G Little G Ship by express courier {:I

| Submit arder]

Thank you for ordering an AW| widget, the best widget money can buy!

Figure 20.6 (a)The HTML for an order form (b) The formatted page

Computer Networks 20.17 THE WORLD WIDE AND WEB...

At the bottom of the form is typically a submit button, created using <input type="submit">.
This sends all the form data to the server. When clicked, the browser packages the user's
inputs into a long string and transmits it to the action URL specified in the form’s attributes.
For instance, an order form might result in a string like
customer=John+Doe&address=100+Main+St.&city=White+Plains, and so on. The server
then interprets this string and passes it to backend logic for processing, such as storing the
data in a database or confirming an order. Beyond basic elements, HTML also includes
support for more advanced input types. A password input works like a text box but masks the
typed characters. A textarea allows for multiline input, useful for comments or messages.
When selecting from a list of options, the <select> tag is used, creating dropdown menus,
which can function like either radio buttons (single selection) or checkboxes (multiple
selections) depending on whether the multiple attribute is included. Forms may also include
default values that appear in the input fields when the page loads, allowing users to edit or
accept pre-filled information. This rich system of form elements, even within static HTML
pages, significantly advanced the Web’s functionality, transforming it into a powerful
medium for user interaction and input.

CSS- Cascading Style Sheets

Initially, HTML was created with the intention of specifying the structure and logical
meaning of content rather than its exact visual appearance. For instance, using a tag like
<h1>Deborah’s Photos</h1> merely tells the browser that the enclosed text is a primary
heading, without providing details on how it should look in terms of font, size, or color. The
browser, in turn, decides the exact presentation based on its own defaults and the capabilities
of the display system. However, as web design evolved, many developers demanded more
control over how their content appeared across different devices and browsers. This led to the
inclusion of tags in HTML that allowed designers to dictate specific visual properties. For
example, the tag Deborah’s Photos
provides explicit instructions on the font face, text size, and color. While this allowed for
finer control over appearance, it had significant drawbacks. The HTML became cluttered and
harder to maintain, and the results were often inconsistent across different browsers or screen
sizes. Pages that looked perfect on one browser could render poorly on another, especially if
browser versions differed or if users had different screen resolutions.

To address these limitations and promote a cleaner separation of content and presentation,
style sheets were introduced. Borrowed from traditional publishing tools, style sheets allowed
authors to define how elements should appear based on their logical roles rather than
embedding styling directly into the HTML. For instance, instead of specifying "italic blue
text" for an introductory paragraph, an author could simply assign it the logical style "initial
paragraph" and define the desired appearance for that style separately. This modular approach
made it far easier to maintain and update the look of a website. If a designer wanted to
change all introductory paragraphs from blue italic text to bold pink text, they only needed to
change the style definition once instead of editing every instance throughout the HTML.
Cascading Style Sheets (CSS), introduced in HTML 4.0, gave developers the tools to
implement this approach effectively. A CSS rule like body {background-color:linen;
color:navy; font-family:Arial;} sets default styles for the body of the document, affecting all
enclosed content. Additional rules such as hl {font-size:200%;} and h2 {font-size:150%;}

Centre for Distance Education 20.18 Acharya Nagarjuna University

define how headers should be sized relative to normal text, contributing to a consistent visual
hierarchy throughout the page.

One of the powerful features of CSS is the concept of cascading rules and inheritance. Style
properties defined at higher levels in the HTML hierarchy automatically apply to nested
elements unless explicitly overridden. This approach streamlines style management and
ensures consistency. Moreover, CSS definitions can be embedded directly within HTML
documents using the <style> tag or, more commonly, placed in separate external files and
referenced via the <link> tag in the document's <head> section. For example, adding <link
rel="stylesheet" type="text/css" href="awistyle.css" /> connects the HTML document to an
external style sheet named "awistyle.css". This practice offers significant advantages. First, it
allows for a uniform appearance across multiple web pages, even when they are created by
different authors or at different times. A single change to the CSS file can update the look of
an entire website, just as modifying a shared header file in C can change behavior across
multiple source files. Second, it reduces the size of individual HTML files, since style rules
do not need to be repeated within each file. The browser can download the CSS file once and
reuse it for all pages that reference it, improving load times and bandwidth efficiency. This
separation of content and style not only simplifies the development process but also enhances
accessibility, maintainability, and scalability of web content.

20.4 DYNAMIC WEB PAGES AND WEB APPLICATIONS

In the early days of the World Wide Web, the static page model was sufficient because it
served the purpose of presenting multimedia documents that could be easily linked to one
another. This approach made it possible to publish vast amounts of information online in a
manner that was accessible and straightforward. However, as the Web evolved, its utility
shifted dramatically from merely displaying content to becoming a platform for full-fledged
applications and services. Today, people use the Web for activities such as shopping on e-
commerce platforms, searching library databases, exploring interactive maps, managing
emails, and even collaborating in real time on shared documents. These functionalities mirror
those of traditional desktop applications like email clients and word processors, but with a
crucial difference — they operate within the browser environment. This paradigm shift
means that users no longer need to install dedicated software for each application. Instead,
applications reside on remote servers and use web technologies to deliver interactive user
experiences directly through the browser. One major benefit of this model is the ability to
access applications and data from multiple devices without needing separate installations, all
while ensuring data is securely stored and backed up by the service providers themselves.
This centralized approach to computing is a core component of cloud computing, where
services and resources are delivered from large clusters of servers over the Internet rather
than from local machines.

1
Web *2 >
3 S
5 6
dn Program & _ | L Program

—— Woeb server —@7

Figure 7-29. Dynamic pages.
Figure 20.7 Dynamic pages

Web browser

Computer Networks 20.19 THE WORLD WIDE AND WEB...

For web applications to be truly interactive and responsive, static content is no longer
adequate. What is needed is dynamic content — content that adapts in real-time to reflect
user interactions or current data. For instance, an online library catalog must display accurate
availability information for books, and a finance website must allow users to view stock
trends over time and calculate investment outcomes. These examples highlight the necessity
for web pages that change based on input or data, either from user interactions or backend
systems. Dynamic content is generated either on the server side, on the client side (within the
browser), or through a combination of both. When the server generates dynamic content, it
uses web applications to process user requests and pull data from databases in order to craft
custom web pages. For example, in an interactive mapping service, when a user enters a
street address, the server-side application processes the input, queries a geographic database
for the relevant map section, and dynamically generates a web page that displays the map.
This process, shown in the early steps of an interaction diagram, involves receiving a request,
running a server-side program, and returning the customized page to the client.

The interaction does not end there. The returned page may itself contain client-side scripts —
small programs that execute directly in the user's browser. These scripts enhance interactivity
by enabling real-time updates to the web page without needing to reload it entirely. Taking
the map service example further, the client-side program might allow the user to zoom, pan,
or search for nearby points of interest. As the user interacts with the map, the program might
need additional data, such as detailed images or route calculations. In such cases, it sends
asynchronous requests to the server behind the scenes, retrieves the necessary information,
and updates the display accordingly. These interactions occur so seamlessly that users often
remain unaware that additional communication with the server is taking place. The page's
URL and title typically stay the same, maintaining a continuous and smooth browsing
experience. This model of combining server-side and client-side programming allows web
applications to be more powerful, efficient, and user-friendly, offering a level of
responsiveness that static content alone could never achieve. It marks a major step in the
evolution of the Web, turning it into a platform for dynamic, rich, and interactive
applications.

Server Side Dynamic Web Page Generation

When server-side content generation is required, especially in the context of web forms, the
process becomes more dynamic and tailored to user input. For example, when a user fills out
a form like an online order and clicks the submit button, the browser sends a request to a
specific URL defined in the form’s configuration, often using the HTTP POST method. This
request includes the data filled out by the user, which must be processed by a backend
program or script. That URL doesn’t simply retrieve a stored file but actually calls a program
to process the incoming data. In a commercial scenario, such as an online widget store, this
process would include logging the order into the company’s internal system, updating
customer records, and processing the payment. The output—what the user sees as a response
page—is dynamically generated based on what happens during this processing. For instance,
if the order is successful, the returned page might display a shipping date; if there is a failure,
such as an invalid credit card or out-of-stock items, the message would reflect that
accordingly. Importantly, the actual mechanism of executing server-side programs is
determined by the design of the server software and is not standardized by web protocols,

Centre for Distance Education 20.20 Acharya Nagarjuna University

because from the browser’s perspective, the request is simply fetching a page, regardless of
how it was generated.

Over time, developers have adopted standard APIs to simplify how web servers invoke these
backend programs. One of the earliest and most common is the Common Gateway Interface,
or CGI, which is defined in RFC 3875. CGI provides a standard method for web servers to
execute backend programs or scripts, allowing them to take input—Iike form data—and
output HTML content in response. These scripts can be written in various languages such as
Python, Perl, or Ruby, depending on developer preference. By convention, these CGI scripts
are stored in a directory like cgi-bin, which is visible in URLs, and when a request targets
that directory, the server executes the relevant script. The input from the form submission is
passed to the script, and the HTML output generated by the script is what gets sent back to
the user’s browser. Often, CGI programs are designed to show the form itself if no user input
is present, allowing a single script to handle both displaying the form and processing its
results.

Another approach to server-side programming is to embed scripts directly within HTML
pages that are processed by the server before being sent to the client. A widely used language
for this is PHP (PHP: Hypertext Preprocessor). PHP pages are usually identified by the .php
file extension instead of .html, signaling to the server that it must interpret the file using a
PHP engine. In this model, when a user submits a form, the server processes the incoming
data using PHP commands embedded in the HTML. For example, a form that requests a
name and age from the user might send that data to a file named action.php, which then uses
PHP code to generate a personalized response. If the user inputs “Barbara” and “32” into the
form, the resulting web page might greet her by name and predict her age next year as 33.
This 1s made possible because the PHP code dynamically inserts the submitted values into the
HTML being returned to the browser. PHP simplifies dynamic page generation significantly
compared to CGI because it allows developers to write and manage logic and presentation in
the same file. It supports robust programming constructs like variables, arrays, and control
structures, and includes strong capabilities for working with server-side databases. PHP is
open-source and was designed to integrate tightly with the Apache web server, which also
enjoys wide usage in the industry.

While CGI and PHP are two prominent technologies for dynamic content generation, there
are several other options as well. JavaServer Pages (JSP) is a technique similar to PHP but
uses Java instead of PHP for its embedded code. Pages developed using JSP typically have
the .jsp extension and are used in Java-based server environments. Microsoft’s answer to this
paradigm is ASP.NET, which uses the .NET framework to power its server-side logic. These
pages carry the .aspx extension and are typically deployed on Microsoft’s IIS servers. In
essence, all three—PHP, JSP, and ASP.NET—enable the same core functionality:
dynamically generating web pages based on user input or other data sources. The choice
among them often boils down to organizational preference or platform alignment rather than
technical superiority, as each offers similar capabilities in terms of dynamic content
generation.

Client Side Server Dynamic Web Page Generation
PHP and CGI scripts are essential technologies that address the fundamental need for server-

side interactivity on the Web. They handle tasks such as receiving input from users via web
forms, performing queries or updates on one or more databases, and then constructing and

Computer Networks 20.21 THE WORLD WIDE AND WEB...

sending back dynamically generated HTML pages based on those results. These technologies
allow developers to create content that changes based on the user's input, enabling
functionality like login authentication, shopping cart management, and data analytics.
However, while they are powerful for server-side data processing, these tools lack the ability
to directly respond to user actions like mouse movements or clicks without a round-trip to the
server. This is where client-side scripting enters the picture. Starting with HTML 4.0, the
<script> tag was introduced to allow embedding of scripts that are executed on the user's
browser rather than on the web server. This capability opened the door to what is known as
Dynamic HTML (DHTML), a collection of technologies that work together to create
interactive and responsive web experiences directly within the browser.

Browsar Server Browsear SEII'.I'EF
User |. User / I
ill 1 ,r—f'\} 2 {}] ; 1 O
%\ET{/ T3 \’) ?ET
7
(a) PHP module JavaScript (b)

Figure 20.8 (a)Server-side scripting with PHP(b)Client-side scripting with Java Script

The most popular language used for client-side scripting is JavaScript. Despite its name,
JavaScript is unrelated to Java and is instead a lightweight, high-level programming language
designed for embedding directly into HTML pages. Its high-level nature allows for
impressive functionality in minimal code; for instance, a single line can open a dialog box,
prompt the user for input, and store that input for further processing. This simplicity and
power make JavaScript especially suited for adding interactivity to web pages, such as form
validation, dynamic content updates, and responsive user interfaces. However, JavaScript's
rapid evolution and inconsistent implementation across browsers have historically made it
difficult to ensure consistent behavior on all platforms, though this situation has improved in
recent years.

An illustrative example of JavaScript’s capabilities is seen in a simple form-handling
application. Just like the PHP-based example, a user is asked to input their name and age, but
unlike PHP, JavaScript processes this information entirely within the browser. When the user
clicks the submit button, a function written in JavaScript is invoked. This function retrieves
the values entered into the form, performs basic computation (such as incrementing the age),
and then generates new HTML content on the fly to display a personalized message. The
function uses methods like document.open() and document.writeln() to construct the output
page directly within the browser, without ever needing to contact the server. This kind of
local processing results in near-instant feedback to the user, unlike server-side approaches
which typically involve a delay due to the network round trip and server processing time.

Although PHP and JavaScript may seem similar because both are embedded within HTML,
they are executed in entirely different environments. In the PHP model, once the form is
submitted, the browser packages the data and sends it to the server, which then processes the
PHP code, interacts with databases if needed, and finally returns a completely new HTML
page to be displayed. The browser has no idea how the page was generated; it simply renders
the HTML it receives. This server-client interaction cycle introduces a delay and depends on

Centre for Distance Education 20.22 Acharya Nagarjuna University

the availability and responsiveness of the server. By contrast, in the JavaScript model, no data
is sent to the server; the browser handles everything locally by executing the embedded
JavaScript code as soon as the user interacts with the page. This makes JavaScript especially
useful for real-time validation and user interaction.

JavaScript is not the only option for client-side scripting. On Windows-based systems,
another option is VBScript, a scripting language derived from Visual Basic. Though less
commonly used today, VBScript allows similar interactivity for Internet Explorer browsers.
A more powerful and historically significant method for creating interactive content was the
use of Java applets. These are small applications written in Java, compiled into bytecode, and
run in the browser through the Java Virtual Machine (JVM). Applets are embedded in web
pages using the <applet> tag and provide more computational power than JavaScript, since
they are interpreted in a secure sandbox environment designed to restrict malicious behavior.
However, applets have fallen out of favor due to security concerns, browser incompatibility,
and the rise of more secure and modern technologies.

Microsoft’s response to Java applets was the creation of ActiveX controls. These are small
programs compiled into native x86 machine code and executed directly by the browser on
Windows platforms. Because they run on bare hardware rather than in a virtual machine or
interpreter, ActiveX controls offer unmatched performance and flexibility, capable of
performing complex tasks like accessing hardware devices or modifying system settings.
However, this same power introduces enormous security risks, since downloading and
running compiled code from untrusted websites could allow malicious programs to harm the
user’s system. As such, ActiveX is now largely deprecated and is rarely used outside of
specific enterprise contexts.

Web developers today must often choose among JavaScript, Java applets, and sometimes
ActiveX when they aim to create highly interactive web pages. JavaScript remains the most
widely used due to its simplicity and native browser support, though its portability issues
persist because different browsers implement JavaScript standards in subtly different ways.
Java applets, while more portable across platforms thanks to the uniform behavior of JVMs,
are heavier and require additional setup. ActiveX, while the fastest and most flexible, is tied
to Windows and Internet Explorer and carries high security risks. Ultimately, the choice of
technology depends on the specific needs of the application, the target user base, and the
desired trade-off between performance, portability, and security.

AJAX- Asynchronous Javascript and Xml

Modern web applications are expected to provide rich user experiences that are both dynamic
and interactive, mirroring the responsiveness and power of traditional desktop applications.
To achieve this, developers rely on a variety of technologies, both on the client and server
side. Technologies like JavaScript on the client and PHP on the server are fundamental tools,
but when combined with other elements, they become part of a more powerful toolkit known
as AJAX, or Asynchronous JavaScript and XML. Although often thought of as a technology
on its own, AJAX is not a single language or system—it is a synergistic combination of
several key technologies that together enable highly responsive web applications such as
Google Maps, Gmail, and Google Docs. AJAX integrates HTML and CSS for structuring and
presenting content, DOM (Document Object Model) for manipulating page elements
dynamically, XML for data formatting and exchange, asynchronous communication for non-

Computer Networks 20.23 THE WORLD WIDE AND WEB...

blocking data transfer, and JavaScript as the binding agent that enables everything to work
together seamlessly.

Elements ~

/—— Attributes to the right

action = “action.php”

Child elements below method = “post”

/ .

Wpe =" piease enter
name = "age your age:”

type = “submit’

type = “txt"

“Please enter | input R
name = “age

your name:”

Figure 20.8 The DOM tree for the HTML in Fig.20.7(a)

HTML and CSS form the foundational structure of any web page by defining the content and
its visual presentation. These technologies are widely supported and allow any software that
can generate HTML and CSS to use the web browser as a rendering engine. However,
dynamic web applications go beyond static page content. To allow parts of a web page to be
updated without reloading the whole page, the Document Object Model (DOM) is used. The
DOM is a programmatically accessible tree representation of the HTML page. Each HTML
element is represented as a node in the DOM tree, with relationships that reflect the nesting
and attributes of elements in the original HTML. This structure makes it easy for scripts,
particularly JavaScript, to modify the page's content and appearance on-the-fly. When a
specific DOM node is changed, the browser only re-renders that part of the page, preserving
other content and offering a smoother, more efficient user experience. This model enables
highly interactive applications, such as forms that update dynamically or new content being
loaded without a full page refresh.

Structured data communication between the browser and the server is another critical piece of
AJAX, and XML plays a central role in this. XML, or eXtensible Markup Language, is a
flexible data format developed to enable automated processing of structured data. Unlike
HTML, which mixes formatting with content, XML focuses purely on the structure of the
information. This separation is crucial for applications that need to interpret the data itself
rather than just display it. For example, a program searching multiple online bookstores for
the lowest price on a book needs a consistent and understandable data structure to locate titles
and prices effectively. XML allows the definition of custom tags, enabling highly specific
data representations such as book titles, authors, and publication years. These tags can also be
nested and subdivided, allowing for complex, hierarchical data structures. Although XML is
more rigid and syntactically strict than HTML—which historically was often written with
minor errors—this strictness results in cleaner, more machine-readable content. XML files
must close tags properly, respect case sensitivity, and quote attribute values, all of which help
in error-free parsing and consistent interpretation across different systems.

Centre for Distance Education 20.24 Acharya Nagarjuna University

In addition to XML, a subset of HTML known as XHTML has been developed to bring the
rigor of XML to web page design. XHTML pages must conform strictly to XML rules, which
makes them more reliable for applications that need consistent processing. Although the
adoption of XHTML has been gradual due to legacy habits and uneven browser support,
newer specifications like HTMLS aim to bridge the gap, allowing pages to be interpreted as
either HTML or XHTML depending on context. XML has also proven invaluable for
enabling interoperability between programs, especially in the context of web services. These
services use HTTP as a transport protocol and rely on XML-formatted messages to facilitate
communication between heterogeneous applications. For example, SOAP (Simple Object
Access Protocol) allows remote procedure calls between programs regardless of language or
platform, by structuring requests and responses in XML and transmitting them via HTTP.
This makes it possible for systems running in different environments to interact reliably and
efficiently.

A crucial characteristic of AJAX-powered applications is their use of asynchronous
communication. This means that scripts can send or receive data from the server without
halting the user's interaction with the page. For instance, if a user scrolls through a web-based
map, the script might detect that the user is approaching the edge of the currently loaded map
data. Without freezing the interface, it can request additional data from the server, allowing
the map to scroll smoothly while the new content loads in the background. When the
requested data arrives, it can be incorporated into the DOM, and the display updates
automatically—giving users the impression of a continuous, responsive application. This kind
of non-blocking input/output is critical for maintaining smooth and interactive user
experiences and is a key reason why AJAX-based applications feel more like desktop
software than traditional web pages.

| I Client machine Server machine

ava virtual
machine Web browser Web browser

process process

VB Script -
interprater h HTMLCSS
, Helper elc. CaGl
HTML / CSS5/ | application script

XML interpreter

Java Script 4 Plug-ins
interprater :I
-:"—':

Figure 20.9 Various technologies used to generate dynamic pages

To bring all these technologies together, developers use scripting languages—chiefly
JavaScript. JavaScript is a powerful and versatile language that enables interaction with all
aspects of a web page, including the DOM, HTML, CSS, and server communication via
HTTP. Despite its occasionally quirky syntax, JavaScript is a fully-featured programming
language, capable of complex logic and operations equivalent to what can be done in
languages like Java or C. It supports variables, arrays, objects, functions, and control
structures, making it suitable for building complete applications within the browser.
JavaScript can respond to user actions, modify page content, and even track cursor
movements, which opens the door for rich interactions such as dynamic menus, interactive
graphics, and complex form validation. Moreover, its built-in support for asynchronous
HTTP requests—via technologies like XMLHttpRequest or the more modern fetch API—
enables seamless data exchange without page reloads, which is the backbone of AJAX.

Computer Networks 20.25 THE WORLD WIDE AND WEB...

Dynamic content generation is not limited to the client side. Server-side scripting also plays a
significant role in constructing web applications. Web pages can be generated dynamically on
the server using languages and platforms such as PHP, JSP (Java Server Pages), ASP.NET, or
CGI scripts written in a wide range of programming languages. These server-side scripts
process user input, query databases, and generate HTML pages that are sent back to the
client. Once the dynamic pages are delivered to the browser, they are treated like any other
web content and rendered accordingly. Browsers can be extended through plug-ins and helper
applications to handle a variety of content types. Simultaneously, scripts embedded in the
delivered HTML—written in languages like JavaScript, VBScript, or Java—can perform
complex tasks on the client side, including interface updates and communication with the
server. With AJAX, these embedded scripts can continuously exchange data with the server,
often using XML or other lightweight formats like JSON, resulting in web applications that
not only look and feel like traditional software but also provide the added benefit of being
accessible through any modern browser with an internet connection. This powerful model
underpins the modern Web and continues to evolve, enabling developers to create
increasingly sophisticated and user-friendly applications.

20.5 HTTP- THE HYPERTEXT TRANSFER PROTOCOL

HTTP, or HyperText Transfer Protocol, is the fundamental protocol used to transmit web
content between servers and clients. Defined in RFC 2616, HTTP functions as a simple, text-
based request-response protocol that typically operates over the Transmission Control
Protocol (TCP). In its most basic form, a client—usually a web browser—sends a request to a
server for a resource, and the server returns a response containing the requested content or an
error message. Both the request and response messages are composed using ASCII text, with
headers providing metadata about the transaction and the content itself formatted similarly to
MIME (Multipurpose Internet Mail Extensions). This simplicity and use of human-readable
text were major contributors to the early success of the World Wide Web, as they made it
easy for developers to build and debug web applications.

As the internet has evolved, so too has the role of HTTP. While it is technically classified as
an application-layer protocol—because it operates above TCP and is most closely associated
with web browsing—it has begun to take on characteristics that resemble those of a transport
protocol. This evolution reflects its widespread adoption as a general-purpose communication
protocol for a variety of applications that extend far beyond traditional web browsing. For
instance, HTTP is now commonly used by media players to request album information from
servers, by antivirus software to download definition updates, and by developers to retrieve
project files from online repositories. The use of HTTP by consumer electronic devices, such
as digital photo frames that embed lightweight HTTP servers, demonstrates its adaptability
and growing pervasiveness.

Machine-to-machine communication is also increasingly being conducted over HTTP, further
cementing its role as a versatile conduit for data exchange across the internet. A practical
example of this is seen in service integration scenarios, where an airline server might use
SOAP—a protocol that transmits XML-formatted data over HTTP—to interact with a car
rental company’s server to reserve a car as part of a broader travel package. These behind-
the-scenes interactions are transparent to the end user but rely heavily on HTTP’s ability to
carry structured data reliably and universally. This trend illustrates how HTTP has grown

Centre for Distance Education 20.26 Acharya Nagarjuna University

beyond its original scope, becoming a backbone not just for human-facing web pages, but for
automated, cross-service communication across the internet. Its ongoing adoption in both
consumer and industrial applications suggests that its role will only continue to expand in the
future.

Connections

When a browser wants to retrieve information from a web server, it typically initiates a TCP
connection to the server, usually targeting port 80, the standard port for HTTP. Though not a
mandatory rule, this approach is widely adopted because TCP ensures reliable delivery,
handles message fragmentation and reassembly, and manages congestion control—meaning
that neither the browser (client) nor the server needs to worry about the complexities of low-
level data transmission. In the early days of the Web, HTTP/1.0 operated under a simple
model: once the TCP connection was established, the client would send a single HTTP
request, receive a single response, and then immediately close the connection. While this
approach sufficed when most web pages were small and primarily consisted of simple HTML
text, it quickly became inefficient as web content grew more complex. Modern web pages
often contain numerous embedded resources like images, scripts, fonts, and stylesheets.
Opening a new TCP connection for each of these elements created substantial overhead,
drastically affecting performance and scalability.

This inefficiency led to the development of HTTP/1.1, which introduced persistent
connections—a major enhancement to the protocol. With persistent connections, a single
TCP connection can be reused for multiple HTTP requests and responses. This approach
eliminates the need to repeatedly set up and tear down connections, thereby reducing latency
and lowering the overhead associated with TCP handshakes. Additionally, connection reuse
enables TCP congestion control to operate more effectively. When a TCP connection is
reused, the slow-start mechanism—which gradually increases data transfer rates as the path
becomes better understood—has a longer duration to build throughput. In contrast, repeated
short-lived connections never stay active long enough to reach optimal transmission speed.
Persistent connections also support HTTP pipelining, where multiple requests can be sent in
quick succession without waiting for prior responses. This reduces idle time on the server
side and improves overall page load performance.

Connection setup_|_ HTTP Conneclion satup Connection setup

e —— Request o ——— g ————
—— — —
e . -r]- _____—— __.__——__
= 'Y g P — Pipelined
BSpONSE requ E5-15.'=:__\"‘_—‘¥_—
------------ - ———
Cmne-::luon satup —— —
Mime | ————— — [+
VT
o ——]

Connection setup

N —
{a) i) =]

Figure 20.10 HTTP with (a)multiple connections and sequential requests (b) A persistent
connection and sequential requests (c) A persistent connection and pipelined requests

Computer Networks 20.27 THE WORLD WIDE AND WEB... |

To illustrate this evolution, three usage patterns are typically compared. In the first scenario,
under HTTP/1.0, each resource (such as the main HTML page and each image it references)
is retrieved using a separate TCP connection. This results in repeated connection setup delays
and slow data transfers due to the TCP warmup process. In the second scenario, HTTP/1.1
allows for a persistent connection, where all resources are fetched sequentially over the same
connection. This avoids repeated setup times and allows TCP to optimize throughput. In the
third and most efficient case, pipelining is used with a persistent connection. Here, the
browser sends multiple requests as soon as it knows what resources are needed—without
waiting for earlier responses—allowing the server to begin processing them earlier and
reducing total load time.

However, persistent connections also introduce new challenges. The main question is: when
should a connection be closed? If the server closes it too soon, the client might have to reopen
it to make subsequent requests. If it remains open too long, server resources might be
unnecessarily consumed, especially if many clients are idle. In practice, browsers and servers
implement timeouts, typically keeping connections alive for a brief idle period (e.g., 60
seconds). If no further requests are received during this window, the connection is closed to
free up resources. This balances user experience with system efficiency.

Another approach once used to improve performance was parallel connections—opening
multiple TCP connections simultaneously to the same server and fetching resources in
parallel, even if each connection handled only one request. While this method does hide some
latency and can improve page load speed, it introduces serious network inefficiencies. Since
TCP congestion control operates independently for each connection, these parallel streams
compete with each other and can lead to increased packet loss and network congestion. This
not only wastes bandwidth but can also degrade overall network stability. For these reasons,
persistent connections with pipelining are now preferred over parallel connections, as they
offer better performance while being more network-friendly and resource-efficient.

In conclusion, HTTP's transition from one-request-per-connection in HTTP/1.0 to persistent
connections with pipelining in HTTP/1.1 marks a major evolution in how web
communication is handled. By minimizing overhead, improving TCP performance, and
optimizing server response time, persistent connections have significantly enhanced the
efficiency and speed of web browsing—especially as the complexity and size of web content
have grown.

Methods

HTTP, or HyperText Transfer Protocol, though originally intended for delivering simple web
pages, was deliberately designed with general-purpose capabilities in mind to allow future
extensibility and support object-oriented applications. Its flexibility has enabled a wide range
of applications beyond traditional web browsing, such as communication between services
and embedded systems. HTTP uses operations known as methods, which define the kind of
action a client wants to perform on a given resource.

Centre for Distance Education 20.28 Acharya Nagarjuna University

Method | Description
GET Read a Web page
HEAD Read a Web page's header
POST Append to a Web page
PUT Store a Web page
DELETE | Remove the Web page
TRACE | Echo the incoming request
CONNECT | Connect through a proxy
OPTIONS | Query options for a page

Figure 20.11 The built-in HTTP requests methods

Each HTTP request begins with a method name in uppercase, followed by other request
details, all composed in readable ASCII text. The most common method is GET, which asks
the server to return the contents of a specified page. This is used in nearly every browser
interaction, from accessing websites to retrieving assets. In practice, the format of the request
is typically written as GET /filename HTTP/1.1, where the filename is the resource path and
1.1 represents the protocol version.

Another method, HEAD, is similar to GET but requests only the metadata (i.e., headers) of a
page, without the actual content. It is useful for validating URLs or gathering information for
search engine indexing. POST is a method typically used when a form is submitted from a
browser. Instead of simply retrieving data, POST sends data (such as form entries or
parameters) to the server, which then processes it and responds with a result page. This
method is also commonly used in SOAP-based web services, where it helps invoke
procedures remotely by passing structured data. PUT is used to upload or modify a web page
on the server; it essentially stores data at the specified resource path. This method can be
helpful in collaborative editing or content publishing environments. However, because it
writes to the server, it often requires authentication headers to verify that the client is
authorized to perform the action.

The DELETE method, as the name suggests, is used to remove a page or resource from the
server. It too generally requires appropriate authentication. TRACE is primarily used for
diagnostic purposes. When invoked, it causes the server to return the exact request it
received. This feedback helps developers identify how their HTTP requests are interpreted,
especially when intermediaries like proxies are involved. CONNECT is meant to establish a
tunnel to a remote server through an intermediary, typically used to enable secure HTTPS
connections through a proxy server. OPTIONS allows a client to inquire about the
communication options available for a resource, such as which methods and headers it
supports, thereby allowing clients to adjust their behavior dynamically based on server
capabilities.

Code Meaning Examples
1xx% Information 100 = server agrees to handle client's request
23 Success 200 = request succeeded; 204 = no content present

3ux Redirection 301 = page moved; 304 = cached page still valid

4xx_ | Client error | 403 = forbidden page; 404 = page not found
Sxx | Server error | 500 = internal server error; 503 = try again later

Figures 20.12 The status code response groups

Computer Networks 20.29 THE WORLD WIDE AND WEB...

Every HTTP request receives a response from the server, which includes a status line
followed by optional content such as headers or a page body. The status line includes a three-
digit code that indicates whether the request was successful or if some issue occurred. These
codes are divided into five categories. The 1xx class provides informational responses but is
rarely used in real-world applications. The 2xx class indicates success, with code 200
meaning the request was successful and the content is returned, and 204 meaning the request
succeeded but there is no content to deliver. The 3xx class covers redirection, guiding the
client to a different location for the requested resource; for example, 301 means the resource
has permanently moved, while 304 indicates that the resource in the cache is still valid and
does not need to be re-fetched. The 4xx class denotes client errors; for instance, 403 indicates
that access is forbidden and 404 signifies that the requested page does not exist. Finally, the
5xx class identifies server-side problems. These include situations where the server has
encountered an unexpected condition, such as code 500 for internal server errors or 503,
which suggests the server is temporarily unavailable, typically due to overload or
maintenance. These structured response codes provide a robust mechanism for diagnosing
issues and guiding client behavior across a wide variety of web applications and services.

Message Headers

In the process of communication between web clients and servers, HTTP message headers
play a crucial role by supplying additional information about the request or response, often in
the form of metadata. When a client makes a request, the request line can be followed by a
number of headers that detail the client's capabilities, preferences, or intentions. Similarly,
when a server responds, it can include headers that describe the nature of the content being
returned, how it should be processed, or provide instructions related to caching and access.
These headers resemble the parameters in a procedure call, supplying important context that
determines how the message is to be interpreted or acted upon.

One common header included in client requests is the User-Agent, which identifies the
browser type and platform the client is using. This allows the server to tailor its responses
appropriately since different browsers may support different features. In cases where the
client has limitations or preferences, several Accept headers are used. These include headers
for specifying acceptable MIME types (Accept), character sets (Accept-Charset), encodings
(Accept-Encoding), and natural languages (Accept-Language). These headers help the server
decide the most suitable version of a resource to serve back. In situations where a client
already has a cached copy of a page, the If-Modified-Since and If-None-Match headers can
be used to request the resource only if it has changed, thus saving bandwidth and improving
efficiency.

The Host header, which is mandatory in HTTP/1.1, tells the server which hostname the client
wants to reach. This is essential when multiple domain names are served from the same IP
address, a practice known as virtual hosting. If the requested resource requires authentication,
the Authorization header is used to pass credentials. Additionally, the Referer header
(intentionally misspelled due to a historical typo) indicates the URL of the page that led the
client to make the current request, often helping servers analyze browsing paths or apply
security measures.

Centre for Distance Education 20.30 Acharya Nagarjuna University

Cookies are another critical feature managed through headers. Servers use the Set-Cookie
header to send a cookie to the client, which the client must store and return in future requests
using the Cookie header. These headers are used for session management, tracking user
activity, and personalizing content. Though newer standards for cookies exist, such as RFC
2965, these are not widely adopted, and the original RFC 2109 format remains dominant.

On the server's side, response headers provide detailed information about the resource. The
Server header identifies the server software. The various Content- headers—such as Content-
Encoding, Content-Language, Content-Length, Content-Type, and Content-Range—describe
the format, language, size, and encoding of the content being sent. This helps the client
understand how to display or process the content correctly. The Last-Modified and Expires
headers are particularly important for caching mechanisms, indicating when the page was last
changed and when it will become stale.

The Location header is used when the server wants to redirect the client to a different URL,
either because the resource has moved or to route users to localized versions of a site. For
handling large files, the Accept-Ranges header tells clients that the server supports partial
content delivery, enabling them to fetch resources in chunks, which is useful for streaming
media or resuming downloads.

Some headers can appear in both requests and responses. The Date header provides a
timestamp indicating when the message was sent. The Range header specifies which part of a
resource is being requested or returned. The ETag (Entity Tag) header is another tool for
caching, providing a unique identifier for a specific version of a resource so clients can check
whether their cached version is up to date. The Cache-Control header gives instructions on
how resources should be cached by clients and intermediary caches. Lastly, the Upgrade
header allows clients and servers to negotiate a protocol change, enabling transitions to newer
versions of HTTP or to secure protocols like HTTPS. All these headers collectively ensure
that the HTTP protocol remains flexible, extensible, and capable of supporting the complex
and varied needs of the modern web.

CACHING

Caching plays a fundamental role in improving the efficiency and performance of web
browsing by minimizing redundant data transfers and reducing the load on both the network
and servers. When users frequently revisit websites or navigate through related pages within a
site, many of the embedded resources—such as images, stylesheets, and scripts—tremain
unchanged. Retrieving these elements afresh with each request would be inefficient and
wasteful, especially considering that the browser already holds a copy from previous visits.
This concept of storing and reusing previously fetched resources is referred to as caching.
The principal benefit of caching is that it can significantly decrease the time it takes for web
pages to load by eliminating the need to re-download content that hasn’t changed. This not
only lowers network traffic but also reduces latency, offering a faster user experience. Given
the low cost and ample availability of local storage, typically in the form of disk space, this
trade-off—allocating space to store web content—is almost always advantageous.

Computer Networks 20.31 THE WORLD WIDE AND WEB...

1: Request 2: Check expiry 3: Conditional GET

4a: Not modified Program

Cache

5: Response

4b: Response
Web browser Web server

Figure 20.13 HTTP caching

However, caching introduces a complex challenge: determining whether a previously stored
version of a resource is still valid and identical to the version that would be retrieved from the
server if requested again. This is particularly difficult because a URL alone is not a reliable
indicator of a page’s freshness. For instance, a single URL may always refer to the latest
news article, which is updated frequently, or it may point to a static page like a list of
mythological figures, which changes infrequently or not at all. To address this challenge,
HTTP employs two primary strategies. The first is page validation. In this strategy, when a
client receives a request for a page, it first checks its local cache to see if it has a copy that is
known to still be valid. If so, it can immediately serve that cached page without contacting
the server. This determination is made using headers like Expires, which indicate when the
page is expected to become stale. If the current date and time precede the Expires value, the
cached copy is reused. Unfortunately, not all web pages are accompanied by an Expires
header because predicting the future accuracy of content is inherently uncertain. In such
cases, browsers often apply heuristics—rules of thumb—to decide whether a page is likely to
remain unchanged for a short period. For example, if a page hasn’t been modified in over a
year, it’s probably safe to assume it won’t change in the next few minutes or hours. But
heuristics aren’t foolproof; some content may change rapidly despite having long periods of
apparent stability, like a stock market page that only updates when the market is open.

When validation based on expiry fails or is inconclusive, HTTP resorts to the second
strategy: conditional requests. Here, the client sends a conditional GET request to the server,
asking whether the cached version is still up to date. This is accomplished using headers like
If-Modified-Since, which passes the timestamp from the Last-Modified header of the cached
page. If the server determines that the content has not changed since that date, it responds
with a short confirmation rather than the full content, saving bandwidth. Another mechanism
used is entity tags, or ETags, which act like unique fingerprints for a specific version of a
page. These can be cryptographic hashes or other identifiers that change whenever the
content changes. The client includes these tags in the [f-None-Match header of its request. If
the server finds that the ETag still matches the current version of the resource, it allows the
cached copy to be used. This method is particularly useful when freshness cannot be
determined based solely on modification dates—for instance, when the server customizes the
content based on language or content type preferences.

Caching behavior can be explicitly controlled using the Cache-Control header. This header
allows servers to define rules about how their responses should be cached. For instance,
sensitive or frequently updated pages can be marked as no-cache, indicating that they should
not be stored. Dynamic content or pages requiring user authentication typically use such
directives to prevent outdated or unauthorized data from being inadvertently reused.

Centre for Distance Education 20.32 Acharya Nagarjuna University

Furthermore, it’s important to recognize that caching isn’t limited to just browsers. Proxy
caches, which are intermediary servers that cache content for multiple users, play a
significant role in reducing the overall demand on origin servers. Organizations like Internet
Service Providers (ISPs) and large enterprises commonly deploy proxy caches to serve
frequently accessed content more efficiently across users, further optimizing network
performance.

Nevertheless, caching—despite all its advantages—has limitations. While it greatly improves
performance for popular and frequently accessed resources, it is less effective for the vast
number of less commonly accessed items. This phenomenon, often referred to as the "long
tail," describes the distribution where a small number of web documents receive a large
portion of the traffic, while the majority receive very little. Many of these unpopular
documents, such as long videos or obscure articles, take up significant cache space without
being frequently requested. As a result, even with large caches, the hit rate—the proportion of
requests that can be fulfilled from the cache—does not increase proportionally with cache
size. Research has shown that caches typically handle fewer than half of all requests. Thus,
while HTTP caching is a powerful and essential mechanism for enhancing web performance,
it is not a panacea and must be complemented by other techniques like content distribution
networks to achieve optimal results across the global web.

Experimenting With HTTP

Since HTTP is an ASCII-based protocol, it is quite straightforward for a person to interact
with web servers directly from a terminal, without needing a web browser. This is possible
because HTTP messages are simply plain-text commands and headers that follow a
predictable format. All a user needs is a TCP connection to the server, typically on port 80,
which is the default port for HTTP communication.

To experiment with this, one can use the telnet command in a UNIX shell or a Windows
command window. For example, by typing telnet www.ietf.org 80, the user initiates a TCP
connection to the IETF’s web server. Once connected, the user can type an HTTP request
manually, such as GET /rfc.html HTTP/1.1, which asks the server to send back the content at
the specified path. This must be followed by a Host header, like Host: www.ietf.org, to tell
the server which domain the request is intended for, especially when multiple websites are
hosted on the same server.

After entering these lines, the user must add a blank line to indicate the end of the HTTP
request. This lets the server know that the message is complete and that it should now
respond. Depending on the specific server and the requested content, a variety of headers and
webpage data will be returned. This process illustrates how transparent and accessible HTTP
is, allowing direct interaction with servers for testing or educational purposes.

20.6 THE MOBILE WEB

Web browsing from mobile phones has become increasingly common due to the convenience
of accessing information while on the move. However, it also introduces technical challenges
because most traditional web content was originally designed for large desktop screens,
powerful processors, and broadband connectivity. Mobile devices such as smartphones, in
contrast, have relatively small screens, limited input capabilities, lower network bandwidth—
especially on older 3G cellular networks—intermittent connectivity, and constrained

Computer Networks 20.33 THE WORLD WIDE AND WEB...

computing power due to factors like battery life and device size. As a result, directly
displaying desktop-designed websites on mobile devices often results in a frustrating user
experience.

Initially, a completely different protocol stack was developed to cater to mobile devices, with
WAP (Wireless Application Protocol) being the most notable example. WAP was introduced
in 1997 by major mobile phone manufacturers like Nokia, Ericsson, and Motorola. It aimed
to provide a lightweight protocol suite that matched the limitations of early mobile devices.
However, technological advancements over the following decade brought significant
improvements in mobile hardware and networks. With the rollout of 3G services, more
powerful processors, high-resolution color displays, and Wi-Fi capabilities became standard
in many mobile phones. These improvements reduced the necessity for a completely separate
mobile web infrastructure and allowed mobile devices to begin using standard web browsers.
Given this progress, the modern approach has shifted toward using the same web protocols
for both mobile and desktop environments. Websites now typically serve device-specific
content by detecting the type of device making the request. This detection is often done
through HTTP request headers, particularly the User-Agent header, which identifies the
client's browser and platform. Using this information, web servers can deliver optimized
versions of pages tailored to mobile devices—for instance, with smaller images, simplified
layouts, and streamlined navigation—while providing full-featured pages to desktops and
laptops. This strategy offers a seamless experience without requiring separate technologies
for different devices.

To promote this unified approach, the World Wide Web Consortium (W3C) has issued
guidelines and best practices for mobile web content. These practices focus on reducing page
size through measures like image compression and effective caching because the cost of data
transmission is typically higher than computation. W3C's guidelines encourage large websites
to create mobile-specific versions of their pages to accommodate users browsing on phones.
Additionally, W3C introduced a recognizable logo for mobile-friendly websites to help users
identify pages that perform well on mobile devices.

Another important development is XHTML Basic, a simplified version of the standard
XHTML language designed specifically for constrained devices like mobile phones,
televisions, game consoles, and even watches. XHTML Basic includes a subset of standard
HTML tags, organized into eleven modular groups such as structure, text, hyperlinks, lists,
forms, and images. Some of these modules are required (e.g., structure, text, and hyperlinks),
while others are optional. Because XHTML Basic omits style sheets, scripts, and frames, it is
easier for low-powered devices to render the pages efficiently, yet still supports meaningful
web content.

Despite improvements in mobile browser support and XHTML Basic, not all websites are
designed with mobile users in mind. To address this, another strategy called content
transformation or transcoding is used. This involves placing an intermediary system between
the mobile device and the web server. This intermediary takes the content returned from the
server and transforms it into a more mobile-friendly format before delivering it to the user.
For instance, large images might be reformatted into smaller, lower-resolution versions.
Other transformations might include simplifying page layout or converting complex elements
into more basic ones. Transcoding has been helpful in making traditional web content

Centre for Distance Education 20.34 Acharya Nagarjuna University

accessible on mobile devices, but it can sometimes conflict with mobile-specific content
already being served by the original website, leading to redundant or contradictory
optimizations.

Although the main challenges of mobile web development are content-related, the underlying
network protocols can also present inefficiencies. Standard protocols like HTTP, TCP, and IP
tend to include a significant amount of overhead in the form of headers, which can consume
precious bandwidth—especially over cellular or other low-bandwidth networks. In the early
mobile web era, special-purpose protocols were introduced to reduce these overheads, but
such measures are now less necessary. Instead, header compression technologies such as
ROHC (Robust Header Compression) have emerged as effective solutions. These
technologies significantly reduce the size of protocol headers, allowing standard protocols to
be used efficiently over both high-speed and low-speed links. By enabling header
compression, developers can maintain a single set of protocols—HTTP, TCP, and IP—while
still meeting the performance needs of both mobile and desktop users.

20.7 WEB SEARCH

The development of web search stands out as one of the most transformative successes in the
history of the World Wide Web. Initially pioneered in 1998 by Sergey Brin and Larry Page
while they were graduate students at Stanford University, Google revolutionized the concept
of search by introducing a fundamentally different ranking algorithm. Unlike earlier methods
that simply counted keyword matches, Google's approach assessed a page’s importance based
on how many other pages linked to it. This methodology more accurately reflected a page’s
relevance and usefulness, since popular and trusted pages naturally attracted more inbound
links. For instance, the official Cisco homepage is inherently more authoritative for a query
like “Cisco” than a lesser-known page that simply repeats the keyword multiple times. This
novel approach proved highly effective, leading to a surge in Google’s popularity and
growth. The company quickly attracted venture capital, became publicly traded in 2004 with
a substantial market valuation, and by 2010 had established a vast infrastructure of over one
million servers spread across data centers worldwide.

Web search may seem like a straightforward web application, but its influence extends far
beyond that. As one of the most widely used and mature applications on the internet, search
engines handle over a billion queries daily. For many users, search is the gateway to
discovering information, products, services, or places that they otherwise wouldn’t know how
to find. For example, someone looking to buy Vegemite in Seattle might not know where to
start—but a quick search often provides an accurate and fast result. The typical search
process involves directing a browser to a search engine’s website, such as Google, Yahoo!, or
Bing, entering a query through a form, and receiving a dynamic results page with relevant
links. From this point, the user can explore any of the listed pages. While this process seems
simple on the surface, it is supported by a massive and complex infrastructure of crawling,
indexing, and data analysis.

At the heart of every search engine lies the mechanism of web crawling. To answer user
queries, a search engine must first maintain a database of web pages. Since most pages link to
others, theoretically all public pages on the web can be discovered through recursive traversal
of links—a process that crawlers perform continually. However, challenges arise with
dynamic content. Many modern websites are generated on-the-fly from databases in response
to user input. This makes them inaccessible to crawlers that rely on static links. Such content

Computer Networks 20.35 THE WORLD WIDE AND WEB...

is referred to as the "deep web," a vast expanse of data that remains largely invisible to
traditional search engines. Researchers are actively exploring ways to access this hidden
portion of the web. Furthermore, websites can use a special file called robots.txt to instruct
crawlers which parts of the site to index and which to ignore, offering site owners some
control over how their content is accessed.

Beyond crawling, the storage and processing of the web's content is a monumental task. The
scale of this data is immense—estimated to include tens of billions of pages, each averaging
about 320 KB in size. The resulting index requires roughly 20 petabytes of storage space.
Although this is a massive volume, it remains manageable for tech giants like Google and
Microsoft due to declining storage costs and the availability of large-scale data centers. For
instance, even at a cost of $20 per terabyte, storing the entire web would cost under half a
million dollars—a minor investment for such companies. Nevertheless, managing this data
involves more than just storage. Understanding and interpreting the data presents even greater
challenges. While structured data formats like XML can assist with organizing information,
much of the web consists of unstructured or semi-structured content. This makes it difficult
for algorithms to extract meaning, especially when dealing with varied formats and
languages. The ultimate goal is to develop search systems that don’t just locate information,
but interpret it—such as identifying where to buy a high-quality, budget-friendly toaster oven
nearby.

Search engines have also evolved into powerful tools for simplifying how people navigate the
internet. Instead of memorizing lengthy URLSs, users can now simply type in the name of a
person, company, or topic and be guided to the appropriate page. In this way, search engines
are beginning to replace URLSs in the same way that DNS replaced IP addresses—providing a
more human-friendly naming system. Moreover, search engines help correct user errors. If a
user makes a spelling mistake or typo in their query, the search engine often still provides the
correct result. This user-friendliness has made search engines indispensable tools in daily
digital life.

Perhaps most importantly from a business standpoint, web search has become a significant
driver of revenue through targeted advertising. Unlike traditional print advertising, online ads
can be tailored to individual users based on their search queries. This makes advertisements
more relevant and effective, thereby increasing their value to advertisers. Most major search
engines use auction-based models to determine which ads appear alongside which searches,
maximizing profit while ensuring user relevance. However, this system has also given rise to
issues such as click fraud, where automated scripts mimic human behavior to generate ad
revenue illegitimately. Despite such challenges, advertising remains the financial engine
powering the continuous growth and innovation in web search technology.

Centre for Distance Education 20.36 Acharya Nagarjuna University

20.8 SUMMARY

This chapter covers the World Wide Web and multimedia applications. The WWW is based
on a client-server architecture, delivering static and dynamic web documents using the HTTP
protocol. Performance improvements include caching, compression, and the wireless web for
mobile access. Multimedia networking introduces digital audio and video, compression
techniques, and applications like streaming audio, Internet radio, VoIP, and video on demand,
enabling rich, interactive, and real-time content delivery over networks.

20.9 TECHNICAL TERMS
World Wide Web, HTTP, multimedia, audio streaming, MIME, VoIP

20.10 SELF ASSESSMENT QUESTIONS
Essay questions:

Explain the architecture and working of the World Wide Web.

Describe static versus dynamic web documents and their applications.

Discuss the HTTP protocol and performance enhancements for the web.

Explain digital audio and video concepts, including compression and streaming.
Describe multimedia applications such as Internet radio, VoIP, and video on demand.

Nk W=

Short Questions:

What is the architecture of the World Wide Web?
Define static and dynamic web documents.

What is HTTP?

Name one audio and one video compression technique.
What is the purpose of VoIP?

MRS

20.11 FURTHER READINGS

1. Andrew S. Tanenbaum, “Computer Networks”, Fourth Edition, PHI.

2. James F.Kurose, Keith W.Ross, “Computer Networking”, Third Edition, Pearson
Education

3. Behrouz A Forouzan, “Data Communications and Networking”, Fourth Edition, TMH
(2007)

4. Michael A. Gallo, William M. Hancock, “Computer Communications and
NetworkingTechnologies”, Cengage Learning (2008)

Mrs. Appikatla Pushpa Latha

