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FOREWORD 

Since its establishment in 1976, Acharya Nagarjuna University has been 

forging ahead in the path of progress and dynamism, offering a variety of courses 

and research contributions. I am extremely happy that by gaining ‘A+’ grade from 

the NAAC in the year 2024, Acharya Nagarjuna University is offering educational 

opportunities at the UG, PG levels apart from research degrees to students from 

over 221 affiliated colleges spread over the two districts of Guntur and Prakasam.  

The University has also started the Centre for Distance Education in 2003-

04 with the aim of taking higher education to the door step of all the sectors of the 

society. The centre will be a great help to those who cannot join in colleges, those 

who cannot afford the exorbitant fees as regular students, and even to housewives 

desirous of pursuing higher studies. Acharya Nagarjuna University has started 

offering B.Sc., B.A., B.B.A., and B.Com. courses at the Degree level and M.A., 

M.Com., M.Sc., M.B.A., and L.L.M., courses at the PG level from the academic 

year 2003-2004 onwards.  

To facilitate easier understanding by students studying through the distance 

mode, these self-instruction materials have been prepared by eminent and 

experienced teachers. The lessons have been drafted with great care and expertise 

in the stipulated time by these teachers. Constructive ideas and scholarly 

suggestions are welcome from students and teachers involved respectively. Such 

ideas will be incorporated for the greater efficacy of this distance mode of 

education. For clarification of doubts and feedback, weekly classes and contact 

classes will be arranged at the UG and PG levels respectively.  

It is my aim that students getting higher education through the Centre for 

Distance Education should improve their qualification, have better employment 

opportunities and in turn be part of country’s progress. It is my fond desire that in 

the years to come, the Centre for Distance Education will go from strength to 

strength in the form of new courses and by catering to larger number of people. My 

congratulations to all the Directors, Academic Coordinators, Editors and Lesson-

writers of the Centre who have helped in these endeavors.  

Prof. K. Gangadhara Rao 

M.Tech., Ph.D., 

Vice-Chancellor I/c  

Acharya Nagarjuna University. 
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M.Sc. DEGREE EXAMINATION,  
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THEORY OF LINEAR ESTIMATION AND ANALYSIS OF VARIANCE 

Time: Three Hours  Maximum: 70 Marks 

ANSWER ONE QUESTION FROM EACH UNIT 

(Each question carries equal marks) 

UNIT-I 

1) a) Explain inverse matrix and idempotent matrix 
b) State and prove Cayley-Hamilton theorem 

2) a) Explain (i) determinant (ii) rank of a matrix and (iii) Inverse of a matrix with 
suitable example. 

b) State and prove a necessary and sufficient condition for a real matrix to be 
positive definite 

UNIT-II 

3) a) Explain (i) linear model (ii) Best linear unbiased estimate. 
b) State and prove Gauss – Markov theorem. 

4) a) Describe Generalized linear model with suitable example. 
b) State and prove Aitken’s theorem. 

UNIT-III 

5) a) Describe one-way classification for equal no. of observations per cell 
b) Explain Duncan’ multiple range test 

6) a) Explain Fisher’s least significant difference method 
b) Explain analysis of variance two-way classification with multiple observations 

per cell.                                                                                                                                                                 

UNIT-IV 

7) a) Write the applications of CRD and RBD. 
b) Explain analysis of covariance with a single concomitant variable. 

8) a) Explain the analysis of variance two-way classification. 
b) Explain analysis of LSD with one missing value. 

UNIT-V 

9) a) State and prove Bartlett’s test. 
b) Briefly explain test for normality difference of variances. 

10) a) What is multiple range test and its properties. 
b) State and prove Turkey’s test. 
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LESSON-1 

FUNDAMENTALS OF MATRICES 
 

1.0 OBJECTIVES: 

After completing this lesson, students will be able to: 

 Define and explain fundamental matrix concepts such as order, types of 
matrices, determinants, rank, and inverse. 

 Compute determinants and rank using standard algebraic methods and 
elementary transformations. 

 Determine the inverse of a matrix (when it exists) using adjoint and row-
reduction techniques. 

 Identify and verify properties of orthogonal and idempotent matrices, and 
understand their role in statistical models. 

 Apply basic matrix operations and properties to solve simple linear algebra 
problems relevant to linear models and estimation. 

 

STRUCTURE: 

1.1 Introduction 

1.2 Fundamental Matrix Definitions 

1.3 Addition, Multiplication of Matrices  

1.4 Properties 

1.5 Conclusion 

1.6 Self-Assessment Questions 

1.7 Suggested Readings 

 

1.1. INTRODUCTION: 

Matrix algebra forms the backbone of many statistical techniques used in estimation, 
inference, and data analysis. In linear models, observations and parameters are conveniently 
expressed using matrices, allowing complex relationships to be handled in a compact and 
systematic manner. A strong foundation in matrix concepts is therefore essential for students 
of statistics and data science. 

Determinants, rank, and inverse of matrices play an important role in solving systems 
of linear equations and in determining the existence and uniqueness of solutions. These ideas 
are particularly important in regression analysis and in deriving least squares estimators, 
where matrix operations simplify theoretical derivations. 
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Special matrices such as orthogonal and idempotent matrices occur naturally in the 
study of projection operators and sum of squares decomposition in ANOVA. Their algebraic 
properties help in understanding how variation in data is partitioned and how estimators 
behave under linear transformations. 

Another important area in matrix algebra is the study of quadratic forms, which 
provides the mathematical framework for expressing many statistical quantities such as 
variance, sums of squares, and test statistics. Mastery of these concepts allows students to 
analyze multivariate data and to interpret geometrical aspects of statistical models. 

In this lesson, we introduce the fundamental concepts of matrix algebra that support 
the theory of linear estimation. The aim is to equip students with the necessary tools to 
understand later topics such as diagonalization, quadratic forms, and Cochran’s theorem, 
which are central to advanced statistical inference. 

 

1.2. FUNDAMENTAL MATRIX DEFINITIONS: 

Definition of a Matrix: 

‘A’ set of  numbers (scalars) arranged in the form of a rectangular array denoted by 

 

 

 

Here '  ' is number of rows and '  ' is number of columns is called a matrix of order . 

The numbers  are called the elements of the matrix. The matrix '  ' can 

be represented by , where  and . 

In the matrix the horizontal lines are called rows (or) row. vectors & vertical lines are called 

columns (or) column vectors. 

For example  is the element of intersection (or)  row &  column of the matrix. Here 

there are few examples of the matrix. 

 

 

 



Theory of Linear Estimation & Analysis…         1.3                        Fundamentals of Matrices 

 
 

 

Row Matrix: 

A matrix which has only one row is called Row Matrix. i.e.,  matrix. 

Ex: -  

Column Matrix: 

A matrix which has only one column is called column Matrix. i.e.,  matrix. 

Ex:-                                                   Note:  

 

Square Matrix: 

A matrix in which the no. of rows and no. of columns are equal then matrix is called Square 
Matrix. 

Ex:  

 

Rectangular Matrix:  

A matrix in which the no. of rows is not equal to the no. of columns is called Rectangular 
Matrix. 

                            Note  
Eg:     

 

Determinant of a Matrix: 

Let '  ' be a square matrix the determinant of  is the sum of the product of elements of any 
row or column with their co-factors it is denoted by . 

 then, to write the determinant of '  ' is  

Eg : 

(i) . 
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(ii)  

 

Identity (or) Unit Matrix: 

Square matrix each of whose diagonal element one and each of whose non-diagonal element 
is equal to zero is called unit matrix (or) identity matrix. 

 

Null (or) Zero Matrix: 

The matrix whose elements are all zeros is called a Null matrix (or) zero matrix. 

 

Sub-matrix of a Matrix: 

Any matrix obtained by ommitting some rows and columns from a given  matrix, is 
called a sub-matrix of a given matrix. 

 

 is a sub-matrix of . 

 

Diagonal Matrix: 

A Square matrix  whose elements above and below the principal diagonal are 

zero is called a diagonal matrix. 

 

Scalar Matrix: 

A Diagonal matrix whose diagonal elements are equal is called a scalar Matrix. 

 

Inverse of a Matrix: 

A Square matrix '  ' of order  have the inverse matrix ' ' of order   

if . If we write . 

Eg: 
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(i)  is normal matrix  

 
Ex: 

1.  then to calculate  & inverse of A? 
 

 
 

Triangular Matrix: 

(i) Upper Triangular Matrix: 

 Square matrix  is called an upper triangular matrix. if  whenever  
 

 
(ii) Lower - Triangular Matrix: 

A Square matrix  is called a Lower -Triangular matrix. if  whenever 

                                              

 

Transpose Matrix: 

Let  then the  matrix obtained from  by changing its rows into columns 

and columns into rows is called Transpose of  and denoted by . 
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Conjugate of a Matrix: 

The matrix obtained from any given matrix  on replacing its elements by the corresponding 
conjugate complex number is called conjugate of A and denoted as . 

 

Idempotent Matrix: 

 square matrix '  ' is said to be an Idempotent Matrix  
 

 

 

                                                       is an Idempotent Matrix. 

 
Trace of a Matrix: 

Let '  ' be any square matrix. Then the sum of their principal diagonal elements of  is 
called Trace of a matrix. It is denoted by . 

Eg:  

Then                        

 

Symmetric Matrix: 

A Square matrix  is said to be symmetric if  A is symmetric if . 

Eg: 
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                                                       is symmetric matrix. 
 

Skew-Symmetric Matrix: 

A square matrix is called a skew-symmetric matrix if  (or) . If  

 is a skew-symmetric matrix. then  for all . In a symmetric 

matrix each of the diagonal matrix is zero. 

Eg: 

 

A is a skew-symmetric matrix. 

Real - Symmetric Matrix: 

Let '  ' be a  real symmetric matrix then there exists an orthogonal matrix  such that 
 or,  where  is a diagonal matrix. 

Let 

 

 

 

 

Pair of Real - Symmetric Matrix: 

let  and  be real  symmetric matrices of which  is P.d then  a matrix '  ' such 
that  and  where  is a diagonal matrix.\ 
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Orthogonal Matrix: 

A Square matrix  is said to be Orthogonal if , where  is a unit matrix. 

 

Hermitian Matrix: 

A square matrix  is said to be Hermitial If  that is  elements of 

 is equal to conjugate complex of  elements of . 

 
 

Skew - Hermitian Matrix: 

A square matrix  is said to be skew Hermitian if  

 

Complex Matrix: 

A square matrix  is said to be unitary if . where  is the transpose of a 
conjugate of a complex matrix. 

 
 

Periodic Matrix: 

A square matrix '  ' is said to be periodic if there exists a positive integer  such that 
, then  is called the Period of . 

Ex:- For idempotent matrix period of , because 

 

Nilpotent Matrix: 

A square matrix  is said to be nilpotent if  a possible integer '  ' such that  where 0 
is null matrix. 

Eg:  then  

                                                               A is nilpotent 
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Minor of a Matrix: 

If  is an  matrix then the determinant of every submatrix of  is called a Minor of the 
matrix  ． 

 

 then  is called 2-rowed minor of  ． 

Equal Matrix: 

Two matrices  and  are said to be equal if they are of the same type and each element of 
one is equal to the corresponding elements of the order it is denoted by  ． 

Eg:  If 

 

then  ． 

 

Elementary Matrix: 

A matrix obtained from a unit-matrix by a single elementary transformation is called a 
Elementary Matrix． 

 

 

Involuntary Matrix: 

A matrix＇ ＇is said to be involuntary matrix if  ． 

 

 

1.3. ADDITION, MULTIPLICATION OF MATRICES:  

Addition of Matrix: 

The Sum of two matrices '  ' and '  ' of same order is a new matrix denoted by  
whose elements are the sum of the corresponding elements of the two matrices  and . 

If  and  are two matrices of order  then  is also matrix of order. Therefore 

Eg:  
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Multiplication of Matrices: 

Two matrices  and  are compatible for multiplication only if the no. of columns of  is 
equal to the no. of rows of . 

Eg:  

Here, The no. of columns of  

The no. of rows of  

 it is possible to find . 

 
 

In general, the product of  is written as  and is defined as 

 

 
 

1.4. PROPERTIES: 

i)  

ii)  [Assosciative law] 

iii)  [Existence of multiplicative identily.]  

iv) For 2 matrices  if  it is not necessary that  (or)  (or) 

Both  and  are ' ' 

Eg: If , then 

 

v)   [left distributive law] 

vi)   [Right distributive law] 
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1.5. CONCLUSION: 

In this lesson, the foundational ideas of matrix algebra that form the basis for many 
statistical and computational techniques were introduced. Beginning with essential matrix 
definitions, students gained an understanding of how data and linear relationships can be 
represented compactly using rows, columns, and different types of matrices. These 
fundamental concepts prepare us for more advanced topics in linear models, multivariate 
analysis, and estimation theory. 

  Also, here explored basic matrix operations such as addition and multiplication, 
which are crucial for expressing and solving systems of linear equations. Understanding how 
matrices interact under these operations helps students to interpret model structures like (Xβ) 
and transformations such as (A'XA). These operations also reveal important algebraic 
behaviours - such as non-commutativity - that significantly influence statistical procedures 
and matrix decompositions. 

Finally, here discussed selected matrix properties that frequently appear in statistical 
applications. Properties such as symmetry, diagonal dominance, invertibility, and 
orthogonality play a vital role in simplifying computations and understanding the geometry of 
linear transformations. Together, the concepts covered in this lesson provide the 
mathematical groundwork needed for studying determinants, rank, inverse matrices, and 
matrix transformations in the subsequent lessons. 

 

1.6. SELF-ASSESSMENT QUESTIONS: 

1) Describe in detail the importance of learning matrix algebra for data science, 
machine learning, and computational statistics. Give suitable examples. 

2) Define and explain different types of matrices: row matrix, column matrix, square 
matrix, diagonal matrix, scalar matrix, identity matrix, and zero matrix. Illustrate 
each with examples. 

3) State and prove the properties of matrix multiplication. Explain why matrix 
multiplication is not commutative, giving suitable examples. 

4) Discuss in detail the associative, commutative, and distributive properties related 
to matrix addition and multiplication. Provide proofs and examples for each 
property. 

5) Discuss the role of special matrices (identity, zero, diagonal matrices) in matrix 
operations. Explain how these matrices behave under addition, multiplication, and 
transposition. 

 

1.7.  SUGGESTED READINGS: 

1) Introduction to Linear and Matrix Algebra – by Richard Bronson & Gabriel  
B. Costa 

2) Matrices and Linear Algebra – by I. N. Herstein & D. J. Winter 

3) Linear Algebra and Matrices – by K. Hari Kishan 

4) Linear Algebra and Matrices: Topics for a Second Course – by Helene 
Shapiro 

 

Dr. Bala Naga Hima Bindu, Inampudi. 



LESSON-2 

RANK OF A MATRIX 
 

2.0. OBJECTIVES: 

After completing this lesson, students will be able to: 

 Understand the concept of rank  

 Compute the rank of a matrix  

 Determine the solvability of linear systems  

 Analyze linear dependence and independence  

 Apply the concept of rank. 

 

STRUCTURE 

2.1 Introduction 

2.2 Rank of a Matrix 

2.3 Vector Space  

2.4 Problems 

2.5 Some Important Results 

2.6 Conclusion 

2.7 Self-Assessment Questions 

2.8 Suggested Readings 

 

2.1   INTRODUCTION 

The rank of a matrix is one of the fundamental concepts in linear algebra and matrix 
theory. It essentially measures the “non-degenerateness” of a matrix by indicating the 
maximum number of linearly independent rows or columns it contains. In simpler terms, the 
rank tells us how much information a matrix carries and whether its rows or columns are 
redundant. It plays a central role in solving systems of linear equations, determining 
invertibility, and analyzing the dimensions of vector spaces associated with the matrix. 

Mathematically, the rank of a matrix is defined as the dimension of the row space or 
the column space of . The row space is the set of all possible linear combinations of the 
rows of the matrix, and the column space is the set of all linear combinations of its columns. 
Interestingly, the row rank and column rank of any matrix are always equal, and this common 
value is referred to simply as the rank of the matrix. This property highlights the intrinsic 
symmetry in linear algebra between rows and columns. 

The concept of rank is also closely linked to the idea of solutions to linear systems. If 
a system of linear equations is represented in matrix form as , the rank of the 
coefficient matrix provides crucial information about the existence and uniqueness of 
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solutions. Specifically, if the rank of equals the number of unknowns, the system has a 
unique solution; if it is less, the system may have infinitely many solutions or none, 
depending on the rank of the augmented matrix. 

Finally, rank is widely used in various applications beyond solving equations. In 
statistics, it helps in determining the independence of variables, while in engineering and 
computer science, it assists in analyzing networks, transformations, and data structures. 
Understanding the rank of a matrix equips us with a tool to probe the structural properties of 
matrices and to address practical problems efficiently. 

 

2.2.   RANK OF A MATRIX: 

Determinant:  

The determinant is a scalar value that can be computed from the elements of a square matrix 
and encodes certain properties of the linear transformation described by the matrix. The 
determinant of a matrix  is denoted by  or . 

 

Eg:  

 

Rank of a Matrix: 

Suppose  is a non-zero matrix, a positive integer  is said to be the rank of . If 

 non-zero -rowed minor of .  

ii) Every (rH) rowed r-rowed minor of . 

 

In other words, let  be any non-zero matrix then the rank of a matrix is defined as the order 

of non-singular sub-matrix of . It is denoted by rank (A) 

Eg:- Let  

 

 is non-singular matrix. 

∴ So, Rank of (A) is 3 
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Singular Matrix: 

A square matrix  is said to be a singular Matrix if  

Eg:   

 

 

Non-Singular Matrix: 

A Square matrix '  ' is said to be a non-singular matrix if . 

Eg:  

 

Multiplicative Inverse of a Square matrix: 

Let , then the inverse of  denoted by  

 

1.  If ad ,  i.e, '  ' is a singular matrix then  is not defined          

2. . 

Eg:  If  then find  

 

 

 

Methods to find Inverse of a Matrix: 

1) Matrix - Inversion Method 

2) Cramer’s Method. 
 

1) Matrix - Inversion Method: 

In this method, we first express the given coefficient matrix '  ' is called the variables 
matrix and '  ' is called the constant matrix. 

Eg:   
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 If     

multiplying this by  on  is 

 

 

2) Cramer's Method: 

Consider two linear equations  and  expressing these equations in 

matrix equation form. 

 

Then  

Let  

Now 

 

 

Orthogonal Matrix: 

A square matrix  is said to be orthogonal if  where  is a unit matrix. 

 then  
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Determinant of a Matrix: 

Let  

 
 

Properties: 

i)  

     

                                                             

If '  ' is invertible, where  (or)  is non-singular matrix. 
 

Adjoint of a Matrix: 

Let  be a square matrix, then the transpose of the cofactor matrix of  is called Adjoint 

Matrix of A. It is denoled by Adj . 

i.e., 

 

 

cofactor of  

 

 

Vector of a Matrix: 

If a matrix has only one row (or) one column it is called a vector 

 A matrix having only one row is called Row vector. Eg:  

 A matrix having only one column is called column vector: Eg:  
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2.3. VECTOR SPACE: 

Let  be a non-empty set whose elements are called vector.  be a field whose elements are 
called Scalars. Then  is said to be Vector space over a field '  '. It is denoted by  if 

i)  is an abelian group. 

ii) '  ' is closed under scalar multiplication  

iii) Scalar properties: 

a) . 

b) . 

c) . 

d) . 

 

Dimension of Vector Space: 

Let  be a vector space, let '  ' be a basis for  then the number of vectors in the 
basis 

' ' is called as dimension of a vector space. It is denoted by "dim  ". 

Eg: 

Let ' ' be a vector space of all ordered pairs of R then  is basis for'  '. 

 The number of elements in the basis  

 

Properties: 

1) If the dimension of vector space is finite, then the vector space is called Finite 
dimension vector space.  

2)  If the dimension of vector space is infinite, then the vector space is called Infinite 
dimension vector space. 

3) Any two basis of a vector space have same number of vectors. 

4) Let  be a vector space  are two subspaces then  

 

5) Let  be a vector space '  ' be a subspace of '  ' then  

. 

 

Linearly Independent: 

Let  be a vector space and  be a non-emply subset of  to '  ' is said 

to be linearly independent then there exists scalars . 

Let  
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Linearly Dependent: 

Let  be  vector space and  be a non-emply subset of '  ' then '  ' 

is said to be Linearly dependent then  scalars. 

 

let  not all zeros 

 

Basis: 

Let  be a vectos space. Let '  ' be a finile subset of '  ' then '  ' is said to be Basis for 

 if 

(i)  is linearly independent (L.I) 

(ii) 'S' spans 'V'. 

 

Index of a Matrix: 

Index of matrix  is defined as the no. of positive terms in the C form (or) natural form of a 

matrix. It is denoted by '  '. 

Let 

 

 

 

Eigen values  

Index  
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2.4. PROBLEMS: 

1) Find the rank of a matrix    

Sol:  Given        
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The rank is 3. 
 

2) Find the rank of the matrix  

 

Sol):  Given  

 

 

 

 

Rank of . 
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2.5. SOME IMPORTANT RESULTS: 

1. Idempotent Matrix: 

Prove that the sum of two idempotent matrix is also idempotent. 

Proof: Given that  

Let  are two idempotent matrices. 

 

To prove  is idempotent. 

 

Now 

 

 is idempotent. 

 

2) If  are independent and cumulative then prove that  is idempotent. 

Proof: Given  are idempotent 

 

Given  are cumulative 

 

To prove '  ' is idempotent 

 

Now  

 

∴ '  ' is idempotent matrix. 
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Problems: 

1) Orthogonal Matrix: 

Prove that  is orthogonal. 

Sol) Given that, 

 

 

             

               

'  ' is orthogonal matrix. 

 

2.   Linearly Independent: 

1) Prove that  are linearly independent. 

Sol):  Let . 
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comparing the LHS and RHS 

 

 

  

from ; 

 

                                                                                         

(a) - 3(b)  

  

        

Sub  in eqn (1) 

 

Sub  in   

 

 

'  ' is linearly independent 

 

2.6. CONCLUSION: 

In conclusion, determinants, rank, and linear dependence are closely interconnected 
concepts in matrix theory. The determinant of a square matrix provides a quick test of 
invertibility: a matrix is non-singular if its determinant is non-zero and singular if the 
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determinant is zero. The rank of a matrix measures the maximum number of linearly 
independent rows or columns, indicating the “information content” of the matrix and 
determining the existence and uniqueness of solutions to linear systems. Meanwhile, linear 
independence of rows or columns ensures full rank, whereas linear dependence implies 
redundancy and reduces the rank. Together, these concepts form the foundation for 
understanding matrix behavior, solving linear equations, and analyzing vector spaces in both 
theoretical and applied contexts. 

 

2.7. SELF-ASSESSMENT QUESTIONS: 

1) Explain the method of determining the rank of a matrix using minors. 

2) State and explain the properties of the rank of a matrix. 

3) Explain the connection between rank and linear independence of rows/columns. 

4) Show that if a matrix has rank , then can be expressed as the product of two 
matrices-one of size and the other of size . 

 

2.8. SUGGESTED READINGS: 

1) Introduction to Matrix Theory - Arindama Singh 

2) Linear Algebra - Jörg Liesen & Volker Mehrmann 

3) Matrix Theory and Linear Algebra - Peter Selinge 

4) A Textbook of Matrices - Hari Kishan 

5) Linear Algebra and Matrix Theory - Robert R. Stoll 

 

 

Dr. Bala Naga Hima Bindu, Inampudi 



LESSON-3 

QUADRATIC FORMS 
 

3.0. OBJECTIVES: 

After completing this lesson, students will be able to: 

 Understand and explain the Cayley-Hamilton theorem including its statement, 
meaning, and importance in matrix theory and linear algebra. 

 Apply the Cayley-Hamilton theorem to compute powers of matrices, find matrix 
inverses (when they exist), and simplify polynomial expressions in matrices. 

 Identify and classify quadratic forms, and express them in matrix notation to 
analyze their structure. 

 Perform reduction of quadratic forms to canonical form or diagonal form using 
orthogonal transformations or congruence transformations. 

 Determine the nature of quadratic forms (positive definite, negative definite, 
indefinite, etc.) using eigenvalues, principal minors, and other criteria. 

 Understand the statement and implications of Cochran’s theorem in the context of 
quadratic forms and sums of squares in statistics. 

 Integrate the concepts of matrix algebra (Cayley-Hamilton theorem), quadratic 
forms, and Cochran’s theorem to solve advanced problems in linear algebra, 
multivariate analysis, and statistical inference. 

 

STRUCTURE 

3.1. Introduction 

3.2. Characteristic Equation, Cayley-Hamilton Theorem 

3.3. Quadratic Forms 

3.4. Problems 

3.5. Conclusion 

3.6. Self-Assessment Questions 

3.7. Suggested Readings 

 

3.1.   INTRODUCTION 

The Cayley-Hamilton theorem, quadratic forms, and Cochran’s theorem are important 
tools that help students understand deeper structures in matrix theory and its applications. The 
Cayley-Hamilton theorem is significant because it allows complex matrix calculations to be 
simplified using the matrix’s own characteristic equation. This makes it easier to compute 
matrix powers, understand matrix behaviour, and solve systems that involve repeated 
transformations. It has applications in engineering, computer science, control theory, and any 
area where linear systems evolve over time. 
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Quadratic forms and Cochran’s theorem are widely used in geometry, optimization, 
economics, and especially in statistics. Quadratic forms help us to classify surfaces, study the 
nature of functions, and determine whether a system is stable or unstable. They are also 
essential in statistical methods such as least squares, regression, and multivariate analysis. 
Cochran’s theorem adds further importance by explaining how total variation in statistical 
models can be broken into meaningful components, which is the foundation of ANOVA and 
variance estimation. Together, these topics build strong analytical skills and provide practical 
methods for solving real-world problems in science, data analysis, and applied mathematics. 

 

3.2. CHARACTERISTIC EQUATION, CAYLEY -HAMILTON THEOREM: 

Characteristic Equation: 

Let '  ' be a square matrix.  is determinant then  is called as Characteristic 

Equation of '  ' 

Characteristic Roots (or) Eigen Values (or) Latent Roots:  

Let '  ' be a square matrix '  ' is called determinant then the roots of  are called 

as characteristic roots (or) Eigen values (or) Latent roots. 

Characteristic Vector (or) Eigen Vector: 

Let  be a square matrix and  is a characteristic root. If  is a non-zero vector such that  

 then  is called characteristic vector corresponding to characteristic root . 

Note:  

 

 

Cayley - Hamilton Theorem: 

Statement: Every Square matrix satisfies its characteristic equations. 

Proof: Let '  ' be a square matrices of order '  ' The characteristic equation of '  ' is  

 

To prove 

 

Every element of  is a polynomial  of degrees almost 1. 

Every element of  is a polynomial in '  ' of degrees  (or) less 
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where  are square matrix of order '  '. 

we know that any matrix   

we have 

 

compare like powers of  

 

Multiply above  eqn's with  respective, we get 

 

adding the above  equations we get, 

 

Every square matrix will be satisfied its characteristics equation. 

Hence the theorem is proved. 

 

3.3. QUADRATIC FORMS: 

Quadratic Form: 

An expression of the form  where  and real number is called Quadratic 
form. 

Eg:  is a quadratic form of three variables 
. 
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Matrix of Quadratic Form: 

Let  is a real quadratic form where . Then '  ' is called Matrix of the 

quadratic form. 

Note: The matrix of quadratic form '  ' is always Symmetric form 

 

Reduction of A Real Quadratic Form: 

If  be any '  ' rows real symmetric matrix of rank r then  a real non-singular matrix. 

 

 

Cochran's Theorem: 

Let  be the random sample drawn from normal population with parameter 

 (0, .  Let the sum of the squares of the this values to written in the form. 

 where  is the quadratic form  with rank  

 then the random voriables  are mutually independent and  is 

-variate with  degrees of freedom if . 

1) Prove that value of independent matrix  are always either zeros (or) ones. 

Sol):  Let  

Now 

 

 is idempotent 

Now 

 

characteristic equation of '  ' is 



Theory of Linear Estimation & Analysis…        3.5                                       Quadratic Forms 

 
 

 

 

The Eigen values of independent matrix are 0's (or) 1’s 

 

2)  Find the characteristic roots are of  

Sol:  Given  

 

Characteristic  of  is  

 

, satisfies the  
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characteristic vector corresponding to . 

Let  be the characteristic vector corresponding to  

 

 

 

It reduces to Normal Form 

 

 

put  and  then 

 

        be the corresponding characteristic vector corresponding to . 

 

                                   



Theory of Linear Estimation & Analysis…        3.7                                       Quadratic Forms 

 
 

 

put  

put , in 

 

        

 be the characteristic vector corresponding to  

 

Similar Matrices and Equivalent Vectors: 

1) Show that  

Sol:  Let  

Now  

 where  

Now  where . 
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Now  

 

 

2) Show that . 

Sol) Now  

 

Now  

 

Hence proved. 

 

3) It '  ' is square matrix then show that   

Sol: Let '  ' be a square matrix order '  '. 

Then  are square matrix of order   

 element of . 

 

 

Hence proved. 
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3.4. PROBLEMS: 

1) Find the matrix of the quadratic form . 

Sol):   Let  

 

where  is the matrix of given quadratic form. 

 

2) Find the quadratic form for the matrix 

 

Sol):   Given  

Let  

Quadratic form . 

 

 

3) Find the rank, signature index transformed form and normal form of given 

quadratic form. 

 

Sol):  Given Quadratic form is 
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Let  (or)  
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                                             =  

Rank of  no. of non-singular sub-square  

Index of  number of positive  ve  rows in a diagonal form  

Signature of  

 

Normal form of  is  transformed form is 

 

                                                    =     

                                                    =      

                                                    =       

                                                    =        

                                                    =        

 

4) If  then prove that  are Idempotent Matrix. 

Sol):   Given that   

since  
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' ' is idempotent 

 

                                                        ' ' is idempotent. 
 

5) Determinant of Matrix: 

Let 

 

 

 

 

Properties: 

(i)  

(iii)  

 

(vi)  If '  ' is invertable, where  (or)  is non-singular matrix. 

 

Adjoint of Matrix: 

Let '  ' be a square matrix then the transpose of the cofactor matrix of '  ' is called Adjoint 

matrix of . It  denoted by Adj A. 

i.e., . 

 

Problems on Characteristic roots (or) Eigen Roots (or) Latent Roots:  

1) Show that the characteristic roots of diagonal matrix are same as its diagonal 

element. 

Sol):   Let  be the diagonal matrix. 
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Now, 

 

characteristic  of '  ' is  

 

 are the characteristic roots of . 

The characteristic roots of a diagonal matrix is same as its diagonal elements. 

 

2) Show that characteristic roots of a triangular matrix are same as its diagonal 

elements. 

 Sol:  Let      be the upper triangular matrix 

                Now   

 

3) If A is idempotent matrix the rank of A = Trace of A 

Sol:  Given A bean idempotent matrix   

                        i.e.,  

Eg: 1  

         Let      
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    is idempotent matrix. 

                                 Trace of A = 1+1 = 2 

 Now   

 Rank of A =2; Rank of A = Trace of A 

Eg 2: 

Let            

Now          = A             

 

  

A   is Idempotent matrix 

Trace of   

Now         
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Rank of A = 1 

Rank of A = Trace of A 

Find rank and Inverse of A and also Cauley Hamilton Theorem. 

                                                       

Sol:      Given matrix 

  A =  
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Rank of matrix A is 3 

 

3.5.  CONCLUSION: 

The Cayley–Hamilton theorem, quadratic forms, and Cochran’s theorem together 
highlight the power of matrix theory in understanding both algebraic and statistical problems. 
The Cayley–Hamilton theorem gives a practical method for simplifying matrix computations 
by allowing a matrix to satisfy its own characteristic equation. Quadratic forms provide a 
systematic way to study the nature of multivariable expressions and classify them through 
reduction methods, helping identify whether a system is stable or variable. Cochran’s 
theorem offers a useful technique for breaking down sums of squares into independent 
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components, forming the basis for variance partitioning in statistical models. Together, these 
methods reinforce the connection between theory and application, strengthening our 
analytical and problem-solving skills. 

 

3.6.  SELF-ASSESSMENT QUESTIONS: 

1) Discuss the classification of quadratic forms. 

2) Discuss the role of eigenvalues in studying quadratic forms. 

3) Explain the importance of the Cayley–Hamilton theorem in linear algebra. 

4) Explain how the Cayley–Hamilton theorem is used to find powers of a singular 
matrix. 

 

3.7. SUGGESTED READINGS: 

1) Hoffman, K. & Kunze, R.  Linear Algebra, Prentice-Hall. 

2) Strang, G. Introduction to Linear Algebra, Wellesley-Cambridge Press. 

3) Lang, S. Linear Algebra, Springer-Verlag. 

4) Horn, R.A. & Johnson, C.R. Matrix Analysis, Cambridge University Press. 

5) Roman, S. Advanced Linear Algebra, Springer (Graduate Texts in 
Mathematics). 

6) Searle, S.R., Linear Models, Wiley - for Cochran’s theorem and quadratic forms 
in statistics. 

 

 

Dr. Bala Naga Hima Bindu, Inampudi 



LESSON-4 

 THEORY OF LINEAR ESTIMATION AND LINEAR MODELS 
 
 

4.0.  OBJECTIVES:  

 After studying this lesson, you should be able to: 

● Understand the concept of linear estimation. 

● Explain the general linear statistical model. 

● Identify assumptions of linear models. 

● Define the estimability of linear parametric functions. 

● Distinguish between estimable and non-estimable functions. 

 

STRUCTURE 

4.1      Introduction 

4.2     Theory of Linear Estimation 

4.3     Linear Statistical Model 

4.4     Assumptions of Linear Model 

4.5     Estimability of Linear Parametric Functions 

4.6     Conclusion 

4.7    Self-Assessment Questions 

4.8    Suggested Readings 

 

4.1. INTRODUCTION: 

         In statistics, we often collect sample data to estimate unknown population parameters 
such as means, regression coefficients, or treatment effects. When the estimator can be 
written as a linear combination of the observed data, the problem belongs to the theory of 
linear estimation. 

Linear estimation is important because: 

● Many statistical methods (regression, ANOVA, experimental design) can be 
expressed using linear models. 

● Linear estimators are mathematically simple and easy to analyse. 

● Under suitable conditions, linear estimators possess optimal properties, including 
minimum variance. 



Centre for Distance Education                            4.2                 Acharya Nagarjuna University  

 

Thus, linear models provide a unified framework for statistical inference in practical 
problems. 

Statistical inference is primarily concerned with drawing conclusions about unknown 
population parameters based on observed sample data. In many practical situations-such as 
agricultural experiments, industrial quality control, medical research, economics, and social 
sciences-the relationship between observations and unknown parameters can be expressed in 
a linear form. The study of such problems is known as the theory of linear estimation. 

In linear estimation, the estimator of an unknown parameter or a function of 
parameters is assumed to be a linear function of the observed random variables. That is, 
the estimator can be written as a weighted sum of observations. This restriction to linear 
estimators simplifies mathematical analysis and allows the derivation of important optimality 
properties, such as minimum variance among a given class of estimators. 

Linear estimation plays a central role in statistics because many widely used 
techniques-such as regression analysis, analysis of variance (ANOVA), and experimental 
design-can all be formulated within the framework of a general linear statistical model. By 
using a common model, diverse statistical methods can be studied in a unified manner. 

Another important concept in linear models is estimability. In certain models, 
especially when the design matrix does not have full rank, it may not be possible to estimate 
all individual parameters uniquely. However, some linear combinations of parameters may 
still be estimable. Understanding which parametric functions are estimable is essential for 
meaningful statistical inference. 

The theory of linear estimation also provides the foundation for advanced results such 
as the Gauss-Markov theorem, which identifies the best linear unbiased estimator (BLUE), 
and its generalisation, known as Aitken’s theorem, applicable when errors are correlated or 
have unequal variances. Hence, the study of linear estimation is fundamental to both 
theoretical development and practical application of statistical methods. 

 

4.2. THEORY OF LINEAR ESTIMATION: 

Let 

 

be a vector of observations. 

A linear estimator of a parametric function is of the form: 

 

where 

 

is a vector of known constants. 
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Properties: 

Expectation of a Linear Estimator 

 

If 

 

then 

 

 

Variance of a Linear Estimator 

 

If 

 

then 

 

● Expectation:   

● Variance:  

 

Example 1 (Linear Estimator) 

Let 

 

Consider the estimator: 

 

Expectation 

 

Hence,  is unbiased. 

Variance 
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4.3. LINEAR STATISTICAL MODEL: 

The general linear model is: 

 

where 

● Y = vector of observations 

● X = known design matrix 

●  = vector of unknown parameters 

●  = vector of random errors 

 

Expectation and Variance: 

 

 
 

Example 2 (Linear Model): 

Let 

  

Then: 

 

So, the model depends only on . 

Problem-1 

Let 

 

be a vector of observations such that 

 

and the ’s are uncorrelated. 

Consider the linear estimator: 
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1) Find  

2) Find  

3) Comment on unbiasedness 

 

Solution: 

Step 1: Write the estimator in matrix form 

 

where 

 

Step 2: Expectation 

 

Since 

 

 

 

Hence,  is unbiased. 

Step 3: Variance 

Given 
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 Final Answer: 

 

 

Problem 2: Linear Statistical Model 

Consider the linear model: 

 

where 

 

Assume: 

 

1) Find E(Y) 

2) Identify the parametric function involved 

3) Comment on estimability 

 

Solution: 

Step 1: Expectation of Y 

 

 

 

 

 

Step 2: Parametric Function 

The model depends only on the linear parametric function: 
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Step 3: Estimability 

Since all expected values are the same and depend on 

 

This linear function is estimable, but  and  cannot be estimated separately. 

Final Answer 

 

The model depends only on the estimable function 

 

 

4.4. ASSUMPTIONS OF THE LINEAR MODEL: 

1) Zero Mean Errors 

 

2) Constant Variance 

 

3) Uncorrelated Errors 

 

4) Rank of X 

● Full rank → unique parameter estimates 

● Rank deficient → some parameters not estimable 

 

4.5. ESTIMABILITY OF LINEAR PARAMETRIC FUNCTIONS: 

A linear parametric function is: 

 

Definition 

A function  is estimable if there exists a linear unbiased estimator  such that: 

 

Condition for Estimability (Derivation) 
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For Unbiasedness: 

 

This must hold for all , hence: 

 

Therefore,  must lie in the row space of X. 

 

Advantages of Linear Estimation and Linear Models: 

1) Simplicity of Formulation: 

Linear estimators are simple weighted sums of observations, making them easy to 
understand, compute, and interpret. 

2) Unified Framework:  

Many statistical techniques, such as regression analysis, ANOVA, and experimental 
design, can be expressed using a single linear model. 

3) Mathematical Tractability: 

Linear models allow closed-form solutions for estimators, variances, and confidence 
intervals using matrix algebra. 

4) Optimal Properties: 

Under standard assumptions, linear estimators possess optimal properties such as 
minimum variance (Gauss–Markov theorem). 

5) No Need for Normality: 

The Gauss–Markov theorem does not require normality of errors; only first and 
second moments are needed. 

6) Ease of Extension: 

Linear models can be easily extended to generalised models (GLS) to handle 
correlated or heteroscedastic errors. 

7) Wide Applicability: 

Linear estimation is applicable in agriculture, economics, medicine, engineering, and 
social sciences. 

 

Disadvantages of Linear Estimation and Linear Models: 

1) Restriction to Linearity: 

Only estimators linear in observations are considered; nonlinear estimators may 
sometimes be more efficient. 
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2) Dependence on Model Assumptions: 

Violations of assumptions such as homoscedasticity or uncorrelated errors can lead to 
inefficient estimates. 

3) Estimability Issues: 

In rank-deficient models, not all parameters are estimable, which can complicate 
interpretation. 

4) Sensitivity to Outliers: 

Linear estimators, especially least squares estimators, can be highly sensitive to 
extreme observations. 

5) Limited Flexibility: 

Complex nonlinear relationships cannot be adequately modelled using simple linear 
models. 

6) Inefficiency Under Heteroscedasticity: 

Ordinary least squares estimators are not efficient when error variances are unequal. 

7) Interpretational Difficulties: 

In models with constraints or aliasing, individual parameter estimates may lack clear 
meaning. 

 

4.6. CONCLUSION: 

The theory of linear estimation and linear models provides a systematic approach for 
estimating unknown parameters and their linear functions based on observed data. By 
expressing estimators as linear functions of the observations, the theory offers mathematical 
simplicity and analytical convenience while ensuring meaningful statistical inference. The 
general linear model serves as a powerful and unifying framework that encompasses 
regression analysis, analysis of variance, and experimental design. 

A key concept in linear models is estimability, which determines whether a parameter 
or a linear combination of parameters can be uniquely and unbiasedly estimated. In situations 
where the design matrix does not have full rank, individual parameters may not be estimable; 
however, certain linear functions of the parameters may still be estimated reliably. 
Understanding estimability is therefore essential for the correct interpretation of model 
parameters. 

Under appropriate assumptions on the error structure, linear estimation leads to 
optimal estimators with minimum variance properties, forming the basis for further 
theoretical developments such as the Gauss–Markov theorem. Overall, the theory of linear 
estimation and linear models plays a central role in statistical methodology and forms the 
foundation for many practical and advanced statistical techniques. 

● Linear estimation deals with estimators linear in observations 
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● Linear models provide a unified framework for regression and ANOVA 

● Estimability ensures the uniqueness of the estimation 

● Not all parametric functions are estimable in rank-deficient models. 

 

4.7. SELF-ASSESSMENT QUESTIONS: 

1) What is meant by a linear estimator? 

2) Write the general form of a linear statistical model. 

3) State the expectation and variance of a linear estimator. 

4) Define a linear parametric function. 

5) What is meant by estimability in linear models? 

6) Explain the theory of linear estimation with suitable examples. 

7) Discuss the assumptions of the general linear statistical model. 

8) What are meant by estimable and non-estimable parametric functions? Explain 
with examples. 

9) Explain why rank deficiency of the design matrix affects estimability. 

10) Discuss the advantages and disadvantages of linear estimation and linear models. 

11) Explain, with a suitable example, a situation where individual parameters are not 
estimable function of parameters is estimable. 

 

4.8. SUGGESTED READINGS: 

1) Rao, C.R. (1973). Linear Statistical Inference and Its Applications. Wiley, New 
York. Searle, S.R. (1971). Linear Models. Wiley, New York. 

2) Graybill, F.A. (1976). Theory and Application of the Linear Model. Duxbury 
Press. 

3) Montgomery, D.C., Peck, E.A., & Vining, G.G. (2012). Introduction to Linear 
Regression Analysis. Wiley. 

4) Kutner, M.H., Nachtsheim, C.J., Neter, J., & Li, W. (2005). Applied Linear 
Statistical Models. McGraw-Hill. 

5) Johnson, R.A., & Wichern, D.W. (2007). Applied Multivariate Statistical 
Analysis. Pearson. 

        

                   Prof. V.V. Haragopal 



LESSON-5 

BEST LINEAR UNBIASED ESTIMATOR AND GAUSS–MARKOV 

THEOREM 
 

5.0. OBJECTIVES: 

After studying this lesson, the student should be able to: 

 Understand the concept of unbiased estimation in linear regression models. 

 Define and explain the Best Linear Unbiased Estimator (BLUE). 

 Derive the normal equations using the least squares method. 

 State and interpret the Gauss–Markov theorem and its assumptions. 

 Solve numerical problems to obtain BLUE and estimate linear functions of 
parameters. 

 

STRUCTURE: 

5.1 Introduction 

5.2 Linear Unbiased Estimators 

5.3 Best Linear Unbiased Estimator 

5.4 Gauss–Markov Theorem  

5.5 Estimation of Linear Functions 

5.6 Advantages and Disadvantages 

5.7 Conclusion 

5.8 Self-Assessment Questions 

5.9 Suggested Readings 

 

5.1. INTRODUCTION: 

In many practical situations, the relationship between a dependent variable and one or 
more independent variables is modeled using a linear regression model. The main objective 
is to estimate the unknown parameters of the model based on observed data. 

Several estimators may be constructed for these parameters. However, an estimator should 
possess desirable properties such as linearity, unbiasedness and minimum variance. 
Among all estimators that are linear functions of the observations and are unbiased, we seek 
the one with the smallest variance. This leads to the concept of the Best Linear Unbiased 
Estimator (BLUE). 
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The method of least squares provides such an estimator under certain assumptions on 
the error terms. The Gauss-Markov theorem establishes that the least squares estimator is 
BLUE, making it fundamental in regression analysis and statistical inference. 

Thus, this lesson focuses on the derivation, properties, and applications of BLUE and 
the Gauss–Markov theorem. 

Moreover, the concept of BLUE provides a unifying framework for understanding the 
efficiency of different estimation methods in linear models. By restricting attention to linear 
and unbiased estimators, the Gauss–Markov theorem offers a clear criterion for optimality 
based solely on variance minimization. This result not only simplifies theoretical analysis but 
also guides practical model building and interpretation. As a consequence, BLUE serves as a 
cornerstone in statistical modeling, enabling reliable parameter estimation across a wide 
range of applied disciplines. 

 

5.2. LINEAR UNBIASED ESTIMATORS: 

       Before identifying the best estimator, it is necessary to understand what is meant by a 
linear and an unbiased estimator. In regression analysis, estimators are constructed using 
observed sample data, and their performance is judged based on properties such as simplicity, 
unbiasedness, and variability. This section introduces the class of estimators that are linear 
functions of the observations and whose expected values equal the true parameters. 

Consider the general linear statistical model: 

 

where Y is the vector of observations, X is the known design matrix,  is the vector of 

unknown parameters, and  is the random error vector with 

 

This model provides the framework for defining linear unbiased estimators. 

 

5.3. BEST LINEAR UNBIASED ESTIMATOR (BLUE): 

In Section 5.2, we discussed the class of linear unbiased estimators. Since there can be 
many estimators that satisfy linearity and unbiasedness, it becomes necessary to choose the 
one that is most efficient. Efficiency is measured in terms of variance. The estimator with 
the smallest variance among all linear unbiased estimators is called the Best Linear 
Unbiased Estimator (BLUE). 

Definition: 

An estimator   is said to be the Best Linear Unbiased Estimator (BLUE) if: 

1) It is a linear function of the observations Y, i.e., 
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2) It is unbiased, that is, 

 

3) It has the minimum variance among all linear unbiased estimators of . 

Least Squares Estimator: 

For the linear model: 

 

the estimator obtained by minimizing the sum of squared errors 

 

is called the least squares estimator. 

Differentiating with respect to   and equating to zero: 

 

we obtain the normal equations: 

 

Solving, 

 

If  is nonsingular, 

 

BLUE of  

The least squares estimator  is linear in Y, unbiased, and (as shown by the Gauss–Markov 

theorem) has minimum variance among all linear unbiased estimators. Hence, 

 

is the BLUE of . 

Variance of BLUE 

The variance–covariance matrix of  is given by: 
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This matrix measures the precision of the parameter estimates. 

Numerical Example: 

From the simple regression example in Section 5.3, we obtained: 

 

Estimate the linear function: 

 

and find its variance. 

Solution: 

Here, 

 

Estimator: 

 

Variance: 

 

 

 

 

5.4. GAUSS-MARKOV THEOREM: 

The Gauss–Markov theorem is one of the most important results in linear regression 
analysis. It provides the theoretical foundation for the use of the least squares method by 
establishing that, under certain assumptions on the error terms, the least squares estimator is 
the Best Linear Unbiased Estimator (BLUE). In other words, among all estimators that are 
linear functions of the observations and unbiased for the parameters, the least squares 
estimator has the minimum variance. 

Statement of the Theorem: 

Consider the linear model: 
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where 

 

Then the least squares estimator 

 

is the Best Linear Unbiased Estimator (BLUE) of  . 

Assumptions: 

The Gauss–Markov theorem holds under the following assumptions: 

1. The model is linear in parameters:  

2. The errors have zero mean:  

3. The errors are uncorrelated and have equal variance:  

4. The matrix X has full column rank. 

 

Meaning of the Theorem: 

The theorem states that among all estimators of β that are: 

 linear in Y, and 

 unbiased, 

the least squares estimator  has the smallest variance–covariance matrix. Hence, no other 

linear unbiased estimator can be more efficient than . 

 

Key Result: 

If  is any other linear unbiased estimator of , then: 

 

that is, the difference is positive semidefinite. Therefore, 

 

This proves that  is the BLUE. 
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Importance: 

The Gauss-Markov theorem justifies the widespread use of the least squares method 
in regression analysis. It assures us that, under mild conditions, least squares provide the most 
precise estimates possible within the class of linear unbiased estimators. 

 

5.5. ESTIMATION OF LINEAR FUNCTIONS: 

In many practical situations, interest may not be in estimating the entire parameter 
vector β, but in estimating certain linear functions of the parameters, such as sums, 
differences, or other combinations. This section explains how such functions can be estimated 
using the BLUE. 

Linear Function of Parameters 

A linear function of  is of the form: 

 

where l is a known vector of constants. 

Examples: 

  

  

  

Estimator of  

If  is the BLUE of β\betaβ, then the estimator of  is: 

 

Unbiasedness 

Since  

 

Hence,  is an unbiased estimator of  . 

Variance 

The variance of  is given by: 
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Estimability 

A linear function  is said to be estimable if there exists a vector a such that: 

 

That is,  lies in the row space of X. Only estimable functions can be estimated unbiasedly. 

Numerical Example: 

From the simple regression example in Section 5.3, we obtained: 

 

Estimate the linear function: 

 

and find its variance. 

Solution: 

Here, 

 

Estimator: 

 

Variance: 

 

 

 

 

5.6. ADVANTAGES AND DISADVANTAGES: 

Advantages of BLUE 

1) Minimum Variance 
Among all linear and unbiased estimators, BLUE has the smallest variance, making it 
the most efficient estimator in this class. 

2) Unbiased Estimation 
The expected value of the BLUE equals the true parameter value, ensuring no 
systematic over- or under-estimation. 
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3) No Distributional Assumption 
The Gauss–Markov theorem does not require normality of the error terms; only mean 
zero and constant variance are needed. 

4) Theoretical Foundation of Least Squares 
BLUE provides a strong theoretical justification for using the least squares method in 
regression analysis. 

5) Wide Applicability 
It is extensively used in economics, engineering, agriculture, biostatistics, and social 
sciences for reliable parameter estimation. 

 

Disadvantages of BLUE: 

1) Restricted to Linear Estimators 
BLUE is optimal only within the class of linear unbiased estimators; non-linear 
estimators may sometimes perform better. 

2) Dependence on Model Assumptions 
If assumptions such as homoscedasticity or uncorrelated errors are violated, BLUE 
may lose its optimality. 

3) Sensitivity to Multicollinearity 
When the design matrix X is nearly singular, BLUE can have large variances and 
unstable estimates. 

4) Not Necessarily Best Overall Estimator 
If errors are normally distributed, estimators like the Maximum Likelihood Estimator 
(MLE) may be more efficient than BLUE. 

 

5.7. CONCLUSION: 

In this unit, we studied the problem of estimating parameters in a linear regression 
model using linear unbiased estimators. The main points covered are summarized below: 

 The linear model is given by  with  and  

 A linear estimator is a linear function of the observations, and it is unbiased if its 
expected value equals the true parameter. 

 The Best Linear Unbiased Estimator (BLUE) is the linear unbiased estimator with 
the minimum variance. 

 The least squares estimator  is the BLUE of  . 

 The normal equations  are obtained by minimizing the sum of squared 

errors. 

 The Gauss–Markov theorem proves that the least squares estimator is BLUE under 
mild assumptions and does not require normality of errors. 
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 Linear functions of parameters  can be estimated by , and their variance is 

 

 Numerical examples illustrate the computation and application of BLUE in regression 
problems. 

This unit establishes the theoretical foundation for regression analysis and provides tools for 
efficient estimation and inference in practical applications. 

 

5.8. SELF-ASSESSMENT QUESTIONS: 

A. Short Answer Questions: 

1) What is meant by an unbiased estimator? 

2) Define a linear estimator. 

3) What is meant by BLUE? 

4) Write the general linear model. 

5) What are the normal equations? 

6) State the Gauss–Markov theorem. 

7) What does “best” mean in BLUE? 

8) Does the Gauss–Markov theorem assume normality of errors? 

9) Write the expression for the variance of  

10) What is meant by an estimable function? 

 

B. Descriptive / Long Answer Questions: 

1) Explain the concept of linear unbiased estimators. 

2) Derive the normal equations using the least squares method. 

3) Define BLUE and discuss its properties. 

4) State and explain the Gauss–Markov theorem with assumptions. 

5) Show that the least squares estimator is unbiased. 

6) Explain how linear functions l′βl'\betal′β are estimated and find their variance. 

7) Discuss the importance of the Gauss–Markov theorem in regression analysis. 

 

5.9. SUGGESTED READINGS: 

The following books and references are recommended for further study and deeper 
understanding of linear models, BLUE, and the Gauss–Markov theorem: 
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1) Rao, C. R. – Linear Statistical Inference and Its Applications, Wiley. 

→ A classic reference on estimation theory and linear models. 

2) Montgomery, D. C., Peck, E. A., and Vining, G. G. – Introduction to Linear 
Regression Analysis, Wiley. 

→ Excellent for regression methods and applications. 

3) Draper, N. R. and Smith, H. – Applied Regression Analysis, Wiley. 

→ Focuses on practical aspects of regression analysis. 

4) Kutner, M. H., Nachtsheim, C. J., Neter, J., and Li, W. – Applied Linear 
Statistical Models, McGraw-Hill. 

→ Widely used textbook with examples and exercises. 

5) Seber, G. A. F. and Lee, A. J. – Linear Regression Analysis, Wiley. 

→ Covers theory and computation in detail. 

6) Graybill, F. A. – Introduction to Matrices with Applications in Statistics, 
Wadsworth. 

→ Useful for matrix methods used in BLUE. 

 

Prof. V.V. Haragopal 



LESSON-6 

GENERALIZED LINEAR MODEL AND GENERALIZED GAUSS-

MARKOV (AITKEN’S THEOREM) 
 

6.0. OBJECTIVES: 

After studying this lesson, you should be able to: 

 Understand models with correlated and heteroscedastic errors. 

 Explain the concept of Generalized Least Squares (GLS). 

 State and interpret Aitken’s theorem. 

 Compare Ordinary Least Squares (OLS) and GLS estimators. 

 

STRUCTURE: 

6.1 Introduction 

6.2 Generalized Linear Model  

6.3 Generalized Least Squares (GLS) 

6.4 Numerical Examples 

6.5 Generalized Gauss–Markov Theorem (Aitken’s Theorem) 

6.6 Comparison of OLS and GLS 

6.7 Conclusion 

6.8 Self-Assessment Questions 

6.9 Suggested Readings 

 

6.1. INTRODUCTION: 

In many practical data analysis problems, the assumptions of the classical linear 
regression model are often violated. The traditional model assumes that the error terms are 
independent and identically distributed with zero mean and constant variance. However, in 
real-world applications such as time-series analysis, econometrics, environmental studies, and 
engineering experiments, errors may be correlated across observations or may exhibit 
unequal variances, a situation known as heteroscedasticity. Under such circumstances, the 
Ordinary Least Squares (OLS) estimator, although still unbiased, no longer possesses the 
property of minimum variance among all linear unbiased estimators. 

To address these limitations, the linear model is extended by allowing a more general 
form for the variance–covariance matrix of the error vector. This leads to the formulation of 
the Generalized Linear Model, in which the error variance is no longer restricted to a scalar 
multiple of the identity matrix. The method of Generalized Least Squares (GLS) naturally 
arises from this framework, providing a way to incorporate the known error structure into the 
estimation process. The theoretical justification for GLS is given by the Generalized Gauss-
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Markov theorem, also called Aitken’s theorem, which establishes GLS as the best linear 
unbiased estimator under generalized error conditions. This lesson focuses on understanding 
these extensions and their importance in obtaining efficient and reliable parameter estimates 
in practical statistical modeling. 

 

6.2. GENERALIZED LINEAR MODEL: 

The generalized linear model provides a natural extension of the classical linear 
regression model by relaxing the restrictive assumptions on the error structure. In many 
practical situations, the variability in observations is not uniform and the errors may exhibit 
correlation due to time, space, or grouping effects. To capture such realistic features of data, 
the generalized linear model allows the error term to have a general variance–covariance 
matrix rather than assuming equal and independent variances. 

The model is written as: 

 

where 

 Y is an  vector of observed responses, 

 X is an  known design matrix, 

  vector of unknown parameters, and 

  vector of random errors. 

The key assumptions on the error term are: 

 

where V is a known n×n positive definite matrix. 

The matrix V represents the pattern of variances and covariances among the errors. If 
V=I, the errors are uncorrelated and have equal variances, and the model reduces to the 
classical linear model. If V is diagonal with unequal elements, the model accounts for 
heteroscedasticity. If V has non-zero off-diagonal elements, it represents correlated errors. 

Thus, the generalized linear model provides a flexible framework for modeling data 
with non-spherical error structures and forms the basis for deriving efficient estimation 
procedures such as Generalized Least Squares. 

 

6.3. GENERALIZED LEAST SQUARES (GLS): 

In the generalized linear model, the presence of correlated errors or unequal variances 
makes the Ordinary Least Squares (OLS) method inadequate from the point of view of 
efficiency. Although OLS estimators remain unbiased under such conditions, they no longer 
have minimum variance among all linear unbiased estimators. To overcome this limitation, 
the method of Generalized Least Squares (GLS) is employed. GLS modifies the least 
squares criterion by explicitly incorporating the known variance–covariance structure of the 
errors, thereby assigning appropriate weights to observations and leading to more precise 
parameter estimates. 
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When the error vector satisfies 

 

the GLS estimator of β\betaβ is obtained by minimizing the weighted sum of squared 
residuals: 

 

This yields the estimator: 

 

The variance–covariance matrix of the GLS estimator is: 

 

Thus, GLS takes into account the structure of the error covariance matrix and 
produces more efficient estimates than OLS whenever errors are correlated or 
heteroscedastic. An important property of GLS is that when V=I, the GLS estimator reduces 
to the ordinary least squares estimator, showing that OLS is a special case of GLS. 

 

6.4. NUMERICAL EXAMPLE: GLS 

Consider the generalized linear model 

 

where 

 

and the variance–covariance matrix of errors is 

 

Find the GLS estimate of β. 

Solution: 

The GLS estimator is given by: 

 

Step 1: Find  

 

 

Step 2: Compute  
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Step 3: Compute  

 

Step 4: Compute GLS estimate 

 

 Answer 

 

Generalized Linear Model (GLM): 

Advantages: 

1) Handles non-normal data 

GLMs allow response variables to follow distributions like binomial, Poisson, or 
gamma, not only normal. 

2) Flexible relationship 

The link function connects the mean of the response to predictors, allowing non-linear 
relationships. 

3) Widely applicable 

Used in logistic regression, Poisson regression, survival analysis, epidemiology, and 
social sciences. 

4) Interpretable parameters 

Coefficients often have meaningful interpretations (e.g., odds ratios in logistic 
regression). 

5) Unifies many models 

Linear regression, logistic regression, and Poisson regression are all special cases of 
GLM. 

 

Disadvantages: 

1) Model selection is difficult 

Choosing the correct distribution and link function requires experience. 

2) Computationally intensive 

Estimation is done using iterative methods, which can be slow for large datasets. 

3) Sensitive to misspecification 

Incorrect choice of link or distribution leads to biased results. 

4) Assumes independence 

Standard GLMs assume observations are independent, which may not always be true. 

5) Less intuitive for beginners 

Concepts like link functions and likelihood estimation are harder to understand than 
simple linear regression. 
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6.5. GENERALIZED GAUSS-MARKOV THEOREM (AITKEN’S THEOREM): 

The efficiency and optimality of the Generalized Least Squares estimator are formally 
established by the Generalized Gauss–Markov theorem, commonly referred to as Aitken’s 
theorem. Just as the classical Gauss–Markov theorem shows that the Ordinary Least Squares 
estimator is the best linear unbiased estimator under the assumption of independent and 
homoscedastic errors, Aitken’s theorem extends this important result to situations where the 
error terms have a general variance–covariance structure. It provides the theoretical 
foundation for preferring GLS over OLS in models with correlated or unequal error 
variances. 

Statement: 

Consider the general linear model 

 

where 

 

 known positive definite matrix. 

Theorem (Aitken) 

Among all linear unbiased estimators of , the estimator 

 

has minimum variance. 

Hence,  is the Best Linear Unbiased Estimator (BLUE) of β. 

Proof of Aitken’s Theorem: 

Step 1: Consider a general linear estimator 

Let 

 

where A is a p×n matrix of constants. 

Step 2: Condition for unbiasedness 

 

For unbiasedness: 

 

 

Step 3: Variance of a linear estimator 
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Step 4: GLS estimator satisfies unbiasedness 

Define 

 

Then: 

 

So,  is unbiased. 

Step 5: Compare variances of estimators 

Let  be any linear unbiased estimator. 

Define: 

 

Then: 

DX=0 

Now consider: 

 

Expanding: 

 

Step 6: Cross terms vanish 

Since DX=0: 

 

Similarly: 

 

Thus: 

 

Step 7: Conclude optimality 

Since V is positive definite: 

definite  

Therefore: 
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Hence, no other linear unbiased estimator has smaller variance than the GLS estimator. 

This means that among all estimators that are linear functions of the observations and 
unbiased for β, the GLS estimator has the minimum variance. Hence, Aitken’s theorem 
generalizes the classical Gauss–Markov theorem by replacing the restrictive assumption 

 with the more general condition . When V=I, Aitken’s theorem. 

Generalized Gauss-Markov Theorem (Aitken’s Theorem) 

Advantages: 

1) Best Linear Unbiased Estimator (BLUE) 
Aitken’s theorem provides the most efficient linear unbiased estimator when error 
covariance is known. 

2) Handles heteroscedasticity 
Works when error variances are unequal. 

3) Allows correlated errors 
Useful in time-series and spatial data. 

4) Improves efficiency 
Generalized Least Squares (GLS) estimators have smaller variance than OLS. 

5) Extends classical Gauss–Markov theorem 
Makes linear estimation more realistic for practical data. 

 

Disadvantages: 

1) Requires known covariance matrix 
In practice, the error covariance matrix is often unknown. 

2) Estimation becomes complex 
Computing GLS estimators involves matrix inversion and numerical methods. 

3) Sensitive to covariance misspecification 
Incorrect covariance structure leads to inefficient estimates. 

4) Limited to linear models 
Does not handle non-linear mean structures or non-normal responses. 

5) Interpretation remains linear 
Cannot model non-linear relationships between predictors and response. 

 

6.6. COMPARISON OF OLS AND GLS: 

Having developed the estimators under both the classical and generalized linear 
models, it is important to compare the Ordinary Least Squares (OLS) and Generalized Least 
Squares (GLS) methods. While both aim to estimate the same parameter vector β\betaβ, their 
performance differs significantly depending on the nature of the error structure. This section 
highlights the key differences between OLS and GLS and clarifies when GLS should be 
preferred over OLS in practical applications. 
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Feature OLS GLS 

Error variance   

Error structure Independent and equal variance Correlated and/or unequal variance 

Estimator   

Unbiasedness Unbiased if  Unbiased if  

Efficiency BLUE only when V=I BLUE for general V 

Special case – Reduces to OLS when V=I 

Computation Simple More computational effort 

Applicability Classical regression problems 
Time-series, panel, spatial, 
heteroscedastic data 

 

Remarks: 

 When errors are independent with equal variance, OLS is optimal and simpler to use. 

 When errors are correlated or heteroscedastic, OLS loses efficiency, while GLS 
remains optimal. 

 GLS gives more weight to observations with smaller variances and adjusts for 
correlations. 

 In practice, if V is unknown, it is estimated, leading to Feasible GLS (FGLS). 

Thus, the choice between OLS and GLS depends on how well the classical assumptions 
about the error term are satisfied in a given problem. 

 

6.7. CONCLUSION: 

In this lesson, we extended the classical linear regression framework to situations 
where the usual assumptions about the error structure do not hold. The generalized linear 
model allows the error terms to be correlated and to have unequal variances, which is often 
the case in practical data analysis problems. Under such conditions, the Ordinary Least 
Squares method, although unbiased, is no longer efficient. 

To address this issue, the method of Generalized Least Squares (GLS) was 
introduced. By incorporating the known variance–covariance matrix of the errors into the 
estimation procedure, GLS provides parameter estimates with smaller variance than OLS 
whenever the errors are heteroscedastic or correlated. The derivation of the GLS estimator 
shows that it can be obtained by transforming the generalized model into a classical one and 
then applying OLS. 
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The optimality of GLS is guaranteed by the Generalized Gauss–Markov theorem 
(Aitken’s theorem), which states that the GLS estimator is the Best Linear Unbiased 
Estimator of the parameter vector under the generalized model. Finally, a comparison of OLS 
and GLS highlights that while OLS is simple and effective under classical assumptions, GLS 
is more appropriate and efficient in realistic situations where those assumptions are violated. 
Thus, GLS plays a crucial role in modern regression analysis and statistical modeling. 

 

6.8. SELF-ASSESSMENT QUESTIONS: 

1) What is meant by a generalized linear model? How does it differ from the 
classical linear model? 

2) Why does the Ordinary Least Squares (OLS) estimator lose efficiency when errors 
are heteroscedastic or correlated? 

3) Derive the Generalized Least Squares (GLS) estimator starting from the weighted 
least squares criterion. 

4) Write down the GLS estimator and its variance–covariance matrix. 

5) State the Generalized Gauss-Markov theorem (Aitken’s theorem). What is its 
significance? 

6) Explain the meaning of the term BLUE in the context of Aitken’s theorem. 

7) Compare OLS and GLS estimators with respect to assumptions, efficiency, and 
applicability. 

8) In what situations is GLS preferred over OLS? Give practical examples. 

9) What is Feasible GLS (FGLS)? Why is it used in practice? 

10) Show that GLS reduces to OLS when the variance–covariance matrix of errors is 
σ2I\sigma^2 Iσ2I. 

 

6.9. SUGGESTED READINGS: 

To gain deeper insight into generalized linear models, GLS estimation, and Aitken’s 
theorem, students are encouraged to consult the following standard textbooks and 
references: 

1) Rao, C.R. (1973). Linear Statistical Inference and Its Applications. Wiley. 
– A classic reference covering linear models, estimation theory, and extensions of 
the Gauss–Markov theorem. 

2) Searle, S.R. (1971). Linear Models. Wiley. 

– Provides a comprehensive treatment of linear and generalized linear models 
with matrix methods. 

3) Graybill, F.A. (1976). Theory and Application of the Linear Model. Duxbury 
Press. 
– Focuses on both theoretical foundations and practical applications. 
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4) Draper, N.R., & Smith, H. (1998). Applied Regression Analysis. Wiley. 
– An applied perspective on regression, including handling of non-constant 
variance. 

5) Greene, W.H. (2018). Econometric Analysis. Pearson. 

– Extensive coverage of GLS, FGLS, and applications in econometrics. 

6) Montgomery, D.C., Peck, E.A., & Vining, G.G. (2012). Introduction to Linear 
Regression Analysis. Wiley. 

– Useful for understanding practical regression issues and remedies for 
assumption violations. 

 

Prof. V.V. Haragopal 



LESSON-7 

ANALYSIS OF VARIANCE (ANOVA) 
 

7.0. OBJECTIVES: 

After studying this unit, you should be able to: 

 Understand the concept of total variation in ANOVA. 

 Explain the decomposition of the total sum of squares. 

 Distinguish between one-way and two-way ANOVA. 

 Calculate sum of squares due to treatment, error, and interaction effects. 

 Analyse both balanced and unbalanced designs in ANOVA. 

 

STRUCTURE: 

7.1 Introduction of ANOVA 

7.2 Assumptions for ANOVA 

7.3 One-Way ANOVA Classification 

a) Decomposition of Sum of Squares 

b) Example for ANOVA One Way 

7.4 Two-Way ANOVA Classification 

a) Decomposition of Sum of Squares 

b) Example for ANOVA Two Way 

7.5 Balanced Vs. Unbalanced Designs 

7.6 Conclusion 

7.7 Self-Assessment Questions 

7.8 Suggested Readings 

 

7.1. INTRODUCTION: 

 The analysis of variance is a powerful statistical tool for tests of significance. The test 
of significance based on t-distribution is an adequate procedure only for testing the 
significance of the difference between two sample means. In a situation when we have three 
or more samples to consider at a time an alternative procedure is needed for testing the 
hypothesis that all the samples are drawn from the same population, i.e., they have the same 
mean. For example, five fertilizers are applied to four plots each of wheat and yield of wheat 
on each of the plot is given. We may be interested in finding out whether the effect of these 
fertilizers in the yields is significantly different or in other words, whether the samples have 
come for the same normal population. The answer to this problem is provided by the 
technique of analysis of variance. The basic purpose of the analysis of variance is to test the 
homogeneity of several means.  
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 The term 'Analysis of Variance’ was introduced by Prof. R.A. Fisher in 1920's to deal 
with problem in the analysis of agronomical data. Variation is inherent in nature. The total 
variation in any set of numerical data is due to a number of causes which may be classified 
as: (i) Assignable causes, and (ii) Chance causes.  

 The variation due to assignable causes can be detected and measured whereas the 
variation due to chance causes is beyond the control of human hand and cannot be traced 
separately. 

 

Definition: 

 According to Prof. R.A. Fisher, Analysis of Variance (ANOVA) is the "Separation of 
variance ascribable to one group of causes from the variance ascribable to other group". By 
this technique the total variation in the sample data is expressed as the sum of its non-
negative components where each of these components is a measure of the variation due to 
some specific independent source or factor or cause. The ANOVA consists in the estimation 
of the amount of variation due to each of the independent factors (causes) separately and then 
comparing these estimates due to assignable factors (causes) with the estimate due to chance 
factor (causes), the latter being known as experimental error or simply error. 

 

7.2. ASSUMPTIONS FOR ANOVA TEST: 

ANOVA test is based on the test statistics F (or) Variance Ratio. For the validity of the F-test 
in ANOVA, the following assumptions are made. 

i) The observations are independent,  

ii) Parent population from which observations are taken is normal, and  

iii) Various treatment and environmental effects are additive in nature. In the 
following sequences we will discuss the analysis of variance for F test 

a) One-way classification 

b)  Two-way classifications 

 

Remarks: 

1) ANOVA technique enables us to compare several populations means simultaneously 
and thus results in lot of savings in terms of time and money as compared to several 
experiments required for comparing two populations means at a time.  

2) As pointed out earlier, the origin of the ANOVA technique lies in agricultural 
experiments and as such its language is loaded with such terms as treatments, blocks, 
plots etc. However, ANOVA technique is so versatile that it finds applications in 
almost all types of design of experiments in various diverse fields such as industry, 
education, psychology, business etc. 

 

7.3. ANOVA ONE WAY CLASSIFICATION WITH ONE OBSERVATION FOR 

        EACH SUBCLASS: 
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Layout of One-Way Classification: 

A One-Way ANOVA (Analysis of Variance) is used to test whether there are statistically 
significant differences between the means of three or more independent (unrelated) groups. 

 

    

    

    

    

    

    

    

    

 

Mathematical Model 

 

Where:  

  is observation in the sub classes 

  

  

  

 

Working Rule of ANOVA one-way classification 

Explanation of Terms: 

 k: number of groups 

 N: total number of observations 

 Set the Hypothesis 

 Degree of Freedom 

 SS (Sum of Squares): a measure of variability 

o  total sum of squares 

o  = sum of squares between groups (explained variation) 

o  = sum of squares within groups (unexplained variation) 

o MS (Mean Square): an average of the sum of squares  
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 F-ratio: used to determine statistical significance (if F is large enough, the null 
hypothesis is rejected) 

a) Decomposition of Sum of Squares: 

Step 1: Set Hypotheses 

 

 

Alternative Hypothesis (H₁): At least one group mean differs 

 

Step 2: Compute Group Totals and Means 

  

  

  

  

  

Here unknown parameters are   We estimate the parameters by using the principle of 
least squares (method of least squares). 

Minimize the error sum of squares partially differentiating w.r.t. the parameters. 

        ----------------(1) 

 

 

Partial differentiation equ (2) w.r.t  and equated to zero, we get  
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Partial differentiation equ (2) w.r.t  and equated to zero, we get  

 

 

 

 

 

 

 

Step 3: Calculate Sum of Squares 

Total Sum of Squares (SST): 

 

Between Groups Sum of Squares (SSB): 

 

Within Groups Sum of Squares (SSW)(Error): 

 

 

 

Step 4: Compute Degrees of Freedom 
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Step 5: Compute Mean Squares 

 

 

Step 6: Compute F-Ratio 

 

Step 7: Compare with F-Critical 

  

  

 

Decision Rule: 

 

 

Step 8: Conclusion 

 If  is rejected, at least one group mean is significantly different. 

 

One-Way ANOVA Table 

 

 

 

 

 

 

 

 

 

 
 

     

    

     

 

b) Example for ANOVA One Way: 

 A researcher wants to test whether three different fertilizers affect plant growth 
differently. He applies Fertilizer A, B, and C to three groups of plants and records the growth 
(in cm) after a fixed time. 
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Data: 

Fertilizer Plant 1 Plant 2 Plant 3 

A 20 22 23 

B 25 27 26 

C 22 20 21 

 

Steps in One-Way ANOVA: 

Step 1: Calculate Group Means 

 k=3 (number of groups) 

 n=3 (observations per group) 

 N=9 (total number of observations) 

G=206 (Grand Total) 

  

  

  

 

Step 2: Calculate the Overall Mean (Grand Mean) 

  

 

Step 3: Compute Sum of Squares 

Total Sum of Squares (SST): 

 

 

 

(Compute each observation’s squared deviation from the grand mean.) 

 

Between Groups Sum of Squares (SSB): 
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  

  

   

  

 

Within Groups Sum of Squares (SSW)(Error): 

 

 

 

Step 4: Calculate Degrees of Freedom 

   

  

  

 

Step 5: Compute Mean Squares 

  

  

 
Step 6: Calculate the F-Ratio 

  

 

Step 7: Compare with Critical F-Value / Find p-value 

 Use F-distribution table or software with: 

  

  

    reject H₀. 

 

Conclusion: 

Since F ≈ 15.24 is likely greater than the critical value, we reject the null hypothesis and 
conclude that there is a significant difference in plant growth among the three fertilizers. 
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Source of Variation 
Degrees of 

Freedom (df) 

Sum of 
Squares 

(SS) 

Mean 
Square (MS) 

F-Ratio 

Between Groups 44.19 2 22.095 15.24 

Within Groups 8.68 6 1.447  

Total 52.87 8   

 

Interpretation: 

 Since F = 15.24 is quite high and likely exceeds the critical F-value at α = 0.05, we 
reject the null hypothesis. 

 This means at least one fertilizer has a significantly different effect on plant growth. 

 Using the F-distribution table (or calculator), at α = 0.05, with df1 = 2 and df2 = 6, the 
critical value of F ≈ 5.14. 

 

7.4. ANOVA TWO-WAY CLASSIFICATION WITH ONE OBSERVATION PER 
        CELL: 

ANOVA Two Way Classification 

  

1      2     ...      n 

  

    

    

    

    

    

    

    

 

Mathematical Model 

 

Where:  

  is observation in the sub classes 
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  

  

 sub class additive effect 

   

 

Explanation of Terms: 

 k: number of groups 

 h= number of classes 

 N: total number of observations 

 G= Grand Total 

 Set the Hypothesis  

 Degrees of Freedom 

 SS (Sum of Squares): a measure of variability 

o  total sum of squares 

o   = sum of squares Factor-A 

o  = sum of squares Factor-B 

o Sum of squares for Error 

 MS (Mean Square): an average of the sum of squares  

 F-ratio: used to determine statistical significance (if F is large enough, the null 
hypothesis is rejected) 

 

a) Decomposition of Sum of Squares:  

Step 1: Set Hypotheses 

  

 

 

 Alternative Hypothesis (H₁): At least one group mean differs 

 

Step 2: Compute Group Totals and Means 

  

  

  

 k: number of groups 
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 N: total number of observations 

  

  

  

  

  

Here unknown parameters are   We estimate the parameters by using the principle of 
least squares (method of least squares). 

 

Minimize the error sum of squares partially differentiating w.r.t. the parameters. 

         -------------------(1) 

  

  

 

Partial differentiation equ (2) w.r.t  and equated to zero, we get  

 

 

  

  

 

Partial differentiation equ (2) w.r.t  and equated to zero, we get  
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Partial differentiation equ (2) w.r.t  and equated to zero, we get  

  

 

  

Total Sum of Squares (SST): 

  

Factor A Sum of Squares (SSA): 

  

Factor B Sum of Squares (SSB): 

  

Error Sum of Squares (SSE): 

 

  

Step 4: Compute Degrees of Freedom 
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Step 5: Compute Mean Squares 

 

 

 

Step 6: Compute F-Ratio 

 

Step 7: Compare with F-Critical 

  

  

Decision Rule: 

 

Step 8: Conclusion 

 

 If  is rejected, at least one group mean is significantly different. 

 

 

 
 

 

 

 

 
 

Factor A     

Factor B    

Error  N-k-h+1   
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a) Example for ANOVA Two way: 

Sample (Factor A) B1 B2 B3 B4 Row Total 

S1 34 23 35 36 128 

S2 33 36 32 35 136 

S3 28 31 29 30 118 

Column Total 95 90 96 101 G=382 

 

Step 1: Set Hypotheses 

  

  

  

Alternative Hypothesis (H₁): At least one group mean differs 

Step 2: Calculate the Overall Mean (Grand Mean) 

 Grand total G: 

 G = 128 + 136 + 118 = 382 

 Number of rows r = 3, columns c = 4, total N=r×c=12 

 

Step 3: Compute the Sum of Squares (SST) 

  

 

 

 
 

Sum of Squares for Factor A (Rows) 
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Sum of Squares for Factor B (Columns) 

  

  

  

  

 

 

Error (Residual) Sum of Squares: 

Since we have no replication, the “error” is actually the interaction term  

(Unexplained Variation): 

  

  

Step 4: Degrees of Freedom 

  

  

  

  

Step 5: Mean Squares & F-values 
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Step 6: Compute F-Ratio 

 

  

Step 7: Compare with F-Critical 

ANOVA Two-Way Table 

Source SS df MS F 

Factor A (Rows) 40.6667 2 20.33335 0.1104 

Factor B (Cols) 20.3334 3 6.7778 0.0368 

Error 1104.6666 6 184.1111  

Total 1165.6667 11   

 

Step 7: Conclusion 

 

 

 

 

 

7.5. BALANCED DESIGN AND UNBALANCED DESIGN: 

Balanced Design:  

A balanced design is one where: 

 Each treatment (or factor level) has the same number of observations (replications). 

 The data is evenly distributed across all groups or cells in the design. 

Unbalanced Design an Unbalanced Design occurs when: 

 The number of observations (replications) is not equal across treatment groups. 

 Some cells (factor combinations) may even be missing entirely. 
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Feature Balanced Design Unbalanced Design 

Replications per cell Equal Unequal / Missing 

Analysis Simple (standard ANOVA) 
Complex (need Type 

I/II/III SS) 

Power Higher Lower (if very uneven) 

Interpretation Easy Sometimes tricky 

 

7.6.  CONCLUSION: 

 One-Way ANOVA is used when a single factor with two or more levels is studied 
to check if there is any significant difference in the means of different groups. 
Example: comparing crop yields under different fertilizers. 

 Two-Way ANOVA is applied when two factors are considered simultaneously. It 
evaluates: 

1) Main effect of factor A. 

2) Main effect of factor B. 

3) Interaction effect of A × B. Example: studying the effect of fertilizer type 
(Factor A) and irrigation level (Factor B) on crop yield. 

 Assumptions of ANOVA: 

1) Observations are independent. 

2) Populations are normally distributed. 

3) Variances are equal across groups (homoscedasticity). 

 ANOVA partitions total variation into between-group and within-group (error) 
variation. The F-test determines significance. 

 Balanced designs (equal sample sizes) make ANOVA simpler, while unbalanced 
designs require advanced techniques. 

 

7.7. SELF-ASSESSMENT QUESTIONS: 

1) What is the purpose of ANOVA? 

2) Differentiate between one-way and two-way ANOVA with examples. 

3) Define main effect and interaction effect in two-way ANOVA. 

4) What are the assumptions of ANOVA? 

5) Write the mathematical model for one-way ANOVA. 
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6) Write the mathematical model for two-way ANOVA with interaction. 

7) How is the F-ratio calculated in ANOVA? 

8) Explain with an example where two-way ANOVA is more appropriate than one-
way ANOVA. 

9) What are degrees of freedom in one-way and two-way ANOVA? 

10) State the difference between between-group and within-group variation. 

 

7.8. SUGGESTED READINGS: 

1) Montgomery, D.C. (2017). Design and Analysis of Experiments (9th ed.). Wiley. 

2) Fisher, R.A. (1925). Statistical Methods for Research Workers. Oliver & Boyd. 

3) Gupta, S.C., & Kapoor, V.K. (2014). Fundamentals of Applied Statistics. Sultan 
Chand & Sons. 

4) Hinkelmann, K., & Kempthorne, O. (2008). Design and Analysis of Experiments. 
Wiley. 

5) Ott, R.L., & Longnecker, M. (2016). An Introduction to Statistical Methods and 
Data Analysis. Cengage Learning. 

6) Snedecor, G.W., & Cochran, W.G. (1989). Statistical Methods. Iowa State 
University Press. 

 

Prof. V.V. Haragopal 



LESSON-8 

MULTIPLE COMPARISON TESTS 
 

8.0. OBJECTIVES: 

After completing this unit, you should be able to: 

 Explain the need for multiple comparison tests after obtaining a significant 
ANOVA result. 

 Distinguish clearly between Fisher’s LSD and Duncan’s Multiple Range Test 
based on their procedures and error-control strategies. 

 Compare the advantages, limitations, and applications of the three methods. 

 Use each test to determine which specific group means differ significantly in a 
dataset. 

 Interpret the outcomes of multiple comparison tests and apply them effectively in 
real research situations. 

 

STRUCTURE: 

8.1 Introduction 

8.2 Need for Multiple Comparison Tests 

8.3 Fisher’s Least Significant Difference (LSD) Method 

8.4 Duncan’s Multiple Range Test (DMRT) 

8.5 Difference Between LSD and Duncan’s 

8.6 Applications 

8.7 Summary 

8.8 Self-Assessment Questions 

8.9 Suggested Readings 

 

8.1. INTRODUCTION 

In many scientific investigations-such as agricultural trials, medical experiments, 
psychological studies, or industrial quality testing-researchers often need to compare the 
performance of more than two groups or treatments. For example, a scientist may evaluate 
different fertilizers, a doctor may compare multiple drug dosages, or an educator may test 
various teaching methods. In all such situations, the central question is whether the group 
means differ significantly. 

To address this, the Analysis of Variance (ANOVA) is commonly used as an initial 
statistical test. ANOVA examines whether there is overall variability among group means 
that cannot be explained by chance alone. If ANOVA yields a significant F-value, it tells us 
that at least one group mean is different from the others. However, ANOVA does not 
indicate: 

 Which specific pairs of means differ, 

 How large those differences are, or 

 Whether the differences are practically meaningful. 
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This limitation requires additional statistical procedures known as multiple 
comparison tests or post-hoc tests. 

Multiple comparison tests are specially designed to examine the pairwise differences 
among all group means in a controlled manner. Without these tests, comparing groups using 
several individual t-tests would greatly increase the likelihood of committing a Type I error, 
meaning we might incorrectly conclude that two groups differ when they do not. 
As the number of groups increases, the number of pairwise comparisons grows rapidly, and 
so does the risk of false positives. 

To address this, multiple comparison procedures apply statistical corrections, 
adjustments, or decision rules that help maintain the overall accuracy of conclusions. These 
methods differ in their: 

 Stringency or strictness (how much they control Type I error) 

 Power (their ability to detect true differences) 

 Assumptions (equal sample sizes, equal variances, normality) and 

 Computational approaches. 

Some methods, such as Fisher’s Least Significant Difference (LSD), are more liberal 
and sensitive, making them good for detecting subtle differences but less strict in error 
control. Others, like Tukey’s Honest Significant Difference (HSD), provide stronger 
protection against Type I error, especially with many groups. Duncan’s Multiple Range Test 
lies between these methods, offering a balance of power and flexibility with a stepwise 
procedure. 

Overall, multiple comparison tests play a crucial role in the interpretation of ANOVA 
results. They allow researchers to pinpoint exactly which means differ, understand the pattern 
of differences among treatments, and draw reliable conclusions from experimental data. By 
choosing an appropriate procedure based on the research design and objectives, investigators 
can ensure that their conclusions are both statistically sound and practically meaningful. 

 

8.2. NEED FOR MULTIPLE COMPARISON TESTS:  

A significant ANOVA result tells us that group differences exist, but it does not 
provide detailed information about where those differences lie. Conducting several 
independent t-tests is not recommended because it increases the probability of Type I error 
incorrectly concluding that differences exist when they do not. Multiple comparison tests 
offer a systematic and statistically valid solution by: 

 Adjusting the significance level when multiple pairwise comparisons are made. 

 Providing a consistent framework to determine which specific means differ. 

 Protecting the study from inflated false-positive rates. 

 Allowing researchers to make clear, interpretable decisions about treatment 
effectiveness or group behaviour. 

Because different tests vary in strictness and power, selecting the right method ensures valid 
and reliable conclusions. 
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8.3. FISHER’S LEAST SIGNIFICANT DIFFERENCE (LSD) METHOD: 

Fisher’s LSD is one of the earliest and simplest post-ANOVA multiple comparison 
techniques. It operates by performing pairwise t-tests but only after a significant ANOVA 
result has been obtained. The method calculates a minimum difference-called the Least 
Significant Difference-that two means must exceed to be considered statistically different. 

 

Key Features: 

 It does not strongly adjust for multiple comparisons, making it more liberal (more 
likely to find differences). 

 The method is powerful when the number of comparisons is small and when the 
overall ANOVA is highly significant. 

 It uses the pooled variance from ANOVA to calculate the standard error for pairwise 
comparisons, which enhances consistency across tests. 
 

1) Precondition: 

 Perform one-way ANOVA first. Apply LSD only if the ANOVA F-test is significant 
at the chosen α (e.g. 0.05). LSD uses the pooled error variance (MSE) from that 
ANOVA. 
 

2) Notation 

  

  

  

  

 
 

  

  

 

3) Standard error formulas 

Equal sample sizes (all groups have n) 

 

Unequal sample sizes 
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Note: LSD assumes homogeneity of variances (pooled MSE valid). If variances are unequal, 
LSD is not appropriate without modification. 

 

4) LSD (Critical Difference): 

 

 This is the minimum absolute difference between   required for significance 

at the two-sided level α. 

5) Decision Rule: 

  

  

  

6) Equivalent Confidence Interval Form: 

 A two-sided 100(1−α) % confidence interval for the difference  is: 

  

 If this interval does not contain 0, the difference is significant at level alpha α. 

 

A B C 

15.47 19.47 
 

22.47 
 

16.74 20.74 
 

23.74 
 

18.00 22.00 
 

25.00 
 

19.26 23.26 
 

26.26 
 

20.53 24.53 
 

27.53 
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1.  

2.  

3.  

 

 

 

 

 
 

  

  
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Example: 

Suppose we test the effect of 3 fertilizers (A, B, C) on plant growth. 

 Fertilizer A: 20, 22, 23 

 Fertilizer B: 25, 27, 26 

 Fertilizer C: 22, 20, 21 

 

From ANOVA, we get: 

Means: 

  

  

  

 

Comparisons: 

  

  

  

  

Fisher’s Least Significant Difference Formula: 

 

 

Differences: 

 A vs B = 4.33 → greater than 2.0 → significant 

 A vs C = 0.67 → less than 2.0 → not significant 

 B vs C = 5.0 → greater than 2.0 → significant 
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Conclusion:  

Fertilizer B produces significantly more growth than A and C, but A and C do not 
differ. 

 

8.4. DUNCAN’S MULTIPLE RANGE TEST (DMRT): 

Duncan’s Multiple Range Test is a post-hoc multiple comparison procedure used after 
ANOVA to determine which specific group means differ. 

Developed by D.B. Duncan, it is considered less conservative than Tukey’s HSD, 
meaning it is more likely to detect differences between groups. 

It uses Studentized Range Statistics (q-values) but applies a stepwise increasing 
significance level, which gives DMRT more power (higher chance of finding differences). 

 

Key Features of DMRT: 

 Stepwise procedure - comparisons begin with the largest range (largest difference 
between means). 

 Uses q-statistics from the Studentized Range distribution. 

 More liberal than Tukey’s HSD, but less liberal than unadjusted LSD. 

 Controls Type I error at each step but not the experiment-wise error. 

 

Steps in Duncan’s Multiple Range Test 

1) Perform ANOVA DMRT is used only if the ANOVA F-test is significant. 

2) Arrange means in ascending or descending order 

3) Compute the Standard Error (SE) 

 

where 

 MSE = Mean Square Error from ANOVA 

 n = number of observations per group (for equal sample size) 

 

1) Find the least significant ranges (LSR) 
For a range of r means: 
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2) Compare differences between ordered means against LSR values 
If the difference is greater than LSR → means are significantly different. 

Example: 

Fertilizer Plant 1 Plant 2 Plant 3 Mean 

A 20 22 23 21.7 

B 25 27 26 26.0 

C 22 20 21 21.0 

 

From ANOVA, suppose: 

 

 

 

 

Comparisons 

  

  

 

 

 

 

 

 

 

  

  
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Step 5 – Compare Differences 

 B vs C = 26.0 – 21.0 = 5.0 > 2.38 → Significant 

 B vs A = 26.0 – 21.7 = 4.3 > 2.12 → Significant 

 A vs C = 21.7 – 21.0 = 0.7 < 2.12 → Not significant 

Conclusion: Fertilizer B is significantly better than A and C, but A and C are similar. 

 

8.5. DIFFERENCE BETWEEN FISHERS AND DUNCANS: 

Feature Fisher’s LSD 
Duncan’s Multiple Range Test 

(DMRT) 

Type of method 
Pairwise comparison using 

pooled t-tests 
Stepwise multiple range test 

Protection against 
Type I error 

Weak control - higher 
chance of false positives 

Moderate control, stronger than 
LSD but weaker than Tukey 

Requires significant 
ANOVA first? 

Usually yes (Fisher’s rule)** 
Yes, but still conducts stepwise 

comparisons 

Basis of critical 
value 

Constant critical difference 
(LSD) using t-value for all 

comparisons 

Variable critical ranges (R values) 
depending on the number of ordered 

groups compared 

Comparison 
approach 

Compares all pairs equally 
Compares ordered means in a step-

down procedure 

Stringency 
More liberal (detects more 

differences) 
More conservative than LSD, but 

liberal compared to Tukey 

Risk of Type I error High Medium 

Power (ability to 
detect real 

differences) 
High (but risks false alarms) Medium-high 

Best used when 
Few groups + low risk of 

false positives is acceptable 
Agricultural / biological experiments 

with ordered treatments 

Output style 
Pairwise tests with single 

LSD value 

Means are grouped into 
homogeneous subsets (e.g., a, b, c 

letters) 

Interpretation “Means differ if Xi – Xj 
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8.6. APPLICATIONS: 

 Agriculture: Comparing crop yields under different fertilizers. 

 Medicine: Comparing effects of different drug dosages. 

 Education: Comparing student performance under different teaching methods. 

 Psychology / Behavioral Science: Comparing stress levels under different 
relaxation techniques (e.g., meditation, music therapy, exercise). 

 Manufacturing / Industry: Comparing the strength of materials produced by 
different production processes. 

 

8.7. SUMMARY OF MULTIPLE COMPARISON PROCEDURES: 

Fisher’s Least Significant Difference (LSD) test is one of the earliest and simplest 
post-hoc methods used after ANOVA to identify which group means differ significantly. It 
compares pairs of means using the pooled error variance from ANOVA and relies on the t-
distribution. Because it does not strongly control the familywise Type I error rate, it is 
considered a liberal method-meaning it often detects significant differences, but at the cost of 
a higher risk of false positives. Fisher’s LSD is most suitable when the number of treatments 
is small and when researchers want a highly sensitive method to detect differences. 

Duncan’s Multiple Range Test (DMRT) is a stepwise procedure that uses the 
studentized range statistic (q) and compares ordered means to determine significant 
differences. It provides better error control than LSD while still remaining more powerful 
than conservative tests like Tukey’s HSD. DMRT groups means into homogeneous subsets 
(A, B, AB, etc.) based on their statistical similarity, making interpretation easier in 
agricultural and biological experiments. Although DMRT is less liberal than LSD, it still 
allows more flexibility than stricter methods, balancing sensitivity and protection against 
false positives. 

 

8.8. SELF-ASSESSMENT QUESTIONS: 

1) What is Fisher’s LSD test used for after ANOVA? 

2) Why is Duncan’s test considered less strict than other multiple comparison tests? 

3) Differences Between Fishers LSD and Duncan’s Test? 

4) How does Duncan’s test group treatments compare to Fisher’s LSD? 

5) Problems on LSD and Duncans Test? 

 

8.9. SUGGESTED READINGS: 

1) Montgomery, D.C. (2017). Design and Analysis of Experiments (9th ed.). Wiley. 

2) Fisher, R.A. (1925). Statistical Methods for Research Workers. Oliver & Boyd. 
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3) Gupta, S.C., & Kapoor, V.K. (2014). Fundamentals of Applied Statistics. Sultan 
Chand & Sons. 

4) Hinkelmann, K., & Kempthorne, O. (2008). Design and Analysis of Experiments. 
Wiley. 

5) Ott, R.L., & Longnecker, M. (2016). An Introduction to Statistical Methods and 
Data Analysis. Cengage Learning. 

6) Snedecor, G.W., & Cochran, W.G. (1989). Statistical Methods. Iowa State 
University Press. 

 

Dr. M. Amulya 



LESSON-9 

FIXED, RANDOM AND MIXED EFFECT MODELS 
 

9.0. OBJECTIVES: 

After Studying this unit, you should able to: 

 Understand the difference between fixed, random, and mixed effect models. 

 Identify situations where each model is applicable. 

 Learn the assumptions behind each model. 

 Apply these models in practical research problems. 

 Compare their advantages and limitations 

 

STRUCTURE: 

9.1 Introduction 

9.2 Fixed Effect Model 

9.3 Random Effect Model 

9.4 Mixed Effect Model 

9.5 Comparison of Models 

9.6 Applications 

9.7 Summary 

9.8 Self-Assessment Questions 

9.9 Suggested Readings 

 

9.1. INTRODUCTION 

In statistical modeling and analysis of variance, factors influencing a response can be 
treated as fixed, random, or mixed effects depending on how their levels are chosen. In a 
fixed effect model, the levels of the factor are specifically selected by the researcher, and 
inference is restricted to those levels only. In contrast, a random effect model assumes that 
the factor levels are randomly drawn from a larger population, allowing generalization 
beyond the sample. A mixed effect model combines both, where some factors are fixed and 
others are random, making it suitable for more complex designs. These models are 
fundamental in agriculture, medicine, engineering, and social sciences for designing 
experiments and interpreting results accurately. 

 

9.2. FIXED EFFECT MODEL: 

A fixed effect model is used when the levels of a factor are specifically chosen by the 
researcher and are the only ones of interest. The purpose is to compare these selected 
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treatments without generalizing beyond them. The treatment effects are considered constant 
(non-random), and inference is limited to the chosen levels. 

Model Equation: 

𝐘ᵢⱼ = μ + ᵢ + εᵢⱼ, εᵢⱼ ∼ 𝑁 (0, σ²) 

Where: 

 𝐘ᵢⱼ= Outcome for group i at time t 

 μ = overall mean 

 ᵢ = fixed treatment effect of ith level 

 εᵢⱼ = random error associated with ith level treatment 

Example:  

A researcher wants to test whether average exam scores differ across three teaching methods 
(A, B, C). The data are given below: 

Method S1 S2 S3 S4 

A 78 74 82 80 

B 85 88 90 87 

C 72 70 68 69 

Solution Steps: 

1) Model:  

where τᵢ are fixed effects of teaching method. 

2) Hypotheses: 

 

At least one τᵢ ≠ 0 

3) Means: 

Method A mean = 78.50 

Method B mean = 87.50 

Method C mean = 69.75 

Grand mean G = 78.58 

4) Calculate Sum of Squares 

 Total Sum of Squares (SST): 
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 Between Groups Sum of Squares (SSB): 

 

 Within Groups Sum of Squares (SSW): 

 
 

5) Degrees of Freedom: 

 

 

 
 

6) Mean Squares: 

 

  

7) F-ratio: 

 

8) Decision: 

Critical F (2,9) at α=0.05 ≈ 4.26. Since 49.97 >> 4.26, reject H0. 

 

Conclusion:  

Teaching methods have a significant effect on exam scores. Method B performs best, 
Method A is average, and Method C performs worst. 

 

9.3. RANDOM EFFECT MODEL: 

A random effect model is applied when the factor levels are randomly sampled from a 
larger population. Here, the focus is not on comparing specific treatments but on estimating 
the variability among treatments. The treatment effects are assumed to be random variables 
with mean zero and constant variance. 
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Model Equation: 

 

Where: 

  

  

  random error  

Example: 

A manufacturer wants to estimate variability in product weight due to machines. Four 
machines are randomly selected from the factory floor and each machine produces 3 items. 
The weights (in grams) recorded are: 

Machine Item 1 Item 2 Item 3 

M1 50.2 49.8 50.5 

M2 51.0 50.6 50.9 

M3 49.0 48.7 49.3 

M4 50.7 50.4 50.8 

 

Model:   
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Conclusion:  

The random effect of machine is significant (F = 17.69, p < 0.05). Estimated variance 
components: between-machine variance ≈ 0.6216, within-machine variance ≈ 0.1118. High 
ICC (≈0.85) indicates most variability comes from machine-to-machine differences. 

 

9.4. MIXED EFFECT MODEL: 

A mixed effect model includes both fixed and random factors. Some effects are 
chosen deliberately (fixed), while others represent random variation. These models are useful 
when experiments involve structured treatments combined with naturally occurring random 
factors, such as blocks or subjects. 

 

Model Equation: 

 

  μ= overall mean 

 = fixed effect of the ith treatment 

   = random effect of the jth block 

 εᵢⱼₖ  = random error 

 

Problem: 

A manufacturer wants to estimate variability in product weight due to machines. Four 
machines (random sample) are selected and each receives two fertilizers (fixed: F1, F2). Each 
machine–fertilizer combination is observed once (one measurement per cell). The weights (in 
grams) are: 
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Machine F1 F2 

M1 52 55 

M2 48 50 

M3 51 53 

M4 49 52 

 

 

 

 

 

 

 

 

 

 

 

Mean Sum of Squares 
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9.5. COMPARISON OF MODELS:  

Aspect Fixed Effect Model 
Random Effect 

Model 
Mixed Effect Model 

Definition 
Specific treatments 
chosen by researcher. 

Treatments are 
random samples from 
a population. 

Combination of fixed 
and random factors. 

Inference Scope 
Limited to chosen 
treatments only. 

Generalizes to the 
entire population. 

Both specific and 
general conclusions. 

Treatment Effect Constants (τi) 
Random variables 
(αi) 

Mix of constants and 
random variables. 

Estimation Focus 
Differences between 
means. 

Variance 
components. 

Both mean 
differences and 
variance components. 

Examples Fertilizers A, B, C. 
Randomly chosen 
schools or machines. 

Fertilizers (fixed) + 
fields (random). 

Advantages 
Simple, easy to 
interpret. 

Allows broad 
generalization. 

Handles complex, 
realistic designs. 

Disadvantages 
No generalization 
possible. 

Complex estimation. 
Computationally 
intensive. 

 

9.6. APPLICATIONS: 

1) Agriculture – Fertilizer trials (fixed), soil plots (random), mixed designs for crop 
yield. 

2) Medicine – Drug dosage levels (fixed), patient-to-patient variation (random). 

3) Industry – Comparing manufacturing methods (fixed), machine variation 
(random). 

4) Education – Studying teaching methods (fixed), schools or classrooms (random). 

5) Psychology – Comparing therapy types (fixed) while accounting for subject 
variability (random). 

6) Environmental Studies – Pollution control methods (fixed) tested across random 
locations (random). 

 

9.7. SUMMARY: 

Fixed models are used when the levels of a factor (treatments, groups, or categories) 
are specifically chosen and represent the entire set of interest. In other words, the researcher 
wants to draw conclusions only about the treatments included in the study. Because of this, 
differences detected among treatment means apply exclusively to those particular levels. 



Theory of Linear Estimation & Analysis…        9.9          Fixed, Random and Mixed Effect… 

 
 

Fixed models are common in agricultural experiments, lab studies, and clinical trials where 
treatments such as fertilizer types, drug doses, or teaching methods are deliberately selected. 
In fixed-effects ANOVA, the treatment means are compared directly, and statistical tests 
focus on identifying specific differences among them. 

 Random models, by contrast, consider treatment levels as a random sample from a 
much larger population of possible levels. The goal is not to study those levels individually 
but to generalize findings to the broader population. Instead of testing differences among 
specific means, random-effect models focus on estimating variance components-how much 
variability in the response is due to the random factor. This is useful in biological studies, 
multi-site experiments, and situations with subjects drawn randomly from populations. 

  Mixed models combine both fixed and random effects, allowing some factors to be 
specific (fixed) and others to represent random variability. These models are essential in 
designs like Randomized Block Designs (RBD), Latin Square Designs (LSD), repeated-
measures studies, and multi-level data where blocks, subjects, or locations act as random 
factors. Mixed models improve precision by accounting for structured random variation, 
enabling both specific treatment comparisons and broader generalization. 

 
9.8. SELF-ASSESSMENT QUESTIONS: 

1) Differentiate between fixed, random, and mixed effect models with examples. 

2) Write the assumptions of the random effect model. 

3) Why are mixed models useful in agricultural and industrial research? 

4) List advantages and disadvantages of fixed effect models. 

5) Give one real-life situation for each type of model. 

6) In which field would you apply mixed effect models and why? 

 

9.9 SUGGESTED READINGS: 

1) Montgomery, D.C. (2017). Design and Analysis of Experiments (9th ed.). Wiley. 

2) Hinkelmann, K., & Kempthorne, O. (2008). Design and Analysis of Experiments. 
Wiley. 

3) Fisher, R.A. (1925). Statistical Methods for Research Workers. Oliver & Boyd. 

 

 

Dr. M. Amulya 



LESSON-10 

 ADVANCED ANALYSIS OF VARIANCE  
 

10.0. OBJECTIVES: 

After reading this unit  

 Become familiar to the analysis of variance technique 

 Describe the various types of analysis of variance technique 

 Describe the various types of assumptions involved in analysis of variance  

 Define the various types of linear models used in analysis of various  

 Describe the applications of analysis of variance  

 

STRUCTURE: 

10.1 Introduction 

10.2 Concept of ANOVA 

10.3 Terminologies Related to ANOVA 

10.3.1 Sum of Square between Groups 

10.3.2 Sum of Squares within Groups 

10.3.3 F-Ratio 

10.3.4 Degree of Freedom 

10.3.5 Significance 

10.4 Types of ANOVA 

10.4.1 One-Way Analysis 

10.4.2 Two-Way Analysis 

10.4.3 Comparison between One Way and Two-Way ANOVA 

10.5 Self-Assessment Questions 

10.6 Suggested Readings 

 

10.1. INTRODUCTION: 

Analysis of variance (ANOVA) was developed by the pioneering British Statistician 
Sir Ronald Aylmer Fisher (R.A. Fisher), who introduced the technique in the 1920s, notably 
in his book statistical methods for Research Workers (1925) and The Design of Experiments 
(1935) for analysing agricultural data, allowing researchers to Compare means of multiple 
groups by partitioning total variance  

 

10.2. CONCEPT OF ANOVA: 

ANOVA is a statistical method that analyzes variances to determine if the means from 
more than two populations are same. In other words, we have a quantitative response variable 
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and a categorical explanatory variable with more than two levels. In ANOVA, the categorical 
explanatory is typically referred as the factor. 

Analysis of Variance (ANOVA) is a parametric statistical technique used to compare 
datasets. This technique was developed by R.A. Fisher, and hence it is refereed in his name as 
Fisher’s ANOVA. Its applications are similar to other statistical techniques such as t-test and 
z-test and this test is applied for comparing the means and relative variance between samples 
or population. ANOVA is considered as paramount test to compare more than two 
populations or samples.  

This parametric statistical technique holds certain important assumptions including 
the following: 

1) Independence of Case: In this assumption the dependent variable should be 
independent or randomly sample should be selected without any pattern. 

2) Normality: In this, the assumption followed is that each group should be distributed 
normal. The normality of the group is confirmed by carrying out tests like 
Kolmogorov-Smirnov or the Shapiro-Wilk test. 

3) Homogeneity: If the means variance between the groups is same, then it is called as 
Homogeneity. It can be tested using Levene’s test. 

 

If any data follow the above assumptions, then the analysis of variance (ANOVA) 
would be the appropriate technique for carrying out the comparison between the means of 
two, or more, populations. 

 

10.3. TERMINOLOGIES RELATED TO ANOVA: 

10.3.1. Sum of Square between Groups: 

For the sum of the square between groups, the individual means of the group are 
calculated followed by the deviation from the individual mean for each group are taken. 
Finally sum of all groups is taken. It is also called as ‘between groups variance’ and denoted 
as SS(B). 

 

10.3.2. Sum of Squares within Groups: 

For sum of squares within a group, first, the grand mean for all groups are calculated 
and deviation from the individual group is taken. Finally, the sum of all groups will be made 
after squaring the deviation. It is also called as ‘within group’s variance’ and denoted as 
SS(W). 

 

10.3.3. F-Ratio: 

It is calculated by dividing the sum of the squares between groups by the sum of the 
square within a group. 
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Fig. 10.1: Graphical Representation of Analysis of Variance 

From the above graphical representation, Figure ‘A’ reveals that variance is large 
within group while it is small in the case of between the groups. Thus, the calculated ‘F’ 
value will be smaller. It indicates that there is no significant difference between groups. In 
contrast, Fig ‘B’ reveals that variance is small within groups but larger difference in variance 
is observed between groups. It thus interprets that there is significance difference between 
groups. 

 

10.3.4. Degree of Freedom: 

Degree of freedom (DF) for sum of square between group (SS(B)) is calculated by 
deducting value one (1) from the number of samples groups (k). Hence it is denoted as DF is 
k-1. In the case of sum of squares within group (SS(W)), the degree of freedom is calculated 
by deducting number of sample groups (k) from the total observation (N). Thus, the DF is 
denoted as N-k. 

 

10.3.5. Significance:  

It is important component of ANOVA where level of significance plays an important 
role in acceptance or rejection of hypothesis or null hypothesis respectively. Generally, it is 
defined as the probability of rejecting the null hypothesis when it is true at a predetermined 
level of significance say, 5%, 1%. 

Generally, two ways of comparison for significant of ANOVA, that is based on F - 
value and P – value. 

1) If calculated significance value (F) is compared with critical table value (i.e  
F- distribution table value); 

 If calculated F value is less than the Critical F value, we accept the null 
hypothesis, and then it is interpreted as there is no difference between the groups 
means. 

 If calculated F value is greater than the Critical F value, we reject the 
nullhypothesis, and then it is interpreted as there is difference between the groups 
means. 
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2) If calculated probability significance value (p) is compared with predetermined level 
of significance value (usually at 5%); 

 If ‘p’ value is smaller than the predetermined significance level value, we reject 
null hypothesis, and then it is interpreted as there is difference between the group 
means. 

 If ‘p’ value is greater than the predetermined significance level, we accept null 
hypothesis, and then it can be interpreted as there is no significant difference 
between groups. 

Nowadays modern computers can automatically calculate the probability value for F- ratio. 

 

10.4. TYPES OF ANOVA: 

There are three types of ANOVA. 

1) One -Way Analysis 

2) Two -Way Analysis 

3) K-Way Analysis 

 

In these three types of analysis mainly we are using two types that are one way and 
two-way analysis of variances. 

 

10.4.1 One-Way Analysis:  

When we are comparing more than three groups based on one factor variable, then it 
is said to be one-way analysis of variance (ANOVA). One-Way ANOVA is a parametric test. 
This test is also known as One-Factor ANOVA / One-Way Analysis of Variance / Between 
Subjects ANOVA. 

 

Statistical Analysis of the Model:  

         Let us suppose that N observations ijX ( i = 1, 2, .....,k; j = 1, 2, ...., r) of a random 

arableX are grouped, on some basis, into k classes of sizes n1, n2, ...., nk respectively, 
k

i
i 1

N n


 
 

 
 as exhibited below: 
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 1 2 …. j… R Total Mean  

1. X11 X12 . . . . X1j . . . X1r. X1. 1X .  

2. X21 X22 . . . . X2j . . . X2r. X2. 2X .  

.

.

.

 

.

.

.

 

.

.

.

 

  

  

  

.

.

.

 

.

.

.

 

.

.

.

 

.

.

.

 

i Xi1 Xi2 . . . . Xij . . . Xir Xi. iX .  

.

.

.

 

.

.

.

 

.

.

.

 

  

  

  

.

.

.

 

.

.

.

 

.

.

.

 

.

.

.

 

k Xk1 Xk2 . . . . Xkj . . . Xkr Xk. kX .  

 

Mathematical Model: 

Let xij be the Individual measurement of jth experimental units for ith treatment. The 
mathematical model for one-way classification is  

ij i ijx e i 1.2,...k, j 1,2,...r          [1] 

where,  μ = General mean 

αi = ith treatment class effect  

eij = Random error 

 2
ij ix ~ N ,   

Here eijk is random errors which are identically and independently distributed (iid) following 
N (0, σ2). 

 

Assumptions in the Model:  

1) All the observations are independent 

2) Deferent effects are additive in nature. 

3)   2
ije ~idd N 0,  
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Null Hypothesis:  

In a one-way ANOVA, there are two possible hypotheses. Let us consider the null 
hypothesis under consideration is  

 0H :  1 2 k.....        

(or) 

 0H :  1 2 k..... 0       

(or)  

H0: There is no significance difference between the treatments. 

 

To test the above Null hypothesis, first we estimate the parameters in mathematical 
model (1) by using the principle of least square by minimizing the error sum of squares. By 
solving the equation (1), we get the following results. 

Grand Total: 
k r

ij
i 1 j 1

G x
 

         Correction Factor: 
2G

CF
rk

   Since N = r * k  

Total sum of squares: 
k r

2
ij

i 1 j 1

TSS x CF
 

    

Sum of squares due to treatment:

r
2
i

i 1

x
SSTr CF

r
 


 

Sum of squares due to Error: SSE = TSS – SSTr 

 

Degrees of Freedom: 

Degrees of freedom carried by TSS is (rk - 1)  

Degrees of freedom carried by SSTr is (k- 1)  

Degree of freedom carried by SSE is k(r - 1) 

 

ANOVA Table:  

To the above null hypothesis by using this calculation, we construct the following 
ANOVA Table.  
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Source of 
Variation 

Degrees of 
freedom 

Sum of 
squares 

Mean Sum of 
Squares 

F-Ratio 

F cal.val F cri.val 

Treatments  k-1 SSTr 
Tr

SSTr
MSS

k 1



 Tr

Tr
E

MSS
F

MSS
   F[k 1,k r 1   

@ % los  

Error  k r 1  SSE 
 E

SSE
MSS

k r 1



 - - 

Total rk-1 TSS  - - 

 

Statistical Decision:  

We compare F calculated value with F critical values @ 5% los. We draw the 
conclusions accordingly. 
 

10.4.2. Two-Way Analysis: 

The two-way analysis of variance is an extension to the one-way analysis of variance. 
When factor variables are more than two, then it is said to be two-way analysis of variance 
(ANOVA). That is, when the data is classified into groups according to only two factors, like 
age group and gender we call it a two – way classified data and the corresponding ANOVA is 
called the Two-way ANOVA. At each combination of the levels of the factors, there may be 
more than one data value. This is called replication. Two-way tests can be with or without 
replication. 

 Two-Way ANOVA with Replication: When there are replications, it is possible to 
estimate the interaction or the joint effect of the two factors on the response being 
studied. 

 Two-Way ANOVA without Replication: When there are no replications, we can 
still perform two-way ANOVA. In this case, interactions cannot be estimated. 

 

Statistical Analysis of the Model: 

Let there be an ‘N’ experimental unit, in this experiment ‘k’ is number of treatments 
and ‘r’ is number of blocks. Here the total variation is divided into three parts. 

1) Variation between the Treatments 

2) Variation between Blocks 

3) Variation due to Error 

If there are ‘r’ such blocks, we say that the blocks are at ‘r’ levels. Similarly, if there 
are ‘k’ treatments, we say that the treatments are at ‘k’ levels. The responses from the ‘r’ 
levels of blocks and ‘k’ levels of treatments can be arranged in a two-way layout. The 
observed data set is arranged as follows:  
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Blocks 

Treatments 
1 2 . . . . j . . . . r Block Total Block Mean 

1. X11 X12 . . . . X1j . . . X1r X1. 1X .  

2. X21 X22 . . . . X2j . . . X2r X2. 2X .  

.

.

.

 

.

.

.

 

.

.

.

 

  

  

  

.

.

.

 

.

.

.

 

.

.

.

 

.

.

.

 

K Xi1

 

Xi2

 

. . . . Xij . . .

 

Xir

 

Xi.

 

kX .

Treatment 
Total 1X.  2X.  . . . . jX. … 

rX.  
kX .  

Grand Total  

kX .  

Grand Mean  Treatment 
Mean  1X.  2X.  . . . . jX. … 

rX.  

 

Mathematical Model: 

Let xij be the yield from ith treatment and jth block. The mathematical for two-way 
classification as follows  

ij i j ijx e for all i 1, 2,...k, j 1, 2,...r       

where, μ = General mean 

αi = ith treatment effect 

βj = jth block effect  

eij = Random error 

eij ~ N (0, σ2) 

 

Null Hypothesis:  

There are three pairs of null or alternative hypotheses for the two-way ANOVA. Let 
us consider the null hypothesis under consideration is 

1) H0: All treatments are homogeneous 

(or)  

H0:
k

1 2 k i
i 1

..... 0 (or) 0


          
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2) H0: All blocks are homogeneous 

(or)  

H0:
r

1 2 r j
i 1

..... 0 (or) 0


        

To test the above Null hypothesis, first we estimate the parameters in mathematical model (1) 
by using the principle of least square by minimizing the error sum of squares.  

By solving the equation (1), we get the following results. 

Grand Total: 
k r

ij
i 1 j 1

G x
 

  

Correction Factor: 
2G

CF
rk

   Since N = r * k  

Total sum of squares: 
k r

2
ij

i 1 j 1

TSS x CF
 

   

Sum of squares due to treatment:

k
2
i

i 1

x
SSTr CF

r
 


 

Sum of squares due to Block:

r
2
j

j 1

x

SSB CF
k

 


 

Sum of squares due to Error: SSE = TSS – SSB – SSTr 

 

Degrees of Freedom: 

Degrees of freedom carried by TSS is (rk – 1)  

Degrees of freedom carried by SSTr is (k – 1)  

Degrees of freedom carried by SSB is (r – 1)  

Degree of freedom carried by SSE is (k – 1) (r – 1) 

 

ANOVA Table:  

To the above null hypothesis by using this calculation, we construct the following 
ANOVA Table. 
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Mean Sum of 
Squares 

F-Ratio 

F cal.val F cri.val 

T
re

at
m

en
ts

 

k-1 SSTr 
Tr

SSTr
MSS

k 1



 Tr

Tr
E

MSS
F

MSS
   F[k 1,k r 1   

@ % los  

B
lo

ck
s r 1  SSB SSB

MSS
r 1




 
Tr

E

MSB
F

MSS
  

  F[r 1, k 1 r 1 ]   @ % los  

E
rr

or
  k r 1

 

SSE 
  E

SSE
MSS

k 1 r 1


   

- - 

T
ot

al
 rk-1 TSS  - - 

 

Statistical Decision:  

We compare ‘F’ calculated value with ‘F’ critical values @ 5% LOS. We draw the 
conclusions accordingly. 

 

10.4.3. Comparison between One Way and Two-Way ANOVA: 

Basis for Comparison One Way ANOVA Two Way ANOVA 

Meaning One-way ANOVA is a 
hypothesis test, used to test the 
equality of three of more 
population means 
simultaneously using variance 

Two ways ANOVA is a 
statistical technique wherein, 
the interaction between factors, 
influencing variable can be 
studied. 

Independent Variable One Two 

Number of Observation Need not to be same in each 
group. 

Need to be equal in each group. 

Compares Three or more levels of one 
factor 

Effect of multiple level of two 
factors. 

Design of experiments Need to satisfy only two 
principles 

All three principles needs to be 
satisfied 
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10.7.  Self-ASSESSMENT QUESTIONS: 

1) Explain Terminologies Related to ANOVA 

2) Explain Types of ANOVA 

3) Comparison between One Way and Two-Way ANOVA 

 

10.8.  SUGGESTED READINGS: 

1) Montgomery, D.C. (2017). Design and Analysis of Experiments (9th ed.). Wiley. 

2) Fisher, R.A. (1925). Statistical Methods for Research Workers. Oliver & Boyd. 

3) Gupta, S.C., & Kapoor, V.K. (2014). Fundamentals of Applied Statistics. Sultan 
Chand & Sons. 

 

 

Dr. B. Hari Mallikarjuna Reddy 



LESSON-11 

ANALYSIS OF COVARIANCE 
 

11.0. OBJECTIVES: 

There are several important uses of covariance analysis in industrial and agricultural 
research. Some of the most important ones are: 

 To control experimental error and to adjust treatment means. 

 To aid in the interpretation of experimental results. 

 To estimate missing data. 

 

STRUCTURE: 

11.1 Introduction 

11.2 Concept of Analysis of Covariance 

11.3 One-Way Classification 

11.4 Two-Way Classification (With One Observations Per Cell) 

11.5 Self-assessment questions 

11.6 Suggested readings 

 

11.1. INTRODUCTION: 

The meaning of ANCOVA is Analysis of Covariance. It is a general linear model 
with one continuous outcome variable (quantitative) and one or more factor variables 
(qualitative). ANCOVA is a merger of ANOVA and regression for continuous variables. 
ANCOVA tests whether certain factors have an effect on the outcome variable after 
removing the variance for which quantitative predictors (covariates) account. The inclusion 
of covariates can increase statistical power because it accounts for some of the variability. 

It is well known that in designed experiments the ability to detect existing differences 
among treatments increases as the size of the experimental error decreases, a good 
experiment attempts to incorporate all possible means of minimizing the experimental error. 
Besides proper experimentation, a proper data analysis also helps in controlling experimental 
error. In situations where blocking alone may not be able to achieve adequate control of 
experimental error, proper choice of data analysis may help a great deal. By measuring one or 
more covariates - the characters whose functional relationships to the character of primary 
interest are known - the Analysis of Covariance (ANCOVA) can reduce the variability 
among experimental units by adjusting their values to a common value of the covariates. For 
example, in an animal feeding trial, the initial body weight of the animals usually differs. 
Using this initial body weight as a covariate, the final weights recorded after the animals have 
been subjected to various physiological feeds (treatments) can be adjusted to the values that 
would have been obtained had there been no variation in the initial body weights of the 
animals at the start of the experiment. Another example, in a field experiment where rodents 
have (partially) damaged some of the plots, covariance analysis with rodent damage as a 
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covariate could be useful in adjusting plot yields to the levels that they should have been had 
there been no rodent damage in any plot. 

ANCOVA requires measurement of the character of primary interest plus the 
measurement of one or more variables known as covariates. It also requires that the 
functional relationship of the covariates with the character of primary interest is known 
beforehand. Generally, a linear relationship is assumed, though other type of relationships 
could also be assumed. 

Consider the case of a variety trial in which weed incidence is used as a covariate. 
With a known functional relationship between weed incidence and grain yield, the character 
of primary interest, the covariance analysis can adjust grain yield in each plot to a common 
level of weed incidence. With this adjustment, the variation in yield due to weed incidence is 
quantified and effectively separated from that due to varietal difference. 

ANCOVA can be applied to any number of covariates and to any type of functional 
relationship between variables viz. quadratic, inverse polynomial, etc. Here we illustrate the 
use of covariance analysis with the help of a single covariate that is linearly related with the 
character of primary interest. It is expected that this simplification shall not unduly reduce the 
applicability of the technique, as a single covariate that is linearly related with the primary 
variable is adequate for most of the experimental situations in industrial and agricultural 
research. 

 

11.2. CONCEPT OF ANALYSIS OF COVARIANCE: 

Any scientific experiment is performed to know something that is unknown about a 
group of treatments and to test certain hypothesis about the corresponding treatment effect. 

When variability of experimental units is small relative to the treatment differences 
and the experimenter do not wish to use experimental design, then just take large number of 
observations on each treatment effect and compute its mean. The variation around mean can 
be made as small as desired by taking more observations. 

When there is considerable variation among observations on the same treatment and it 
is not possible to take an unlimited number of observations, the techniques used for reducing 
the variation are 

i) Use of proper experimental design and 

ii) Use of concomitant variables. 

The use of concomitant variables is accomplished through the technique of analysis of 
covariance. If both the techniques fail to control the experimental variability then the number 
of replications of different treatments (in other words, the number of experimental units) are 
needed to be increased to a point where adequate control of variability is attained. 

Linear model  

Y = Χ1β1 + Χ2β2+...+Χpβp +ε, 

if the explanatory variables are quantitative variables as well as indicator variables, i.e., some 
of them are qualitative and some are quantitative, then the linear model is termed as analysis 
of covariance (ANCOVA) model. 
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Note that the indicator variables do not provide as much information as the 
quantitative variables. For example, the quantitative observations on age can be converted 
into indicator variable. Let an indicator variable be 

1 if age 17 years
D

0 if age 17 years.


    

Now the following quantitative values of age can be changed into indicator variables.  

Ages (Years) Ages 

14 0 

15 0 

16 0 

17 1 

20 1 

21 1 

22 1 

In many real applications, some variables may be quantitative and others may be 
qualitative. In such cases, ANCOVA provides a way out. 

It helps is reducing the sum of squares due to error which in turn reflects the better 
model adequacy diagnostics. 

 

See how does this work: 

ij i ij 1 1 1In one way mod el : Y , we have TSS1 SSA SSE       
 

ij i j ij 2 2 2In two way mod el : Y , we have TSS1 SSA SSE      
 

ij i j k ij 3 3 3 3 2In two way mod el : Y , we have TSS1 SSA SSB SS SSE             
 

If we have a given data set, then ideally  

1 2 3

1 2 3

2 3

1 2 3

TTS TSS TSS

SSA SSA SSA ;

SSB SSB

So SSE SSE SSE

 
 


   



Centre for Distance Education                           11.4               Acharya Nagarjuna University  

  

Note that in the construction of F – statistics, 

SS(effects) / df

SSE / df  

So, F- statistic essentially depends on the SSEs.  

Smaller SSE  lager F more chance of rejection.  

Since SSA, SSB etc., here are based on dummy variables, so obviously if SSA, SSB, 
etc. are based on quantitative variables, they will provide more information. Such ideas are 
used in ANCOVA models and we construct the model by incorporating the quantitative 
explanatory variables in ANOVA models. 

In another example, suppose our interest is to compare several different kinds of feed 
for their ability to put weight on animals. If we use ANOVA, then we use the final weights at 
the end of experiment. However, final weights of the animals depend upon the initial weight 
of the animals at the beginning of the experiment as well as upon the difference in feeds. 

Use of ANCOVA models enables us to adjust or correct these initial differences. 

ANCOVA is useful for improving the precision of an experiment. Suppose response Y is 
linearly related to covariate X (or concomitant variable). Suppose experimenter cannot 
control X but can observe it. ANCOVA involves adjusting Y for the effect of X. If such an 
adjustment is not made, then the X can inflate the error mean square and makes the true 
differences is Y due to treatment harder to detect. 

If, for a given experimental material, the use of proper experimental design cannot control the 
experimental variation, the use of concomitant variables (which are related to experimental 
material) may be effective in reducing the variability. 

 

Consider the One-Way Classification model as  

ij i ij

2
ij

E(Y t

Var(Y )

   

 
   i=1..... p, j=1,..., N, 

If usual analysis of variance for testing the hypothesis of equality of treatment effects 
shows a highly significant difference in the treatment effects due to some factors affecting the 
experiment, then consider the model which takes into account this effect 

2
ijij i ij 2E(Y t t i 1,..........., j 1,............j         

2
ijVar(Y )    

 ij i ijE Y j t i 1,..........., j 1,............j          

Or 
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 ij i ij 2 ijE Y j t w         

i j
i j

with , 0,     

Where are the observations on concomitant variables (which are related to Xij) and 
 is the regression coefficient associated with tij. With this model, the variability of treatment 
effects can be considerably reduced. 

For example, in any agricultural experimental, if the experimental units are plots of 
land then, tij can be measure of fertility characteristic of the jth plot receiving ith treatment and 
X can be yield. 

In another example, if experimental units are animals and suppose the objective is to 
compare the growth rates of groups of animals receiving different diets. Note that the 
observed differences in growth rates can be attributed to diet only if all the animals are 
similar in some observable characteristics like weight, age etc. which influence the growth 
rates. 

In the absence of similarity, user, which is the weight or age of j animal receiving it 
treatment. 
 

If we consider the quadratic regression is given by  

2
ijij i ij 2E(Y t t i 1,..........., j 1,............j         

2
ijVar(Y )    

ANCOVA in this case is the same as ANCOVA with two concomitant variables and 

 

In two-way classification with one observation per cell,  

 ij i ijE Y j t i 1,..........., j 1,............j          

or 

 ij i ij 2 ijE Y j t w         

i j
i j

with , 0,     

The concomitant variables can be fixed on random. 

We consider the case of fixed concomitant variables only. 
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11.3. ONE-WAY CLASSIFICATION: 

Let  1... , 1...ij iY j n i p   be a random sample of size in  from thi  normal populations with 

mean 

 ij ij i ijE Y t    
 

  2
ijVar Y 

 

Where ,i   and 2  are the unknown parameters, ijt  are known constants which are the 

observations on a concomitant variable. 

The null hypothesis is 

 0 1: .... pH   
. 

Let 

 

1 1 1
; ,ia ij ij ijoj oo

j i i ji

y y y y y t
n p n

    
 

 

1 1 1
; ,ai oj ooij ij ij

j i i ji

t t t t t t
n p n

    
 

Under the whole parametric space   , use likelihood ratio test for which we obtain the 

 'i s  and   using the least squares principle or maximum likelihood estimation as follows: 

Minimize 
 2

ij ij
i i

S y  
 

 
 2

ij i ij
i i

y t   
 

0
i

S





  for fixed   

i ioioy t     

Put i  in S and minimize the function by 0
S







. 
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i.e., minimize   2

ioij ijio
i j

y y t t      with respect to   gives 


  

 2

ij ij ioio
i j

ij io
i j

y y t t

t t


 







 

Thus 
 

i ioioy t    

 
ij i ijt   

 

Since 
  

ij ij ij i ijy y t     
 

                         =   ij ij ioijy y t t    

We have 

   
   
 

2 2

2

ij ij ioio
i j

ij ij ij io
i j

ij ij io
i j

y y t t

y y y
t t t



 
  

    
 


 


 

Under 0 1: ... pH       (say), consider 
2

w ij ij
i j

S y t       and minimize wS  

under sample space  w , 

0wS







, 

0wS







 

 
00 ooy t     


   

 2

ij ij oooo
i j

ij oo
i j

y y t t

t t


 







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  
ijt     

Hence 

  
  

 
2

2

ij oo ij oo
i j

ij ij ij oo
i j i j

ij oo
i j

y y t t

y y y
t t



 
  

       
  


 


 

and 

         
2 2

ij ij oo ij io ij ooi
i j i j

y y t t t t                    

The likelihood ratio test statistic in this case is given by 

 
 

2

w
2

max L , ,

max L , ,


  
 

  
 

     = 

  
 

2

ij ij
i j

2

ij ij
i j

y

 






 

Now we use the following theorems: 

 

Theorem 1:  

Let  1 2 nY Y ,Y ,...,Y '  follow a multivariate normal distribution  N ,   with mean 

vector   and positive definite covariance matrix  . Then Y’AY follows a noncentral chi-

square distribution with p degrees of freedom and non-centrality parameter 'A  , i.e., 

 2x p, 'A   if and only if A is an idempotent matrix of rank p. 

 

Theorem 2:  

Let  1 2 nY Y ,Y ,....,Y '  follows a multivariate normal distribution  N ,   with 

mean vector   and positive definite covariance matrix  . Let 1Y 'A Y  follows 

 2
1 1x p , 'A   and 2Y 'A Y  follows  2

2 2x p , 'A  . Then 1Y 'A Y  and 2Y 'A Y  are 

independently distributed if 1 2A A 0  . 
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Theorem 3:  

Let  1 2 nY Y ,Y ,....,Y '  follows a multivariate normal distribution  2N , I  , then 

the maximum likelihood (or least squares) estimator L'  of estimable linear parametric 

function is independently distributed of  2
; L   follow   1

N L' , L ' X 'X L
    and 

 2

2

n


 

follows  2x n p where rank (X) = p. 

Using these theorems on the independence of quadratic forms and dividing the 

numerator and denominator by respective degrees of freedom, we have 

 

  
 

 

2

ij ij
i j

2

ij ij

n p 1

F F p 1, n p
p 1 y

   
  

 




  under 0H  

So, reject 0H  whenever  1F F p 1, n p    at   level of significance. 

 

The terms involved in   can be simplified for computational convenience follows: 

We can write 

 2

ij ij
i j

y   

   = 
2

ij ij
i j

y t       

    =    
2

ij ij oooo
i j

y y t t         

    =        
2

ioij ij oo ij oo ijoo
i j

y y t t t t t t                  

    =     2

ij ij ioio
i j

y y t t        

    =      
2

ij ij io ij ooio
i j

y y t t t t             
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    =    2

ij ij ij ij
i j i j

y      
    

For Computational Convenience 

 

 

2 22
yt yt

yy yyij ij
it tti j

2 2
yt

ij ij
yyi j

yy

T E
T E

T E

Ey E
E

                       
    
 




 

Where 

 2

yy ij oo
i j

T y y   

 2

tt ij oo
i j

T t t   

  yt ij oo ij oo
i j

T y y t t    

 2

yy ij io
i j

E y y   

 2

tt ij io
i j

E t t   

  yt ij io ij io
i j

E y y t t    

 

Analysis of Covariance Table for One-Way Classification is as follows: 

Source of 
Variation 

Degrees 
of 

Freedom 

Sum of Products 

yyyt    tt 

Adjusted Sum of 
Squares 

F 

Degrees 
of 

Freedom 

Sum of 
Squares 

 

Population p-1  yy yy yy ytP T E P 
 

   yt yt it it itT E P T E     

P-1 
1 0 2q q q   1

2

n p 1 q

p 1 q

 


 

Error n-p 
yyE ytE ttE  n-p-1 2

yt
2 yy

yy

E
q E

E
   

 

Total n-1 
yyT ytT ttT  n-2 2

yt
0 yy

tt

T
q T

T
   
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If 0H  is rejected, employ multiple comprises methods to determine which of the contrasts in 

i  are responsible for this. 

For any estimable linear parametric contrast 

 
p p

i i i
i 1 i 1

C with C 0,
 

      

  
p p p

i i i i ii i
i 1 i 1 i 1

C C y C t
  

         

  
 

2

2

ij i
i j

Var
t t


 


  

  
 

2

i i2
i2 i

2
i i

ij i
i j

C t
C

Var
n t t

  
  

        
  





 

 

11.4. TWO-WAY CLASSIFICATION (WITH ONE OBSERVATIONS PER CELL): 

Consider the case of two-way classification with one observation per cell. 

Let  2
ij ijy N ,   be independently distributed with 

  ij i i ijE y t , i 1...I, j 1...J          

   2
ijV y    

Where 

 : Grand mean 

1 :  Effect of thi  level of A satisfying 
l

i
i

0   

1 :  Effect of thj  level of B satisfying 
J

j
i

0   

ijt :  observation (known) on concomitant variable. 

The null hypothesis under consideration are 

0 1 2 IH : ... 0         
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0 1 2 JH : ... 0         

Dimension of whole parametric space   : I J   

Dimension of sample space   : J 1   under 0H   

Dimension of sample space  w : I 1   under 0H   

With respective alternative hypotheses as 

1H :  At least one pair of 's  is not equal 

1H :  At least one pair of 's  is not equal. 

Consider the estimation of parameters under the whole parametric space    

Find minimum value of  2

ij ij
i j

y   under   

To do this, Minimize 

 2

ij i j ij
i j

y t      

For fixed  , which gives on solving the least squares estimates (or the maximum likelihood 

estimates) of the respective parameters as 

 oo oy t     

  i i oo oo ooy y t t        …. (1) 

  j oj oo oj ooy y t t       

Under these values of i,   and j , the sum of squares  2

ij i j ij
i j

y t      

reduces to 

   2

ij oo oj ij io oj oo
i j

y y y t t t t          …..(2) 

Now minimization of (2) with respect to   gives 
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  

 
ij io oj oo ij oj oo

i 1 j 1

2

ij io oj oo
i 1 j 1

y y y y t t t

t t t t

 

 

    
 

  




  

Using  , we get from (1) 

 
ooooy t     

     i oo oooo ooy y t t       

     oj ooj oj ooy y t t       

Hence 

  2

ij ij
i j

y   

  
  

 

oj ooij ijio oj oo
i j

ij io oo 2
i j io oj ooij

i j

y y y y t t t

y y y
t t t t

 
     

    
  





 

 = 
2
yt

yy
tt

E
E

E
  

Where 

  2

yy ij io oj oo
i j

E y y y y     

   io oj ooyt ij io ijoj oo
i j

E y y y y t t t t        

  2

io oj oott ij
i j

E t t t t     

Case (i): Test of 0H   

Minimize  2

ij j ij
i j

y t     with respect to j,   and   gives the least squares 

estimates) (or the maximum likelihood estimates) of respective parameters as 

 
ooooy t     
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   oj ooj oj ooy y t t       

 
  

 

ojij ijoj
i j

2

ojij
i j

y y t t

t t

 
 






   ….. (3) 

   
j ijt       

Substituting these estimates in (3) we get 

   
   

 

ojij ijoj2 2 i j

ij g ij j 2
i j i j ojij

i j

y y t t

y y y
t t

 
  

    



 


 

  = 
yt yt

xy yy
tt tt

E A
E A

E A

   


 

Where 

  2

yy io oo
i

A J y y   

  2

io oott
i

A J t t   

    2

io ooyt io oo
i

A J y y t t    

  2

yy ij io oj oo
i j

E y y y y     

  2

io oj oott ij
i j

E t t t t     

   io oj ooyt ij ijio oj oo
i j

E y y y y t t t t        

Thus, the likelihood ratio test statistic for testing 0H   is 

 

   
 

2 2

ij ij ij ij
i j i j

1 2

ij ij
i j

y y

y

  
 



 


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Adjusting with degrees of freedom and using the earlier result for the independence of two 

quadratic forms and their distribution 

 
 
 

   
 

 

2 2

ij ij ij ij
i j i j

1 2

ij ij
i j

y y
IJ I J

F F I 1, IJ I J
I 1 y

 
         

   
 

 


  under  

oH   

So, the decision rule is to reject aH   whenever  1 1F F I 1, IJ I J    . 

 

Case (ii): Test of H  

Minimize  2

ij i ij
i j

y t     with respect to i,   and   gives the least squares 

estimates (or maximum likelihood estimates) of respective parameters as 

 
ooooy t     

   j io ooio ooy y t t       

 
  

 

ioij ijio
i j

2

ioij
i j

y y t t

t t

 
 






    ….. (4) 

   
iij ij       

From (4), we get 

    
  

 

ojij ijio
2 2 i j

ij ij ij io 2
i j i j ioij

i j

y y t t

y y y
t t

 
  

    



 


 

     = 

2

jt yt

yy yy
tt

E B
E B

B

     
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 2

yy oj oo
j

B I y y   

Where  2

oj oott
j

B I t t   

    2

oj ooyt io oo
j

B I y y t t    

Thus, the likelihood ratio test statistic for testing 0H  is 

 
 
 

   
 

 

22

ij ij ij ij
i j i j

2 2

ij ij
i j

y y
IJ I J

F F J 1, IJ I J
J 1 y

     
    

  
  

 


  under 

oH  . 

So, the decision rule is to reject 0H   whenever  2 1F F Y 1, IJ I J     

If oH   is rejected, use multiple comparison methods to determine which of the contrasts i  

are responsible for this rejection. The same is true for oH  . 

 

The Analysis of Covariance Table for Two-Way Classification is as follows: 

Source of Variation 
Degrees of 
Freedom 

Sum of 
Products 

 F 

  yy yt tt   

Between levels of A I-1 Ayy Ayt Att I-1     q0=q3-q o
1

2

qIJ I J
F

I 1 q

 



 

Between levels of B J-1 Byy Byt Btt J-1     q1=q4-
q2 

1
2

2

IJ I J q
F

J 1 q

 



 

Error (I-1) (J-1) Eyy Yet Ett IJ-I-J   
2
yt

2 yy
tt

E
q E

E
 

 

 

Total IJ-1 Tyy Tyt Ttt IJ-2  

Error + levels of A IJ-J       2

yt yt

3 yy yy
tt tt

A E
q A E

A E


  



  

Error + levels of B IJ-I       2

yt yt

4 yy yt
tt tt

B E
q B E

B E


  


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11.5. SELF-ASSESSMENT QUESTIONS: 

1) Explain difference between ANOVA and ANCOVA 

2) Explain ANCOVA one-way classification with one observation per cell 

3) Explain ANCOVA two-way classification with one observation per cell 

4) Explain analysis of covariance with a single concomitant variable. 

 

11.6. SUGGESTED READINGS: 

1) Kempthorne, O, (1951), The design and Analysis of Experiments, Wiley Eastern 
Private Limited.  

2) Federer, Wt (1967), Experimental Design Theory and Application, Oxford & IBH 
Publishing Company.  

3) Montgomery, D.C. (2017). Design and Analysis of Experiments (9th ed.). Wiley. 

4) Fisher, R.A. (1925). Statistical Methods for Research Workers. Oliver & Boyd. 

5) Gupta, S.C., & Kapoor, V.K. (2014). Fundamentals of Applied Statistics. Sultan 
Chand & Sons. 
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LESSON-12 

COMPLETELY RANDOMISED DESIGN 
 

12.0. OBJECTIVES: 

After studying this unit, you would be able to 

 Describe the experimental design; 

 Explain the planning and classification of experimental designs; 

 Describe the principles of design of experiments; 

 Explain the completely randomized design; 

 Describe the layout of CRD; 

 Explain the statistical analysis of CRD; and 

 Explain the advantages and disadvantages as well as the suitability of CRD. 

 

STRUCTURE: 

12.1 Introduction 

12.1.1 Planning of an Experiment 

12.1.2. Classification of Experimental Designs 

12.2 Basic Definitions of Experimental Design 

12.3 Principles of Design of Experiments 

12.3.1. Randomization, Replication, Local Control 

12.4 Size and Shape of the Plots 

12.5 Completely Randomized Design 

12.5.1. Layout of Completely Randomized Design 

12.5.2. Statistical Analysis of Completely Randomized Design 

12.5.3. Least Square Estimates of Effects  

12.5.4. Variance of the Estimates  

12.5.5. Expectation of Sum of Squares 

12.6 Suitability of CRD 

12.7 Summary 

12.8 Self-Assessment Questions 

12.9    Suggested Readings 

 

12.1. INTRODUCTION: 

The modern concepts of experimental designs were primarily given by Ronald A. 
Fisher in the 1920s and 1930s at “Rothamasted Experimental Station”, an agricultural 
research station of London. In Fisher’s first book on design of experiments, he showed how 
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valid conclusions could be drawn efficiently from experiments with natural fluctuation such 
as temperature, soil conditions and rainfall, that is, in the presence of nuisance variables. The 
known nuisance variables usually cause systematic biases in groups of results (e.g. batch-to- 
batch variables). The unknown nuisance variables usually cause random variability in the 
results and are called inherent variability or noise. 

The experimental design was first used in an agricultural context, the method has been 
applied successfully in the military and in industry since the 1940s. Besse Day, working at U. 
S. Naval Experimentation Laboratory, used experimental designs to solve problems such as 
finding the cause of bad welds at the naval shipyards during World War II. George Box, 
employed by Imperial Chemical Industries before coming to the United States, is a leading 
developer of experimental design produced for optimizing chemical process. W. Edwards 
Deming taught statistical methods, including experimental designs, to Japanese scientist and 
engineers in the early 1950’s at a time when “Made in Japan” meant poor quality. Ganache 
Taguchi, the most well-known of this group of Japanese scientists is famous for his quality 
improvement methods. One of the companies where Taguchi first applied his methods was                                             
Toyota. Since the late 1970’s, U.S. industry has become interested again inquality 
improvement initiatives, now known as “Total Quality” & “Six-sigma” programs. Design of 
experiments is considered an advanced method in the six sigma programs, which were 
pioneered at Motorola & GE. 

According to Bernad Ostle, “The design of experiment is, the complete sequence of 
steps taken ahead of time to ensure that the appropriate data will be obtained in a way which 
permits an objective analysis to valid inferences with respect to stated problem”. 

In any field of study either in life sciences or some other, it is essential to plan an 
experiment, i.e. what is the object and which type of data is required. In order to make use of 
time and energy spent on experiment, it should be planned with a careful designing. Once a 
design of experiment is decided, the observations are obtained from it and with the technique 
of analysis of variance, the data is analyzed. 

 

12.1.1. Planning of an Experiment: 

There are some basic points regarding the planning of an experiment, which should be 
under consideration. These are as follows: 

1. The Experiment should be Free from Bias: 

An experiment must be planned so that it gives an unbiased estimate of the values we wish to 
measure. It is a matter of the design being such that no bias on the part of the experimenter 
can possibly enter into the results. This is achieved mainly by randomisation. 

2. There must be a Measure of Error: 

The true experiment is one that is strictly objective. It should furnish a measure of error and 
this error alone should be the measuring stick of significance. 

3. There must be a Clearly Defined Objective: 

For an experiment it is essential to specify the objects perfectly. In other words, the 
objective of the experiment should be clearly defined. 
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4. The Experiment should have Sufficient Accuracy: 

The accuracy of an experiment can be brought by the elimination of technical errors 
and by increasing replications. The number of replications should be decided to produce a 
given degree of accuracy. 

 

12.1.2. Classification of Experimental Designs: 

Statisticians by themselves do not design experiments, but they have developed a 
number of structured schedules called “experimental designs”, which they recommend for the 
taking of measurements. These designs have certain rational relationships to the purposes, 
needs and physical limitations of experiments. Designs also offer certain advantages in 
economy of experimentation and provide straightforward estimates of experimental effects 
and valid estimates of variance. There are a number of ways in which experiment designs 
might be classified, for example, the following: 

1) By the number of experimental factors to be investigated (e.g., single- factor versus 
multifactor designs) 

2) By the structure of the experimental design (e.g., blocked, factorial, nested, or 
response-surface design) 

3) By the kind of information which the experiment is primarily intended to provide (e.g. 
estimates of effects, estimates of variance, or empirical mappings). 

 

12.2. BASIC DEFINITIONS OF EXPERIMENTAL DESIGN: 

Several fundamental terms are widely used throughout this section. They may be defined as 
follows: 

1. Treatment: 

In an experiment, there are some variants under study, the effects of which are 
measured and tested (compared). These variants will be referred to as treatments. For 
example, to test the effects of three fertilizers, i.e., Nitrogen, Phosphorus and Potash on the 
yield of a certain crop. Then Nitrogen, Phosphorus and Potash are called treatments. 

2. Yield: 

The response of the treatment is measured by some indicator such as crop production, 
milk production, body temperature, mileage of engine set, etc. Such an indicator is called 
yield. The treatments are applied to some units such as field plots, sample of cows, sample of 
patients, sample of engine, sets, etc. and the effect on the yield is observed. 

3. Experimental Units: 

A unit to which one treatment applied is called experimental unit. It is the smallest 
division of an experimental material to which the treatment applied and on which the variable 
under study is measured. In carrying out an experiment, we should clear as to what constitute 
the experimental unit. 
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It can be understood that in a field of agriculture it is called plot, in the field of animal 
husbandry it may be a cow (cattle), in the field of medicine it may be a patient and in the field 
of automobile industry it may be engine set and so on. 

4. Experimental Material: 

We have already explained the concept of experimental unit. The experimental 
material is nothing but a set of experimental units. For example, a piece of land, a group of 
cows, a number of patients and a group of engine sets, etc. Actually, an experimental material 
is that material on which some set of treatments are applied and tested. 

5. Blocks: 

The experimental material is divided into a number of groups or strata which are so 
formed that they are within homogeneous and between heterogeneous. These groups or strata 
are called blocks. 

6. Experimental Error: 

There is always a variation between the yields of the different plots even when they 
get the same treatment. This variation exists due to non- assignable causes, which cannot be 
detected and explained. These are taken to be of random type. This unexplained random part 
of variation is termed as experimental error. This include all types of extraneous variation due 
to, (i) inherent variability in the experimental units, (ii) error associated with the 
measurement made and (iii) lack of representativeness of the sample of the population 
understudy. 

7. Precision: 

The precision of an experiment is measured by the reciprocal of the variance of a 
mean, i.e. 

  2 2
x

1 1 n

v x
 
 

 

As n, the replication number increases, precision also increases. 

8. Uniformity Trial: 

We know that to increase the efficiency of a design, the plots should be arranged into 
homogeneous blocks. It can be done only if we have a correct idea about the fertility 
variation of the field. This is achieved through uniformity trial. It is known that fertility of 
soil does not increase or decrease uniformly in any direction but it is distributed over the 
entire field in an erratic manner. By a uniformity trial, we mean a trial in which the field 
(experimental material) is divided into small units (plots) and the same treatment is applied 
on each of the units and their yields are recorded. From these yields we can draw a fertility 
control map which gives us a graphic picture of the variation of the soil fertility and enables 
us to form a good idea about the nature of the soil fertility variation. This fertility control map 
is obtained by joining the points of equal fertility through lines. 

 



Theory of Linear Estimation & Analysis…       12.5             Completely Randomised Design 

 
 

A Uniformity Trial gives us an idea about the 

1) Fertility gradient of the field, 

2) Determination of the shape of the plots to be used, 

3) Optimum size of plots, 

4) Estimation of number of replications required for achieving certain degree of 
accuracy.  

 

12.3. PRINCIPLES OF DESIGN OF EXPERIMENTS:   

Good experimentation is an art and depends heavily upon the prior knowledge and 
abilities of the experimenter. Designing an experiment means deciding how the observations 
or measurements should be taken to answer a particular question in a valid, efficient and 
economical way. If a design is properly designed, then there will exists an appropriate way of 
anal sing the data. From an ill-designed experiment, no conclusion can be drawn. 

The fundamental principles in design of experiments are the solutions to the problems in 
experimentation posed by the two types of nuisance factors and serve to improve the 
efficiency of experiments. For the validity of the design Prof. R.A. Fisher gave three 
principles of design of experiments, those fundamental principles are: 

• Randomization 

• Replication 

• Local Control 

 

12.3.1. Randomization: 

The principle of randomization is essential for a valid estimate of the experimental 
error and to minimize the bias in the results. In the words of Cochran and Cox, 
“Randomization is analogous to insurance in that it is a precaution against disturbances that 
may or may not occur and they may or may not be serious if they do occur”. Thus, 
randomization is so done that each treatment should get an equal chance. We mean that the 
treatments should be allocated randomly, i.e., by the help of random numbers. The following 
are the advantages of randomizations: 

1) It provides a basis for the test of significance because randomization ensures the 
independence of the observations which is one of the assumptions for the analysis of 
variance. 

2) It is also a device for eliminating bias. Bias creeps in experiment, when the treatments 
are not assigned randomly to the units. This bias may be personal or subjective. The 
randomization ensures the validity of the results. 

 

12.3.2. Replication: 

“Replication” is the repetition, the rerunning of an experiment or measurement in 
order to increase precision or to provide the means for measuring precision. A single replicate 
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consists of a single observation or experimental run. Replication provides an opportunity for 
the effects of uncontrolled factors or factors unknown to the experimenter to balance out and 
thus, through randomization, acts as a bias-decreasing tool. Suppose a pain-relieving drug A 
is applied to 4 patients, we say that drug A is replicated four times. By repeating a treatment, 
it is possible to obtain a more reliable estimate because it reduces the experimental error. 
Further by repeating a treatment number of times we can judge the average performance of a 
treatment and the situation becomes clearer. Basically, there are following uses of replication: 

1) It enables us to obtain a more precise estimate of the treatment’s effects. 

2) The next important purpose of replication is to provide an estimate of the 
experimental error without which we cannot test the significance of the difference 
between any two treatments. The estimate of experimental error is obtained by 
considering the difference in the plots receiving the same treatment in different 
replications and there is no other alternative of obtaining this estimate. 

3) For a desired amount of precision, the minimum number of replications can be 
obtained. 

 

12.3.3. Local Control: 

This method is used to attain the accuracy or to reduce the experimental error without 
increasing unduly the number of replications. Local control is a technique that handles the 
experimental material in such a way that the effects of variability are reduced. In local 
control, experimental units are divided into a number of homogeneous groups called blocks. 
These blocks are so formed that they are homogeneous within and heterogeneous between. 
This blocking of experiment may be row-wise, column-wise or both according to the number 
of factors responsible for heterogeneity. Different types of blocking constitute different types 
of experimental designs. The following are the advantages of local control: 

1) By means of local control, the experimental error is reduced considerably and the 
efficiency of the design is increased. 

2) By means of local control the test procedure becomes more sensitive or powerful. 

Besides the above three principles, there are some other general principles in 
designing an experiment. Familiarity with the treatments and experimental material is an 
asset. Selection of experimental site is an asset.  Selection of experimental site should be 
carefully done. Within block variability should be reduced. 

 

12.4. SIZE AND SHAPE OF THE PLOTS: 

In field experiments, the size and shape of plots as well as of blocks influence the 
experimental error. The total available experimental area remaining fixed, an increase in size 
of plots will automatically decrease the number of plots and indirectly increases the block 
size. In order to reduce the flow of experimental material from one plot to another, it is 
customary to leave out strips of land between consecutive plots and also between blocks. 
These non- experimental areas are known as guard area. The size and shape of the plot should 
be such that we make a compromise between statistical and practical requirements i.e. if plot 
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size is x and the variance of the plot is V(x), then V(x) is minimum (statistical consideration) 
and there should be no disturbance for agricultural operations (practical requirements). 

The size and shape of block will ordinarily be determined by the size and shape of 
plots and the number of plots in a block. It is desirable from the point of view of error control 
to have small variations among the plots within a block and large variation among the blocks 
i.e. in general the division of experimental material into blocks is made in such a way that 
plots within blocks are as homogeneous as possible.  

Different Experimental Designs: 

Based on these fundamental principles, we have certain designs. The analysis of those 
designs is based on the theory of least squares which gives the best estimates of the 
treatments effects and was initiated by Fisher (1926) followed by Yates (1936), Bose & Nair 
(1939) and Rao (1976). The following three designs are frequently used: 

1) Completely Randomized Design 

2) Randomized Block Design 

3) Latin Square Design 

 

12.5. COMPLETELY RANDOMISED DESIGN: 

The simplest of all the design is completely randomized design (CRD) which is 
applied in the case when the experimental materials are homogeneous. CRD is based on two 
principles i.e. randomization and replication. The third principle, i.e. local control is not used 
because it is assumed that experimental materials are homogeneous. In this, the treatments 
are allocated randomly to the experimental units and each treatment is assigned to different 
experimental units completely at random (can be repeated any number of times) that is why it 
is called completely randomized design. 

Suppose we have k treatments under comparison and the ith treatment is to be replicated ni 

times for i =1, 2, …, k, then the total number of units required for the design are
k

i
i 1

n n


 . 

We allocate the k treatments completely at random to ni units such that ith treatment appears 

ni times in the experiment. 

 

12.5.1. Layout of Completely Randomized Design: 

The term layout refers to the allocation of different treatment to the experimental 
units. We have already said that treatments are allocated completely at random to the 
different experimental units. Every experimental unit has the same chance of receiving a 
particular treatment. 

Suppose we want to test the effect of three pain relieving drugs A, B and C on twelve 
patients. Then we first number all the patients (units) from 1 to 12. Then from a random 
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number table of one digit we pick up 12 numbers which are less than 4. Suppose the numbers 
are 1, 3, 2, 1, 3, 2, 1, 3, 2, 2, 3, 1. Thus the drug A is allotted to patient 1, drug C is allotted to 
patient number 2 and so on. It can be shown below: 

(1) 

A 

(2) 

C 

(3) 

B 

(4) 

A 

(5) 

C 

(6) 

B 

(1) 

A 

(2) 

C 

(3) 

B 

(4) 

B 

(5) 

C 

(6) 

A 

 

It is clear from the above layout that the replications of A, B and C are equal. If the 
number of replications for each treatment is 5, 4 and 3 respectively, we number the 
experimental units in a convenient way from 1 to 12. We then get a random permutation of 
the experimental units. To the first 5 of the units in the random permutation we assign 
treatment A, to the next 4 units’ treatment B is assigned and the treatment C is assigned to the 
remaining 3 units.  
 

12.5.2. Statistical Analysis of Completely Randomized Design: 

Statistical analysis of a CRD is analogous to the ANOVA for one-way classified data 
for fixed effect model, the linear model (assuming various effect to be additive) becomes 

ij i ijy  = µ +  + e , i = 1, 2, 3, ....., k;  j = 1, 2, 3, ..., ni              … (1) 

where yij is the yield or response from the jth unit receiving the ith treatment, µis the 

general mean effect, i is the effect due to the ith treatment, where µ andi are constants so 

that  
k

i i
i 1

n 0


  and eij is identically and independently distributed (i.i.d.)  2
eN 0,  . Then, 

k

1
i 1

n n


 is the total number of experimental units. 

The analysis of model given in equation (1) is as same as that of fixed effect model of one-

way classified data, discussed in Unit 6 of MST-005. If we write 

ij ..
i j

y y G   = Grand total of the n observations, and 

 
ni

ij i i
j 1

y y T


   = Total response in the units receiving the ith treatment, 

Then, as in ANOVA (one-way classified data), 
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     
2 2n nk k ki i

2

ij .. ij .. i i ..
i 1 j 1 i 1 j 1 i 1

y y y y n y y
    

        

i.e.   TSS = SSE + SST 

where, TSS, SST and SSE are the Total Sum of Squares, Sum of Squares due to Treatments 
(between treatments SS) and Sum of Square due to Error (within treatment SS) given 
respectively by 

  
2nk i

ij ..
i 1 j 1

TSS y y
 

   

  
k

2 2
i i .. T

i 1

SST n y y S


    

 and  
nk i 2 2

ij i E
i 1 j 1

SSE y y S
 

    

ANOVA TABLE FOR CRD 

Source of 
Variation 

DF SS MSS 
Variance 
Ratio (F) 

Treatments  k-1 2
TSST S  

 
2
TS

MSST
k 1




 T

MSST
F

MSSE
  

Error n-k 2
ESSE S  

 
2
ES

MSSE
n k




 
 

Total  n-1 2 2
T ES S    

 

Under the null hypothesis, 0 1 2 kH : ....       against the alternative that all ’s is not 

equal, the test statistic 

 T

MSST
F ~ f k 1, n k

MSSE
    

i.e., FT follows F distribution with (k-1, n- k) df. 
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If    T k 1, n kF F    then H0 is rejected at  level of significance and we conclude that 

treatments differ significantly. If    T k 1, n kF F    then H0 may be accepted i.e. the data do 

not provide any evidence to prefer one treatment to the other and as such all of them can be 

considered alike. 

If the treatments show significant effect, then we would be interested to find out 
which pair of treatments differs significantly. For this instead of calculating Student's t-test 
for different pairs of treatment means we calculate the least significant difference at the given 
level of significance. This least difference is called as critical different (CD) and CD at α 
level of significance is given by 

CD = Standard error of difference between two treatment means x / 2t for error degrees of 

freedom. 

We have  

  
2 2

2e e
i . j e

i j i j

1 1
Var y y

n n n n

  
       

 
 

 Standard Error  
1/ 2

i . j e
i j

1 1
y y

n n

 
     

 
 

Hence, the critical difference (CD) for  i . jy y  

   
1/ 2

/ 2
i j

1 1
t for error df x MSSE

n n

  
       

 

Since MSSE provides an unbiased estimate of 2
E . 

If each treatment is replicated n times, that is ni = n for i=1, 2, ..., k then 

CD for difference of mean  
1/ 2

/ 2

2
t for error df x MSSE

n
       

 

 

12.5.3. Least Square Estimates of Effects: 

The completely randomised model in equation (1) in Sub-section 9.5.2 is a fixed 

effect model. Proceeding exactly as in Section 6.4 of Unit 6, we shall get  
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i i i. ...

y..
ˆˆ y.. and y y

n
            (2) 

 

12.5.4. Variance of the Estimates: 

Proceeding exactly as in Section 6.7 of Unit 6, we shall get 

 
2 k
e

i
i 1

ˆVar ; where n n
n 


       (3) 

 And     2
i i e k

i
i

i 1

1 1
Var Var

n n


 
 
      
 
 
 


   (4)  

If we assume that each treatment is replicated an equal number of times i.e., if 

ni = n, (say), i = 1, 2, …, k; then n = 
k

i
i 1

n nk


  

Hence, from equations (3) and (4), we get 

       
2

2e
i i e

k 1
ˆˆVar and Var Var

nk nk

          
 

  (5)  

 

12.5.5. Expectation of Sum of Squares: 

Proceeding exactly as in Section 6.7 of Unit 6 [fixed effect model for one-way 
classified data], we get  

      
2k k

2 2
1 i .. e i 1

i 1 i 1

E SST E n y y k 1 n
 

 
       

  
   

    
2 k

2 2T
e i 1

i 1

S 1
E MSST E n

k 1 k 1 

 
     

   
  

     2
eE SSE n k    

    
2

2E
e

S
E MSSE E

n k

 
   

  
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The method of analysis of completely randomized design would be similar to one-
way ANOVA, which has been illustrated below with the following example: 

Example 1:  

A person wanted to purchase a lot of electric drills. He got quotations from five 
manufacturers. For the selection, he wanted to conduct an experiment to estimate the time 
taken by each making a hole in a metallic sheet. As the sheet might not be uniform all over in 
respect of thickness and hardness, he marked 20 places on the sheet and applied four drills 
from each concern in 4 randomly selected places to make holes. The time for making each 
hole was recorded and these formed the observations. The observations in seconds are shown 
below in brackets along with marks of the drills denoted by D1, D2, D3, D4 and D5. 

D1(19) D3(22) D4(20) D1(20) 

D5(29) D2(24) D5(30) D3(24) 

D2(26) D4(25) D1(16) D2(22) 

D5(28) D3(25) D5(31) D4(28) 

D4(27) D1(16) D2(27) D3(20) 

Conduct the experiment by adopting a completely randomized design. 

Solution:  The analysis of the given design is done by one-way analysis of variance method. 
The data is analyzed and computation results are given as below: 

The totals of time records for 4 holes by each of the different makes are denoted by T1, T2, 
T3, T4 and T5 are shown below. 

T1 = 71, T2 = 99, T3 = 91, T4 = 100, T5 = 118 

Grand Total (G) = 479 

Correction Factor (CF) =
 22 479G

11472.05
N 20

   

Total Sum of Squares (TSS) = 212+ 182 + 222 +… +312 + 202 - 11472.05 

= 11847 – 11472.05 = 374.95 

Sum of Squares due to Makes (SSM) 

   
         2 2 2 2 2
71 99 91 100 118

11472.05
4

   
   

= 11761.75 – 11472.05 = 289.70 

Sum of Squares due to Error (SSE) = TSS – SSM 

= 374.95 – 289.70 = 85.25 
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Analysis of Variance Table 

Sources of Variation DF SS MSS F 

Makes 4 289.7 72.425 12.75 

Error 15 85.25 5.68  

Total 19 374.95   

The tabulated value of F at 1 per cent level of significance for 4 and 15 df is 4.89. Thus, the 
calculated value of F viz. 12.75 shows that Make to Make variation is highly significant 
thereby indicating that the hypothesis that the time periods taken by the different Makes in 
boring a hole are, on an average, the same, is rejected. So multiple comparison test will be 
applied for different Makes. 

 

Mean for Different Makes: 

Makes 

1D  2D  3D  4D  5D  

17.74 24.75 22.75 25.00 29.50 

 

SE =
2MSSE 2x5.68

SE = 1.69
n 4

   

Critical difference at 1% level of significance 

CD = t/2 (for error df) x SE = 3.055 x 1.69 = 5.16 
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The initial difference indicates that the Make D5 is significantly better than all the other 
Makes. 

Pair of 
Treatments 

Difference CD Inference 

D1, D2 
1 2D D =7.10 5.16 Significant 

D1, D3 
1 3D D =5.10 5.16 Insignificant  

D1, D4 
1 4D D =7.26 5.16 Significant 

D1, D5 
1 5D D =11.26 5.16 Significant 

D2, D3 
2 3D D =2.00 5.16 Insignificant 

D2, D4 
2 4D D =0.25 5.16 Insignificant 

D2, D5 
2 5D D =4.75 5.16 Insignificant 

D3, D4 
3 4D D =2.25 5.16 Insignificant 

D3, D5 
3 5D D =6.75 5.16 Significant 

D4, D5 
4 5D D =4.5 5.16 Insignificant 

 

12.6. SUITABILITY OF CRD: 

The following are some situations, in which one can apply the complete randomised design: 

1) The CRD is used in the situations where experimental materials are homogeneous. 
That is why, CRD is mostly used in chemical, biological and banking experiments, 
where the experimental material is thoroughly mixed powder, liquid or chemical. 

2) The CRD is used in the situations where the observations on some units are missing 
or destroyed. This feature of missing observation does not disturb the analysis of the 
design. 

3) In agricultural experiments, this design is not used because experimental material is 
not homogeneous. 
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12.6.1. Advantages and Disadvantages of CRD: 

Advantages of CRD 

1) In this design any number of treatments and replications can be used. There may be 
different number of replications for different treatments. 

2) Analysis is simple and easy even if the number of replications is unequal for each 
treatment. In such case experimental error will differ from treatment to treatment. 

3) If some of the observations are missing or destroyed or not available due to some 
reasons, the analysis can be done without any problem. 

4) It provides large degree of freedom for error sum of squares. This increases the 
sensitivity of the experiment. 

5) In CRD there is no condition on the number of replications of the treatments, they can 
be increased or decreased according to the need of the experimenter. Thus, the design 
is flexible. 

 

Disadvantages of CRD: 

1) The main disadvantage of CRD is that the principle of local control has not been used 
in this design. Due to this fact, the experimental error is inflated. This is the main 
reason for the criticism of CRD. 

2) In agricultural experiments, the design is seldom used because the experimental 
material is not homogenous. 

 

12.7.    SUMMARY: 

In this unit, we have discussed: 

1) The experimental design; 

2) The planning and classification of experimental designs; 

3) Principles of design of experiments; 

4) Completely randomised design; 

5) Layout of CRD; 

6) The statistical analysis of CRD; and 

7) Advantages and disadvantages as well as suitability of CRD. 

 

Example 2: Carryout the ANOVA for the given following data of yields of 5 varieties, 7 
observations on each variety: 
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Variety 

Observations 

1 2 3 4 5 6 7 

1 13 15 14 14 17 15 16 

2 11 11 10 10 15 9 12 

3 10 13 12 15 14 13 13 

4 16 18 13 17 19 14 15 

5 12 12 11 10 12 10 10 

 

The analysis of the given design is done by one-way analysis of variance method. The data is 
analyzed and computation results are given as below: 

Correction Factor (CF) =   6072.03 

Raw Sum of Squares (RSS) = 6293 

Total Sum of Squares (TSS) = 220.97                                                                                                     

Sum of Squares due to Variety (SSV) = 138.40 

Sum of Squares due to Error (SSE)  = TSS – SSV 

= 220.97-138.40 = 82.57 

 

ANOVA TABLE 

Source of 
Variation 

DF SS MSS 
Variance Ratio 

Calculated Tabulated 

Variety 4 138.40 34.60 

12.58 2.66 Error 30 82.57 2.75 

Total  34 220.97  
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Null Hypothesis 0 1 2 5H :µ µ ... µ    

Since, calculated value of F is greater than the tabulated value of F, we reject the null 

hypothesis and conclude that variety effects are significantly different. 

Mean for Different Varieties: 

Varieties  

1D  2D  3D  4D  5D  

14.86 11.14 12.86 16.00 11.00 

 

SE =
2MSSE 2x13.34

SE = 1.95
n 7

   

Critical difference at 1 % level of significance 

= t/2 (for error df) x SE = 3.055 x 1.95 = 5.96 

The initial difference indicates that the Variety D4 is significantly better than all the other 

Varieties. 

Pair of 
Treatments 

Difference CD Inference 

D1, D2 
1 2D D  = 3.72 5.96 Insignificant 

D1, D3 
1 3D D =2.00 5.96 Insignificant 

D1, D4 
1 4D D =1.14 5.96 Insignificant 

D1, D5 
1 5D D =3.86 5.96 Insignificant 

D2, D3 
2 3D D =1.72 5.96 Insignificant 

D2, D4 
2 4D D =4.86 5.96 Insignificant 

D2, D5 
2 5D D =0.14 5.96 Insignificant 

D3, D4 
3 4D D =3.14 5.96 Insignificant 

D3, D5 
3 5D D =1.86 5.96 Insignificant 

D4, D5 
4 5D D =5.00 5.96 Insignificant 
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12.8.   SELF-ASSESSMENT QUESTIONS: 

1) Explain Principles of Design of Experiments 

2) Explain Layout of Completely Randomized Design 

3) Explain the Statistical Analysis of Completely Randomized Design 

4) Explain the Least Square Estimates of Effects  

5) Explain the Suitability of CRD 

 

12.9   SUGGESTED READINGS: 

1) Montgomery, D.C. (2017). Design and Analysis of Experiments (9th ed.). Wiley. 

2) Fisher, R.A. (1925). Statistical Methods for Research Workers. Oliver & Boyd. 

3) Gupta, S.C., & Kapoor, V.K. (2014). Fundamentals of Applied Statistics. Sultan 
Chand & Sons. 

 

 

Dr. B. Hari Mallikarjuna Reddy 



LESSON-13 

RANDOMISED BLOCK DESIGN 
 

13.0. OBJECTIVES: 

After studying this unit, you would be able to 

 Explain the randomized block design; 

 Describe the layout of RBD; 

 Explain the statistical analysis of RBD; 

 Find out the missing plots in RBD; and 

 Explain the advantages and disadvantages as well as the suitability of RBD. 

 

STRUCTURE: 

13.1  Introduction  

13.2 Layout of Randomized Block Design 

13.3  Statistical Analysis of RBD 

13.3.1. Least Square Estimates of Effects 

13.3.2. Variance of the Estimates 

13.3.3. Expectation of Sum of Squares 

13.4  Missing Plots Technique in RBD 

13.4.1. One Missing Plot 

13.4.2. Two Missing Plots 

13.5  Suitability of RBD 

13.6  Summary 

13.7  Self-assessment questions 

13.8     Suggested readings 

 

13.1. INTRODUCTION: 

The completely randomized design was simple due to the reason that principle of 
local control was not used and it was assumed that the experimental material is 
homogeneous, but it is observed that the experimental material is not fully homogeneous. In 
agricultural field experiments sometimes, a fertility gradient is present in one direction. In 
such situation the simple method of controlling variability of the experimental material 
consists in stratifying or grouping the whole experimental area into relatively homogeneous 
strata or sub-groups (called blocks), perpendicular to the direction of fertility gradient. These 
blocks are so formed that plots within a block are homogeneous and between blocks are 
heterogeneous. In other words, there may be less variation within a block and major 
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difference or variation between blocks. It is to be kept in mind that familiarity with the nature 
of experimental units is necessary for an effective blocking of the material. The procedure of 
division of experimental material into a number of blocks give rise to a design known as 
Randomized block design (RBD) which can be defined as an arrangement of t treatments in r 
blocks such that each treatment occurs precisely once in each block. 

In other words, when the experimental units are heterogeneous, a part of the 
variability can be accounted for by grouping the experimental units in such a way that those 
experimental units within each group are as homogeneous as possible. The treatments are 
then allotted randomly to the experimental units. Within each group (or block). This results in 
an increase in precision of estimates of the treatment contrasts, due to the fact that error 
variance that is a function of comparisons within blocks is smaller because of homogeneous 
blocks. 

 

13.2. LAYOUT OF RANDOMISED BLOCK DESIGN: 

The entire experimental material is divided into a number of blocks equal to the 
number of replications for each treatment. Then each block is divided into a number of plots 
equal to the number of treatments. For example, if we have 4 treatments A, B, C and D and 
each treatment is to be replicated 3 times. Then according to the condition of RBD, we will 
arrange the experimental material in three blocks each of size 4, i.e. each block consists of 4 
plots. After arranging the experimental material into a number of blocks, treatments are 
allocated to each block separately. That is randomization is applied afresh for each block and 
thus, it will be independent for each block. The method is illustrated below by the following 
arrangement of 3 blocks and 4 treatments: 

Layout of RBD with 4 Treatments 

Block I A B D C 

Block II C A D B 

Block III D B C A 

 

13.3. STATISTICAL ANALYSIS OF RBD: 

If in RBD a single observation is made on each of the experimental units, then its 
analysis is analogous to ANOVA for fixed effect model for a two-way classified data with 
one observation per cell and the linear model effects to be (additive) becomes 

ji i j ijy e ; i 1,2,........,P; j 1,2,..........,q.       

where, y ij is the yield or response of the experimental unit receiving the ith treatment 

in the jth block,   is the general mean effect, i is the effect due to the ith treatment, j in the 
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effect due to jth block or replicate and mathfrak eij is identically and independently distributed 

i.e. eij follows (i.i.d.) N (0, 2
e ), 

where  i  and j  are constants so that 
p q

i
i 1 j i

0 and j 0.
 

      

If we write that  

i j

yij y.. G grand total of all the pxq observations.     

th
i i

j

yij y Total for i treatmetn     

th
i i

j

yij y Total for j block     

Then heuristically, we get  

2 2 2
i j .. i jj

i j i j

q (y y..) p (y y ) (y y. y..)          

2
ij

i j

TTS (y y..)   

22
.. T

i i

SST q (y y ) S (say)    

22
. j .. B

j

SSB p (y y ) S    

2
ESSE S TSS SSB SST     

B

MSST
F

MSSE
  

The product terms vanish since the algebraic sum of deviations form mean is zero. 

This   

TSS =SSE+ SSB+ SST  

Where TSS, SST, SSB and SSE are that total sum of squares, sum of squares due to 
treatments (between treatments SS), of squares due to blocks and sum of squares due to error 
(i.e., within treatment SS) given respectively by  
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2
ij

i j

TTS (y y..)   

22
.. T

i i

SST q (y y ) S (say)    

22
. j .. B

j

SSB p (y y ) S    

2
ESSE S TSS SSB SST     

 Hence, the total sum of squares is partitioned three sums of squares whose degree of 
freedom make the total to the degree freedom of TSS.  

Source of Variation DF SS MSS 
Variance 

Ration (F) 

Treatments  P-1 ST
2 MSST=ST

2/(P-1) 
T

MSST
F

MSSE
  

Blocks  q-1 SB
2 MSST=SB

2/(q-1) 
B

MSST
F

MSSE
  

Error (p-1) (q-1) SE
2 MSST=SE

2/ (P-1)(q-1) 

Total  Pq-1    

 

Under the null hypothesis, H0: 1 2 p...........      against the alternative that all 's are 

not equal, the test statistic  

T

MSST
F

MSSE
    Follows F[(P-1) (q-1)] 

i.e., FT follows F-distribution with [(P-1), (P-1) (q-1) df. 

i.e., FT ≤ F with [(p-1), (p-1) (q-1)] df at   level of significance, (Usually 5%) then 

H0 is rejected and we conclude that treatments differ significantly.  
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If FT  F with [(p-1), (p-1)] df at   level of Significance, then H0 may be accepted, 
i.e. the data do not provide any evidence against the null hypothesis which may be accepted.  

Similarly, under the null hypothesis, 0 1 2 qH : ........     against the alternative 

that all  ’s are not equal, the test statistic.  

T

MSSB
F

MSSE
    follows F[(q-1), (p-1) (q-1)] 

 

13.3.1. Least Square Estimates of Effects: 

 Proceeding exactly similar as in CRD, and replacing K by p, n by q and taking N=pq, 
the estimates of the parameters  , i and j  are given by:  

i i. .. j . j ..
ˆˆy..., a y y , y y          …….. (1) 

 

13.3.2. Variance of the Estimates:  

Proceeding exactly similar as in CRD, we shall get  

2
eˆVar ( )

pq


   

2
i e

(p 1)
ˆVar ( )

pq


    

2
j e

(q 1)ˆand Var ( )
pq


    

 

13.3.3. Expectation of Sum of Squares:  

Proceeding exactly as in CRD, we get  

2 2
e i

i

E[SST] (p 1) q      

2 2
e i

i

(SST) q
E E(MSST)

(p 1) (p 1)

 
       

  
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2 2
e j

j

E(SSB) (q 1) P      

2 2
e j

j

(SST) q
E E(MSSB)

(q 1) (q 1)

 
       

  

2
eE(SSE) (q 1)(p 1)     

2
e

(SSE)
E E(MSSE)

(q 1)(p 1)

 
     

 

 

Hence under the null hypothesis 

0 1 2 pH : ........ 0;        

0 1 2 pH : ........ 0;      

2 2
e eE(MSST) and E(MSSB)     

i.e. each of the mean sum of squares due to treatments and blocks gives an unbiased estimate 
of the error variance 2

e  under the null hypothesis 0H  and 0H  respectively. 

 

Example 1:  

There were 4 different makes of cars. A problem was posed to estimate the petrol 
consumption rates of the different makes of cars for suitable average speed and compare 
them. The following experiment could be conducted for an inference about the problem: 

Five different cars of each four makes were chosen at random. The five cars of each make 
were put on road on 5 different days. The cars of A make run with different speeds on 
different days. The speeds were 25, 35, 50, 60 and 70 mph. Which car was to put on the road 
on which day and what speed it should have was determined through a chance mechanism 
subject to the above conditions of the experiment. The procedure was adopted for each of the 
makes of cars. For each car, the number of miles covered per gallon of petrol was observed. 
The observations are presented below: 
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TABLE: MILES PER GALLON OF PETROL 

Makes of Car 

Speed of the Cars in Miles Per Hour (mph) 

Average 
25 35 50 60 70 Total 

A 20.6 19.5 18.1 17.9 16.0 92.1 18.42 

B 19.5 19.0 15.6 16.7 14.1 84.9 16.42 

C 20.5 18.5 16.3 15.2 13.7 84.2 16.84 

D 16.2 16.5 15.7 14.8 12.7 75.9 15.18 

Total 76.8 73.5 65.7 64.6 65.5 337.1  

Carry out the analysis of the given RBD. 
 

Solution:  

Here the makes of the cars are the treatments and the other controlled factor is the 
speed, the variance for which has been eliminated through the design which is thus actually a 
randomized block design with the speeds as blocks. The specific cars used, the effects of the 
days, drivers and possibly some other effects contributed to the error variance. 

Here,  

Correction Factor (CF) = 
2(337.1)

5681.82
20

  

Raw Sum of Squares  = (20.6)2+(19.5)2+…+(13.7)2 + (12.7)2 =5781.41 

Total Sum of Squares (TTS) = 5681.41.5881.82=99.59 

Sum of Squares due to Speed (SSS)  

2 2 2 2(76.8) (73.5) ..... (64.6) (56.5)
CF

4

   
   

=66.04 

Sum of Squares due to Makes (SSM)  

   
2 2 2 2(92.1) (84.9) (84.2) (75.9)

CF
5

  
   

   =28.78 



Centre for Distance Education                           13.8                Acharya Nagarjuna University  

  

Sum of Squares due to Errors (SSE) 

   = TSS-SSS-SSM 

=99.59-66.04-28.78=4.77  

 

ANALYSIS OF VARIANCE TABLE 

Source of Variation DF SS MSS 

Variance Ration 

Calculated Tabulated 

Speeds  4 66.04 16.57 41.27 3.26 

Treatments (Makes)  3 28.78 9.59 23.97 3.49 

Error  12 4.77 0.40   

Total  19 99.59    

 

In both the cases either for speeds or for makes, calculated value of F is greater than 
tabulated value of F at 5% level of significance and thus null hypothesis is rejected. 

In the above experiment, we are interested only on makes so multiple comparison test 
will be applied for different makes. 

Mean number of miles per gallon for different Makes 

Makes 

A  B  C  D  

18.42 16.98 16.84 15.18 

 

2MSSE 2x0.40
SE 0.40

5 5
    

Critical difference at 1 % level of significance  

 CD / 2t  (for error df) x SE=3.055x 0.40 =122 
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The initial difference indicates that the Make A is significantly better than all the other 
Makes.  

Pair of 
Treatments 

Difference CD Inference 

A,B A B 1.44   1.22 Significant 

A,D A C 1.58   1.22 Significant 

A,C A D 3.24   1.22 Significant 

B,C B C 0.14   1.22 Significant 

B,D B D 1.8   1.22 Significant 

C,D C D 1.66   1.22 Significant 

 

Example 2:  

Carryout the analysis of the following design:  

Varieties 

 

Blocks 

I II III IV 

A 7 16 10 11 

B 14 15 15 14 

C 8 16 7 11 

 

Varieties 

 

Blocks 
Total 

I II III IV 

A 7 16 10 11 44 

B 14 15 15 14 58 

C 8 16 7 11 102 

Total  29 74 32 36 144 
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Correction Factor (CF)   = 
2(144)

1728
12

  

Raw Sum of Squares (RSS)  = 2 2 2 2(7) (14) .... (14) (11) 1858      

Total Sum of Squares (TSS)   =1858-1728=130 

Block Sum of Squares (SSB)   =
2 2 2 2(29) (47) (32) (36)

CF
3

  
  

     
841 2209 1024 1296

1728
3

  
   

     1790 1728 62    

Variety Sum of Squares (SSV)  
2 2 2(44) (58) (42)

CF
4

 
   

1936 3364 1764
1728

4

 
   

1766 1728 38    

Sum of Squares due to Error (SSE)  TSS SSV SSB    

=130 62 39 30    

 

ANOVA TABLE 

Source of 
Variation 

DF SS MSS 

Variance Ration 

Calculated Tabulated 

Variety 2 38 19 3.8 5.14 

Blocks 3 62 20.67 4.13 4.76 

Error 6 30 5   

Total 11 130    
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In both these cases either for varieties or for blocks, calculated value of F is less than 
tabulated value off at 5% level of significance and thus null hypothesis is accepted and 
inferred that variety effect and block effect are insignificant. 
 

13.4. MISSING PLOTS TECHNIQUE IN RBD: 

Sometimes observations from one or more experimental units are not found (missing) 
due to some unavoidable causes. There may be some unforeseen causes for example in 
agricultural experiments damage by animal or pets, in animal experiment any animal may die 
or observations from one or more plot is excessively large as compared to other plots and 
thus accuracy of such observation is often in doubt. In such observation is often in doubt. In 
such situations, these observations are omitted and treated as missing. 

In case of missing observations, analysis is done by estimating the missing 
observation. This type of analysis was given by Yates (1937) and it is known as missing plot 
technique. 

13.4.1. One Missing Plot: 

 Suppose without loss of generality that observation for treatment 1 in block 1 i.e. 11y  
is missing and let it is Y, then the observations for a RBD may be represented as below: 

 T1 T2 ….. Ti …. Tp Total 

B1 Y11=Y Y21 …. Yi1 …. Yp1 B1’+Y 

B2 Y12 Y22 …. Yi2 …. Yp2 B2 

… … … … … … … … 

Bj Y1j Y2j … Yij … Ypj Bj 

… … … … … … … … 

Bq Y1q Y2q … Yiq … Ypq Bq 

Total T1’+Y T2 … Ti … Tp G’+Y 

 Where, 

 B1’=total of all available (p-1) observations in 1st block 

 T1’=total of all available (q-1) observations in 1st treatment. 

 G’=total of all available (pq-1) observations 
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On the basis of these totals we calculate different SS’s as follows: 

Sum of Squares for blocks (SSB) = 
   

q2' 2
21 j

j 2

B Y B
G ' Y

p pq


 





 

Sum of Squares for Treatments (SST) = 
   

q2' 2
21 j

j 2

T Y T
G ' Y

q pq


 





 

Total Sum of Squares (TSS) = 
 2

2 2
ij

i j

G ' Y
y Y

pq


   where    i, j 1, 1  

Sum of Squares due to Error (SSE) = TSS – SSB – SST 

 
     2 22 ' '

1 12
B Y T YG ' Y

SSE Y
pq p q

 
     + terms not involving Y 

For obtaining the value of Y, we minimize the sum of squares due to error with respect to Y. 

this is obtained by solving the equation. 

 
       ' '

1 12 B Y 2 T YSSE 2 G ' y
2Y 0

Y qp p q

  
    


 

 
' '

1 1Y Y Y T B G '
Y

pq p q q p pq
        

 = 
  ' '

1 1
Y pq 1 q p pT qB G '

pq pq

    
  

 
  

' '
1 1pT qB G '

Y
p 1 q 1

 


 
 

Y  is the least square estimate of the yield of the missing plot. The value of Y is inserted in 

the original table of yield and ANOVA is performed in the usual way except that for each 

missing observation 1 df is subtracted from total and consequently from error df. 
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13.4.2. Two Missing Plots: 

For two missing values, we convert the problem into one missing value by putting any 
value say the overall mean or mean of the available values of that block for which one value 
is missing or mean of the available values of that replicate in any missing cell and obtain the 
estimate of the second missing value by the above prescribed estimation formula. Then we 
put the estimate of this second missing value and estimate the first missing value for which 
originally mean was taken. We go on repeating the same procedure until we obtain two 
successive estimates which are not materially different. Method is illustrated below with 
examples. 
 

Example 3:  

In the following data two values are missing. Estimate these values by Yates method and 
analyse: 

Treatments 

Blocks 

I II III 

A 12 14 12 

B 10 y 8 

C x 15 10 

 

Solution: We convert the two missing plots problems into one missing plot problem, for 
which we take the average of the values of I block in which x is missing. This average is 
(10+12)/2=11. Thus, the estimate of x is taken to be x1=11 and it is inserted in place of x and 
form the following table of totals: 

Treatments 

Blocks 

Total 

I II III 

A 12 14 12 TA=38 

B 10 Y 8 TB=18+Y 

C 11 15 10 TC=36 

Total B1=33 B2=29+y B3=30 G=92+y 
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Thus, from the above table we get 

 P=3, q=3, B2’=29, TB’=18, G’=92 

Applying the missing estimation formula 

 
   

' '
1 1pT qB G 3 18 3 29 92

y
q 1 p 1 4

     
 

 
 

   = 
54 87 92 49

12.25 12
4 4

 
    

Now the estimated value of y is taken to be y1 = 12 and it is inserted in place of y and the 
following table of totals is formed by taking x unknown: 

Treatments 

Blocks 

Total 

I II III 

A 12 14 12 TA=38 

B 10 12 8 TB=30 

C x 15 10 TC=25+x 

Total B1=22+x B2=41 B3=30 G=93+x 

 

Thus, from the above table we get p = 3, q = 3, B1’=22, TC’ = 25, G’ = 93  

Again, applying the missing estimation formula 

  3 25 3 22 93
x

4

   
  

      = 
75 66 93 48

12
4 4

 
   

Thus, x2=12 

Again, using x2=12, we estimate the second estimate of y i.e. y2 for which 
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 ' '
2 BB 29, T 18, G ' 92    

  3 18 3 29 93
y

4

   
  

     = 
54 87 93 47

11.75 12
4 4

 
    

We see that the second estimate of y i.e. y2 is not materially different from y1. 

Thus, we take the estimated values of  x 12 and y 12  . Inserting both the estimated values 

of x and y we get the following observations: 

Treatments 

Blocks 

Total 

I II III 

A 12 14 12 TA=38 

B 10 12 8 TB=30 

C 12 15 10 TC=37 

Total B1=34 B2=41 B3=30 G=105 

 

Correction Factor (CF) = 
 2
105 11025

1225
9 9

   

Raw Sum of Square (RSS) =        2 2 2 2
12 10 ... 8 10 1261      

Total Sum of Squares (TSS) = 1261-1225=36 

Treatment Sum of Squares (SST) = 
     2 2 2
38 30 37

CF
3

 
  

    = 
1444 900 1369

1225
3

 
  
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    = 
3713

1225 1237.67 1225
3

    

    = 12.67 

Block Sum of Squares (SSB) = 
     2 2 2
34 41 30

CF
3

 
  

    = 
1156 1681 900

1225
3

 
  

    = 1245.67 – 1225 = 20.67 

Error Sum of Squares (SSE) = TSS – SST – SSB 

    = 36 – 12.67 – 20.67 = 2.66 

Source of 
Variation 

DF SS MSS 

Variance Ratio 

Calculated Tabulated 

Treatments 3-1=2 12.67 6.34 4.77 9.55 

Blocks 3-1=2 20.67 10.34 7.77 9.55 

Error 4-2=2 2.66 1.33   

Total 8-2=6     

In case of both treatments and blocks, calculated value of F is less than tabulated 

value of F at 5% level of significance, thus treatment and block means are not significantly 

different. 

 

13.5 SUITABILITY OF RBD: 

1) The RBD is suitable in the situations where it is possible to divide the 
experimental material into a number of blocks. If it is not possible to divide the 
experimental material, RBD cannot be used. 
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2) the RBD is suitable only when the number of treatments is small because as the 
number of treatments increases, the block size also increases and it disturbs the 
homogeneity of the block. 

3) RBD is suitable only when experimental material is heterogeneous with respect to 
one factor only. If there is two-way heterogeneity, LSD is used. 

 

13.5.1. Advantages and Disadvantages of RBD: 

Advantages of RBD: 

The RBD has many advantages over other designs. Some of them are listed below: 

1) It is a flexible design. It is applicable to moderate number of treatments. If extra 
replication is necessary for some treatment, this may be applied to more than one unit 
(but to the same number of units) per block. 

2) Since all the three principles of design of experiments are used, the conclusions drawn 
from RBD are more valid and reliable. 

3) If data from individual units be missing then, analysis can be done by estimating it. 

4) This is the most popular design in view of its simplicity, flexibility and validity. No 
other design has been used so frequently as the RBD. 

5) This design has been shown to be more efficient or accurate than CRD, for most types 
of experimental work. The elimination of block sum of squares from error sum of 
squares, usually results in a decrease of error sum of squares. 

6) Analysis is simple and rapid. 

 

Disadvantages of RBD: 

1) The main disadvantage of RBD is that if the blocks are not internally homogeneous, 
then a large error term will result. In field experiments, it is usually observed that as 
the number of treatments increases, the block size increases and so one has lesser 
control over error. 

2) The number of replications for each treatment is same. If replication is not same, the 
only remedy is to adopt CRD. 

3) It cannot control two-sided variation of experimental material simultaneously. That is 
why, it is not recommended when experimental material contains considerable 
variability. 

 

13.6. SUMMARY: 

In this unit, we have discussed: 

1) The randomised block design; 
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2) The layout of RBD; 

3) The statistical analysis of RBD; 

4) The missing plot techniques in RBD; and 

5) The advantages and disadvantages as well as the suitability of RBD. 

 

Example 4: Carryout the analysis of following design:  

Block 

I II III IV 

A 

8 

C 

10 

A 

6 

B 

10 

C 

12 

B 

8 

B 

9 

A 

8 

B 

10 

A 

8 

C 

10 

C 

9 

 

The given design is solved by method of analysis of variance for two-way classified data. The 
computation results are given as follows: 

Correction Factor (CF) = 972 

Raw Sum of Squares (RSS) = 998 

Total Sum of Squares (TSS) = 26 

Block Sum of Squares (SSB) = 4.67 

Treatment Sum of Squares (SST) = 15.5 

Error Sum of Squares (SSE) = 5.83 
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ANOVA TABLE 

Source of 
Variation 

DF SS MSS 
Variance Ratio 

Calculated Tabulated 

Variety 2 15.5 7.7 7.94 5.14 

Blocks 3 4.67 1.56 1.61 4.76 

Error 6 5.83 0.97   

Total 11 26 32   

 

In case of variety, calculated value of F is greater than the tabulated value at F at 5% 

level of significance, so we reject the null hypothesis and conclude that the treatment effect is 

significant, while for blocks, it is not significant. For pairwise testing, we have to find the 

standard error of difference of two treatment means: 

2MSSE 2x0.97
SE 0.80

q 3
   

Critical Difference (CD) = SE x / 2t  at error df 

   = 0.80x2.447=1.96 

Treatment means are  

30
A 7.5,

4
    

37
B 9.25

4
    

41
C 10.25

4
   

Pair of Treatments Difference CD Inference 

A,B A B 1.76   1.96 Insignificant 

A,C A C 2.75   1.96 Significant 

B,C B C 1.00   1.96 Insignificant 
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Example 5: For the given data the yield of the treatment C in 2nd block is missing.  

 Estimate the missing value and analyse the data: 

Blocks 

Treatments 

A B C D 

I 105 114 108 109 

II 112 113 Y 112 

III 106 114 105 109 

We have p=3, q=4, B3 = 213, T2 =337, G=1207 and the value of  

ŷ =109  

Therefore,  

Correction Factor = 144321.33 

Raw Sum of Squares = 144442.00 

Total Sum of Squares = 120.64 

Treatment Sum of Squares = 76.67 

Block Sum of Squares =20.67 

Error Sum of Squares =23.33 

ANOVA TABLE 

Source of 
Variation 

DF SS MSS 
Variance Ratio 

Calculated Tabulated 

Treatments  3- 1=2 20.67 10.33 2.21 5.79 

Blocks 4- = 3 76.67 25.55 5.48 5.41 

Error 6- 1=3 23.33 4.66   

Total 11- 1=10 120.67 32   
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In the above experiment, we are interested only treatments, so multiple comparison test will 

be applied for different treatments.  

2MSSE 2x4.66
SE 1.76

q 3
   

/ 2CD SExt at error df  

1.76 x2.447 4.31   

Treatment means are  

323
A 107.67,

3
   

341
B 113.67,

3
   

322
C 107.33,

3
   

330
D 110,

3
 

 

Pair of Treatments Difference CD Inference 

A,B A B 6.0   4.31 Significant 

A,D A C 0.3   4.31 Insignificant 

A,C A D 2.3   4.31 Insignificant 

B,C B C 6.3   4.31 Significant 

B,D B D 3.7   4.31 Insignificant 

C,D C D 2.7   4.31 Insignificant 

 

13.7.  SELF-ASSESSMENT QUESTIONS: 

1) Explain Layout of Completely Randomized Design 

2) Explain the Statistical Analysis of Completely Randomized Block Design 

3) Explain the Least Square Estimates of Effects of RBD 
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4) Missing Plots Technique in RBD 

5) Explain the Suitability of RBD 

 

13.8. SUGGESTED READINGS: 

1) Montgomery, D.C. (2017). Design and Analysis of Experiments (9th ed.). Wiley. 

2) Fisher, R.A. (1925). Statistical Methods for Research Workers. Oliver & Boyd. 

3) Gupta, S.C., & Kapoor, V.K. (2014). Fundamentals of Applied Statistics. Sultan 
Chand & Sons. 

 

Dr. B. Hari Mallikarjuna Reddy 



LESSON-14 

LATIN SQUARE DESIGN 
 

14.0. OBJECTIVES: 

After studying this unit, you would be able to  

 Explain the latin square design;  

 Describe the layout of LSD;  

 Explain the statistical analysis of LSD;  

 Find out the missing plot in LSD; and  

 Explain the advantages and disadvantages of LSD.  

 

STRUCTURE: 

14.1     Introduction 

14.2     Layout of Latin Square Design (LSD) 

14.3     Statistical Analysis of LSD 

14.4     Missing Plots Technique in LSD 

14.4.1. One Missing Plot 

14.5     Suitability of LSD 

14.6     Summary 

14.7     SELF-ASSESSMENT QUESTIONS 

14.8     SUGGESTED READINGS 

 

 

14.1   INTRODUCTION 

We know that RBD is used when experimental material is heterogeneous with respect 
to one factor and this factor of variation is eliminated by grouping the experimental material 
into a number of homogeneous groups called blocks. This grouping can be carried one step 
forward and we can group the units in two ways, each way corresponding to a source of 
variation among the units, and get the LSD. In agricultural experiments generally, fertility 
gradient is not always known and, in such situations, LSD is used with advantage. Then LS 
Deliminates the initial variability among the units in two orthogonal directions.  

The Latin Square design represents, in some sense, the simplest form of a row- 
column design. It is used for comparing m treatments in m rows and m columns, where rows 
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and columns represent the two blocking factors. Latin squares and their combinatorial 
properties have been attributed to Euler (1782). They were proposed as experimental designs 
by Fisher (1925, 1926), although De Palluel (l788) already utilized the idea of a 4x4 latin 
square design for an agricultural experiment (see Street and Street, 1987, 1988).  

 

14.2. LAYOUT OF LATIN SQUARE DESIGN (LSD): 

Mathematically speaking, the latin square of order m is an arrangement of m latin 
letters in a square of m rows and m columns such that every latin letter occurs once in each 
row and once in each column, or more generally, the arrangement of m symbols in a m x m 
array such that each symbol occurs exactly once in each row and column. In the context of 
experimental design, the latin letters are the treatments. Latin squares exist for every m. A 
reduced latin square (or latin square in standard form) is one in which the first row and the 
first column are arranged in alphabetical order, for example, for m = 3, 

A B C  

B C A  

C A B 

This is the only reduced latin square. The number of squares that can be generated 
from a reduced latin square by permutation of the rows, columns, and letters is (m!). These 
are not necessarily all different. If all rows but the first and all columns are permuted, we 
generate m! (m − l)! different squares. From the reduced latin square of order 3 we can thus 
generate 3!x(3-1)!-12squares. 

In LSD two restrictions are imposed by forming blocks in two orthogonal directions, 
row-wise and column-wise. Further in LSD the number of treatments equals the number of 
replications of the treatment. Let there are m treatments and each is replicated m times then 
the total number of experimental units needed for the designs are m x m. These m2 units are 
arranged in m rows and m columns. Then m treatments are allotted to these m2 units at 
random subject to the condition that each treatment occurs once and only once in each row 
and in each column. 

Selected Latin Squares: 

3x3 4x4    

 1 2 3 4 

ABC 

BCA 

CAB 

ABCD 

BADC 

CDBA 

DCAB 

ABCD 

BCDA 

CDAB 

DABC 

ABCD 

BDAC 

CADB 

DCBA 

ABCD 

BADC 

CDAB 

DCBA 
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5x5 6x6 7x7 

ABCDE 

BAECD  

CDAEB  

DEBAC 

ECDBA 

ABCDEF 

BFDCAE 

CDEFBA 

DAFECB 

ECABFD 

FEBADC 

ABCDEFG 

BCDEFGA 

CDEFGAB 

DEFGABC 

EFGABCD 

FGABCDE 

GABCDEF 

 

For randomization purpose two-way heterogeneity is eliminated by means of rows 
and columns and a latin square of order m x mis picked up from the table of Fisher and Yates. 
After picking the latin square its rows and columns are randomised by the help of random 
numbers and this randomized square is superimposed on the arranged square.  

 

14.3. STATISTICAL ANALYSIS OF LSD: 

Let yijk (i, j, k = 1, 2, …, m) denote the response from unit (plot in the filed 
experimentation) in the ith row, jth column and receiving the kth treatment. The triple (i, j, k) 
assumes only m2 of the possible m3 values of an LSD selected by the experiment. If S 
represents the set of m2 values, then symbolically (i, j, k) belongs to S. If a single observation 
is made per experimental unit, then the linear additive model is: 

yijk = µ + i + βj + τk + eijk; (i, j, k)  S 

 

where, µ is the general mean effect, i, βj and τk are the constants effects due to the ith row, jth 

column and kth treatment respectively and eijk is the error effect due to random component 

assumed to be normally distributed with mean zero and variance 2
e  i.e. eijk follows 

(i.i.d.)  2
eN 0, . 

If we write that  

G = y = Grand total of all the m2observations.  

Ri= y = Total form observations in the ith row.  

Cj= yj = Total of the m observations in the jth column.  
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Tk= y.. = Total of the m observations in the kth treatment.  

Then heuristically, we get  

       2

ijk i.. ... . j. ... ..k ...
i j k i j k

y y... y y y y y y         

 i, j, k S     2

ijk i.. . j. ..k ...y y y y 2y        

     22 2

i.. ... . j. ... ..k ...
i j k

m y y m y y m y y         

   2

ijk i.. . j. ..k
i j k

y y y y 2y...      

The product terms vanish since the algebraic sum of deviations from mean is zero. Thus 

TSS = SSR + SSC + SST + SSE 

Where TSS is the total sum of squares and SSR, SSC, SST and SSE are sum of squares due 

to rows, columns, treatments and due to error respectively given by  

TSS  2

ijk ..
i, j,k S

y y . ;


   

SSR    2 2
i... ... R

i

m y y S say    

 SSC  2 2
. j. ... C

J

m y y S    

  2 2
..k ... T

k

m y y S    

and SSE = SE
2   = TSS – SSR – SSC – SST 

Hence, the Total sum of squares is partitioned into three sums of squares, whose degree of 

freedom add to the degree of freedom of TSS. 
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ANOVA Table for LSD: 

Source of 
variation 

DF SS MSS 
Variance  
Ratio (F) 

Treatments m-1 2
TS   2

TMSST S / m 1   
T

MSST
F

MSSE
  

Columns  m-1 2
CS   2

CMSSC S / m 1   
C

MSSC
F

MSSE
  

Rows  m-1 2
RS   2

RMSSR S / m 1   
R

MSSR
F

MSSE
  

Error (m-1)(m-2) 2
ES    2

EMSSE S / m 1 m 2     

Total  m2-1    

 

Under the null hypothesis, 

For row effects                  H0α: 1 = 2 = …. = m = 0 

For column effects            H0β:  β1 = β2 = …. = βm = 0 and 

For treatment effects         H0τ:  τ1 = τ2 = ….  = τm = 0 

against the alternative that all ’s, β’s and τ’s are not equal, the test statistics FT, Fc, FR follow 

F distribution with [(m – 1), (m – 1) (m – 2)] df, under the above null hypothesis. 

Thus, Fα = Fα [(m– 1), (m– 1) (m– 2)] be the tabulated value of F distribution with [(m– 1), 

(m– 1) (m– 2)] df at the level of significance α. Thus, if FR>Fα we reject the null hypothesis 

H0α, otherwise accept the null hypothesis. Similarly, we can test for H0β and H0τ. 

 

Remark 1: Efficiency of LSD over RBD: 

There may be two cases to judge the relative efficiency of LSD over RBD: 

1) Relative efficiency of LSD over RBD, when rows are taken as blocks is 

 MSSC+ m-1 MSSE
= 

m x MSSE
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2) Relative efficiency of LSD over RBD, when columns are taken as blocks is 

 MSSR+ m-1 MSSE
= 

m x MSSE
 

Remark 2: Efficiency of LSD over CRD 

Relative efficiency of LSD over CRD is given by 

 
 

MSSR+MSSE+ m-1 MSSE
= 

m 1 MSSE
 

Example 1: The example of petrol consumption by different makes of cars for illustrating 
randomised block designs has been converted to one with 5 makes of cars to illustrate latin 
square design. The effects of day and driver on consumption rate have been eliminated in 
addition to the effect of speed by suitable modification of the experimental situation. For this 
purpose, 5 drivers were chosen and each driver was used on one of 5 days. On that day, he 
drove5 cars each of different make and each car with a different speed. The arrangement of 
the drivers, speeds and makes was as in the following table: 

 
Speeds in Miles Per Hour 

25 35 50 60 70 

D
ri

ve
rs

 a
n

d
 D

ay
s 

D1 B(19.5) E(21.7) A(18.1) D(14.8) C(13.7) 

D2 D(16.2) B(19.0) C(16.3) A(17.9) E(17.5) 

D3 A(20.6) D(16.5) E(19.5) C(15.2) B(14.1) 

D4 E(22.5) C(18.5) D(15.7) B(16.7) A(16.0) 

D5 C(20.5) A(19.5) B(15.6) E(18.7) D(12.7) 

 

Solution:  

Here, Di (i = 1, 2, 3, 4, 5) denotes the ith driver driving in the ith day. A, B, C, D and E 
denote the 5 Makes of the cars. In the first cell of the table indicates that a car of Make B was 
driven by D1 on this day with a speed of 25 miles per hour. The alphabets in the other cells 
have similar meaning. The number of miles covered by a gallon of petrol is shown in bracket 
in each cell. 

The design adopted is actually a latin square design with the makes of cars as 
treatments and the drivers and speeds are the two controlled factors representing rows and 
columns. The observations of the miles per hour have been analysed below as appropriate for 
the design. 
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Correction Factor = 7638.76 

Sum of Squares due to Speeds = 7719.49 –7638.76 = 80.73 

Sum of Squares due to Drivers = 7640.12 – 7638.76 = 1.36 

Sum of Squares due to Makes = 7704.18 – 7638.76 = 65.42 

Total Sum of Squares = 7792.70 – 7638.76 = 153.94                                                                                      

Error Sum of Squares = 153.94 – 80.73 – 1.36 – 65.42 = 6.43 

 

ANALYSIS OF VARIANCE TABLE 

Sources of 
Variation 

DF SS MS 
F 

Calculated 
F 

Tabulated 

Speeds 4 8073 20.18 37.37** 3.26 

Drivers 4 1.36 0.34 0.63  

Makes 4 65.42 16.35 30.28**  

Error  12 6.43 0.54   

Total  24 153.94    

** highly significant 

 

Mean numbers of miles per gallon for the different makes arranged in order 

E  A  B  C  D  

19.98 18.42 16.98 16.84 15.18 

 

2xMSSE 2x0.54
SE 0.33

5 5
    

 CD at 1 per cent = 3.055 x 0.33 = 1.42 

The initial difference indicates that the Make E is significantly better than all the other 

Makes. Make A was better than B, C and D. Finally, D is the worst. 
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Efficiency of Latin square  

4x0.34+0.54x16 34 0.54x4
E (Drivers) = 0.93

20x0.54 5x0.54


   

 
4x20.18+0.54x16 20.18 0.54x4

E (Speeds) = 8.27
20x0.54 5x0.54


   

The efficiency figures show that elimination of speed variation increased precision 

considerably while elimination of driver variation did not reduce error variance. 

 

14.4. MISSING PLOTS TECHNIQUE IN LSD: 

As we have discussed in Section 10.4 of Unit 10, sometimes observations from one or 
more experimental units are not found (missing) due to some unavoidable causes. There may 
be some unforeseen causes for example in agricultural experiments damage by animal or 
pets, in animal experiment any animal may die or observations from one or more plot is 
excessively large as compared to other plots and thus accuracy of such observation is often in 
doubt. In such situations, these observations are omitted and treated as missing. 

In case of missing observations, analysis is done by estimating the missing 
observation. This type of analysis was given by Yates (1937) and it is known as missing plot 
technique. As similar as in the RBD, we are now going to discuss the same in LSD in the 
following sub-section: 

 

14.4.1. One Missing Plot: 

Suppose without loss of generality that in m x m latin square design the observation 
occurring in the first row, first column and receiving first treatment is missing. Let us assume 
that y111=Y 

R'1 = Total of all available (m – 1) observations in 1strow.  

C'1 = Total of all available (m – 1) observations in 1stcolumn.  

T'1 = Total of all available (m – 1) observations receiving 1st treatment  

G' = Total of all available (m2 − 1) observations. 

On the basis of these totals we calculate different sum of squares as follows: 

Sum of Squares for Rows (SSR) =
   

m2' 2 2'1 i
1i 2

2

R Y R R Y

m m


  



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Sum of Squares for Columns (SSC) = 
   

m2' 2 2'1 j
j 2

2

C Y C
G Y

m m


  



 

Sum of Squares for Treatments (SST) =
   

m2 2 2'1 K
k 2

2

T Y T G Y

m m


  



 

Total Sum of Squares (TSS) = 
 2

2 2
ijk 2

i j k

G ' Y
y Y

m


   

   i, j, k 1,1,1  

Sum of Squares due to Error (SSE) = TSS – SSR – SSC – SST 

   2 2

12
2

2 G 'Y 2 R ' Y
SSE Y

m m
    

   2 2' '
1 1C Y T Y

m m

 
  Terms not involving Y 

For obtaining the value of Y, we minimize the sum of squares due to error with respect to Y. 

This is obtained by solving the equation 

 
         ' ' '

1 1 1

2

2 R Y 2 C Y 2 T YSSE 4 G ' Y
2Y 0

Y m m m m

   
     


 

 
' ' ' '
1 1 1

2 2

2Y Y Y Y R C T 2G
Y

m m m m m m m m
          

 
   2 ' ' '

1 1 1

2 2

Y m 2 3m m R C T 2G '

m m

    
   

 
 
  

' ' '
1 1 1m R C T 2G '

Ŷ
m 1 m 2

  


 
 

Ŷ  is the least square estimate of the yield of the missing plot. The value of Y is inserted in 
the original table of yield and ANOVA is performed in the usual way except that for each 
missing observation 1 df is subtracted from total and consequently from error df. 
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Example 2:  

In the following data, one value is missing. Estimate this value and analyse the given data. 

Column 

Row 
I II III IV 

Row Totals 
(R1) 

I 
A 

12 

C 

19 

B 

10 

D 

8 
49 

II 
C 

18 

B 

12 

D 

6 

A 

7 
43 

III 
B 

22 

D 

Y 

A 

5 

C 

21 
48+Y 

IV 
D 

12 

A 

7 

C 

27 

B 

17 
63 

Column 
Totals (Cj) 

64 38+Y 48 53 203+Y 

 

Solution:  Here ' ' ' '
3 2 4m 4, R 48,C 38, T 26, G 203      

Applying the missing estimation formula  

 
  

' ' '
3 2 4m R C T 2G '

Ŷ
m 1 m 2

  


 
 

 
  

4 48 38 26 2x203
x7

4 1 4 2

  


 
 

Inserting the estimated value of Y, we get the following observations: 
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Column 

Row 
I II III IV 

Row Totals 
(R1) 

I 
A 

12 

C 

19 

B 

10 

D 

8 
49 

II 
C 

18 

B 

12 

D 

6 

A 

7 
43 

III 
B 

22 

D 

Y 

A 

5 

C 

21 
48+Y 

IV 
D 

12 

A 

7 

C 

27 

B 

17 
63 

Column 
Totals (Cj) 

64 45 48 53 203 

 

Correction Factor (CF) =
 2
210 44100

2756.25
16 16

   

Raw Sum of Squares (RSS) = (12)2+(18)2+ ... + (21)2+ (17)2 = 3432 

Total Sum of Squares (TSS) = 3432– 2756.25 = 675.75 

Row Sum of Squares (SSR) 
       2 2 2 2
49 43 55 63

CF
4

  
   

    
2401 1849 3025 3969

2756.25 54.75
4

  
    

Column Sum of Squares (SSC)
       2 2 2 2
64 45 48 53

CF
4

  
   

    
4096 2025 2304 2809

2756.25 52.25
4

  
     
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Treatment Sum of Squares (TSS) 
       2 2 2 2
31 61 85 33

CF
4

  
   

    
961 3421 7225 1089

2756.25 417.75
4

  
     

Error Sum of Squares (SSE) = TSS– SSR – SSC – SST 

=675.75–54.75–52.25–417.75=151                                            

 

ANOVA TABLE 

Source of 
Variation 

DF SS MSS 

Variance Ratio 

Conclusion 

Calculated Tabulated 

Rows 4– 1=3  54.75 18.25 0.60 5.41 Insignificant 

Columns 4– 1=3  52.25 17.42 0.58 5.41 Insignificant 

Treatments 4– 1=3  417.75 139.25 4.61 5.41 Insignificant 

Error 6– 1=5 151 30.20    

Total 15– 1 =14      

 

14.5. SUITABILITY OF LSD: 

The latin square design is used when the experimental material is heterogeneous with 

respect to two factors and this two-way heterogeneity is eliminated by means of rows and 

columns. In fact, LSD can be applied to all those cases where either the variation in the 

experimental material is not known or is known in two mutually perpendicular directions. 

Thus, LSD is successfully used in industry, animal husbandry, biological and social sciences, 

piggeries, marketing, medical and educational fields, where it is desired to eliminate the two-

factor heterogeneity simultaneously. 
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Advantages and Disadvantages of LSD: 

Advantages of LSD: 

1) Since total variation is divided into three parts namely rows, columns and treatments, 
the error variance is reduced considerably. It happens due to the fact that rows and 
columns being perpendicular to each other, eliminates the two-way heterogeneity up 
to a maximum extent. 

2) LSD is an incomplete three-way layout. Its advantage over the complete three-way 
layout is that instead of m3 units only m2 units are needed. Thus, a 4x4 LSD results in 
saving 64 – 16 = 48 observations over a complete three-way layout. 

3) The analysis creates no problem even if a missing observation exists. 

 

Disadvantages of LSD: 

1) The fundamental assumption that there is no interaction between different factors may 
not be true in general. 

2) The main limitation of LSD is the equality of number of rows to that of columns and 
treatments. If the layout of experimental material is not of square design then LSD 
cannot be used. 

3) RBD can be accommodated in any shape of field whereas for LSD field should 
perfectly be a square. 

4) For smaller number of treatments, say less than 5, the degree of freedom for error is 
very small and thus the results are not reliable. Even in case of2x2 LSD, degree of 
freedom for error becomes zero. In such situations,either the number of treatments 
should be increased or the latin square should be repeated. 

5) On the other side, if the number of treatments increases the size of latin squares 
increases and this causes a disturbance in heterogeneit y. 

6) Analysis of LSD becomes very much complicated if complete row or complete 
column is missing. Analysis of RBD is quite easy in such situations. 

 

14.6. SUMMARY: 

In this Unit, we have discussed: 

1) The Latin Square design; 

2) The layout of LSD; 

3) The method of statistical analysis of LSD; 

4) The missing plots technique in LSD; and 

5) The advantages and disadvantages of LSD. 
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Example 3:   Carry out ANOVA for the following design: 

A 

5 

B 

7 

C 

7 

D 

8 

E 

9 

B 

7 

C 

9 

D 

8 

E 

8 

A 

5 

C 

6 

D 

5 

E 

9 

A 

8 

B 

9 

D 

5 

E 

6 

A 

8 

B 

5 

C 

7 

E 

8 

A 

9 

B 

5 

C 

7 

D 

6 

 

The analysis of the given design is done by the method of analysis of variance. The 

computation results are given as follows: 

Correction factor (CF) = 1239.04 

Raw Sum of Squares  = 1292 

Total Sum of Squares  = 52.92 

Column Sum of Squares = 4.56 

Row Sum of Squares  = 4.96 

Treatment Sum of Squares     =    7.76 

Error Sum of Squares             =    35.68 
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ANALYSIS OF VARIANCE TABLE 

Sources of Variation DF SS MSS F 

Rows 4 4.96 1.24 0.42 

Columns 4 4.56 1.14 0.38 

Treatment 4 7.76 1.94 0.65 

Error 12 35.68 2.97  

Total 24 52.96   

 

Tabulated value of F (4, 12) = 3.26 

Since the calculated value of F is much less than the tabulated value of F at 5% level of 
significance, we conclude that there is no significant difference between treatment means. 

 

Example 4:  Let the missing value is Y then we have 

Column 

Row 
I II III IV 

Row Totals 
(Ri) 

I 
A 

8 

C 

18 

B 

11 

D 

8 
45 

II 
C 

16 

B 

10 

D 

7 
A Y 33+Y 

III 
B 

12 

D 

10 

A 

6 

C 

20 
48 

IV 
D 

10 

A 

9 

C 

28 

B 

16 
63 

Column 

Totals (Cj) 
46 47 52 44+Y 189+Y 
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Here, ' ' '
2 4 1m 4, R 33,C 44,T 23, G ' 189      

Applying the missing estimation formula 

 
  

' ' '
3 2 4m R C T 2G '

Ŷ
m 1 m 2

  


 
 

 
  

4 33 44 23 2x189
3.66 ~ 4

4 1 4 2

  
 

 
 

Inserting the estimated value of Y, we get the following observations: 

Column 

Row 
I II III IV Row Totals (Ri) 

I 
A 

8 

C 

18 

B 

11 

D 

8 
45 

II 
C 

16 

B 

10 

D 

7 

A 

4 
37 

III 
B 

12 

D 

10 

A 

6 

C 

20 
48 

IV 
D 

10 

A 

9 

C 

28 

B 

16 
63 

Column Totals (Cj) 46 47 52 48 193 

 

Correction Factor (CF) =
 2
193

2328.06
16

  

Raw Sum of Squares (RSS) = = (8)2 x (16)2 x ... x (20)2 x (16)2= 2895  

Total Sum of Squares (TSS) = = 2895 – 2328.06 = 566.94 

Row Sum of Squares (SSR) 
       2 2 2 2
45 37 48 63

CF
4

  
   
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2025 1369 2304 3959

2328.06 88.69
4

  
    

Column Sum of Squares (SSC)
       2 2 2 2
46 47 52 48

CF
4

  
   

    
2116 2209 2704 2304

2328.06 5.19
4

  
     

Treatment Sum of Squares (SST) 
       2 2 2 2
27 49 82 35

CF
4

  
   

    
729 2401 6724 1225

2328.06 441.69
4

  
     

Error Sum of Squares (SSE) = TSS– SSR – SSC – SST 

= 566.94 – 88.69 – 5.19 – 441.69 = 31.37 

 

ANOVA TABLE 

Source of Variation DF SS MSS 

Variance Ratio 

Conclusion 

Calculated Tabulated 

Columns 4−1=3 5.19 1.73 0.28 5.41 Insignificant 

Treatments 4−1=3 441.69 147.23 23.48 5.41 Significant 

Error 6−1=5 31.37 6.27 

   

Total 15−1=14 

     

 

Since for treatment effect calculated value of F is greater than the tabulated value of F at 5% 

level of significance, so we conclude that the treatment effect is significant. For pairwise 

testing, find the standard error of difference of two treatment means. 
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2MSSE 2x6.27
SE 1.77

m 4
    

Critical difference (CD) = / 2SE x t  at error df 

= 1.77 x 2.571 = 4.55 

Treatment means 

27 49 82 35
A 6.75, B 12.25, C 20.5& D 8.75

4 4 4 4
         

 

Pair of Treatments Difference CD Inference 

A, B A B 05.50 4.55 Significant 

A, C A C 13.75 4.55 Significant 

A, D A D  02.00 4.55 Insignificant 

B, C B C 08.25 4.55 Significant 

B, D B D  03.50 4.55 Insignificant 

C, D C D  11.75 4.55 Insignificant 

 

14.7.     SELF-ASSESSMENT QUESTIONS: 

1) Explain Layout of Latin Square Design 

2) Explain the Statistical Analysis of Latin Square Design 

3) Explain the Least Square Estimates of Effects of LSD 

4) Missing Plots Technique in LSD  

5) Explain the Suitability of LSD 



Theory of Linear Estimation & Analysis…       14.19                                Latin Square Design 

 
 

14.8.     SUGGESTED READINGS: 

1) Montgomery, D.C. (2017). Design and Analysis of Experiments (9th ed.). Wiley. 

2) Fisher, R.A. (1925). Statistical Methods for Research Workers. Oliver & Boyd. 

3) Gupta, S.C., & Kapoor, V.K. (2014). Fundamentals of Applied Statistics. Sultan 
Chand & Sons. 

 

 

Dr. B. Hari Mallikarjuna Reddy 



LESSON-15 

TEST OF NORMALITY 
 

15.0. OBJECTIVES: 

After completing this unit, you should be able to: 

 Understand the importance of the normality assumption in linear models and 
ANOVA. 

 Explain the theoretical basis of normality in residuals. 

 Apply graphical and numerical tests for normality. 

 Interpret the results of Shapiro–Wilk, Kolmogorov–Smirnov, Anderson–
Darling, and Chi-square tests. 

 Recognize limitations and practical considerations in testing normality. 
 

STRUCTURE: 

15.1 Introduction 

15.2 Role of Normality in Linear Models and ANOVA 

15.3 Consequences of Non-Normality 

15.4 Graphical Methods for Checking Normality 

15.5 Statistical Tests for Normality  

15.5.1. Shapiro - Wilk Test 

15.5.2. Kolmogorov - Smirnov Test 

15.5.3. Anderson - Darling Test 

15.5.4. Chi-Square Goodness-of-Fit Test 

15.6 Limitations of Normality Tests  

15.7 Summary 

15.8 Self-Assessment Questions 

15.9  Suggested readings 

 

15.1. INTRODUCTION:  

Statistical models such as linear regression and Analysis of Variance (ANOVA) rely 
on certain assumptions. One of the most fundamental assumptions is that the error terms 
(residuals) follow a normal distribution with mean zero and constant variance. This 
assumption simplifies inference because many test statistics (t, F, χ²) are derived under 
normality. Normality refers to the condition where a dataset follows a Normal Distribution 
(also called the Gaussian distribution or bell curve). The normal distribution is symmetrical, 
with most of the data clustered around the mean and tapering off equally on both sides. 
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It is Fully Described by Two Parameters: 

 Mean (µ) → the central tendency 

 Variance (σ²) → the spread of data 
 

Normality Ensures: 

 Reliable estimation of parameters. 

 Valid hypothesis testing. 

 Correct confidence intervals. 

 Without normality, results may be misleading, especially in small samples. 

 

15.2. ROLE OF NORMALITY IN LINEAR MODELS AND ANOVA: 

 In ANOVA, the F-statistic assumes residuals are normally distributed. 

 In linear regression, least squares estimate remain unbiased without normality, but 
t-tests and F-tests may be invalid. 

 The Central Limit Theorem (CLT) suggests that with large samples, normality is 
less critical; but with small or moderate samples, normality should be checked. 

 

Testing Normality is Important because: 

1. Statistical Assumptions 

o Many parametric tests (t-test, ANOVA, regression) assume that the data (or 
residuals) follow a normal distribution. 

o If the assumption is violated, results may be misleading. 

2. Model Adequacy Checking 

o In regression and ANOVA, residuals should be normally distributed. 

o Non-normality may suggest model misspecification. 

3. Practical Decision Making 

o Helps decide whether to use parametric methods (require normality) or non-
parametric methods (do not assume normality). 

 

15.3. CONSEQUENCES OF NON-NORMALITY: 

Type I error inflation – p-values may be inaccurate. 

Loss of power – tests may fail to detect significant differences. 

Biased parameter estimates when distributions are skewed or have outliers. 
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Heteroscedasticity Can Worsen Violations – unequal variances across groups make 
normality departures more problematic. 

Outliers Strongly Affect Normality Tests – even a single extreme value can cause the test 
to reject normality. 

Tests Rely on the Assumption of Continuous Data – discretized or rounded data can lead 
to misleading conclusions. 

 

15.4. GRAPHICAL METHODS FOR CHECKING NORMALITY: 

These give a visual check of distribution: 

 Histogram: Compare shape to bell curve. 

 Boxplot: Detect skewness and outliers. 

 Q-Q Plot (Quantile-Quantile Plot): If points lie close to a straight diagonal line, data is 
approximately normal. 

 P-P Plot (Probability-Probability Plot): Compares cumulative probabilities. 

 Histogram of Residuals – should resemble bell-shaped curve if normal. 

 

 

Figure 15.1: Histogram of Normally Distributed Residuals 
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Figure 15.2: Histogram of Skewed Residuals 

 

Box Plot – Detects Skewness and Outliers 

 

 

Figure 15.3: Boxplot Comparison (Normal vs Skewed) 

 

Q-Q Plot (Quantile–Quantile Plot) – Observed Quantiles vs Theoretical Quantiles; should lie 
on 45° line. 
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Figure 15.4: Q-Q Plot for Normal Data 

 

 

Figure 15.5: Q-Q Plot for Skewed Data 

P-P Plot (Probability–Probability Plot) – Plots Cumulative Probabilities. 
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Figure 15.6: P-P Plot for Normal Data 

 

15.5. STATISTICAL TESTS FOR NORMALITY: 

15.5.1. Shapiro–Wilk Test: 

 The Shapiro–Wilk test is a statistical test for normality. 

 It checks whether a sample comes from a normally distributed population. 

 First proposed by Shapiro and Wilk (1965). 

 It is one of the most powerful and widely used normality tests, especially for small 
to medium sample sizes. 

 

Hypotheses: 

 Null Hypothesis (H₀): The data are normally distributed. 

 Alternative Hypothesis (H₁): The data are not normally distributed. 

Statistic (W): The test calculates a statistic W defined as: 

 

Where,  

 = the ordered sample values (from smallest to largest). 
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= Sample Mean 

= constants derived from the covariance matrix of the order statistics of a normal 

distribution. 

W ranges between 0 and 1. Values closer to 1 indicate stronger normality. 

Decision Rule: 

 A p-value is computed from W. 

 If p > 0.05 → Fail to reject H₀ → Data is approximately normal. 

 If p < 0.05 → Reject H₀ → Data significantly deviates from normality. 

Data (exam scores): 52, 55, 60, 62, 64, 65, 66, 68, 70, 72 

We test 

 H₀: data are from a normal distribution 

 H₁: data are not from a normal distribution 

 

Step 1: Order the sample:  

 

 

 

 

Step 2: Compute the sample mean and the total sum of squares 

 

 

This SS is the denominator of Shapiro–Wilk’s W. 

 

Step 3: Get the Shapiro–Wilk weights  

The test forms a symmetric, weighted contrast of the order statistics: 
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he weights   are functions of the expected normal 

order statistics and their covariance matrix; in practice they are looked up from published 

tables or computed by software, not hand-derived. 

For n=10, we use software (equivalent to table values) to obtain the  and compute b. 

Step 4: Compute the Shapiro–Wilk statistic 

 

 

Using standard software for this dataset: 

 W=0.9603 

 p = 0.7890 

(These reflect the exact  and the Monte-Carlo–based p-value approximation used by 

modern implementations.) 

 

 

15.5.2. Kolmogorov–Smirnov Test: 

The K-S test is a non-parametric test used to check whether: 

1) A sample comes from a specified distribution (e.g., normal distribution) → One-
sample K-S test. 

2) Two samples come from the same distribution → Two-sample K-S test. 

It compares the empirical distribution function (EDF) of the sample with the theoretical CDF 

(one-sample) or compares the EDFs of two samples (two-sample). 

Test Statistic (D): 

 

1) One-Sample K-S Test Numerical Example 

Problem: We have a sample of n = 8 observations: 2,4,6,8,10,12,14,16  

We want to test if the data comes from a Uniform (0, 20) distribution at the 5% level of 

significance. 
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Step 1: Order the data Already ordered: 2,4,6,8,10,12,14,16 

Step 2: Compute ECDF    

   
2 

  
4 

  
6 

  
8 

  
10 

  
12 

  
14 

  
16 

  
 

Step 3: Theoretical CDF F(x) 

For Uniform (0,20):  
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We calculate  

  

    

2    

4  0.20 0.050 

6 0.375 0.30 0.075 

8 0.500 0.40 0.100 

10 0.625 0.50 0.125 

12 0.750 0.60 0.150 

14 0.875 0.70 0.175 

16 1.000 0.80 0.200 

 

 

 

Step 5: Critical Value 

 

 

We fail to reject  

Conclusion: The sample is consistent with a Uniform (0,20) distribution. 

 

15.5.3. Anderson–Darling Test: 

 

Example: Residuals gave A² = 0.48 < critical 0.75 ⇒ Normal. 
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15.5.4. Chi-Square Goodness-of-Fit Test: 

The Chi-Square (χ²) Test is a statistical hypothesis test that compares observed data 
with expected data according to some assumption. It helps us check whether differences 
between observed and expected values are due to chance or statistically significant. 

 

Types of Chi-Square Tests: 

There are mainly two types: 

1. Chi-Square Goodness-of-Fit Test 

o Checks if a sample data fits a particular theoretical distribution. 

o Example: Testing if a die is fair (uniform distribution). 

2. Chi-Square Test of Independence 

o Checks if two categorical variables are independent. 

o Example: Testing if gender is related to preference for a product. 

Test Statistic Formula 

The general form of the chi-square statistic is: 

 

Where: 

  

  Expected frequency 

 The sum is taken over all categories/cells 

Degrees of Freedom (df) 

  

(where k = number of categories, m = parameters estimated) 

  
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Decision Rule 

    

 

 

 

ASSUMPTIONS: 

1. Independence of Observations: 

 The data points must be independent; correlation or repeated measurements violate 
this assumption. 

2. Continuous Scale of Measurement: 

 Normality tests assume data are measured on a continuous scale, not categorical or 
overly discretized. 

3. Random Sampling 

 The sample should be randomly drawn from the population to ensure valid inference. 

4.   No Extreme Outliers 

 Many normality tests (especially Shapiro–Wilk) are highly sensitive to outliers, which 
can distort results. 

5.  Underlying Distribution must be Fully Specified 

 Tests like Kolmogorov–Smirnov require that the expected distribution (e.g., N (μ, σ²)) 
is known. 

6.  Sufficient Sample Size 

 Very small samples may fail to detect non-normality; very large samples may detect 
trivial deviations. 

7.  Residual-Based Testing in Models 

 In ANOVA or regression, normality should be checked on residuals, not raw data. 

 

15.6. LIMITATIONS OF NORMALITY TESTS: 

 Large samples may reject normality for trivial deviations. 

 Small samples may fail to detect non-normality. 

 Always combine graphical + statistical methods. 

 Apply transformations (log, square root, Box-Cox). 

 Different tests have different sensitivities (e.g., Shapiro-Wilk detects tail issues 
better than Kolmogorov-Smirnov). 
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 Tests assume independent observations; correlated data (time series, repeated 
measures) can give misleading results. 

 Non-normality of the data vs. non-normality of residuals is often confused-
tests should be applied to residuals in regression/ANOVA, not to raw data. 

 

15.7. SUMMARY: 

Normality is one of the fundamental assumptions underlying ANOVA and linear 
regression, because these methods rely on the idea that the errors (residuals) of the model 
follow a normal distribution. When this assumption holds, the resulting test statistics (such as 
the F-statistic and t-statistic) follow their theoretical distributions, which ensures that p-
values, confidence intervals, and hypothesis tests are valid and reliable. If the residuals 
deviate significantly from normality, the Type I error rate may increase, estimates may 
become biased, and conclusions drawn from the model may be misleading. Therefore, 
assessing normality is an essential diagnostic step before interpreting ANOVA or regression 
results. 

To evaluate normality, both graphical and statistical methods should be applied 
because each provides complementary information. Graphical tools-such as histograms,  
Q-Q plots, boxplots, and residual plots-help visualize the shape, symmetry, skewness, and 
presence of outliers. Statistical tests, such as Shapiro–Wilk, Kolmogorov–Smirnov, 
Anderson–Darling, and Jarque-Bera, provide quantitative evidence about deviations from 
normality. Among these, the Shapiro–Wilk test is widely recommended, especially for small 
to medium sample sizes (n < 50 or n < 200), because it has high power in detecting non-
normal patterns. 

Normality tests should not be viewed as rigid pass–fail tools; instead, they guide the 
analyst in evaluating whether the assumptions behind ANOVA and regression are sufficiently 
met for valid inference. Even if slight departures from normality are detected, ANOVA and 
regression are generally robust-particularly with larger sample sizes-due to the Central Limit 
Theorem. However, severe deviations may require corrective actions, such as transforming 
the data (log, square-root, Box–Cox), using non-parametric alternatives, or applying robust 
statistical methods. Thus, normality assessment plays a crucial role in ensuring the accuracy, 
reliability, and interpretability of statistical modelling results. 

 

15.8. SELF-ASSESSMENT QUESTIONS: 

1) Why is normality of residuals required in ANOVA? 

2) Compare Q-Q plots and histograms in testing normality. 

3) Derive the test statistic for the Shapiro–Wilk test. 

4) Why is Anderson–Darling more sensitive in the tails? 

5) Discuss limitations of the Chi-square test for normality. 
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15.9.  SUGGESTED READINGS: 

1) Kutner, Nachtsheim, Neter and Li - Applied Linear Statistical Models 

2) Douglas C. Montgomery, Elizabeth A. Peck and G. Geoffrey Vining - 
Introduction to Linear Regression Analysis 

3) N.R. Draper and H. Smith - Applied Regression Analysis 

4) Samprit Chatterjee and Ali S. Hadi - Regression Analysis by Example 

5) S.C. Gupta and V.K. Kapoor - Fundamentals of Mathematical Statistics. 

 

Dr. M. Amulya 



LESSON-16 

TEST OF EQUALITY OF VARIANCES 
 

16.0. OBJECTIVES: 

After completing this unit, you should be able to: 

 Understand the assumption of homogeneity of variances (homoscedasticity) 
in ANOVA and regression. 

 Explain why variance equality is essential for valid F-tests. 

 Apply Bartlett’s test and the Modified Levene test. 

 Interpret test results and handle violations of variance homogeneity. 
 

STRUCTURE: 

16.1 Introduction 

16.2 Importance of Equal Variances in ANOVA 

16.3 Consequences of Heteroscedasticity 

16.4 Graphical Methods for Checking Homogeneity 

16.5 Bartlett’s Test of Homogeneity 

16.6 Levene’s Test (Modified Levene Method) 

16.7 Applications and Case Studies 

16.8 Summary 

16.9 Self-Assessment Questions 

16.10 Suggested readings 

 

16.1. INTRODUCTION: 

ANOVA assumes that the populations being compared have the same variance (σ²). 
This assumption is called homogeneity of variances. For example, if two fertilizers are 
compared on crop yields but one group has much larger variability than the other, the 
ANOVA test may show a significant difference that is actually due to unequal variability 
rather than a true treatment effect. 

 When variances are equal, the pooled error term (MSE) provides a valid estimate of 
error variance. 

 When variances are unequal (heteroscedasticity), the F-distribution used in ANOVA 
no longer holds true. 

 This leads to incorrect conclusions about treatment effects. 
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16.2. IMPORTANCE OF EQUAL VARIANCES: 

Test Assumptions Robustness Best Use Case 

Bartlett’s Test Assumes normality. 
Very sensitive to 
non-normality & 

outliers. 

When data is strictly 
normal and 

sensitivity is needed. 

Levene’s Test 
(Mean version) 

Fewer assumptions; 
not strict normality. 

Moderately robust. 
General-purpose, 
when normality is 

doubtful. 

Levene’s Test 
(Modified / Brown–
Forsythe, Median 

version) 

Uses median instead 
of mean. 

Highly robust to 
non-normality & 

outliers. 

Most recommended 
in real-world data. 

O’Brien’s Test 
Assumes 

approximate 
normality. 

More powerful than 
Levene in some 

cases. 

When mild 
deviations from 
normality are 

expected. 

Hartley’s F-Max 
Test 

Assumes normality 
and equal sample 

sizes. 

Very sensitive, 
limited use. 

Quick check with 
small, normal 

samples. 

Fligner–Killeen 
Test 

Non-parametric. No 
normality 

assumption. 

Very robust, 
distribution-free. 

When data is heavily 
non-normal or 

ordinal. 

 

16.3.  CONSEQUENCES OF HETEROSCEDASTICITY: 

 Bias in test results: Groups with smaller variances appear more “stable” and 
inflate F-ratio. 

 Loss of statistical power: Large differences in variance reduce sensitivity of tests. 

 Misleading confidence intervals: Standard errors are underestimated or 
overestimated. 

 

Example:  

In a clinical trial, if variability in the placebo group is much larger than in treatment 
groups, the ANOVA may incorrectly detect differences. 
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16.4. GRAPHICAL METHODS FOR CHECKING HOMOGENEITY: 

Before applying formal tests, visual checks are recommended: 

1) Residual Plots 

o Plot residuals vs fitted values. 

o If spread is constant across all fitted values ⇒ homogeneity. 

o Funnel-shaped patterns ⇒ heteroscedasticity. 

2) Box Plots 

o Compare spread of groups visually. 

o Unequal lengths of boxes/whiskers suggest unequal variance. 

3) Spread-Level Plot 

o Plots spread against mean. 

o Helps decide if a transformation (log, square root) is needed. 

 

16.5. BARTLETT’S TEST OF HOMOGENEITY: 

 Bartlett’s Test is a statistical test used to check whether multiple samples (from 
different groups) have equal variances. 

 It is commonly used as an assumption check before performing ANOVA 
(Analysis of Variance) because ANOVA assumes homogeneity of variances. 

 The test statistic follows a Chi-square (χ²) distribution. 

  

  

 

 

 

Where 
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Degrees of freedom  

Decision Rule: 

  

  

Example:  

A researcher wants to check whether 3 different teaching methods produce equal 

variability in student exam scores. 

Method A 72 75 78 74 77 

Method B 68 70 65 69 66 

Method C 80 85 83 82 84 

 

Step 1: Calculate Variances 

Method A 

  

  

Method B 

  

  

Method C 

  

  

So,  



Theory of Linear Estimation & Analysis…       16.5                  Test of Equality of Variances 

 
 

each group size = 5 →  

Total sample size N = 15, groups k = 3 

 

Step 2: Pooled Variance 

 

 

 

Step 3: Bartlett’s Test Statistic 

 

  

  

  

 

  

  

  

  

Numerator = 19.84 – 19.63 = 0.21 

Now correction factor denominator: 
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Step 4: Decision 

  

  

  

Conclusion: So, the variances of the three teaching methods are equal. 

 

Advantages: 

1) Powerful under normality: 

o Bartlett’s test is very sensitive in detecting small differences in variances when 
the data is normally distributed. 

2) Widely used in ANOVA preparation: 

o Ensures the assumption of homogeneity of variance is met, which is crucial 
for valid ANOVA results. 

3) Mathematically well-established: 

o Based on exact distributions under normality, making it theoretically strong. 

4) Useful for multiple groups: 

o Can compare variances across more than two groups (not limited to pairwise 
comparisons). 

 

Disadvantages: 

1) Highly sensitive to non-normality: 

o If the data is not normally distributed, Bartlett’s test may give misleading 
results (false positives/false negatives). 

2) Not robust: 

o Even slight deviations from normality can cause incorrect conclusions. 

3) Alternatives are better in practice: 

o Levene’s Test and Brown-Forsythe Test are preferred because they are more 
robust against non-normal data. 
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4) Interpretation depends on sample size: 

o With large sample sizes, even trivial differences in variances may appear 
significant. 

o With small samples, it may fail to detect real variance differences. 

 

16.6. LEVENE’S TEST (MODIFIED LEVENE METHOD): 

 Levene’s Test is a statistical test used to check the homogeneity of variances 

(equal variances) across groups, similar to Bartlett’s Test. 

 It was proposed as a robust alternative to Bartlett’s test, since Bartlett’s is 

highly sensitive to non-normal data. 

 The Modified Levene’s Test (also called the Brown–Forsythe version) uses the 

median instead of the mean to calculate deviations, making it even more robust 

against skewed data or outliers. 

 Hypotheses: 

o  

o  

Procedure: 

1) Compute absolute deviations of each observation from its group mean (or median for 

the Brown–Forsythe version). 

 

where  = observation j in group i. 

Perform a one-way ANOVA on these absolute deviations . 

If the ANOVA is significant → reject H₀, variances are unequal. 

 H₀: all variances equal. 

 H₁: at least one variance differs. 

Problem: 

Three groups (each n=5) with these observations: 



Centre for Distance Education                           16.8               Acharya Nagarjuna University  

  

 Group A: 10, 12, 9, 11, 13 

 Group B: 20, 22, 19, 21, 20 

 Group C: 30, 40, 28, 35, 32 

We want to test 

 

Use Levene’s test (center deviations about the group mean). 

Step 1 - Compute Group Means 

 Mean  

 Mean  

 Mean  

 

Step 2 - Compute Absolute Deviations  

 

Group A deviations: 

∣10−11∣=1, ∣12−11∣=1, ∣9−11∣=2, ∣11−11∣=0, ∣13−11∣=2|→ [1, 1, 2, 0, 2] 

Group B deviations: 

∣20−20.4∣=0.4, ∣22−20.4∣=1.6, ∣19−20.4∣=1.4, ∣21−20.4∣=0.6, ∣20−20.4∣=0.4  

→ [0.4, 1.6, 1.4, 0.6, 0.4] 

Group C deviations: 

∣30−33∣=3, ∣40−33∣=7, ∣28−33∣=5, ∣35−33∣=2, ∣32−33∣=1 → [3, 7, 5, 2, 1] 

 

Step 3 - Means of the Deviations 

  

  
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  

 

 

Step 4 - Compute Sums of Squares: One-Way ANOVA on the   

Between-group sum of squares (SSB): 

 

Within-group sum of squares (SSW): 

 

Degrees of freedom: 

 

 

Mean squares: 

) 

 

 

 

 

 

  

  
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Conclusion:  

There is statistically significant evidence (at the 5% level) that variances are not 

equal across the three groups. In plain words Group C has much larger variability than 

Groups A and B. 

 

Advantages: 

1) Robust to non-normality: 

o Unlike Bartlett’s, Levene’s test works well even when data is not normally 
distributed. 

2) Resistant to outliers (modified version): 

o By using the median (Brown–Forsythe modification), the test reduces the 
influence of extreme values. 

3) Applicable for many groups: 

o Can handle two or more groups easily. 

4) Widely used in ANOVA preparation: 

o It helps verify the assumption of equal variances before applying parametric 
tests like ANOVA or t-tests. 

5) Flexibility: 

o Different versions (based on mean, median, trimmed mean) give options 
depending on the type of data distribution. 

 

Disadvantages: 

1) Less powerful than Bartlett’s under strict normality: 

o If data is perfectly normal, Bartlett’s test is more sensitive in detecting small 
variance differences. 

2) Sample size issues: 

o With very small sample sizes, Levene’s test may lack power to detect variance 
differences. 

3) Interpretation with large samples: 

o Similar to Bartlett’s, with very large samples even small, unimportant 
differences in variances can become statistically significant. 

4) Not fully immune to skewness: 

o Although better than Bartlett’s, extreme skewed distributions can still affect 
the results. 
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16.7. APPLICATIONS AND CASE STUDIES: 

1) Agriculture 

o Crop yield experiments often have heterogeneous variances due to soil quality 
differences. 

o Levene’s test is commonly applied. 

2) Industrial Experiments 

o Machine performance studies: older machines may have higher variability. 

3) Medical Research 

o Drug response variances may differ between treatment groups. 

o Testing equality of variances avoids misleading conclusions. 

4) Education Research 

o Student performance scores across different teaching methods or schools may 
have different variability (e.g., private vs. public schools). 

o Levene’s test can be applied before comparing mean scores with ANOVA. 

5) Psychology / Social Sciences: 

o Reaction times or survey responses often show group differences in variability 
(e.g., young vs. elderly participants). 

o Testing variance equality ensures statistical comparisons (like t-tests or 
ANOVA) are valid. 

 

16.8. SUMMARY: 

Aspect Bartlett’s Test Levene’s Test (Modified Method) 

Purpose 
Tests equality of variances 
(homogeneity of variance) 
across groups. 

Tests equality of variances across 
groups (robust alternative to 
Bartlett’s). 

Hypotheses 
H₀: All variances are equal. 
H₁: At least one variance 
differs. 

H₀: All variances are equal. H₁: At 
least one variance differs. 

Statistic 
Distribution 

Test statistic ~ Chi-square 
(χ²) distribution. 

Test statistic ~ F-distribution 
(ANOVA on absolute deviations). 

Assumption 
about 
Normality 

Requires strict normality. 
Very sensitive to 
deviations. 

Works well under non-normality; 
robust to skewed data. 

Effect of 
Outliers 

Highly sensitive – outliers 
can distort results. 

Modified version (Brown–Forsythe 
using median) is robust to outliers. 
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Aspect Bartlett’s Test Levene’s Test (Modified Method) 

Power 
More powerful than 
Levene’s if data is 
perfectly normal. 

Slightly less powerful under strict 
normality, but more reliable in real-
world data. 

Sample Size 
Behavior 

With small n → less 
reliable. With large n → 
even trivial variance 
differences appear 
significant. 

With small n → reduced power. 
With large n → may flag small, 
unimportant differences as 
significant. 

Best Use Case 
When data is normal and 
you want maximum 
sensitivity. 

When data may be non-normal or 
contain outliers. 

Common 
Applications 

Preliminary test for 
ANOVA when normality 
is strongly assumed. 

Widely used in applied research 
(psychology, medicine, social 
sciences) as a standard 
homogeneity test. 

 

16.9. SELF-ASSESSMENT QUESTIONS: 

1) Why is the equal variance assumption necessary in ANOVA? 

2) Derive the Bartlett test statistic and explain its limitations. 

3) Explain how Levene’s test works. Why is it more robust than Bartlett’s test? 

4) What are the alternatives when homogeneity of variance is violated? 

5) Discuss real-life situations where variance heterogeneity occurs. 

 

16.10.   SUGGESTED READINGS: 

1) Douglas C. Montgomery, Elizabeth A. Peck and G. Geoffrey Vining - 
Introduction to Linear Regression Analysis. 

2) N.R. Draper and H. Smith - Applied Regression Analysis. 

3) Samprit Chatterjee and Ali S. Hadi - Regression Analysis by Example. 

4) S.C. Gupta and V.K. Kapoor - Fundamentals of Mathematical Statistics. 

 

Dr. M. Amulya 



LESSON-17 

ADVANCED MULTIPLE COMPARISON TESTS 
 

17.0. OBJECTIVES: 

After completing this unit, you should be able to: 

 Understand why multiple comparison tests are required after ANOVA. 

 Differentiate between Fisher’s LSD, Tukey’s HSD, and Duncan’s Multiple 
Range Test. 

 Comparison of Methods Fisher’s LSD, Tukey’s HSD, and Duncan’s. 

 Apply these tests to identify which group means differ significantly. 

 Interpret results in practical research problems. 

 

STRUCTURE: 

17.1 Introduction 

17.2 Need for Multiple Comparison Tests 

17.3 Tukey’s Honestly Significant Difference (HSD) Test 

17.4 Fisher’s Least Significant Difference (LSD) Method 

17.5 Duncan’s Multiple Range Test (DMRT) 

17.6 Comparison of Methods 

17.7 Applications 

17.8 Summary 

17.9 Self-Assessment Questions 

17.10 Suggested readings 

 

17.1.  INTRODUCTION: 

 The most useful information from a one-way ANOVA is obtained through examining 
contrasts. The trick is in picking interesting contrasts to consider. Interesting contrasts are 
determined by the structure of the treatments or are suggested by the data. The structure of 
the treatments often suggests a fixed group of contrasts that are of interest. For example, if 
one of the treatments is a standard treatment or a control, it is of interest to compare all of the 
other treatments to the standard. With a treatment this leads to a-1 contracts. 

One problem is that, with a moderate number of treatment groups, there are many 
contrasts to look at. When we do tests or confidence intervals, there is a built-in chance for 
error. The more statistical inferences we perform, the more likely we are to commit an error. 
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The purpose of the multiple comparison methods examined in this chapter is to control the 
probability of making a specific type of error. When testing many contrasts, we have many 
null hypotheses.  

This chapter considers multiple comparison methods that control (i.e., limit) the 
probability of making an error in any of the tests, when all of the null hypotheses are correct. 
Limiting this probability is referred to as weak control of the experiment wise error rate. It is 
referred to as weak control because the control only applies under the very stringent 
assumption that all null hypotheses are correct. Some authors consider a different approach 
and define strong control of the experiment wise error rate as control of the probability of 
falsely rejecting any null hypothesis. Thus, strong control limits the probability of false 
rejections even when some of the null hypotheses are false. Not everybody distinguishes 
between weak and strong control, so the definition of experiment wise error rate depends on 
whose work you are reading. One argument against weak control of the experiment wise 
error rate is that in designed experiments, you choose treatments that you expect to have 
different effects.    
 

17.2. NEED FOR MULTIPLE COMPARISON TESTS: 

Many multiple testing procedures can be adjusted to provide multiple confidence 
intervals that have a guaranteed simultaneous coverage. Several such methods will be 
presented. 

Besides the treatment structure suggesting contrasts, the other source of interesting 
contrasts is having the data suggest them. If the data suggest contrast, then the ‘parameter’ in 
our standard theory for statistical inferences is a function of the data and not a parameter in 
the usual sense of the word.  

When the data suggest the parameter, the standard theory for inferences does not 
apply. To handle such situations, we can often include the contrasts suggested by the data in a 
broader class of contrasts and develop a procedure that applies to all contrasts in the class. 

 In such cases we can ignore the fact that the data suggested particular contrasts of 
interest because these are still contrasting in the class and the method applies for all contrasts 
in the class. 

 

17.3. TUKEY’S HONESTLY SIGNIFICANT DIFFERENCE (HSD) TEST: 

John Tukey’s honest significant difference method is to reject the equality of a pair of 

means, say,  and   at the  level, if 

 

Obviously, this test cannot be rejected for any pair of means unless the test based on 

the maximum and minimum sample means is also rejected. For an equivalent way of 

performing the test, reject equality of  and  if  
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With a fixed , the honest significant difference is 

 

where Q is the studentized range statistic. 

For any pair of sample means with an absolute difference greater than the HSD, we 
conclude that the corresponding population means are significantly different. The HSD is the 
number that an observed difference must be greater than in order for the population means to 
have an ‘honestly’ significant difference. The use of the word ‘honest’ reflects the view that 
the LSD method allows ‘too many’ rejections. 

Tukey’s method can be extended to provide simultaneous  confidence 
intervals for all differences between pairs of means. The interval for the difference  
has end points 

 

Where HSD depends on . For , we are 95% confident that the collection of 
all such intervals simultaneously contains all of the corresponding differences between pairs 
of population means. 

 

Example: 

Using the same fertilizer experiment: 

 Fertilizer A: 20, 22, 23  

 Fertilizer B: 25, 27, 26  

 Fertilizer C: 22, 20, 21  

Means 

  

  

  

From Comparisons: 

  

  
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  

  

  

 

The HSD Formula is given by 

 

 

Comparisons: 

 A vs B = 4.33 → greater than 2.12 → significant 

 A vs C = 0.67 → less than 2.12 → not significant 

 B vs C = 5.0 → greater than 2.12 → significant 

Conclusion:  

Fertilizer B is significantly better than A and C, but A and C are not different. 

 Advantages: 

o Controls overall Type I error. 

o Works best when group sizes are equal. 

 Disadvantage: Conservative when many comparisons. 

 

17.4. FISHER’S LEAST SIGNIFICANT DIFFERENCE (LSD) METHOD: 

The easiest way to adjust for multiple comparisons is to use R.A. Fisher’s least 
significant difference method. To put it as simply as possible, with this method you first look 
at the analysis of variance. F-test for whether there are differences between the groups. If this 
test provides no evidence of differences, you quit and go home. If the test is significant at, 
say, the =05 level, you just ignore the multiple comparison problem and do all other tests in 
the usual way at the .05 level.  

This method is generally considered in appropriate for use with contrasts suggested by 
the data. While the theoretical basis for excluding contrasts suggested by the data is not clear 
(at least relative to weak control of the experiment wise error rate), experience indicates that 
the method rejects far too many individual null hypotheses if this exclusion is not applied. In 
addition, many people would not apply the method unless the number of comparisons to be 
made was quite small.  



Theory of Linear Estimation & Analysis…       17.5                      Multiple Comparison Tests 

 
 

The term least significant difference comes from comparing pairs of means in a 
balanced ANOVA. There is a number, the least significant difference (LSD), such that the 
difference between two means must be greater than the LSD for the corresponding treatments 
to be considered significantly different. Generally, we have a significant difference between 

 and   if  

 

Multiplying both sides by the standard error leads to rejection if 

 

The number on the right is defined as the least significant difference, 

 

Where 

o MSE = Mean Square Error from ANOVA 

o n = number of observations per group. 

Note that the LSD depends on the choice of but does not depend on which means are 
being examined. If the absolute difference between two sample means is greater than the 
LSD the population means are declared significantly different. Recall, however, that these 
comparisons are never attempted unless the analysis of variance F test is rejected at the level. 
The reason that a single number exists for comparing all pairs of means is that in a balanced 
ANOVA the standard error is the same for any comparison between a pair of means. 

 If |difference between means| > LSD ⇒ means differ significantly. 

 Advantages: Simple, powerful. 

 Disadvantage: Inflates Type I error rate if used without prior ANOVA. 

Example: 

Suppose we test the effect of 3 fertilizers (A, B, C) on plant growth. 

 Fertilizer A: 20, 22, 23 

 Fertilizer B: 25, 27, 26 

 Fertilizer C: 22, 20, 21 



Centre for Distance Education                           17.6                Acharya Nagarjuna University  

  

From ANOVA, we get: 

Means: 

  

  

  

Comparisons: 

  

  

  

  

 

Fisher’s Least Significant Difference Formula: 

 

 

Differences: 

 A vs B = 4.33 → greater than 2.0 → significant 

 A vs C = 0.67 → less than 2.0 → not significant 

 B vs C = 5.0 → greater than 2.0 → significant 

 

Conclusion:  

Fertilizer B produces significantly more growth than A and C, but A and C do not 
differ. 

 

17.5. DUNCAN’S MULTIPLE RANGE TEST (DMRT): 

Duncan has developed a multiple range procedure similar to that of Newman-Keuls. Newman 

Keuls uses a series of tabled values 
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 Duncan’s method simply 

changes the tabled values. Duncan uses 

 

Using Duncan’s value  to compare the largest and smallest 
means does not control the experiment wise error rate at . (It controls it at 1- ). 
As a result, Duncan suggests performing the analysis of variance Ftest first and proceeding 
only if the Ftest indicates that there are differences among the means at level.  

Duncan’s method is more likely to conclude that a pair of means is different than the 
Newman–Keuls method and less likely to establish a difference than the LSD method. Just as 
the Newman–Keuls approach can be used to modify the AOM and Dunnett’s method, 
Duncan’s idea can also be applied to the AOM and Dunnett’s method. 

 

Stepwise Procedure – Compares Ordered Means in Groups.  

 Uses a range statistic to test differences between ranked means. 

 More liberal than Tukey ⇒ greater chance of detecting differences. 

 Advantage: Higher power. 

 Disadvantage: Higher risk of Type I error. 

 

Example: 

Fertilizer Plant 1 Plant 2 Plant 3 Mean 

A 20 22 23 21.7 

B 25 27 26 26.0 

C 22 20 21 21.0 

 

From ANOVA, suppose: 
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Comparisons 

  

  

 

 

 

 

 

 

 

  

  

Step 5 – Compare Differences 

 B vs C = 26.0 – 21.0 = 5.0 > 2.38 → Significant 

 B vs A = 26.0 – 21.7 = 4.3 > 2.12 → Significant 

 A vs C = 21.7 – 21.0 = 0.7 < 2.12 → Not significant 

Conclusion: Fertilizer B is significantly better than A and C, but A and C are similar. 
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17.6. COMPARISON OF METHODS: 

Test Error Control Power Suitable When… 

Fisher LSD Weak control High power 
Small number of 

comparisons, ANOVA 
significant 

Tukey HSD Strong control Moderate 
All pairwise comparisons, 

equal sample sizes 

Duncan 
MRT 

Moderate High power 
Ordered means, 

agricultural/biological 
research 

 

17.7. APPLICATIONS: 

 Agriculture: Comparing crop yields under different fertilizers. 

 Medicine: Comparing effects of different drug dosages. 

 Education: Comparing student performance under different teaching methods. 

 Psychology / Behavioral Science: Comparing stress levels under different 
relaxation techniques (e.g., meditation, music therapy, exercise). 

 Manufacturing / Industry: Comparing the strength of materials produced by 
different production processes. 

 

17.8. SUMMARY OF MULTIPLE COMPARISON PROCEDURES: 

Fisher’s Least Significant Difference (LSD) Test is one of the earliest and simplest 
multiple comparison procedures. It performs pairwise t-tests between group means but uses 
the pooled error variance from ANOVA to increase precision. Fisher’s LSD is powerful 
(high ability to detect true differences) because it does not strongly control the familywise 
Type I error rate when many comparisons are made. As a result, it is generally recommended 
only when the overall ANOVA F-test is significant, and the number of groups is small. Its 
primary advantage is sensitivity, but its limitation is inflation of false positives in large 
comparison sets. 

Tukey’s Honestly Significant Difference (Tukey’s HSD) Test is one of the most 
commonly recommended procedures for comparing all possible pairs of means. It 
effectively controls the familywise error rate, making it more conservative but also more 
reliable than Fisher’s LSD, especially when sample sizes are equal. Tukey’s test provides 
confidence intervals for each mean difference and maintains a strong balance between Type I 
error control and statistical power. It is the preferred method in many experimental designs 
where all pairwise comparisons are of interest. 

Duncan’s Multiple Range Test (DMRT) is a stepwise, less conservative procedure 
designed to identify homogeneous groups of means. Compared to Tukey’s HSD, Duncan’s 
test allows more differences to be declared significant because it relaxes Type I error control 
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as the number of steps increases. This gives it greater sensitivity but at the cost of higher false 
positive rates. Duncan’s test is useful when the goal is to maximize detection of group 
differences, but it is generally not recommended for confirmatory research. Overall, Fisher’s 
LSD is the most liberal, Tukey’s offers the best error control, and Duncan’s provides greater 
sensitivity with moderate error protection. 

 

17.9. SELF-ASSESSMENT QUESTIONS: 

1) Why do we need multiple comparison tests after ANOVA? 

2) Derive the formula for Fisher’s LSD test. 

3) Differentiate between Tukey’s HSD and Duncan’s MRT. 

4) Discuss advantages and disadvantages of Fisher’s LSD. 

5) In what situations would you prefer Duncan’s MRT over Tukey’s HSD? 

 

17.10. SUGGESTED READINGS: 

1) Douglas C. Montgomery, Elizabeth A. Peck and G. Geoffrey Vining - 
Introduction to Linear Regression Analysis 

2) N.R. Draper and H. Smith - Applied Regression Analysis 

3) S.C. Gupta and V.K. Kapoor - Fundamentals of Mathematical Statistics 

 

 

Dr. M. Amulya 


