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FOREWORD

Since its establishment in 1976, Acharya Nagarjuna University has been
forging ahead in the path of progress and dynamism, offering a variety of courses
and research contributions. I am extremely happy that by gaining ‘A+’ grade from
the NAAC in the year 2024, Acharya Nagarjuna University is offering educational
opportunities at the UG, PG levels apart from research degrees to students from

over 221 affiliated colleges spread over the two districts of Guntur and Prakasam.

The University has also started the Centre for Distance Education in 2003-
04 with the aim of taking higher education to the door step of all the sectors of the
society. The centre will be a great help to those who cannot join in colleges, those
who cannot afford the exorbitant fees as regular students, and even to housewives
desirous of pursuing higher studies. Acharya Nagarjuna University has started
offering B.Sc., B.A., B.B.A., and B.Com. courses at the Degree level and M.A.,
M.Com., M.Sc., M.B.A., and L.L.M., courses at the PG level from the academic
year 2003-2004 onwards.

To facilitate easier understanding by students studying through the distance
mode, these self-instruction materials have been prepared by eminent and
experienced teachers. The lessons have been drafted with great care and expertise
in the stipulated time by these teachers. Constructive ideas and scholarly
suggestions are welcome from students and teachers involved respectively. Such
ideas will be incorporated for the greater efficacy of this distance mode of
education. For clarification of doubts and feedback, weekly classes and contact

classes will be arranged at the UG and PG levels respectively.

It is my aim that students getting higher education through the Centre for
Distance Education should improve their qualification, have better employment
opportunities and in turn be part of country’s progress. It is my fond desire that in
the years to come, the Centre for Distance Education will go from strength to
strength in the form of new courses and by catering to larger number of people. My
congratulations to all the Directors, Academic Coordinators, Editors and Lesson-

writers of the Centre who have helped in these endeavors.

Prof. K. Gangadhara Rao
M.Tech., Ph.D.,
Vice-Chancellor I/c
Acharya Nagarjuna University.
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ANSWER ONE QUESTION FROM EACH UNIT
(Each question carries equal marks)
UNIT-I
Explain inverse matrix and idempotent matrix
State and prove Cayley-Hamilton theorem

Explain (i) determinant (ii) rank of a matrix and (iii) Inverse of a matrix with
suitable example.

State and prove a necessary and sufficient condition for a real matrix to be
positive definite

UNIT-1I

Explain (1) linear model (ii) Best linear unbiased estimate.
State and prove Gauss — Markov theorem.

Describe Generalized linear model with suitable example.
State and prove Aitken’s theorem.

UNIT-III

Describe one-way classification for equal no. of observations per cell
Explain Duncan’ multiple range test

Explain Fisher’s least significant difference method

Explain analysis of variance two-way classification with multiple observations
per cell.

UNIT-1V

Write the applications of CRD and RBD.
Explain analysis of covariance with a single concomitant variable.

Explain the analysis of variance two-way classification.

Explain analysis of LSD with one missing value.
UNIT-V

State and prove Bartlett’s test.

Briefly explain test for normality difference of variances.

What is multiple range test and its properties.
State and prove Turkey’s test.
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LESSON-1
FUNDAMENTALS OF MATRICES

1.0 OBJECTIVES:
After completing this lesson, students will be able to:
e Define and explain fundamental matrix concepts such as order, types of
matrices, determinants, rank, and inverse.
e Compute determinants and rank using standard algebraic methods and
elementary transformations.
e Determine the inverse of a matrix (when it exists) using adjoint and row-
reduction techniques.
e Identify and verify properties of orthogonal and idempotent matrices, and
understand their role in statistical models.
e Apply basic matrix operations and properties to solve simple linear algebra
problems relevant to linear models and estimation.
STRUCTURE:
1.1 Introduction
1.2 Fundamental Matrix Definitions
1.3  Addition, Multiplication of Matrices
1.4  Properties
1.5  Conclusion
1.6 Self-Assessment Questions
1.7 Suggested Readings

1.1. INTRODUCTION:

Matrix algebra forms the backbone of many statistical techniques used in estimation,
inference, and data analysis. In linear models, observations and parameters are conveniently
expressed using matrices, allowing complex relationships to be handled in a compact and
systematic manner. A strong foundation in matrix concepts is therefore essential for students
of statistics and data science.

Determinants, rank, and inverse of matrices play an important role in solving systems
of linear equations and in determining the existence and uniqueness of solutions. These ideas
are particularly important in regression analysis and in deriving least squares estimators,
where matrix operations simplify theoretical derivations.
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Special matrices such as orthogonal and idempotent matrices occur naturally in the
study of projection operators and sum of squares decomposition in ANOVA. Their algebraic
properties help in understanding how variation in data is partitioned and how estimators
behave under linear transformations.

Another important area in matrix algebra is the study of quadratic forms, which
provides the mathematical framework for expressing many statistical quantities such as
variance, sums of squares, and test statistics. Mastery of these concepts allows students to
analyze multivariate data and to interpret geometrical aspects of statistical models.

In this lesson, we introduce the fundamental concepts of matrix algebra that support
the theory of linear estimation. The aim is to equip students with the necessary tools to
understand later topics such as diagonalization, quadratic forms, and Cochran’s theorem,
which are central to advanced statistical inference.

1.2. FUNDAMENTAL MATRIX DEFINITIONS:

Definition of a Matrix:

‘A’ set of m X n numbers (scalars) arranged in the form of a rectangular array denoted by

a;; Qi gz vt Qgp
Qzy Qzz Qzz v gy
3y Qzz Qzz - vt Oz
iy iz i3 Ajp
1 Az i3 e Qi

Here ' m ' is number of rows and ' nn ' is number of columns is called a matrix of order m x n.

The numbers ayq, @3, -« ... ... .. @y, are called the elements of the matrix. The matrix ' 4 ' can

be represented by A = [aU]mxn’ wherei =1,2,....mandj = 1.2,...n.

In the matrix the horizontal lines are called rows (or) row. vectors & vertical lines are called

columns (or) column vectors.
For example as, is the element of intersection (or) 3™ row & 4™ column of the matrix. Here

there are few examples of the matrix.

1 2 3
1 2 o . _
A—[a diB=0 2 3l C—[4 5 6‘
3Ix3
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a b ¢ d e
D= cE=|lk I m n o
0 1 2 3
1 4 3 1 pqa T st
axa u v ow x yl .

Row Matrix:

A matrix which has only one row is called Row Matrix. i.e., 1 X n matrix.
Ex:-[1 2 3liva; [a b clixa

Column Matrix:

A matrix which has only one column is called column Matrix. i.e., m X 1 matrix.

1
Ex:- [2] Note: ™ :13
n =
3 Ix1

Square Matrix:

A matrix in which the no. of rows and no. of columns are equal then matrix is called Square
Matrix.

a b ¢
Ex:A:[l 2l p—|d e f
3 4l hoi

Ix3

Rectangular Matrix:

A matrix in which the no. of rows is not equal to the no. of columns is called Rectangular
Matrix.

Notem = n
Eg:
a b ¢ d
A:[1234] B=le f g h
5 6 7 8l ik 1
3Ix4

Determinant of a Matrix:

Let' A' be a square matrix the determinant of ‘A" is the sum of the product of elements of any
row or column with their co-factors it is denoted by A(or)|A|.

A= [S Z] then, to write the determinant of' A'is |A| = ad — bc
Eg:

(i) A:[; i]:‘-'|A|=ad—bc=4—6=—2.
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(ii)Az[z E]Z‘»'|A|=ac—ac=0

Identity (or) Unit Matrix:

Square matrix each of whose diagonal element one and each of whose non-diagonal element
is equal to zero is called unit matrix (or) identity matrix.

1 0 0
I=10 1 0
0 0 1

Null (or) Zero Matrix:

The matrix whose elements are all zeros is called a Null matrix (or) zero matrix.

o=[s ¢

Sub-matrix of a Matrix:

Any matrix obtained by ommitting some rows and columns from a given m X n matrix, is
called a sub-matrix of a given matrix.

1 2 3 4 2 3
A=|5 6 7 8 s B=|6 7
9 9 8 1llixa 9 8lix2

B is a sub-matrix of A.

Diagonal Matrix:

A Square matrix 4 = [al- J']mm whose elements above and below the principal diagonal are

1 0 0
A=|0 4 0

n o 7

zero is called a diagonal matrix.

Scalar Matrix:
A Diagonal matrix whose diagonal elements are equal is called a scalar Matrix.
3 00
A= [D 3 D‘
0o 0 3
Inverse of a Matrix:
A Square matrix ' A ' of order m X n have the inverse matrix 'B' of order n x m
if AB = BA = 1. If we write B = A™1.
Eg:
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(1A= [S Z] & |A| # 0 [4 is normal matrix |

1 d —b
-1 _
47 = ad — be [—c a ]
Adj(A) d —b
-1 _ v A _ ) — _
AT == [-Ad](A)—[_c a],|A| ad — be
Ex:
1 2 )
1. A= [3 B 5] then to calculate Det4 & inverse of A?

1 2
A—[a _5] Al =ad —be=-5-6=—11=11#0

agia=[° =2
-5 -2

5
o1 _Adj(4) _ [_3 1 ] _[5/11  2/11 }

4~ —11  I3/11 -1/11
A [cosa —sina]
sina cosa

|A| = ad — bc = cos®a + sina =1
. _[d —b] _[cosa sina
i - [ ][ sne

—sina cosa
[cosa sina]
-1 _Adj(ﬂ) _ L—sina cosal [ CcOSa sina

4] 1 —sina cosa

Triangular Matrix:
(i) Upper Triangular Matrix:

. " r 1. . . .
A Square matrix A = |a;; | is called an upper triangular matrix. if a;; = 0 whenever

i
1>]
1 2 3
A=10 4 5
0O 0 7
(ii) Lower - Triangular Matrix:
A Square matrix 4 = [e; J,-] is called a Lower -Triangular matrix. if a;; = 0 whenever
1 <]

Transpose Matrix:

Let A = [-:Il-j-]mx
and columns into rows is called Transpose of A and denoted by AT.

. then the n X m matrix obtained from 4 by changing its rows into columns
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Conjugate of a Matrix:

The matrix obtained from any given matrix A on replacing its elements by the corresponding
conjugate complex number is called conjugate of A and denoted as A.

2430 —2i
A= tl
4— 6i 3+J 1en
-~ 12-3i 2i
4= 4 46i 3—J

Idempotent Matrix:

A square matrix ' A 'is said to be an Idempotent Matrix A’ = A

1/2 1/2
A ::[112 112]

_[1/2 1/2111/2 1/2
AP=A-A= 1/2 1;2} 1/2 1/2}
[+ 3

1 1 1 1

ity ots
/2 1;2]
~l1/2 172
A2 =4

~ A 1s an Idempotent Matrix.

Trace of a Matrix:

Let' A'be any square matrix. Then the sum of their principal diagonal elements of 4 is
called Trace of a matrix. It is denoted by tr(4).

1 2 3
EgA:E i ; A:F 56‘
2x2 ? 8 9

Then Trace(4)=1+4 =5 Tr(A) =1+5+9 =15

Symmetric Matrix:

A Square matrix 4 = [a, j-] is said to be symmetric if a;; = a;;Vi,j A is symmetric if 4 = A"
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—2 3 —4 -2 3 —4
A=|3 1 01]|:;4T=|3 1 o0

-4 0 3 -4 0 3

» A= AT = Ais symmetric matrix.

Skew-Symmetric Matrix:
A square matrix is called a skew-symmetric matrix if 4 = (—A") (or) AT = —A. If

A= (al- j-)m}m is a skew-symmetric matrix. then a;; = —a;; for all i & j. In a symmetric
matrix each of the diagonal matrix is zero.

Eg:

0 1 =5
A=1|-1 0 3
5

0 -1 5
.AT=[1 0 —3]

-3 0 -5 3 0
0 1 -5
—AT=[—1 0 —3]
5 3 0
A=—AT

A is a skew-symmetric matrix.
Real - Symmetric Matrix:

Let' A'be a n x n real symmetric matrix then there exists an orthogonal matrix P such that
P'AP = A or, A= PAA’ where A is a diagonal matrix.

Let
B
A=y _3
1l 2
| V5 5
Y
V5 /5
:[—5 D]
0 5
A=P'AP
:Im@ —2/@“—5 olllfﬁ 2/\V5
2/v5 1/v5 L0 5| -2/4/5 1/4/5
:[:—; —4]
—4 -3

Pair of Real - Symmetric Matrix:

let A and B be real m X m symmetric matrices of which B is P.d then 3 a matrix ' R ' such
that A = [R™1]"*AR Yand B = (R™1)"1R~! where A is a diagonal matrix.\
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Orthogonal Matrix:

A Square matrix A is said to be Orthogonal if A x AT = AT x A = I, where I is a unit matrix.

1 2 2 1 2 =2
1 1
A=§ 2 1 =2 mmAT=§2 1 2
-2 2 -1 2 -2 —1
0 0 0
A-AT=[0 0 0
0 0 0

CACAT=AT-A=1
Hermitian Matrix:

A square matrix 4 = [ai ,I is said to be Hermitial If a;; = a;;, Vi, j that is (i, j)® elements of

A is equal to conjugate complex of (i, j)™ elements of A.

a b+ci
A=
[b—Ci d 2%2.

Skew - Hermitian Matrix:

A square matrix A = [ﬂ:' j-] is said to be skew Hermitian if a;; = —a;; Vi, j

Complex Matrix:

A square matrix ‘A’ is said to be unitary if A - A = A - A% = I. where A? is the transpose of a
conjugate of a complex matrix.

A= [? _OL] is a unitary matrix

Periodic Matrix:

A square matrix ' A ' is said to be periodic if there exists a positive integer k such that
AF*Tl = 4 then k is called the Period of A.

Ex:- For idempotent matrix period of 4 = 1, because
A2 =Aie A1 =4

1/2 1/2

4=12 172

};AZZA

Nilpotent Matrix:

A square matrix A is said to be nilpotent if 3 a possible integer ' n ' such that A™ = 0 where 0
is null matrix.

1 1 3
Eg: A=1|5 2 6| then 42=0
2 -1 -3

A is nilpotent
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Minor of a Matrix:

If A is an m X n matrix then the determinant of every submatrix of 4 is called a Minor of the
matrix A .

1 1 3 1 3
A=1|5 2 6 | then ‘ ‘ is called 2-rowed minor of A .
2 -1 -3 2 6

Equal Matrix:

Two matrices A and B are said to be equal if they are of the same type and each element of
one is equal to the corresponding elements of the order it is denoted by A = B .

Eg: If
A R

then A=Boa=-1,b=2,c=3,d=-1

Elementary Matrix:

A matrix obtained from a unit-matrix by a single elementary transformation is called a
Elementary Matrix.

Eg:
1 0 O
A=10 -3 0
0 0 1
Involuntary Matrix:

A matrix " A ' is said to be involuntary matrix if 42 =1 .

12 121 ,, , , [1/2 1/2][1/2 1/2
4= [1;2 1/2)i AT =4 A‘[l/z 1;2} 1/2 1;2}
1/2 1/2
~ 172 1;2}:1r

1.3. ADDITION, MULTIPLICATION OF MATRICES:
Addition of Matrix:

The Sum of two matrices ' A ' and ' B ' of same order is a new matrix denoted by 4 + B
whose elements are the sum of the corresponding elements of the two matrices A4 and B.

If A and B are two matrices of order (m x n) then 4 + B is also matrix of order. Therefore

R A L T
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A+B:[1+? 5+2 :[2 ;]

6+0 3+4

Multiplication of Matrices:

Two matrices A and B are compatible for multiplication only if the no. of columns of A is
equal to the no. of rows of B.

1 2 0 2 3

Fe: 4 :[15 6]2><2 14 5l

B

Here, The no. of columns of 4 = 2
The no. of rows of B = 2
A X B it is possible to find AB.

Axg_1x0+2><1 1x24+2x4 1x34+2x5 _[2
T lI5x0D+6x%x1 15x2+6%x4 15x3+6x51 la

10 13
K4 758

In general, the product of A X B is written as AB and is defined as

First row of Ax 1% row of Ax 1% row of Ax
First column of B 2™ column of B 3™ column of B
28 row of Ax 28 row of Ax 28 row of Ax
1% column of B 28 oplumn of B 2™ column of B

[allbll +abyy  ayibyy +apby;  ayby; +aggbs;
@z1byy +ajpbyy  azi by +azby;  azbi; +azbs;
1.4. PROPERTIES:
iy AB=BA
i1) (AB)C = A(BC) [Assosciative law]
1) Al = IA = A [Existence of multiplicative identily.]

iv)  For 2 matrices A;B if A X B = 0 it is not necessary that A = 0 (or) B = 0 (or)
Both 4 and B are '0'

Eg:If A = [_32 _3] B = H 11], then

3 =311 11_[0 O© B
AB_[—a 3][1 1 _[0 om_cl
V) A(B + C) = (A x B) + (A x C) [left distributive law]

Vi) (A + B)C = AC + BC [Right distributive law]
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1.5. CONCLUSION:

In this lesson, the foundational ideas of matrix algebra that form the basis for many
statistical and computational techniques were introduced. Beginning with essential matrix
definitions, students gained an understanding of how data and linear relationships can be
represented compactly using rows, columns, and different types of matrices. These
fundamental concepts prepare us for more advanced topics in linear models, multivariate
analysis, and estimation theory.

Also, here explored basic matrix operations such as addition and multiplication,
which are crucial for expressing and solving systems of linear equations. Understanding how
matrices interact under these operations helps students to interpret model structures like (Xf3)
and transformations such as (A'XA). These operations also reveal important algebraic
behaviours - such as non-commutativity - that significantly influence statistical procedures
and matrix decompositions.

Finally, here discussed selected matrix properties that frequently appear in statistical
applications. Properties such as symmetry, diagonal dominance, invertibility, and
orthogonality play a vital role in simplifying computations and understanding the geometry of
linear transformations. Together, the concepts covered in this lesson provide the
mathematical groundwork needed for studying determinants, rank, inverse matrices, and
matrix transformations in the subsequent lessons.

1.6. SELF-ASSESSMENT QUESTIONS:
1) Describe in detail the importance of learning matrix algebra for data science,
machine learning, and computational statistics. Give suitable examples.

2) Define and explain different types of matrices: row matrix, column matrix, square
matrix, diagonal matrix, scalar matrix, identity matrix, and zero matrix. Illustrate
each with examples.

3) State and prove the properties of matrix multiplication. Explain why matrix
multiplication is not commutative, giving suitable examples.

4) Discuss in detail the associative, commutative, and distributive properties related
to matrix addition and multiplication. Provide proofs and examples for each

property.

5) Discuss the role of special matrices (identity, zero, diagonal matrices) in matrix
operations. Explain how these matrices behave under addition, multiplication, and
transposition.

1.7. SUGGESTED READINGS:
1) Introduction to Linear and Matrix Algebra — by Richard Bronson & Gabriel
B. Costa
2) Matrices and Linear Algebra — by I. N. Herstein & D. J. Winter
3) Linear Algebra and Matrices — by K. Hari Kishan

4) Linear Algebra and Matrices: Topics for a Second Course — by Helene
Shapiro

Dr. Bala Naga Hima Bindu, Inampudi.



LESSON-2
RANK OF A MATRIX

2.0. OBJECTIVES:
After completing this lesson, students will be able to:
e Understand the concept of rank
e Compute the rank of a matrix
e Determine the solvability of linear systems
e Analyze linear dependence and independence

e Apply the concept of rank.

STRUCTURE

2.1 Introduction

2.2 Rank of a Matrix

23 Vector Space

24 Problems

2.5 Some Important Results
2.6  Conclusion

2.7 Self-Assessment Questions

2.8 Suggested Readings

2.1 INTRODUCTION

The rank of a matrix is one of the fundamental concepts in linear algebra and matrix
theory. It essentially measures the ‘“non-degenerateness” of a matrix by indicating the
maximum number of linearly independent rows or columns it contains. In simpler terms, the
rank tells us how much information a matrix carries and whether its rows or columns are
redundant. It plays a central role in solving systems of linear equations, determining
invertibility, and analyzing the dimensions of vector spaces associated with the matrix.

Mathematically, the rank of a matrix Ais defined as the dimension of the row space or
the column space of A. The row space is the set of all possible linear combinations of the
rows of the matrix, and the column space is the set of all linear combinations of its columns.
Interestingly, the row rank and column rank of any matrix are always equal, and this common
value is referred to simply as the rank of the matrix. This property highlights the intrinsic
symmetry in linear algebra between rows and columns.

The concept of rank is also closely linked to the idea of solutions to linear systems. If
a system of linear equations is represented in matrix form as AX = B, the rank of the
coefficient matrix Aprovides crucial information about the existence and uniqueness of
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solutions. Specifically, if the rank of Aequals the number of unknowns, the system has a
unique solution; if it is less, the system may have infinitely many solutions or none,
depending on the rank of the augmented matrix.

Finally, rank is widely used in various applications beyond solving equations. In
statistics, it helps in determining the independence of variables, while in engineering and
computer science, it assists in analyzing networks, transformations, and data structures.
Understanding the rank of a matrix equips us with a tool to probe the structural properties of
matrices and to address practical problems efficiently.

2.2. RANK OF A MATRIX:
Determinant:

The determinant is a scalar value that can be computed from the elements of a square matrix
and encodes certain properties of the linear transformation described by the matrix. The
determinant of a matrix 4 is denoted by |A| or detA.

Eg: |A|:‘f 3|:ad—bc
12 3
“=17 5

Al =10 —-21 = —-11
Rank of a Matrix:

Suppose A is a non-zero matrix, a positive integer r is said to be the rank of A. If
i) 3 @ non-zero r-rowed minor of A.
i1) Every (rH) rowed r-rowed minor of A.
0 0 0
A=1l0 0 0
0 0 O0lzxs

In other words, let A be any non-zero matrix then the rank of a matrix is defined as the order

of non-singular sub-matrix of 4. It is denoted by rank (A)

1 2 3
Eg:-LetA=1[2 1 5
3 4 2343

det|4| = |1(2 — 20) — 2(4 — 15) + 3(8 — 3)|
— | —18 + 22 + 15|

=19 =0
detd =0

~ A is non-singular matrix.

= So, Rank of (A) is 3
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Singular Matrix:

A square matrix ‘A’ is said to be a singular Matrix if [A] = 0
. 1o
Ee: A= [5 n]

Al =0

Non-Singular Matrix:
A Square matrix ' A 'is said to be a non-singular matrix if |A| = 0.
1 0
A=
o 1
Al =1

Eg:

Multiplicative Inverse of a Square matrix:
Let ad — be = 0, then the inverse of ‘A’ denoted byA™! as defined as
1 d —b
-1_
A7= ad — be [—c a ]

1. Ifad —bc =0,|A| =0, i.e,' A'is a singular matrix then A~ is not defined

2. AXATP=A"TxA=1
: _[2 3 -1
Eg: Ifsil—[5 6] then find A
|A|=12—-15= -3

1 _ _ _af_
A= 23]:[—65{;—33 2?—33}

. [—2 1 ]
—|15/3 —-2/3
Methods to find Inverse of a Matrix:

1) Matrix - Inversion Method
2) Cramer’s Method.

1) Matrix - Inversion Method:

In this method, we first express the given coefficient matrix ' x ' is called the variables

matrix and ' B 'is called the constant matrix.
Eg:

ax+by=p
cx +dy=gq

& abl=[
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If A:[S z,x:[; ;B:[z]ﬂlenﬂx:B

multiplying this by A~ on B is

A™l(Ax) = A™!B

Ix=A"'B

X ad i be [fc _ab] [z] < l(ad =be) = 0]
1 d —b

[;] " ad — be [—fp +ﬂg]

[I] _ [ (dp — bq)/(ad — be) }

y (—cp + ga) /(ad — bc)
dp — bq aq —cp

¥ T ad—be 'Y " ad—be

2) Cramer's Method:

Consider two linear equations ax + by = p and c¢x + dy = g expressing these equations in

matrix equation form.

a=[y Jx=[]2=[]

Then |A| = ad —bec = 0

Let B, :[z Z] B, =[S S]

Now
N AR
Al Al
_dp—qb _aq —cp

*=ad —he' ¥ " ad —bre
Orthogonal Matrix:
A square matrix A is said to be orthogonal if A x AT = AT x A = I where I is a unit matrix.

Jr 2 2 Jr 2z -2
A=3l2 1 -2 thenATZE 2 1 2
2 2 -1l

2 -2 -1

1 0 0

AAT:[O 1 0| =1I343
0 0 1l

LAAT=ATA=1
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Determinant of a Matrix:

2 3 -1
LetA=|5 4 6
1 2 6
detd = [2(24 — 12) —3(30 — 6) — 1(10 — 4)]
=24-72—-6
=—54=+0
Properties:
i) |AT] = |4 AdjA = |A| - 1
4B| = |4l - B amt=20
l4]
-1 _i
|A |_|A|

If' A'is invertible, where |A| = 0 (or) 4 is non-singular matrix.
Adjoint of a Matrix:

Let A be a square matrix, then the transpose of the cofactor matrix of A4 is called Adjoint

Matrix of A. It is denoled by Adj A.
1e.,
AdjA = [ co-factor of A]7!

1 -1 2
A=|2 3 5

1 0 3

+9 -1 +(-3)
cofactor of A = [+3 +1 -1

~11 —1 45
9 3 11
adjid=|-1 1 -1
-3 -1 5

Vector of a Matrix:

If a matrix has only one row (or) one column it is called a vector

o A matrix having only one row is called Row vector. Eg: [2 3 4]

2
o A matrix having only one column is called column vector: Eg: [3
4
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2.3. VECTOR SPACE:

Let V be a non-empty set whose elements are called vector. F be a field whose elements are
called Scalars. Then V is said to be Vector space over a field ' F'. It is denoted by V(F) if

i) (V,+) is an abelian group.
i1) 'V 'is closed under scalar multiplication Va + F,a¢ € V3 aa €V
1ii)  Scalar properties:
a) ala+p)=aax+afB;V;a €EF;a,f EV.
b) (a+ b)a =aa+ ba,a,bEF,a€V.
¢) (ab)a =a(ba)Vab€EF acV.
d) l1ra=a-1=a,VacelV.

Dimension of Vector Space:

Let V(F) be a vector space, let ' §' be a basis for V(F) then the number of vectors in the
basis

'S" is called as dimension of a vector space. It is denoted by "dim V ".
Eg:
Let 'V' be a vector space of all ordered pairs of R then § = {(1,0)(0,1)} is basis for' VV'".

dim ¥V = The number of elements in the basis = 2

Properties:

1) If the dimension of vector space is finite, then the vector space is called Finite
dimension vector space.

2) If the dimension of vector space is infinite, then the vector space is called Infinite
dimension vector space.

3) Any two basis of a vector space have same number of vectors.
4) Let V(F) be a vector space W, W, are two subspaces then

dim(W, + W,) = dimW, + dimW, = dim(W; + W,)
5) Let V(F) be a vector space ' W ' be a subspace of ' V' then

dim(v/w) = dimv — dimw.

Linearly Independent:
Let V(F) be a vector space and S = {a,, @y, ... @, } be a non-emply subset of v to ' s 'is said

to be linearly independent then there exists scalars @, @, + a,a, + azas +--- -+ a, &, = 0.

Let a1:a2:a3:-"...:ﬂl
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Linearly Dependent:
Let V(F) be a vector space and S = {a;, a5, ..., ..., @, } be a non-emply subset of ' v ' then ' s’

is said to be Linearly dependent then 3 scalars.

a;a, +aza; +ee taga, =0
leta, = a, = ag = -+ ... = a,, not all zeros
Basis:

Let V(F) be a vectos space. Let' 5'be a finile subset of ' V' ' then ' S ' is said to be Basis for

V(F)if
(1) S is linearly independent (L.I)

(i1) 'S' spans "V'.

Index of a Matrix:
Index of matrix A is defined as the no. of positive terms in the C form (or) natural form of a

matrix. It is denoted by ' P ".

Let
1 -2 +4
Azl—z 2 0
4 0 -7
R, = Ry,+2R, [+ —& *
Ry —R,—4R, 4=[0 —2 8
0 8 -23
1 -2 4
A=lo -2 8]
0 8 -—23
C, — C, +2C,
Cs — Cs — 4C,
1 0 0
A=|0 -2 8| Rs—Rs+4R,
0 o0 o
1 0 0
A:[O —2 0|Cs—Cs +4c,
0 0 9

Eigen values = 1,—2,9

Index (p) = 2, rank(r) = 3,signature(s) =2p—r=4—-3=1
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2.4. PROBLEMS:

2 3 -1 -1

1) Find the rank of a matrix 4 = 1 -1 -2 4

3 1 3 _2

6 ~7

2 -1 -1

Sol: Given 1 —2 —4

3 —2

6 ~7

R1(—>R2

1 -1 —2 —4
|z 3 -1 41
A4=13 1 3 2
6 3 0 -7

R, =R, — 2Ry;R3 —» Ry — 3R;;R, — R, — 6R,
1 -1 —2 —4
0 5 3 7
4 9 10
9 12 17
= C, 4 €;C3 = C3 + 2C1;C4 — €4 +4C,

(==

1y
r

e R B e Y
O o

2 3
Cg—’Cg +ECz, C4—’C4 +£Cz
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===
=

mE=R=a
=

N = o O

(= R

The rank is 3.

2) Find the rank of the matrix 4 = [

Sol): Given

1
0
0

N R oo

coc oo

s O
0 0

0 0 0
-5 11 —4
—15 41 33

1 0 0 0 7

A=|0 1 11 -4

Rg_”Rg_ng

A=|0 1 11 -4

Cg — Cg —_ 11{:‘2,{:‘4 —* C-‘-i» + 462

1 0 0 O
A=|0 1 0 0O
0 0 8 —21
C3 — C3/8;Cy — Cyf/—21
1 0 0 O]
A=[0 1 0 0
0 0 1 1l
C, = C, — Cs
1 0 0 0]
A=[0 1 0 0|~[150]
0 0 1 ol

Rank of A = P(4) = 3.

|

RZ_’RZ_ZR]_; Rg_”Rg_BRl

1 2 —4 5
A= [O -5 11 —4

0 —15 41 -33
Cy; = C; —2C;C3 = C3+4C,;C4, — €4, — 5C,

X

Cz—’

0 3 41 —33.

1 0 0 07

0 0 8 —211

R4_’R4_2R3; C4—>C4—C3

2
—1

-1

G

-5

—4 5

—4 5
6
7
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2.5. SOME IMPORTANT RESULTS:

1. Idempotent Matrix:

Prove that the sum of two idempotent matrix is also idempotent.

Proof: Given that AR = BA =0

Let A, B are two idempotent matrices.

A? = A:B? = B.

To prove A + B is idempotent.
(A+B)? =A+B

Now

(A+B)Y=(A+B)A+B)
= A> + AB + AB + B?

(A+B)?=A+0+0+B[+A?=4;B? =B]

(A+B)?=A+B

(A + B) is idempotent.

2) If A, B are independent and cumulative then prove that AB is idempotent.

Proof: Given A, B are idempotent
A?=A;B? =B.

Given 4, B are cumulative

AB = BA.

To prove ' AB'is idempotent
(AB)? = AB

Now (4B)? = (AB)(A4B)

— A(BA) -B = A(AB) - B
(AB)? = (4A)(BB)
(AB)2 = A?-B2 = AB
(AB)? = AB

~ ' AB'is idempotent matrix.
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Problems:
1) Orthogonal Matrix:
-1/2  1/2 1/2  1/2
|12 -2 1720 172,
Prove that 4 = 1/2 /2 -1/2 1/2 is orthogonal.
1/2 1/2 1/2  —-1/2
Sol) Given that,
—1/2  1/2  1/2  1/2 7
A= /2 —-1/2 1/2 1/2
| 1/2 1/2 —-1/2 1/2
| 1/2 /2  1/2 —-1/2]
—1/2  1/2  1/2  1/2 7
AT — /2 —-1/2 1/2 1/2
1/2 1/2 —-1/2 1/2
| 1/2  1/2  1/2 -1/2
—1/2 1/2 1/2 1/21r-1/2 1/2 1/2 1/2
4. AT — 1/2 —-1/2 1/2 1/2 /2 -1/2 1/2 1/2
“ |12 172 -1/2 1/2 || 1/2 1/2 -1/2 1/2
172 172 1/2 —1/2ll 172 172 172 —1)2
1+1+1+1 -1 1+1+1 —1+1 1+1 -1 1+1 17
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
-1 1 1+1 1+1+1+1 1 1 1+1 1 1+1 1
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
1 1+1 1 1 1 1+1 1+1+1+1 1+1 1 1
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
—1+1+1 1 1 1+1 1 1+1 1 1 1+1+1+1
L4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
1 0 0 0
0 1 0 0 _ g
0 0 1 0
0 0 0 1
A-AT =1

" A'1s orthogonal matrix.

2. Linearly Independent:

1) Prove that {(2,3,4)(0,1,2)(—1,1, —1)} are linearly independent.

Sol): Lets = {(2,3,4)(0,1,2)(—1,1,—1)}
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= a(2,3,4) + b(0,1,2) + c(—1,1,—1) = 0
= (2a,3a,4a) + (0,b,2b) + (—c,c,—c) =0
(2a+0—-c,3a+b+c4a+2b—-c)=0

comparing the LHS and RHS

2a+0—c=0 ;3a+b+c=0;4a+2b—c=0
2a—c=0 — (2) — (3)
2a=c— (1)

4da+2b—c=0
(2)+(B)=3a+b+c =0

7a + 3b =0
— (a)
from £g™(2);
3a+b+c =0
3a+ b+ 2a =0
5a+b=0
— (b)
(@-3(0)=
7a+3b =0
+15a+3b =0
—8a =0
a=20

Suba =0ineqn (1)

' s '1s linearly independent

2.6. CONCLUSION:

In conclusion, determinants, rank, and linear dependence are closely interconnected
concepts in matrix theory. The determinant of a square matrix provides a quick test of
invertibility: a matrix is non-singular if its determinant is non-zero and singular if the
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determinant is zero. The rank of a matrix measures the maximum number of linearly
independent rows or columns, indicating the “information content” of the matrix and
determining the existence and uniqueness of solutions to linear systems. Meanwhile, linear
independence of rows or columns ensures full rank, whereas linear dependence implies
redundancy and reduces the rank. Together, these concepts form the foundation for
understanding matrix behavior, solving linear equations, and analyzing vector spaces in both
theoretical and applied contexts.

2.7. SELF-ASSESSMENT QUESTIONS:
1) Explain the method of determining the rank of a matrix using minors.
2) State and explain the properties of the rank of a matrix.
3) Explain the connection between rank and linear independence of rows/columns.

4) Show that if a matrix A has rank r, then A can be expressed as the product of two
matrices-one of size m X rand the other of size r X n.

2.8. SUGGESTED READINGS:
1) Introduction to Matrix Theory - Arindama Singh
2) Linear Algebra - Jorg Liesen & Volker Mehrmann
3) Matrix Theory and Linear Algebra - Peter Selinge
4) A Textbook of Matrices - Hari Kishan
5) Linear Algebra and Matrix Theory - Robert R. Stoll

Dr. Bala Naga Hima Bindu, Inampudi



LESSON-3

QUADRATIC FORMS
3.0. OBJECTIVES:

After completing this lesson, students will be able to:

e Understand and explain the Cayley-Hamilton theorem including its statement,
meaning, and importance in matrix theory and linear algebra.

e Apply the Cayley-Hamilton theorem to compute powers of matrices, find matrix
inverses (when they exist), and simplify polynomial expressions in matrices.

e Identify and classify quadratic forms, and express them in matrix notation to
analyze their structure.

e Perform reduction of quadratic forms to canonical form or diagonal form using
orthogonal transformations or congruence transformations.

e Determine the nature of quadratic forms (positive definite, negative definite,
indefinite, etc.) using eigenvalues, principal minors, and other criteria.

e Understand the statement and implications of Cochran’s theorem in the context of
quadratic forms and sums of squares in statistics.

e Integrate the concepts of matrix algebra (Cayley-Hamilton theorem), quadratic
forms, and Cochran’s theorem to solve advanced problems in linear algebra,
multivariate analysis, and statistical inference.

STRUCTURE

3.1. Introduction

3.2.  Characteristic Equation, Cayley-Hamilton Theorem
3.3.  Quadratic Forms

3.4. Problems

3.5. Conclusion

3.6. Self-Assessment Questions

3.7. Suggested Readings

3.1. INTRODUCTION

The Cayley-Hamilton theorem, quadratic forms, and Cochran’s theorem are important

tools that help students understand deeper structures in matrix theory and its applications. The
Cayley-Hamilton theorem is significant because it allows complex matrix calculations to be
simplified using the matrix’s own characteristic equation. This makes it easier to compute
matrix powers, understand matrix behaviour, and solve systems that involve repeated
transformations. It has applications in engineering, computer science, control theory, and any
area where linear systems evolve over time.
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Quadratic forms and Cochran’s theorem are widely used in geometry, optimization,
economics, and especially in statistics. Quadratic forms help us to classify surfaces, study the
nature of functions, and determine whether a system is stable or unstable. They are also
essential in statistical methods such as least squares, regression, and multivariate analysis.
Cochran’s theorem adds further importance by explaining how total variation in statistical
models can be broken into meaningful components, which is the foundation of ANOVA and
variance estimation. Together, these topics build strong analytical skills and provide practical
methods for solving real-world problems in science, data analysis, and applied mathematics.
3.2. CHARACTERISTIC EQUATION, CAYLEY -HAMILTON THEOREM:
Characteristic Equation:

Let ' A ' be a square matrix. |4| is determinant then |4 — AI| = 0 is called as Characteristic

Equation of ' 4"
Characteristic Roots (or) Eigen Values (or) Latent Roots:

Let' A 'be a square matrix ' A ' is called determinant then the roots of |4 — AI| = 0 are called

as characteristic roots (or) Eigen values (or) Latent roots.

Characteristic Vector (or) Eigen Vector:

Let A be a square matrix and A is a characteristic root. If x is a non-zero vector such that
Ax = Ax then % is called characteristic vector corresponding to characteristic root A.
Note: Ax = Ax

AT —Ax=0=(A—-1D)x =0

Cayley - Hamilton Theorem:
Statement: Every Square matrix satisfies its characteristic equations.

Proof: Let ' A' be a square matrices of order ' n ' The characteristic equation of ' A4 ' is

|A—AIl=0
S A-AUl=CFD"A"+ A" @At a4+ 1)
ap1A+a,] =0-
To prove
(—D"A" + a; A" + @AV az AT 4 e a1 A+ a,]] =0 - (2)

Every element of (A — AI') is a polynomial A of degrees almost 1.

Every element of adj(4 — AI') is a polynomial in' A ' of degrees (n — 1) (or) less
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=adj(A —A) =B A"+ B A" 24+ By A" +--+ B, 1A+ B,
where By, B,, B, ... ... B, _4, B, are square matrix of order 'n ".

we know that any matrix 'n’

we have
A-adjd = |A| - L
putA=A— AL
(A — AD)adj(A — AI) = |[A— Al| - I [+ from ogn (1)]
= (A—AD[B A" 1 + BpA" 2 4 v + By_1A+B,] = (—1)"
[+ a A" + @ A"2 4 +a, A +a,ll

compare like powers of A

—B, = (—1)™I (A" coefficients )
AB, — B, = (—1)"a,I (A"~ coetticients )

AB,_y— B, =(—1)"a,_,I (A-coefficients )
AB, = (—1)"a,I (constant form)

Multiply above (n + 1) eqn's with A™, A" 1, . . , Al respective, we get

_A"B, = (—1)"A"
AnBl _An_le = (_1)1‘1 . Q1AH_1

A’B,_, —B,A= (—D"a,_,A
A-B, = (-Da,l-

adding the above (n + 1) equations we get,
DA+ A"+t ay - At ayl] =0
Every square matrix will be satisfied its characteristics equation.

Hence the theorem is proved.

3.3. QUADRATIC FORMS:
Quadratic Form:

An expression of the form X, X7, a;;x;x; where a;; and real number is called Quadratic
form.

Eg: 2x? + 3x2 4+ 4x2 4+ 3x,x, + 6x3x3 + 4x3x, is a quadratic form of three variables
X1,%5, X3.
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Matrix of Quadratic Form:
X1
. . x . .
Let ¢ = xT - Ax is a real quadratic form where x = | |. Then ' A4 'is called Matrix of the

X T
quadratic form.

Note: The matrix of quadratic form ' A ' is always Symmetric form

Reduction of A Real Quadratic Form:

If A be any ' n ' rows real symmetric matrix of rank r then 3 a real non-singular matrix.

papT AP = diag[1,1,1,...,1,—1, ..., —1,0,0]

Cochran's Theorem:

Let x4,x5, ..., x,, be the random sample drawn from normal population with parameter

(0, 8%). Let the sum of the squares of the this values to written in the form.

Y xP=0,+0, 4 + 6, where 6, is the quadratic form x; + x5, ... ... x, with rank Q

j = 1,2, ... k then the random voriables 8, 8, ... 8, are mutually independent and Bj-jaz is

x2-variate with 7; degrees of freedom if ¥¥_; r, =n.

J—l'J:J_

1) Prove that value of independent matrix (42 = A) are always either zeros (or) ones.

11
. 12 2
Sol).LetA—l 1
2 2
Now
1 191 1 1 1
2_ |2 2f|2 2|_|2 2|_
A7 = 1 1f|1 1 |1 1 =4
2 2112 2 2 2
A2 =A
~ A is idempotent
Now
1 1 1 3 O-I-l
A—a=]2 2_[)1 0]:2 2
1 1 0 4 1 1 3
2 2 2 2

characteristic equation of ' A 'is
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A—AI| =0

1.10+1
2 2

1 1 3
2 2

1 02 1_0

(z ) 4
1 A2 -1 1—0

a AT

2—-1=0

AA-1)=0
A=0:1-1=0=2>1=1

=0

A=0,L

The Eigen values of independent matrix are 0's (or) 1’s

6 -2 2
2) Find the characteristic roots are of A" = [—2 3 —1]

2 -1 3
6 -2 2
Sol: Given[—-2 3 —1
2 -1 3
6 -2 2 A 0 0 6—A -2 2
A—-Al=|-2 3 -—-1|—-|0 42 O|+] -2 3—-21 -1
2 -1 3 0 0 A 2 -1 3-—-4

Characteristic eg" of Ais |[A —AI| = 0

6—-1 -2 2
-2 3—-1 -1
2 -1 3-2
6 —A[B—AD2— ()] +2[-2(3—-A)+2]+2[2-2(3-A)] =0
6—A9+ A —64A—1]+2[-6+241+2]+2[2—6+21]=0
6—A[A2 —64+8]+2[2A—4]+2[21—-4]=0
642 —361+48 — A +64° —81+41—-8+41—-8=0
A2+ 1242 -3614+32=0
B —-12224+361—-32=0

=0

A = 2, satisfies the g™

(A—2)(A—2)(A—8)=0
1=228
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characteristic vector corresponding to 4 = 2.

X
Letx = [yl be the characteristic vector correspondingto A = 2
z

[A-Allx=0
(A—-2Dx=0
6 —2 2]
A-2I=|-2 3 -1
L2 -1 31
4 -2 2]
=|1-2 1 -1
L2 -1 11

It reduces to Normal Form

R2_3’2R2+R1; R3_>2R3_R1

4 -2 2]
=10 0 0
0 0 0J
v(A—-2)x=0
4 —2 2rx
0 0 0 l}’l =0
0 0 O0ltz
[4x — 2y + 2z
0 =0
L 0
4x — 2y +2z=0
2x —y+z=0
put z = k, and y = k, then
2x — kz + kl =0
2x = kz — kl
ky —ky
X =
2
kz_kl
x
2 . .. .
X = Iyl =| k, be the corresponding characteristic vector corresponding to A = 2.
z
ki

characteristic vector corresponding to A =8

[A—AIlE =0
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[A—8I]x=0
6 -2 2 8 0 0] [-2 -2
A—81’=[—2 3 -1 —[0 8 0‘:[_2 -5
2 -1 3 0 0 8 2 -1
R, » R, —Ry;R; > R3 +R,
—2 —2 2]
=lo -3 -3
Lo -3 -3i
R;— Rs—R,
—2 —2 42
=lo -3 -3
Lo o o
2 -2 2]
[A—8[]f—0=>[0 -3 —3“}11:0
o o ollz

0

—3y — 3z :[O]

0 0

= —2x—2y+2z=10
x+y—z=0

[—Ex — 2y + 2z

putz=k=>y=—k
puty =—k,z=k,in

x—k—k=0 =2x=2k

BB

Xx=k [—1‘ be the characteristic vector corresponding to A = 8

1

Similar Matrices and Equivalent Vectors:
1) Show that (AB)T =BT - AT
Sol: LetA = [au]mxn;B = [bjk]n:{p
Now AB = [CLI-J,-]mwt [JE:FJ-;,;]M]Ea

AB = [Cik]mx;:a Where Cip = Z?:]_ aij'bjk

NOW (AB)T = [C;“'] Where Fki - Cﬂ('

T _ ; o
A = [aU']mxm where a; = Ay

BT = [by, J"]pxn where by; = by;.
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Now BT - AT = [b 4]

pxn [a, I'j]nxm

T
1 — r I
=[ckilpxn Where c;; = Z by ; aj;
j=1

K

Now c;; = cj Z ag;bjy
j=1
mn
= Z a_;ib_;k = Cri
j=1
s (AB)T = BTAT

2) Show that (AB)"! =B"1-A71
Sol) Now (AB)(B™1-A™1) = A(BB™1)- AL
— AIA?
= AA™!

Now (B~1- A 1)(AB) = B~1(A"1.4)B
=B 1.][B=BB!=]
(AB)(B™1-A)= (B 1-4A1)(4B) =1
(AB)"t=p1.a"1

Hence proved.

3) It' A'is square matrix then show that adj AT = (4djA)7

Sol: Let " A ' be a square matrix order ' n '.

Then adjAT, (AdjA)T are square matrix of order 'n’

ij*" element of (adjA)T.

= P(B) < P(AB) +n— P(4)
= P(A) + P(B) —n < P(AB)

P(AB) = P(A) + P(B) —n (or)
Rank(AB) = Rank(A) + Rank(B) — n

Hence proved.
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3.4. PROBLEMS:
1) Find the matrix of the quadratic form x7 + 2x% — 5x% — x,%; + 4%,%3 — 3%, Xa.

Sol): Let® = x? +2x2 — 5x2 — x;x5 + 4x5,xz — 3x1 X3

1 —-1/2 —5/271x,
[x; x3 xg][lfﬁl 2 2 ][?52]
—3/2 2 —5 Jlxs
xT - Ax
1 -1/2 -5/2
where [—1!2 2 2 ]is the matrix of given quadratic form.
—3/2 2 —5

2) Find the quadratic form for the matrix
1 2 3

A=12 0 3
3 3 1

1
2
13

Sol): Given

X1
Letx = [3’52‘

X3

w o N

= L
S——

Quadratic form @ = XTAX.

[1 2 3][*:1
P=1[x1 x2 x3]|2 0 3]||*2
13 3 111%x3

[x1 +2x5; + 3x3
=[x; %2 X3] 2x; +3x3
[3x; + 3x; + x5
= x;(xy + 2x5 + 3x3) + 25(2x; + 3x3) + x3(3x; + 3x5 + x3)
= x? + 2x,%; + 3xyx3 + 2x1%, + 3x,%3 + 3x,x3 + 3x,x3 + X3
=x24 x4+ 4x,%, 4+ 6X,%2 + 6x5%2

3) Find the rank, signature index transformed form and normal form of given

quadratic form.

O = xZ + 6x,%; +4xyx3 + 2x,X,4 + 8x, x5 + 10x3 + 6x,%3 + 8x1x,
+26x,xs + 12x% + 8x3x, + 20x3x5 + 2x2 + 10x,x5 + 17x2

Sol): Given Quadratic form is
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xZ + 6x1x; + 4x,x3+ 2x1x4 + 8xyx5 + 10x2 + 6x5x3 + 8xyx, +

26x,%s + 12x3 + 8x3x, + 20x3x5 + 2x7 + 10x,x5 + 17x2

0 =

| e — |
— oM o= N
=Rk kR
| e —— |
MmO .~
+ O s W
— % <+ N
no Ne S
o o
— el o
|

I

e

-

[a7]

i

™~

A

—

"

[

4
13}

2 1

8 4

12 4 10
2

3
10
8
4 4
4 13 10 5 17

1
3
2
1
sAl;

= x T Ax where 4

Let A =1ITAT (or) I

— 4
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_nUnUnU1
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e
201G00M01000_01___rw.01___
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r 1 0O 0 0 0y 0 -3 2 2 =17
1 0 0 0 O
0100 0 -3 1 2 0 0 0 1 —11 -1 -1
0 01 0 0|=l2 -1 - 0 O0f|Af0 © = 0 0
0000 0 z 2
0000 0 2 -1 0 1 0 0 0 0 1 0
——1 -1 0 0 14 0 O 0 0 1-
= PAQ

Rank of A = no. of non-singular sub-square matrix form = 3

Index of A = P = number of positive (+ ve ) rows in a diagonal form = 3

Signature of A =S = 2p — vy

=6—3=3.

Normal form of @ is ¥ + v# + yZ 4+ 0yZ + 0 - y¢ transformed form is

Vi —3y: +2y3 + 2y, — ¥s

Y2 —=V3 —Ma— Vs

X=QY
s rl —3 2 2 —17
1
x 0 1 -1 -1 -1
z 1
X3|=10 O —— 0 0
X4 2
0 O 0 1 0
_x5_
0 0 0 0 1-
r X1 v —3y2 + 2y3+ 2y, —ys
X3 Yz =¥z —V4 — Vs
X3 p— _}’E
2
X4 Va
X5 Vs
X1 =
X2 =
X3 =
Xy =
Xg =

L
> V3
Va
Vg

4) If AB = A, BA = A then prove that A, B are Idempotent Matrix.
Sol): Giventhat AB =A, BA=RB

since AB — A
= A(BA)

(AB)A _

A-A
AZ

(B
AB

= BA
= A)
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'A" is idempotent

BA =R
B(AB) =B
(BA)-B=B
B-B=RB
B?=RB
~'B' is idempotent.

5) Determinant of Matrix:
Let
2 3 -1
A=1|5 4 6
1T 2 a6
detA=2(24-12)—-3(30—-6)—1(10—4)

=24-72—-6=%0

Properties:

(i) AT = |A| (11) Adj A = |A]

(iii) |AB| = |4] - |B| (iv) A~1 =%‘°‘
1

W) A7 =—

Al

(vi) If' A'is invertable, where |A| = 0 (or) A is non-singular matrix.

Adjoint of Matrix:

Let' A'be a square matrix then the transpose of the cofactor matrix of ' A" is called Adjoint

matrix of A. It is denoted by Adj A.

i.e., adj4 = [ co-factor of A]71.

Problems on Characteristic roots (or) Eigen Roots (or) Latent Roots:

1) Show that the characteristic roots of diagonal matrix are same as its diagonal
element.

a 0 0
Sol): LetA = ’0 b 0‘ be the diagonal matrix.
0 0 ¢
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Now,
[a 0 0] 1 0 0
A—AI=10 b O —)1[0 1 0]
0 0 cl 0 0 1
[a 0 0] A 0 0
=0 b O —[O A 0]
0 0 cl 0 0 A
a— A 0 0
A—Al=| 0 b—A4 OJ
0 0 c—

characteristic eq™ of ' A'is |[A —AI| =0

a—A 0 0
0 b—A4 0
0 0 c—A

(a—A)[b—A)(c—4A)—0+0]=0

(a— Db —-AD(c—4)=0

a=Ab=Ac=41

=0

A = a, b, ¢ are the characteristic roots of A.

The characteristic roots of a diagonal matrix is same as its diagonal elements.

2) Show that characteristic roots of a triangular matrix are same as its diagonal

elements.
a b ]
Sol: Let A=|0 d e| betheupper triangular matrix
0 0 fl
[a — Al b c
Now A— Al = 0 d—A e
0 0 f—A

3) If A is idempotent matrix the rank of A = Trace of A

Sol: Given A bean idempotent matrix
ie, A=A
Eg: 1

1 0
0 1

el s 913 9

Let A:[
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A=A
~'A" is idempotent matrix.

Traceof A=1+1=2
1 o
Now A—[D 1

Rank of A =2; Rank of A = Trace of A

Let A=

[ ————————
W ] = | =
e —— |

W | = | =
W ] = | =

Now A =

W | = | = ] =
W | = | = ] =
W | = | = ] =
Wl W= W]
W | = | = ] =
W | =l | = ] =
W | = | = ] =
W | = | = ] =
W | = | = ] =

I

>

A=A
A is Idempotent matrix

1 1 1 3
TraceofA—g—l—g—l—g— =1

3

101 14
I~ = 2
Iz = =1
I
Now A=1- = 2]
iz 3 3zl
1 1 1]
= = =
-3 3 3
Ry Rz Ra
Riy-7T; Rp>7T; Ra—>1
=1 3 =1
1 1 1
1 1 1
1 1 1

R, =R, —Ry; Rz > R;— Ry

1 1 1
0O 0 0

0 0 0

C, = C,—Cy; C3— C3—C,
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1 0 0
[ooo‘wgg
0 0 0

Rank of A=1
Rank of A = Trace of A

+. Find rank and Inverse of A and also Cauley Hamilton Theorem.

2 3 -1 -1
1 -1 -2 —4

A=z 1 3 -2
6 3 0 7
Sol:  Given matrix
2 3 -1 -1
gl -1 -2 -
3 1 3 =2
6 3 0 7
RZ_’ZRZ_RI; RE_’2R3_3R1, Rd»_:'Rd-_gRl
2 3 -1 -1
0 -5 -3 -7
0 -7 9 -1
0 -6 3 10
Cz_’ECZ_gcl ' C';_’ZCE‘i‘Cl, C4—'2C4+Cl
2 0 0 0
0 —-10 -6 —14
0 —14 —-18 -2
0 -12 6 20
Rg - ]_ORg - 14R2 N R,_i, - 1DR4_ - 12R2
2 0 0 0
0 —-10 -6 -—14
0 0 264 176
0 0 132 368
Cg - ]_OC'; - 6C2 N Cd- - 1':'64 - 14C2
2 0 0 0
0 -10 0 0
0 0 2640 1760
0 0 1320 3680

Cg_’{:|3—110, 64_’{:‘4—10
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2 0 0 0
0 —-10 0 0
0 0 24 176
0 0 12 368
C3—>C3+12; Cy—Co=16
2 0 0 0]
0 —-10 0 0O
0 0 2 11
0 0 1 23]
Cd, - 2-(:4 - 11{:‘3
2 0 0 0
0 —-10 0 O
0 0 2 0
0 0 1 33
64 - 64 =33
2 0 0 0
0 —10 0 0
0 0 2 0
0 0 1 1
64_’64_63 N Rl_’Rl:—z
R, > R,=(=10) ; Ry—Ry=<?2
1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 0
Ry — Ry — R

1 0 0 0

010 0 I, 0

0 0 1 0 0 0

0 0 0 0

Rank of matrix A is 3

3.5. CONCLUSION:

The Cayley—Hamilton theorem, quadratic forms, and Cochran’s theorem together
highlight the power of matrix theory in understanding both algebraic and statistical problems.
The Cayley—Hamilton theorem gives a practical method for simplifying matrix computations
by allowing a matrix to satisfy its own characteristic equation. Quadratic forms provide a
systematic way to study the nature of multivariable expressions and classify them through
reduction methods, helping identify whether a system is stable or variable. Cochran’s
theorem offers a useful technique for breaking down sums of squares into independent
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components, forming the basis for variance partitioning in statistical models. Together, these
methods reinforce the connection between theory and application, strengthening our
analytical and problem-solving skills.

3.6.

3.7.

SELF-ASSESSMENT QUESTIONS:

1) Discuss the classification of quadratic forms.

2) Discuss the role of eigenvalues in studying quadratic forms.

3) Explain the importance of the Cayley—Hamilton theorem in linear algebra.

4) Explain how the Cayley—Hamilton theorem is used to find powers of a singular
matrix.

SUGGESTED READINGS:

1) Hoffman, K. & Kunze, R. Linear Algebra, Prentice-Hall.

2) Strang, G. Introduction to Linear Algebra, Wellesley-Cambridge Press.

3) Lang, S. Linear Algebra, Springer-Verlag.

4) Horn, R.A. & Johnson, C.R. Matrix Analysis, Cambridge University Press.

5) Roman, S. Advanced Linear Algebra, Springer (Graduate Texts in
Mathematics).

6) Searle, S.R., Linear Models, Wiley - for Cochran’s theorem and quadratic forms

1n statistics.

Dr. Bala Naga Hima Bindu, Inampudi



LESSON-4
THEORY OF LINEAR ESTIMATION AND LINEAR MODELS

4.0. OBJECTIVES:
After studying this lesson, you should be able to:
e Understand the concept of linear estimation.
e Explain the general linear statistical model.
e Identify assumptions of linear models.
e Define the estimability of linear parametric functions.

e Distinguish between estimable and non-estimable functions.

STRUCTURE

4.1 Introduction

4.2 Theory of Linear Estimation

4.3 Linear Statistical Model

4.4 Assumptions of Linear Model

4.5 Estimability of Linear Parametric Functions
4.6 Conclusion

4.7 Self-Assessment Questions

4.8 Suggested Readings

4.1. INTRODUCTION:

In statistics, we often collect sample data to estimate unknown population parameters
such as means, regression coefficients, or treatment effects. When the estimator can be
written as a linear combination of the observed data, the problem belongs to the theory of
linear estimation.

Linear estimation is important because:

e Many statistical methods (regression, ANOVA, experimental design) can be
expressed using linear models.

e Linear estimators are mathematically simple and easy to analyse.

e Under suitable conditions, linear estimators possess optimal properties, including
minimum variance.
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Thus, linear models provide a unified framework for statistical inference in practical
problems.

Statistical inference is primarily concerned with drawing conclusions about unknown
population parameters based on observed sample data. In many practical situations-such as
agricultural experiments, industrial quality control, medical research, economics, and social
sciences-the relationship between observations and unknown parameters can be expressed in
a linear form. The study of such problems is known as the theory of linear estimation.

In linear estimation, the estimator of an unknown parameter or a function of
parameters is assumed to be a linear function of the observed random variables. That is,
the estimator can be written as a weighted sum of observations. This restriction to linear
estimators simplifies mathematical analysis and allows the derivation of important optimality
properties, such as minimum variance among a given class of estimators.

Linear estimation plays a central role in statistics because many widely used
techniques-such as regression analysis, analysis of variance (ANOVA), and experimental
design-can all be formulated within the framework of a general linear statistical model. By
using a common model, diverse statistical methods can be studied in a unified manner.

Another important concept in linear models is estimability. In certain models,
especially when the design matrix does not have full rank, it may not be possible to estimate
all individual parameters uniquely. However, some linear combinations of parameters may
still be estimable. Understanding which parametric functions are estimable is essential for
meaningful statistical inference.

The theory of linear estimation also provides the foundation for advanced results such
as the Gauss-Markov theorem, which identifies the best linear unbiased estimator (BLUE),
and its generalisation, known as Aitken’s theorem, applicable when errors are correlated or
have unequal variances. Hence, the study of linear estimation is fundamental to both
theoretical development and practical application of statistical methods.

4.2. THEORY OF LINEAR ESTIMATION:
Let

¥l B}
be a vector of observations.
A linear estimator of a parametric function is of the form:
b=aY
where
' T [ O G 1

1s a vector of known constants.
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Properties:
Expectation of a Linear Estimator
E(B) =E(a'Y) = ad'E(Y)

If

then

Variance of a Linear Estimator
Var(é) =Var(a'V)=a'Var(Y)a
It
Var(Y) =02l
then
Var(@) =a a'd

e Expectation: © (0) =a’E(N)E(D) = <'E(Y)

o Variance: V@ (8) = aVar(¥)aVar(8) = a'Var(¥)a

Example 1 (Linear Estimator)
Let

V.Y ~ (B,0?)
Consider the estimator:

S |
B=5 (% +¥,)
Expectation
E(B) =5 [ECR) + E)] =5 (B+B) = B
Hence, (E ) is unbiased.
Variance

Var(B) = L [Var(v) + Var(%)] = 2 (20%) = Zvar(B) = 2 Var(t;) + Var(1,)] = 2 (202 = &
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4.3. LINEAR STATISTICAL MODEL:
The general linear model is:
Y=Xf¥re
where
e Y =vector of observations

e X =known design matrix
o B =vector of unknown parameters

e & =vector of random errors

Expectation and Variance:
E(Y)=Xp

Var(¥) =Varle) = ol

Example 2 (Linear Model):

o=(r 0) s-(-(i o). 5=

1 0

Let

Then:

B
E(Y) — Xﬁ — (ﬁl)
B

So, the model depends only on B,
Problem-1
Let
Y= ¥ E2. %3}
be a vector of observations such that

E(Y)=6, Var(t)=0¢% i=123

and the hY; ’s are uncorrelated.

Consider the linear estimator:

~ 1
9:§(Y1+Y2 +Y3)
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1y Find £(6)
2) Find Vo (6)

3) Comment on unbiasedness

Solution:
Step 1: Write the estimator in matrix form
B=av

where
111
’““(3’3’3)

E(®)=adE®)

Step 2: Expectation

Since
E(ry=18.0.8)
g
o 11 1
E(0) = (—,—,—) (@) =-(30) =196
33 3
g
Hence, 0 is unbiased.

Step 3: Variance
Given

Var(Y) = o?I

Var(@) =a'Var(Y)a
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Final Answer:

E@)=6, var(d) ="

Problem 2: Linear Statistical Model

Consider the linear model:
Y=XB+¢

where

(1 2) -
1 2
Assume:
E(c)=0 Warle)=6"I
1) Find E(Y)
2) Identify the parametric function involved

3) Comment on estimability

Solution:
Step 1: Expectation of Y
E(Y) =XB

(1 9

By + 2B, By + 2B,
= (Bl + 282): (Bl + 282)
B+ 28, B+ 28,

Step 2: Parametric Function

The model depends only on the linear parametric function:

0 =P + 2B,
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Step 3: Estimability
Since all expected values are the same and depend on

By + 2B,

This linear function is estimable, but P1 and P2 cannot be estimated separately.

Bi + 2B,
EY) = (Bl 7+ 282)
B + 2B,

The model depends only on the estimable function

Final Answer

B1 + 2P,

4.4. ASSUMPTIONS OF THE LINEAR MODEL:
1) Zero Mean Errors
E(e)=0
2) Constant Variance
Var(e) = ol
3) Uncorrelated Errors
Cov(si,sj) =0, i#j
4) Rank of X
e Full rank — unique parameter estimates

e Rank deficient — some parameters not estimable

4.5. ESTIMABILITY OF LINEAR PARAMETRIC FUNCTIONS:
A linear parametric function is:
p=Up
Definition
A function [Pl is estimable if there exists a linear unbiased estimator @ Y'Y such that:
E(@'Y)=1g
Condition for Estimability (Derivation)

E(@a'Y)=a'E(Y)=a'X8
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For Unbiasedness:

a’Xp =1'p

This must hold for all B , hence:

Therefore,

l'=a'X

[ must lie in the row space of X.

Advantages of Linear Estimation and Linear Models:

1)

2)

3)

4)

S)

6)

7)

Simplicity of Formulation:

Linear estimators are simple weighted sums of observations, making them easy to
understand, compute, and interpret.

Unified Framework:

Many statistical techniques, such as regression analysis, ANOVA, and experimental
design, can be expressed using a single linear model.

Mathematical Tractability:

Linear models allow closed-form solutions for estimators, variances, and confidence
intervals using matrix algebra.

Optimal Properties:

Under standard assumptions, linear estimators possess optimal properties such as
minimum variance (Gauss—Markov theorem).

No Need for Normality:

The Gauss—Markov theorem does not require normality of errors; only first and
second moments are needed.

Ease of Extension:

Linear models can be easily extended to generalised models (GLS) to handle
correlated or heteroscedastic errors.

Wide Applicability:

Linear estimation is applicable in agriculture, economics, medicine, engineering, and
social sciences.

Disadvantages of Linear Estimation and Linear Models:

1))

Restriction to Linearity:

Only estimators linear in observations are considered; nonlinear estimators may
sometimes be more efficient.
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2) Dependence on Model Assumptions:

Violations of assumptions such as homoscedasticity or uncorrelated errors can lead to
inefficient estimates.

3) Estimability Issues:

In rank-deficient models, not all parameters are estimable, which can complicate
interpretation.

4) Sensitivity to Outliers:

Linear estimators, especially least squares estimators, can be highly sensitive to
extreme observations.

5) Limited Flexibility:

Complex nonlinear relationships cannot be adequately modelled using simple linear
models.

6) Inefficiency Under Heteroscedasticity:
Ordinary least squares estimators are not efficient when error variances are unequal.
7) Interpretational Difficulties:

In models with constraints or aliasing, individual parameter estimates may lack clear
meaning.

4.6. CONCLUSION:

The theory of linear estimation and linear models provides a systematic approach for
estimating unknown parameters and their linear functions based on observed data. By
expressing estimators as linear functions of the observations, the theory offers mathematical
simplicity and analytical convenience while ensuring meaningful statistical inference. The
general linear model serves as a powerful and unifying framework that encompasses
regression analysis, analysis of variance, and experimental design.

A key concept in linear models is estimability, which determines whether a parameter
or a linear combination of parameters can be uniquely and unbiasedly estimated. In situations
where the design matrix does not have full rank, individual parameters may not be estimable;
however, certain linear functions of the parameters may still be estimated reliably.
Understanding estimability is therefore essential for the correct interpretation of model
parameters.

Under appropriate assumptions on the error structure, linear estimation leads to
optimal estimators with minimum variance properties, forming the basis for further
theoretical developments such as the Gauss—Markov theorem. Overall, the theory of linear
estimation and linear models plays a central role in statistical methodology and forms the
foundation for many practical and advanced statistical techniques.

e Linear estimation deals with estimators linear in observations
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4.7.

4.8.

Linear models provide a unified framework for regression and ANOVA
Estimability ensures the uniqueness of the estimation

Not all parametric functions are estimable in rank-deficient models.

SELF-ASSESSMENT QUESTIONS:

Y
2)
3)
4)
5)
6)
7)
8)

9)

What is meant by a linear estimator?

Write the general form of a linear statistical model.

State the expectation and variance of a linear estimator.
Define a linear parametric function.

What is meant by estimability in linear models?

Explain the theory of linear estimation with suitable examples.
Discuss the assumptions of the general linear statistical model.

What are meant by estimable and non-estimable parametric functions? Explain
with examples.

Explain why rank deficiency of the design matrix affects estimability.

10) Discuss the advantages and disadvantages of linear estimation and linear models.

11) Explain, with a suitable example, a situation where individual parameters are not

estimable function of parameters is estimable.

SUGGESTED READINGS:

1) Rao, C.R. (1973). Linear Statistical Inference and Its Applications. Wiley, New
York. Searle, S.R. (1971). Linear Models. Wiley, New Y ork.

2) Graybill, F.A. (1976). Theory and Application of the Linear Model. Duxbury
Press.

3) Montgomery, D.C., Peck, E.A., & Vining, G.G. (2012). Introduction to Linear
Regression Analysis. Wiley.

4) Kutner, M.H., Nachtsheim, C.J., Neter, J., & Li, W. (2005). Applied Linear
Statistical Models. McGraw-Hill.

5) Johnson, R.A., & Wichern, D.W. (2007). Applied Multivariate Statistical

Analysis. Pearson.

Prof. V.V. Haragopal



LESSON-5
BEST LINEAR UNBIASED ESTIMATOR AND GAUSS-MARKOV
THEOREM

5.0. OBJECTIVES:
After studying this lesson, the student should be able to:
e Understand the concept of unbiased estimation in linear regression models.
e Define and explain the Best Linear Unbiased Estimator (BLUE).
¢ Derive the normal equations using the least squares method.
e State and interpret the Gauss—Markov theorem and its assumptions.

¢ Solve numerical problems to obtain BLUE and estimate linear functions of
parameters.

STRUCTURE:

5.1 Introduction

5.2 Linear Unbiased Estimators

5.3 Best Linear Unbiased Estimator
5.4 Gauss—Markov Theorem

5.5 Estimation of Linear Functions
5.6 Advantages and Disadvantages
5.7 Conclusion

5.8 Self-Assessment Questions

5.9 Suggested Readings

5.1. INTRODUCTION:

In many practical situations, the relationship between a dependent variable and one or
more independent variables is modeled using a linear regression model. The main objective
is to estimate the unknown parameters of the model based on observed data.

Several estimators may be constructed for these parameters. However, an estimator should
possess desirable properties such as linearity, unbiasedness and minimum variance.
Among all estimators that are linear functions of the observations and are unbiased, we seek
the one with the smallest variance. This leads to the concept of the Best Linear Unbiased
Estimator (BLUE).
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The method of least squares provides such an estimator under certain assumptions on
the error terms. The Gauss-Markov theorem establishes that the least squares estimator is
BLUE, making it fundamental in regression analysis and statistical inference.

Thus, this lesson focuses on the derivation, properties, and applications of BLUE and
the Gauss—Markov theorem.

Moreover, the concept of BLUE provides a unifying framework for understanding the
efficiency of different estimation methods in linear models. By restricting attention to linear
and unbiased estimators, the Gauss—Markov theorem offers a clear criterion for optimality
based solely on variance minimization. This result not only simplifies theoretical analysis but
also guides practical model building and interpretation. As a consequence, BLUE serves as a
cornerstone in statistical modeling, enabling reliable parameter estimation across a wide
range of applied disciplines.

5.2. LINEAR UNBIASED ESTIMATORS:

Before identifying the best estimator, it is necessary to understand what is meant by a
linear and an unbiased estimator. In regression analysis, estimators are constructed using
observed sample data, and their performance is judged based on properties such as simplicity,
unbiasedness, and variability. This section introduces the class of estimators that are linear
functions of the observations and whose expected values equal the true parameters.

Consider the general linear statistical model:
Y =XB+¢

where Y is the vector of observations, X is the known design matrix, f is the vector of

unknown parameters, and & is the random error vector with
E(e)=0, Var(e) =c?lL

This model provides the framework for defining linear unbiased estimators.

5.3. BEST LINEAR UNBIASED ESTIMATOR (BLUE):

In Section 5.2, we discussed the class of linear unbiased estimators. Since there can be
many estimators that satisfy linearity and unbiasedness, it becomes necessary to choose the
one that is most efficient. Efficiency is measured in terms of variance. The estimator with
the smallest variance among all linear unbiased estimators is called the Best Linear
Unbiased Estimator (BLUE).

Definition:

An estimator ,é of B is said to be the Best Linear Unbiased Estimator (BLUE) if:

1) Itis alinear function of the observations Y, i.e.,

B = Ay,
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2) It is unbiased, that is,
E(f)=8,

3) It has the minimum variance among all linear unbiased estimators of £.

Least Squares Estimator:

For the linear model:
Y=XB+e E(e)=0, Var(e) =2l
the estimator obtained by minimizing the sum of squared errors
§S=-xp) ¥ —Xp)
is called the least squares estimator.

Differentiating with respect to f and equating to zero:

s _ 2X'Y +2X'XB =0
B p=0

we obtain the normal equations:
X'XB=X'Y.

Solving,

-~

f=XX)XY.
If X'X is nonsingular,
B=x'x)"1x'y.

BLUE of 8

The least squares estimator ﬁ is linear in Y, unbiased, and (as shown by the Gauss—Markov

theorem) has minimum variance among all linear unbiased estimators. Hence,

g=&xX)x'y

is the BLUE of £5.

Variance of BLUE

The variance—covariance matrix of f is given by:

Var(é) =2 (X'X)"L.
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This matrix measures the precision of the parameter estimates.
Numerical Example:

From the simple regression example in Section 5.3, we obtained:

b= (50w =55 3)

Estimate the linear function:
0 = Bo + Py

and find its variance.
Solution:

Here,

()

Estimator:

L 0.33
R=UFf=1[11] (1_50 — 1.83.

Variance:

Var(IB) = o2I'(X'X) X1 = 62[1 1] %(fﬁ 2)6G)

1 5
_ 2, _ _ — _ 2
=0 6(14 6—6+3) g0

__ __ 5
=183 Var(l'B)= 6"2'

54. GAUSS-MARKOV THEOREM:

The Gauss—Markov theorem is one of the most important results in linear regression
analysis. It provides the theoretical foundation for the use of the least squares method by
establishing that, under certain assumptions on the error terms, the least squares estimator is
the Best Linear Unbiased Estimator (BLUE). In other words, among all estimators that are
linear functions of the observations and unbiased for the parameters, the least squares
estimator has the minimum variance.

Statement of the Theorem:
Consider the linear model:

Y = XB + ¢
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where
E(e)=0, Var(e) =c?lL
Then the least squares estimator
B=xx)1x"y

is the Best Linear Unbiased Estimator (BLUE) of f.

Assumptions:
The Gauss—Markov theorem holds under the following assumptions:

1. The model is linear in parameters: ¥ = X8 + .
2. The errors have zero mean: E(g) = 0.
3. The errors are uncorrelated and have equal variance: Var(e) = ¢21.

4. The matrix X has full column rank.

Meaning of the Theorem:
The theorem states that among all estimators of B that are:
e linearinY, and

e unbiased,

the least squares estimator f§ has the smallest variance—covariance matrix. Hence, no other

linear unbiased estimator can be more efficient than ﬁ .

Key Result:

If £ is any other linear unbiased estimator of B, then:

Var(ﬁ) — Var(ﬁ) =0,
that is, the difference is positive semidefinite. Therefore,
Var(ﬁ) = Var(ﬁ).
This proves that ﬁ is the BLUE.
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Importance:

The Gauss-Markov theorem justifies the widespread use of the least squares method
in regression analysis. It assures us that, under mild conditions, least squares provide the most
precise estimates possible within the class of linear unbiased estimators.

5.5. ESTIMATION OF LINEAR FUNCTIONS:

In many practical situations, interest may not be in estimating the entire parameter
vector B, but in estimating certain linear functions of the parameters, such as sums,
differences, or other combinations. This section explains how such functions can be estimated
using the BLUE.

Linear Function of Parameters

A linear function of g is of the form:

6=1Ip,
where [ is a known vector of constants.

Examples:

e B
o Bith
e Br—b

Estimator of I' 8
If ﬁ is the BLUE of B\betap, then the estimator of I'f3 is:

—

=18
Unbiasedness

Since E(ﬁ) =B,

E(lB)=E('B)=UE(B)=1B.

Hence, I'f is an unbiased estimator of I'f.

Variance

The variance of FB is given by:

Var(ﬁ?) = I’Var(,é)t'. =a?l'(X' X)L
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Estimability

A linear function {'f is said to be estimable if there exists a vector a such that:

E@Y) =UB.

That is, [ lies in the row space of X. Only estimable functions can be estimated unbiasedly.

Numerical Example:

From the simple regression example in Section 5.3, we obtained:

-0 w038 )

Estimate the linear function:
0 =By + P,

and find its variance.
Solution:

Here,

=)

Estimator:

FB=1F=1[11] (2;3) — 1.83.

Variance:

Var(IB) = ¢2I'(X'X) 11 = ¢2[1 1] %C‘é _36) G)

1 5
—g2.- 6 — _ 2
o 6(14 6—6+3) G

__ __ 5
=183 Var(l'B)= 6"2'

5.6. ADVANTAGES AND DISADVANTAGES:
Advantages of BLUE

1) Minimum Variance
Among all linear and unbiased estimators, BLUE has the smallest variance, making it
the most efficient estimator in this class.

2) Unbiased Estimation
The expected value of the BLUE equals the true parameter value, ensuring no
systematic over- or under-estimation.
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3)

4)

S)

No Distributional Assumption
The Gauss—Markov theorem does not require normality of the error terms; only mean
zero and constant variance are needed.

Theoretical Foundation of Least Squares
BLUE provides a strong theoretical justification for using the least squares method in
regression analysis.

Wide Applicability
It is extensively used in economics, engineering, agriculture, biostatistics, and social
sciences for reliable parameter estimation.

Disadvantages of BLUE:

1))

2)

3)

4)

5.7.

Restricted to Linear Estimators
BLUE is optimal only within the class of linear unbiased estimators; non-linear
estimators may sometimes perform better.

Dependence on Model Assumptions
If assumptions such as homoscedasticity or uncorrelated errors are violated, BLUE
may lose its optimality.

Sensitivity to Multicollinearity
When the design matrix X is nearly singular, BLUE can have large variances and
unstable estimates.

Not Necessarily Best Overall Estimator
If errors are normally distributed, estimators like the Maximum Likelihood Estimator
(MLE) may be more efficient than BLUE.

CONCLUSION:

In this unit, we studied the problem of estimating parameters in a linear regression

model using linear unbiased estimators. The main points covered are summarized below:

The linear model is given by Y = Xf + ¢, with E(¢) = 0 and Var(e) = oI

A linear estimator is a linear function of the observations, and it is unbiased if its
expected value equals the true parameter.

The Best Linear Unbiased Estimator (BLUE) is the linear unbiased estimator with
the minimum variance.

The least squares estimator # = (X'X)"1X'Y is the BLUE of f .

The normal equations X'X/ = X'V are obtained by minimizing the sum of squared

CITOoT1S.

The Gauss—Markov theorem proves that the least squares estimator is BLUE under
mild assumptions and does not require normality of errors.
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Linear functions of parameters {'f# can be estimated by I’ﬁ, and their variance is

a?l'(X' X)Ll

Numerical examples illustrate the computation and application of BLUE in regression
problems.

This unit establishes the theoretical foundation for regression analysis and provides tools for
efficient estimation and inference in practical applications.

5.8.

5.9.

SELF-ASSESSMENT QUESTIONS:

A. Short Answer Questions:

1)
2)
3)
4)
5)
6)
7)
8)
9)

What is meant by an unbiased estimator?
Define a linear estimator.

What is meant by BLUE?

Write the general linear model.

What are the normal equations?

State the Gauss—Markov theorem.

What does “best” mean in BLUE?

Does the Gauss—Markov theorem assume normality of errors?

Write the expression for the variance of B

10) What is meant by an estimable function?

B. Descriptive / Long Answer Questions:

1)
2)
3)
4)
5)
6)
7)

Explain the concept of linear unbiased estimators.

Derive the normal equations using the least squares method.

Define BLUE and discuss its properties.

State and explain the Gauss—Markov theorem with assumptions.

Show that the least squares estimator is unbiased.

Explain how linear functions 1'Bl"\betal’p are estimated and find their variance.

Discuss the importance of the Gauss—Markov theorem in regression analysis.

SUGGESTED READINGS:

The following books and references are recommended for further study and deeper
understanding of linear models, BLUE, and the Gauss—Markov theorem:
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1)

2)

3)

4)

5)

6)

Rao, C. R. — Linear Statistical Inference and Its Applications, Wiley.
— A classic reference on estimation theory and linear models.

Montgomery, D. C., Peck, E. A., and Vining, G. G. — Introduction to Linear
Regression Analysis, Wiley.

— Excellent for regression methods and applications.
Draper, N. R. and Smith, H. — Applied Regression Analysis, Wiley.
— Focuses on practical aspects of regression analysis.

Kutner, M. H., Nachtsheim, C. J., Neter, J., and Li, W. — Applied Linear
Statistical Models, McGraw-Hill.

— Widely used textbook with examples and exercises.
Seber, G. A. F. and Lee, A. J. — Linear Regression Analysis, Wiley.
— Covers theory and computation in detail.

Graybill, F. A. — Introduction to Matrices with Applications in Statistics,
Wadsworth.

— Useful for matrix methods used in BLUE.

Prof. V.V. Haragopal



LESSON-6
GENERALIZED LINEAR MODEL AND GENERALIZED GAUSS-
MARKOYV (AITKEN’S THEOREM)

6.0. OBJECTIVES:

After studying this lesson, you should be able to:
e Understand models with correlated and heteroscedastic errors.
o Explain the concept of Generalized Least Squares (GLS).
o State and interpret Aitken’s theorem.

e Compare Ordinary Least Squares (OLS) and GLS estimators.

STRUCTURE:

6.1 Introduction

6.2 Generalized Linear Model

6.3 Generalized Least Squares (GLS)

6.4 Numerical Examples

6.5 Generalized Gauss—Markov Theorem (Aitken’s Theorem)
6.6 Comparison of OLS and GLS

6.7 Conclusion

6.8 Self-Assessment Questions

6.9 Suggested Readings

6.1. INTRODUCTION:

In many practical data analysis problems, the assumptions of the classical linear
regression model are often violated. The traditional model assumes that the error terms are
independent and identically distributed with zero mean and constant variance. However, in
real-world applications such as time-series analysis, econometrics, environmental studies, and
engineering experiments, errors may be correlated across observations or may exhibit
unequal variances, a situation known as heteroscedasticity. Under such circumstances, the
Ordinary Least Squares (OLS) estimator, although still unbiased, no longer possesses the
property of minimum variance among all linear unbiased estimators.

To address these limitations, the linear model is extended by allowing a more general
form for the variance—covariance matrix of the error vector. This leads to the formulation of
the Generalized Linear Model, in which the error variance is no longer restricted to a scalar
multiple of the identity matrix. The method of Generalized Least Squares (GLS) naturally
arises from this framework, providing a way to incorporate the known error structure into the
estimation process. The theoretical justification for GLS is given by the Generalized Gauss-
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Markov theorem, also called Aitken’s theorem, which establishes GLS as the best linear
unbiased estimator under generalized error conditions. This lesson focuses on understanding
these extensions and their importance in obtaining efficient and reliable parameter estimates
in practical statistical modeling.

6.2. GENERALIZED LINEAR MODEL:

The generalized linear model provides a natural extension of the classical linear
regression model by relaxing the restrictive assumptions on the error structure. In many
practical situations, the variability in observations is not uniform and the errors may exhibit
correlation due to time, space, or grouping effects. To capture such realistic features of data,
the generalized linear model allows the error term to have a general variance—covariance
matrix rather than assuming equal and independent variances.

The model is written as:
Y=XB+¢
where

e Yisann X 1 vector of observed responses,
e Xisann X p known design matrix,
e Bisap x 1vector of unknown parameters, and
e cisann X 1 vector of random errors.
The key assumptions on the error term are:
E(e) =0, Var(e) = o2V,
where V is a known nxn positive definite matrix.

The matrix V represents the pattern of variances and covariances among the errors. If
V=I, the errors are uncorrelated and have equal variances, and the model reduces to the
classical linear model. If V is diagonal with unequal elements, the model accounts for
heteroscedasticity. If V has non-zero off-diagonal elements, it represents correlated errors.

Thus, the generalized linear model provides a flexible framework for modeling data
with non-spherical error structures and forms the basis for deriving efficient estimation
procedures such as Generalized Least Squares.

6.3. GENERALIZED LEAST SQUARES (GLS):

In the generalized linear model, the presence of correlated errors or unequal variances
makes the Ordinary Least Squares (OLS) method inadequate from the point of view of
efficiency. Although OLS estimators remain unbiased under such conditions, they no longer
have minimum variance among all linear unbiased estimators. To overcome this limitation,
the method of Generalized Least Squares (GLS) is employed. GLS modifies the least
squares criterion by explicitly incorporating the known variance—covariance structure of the
errors, thereby assigning appropriate weights to observations and leading to more precise
parameter estimates.
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When the error vector satisfies
Var(e) = a2V,

the GLS estimator of B\betaf} is obtained by minimizing the weighted sum of squared
residuals:

(¥ — XB)'VL(Y — XB).
This yields the estimator:
Bers = (X'Vix)x'vly.
The variance—covariance matrix of the GLS estimator is:
Var(Bgs) = a2(X'V71x) L

Thus, GLS takes into account the structure of the error covariance matrix and
produces more efficient estimates than OLS whenever errors are correlated or
heteroscedastic. An important property of GLS is that when V=I, the GLS estimator reduces
to the ordinary least squares estimator, showing that OLS is a special case of GLS.

6.4. NUMERICAL EXAMPLE: GLS

Consider the generalized linear model
Y =XB+¢

where

o= ()r-(2)

and the variance—covariance matrix of errors is

1 0

Var(e) = o2V, V= (0 1)

Find the GLS estimate of 3.
Solution:

The GLS estimator is given by:
Bors = (X'VTix)1x'vly.
Step 1: Find V1

vi= ([1} 0.25)'

Step 2: Compute X'V 1X

1

XVIix=01 1) ([1) 0_25) (1) — 14 025= 1.25.
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Step 3: Compute X'V Y

XVly =(1 1) ([1} 0_25) (g) — 41 15=5.5.

Step 4: Compute GLS estimate

. 55

6s =15 4

Answer

EGLS =44

Generalized Linear Model (GLM):
Advantages:

)

2)

3)

4)

S)

Handles non-normal data

GLMs allow response variables to follow distributions like binomial, Poisson, or
gamma, not only normal.

Flexible relationship

The link function connects the mean of the response to predictors, allowing non-linear
relationships.

Widely applicable

Used in logistic regression, Poisson regression, survival analysis, epidemiology, and
social sciences.

Interpretable parameters

Coefficients often have meaningful interpretations (e.g., odds ratios in logistic
regression).

Unifies many models

Linear regression, logistic regression, and Poisson regression are all special cases of
GLM.

Disadvantages:

1)

2)

3)

4)

)

Model selection is difficult

Choosing the correct distribution and link function requires experience.
Computationally intensive

Estimation is done using iterative methods, which can be slow for large datasets.
Sensitive to misspecification

Incorrect choice of link or distribution leads to biased results.

Assumes independence

Standard GLMs assume observations are independent, which may not always be true.
Less intuitive for beginners

Concepts like link functions and likelihood estimation are harder to understand than
simple linear regression.
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6.5. GENERALIZED GAUSS-MARKOV THEOREM (AITKEN’S THEOREM):

The efficiency and optimality of the Generalized Least Squares estimator are formally
established by the Generalized Gauss—Markov theorem, commonly referred to as Aitken’s
theorem. Just as the classical Gauss—Markov theorem shows that the Ordinary Least Squares
estimator is the best linear unbiased estimator under the assumption of independent and
homoscedastic errors, Aitken’s theorem extends this important result to situations where the
error terms have a general variance—covariance structure. It provides the theoretical
foundation for preferring GLS over OLS in models with correlated or unequal error
variances.

Statement:
Consider the general linear model
Y=XB +¢
where
E(s) = 0,Var(e) = o2V
with Va known positive definite matrix.
Theorem (Aitken)

Among all linear unbiased estimators of 3, the estimator

Bors = (X'VIX)IX'v-1ly

has minimum variance.
Hence, ﬁcas is the Best Linear Unbiased Estimator (BLUE) of f3.

Proof of Aitken’s Theorem:
Step 1: Consider a general linear estimator
Let

=AY

=)

where A is a pxn matrix of constants.

Step 2: Condition for unbiasedness
E(B) = AE(Y) = AXP
For unbiasedness:

AX=1, (1)

Step 3: Variance of a linear estimator

Var(B) = AVar (Y)A' = c?AVA’
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Step 4: GLS estimator satisfies unbiasedness
Define
A =X'Vv1ix)xv1?
Then:
AgX = X'V X)XV ix = I,
So, ﬁGLS = AyY is unbiased.
Step 5: Compare variances of estimators

Let E = AY be any linear unbiased estimator.
Define:

D=A4-4,

Then:

Now consider:

Var(B) = o%(4¢ + D)V(4q + D)’
Expanding:

= a?[AgVAy + DVD' + AgVD' + DV Ay]
Step 6: Cross terms vanish
Since DX=0:
AVD' = X'V IX)"I1X'D' =0
Similarly:
DVA, =0

Thus:

Var(B)=Var(Bss) + o2DVD’
Step 7: Conclude optimality
Since V is positive definite:
o?DVD' is positive semi-definite
Therefore:

Va r(ﬁ) = Var(ﬁGLS)
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Hence, no other linear unbiased estimator has smaller variance than the GLS estimator.

This means that among all estimators that are linear functions of the observations and
unbiased for B, the GLS estimator has the minimum variance. Hence, Aitken’s theorem
generalizes the classical Gauss—Markov theorem by replacing the restrictive assumption
Var(e) = 021 with the more general condition Var(e) = ¢2V. When V=I, Aitken’s theorem.

Generalized Gauss-Markov Theorem (Aitken’s Theorem)
Advantages:

1) Best Linear Unbiased Estimator (BLUE)
Aitken’s theorem provides the most efficient linear unbiased estimator when error
covariance is known.

2) Handles heteroscedasticity
Works when error variances are unequal.

3) Allows correlated errors
Useful in time-series and spatial data.

4) Improves efficiency
Generalized Least Squares (GLS) estimators have smaller variance than OLS.

5) Extends classical Gauss—Markov theorem
Makes linear estimation more realistic for practical data.

Disadvantages:

1) Requires known covariance matrix
In practice, the error covariance matrix is often unknown.

2) Estimation becomes complex
Computing GLS estimators involves matrix inversion and numerical methods.

3) Sensitive to covariance misspecification
Incorrect covariance structure leads to inefficient estimates.

4) Limited to linear models
Does not handle non-linear mean structures or non-normal responses.

5) Interpretation remains linear
Cannot model non-linear relationships between predictors and response.

6.6. COMPARISON OF OLS AND GLS:

Having developed the estimators under both the classical and generalized linear
models, it is important to compare the Ordinary Least Squares (OLS) and Generalized Least
Squares (GLS) methods. While both aim to estimate the same parameter vector B\betap, their
performance differs significantly depending on the nature of the error structure. This section
highlights the key differences between OLS and GLS and clarifies when GLS should be
preferred over OLS in practical applications.
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Feature OLS GLS
Error variance a?l a?V
Error structure Independent and equal variance | Correlated and/or unequal variance
Estimator X'X)" X'y X'viX)xvily
Unbiasedness Unbiased if E(e) = 0 Unbiased if E(e) = 0
Efficiency BLUE only when V=I BLUE for general V
Special case — Reduces to OLS when V=I
Computation Simple More computational effort
Applicability Classical regression problems Time-series, P anel, spatial,

heteroscedastic data

Remarks:

e When errors are independent with equal variance, OLS is optimal and simpler to use.

e When errors are correlated or heteroscedastic, OLS loses efficiency, while GLS
remains optimal.

e GLS gives more weight to observations with smaller variances and adjusts for
correlations.

e In practice, if V is unknown, it is estimated, leading to Feasible GLS (FGLYS).

Thus, the choice between OLS and GLS depends on how well the classical assumptions
about the error term are satisfied in a given problem.

6.7. CONCLUSION:

In this lesson, we extended the classical linear regression framework to situations
where the usual assumptions about the error structure do not hold. The generalized linear
model allows the error terms to be correlated and to have unequal variances, which is often
the case in practical data analysis problems. Under such conditions, the Ordinary Least
Squares method, although unbiased, is no longer efficient.

To address this issue, the method of Generalized Least Squares (GLS) was
introduced. By incorporating the known variance—covariance matrix of the errors into the
estimation procedure, GLS provides parameter estimates with smaller variance than OLS
whenever the errors are heteroscedastic or correlated. The derivation of the GLS estimator
shows that it can be obtained by transforming the generalized model into a classical one and
then applying OLS.
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6.8.

6.9.

The optimality of GLS is guaranteed by the Generalized Gauss—Markov theorem
(Aitken’s theorem), which states that the GLS estimator is the Best Linear Unbiased
Estimator of the parameter vector under the generalized model. Finally, a comparison of OLS
and GLS highlights that while OLS is simple and effective under classical assumptions, GLS
is more appropriate and efficient in realistic situations where those assumptions are violated.
Thus, GLS plays a crucial role in modern regression analysis and statistical modeling.

SELF-ASSESSMENT QUESTIONS:

1)

2)

3)

4)
5)

6)
7)

8)
9)

What is meant by a generalized linear model? How does it differ from the
classical linear model?

Why does the Ordinary Least Squares (OLS) estimator lose efficiency when errors
are heteroscedastic or correlated?

Derive the Generalized Least Squares (GLS) estimator starting from the weighted
least squares criterion.

Write down the GLS estimator and its variance—covariance matrix.

State the Generalized Gauss-Markov theorem (Aitken’s theorem). What is its
significance?

Explain the meaning of the term BLUE in the context of Aitken’s theorem.

Compare OLS and GLS estimators with respect to assumptions, efficiency, and
applicability.

In what situations is GLS preferred over OLS? Give practical examples.

What is Feasible GLS (FGLS)? Why is it used in practice?

10) Show that GLS reduces to OLS when the variance—covariance matrix of errors is

o2l\sigma”2 Io2l.

SUGGESTED READINGS:

To gain deeper insight into generalized linear models, GLS estimation, and Aitken’s
theorem, students are encouraged to consult the following standard textbooks and

references:

1) Rao, C.R. (1973). Linear Statistical Inference and Its Applications. Wiley.
— A classic reference covering linear models, estimation theory, and extensions of
the Gauss—Markov theorem.

2) Searle, S.R. (1971). Linear Models. Wiley.

— Provides a comprehensive treatment of linear and generalized linear models
with matrix methods.

3) Graybill, F.A. (1976). Theory and Application of the Linear Model. Duxbury

Press.
— Focuses on both theoretical foundations and practical applications.
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4)

)

6)

Draper, N.R., & Smith, H. (1998). Applied Regression Analysis. Wiley.
— An applied perspective on regression, including handling of non-constant
variance.

Greene, W.H. (2018). Econometric Analysis. Pearson.
— Extensive coverage of GLS, FGLS, and applications in econometrics.

Montgomery, D.C., Peck, E.A., & Vining, G.G. (2012). Introduction to Linear
Regression Analysis. Wiley.

— Useful for understanding practical regression issues and remedies for
assumption violations.

Prof. V.V. Haragopal



7.0. OBJECTIVES:
After studying this unit, you should be able to:
e Understand the concept of total variation in ANOVA.
e Explain the decomposition of the total sum of squares.
e Distinguish between one-way and two-way ANOVA.
e C(Calculate sum of squares due to treatment, error, and interaction effects.
e Analyse both balanced and unbalanced designs in ANOVA.
STRUCTURE:
7.1 Introduction of ANOVA
7.2 Assumptions for ANOVA
7.3 One-Way ANOVA Classification
a) Decomposition of Sum of Squares
b) Example for ANOVA One Way
7.4 Two-Way ANOVA Classification
a) Decomposition of Sum of Squares
b) Example for ANOVA Two Way
7.5 Balanced Vs. Unbalanced Designs
7.6 Conclusion
7.7 Self-Assessment Questions
7.8 Suggested Readings

LESSON-7

ANALYSIS OF VARIANCE (ANOVA)

7.1. INTRODUCTION:

The analysis of variance is a powerful statistical tool for tests of significance. The test
of significance based on t-distribution is an adequate procedure only for testing the
significance of the difference between two sample means. In a situation when we have three
or more samples to consider at a time an alternative procedure is needed for testing the
hypothesis that all the samples are drawn from the same population, i.e., they have the same
mean. For example, five fertilizers are applied to four plots each of wheat and yield of wheat
on each of the plot is given. We may be interested in finding out whether the effect of these
fertilizers in the yields is significantly different or in other words, whether the samples have
come for the same normal population. The answer to this problem is provided by the
technique of analysis of variance. The basic purpose of the analysis of variance is to test the

homogeneity of several means.
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The term 'Analysis of Variance’ was introduced by Prof. R.A. Fisher in 1920's to deal
with problem in the analysis of agronomical data. Variation is inherent in nature. The total
variation in any set of numerical data is due to a number of causes which may be classified
as: (1) Assignable causes, and (ii) Chance causes.

The variation due to assignable causes can be detected and measured whereas the
variation due to chance causes is beyond the control of human hand and cannot be traced
separately.

Definition:

According to Prof. R.A. Fisher, Analysis of Variance (ANOVA) is the "Separation of
variance ascribable to one group of causes from the variance ascribable to other group". By
this technique the total variation in the sample data is expressed as the sum of its non-
negative components where each of these components is a measure of the variation due to
some specific independent source or factor or cause. The ANOVA consists in the estimation
of the amount of variation due to each of the independent factors (causes) separately and then
comparing these estimates due to assignable factors (causes) with the estimate due to chance
factor (causes), the latter being known as experimental error or simply error.

7.2. ASSUMPTIONS FOR ANOVA TEST:

ANOVA test is based on the test statistics F (or) Variance Ratio. For the validity of the F-test
in ANOVA, the following assumptions are made.

1) The observations are independent,
i1)  Parent population from which observations are taken is normal, and

iii)  Various treatment and environmental effects are additive in nature. In the
following sequences we will discuss the analysis of variance for F test

a) One-way classification

b) Two-way classifications

Remarks:

1) ANOVA technique enables us to compare several populations means simultaneously
and thus results in lot of savings in terms of time and money as compared to several
experiments required for comparing two populations means at a time.

2) As pointed out earlier, the origin of the ANOVA technique lies in agricultural
experiments and as such its language is loaded with such terms as treatments, blocks,
plots etc. However, ANOVA technique is so versatile that it finds applications in
almost all types of design of experiments in various diverse fields such as industry,
education, psychology, business etc.

7.3. ANOVA ONE WAY CLASSIFICATION WITH ONE OBSERVATION FOR
EACH SUBCLASS:
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Layout of One-Way Classification:

A One-Way ANOVA (Analysis of Variance) is used to test whether there are statistically
significant differences between the means of three or more independent (unrelated) groups.

Classi ValuesY;; Total T; Mean',.
1 Y11, Yig, o, Vg, T, Yi.
2 Y21, Ya2, .., Yo, T, Y.
i Yit, Y, s Yin, T, 7.
k Yer Yoo o) Yiemy, Ty Y.
GrandTotal G | Grand Mean Y

Mathematical Model

YVij=uta;+e;

Where:
e« Y, is j™ observation in the i*" sub classes
o u= General Mean Effect

e a; = i'*" sub class additive ef fect

e €;~N(0,6%)

Working Rule of ANOVA one-way classification
Explanation of Terms:
e k: number of groups

N: total number of observations

o Set the Hypothesis

e Degree of Freedom

eSS (Sum of Squares): a measure of variability
o SS; =total sum of squares
o SSg =sum of squares between groups (explained variation)
o S5, = sum of squares within groups (unexplained variation)

o MS (Mean Square): an average of the sum of squares (§5/df)
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e F-ratio: used to determine statistical significance (if F is large enough, the null
hypothesis is rejected)

a) Decomposition of Sum of Squares:
Step 1: Set Hypotheses
NullHypothesis(H,): All group means are equal
Ho:py = P2 = o = Mg
Alternative Hypothesis (H1): At least one group mean differs

Step 2: Compute Group Totals and Means

. Yij : Observationjin groupi
mn;

o Totalforgroupi: T, = X1 Yy

T;
i

e  Meanforgroupi:VY,.=
e Grandtotal: G = ZLE?LIYI-J,-
o Grand mean : Y :% where N = Y& | n;

Here unknown parameters are u and t;. We estimate the parameters by using the principle of
least squares (method of least squares).

Minimize the error sum of squares partially differentiating w.r.t. the parameters.

Yy=nta +e; - ()
€ij — YI} H— &
kT4 kT
E:Z EUZZZ (YI_} U_ai) _____ (2)
i=1j=1 i=1j=1

Partial differentiation equ (2) w.r.t u and equated to zero, we get

B T
dE
a_:g_,zzzmj_u_ai)(—l) =0
M 1

i=1j=

i=1 j=1
k
Y..:kni#‘i‘nizai("'zaxz )
i=1
XYYy
p=—y— =Y. - (3)
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Partial differentiation equ (2) w.r.t t; and equated to zero, we get

aal—c-azzZ(YU —a;)(~1) =0

i=1j=
4
YRR
i=1 j=1
a; :T_.Iu'
a =Y, —Y

€ij — YI’}' )

Step 3: Calculate Sum of Squares

Total Sum of Squares (SST):

SSTp = Z Z(

i=1 j=

Between Groups Sum of Squares (SSB):

~ 2

SSBz = ) n(¥.—Y)

gl

[y

1=

Within Groups Sum of Squares (SSW)(Error):

SSWy = Y (v, ~T;)’

SSWyw = S5Tr — S5Bg

Step 4: Compute Degrees of Freedom
dﬁrﬁtwr-?r-?n =k-1
dfwithin = N — k

dftota: =N-—-1
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Step 5: Compute Mean Squares

MSB. — S5S5EB
B k-1
— SSW
w - N o k

Step 6: Compute F-Ratio

 MSBy
- MSWy,

Step 7: Compare with F-Critical

Find Foritica: from F — distribution tableforgiven a(usually 0.05), with

dfi =k—1,df; =N —k

Decision Rule:
If F = Ff?r‘:ft:fﬂl'].l': RBjBCtHn, If F = Fl'??":fﬁl'?ﬂf . Fali to rejBCtHn

Step 8: Conclusion

If H, is rejected, at least one group mean is significantly different.

One-Way ANOVA Table

Sumof | Degreesof
Source of MeanSquare
o Sgiuares | Freedom F — ratio = MS(Between)/MS (Within)
Variation (MS) = §5/df
(55) (df)
Between Groups| SSBg E—-1 MSBg = SSBg/(k—1) | F = MSBg/MSW;,
Within Groups | SSWy, N — k MSWy, = SSWy, /(N — k)
Total SST; N -1

b) Example for ANOVA One Way:

A researcher wants to test whether three different fertilizers affect plant growth
differently. He applies Fertilizer A, B, and C to three groups of plants and records the growth
(in cm) after a fixed time.
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Data:
Fertilizer Plant1 | Plant2 | Plant3
A 20 22 23
B 25 27 26
C 22 20 21
Steps in One-Way ANOVA:
Step 1: Calculate Group Means
e k=3 (number of groups)
e n=3 (observations per group)
e N=9 (total number of observations)
G=206 (Grand Total)
. 7= 2167
. V=" 26.00
. Vo= =2100
Step 2: Calculate the Overall Mean (Grand Mean)
. 7= 2o+22+23+25+29?+2s+22+20+21 _ ? _ 9249

Step 3: Compute Sum of Squares
Total Sum of Squares (SST):

kg
SSTy = ZZ(YU' _7)" =52.89

i=1j=1

= (20 — 22.89)% + (22 — 22.89)% + -+ + (21 — 22.89)?

=8.35+0.79 + 0.01 + 4.45 +16.87 +9.67 + 0.79 + 8.35 + 3.57 = 52.857

(Compute each observation’s squared deviation from the grand mean.)

Between Groups Sum of Squares (SSB):

° —_— —
SSBp = Z n(¥, —Y) =44.19

i=1
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o FertilizerA:3(21.67 — 22.89)? = 3(1.48) = 4.19

o FertilizerB:3(26 —22.89)% = 3(9.67) = 29.01

o FertilizerC:3(21 —22.89)? = 3(3.57) = 10.71
SSBp = 447 + 29.01 + 10.71 = 44.19

Within Groups Sum of Squares (SSW)(Error):

—_ 2
SSWy, = Z(YU- ~Y.) =868

SSW,, = SST; — SSB = 52.87 — 44.19 = 8.68

Step 4: Calculate Degrees of Freedom
d dfbetween:k_lza_lzz
o dfwithin=N—-k=9-3=6
o dfrotmm =N—-1=9-1=8

Step 5: Compute Mean Squares

e MSB=-—2F _ 213 _ 55095
 fhetwasn 2

o MSW =" =% _ 447
d fwithin 6

Step 6: Calculate the F-Ratio

_ MSB  22.095
- MSW  1.447

F ~ 15.24

Step 7: Compare with Critical F-Value / Find p-value
e Use F-distribution table or software with:
e df; = 2(numerator)
e df; = 6(denominator)

o IfFqy = 15.24 > F 3501 = 5.14 (or) p < 0.05, reject Ho.

Conclusion:

Since F = 15.24 is likely greater than the critical value, we reject the null hypothesis and
conclude that there is a significant difference in plant growth among the three fertilizers.
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Degrees of Sum of Mean
Source of Variation Freedom (df) Sq(ggl)*es Square (MS) F-Ratio
Between Groups 44.19 2 22.095 15.24
Within Groups 8.68 6 1.447
Total 52.87 8

Interpretation:

e Since F = 15.24 is quite high and likely exceeds the critical F-value at a = 0.05, we
reject the null hypothesis.

o This means at least one fertilizer has a significantly different effect on plant growth.

o Using the F-distribution table (or calculator), at a = 0.05, with dfl1 =2 and df2 = 6, the
critical value of F = 5.14.

7.4. ANOVA TWO-WAY CLASSIFICATION WITH ONE OBSERVATION PER

CELL:
ANOVA Two Way Classification
Classi ValuesY;; Total T; Mean
I 2 .. n
1 Y11, Yig, w0, Vi, Ty 2
2 Y21, Yoz, o, Yo, T Y.
i Vi, Yo o Yin, T, T.
k Yier, Yiz, ooy Yiemy, T Y.
Mean Y1, Yy o, Y Grand Total G Grand Mean'Y
Mathematical Model
Yiy=n+t+a +F3j + €5
Where:

o Y, isj™ observation in the i*" sub classes
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. i = General Mean Ef fect
e a; = i sub class additive ef fect
e f3; = j™ sub class additive effect

€;;~N(0,0%)

Explanation of Terms:

e k: number of groups

e h=number of classes

e N: total number of observations

e G=Grand Total

e Set the Hypothesis

e Degrees of Freedom

eSS (Sum of Squares): a measure of variability
o SST = total sum of squares
o SSA =sum of squares Factor-A
o SSB =sum of squares Factor-B
o SSE =Sum of squares for Error

e MS (Mean Square): an average of the sum of squares (SS/df)

o F-ratio: used to determine statistical significance (if F is large enough, the null
hypothesis is rejected)

a) Decomposition of Sum of Squares:
Step 1: Set Hypotheses
. NullHypothesis(H,): Allgroup means are equal
Hop: pp = Hz = . = g
Hop: i = M2 = ... = Hy

o Alternative Hypothesis (Hi1): At least one group mean differs

Step 2: Compute Group Totals and Means
. i=1,2 ..,k
J j=1,2, ..., n;
e XX n;t; = 0(Constraintf oridentifiability).

e  k: number of groups
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o N: total number of observations

° Yij : Observationjin groupi

e T, = ET‘:I Y;;: Totalforgroup i

. ?}.:%:Meanforgroupi

. G =X 27, Y, :Grandtotal

e 7=S1hereN= ¥¥ .n;:Grand mean
N

Here unknown parameters are u and t;. We estimate the parameters by using the principle of
least squares (method of least squares).

Minimize the error sum of squares partially differentiating w.r.t. the parameters.

Yijzﬁ-l'ai-i_ﬁj-'_eij (1)

Partial differentiation equ (2) w.r.t u and equated to zero, we get

kM

oE
B—MZGHZZZ(%'_H_??} —a;) (1) =0

i=1j=1

i=1 j=1
k g k g
Y”:kni,u—l-niZcri-l-kZ,Gj -'-Zai: B; =0
i=1 i=1 i=1 j=1
XXy —
== =Y (3

Partial differentiation equ (2) w.r.t o; and equated to zero, we get

.4 mn;
JE
G =022 Y (- n—a— ) (-1 =0

i=1j=1
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ii(yi} —HT® _ﬁj) =0

i=1j=1
a; — f —?

Partial differentiation equ (2) w.r.t §; and equated to zero, we get

o —7-T
€ = i — U a'i_ﬁ}
€ij :}]U_T_?j-i_?

Total Sum of Squares (SST):
kg
ssT=) ) (%~ %)’
i=1j=1

Factor A Sum of Squares (SSA):

k
SSA = Z n (v, -7)
i=1

Factor B Sum of Squares (SSB):

1

SSB = Z K7, -7)°

j=1

Error Sum of Squares (SSE):
_ = =2
SSE = Z(YU- ~Y.-Y;+Y)

SSE = S5T — SSA—SSB

Step 4: Compute Degrees of Freedom

dfFactor‘A =k—-1

dfFactor‘ g—=n— 1

derror =N-k—-n-1
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dftotai =N-1

Step 5: Compute Mean Squares

s SSA
k-1
SSB
MSB = ——
n —1
MSE — SSwW
N —-k—n-—1

Step 6: Compute F-Ratio

MSA MSB

F=ysg d F=grr

Step 7: Compare with F-Critical

Find Foitica: from F — distribution tableforgiven a(usually 0.05), with

df,=k—1,df,=N—k

Decision Rule:

IfF = FC]"itiCﬂI: RE}ECE:HO, IfF = FCY‘iI’iCﬂI:Fa’iE to i"BjBCtHﬂ

Step 8: Conclusion

If H, is rejected, at least one group mean is significantly different.

Degreesof
Sourceof | Sumof MeanSquare ‘ .
Freedom F - ratio = MS(Between) MS Within)
Variation | Squares(SS) (MS) = 55/df
df)
Factor A SSA k —1 | MSBy =SSBg/(k—1)| F =MSA/MSE
Factor B SSB h—1 |MSW, =SSW,/(h—1] F=MSA/MSE
Error SSE N-k-h+1
Total SST N -1
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a) Example for ANOVA Two way:

Sample (Factor A) B1 B2 B3 B4 Row Total
S1 34 23 35 36 128

S2 33 36 32 35 136

S3 28 31 29 30 118
Column Total 95 90 96 101 G=382

Step 1: Set Hypotheses
NullHypothesis(Hy): Allgroup means are equal
Hoi: i = 1 = . = W
Hoz: 1y = 2 = . = Wy
Alternative Hypothesis (Hi): At least one group mean differs
Step 2: Calculate the Overall Mean (Grand Mean)
Grand total G:
G=128+136+118 =382
Number of rows r = 3, columns ¢ = 4, total N=rxc=12

G2 (382)2
CF=— =
N 12

Step 3: Compute the Sum of Squares (SST)

SST=ZY2 —CF

Z Y2 == 347 + 232 + 352 + 36 + 332 + 36 + 322 + 35% + 282 + 31% + 29% 4 30°

=12,160.3333

= 1156 + 5294 1225+ 1296 + 1089 + 1296 + 1024 + 1225 + 784 + 961 + 841 + 900
= 13,326

SST = 13,326 — 12,160.3333 = 1,165.6667

Sum of Squares for Factor A (Rows)

Y (Row Total)?
C

SSA =

B 1282 + 1362 + 1182
- 4

—12,160.3333
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16,384 + 18,496 + 13,924
N 4

—12,160.3333

_ 48,804

—12,160.3333

=12,201 —12,160.3333 = 40.6667

Sum of Squares for Factor B (Columns)

¥ (Column Total)?

SSB = —CF
r
952 4+ 90% 4+ 962 + 1017
= 3 —12,160.3333
9025 + 8100 + 9216 + 10201
= 3 —12,160.3333
36,542
= —12,160.3333

= 12,180.6667 — 12,160.3333 = 20.3334

Error (Residual) Sum of Squares:

Since we have no replication, the “error” is actually the interaction term

(Unexplained Variation):

SSE = 55T — S5A — SSB

SSE = 1,165.6667 — 40.6667 — 20.3334 = 1,104.6666

Step 4: Degrees of Freedom
dfs =r—1=2
dfs=c—1=3
dfi =r—1)(c—1)=2x3=6
dfr=N—-1=11
Step 5: Mean Squares & F-values

s, _ SSA _ 406667
AT df, 2

= 20.33335
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o S55B _ 20.3334 _ 67778
Pl 3
M5, — SSE B 1,104.6666 1841111
ETdfy 6 -
Step 6: Compute F-Ratio
Fo_ MS, _ 20.33335 0.1104
AT MS; 1841111
MSg 6.7778
Fg= ~ 0.0368

MS; 1841111
Step 7: Compare with F-Critical

ANOVA Two-Way Table

Source SS df MS F
Factor A (Rows) 40.6667 2 20.33335 0.1104
Factor B (Cols) 20.3334 3 6.7778 0.0368

Error 1104.6666 6 184.1111

Total 1165.6667 11

Step 7: Conclusion

Interpretation:

Both F, and Fg are far lessthan 1, so there is no statistically significant effect of either
Sample (FactorA) or Column factor (FactorB). The large error term shows that most

variation is unexplained.

7.5. BALANCED DESIGN AND UNBALANCED DESIGN:

Balanced Design:

A balanced design is one where:
o Each treatment (or factor level) has the same number of observations (replications).
o The data is evenly distributed across all groups or cells in the design.

Unbalanced Design an Unbalanced Design occurs when:
e The number of observations (replications) is not equal across treatment groups.

e Some cells (factor combinations) may even be missing entirely.
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7.6.

7.7.

Feature Balanced Design Unbalanced Design
Replications per cell Equal Unequal / Missing
. . Complex (need Type
Analysis Simple (standard ANOVA) VIV SS)
Power Higher Lower (if very uneven)
Interpretation Easy Sometimes tricky
CONCLUSION:

One-Way ANOVA is used when a single factor with two or more levels is studied
to check if there is any significant difference in the means of different groups.
Example: comparing crop yields under different fertilizers.

Two-Way ANOVA is applied when two factors are considered simultaneously. It
evaluates:

1) Main effect of factor A.
2) Main effect of factor B.

3) Interaction effect of A x B. Example: studying the effect of fertilizer type
(Factor A) and irrigation level (Factor B) on crop yield.

Assumptions of ANOVA:
1) Observations are independent.
2) Populations are normally distributed.
3) Variances are equal across groups (homoscedasticity).

ANOVA partitions total variation into between-group and within-group (error)
variation. The F-test determines significance.

Balanced designs (equal sample sizes) make ANOVA simpler, while unbalanced
designs require advanced techniques.

SELF-ASSESSMENT QUESTIONS:

1)
2)
3)
4)
5)

What is the purpose of ANOVA?

Differentiate between one-way and two-way ANOVA with examples.
Define main effect and interaction effect in two-way ANOVA.

What are the assumptions of ANOVA?

Write the mathematical model for one-way ANOVA.
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7.8.

6)
7)
8)

9)

Write the mathematical model for two-way ANOVA with interaction.
How is the F-ratio calculated in ANOVA?

Explain with an example where two-way ANOVA is more appropriate than one-
way ANOVA.

What are degrees of freedom in one-way and two-way ANOVA?

10) State the difference between between-group and within-group variation.

SUGGESTED READINGS:

1)
2)
3)

4)

5)

6)

Montgomery, D.C. (2017). Design and Analysis of Experiments (9" ed.). Wiley.
Fisher, R.A. (1925). Statistical Methods for Research Workers. Oliver & Boyd.

Gupta, S.C., & Kapoor, V.K. (2014). Fundamentals of Applied Statistics. Sultan
Chand & Sons.

Hinkelmann, K., & Kempthorne, O. (2008). Design and Analysis of Experiments.
Wiley.

Ott, R.L., & Longnecker, M. (2016). An Introduction to Statistical Methods and
Data Analysis. Cengage Learning.

Snedecor, G.W., & Cochran, W.G. (1989). Statistical Methods. lowa State
University Press.

Prof. V.V. Haragopal



LESSON-8
MULTIPLE COMPARISON TESTS

8.0. OBJECTIVES:

After completing this unit, you should be able to:

e Explain the need for multiple comparison tests after obtaining a significant
ANOVA result.

o Distinguish clearly between Fisher’s LSD and Duncan’s Multiple Range Test
based on their procedures and error-control strategies.

e Compare the advantages, limitations, and applications of the three methods.

e Use each test to determine which specific group means differ significantly in a
dataset.

o Interpret the outcomes of multiple comparison tests and apply them effectively in
real research situations.

STRUCTURE:

8.1 Introduction

8.2 Need for Multiple Comparison Tests

8.3 Fisher’s Least Significant Difference (LSD) Method
8.4 Duncan’s Multiple Range Test (DMRT)

8.5 Difference Between LSD and Duncan’s

8.6 Applications

8.7 Summary

8.8 Self-Assessment Questions

8.9 Suggested Readings

8.1. INTRODUCTION

In many scientific investigations-such as agricultural trials, medical experiments,
psychological studies, or industrial quality testing-researchers often need to compare the
performance of more than two groups or treatments. For example, a scientist may evaluate
different fertilizers, a doctor may compare multiple drug dosages, or an educator may test
various teaching methods. In all such situations, the central question is whether the group
means differ significantly.

To address this, the Analysis of Variance (ANOVA) is commonly used as an initial
statistical test. ANOVA examines whether there is overall variability among group means
that cannot be explained by chance alone. If ANOVA vyields a significant F-value, it tells us
that at least one group mean is different from the others. However, ANOVA does not
indicate:

e Which specific pairs of means differ,
o How large those differences are, or
o Whether the differences are practically meaningful.
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This limitation requires additional statistical procedures known as multiple
comparison tests or post-hoc tests.

Multiple comparison tests are specially designed to examine the pairwise differences
among all group means in a controlled manner. Without these tests, comparing groups using
several individual t-tests would greatly increase the likelihood of committing a Type I error,
meaning we might incorrectly conclude that two groups differ when they do not.
As the number of groups increases, the number of pairwise comparisons grows rapidly, and
so does the risk of false positives.

To address this, multiple comparison procedures apply statistical corrections,
adjustments, or decision rules that help maintain the overall accuracy of conclusions. These
methods differ in their:

e Stringency or strictness (how much they control Type I error)

o Power (their ability to detect true differences)

o Assumptions (equal sample sizes, equal variances, normality) and
e Computational approaches.

Some methods, such as Fisher’s Least Significant Difference (LSD), are more liberal
and sensitive, making them good for detecting subtle differences but less strict in error
control. Others, like Tukey’s Honest Significant Difference (HSD), provide stronger
protection against Type I error, especially with many groups. Duncan’s Multiple Range Test
lies between these methods, offering a balance of power and flexibility with a stepwise
procedure.

Overall, multiple comparison tests play a crucial role in the interpretation of ANOVA
results. They allow researchers to pinpoint exactly which means differ, understand the pattern
of differences among treatments, and draw reliable conclusions from experimental data. By
choosing an appropriate procedure based on the research design and objectives, investigators
can ensure that their conclusions are both statistically sound and practically meaningful.

8.2. NEED FOR MULTIPLE COMPARISON TESTS:

A significant ANOVA result tells us that group differences exist, but it does not
provide detailed information about where those differences lie. Conducting several
independent t-tests is not recommended because it increases the probability of Type I error
incorrectly concluding that differences exist when they do not. Multiple comparison tests
offer a systematic and statistically valid solution by:

o Adjusting the significance level when multiple pairwise comparisons are made.
e Providing a consistent framework to determine which specific means differ.
e Protecting the study from inflated false-positive rates.

o Allowing researchers to make clear, interpretable decisions about treatment
effectiveness or group behaviour.

Because different tests vary in strictness and power, selecting the right method ensures valid
and reliable conclusions.
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8.3. FISHER’S LEAST SIGNIFICANT DIFFERENCE (LSD) METHOD:

Fisher’s LSD is one of the earliest and simplest post-ANOVA multiple comparison
techniques. It operates by performing pairwise t-tests but only after a significant ANOVA
result has been obtained. The method calculates a minimum difference-called the Least
Significant Difference-that two means must exceed to be considered statistically different.

Key Features:

o It does not strongly adjust for multiple comparisons, making it more liberal (more
likely to find differences).

e The method is powerful when the number of comparisons is small and when the
overall ANOVA is highly significant.

o [t uses the pooled variance from ANOVA to calculate the standard error for pairwise
comparisons, which enhances consistency across tests.

1) Precondition:

o Perform one-way ANOVA first. Apply LSD only if the ANOVA F-test is significant
at the chosen a (e.g. 0.05). LSD uses the pooled error variance (MSE) from that
ANOVA.

2) Notation
e X, and X,:sample means of groupsi and j
* n; andn;:sample sizes of groupsiand j
e MSE: mean square error (pooled within — groups variance) from ANOV A

e df.:errordegreesof freedom from ANOVA

Lerit = Coy2, af, tWO —
o tailed critical t for significance level a (commonly 0.05)

» LSDy;:least significant dif ference for comparison ivs j

* SEj;:standard error of X, — fj

3) Standard error formulas

Equal sample sizes (all groups have n)

2ZMSE
SEU' — n

Unequal sample sizes

1 1
SE;; = jMSE —+—l
n; n;
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Note: LSD assumes homogeneity of variances (pooled MSE valid). If variances are unequal,
LSD is not appropriate without modification.

4) LSD (Critical Difference):

LSDU- = t(;dﬁ;} * SE;;

e This is the minimum absolute difference between X; and X, required for significance

at the two-sided level a.
5) Decision Rule:
e Compare ‘k_’l — X_J, ‘ with LSD;:
. If‘}i—’l —}i_:,‘ > LSD;; — significant (reject Hy:p; = pJ,-).
« If |X,— X| =1SD,; — notsignificant.
6) Equivalent Confidence Interval Form:
o A two-sided 100(1-a) % confidence interval for the difference p; — y; is:
« (X —X)*tazaz SEy.
o If'this interval does not contain 0, the difference is significant at level alpha a.

Study: Compare three fertilizers A,B,C.

A B C

1547 | 1947 | 22.47

16.74 | 20.74 | 23.74

18.00 | 22.00 | 25.00

19.26 | 2326 | 26.26

20.53 | 24.53 27.53

Observed means and sample sizes:

XA:]_B, ?3222, EZES, HA:nB:nCZHZS.
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From ANOVA (given):
MSE = 4.0, dforror = 12.
ANOVA F was significant — proceed with LSD at « = 0.05

StepA — Formulaforstandarderror(equaln)

2+ MSE
SEy= |———

Substitute:

’2 X 4.05 8
SE = — 5 - j; =+/1.6 = 1.2649110 (= 1.265).

Step B — Criticalt
Two — tailed ttt — critical with ¢ = 0.05 and df = 12:
torie = toozs 12 ~ 2.1788 (often rounded to 2.179).
StepC — LeastSignificantDif ference(LSD)
LSD = t,; X SE = 2.1788 X 1.264911064 =~ 2.7560.
So any absolute mean dif ference > 2.7560 is significant at &« = 0.05
Step D — Pairwise dif ferences,compare with LSD
1. B—A=22-18=4.0 > 2.7560 = significant.
2. C—A=25—-18=17.0> 27560 = significant.
3. C—B=25-22=3.0.> 27560 = significant.

All three pairwise dif ferences exceed the LSD
— all means are significantly dif ferent.

StepE — Confidenceintervalsfordifferences(equivalentcheck)
General CI:
(X, — X) £t - SE

For C — B:3.0 £ 2.7560 = [0.2440, 5.7560] — interval does not contain0 —
o« Significant.

e ForB— A:4.01+2.7560 = [1.2440, 6.7560]
e For(C— A:7.0+2.7560 = [4.2440, 9.7560]
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Interpretation(Examplel)
Ata =0.05C > B > A.
Fertilizer C gives the highest mean height, significantly higher than B and 4;

B is significantly higher than A.

Example:

Suppose we test the effect of 3 fertilizers (A, B, C) on plant growth.
o Fertilizer A: 20, 22, 23
o Fertilizer B: 25, 27, 26
e Fertilizer C: 22, 20, 21

From ANOVA, we get:

Means:
e Fertilizer A =222 _ (21.7)
o Fertilizer B = """ = (26.0)
e Fertilizer ¢ = 2222 _ (21.0)

3

Comparisons:

e MSE = 1.0

i dﬁ-‘e‘f‘?‘nr = 6
L4 tﬂ.US.G = 244?

e n =3

Fisher’s Least Significant Difference Formula:

2MSE
1-3a) | n

2x10
LSD = 2.447 X 3 2.0

e A vs B=4.33 — greater than 2.0 — significant

LSD =t
(

Differences:

e AvsC=0.67 — less than 2.0 — not significant

e B vs C=5.0— greater than 2.0 — significant
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Conclusion:

Fertilizer B produces significantly more growth than A and C, but A and C do not
differ.

8.4. DUNCAN’S MULTIPLE RANGE TEST (DMRT):

Duncan’s Multiple Range Test is a post-hoc multiple comparison procedure used after
ANOVA to determine which specific group means differ.

Developed by D.B. Duncan, it is considered less conservative than Tukey’s HSD,
meaning it is more likely to detect differences between groups.

It uses Studentized Range Statistics (g-values) but applies a stepwise increasing
significance level, which gives DMRT more power (higher chance of finding differences).

Key Features of DMRT:

o Stepwise procedure - comparisons begin with the largest range (largest difference
between means).

o Uses g-statistics from the Studentized Range distribution.
e More liberal than Tukey’s HSD, but less liberal than unadjusted LSD.

o Controls Type I error at each step but not the experiment-wise error.

Steps in Duncan’s Multiple Range Test
1) Perform ANOVA DMRT is used only if the ANOVA F-test is significant.
2) Arrange means in ascending or descending order

3) Compute the Standard Error (SE)

’MSE
E= |—

n
where

e MSE = Mean Square Error from ANOVA

e n=number of observations per group (for equal sample size)

1) Find the least significant ranges (LSR)
For a range of » means:

LSR(r) = q, aferror X SE
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2) Compare differences between ordered means against LSR values

If the difference is greater than LSR — means are significantly different.

Example:
Fertilizer | Plant 1 | Plant 2 Plant3 | Mean
A 20 22 23 21.7
B 25 27 26 26.0
C 22 20 21 21.0
From ANOVA, suppose:
Step 1 — Order means
22+ 20+ 21
=———— =(21.0)
3
20+ 22+ 23
=——=(21.7)
3
25+ 27+ 26
=———=(26.0)
3
Comparisons

e MSE = 156

e Errordf = 6

Step 2 — Calculation

1.56
— =072

3

Step 3 — Critical g — values

Take from Studentized Range Table(dependsondf,« = 0.05).

Forr =2,q, =295

Forr =3,q53 = 3.31

Step 4 — Compute LSRs

e LSR,=295x0.72=212

e LSR;=331x072=238
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Multiple Comparison Tests

Step 5 — Compare Differences

e BvsC=26.0-21.0=5.0>2.38 — Significant

e BvsA=26.0-21.7=4.3>2.12 — Significant

e AvsC=21.7-21.0=0.7<2.12 — Not significant

Conclusion: Fertilizer B is significantly better than A and C, but A and C are similar.

8.5. DIFFERENCE BETWEEN FISHERS AND DUNCANS:

Feature

Fisher’s LSD

Duncan’s Multiple Range Test
(DMRT)

Type of method

Pairwise comparison using
pooled t-tests

Stepwise multiple range test

Protection against
Type I error

Weak control - higher
chance of false positives

Moderate control, stronger than
LSD but weaker than Tukey

Requires significant
ANOVA first?

Usually yes (Fisher’s rule)**

Yes, but still conducts stepwise
comparisons

Basis of critical

Constant critical difference
(LSD) using t-value for all

Variable critical ranges (R values)
depending on the number of ordered

value .
comparisons groups compared
Comparison . Compares ordered means in a step-
Compares all pairs equally
approach down procedure
Stringenc More liberal (detects more More conservative than LSD, but
mngency differences) liberal compared to Tukey
Risk of Type I error High Medium
Power (ability to
detect real High (but risks false alarms) Medium-high
differences)

Best used when

Few groups + low risk of
false positives is acceptable

Agricultural / biological experiments
with ordered treatments

Output style

Pairwise tests with single
LSD value

Means are grouped into
homogeneous subsets (e.g.,a, b, ¢
letters)

Interpretation

“Means differ if

Xi— Xj
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8.6. APPLICATIONS:
e Agriculture: Comparing crop yields under different fertilizers.
e Medicine: Comparing effects of different drug dosages.
e Education: Comparing student performance under different teaching methods.

o Psychology / Behavioral Science: Comparing stress levels under different
relaxation techniques (e.g., meditation, music therapy, exercise).

e Manufacturing / Industry: Comparing the strength of materials produced by
different production processes.

8.7. SUMMARY OF MULTIPLE COMPARISON PROCEDURES:

Fisher’s Least Significant Difference (LSD) test is one of the earliest and simplest
post-hoc methods used after ANOVA to identify which group means differ significantly. It
compares pairs of means using the pooled error variance from ANOVA and relies on the #-
distribution. Because it does not strongly control the familywise Type I error rate, it is
considered a liberal method-meaning it often detects significant differences, but at the cost of
a higher risk of false positives. Fisher’s LSD is most suitable when the number of treatments
is small and when researchers want a highly sensitive method to detect differences.

Duncan’s Multiple Range Test (DMRT) is a stepwise procedure that uses the
studentized range statistic (¢) and compares ordered means to determine significant
differences. It provides better error control than LSD while still remaining more powerful
than conservative tests like Tukey’s HSD. DMRT groups means into homogeneous subsets
(A, B, AB, etc.) based on their statistical similarity, making interpretation easier in
agricultural and biological experiments. Although DMRT is less liberal than LSD, it still
allows more flexibility than stricter methods, balancing sensitivity and protection against
false positives.

8.8. SELF-ASSESSMENT QUESTIONS:
1) What is Fisher’s LSD test used for after ANOVA?
2) Why is Duncan’s test considered less strict than other multiple comparison tests?
3) Differences Between Fishers LSD and Duncan’s Test?
4) How does Duncan’s test group treatments compare to Fisher’s LSD?

5) Problems on LSD and Duncans Test?

8.9. SUGGESTED READINGS:
1) Montgomery, D.C. (2017). Design and Analysis of Experiments (9" ed.). Wiley.
2) Fisher, R.A. (1925). Statistical Methods for Research Workers. Oliver & Boyd.
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3)

4)

5)

6)

Gupta, S.C., & Kapoor, V.K. (2014). Fundamentals of Applied Statistics. Sultan
Chand & Sons.

Hinkelmann, K., & Kempthorne, O. (2008). Design and Analysis of Experiments.
Wiley.

Ott, R.L., & Longnecker, M. (2016). An Introduction to Statistical Methods and
Data Analysis. Cengage Learning.

Snedecor, G.W., & Cochran, W.G. (1989). Statistical Methods. lowa State
University Press.

Dr. M. Amulya



LESSON-9
FIXED, RANDOM AND MIXED EFFECT MODELS

9.0. OBJECTIVES:
After Studying this unit, you should able to:
o Understand the difference between fixed, random, and mixed effect models.
o Identify situations where each model is applicable.
e Learn the assumptions behind each model.
e Apply these models in practical research problems.

o Compare their advantages and limitations

STRUCTURE:

9.1 Introduction

9.2 Fixed Effect Model

9.3 Random Effect Model

9.4 Mixed Effect Model

9.5 Comparison of Models

9.6  Applications

9.7 Summary

9.8 Self-Assessment Questions

9.9 Suggested Readings

9.1. INTRODUCTION

In statistical modeling and analysis of variance, factors influencing a response can be
treated as fixed, random, or mixed effects depending on how their levels are chosen. In a
fixed effect model, the levels of the factor are specifically selected by the researcher, and
inference is restricted to those levels only. In contrast, a random effect model assumes that
the factor levels are randomly drawn from a larger population, allowing generalization
beyond the sample. A mixed effect model combines both, where some factors are fixed and
others are random, making it suitable for more complex designs. These models are
fundamental in agriculture, medicine, engineering, and social sciences for designing
experiments and interpreting results accurately.

9.2. FIXED EFFECT MODEL:

A fixed effect model is used when the levels of a factor are specifically chosen by the
researcher and are the only ones of interest. The purpose is to compare these selected
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treatments without generalizing beyond them. The treatment effects are considered constant
(non-random), and inference is limited to the chosen levels.

Model Equation:
Yi=p+ate; &~N(0, 0%
Where:

e Y= Outcome for group i at time t
e u=overall mean

e a;= fixed treatment effect of i level

e &;=random error associated with i level treatment
Example:

A researcher wants to test whether average exam scores differ across three teaching methods
(A, B, C). The data are given below:

Method | S1 S2 S3 S4

A 78 74 82 80
B 85 88 90 87
C 72 70 68 69

Solution Steps:
1) Model: Yij = p + 7; + &
where 1; are fixed effects of teaching method.
2) Hypotheses:
Hoy:1, =15 =1, = 0 (nodif ference)
H,: Atleast one ti #0
3) Means:
Method A mean = 78.50
Method B mean = 87.50
Method C mean = 69.75
Grand mean G = 78.58
4) Calculate Sum of Squares

o Total Sum of Squares (SST):
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BT .
55Ty = ZZ(YI- ;—¥) =686.92

i=1j=1
e Between Groups Sum of Squares (SSB):

k

SSBp = Z n,(¥, — ¥)? = 630.17
i=1

e Within Groups Sum of Squares (SSW):

SSWy, = SST; — SSBy = 56.75

5) Degrees of Freedom:
dfpetween =k —1=3—-1=2
dfithin =N —-k=12—-3=9

dftotai :N_l :12-_1 :11
6) Mean Squares:

SSB
MSBg = o1 315.08

MsW,, =2Y = 631

N—k
7) F-ratio:

MSBg  315.08

F= = ~ 4997
MSW,;,  6.31

8) Decision:

Critical F (2,9) at 0=0.05 = 4.26. Since 49.97 >> 4.26, reject Ho.

Conclusion:

Teaching methods have a significant effect on exam scores. Method B performs best,
Method A is average, and Method C performs worst.

9.3. RANDOM EFFECT MODEL:

A random effect model is applied when the factor levels are randomly sampled from a
larger population. Here, the focus is not on comparing specific treatments but on estimating
the variability among treatments. The treatment effects are assumed to be random variables
with mean zero and constant variance.
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Model Equation:
Yy =u+a; +¢; a ~ N0 %), s ~ N@O°)
Where:

e u = overall mean

e a; = randomeffect of the ith level treatment,

¢ ¢€; = random error

Example:

A manufacturer wants to estimate variability in product weight due to machines. Four
machines are randomly selected from the factory floor and each machine produces 3 items.
The weights (in grams) recorded are:

Machine | Item 1 | Item 2 | Item 3

Ml 50.2 49.8 50.5

M2 51.0 50.6 50.9

M3 49.0 48.7 49.3

M4 50.7 50.4 50.8

Model: Y;; = p + a; + €

a; ~ N(0, 62)(randommachineef fect)

gij ~ N(0, c?)(within — machineerror)

i = 1,..,kmachines; j = 1,...,nitems per machine.
1) Compute machine (cell) means and grand mean:
M1 mean = (50.2 4+ 49.8 + 50.5)/3 = 50.1667

M2 mean = (51.0 4+ 50.6 + 50.9)/3 = 50.8333

M3 mean = (49.0 + 48.7 + 49.3)/3 = 49.0000

M4 mean = (50.7 + 50.4 + 50.8)/3 = 50.6333

Grand mean = (sumofall 12 observations)/12 = 50.1583
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2) Sumsof Squares

k n .
SST = ZZ(YI- ;—¥Y) = 6.8246

i=1j=1

k
SSB = nZ@Yi, — $Y)? = 5.9300

i=1
SSE = S5T — 55B =0.8946

3) Degreesof freedom:

dfg =k—1=3

dfg =k(n—-1)=8

dff =N—1=11

4) Mean Squares

MSB = SSB/(k — 1) =5.9300/3 = 1.9767
MSE = SSE/[k(n — 1)] =0.8946,/8 = 0.1118
5) Variance — component estimates:

MSE = 0.1118

32

2= (MSB —MSE)/n= (19767 — 0.1118)/3 = 0.6216
6) Intraclass Correlation (ICC):

Icc =a2/(62+a%)

I1CC =0.6216/(0.6216 + 0.1118) = 0.847 (~ 84.7%)

Interpretation: about 84.7% of the total variance is due to dif ferences between machines.

7) F —test for random ef fect

__MSB _1.9767
~ MSE 0.1118

— 17.69 withdfl=k—-1=3 anddf2=k(n—1) =8

Critical F(3,8) at «a = 0.05 ~ 4.07.Since 17.69
> 4.07, machine ef fects are significant.
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ANOVA Summary Table
Source SS df MS F
Machines 5.9300 3 1.9767 17.69
Error 0.8946 8 0.1118
Total 6.8246 11
Conclusion:

The random effect of machine is significant (F = 17.69, p < 0.05). Estimated variance
components: between-machine variance ~ 0.6216, within-machine variance = 0.1118. High
ICC (=0.85) indicates most variability comes from machine-to-machine differences.

9.4. MIXED EFFECT MODEL:

A mixed effect model includes both fixed and random factors. Some effects are
chosen deliberately (fixed), while others represent random variation. These models are useful
when experiments involve structured treatments combined with naturally occurring random
factors, such as blocks or subjects.

Model Equation:
Vi = 0+ a; + B+ € fixed, B; ~ N(0,0°B)
u= overall mean

a;= fixed effect of the i treatment
B; = random effect of the j" block

&k = random error

Problem:

A manufacturer wants to estimate variability in product weight due to machines. Four
machines (random sample) are selected and each receives two fertilizers (fixed: F1, F2). Each
machine—fertilizer combination is observed once (one measurement per cell). The weights (in
grams) are:



Theory of Linear Estimation & Analysis... 9.7 Fixed, Random and Mixed Effect...
Machine F1 F2
M1 52 55
M2 48 50
M3 51 53
M4 49 52

Machine means:
M1 mean: 53.50,
M2 mean: 49.00
M3mean: 52.00,
M4 mean:50.50
Grand meanY..= 51.25
Sums of Squares
SST = Z,Z;(V;j — Y..)?* = 35.5000
SSB = aZ;(Y;.—Y..)? = 22.5000
ssA=bz,(Y,-¥..)" =57.5000
SSAB = SST —SSA— SSB = 0.5000
Mean Sum of Squares
MSA = SSA/(a—1),
MSB =SSB/(b —1),

MSAB = SSAB/[(a — 1D(b — 1]

F,test for Fertilizer (fixed):F = MSA/MSAB,(df1=a —1,df2 = (a — 1)(b — 1))

F.est for Machines (random):F = MSB/MSAB, (dfl =b—1,df2=(a—1)(b— 1))

EMS:E[MSA] = 0 + bajg + br = (fixedef fectterm), E[MSB]
= 0% + agjs +aroj, E[MSAB] = 0% + rajs

Becauser =1, Uzandagﬁ arenotseparatelyidentifiable; MSABestimatestheirsum.
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9.5. COMPARISON OF MODELS:
Aspect Fixed Effect Model Random Effect Mixed Effect Model
Model
Specific treatments Treatments are Combination of fixed
Definition P random samples from

chosen by researcher.

a population.

and random factors.

Inference Scope

Limited to chosen
treatments only.

Generalizes to the
entire population.

Both specific and
general conclusions.

Treatment Effect

Constants (ti1)

Random variables

(ai)

Mix of constants and
random variables.

Estimation Focus

Differences between
means.

Variance
components.

Both mean
differences and
variance components.

Randomly chosen

Fertilizers (fixed) +

Examples Fertilizers A, B, C. schools or machines. | fields (random).

Advantages Simple, easy to Allows broad Handles complex,
interpret. generalization. realistic designs.

Disadvantages No generahzanon Complex estimation. Comp pta‘uonally
possible. intensive.

9.6. APPLICATIONS:

1) Agriculture — Fertilizer trials (fixed), soil plots (random), mixed designs for crop

yield.

2) Medicine — Drug dosage levels (fixed), patient-to-patient variation (random).

3) Industry — Comparing manufacturing methods (fixed), machine variation
(random).

4) Education — Studying teaching methods (fixed), schools or classrooms (random).

5) Psychology — Comparing therapy types (fixed) while accounting for subject
variability (random).

6) Environmental Studies — Pollution control methods (fixed) tested across random
locations (random).

9.7. SUMMARY:

Fixed models are used when the levels of a factor (treatments, groups, or categories)
are specifically chosen and represent the entire set of interest. In other words, the researcher
wants to draw conclusions only about the treatments included in the study. Because of this,
differences detected among treatment means apply exclusively to those particular levels.
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Fixed models are common in agricultural experiments, lab studies, and clinical trials where
treatments such as fertilizer types, drug doses, or teaching methods are deliberately selected.
In fixed-effects ANOVA, the treatment means are compared directly, and statistical tests
focus on identifying specific differences among them.

Random models, by contrast, consider treatment levels as a random sample from a
much larger population of possible levels. The goal is not to study those levels individually
but to generalize findings to the broader population. Instead of testing differences among
specific means, random-effect models focus on estimating variance components-how much
variability in the response is due to the random factor. This is useful in biological studies,
multi-site experiments, and situations with subjects drawn randomly from populations.

Mixed models combine both fixed and random effects, allowing some factors to be
specific (fixed) and others to represent random variability. These models are essential in
designs like Randomized Block Designs (RBD), Latin Square Designs (LSD), repeated-
measures studies, and multi-level data where blocks, subjects, or locations act as random
factors. Mixed models improve precision by accounting for structured random variation,
enabling both specific treatment comparisons and broader generalization.

9.8. SELF-ASSESSMENT QUESTIONS:
1) Differentiate between fixed, random, and mixed effect models with examples.
2) Write the assumptions of the random effect model.
3) Why are mixed models useful in agricultural and industrial research?
4) List advantages and disadvantages of fixed effect models.
5) Give one real-life situation for each type of model.

6) In which field would you apply mixed effect models and why?

9.9 SUGGESTED READINGS:
1) Montgomery, D.C. (2017). Design and Analysis of Experiments (9" ed.). Wiley.

2) Hinkelmann, K., & Kempthorne, O. (2008). Design and Analysis of Experiments.
Wiley.

3) Fisher, R.A. (1925). Statistical Methods for Research Workers. Oliver & Boyd.

Dr. M. Amulya



LESSON-10
ADVANCED ANALYSIS OF VARIANCE

10.0. OBJECTIVES:
After reading this unit
e Become familiar to the analysis of variance technique
e Describe the various types of analysis of variance technique
e Describe the various types of assumptions involved in analysis of variance
e Define the various types of linear models used in analysis of various

e Describe the applications of analysis of variance

STRUCTURE:

10.1 Introduction
10.2 Concept of ANOVA
10.3 Terminologies Related to ANOVA
10.3.1 Sum of Square between Groups
10.3.2 Sum of Squares within Groups
10.3.3 F-Ratio
10.3.4 Degree of Freedom
10.3.5 Significance
10.4 Types of ANOVA
10.4.1 One-Way Analysis
10.4.2 Two-Way Analysis
10.4.3 Comparison between One Way and Two-Way ANOVA
10.5 Self-Assessment Questions
10.6 Suggested Readings

10.1. INTRODUCTION:

Analysis of variance (ANOVA) was developed by the pioneering British Statistician
Sir Ronald Aylmer Fisher (R.A. Fisher), who introduced the technique in the 1920s, notably
in his book statistical methods for Research Workers (1925) and The Design of Experiments
(1935) for analysing agricultural data, allowing researchers to Compare means of multiple
groups by partitioning total variance

10.2. CONCEPT OF ANOVA:

ANOVA is a statistical method that analyzes variances to determine if the means from
more than two populations are same. In other words, we have a quantitative response variable
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and a categorical explanatory variable with more than two levels. In ANOVA, the categorical
explanatory is typically referred as the factor.

Analysis of Variance (ANOVA) is a parametric statistical technique used to compare
datasets. This technique was developed by R.A. Fisher, and hence it is refereed in his name as
Fisher’s ANOVA. Its applications are similar to other statistical techniques such as t-test and
z-test and this test is applied for comparing the means and relative variance between samples
or population. ANOVA is considered as paramount test to compare more than two
populations or samples.

This parametric statistical technique holds certain important assumptions including
the following:

1) Independence of Case: In this assumption the dependent variable should be
independent or randomly sample should be selected without any pattern.

2) Normality: In this, the assumption followed is that each group should be distributed
normal. The normality of the group is confirmed by carrying out tests like
Kolmogorov-Smirnov or the Shapiro-Wilk test.

3) Homogeneity: If the means variance between the groups is same, then it is called as
Homogeneity. It can be tested using Levene’s test.

If any data follow the above assumptions, then the analysis of variance (ANOVA)
would be the appropriate technique for carrying out the comparison between the means of
two, or more, populations.

10.3. TERMINOLOGIES RELATED TO ANOVA:
10.3.1. Sum of Square between Groups:

For the sum of the square between groups, the individual means of the group are
calculated followed by the deviation from the individual mean for each group are taken.
Finally sum of all groups is taken. It is also called as ‘between groups variance’ and denoted
as SS(B).

10.3.2. Sum of Squares within Groups:

For sum of squares within a group, first, the grand mean for all groups are calculated
and deviation from the individual group is taken. Finally, the sum of all groups will be made
after squaring the deviation. It is also called as ‘within group’s variance’ and denoted as
SS(W).

10.3.3. F-Ratio:

It is calculated by dividing the sum of the squares between groups by the sum of the
square within a group.
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Fig. 10.1: Graphical Representation of Analysis of Variance

From the above graphical representation, Figure ‘A’ reveals that variance is large
within group while it is small in the case of between the groups. Thus, the calculated ‘F’
value will be smaller. It indicates that there is no significant difference between groups. In
contrast, Fig ‘B’ reveals that variance is small within groups but larger difference in variance
is observed between groups. It thus interprets that there is significance difference between
groups.

10.3.4. Degree of Freedom:

Degree of freedom (DF) for sum of square between group (SS(B)) is calculated by
deducting value one (1) from the number of samples groups (k). Hence it is denoted as DF is
k-1. In the case of sum of squares within group (SS(W)), the degree of freedom is calculated
by deducting number of sample groups (k) from the total observation (N). Thus, the DF is
denoted as N-k.

10.3.5. Significance:

It is important component of ANOVA where level of significance plays an important
role in acceptance or rejection of hypothesis or null hypothesis respectively. Generally, it is
defined as the probability of rejecting the null hypothesis when it is true at a predetermined
level of significance say, 5%, 1%.

Generally, two ways of comparison for significant of ANOVA, that is based on F -
value and P — value.

1) If calculated significance value (F) is compared with critical table value (i.e
F- distribution table value);

o If calculated F value is less than the Critical F value, we accept the null
hypothesis, and then it is interpreted as there is no difference between the groups
means.

e If calculated F value is greater than the Critical F value, we reject the
nullhypothesis, and then it is interpreted as there is difference between the groups
means.
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2) If calculated probability significance value (p) is compared with predetermined level
of significance value (usually at 5%);

e If ‘p’ value is smaller than the predetermined significance level value, we reject
null hypothesis, and then it is interpreted as there is difference between the group
means.

e If °p’ value is greater than the predetermined significance level, we accept null
hypothesis, and then it can be interpreted as there is no significant difference
between groups.

Nowadays modern computers can automatically calculate the probability value for F- ratio.

10.4. TYPES OF ANOVA:
There are three types of ANOVA.
1) One -Way Analysis
2) Two -Way Analysis
3) K-Way Analysis

In these three types of analysis mainly we are using two types that are one way and
two-way analysis of variances.

10.4.1 One-Way Analysis:

When we are comparing more than three groups based on one factor variable, then it
is said to be one-way analysis of variance (ANOVA). One-Way ANOVA is a parametric test.
This test is also known as One-Factor ANOVA / One-Way Analysis of Variance / Between
Subjects ANOVA.

Statistical Analysis of the Model:

Let us suppose that N observations X;(i=1,2,...k;j=1,2,..,r)of a random

arableX are grouped, on some basis, into k classes of sizes ni, ny, ...., ng respectively,

k
(N = Z nij as exhibited below:

i=1
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1 2 Jeoo R Total Mean
1. X Xi2 Xij . Xir, Xi. X,.
2. X2 X2 X5 . Xor. Xa. X,.
i Xi1 Xi Xij . Xir Xi. X,
k Xkl Xk2 Xkj .- - Xkr Xk. X,.
Mathematical Model:

Let xij be the Individual measurement of j experimental units for i treatment. The
mathematical model for one-way classification is

X =p+o;te; Vi=1.2,..k, j=1,2,..1 [1]
where, p1 = General mean

a; = i treatment class effect

eij = Random error
X;; ~N(},L+0Li,02)

Here ejjx is random errors which are identically and independently distributed (iid) following
N (0, 6°).

Assumptions in the Model:
1) All the observations are independent

2) Deferent effects are additive in nature.

3) ¢;~iddN(0,0%)
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Null Hypothesis:

In a one-way ANOVA, there are two possible hypotheses. Let us consider the null
hypothesis under consideration is

H, W=H, =.= 1, U
(or)

H, o =0, =..... =a, 0
(or)

Ho: There is no significance difference between the treatments.

To test the above Null hypothesis, first we estimate the parameters in mathematical
model (1) by using the principle of least square by minimizing the error sum of squares. By
solving the equation (1), we get the following results.

2

Grand Total: g = Zk: Zr: X. Correction Factor: CFzG—k Since N=r*k
ij T

i=1 j=1

k r
Total sum of squares: Tgs= Z z x;—CF

i=1 j=1

T

2
Sum of squares due to treatment: SSTr= =L — CF
T

Sum of squares due to Error: SSE = TSS — SSTr

Degrees of Freedom:
Degrees of freedom carried by TSS is (rtk - 1)
Degrees of freedom carried by SSTr is (k- 1)
Degree of freedom carried by SSE is k(r - 1)

ANOVA Table:

To the above null hypothesis by using this calculation, we construct the following
ANOVA Table.
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Source of | Degrees of Sum of Mean Sum of F-Ratio

Variation freedom squares Squares F cal.val F cri.val
Treatments k-1 SST: MSS. - SSTr = MSS,, F[k—l,k(r—l)

" k-1 " MSS
. @ % los
Error k(r—l) SSE MSS, = SSE - -
k(r—1)

Total rk-1 TSS - -
Statistical Decision:

We compare F calculated value with F critical values @ 5% los. We draw the
conclusions accordingly.

10.4.2. Two-Way Analysis:

The two-way analysis of variance is an extension to the one-way analysis of variance.
When factor variables are more than two, then it is said to be two-way analysis of variance
(ANOVA). That is, when the data is classified into groups according to only two factors, like
age group and gender we call it a two — way classified data and the corresponding ANOVA is
called the Two-way ANOVA. At each combination of the levels of the factors, there may be
more than one data value. This is called replication. Two-way tests can be with or without
replication.

e Two-Way ANOVA with Replication: When there are replications, it is possible to
estimate the interaction or the joint effect of the two factors on the response being
studied.

e Two-Way ANOVA without Replication: When there are no replications, we can
still perform two-way ANOVA. In this case, interactions cannot be estimated.

Statistical Analysis of the Model:

Let there be an ‘N’ experimental unit, in this experiment ‘k’ is number of treatments
and ‘r’ is number of blocks. Here the total variation is divided into three parts.

1) Variation between the Treatments
2) Variation between Blocks
3) Variation due to Error

If there are ‘r’ such blocks, we say that the blocks are at ‘r’ levels. Similarly, if there
are ‘k’ treatments, we say that the treatments are at ‘k’ levels. The responses from the ‘r’
levels of blocks and ‘k’ levels of treatments can be arranged in a two-way layout. The
observed data set is arranged as follows:
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Blocks
1 2 cees Joooo r Block Total Block Mean
Treatments
1. X | X | ooon | Xy | Xue X1 Xi.
2. Xor | X2 | ... Xoj... | Xor Xa. iz.
K Xii | X2 | ..., Xjj - - . Xir Xi. Xk
freament | X, | Xy || Xgee | X, _
ota X, Xk.
_ _ — — Grand Total Grand Mean
Treatment X, X, X X
Mean ) r
Mathematical Model:

Let xjj be the yield from i treatment and j™ block. The mathematical for two-way
classification as follows

Xy =p+a, 4—[_’>j+eij for alli=1,2,..k, j=12,..1

where, p = General mean
0i = i treatment effect
Bi = j™ block effect
eij = Random error

eij ~ N (0, (52)

Null Hypothesis:

There are three pairs of null or alternative hypotheses for the two-way ANOVA. Let
us consider the null hypothesis under consideration is

1) Ho: All treatments are homogeneous

(or)
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2) Ho: All blocks are homogeneous
(or)

To test the above Null hypothesis, first we estimate the parameters in mathematical model (1)
by using the principle of least square by minimizing the error sum of squares.

By solving the equation (1), we get the following results.

Grand Total: G = Zk: Zr: X;

i=l j=1

2

Correction Factor: CF = G_k Since N=r*k
T

k r
Total sum of squares: TSS=>'>"x; -CF

i=l j=1

k

2
in

Sum of squares due to treatment: SSTr = -=-—— CF
r

T
2
ZXJ

Sum of squares due to Block: SSB = jzlk —-CF

Sum of squares due to Error: SSE = TSS — SSB — SSTr

Degrees of Freedom:

Degrees of freedom carried by TSS is (rk — 1)
Degrees of freedom carried by SSTr is (k — 1)
Degrees of freedom carried by SSB is (r— 1)
Degree of freedom carried by SSE is (k—1) (r—1)

ANOVA Table:

To the above null hypothesis by using this calculation, we construct the following
ANOVA Table.
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S .
E E : g < 3 F-Ratio
SEl g2 £ = Mean Sum of
E IR g Squares )
R > 5 & R F cal.val F cri.val
g k-1 SST, MSS, - iSTlr F - MSS,, Flk—Lk(r-1)

! - " MSS

= £ @ 0% los
o
[
2 r—1 | SSB Mss - SSB B - MSB | Fr-1,(k-1)(r-1)] @ a% los
B r—1 "MSS,
=]
o | K(r=1)) SSE | ygg o SSE - -
g (k=1)(r-1)
=

rk-1 TSS - -
=
°
[

Statistical Decision:

We compare ‘F’ calculated value with ‘F’ critical values @ 5% LOS. We draw the
conclusions accordingly.

10.4.3. Comparison between One Way and Two-Way ANOVA:

Basis for Comparison | One Way ANOVA Two Way ANOVA

Meaning One-way ANOVA is a Two ways ANOVA is a
hypothesis test, used to test the | statistical technique wherein,
equality of three of more the interaction between factors,
population means influencing variable can be

simultaneously using variance | studied.

Independent Variable One Two

Number of Observation | Need not to be same in each Need to be equal in each group.
group.

Compares Three or more levels of one Effect of multiple level of two
factor factors.

Design of experiments | Need to satisfy only two All three principles needs to be

principles satisfied
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10.7.

10.8.

Self-ASSESSMENT QUESTIONS:

1) Explain Terminologies Related to ANOVA

2) Explain Types of ANOVA

3) Comparison between One Way and Two-Way ANOVA

SUGGESTED READINGS:
1) Montgomery, D.C. (2017). Design and Analysis of Experiments (9™ ed.). Wiley.
2) Fisher, R.A. (1925). Statistical Methods for Research Workers. Oliver & Boyd.

3) Gupta, S.C., & Kapoor, V.K. (2014). Fundamentals of Applied Statistics. Sultan
Chand & Sons.

Dr. B. Hari Mallikarjuna Reddy



LESSON-11
ANALYSIS OF COVARIANCE

11.0. OBJECTIVES:

There are several important uses of covariance analysis in industrial and agricultural
research. Some of the most important ones are:

e To control experimental error and to adjust treatment means.
e To aid in the interpretation of experimental results.

e To estimate missing data.

STRUCTURE:

11.1  Introduction

11.2  Concept of Analysis of Covariance

11.3  One-Way Classification

11.4 Two-Way Classification (With One Observations Per Cell)
11.5 Self-assessment questions

11.6 Suggested readings

11.1. INTRODUCTION:

The meaning of ANCOVA is Analysis of Covariance. It is a general linear model
with one continuous outcome variable (quantitative) and one or more factor variables
(qualitative). ANCOVA is a merger of ANOVA and regression for continuous variables.
ANCOVA tests whether certain factors have an effect on the outcome variable after
removing the variance for which quantitative predictors (covariates) account. The inclusion
of covariates can increase statistical power because it accounts for some of the variability.

It is well known that in designed experiments the ability to detect existing differences
among treatments increases as the size of the experimental error decreases, a good
experiment attempts to incorporate all possible means of minimizing the experimental error.
Besides proper experimentation, a proper data analysis also helps in controlling experimental
error. In situations where blocking alone may not be able to achieve adequate control of
experimental error, proper choice of data analysis may help a great deal. By measuring one or
more covariates - the characters whose functional relationships to the character of primary
interest are known - the Analysis of Covariance (ANCOVA) can reduce the variability
among experimental units by adjusting their values to a common value of the covariates. For
example, in an animal feeding trial, the initial body weight of the animals usually differs.
Using this initial body weight as a covariate, the final weights recorded after the animals have
been subjected to various physiological feeds (treatments) can be adjusted to the values that
would have been obtained had there been no variation in the initial body weights of the
animals at the start of the experiment. Another example, in a field experiment where rodents
have (partially) damaged some of the plots, covariance analysis with rodent damage as a
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covariate could be useful in adjusting plot yields to the levels that they should have been had
there been no rodent damage in any plot.

ANCOVA requires measurement of the character of primary interest plus the
measurement of one or more variables known as covariates. It also requires that the
functional relationship of the covariates with the character of primary interest is known
beforehand. Generally, a linear relationship is assumed, though other type of relationships
could also be assumed.

Consider the case of a variety trial in which weed incidence is used as a covariate.
With a known functional relationship between weed incidence and grain yield, the character
of primary interest, the covariance analysis can adjust grain yield in each plot to a common
level of weed incidence. With this adjustment, the variation in yield due to weed incidence is
quantified and effectively separated from that due to varietal difference.

ANCOVA can be applied to any number of covariates and to any type of functional
relationship between variables viz. quadratic, inverse polynomial, etc. Here we illustrate the
use of covariance analysis with the help of a single covariate that is linearly related with the
character of primary interest. It is expected that this simplification shall not unduly reduce the
applicability of the technique, as a single covariate that is linearly related with the primary
variable is adequate for most of the experimental situations in industrial and agricultural
research.

11.2. CONCEPT OF ANALYSIS OF COVARIANCE:

Any scientific experiment is performed to know something that is unknown about a
group of treatments and to test certain hypothesis about the corresponding treatment effect.

When variability of experimental units is small relative to the treatment differences
and the experimenter do not wish to use experimental design, then just take large number of
observations on each treatment effect and compute its mean. The variation around mean can
be made as small as desired by taking more observations.

When there is considerable variation among observations on the same treatment and it
is not possible to take an unlimited number of observations, the techniques used for reducing
the variation are

1) Use of proper experimental design and
i1) Use of concomitant variables.

The use of concomitant variables is accomplished through the technique of analysis of
covariance. If both the techniques fail to control the experimental variability then the number
of replications of different treatments (in other words, the number of experimental units) are
needed to be increased to a point where adequate control of variability is attained.

Linear model
Y = XiP1 + Xofot.. A XpBp te,
if the explanatory variables are quantitative variables as well as indicator variables, i.e., some

of them are qualitative and some are quantitative, then the linear model is termed as analysis
of covariance (ANCOV A) model.
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Note that the indicator variables do not provide as much information as the
quantitative variables. For example, the quantitative observations on age can be converted
into indicator variable. Let an indicator variable be

_ {1 if age >17 years
0if age > 17 years.
Now the following quantitative values of age can be changed into indicator variables.
Ages (Years) Ages
14 0
15 0
16 0
17 1
20 1
21 1
22 1

In many real applications, some variables may be quantitative and others may be
qualitative. In such cases, ANCOVA provides a way out.

It helps is reducing the sum of squares due to error which in turn reflects the better
model adequacy diagnostics.

See how does this work:

In one way model: Y; =p+a, +g, we have TSS1, =SSA, +SSE,
In two way model:Y; =p+o;+B;+¢;,  wehave TSSI, =SSA, +SSE,
In two way model:Y; =p+a,+B;+v, +g;, wehaveTSSI, =SSA, +SSB, +SSy, +SSE,

If we have a given data set, then ideally

TTS, = TSS, =TSS,
SSA, =SSA, =SSA;;
SSB, =SSB,

So SSE, > SSE, > SSE,
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Note that in the construction of F — statistics,

SS(effects) /df
SSE /df

So, F- statistic essentially depends on the SSEs.

Smaller SSE = lager F = more chance of rejection.

Since SSA, SSB etc., here are based on dummy variables, so obviously if SSA, SSB,
etc. are based on quantitative variables, they will provide more information. Such ideas are
used in ANCOVA models and we construct the model by incorporating the quantitative
explanatory variables in ANOVA models.

In another example, suppose our interest is to compare several different kinds of feed
for their ability to put weight on animals. If we use ANOVA, then we use the final weights at
the end of experiment. However, final weights of the animals depend upon the initial weight
of the animals at the beginning of the experiment as well as upon the difference in feeds.

Use of ANCOVA models enables us to adjust or correct these initial differences.

ANCOVA is useful for improving the precision of an experiment. Suppose response Y is
linearly related to covariate X (or concomitant variable). Suppose experimenter cannot
control X but can observe it. ANCOVA involves adjusting Y for the effect of X. If such an
adjustment is not made, then the X can inflate the error mean square and makes the true
differences is Y due to treatment harder to detect.

If, for a given experimental material, the use of proper experimental design cannot control the
experimental variation, the use of concomitant variables (which are related to experimental
material) may be effective in reducing the variability.

Consider the One-Way Classification model as
E(YU =B+ e

Var(Y;) = c’

If usual analysis of variance for testing the hypothesis of equality of treatment effects
shows a highly significant difference in the treatment effects due to some factors affecting the
experiment, then consider the model which takes into account this effect

E(Y; =B; + 1t +7,t T I L3 S y

Var(Y;) = o’

E(Yij)=H+(Xi+Bj+Vtij =1, NS j
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E(Yij)= ntoy + B+t +v7,w;
with Y o, "B, =0,
i j

Where are the observations on concomitant variables (which are related to Xj) and
v 1is the regression coefficient associated with ti;. With this model, the variability of treatment

effects can be considerably reduced.

For example, in any agricultural experimental, if the experimental units are plots of
land then, tj can be measure of fertility characteristic of the j™ plot receiving i treatment and
X can be yield.

In another example, if experimental units are animals and suppose the objective is to
compare the growth rates of groups of animals receiving different diets. Note that the
observed differences in growth rates can be attributed to diet only if all the animals are
similar in some observable characteristics like weight, age etc. which influence the growth
rates.

In the absence of similarity, user, which is the weight or age of j animal receiving it
treatment.

If we consider the quadratic regression is given by
E(Y; =B; +7t; + 7,1 i=1 s S I j
Var(Y;) = c’

ANCOVA 1n this case is the same as ANCOVA with two concomitant variables and

In two-way classification with one observation per cell,
E(Y;)=p+o, +Bj+1t; i=1 . TS I i
or

E(Yij)= ntoy + B+t +v,w;
with 3" o, DB, =0,
i j

The concomitant variables can be fixed on random.

We consider the case of fixed concomitant variables only.



| Centre for Distance Education 11.6 Acharya Nagarjuna University

11.3. ONE-WAY CLASSIFICATION:

th

Let ¥, ( j-l.n,i=1.. p) be a random sample of size n, from " normal populations with

mean
ty=E(Y;)= B+ 11,
Var(Yij)=02

Where 3,7 and & are the unknown parameters, t, are known constants which are the

observations on a concomitant variable.

The null hypothesis is

Let

— 1 — 1 — 1
Via _n_i;yjj’yoj _;lzyg/‘oyoo _;Z;tﬁ

- -1 - 1
tai _n_i;twto/ —;Ztﬁ»t”" _;Z;tﬁ

Under the whole parametric space (ﬂ'Q) , use likelihood ratio test for which we obtain the

E 's and 7A/ using the least squares principle or maximum likelihood estimation as follows:

S :ZIZ(J’@/ _f“e'/)z

Minimize
= ZZ(J’@/ -8 _7/’4/)2

N _y
%, for fixed y

:ﬁi:ym_7tio

Put B in S and minimize the function by Z—S =0.
4
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— - 2
1.e., minimize V. —v. —v|t, —tio with respect to ves
ij yl() ]/ ij p 7 g
i

 EEn)fe i)
X

~

Thus ﬂl :yio _}/tio

1y =B+
Since yl’f—;‘ij :yij_E_],;tl.j

=y, =y -7(t-1,)
We have

T HE M b
i j(yij :uij) = (yij Yio ZZ(z‘y—g—g)z

Lo

Under H,: f =...= B, = (say), consider S, = ZZ[yy -B-n, :'2 and minimize S,
i

under sample space (ﬂ'w) ,

oS, _ 0.
op
oS, _ 0
oy

:ﬂ:yOO_ytoo

_Z;(yv’_;w)(’fa)
YY)

i

R »
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and

>

$3 (i) “ZE[(0 il -a)-7le-w)]

The likelihood ratio test statistic in this case is given by

rnwaxL(B,y,Gz)
B mng(B,y,cz)

ZZ(;‘ij_aij)z

— i ]
sz:(yij _;Lij )2

Now we use the following theorems:

Theorem 1:

Let Y = (Y1 Y5, Y, )' follow a multivariate normal distribution N(u, Z) with mean

vector 1 and positive definite covariance matrix 2. Then Y’AY follows a noncentral chi-

square distribution with p degrees of freedom and non-centrality parameter pu'Ap, i.e.,

x’ (p, u'Ap) if and only if XA is an idempotent matrix of rank p.

Theorem 2:
Let Y=(Y,Y,,....Y,)" follows a multivariate normal distribution N(p, £) with

mean vector p and positive definite covariance matrix X. Let Y'AY follows
x*(p, 'Ap) and Y'A,Y follows x’(p,,u'A,u). Then Y'A)Y and Y'A,Y are

independently distributed if A XA, =0.
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Theorem 3:

Let Y=(Y,.Y,,....Y,)" follows a multivariate normal distribution N( L, GZI), then

the maximum likelihood (or least squares) estimator L' of estimable linear parametric

~2
no

2
(&)

function is independently distributed of GZ;L[A& follow N[L'B, L'(X‘X)_1 LJ and
follows x* (n —p)where rank (X) =p.

Using these theorems on the independence of quadratic forms and dividing the

numerator and denominator by respective degrees of freedom, we have

~ 2\
n—p—IZZ(uﬁ—uu)
F= —
P12 vy~ 1y

~F(p-1, n—p) under H,

So, reject H, whenever F>F_, (p -ILn —p) at a level of significance.

The terms involved in A can be simplified for computational convenience follows:

We can write

Sk

-22[n b

A

- 555 -i0)]

A

_ 2 — A . T
- sz: (yij_yoo)—Y(tij—tOO)+Y(tU—too)—y(tij—tio)}

= ZJZ:(YQ‘ _§io)_’;(tij _E):r

= sz:[(yij _;]io)-‘r’;(tij _g)_i((tii _E)T
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-S3bch T3

For Computational Convenience

~ =\ T2 E?
yt yt
X_Z;(Mij_uijj _(TYY_TJ_[EY}’_EJ

it

l Z;(yﬁ—ﬂi\j)z (E —E;J
Where

T, =23 (v-ve)

T30
Ty ZZZ(YU-—Y_W)(%—Q)

L)

By = (v va)

]

E, :ZZ(tij _E)z

i

E, :sz:(yij_y_w)(tﬂ_a)

Analysis of Covariance Table for One-Way Classification is as follows:

Adjusted Sum of F
Squares
Source of De%;ees Sum of Products a
iati Degrees
Variation Freedom yyyt tt % ¢ Sum of
Freedom Squares
Population p-1 pyy(z T, _Eyy)pyt P-1 q =9, — 9, n-p-1lgq,
p— 1 9
(: Tyt _Eyt )Pit (: T, _Eit)
Error n-p E, E, E, n-p-1 Ef/t
q2 = Eyy - E
yy
Total n-1 T T T n-2 T2
M4 vt t qO = Tyy —_yt
tt
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If H, is rejected, employ multiple comprises methods to determine which of the contrasts in
B, are responsible for this.

For any estimable linear parametric contrast

o= zpjcisi with ici =0,
i=l i=1

.~ P . P _
O®= ZCiBi :ZCiYi _Yzciiti

11.4. TWO-WAY CLASSIFICATION (WITH ONE OBSERVATIONS PER CELL):

Consider the case of two-way classification with one observation per cell.

Let y; ~ N(uij, 62) be independently distributed with
E(Yij) = I“H_ai +Bi +Ytija 1= 1~~I, jZ 1..J

V(yy)=0’
Where

p: Grand mean

1

o, : Effect of i" level of A satisfying ) o, =0
J

B, : Effect of j" level of B satisfying > B, =0

t; - observation (known) on concomitant variable.

The null hypothesis under consideration are

Hy, :a,=0a,=..=0a,=0
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Hy :B, =B, =..=B,=0

Dimension of whole parametric space (TEQ) 14+
Dimension of sample space (Ttm) :J+1 under H,
Dimension of sample space (nwﬁ ) :1+1 under H,

With respective alternative hypotheses as

H,, : At least one pair of a's is not equal

H,; : At least one pair of B's is not equal.

Consider the estimation of parameters under the whole parametric space (719)
. . . 2
Find minimum value of % >"(y,—p;) under
i

To do this, Minimize
ZZ(YU —U=ay _Bj _ytij)z
i

For fixed y, which gives on solving the least squares estimates (or the maximum likelihood

estimates) of the respective parameters as

u = y()() - ytO

0 =¥, Yoo =¥ (ton ~ too e (D)
Bj ZY_q—y_m—Y(t_q—E)

Under these values of i, o, and B;, the sum of squares > > (y; —p—o, =B, - 1t; )2
P

reduces to

- N
ZZ[yij_YOo_YOj+Y(tij_tjo_toj+too):| .(2)

]

Now minimization of (2) with respect to y gives
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2+t
(-t -ty + )

i=1 j=1

Using &, we get from (1)

M = yoo _ytoo

N

6= (T T ) - 3o

~ A

Bj = (§oj _§00) Y(on _Eoo)

Hence

ZZ(YU _;Lij)z

i

—ZZ(yﬁ—io—?oo)—{ :

ZZ(yﬁ—io—;oﬁ;w)(tﬁ_zﬁzm)}
J
L ZZ(tij_EiO_on"‘{tm)z

i

Where

E, = ZZ(Yij ~Yio _;,oj +§00)2

o]

E.= ZZ(yij ~Yio _§oj +§00)(tij —tio — to +E00)
i
E, = ZZ(tU _Eio _on +7[00 )2
i
Case (i): Test of H,

Minimize Z Z:(yij —p=B; =t )2 with respect to p, B; and y gives the least squares
i

estimates) (or the maximum likelihood estimates) of respective parameters as

p/\p—

:> }’l' = yOO - YtOO
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. i 3)

Substituting these estimates in (3) we get

SR )
R

t. —ty )}

;

=E_+A ——[ k y‘]
+A,

tt

Where

Eyt = ZZ(YU _§io _§oj +;’00)(tij _Eio —on +E00)
i

Thus, the likelihood ratio test statistic for testing H,, is

) ZZJ:(YU _flij )2 —ZZj:(Yﬁ _;Lij)Z
IR

}\‘1
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Adjusting with degrees of freedom and using the earlier result for the independence of two

quadratic forms and their distribution

2 \? ~ \2
(IJ—I—J) ZZ(Yij_uij) _ZZ(Yij_“ij)
F = — —! ~F(I-1, J-1-1J) under

O >3 (v-h)

H

oo

So, the decision rule is to reject H,, whenever F >E__ (I -L1IJ-1I-] ) .

Case (ii): Testof H ,

Minimize Z Z (yij —p-oy =t )2 with respect to 1, o, and y gives the least squares
i

estimates (or maximum likelihood estimates) of respective parameters as

A J—

H= Yo —Vtoo

~ A =

T (A

. ZZ(Yij_;]io)(tij_{io)
y=—" — e (B
izzj:(tij—tio)

Wi =1+ 0 + 75

From (4), we get

sz:(}’ij_l;ij)z =sz:(3’ij_§io)2_ sz:(tﬁ—{io)z
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B, = X[y, v, ]

Where B, = ZI(on —too )2
J

By = 1Yo~ Yoo (1o —EOO)Z
J

Thus, the likelihood ratio test statistic for testing H, is

(1)

_iZJZ(Yij _;lij )2 _inZ(Yij _!;ij )2 _

")

H,.

iZJZ(Yij _ljlij )2

So, the decision rule is to reject Hy, whenever F, 2 F_, (Y -1, 0-1-J )

~F(J-1, -1-1)

under

If H_, is rejected, use multiple comparison methods to determine which of the contrasts a,

are responsible for this rejection. The same is true for H.

The Analysis of Covariance Table for Two-Way Classification is as follows:

. Degrees of Sum of
Source of Variation Freedom Products F
yy yt tt
Between levels of A I-1 Ay | Ayt | Ax | -1 qo=q3-q - J-1-Jq,
I-1 q,
Between levels of B J-1 Byy | Byt | Be | J-1  qi=qs- B - U-1-Jq,
q2 J-1 q,
Error (I-1) J-1) | Eyy | Yet | Eu 1J-1-J
EZ,
q,=E E—
yy Ett
Total 1J-1 Tyy | Tyt | Ta 1J-2
Error + levels of A 1J-J q]:(AﬂE”),%
Error + levels of B 1J-1 . :(BNE“),(B]; ”;ﬂf
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11.5.

11.6.

SELF-ASSESSMENT QUESTIONS:

1) Explain difference between ANOVA and ANCOVA

2) Explain ANCOVA one-way classification with one observation per cell
3) Explain ANCOVA two-way classification with one observation per cell

4) Explain analysis of covariance with a single concomitant variable.

SUGGESTED READINGS:

1) Kempthorne, O, (1951), The design and Analysis of Experiments, Wiley Eastern
Private Limited.

2) Federer, Wt (1967), Experimental Design Theory and Application, Oxford & IBH
Publishing Company.

3) Montgomery, D.C. (2017). Design and Analysis of Experiments (9™ ed.). Wiley.
4) Fisher, R.A. (1925). Statistical Methods for Research Workers. Oliver & Boyd.

5) Gupta, S.C., & Kapoor, V.K. (2014). Fundamentals of Applied Statistics. Sultan
Chand & Sons.

Dr. B. Hari Mallikarjuna Reddy
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LESSON-12
COMPLETELY RANDOMISED DESIGN

OBJECTIVES:
After studying this unit, you would be able to
e Describe the experimental design;
e Explain the planning and classification of experimental designs;
e Describe the principles of design of experiments;
e Explain the completely randomized design;
e Describe the layout of CRD;
e Explain the statistical analysis of CRD; and

e Explain the advantages and disadvantages as well as the suitability of CRD.

STRUCTURE:

12.1

12.2
12.3

12.4
12.5

12.6
12.7
12.8
12.9

Introduction

12.1.1 Planning of an Experiment

12.1.2. Classification of Experimental Designs
Basic Definitions of Experimental Design
Principles of Design of Experiments

12.3.1. Randomization, Replication, Local Control
Size and Shape of the Plots

Completely Randomized Design

12.5.1. Layout of Completely Randomized Design
12.5.2. Statistical Analysis of Completely Randomized Design
12.5.3. Least Square Estimates of Effects

12.5.4. Variance of the Estimates

12.5.5. Expectation of Sum of Squares

Suitability of CRD

Summary

Self-Assessment Questions

Suggested Readings

12.1. INTRODUCTION:

The modern concepts of experimental designs were primarily given by Ronald A.

Fisher in the 1920s and 1930s at “Rothamasted Experimental Station”, an agricultural
research station of London. In Fisher’s first book on design of experiments, he showed how
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valid conclusions could be drawn efficiently from experiments with natural fluctuation such
as temperature, soil conditions and rainfall, that is, in the presence of nuisance variables. The
known nuisance variables usually cause systematic biases in groups of results (e.g. batch-to-
batch variables). The unknown nuisance variables usually cause random variability in the
results and are called inherent variability or noise.

The experimental design was first used in an agricultural context, the method has been
applied successfully in the military and in industry since the 1940s. Besse Day, working at U.
S. Naval Experimentation Laboratory, used experimental designs to solve problems such as
finding the cause of bad welds at the naval shipyards during World War II. George Box,
employed by Imperial Chemical Industries before coming to the United States, is a leading
developer of experimental design produced for optimizing chemical process. W. Edwards
Deming taught statistical methods, including experimental designs, to Japanese scientist and
engineers in the early 1950’s at a time when “Made in Japan” meant poor quality. Ganache
Taguchi, the most well-known of this group of Japanese scientists is famous for his quality
improvement methods. One of the companies where Taguchi first applied his methods was
Toyota. Since the late 1970’s, U.S. industry has become interested again inquality
improvement initiatives, now known as “Total Quality” & “Six-sigma” programs. Design of
experiments is considered an advanced method in the six sigma programs, which were
pioneered at Motorola & GE.

According to Bernad Ostle, “The design of experiment is, the complete sequence of
steps taken ahead of time to ensure that the appropriate data will be obtained in a way which
permits an objective analysis to valid inferences with respect to stated problem”.

In any field of study either in life sciences or some other, it is essential to plan an
experiment, i.e. what is the object and which type of data is required. In order to make use of
time and energy spent on experiment, it should be planned with a careful designing. Once a
design of experiment is decided, the observations are obtained from it and with the technique
of analysis of variance, the data is analyzed.

12.1.1. Planning of an Experiment:

There are some basic points regarding the planning of an experiment, which should be
under consideration. These are as follows:

1. The Experiment should be Free from Bias:

An experiment must be planned so that it gives an unbiased estimate of the values we wish to
measure. It is a matter of the design being such that no bias on the part of the experimenter
can possibly enter into the results. This is achieved mainly by randomisation.

2. There must be a Measure of Error:

The true experiment is one that is strictly objective. It should furnish a measure of error and
this error alone should be the measuring stick of significance.

3. There must be a Clearly Defined Objective:

For an experiment it is essential to specify the objects perfectly. In other words, the
objective of the experiment should be clearly defined.
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4. The Experiment should have Sufficient Accuracy:

The accuracy of an experiment can be brought by the elimination of technical errors
and by increasing replications. The number of replications should be decided to produce a
given degree of accuracy.

12.1.2. Classification of Experimental Designs:

Statisticians by themselves do not design experiments, but they have developed a
number of structured schedules called “experimental designs”, which they recommend for the
taking of measurements. These designs have certain rational relationships to the purposes,
needs and physical limitations of experiments. Designs also offer certain advantages in
economy of experimentation and provide straightforward estimates of experimental effects
and valid estimates of variance. There are a number of ways in which experiment designs
might be classified, for example, the following:

1) By the number of experimental factors to be investigated (e.g., single- factor versus
multifactor designs)

2) By the structure of the experimental design (e.g., blocked, factorial, nested, or
response-surface design)

3) By the kind of information which the experiment is primarily intended to provide (e.g.
estimates of effects, estimates of variance, or empirical mappings).

12.2. BASIC DEFINITIONS OF EXPERIMENTAL DESIGN:

Several fundamental terms are widely used throughout this section. They may be defined as
follows:

1. Treatment:

In an experiment, there are some variants under study, the effects of which are
measured and tested (compared). These variants will be referred to as treatments. For
example, to test the effects of three fertilizers, i.e., Nitrogen, Phosphorus and Potash on the
yield of a certain crop. Then Nitrogen, Phosphorus and Potash are called treatments.

2. Yield:

The response of the treatment is measured by some indicator such as crop production,
milk production, body temperature, mileage of engine set, etc. Such an indicator is called
yield. The treatments are applied to some units such as field plots, sample of cows, sample of
patients, sample of engine, sets, etc. and the effect on the yield is observed.

3. Experimental Units:

A unit to which one treatment applied is called experimental unit. It is the smallest
division of an experimental material to which the treatment applied and on which the variable
under study is measured. In carrying out an experiment, we should clear as to what constitute
the experimental unit.
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It can be understood that in a field of agriculture it is called plot, in the field of animal
husbandry it may be a cow (cattle), in the field of medicine it may be a patient and in the field
of automobile industry it may be engine set and so on.

4. Experimental Material:

We have already explained the concept of experimental unit. The experimental
material is nothing but a set of experimental units. For example, a piece of land, a group of
cows, a number of patients and a group of engine sets, etc. Actually, an experimental material
is that material on which some set of treatments are applied and tested.

5. Blocks:

The experimental material is divided into a number of groups or strata which are so
formed that they are within homogeneous and between heterogeneous. These groups or strata
are called blocks.

6. Experimental Error:

There is always a variation between the yields of the different plots even when they
get the same treatment. This variation exists due to non- assignable causes, which cannot be
detected and explained. These are taken to be of random type. This unexplained random part
of variation is termed as experimental error. This include all types of extraneous variation due
to, (i) inherent variability in the experimental units, (ii) error associated with the
measurement made and (iii) lack of representativeness of the sample of the population
understudy.

7. Precision:

The precision of an experiment is measured by the reciprocal of the variance of a
mean, i.€.

Lt

V(i) o,

n
2
c

As n, the replication number increases, precision also increases.
8. Uniformity Trial:

We know that to increase the efficiency of a design, the plots should be arranged into
homogeneous blocks. It can be done only if we have a correct idea about the fertility
variation of the field. This is achieved through uniformity trial. It is known that fertility of
soil does not increase or decrease uniformly in any direction but it is distributed over the
entire field in an erratic manner. By a uniformity trial, we mean a trial in which the field
(experimental material) is divided into small units (plots) and the same treatment is applied
on each of the units and their yields are recorded. From these yields we can draw a fertility
control map which gives us a graphic picture of the variation of the soil fertility and enables
us to form a good idea about the nature of the soil fertility variation. This fertility control map
is obtained by joining the points of equal fertility through lines.
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A Uniformity Trial gives us an idea about the

1) Fertility gradient of the field,
2) Determination of the shape of the plots to be used,
3) Optimum size of plots,

4) Estimation of number of replications required for achieving certain degree of
accuracy.

12.3. PRINCIPLES OF DESIGN OF EXPERIMENTS:

Good experimentation is an art and depends heavily upon the prior knowledge and
abilities of the experimenter. Designing an experiment means deciding how the observations
or measurements should be taken to answer a particular question in a valid, efficient and
economical way. If a design is properly designed, then there will exists an appropriate way of
anal sing the data. From an ill-designed experiment, no conclusion can be drawn.

The fundamental principles in design of experiments are the solutions to the problems in
experimentation posed by the two types of nuisance factors and serve to improve the
efficiency of experiments. For the validity of the design Prof. R.A. Fisher gave three
principles of design of experiments, those fundamental principles are:

e Randomization
» Replication

* Local Control

12.3.1. Randomization:

The principle of randomization is essential for a valid estimate of the experimental
error and to minimize the bias in the results. In the words of Cochran and Cox,
“Randomization is analogous to insurance in that it is a precaution against disturbances that
may or may not occur and they may or may not be serious if they do occur”. Thus,
randomization is so done that each treatment should get an equal chance. We mean that the
treatments should be allocated randomly, i.e., by the help of random numbers. The following
are the advantages of randomizations:

1) It provides a basis for the test of significance because randomization ensures the
independence of the observations which is one of the assumptions for the analysis of
variance.

2) Itis also a device for eliminating bias. Bias creeps in experiment, when the treatments
are not assigned randomly to the units. This bias may be personal or subjective. The
randomization ensures the validity of the results.

12.3.2. Replication:

“Replication” is the repetition, the rerunning of an experiment or measurement in
order to increase precision or to provide the means for measuring precision. A single replicate
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consists of a single observation or experimental run. Replication provides an opportunity for
the effects of uncontrolled factors or factors unknown to the experimenter to balance out and
thus, through randomization, acts as a bias-decreasing tool. Suppose a pain-relieving drug A
is applied to 4 patients, we say that drug A is replicated four times. By repeating a treatment,
it is possible to obtain a more reliable estimate because it reduces the experimental error.
Further by repeating a treatment number of times we can judge the average performance of a
treatment and the situation becomes clearer. Basically, there are following uses of replication:

1) It enables us to obtain a more precise estimate of the treatment’s effects.

2) The next important purpose of replication is to provide an estimate of the
experimental error without which we cannot test the significance of the difference
between any two treatments. The estimate of experimental error is obtained by
considering the difference in the plots receiving the same treatment in different
replications and there is no other alternative of obtaining this estimate.

3) For a desired amount of precision, the minimum number of replications can be
obtained.

12.3.3. Local Control:

This method is used to attain the accuracy or to reduce the experimental error without
increasing unduly the number of replications. Local control is a technique that handles the
experimental material in such a way that the effects of variability are reduced. In local
control, experimental units are divided into a number of homogeneous groups called blocks.
These blocks are so formed that they are homogeneous within and heterogeneous between.
This blocking of experiment may be row-wise, column-wise or both according to the number
of factors responsible for heterogeneity. Different types of blocking constitute different types
of experimental designs. The following are the advantages of local control:

1) By means of local control, the experimental error is reduced considerably and the
efficiency of the design is increased.

2) By means of local control the test procedure becomes more sensitive or powerful.

Besides the above three principles, there are some other general principles in
designing an experiment. Familiarity with the treatments and experimental material is an
asset. Selection of experimental site is an asset. Selection of experimental site should be
carefully done. Within block variability should be reduced.

12.4. SIZE AND SHAPE OF THE PLOTS:

In field experiments, the size and shape of plots as well as of blocks influence the
experimental error. The total available experimental area remaining fixed, an increase in size
of plots will automatically decrease the number of plots and indirectly increases the block
size. In order to reduce the flow of experimental material from one plot to another, it is
customary to leave out strips of land between consecutive plots and also between blocks.
These non- experimental areas are known as guard area. The size and shape of the plot should
be such that we make a compromise between statistical and practical requirements i.e. if plot
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size is x and the variance of the plot is V(x), then V(x) is minimum (statistical consideration)
and there should be no disturbance for agricultural operations (practical requirements).

The size and shape of block will ordinarily be determined by the size and shape of
plots and the number of plots in a block. It is desirable from the point of view of error control
to have small variations among the plots within a block and large variation among the blocks
i.e. in general the division of experimental material into blocks is made in such a way that
plots within blocks are as homogeneous as possible.

Different Experimental Designs:

Based on these fundamental principles, we have certain designs. The analysis of those
designs is based on the theory of least squares which gives the best estimates of the
treatments effects and was initiated by Fisher (1926) followed by Yates (1936), Bose & Nair
(1939) and Rao (1976). The following three designs are frequently used:

1) Completely Randomized Design
2) Randomized Block Design

3) Latin Square Design

12.5. COMPLETELY RANDOMISED DESIGN:

The simplest of all the design is completely randomized design (CRD) which is
applied in the case when the experimental materials are homogeneous. CRD is based on two
principles i.e. randomization and replication. The third principle, i.e. local control is not used
because it is assumed that experimental materials are homogeneous. In this, the treatments
are allocated randomly to the experimental units and each treatment is assigned to different
experimental units completely at random (can be repeated any number of times) that is why it
is called completely randomized design.

Suppose we have k treatments under comparison and the i treatment is to be replicated n;
k

times for 1 =1, 2, ..., k, then the total number of units required for the design aren = Zni .
i=1l

We allocate the k treatments completely at random to n; units such that i treatment appears

n; times in the experiment.

12.5.1. Layout of Completely Randomized Design:

The term layout refers to the allocation of different treatment to the experimental
units. We have already said that treatments are allocated completely at random to the
different experimental units. Every experimental unit has the same chance of receiving a
particular treatment.

Suppose we want to test the effect of three pain relieving drugs A, B and C on twelve
patients. Then we first number all the patients (units) from 1 to 12. Then from a random
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number table of one digit we pick up 12 numbers which are less than 4. Suppose the numbers
are 1,3,2,1,3,2,1,3,2,2,3, 1. Thus the drug A is allotted to patient 1, drug C is allotted to
patient number 2 and so on. It can be shown below:

(1) 2) €) (4) () (6)

(1) ) 3) 4 () (6)

It is clear from the above layout that the replications of A, B and C are equal. If the
number of replications for each treatment is 5, 4 and 3 respectively, we number the
experimental units in a convenient way from 1 to 12. We then get a random permutation of
the experimental units. To the first 5 of the units in the random permutation we assign
treatment A, to the next 4 units’ treatment B is assigned and the treatment C is assigned to the
remaining 3 units.

12.5.2. Statistical Analysis of Completely Randomized Design:

Statistical analysis of a CRD is analogous to the ANOVA for one-way classified data
for fixed effect model, the linear model (assuming various effect to be additive) becomes

yi=Rhto; te,1=1,2,3, ...k j=1,2,3, .., ni .. (D)

ij?
where i is the yield or response from the j™ unit receiving the i treatment, pis the

general mean effect, o is the effect due to the i™ treatment, where p andas are constants so

k
that ZniOLi =0and ejj is identically and independently distributed (i.i.d.) N(O, ocz). Then,

i=1

k
n= an is the total number of experimental units.
i=1

The analysis of model given in equation (1) is as same as that of fixed effect model of one-

way classified data, discussed in Unit 6 of MST-005. If we write

ZZyij =y =G = Grand total of the n observations, and

J

z y; =y; =T, = Total response in the units receiving the i treatment,
i=1

Then, as in ANOVA (one-way classified data),
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nj 2 k

Zk: (Yij_y)z:i (Yij_y..) +Zni(yi_y..)2

i=l j=1 i=1 j=1 i=1

nj

Le. TSS =SSE + SST

where, TSS, SST and SSE are the Total Sum of Squares, Sum of Squares due to Treatments
(between treatments SS) and Sum of Square due to Error (within treatment SS) given
respectively by

158=3 3 (3, )

i=l j=l

2

k
SST=>n,(5,-y.) =S
i=1

and SSE=Y"Y (v, -7.) =5

i=l j=1

ANOVA TABLE FOR CRD
Source of Variance
Variation DF S8 MSS Ratio (F)
Treatments k-1 SST=§2 2 MSST
T MSST= 1 | F=
(k - 1) MSSE
Error n-k SSE =% 2
| MSSE=>F
(n-k)
Total n-1 Si + Sé
Under the null hypothesis, H;:a, =a, =....=a, against the alternative that all o’s is not
equal, the test statistic
F= 55T pk 1 n-k)
MSSE

i.e., FT follows F distribution with (k-1, n- k) df.
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If E. > Fiiny (oc) then HO is rejected at a level of significance and we conclude that

treatments differ significantly. If F. > Ficinn (a) then Ho may be accepted i.e. the data do

not provide any evidence to prefer one treatment to the other and as such all of them can be

considered alike.

If the treatments show significant effect, then we would be interested to find out
which pair of treatments differs significantly. For this instead of calculating Student's t-test
for different pairs of treatment means we calculate the least significant difference at the given
level of significance. This least difference is called as critical different (CD) and CD at a
level of significance is given by

CD = Standard error of difference between two treatment means x t_,, for error degrees of

freedom.
We have
2 2 1 1
Var(yi_yj):&&:cg[_+_
n, n n; n;

1/2
I 1
Standard Error (?i -y j) =0, L_ + _J

n; 1’1j

Hence, the critical difference (CD) for (?i -y j)

1/2
=t,, (for error df)){MSSE{LWLLH

n, l’lj

Since MSSE provides an unbiased estimate of o7, .

If each treatment is replicated n times, that is n; = n for i=1, 2, ..., k then

1/2
CD for difference of mean =t (for error df )x {MSSE(EH
n

12.5.3. Least Square Estimates of Effects:

The completely randomised model in equation (1) in Sub-section 9.5.2 is a fixed

effect model. Proceeding exactly as in Section 6.4 of Unit 6, we shall get
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=y.and o, =a, =y, -y )

12.5.4. Variance of the Estimates:

Proceeding exactly as in Section 6.7 of Unit 6, we shall get

2 k
Var (i) = O . where n = Zni (3)
n

i=1

And Var (o) = Var(a;)=0] | ——— 4)

If we assume that each treatment is replicated an equal number of times i.e., if

k
ni=n, (say),i=1,2,...,k; thenn= Zni =nk

i=1

Hence, from equations (3) and (4), we get

Var (fi)= :f( ((Sci):Var(Gi ):csz (%j (5)

12.5.5. Expectation of Sum of Squares:

Proceeding exactly as in Section 6.7 of Unit 6 [fixed effect model for one-way
classified data], we get

i=1

E(SST)= |:Zn 2} (k—=1)c? +Znocl

2

S 1 &
E(MSST)=E| —— |=c¢’+—— n.a?
sy -] S5 ot L B

E(SSE)=(n-k)o?

SZ
E(MSSE) = E{ E }: o,

(n—k)
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The method of analysis of completely randomized design would be similar to one-
way ANOVA, which has been illustrated below with the following example:

Example 1:

A person wanted to purchase a lot of electric drills. He got quotations from five
manufacturers. For the selection, he wanted to conduct an experiment to estimate the time
taken by each making a hole in a metallic sheet. As the sheet might not be uniform all over in
respect of thickness and hardness, he marked 20 places on the sheet and applied four drills
from each concern in 4 randomly selected places to make holes. The time for making each
hole was recorded and these formed the observations. The observations in seconds are shown
below in brackets along with marks of the drills denoted by D1, D2, D3, D4 and Ds.

D1(19) D3(22) D4(20) D1(20)
Ds(29) D2(24) Ds(30) D3(24)
D1(26) D4(25) D1(16) D2(22)
Ds5(28) D3(25) Ds(31) D4(28)
D4(27) D1(16) D2(27) D3(20)
Conduct the experiment by adopting a completely randomized design.

Solution: The analysis of the given design is done by one-way analysis of variance method.
The data is analyzed and computation results are given as below:

The totals of time records for 4 holes by each of the different makes are denoted by Ti, T»,
T3, T4 and Ts are shown below.

Ti1=71,T2=99, T3 =91, T4 =100, Ts = 118

Grand Total (G) =479

_ G* (479)
Correction Factor (CF) ZW = 0 —11472.05

Total Sum of Squares (TSS) = 217+ 182 + 222 +... +31% + 20% - 11472.05
= 11847 —11472.05 =374.95

Sum of Squares due to Makes (SSM)

_(71)°+(99)" +(91)° +(100)” +(118)° 147205
4

=11761.75 - 11472.05 = 289.70
Sum of Squares due to Error (SSE) = TSS — SSM

=374.95 -289.70 = 85.25
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Analysis of Variance Table

Sources of Variation DF SS MSS F
Makes 4 289.7 72.425 12.75
Error 15 85.25 5.68
Total 19 374.95

The tabulated value of F at 1 per cent level of significance for 4 and 15 df is 4.89. Thus, the
calculated value of F viz. 12.75 shows that Make to Make variation is highly significant
thereby indicating that the hypothesis that the time periods taken by the different Makes in
boring a hole are, on an average, the same, is rejected. So multiple comparison test will be
applied for different Makes.

Mean for Different Makes:

Makes

ol
o
ol
o
jel

17.74 24.75 22.75 25.00 29.50

SE —SE :\/2MSSE :\/2X2.68:1‘69
n

Critical difference at 1% level of significance

CD = to2 (for error df) x SE =3.055x 1.69 =5.16
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The initial difference indicates that the Make D5 is significantly better than all the other
Makes.

Tl‘le)::ll.n(:‘l ts Difference CDh Inference
D1, D2 D,-D,|=7.10 5.16 Significant
D1, D3 D_1_D_3 =5.10 5.16 Insignificant
D1, D4 D_1_D_4 =726 5.16 Significant
D1, Ds D,-D,|=11.26 5.16 Significant
D2, D3 D, —D,|=2.00 5.16 Insignificant
D3, D4 D_z_D_4 =0.25 5.16 Insignificant
D>, Ds ])_2_])_5 =4.75 5.16 Insignificant
D3, D4 D,-D,|=2.25 5.16 Insignificant
D3, Ds D, -D,|=6.75 5.16 Significant
D4, Ds D, - D_s‘ 45 5.16 Insignificant

12.6. SUITABILITY OF CRD:
The following are some situations, in which one can apply the complete randomised design:

1) The CRD is used in the situations where experimental materials are homogeneous.
That is why, CRD is mostly used in chemical, biological and banking experiments,
where the experimental material is thoroughly mixed powder, liquid or chemical.

2) The CRD is used in the situations where the observations on some units are missing
or destroyed. This feature of missing observation does not disturb the analysis of the
design.

3) In agricultural experiments, this design is not used because experimental material is
not homogeneous.



Theory of Linear Estimation & Analysis... 12.15 Completely Randomised Design

12.6.1. Advantages and Disadvantages of CRD:

Advantages of CRD

1)

In this design any number of treatments and replications can be used. There may be
different number of replications for different treatments.

2) Analysis is simple and easy even if the number of replications is unequal for each
treatment. In such case experimental error will differ from treatment to treatment.

3) If some of the observations are missing or destroyed or not available due to some
reasons, the analysis can be done without any problem.

4) It provides large degree of freedom for error sum of squares. This increases the
sensitivity of the experiment.

5) In CRD there is no condition on the number of replications of the treatments, they can
be increased or decreased according to the need of the experimenter. Thus, the design
is flexible.

Disadvantages of CRD:

1) The main disadvantage of CRD is that the principle of local control has not been used
in this design. Due to this fact, the experimental error is inflated. This is the main
reason for the criticism of CRD.

2) In agricultural experiments, the design is seldom used because the experimental
material is not homogenous.

12.7. SUMMARY:

In this unit, we have discussed:

1) The experimental design;

2) The planning and classification of experimental designs;
3) Principles of design of experiments;

4) Completely randomised design;

5) Layout of CRD;

6) The statistical analysis of CRD; and

7) Advantages and disadvantages as well as suitability of CRD.

Example 2: Carryout the ANOVA for the given following data of yields of S varieties, 7
observations on each variety:
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Observations
Variety
1 2 3 4 5 6 7
1 13 15 14 14 17 15 16
2 11 11 10 10 15 9 12
3 10 13 12 15 14 13 13
4 16 18 13 17 19 14 15
5 12 12 11 10 12 10 10

The analysis of the given design is done by one-way analysis of variance method. The data is
analyzed and computation results are given as below:

Correction Factor (CF)= 6072.03

Raw Sum of Squares (RSS) = 6293

Total Sum of Squares (TSS) =220.97

Sum of Squares due to Variety (SSV) = 138.40
Sum of Squares due to Error (SSE) = TSS —SSV

=220.97-138.40 = 82.57

ANOVA TABLE
S f Variance Ratio
ource o DF SS MSS
Variation
Calculated | Tabulated

Variety 4 138.40 34.60
Error 30 82.57 2.75 12.58 2.66
Total 34 220.97
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Null Hypothesis H, :p, =p, =... = s

Since, calculated value of F is greater than the tabulated value of F, we reject the null

hypothesis and conclude that variety effects are significantly different.

Mean for Different Varieties:

Varieties
D, D, D, D, D,
14.86 11.14 12.86 16.00 11.00

SE —SE :\/2MSSE :\/2)(1334:1.95
n

Critical difference at 1 % level of significance
= to)2 (for error df) x SE =3.055x 1.95=5.96

The initial difference indicates that the Variety D4 is significantly better than all the other

Varieties.

Tl‘le)::ll.n(:‘l ts Difference CD Inference
D1, D2 D,-D,| =3.72 5.96 Insignificant
D1, D3 D_1_D_3 =2.00 5.96 Insignificant
D1, D4 D_1_D_4 -1.14 5.96 Insignificant
D1, Ds D,-D.|=3.86 5.96 Insignificant
D2, D3 D, -D,|=1.72 5.96 Insignificant
D3, D4 D_z_D_4 =4.86 5.96 Insignificant
D2, Ds ])_2_])_5 —-0.14 5.96 Insignificant
D3, D4 D_3 D_4 -3 14 5.96 Insignificant
D3, Ds D, -D.|=1.86 5.96 Insignificant
D4, Ds D, - D_s‘ —5.00 5.96 Insignificant
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12.8. SELF-ASSESSMENT QUESTIONS:
1) Explain Principles of Design of Experiments
2) Explain Layout of Completely Randomized Design
3) Explain the Statistical Analysis of Completely Randomized Design
4) Explain the Least Square Estimates of Effects

5) Explain the Suitability of CRD

12.9 SUGGESTED READINGS:
1) Montgomery, D.C. (2017). Design and Analysis of Experiments (9™ ed.). Wiley.
2) Fisher, R.A. (1925). Statistical Methods for Research Workers. Oliver & Boyd.

3) Gupta, S.C., & Kapoor, V.K. (2014). Fundamentals of Applied Statistics. Sultan
Chand & Sons.

Dr. B. Hari Mallikarjuna Reddy



LESSON-13
RANDOMISED BLOCK DESIGN

13.0. OBJECTIVES:
After studying this unit, you would be able to
e Explain the randomized block design;
e Describe the layout of RBD;
e Explain the statistical analysis of RBD;
e Find out the missing plots in RBD; and
e Explain the advantages and disadvantages as well as the suitability of RBD.

STRUCTURE:

13.1 Introduction

13.2 Layout of Randomized Block Design

13.3  Statistical Analysis of RBD
13.3.1. Least Square Estimates of Effects
13.3.2. Variance of the Estimates
13.3.3. Expectation of Sum of Squares

13.4 Missing Plots Technique in RBD
13.4.1. One Missing Plot
13.4.2. Two Missing Plots

13.5  Suitability of RBD

13.6 Summary

13.7  Self-assessment questions

13.8 Suggested readings

13.1. INTRODUCTION:

The completely randomized design was simple due to the reason that principle of
local control was not used and it was assumed that the experimental material is
homogeneous, but it is observed that the experimental material is not fully homogeneous. In
agricultural field experiments sometimes, a fertility gradient is present in one direction. In
such situation the simple method of controlling variability of the experimental material
consists in stratifying or grouping the whole experimental area into relatively homogeneous
strata or sub-groups (called blocks), perpendicular to the direction of fertility gradient. These
blocks are so formed that plots within a block are homogeneous and between blocks are
heterogeneous. In other words, there may be less variation within a block and major
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difference or variation between blocks. It is to be kept in mind that familiarity with the nature
of experimental units is necessary for an effective blocking of the material. The procedure of
division of experimental material into a number of blocks give rise to a design known as
Randomized block design (RBD) which can be defined as an arrangement of t treatments in r
blocks such that each treatment occurs precisely once in each block.

In other words, when the experimental units are heterogeneous, a part of the
variability can be accounted for by grouping the experimental units in such a way that those
experimental units within each group are as homogeneous as possible. The treatments are
then allotted randomly to the experimental units. Within each group (or block). This results in
an increase in precision of estimates of the treatment contrasts, due to the fact that error

variance that is a function of comparisons within blocks is smaller because of homogeneous
blocks.

13.2. LAYOUT OF RANDOMISED BLOCK DESIGN:

The entire experimental material is divided into a number of blocks equal to the
number of replications for each treatment. Then each block is divided into a number of plots
equal to the number of treatments. For example, if we have 4 treatments A, B, C and D and
each treatment is to be replicated 3 times. Then according to the condition of RBD, we will
arrange the experimental material in three blocks each of size 4, i.e. each block consists of 4
plots. After arranging the experimental material into a number of blocks, treatments are
allocated to each block separately. That is randomization is applied afresh for each block and
thus, it will be independent for each block. The method is illustrated below by the following
arrangement of 3 blocks and 4 treatments:

Layout of RBD with 4 Treatments

Block I A B D C

Block 11 C A D B

Block IIT D B C A

13.3. STATISTICAL ANALYSIS OF RBD:

If in RBD a single observation is made on each of the experimental units, then its
analysis is analogous to ANOVA for fixed effect model for a two-way classified data with
one observation per cell and the linear model effects to be (additive) becomes

Yi =Hto, +B+eg; 1=12,..... P1=1,2,.......... ,q

where, y ij is the yield or response of the experimental unit receiving the i treatment

in the j™ block, p is the general mean effect, a, is the effect due to the i treatment, B;in the



Theory of Linear Estimation & Analysis... 13.3 Randomised Block Design

effect due to j" block or replicate and mathfrak e; is identically and independently distributed

i.e. ejj follows (i.i.d.) N (0, c.%),

p q
where p o, and; are constants so that Zoci =0and ZBj =0.

i=1 j=i
If we write that

Z z yij=y..= G = grand total of all the pxq observations.
i J

D yij=y; =0, = Total fori" treatmetn
J

z yij=y, =B, = Total for j* block
j

Then heuristically, we get

=9 (Fi=¥.) +p2(¥,=¥ )+ 2 2 (v~ ¥4 +7-)°
TTS = ZZ(Yij _?--)2

SST=q) (¥ ~¥.)" =Sy (say)

1

SSB=p> . (¥,-¥.)* =Sy’
J

SSE =S,’ —~TSS—SSB=SST

_ MSST
" MSSE

The product terms vanish since the algebraic sum of deviations form mean is zero.

This
TSS =SSE+ SSB+ SST

Where TSS, SST, SSB and SSE are that total sum of squares, sum of squares due to
treatments (between treatments SS), of squares due to blocks and sum of squares due to error
(i.e., within treatment SS) given respectively by
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TTS = ZZ(Yij _?“)2

SST=q) (¥ ~¥.)" =Sy (say)

1

SSB=p>.(¥,-¥.) =S’
j

SSE = SE2 —-TSS-SSB =SST

Hence, the total sum of squares is partitioned three sums of squares whose degree of
freedom make the total to the degree freedom of TSS.

Variance
Source of Variation DF SS MSS
Ration (F)
Treatments p! St? | MSST=Sr%/(P-1) B - MSST
' MSSE
Blocks q-1 Se? | MSST=Sg*(q-1) g _ MSST
®  MSSE
Error (p-1)(q-1) | Se* | MSST=S¢*/ (P-1)(g-1)
Total Pg-1
Under the null hypothesis, Ho: o, =0, =........... =0, against the alternative that all a's are

not equal, the test statistic

MSST
E, =
MSSE

Follows F[(P-1) (q-1)]

i.e., Fr follows F-distribution with [(P-1), (P-1) (g-1) df.

i.e., Fr < F with [(p-1), (p-1) (g-1)] df at « level of significance, (Usually 5%) then

Ho is rejected and we conclude that treatments differ significantly.
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If Fr< F with [(p-1), (p-1)] df at « level of Significance, then Ho may be accepted,
i.e. the data do not provide any evidence against the null hypothesis which may be accepted.

Similarly, under the null hypothesis, H, :B, =B, =........ =P, against the alternative

that all 3 ’s are not equal, the test statistic.

MSSB
E, =
MSSE

follows F[(q-1), (p-1) (q-1)]

13.3.1. Least Square Estimates of Effects:

Proceeding exactly similar as in CRD, and replacing K by p, n by q and taking N=pq,
the estimates of the parameters i, o, and B; are given by:

n=7y..

|
£
Il
<
|
<
s
Il
«
|
<
i
[
p—

13.3.2. Variance of the Estimates:

Proceeding exactly similar as in CRD, we shall get

2
Ge

Pq

Var (1) =

Var (&,) = Mcsez
Pq

and  Var (Bj) = @Gez
Pq

13.3.3. Expectation of Sum of Squares:

Proceeding exactly as in CRD, we get

E[SST]=(p-1)o,” +q) o’

(SST) 2 q 2
E| ——= |=E(MSST) = )
[(p—l)} (MSST) =0+ 7 2.0,
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E(SSB)=(q-Do,” +PD> B/

(SST) 2 q 2
E|l ——= |=E(MSSB) = )
[(q—l)} (MSSB) =0+ 7 2P,

E(SSE)=(q-D)(p-1)s,’

E{ﬂ} =E(MSSE) =05
(q-D(p-1)

Hence under the null hypothesis

HpB:o, =0a,....... =a, =0;

E(MSST) =0, and E(MSSB) =,’

i.e. each of the mean sum of squares due to treatments and blocks gives an unbiased estimate
of the error variance Gez under the null hypothesis H,, andH,; respectively.

Example 1:

There were 4 different makes of cars. A problem was posed to estimate the petrol
consumption rates of the different makes of cars for suitable average speed and compare
them. The following experiment could be conducted for an inference about the problem:

Five different cars of each four makes were chosen at random. The five cars of each make
were put on road on 5 different days. The cars of A make run with different speeds on
different days. The speeds were 25, 35, 50, 60 and 70 mph. Which car was to put on the road
on which day and what speed it should have was determined through a chance mechanism
subject to the above conditions of the experiment. The procedure was adopted for each of the
makes of cars. For each car, the number of miles covered per gallon of petrol was observed.
The observations are presented below:
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TABLE: MILES PER GALLON OF PETROL

Speed of the Cars in Miles Per Hour (mph)
Makes of Car Average

25 35 50 60 70 Total

A 20.6 19.5 18.1 17.9 16.0 92.1 18.42

B 19.5 19.0 15.6 16.7 14.1 84.9 16.42

C 20.5 18.5 16.3 15.2 13.7 84.2 16.84

D 16.2 16.5 15.7 14.8 12.7 75.9 15.18
Total 76.8 73.5 65.7 64.6 65.5 337.1

Carry out the analysis of the given RBD.

Solution:

Here the makes of the cars are the treatments and the other controlled factor is the
speed, the variance for which has been eliminated through the design which is thus actually a
randomized block design with the speeds as blocks. The specific cars used, the effects of the
days, drivers and possibly some other effects contributed to the error variance.

Here,

(337.1)°

Correction Factor (CF) = =5681.82

Raw Sum of Squares = (20.6)*+(19.5)*+...+(13.7)* + (12.7)> =5781.41
Total Sum of Squares (TTS) = 5681.41.5881.82=99.59
Sum of Squares due to Speed (SSS)

_(76.8)' +(73.5) ... +(64.6)’ +(56.5] _

=66.04

Sum of Squares due to Makes (SSM)

_ (92.1)° +(84.9)> +(84.2)* +(75.9)
5

-CF

=28.78
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Sum of Squares due to Errors (SSE)

= TSS-SSS-SSM

=99.59-66.04-28.78=4.77

ANALYSIS OF VARIANCE TABLE

Variance Ration

Source of Variation DF SS | MSS
Calculated | Tabulated
Speeds 4 66.04 | 16.57 41.27 3.26
Treatments (Makes) 3 28.78 | 9.59 23.97 3.49
Error 12 4.77 | 0.40
Total 19 99.59

In both the cases either for speeds or for makes, calculated value of F is greater than

tabulated value of F at 5% level of significance and thus null hypothesis is rejected.

In the above experiment, we are interested only on makes so multiple comparison test
will be applied for different makes.

Mean number of miles per gallon for different Makes

Makes

>
ool

Ql

ol

18.42 16.98

16.84

15.18

SE:\/2MSSE :\/2x<;.40 040

5

Critical difference at 1 % level of significance

CD t_,, (for error df) x SE=3.055x 0.40 =122
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The initial difference indicates that the Make A is significantly better than all the other
Makes.

Pair of Difference CD Inference
Treatments

AB ‘g - E‘ =1.44 1.22 Significant
AD ‘R — (_j‘ =158 1.22 Significant
AC ‘A _ [_)‘ —~3.24 1.22 Significant
B,C ‘}_3 _ 6‘ ~0.14 1.22 Significant
B,D ‘E_ﬁ‘ =18 1.22 Significant
C,D ‘6_1_)‘ ~1.66 1.22 Significant
Example 2:

Carryout the analysis of the following design:

Varieties Blocks
I I 111 v
A 7 16 10 11
B 14 15 15 14
C 8 16 7 11
Varieties Blocks
Total
I 11 111 v
A 7 16 10 11 44
B 14 15 15 14 58
C 8 16 7 11 102
Total 29 74 32 36 144
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2

Correction Factor (CF) = (1411;) =1728

Raw Sum of Squares (RSS) = (7 +(14)* +...+(14)* +(11)* =1858

Total Sum of Squares (TSS)

Block Sum of Squares (SSB)

Variety Sum of Squares (SSV)

=1858-1728=130

_ (29)* +(47) +(32)* + (36)
3

-CF

_ 841+2209+1024+1296
3

-1728

=1790-1728 =62

2 2 2
:(44) +(58)" +(42) _CF
4
:1936+3364+1764_1728

=1766—-1728 =38

Sum of Squares due to Error (SSE) =TSS—-SSV -SSB
=130-62-39=30
ANOVA TABLE
Variance Ration
Source of DF | SS MSS
Variation
Calculated Tabulated
Variety 2 38 19 3.8 5.14
Blocks 3 62 20.67 4.13 4.76
Error 6 30 5
Total 11 130
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In both these cases either for varieties or for blocks, calculated value of F is less than
tabulated value off at 5% level of significance and thus null hypothesis is accepted and
inferred that variety effect and block effect are insignificant.

13.4. MISSING PLOTS TECHNIQUE IN RBD:

Sometimes observations from one or more experimental units are not found (missing)
due to some unavoidable causes. There may be some unforeseen causes for example in
agricultural experiments damage by animal or pets, in animal experiment any animal may die
or observations from one or more plot is excessively large as compared to other plots and
thus accuracy of such observation is often in doubt. In such observation is often in doubt. In
such situations, these observations are omitted and treated as missing.

In case of missing observations, analysis is done by estimating the missing
observation. This type of analysis was given by Yates (1937) and it is known as missing plot
technique.

13.4.1. One Missing Plot:

Suppose without loss of generality that observation for treatment 1 in block 1 i.e. y,,
is missing and let it is Y, then the observations for a RBD may be represented as below:

T1 T2 Ti Tp Total

B Y=Y You Yii Yp1 Br’+Y
B Yi2 Y2 Yio Yp2 B>
B; Yij Y2 Yij Ypj B
Bq Yiq Y2q Yiq Yoq Bq

Total | Ti’+Y T2 e Ti e Ty G+Y

Where,
Bi’=total of all available (p-1) observations in 1% block
Ti’=total of all available (g-1) observations in 1* treatment.

G’=total of all available (pg-1) observations
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On the basis of these totals we calculate different SS’s as follows:

Sum of Squares for blocks (SSB) = —

q

(Tl' +Y)2 +2Tj2 (G'+Y)2

j=2

Sum of Squares for Treatments (SST) = -
q Pq
Total Sum of Squares (TSS) = Z;yﬁ +Y? —% where (i,j)# (1, 1)
Sum of Squares due to Error (SSE) = TSS — SSB — SST
SSE=Y’+ (G y+ Y)2 - (Bl ! Y)2 - (Tll i Y)2 + terms not involving Y

Pq p q

For obtaining the value of Y, we minimize the sum of squares due to error with respect to Y.

this is obtained by solving the equation.

Y(pq+1—q—p) _ pT1'+qB'1 -G’
Pq Pq

o pT1'+qB; -G’

(p-1)(a-1)

Y is the least square estimate of the yield of the missing plot. The value of Y is inserted in
the original table of yield and ANOVA is performed in the usual way except that for each

missing observation 1 df is subtracted from total and consequently from error df.
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13.4.2. Two Missing Plots:

For two missing values, we convert the problem into one missing value by putting any
value say the overall mean or mean of the available values of that block for which one value
is missing or mean of the available values of that replicate in any missing cell and obtain the
estimate of the second missing value by the above prescribed estimation formula. Then we
put the estimate of this second missing value and estimate the first missing value for which
originally mean was taken. We go on repeating the same procedure until we obtain two
successive estimates which are not materially different. Method is illustrated below with
examples.

Example 3:

In the following data two values are missing. Estimate these values by Yates method and
analyse:

Blocks
Treatments
1 11 111
A 12 14 12
B 10 y 8
C X 15 10

Solution: We convert the two missing plots problems into one missing plot problem, for
which we take the average of the values of I block in which x is missing. This average is
(10+12)/2=11. Thus, the estimate of x is taken to be x1=11 and it is inserted in place of x and
form the following table of totals:

Blocks
Treatments Total
| II 111
A 12 14 12 Ta=38
B 10 Y 8 Te=18+Y
C 11 15 10 Tc=36
Total B1=33 B>=29+y B3=30 G=92+y
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Thus, from the above table we get
P=3, q=3, B>»’=29, Ts’=18, G’=92
Applying the missing estimation formula

~_pT+qB, -G _3x18+3x29-92
(a-1)(p-1) 4

- wzﬁzlz,zszu
4 4

Now the estimated value of y is taken to be y1 = 12 and it is inserted in place of y and the
following table of totals is formed by taking x unknown:

Blocks
Treatments Total
1 11 111
A 12 14 12 Ta=38
B 10 12 8 Ts=30
C X 15 10 Tc=25+x
Total Bi=22+x By=41 B3=30 G=93+x

Thus, from the above table we getp =3, q=3, Bi’=22, Tc’=25,G’ =93

Again, applying the missing estimation formula

;(_ 3x25+3x22-93
4

75+66-93 48
4 4

12

Thus, x2=12

Again, using x2=12, we estimate the second estimate of y i.e. y> for which
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B, =29, T, =18,G'=92

~ 3x18+3x29-93
y= 4

_A+87-93 4T _1175-10
4 4

We see that the second estimate of y i.e. y» is not materially different from y;.

Thus, we take the estimated values of x =12 and ;r: 12. Inserting both the estimated values

of x and y we get the following observations:

Blocks
Treatments Total
1 11 111

A 12 14 12 Ta=38

B 10 12 8 Tg=30

C 12 15 10 Tc=37

Total B1=34 Bx=41 B3=30 G=105

105)*
Correction Factor (CF) = ( ) = 11025 =1225

9 9
Raw Sum of Square (RSS) = (12)” +(10)” +...+(8)" +(10)° =1261

Total Sum of Squares (TSS) = 1261-1225=36

(38)" +(30)" +(37)’
Treatment Sum of Squares (SST) = 3 -CF
_ 1444+900+1369

-1225
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= %—1225 =1237.67-1225

=12.67

(34) +(41) +(30)"
3

Block Sum of Squares (SSB) = CF

_ 1156+1§81+900_1225

1245.67 — 1225 =20.67
Error Sum of Squares (SSE) = TSS — SST — SSB

=36-12.67-20.67 =2.66

Variance Ratio
Sourceof | p ) o9 | Mss
Variation

Calculated | Tabulated

Treatments | 3-1=2 | 12.67 | 6.34 4.77 9.55
Blocks 3-1=2 |20.67 | 10.34 7.77 9.55
Error 4-2=2 | 2.66 1.33
Total 8-2=6

In case of both treatments and blocks, calculated value of F is less than tabulated
value of F at 5% level of significance, thus treatment and block means are not significantly

different.

13.5 SUITABILITY OF RBD:

1) The RBD is suitable in the situations where it is possible to divide the
experimental material into a number of blocks. If it is not possible to divide the
experimental material, RBD cannot be used.
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2) the RBD is suitable only when the number of treatments is small because as the
number of treatments increases, the block size also increases and it disturbs the
homogeneity of the block.

3) RBD is suitable only when experimental material is heterogeneous with respect to
one factor only. If there is two-way heterogeneity, LSD is used.

13.5.1. Advantages and Disadvantages of RBD:

Advantages of RBD:

The RBD has many advantages over other designs. Some of them are listed below:

1) It is a flexible design. It is applicable to moderate number of treatments. If extra
replication is necessary for some treatment, this may be applied to more than one unit
(but to the same number of units) per block.

2) Since all the three principles of design of experiments are used, the conclusions drawn
from RBD are more valid and reliable.

3) If data from individual units be missing then, analysis can be done by estimating it.

4) This is the most popular design in view of its simplicity, flexibility and validity. No
other design has been used so frequently as the RBD.

5) This design has been shown to be more efficient or accurate than CRD, for most types
of experimental work. The elimination of block sum of squares from error sum of
squares, usually results in a decrease of error sum of squares.

6) Analysis is simple and rapid.

Disadvantages of RBD:

1) The main disadvantage of RBD is that if the blocks are not internally homogeneous,
then a large error term will result. In field experiments, it is usually observed that as
the number of treatments increases, the block size increases and so one has lesser
control over error.

2) The number of replications for each treatment is same. If replication is not same, the
only remedy is to adopt CRD.

3) It cannot control two-sided variation of experimental material simultaneously. That is
why, it is not recommended when experimental material contains considerable
variability.

13.6. SUMMARY:

In this unit, we have discussed:

1) The randomised block design;
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2) The layout of RBD;
3) The statistical analysis of RBD;
4) The missing plot techniques in RBD; and

5) The advantages and disadvantages as well as the suitability of RBD.

Example 4: Carryout the analysis of following design:

Block

| 11 111 v
A C A B
8 10 6 10
C B B A
12 8 9 8
B A C C
10 8 10

The given design is solved by method of analysis of variance for two-way classified data. The
computation results are given as follows:

Correction Factor (CF) =972

Raw Sum of Squares (RSS) = 998

Total Sum of Squares (TSS) =26

Block Sum of Squares (SSB) = 4.67
Treatment Sum of Squares (SST) = 15.5
Error Sum of Squares (SSE) = 5.83
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ANOVA TABLE
S ¢ Variance Ratio
ourceol 1 pp SS | Mss
Variation
Calculated | Tabulated
Variety 2 15.5 7.7 7.94 5.14
Blocks 3 4.67 1.56 1.61 4.76
Error 6 5.83 0.97
Total 11 26 32

In case of variety, calculated value of F is greater than the tabulated value at F at 5%
level of significance, so we reject the null hypothesis and conclude that the treatment effect is

significant, while for blocks, it is not significant. For pairwise testing, we have to find the

standard error of difference of two treatment means:

SE \/ZMSSE _ \/2x(;.97 0,80
q

Critical Difference (CD) =SE x t_,, at error df

= 0.80x2.447=1.96

Treatment means are

K=£:7.5, B! 925 c= 1025
4 4 4
Pair of Treatments Difference CD Inference
AB ‘A — E‘ =1.76 1.96 Insignificant
A,C ‘A - E‘ =275 1.96 Significant
B,C ‘}_3 - 6‘ =1.00 1.96 Insignificant
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Example 5: For the given data the yield of the treatment C in 2" block is missing.

Estimate the missing value and analyse the data:

Treatments
Blocks
A B C D
| 105 114 108 109
11 112 113 Y 112
111 106 114 105 109

We have p=3, =4, B3 =213, T> =337, G=1207 and the value of
y=109

Therefore,

Correction Factor = 144321.33

Raw Sum of Squares = 144442.00

Total Sum of Squares = 120.64

Treatment Sum of Squares = 76.67

Block Sum of Squares =20.67

Error Sum of Squares =23.33

ANOVA TABLE
S f Variance Ratio
ource o DF SS MSS
Variation
Calculated | Tabulated
Treatments | 3- 1=2 20.67 10.33 2.21 5.79
Blocks 4-=3 76.67 25.55 5.48 5.41
Error 6-1=3 23.33 4.66
Total 11- 1=10 | 120.67 32
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In the above experiment, we are interested only treatments, so multiple comparison test will

be applied for different treatments.

SE\/2MSSE :\/2x431.66 176
q

CD =SExt,,,, at error df

=1.76 x2.447=4.31

Treatment means are

A=2_107.67, B=22-11367, C=222-10733, D=>2=110,

3 3 3 3

Pair of Treatments Difference CD Inference
AB ‘g _ ]_3‘ —6.0 431 | Significant
AD ‘g _ 6‘ -03 431 | Insignificant
AC ‘A _ [_)‘ -23 431 | Insignificant
B,C ‘E_C‘ -63 431 Significant
B,D ‘]_3 _ f)‘ =37 431 | Insignificant
CD ‘6_1_)‘ -27 431 | Insignificant

13.7. SELF-ASSESSMENT QUESTIONS:
1) Explain Layout of Completely Randomized Design
2) Explain the Statistical Analysis of Completely Randomized Block Design
3) Explain the Least Square Estimates of Effects of RBD
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13.8.

4) Missing Plots Technique in RBD
5) Explain the Suitability of RBD

SUGGESTED READINGS:
1) Montgomery, D.C. (2017). Design and Analysis of Experiments (9" ed.). Wiley.
2) Fisher, R.A. (1925). Statistical Methods for Research Workers. Oliver & Boyd.

3) Gupta, S.C., & Kapoor, V.K. (2014). Fundamentals of Applied Statistics. Sultan
Chand & Sons.

Dr. B. Hari Mallikarjuna Reddy



LESSON-14
LATIN SQUARE DESIGN

14.0. OBJECTIVES:
After studying this unit, you would be able to
e Explain the latin square design;
e Describe the layout of LSD;
e Explain the statistical analysis of LSD;

¢ Find out the missing plot in LSD; and

Explain the advantages and disadvantages of LSD.

STRUCTURE:

14.1 Introduction

14.2 Layout of Latin Square Design (LSD)

14.3  Statistical Analysis of LSD

14.4 Missing Plots Technique in LSD
14.4.1. One Missing Plot

14.5  Suitability of LSD

14.6 Summary

14.7 SELF-ASSESSMENT QUESTIONS

14.8 SUGGESTED READINGS

14.1 INTRODUCTION

We know that RBD is used when experimental material is heterogeneous with respect
to one factor and this factor of variation is eliminated by grouping the experimental material
into a number of homogeneous groups called blocks. This grouping can be carried one step
forward and we can group the units in two ways, each way corresponding to a source of
variation among the units, and get the LSD. In agricultural experiments generally, fertility
gradient is not always known and, in such situations, LSD is used with advantage. Then LS
Deliminates the initial variability among the units in two orthogonal directions.

The Latin Square design represents, in some sense, the simplest form of a row-
column design. It is used for comparing m treatments in m rows and m columns, where rows
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and columns represent the two blocking factors. Latin squares and their combinatorial
properties have been attributed to Euler (1782). They were proposed as experimental designs
by Fisher (1925, 1926), although De Palluel (1788) already utilized the idea of a 4x4 latin
square design for an agricultural experiment (see Street and Street, 1987, 1988).

14.2. LAYOUT OF LATIN SQUARE DESIGN (LSD):

Mathematically speaking, the latin square of order m is an arrangement of m latin
letters in a square of m rows and m columns such that every latin letter occurs once in each
row and once in each column, or more generally, the arrangement of m symbols in a m x m
array such that each symbol occurs exactly once in each row and column. In the context of
experimental design, the latin letters are the treatments. Latin squares exist for every m. A
reduced latin square (or latin square in standard form) is one in which the first row and the
first column are arranged in alphabetical order, for example, for m = 3,

ABC
BCA
CAB

This is the only reduced latin square. The number of squares that can be generated
from a reduced latin square by permutation of the rows, columns, and letters is (m!). These
are not necessarily all different. If all rows but the first and all columns are permuted, we
generate m! (m — 1)! different squares. From the reduced latin square of order 3 we can thus
generate 3!x(3-1)!-12squares.

In LSD two restrictions are imposed by forming blocks in two orthogonal directions,
row-wise and column-wise. Further in LSD the number of treatments equals the number of
replications of the treatment. Let there are m treatments and each is replicated m times then
the total number of experimental units needed for the designs are m x m. These m? units are
arranged in m rows and m columns. Then m treatments are allotted to these m? units at
random subject to the condition that each treatment occurs once and only once in each row
and in each column.

Selected Latin Squares:

3x3 4x4
1 2 3 4
ABC ABCD ABCD ABCD ABCD
BCA BADC BCDA BDAC BADC
CAB CDBA CDAB CADB CDAB
DCAB DABC DCBA DCBA
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5x5 6x6 7x7
ABCDE ABCDEF ABCDEFG
BAECD BFDCAE BCDEFGA
CDAEB CDEFBA CDEFGAB
DEBAC DAFECB DEFGABC
ECDBA ECABFD EFGABCD
FEBADC FGABCDE
GABCDEF

For randomization purpose two-way heterogeneity is eliminated by means of rows
and columns and a latin square of order m x mis picked up from the table of Fisher and Yates.
After picking the latin square its rows and columns are randomised by the help of random
numbers and this randomized square is superimposed on the arranged square.

14.3. STATISTICAL ANALYSIS OF LSD:

Let yik (1, j, k = 1, 2, ..., m) denote the response from unit (plot in the filed
experimentation) in the i row, j column and receiving the k'™ treatment. The triple (i, j, k)
assumes only m2 of the possible m*> values of an LSD selected by the experiment. If S
represents the set of m? values, then symbolically (i, j, k) belongs to S. If a single observation
is made per experimental unit, then the linear additive model is:

yik = p +oi + B+ + eijk; (1, ), k) € S

where, 1 is the general mean effect, o, Bj and T« are the constants effects due to the i™ row, j

column and k™ treatment respectively and ejj is the error effect due to random component

assumed to be normally distributed with mean zero and variance o> i.e. e follows
(ii.d)N(0,07).

If we write that

G =y = Grand total of all the m?observations.

Ri=y = Total form observations in the i row.

Cj= y; = Total of the m observations in the j™ column.
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Tk=y. = Total of the m observations in the k™ treatment.

Then heuristically, we get

ZZZ(y —y..) =Z;§[(ﬁ )3, -7.)+(F.-7.)
(ia j,k) €S +(Yijk -V _yjA -y t2y. )T

1

=mY(5, 5. +m(s, -3 ) +mE (3. )

+222(yﬁk “Yi. 7YYkt 2?...)2
"

The product terms vanish since the algebraic sum of deviations from mean is zero. Thus
TSS =SSR + SSC + SST + SSE

Where TSS is the total sum of squares and SSR, SSC, SST and SSE are sum of squares due

to rows, columns, treatments and due to error respectively given by

TSS = z (Yijk _y“‘)Z;

i,j,keS

SSR =mY (¥,.-v.) =Si (say)

sSC=mY (y,-v.) =S¢
J

and SSE = Sg? =TSS — SSR — SSC — SST

Hence, the Total sum of squares is partitioned into three sums of squares, whose degree of

freedom add to the degree of freedom of TSS.
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ANOVA Table for LSD:

Source of Variance
variation DF S8 MSS Ratio (F)
Treatments m-1 N MSST =S} /(m—-1) g - MSST

' MSSE
Columns m-1 N MSSC =S?. /(m _1) o MSSC
¢ MSSE
Rows m-1 s2R MSSR = SZR /(m—l) P MSSR
® MSSE
Error | (m-1)(m-2) | S? MSSE =S; /(m—1)(m-2)
Total m>-1

Under the null hypothesis,

For row effects How: oi=o2=....=am =0
For column effects Hop: Bi=P2=....=Pm=0and
For treatment effects Ho: i=n2=.... =tm=0

against the alternative that all a’s, B’s and t’s are not equal, the test statistics Fr, F¢, Fr follow

F distribution with [(m — 1), (m — 1) (m — 2)] df, under the above null hypothesis.

Thus, Fo = Fo [(m— 1), (m— 1) (m— 2)] be the tabulated value of F distribution with [(m— 1),
(m— 1) (m— 2)] df at the level of significance a. Thus, if FR>F, we reject the null hypothesis

HOa, otherwise accept the null hypothesis. Similarly, we can test for Hop and Ho..

Remark 1: Efficiency of LSD over RBD:
There may be two cases to judge the relative efficiency of LSD over RBD:
1) Relative efficiency of LSD over RBD, when rows are taken as blocks is

_ MSSC+(m—1) MSSE
mx MSSE
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2) Relative efficiency of LSD over RBD, when columns are taken as blocks is

_ MSSR+(m-1)MSSE
mx MSSE

Remark 2: Efficiency of LSD over CRD
Relative efficiency of LSD over CRD is given by

_ MSSR+MSSE+(m-1)MSSE
(m—1)MSSE

Example 1: The example of petrol consumption by different makes of cars for illustrating
randomised block designs has been converted to one with 5 makes of cars to illustrate latin
square design. The effects of day and driver on consumption rate have been eliminated in
addition to the effect of speed by suitable modification of the experimental situation. For this
purpose, 5 drivers were chosen and each driver was used on one of 5 days. On that day, he
drove5 cars each of different make and each car with a different speed. The arrangement of
the drivers, speeds and makes was as in the following table:

Speeds in Miles Per Hour
25 35 50 60 70

D1 B(19.5) E(21.7) A(18.1) D(14.8) C(13.7)
E’ D2 D(16.2) B(19.0) C(16.3) A(17.9) E(17.5)
§ D3 A(20.6) D(16.5) E(19.5) C(15.2) B(14.1)
4
E D4 E(22.5) C(18.5) D(15.7) B(16.7) A(16.0)

D5 C(20.5) A(19.5) B(15.6) E(18.7) D(12.7)

Solution:

Here, Di (i=1, 2, 3, 4, 5) denotes the i driver driving in the i day. A, B, C, D and E
denote the 5 Makes of the cars. In the first cell of the table indicates that a car of Make B was
driven by D1 on this day with a speed of 25 miles per hour. The alphabets in the other cells
have similar meaning. The number of miles covered by a gallon of petrol is shown in bracket
in each cell.

The design adopted is actually a latin square design with the makes of cars as
treatments and the drivers and speeds are the two controlled factors representing rows and
columns. The observations of the miles per hour have been analysed below as appropriate for
the design.
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Correction Factor = 7638.76

Sum of Squares due to Speeds = 7719.49 —7638.76 = 80.73
Sum of Squares due to Drivers = 7640.12 — 7638.76 = 1.36
Sum of Squares due to Makes = 7704.18 — 7638.76 = 65.42
Total Sum of Squares = 7792.70 — 7638.76 = 153.94

Error Sum of Squares = 153.94 — 80.73 — 1.36 — 65.42 = 6.43

ANALYSIS OF VARIANCE TABLE

S\;:lrl;;iisozf DF S8 MS Calcnl:lated Tablﬂated
Speeds 4 8073 20.18 37.37** 3.26
Drivers 4 1.36 0.34 0.63

Makes 4 65.42 16.35 30.28**

Error 12 6.43 0.54

Total 24 153.94

** highly significant

Mean numbers of miles per gallon for the different makes arranged in order

E A B C D

19.98 18.42 16.98 16.84 15.18

SE:\/le\/;SSE :\/2);(;.54 033

CD at 1 per cent =3.055 x 0.33 =1.42

The initial difference indicates that the Make E is significantly better than all the other
Makes. Make A was better than B, C and D. Finally, D is the worst.
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Efficiency of Latin square

4x0.34+0.54x16  34+0.54x4

E (Drivers) =
( ) 20x0.54 5x0.54

=0.93

4x20.18+0.54x16  20.18+0.54x4
20x0.54 5x0.54

E (Speeds) = =8.27

The efficiency figures show that elimination of speed variation increased precision

considerably while elimination of driver variation did not reduce error variance.

14.4. MISSING PLOTS TECHNIQUE IN LSD:

As we have discussed in Section 10.4 of Unit 10, sometimes observations from one or
more experimental units are not found (missing) due to some unavoidable causes. There may
be some unforeseen causes for example in agricultural experiments damage by animal or
pets, in animal experiment any animal may die or observations from one or more plot is
excessively large as compared to other plots and thus accuracy of such observation is often in
doubt. In such situations, these observations are omitted and treated as missing.

In case of missing observations, analysis is done by estimating the missing
observation. This type of analysis was given by Yates (1937) and it is known as missing plot
technique. As similar as in the RBD, we are now going to discuss the same in LSD in the
following sub-section:

14.4.1. One Missing Plot:

Suppose without loss of generality that in m x m latin square design the observation
occurring in the first row, first column and receiving first treatment is missing. Let us assume
that y111=Y

R'i = Total of all available (m — 1) observations in 1%row.

C'| = Total of all available (m — 1) observations in 1%'column.

T'; = Total of all available (m — 1) observations receiving 1* treatment

G' = Total of all available (m? — 1) observations.

On the basis of these totals we calculate different sum of squares as follows:

, 2 G
(R, +Y) ﬁL;Ri

4 (Rl + Y)2
Sum of Squares for Rows (SSR) = -
m

1,1,12
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' 2 &
(Ci+Y) +2.6 (G +Y)2
Sum of Squares for Columns (SSC) = =
m

(T, +Y)2+iTI§ (G +v)

k=2

Sum of Squares for Treatments (SST) =

(G+Y)’
Total Sum of Squares (TSS)= D> > > yi +Y’ —~———
i j ok m

(i, k)= (1,1,1)
Sum of Squares due to Error (SSE) = TSS — SSR — SSC — SST

2(G'Y)" 2(R"Y)

I’Il2 m

SSE=Y*+

(C+Y) (T+Y) o
- - Terms not involving Y
m m

For obtaining the value of Y, we minimize the sum of squares due to error with respect to Y.
This is obtained by solving the equation

4(G+Y) 2(Rj+Y) 2(Ci+Y) 2(T/+Y)

a(SSE):2Y+ ) ~ ~ 0

oY m m m m

=>Y+—-—————

= =
m m
m(R; +C, +T,)-2G"

(m-1)(m~2)

Y=

Y is the least square estimate of the yield of the missing plot. The value of Y is inserted in
the original table of yield and ANOVA is performed in the usual way except that for each
missing observation 1 df is subtracted from total and consequently from error df.
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Example 2:

In the following data, one value is missing. Estimate this value and analyse the given data.

Column
I I I v Rowl;l“otals
Row (Ry)
A C B D
| 49
12 19 10 8
C B D A
11 43
18 12 6 7
B D A C
111 48+Y
22 Y 5 21
D A C B
v 63
12 7 27 17
Column 64 384Y 48 53 203+Y
Totals (Cj)

Solution: Here m=4,R, =48,C, =38, T, =26, G =203

Applying the missing estimation formula

m(R; +C, +T,)-2G'

(m-1)(m-~2)

_ 4(48+38+26)—2x203

(+-1)(4-2)

Y =

x7

Inserting the estimated value of Y, we get the following observations:
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Column
I I I v Row Totals
Row R1)
A C B D
I 49
12 19 10 8
C B D A
II 43
18 12 6 7
B D A C
I 48+Y
22 Y 5 21
D A C B
v 63
12 7 27 17
Column
Totals (C)) 64 45 48 53 203
(210" 44100
Correction Factor (CF) = = =2756.25

16
Raw Sum of Squares (RSS) = (12)*+(18)*+ ... + (21)*+ (17)> = 3432

Total Sum of Squares (TSS) = 3432—2756.25 = 675.75

(49)" +(43)" +(55)" +(63)’

Row Sum of Squares (SSR) = 4 -CF
_ 2401+1849-;3025+3969 975625 = 54.75

(64)" +(45)" +(48) +(53)"
4

CF

Column Sum of Squares (SSC) =

_ 4096 +2025+2304 + 2809
4

—2756.25=52.25
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(31)" +(61)" +(85)" +(33)’
4

-CF

Treatment Sum of Squares (TSS) =

~961+3421+7225+1089
4

—2756.25=417.75

Error Sum of Squares (SSE) = TSS— SSR — SSC — SST

=675.75-54.75-52.25-417.75=151

ANOVA TABLE

Variance Ratio

S f
ouf*ce. 0 DF SS MSS Conclusion
Variation
Calculated | Tabulated
Rows 4-1=3 54.75 18.25 0.60 5.41 Insignificant
Columns 4-1=3 52.25 17.42 0.58 5.41 Insignificant
Treatments | 4— 1=3 417.75 | 139.25 4.61 5.41 Insignificant
Error 6— 1=5 151 30.20
Total 15-1=14

14.5. SUITABILITY OF LSD:

The latin square design is used when the experimental material is heterogeneous with
respect to two factors and this two-way heterogeneity is eliminated by means of rows and
columns. In fact, LSD can be applied to all those cases where either the variation in the
experimental material is not known or is known in two mutually perpendicular directions.
Thus, LSD is successfully used in industry, animal husbandry, biological and social sciences,
piggeries, marketing, medical and educational fields, where it is desired to eliminate the two-

factor heterogeneity simultaneously.
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Advantages and Disadvantages of LSD:

Advantages of LSD:

1)

Since total variation is divided into three parts namely rows, columns and treatments,
the error variance is reduced considerably. It happens due to the fact that rows and
columns being perpendicular to each other, eliminates the two-way heterogeneity up
to a maximum extent.

2) LSD is an incomplete three-way layout. Its advantage over the complete three-way
layout is that instead of m> units only m? units are needed. Thus, a 4x4 LSD results in
saving 64 — 16 = 48 observations over a complete three-way layout.

3) The analysis creates no problem even if a missing observation exists.

Disadvantages of LSD:

1) The fundamental assumption that there is no interaction between different factors may
not be true in general.

2) The main limitation of LSD is the equality of number of rows to that of columns and
treatments. If the layout of experimental material is not of square design then LSD
cannot be used.

3) RBD can be accommodated in any shape of field whereas for LSD field should
perfectly be a square.

4) For smaller number of treatments, say less than 5, the degree of freedom for error is
very small and thus the results are not reliable. Even in case of2x2 LSD, degree of
freedom for error becomes zero. In such situations,either the number of treatments
should be increased or the latin square should be repeated.

5) On the other side, if the number of treatments increases the size of latin squares
increases and this causes a disturbance in heterogeneit y.

6) Analysis of LSD becomes very much complicated if complete row or complete
column is missing. Analysis of RBD is quite easy in such situations.

14.6. SUMMARY:

In this Unit, we have discussed:

1) The Latin Square design;

2) The layout of LSD;

3) The method of statistical analysis of LSD;
4) The missing plots technique in LSD; and
5) The advantages and disadvantages of LSD.
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Example 3: Carry out ANOVA for the following design:

A B C D E
5 7 8
B C D E A
8 8 5
C D E A B
6 5 8
D E A B C
5 8 7
E A B C D
9 7 6

The analysis of the given design is done by the method of analysis of variance. The

computation results are given as follows:

Correction factor (CF) = 1239.04
Raw Sum of Squares = 1292
Total Sum of Squares = 52.92
Column Sum of Squares = 4.56
Row Sum of Squares = 4.96
Treatment Sum of Squares = 7.76

Error Sum of Squares = 35.68
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ANALYSIS OF VARIANCE TABLE

Sources of Variation DF SS MSS F
Rows 4 4.96 1.24 0.42
Columns 4 4.56 1.14 0.38
Treatment 4 7.76 1.94 0.65
Error 12 35.68 2.97

Total 24 52.96

Tabulated value of F (4, 12) =3.26

Since the calculated value of F is much less than the tabulated value of F at 5% level of
significance, we conclude that there is no significant difference between treatment means.

Example 4: Let the missing value is Y then we have

Column
I I I v R"ng’tals
Row (Rij)
A C B D
| 45
8 18 11 8
C B D
11 AY 33+Y
16 10 7
B D A C
111 48
12 10 6 20
D A C B
1V 63
10 9 28 16
Column
46 47 52 44+Y 189+Y
Totals (Cj)
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Here, m=4, R, =33,C, =44,T, =23, G'=189
Applying the missing estimation formula

Y:rn(R'3+c'2+T;,)—2G'

(m-1)(m-2)
4(33 +44 + 23) —2x189
= =3.66~4
(4-1)(4-2)
Inserting the estimated value of Y, we get the following observations:
Column
I 1 I v Row Totals (Ri)
Row

A C B D
I 45

8 18 11 8

C B D A
I 37

16 10 7 4

B D A C
I 48

12 10 6 20

D A C B
v 63

10 9 28 16
Column Totals (Cj) 46 47 52 48 193

, (193)°
Correction Factor (CF) ZT =2328.06
Raw Sum of Squares (RSS) == (8)*x (16)*x ... x (20)*x (16)*= 2895
Total Sum of Squares (TSS) == 2895 — 2328.06 = 566.94

(45) +(37)" +(48)" +(63)"
4

Row Sum of Squares (SSR) = CF
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Column Sum of Squares (SSC) =

Treatment Sum of Squares (SST) =

_2025+1369+2304 +3959

(46)" +(47)" +(52)" +(48)°

4

—2328.06-88.69

-CF

_ 2116+2209+ 2704 +2304

4

—2328.06=5.19

_729+2401+ 6724 +1225

4

(27)" +(49) +(82)" +(35)°

—CF

4

—2328.06 =441.69

4

Error Sum of Squares (SSE) = TSS— SSR — SSC — SST

=566.94 — 88.69 —5.19 —441.69 = 31.37

ANOVA TABLE
Variance Ratio
Source of Variation DF SS MSS Conclusion
Calculated | Tabulated

Columns 4-1=3 5.19 1.73 0.28 5.41 Insignificant
Treatments 4-1=3 441.69 | 147.23 23.48 541 Significant
Error 6—1=5 31.37 6.27

Total 15—-1=14

Since for treatment effect calculated value of F is greater than the tabulated value of F at 5%

level of significance, so we conclude that the treatment effect is significant. For pairwise

testing, find the standard error of difference of two treatment means.
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SE:\/zMSSE :\/2){6.27 17
m 4

Critical difference (CD) = SE x t_,, at error df

=1.77x2.571 =4.55

Treatment means

A= _675B=2 1225, c=32 _2058D=2 =875
4 4 4 4

Pair of Treatments Difference CD Inference
A, B A—Bl=05.50 4.55 Significant
A, C A-Cl=13.75 4.55 Significant
A,D A-D|=02.00 4.55 Insignificant
B, C B-Cl=08.25 4.55 Significant
B,D B-D|=03.50 4.55 Insignificant
C,D C-Dl=11.75 4.55 Insignificant

14.7. SELF-ASSESSMENT QUESTIONS:
1) Explain Layout of Latin Square Design
2) Explain the Statistical Analysis of Latin Square Design
3) Explain the Least Square Estimates of Effects of LSD
4) Missing Plots Technique in LSD
5) Explain the Suitability of LSD
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14.8.

SUGGESTED READINGS:
1) Montgomery, D.C. (2017). Design and Analysis of Experiments (9" ed.). Wiley.
2) Fisher, R.A. (1925). Statistical Methods for Research Workers. Oliver & Boyd.

3) Gupta, S.C., & Kapoor, V.K. (2014). Fundamentals of Applied Statistics. Sultan
Chand & Sons.

Dr. B. Hari Mallikarjuna Reddy



LESSON-15
TEST OF NORMALITY

15.0. OBJECTIVES:

After completing this unit, you should be able to:

e Understand the importance of the normality assumption in linear models and
ANOVA.

e Explain the theoretical basis of normality in residuals.
e Apply graphical and numerical tests for normality.

e Interpret the results of Shapiro—Wilk, Kolmogorov—Smirnov, Anderson—
Darling, and Chi-square tests.

e Recognize limitations and practical considerations in testing normality.

STRUCTURE:

15.1 Introduction
15.2 Role of Normality in Linear Models and ANOVA
15.3 Consequences of Non-Normality
15.4 Graphical Methods for Checking Normality
15.5 Statistical Tests for Normality
15.5.1. Shapiro - Wilk Test
15.5.2. Kolmogorov - Smirnov Test
15.5.3. Anderson - Darling Test
15.5.4. Chi-Square Goodness-of-Fit Test
15.6 Limitations of Normality Tests
15.7 Summary
15.8 Self-Assessment Questions

15.9 Suggested readings

15.1. INTRODUCTION:

Statistical models such as linear regression and Analysis of Variance (ANOVA) rely
on certain assumptions. One of the most fundamental assumptions is that the error terms
(residuals) follow a normal distribution with mean zero and constant variance. This
assumption simplifies inference because many test statistics (t, F, ¥?) are derived under
normality. Normality refers to the condition where a dataset follows a Normal Distribution
(also called the Gaussian distribution or bell curve). The normal distribution is symmetrical,
with most of the data clustered around the mean and tapering off equally on both sides.



Centre for Distance Education 15.2 Acharya Nagarjuna University

It is Fully Described by Two Parameters:
e Mean (n) — the central tendency

e Variance (6?) — the spread of data

Normality Ensures:
e Reliable estimation of parameters.
e Valid hypothesis testing.
e Correct confidence intervals.

e Without normality, results may be misleading, especially in small samples.

15.2. ROLE OF NORMALITY IN LINEAR MODELS AND ANOVA:
e In ANOVA, the F-statistic assumes residuals are normally distributed.

e In linear regression, least squares estimate remain unbiased without normality, but
t-tests and F-tests may be invalid.

e The Central Limit Theorem (CLT) suggests that with large samples, normality is
less critical; but with small or moderate samples, normality should be checked.

Testing Normality is Important because:
1. Statistical Assumptions

o Many parametric tests (t-test, ANOVA, regression) assume that the data (or
residuals) follow a normal distribution.

o If the assumption is violated, results may be misleading.

2. Model Adequacy Checking
o Inregression and ANOVA, residuals should be normally distributed.
o Non-normality may suggest model misspecification.

3. Practical Decision Making

o Helps decide whether to use parametric methods (require normality) or non-
parametric methods (do not assume normality).

15.3. CONSEQUENCES OF NON-NORMALITY:
Type I error inflation — p-values may be inaccurate.
Loss of power — tests may fail to detect significant differences.

Biased parameter estimates when distributions are skewed or have outliers.



Theory of Linear Estimation & Analysis... 15.3 Test of Normality

Heteroscedasticity Can Worsen Violations — unequal variances across groups make
normality departures more problematic.

Outliers Strongly Affect Normality Tests — even a single extreme value can cause the test
to reject normality.

Tests Rely on the Assumption of Continuous Data — discretized or rounded data can lead
to misleading conclusions.

15.4. GRAPHICAL METHODS FOR CHECKING NORMALITY:
These give a visual check of distribution:

e Histogram: Compare shape to bell curve.

o Boxplot: Detect skewness and outliers.

e Q-Q Plot (Quantile-Quantile Plot): If points lie close to a straight diagonal line, data is
approximately normal.

o P-P Plot (Probability-Probability Plot): Compares cumulative probabilities.

o Histogram of Residuals — should resemble bell-shaped curve if normal.

Figure 15.1: Histogram of Normally Distributed Residuals
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Figure 15.2: Histogram of Skewed Residuals

Box Plot — Detects Skewness and Outliers

o o
1
Normal Skewed

Figure 15.3: Boxplot Comparison (Normal vs Skewed)

Q-Q Plot (Quantile—Quantile Plot) — Observed Quantiles vs Theoretical Quantiles; should lie

on 45° line.
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Probability Plot

Ordered Values

-2 -1 0 1 2
Theoretical quantiles

Figure 15.4: Q-Q Plot for Normal Data

Probability Plot

Ordered Values
N

-2 -1 0 1 2
Theoretical quantiles

Figure 15.5: Q-Q Plot for Skewed Data
P-P Plot (Probability—Probability Plot) — Plots Cumulative Probabilities.
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Figure 15.6: P-P Plot for Normal Data
15.5. STATISTICAL TESTS FOR NORMALITY:

15.5.1. Shapiro—Wilk Test:

The Shapiro—Wilk test is a statistical test for normality.
It checks whether a sample comes from a normally distributed population.
First proposed by Shapiro and Wilk (1965).

It is one of the most powerful and widely used normality tests, especially for small
to medium sample sizes.

Hypotheses:

Null Hypothesis (Ho): The data are normally distributed.

Alternative Hypothesis (Hi): The data are not normally distributed.

Statistic (W): The test calculates a statistic W defined as:

Where,

2

_ (Zr, ax)

W=sn 2

x; = the ordered sample values (from smallest to largest).
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x= Sample Mean

a;= constants derived from the covariance matrix of the order statistics of a normal

distribution.
W ranges between 0 and 1. Values closer to 1 indicate stronger normality.

Decision Rule:
e A p-value is computed from W.

e Ifp>0.05— Fail to reject Ho — Data is approximately normal.

e Ifp<0.05— Reject Ho — Data significantly deviates from normality.
Data (exam scores): 52, 55, 60, 62, 64, 65, 66, 68, 70, 72
We test

o Ho: data are from a normal distribution

e Hi: data are not from a normal distribution

Step 1: Order the sample:data are not from a normal distribution
X(1) =X(2) = = X(10)
Already sorted:

X — 52, X2y — 55, Xy — 60, Xy — 62, Xy — 64, X(g) — 65, X7y — 66, X(g)
= 68, X9y = 70, X(10) = 72

Step 2: Compute the sample mean and the total sum of squares

= 63.4

IZ _52+55+"°+?2

YRl T 10

Ss = Z(xi _%)2= (52 —634)% + -+ (72— 63.4)% = 362.4

This SS is the denominator of Shapiro—Wilk’s W.

Step 3: Get the Shapiro—Wilk weights
The test forms a symmetric, weighted contrast of the order statistics:

The test forms a symmetric, weighted contrast of the order statistics:
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b = ¥ ia; x¢) (witha; = a,4+,-; )he weights a; are functions of the expected normal
order statistics and their covariance matrix; in practice they are looked up from published

tables or computed by software, not hand-derived.
For n=10, we use software (equivalent to table values) to obtain the @; and compute b.

Step 4: Compute the Shapiro—Wilk statistic

ompute the Shapiro — Wilk statistic

b2
W=ss

Using standard software for this dataset:
e W=0.9603

e p=0.7890

(These reflect the exact a; and the Monte-Carlo—based p-value approximation used by

modern implementations.)

55 =1362.4,W =0.9603, b = VW - S§ =/0.9603 x 362.4 ~ 18.655

15.5.2. Kolmogorov—Smirnov Test:
The K-S test is a non-parametric test used to check whether:

1) A sample comes from a specified distribution (e.g., normal distribution) — One-
sample K-S test.

2) Two samples come from the same distribution — Two-sample K-S test.

It compares the empirical distribution function (EDF) of the sample with the theoretical CDF

(one-sample) or compares the EDFs of two samples (two-sample).
Test Statistic (D):

D = sup|F,(x) — F°(x)|

1) One-Sample K-S Test Numerical Example

Problem: We have a sample of n = 8 observations: 2,4,6,8,10,12,14,16

We want to test if the data comes from a Uniform (0, 20) distribution at the 5% level of

significance.
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Step 1: Order the data Already ordered: 2,4,6,8,10,12,14,16

Step 2: Compute ECDF (Fn (x)) E,(xi) = i,z =1,2,

x; | Rank (1) E, (x;)

2 1 1/8 = 0.125
4 2 2/8 = 0.250
6 3 3/8 = 0.375
8 4 4/8 = 0.500
10 5 5/8 = 0.625
12 6 |6/8 = 0.750
14 7 7/8 = 0.875
16 8 8/8 = 1.000

Step 3: Theoretical CDF F(x)

For Uniform (0,20): F(x) = %. 0<x<=20

X F(xi)

2 2/20 = 0.10
4 | 4/20 = 020
6 |6/20 = 030
8 8/20 = 0.40
10 10/20 = 0.50
12 12/20 = 0.60
14 14/20 = 0.70
16 16/20 = 0.80
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We calculate Dt = nlax(Fn(xI-) — F(xi)) and D™ = max(F(xi) — Fn(xi_l))

e Teststatistic:D = max(D*,D™)

X; E, () Fx;) | |F —F]
2 0.125 0.10 0.025
4 0.250 0.20 0.050
6 0.375 0.30 0.075
8 0.500 0.40 0.100
10 0.625 0.50 0.125
12 0.750 0.60 0.150
14 0.875 0.70 0.175
16 1.000 0.80 0.200

So, D = max|E,(x;)— F(x;)| = 0.200

Step 5: Critical Value
For,n = 8, significance level a« = 0.05:

1.36 1.36
Driticat = N = 7 ~ 0.48

We fail to reject Hy,.

Conclusion: The sample is consistent with a Uniform (0,20) distribution.

15.5.3. Anderson—Darling Test:
4% = —n— (1/mE @i — DInF(xq)) + @n +1 = 20)in (1 - F(x() )|

Example: Residuals gave A? = 0.48 < critical 0.75 = Normal.
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15.5.4. Chi-Square Goodness-of-Fit Test:

The Chi-Square (y*) Test is a statistical hypothesis test that compares observed data
with expected data according to some assumption. It helps us check whether differences
between observed and expected values are due to chance or statistically significant.

Types of Chi-Square Tests:
There are mainly two types:

1. Chi-Square Goodness-of-Fit Test
o Checks if a sample data fits a particular theoretical distribution.
o Example: Testing if a die is fair (uniform distribution).
2. Chi-Square Test of Independence
o Checks if two categorical variables are independent.
o Example: Testing if gender is related to preference for a product.
Test Statistic Formula

The general form of the chi-square statistic is:

5 2(01_51)2
X = —
E;

Where:
e 0; = Observedfrequency
e E; = Expected frequency
e The sum is taken over all categories/cells
Degrees of Freedom (df)
e ForGoodnessofFit df=k—1—m
(where k = number of categories, m = parameters estimated)
e ForlIndependence Test:df = (+r — 1)(c — 1)

(where r = rows, ¢ = columns in a contingency table)



Centre for Distance Education 15.12 Acharya Nagarjuna University

Decision Rule
Compare calculated y? value with the critical value from the chi square
distribution table ata chosen significance level(a).

2 2 : : : :
U Xaicutated = Xeriticar, T€j€ctHy. Otherwise, failtoreject Hy.

ASSUMPTIONS:
1. Independence of Observations:

o The data points must be independent; correlation or repeated measurements violate
this assumption.

2. Continuous Scale of Measurement:

o Normality tests assume data are measured on a continuous scale, not categorical or
overly discretized.

3. Random Sampling
e The sample should be randomly drawn from the population to ensure valid inference.
4. No Extreme Outliers

e Many normality tests (especially Shapiro—Wilk) are highly sensitive to outliers, which
can distort results.

5. Underlying Distribution must be Fully Specified

e Tests like Kolmogorov—Smirnov require that the expected distribution (e.g., N (u, 62))
is known.

6. Sufficient Sample Size

e Very small samples may fail to detect non-normality; very large samples may detect
trivial deviations.

7. Residual-Based Testing in Models

e In ANOVA or regression, normality should be checked on residuals, not raw data.

15.6. LIMITATIONS OF NORMALITY TESTS:
e Large samples may reject normality for trivial deviations.
e Small samples may fail to detect non-normality.
e Always combine graphical + statistical methods.
e Apply transformations (log, square root, Box-Cox).

o Different tests have different sensitivities (e.g., Shapiro-Wilk detects tail issues
better than Kolmogorov-Smirnov).
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e Tests assume independent observations; correlated data (time series, repeated
measures) can give misleading results.

e Non-normality of the data vs. non-normality of residuals is often confused-
tests should be applied to residuals in regression/ANOVA, not to raw data.

15.7. SUMMARY:

Normality is one of the fundamental assumptions underlying ANOVA and linear
regression, because these methods rely on the idea that the errors (residuals) of the model
follow a normal distribution. When this assumption holds, the resulting test statistics (such as
the F-statistic and t-statistic) follow their theoretical distributions, which ensures that p-
values, confidence intervals, and hypothesis tests are valid and reliable. If the residuals
deviate significantly from normality, the Type I error rate may increase, estimates may
become biased, and conclusions drawn from the model may be misleading. Therefore,
assessing normality is an essential diagnostic step before interpreting ANOVA or regression
results.

To evaluate normality, both graphical and statistical methods should be applied
because each provides complementary information. Graphical tools-such as histograms,
Q-Q plots, boxplots, and residual plots-help visualize the shape, symmetry, skewness, and
presence of outliers. Statistical tests, such as Shapiro—Wilk, Kolmogorov—Smirnov,
Anderson-Darling, and Jarque-Bera, provide quantitative evidence about deviations from
normality. Among these, the Shapiro—Wilk test is widely recommended, especially for small
to medium sample sizes (n < 50 or n < 200), because it has high power in detecting non-
normal patterns.

Normality tests should not be viewed as rigid pass—fail tools; instead, they guide the
analyst in evaluating whether the assumptions behind ANOVA and regression are sufficiently
met for valid inference. Even if slight departures from normality are detected, ANOVA and
regression are generally robust-particularly with larger sample sizes-due to the Central Limit
Theorem. However, severe deviations may require corrective actions, such as transforming
the data (log, square-root, Box—Cox), using non-parametric alternatives, or applying robust
statistical methods. Thus, normality assessment plays a crucial role in ensuring the accuracy,
reliability, and interpretability of statistical modelling results.

15.8. SELF-ASSESSMENT QUESTIONS:
1) Why is normality of residuals required in ANOVA?
2) Compare Q-Q plots and histograms in testing normality.
3) Derive the test statistic for the Shapiro—Wilk test.
4) Why is Anderson—Darling more sensitive in the tails?

5) Discuss limitations of the Chi-square test for normality.
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15.9. SUGGESTED READINGS:

1)
2)

3)
4)
5)

Kutner, Nachtsheim, Neter and Li - Applied Linear Statistical Models

Douglas C. Montgomery, Elizabeth A. Peck and G. Geoffrey Vining -
Introduction to Linear Regression Analysis

N.R. Draper and H. Smith - Applied Regression Analysis
Samprit Chatterjee and Ali S. Hadi - Regression Analysis by Example
S.C. Gupta and V.K. Kapoor - Fundamentals of Mathematical Statistics.

Dr. M. Amulya



LESSON-16
TEST OF EQUALITY OF VARIANCES

16.0. OBJECTIVES:
After completing this unit, you should be able to:
e Understand the assumption of homogeneity of variances (homoscedasticity)
in ANOVA and regression.

o Explain why variance equality is essential for valid F-tests.

e Apply Bartlett’s test and the Modified Levene test.

o Interpret test results and handle violations of variance homogeneity.
STRUCTURE:
16.1 Introduction
16.2 Importance of Equal Variances in ANOVA
16.3 Consequences of Heteroscedasticity
16.4 Graphical Methods for Checking Homogeneity
16.5 Bartlett’s Test of Homogeneity
16.6 Levene’s Test (Modified Levene Method)
16.7 Applications and Case Studies
16.8 Summary
16.9 Self-Assessment Questions
16.10 Suggested readings
16.1. INTRODUCTION:

ANOVA assumes that the populations being compared have the same variance (c?).

This assumption is called homogeneity of variances. For example, if two fertilizers are
compared on crop yields but one group has much larger variability than the other, the
ANOVA test may show a significant difference that is actually due to unequal variability
rather than a true treatment effect.

When variances are equal, the pooled error term (MSE) provides a valid estimate of
error variance.

When variances are unequal (heteroscedasticity), the F-distribution used in ANOVA
no longer holds true.

This leads to incorrect conclusions about treatment effects.
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16.2. IMPORTANCE OF EQUAL VARIANCES:

Test

Assumptions

Robustness

Best Use Case

Bartlett’s Test

Assumes normality.

Very sensitive to
non-normality &

When data is strictly
normal and

outliers. sensitivity is needed.
Levene’s Test Fewer assumptions; General-purposg,
. . . Moderately robust. when normality is
(Mean version) not strict normality.
doubtful.
Levene’s Test Highly robust to
(Modified / Brown— | Uses median instead gty . Most recommended
. non-normality & .
Forsythe, Median of mean. . in real-world data.
. outliers.
version)
Assumes More powerful than Wh?n mild
St s . . deviations from
O’Brien’s Test approximate Levene in some .
. normality are
normality. cases.
expected.
Hartley’s F-Max Assumes normality Very sensitive, Quick check with
and equal sample L7 small, normal
Test . limited use.
sizes. samples.
Fligner—Killeen Non-parame'trlc. No Very robust, When data is heavily
normality o non-normal or
Test . distribution-free. .
assumption. ordinal.

16.3. CONSEQUENCES OF HETEROSCEDASTICITY:

e Bias in test results: Groups with smaller variances appear more ‘“stable” and

inflate F-ratio.
o Loss of statistical power: Large differences in variance reduce sensitivity of tests.

e Misleading confidence intervals: Standard errors are underestimated or

overestimated.

Example:

In a clinical trial, if variability in the placebo group is much larger than in treatment
groups, the ANOV A may incorrectly detect differences.
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16.4. GRAPHICAL METHODS FOR CHECKING HOMOGENEITY:
Before applying formal tests, visual checks are recommended:
1) Residual Plots
o Plot residuals vs fitted values.
o If spread is constant across all fitted values = homogeneity.
o Funnel-shaped patterns = heteroscedasticity.
2) Box Plots
o Compare spread of groups visually.
o Unequal lengths of boxes/whiskers suggest unequal variance.
3) Spread-Level Plot
o Plots spread against mean.

o Helps decide if a transformation (log, square root) is needed.

16.5. BARTLETT’S TEST OF HOMOGENEITY:

e Bartlett’s Test is a statistical test used to check whether multiple samples (from
different groups) have equal variances.

e It is commonly used as an assumption check before performing ANOVA
(Analysis of Variance) because ANOV A assumes homogeneity of variances.

e The test statistic follows a Chi-square (»?) distribution.
e Hy:0'? =02 = ... =gk?(all variances are equal)

e H,:Atleast one variance is dif ferent.

Test Statistic:

y2= (N—-k)In .S‘g — X8 (n;— 1 Ins?
1+ 2 ( e 1 1)

3(k—1) \“i=ly,—1 N-k

Where

N = Z n; = totalsamplesize

5'1-2 = varianceof group i
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. T —Ds? |
S =" N_"F  _ pooledvariance

Degrees of freedom =k — 1
Decision Rule:
e Compare y*with y* (k — 1) at significance level a.
o Ify?calculated > y*critical = rejectH®.

Example:

A researcher wants to check whether 3 different teaching methods produce equal

variability in student exam scores.

Method A 72 75 78 74 77

Method B 68 70 65 69 66

Method C 80 85 83 82 84

Step 1: Calculate Variances
Method A
e Mean = (72+75+78+74+77)/5 = 75.2

e Variances? = 6.7

Method B

e Mean = (68 +70 4+ 65 + 69 +66)/5 = 67.6
e Variances: = 4.3

Method C

e Mean = (80 + 85 + 83 + 82 + 84)/5 = 82.8

o Variances? = 4.7

So, s2 = 6.7,55 = 4.3,52 = 4.7
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each groupsize=5—>n; =n,=n3 =5

Total sample size N = 15, groups k =3

Step 2: Pooled Variance

(ny—1)sz + (ny— 1)s3 + (n3 — 1)s?
N—k

2
Sp

4(6.7) +4(4.3) + 4(4.7) _268+17.2+188 628

2
Sp 15 —3 12

Step 3: Bartlett’s Test Statistic

2

- (N—k)In(s3) - ZE,(r; — DIn(s?)

1+ 3[:«:1— 1) ( =1 n,-1—1 N N—:k)

e (N—k)=12

o In(s?) =In(5.23) = 1.653
e Firstterm = 12 x 1.653 =19.84
Now log terms:

e (n;—1In(s?) =4In(6.7) =4 x 1.902 = 7.61

e (ny—1)In(sz) =4In(4.3) =4 x 1.458 = 5.83

e (n3—DIn(s?) = 4In(4.7) = 4 x 1.548 = 6.19

e Sum = 7.61 + 5.83 + 6.19 = 19.63
Numerator = 19.84 — 19.63 = 0.21

Now correction factor denominator:

1 1 1 1 1
1 (

1
"3k—D E+1+g—ﬁ) =1+:(0.75 - 0.083)

1
=1 -I-g (0.667) =1+ 0.111 = 1.111

12

= 5.23
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So test statistic:

Step 4: Decision
e df = k-1 =2
e Critical value at @ = 0.05: y2 4z, = 5.99
e QOurvalue = 0.189 < 5.99

Conclusion: Fail to reject Hy. So, the variances of the three teaching methods are equal.

Advantages:
1) Powerful under normality:

o Bartlett’s test is very sensitive in detecting small differences in variances when
the data is normally distributed.

2) Widely used in ANOVA preparation:

o Ensures the assumption of homogeneity of variance is met, which is crucial
for valid ANOVA results.

3) Mathematically well-established:
o Based on exact distributions under normality, making it theoretically strong.
4) Useful for multiple groups:

o Can compare variances across more than two groups (not limited to pairwise
comparisons).

Disadvantages:
1) Highly sensitive to non-normality:

o If the data is not normally distributed, Bartlett’s test may give misleading
results (false positives/false negatives).

2) Not robust:
o Even slight deviations from normality can cause incorrect conclusions.
3) Alternatives are better in practice:

o Levene’s Test and Brown-Forsythe Test are preferred because they are more
robust against non-normal data.
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4) Interpretation depends on sample size:

o With large sample sizes, even trivial differences in variances may appear
significant.

o With small samples, it may fail to detect real variance differences.

16.6. LEVENE’S TEST (MODIFIED LEVENE METHOD):

o Levene’s Test is a statistical test used to check the homogeneity of variances
(equal variances) across groups, similar to Bartlett’s Test.

e It was proposed as a robust alternative to Bartlett’s test, since Bartlett’s is
highly sensitive to non-normal data.

e The Modified Levene’s Test (also called the Brown—Forsythe version) uses the
median instead of the mean to calculate deviations, making it even more robust
against skewed data or outliers.

e Hypotheses:
o Hy:01'? = %2 = ... = gk?(all Population variances are equal)

o Hi:Atleast one variance is dif ferent.

Procedure:

1) Compute absolute deviations of each observation from its group mean (or median for
the Brown—Forsythe version).

Zij = |Y:" - ?:‘

where Y;; = observation j in group i.

Perform a one-way ANOVA on these absolute deviations Z;.
If the ANOVA is significant — reject Ho, variances are unequal.
e Ho: all variances equal.

e Hi: at least one variance differs.

Problem:

Three groups (each n=5) with these observations:
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e Group A:10,12,9,11,13

e Group B: 20, 22, 19, 21, 20

e Group C: 30, 40, 28, 35, 32

We want to test

Hy:0} = 0§ = of Vs H,: at least one variance differs.
Use Levene’s test (center deviations about the group mean).

Step 1 - Compute Group Means

e Mean X, = 33.0

Step 2 - Compute Absolute Deviations
Zy = |YU _?:‘

Group A deviations:

[10—-11|=1, [12—-11I=1, [9—-11|=2,]11-11]=0,]13—-11|=2|— [1, 1, 2, 0, 2]
Group B deviations:

[20—20.4]=0.4, 122—20.4|=1.6, [19-20.4|=1.4, 121-20.41=0.6, |20—20.4|=0.4
— [0.4, 1.6, 1.4, 0.6, 0.4]

Group C deviations:

[30—33|=3, 140-33|=7, |28-33|=5, [35-331=2, |132-33|=1 — [3, 7, 5, 2, 1]

Step 3 - Means of the Deviations

o Z,=120

e Zz =0.88 (rounded)
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e Z; =3.60

Overall mean of all Z;;:Z = 1.8933 (approx)

Step 4 - Compute Sums of Squares: One-Way ANOVA on the Z

Between-group sum of squares (SSB):

k
SSB = Z n;(Z, — Z)? = 22.1013 (approx)

i=1

Within-group sum of squares (SSW):

kK
_ .2
SSW = ZZ(Z’U —Z,)" = 27.3280 (approx)

i=1j=1
Degrees of freedom:

dfpetween =k —1 =2
dfithin=N—-—k=15-3 =12

Mean squares:

MSB = S5B/(k — 1) = 11.0507 (approx)
MSW =SSW/(N — k) = 2.2773(approx)
F statistic:

MSB 11.0507

“Msw o 22773 © 48525

F

Step5 — Decision(use a = 0.05)

° Crltlcal Fﬂ.05.2.12 R 3 89

e ObservedF ~ 485 > 3.89 — rejectH,.

ij
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Conclusion:

There is statistically significant evidence (at the 5% level) that variances are not
equal across the three groups. In plain words Group C has much larger variability than

Groups A and B.

Advantages:
1) Robust to non-normality:

o Unlike Bartlett’s, Levene’s test works well even when data is not normally
distributed.

2) Resistant to outliers (modified version):

o By using the median (Brown—Forsythe modification), the test reduces the
influence of extreme values.

3) Applicable for many groups:
o Can handle two or more groups easily.
4) Widely used in ANOVA preparation:

o It helps verify the assumption of equal variances before applying parametric
tests like ANOVA or t-tests.

5) Flexibility:

o Different versions (based on mean, median, trimmed mean) give options
depending on the type of data distribution.

Disadvantages:
1) Less powerful than Bartlett’s under strict normality:

o If data is perfectly normal, Bartlett’s test is more sensitive in detecting small
variance differences.

2) Sample size issues:

o With very small sample sizes, Levene’s test may lack power to detect variance
differences.

3) Interpretation with large samples:

o Similar to Bartlett’s, with very large samples even small, unimportant
differences in variances can become statistically significant.

4) Not fully immune to skewness:

o Although better than Bartlett’s, extreme skewed distributions can still affect
the results.
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16.7. APPLICATIONS AND CASE STUDIES:
1) Agriculture

o Crop yield experiments often have heterogeneous variances due to soil quality
differences.

o Levene’s test is commonly applied.
2) Industrial Experiments
o Machine performance studies: older machines may have higher variability.
3) Medical Research
o Drug response variances may differ between treatment groups.
o Testing equality of variances avoids misleading conclusions.
4) Education Research

o Student performance scores across different teaching methods or schools may
have different variability (e.g., private vs. public schools).
o Levene’s test can be applied before comparing mean scores with ANOVA.
5) Psychology / Social Sciences:

o Reaction times or survey responses often show group differences in variability
(e.g., young vs. elderly participants).

o Testing variance equality ensures statistical comparisons (like t-tests or

ANOVA) are valid.

16.8. SUMMARY:

Aspect Bartlett’s Test Levene’s Test (Modified Method)
Tests equality of variances | Tests equality of variances across
Purpose (homogeneity of variance) | groups (robust alternative to
across groups. Bartlett’s).
Ho: All variances are egual. Ho: All variances are equal. Hi: At
Hypotheses Hi: At least one variance . .
. least one variance differs.
differs.
Statistic Test statistic ~ Chi-square | Test statistic ~  F-distribution
Distribution (%?) distribution. (ANOVA on absolute deviations).
Assumption Requires StI‘lCt. 'normahty. Works well under non-normality:
about Very sensitive to
. 7. robust to skewed data.
Normality deviations.
Effect of | Highly sensitive — outliers | Modified version (Brown—Forsythe
Outliers can distort results. using median) is robust to outliers.
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Aspect Bartlett’s Test Levene’s Test (Modified Method)

More  powerful  than | Slightly less powerful under strict

Power Levene’s if data is | normality, but more reliable in real-
perfectly normal. world data.

With small n — less
reliable. With large n —
even  trivial  variance
differences appear
significant.

With small n — reduced power.
With large n — may flag small,
unimportant differences as
significant.

Sample  Size
Behavior

When data is normal and
Best Use Case | you  want  maximum
sensitivity.

When data may be non-normal or
contain outliers.

Preliminary test for Widely used in applied research

ANOVA when normality (psychology, medicine, social

. sciences) as a standard
is strongly assumed. .
homogeneity test.

Common
Applications

16.9. SELF-ASSESSMENT QUESTIONS:
1) Why is the equal variance assumption necessary in ANOVA?
2) Derive the Bartlett test statistic and explain its limitations.
3) Explain how Levene’s test works. Why is it more robust than Bartlett’s test?
4) What are the alternatives when homogeneity of variance is violated?

5) Discuss real-life situations where variance heterogeneity occurs.

16.10. SUGGESTED READINGS:

1) Douglas C. Montgomery, Elizabeth A. Peck and G. Geoffrey Vining -
Introduction to Linear Regression Analysis.

2) N.R. Draper and H. Smith - Applied Regression Analysis.
3) Samprit Chatterjee and Ali S. Hadi - Regression Analysis by Example.

4) S.C. Gupta and V.K. Kapoor - Fundamentals of Mathematical Statistics.

Dr. M. Amulya



LESSON-17
ADVANCED MULTIPLE COMPARISON TESTS

17.0. OBJECTIVES:
After completing this unit, you should be able to:
e Understand why multiple comparison tests are required after ANOVA.
o Differentiate between Fisher’s LSD, Tukey’s HSD, and Duncan’s Multiple
Range Test.
o Comparison of Methods Fisher’s LSD, Tukey’s HSD, and Duncan’s.
e Apply these tests to identify which group means differ significantly.
o Interpret results in practical research problems.
STRUCTURE:
17.1 Introduction
17.2 Need for Multiple Comparison Tests
17.3 Tukey’s Honestly Significant Difference (HSD) Test
17.4 Fisher’s Least Significant Difference (LSD) Method
17.5 Duncan’s Multiple Range Test (DMRT)
17.6 Comparison of Methods
17.7 Applications
17.8 Summary
17.9 Self-Assessment Questions
17.10 Suggested readings
17.1. INTRODUCTION:

The most useful information from a one-way ANOVA is obtained through examining

contrasts. The trick is in picking interesting contrasts to consider. Interesting contrasts are
determined by the structure of the treatments or are suggested by the data. The structure of
the treatments often suggests a fixed group of contrasts that are of interest. For example, if
one of the treatments is a standard treatment or a control, it is of interest to compare all of the
other treatments to the standard. With a treatment this leads to a-1 contracts.

One problem is that, with a moderate number of treatment groups, there are many

contrasts to look at. When we do tests or confidence intervals, there is a built-in chance for
error. The more statistical inferences we perform, the more likely we are to commit an error.
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The purpose of the multiple comparison methods examined in this chapter is to control the
probability of making a specific type of error. When testing many contrasts, we have many
null hypotheses.

This chapter considers multiple comparison methods that control (i.e., limit) the
probability of making an error in any of the tests, when all of the null hypotheses are correct.
Limiting this probability is referred to as weak control of the experiment wise error rate. It is
referred to as weak control because the control only applies under the very stringent
assumption that all null hypotheses are correct. Some authors consider a different approach
and define strong control of the experiment wise error rate as control of the probability of
falsely rejecting any null hypothesis. Thus, strong control limits the probability of false
rejections even when some of the null hypotheses are false. Not everybody distinguishes
between weak and strong control, so the definition of experiment wise error rate depends on
whose work you are reading. One argument against weak control of the experiment wise
error rate is that in designed experiments, you choose treatments that you expect to have
different effects.

17.2. NEED FOR MULTIPLE COMPARISON TESTS:

Many multiple testing procedures can be adjusted to provide multiple confidence
intervals that have a guaranteed simultaneous coverage. Several such methods will be
presented.

Besides the treatment structure suggesting contrasts, the other source of interesting
contrasts is having the data suggest them. If the data suggest contrast, then the ‘parameter’ in
our standard theory for statistical inferences is a function of the data and not a parameter in
the usual sense of the word.

When the data suggest the parameter, the standard theory for inferences does not
apply. To handle such situations, we can often include the contrasts suggested by the data in a
broader class of contrasts and develop a procedure that applies to all contrasts in the class.

In such cases we can ignore the fact that the data suggested particular contrasts of
interest because these are still contrasting in the class and the method applies for all contrasts
in the class.

17.3. TUKEY’S HONESTLY SIGNIFICANT DIFFERENCE (HSD) TEST:

John Tukey’s honest significant difference method is to reject the equality of a pair of

means, say, ; and y; at the @ = .05 level, if

M > Q (0.95,a,df.)

MSE

n

Obviously, this test cannot be rejected for any pair of means unless the test based on
the maximum and minimum sample means is also rejected. For an equivalent way of

performing the test, reject equality of u; and y; if
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=<l
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=<l
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a J ) MSE
2'a' fe n

With a fixed a, the honest significant difference is

MSE

HSD = Q(,_% aar) [

where Q is the studentized range statistic.

For any pair of sample means with an absolute difference greater than the HSD, we
conclude that the corresponding population means are significantly different. The HSD is the
number that an observed difference must be greater than in order for the population means to
have an ‘honestly’ significant difference. The use of the word ‘honest’ reflects the view that
the LSD method allows ‘too many’ rejections.

Tukey’s method can be extended to provide simultaneous (1 — «)100% confidence
intervals for all differences between pairs of means. The interval for the difference p; — p;

has end points
7~ 5| £ HsD

Where HSD depends on a. For @ = 0.05, we are 95% confident that the collection of
all such intervals simultaneously contains all of the corresponding differences between pairs
of population means.

Example:

Using the same fertilizer experiment:
e Fertilizer A: 20, 22,23
o Fertilizer B: 25, 27, 26
e Fertilizer C: 22, 20, 21

Means
o FertilizerA =27 = (21.7)
« Fertilizer B = 272 = (26.0)
« Fertilizer ¢ = w — (21.0)

From Comparisons:

e MSE =10

hd dﬁ?r‘ror = 6
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e k =3,
e n =3
o Studentized range value:

Go.0536 ~ 3.67

The HSD Formula is given by

MSE

(+-Faar)

’1.0
HSD = 3.67 X 3 = 2.12

Comparisons:

HSD = Q

e A vsB=4.33 — greater than 2.12 — significant
e AvsC=0.67 — less than 2.12 — not significant
e B vs C=5.0— greater than 2.12 — significant
Conclusion:
Fertilizer B is significantly better than A and C, but A and C are not different.
e Advantages:
o Controls overall Type I error.
o Works best when group sizes are equal.

o Disadvantage: Conservative when many comparisons.

17.4. FISHER’S LEAST SIGNIFICANT DIFFERENCE (LSD) METHOD:

The easiest way to adjust for multiple comparisons is to use R.A. Fisher’s least
significant difference method. To put it as simply as possible, with this method you first look
at the analysis of variance. F-test for whether there are differences between the groups. If this
test provides no evidence of differences, you quit and go home. If the test is significant at,
say, the =05 level, you just ignore the multiple comparison problem and do all other tests in
the usual way at the .05 level.

This method is generally considered in appropriate for use with contrasts suggested by
the data. While the theoretical basis for excluding contrasts suggested by the data is not clear
(at least relative to weak control of the experiment wise error rate), experience indicates that
the method rejects far too many individual null hypotheses if this exclusion is not applied. In
addition, many people would not apply the method unless the number of comparisons to be
made was quite small.
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The term least significant difference comes from comparing pairs of means in a
balanced ANOVA. There is a number, the least significant difference (LSD), such that the
difference between two means must be greater than the LSD for the corresponding treatments
to be considered significantly different. Generally, we have a significant difference between
p; and gy if

MsE [+ ]

-7l

o

>t (1—%.@;)

Multiplying both sides by the standard error leads to rejection if

—ﬁbw(l—%@@)meE+%}

The number on the right is defined as the least significant difference,

=<l

2MSE
i 4
1-S.dn)y =

LSD=t
(

Where
o MSE = Mean Square Error from ANOVA
o n=number of observations per group.

Note that the LSD depends on the choice of but does not depend on which means are
being examined. If the absolute difference between two sample means is greater than the
LSD the population means are declared significantly different. Recall, however, that these
comparisons are never attempted unless the analysis of variance F test is rejected at the level.
The reason that a single number exists for comparing all pairs of means is that in a balanced
ANOVA the standard error is the same for any comparison between a pair of means.

o [f|difference between means| > LSD = means differ significantly.

e Advantages: Simple, powerful.

o Disadvantage: Inflates Type I error rate if used without prior ANOVA.
Example:
Suppose we test the effect of 3 fertilizers (A, B, C) on plant growth.

e Fertilizer A: 20, 22, 23

o Fertilizer B: 25, 27, 26

e Fertilizer C: 22, 20, 21
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From ANOVA, we get:

Means:
« Fertilizer 4 = w = (21.7)
« Fertilizer B = zmgﬂ = (26.0)
« Fertilizer ¢ = w — (21.0)

Comparisons:

e MSE = 1.0

® dferror =6
L4 tﬂ.US.E — 2447

.n:?,

Fisher’s Least Significant Difference Formula:

Lsp - 2MSE
- 1C{l—g.cm) n

)2 X 1.0
2.447 X =
\J 3

chn 2N
LS PR

T
L

Differences:
e A vs B=4.33 — greater than 2.0 — significant
e AvsC=0.67 — less than 2.0 — not significant

e B vs C=5.0— greater than 2.0 — significant

Conclusion:

Fertilizer B produces significantly more growth than A and C, but A and C do not
differ.

17.5. DUNCAN’S MULTIPLE RANGE TEST (DMRT):

Duncan has developed a multiple range procedure similar to that of Newman-Keuls. Newman

Keuls uses a series of tabled values
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Q1 —a,a,df.),Q(l —a,a—1,df,),..., Q(1 — @, 2,df,). Duncan’s method simply
changes the tabled values. Duncan uses

0((1 —a)®Ya,df.),0((1 —a)*2,a—1,df.),..., 0(1—a,2,df).

Using Duncan’s value Q[(1 — a)? !, a,df.] to compare the largest and smallest
means does not control the experiment wise error rate at a. (It controls it at 1-(1 — a)?~1).
As a result, Duncan suggests performing the analysis of variance Ftest first and proceeding
only if the Ftest indicates that there are differences among the means at level.

Duncan’s method is more likely to conclude that a pair of means is different than the
Newman—Keuls method and less likely to establish a difference than the LSD method. Just as
the Newman—Keuls approach can be used to modify the AOM and Dunnett’s method,
Duncan’s idea can also be applied to the AOM and Dunnett’s method.

Stepwise Procedure — Compares Ordered Means in Groups.
o Uses a range statistic to test differences between ranked means.
e More liberal than Tukey = greater chance of detecting differences.
e Advantage: Higher power.

o Disadvantage: Higher risk of Type I error.

Example:
Fertilizer | Plant1 | Plant 2 Plant3 | Mean
A 20 22 23 21.7
B 25 27 26 26.0
C 22 20 21 21.0
From ANOVA, suppose:

Step 1 — Order means

22420+ 21

: = (21.0)
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204+ 22+ 23
=—=(21.7)
3
254+ 27 + 26
- T —(26.0)
3
Comparisons

e MSE = 1.56
e Errordf = 6

Step 2 — Calculation

1.56

Step 3 — Critical q — values

Take from Studentized Range Table(dependsondf,a = 0.05).

Forr =2,q, =295
Forr =3,q; =331
Step 4 — Compute LSRs
e LSR,=295x0.72=212
e LSR;=331x0.72= 238
Step 5 — Compare Differences
e BvsC=26.0-21.0=5.0>2.38 — Significant
e BvsA=26.0-21.7=4.3>2.12 — Significant

e AvsC=21.7-21.0=0.7<2.12 — Not significant

Conclusion: Fertilizer B is significantly better than A and C, but A and C are similar.
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17.6. COMPARISON OF METHODS:

Test Error Control Power Suitable When...

Small number of

Fisher LSD Weak control High power comparisons, ANOVA
significant
Tukey HSD Strong control Moderate All pairwise comparisons,

equal sample sizes

Ordered means,
Moderate High power agricultural/biological
research

Duncan
MRT

17.7. APPLICATIONS:
e Agriculture: Comparing crop yields under different fertilizers.
e Medicine: Comparing effects of different drug dosages.
e Education: Comparing student performance under different teaching methods.

e Psychology / Behavioral Science: Comparing stress levels under different
relaxation techniques (e.g., meditation, music therapy, exercise).

e Manufacturing / Industry: Comparing the strength of materials produced by
different production processes.

17.8. SUMMARY OF MULTIPLE COMPARISON PROCEDURES:

Fisher’s Least Significant Difference (LSD) Test is one of the earliest and simplest
multiple comparison procedures. It performs pairwise t-tests between group means but uses
the pooled error variance from ANOVA to increase precision. Fisher’s LSD is powerful
(high ability to detect true differences) because it does not strongly control the familywise
Type I error rate when many comparisons are made. As a result, it is generally recommended
only when the overall ANOVA F-test is significant, and the number of groups is small. Its
primary advantage is sensitivity, but its limitation is inflation of false positives in large
comparison sets.

Tukey’s Honestly Significant Difference (Tukey’s HSD) Test is one of the most
commonly recommended procedures for comparing all possible pairs of means. It
effectively controls the familywise error rate, making it more conservative but also more
reliable than Fisher’s LSD, especially when sample sizes are equal. Tukey’s test provides
confidence intervals for each mean difference and maintains a strong balance between Type |
error control and statistical power. It is the preferred method in many experimental designs
where all pairwise comparisons are of interest.

Duncan’s Multiple Range Test (DMRT) is a stepwise, less conservative procedure
designed to identify homogeneous groups of means. Compared to Tukey’s HSD, Duncan’s
test allows more differences to be declared significant because it relaxes Type I error control
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as the number of steps increases. This gives it greater sensitivity but at the cost of higher false
positive rates. Duncan’s test is useful when the goal is to maximize detection of group
differences, but it is generally not recommended for confirmatory research. Overall, Fisher’s
LSD is the most liberal, Tukey’s offers the best error control, and Duncan’s provides greater
sensitivity with moderate error protection.

17.9. SELF-ASSESSMENT QUESTIONS:
1) Why do we need multiple comparison tests after ANOVA?
2) Derive the formula for Fisher’s LSD test.
3) Differentiate between Tukey’s HSD and Duncan’s MRT.
4) Discuss advantages and disadvantages of Fisher’s LSD.

5) In what situations would you prefer Duncan’s MRT over Tukey’s HSD?

17.10. SUGGESTED READINGS:

1) Douglas C. Montgomery, Elizabeth A. Peck and G. Geoffrey Vining -
Introduction to Linear Regression Analysis

2) N.R. Draper and H. Smith - Applied Regression Analysis

3) S.C. Gupta and V.K. Kapoor - Fundamentals of Mathematical Statistics

Dr. M. Amulya



