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FOREWORD 

Since its establishment in 1976, Acharya Nagarjuna University has been 

forging ahead in the path of progress and dynamism, offering a variety of courses 

and research contributions. I am extremely happy that by gaining ‘A+’ grade from 

the NAAC in the year 2024, Acharya Nagarjuna University is offering educational 

opportunities at the UG, PG levels apart from research degrees to students from 

over 221 affiliated colleges spread over the two districts of Guntur and Prakasam.  

The University has also started the Centre for Distance Education in 2003-

04 with the aim of taking higher education to the door step of all the sectors of the 

society. The centre will be a great help to those who cannot join in colleges, those 

who cannot afford the exorbitant fees as regular students, and even to housewives 

desirous of pursuing higher studies. Acharya Nagarjuna University has started 

offering B.Sc., B.A., B.B.A., and B.Com courses at the Degree level and M.A., 

M.Com., M.Sc., M.B.A., and L.L.M., courses at the PG level from the academic 

year 2003-2004 onwards.  

To facilitate easier understanding by students studying through the distance 

mode, these self-instruction materials have been prepared by eminent and 

experienced teachers. The lessons have been drafted with great care and expertise 

in the stipulated time by these teachers. Constructive ideas and scholarly 

suggestions are welcome from students and teachers involved respectively. Such 

ideas will be incorporated for the greater efficacy of this distance mode of 

education. For clarification of doubts and feedback, weekly classes and contact 

classes will be arranged at the UG and PG levels respectively.  

It is my aim that students getting higher education through the Centre for 

Distance Education should improve their qualification, have better employment 

opportunities and in turn be part of country’s progress. It is my fond desire that in 

the years to come, the Centre for Distance Education will go from strength to 

strength in the form of new courses and by catering to larger number of people. My 

congratulations to all the Directors, Academic Coordinators, Editors and Lesson-

writers of the Centre who have helped in these endeavors.  

Prof. K. Gangadhara Rao 

M.Tech., Ph.D., 

Vice-Chancellor I/c  

Acharya Nagarjuna University. 

 



 

Semester-2 

M.Sc. Physics- Syllabus 

203PH24-QUANTUM DYNAMICS AND 

SCATTERING THEORY 

 
 

Course Objectives: 

➢ Introduction of Spin and Total angular momentum 

➢ To acquire mathematical skills require developing theory of different pictures. 

➢ To develop understanding of scattering theory 

➢ To offer systematic methodology for the application of molecular quantum 

mechanical systems 

 

UNIT-I (Spin and Total angular momentum) 

 

Introduction to spin and total angular momentum, spin angular momentum and Pauli’s spin 

matrices, total angular momentum J, explicit matrices for J², Jx, Jy & Jz, combination of two 

angular moment and tensor operator, Clebsch-Gordan coefficients for j1=1/2, j2=1/2 and 

j1=1, j2=1/2, Wigner-Eckart theorem. 

 

Learning Outcomes: 

• The students will be able to grasp the concepts of spin and angular momentum, as well as 

their quantization and addition rules. 

• Students will learn the mathematical formalism of Clebsch-Gordan coefficients in 

quantum theory. 

 

UNIT II (Quantum dynamics) 

 

Introduction to quantum dynamics, equation of motion in Schrödinger picture and Heisenberg 

picture, correspondence between the two, correspondence with classical mechanics, 

application of Heisenberg picture to harmonic oscillator, interaction picture. 

 

Learning Outcomes: 

• Learn mathematical expressions for Schrödinger picture and their applications. 

• Students will learn the application of Heisenberg picture. 

 

UNIT III (Identical particles) 

 

The indistinguishability of identical particles – the state vector space for a system of identical 

particles – creation and annihilation operators – continuous one particle system – dynamical 

variables – the quantum dynamics of identical particle systems. 

 

Learning Outcomes: 

• Students will learn the physical significance of identical particles. 

• The students will be able to grasp the concepts of quantum dynamics of identical 

particle systems. 

 

 



 

UNIT IV (Scattering Theory) 

 

Introduction of scattering – notion of cross section – scattering of a wave packet – scattering 

in continuous stream model – Green’s function in scattering theory – Born approximation – 

first order approximation – criteria for the validity of Born approximation, form factor 

scattering – scattering from a square well potential – partial wave analysis – expansion of a 

plane wave – optimal theorem – scattering from a square well potential. 

 

Learning Outcomes: 

• Acquiring knowledge in scattering theory 

• Studying the applications of Green’s function and Born approximation in Scattering 

Theory. 

 

UNIT V (Molecular Quantum Mechanics) 

Introduction to molecular quantum mechanics, the Born-Oppenheimer approximation – the 

hydrogen molecule ion – the valance bond method – the molecular orbital method – 

Comparison of the methods – Heitler-London method (Ref: Atkins, Chapter-9, 279-294). 

 

Learning Outcomes: 

• Students will gain the knowledge about the Born-Oppenheimer Approximation 

• Learning the significances of Heitler-London method 

• Knowing the importance of different methods involved in Molecular Quantum 

Mechanics 

 

Course Outcomes: 

➢ Understand the Spin, Total angular momentum and Clebsch-Gordan coefficients 

concepts. 

➢ Understand historical aspects of identical particles in quantum mechanics 

➢ Scattering theory will teach them how to use projectiles to infer details about target 

quantum system. 

 

Text and Reference Books: 

 

1. Merzbacher, Quantum Mechanics 

2. L I Schiff, Quantum Mechanics (Mc Graw-Hill) 

3. D Crasemann and J D Powell, Quantum Mechanics (Addison Wesley) 

4. A P Messiah, Quantum Mechanics 

5. J J Sakurai, Modern Quantum Mechanics 

6. Mathews and Venkatesan Quantum Mechanics 

7. Quantum Mechanics, R.D. Ratna Raju 

8. Quantum mechanics by Kakania and Chandaliya 

9. Atkins P, Molecular Quantum Mechanics, Oup 1996(T) 

 

 

 

 

 

 

 

 



 

(203PH24) 

M.Sc. DEGREE EXAMINATION 

Physics 

Paper-III- QUANTUM DYNAMICS AND SCATTERING THEORY 

 

Time: Three hours                                                               Maximum:70 marks. 

                                         

                                  All questions carry equal marks. 

 

1     (a)     Write the matrix representation of total angular momentum. 

       (b)     Obtain matrix elements for Jx, Jy and Jz for ½ system. 

                                                            OR 

       (c)      Obtain the Clebsch-Gordon coefficients for j1  =  ½  and j2 = ½ . 

       (d)      Discuss in detail Wigner- Eckart theorem. 

 

2     (a)     Obtain the equation of motion in Schrodinger picture. 

       (b)     Discuss how the unitary operator connects the Heisenberg picture  

                 and  Schrodinger picture. 

                                                             OR 

       (c)      Obtain the equation of motion using interaction picture. 

       (d)     Obtain the expression for energy levels of harmonic oscillator using  

                 Heisenberg picture. 

 

3     (a)     Discuss the distinguishability of identical particles. 

       (b)     What are symmetric and anti symmetric wave functions and write  

                 the wave functions for three particle system. 

                                                              OR 

       (c)     What is an operator write about creation and annihilation operators. 

       (d)     Discuss the quantum dynamics of identical particles. 

 

4     (a)     Write the theory of scattering in continuous stream model. 

       (b)     Write the validity of Born approximation. 

                                                                OR 

       (c)      Discuss the theory of partial wave analysis. 

       (d)      Obtain the expression for scattering cross section in case of square  

                  Well  potential by partial wave method. 

 

5     (a)      Discuss in detail Born-Oppenheimer approximation to a molecule. 

       (b)      Outline the theory of Valence bond method of a hydrogen molecule. 

                                                                   OR 

       (c)      Discuss in detail molecular orbital method of a hydrogen molecule. 

       (d)      Write the theory of Heitler-London method of hydrogen molecule. 

 



 

 

CONTENTS 

S.No TITLES PAGE No 

1  Spin And Angular Momentum 1.1-1.10 

2  Wigner-Eckart Theorem 2.1-2.10 

3  Quantum Dynamics 3.1-3.11 

4  Interaction Picture 4.1-4.12 

5  Identical Particles 5.1-5.15 

6  Quantum Dynamical 6.1-6.12 

7  Scattering Theory 7.1-7.14 

8  Born-Approximation 8.1-8.15 

9  Square Well Potential 9.1-9.13 

10  Molecular Quantum Mechanics 10.1-10.8 

11  The Valance Bond and Molecular Orbital Method 11.1-11.9 

12  Heitler-London Method 12.1-12.10 

 



LESSON-1 

SPIN AND ANGULAR MOMENTUM 
 

1.0 Aim and OBJECTIVE 

Spin angular momentum represents an intrinsic property of elementary particles, such as 

electrons with spin quantum number s = 1/2, distinct from orbital angular momentum arising 

from spatial motion. Total angular momentum J combines spin S and orbital L as J = L + S, 

crucial for understanding atomic spectra, fine structure, and particle interactions. 

Aim 

The primary aim is to unify diverse angular momentum contributions into a single quantum 

framework obeying su(2) algebra: [J_i, J_j] = iℏε_ijkJ_k. This enables prediction of energy 

levels, selection rules in transitions, and magnetic properties via Zeeman effects, essential for 

quantum information, NMR, and condensed matter physics. 

Objectives 

• Quantization and Representation: Derive J² eigenvalues j(j+1)ℏ² and Jz = mℏ (m = -j to 

j), constructing explicit matrices (e.g., Pauli for j=1/2) for computations in coupled 

systems. 

• Coupling Multiple Momenta: Use Clebsch-Gordan coefficients to couple J1 and J2, 

forming total J states for multi-electron atoms or spin-orbit interactions. 

• Symmetry Applications: Apply Wigner-Eckart theorem for tensor operators, factoring 

matrix elements into angular (Clebsch-Gordan) and reduced parts, simplifying transition 

amplitudes. 

• Experimental Links: Connect to Stern-Gerlach experiments verifying spin discreteness 

and g-factors, bridging quantum to relativistic descriptions in Dirac theory. 

Mastery facilitates modeling hyperfine splitting, quantum computing qubits, and particle 

classification (bosons/fermions by integer/half-integer spin), underpinning quantum field 

theory foundations. (248 words) 

STRUCTURE 

1.1 INTRODUCTION TO SPIN AND TOTAL ANGULAR MOMENTUM 

1.2 SPIN ANGULAR MOMENTUM AND PAULI’S SPIN MATRICES 

1.3 TOTAL ANGULAR MOMENTUM J EXPLICIT MATRICES FOR J2, JX, JY, & JZ 

1.4 COMBINATION OF TWO ANGULAR MOMENT AND TENSOR OPERATOR 

1.3 SUMMARY 

1.4 TECHNICAL TERMS 

1.5 SELF ASSESSMENT QUESTIONS 

1.6 SUGGESTED READINGS 
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1.1 INTRODUCTION TO SPIN AND TOTAL ANGULAR MOMENTUM 

Angular momentum plays a central role in both classical and quantum mechanics. In classical 

physics, angular momentum arises due to the rotational motion of particles or rigid bodies 

about an axis. In quantum mechanics, however, angular momentum acquires a deeper and 

more fundamental significance. In addition to the angular momentum associated with the 

spatial motion of a particle, quantum theory introduces an intrinsic form of angular 

momentum known as spin. The combined effect of orbital angular momentum and spin gives 

rise to the concept of total angular momentum, which governs the behavior of microscopic 

systems such as electrons, atoms, and nuclei. Understanding spin and total angular 

momentum is essential for explaining atomic spectra, fine structure, magnetic properties of 

matter, and selection rules in spectroscopy. 

Spin Angular Momentum (𝐒):Spin is an intrinsic form of angular momentum possessed by 

elementary particles (electrons, protons, neutrons, etc.). 

It does not arise due to motion in space → purely quantum mechanical. 

Properties 

Quantized like orbital angular momentum: 

S2 = ℏ2s(s+1), Sz = msℏ  

Quantum number s: 

Electron, proton, neutron: s = 1/2 ;Photons: s = 1; spin-0 nuclei: s = 0 

Total Angular Momentum (𝐉):Total angular momentum is the vector sum of orbital and 

spin angular momentum: J = L  + S  

Eigenvalues: J2 = ℏ2j(j+1),  Jz = mjℏ 

Allowed values of j 

J = ∣l−s∣, ∣l−s∣ + 1,..., (l+s)     

Physical Meaning 

Total angular momentum plays a central role in: 

• Fine structure of atomic spectra 

• Spin-orbit coupling 

• Zeeman effect (interaction with magnetic field) 

• Selection rules in spectroscopy 

Example (electron in an atom, s = 1/2): If l = 1, 

   J = 1/2, 3/2  

These give rise to doublets in atomic spectra 

Conclusion 

Spin and total angular momentum represent core concepts in quantum mechanics that 

distinguish it sharply from classical physics. Spin is an intrinsic form of angular momentum 

inherent to particles, while total angular momentum arises from the vector combination of 
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spin and orbital contributions. Together, they provide a comprehensive framework for 

understanding atomic structure, spectral features, magnetic behavior, and angular momentum 

conservation laws. Mastery of these concepts is essential for advanced studies in quantum 

mechanics, atomic physics, and modern condensed matter physics. 

1.2 SPIN ANGULAR MOMENTUM AND PAULI’S SPIN MATRICES 

Definition: In 1920, it was found that orbital quantum properties are   unable to explain some  

observed troubled features, which were observed in the spectra of alkali halides. The spectral 

lines of alkali like atoms appear doublets which could not be explained by the wave function 

which is a function of orbital angular momentum alone.  The true explanation of the doublet 

structure  ofthe  terms of alkali halides is explained by introducing  the concept of electron 

spin.  Spin (S) is a vector quantity, with the dimensions of angular momentum.  Stern and 

Gerlach experiment later verified its existence experimentally. The total angular momentum 

is a sum of orbital angular momentum and the spin of electron.                         

                                            i.e.  
−−−

+= SLJ  

          The characteristic  values of the component of the spin in any prescribed direction are 

2
&

2


− .  The spin is measured in the units of   and the characteristic values are reformed to 

as 1/2 and –1/2 .  Now we will see the interpretation of the theory of spin of the electron 

given by Pauli.  

                  As we have said already, the spin of the electron is represented by the 
−

S  and 

besides this let us introduce an operator    (known as Pauli’s spin operator) such that  


2


=

−

S            (1) 

Spin of the electron is also angular momentum as mentioned before. Therefore, it should 

satisfy the angular momentum commutation relations.  

iSSXS =
−−

   In the units of   

     [S x S y-S y S x] = i S z          (2) 

Now introducing (1) and (2), we get  

zxyyx i 2=−  

xyzzy i 2=−      (3)                                                                                          

 yzxxz i 2=−  

 

and  +
x=


















0

0

2

:

3

a

a

 All   in the units of   

The eigen values of S2     are   S (S+1)  = 1/2(1/2+1)= 1/4       (4) 
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 S2   =  2222
2

4

1

2
zyx  ++=


       (5) 

 From the equations (4) and (5) the condition that gives the expectation value of 1/4 is                                

1222 === zyx   

spin matrices  x , y  , z 

Let the operator  z be operated on the ket
k

 giving the eigen value a  

               i.e. 
kakz =

 

kakz
22 =

 

 a = 1  

Therefore, there are two eigen values corresponding to in operator  z which are 1 . 

The matrix representation of these eigen values is a 2X2 matrix. 

 z =   









−10

01

 


x :- Since   z is a 2 x 2 matrix ,𝜎𝑥 𝑎𝑛𝑑 𝜎𝑦should also be 2 x 2 matrices since this has two 

anti commute. 

 Let   x  =









43

21

aa

aa

 

 

Consider x


z+ z


x= 0 

 

i.e.  








=

==







=









−










=









−−
+








−

−


=
















−
+








−








0

0

0
00

00

20

02

00

00

0
10

01

10

01

3

2

41

4

1

43

21

43

21

43

21

43

21

a

a

aa
a

a

aa

aa

aa

aa

aa

aa

aa

aa

x

 

 

 2a = 
:

3a  and 
:

3a =
:

2a  
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







=













=




























=









=









10

01

0

0

0

0

0

0

0

0

22

22

2

2

2

22

2

2

aa

aa

a

a

a

a

a

a

x

x





 

1
2

2 = a
 

 We may take a2=  exp( )i  














=














=

0

0

0

0













i

i

y

i

i

x

e

e
Similarly

e

e

 


x


z+ z


x= 0 









=









−

−









=









−−+−

−−+−









=









−

−
+








−

−









=



























+


























−−−−

00

00

)cos(0

0)cos(

00

00

))(exp())(exp(0

0))(exp())(exp(

00

00

))(exp(0

0))(exp(

))(exp(0

0))(exp(

00

00

0

0

0

0

0

0

0

0

































ii

ii

i

i

i

i

e

e

e

e

e

e

e

e
i

i

i

i

i

i

i

i

 









=

01

10
x

 

 2
;0




−
==

 
 

 

 

 

 

2

2
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
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These matrices are known as Pauli’s spin matrices.  










−
=







 −
=








=








 −
=


















−

=


















−

=

10

01

0

0
;

01

10

0

0

0
2

sin

2
sin0

0
2

exp(

)
2

exp(0

zyx

y

and
i

i

i

i

i

i

i

i













 

 

1.3 TOTAL ANGULAR MOMENTUM J EXPLICIT MATRICES FOR J2, JX, JY, & JZ 

The total angular momentum is defined as J = L  S and J x, J y, J z are the components of J. In 

analogy with the orbital angular momentum operators, we have the relations, 

           [J x, J y]=i J z[J y, J z]=i  J x 

and  [J z, J x]=i  J y         (1) 

             J X J= i J         (2) 

And   [J2,J]=0          (3)           

        J2= J2
x+ J 2y + J2

z 

     Let   us now consider the Eigen value problem of J z and J2.   

                  Let 2  and m   are the eigen values of J2 and Jz respectively. To find out the 

relation between  and m, let us construct new the operators:   

Matrices for J2, Jx, Jy and Jz 

Matrix element (J+)m
1

m= 
1

1
1)1)((

++ ++−=
mmj mJmjmJm   

Consider j=1/2 then J2 eigen values are   j(j+1) 22 4/3  =  

Jz eigen values = +1/2 and  –1/2        (since (2j+1)=(2*1/2+1=2) 

Therefore   

 

 

 

  







=+

00

10
J  

and          







=

− 01

00
J  

  

=xJ
2

1
 ( +J +

−
J ) = 

2











00
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





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−
=


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














−
=









=



















=

10

01

2

2
0

0
2

10

01

4

3

4

3
0

0
4

3
2

2

2

2











zJ

similarly

J



Centre for Distance Education  1.7  Acharya Nagarjuna University 

 

yJ = 
2

i









− 01

10
= 

2









 −

0

0

i

i
 

=zJ
2











−10

01
 

Physical Significance 

• The explicit matrices allow direct calculation of expectation values and transition 

amplitudes. 

• They are essential in studying spin systems, magnetic resonance, and addition of 

angular momenta. 

• The matrix representation highlights the non-commuting nature of angular 

momentum components. 

Conclusion 

Total angular momentum J is a fundamental conserved quantity in quantum systems with 

rotational symmetry. Its components obey universal commutation relations and admit finite-

dimensional matrix representations. Explicit matrices for J2,Jx,Jy,J
2, Jx, Jy,J2,Jx,Jy, and provide 

a powerful and concrete framework for understanding spin dynamics, atomic structure, and 

quantum measurements. These representations form the mathematical backbone of modern 

quantum mechanics and its applications. 

1.4 COMBINATION OF TWO ANGULAR MOMENT AND TENSOR OPERATOR 

In quantum mechanics, many physical systems involve more than one source of angular 

momentum. Examples include atoms with several electrons, nuclei composed of nucleons, 

and systems with both orbital and spin angular momenta. To describe such systems correctly, 

it is essential to understand the quantum mechanical rules for combining two angular 

momenta. Closely connected with this topic is the concept of tensor operators, which 

provide a powerful and systematic way to describe operators that transform under rotations in 

the same manner as angular momentum states. Together, the theory of angular momentum 

addition and tensor operators forms a cornerstone of modern quantum mechanics, with wide 

applications in spectroscopy, atomic structure, nuclear physics, and selection rules. 

If two distinct physical systems or two distinct sets of dynamical variables of one system 

,which are described in two different  vector spaces, are merged ,the states of the composite 

system are , vectors in the direct  product space of  the two previously separate vector  spaces. 

If  J1 and J2 are the angular momentum of the two physical systems , Then J= J1 + J2 is the 

total angular momentum   of the  entire system. J1x ,  J1y,  J1z are the components of J1,  J2x,   

J2y,  J2z  components of J2. 

Jx = J1x + J2x  and  so on  

 

Each component of J1 commutes with each component. The total component of J satisfies the 

angular momentum commutation relations:  

 

[Jx,Jy]= i Jz  ;    [Jy, Jz] = i Jx  ;  [Jz, Jx]= i  Jy     (4) 
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 Now, the problem of addition of two angular moment consists of obtaining the eigen values 

of Jz and J2 and their eigen vectors in terms of the direct products of the eigen vectors of J1z 

and J1
2 and of  J2z and J2

2 .  The normalized simultaneous eigen vectors of the four operators 

J1
2, J2

2, J1z , J2z  can be symbolized by the direct product kets.  

 

22112121 mjmjmmjj =
        (5) 

 

These constitute a basis in the direct product space . These form a  basis in the product space . 

From this basis , it is desire to construct a new basis with the eigen vectors of Jzand J2 . 

 

        Corresponding to three angular momentum vectors J1,J2 ,J we have six 

hermitianoperators . J2
1, J

2
2, J1z , J2z ,J

2  andJz out of these    J2
1 and J2

2 commute with every 

component of J and J2also . 

 

i.e. [J2, J
2
1] =[ J2, J

2
2] =   [J2,J2

1] =  [J2, J2
2] =0     (6) 

 

But J2 does not commute with  J1z and J2z we therefore have two sets of simultaneous eigen 

functions. They are  

 

1.  J2
1, J

2
2, J1z , J2z. 

2. J2
1, J

2
2, J

2 ,Jz 

 

Tensor Operator: A tensor operator is a set of operators that transform under rotation in the 

same way as classical tensors. 

 

They are labelled by two indices T⁽ᵏ⁾_q: 

• k → rank of the tensor 

• q = −k, −k+1, …, k → component index 

Thus, a tensor operator of rank k has (2k+1) components. 

Examples:  k = 0 → Scalar operator 

k = 1 → Vector operator 

k = 2 → Quadrupole operator  

Physical Significance and Applications 

The combined theory of angular momentum addition and tensor operators is indispensable in: 

• atomic and molecular spectroscopy, 

• nuclear electromagnetic transitions, 

• magnetic resonance, 

• quantum information theory, 

• symmetry-based simplifications of complex quantum systems. 

These tools allow physicists to extract physical predictions without solving the full dynamical 

problem. 
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Conclusion 

The combination of two angular momenta is a fundamental problem in quantum mechanics, 

arising whenever a system possesses multiple angular momentum contributions. The rules 

governing this combination lead to quantized total angular momentum values and introduce 

Clebsch–Gordan coefficients as essential mathematical tools. Tensor operators provide a 

natural language for describing operators that transform under rotations, while the Wigner–

Eckart theorem elegantly connects symmetry with observable quantities. Together, these 

concepts form a powerful and unified framework that underpins much of atomic, nuclear, and 

molecular physics. 

1.3 SUMMARY 

Spin represents an intrinsic angular momentum of particles like electrons, independent of 

orbital motion. Total angular momentum J combines orbital L and spin S via J = L + S, with 

its magnitude squared J² having eigenvalues j(j+1)ℏ², where j is the total quantum number. 

Spin Angular Momentum 

Spin angular momentum S for electrons has s = 1/2, yielding states |↑⟩ and |↓⟩ with Sz 

Eigenvalues ±ℏ/2. Pauli spin matrices define S operators: σx flips spin states, σy involves 

imaginary components mixing up and down, and σz diagonalizes along z-axis  

Total Angular Momentum J 

J obeys commutation relations like [Jx, Jy] = iℏJz, enabling simultaneous J² and Jz eigenstates 

|j, m⟩. Matrices are constructed in this basis using raising/lowering operators J± = Jx ± i Jy 

Total angular momentum J operators have explicit matrix representations in the |j, m⟩ basis, 

with J² proportional to the identity matrix scaled by j(j+1)ℏ². Jz is diagonal with entries mℏ 

for m = -j to +j, while Jx and Jy are tridiagonal, featuring real and imaginary off-diagonal 

elements from raising/lowering operators J±  

Example for j=1 

Jz = ℏ diag(1, 0, -1); Jx = (ℏ/√2) off-diagonals connecting adjacent m; Jy similarly with i 

factors; J² = 2ℏ² identity (3x3). 

Combining Angular Momenta 

Coupling J1 and J2 produces total J from |J1-J2| to J1+J2, using Clebsch-Gordan coefficients 

to express coupled states as linear combinations of uncoupled |m1, m2⟩ products  

Tensor Operators 

These rank-k operators transform irreducibly under rotations, enabling Wigner-Eckart 

theorem applications for matrix elements split into angular (Clebsch-Gordan) and reduced 

parts. 
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1.4 TECHNICAL TERMS 

Introduction to spin and total angular momentum, Spin angular momentum and Pauli’s spin 

matrices, Total angular momentum J explicit matrices for J2, JX, JY, & JZ, Combination of two 

angular moment and tensor operator 

1.5 SELF ASSESSMENT QUESTIONS 

1. Write about the introduction to spin and total angular momentum 

2. Explain about the Spin angular momentum and Pauli’s spin matrices 

3. Explain about the Total angular momentum J explicit matrices for J2, JX, JY, & JZ, 

4. Explain about the Combination of two angular moment and tensor operator 

1.6 SUGGESTED READINGS 

1. Quantum Mechanics – Merzbacher E (John Wiley & Sons, New York) 

2. L I Schiff, Quantum Mechanics (Mc Graw-Hill) 

3. B Crasemann and J D Powell, Quantum Mechanics (Addison Wesley) 

4. A P Messiah, Quantum Mechanics  

5. J J Sakural, Modern Quantum Mechanics 

6. Mathews and Venkatesan, Quantum Mechanics  

7. Quantum Mechanics, R.D. Ratna Raju 

8. Quantum Mechanics by Kakani and Chandaliya 

9. Atkins P, Molecular Quantum Mechanics, Oup 1996(T) 

 

 

Prof. R.V.S.S.N. Ravi Kumar 



LESSON-2 

WIGNER-ECKART THEOREM 
 

Aim and Objective 

The Wigner-Eckart theorem aims to exploit rotational invariance in quantum systems to 

simplify calculations of matrix elements for tensor operators acting on angular momentum 

states. Its primary objective is to factor these elements into a purely geometrical part, given 

by Clebsch-Gordan coefficients, and an intrinsic dynamical part, the reduced matrix element, 

which depends only on the tensor rank and initial/final angular momenta but not on magnetic 

projections. 

Aim 

Developed by Eugene Wigner and Carl Eckart, the theorem bridges group representation 

theory with quantum mechanics. It ensures that under rotations, matrix elements transform 

predictably, reducing the number of independent computations from (2j+1)(2j'+1)(2k+1) to a 

single reduced element per tensor component. This leverages SU(2) irreducibility: all 

orientations relate via Wigner D-matrices or ladder operators. 

Key Objectives 

• Selection Rules: Enforce Δj ≤ k ≤ j + j' and Δm = q, automatically vanishing non-

allowed transitions without explicit integrals. 

• Computational Efficiency: Compute one convenient matrix element (e.g., maximum 

m), extract the reduced value, then scale all others using tabulated Clebsch-Gordan 

coefficients. 

• Symmetry Exploitation: Reveal degeneracies; for scalar operators (k=0), elements 

are m-independent, explaining isotropic energy levels in free atoms. 

• Proof Foundation: Relies on rotating states and operators, yielding algebraic 

relations that prove proportionality to CG coefficients, with conventions like Condon-

Shortley phases. 

Practical Applications 

In atomic physics, it computes dipole (k=1) transition strengths for spectra. Nuclear physics 

uses it for multipole decays; particle physics for weak currents. Crystal field theory and EPR 

benefit from vector/tensor forms. Quantum computing employs it for spin operators in qubits. 

Ultimately, it minimizes numerical effort in multi-particle systems, enhancing predictive 

power from symmetry alone. 

 

STRUCTURE OF THE LESSON: 

 

2.1 CLEBSCH-GORDAN COEFFICIENTS FOR J1 = ½ AND J1 = 1, J2 = ½   

2.2 WINGER-ECKART THEOREM 

2.3 SUMMARY 

2.4 TECHNICAL TERMS 



Quantum Dynamics and Scattering Theory 2.2   Wigner-Eckart Theorem 

 

2.5 SELF ASSESSMENT QUESTIONS 

2.6 SUGGESTED READINGS 

 

2.1 CLEBSCH-GORDAN COEFFICIENTS FOR J1 = ½ AND J1 = 1, J2 = ½   

Introduction 

In quantum mechanics, the addition of angular momenta is essential for understanding 

composite systems such as multi-electron atoms, nuclei, and coupled spin systems. When two 

angular momenta are combined, the resulting total angular momentum states are expressed as 

linear combinations of product states of the individual angular momenta. The numerical 

factors appearing in these linear combinations are known as Clebsch–Gordan (CG) 

coefficients. These coefficients play a fundamental role in atomic spectroscopy, spin 

coupling, selection rules, and transition probabilities. 

 

The basis vectors corresponding to first set of vectors, J2
1, J

2
2, J1z , J2z. is denoted by  

22112121 mjmjmmjj =         (1) 

or briefly with 21mm   and corresponding to the second set, J2
1, J

2
2, J

2 ,Jz 

it is given by 

jmjj 21 are briefly by jm  

We thus have  

 

( ) 2121

2

112121

2

1 1 mmjjjjmmjjJ +=  

2121121211 mmjjmmmjjJ z =      (2)             

( ) 2121

2

222121

2

2 1 mmjjjjmmjjJ +=  

2121121212 mmjjmmmjjJ z =  

 

( ) jmjjjjjmjjJ 21

2

21

2 1 +=  

jmjjmjmjjJ z 2121 =       (3) 

( ) jmjjjjjmjjJ 21

2

1121

2

1 1 +=  

( ) jmjjjjjmjjJ 21

2

2221

2

2 1 +=  

 

We shall now write the transformation equation between jmjj 21  and 2121 mmjj  as  

jmjj 21  = 
21

2121212121

mm

jmjjmmjjmmjj       (4) 
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Here j1, j2 can be assumed to have fixed values and m1,m2 are variables.  

In the above equation, the transformation coefficient  

jmjjmmjj 212121  =
jjj

mmm
C 11

21
        (5)  

 

This is also called Clebsch-Gordon coefficient or Wigner coefficient.   

C.G coefficients j1=1 ,j2=1/2.  

The total number of C.G coefficients are (2j1+1)(2j2+1)=6 .The C.G coefficient matrix is a 

6X6 matrix. m1 takes the values 1 0-1 and m2 takes 1/2, -1/2 and  mtakes the values j1+j2 to 

21 jj −  i.e. 3/2, 1/2, -1/2, -3/2 

j values corresponding to j1=1, j2=1/2.are given by 

m  m1  m2  j 

j1+j2=3/2 j1=1  j2=1/2  m=3/2 

j1+j2-1=1/2 j1=1  j2-1= -1/2 j1+j2=3/2 

  j1-1 =1  j2 = ½               j1+j2-1=1/2 

 

              j1-1=0  j2-1= -1/2  j1+j2=3/2 

j1+j2-2= -1/2     j1-2 = -1  j2 = ½               j1+j2-1=1/2 

j1+j2-3=-3/2  j1-2= -1  j2-1= -1/2 j1+j2=3/2 

 

 

j→   3/2  3/2  1/2  3/2  1/2  3/2 

m→3/2  1/2  1/2  1/2  1/2  3/2  

 

 



























−−

−

−

−

66

5554

4544

3332

2322

11

21

00000

0000

0000

0000

0000

00000

2/11

2/11

2/10

2/10

2/11

2/11

c

cc

cc

cc

cc

c
mm
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Now consider 

jm 21mm












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
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
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




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

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



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−
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−

−

−



























=
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
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






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


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



−

−

−

2

1
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2

1
1

2

1
0

2

1
0

2

1
1

2

1
1
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2

3

2

3

2

1

2

1

2

1

2

3

2

1

2

1

2

1

2
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1
1

2

3

2

3

2

1
1

2

1
1

2

1
1

2

3
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3

2

1
1

2

3

2

3

2

1
1

2

3

2

3

11

2

11
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1111
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==
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1

2

1
1

2

1
1

2
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2

1
1

2
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1
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3

11

11
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c
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Now to find the other coefficients let us apply   J- on 
2

3

2

3
, then we have  

J-
2

3

2

3
= (J1-+J2-) 

2

1
1  

i.e. 

( )( ) ( ) ( )( ) 111(1̀1 212222211111 −+−+++−+=−+++ mmmjmjmmmjmjjmmjmj

 

i.e. ( )
2

1
11

2

1
011

2

1

2

3
3

−
++=  
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2

1
1

3

1

2

1
0

0

2

2

1

2

3 −
+=        (6) 

From the matrix, we have  

2

1
0

2

1
1

2

1

2

1
3332 cc +

−
=  

Multiplying the above two equations , we get  

2

1
1

2

1
1

3

1

2

1
0

2

1
0

3

2
0

2

1

2

3

2

1
1 *

32

*

33

−−
+==

−
cc

 

                          = *

32

*

33
3

1

3

2
cc +  

 
32

33

*

32

*

33

3

2

3

1

c

c

c

c
=

−

−
=  

Because they are real coefficients 

Now consider equation (3.5.19) and apply J- on both sides, we get  

J- ( ) ( )
2

1
1

3

1

2

1
0

3

2

2

1

2

3
2121

−
+++= −−−− JJJJ  

L.H.S      

2

1

2

3
2.2

−
 

R.H.S(1) : ( )
2

1
01

3

2

2

1
110101

3

2 −
+−+−+  

2

1
0

3

2

2

1
12

3

2 −
+−=  

R.H.S(2): i.e ( ) 0
2

1
02

3

1

2

1
1

3

1
21 +

−
=

−
+ −− JJ  

 

2

1
0

3

2
.2

2

1
1

3

2

2

1

2

3
2

−
+−=

−
  

2

1
0

3

2

2

1
1

3

1

2

1

2

3 −
+−=

−
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Again from the matrix  

2

1
1

2

1
0

2

1

2

1
5554 −+

−
=

−
cc  

Multiplying the above two equations, we  have

2

1
1
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1
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1

2

1
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1
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2

2

1

2

3

2

1

2
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C66=1, 

With this the CG coefficient matrix for J1=1 and J2 = 1/2 are  
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Physical Applications 

Clebsch–Gordan coefficients for these cases are extensively used in: 

• coupling of electron orbital angular momentum (l=1l = 1l=1) with spin (s=12s = 

\tfrac{1}{2}s=21), 

• fine structure of atoms, 

• hyperfine interactions, 

and
c
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• nuclear spin coupling, 

• quantum information and spin-½ systems. 

2.2 WINGER-ECKART THEOREM 

Introduction 

In quantum mechanics, symmetry principles play a central role in simplifying complex 

physical problems. Among these, rotational symmetry is of fundamental importance in 

atomic, molecular, and nuclear physics. Physical systems possessing rotational invariance are 

naturally described using angular momentum theory. However, direct calculation of matrix 

elements of operators between angular momentum eigenstates often becomes algebraically 

complicated, especially when the system involves multiple angular momenta. 

The Wigner–Eckart theorem provides a powerful and elegant solution to this problem. It 

states that matrix elements of spherical tensor operators can be factorized into a geometrical 

part, which depends only on angular momentum coupling, and a dynamical part, which is 

independent of magnetic quantum numbers. This theorem greatly simplifies calculations of 

transition probabilities, selection rules, and spectroscopic intensities, and is widely used in 

atomic, molecular, and nuclear physics. 

The Wigner- Eckart Theorem is in general used in calculating the transition probabilities of 

laser emission transitions. Before going to the proof of the theorem first let us get acquainted 

with some of the preliminaries used in the theorem.  

Euler angles 

The operator J can   be expressed as a unitary operator as a rotation at operator as  

)
).(

exp()(





Jni
Rn −= 







 −












 −
−==


zyz

zy

Ji
Exp

Ji
Exp

Ji
ExpRRR


 )()()()()(

 

Rotation Matrix 

Consider R  

jmRjmjmjm
m

)(11

1

 =
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JiJiJi

jmjmRjm zyz
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
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
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
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The statement of Wignar-Eckart theorem 
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Applications of the Wigner–Eckart Theorem 
The theorem is indispensable in: 

• atomic and molecular spectroscopy, 

• calculation of transition probabilities, 

• nuclear electromagnetic transitions, 

• hyperfine structure, 

• magnetic resonance, 

• particle physics and quantum field theory, 

• symmetry-based simplification of many-body problems. 
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Advantages of the Wigner–Eckart Theorem 

• Reduces computational complexity drastically. 

• Makes symmetry properties explicit. 

• Provides direct derivation of selection rules. 

• Separates physical dynamics from angular geometry. 

Conclusion 

The Wigner–Eckart theorem is one of the most powerful results in quantum mechanics, 

providing a deep connection between symmetry, angular momentum theory, and physical 

observables. By factorizing matrix elements of tensor operators into a geometrical part and a 

reduced matrix element, the theorem simplifies calculations and reveals the underlying 

rotational structure of quantum systems. Its applications span atomic, molecular, nuclear, and 

particle physics, making it an essential tool for both theoretical understanding and practical 

computation. Mastery of the Wigner–Eckart theorem is therefore indispensable for advanced 

studies in quantum mechanics. 

2.3 SUMMARY 

Clebsch-Gordan for Specific Cases 

For J1 = 1/2, J2 = 1/2, possible J=1 (triplet, symmetric) and J=0 (singlet, antisymmetric). 

J1=1/2 with J2=1 gives J=3/2 and J=1/2, with coefficients determining spin-orbit mixtures like 

in fine structure. 

The Wigner-Eckart theorem provides a powerful factorization for matrix elements of tensor 

operators between angular momentum states. It separates the angular dependence, captured 

by Clebsch-Gordan coefficients, from the intrinsic strength given by a reduced matrix 

element independent of magnetic quantum numbers. 

 

2.4 TECHNICAL TERMS 

 

Clebsch-Gordan coefficients for J1 = ½ and J1 = 1, J2 = ½, Winger-Eckart theorem 

 

2.5 SELF ASSESSMENT QUESTIONS 

 

1. Explain about the Clebsch-Gordan coefficients for J1 = ½ and J1 = 1, J2 = ½ 

2. Briefly explain about the Winger-Eckart theorem with proof. 
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2.6 SUGGESTED READINGS 

 

1. Quantum Mechanics – Merzbacher E (John Wiley & Sons, New York) 

2. L I Schiff, Quantum Mechanics (Mc Graw-Hill) 

3. B Crasemann and J D Powell, Quantum Mechanics (Addison Wesley) 

4. A P Messiah, Quantum Mechanics  

5. J J Sakural, Modern Quantum Mechanics 

6. Mathews and Venkatesan, Quantum Mechanics  

7. Quantum Mechanics, R.D. Ratna Raju 

8. Quantum Mechanics by Kakani and Chandaliya 

9. Atkins P, Molecular Quantum Mechanics, Oup 1996(T) 
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LESSON-3 

QUANTUM DYNAMICS 

3.0 Aim and Objective 

Quantum dynamics aims to describe the time evolution of quantum systems, bridging static 

energy eigen states to real-time processes like transitions and scattering. Its objective is to 

predict observable changes, such as spectral lines or reaction rates, using unitary evolution 

under the Hamiltonian. 

Core Principles 

Fundamentally, quantum dynamics resolves classical determinism with probabilistic wave 

mechanics via the Schrödinger equation for state propagation. In the Schrödinger picture, 

states |ψ(t)⟩ evolve while operators remain time-independent; the Heisenberg picture reverses 

this, evolving operators to mirror classical Hamilton equations through commutators  

Key Objectives 

• Time Evolution: Govern how superpositions develop, enabling interference and 

decoherence analysis in open systems. 

• Transition Probabilities: Compute Fermi's golden rule rates for perturbations, vital 

for spectroscopy and lasers. 

• Equivalence of Pictures: Demonstrate Schrödinger, Heisenberg, and interaction 

pictures yield identical physics, facilitating approximations like time-dependent 

perturbation theory. 

• Classical Limit: Via Ehrenfest theorem, show expectation values follow Newton's 

laws for macroscopic scales. 

STRUCTURE 

3.1 INTRODUCTION TO QUANTUM DYNAMICS 

3.2 EQUATION OF MOTION IN SCHRODINGER PICTURE AND HEISENBERG 

PICTURE  

3.3 CORRESPONDENCE BETWEEN SCHRODINGER PICTURE AND 

HEISENBERG PICTURE 

3.4 SUMMARY 

3.5 TECHNICAL TERMS 

3.6 SELF ASSESSMENT QUESTIONS 

3.7 SUGGESTED READINGS 
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3.1 INTRODUCTION TO QUANTUM DYNAMICS 

Quantum dynamics is the branch of quantum mechanics concerned with the time evolution of 

quantum systems. While quantum mechanics provides the fundamental laws governing 

microscopic particles such as electrons, atoms, and molecules, quantum dynamics focuses 

specifically on how these systems change with time under the influence of internal 

interactions and external forces. It forms the theoretical backbone for understanding a wide 

range of physical phenomena, including atomic transitions, molecular vibrations, chemical 

reactions, scattering processes, and quantum transport. 

In classical mechanics, the motion of a system is described by deterministic equations such as 

Newton’s laws or Hamilton’s equations, which predict precise trajectories in phase space. In 

contrast, quantum dynamics replaces classical trajectories with wave functions or state 

vectors, whose evolution is governed by probabilistic laws. The key objective of quantum 

dynamics is therefore not to determine exact paths, but to calculate time-dependent 

probabilities, expectation values, and transition amplitudes. 

Historical Background 

The development of quantum dynamics is deeply rooted in the early history of quantum 

mechanics. In 1926, Erwin Schrödinger formulated the Schrödinger equation, which 

describes the time evolution of a quantum state. Shortly afterward, Heisenberg, Born, and 

Dirac developed alternative but equivalent formulations of quantum mechanics. These 

formulations introduced different ways of describing quantum dynamics, known as the 

Schrödinger picture, Heisenberg picture, and later the interaction picture. 

Early applications of quantum dynamics focused on simple systems such as the hydrogen 

atom and harmonic oscillator. With advances in computational techniques and experimental 

tools, the scope of quantum dynamics expanded to include many-body systems, open 

quantum systems, molecular collisions, and ultrafast processes occurring on femtosecond and 

attosecond timescales. 

Quantum States and Observables 

In quantum dynamics, the complete physical information about a system at a given time is 

contained in its state. The state may be represented by a wavefunction ψ(r, t) in position 

space or by an abstract state vector |ψ(t)⟩ in Hilbert space. 

Physical quantities such as position, momentum, energy, and angular momentum are 

represented by operators acting on the state. The measurable value of an observable is 

obtained through its expectation value, which depends explicitly on time if the system is 

evolving. 

Unlike classical mechanics, where observables have definite values at all times, quantum 

dynamics predicts only probability distributions, reflecting the inherently probabilistic nature 

of quantum theory. 

Time-Dependent Schrödinger Equation 

The central equation of quantum dynamics is the time-dependent Schrödinger equation 

(TDSE) 
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Here, 𝐻̂ is the Hamiltonian operator, representing the total energy of the system. It typically 

includes kinetic energy and potential energy terms. The TDSE plays a role analogous to 

Newton’s second law in classical mechanics, determining how the quantum state evolves 

with time. 

If the Hamiltonian is time-independent, the solution of the TDSE can often be expressed as a 

superposition of stationary states with well-defined energies. If the Hamiltonian is time-

dependent, the system exhibits more complex behavior, such as transitions between energy 

levels. 

Stationary and Non-Stationary States 

A stationary state is an eigenstate of the Hamiltonian. In such states, the probability density 

remains constant in time, even though the wavefunction itself acquires a time-dependent 

phase factor. Stationary states are particularly important because they represent stable 

configurations of quantum systems, such as atomic orbitals. 

In contrast, a non-stationary state is a superposition of two or more stationary states. The time 

evolution of such states leads to observable phenomena such as quantum beats, oscillations in 

expectation values, and transitions induced by external perturbations. 

Quantum dynamics primarily deals with these non-stationary states, as they reflect the true 

dynamical behavior of quantum systems 

Pictures of Quantum Dynamics 

Quantum mechanics allows multiple, mathematically equivalent ways of describing time 

evolution, known as pictures. 

Schrödinger Picture 

In the Schrödinger picture, the state vectors evolve in time, while operators corresponding to 

observables are time-independent (unless they have explicit time dependence). This picture is 

conceptually simple and widely used in introductory treatments. 

 Heisenberg Picture 

In the Heisenberg picture, operators evolve in time, while state vectors remain fixed. The 

time evolution of operators is governed by the Heisenberg equation of motion, which 

resembles classical equations of motion. 

Interaction Picture 

The interaction picture combines features of both the Schrödinger and Heisenberg pictures. It 

is particularly useful in systems where the Hamiltonian can be separated into a solvable part 

and a small interaction. This picture is essential in time-dependent perturbation theory and 

quantum field theory. 
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Time-Dependent Perturbation Theory 

Many physically important systems cannot be solved exactly, especially when they interact 

with external fields. Quantum dynamics addresses this challenge through time-dependent 

perturbation theory, which treats the interaction as a small correction to an exactly solvable 

system. 

This approach allows the calculation of transition probabilities between quantum states and 

explains phenomena such as: 

* Absorption and emission of radiation 

* Atomic and molecular spectroscopy 

* Induced transitions by electromagnetic fields 

The interaction picture plays a central role in simplifying these calculations. 

Quantum Transitions and Selection Rules 

Quantum dynamics provides a framework for understanding transitions between energy 

levels. These transitions occur when a system interacts with time-dependent perturbations, 

such as electromagnetic radiation. 

Not all transitions are allowed. Selection rules, derived from symmetry considerations and 

conservation laws, determine which transitions can occur. These rules are essential for 

interpreting spectroscopic data and understanding the structure of atoms and molecules. 

Many-Body Quantum Dynamics 

Realistic quantum systems often consist of many interacting particles. The quantum dynamics 

of such systems is significantly more complex due to electron–electron interactions, 

correlations, and collective effects. 

Many-body quantum dynamics is crucial for understanding: 

* Solids and condensed matter systems 

* Superconductivity and magnetism 

* Nuclear dynamics 

* Quantum gases and Bose–Einstein condensation 

Advanced methods such as second quantization and Green’s functions are commonly used in 

this context. 

Open Quantum Systems 

Most quantum systems are not completely isolated but interact with their surroundings. The 

study of open quantum systems focuses on how environmental interactions lead to 

decoherence, dissipation, and the emergence of classical behavior. 

Quantum dynamics of open systems is vital for: 
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* Quantum optics 

* Quantum information and computation 

* Chemical reaction dynamics in solution 

These studies bridge the gap between idealized quantum systems and real-world experiments. 

Molecular and Chemical Quantum Dynamics 

In molecular systems, quantum dynamics explains vibrational motion, rotational motion, and 

electronic transitions. It also plays a crucial role in understanding chemical reactions, where 

the motion of nuclei and electrons occurs on comparable timescales. 

The concept of potential energy surfaces, derived from quantum mechanics, provides insight 

into reaction pathways, transition states, and reaction rates. 

Modern Applications of Quantum Dynamics 

Quantum dynamics is central to many modern scientific and technological fields, including: 

* Ultrafast laser spectroscopy 

* Quantum control and coherent manipulation of states 

* Quantum computing and information processing 

* Nanoscience and molecular electronics 

Advances in experimental techniques have made it possible to observe and control quantum 

dynamics in real time, further increasing its importance. 

Conclusion 

Quantum dynamics is a fundamental and expansive field that describes how quantum systems 

evolve in time. By replacing classical trajectories with time-dependent wavefunctions and 

operators, it provides a deep and accurate understanding of microscopic motion and change. 

From simple atomic systems to complex many-body and open systems, quantum dynamics 

offers a unifying framework that connects theory with experiment. 

As experimental capabilities continue to advance and new quantum technologies emerge, the 

study of quantum dynamics remains at the forefront of modern physics and chemistry, 

offering profound insights into the nature of matter, energy, and time. 

3.2 Equation of motion in Schrodinger picture and Heisenberg picture  

Schrodinger Picture: 

In this picture the state vectors are time dependent kets and the operators are constant 

in time.   So, the equation of motion  is the equation for Ψ: 

      

(1) 

 

The subscript   s   indicates Schrodinger picture.  One can express the time dependence of 

Ψs(r,t), in the Schrodinger picture, by unitary transformation 

Ψs(r,t) = U(t) Ψs(r)                                                                           (2) 
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with the condition that U(0)=1, then one can write 

Ψs(r) = Ψs (r,0).                                                                               (3) 

Now, 

Which would imply that if Ψs(r) is normalized, Ψs(r, t)remains normalized at all time 

,t, only when U(t) is unitary.     From eqans (1) and (2), we have

 

The corresponding operator equation is 

If  H does not depend on time, t, then above equation has a solution of the form 

Therefore from eqn (2), we obtain 

 

From eqn (1) and eqn (5), the time rate of change of the matrix element of an observable As, 

with time is given by 

 

 

If   As does not depend explicitly on time, first term of the right side of eqn (6) 

reduces to zero. Then eqn (4.1.6) becomes 
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Comparing this equation with the equation of motion for the dynamical variables A in 

classical mechanics, we see that the expectation values of operators obey the same equation 

of motion in quantum mechanics (Ehrenfest's theorem), provided we identify the 

commutatory bracket divided by iħ with the quantum mechanical Poisson Bracket. 

Heisenberg Picture: 

In this representation, the wave function ψH(r) does not change with time while the 

operators change with time.  The subscript H stands for Heisenberg picture.  Time-

independent state ψH(r) is obtained from ψs(r,t) by unitary transformation  (U(t)=exp(-iHt/ħ)) 

i.e.,  

 

Where ψs(r,t)  is the state vector in Schrodinger picture, and ψH(r)is in the Heisenberg 

picture and is independent of time.         

The operator in the Heisenberg picture can be written as  

Differentiating this equation with respect to time, we get 

 The eqn (9) represents the variation of dynamical variables with time in the Heisenberg 

picture. 

In the interaction Picture the state vector and operators can be represented as  

So that the interaction and Heisenberg pictures are the same when H' = 0 ( H'  represents the 

explicit time dependence of Hamiltonian).   In this case Hos  =  HoI 

 

3.3 CORRESPONDENCE BETWEEN SCHRODINGER PICTURE AND 

HEISENBERG PICTURE 

In quantum mechanics, we have two fundamental entities, one is the state vector, representing 

state of the physical system and the other is dynamical operator.   We are interested in 
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knowing the time development of these quantities i.e., their equations of motion.  In 

Schrodinger picture, the state vector ψs(t), depends on time while operator, say As, is time 

independent.  Whereas, in Heisenberg representation the operator change with time while the 

state vector remains constant.   As the physical process cannot depend on a particular choice 

of representation, there must exit some relation between them. 

At t = 0, state vector and operator are to be identical in both representations, i.e., 

 

U(t)  =  exp( -iHst/ђ)                                                                      (4)         

Where Hs  is assumed to be time-independent. 

For conservative systems, the Hamiltonian gives the energy of the system.  Therefore, inany 

representation H does not depend on time, so that HH = Hs = H. Since the expectation value 

of an operator is the same, irrespective of its representation, so 
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Therefore, 

                   AH(t) = U† As U                                                 (6) 

This gives us the relation between any Heisenberg and Schrodinger operators, 

defining observables. We will now show that the eigenvalues of operators, being the results 

of physical measurements, must be same in both the representations. 

 

Let the state vector in Schrodinger representation be 

 

Multiplying both sides by U† with U U†  = 1,   the above equation becomes 

Eqn (8) shows that λi
' s  are also the eigenvalues of the operator AH .Hence the 

eigenvalues of the operators are the same in Schrodinger and Heisenberg representations. 

Now, let us show that the probabilities of finding the system in corresponding eigenstates are 

same in both representations.   For that, consider the eqn (5), 

Multiplying both sides by  U†, we obtain 

or 

 

In eqn (9),  ci 's give the probabilities of finding the system in the ith  eigenstate and 

the same ci 's occur as coefficients in eqn (18) also. Therefore, the probabilities of finding the 

system in the corresponding eigenstates are same in both representations, i.e., 
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Since two pictures are equivalent, in principle, we can do our calculations using either one of 

them.   However, for a general operator equations of motions in Heisenberg picture is 

difficult to solve for most systems (there are exceptions) and therefore, we use the 

Schrodinger picture in which we deal with the more familiar linear differential equations. 

Summarizing with the help of metaphor, we can say that the Schrodinger picture rotates the 

dance floor with the dancers remaining still, while the Heisenberg picture leaves the dance 

floor alone and lets the dancers rotate. 

3.4  SUMMARY 

Quantum dynamics describes how quantum states evolve over time, governed primarily by 

the Hamiltonian operator representing total energy. Two equivalent pictures capture this 

evolution: Schrödinger and Heisenberg. 

Schrödinger Picture 

States evolve dynamically while operators remain fixed. The state vector |ψ(t)⟩ changes via 

the time-dependent equation involving the Hamiltonian, preserving probabilities and enabling 

wave function propagation  

Heisenberg Picture 

Operators evolve in time while states stay constant, resembling classical mechanics more 

closely. Operator time dependence follows a commutator-derived equation with the 

Hamiltonian, facilitating expectation value calculations and symmetry analysis. 

Key Equivalence 

Both pictures yield identical observables through unitary transformations, with the 

Schrödinger approach intuitive for state propagation and Heisenberg for operator algebra and 

Ehrenfest theorem linking to classical limits. 

3.5 TECHNICAL TERMS 

 Introduction to quantum dynamics, Equation of motion in Schrodinger picture and 

Heisenberg picture, Correspondence between Schrodinger picture and Heisenberg picture 

3.6 SELF ASSESSMENT QUESTIONS 

1. Write about the Introduction to quantum dynamics 

2. Briefly explain about the Equation of motion in Schrodinger picture and Heisenberg 

picture 

3. Explain about the Correspondence between Schrodinger picture and Heisenberg picture 

 

 

2 22 s H
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3.7 SUGGESTED READINGS 

 

1. Quantum Mechanics – Merzbacher E (John Wiley & Sons, New York) 

2. L I Schiff, Quantum Mechanics (Mc Graw-Hill) 

3. B Crasemann and J D Powell, Quantum Mechanics (Addison Wesley) 

4. A P Messiah, Quantum Mechanics  

5. J J Sakural, Modern Quantum Mechanics 

6. Mathews and Venkatesan, Quantum Mechanics  

7. Quantum Mechanics, R.D. Ratna Raju 

8. Quantum Mechanics by Kakani and Chandaliya 

9. Atkins P, Molecular Quantum Mechanics, Oup 1996(T) 
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LESSON-4 

INTERACTION PICTURE 
 

4.0 Aim and Objective 

Theaim of the interaction pictureistosimplify the solution of the time-dependent Schrödinger 

equationfor quantum systems whose Hamiltonian consists of asolvable part and asmall 

interaction (perturbation), especially when the interaction depends explicitly on time. 

The interaction picture, also known as the Dirac picture, aims to simplify time-dependent 

perturbation theory in quantum mechanics by separating free evolution from interaction 

effects. 

Objectives 

1. To separate free evolution and interaction effects 

o The Hamiltonian is written as 

 

2. To simplify time-dependent perturbation theory 

o Leads naturally to the Dyson series. 

o Useful for calculating transition probabilities between quantum states. 

3. To place operators and states on equal footing 

o Operators evolve partly in time (as in Heisenberg picture). 

o States evolve partly in time (as in Schrödinger picture). 

4. To facilitate calculations in quantum field theory 

o Most scattering theory and Feynman diagram calculations are done in the 

interaction picture. 

STRUCTURE 

4.1 CORRESPONDENCE BETWEEN HEISENBERG EQUATION WITH 

CLASSICAL MECHANICS 

4.2 APPLICATION OF HEISENBERG PICTURE TO HARMONIC OSCILLATOR 

4.3 INTERACTION PICTURE 

4.4 SUMMARY 

4.5 TECHNICAL TERMS 

4.6 SELF ASSESSMENT QUESTIONS 

4.7 SUGGESTED READINGS 
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4.1 CORRESPONDING BETWEEN HEISENBERG EQUATION WITH CLASSICAL 

MECHANICS  

Introduction 

One of the fundamental requirements of quantum mechanics is that it must reduce to classical 

mechanics in the appropriate limit. This requirement is known as the correspondence 

principle, originally proposed by Niels Bohr. It ensures the consistency of quantum theory 

with classical physics for macroscopic systems or in situations involving large quantum 

numbers. An important manifestation of this principle appears in the Heisenberg equation of 

motion, which governs the time evolution of operators in the Heisenberg picture of quantum 

mechanics. 

The Heisenberg equation exhibits a close formal resemblance to the equations of motion in 

classical Hamiltonian mechanics. In particular, the quantum mechanical commutator plays a 

role analogous to the classical Poisson bracket. This correspondence provides deep insight 

into the structure of quantum theory and clarifies how classical laws of motion emerge as 

limiting cases of quantum dynamics. 

 In order to get the similarity between Heisenberg equation of motion and 

corresponding classical equation, we review briefly the structure of classical Hamiltonian 

theory. Let the Hamiltonian is a function of coordinates and momenta, i.e., H = H (q1, q2, . . .; 

p1, p2, . . .), and 

writing a relation between Hamiltonian and Lagrangian as 

The variation of Hamiltonian, H,  lead to the Hamilton's equations of motion 

 

The time dependence of any function of the coordinates, momenta, and the time, calculated 

along a moving phase point, is 

 

Here the Hamilton's equations have been used to get the above equation.  The Poisson 

bracket {A, B} of any two functions of the coordinates and momenta is defined as  

.
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In terms of Poisson bracket, the equation of motion for the function  F of the dynamical 

variables becomes 

 

The resemblance between the above equation and Heisenberg equation, suggests that 

quantum analogs of the classical equations of motion can be found by substituting the 

commutator bracket divided by  iħ  for the Poisson bracket, 

and working with the Heisenberg picture. 

Conclusion 

The Heisenberg equation of motion represents the quantum mechanical generalization of 

Hamilton’s equations of classical mechanics. Through the close analogy between 

commutators and Poisson brackets, quantum dynamics mirrors classical dynamics in a 

precise mathematical sense. The Ehrenfest theorem and explicit examples such as the free 

particle and harmonic oscillator further reinforce this correspondence. In the classical limit of 

large quantum numbers or vanishing ℏ\hbarℏ, the quantum equations of motion reduce 

seamlessly to their classical counterparts. This correspondence not only validates quantum 

mechanics but also provides deep insight into the unity and continuity of physical laws across 

classical and quantum domains. 

4.2 Application of Heisenberg picture to harmonic oscillator 

Introduction 

The quantum harmonic oscillator is one of the most important and exactly solvable problems 

in quantum mechanics. It serves as a fundamental model for a wide variety of physical 

systems, including lattice vibrations (phonons), molecular vibrations, electromagnetic field 

modes, and quantum fields. Because of its simplicity and wide applicability, it provides an 

ideal framework for illustrating different formulations of quantum mechanics. 

Among the various representations of quantum mechanics, the Heisenberg picture offers a 

particularly transparent way of understanding quantum dynamics. In this picture, the 

operators evolve in time, while the state vectors remain fixed. The application of the 

Heisenberg picture to the harmonic oscillator reveals a striking correspondence between 

{ , }
i i i i

A B B A
A B

q p q p

    
= + 

    


{ , }
dF F

F H
dt t


= +



1
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i
=





Quantum Dynamics and Scattering Theory  4.4   Interaction picture 

 

 

quantum and classical motion and highlights the role of operator algebra in determining time 

evolution. This chapter discusses in detail how the Heisenberg picture is applied to the 

harmonic oscillator and how its physical properties emerge naturally from this formulation 

 

In the Heisenberg representation the time dependence is assigned to operators leaving the 

state vector time independent.  The Heisenberg equation of motion for an operator is given by 

iħdA/dt  =  [ A, H ] 

Where  A is an operator.  He has used this equation of motion to Harmonic oscillator. 

Let us consider a linear harmonic oscillator having the Hamiltonian 

H  =  p2/(2m)  +  (1/2) k x2 

=  p2/(2m)  +  (1/2) mω2 x2          (1) 

Where p and x are time dependent operators with infinite Hermitian matrices satisfying the 

commutation relation 

The equation of motion for the operator x in the Heisenberg picture is 

=
1

2𝑚
[𝑥, 𝑝2] +

1

2
𝑚𝜔2[𝑥, 𝑥2] 

=
1

2𝑚
(𝑝[𝑥, 𝑝] + [𝑥, 𝑝]𝑝) 

=
𝑖ℏ𝑝

𝑚
 

 

or 

𝑥̇ =
𝑝

𝑚
(2) 

 

In the similar way we can write that  

p˙=−mω2x(3) 

Differentiating eqn (2) with respect to t and combining it with eqn (3), we have 

x¨+ω2x=0(4) 

This equation can be written in the matrix form as  

 

The solution of this equation is 

, xx p i  =  
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Differentiating the eqn (6) twice with respect to time, we get 

 

 

Substituting eqn (7) in eqn (5), we obtain 

It is convenient to derive the relations for the matrix elements, which are independent of time.  

Generalization is not different as similar relations hold for matrices that depend on time.  In   

view of eqn (4.2.8), all matrix elements xkn(0) vanish except those for which the transition 

frequency ωkn = ± ω.    Therefore 

That is, for a given value of k only two xknelements are non-vanishing and those are n=k+1 

and n=k-1: 

 

The structure of x matrix would then be 

 

Similar way the elements of the p matrix can be obtained as 

( )

( )

0 0  if ;

0 0 if   

kn kn

kn kn

x

and x

 

 

=  

 = 
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In view of eqns (9) and (10), the non-vanishing elements of the p matrix are 

pk,k-1= imωxk,k-1 and pk,k+1=-imωxk,k+1                                                       (11) 

The structure of  pmatrix is  

 

The Heisenberg equation of motion of an operator allows us to get the structure of the 

x and p matrices.  To get the elements of the x and p matrices, we have to use the fundamental 

equation of Heisenberg method.  The diagonal (k,k) elements of the fundamental 

commutation relation is 

Substituting the matrices for x and p and using matrix multiplication procedures, we get    

 

 

Where δkn is the unit matrix.  Equating the elements on both sides, we have 
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Solving this system of equations,  Since x is Hermitian, we can write 

 

and  

 

From  eqns. (11),  (12),  and (13),    we have  

 and 

Now 

(x2)nn =   (xx)nn    =   Σ xnixin=  xn,n+1 xn+1,n+  xn,n-1 xn-1,n 

 =   (n+1) ħ / (2m ω)  +nħ / (2m ω) 

 =   (2n+1) ħ / (2m ω) 

and 

(p2)nn   =   m ω (n+1) ħ / 2  + m ω n ħ / 2   = m ω (2n+1) ħ / 2      

Then the Hamiltonian matrix is 

Hnn =   (1/2m) m ω (2n+1) ħ / 2  + m ω2 (2n+1) ħ / (4 m ω) 

 =   (2n+1)ħ ω / 2 

The eigenvalues  En  of the Hamiltonian are given by 

En =   ( n + ½) ħ ω,   n  =  0,1,2,3, . . .                (14) 

This is the same as the usual way one can obtain. 

Now, one can write the explicit form of the matrices for x(0) and p(0) based on the above 

equations as 

( )( ), 1 1, , 1 1,
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2
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and  

 

 

We could obtain the energy quantization of the harmonic oscillator results from the 

application of Heisenberg equation of motion. 

Physical Significance and Applications 

The harmonic oscillator in the Heisenberg picture is fundamental in: 

• quantum optics (photons as oscillator modes), 

• solid-state physics (phonons), 

• molecular spectroscopy (vibrational modes), 

• quantum electrodynamics, 

• semiclassical approximations and coherent states. 

Understanding this formulation is essential for advanced studies in modern physics. 

Conclusion 

The application of the Heisenberg picture to the quantum harmonic oscillator provides deep 

insight into the dynamical structure of quantum mechanics. By shifting time dependence 

from states to operators, the Heisenberg formulation reveals a direct and elegant 

correspondence between quantum and classical motion. The position and momentum 

operators satisfy equations identical in form to their classical counterparts, while creation and 

annihilation operators evolve with simple exponential time dependence. This approach not 

only simplifies calculations but also clarifies the emergence of classical behavior from 

quantum dynamics. As a result, the harmonic oscillator in the Heisenberg picture stands as a 

cornerstone example in quantum mechanics and a gateway to more advanced theories. 
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4.3 INTERACTION PICTURE 

The interaction picture (also called the Dirac picture) is a formulation of quantum mechanics 

that lies between the Schrödinger picture and the Heisenberg picture. It is especially powerful 

for time-dependent perturbation theory and quantum dynamics with interactions. 

 

Fig: 1 Interaction Picture 

1. Motivation 

In many physical problems, the Hamiltonian can be split as 

 

where: 

• 𝐻0̂ is the exactly solvable (free) Hamiltonian 

𝐻𝑖𝑛𝑡
̂ is a small interaction or perturbation 

The interaction picture treats: 

• the free evolution exactly (via 𝐻0̂ ) 

• the interaction perturbatively (via 𝐻𝑖𝑛𝑡
̂   ) 

2. Comparison of Pictures 

Picture     State vectors Operators 

Schrödinger        Time-dependent       Time-independent 

Heisenberg      Time-independent       Time-dependent 
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Picture     State vectors Operators 

Interaction      Time-dependent       Time-dependent 

3. Definition of the Interaction Picture 

Let < ψ𝑆(𝑡) > be the Schrödinger picture state. 

The interaction picture state is defined as: 

 

An operator 𝐴̂ in the interaction picture is: 

 

4. Time Evolution in the Interaction Picture 

The interaction picture state evolves according to: 

 

where the interaction Hamiltonian is: 

 
This equation resembles the Schrödinger equation, but only the interaction Hamiltonian 

appears. 

5. Time Evolution Operator 

The interaction picture evolution operator 𝑈̂𝐼(𝑡, 𝑡0)satisfies: 

 
Its formal solution is: 
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Here, T is the time-ordering operator. 

6. Dyson Series (Perturbative Expansion) 

Expanding the time-ordered exponential gives the Dyson series: 

 

This is the foundation of time-dependent perturbation theory. 

7. Physical Significance 

The interaction picture: 

• Separates free motion and interaction effects 

• Makes perturbative calculations systematic 

• Is essential in: 

o Atomic transitions 

o Light–matter interaction 

o Scattering theory 

o Quantum field theory 

4.4 SUMMARY 

The Heisenberg picture establishes a direct bridge between quantum mechanics and classical 

mechanics, with practical applications to solvable systems and perturbation theory. 

Classical Correspondence 

The Heisenberg equation dA/dt = (i/ℏ)[H, A] + ∂A/∂t directly analogs Hamilton's equations, 

where the commutator [A, H]/iℏ replaces the Poisson bracket {A, H}. Ehrenfest's theorem 

ensures expectation values ⟨x⟩ and ⟨p⟩ satisfy classical ẋ = ∂H/∂p and ṗ = -∂H/∂x, recovering 

Newtonian trajectories for coherent states or ħ → 0 limits. This correspondence validates 

quantum theory's classical limit while highlighting non-commutativity for microscopic 

scales.  

Harmonic Oscillator in Heisenberg Picture 

For H = p²/2m + (1/2)mω²x², position and momentum evolve as x(t) = x(0) cos(ωt) + 

(p(0)/mω) sin(ωt), p(t) = p(0) cos(ωt) - mωx(0) sin(ωt). Ladder operators a(t) = a(0) e^{-iωt} 

and a†(t) = a†(0) e^{iωt} phase-rotate exactly, preserving commutation [a, a†] = 1 and 

number eigenstates |n⟩. This mirrors classical sinusoidal motion, ideal for quantum optics and 

coherent states  
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Interaction Picture 

Splits H = H₀ + V(t): free evolution via H₀ governs operators A_I(t) = e^{i H₀ t/ℏ} A_H(0) 

e^{-i H₀ t/ℏ} and states |ψ_I(t)⟩ via interaction Hamiltonian V_I(t). Time-evolution operator 

U_I(t) expands as Dyson series ∑ (-i/ℏ) ∫ V_I(t₁)...V_I(t_n) dt, enabling time-dependent 

perturbation theory for weak V(t), such as Raman scattering or Rabi oscillations in qubits  

These frameworks unify quantum predictions with classical intuition, powering simulations 

in quantum chemistry and control. 

4.5 TECHNICAL TERMS 

 

Correspondence with Heisenberg equation with classical mechanics, Application of 

Heisenberg picture to harmonic oscillator, Interaction picture. 

 

4.6 SELF ASSESSMENT QUESTIONS 

1. Explain about the Correspondence with Heisenberg equation with classical mechanics 

2. Write about the Application of Heisenberg picture to harmonic oscillator 

3. Explain about interaction picture 

 

4.7 SUGGESTED READINGS 

1. Quantum Mechanics – Merzbacher E (John Wiley & Sons, New York) 

2. L I Schiff, Quantum Mechanics (Mc Graw-Hill) 

3. B Crasemann and J D Powell, Quantum Mechanics (Addison Wesley) 

4. A P Messiah, Quantum Mechanics  

5. J J Sakural, Modern Quantum Mechanics 

6. Mathews and Venkatesan, Quantum Mechanics  

7. Quantum Mechanics, R.D. Ratna Raju 

8. Quantum Mechanics by Kakani and Chandaliya 

9. Atkins P, Molecular Quantum Mechanics, Oup 1996(T) 
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LESSON -5 

IDENTICAL PARTICLES 
 

5.0 Aim and Objectives 

 

The aim of this chapter is to understand the quantum mechanical treatment of identical 

particles and how their indistinguishability affects physical observables. The objectives are to 

introduce the concepts of symmetric and antisymmetric wavefunctions, study the 

implications for bosons and fermions, apply the principles to multi-particle systems, and 

analyse how exchange symmetry influences measurable quantities such as scattering 

amplitudes and statistical behaviour. 

 

STRUCTURE OF THE LESSON: 

 

5.1THE INDISTINGUISHABILITY OF IDENTICAL PARTICLES  

5.2 THE STATE VECTOR SPACE FOR A SYSTEM OF IDENTICAL PARTICLES  

5.3 CREATION AND ANNIHILATION OPERATORS   

5.4 CONTINUOUS ONE PARTICLE SYSTEM  

5.5 SUMMARY 

5.6 TECHNICAL TERMS 

5.7 SELF-ASSESSMENT QUESTIONS 

5.8 SUGGESTED READINGS 

 

5.1THE INDISTINGUISHABILITY OF IDENTICAL PARTICLES 

 INTRODUCTION 

One of the most profound and fundamentally non-classical features of quantum mechanics is 

the indistinguishability of identical particles. Unlike classical physics, where particles can 

always be regarded as distinguishable entities, quantum mechanics imposes a radical and 

unavoidable constraint: identical particles cannot be distinguished, even in principle. This 

single idea reshapes our understanding of matter, statistics, and interactions at the 

microscopic level and lies at the heart of many essential physical phenomena. 

 

In classical mechanics, even if two particles possess exactly the same intrinsic properties—

such as mass, charge, and size—they can still be distinguished by tracking their trajectories, 

initial positions, or histories. Each particle carries an implicit label based on its path through 

space and time. Quantum mechanics, however, rejects this classical notion. When particles 

are identical—meaning, they share the same mass, charge, spin, and internal structure—no 

physical measurement can identify or label them individually. The laws of quantum 

mechanics therefore require that the description of such particles reflect this fundamental 

indistinguishability. 

 

This principle has far-reaching consequences. It gives rise to new forms of statistics, governs 

the structure of atoms and molecules, determines the behavior of solids, and explains 

phenomena such as the Pauli exclusion principle, degeneracy pressure, Bose–Einstein 
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condensation, superfluidity, and superconductivity. Without indistinguishability, much of 

modern physics and chemistry would be impossible to understand. It is therefore a 

cornerstone of quantum theory and a key concept in molecular quantum mechanics. 

 

Identical versus Distinguishable Particles 

Classical Perspective 

In classical physics, particles are always considered distinguishable, even if they are identical 

in every observable way. For example, consider two identical classical balls. One may label 

them as particle 1 and particle 2 and follow their positions and velocities as functions of time. 

Even if the two particles exchange positions, the system is considered to have evolved into a 

new state because the labels have been exchanged. 

 

This distinguishability is reflected mathematically in classical phase space. Each particle 

contributes its own coordinates and momenta, and exchanging two particles corresponds to a 

different point in phase space. Consequently, classical statistical mechanics counts 

configurations that differ only by particle exchange as distinct microstates. While this 

approach works well for macroscopic systems, it leads to serious inconsistencies when 

applied to microscopic particles, such as the Gibbs paradox. 

 

Thus, classical distinguishability is an assumption that ultimately fails at the atomic and 

subatomic scale. 

 

Quantum Perspective 

Quantum mechanics fundamentally changes this viewpoint. Identical quantum particles 

cannot be labeled in any physically meaningful way. If two identical particles are exchanged, 

there is no experiment that can determine whether such an exchange has occurred. Since 

physical predictions must be independent of unobservable distinctions, the quantum 

description must treat exchanged configurations as physically identical. 

 

This requirement imposes a strict constraint on the wavefunction of a system of identical 

particles. The wavefunction must remain either unchanged or change only by a sign when 

two particles are exchanged. In other words, under the exchange of any two identical 

particles, the wavefunction must be either: 

• Symmetric, or 

• Antisymmetric 

This symmetry property is not optional—it is a fundamental requirement arising from the 

indistinguishability of particles. 

 

Bosons and Fermions 

The symmetry of the wavefunction under particle exchange divides all particles in nature into 

two distinct classes, as dictated by the spin–statistics theorem. 

 

Bosons 

Bosons are particles with integer spin (0, 1, 2, …). Their wavefunctions are symmetric under 

the exchange of any two particles. 

Examples of bosons include: 

• Photons 

• Phonons 

• Helium-4 atoms 

• Gluons 
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• W and Z bosons 

Properties of bosons: 

• Any number of bosons can occupy the same quantum state. 

• They obey Bose–Einstein statistics. 

• Their symmetric wavefunctions allow constructive interference between particle 

states. 

• They are responsible for collective quantum phenomena such as: 

o Laser action 

o Superfluidity 

o Bose–Einstein condensation 

Because bosons do not exclude one another from quantum states, they can behave coherently 

on macroscopic scales. 

 

Fermions 

Fermions are particles with half-integer spin (1/2, 3/2, …). Their wavefunctions are 

antisymmetric under the exchange of any two particles. 

Examples of fermions include: 

• Electrons 

• Protons 

• Neutrons 

• Quarks 

• Neutrinos 

 

Properties of fermions: 

• No two fermions can occupy the same quantum state. 

• They obey Fermi–Dirac statistics. 

• The antisymmetric of the wavefunction enforces strong constraints on particle 

configurations. 

• Their behaviour determines the structure and stability of matter. 

The antisymmetric nature of fermionic wavefunctions leads directly to one of the most 

important principles in physics. 

 

Pauli Exclusion Principle 

The Pauli exclusion principle states that no two identical fermions can have the same set of 

quantum numbers. This principle is not an independent assumption but a direct and 

unavoidable consequence of indistinguishability and antisymmetric. 

 

To see this, consider two fermions placed in the same quantum state. Exchanging the two 

particles would leave the wavefunction unchanged, since the states are identical. However, 

antisymmetric requires the wavefunction to change sign under exchange. The only way both 

conditions can be satisfied simultaneously is for the wavefunction to be zero everywhere, 

which is physically impossible. Therefore, such a configuration cannot exist. 

The Pauli exclusion principle explains: 

• The electronic structure of atoms 

• The shell structure of atoms 

• The periodic table 

• Chemical bonding and molecular geometry 

• The stability and finite size of matter 

Without this principle, electrons would collapse into the lowest energy state, and atoms 

would not have structure. 
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Indistinguishability and Quantum Statistics 

Indistinguishability leads naturally to quantum statistics, which differ fundamentally from 

classical Maxwell–Boltzmann statistics. 

 

Bose–Einstein Statistics 

 

For bosons: 

• Multiple particles may occupy the same energy state. 

• At low temperatures, particles tend to accumulate in the lowest available energy level. 

• Below a critical temperature, a macroscopic number of particles occupy a single 

quantum state. 

This phenomenon is known as Bose–Einstein condensation, in which quantum effects 

become visible on a macroscopic scale. It underlies superfluidity and many modern quantum 

technologies. 

 

Fermi–Dirac Statistics 

For fermions: 

• Each quantum state can be occupied by at most one particle. 

• At absolute zero, fermions fill energy states up to a maximum value called the Fermi 

energy. 

• Thermal excitation occurs only near the Fermi surface. 

 

Fermi–Dirac statistics determine: 

• Electrical conductivity of metals 

• Heat capacity of solids 

• Properties of semiconductors 

• Degeneracy pressure in white dwarf and neutron stars 

 

Exchange Interaction 

Indistinguishability gives rise to the exchange interaction, a purely quantum mechanical 

effect with no classical analogue. Importantly, this interaction does not arise from a physical 

force but from the symmetry properties of the wavefunction. 

In atoms and molecules, the exchange interaction: 

• Explains chemical bonding 

• Determines magnetic ordering 

• Accounts for ferromagnetism and antiferromagnetism 

• Plays a central role in valence bond and molecular orbital theories 

Exchange effects are therefore essential for understanding both chemistry and condensed 

matter physics. 

 

Indistinguishability in Many-Particle Systems 

In systems containing many identical particles, the total wavefunction must be symmetric 

(bosons) or antisymmetric (fermions) under the exchange of any pair of particles. 

 

For fermions, antisymmetric is conveniently enforced using the Slater determinant, which 

automatically satisfies the Pauli exclusion principle. This mathematical structure is 

fundamental in: 

• Atomic structure calculations 

• Hartree–Fock theory 

• Quantum chemistry 
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• Condensed matter physics 

For bosons, symmetric wavefunctions lead to collective states described by mean-field and 

field-theoretic approaches. 

 

Physical Consequences of Indistinguishability 

The indistinguishability of identical particles has profound physical consequences: 

1. Stability of Matter 

Without fermionic antisymmetric, matter would collapse. 

2. Atomic and Molecular Structure 

Electron configurations and bonding arise from indistinguishability. 

3. Thermal and Electrical Properties of Solids 

Conductivity and heat capacity depend on fermionic statistics. 

4. Macroscopic Quantum Phenomena 

Superfluidity, superconductivity, and Bose–Einstein condensation depends on bosonic 

symmetry. 

 

Indistinguishability versus Practical Distinguishability 

Quantum indistinguishability is a fundamental principle, not a practical limitation. Even 

when particles are widely separated, identical particles remain indistinguishable in principle. 

 

However, in certain limits—high temperature or low density—quantum effects become 

negligible, and particles behave as if they were distinguishable. In this regime, classical 

statistics provides an excellent approximation. 

 

Role in Molecular Quantum Mechanics 

In molecular systems, electron indistinguishability is crucial for: 

• Constructing correct electronic wavefunctions 

• Explaining bonding and antibonding states 

• Understanding electron correlation 

• Predicting molecular spectra 

The requirement of antisymmetric under electron exchange strongly constrains allowed 

molecular states and shapes chemical behaviour. 

 

5.2 THE STATE VECTOR SPACE FOR A SYSTEM OF IDENTICAL PARTICLES  

 

Indistinguishability of Particles 

One of the most fundamental departures of quantum mechanics from classical physics is the 

principle of indistinguishability of identical particles. In classical mechanics, particles—even 

if identical in mass, charge, and size—are always considered distinguishable. Each particle 

follows a definite trajectory in space and time, and by tracing these trajectories one can, at 

least in principle, label and identify individual particles. Particle labels therefore have 

physical meaning in classical theory, and exchanging two particles leads to a new 

configuration in phase space. 

 

Quantum mechanics radically alters this classical picture. Due to the Heisenberg uncertainty 

principle, particles do not possess well-defined trajectories. Instead, they are described by 

wavefunctions that give only probabilistic information about their positions and momenta. 

When particles have identical intrinsic properties such as mass, charge, spin, and internal 

structure, there exists no physical measurement that can distinguish one particle from another. 
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Any attempt to label identical quantum particles has no observable consequence and therefore 

no physical meaning. 

 

As a result, particle labels in quantum mechanics are purely mathematical devices and cannot 

correspond to experimentally distinguishable features. Exchanging two identical particles 

must not change any physical prediction. This requirement lies at the heart of quantum 

statistics and has profound implications for the structure and behaviour of matter at the 

microscopic scale. 

 

Total Hilbert Space and Its Limitation 

Consider a quantum system consisting of N identical particles. The state of a single particle is 

described by a Hilbert space 𝐻. For N particles, the natural mathematical construction of the 

total Hilbert space is the tensor product of individual single-particle spaces: 

𝐻total = 𝐻1 ⊗𝐻2 ⊗⋯⊗𝐻𝑁 
 

Each factor 𝐻𝑖corresponds to the state space of the 𝑖-th particle. This tensor product space 

contains all possible product states and superpositions of single-particle states and is 

mathematically complete. 

 

However, this total Hilbert space is larger than the physical state space for a system of 

identical particles. The reason is that many states in the tensor product space differ only by a 

permutation of particle labels, which has no physical significance. Since identical particles 

cannot be distinguished, states that differ only by relabeling particles must represent the same 

physical situation. 

 

This restriction arises from a fundamental property of the system’s Hamiltonian. For identical 

particles, the Hamiltonian is invariant under any permutation of particle labels. That is, 

exchanging any two particles leaves the Hamiltonian unchanged. Consequently, the time 

evolution and measurable quantities must also be invariant under particle exchange. 

 

Therefore, only those states in the total Hilbert space that reflect this permutation symmetry 

can correspond to physically allowed states. The true physical state space is thus a restricted 

subspace of the full tensor product space. 

 

Permutation Operator 

To formalize the exchange of particles, we introduce the permutation operator. For two 

particles 𝑖and 𝑗, the permutation operator 𝑃𝑖𝑗interchanges their states: 

𝑃𝑖𝑗   ∣ ⋯ , 𝜙𝑖 , … , 𝜙𝑗 , …  ⟩ =∣ ⋯ ,𝜙𝑗 , … , 𝜙𝑖 , …  ⟩ 

 

This operator acts on the total Hilbert space and represents the mathematical operation of 

exchanging the labels of particles 𝑖and 𝑗. 
 

The permutation operator has several important properties. Applying the same permutation 

twice returns the system to its original configuration, which means: 

𝑃𝑖𝑗
2 = 𝐼 

 

where 𝐼is the identity operator. As a consequence, the eigenvalues of the permutation operator 

can only be +1or −1. 
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Since exchanging identical particles has no physical effect, physical states must be 

eigenstates of the permutation operator. If a state were not an eigenstate, exchanging particles 

would change the state in a physically observable way, contradicting the principle of 

indistinguishability. 

 

Thus, the allowed quantum states of identical particles are severely constrained by 

permutation symmetry. 

 

Symmetrisation Postulate 

The constraints imposed by indistinguishability are summarized in the symmetrisation 

postulate of quantum mechanics. This postulate states that only two types of wavefunctions 

are physically allowed for identical particles: 

1. Symmetric wavefunctions 

2. Antisymmetric wavefunctions 

No other symmetry behaviour is permitted in nature. 

 

Symmetric States: Bosons 

A quantum state is said to be symmetric under particle exchange if it satisfies: 

𝑃𝑖𝑗 ∣ Ψ⟩ = +∣ Ψ⟩ 

 

Particles described by symmetric wavefunctions are called bosons. Bosons have integer spin 

(0, 1, 2, …) and obey Bose–Einstein statistics. 

Important properties of bosons include: 

• Any number of bosons can occupy the same quantum state. 

• Their wavefunctions add constructively under exchange. 

• They can exhibit collective quantum behaviour on macroscopic scales. 

Examples of bosons include photons, phonons, helium-4 atoms, and gauge bosons. 

Phenomena such as laser action, superfluidity, and Bose–Einstein condensation arise directly 

from the symmetric nature of bosonic wavefunctions. 

 

Antisymmetric States: Fermions 

A quantum state is antisymmetric under particle exchange if: 

𝑃𝑖𝑗 ∣ Ψ⟩ = −∣ Ψ⟩ 

 

Particles described by antisymmetric wavefunctions are called fermions. Fermions have half-

integer spin (1/2, 3/2, …) and obey Fermi–Dirac statistics. 

 

A crucial consequence of antisymmetric is the Pauli exclusion principle. If two fermions 

occupy the same single-particle state, exchanging them leaves the wavefunction unchanged, 

but antisymmetric requires a change of sign. The only way both conditions can be satisfied is 

for the wavefunction to vanish, which is physically forbidden. Therefore, no two identical 

fermions can occupy the same quantum state. 

This principle explains: 

• Atomic shell structure 

• The periodic table 

• Chemical bonding 

• The stability and finite size of matter 

 

Construction of Physical States 
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An arbitrary product state in the total Hilbert space does not, in general, satisfy the symmetry 

requirements imposed by indistinguishability. To obtain physically allowed states, one must 

project such states onto the symmetric or antisymmetric subspace. 

 

Symmetrisation for Bosons 

For bosons, the physical state is constructed by summing over all permutations of particle 

labels with equal weight and proper normalization. This symmetrisation ensures that the 

wavefunction remains unchanged under any particle exchange. 

 

Such states allow multiple particles to occupy the same single-particle state and naturally lead 

to Bose–Einstein statistics. 

 

Anti symmetrisation for Fermions 

For fermions, anti-symmetrisation introduces alternating signs for even and odd 

permutations. The most convenient way to express antisymmetric states is through the Slater 

determinant. The Slater determinant automatically ensures antisymmetric and vanishes 

whenever two particles occupy the same single-particle state, thereby enforcing the Pauli 

exclusion principle. 

This construction is fundamental in: 

• Atomic and molecular structure calculations 

• Hartree–Fock theory 

• Quantum chemistry 

• Condensed matter physics 

 

Fock Space Description 

In many physical systems, the number of particles is not fixed. Examples include systems 

where particles can be created or annihilated, such as in quantum field theory or many-body 

condensed matter systems. In such cases, the tensor product Hilbert space is no longer 

sufficient. 

 

The appropriate framework is Fock space. 

Fock space is defined as the direct sum of all N-particle Hilbert spaces, including the vacuum 

state: 

ℱ = ℂ⊕𝐻⊕ (𝐻⊗𝐻)⊕ (𝐻⊗𝐻⊗𝐻)⊕⋯ 
 

For identical particles, only the symmetric (bosons) or antisymmetric (fermions) subspaces of 

each N-particle sector are included. 

Fock space provides: 

• A natural description of systems with variable particle number 

• A framework for creation and annihilation operators 

• Automatic enforcement of particle statistics 

It is essential in: 

• Many-body quantum mechanics 

• Quantum field theory 

• Second quantization 

• Condensed matter and particle physics 

 

Physical Significance and Consequences 

The indistinguishability of particles and the resulting symmetry requirements have profound 

physical consequences: 
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1. Stability of Matter 

Without fermionic antisymmetric, electrons would collapse into the lowest energy 

state. 

2. Atomic and Molecular Structure 

Shell structure, bonding, and molecular geometry arise from particle statistics. 

3. Thermal and Electrical Properties of Solids 

Conductivity, heat capacity, and magnetism depend on Fermi–Dirac statistics. 

4. Macroscopic Quantum Phenomena 

Superconductivity, superfluidity, and Bose–Einstein condensation rely on bosonic 

symmetry. 

 

5.3 CREATION AND ANNIHILATION OPERATORS   

 

In many-particle quantum mechanics, describing a system by explicitly labeling individual 

particles becomes impractical and physically unnecessary, especially when the particles are 

identical. Since identical particles are fundamentally indistinguishable, the labeling of 

particles carries no observable meaning. Instead, it is often far more convenient and 

physically transparent to describe the system in terms of how many particles occupy each 

allowed single-particle quantum state. 

 

This approach leads naturally to the occupation number representation, also known as the 

number representation, which is most conveniently formulated within the framework of Fock 

space. In this representation, the focus shifts from particle labels to the distribution of 

particles among available quantum states. Such a description is particularly powerful for 

systems involving a large or variable number of particles, such as atoms, molecules, solids, 

and quantum fields. 

 

Fock space provides a unified language for both bosonic and fermionic systems and forms the 

foundation of second quantization, which is the standard formalism used in modern many-

body physics and quantum field theory. 

 

Fock Space and Number States 

Fock space is constructed as a direct sum of Hilbert spaces corresponding to different particle 

numbers. Each basis vector in Fock space is specified by a set of occupation numbers: 

∣ 𝑛1, 𝑛2, 𝑛3, …  ⟩ 
 

where 𝑛𝑖denotes the number of particles occupying the single-particle state labeled by 𝑖. 
These basis vectors are called number states or occupation number states. 

The allowed values of 𝑛𝑖depend on the quantum statistics of the particles: 

• For bosons, 𝑛𝑖 = 0,1,2,3, … 

• For fermions, 𝑛𝑖 = 0or 1, reflecting the Pauli exclusion principle 

A many-particle quantum state is then represented by specifying the complete set of 

occupation numbers for all single-particle states. This description automatically incorporates 

the indistinguishability of particles and the appropriate symmetry requirements. 

 

Creation and Annihilation Operators 

The central mathematical objects in the occupation number representation are the creation 

and annihilation operators. These operators provide a simple and systematic way to build 

many-particle states from simpler ones and to describe processes in which particles are added 

to or removed from specific quantum states. 
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Definition of Creation Operator 

The creation operator, denoted by 𝑎𝑖
†
, creates (adds) one particle in the single-particle state 

labeled by 𝑖. When acting on a number state ∣ 𝑛𝑖⟩, it increases the occupation number of that 

state by one: 

𝑎𝑖
† ∣ 𝑛𝑖⟩ = √𝑛𝑖 + 1  ∣ 𝑛𝑖 + 1⟩ 

 

The square-root factor ensures proper normalization of the resulting state and plays a crucial 

role in preserving the consistency of quantum mechanical probability amplitudes. 

 

Physically, the creation operator represents the act of placing a particle into a specific 

quantum state, such as adding an electron to an atomic orbital or creating a photon in a 

particular mode of the electromagnetic field. 

 

Definition of Annihilation Operator 

The annihilation operator, denoted by 𝑎𝑖, destroys (removes) one particle from the single-

particle state 𝑖. Its action on a number state is given by: 

𝑎𝑖 ∣ 𝑛𝑖⟩ = √𝑛𝑖   ∣ 𝑛𝑖 − 1⟩ 

 

If 𝑛𝑖 = 0, the annihilation operator yields zero, since it is impossible to remove a particle 

from an empty state. 

The annihilation operator corresponds physically to removing a particle from a given state, 

such as absorbing a photon or removing an electron from an orbital. 

 

Algebra of Creation and Annihilation Operators 

The physical behaviour of many-particle systems is encoded in the algebraic relations 

satisfied by the creation and annihilation operators. These relations depend on whether the 

particles are bosons or fermions and reflect the fundamental symmetry properties of their 

wavefunctions. 

 

Bosonic Operators and Commutation Relations 

For bosons, the creation and annihilation operators satisfy commutation relations: 

[𝑎𝑖, 𝑎𝑗
†] = 𝑎𝑖𝑎𝑗

† − 𝑎𝑗
†𝑎𝑖 = 𝛿𝑖𝑗  

[𝑎𝑖, 𝑎𝑗] = [𝑎𝑖
†, 𝑎𝑗

†] = 0 

 

These relations imply that the order in which bosonic operators are applied does not matter, 

except for the special case involving one creation and one annihilation operator acting on the 

same state. 

 

The commutation relations allow any number of bosons to occupy the same single-particle 

state, which is the defining feature of Bose–Einstein statistics. This property leads directly to 

collective quantum phenomena such as: 

• Bose–Einstein condensation 

• Superfluidity 

• Laser action 

• Coherent states of light 

The mathematical simplicity of bosonic commutation relations makes bosonic systems 

particularly amenable to analytical treatment. 

 

Fermionic Operators and Anticommutation Relations 
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For fermions, creation and annihilation operators obey anticommutation relations: 

{𝑎𝑖, 𝑎𝑗
†} = 𝑎𝑖𝑎𝑗

† + 𝑎𝑗
†𝑎𝑖 = 𝛿𝑖𝑗 

{𝑎𝑖, 𝑎𝑗} = {𝑎𝑖
†, 𝑎𝑗

†} = 0 

 

These relations imply that exchanging the order of fermionic operators introduces a minus 

sign. This algebraic structure is a direct mathematical expression of the antisymmetry of 

fermionic wavefunctions. 

A crucial consequence of these anticommutation relations is that: 

( 𝑎𝑖
†)2 = 0  

 

which means that no more than one fermion can occupy a given single-particle state. This 

result automatically enforces the Pauli exclusion principle without the need to impose it 

separately. 

Fermionic operators are essential for describing: 

• Electrons in atoms and molecules 

• Nuclear matter 

• Quarks and leptons 

• Conducting electrons in solids 

 

Physical Meaning of Operator Algebra 

The distinction between commutation and anticommutation relations has profound physical 

consequences. It determines: 

• The allowed occupation numbers 

• The statistical behaviour of particles 

• The stability and structure of matter 

In this way, quantum statistics emerge naturally from the algebra of creation and annihilation 

operators rather than being imposed as external rules. 

 

Number Operator 

An important operator constructed from the creation and annihilation operators is the number 

operator, defined as: 

𝑁̂𝑖 = 𝑎𝑖
†𝑎𝑖 

 

The number operator measures the number of particles occupying the single-particle state 𝑖. 
When acting on a number state, it satisfies the eigenvalue equation: 

𝑁̂𝑖 ∣ 𝑛𝑖⟩ = 𝑛𝑖 ∣ 𝑛𝑖⟩ 
 

Thus, the occupation number 𝑛𝑖appears as the eigenvalue of the number operator, confirming 

the interpretation of ∣ 𝑛𝑖⟩as a state with a definite number of particles in state 𝑖. 
 

The total number operator for the system is given by the sum over all single-particle states: 

𝑁̂ =∑𝑎𝑖
†

𝑖

𝑎𝑖 

 

This operator plays a central role in distinguishing between systems with fixed and variable 

particle numbers. 
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Second Quantization Formalism 

Creation and annihilation operators form the backbone of second quantization, a formalism in 

which fields rather than particles are quantized. In this approach: 

• Single-particle states define a basis 

• Operators create and destroy particles in these states 

• Many-particle states emerge naturally 

 

Second quantization offers several advantages: 

• Automatic enforcement of particle statistics 

• Compact representation of many-body Hamiltonians 

• Simplified treatment of interactions 

• Natural description of particle creation and annihilation 

For example, the Hamiltonian of a many-particle system can often be written compactly in 

terms of creation and annihilation operators, making calculations more systematic and 

transparent. 

 

Applications in Many-Body Physics 

The occupation number representation and second quantization are indispensable in modern 

physics. They are extensively used in: 

1. Many-Body Quantum Mechanics 

To describe interacting systems of electrons, atoms, or nuclei. 

2. Quantum Field Theory 

Where particles are interpreted as excitations of underlying quantum fields. 

3. Condensed Matter Physics 

In the study of superconductivity, magnetism, and electron correlations. 

4. Atomic and Molecular Physics 

For describing electronic structure and correlation effects. 

5. Statistical Mechanics 

Where Bose–Einstein and Fermi–Dirac distributions naturally arise. 

 

Conceptual Advantages of Occupation Number Representation 

The occupation number representation provides a clear and physically meaningful description 

of quantum systems by: 

• Eliminating unphysical particle labels 

• Highlighting the role of quantum statistics 

• Simplifying calculations involving large numbers of particles 

• Providing a natural bridge between quantum mechanics and quantum field theory 

It emphasizes that particles are excitations of quantum states, not distinguishable objects 

following classical trajectories. 

 

5.4 CONTINUOUS ONE PARTICLE SYSTEM  

 

In many-particle quantum mechanics, it is often necessary to describe particles moving freely 

in continuous space rather than occupying a discrete set of energy levels. For such systems, 

the single-particle states are labeled by continuous variables, most commonly the position ror 

the momentum p. This situation arises naturally in problems involving free particles, particles 

in external potentials, electrons in solids, ultracold atomic gases, and quantum fields. 
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When the single-particle basis is continuous, the occupation number representation based on 

discrete labels is replaced by a field-theoretic description. In this framework, creation and 

annihilation operators become field operators, denoted by ψ†(r)and ψ(r). These operators 

create or destroy particles at specific points in space and form the fundamental building 

blocks of second quantization in the continuous representation. 

 

Definition of Field Operators 

The field creation operator ψ†(r)creates a particle localized at position r, while the field 

annihilation operator ψ(r)removes a particle from that position. These operators act on states 

defined in Fock space and allow the description of systems with any number of particles. 

 

Acting on the vacuum state ∣ 0⟩, which contains no particles, the field operators satisfy 

ψ†(r) ∣ 0⟩ =∣ r⟩, ψ(r) ∣ 0⟩ = 0. 
 

Here, ∣ r⟩represents a single-particle state localized at position r. The annihilation operator 

acting on the vacuum gives zero because there is no particle to remove. 

 

Physically, ψ†(r)corresponds to the process of adding a particle at point r, while 

ψ(r)represents the removal of a particle from that point. These operators provide a natural 

and intuitive description of particle dynamics in real space. 

 

Field Operators as Operator-Valued Distributions 

It is important to note that field operators are not ordinary operators but operator-valued 

distributions. The state ∣ r⟩is not normalizable in the usual sense, and physical states are 

obtained by integrating the field operators against suitable wavefunctions. For example, a 

general single-particle state can be written as 

∣ ψ⟩ = ∫ ψ(r) ψ†(r) ∣ 0⟩ dr, 
 

where ψ(r)is the single-particle wavefunction. This expression demonstrates how the field 

operator formalism reproduces the standard wavefunction description of quantum mechanics 

while extending it naturally to many-particle systems. 

 

(Anti)Commutation Relations of Field Operators 

The statistical nature of the particles—whether they are bosons or fermions—is encoded in 

the algebra satisfied by the field operators. 

For bosons, the field operators obey commutation relations: 

[ψ(r),ψ†(r′)] = δ(r − r′), 
[ψ(r),ψ(r′)] = [ψ†(r), ψ†(r′)] = 0. 

 

These relations allow multiple bosons to occupy the same position or quantum state, 

reflecting the symmetric nature of bosonic wavefunctions. 

For fermions, the field operators satisfy anticommutation relations: 

{ψ(r),ψ†(r′)} = δ(r − r′), 
{ψ(r),ψ(r′)} = {ψ†(r), ψ†(r′)} = 0. 

 

These relations enforce the Pauli exclusion principle, ensuring that no two fermions can 

occupy the same quantum state or the same point in space with identical quantum numbers. 
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The delta function δ(r − r′)expresses the locality of the field operators: creation and 

annihilation at different spatial points are independent, while operators acting at the same 

point are linked by the statistical rules of the particles. 

 

Physical Significance of Field Operator Algebra 

The commutation or anticommutation relations ensure that observable quantities derived 

from the field operators are consistent with quantum statistics. They guarantee that: 

• Bosonic systems exhibit collective behaviour such as Bose–Einstein condensation and 

superfluidity. 

• Fermionic systems obey the exclusion principle, leading to atomic shell structure, 

electronic band formation, and the stability of matter. 

Thus, the statistical behaviour of particles is not imposed artificially but emerges naturally 

from the algebra of the field operators. 

 

Number Density Operator 

An important observable in the continuous representation is the particle number density 

operator, defined as 

n̂(r) = ψ†(r)ψ(r). 
 

This operator measures the density of particles at position r. Its expectation value in a given 

quantum state gives the probability density of finding a particle at that point in space. 

 

For example, in a single-particle state ∣ ψ⟩, the expectation value of n̂(r)reproduces the 

familiar probability density ∣ ψ(r) ∣2. 

 

Total Number Operator 

The total particle number operator is obtained by integrating the number density operator 

over all space: 

N̂ = ∫ ψ†(r)ψ(r) dr. 
 

This operator counts the total number of particles present in the system. In systems where the 

particle number is conserved, the Hamiltonian commutes with N̂. In other situations, such as 

in quantum field theory or open quantum systems, the particle number may vary, and N̂is not 

conserved. 

 

Connection to Discrete Representation 

The continuous field operators can be expanded in terms of a complete set of single-particle 

basis functions ϕi(r): 

ψ(r) =∑ai
i

ϕi(r), ψ
†(r) =∑ai

†

i

ϕi
∗(r), 

 

where aiand ai
†
are the annihilation and creation operators in the discrete representation. This 

expansion shows that the continuous and discrete formulations are completely equivalent and 

differ only in the choice of basis. 

 

Applications and Importance 

Creation and annihilation operators in the continuous representation provide a powerful and 

natural framework for describing many-particle systems in real space. They are indispensable 

in: 
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• Many-body quantum mechanics 

• Quantum field theory 

• Condensed matter physics 

• Atomic, molecular, and optical physics 

• Ultracold atomic gases and superfluid’s 

They allow a compact description of interacting systems, spatial correlations, and particle 

creation and annihilation processes. 

 

5.5 SUMMARY 

 

In quantum mechanics, identical particles are indistinguishable because no experiment can 

uniquely label particles with the same intrinsic properties. Although the state space of an 𝑁-

particle system is given by the tensor product of single-particle Hilbert spaces, this space is 

larger than the physical one. Since the Hamiltonian is invariant under particle exchange, only 

symmetric states for bosons and antisymmetric states for fermions represent physical 

states.the formalism of creation and annihilation operators is introduced to describe quantum 

systems containing many particles. Instead of labelling individual particles, the theory uses 

occupation numbers of single-particle states, which is especially convenient for identical 

particles. For discrete states as well as continuous one-particle systems, these operators add 

or remove particles while automatically incorporating Bose–Einstein or Fermi–Dirac 

statistics. 

 

5.6 TECHNICAL TERMS 

 

   Indistinguishability of identical particles, the state vector space for a system of identical 

particles  

 

5.7 SELF-ASSESSMENT QUESTIONS 

 

1. State the Indistinguishability of identical particles 

2. Describe the state vector space for a system of identical particles  

3. Define the creation and annihilation operators. 

4. Explain the Creation and Annihilation Operators for a Continuous One- Particle System. 

 

5.8 SUGGESTED READINGS 

 

1. Quantum Mechanics – Merzbacher E (John Wiley & Sons, New York) 

2. L I Schiff, Quantum Mechanics (Mc Graw-Hill) 

3. B Crasemann and J D Powell, Quantum Mechanics (Addison Wesley) 

4. A P Messiah, Quantum Mechanics  

5. J J Sakural, Modern Quantum Mechanics 

6. Mathews and Venkatesan, Quantum Mechanics  

7. Quantum Mechanics, R.D. Ratna Raju 

8. Quantum Mechanics by Kakani and Chandaliya 

9. Atkins P, Molecular Quantum Mechanics, Oup 1996(T) 
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LESSON -6 

QUANTUM DYNAMICAL 
 

6.0 Aim and Objectives 

 

The aim of this chapter is to develop a clear understanding of dynamical variables in quantum 

mechanics and their representation as operators acting on the state vector space. This 

formulation provides a fundamental link between classical mechanics, where physical 

quantities are treated as functions of position and momentum, and quantum mechanics, where 

the same quantities are described by linear operators with well-defined mathematical 

properties. Through this approach, the chapter establishes the conceptual framework required 

to describe measurement and dynamics at the microscopic level. 

 

One of the central objectives is to introduce measurable physical quantities as Hermitian 

operators, emphasizing that Hermiticity guarantees real eigenvalues corresponding to 

observable measurement outcomes. The distinction between classical variables and quantum 

operators is examined in detail, highlighting the non-commutative nature of operators and its 

profound physical consequences. This naturally leads to a discussion of commutation 

relations, which encode fundamental aspects of quantum behaviour and determine whether 

different observables can be simultaneously measured. 

 

A key objective of the chapter is to analyze the uncertainty principle as a direct consequence 

of operator commutation relations. Rather than arising from experimental limitations, 

uncertainty is shown to be an intrinsic feature of quantum systems, reflecting the structure of 

the underlying operator algebra. This insight marks a fundamental departure from classical 

determinism and reshapes the interpretation of physical reality at the quantum scale.The 

chapter also aims to apply the operator formalism to the time evolution of quantum systems, 

with particular emphasis on the role of the Hamiltonian operator. The Schrödinger equation is 

used to describe how quantum states evolve in time and how expectation values of 

observables can be calculated. Finally, these ideas are extended to multi-particle systems, 

where operator methods provide a powerful and systematic way to compute physical 

quantities and describe interactions. Overall, the chapter lays the foundation for advanced 

studies in quantum dynamics, many-body physics, and quantum statistical mechanics. 

 

STRUCTURE OF THE LESSON: 

 

6.1 DYNAMICAL VARIABLES 

6.2 THE QUANTUM DYNAMICS OF IDENTICAL PARTICLE SYSTEM 

6.3 SUMMARY 

6.4 TECHNICAL TERMS 

6.5 SELF-ASSESSMENT QUESTIONS 

6.6 SUGGESTED READINGS 

 

6.1 DYNAMICAL VARIABLES 

 

In quantum mechanics, every measurable physical quantity—such as position, momentum, 

energy, angular momentum, or spin—is referred to as a dynamical variable or observable. 

The treatment of these quantities marks a fundamental departure from classical mechanics. In 
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classical physics, dynamical variables are represented as ordinary functions of the generalized 

coordinates 𝑥and momenta 𝑝, and their values can, in principle, be specified simultaneously 

and with arbitrary precision. 

 

Quantum mechanics fundamentally alters this viewpoint. Physical quantities are no longer 

described by numerical functions but by linear operators acting on state vectors in an abstract 

vector space known as Hilbert space. The physical state of a system is represented by a state 

vector ∣ Ψ⟩, and measurable quantities are extracted through the action of operators on these 

states. 

 

Operator Representation of Observables 

In quantum theory, an observable 𝐴is represented by an operator 𝐴̂. These operators are 

required to be Hermitian (self-adjoint) so that their eigenvalues—corresponding to possible 

measurement outcomes—are real. If 𝐴̂is a Hermitian operator, then 

𝐴̂† = 𝐴̂. 
 

The eigenvalue equation 

𝐴̂ ∣ 𝑎⟩ = 𝑎 ∣ 𝑎⟩ 
 

defines the allowed measurement results 𝑎, while the corresponding eigenstates ∣ 𝑎⟩form a 

complete basis for the Hilbert space. 

The operator formalism provides a systematic framework to compute: 

• Expectation values 

⟨𝐴⟩ = ⟨Ψ ∣ 𝐴̂ ∣ Ψ⟩, 
 

• Measurement probabilities 

• Time evolution of observables and states 

Thus, operators form the core mathematical structure of quantum mechanics. 

 

Classical View vs Quantum View 

From a conceptual standpoint, the distinction between classical and quantum descriptions of 

dynamical variables may be summarized as: 

• Classical view: 

Physical quantities are functions of coordinates 𝑥and momenta 𝑝: 

𝐴 = 𝐴(𝑥, 𝑝). 
 

• Quantum view: 

Physical quantities are represented by operators acting on the state vector space: 

𝑥 → 𝑥̂, 𝑝 → 𝑝̂ = −𝑖ℏ∇. 
 

The replacement of classical variables by operators introduces non-commutativity, which lies 

at the heart of quantum behaviour. 

 

Commutation Relations and Physical Meaning 

Operators in quantum mechanics do not generally commute. The commutation relation 

between two operators 𝐴̂and 𝐵̂is defined as 

[𝐴̂, 𝐵̂] = 𝐴̂𝐵̂ − 𝐵̂𝐴̂. 
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A fundamental example is the canonical commutation relation between position and 

momentum: 

[𝑥̂, 𝑝̂] = 𝑖ℏ. 
 

This non-zero commutator directly leads to the Heisenberg uncertainty principle, 

Δ𝑥 Δ𝑝 ≥
ℏ

2
, 

 

which places a fundamental limit on the simultaneous measurement of position and 

momentum. More generally, commutation relations encode deep physical principles and 

determine: 

• Which observables can be simultaneously measured 

• The structure of quantum dynamics 

• The algebraic properties of physical systems 

 

 

Indistinguishability Constraint for Identical Particles 

For systems containing identical particles, quantum mechanics introduces an additional and 

crucial constraint. Identical particles possess the same intrinsic properties (mass, charge, 

spin), and no measurement can distinguish one particle from another. 

As a result: 

• Particle labels have no physical meaning 

• Physical observables must be invariant under particle exchange 

• Dynamical variables must be symmetric under permutation of particle indices 

This indistinguishability profoundly affects the structure of the state space and the allowed 

forms of operators. 

 

Categorization of Observables in Many-Particle Systems 

Dynamical variables in many-particle quantum mechanics are classified according to the 

number of particles involved. 

 

One-Body Operators 

One-body operators describe properties that act independently on each particle and are 

summed over all particles. Examples include: 

• Total kinetic energy 

• Total momentum 

• Interaction with an external field 

First-Quantized Form 

In first quantization, a general one-body operator is written as 

𝐹1 =∑𝑓(

𝑁

𝑖=1

𝑥𝑖 , 𝑝𝑖), 

 

where 𝑓(𝑥𝑖, 𝑝𝑖)acts only on particle 𝑖. 
 

Second-Quantized Form 

In second quantization, one-body operators take the form 

𝐹̂ =∑⟨

𝑖,𝑗

𝜙𝑖 ∣ 𝑓 ∣ 𝜙𝑗⟩ 𝑎𝑖
†𝑎𝑗, 
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where: 

• 𝑎𝑗annihilates a particle in state 𝑗 

• 𝑎𝑖
†
creates a particle in state 𝑖 

• ⟨𝜙𝑖 ∣ 𝑓 ∣ 𝜙𝑗⟩are single-particle matrix elements 

This formulation greatly simplifies calculations in many-body systems and automatically 

incorporates particle indistinguishability. 

 

Two-Body Operators 

Two-body operators describe interactions between pairs of particles. Typical examples 

include: 

• Coulomb interaction between electrons 

• Short-range nuclear forces 

• Van der Waals interactions 

 

 

First-Quantized Form 

The general two-body interaction is written as 

𝐹2 =∑𝑣(

𝑖<𝑗

𝑥𝑖 , 𝑥𝑗), 

 

where 𝑣(𝑥𝑖, 𝑥𝑗)depends on the coordinates of two particles. 

 

Second-Quantized Form 

In second quantization, the corresponding operator becomes 

𝑉̂ =
1

2
∑ ⟨

𝑖,𝑗,𝑘,𝑙

𝜙𝑖𝜙𝑗 ∣ 𝑣 ∣ 𝜙𝑘𝜙𝑙⟩ 𝑎𝑖
†𝑎𝑗

†𝑎𝑙𝑎𝑘. 

 

The ordering of operators ensures: 

• Symmetry for bosons 

• Antisymmetric for fermions 

Two-body operators are essential for describing correlations, collective behaviour, and 

interaction-driven phenomena in quantum systems. 

 

Symmetry and Conservation Laws 

A central principle in physics is the intimate connection between symmetry and conservation 

laws, formalized by Noether’s theorem. In quantum mechanics: 

• Translational symmetry → Conservation of linear momentum 

• Rotational symmetry → Conservation of angular momentum 

• Time-translation symmetry → Conservation of energy 

These symmetries restrict the form of allowed operators, determine selection rules, and 

simplify the analysis of quantum systems. 

 

Indistinguishability and the Physical State Space 

For a system of 𝑁identical particles, the total Hilbert space is the tensor product 

ℋtotal = ℋ1 ⊗ℋ2 ⊗⋯⊗ℋ𝑁 . 
 

However, not all states in this space are physically meaningful. Only: 

• Symmetric states (bosons) 
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• Antisymmetric states (fermions) 

are allowed. This restriction arises from the requirement that the Hamiltonian be invariant 

under particle exchange. 

This principle governs: 

• Quantum statistics 

• Allowed transitions 

• Correlation effects 

• Structure of many-particle wavefunctions 

 

Time Evolution of Quantum Systems 

The time evolution of a quantum system is governed by the time-dependent Schrödinger 

equation: 

𝑖ℏ
∂

∂𝑡
∣ Ψ(𝑡)⟩ = 𝐻̂ ∣ Ψ(𝑡)⟩. 

 

For systems of identical particles, the Hamiltonian 𝐻̂is symmetric under particle 

permutations. Consequently: 

• Bosonic states remain symmetric 

• Fermionic states remain antisymmetric 

throughout time evolution. This ensures consistency with indistinguishability. 

 

Hamiltonian Structure in Many-Particle Systems 

The total Hamiltonian is generally written as 

𝐻̂ = ∑ℎ̂𝑖

𝑁

𝑖=1

+∑𝑉̂𝑖𝑗
𝑖<𝑗

, 

 

where: 

• ℎ̂𝑖: one-body operators (kinetic energy, external fields) 

• 𝑉̂𝑖𝑗: two-body interactions 

In second quantization, this structure is compactly expressed using creation and annihilation 

operators, making it particularly suitable for large systems. 

 

Observables and Expectation Values 

Any physical observable 𝑂̂must be symmetric under particle exchange. The expectation value 

in a state ∣ Ψ(𝑡)⟩is 

⟨𝑂̂⟩ = ⟨Ψ(𝑡) ∣ 𝑂̂ ∣ Ψ(𝑡)⟩. 
 

Such expectation values describe measurable quantities and their evolution in time, including 

fluctuations and correlations. 

 

Continuous Systems and Field Operators 

For systems with particles moving in continuous space, it is convenient to use field operators 

𝜓(r, 𝑡)and 𝜓†(r, 𝑡). These operators annihilate or create particles at position r. 
The time evolution in the Heisenberg picture is given by 

𝑖ℏ
∂𝜓(𝐫, 𝑡)

∂𝑡
= [𝜓(𝐫, 𝑡), 𝐻̂]. 
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Density Operator 

The particle density operator is 

𝑛̂(𝐫) = 𝜓†(𝐫)𝜓(𝐫), 
 

which measures the local particle density. 

 

Hamiltonian in Field Form 

𝐻̂ = ∫ 𝑑3𝑟 𝜓†(𝐫) (−
ℏ2

2𝑚
∇2 + 𝑉ext(𝐫))𝜓(𝐫) +

1

2
∫ 𝑑3𝑟 𝑑3𝑟′ 𝜓†(𝐫)𝜓†(𝐫′)𝑣(𝐫

− 𝐫′)𝜓(𝐫′)𝜓(𝐫). 
 

This formulation naturally incorporates interactions, correlations, and quantum statistics. 

 

Physical Significance 

Field operators and operator methods form the foundation for: 

• Bose–Einstein condensation 

• Superfluidity and superconductivity 

• Collective excitations 

• Quantum correlations and entanglement 

• Quantum field theory and condensed matter physics 

They allow a unified, elegant description of many-particle systems with variable particle 

number. 

 

6.2 THE QUANTUM DYNAMICS OF IDENTICAL PARTICLE SYSTEM 

 

One of the most fundamental departures of quantum mechanics from classical physics lies in 

the treatment of identical particles. In classical mechanics, particles are always regarded as 

distinguishable, even if they possess identical intrinsic properties such as mass and charge. 

One may, at least in principle, label particles by their trajectories, initial positions, or 

histories. Quantum mechanics radically changes this viewpoint. When particles are identical, 

meaning they share the same intrinsic properties—mass, charge, spin, and internal 

structure—it becomes impossible, even in principle, to distinguish one particle from another. 

This indistinguishability is not a limitation of measurement but a fundamental property of 

nature. 

 

As a consequence, systems consisting of identical quantum particles exhibit unique and 

deeply non-classical behaviour. The indistinguishability of particles imposes strict constraints 

on the mathematical form of the quantum state describing the system. These constraints 

profoundly influence the dynamics, statistics, and observable properties of many-particle 

systems and underlie a wide range of physical phenomena in atomic, molecular, condensed 

matter, and nuclear physics. 

 

Indistinguishability and the Quantum State 

In quantum mechanics, the complete physical description of a system is provided by its 

wavefunction or state vector. For a system of identical particles, this wavefunction must 

reflect the fundamental fact that exchanging two particles cannot lead to any observable 

change. If an experiment cannot distinguish whether particle 1 is at position 𝑟1and particle 2 

at position 𝑟2, or vice versa, then the physical predictions of the theory must remain 

unchanged under such an exchange. 
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Mathematically, this requirement leads to the symmetry condition on the wavefunction. If 

𝑃𝑖𝑗denotes the operator that exchanges particles 𝑖and 𝑗, then a physically allowed state ∣

Ψ⟩must satisfy 

𝑃𝑖𝑗 ∣ Ψ⟩ = ±∣ Ψ⟩. 

 

The plus sign corresponds to symmetric wavefunctions, while the minus sign corresponds to 

antisymmetric wavefunctions. This dichotomy leads directly to the classification of particles 

into two fundamental classes: 

• Bosons, which have integer spin and are described by symmetric wavefunctions. 

• Fermions, which have half-integer spin and are described by antisymmetric 

wavefunctions. 

This connection between spin and symmetry is formalized in the spin–statistics theorem, one 

of the deepest results in quantum theory. 

 

Consequences of Symmetry Requirements 

The requirement of symmetry or antisymmetric under particle exchange has far-reaching 

consequences. It affects all observable quantities, including: 

• Energy spectra, determining allowed and forbidden energy levels. 

• Scattering amplitudes, influencing interference patterns and cross sections. 

• Statistical distributions, giving rise to Bose–Einstein and Fermi–Dirac statistics. 

• Correlation effects, which have no classical analogue. 

Understanding these consequences is essential for explaining key physical phenomena such 

as Bose–Einstein condensation, Fermi degeneracy pressure, exchange interactions, and the 

stability of matter. 

 

Indistinguishability and the State Space 

Consider a system of 𝑁identical particles. The mathematical Hilbert space describing the 

system is formally given by the tensor product of 𝑁single-particle Hilbert spaces: 

ℋtotal = ℋ1 ⊗ℋ2 ⊗⋯⊗ℋ𝑁 . 
 

However, this space is larger than the physically meaningful state space. The reason is that 

the Hamiltonian of a system of identical particles is invariant under permutations of particle 

labels. Therefore, states that differ only by a permutation of particles represent the same 

physical situation and must not be counted separately. 

 

As a result, only a restricted subspace of ℋtotalis physically allowed: 

• The symmetric subspace for bosons. 

• The antisymmetric subspace for fermions. 

This restriction is not optional; it is a fundamental requirement imposed by 

indistinguishability. It governs the allowed quantum states and determines the structure of 

many-particle wavefunctions. 

 

Bosons and Fermions 

Bosons 

Bosons are particles with integer spin (0, 1, 2, …). Their wavefunctions are symmetric under 

particle exchange: 

Ψ(… , 𝑟𝑖, … , 𝑟𝑗, … ) = Ψ(… , 𝑟𝑗 , … , 𝑟𝑖, … ). 
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This symmetry allows any number of bosons to occupy the same quantum state. As a result, 

bosons obey Bose–Einstein statistics. At low temperatures, this leads to macroscopic 

occupation of the lowest energy state, giving rise to Bose–Einstein condensation, 

superfluidity, and coherent phenomena such as laser action. 

 

Fermions 

Fermions are particles with half-integer spin (1/2, 3/2, …). Their wavefunctions are 

antisymmetric under particle exchange: 

Ψ(… , 𝑟𝑖, … , 𝑟𝑗 , … ) = −Ψ(… , 𝑟𝑗 , … , 𝑟𝑖, … ). 

 

This antisymmetry implies that if two fermions attempt to occupy the same quantum state, 

the wavefunction vanishes identically. This leads directly to the Pauli exclusion principle, 

which states that no two identical fermions can have the same set of quantum numbers. 

The Pauli principle explains: 

• The electronic structure of atoms 

• The periodic table 

• Chemical bonding 

• The stability of matter 

• Fermi degeneracy pressure in white dwarfs and neutron stars 

 

Time Evolution of Identical Particle Systems 

The quantum dynamics of any system is governed by the time-dependent Schrödinger 

equation: 

𝑖ℏ
∂

∂𝑡
∣ Ψ(𝑡)⟩ = 𝐻̂ ∣ Ψ(𝑡)⟩, 

 

where 𝐻̂is the total Hamiltonian of the system. For systems consisting of identical particles, 

the Hamiltonian must be symmetric under particle permutations. That is, 

[𝐻̂, 𝑃𝑖𝑗] = 0 
 

for all particle exchanges 𝑃𝑖𝑗. 

Because the Hamiltonian commutes with all permutation operators, the symmetry (or 

antisymmetry) of the wavefunction is preserved during time evolution. If the system begins in 

a symmetric (bosonic) or antisymmetric (fermionic) state, it will remain in that class for all 

time. This ensures that all physical predictions—such as probabilities, expectation values, and 

correlation functions—remain consistent with the principle of indistinguishability. 

 

Hamiltonian Structure for Identical Particles 

The Hamiltonian of an interacting system of identical particles typically consists of two parts: 

𝐻̂ = ∑ℎ̂𝑖

𝑁

𝑖=1

+∑𝑉̂𝑖𝑗
𝑖<𝑗

. 

 

Here: 

• ℎ̂𝑖represents one-body operators, such as kinetic energy and interaction with external 

potentials. 

• 𝑉̂𝑖𝑗represents two-body interaction operators, describing interactions between particle 

pairs. 
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This structure reflects the physical reality that particles possess individual kinetic energies 

and also interact with one another through forces such as Coulomb or short-range 

interactions. 

 

Second Quantization and Many-Body Dynamics 

While the first-quantized formulation is conceptually useful, it becomes cumbersome for 

systems with many particles. A more powerful and elegant framework is provided by second 

quantization, in which the Hamiltonian is expressed in terms of creation and annihilation 

operators. 

In this formalism: 

• Particle indistinguishability is built in automatically. 

• The correct bosonic or fermionic statistics are enforced by commutation or 

anticommutation relations. 

• Calculations of expectation values, correlation functions, and response properties are 

greatly simplified. 

Second quantization is indispensable for the study of large many-body systems and forms the 

foundation of modern quantum statistical mechanics and quantum field theory. 

 

Observables and Expectation Values 

Any physical observable 𝑂̂describing an identical particle system must itself be invariant 

under particle exchange. This ensures that measurements do not depend on arbitrary particle 

labels. 

 

The expectation value of an observable in a time-dependent state ∣ Ψ(𝑡)⟩is given by 

⟨𝑂̂⟩ = ⟨Ψ(𝑡) ∣ 𝑂̂ ∣ Ψ(𝑡)⟩. 
 

The time dependence of expectation values follows from the system’s dynamics and reflects 

both the interactions and quantum statistics of the particles. Symmetry requirements ensure 

that statistical properties such as fluctuations and correlations are correctly captured. 

 

Continuous Systems and Field Operators 

For systems in continuous space, it is often convenient to adopt a field-theoretic description. 

In this approach, the basic dynamical variables are the field operators 𝜓(r, 𝑡)and 𝜓†(r, 𝑡), 
which annihilate and create particles at position rand time 𝑡, respectively. 

 

The time evolution of field operators in the Heisenberg picture is governed by 

𝑖ℏ
∂𝜓(r, 𝑡)

∂𝑡
= [𝜓(r, 𝑡), 𝐻̂]. 

 

This formulation naturally accommodates systems with variable particle number and 

automatically incorporates symmetrisation for bosons or antisymmetrisation for fermions. 

 

Physical Significance of Field Operators 

Field operator methods provide a unified and powerful framework for describing: 

• Bose–Einstein condensation 

• Superfluidity and superconductivity 

• Collective excitations such as phonons and magnons 

• Quantum correlations and entanglement in many-body systems 
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They form the conceptual bridge between non-relativistic quantum mechanics and quantum 

field theory. 

 

Key Principles of Quantum Dynamics for Identical Particles 

The quantum dynamics of identical particle systems is governed by several fundamental 

principles: 

• The symmetry or antisymmetric of the wavefunction is preserved in time. 

• Hamiltonians and observables must be invariant under particle exchange. 

• Quantum statistics emerge naturally from indistinguishability. 

• Second quantization and field operators provide an efficient and physically 

transparent description of many-body systems. 

 

So, in the indistinguishability of identical particles is a cornerstone of quantum mechanics 

and lies at the heart of many of its most striking predictions. By imposing symmetry 

constraints on the state space and operators, quantum mechanics gives rise to fundamentally 

new forms of behaviour that have no classical analogue. From the structure of atoms and 

molecules to the collective phenomena observed in condensed matter systems, the quantum 

dynamics of identical particles shapes the physical world at every scale. 

 

Understanding these principles is essential for mastering quantum statistical mechanics, 

many-body physics, and modern theoretical physics as a whole. 

 

6.3 SUMMARY 

 

In quantum mechanics, dynamical variables represent measurable physical quantities such as 

position, momentum, energy, and angular momentum. Unlike classical mechanics, where 

these quantities are treated as ordinary functions of coordinates and momenta, quantum 

mechanics represents them by operators acting on state vectors in a Hilbert space. These 

operators are required to be Hermitian (self-adjoint) so that their eigenvalues, which 

correspond to possible measurement outcomes, are real and physically meaningful. The 

operator formalism provides a systematic framework for calculating expectation values, 

probabilities, and the time evolution of quantum systems. 

 

For a given dynamical variable represented by an operator 𝐴̂, the measurable values are 

obtained from the eigenvalue equation 𝐴̂ ∣ 𝑎⟩ = 𝑎 ∣ 𝑎⟩. In a general quantum state, 

measurements yield different outcomes with probabilities determined by the projection of the 

state onto the eigenstates of the operator. Thus, operators form the mathematical backbone of 

quantum theory and encode the statistical nature of physical measurements. 

 

When dealing with systems of identical particles, additional constraints arise due to the 

principle of indistinguishability. Identical particles possess the same intrinsic properties and 

cannot be distinguished by any physical measurement. Consequently, all physical operators, 

including the Hamiltonian, must be invariant under the exchange of particles. This invariance 

leads to a fundamental classification of particles into bosons and fermions, according to the 

symmetry of their quantum states. Bosonic states are symmetric under particle exchange, 

while fermionic states are antisymmetric. 



Centre for Distance Education  6.11  Acharya Nagarjuna University  

 

 

 

The symmetry properties of the state space are preserved by the system’s quantum dynamics. 

The time evolution of a quantum system is governed by the Schrödinger equation, 𝑖ℏ
∂

∂𝑡
∣

Ψ(𝑡)⟩ = 𝐻̂ ∣ Ψ(𝑡)⟩, where 𝐻̂is the Hamiltonian operator. For identical particles, the 

Hamiltonian commutes with permutation operators, ensuring that an initially symmetric or 

antisymmetric state remains so throughout its evolution. This guarantees that all physical 

predictions remain consistent with particle statistics. 

 

An equivalent description of dynamics is provided by the Heisenberg picture, in which 

operators evolve in time according to 𝑖ℏ
𝑑𝑂̂

𝑑𝑡
= [𝑂̂, 𝐻̂], while the state vectors remain fixed. 

This formulation is particularly useful in many-body systems, where the focus is often on the 

time evolution of observables rather than states. 

 

In continuous systems and many-particle problems, the dynamics is naturally expressed in 

terms of field operators. The creation and annihilation operators 𝜓†(r, 𝑡)and 

𝜓(r, 𝑡)respectively create and destroy a particle at position rand time 𝑡. These operators obey 

commutation relations for bosons and anticommutation relations for fermions, thereby 

automatically incorporating the correct quantum statistics. Field operators allow a compact 

and powerful description of observables such as particle density, currents, and correlation 

functions, and they form the foundation of second quantization. 

 

The symmetry requirements imposed by indistinguishability give rise to several distinctive 

physical phenomena. For fermions, antisymmetry of the wavefunction leads directly to the 

Pauli exclusion principle, which forbids more than one fermion from occupying the same 

quantum state. This principle explains the structure of atoms, the stability of matter, and the 

behavior of electrons in solids. For bosons, symmetric wavefunctions allow multiple particles 

to occupy the same state, leading to Bose–Einstein condensation and macroscopic quantum 

phenomena such as superfluidity. 

 

In addition, exchange interactions arise purely from the symmetry properties of identical 

particle wavefunctions. These interactions significantly affect energy spectra, correlation 

functions, and scattering processes in multi-particle systems. As a result, the study of 

dynamical variables and quantum dynamics in identical particle systems is fundamental to 

atomic, molecular, and condensed matter physics, providing deep insight into the collective 

behaviour of quantum matter. 

 

6.4 TECHNICAL TERMS 

 

Dynamical variables, The quantum dynamics of identical particle system 
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6.5 SELF-ASSESSMENT QUESTIONS 

 

1. Explain what is dynamical variables. 

2. Explain the quantum dynamics of identical particle system. 

 

6.6 SUGGESTED READINGS 

 

1. Quantum Mechanics – Merzbacher E (John Wiley & Sons, New York) 

2. L I Schiff, Quantum Mechanics (Mc Graw-Hill) 

3. B Crasemann and J D Powell, Quantum Mechanics (Addison Wesley) 

4. A P Messiah, Quantum Mechanics  

5. J J Sakural, Modern Quantum Mechanics 

6. Mathews and Venkatesan, Quantum Mechanics  

7. Quantum Mechanics, R.D. Ratna Raju 

8. Quantum Mechanics by Kakani and Chandaliya 

9. Atkins P, Molecular Quantum Mechanics, Oup 1996(T) 
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LESSON- 7 

SCATTERING THEORY 
 

Aim and Objectives 

 

The aim of this chapter is to develop a clear and systematic understanding of the fundamental 

principles of scattering theory, which describes how particles or waves interact with a 

scattering potential and how these interactions lead to observable physical effects. Scattering 

processes play a central role in probing the structure of matter, as they provide indirect 

information about the nature of forces and potentials that cannot be observed directly. This 

chapter establishes the theoretical framework required to connect microscopic interaction 

potentials with measurable quantities obtained in experiments. 

 

One of the primary objectives is to introduce the concept of scattering cross sections, 

including differential and total cross sections, which quantify the probability of particles 

being scattered into specific directions. These quantities form the basis for comparing 

theoretical predictions with experimental data. The chapter also examines the scattering of 

wave packets and contrasts it with the continuous stream model, clarifying how realistic 

particle beams are described within quantum mechanics and how flux conservation is 

ensured. 

 

Another important objective is to develop approximate and exact methods for solving 

scattering problems. The Born approximation is introduced as a perturbative approach 

applicable when the interaction potential is weak, allowing the scattering amplitude to be 

expressed in terms of the Fourier transform of the potential. Conditions for the validity of the 

Born approximation are discussed to highlight its physical limitations. For stronger potentials 

and lower energies, the chapter presents partial wave analysis, which provides an exact and 

physically transparent method by decomposing the scattering process into angular momentum 

components. 

 

The chapter further aims to relate theoretical scattering amplitudes to experimentally 

observable quantities through concepts such as the optical theorem and phase shifts. By the 

end of the chapter, the reader gains a coherent understanding of how quantum scattering 

theory explains experimental observations in atomic, nuclear, and particle physics, and how it 

serves as a powerful tool for investigating the interaction and structure of physical systems. 

 

STRUCTURE OF THE LESSON: 

 

7.1 INTRODUCTION OF SCATTERING - NOTION OF CROSS SECTION 

7.2 SCATTERING OF WAVE PACKET  

7.3 SCATTERING IN CONTINUOUS STREAM MODEL 

7.4 GREEN’S FUNCTION IN SCATTERING THEORY 

7.5 SUMMARY 

7.6 TECHNICAL TERMS 

7.7 SELF-ASSESSMENT QUESTIONS 

7.8 SUGGESTED READINGS 
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7.1 INTRODUCTION OF SCATTERING - NOTION OF CROSS SECTION 

 

In a scattering experiment, one studies the collisions that occur between a beam of incident 

particles and a target material in order to understand the nature of the interaction between 

them. A beam consisting of a large number of particles is directed toward a fixed target, and 

the particles in the beam interact with the constituents of the target as they pass through it. 

The total number of collisions observed during the course of the experiment is proportional to 

two important factors: the total number of incident particles in the beam and the number of 

target particles per unit area encountered along the path of the beam. Hence, increasing either 

the beam intensity or the target density increases the likelihood of collisions. 

 

In such experiments, the primary task is to count the particles that emerge from the target 

after the interaction. Not all incident particles undergo scattering. Those particles that do not 

interact with the target continue their motion essentially undisturbed in the forward direction, 

maintaining nearly the same momentum and energy as before the collision. On the other 

hand, particles that do interact with the target experience a change in momentum and are 

deflected from their original direction of motion. These particles are said to be scattered and 

emerge at various angles relative to the direction of the incident beam, as illustrated 

schematically in a typical scattering diagram. 

 

The number of scattered particles is not the same in all directions. In general, the number of 

particles emerging from the target depends strongly on the direction in which they are 

observed. To describe this angular distribution quantitatively, the directions of the scattered 

particles are specified by the polar angle θ and the azimuthal angle φ. The detectors measure 

the number of particles scattered into a small element of solid angle dΩ, where 

dΩ = sin θ dθ dφ. 

 

The number of particles scattered into this small solid angle element is proportional to a 

fundamental quantity in scattering theory known as the differential cross section. The 

differential cross section, denoted by dσ(θ, φ)/dΩ, plays a central role in the physics of 

scattering, as it provides a precise measure of how particles are distributed in angle after the 

interaction. 

 

By definition, the differential cross section dσ(θ, φ)/dΩ is the number of particles scattered 

per unit time into the element of solid angle dΩ in the direction specified by the angles (θ, φ), 

divided by the incident flux. The incident flux, denoted by J_inc, is defined as the number of 

incident particles crossing a unit area perpendicular to the beam direction per unit time. It 

characterizes the intensity of the incoming beam and provides the proper normalization 

needed to compare results obtained under different experimental conditions. 

 

From this definition, it can be verified that the differential cross section has the dimensions of 

an area, which justifies the term “cross section.” Physically, it may be interpreted as an 

effective area that quantifies the probability of scattering into a particular direction. Thus, the 

differential cross section contains complete information about the angular distribution of 

scattered particles and forms the basis for analysing and interpreting both classical and 

quantum mechanical scattering experiments. 
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 Here, 𝐽increpresents the incident flux, also called the incident current density. It is 

defined as the number of incident particles crossing a unit area perpendicular to the direction 

of the beam per unit time, and it characterizes the intensity of the incoming particle beam. 

From the definition of the differential cross section, 
𝑑𝜎

𝑑Ω
is obtained by dividing the number of 

particles scattered per unit time into a given solid angle by the incident flux. Dimensional 

analysis shows that 
𝑑𝜎

𝑑Ω
has the dimensions of an area, which justifies referring to it as a 

differential cross section. 

The relationship between d/dΩ and the total cross section  is obvious: 

 
 

 
Figure 1 Scattering between an incident beam of particles and a fixed target: the scattered 

particles are detected within a solid angle dΩ along the direction (θ,𝟇). 

  

Most scattering experiments are performed in the laboratory (Lab) frame, in which the target 

particles or nuclei are initially at rest, while the incident particles, often called projectiles, are 

in motion with a well-defined velocity and momentum. In this frame, the experimenter 

observes the scattering events as the beam of projectiles interacts with the stationary target. 

Detectors are placed around the target to measure the number and angular distribution of 

scattered particles. The laboratory frame provides a natural setting for actual experiments 

because it corresponds to the physical setup in which the target is fixed and the projectile 

beam is directed towards it. Observations such as particle counts, scattering angles, and 

energy measurements are typically recorded in this frame. 

 

However, while experiments are performed in the lab frame, theoretical calculations of 

scattering cross sections are often more conveniently carried out in the centre of mass (CM) 

frame. In the CM frame, the centre of mass of the system consisting of the incident particle 

and the target is at rest before the collision and remains at rest after the collision. This 

simplifies calculations significantly because the total momentum of the system is zero in this 

frame, allowing one to treat the scattering problem symmetrically. For example, in the CM 

frame, the magnitudes of the momenta of the two particles before and after the collision are 

equal for elastic scattering, and the dynamics reduce to a simpler two-body problem. 

Consequently, many analytical and computational methods, including partial wave analysis 
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and Born approximation, are formulated in the CM frame. This makes it easier to derive 

expressions for the scattering amplitude, differential cross section, and other observables. 

 

To compare experimental measurements taken in the lab frame with theoretical predictions 

made in the CM frame, one must carefully transform the relevant quantities between frames. 

These transformations include converting scattering angles, particle velocities, and momenta 

from the CM frame to the lab frame, or vice versa. For a two-body elastic collision, the 

relationship between the scattering angle in the lab frame and the corresponding angle in the 

CM frame can be derived using vector addition of momenta and the conservation of energy 

and momentum. Similarly, the velocities of scattered particles in one frame are related to 

those in the other frame through Galilean transformations in non-relativistic mechanics or 

Lorentz transformations in relativistic regimes. Understanding these transformations is 

crucial for interpreting experimental data and ensuring that comparisons between theory and 

experiment are meaningful. 

 

It is important to note that the total cross section, denoted by 𝜎, is invariant between the two 

frames. This invariance arises because the total cross section represents the total number of 

scattering events that occur, integrated over all angles, and this total number does not depend 

on the frame of observation. Whether the experiment is observed in the lab frame or analyzed 

in the CM frame, the overall probability of scattering remains the same, reflecting the 

physical fact that collisions occur independently of the observer's reference frame. 

 

In contrast, the differential cross section, 
𝑑𝜎

𝑑Ω
, is generally frame-dependent, because the 

scattering angles themselves are different in the lab and CM frames. The scattering angle 𝜃in 

the lab frame corresponds to a different direction than the scattering angle in the CM frame, 

due to the motion of the center of mass. As a result, while the shape of the angular 

distribution and the number of particles scattered into a given solid angle depend on the 

frame of reference, the total probability of scattering, integrated over all angles, remains 

unchanged. Therefore, careful transformation of differential cross sections is essential for 

comparing theory, usually derived in the CM frame, with measurements made in the lab 

frame. 

 

In summary, scattering experiments are naturally performed in the lab frame, where the target 

is at rest and projectiles move towards it. Theoretical calculations are simplified in the CM 

frame, where the total momentum is zero. Transformations between these frames are 

necessary to connect theory with experiment. While the total cross section remains invariant 

between frames, the differential cross section depends on the choice of frame due to 

differences in scattering angles. Understanding these relationships is fundamental to 

accurately analysing and interpreting scattering experiments and their theoretical 

descriptions. 

 

7.2 SCATTERING OF WAVE PACKET  

 

Scattering of a Wave Packet 

When a localized wave packet interacts with a potential 𝑉(𝑟), the scattering process is 

described by the time-dependent Schrödinger equation. Unlike a plane wave, which extends 

infinitely in space and has a single momentum, a wave packet is a superposition of plane 

waves with different momenta. This superposition allows the wave packet to be localized in 

space, representing a particle with a finite probability distribution rather than a perfectly 

delocalized state. 
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Mathematically, the incident wave packet can be written as 

Ψinc(𝑟, 𝑡) = ∫ 𝑎(𝑘) 𝑒𝑖(𝑘⋅𝑟−𝜔𝑘𝑡) 𝑑3𝑘 

 

where 𝑎(𝑘)is the amplitude corresponding to the momentum 𝑘, representing the momentum 

distribution of the packet, and 𝜔𝑘 =
ℏ𝑘2

2𝑚
is the energy associated with each plane wave 

component. The wave packet has a finite width in space, which leads to a spread in 

momentum space according to the Fourier relationship. A narrower packet in real space 

corresponds to a wider spread in momentum, and vice versa. 

 

When the wave packet encounters a scattering potential, different momentum components are 

scattered differently, leading to a modified wavefunction after interaction. The scattered wave 

is generally a combination of transmitted, reflected, and deflected components, depending on 

the shape and strength of the potential. Observables such as the scattering probability, 

differential cross section, and angular distribution can be extracted by analyzing the scattered 

wave packet. 

 

Wave packet scattering provides a more realistic description of physical particles in 

experiments compared to idealized plane waves. It allows for the study of time-dependent 

effects, finite-size effects, and the localization of particles during interactions. Additionally, it 

connects naturally with experimental measurements, as detectors respond to particles 

localized in space rather than infinite plane waves. Therefore, understanding wave packet 

scattering is crucial for bridging theoretical models with realistic scattering experiments. 

 

Scattered Wave Packet 

In quantum mechanics, a particle is often represented by a localized wave packet rather than 

an idealized plane wave. This wave packet is a superposition of plane waves with different 

momenta, allowing it to be localized in space. When such a wave packet interacts with a 

potential 𝑉(𝑟), the scattering process is described by the time-dependent Schrödinger 

equation, and the total wavefunction of the system after interaction is expressed as: 

Ψ(𝑟, 𝑡) = Ψinc(𝑟, 𝑡) + Ψsc(𝑟, 𝑡) 
 

Here, Ψinc(𝑟, 𝑡)is the incident wave packet, representing the particle approaching the 

scattering potential, and Ψsc(𝑟, 𝑡)is the scattered wave packet, representing the particle after 

interaction with the potential. The scattered component carries information about how the 

potential has modified the momentum and spatial distribution of the particle. 

At large distances from the scattering center (𝑟 → ∞), the scattered wave packet assumes an 

asymptotic form, which can be written as: 

Ψsc(𝑟, 𝑡) ∼
𝑒𝑖𝑘𝑟

𝑟
∫ 𝑓(𝐤′, 𝐤) 𝑎(𝐤) 𝑒−𝑖𝜔𝑘𝑡 𝑑3𝑘 

 

In this expression, 𝑓(𝐤′, 𝐤)is the scattering amplitude, which depends on both the incident 

momentum 𝐤and the potential 𝑉(𝑟). The function 𝑎(𝐤)is the momentum distribution of the 

incident wave packet, and 𝜔𝑘 =
ℏ𝑘2

2𝑚
is the energy associated with each momentum 

component. The scattering amplitude encodes the effect of the potential on each plane-wave 

component of the incident packet, including the angular dependence and the strength of 

scattering. 
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The scattered wave packet remains localized in space, reflecting the localized nature of the 

incident particle. However, as time progresses, the packet spreads due to the different 

momentum components in the superposition. This spreading is a natural consequence of 

quantum mechanics and is dictated by the Fourier transform relationship between position 

and momentum space. 

 

Differential Cross Section for Wave Packets 

The probability for the wave packet to scatter into a solid angle 𝑑Ωis given by: 
𝑑𝑃

𝑑Ω
= ∫ ∣ 𝑓(𝐤′, 𝐤) ∣2   ∣ 𝑎(𝐤) ∣2  𝑑3𝑘 

 

This formula accounts for the contribution of each momentum component of the incident 

wave packet to the scattered wave. For a wave packet that is narrow in momentum space 

(quasi-monochromatic), the momentum distribution 𝑎(𝐤)is sharply peaked around a central 

momentum 𝐤0. In such a case, the integral simplifies, and the differential scattering 

probability reduces to the familiar plane-wave result: 
𝑑𝑃

𝑑Ω
≈∣ 𝑓(𝐤0

′ , 𝐤0) ∣
2 

 

This demonstrates that plane-wave scattering formulas, such as those derived from the Born 

approximation or partial wave analysis, can be applied approximately when the incident wave 

packet has a narrow momentum spread. 

 

Physical Interpretation of Scattered Wave Packets 

The wave packet approach provides several key insights into the scattering process that are 

not captured by idealized plane waves: 

 

1. Spatial Spread of the Packet: 

The different momentum components of the wave packet cause it to spread over time. 

This spreading affects both the temporal duration and the spatial width of the 

scattered particle, giving rise to finite interaction times during collisions. 

 

2. Localized Scattering: 

The scattered wave packet remains localized rather than becoming infinitely 

extended, preserving the particle-like interpretation of the quantum state. The 

direction and shape of the outgoing packet depend on the interplay between the 

incident packet’s momentum distribution and the scattering potential. 

 

3. Applicability of Plane-Wave Formulas: 

For narrow momentum distributions, the wave packet behaves approximately like a 

plane wave, allowing the use of standard scattering approximations, including the 

first-Born approximation and partial wave expansions. This bridge between wave 

packets and plane waves provides a practical method for connecting theoretical 

predictions with real experiments. 

 

4. Time-Dependent Behaviour: 

Wave packet scattering captures the dynamic evolution of the particle, enabling the 

study of time-dependent phenomena such as tunnelling, resonance effects, and 
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transient scattering processes. Plane-wave approaches cannot describe these temporal 

aspects because plane waves are time-independent in terms of probability density. 

 

Applications of Wave Packet Scattering 

Wave packet scattering is widely used in modern quantum mechanics and experimental 

physics due to its ability to describe realistic particles: 

1. Electron and Neutron Scattering: 

In experiments, electrons or neutrons are never perfect plane waves; they have finite 

spatial extents. Wave packet descriptions account for their localization, coherence 

properties, and temporal duration, improving the accuracy of theoretical predictions. 

2. Atom and Molecular Collisions: 

When atoms or molecules collide, their wave packets provide a realistic picture of 

how interactions occur over finite distances and times, which is essential for 

calculating reaction rates, collision cross sections, and energy transfer probabilities. 

3. Quantum Optics: 

Photons in optical experiments are often emitted as localized pulses rather than 

continuous plane waves. Wave packet theory is crucial for analyzing interference, 

diffraction, and photon scattering in cavities, waveguides, or free space. 

4. Time-Dependent Quantum Processes: 

Wave packets allow the study of tunneling dynamics, resonances, and transient 

phenomena in quantum systems, offering insights into processes that cannot be 

described with stationary plane waves. 

5. Coherence and Decoherence: 

The wave packet formalism is essential for understanding coherence effects in 

scattering, as well as decoherence due to interactions with the environment. It 

provides a framework for describing how initially localized states evolve and spread 

during scattering. 

 

 
7.3 SCATTERING IN CONTINUOUS STREAM MODEL 

        

In quantum mechanics, the scattering of particles by a potential is often described using wave 

mechanics, where the incident particle is treated as a wave interacting with a target. While 

single-particle plane-wave or wave-packet approaches provide a microscopic description of 

scattering, many practical experiments involve a large number of identical particles 

interacting with a target over a period of time. To describe such situations, the continuous 

stream model (also called the steady-flux model) is particularly useful. In this approach, the 
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incident particle is modelled as a continuous stream or flux of particles moving towards a 

scattering centre, allowing for a probabilistic interpretation of scattering phenomena and a 

natural connection with measurable experimental quantities. 

 

Incident Stream 

In the continuous stream model, the incident beam is considered as a steady flow of particles 

with a uniform number density 𝑛and a uniform velocity 𝑣. The particles are identical, non-

interacting before the collision, and the beam is assumed to be collimated such that the 

particles move in the same direction. The particle flux, Φ, which represents the number of 

particles passing per unit area per unit time, is expressed as: 

Φ = 𝑛𝑣 

 

Here, 𝑛is the number of particles per unit volume, and 𝑣is the speed of the incident particles. 

The concept of particle flux provides a direct connection between the microscopic motion of 

particles and macroscopic measurable quantities like counting rates in scattering detectors. 

The wavefunction of the incident continuous stream is often approximated by a plane wave: 

𝜓inc(𝑟, 𝑡) = 𝑒𝑖(k⋅r−𝜔𝑡) 

 

where kis the wave vector, representing the momentum of the incident particle, and 𝜔 =
ℏ𝑘2/2𝑚is the angular frequency corresponding to the particle’s energy. This plane-wave 

description captures the coherent propagation of the incident flux and forms the basis for 

calculating scattering amplitudes in the quantum mechanical framework. 

 

Scattering Process 

As the particles in the continuous stream encounter the potential 𝑉(𝑟)of the scattering center, 

they interact according to the Schrödinger equation. Each particle in the beam experiences the 

potential independently, producing a scattered wave that emanates from the scattering center. 

The scattered wave can be expressed as a spherical wave, whose amplitude depends on the 

interaction potential and the scattering angle: 

𝜓sc(𝑟) ∼ 𝑓(𝜃, 𝜙)
𝑒𝑖𝑘𝑟

𝑟
 

 

Here, 𝑓(𝜃, 𝜙)is the scattering amplitude, which encodes the angular dependence of scattering 

and the effect of the potential 𝑉(𝑟)on the incident particle. The scattered wave is a coherent 

superposition of contributions from all incident particles, and for a sufficiently dilute beam, 

each particle’s scattering event can be treated independently. 

 

This representation highlights the essential feature of quantum scattering: the outgoing 

scattered wave carries information about both the incident flux and the potential, and the 

probability of scattering into a particular direction is proportional to the square of the 

scattering amplitude. 

 

Differential Cross Section 

The differential cross section is a central quantity in scattering theory, providing the 

probability per unit solid angle that a particle is scattered in a given direction. For the 

continuous stream model, it is defined as: 
𝑑𝜎

𝑑Ω
=∣ 𝑓(𝜃, 𝜙) ∣2 
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This relation connects the microscopic scattering amplitude with an observable probability 

density. For an incident flux Φ, the number of particles scattered per unit time into a solid 

angle 𝑑Ωis: 
𝑑𝑁sc

𝑑𝑡
= Φ 𝑑𝜎 = Φ

𝑑𝜎

𝑑Ω
𝑑Ω 

 

This equation establishes the direct link between the continuous particle flux, the interaction 

potential, and the measured scattering rates in detectors. By integrating over all solid angles, 

one obtains the total cross section, which represents the effective area of the target that 

contributes to scattering: 

𝜎total = ∫
𝑑𝜎

𝑑Ω
𝑑Ω 

 

The total cross section can be interpreted as the sum of all scattering probabilities for 

particles in the continuous beam, providing a quantitative measure of the interaction strength 

between the incident particles and the target. 

 

Physical Interpretation 

The continuous stream model provides a macroscopic and probabilistic picture of scattering 

processes, bridging the gap between single-particle quantum mechanics and experimental 

observations. Several key physical insights emerge from this model: 

1. Time-Averaged Measurement: 

The model is equivalent to a time-averaged view of many single-particle scattering 

events. Detectors record an average number of scattered particles per unit time, 

corresponding directly to the incident flux and the cross section. 

2. Connection to Classical Concepts: 

Concepts like flux and impact parameter, familiar from classical mechanics, are 

naturally incorporated into the quantum description. The particle flux Φ = 𝑛𝑣serves 

as the bridge between microscopic wavefunctions and macroscopic particle currents. 

3. Interpretation of Scattering Intensities: 

In beam experiments, the measured scattering intensities (for electrons, neutrons, or 

photons) can be understood in terms of the continuous stream model. The intensity in 

a particular direction is proportional to the differential cross section and the incident 

flux. 

4. Bridge Between Micro and Macro: 

The model connects single-particle quantum dynamics with bulk experimental 

outcomes, allowing theoretical predictions of scattering amplitudes to be directly 

compared with measured particle counting rates. 

 

Applications of the Continuous Stream Model 

The continuous stream approach is widely used in experimental and theoretical physics: 

1. Electron and Neutron Diffraction: 

Beams of electrons or neutrons are used to probe the structure of crystals and 

materials. The continuous stream model explains how scattering intensities are related 

to atomic arrangements and allows extraction of structural information. 

2. Light Scattering: 

The scattering of photons by atoms, molecules, or colloidal particles is naturally 

described using the continuous stream model, which explains angular distributions 

and intensity patterns observed in experiments. 
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3. Nuclear and Particle Physics: 

High-energy experiments often involve continuous beams of protons, neutrons, or 

electrons interacting with targets. The model provides a framework for calculating 

cross sections and predicting reaction probabilities. 

4. Quantitative Analysis of Experimental Data: 

By relating incident flux to scattering events, the model allows accurate determination 

of differential and total cross sections, which are fundamental parameters in analyzing 

collisions and interactions in both nuclear and atomic systems. 

 

Theoretical Implications 

From a theoretical standpoint, the continuous stream model provides an elegant and practical 

description of scattering in the ensemble limit, where individual particles are treated 

statistically. This approach also facilitates the application of approximation methods such as: 

• Born Approximation: Treating the potential as weak to compute scattering amplitudes 

for each particle. 

• Partial Wave Analysis: Decomposing the scattering amplitude into angular momentum 

components. 

• Time-Dependent Scattering: Modeling wave packets as part of a continuous flux to 

study the temporal evolution of scattering events. 

The continuous stream framework, therefore, serves as a unifying approach that connects 

single-particle quantum mechanics, statistical interpretations, and experimental observables, 

enabling a comprehensive understanding of scattering processes. 

 

7.4 GREEN’S FUNCTION IN SCATTERING THEORY 

 

In quantum scattering theory, the description of how a particle interacts with a potential is 

central to understanding observable phenomena such as differential cross sections, total cross 

sections, and scattering amplitudes. While the Schrödinger equation provides the exact 

foundation for quantum mechanics, directly solving it for scattering problems can be 

challenging, particularly when the interaction potential is complicated. To overcome this, the 

concept of Green’s functions is introduced, providing a powerful and compact mathematical 

tool for analyzing scattering phenomena. Green’s functions are especially useful in deriving 

approximate solutions, including the Born approximation, which is widely applied in elastic 

scattering problems such as electron-atom scattering. 

 

Schrödinger Equation in Scattering Form 

Consider a particle of mass 𝜇moving in a potential 𝑉(𝑟). The time-independent Schrödinger 

equation describing the particle is: 

(−
ℏ2

2𝜇
∇2 + 𝑉(𝑟))𝜓(𝑟) = 𝐸𝜓(𝑟) 

 

To facilitate scattering calculations, it is convenient to rewrite the Schrödinger equation in a 

form that separates the free-particle motion from the interaction with the potential. Defining: 
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𝑘2 =
2𝜇𝐸

ℏ2
, 𝑈(𝑟) =

2𝜇

ℏ2
𝑉(𝑟) 

 

the equation can be rewritten as: 

(∇2 + 𝑘2)𝜓(𝑟) = 𝑈(𝑟)𝜓(𝑟) 

 

Here, the left-hand side represents the free-particle propagation, while the right-hand side 

encodes the influence of the scattering potential. This separation is fundamental because it 

allows us to treat the effect of the potential as a perturbation on the free-particle motion. 

 

Introduction to Green’s Functions 

A Green’s function is a mathematical construct that provides a solution to an inhomogeneous 

differential equation with a localized source. For the scattering problem, the Green’s function 

𝐺(𝑟, 𝑟′)is defined as the solution to: 

(∇2 + 𝑘2)𝐺(𝑟, 𝑟′) = −4𝜋𝛿(𝑟 − 𝑟′) 

 

where 𝛿(𝑟 − 𝑟′)is the Dirac delta function, representing a point source at position 𝑟′. The 

delta function has the property that for any well-behaved function 𝑔(𝑟): 

∫ 𝑔(𝑟)𝛿(𝑟 − 𝑟′) 𝑑𝑟 = 𝑔(𝑟′) 

 

In other words, the delta function "picks out" the value of the function at a specific point. The 

Green’s function thus represents the response of the system to a point source, which can then 

be used to construct the solution for an arbitrary source term. 

 

Particular Solution Using Green’s Function 

Using the Green’s function, one can formally express a particular solution of the 

inhomogeneous Schrödinger equation as an integral over the potential: 

𝜓(𝑟) = −
1

4𝜋
∫ 𝐺(𝑟, 𝑟′) 𝑈(𝑟′) 𝜓(𝑟′) 𝑑𝑟′ 

 

This integral equation is exact and expresses the wavefunction 𝜓(𝑟)in terms of itself, the 

interaction potential 𝑈(𝑟′), and the Green’s function 𝐺(𝑟, 𝑟′). To verify that this indeed 

satisfies the Schrödinger equation, we can operate with (∇2+𝑘2)on both sides: 

(∇2 + 𝑘2)𝜓(𝑟) = −
1

4𝜋
∫ (∇2 + 𝑘2)𝐺(𝑟, 𝑟′) 𝑈(𝑟′) 𝜓(𝑟′) 𝑑𝑟′ = ∫ 𝛿(𝑟 − 𝑟′) 𝑈(𝑟′) 𝜓(𝑟′) 𝑑𝑟′

= 𝑈(𝑟)𝜓(𝑟) 

 

This confirms that the integral representation is equivalent to the original differential 

equation, provided the Green’s function satisfies the defining equation. 

 

General Solution and Homogeneous Term 

The Schrödinger equation also has solutions to the homogeneous equation: 

(∇2 + 𝑘2)𝜓(0)(𝑟) = 0 
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These represent free-particle wavefunctions in the absence of the potential, such as plane 

waves or spherical waves. Including these solutions, the general solution of the scattering 

problem can be written as: 

𝜓(𝑟) = 𝜓(0)(𝑟) −
1

4𝜋
∫ 𝐺(𝑟, 𝑟′) 𝑈(𝑟′) 𝜓(𝑟′) 𝑑𝑟′ 

 

This equation is known as the integral scattering equation. It has several important features: 

1. It incorporates both the free motion and the scattering due to the potential. 

2. The boundary conditions of the scattering problem are implicitly included in the 

choice of Green’s function. 

3. It provides a natural starting point for approximations and numerical solutions. 

 

Outgoing Green’s Function and Boundary Conditions 

In scattering problems, it is important to select a Green’s function that satisfies the physical 

boundary conditions. For elastic scattering, the relevant choice is the outgoing Green’s 

function, which corresponds to a spherical wave radiating away from the scattering center: 

𝐺(𝑟, 𝑟′) =
𝑒𝑖𝑘∣𝑟−𝑟

′∣

∣ 𝑟 − 𝑟′ ∣
 

 

This ensures that the scattered wave moves outward from the target, consistent with the 

physical requirement that no waves are incoming from infinity. Using this Green’s function, 

the formal solution becomes: 

𝜓(𝑟) = 𝜓(0)(𝑟) −
1

4𝜋
∫
𝑒𝑖𝑘∣𝑟−𝑟

′∣

∣ 𝑟 − 𝑟′ ∣
 𝑈(𝑟′) 𝜓(𝑟′) 𝑑𝑟′ 

 

This integral equation forms the backbone of scattering theory. It elegantly transforms the 

problem from a differential equation with complex boundary conditions into an integral 

equation where all boundary conditions are automatically included in the choice of Green’s 

function. 

 

Advantages of the Integral Formulation 

While integral equations are often more challenging to solve exactly than differential 

equations, they offer several advantages in scattering theory: 

1. Compact Representation: 

The Green’s function formulation encapsulates both the potential and the boundary 

conditions in a single integral. 

2. Basis for Approximations: 

The integral equation is ideally suited for perturbative approximations, such as the 

Born approximation, which is widely used in weak-potential scattering problems. 

3. Adaptable to Various Potentials: 

The formalism applies to any potential 𝑈(𝑟), whether short-range, long-range, central, 

or non-central, making it extremely flexible. 

4. Direct Relation to Scattering Amplitudes: 
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The scattering amplitude 𝑓(𝜃, 𝜙)and differential cross sections can be obtained 

directly from the integral form, providing a bridge between theory and experiment. 

 

Connection to the Born Approximation 

The Born approximation arises naturally from the Green’s function formulation. In the first-

order Born approximation, the wavefunction 𝜓(𝑟′)inside the integral is replaced by the 

incident wave 𝜓(0)(𝑟′), yielding: 

𝜓(𝑟) ≈ 𝜓(0)(𝑟) −
1

4𝜋
∫
𝑒𝑖𝑘∣𝑟−𝑟

′∣

∣ 𝑟 − 𝑟′ ∣
 𝑈(𝑟′) 𝜓(0)(𝑟′) 𝑑𝑟′ 

 

This simplification is valid when the potential is weak, so that multiple scattering events are 

negligible. The resulting scattering amplitude is given by the Fourier transform of the 

potential, connecting the microscopic interaction with experimentally observable quantities. 

 

7.5 SUMMARY 

 

This chapter covered the essentials of quantum scattering theory, which explains how 

particles interact with potentials and how to quantify these interactions. A key concept is the 

cross section, which measures the probability of scattering. The differential cross section 

gives the likelihood of scattering into a specific direction, while the total cross section 

represents the overall interaction probability, providing a direct link between theory and 

experiment. 

 

Wave packet scattering describes realistic particles with finite spatial extent and momentum 

spread. When such a packet interacts with a potential, the scattered wave depends on both the 

shape of the packet and the interaction, capturing time-dependent effects like spreading and 

localization. This approach gives a more accurate picture than ideal plane waves and is 

essential for studying tunneling, collisions, and resonances. 

 

The continuous stream model extends the description to particle beams, treating particles as a 

steady flux. It connects the scattering amplitude to measurable quantities such as particle flux 

and scattering rates, allowing a practical interpretation of experimental data. 

 

Finally, Green’s functions provide a formal solution to the Schrödinger equation with proper 

boundary conditions. They allow the scattered wave to be expressed in terms of the incident 

wave and potential, forming the foundation for approximation methods like the Born 

approximation. Together, these concepts unify the understanding of elastic and inelastic 

scattering in quantum systems. 

 

 

7.6 TECHNICAL TERMS 

 

Introduction of Scattering - notion of Cross section, Scattering of Wave packet  

Scattering in continuous stream model, Green’s function in scattering theory. 
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7.7 SELF-ASSESSMENT QUESTIONS 

 

1. Write the theory of scattering in continuous stream model. 

2. Discuss the Green’s function in scattering theory. 

3. Write the scattering theory of wave packet. 

 

7.8 SUGGESTED READINGS 

 

1. Quantum Mechanics – Merzbacher E (John Wiley & Sons, New York) 

2. L I Schiff, Quantum Mechanics (Mc Graw-Hill) 

3. B Crasemann and J D Powell, Quantum Mechanics (Addison Wesley) 

4. A P Messiah, Quantum Mechanics  

5. J J Sakural, Modern Quantum Mechanics 

6. Mathews and Venkatesan, Quantum Mechanics  

7. Quantum Mechanics, R.D. Ratna Raju 

8. Quantum Mechanics by Kakani and Chandaliya 

9. Atkins P, Molecular Quantum Mechanics, Oup 1996(T) 
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LESSON 8 

BORN-APPROXIMATION 
 

Aim and Objectives 

 

The aim of this chapter is to develop a thorough understanding of the Born Approximation, 

an important method in quantum scattering theory. This approximation provides a practical 

approach to solving scattering problems when the interaction potential between the incident 

particle and the target is sufficiently weak. By replacing the exact scattered wave with the 

incident wave in the integral form of the Schrödinger equation, the Born Approximation 

simplifies the calculation of scattering amplitudes while preserving the essential physics of 

the process. 

 

The chapter introduces the first-order Born approximation, which corresponds to the initial 

iteration of the integral equation, as well as higher-order corrections that account for multiple 

scattering effects. Explicit expressions for the scattering amplitude and differential cross 

sections are derived, showing their dependence on the Fourier transform of the potential and 

the momentum transfer. 

 

A key focus is the criteria for validity, emphasizing that the approximation is reliable when 

the potential energy is small compared to the kinetic energy of the incoming particle, and 

higher-order contributions are negligible. The method is then applied to simple, analytically 

solvable potentials, allowing a direct comparison between theoretical predictions and 

experimental measurements. 

 

By the end of this chapter, students will understand the utility, limitations, and practical 

implementation of the Born Approximation, providing a foundation for analysing weak 

scattering phenomena in atomic, molecular, and nuclear physics. 

 

STRUCTURE OF THE LESSON: 

 

8.1 BORN -APPROXIMATION  

8.2 FIRST ORDER APPROXIMATION  

8.3 CRITERIA FOR THE VALIDITY OF BORN APPROXIMATION 

8.5 FORM FACTOR SCATTERING 

8.6 SUMMARY 

8.7 TECHNICAL TERMS 

8.8 SELF-ASSESSMENT QUESTIONS 

8.9 SUGGESTED READINGS. 

 

8.1 BORN -APPROXIMATION  

 

Introduction 

The Born approximation is a fundamental concept in quantum mechanical scattering theory, 

providing a practical method for calculating the scattering amplitude when an exact solution 
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of the Schrödinger equation is difficult or impossible to obtain. Scattering theory itself is 

concerned with understanding how particles, such as electrons, neutrons, or atoms, interact 

with a potential field, such as the electric field of a nucleus or the interatomic potential in 

molecules. Exact solutions of the time-independent Schrödinger equation are generally 

available only for a few idealized potentials, such as the Coulomb potential or the square 

well. For most realistic potentials, an approximate method is required to predict scattering 

behaviour, and the Born approximation provides one such method. 

 

The Born approximation is particularly useful for weak potentials, where the interaction 

between the incident particle and the scattering centre perturbs the wavefunction only 

slightly. This approach converts the complex problem of solving a differential equation into a 

manageable integral formulation, allowing direct computation of scattering amplitudes, cross 

sections, and other measurable quantities. Its simplicity and physical transparency make it a 

cornerstone of scattering theory and a widely used tool in atomic, molecular, and nuclear 

physics. 

 

Physical Assumption 

The fundamental assumption underlying the Born approximation is that the scattering 

potential V(r) causes only a small perturbation to the incident wave. In other words, the 

incident particle essentially “sees” the potential as a minor modification to its motion rather 

than a strong influence that significantly changes its trajectory. Mathematically, this 

assumption allows one to replace the exact scattered wavefunction inside the integral form of 

the Schrödinger equation with the incident plane wave. 

 

Because the potential is weak, the scattered wave is much smaller in amplitude than the 

incident wave, and the probability of multiple scattering events—where the particle interacts 

more than once with the potential—is negligible. This assumption also implies that the 

interaction energy is small compared to the kinetic energy of the particle. Physically, this is 

often the case for high-energy particles or for potentials that decrease rapidly with distance, 

such as short-range nuclear or molecular potentials. 

 

This weak-scattering assumption is essential because it allows a first-order perturbative 

treatment of the scattering problem. Higher-order contributions can be included, but they are 

usually small and can be neglected in the first approximation. By focusing on the first-order 

effect, the Born approximation gives an accurate estimate of the scattering amplitude while 

keeping the calculations tractable. 

 

Scattering Amplitude 

The scattering amplitude, denoted as 𝑓(𝜃, 𝜙), is the central quantity in scattering theory. It 

contains all the information about the angular distribution and intensity of the scattered 

particles. In the Born approximation, the scattering amplitude is expressed as the Fourier 

transform of the scattering potential, reflecting how the structure of the potential determines 

the scattering pattern: 

𝑓(𝜃, 𝜙) = −
2𝑚

ℏ2
∫ 𝑒𝑖𝐪⋅𝐫𝑉(𝐫)𝑑3𝑟 

 

Here, q = k0 − kis the momentum transfer vector, representing the difference between the 

incident momentum k0and the scattered momentum k. The scattering amplitude depends not 

only on the potential but also on the angle of scattering, as encoded in q. 
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This expression highlights the physical interpretation of the Born approximation: the angular 

distribution of scattered particles is directly related to the spatial structure of the potential. 

Sharp features in the potential, such as abrupt changes or localized regions, produce wide-

angle scattering, while smooth or long-range potentials produce forward-peaked scattering. 

For spherically symmetric potentials, the integral simplifies, and the scattering amplitude 

depends only on the magnitude of the momentum transfer, reducing the computational 

complexity. 

 

The Born approximation therefore provides a direct link between microscopic properties of 

the potential and macroscopic observables measured in experiments, such as scattering 

patterns and angular distributions. 

 

Differential Cross Section 

The differential cross section is defined as the probability of a particle being scattered into a 

given solid angle 𝑑Ω. In the Born approximation, it is obtained as the square of the magnitude 

of the scattering amplitude: 
𝑑𝜎

𝑑Ω
=∣ 𝑓(𝜃, 𝜙) ∣2 

 

This quantity represents a fundamental observable in scattering experiments. It tells us how 

many particles are scattered per unit solid angle in a given direction relative to the incident 

beam. Since the scattering amplitude encodes the effects of the potential and the momentum 

transfer, the differential cross section provides a direct measurable signature of the potential. 

For spherically symmetric potentials, the differential cross section simplifies further and can 

often be expressed in analytical forms for simple potentials like square wells or Yukawa 

potentials. In experimental settings, measuring the angular distribution of scattered particles 

allows physicists to reconstruct information about the potential, making the Born 

approximation a practical tool for interpreting experimental data. 

 

The total cross section can then be obtained by integrating the differential cross section over 

all solid angles: 

𝜎total = ∫
𝑑𝜎

𝑑Ω
𝑑Ω 

 

The total cross section represents the effective “area” of the target that contributes to 

scattering and is directly related to the overall probability of a scattering event occurring. 

 

Applications and Limitations 

The Born approximation is widely used in electron-atom scattering, neutron scattering, and 

X-ray scattering, especially when the interaction is weak or the particles are high in energy. 

Its simplicity allows for analytical calculations and a clear physical interpretation of 

experimental results. 

 

However, the approximation has limitations. It is valid only when the potential is weak and 

the kinetic energy of the incident particle is sufficiently high. For strong potentials, such as 

low-energy nuclear interactions or Coulomb scattering at small energies, higher-order 

contributions cannot be neglected, and the Born approximation may fail. In such cases, 

alternative methods, such as partial wave analysis, must be used. 
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8.2 FIRST ORDER APPROXIMATION 

 

In quantum scattering, when a particle encounters a potential 𝑉(r), its motion is governed by 

the Schrödinger equation. If the potential is weak, it perturbs the incident particle only 

slightly, producing a scattered wave that differs only minimally from the incident plane wave. 

This scenario is addressed by the First-Born Approximation, which provides a practical 

method to calculate the scattering amplitude under such weak-interaction conditions. 

 

Mathematically, the First-Born Approximation arises as the first-order solution of the integral 

form of the Schrödinger equation. In this approach, the exact scattered wavefunction inside 

the integral is replaced by the incident plane wave. This simplification reduces a complex 

scattering problem to a manageable calculation, allowing the scattering amplitude to be 

expressed as the Fourier transform of the potential. 

 

The approximation is particularly useful for high-energy particles or short-range potentials, 

where the first-order contribution dominates and higher-order effects can be neglected. It 

forms the foundation for understanding differential and total cross sections in many scattering 

experiments. 

 

  

 
 

In quantum mechanics, scattering processes describe the interaction of an incident particle 

with a potential, which may represent an atom, nucleus, or any localized scattering center. A 

fundamental approach to solving scattering problems, particularly when the interaction is 

weak, is the First-Born Approximation. This method simplifies the solution of the 

Schrödinger equation by assuming that the potential only slightly perturbs the incident 

particle, allowing the scattered wavefunction to be approximated in terms of the incident 

plane wave. 

 

Incident Wavefunction 

Consider an incident particle moving towards a scattering center. The particle is represented 

by a plane wave, which is an eigenfunction of the momentum operator: 

𝜓inc(r) = 𝑒𝑖k0⋅r (1) 
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Here, k0is the incident wave vector, and ℏk0is the incident momentum. The plane wave is an 

idealized representation of a particle with definite momentum and infinite spatial extent, 

which is a standard starting point in scattering theory. In a more realistic description, one can 

use a localized wave packet, but the plane-wave assumption simplifies analytical 

calculations. 

 

Scattered Wavefunction (First Born Approximation) 

The total wavefunction for the particle after interacting with a potential 𝑉(r)can be written 

as: 

𝜓(r) = 𝜓inc(r) +
2𝑚

ℏ2
∫

𝑒𝑖𝑘∣r−r′∣

∣ r − r′ ∣
𝑉(r′)𝜓inc(r′) 𝑑3𝑟′ (2) 

  
 

This is the integral form of the Schrödinger equation, where the first term represents the 

incident plane wave, and the second term accounts for the scattered wave. The integral kernel 

𝑒𝑖𝑘∣r−r′∣/∣ r − r′ ∣represents a spherical outgoing wave, satisfying the proper boundary 

condition at infinity. 

 

The First-Born Approximation is obtained by assuming that the potential is weak, so that 

𝜓(r′)inside the integral can be replaced by the incident plane wave 𝜓inc(r′). This first 

iteration provides a simple yet accurate solution for weak scattering potentials. 

𝜓(r) ≈ 𝜓inc(r) +
2𝑚

ℏ2
∫

𝑒𝑖𝑘∣r−r′∣

∣ r − r′ ∣
𝑉(r′)𝜓inc(r′) 𝑑3𝑟′ 

 

Scattering Amplitude 

The scattering amplitude 𝑓(𝜃, 𝜙)is a central quantity in scattering theory. It describes the 

angular distribution of scattered particles and is directly related to measurable quantities such 

as differential cross sections. In the First-Born Approximation, the scattering amplitude is 

expressed as: 

 

𝑓(𝜃, 𝜙) = −
2𝑚

ℏ2
∫ 𝑒−𝑖k⋅r𝑉(r)𝜓inc(r) 𝑑3𝑟 (3) 

 

Substituting 𝜓inc(r) = 𝑒𝑖k0⋅r, we obtain: 

 

𝑓(𝜃, 𝜙) = −
2𝑚

ℏ2
∫ 𝑒𝑖(k0−k)⋅r𝑉(r) 𝑑3𝑟 (4) 

 

 

 

Here, k0and kare the incident and scattered wave vectors, respectively. 

 

Momentum Transfer 

Defining the momentum transfer vector: 

q = k0 − k 

 

the scattering amplitude can be compactly written as: 
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𝑓(𝜃, 𝜙) = −
2𝑚

ℏ2
∫ 𝑒𝑖q⋅r𝑉(r) 𝑑3𝑟 (5) 

 

This demonstrates a profound result: the scattering amplitude in the Born approximation is 

the Fourier transform of the potential. The momentum transfer ℏqrepresents the change in the 

particle's momentum due to the scattering event. 

 

Differential Scattering Cross Section 

The differential cross section, which represents the probability of scattering into a specific 

solid angle, is given by the square of the scattering amplitude: 
𝑑𝜎

𝑑Ω
=∣ 𝑓(𝜃, 𝜙) ∣2 

 

Substituting the Fourier-transformed amplitude: 

 

𝑑𝜎

𝑑Ω
=

4𝑚2

ℏ4
∣ ∫ 𝑒𝑖q⋅r𝑉(r) 𝑑3𝑟 ∣2 (6) 

 

This general expression forms the basis for calculating cross sections for a variety of 

potentials, from short-range atomic potentials to long-range Coulomb interactions. 

 

Elastic Scattering 

For elastic scattering, the magnitude of the incident and scattered momenta are equal: ∣ k0 ∣=
∣ k ∣= 𝑘. The momentum transfer is then related to the scattering angle 𝜃by: 

𝑞 =∣ k0 − k ∣= 2𝑘sin 
𝜃

2
 

𝑞 = √𝑘0
2 + 𝑘2 − 2𝑘0𝑘cos 𝜃 = 2𝑘sin (

𝜃

2
) (7) 

 

This geometrical relation is critical for evaluating the scattering amplitude and cross section 

for isotropic or spherically symmetric potentials. 

 

Spherically Symmetric Potential 

For a spherically symmetric potential, 𝑉(r) = 𝑉(𝑟), the problem simplifies due to rotational 

symmetry. Choosing the 𝑧-axis along q, we have q ⋅ r = 𝑞𝑟cos 𝜃. The volume integral 

becomes: 

∫ 𝑒𝑖q⋅r𝑉(𝑟) 𝑑3𝑟 = ∫ 𝑟2
∞

0

𝑉(𝑟)𝑑𝑟 ∫ 𝑒𝑖𝑞𝑟cos 𝜃
𝜋

0

sin 𝜃𝑑𝜃 ∫ 𝑑𝜙
2𝜋

0

 

 

Performing the angular integration yields: 

 

    ∫ 𝑒𝑖q⋅r𝑉(𝑟) 𝑑3𝑟 = 4𝜋 ∫ 𝑟2∞

0
𝑉(𝑟)

sin (𝑞𝑟)

𝑞𝑟
 𝑑𝑟 (8) 

 

 

Scattering Amplitude and Differential Cross Section 

The scattering amplitude for a spherically symmetric potential is: 

Type equation here. 

𝑓(𝜃) = −
2𝑚

ℏ2𝑞
∫ 𝑟𝑉(𝑟)sin (𝑞𝑟) 𝑑𝑟

∞

0

(9) 
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Substituting into the formula for the differential cross section, we obtain: 

 

𝑑𝜎

𝑑Ω
=

4𝜋2𝑚2

ℏ4𝑞2
[∫ 𝑟

∞

0

𝑉(𝑟)sin (𝑞𝑟) 𝑑𝑟]

2

(10) 

 

This expression shows explicitly that, for spherically symmetric potentials, the differential 

cross section depends only on the momentum transfer 𝑞and, therefore, on the scattering angle 

𝜃. 

 

Physical Interpretation 

The First-Born Approximation provides a clear physical picture: 

1. The incident plane wave is only slightly perturbed by the potential, producing a 

scattered spherical wave. 

2. The scattering amplitude is the Fourier transform of the potential, showing how 

different spatial components of the potential contribute to scattering at different 

angles. 

3. For elastic scattering, the magnitude of momentum is conserved, and the scattering 

angle determines the momentum transfer. 

 

Validity of the First Born Approximation 

The approximation is valid under certain conditions: 

• The potential 𝑉(𝑟)must be weak compared to the kinetic energy of the incident 

particle. 

• Multiple scattering events must be negligible. 

• The incident particle energy should be high enough that the first-order term dominates 

over higher-order contributions. 

Under these conditions, the First Born Approximation accurately predicts scattering 

amplitudes, differential, and total cross sections. 

 

Applications 

The First-Born Approximation is widely used in: 

• Electron-atom scattering in atomic physics. 

• Neutron scattering in condensed matter studies. 

• X-ray scattering in crystallography. 

• High-energy particle physics, where interactions are weak or short-ranged. 

Its simplicity allows straightforward connection between theory and experimental 

observations, making it a cornerstone of quantum scattering theory. 

 

8.3 CRITERIA FOR THE VALIDITY OF BORN APPROXIMATION 

 

The First-Born Approximation provides a simplified solution to scattering problems by 

assuming that the scattered wave is only a small perturbation to the incident plane wave. 

However, this approximation is only valid under certain conditions that ensure that higher-

order corrections to the wavefunction are negligible. Understanding these conditions is 

crucial for applying the approximation correctly. 

 

Condition for Validity 

The total wavefunction in the First-Born Approximation is given by the integral expression: 
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𝜓(r) = 𝜓inc(r) +
2𝑚

ℏ2
∫

𝑒𝑖𝑘∣r−r′∣

∣ r − r′ ∣
𝑉(r′)𝜓inc(r′) 𝑑3𝑟′  

 

For the approximation to be valid, the second term—which represents the scattered wave—

must be much smaller than the incident wave 𝜓inc(r). Mathematically, this condition is 

expressed as: 

∣
2𝑚

ℏ2
∫

𝑒𝑖𝑘∣r−r′∣

∣ r − r′ ∣
𝑉(r′)𝑒𝑖k0⋅r′

 𝑑3𝑟′ ∣≪∣ 𝜓inc(r) ∣2 (11) 

 

 

Simplification Using Incident Wavefunction 

The incident wavefunction is a plane wave: 

𝜓inc(r) = 𝑒𝑖k0⋅r 

 

which has unit magnitude (∣ 𝜓inc ∣= 1). Using this, the validity condition simplifies to: 

∣
2𝑚

ℏ2
∫

𝑒𝑖𝑘∣r−r′∣

∣ r − r′ ∣
𝑉(r′)𝑒𝑖k0⋅r′

 𝑑3𝑟′ ∣≪ 1 (12) 

 

This inequality provides a general quantitative criterion: the integral of the potential weighted 

by the phase factor must be small compared to unity. 

 

Elastic Scattering Approximation 

For elastic scattering, the incident and scattered momenta have nearly equal magnitudes 

(𝑘0 ≈ 𝑘). If the scattering potential 𝑉(𝑟)is localized, meaning it is significant only near 𝑟 =
0, the integral can be simplified in spherical coordinates: 

∣
𝑚

ℏ2
∫ 𝑟

∞

0

𝑒𝑖𝑘𝑟𝑉(𝑟) 𝑑𝑟 ∫ 𝑒𝑖𝑘𝑟cos 𝜃
𝜋

0

sin 𝜃 𝑑𝜃 ∣≪ 1 (13) 

 

Here, the angular integral accounts for the contribution of all directions of scattering, while 

the radial integral represents the potential’s effect over space. 

 

Further Simplification 

Performing the angular integration yields a simpler condition: 

∣
𝑚

ℏ2𝑘
∫ 𝑉(𝑟)(

∞

0

𝑒2𝑖𝑘𝑟 − 1) 𝑑𝑟 ∣≪ 1 (14) 

 

This shows that the dimensionless quantity formed by the ratio of the potential’s effect to the 

incident kinetic energy must be small. The factor 1/𝑘indicates that higher particle momentum 

reduces the effect of the potential, making the approximation more accurate. 

 

Physical Interpretation 

The energy of the incident particle is purely kinetic: 

𝐸𝑖 =
ℏ2𝑘2

2𝑚
 

 

Since 𝐸𝑖 ∝ 𝑘2, the inequalities above imply that the Born Approximation is valid when: 

1. High Incident Energy: A larger 𝑘increases the particle’s kinetic energy, making the 

effect of the potential smaller in comparison. 
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2. Weak Scattering Potential: The magnitude of 𝑉(𝑟)must be small enough that the 

scattered wave remains a perturbation. 

In other words, the average interaction energy between the particle and the potential should 

be much smaller than the particle’s kinetic energy. When this condition is satisfied, the 

particle effectively moves as a free plane wave, and the scattered wave remains a small 

correction. 

 

8.4 FORM FACTOR SCATTERING 

 

In scattering theory, the concept of the form factor is fundamental when the scattering object 

possesses a finite spatial extent or an internal structure. While idealized point scatterers 

provide a simple model for basic scattering calculations, real physical systems such as atoms, 

molecules, nuclei, and nanoparticles have distributed charge or mass densities. These 

distributions significantly affect the scattering pattern, as each part of the scatterer contributes 

to the interference of the scattered waves. The form factor is introduced to account for these 

effects, allowing a quantitative link between the scattering amplitude and the internal 

structure of the target. 

 

1. Scattering Amplitude in the First-Born Approximation 

Within the framework of the First-Born approximation, the scattering amplitude for a particle 

interacting with a weak potential 𝑉(𝐫)is obtained using the Fourier transform of the potential: 

𝑓(𝐪) = −
2𝑚

ℏ2
∫ 𝑒𝑖𝐪⋅𝐫𝑉(𝐫) 𝑑3𝑟 (1) 

 

Here: 

• q = k0 − kis the momentum transfer vector, 

• ℏk0and ℏkare the incident and scattered momenta, respectively, 

• 𝑚is the mass of the incident particle, and 

• ℏis the reduced Planck constant. 

Equation (1) shows that the scattering amplitude depends directly on the Fourier components 

of the potential. This dependence implies that scattering measurements can probe the spatial 

structure of the target, because the Fourier transform encodes information about the 

distribution of potential within the object. 

 

Definition of the Form Factor 

If the scattering potential 𝑉(𝐫)is proportional to a spatial density distribution 𝜌(r), such that 

𝑉(r) ∝ 𝜌(r), the form factor 𝐹(q)is defined as: 

𝐹(𝐪) = ∫ 𝑒𝑖𝐪⋅𝐫𝜌(𝐫) 𝑑3𝑟 (2) 

 

Thus, the scattering amplitude can be expressed in terms of the form factor: 

𝑓(𝐪) ∝ 𝐹(𝐪) (3) 

 

Consequently, the differential scattering cross section is given by the square of the scattering 

amplitude: 
𝑑𝜎

𝑑Ω
=∣ 𝑓(q) ∣2∝∣ 𝐹(q) ∣2 (4) 

 

Equation (4) indicates that the measured scattering intensity is directly related to the square of 

the form factor. Therefore, experimental scattering patterns provide immediate information 

about the internal distribution of mass or charge in the target. The stronger the variations in 
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the form factor, the more detailed information can be extracted regarding the internal 

structure. 

 

Physical Interpretation of the Form Factor 

The form factor has a clear physical meaning. It represents the interference of waves 

scattered from different regions of the object. Each point inside the scatterer acts as a 

secondary source of scattered waves. Depending on their relative phases, these waves can 

interfere constructively or destructively, altering the scattering amplitude observed at a 

detector. 

1. Small momentum transfer (𝑞 → 0): All parts of the object scatter coherently, and the 

form factor approaches the total scattering strength. In this regime, the object behaves 

approximately like a point scatterer. 

2. Large momentum transfer (𝑞 increases): The phase differences between waves 

scattered from different regions become significant, leading to oscillatory behaviour 

and decay of the form factor. These oscillations carry detailed information about the 

internal spatial distribution of density or charge. 

The form factor, therefore, acts as a bridge between microscopic structure and macroscopic 

scattering measurements. It encodes the size, shape, and internal features of the scatterer. 

 

Form Factor for Spherically Symmetric Systems 

In many cases, the scatterer is spherically symmetric, meaning that the density depends only 

on the radial distance: 𝜌(r) = 𝜌(𝑟). Choosing the z-axis along the momentum transfer vector 

q, the dot product simplifies to q ⋅ r = 𝑞𝑟cos 𝜃. The form factor reduces to a one-

dimensional radial integral: 

𝐹(𝑞) = 4𝜋 ∫ 𝑟2
∞

0

𝜌(𝑟)
sin (𝑞𝑟)

𝑞𝑟
 𝑑𝑟 (5) 

 

Equation (5) is extensively used in nuclear physics, atomic scattering, and small-angle 

scattering experiments with nanoparticles or molecular clusters. The factor sin (𝑞𝑟)/
(𝑞𝑟)arises naturally from the angular integration and accounts for the interference of waves 

scattered from different radial shells of the object. 

 

Examples of Spherical Form Factors 

1. Uniform sphere of radius 𝑅: 

𝜌(𝑟) = {
𝜌0, 𝑟 ≤ 𝑅
0, 𝑟 > 𝑅

 

 

This yields: 

𝐹(𝑞) = 3𝜌0

sin (𝑞𝑅) − 𝑞𝑅cos (𝑞𝑅)

(𝑞𝑅)3
 

 

The scattering amplitude shows oscillatory patterns, with zeros corresponding to destructive 

interference from different regions of the sphere. 

2. Gaussian density distribution: 

𝜌(𝑟) = 𝜌0𝑒−𝑟2/2𝜎2
 

 

Then: 

𝐹(𝑞) ∝ 𝑒−𝑞2𝜎2/2 
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This produces a smooth decay in scattering intensity with increasing 𝑞, reflecting the gradual 

decrease in coherence across the distribution. 

 

 Form Factor in Many-Body Systems 

For systems containing multiple scatterers, such as liquids, glasses, or powders, the total 

scattering intensity depends on both the individual particle form factor and the spatial 

correlations between particles. This is expressed as: 

𝐼(𝑞) ∝∣ 𝐹(𝑞) ∣2 𝑆(𝑞) (6) 

 

where: 

• 𝐹(𝑞)is the form factor of a single particle, and 

• 𝑆(𝑞)is the structure factor, describing positional correlations among particles. 

Here, the form factor provides information about the internal structure of individual particles, 

while the structure factor provides information about the collective arrangement. 

 

 Applications of Form Factor Analysis 

1. X-ray Scattering: 

Atomic electron density distributions are mapped using X-ray diffraction. The form 

factor decreases with scattering angle as the effective interference becomes less 

coherent. 

2. Neutron Scattering: 

Nuclear densities of atoms or molecules are probed using neutron beams. Isotope-

sensitive measurements can differentiate elements with similar electron densities. 

3. Electron Scattering: 

High-energy electrons probe charge distributions within atoms, molecules, and 

condensed matter systems. 

4. Nanoparticle and Cluster Scattering: 

Small-angle scattering experiments reveal particle size, shape, and internal density 

fluctuations. 

5. Biophysical Applications: 

Proteins and macromolecules in solution can be characterized using X-ray or neutron 

scattering, providing structural information without requiring crystallization. 

 

 Interpretation of Experimental Data 

The square of the form factor, ∣ 𝐹(𝑞) ∣2, determines the angular distribution of scattering 

intensity. By measuring intensity as a function of scattering angle (or momentum transfer 𝑞), 

experimentalists can extract: 

• The overall size of the scatterer, from the decay of intensity at small 𝑞. 

• Internal structure details, from oscillations in intensity at larger 𝑞. 

• Surface or interface features, from deviations from idealized density models. 

This makes form factor analysis an essential tool in experimental scattering physics. 

 

8.5 SUMMARY 

 

This section discussed the Born approximation, an important method in quantum scattering 

theory used to obtain approximate solutions when the interaction potential between the 

incident particle and the target is weak. The approach simplifies the scattering problem by 

replacing the exact scattered wavefunction with the incident wave, resulting in the first-order 

Born approximation. This leads to a straightforward expression for the scattering amplitude, 

which is proportional to the Fourier transform of the scattering potential. From this 
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amplitude, one can directly calculate the differential cross section, representing the 

probability of scattering into a particular solid angle, as well as the total cross section, which 

gives the overall scattering probability. The validity of the Born approximation depends on 

the scattering potential being sufficiently weak and the kinetic energy of the incident particle 

being relatively high, so that the scattered wave is a small perturbation to the incident wave. 

Under these conditions, the Born approximation provides a reliable and practical tool for 

analyzing a wide range of physical scattering phenomena. 

 

8.6 TECHNICAL TERMS 

 

Born approximation, first-order Born approximation, validity of the Born approximation. 

 

8.7 SELF-ASSESSMENT QUESTIONS 

 

1. Explain the Born Approximation and first order born approximation in the scattering 

theory. 

2. Write the validity of first-Born approximation. 

 

8.8 SUGGESTED READINGS 

 

1. Quantum Mechanics – Merzbacher E (John Wiley & Sons, New York) 

2. L I Schiff, Quantum Mechanics (Mc Graw-Hill) 

3. B Crasemann and J D Powell, Quantum Mechanics (Addison Wesley) 

4. A P Messiah, Quantum Mechanics 

5. J J Sakural, Modern Quantum Mechanics 

6. Mathews and Venkatesan, Quantum Mechanics 

7. Quantum Mechanics, R.D. Ratna Raju 

8. Quantum Mechanics by Kakani and Chandaliya 

9. Atkins P, Molecular Quantum Mechanics, Oup 1996(T) 
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LESSON -9 

SQUARE WELL POTENTIAL 
 

Aim and objectives 

 

The aim of this chapter is to study the scattering of particles from a square well potential, 

which serves as a simple yet powerful model to illustrate the fundamental aspects of quantum 

scattering. This potential allows us to explore how particles interact with localized attractive 

or repulsive regions and provides insight into the behavior of realistic scattering systems. The 

chapter focuses on formulating the Schrödinger equation for a square well potential and 

solving it to determine the wavefunctions inside and outside the potential region. From these 

solutions, one can calculate important quantities such as the reflection and transmission 

coefficients, which quantify the probabilities of particles being reflected or transmitted by the 

potential. Additionally, the chapter examines scattering phase shifts, differential and total 

cross sections, and their dependence on energy and potential parameters. By comparing 

theoretical predictions with experimental scattering data, this model helps develop a deeper 

understanding of quantum scattering phenomena, resonance effects, and the principles 

underlying particle-wave interactions. 

 
STRUCTURE OF THE LESSON: 

 

9.1 SCATTERING FROM A SQUARE WELL POTENTIAL 

9.2 PARTIAL WAVE ANALYSIS 

9.3 EXPANSION OF A PLANE WAVE 

9.4 OPTIMAL THEOREM 

9.5 SCATTERING FROM A SQUARE WELL POTENTIAL 

9.6 SUMMARY 

9.7 TECHNICAL TERMS 

9.8 SELF-ASSESSMENT QUESTIONS 

9.9 SUGGESTED READINGS 

 

9.1 SCATTERING FROM A SQUARE WELL POTENTIAL 

 

Introduction 

Scattering theory is a fundamental part of quantum mechanics that describes how an incident 

particle interacts with a target potential and is deflected as a result of this interaction. It forms 

the basis for understanding a wide range of phenomena in nuclear physics, atomic physics, 

and condensed matter systems. Scattering experiments provide critical information about the 

nature of forces, potentials, and internal structure of the scattering centre. 

 

Among the exactly solvable models in quantum scattering, the square-well potential holds a 

central place. Despite its simplicity, the square-well potential captures essential features of 

real physical systems, making it an excellent tool for teaching and research. It allows explicit 

calculation of key quantities such as phase shifts, differential and total cross sections, and 
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resonance behaviour. Furthermore, it provides a practical framework to test the validity of 

approximations such as the Born approximation, which assumes weak scattering potentials. 

The square-well potential is especially important in low-energy scattering studies, where 

particles have energies comparable to the potential depth. Examples include neutron 

scattering from nuclei, electron scattering from atoms, and atom-atom collisions in cold 

gases. Understanding scattering from the square-well potential also provides insight into 

more complex potentials, as solutions can often be generalized or serve as a starting point for 

perturbative or numerical methods. 

 

Square-Well Potential 

The spherically symmetric square-well potential is defined as: 

𝑉(𝑟) = {
−𝑉0, 𝑟 ≤ 𝑎
0, 𝑟 > 𝑎

 

 

where: 

• 𝑉0 > 0is the depth of the potential well, indicating that the potential is attractive 

inside the radius 𝑎. 

• 𝑎is the range of the interaction, which determines the spatial extent of the potential. 

Physically, this model represents a particle experiencing a constant attractive force within a 

certain radius and no interaction outside. It is a simple representation of finite-size scatterers 

such as nuclei, atoms, or molecules and provides a tractable model for analytic solutions. 

 

Schrödinger Equation for Scattering 

The time-independent Schrödinger equation governs the motion of a particle in the presence 

of a potential: 

[−
ℏ2

2𝑚
∇2 + 𝑉(𝑟)]𝜓(𝑟) = 𝐸𝜓(𝑟) 

 

For scattering states, the particle has positive energy: 

𝐸 =
ℏ2𝑘2

2𝑚
> 0 

 

where 𝑘is the wave number corresponding to the incident particle momentum. 

Due to the spherical symmetry of the potential, it is convenient to express the wavefunction 

using partial wave expansion, which separates the radial and angular parts. This allows the 

problem to be reduced to solving a radial differential equation for each angular momentum 

component. 

 

Partial Wave Expansion 

The total wavefunction is expanded as: 

𝜓(𝑟) = ∑𝑅𝑙

∞

𝑙=0

(𝑟)𝑃𝑙(cos⁡ 𝜃) 

where: 

• 𝑙is the orbital angular momentum quantum number (partial wave index). 

• 𝑅𝑙(𝑟)is the radial wavefunction for the 𝑙-th partial wave. 

• 𝑃𝑙(cos⁡ 𝜃)are the Legendre polynomials, which represent the angular dependence of 

the wavefunction. 

By defining 𝑢𝑙(𝑟) = 𝑟𝑅𝑙(𝑟), the radial Schrödinger equation becomes: 
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𝑑2𝑢𝑙
𝑑𝑟2

+ [𝑘2 −
𝑙(𝑙 + 1)

𝑟2
−
2𝑚

ℏ2
𝑉(𝑟)] 𝑢𝑙 = 0 

 

This form separates the effects of angular momentum and the potential, enabling systematic 

analysis of scattering for each partial wave. 

 

Solutions of the Radial Equation 

(a) Inside the Well (𝒓 ≤ 𝒂) 

Inside the potential well, 𝑉(𝑟) = −𝑉0. Define the modified wave number: 

𝑘1
2 = 𝑘2 +

2𝑚𝑉0
ℏ2

 

 

The physically acceptable solution, which is regular at 𝑟 = 0, is expressed in terms of 

spherical Bessel functions: 

𝑢𝑙(𝑟) = 𝐴𝑙𝑗𝑙(𝑘1𝑟) 
 

Here, 𝑗𝑙(𝑥)are the spherical Bessel functions of the first kind, which are finite at the origin. 

The constant 𝐴𝑙is determined by normalization and matching conditions at 𝑟 = 𝑎. 

 

(b) Outside the Well (𝒓 > 𝒂) 

For 𝑟 > 𝑎, the potential vanishes (𝑉(𝑟) = 0), and the solution is a combination of spherical 

Bessel and Neumann functions: 

𝑢𝑙(𝑟) = 𝐵𝑙[cos⁡ 𝛿𝑙  𝑗𝑙(𝑘𝑟) − sin⁡ 𝛿𝑙 𝑛𝑙(𝑘𝑟)] 
 

where: 

• 𝑛𝑙(𝑥)are spherical Neumann functions (irregular at 𝑟 = 0, but regular at 𝑟 > 𝑎). 

• 𝛿𝑙is the phase shift, which contains all information about the scattering process. 

The phase shift 𝛿𝑙arises due to the modification of the wavefunction caused by the potential 

and plays a central role in determining scattering amplitudes and cross sections. 

 

Phase Shifts 

The phase shifts 𝛿𝑙are obtained by applying continuity conditions at the boundary 𝑟 = 𝑎: 

1. Continuity of the wavefunction: 

𝑢𝑙
inside(𝑎) = 𝑢𝑙

outside(𝑎) 
 

2. Continuity of the derivative: 
𝑑𝑢𝑙
𝑑𝑟

∣inside=
𝑑𝑢𝑙
𝑑𝑟

∣outside 

 

Solving these equations gives the exact phase shifts for each partial wave. These phase shifts 

encode the influence of the potential on the scattering process, including constructive or 

destructive interference effects that manifest as resonances or minima in the scattering cross 

section. 

 

s-Wave (Low-Energy) Scattering 

At low energies, where 𝑘𝑎 ≪ 1, the scattering is dominated by the 𝑙 = 0partial wave (s-

wave), as contributions from higher angular momenta are suppressed by the centrifugal 

barrier. 

For 𝑙 = 0, the phase shift is: 
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𝛿0 = 𝑘𝑎 − tan⁡−1 (
𝑘

𝑘1
tan⁡(𝑘1𝑎)) 

 

This simple expression is extremely important in nuclear and atomic scattering. It captures 

the key physics of low-energy collisions, where particles probe the overall size and depth of 

the potential rather than its detailed structure. 

 

Scattering Amplitude 

The scattering amplitude is related to the phase shifts via: 

𝑓(𝜃) =
1

𝑘
∑(2𝑙 + 1)

∞

𝑙=0

𝑒𝑖𝛿𝑙sin⁡ 𝛿𝑙 𝑃𝑙(cos⁡ 𝜃) 

 

For low-energy s-wave scattering, only the 𝑙 = 0term contributes: 

𝑓(𝜃) ≈
1

𝑘
𝑒𝑖𝛿0sin⁡ 𝛿0 

 

The scattering amplitude determines the angular distribution of scattered particles and is 

directly measurable in experiments. 

 

Differential Cross Section 

The differential cross section quantifies the probability of scattering into a solid angle 𝑑Ω: 
𝑑𝜎

𝑑Ω
=∣ 𝑓(𝜃) ∣2 

 

For s-wave scattering, this simplifies to: 
𝑑𝜎

𝑑Ω
=

1

𝑘2
sin⁡2 𝛿0 

 

This shows that at low energies, scattering is isotropic, as the differential cross section does 

not depend on 𝜃. The magnitude of the scattering is controlled by the phase shift, which 

depends on the potential depth 𝑉0and range 𝑎. 

 

Physical Interpretation 

The square-well potential illustrates key features of quantum scattering: 

1. Phase Shifts (𝛿𝑙): Encapsulate the modification of the wave due to the potential and 

determine all observable scattering properties. 

2. Resonances: Occur when 𝛿𝑙rapidly changes with energy, corresponding to quasi-

bound states within the well. 

3. Cross Sections: Differential and total cross sections can be calculated exactly, 

allowing direct comparison with experiments. 

4. Low-Energy Scattering: Dominated by s-wave (𝑙 = 0) contributions, leading to 

isotropic scattering at low energies. 

5. Partial Waves: Higher angular momentum states contribute significantly only at 

higher energies. 

This model also provides a benchmark to test approximations like the Born approximation, 

which assumes weak scattering potentials. By comparing exact phase shifts and cross 

sections from the square-well model with Born approximation results, one can assess the 

conditions under which approximate methods are valid. 
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➢ Total Cross Section 

The total scattering cross section measures the overall probability of a particle being 

deflected by a potential. For a spherically symmetric square-well potential, it is expressed in 

terms of partial-wave phase shifts 𝛿𝑙as: 

𝜎 =
4𝜋

𝑘2
∑(2𝑙 + 1)

∞

𝑙=0

sin⁡2 𝛿𝑙 

 

At low energies (𝑘𝑎 ≪ 1), scattering is dominated by the s-wave (𝑙 = 0), simplifying the 

total cross section to: 

𝜎 ≈
4𝜋

𝑘2
sin⁡2 𝛿0 

 

Resonance Scattering 

Resonances occur when 

𝑘1𝑎 ≈ 𝑛𝜋 
 

with 𝑘1 = √𝑘2 + 2𝑚𝑉0/ℏ2. At these energies, the particle is temporarily trapped in the 

potential well, forming a quasi-bound state. Phase shifts change rapidly, and the cross section 

shows a pronounced peak. Resonances are crucial in nuclear reactions and indicate the energy 

and lifetime of these states. 

 

Relation to Born Approximation 

For weak and shallow potentials, the first Born approximation can estimate scattering. 

However, for strong potentials or low-energy scattering, it fails, requiring exact partial-wave 

solutions. The square-well potential provides a clear benchmark to compare approximate and 

exact methods. 

 

 



Quantum Dynamics and Scattering Theory 9.6   Square Well Potential  

 

Physical Significance 

The square-well model offers insights into: 

1. Phase Shifts – Encoding angular distributions and resonance behavior. 

2. Low-Energy Scattering – Dominated by s-wave contributions. 

3. Resonances – Showing quasi-bound state formation and enhanced cross sections. 

As a simple yet exactly solvable model, the square-well potential illustrates fundamental 

quantum scattering features and serves as a benchmark for more complex potentials in 

nuclear, atomic, and low-energy particle physics. 

 

9.2 PARTIAL WAVE ANALYSIS 

 

So far, we have considered only an approximate calculation of the differential cross section 

where the interaction between the projectile particle and the scattering potential V(r) is 

considered small compared with the energy of the incident particle. In this section we are 

going to calculate the cross section without placing any limitation on the strength of V(r). 

 

Partial Wave Analysis for Elastic Scattering 

Partial Wave Analysis for Elastic Scattering 

We consider scattering by a spherically symmetric potential 𝑉(𝑟). In such cases, the angular 

momentum of the incident particle is conserved, meaning the particle has the same angular 

momentum before and after scattering. 

The incident plane wave along the 𝑧-axis is: 

𝜙inc(r) = 𝑒ikrcos𝜃 =∑𝑖𝑙
∞

𝑙=0

(2𝑙 + 1)𝑗𝑙(𝑘𝑟)𝑃𝑙(cos⁡ 𝜃)(1) 

where 𝑗𝑙(𝑘𝑟) are spherical Bessel functions and 𝑃𝑙(cos⁡ 𝜃) are Legendre polynomials. 

The total wavefunction can be expressed as a superposition of angular momentum 

eigenstates: 

𝜓(r) = ∑𝑐𝑙𝑚
𝑙𝑚

𝑅𝑘𝑙(𝑟)𝑌𝑙𝑚(𝜃, 𝜙)⁡ 

Since the potential is central, the system is rotationally invariant about the 𝑧-axis, so the 

wavefunction does not depend on the azimuthal angle 𝜙. Therefore, 𝑚 = 0, and the scattered 

wavefunction reduces to: 

𝜓(𝑟, 𝜃) = ∑𝑎𝑙

∞

𝑙=0

𝑅𝑘𝑙(𝑟)𝑃𝑙(cos⁡ 𝜃)⁡⁡⁡⁡⁡⁡(2) 

The radial functions 𝑅𝑘𝑙(𝑟) satisfy the radial Schrödinger equation: 

[
𝑑2

𝑑𝑟2
+ 𝑘2 −

𝑙(𝑙 + 1)

𝑟2
] (𝑟𝑅𝑘𝑙(𝑟)) =

2𝑚

ℏ2
𝑉(𝑟)(𝑟𝑅𝑘𝑙(𝑟))⁡⁡⁡⁡⁡⁡(3) 

 

Each term in the series represents a partial wave, which is a joint eigenfunction of the angular 

momentum operators 𝐿̂2 and 𝐿̂𝑧. 

Substituting the expansion of the plane wave  into the general solution gives the asymptotic 

form of the wavefunction: 
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𝜓(𝑟, 𝜃) ≃∑𝑖𝑙
∞

𝑙=0

(2𝑙 + 1)𝑗𝑙(𝑘𝑟)𝑃𝑙(cos⁡ 𝜃) + 𝑓(𝜃)
𝑒𝑖𝑘𝑟

𝑟
⁡⁡⁡⁡⁡⁡⁡⁡(4) 

Here, the scattered wave is represented by the outgoing spherical wave term 𝑓(𝜃)𝑒𝑖𝑘𝑟/𝑟, and 

the total wavefunction is a combination of the incident plane wave and the scattered wave. 

This framework forms the basis of partial wave analysis, allowing the scattering amplitude 

𝑓(𝜃)to be computed from the phase shifts of each partial wave. 

 

Partial Wave Analysis: Asymptotic Forms of the Scattered Wave 

In scattering experiments, detectors are located at distances much larger than the target size. 

Therefore, the measurements correspond to large 𝑟behavior of the scattered wavefunctions. 

By comparing the asymptotic forms of the total wavefunction and the partial wave expansion, 

we can determine the scattering amplitude and hence the differential cross section. 

For large 𝑟, the spherical Bessel function behaves as: 

 

𝑗𝑙(𝑘𝑟) →
sin (𝑘𝑟 −

𝑙𝜋

2
)

𝑘𝑟
(𝑟 → ∞)⁡⁡⁡⁡⁡⁡⁡⁡⁡(5) 

Using this, the asymptotic form of the total wavefunction is: 

𝜓(𝑟, 𝜃) →∑𝑖𝑙
∞

𝑙=0

(2𝑙 + 1)𝑃𝑙(cos⁡ 𝜃)
sin (𝑘𝑟 −

𝑙𝜋

2
)

𝑘𝑟
+
𝑓(𝜃)𝑒𝑖𝑘𝑟

𝑟
⁡⁡⁡⁡⁡⁡⁡⁡⁡(6) 

 

By expressing sin⁡(𝑘𝑟 − 𝑙𝜋/2)in terms of exponentials, the wavefunction can be rewritten as: 

𝜓(𝑟, 𝜃) → −
𝑒−𝑖𝑘𝑟

2𝑖𝑘𝑟
∑𝑖𝑙
∞

𝑙=0

(2𝑙 + 1)𝑃𝑙(cos⁡ 𝜃)

+
𝑒𝑖𝑘𝑟

𝑟
[𝑓(𝜃) +

1

2𝑖𝑘
∑𝑖𝑙
∞

𝑙=0

(−𝑖)𝑙(2𝑙 + 1)𝑃𝑙(cos⁡ 𝜃)] (7) 

 

To find the asymptotic form of the radial function𝑅𝑘𝑙(𝑟), note that for large 𝑟, the potential 

vanishes (𝑉(𝑟) → 0) and the radial equation reduces to: 

(
𝑑2

𝑑𝑟2
+𝑘2) (𝑟𝑅𝑘𝑙(𝑟)) = 0⁡⁡⁡⁡⁡(8) 

 

The general solution is a linear combination of spherical Bessel and Neumann functions: 

𝑅𝑘𝑙(𝑟) = 𝐴𝑙𝑗𝑙(𝑘𝑟) + 𝐵𝑙𝑛𝑙(𝑘𝑟)⁡⁡⁡⁡⁡⁡(9) 
 

where the Neumann function asymptotically behaves as: 

𝑛𝑙(𝑘𝑟) → −
cos (𝑘𝑟 −

𝑙𝜋

2
)

𝑘𝑟
(𝑟 → ∞)⁡⁡⁡⁡⁡⁡⁡⁡(10) 

 

Hence, the asymptotic form of the radial function is: 

𝑅𝑘𝑙(𝑟) → 𝐴𝑙
sin (𝑘𝑟 −

𝑙𝜋

2
)

𝑘𝑟
− 𝐵𝑙

cos (𝑘𝑟 −
𝑙𝜋

2
)

𝑘𝑟
(𝑟 → ∞)⁡⁡⁡⁡⁡⁡⁡⁡⁡(11) 

 

For a physical solution, 𝑅𝑘𝑙(𝑟)⁡must be finite at the origin. The Neumann function diverges at 

𝑟 = 0, so the cosine term is discarded. The radial function is then written in the form: 
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𝑅𝑘𝑙(𝑟) → 𝐶𝑙
sin (𝑘𝑟 −

𝑙𝜋

2
+ 𝛿𝑙)

𝑘𝑟
(𝑟 → ∞)⁡⁡⁡⁡⁡⁡(12) 

 

Here, 𝛿𝑙is the phase shift introduced by the potential, encoding all information about the 

scattering in the 𝑙-th partial wave. 

This asymptotic form is crucial for calculating scattering amplitudes, differential cross 

sections, and understanding the effect of the potential on each partial wave. 

 

Phase Shift in Scattering 

• The radial function 𝑅𝑘𝑙(𝑟)for a scattering problem can be written as: 

𝐴𝑙 = 𝐶𝑙cos⁡ 𝛿𝑙, 𝐵𝑙 = −𝐶𝑙sin⁡ 𝛿𝑙   ⟹   𝐶𝑙 = √𝐴𝑙
2 + 𝐵𝑙

2, 𝛿𝑙 = −tan⁡−1
𝐵𝑙
𝐴𝑙

 

 

• Phase shift (𝛿𝑙): 
o Real angle representing the deviation of 𝑅𝑘𝑙(𝑟)from 𝑗𝑙(𝑘𝑟)due to the potential 

𝑉(𝑟). 
o Vanishes (𝛿𝑙 = 0) when 𝑉 = 0, i.e., no scattering. 

• Asymptotic form of the wave function for large 𝑟: 

𝜓(𝑟, 𝜃) ∼∑𝑎𝑙

∞

𝑙=0

𝑃𝑙(cos⁡ 𝜃)
sin⁡(𝑘𝑟 − 𝑙𝜋/2 + 𝛿𝑙)

𝑘𝑟
 

Distorted Plane Wave 

• The wave function differs from a plane wave due to phase shifts: 

𝜓(𝑟, 𝜃) ∼ −
𝑒−𝑖𝑘𝑟

2𝑖𝑘𝑟
∑𝑎𝑙

∞

𝑙=0

𝑖𝑙𝑒−𝑖𝛿𝑙𝑃𝑙(cos⁡ 𝜃) +
𝑒𝑖𝑘𝑟

2𝑖𝑘𝑟
∑𝑎𝑙

∞

𝑙=0

(−𝑖)𝑙𝑒𝑖𝛿𝑙𝑃𝑙(cos⁡ 𝜃) 

Coefficients: 

𝑎𝑙 = (2𝑙 + 1)𝑖𝑙𝑒𝑖𝛿𝑙  
Scattering Amplitude 

• Substituting 𝑎𝑙into the wave function, the scattering amplitude: 

𝑓(𝜃) = ∑𝑓𝑙

∞

𝑙=0

(𝜃) =
1

𝑘
∑(2𝑙 + 1)

∞

𝑙=0

𝑒𝑖𝛿𝑙sin⁡ 𝛿𝑙  𝑃𝑙(cos⁡ 𝜃) 

 

Partial wave amplitude: 

𝑓𝑙(𝜃) =
2𝑙 + 1

𝑘
𝑒𝑖𝛿𝑙sin⁡ 𝛿𝑙  𝑃𝑙(cos⁡ 𝜃) 

 

Differential and Total Cross Section 

• Differential cross section: 

𝑑𝜎

𝑑Ω
=∣ 𝑓(𝜃) ∣2=

1

𝑘2
∑∑(2𝑙 + 1)(2

∞

𝑙′=0

∞

𝑙=0

𝑙′ + 1)𝑒𝑖(𝛿𝑙−𝛿𝑙′)sin⁡ 𝛿𝑙sin⁡ 𝛿𝑙′𝑃𝑙(cos⁡ 𝜃)𝑃𝑙′(cos⁡ 𝜃) 

Total cross section can be obtained by integrating over solid angle. 

1. Total Cross Section (𝜎) 

𝜎 = ∫
𝑑𝜎

𝑑Ω
𝑑Ω = 2𝜋∫ ∣ 𝑓(𝜃)

𝜋

0

∣2 sin⁡ 𝜃 𝑑𝜃 
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2. Expansion in Partial Waves 

𝑓(𝜃) =
1

𝑘
∑(2𝑙 + 1)

∞

𝑙=0

𝑒𝑖𝛿𝑙sin⁡ 𝛿𝑙𝑃𝑙(cos⁡ 𝜃) 

Using orthogonality of Legendre polynomials: 

∫ 𝑃𝑙

𝜋

0

(cos⁡ 𝜃)𝑃𝑙′(cos⁡ 𝜃)sin⁡ 𝜃 𝑑𝜃 =
2

2𝑙 + 1
𝛿𝑙𝑙′  

3. Partial Cross Sections 

𝜎 =∑𝜎𝑙

∞

𝑙=0

, 𝜎𝑙 =
4𝜋

𝑘2
(2𝑙 + 1)sin⁡2 𝛿𝑙 

o 𝜎𝑙corresponds to the contribution from angular momentum 𝑙. 

o Interference terms vanish when integrated over 𝜃. 

4. Special Case: s-wave Scattering (𝑙 = 0) 

𝑓0 =
1

𝑘
𝑒𝑖𝛿0sin⁡ 𝛿0,

𝑑𝜎

𝑑Ω
=∣ 𝑓0 ∣

2=
1

𝑘2
sin⁡2 𝛿0, 𝜎 = 4𝜋 ∣ 𝑓0 ∣

2=
4𝜋

𝑘2
sin⁡2 𝛿0 

Forward Scattering Amplitude and Optical Theorem 

𝑓(0) =
1

𝑘
∑(2𝑙 + 1)(sin⁡

∞

𝑙=0

𝛿𝑙cos⁡ 𝛿𝑙 + 𝑖sin⁡2 𝛿𝑙) 

Connection between total cross section and forward scattering: 

𝜎 =
4𝜋

𝑘
Im𝑓(0) =

4𝜋

𝑘2
∑(2𝑙 + 1)

∞

𝑙=0

sin⁡2 𝛿𝑙 

This is the Optical Theorem: relates total cross section to the imaginary part of 

forward scattering amplitude. 

o Physical meaning: conservation of particles (probability). 

5. Key Points 

o For 𝑉 = 0, 𝛿𝑙 = 0⇒𝜎 = 0. 

o Partial wave series converges after finite number of terms except for Coulomb 

potential. 

o 𝑙 = 0dominates at low energies (s-wave). 
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Partial Wave Analysis for Inelastic Scattering 

1. Scattering Amplitude: 

𝑓(𝜃) =∑(2𝑙 + 1)

∞

𝑙=0

𝑓𝑙(𝑘)𝑃𝑙(cos⁡ 𝜃) 

where 𝑃𝑙are Legendre polynomials. 

 

2. Partial Wave Amplitude 𝑓𝑙(𝑘): 

𝑓𝑙(𝑘) =
1

𝑘
𝑒𝑖𝛿𝑙sin⁡ 𝛿𝑙 =

1

2𝑖𝑘
(𝑒2𝑖𝛿𝑙 − 1) =

1

2𝑖𝑘
(𝑆𝑙(𝑘) − 1) 

 

with 

𝑆𝑙(𝑘) = 𝑒2𝑖𝛿𝑙 . 
No flux loss:∣ 𝑆𝑙(𝑘) ∣= 1 

• With absorption:𝑆𝑙(𝑘) = 𝜂𝑙(𝑘)𝑒
2𝑖𝛿𝑙, 0 < 𝜂𝑙 ≤ 1 

 

3. Modified Partial Wave Amplitude (with absorption): 

𝑓𝑙(𝑘) =
𝜂𝑙𝑒

2𝑖𝛿𝑙 − 1

2𝑖𝑘
=

1

2𝑘
[𝜂𝑙sin⁡ 2𝛿𝑙 + 𝑖(1 − 𝜂𝑙cos⁡ 2𝛿𝑙)] 

Scattering amplitude becomes: 

𝑓(𝜃) =
1

2𝑘
∑(2𝑙 + 1)[

∞

𝑙=0

𝜂𝑙sin⁡ 2𝛿𝑙 + 𝑖(1 − 𝜂𝑙cos⁡ 2𝛿𝑙)]𝑃𝑙(cos⁡ 𝜃)  

4. Elastic Scattering Cross Section: 

𝜎𝑒𝑙 = 4𝜋∑(2𝑙 + 1) ∣

∞

𝑙=0

𝑓𝑙 ∣
2=

𝜋

𝑘2
∑(2𝑙 + 1)(1 +

𝑙

𝜂𝑙
2 − 2𝜂𝑙cos⁡ 2𝛿𝑙) 

5. Inelastic Scattering Cross Section (flux loss): 

𝜎𝑖𝑛𝑒𝑙 =
𝜋

𝑘2
∑(2𝑙 + 1)(1 −

∞

𝑙=0

𝜂𝑙
2)  
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6. Total Cross Section: 

𝜎𝑡𝑜𝑡 = 𝜎𝑒𝑙 + 𝜎𝑖𝑛𝑒𝑙 =
2𝜋

𝑘2
∑(2𝑙 + 1)(1 −

∞

𝑙=0

𝜂𝑙cos⁡ 2𝛿𝑙)  

Remarks: 

• 𝜂𝑙 = 1→ No inelastic scattering. 

• 𝜂𝑙 = 0→ Total absorption, still some elastic scattering in partial waves. 

Sum of elastic and inelastic gives the total scattering cross section. 

 

 

9.3 EXPANSION OF A PLANE WAVE 

 

In scattering theory, states with well-defined momentum are described by plane waves. A 

plane wave with momentum 𝑝⃗is an eigenfunction of the free-particle Hamiltonian 

𝐻0 =
𝑝2

2𝑚
. 

Such a state is denoted by ∣ 𝑝⃗⟩ and represents a particle moving freely with definite 

momentum. 

In the position representation, the plane wave eigenfunction is given by 

⟨𝑥⃗ ∣ 𝑝⃗⟩ =
1

(2𝜋ℏ)3/2
 𝑒𝑖𝑝⃗⋅𝑥⃗/ℏ, 

 

which represents a wave of constant amplitude extending throughout space. 

When the potential depends only on the radial distance, 𝑉(𝑥⃗) = 𝑉(𝑟), the problem becomes 

spherically symmetric. In this case, it is more convenient to use spherical waves rather than 

plane waves. Although the momentum operator 𝑃⃗⃗does not commute with angular momentum 

operators, the Hamiltonian 𝐻0commutes with 𝐿2 and 𝐿𝑧. 

Therefore, a common set of eigenstates of 𝐻0, 𝐿2, and 𝐿𝑧can be defined as 

∣ 𝐸 ℓ 𝑚⟩, 
 

where 𝐸is the energy, ℓthe orbital angular momentum quantum number, and 𝑚its magnetic 

quantum number (not to be confused with mass). 

The spherical wave states form an orthonormal and complete basis of the Hilbert space, 

satisfying 

⟨𝐸′ℓ′𝑚′ ∣ 𝐸ℓ𝑚⟩ = 𝛿(𝐸′ − 𝐸) 𝛿ℓℓ′  𝛿𝑚𝑚′ . 
 

This makes spherical waves particularly useful for analysing scattering from central 

potentials. 

 

9.4 OPTIMAL THEOREM 

 

Optical Theorem 

The Optical Theorem is a fundamental result in quantum scattering theory which relates the 

total scattering cross section to the forward scattering amplitude. It expresses the 

consequence of probability (flux) conservation in scattering processes. 
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Statement of the Optical Theorem: 

The optical theorem states that the imaginary part of the forward scattering amplitude 

determines the total cross section: 

𝜎total =
4𝜋

𝑘
 Im 𝑓(0)  

where: 

• 𝜎totalis the total scattering cross section 

• 𝑘is the incident wave number 

• 𝑓(0)is the scattering amplitude at zero scattering angle (𝜃 = 0) 

• Im 𝑓(0)is the imaginary part of the forward amplitude 

 

Physical Meaning: 

Although scattering is usually thought of as particles being deflected to non-zero angles, the 

optical theorem shows that even the forward direction contains information about all 

scattering events. The reduction in the intensity of the incident beam is due to scattering into 

all other directions, and this loss appears mathematically as the imaginary part of the forward 

amplitude. 

Thus, the optical theorem connects: 

• Forward scattering 

• Total probability loss from the incident beam 

• Total cross section 

 

Origin of the Optical Theorem: 

The theorem arises from: 

• Conservation of probability (or particle flux) 

• The asymptotic form of the scattered wavefunction 

• The unitarity of the scattering (S-matrix) 

The asymptotic wavefunction is: 

𝜓(r) →
𝑟→∞

𝑒𝑖𝑘𝑧 + 𝑓(𝜃)
𝑒𝑖𝑘𝑟

𝑟
 

The interference between the incident plane wave and the scattered spherical wave in the 

forward direction leads directly to the optical theorem. 

 

Relation to Differential Cross Section 

The differential cross section is: 

𝑑𝜎

𝑑Ω
=∣ 𝑓(𝜃) ∣2 

The total cross section is obtained by integrating over all angles: 

𝜎total = ∫ ∣ 𝑓(𝜃) ∣2 𝑑Ω 

 

The optical theorem provides a shortcut, allowing 𝜎totalto be determined without performing 

the angular integration, using only 𝑓(0). 

Optical Theorem in Partial Wave Analysis 

The scattering amplitude can be written as: 

𝑓(𝜃) =
1

𝑘
∑(2ℓ + 1)

∞

ℓ=0

𝑒𝑖𝛿ℓsin⁡ 𝛿ℓ𝑃ℓ(cos⁡ 𝜃) 
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At 𝜃 = 0, using 𝑃ℓ(1) = 1: 

𝑓(0) =
1

𝑘
∑(2ℓ + 1)

∞

ℓ=0

𝑒𝑖𝛿ℓsin⁡ 𝛿ℓ 

Taking the imaginary part: 

Im 𝑓(0) =
1

𝑘
∑(2ℓ + 1)

∞

ℓ=0

sin⁡2 𝛿ℓ 

Hence: 

𝜎total =
4𝜋

𝑘2
∑(2ℓ + 1)

∞

ℓ=0

sin⁡2 𝛿ℓ 

This confirms the optical theorem exactly. 

 

Validity and Importance: 

• The optical theorem is exact and does not depend on the Born approximation 

• Valid for elastic and inelastic scattering 

• Applies to quantum mechanics, nuclear physics, particle physics, optics, X-ray and 

neutron scattering 

 

9.5 SCATTERING FROM A SQUARE WELL POTENTIAL 

 

Definition of Square Well Potential 

The square well potential is spherically symmetric and defined as 

 

𝑉(𝑟) = {
−𝑉0, 𝑟 ≤ 𝑎
0, 𝑟 > 𝑎

 

 

where 𝑉0 > 0is the depth of the well and 𝑎is its range. 

 

Radial Schrödinger Equation 

The radial motion of a particle in this potential is described by 

 

𝑑2𝑢ℓ(𝑟)

𝑑𝑟2
+ [𝑘2 −

ℓ(ℓ + 1)

𝑟2
−
2𝑚

ℏ2
𝑉(𝑟)]𝑢ℓ(𝑟) = 0 

with boundary conditions 𝑢ℓ(0) = 0and continuity at 𝑟 = 𝑎. 

 

Solution Inside and Outside the Well 

• Inside (𝑟 ≤ 𝑎): 𝑢ℓ(𝑟) = 𝐴ℓ𝑗ℓ(𝑘1𝑟), where 𝑘1 = √𝑘2 +
2𝑚𝑉0

ℏ2
 and 𝑗ℓ⁡is the spherical 

Bessel function. 

• Outside (𝑟 > 𝑎): 𝑢ℓ(𝑟) = 𝑗ℓ(𝑘𝑟) − tan⁡ 𝛿ℓ 𝑛ℓ(𝑘𝑟), where 𝑛ℓis the spherical Neumann 

function and 𝛿ℓ is the phase shift. 

 

Phase Shift 

Matching the wavefunction and its derivative at 𝑟 = 𝑎gives 

tan⁡ 𝛿ℓ =
𝑘𝑗ℓ(𝑘1𝑎)𝑗ℓ

′(𝑘𝑎) − 𝑘1𝑗ℓ
′(𝑘1𝑎)𝑗ℓ(𝑘𝑎)

𝑘1𝑗ℓ
′(𝑘1𝑎)𝑛ℓ(𝑘𝑎) − 𝑘𝑛ℓ

′ (𝑘𝑎)𝑗ℓ(𝑘1𝑎)
. 
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Scattering Amplitude 

The scattering amplitude in partial wave expansion is 

𝑓(𝜃) =
1

𝑘
∑(2ℓ + 1)

∞

ℓ=0

𝑒𝑖𝛿ℓsin⁡ 𝛿ℓ𝑃ℓ(cos⁡ 𝜃), 

 

where 𝑃ℓare Legendre polynomials. At 𝜃 = 0, the forward amplitude is 

𝑓(0) =
1

𝑘
∑(2ℓ + 1)

∞

ℓ=0

𝑒𝑖𝛿ℓsin⁡ 𝛿ℓ 

 

and its imaginary part is 

Im 𝑓(0) =
1

𝑘
∑(2ℓ + 1)

∞

ℓ=0

sin⁡2 𝛿ℓ. 

Total Cross Section 

The total cross section is obtained as 

𝜎total =
4𝜋

𝑘2
∑(2ℓ + 1)

∞

ℓ=0

sin⁡2 𝛿ℓ. 

Low Energy Scattering 

For low incident energies, the s-wave (ℓ = 0) dominates, while higher partial waves 

contribute at higher energies. 

 

Physical Significance 

The square well potential shows how the depth and range of a potential influence phase 

shifts, scattering amplitude, and cross sections. It also illustrates resonances, partial wave 

contributions, and energy dependence. In the weak potential limit, the Born approximation 

can be applied for simplicity. This model is widely used in quantum mechanics, nuclear 

physics, and particle physics to study scattering phenomena. 

 

9.6 SUMMARY 

 

This chapter discussed key scattering methods including form factor scattering, which 

accounts for the finite size of the scatterer, and scattering from a square well potential as an 

exactly solvable model. Partial wave analysis was developed using plane wave expansion 

into spherical waves, and the optical theorem linked total cross section to forward scattering 

amplitude. 

 

9.7 TECHNICAL TERMS 

 

Form factor scattering, Scattering from a square well potential Partial wave analysis, 

Expansion of a plane wave, Optimal theorem, Scattering from a square   well potential. 

 

9.8 SELF-ASSESSMENT QUESTIONS 

 

1. Discuss the theory of partial wave analysis 

2. Obtain the expression for scattering cross section in case of square well potential by 

partial  wave method. 

3. Explain Optimal Theorem. 

4. Explain from Factor scattering. 
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LESSON-10 

MOLECULAR QUANTUM MECHANICS 
 

Aim and Objective 

The aim of Molecular Quantum Mechanics is to apply the principles of quantum mechanics 

to moleculesin order tounderstand, predict, and explain their structure, bonding, spectra, and 

dynamical behaviorat the atomic and electronic level. 

Objectives 

1. To describe electronic structure of molecules 

o Determine allowed electronic energy levels and molecular orbitals. 

o Explain chemical bonding using wavefunctions and operators. 

2. To explain molecular spectra 

o Interpret rotational, vibrational, and electronic spectra. 

o Relate spectral lines to quantized energy transitions. 

3. To separate electronic and nuclear motion 

o Use the Born–Oppenheimer approximation to simplify the molecular 

Schrödinger equation. 

4. To understand molecular geometry and stability 

o Predict equilibrium bond lengths, bond angles, and molecular shapes. 

o Explain potential energy surfaces and molecular stability. 

5. To study molecular dynamics and reactions 

o Analyze vibrational motion, rotations, and reaction pathways. 

o Understand transition states and reaction rates at the quantum level. 

6. To explain intermolecular interactions 

o Describe van der Waals forces, hydrogen bonding, and weak interactions. 

7. To connect theory with experiments 

o Provide theoretical foundations for spectroscopy, chemical kinetics, and 

materials science. 
 

STRUCTURE OF THE LESSON: 

 

10.1 INTRODUCTION TO QUANTUM MECHANICS 

10.2 THE BORN-OPPENHEIMER APPROXIMATION 

10.3 THE HYDROGEN MOLECULE ION 

10.4 SUMMARY 

10.5 TECHNICAL TERMS 

10.6 SELF ASSESSMENT QUESTIONS 

10.7 SUGGESTED READINGS 

 

10.1 Introduction to quantum mechanics 

 Introduction: 

Quantum mechanics is the fundamental theory that governs the behavior of matter and 

radiation at atomic and sub-atomic scales. Unlike classical mechanics, which successfully 

describes the motion of macroscopic objects, quantum mechanics becomes essential when 

dealing with systems of very small dimensions such as electrons, atoms, nuclei, and photons. 
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At these scales, classical concepts like definite position, trajectory, and deterministic motion 

fail to explain experimental observations. Quantum mechanics provides a new framework 

based on probabilistic laws and wave–particle duality. 

The development of quantum mechanics in the early twentieth century marked a profound 

revolution in physics. It arose from the inability of classical physics to explain several 

experimental phenomena, including blackbody radiation, the photoelectric effect, atomic 

spectra, and the stability of atoms. Today, quantum mechanics forms the foundation of 

modern physics and plays a crucial role in diverse fields such as solid-state physics, quantum 

chemistry, nuclear physics, quantum optics, and emerging technologies like quantum 

computing. 

.  

Fig: 1. Wave Particle Duality 

 

Fig: 2. Heisenberg Uncertainty principle 

Need for Quantum Mechanics 

Several experimental observations could not be explained using classical physics: 

• Blackbody radiation 

• Photoelectric effect 

• Compton scattering 
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• Atomic line spectra 

These failures led to the development of quantum theory in the early twentieth century. 

Key Historical Milestones 

• Planck (1900): Energy is quantized 

• Einstein (1905): Light consists of photons 

• Bohr (1913): Quantized atomic orbits 

• de Broglie (1924): Matter waves 

• Schrödinger & Heisenberg (1926): Wave mechanics and matrix mechanics 

Energy Quantization 

According to Planck, energy is not continuous but is exchanged in discrete packets called 

quanta. The energy of a quantum is given by: 

E = hν 

Wave–Particle Duality 

Louis de Broglie proposed that matter exhibits wave-like properties. The wavelength 

associated with a particle of momentum p is: 

λ = h / p 

Wave Function and Probability 

In quantum mechanics, the state of a system is described by a wave function ψ. The 

probability density of finding a particle at a given position is given by: 

Probability density = |ψ|² 

Schrödinger Equation 

The time-independent Schrödinger equation is the fundamental equation governing non-

relativistic quantum systems: 

−(ħ² / 2m) ∇²ψ +  Vψ =  Eψ 

Uncertainty Principle 

Heisenberg's uncertainty principle states that the position and momentum of a particle cannot 

be simultaneously measured with arbitrary precision: 

Δx Δp ≥  ħ / 2 

Importance and Applications of Quantum Mechanics 

Quantum mechanics is essential for understanding and developing modern technologies, 

including: 

• Semiconductors and transistors 

• Lasers and LEDs 

• Magnetic resonance imaging (MRI) 

• Atomic clocks 

• Nanotechnology 

• Quantum computation and quantum information science 

It has transformed not only physics but also chemistry, materials science, and engineering. 
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Conclusion 

Quantum mechanics represents a fundamental departure from classical physics, introducing 

new concepts such as wave–particle duality, probabilistic interpretation, and operator-based 

observables. Born out of the failure of classical theories, quantum mechanics successfully 

explains phenomena at atomic and subatomic scales and forms the backbone of modern 

science and technology. Despite its abstract and counterintuitive nature, quantum mechanics 

provides remarkably accurate predictions and continues to inspire new theoretical and 

technological developments. A solid understanding of its principles is essential for advanced 

studies in physics and related disciplines. 

10.2 THE BORN-OPPENHEIMER APPROXIMATION 

 

Introduction: 

The Born–Oppenheimer approximation is one of the most fundamental and widely used 

approximations in quantum mechanics, particularly in the study of atomic, molecular, and 

solid-state systems. Proposed in 1927 by Max Born and J. Robert Oppenheimer, this 

approximation provides a practical method for solving the Schrödinger equation for systems 

containing both nuclei and electrons. Because an exact solution of the full many-body 

Schrödinger equation is mathematically intractable for most realistic systems, the Born–

Oppenheimer approximation plays a crucial role in simplifying the problem while retaining 

essential physical features. 

The key idea of the Born–Oppenheimer approximation is the separation of electronic and 

nuclear motions based on the large mass difference between nuclei and electrons. Since 

nuclei are much heavier than electrons, they move much more slowly. This allows the 

electronic motion to be treated independently of nuclear motion to a very good 

approximation. As a result, the total wave function of a molecular system can be factorized 

into electronic and nuclear components. This approximation forms the foundation of 

molecular quantum mechanics, quantum chemistry, spectroscopy, and computational 

methods such as Hartree–Fock and density functional theory. 

 

The exact solution of the Schrödinger equation is not possible for light atoms even the 

simplest molecule H2 consists of these particles. To overcome this difficult we adopt the 

Born-Oppenheimer approximation. 

 

The Hamiltonian operator for a molecule is  

𝐻 =̂ 𝑇̂𝑁 + 𝑇𝑒̂ + 𝑉𝑒̂𝑒 + 𝑉𝑒̂𝑁 + 𝑉𝑁𝑁̂       …….(1) 

Where 𝑇̂̂𝑁 stands for K.E operators for the electrons 𝑉𝑒̂𝑒 is the electron –electron repulsion 

𝑉̂𝑒𝑛 is the electron-nucleus attractipon term. If the molecule contains k-nuclei and n-electron  

Then  

𝑇̂𝑁=− ∑
1

2

𝑘
𝑖=1 ∇𝑖2 

𝑇𝑒̂ = − ∑
1

2

𝑘

𝑗=1
∇𝑗2 

𝑉𝑒̂𝑒 = ∑ ∑
1

𝑟𝑖𝑗

𝑛

𝑗

𝑛

𝑖
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𝑉𝑒̂𝑁 = − ∑ − ∑
2𝑖

𝑟𝑖𝑗

𝑘

𝑗

𝑛

𝑖

 

𝑉𝑁𝑁̂ = ∑ − ∑
2𝑖2𝑖

𝑟𝑖𝑗

𝑘

𝑗

𝑘

𝑖

 

Since the electrons are much lighter than the nucleus they move much faster in a molecule. 

The electrons carry out many cycles of motion in the time. The nucleus move a short 

distance. Therefore we can consider the nucleus to be fixed while the electron move through 

the whole volume of the molecule. We can now separate the Schrodinger equation for a 

molecule into two separate equation. One depending upon the electronic motion and the other 

static nuclear  position. This approximation is known as Born-Oppenheimer approximation. 

 

   If we take nucleus is fixed in position then ‘TN’should be zero and ‘VNN’ is constant then 

the Hamiltonian for line electrons would be 

𝐻̂𝑒 = 𝑇𝑒̂ + 𝑉𝑒̂𝑒 + 𝑉𝑒̂𝑁          … … … (2) 

Rearranging terms in equ(1) if denoted by ‘Hn’ are 

𝐻̂𝑛 = 𝑇̂𝑁 + 𝑉̂NN      …….(3) 

So that the Hamiltonian is 𝐻 = 𝐻̂𝑛 + 𝐻̂𝑒 

The Schrödinger equation for any electrostatic motion is given by 

𝐻̂𝑛 + 𝐻̂𝑒𝜓𝑒 = (𝐸𝑒 + 𝐸𝑛)𝜓𝑒 

= 𝑈𝜓𝑒     Where U=𝐸𝑒 + 𝐸𝑛 

Since 𝐸𝑛is constant quantity, we can write 

𝐻̂𝑒𝜓𝑒 = 𝐸𝑒𝜓𝑒 

Where 𝐸𝑒 is the electronic energy 𝜓𝑒is the corresponding wave function and U is the total 

energy of the nucleus and electrons 

 

Applications 

The approximation is widely used in: 

• Molecular spectroscopy (vibrational and rotational spectra), 

• Chemical reaction theory, 

• Solid-state physics (phonons), 

• Quantum chemistry software packages, 

• Understanding molecular structure and bonding. 

It provides a conceptual framework for separating electronic, vibrational, and rotational 

motions in molecules. 

Conclusion 
The Born–Oppenheimer approximation represents a cornerstone of modern quantum 

mechanics and molecular physics. By exploiting the large mass difference between electrons 

and nuclei, it allows a systematic separation of electronic and nuclear motions, drastically 

simplifying the many-body Schrödinger equation. The concept of potential energy surfaces 

arising from this approximation provides deep insight into molecular structure, bonding, and 

dynamics. Although it has limitations in systems involving strong non-adiabatic effects, the 

Born–Oppenheimer approximation remains remarkably accurate for a vast range of physical 
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and chemical phenomena. Its success and wide applicability make it one of the most powerful 

and indispensable tools in theoretical and computational physics. 

10.3 THE HYDROGEN MOLECULE ION 

 

Introduction 

The hydrogen molecule ion, 𝐻2
+, is the simplest molecular system, consisting of two protons 

and one electron. Despite its simplicity, it exhibits essential features of molecular bonding, 

including electron delocalization, bond formation, and energy splitting. 𝐻2
+serves as a 

fundamental example to understand molecular orbitals, the Born-Oppenheimer 

approximation, and the quantum mechanical treatment of diatomic molecules. 

Schrödinger Equation for 𝐻2
+ 

The time-independent Schrödinger equation for 𝐻2
+is: 

𝐻̂Ψ(r, R) = 𝐸Ψ(r, R) 
Where: 

• r= electron coordinates 

• R= internuclear vector 

• 𝐻̂= Hamiltonian for one electron and two nuclei 

𝐻̂ = −
ℏ2

2𝑚𝑒
∇2 −

𝑒2

4𝜋𝜖0
(

1

𝑟𝐴
+

1

𝑟𝐵
) +

𝑒2

4𝜋𝜖0𝑅
 

Where: 

• 𝑟𝐴, 𝑟𝐵= distances from electron to nuclei A and B 

• 𝑅= internuclear distance 

Born-Oppenheimer Approximation 

Since nuclei are much heavier than electrons (𝑚𝑝 ≫ 𝑚𝑒), their motion is slower. The Born-

Oppenheimer approximation assumes: 

Ψ(r, R) ≈ 𝜓electronic(r; R) ⋅ 𝜒nuclear(R) 
 

• Electronic motion is solved first with nuclei fixed. 

• Nuclear motion is treated later in the effective potential created by the electron. 

Molecular Orbitals: LCAO Approach 

The electron in 𝐻2
+can occupy molecular orbitals formed as a linear combination of the 1s 

atomic orbitals of the two hydrogen atoms: 

𝜓± = 𝑁[𝜙𝐴±𝜙𝐵] 
 

• 𝜓+= bonding orbital (symmetric combination, lower energy) 

• 𝜓−= antibonding orbital (antisymmetric combination, higher energy) 

• 𝑁= normalization constant 
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Bonding Orbital: Increased electron density between nuclei → stabilizes molecule 

Antibonding Orbital: Node between nuclei → destabilizes molecule 

Energy and Potential Energy Curve 

The electronic energy 𝐸𝑒(𝑅)depends on internuclear distance 𝑅. Total energy including 

nuclear repulsion: 

𝐸(𝑅) = 𝐸𝑒(𝑅) +
𝑒2

4𝜋𝜖0𝑅
 

 

• Equilibrium bond length 𝑅𝑒: minimum of 𝐸(𝑅) 

• Bond dissociation energy 𝐷𝑒: energy required to separate nuclei infinitely 

• Bonding orbital → stable, energy minimum at 𝑅𝑒 ≈ 1.06 Å 

• Antibonding orbital → unstable, no bound state 

1. Simplest one-electron diatomic molecule → exactly solvable within approximations. 

2. Demonstrates covalent bonding via electron delocalization. 

3. Basis for understanding molecular orbital theory and larger diatomic systems. 

4. Illustrates Born-Oppenheimer approximation and separation of electronic and nuclear 

motion. 

 

Importance and Applications 
The hydrogen molecule ion plays a crucial role in: 

• Understanding molecular bonding, 

• Testing quantum mechanical methods, 

• Astrophysical chemistry, 

• Plasma physics, 

• Development of molecular orbital theory. 

It serves as a benchmark system for more complex molecules. 

Conclusion 
The hydrogen molecule ion, H₂⁺, is the simplest and most instructive molecular system in 

quantum mechanics. Through the application of the Born–Oppenheimer approximation and 

the LCAO method, it provides a clear and quantitative understanding of molecular bonding. 

The existence of stable bonding and antibonding molecular orbitals demonstrates the purely 

quantum mechanical origin of chemical bonds. Despite its simplicity, H₂⁺ captures the 

essential physics of electron delocalization, potential energy surfaces, and molecular stability, 

making it a cornerstone of molecular quantum mechanics. 

10.4 SUMMARY 

 

Molecules in order to understand and predict their structure, bonding, spectra, and dynamics 

at the microscopic level. 
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Molecules are described by a molecular Schrödinger equation that includes the motion of 

electrons and nuclei interacting through Coulomb forces. Because this equation is too 

complex to solve exactly, important approximations are introduced—most notably the Born–

Oppenheimer approximation, which separates fast electronic motion from slower nuclear 

motion. 

 

The electronic structure of molecules is explained using molecular orbitals, formed by the 

linear combination of atomic orbitals. Solutions of the electronic Schrödinger equation yield 

quantizedenergy levelsandelectron probability distributions, which determine molecular 

bonding, stability, and geometry. 

 

Molecular quantum mechanics explains rotational, vibrational, and electronic motions of 

molecules. Each type of motion has discrete energy levels, leading to characteristic 

molecularspectra observed in microwave, infrared, and visible/UV regions. Selection rules 

derived from quantum theory govern allowed transitions. 

 

The theory also provides a quantum description of molecular vibrations and rotations, 

potential energy surfaces, andreaction dynamics, helping to understand chemical reactions, 

transition states, and molecular collisions. 

 

Overall, molecular quantum mechanics forms the theoretical foundation of spectroscopy, 

quantum chemistry, chemical bonding theory, and molecular dynamics, linking experimental 

observations with fundamental quantum laws. 

 

10.5 TECHNICAL TERMS 

 

Introduction to quantum mechanics, The Born-Oppenheimer approximation,The hydrogen 

molecule ion 

 

10.6 SELF ASSESSMENT QUESTIONS 

 

1. Write about the Introduction to quantum mechanics 

2. Explain about the the Born-Oppenheimer approximation 

3. Briefly explain about the the hydrogen molecule ion 

 

10.7 SUGGESTED READINGS 

 

1. Quantum Mechanics – Merzbacher E (John Wiley & Sons, New York) 

2. L I Schiff, Quantum Mechanics (Mc Graw-Hill) 

3. B Crasemann and J D Powell, Quantum Mechanics (Addison Wesley) 

4. A P Messiah, Quantum Mechanics  

5. J J Sakural, Modern Quantum Mechanics 

6. Mathews and Venkatesan, Quantum Mechanics  

7. Quantum Mechanics, R.D. Ratna Raju 

8. Quantum Mechanics by Kakani and Chandaliya 

9. Atkins P, Molecular Quantum Mechanics, Oup 1996(T) 

 

 

 

Prof. M. Rami Reddy 



 

 

LESSON -11 

THE VALANCE BOND AND MOLECULAR 

ORBITAL METHOD 
 

Aim and Objectives 

 

The aim of the Valence Bond (VB) and Molecular Orbital (MO) methods is to explain the 

nature of chemical bonding in molecules using the principles of quantum mechanics and to 

predict important molecular properties such as structure, stability, bonding characteristics, 

and spectra. These two theoretical approaches provide a microscopic description of how 

atoms combine to form molecules by considering the behavior of electrons as wavefunctions 

rather than as classical particles. By applying quantum mechanical concepts such as orbital 

overlap, electron spin, and energy quantization, both methods offer a rigorous theoretical 

framework that goes beyond empirical bonding models and enables a deeper understanding 

of covalent bonding at the atomic level. 

 

The Valence Bond (VB) method focuses on the concept of localized chemical bonds. 

According to this approach, a covalent bond is formed when atomic orbitals from two atoms 

overlap in space, allowing a pair of electrons with opposite spins to be shared between the 

atoms. The extent of overlap between atomic orbitals determines the strength of the bond, 

with greater overlap leading to stronger and shorter bonds. VB theory emphasizes the 

directional nature of bonds, which helps explain molecular shapes and geometries. It accounts 

for the orientation of bonds in space by introducing the concept of hybridization, where 

atomic orbitals on the same atom mix to form new hybrid orbitals such as sp, sp², and sp³. 

These hybrid orbitals explain linear, trigonal planar, and tetrahedral molecular geometries, 

respectively, and provide a clear interpretation of observed bond angles in molecules like 

ethyne, ethene, and methane. 

 

In addition, the VB method explains the pairing of electrons in bonds in accordance with the 

Pauli exclusion principle and highlights the importance of electron spin in bond formation. It 

also introduces the idea of resonance, which is used to describe molecules that cannot be 

represented adequately by a single Lewis structure. In such cases, the actual electronic 

structure is considered to be a superposition of multiple contributing structures, leading to 

enhanced stability. VB theory therefore provides valuable insight into bond directionality, 

localized electron density, molecular geometry, and the relationship between orbital overlap 

and bond strength. These features make the VB approach particularly useful in understanding 

the reactivity and bonding patterns of organic molecules. 

 

The Molecular Orbital (MO) method, in contrast, offers a fundamentally different perspective 

on chemical bonding by treating electrons as delocalized over the entire molecule rather than 

confined between specific pairs of atoms. In the MO approach, atomic orbitals from all atoms 

in a molecule combine to form molecular orbitals that extend over the whole molecular 

framework. These molecular orbitals are obtained using the linear combination of atomic 

orbitals (LCAO) method and are classified as bonding, antibonding, or non-bonding 

depending on their energy and electron density distribution. Bonding molecular orbitals 

concentrate electron density between nuclei and stabilize the molecule, while antibonding 

orbitals contain nodes between nuclei and destabilize the molecule when occupied. 
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The MO method provides a quantitative way to determine bond order, which is calculated 

from the difference between the number of electrons in bonding and antibonding orbitals. 

This allows prediction of bond strength, bond length, and molecular stability. A higher bond 

order corresponds to a stronger and shorter bond. The MO approach is particularly powerful 

in explaining magnetic properties of molecules, such as paramagnetism and diamagnetism, 

by explicitly showing the presence or absence of unpaired electrons in molecular orbitals. A 

classic example is the oxygen molecule, O₂, whose paramagnetic nature cannot be explained 

by VB theory but is correctly predicted by MO theory due to the presence of unpaired 

electrons in antibonding π* orbitals. 

 

Furthermore, the MO method is essential for understanding electronic spectra and transitions, 

as it provides a clear picture of allowed electronic excitations between molecular orbitals. 

This makes it highly relevant in spectroscopy, photochemistry, and the study of excited states. 

The delocalized nature of molecular orbitals also allows the MO approach to successfully 

describe conjugated systems, aromatic molecules, and extended π-electron systems, where 

electrons are spread over several atoms. As a result, MO theory plays a crucial role in 

explaining the stability of aromatic compounds, color in organic molecules, and the electronic 

properties of materials. 

 

Together, the VB and MO methods provide a comprehensive and complementary 

understanding of chemical bonding. While the VB method excels in describing localized 

bonds, molecular geometry, and hybridization, the MO method offers a broader picture of 

electron delocalization, molecular stability, magnetic behavior, and spectral properties. By 

combining insights from both approaches, chemists can connect theoretical predictions with 

experimental observations such as bond lengths, bond energies, reactivity patterns, and 

spectroscopic data. Thus, the VB and MO methods together form a complete and powerful 

framework for interpreting chemical bonding and molecular structure at the quantum 

mechanical level. 

 

STRUCTURE OF THE LESSON: 

 

11.1 THE VALANCE BOND METHOD 

11.2 THE MOLECULAR ORBITAL METHOD 

11.3 SUMMARY 

11.4 TECHNICAL TERMS 

11.5 SELF-ASSESSMENT QUESTIONS 

11.6 SUGGESTED READINGS 

 

11.1 THE VALANCE BOND METHOD 

 

Valence Bond Theory (VBT) is one of the fundamental quantum mechanical models that 

describe chemical bonding in molecules. Proposed in 1927 by Walter Heitler and Fritz 

London, VBT was the first attempt to explain chemical bonds using the principles of quantum 

mechanics. This marked a significant departure from classical ideas of bonding that were 

based purely on empirical observations, Lewis structures, or chemical intuition. Before the 

development of VBT, chemists relied on Lewis structures and valence rules, which provided 

an incomplete picture, especially for explaining bond energies, bond lengths, and molecular 
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stability. Heitler and London’s pioneering work focused initially on the hydrogen molecule 

(H₂). They demonstrated that a quantum mechanical treatment of electrons in overlapping 

atomic orbitals could explain the formation of a stable covalent bond. This approach laid the 

groundwork for the systematic understanding of covalent bonding in molecules of increasing 

complexity. 

 

In the VBT framework, a chemical bond forms due to the overlap of atomic orbitals on 

adjacent atoms. The greater the overlap between orbitals, the stronger the bond. The 

overlapping orbitals allow electrons to be shared between the two atoms, increasing electron 

density in the internuclear region and lowering the overall potential energy of the system. 

This leads to stabilization of the molecule. Mathematically, for the hydrogen molecule, the 

total wavefunction can be expressed as: 

𝚿 = 𝝍𝑨(𝟏)𝝍𝑩(𝟐) + 𝝍𝑨(𝟐)𝝍𝑩(𝟏) 
 

Here, 𝜓𝐴and 𝜓𝐵represent the atomic orbitals of atoms A and B, while 1 and 2 denote the two 

electrons. This symmetric combination increases the probability of finding electrons between 

the nuclei, forming a covalent bond. In accordance with the Pauli exclusion principle, the 

electrons in the bond must have opposite spins to ensure that no two electrons occupy the 

same quantum state. The singlet spin function describing this pairing is: 

𝝌𝒔 =
𝟏

√𝟐
[𝜶(𝟏)𝜷(𝟐) − 𝜷(𝟏)𝜶(𝟐)] 

 

This antisymmetric spin combination ensures that the overall wavefunction remains 

antisymmetric under exchange of electrons, a fundamental requirement for fermions. 

 

The energy of a molecule can be visualized using a potential energy curve as a function of 

internuclear distance, 𝑅. At very large distances, the atoms behave independently, and the 

potential energy approaches zero. As the atoms move closer together, attractive interactions 

between electrons and nuclei lower the potential energy, while repulsive interactions between 

electrons and between nuclei increase it. The equilibrium bond length 𝑅𝑒occurs at the 

minimum of this potential energy curve, where the molecule achieves maximum stability. 

The depth of this minimum, 𝐷𝑒, represents the bond dissociation energy, i.e., the energy 

required to break the bond and separate the molecule into individual atoms. This concept 

explains why molecules exist at specific bond lengths and why stronger bonds correspond to 

deeper energy minima. 

 

Key Concepts in VBT 

1. Wavefunction Superposition: The overlapping atomic orbitals create a linear 

combination of wavefunctions, enhancing electron density between the nuclei. This 

principle is essential in describing localized bonding, where electrons are primarily 

found between two bonded atoms. 

2. Spin Pairing: Covalent bonds require electrons in overlapping orbitals to have 

opposite spins, forming a singlet state that complies with the Pauli exclusion 

principle. 

3. Potential Energy Curve: The molecular energy plotted against internuclear distance 

illustrates bond formation. The depth of the energy minimum indicates bond strength, 

while the position of the minimum defines the equilibrium bond length. 
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Types of Covalent Bonds 

• Sigma (σ) Bonds: Formed by head-to-head or end-to-end overlap of atomic orbitals. 

Examples include H–H bonds (1s–1s overlap), C–H bonds in methane (sp³–1s 

overlap), and C–C single bonds (sp³–sp³ overlap). Sigma bonds are cylindrically 

symmetric about the bond axis, relatively strong, and localized. 

• Pi (π) Bonds: Formed by sideways overlap of p orbitals. Pi bonds are present in 

double and triple bonds, such as C=C in ethene and C≡C in ethyne. They are weaker, 

more diffuse, and electrons are delocalized over the bonding region perpendicular to 

the bond axis. 

 

Hybridization Theory 

Hybridization is a key concept within VBT that explains molecular geometry and bond 

angles, which cannot be fully explained by pure atomic orbitals. Hybrid orbitals are formed 

by mixing atomic orbitals on the same atom to produce new equivalent orbitals oriented to 

minimize electron pair repulsion. 

 

• sp³ Hybridization (Tetrahedral Geometry): Observed in molecules with single-bonded 

carbon atoms such as methane (CH₄) and ethane (C₂H₆). One 2s orbital mixes with three 

2p orbitals to form four sp³ orbitals arranged tetrahedrally, giving bond angles of 

approximately 109.5°. Each sp³ orbital forms a sigma bond with another atom’s orbital 

(hydrogen 1s or carbon sp³). 

• sp² Hybridization (Trigonal Planar Geometry): Found in molecules with double bonds 

such as ethene (C₂H₄). 1s orbital mixes with two p orbitals to form three sp² orbitals lying 

in a plane, with one unhybridized p orbital perpendicular to this plane. The sp² orbitals 

form sigma bonds, while the unhybridized p orbitals form a pi bond, giving rise to planar 

double bonds. 

• sp Hybridization (Linear Geometry): Present in molecules with triple bonds, such as 

ethyne (C₂H₂). 1s orbital mixes with one p orbital to form two sp orbitals arranged 

linearly at 180°, while two unhybridized p orbitals form two perpendicular pi bonds 

along the bond axis. 

 

Resonance and Delocalization 

VBT also explains resonance, which occurs when a single Lewis structure cannot fully 

describe electron distribution. In molecules like benzene (C₆H₆), electrons are delocalized 

over six carbon atoms. VBT describes this using a superposition of contributing resonance 

structures. Resonance stabilizes the molecule and leads to bond lengths that are intermediate 

between single and double bonds. 

 

Applications of VBT 

VBT is highly effective in explaining localized bonding, bond strength, bond length, 

molecular geometry, and hybridization patterns. It can be applied to predict reactivity in 

organic chemistry, understand molecular stability, and qualitatively explain magnetic 

properties. 

 

Limitations 

VBT cannot describe delocalized electrons in conjugated or aromatic systems adequately, nor 

can it explain Para magnetism in molecules such as O₂. Molecular Orbital Theory (MOT) 

complements VBT by treating electrons as delocalized over the molecule, allowing a more 

complete understanding of bonding in aromatic compounds, metals, and molecules with 

unpaired electrons. 
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Hybridization in Valence Bond Theory 

Hybridization Orbitals Mixed 
Resulting 

Orbitals 
Geometry 

Ideal Bond 

Angle 
Example 

sp3 one s, three p four sp3 Tetrahedral 109.5° 
Methane, 

Ethane 

sp2 one s, two p 
three sp2, one 

p 

Trigonal 

Planar 
120° Ethene 

sp one s, one p two sp, two p Linear 180° Ethyne 

In nitrogen and oxygen, 𝐬𝐩𝟑hybridization also occurs, but some hybrid orbitals contain lone 

pairs, which causes distortion from the ideal tetrahedral angle (e.g., in ammonia and water). 

 

11.2 THE MOLECULAR ORBITAL METHOD 

 

The Molecular Orbital Theory (MOT) is a cornerstone of modern quantum chemistry and a 

powerful method for understanding chemical bonding in molecules. Developed in the early 

20th century by Friedrich Hund and Robert S. Mulliken, MOT was designed to overcome 

limitations of the Valence Bond Theory (VBT), which treats electrons as localized in bonds 

between two atoms. While VBT successfully explains many molecular structures and 

properties, it fails to account for certain phenomena such as the Para magnetism of oxygen, 

delocalization in conjugated systems, and bonding in molecules with unusual electron 

configurations. MOT addresses these issues by describing electrons as delocalized over the 

entire molecule, occupying molecular orbitals (MOs) formed from linear combinations of 

atomic orbitals (AOs). 

 

Unlike the classical view in VBT, where bonding electrons are confined to the space between 

two nuclei, MOT considers that the electron density is spread over the entire molecule, giving 

a polycentric character. This approach allows a more complete description of chemical 

bonding, electron distribution, and molecular stability, and it provides insights into molecular 

magnetism, bond order, bond length, and electronic transitions observed in spectroscopy. 

 

Key Principles of Molecular Orbital Theory 

1. Formation of Molecular Orbitals 

Molecular orbitals are formed by the linear combination of atomic orbitals (LCAO) from the 

constituent atoms. When two atoms approach each other, their atomic orbitals overlap 

constructively and destructively to form two molecular orbitals: 

 

1. Bonding Molecular Orbital: Constructive interference increases electron density 

between the nuclei, lowering the energy relative to the separate atomic orbitals. 

Electrons in bonding orbitals stabilize the molecule. Notation: σ or π. 

2. Antibonding Molecular Orbital: Destructive interference creates a node between the 

nuclei, reducing electron density and raising the energy. Electrons in antibonding 

orbitals destabilize the molecule. Notation: σ* or π*. 

For example, in the hydrogen molecule (H₂), two 1s atomic orbitals combine to produce one 

σ₁s bonding and one σ₁s antibonding* orbital. The two electrons occupy the lower-energy σ₁s 

orbital, resulting in a stable bond. 

 

The number of molecular orbitals always equals the number of atomic orbitals combined, a 

principle known as orbital conservation. 
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2. Electron Delocalization 

Electrons in atomic orbitals are monocentric, primarily influenced by a single nucleus. In 

molecular orbitals, electrons are polycentric, meaning they are influenced by all nuclei in the 

molecule. This delocalization explains properties such as resonance, delocalized bonding in 

conjugated systems, and unusual magnetic behaviours like Para magnetism in O₂, which VBT 

cannot explain. 

 

3. Electron Filling Rules 

Molecular orbitals are filled according to quantum mechanical rules: 

1. Aufbau Principle: Electrons occupy molecular orbitals in order of increasing energy. 

The energy order depends on the type of molecule. For diatomic molecules of 

elements with atomic numbers less than 8 (H₂, He₂, Li₂, B₂, C₂, N₂), the order is: 

σ1s<σ1s∗<σ2s<σ2s∗<σ2pz<π2px=π2py<π2px∗=π2py∗<σ2pz∗ 

2. For O₂, F₂, and Ne₂, s-p mixing alters the order slightly: 

σ1s<σ1s∗<σ2s<σ2s∗<σ2pz<π2px=π2py<π2px∗=π2py∗<σ2pz∗ 

3. Pauli Exclusion Principle: A maximum of two electrons can occupy a molecular 

orbital, with opposite spins. 

4. Hund’s Rule: Degenerate orbitals (orbitals of equal energy, e.g., π₂p_x and π₂p_y) are 

singly filled before pairing. This minimizes electron-electron repulsion and stabilizes 

the molecule. 

 

4. Types of Molecular Orbitals 

Type Interference Energy Electron Density 
Stability 

Contribution 
Notation 

Bonding Constructive 
Lower than 

AOs 

High between 

nuclei 
Stabilizes molecule σ, π 

Antibonding Destructive 
Higher than 

AOs 

Node between 

nuclei 

Destabilizes 

molecule 
σ*, π* 

 

5. Bond Order and Stability 

Bond order (B.O.) is a measure of bond strength and stability, defined as: 

B.O. =
𝑁𝑏 − 𝑁𝑎

2
 

 

where 𝑁𝑏= number of electrons in bonding orbitals, 𝑁𝑎= number in antibonding orbitals. 

• B.O. > 0 → stable bond 

• B.O. = 0 → molecule unstable (e.g., He₂) 

Bond order correlates with bond length and energy: higher bond order → shorter, stronger 

bond. 

 

6. Magnetic Properties 

• Paramagnetic: Molecules with unpaired electrons are attracted to magnetic fields. 

• Diamagnetic: Molecules with all paired electrons are repelled by magnetic fields. 

• MOT accurately predicts O₂ is paramagnetic because two electrons occupy degenerate 

π* orbitals, whereas VBT incorrectly predicts it as diamagnetic. 

 

7. Molecular Orbital Diagrams 

Molecular orbital diagrams visually represent the energy levels of AOs and resulting MOs, 

showing electron distribution and predicting molecular properties. 
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H₂ Example: 

• Two 1s atomic orbitals combine → σ₁s and σ₁s* 

• Two electrons occupy σ₁s 

• Bond order = 1 → single bond 

 

8. Oxygen Molecule (O₂) MO Diagram 

• Total electrons: 16 

• Minimal s-p mixing 

• 𝜎2𝑝orbital is lower than 𝜋2𝑝orbitals 

 

Electron Configuration: 
(σ1s)

2(σ1s
∗
)2(σ2s)

2(σ2s
∗
)2(σ2p)

2(π2p)
2(π2p)

2(π2p
∗
)1(π2p

∗
)1 

 

 

Bond Order: (10 bonding − 6 antibonding)/2 = 2 

Magnetism: Two unpaired electrons → paramagnetic 

 

9. Nitrogen Molecule (N₂) MO Diagram 

• Total electrons: 14 

• Significant s-p mixing 

• 𝜎2𝑝orbital lies above 𝜋2𝑝orbitals 

 

Electron Configuration: 

(𝛔𝟏𝐬)
2(𝛔𝟏𝐬

∗
)2(𝛔𝟐𝐬)

2(𝛔𝟐𝐬
∗
)2(𝛑𝟐𝐩)

2(𝛑𝟐𝐩)
2(𝛔𝟐𝐩)

2 

 

 

Bond Order: (10 bonding − 4 antibonding)/2 = 3 → triple bond 

Magnetism: All electrons paired → diamagnetic 

 

10. Energy Level Diagrams and s-p Mixing 

• Energy diagrams differ for molecules before and after oxygen. 

• s-p mixing occurs in lighter elements (Li₂ to N₂), altering orbital energies: σ₂p_z may 

lie below π₂p_x and π₂p_y. 

• Explains variations in bond orders and stability. 

 

11. Comparison with Valence Bond Theory 

• VBT: Electrons localized, explains single bonds and hybridization well. 

• MOT: Electrons delocalized, explains Para magnetism, bond order variations, 

resonance. 

• Delocalized MOs are essential for aromatic systems (e.g., benzene), conjugation, and 

polyatomic molecules. 

 

12. Applications of MOT 

1. Predicts magnetic properties (O₂, NO, F₂). 

2. Determines bond orders, lengths, and energies. 

3. Explains spectroscopic transitions (UV-Vis, IR). 

4. Describes resonance and delocalization in aromatic molecules. 

5. Clarifies unusual molecules/ions (O₂⁻, NO⁺, CO). 
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13. Extension to Polyatomic Molecules 

• MOT can be generalized to multiple atoms. 

• Atomic orbitals from all atoms combine to form molecular orbitals delocalized over 

entire molecule. 

• Explains bonding in polyatomic ions like NO₃⁻, CO₃²⁻, and conjugated systems like 

C₆H₆. 

• Forms basis for computational chemistry methods. 

  

11.3 SUMMARY 

 

This chapter focuses on Valence Bond Theory (VBT) and Molecular Orbital Theory (MOT), 

two fundamental approaches for understanding chemical bonding in molecules using 

quantum mechanics. Valence Bond Theory describes chemical bonds as localized electron 

pairs formed by the overlap of atomic orbitals on adjacent atoms. According to VBT, 

electrons in overlapping orbitals must have paired spins, as dictated by the Pauli exclusion 

principle, to allow bond formation. The stability of the bond is determined by the potential 

energy curve, which reaches a minimum at the equilibrium internuclear separation, reflecting 

the balance between attractive and repulsive forces. VBT also accounts for the directionality 

of bonds, explaining molecular geometry, and introduces hybridization to describe molecular 

shapes. In hybridization, atomic orbitals mix to form equivalent hybrid orbitals: sp³ 

hybridization results in tetrahedral geometry with ideal bond angles of 109.5°, sp² 

hybridization leads to trigonal planar geometry with 120° bond angles, and sp hybridization 

produces linear molecules with 180° bond angles. Lone pairs of electrons can slightly distort 

these ideal geometries. 

 

Molecular Orbital Theory, developed by Hund and Mulliken, extends the understanding of 

bonding by considering electrons as delocalized over the entire molecule rather than strictly 

localized between atoms. MOT uses the Linear Combination of Atomic Orbitals (LCAO) 

method to construct bonding and antibonding molecular orbitals. Electrons occupy these 

orbitals according to the Aufbau principle, the Pauli exclusion principle, and Hund’s rule. 

This approach allows the calculation of bond order, which measures bond strength and 

stability, and can predict magnetic properties. For example, MOT correctly explains the Para 

magnetism of oxygen (O₂) due to the presence of two unpaired electrons in π* antibonding 

orbitals, a phenomenon that VBT cannot account for. MOT also helps rationalize the stability 

of molecules like N₂, which has all paired electrons in bonding orbitals, making it 

diamagnetic. 

 

By integrating the principles of VBT, hybridization, and MOT, one obtains a comprehensive 

understanding of chemical bonding. VBT explains the formation of localized bonds and 

electron pairing, hybridization clarifies molecular geometry and bond angles, and MOT 

accounts for electron delocalization, bond order, and magnetic properties. Together, these 

theories provide a complete picture of molecular structure, electron distribution, stability, and 

reactivity, bridging classical chemical intuition with quantum mechanical principles. 

 

11.4 Technical terms: 

 

Valence bond theory, Molecular orbital theory 
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11.5 SELF-ASSESSMENT QUESTIONS 

 

1. Briefly explain the of Valence bond method. 

2. Explain the Molecular orbital theory. 

 

11.6 SUGGESTED READINGS 

 

1. Quantum Mechanics – Merzbacher E (John Wiley & Sons, New York) 

2. L I Schiff, Quantum Mechanics (Mc Graw-Hill) 

3. B Crasemann and J D Powell, Quantum Mechanics (Addison Wesley) 

4. A P Messiah, Quantum Mechanics 

5. J J Sakural, Modern Quantum Mechanics 

6. Mathews and Venkatesan, Quantum Mechanics 

7. Quantum Mechanics, R.D. Ratna Raju 

8. Quantum Mechanics by Kakani and Chandaliya 

9. Atkins P, Molecular Quantum Mechanics, Oup 1996(T) 

 

 

 

 

Prof. M. Rami Reddy 



LESSON - 12 

HEITLER-LONDON METHOD 
 

Aim and Objectives 

 

The aim of this study is to critically compare the main quantum mechanical approaches used 

to describe chemical bonding in molecules, specifically focusing on Valence Bond Theory 

(VBT), Molecular Orbital Theory (MOT), and the Heitler-London method. These theories 

provide frameworks for understanding how electrons are distributed in molecules, how 

chemical bonds form, and how molecular properties such as bond order, magnetism, and 

stability can be predicted. While VBT emphasizes localized electron pairs and orbital overlap, 

MOT treats electrons as delocalized over the entire molecule, offering explanations for 

phenomena that VBT cannot adequately describe. The Heitler-London method, as the earliest 

quantum mechanical approach to the hydrogen molecule, forms the historical foundation for 

these theories. By comparing these methods, this study aims to clarify their relative strengths, 

limitations, and applicability to different molecular systems. 

 

The first objective is to understand the fundamental principles of Valence Bond Theory. VBT 

describes bonds as localized electron pairs resulting from the overlap of atomic orbitals and 

incorporates the concepts of hybridization and resonance to explain molecular geometries and 

bond strengths. It is particularly effective for simple molecules and provides an intuitive 

visual understanding of bonding, but its limitations become apparent in molecules with 

delocalized electrons or magnetic properties that cannot be explained by localized electron 

pairs alone. Understanding these aspects allows one to appreciate both the utility and 

boundaries of VBT. 

 

The second objective is to study Molecular Orbital Theory, which models electrons as 

delocalized over the entire molecule. MOT uses the linear combination of atomic orbitals 

(LCAO) to form bonding and antibonding molecular orbitals and provides a quantitative 

framework for calculating bond order, predicting magnetic behaviour, and explaining spectral 

properties. Unlike VBT, MOT successfully accounts for the Paramagnetism of oxygen and 

other molecules where electrons are not strictly localized. Exploring MOT helps in 

understanding the advantages of delocalized electron models and their predictive accuracy in 

complex molecular systems. 

 

The third objective is to analyse the Heitler-London method, which was the first rigorous 

quantum mechanical treatment of the hydrogen molecule (H₂). This method introduces the 

concept of electron exchange and the importance of antisymmetrization of the wavefunction 

in bond formation. While computationally intensive, the Heitler-London method provides 

accurate predictions of molecular energy and bond characteristics for simple systems and 

forms the basis upon which modern VBT was developed. Studying this method highlights the 

evolution of bonding theories from the first quantum mechanical attempts to contemporary 

models. 

 

Another important objective is to compare the predictive capabilities of VBT and MOT. This 

includes evaluating how each method describes electron distribution, bonding, and 

antibonding interactions, and assessing their predictions of bond length, bond energy, and 

magnetic properties in molecules like H₂, O₂, and N₂. While VBT offers a simpler, more 

intuitive explanation in many cases, MOT provides a more comprehensive approach for 
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systems with delocalized electrons. This comparison allows for informed selection of the 

appropriate theoretical model depending on the molecule or property under study. 

 

Finally, this study aims to highlight the historical development and practical applications of 

these theories. Tracing the evolution from Heitler-London to modern VBT and MOT 

demonstrates the refinement of theoretical models alongside advances in quantum mechanics. 

Each theory’s practical applications in spectroscopy, computational chemistry, and molecular 

design are evaluated, emphasizing how these models guide our understanding of chemical 

reactivity, molecular stability, and electronic properties. By integrating insights from all three 

approaches, the study provides a holistic understanding of chemical bonding, supporting both 

conceptual clarity and quantitative prediction of molecular behaviour. 
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12.1 COMPARISON OF THE METHODS 

 

Chemical bonding is a central concept in chemistry, and understanding how atoms combine 

to form molecules is crucial for explaining molecular structure, stability, and properties. Over 

the past century, two fundamental quantum mechanical models have emerged to describe 

chemical bonding: Valence Bond Theory (VBT) and Molecular Orbital Theory (MOT). Both 

approaches are grounded in quantum mechanics but adopt distinct perspectives on the 

behavior of electrons within molecules. VBT emphasizes localized electron pairs between 

atoms, while MOT treats electrons as delocalized across the entire molecule. Together, these 

theories provide complementary insights into the electronic structure, bonding characteristics, 

and properties of molecules. 

 

1. Conceptual Basis 

Valence Bond Theory (VBT): VBT, originally developed by Heitler, London, and Pauling, 

explains bonding as a result of the overlap of atomic orbitals from two atoms to form a 

covalent bond. In this model, electrons remain largely localized between the atoms they bond, 

and the strength of a bond is proportional to the extent of orbital overlap. The theory also 

incorporates concepts such as hybridization, which allows atomic orbitals to mix and form 

new orbitals that better describe molecular geometries, and resonance, which accounts for 

delocalization effects in molecules that cannot be represented by a single Lewis structure. 

The wavefunction of the molecule in VBT is constructed using atomic orbitals of individual 

atoms, reflecting a strong connection to the electronic structure of isolated atoms. 

 

Molecular Orbital Theory (MOT): MOT, developed by Hund and Mulliken, approaches 

bonding from a delocalized perspective, where electrons are not confined to individual bonds 

but occupy molecular orbitals (MOs) that extend over the entire molecule. These MOs are 
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constructed as linear combinations of atomic orbitals (LCAO), allowing the formation of 

bonding and antibonding orbitals. MOT provides a more global description of the molecule’s 

electronic structure, explaining properties such as magnetism, bond order, and electronic 

transitions that VBT cannot fully address. In contrast to VBT, MOT assigns equal importance 

to covalent and ionic contributions, giving a more accurate representation of electron 

distribution in molecules. 

 

2. Wavefunction Representation 

A key distinction between VBT and MOT lies in how the molecular wavefunction is 

expressed. 

• VBT:In the hydrogen molecule (H2), for instance, the wavefunction can be written as: 

𝚿𝐕𝐁𝐓 = 𝒄𝟏𝝍𝑨(𝟏)𝝍𝑩(𝟐) + 𝒄𝟐𝝍𝑨(𝟐)𝝍𝑩(𝟏) 
 

Here, 𝜓𝐴and 𝜓𝐵are atomic orbitals centered on atoms A and B, and the terms account for the 

exchange of electrons between the two nuclei. This form emphasizes the pairing of electrons 

in a covalent bond and is inherently localized between the two atoms. Ionic contributions, in 

which both electrons might reside on a single atom, are typically neglected in simple VBT 

treatments. 

• MOT:In contrast, the molecular orbital wavefunction is expressed as: 

𝚿𝐌𝐎𝐓 = 𝒄𝟏𝝍𝑨 + 𝒄𝟐𝝍𝑩 
 

for each electron, and electrons occupy bonding (𝜎) and antibonding (𝜎∗) molecular orbitals 

formed by constructive or destructive interference of atomic orbitals. This representation is 

delocalized, allowing electrons to be shared across the entire molecule, and naturally includes 

both covalent and ionic character in the bonding description. MOT thus provides a more 

versatile framework for describing molecules with complex bonding interactions. 

 

3. Exchange Integrals 

Another difference between VBT and MOT arises in the treatment of electron exchange: 

• VBT:The exchange integral in VBT is given by 

∫ 𝝓𝑨(𝟏)𝝓𝑩(𝟐)𝑯𝝓𝑩(𝟏)𝝓𝑨(𝟐)𝒅𝝉 
 

which represents the simultaneous exchange of two electrons between two atomic orbitals. 

This integral contributes to the stabilization energy of the covalent bond. It is central to 

understanding why electron pairing lowers the energy of the system, but its computation 

becomes increasingly complex for larger molecules. 

• MOT: In MOT, the exchange integral takes the form 

∫ 𝝓𝑨(𝟏)𝝓𝑩(𝟐)𝒅𝝉 
 

which represents the exchange of a single electron between atomic orbitals. These integral 

measures the interaction or coupling between orbitals and is used to calculate the energies of 

bonding and antibonding molecular orbitals. Unlike VBT, MOT inherently incorporates 

electron delocalization, and exchange interactions are naturally included in the energy levels 

of the molecular orbitals. 

 

4. Treatment of Ionic and Covalent Contributions 

VBT and MOT differ significantly in how they handle ionic versus covalent character: 

• VBT: The traditional VBT approach focuses on purely covalent bonding, where 

electrons are localized between atoms. Ionic structures, in which both electrons reside 

on a single atom, are usually ignored unless explicitly included through resonance. 
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This simplification works well for molecules dominated by covalent interactions but 

fails to accurately describe molecules with significant ionic character. 

 

• MOT: MOT treats both covalent and ionic contributions equally, as the molecular 

orbitals are formed from a combination of atomic orbitals on different atoms. As a 

result, MOT can naturally explain phenomena like partial ionic character, charge 

delocalization, and resonance stabilization, providing a more complete picture of 

bonding in polar molecules and complex systems. 

 

5. Electron Sharing and Delocalization 

• VBT: In VBT, a single electron is not shared simultaneously by two nuclei; instead, 

bonding is viewed as localized electron pairing. The bond forms due to the overlap of 

atomic orbitals, and the electrons remain predominantly confined between the two 

atoms. This localized view makes VBT intuitive for understanding molecular 

geometry and simple diatomic molecules but limits its applicability for delocalized 

systems like conjugated molecules or metals. 

• MOT: In MOT, electrons are delocalized and can be simultaneously associated with 

multiple nuclei. This delocalization explains electronic properties such as Para 

magnetism, aromaticity, and electronic transitions, which VBT cannot easily account 

for. For example, MOT correctly predicts that oxygen (O₂) isparamagnetic due to the 

presence of two unpaired electrons in antibonding molecular orbitals, whereas VBT 

fails to do so. 

 

 

6. Predictive Power and Applications 

Both VBT and MOT have their strengths and limitations in predicting molecular properties: 

• VBT is highly effective for understanding localized bonding, molecular shapes via 

hybridization, and resonance effects in organic molecules. It provides an intuitive and 

visual model that is easy to use for explaining covalent structures. 

• MOT is more versatile, capable of explaining magnetic properties, bond orders, 

delocalized electrons, electronic spectra, and molecules with unusual bonding 

patterns. Its quantitative nature makes it indispensable in computational chemistry, 

spectroscopy, and the design of molecules with specific electronic properties. 

• In practice, modern chemical analysis often uses a combination of both approaches, 

with VBT providing a simple conceptual framework and MOT providing detailed 

quantitative predictions. 

 

7.Historical Context 

The development of these theories also reflects the historical evolution of quantum chemistry: 

• The Heitler-London method laid the foundation for VBT by applying quantum 

mechanics to the hydrogen molecule, introducing electron pairing and exchange 

interactions. 

• VBT further developed these concepts, introducing hybridization and resonance to 

explain more complex molecules. 

• MOT emerged later, providing a more general and mathematically rigorous treatment 

of electrons in molecules, extending the applicability to delocalized systems and 

explaining properties that VBT could not. 

In summary, Valence Bond Theory and Molecular Orbital Theory represent two 

complementary approaches to understanding chemical bonding. VBT emphasizes localized 

electron pairs and covalent interactions, providing intuitive insights into molecular geometry 
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and bonding patterns. MOT, on the other hand, treats electrons as delocalized across the 

molecule, allowing it to explain magnetic properties, bond order, and electronic spectra. 

While VBT often simplifies bonding by neglecting ionic contributions, MOT incorporates 

both ionic and covalent character equally, offering a more complete description of molecules. 

Together, these theories form the backboneof modern quantum chemistry, providing both 

qualitative understanding and quantitative tools to predict molecular behaviour. 

 

12.2 Heitler-London method 

 

Introduction 

The Heitler–London method, developed in 1927 by Walter Heitler and Fritz London, marked 

a pivotal moment in the history of quantum chemistry. It was the first rigorous quantum 

mechanical explanation of chemical bonding, providing a theoretical foundation for what 

would later become Valence Bond Theory (VBT). Prior to this work, the nature of chemical 

bonds had been largely understood in classical terms, relying on electrostatic attractions 

between nuclei and electrons. The Heitler–London method introduced the radical idea that 

bonding arises not from classical forces alone but from electron exchange and wavefunction 

symmetry, concepts rooted in the principles of quantum mechanics. This approach was first 

applied to the hydrogen molecule (H2), the simplest diatomic system, making it an ideal test 

case for examining how quantum mechanics can describe molecular stability and chemical 

bonding. 

 

Historical Context 

In the early 20th century, the understanding of atomic structure had advanced significantly 

due to the work of Bohr, Schrödinger, and Heisenberg, but molecules remained poorly 

understood. While the Bohr model explained discrete energy levels of isolated atoms, it could 

not account for chemical bonding or molecular properties. The emerging quantum mechanics 

framework, particularly the Schrödinger equation, provided a mathematical basis for 

describing the behaviour of electrons, yet the application to molecules was nontrivial. Heitler 

and London addressed this challenge by considering the two-electron hydrogen molecule, 

applying the Schrödinger equation with approximations suitable for molecular systems. Their 

work demonstrated that electron exchange and wavefunction symmetry could explain bond 

formation, a concept with no classical analogue. This methodology laid the groundwork for 

Linus Pauling’s Valence Bond Theory and influenced future molecular orbital and quantum 

chemistry developments. 

 

Basic Assumptions of the Heitler–London Method 

The Heitler–London method relies on several key assumptions that simplify the treatment of 

molecular bonding while preserving essential quantum mechanical principles: 

1. Electron Contribution: Each hydrogen atom contributes one electron to bond 

formation. This allows the simplest molecule, H₂, to be treated as a two-electron 

system, the minimum required to study bonding interactions. 

2. Localization of Electrons: Electrons are assumed to remain largely associated with 

their parent nuclei, which corresponds to a localized bond picture. Despite this 

localization, electron exchange between atoms is explicitly allowed to account for 

quantum mechanical bonding interactions. 

3. Pauli Exclusion Principle: The total molecular wavefunction must obey the Pauli 

exclusion principle, ensuring that it is antisymmetric with respect to the exchange of 

electron coordinates for fermions (electrons). This antisymmetric leads to spin-

dependent energy differences, distinguishing singlet and triplet states. 
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4. Neglect of Nuclear Motion: Initially, the nuclei are assumed to be stationary, 

following the Born–Oppenheimer approximation, which separates nuclear and 

electronic motion. This approximation simplifies the calculation of electronic energies 

without significant loss of accuracy for light molecules such as H₂. 

5. Wavefunction Symmetry: Both possible arrangements of the two electrons must be 

included because electrons are indistinguishable. This ensures a physically 

meaningful molecular wavefunction, consistent with quantum principles. 

 

Atomic Wavefunctions 

Each hydrogen atom is described by a 1s atomic orbital, the simplest solution to the 

Schrödinger equation for a single electron bound to a proton. Let: 

𝜓𝐴(1) represent the 1s orbital of atom A for electron 1, 
𝜓𝐵(2) represent the 1s orbital of atom B for electron 2. 

 

Because electrons are indistinguishable, there are two equivalent electron arrangements: 

1. Electron 1 in orbital 𝜓𝐴, electron 2 in 𝜓𝐵: 𝜓𝐴(1)𝜓𝐵(2) 
2. Electron 1 in orbital 𝜓𝐵, electron 2 in 𝜓𝐴: 𝜓𝐴(2)𝜓𝐵(1) 

Both configurations are necessary for constructing a proper molecular wavefunction that 

accounts for electron indistinguishability. 

 

Heitler–London Wavefunctions 

The total molecular wavefunction is constructed as a linear combination of the two electron 

arrangements, leading to two possible states: 

(a) Singlet State (Bonding State) 

In the singlet state, the two electrons have opposite spins, and the spatial part of the 

wavefunction is symmetric: 

Ψ𝑆 =
1

√2(1 + 𝑆2)
[𝜓𝐴(1)𝜓𝐵(2) + 𝜓𝐴(2)𝜓𝐵(1)] 

 

Here, 

𝑆 = ∫ 𝜓𝐴𝜓𝐵  𝑑𝜏 
 

is the overlap integral, which quantifies the extent of orbital overlap between atoms A and B. 

The symmetric combination enhances electron density in the internuclear region, creating an 

attractive interaction that stabilizes the molecule and leads to bond formation. This bonding 

state corresponds to the lowest energy configuration, explaining why the H₂ molecule is 

stable. 

(b) Triplet State (Antibonding State) 

In the triplet state, the electrons have parallel spins, requiring an antisymmetric spatial 

wavefunction: 

Ψ𝑇 =
1

√2(1 − 𝑆2)
[𝜓𝐴(1)𝜓𝐵(2) − 𝜓𝐴(2)𝜓𝐵(1)] 

 

The antisymmetric combination reduces electron density between the nuclei, so repulsion 

dominates, and no stable bond is formed. This explains why the triplet state of H₂ is unstable 

and why the singlet state is energetically preferred. 

 

 

 



Centre for Distance Education  12.7  Acharya Nagarjuna University  

 

Role of Exchange Interaction 

The exchange interaction is central to the Heitler–London method. It arises purely from the 

quantum mechanical requirement of electron indistinguishability and has no classical 

analogue. Exchange interaction increases the probability of finding electrons between the 

nuclei, enhancing electron density in the bonding region and lowering the total energy of the 

system. This stabilization is the key mechanism behind covalent bond formation. The singlet 

state benefits from this interaction, while the triplet state, which does not allow symmetric 

spatial overlap, remains repulsive. 

 

Mathematically, the exchange energy can be expressed as the difference in energy between 

symmetric and antisymmetric combinations of atomic orbitals. This energy is directly related 

to the overlap integral, which increases as atomic orbitals come closer, explaining the 

distance-dependent nature of chemical bonds. 

 

Energy Expression 

The total energy of the H₂ molecule is obtained by evaluating the expectation value of the 

Hamiltonian: 

𝐸 =
⟨Ψ ∣ 𝐻̂ ∣ Ψ⟩

⟨Ψ ∣ Ψ⟩
 

 

The molecular Hamiltonian 𝐻̂includes contributions from: 

• Electron kinetic energy 

• Electron–nucleus attraction 

• Electron–electron repulsion 

• Nucleus–nucleus repulsion 

By solving this expression for different internuclear distances (R), one can determine the 

equilibrium bond length and bond energy of H₂. The energy minimization shows that there is 

an optimal separation 𝑅𝑒where attractive and repulsive forces balance, confirming the 

existence of a stable chemical bond. 

 

Potential Energy Curve 

Plotting the total energy E(R) as a function of internuclear distance yields a potential energy 

curve: 

• At large distances, the electrons are effectively associated with their respective atoms, 

and the energy approaches that of two isolated hydrogen atoms. 

• As atoms approach, electron exchange increases the attractive interaction, lowering 

energy. 

• The minimum of the curve corresponds to the equilibrium bond length 𝑅𝑒, and the 

depth of the minimum represents the bond dissociation energy 𝐷𝑒. 

• At very short distances, nuclear repulsion dominates, sharply increasing energy. 

• This curve provides direct evidence for the stability of the hydrogen molecule and 

allows quantitative prediction of bond properties, such as length, energy, and 

vibrational characteristics. 

 

Extensions and Implications 

The Heitler–London method, although applied initially to H₂, laid the foundation for Valence 

Bond Theory, which generalizes electron pairing and orbital overlap to more complex 

molecules. Key implications include: 
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1. Localized Bonding: Bonds can be understood as localized electron pairs, a principle 

widely used in organic and inorganic chemistry. 

2. Hybridization: The concept of mixing atomic orbitals to form new directional orbitals 

(sp, sp², sp³) emerges naturally from the VBT extension of the Heitler–London 

approach. 

3. Resonance and Delocalization: While Heitler–London treats electrons as localized, it 

provides the groundwork for incorporating resonance in molecules where electrons 

are delocalized across multiple atoms. 

4. Spin Dependence: Singlet–triplet splitting explains magnetic properties and the 

preference for certain spin states in molecules. 

5. Quantitative Predictions: Though limited to small systems, the method allows 

estimation of bond lengths, bond energies, and vibrational frequencies with 

reasonable accuracy. 

 

Comparison with Molecular Orbital Theory 

While the Heitler–London method provides an intuitive localized picture, Molecular Orbital 

Theory (MOT) generalizes bonding by delocalizing electrons over the molecule. MOT: 

• Accounts for ionic contributions automatically. 

• Explains paramagnetism, e.g., O2, which VBT and Heitler–London cannot. 

• Provides a framework for molecules with more than two atoms and conjugated 

systems. 

Nonetheless, the Heitler–London method remains foundational, emphasizing the quantum 

mechanical origin of bonding and introducing exchange interactions, which are fundamental 

to all covalent bonds. 

 

So, in summary the Heitler–London method represents a milestone in theoretical chemistry. 

By applying quantum mechanics to the hydrogen molecule, it demonstrated that chemical 

bonds arise from electron exchange and wavefunction symmetry, not merely classical forces. 

The method introduced: 

• Localized bonding 

• Symmetric and antisymmetric wavefunctions 

• Exchange interaction as a stabilizing force 

• Quantitative energy calculations for molecular stability 

Its conceptual framework underpins Valence Bond Theory, influencing the understanding of 

molecular geometry, bond energies, and electronic structure. While later theories like MOT 

extend these ideas to delocalized systems, the Heitler–London approach remains a 

cornerstone of quantum chemical bonding theory, providing insight into the fundamental 

nature of the chemical bond. 

 

12.3 SUMMARY 

 

The study of chemical bonding has been revolutionized by quantum mechanics, with the 

Valence Bond Theory (VBT), Molecular Orbital Theory (MOT), and the Heitler–London 

method serving as foundational models. Each approach offers a distinct perspective on how 

electrons interact to form stable molecules, with unique assumptions, strengths, and 

limitations. 

 

The Heitler–London method (1927) was the first successful quantum mechanical explanation 

of bonding. Applied to the hydrogen molecule (H2), it demonstrated that bond formation 

arises from electron exchange and wavefunction symmetry, rather than purely classical 
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electrostatic forces. The method assumes that each hydrogen atom contributes one electron, 

which remains largely associated with its parent nucleus, but allows for electron exchange 

between atoms. The total molecular wavefunction is constructed to obey the Pauli exclusion 

principle, resulting in a singlet (bonding) and triplet (antibonding) state. The singlet state, 

with opposite spins, produces a symmetric spatial wavefunction that increases electron 

density in the internuclear region, leading to a stable bond. The triplet state, with parallel 

spins, has an antisymmetric spatial wavefunction, reducing electron density between nuclei 

and preventing stable bonding. The exchange interaction stabilizes the singlet state, and the 

energy of the molecule is calculated using the expectation value of the Hamiltonian, 

including kinetic energy, electron–nucleus attraction, electron–electron repulsion, and nuclear 

repulsion. The resulting potential energy curve illustrates the equilibrium bond length and 

bond dissociation energy, providing a quantitative description of molecular stability. The 

Heitler–London method laid the foundation for Valence Bond Theory, which generalizes the 

concepts of localized electron pairing, hybridization, and resonance to more complex 

molecules. 

 

Valence Bond Theory (VBT) builds directly on the Heitler–London approach. In VBT, 

covalent bonds form through the overlap of atomic orbitals, and electrons remain localized 

between the bonded atoms. Concepts like hybridization explain molecular geometry, while 

resonance accounts for delocalized bonding in molecules that cannot be represented by a 

single Lewis structure. VBT provides an intuitive, visual understanding of bonding, making it 

effective for small molecules and organic systems. However, it often neglects ionic 

contributions and cannot fully explain phenomena like the Para magnetism of O2. 

 

Molecular Orbital Theory (MOT) offers a complementary perspective, treating electrons as 

delocalized over the entire molecule. Molecular orbitals are formed as linear combinations of 

atomic orbitals, resulting in bonding and antibonding orbitals that include both covalent and 

ionic character. MOT accurately predicts bond order, magnetic behaviour, and electronic 

spectra, and can describe systems with delocalized electrons, such as benzene, more naturally 

than VBT. For example, MOT correctly predicts O2 as paramagnetic due to two unpaired 

electrons in antibonding π* orbitals, whereas VBT and Heitler–London fails in this regard. 

While more computationally complex, MOT provides a more global and quantitative 

description of molecular electronic structure. 

 

In summary, the Heitler–London method establishes the quantum mechanical basis for 

bonding, highlighting the role of electron exchange and wavefunction symmetry. VBT 

extends this localized approach to explain geometry, hybridization, and resonance in 

molecules, whereas MOT provides a delocalized framework capable of explaining magnetic 

properties, bond order, and delocalization phenomena. Together, these models offer a 

comprehensive understanding of chemical bonding, from the simplest diatomic molecules to 

complex polyatomic systems, bridging intuitive visualization and quantitative prediction in 

modern chemistry. 

 

12.4 TECHNICAL TERMS 

   

Comparison of the methods 

  Heitler-London Method 
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12.5 SELF-ASSESSMENT QUESTIONS 

 

1. Distinguish between VBT and MOT. 

2. Explain Heitler-London Method 
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