WEB TECHNOLOGIES

MASTER OF COMPUTER APPLICATIONS(MCA)
SEMESTER-II, PAPER-III

LESSON WRITERS
Dr. Kampa Lavanya Dr. Vasantha Rudrarnalla
Assistant Professor Faculty, Department of CS&E
Department of CS&E Acharya Nagarjuna University

Acharya Nagarjuna University

Mrs. Appikatla Pushpa Latha Dr. U. Surya Kameswari
Faculty, Department of CS&E Assistant Professor
Acharya Nagarjuna University Department of CS&E

Acharya Nagarjuna University

EDITOR
Dr. Neelima Guntupalli
Assistant Professor
Department of CS&E
Acharya Nagarjuna University

ACADEMIC ADVISOR
Dr. Kampa Lavanya
Assistant Professor
Department of CS&E
Acharya Nagarjuna University

DIRECTOR, I/c.

Prof. V. Venkateswarlu
M.A., M.P.S., M.S.W., M.Phil., Ph.D.
Professor
Centre for Distance Education
Acharya Nagarjuna University
Nagarjuna Nagar 522 510

Ph: 0863-2346222, 2346208
0863- 2346259 (StudyMaterial)
Website www.anucde.info
E-mail:anucdedirector@gmail.com

mailto:anucdedirector@gmail.com

MCA : WEB TECHNOLOGIES
First Edition : 2025

No. of Copies

© Acharya Nagarjuna University

This book is exclusively prepared for the use of students of MASTER OF COMPUTER
APPLICATIONS(MCA),Centre for Distance Education, Acharya Nagarjuna University
and this book is meant for limited circulation only.

Publishedby:

Prof. V. VENKATESWARLU
Director, I/c
CentreforDistanceEducation,
AcharyaNagarjunaUniversity

Printed at:

FOREWORD

Since its establishment in 1976, Acharya Nagarjuna University has been
forging ahead in the path of progress and dynamism, offering a variety of courses
and research contributions. I am extremely happy that by gaining ‘A+’ grade from
the NAAC in the year 2024, Acharya Nagarjuna University is offering educational
opportunities at the UG, PG levels apart from research degrees to students from

over 221 affiliated colleges spread over the two districts of Guntur and Prakasam.

The University has also started the Centre for Distance Education in 2003-
04 with the aim of taking higher education to the door step of all the sectors of the
society. The centre will be a great help to those who cannot join in colleges, those
who cannot afford the exorbitant fees as regular students, and even to housewives
desirous of pursuing higher studies. Acharya Nagarjuna University has started
offering B.Sc., B.A., B.B.A., and B.Com courses at the Degree level and M.A.,
M.Com., M.Sc., M.B.A., and L.L.M., courses at the PG level from the academic
year 2003-2004 onwards.

To facilitate easier understanding by students studying through the distance
mode, these self-instruction materials have been prepared by eminent and
experienced teachers. The lessons have been drafted with great care and expertise
in the stipulated time by these teachers. Constructive ideas and scholarly
suggestions are welcome from students and teachers involved respectively. Such
ideas will be incorporated for the greater efficacy of this distance mode of
education. For clarification of doubts and feedback, weekly classes and contact

classes will be arranged at the UG and PG levels respectively.

It is my aim that students getting higher education through the Centre for
Distance Education should improve their qualification, have better employment
opportunities and in turn be part of country’s progress. It is my fond desire that in
the years to come, the Centre for Distance Education will go from strength to
strength in the form of new courses and by catering to larger number of people. My
congratulations to all the Directors, Academic Coordinators, Editors and Lesson-

writers of the Centre who have helped in these endeavors.

Prof. K. Gangadhara Rao
M.Tech., Ph.D.,
Vice-Chancellor I/c
Acharya Nagarjuna University.

MASTER OF COMPUTER APPLICATIONS (MCA)
Semester-11, Paper-I11

203MC24:Web Technologies
SYLLABUS

UNIT I

Java Basics: Java buzzwords, Review of OOP concepts, dynamic binding, abstract classes
and methods, interfaces, Packages.

GUI Programming with JAVA: Event Handling, Applets, Swing - Introduction to Swing,
Swing vs. AWT,MVC architecture, Hierarchy for Swing components, Containers ,JFrame,
JApplet, JWindow, JDialog, JPanel, A simple swing application, Overview of several swing
components, Layout management - Layout manager types — border, grid, flow, box.

UNIT I1
HTML: Common Tags: List, Tables, images, forms, Frames, Cascading Style Sheets;

Java Script: Introduction to Java Scripts, Objects in Java Script, Dynamic HTML with Java
Script.

XML:Document type definition, XML Schemas, Document Object model, Presenting XML,
Using XML Processors: DOM and SAX

UNIT 111

JDBC: Introduction to JDBC — Connections — Internal Database Connections — Statements —
Results Sets - Prepared Statements - Callable Statements.

Network Programming and RMI: why networked Java — Basic Network Concepts —
looking up Internet Addresses — URLs and URIs — UDP Datagrams and Sockets — Remote
Method Invocation.

Unit -1V

Web Servers and Servlets: Tomcat web server, Introduction to Servlets: Lifecycle of a
Servlet, JSDK, The Servlet API, Thejavax.servlet Package, Reading Servlet parameters,
Reading Initialization parameters. The javax.servlet HTTP package, Handling Http Request
& Responses, Using Cookies-Session Tracking, Security Issues.

Introduction to JSP: The Problem with Servlet. The Anatomy of a JSP Page, JSP
Processing. JSP Application Design with MVC Setting Up and JSP Environment: Installing
the Java Software Development Kit, Tomcat Server & Testing Tomcat

Prescribed Textbooks

The Complete reference Java, Herbet Schildt, 7" Edition, McGraw Hill.

Java Programming with JDBC ;Donald Bales, O’Reilly

Web Technologies — a computer science perspective, Jeffrey C. Jackson, Pearson,
2007.

Reference Textbooks

—

Java Network Programming, elliotte Rusty Harold, 3rd Edition

. Java Server Pages — Hans Bergsten, SPD O’Reilly

Robert W. Sebesta, “Programming the World Wide Web”, Third Edition, Pearson
Education (2007).

Anders Moller and Michael schwartzbach, ”An Introduction to XML and Web
Technologies”, Addison Wesley (2006)

Chris Bates, “Web Programming—Building Internet Applications®”, Second Edition,
Wiley (2007).

(203MC24)

M.C.A. DEGREE EXAMINATION, MODEL QUESTION PAPER

Second Semester
203MC24:Web Technologies

Time: 3 Hours Max. Marks: 70
SECTION-A
Answer Question No.1 Compulsory 2 Marks x 7 =14 Marks
1. a) Define Interface
b) Differentiate Swing and AWT
¢) List out Table Tags
d) Explain DTD
¢) Explain Result Sets
f) Explain Servlet API
g) Write steps for installing JDK
SECTION-B
Answer ONE Question from Each Unit 4 x 14 =56 Marks
UNIT -1
2. a) Differentiate abstract class and interface
b) Write short notes on dynamic binding
OR
a) What are events handler? Explain five event handlers
UNIT -1I
3. a) How to place hyperlink on web page? Explain <A> tag in detail
OR
a) What are style sheets? Explain various types.
b) Write a java script program to find factorial of a given numbers.
UNIT - 111
4. a) Explain JDBC architecture and different types of devices available
OR
a) Explain about RMI architecture
UNIT -1V
5. a) Whatis JSP? What are the advantages and Disadvantages of JSP?
b) Explain the anatomy of JSP
OR
a) Explain the life cycle of Servlet.

CONTENTS

S.No TITLES PAGE No
1 JAVA CONCEPTS AND OBJECT-ORIENTED PROGRAMMING 1.1-1.17
5 ADVANCED JAVA CONCEPTS: BINDING, ABSTRACTION, 21215
AND INTERFACES e

3 GUI DEVELOPMENT IN JAVA — EVENT HANDLING AND 3.1-3.18
APPLETS e

4 SWING FRAMEWORK AND LAYOUT MANAGEMENT 4.1-4.22

5 BUILDING WEB PAGES WITH HTML AND CSS 5.1-5.22

6 INTRODUCTION TO JAVASCRIPT AND CLIENT-SIDE 6.1-6.19
SCRIPTING T

7 OBJECTS IN JAVA SCRIPT AND DYNAMIC HTML (DHTML) 7.1-7.25

8 XML BASICS AND DATA PROCESSING IN WEB 8.1-8.27
APPLICATIONS o
INTRODUCTION TO JDBC AND DATABASE CONNECTIVITY

9 9.1-9.17
IN JAVA

10 | EXECUTING SQL WITH JDBC 10.1-10.14

1 ADVANCED JDBC: PREPARED AND CALLABLE 11.1-11.14
STATEMENTS T

13 NETWORK PROGRAMMING AND REMOTE METHOD 12.1-12.19
INVOCATION (RMI) A

13 INTRODUCTION TO WEB SERVERS AND THE TOMCAT 13.1-13.14
ENVIRONMENT i

14 | INTRODUCTION TO SERVLETS AND HTTP PROGRAMMING 14.1-14.29

15 HANDLING REQUESTS, SESSIONS, AND SECURITY IN 15.1-15.21
SERVLETS R

16 | JSP FUNDAMENTALS AND MVC ARCHITECTURE 16.1-16.30

LESSON- 1
JAVA CONCEPTS AND OBJECT-ORIENTED

PROGRAMMING

Aim and Objectives:

To understand and explain the key Java buzzwords such as simple, secure, platform-
independent, robust, and multithreaded.

To analyze how Java’s design principles support the development of portable, efficient, and
reliable applications.

To review fundamental object-oriented programming (OOP) concepts including
encapsulation, inheritance, polymorphism, and abstraction.

To demonstrate the practical application of OOP principles in Java programming.

To develop Java programs that apply both Java buzzword features and object-oriented
techniques for real-world problem solving.

STRUCTURE:

1. 1 Introduction to Java

1 .1.1 Basic structure of a Java program
1.1.2 Explanation of the Basic Structure
1.1.3 Uses of Java

1.2. Java buzzwords

1.3 Review of OOP Concepts:

1.4 Summary

1.5 Key Terms

1.6 Self-Assessment Questions

1.7 Further Readings

1. 1 INTRODUCTION TO JAVA

Java is a high-level, class-based, object-oriented programming language developed by Sun
Microsystems in 1995 (now owned by Oracle Corporation). It is designed to have as few
implementation dependencies as possible, allowing developers to write code once and run it
anywhere (WORA — Write Once, Run Anywhere), thanks to the Java Virtual Machine (JVM).

1.1.1Basic structure of a Java program:

// 'This is a simple Java program
public class HelloWorld
{ //'1. Class declaration
public static void main(String[] args)

‘ WebTechnologies Lab 1.2 Java Concepts and Object-Oriented ...

{ // 2. main method - program entry point
System.out.println("Hello, World!"); // 3. Statement to print output

}
j

Output:
Hello World
1.1.2Explanation of the Basic Structure:

1. Class Declaration:
Every Java program must have at least one class. The class name here is HelloWorld.
The filename must match the class name (HelloWorld.java).

2. main() Method:
This is the entry point of any Java application. The JVM looks for this method to start
program execution. It must be declared exactly as public static void main(String[]
args).

3. Statements:
Inside the main method, you write statements that perform actions. For example,
System.out.println() prints text to the console.

4. Curly Braces {}:
These define the beginning and end of classes and methods.

1.1.3 Uses of Java:

Web applications (using Spring, JSP, Servlets)
Mobile applications (especially Android)
Desktop GUI applications (JavaFX, Swing)
Enterprise applications

Embedded systems

Scientific and research applications

1.2 Java buzzwords

Java buzzwords are key features or concepts that describe the design and philosophy of the
Java programming language. These buzzwords highlight why Java has been popular and
widely adopted. Here are the major Java buzzwords along with brief explanations and
examples:

Java buzzwords are key features or concepts that describe the design and philosophy of the
Java programming language. These buzzwords highlight why Java has been popular and
widely adopted. Here are the major Java buzzwords along with brief explanations and

examples:

1. Simple
2. Secure

Centre for Distance Education 1.3 Acharya Nagarjuna University

3. Portable

4. Object-Oriented

5. Robust

6. Architecture Neutral (or) Platform Independent
7. Multithreaded

8. Interpreted

9. High Performance

10. Distributed

11.Dynamic

1. Simple
Java is designed to be easy to learn and use. It eliminates complex features like pointers and
operator overloading.

Example: Program to add two numbers (input/output)

import java.util.Scanner;
public class SimpleExample

{

public static void main(String|[] args)

{

Scanner sc = new Scanner(System.in);
System.out.print("Enter first number: ");
int a = sc.nextInt();
System.out.print("Enter second number: ");
int b = sc.nextInt();

int sum = a + b;
System.out.println("Sum is: " + sum);

sc.close();

}

Input:

Enter first number: 5
Enter second number: 7

Output:
Sum is: 12
2. Secure

Java has built-in security features like the absence of pointers, bytecode verification, and the
Security Manager.

WebTechnologies Lab 1.4 Java Concepts and Object-Oriented ...

Example: 1.A simple print statement showing security message.

public class SecureExample

{

public static void main(String[] args) {
System.out.println("Java ensures security with runtime checks.");

j
j

Output:
Java ensures security with runtime checks.

Example:2.Applets run inside a restricted sandbox environment to prevent unauthorized
access.

3. Portable

Java programs can move easily from one system to another because there are no platform-
specific features.

Example: Same as above. The compiled .class file runs on Windows, Linux, Mac etc. with
JVM.

public class PortableExample

{

public static void main(String[] args)

{

System.out.println("Java program is portable across platforms.");

}

}

Output:

Java program is portable across platforms.
4. Object-Oriented

Everything in Java is treated as an object. It uses classes and objects to model real-world
entities.

Centre for Distance Education 1.5

Acharya Nagarjuna University

Example: Represent a Car and print its behavior

class Car

{

String color;

Car(String ¢)
{

color = ¢;

}

void drive()

{

System.out.println("The " + color + " car is driving.");

}

}
public class OOPExample

{

public static void main(String|[] args)

{

Car myCar = new Car("red");
myCar.drive();

}
}

Output:
The red car is driving.

5. Robust

Java emphasizes error checking at compile time and runtime with strong memory

management.
Example: Handling division by zero

import java.util.Scanner;

public class RobustExample

{

public static void main(String[] args)
{
Scanner sc = new Scanner(System.in);
System.out.print("Enter numerator: ");
int num = sc.nextInt();
System.out.print("Enter denominator: ");

WebTechnologies Lab 1.6 Java Concepts and Object-Oriented ...

int denom = sc.nextInt();
try
{

int result = num / denom;
System.out.println("Result is: " + result);

}

catch (ArithmeticException e)

{

System.out.println("Error: Division by zero is not allowed.");

}

sc.close();

j
j

Input:

Enter numerator: 10
Enter denominator: 0

Output:

Error: Division by zero is not allowed.

6. Architecture Neutral

Java bytecode is not tied to any specific machine architecture, making it portable.
Example:

public class ArchitectureNeutral

{

public static void main(String[] args)

{

System.out.println("This bytecode runs on any architecture with JVM.");
}

}

Output:

This bytecode runs on any architecture with JVM.

Centre for Distance Education 1.7 Acharya Nagarjuna University

(Or)
Platform Independent

Java code is compiled into bytecode, which can run on any machine with a Java Virtual
Machine (JVM).

Example:

javac Hello.java # Compiles to Hello.class (bytecode)

java Hello # Runs on any OS with JVM

7. Multithreaded

Java supports multithreading—multiple threads of execution can run concurrently.
Example: Two threads printing messages

class MyThread extends Thread
{

String name;

MyThread(String n)
{

name = n;

}

public void run() {
for (inti=1;1<=3; i++)

{
System.out.println(name + " is running: " + 1);
try { Thread.sleep(500); } catch (InterruptedException e) {}

}
}

}

public class MultithreadExample

{

public static void main(String[] args)

{

MyThread t1 = new MyThread("Thread 1");
MyThread t2 = new MyThread("Thread 2");
t1.start();
t2.start();

}

‘ WebTechnologies Lab 1.8 Java Concepts and Object-Oriented ...

}

Possible Output:

Thread 1 is running: 1
Thread 2 is running: 1
Thread 1 is running: 2
Thread 2 is running: 2
Thread 1 is running: 3
Thread 2 is running: 3

(Note: Output may vary because threads run concurrently.)

8. Interpreted

Java enables the creation of cross-platform programs by compiling into an intermediate
representation calledJava bytecode. The byte code is interpreted to any machine code so that
it runs on the native machine.

Example :Simple HelloWorld (No input)

public class HelloWorld

{

public static void main(String[] args)

{

System.out.println("Hello, Java is interpreted!");

j
j

Output:
Hello, Java is interpreted!
Note:

1. You write the Java source code.

2. You compile it once using javac to get bytecode (.class file).

3. The JVM interprets this bytecode to native machine instructions at runtime, on
whatever platform you use.

4. So, the same .class file runs everywhere without needing recompilation — this is the
interpreted nature of Java.

Centre for Distance Education 1.9 Acharya Nagarjuna University

9. High Performance

Java performance is better than traditional interpreted languages due to Just-In-Time (JIT)
compilation.

Example: Simple computation to show performance
public class HighPerformance

{

public static void main(String|[] args)
{
long start = System.currentTimeM illis();
long sum = 0;
for (longi=0;1<1 000 000 0OOL; i++)
{
sum += i;
}
long end = System.currentTimeMillis();
System.out.println("Sum: " + sum);

System.out.println("Time taken in milliseconds: " + (end - start));

}
}
Output: (sample)
Sum: 499999999500000000
Time taken in milliseconds: 500

(The exact time depends on your machine, but JIT optimizes such code during runtime.)

WebTechnologies Lab 1.10 Java Concepts and Object-Oriented ...

10. Distributed

Java supports networking and remote method invocation (RMI) to build distributed
applications.

Example:: Simple Client-Server using sockets.
Server Program:

import java.net.ServerSocket;

import java.net.Socket;

import java.io.PrintWriter;

import java.io.IOException;

public class SimpleServer

{

public static void main(String|[] args)

{

try (ServerSocket server = new ServerSocket(5000))

{

System.out.println("Server started. Waiting for client...");

Socket client = server.accept(); // accept client connection
PrintWriter out = new PrintWriter(client.getOutputStream(), true);
out.println("Hello from Server!");

client.close();

}

catch (IOException e)

{

e.printStackTrace();

}

Centre for Distance Education 1.11 Acharya Nagarjuna University

}
j

Client Program:
import java.net.Socket;

import java.util.Scanner;
import java.io.InputStreamReader;
import java.io.BufferedReader;
import java.io.IOException;
public class SimpleClient

{

public static void main(String|[] args)

{

try (Socket socket = new Socket("localhost", 5000))
{
BufferedReader in = new BufferedReader(new
InputStreamReader(socket.getInputStream())
String message = in.readLine();
System.out.println("Message from Server: " + message);

}

catch (IOException e)

e.printStackTrace();

‘ WebTechnologies Lab 1.12 Java Concepts and Object-Oriented ...

}
j

How to run:

1. Run SimpleServer first; it waits for a client.

2. Run SimpleClient; it connects and receives the message.

Output on Client:

Message from Server: Hello from Server!

Output on Server:

Server started. Waiting for client...

11. Dynamic

Java can dynamically load classes at runtime and supports runtime reflection.
Example: Dynamically loading a class

public class DynamicExample

{
public static void main(String[] args)
{
Try
{
Class<?> cls = Class.forName("java.util. ArrayList");
System.out.println("Class loaded dynamically: " + cls.getName());

}
catch (ClassNotFoundException €)

{

System.out.println("Class not found.");

h
h
h

Output:

Class loaded dynamically: java.util. ArrayList

Centre for Distance Education 1.13 Acharya Nagarjuna University

1.3 REVIEW OF OOP CONCEPTS

Object-Oriented Programming (OOP) is a programming paradigm based on the concept of
objects which contain data and methods. Java is an object-oriented language that uses the
following key concepts:

1. Class and Object

e Class: Blueprint or template for creating objects. It defines properties (fields) and
behaviors (methods).
e Object: An instance of a class.

Example:

class Dog
{

String name;
int age;

void bark()
{

System.out.println(name + " is barking.");

}
}

public class TestDog
{

public static void main(String[] args)

{
Dog myDog = new Dog(); // Create object

myDog.name = "Buddy"; /I Set properties
myDog.age = 3;
myDog.bark(); // Call method
}
b

Output:
Buddy is barking.
2. Encapsulation

e Wrapping data (variables) and code (methods) together as a single unit.
e Use of private fields and public getter/setter methods to control access.

WebTechnologies Lab 1.14 Java Concepts and Object-Oriented ...

Example:

class Person

{

private String name; // private variable

public void setName(String n) { // setter method
name = n;
h
public String getName()
{ // getter method
return name;

j
}

public class TestPerson

{

public static void main(String|[] args)

{

Person p = new Person();
p.setName("Alice");
System.out.println("Name is: " + p.getName());

}
}

Output:
Name is: Alice
3. Inheritance

e Mechanism where one class (subclass/child) inherits fields and methods from another
(superclass/parent).
e Supports code reuse.

Example:

class Animal

{

void sound()

{

System.out.println(" Animal makes a sound");

}
h

Centre for Distance Education 1.15 Acharya Nagarjuna University

class Cat extends Animal

{

void sound()

{

System.out.println("Cat meows");

j
}

public class TestInheritance

{

public static void main(String|[] args)

{

Cat ¢ = new Cat();
c.sound(); // calls overridden method

}
}

Output:
Cat meows
4. Polymorphism

e Ability to take many forms.
e Method overriding: Subclass provides specific implementation.
e Method overloading: Same method name, different parameters.

Example (Method Overriding):

class Bird

{

void sound()

{
System.out.println("Bird chirps");

h
}

class Parrot extends Bird

{

void sound()

{

System.out.println("Parrot talks");

}

‘ WebTechnologies Lab 1.16 Java Concepts and Object-Oriented ...

public class TestPolymorphism
{

public static void main(String|[] args)

{

Bird b = new Parrot();
b.sound(); // calls Parrot’s method (runtime polymorphism)

}
}

Output:Parrot talks
5. Abstraction

e Hiding complex implementation details and showing only the essentials.
e Can be achieved using abstract classes or interfaces.

Example (Abstract Class):

abstract class Shape

{

abstract void draw();}

class Circle extends Shape

{

void draw()

{

System.out.println("Drawing Circle"); } }

public class TestAbstraction {
public static void main(String[] args) {
Shape s = new Circle();
s.draw();

h
h

Output:Drawing Circle
1.4 SUMMARY

Java is a high-level, object-oriented programming language developed by Sun Microsystems
in 1995, now owned by Oracle. It follows the “Write Once, Run Anywhere” philosophy,
made possible through the Java Virtual Machine (JVM). A basic Java program includes class
declarations, the main() method, and output statements. Java is widely used in web, mobile,

Centre for Distance Education 1.17 Acharya Nagarjuna University

desktop, and enterprise applications. It is known for its key features—called Java
buzzwords—such as simplicity, object-orientation, platform independence, security,
robustness, multithreading, portability, high performance, distributed computing, and
dynamic class loading. Each of these features is demonstrated through small, functional code
examples. Java is also rooted in Object-Oriented Programming (OOP) principles including
class and object creation, encapsulation, inheritance, polymorphism, and abstraction. These
concepts help in modeling real-world systems, promoting code reusability, and building
secure, maintainable applications. Through its rich feature set and OOP foundation, Java
remains a powerful and versatile language for modern software development.

1.5 KEY TERMS

JVM (Java Virtual Machine), WORA (Write Once, Run Anywhere) ,Class ,Object,
EncapsulationInheritance, Abstraction ,Platform Independent, Multithreading, Robust ,Secure
,Dynamic.

1.6 SELF-ASSESSMENT QUESTIONS

1. What is the role of the main() method in a Java program, and why must it be declared
as public static void main(String[] args)?

2. Explain any three Java buzzwords and illustrate their meaning with an example.

How does Java achieve platform independence? Mention the role of the Java Virtual

Machine (JVM) in this context.

4. Differentiate between encapsulation and abstraction in Java with suitable code
examples.

5. What is polymorphism in Java? Provide a code example showing method overriding
to demonstrate runtime polymorphism.

[98)

1.7 FURTHER READINGS

1. The Complete reference Java, Herbet Schildt, 7 Edition, McGraw Hill.

2. Java for Programmers, P.J.Deitel and H.M.Deitel, PEA (or) Java: How to Program ,
P.J.Deiteland H.M.Deitel, PHI

3. ObjectOrientedProgrammingthroughJava,P.RadhaKrishna,UniversitiesPress.

Dr. Kampa Lavanya

LESSON- 2
ADVANCED JAVA CONCEPTS: BINDING,

ABSTRACTION, AND INTERFACES

Aim and Objectives:

>

YV V VYV V¥V

Understand the concept of dynamic binding and its role in achieving runtime
polymorphism in Java programs through method overriding.

Learn the purpose and usage of abstract classes and methods in designing flexible and
partially implemented classes for future extension.

Explore the use of interfaces to achieve full abstraction and enable multiple
inheritance in Java, promoting contract-based design.

Differentiate clearly between abstract classes and interfaces, and identify appropriate
scenarios for their use in software development.

Gain practical knowledge on creating and using packages to group related classes and

interfaces, improve modularity, and manage namespace efficiently in Java

applications.

STRUCTURE:

2.1Understanding Binding in Java

2.1.1 Types of Binding in Java

2.2. What is Dynamic Binding in Java?

2.2.1 Difference from Static Binding

2.2.2 Importance of Dynamic Binding

2.2.3 Basics of Binding in Java

2.2.4 Java Dynamic Binding: Using the super Keyword
2.3 Abstract Classes and Methods

2.3.1 Key Characteristics of Abstract Classes
2.4 Interfaces

2.4.1 Implementing an Interface

2.5 Packages

2.5.1 Why Use Packages?

2.5.2 Types of Packages

2.5.3 Creating and Using Packages: Example
2.5.4 Benefits of Using Packages

2.6 Summary

2.7 Key Terms

‘ Web Technologies Lab 2.2 Advanced Java Concepts: Binding ...

2.8 Self-Assessment Questions
2.9 Further Readings

2.1UNDERSTANDING BINDING IN JAVA

Before exploring static and dynamic binding, it is important to grasp what binding means in
the context of Java programming. Binding is the process of associating a method call with its
actual method definition. In simpler terms, it determines which method gets executed when a
method is invoked in the code.

Binding plays a crucial role in polymorphism, one of the core principles of object-oriented
programming in Java. Polymorphism allows objects of different classes to be treated as
objects of a common superclass. This is typically achieved through inheritance and method
overriding, where a subclass can provide its own version of a method already defined in its
parent class.

The type of binding—whether static or dynamic—depends on when the method resolution
takes place and the type of reference used to call the method.

2.1.1 Types of Binding in Java

Java supports two primary types of method binding:
1. Static Binding (Early Binding)
e Happens at compile time.
e Used with private, static, and final methods as well as method overloading.
2.
3. Dynamic Binding (Late Binding)
e Occurs at runtime.
e Used with method overriding and supports runtime polymorphism.

2.2. WHAT IS DYNAMIC BINDING IN JAVA?

Dynamic Binding, also known as late binding, is a fundamental concept in object-oriented
programming, particularly in Java. It refers to the process where method calls are resolved at

runtime, rather than during compilation.

This mechanism is key to achieving runtime polymorphism. When a method is overridden
in a subclass, and the method is called through a reference of the superclass type, Java defers
the method resolution until the program runs. This allows the JVM to determine the actual
object type at runtime and invoke the correct method implementation.

2.2.1 Difference from Static Binding

In contrast, Static Binding (or early binding) occurs at compile time, where the method call is
resolved based on the declared type of the reference variable. It is typically used for:

e private, static, or final methods

e Overloaded methods

Static binding leads to faster execution, but lacks the flexibility offered by dynamic binding.

Centre for Distance Education 2.3 Acharya Nagarjuna University

2.2.2 Importance of Dynamic Binding

Enables runtime polymorphism

Supports method overriding

Enhances flexibility and extensibility of code

Promotes code reusability by treating subclass objects as superclass types

e Allows seamless addition of new functionality without altering existing code

2.2.3 Basics of Binding in Java

In Java, binding refers to the process of linking a method call to the actual method
implementation. This process can take place at different stages of program execution and is
primarily categorized into two types:
1. Static Binding (Early Binding)
¢ Binding occurs at compile time.
e The compiler determines the method to be invoked based on the reference type.
e Commonly applied to methods that are private, static, or final, since such methods
cannot be overridden.
e Used in method overloading, where multiple methods share the same name but differ
in parameters.

Example:
public class StaticBindingExample {

public static voiddisplay() {
System.out.println("Static method called");

}

public static void main(String[] args) {
StaticBindingExample.display(); // Method resolved at compile time

}

}
Output:

Static method called

2. Dynamic Binding (Late Binding)
¢ Binding takes place at runtime.
e The Java Virtual Machine (JVM)determines the method to be executed based on
theactual object type, not the reference type.
e It is primarily used with overridden methods in inheritance to achieve runtime
polymorphism.
e [Enables more flexible and extensible code through dynamic method dispatch.

Example:
class Animal {
void sound() {
System.out.println(" Animal makes a sound");

}
}

‘ Web Technologies Lab 2.4 Advanced Java Concepts: Binding ...

class Dog extends Animal {
@QOverride

void sound() {
System.out.println("Dog barks");

}

}
public class DynamicBindingExample {

public static void main(String[] args) {
Animal a = new Dog(); // Reference is of type Animal, object is of type Dog
a.sound(); // Method resolved at runtime (dynamic binding)
}
J

Output:
Dog barks
Characteristics of Static Binding in Java
e The method call is determined at compile time.
e Applies to private, static, and final methods.
e Method overriding is not involved.
Characteristics of Dynamic Binding in Java
e The method call is resolved at runtime, depending on the actual object type.

e Supports method overriding and enables runtime polymorphism.
e Applicable to non-static and non-final methods.

‘ Feature H Static Binding H Dynamic Binding ‘
‘Binding Time HOccurs at compile time HOccurs at runtime ‘
Applies to private, static, and final ||Applies to non-static and non-final
Method Types methods methods
Meth(?d' Not involved Involves method overriding
Overriding
Polymorphism Does not support runtime Enables runtime polymorphism
ymorp polymorphism potymorp
Faster, as resolution happens at Slightly slower, due to runtime
Performance S ;
compile time method resolution
grelcwlon Based Based on reference type Based on object type at runtime
Example Hstatic void show() Hvoid show() (overridden in subclass) ‘

Centre for Distance Education 2.5 Acharya Nagarjuna University

2.2.4 Java Dynamic Binding: Using the super Keyword

Dynamic Binding in Java refers to method calls being resolved at runtime based on the
actual object type. It allows method overriding and supports runtime polymorphism.

The super keyword is used within a subclass to refer to its immediate superclass. When used
in the context of dynamic binding, super can help invoke the overridden method from the
parent class, even if the subclass has provided its own implementation.

Key Points:

e super is used to access the superclass version of an overridden method.

o It bypasses dynamic binding for that specific method call.

o It is useful when the subclass wants to extend or modify the behavior of the
superclass method.

Example Program: Dynamic Binding with super

class Animal {
void sound() {
System.out.println("Animal makes a sound");

}
j

class Dog extends Animal {
void sound() {
System.out.println("Dog barks");
§
void display() {
sound(); // Calls Dog's overridden method (dynamic binding)
super.sound(); // Calls Animal's method using super

}

}
public class Main {

public static void main(String[] args) {
Dog d = new Dog();
d.display();
}
}

Output:
Dog barks
Animal makes a sound

Web Technologies Lab 2.6 Advanced Java Concepts: Binding ...

Explanation:

e sound() is overridden in Dog.

e d.sound() calls the method dynamically based on object type (Dog).

o super.sound() calls the superclass (Animal) method explicitly, bypassing dynamic
binding for that call.

How Dynamic Binding Works in Java

Dynamic Binding (also called late binding) is a process where the method call is resolved at
runtime, not at compile time. It enables runtime polymorphism, allowing a program to decide
which method implementation to execute based on the actual object type, not the reference

type.
How It Works — Step by Step:

1. Inheritance: A subclass overrides a method defined in a superclass.

2. Reference Variable: A superclass reference is used to refer to a subclass object.

3. Method Call: When a method is called on this reference, Java checks the actual object
typeatruntime.

4. Runtime Resolution: The JVM dynamically binds the method call to the overridden
method in the subclass.

Example:

class Animal {
void sound() {
System.out.println(" Animal makes a sound");

j
j

class Cat extends Animal {
void sound() {
System.out.println("Cat meows");

}

}
public class Main {

public static void main(String[] args) {
Animal a = new Cat(); // Superclass reference, subclass object
a.sound(); // Dynamic Binding: calls Cat's sound()
}
}

Output:
Cat meows

Why It Matters:

e Supports runtime polymorphism.

Centre for Distance Education 2.7 Acharya Nagarjuna University

o Increases flexibility and scalability of the code.
e Allows programs to be more modular and maintainable.

Key Points about Dynamic Binding

1. Occurs at Runtime
e Method calls are resolved during program execution, not at compile time.
2. Supports Polymorphism
e Enables runtime polymorphism, allowing different behaviors through a common
interface or superclass.
3. Involves Method Overriding
e Works when a subclass overrides a method from the superclass.
4. Reference Type vs Object Type
e The reference type determines which methods are accessible, but the actual object
type determines which overridden method is called.
5. Used with Non-static Methods
e Applies only to non-static, non-final, and non-private methods (as these can be
overridden).
6. Enhances Flexibility
e Makes the code more modular, scalable, and maintainable.
7. Handled by JVM
e The Java Virtual Machine determines the correct method to invoke at runtime.
8. Improves Code Reusability
e Same method call can result in different behaviors depending on the object,
enabling code reuse through inheritance.

Advantages of Java Dynamic Binding

1. Enables Runtime Polymorphism
e Allows the same method call to behave differently based on the actual object type
at runtime.
2. Supports Method Overriding
e Lets subclasses provide specific implementations of methods defined in the
superclass, enhancing flexibility.
3. Improves Code Flexibility and Maintainability
e You can write more general code using superclass or interface references and
extend it later without modifying existing code.
4. Reduces Code Complexity
e Avoids the need for complex if-else or switch statements by using overridden
methods in subclass objects.
5. Promotes Loose Coupling
e Objects interact through abstract classes or interfaces rather than concrete
implementations, promoting better design.
6. Supports Extensibility
e New subclasses with different behaviors can be added without affecting the base
class or existing code.
7. Encourages Reusability
e Superclass code can be reused, while subclasses override only the necessary parts,
minimizing duplication.

Web Technologies Lab 2.8 Advanced Java Concepts: Binding ...

8. Foundation for Design Patterns

e [Essential for implementing many object-oriented design patterns like Strategy,

Command, and Template Method.
9. Enables Dynamic Behavior

e Behavior of the program can be changed at runtime, which is especially useful in

frameworks and plug-in architectures.

Note: Dynamic binding in Java is the process where method calls are resolved at runtime, not
at compile time, allowing for polymorphism and dynamic method invocation. This
mechanism empowers developers to write flexible, extensible, and maintainable code by
leveraging core principles of object-oriented programming. The examples provided illustrate
how overridden methods are dynamically selected based on the actual object type at runtime,
highlighting the importance and practical value of dynamic binding in real-world Java

applications.
2.3 Abstract Classes and Methods

What is an Abstract Class?

An abstract class is a class that is declared with the abstractkeyword. It may or may not

contain abstract methods (methods without a body), but it cannot be instantiated directly.
It acts as a base class that other classes extend to provide specific implementations.

Example:
abstract class Shape {
abstract void draw(); // abstract method
void display() {
System.out.println("Displaying shape");} }

What is an Abstract Method?

An abstract method is a method declared without an implementation in the abstract class.
Subclasses must override this method.

Syntax:

abstract returnType methodName();

Abstract methods are used when you want to force subclasses to implement specific behavior.

2.3.1 Key Characteristics of Abstract Classes
‘ Feature H Description

‘abstract keyword HUsed to define an abstract class or method

‘Can contain abstract methods HMethods declared without a body

‘Can have constructors HTo initialize fields when subclass objects are created
‘Can have instance variables HLike normal classes
‘Can extend another class HAbstract or concrete

|
|
|
‘Can contain concrete methods HFully implemented methods ‘
}
|
|

‘Can be extended by another classHWhich must implement abstract methods

Centre for Distance Education 2.9 Acharya Nagarjuna University

Example: Abstract Class with Method Implementation
abstract class Animal {
abstract void makeSound(); // abstract method

void breathe() {
System.out.println(" Animal breathes");

}
j

class Cat extends Animal {
void makeSound() {
System.out.println("Cat meows");

}

}
public class Main {

public static void main(String[] args) {
Animal a = new Cat(); // Polymorphism
a.makeSound(); // Calls Cat's method
a.breathe(); // Calls inherited method

j
}

Why Use Abstract Classes?

Advantages:
e Provides a common interface for all subclasses.
o Helps implement partial abstraction.
e Promotes code reuse by defining common behavior in the abstract class.
e Ideal when multiple classes share common methods but also require specific
implementations.

Rules for Abstract Classes and Methods
e A class must be declared abstract if it contains any abstract methods.
e Abstract classes cannot be instantiated.
e Subclasses must override all abstract methods, unless the subclass is also abstract.
e Abstract methods cannot be static, private, or final.
o Constructors in abstract classes can be used by subclasses through super().

Abstract Class vs Interface (Key Differences)

‘ Feature H Abstract Class H Interface ‘
‘Keywords HAbstract Hinterface ‘
Method Can have both abstract and Java 8+ allows default and static
Implementation concrete methods methods

Supported (a class can implement

Multiple Inheritance |[Not supported multiple interfaces)

‘Constructors HCan have constructors HCannot have constructors ‘

‘Access Modifiers HCan use public, protected, etc. HAll methods are public by default ‘

When classes share common When unrelated classes share

Use Case base behavior behavior

‘ Web Technologies Lab 2.10 Advanced Java Concepts: Binding ...

Real-World Use Cases
o Shape hierarchy: Shape (abstract) — Circle, Rectangle, etc.
o Employee hierarchy: Employee (abstract) — FullTimeEmployee,
PartTimeEmployee
e Game development: Character (abstract) — Hero, Villain

o Use abstract classesto define a common structure and partial implementation.

o Use abstract methods to force specific behavior in subclasses.

e Abstract classes play a crucial role in polymorphism, inheritance, and code
organization.

2.4 INTERFACES

What is an Interface?
An interfacein Java is a reference type, similar to a class that can contain only abstract
methods(until Java 7) and constant variables. Since Java 8§ and later, interfaces can also have
default methods (methods with a body), static methods, and private methods (since Java 9).

o Interfaces define acontract that implementing classes must fulfill.

o Interfaces specify what a class should do, but not how it does it.

Syntax of Interface

interface Animal {
void sound(); /I Abstract method (implicitly public and abstract)
int LEGS =4; // Constant variable (implicitly public, static, final)

default void sleep() { // Default method with implementation (Java 8+)
System.out.println("Animal is sleeping");
}
static void info() { // Static method (Java 8+)
System.out.println("Animals interface");
J
J

2.4.1 Implementing an Interface

A class implements an interface using the implements keyword and must provide
implementations for all abstract methods.

class Dog implements Animal {
public void sound() {
System.out.println("Dog barks");

h
}

Centre for Distance Education 2.11

Acharya Nagarjuna University

Key Features of Interfaces

Feature

Description

All methods are abstract by default (before No method bodies unless default or static

Java 8) methods

Variables are public static final by default Constants only, no instance variables
Supports multiple inheritance A class can implement multiple interfaces
Cannot be instantiated Interfaces only define behavior, not state

Default and static methods allowed (Java 8+) ||Added flexibility in interface design

Private methods allowed (Java 9+) To share code within interface methods

Why Use Interfaces?

e Achieve Multiple Inheritance: Java does not support multiple inheritance with

classes but allows it through interfaces.

e Define Contracts: Specify methods that must be implemented, ensuring consistency

across classes.

e Decouple Code: Promote loose coupling by programming to interfaces rather than

implementations.

e Support Polymorphism: Objects can be referred to by their interface types, enabling

flexible code.
Example: Multiple Interfaces

interface Printable {
void print();
¥
interface Showable {
void show();
}
class Document implements Printable, Showable {
public void print() {
System.out.println("Printing document");
h
public void show() {
System.out.println("Showing document");

h
h

Rules and Restrictions

e A class must implement all abstract methods of an interface or be declared abstract.

o Interface methods are implicitly public.

Web Technologies Lab 2.12 Advanced Java Concepts: Binding ...

Interfaces cannot have constructors.

Variables in interfaces are public static final by default.

From Java 8 onwards, interfaces can have default and static methods.
Interfaces can extend multiple interfaces.

Interface vs Abstract Class

Aspect Interface Abstract Class
Inheritance Supports multiple inheritance Single inheritance only
1 tract, default, stati

Methods Only abstract, default, static Abstract and concrete methods
methods

Variables Constants (public static final) Instance variables allowed

Constructors Not allowed Allowed

A .

cce‘ss All methods are public Can have protected, private, etc.

Modifiers

Use Case Define capabilities (e.g.,]?eﬁne base ?lass with partial
Runnable) implementation

Real-world Uses

Runnable interface: For defining tasks to be run by threads.
Comparable interface: To provide sorting behavior.
Collection framework interfaces: Like List, Set, Map.

Note:

o Interfaces are essential for designing flexible and extensible Java applications.

e They provide a way to achieve multiple inheritance.

e Promote loose coupling, code reusability, and polymorphism.

o Evolved to support default, static, and privatemethods for more powerful abstractions.
2.5 Packages
What is a Package?

A package in Java is a namespace that organizes classes, interfaces, enumerations, and sub-
packages into a single group. It helps avoid naming conflicts and controls access.
Think of packages as folders/directories on your computer, grouping related files together.

2.5.1 Why Use Packages?

Namespace management: Prevents class name conflicts by grouping classes
logically.

Access control: Classes in the same package can access each other’s package-private
members.

Code organization: Makes large codebases manageable by grouping related classes.
Reusability: Facilitates easier distribution and reuse of related classes.

Modularity: Enables modular programming and better maintenance.

Centre for Distance Education 2.13 Acharya Nagarjuna University

2.5.2 Types of Packages
Type H Description H Example
Built-in Predefined packages provided by Java java.util, java.io, java.lang
SDK
User- Created by developers to organize code com.example.my?p P,
defined org.company.project

How to Declare a Package?

The package statement should be the first line(except comments) in a Java source file.
package com.example.myapp;

public class HelloWorld {
public static void main(String[] args) {
System.out.println("Hello from my package!");

j
}

Importing Packages and Classes
To use classes from other packages, use the import statement.

import java.util.Scanner; // Imports Scanner class only
import java.util. *; // Imports all classes from java.util package

e (lasses in the same package do not require import.
o Classes in java.lang (like String, System) are imported automatically.

Package Naming Conventions

o Use lowercase letters.
o Use your organization’s internet domain name in reverse as a prefix to avoid name
conflicts.
Example: com.companyname.project
e Separate words with dots (.).
o Example package names:
o com.google.maps
o org.apache.commons

Access Control and Packages

‘ Access Modifier HSame ClassHSame PackageHSubclass (any package)HOther Packages‘

‘Public HYes HYes HYes HYes ‘
‘Protected HYes HYes HYes HNO ‘
‘default (no modiﬁer)HYes HYes HNO HNO ‘

|

‘Private HYes HNo HNO HNO

Web Technologies Lab 2.14 Advanced Java Concepts: Binding ...

e (lasses with default(no modifier) access are visible only within the same package.
2.5.3 Creating and Using Packages: Example

Folder structure:

src/
L— com/

L— example/
[—app/
| L— Main.java
L— utils/

L— Helper.java
Helper.java

package com.example.utils;
public class Helper {
public static void greet() {
System.out.println("Hello from Helper!");}}

Main.java

package com.example.app;
import com.example.utils.Helper;
public class Main {
public static void main(String[] args) {

Helper.greet();
}
}
Subpackages

o Packages can have subpackages to create a hierarchical structure.
o Subpackages are notconsidered part of the parent package.
e You must import subpackages explicitly.

2.5.4 Benefits of Using Packages
e Avoid class name collisions in large projects.
o Easier to maintain and locate files.

e Improves modularity and encapsulation.
o Facilitates sharing and reuse of code libraries.

o Packages are fundamental for organizing Java code.

Centre for Distance Education 2.15 Acharya Nagarjuna University

e Provide a namespace mechanism and access control.
o Follow naming conventions based on reverse domain names.
o Essential for scalable and maintainable software development.

2.6 Summary

Binding in Java is the process of linking a method call to its actual method implementation.
There are two types: static binding (early binding) and dynamic binding (late binding). Static
binding happens at compile time and is used for private, static, and final methods, as well as
method overloading, where the compiler determines which method to call based on the
reference type. In contrast, dynamic binding occurs at runtime and is essential for method
overriding and runtime polymorphism. It allows Java to determine the actual object's type
during execution and call the appropriate overridden method, providing greater flexibility and
extensibility. Dynamic binding supports polymorphism, making code more modular and
maintainable, while static binding offers faster execution but less flexibility. The super
keyword can be used in dynamic binding to explicitly call a superclass method, bypassing the
dynamic dispatch. Dynamic binding enables the same method call to behave differently
depending on the actual object, promoting code reuse, loose coupling, and scalable design.
This feature is fundamental for many design patterns and frameworks, allowing behavior to
change dynamically at runtime. Overall, dynamic binding enhances Java’s object-oriented
capabilities by supporting flexible, extensible, and reusable code

2.7 Key Terms

Binding, Static Binding (Early Binding), Dynamic Binding (Late Binding) Polymorphism,
Method Overriding, Method Overloading, Runtime Polymorphism, Compile Time, Runtime,
super Keyword, Abstract Class, Abstract Method, Interface, Package, Access Modifiers.

2.8 Self-Assessment Questions

1. What is binding in Java?

2. What is the difference between static binding and dynamic binding?

3. Which types of methods use static binding?

4. How does dynamic binding support polymorphism?

5. What role does the super keyword play in dynamic binding?

6. Why can't abstract classes be instantiated?

7. What is the purpose of an abstract method?

8. How do interfaces differ from abstract classes?

9. What is the benefit of using packages in Java?

10. How does Java control access to classes and members within packages?

2.9 Further Readings

1. The Complete reference Java, Herbet Schildt, 7" Edition, McGraw Hill.

2. Java for Programmers, P.J.Deitel and H.M.Deitel, PEA (or) Java: How to Program,
P.J.Deiteland H.M.Deitel , PHI

3. ObjectOrientedProgrammingthroughJava,P.RadhaKrishna,UniversitiesPress.

Dr. Kampa Lavanya

LESSON- 3
GUI DEVELOPMENT IN JAVA - EVENT
HANDLING AND APPLETS

Aim and Objectives:

To understand the structure and components of Java GUI using AWT and Swing.

To learn and implement event handling using various listener interfaces.

To develop interactive GUI applications responding to user actions.

To understand the lifecycle and usage of Java Applets.

To design and integrate GUI elements within applets for web-based Java applications.

VVVVY

STRUCTURE:

3.1What is an Event in Java?
3.1.1Event Class Hierarchy
3.1.2.How Events Work in Java
3.1.3 Classification of Events
3.1.4.Event Handling Mechanism in Java
3.1.5 Event Classes and Listener Interfaces
3.1.6.Methods in Listener Interfaces
3.1.7 Flow of Event Handling in Java
3.1.8 Approaches for Event Handling in Java
3.2.Applets
3.2.1 What is a Java Applet?
3.2.2.Java Applet Life Cycle
3.2.3 Understanding the Lifecycle of an Applet
3.2.4 Creating Hello World Applet
3.3 Introduction to GUI in Java
3.3.1 Key Features of Java GUI:
3.4 Summary
3.5 Key Terms
3.6 Self-Assessment Questions
3.7 Further Readings

3.1.What is an Event in Java?

An event in Java is an object that describes a change in the state of a source. Events are
generated when a user interacts with GUI components such as buttons, text fields, or
windows.

Definition:

An event is an occurrence triggered by the user (like a mouse click or key press) or by the
system (like a window closing), which can be handled by event listeners to execute some
specific action.

Web Technologies Lab 3.2 Gui Development In Java — Event ...

Examples of Events:

User Action Corresponding Event
Clicking a button ActionEvent

‘Moving or clicking a mouse HMouseEvent ‘
Pressing a key KeyEvent

‘Selecting an item from a list HItemEvent ‘
Resizing a window ComponentEvent

3.1.1 Event Class Hierarchy:

All event classes are part of the java.awt.event package and are subclasses of
java.util. EventObject.

java.util. EventObject

L— java.awt. AWTEvent

—— ActionEvent

—— MouseEvent

— KeyEvent

—— WindowEvent

—— ... and more

3.1.2 How Events Work in Java:

Java uses an Event Delegation Model, which involves three key components:
1. Event Source — The GUI component (e.g., button) that generates the event.
2. Event Object — Contains information about the event.
3. Event Listener — Interface that receives and handles the event.

Simple Example:
JButton button = new JButton("Click Me");

button.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvente) {
System.out.println("Button was clicked!");

}
;s

In this example:
e The button is the event source.
e ActionEvent is the event object.
o ActionListener is the event listener handling the action.

What Happens at Runtime?

e A button labeled "Click Me" is created.

Centre for Distance Education 33 Acharya Nagarjuna University

e An ActionListener is added to the button.
e When the user clicks the button, the actionPerformed() method is executed.

Console Output (After Button Click):
Button was clicked!

3.1.3 Classification of Events

Foreground Background
Events Events

Events in Java can be broadly classified into two categories based on how they are generated:

1. Foreground Events: Foreground events are the events that require user interaction to
generate. Examples of these events include Button clicks, Scrolling the scrollbar,
Moving the cursor, etc.

2. Background Events: Events that don't require interactions of users to generate are
known as background events. Examples of these events are operating system
failures/interrupts, operation completion, etc.

3.1.4.Event Handling Mechanism in Java

Event handling in Java enables programs to manage and respond to events effectively by
specifying actions to be performed when an event occurs. Java employs the Delegation
Event Model to handle these interactions, which is based on a clear separation of
responsibilities between two key components:

1. Source: The source is the object that generates an event. Common event sources
include GUI components such as buttons, checkboxes, lists, menu items, choices,
scrollbars, text fields, and windows.

2. Listener: A listener is an object that waits for and responds to events generated by the
source. Listeners are defined through interfaces, and each type of event has a
corresponding listener interface responsible for handling it (e.g., ActionListener,
ItemListener, MouseListener, etc.).

Web Technologies Lab 3.4 Gui Development In Java — Event ...

Delegation Event Model

Consists
. 3

Sources Listners

Registering the Source with a Listener

In Java, to enable event handling, the event source must be explicitly registered with an
appropriate listener. This establishes a connection so that when the event occurs, the listener
is notified and can respond accordingly.

Java provides specific methods for registering listeners depending on the type of event:

Syntax:
add<Type>Listener(listenerInstance)

Examples:

o addKeyListener() — used to register a listener for keyboard events (KeyEvent)
e addActionListener() — used to register a listener for action events like button clicks
(ActionEvent)

3.1.5 Event Classes and Listener Interfaces

o Java offers a rich set of event classes and their corresponding listener interfaces as
part of the java.awt.event and javax.swing.event packages. These classes and
interfaces enable developers to handle different types of user and system-generated
events effectively.

o The table below lists some of the most commonly used event classes along with their
associated listener interfaces:

‘ Event Class H Listener Interface H Description ‘

‘ActionEvent HActionListener HHandles action events like button clicks ‘
. Handles i lecti '

ItemEvent TtemListener andles item selection events in

components like checkboxes and choices

Handles keyboard key press, release, and

KeyEvent KeyListener
Y y type events
MouseListener, Handles mouse click, press, release, enter,
MouseEvent . . .
MouseMotionListener exit, move, and drag events

MouseWheelEvent"MouseWheelListener

’Handles mouse wheel rotation

Handles window events like open, close,

WindowEvent WindowListener .
minimize, etc.

Centre for Distance Education

3.5

Acharya Nagarjuna University

Event Class H Listener Interface H Description
FocusEvent FocusListener Handles focus gained or lost by a
component
.
ComponentEvent |[ComponentListener Hapdles change.:s .t9 a components size,
position, or visibility
‘AdjustmentEvent HAdjustmentListener “Handles scrollbar adjustments ‘
‘TextEvent HTextListener “Handles changes in text components ‘

3.1.6. Methods in Listener Interfaces

Each listener interface in Java defines one or more methods that must be implemented to
handle specific types of events. These methods are automatically invoked when the
corresponding event occurs, allowing developers to define custom behavior in response.
Below is a summary of some common listener interfaces and their associated methods:

Listener
Interface Methods Purpose
. . . Invoked when an action event occurs
ActionListener actionPerformed(ActionEvent e) .
(e.g., button click)
ItemListener itemStateChanged(ItemEvent e) Invoked when an item is selected or
deselected
KevListener keyPressed(KeyEvente)keyReleased(|[Handle keyboard key actions (press,
Y KeyEvente)keyTyped(KeyEvent e) release, and typing)
mouseClicked(MouseEvente)mouseEn
. tered(MouseEvente)mouseExited(Mou|Handle mouse click and basic
MouseListener . .
seEvente)mousePressed(MouseEvente |interactions
)mouseReleased(MouseEvent e)
MouseMotionList [mouseDragged(MouseEvente)mouse |[Handle mouse movement and
ener Moved(MouseEvent e) dragging
MouseWheelListe [mouseWheelMoved(MouseWheelEve .
Handles mouse wheel rotation
ner nt e)
windowOpened(WindowEvente)wind
owClosing(WindowEvente)windowCl
osed(WindowEvente)windowIconified
WindowListener |(WindowEvente)windowDeiconified(|[Handle window state changes
WindowEvente)windowActivated(Wi
ndowEvente)windowDeactivated(Win
dowEvent e)
. focusGained(FocusEvente)focusLost(|[Handle focus gained or lost by
FocusListener
FocusEvent e) components
componentResized(ComponentEvente
ComponentListen JcomponentMoved(ComponentEvente Handle changes in component
or)componentShown(ComponentEvente Visibility. size. or position
)componentHidden(ComponentEvent Y, - 0T P
e)

Web Technologies Lab 3.6 Gui Development In Java — Event ...

3.1.7 Flow of Event Handling in Java

Event handling in Java follows a systematic process to manage user interactions. The typical
flow involves the following steps:

1.

2.

User Interaction: An event is triggered when the user interacts with a GUI
component (e.g., clicking a button or pressing a key).

Event Object Creation: After the event is generated, an object of the corresponding
event class is automatically created. This object contains detailed information about
the event and its source.

Event Dispatch to Listener: The event object is then passed to the appropriate
method of the listener interface that has been registered to handle that event.
Listener Method Execution: The listener method processes the event and executes
the defined actions or responses.

3.1.8 Approaches for Event Handling in Java
Java provides several approaches to handle events, giving developers flexibility in structuring
their code. The most commonly used approaches are:

1.

Implementing Listener Interface in a Separate Class

o A dedicated class is created to implement the listener interface.
o Keeps code modular and reusable.
o Best suited for handling events from multiple components.

Example:
import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

class MyEventHandler implements ActionListener {
public void actionPerformed(ActionEvente) {

System.out.println("Button clicked from separate class!");

}
h

public class SeparateClassExample {

public static void main(String[] args) {
JFrame frame = new JFrame("Event Handling - Separate Class");
JButton button = new JButton("Click Me");

button.addActionListener(new MyEventHandler()); // Register listener

Centre for Distance Education 3.7 Acharya Nagarjuna University

frame.add(button);

frame.setSize(300, 100);

frame.setLayout(new FlowLayout());
frame.setDefaultCloseOperation(JFrame.EXIT ON_CLOSE);

frame.setVisible(true);

}
}

Input: Click the button
Output:
Button clicked from separate class!

2. Implementing Listener Interface in the Main Class
Example:

import java.awt.*;
import java.awt.event.*;

import javax.swing.*;

public class MainClassListenerExample extends JFrame implements ActionListener {

JButton button,;

MainClassListenerExample() {
button = new JButton("Click Me");

button.addActionListener(this); // Register listener

add(button);
setSize(300, 100);

setLayout(new FlowLayout());

Web Technologies Lab 3.8 Gui Development In Java — Event ...

setDefaultCloseOperation(JFrame.EXIT ON_ CLOSE);

setVisible(true);

}

public void actionPerformed(ActionEvente) {

System.out.println("Button clicked from main class!");

}

public static void main(String[] args) {

new MainClassListenerExample();

}

Input: Click the button

Output:

Button clicked from main class!

3. Using Anonymous Inner Class

Example:

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

public class AnonymousClassExample {
public static void main(String[] args) {

JFrame frame = new JFrame("Event Handling - Anonymous Class");

JButton button = new JButton("Click Me");

button.addActionListener(new ActionListener() {

Centre for Distance Education 3.9 Acharya Nagarjuna University

public void actionPerformed(ActionEvente) {

System.out.println("Button clicked from anonymous class!");

}
s

frame.add(button);

frame.setSize(300, 100);

frame.setLayout(new FlowLayout());
frame.setDefaultCloseOperation(JFrame. EXIT ON_ CLOSE);

frame.setVisible(true);

j
j

Input: Click the button
Output:
Button clicked from anonymous class!
4. Using Lambda Expression (Java 8+)
Example:
import java.awt.*;
import javax.swing.*;
public class LambdaExpressionExample {
public static void main(String[] args) {
JFrame frame = new JFrame("Event Handling - Lambda Expression");
JButton button = new JButton("Click Me");
button.addActionListener(e ->System.out.println("Button clicked using lambda!"));
frame.add(button);

frame.setSize(300, 100);

Web Technologies Lab

3.10 Gui Development In Java — Event ...

frame.setLayout(new FlowLayout());

frame.setDefaultCloseOperation(JFrame.EXIT ON CLOSE);

frame.setVisible(true);

j
j

Input: Click the button

Output:

Button clicked using lambda!

Table:

‘ Approach ‘

‘ Pros

H Cons ‘

‘Separate Class ‘

‘Clean separation of concerns

HRequires more boilerplate code ‘

Main Class

Easy to implement for small
applications

Can clutter the main class

‘Anonymous Inner Class ‘

‘Concise for one-time use

HLess reusable ‘

Lambda Expression (Java
8+)

Most concise and readable

Only works with functional
interfaces

3.2.Applets

Java Applets

Java Applets were once a popular feature in early web applications. These small Java
programs could run inside a web browser, providing interactive and dynamic content.
Although applets are now obsolete, learning about them helps us understand the evolution of
Java, especially its approach to graphics and GUI development.

Note: The java.applet package was deprecated starting from Java 9, as modern web
technologies have replaced the need for applets.

3.2.1 What is a Java Applet?

A Java Applet is a program written in Java that is designed to be embedded within a web
page and executed by a browser. Applets are included in HTML using the <applet> or
<object> tags. They were commonly used to enhance web pages with multimedia,
animations, and interactive features.

Applets operate in a sandboxed environment to ensure security, meaning they have
restricted access to the local system.

Centre for Distance Education 3.11 Acharya Nagarjuna University

Key Points about Applets

o Applet Basics: Every applet is a subclass of the java.applet. Applet class.

e Not Standalone: Applets cannot run independently like regular Java applications.
They require a web browser or a special tool called the Applet Viewer, which is
included with the Java Development Kit (JDK).

e No main() Method: Applets do not use the main() method to start execution. Instead,
they rely on lifecycle methods such as init(), start(), and paint().

o Displaying Output: Unlike traditional programs that use System.out.println(), applets
display content using graphical methods from the Abstract Window Toolkit (AWT),
such as drawString().

3.2.2.Java Applet Life Cycle

The below diagram demonstrates the life cycle of Java Applet:

-
J
;I

-~

'

E

Paint()

|

.

destroy ()

3.2.3 Understanding the Lifecycle of an Applet
It is essential to understand the order in which the lifecycle methods of an applet are invoked.
When an applet starts, the following methods are called in sequence:

1. init() — This method is called once when the applet is first loaded. It is used for
initialization, such as setting up user interface components or loading resources.

2. start() — Called after init(), and also each time the applet becomes active (e.g., when
returning to the page containing the applet).

3. paint(Graphics g) — Invoked after start() to render the applet's output on the screen.

When an applet is terminated or no longer visible, the following methods are executed in
order:

1. stop() — Called when the applet becomes inactive, such as when the user navigates
away from the page.

2. destroy() — Invoked just before the applet is removed from memory. It is used to
release resources and perform cleanup operations.

Web Technologies Lab 3.12 Gui Development In Java — Event ...

Key Packages for Java Applets

e java.applet.Applet: Base class for applets.
e java.awt.Graphics: Used for drawing on the applet screen.
e java.awt: Provides GUI components and event-handling mechanisms.

3.2.4 Creating Hello World Applet

To understand how applets work, let’s create a simple “Hello World” applet. This example
demonstrates the basic structure and the use of applet lifecycle methods.
Steps to Create a Hello World Applet:
1. Import Required Packages
Import java.applet.Applet and java.awt.Graphics packages.
2. Extend the Applet Class
Create a class that extends the Applet class.
3. Override the paint() Method
Use the paint(Graphics g) method to display the output on the applet window.

Example Code:
import java.applet.Applet;
import java.awt.Graphics;

/*

<applet code="HelloWorldApplet.class" width="300" height="100">
</applet>

*/

public class HelloWorldApplet extends Applet {

public voidpaint(Graphics g) {
g.drawString("Hello, World!", 100, 50);

}
j

Explanation:

e The drawString() method of the Graphics class is used to display the text '""Hello,
World!" at the coordinates (100, 50).

o The HTML-style comment is used to embed the applet into a web page using the
<applet> tag.

How to Run:

1. Save the file as HelloWorldApplet.java.
2. Compile it using:

3. javac HelloWorldApplet.java

4. Run it using the appletviewer tool:

5. appletviewer HelloWorldApplet.java

Centre for Distance Education 3.13 Acharya Nagarjuna University

Note: Modern browsers no longer support applets. Applet-based programs are mainly run
using the appletviewer tool or within Java-enabled development environments.

1. Using a Java-Enabled Web Browser

In the past, Java applets could be run directly within web browsers that had Java plugin
support. To run a Hello World Applet this way, follow these steps:

Step 1: Create the Applet Source Code
Create a file named HelloWorldApplet.java:

import java.applet.Applet;
import java.awt.Graphics;

public class HelloWorldApplet extends Applet {
public voidpaint(Graphics g) {
g.drawString("Hello, World!", 100, 50);

§
}

Step 2: Compile the Applet

Open the command prompt or terminal and compile the Java file:

javac HelloWorldApplet.java

This will generate a HelloWorldApplet.class file.

Step 3: Create an HTML File

Create a file named HelloApplet.html and include the following content:

<htmI>

<head>

<title>Hello Applet</title>

</head>

<body>

<applet code="HelloWorldApplet.class" width="300" height="100">
Your browser does not support Java Applets.

</applet>

</body>

</html>

Web Technologies Lab 3.14 Gui Development In Java — Event ...

Step 4: Open the HTML File in a Java-Enabled Browser

e Open the HelloApplet.html file in a Java-enabled browser (e.g., older versions of
Internet Explorer, Netscape Navigator, or using a special plugin).
o The applet will be loaded, and the text "Hello, World!" will appear.

Important Note:

Most modern web browsers (like Chrome, Firefox, and Edge) have removed support for
Java Applets due to security concerns. Java Applets are now considered outdated, and the
recommended way to run them is using the appletviewer tool included with the JDK for
testing and educational purposes.

2. Using appletviewer Tool

The appletviewer is a command-line utility provided by the JDK to run and test Java applets
without needing a web browser.

Step 1: Write the Applet Code
Create a Java file named HelloWorldApplet.java:

import java.applet.Applet;
import java.awt.Graphics;

public class HelloWorldApplet extends Applet {
public voidpaint(Graphics g) {
g.drawString("Hello, World!", 100, 50);

j
}

Step 2: Add an HTML Applet Tag in Comments

Add the <applet> tag inside a block comment in the same .java file, like this:
/*

<applet code="HelloWorldApplet.class" width="300" height="100">

</applet>
*/

This allows the appletviewer tool to detect and use the tag directly from the source file.
Step 3: Compile the Applet
Open the terminal or command prompt and run:

javac HelloWorldApplet.java

Centre for Distance Education 3.15 Acharya Nagarjuna University

This creates the compiled file HelloWorldApplet.class.
Step 4: Run the Applet Using appletviewer

Now run the applet using:

appletviewer HelloWorldApplet.java

The appletviewer will launch a window and display "Hello, World!" at the specified
position.

Advantages of Using appletviewer

e No need for a web browser.
e Quick testing of applets during development.
e Works even though browsers have discontinued support for applets.

Note: Make sure you have the JDK installed and that the bin directory is included in your
system’s PATH variable to use javac and appletviewer.

3.3 Introduction to GUI in Java

A Graphical User Interface (GUI) in Java allows users to interact with programs visually
through elements like buttons, text fields, menus, and windows rather than typing commands
in a console.

Java provides two main libraries for creating GUIs:

1. AWT (Abstract Window Toolkit)
o Part of Java’s original GUI library (from JDK 1.0)
o Platform-dependent (uses native OS components)
o Basic GUI components like Button, Label, TextField, etc.
2. Swing (javax.swing package)
o Built on top of AWT (introduced in JDK 1.2)
o Platform-independent (pure Java implementation)
o Provides rich, flexible GUI components like JButton, JTextField, JLabel,
JTable, etc.
o Supports pluggable look-and-feel, lightweight components, and more control
over GUI design.

3.3.1 Key Features of Java GUI:

e Event-driven: Components respond to user actions (click, type, move).
e Component-based: GUI built using reusable components.
o Customizable: Layout managers allow flexible positioning of elements.

Web Technologies Lab 3.16 Gui Development In Java — Event ...

e Thread-safe: GUI updates should occur on the Event Dispatch Thread (EDT).

Common GUI Components in Swing:

Component Description
JFrame Main window
JButton Button
JLabel Display text or image
JTextField Input single line text
JTextArea Multi-line text input
JCheckBox, JRadioButton|[Selection options

Example: Basic GUI with JFrame, JLabel, JTextField, and JButton

import javax.swing.*;
import java.awt.event.™*;

public class SimpleGUI {
public static void main(String[] args) {
/I Create a frame
JFrame frame = new JFrame("Simple GUI Example");
frame.setSize(300, 200);
frame.setLayout(null); // Using no layout manager
frame.setDefaultCloseOperation(JFrame.EXIT ON_ CLOSE);

/I Create a label
JLabel label = new JLabel("Enter your name:");
label.setBounds(20, 20, 120, 25);
frame.add(label);

// Create a text field
JTextFieldtextField = new JTextField();
textField.setBounds(150, 20, 100, 25);
frame.add(textField);

/I Create a button

JButton button = new JButton("Greet");
button.setBounds(100, 70, 80, 30);
frame.add(button);

// Create a label to show the result
JLabelresultLabel = new JLabel("");

Centre for Distance Education 3.17 Acharya Nagarjuna University

resultLabel.setBounds(20, 120, 250, 25);
frame.add(resultLabel);

// Add event listener to button
button.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvente) {
String name = textField.getText();
resultLabel.setText("Hello, " + name + "!");

}
s

// Make frame visible
frame.setVisible(true);
J
J

Expected Output:
When you run the program:

1. A window titled "Simple GUI Example" opens.

2. It contains:

A label: "Enter your name:"

A text field to input your name.

A button labeled "Greet".

An empty label where the greeting will appear.

o O O O

When you type a name in the text field (e.g., Alice) and click the "Greet" button, the label
at the bottom updates to:

Hello, Alice!
3.4 Summary

In Java, event handling is a mechanism that enables programs to respond to user interactions
like mouse clicks, key presses, or window actions through a well-structured Event Delegation
Model. Events are generated by sources such as buttons or text fields and are handled using
listener interfaces like ActionListener, MouseListener, or KeyListener. Java provides several
approaches to implement event handling, including separate listener classes, the main class,
anonymous inner classes, and lambda expressions (Java 8+), each with its own advantages.
Events are categorized into foreground (user-driven) and background (system-driven), and
are managed using classes in the java.awt.event and javax.swing.event packages. In contrast,
Java applets are small Java programs designed to run within a web browser, historically
used to create interactive web content. Applets follow a defined lifecycle involving methods

‘ Web Technologies Lab 3.18 Gui Development In Java — Event ...

like init(), start(), paint(), stop(), and destroy(), and rely on the java.applet and java.awt
packages. Though now deprecated and unsupported in modern browsers, applets represent an
important part of Java’s evolution in GUI and web-based development. Java GUI allows
users to interact visually using components like buttons and text fields, created using AWT or
Swing libraries. Swing provides a rich, platform-independent set of components, supporting
event-driven and customizable interfaces.

3.5 Key Terms

Event,Event Listener,ActionEvent,MouseEvent,KeyEvent,Event Delegation
Model,Foreground Events,Background Events,addActionListener(),Anonymous Inner
Class,Lambda Expression,AWT (Abstract Window Toolkit), Applet,paint(Graphics g),Applet
Life Cycle,Swing, Event-driven programming.

3.6 Self-Assessment Questions

What is an event in Java, and how is it triggered?

Explain the Event Delegation Model in Java. What are its main components?
What is the purpose of an event listener in Java?

Differentiate between foreground and background events with examples.
What are the steps involved in the event handling flow in Java?

List any three event classes and their corresponding listener interfaces.

What are the different approaches to implement event handling in Java?
How does a lambda expression simplify event handling in Java 8 and above?
What is a Java Applet and how is it different from a standalone Java application?
10 Describe the life cycle methods of a Java Applet and their execution order.
11. What does it mean for a Java GUI application to be event-driven?

R

3.7 Further Readings

1. The Complete reference Java, Herbet Schildt, 7 Edition, McGraw Hill.

2. Java for Programmers, P.J.Deitel and H.M.Deitel, PEA (or) Java: How to Program
,P.J.DeitelandH.M.Deitel, PHI

3. ObjectOrientedProgrammingthroughJava,P.RadhaKrishna,UniversitiesPress.

Dr. Kampa Lavanya

LESSON- 4
SWING FRAMEWORK AND LAYOUT

MANAGEMENT

Aim and Objectives:

>

vV V ¥V VvV 'V

Understand the fundamentals of Swing and how it differs from AWT in terms of
architecture, performance, and flexibility.

Explore the MVC (Model-View-Controller) architecture followed by Swing and how
it separates data, UI, and control logic.

Identify the hierarchy of Swing components and comprehend the role of various top-
level containers like JFrame, JApplet, JWindow, and JDialog.

Gain practical knowledge of container classes such as JPanel and how they help in
organizing Swing components.

Develop a simple Swing-based GUI application using standard components like
buttons, labels, text fields, and message dialogs.

Learn various layout managers—BorderLayout, GridLayout, FlowLayout, and
BoxLayout—for effective component arrangement in Swing interfaces.

STRUCTURE:

4.1What is Swing in Java?

4.2 Introduction to Swing
4.3 Swing vs. AWT
4.4 MVC architecture

4.4.1 Components of MVC
4.4.2 Working of the MVC framework with Example

4.5 Hierarchy for Swing components

4.6 Containers

4.6.1 Types of Containers
4.7 JFrame

4.8 JApplet(Deprecated)
4.9 JWindow

4.10 JDialog

4.11 JPanel

4.12 A simple swing application

4.13 Overview of several swing components

4.14 Layout management

4.15 Layout manager types

4.15.1 border Layout

Web Technologies Lab 4.2 Swing Framework and Layout ...

4.16
4.17
4.18
4.19

4.15.2 grid Layout

4.15.3 flow Layout

4.15.4 box Layout
Summary

Key Terms
Self-Assessment Questions

Further Readings

4.1What is Swing in Java?

Swing is a Graphical User Interface (GUI) toolkit for Java that is part of the Java Foundation
Classes (JFC). It is used to create window-based applications and provides a rich set of
lightweight, platform-independent components.

Swing is built on top of the Abstract Window Toolkit (AWT) but offers more powerful and
flexible components such as buttons, tables, lists, menus, and more. It also supports features
like pluggable look-and-feel, double buffering, and drag-and-drop functionality.

4.2 Introduction to Swing

Swing was introduced by Sun Microsystems to address the limitations of AWT and
offer a more robust GUI development framework.

It is defined in the javax.swing package.

Swing components are written entirely in Java, making them platform-independent
and lightweight (they do not rely on native OS peers).

Swing supports the Model-View-Controller (MVC) architecture, which separates the
logic (model), the interface (view), and the user interaction (controller).

It allows developers to create customized, consistent, and interactive user interfaces.
Example components: JFrame, JButton, JLabel, JTextField, JPanel, JTable, JTree, etc.

Advantages of Swing

Platform independent

Rich set of customizable GUI components
Consistent look-and-feel across platforms
Fully object-oriented

Supports MVC architecture

Integrated drag-and-drop support
Disadvantages of Swing

Slower than native GUI frameworks

Can be more memory-intensive

Learning curve for advanced components

4.3 Swing vs. AWT

Swing vs. AWT in Java

Centre for Distance Education 4.3 Acharya Nagarjuna University

Feature AWT (Abstrac.t Window Swing
Toolkit)

‘Package “iava.awt lﬁavax.swing ‘
Component Type pHeeear\S/weight (uses native OS Lightweight (pure Java components)
‘Look and Feel “OS-dependent HPluggable look and feel ‘
‘Custom Components “Hard to customize HEasy to customize ‘
égr‘;la[:locrfgn ts Limited (no JTable, JTree, etc.) JR]{ZEIDS:(SI(’L?;?LG‘[’CJ)T ree,

‘MVC Architecture “Not strictly followed HFollows MVC architecture ‘
‘Thread Safety HPartially thread-safe HMore thread-safe ‘
‘Performance HFaster on native components HSlightly slower due to more features ‘

Example Programs
1. AWT Example Program

import java.awt.*;
import java.awt.event.*;
public class AWTExample {
public static void main(String[] args) {
Frame frame = new Frame("AWT Example");
Label label = new Label("Enter your name:");
label.setBounds(50, 50, 120, 30);
TextField textField = new TextField();
textField.setBounds(180, 50, 150, 30);
Button button = new Button("Greet");
button.setBounds(100, 100, 100, 30);
Label output = new Label();
output.setBounds(50, 150, 250, 30);
button.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {

output.setText("Hello, " + textField.getText());

}

1)
frame.add(label);

frame.add(textField);

Web Technologies Lab 4.4 Swing Framework and Layout ...

frame.add(button);

frame.add(output);

frame.setSize(400, 250);

frame.setLayout(null);

frame.setVisible(true);

frame.addWindowListener(new WindowAdapter() {
public void windowClosing(WindowEvent e) {

frame.dispose();

s
}
}

Input:

o User types John in the text field
e Clicks the Greet button

Output:
o Label displays: Hello, John
2. Swing Example Program

import javax.swing.*;
import java.awt.event.*;
public class SwingExample {
public static void main(String[] args) {

JFrame frame = new JFrame("Swing Example");

JLabel label = new JLabel("Enter your name:");
label.setBounds(50, 50, 120, 30);

JTextField textField = new JTextField();
textField.setBounds(180, 50, 150, 30);

JButton button = new JButton("Greet");
button.setBounds(100, 100, 100, 30);

JLabel output = new JLabel();

Centre for Distance Education 4.5 Acharya Nagarjuna University

output.setBounds(50, 150, 250, 30);

button.addActionListener(e > {
output.setText("Hello, " + textField.getText());

135

frame.add(label);
frame.add(textField);
frame.add(button);

frame.add(output);

frame.setSize(400, 250);
frame.setLayout(null);
frame.setDefaultCloseOperation(JFrame. EXIT ON_ CLOSE);

frame.setVisible(true);

}
}
Input:
e User types Anita in the text field
e Clicks the Greet button
Output:
o Label displays: Hello, Anita
Note:
o AWT is simpler but less flexible, uses native GUI components, and is platform-
dependent.

e Swing provides a modern and consistent UI, with more controls and features suitable
for real-world applications.

4.4 MVC architecture
MVC stands for Model-View-Controller. It is a design pattern that separates the
application logic into three interconnected components. This separation helps manage
complexity and promotes organized and scalable code in GUI applications like those
built using Java Swing.

MVC Components
Following are the components of MVC

Web Technologies Lab 4.6 Swing Framework and Layout ...

/ N\
" View M Controtiers.

4.4.1 Components of MVC:
1. Model

e Definition: The Model represents the data and the business logic of the application.
¢ Responsibilities:

o Manages application state and data.

o Performs calculations and database interactions.

o Notifies the View of data changes.

2. View

e Definition: The View is the UI (User Interface) component that displays the data.
o Responsibilities:

o Renders the data from the model to the user.

o Provides interface elements like buttons, labels, and text fields.

o Updates when the model changes.

3. Controller

o Definition: The Controller handles user inputs and controls application flow.
+ Responsibilities:

o Interprets user actions (e.g., button clicks).

o Updates the model or changes the view accordingly.

Flow of MVC Architecture:

User interacts with the View (e.g., clicks a button).
Controller handles the input and makes changes to the Model.
Model updates its state and notifies the View.

View refreshes to display updated data.

b S

Advantages of MVC:

o Separation of concerns: Keeps Ul, data, and logic separate.
e Maintainability: Easier to manage and update code.

e Reusability: Components can be reused independently.

e Scalability: Suitable for complex applications.

Disadvantages of MVC Architecture

e The structure can be hard to understand and modify, making it challenging to read,
test, and reuse the code effectively.

Centre for Distance Education 4.7 Acharya Nagarjuna University

Not ideal for small-scale applications, as the overhead of implementing MVC may
outweigh its benefits.

The View layer has limited direct access to data, which can reduce efficiency in data
display and interaction.

Navigation within the framework can be complex, due to multiple layers and the need
to understand MV C's separation of concerns.

The architecture adds additional complexity, which can lead to inefficiencies,
especially during data updates and application scaling.

4.4.2 Working of the MVC framework with Example

The Model-View-Controller (MVC) framework is a design pattern that separates an
application into three interconnected components to organize code efficiently, especially in
large applications.

Step-by-Step Working of MVC

1.

User Interaction with the View
o The user interacts with the UI (e.g., clicks a button, enters text).
o These interactions are captured by the View.
Controller Handles User Input
o The Controller receives the input event from the View.
o Itinterprets the action and determines what needs to change in the application.
Controller Updates the Model
o The Controller modifies the Model based on the user input.
o The Model performs business logic or data processing (like updating a value
or retrieving data from a database).
Model Changes the State
o The Model updates its internal state or data.
o It may notify the View about the change (if an observer or event mechanism is
used).
View Updates the Interface
o The View reads the updated data from the Model.
o It then refreshes the user interface to reflect the new state.

Summary of Responsibilities

Component Role

Model

Manages data and business logic

View

Displays data and interacts with the user

Controller |Handles user actions and updates Model & View

Example Use Case (Counter App):

User clicks “Increment” (View)

Web Technologies Lab 4.8 Swing Framework and Layout ...

o Controller receives the click event and calls increment() on Model
e Model updates count value
e View reads new value from Model and displays updated count.

Popular MVC Frameworks

The Model-View-Controller (MVC) architecture is widely adopted in web and application
development. Below are some of the most commonly used and well-known MVC
frameworks:

e Ruby on Rails — A powerful framework written in Ruby, known for its simplicity and
speed.

e Django — A high-level Python framework that promotes rapid development and clean
design.

e CherryPy — A minimalist Python framework that allows developers to build web
applications quickly.

e Spring MVC - A robust, enterprise-level Java framework, part of the Spring
ecosystem.

o Catalyst — A Perl-based MVC framework that is flexible and scalable.

e Rails — Often synonymous with Ruby on Rails, it's a popular choice for rapid web
application development.

e Zend Framework — A PHP-based framework designed for building secure and
modern web applications.

e FuelPHP — A simple, flexible PHP framework with support for HMVC (Hierarchical
MVCQ).

o Laravel — A widely-used PHP framework that emphasizes elegance, simplicity, and
readability.

e Symfony — A mature PHP framework known for its reusable components and large
developer community.

4.5 Hierarchy for Swing components

Swing components in Java are built upon the Java Foundation Classes (JFC) and follow a
class hierarchy that extends from AWT (Abstract Window Toolkit). Swing provides a richer
set of GUI components than AWT.

Top-Level Hierarchy

java.lang.Object
L— java.awt.Component
L— java.awt.Container
L— javax.swing.JComponent

Main Categories of Swing Components

1. Top-Level Containers — The root containers for any Swing GUL
o JFrame — Main window
o JDialog — Popup window

Centre for Distance Education

4.9 Acharya Nagarjuna University

o JWindow — Undecorated window

o JApplet — Applet container

2. Intermediate Containers — Used to hold and organize other components.
o JPanel — Generic lightweight container
o JScrollPane, JSplitPane, JTabbedPane — Specialized containers

3. Atomic Components (Controls) — Basic Ul elements.

o Labels and Text:

= JLabel, JTextField, JTextArea, JPasswordField

o Buttons:

= JButton, JToggleButton, JRadioButton, JCheckBox

o Menus:

= JMenuBar, JMenu, JMenultem

o Lists and Tables:

= JList, JComboBox, JTable, JTree

o Spinners and Sliders:

= JSpinner, JSlider

o Others:

= JProgressBar, JToolBar, JSeparator, JFileChooser

Hierarchy Diagram (Simplified)

Object
L Component (AWT)
L— Container (AWT)
L— JComponent (Swing)

— JPanel
I— JLabel
I— JButton

I— JTextField

— JTable
— JComboBox
L— etc.

Top-Level Containers (not under JComponent but under Container):

Object
L Component
L— Container

|—— Window

| |—— Frame — JFrame

| |—— Dialog — JDialog

| L— Window — JWindow
L— Applet — JApplet

Web Technologies Lab 4.10 Swing Framework and Layout ...

Key Points
e All Swing components are lightweight and extend from JComponent.
e Swing is built on top of AWT but provides a pluggable look-and-feel.
o The hierarchy enables reusability and flexibility of components.
e Containers can hold other components and manage their layout using layout
managers.
4.6 Containers

Containers in Swing

A container is a special component in Java that can hold and organize other components
(like buttons, labels, text fields) in a graphical user interface.

4.6.1 Types of Containers: Swing provides several types of containers, divided into two
categories:

1. Top-Level Containers

These are the root containers for any Swing application. Every Swing GUI must start with a
top-level container.

@ JFrame

e Represents a main window with title bar, borders, buttons, etc.
e Commonly used in desktop applications.

@ JDialog

e A pop-up window, typically used for alerts, messages, or input dialogs.
o Can be modal or non-modal.

9 JWindow

e A borderless window used for splash screens or tool tips.
e No title bar or controls.

@ JApplet (Deprecated)
e Used for embedding Java applications in web browsers (not commonly used now).
2. Intermediate (Lightweight) Containers
These are used to group and arrange components inside top-level containers.
< JPanel

e A general-purpose lightweight container.

Centre for Distance Education 4.11 Acharya Nagarjuna University

e Often used to group related components.
e Can be nested and combined with layout managers.

< JScrollPane

e Provides a scrollable view of another component.

QJ SplitPane

e Divides two components horizontally or vertically.

< JTabbedPane

o Lets users switch between tabs, each containing a different component.

¢ JLayeredPane, JDesktopPane
e Used for more advanced Ul structures like internal frames.
Why Use Containers?

o Containers organize components using layout managers.
o They enable nesting and structuring of complex GUIs.
o Containers make the UI modular and reusable.

Example: Using a Container (JFrame + JPanel)

import javax.swing.*;
public class MyFrame {
public static void main(String[] args) {

JFrame frame = new JFrame("Container Example");
JPanel panel = new JPanel();
JButton button = new JButton("Click Me");
panel.add(button);
frame.add(panel);
frame.setSize(300, 150);
frame.setDefaultCloseOperation(JFrame.EXIT ON_ CLOSE);
frame.setVisible(true);

h
h

Output: A window (JFrame) with a panel (JPanel) and a button inside.
4.7 JFrame

o JFrame is a top-level container used to create a main application window.
o Itincludes features like a title bar, close/minimize/maximize buttons, and menu bars.

Web Technologies Lab 4.12 Swing Framework and Layout ...

e Commonly used in desktop GUI applications.

Example: JFrame frame = new JFrame("My Window");
4.8 JApplet(Deprecated)

o JApplet is a top-level container used to embed Java applications in web browsers.

o Extends Applet and provides support for Swing components.

o Rarely used now, as applets are outdated and no longer supported in modern
browsers.

Example: public class MyApplet extends JApplet { ... }
4.9 JWindow
e JWindow is a borderless top-level window with no title bar or control buttons.
o Useful for splash screens, tooltips, or popups.
e Cannot be resized or closed by the user.
Example: JWindow window = new JWindow();
4.10 JDialog
o JDialog is a pop-up window used for short interactions like messages, warnings, or
form inputs.
e Can be modal (blocks other windows until closed) or non-modal.
Example: JDialog dialog = new JDialog(frame, "Message", true);
4.11 JPanel
o JPanel is a lightweight container used to group components inside a window.
e Often used with layout managers to organize buttons, labels, and other UI elements.
e Cannot exist independently—must be added to a top-level container like JFrame.
Example: JPanel panel = new JPanel();
4.12 A simple swing application
A basic Swing application can display a "Hello World" message inside a window. This
example shows how to create a JFrame as the main window, add a JLabel with the message,
and make the window visible.

import javax.swing.JFrame;

import javax.swing.JLabel;
public class SimpleSwingApp {
public static void main(String[] args) {
JFrame frame = new JFrame("Simple Swing App");

Centre for Distance Education 4.13 Acharya Nagarjuna University

frame.setDefaultCloseOperation(JFrame.EXIT ON_ CLOSE);
frame.setSize(300, 200);

JLabel label = new JLabel("Hello World");

frame.add(label);

frame.setVisible(true);

3
Explanation:
1. Import necessary classes:
javax.swing.JFrame is used to create the main application window, and
javax.swing.JLabel is used to display text.
2. Create a JFrame:
This is the main window of the application.
3. Set window properties:
o setDefaultCloseOperation(JFrame.EXIT ON_CLOSE) ensures the application
closes when the window’s close button is clicked.
o setSize(300, 200) sets the window dimensions.
4. Create a JLabel:
This component holds and displays the "Hello World" text.
5. Add the label to the frame:
The label is added to the frame’s content area.
6. Make the frame visible:

Calling setVisible(true) displays the window on the screen.

This simple program serves as a foundation for creating more complex Swing applications by
adding additional components and event handling.

4.13 Overview of several swing components

Swing components form the core elements of Java-based graphical user interfaces (GUISs).
They include interactive elements like buttons, text fields, labels, and more, which are
essential for building user-friendly applications. Compared to the older AWT (Abstract
Window Toolkit), Swing offers a more versatile and feature-rich set of components with
greater flexibility and customization.

Below is a brief overview of commonly used Swing components:

g(g) Swing Components in Java

~—
| |

| | | | | [F=in| [

Web Technologies Lab 4.14 Swing Framework and Layout ...

Swing Components

Swing provides a comprehensive set of components for building interactive and visually
appealing Java GUI applications. These components are categorized into interactive and non-
interactive elements and are supported by powerful features like customization, lightweight
design, and event handling.

Interactive Components

o JButton: Triggers an action when clicked.

e JCheckBox: Allows users to select or deselect one or more independent options.

o JRadioButton: Lets users choose one option from a group (mutually exclusive).

o JTextField / JTextArea: Enables users to input and display single-line or multi-line
text.

o JList: Displays a scrollable list of selectable items.

e JComboBox: Offers a dropdown list from which users can choose a single item.

Non-Interactive Components

o JLabel: Displays static text or images.
o Imagelcon: Loads and shows images within the GUI.
e JPanel: Acts as a container to group and organize components within the interface.

Container Components

e JFrame: The main top-level window in a Swing application.

e JScrollPane: Adds scroll bars to a component when its content exceeds the visible
area.

o JSplitPane: Splits a window into two resizable sections (horizontal or vertical).

Key Features of Swing Components

o Pluggable Look and Feel: Components can adopt different styles to match various
operating systems or custom themes.

e Lightweight Components: Pure Java implementation ensures platform independence
and better performance.

e Event-Driven Programming: Components can respond dynamically to user actions
such as clicks, typing, and mouse movements.

e MVC Architecture: Swing follows the Model-View-Controller pattern, promoting
separation of data, UI, and control logic.

Swing empowers developers to create flexible, efficient, and modern desktop applications by
combining these components with powerful features and customization options.

4.14 Layout management

Layout management in Swing refers to the way components (like buttons, labels, and text
fields) are arranged within a container (like JFrame or JPanel). Swing provides several layout
managers to control the positioning and sizing of components automatically, making the
interface more flexible and adaptable across different screen sizes and resolutions.

Centre for Distance Education 4.15 Acharya Nagarjuna University

Advantages:
e Automatically adjusts components for different screen sizes.
e Reduces manual effort in positioning components.
o Makes GUI development easier and more organized.

Note:

If more control is needed, developers can also set layout to null and use absolute positioning
with setBounds(), but this is generally discouraged for real-world applications.

4.15 Layout manager types

The Layout managers enable us to control the way in which visual components are arranged
in the GUI forms by determining the size and position of components within the containers.

4.15.1 Border Layout

Description: Divides the container into five regions: NORTH, SOUTH, EAST, WEST, and
CENTER.

Default for: JFrame
Use case: Organizing content by position.
Constructors of BorderLayout class:
o BorderLayout(): creates a border layout but with no gaps between the components.
e BorderLayout(int hgap, int vgap): creates a border layout with the given horizontal
and vertical gaps between the components
Example:
import java.awt.*;
import javax.swing.*;
public class Border
{
JFrame f;
Border()
{

f=new JFrame();

// creating buttons

Web Technologies Lab 4.16

Swing Framework and Layout ...

}

JButton bl = new JButton("NORTH");;
JButton b2 = new JButton("SOUTH");;
JButton b3 = new JButton("EAST");;
JButton b4 = new JButton("WEST");;
JButton b5 = new JButton("CENTER");;
f.add(b1, BorderLayout. NORTH);
f.add(b2, BorderLayout.SOUTH);
f.add(b3, BorderLayout.EAST);
f.add(b4, BorderLayout. WEST);
f.add(b5, BorderLayout. CENTER);
f.setSize(300, 300);

f.setVisible(true);

public static void main(String[] args) {

new Border();

Output:
a2 — O X
NORTH
WEST CENTER EAST

SOUTH

Centre for Distance Education 4.17 Acharya Nagarjuna University

4.15.2 Grid Layout
Description: Arranges components in a grid of equally sized rows and columns.
Use case: Uniformly spaced component layout.

Constructors of GridLayout class

1. GridLayout(): creates a grid layout with one column per component in a row.

2. GridLayout(int rows, int columns): creates a grid layout with the given rows and
columns but no gaps between the components.

3. GridLayout(int rows, int columns, int hgap, int vgap): creates a grid layout with
the given rows and columns along with given horizontal and vertical gaps.

Example:
import java.awt.*;
import javax.swing.*;
public class GridLayoutExample
{
JFrame frameObyj;
GridLayoutExample()
{
frameObj = new JFrame();
JButton btnl = new JButton("1");
JButton btn2 = new JButton("2");
JButton btn3 = new JButton("3");
JButton btn4 = new JButton("4");
JButton btn5 = new JButton("5");
JButton btn6 = new JButton("6");
JButton btn7 = new JButton("7");
JButton btn8 = new JButton("8");

JButton btn9 = new JButton("9");

Web Technologies Lab 4.18 Swing Framework and Layout ...

frameObj.add(btn1); frameObj.add(btn2); frameObj.add(btn3);
frameObj.add(btn4); frameObj.add(btn5); frameObj.add(btn6);
frameObj.add(btn7); frameObj.add(btn8); frameObj.add(btn9);
frameObj.setLayout(new GridLayout());
frameObj.setSize(300, 300);

frameObj.setVisible(true);

}

public static void main(String argvs[])

{

new GridLayoutExample();

4.15.3 Flow Layout

Description: Arranges components in a single row, left to right. Wraps to the next line
when necessary.

Default for: JPanel
Use case: Simple horizontal or vertical layouts.
Fields of FlowLayout class
1. public static final int LEFT

2. public static final int RIGHT
3. public static final int CENTER

Centre for Distance Education 4.19 Acharya Nagarjuna University

4. public static final int LEADING
5. public static final int TRAILING

Constructors of FlowLayout class
1. FlowLayout(): creates a flow layout with centered alignment and a default 5 unit
horizontal and vertical gap.
2. FlowLayout(int align): creates a flow layout with the given alignment and a default

5 unit horizontal and vertical gap.
3. FlowLayout(int align, int hgap, int vgap): creates a flow layout with the given

alignment and the given horizontal and vertical gap.
Example:
import java.awt.*;
import javax.swing.*;
public class FlowLayoutExample
{
JFrame frameObj;
FlowLayoutExample()
{
frameObj = new JFrame();
JButton bl = new JButton("1");
JButton b2 = new JButton("2");
JButton b3 = new JButton("3");
JButton b4 = new JButton("4");
JButton b5 = new JButton("5");
JButton b6 = new JButton("6");
JButton b7 = new JButton("7");
JButton b8 = new JButton("8");
JButton b9 = new JButton("9");

JButton b10 = new JButton("10");

Web Technologies Lab 4.20 Swing Framework and Layout ...

frameObj.add(b1); frameObj.add(b2); frameObj.add(b3); frameObj.add(b4);
frameObj.add(b5); frameObj.add(b6); frameObj.add(b7); frameObj.add(b8);
frameObj.add(b9); frameObj.add(b10);

frameObj.setLayout(new FlowLayout());

frameObj.setSize(300, 300);

frameObj.setVisible(true);

}

public static void main(String argvs[])

{

new FlowLayoutExample();

4.15.4 Box Layout
Description: Arranges components either vertically (Y-axis) or horizontally (X-axis).
Use case: Stacking components in a single direction.
For this purpose, the BoxLayout class provides four constants. They are as follows:
Fields of BoxLayout Class

1. public static final int X AXIS: Alignment of the components are horizontal from left
to right.

Centre for Distance Education 4.21 Acharya Nagarjuna University

2. public static final int Y AXIS: Alignment of the components are vertical from top to
bottom.

3. public static final int LINE AXIS: Alignment of the components is similar to the way
words are aligned in a line,

4. public static final int PAGE AXIS: Alignment of the components is similar to the
way text lines are put on a page,

Constructor of BoxLayout class

1. BoxLayout(Container c, int axis): creates a box layout that arranges the components
with the given axis.

Example:

import java.awt.*;
import javax.swing.*;
class BoxLayoutExamplel extends Frame {
Button buttons|[];
public BoxLayoutExamplel () {
buttons = new Button [5];
for (int i = 0;i<5;i++) {
buttons[i] = new Button ("Button " + (i + 1));
add (buttons][i]);
}
setLayout (new BoxLayout (this, BoxLayout.Y AXIS));
setSize(400,400);
setVisible(true);
}
public static void main(String args[]){
BoxLayoutExamplel b=new BoxLayoutExamplel();

Output:
a2 — O >
Button 1
Button 2
Button 3
Button 4

Button 5

Web Technologies Lab 4.22 Swing Framework and Layout ...

416 SUMMARY

Swing is a powerful part of Java’s GUI toolkit called Java Foundation Classes (JFC), used to
create rich window-based applications. It is built on top of AWT but offers more components
and greater flexibility. Unlike AWT, which uses native GUI elements, Swing is fully written
in Java, making it lightweight and platform-independent. Swing follows the Model-View-
Controller (MVC) architecture, separating data, user interface, and user interaction logic for
better structure and maintenance. The javax.swing package includes various useful classes
like JFrame, JButton, JLabel, and JTextField. Swing provides a uniform look and feel across
different platforms and allows for customized appearances through pluggable look-and-feel
settings. It supports advanced features like drag-and-drop and rich component behavior.
Although Swing can be slower than native toolkits, it is more customizable and flexible than
AWT. Its component hierarchy starts with java.awt.Component and extends through
javax.swing.JComponent. Swing components fall into top-level, intermediate, and atomic
categories, such as JFrame, JPanel, and JButton. Containers like JPanel and JDialog are
crucial for layout and component organization. Swing also integrates layout managers to
control component placement. The MVC pattern, while powerful, can be complex for small
applications. Despite being older, Swing is still widely used for desktop apps. Its extensive
features, object-oriented design, and platform independence make it suitable for building
sophisticated user interfaces.

4.17 Key Terms

Swing, AWT, JFC (Java Foundation Classes), javax.swing, Lightweight components,
Pluggable = Look-and-Feel, MVC(Model-View-Controller),JFrame,JPanel,JComponent,Top-
Level Container, Atomic Components, Layout Managers, Event Handling, Swing vs. AWT

4.18 Self-Assessment Questions

What is Swing in Java?

How does Swing differ from AWT?

What is the role of JFC in Swing?

Which package contains all Swing classes?

What are lightweight components in Swing?

What is a pluggable look-and-feel in Swing?
Explain the MVC architecture used in Swing.
What is the purpose of JFrame?

Name two top-level containers in Swing.

0. What is the function of layout managers in Swing?

200NN k=

4.19 Further Readings

1. The Complete reference Java, Herbet Schildt, 7% Edition, McGraw Hill.

2. Java for Programmers, P.J.Deitel and H.M.Deitel, PEA (or) Java: How to Program ,
P.J.Deiteland H.M.Deitel, PHI

3. ObjectOrientedProgrammingthroughJava,P.RadhaKrishna,UniversitiesPress.

4. "Java: The Complete Reference" by Herbert Schildt
(Latest Edition, McGraw-Hill Education) — Chapter on Swing Components and GUI
Design

Dr. Kampa Lavanya

LESSON- 5
BUILDING WEB PAGES WITH HTML AND CSS

Aim and Objectives:

Understand the basic structure and purpose of HTML for web page development.
Identify and apply common HTML tags to create lists, tables, and insert images.
Design and implement user input forms using appropriate HTML form elements.
Utilize HTML frames to organize content into multiple sections within a browser
window.

Apply Cascading Style Sheets (CSS) to enhance the presentation and layout of web

pages.

YV VVVYVY

STRUCTURE:

5.1 HTML
5.1.1 History of HTML
5.2 Common Tags
5.3 List
5.4 Tables
5.5. Images
5.6 forms
5.7 Frames
5.8 Cascading Style Sheets (CSS)
5.8.1. Inline CSS
5.8.2. Internal CSS
5.8.3. External CSS
5.8.4 Common CSS Properties
5.9 Summary
5.10 Key Terms
5.11 Self-Assessment Questions

5.12 Further Readings

5.1 HTML

HTML Overview and Evolution

HTML (HyperText Markup Language) structures a document by dividing its content into
elements. These elements are generally categorized into two types:

1. Elements that control how the content in the BODY of the document is displayed by
the web browser.

Web Technologies Lab 5.2 Building Web Pages with Html and CSS

2. Elements that provide metadata about the document, such as its title or links to other
resources.
The rules and syntax of HTML (including the names and usage of tags) are based on a more
complex language known as SGML (Standard Generalized Markup Language). SGML was
originally designed for managing large document collections and is quite sophisticated.
Thankfully, HTML is a much simpler subset that suits the needs of web developers.

Despite its simplicity, HTML lacks some powerful features of SGML. To bridge this gap,
XML (eXtensible Markup Language) was introduced—retaining the simplicity of HTML
while incorporating the flexibility of SGML.

5.1.1 History of HTML

HTML was first created by Tim Berners-Lee at CERN and gained popularity through the
Mosaic browser developed at NCSA. As the Web grew rapidly in the 1990s, HTML evolved
significantly with various enhancements and updates.

To maintain consistency and compatibility among web browsers and developers,
standardized versions of HTML were introduced.

e HTML 2.0 (released in November 1995) standardized the common usage practices of
the time.
e HTML 3.0 (1995) aimed to support more complex web design features but was not
widely adopted due to implementation challenges.
Maintaining compatibility across browsers helps reduce development costs and prevents the
fragmentation of the Web into proprietary, incompatible systems—ensuring a more unified
and accessible experience for all users.

HTML's Future Vision

HTML has always been developed with a vision of universal access. It is designed to support
a wide range of devices and platforms—ranging from PCs with high-resolution displays to
mobile phones, voice-based devices, and even low-bandwidth systems—ensuring that web
content remains accessible and functional across diverse environments.

Advantages of HTML:

1. Widely Adopted: HTML is a universally accepted standard for creating web pages,
making it highly reliable and popular.

2. Cross-Browser Support: All major web browsers support HTML, ensuring that
websites display consistently across platforms.

3. User-Friendly: HTML is easy to learn, write, and understand, even for beginners in
web development.

4. No Cost or Special Software: HTML editing requires only a basic text editor and a
web browser, both of which are typically pre-installed on most systems.

Disadvantages of HTML:

1. Static Content Only: HTML is limited to creating static pages; it cannot handle
dynamic functionality without additional technologies like JavaScript or server-side
scripting.

Centre for Distance Education 53 Acharya Nagarjuna University

2. Verbose Coding: Even simple designs may require writing large amounts of

repetitive code.

3. Weak Security: HTML lacks built-in security mechanisms, making it dependent on

other technologies for secure web applications.

4. Code Complexity for Larger Pages: Managing and organizing lengthy HTML code

can become complex and error-prone as the size of the webpage increases.
Important Points about HTML:

e HTML tags are enclosed within angle brackets (e.g., <tag>).

e Tags are not case-sensitive; for example, <head>, <HEAD>, and <Head> are treated

the same.
e Ifa browser does not recognize a tag, it typically ignores it without error.

e Certain special characters must be represented using escape sequences (e.g., < for

<, > for >).

e Whitespace, tabs, and newlines are generally ignored by the browser when rendering

the content.

Structure of an HTML Document

All HTML documents follow a standard structure. The root element is <htmI>, which
contains two main sections: <head> and <body>.

e The <head> tag includes metadata and control information for the browser.
e The <body> tag holds the actual content that is displayed to the user.

Below is a basic example of an HTML document:

<htmlI>
<head>
<title>Basic HTML Document</title>
</head>
<body>
<h1>Welcome to the World of Web Technologies</h1>
<p>A sample HTML program</p>
</body>
</htm]>

In this example:
o The <title> tag (inside <head>) specifies the text shown in the browser’s title bar.
. The <h1> tag is used for main headings. It renders the text in bold and a larger font
. "SFIE:.<p> tag is used to define a paragraph of text.

HTML Comments

Comments in HTML start with <!-- and end with -->.
They can span multiple lines, and are ignored by the browser. For example:

Web Technologies Lab 5.4 Building Web Pages with Html and CSS

<!-- This is a comment
that spans multiple lines -->

Avoid using double hyphens (--) inside the comment text, as it may cause errors in some
browsers.

5.2 Common Tags

Common HTML Tags:

N —

<htmlI> — Root element that defines the entire HTML document.

<head> — Contains metadata and links to external resources like stylesheets and
scripts.

<title> — Specifies the title of the web page (appears in the browser tab).

<body> — Contains the main content of the webpage that is visible to users.

<h1> to <h6> — Heading tags, where <h1> is the largest and <h6> is the smallest.
<p> — Defines a paragraph.

 — Inserts a line break.

<hr> — Inserts a horizontal line (thematic break).

<a> — Creates a hyperlink. Example: Visit

. — Embeds an image. Example:
. — Creates an unordered (bulleted) list.
. — Creates an ordered (numbered) list.
. — List item (used inside or).
. <table> — Defines a table.

. <tr> — Defines a table row.

. <td> — Defines a cell in a table row.

. <th> — Defines a header cell in a table.

. <form> — Creates a form for user input.

. <input> — Accepts user input inside a form.
. <button> — Defines a clickable button.

5.3 List

HTML List Tags

HTML provides three main types of lists:

Type Tag Description

Ordered |||Displays list items in a specific order (numbered: 1, 2, 3... or i, ii, iii...).

Unordered |[|Displays items with bullet points.

Description|<dl>|Used for name/value pairs, like in dictionaries or glossaries.

Ordered List ()

Displays items in numbered order.

Centre for Distance Education 5.5 Acharya Nagarjuna University

Wake up

Brush teeth

Eat breakfast

Output:

1. Wake up
2. Brush teeth
3. Eat breakfast

Attributes:

e type: Specifies the numbering type (1, A, a, I, 1)
o start: Specifies the start number
o reversed: Displays the list in reverse order

Unordered List ()
Displays items with bullet points.

Milk
Eggs
Bread
</hul>

9 Output:

e Milk

« Eggs
e Bread

Custom bullets can be styled using CSS (list-style-type).
Description List (<dI>)
Used for terms and their descriptions.
<dI>
<dt>HTML</dt>
<dd>HyperText Markup Language</dd>
<dt>CSS</dt>
<dd>Cascading Style Sheets</dd>
</dI>

e <dt>: Defines the term (name)
e <dd>: Defines the description (value)

Web Technologies Lab 5.6

Building Web Pages with Html and CSS

Nesting Lists
You can nest lists within each other:

Fruits

Apple
Banana
</ful>

Vegetables
<hl>

Note:

‘ Tag H Purpose ‘
‘ HOrdered list (numbered) ‘
‘ HUnordered list (bulleted) ‘
‘ HList item for both and ‘
|
|
|

‘<dl> HDescription list
[<dt> | Term (used in <d1>)

[<dd>|Definition (used in <dI>)

Example program:
<IDOCTYPE html>
<htmlI>
<body>
<h2>An Unordered HTML List</h2>

Coffee
Tea
Milk
<ful>
<h2>An Ordered HTML List</h2>

Coffee

Centre for Distance Education 5.7 Acharya Nagarjuna University

Tea
Milk

</body>
</html>

Output:

An Unordered HTML List

e Coffee
e Tea
» Milk

An Ordered HI' ML List

1. Coffee
2. Tea
3. Malk

5.4 Tables
Detailed Information About the <table> Tag in HTML

The <table> tag is used to create tables in HTML, which organize data into rows and columns
for easy presentation.

Core Elements of an HTML Table

o <table>
This is the container element that wraps the entire table structure.

e <tr> (Table Row)
Defines a single row within the table. Each <tr> contains one or more <th> or <td>
elements.

e <th> (Table Header Cell)
Represents a header cell in a table row. Header cells are usually displayed in bold and
centered by default.

e <td> (Table Data Cell)
Represents a standard data cell in a table row.

Additional Table Elements

o <caption>
Provides a title or caption for the table. It is usually displayed above the table.

e <thead>
Groups the header content in the table. This can help with styling and makes tables
more accessible.

Web Technologies Lab 5.8 Building Web Pages with Html and CSS

e <tbody>
Groups the main body content of the table. Useful for applying styles or scripting to
the body separately.

o <tfoot>

Groups the footer content of the table, often used for summaries or totals. This section
is typically displayed after the table body but can be useful for browsers and assistive
technologies to know the footer’s role.

e <colgroup> and <col>
Used to group and define attributes for columns, such as width or background color.

Attributes Commonly Used with <table>

o border
Adds a border around the table and cells (deprecated in HTMLS5; CSS recommended
instead).

o cellpadding
Defines the space between the cell content and its border (use CSS padding
nowadays).

o cellspacing
Defines the space between cells (use CSS border-spacing).

e width
Sets the width of the table.

Accessibility and Best Practices

e Always use <th> for header cells to improve readability and accessibility, especially
for screen readers.

o Use <caption> to describe the table’s purpose.

o Use semantic grouping elements like <thead>, <tbody>, and <tfoot> for better
structure.

e Avoid using deprecated attributes like border, cellpadding, and cellspacing. Instead,
use CSS for styling.
Example program:
<IDOCTYPE htmI>
<htmlI>
<head>
<style>
table, th, td {

border: 1px solid black;

b

</style>

Centre for Distance Education 5.9 Acharya Nagarjuna University

</head>

<body>

<h1>The table element</h1>

<table>
<tr>
<th>Month</th>
<th>Savings</th>
</tr>
<tr>
<td>January</td>
<td>$100</td>
</tr>
<tr>
<td>February</td>
<td>$80</td>
</tr>

</table>

</body>
</htmI>

Output:

The table element

Month [|Savings
Janwary [($100
Febmary|| 380

Web Technologies Lab 5.10 Building Web Pages with Html and CSS

5.5. IMAGES
 Tag in HTML

The tag is used to embed images into a web page. Unlike most tags, is self-
closing—it does not have a closing tag.

Basic Syntax

Common Attributes of

‘AttributeH Description

‘src H(Required) The path or URL to the image file.

(Required for accessibility) Descriptive text shown if the image cannot be

alt displayed. Useful for screen readers.

‘width HSets the width of the image (in pixels or %).

‘height HSets the height of the image.

‘title HTooltip text shown when you hover over the image.

‘loading HDetermines image loading behavior (lazy or eager).

‘style HAllows inline CSS styling for the image.

Example

<img src="flowers.jpg" alt="A bouquet of flowers" width="300" height="200" title="Spring
Flowers">

Types of Image Sources

e Local file:

e

o [External URL:

e

o Data URI (embedded image in base64):

e <img src="..."
alt="Embedded Image">

Best Practices

e Always include the alt attribute for accessibility and SEO.
e Use appropriate image formats:
o .Jpg or .jpeg for photographs
o .png for images with transparency
o .gif for animations
o .svg for vector graphics
o Use width and height to avoid layout shifts (good for performance).

Centre for Distance Education 5.11 Acharya Nagarjuna University

e For responsive design, use CSS (e.g., max-width: 100%) or the picture element.
Advanced Usage with <picture> Element
To provide different images based on screen size or format:

<picture>
<source srcset="image.webp" type="image/webp">
<source srcset="image.jpg" type="image/jpeg">

</picture>

Example program:

<!DOCTYPE html>
<html>
<body>

<h1>The img element</h1>

</body>
</html>

Output:

The img element

5.6 FORMS

Forms are essential for adding interactivity to web pages. They allow users to input data and
send it to the server, commonly used in user registration, search, and feedback functionalities.
Forms can also help navigate complex websites more efficiently.

Web Technologies Lab 5.12 Building Web Pages with Html and CSS

Basic Syntax of a Form
<form action="URL" method="post|get">

</form>
e action: Specifies the destination URL where the form data will be sent.
e method:
o get: Appends data to the URL; visible in the address bar; suitable for small
data submissions.

o post: Sends data in the request body; more secure; used for larger and sensitive
data.

Common Input Tags Inside Forms

<input type="..." name="..." value="..." size="...">
In e .
put Description
Type

Creates a single-line text field. The size attribute controls the width, and value

fext sets the default input.

‘password HSimilar to text, but user input is masked with asterisks (*).

Creates a radio button. All radio buttons in the same group must share the same

radio .)
name but have different values. Only one can be selected at a time.

‘checkbox HAllows multiple selections. Each checkbox can have a different value.

Creates a button that submits the form data to the server. The button text is taken

submit lg o the value attribute.

Select Dropdown

<select name="...">
<option value="..." selected>Option Label</option>

</select>
o select: Creates a drop-down list.
o option: Specifies the individual options. The selected attribute makes it the default
choice.
Textarea
<textarea name="..." rows="..." cols="...">Default Text</textarea>
e Allows multi-line plain text input.
e rows and cols define the visible size.
e Supports vertical scrolling if the content overflows.

HTML forms allow data collection and interaction using various controls like:

o Text fields

Centre for Distance Education 5.13 Acharya Nagarjuna University

e Password inputs

e Radio buttons

e Checkboxes

e Drop-down lists

¢ Submit buttons

e Multi-line text areas

These elements help create powerful and interactive web applications.

Example program
<IDOCTYPE html>
<htmlI>
<body>
<h1>The form element</h1>
<form action="/action_page.php">
<label for="fname">First name:</label>
<input type="text" id="fname" name="fname">

<label for="Iname">Last name:</label>
<input type="text" id="Iname" name="Iname">

<input type="submit" value="Submit">
</form>
<p>Click the "Submit" button and the form-data will be sent to a page on the
server called "action page.php".</p>
</body>
</html>

Output

The form element

First name: |]

Last name: | |

Click the "Submit" button and the form-data will be sent to a page on the server called "action_page.php”.

5.7 FRAMES

Frames in HTML are used to divide the web browser window into multiple sections, where
each section can load a separate HTML document. This allows for the display of multiple

Web Technologies Lab 5.14 Building Web Pages with Html and CSS

web pages within a single browser window. Frames were commonly used to create
navigation menus that stay static while content changes in another section.

Key Concepts of Frames

1. Frameset:

o Replaces the <body> tag in a frames-based page.
o Defines how the screen is split — vertically (cols) or horizontally (rows).
o Syntax:
o <frameset cols="30%, 70%">
o <frame src="menu.html">
o <frame src="content.html]">
o </frameset>
2. Frame:

o

@)

o

@)

Defines each individual frame within a frameset.
Uses attributes like src, name, scrolling, and frameborder.
Example:

<frame name="menu" src="menu.html" scrolling

]

yes" frameborder="0">

3. NoFrames:

O O O O O

Provides alternative content for browsers that do not support frames.
Syntax:
<noframes>
Y our browser does not support frames.
</noframes>

Attributes of <frame> Tag

Attribute

Description

Src

Specifies the HTML file to display in the frame.

name

Gives the frame a name to be targeted by links.

scrolling

Sets scrollbar visibility: yes, no, or auto.

frameborder

Controls border visibility: 0 (no border), 1 (with border).

Advantages of Using Frames

e Allows independent scrolling in different parts of the screen.
o Useful for persistent navigation menus.
e Reduces the need to reload the entire page.

Disadvantages of Using Frames

e Deprecated in HTMLS — modern web development discourages frames.
e Not SEO-friendly; search engines may not index all content properly.

o Bookmarking specific frames is difficult.

o Navigation issues (e.g., back button behavior) may confuse users.

Centre for Distance Education 5.15 Acharya Nagarjuna University

Note: While frames were once popular for building complex web layouts, they have been
largely replaced by modern techniques using CSS, JavaScript, and responsive design
principles. Frames are no longer supported in HTMLS, so developers are encouraged to use
<iframe> or layout techniques like Flexbox and Grid.

Example

Let's put above example as follows, here we replaced rows attribute by cols and changed their
width. This will create all the three frames vertically:
<IDOCTYPE htmI>

<htmlI>

<head>

<title>HTML Frames</title>

</head>

<frameset cols="25%,50%,25%">

<frame name="left" src="/html/top frame.htm" />
<frame name="center" src="/html/main_frame.htm" />
<frame name="right" src="/html/bottom_frame.htm" />
<noframes>

<body>

Y our browser does not support frames.

</body>

</noframes>

</frameset>

</html>

This will produce following result:

Main Frame

Web Technologies Lab 5.16 Building Web Pages with Html and CSS

5.8 CASCADING STYLE SHEETS (CSS)

Definition:

CSS (Cascading Style Sheets) is a style sheet language used for describing the look and
formatting of a document written in HTML or XML. It controls the layout of multiple web
pages all at once and separates content from design.

Objectives of CSS:

To enhance the visual appearance of web pages.

To separate structure (HTML) from presentation (CSS).

To allow consistent styling across multiple pages.

To make web development and maintenance easier and faster.

Types of CSS:

5.8.1. Inline CSS

Applied directly within an HTML tag using the style attribute.
Affects only the specific element.

Example:

<p style="color:blue; font-size:16px;">This is inline styled text.</p>

5.8.2. Internal CSS

Defined within a <style> tag in the <head> section of the HTML document.
Affects all elements on that page.
Example:
<head>
<style>
hl {
color: green;
text-align: center;
}
</style>
</head>

5.8.3. External CSS

Written in a separate .css file and linked to HTML using the <link> tag.
Can be used across multiple HTML pages.

Example (in HTML):

<link rel="stylesheet" type="text/css" href="style.css">

Example (style.css):

body {
background-color: #0{010;
font-family: Arial,

Centre for Distance Education 5.17 Acharya Nagarjuna University

}
Cascading Order (Priority)

When multiple styles apply to the same element, CSS follows a specific order of precedence:

1. Inline CSS (Highest priority)

2. Internal CSS

3. External CSS

4. Browser default styles (Lowest priority)

The term "cascading" refers to this order of priority.

CSS Syntax

selector {
property: value;
property: value;

}

e Selector: The HTML element you want to style.

e Property: The style attribute you want to change.

e Value: The value you want to assign to that property.
Example:
pi

color: red;
font-size: 14px;
}
5.8.4 Common CSS Properties
Property Description Example

color Text color color: blue;
background-color |Background color background-color: yellow;
font-size Size of the text font-size: 18px;
font-family Font type font-family: Arial,
text-align Alignment of text text-align: center;
margin Space outside the element ||margin: 20px;
padding Space inside the element padding: 10px;
border Border style border: 1px solid black;
width/height Size of an element width: 100px;

Web Technologies Lab 5.18 Building Web Pages with Html and CSS

CSS Selectors
CSS selectors are used to "select" the HTML elements you want to style.

1. Universal Selector:

*{
margin: 0;

}

2. Element Selector:

hl {
color: blue;

}

3. Class Selector:

.myclass {
font-size: 18px;

}

Used in HTML like: <p class="myclass">Text</p>
4. ID Selector:

#myid {
color: green;

}
Used in HTML like: <div id="myid">Box</div>
5. Group Selector:

hl,h2,p {
color: red;

}

6. Descendant Selector:

divp {
color: orange;

h
Box Model in CSS

Every HTML element is treated as a box with four components:

Centre for Distance Education 5.19 Acharya Nagarjuna University
1. Content — The actual text or image.
2. Padding — Space between content and border.
3. Border — Surrounds the padding (if any) and content.
4. Margin — Space outside the border.
Box Model Example:
div {

padding: 10px;
border: 1px solid black;
margin: 20px;

}

Advanced CSS Features

Pseudo-classes (e.g., :hover, :first-child)

a:hover {

}

color: red;

Pseudo-elements (e.g., ::before, ::after)

p::first-letter {

}

font-size: 30px;

Media Queries (for responsive design)

(@media screen and (max-width: 600px) {

}

body {
background-color: lightblue;

Animations and Transitions

div {

}

transition: all 0.3s ease-in-out;

Flexbox and Grid Layouts (modern layout techniques)

Advantages of CSS

Enhances presentation and user experience.
Reduces repetition and saves time.

Makes maintenance easier.

Supports responsive web design.

Allows separation of concerns (structure vs. presentation).

Web Technologies Lab 5.20 Building Web Pages with Html and CSS

Disadvantages of CSS

e Browser compatibility issues may occur.
o Complex projects may require a CSS preprocessor (like SCSS/SASS).
e Overriding styles can be difficult in large projects.

Note:CSS is an essential part of modern web development. It provides the tools needed to
make web pages visually appealing, consistent, and responsive. With advanced features like
Flexbox, Grid, animations, and media queries, CSS goes far beyond just changing colors and
fonts—it shapes the entire user experience.

Example

<htmlI>

<head>

<title>My Web Page</title>

<style type="text/css">

h1 {font-family:mssanserif;font-size:30;font-style:italic;fontweight:
bold;color:red;background-color:blue;border:thin groove}
.m{border-width:thick;border-color:red;border-style:dashed}

.mid{font-family:BankGothicLtBT;text-decoration:link;texttransformation:uppercase;text-
indentation:60%}

</style>

</head>

<body class="m">

<h1> ANUCS</h1>

<p class="mid">Acharya Nagarjuna University Guntur</p>
</div>

</body>

</html>

Output

I I
[Ackarya Nagarjuna University Guntur |

Ll--------I-I----------------------lJ

Centre for Distance Education 5.21 Acharya Nagarjuna University

5.9 SUMMARY

HTML (HyperText Markup Language) is the foundational language for creating web pages,
allowing content to be structured using predefined tags. It evolved from SGML and was
simplified for web development needs. XML later extended HTML’s functionality while
retaining its simplicity. HTML was created by Tim Berners-Lee and gained momentum
through the Mosaic browser. To standardize web content, versions like HTML 2.0 and
HTML 3.0 were introduced, improving compatibility across browsers. HTML’s vision
emphasizes universal access across devices, from desktops to mobile and low-bandwidth
systems. It is widely used due to its simplicity, cross-browser support, and no-cost
development. However, it is limited to static content, lacks security features, and can become
complex for large pages. HTML documents follow a defined structure with <htmlI>, <head>,
and <body> elements. Common tags include headings (<hl1> to <h6>), paragraphs (<p>),
links (<a>), images (), and forms. HTML lists include ordered (), unordered
(), and description (<dI>) types, while tables use <table>, <tr>, <td>, and <th> to
organize data. The tag embeds images, with src and alt attributes being essential.
HTML encourages semantic structure and accessibility best practices through appropriate tag
usage.

5.10 KEY TERMS

HTML (HyperText Markup Language),SGML (Standard Generalized Markup
Language), XML (eXtensible Markup Language),Tags, Paragraph, Anchor/hyperlink, Image,
Lists, Table, Form, Frame, CSS (Cascading Style Sheets).

5.11 Self-Assessment Questions

What is the purpose of a <form> tag in HTML?
What does the action attribute in a form specify?
How does the method="get" work in a form?
When should you use the method="post"?
What tag is used to take user input in a form?
What is the difference between <input type="text"> and <textarea>?
How do you create a drop-down list in a form?
What is the purpose of the <label> tag?
How do radio buttons differ from checkboxes?
. What happens when a form is submitted with the GET method?
. Can you send a file using a form? How?
. What attribute is used to group form controls?
. What is the use of the name attribute in an input field?
. How can you prefill values in form elements?

A N AR o e

—_ =
—_ O

—_—
B~ W N

Web Technologies Lab 5.22 Building Web Pages with Html and CSS

5.12 Further Readings

1.

Web Technologies — a computer science perspective, Jeffrey C. Jackson, Pearson,
2007.

Web Programming, building internet applications, Chris Bates 2nd edition, WILEY
Dreamtech.

Internet and World Wide Web — How to program by Dietel and Nieto PHI/Pearson
Education Asia.

An Introduction to web Design and Programming —Wang-Thomson.

Web Applications Technologies Concepts-Knuckles, John Wiley.

Dr. Vasantha Rudramalla

LESSON- 6
INTRODUCTION TO JAVASCRIPT AND

CLIENT-SIDE SCRIPTING

Aims and Objectives:

» Understand the basic syntax rules of JavaScript and how to declare and use variables
effectively.

» Learn to define and call functions to organize reusable blocks of code.

» Explore how to handle user interactions through JavaScript events like clicks and

form submissions.

Embed JavaScript into HTML documents using <script> tags in various ways (inline,

internal, external).

Implement basic client-side form validation using JavaScript to ensure correct user

input before submission.

Y VY

STRUCTURE:

6.1 JavaScript
6.1.1Key Capabilities of JavaScript
6.2 . Variables in JavaScript
6.3 Functions
6.4 Events in JavaScript
6.4.1. Introduction to Events in JavaScript
6.4.2. Common Types of JavaScript Events
6.4.3. Adding Event Handlers in JavaScript
6.4.4. Event Object
6.4.5. Event Propagation
6.4.6. Event Delegation
6.4.7. Removing Event Listeners
6.4.8. Keyboard and Mouse Events
6.4.9. Form Events
6.4.10. Best Practices for Using Events
6.5 Embedding JavaScript in HTML
6.5.1. Using the <script> Tag
6.5.2. Types of Embedding JavaScript
6.6 Form Validation Basics
6.7. Data Types

6.8 Summary

Web Technologies Lab 6.2 Introduction To Javascript and ..

6.9 Key Terms
6.10 Self-Assessment Questions

6.11 Further Readings

6.1 JAVASCRIPT

1. Introduction

JavaScript is a high-level, interpreted programming language used primarily for creating
interactive and dynamic content on web pages. It allows developers to implement features
like image sliders, form validation, dropdown menus, modal windows, and more.

2. History

e Created by: Brendan Eich in 1995 at Netscape.
o Initially called: Mocha, then LiveScript, and finally renamed JavaScript.
e Standardized as: ECMAScript (by ECMA International) in 1997.

3. Features of JavaScript

e JavaScript was designed to add interactivity to HTML pages

e Lightweight and interpreted: No need for compilation.

e Client-side scripting: Runs in the user's browser.

o Dynamic typing: Variables do not require type declaration.

e Prototype-based OOP: Supports object-oriented programming.

o Event-driven: Reacts to user actions like clicks and input.

e Cross-platform: Works on all modern browsers and devices.

e Asynchronous programming: Supports callbacks, promises, and async/await.

What Can JavaScript Do?

JavaScript provides HTML designers with a powerful programming tool. While HTML
authors may not always be trained programmers, JavaScript is a lightweight scripting
language with simple and readable syntax, making it accessible to beginners. With just
small code snippets, JavaScript can greatly enhance a webpage's functionality.

6.1.1Key Capabilities of JavaScript

a) Add Dynamic Content to Web Pages
o JavaScript can insert dynamic text into HTML using variables.

o Example:
o document.write("<h1>" + name + "</h1>");
This writes the value of the variable name directly into the HTML page.

b) React to User Events
o JavaScript can execute specific code in response to events such as:
= Page loading
= Mouse clicks
= Keyboard inputs

Centre for Distance Education 6.3 Acharya Nagarjuna University

o This interactivity improves the user experience.
¢) Read and Modify HTML Elements

o JavaScript can access and manipulate the content of HTML elements using the

DOM (Document Object Model).

o It can change text, attributes, styles, and structure of the webpage dynamically.

d) Validate Form Data
o JavaScript can check user inputs before the form is submitted to the server.
o This reduces unnecessary server load and improves performance and user
feedback.
o Example checks: Empty fields, valid email format, password strength.
e) Detect Browser Information
o JavaScript can detect the user’s browser and operating system.
o This is useful for customizing content or redirecting users to a browser-
compatible version of the site.
f) Create and Manage Cookies
o JavaScript can store, retrieve, and delete cookies on the user's computer.
o Cookies are useful for saving user preferences, login sessions, and other
personalized data.

4. JavaScript Syntax Basics

// ' Variable declaration

let name = "Alice"; // ES6 syntax
var age = 25; /I ESS syntax
const pi = 3.14; // Constant

// Function
function greet() {
alert("Hello, " + name);

}

/I Conditional

if (age >18) {
console.log("Adult");

} else {
console.log("Minor");

b

6.2 . Variables in JavaScript

What is a Variable?

A variable in JavaScript is a named container used to store data that can be referenced and

manipulated in a program. Variables allow developers to reuse values and manage dynamic
data.

Web Technologies Lab 6.4 Introduction To Javascript and ..

Declaring Variables

JavaScript provides three keywords to declare variables:

‘Keyword” Scope HReassignment"HoistingHBlock Scopedl
‘Var HFunctionHYes HYes HNO |
‘let HBlock HYes HNO HYes ‘
‘const HBlock HNO HNO HYes ‘
Syntax

var x = 10;

let name = "Alice";
const PI =3.14;

e var is function-scoped and can be redeclared.

e et is block-scoped and cannot be redeclared in the same scope.

e const is block-scoped and must be initialized during declaration. Its value cannot be
changed (immutable binding).

Variable Naming Rules
e Names must start with a letter, underscore , or dollar sign $.
o Cannot start with a digit.
e Are case-sensitive (Name and name are different).
e Should not use reserved JavaScript keywords (like for, if, etc.)
Valid Names:
let userName;
let $Sprice;
let total Amount;
Invalid Names:
let 2value; // Invalid: starts with a number
let if; // Invalid: reserved keyword

Data Types Stored in Variables

Variables can hold different types of data:

let age = 25; // Number
let name = "John"; // String
let isActive = true; // Boolean

let person = {name:"Ava"}; // Object
let items =[1, 2, 3]; // Array
let result = null; // Null

Centre for Distance Education 6.5 Acharya Nagarjuna University

let score; // Undefined
Variable Scope

1. Global Scope — Declared outside any function or block.
2. Function Scope — Declared inside a function using var.
3. Block Scope — Declared using let or const inside {} like loops, if statements.

function testScope() {
var a = 10; // function scoped
let b = 20; // block scoped
if (true) {
let ¢ = 30;
console.log(c); // 30
}

/I console.log(c); // Error: ¢ is not defined

}

Variable Hoisting

e var declarations are hoisted to the top of their scope but not initialized.
e let and const are hoisted but stay in the temporal dead zone (TDZ) until declared.

console.log(x); // undefined (due to hoisting)
var x =5;

/I console.log(y); // Error: Cannot access 'y' before initialization
lety =10;

Best Practices

e Always prefer let or const over var.

e Use const when the value should not change.

o Declare variables at the top of their scope.

e Use meaningful names (e.g., userAge instead of x).

Example Program

<IDOCTYPE html>
<html>
<body>

<h2>JavaScript Variable Example</h2>
<p id="demo"></p>

<script>
const firstName = "John";
let age = 30;
var message = firstName + " is " + age + " years old.";

Web Technologies Lab 6.6 Introduction To Javascript and ..

document.getElementByld("demo").innerHTML = message;
</script>

</body>
</html>

Output:
John is 30 years old.

6.3 Functions
What is a Function?

A function is a block of reusable code designed to perform a specific task. Functions help
organize code, reduce repetition, and improve maintainability.

Why Use Functions?

e To reuse code.

e To break down complex problems into smaller, manageable parts.
e To improve readability and maintainability.

e To execute code only when invoked or called.

Function Declaration (Function Statement)

function greet() {
console.log("Hello, World!");

}
greet(); // Output: Hello, World!
Function Parameters and Arguments

Functions can accept inputs called parameters, and these values passed are called arguments.

function greetUser(name) {
console.log("Hello, " + name + "!");

}
greetUser("Alice"); // Output: Hello, Alice!

Return Statement

Functions can return a value using the return keyword.

function add(a, b) {
return a + b;

}
let result = add(5, 3); // result is 8

Function Expressions

Centre for Distance Education 6.7 Acharya Nagarjuna University

A function can also be defined as an expression and stored in a variable.

const multiply = function(x, y) {
return X * y;

}5
console.log(multiply(4, 5)); // Output: 20

Arrow Functions (ES6+)
Arrow functions provide a shorter syntax for writing functions.
const square = (n) => {
return n * n;
iénsole.log(square(@); // Output: 36
Simplified Version (one-liner):
const square =n =>n * n;

Anonymous Functions

Functions without a name are called anonymousfunctions. Often used in event handlers or
passed as arguments.

setTimeout(function() {
console.log("Executed after 2 seconds");
},2000);

Immediately Invoked Function Expression (IIFE)
A function that runs immediately after it is defined.

(function() {
console.log("IIFE executed!");

HO;

Nested Functions

Functions can be defined inside other functions and have access to variables in the parent
function.

function outer() {
let outerVar = "I'm outer!";

function inner() {
console.log(outerVar); // Can access outer variable

}

inner();

‘ Web Technologies Lab 6.8

Introduction To Javascript and ..

}

outer();

Function Scope

e Variables declared inside a function are local to that function.
o Functions have access to global variables and to variables in their parent functions

(closures).

Rest Parameters

Allows a function to accept an indefinite number of arguments as an array.

function sum(...numbers) {
return numbers.reduce((total, num) => total + num);

}
console.log(sum(1, 2, 3, 4)); // Output: 10

Default Parameters
Set default values for parameters.

function greet(name = "Guest") {
console.log("Hello, " + name);

J
greet(); // Output: Hello, Guest

greet("Ravi"); // Output: Hello, Ravi

Example: Function in HTML

<IDOCTYPE html>

<htmI>

<body>

<h2>JavaScript Function Example</h2>

<p>Click the button to see a message.</p>

<button onclick="showMessage()">Click Me</button>
<script>

function showMessage() {
alert("Hello! You clicked the button.");

}

</script>

</body>
</htmI>

Centre for Distance Education 6.9 Acharya Nagarjuna University

Best Practices

e Use descriptive function names.

o Keep functions small and focused on a single task.

e Avoid global variables inside functions.

e Use arrow functions for shorter syntax when appropriate.
e Use const or let when assigning functions to variables.

Common Use Cases

o Input validation

e Performing calculations

o Event handling (e.g., button clicks)
e APIcalls

e Data manipulation

6.4 Events in JavaScript
6.4.1. Introduction to Events in JavaScript

Events in JavaScript are actions or occurrences that happen in the browser, which JavaScript
can respond to. Examples of events include:

e A user clicking a button
A web page loading
A form being submitted
A key being pressed

JavaScript allows developers to create dynamic and interactive web applications by reacting
to these events.

6.4.2. Common Types of JavaScript Events

Event Description
click Triggered when an element is clicked
dblclick Triggered when an element is double-clicked

mouseover |[Triggered when the mouse pointer moves over an element

mouseout Triggered when the mouse pointer moves out of an element

keydown Triggered when a key is pressed

keyup Triggered when a key is released

load Triggered when a page or image is fully loaded
submit Triggered when a form is submitted

change Triggered when the value of a form element changes
focus Triggered when an element gains focus

blur Triggered when an element loses focus

Web Technologies Lab 6.10 Introduction To Javascript and ..

6.4.3. Adding Event Handlers in JavaScript
JavaScript provides multiple ways to attach event handlers to elements:

a) Inline HTML Event Handling
<button onclick="alert('Button clicked!")">Click Me</button>

b) Using DOM Properties

let btn = document.getElementById("myBtn");
btn.onclick = function () {

alert("Button clicked!");

}5

c¢) Using addEventListener()

let btn = document.getElementByld("myBtn");
btn.addEventListener("click", function () {
alert("Button clicked using addEventListener!");

135

addEventListener() is the preferred method as it allows attaching multiple handlers and
supports event bubbling and capturing.

6.4.4. Event Object

When an event occurs, an event object is automatically passed to the event handler. It
contains useful information like:

e type — the type of the event

o target — the element on which the event occurred

o preventDefault() — prevents the default action

o stopPropagation() — stops the event from bubbling up

document.getElementByld("myForm").addEventListener("submit", function (event) {
event.preventDefault(); // Prevents form from submitting
alert("Form submission prevented!");

135

6.4.5. Event Propagation

JavaScript events follow a three-phase propagation model:
1. Capturing Phase (trickle down)
2. Target Phase (event reaches the target)
3. Bubbling Phase (bubble up to ancestors)

element.addEventListener("click", handler, true); // Capturing
element.addEventListener("click", handler, false); / Bubbling (default)

Centre for Distance Education 6.11 Acharya Nagarjuna University

6.4.6. Event Delegation

Instead of adding event listeners to individual elements, event delegation allows attaching a
single event listener to a parent element that handles events for its child elements.

document.getElementByld("parent").addEventListener("click", function (e) {
if (e.target&&e.target.matches("button.classname")) {
alert("Button inside parent clicked");

}
s

6.4.7. Removing Event Listeners
You can remove an event listener using removeEventListener().

function greet() {
alert("Hello");
¥

btn.addEventListener("click", greet);

// To remove
btn.removeEventListener("click", greet);

Note: The function reference must be the same to remove it.
6.4.8. Keyboard and Mouse Events
o Keyboard Events: keydown, keypress, keyup

document.addEventListener("keydown", function (e) {
console.log("Key pressed:", e.key);

135

e Mouse Events: click, dblclick, mousedown, mouseup, mousemove, mouseenter,
mouseleave

document.addEventListener("mousemove", function (e) {
console.log("Mouse X:", e.clientX, "Mouse Y:", e.clientY);

;s

6.4.9. Form Events

Form controls support events like:

e submit
e change
o focus

e blur

‘ Web Technologies Lab 6.12 Introduction To Javascript and ..

document.getElementByld("name").addEventListener("change", function () {
alert("Name changed!");

1)
6.4.10. Best Practices for Using Events

o Prefer addEventListener() over inline handlers

o Use event delegation for dynamic or multiple elements

e Always remove unused event listeners to avoid memory leaks
e Avoid anonymous functions if the event needs to be removed
o Use preventDefault() and stopPropagation() wisely

6.4.11. Example: Simple Event Handler
<IDOCTYPE html>

<htmI>

<head>

<title>Event Example</title>

</head>

<body>

<button id="btn">Click Me</button>

<script>
document.getElementByld("btn").addEventListener("click", function () {
alert("Button was clicked!");
1)
</script>
</body>
</htm]>

Conclusion

Events in JavaScript are crucial for creating interactive and dynamic web applications.
Mastery of events and their proper handling ensures a responsive and user-friendly
experience. Understanding concepts like event propagation, delegation, and proper use of
listeners is essential for efficient JavaScript programming.

6.5 Embedding JavaScript in HTML

JavaScript can be embedded in an HTML document to add dynamic functionality to web
pages. This is done using the <script> tag. JavaScript can be embedded in several ways:
directly within the HTML file (inline or internal), or through an external JavaScript file.

6.5.1. Using the <script> Tag

The <script> tag is used to embed JavaScript code in HTML. It can be placed in the <head>
or <body> section of an HTML document.

<script>
// JavaScript code goes here
</script>

Centre for Distance Education 6.13 Acharya Nagarjuna University

6.5.2. Types of Embedding JavaScript
There are three main methods of embedding JavaScript into HTML.:
a) Inline JavaScript

JavaScript code can be placed directly within an HTML element’s attribute, such as the
onclick attribute of a button.

Example:
<button onclick="alert('"Hello, World!")">Click Me</button>

Use Case: Best for simple tasks and demonstrations. Not recommended for complex logic or
production code.

b) Internal JavaScript (Embedded in HTML)

You can write JavaScript within a <script> tag inside the HTML file, typically in the <head>
or at the end of the <body>.

Example:

<IDOCTYPE htmI>
<htmlI>
<head>
<title>Internal JavaScript</title>
<script>
function greetUser() {
alert("Welcome to my website!");
}
</script>
</head>
<body>
<button onclick="greetUser()">Say Hello</button>
</body>
</htm]>

¢) External JavaScript

JavaScript can be written in a separate .js file and linked to the HTML document using the src
attribute of the <script> tag.

Example:
1. HTML File (index.html)
<IDOCTYPE htmI>

<html>
<head>

Web Technologies Lab 6.14 Introduction To Javascript and ..

<title>External JavaScript</title>

<script src="script.js"></script>

</head>

<body>

<button onclick="greetUser()">Click Me</button>
</body>

</html>

2. JavaScript File (script.js)

function greetUser() {
alert("Hello from external JavaScript!");

}

Benefits:
e Cleaner HTML code
o Reusability of scripts across pages

o Easier maintenance and debugging

Script Placement in HTML

‘ Placement H Description

‘<head> HExecutes before the content loads. May delay rendering.

‘defer HAttribute used to defer script execution until after HTML parsing.

|
|
‘End of <body>HPreferred for performance. Loads content first, then script. ‘
l

‘async HAttribute used to download and execute script asynchronously.

Example with defer:

—_n

<script src="script.js" defer></script>
Security Note

Avoid embedding user-generated content directly into <script> tags to prevent Cross-Site
Scripting (XSS) attacks.

Table

‘MethodH Where Used H Use Case H Example ‘
‘Inline HHTML attributesHQuick tests, simple interactions H<butt0n onclick="alert('Hi")"> ’
‘Internal H<script> tag HPage-speciﬁc logic H<script>functi0n(){...}</ script> ’

‘ExtemalHLinked Js file HReusable and maintainable codeH<script src="script.js"></ script>‘

Best Practices

e Always place scripts just before </body> unless required in <head>.

Centre for Distance Education 6.15 Acharya Nagarjuna University

o Use external JavaScript for modularity and reuse.
e Avoid inline JavaScript in production.
e Use defer or async for performance optimization.

6.6 Form Validation Basics

Form validation is the process of checking the data entered into a form to ensure it meets
certain rules before it is submitted to a server. It helps in maintaining data quality, enhancing
user experience, and improving security.

Types of Form Validation

1. Client-Side Validation
o Happens in the user's browser (before data is sent to the server).
o Uses HTMLYS attributes or JavaScript.
o Provides immediate feedback.

2. Server-Side Validation
o Happens on the server after the form is submitted.
o [Essential for security (users can bypass client-side validation).
o Typically done using languages like PHP, Python, Java, etc.

Common Validation Rules

e Required fields: Ensures the user has entered something.

o Data type checks: Ensures values are numbers, emails, URLSs, etc.

e Length checks: Limits input to a specific number of characters.

o Pattern matching: Validates format using regular expressions (e.g., phone number,
postal code).

e Matching fields: Confirms that values in two fields are the same (e.g., password and
confirm password).

Client-Side Validation Techniques
1. HTMLS Attributes

o required: Field must be filled.

e type="email": Must be a valid email format.

e min, max, maxlength: Numeric or text length limits.
e pattern: Regular expression validation.

<form>
<input type="text" name="name" required>

<input type="email" name="email" required>

<input type="password" name="pwd" minlength="6" required>
<input type="submit">

</form>

Example

<IDOCTYPE htmI>

Web Technologies Lab 6.16 Introduction To Javascript and ..

<htmlI>
<head>
<script>
function validateForm() {
let x = document.forms["myForm"]["thame"].value;
if (x =" {
alert("Name must be filled out");
return false;

}
j

</script>
</head>
<body>
<h2>JavaScript Validation</h2>
<form name="myForm" action="/action_page.php" onsubmit="return validateForm()"
method="post">
Name: <input type="text" name="fname">
<input type="submit" value="Submit">
</form>
</body>
</html>

Output:

JavaScript Validation

Name: Submit

Common Use Cases

e Form validation

o Image sliders

e Interactive maps

e Popups/modals

o Real-time updates (chat, notifications)

o Games

e AJAX requests (load data without refreshing page)

Advantages

o Enhances user experience

e Reduces server load

o Fast client-side processing

e Wide community and support

Centre for Distance Education 6.17 Acharya Nagarjuna University

Limitations

o Runs in the browser — can't access server files directly
e Code visibility (can be viewed and modified by users)
e May behave differently across browsers if not standardized

Modern JavaScript Tools and Frameworks

o Libraries: jQuery, Axios

o Frameworks: React, Angular, Vue.js
e Runtimes: Node.js (for server-side JS)
e Build tools: Webpack, Babel, ESLint

Note:

JavaScript is an essential language for web development. It bridges the gap between static
HTML/CSS and dynamic user interaction, making websites more functional, responsive, and
user-friendly.

Example: Change Text on Button Click

<IDOCTYPE html>
<htmI>

<head>
<title>JavaScript Example</title>
</head>
<body>
<p id="myParagraph">This is the initial text.</p>
<button onclick="changeText()">Click Me</button>
<script>
function changeText() {
document.getElementByld("myParagraph").innerHTML = "This text has been changed!";
}
</script>
</body>
</html>

Explanation of Code

1. HTML Structure:
e A paragraph element is defined with the ID myParagraph.
e A button element is provided to trigger the JavaScript function.

2. JavaScript Functionality:
e The changeText() function is defined inside a <script> tag.
e [t uses document.getElementByld("myParagraph") to access the paragraph.
e The innerHTML property is used to change the paragraph’s content.

3. Event Handling:
e The onclick attribute of the button is used to call the changeText() function when
the button is clicked.

Web Technologies Lab 6.18 Introduction To Javascript and ..

4. Output:
e Initially, the paragraph displays: "This is the initial text."
e After clicking the button, the paragraph updates to: " This text has been changed!"

Key JavaScript Concepts Demonstrated
e HTML Structure: Defines the elements to be manipulated.
o JavaScript Behavior: Provides interactivity and control logic.
o Event Handling: The onclick event responds to user actions.
e DOM Manipulation: document.getElementByld() and innerHTML are used to
modify webpage content.
o Functions: Encapsulate reusable code logic that executes when triggered.

6.7.DATA TYPES

e Primitive: String, Number, Boolean, Null, Undefined, Symbol, Biglnt.
e Non-Primitive: Object, Array, Function.

Strings - are a series of letters and numbers enclosed in quotation marks. JavaScript uses the
string literally; it doesn't process it. You'll use strings for text you want displayed or values
you want passed along.

Numbers - are values that can be processed and calculated. You don't enclose them in
quotation marks. The numbers can be either positive or negative.

Boolean (true/false) - lets you evaluate whether a condition meets or does not meet specified
criteria.

Null - is an empty value. null is not the same as 0 -- 0 is a real, calculable number, whereas
null is the absence of any value.

Data Types

TYPE EXAMPLE

Numbers Any number, such as 17, 21, or 54e7

Strings | "Greetings!” or "Fun"

Boolean | Either true or false

Null A special keyword for exactly that — the null valoe (that 1=, nothing)

6.8 SUMMARY

JavaScript is a high-level, interpreted scripting language used to add interactivity to web
pages. Created by Brendan Eich in 1995, it was standardized as ECMAScript in 1997.
JavaScript supports dynamic typing, prototype-based OOP, event-driven programming, and
asynchronous operations. It can modify HTML elements, validate forms, handle browser
detection, and manage cookies. Variables are declared using var, let, or const, each with
different scopes and behaviors. JavaScript supports various data types and has well-defined

Centre for Distance Education 6.19 Acharya Nagarjuna University

rules for naming variables. Functions in JavaScript allow code reuse and come in multiple
forms, including function declarations, expressions, and arrow functions. Events are central
to JavaScript, enabling responses to user interactions like clicks and keypresses. Event
handling can be done inline, via DOM properties, or using addEventListener(). Developers
can manage event propagation and delegation for efficient interaction handling. JavaScript
can be embedded into HTML using <script> tags—inline, internal, or external. External
scripts promote modularity and cleaner code. The defer and async attributes optimize script
loading. Proper use of events and functions enhances web app responsiveness. JavaScript's
versatility makes it essential for modern web development.

6.9 KEY TERMS

JavaScript, ECMAScript,Variable (var, let, const),Data Types,Function,Arrow
Function,Event Handling, DOM (Document Object Model),Form
Validation,addEventListener(),Event Delegation,Event Propagation,Script Tag
(<script>),Inline/Internal/External JavaScript,Hoisting.

6.10 SELF-ASSESSMENT QUESTIONS

What is JavaScript and where is it primarily used?

What is the difference between var, let, and const in JavaScript?

List some of the basic data types in JavaScript.

What is the purpose of functions in JavaScript?

How do arrow functions differ from regular functions in JavaScript?
What is the DOM in JavaScript?

How can JavaScript be added to an HTML document?

What is form validation and why is it important in JavaScript?

. Explain the use of addEventListener() in event handling.

10 What is the difference between inline, internal, and external JavaScript?

I R

6.11 FURTHER READINGS

1. JavaScript: The Definitive Guide, Seventh Editionby David Flanagan. O'Reilly
Media.

2. Eloquent JavaScript: A Modern Introduction to Programming, Third Editionby Marijn

Haverbeke. No Starch Press.

Beginning JavaScript, Fifth Editionby Jeremy McPeak. Wrox (Wiley).

Learning JavaScript Design Patterns, First Editionby Addy Osmani. O'Reilly Media.

5. The complete Reference Java 2 Fifth Edition by Patrick Naughton and Herbert
Schildt. TMH

W

Dr. Vasantha Rudramalla

LESSON- 7
OBJECTS IN JAVA SCRIPT AND DYNAMIC

HTML (DHTML)

Aims and Objectives:

» Understand the concept and structure of JavaScript objects, including properties and

methods.

» Learn how to create, access, modify, and delete object properties using different
approaches.

» Explore how to use JavaScript to dynamically change HTML content, attributes, and
styles.

» Apply the this keyword and methods within objects to build real-world functionalities.

» Demonstrate the use of JavaScript in manipulating DOM elements for creating

interactive web pages.
STRUCTURE:

7.1 Objects in JavaScript

7.2 Dynamic HTML with Java Script.
7.2.1 How JavaScript Enables DHTML
7.2.2 DOM Methods in DHTML

7.3 Summary

7.4 Key Terms

7.5 Self-Assessment Questions

7. 6 Further Readings

7.1 Objects in JavaScript

In JavaScript, objects are collections of related data and functionality. These can include
built-in objects provided by the browser (like window, document, etc.) or user-defined
objects. Objects contain properties (values) and methods (functions).

1. Window Object

The window object is the top-level object in the browser's JavaScript environment. It
represents the browser window or tab that displays the HTML document. Every global
variable, function, or object created in JavaScript is automatically a member of the window
object.

Key Features:

e [t is automatically created by the browser when a web page loads.
e Acts as the global object in browsers.
e Contains properties like location, history, navigator, etc.

Web Technologies Lab

7.2 Objects in Java Script and Dynamic ...

Note:

Provides methods like alert(), prompt(), confirm(), setTimeout(), and setInterval().

The window object is global, so you usually don’t need to type window. explicitly.
alert("Hello!"); // Equivalent to window.alert("Hello!");

e console.log(window.innerHeight); / Displays window height

Common Properties:

Property

Description

window.innerWidth

Width of the content area of the window

window.innerHeight

Height of the content area

window.location

Provides URL and navigation functions

window.document

Refers to the current page's document

window.navigator

Gives browser information

window.history

Controls the session history

Common Methods:

Method Description
alert(message) Displays a popup alert box
confirm(message) Displays a popup with OK and Cancel
prompt(message) Displays a popup with a text input field

setTimeout(fn, time)

Executes a function after a delay

setInterval(fn, time)

Repeats function execution at intervals

open(url) Opens a new browser window
close() Closes the current window
Example Usage:

// Display an alert box

window.alert("Welcome to JavaScript!");

// Set a timeout

window.setTimeout(function() {
alert("This alert appears after 3 seconds.");

}, 3000);

/I Log the window dimensions

Centre for Distance Education 7.3 Acharya Nagarjuna University

console.log("Width: " + window.innerWidth);
console.log("Height: " + window.innerHeight);

/I Redirect to another URL

window.location.href = "https://www.example.com";

2. Navigator Object

The Navigator Object is a built-in object in JavaScript that contains information about the
web browser being used by the client (user). It is a property of the window object, and it
provides useful metadata about the browser's name, version, platform, and capabilities.

The navigator object is often used for browser detection and for controlling or accessing
certain browser features.

Syntax:
window.navigator
/l or simply

navigator

Key Properties of Navigator Object:

‘ Property H Description |
Returns the name of the browser (mostly returns "Netscape" for
appName o e1s
compatibility reasons)
‘appCodeName HReturns the code name of the browser (usually "Mozilla") |
‘appVersion HReturns the version information of the browser |
‘userAgent HReturns the user-agent header sent by the browser to the server |
Returns the platform on which the browser is running (e.g., "Win32",
platform

"Linux x86_64")

language or Returns the language preference of the browser

‘hardwareConcurrencyHReturns the number of logical processors available to run threads

languages

‘cookieEnabled HReturns true if cookies are enabled in the browser |

‘onLine HReturns true if the browser is online |

b’avaEnabled() HReturns true if Java is enabled in the browser |

‘plugins HReturns a list of all plugins installed in the browser |

‘mimeTypes HReturns a list of all MIME types supported by the browser |
|
|

‘maxTouchPoints HReturns the maximum number of simultaneous touch points supported

webdriver Returns true if the browser is controlled by automation (e.g., Selenium)

Web Technologies Lab 7.4 Objects in Java Script and Dynamic ...

Example: Using Navigator Object

<IDOCTYPE html>
<htmI>
<head>

<title>Navigator Object Example</title>
</head>
<body>

<h2>Browser Information</h2>

<script>

document.write("Browser Name: " + navigator.appName + "
");

document.write("Browser Code Name:" + navigator.appCodeName + "
");
document.write("Browser Version:" + navigator.appVersion + "
");
document.write("Platform: " + navigator.platform + "
");
document.write("User Agent:" + navigator.userAgent + "
");
document.write("Cookies Enabled: " + navigator.cookieEnabled + "
");
document.write("Online Status:" + navigator.onLine + "
");

</script>
</body>
</html]>

Common Uses of Navigator Object

1. Browser Detection:
To perform actions depending on which browser is being used (though feature
detection is preferred over browser detection).
2. Language Preferences:
To customize content based on the user's preferred language.
3. Online/Offline Detection:
To check whether the user is connected to the internet.
4. Feature Availability:
Determine if Java, cookies, or other plugins are enabled or available.

Note:

Avoid relying solely on browser detection using the navigator object for functionality.
Instead, use feature detection (via libraries like Modernizr) to ensure consistent behavior
across different environments.

Centre for Distance Education 7.5 Acharya Nagarjuna University

Table
Feature Description
Object Name navigator
Purpose Provides information about the browser and system

Important Properties|userAgent, platform, language, cookieEnabled, onLine

Common Use Browser info, feature support, user customization

Key Properties:

e navigator.appName: Browser name

e navigator.appVersion: Browser version

e navigator.platform: OS platform

e navigator.language: Language setting

e navigator.onLine: Checks if the browser is online

Example:
console.log("Browser Name: " + navigator.appName);
console.log("Online: " + navigator.onLine);
3. Document Object
The document object is a part of the Browser Object Model (BOM) and more specifically, it
is the core of the DOM (Document Object Model). It represents the webpage loaded in the
browser and acts as an entry point to access and manipulate HTML content, structure, and
styles through JavaScript.
Syntax:
window.document
// or simply
document
Purpose of Document Object
e To access elements in the HTML document.
o To modify the structure, style, and content of the webpage.
e To handle events.

e To dynamically create or delete HTML elements.

Web Technologies Lab

7.6 Objects in Java Script and Dynamic ...

Important Properties of Document Object

Property

Description

document.title

Gets or sets the title of the document

document.URL

Returns the complete URL of the document

document.domain

Gets the domain name of the server

document.body

Represents the <body> element of the document

document.head

Represents the <head> element of the document

document.forms

Returns a collection of all <form> elements

document.images

Returns a collection of all elements

document.links

Returns a collection of all <a> elements with an href

document.cookie

Gets or sets cookies for the current page

document.readyState

Returns the loading state of the document (e.g., "loading",
"complete")

document.documentElement

Returns the root <html> element

Commonly Used Methods of Document Object

Method

Description

getElementByld(id)

Returns the element with the specified ID

getElementsByTagName(tag)

Returns a collection of elements with the given tag name

getElementsByClassName(class)

Returns a collection of elements with the specified class
name

querySelector(selector)

Returns the first element that matches the CSS selector

querySelectorAll(selector)

Returns all elements that match the CSS selector

createElement(tag) Creates a new HTML element

create TextNode(text) Creates a new text node

appendChild(node) Adds a node to the end of a list of children of a specified
parent

removeChild(node) Removes a child node from the document

. Writes HTML expressions or JavaScript code to the

write(text)
document

open() Opens a document for writing

close() Closes a document stream opened with document.open()

Example: Access and Modify Elements

<IDOCTYPE htmI>

Centre for Distance Education 7.7 Acharya Nagarjuna University

<htmlI>
<head>
<title>Document Object Example</title>
</head>
<body>
<h1 id="heading">Hello World</h1>
<p class="message">This is a paragraph.</p>
<script>
/I Access and modify content using document object
document.getElementByld("heading").innerHTML = "Welcome to JavaScript!";
document.querySelector(".message").style.color = "blue";
alert("Page Title: " + document.title);
</script>
</body>
</html]>
Use Cases of the Document Object
o Reading or changing the page content dynamically.
e Adding or removing HTML elements using JavaScript.
e Validating form input.
o Responding to user interactions like clicks and keypresses.
e Manipulating CSS styles and classes.
Important Notes
e Changes made using the document object reflect immediately on the webpage.
e document.write() should be avoided after the page has loaded as it can overwrite the

entire document.

Table
Feature Description
Object Name document
Part of DOM (Document Object Model)
Purpose Interact with and modify the HTML structure

Common Methods ||getElementByld(), querySelector(), createElement(), write()

Common Properties|title, URL, body, head, forms, images

Usage Dynamic HTML manipulation, event handling, content modification

Web Technologies Lab 7.8 Objects in Java Script and Dynamic ...

Common Methods:

o getElementByld()

o getElementsByTagName()

e querySelector()

o createElement(), appendChild()

Example:

document.getElementByld("demo").innerHTML = "Text changed!";

4. Form Object

Form Object in JavaScript

The Form object in JavaScript represents an HTML <form> element. It allows JavaScript to

access, manipulate, validate, and submit form data dynamically.

Each form in an HTML document becomes a part of the document.forms collection. You can

access a form either by its index or name.

Syntax:

/I Access form by index

document.forms[0]

/I Access form by name (name attribute in HTML)

document.forms["formName"]

Purpose of the Form Object

e To retrieve form input values.

e To set or modify form fields.

o To validate form inputs before submission.

e To handle form submission via JavaScript.

Important Properties of the Form Object

Property Description
elements Collection of all form elements (inputs, selects, buttons, etc.)
length Number of elements in the form
name The name of the form (from the name attribute)
action URL where the form data is sent (from the action attribute)
method HTTP method used when submitting the form (GET or POST)

target

Specifies where to display the response (like blank, _self)

Centre for Distance Education 7.9 Acharya Nagarjuna University

Property Description

Encoding type for submitted form data (e.g., application/x-www-form-
enctype
urlencoded)

acceptCharset|Character encodings the server can handle

autocomplete |[Indicates whether form input fields can be auto-completed (on or off)

noValidate |/If present, form will not be validated on submit

Common Methods of the Form Object

Method Description
submit() Submits the form programmatically
reset() Resets all form fields to their default values

checkValidity()||Returns true if the form is valid

reportValidity()||Reports validity and displays error messages if invalid

Example: Accessing and Using Form Object
<IDOCTYPE html>
<htmlI>
<head>
<title>Form Object Example</title>
</head>
<body>
<form name="myForm" action="/submit" method="post">
Name: <input type="text" name="username">

Email: <input type="email" name="email">

<input type="button" value="Submit" onclick="submitForm()">
</form>
<script>

function submitForm() {
var form = document.forms["myForm"];
var name = form["username"].value;
var email = form["email"].value;
if (name ==="" || email ==="") {
alert("All fields are required!");

‘ Web Technologies Lab 7.10 Objects in Java Script and Dynamic ...

} else {
alert("Form submitted with:\nName: " + name + "\nEmail: " + email);
form.submit(); // optional: submit programmatically

j
j

</script>
</body>
</html>

Form Validation Example

function validateForm() {
var form = document.forms["myForm"];
if (form.checkValidity()) {
alert("Form is invalid!");

} else {
alert("Form is valid and ready to submit.");

j
j

Accessing Form Elements

You can access individual form fields using:
document.forms["myForm"]["username"].value;
Or loop through all form elements:

var form = document.forms[0];

for (var i = 0; 1 < form.length; i++) {

console.log(form.elements[i].name + ": " + form.elements[i].value);

}

Table

Feature Details

Object Form
Part of |[DOM (document.forms)

Used for ||Accessing and manipulating form fields

Properties|jelements, action, method, target, length, name

Methods ||submit(), reset(), checkValidity(), reportValidity()

Use Cases||Input validation, programmatic form submission, dynamic data handling

Centre for Distance Education 7.11 Acharya Nagarjuna University

5. Date Object

Date Object in JavaScript

The Date object is a built-in JavaScript object used to work with dates and times. It allows
you to create, retrieve, and manipulate date and time values such as the current date, day,
month, year, hour, minute, second, and millisecond.

Syntax:

let date = new Date(); // Current date and time

let date = new Date(milliseconds); // Date based on milliseconds since Jan 1, 1970
let date = new Date(dateString); // Date from a string (e.g., "2025-06-11")

let date = new Date(year, month, day, hours, minutes, seconds, ms);

Note: In JavaScript, months are zero-indexed (January = 0, December = 11).

Creating Date Objects
1. Current Date and Time

let now = new Date();

2. From String

let d = new Date("2025-06-11");

3. From Components

let d = new Date(2025, 5, 11, 10, 30, 0); // June 11, 2025 10:30:00
4. From Milliseconds

let d = new Date(0); // January 1, 1970 (Unix Epoch Time)
Important Date Methods

Getter Methods (to retrieve parts of the date)

Method Description
getFullYear() Returns the 4-digit year (e.g., 2025)
getMonth() Returns the month (0-11)
getDate() Returns the day of the month (1-31)
getDay() Returns the day of the week (0—6, where 0 = Sunday)
getHours() Returns the hour (0-23)
getMinutes() Returns the minutes (0-59)
getSeconds() Returns the seconds (0-59)
getMilliseconds() |[Returns the milliseconds (0-999)
getTime() Returns milliseconds since Jan 1, 1970
getTimezoneOffset()||[Returns difference from UTC in minutes

Web Technologies Lab 7.12 Objects in Java Script and Dynamic ...

Setter Methods (to set parts of the date)

Method Description
setFullYear(year) Sets the full year
setMonth(month) Sets the month (0-11)
setDate(day) Sets the day of the month
setHours(hour) Sets the hour
setMinutes(min) Sets the minutes
setSeconds(sec) Sets the seconds
setMilliseconds(ms) Sets the milliseconds
setTime(ms) Sets the date based on milliseconds since 1970

Conversion Methods

Method Description
toDateString() Returns date as a readable string (e.g., "Wed Jun 11 2025")
toTimeString() Returns time as a readable string (e.g., "10:30:00 GMT+0530")
toISOString() Returns ISO format string (e.g., "2025-06-11T05:00:00.000Z")

toLocaleDateString() |[Returns date as a localized string

toLocaleTimeString()|[Returns time as a localized string

toUTCString() Returns UTC date string

Examples
Example 1: Get Current Date and Time

let now = new Date();
console.log(now.toString());

Example 2: Extract Date Components

let today = new Date();

console.log("Year: " + today.getFullYear());
console.log("Month: " + today.getMonth()); / 0 = January
console.log("Date: " + today.getDate());
console.log("Day: " + today.getDay()); // 0 = Sunday

Example 3: Set Custom Date
let customDate = new Date();

customDate.setFullYear(2026);
customDate.setMonth(11); // December

Centre for Distance Education 7.13 Acharya Nagarjuna University

customDate.setDate(25);
console.log(customDate.toDateString()); // "Fri Dec 25 2026"

Example 4: Compare Two Dates

let d1 = new Date("2025-06-01");
let d2 = new Date("2025-06-11");
if (d1 <d2) {
console.log("d1 is earlier than d2");

}

Use Cases of Date Object

e Displaying current date and time
e Calculating date differences

e Creating countdowns or clocks

e Validating date input in forms

e Generating timestamps for logs

Important Notes
e Months are 0-indexed: January is 0, December is 11.

e Always consider time zone differences when working with global users.
e Prefer using toISOString() or toLocaleString() for consistent formatting.

Table

Feature Description
Object Date
Purpose Work with dates and times

Common Getters ||getFullYear(), getMonth(), getDate(), getHours()

Common Setters ||setFullYear(), setMonth(), setDate()

Formats toString(), toISOString(), toLocaleString()

Use Cases Clocks, timestamps, reminders, form validations

6. String Object

The String object in JavaScript is a built-in object that allows you to create, manipulate, and
work with text (string values). Strings are sequences of characters used for storing and
manipulating text.

What is a String?
A string is a sequence of characters enclosed in:

e single quotes (")

Web Technologies Lab 7.14 Objects in Java Script and Dynamic ...

e double quotes ("")
e Dbackticks (") — for template literals

let strl ='Hello';
let str2 = "World";
let str3 = "Hello, ${str2}"; / Template literal

Creating String Objects

1. String Literal

let name = "JavaScript";

2. String Object Using Constructor

let nameObj = new String("JavaScript");

S Note: Using string objects (new String(...)) is not recommended for regular usage. Use
string literals for simplicity and performance.

Common String Properties

Property Description

length |[Returns the number of characters in the string

let text = "Hello World";
console.log(text.length); // Output: 11

Common String Methods

String Inspection Methods

Method Description
charAt(index) Returns the character at a specified index
charCodeAt(index) Returns the Unicode of the character
includes(substring) Checks if the string contains a substring
startsWith(substring) Checks if the string starts with a substring
endsWith(substring) Checks if the string ends with a substring
indexOf(substring) Returns the index of the first occurrence
lastIndexOf{(substring) Returns the last index of the substring

Centre for Distance Education 7.15 Acharya Nagarjuna University

String Manipulation Methods

Method Description
concat(string2) Combines two or more strings
replace(search, replace) Replaces substring with another

replaceAll(search, replace) Replaces all occurrences

slice(start, end) Extracts part of a string

substring(start, end) Similar to slice but does not accept negative indices
substr(start, length) Deprecated; use slice instead

toLowerCase() Converts string to lowercase

toUpperCase() Converts string to uppercase

trim() Removes whitespace from both ends

trimStart() / trimEnd() Trims start or end spaces

String Splitting and Matching

Method Description
split(separator) Splits a string into an array
match(regex) Matches string against a regular expression

matchAll(regex) |Returns all matches as an iterator

search(regex) Searches for a match using a regular expression

includes(text) Checks if text exists in the string

String Conversion Methods

Method Description

toString() ||Returns string representation

valueOf() |Returns the primitive string value

Examples
Example 1: Basic Usage

let msg = "Hello JavaScript";

console.log(msg.length); /Ay
console.log(msg.charAt(0)); //"H"
console.log(msg.toUpperCase()); / "HELLO JAVASCRIPT"

Example 2: Searching and Replacing
let txt = "The rain in Spain";

7.16 Objects in Java Script and Dynamic ...

Web Technologies Lab
console.log(txt.includes("rain")); // true
console.log(txt.indexOf("rain")); /] 4

nn

console.log(txt.replace("rain",
Example 3: Extracting Parts of a String

let str = "Hello, world!";
console.log(str.slice(0, 5)); // "Hello"
console.log(str.substring(7)); // "world!"

Example 4: Using Template Literals

let name = "Alice";
let greeting = "Hello, ${name}!";
console.log(greeting); // "Hello, Alice!"

Example 5: Splitting a String

let csv = "apple,banana,orange";
let fruits = csv.split(",");
console.log(fruits); // ["apple", "banana", "

Use Cases of String Object

e Displaying and formatting messages
e Validating form inputs

e Searching and filtering text

o Parsing and formatting data

sun")); // "The sun in Spain"

orange"]

e Creating dynamic content (e.g., templates)

Important Notes

o Strings are immutable: operations like replace() or concat() return a new string, not

modify the original.

e Prefer using string literals instead of new String().
e For multi-line strings or embedded variables, use template literals (*) with ${}.

Table
Feature Description
Object String
Type Wrapper object for text
Common Property | Length

Common Methods

charAt(), slice(), toUpperCase(), replace(), split()

Use Cases

Text display, manipulation, validation, and search

Mutability

Immutable — returns new string after changes

Centre for Distance Education 7.17 Acharya Nagarjuna University

7. Array Object

The Array object in JavaScript is a built-in object used to store multiple values in a single
variable. Arrays are versatile data structures that allow storing items like numbers, strings,
objects, and even other arrays.

What is an Array?

An array is a collection of items stored in a single variable. Each item has a numeric index,
starting from 0.

let fruits = ["Apple", "Banana", "Cherry"];
Creating Arrays

1. Array Literal (Recommended)

let colors = ["Red", "Green", "Blue"];

2. Using new Array() Constructor

let numbers = new Array(1, 2, 3, 4);

3. Creating an Empty Array

let emptyArr =[];

/\ Avoid using new Array(size) unless you know what you are doing. It creates an empty
array of a specific length but without elements.

Array Properties

Property Description

length |[Returns the number of elements in the array

let arr = [10, 20, 30];
console.log(arr.length); // Output: 3

Common Array Methods

Adding & Removing Elements

Method Description

push(item) Adds item to the end

pop() Removes and returns the last item

Web Technologies Lab 7.18 Objects in Java Script and Dynamic ...

Method Description
unshift(item) Adds item to the beginning
shift() Removes and returns the first item

splice(start, deleteCount, items...) ||Adds/removes elements at a specific index

slice(start, end) Returns a shallow copy of a portion of the array
Searching & Testing

Method Description
indexOf(item) Returns the first index of the item

lastindexOf(item) |Returns the last index of the item

includes(item) Checks if the array contains the item

find(callback) Returns the first element that satisfies the condition

findIndex(callback) | Returns the index of the first element that satisfies the condition

some(callback) Returns true if at least one element passes the test

every(callback) Returns true if all elements pass the test

Iteration and Transformation

Method Description
forEach(callback) Executes a function on each element
map(callback) Creates a new array with transformed values
filter(callback) Creates a new array with elements that pass the test

reduce(callback, initialValue) |[Reduces array to a single value

flat(depth) Flattens nested arrays

flatMap(callback) Maps and flattens results into a new array

Sorting & Reversing

Method Description

sort(compareFunction) ||Sorts the array elements in-place

reverse() Reverses the order of the elements

Centre for Distance Education 7.19 Acharya Nagarjuna University

Joining & Converting

Method Description

join(separator) ||Joins all elements into a string

toString() Converts array to a string (comma-separated)

Array.isArray() ||Checks whether a variable is an array

Examples
Example 1: Creating and Accessing Elements

let fruits = ["Apple", "Banana", "Cherry"];
console.log(fruits[0]); / Output: "Apple"
console.log(fruits.length); // Output: 3
Example 2: Adding and Removing

fruits.push("Mango");

console.log(fruits); // ["Apple", "Banana", "Cherry", "Mango"]
fruits.pop();

console.log(fruits); // ["Apple", "Banana", "Cherry"|

Example 3: Iterating Over an Array

fruits.forEach(function(item, index) {
console.log(index + ": " + item);

135

Example 4: Transforming with map()

let numbers =[1, 2, 3];
let squared = numbers.map(n =>n * n);
console.log(squared); // [1, 4, 9]

Example S: Filtering with filter()

let scores = [45, 67, 89, 30];

let passed = scores.filter(score => score >= 50);
console.log(passed); // [67, 89]

Example 6: Reducing with reduce()

let total = [10, 20, 30].reduce((acc, curr) => acc + curr, 0);
console.log(total); // 60

Web Technologies Lab 7.20 Objects in Java Script and Dynamic ...

Use Cases of Array Object

o Storing lists of items (names, numbers, etc.)
o [terating and transforming data
 Filtering and sorting information

e Storing results from APIs or form data

e Creating dynamic UI components

Important Notes

e JavaScript arrays are dynamic — they grow/shrink in size.
e Arrays can store mixed data types, but it's best to use uniform types.
o Use Array.isArray() to check if a variable is truly an array (as typeof returns "object").

Table
Feature Description
Object Array
Purpose Store and manipulate ordered collections of data
Indexing Starts from 0
Property Length

Common Methods |jpush(), pop(), map(), filter(), reduce(), sort()

Use Cases Lists, filtering, mapping, sorting, iteration, Ul building

Type Check Array.isArray(var)

Overview Table

Object Purpose Example Method / Property
window ||Global browser context alert(), setTimeout()
navigator |[Browser information navigator.appName

document |[HTML document interaction |getElementByld()

form HTML form access and data ||document.forms
Date Dates and time manipulation ||getDate(), getFull Year()
String Text processing toUpperCase(), replace()

Array Collection of values push(), length, sort()

Centre for Distance Education 7.21 Acharya Nagarjuna University

7.2 Dynamic HTML with Java Script
What is Dynamic HTML (DHTML)?

Dynamic HTML (DHTML) is not a language itself, but a collection of technologies used
together to create interactive and dynamic websites. DHTML allows web pages to change
after they are loaded, without requiring a full page reload.

DHTML Combines:

e HTML - to define structure/content

e CSS —to style and position elements

o JavaScript — to add interactivity and control behavior

e DOM (Document Object Model) — to access and manipulate HTML elements
dynamically

Purpose of DHTML
o Enhance user experience with interactive and responsive interfaces
e Create animations, dropdown menus, form validation, etc.

o Update content dynamically without reloading the entire page

Core Components of DHTML

Component Role
HTML Provides the basic structure and elements of the page
CSS Styles elements dynamically (e.g., color, font, layout)

JavaScript |Adds functionality and manipulates page content

DOM Allows access and modification of elements on the fly

7.2.1 How JavaScript Enables DHTML
JavaScript is the engine behind DHTML. Using JavaScript, you can:

e Access and modify HTML elements (via DOM)
e Change CSS styles dynamically

o Respond to user events (click, hover, input, etc.)
o Insert, remove, or replace content on the page

Example: Changing Content Dynamically

<IDOCTYPE html>
<htmI>
<head>
<title>DHTML Example</title>

Web Technologies Lab

7.22 Objects in Java Script and Dynamic ...

<script>
function changeContent() {

document.getElementByld("demo").innerHTML = "Content changed using DHTML!";

}

</script>
</head>
<body>

<h2 id="demo">Original Content</h2>
<button onclick="changeContent()">Click Me</button>

</body>
</html>

Explanation:

o JavaScript accesses the element using getElementByld

e The content is updated dynamically without reloading the page

DHTML Features Enabled by JavaScript

Feature Description
Event Handling Responds to user actions like clicks, keypresses, hovers
DOM Manipulation Modifies HTML structure in real-time
CSS Style Control Changes the look of elements dynamically
Animations Moves, fades, or transforms elements smoothly

Form Validation

Validates user input before submission

Real-Time Content Updates

Updates parts of the page based on conditions or input

7.2.2 DOM Methods in DHTML

JavaScript Method

Purpose

getElementByld() Access a specific element

getElementsByClassName() ||Access multiple elements by class

innerHTML Set or get the content inside an element
style.property Change element style (e.g., style.color)
createElement() Create new HTML elements
appendChild() Add new elements to the DOM

removeChild() Remove elements from the DOM

Centre for Distance Education 7.23 Acharya Nagarjuna University

Dynamic Style Example

<script>
function changeColor() {
document.getElementByld("text").style.color = "red";
}
</script>
<p id="text">Hello, world!</p>
<button onclick="changeColor()">Change Color</button>

Event Handling Example

<script>
function showMessage() {
alert("You clicked the button!");
J
</script>
<button onclick="showMessage()">Click Here</button>

Advantages of DHTML

e No page reload required for updates

o Better user interactivity and engagement

e Fast and responsive Ul

o Enables advanced features like sliders, popups, drag-drop, etc.

Disadvantages of DHTML

e Complex for beginners to debug and maintain
e Not all older browsers may support advanced DHTML features
e Too much DHTML can affect page performance

Real-Life Use Cases

e Dynamic menus and tooltips

e Live form validation (email/password check)

o Content sliders and carousels

o Expandable/collapsible sections

o Interactive games and visualizations

o AJAX-powered web applications (e.g., Gmail, Facebook)

Web Technologies Lab 7.24 Objects in Java Script and Dynamic ...

Table
Feature Description
Full Form Dynamic HTML
Key Technologies |[HTML, CSS, JavaScript, DOM
Driven By JavaScript
Main Purpose Make web pages dynamic and interactive

Core Capabilities ||Content change, style update, event handling

Use Cases Menus, animations, form validation, pop-ups

Note: DHTML with JavaScript is a powerful combination that allows developers to build
interactive, responsive, and dynamic web applications. It forms the foundation of modern
web interactivity, and understanding how JavaScript works with HTML and CSS is key to
mastering front-end development.

7.3 SUMMARY

JavaScript provides powerful built-in objects like Window, Navigator, Document, Form,
Date, String, and Array that form the core of dynamic web development. The Window object
serves as the global object and includes properties and methods like alert(), location, and
setTimeout(). The Navigator object offers browser-specific details such as appName,
userAgent, and onLine status. The Document object allows access and manipulation of
HTML elements using methods like getElementByld() and querySelector(). The Form object
is used to access and validate form inputs dynamically. The Date object enables working with
dates and times through methods like getFullYear() and setDate(). The String object allows
text manipulation with methods such as toUpperCase(), replace(), and split(). Arrays,
represented by the Array object, can hold multiple values and support powerful methods like
map(), filter(), and reduce(). These objects enable developers to create responsive, data-
driven interfaces. In addition, Dynamic HTML (DHTML) integrates HTML, CSS,
JavaScript, and the DOM to create interactive and visually dynamic web pages. JavaScript is
essential to DHTML, enabling real-time content updates, event handling, and style changes
without reloading the page.

7.4 KEY TERMS

Window Object, Navigator Object, Document Object, Form Object, Date Object, String
Object, Array Object, Dynamic HTML (DHTML), Document Object Model (DOM),
Event Handling.

7.5 SELF-ASSESSMENT QUESTIONS

1. What is the role of the Window object in JavaScript?
2. How can the Navigator object be used to detect browser information?

Centre for Distance Education 7.25 Acharya Nagarjuna University

How can you access and validate form data using the Form object in JavaScript?
What are some useful methods of the Date object to retrieve or set date values?
How do String methods like replace() and split() help in text manipulation?
What is Dynamic HTML (DHTML), and how does JavaScript contribute to it?

AN

7.6 FURTHER READINGS

1. JavaScript: The Definitive Guide, Seventh Edition by David Flanagan. O'Reilly
Media.

2. Eloquent JavaScript: A Modern Introduction to Programming, Third Edition by
Marijn Haverbeke. No Starch Press.

3. Beginning JavaScript, Fifth Edition by Jeremy McPeak. Wrox (Wiley).

4. The complete Reference Java 2 Fifth Edition by Patrick Naughton and Herbert
Schildt. TMH.

Dr. Vasantha Rudramalla

LESSON- 8
XML BASICS AND DATA PROCESSING IN WEB

APPLICATIONS

Aims and Objectives:

» Understand the purpose and syntax of Document Type Definition (DTD) for defining
the structure of XML documents.

Learn how to use XML Schemas (XSD) to enforce data types and validation rules in
XML files.

Explore the Document Object Model (DOM) to access, modify, and traverse XML
documents programmatically.

Gain knowledge of presenting XML datausing technologies like XSLT for
transformation and display.

Compare and utilize XML processors such as DOM and SAX for parsing and
handling XML data efficiently.

YV V VYV V¥V

STRUCTURE:

8.1 Introduction to XML
8.1.1 Basic XML Structure
8.2 Document type definition
8.3 XML Schemas
8.4 Document Object model
8.5 Presenting XML
8.6 DOM and SAX
8.7 Summary
8.8 Key Terms
8.9 Self-Assessment Questions

8.10 Further Readings

8.1 INTRODUCTION TO XML

XML (eXtensible Markup Language) is a simplified subset of SGML (Standard Generalized
Markup Language), a powerful markup language adopted as a standard by the International
Organization for Standardization (ISO). SGML was originally developed to add structure and
formatting to data in a way that could be used across various applications.

Unlike other languages that focus on how data is displayed, XML is designed to describe
what the data is. It emphasizes data structure rather than presentation. XML was introduced
as a recommendation by the World Wide Web Consortium (W3C) to facilitate data sharing
and transportation across systems in a platform-independent manner.

Markup and Tags

Web Technologies Lab 8.2 XML Basics and Data Processing in Web ...

In XML, markup refers to the set of instructions (called tags) used to define elements within
a document. These tags help structure the data but do not specify how it should be displayed.
XML syntax closely resembles HTML, but its purpose is different: while HTML formats data
for display, XML organizes data for storage and transport.

8.1.1 Basic XML Structure
Below is an example of a simple XML document:

<?xml version="1.0"7>
<college>

<studdetail>
<regno>05j0al1260</regno>
<name>
<firstname>karthik</firstname>
<lastname>btech</lastname>
</name>

<country name="india"/>
<branch>csit</branch>
</studdetail>

</college>

o The first line is a processing instruction that declares the file as an XML document
and specifies the version.
e <college> is the root element, and all other elements are nested within it.

Well-Formed vs Valid XML

e A well-formed XML document adheres strictly to XML syntax rules:
o All tags must be properly opened and closed.
o Tags must not overlap.

Empty tags must be self-closed (e.g., <tag/>).
o The document must include an XML declaration at the top.

e A valid XML document is not only well-formed but also follows a defined
DTD(Document Type Definition) or XML Schema that specifies its structure and
allowed elements. XML parsers can be used to check both well-formedness and
validity.

o

XML Elements and Rules
XML documents are composed of:
e Elements (the core content)

e Controlinformation (like comments and declarations)
o Entities (reusable data)

Centre for Distance Education 8.3 Acharya Nagarjuna University

Key characteristics of XML elements include:

Nesting Tags: XML requires proper nesting. If one tag is opened inside another, it
must be closed before the outer tag is closed.

<parent>

<child>Content</child>

</parent>

Case Sensitivity: XML is case-sensitive. <Name> and <name> are treated as
different tags. It's a best practice to use lowercase for all tags.

Empty Tags: Tags without content must be self-closed using a forward slash:
<country name="india"/>

Attributes: Elements can include attributes to hold additional information:
<country name="india"/>

Attributes should not replace elements when the data is complex or needs further structure.

Control Information in XML

In XML, control information refers to special components that provide instructions and
structure to the document. There are three main types of control information:

1. Comments
Comments in XML are used to include notes or explanations within the document that
are ignored by the parser.
o Syntax: <!-- This is a comment -->
o XML comments are similar to those in HTML.
2. Processing Instructions (PIs)
These are special instructions intended for applications that process the XML file.
o Example: <?xml version="1.0"7>
o This declaration tells the XML processor which version of XML is being used.
3. Document Type Declarations (DOCTYPE)
A Document Type Declaration links an XML document to a DTD (Document Type
Definition), which defines its structure and the rules for validation.
o Syntax: <IDOCTYPE element SYSTEM "filename.dtd">
o Example: <IDOCTYPE cust SYSTEM "customer.dtd">
o The DTD can be either internal (within the XML) or external (in a separate
file).
Entities in XML

Entities in XML are reusable content placeholders used to store small pieces of data that may
be repeated throughout the document. These help in maintaining consistency and
manageability.

For example, an XML document using control information and entities might look like this:

Web Technologies Lab 8.4

XML Basics and Data Processing in Web ...

<?xml version="1.0"7>

<IDOCTYPE stud SYSTEM "student.dtd">

<college>

<studdetail>
<regno>mc20001</regno>
<name>
<firstname>feroz</firstname>
<lastname>pg</lastname>

</name>

<country name="india"/>
<branch>cse</branch>
</studdetail>

</college>

In this example:

e The <?xml version="1.0"?> is a processing instruction.
e The <!IDOCTYPE stud SYSTEM "student.dtd"> links the XML file to an external

DTD.

o Elements like <college> and <studdetail> are structured using rules defined in the

DTD.

8.2 Document type definition

1. Introduction to DTD

Document Type Definition (DTD) defines the structure and the legal elements and attributes
of an XML document. It acts as a blueprint or grammar that XML documents must follow to

be considered valid.

While XML provides flexibility in data representation, DTD ensures data consistency,
validity,and structure conformity across documents.

DTD can be written as part of the XML document (internalDTD) or in a separate file

(externalDTD).

2. Purpose of DTD

e To validate the structure and content of XML documents.
o To ensure data integrity and uniformity across systems.

e To definerules for:
o Elements and their hierarchy
o Attributes of elements
o Entities
o Notations

Centre for Distance Education 8.5 Acharya Nagarjuna University

3. Types of DTD

a. Internal DTD

Defined within the XML document itself, using the <!IDOCTYPE> declaration.
Syntax:

<?xml version="1.0"?>

<IDOCTYPE root-element [

<IELEMENT element-name (child-elements)>

<IATTLIST element-name attribute-name attribute-type #default>
>

<root-element>

</root-element>
Example:

<?xml version="1.0"7>
<IDOCTYPE note [

<IELEMENT note (to, from, heading, body)>
<IELEMENT to (#PCDATA)>
<IELEMENT from (#PCDATA)>
<IELEMENT heading (#PCDATA)>
<IELEMENT body (#PCDATA)>

>

<note>

<to>Alice</to>

<from>Bob</from>
<heading>Reminder</heading>
<body>Meeting at 10 AM</body>
</note>

b. External DTD
Stored in a separate .dtd file and referenced from the XML document.
XML Document:

<?xml version="1.0"7>

<!DOCTYPE note SYSTEM "note.dtd">
<note>

<to>Alice</to>

<from>Bob</from>
<heading>Reminder</heading>
<body>Meeting at 10 AM</body>
</note>

Web Technologies Lab 8.6 XML Basics and Data Processing in Web ...

note.dtd (External DTD File):

<IELEMENT note (to, from, heading, body)>
<IELEMENT to (#PCDATA)>
<IELEMENT from (#PCDATA)>
<!IELEMENT heading (#PCDATA)>
<IELEMENT body (#PCDATA)>

4. DTD Components
a. Elements
Defines the allowable content of an element.
Syntax:
<!IELEMENT element-name (child-elements | #PCDATA | ANY | EMPTY)>
Examples:
<IELEMENT title (#PCDATA)><!-- Text-only -->
<IELEMENT book (title, author)><!-- Nested structure -->
<IELEMENT page ANY><!-- Any content -->
<IELEMENT img EMPTY><!-- Empty element -->
b. Attributes
Defines attributes for elements and their data types.
Syntax:
<IATTLIST element-name attribute-name attribute-type default-value>
Attribute Types:

e CDATA: Character data

e ID: Unique identifier

o IDREF: Reference to another ID

o IDREFS: Multiple references

e NMTOKEN: Name token

e ENUMERATION: List of allowed values
Default Values:

o #REQUIRED

e #IMPLIED

o #FIXED "value"
e "default value"

Centre for Distance Education 8.7 Acharya Nagarjuna University

Example:

<IATTLIST book isbn CDATA #REQUIRED>
<IATTLIST book category (fiction | nonfiction | reference) "fiction">

c. Entities

Used to define constants or placeholders that can be reused.
Syntax:

<IENTITY entity-name "replacement-text">

Example:

<!ENTITY author "ABC">

Usage in XML:

<creator>&author;</creator>

d. Comments in DTD

<!-- This is a comment -->

5. DTD Element Content Types

Type Description
‘#PCDATA HParsed Character Data (text) ‘
‘EMPTY HElement has no content ‘
‘ANY HElement can contain any content ‘
Child list Defines specific child elements and their order
Modifiers:

e 7 —zero or one

e *_zero or more
e + —o0ne or more
e | —choice

, — sequence

Example:

<IELEMENT name (first, middle?, last)>
<IELEMENT phone (home | mobile)>
<IELEMENT address (street, city, state, zip)>

Web Technologies Lab 8.8 XML Basics and Data Processing in Web ...

6. Advantages of DTD

o Simplicity and ease of use

o Useful for simple validation tasks

e Wide support by XML parsers

e Promotes consistency and reusability

7. Limitations of DTD

No support for data types beyond text (e.g., integer, date)
Limited namespace support

Cannot enforce constraints like min/max values or string patterns
Written in a different syntax (not XML-based)

Alternative: XML Schema (XSD) overcomes these limitations and is written in XML itself.
8. Validating XML with DTD
To validate an XML document:

e Use an XML parser (e.g., Xerces, DOM, SAX)

e Ensure the DOCTYPE declaration correctly references the DTD
e Check the document structure, elements, and attributes against the DTD rules

9. Table

‘ Feature H Description ‘
‘Full form HDocument Type Definition ‘
‘Purpose HValidates XML structure and content ‘
‘Deﬁned in HInternally in XML or externally as a .dtd file ‘
‘Key components HElements, attributes, entities, content models ‘
‘Limitation HNo support for data types or namespaces ‘
‘Replacement HXML Schema (XSD) for advanced validation ‘
Library XML with DTD:

library.xml

<?xml version="1.0"7>

<IDOCTYPE library SYSTEM "library.dtd">
<library>

<book isbn="12345">

<title>XML Basics</title>

<author>John Smith</author>

</book>

</library>

Centre for Distance Education 8.9 Acharya Nagarjuna University

library.dtd

<!IELEMENT library (book+)>

<IELEMENT book (title, author)>

<IATTLIST book isbn CDATA #REQUIRED>
<!IELEMENT title (#PCDATA)>

<!IELEMENT author (#PCDATA)>

8.3 XML Schemas

1. Introduction to XML Schema

XML Schema Definition (XSD) is a powerful way to define the structure, content, and
semantics of XML documents. It is a recommendation by the World Wide Web Consortium
(W3C)and is considered more powerful and expressive than Document Type Definition
(DTD).

Purpose of XML Schema

e To define the structure of an XML document.

e To define the datatypes of elements and attributes.

e To validate whether an XML document adheres to a specific format.
e To support namespace and extensibility features.

2. Advantages of XML Schema over DTD

Feature DTD XML Schema (XSD)
Syntax SGML-based | XML-based
Data types Not supported |Strongly supported (e.g., string, int)
Namespaces Not supported |[Fully supported
Custom types Not available ||Available
Reuse of components ||[Limited Extensive (via complex types, imports)

3. XML Schema Syntax
XML Schema documents are XML files that define:

o Elements

o Attributes

e Data types

o Element relationships

Basic Structure of XML Schema
<xs:schemaxmlns:xs="http://www.w3.0rg/2001/XMLSchema">

<!-- Definitions go here -->
</xs:schema>

Web Technologies Lab 8.10 XML Basics and Data Processing in Web ...

4. Defining Elements and Attributes

Defining a Simple Element

<xs:element name="studentName" type="xs:string"/>
Defining an Attribute

<xs:attribute name="id" type="xs:integer"/>

5. Complex Types
Used to define elements that contain:

e Other elements
e Attributes

Example: Complex Type with Child Elements

<xs:element name="student">
<xs:complexType>

<xs:sequence>

<xs:element name="name" type="xs:string"/>
<xs:element name="age" type="xs:integer"/>
</xs:sequence>

</xs:complexType>

</xs:element>

Example: Complex Type with Attributes

<xs:element name="book">
<xs:complexType>
<xs:attribute name="
</xs:complexType>
</xs:element>

isbn" type="xs:string" use="required"/>

6. Data Types in XML Schema
XML Schema provides many built-in data types, categorized as:
Primitive Types

e Xs:string

e Xxs:integer
e xs:boolean
e xs:decimal
e xs:date

e Xxs:time

Centre for Distance Education 8.11 Acharya Nagarjuna University

Derived Types

e Xxs:positivelnteger

o xs:monNegativelnteger
e xs:token

e xs:ID

7. Occurrence Constraints
To control the number of times an element can occur:

¢ minOccurs — Minimum number of occurrences
¢ maxOccurs — Maximum number of occurrences

Example

<xs:element name="phone" type="xs:string" minOccurs="0" maxOccurs="3"/>

8. Restriction and Facets
To place constraints on data values using facets:
Example: Restricting String Length

<xs:simpleType name="usernameType">
<xs:restriction base="xs:string">
<xs:minLength value="5"/>
<xs:maxLength value="12"/>
</xs:restriction>

</xs:simpleType>

9. Reusing Schema Components

o Named Types: Reuse custom types across the schema
e Include / Import: Modularize large schemas

Include Another Schema

<xs:include schemal.ocation="commonTypes.xsd"/>

10. Namespaces in XML Schema
Namespaces prevent element name conflicts.

Example
<xs:schemaxmlns:xs="http://www.w3.0org/2001/XMLSchema"
targetNamespace="http://www.example.com/student"
xmlns="http://www.example.com/student"
elementFormDefault="qualified">

Web Technologies Lab 8.12 XML Basics and Data Processing in Web ...

11. Validating XML with Schema

XML files can be validated against an XSD to ensure structural and data correctness using
tools like:

e XML parsers (e.g., Xerces, XMLSpy)
o IDEs (e.g., Eclipse, IntelliJ)
e Java (via JAXP)

12. Example: XML and XSD
Sample XML Document

<student>
<name>John</name>
<age>21</age>
</student>

Corresponding XSD

<xs:schemaxmlns:xs="http://www.w3.0rg/2001/XMLSchema">
<xs:element name="student">

<xs:complexType>

<xs:sequence>

<xs:element name="name" type="xs:string"/>

<xs:element name="age" type="xs:integer"/>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:schema>

13. Tools Supporting XML Schema

Editors: Oxygen XML Editor, XMLSpy
Parsers: Xerces, SAXON
Programming APIs:

o Java: JAXP, JAXB

o .NET: XmlSchemaSet, XDocument

Note:

XML Schema is a robust and feature-rich way to define the structure and constraints of XML
documents. It supports a wide range of data types, complex content modeling, namespaces,
and extensibility, making it ideal for applications requiring strict data validation and
integration across systems.

Centre for Distance Education 8.13 Acharya Nagarjuna University

8.4 Document Object model

1. Introduction to DOM

The Document Object Model (DOM) is a W3C standard that defines a platform- and
language-neutral interfaceto access and manipulate the content, structure, and style of XML
or HTML documents.

o It represents a document as a tree structure.

e Each part of the document (elements, attributes, text) is a node in the tree.

e DOM allows programsand scripts to dynamically access and update the document's
content, structure, and style.

2. Key Features of DOM
e Tree Structure: Represents documents as a hierarchy of nodes.
o Language-Independent: DOM can be used in Java, JavaScript, Python, etc.
e Dynamic: Allows dynamic modification of documents.
o Standardized: Defined by the W3C DOM Specification.
3. DOM Tree Structure

DOM views an XML/HTML document as a tree of nodes.

Types of Nodes

‘ Node Type H Description ‘
‘Document Node HRoot of the document tree ‘
‘Element Node HRepresents XML/HTML elements ‘
‘Attribute Node HRepresents attributes of elements ‘
‘Text Node HRepresents text content ‘
‘Comment Node HRepresents comments ‘
‘Processing Instruction HRepresents special instructions ‘
Example XML

<student>

<name>John</name>

<age>21</age>

</student>

Corresponding DOM Tree

Document

L— Element: student

—— Element: name
L— Text: John

—— Element: age

Web Technologies Lab 8.14 XML Basics and Data Processing in Web ...

L— Text: 21
4. DOM Levels

DOM has been standardized in multiple levels:
e DOM Level 1: Core functionalities — tree structure, basic node access.
e DOM Level 2: Adds events, style, and support for namespaces.
e DOM Level 3: Adds support for loading/saving documents, validation.
5. Accessing DOM with Java (Using JAXP)

Java provides JAXP (Java API for XML Processing) to work with DOM.

Steps to Use DOM in Java
1. Create DocumentBuilderFactory
2. Create DocumentBuilder
3. Parse the XML file to get Document
4. Traverse or modify the DOM tree

Java Example: Reading XML using DOM

import javax.xml.parsers.*;
import org.w3c.dom.*;
import java.io.*;

public class DOMReadExample {
public static void main(String[] args) throws Exception {
File inputFile = new File("student.xml");
DocumentBuilderFactory dbFactory = DocumentBuilderFactory.newInstance();
DocumentBuilder dBuilder = dbFactory.newDocumentBuilder();
Document doc = dBuilder.parse(inputFile);
doc.getDocumentElement().normalize();

System.out.println("Root element: " + doc.getDocumentElement().getNodeName());

NodeList nodeList = doc.getElementsByTagName("student");
for (int 1 = 0; 1 < nodeList.getLength(); i++) {
Node node = nodeList.item(i);
if (node.getNodeType() == Node. ELEMENT NODE) {
Element element = (Element) node;
System.out.println("Name: " +
element.getElementsByTagName("name").item(0).getTextContent());
System.out.println("Age: " +
element.getElementsByTagName("age").item(0).getTextContent());

IR

Centre for Distance Education 8.15 Acharya Nagarjuna University

6. Common DOM Interfaces (Java - org.w3c.dom)

Interface Description
Node Base interface for all nodes
Element Represents an element
Attr Represents an attribute
Text Represents text within elements
Document Represents the entire XML/HTML document
NodeList A list of nodes
NamedNodeMap Map for attributes

7. DOM Operations

a. Traversing Nodes

getFirstChild(), getLastChild()
getNextSibling(), getPreviousSibling()
getParentNode(), getChildNodes()

b. Modifying Document

createElement(), createTextNode()
appendChild(), removeChild()
setAttribute(), removeAttribute()

c. Reading Data

getNodeName(), getNodeValue(), getNodeType()
getTextContent(), getElementsByTagName()

8. Advantages of DOM

Random Access: Any node can be accessed anytime.
Modifiable: Nodes can be added, updated, or deleted.

Standard Interface: Supported across multiple languages.
Rich Functionality: Allows full document manipulation.

9. Disadvantages of DOM

Memory Intensive: Loads the entire document into memory.
Slower for Large Files: Not suitable for very large XML documents.
More Complex: DOM API can be verbose and complex for beginners.

Web Technologies Lab 8.16 XML Basics and Data Processing in Web ...

10. DOM vs SAX

Feature DOM SAX

Parsing Mode||Loads entire document in memory||[Event-based (reads sequentially)

Access Random access to any part Sequential access only

Modification ||[Supports document modification |[Read-only

Performance ||Slower for large files Faster and memory-efficient

11. DOM in Web Browsers (JavaScript)

DOM is also widely used in web browsers via JavaScript to manipulate HTML documents
dynamically.

Example (HTML + JavaScript)

<p id="demo">Hello</p>

<script>

document.getElementByld("demo").innerHTML = "Hello, DOM!";
</script>

Note:

The Document Object Model (DOM) is a critical concept for working with both XML and
HTML documents. It offers a structured, object-oriented view of a document, enabling
dynamic access and manipulation. While powerful, it should be used carefully for large
documents due to memory and performance considerations.

8.5 Presenting XML

1. Introduction

Presenting XML refers to the methods and technologies used to display or render the data
stored in XML (eXtensible Markup Language) documents in a human-readable and visually
appealing format. By itself, XML is only a data representation format; it does not define how
the data should appear on screen or on paper.

To make XML content presentable, we need to use associated technologies that can transform
or style XML data into HTML, PDF, plain text, or other output formats.

2. Need for Presenting XML

e XML is self-descriptive but not inherently visual.

Centre for Distance Education 8.17 Acharya Nagarjuna University

o For users to understand or interact with XML content, it must be transformed into a
user-friendly format.
o Enables data sharing across different platforms and presentation customization.

3. Techniques for Presenting XML
There are several technologies and methods for presenting XML data effectively:
A. Using XSLT (Extensible Stylesheet Language Transformations)

e XSLT is a W3C standard used to transform XMLdata into other formats such as
HTML, text, or another XML structure.

o It works by applying templates and rules to match elements in the XML file and
transform them accordingly.

Example

XML File: students.xml
<students>

<student>
<name>John</name>
<age>21</age>
</student>

</students>

XSLT File: students.xsl

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">

<xsl:template match="/">

<html>

<body>

<h2>Student Information</h2>

<table border="1">

<tr><th>Name</th><th>Age</th></tr>

<xsl:for-each select="students/student">

<tr>

<td><xsl:value-of select="name"/></td>

<td><xsl:value-of select="age"/></td>

</tr>

</xsl:for-each>

</table>

</body>

</html>

</xsl:template>

</xsl:stylesheet>

Web Technologies Lab 8.18 XML Basics and Data Processing in Web ...

Linking XML with XSLT
<?xml-stylesheet type="text/xsl" href="students.xsl"?>

B. Using CSS with XML

e CSS (Cascading Style Sheets) can be used to apply basic formatting to XML
documents, just like in HTML.

e XML must be well-structured and follow a specific format for CSS to work
effectively.

o Best suited for simple styling (fonts, colors, borders).

Example

XML

<?xml-stylesheet type="text/css" href="style.css"?>
<note>

<to>Tina</to>

<from>John</from>

<body>Hello, how are you?</body>

</note>

CSS (style.css)

note {
display: block;
background-color: lightyellow;
padding: 10px;
font-family: Arial,

}

to, from, body {
display: block;
margin: 5px 0;

}

C. Converting XML to HTML via Programming

e You can use programming languages like Java, Python, PHP, or JavaScript to read
XML data and present it as HTML.
e Commonly used in web applications and dynamic content generation.

Example: Using JavaScript
<script>

fetch('students.xml')
.then(response => response.text())
.then(data => {

Centre for Distance Education 8.19 Acharya Nagarjuna University

const parser = new DOMParser();

const xmlDoc = parser.parseFromString(data, "text/xml");

const name = xmlDoc.getElementsByTagName("name")[0].childNodes[0].nodeValue;
document.body.innerHTML = "<h1>Student: " + name + "</h1>";

s

</script>
D. Converting XML to PDF or Other Formats
e XML can be converted to PDF using tools like Apache FOP (Formatting Objects
Processor) and XSL-FO (XSL Formatting Objects).
e Common in business applications where XML-based data must be printed or
archived.
Workflow
1. XML + XSL-FO — Apache FOP — PDF

4. Technologies Involved in XML Presentation

Technology Purpose
XSLT Transforms XML into HTML, text, or other XML
XSL-FO Converts XML into print formats like PDF
CSS Styles XML elements
JavaScript Dynamically reads and displays XML in web pages
Apache FOP Converts XSL-FO documents into PDF
Programming APIs |[Java (JAXP), Python (Ixml), etc., for customized rendering

5. Presentation Best Practices

o Always validate XML before presenting.

e Use XSLT for complex formatting and CSS for simple visual enhancements.

o Ensure cross-browser compatibility when using XML on the web.

o For large documents, consider server-side transformation for better performance.
o Use responsive and accessible design when converting to HTML.

6. Applications of Presenting XML

e Web content management systems
e Online reporting systems

e E-commerce catalogs

e Invoice and billing systems

e Educational content presentation

e News and media feeds (RSS/Atom)

Web Technologies Lab 8.20 XML Basics and Data Processing in Web ...

Presenting XML is essential to make XML data usable and understandable for human users.
Whether through XSLT, CSS, or programmingtechniques, transforming XML into a readable
format bridges the gap between raw structured data and practical user applications.

By leveraging the right tools and technologies, XML data can be presented effectively across
web, print, and mobile platforms.

1. Introduction

An XML Processor is a software component or engine that reads, interprets, and processes
XML documents according to defined standards (like XML 1.0 by W3C). It ensures that an
XML document is well-formed, and optionally,valid according to a DTD or XML Schema.

The XML processor is also commonly referred to as an XML parser.
2. Types of XML Processors

XML processors are categorized into two main types based on how they access and process
the document:

A. Validating Processor

e Checks both well-formedness and validity.
o Validates the document against a DTD or XML Schema.
e Reports errors if the document doesn't conform to the structure.

B. Non-Validating Processor

e Only checks for well-formedness.
e Does not validate against any DTD or Schema.
o Faster and simpler, suitable when validation isn't required.

3. Functions of an XML Processor

Function Description
Parsing Reads XML text and constructs a tree or events
Validation Checks XML against a DTD or Schema (optional)

Reporting Errors |Identifies and reports syntax or structure errors

Providing Interfaces|Supplies access through APIs like DOM or SAX

Data Extraction Enables retrieval of specific information from XML documents

4. Common XML Processing Models
There are two primary programming models for using XML processors:

A. DOM (Document Object Model)

Centre for Distance Education

8.21

Acharya Nagarjuna University

e Tree-based processing.

e Loads the entire XML document into memory as a tree structure.
o Allows random access, traversal, and modification.

o Easy to use and understand.
e Supports both reading and writing.

Cons:

o High memory usage for large documents.

B. SAX (Simple API for XML)

o Event-based processing.
e Parses the document sequentially and generates events (startElement, endElement,

etc.).
e No tree is built; ideal for read-only, forward-only access.

Pros:

o Fast and memory-efficient.

e Good for large files.

Cons:

e More complex to code.

e No backward access or modification.

5. Popular XML Processors

Processor Language Type Description

Xerces | Java, C++ Validating Apache XML processor supporting DOM, SAX,
Schema

MSXML HC++, COM, VB ‘Validating ‘Microsoft XML Parser for Windows platforms

libxml2 ||C Validating||Open-source XML parser from the GNOME project

Expat C Non- Fast, lightweight stream-oriented parser

P validating - 18 & p

JAXP Java Both Java API for XML Processing (uses DOM, SAX,
StAX)

Ixml Python Validating|Powerful Python binding for libxml2 and libxslt

6. Using XML Processors in Java (JAXP)
Java provides JAXP (Java API for XML Processing) which supports DOM, SAX, and StAX

models.

Example: Using DOM Parser

Web Technologies Lab 8.22 XML Basics and Data Processing in Web ...

import javax.xml.parsers.*;
import org.w3c.dom.*;
import java.io.*;

public class DOMParserExample {
public static void main(String[] args) throws Exception {
File inputFile = new File("students.xml");
DocumentBuilderFactory dbFactory = DocumentBuilderFactory.newInstance();
DocumentBuilder dBuilder = dbFactory.newDocumentBuilder();
Document doc = dBuilder.parse(inputFile);
doc.getDocumentElement().normalize();

System.out.println("Root element: " + doc.getDocumentElement().getNodeName());

j
j

Example: Using SAX Parser

import org.xml.sax.*;
import org.xml.sax.helpers.DefaultHandler;
import javax.xml.parsers.*;

public class SAXParserExample {
public static void main(String[] args) throws Exception {
SAXParserFactory factory = SAXParserFactory.newlnstance();
SAXParser saxParser = factory.newSAXParser();

DefaultHandler handler = new DefaultHandler() {
public void startElement(String uri, String localName, String qName, Attributes
attributes) {
System.out.println("Start Element: " + qName);

}
¥
saxParser.parse("students.xml", handler);
b
b
7. Well-Formedness vs. Validity
Criterion Well-Formed XML Valid XML

Syntax Rules |[Must follow basic syntax |[Must follow syntax and structure

DTD or Schema |Not required Required for validation

Checked by All processors Only validating processors

Centre for Distance Education 8.23 Acharya Nagarjuna University

8. Error Handling in XML Processors

o Well-formedness errors: Missing tags, improper nesting, etc.

e Validation errors: Mismatch with DTD/Schema definitions.

e Most processors provide mechanisms to report, log, and sometimes recover from
errors.

9. Performance Considerations

Model | Memory Use Speed Use Case
DOM |High Medium ||Small to medium documents
SAX Low High Large, read-only documents
StAX |Medium High Event-driven, pull-based parsing

10. Applications of XML Processors

o Web services (SOAP, REST)

o Configuration files (Spring, Maven)
o Data exchange between systems

e Digital publishing

e Document storage and retrieval

o Enterprise systems integration

Note: An XMLprocessor is an essential tool for working with XML documents. It validates,
parses, and provides programmatic access to the data, enabling applications to read,
transform, and presentXML content.

Choosing the right processor (DOM, SAX, or StAX) depends on the application
requirements, such as performance, memory constraints, and the need for validation.

8.6 DOM and SAX
DOM and SAX in XML Processing

1. Introduction

When working with XML documents programmatically, two primary APIs are commonly
used for parsing and processing:

e DOM (Document Object Model)
e SAX (Simple API for XML)

Both provide ways to access the data and structure of XML documents, but they do so using
different approaches suited for different use cases.

Web Technologies Lab 8.24 XML Basics and Data Processing in Web ...

2. What is DOM (Document Object Model)?
Definition:

DOM is a tree-based parsing method. It represents the entire XML document as a hierarchical
tree of nodes in memory. This allows developers to access, navigate, and manipulate any part
of the XML document at any time.

How It Works:

e Loads the entire XML document into memory.
o Constructs a tree where each element, attribute, or text is a node.
e Provides random access to any node.

Key Features:

e Tree structure (parent-child relationships)
e Allowsread and write access
e Supports navigation and modification

DOM Parser Workflow:

1. Parse the XML document.
2. Create a tree (DOM tree) in memory.
3. Access or modify nodes using methods.

DOM Example in Java:

import javax.xml.parsers.*;
import org.w3c.dom.*;
import java.io.*;
public class DOMExample {
public static void main(String[] args) throws Exception {
File file = new File("students.xml");
DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();
DocumentBuilder builder = factory.newDocumentBuilder();
Document doc = builder.parse(file);
NodeList list = doc.getElementsByTagName("student");
for (int 1 = 0; 1 <list.getLength(); i++) {
Element student = (Element) list.item(i);
System.out.println("Name: " +
student.getElementsByTagName("name").item(0).getTextContent());

h
}
h

3. What is SAX (Simple API for XML)?

Definition:

Centre for Distance Education 8.25 Acharya Nagarjuna University

SAX is an event-based parsing method. Instead of building a tree, it reads the XML
document sequentially and fires events (start element, end element, characters) when it
encounters different components of the document.

How It Works:

e Reads the XML document line by line.
e Generates events such as:
o startElement()
o characters()
o endElement()
e The application must handle these events.

Key Features:

e Does not load the entire document into memory.
e Suitable for large XML documents.
o Fast and memory-efficient.

SAX Parser Workflow:

1. Setup a handler to listen for XML events.
2. Parse the document.
3. React to events like element starts and ends.

SAX Example in Java:

import org.xml.sax.*;
import org.xml.sax.helpers.DefaultHandler;
import javax.xml.parsers.*;
public class SAXExample {
public static void main(String[] args) throws Exception {
SAXParserFactory factory = SAXParserFactory.newlInstance();
SAXParser parser = factory.newSAXParser();
DefaultHandler handler = new DefaultHandler() {
public void startElement(String uri, String localName, String qName, Attributes
attributes) {
if (qQName.equalsIgnoreCase("name")) {
System.out.print("Name: ");

§

§

public void characters(char ch[], int start, int length) {
System.out.println(new String(ch, start, length));

§

¥

parser.parse("students.xml", handler);

}
h

Web Technologies Lab 8.26 XML Basics and Data Processing in Web ...

4. Comparison Between DOM and SAX

Feature DOM SAX

Model Tree-based Event-based

Memory Usage|High (loads whole XML in memory) | Low (sequential reading)

Speed Slower for large files Faster for large files

Access Type |[Random access to any part Sequential access only
Modification |[Supports modification Read-only

Complexity Easier to implement More complex due to event handling
Use Case Small to medium-sized documents ||Large documents, stream processing

Navigation Built-in methods (e.g., getChild) No navigation—developer handles flow

5. When to Use DOM

e You need to modify or update XML data.

e Random access to nodes is necessary.

e The XML document is smallormedium-sized.
e You want a simpler programming model.

6. When to Use SAX

e The XML document is very large.

e You only need to read data (not modify).
e You require faster processing.

e Memory usage must be minimal.

7. Hybrid Approach

Some applications use a combination of DOM and SAX, known as StAX (Streaming API for
XML), which gives the developer more control (pull-based parsing) over the event stream.

Note:BothDOM and SAX provide powerful ways to work with XML data, but their usage
depends on the requirements:

e Use DOM when you need full access, modification, and tree-based structure.
o Use SAX when you want efficient, stream-based, andlightweight processing of large
XML documents.

Understanding the difference helps in choosing the right parser for your application's
performance, memory, and complexity needs.

Centre for Distance Education 8.27 Acharya Nagarjuna University

8.7 Summary

XML (eXtensible Markup Language) is a standardized language used to structure, store, and
transport data. A Document Type Definition (DTD) defines the legal building blocks of an
XML document by specifying its structure with a list of allowed elements and attributes. In
contrast, XML Schemas are more powerful than DTDs, allowing data type definitions,
namespaces, and detailed validation rules using XML syntax itself. The Document Object
Model (DOM) is a tree-based representation of an XML document in memory, allowing
developers to access, modify, and navigate the document structure dynamically. Presenting
XML involves transforming XML content into human-readable formats using tools like CSS
for styling and XSLT (Extensible Stylesheet Language Transformations) for converting XML
into HTML or other formats. XML data is not typically presented directly; it requires
formatting or transformation to be user-friendly.To work with XML programmatically, XML
Processors (or parsers) are used. These processors validate the document’s structure and
convert it into usable data formats for applications. There are two main types of processors:
DOMand SAX. The DOMparser reads the entire XML into memory and builds a node tree,
suitable for editing and random access. On the other hand, the SAX parser is event-driven,
reading the document sequentially and firing events during parsing, which is ideal for large,
read-only documents. DOM is easier for manipulation but memory-intensive, while SAX is
faster and more efficient for large-scale XML. Understanding these technologies is essential
for developers working with XML in real-world applications.

8. 8 Key Terms

XML, DTD, XML Schema (XSD), Well-formed XML, Valid XML, DOM, SAX, XML
Processor, XSLT, Namespace.

8. 9 Self-Assessment Questions

What is the purpose of a Document Type Definition (DTD) in XML?

How does an XML Schema differ from a DTD?

What is meant by a well-formed XML document?

What is the role of the Document Object Model (DOM) in XML processing?
How does SAX process XML documents differently from DOM?

What is an XML Processor, and what are its main types?

How can XML data be presented to users in a readable format?

NoUnAEWLD—

8.10Further Readings

1. Beginning XML, Fifth Edition by David Hunter, Jeff Rafter, and Joe Fawcett. Wiley
Publishing.

2. Learning XML, Second Edition by Erik T. Ray. O'Reilly Media.

XML in a Nutshell, Third Edition by Elliotte Rusty Harold and W. Scott Means.

O'Reilly Media.

4. Internet and World Wide Web: How to Program, Third Edition by Paul Deitel and
Harvey Deitel. Pearson Education.

[98)

Dr. Vasantha Rudramalla

LESSON-9
INTRODUCTION TO JDBC AND DATABASE

CONNECTIVITY IN JAVA

Aims and Objectives:

» Gain insight into JDBC and recognize its role as a standardized interface for database
interaction in Java.

Identify and understand the key steps required to connect Java applications with
relational databases.

Investigate the different types of JDBC drivers and how they support communication
between Java and databases.

Examine the inner workings and stages of a JDBC connection from initiation to
termination.

Learn to create, handle, and optimize database connections efficiently within Java-
based systems.

YV V VYV V¥V

STRUCTURE:

9.1 JDBC: Introduction to JDBC
9.1.1Purpose of JDBC
9.1.2 Types of JDBC Drivers
9.2 Connections
9.3 Internal Database Connections
9.4 Summary
9.5 Key Terms
9.6 Self-Assessment Questions

9.7 Further Readings

9.1 JDBC: INTRODUCTION TO JDBC

JDBC (Java Database Connectivity) is a Java-based API (Application Programming
Interface) that enables Java applications to interact with databases in a platform-independent
and standardized way. Developed by Sun Microsystems (now part of Oracle Corporation),
JDBC is part of the Java Standard Edition and is widely used for building robust, data-driven
applications.

9.1.1Purpose of JDBC

The main purpose of JDBC is to allow Java applications to perform the following operations
on relational databases:

o [Establish a connection to a database

e Send SQL queries and update statements

e Retrieve and process the results of SQL queries

Web Technologies Lab 9.2 Introduction To JDBC and Database ...

e Handle errors and exceptions
e Perform transaction management

Need for JDBC

Before JDBC, accessing databases in Java required platform-specific and third-party APIs,
making applications less portable and harder to maintain. JDBC solves this by providing a
uniform interface for accessing different types of relational databases like MySQL, Oracle,
PostgreSQL, SQL Server, etc., using the same code structure.

JDBC Architecture

JDBC architecture consists of two layers:
1. JDBC API: This provides the application-level interface for Java developers to write
database code.
2. JDBC Driver: This handles the communication between the Java application and the
actual database. The driver translates JDBC calls into database-specific calls.

The JDBC API utilizes a DriverManager along with database-specific drivers to enable
seamless and transparent connectivity to various types of relational databases, regardless of
vendor differences.The DriverManager is responsible for selecting and managing the
appropriate driver for each database connection request. It supports the operation of multiple
drivers simultaneously, allowing connections to several heterogeneous databases within a
single Java application.

The following architectural figure: 9.1 illustrates the position of the DriverManager in
relation to the JDBC drivers and the Java application:

Java Application
JDBC API
JDBC Driver
| Manager
| 1
l JDBC Driver { JDBC Driver JDBC Driver

3 3

Figure: 9.1 the position of the DriverManager in relation to the JDBC drivers and the Java
application:

Centre for Distance Education 9.3 Acharya Nagarjuna University

Core JDBC Components

1. DriverManager: Manages the list of database drivers and establishes a connection to
the database.

2. Connection: Represents a session with a specific database.

Statement: Used to execute SQL queries.

4. PreparedStatement: A subclass of Statement that allows precompiled queries with

parameters.

CallableStatement: Used to execute stored procedures.

6. ResultSet: Represents the result of a SQL query and allows traversal through query
results.

7. SQLException: Handles database-related exceptions and errors.

(98]

V)]

What is a JDBC Driver?

A JDBC Driver is a software component that enables Java applications to interact with a
specific database. It acts as a bridge between the Java application and the database,
translating the standard JDBC API calls into database-specific calls that the database can
understand and execute.

Since different databases (like MySQL, Oracle, SQL Server, PostgreSQL, etc.) use different
communication protocols, JDBC drivers are tailored for each type of database.

9.1.2 Types of JDBC Drivers
There are four types of JDBC drivers, also known as JDBC driver types:
1. Type 1: JDBC-ODBC Bridge Driver

In a Type 1 JDBC driver, a JDBC-ODBC bridge is used to connect Java applications to
databases through existing ODBC (Open Database Connectivity) drivers installed on each
client machine. To use this approach, the system must be configured with a Data Source
Name (DSN), which identifies the target database.When Java was first introduced, this
driver type was practical because most relational databases primarily supported ODBC
for connectivity. However, with the evolution of native JDBC drivers, the Type 1 driver
is now considered outdated and is recommended only for testing or experimental
purposes or in cases where no other driver is available.

Local Computer

I
Java Application I DB

| Application Code | 1 Driver '

| . }_ ——
TR
Type 1 obDBecC
JDBC ODBC Bridge | % ! Driver Local
DBEBMS

Proprietary Vendor I Network

Specific Protocol Communication

- -

Database Server

Figure: 9.2 Type 1: JDBC-ODBC Bridge Driver

Web Technologies Lab 9.4 Introduction To JDBC and Database ...

An example of this type of driver is the JDBC-ODBC Bridge provided with JDK 1.2.
2. Type 2: Native-API Driver

A Type 2 JDBC driver converts JDBC API calls into native C/C++ API calls that are
specific to the database being used. These drivers are usually provided by the database
vendors and function similarly to the JDBC-ODBC Bridge, but without relying on ODBC.
However, they require the native driver to be installed on each client machine.

Since these drivers are database-specific, switching to a different database would
require replacing the underlying native APIs, making them less portable. Although
largely outdated today, Type 2 drivers can offer better performance than Type 1
drivers by avoiding the overhead introduced by ODBC.

Local Computer

Java Application e——| DB Vendor Driver

Application Code
e———]
t Local
Type 2 - Native API DBMS
Proprietary Vendor Network
Specific Protocol Communication

Database Server

Figure9.3 Type 2: Native-API Driver
A well-known example of a Type 2 driver is the Oracle Call Interface (OCI) driver.
3. Type 3: Network Protocol Driver

A Type 3 JDBC driver follows a three-tier architecture to access databases. In this setup, the
JDBC client communicates with a middleware application server using standard network
sockets. The middleware server then translates these requests into database-specific calls and
forwards them to the appropriate database server.

This driver type is highly flexible and scalable, as it does not require any database-specific
code on the client side. A single Type 3 driver can provide access to multiple types of
databases through the middleware. Essentially, the application server acts as a JDBC proxy,
handling database operations on behalf of the client.

To effectively use a Type 3 driver, you must be familiar with the configuration of the
middleware server. Internally, the server may use a Type 1, 2, or 4 driver to communicate
with the actual database, so understanding how it is set up can help optimize performance and
compatibility.

Centre for Distance Education

9.5 Acharya Nagarjuna University

Local Computer

Middleware Server

Java Application

Application Code

l_, JDBC Type 1 Driver

T]"PE 3
JOBC — Met Pure Java

: - L JDBC Type 2 Driver

JDBC Type 4 Driver

Natwaork
Communication

o e

Database Server

Proprietary Vendor
Specific Protocol

Figure: 9.4 Type 3: Network Protocol Driver

4. Type 4: Thin Driver (Pure Java driver)

A Type 4 JDBC driver is a pure Java driver that communicates directly with the database
server using the database vendor’s native network protocol over a socket connection. This
type of driver offers the highest performance and is typically provided by the database
vendor.

Type 4 drivers are highly portable and easy to use, as they require no additional software
installation on either the client or server. Additionally, they can often be dynamically
downloaded at runtime, further simplifying deployment. An example of a Type 4 driver is
MySQL’s Connector J. Due to the proprietary nature of database communication protocols,
these drivers are usually developed and maintained by the database vendors themselves.

Note:

A JDBC driver is essential for establishing communication between a Java application and a
relational database. Choosing the right driver type depends on factors like performance,

Local Computer

Java Application

[Application Code]
h
8 4 = ____—D

I ——

Type 4
100% Pure Java Local
DBMS
Network

Proprietary Vendor
Specific Protocol Communication

-

Database Server

Figure 9.5: Type 4: Thin Driver (Pure Java driver)

Web Technologies Lab 9.6 Introduction To JDBC and Database ...

portability, and the specific use case. Type 4 drivers are typically preferred for their
simplicity and cross-platform compatibility.

Basic JDBC Workflow
1. Load the JDBC driver.
2. Establish a connection using DriverManager.getConnection().
3. Create a Statement or PreparedStatement.
4. Execute a query using executeQuery() or update using executeUpdate().
5. Process the ResultSet.
6. Close the connection and other resources.

Example Code Snippet

import java.sql.*;

public class JDBCExample {
public static void main(String[] args) {
try {
/I Load the JDBC driver
Class.forName("com.mysql.cj.jdbe.Driver");
// Establish the connection
Connection conn = DriverManager.getConnection(
"jdbc:mysql://localhost:3306/mydatabase", "username", "password");

/I Create a statement
Statement stmt = conn.createStatement();

// Execute a query
ResultSet rs = stmt.executeQuery("SELECT * FROM students");

// Process the result set
while (rs.next()) {
System.out.println("ID: " + rs.getInt("id") + ", Name: " + rs.getString("name"));

}

/I Close resources
rs.close();
stmt.close();
conn.close();

} catch (Exception e) {
e.printStackTrace();

h
h
}

Centre for Distance Education 9.7 Acharya Nagarjuna University

Advantages of JDBC

o Platform-independent database connectivity

o Enables connection to various databases using a uniform API

e Supports basic and advanced SQL operations

o FEasy integration with enterprise Java technologies (JSP, Servlets, Spring, etc.)
e Good performance with Type 4 drivers

Note: JDBC is a powerful and essential API for Java developers who need to interact with
relational databases. It abstracts the complexity of database communication and provides a
clean, simple, and extensible framework for data access, making it a cornerstone of Java
database programming.

9.2 Connections
Establishing a JDBC Connection in Java

Establishing a JDBC (Java Database Connectivity) connection in Java is a straightforward
process involving a few essential steps. These steps include importing the required packages,
registering the JDBC driver, formulating the database URL, creating a connection object, and
finally, closing the connection properly.

. R
mport Packages 1. Impert Packages

2. Load Database Driver ! 2. Load Database Driver

Driver Manager
i | Driver Manager

2-A.for Name() 2-B.getconnection())
l 2-B.getconnection()

3.createstatement() 4-a.SELECT : executequery()

. ~ - - P -
[Connection |4) Statement }—) Resultset]

y, \ . J |
\|r l l 5. close|()

5. close() 5. close()

4-b. Data

INSERT/UPDATE/
DELETE :
executeUpdate()

int

Figure 9.6: Establishing a JDBC Connection in Java
Step 1: Import JDBC Packages
Before working with JDBC, you need to import the necessary classes provided by the Java

API. These imports allow your program to interact with databases by enabling operations like
querying, inserting, updating, and deleting data.

Web Technologies Lab 9.8 Introduction To JDBC and Database ...

Add the following import statements at the beginning of your Java source file:

import java.sql.*; // For standard JDBC classes
import java.math.*; // For BigDecimal and BigInteger support

Step 2: Register the JDBC Driver

Registering the JDBC driver is the process of loading the database-specific driver class into
memory. This step must be performed only once in your program. There are two approaches
to register a driver:

Approach I — Using Class.forName()

This is the most commonly used and portable method.

try {
Class.forName("oracle.jdbc.driver.OracleDriver");

} catch (ClassNotFoundException ex) {
System.out.println("Error: unable to load driver class!");
System.exit(1);

}

For non-compliant JVMs, you can use newlInstance() with exception handling:

try {
Class.forName("oracle.jdbc.driver.OracleDriver").newlInstance();

} catch (ClassNotFoundException ex) {
System.out.printIn("Error: unable to load driver class!");
System.exit(1);

} catch (Illegal AccessException ex) {
System.out.println("Error: access problem while loading!");
System.exit(2);

} catch (InstantiationException ex) {
System.out.println("Error: unable to instantiate driver!");
System.exit(3);

}

Approach II — Using DriverManager.registerDriver()

This method is useful for non-JDK compliant JVMs:

try {
Driver myDriver = new oracle.jdbc.driver.OracleDriver();
DriverManager.registerDriver(myDriver);

} catch (Exception ex) {
System.out.printIn("Error: unable to register driver!");

Centre for Distance Education 9.9 Acharya Nagarjuna University

System.exit(1);
}

Step 3: Formulate the Database URL

A database URL is used to specify the location of the database to which you want to connect.
The DriverManager.getConnection() method requires this URL.

Common URL formats for various databases are:

RDBMS JDBC Driver Class URL Format

MySQL |com.mysql.jdbc.Driver jdbc:mysql://hostname/databaseName

jdbc:oracle:thin:@hostname:port:databaseNam

Oracle |joracle.jdbc.driver.OracleDriver o

DB2 COM.ibm.db2.jdbc.net. DB2Driver||jdbc:db2:hostname:port/databaseName

Sybase |lcom.sybase.jdbc.SybDriver jdbc:sybase: Tds:hostname:port/databaseName

Note: Replace hostname, port, and databaseName with actual values based on your database
configuration.

Step 4: Create the Connection Object

To establish a connection, use one of the three overloaded versions of the
DriverManager.getConnection() method:

1. Using Database URL, Username, and Password

String URL = "jdbc:oracle:thin:@amrood:1521:EMP";

String USER = "username";

String PASS = "password";

Connection conn = DriverManager.getConnection(URL, USER, PASS);

2. Using a Database URL with Embedded Credentials
String URL = "jdbc:oracle:thin:username/password@amrood: 1521:EMP";
Connection conn = DriverManager.getConnection(URL);

3. Using a Database URL and Properties Object
import java.util.*;

String URL = "jdbc:oracle:thin:@amrood: 1521:EMP";
Properties info = new Properties();

info.put("user", "username");

info.put("password", "password");

Connection conn = DriverManager.getConnection(URL, info);

Web Technologies Lab 9.10 Introduction To JDBC and Database ...

Step 5: Close the Connection
After completing database operations, it is crucial to close the connection to free up database
resources. Never rely on Java’s garbage collector for this task, as it is a poor programming

practice.

Always use the close() method in a finally block to ensure the connection is properly closed:

try {

/I database operations
} finally {

if (conn != null) conn.close();
}

Closing connections properly helps avoid memory leaks and ensures efficient use of DBMS
resources.

Note:
In JDBC programming, establishing a connection follows five main steps:

Import the required JDBC classes.

Register the JDBC driver.

Formulate the database URL correctly.

Create the connection using DriverManager.getConnection().
Close the connection properly after use.

A e

By following this structure, your JDBC application will maintain reliability, portability, and
good resource management practices.9.3 Internal Database Connections

In Java applications, internal database connections refer to the underlying process of how a
connection is established between a Java program and a database using the JDBC APIL
Internally, JDBC acts as a bridge between the Java application and the database, abstracting
the complexity of database communication through a set of well-defined interfaces and
classes.

Key Components Involved

1. DriverManager Class
o Manages a list of database drivers.
o Matches the connection request with the appropriate driver using the JDBC
URL.
o Returns a Connection object to the application.
2. Driver Interface
o Every JDBC driver must implement the java.sql.Driver interface.
o When the driver class is loaded, it automatically registers itself with
DriverManager.
3. Connection Interface
o Represents a session with the database.

Centre for Distance Education 9.11 Acharya Nagarjuna University

o Provides methods for creating Statement, PreparedStatement, and
CallableStatement objects.

Internal Connection Flow

1. Load the JDBC Driver
2. Class.forName("com.mysql.cj.jdbc.Driver");
o Registers the driver with DriverManager.
o Enables the driver to handle future connection requests.
3. Establish the Connection
4. Connection con = DriverManager.getConnection(
5. "jdbc:mysql://localhost:3306/mydatabase", "username", "password");
o The DriverManager scans through registered drivers.
o The driver that understands the URL (jdbc:mysql://...) takes over.
6. Driver Internally Performs:
o URL Parsing: Validates if the URL is compatible.
o Authentication: Uses username and password to connect.
o Socket Creation: Establishes a network socket to the database server.
o Protocol Handling: Implements database-specific communication protocol.
7. Return Connection Object
o Once the connection is successfully established, a Connection object is
returned to the Java program.
o The application can now execute SQL queries.

Example Code
import java.sql.*;

public class InternalConnectionExample {
public static void main(String[] args) {
try {
// Step 1: Load JDBC driver
Class.forName("com.mysql.cj.jdbe.Driver");

// Step 2: Establish connection
Connection con = DriverManager.getConnection(
"jdbc:mysql://localhost:3306/mydatabase", "root", "password");

System.out.println("Connected Successfully!");

// Close the connection
con.close();

} catch (Exception e) {
e.printStackTrace();

‘ Web Technologies Lab 9.12 Introduction To JDBC and Database ...

}
}
}

Best Practices

e Always close the connection to avoid resource leakage.

e Use connection pooling (like HikariCP, Apache DBCP) for performance in enterprise
applications.

o Prefer PreparedStatement for security and efficiency over plain Statement.

Note: Internal database connections in JDBC abstract the complex mechanics of establishing
a link between a Java application and a relational database. Understanding this process helps
developers write efficient and secure database applications.

9.3 INTERNAL DATABASE CONNECTIONS
Introduction

In web technology, internal database connections refer to the behind-the-scenes process by
which a web application connects and communicates with a relational database management
system (RDBMS) like MySQL, Oracle, or PostgreSQL. These connections are crucial for
storing, retrieving, and managing dynamic content in modern web applications.

Key Components Involved

1. Client: The end-user interface (browser or mobile app).
. Web Server: Handles HTTP requests and responses.
3. Application Logic: Server-side scripts or programs (e.g., Servlets, JSP, PHP,
ASP.NET).
4. Database Driver: A JDBC driver or equivalent that enables communication with the
database.
5. Database Server: Stores application data (e.g., MySQL, Oracle DB).

Step-by-Step Internal Workflow
1. Client Sends Request

The process begins when a client (usually a web browser) submits an HTTP request, such as
a login form or data entry form.

<form action="LoginServlet" method="post">
<input type="text" name="username">
<input type="password" name="password">
<input type="submit" value="Login">
</form>

Centre for Distance Education 9.13 Acharya Nagarjuna University

2. Web Server Processes Request

The Web Server (e.g., Apache Tomcat) receives the request and forwards it to the
appropriate component (Servlet, JSP, etc.).

3. Backend Logic Extracts Input
Server-side code (e.g., a Servlet) extracts input parameters.

String uname = request.getParameter("username");
String pwd = request.getParameter("password");

4. Load JDBC Driver

Before connecting to the database, the application loads the JDBC driver.
Class.forName("com.mysql.cj.jdbc.Driver");

Internally:

o The class loader loads the driver.
e It registers the driver with DriverManager using a static block:

e static {
. DriverManager.registerDriver(new com.mysql.cj.jdbe.Driver());
*

5. Establish Database Connection
Use DriverManager or a DataSource to establish a connection.

Connection con = DriverManager.getConnection(
"jdbc:mysql://localhost:3306/webapp", "root", "password");

Internally:

e DriverManager checks the URL and hands the request to the matching driver.
e A socket connection is established to the database.

o User authentication is validated.

e A Connection object is returned to the application.

6. Create SQL Statement
To perform queries, a Statement or PreparedStatement object is created.
PreparedStatement pst = con.prepareStatement(

"SELECT * FROM users WHERE username=? AND password=?");

pst.setString(1, uname);
pst.setString(2, pwd);

Web Technologies Lab 9.14 Introduction To JDBC and Database ...

Internally:

e The SQL is precompiled (in case of PreparedStatement).
o Parameters are safely injected.
o Execution plan may be reused for performance.

7. Execute SQL Query

The query is sent to the database server.

ResultSet rs = pst.executeQuery();

Internally:
o JDBC translates the query into native database protocol.
e The query is executed on the database engine.
e Results are streamed back to the application as a ResultSet.

8. Process Results

Results from the ResultSet are processed.

if(rs.next()) {

out.println("Login Successful");

} else {
out.println("Invalid credentials");

}

Internally:

o ResultSet manages cursor movement and type conversion.
o Data is converted from SQL types to Java types (e.g., VARCHAR to String).

9. Close Resources

Resources must be closed to release memory and database connections.
rs.close();

pst.close();

con.close();

Internally:

o JDBC notifies the driver to release sockets, buffers, and connections.
e Connections return to the pool if pooling is used.

Connection Lifecycle Summary
Client Request

)
Web Server

Centre for Distance Education 9.15 Acharya Nagarjuna University

!

Servlet/JSP — JDBC Driver — Database

!

ResultSet < Response

!
Client

Connection Pooling (Advanced Approach)

In enterprise web applications, connection pooling is used to avoid the overhead of frequent

connection creation and closing.

Example using DataSource (JNDI in a Servlet):

Context ctx = new InitialContext();
DataSource ds = (DataSource) ctx.lookup("java:comp/env/jdbc/MyDB");
Connection con = ds.getConnection();

Internally:

o Connections are managed in a pool.
e The same physical connection is reused, improving performance.

Best Practices

Practice

Benefit

Use PreparedStatement

Avoids SQL injection

Always close resources

Prevents memory leaks

Use connection pooling

Enhances performance

Validate inputs

Improves security

Use MVC architecture

Clean code organization

Technologies Involved

Layer Example
Client HTML, CSS, JS
Server-Side Java Servlets, JSP, Spring MVC
Database MySQL, Oracle
JDBC Driver MySQL JDBC, Oracle JDBC

Web Server

Tomcat, GlassFish

Web Technologies Lab 9.16 Introduction To JDBC and Database ...

Note: Internal database connections are a core part of web application architecture. They
enable dynamic content generation, user authentication, and business logic execution.
Understanding the internal workflow helps in writing efficient, secure, and scalable web
applications.

9.4 SUMMARY

JDBC (Java Database Connectivity) is a Java API that enables platform-independent access
to relational databases. It allows Java applications to connect to databases, execute SQL
queries, and process results efficiently. The core components of JDBC include
DriverManager, Connection, Statement, PreparedStatement, CallableStatement, and
ResultSet, all working together to manage database communication.

JDBC drivers translate Java calls into database-specific protocols, with four types available:
Type 1 (ODBC Bridge), Type 2 (Native API), Type 3 (Network Protocol), and Type 4 (Pure
Java/Thin Driver). The typical workflow involves loading the driver, establishing a
connection, executing queries, processing results, and closing resources.

In web applications, internal database connections occur when server-side logic (Servlets,
JSPs) interacts with the database using JDBC. This involves processing client requests,
extracting input, loading drivers, and sending queries via JDBC. Internally, the driver handles
socket creation, protocol translation, and authentication.

Best practices include using PreparedStatement to prevent SQL injection, employing
connection pooling for performance, and ensuring all resources are closed properly. Web
technologies like HTML, JSP, JDBC drivers, and web servers such as Tomcat work together
to deliver data-driven applications. Connection pooling through JNDI and DataSource
improves resource management. Understanding JDBC's architecture and internal workflow is
essential for building efficient and scalable Java-based web systems.

9.5 KEY TERMS

JDBC (Java Database Connectivity),DriverManager, Connection, Statement,
PreparedStatement, CallableStatement, ResultSet, SQLException, JDBC,Type 1 Driver,
Type 2 Driver, Type 3 Driver, Type 4 Driver, Connection Pooling, DataSource .

9.6 SELF-ASSESSMENT QUESTIONS

What is JDBC and why is it used in Java applications?

List any three core components of the JDBC APL

What are the two main layers of JDBC architecture?

Why was JDBC introduced, replacing earlier third-party or platform-specific APIs?
What is the role of the DriverManager class in JDBC?

Differentiate between Statement and PreparedStatement.

What is a Type 4 JDBC driver and why is it widely preferred?

What steps are involved in establishing a JDBC connection?

What does the Connection interface represent in JDBC?

10 How does internal database connection flow work in a web application using JDBC?

00N AW

Centre for Distance Education 9.17 Acharya Nagarjuna University

9.7 Further Readings

1. Java: The Complete Reference, Twelfth Edition by Herbert Schildt. McGraw-Hill
Education.

2. Beginning Java Programming: The Object-Oriented Approach by Bart Baesens,

Aimee Backiel, and Seppe vanden Broucke. Wiley.

Java Programming with Oracle JDBC by Donald Bales. O'Reilly Media.

Java EE 8 Application Development by David R. Heffelfinger. Packt Publishing.

5. Professional Java for Web Applications by Nicholas S. Williams. Wrox/Wiley
Publishing.

6. Java 2: Developer's Guide to Web Applications with JDBC by Gregory Brill. Sybex.

W

Mrs. Appikatla Pushpa Latha

LESSON-10
EXECUTING SQL WITH JDBC

Aim and Objectives:

» To understand the concept and purpose of JDBC as an interface between Java
applications and databases.

» To learn how to establish, manage, and close connections between a Java program
and a database using JDBC.

» To explain the working and components of JDBC, including DriverManager,
Connection, Statement, and ResultSet.

» To explore the internal process of how JDBC drivers communicate with the database
for query execution.

» To develop the ability to write and execute SQL statements in Java programs using
JDBC connections effectively.

STRUCTURE:

10.1Introduction to JDBC

10.2. Connections

10.3 Internal Database Connections
10.4 Statements

10.5S Summary

10.6 Key Terms

10.7 Self-Assessment Questions

10.8 Further Readings

10.1 Introduction to JDBC

What is JDBC?

JDBC (Java Database Connectivity) is a Java API that allows Java applications to interact
with various databases. It provides a standard interface for connecting to relational databases,
executing SQL queries, and retrieving results.

JDBC is crucial in web technologies because many web applications need to communicate
with databases to store, retrieve, and manipulate data dynamically.

Why JDBC?

o Database Independence: JDBC abstracts the database-specific details, allowing
developers to write database-agnostic code.

o Integration: Enables Java-based web applications (Servlets, JSP, Spring, etc.) to
interact with backend databases.

o Standardization: Offers a uniform API to work with different relational databases
like MySQL, Oracle, SQL Server, PostgreSQL, etc.

Web Technologies Lab 10.2 Executing SQL with Jdbc

e Supports CRUD Operations: Create, Read, Update, Delete operations on the
database.

JDBC Architecture

The JDBC API follows a client-server model and has four main components:

1.

JDBC Drivers

These are specific implementations provided by database vendors to communicate
between Java applications and the database. Types include:

e Type 1: JDBC-ODBC Bridge Driver

e Type 2: Native-API Driver

e Type 3: Network Protocol Driver

e Type 4: Thin Driver (Pure Java)

DriverManager

Manages the set of JDBC drivers and establishes connections to the database.
Connection Interface

Represents a connection session with a specific database.

Statement Interface

Used to execute SQL queries (Statement, PreparedStatement, CallableStatement).
ResultSet Interface

Represents the result set from SQL query execution, allowing navigation and retrieval of
data.

How JDBC Works in Web Technologies?
In web applications, typically the architecture looks like this:

Client (Browser) — Web Server (Servlet/JSP/Spring MVC) — JDBC Layer —
Database

Step-by-step workflow:

1. Load the JDBC Driver
This registers the driver with the DriverManager.
Class.forName("com.mysql.cj.jdbc.Driver");

2. Establish a Connection
Use DriverManager.getConnection() with a database URL, username, and password.
Connection conn = DriverManager.getConnection(
"jdbe:mysql://localhost:3306/mydb", "root", "password");

3. Create a Statement
Create a statement object to send SQL commands.
Statement stmt = conn.createStatement();

4. Execute SQL Queries
o For SELECT queries, use executeQuery().
o For INSERT, UPDATE, DELETE, use executeUpdate().
ResultSet rs = stmt.executeQuery("SELECT * FROM users");

Centre for Distance Education 10.3 Acharya Nagarjuna University

5. Process the Results
Iterate through the ResultSet to read data.
while(rs.next()) {
System.out.println("User: " + rs.getString("username"));

}

6. Close Resources
Close ResultSet, Statement, and Connection to free resources.
rs.close();
stmt.close();
conn.close();

JDBC in Web Frameworks

e Servlets and JSPs: Use JDBC directly to interact with the database.

e Spring Framework: Uses JdbcTemplate for simplified database operations built on
top of JDBC.

o Hibernate / JPA: ORM frameworks that abstract JDBC, but ultimately rely on JDBC
to communicate with the database.

Benefits of Using JDBC in Web Technologies

o Enables dynamic content based on database info.

e Supports scalable, enterprise-level database applications.
e Portable across databases with minimal changes.

o Well-integrated into Java EE and Spring frameworks.

Common Challenges

e Resource Management: Forgetting to close connections can lead to memory leaks.
e SQL Injection: Must use PreparedStatement to safely pass parameters.

e Error Handling: Must handle SQLException properly.

e Connection Pooling: Needed for performance in high-traffic web applications.

Sample Code Snippet for JDBC in a Web Application
public class UserServlet extends HttpServlet {

protected void doGet(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException {
Connection conn = null;
PreparedStatement ps = null;
ResultSet rs = null;

try {
Class.forName("com.mysql.cj.jdbc.Driver");

conn = DriverManager.getConnection(
"jdbc:mysql://localhost:3306/mydb", "root", "password");

String sql = "SELECT username, email FROM users WHERE status =?";

Web Technologies Lab 10.4 Executing SQL with Jdbc

ps = conn.prepareStatement(sql);
ps.setString(1, "active");
rs = ps.executeQuery();

while (rs.next()) {
String username = rs.getString("username");
String email = rs.getString("email");
// process user data or add to request attributes

}

} catch (Exception e) {

e.printStackTrace();

} finally {

try { if (rs !=null) rs.close(); } catch (SQLException e) { e.printStackTrace(); }
try { if (ps !=null) ps.close(); } catch (SQLException e) { e.printStackTrace(); }
try { if (conn !=null) conn.close(); } catch (SQLException e) { e.printStackTrace(); }

JDBC is a Java API that facilitates communication between Java web applications and
databases.

It provides a standard way to execute SQL commands and process database results.
It’s fundamental for dynamic, database-driven web applications.

Used in Java Servlets, JSP, Spring, and other Java web frameworks.

Requires proper resource management, security considerations, and may benefit from
connection pooling for high performance.

10.2. Connections

A JDBC Connection is the link between your Java application and the database, enabling the
execution of SQL statements, retrieval of data, and management of transactions.

Purpose of JDBC Connection

The JDBC Connection object is responsible for:

Establishing a session with the database.
Sending SQL statements to the DB.

Handling transactions.

Providing access to metadata.

Managing resources (connection closing, etc).

Centre for Distance Education

Acharya Nagarjuna University

Basic JDBC Connection Workflow

Here’s the typical process for using JDBC:

U e

Load the JDBC Driver
Establish the Connection
Create SQL Statements
Execute SQL Queries
Process Results

Close the Connection

JDBC Connection in Detail

1. Loading the JDBC Driver

This step loads the JDBC driver class provided by the database vendor.

Class.forName("com.mysql.cj.jdbe.Driver"); // For MySQL

As of IDBC 4.0 (Java 6+), this step is often optional if the driver is available on the classpath.

2. Establishing a Connection

Use the DriverManager class to create a connection to the database.

Connection conn = DriverManager.getConnection(URL, USER, PASSWORD);

Connection URL Format

jdbc:subprotocol:subname

Example (for MySQL):

jdbc:mysql://localhost:3306/mydatabase

Component Description
jdbc Protocol
mysql Subprotocol (DB type)
localhost Hostname of DB server
3306 Port number

mydatabase

Name of the database

Web Technologies Lab

Executing SQL with Jdbc

3. Common JDBC Driver Connection URLS

Database JDBC Driver Class

Example URL

MySQL |com.mysql.cj.jdbc.Driver

jdbc:mysql://localhost:3306/mydb

PostgreS
QL

org.postgresql.Driver

jdbc:postgresql://localhost:5432/mydb

Oracle |loracle.jdbc.driver.OracleDriver

jdbc:oracle:thin:@localhost:1521:xe

SQL com.microsoft.sqlserver.jdbc.SQLSer

Server verDriver

me=mydb

4. Example Code: Establishing JDBC Connection

import java.sql.*;

public class JdbcConnectionExample {

public static void main(String[] args) {

String url = "jdbc:mysql://localhost:3306/mydb";

String user = "root";
String password = "admin";

try (Connection conn = DriverManager.getConnection(url, user, password)) {
System.out.println("Connected to database successfully!");

} catch (SQLException e) {
e.printStackTrace();

j
j
j

JDBC Connection Interface Methods

The java.sql.Connection interface provides many useful methods:

| Method [

Purpose

‘createStatement()

HCreates a basic SQL statement

‘prepareStatement(String sql)

HCreates a precompiled SQL statement

‘setAutoCommit(boolean)

HEnables/disables auto-commit mode

‘rollback() HRolls back transaction manually
‘close() HCloses the connection
‘isClosed() HChecks if connection is closed

‘ getMetaData()

|
;
|
‘commit() HCommits transaction manually ’
;
|
|

HReturns database metadata

jdbc:sqlserver://localhost:1433;databaseNa

Centre for Distance Education 10.7 Acharya Nagarjuna University

Transaction Management

By default, JDBC is in auto-commit mode.

Auto-Commit Mode (Default)

Each SQL statement is committed immediately after execution.
conn.setAutoCommit(true); // default

Manual Commit Mode

You can turn off auto-commit and commit manually:

conn.setAutoCommit(false);

try {
// Execute SQL statements
conn.commit(); // Commit if all succeed
} catch (SQLException e) {
conn.rollback(); // Rollback if any fails

}

Handling Exceptions and Closing Connection
It’s important to close connections to avoid memory leaks.
Try-With-Resources (Recommended)

try (Connection conn = DriverManager.getConnection(url, user, password)) {
/I Work with connection

} catch (SQLException e) {
e.printStackTrace();

}

This automatically closes the connection at the end of the block.

JDBC Connection in Web Applications

In Java web apps (Servlets, JSPs, Spring), JDBC is commonly used for database access.
Example in a Servlet:

public class UserServlet extends HttpServlet {
protected void doGet(HttpServletRequest request, HttpServletResponse response) {
try (Connection conn =
DriverManager.getConnection("jdbc:mysql://localhost:3306/mydb", "root", "pass")) {
PreparedStatement ps = conn.prepareStatement("SELECT * FROM users");
ResultSet rs = ps.executeQuery();
while (rs.next()) {

‘ Web Technologies Lab 10.8 Executing SQL with Jdbc

// process data

}
} catch (SQLException e) {

e.printStackTrace();

j
j
j

JDBC Connection Pooling (Advanced)

Creating a new connection for every request is expensive. Connection pooling improves
performance by reusing existing connections.

Popular Connection Pooling Libraries:

Library Features

HikariCP Fast and lightweight

Apache DBCP||Easy integration

C3P0 Automatic testing and recovery

Spring Boot uses HikariCP by default.
Security Tips for JDBC Connections

e Avoid hardcoding DB credentials.

o Use config files or environment variables.

e Always close your connection objects.

o Use PreparedStatement to prevent SQL Injection.

JDBC Connection Best Practices

Practice Why It's Important
Use try-with-resources Ensures connections are closed properly
Use connection pooling Improves performance for web applications

Close ResultSet and Statement ||Frees resources and avoids memory leaks

Avoid hardcoded credentials ||[Improves security

Use transactions where needed |[Maintains data integrity

Centre for Distance Education 10.9 Acharya Nagarjuna University

Table

Feature Description
Connection Interface to connect Java app to DB
Created By DriverManager.getConnection()

Needs Driver? Yes, specific to DB (e.g., MySQL, Oracle)

Connection URL ||[Follows format: jdbc:subprotocol:subname

Auto-Commit Default is true, can be set to manual

Use in Web Apps |JDBC connects backend to DB in Servlets, JSPs, Spring etc.

Connection Pooling Reuses DB connections, improves performance
[

10.3. Internal Database Connections
1. Internal Database Connection

An Internal Database Connection refers to the behind-the-scenes process through which a
Java application communicates with a database via JDBC.

o It is not visible to the user but is essential for executing SQL commands, retrieving
results, and maintaining sessions.

o JDBC abstracts these internal processes, so developers focus on Java code rather than
database protocols.

2. Components Involved in Internal Connections

When a JDBC program connects to a database, several internal components work together:

Component H Role
DriverManaser Maintains a registry of JDBC drivers and selects the
g appropriate driver for a database URL.
JDBC Driver Converts Java method calls into database-specific
network protocol commands.
Represents a live session with the database, including
Connection Object metadata like database version, session info, and active

transactions.

Statement / PreparedStatement /

CallableStatement Sends SQL queries to the database and processes results.

Stores the query results and provides methods to retrieve

ResultSet Object data row by row.

3. How Internal Database Connections Work

Here’s a step-by-step explanation of the internal workflow when a Java program connects to
a database:

Web Technologies Lab 10.10 Executing SQL with Jdbc

Step 1: Driver Registration
Class.forName("com.mysql.cj.jdbc.Driver");

e The JDBC driver class is loaded.
o The driver registers itself with DriverManager, making it available for connection
requests.

Step 2: Requesting a Connection

Connection con = DriverManager.getConnection(
"jdbc:mysql://localhost:3306/world", "root", "12345");

e The DriverManager checks its list of registered drivers.
o It selects a driver that supports the provided database URL.

Step 3: Authentication and Session Creation

e The driver sends the username and password to the database server.
o The database validates credentials.
o Ifvalid, a session is created, and a Connection object is returned to the Java program.

Step 4: SQL Query Execution

e SQL commands executed via Statement or PreparedStatement are internally
converted into database-specific requests.

e The driver handles protocol translation, sending the commands over TCP/IP to the
database server.

Step 5: Result Processing

o The database executes the query and returns results.
e The driver converts the database-specific response into a ResultSet object.
o The Java application iterates over the ResultSet to retrieve data.

Step 6: Closing the Connection
con.close();

o Closing the connection informs the driver and database to release resources.
o Internally, the session is terminated, and sockets are closed.

4. Key Features of Internal Database Connections

1. Automatic Protocol Handling: Converts Java calls into database-specific
commands.

2. Session Management: Maintains database session metadata such as user, privileges,
and active transactions.

3. Result Handling: Converts raw database results into ResultSet objects for Java
applications.

Centre for Distance Education 10.11 Acharya Nagarjuna University

4. Security: Handles authentication and prevents unauthorized access at the session
level.

5. Transparency: Developers don’t need to know the underlying network or protocol
details.

5. Advantages of Understanding Internal Connections

e Optimized Performance: Helps in implementing connection pooling to reuse
connections efficiently.

o Better Debugging: Understanding internal flow helps troubleshoot connection
failures or slow queries.

e Security Awareness: Explains how credentials and queries travel from Java to the
database.

e Resource Management: Encourages proper closing of connections, statements, and
result sets.

o Scalability: Enables designing multi-tier applications with minimal connection
overhead.

6. Diagram: Internal Database Connection Flow

L1 t Packages
mport Facks 1. Import Packages

2. Load Database Driver ' 2. Load Database Driver

Driver Manager : [i]
H Driver Manager

2-A.for Name() 2-B.getconnection() :
l 2-B.getconnection() :

3.createstatement() 4-a.SELECT : executequery()

. ~ - . -
[Connection |4) Statement J—) Resultset]
" A L. r |

l l 5. close()
5. close() 5. close()
e Data
INSERT/UPDATE/
DELETE :
executeUpdate()
R
int

7. Best Practices for Internal Database Connections

1. Always close connections, statements, and result sets in finally blocks or use try-with-
resources.

Use PreparedStatement to improve performance and prevent SQL injection.

Use connection pooling in enterprise applications to reduce connection overhead.
Minimize open connections to reduce memory and server load.

Handle SQLException properly to catch connection or query failures.

Nk

Web Technologies Lab 10.12 Executing SQL with Jdbc

Note:

o Internal database connections are the hidden processes that allow Java applications to
communicate with databases via JDBC.

o JDBC DriverManager + Driver + Connection + Statement + ResultSet work together
internally.

o Understanding internal connections helps with performance, security, and proper
resource management.

e While transparent to developers, this internal workflow is critical for building robust,
scalable, and secure database applications.

10.4. STATEMENTS

In Java, the Statement interface of JDBC (Java Database Connectivity) is used to create and
execute SQL queries within Java applications.JDBC provides three types of statements to
interact with the database:

o Statement -> For executing static SQL queries.

e PreparedStatement -> For executing parameterized queries.

o CallableStatement -> For executing stored procedures.

1. Statement

A Statement object is used for general-purpose access to databases and is useful for
executing static SQL statements at runtime.

Syntax:

Statement statement = connection.createStatement();

Execution Methods

o execute(String sql): Executes any SQL (SELECT, INSERT, UPDATE, DELETE).
Returns true if a ResultSet is returned.

o executeUpdate(String sql): Executes DML (INSERT, UPDATE, DELETE). Returns
number of rows affected.

o executeQuery(String sql): Executes SELECT queries. Returns a ResultSet.

Example:

import java.sql.*;

public class JDBCExample {
public static void main(String[] args) {
try {
// Step 1: Load the MySQL JDBC Driver
Class.forName("com.mysql.cj.jdbc.Driver");

// Step 2: Establish a connection to the database
Connection con = DriverManager.getConnection(
"jdbc:mysql://localhost:3306/world", "root", "12345");

/I Step 3: Create a Statement object to send SQL queries
Statement stmt = con.createStatement();

// Step 4: Define and execute an SQL SELECT query
String query = "SELECT * FROM people";
ResultSet rs = stmt.executeQuery(query);

Centre for Distance Education 10.13 Acharya Nagarjuna University

// Step 5: Process the ResultSet
while (rs.next()) {
String name = rs.getString("name");
int age = rs.getInt("age");
System.out.println("Name: " + name + ", Age: " + age);

}

/I Step 6: Close all resources
rs.close();

stmt.close();

con.close();

} catch (Exception e) {
e.printStackTrace();
}
h
}

Output: Name and age are as shown for random inputs.

Jame : Aryan
Age - 25
Mame: MNMiwva
Age 7S
Mame: Sneh
Age 1S

Mame: Alexa
Ace 13
Mame: ITan
Agce 18

10.5 SUMMARY

JDBC (Java Database Connectivity) is a Java API that allows Java applications to interact
with relational databases in a standardized way. It enables executing SQL queries, retrieving
results, and performing CRUD operations, making it crucial for dynamic, database-driven
web applications. JDBC provides a uniform interface for different databases such as MySQL,
Oracle, PostgreSQL, and SQL Server, ensuring database independence.

The JDBC architecture follows a client-server model and consists of components like JDBC
drivers, DriverManager, Connection, Statement, and ResultSet. JDBC drivers handle
communication between Java programs and databases, converting Java calls into database-
specific protocol commands. The Connection object establishes a session with the database,
manages transactions, and provides metadata access. Internal database connections represent
the hidden workflow of driver registration, authentication, session creation, SQL execution,

Web Technologies Lab 10.14 Executing SQL with Jdbc

result processing, and closing resources. Developers interact with Statement objects to
execute SQL queries, with three types available: Statement for static queries,
PreparedStatement for parameterized queries, and CallableStatement for stored procedures.
Using PreparedStatement improves performance and prevents SQL injection.

JDBC in web technologies is widely used in Servlets, JSP, Spring, and other Java
frameworks, allowing backend databases to provide dynamic content. Proper resource
management, such as closing connections, statements, and result sets, is critical to avoid
memory leaks. Connection pooling is recommended for high-performance web applications.
Transactions can be managed automatically or manually using commit and rollback methods.
Understanding internal connections helps with debugging, security, and optimizing database
interactions. Overall, JDBC provides a robust, scalable, and secure way to integrate Java
applications with databases.

10.6 KEY TERMS

JDBC (Java Database Connectivity) , DriverManager ,Connection , JDBC Driver ,
Connection Pooling , SQL Injection, Transaction Management, Internal Database Connection,
Statement.

10.7 SELF-ASSESSMENT QUESTIONS

Define JDBC and explain its importance in Java web applications.

Explain the architecture of JDBC and describe the role of each component.

What are the different types of JDBC drivers? Explain with examples.

Describe the process of establishing a JDBC connection, including the connection

URL format.

Explain the difference between Statement?

6. What is an internal database connection in JDBC? Describe the workflow from driver
registration to closing the connection.

7. Explain how transaction management works in JDBC and the difference between
auto-commit and manual commit modes.

8. What are the best practices for using JDBC in web applications? Explain with

reasons.

b

e

10.8 FURTHER READINGS

1. Java: The Complete Reference, Twelfth Edition by Herbert Schildt. McGraw-Hill
Education.

2. Beginning Java Programming: The Object-Oriented Approach by Bart Baesens,

Aimee Backiel, and Seppe vanden Broucke. Wiley.

Java Programming with Oracle JDBC by Donald Bales. O'Reilly Media.

Java EE 8 Application Development by David R. Heffelfinger. Packt Publishing.

5. Professional Java for Web Applications by Nicholas S. Williams. Wrox/Wiley
Publishing.

6. Java 2: Developer's Guide to Web Applications with JDBC by Gregory Brill. Sybex.

hale

Mrs. Appikatla Pushpa Latha

LESSON- 11
ADVANCED JDBC: PREPARED AND

CALLABLE STATEMENTS

Aim and Objectives:

» Understand the purpose of Statement objects in executing SQL queries from Java
programs.

» Learn how ResultSet stores and allows navigation through data retrieved from a
database.

» Explore PreparedStatement for executing parameterized queries to prevent SQL
injection and improve performance.

» Understand CallableStatement for invoking stored procedures in a database from Java
applications.

» Develop the ability to perform database operations efficiently using different types of
JDBC statements.

Structure:

11.1 Statements

11.2 Results Sets

11.3 Prepared Statements

11.4 Callable Statements

11.5 Summary

11.6 Key Terms

11.7 Self-Assessment Questions
11.8 Further Readings

11.1. STATEMENTS

1. Introduction

In JDBC (Java Database Connectivity), a Statement is an interface used to execute SQL
queries against a database. It allows Java programs to interact with a database, retrieve data,
and update it. Statements are best suited for static SQL queries that do not change often,
unlike PreparedStatement, which is used for dynamic queries with parameters.

Types of Statements

1. Statement — Used for simple SQL queries without parameters.
2. PreparedStatement — Used for parameterized queries (dynamic queries).
3. CallableStatement — Used to execute stored procedures in a database.

2. Key Features of Statement
o Executes SQL queries like SELECT, INSERT, UPDATE, and DELETE.

o Returns ResultSet for queries that retrieve data.
e Simple to use for basic database operations.

Web Technologies Lab 11.2 Advanced Jdbc: Prepared and ...

e Not secure for dynamic user inputs (prone to SQL injection).
3. Creating a Statement
To create a Statement object, you need:
Load the JDBC driver.
Establish a connection to the database.

Create a Statement object.
Execute SQL queries using the statement.

=

4. Example Program Using Statement
Database Setup

Assume a database SchoolDB with table Students:

ID Name Age Grade
1 Alice 14 8
2 Bob 15 9
3 Charlie 14 8

Java Program: Statement Example
importjava.sql.*;

public class StatementExample

{
public static void main(String[] args)
{
Try
{
//'1. Load JDBC driver
Class.forName("com.mysql.cj.jdbc.Driver");

/I 2. Establish connection
Connection con = DriverManager.getConnection(
"jdbc:mysql://localhost:3306/SchoolDB", "root", "password");

// 3. Create Statement object
Statement stmt = con.createStatement();

//'4. Execute SQL query
ResultSetrs = stmt.executeQuery("SELECT * FROM Students");

/I'5. Process ResultSet
System.out.println("ID\tName\tAge\tGrade");
while(rs.next()) {

Centre for Distance Education 11.3 Acharya Nagarjuna University

System.out.println(rs.getInt("ID") + "\t" +
rs.getString("Name") + "\t" +
rs.getInt("Age") + "\t" +
rs.getInt("Grade"));

}

/1 6. Close connections
rs.close();
stmt.close();
con.close();

} catch(Exception e) {
e.printStackTrace();

j
}
j

5. Input / Output
Input

o The program does not take dynamic input; it directly queries the Students table.
Output (Console)

ID Name Age Grade
1 Alice 14 8

2 Bob 15 9

3 Charlie 14 8

6. Executing Update Queries Using Statement
You can also execute INSERT, UPDATE, or DELETE queries using Statement.

// Insert a new student
introwsInserted = stmt.executeUpdate(

"INSERT INTO Students (ID, Name, Age, Grade) VALUES (4, 'David', 13, 7)");
System.out.println(rowsInserted + " row(s) inserted.");

Output:
1 row(s) inserted.
7. Note:
o executeQuery() is used for SELECT queries and returns a ResultSet.
o executeUpdate() is used for INSERT, UPDATE, DELETE queries and returns the
number of affected rows.

e For queries with dynamic user input, prefer PreparedStatement to avoid SQL
injection.

Web Technologies Lab

11.4 Advanced Jdbc: Prepared and ...

o Statement is simple but less secure and less efficient for repeated queries.

11.2 RESULTS SETS

1. Introduction

In JDBC, a ResultSet is an object that holds the data retrieved from a database after
executing a SELECT query using a Statement or PreparedStatement. It acts like a table in
memory, allowing you to navigate through rows of data and fetch column values.

Key Points

o Represents tabular data from a database query.
e Cursor-based: can move forward, backward (depending on type), or jump to a specific

Tow.

e Read-only or updatable (depending on how you create it).
e Often used with while(rs.next()) to iterate through rows.

2. Types of ResultSet

| Type

H Description

ITYPE FORWARD ONLY

HDefault. Cursor moves only forward.

TYPE SCROLL INSENSITIVE

Cursor can move forward/backward. Changes in DB after
query execution are not visible.

TYPE SCROLL SENSITIVE

Cursor can move forward/backward. Reflects changes in
DB after query execution.

3. Creating a ResultSet

b

Create a Statement object.

Execute a SELECT query using executeQuery().
Store the returned data in a ResultSet.

Iterate through the ResultSet to process data.

4. Example Program Using ResultSet

Database Setup

Assume a database SchoolDB with table Students:

ID Name Age Grade
1 Alice 14 8
2 Bob 15 9

3 Charlie 14 8

Centre for Distance Education 11.5 Acharya Nagarjuna University

Java Program: ResultSet Example
importjava.sql.*;

public class ResultSetExample

{
public static void main(String[] args)
{
try
{
/I'1. Load JDBC driver
Class.forName("com.mysql.cj.jdbc.Driver");

// 2. Establish connection
Connection con = DriverManager.getConnection(
"jdbc:mysql://localhost:3306/SchoolDB", "root", "password");

// 3. Create Statement object

Statement stmt = con.createStatement(
ResultSet. TYPE SCROLL INSENSITIVE,
ResultSet. CONCUR READ ONLY);

//'4. Execute SELECT query
ResultSetrs = stmt.executeQuery("SELECT * FROM Students");

/I'5. Process ResultSet
System.out.println("ID\tName\tAge\tGrade");
while(rs.next())

{

// iterate forward
System.out.println(rs.getInt("ID") + "\t" +
rs.getString("Name") + "\t" +
rs.getlnt("Age") + "\t" +
rs.getInt("Grade"));

}

/I'6. Moving cursor backwards (if scrollable)
System.out.println("\nLast record:");
if(rs.last())
{
System.out.println(rs.getInt("ID") + "\t" +
rs.getString("Name") + "\t" +
rs.getlnt("Age") + "\t" +
rs.getInt("Grade"));
b

/1 7. Close connections
rs.close();
stmt.close();
con.close();

‘ Web Technologies Lab 11.6 Advanced Jdbc: Prepared and ...

} catch(Exception e)

{
e.printStackTrace();

j
}
j

5. Input / Output
Input

e The program directly queries the Students table. No dynamic input is required.

Output (Console)

ID Name Age Grade
1 Alice 14 8

2 Bob 15 9

3 Charlie 14 8

Last record:

3 Charlie 14 8

6. Updating Data Using ResultSet (Optional)
Some ResultSet objects can be updatable. Example:
Statement stmt = con.createStatement(

ResultSet. TYPE_SCROLL_SENSITIVE,
ResultSet. CONCUR_UPDATABLE);

ResultSetrs = stmt.executeQuery("SELECT * FROM Students WHERE ID=2");
if(rs.next())

{

rs.updateInt("Age", 16); // update age
rs.updateRow(); // commit changes
}

This directly updates the database without executing a separate UPDATE query.
7. Note:

e r1s.getlnt("columnName") or rs.getString("columnName") fetches column data.

o Always close ResultSet and Statement to free resources.

o For large datasets, consider using pagination because ResultSet loads data into
memory.

e Scrollable and updatable ResultSets are more flexible but slightly slower.

Centre for Distance Education 11.7 Acharya Nagarjuna University

11.3 Prepared Statements

1. Introduction

A PreparedStatement is a feature of JDBC used to execute parameterized SQL queries.
Unlike a regular Statement, which executes raw SQL strings, PreparedStatement allows
placeholders (?) for values, which are supplied at runtime.

Advantages
1. Prevents SQL Injection — User input is treated as data, not code.
2. Improves Performance — The SQL query is precompiled by the database.
3. Reusability — The same query can be executed multiple times with different inputs.
4. Type Safety — You can explicitly set the data type of parameters.

2. Syntax
PreparedStatementpstmt = con.prepareStatement("SQL query with ?");
e ?is aplaceholder for a value.
e Values are set using methods like:
o setlnt(index, value)
o setString(index, value)
o setDouble(index, value)
3. Example Program Using PreparedStatement

Database Setup

Assume a database SchoolDB with table Students:

‘ ID H Name H Age H Grade ‘
|1 | Alice || 14 || 8 |
(2] Bob | 15 | 9 |

Java Program: Insert Using PreparedStatement
importjava.sql.*;

public class PreparedStatementExample

{

public static void main(String[] args)
{
Try
{
//'1. Load JDBC Driver

Class.forName("com.mysql.cj.jdbc.Driver");

// 2. Establish Connection

Web Technologies Lab 11.8 Advanced Jdbc: Prepared and ...

Connection con = DriverManager.getConnection(
"jdbc:mysql://localhost:3306/SchoolDB", "root", "password");

//' 3. Prepare SQL Query with placeholders
String sql = "INSERT INTO Students (ID, Name, Age, Grade) VALUES (?, 2, 2, ?7)";

PreparedStatementpstmt = con.prepareStatement(sql);

/I 4. Set parameter values

pstmt.setlnt(1, 3); /' 1D
pstmt.setString(2, "Charlie"); // Name
pstmt.setlnt(3, 14); /I Age
pstmt.setInt(4, 8); /I Grade

/I'5. Execute query
int rows = pstmt.executeUpdate();
System.out.println(rows + " row(s) inserted.");

/I 6. Close connection
pstmt.close();
con.close();

}

catch(Exception e)

1
e.printStackTrace();

j
}
j

4. Input / Output
Input
e Directly set in the program using pstmt.setXXX() methods.
Output
1 row(s) inserted.

e After execution, the table Students will have:

ID Name Age Grade
1 Alice 14 8
2 Bob 15 9
3 Charlie 14 8

Centre for Distance Education 11.9 Acharya Nagarjuna University

5. Example Program: Select Using PreparedStatement

String sql = "SELECT * FROM Students WHERE Age = ?";
PreparedStatementpstmt = con.prepareStatement(sql);
pstmt.setlnt(1, 14); // parameter for age

ResultSetrs = pstmt.executeQuery();

while(rs.next()) {
System.out.println(rs.getInt("ID") + "\t" +
rs.getString("Name") + "\t" +
rs.getInt("Age") + "\t" +
rs.getInt("Grade"));

}

Output

ID Name Age Grade
1 Alice 14 8

3 Charlie 14 8

6. Note:

e PreparedStatement is preferred over Statement for dynamic queries.
e Supports batchprocessing for multiple inserts efficiently:

pstmt.setlnt(1, 4);
pstmt.setString(2, "David");
pstmt.setlnt(3, 15);
pstmt.setint(4, 9);
pstmt.addBatch(); // add to batch

int[] result = pstmt.executeBatch(); // execute all at once

o Always close PreparedStatement and Connection to free resources.

11.4 CALLABLE STATEMENTS

1. Introduction

A CallableStatement is used in JDBC to execute storedprocedures in a database. Stored
procedures are precompiled SQL programs stored in the database.

Advantages
1. Encapsulation — Database logic is centralized in procedures.
2. Performance — Stored procedures are precompiled.
3. Security — Reduces SQL injection risk.
4. Ease of Maintenance — Changes in logic don’t require Java code changes.

Web Technologies Lab 11.10 Advanced Jdbc: Prepared and ...

2. Syntax
CallableStatementcstmt = con.prepareCall(" {call procedure _name(?, ?)}");

e {callprocedure name(?, ?)} — ? are placeholders for input/output parameters.
e Parameters can be:

o IN — Input to the procedure

o OUT - Output from the procedure

o INOUT - Input and output

Set parameters with:

e cstmt.setInt(index, value)
e cstmt.setString(index, value)

Register output parameters with:
o cstmt.registerOutParameter(index, type)

3. Example: Stored Procedure in MySQL
Create a stored procedure in MySQL SchoolDB:
DELIMITER //
CREATE PROCEDURE GetStudentByID(IN sid INT, OUT sname VARCHAR(50), OUT
sage INT)
BEGIN

SELECT Name, Age INTO sname, sage FROM Students WHERE ID = sid;
END //
DELIMITER ;
4. Java Program Using CallableStatement

importjava.sql.*;

public class CallableStatementExample {
public static void main(String[] args) {
try {

//'1. Load JDBC Driver
Class.forName("com.mysql.cj.jdbc.Driver");

/I 2. Establish Connection
Connection con = DriverManager.getConnection(
"jdbc:mysql://localhost:3306/SchoolDB", "root", "password");

// 3. Prepare CallableStatement
CallableStatementcstmt = con.prepareCall(" {call GetStudentByID(?, ?, 7)}");

Centre for Distance Education 11.11 Acharya Nagarjuna University

// 4. Set input parameter
cstmt.setlnt(1, 1); / ID =1

/I'5. Register output parameters
cstmt.registerOutParameter(2, Types.VARCHAR); // Name
cstmt.registerOutParameter(3, Types.INTEGER); // Age

/I 6. Execute stored procedure
cstmt.execute();

/I 1. Retrieve output
String name = cstmt.getString(2);
int age = cstmt.getInt(3);

System.out.println("Student Name: " + name);
System.out.println("Student Age: " + age);

/I 8. Close connection
cstmt.close();
con.close();

} catch(Exception e) {
e.printStackTrace();

j
}
j

5. Input / Output
Input

e ID=1 (passed as input to stored procedure)
Output

Student Name: Alice
Student Age: 14

6. Note:

o CallableStatement can handle IN, OUT, and INOUT parameters.

o It is mainly used when complex database operations are handled inside stored
procedures.

o Example of using INOUT parameter:

CREATE PROCEDURE IncreaseAge(INOUT sid INT, IN increment INT)
BEGIN
UPDATE Students SET Age = Age + increment WHERE ID = sid;
SELECT Age INTO sid FROM Students WHERE ID = sid;

Web Technologies Lab

11.12

Advanced Jdbc: Prepared and ...

END;

e In Java, register sid as INOUT:

cstmt.registerOutParameter(1, Types.INTEGER); // INOUT parameter

Difference between CallableStatement and PreparedStatement :

It is used when the stored procedures are to be executed.

CallableStatement

You can pass 3 types of parameter IN, OUT, INOUT.

Used to execute functions.

Performance is very high.

Used to call the stored procedures.

It extends PreparedStatement interface.

No protocol is used for communication.

Overview of the Statement PreparedStatement
CallableStatement :

Feature Statement PreparedStatement

Executes '

Purpose static SQL Exegutes parameterized

. queries

queries

SQL 1n.Ject10n No e

protection
Normal (re-

Performance parsed every ||Faster (precompiled)
time)

Used for Slmple Dynamic queries with
queries parameters

PreparedStatement

It is used when SQL query is to be
executed multiple times.

You can pass any type of parameters at
runtime.

Used for the queries which are to be
executed multiple times.

Performance is better than Statement.
Used to execute dynamic SQL queries.
It extends Statement Interface.

Protocol is used for communication.

Centre for Distance Education 11.13 Acharya Nagarjuna University

Table for the PreparedStatement CallableStatement ResultSet :

‘ Feature H PreparedStatement H CallableStatement H ResultSet
Main Use Exequte parameterized SQL Execute stored procedures ||Hold query results
queries
SQL type 81;% A("?ELII;ISIT]’EIFI\]ISERT’ Stored procedure/function ||Output of a query
Parameter Supports IN, OUT, INOUT Access data via
. Uses ? placeholders column
Handling parameters .
names/index
S . Precompiled (DB-side Not compiled;
Compilation ||Precompiled (faster) procedure) ceturned as data
SQL Injection Yes Yes N/A
Safe
‘Return Type HResultSet or update count HResultSet or output params HData from query
Example SELECT * FROM emp {call Iterating over query
P WHERE dept=? getEmployeeByDept(?)} results

11.5 SUMMARY

In JDBC, several key objects are used to interact with databases, each serving a distinct
purpose. The Statement object is used to execute simple SQL queries such as SELECT,
INSERT, UPDATE, and DELETE. However, since it directly embeds user inputs into SQL
strings, it is vulnerable to SQL injection attacks, making it suitable only for static or simple
queries. The ResultSet object stores the data retrieved from queries and provides cursor-based
navigation to move through rows of results. Depending on its type, it can be forward-only or
scrollable, and even updatable, allowing direct modification of data within the result set.

For more secure and efficient database operations, the PreparedStatement object is preferred.
It allows parameterized queries, preventing SQL injection and improving performance by
precompiling the SQL statement. PreparedStatements are reusable, making them ideal for
executing similar queries multiple times with different parameters. They also support batch
processing for executing multiple SQL commands efficiently. When working with stored
procedures, the CallableStatement object is used. It allows the execution of precompiled
database procedures that can accept IN, OUT, and INOUT parameters, offering better
performance, encapsulation, and security for complex operations.

Proper resource management is crucial when using these JDBC objects—<closing the
ResultSet, Statement, and Connection objects ensures system efficiency and prevents
memory leaks. Overall, using the right JDBC object based on the operation type—Statement
for simple queries, PreparedStatement for dynamic queries, and CallableStatement for stored
procedures—enables developers to build robust, secure, and maintainable database
applications.

Web Technologies Lab 11.14 Advanced Jdbc: Prepared and ...

11.6 KEY TERMS

Statement, PreparedStatement, CallableStatement, Result Set, SQL, Database, Connection,
Stored Procedure, Parameter,Cursor,executeQuery,executeUpdate.

11.7

S e

11.8

A

= o 0~

SELF-ASSESSMENT QUESTIONS

What is the purpose of a Statement in JDBC?

How does PreparedStatement differ from Statement?

What is a CallableStatement used for?

What does a ResultSet represent in JDBC?

Name the three types of ResultSet cursors.

Which method is used to execute a SELECT query: execute Query() or execute
Update()?

How do you set values in a PreparedStatement?

What is the advantage of using Prepared Statement over Statement?

What types of parameters can a Callable Statement handle?

. Why is it important to close Result Set, Statement, and Connection objects?

Further Readings

Java: The Complete Reference, Twelfth Edition by Herbert Schildt. McGraw-Hill
Education.

Beginning Java Programming: The Object-Oriented Approach by Bart Baesens,
Aimee Backiel, and SeppevandenBroucke. Wiley.

Java Programming with Oracle JDBC by Donald Bales. O'Reilly Media.

Java EE 8 Application Development by David R. Heffelfinger. Packt Publishing.
Professional Java for Web Applications by Nicholas S. Williams. Wrox/Wiley
Publishing.

Java 2: Developer's Guide to Web Applications with JDBC by Gregory Brill. Sybex.

Mrs. Appikatla PushpaLatha

LESSON- 12

NETWORK PROGRAMMING AND REMOTE

METHOD INVOCATION (RMI)

Aim and Objectives:

YV VVV

Understand the importance of networked Java for building distributed applications.
Learn basic network concepts, including protocols, IP addresses, and ports.

Gain the ability to look up Internet addresses and differentiate between URLs and
URIs.

Explore UDP datagrams and sockets for sending and receiving data over a network.
Understand Remote Method Invocation (RMI) to enable communication between
Java objects across different machines.

STRUCTURE:

12.1
12.2
12.3
12.4
12.5
12.6
12.7
12.8
12.9
12.10
12.11

Network Programming

why networked Java

Basic Network Concepts
looking up Internet Addresses
URLSs and URIs

UDP Datagrams and Sockets
Remote Method Invocation
Summary

Key Terms

Self-Assessment Questions
Further Readings

12.1 Network Programming

It 1s about writing programs that can send and receive data over a network (like the
internet or a local network).

Why needed: For client-server applications, chatting apps, online games, or
distributed systems.

Key concepts:

o IP Address & Ports: Identify devices and communication endpoints.

o Sockets: Points where programs connect and exchange data.

o Protocols: TCP (reliable) and UDP (fast, less reliable).

o URLs and URIs: Ways to locate and access resources on the web.
12.2 Why networked Java

Networked Java refers to Java programs that communicate over a network, like the Internet
or a local network. Java is widely used for network programming because it provides built-in
support for networking via packages like java.net and java.rmi.

Web Technologies Lab 12.2 Network Programming and Remote ...

Reasons to use Networked Java:

1. Platform Independence: Java runs on any machine with a JVM, making networked
applications portable.

2. Built-in Networking API: Java provides classes like Socket, ServerSocket,
DatagramSocket, URL, etc., for easy network communication.

3. Supports Client-Server Architecture: You can easily build applications where a
client requests data from a server.

4. RMI (Remote Method Invocation): Java allows calling methods on remote objects,
making distributed systems easier to develop.

5. Secure Networking: Java provides SSL and security features for safe network
communication.

Basic Java Network Programming Example
1. TCP Client-Server Program

Server Program (TCP)
import java.io.*;
import java.net.*;

public class TCPServer {

public static void main(String[] args) throws IOException {
ServerSocket server = new ServerSocket(5000);
System.out.println("Server is running and waiting for a client...");

Socket client = server.accept();
BufferedReader in = new BufferedReader(new InputStreamReader(client.getlnputStream()));
PrintWriter out = new PrintWriter(client.getOutputStream(), true);

String message = in.readLine();
System.out.println("Client says: " + message);
out.println("Hello Client! Message received.");

client.close();
server.close();

}
j

Client Program (TCP)
import java.io.*;
import java.net.*;

public class TCPClient {
public static void main(String[] args) throws IOException {

Socket socket = new Socket("localhost", 5000);
BufferedReader in = new BufferedReader(new
InputStreamReader(socket.getInputStream()));

PrintWriter out = new PrintWriter(socket.getOutputStream(), true);

Centre for Distance Education 12.3 Acharya Nagarjuna University

out.println("Hello Server! This is Client.");
String response = in.readLine();
System.out.println("Server says: " + response);

socket.close();

j
}

Input / Output Example

Client Input:
Hello Server! This is Client.
Server Output:

Server is running and waiting for a client...
Client says: Hello Server! This is Client.

Client Output:

Server says: Hello Client! Message received.

2. UDP Datagram Example

Server (UDP)
import java.net.*;

public class UDPServer {

public static void main(String[] args) throws Exception {
DatagramSocketserverSocket = new DatagramSocket(9876);
byte[] receiveData = new byte[1024];

byte[] sendData;

System.out.println("UDP Server is running...");

DatagramPacketreceivePacket = new DatagramPacket(receiveData, receiveData.length);
serverSocket.receive(receivePacket);

String message = new String(receivePacket.getData(), 0, receivePacket.getLength());
System.out.println("Client says: " + message);

InetAddressclientAddress = receivePacket.getAddress();
intclientPort = receivePacket.getPort();

String reply = "Message received via UDP!";
sendData = reply.getBytes();

DatagramPacketsendPacket = new DatagramPacket(sendData, sendData.length,
clientAddress, clientPort);
serverSocket.send(sendPacket);

‘ Web Technologies Lab 12.4 Network Programming and Remote ...

serverSocket.close();

j
}

Client (UDP)
import java.net.*;

public class UDPClient
{

public static void main(String[] args) throws Exception

{

DatagramSocketclientSocket = new DatagramSocket();
InetAddressIPAddress = InetAddress.getByName("localhost");

byte[] sendData = "Hello UDP Server!".getBytes();
byte[] receiveData = new byte[1024];

DatagramPacketsendPacket = new DatagramPacket(sendData, sendData.length, IPAddress,
9876);
clientSocket.send(sendPacket);
DatagramPacketreceivePacket = new DatagramPacket(receiveData, receiveData.length);
clientSocket.receive(receivePacket);

String response = new String(receivePacket.getData(), 0, receivePacket.getLength());
System.out.println("Server says: " + response);

clientSocket.close();

}
j

Input / Output Example
Client Input:

Hello UDP Server!
Server Output:

UDP Server is running...
Client says: Hello UDP Server!

Client Output:
Server says: Message received via UDP!
Note:

e Networked Java allows communication between programs over TCP or UDP.
o RMI allows calling methods on remote objects as if they were local.

Centre for Distance Education 12.5 Acharya Nagarjuna University

e Java’s built-in networking libraries make creating client-server or distributed
applications easy and platform-independent.

12.3 Basic Network Concepts

Network programming involves communication between computers over a network. Java
provides built-in support via the java.net package.

Key Concepts:

1. IP Address:
o Unique address assigned to each device on a network.
o Example: 192.168.1.1 (IPv4) or 2001:0db8:85a3::8a2¢:0370:7334 (IPv6).
2. Port Number:
o Used to identify a specific process/application on a device.
o Range: 0-65535 (Ports <1024 are reserved).
3. Socket:
o Endpoint for communication between two machines.
o Socket class for clients, ServerSocket class for servers.
4. TCP (Transmission Control Protocol):
o Connection-oriented protocol (reliable).
5. UDP (User Datagram Protocol):
o Connectionless protocol (faster but unreliable).
6. URL and URI:
o URL (Uniform Resource Locator) — identifies a resource on the internet.
o URI (Uniform Resource Identifier) — more general, can be a URL or just a
name.

Java Example Programs

1. Finding IP Address
import java.net.*;

public class [IPAddressExample {
public static void main(String[] args) throws Exception {
InetAddress address = InetAddress.getByName("www.google.com");
System.out.println("Host Name: " + address.getHostName());
System.out.println("IP Address: " + address.getHostAddress());

b
}

Output Example:

Host Name: www.google.com
IP Address: 142.250.72.196

2. Simple TCP Client-Server

Server (TCP)
import java.io.*;

Web Technologies Lab 12.6 Network Programming and Remote ...

import java.net.*;

public class SimpleTCPServer {

public static void main(String[] args) throws IOException {

ServerSocket server = new ServerSocket(6000);

System.out.println("Server waiting for connection...");
Socket client = server.accept();

BufferedReader in = new BufferedReader(new InputStreamReader(client.getlnputStream()));
PrintWriter out = new PrintWriter(client.getOutputStream(), true);

String message = in.readLine();
System.out.println("Client says: " + message);
out.println("Message received!");

client.close();
server.close();

j
}

Client (TCP)
import java.io.*;
import java.net.*;

public class SimpleTCPClient {
public static void main(String[] args) throws IOException {

Socket socket = new Socket("localhost", 6000);
BufferedReader in = new BufferedReader(new
InputStreamReader(socket.getInputStream()));

PrintWriter out = new PrintWriter(socket.getOutputStream(), true);

out.printin("Hello Server!");
System.out.println("Server says: " + in.readLine());

socket.close();

}
j

Input / Output Example

Client Input:
Hello Server!
Server Output:

Server waiting for connection...
Client says: Hello Server!

Client Output:

Centre for Distance Education 12.7 Acharya Nagarjuna University

Server says: Message received!
3. URL Example
import java.net.*;

public class URLExample {

public static void main(String[] args) throws Exception {
URL url = new URL("https://www.example.com");

System.out.println("Protocol: " + url.getProtocol());

System.out.println("Host: " + url.getHost());

System.out.println("File: " + url.getFile());

System.out.println("Port: " + url.getPort());

}
j

Output Example:
Protocol: https

Host: www.example.com
File: /

Port: -1

(Port -1 means default port 443 for HTTPS)
Note:

o [P & Port identify a machine and application.

e Sockets enable communication (TCP for reliability, UDP for speed).
o URLSs/URIs locate resources on the internet.

e Java’s java.net makes network programming straightforward.

12.4 Looking up Internet Addresses

Looking up internet addresses in Java involves retrieving IP addressesandhost names for
computers or domain names. This is done using the InetAddress class from the java.net
package.

Key Concepts:

1. InetAddress Class:
o Represents an IP address (IPv4 or IPv6).
o Can be used to get host name and host address.
2. Methods of InetAddress:
o getByName(String host) — Returns the IP address of a given host.
o getHostName() — Returns the host name.
o getHostAddress() — Returns the IP address as a string.
o getAllByName(String host) — Returns all IP addresses associated with a host.
3. DNS Lookup:
o Java can resolve host names to IP addresses (forward lookup).
o Can also perform reverse lookup (IP — Host name).

Web Technologies Lab 12.8 Network Programming and Remote ...

Java Examples
1. Lookup IP Address of a Domain
import java.net.*;

public class InetAddressExample {

public static void main(String[] args) throws Exception {
InetAddress address = InetAddress.getByName("www.google.com");
System.out.println("Host Name: " + address.getHostName());
System.out.println("IP Address: " + address.getHostAddress());

}
j

Output Example:

Host Name: www.google.com
IP Address: 142.250.72.196

(IP may vary depending on DNS and location.)
2. Get Local Host Information
import java.net.*;

public class LocalHostExample {

public static void main(String[] args) throws Exception {
InetAddress local = InetAddress.getLocalHost();
System.out.println("Local Host Name: " + local.getHostName());
System.out.println("Local IP Address: " + local.getHostAddress());

j
}

Output Example:

Local Host Name: MyPC
Local IP Address: 192.168.1.5

3. Get All IP Addresses of a Domain
import java.net.*;

public class AllIPAddresses
{

public static void main(String[] args) throws Exception
{
InetAddress[] addresses = InetAddress.getAllByName("www.google.com");
System.out.println("All IP addresses for www.google.com:");
for (InetAddressaddr : addresses)

{
System.out.println(addr.getHostAddress());

}

Centre for Distance Education 12.9 Acharya Nagarjuna University

}
j

Output Example:

All IP addresses for www.google.com:
142.250.72.196
142.250.72.228
142.250.72.164

(Multiple IPs are returned because large websites use multiple servers for load balancing.)
4. Reverse DNS Lookup (IP — Hostname)
import java.net.*;

public class ReverseLookup {

public static void main(String[] args) throws Exception {

InetAddress address = InetAddress.getByName("8.8.8.8");

System.out.println("Host Name: " + address.getHostName());

System.out.println("IP Address: " + address.getHostAddress());
§

}

Output Example:

Host Name: dns.google
IP Address: 8.8.8.8

Note:

e InetAddress class is used to lookup IP addresses and host names.

e Methods like getByName(), getHostName(), and getAllIByName() help in DNS
lookups.

e You can perform forward (name — IP) and reverse (IP — name) lookups.

o Useful for networkprogramming, pinging hosts, or validating connectivity.

12.5 URLs and URIs
1. Introduction

In network programming, URLsand URIs are essential because they specify how to locate
resources over a network. Java provides classes in the java.net package to handle them.

e URI (Uniform Resource Identifier): Identifies a resource. Can be a URL or URN.
e URL (Uniform Resource Locator): Specifies where a resource is and how to access
it.

Example:

URL: https://www.example.com:443/index.html?user=123#sectionl
URI: https://www.example.com/index.html

Web Technologies Lab 12.10 Network Programming and Remote ...

2. Components of URL

Protocol / Scheme: http, https, ftp

Host / Domain: www.example.com

Port: Default 80 for HTTP, 443 for HTTPS
Path: /index.html

Query: ?user=123

Fragment: #sectionl

SN S

3. Java Classes

o java.net.URI — Represents a URI, allows parsing and constructing URIs.
o java.net.URL — Represents a URL, allows connecting to a resource.
o java.net.URLConnection — To read/write data from a URL.

4. Example Programs
Example 1: Parsing a URL
import java.net.URL;

public class URLExample {
public static void main(String[] args) {

try {
URL url = new

URL("https://www.example.com:443/index.html?user=123#sectionl");

System.out.println("Protocol: " + url.getProtocol());
System.out.println("Host: " + url.getHost());
System.out.println("Port: " + url.getPort());
System.out.println("Path: " + url.getPath());
System.out.println("Query: " + url.getQuery());
System.out.println("Reference: " + url.getRef());

} catch (Exception e) {
e.printStackTrace();

}
h
h

Input: URL is hardcoded.
Output:

Protocol: https

Host: www.example.com
Port: 443

Path: /index.html

Query: user=123

Centre for Distance Education 12.11 Acharya Nagarjuna University

Reference: sectionl
Example 2: Parsing a URI
importjava.net.URI;

public class URIExample {
public static void main(String[] args) {

try {
URI uri = new URI("https://www.example.com/index.html?user=123#section1");

System.out.println("Scheme: " + uri.getScheme());
System.out.println("Host: " + uri.getHost());
System.out.println("Port: " + uri.getPort());
System.out.println("Path: " + uri.getPath());
System.out.println("Query: " + uri.getQuery());
System.out.println("Fragment: " + uri.getFragment());
} catch (Exception e) {
e.printStackTrace();

}
j
}

Output:

Scheme: https

Host: www.example.com
Port: -1

Path: /index.html

Query: user=123
Fragment: sectionl

Note: Port -1 indicates default port is used (443 for HTTPS).
Example 3: Reading Data from a URL

import java.net.URL;
importjava.io.BufferedReader;
importjava.io.InputStreamReader;

public class URLReadExample {
public static void main(String[] args) {
try {
URL url = new URL("https://www.example.com");
BufferedReader reader = new BufferedReader(new InputStreamReader(url.openStream()));

String line;
while ((line = reader.readLine()) != null) {
System.out.println(line);

}

‘ Web Technologies Lab 12.12 Network Programming and Remote ...

reader.close();
} catch (Exception e) {
e.printStackTrace();

j
}
j

Input: URL of a website.

Output: HTML content of the page (depends on the website).
Example snippet:

<!doctype html>

<htmlI>

<head>

<title>Example Domain</title>
</head>

<body>

<div>

<h1>Example Domain</h1>
<p>This domain is for use in illustrative examples in documents.</p>
</div>

</body>

</html>

5. Key Points

URLs are used to connect to resources over the network in Java.

URIs are used mainly for identification and parsing.

Java provides URL and URI classes for network programming.

You can also read content from URLs using URLConnection or openStream().
URL/URI handling is a fundamental part of network programming and web
applications.

A e

Difference Between URI and URL

Feature H URL (Uniform Resource Locator) H URI (Uniform Resource Identifier) |
A URL is a type of URI that specifies ||A URI is a generic identifier of a
Definition the location of a resource and how to resource, which may or may not include
access it. its location.

Used to identify a resource uniquel
Used to locate and access resources over y quety,

Purpose the internet. Wlthou'F necessarily specifying how to
access it.
Components Typically includes protocol, host, port, |Can include scheme, path, query,

path, query, fragment. fragment, but location/access info is

Centre for Distance Education 12.13 Acharya Nagarjuna University

‘ Feature H URL (Uniform Resource Locator) H URI (Uniform Resource Identifier) |

‘ H Hoptional. |

Exambple https://www.example.com:443/index.ht ||https://www.example.com/index.html#s
P ml?user=123#section1 ectionl or urn:isbn:0451450523

‘Class in Java ‘h’ava.net.URL ‘b'ava.net.URI |

Main Use in ||Connect to a web resource, read/write Parse, manipulate, or compare resource

Networking |data (e.g., HTTP requests). identifiers.

Key Point:

e All URLs are URIs, but not all URIs are URLs.
e URL = URI + access method/location.
o URI = identifier, may not point to an actual resource.

12.6UDP Datagrams and Sockets
1. What is UDP?

e UDP (User Datagram Protocol) is a connectionless protocol used for sending short
messages called datagrams over the network.
o It is faster than TCP because it doesn’t establish a connection and has no guarantee of
delivery, ordering, or error checking.
e Commonly used in:
o Video streaming
o Online gaming
o DNS queries

2. UDP Concepts

‘ Term H Description ‘
‘Datagram HA packet of data sent over UDP ‘
‘DatagramSocket HSocket for sending and receiving datagrams ‘
‘DatagramPacket HRepresents a packet to send or receive data ‘
‘Port Hldentiﬁes the application on a host ‘
Connectionless No persistent connection between client and server

3. Java Classes for UDP

e java.net.DatagramSocket — Creates a socket to send/receive UDP packets.
e java.net.DatagramPacket — Represents data packets.

4. UDP Server Example

import java.net.*;

Web Technologies Lab 12.14 Network Programming and Remote ...

public class UDPServer {

public static void main(String[] args) {

try {

DatagramSocketserverSocket = new DatagramSocket(9876);
byte[] receiveData = new byte[1024];

System.out.println("Server is running... Waiting for client messages.");

while (true) {
DatagramPacketreceivePacket = new DatagramPacket(receiveData, receiveData.length);
serverSocket.receive(receivePacket);

String message = new String(receivePacket.getData(), 0,
receivePacket.getLength());
System.out.println("Received from client: " + message);

if (message.equalsIgnoreCase("exit")) {
System.out.println("Server exiting...");
break;

b
}

serverSocket.close();
} catch (Exception e) {
e.printStackTrace();
}
}
}

5. UDP Client Example

import java.net.*;
importjava.util.Scanner;

public class UDPClient {

public static void main(String[] args) {

try {

DatagramSocketclientSocket = new DatagramSocket();

InetAddressIPAddress = InetAddress.getByName("localhost");
Scanner sc = new Scanner(System.in);

System.out.println("Enter messages to send to the server (type 'exit' to quit):");
while (true) {

String message = sc.nextLine();
byte[] sendData = message.getBytes();

DatagramPacketsendPacket = new DatagramPacket(sendData, sendData.length, IPAddress,
9876);
clientSocket.send(sendPacket);

Centre for Distance Education 12.15 Acharya Nagarjuna University

if (message.equalslgnoreCase("exit")) {
System.out.println("Client exiting...");
break;

j
}

clientSocket.close();
sc.close();

} catch (Exception e) {
e.printStackTrace();

}
j
}

6. Sample Input/Output
Client Input:

Hello Server
How are you?
exit

Server Output:

Server is running... Waiting for client messages.
Received from client: Hello Server

Received from client: How are you?

Received from client: exit

Server exiting...

Client Output:

Enter messages to send to the server (type 'exit' to quit):
Hello Server

How are you?

exit

Client exiting...

7. Key Points
e UDP is faster but unreliable compared to TCP.
e No connection is established; packets may arrive outoforder or getlost.

o Useful for real-timeapplications like streaming, VoIP, and gaming.

12.7 Remote Method Invocation

1. What is RMI?

o RMI (Remote Method Invocation) is a Java API that allows an object running in one
Java virtual machine (JVM) to invoke methods on an object in another JVM.

Web Technologies Lab 12.16 Network Programming and Remote ...

o RMI abstracts the underlying network communication, allowing remote method calls
as if they were local.
o It is part of java.rmi package.

Use Cases:
o Distributed applications
e Client-server architecture

¢ Remote services

2. Key Components of RMI

Component Description

Remote

Declares the methods that can be called remotely
Interface

Remote Object Hlmplements the remote interface and contains the actual business logic

Stub Client-side proxy for the remote object (generated automatically)

Server-side entity that dispatches client calls to the remote object (Java 2+ not

Skeleton required explicitly)

RMI Registry |Service that maps names to remote objects, allowing clients to look them up

3. Steps to Create RMI Application

Define the Remote Interface (extends java.rmi.Remote)
Implement the Remote Interface

Create and start the RMI Server

Bind the remote object in the RMI Registry

Create the RMI Client to lookup and invoke methods

hs e =

4. Example: Simple RMI — Adding Two Numbers

Step 1: Remote Interface

importjava.rmi.Remote;
importjava.rmi.RemoteException;
public interface AddInterface extends Remote {

int add(int a, int b) throws RemoteException;

}

Step 2: Remote Object Implementation
importjava.rmi.server.UnicastRemoteObject;
importjava.rmi.RemoteException;

public class AddImplementation extends UnicastRemoteObject implements AddInterface {
publicAddImplementation() throws RemoteException {

super();

Centre for Distance Education 12.17 Acharya Nagarjuna University

publicint add(int a, int b) throws RemoteException {
return a + b;

j
j

Step 3: RMI Server
importjava.rmi.registry.LocateRegistry;
importjava.rmi.registry.Registry;

public class RMIServer {
public static void main(String[] args) {
try {
AddImplementationaddObj = new AddImplementation();
Registry registry = LocateRegistry.createRegistry(1099); // default port

registry.rebind("AddService", addObyj);
System.out.println("Server is running...");

} catch (Exception e) {
e.printStackTrace();

j
}
}

Step 4: RMI Client
importjava.rmi.registry.LocateRegistry;
importjava.rmi.registry.Registry;

public class RMIClient {
public static void main(String[] args) {
try {
Registry registry = LocateRegistry.getRegistry("localhost");
AddInterface stub = (AddInterface) registry.lookup("AddService");

int result = stub.add(10, 20);

System.out.println("Result of addition: " + result);
} catch (Exception e) {

e.printStackTrace();

}

}
h

Web Technologies Lab 12.18 Network Programming and Remote ...

5. How to Run RMI Application
1. Compile all Java files:

javac *.java
2. Start the RMI registry:

rmiregistry
(Keep it running in the background)
3. Start the server:

javaRMIServer
4. Run the client:

javaRMIClient

6. Sample Output
Server Output:

Server is running...
Client Output:

Result of addition: 30

7. Key Points

o RMI allows transparent communication between JVMs.

o Remote interfaces must extend java.rmi.Remote.

o Remote methods must declare throws RemoteException.

o RMI uses stubs and skeletons (proxy objects) to handle network communication.
o Useful for distributed computing and enterprise applications.

12.8 Summary

Network programming in Java allows applications to communicate over networks by using
classes from the java.net package. It supports both TCP (Transmission Control Protocol) and
UDP (User Datagram Protocol), catering to different communication needs—TCP for
reliable, connection-oriented data transfer, and UDP for faster, connectionless
communication. Fundamental concepts such as IP addresses, ports, and sockets are essential
in establishing communication between devices. Java provides classes like Socket and
ServerSocket for TCP-based communication and DatagramSocket and DatagramPacket for
UDP-based data exchange.

Additionally, Java simplifies working with web resources through the URL and URI classes,
enabling developers to connect to web servers, parse links, and retrieve data directly from
websites. The InetAddress class assists in resolving hostnames and IP addresses, making
DNS lookups straightforward. For applications requiring high-speed, lightweight

Centre for Distance Education 12.19 Acharya Nagarjuna University

communication—such as gaming, live streaming, or chat systems—UDP programming is
ideal due to its low overhead and faster transmission.

For building distributed applications, Java provides RMI (Remote Method Invocation), which
allows objects running in different JVMs (Java Virtual Machines) to communicate seamlessly
as if they were local. RMI involves defining remote interfaces, implementing them on the
server, and using an RMI registry for client-server interaction. Overall, Java’s networking
features make it a powerful and platform-independent choice for developing secure, scalable,
and cross-platform networked applications.

12.9 Key Terms

Socket ,ServerSocket ,DatagramSocket ,IP Address ,Port Number ,TCP (Transmission
Control Protocol) ,UDP (User Datagram Protocol) ,URL (Uniform Resource Locator)
JInetAddress,RMI (Remote Method Invocation).

12.10 Self-Assessment Questions

What is network programming and why is it used?

What is the purpose of an IP address in network communication?

What is the difference between TCP and UDP?

Which Java class is used to create a server that listens for client connections?
What is the function of the Socket class in Java?

What does the InetAddress class do?

What is the role of a port number in networking?

What does URL stand for, and what is it used for?

What is RMI and why is it important in Java network programming?

0. Name two real-world applications that use network programming.

i S RS I e e

12.11 Further Readings

1. Java: The Complete Reference, Twelfth Edition by Herbert Schildt. McGraw-Hill
Education.

2. Beginning Java Programming: The Object-Oriented Approach by Bart Baesens,

Aimee Backiel, and SeppevandenBroucke. Wiley.

Java Programming with Oracle JDBC by Donald Bales. O'Reilly Media.

Java EE 8 Application Development by David R. Heffelfinger. Packt Publishing.

Professional Java for Web Applications by Nicholas S. Williams. Wrox/Wiley

Publishing.

6. Java 2: Developer's Guide to Web Applications with JDBC by Gregory Brill. Sybex.

A

Mrs.AppikatlaPushpaLatha

LESSON- 13
INTRODUCTION TO WEB SERVERS AND THE

TOMCAT ENVIRONMENT

Aim and Objectives:

» Understand the role of web servers like Apache Tomcat in hosting and managing web
applications.

Learn the concept and purpose of Servlets as Java programs that handle web requests
and responses.

Describe thelifecycle of a Servlet, including methods like init(), service(), and
destroy().

Explore the Java Servlet Development Kit (JSDK) and how it supports servlet
creation and deployment.

Develop and deploy simple Java-based web applications using servlets on the Tomcat
server.

YV V VYV V¥V

STRUCTURE:

13.1 Web Servers and Servlets
13.2 Tomcat web server

13.3 Introduction to Servlets
13.4 Lifecycle of a Servlet

13.5 JSDK

13.6 Summary

13.7 Key Terms

13.8 Self-Assessment Questions
13.9 Further Readings

13.1 WEB SERVERS AND SERVLETS

Web Servers and Servlets — Brief Information

A Web Server is a software application that handles requests from clients (usually web
browsers) and responds with web pages, data, or other resources. It uses the HTTP protocol
for communication. Examples include Apache Tomcat, GlassFish, and Jetty. A web server
hosts web applications, manages connections, and delivers dynamic or static content to users.
A Servlet is a Java program that runs on a web server and is used to create dynamic web
content. Servlets handle requests (like form submissions) and generate responses (like HTML
pages) dynamically. They are part of Java EE (Jakarta EE) and run inside a servlet container
such as Tomcat.

The Servlet Lifecycle consists of:
1. init() — Initializes the servlet (runs once).

2. service() — Handles client requests (runs repeatedly).
3. destroy() — Cleans up resources before servlet is destroyed.

Web Technologies Lab 13.2 Introduction To Web Servers and The ...

The Java Servlet Development Kit (JSDK) provides tools, libraries, and APIs to develop,
test, and deploy servlets easily.

In summary, Web Servers host applications, while Servlets are Java components that process
web requests and generate dynamic responses—forming the backbone of many Java-based
web applications.

13.2 Tomcat web server
1. Introduction

Apache Tomcat is an open-source web server and servlet container developed by the Apache
Software Foundation. It is used to run Java-based web applications that use technologies such
as Servlets, JSP (JavaServer Pages), and WebSocket.

Tomcat implements the Jakarta Servlet and Jakarta Server Pages (JSP) specifications and
serves as the runtime environment for executing servlets and rendering dynamic web content.

2. Key Features

Supports Servlet and JSP specifications.

Lightweight, easy to install, and open-source.

Handles HTTPrequestsand responses efficiently.

Provides an administrative GUI and management console.
Integrates easily with IDEs like Eclipse, IntelliJ, or NetBeans.

3. How Tomcat Works

A client (web browser) sends an HTTP request (e.g., form submission).
Tomcat receives the request and passes it to the servlet container.

The servlet processes the request (e.g., accesses a database, processes data).
The servlet generates an HTTP response (usually HTML).

Tomcat sends the response back to the client’s browser.

MRS

4. Installing Tomcat

1. Download Tomcat from:https://tomcat.apache.org
2. Extract it to a folder (e.g., C:\apache-tomcat-10.1).
3. Set environment variables:

o JAVA HOME — JDK installation path
CATALINA HOME — Tomcat folder

4. Run startup.bat (Windows) or startup.sh (Linux/Mac) in the bin folder.
Open a browser and go to:

¢ http://localhost:8080
You’ll see the Tomcat welcome page if it’s running properly.

hd

https://tomcat.apache.org/

Centre for Distance Education 13.3

Acharya Nagarjuna University

5. Example Servlet Program Using Tomcat

Step 1 — Directory Structure

Tomcat
L— webapps
L— MyApp
—— WEB-INF
—— web.xml
classes
L— HelloServlet.class

—— index.html

Step 2 — Servlet Source Code

HelloServlet.java

import java.io.*;
importjavax.servlet.*;
importjavax.servlet.http.*;

public class HelloServlet extends HttpServlet {

public void doGet(HttpServletRequest request, HttpServletResponse response)

throwsServletException, IOException {
response.setContentType("text/html");
PrintWriter out = response.getWriter();
out.println("<htmI><body>");

out.println("<h2>Hello from Tomcat Servlet!</h2>");

out.println("<p>This response is generated by a Java servlet running on Tomcat.</p>");

out.println("</body></htmI>");

j
}

Step 3 — Deployment Descriptor

web.xml (inside WEB-INF)

<web-app>

<servlet>
<servlet-name>HelloServlet</servlet-name>
<servlet-class>HelloServlet</servlet-class>
</servlet>

<servlet-mapping>
<servlet-name>HelloServlet</servlet-name>
<url-pattern>/hello</url-pattern>
</servlet-mapping>

</web-app>

Web Technologies Lab 13.4 Introduction To Web Servers and The ...

Step 4 —- HTML File (Optional)
index.html

<htmlI>

<head><title>Welcome Page</title></head>

<body>

<h1>Welcome to My Java Web Application</h1>

<p>Click here to invoke the servlet</p>
</body>

</html>

Step 5 — Compile and Deploy

1. Compile the servlet:

. javac -classpath "C:\apache-tomcat-10.1\lib\servlet-api.jar" HelloServlet.java
Place HelloServlet.class inside:
C:\apache-tomcat-10.1\webapps\MyApp\WEB-INF\classes

4. Restart Tomcat.

5. Open your browser and go to:

7 http://localhost:8080/MyApp/hello

w N

6. Example Input and Output

Input (User Action)

User opens browser and visits:

http://localhost:8080/MyApp/hello

Output (Browser Display)

<htmI>

<body>

<h2>Hello from Tomcat Servlet!</h2>

<p>This response is generated by a Java servlet running on Tomcat.</p>
</body>

</htmI>

7. Servlet Lifecycle in Tomcat

Loading — Tomcat loads the servlet class.

Initialization — init() is called once when the servlet is created.

Request Handling — service() calls doGet() or doPost() for each request.
Destruction — destroy() is called when the server shuts down.

b s

8. Advantages of Tomcat

o Easy to set up and lightweight.
o Excellent support for Java Servlets and JSP.
e Open-source and actively maintained.

Centre for Distance Education 13.5 Acharya Nagarjuna University

e (Can be embedded in Java applications.
o Integrates well with development tools and build systems like Maven.

Note:

e Apache Tomcat is a popular web server and servlet container for running Java web
applications.

o [t processes HTTP requests and executes servlets to generate dynamic responses.

o Using Tomcat, developers can create and deploy powerful Java-based web systems
easily.

13.3 Introduction to Servlets

A Servlet is a Java program that runs on a web server and is used to create dynamic web
content. It acts as a middle layer between a client request (usually from a web browser) and a
server-side resource (like a database or another application). Servlets are part of the Jakarta
EE (formerly Java EE) platform and are handled by a Servlet container such as Apache
Tomcat.

When a user sends a request through a browser (e.g., submitting a form), the servlet receives
this request, processes it (e.g., performs calculations or database queries), and generates a
response — usually in the form of HTML that is sent back to the browser.

Key Features

e Written in Java, making them platform-independent and secure.

e Provide faster performance compared to traditional CGI (Common Gateway
Interface).

e (Can handle multiple requests concurrently using multithreading.

o Easily integrated with JSP, databases, and web frameworks.

Basic Servlet Lifecycle

1. init() — Called once when the servlet is first loaded.
2. service() — Called each time a client request is received.
3. destroy() — Called before the servlet is unloaded from memory.

Example: Simple Servlet
HelloServlet.java

import java.io.*;
importjavax.servlet.*;
importjavax.servlet.http.*;

public class HelloServlet extends HttpServlet {

public void doGet(HttpServletRequest request, HttpServletResponse response)
throwsServletException, IOException {
response.setContentType("text/html");

PrintWriter out = response.getWriter();

‘ Web Technologies Lab 13.6 Introduction To Web Servers and The ...

out.println("<h2>Hello, Welcome to Servlets!</h2>");

j
}

web.xml (Deployment Descriptor)

<web-app>

<servlet>
<servlet-name>HelloServlet</servlet-name>
<servlet-class>HelloServlet</servlet-class>
</servlet>

<servlet-mapping>
<servlet-name>HelloServlet</servlet-name>
<url-pattern>/hello</url-pattern>
</servlet-mapping>

</web-app>

Input / Output Example

Input:
User opens — http://localhost:8080/MyApp/hello

Output:
Hello, Welcome to Servlets!
Note

o Servlets are server-side Java programs used to handle requests and generate dynamic
responses.

o They are managed by a servlet container like Tomcat.

o They follow a defined lifecycle (init(), service(), destroy()).

o Servlets are the foundation of Java web applications, often used with JSP and
frameworks like Spring MVC.

13.4 Lifecycle of a Servlet

1. Introduction

A Servlet is a Java class that extends the capabilities of servers hosting applications accessed
through a request-response model (like web applications).The ServletLifecycle defines how a
servlet is loaded, initialized, handles requests, anddestroyed by the web container (e.g.,

Apache Tomcat).

Servlets are managed automatically by the Servlet Container, which is responsible for
creating instances, managing threads, and calling lifecycle methods.

Centre for Distance Education 13.7 Acharya Nagarjuna University

2. Servlet Lifecycle Phases
There are five main phases in the lifecycle of a servlet:
1. Loading and Instantiation

e When the web application starts or when the servlet is first requested, the container
loads the servlet class into memory and creates an instance of it.

2. Initialization (init() method)

e Called once in the servlet’s lifetime.
o Used to initialize resources such as database connections or configuration data.

public void init() throws ServletException {
// Initialization code here

§
3. Request Handling (service() method)

e (alled for each client request.
e Determines whether the request is GET, POST, etc., and calls corresponding methods
(doGet() or doPost()).

public void service(ServletRequestreq, ServletResponse res)
throwsServletException, IOException {
// Handle client request here

}
4. Destruction (destroy() method)

e Called once when the servlet is taken out of service or the server shuts down.
o Used to release resources like database connections or file handles.

public void destroy() {
/I Cleanup code here

}
5. Garbage Collection

o After destruction, the servlet object becomes eligible for garbage collection by the
JVM.

3. Servlet Lifecycle Methods Summary

‘Method H Description HCalled ByH Times Called‘
‘init() HInitializes the servlet HContainer HOnce ‘
‘service() HHandles client requests HContainer HMultiple times‘
‘destroy()HCleans up before unloadingHContainer HOnce ‘

Web Technologies Lab 13.8 Introduction To Web Servers and The ...

4. Example Program — Servlet Lifecycle Demonstration

LifecycleServlet.java
import java.io.*;
importjavax.servlet.*;
importjavax.servlet.http.*;

public class LifecycleServlet extends HttpServlet {

public void init() throws ServletException {
System.out.println("Servlet is initializing...");

}

public void service(HttpServletRequest request, HttpServletResponse response)
throwsServletException, IOException {

System.out.println("Servlet is servicing a request...");
response.setContentType("text/html");

PrintWriter out = response.getWriter();

out.println("<htmI><body>");

out.println("<h2>Servlet Lifecycle Example</h2>");

out.println("<p>Request processed successfully!</p>");
out.println("</body></htmI>");

}

public void destroy() {

System.out.println("Servlet is being destroyed...");
}

h

web.xml (Deployment Descriptor)

<web-app>

<servlet>
<servlet-name>LifecycleServlet</servlet-name>
<servlet-class>LifecycleServlet</servlet-class>
</servlet>

<servlet-mapping>
<servlet-name>LifecycleServlet</servlet-name>
<url-pattern>/lifecycle</url-pattern>
</servlet-mapping>

</web-app>

5. How to Run the Example

1. Save the servlet file as LifecycleServlet.java.

2. Compile it with the Servlet API jar:

3. javac -classpath "C:\apache-tomcat-10.1\lib\servlet-api.jar" LifecycleServlet.java
4. Place the compiled class in:

5. C:\apache-tomcat-10.1\webapps\MyApp\WEB-INF\classes

Centre for Distance Education 13.9 Acharya Nagarjuna University

N

Add the web.xml file under:
C:\apache-tomcat-10.1\webapps\MyApp\WEB-INF\
8. Start Tomcat and open your browser:
http://localhost:8080/MyApp/lifecycle

~

6. Example Input and Output

Input (User Action)

User visits:

http://localhost:8080/MyApp/lifecycle

Output on Browser

<htmlI>

<body>

<h2>Servlet Lifecycle Example</h2>
<p>Request processed successfully!</p>
</body>

</html>

Output on Tomcat Console
Servlet is initializing...
Servlet is servicing a request...

If the user refreshes the page:
Servlet is servicing a request...
When Tomcat is stopped or servlet is unloaded:
Servlet is being destroyed...
7. Explanation of Output
e When the servlet is first requested — init() is called once.
o Every time a client sends a request — service() executes.
e When the server stops — destroy() runs to release resources.
8. Key Points
e A servletcontainer manages the entire lifecycle.
o init() and destroy() are called once per servlet, while service() is called for every
request.
o The servlet lifecycle ensures efficient resource management and consistent request
handling.

e Developers can override these methods to add custom initialization, logging,
orcleanup logic.

Web Technologies Lab 13.10 Introduction To Web Servers and The ...

Note:

The Servlet Lifecycle represents the journey of a servlet from creation to destruction:
Loading — Initialization — Request Handling — Destruction — Garbage Collection

Using lifecycle methods (init(), service(), destroy()), developers can control how servlets
behave during different stages of execution. This lifecycle is managed by the web container
(like Apache Tomcat), which ensures reliability, scalability, and performance in Java web
applications.

13.5 JSDK

1. Introduction

JSDK (Java Servlet Development Kit) is a toolkit provided by Sun Microsystems (now
Oracle) that contains the libraries, classes, and tools required to develop, test, and run Java
Servlets.

It was introduced to help developers build dynamic web applications before the release of full
enterprise editions like J2EE and later Jakarta EE.

Today, the JSDK’s functionality is integrated into modern Java EE / Jakarta EE servers (like
Tomcat, GlassFish, and WildFly), but understanding it remains essential for the fundamentals
of servlet development.

2. Purpose of JSDK
JSDK provides:
e APIs to develop Servlets and JSPs.
e Tools for compiling, running, and testing servlets locally.
o The Servlet API classes like javax.servlet and javax.servlet.http.

e A small web server (in older versions) to test servlets.

Modern servlet containers (like Tomcat) already include these libraries, but the concept of
JSDK is foundational for understanding servlet development.

3. Important Packages in JSDK

Package Name Description

javax.servlet Contains core classes and interfaces for building servlets.

Contains classes for HTTP-specific functionalities (GET, POST requests,

javax.servlet.htt . .
javax p sessions, cookies).

Common Classes/Interfaces:

o Servlet — Basic interface for all servlets.

Centre for Distance Education 13.11 Acharya Nagarjuna University

e GenericServlet — Provides a framework for non-HTTP servlets.

e HttpServlet — Provides methods for handling HTTP requests (doGet(), doPost()).

o ServletRequest, ServletResponse — Represent client request and server response
objects.

4. JSDK Architecture
A servlet works with the help of:

e Client (Browser): Sends HTTP requests.
e Web Server / Servlet Container: Runs servlets and manages the servlet lifecycle.
e Servlet: Processes requests and sends responses.

The JSDK provides the API layer that enables this communication between client and server.
5. Example Program Using JSDK

HelloServlet.java

import java.io.*;
importjavax.servlet.*;
importjavax.servlet.http.*;

public class HelloServlet extends HttpServlet {
public void init() throws ServletException {
System.out.println("Servlet Initialized");

}

public void doGet(HttpServletRequest request, HttpServletResponse response)
throwsServletException, IOException {

response.setContentType("text/html");

PrintWriter out = response.getWriter();

out.println("<htmI><body>");

out.println("<h2>Welcome to JSDK Servlet Example</h2>");
out.printIn("<p>This servlet is running using the Servlet API from JSDK.</p>");
out.println("</body></htmI>");

}

public void destroy() {
System.out.println("Servlet Destroyed");

h
}

6. Deployment Descriptor (web.xml)

<web-app>

<servlet>
<servlet-name>HelloServlet</servlet-name>
<servlet-class>HelloServlet</servlet-class>
</servlet>

Web Technologies Lab 13.12 Introduction To Web Servers and The ...

<servlet-mapping>
<servlet-name>HelloServlet</servlet-name>
<url-pattern>/hello</url-pattern>
</servlet-mapping>

</web-app>

7. Steps to Run the Example Using Tomcat (Modern Equivalent of JSDK)

1.
2.

b

Install Apache Tomcat.

Save HelloServlet.java in:
C:\apache-tomcat-10.1\webapps\MyApp\WEB-INF\classes

Save web.xml in:

C:\apache-tomcat-10.1\webapps\MyApp\WEB-INF

Compile the servlet:

javac -classpath "C:\apache-tomcat-10.1\lib\servlet-api.jar" HelloServlet.java
Start Tomcat and open browser:

7 http://localhost:8080/MyApp/hello

8. Example Input and Output

Input (User Action)

User opens:

http://localhost:8080/MyApp/hello

Output (Browser Display)

<htmlI>

<body>

<h2>Welcome to JSDK Servlet Example</h2>

<p>This servlet is running using the Servlet API from JSDK.</p>
</body>

</html>

Tomcat Console Output
Servlet Initialized

When stopping the server:

Servlet Destroyed

9. Explanation

The JSDK API provides the servlet classes used here (HttpServlet, ServletRequest,
ServletResponse).

When the servlet is first requested, the container loads and initializes it by calling
init().

Each browser request calls the doGet() method.

When the server shuts down or redeploys the application, destroy() is called.

Centre for Distance Education 13.13 Acharya Nagarjuna University

10. Modern Equivalent
Today, instead of using the old standalone JSDK, developers use:

e Apache Tomcat

o Jakarta EE (Servlet 5.0 and above)

e Maven/Gradle for dependency management, using:
e <dependency>

e <groupld>jakarta.servlet</groupld>

o <artifactld>jakarta.servlet-api</artifactld>

e <version>5.0.0</version>

e <scope>provided</scope>

e </dependency>

11. Advantages of JSDK

Simplifies servlet and JSP development.

Provides standard API for all servlet containers.
Promotes platform independence and code reusability.
Lays the foundation for modern Java web frameworks.
Allows testing servlets locally before deployment.

Note:

‘ Aspect H Description ‘
‘Full Form HJava Servlet Development Kit ‘
‘Purpose HPrOVides API and tools for developing servlets ‘
‘Main Packages ‘havax.servlet, javax.servlet.http ‘
‘Lifecycle Methods Hinit(), service(), destroy() ‘
‘Modern Equivalent HApache Tomcat / Jakarta Servlet API ‘
‘Output HDynamic HTML content via Java code ‘

13.6 SUMMARY

The Java Servlet Development Kit (JSDK), developed by Sun Microsystems (now Oracle),
provides the essential tools, libraries, and APIs required for building, testing, and deploying
Java servlets—programs that run on web servers to handle client requests and generate
dynamic responses. Servlets form the foundation of Java-based web applications and are
managed by servlet containers like Apache Tomcat, which implement the Servlet and JSP
specifications. The servlet lifecycle includes three key phases: initialization using init(),
request handling using service() (or doGet()/doPost() for HTTP requests), and cleanup
through destroy(). This lifecycle ensures efficient resource management and reliable request
processing across multiple clients.

Using the JSDK, developers can compile servlets, deploy them under the WEB-INF/classes
directory, and configure them in the web.xml deployment descriptor. Servlets are
significantly faster and more scalable than traditional CGI programs, as they support

Web Technologies Lab 13.14 Introduction To Web Servers and The ...

multithreading—allowing multiple client requests to be processed simultaneously within the
same server process. The JSDK includes core packages such as javax.servlet and
javax.servlet.http, which define essential classes and interfaces like HttpServlet,
ServletRequest, and ServletResponse. These enable interaction between web clients and
servers, session management, and dynamic HTML generation.

Modern Java web development builds upon the foundation laid by JSDK, often using Apache
Tomcat, Jakarta EE, and build tools like Maven or Gradle for streamlined deployment and
dependency management. Despite advancements in frameworks, understanding servlets and
the JSDK remains essential for grasping the underlying principles of Java web technologies.
Together, they provide a robust, scalable, and maintainable framework for creating
interactive, platform-independent, and secure web applications that respond dynamically to
user input.

13.7 KEY TERMS

Servlet, Tomcat,Web Server,JSDK,HTTP, JSP (JavaServer
Pages),init(),service(),destroy(),Servlet Container

13.8 SELF-ASSESSMENT QUESTIONS

What is a web server, and what is its primary function?

Define a servlet in Java.

Name two popular web servers used with Java applications.

What are the three main methods in the servlet lifecycle?

What is the role of the init() method in a servlet?

How does the service() method handle client requests?

What is Tomcat, and why is it commonly used?

What is the purpose of the JSDK?

Explain the difference between static and dynamic content in web applications.
0. Where do you place a compiled servlet class in a Tomcat web application?

e e AU o e

13.9 FURTHER READINGS

1. Java: The Complete Reference, Twelfth Edition by Herbert Schildt. McGraw-Hill
Education.

2. Beginning Java Programming: The Object-Oriented Approach by Bart Baesens,

Aimee Backiel, and SeppevandenBroucke. Wiley.

Java Programming with Oracle JDBC by Donald Bales. O'Reilly Media.

Java EE 8 Application Development by David R. Heffelfinger. Packt Publishing.

Professional Java for Web Applications by Nicholas S. Williams. Wrox/Wiley

Publishing.

6. Java 2: Developer's Guide to Web Applications with JDBC by Gregory Brill. Sybex.

RN

Dr. U. Surya Kameswari

CHAPTER 14
INTRODUCTION TO SERVLETS AND HTTP

PROGRAMMING

Aim and Objectives:

Understand the purpose and functionality of the Servlet API in Java web development.
Learn the core interfaces and classes provided by the javax.servletpackage.

Explore how to read client request parameters using servlet request methods.
Understand how to access and use initialization parameters for servlet configuration.
Study the javax.servlet.httppackage for handling HTTP-specific requests and responses.

YVYVYYVYYV

STRUCTURE:

14.1 The Servlet API

14.2 The javax.servlet Package

14.3 Reading Servlet parameters

14.4 Reading Initialization parameters
14.5 The javax.servlet HTTP package
14.6 Summary

14.7 Key Terms

14.8 Self-Assessment Questions

14.9 Further Readings

14.1 The Servlet API

1. Introduction to Servlet API

A Servlet is a Java program that runs on a web server and handles client requests (usually from a
web browser) and responses.Servlets are part of the Java EE (Jakarta EE) platform and are used
to create dynamic web content.

The Servlet API provides the classes and interfaces necessary to build and manage servlets.

2. Servlet API Packages

Servlet functionality is mainly provided through two packages:

Package Description

javax.servlet Contains general classes and interfaces for servlets.

javax.servlet.http Provides classes and interfaces specific to HTTP-based servlets.

Web Technologies Lab 14.2 Introduction to Servlets and Http ...

3. Key Interfaces in Servlet API

‘ Interface H Description |
‘Servlet HDeﬁnes methods that all servlets must implement. |
‘ServletRequest HRepresents the client’s request. |
‘ServletResponse HRepresents the server’s response. |
‘ServletConﬁg HProvides configuration information for a servlet. |
‘ServletContext HProvides application-wide information and methods. |
‘HttpServletRequest HExtends ServletRequest; used for HTTP-specific requests. |
‘HttpServletResponse HExtends ServletResponse; used for HTTP-specific responses. |
‘HttpSession HUsed for managing user sessions. |

4. Servlet Life Cycle

The lifecycle of a servlet is managed by the servlet container (e.g., Tomcat).

‘ Stage H Method H Description ‘
‘1. Loading & Instantiation"Constructor HServlet is loaded into memory. ‘

Called once when the servlet is first

2. Initialization init() loaded

service() or doGet(),

3. Request Handling doPost()

Called for each request.

Called once before the servlet is

4. Destruction destroy() unloaded

5. Basic Servlet Example
File: HelloServlet.java
import java.io.*;
importjavax.servlet.*;
importjavax.servlet.http.*;

public class HelloServlet extends HttpServlet {

public void init() throws ServletException {
System.out.println("Servlet Initialized");

}

public void doGet(HttpServletRequest request, HttpServletResponse response)
throwsServletException, IOException {

Centre for Distance Education 14.3

Acharya Nagarjuna University

response.setContentType("text/html");
PrintWriter out = response.getWriter();

out.println("<htmI><body>");

out.println("<h2>Welcome to the Servlet API Example!</h2>");

out.println("</body></htmI>");

}

public void destroy() {
System.out.println("Servlet Destroyed");

}
j

HTML Form (hello.html)

<IDOCTYPE htmI>

<htmlI>

<body>

<form action="HelloServlet" method="get">
<input type="submit" value="Click Me">
</form>

</body>

</html>

Input:
User clicks the “Click Me” button.
Output (Browser):

Welcome to the Servlet API Example!

6. Example: Using ServletRequest and ServletResponse
File: RequestInfoServlet.java

import java.io.*;

importjavax.servlet.*;

importjavax.servlet.http.*;

public class RequestInfoServlet extends HttpServlet {

public void doGet(HttpServletRequest request, HttpServletResponse response)

throwsServletException, IOException {

response.setContentType("text/html");

Web Technologies Lab 144

Introduction to Servlets and Http ...

PrintWriter out = response.getWriter();

String method = request.getMethod();
String uri = request.getRequestURI();
String clientIP = request.getRemote Addr();

out.println("<htmI><body>");
out.println("<h3>Request Information</h3>");
out.println("<p>Method: " + method + "</p>");
out.println("<p>URI: " + uri + "</p>");
out.println("<p>Client IP: " + clientIP + "</p>");
out.println("</body></htmI>");

}
}

Input:

User visits http://localhost:8080/RequestInfoServlet
Output:

Request Information

Method: GET

URI: /RequestInfoServlet

Client IP: 127.0.0.1

7. Example: Reading Form Data
File: FormServlet.java

import java.io.*;
importjavax.servlet.*;

importjavax.servlet.http.*;

public class FormServlet extends HttpServlet {

public void doPost(HttpServletRequest request, HttpServletResponse response)

throwsServletException, IOException {

response.setContentType("text/html");
PrintWriter out = response.getWriter();

String name = request.getParameter("name");
String email = request.getParameter("email");

out.println("<htmI><body>");

Centre for Distance Education 14.5

Acharya Nagarjuna University

out.println("<h3>Form Data Received:</h3>");
out.println("<p>Name: " + name + "</p>");
out.println("<p>Email: " + email + "</p>");
out.println("</body></htmI>");

}
j

HTML Form (form.html)

<IDOCTYPE htmI>

<htmlI>

<body>

<form action="FormServlet" method="post">
Name: <input type="text" name="name">

Email: <input type="text" name="email">

<input type="submit" value="Submit">

</form>

</body>

</html>

Input:

Name: Abc
Email: abc@example.com

Output:
Form Data Received:

Name: Abc
Email: abc@example.com

8. Example: Using ServletConfig and ServletContext

web.xml Configuration

<web-app>

<servlet>
<servlet-name>ConfigServlet</servlet-name>
<servlet-class>ConfigServlet</servlet-class>
<init-param>
<param-name>adminEmail</param-name>
<param-value>admin@site.com</param-value>
</init-param>

</servlet>

<servlet-mapping>

Web Technologies Lab 14.6 Introduction to Servlets and Http ...

<servlet-name>ConfigServlet</servlet-name>
<url-pattern>/ConfigServlet</url-pattern>
</servlet-mapping>

<context-param>
<param-name>company</param-name>
<param-value> Technologies</param-value>
</context-param>

</web-app>

Servlet File: ConfigServlet.java

import java.io.*;
importjavax.servlet.*;
importjavax.servlet.http.*;

public class ConfigServlet extends HttpServlet {
public void doGet(HttpServletRequest request, HttpServletResponse response)
throwsServletException, IOException {

response.setContentType("text/html");
PrintWriter out = response.getWriter();

ServletConfigconfig = getServletConfig();
String email = config.getInitParameter("adminEmail");

ServletContext context = getServletContext();
String company = context.getInitParameter("company");

out.println("<htmI><body>");
out.println("<h3>Configuration Details</h3>");
out.println("<p>Admin Email: " + email + "</p>");
out.println("<p>Company: " + company + "</p>");
out.println("</body></htmI>");

}
}

Input:

User visits http://localhost:8080/ConfigServlet
Output:

Configuration Details

Admin Email: admin@site.com
Company: Technologies

Centre for Distance Education 14.7 Acharya Nagarjuna University

9. Example: Using HttpSession
File: SessionExampleServlet.java

import java.io.*;
importjavax.servlet.*;
importjavax.servlet.http.*;

public class SessionExampleServlet extends HttpServlet {
public void doPost(HttpServletRequest request, HttpServletResponse response)
throwsServletException, IOException {

response.setContentType("text/html");
PrintWriter out = response.getWriter();

String username = request.getParameter("username");
HttpSession session = request.getSession();
session.setAttribute("user", username);

out.println("<htmI><body>");

out.println("<h3>Welcome, " + username + "!</h3>");
out.println("Go to Next Page");
out.println("</body></htmI>");

}
j

File: SessionDisplayServlet.java

import java.io.*;
importjavax.servlet.*;
importjavax.servlet.http.*;

public class SessionDisplayServlet extends HttpServlet {
public void doGet(HttpServletRequest request, HttpServletResponse response)
throwsServletException, IOException {

response.setContentType("text/html");
PrintWriter out = response.getWriter();

HttpSession session = request.getSession(false);
String name = (String) session.getAttribute("user");

out.println("<htmI><body>");
out.println("<h3>Hello again, " + name + "!</h3>");
out.println("<p>Your session is active.</p>");
out.println("</body></htmI>");

‘ Web Technologies Lab 14.8 Introduction to Servlets and Http ...

}
j

Input:
Username: Abc
Output:

Page 1:

Welcome, Abc!
Go to Next Page

Page 2 (After clicking link):

Hello again, Abc!
Your session is active.

10. Table

‘ Concept H Description ‘
‘Servlet API HProvides classes and interfaces for building web apps. ‘
‘Serv]etRequest / Response HHandle client requests and server responses. ‘
‘HttpSeeret HBase class for HTTP-specific servlets. ‘
‘ServletConﬁg / Context HProvide configuration and application info. ‘
‘HttpSession HTracks user data across multiple requests. ‘
‘Lifecycle Methods Hinit(), service(), destroy(). ‘
‘Input Handling Hrequest. getParameter() reads form data. ‘
‘Output Generation Hresponse. getWriter() sends HTML to browser. ‘
Note:

The Servlet API is the backbone of Java web development. It provides powerful classes and
interfaces to process HTTP requests, generate dynamic responses, manage sessions, and
configure web applications securely and efficiently.

14.2 The javax.servlet Package

1. What is javax.servlet?

javax.servlet is a Java package that provides classes and interfaces for building server-side web
applications — primarily Servlets and Filters — that run on a web server or application server

(like Apache Tomcat, Jetty, GlassFish, etc.).

It is part of Java EE (Jakarta EE) and used to handle HTTP requests and responses.

Centre for Distance Education 14.9 Acharya Nagarjuna University

2. Key Components of javax.servlet Package

Component H Description |
Servlet Interface gif;lnes methods all servlets must implement (init(), service(), destroy(),
GenericServlet . .

Class Implements Servlet interface; can be extended for non-HTTP protocols.

HttpServlet Class Extends GenericServlet and adds HTTP-specific methods like doGet()
and doPost().

‘ServletRequest HRepresents client request; gives access to parameters, headers, etc.

‘ServletResponse HRepresents response sent back to the client.

‘Serv]etConﬁg HProvides servlet configuration data (init parameters).

‘ServletContext HProvides information shared among servlets (application-wide context).

‘RequestDispatcher HForwards requests to another servlet or resource.

3. Servlet Lifecycle

Loading and Instantiation — Servlet class is loaded.

Initialization (init()) — Called once.

Request Handling (service(), doGet(), doPost()) — Called for each request.
Destruction (destroy()) — Called once before servlet is destroyed.

b=

4. Example 1 — Basic “Hello World” Servlet
Directory Structure

MyServletApp/
—— WEB-INF/
—— web.xml
—— classes/
L— HelloServlet.class
—— index.html

(a) HelloServlet.java
import java.io.*;
importjavax.servlet.*;
importjavax.servlet.http.*;

public class HelloServlet extends HttpServlet {

public void doGet(HttpServletRequest request, HttpServletResponse response)
throwsServletException, IOException {

Web Technologies Lab 14.10 Introduction to Servlets and Http ...

response.setContentType("text/html");
PrintWriter out = response.getWriter();

out.println("<htmI><body>");
out.println("<h2>Hello, Welcome to the Java Servlet Example!</h2>");
out.println("</body></htmI>");

}
j

(b) web.xml (Deployment Descriptor)
<web-app xmlIns="http://java.sun.com/xml/ns/javaee" version="3.0">

<servlet>
<servlet-name>hello</servlet-name>
<servlet-class>HelloServlet</servlet-class>
</servlet>

<servlet-mapping>
<servlet-name>hello</servlet-name>
<url-pattern>/hello</url-pattern>
</servlet-mapping>

</web-app>
(¢) index.html

<!DOCTYPE html>

<html>

<head><title>Servlet Test</title></head>
<body>

<h1>Click the link to test the servlet</h1>
Say Hello

</body>

</html>

Input

User opens:
http://localhost:8080/MyServletApp/hello
Output (Browser)

<htmI><body>
<h2>Hello, Welcome to the Java Servlet Example!</h2>

Centre for Distance Education 14.11 Acharya Nagarjuna University

</body></html>
5. Example 2 — Servlet with Request Parameters (GET/POST)
(a) FormServlet.java

import java.io.*;
importjavax.servlet.*;
importjavax.servlet.http.*;

public class FormServlet extends HttpServlet {

protected void doPost(HttpServletRequest request, HttpServletResponse response)
throwsServletException, IOException {

response.setContentType("text/html");
PrintWriter out = response.getWriter();

String name = request.getParameter("username");

out.println("<htmI><body>");
out.println("<h3>Hello, " + name + "! Welcome to Servlets.</h3>");
out.println("</body></htmI>");

}
j

(b) form.html
<IDOCTYPE html>
<htmI>
<head><title>Form Example</title></head>
<body>
<form action="form" method="post">
Enter your name: <input type="text" name="username" />
<input type="submit" value="Submit" />
</form>
</body>
</html>

(¢) web.xml

<web-app xmlns="http://java.sun.com/xml/ns/javaee" version="3.0">
<servlet>

<servlet-name>formServlet</servlet-name>
<servlet-class>FormServlet</servlet-class>

</servlet>

<servlet-mapping>

Web Technologies Lab 14.12

Introduction to Servlets and Http ...

<servlet-name>formServlet</servlet-name>
<url-pattern>/form</url-pattern>
</servlet-mapping>

</web-app>

Input

User fills out form:

Enter your name: Alice

and clicks “Submit”.

Output (Browser)

<htmI><body>

<h3>Hello, Alice! Welcome to Servlets.</h3>
</body></htmI>

6. Common Interfaces in javax.servlet

Interface Description
Servlet Base interface for all servlets.
ServletRequest Request object (data from client).
ServletResponse Response object (data to client).
Filter Used to preprocess or postprocess requests.
RequestDispatcher Forward/include requests to another resource.
ServletContext Application-level information.
ServletConfig Servlet-specific configuration data.

7. Deployment & Execution

Compile .java — .class
Place .class files in WEB-INF/classes/
Add mappings in web.xml

Nk =

Start Tomcat — Access URL in browser.

Deploy project to server (like Tomcat’s webapps folder)

Centre for Distance Education 14.13 Acharya Nagarjuna University

8. Example Output

‘ Servlet H Input H Output (Browser) |
‘HelloServletHURL /hello
[FormServlet[POST form with “Alice”

“Hello, Welcome to the Java Servlet Example!”
“Hello, Alice! Welcome to Servlets.” ‘

9. Transition to Jakarta Servlet
Since Jakarta EE 9, the package name changed from
javax.servlet.* — jakarta.servlet.*

But functionality remains the same.

14.3 Reading Servlet parameters

1. What Are Servlet Parameters?

Servlet parameters are data sent by a client (browser) to the server (servlet) through an
HTTPrequest.

There are two types of parameters you can read in servlets:

1. Request Parameters — Sent by the client through HTML forms, query strings, or links.
2. Initialization Parameters — Configured in web.xml for a servlet or application.

2. Methods to Read Request Parameters

From the HttpServletRequest object:

‘ Method H Description ‘
‘getParameter(String name) HReturns a single parameter value (as String). ‘
‘getParameterValues(String name)HReturns multiple values (like checkboxes). ‘
‘getParameterNames() HReturns all parameter names (as Enumeration). ‘
‘getParameterMap() HReturns all parameters and their values (as a Map).‘

3. Example 1 — Reading Parameters from an HTML Form (POST Method)
(a) form.html

<!DOCTYPE html>

<html>

<head><title>User Form</title></head>
<body>

<h2>User Registration</h2>

Web Technologies Lab 14.14 Introduction to Servlets and Http ...

<form action="register" method="post">
Name: <input type="text" name="username" />

Email: <input type="text" name="email" />

Gender:
<input type="radio" name="gender" value="Male"> Male
<input type="radio" name="gender" value="Female"> Female

Hobbies:
<input type="checkbox" name="hobby" value="Reading"> Reading
<input type="checkbox" name="hobby" value="Music"> Music
<input type="checkbox" name="hobby" value="Sports"> Sports

<input type="submit" value="Register" />
</form>
</body>
</html>

(b) RegisterServlet.java

import java.io.*;
importjavax.servlet.*;
importjavax.servlet.http.*;

public class RegisterServlet extends HttpServlet {

protected void doPost(HttpServletRequest request, HttpServletResponse response)
throwsServletException, IOException {

/I Set response type
response.setContentType("text/html");
PrintWriter out = response.getWriter();

// Reading parameters from the form

String name = request.getParameter("username");

String email = request.getParameter("email");

String gender = request.getParameter("gender");
String[] hobbies = request.getParameterValues("hobby");

// HTML Output
out.println("<html><body>");
out.println("<h2>User Registration Details</h2>");
out.println("<p>Name:" + name + "</p>"),
out.println("<p>Email: " + email + "</p>");
out.println("<p>Gender: " + gender + "</p>");

if (hobbies !=null) {
out.println("<p>Hobbies:</p>");

Centre for Distance Education 14.15 Acharya Nagarjuna University

for (String h :hobbies) {
out.println("" + h + "</1i>");
}
out.println("");
} else {
out.println("<p>Hobbies: None selected</p>");

}

out.println("</body></htmI>");

j
}

(c) web.xml (Deployment Descriptor)
<web-app xmlns="http://java.sun.com/xml/ns/javaee" version="3.0">

<servlet>
<servlet-name>register</servlet-name>
<servlet-class>RegisterServlet</servlet-class>
</servlet>

<servlet-mapping>
<servlet-name>register</servlet-name>
<url-pattern>/register</url-pattern>
</servlet-mapping>

</web-app>
Input (From Browser Form)

Name: Alice Johnson
Email: alice@example.com
Gender: Female

Hobbies: Reading, Music

Output (Browser)

<htmI><body>

<h2>User Registration Details</h2>
<p>Name: Alice Johnson</p>
<p>Email: alice@example.com</p>
<p>Gender: Female</p>
<p>Hobbies:</p>

Reading

Music

Web Technologies Lab 14.16 Introduction to Servlets and Http ...

</body></htmI>

4. Example 2 — Reading Multiple Parameters Using getParameterNames()
(a) ParameterListServlet.java

import java.io.*;
importjava.util.*;
importjavax.servlet.*;
importjavax.servlet.http.*;

public class ParameterListServlet extends HttpServlet {

protected void doGet(HttpServletRequest request, HttpServletResponse response)
throwsServletException, IOException {

response.setContentType("text/html");
PrintWriter out = response.getWriter();

Enumeration<String>paramNames = request.getParameterNames();

out.println("<htmI><body>");
out.println("<h3>All Parameters Received:</h3>");
out.println("");

while (paramNames.hasMoreElements()) {
String paramName = paramNames.nextElement();
String[] values = request.getParameterValues(paramName);

out.print("" + paramName + ":");
for (inti = 0; i<values.length; i++) {
out.print(values[i]);
if (i<values.length - 1)
out.print(", ");

}
out.println("");

}

out.println("</body></htmI>");

}
h

Input URL

http://localhost:8080/MyApp/params?user=Bob&city=Delhi&hobby=Music&hobby=Cricket

Centre for Distance Education 14.17 Acharya Nagarjuna University

Output (Browser)

<htmI><body>

<h3>All Parameters Received:</h3>

user: Bob
city: Delhi
hobby: Music, Cricket

</body></htmI>

5. Table

‘ Method H Usage H Example

‘getParameter("name") HGet single value HString n = req.getParameter("name");
String[] h =

getParameterValues("hobby")||Get multiple values req.getParameterValues("hobby™):

Get all parameter

Enumeration e = req.getParameterNames();
names

getParameterNames|()

Get all parameters as

map Map m = req.getParameterMap();

getParameterMap()

6. Key Points

e Request parameters are always strings (even if numbers are entered).
o They can be sent through:
o HTML forms (GET or POST)
o Query strings (?param=value)
o AJAX requests
e You can convert numeric strings to integers with Integer.parselnt() if needed.
o For file uploads, use getPart() from javax.servlet.http.Part (Servlet 3.0+).

14.4. Reading Initialization parameters

1. What Are Initialization Parameters?

Initialization parameters are configuration values defined in the web.xml file (or via annotations
in newer Java EE/Jakarta EE versions).

They are not sent by the client — instead, they are set by the developer to configure servlet
behavior, like:

e Database connection info
o File paths
e Application settings

Web Technologies Lab 14.18 Introduction to Servlets and Http ...

There Are Two Types:

‘ Type H Description H Accessed By |
‘Servlet Initialization Parameters HSpeciﬁc to a single servlet. HServletConﬁg object |
‘Context Initialization ParametersHShared across the entire web app.HServletContext object|

2. Methods to Read Initialization Parameters

From ServletConfig (for one servlet)

‘ Method H Description |
‘getlnitParameter(String name)HReturns the value of a specific parameter.‘

‘ getInitParameterNames() HReturns all parameter names. ‘

From ServletContext (shared for all servlets)

‘ Method H Description ‘
‘ getInitParameter(String name)HReturns the value of a context-wide parameter.‘

‘ getInitParameterNames() HReturns all context-wide parameter names. ‘

3. Example 1 — Servlet-Specific Initialization Parameters
(a) DatabaseServlet.java

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class DatabaseServlet extends HttpServlet {

private String dbUrl;
private String dbUser;
private String dbPassword,

public void init() throws ServletException {
// Get initialization parameters from web.xml
ServletConfig config = getServletConfig();
dbUrl = config.getInitParameter("dbURL");
dbUser = config.getInitParameter("username");
dbPassword = config.getInitParameter("password");

}

public void doGet(HttpServletRequest request, HttpServletResponse response)

Centre for Distance Education 14.19 Acharya Nagarjuna University

throws ServletException, IOException {

response.setContentType("text/html");
PrintWriter out = response.getWriter();

out.println("<htmI><body>");

out.println("<h2>Database Configuration Details</h2>");
out.println("<p>Database URL:" + dbUrl + "</p>");
out.println("<p>Username:" + dbUser + "</p>");
out.println("<p>Password:" + dbPassword + "</p>");
out.println("</body></htmI>");

j
}

(b) web.xml
<web-app xmlns="http://java.sun.com/xml/ns/javaee" version="3.0">

<servlet>
<servlet-name>dbServlet</servlet-name>
<servlet-class>DatabaseServlet</servlet-class>

<!-- Servlet-specific initialization parameters -->
<init-param>
<param-name>dbURL</param-name>
<param-value>jdbc:mysql://localhost:3306/mydb</param-value>
</init-param>

<init-param>
<param-name>username</param-name>
<param-value>admin</param-value>
</init-param>

<init-param>
<param-name>password</param-name>
<param-value>secret]23</param-value>
</init-param>

</servlet>

<servlet-mapping>
<servlet-name>dbServlet</servlet-name>
<url-pattern>/dbinfo</url-pattern>
</servlet-mapping>

</web-app>

‘ Web Technologies Lab 14.20 Introduction to Servlets and Http ...

Input (Browser Request)
http://localhost:8080/MyApp/dbinfo
Output (Browser)

<htmI><body>

<h2>Database Configuration Details</h2>

<p>Database URL:jdbc:mysql://localhost:3306/mydb</p>
<p>Username: admin</p>

<p>Password: secret123</p>

</body></html>

4. Example 2 — Application-Wide Initialization Parameters (ServletContext)
These are shared across allservlets in your application.
(a) ConfigServlet.java

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class ConfigServlet extends HttpServlet {

public void doGet(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException {

response.setContentType("text/html");
PrintWriter out = response.getWriter();

ServletContext context = getServletContext();
String company = context.getlnitParameter("company");
String supportEmail = context.getInitParameter("supportEmail");

out.printIn("<htmI><body>");
out.println("<h2>Application Configuration</h2>");
out.println("<p>Company Name:" + company + "</p>");
out.println("<p>Support Email:" + supportEmail + "</p>");
out.println("</body></htmI>");

}
}

(b) web.xml

<web-app xmlns="http://java.sun.com/xml/ns/javaee" version="3.0">

Centre for Distance Education 14.21 Acharya Nagarjuna University

<!-- Context-wide (application) initialization parameters -->
<context-param>

<param-name>company</param-name>
<param-value>Tech Innovators Pvt. Ltd.</param-value>
</context-param>

<context-param>
<param-name>supportEmail</param-name>
<param-value>support@techinnovators.com</param-value>
</context-param>

<servlet>
<servlet-name>configServlet</servlet-name>
<servlet-class>ConfigServlet</servlet-class>
</servlet>

<servlet-mapping>
<servlet-name>configServlet</servlet-name>
<url-pattern>/config</url-pattern>
</servlet-mapping>

</web-app>

Input (Browser Request)
http://localhost:8080/MyApp/contig
Output (Browser)

<htmI><body>

<h2>Application Configuration</h2>

<p>Company Name: Tech Innovators Pvt. Ltd.</p>
<p>Support Email: support@techinnovators.com</p>
</body></htmI>

5. Comparison Table

Accessed
Type Defined In Using Scope Example Usage
i ide < > i
Servlet Init 1ns1de servlet> tag ServletConfig Specific to DB username/password
Parameter in web.xml one servlet
Context Init At top level . Shared Company name, global
<context-param> in |ServletContext |[among all . ..
Parameter email, version info
web.xml servlets

Web Technologies Lab 14.22 Introduction to Servlets and Http ...

6. Key Points

o init() method is called only once, when the servlet is first loaded.

o Initialization parameters are read-only.

e They are useful for configuration values that might change per deployment (like DB
URLs).

o Using ServletContext, all servlets in the web app can share the same parameters.

7. Example Output Summary

Servlet Input (URL) Output (Browser)
DatabaseServlet /dbinfo Shows servlet-specific DB parameters
ConfigServlet /config Shows app-wide company & support info

14.5 The javax.servlet HTTP package
1. What Is javax.servlet.http?

The javax.servlet.http package extends the javax.servlet package to support HTTP-specific
functionality.

It provides classes and interfaces for handling:

o HTTP requests and responses

o Cookies

e Sessions

e State management

e HTTP methods like GET, POST, PUT, DELETE, etc.

2. Major Classes & Interfaces in javax.servlet.http

Class / Interface H Description
HitoServiet Base class for creating HTTP servlets. You extend this
P class to create your own servlet.
HitpServietRequest i(:é)lziees:netfct})le client’s HTTP request (headers, parameters,
HttpServletResponse HRepresents the HTTP response sent to the client.
HttpSession Ei;i sfi)sr) session tracking (stores data between multiple
. Represents HTTP cookies for client-side state
Cookie
management.

HttpSessionBindingListener HNotiﬁed when objects are bound/unbound to a session.

Centre for Distance Education 14.23 Acharya Nagarjuna University

Class / Interface H Description

HttpServletRequestWrapper /

HttpServietResponseWrapper Used to modify requests or responses.

3. The HttpServlet Class

Important Methods

‘ Method H Description

‘doGet(HttpSeeretRequest req, HttpServletResponse res) HHandles HTTP GET requests.

‘doPost(HttpServletRequest req, HttpServletResponse res) HHandles HTTP POST requests.

‘doPut(), doDelete() HHandle other HTTP methods.

‘getServletInfo() HReturns info about the servlet.

4. Example 1 — Basic HTTP Servlet Using doGet()
(a) HelloHttpServlet.java

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class HelloHttpServlet extends HttpServlet {

protected void doGet(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException {

// Set the content type
response.setContentType("text/html");

/I Get output writer
PrintWriter out = response.getWriter();

//' Write response
out.println("<htmIl><body>");
out.println("<h2>Welcome to javax.servlet.http Example!</h2>");
out.println("<p>This response is generated by doGet() method.</p>");
out.println("</body></htmI>");
b
}

(b) web.xml

<web-app xmlns="http://java.sun.com/xml/ns/javaee" version="3.0">

Web Technologies Lab 14.24 Introduction to Servlets and Http ...

<servlet>
<servlet-name>helloHttp</servlet-name>
<servlet-class>HelloHttpServlet</servlet-class>
</servlet>

<servlet-mapping>
<servlet-name>helloHttp</servlet-name>
<url-pattern>/helloHttp</url-pattern>
</servlet-mapping>

</web-app>

Input (Browser URL)
http://localhost:8080/MyApp/helloHttp

Output (Browser)

<htmI><body>

<h2>Welcome to javax.servlet.http Example!</h2>
<p>This response is generated by doGet() method.</p>
</body></html>

5. Example 2 — Reading Request Data Using HttpServletRequest
(a) UserInfoServlet.java

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class UserInfoServlet extends HttpServlet {

protected void doPost(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException {

// Set content type
response.setContentType("text/html");
PrintWriter out = response.getWriter();

// Read parameters from form
String name = request.getParameter("username");
String city = request.getParameter("city");

out.println("<htmIl><body>");
out.println("<h2>User Information</h2>");

Centre for Distance Education 14.25 Acharya Nagarjuna University

out.printIn("<p>Name:" + name + "</p>");
out.println("<p>City: " + city + "</p>");
out.println("</body></htmI>");

§
}

(b) form.html

<IDOCTYPE html>

<htmlI>

<head><title>User Info</title></head>

<body>

<form action="userinfo" method="post">
Name: <input type="text" name="username">

City: <input type="text" name="city">

<input type="submit" value="Submit">

</form>

</body>

</html>

(¢) web.xml

<web-app xmlns="http://java.sun.com/xml/ns/javaee" version="3.0">
<servlet>

<servlet-name>userinfo</servlet-name>
<servlet-class>UserInfoServlet</servlet-class>

</servlet>

<servlet-mapping>

<servlet-name>userinfo</servlet-name>
<url-pattern>/userinfo</url-pattern>

</servlet-mapping>

</web-app>

Input
User submits the form:

Name: Alice
City: New York

Output (Browser)

<htmI><body>

<h2>User Information</h2>
<p>Name: Alice</p>
<p>City: New Y ork</p>

Web Technologies Lab 14.26 Introduction to Servlets and Http ...

</body></html>

6. Example 3 — Using Cookies (javax.servlet.http.Cookie)
(a) CookieServlet.java

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class CookieServlet extends HttpServlet {

protected void doGet(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException {

response.setContentType("text/html");
PrintWriter out = response.getWriter();

// Create a new cookie

Cookie userCookie = new Cookie("username", "JohnDoe");

userCookie.setMaxAge(60 * 60); / 1 hour
response.addCookie(userCookie);

out.println("<htmI><body>");

out.println("<h3>Cookie has been set!</h3>");
out.println("</body></htmI>");

j
}

Input

http://localhost:8080/MyApp/cookie

Output (Browser)

<htmI><body>

<h3>Cookie has been set!</h3>

</body></htmI>

(Browser stores cookie username=JohnDoe)

7. Example 4 — Managing Sessions (HttpSession)

(a) SessionServlet.java

import java.io.*;

Centre for Distance Education 14.27 Acharya Nagarjuna University

import javax.servlet.*;
import javax.servlet.http.*;

publicclass SessionServlet extends HttpServlet {

protected void doGet(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException {

response.setContentType("text/html");
PrintWriter out = response.getWriter();

HttpSession session = request.getSession();
Integer count = (Integer) session.getAttribute("count");

if (count == null) {
count = 1;

} else {
count++;

}

session.setAttribute("count", count);

out.println("<htmI><body>");

out.println("<h2>Session Example</h2>");

out.println("<p>Session ID: " + session.getld() + "</p>");
out.println("<p>You have visited this page " + count + " times.</p>");
out.println("</body></htmI>");

j
}

Input (Repeated Browser Visits)
http://localhost:8080/MyApp/session
Output (Browser)

First visit:

<h2>Session Example</h2>

<p>Session ID: A12F5C9D2345E...</p>
<p>You have visited this page 1 times.</p>

Second visit:

<h2>Session Example</h2>
<p>Session ID: A12F5C9D2345E...</p>

Web Technologies Lab 14.28 Introduction to Servlets and Http ...

<p>You have visited this page 2 times.</p>

8. Summary of javax.servlet.http Components

‘ Class / Interface H Purpose H Example Usage
‘HttpServlet HBase class for HTTP servlets HExtend to create custom servlets
‘HttpServletRequest HAccess client request data

‘HttpServletResponse HSend data to client Hres. getWriter().println()

|
|
"req.getParameter("nameu) ‘
}
|

‘HttpSession HStore user session info Hsession.setAttribute()
‘Cookie HManage client-side state Hresponse.addCookie()
9. Key Points

e All HTTP servlets must extend HttpServlet.
doGet() and doPost() handle client requests.
HttpServletRequest gives you:

o Parameters

o Headers
o Cookies
o Session

HttpServletResponse allows sending HTML, JSON, or file data back.
Cookies and sessions are used for state management across multiple requests.

10. Output Summary

Servlet Inpll;(ffn%L or Output (Browser)
HelloHttpServlet /helloHttp Static HTML greeting
UserInfoServlet POST form Displays submitted name & city
CookieServlet /cookie Sets a cookie
SessionServlet /session Shows visit count per session

14.6 SUMMARY

The Servlet API is a core part of Java EE (Jakarta EE) used to create dynamic web applications
that process client requests and generate responses. It provides two main packages — b for
generic servlet functionality and javax.servlet.http for HTTP-specific features. The Servlet
interface defines the basic structure and lifecycle of a servlet, including methods like init(),
service(), and destroy(). Servlets operate within a servlet container such as Apache Tomcat,
which manages their lifecycle and communication with clients. Using ServletRequest and
ServletResponse, developers can read client data and send HTML or other types of output to the
browser.

Centre for Distance Education 14.29 Acharya Nagarjuna University

The javax.servletpackage includes key components like ServletConfig for servlet-specific
configuration and ServletContext for application-wide settings. It also supports forwarding
requests using RequestDispatcher and filtering through the Filter interface. Servlets can read
request parameters from forms using methods like getParameter(), getParameterValues(), and
getParameterNames(), allowing them to process user input efficiently. Additionally, initialization
parameters defined in web.xml provide configurable values for servlets or the entire application
through ServletConfig and ServletContext.

The javax.servlet.httppackage extends this functionality to handle HTTP requests and responses.
It introduces classes such as HttpServlet, HttpServletRequest, and HttpServletResponse, which
manage web-based interactions. It also provides HttpSession for maintaining user sessions and
Cookie for client-side state tracking. Methods like doGet() and doPost() are used to handle
different HTTP request types. Together, these APIs enable Java developers to build secure,
scalable, and interactive web applications capable of handling sessions, cookies, and dynamic
content effectively.

14.7 KEY TERMS

Servlet,Servlet
APIL,ServletRequest,ServietResponse,ServletConfig,ServletContext,HttpServlet,HttpSession,Coo
kie,Initialization Parameters.

14.8 SELF-ASSESSMENT QUESTIONS

1. Whatis a Servlet?

2. Which interface do all servlets implement?

3. What is the purpose of the ServletRequest object?

4. What does the ServletResponse object do?

5. How is ServletConfig different from ServletContext?
6. What class do most HTTP servlets extend?

7. How can you store data for a user session?

8. What is a Cookie used for?

9. How do you pass initialization parameters to a servlet?
10. Which method is called first when a servlet is loaded?

149 FURTHER READINGS

1. Java: The Complete Reference, Twelfth Editionby Herbert Schildt. McGraw-Hill Education.
2. Beginning Java Programming: The Object-Oriented Approachby Bart Baesens, Aimee
Backiel, and Seppe vanden Broucke. Wiley.

Java Programming with Oracle JDBCby Donald Bales. O'Reilly Media.

Java EE 8 Application Developmentby David R. Heffelfinger. Packt Publishing.
Professional Java for Web Applicationsby Nicholas S. Williams. Wrox/Wiley Publishing.
Java 2: Developer's Guide to Web Applications with JDBCby Gregory Brill. Sybex.

Sk Ww

Dr. U. Surya Kameswari

YV V. V V

LESSON- 15
HANDLING REQUESTS, SESSIONS, AND

SECURITY IN SERVLETS

Aim and Objectives:

Reading request and initialization parameters
Generating HTTP responses

Using cookies and session tracking

Introduction to security concerns in web applications

Structure:

15.1 Handling Http Request & Responses
15.2 Using Cookies-Session Tracking
15.3 Security Issues

15.4 Summary

15.5 Key Terms

15.6 Self-Assessment Questions

15.7 Further Readings

15.1 Handling Http Request & Responses

1. Introduction

In web applications, HTTP (HyperText Transfer Protocol) is the foundation of
communication between a client (like a web browser) and a server.
When a client sends an HTTP request to a server, the server processes it and sends back an
HTTP response.

Java provides several APIs and frameworks to handle HTTP requests and responses, most
commonly through Servlets and JSP (JavaServer Pages).

2. HTTP Request

An HTTP request is sent by a client to request data or perform an action on the server.
It consists of:

¢ Request Line (method, URL, version)
e Headers (metadata like Content-Type, User-Agent, etc.)
¢ Body (optional; contains data for POST/PUT methods)

Web Technologies Lab 15.2 Handling Requests, Sessions, and Security ...

Common HTTP Methods:

‘ Method H Description ‘
‘GET HRequests data from the server ‘
‘POST HSends data to the server for processing ‘
‘PUT HUpdates an existing resource ‘
‘DELETE HDeletes a resource ‘
‘HEAD HRetrieves headers only ‘
‘OPTIONS HDescribes communication options ‘

3. HTTP Response

The HTTP response is sent by the server to the client after processing the request.
It includes:

e Status Line (protocol, status code, message)
o Headers (metadata such as content type, length, etc.)
o Body (data sent to the client)

Common HTTP Status Codes:

Code Message Description
200 ||OK Request successful
404 |Not Found Resource not found
500 |Internal Server Error Server encountered an error
302 |[Found Redirection
403 |[Forbidden Access denied

4. Handling HTTP Requests and Responses using Servlets

Servlets are Java programs that run on a server and handle requests/responses dynamically.
Example 1: Handling GET Request

File: GetExampleServlet.java

import java.io.*;

importjavax.servlet.*;
importjavax.servlet.http.*;

public class GetExampleServlet extends HttpServlet {
public void doGet(HttpServletRequest request, HttpServletResponse response)

Centre for Distance Education 15.3

Acharya Nagarjuna University

throwsServletException, IOException {

response.setContentType("text/html");
PrintWriter out = response.getWriter();

String name = request.getParameter("username");

out.println("<htmI><body>");
out.println("<h2>Welcome, " + name + "!</h2>");
out.println("<p>This is a GET request example.</p>");
out.println("</body></htmI>");

j
j

HTML Form:

<IDOCTYPE html>

<htmlI>

<body>

<form action="GetExampleServlet" method="get">

Enter your name: <input type="text" name="username">

<input type="submit" value="Submit">
</form>
</body>
</htmI>

Input:
username = ABC
Output (Browser):

Welcome, ABC!
This is a GET request example.

Example 2: Handling POST Request
File: PostExampleServlet.java
import java.io.*;

importjavax.servlet.*;
importjavax.servlet.http.*;

public class PostExampleServlet extends HttpServlet {

public void doPost(HttpServletRequest request, HttpServletResponse response)

Web Technologies Lab 154 Handling Requests, Sessions, and Security ...

throwsServletException, IOException {

response.setContentType("text/html");
PrintWriter out = response.getWriter();

String user = request.getParameter("user");
String email = request.getParameter("email");

out.println("<html><body>");
out.println("<h3>User Registration Details</h3>");
out.println("<p>Username: " + user + "</p>");
out.println("<p>Email: " + email + "</p>");
out.println("</body></htmI>");

}
}

HTML Form:

<IDOCTYPE html>

<htmI>

<body>

<form action="PostExampleServlet" method="post">
Username: <input type="text" name="user">

Email: <input type="text" name="email">

<input type="submit" value="Register'">

</form>

</body>

</html>

Input:

user = Rani
email = rani@example.com

Output (Browser):

User Registration Details
Username: Rani
Email: rani@example.com

5. Accessing Request Data

You can access information from the request using the following methods:

Centre for Distance Education 15.5 Acharya Nagarjuna University

Method Description

getParameter(String name) |Returns the value of a form parameter

getHeader(String name) Returns the value of a request header

getMethod() Returns the HTTP method (GET/POST)
getRequestURI() Returns the requested URI
getRemoteAddr() Returns the IP address of the client

6. Setting Response Data

You can control what the server sends back to the client using:

Method Description
setContentType(String type) Sets response MIME type
setStatus(intsc) Sets the HTTP status code

addHeader(String name, String value) |[Adds a header to the response

. Returns a writer to output response
getWriter() text P P
ex

7. Example: Using Both GET and POST
File: RequestResponseServlet.java

import java.io.*;
importjavax.servlet.*;
importjavax.servlet.http.*;

public class RequestResponseServlet extends HttpServlet {

protected void doGet(HttpServletRequest request, HttpServletResponse response)
throwsServletException, IOException {
processRequest(request, response, "GET");

}

protected void doPost(HttpServletRequest request, HttpServletResponse response)
throwsServletException, IOException {
processRequest(request, response, "POST");

}

private void processRequest(HttpServletRequest request, HttpServletResponse response,
String method)
throwsIOException {

Web Technologies Lab 15.6 Handling Requests, Sessions, and Security ...

response.setContentType("text/html");
PrintWriter out = response.getWriter();
String name = request.getParameter("name");

out.println("<htmI><body>");
out.println("<h3>Request Method: " + method + "</h3>");
out.println("<p>Hello, " + name + "!</p>");
out.println("</body></htmI>");

J
J

HTML Form:

<IDOCTYPE htmI>

<htmlI>

<body>

<form action="RequestResponseServlet" method="post">
Name: <input type="text" name="name">

<input type="submit" value="Send Request">

</form>

</body>

</html>

Input:
name = ABC123
Output:

Request Method: POST
Hello, ABC123!

8. Table

Concept Description

HTTP Request |Data sent from client to server

HTTP Response|Data sent from server to client
GET method |Used to retrieve data
POST method |Used to send data securely

Servlet Java class to handle request/response dynamically

Response writer|Used to generate HTML or data back to client

Centre for Distance Education 15.7 Acharya Nagarjuna University

15.2 USING COOKIES-SESSION TRACKING

1. Introduction

In web technologies, HTTP is a stateless protocol, meaning the server does not remember any
informationabout users between requests.To maintain information (like login details, user
preferences, or shopping cart items) across multiple requests, SessionTracking is used.

2. What is Session Tracking?

Session Tracking is the process of maintaining user state and data across multiple requests
between a client (browser) and a server.

When a user visits a website, a session begins. During this session, the server can store user-
specific information and recall it in subsequent interactions.

3. Need for Session Tracking
HTTP is stateless, so:

o Each request from the browser is treated as independent.
e The server cannot identify whether two requests came from the same user.

To overcome this, web applications use session tracking mechanisms to identify
returningusers and retain information during their visit.

4. Session Tracking Techniques

‘ Technique H Description ‘
‘Cookies HInformation stored on the client side (browser) ‘
‘Hidden Form Fields HHidden input fields within HTML forms ‘
‘URL Rewriting HAdding session data in the URL ‘
‘HttpSession HServer-side session object managed by servlet container ‘

Part A: Using Cookies
5. What is a Cookie?

A Cookie is a small piece of text data stored by the browser on the client’scomputer.
It helps the server recognize users during subsequent requests.

Key Properties of Cookies:
o Stored as key—value pairs.

o Sent automatically with each request to the same domain.
e Can have an expiration time (persistent or session cookies).

Web Technologies Lab 15.8 Handling Requests, Sessions, and Security ...

6. Types of Cookies

Type Description
Session Cookie Temporary; deleted when browser closes
Persistent Cookie Stored on disk until expiry date or manually deleted

7. Example 1 — Creating and Reading Cookies
HTML Form: cookie form.html

<IDOCTYPE htmI>

<htmlI>

<head>

<title>Cookie Example</title>

</head>

<body>

<h3>Enter Your Name</h3>

<form action="SetCookieServlet" method="post">
Name: <input type="text" name="username">

<input type="submit" value="Set Cookie">

</form>

</body>

</htm]>

Servlet 1: SetCookieServlet.java

import java.io.*;
importjavax.servlet.*;
importjavax.servlet.http.*;

public class SetCookieServlet extends HttpServlet {
public void doPost(HttpServletRequest request, HttpServletResponse response)
throwsServletException, IOException {

response.setContentType("text/html");
PrintWriter out = response.getWriter();

String name = request.getParameter("username");
Cookie cookie = new Cookie("user", name);
response.addCookie(cookie);

out.println("<htmI><body>");
out.println("<h3>Cookie has been set successfully!</h3>");
out.println("Click here to read the cookie");

Centre for Distance Education 15.9 Acharya Nagarjuna University

out.println("</body></htmI>");

}
}

Servlet 2: GetCookieServlet.java

import java.io.*;
importjavax.servlet.*;
importjavax.servlet.http.*;
public class GetCookieServlet extends HttpServlet {
public void doGet(HttpServletRequest request, HttpServletResponse response)
throwsServletException, IOException {
response.setContentType("text/html");
PrintWriter out = response.getWriter();
Cookie[] cookies = request.getCookies();
String userName = "Guest";
if (cookies !=null) {
for (Cookie ¢ :cookies) {
if (c.getName().equals("user")) {
userName = c.getValue();

}
}
}

out.println("<html><body>");
out.println("<h2>Welcome Back, " + userName + "!</h2>");
out.println("</body></htmI>");

j
}

Sample Input:

Name = ABC

Output:

1.After submitting form:

Cookie has been set successfully!
Click here to read the cookie

2.After clicking the link:

Welcome Back, ABC!

Web Technologies Lab

15.10 Handling Requests, Sessions, and Security ...

8. Cookie Methods

Method

Description

Cookie(String name, String value)

Creates a cookie

getName() Returns cookie name
getValue() Returns cookie value
setMaxAge(int expiry) Sets cookie lifetime (in seconds)

response.addCookie(Cookie ¢)

Adds cookie to response

request.getCookies()

Returns cookies sent by client

Part B: Using HttpSession
9. What is an HttpSession?

HttpSession is a

server-side object that stores

user-specific

It automatically assigns a unique Session ID to each client.

Unlike cookies, session data is stored on the server, making it more secure.

10. Session Lifecycle

b=

11. Example 2 — Using HttpSession

HTML Form: session_form.html

<IDOCTYPE html>
<html>
<head>

<title>Session Tracking Example</title>

</head>
<body>
<h3>User Login</h3>

Session Created — when a user first accesses the servlet.

Data Stored — attributes are added using setAttribute().

Data Accessed — using getAttribute().

Session Expired — automatically after inactivity (default 30 mins).

<form action="SessionServlet1" method="post">
Name: <input type="text" name="username">

<input type="submit" value="Login">

</form>
</body>

information.

Centre for Distance Education 15.11 Acharya Nagarjuna University

</htm]>
Servlet 1: SessionServletl.java

import java.io.*;

importjavax.servlet.*;

importjavax.servlet.http.*;

public class SessionServlet] extends HttpServlet {

public void doPost(HttpServletRequest request, HttpServletResponse response)
throwsServletException, IOException {

response.setContentType("text/html");

PrintWriter out = response.getWriter();

String name = request.getParameter("username");
HttpSession session = request.getSession();
session.setAttribute("user", name);
out.println("<htmI><body>");
out.println("<h3>Welcome, " + name + "!</h3>");
out.println("Go to next page");
out.println("</body></htmI>");

j
}

Servlet 2: SessionServlet2.java

import java.io.*;

importjavax.servlet.*;

importjavax.servlet.http.*;

public class SessionServlet2 extends HttpServlet {

public void doGet(HttpServletRequest request, HttpServletResponse response)

throwsServletException, IOException {

response.setContentType("text/html");

PrintWriter out = response.getWriter();

HttpSession session = request.getSession(false); // don’t create a new one
String userName = (String) session.getAttribute("user");

out.println("<htmI><body>");

out.println("<h2>Hello again, " + userName + "!</h2>");

out.println("<p>Your session is still active.</p>");

out.println("</body></htmI>");

h
}

Sample Input:

username = Rani

Web Technologies Lab 15.12 Handling Requests, Sessions, and Security ...

Output:
Page 1:

Welcome, Rani!
Go to next page

Page 2 (after clicking link):

Hello again, Rani!
Your session is still active.

12. HttpSession Methods

‘ Method H Description ‘
‘request. getSession() HCreates a new session if not exists ‘
‘getld() HReturns session ID ‘
‘getCreationTime() HReturns time of creation ‘
‘setAttribute(String name, Object value) HStores value in session ‘
‘ getAttribute(String name) HRetrieves stored value ‘
‘invalidate() HTerminates session ‘

13. Difference Between Cookies and Sessions

Feature Cookies HttpSession
Storage Client-side Server-side
Security Less secure More secure
Capacity Limited (~4KB) Larger (server memory)
Lifetime Depends on expiry Until session timeout
Usage Lightweight info Sensitive user data

14. Example 3 — Using Cookies + Session Together

In real-world applications, cookies often store the Session ID, while the server uses that ID to

retrieve session data.

For example:

Browser stores a cookie named JSESSIONID.
Server uses this ID to map user data stored in the session.

Centre for Distance Education 15.13 Acharya Nagarjuna University
15. Table
Concept Description
Cookie Small client-side storage mechanism
Session Server-side user tracking mechanism
Session ID Unique identifier for each user

Session Tracking

Maintaining user data across requests

Servlet API

Provides HttpSession and Cookie classes

16. Best Practices

o Use HttpSession for sensitive data.

e Set appropriate cookie expiration and security flags.
o Invalidate sessions on logout.

e Avoid storing large data in sessions.

e Encrypt cookie values if used for authentication.

17. Output Snapshot
Page 1:

Welcome, ABC!

Cookie has been set successfully!

Page 2:

Welcome Back, ABC!
Your session is still active.

18. Note:

Session tracking through Cookies and HttpSession is vital in building dynamic web
applications that remember users and personalize content.
They form the core of state management in web technologies, enabling features like:

e User login systems
e Shopping carts

e Personalized dashboards

Web Technologies Lab

15.14 Handling Requests, Sessions, and Security ...

15.3 SECURITY ISSUES

1. Introduction

In Web Technologies, security refers to the protection of data and resources from
unauthorized access, modification, or destruction.Since web applications are accessed over
the internet, they are vulnerable to a wide range of security threats.
A secure web application ensures:
o Confidentiality — data is accessible only to authorized users
o Integrity — data cannot be altered by unauthorized users
e Availability — services are always available to legitimate users
o Authentication — verifies user identity
o Authorization — grants appropriate access based on privileges

2. Why Web Security Is Important

Web applications often handle sensitive data such as:

o Login credentials

e Banking and financial data
e Personal information (email, address, contact numbers)

If not properly protected, attackers can exploit vulnerabilities to:

e Steal data

o Alter website content

o Impersonate users

e Gain administrative control of systems

3. Common Security Threats in Web Applications

‘ Threat

H Description

H Example

Cross-Site Scripting
(XSS)

Inserting malicious scripts into
webpages

Attacker injects JavaScript into
form fields

SQL Injection

Injecting SQL commands to
manipulate databases

OR '1'='1"in login fields

Cross-Site Request
Forgery (CSRF)

Forcing a logged-in user to
perform unwanted actions

Attacker uses hidden forms to
make a user send a request

Session Hijacking

Stealing valid session ID to
impersonate users

Capturing cookies to access user
account

Broken Authentication

Weak login or password
handling

No password encryption or reuse

Data Exposure

Sending sensitive data without
encryption

Transmitting credentials over
HTTP instead of HTTPS

Denial of Service (DoS)

Overloading a server to crash it

Flooding the server with fake
requests

Centre for Distance Education 15.15 Acharya Nagarjuna University

4. Major Security Issues Explained
4.1. SQL Injection
Description:

Occurs when unvalidated input is directly used in SQL queries, allowing attackers to
manipulate database operations.

Vulnerable Example:

String user = request.getParameter("username");
String pass = request.getParameter("password");

Statement stmt = conn.createStatement();

String query = "SELECT * FROM users WHERE username=""'+ user + "' AND password=""
;’ pass _;’_ HHV;

ResultSetrs = stmt.executeQuery(query);

If input:

username = admin
password ="' OR '1'="1

Then query becomes:
SELECT * FROM users WHERE username='admin' AND password=" OR '1'='1"
This condition always returns true, allowing unauthorized access.
Secure Example (Using PreparedStatement):
String user = request.getParameter("username");
String pass = request.getParameter("password");
PreparedStatementps = conn.prepareStatement(
"SELECT * FROM users WHERE username=? AND password="");
ps.setString(1, user);
ps.setString(2, pass);
ResultSetrs = ps.executeQuery();
Prevents SQL Injection by treating user input as data, not code.

Sample Input:

username = admin
password ="' OR 'I'="1

Output:

Login failed. Invalid credentials.

Web Technologies Lab 15.16 Handling Requests, Sessions, and Security ...

4.2. Cross-Site Scripting (XSS)

Description:

XSS allows attackers to inject malicious JavaScript into web pages viewed by other users.
Vulnerable Example:

String name = request.getParameter("username");
out.println("<h3>Welcome " + name + "</h3>");

Input:
<script>alert('Hacked!");</script>
QOutput on browser:

e A popup appears: Hacked!
Secure Example:
Use HTML encoding to sanitize user input.
String name = request.getParameter("username");
name = name.replaceAll("<", "&It;").replaceAll(">", ">");
out.println("<h3>Welcome " + name + "</h3>");
Input:
<script>alert('Hacked!");</script>
Output:
Welcome <script>alert('Hacked!");</script>
(Script is displayed as text, not executed)
4.3. Session Hijacking

Description:

Session Hijacking occurs when an attacker steals a valid session ID (stored in cookies) to
impersonate a legitimate user.

Prevention Techniques:

e Always use HTTPS

e Regenerate SessionID on login

e Set cookies as HttpOnly and Secure
o Invalidate sessions on logout

Centre for Distance Education 15.17 Acharya Nagarjuna University

Example:

HttpSession session = request.getSession();
session.setAttribute("user", username);

// Set secure cookie

Cookie ¢ = new Cookie("JSESSIONID", session.getld());
c.setHttpOnly(true);

c.setSecure(true);

response.addCookie(c);

4.4. Cross-Site Request Forgery (CSRF)
Description:

An attacker tricks a logged-in user into performing actions they didn’t intend (e.g., submitting
a form).

Prevention:
e Use a CSRF token with each form submission.

Example:
In form:
<form action="TransferServlet" method="post">
<input type="hidden" name="csrfToken" value="$ {token} ">

Amount: <input type="text" name="amount">
<input type="submit" value="Transfer">
</form>
In servlet:
String token = (String) session.getAttribute("csrfToken");
String formToken = request.getParameter("csrfToken");
if (token != null &&token.equals(formToken)) {
out.println("Transaction Successful");

} else {
out.println("Security Error: Invalid CSRF Token");

}

4.5. Data Encryption

Description:

Sensitive data (like passwords) should never be stored or transmitted as plain text.
Example:

importjava.security.MessageDigest;

Web Technologies Lab 15.18 Handling Requests, Sessions, and Security ...

String password = request.getParameter("password");
MessageDigest md = MessageDigest.getInstance("SHA-256");
byte[] hash = md.digest(password.getBytes());

String encrypted = new String(hash);

Output (hashed password):

E99A18C428CB38D5F260853678922E03ABD8334A

5. Example Program — Secure Login Using PreparedStatement and Session
HTML Form (login.html)

<IDOCTYPE htmI>
<htmlI>
<head><title>Secure Login</title></head>
<body>
<h3>User Login</h3>
<form action="LoginServlet" method="post">
Username: <input type="text" name="username">

Password: <input type="password" name="password">

<input type="
</form>
</body>
</htmI>

submit" value="Login">

Servlet: LoginServlet.java

import java.io.*;

import java.sql.*;

importjavax.servlet.*;

importjavax.servlet.http.*;

public class LoginServlet extends HttpServlet {

public void doPost(HttpServletRequest request, HttpServletResponse response)
throwsServletException, IOException {

response.setContentType("text/html");

PrintWriter out = response.getWriter();

String uname = request.getParameter("username");
String pass = request.getParameter("password");

try {
Class.forName("com.mysql.jdbc.Driver");
Connection con = DriverManager.getConnection(
"jdbc:mysql://localhost:3306/webdb", "root", "admin");

Centre for Distance Education 15.19

Acharya Nagarjuna University

PreparedStatementps = con.prepareStatement(

"SELECT * FROM users WHERE username=? AND password="");

ps.setString(1, uname);
ps.setString(2, pass);

ResultSetrs = ps.executeQuery();

if (rs.next()) {
HttpSession session = request.getSession();
session.setAttribute("user", uname);
out.println("<h3>Welcome, " + uname + "!</h3>");
} else {
out.println("<h3>Invalid username or password</h3>");
}
con.close();
} catch (Exception e) {
e.printStackTrace();
§
§
}

Sample Input:

username = Rani
password = ranil23

Output:

Welcome, Rani!

If invalid credentials:

Invalid username or password

6. Best Security Practices

Validate and sanitize all userinputs.
Use HTTPS for secure data transmission.

Use HttpOnly and Secure cookies.
Apply CSRFtokens in forms.
Never expose sensitive data in URLSs.

Keep all frameworks and servers up to date.
Use exception handling to avoid leaking system details.

Always use PreparedStatement to prevent SQL Injection.

Implement strongauthentication (use hashed passwords).
Regenerate session IDs after login and invalidateon logout.

Web Technologies Lab 15.20 Handling Requests, Sessions, and Security ...

7. Table

Security Issue Description Prevention Technique
SQL Injection Malicious SQL statements Use PreparedStatement
XSS JavaScript injection Sanitize HTML input
CSRF Unauthorized actions Use CSRF tokens
Session Hijacking Stealing session ID Secure cookies & HTTPS
Data Exposure Plain text data Encrypt sensitive data
8. Note:

Security in web applications is not optional — it’s essential.
By understanding and implementing these measures, developers can protect users from:

o Data theft

o Unauthorized access
o Financial loss

e System compromise

Secure coding, input validation, and encryption are the pillarsof safe web development.
154 SUMMARY

Web applications communicate through the HTTP protocol, where clients send requests and
servers respond with appropriate data. In Java, this interaction is primarily managed using
Servlets and JSP (JavaServer Pages). Common HTTP methods include GET for retrieving
information and POST for securely sending data to the server. Each server response contains
an HTTP status code, such as 200 (OK) for successful operations or 404 (Not Found) for
missing resources. Because HTTP is a stateless protocol, it does not retain user information
between requests. To overcome this, web applications use session tracking mechanisms like
Cookies and HttpSession. Cookies store small amounts of data on the client side, while
HttpSession securely maintains user details on the server, enabling features like user
authentication, personalized dashboards, and shopping carts.

Security is a critical concern in web applications, as they are vulnerable to threats such as
SQL Injection, Cross-Site Scripting (XSS), Cross-Site Request Forgery (CSRF), and Session
Hijacking. These attacks can compromise data integrity, steal credentials, or execute
malicious scripts. To mitigate such risks, developers use PreparedStatements to prevent SQL
injection, perform input validation to filter harmful data, and implement CSRF tokens and
secure cookies to protect session data. Using HTTPS for encrypted communication,
regenerating session IDs after login, and properly invalidating sessions after logout further
strengthen security.

By following best practices—such as sanitizing user inputs, employing secure transport
protocols, and enforcing proper authentication and authorization—developers can ensure
confidentiality, integrity, and availability of web applications. A secure and state-aware web

Centre for Distance Education 15.21 Acharya Nagarjuna University

design not only enhances user trust but also protects sensitive information from unauthorized
access and data breaches, forming the foundation of reliable and professional web systems.

15.5

KEY TERMS

HTTP (HyperText Transfer Protocol), Servlet, HTTP Request, HTTP Response, GET
Method, POST Method, Session Tracking, Cookie, HttpSession, PreparedStatement, SQL
Injection, Cross-Site Scripting (XSS), Cross-Site Request Forgery (CSRF), Session
Hijacking, Encryption

15.6

15.7

whw

e e AU o

SELF-ASSESSMENT QUESTIONS

What does HTTP stand for?

What is the role of a Servlet in a web application?

Which HTTP method is used to retrievedata from the server?
Which HTTP method is used to senddata to the server?
What is a Cookie used for?

What is an HttpSession?

Why do we need sessiontracking in web applications?

What is SQLInjection?

What is the purpose of encryption in web security?

0. Name one way to prevent Cross-Site Scripting (XSS) attacks.

FURTHER READINGS

. Java: The Complete Reference, Twelfth Edition by Herbert Schildt. McGraw-Hill

Education.

Beginning Java Programming: The Object-Oriented Approach by Bart Baesens,
Aimee Backiel, and SeppevandenBroucke. Wiley.

Java Programming with Oracle JDBC by Donald Bales. O'Reilly Media.

Java EE 8 Application Development by David R. Heffelfinger. Packt Publishing.
Professional Java for Web Applications by Nicholas S. Williams. Wrox/Wiley
Publishing.

Java 2: Developer's Guide to Web Applications with JDBC by Gregory Brill. Sybex.

Dr. U. Surya Kameswari

LESSON- 16
JSP FUNDAMENTALS AND MVC

ARCHITECTURE

Aim and Objectives:

Identify the problems and limitations of Servlets that led to the introduction of JSP.
Explain the structure and components of a JSP page and their purposes.

Describe the JSP processing mechanismand how a JSP request is handled by the
server.

Understand how to design JSP applications using the MVC architecture for better
separation of concerns.

Learn to set up the JSP environmentby installing the Java SDK, configuring the
Tomcat server, and testing the setup.

Y V. VYVYV

STRUCTURE:

16.1 Introduction to JSP

16.2 The Problem with Servlet.

16.3 The Anatomy of a JSP Page

16.4 JSP Processing

16.5 JSP Application Design with MVC Setting Up and JSP Environment
16.6 Installing the Java Software Development Kit
16.7 Tomcat Server & Testing Tomcat

16.8 Summary

16.9 Key Terms

16.10 Self-Assessment Questions

16.11 Further Readings

16.1 INTRODUCTION TO JSP
What is JSP?

JSP (JavaServer Pages) is a server-side technology used to create dynamic web content. It
allows developers to embed Java code directly into HTML pages.

JSP is built on top of Servlet technology, but it provides a simpler way to develop web
applications by separating the presentation layer (HTML) from the business logic (Java
code).

Why JSP? (The Problem with Servlets)

Servlets require writing a lot of Java code to generate HTML responses.
For example, to display a simple message using a servlet, you must write:

out.println("<htmI>");

Web Technologies Lab 16.2 JSP Fundamentals AndMvc...

out.println("<body>");

out.println("<h1>Welcome to Java Servlets</h1>");

out.println("</body>");

out.println("</htmI>");

This approach mixes Java code and HTML, making maintenance difficult.

JSP solves this problem by allowing you to write HTML normally and embed Java logic only
where needed.

Anatomy of a JSP Page

A JSP page typically has the .jsp extension and can include:

Element Type Syntax Description

Directive <%(@ directive %> |Defines page settings (e.g., importing classes).
Declaration |[<%! code %> Declares variables or methods.

Scriptlet <% code %> Contains Java code executed at request time.

Expression |[<%= expression %> ||Outputs the result of a Java expression.

Comments |[<%-- comment --%>|JSP comment (not sent to client).

How JSP Works (Processing)
When a JSP page is requested:

The web server (e.g., Tomcat) converts the JSP file into a Servlet.
The servlet is compiled into bytecode.

The compiled servlet runs and produces HTML output.

The HTML is sent to the client’s browser.

b=

Setting Up JSP Environment

1. Install Java Development Kit (JDK)
o Download and install from Oracle.
o Set environment variable: JAVA HOME.
2. Install Apache Tomcat Server
o Download from https://tomcat.apache.org.
o Unzip and configure the path.
3. Deploy JSP File
o Place your .jsp file inside apache-tomcat/webapps/ROOT/.
o Start the Tomcat server using startup.bat (Windows) or startup.sh (Linux).
o Access it via:

7 http://localhost:8080/filename.jsp

https://www.oracle.com/java/technologies/javase-downloads.html
https://tomcat.apache.org/
http://localhost:8080/filename.jsp

Centre for Distance Education 16.3 Acharya Nagarjuna University

Example 1: Simple JSP Program
File: hello.jsp

<htmI>
<head><title>Welcome Page</title></head>
<body>
<h2>Welcome to JSP!</h2>
<%
String name = "Student";
out.println("<p>Hello, " + name + "! This is your first JSP program.</p>");
%>
</body>
</htm]>

Output in Browser:

Welcome to JSP!
Hello, Student! This is your first JSP program.

Example 2: JSP with User Input
File: input.jsp

<htmlI>
<head><title>User Input Example</title></head>
<body>
<form action="display.jsp" method="post">
Enter your name: <input type="text" name="username'>
<input type="submit" value="Submit">
</form>
</body>
</html>

File: display.jsp

<htmlI>
<head><title>Display Page</title></head>
<body>
<%
String user = request.getParameter("username");
if (user == null || user.trim().equals("")) {
out.println("<h3>Please enter a valid name.</h3>");
} else {
out.println("<h3>Hello, " + user + "! Welcome to JSP programming.</h3>");

‘ Web Technologies Lab 16.4 JSP Fundamentals AndMvc...

}

%>
</body>
</html>

Input:
User enters: John
Output:

Hello, John! Welcome to JSP programming.

16.2 THE PROBLEM WITH SERVLET

1. Introduction:-Servlets are Java programs that run on a web server and dynamically
generate web pages. They handle client requests and responses using Java code.

However, when building large web applications, Servlets become difficult to maintain, hard
to read, and time-consuming for web designers — mainly because they mix HTML and Java
logic together.

2. Typical Servlet Workflow

The client (browser) sends a request to the server.

The server calls the Servlet, which contains Java code.
The Servlet generates HTML output using Java code.
The generated HTML is sent back to the client.

b=

3. The Core Problem

While Servlets are powerful, they have some serious drawbacks when used to create complex
web pages.

Main Problems with Servlets:

‘ Problem H Description ‘
1. Mixed Code (HTML + ||Writing HTML inside Java out.println() statements makes the
Java) code long and messy.

‘2. Poor Readability HHard for web designers to edit HTML within Java source code. ‘

Any small change in the webpage design requires Java
recompilation.

‘4. No Clear Separation HServlets combine both business logic and presentation logic. ‘

Requires both Java and HTML knowledge for every
modification.

3. Maintenance Difficulty

5. Slower Development

Centre for Distance Education 16.5 Acharya Nagarjuna University

4. Example: Servlet Generating HTML Output
File: HelloServlet.java

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
public class HelloServlet extends HttpServlet {
public void doGet(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException {
response.setContentType("text/html");
PrintWriter out = response.getWriter();
out.println("<htmI>");
out.println("<head><title>Servlet Example</title></head>");
out.println("<body>");
out.println("<h2>Welcome to Java Servlets!</h2>");
out.println("<p>This page is generated using Java code.</p>");
out.println("</body>");
out.println("</htmI>");
out.close();

}
}

Web Deployment Descriptor (web.xml):

<web-app>

<servlet>
<servlet-name>hello</servlet-name>
<servlet-class>HelloServlet</servlet-class>
</servlet>

<servlet-mapping>
<servlet-name>hello</servlet-name>
<url-pattern>/hello</url-pattern>
</servlet-mapping>

</web-app>

Browser Request (Input):
http://localhost:8080/Y ourApp/hello
Output (in Browser):

Welcome to Java Servlets!
This page is generated using Java code.

Web Technologies Lab 16.6 JSP Fundamentals AndMvc...

It works fine — but the HTML is buried inside Java code!
5. Why Is This a Problem?
Imagine the designer wants to change the HTML layout, color, or font.

They would need to open the Java file, find the out.println() lines, and modify the HTML —
then recompile and redeploy the servlet.

That’s inefficient and error-prone.

6. Overview-The below is a conceptual flowdiagram showing how Servlets mix business
and presentation logic:

S — -t

| Java Servlet (HelloServlet) |

- |

| Business Logic (Java Code) |

| out.println("<htmlI>..."); |

| out.println("<h1>Hello User</h1>"); |
| out.println("</htmI>"); |

S — -t

!
Compiled & Executed

!
HTML Response Sent to Browser

Problem: The same file handles both application logic and HTML layout, which is not
modular.

7. Comparison: Servlet vs JSP

Feature Servlet JSP
Code Type Java code with embedded HTML|HTML with embedded Java
Ease of Design|Difficult for web designers Easier for web designers
Maintenance |Requires recompilation JSP auto-compiles
Use Case Good for backend logic Good for presentation layer

8. Example of JSP Solution
Let’s see how JSP fixes the same problem:

File: hello.jsp

Centre for Distance Education 16.7 Acharya Nagarjuna University

<htmlI>

<head><title>JSP Example</title></head>

<body>

<h2>Welcome to JSP!</h2>

<p>This page is generated using JSP — HTML is clean and easy to read.</p>
</body>

</html>

Output:

Welcome to JSP!
This page is generated using JSP — HTML is clean and easy to read.

No messy out.println() statements — only simple HTML!

9. Servlet Problems

Issue Explanation

Mixing of HTML & Java|Reduces readability and maintainability.

Difficult Design Changes ||Designers can’t edit HTML without Java knowledge.

No MVC Separation Business logic and view are tightly coupled.

Compilation Overhead |Every design change requires recompiling the servlet.

16.3 THE ANATOMY OF A JSP PAGE

A JSP (JavaServer Page) is essentially an HTML page enhanced with Java code.
It enables developers to create dynamic web content by embedding Java inside HTML tags.

Each JSP file is eventually translated into a Servlet by the web server (e.g., Apache Tomcat).
This allows the Java code to be executed on the server before sending the HTML result to the
client.

2. Basic Structure of a JSP Page

Here’s what a simple JSP file looks like:

<%(@ page language="java" contentType="text/html" pageEncoding="UTF-8"%>
<htmI>

<head><title>My First JSP Page</title></head>

<body>

<h2>Welcome to JSP!</h2>

<%

// Scriptlet: Java code inside JSP

Web Technologies Lab

16.8 JSP Fundamentals AndMvec...

String name = "Student";
out.printIn("<p>Hello, " + name + "!</p>");

%>
</body>
</html>
Output in Browser:
Welcome to JSP!
Hello, Student!

Tempilate Data
(HTML_. CSS, IS)

—_

S
Container

K

HTML
Response
reacdy for browser

Figure: Anatomy of a JSP Page

3. Major Components (Anatomy) of a JSP Page

A JSP page can contain the following elements:

Element Type H Syntax H

Description

<%@ ...

1. Directive o>
0

Gives instructions to the JSP engine (e.g., importing packages,
setting content type).

2. Declaration |(<%! ... %>

Declares variables and methods that become part of the servlet
class.

3.Scriptlet <% ... %>

IContains Java code executed at request time.

4. Expression |[<%= ... %>

Inserts the result of a Java expression directly into the HTML
output.

<%-- ... --

5. Comment 0>
(]

JSP comment (not visible in the HTML sent to client).

6. Action Tags |<jsp:.../>

Invokes built-in JSP actions (like forwarding requests, using
beans, etc.).

4. JSP Directives

Syntax:

<%(@ directive attribute="value" %>

Centre for Distance Education 16.9 Acharya Nagarjuna University

Common Directives:

o page — Defines page-level settings (language, import, content type).
e include — Includes another file at translation time.
o taglib — Declares a tag library.

Example:

<% @ page import="java.util.Date" %>
<htmI>
<body>
<h3>Current Date and Time:</h3>
<%
Date today = new Date();
out.println(today);
%>
</body>
</html>

Output:

Current Date and Time:
Wed Oct 29 12:30:45 IST 2025

5. JSP Declarations

Syntax:

<%! code %>

Used to declare variables or methods that will become instance members of the servlet class.
Example:

<%!
int counter = 0;
int incrementCounter() {
return ++counter;
}
%>
<htmI>
<body>
<p>Counter value: <%= incrementCounter() %></p>
</body>
</html>

‘ Web Technologies Lab

16.10

JSP Fundamentals AndMvec...

Output (each refresh increases count):

Counter value: 1
Counter value: 2
Counter value: 3

6. JSP Scriptlets
Syntax:

<% code %>

Contains Java statements that execute every time the page is requested.

Example:

<htmI>

<body>

<%
for(inti=1;1<=3;i++) {

out.println("<p>Number: " + 1+ "</p>");
b

%>

</body>

</htm]>

Output:

Number: 1
Number: 2
Number: 3

7. JSP Expressions
Syntax:

<%= expression %>

Displays the result of a Java expression directly in the output stream (like out.printin()

shortcut).
Example:

<html>

Centre for Distance Education 16.11 Acharya Nagarjuna University

<body>

<h3>The sum of 10 and 20 is: <%= 10 + 20 %></h3>
</body>

</html>

Output:

The sum of 10 and 20 is: 30

8. JSP Comments

Syntax:

<%-- comment text --%>

Unlike HTML comments, JSP comments are not sent to the client — they are completely
hidden.

Example:

<htmlI>

<body>

<%-- This is a JSP comment, it will not appear in browser source code --%>
<p>This is visible text.</p>

</body>

</htmI>

Output:

This is visible text.

(The JSP comment will not appear in “View Source.”)
9. JSP Action Tags

Syntax:

<jsp:action attribute="value" />

Used to control the behavior of the JSP engine — like forwarding requests or using
JavaBeans.

Example 1: jsp:forward

<jsp:forward page="nextpage.jsp" />

Web Technologies Lab 16.12 JSP Fundamentals AndMvc...

Redirects the user to another JSP page.

Example 2: jsp:include

<jsp:include page="header.jsp" />

Includes the contents of header.jsp in the current page.
10. Complete Example: Combining All Elements
File: anatomyExample.jsp

<% (@ page import="java.util.*" %>
<%! int counter = 0; %>
<htmlI>
<head><title>JSP Anatomy Example</title></head>
<body>
<%-- This is a JSP comment, not visible in browser --%>
<h2>Understanding JSP Components</h2>
<%
counter++;
String user = "Alice";
Date now = new Date();
%>
<p>Hello, <%= user %>!</p>
<p>You are visitor number <%= counter %>.</p>
<p>Current date and time: <%= now %></p>
<jsp:include page="footer.jsp" />
</body>
</html>

File: footer.jsp

<hr>

<p>Thank you for visiting our JSP demo page.</p>
Output in Browser:

Understanding JSP Components

Hello, Alice!

You are visitor number 1.

Current date and time: Wed Oct 29 13:05:10 IST 2025

Thank you for visiting our JSP demo page.

Centre for Distance Education

16.13 Acharya Nagarjuna University

11. Table

Component|| Syntax Purpose Executes When
Directive |<%@ ... %> |Page instructions At translation time
Declaration|<%! ... %> |Define fields/methods|/Once per class
Scriptlet |<% ... %> ||[Execute Java code On every request
Expression ||<%= ... %> |Output value On every request
Comment |<%-- ... --%>||Hidden note Never executed
Action Tag |<jsp:... /> JSP behavior control ||At request time
16.4JSP PROCESSING

1. JSP (JavaServer Pages) is a server-side technology that allows you to create dynamic
web content by embedding Java code within HTML.

However, unlike plain HTML pages, JSPs are compiled and executed on the server before the
output (HTML) is sent to the client browser.The server handles the processing of a JSP file in
several stages — converting it into a Servlet, compiling it, and executing it to produce HTML
output.

2. JSP Processing Overview

When a client (like a web browser) requests a JSP page, theweb container (e.g., Apache
Tomcat) performs the following steps:

1. Translation Phase:

The JSP file is translated into a Java Servlet source file.
Compilation Phase:

The generated Servlet source is compiled into a .class file (bytecode).
Loading & Initialization Phase:

The Servlet class is loaded into memory and initialized.

Request Processing Phase:

The Servlet’s service() method executes, processing client requests and generating
responses.

Response Phase:

The output (HTML) is sent back to the client browser.

Destruction Phase:

When the application is stopped, the JSP Servlet is destroyed.

JSP Processing Flow Diagram

The complete JSP processing sequence creates a smooth transition from human-readable
.Jsp code to machine-executable bytecode, ultimately producing a dynamic web response.

Web Technologies Lab 16.14 JSP Fundamentals AndMvc...

This powerful lifecycle serves as the foundation for all dynamic web applications
developed using JSP. As shown in below figure.

Client R t [T e
ie equest — l——=
regueasting.jsp iSE
_ A . ==
] + j | | N
~ — JSP Container /_r" index.jsp)

L

Web Server ' | (index_jsp.isp) | |

-
Translation Phase Classboading & Instantiation Phase
mdex_jsp. class (Serviet Bytecode)

Transllation Phase P | e = [Serviet b
index_jsp.java | “[Serviet | || index_jsp.class | __ ¥
T T P - - g - / (ispinit()
~Imitialization ~ _ Ear 7
| index_jsp.object ’_| - { object ™ spServiced()

The Serviet exists is excecutied only once the Serviets lifeed for
dynatticaly generais and dynastising ahis content and incepratied
static tempilate drom the A4S file

Request Processing _ ‘I
| mderiet _jspService() | LH PRI e y

HT TP Response
i

Figure: JSP Processing Flow Diagram
4. JSP Lifecycle Methods

Internally, a JSP page is converted into a Servlet, and the Servlet follows a defined
lifecyclemanaged by the JSP container.

JSP Lifecycle Method Description

jspInit() Called once when the JSP is initialized.

_jspService() Called for each client request (contains the main logic).
jspDestroy() Called before the JSP is destroyed.

5. Step-by-Step JSP Processing Example
Let’s demonstrate JSP processing using a real example.
Example Files:

File 1:welcome.jsp
File 2:web.xml (deployment descriptor)

File: welcome.jsp

<%(@ page language="java" contentType="text/html" pageEncoding="UTF-8"%>

Centre for Distance Education 16.15 Acharya Nagarjuna University

<htmlI>
<head><title>JSP Processing Example</title></head>
<body>
<%-- JSP comment: This will not appear in browser --%>
<%!
int visitCount = 0;
// This method runs once when JSP is initialized
public void jspInit() {
System.out.println("JSP Initialized...");
}
/I ' This method runs when the JSP is destroyed
public void jspDestroy() {
System.out.println("JSP Destroyed...");
}
%>
<%
// This part executes for each request
visitCount++;
String user = request.getParameter("name");
if (user == null || user.equals("")) {
user = "Guest";
}
%>
<h2>Welcome to JSP Processing!</h2>
<p>Hello, <%= user %>!</p>
<p>You are visitor number: <%= visitCount %></p>
<form action="welcome.jsp" method="post">
Enter your name: <input type="text" name="name">
<input type="submit" value="Submit">
</form>
</body>
</htmI>

Step-by-Step JSP Processing Flow:
Step 1 — Client Request
The browser requests:

http://localhost:8080/JSPApp/welcome.jsp

Step 2 — Translation Phase

The server (Tomcat) translates welcome.jsp — welcome_jsp.java
(This is an automatically generated servlet.)

Web Technologies Lab 16.16

JSP Fundamentals AndMvec...

Step 3 — Compilation

welcome jsp.java — compiled into welcome jsp.class

Step 4 — Initialization
The container calls:

jspInit();

This runs only once (prints "JSP Initialized..." on the server console).

Step 5 — Request Handling
The container calls:

_jspService(request, response);

This method executes the main JSP code — reading parameters, generating output, etc.

Step 6 — Response Generation

The generated HTML is sent back to the client browser.

Step 7 — Destruction

When the JSP is reloaded or the server stops, the container calls:

jspDestroy();

6. Example Input and Output

Input 1 (First Visit):

User opens the page without entering a name.
URL:
http://localhost:8080/JSPApp/welcome.jsp
Output 1:

Welcome to JSP Processing!

Hello, Guest!

You are visitor number: 1

[Text box to enter name]

Input 2 (Second Visit with Name):

User enters “Alice” in the text box and submits.

Centre for Distance Education 16.17 Acharya Nagarjuna University

Output 2:

Welcome to JSP Processing!
Hello, Alice!

You are visitor number: 2
[Text box again for new input]

Server Console Output:

JSP Initialized...
JSP Destroyed... (when server stops or reloads)

7. Generated Servlet Code (Simplified View)
When Tomcat processes your JSP, it internally generates something like this:

public final class welcome_jsp extends HttpJspBase {
int visitCount = 0;
public void jsplnit() {
System.out.println("JSP Initialized...");
}
public void _jspService(HttpServletRequest request, HttpServletResponse response)
throws IOException, ServletException {
visitCount++;
String user = request.getParameter("name");
if (user == null) user = "Guest";
JspWriter out = response.getWriter();
out.println("<htmI><body>");
out.println("<h2>Welcome to JSP Processing!</h2>");
out.println("<p>Hello, " + user + "!</p>");
out.println("<p>You are visitor number: " + visitCount + "</p>");
out.println("</body></htmI>");
}
public void jspDestroy() {
System.out.println("JSP Destroyed...");

h
h

This shows how a JSP page internally becomes a servlet that executes Java code to produce
HTML output.
7. Visual Representation of JSP Lifecycle

The life cycle of a JavaServer Page (JSP) involves several stages, beginning with its
creation, followed by its translation into a servlet, and ultimately governed by the servlet

Web Technologies Lab 16.18 JSP Fundamentals AndMvc...

lifecycle. This entire process is automatically managed by the JSP engine. Asshown in
below figure.

Life Cycle of JSP

]

j —_— Buffer
- Jsp (dynamic content)

l 3
JSP Translator
T == | Servlet (.java file) o Lo
| Initialization splnit() .
R l
' request lifecycle !
s Request ' compiler JRE
Main logic —‘ E l 4
L l
. Response 1 Class file)
I RSO N T R SR |

| Shutdown | jspDestray() :

Figure: Life Cycle of JSP

Steps in the JSP Life Cycle:

—

Translation: The JSP page is translated into a corresponding servlet.
Compilation: The translated JSP file (e.g., test.java) is compiled into a class file
(test.class).

Class Loading: The generated servlet class is loaded into the container.
Instantiation: An instance of the generated servlet class is created.

Initialization: The container invokes the jspInit() method to initialize the servlet.
Request Processing: The container calls the jspService() method to handle client
requests and generate responses.

7. Cleanup: The jspDestroy() method is invoked by the container to release resources
before the JSP is unloaded.

N

kW

8. Advantages of JSP Processing

JSP pages are compiled only once, not every time they are requested.

Subsequent requests are faster since the compiled servlet is reused.

Clear separation of presentation (HTML) and business logic (Java).

Automatic servlet generation— developers focus on web design, not boilerplate Java code.

Centre for Distance Education

16.19 Acharya Nagarjuna University

9. Table

Phase Action Description
Translation JSP — Servlet ||JSP converted into Java source code
Compilation Servlet — Class |[Compiled into bytecode
Initialization jsplnit() Runs once when JSP loads
Request Handling | jspService() |Runs for every request
Destruction jspDestroy() Runs when JSP unloads

16.5 JSP APPLICATION DESIGN WITH MVC SETTING UP AND JSP

ENVIRONMENT

What is MVC?

MVC (Model-View—Controller) is a design pattern used in web development to separate an

application into three logical layers:

Component Description Technology Used
Model Contains business logic and data handling. JavaBeans / POJO classes
View Handles presentation and user interface. JSP pages

Controller |Controls the flow of data between Model and View.||Servlets

This separation improves code organization, reusability, and maintenance.

How MVC Works in JSP Applications

S e S

Client (Browser) sends a request (e.g., submits a form).
The Controller (Servlet) receives the request and processes it.

The Controller interacts with the Model (Java class/Bean) for data or business logic.
The result from the Model is sent back to the Controller.
The Controller forwards the data to a View (JSP page) for displaying output.
The JSP renders the final HTML response to the browser.

MVC Flow Diagram

Tho Pw

Lo rriin g
to comtroll

Sk

e
rrvesctel

This
SpEroEria

Eroww Sor sorc s
Coapplicariomn

et g
o

rrvescl el

Whwe e rorvaler s L
@rnnbpaeat

e Ouest to

requaest directad
=

Controller

s o cloka

iz passed to tha
e i

Web Technologies Lab 16.20 JSP Fundamentals AndMvc...

Figure: MVC Flow Diagram.
2. Example Program: JSP Application using MVC

Let’s build a small MVC example where the user enters their name, and the application
displays a welcome message.

Step 1 — Model (JavaBean)
File: User.java

package mvcapp;
public class User {
private String name;
public User() {}
public String getName() {
return name;
§
public void setName(String name) {
this.name = name;
}
public String greetUser() {
return "Welcome, " + name + "! You are learning JSP with MVC.";
h
h

Step 2 — Controller (Servlet)
File: UserServlet.java

package mvcapp;

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class UserServlet extends HttpServlet {

protected void doPost(HttpServletRequest request, HttpServletResponse response)

throws ServletException, IOException {
/I Get data from the form
String username = request.getParameter("username");
// Create model object
User user = new User();

user.setName(username);
// Store model data in request scope

request.setAttribute("userData", user);

Centre for Distance Education 16.21 Acharya Nagarjuna University

// Forward data to the view (JSP)
RequestDispatcher rd = request.getRequestDispatcher("welcome.jsp");
rd.forward(request, response);

j
j

Step 3 — View (JSP Page)
File: welcome.jsp

<%(@ page import="mvcapp.User" %>
<htmlI>
<head><title>Welcome Page</title></head>
<body>
<%
User user = (User) request.getAttribute("userData");
%>
<h2><%= user.greetUser() %></h2>
</body>
</html>

Step 4 — HTML Form (Input Page)
File: index.html

<htmI>

<head><title>JSP MVC Example</title></head>
<body>

<h2>Enter Your Name</h2>

<form action="UserServlet" method="post">
<input type="text" name="username">

<input type="submit" value="Submit">

</form>

</body>

</htmI>

Step 5 — Web Deployment Descriptor
File: web.xml

<web-app>

<servlet>
<servlet-name>userServlet</servlet-name>
<servlet-class>mvcapp.UserServlet</servlet-class>
</servlet>

Web Technologies Lab 16.22

JSP Fundamentals AndMvec...

<servlet-mapping>
<servlet-name>userServlet</servlet-name>
<url-pattern>/UserServlet</url-pattern>
</servlet-mapping>

</web-app>

Input / Output

Input (from index.html):

User enters:

John

Output (in Browser — welcome.jsp):

Welcome, John! You are learning JSP with MVC.

Advantages of MVC with JSP

e Clear separation of presentation (JSP), logic (Servlet), and data (Model).

o Easier maintenance and updates.

e Designers and developers can work independently.

e Promotes reusability and scalability.

3. Setting Up JSP Environment

To execute JSP programs, you need a proper Java web environment with the JDK and

Tomcat server.

Step 1: Install Java Development Kit (JDK)

o Download from: https://www.oracle.com/java/technologies/javase-downloads.html

o Install and set environment variables:

e JAVA HOME = C:\Program Files\Java\jdk-<version>

e PATH=%JAVA HOME%\bin
e Verify installation:
e java-version

Step 2: Install Apache Tomcat Server

e Download from: https://tomcat.apache.org
e Extract it to: C:\Tomcat

e Set environment variable:
e CATALINA HOME = C:\Tomcat
o Start Tomcat:

https://www.oracle.com/java/technologies/javase-downloads.html
https://tomcat.apache.org/

Centre for Distance Education 16.23 Acharya Nagarjuna University

e (C:\Tomcat\bin\startup.bat
e Test in browser:
e http://localhost:8080/

You should see the Tomcat welcome page.
Step 3: Deploy JSP Application

1. Inside C:\Tomcat\webapps, create a folder named mvcapp.
2. Inside it, create WEB-INF folder and place:
o web.xml
o classes folder (for .class files)
3. Place index.html and welcome.jsp in the mvcapp root folder.
4. Compile Java files (User.java, UserServlet.java) and place .class files inside:
5. C:\Tomcat\webapps\mvcapp\WEB-INF\classes\mvcapp\

Step 4: Test the Application
Open your browser and go to:
http://localhost:8080/mvcapp/index.html
Input:
Name: Alice
Output:

Welcome, Alice! You are learning JSP with MVC.

4. Table

Step|| Component File Purpose

1 Model User.java Holds data & logic
2 ||Controller |UserServlet.java|Processes requests

3 View welcome.jsp Displays output

4 ||Configuration||web.xml Maps servlet

5 ||Deployment |Tomcat Server |Runs JSP & Servlets

16.6 INSTALLING THE JAVA SOFTWARE DEVELOPMENT KIT
1. What is JDK?

JDK (Java Development Kit) is a software package that provides all the tools required to
develop and run Java applications, including:

Web Technologies Lab 16.24 JSP Fundamentals AndMvc...

e JVM (Java Virtual Machine) — executes Java bytecode

e JRE (Java Runtime Environment) — runtime environment for running Java programs
e Compiler (javac) — converts Java source code into bytecode

e Development tools — java, javac, jar, javadoc, etc.

2. Steps to Install JDK
Step 1: Download JDK

e Visit the official Oracle website: Java SE Downloads
o Select the latest Java SE Development Kit and download for your operating system
(Windows, Mac, or Linux).

Step 2: Install JDK

e Run the downloaded installer.

o Follow instructions and choose an installation directory (e.g., C:\Program
Files\Java\jdk-21).

e Click Next and finish the installation.

Step 3: Set Environment Variables (Windows)

Open System Properties — Advanced — Environment Variables
Add a new system variable:

Variable name: JAVA_ HOME

Variable value: C:\Program Files\Java\jdk-21

Update the PATH variable:

%JAVA_HOME%\bin

Open Command Prompt and check installation:

java -version

javac -version

A PR IR A o

Example Output:

java version "21"

Java(TM) SE Runtime Environment (build 21+35)

Java HotSpot(TM) 64-Bit Server VM (build 21+35, mixed mode)
javac 21

3. Writing and Running a Java Program

Once JDK is installed, you can write and run Java programs using Command Prompt or IDE
(Eclipse, IntelliJ, NetBeans).

https://www.oracle.com/java/technologies/javase-downloads.html

Centre for Distance Education 16.25 Acharya Nagarjuna University

Step 3.1 — Create a Java Program
File: HelloWorld.java

/I A simple Java program to display a message
public class HelloWorld {
public static void main(String[] args) {
System.out.println("Hello, Java is installed successfully!"); }}

Step 3.2 — Compile Java Program

1. Open Command Prompt
2. Navigate to the folder containing HelloWorld.java
3. Compile using javac:

javac HelloWorld.java
o This generates a HelloWorld.class file (Java bytecode) in the same folder.
Step 3.3 — Run Java Program
java HelloWorld
Output:
Hello, Java is installed successfully!
4. Another Example: Add Two Numbers
File: AddNumbers.java

import java.util.Scanner;
public class AddNumbers {
public static void main(String[] args) {

Scanner sc = new Scanner(System.in);
System.out.print("Enter first number: ");
int a = sc.nextInt();
System.out.print("Enter second number: ");
int b = sc.nextInt();
int sum = a + b;
System.out.println("Sum =" + sum); }}

Input (from user):

Enter first number: 10

Web Technologies Lab 16.26 JSP Fundamentals AndMvc...

Enter second number: 20
Output:

Sum = 30

16.7 TOMCAT SERVER & TESTING TOMCAT
1. What is Tomcat?

Apache Tomcat is a web server and servlet container developed by Apache Software
Foundation. It is used to:

e Run Java Servlets and JavaServer Pages (JSP).

e Serve as a platform for Java-based web applications.

e Provide HTTP web server functionality without needing a separate web server like
Apache HTTPD.

Key Components:

Component Description

Catalina Servlet container

Coyote HTTP connector

Jasper JSP engine (converts JSP to Servlet)

Cluster Handles session replication for high availability

2. Installing Apache Tomcat
Step 1: Download Tomcat

e Visit: https://tomcat.apache.org
e Choose the latest Tomcat version (e.g., Tomcat 10.x or 9.x).
e Download Core zip or installer for your OS.

Step 2: Install Tomcat

o Windows: Extract the zip file to C:\Tomcat
o Linux/Mac: Extract to /ust/local/tomcat or preferred location.

Step 3: Set Environment Variables

e CATALINA HOME = Tomcat installation folder (e.g., C:\Tomcat)
e Add %CATALINA HOME%\bin to PATH.

https://tomcat.apache.org/

Centre for Distance Education 16.27 Acharya Nagarjuna University

Step 4: Start Tomcat

e Windows: Run startup.bat in C:\Tomcat\bin
e Linux/Mac: Run startup.sh in terminal

Test Tomcat:

Open browser and go to:
http://localhost:8080/

You should see the Tomcat Welcome Page.
3. Deploying JSP Programs in Tomcat
Step 1: Tomcat Directory Structure

C:\Tomcat

|

I— bin/ # Startup and shutdown scripts

I— webapps/ # Place your JSP/Servlet projects here
| L—ROOT/ # Default web application folder
—conf/ # Configuration files

|— logs/ # Log files

L— 1ib/ # Library files

o JSP files should go inside webapps/ROOT/ or a subfolder like webapps/MyApp/.
Step 2: Create a Sample JSP Page
File: hello.jsp (inside C:\Tomcat\webapps\ROOT\)

<% (@ page language="java" contentType="text/html; charset=UTF-8"%>
<html>

<head>

<title>Hello JSP</title>

</head>

<body>

<h2>Hello, Tomcat is working perfectly!</h2>

</body>

</html>

Step 3: Access JSP in Browser

Open:

Web Technologies Lab 16.28 JSP Fundamentals AndMvc...

http://localhost:8080/hello.jsp
Output:

Hello, Tomcat is working perfectly!
4. Example: JSP with Form Input
File: greet.jsp (inside ROOT/)

<% (@ page import="java.util.*" %>
<htmlI>
<head><title>Greeting Page</title></head>
<body>
<h2>Enter Your Name</h2>
<form action="greet.jsp" method="post">
<input type="text" name="username">
<input type="
</form>
<%
String name = request.getParameter("username");

if(name != null && !name.isEmpty()) {
out.println("<h3>Welcome, " + name + "! Your JSP program is working.</h3>");}

%>
</body>
</html>

submit" value="Submit">

Input (from form): Name: Alice
Output (in browser): Welcome, Alice! Your JSP program is working.
5. Stopping Tomcat

¢ Windows: shutdown.bat in C:\Tomcat\bin
e Linux/Mac: shutdown.sh in terminal

6. Folder Structure Example for JSP Project

webapps/
L MyApp/
I— index.jsp
I— hello.jsp
|—— greet.jsp
L— WEB-INF/
I—— web.xml

Centre for Distance Education 16.29 Acharya Nagarjuna University

L— classes/

e JSP pages — MyApp/
e Servlets and Java classes — WEB-INF/classes/
e Deployment descriptor — WEB-INF/web.xml

16.8 SUMMARY

JavaServer Pages (JSP) is a technology used to create dynamic web content in Java,
addressing some limitations of traditional Servlets. Servlets, while powerful, mix business
logic with presentation, making web applications harder to maintain and scale. JSP separates
presentation from logic by allowing HTML and Java code to coexist, forming a structured
page with directives, scripting elements, and standard actions, collectively known as the
anatomy of a JSP page. When a JSP page is requested, the server processes it by translating it
into a Servlet, compiling it, and executing the generated bytecode, a process known as JSP
processing. For organized development, JSP applications often follow the Model-View-
Controller (MVC) design pattern, separating data handling, business logic, and user interface.

Setting up a JSP environment requires installing the Java Software Development Kit (JDK),
which provides tools for compiling and running Java applications. Alongside JDK, Apache
Tomecat is commonly used as the web server and servlet container to host JSP applications.
Installing and configuring Tomcat, setting environment variables, and starting the server
allows developers to deploy and test JSP pages. Simple JSP programs, such as displaying
messages or handling form input, verify that the environment is correctly configured. With
these components, developers can create dynamic, interactive web applications with clear
separation of concerns.

The combination of JDK, Tomcat, and MVC design ensures maintainable, scalable, and
efficient Java web applications. Proper understanding of JSP anatomy and processing helps in
debugging and optimizing web applications. The setup process also includes verifying
installations through example programs. Ultimately, JSP simplifies web development by
integrating Java’s capabilities with web presentation, providing a robust framework for
enterprise-level applications.

16.9 KEY TERMS

Directive, Scriptlet, Translation, Compilation, MVC (Model-View-Controller), Servlet
Container, Implicit Objects, Environment Variable, Deployment, RequestDispatcher.

16.10 SELF-ASSESSMENT QUESTIONS

1. What does the acronym JSP stand for?

2. Name one directive you can use in a JSP page.

3. What is the first step in the JSP processing lifecycle?

4. Inthe MVC architecture, which component handles user requests in a JSP
application?

5. What software must you install before you can develop JSP pages?

6. What is the default port when you start Apache Tomcat locally?

7. What file extension is typically used for JSP pages?

Web Technologies Lab 16.30 JSP Fundamentals AndMvc...

In the JSP/Servlet environment, what folder is commonly used for placing JSP files in
Tomcat’s webapps?

Which phase of JSP processing involves converting the JSP page into a Java Servlet
source file?

16.11 FURTHER READINGS

DA W

N

. Java: The Complete Reference, Twelfth Editionby Herbert Schildt. McGraw-Hill

Education.

Beginning Java Programming: The Object-Oriented Approachby Bart Baesens,
Aimee Backiel, and Seppe vanden Broucke. Wiley.

Java Programming with Oracle JDBCby Donald Bales. O'Reilly Media.

Java EE 8 Application Development by David R. Heffelfinger. Packt Publishing.
Professional Java for Web Applicationsby Nicholas S. Williams. Wrox/Wiley
Publishing.

Java 2: Developer's Guide to Web Applications with JDBCby Gregory Brill. Sybex.
Beginning JSP, JSF and Tomcat Web Development: From Novice to Professionalby
Giulio Zambon & Michael Sekler. Apress.

Dr. U. Surya Kameswari

