

SOFTWARE ENGINEERING
M.Sc. Computer Science

First Year, Semester-II, Paper-III

Lesson Writers

Dr. Neelima Guntupalli
Assistant Professor

Department of CS&E
Acharya Nagarjuna University

Dr. Kampa Lavanya
Assistant Professor

Department of CS&E
Acharya Nagarjuna University

Mrs. Appikatla Pushpa Latha
Faculty, Deponent of CS&E

Acharya Nagarjuna University

Dr. U. Surya Kameswari

Assistant Professor
Department of CS&E

Acharya Nagarjuna University

Editor

Dr. U. Surya Kameswari
Assistant Professor

Department of CS&E
Acharya Nagarjuna University

Academic Advisor

Dr. Kampa Lavanya
Assistant Professor

Department of CS&E
Acharya Nagarjuna University

 DIRECTOR, I/c.
Prof. V. Venkateswarlu

 M.A., M.P.S., M.S.W., M.Phil., Ph.D.
CENTRE FOR DISTANCE EDUCATION
ACHARYA NAGARJUNA UNIVERSITY

NAGARJUNA NAGAR 522 510
Ph: 0863-2346222, 2346208

 0863- 2346259 (Study Material)
Website www.anucde.info

E-mail: anucdedirector@gmail.com

M.Sc., (Computer Science) : SOFTWARE ENGINEERING

First Edition : 2025

No. of Copies :

© Acharya Nagarjuna University

This book is exclusively prepared for the use of students of M.Sc. (Computer Science),
Centre for Distance Education, Acharya Nagarjuna University and this book is meant
for limited circulation only.

Published by:

Prof. V. VENKATESWARLU
Director, I/c
Centre for Distance Education,
Acharya Nagarjuna University

Printed at:

FOREWORD

Since its establishment in 1976, Acharya Nagarjuna University has been

forging ahead in the path of progress and dynamism, offering a variety of courses

and research contributions. I am extremely happy that by gaining ‘A+’ grade from

the NAAC in the year 2024, Acharya Nagarjuna University is offering educational

opportunities at the UG, PG levels apart from research degrees to students from

over 221 affiliated colleges spread over the two districts of Guntur and Prakasam.

The University has also started the Centre for Distance Education in 2003-

04 with the aim of taking higher education to the door step of all the sectors of the

society. The centre will be a great help to those who cannot join in colleges, those

who cannot afford the exorbitant fees as regular students, and even to housewives

desirous of pursuing higher studies. Acharya Nagarjuna University has started

offering B.Sc., B.A., B.B.A., and B.Com courses at the Degree level and M.A.,

M.Com., M.Sc., M.B.A., and L.L.M., courses at the PG level from the academic

year 2003-2004 onwards.

To facilitate easier understanding by students studying through the distance

mode, these self-instruction materials have been prepared by eminent and

experienced teachers. The lessons have been drafted with great care and expertise

in the stipulated time by these teachers. Constructive ideas and scholarly

suggestions are welcome from students and teachers involved respectively. Such

ideas will be incorporated for the greater efficacy of this distance mode of

education. For clarification of doubts and feedback, weekly classes and contact

classes will be arranged at the UG and PG levels respectively.

It is my aim that students getting higher education through the Centre for

Distance Education should improve their qualification, have better employment

opportunities and in turn be part of country’s progress. It is my fond desire that in

the years to come, the Centre for Distance Education will go from strength to

strength in the form of new courses and by catering to larger number of people. My

congratulations to all the Directors, Academic Coordinators, Editors and Lesson-

writers of the Centre who have helped in these endeavors.

Prof. K. Gangadhara Rao

M.Tech., Ph.D.,

Vice-Chancellor I/c

Acharya Nagarjuna University.

203CP24 SOFTWARE ENGINEERING

SYLLABUS
Unit-I:

Introduction to Software Engineering: The Evolving Role of Software, Software, The
Changing Nature of Software, Legacy Software: The Quality of legacy software, Software
Evolution, Software Myths.

Process Models: A Generic Process Model, Process Assessment and Improvement,
Prescriptive Process Models, The Waterfall Model, Incremental Process Models: The
Incremental Model, The RAD Model, Evolutionary Process Model: Prototyping, The Spiral
Model, The Concurrent Development Model, Specialized Process Models: Component Based
Development, The formal Methods Model, The Unified Process, Personal and Team Process
Models, Process Technology, Product and Process. An Agile View of Process: What is
Agility? What is Agile Process? Agile Process Models: Extreme Programming, Adaptive
Software Development, Dynamic Systems Development Method, Scrum, Crystal, Feature
Driven Development, Agile Modeling.

Unit-II

Metrics for Process and Projects: Metrics in the Process and Project Domains, Software
Measurement, Metrics for Software Quality, Integrating Metrics within Software Process,
Metrics for Small Organizations, Establishing a Software Metrics Program.

Project Management: The Management Spectrum, the People, The Product, The Process,
The Project, The W5HH Principles.

Unit-III

Requirement Engineering: Requirement Modeling Strategies, Flow Oriented Modeling,
Creatin! a Behavioural Model, Patterns for Requirement Modeling, Requirement Modeling
for Webapps.

Building the Analysis Model: Requirement Analysis, Analysis Modeling Approaches, Data
Modeling Concepts, Object Oriented Analysis, Scenario Based Modeling, Flow Oriented
Modeling, Class Based Modeling, Creating a Behavioral Model.

Design Engineering: Design within the contextof Software Engineering, Design Process and
Design Quality, Design Concepts, The Design Model, Pattern Based Software Design.

Unit-IV

Creating an Architectural Design: Software architecture, Datadesign, Architectural styles
and patterns, Architectural Design.

performing User interface Design: Golden rules, User interface analysis and design,
interface analysis, interface design steps, Design evaluation.

Unit-V

Testing Strategies: A strategic Approach to Software Testing, Strategic Issues, and Test
Strategies for conventional Software, Testing Strategies for Object Oriented Software,
Validation Testing, System Testing, the Art of Debugging.

Testing Tactics: Software Testing Fundamentals, Black Box and White Box Testing, White
Box Testing, Basis Path Testing, Control Structure Testing, Black Box Testing, Object
Oriented Testing Methods, Testing Methods Applicable at the class level, InterClass Test
Case Design, Testing for Specialized Environments, Architectures and Applications Testing
Patterns.

Prescribed Book:

Roger S Pressman, "Software Engineering-A Practitioner's Approach", Sixth Edition, TMH
International.

Reference Books:

1. Sommerville, "Software Engineering", Seventh Edition Pearson Education (2007)
2. S.A.Kelkar, "software Engineering - A Concise Study", PHI.
3. Waman S.Jawadekar, "Software Engineering", TMH.
4. Ali Behforooz and Frederick J.Hudson, "Software Engineering Fundamentals",

Oxford (2008).

203CP24

M.Sc., (Computer Science)
MODEL QUESTION PAPER

 SOFTWARE ENGINEERING
Time: 3 Hours Max. Marks: 70

Answer ONE Question from Each Unit 5 × 14 = 70 Marks

UNIT – I

1.
a) Define Software Engineering and explain the need for a disciplined approach to software
development. (7M)
b) Discuss various Software Myths and explain how they mislead project planning. (7M)

OR
2.
a) Describe the Phases of Software Development Life Cycle (SDLC) with a neat diagram. (7M)
b) Explain the Waterfall and Incremental process models, highlighting their merits and demerits. (7M)

UNIT – II
3.
a) Define the term Software Metric. Explain Process Metrics and Project Metrics with suitable
examples. (7M)
b) Describe Size-oriented and Function-oriented Metrics used for software measurement. (7M)

OR
4.
a) What are the major activities of Software Project Management? Explain each briefly. (7M)
b) Discuss Effort Estimation Techniques and describe the role of COCOMO Model in cost estimation.
(7M)

UNIT – III
5.
a) Explain the steps in the Requirement Engineering Process. How does it help in building a complete
SRS? (7M)
b) Discuss the various Types of Requirements in software projects with examples. (7M)

OR
6.
a) Explain Data Flow Diagrams (DFDs) and their role in analysis modeling with a suitable case study.
(7M)
b) Describe the concept of Design Engineering and explain the principles of Modularity and
Cohesion. (7M)

UNIT – IV
7.
a) What is Software Architecture? Describe different Architectural Design Styles with diagrams. (7M)
b) Explain User Interface Design Process and discuss the Golden Rules of UI Design. (7M)

OR
8.
a) What are the steps involved in Creating an Architectural Design? Illustrate with a suitable example.
(7M)
b) Explain User Interface Design Evaluation and how usability is measured. (7M)

UNIT – V
9.
a) Explain the Strategic Approach to Software Testing. What are the key objectives of testing? (7M)
b) Describe Unit Testing and Integration Testing strategies for conventional software. (7M)

OR

10.
a) Define Validation and System Testing. Explain how both contribute to overall software quality.
(7M)
b) Write short notes on the Art of Debugging and the role of Regression Testing. (7M)

CONTENTS

S.No. TITLE PAGE No.

1 INTRODUCTION TO SOFTWARE ENGINEERING 1.1-1.12

2 PROCESS MODELS 2.1-2.12

3 AN AGILE VIEW OF PROCESS 3.1-3.10

4 METRICS FOR PROCESS AND PROJECTS 4.1-4.13

5 PROJECT MANAGEMENT 5.1-5.10

6 REQUIREMENT ENGINEERING 6.1-6.7

7 BUILDING THE ANALYSIS MODEL 7.1-7.12

8 DESIGN ENGINEERING 8.1-8.9

9 CREATING AN ARCHITECTURAL DESIGN 9.1-9.11

10 PERFORMING USER INTERFACE DESIGN 10.1-10.10

11 TESTING STRATEGIES 11.1-11.11

12
TESTING STRATEGIES FOR OBJECT ORIENTED
SOFTWARE

12.1-12.11

13 FUNDAMENTAL TESTING TACTICS

13.1-13.13

14
OBJECT ORIENTED TESTING METHODS

14.1-14.11

15 TESTING FOR SPECIALIZED ENVIRONMENTS 15.1-15.9

16 TESTING PATTERNS 16.1-16.13

LESSON- 01

INTRODUCTION TO SOFTWARE ENGINEERING

AIMS AND OBJECTIVES

After studying this lesson, you should be able to:

• Define software engineering and explain its scope and need.

• Describe the nature and characteristics of software.

• Explain software engineering as a layered technology.

• Identify the major framework and umbrella activities of the software process.

• Recognize myths, application domains, and ethical issues in software development.

STRUCTURE

1.1 INTRODUCTION TO SOFTWARE ENGINEERING

1.2 NATURE AND CHARACTERISTICS OF SOFTWARE

 1.2.1 SOFTWARE CHARACTERISTICS

 1.2.2 THE CHANGING NATURE OF SOFTWARE

1.3 THE EVOLVING ROLE OF SOFTWARE

1.4 SOFTWARE ENGINEERING AS A LAYERED TECHNOLOGY

 1.4.1 QUALITY FOCUS

 1.4.2 PROCESS LAYER

 1.4.3 METHODS LAYER

 1.4.4 TOOLS LAYER

1.5 THE SOFTWARE PROCESS FRAMEWORK

 1.5.1 FRAMEWORK ACTIVITIES

 1.5.2 UMBRELLA ACTIVITIES

1.6 SOFTWARE ENGINEERING MYTHS

 1.6.1 MANAGEMENT MYTHS

 1.6.2 CUSTOMER MYTHS

 1.6.3 PRACTITIONER MYTHS

1.7 SOFTWARE APPLICATION DOMAINS

 1.7.1 SYSTEM SOFTWARE

 1.7.2 REAL-TIME SOFTWARE

 1.7.3 BUSINESS SOFTWARE

 1.7.4 EMBEDDED AND WEB-BASED SOFTWARE

1.8 PROFESSIONAL AND ETHICAL RESPONSIBILITY

1.9 SUMMARY

1.10 TECHNICAL TERMS

1.11 SELF-ASSESSMENT QUESTIONS

1.12 SUGGESTED READINGS

1.1. INTRODUCTION TO SOFTWARE ENGINEERING

A software engineer studies, designs, develops, maintains, and eventually phases out software,

making it super important in nearly every organization. The importance of software

engineering extends beyond large IT companies and MNCs, it impacts daily life by providing

numerous benefits. Basically, Software engineering was introduced to address the issues of

low-quality software projects. Here, the development of the software uses the well-defined

scientific principal method and procedure. In other words, software engineering is a process in

Centre for Distance Education 1.2 Acharya Nagarjuna University

which the needs of users are analyzed and then the software is designed as per the requirement

of the user. Software engineering builds this software and application by using designing and

programming language. This chapter explores what software engineering is, the importance of

software engineering, and principles of software engineering.

What is Software Engineering? The term software engineering is the product of two words,

software, and engineering.

The software is a collection of integrated programs.

• Software subsists of carefully organized instructions and code written by developers

on any of various computer languages.

• Computer programs and related documentation such as requirements, design models

and user manuals.

Engineering is the application of scientific and practical knowledge to invent, design, build,

maintain, and improve frameworks, processes, etc.

Fig 1.1. Software Engineering

Software Engineering is an engineering branch related to the evolution of software product

using well-defined scientific principles, techniques, and procedures. The result of software

engineering is an effective and reliable software product.

Software engineering is the systematic, disciplined, and quantifiable approach to the

development, operation, and maintenance of software systems.

According to Pressman:

“Software engineering is the application of a layered technology and engineering principles

to obtain reliable, efficient, and cost-effective software.”

Example 1

In the 1996 Ariane 5 rocket failure, a 64-bit floating-point number was converted to a 16-bit

integer, causing overflow and destruction of the rocket.

→ This demonstrates the need for structured engineering practices in software.

SOFTWARE ENGINEERING 1.3 INTRODUCTION TO SOFTWARE…

Software and the Engineering Analogy

Like other branches of engineering, software engineering involves:

• Analysis of requirements

• Design of solutions

• Construction (coding and integration)

• Testing and maintenance

However, software differs in being intangible, evolvable, and knowledge-intensive rather

than material.of the technology required to deliver a complex application.

1.2 NATURE AND CHARACTERISTICS OF SOFTWARE

1.2.1 Software Characteristics

1. Intangibility – Software cannot be seen or touched. Its quality is judged by behavior,

not appearance.

2. Engineered Product – Software is designed and developed, not manufactured.

3. No Wear and Tear – Software does not physically deteriorate; it fails due to changes

or environment issues.

4. Complexity – A small program may contain thousands of inter-dependent

instructions.

5. Custom-built Nature – Most software is unique and built for specific needs.

6. Changeability – Continuous updates are required to adapt to new requirements.

1.2.2 The Changing Nature of Software

The nature of software has changed a lot over the years.

• System Software: Infrastructure software come under this category like compilers,

operating systems, editors, drivers, etc. Basically, system software is a collection of

programs to provide service to other programs.

• Real time Software: These software is used to monitor, control and analyse real

world events as they occur. An example may be software required for weather

forecasting. Such software will gather and process the status of temperature, humidity

and other environmental parameters to forecast the weather.

• Embedded Software: This type of software is placed in “Read-Only- Memory

(ROM)”of the product and control the various functions of the product. The product

could be an aircraft, automobile, security system, signalling system, control unit of

power plants, etc. The embedded software handles hardware components and is also

termed as intelligent software

• Business Software : This is the largest application area. The software designed to

process business applications is called business software. Business software could be

payroll, file monitoring system, employee management, account management. It may

also be a data warehousing tool which helps us to take decisions based on available

data. Management information system, enterprise resource planning (ERP) and such

other software are popular examples of business software.

Centre for Distance Education 1.4 Acharya Nagarjuna University

• Personal Computer Software: The software used in personal computers are covered

in this category. Examples are word processors, computer graphics, multimedia and

animating tools, database management, computer games etc. This is a very upcoming

area, and many big organisations are concentrating their effort here due to large

customer base.

• Artificial intelligence Software: Artificial Intelligence software makes use of non-

numerical algorithms to solve complex problems that are not amenable to

computation or straight forward analysis. Examples are expert systems, artificial

neural network, signal processing software etc.

• Web based Software: The software related to web applications come under this

category. Examples are CGI, HTML, Java, Perl, DHTML etc.

• AI and Data Analytics: Machine learning models and cloud systems.

• Software today acts as the enabler of innovation and a competitive differentiator.

Figure 1.2 Software failure curve compared to hardware failure curve — hardware failures

show “bathtub” shape; software failure rate remains constant until changes introduce new

faults. Failure curves.

Legacy software is software that has been around a long time and still fulfils a business need.

It is mission critical and tied to a particular version of an operating system or hardware model

(vendor lock-in) that has gone end-of-life. Generally, the lifespan of the

hardware is shorter than that of the software.

Common Quality Issues in Legacy Software:

• Maintenance Challenges

Legacy software often lacks modern features and may be built on outdated technologies,

making it difficult to update and maintain. The original developers might no longer be

available, and the documentation may be insufficient or missing, complicating the

maintenance process.

• Compatibility Issues

Legacy software might not be compatible with newer hardware, operating systems, or other

software applications. This incompatibility can limit the integration of new technologies and

systems, reducing overall efficiency and productivity.

SOFTWARE ENGINEERING 1.5 INTRODUCTION TO SOFTWARE…

• Security Vulnerabilities

Older software often lacks the robust security features found in modern applications. This can

make legacy systems vulnerable to cyber-attacks and security breaches, posing significant

risks to the organization.

• Performance Problems

Legacy systems may suffer from performance issues due to outdated code and inefficient

algorithms. These problems can lead to slow processing times, increased downtime, and

overall reduced system performance.

• Lack of Documentation

Over time, documentation for legacy software may become outdated or lost. Without proper

documentation, understanding and modifying the system becomes challenging, leading to

potential errors and inefficiencies.

• Technical Debt

Legacy software often accumulates technical debt, which refers to the extra work required to

fix issues that arise when code that is easy to implement in the short term is used instead of

applying the best overall solution. This debt can hinder the software’s ability to evolve and

adapt to new requirements.

1.3 THE EVOLVING ROLE OF SOFTWARE

The process of developing a software product using software engineering principles and

methods is referred to as software evolution. This includes the initial development of

software and its maintenance and updates, till the desired software product is developed,

which satisfies the expected requirements.

Evolution starts from the requirement gathering process. After which developers create a

prototype of the intended software and show it to the users to get their feedback at the early

stage of software product development. The users suggest changes, on which several

consecutive updates and maintenance keep on changing too. This process changes to the

original software, till the desired software is accomplished.

Figure.1.3. Software Evolution

Even after the user has desired software in hand, the advancing technology and the changing

requirements force the software product to change accordingly. Re-creating software from

scratch and going one-on-one with requirement is not feasible. The only feasible and

economical solution is to update the existing software so that it matches the latest

requirements.

Centre for Distance Education 1.6 Acharya Nagarjuna University

Software permeates every industry:

• System Software: Operating systems, compilers.

• Real-Time Software: Air-traffic control, nuclear plant monitoring.

• Business Software: ERP, banking solutions.

• Web and Mobile Apps: E-commerce, social networks.

• AI and Data Analytics: Machine learning models and cloud systems.

Software today acts as the enabler of innovation and a competitive differentiator.

1.4 SOFTWARE ENGINEERING AS A LAYERED TECHNOLOGY

Pressman defines software engineering as a four-layered technology, where each layer

supports the next.

1.4.1 Quality Focus

At the core lies quality — the driving principle for all activities.

1.4.2 Process Layer

The software process provides a framework for effective delivery (requirements → design →

code → test).

1.4.3 Methods Layer

Methods provide technical how-to’s for building software (analysis, design, coding

techniques, testing).

1.4.4 Tools Layer

Automated tools support process and methods — CASE tools, IDEs, version control, test

frameworks.

Figure 1.3 Software engineering layers : Layered view showing concentric rings — inner

core Quality Focus, surrounded by Process, Methods, and Tools.

1.5 THE SOFTWARE PROCESS FRAMEWORK

The process framework defines a set of generic activities applicable to most software

projects.

SOFTWARE ENGINEERING 1.7 INTRODUCTION TO SOFTWARE…

1.5.1 Framework Activities

1. Communication – Requirements elicitation with stakeholders.

2. Planning – Estimate effort, schedule, resources.

3. Modeling – Analysis and design models.

4. Construction – Coding and unit testing.

5. Deployment – Delivery and feedback from the customer.

1.5.2 Umbrella Activities

Support all framework activities:

• Software Configuration Management

• Quality Assurance

• Risk Management

• Measurement and Metrics

• Documentation and Reviews

Figure 1.4 Generic process framework

1.6. SOFTWARE MYTHS

Software Myths- beliefs about software and the process used to build it - can be traced to the

earliest days of computing. Myths have a number of attributes that have made them insidious.

For instance, myths appear to be reasonable statements of fact, they have an intuitive feel,

and they are often promulgated by experienced practitioners “who know the score”.

Myth: Software that works perfectly will never need maintenance.

Reality: All software requires maintenance due to evolving requirements, environments, and

the discovery of bugs. Even the best-designed software must adapt to changes in user needs,

operating environments, and technological advancements.

Myth: Adding more developers to a late project will speed it up.

Centre for Distance Education 1.8 Acharya Nagarjuna University

Reality: Adding more developers to a late project often leads to further delays due to

increased complexity and communication overhead. This phenomenon is known as Brooks'

Law, which states, "Adding manpower to a late software project makes it later."

Myth: Once software is written, it’s done.

Reality: Software development is an ongoing process that involves continuous updates,

improvements, and adaptations. Software must evolve to meet changing requirements and

environments.

Myth: More features make better software

Reality: More features do not necessarily make better software. Adding unnecessary features

can lead to bloated software, which is harder to use, maintain, and secure. Focusing on core

functionalities and usability is often more important.

Myth: Software can be completely bug-free.

Reality: While rigorous testing and quality assurance can minimize bugs, it is virtually

impossible to create completely bug-free software. The goal should be to identify and fix

critical bugs and continuously improve the software.

Myth: Software development is purely technical.

Reality: Software development is not just a technical activity; it involves significant

collaboration, communication, and problem-solving among team members, stakeholders, and

users.

Myth: Open-source software is less secure than proprietary software.

Reality: Open-source software can be as secure, if not more secure, than proprietary

software. The open-source community actively reviews and improves the code, leading to

robust security practices.

1.7 SOFTWARE APPLICATION DOMAINS

1.7.1 System Software

Operating systems, compilers, database managers that form the computing infrastructure.

1.7.2 Real-Time Software

Monitors and responds to real-world events within time constraints (e.g., missile guidance,

industrial automation).

1.7.3 Business Software

Supports business operations – accounting, payroll, ERP systems.

1.7.4 Embedded and Web-Based Software

Embedded software resides in hardware devices; web software enables cloud, mobile, and

IoT applications.

SOFTWARE ENGINEERING 1.9 INTRODUCTION TO SOFTWARE…

Figure 1.4 (description): Pie chart showing percentage distribution of software types –

Business (~35%), Embedded (~25%), System (~15%), Web/Mobile (~25%).

1.8 PROFESSIONAL AND ETHICAL RESPONSIBILITY

Software engineers must adhere to ethical principles defined by the ACM/IEEE Code of

Ethics:

1. Public – act consistently with public interest.

2. Client and Employer – serve honestly.

3. Product – ensure high standards of quality.

4. Judgment – maintain independence and integrity.

5. Management – promote ethical management of software projects.

6. Profession – advance the reputation of software engineering.

7. Colleagues – be fair and supportive.

8. Self – participate in lifelong learning.

Example 2

A developer who finds a security flaw before product release must report it ethically even if it

delays delivery.

Ethics ensure trust and safety in software practice.

1.9 SUMMARY

• Software is an engineered product that requires systematic processes and tools.

• It differs from hardware in its intangibility and continuous evolution.

• Pressman’s four-layer technology emphasizes quality focus, process, methods, and

tools.

• Generic framework activities guide development through communication, planning,

modeling, construction, and deployment.

• Understanding and dispelling myths improves project success.

• Ethical and professional conduct is essential for sustainable software practice.

1.10 TECHNICAL TERMS

Software Engineering, Software Process, Quality Focus, Process Framework, Umbrella

Activity, Methods, Tools, Software Characteristics, Legacy Software, Agile Process, Software

Myths, System Software, Real-Time Software, Business Software, Embedded Software,

Web-Based Software, CASE Tools, Ethics, Maintenance, Configuration Management,

Verification, Validation.

1.11 SELF-ASSESSMENT QUESTIONS

Essay Questions

1. Define software engineering and explain its layered technology structure.

2. Discuss the generic software process framework with a neat diagram.

3. What are software engineering myths? Classify and illustrate them.

4. Explain the different software application domains with examples.

5. Describe the importance of ethics in software engineering.

Centre for Distance Education 1.10 Acharya Nagarjuna University

Short Notes

1. Write short notes on the changing nature of software.

2. Differentiate between system and real-time software.

3. Explain umbrella activities in the software process.

4. What is the role of tools in software engineering?

1.12 SUGGESTED READINGS

1. Roger S. Pressman, Software Engineering – A Practitioner’s Approach, 6th Edition,

TMH International.

2. Ian Sommerville, Software Engineering, 9th Edition, Pearson Education.

3. Carlo Ghezzi et al., Fundamentals of Software Engineering, Prentice Hall.

4. IEEE Std 610.12-1990 – Standard Glossary of Software Engineering Terminology.

5. ACM/IEEE Software Engineering Code of Ethics and Professional Practice

(https://ethics.acm.org.

Dr. Neelima Guntupalli

https://ethics.acm.org/

LESSON- 02

PROCESS MODELS

AIMS AND OBJECTIVES

After studying this lesson, the learner will be able to:

• Understand what a software process model is and its significance.

• Describe the generic process model and framework activities.

• Explain the major prescriptive process models (Waterfall, Incremental,

Evolutionary, and Concurrent).

• Discuss specialized process models such as Component-Based, Formal Methods, and

Aspect-Oriented approaches.

• Understand the Unified Process, PSP, and TSP.

• Recognize the relationship between product and process in software engineering.

STRUCTURE

2.1 A GENERIC PROCESS MODEL

 2.1.1 DEFINING A FRAMEWORK ACTIVITY

 2.1.2 IDENTIFYING A TASK SET

 2.1.3 PROCESS PATTERNS

2.2 PROCESS ASSESSMENT AND IMPROVEMENT

2.3 PRESCRIPTIVE PROCESS MODELS

 2.3.1 THE WATERFALL MODEL

 2.3.2 INCREMENTAL PROCESS MODELS

 2.3.3 EVOLUTIONARY PROCESS MODELS

 2.3.4 CONCURRENT MODELS

 2.3.5 A FINAL WORD ON EVOLUTIONARY PROCESSES

2.4 SPECIALIZED PROCESS MODELS

 2.4.1 COMPONENT-BASED DEVELOPMENT

 2.4.2 THE FORMAL METHODS MODEL

 2.4.3 ASPECT-ORIENTED SOFTWARE DEVELOPMENT

2.5 THE UNIFIED PROCESS

 2.5.1 A BRIEF HISTORY

 2.5.2 PHASES OF THE UNIFIED PROCESS

2.6 PERSONAL AND TEAM PROCESS MODELS

 2.6.1 PERSONAL SOFTWARE PROCESS (PSP)

 2.6.2 TEAM SOFTWARE PROCESS (TSP)

2.7 PROCESS TECHNOLOGY

2.8 PRODUCT AND PROCESS

2.9 SUMMARY

2.10 TECHNICAL TERMS

2.11 SELF-ASSESSMENT QUESTIONS

2.12 SUGGESTED READINGS

Centre for Distance Education 2.2 Acharya Nagarjuna University

2.1 A GENERIC PROCESS MODEL

A software process model represents an abstract framework describing the set of activities

required to build software products. According to Pressman, each process model organizes

these activities in a particular manner, but all share a generic framework.

Fig 2.1 A software process framework

Process: A set of activities, methods, practices, and transformations that people use to

develop and maintain software and the associated products (e.g., project plans, design

documents, code, test cases, and user manuals).

• The foundation for software engineering is the process layer. It is the glue that holds

the technology layers together and enables rational and timely development of

computer software.

• Process defines a framework that must be established for effective delivery of

software engineering technology.

• The software process forms the basis for management control of software projects and

establishes the context in which technical methods are applied, work products

SOFTWARE ENGINEERING 2.3 PROCESS MODELS

(models, documents, data, reports, etc.) are produced, milestones are established,

quality is ensured, and change is properly managed.

• Software engineering methods provide the technical ―’how to’ for building software.

Methods encompass a broad array of tasks that include communication, req. analysis,

design, coding, testing and support.

• Software engineering tools provide automated or semi-automated support for the

process and the methods

2.1.1 Defining a Framework Activity

Pressman identifies five generic activities:

1. Communication — establishing understanding with stakeholders.

2. Planning — determining resources, effort, and schedule.

3. Modeling — analyzing and designing the software solution.

4. Construction — coding and testing.

5. Deployment — delivering the product, obtaining feedback.

The first activity, Communication, involves effective interaction between developers and

stakeholders to gather requirements and understand the project objectives clearly.

The second, Planning, focuses on defining resources, estimating effort, scheduling tasks, and

identifying potential risks to ensure that the project proceeds in a controlled and organized

manner.

The third, Modeling, translates requirements into representations such as analysis and design

models that guide construction and help visualize system structure and behavior.

The fourth, Construction, is the stage where actual software development takes place —

writing code, performing unit testing, and integrating components to produce a working

system.

Finally, Deployment delivers the software to end users, obtains feedback, and initiates

necessary maintenance or updates.

Together, these five activities form a comprehensive process framework applicable to all

software projects, ensuring consistency, quality, and continuous improvement throughout the

development lifecycle.

These activities occur in every software project, regardless of model.

Fig 2.2 Linear Process flow

Centre for Distance Education 2.4 Acharya Nagarjuna University

Fig 2.3 Iterative Process flow

2.1.2 Identifying a Task Set

A task set is a collection of work tasks, milestones, and deliverables that ensure completion of a

framework activity.

Example: For “Communication,” tasks may include stakeholder interviews, requirement

workshops, and review meetings.

2.1.3 Process Patterns

A process pattern captures reusable knowledge about processes that work well in certain

contexts. Each pattern defines a problem–context–solution structure and may be combined with

others to create customized process flows.

Fig 2.4 Example Process pattern

2.2 PROCESS ASSESSMENT AND IMPROVEMENT

Process assessment and improvement are crucial for maintaining and enhancing the quality

and efficiency of software development processes. Various standards and methodologies

have been developed to facilitate these activities. Here, we discuss several key frameworks

and models used for process assessment and improvement in software engineering:

❖ Standard CMMI Assessment Method for Process Improvement (SCAMPI)

The Standard CMMI Assessment Method for Process Improvement (SCAMPI) is a

comprehensive methodology used to assess an organization's process maturity based on the

Capability Maturity Model Integration (CMMI) framework. SCAMPI provides a structured

SOFTWARE ENGINEERING 2.5 PROCESS MODELS

approach for evaluating process implementation and effectiveness, identifying strengths and

weaknesses, and establishing a basis for continuous improvement. SCAMPI assessments are

classified into three classes:

• Class A: Provides the most rigorous assessment, often used for official ratings.

• Class B: Less formal and typically used for internal assessments to identify areas for

improvement.

• Class C: The least formal, used for quick evaluations and initial assessments.

❖ CMM-Based Appraisal for Internal Process Improvement (CBA IPI)

The CMM-Based Appraisal for Internal Process Improvement (CBA IPI) is another

methodology designed for assessing and improving software processes based on the

Capability Maturity Model (CMM). It focuses on:

• Identifying the maturity level of the current processes.

• Highlighting process strengths and areas needing improvement.

• Providing a roadmap for achieving higher maturity levels.

CBA IPI involves detailed data collection through interviews, document reviews, and

observations to provide a thorough analysis of process performance.

❖ SPICE (ISO/IEC 15504)

SPICE, or Software Process Improvement and Capability Determination, is an international

standard (ISO/IEC 15504) for assessing and improving software processes. It provides a

framework for:

• Process assessment: Evaluating the capability of software processes against a

predefined set of criteria.

• Process improvement: Identifying and implementing improvements based on

assessment results.

• SPICE is widely used in various industries to ensure that software processes are

efficient, effective, and capable of producing high-quality products.

❖ ISO 9001:2000 for Software

ISO 9001:2000 is part of the ISO 9000 family of standards for quality management systems.

When applied to software development, it focuses on:

• Establishing a quality management system that meets customer and regulatory

requirements.

• Continuous improvement of processes through regular audits and reviews.

• Documenting processes to ensure consistency and repeatability.

ISO 9001:2000 emphasizes a process-oriented approach, ensuring that software development

processes are systematically managed and improved.

Key Steps in Process Assessment

Regardless of the specific methodology used, process assessment typically involves the

following steps:

Centre for Distance Education 2.6 Acharya Nagarjuna University

1. Preparation:

o Define the scope and objectives of the assessment.

o Select the assessment team and prepare necessary documentation.

2. Data Collection:

o Gather data through interviews, surveys, and document reviews.

o Observe process execution to understand current practices.

3. Analysis:

o Evaluate the collected data against predefined criteria or standards.

o Identify strengths, weaknesses, and areas for improvement.

4. Reporting:

o Document the findings and provide actionable recommendations.

o Communicate results to stakeholders and develop an improvement plan.

5. Implementation:

o Implement the recommended improvements.

o Monitor progress and adjust the plan as needed.

By following these steps, organizations can systematically assess and improve their software

development processes, leading to higher efficiency, better quality products, and increased

customer satisfaction.

2.3 PRESCRIPTIVE PROCESS MODELS

Prescriptive models provide structured guidelines for planning, scheduling, and controlling

software projects.

2.3.1 The Waterfall Model

Introduced in the 1970s, this is the linear-sequential approach.

Phases: Requirements → Design → Implementation → Testing → Deployment →

Maintenance.

Advantages:

• Simple and easy to manage.

• Works well for clearly defined requirements.

Limitations:

• Difficult to accommodate change.

• Late testing feedback.

Fig 2.5 Waterfall Model

SOFTWARE ENGINEERING 2.7 PROCESS MODELS

The waterfall model, sometimes called the classic life cycle, suggests a systematic, sequential

approach6 to software development that begins with customer specification of requirements

and progresses through planning, modelling, construction, and deployment, culminating in

ongoing support of the completed software.

2.3.2 Incremental Process Models

Software is developed in increments — each delivers a working subset of functionality.

Users gain early access, and feedback drives successive releases.

Advantages:

• Early delivery of partial systems.

• Easier risk management and adaptation.

Example: Modern web applications where updates are periodically released.

Figure 2.6 Incremental Model

For example, a major system might require the availability of new hardware that is under

development and whose delivery date is uncertain. It might be possible to plan early increments

in a way that avoids the use of this hardware, thereby enabling partial functionality to be

delivered to end users without inordinate delay

2.3.3 Evolutionary Process Models

Emphasize iterative refinement through multiple cycles of analysis, design, and prototype.

Two well-known forms:

• Prototyping Model: A throwaway or evolutionary prototype is built to clarify

requirements.

• Spiral Model (Boehm): Combines prototyping and risk analysis in a cyclic structure.

prototyping can be an effective paradigm for software engineering. The key is to define the

rules of the game at the beginning; that is, all stakeholders should agree that the prototype is

built to serve as a mechanism for defining requirements

Centre for Distance Education 2.8 Acharya Nagarjuna University

Prototyping can be an effective paradigm in software engineering when used appropriately and

with clear expectations. It involves building an initial working model of the system, allowing

both developers and users to visualize, evaluate, and refine requirements early in the

development process. The key to successful prototyping lies in defining the rules of

engagement at the outset — all stakeholders must agree that the prototype is not the final

product, but a tool for eliciting and validating requirements. This shared understanding prevents

misunderstandings and unrealistic expectations. By enabling early user feedback and iterative

refinement, prototyping helps uncover missing or unclear requirements, reduces development

risks, and ensures that the final system aligns more closely with user needs and business goals.

Figure 2.6 The prototyping paradigm

Using the spiral model, software is developed in a series of evolutionary releases. During early

iterations, the release might be a model or prototype. During later iterations, increasingly more

complete versions of the engineered system are produced.

Figure 2.7 Spiral Model

SOFTWARE ENGINEERING 2.9 PROCESS MODELS

Spiral Model with concentric loops representing Planning, Risk Analysis, Engineering, and

Evaluation.

The Spiral Model, proposed by Barry Boehm, is an evolutionary software process model that

combines the iterative nature of prototyping with the systematic aspects of the Waterfall model.

The model is visualized as a spiral with concentric loops, where each loop represents one phase

or iteration of the development process. Every loop passes through four key quadrants —

Planning, Risk Analysis, Engineering, and Evaluation.

In the Planning quadrant, project objectives, alternatives, and constraints are identified. The

Risk Analysis quadrant focuses on assessing technical and managerial risks, evaluating possible

solutions, and developing strategies to mitigate them. The Engineering quadrant involves actual

development activities such as coding, testing, and integration. Finally, in the Evaluation

quadrant, the customer reviews the product, provides feedback, and decides on the next

iteration.

Each cycle of the spiral results in a progressively refined version of the software, with risk

management at its core. This makes the Spiral Model particularly suitable for large, complex,

and high-risk projects, where early identification and mitigation of risks are critical to success.

Advantages: Handles changing requirements, encourages user feedback.

Limitations: Complex management and requires skilled teams.

2.3.4 Concurrent Models

In the Concurrent Model, all framework activities occur in parallel and change states

independently.This model is suited to event-driven or component-based systems.

Example: A real-time system where design, coding, and testing proceed simultaneously for

different modules.

Centre for Distance Education 2.10 Acharya Nagarjuna University

Figure 2.8 One element of the concurrent process model

Concurrent modeling is applicable to all types of software development and provides an

accurate picture of the current state of a project. Rather than confining software engineering

activities, actions, and tasks to a sequence of events, it defines a process network. Each activity,

action, or task on the network exists simultaneously with other activities, actions, or tasks.

Events generated at one point in the process network trigger transitions among the states.

2.3.5 A Final Word on Evolutionary Processes

Evolutionary models reflect the modern trend toward incremental and agile development,

where requirements and solutions co-evolve through collaboration and feedback.

The intent of evolutionary models is to develop high-quality software14 in an iterative or

incremental manner. However, it is possible to use an evolutionary process to emphasize

flexibility, extensibility, and speed of development. The challenge for software teams and their

managers is to establish a proper balance between these critical project and product parameters

and customer satisfaction (the ultimate arbiter of software quality).

2.4 SPECIALIZED PROCESS MODELS

Specialized process models take on many of the characteristics of one or more of the traditional

models presented in the preceding sections. However, these models tend to be applied when a

specialized or narrowly defined software engineering approach is chosen.

2.4.1 Component-Based Development (CBD)

Systems are assembled from pre-built, reusable components. Emphasizes reuse, standard

interfaces, and integration.

Example: JavaBeans, .NET assemblies, web services.

The component-based development model incorporates the following steps (implemented using

an evolutionary approach):

o Available component-based products are researched and evaluated for

theapplication domain in question.

o Component integration issues are considered.

o A software architecture is designed to accommodate the components.

o Components are integrated into architecture.

o Comprehensive testing is conducted to ensure proper functionality.

2.4.2 The Formal Methods Model

Uses mathematical specifications and proofs to ensure correctness.

Applied to mission-critical software (e.g., aerospace, medical systems).

Advantage — high reliability; Limitation — complex and costly.

Although not a mainstream approach, the formal methods model offers the promise of defect-

free software. Yet, concern about its applicability in a business environment has been voiced:

SOFTWARE ENGINEERING 2.11 PROCESS MODELS

• The development of formal models is currently quite time consuming and

• expensive.

• Because few software developers have the necessary background to apply

• formal methods, extensive training is required.

• It is difficult to use the models as a communication mechanism for technically

unsophisticated customers.

2.4.3 Aspect-Oriented Software Development (AOSD)

Focuses on cross-cutting concerns (e.g., logging, security). Aspects are modularized and woven

into the main code base to enhance modularity.Aspect-oriented software development (AOSD),

often referred to as aspect-oriented programming (AOP), is a relatively new software

engineering paradigm that provides a process and methodological approach for defining,

specifying, designing, and constructing aspects—“mechanisms beyond subroutines and

inheritance for localizing the expression of a crosscutting concern

2.5 THE UNIFIED PROCESS (UP)

A widely used iterative and incremental model that integrates UML and object-oriented

concepts.

2.5.1 A Brief History

Originated from the Rational Unified Process (RUP) developed by Grady Booch, Ivar

Jacobson, and James Rumbaugh. It combines their object-oriented methods into a unified

framework.UML provided the necessary technology to support object-oriented software

engineering practice, but it did not provide the process framework to guide project teams in

their application of the technology. Over the next few years, Jacobson, Rumbaugh, and Booch

developed the Unified Process, a framework for object-oriented software engineering using

UML. T

2.5.2 Phases of the Unified Process

1. Inception Phase: Define scope and business case.

2. Elaboration Phase: Refine requirements, architecture, and risks.

3. Construction Phase: Iterative development and testing.

4. Transition Phase: Deployment and user acceptance.

Figure 2.5 The Unified Process

Centre for Distance Education 2.12 Acharya Nagarjuna University

Key Characteristics of the Unified Process Phases

• Iterative: Each phase may involve multiple iterations.

• Risk-Driven: Early phases reduce uncertainty and manage technical risks.

• Architecture-Centric: Emphasis on stable architecture before full construction.

• Use-Case Driven: Requirements are expressed as use cases guiding design,

implementation, and testing.

• Incremental Delivery: Product evolves through successive builds.

Benefits of the Unified Process

• Promotes early risk identification and mitigation.

• Encourages continuous user involvement.

• Provides a structured yet flexible development framework.

• Ensures quality through iterative verification and validation.

• Suitable for large, complex, and object-oriented projects.

Summary of Unified Process Phases

Phase Primary Goal Key Deliverables Milestone

Inception Define scope and

business justification

Vision Document, Business Case,

Risk List

Lifecycle

Objective

Elaboration Stabilize requirements

and architecture

Software Architecture Document,

Refined Use-Case Model,

Prototype

Lifecycle

Architecture

Construction Develop and test

software iteratively

Code, Test Reports, Beta Release Initial Operational

Capability

Transition Deploy and obtain

user acceptance

Final Product, User Manuals,

Training Materials

Product Release

The four phases of the Unified Process ensure that software evolves from concept to

deployment in a controlled, iterative, and quality-oriented manner.

Each phase ends with a measurable milestone, confirming progress and readiness to proceed.

By integrating risk management, architecture design, and iterative development, the UP

represents one of the most balanced and mature approaches in modern software engineering.

2.6 PERSONAL AND TEAM PROCESS MODELS

2.6.1 Personal Software Process (PSP)

Proposed by Watts Humphrey to help individual developers measure and improve their

performance.

PSP emphasizes planning, size and effort estimation, defect recording, and process analysis.

The Personal Software Process (PSP), proposed by Watts S. Humphrey, provides a structured

framework that helps individual software engineers measure, analyze, and improve their own

performance. PSP emphasizes careful planning, in which developers estimate the tasks to be

performed and set realistic schedules; size and effort estimation, where programmers predict

SOFTWARE ENGINEERING 2.13 PROCESS MODELS

the number of lines of code or function points and the time required to implement them; defect

recording, which involves tracking all errors found during development and their causes; and

process analysis, where data from previous projects are evaluated to identify trends and guide

continuous improvement. By consistently collecting and reviewing these personal metrics,

engineers gain better control over quality, productivity, and predictability, thereby enhancing

both individual and organizational software process maturity.

2.6.2 Team Software Process (TSP)

An extension of PSP to teams. Promotes self-directed teams that plan, track, and improve their

work collectively. Used for high-quality, on-schedule software delivery.

 the following objectives for TSP:

• Build self-directed teams that plan and track their work, establish goals, and own their

processes and plans. These can be pure software teams or integrated product teams

(IPTs) of 3 to about 20 engineers.

• Show managers how to coach and motivate their teams and how to help them sustain

peak performance.

• Accelerate software process improvement by making CMM23 Level 5 behavior normal

and expected.

• Provide improvement guidance to high-maturity organizations.

• Facilitate university teaching of industrial-grade team skills.

2.7 PROCESS TECHNOLOGY

Refers to tools and environments that support the software process: version control systems,

build automation, CASE tools, and project dashboards. Integration of process technology

reduces manual effort and improves visibility and control.

2.8 PRODUCT AND PROCESS

Pressman emphasizes that a good process improves the product.

Process quality is a key determinant of software quality. Measuring and optimizing process

activities leads to better productivity, predictability, and customer satisfaction.

2.9 SUMMARY

• The software process model provides a structured way to develop software.

• All models share five generic activities: communication, planning, modeling,

construction, and deployment.

• Prescriptive models like Waterfall, Incremental, and Spiral define clear phases and

control mechanisms.

• Specialized models address specific needs — reuse, formality, or cross-cutting

concerns.

• The Unified Process integrates object-oriented and iterative development.

• PSP and TSP enable continuous personal and team improvement.

• Effective process technology and quality assurance lead to better products.

Centre for Distance Education 2.14 Acharya Nagarjuna University

2.10 TECHNICAL TERMS

Software Process Model, Framework Activity, Task Set, Process Pattern, CMMI, Waterfall

Model, Incremental Model, Evolutionary Model, Spiral Model, Concurrent Model,

Component-Based Development, Formal Methods, Aspect-Oriented Development, Unified

Process, Rational Unified Process, PSP, TSP, Process Technology, Product Quality, Process

Improvement.

2.11 SELF-ASSESSMENT QUESTIONS

Essay Questions

1. Explain the generic process model and its framework activities.

2. Describe the Waterfall, Incremental, and Spiral models with diagrams.

3. Discuss specialized process models and their applications.

4. Explain the phases of the Unified Process with a neat diagram.

5. Differentiate between PSP and TSP. How do they help in process improvement?

Short Notes

1. Write short notes on process patterns.

2. What is Concurrent Process Model?

3. Explain Component-Based Development.

4. Define process technology with examples.

2.12 SUGGESTED READINGS

1. Roger S. Pressman, Software Engineering – A Practitioner’s Approach, 6th Edition,

TMH International.

2. Ian Sommerville, Software Engineering, 9th Edition, Pearson Education.

3. Watts Humphrey, Managing the Software Process, Addison-Wesley.

4. ISO/IEC 15504 (SPICE): Software Process Improvement and Capability

Determination.

5. Grady Booch, Ivar Jacobson, James Rumbaugh, The Unified Modeling Language User

Guide, Addison-Wesley.

Dr. Neelima Guntupalli

LESSON- 03

AN AGILE VIEW OF PROCESS

AIMS AND OBJECTIVES

After studying this lesson, learners will be able to:

• Define agility and explain why it has become essential in modern software

engineering.

• Understand the cost of change and how Agile addresses it.

• Explain what constitutes an Agile process and its underlying principles.

• Describe Extreme Programming (XP), its values, practices, and variations.

• Discuss other Agile models such as ASD, Scrum, DSDM, Crystal, FDD, LSD, AM,

and AUP.

• Recognize the human, managerial, and technical factors influencing Agile adoption.

• Apply Agile thinking to software process improvement and project success.

STRUCTURE

3.1 WHAT IS AGILITY?

3.2 AGILITY AND THE COST OF CHANGE

3.3 WHAT IS AN AGILE PROCESS?

 3.3.1 AGILITY PRINCIPLES

 3.3.2 THE POLITICS OF AGILE DEVELOPMENT

 3.3.3 HUMAN FACTORS

3.4 EXTREME PROGRAMMING (XP)

 3.4.1 XP VALUES

 3.4.2 THE XP PROCESS

 3.4.3 INDUSTRIAL XP

 3.4.4 THE XP DEBATE

3.5 OTHER AGILE PROCESS MODELS

 3.5.1 ADAPTIVE SOFTWARE DEVELOPMENT (ASD)

 3.5.2 SCRUM

 3.5.3 DYNAMIC SYSTEMS DEVELOPMENT METHOD (DSDM)

 3.5.4 CRYSTAL

 3.5.5 FEATURE DRIVEN DEVELOPMENT (FDD)

 3.5.6 LEAN SOFTWARE DEVELOPMENT (LSD)

 3.5.7 AGILE MODELING (AM)

 3.5.8 AGILE UNIFIED PROCESS (AUP)

3.6 A TOOL SET FOR THE AGILE PROCESS

3.7 SUMMARY

3.8 TECHNICAL TERMS

3.9 SELF-ASSESSMENT QUESTIONS

3.10 SUGGESTED READINGS

Centre for Distance Education 3.2 Acharya Nagarjuna University

2

3.1 WHAT IS AGILITY?

Agility in software engineering refers to the ability of a team to respond rapidly and

effectively to change. Agile teams deliver working software in small, frequent increments,

enabling users to provide feedback early. Instead of rigid, document-heavy procedures, agility

favors adaptation, communication, and simplicity.

Example:

A mobile-banking startup releases a basic transfer feature in two weeks, collects user feedback,

and iterates quickly—an agile response to a changing market.

Agility can be applied to any software process. However, to accomplish this, it is essential that

the process be designed in a way that allows the project team to adapt tasks and to streamline

them, conduct planning in a way that understands the fluidity of an agile development

approach, eliminate all but the most essential work products and keep them lean, and

emphasize an incremental delivery strategy that gets working software to the customer as

rapidly as feasible for the product type and operational environment.

3.2 AGILITY AND THE COST OF CHANGE

Traditional models assume that the cost of change rises exponentially as a project progresses.

Agile methods flatten this curve by introducing continuous integration, automated testing, and

incremental releases.

• Early feedback exposes errors when they are cheap to correct.

• Illustration (description): A comparison graph showing the Waterfall curve climbing

steeply, while the Agile curve stays nearly flat due to rapid iterations.

• Agility therefore transforms change from a threat into an opportunity to enhance

customer value.

Fig 3.1 Change costs as a function of time in development

SOFTWARE ENGINEERING 3.3 AN AGILE VIEW OF PROCESS

3.3 WHAT IS AN AGILE PROCESS?

• An Agile process is a framework that promotes incremental development, team

collaboration, and customer involvement.

• It values working code over heavy documentation and embraces changing requirements

as natural and beneficial.

3.3.1 Agility Principles

Core ideas include:

• Delivering valuable software early and often.

• Welcoming change at any stage.

• Building projects around motivated individuals.

• Communicating face-to-face.

• Measuring progress through working software.

• Striving for simplicity and technical excellence.

3.3.2 The Politics of Agile Development

Agile adoption affects organizational power structures. Managers relinquish tight control;

teams gain autonomy. Resistance may arise from those accustomed to hierarchical command.

Successful transitions require trust, open communication, and incremental cultural change.

3.3.3 Human Factors

Agile development thrives on people-centric collaboration. Small, cross-functional teams (5–9

members) share responsibility and communicate continuously.

Psychological safety, respect, and transparency foster creativity and accountability.

3.4 EXTREME PROGRAMMING (XP)

Extreme Programming (XP), introduced by Kent Beck, pushes good software practices—

testing, communication, simplicity—to their “extreme.”

It is highly iterative, delivering working software every 1–2 weeks.

3.4.1 XP Values

XP is built upon five values: communication, simplicity, feedback, courage, and respect.

Teams maintain continuous dialogue with customers, design only what is needed, seek rapid

feedback, and are courageous in improving existing code.

3.4.2 The XP Process

XP follows a loop of Planning → Design → Coding → Testing → Integration → Feedback.

Practices include:

• Pair Programming

• Test-Driven Development (TDD)

• Continuous Integration

• Refactoring

• Small Releases

• Collective Code Ownership

Centre for Distance Education 3.4 Acharya Nagarjuna University

4

Pair Programming

In Pair Programming, two developers work together at the same workstation — one acts as the

driver (writing the code), and the other as the observer or navigator (reviewing the code in real

time). This practice enhances code quality through continuous review, encourages knowledge

sharing, and reduces the likelihood of defects. It also improves team communication and helps

less experienced programmers learn best practices from their peers.

Test-Driven Development (TDD)

Test-Driven Development (TDD) is an Agile practice in which developers write unit tests

before writing the actual code. The process follows a “Red–Green–Refactor” cycle: first, a test

is written that fails (red); then minimal code is added to make the test pass (green); finally, the

code is refactored to improve its design without altering functionality. TDD ensures that code

meets functional requirements and maintains a robust regression test suite throughout

development.

Continuous Integration

Continuous Integration (CI) involves frequently integrating and building the system — often

multiple times per day. Each integration automatically compiles, tests, and validates the

codebase to detect integration errors early. CI tools (such as Jenkins or GitHub Actions) ensure

that all developers work on a synchronized, stable version of the software, improving reliability

and accelerating feedback loops.

Refactoring

Refactoring is the disciplined technique of restructuring existing code without changing its

external behavior. The purpose is to improve internal design — enhancing readability, reducing

complexity, and eliminating code duplication. Regular refactoring keeps the codebase clean,

maintainable, and adaptable to future changes. In XP, refactoring is performed continuously as

part of development rather than postponed to later phases.

Small Releases

XP promotes frequent, small releases of working software that deliver immediate value to the

customer. Each release represents a usable increment of the system, allowing early feedback

and continuous improvement. Small releases reduce risk by keeping iterations short and

manageable, ensuring that the team always has a stable, deployable product.

Collective Code Ownership

Collective Code Ownership means that the entire team is responsible for the codebase — any

member can modify any part of the code at any time. This eliminates silos and bottlenecks,

SOFTWARE ENGINEERING 3.5 AN AGILE VIEW OF PROCESS

promotes shared responsibility, and ensures consistency in coding standards. If a defect is

found, anyone can fix it, fostering collaboration and accountability across the team.

Figure 3.2 Circular XP cycle showing continuous iteration between coding and testing.

Example: In an e-commerce app, developers write a failing unit test for “Add-to-Cart,” then

code until it passes—ensuring correctness from the outset.

3.4.3 Industrial XP

Industrial XP (IXP) extends XP to larger, more distributed projects.

It adds practices such as project community, retrospective workshops, and risk-driven

iterations while retaining XP’s iterative core.

Project Chartering

Project chartering involves evaluating the project’s business justification and alignment

with organizational goals. The IXP team examines whether the project supports strategic

objectives, complements existing systems, and delivers measurable value. This ensures that

development effort is purpose-driven and supported by clear business rationale before

significant resources are committed.

Test-Driven Management :, project progress is tracked using measurable objectives or

milestones (called “destinations”). Each destination represents a tangible outcome—such as

completion of a feature or achievement of performance metrics—and mechanisms are defined

to verify that it has been reached. This approach maintains transparency and objective

assessment throughout the project lifecycle.

Retrospectives are structured technical reviews conducted after each software increment or

release. The team collectively examines issues, successes, and lessons learned during the

iteration. The goal is to identify improvements for future cycles, reinforce effective practices,

and continuously enhance the Industrial XP process.

Centre for Distance Education 3.6 Acharya Nagarjuna University

6

Continuous Learning ,encourages all team members to acquire new skills, tools, and

techniques that enhance productivity and product quality. It promotes a culture of ongoing

improvement where developers expand their technical expertise and adopt innovative methods.

This commitment to learning strengthens both the team and the organization’s long-term

capability.

Table 3.1 — Summary of Industrial XP (IXP) Practices

IXP Practice Purpose Benefit

Project

Community

To involve all stakeholders —

developers, customers, legal, quality,

and management — in a collaborative

“community” rather than a small team.

Promotes broad communication,

shared ownership, and better

alignment of goals across

departments.

Project

Chartering

To assess the project’s business

justification and ensure it aligns with

organizational objectives before major

effort begins.

Ensures strategic fit, prevents

wasteful projects, and provides a

clear mission and vision.

Test-Driven

Management

To define measurable milestones

(“destinations”) and track progress

using objective criteria.

Provides transparency, enables

accurate progress monitoring,

and supports evidence-based

decision-making.

Retrospectives To review each completed iteration or

release, capturing issues, lessons

learned, and opportunities for

improvement.

Encourages process refinement,

continuous improvement, and

stronger teamwork.

Continuous

Learning

To foster ongoing professional growth

and adoption of new technologies,

methods, and tools.

Enhances team capability,

innovation, and long-term

software quality.

3.4.4 The XP Debate

Critics argue that XP may neglect documentation and architectural foresight. Supporters

counter that continual refactoring and testing keep systems clean and resilient.

Pressman concludes that XP succeeds when teams are small, skilled, and disciplined.

Summary Table — Common Concerns in Extreme Programming

Issue Description XP Response / Mitigation

Requirements

Volatility

Informal changes in

requirements can alter project

scope.

Frequent iterations and customer

collaboration control scope creep.

Conflicting

Customer Needs

Multiple customers may have

competing priorities.

Close communication and

prioritization within the team

mitigate conflicts.
Informal User stories may lack precision Continuous feedback and acceptance

SOFTWARE ENGINEERING 3.7 AN AGILE VIEW OF PROCESS

Requirements and completeness. testing clarify evolving needs.

Lack of Formal

Design

Minimal upfront design may

harm system structure for large

projects.

Simplicity, refactoring, and iterative

development sustain architectural

quality.

3.5 OTHER AGILE PROCESS MODELS

3.5.1 Adaptive Software Development (ASD)

• Proposed by Jim Highsmith, ASD views development as a continuous learning cycle

of Speculate → Collaborate → Learn.

• Speculation sets vision and objectives, collaboration encourages teamwork, and

learning adapts plans based on results.

• ASD embraces uncertainty, focusing on mission success rather than rigid adherence to

plans.

Figure 3.3 Adaptive software development

Phases of ASD

1. Speculate

In this phase, the team defines a mission statement, high-level project objectives, and an

initial scope. The word speculate reflects the understanding that all planning is based on

incomplete and evolving knowledge. The team formulates hypotheses about

requirements and schedules but remains open to revising them as learning occurs.

2. Collaborate

ASD emphasizes team collaboration and customer involvement as key to success.

Developers, customers, and stakeholders work together continuously to design,

implement, and test components. Cross-functional collaboration allows rapid feedback

and enables the team to self-organize around emerging tasks.

3. Learn

The final phase, Learn, is the heart of ASD. Each iteration ends with evaluation,

reflection, and adaptation based on what was discovered. The team examines what

Centre for Distance Education 3.8 Acharya Nagarjuna University

8

worked, what failed, and what can be improved for the next cycle. This continuous

learning loop ensures that the process and product evolve together toward higher quality

and customer satisfaction.

Key Characteristics of ASD

• Change-Driven: Accepts that requirements evolve constantly and embraces change

rather than resisting it.

• Mission-Focused: Instead of fixed requirements, ASD starts with a mission statement

that defines the project’s overall direction.

• Feature-Based: Development is organized around small, testable features that deliver

customer value.

• Iterative and Incremental: Each iteration delivers a functional component, allowing

early customer validation.

• Risk-Resilient: Frequent feedback and learning cycles reduce uncertainty and improve

risk management.

• Human-Centric: Emphasizes teamwork, communication, and trust over documentation

and rigid control.

Advantages Disadvantages

Embraces changing requirements Requires highly skilled, self-disciplined teams

Encourages strong collaboration Challenging for distributed or large teams

Promotes continuous learning May lack sufficient documentation

Enables rapid value delivery Difficult to estimate cost and schedule

Improves risk management Prone to scope creep without strong control

Ensures customer involvement Dependent on frequent user feedback

3.5.2 Scrum

• Scrum, created by Ken Schwaber and Jeff Sutherland, divides work into Sprints

lasting 2–4 weeks.

• Roles: Product Owner, Scrum Master, and Development Team.

Artifacts: Product Backlog, Sprint Backlog, and Increment.

Scrum Roles

Scrum defines three primary roles that collectively form a self-organizing and cross-

functional team:

1. Product Owner:

The Product Owner represents the customer or stakeholder’s voice and is responsible for

defining and prioritizing the Product Backlog — a dynamic list of all features, enhancements,

and fixes required in the product. The Product Owner ensures that the team works on the most

valuable items first.

SOFTWARE ENGINEERING 3.9 AN AGILE VIEW OF PROCESS

2. Scrum Master:

The Scrum Master acts as a servant-leader who facilitates the Scrum process, removes

obstacles, and ensures adherence to Scrum principles. Unlike a traditional project manager, the

Scrum Master does not assign tasks or enforce decisions but instead empowers and supports

the team to self-organize.

3. Development Team:

This is a cross-functional group of professionals (typically 5–9 members) who are responsible

for designing, coding, testing, and delivering product increments. The team owns the work

collectively and is accountable for achieving Sprint goals.

Scrum Artifacts

1. Product Backlog:

A prioritized list of all features, changes, and requirements desired in the product. It evolves

throughout the project as feedback is received.

2. Sprint Backlog:

A subset of items selected from the Product Backlog for implementation during the current

Sprint. The team commits to delivering these items within the Sprint timeframe.

3. Increment:

The sum of all completed Product Backlog items that meet the Definition of Done at the end of

the Sprint. Each increment must be potentially shippable and usable by the customer.

Daily stand-up meetings track progress, and each Sprint ends with a Review and

Retrospective.

• Scrum emphasizes empowerment, transparency, and inspect-and-adapt cycles.

• Scrum principles are consistent with the agile manifesto and are used to guide

development activities within a process that incorporates the following framework

activities: requirements, analysis, design, evolution, and delivery.

Advantages Disadvantages

Frequent delivery of working software Requires highly skilled and disciplined team

Rapid adaptation to changing requirements Difficult to scale for large or distributed teams

Strong collaboration and communication Dependent on active customer involvement

High visibility of progress and issues Less predictable cost and schedule

Encourages continuous improvement Minimal documentation for long-term

maintenance

Improves product quality and user

satisfaction

Potential role conflicts if responsibilities are

unclear

Centre for Distance Education 3.10 Acharya Nagarjuna University

10

3.5.3 Dynamic Systems Development Method (DSDM)

• Originating in the UK, DSDM formalizes Rapid Application Development (RAD) with

iterative prototyping and strict timeboxing.

• Lifecycle phases: Feasibility Study, Business Study, Functional Model, Design & Build,

Implementation.

• Active user involvement and frequent delivery ensure alignment with business needs.

S.No. Advantage Description

1 Faster Delivery of

Working Software

Each Sprint produces a potentially shippable product

increment, allowing early customer feedback and quicker

value realization.

2 High Flexibility and

Adaptability

Scrum easily accommodates evolving requirements and

priorities during development.

3 Continuous Feedback

Loop

Regular Sprint Reviews and daily stand-ups ensure constant

user and team feedback for improvement.

4 Enhanced

Transparency

Daily Scrums, task boards, and burndown charts make project

progress visible to all stakeholders.

5 Improved Product

Quality

Frequent integration and testing identify defects early, leading

to higher reliability.

6 Strong Team

Collaboration

Cross-functional, self-organizing teams improve

communication, creativity, and accountability.

7 Customer-Centric

Approach

Direct stakeholder participation ensures that the product

aligns with real business needs.

8 Reduced Project Risk Short iterations and continuous monitoring help identify and

mitigate risks early.

9 Motivated and

Empowered Teams

Team autonomy and shared responsibility enh

DSDM can be combined with XP (Section 3.4) to provide a combination approach that defines

a solid process model (the DSDM life cycle) with the nuts and bolts practices (XP) that are

required to build software increments. In addition, the ASD concepts of collaboration and self-

organizing teams can be adapted to a combined process model.

3.5.4 Crystal

• The Crystal family (Clear, Orange, Red) designed by Alistair Cockburn adapts its

rigor to project size and criticality.

• All Crystal methods share principles of frequent delivery, reflective improvement, and

osmotic communication.

• Lightweight variants suit small teams; heavier versions add formality for safety-critical

systems.

SOFTWARE ENGINEERING 3.11 AN AGILE VIEW OF PROCESS

S.No. Advantage Explanation

1 Human-Centric

Approach

Focuses on people, communication, and team collaboration

rather than rigid processes or heavy documentation.

2 Lightweight and

Flexible

Minimizes bureaucracy by tailoring practices based on project

size and criticality (e.g., Crystal Clear, Crystal Orange).

3 Frequent Delivery Promotes short iterations with working software releases,

allowing rapid feedback and course correction.

4 Customizable

Framework

Scales methodology intensity according to team size and

project complexity, ensuring adaptability.

5 Reflective

Improvement

Encourages teams to reflect on their performance and

continuously improve processes after each iteration.

6 Osmotic

Communication

Promotes open, informal communication where information

flows naturally among co-located team members.

7 High Team Morale Empowers individuals and values direct collaboration, creating

a motivated and responsible team environment.

8 Reduced Overhead Less emphasis on detailed documentation and formal

approvals reduces administrative load.

9 Customer

Involvement

Encourages close interaction with users to ensure the product

aligns with actual business needs.

10 Supports Incremental

Growth

Enables gradual refinement of software through continuous

user feedback and iterative enhancements.

S.No. Disadvantage Explanation

1 Limited Scalability Designed mainly for small to medium teams; larger,

distributed teams may face communication and coordination

challenges.

2 Dependence on Team

Competence

Relies heavily on experienced, disciplined, and self-

motivated individuals to ensure success.

3 Informal

Documentation

Minimal documentation may create difficulties during

system maintenance or onboarding of new members.

4 Customer Availability

Required

Continuous user participation is essential but not always

possible in real organizational contexts.

5 Lack of Formal

Structure

The absence of strict roles or defined processes may lead to

ambiguity and inconsistent practices.

6 Not Ideal for Safety-

Critical Systems

Informal communication and lightweight documentation

may be inadequate for projects needing regulatory

compliance.

7 Difficult to Measure

Progress

Since Crystal focuses on people and collaboration,

quantitative progress tracking can be less clear.

8 High Reliance on Co-

Location

Osmotic communication assumes teams work in close

physical proximity; virtual teams may lose this benefit.

9 Potential for Scope

Creep

Flexibility and openness to change can sometimes allow

uncontrolled expansion of project scope.

10 Requires Organizational

Support

Successful implementation demands cultural acceptance of

Agile principles across management levels.

Centre for Distance Education 3.12 Acharya Nagarjuna University

12

The Crystal family of methodologies—including Crystal Clear, Crystal Yellow, and Crystal

Orange—prioritizes people and communication over processes and tools. Its adaptability and

focus on frequent delivery make it suitable for small, co-located teams developing non-

critical systems. However, its informal nature, reliance on team skill, and limited scalability

can make it less effective in large or regulated environments.

3.5.5 Feature Driven Development (FDD)

• FDD, by Jeff De Luca and Peter Coad, structures work around client-valued features.

• Its five activities are: Develop overall model, Build features list, Plan by feature,

Design by feature, Build by feature.

• FDD scales well for large teams needing precise coordination.

S.No. Advantages Disadvantages

1 Simple and structured Agile methodology Less suitable for small or rapidly

changing projects

2 Produces frequent, tangible results via small

features

Limited customer involvement during

development

3 Scales effectively for large and distributed

teams

Requires highly skilled designers and

modelers

4 Encourages detailed design and planning

before coding

Not ideal when requirements are unclear

or evolving

5 Provides clear visibility of progress through

feature tracking

Overemphasis on design may delay

initial output

6 Enables early risk detection and control Offers little guidance for non-functional

requirements

7 Supports iterative and incremental delivery Dependent on accurate and stable

feature list

8 Promotes team ownership and

accountability

Less adaptable compared to other Agile

approaches

9 Integrates with existing reporting and

management tools

Slightly highe

3.5.6 Lean Software Development (LSD)

• Based on lean manufacturing, LSD (by Mary and Tom Poppendieck) emphasizes

• eliminating waste, amplifying learning, and delivering fast.

• Key principles: empower teams, build quality in, decide as late as possible, and

optimize the whole system.

• Lean’s influence underpins modern DevOps pipelines.

SOFTWARE ENGINEERING 3.13 AN AGILE VIEW OF PROCESS

3.5.7 Agile Modeling (AM)

• Agile Modeling, proposed by Scott Ambler, provides lightweight guidance for

creating “just enough” models.

• It advocates modeling with purpose, simplicity, and collaboration—using diagrams

such as UML only when they add value.

• AM bridges documentation and agility by ensuring clarity without bureaucracy.

Core Principles of Agile Modeling

1. Model with a Purpose: Every model must serve a specific, practical objective.

2. Use Multiple Models: Apply various notations (e.g., UML, flowcharts) to view the

system from different perspectives.

3. Travel Light: Keep models and documents simple, avoiding unnecessary detail.

4. Content over Presentation: Focus on what the model conveys, not how it looks.

5. Build Models Collaboratively: Encourage team involvement for shared

understanding.

6. Update Only When Necessary: Revise models only when changes are meaningful.

7. Iterate Quickly: Modeling should be fast, flexible, and responsive to new insights.

8. Model in Small Increments: Avoid large upfront design; evolve models with the

system.

Applications of Agile Modeling

• Used for requirements analysis, architectural design, and process visualization.

• Supports communication between technical and non-technical stakeholders.

• Encourages continuous documentation without slowing down Agile iterations.

• Bridges the gap between conceptual modeling and working software.

S.No. Advantages Disadvantages

1 Promotes simplicity and efficiency in

modeling activities

May oversimplify complex systems if not

carefully managed

2 Reduces unnecessary documentation

effort

Lack of detailed documentation may cause

maintenance challenges

3 Encourages collaboration and shared

understanding

Requires active team participation and

communication

4 Integrates easily with other Agile

methods (XP, Scrum, AUP)

Not suitable for projects demanding heavy

documentation or compliance

5 Improves communication between

developers and stakeholders

Informal modeling can lead to inconsistent

interpretations

6 Enables fast iterations and adaptability

to change

Continuous updates may create coordination

overhead

7 Focuses on delivering business value,

not paperwork

May be difficult to justify in highly regulated

industries

8 Supports early problem detection

through visual representation

Limited modeling depth for large-scale

enterprise systems

9 Encourages learning and innovation

during design

Depends on team skill and familiarity with

modeling techniques

10 Aligns modeling with Agile values and

iterative development

Lacks standardized metrics for assessing

model quality

Centre for Distance Education 3.14 Acharya Nagarjuna University

14

3.5.8 Agile Unified Process (AUP)

• Developed by Scott Ambler, the AUP simplifies the Rational Unified Process (RUP)

to align with Agile values.

• It retains phases—Inception, Elaboration, Construction, Transition—but executes them

iteratively with minimal documentation and continuous stakeholder feedback.

S.No. Advantages Disadvantages

1 Combines the discipline of RUP with the

flexibility of Agile methods

Still more complex than lightweight Agile

frameworks like Scrum or XP

2 Maintains clear project phases while

allowing iterative development

Requires experienced teams to balance

modeling and agility

3 Provides structured guidance for

architecture, modeling, and testing

May be difficult for small organizations

with limited resources

4 Encourages continuous integration and

early testing

Overhead from maintaining multiple

disciplines (e.g., PM, CM)

5 Supports incremental delivery and

stakeholder feedback

Can become bureaucratic if not

implemented carefully

6 Suitable for medium-to-large projects

needing both rigor and adaptability

Not ideal for fast-changing or exploratory

projects

7 Incorporates Agile practices like TDD and

iterative modeling

Tool and process setup may require

additional effort

8 Improves documentation quality while

keeping it concise

Balancing documentation and agility can

be challenging

9 Facilitates gradual Agile adoption for

RUP-based organizations

May be viewed as “RUP-lite” rather than

fully Agile

10 Enhances coordination in distributed or

regulated environments

Requires strong management commitment

to maintain agility

In summary, the Agile Unified Process (AUP) serves as a bridge between traditional RUP and

modern Agile approaches. It preserves the structured framework of RUP while embedding

Agile values of iteration, collaboration, and continuous feedback. AUP is particularly effective

for organizations seeking to adopt Agile practices without abandoning existing governance

structures. However, it demands experienced practitioners to avoid reverting to heavyweight

practices and to maintain the balance between agility and discipline.

3.6 A TOOL SET FOR THE AGILE PROCESS

Agile success depends on tools that support collaboration and automation.

Common categories include:

• Project Management Tools: Jira, Trello, Asana.

• Version Control: Git, GitHub, GitLab.

• Continuous Integration: Jenkins, GitHub Actions.

• Testing Frameworks: JUnit, Selenium, Cypress.

• Communication: Slack, MS Teams, Zoom.

SOFTWARE ENGINEERING 3.15 AN AGILE VIEW OF PROCESS

Automated build pipelines and visual dashboards ensure transparency and maintain the Agile

rhythm of build–measure–learn.

3.7 SUMMARY

• Agility emphasizes adaptation, collaboration, and incremental delivery.

• The Agile Manifesto provides guiding values for all Agile methods.

• Extreme Programming focuses on technical excellence; Scrum organizes work

through Sprints.

• Other frameworks such as ASD, DSDM, Crystal, FDD, LSD, AM, and AUP adapt

Agile to varied contexts.

• Tools and automation sustain speed, quality, and visibility.

• Agile success depends as much on people and culture as on processes.

3.8 TECHNICAL TERMS

Agility, Cost of Change, Agile Manifesto, XP, Pair Programming, TDD, Continuous

Integration, ASD, Scrum, Sprint, Backlog, DSDM, Crystal, FDD, Lean Software Development,

Agile Modeling, AUP, Timeboxing, Iteration, Velocity, Burndown Chart, Retrospective, Self-

Organizing Teams, Adaptive Planning.

3.9 SELF-ASSESSMENT QUESTIONS

Essay Questions

1. Define agility and explain its importance in modern software development.

2. Describe the principles of an Agile process and how they differ from traditional models.

3. Explain the XP process and discuss its major practices.

4. Compare and contrast Scrum, DSDM, and Crystal methodologies.

5. Discuss the role of tools in enabling Agile development.

Short Notes

1. Write short notes on Agile Modeling.

2. Explain “timeboxing” with reference to DSDM.

3. Differentiate between XP and Industrial XP.

4. What is the significance of the Agile Unified Process (AUP)?

3.10 SUGGESTED READINGS

1. Roger S. Pressman, Software Engineering – A Practitioner’s Approach, 6th Ed., TMH

International.

2. Kent Beck, Extreme Programming Explained: Embrace Change, Addison-Wesley.

3. Ken Schwaber & Jeff Sutherland, The Scrum Guide.

4. Jim Highsmith, Adaptive Software Development, Addison-Wesley.

5. Alistair Cockburn, Crystal Clear: A Human-Powered Methodology for Small Teams,

Addison-Wesley.

6. Mary & Tom Poppendieck, Lean Software Development: An Agile Toolkit, Addison-

Wesley.

7. Scott Ambler, Agile Modeling and AUP Resources (www.agilemodeling.com).

Dr. Neelima Guntupalli

LESSON- 04

METRICS FOR PROCESS AND PROJECTS

AIMS AND OBJECTIVES

After completing this lesson, learners will be able to:

• Understand the importance and role of metrics in software engineering.

• Differentiate between process metrics, project metrics, and product metrics.

• Explain how metrics are used to assess process maturity and predict performance.

• Apply key metrics for effort estimation, productivity measurement, and quality

assessment.

• Interpret data from software metrics to improve process capability and project

outcomes.

• Recognize the limitations and challenges of metrics collection and analysis.

STRUCTURE

4.1 INTRODUCTION TO SOFTWARE METRICS

4.2 MEASUREMENT IN SOFTWARE ENGINEERING

4.3 PROCESS METRICS

 4.3.1 PRIVATE AND PUBLIC METRICS

 4.3.2 PROCESS METRICS AND PROCESS IMPROVEMENT

4.4 PROJECT METRICS

 4.4.1 OBJECTIVES OF PROJECT METRICS

 4.4.2 METRICS FOR ESTIMATION AND TRACKING

 4.4.3 AGILE PROJECT METRICS

4.5 SOFTWARE MEASUREMENT PRINCIPLES

4.6 METRICS FOR SOFTWARE QUALITY

 4.6.1 DEFECT METRICS

 4.6.2 RELIABILITY METRICS

 4.6.3 COMPLEXITY METRICS

4.7 METRICS FOR MAINTENANCE AND PROCESS IMPROVEMENT

4.8 STATISTICAL SOFTWARE PROCESS IMPROVEMENT (SSPI)

4.9 LIMITATIONS OF METRICS

4.10 SUMMARY

4.11 TECHNICAL TERMS

4.12 SELF-ASSESSMENT QUESTIONS

4.13 SUGGESTED READINGS

Centre for Distance Education 4.2 Acharya Nagarjuna University

4.1 INTRODUCTION TO SOFTWARE METRICS

Software engineering depends on measurement and quantitative assessment to manage

complexity and ensure quality.

A software metric is a quantitative measure of the degree to which a system, component, or

process possesses a given attribute.

Pressman states:

“Measurement is fundamental to engineering; it provides the quantitative basis for process

control and improvement.”

Without measurement, software management relies only on intuition.

Metrics bring objectivity, consistency, and traceability to engineering decisions.

Examples of Software Metrics:

• Defect Density — Number of defects per thousand lines of code (KLOC)

• Productivity — Lines of code (LOC) or Function Points (FP) per person-month

• Cycle Time — Average time required to complete a task or iteration

• Customer Satisfaction Index — Rating of end-user satisfaction

Figure 4.1: Relationship between Process Metrics, Project Metrics, and Product Metrics

(feedback loop for continuous improvement).

SOFTWARE ENGINEERING 4.3 METRICS FOR PROCESS…

This figure illustrates how process, project, and product metrics are interconnected in a

continuous improvement cycle within software engineering. Each metric category provides

feedback that influences the others, creating a closed-loop system for measurement, analysis,

and enhancement.

1. Process Metrics

o Measure the efficiency and stability of development activities (e.g., defect density, cycle

time, rework percentage).

o They provide feedback on how well the development process is functioning.

o When analyzed, they highlight areas requiring process refinement — such as code

review efficiency or testing effectiveness.

2. Project Metrics

o Focus on management and control aspects of individual projects — such as cost,

schedule variance, productivity, and effort.

o They track progress and identify deviations from planned targets.

o Data from project metrics feed back into process metrics, helping organizations

determine whether the process supports predictable project performance.

3. Product Metrics

o Evaluate software quality attributes — including size, reliability, maintainability,

performance, and defect rates.

o They provide a direct measure of product outcomes resulting from both process and

project activities.

o Defects or performance issues detected in the product trigger improvements in both

project execution and process practices.

The feedback loop ensures that information flows in all directions:

• Product metrics inform project managers about software quality.

• Project metrics inform process engineers about process effectiveness.

• Process improvements enhance both future project execution and product outcomes.

This continuous loop supports data-driven decision-making and is central to Software Process

Improvement (SPI) initiatives such as CMMI, Six Sigma, and ISO 9001.

4.2 MEASUREMENT IN SOFTWARE ENGINEERING

Software measurement helps achieve three goals:

1. Understanding – Analyze how the process behaves.

2. Control – Regulate process performance within predictable limits.

3. Improvement – Identify opportunities for enhancement.

Centre for Distance Education 4.4 Acharya Nagarjuna University

Importance of Measurement

• Provides a basis for estimation and planning.

• Enables process comparison and benchmarking.

• Detects deviations from standards.

• Facilitates quantitative quality assurance.

• Supports CMMI and ISO 9001 maturity evaluation.

4.3 PROCESS METRICS

Process metrics evaluate the effectiveness and efficiency of software development activities.

They help in understanding how processes affect quality, productivity, and cost.

4.3.1 Private and Public Metrics

Type Used By Purpose

Private

Metrics

Individual

developers

For self-assessment and improvement (e.g., code reviews,

defects found)

Public

Metrics

Teams and

managers

To evaluate process performance, resource use, and

quality trends

Private metrics help individuals grow, while public metrics aid organizational learning.

4.3.2 Process Metrics and Process Improvement

Process metrics are the foundation of Software Process Improvement (SPI) programs.

They measure process health and maturity.

Typical Process Metrics:

Metric Purpose

Defect Density Measures errors per KLOC or Function Point

Rework Percentage Assesses efficiency of error correction

Process Yield Percentage of outputs passing verification

Review Efficiency Percentage of defects detected early

Cycle Time Time to complete each process phase

Figure 4.2: Process Metrics Feedback Loop showing “Measure → Analyze → Improve

→ Repeat.”

SOFTWARE ENGINEERING 4.5 METRICS FOR PROCESS…

This figure represents the cyclical nature of process measurement and improvement in software

engineering. The feedback loop consists of four recurring stages — Measure, Analyze,

Improve, and Repeat — forming the foundation of continuous process enhancement.

1. Measure:

The first step involves collecting quantitative data on process activities. Typical measures

include defect density, review efficiency, rework effort, or cycle time. Measurement must be

consistent, objective, and aligned with organizational goals.

o Example: Tracking the average number of defects per thousand lines of code (KLOC)

across multiple projects.

2. Analyze:

Collected data are interpreted and evaluated to identify trends, inefficiencies, and causes of

variation. Statistical and graphical tools (e.g., control charts, Pareto analysis) are often used to

pinpoint weaknesses in the process.

o Example: If rework effort is increasing, analysis may reveal insufficient peer reviews or

unstable requirements.

3. Improve:

Based on analysis, corrective actions are planned and implemented to optimize process

performance. Improvements may involve tool upgrades, staff training, or revising coding

standards and testing practices.

o Example: Introducing automated testing to reduce manual rework and improve defect

detection.

4. Repeat:

After improvement, the process is re-measured to evaluate the effectiveness of implemented

changes. This repetition creates a culture of ongoing learning and adaptation. Over time, the

loop narrows the gap between current and desired performance.

The feedback loop embodies the principle of quantitative process management — a key

element in Capability Maturity Model Integration (CMMI) Level 4 and 5 organizations.

It ensures that decisions are based on empirical evidence rather than assumptions, leading to

predictable quality outcomes.

4.4 PROJECT METRICS

Project metrics are used by managers to estimate, monitor, and control development activities.

4.4.1 Objectives of Project Metrics

• Track progress against schedule and cost.

• Identify risks and issues early.

• Evaluate resource utilization and productivity.

• Improve future project estimation accuracy.

Centre for Distance Education 4.6 Acharya Nagarjuna University

4.4.2 Metrics for Estimation and Tracking

Metric Meaning

Size Metric (LOC, Function Points) Basis for estimating effort and time

Effort Metric Person-hours or person-months spent

Schedule Variance (SV) Difference between planned and actual progress

Cost Variance (CV) Deviation between planned and actual expenditure

Productivity Index Output (LOC or FP) per effort unit

Earned Value Analysis (EVA):

• CPI (Cost Performance Index) = EV / AC

• SPI (Schedule Performance Index) = EV / PV

• Values <1 indicate underperformance.

Figure 4.3:Earned Value Analysis chart showing Planned Value, Earned Value, and

Actual Cost lines.

This figure illustrates the Earned Value Analysis (EVA) technique — a widely used project

performance measurement tool in software engineering and project management. EVA

integrates cost, schedule, and scope parameters to provide a quantitative assessment of project

progress and efficiency.

SOFTWARE ENGINEERING 4.7 METRICS FOR PROCESS…

The chart displays three primary curves plotted over time (x-axis) against cumulative cost or

effort (y-axis):

1. Planned Value (PV) – also called Budgeted Cost of Work Scheduled (BCWS)

o Represents the authorized budget for work planned to be completed by a specific date.

o It is the baseline against which actual progress is compared.

o Example: If ₹10 lakhs was planned for the first six months, PV = ₹10 lakhs at that

point.

2. Earned Value (EV) – also called Budgeted Cost of Work Performed (BCWP)

o Indicates the value of work actually completed, expressed in terms of the approved

budget.

o EV helps determine whether the project is ahead or behind schedule and under or over

budget.

o Example: If 80% of the planned work is done, EV = 0.8 × Total Budget.

3. Actual Cost (AC) – also called Actual Cost of Work Performed (ACWP)

o Represents the actual expenditure incurred for the work completed so far.

o It allows managers to evaluate cost performance relative to progress.

4.4.3 Metrics in Agile Projects

Agile teams use lightweight, real-time metrics instead of formal reports.

Metric Description

Velocity Work completed per iteration (story points)

Lead Time Time from feature request to delivery

Burndown Chart Tracks remaining work across iterations

Defect Rate Monitors product stability

Team Happiness Gauges morale and collaboration

Figure 4.4:Sample Agile Burndown Chart showing continuous progress across 10 sprints.

Centre for Distance Education 4.8 Acharya Nagarjuna University

4.5 SOFTWARE MEASUREMENT PRINCIPLES

Pressman emphasizes six key principles:

1. The objectives of measurement must be established before data collection.

2. Each metric should be derived from a defined model of software or process.

3. Metrics should be simple, objective, and computable.

4. Collect data consistently and interpret them cautiously.

5. Provide feedback to all stakeholders.

6. Use metrics to foster improvement, not punishment.

Example:

A developer’s defect rate may be higher because they handle more complex modules —

context matters in interpretation.

4.6 METRICS FOR SOFTWARE QUALITY

Quality metrics help determine how well software meets requirements and how reliable it is in

operation.

4.6.1 Defect Metrics

Metric Definition

Defect Density Defects per KLOC or FP

Defect Removal Efficiency

(DRE)

DRE = (Defects removed before release / Total defects) ×

100

Mean Time to Repair (MTTR) Average time to fix a failure

Customer-Reported Defects Post-release defect count

4.6.2 Reliability Metrics

Metric Definition

Mean Time Between Failures (MTBF) Average operating time between system failures

Availability Uptime ÷ (Uptime + Downtime) × 100

Failure Rate 1 / MTBF

Reliability Growth Reduction in failure rate over time

4.6.3 Complexity Metrics

Metric Purpose

Cyclomatic Complexity (McCabe) Measures logical complexity of a program module

Halstead Metrics Based on operators and operands count

Structural Complexity Degree of inter-module dependency

Coupling and Cohesion Assess modular design quality

Example:

A module with a Cyclomatic Complexity >10 indicates high risk and requires focused testing.

SOFTWARE ENGINEERING 4.9 METRICS FOR PROCESS…

4.7 METRICS FOR MAINTENANCE AND PROCESS IMPROVEMENT

Maintenance consumes 60–80% of software cost; hence metrics are vital.

Metric Purpose

Change Request Frequency Measures stability of delivered product

Mean Time to Implement Change Measures maintenance efficiency

Post-Release Defect Rate Evaluates delivered quality

Maintainability Index Quantifies ease of future changes

Figure 4.5: Graph showing declining defect density and increasing process maturity over

successive releases.

This figure demonstrates the correlation between process maturity and product quality in

software engineering. It shows how defect density decreases as process maturity improves

across successive software releases.

The x-axis represents the sequence of software releases (Release 1, Release 2, Release 3, etc.),

and the y-axes represent two complementary measures:

• Left Y-Axis: Defect Density (defects per KLOC or Function Points).

• Right Y-Axis: Process Maturity Level (qualitative or numerical scale, such as CMMI

Levels 1–5).

Two curves are plotted:

1. Defect Density Curve (Downward Slope)

o Indicates the number of defects per size unit in each release.

o As process maturity improves, the number of defects found in each subsequent release

declines significantly.

o This downward trend represents better process control, early defect detection, and

higher product reliability.

Centre for Distance Education 4.10 Acharya Nagarjuna University

2. Process Maturity Curve (Upward Slope)

o Shows the organization’s process capability improvement over time (e.g., moving from

ad hoc development to defined and optimized processes).

o As practices such as code reviews, peer inspections, metrics-based management, and

statistical process control are adopted, process maturity steadily increases.

Example

A software organization initially records 12 defects/KLOC in Release 1.

By Release 5, after implementing formal reviews, automated testing, and root cause analysis,

the defect density falls to 3 defects/KLOC. Simultaneously, their CMMI level rises from 2

(Repeatable) to 4 (Managed), showing a measurable improvement in process capability.

Key Insights

• Defect reduction is a measurable outcome of process improvement.

• Process maturity correlates strongly with predictability and quality.

• Continuous use of metrics feedback loops (Measure → Analyze → Improve → Repeat)

sustains this trend.

As process maturity increases, software defects decrease — illustrating that quality is built into

the process, not inspected into the product.

4.8 STATISTICAL SOFTWARE PROCESS IMPROVEMENT (SSPI)

• SSPI applies statistical process control (SPC) principles to software.

• It uses control charts, trend analysis, and process capability indices (Cp, Cpk) to

monitor process stability.

Benefits of SSPI:

• Detects abnormal variations early.

• Identifies root causes of defects.

• Enables data-driven process tuning.

4.9 LIMITATIONS OF METRICS

Despite their importance, metrics have limitations:

• Data collection can be costly.

• Poorly defined metrics can mislead.

• Overemphasis on numbers may ignore human factors.

• Context differences reduce comparability.

• Requires mature organizational culture for effective use.

4.10 SUMMARY

• Metrics provide a quantitative basis for understanding and improving software

processes and projects.

• Process metrics evaluate efficiency; project metrics track progress and cost; product

metrics assess quality.

• Measurement enables estimation, prediction, and control.

• Metrics must be used ethically and interpreted contextually to foster improvement.

SOFTWARE ENGINEERING 4.11 METRICS FOR PROCESS…

4.11 TECHNICAL TERMS

Software Metric, Process Metric, Project Metric, Product Metric, Defect Density, DRE, MTBF,

Complexity, Velocity, Burndown Chart, Earned Value, CPI, SPI, Function Point, Cyclomatic

Complexity, Maintainability Index, SSPI.

4.12 SELF-ASSESSMENT QUESTIONS

Essay Questions

1. Define software metrics and explain their importance in software engineering.

2. Differentiate between process metrics and project metrics with examples.

3. Describe how metrics contribute to Software Process Improvement (SPI).

4. Explain the principles of software measurement.

5. Discuss various software quality metrics used in practice.

Short Notes

1. Earned Value Analysis (EVA)

2. Defect Removal Efficiency (DRE)

3. Cyclomatic Complexity

4. Process Maturity and SSPI

5. Agile Metrics

4.13 SUGGESTED READINGS

1. Roger S. Pressman, Software Engineering – A Practitioner’s Approach, 6th Edition,

TMH International.

2. Watts S. Humphrey, Managing the Software Process, Addison-Wesley.

3. Norman Fenton & James Bieman, Software Metrics: A Rigorous and Practical

Approach, CRC Press.

4. Stephen H. Kan, Metrics and Models in Software Quality Engineering, Addison-

Wesley.

5. ISO/IEC 9126: Software Product Quality Model.

Dr. Neelima Guntupalli

LESSON- 05

PROJECT MANAGEMENT

AIMS AND OBJECTIVES

After completing this lesson, learners will be able to:

• Understand the management spectrum and how people, product, process, and

project are interrelated.

• Recognize the importance of stakeholders, team leaders, and software teams.

• Define software scope and use problem decomposition to break down complex

systems.

• Relate software process activities to the project life cycle.

• Apply the W⁵HH Principle for defining and planning software projects.

• Explain how communication, coordination, and leadership contribute to successful

software project outcomes.

STRUCTURE

5.1 INTRODUCTION TO PROJECT MANAGEMENT

 5.1.1 THE PEOPLE

 5.1.2 THE PRODUCT

 5.1.3 THE PROCESS

 5.1.4 THE PROJECT

5.2 PEOPLE

 5.2.1 STAKEHOLDERS

 5.2.2 TEAM LEADERS

 5.2.3 THE SOFTWARE TEAM

 5.2.4 AGILE TEAMS

 5.2.5 COORDINATION AND COMMUNICATION ISSUES

5.3 THE PRODUCT

 5.3.1 SOFTWARE SCOPE

 5.3.2 PROBLEM DECOMPOSITION

5.4 THE PROCESS

 5.4.1 MELDING THE PRODUCT AND THE PROCESS

 5.4.2 PROCESS DECOMPOSITION

5.5 THE PROJECT

5.6 THE W⁵HH PRINCIPLE

5.7 SUMMARY

5.8 TECHNICAL TERMS

5.9 SELF-ASSESSMENT QUESTIONS

5.10 SUGGESTED READINGS

Centre for Distance Education 5.2 Acharya Nagarjuna University

5.1 INTRODUCTION TO PROJECT MANAGEMENT

Project management involves applying knowledge, skills, tools, and techniques to project

activities to meet requirements.

In software engineering, it ensures that technical development aligns with customer

expectations and business goals.

The management spectrum proposed by Pressman includes four interrelated elements:

People, Product, Process, and Project.

Figure 5.1 – The Management Spectrum

(Diagram showing People, Product, Process, and Project in continuous interaction.)

These four components interact dynamically in a continuous improvement loop.

• People execute the process,

• The process shapes how the product is developed,

• The product defines the goals and scope of the project, and

• The project provides feedback for refining both people skills and process maturity.

Together, they form a balanced ecosystem ensuring that software development is not just a

technical activity but an organized, goal-oriented management discipline.

5.1.1 THE PEOPLE

People are the core strength of every software project.They influence productivity, creativity,

and quality.

Key Factors:

• Motivation: Encourages ownership and accountability.

• Competence: Determines technical excellence.

• Communication: Prevents misunderstandings and delays.

• Leadership: Guides the team toward common goals.

A cohesive, motivated team produces reliable, high-quality results even under tight deadlines.

5.1.2 THE PRODUCT

A software project begins with understanding what to build.

The product definition stage identifies the problem, objectives, and boundaries.

Elements of Product Definition:

• Objectives of the system.

• Scope and major functions.

SOFTWARE ENGINEERING 5.3 PROJECT MANAGEMENT

• Constraints (technical, economic, organizational).

• Interfaces with other systems.

Clear product definition reduces rework and improves customer satisfaction.

5.1.3 THE PROCESS

The software process defines the framework for engineering activities: communication,

planning, modeling, construction, and deployment.

Each organization tailors its process model (e.g., waterfall, incremental, spiral, agile) based

on project complexity and risk.

A disciplined process ensures repeatability, predictability, and continuous improvement.

5.1.4 THE PROJECT

A project combines people, product, and process to achieve objectives within constraints of

time, cost, and quality.

Project Activities:

• Planning: Identify tasks, milestones, and resources.

• Scheduling: Allocate time for each activity.

• Risk Management: Anticipate problems and plan contingencies.

• Control: Track progress and compare actuals with planned results.

Figure 5.2 illustrates the Project Triad, which emphasizes that successful software project

management depends on maintaining a balanced relationship between People, Product, and

Process—the three fundamental forces driving all engineering efforts. Each side of the

triangle represents a critical dimension: People provide the creativity, knowledge, and skill

needed to perform the work; the Product defines what must be built, establishing goals and

expectations; and the Process offers a structured pathway for transforming concepts into

working software. Imbalance in any of these areas can jeopardize project success—for

instance, a capable team without a well-defined process may struggle with consistency, while

an efficient process cannot compensate for unclear product objectives. The triad thus

symbolizes harmony and interdependence: effective management integrates competent

people, a clearly understood product, and a disciplined process to produce predictable, high-

quality results.

Figure 5.2 – The Project Triad: People, Product, and Process

(Triangle showing balance between the three core forces in project success.)

Centre for Distance Education 5.4 Acharya Nagarjuna University

5.2 PEOPLE

Successful software development depends on motivated, skilled, and well-coordinated

people.

5.2.1 STAKEHOLDERS

Stakeholders include everyone who has a vested interest in the software: customers, users,

developers, managers, and quality staff.

Stakeholder Interest / Concern

Customer Functionality, cost, and schedule

User Usability, reliability

Developer Technical feasibility

Manager Productivity, delivery

QA Staff Compliance, testing

Effective communication among these groups avoids conflict and misunderstanding.

5.2.2 TEAM LEADERS

Team leaders bridge management and technical staff.

They motivate the team, delegate work, and ensure that objectives are met.

Responsibilities:

• Define goals and deliverables.

• Monitor progress and remove obstacles.

• Maintain morale and resolve conflicts.

Good leaders balance technical expertise with emotional intelligence.

5.2.3 THE SOFTWARE TEAM

Software development projects vary greatly in size, complexity, and criticality, and therefore

require different team structures to achieve maximum efficiency and control. Pressman

identifies three primary organizational models — Democratic Decentralized, Controlled

Decentralized, and Controlled Centralized — each suited to specific project environments

and management styles. These structures determine how communication flows, how

decisions are made, and how authority is distributed within the team.

1. Democratic Decentralized (DD) Structure

This structure is most effective for small, innovative, and research-oriented projects where

creativity and collaboration are essential.

SOFTWARE ENGINEERING 5.5 PROJECT MANAGEMENT

• Use Case: Ideal for projects that demand flexibility and exploration, such as

prototype development or concept validation.

• Features: Every team member has equal authority in decision-making. Ideas are

discussed openly, and consensus is often used to guide actions. Communication flows

freely among all members without strict hierarchy.

• Advantages: Encourages innovation, high motivation, and a strong sense of

ownership.

• Challenges: May lead to slower decisions when disagreements arise and lacks the

control necessary for large-scale projects.

2. Controlled Decentralized (CD) Structure

This structure represents a balanced approach, blending autonomy with managerial

oversight. It is suitable for medium-sized projects that need both creativity and structure.

• Use Case: Effective in product development teams where independent technical

groups handle specific modules but coordinate through a central leader.

• Features: Decision-making authority is shared; technical teams can make local

decisions, but overall coordination is managed by a project leader. The leader sets

priorities, monitors progress, and ensures communication across groups.

• Advantages: Combines flexibility with control, allowing teams to innovate while

maintaining accountability.

• Challenges: Coordination can become difficult if communication between subteams

weakens, potentially causing integration issues.

3. Controlled Centralized (CC) Structure

This model is used for large-scale, safety-critical, or mission-critical systems, where

precision, documentation, and strict management control are mandatory.

• Use Case: Appropriate for projects such as aerospace systems, defense software,

medical devices, or financial transaction systems.

• Features: A clear hierarchy exists—decision-making is concentrated at the top levels,

and work is divided into specialized roles. Information flows downward through

formal channels. Procedures, schedules, and standards are rigidly enforced.

• Advantages: Ensures consistency, safety, and adherence to strict requirements.

Excellent for predictable outcomes and risk minimization.

• Challenges: Limits creativity and flexibility; lower-level team members may feel less

ownership, and communication bottlenecks may occur due to hierarchy.

Structure Use Case Features

Democratic

Decentralized

Small projects Equal participation, creative decisions

Controlled

Decentralized

Medium projects Combination of autonomy and oversight

Controlled Centralized Large or critical

systems

Strong control, hierarchical decision-

making

Centre for Distance Education 5.6 Acharya Nagarjuna University

5.2.4 AGILE TEAMS

Agile teams are small, cross-functional, and self-organizing groups that work collaboratively

to deliver high-quality software in short, iterative cycles. They embody the principles of the

Agile Manifesto, emphasizing individuals and interactions, working software, customer

collaboration, and responsiveness to change over rigid processes and documentation.

Typically consisting of 5 to 9 members, agile teams include diverse roles such as developers,

testers, designers, and product owners who collectively share responsibility for achieving the

project goals.

A defining feature of agile teams is their shared ownership of both the codebase and the final

product outcomes. There is no rigid hierarchy—decisions are made collaboratively, ensuring

transparency and accountability. Daily stand-up meetings (scrums) promote open

communication, allowing the team to discuss progress, identify obstacles, and adapt plans

quickly.

Adaptability is another key characteristic of agile teams. Requirements often evolve as

customer needs become clearer during development. Agile teams welcome change, viewing it

as an opportunity to enhance value rather than a disruption. They use short iterations—called

sprints—to develop functional increments of software, ensuring that stakeholders can provide

feedback early and often.

Customer collaboration is central to agile success. Customers or product owners remain

closely involved throughout development, reviewing deliverables at the end of each sprint to

validate that the software aligns with expectations. This constant feedback loop minimizes

misunderstandings and reduces the risk of building the wrong product.

Because of their flexibility and focus on communication, agile teams thrive in dynamic, fast-

changing environments where traditional, plan-driven models often fail. Their ability to

adapt, learn, and continuously improve allows them to maintain momentum and deliver

valuable, working software consistently.

5.2.5 COORDINATION AND COMMUNICATION ISSUES

• Communication complexity grows with team size.

• For n team members, possible communication paths = n (n – 1) / 2.

Figure 5.3 – Coordination and Communication Model

(Depicts information flow among stakeholders and development teams.)

SOFTWARE ENGINEERING 5.7 PROJECT MANAGEMENT

Figure 5.3 represents the Coordination and Communication Model, which illustrates how

information flows among the various participants in a software project—namely,

stakeholders, project managers, team leaders, and development teams. In any software

project, effective communication is the lifeline that connects all roles and ensures that

objectives, progress, and expectations remain aligned.

The model typically shows bidirectional communication links, emphasizing that

communication is not a one-way process but a continuous exchange of information, feedback,

and clarification. Stakeholders, such as customers and users, convey requirements and

business goals to the project team, while managers and team leads translate these into

actionable tasks and relay progress updates back to stakeholders. Development teams, in turn,

share technical insights, risks, and challenges that influence project decisions.

Pressman highlights that as team size increases, communication complexity grows

exponentially. For n team members, there are n(n – 1)/2 potential communication paths.

Without structure, this can lead to confusion, duplication of work, or conflicting priorities. To

mitigate this, the model emphasizes the use of organized communication mechanisms such as

status meetings, documentation, collaborative tools, and clear reporting hierarchies.

Furthermore, the model underlines the importance of transparency and feedback loops.

Continuous and clear communication reduces misunderstandings, accelerates problem-

solving, and enhances team coordination. In essence, this figure demonstrates that project

success depends not only on technical competence but also on how efficiently information

moves within and between all involved parties, ensuring that everyone shares a unified vision

of the project goals.

Best Practices:

• Use collaborative tools (Slack, Jira, MS Teams).

• Schedule regular reviews and retrospectives.

• Document key decisions and assumptions.

5.3 THE PRODUCT

Effective project planning starts with a clear understanding of the product.

5.3.1 SOFTWARE SCOPE

Scope describes the software’s functions, features, performance, and constraints.

Steps to Define Scope:

1. Identify stakeholders.

2. Determine inputs, outputs, and interfaces.

3. Specify constraints.

4. List major functions.

A precise scope statement avoids scope creep and sets realistic expectations.

Centre for Distance Education 5.8 Acharya Nagarjuna University

5.3.2 PROBLEM DECOMPOSITION

Large systems must be broken into smaller, manageable parts.

Levels of Decomposition:

• System → Subsystem → Module → Component → Task

Figure 5.4 – Product and Process Decomposition

(Shows hierarchical breakdown aligning product parts with process tasks.)

Decomposition simplifies estimation, scheduling, and testing.

Figure 5.4 illustrates the concept of Product and Process Decomposition, a fundamental

principle in software engineering project management. It demonstrates how a large, complex

software system can be systematically divided into smaller, more manageable parts—both in

terms of the product structure and the process activities required to develop it. This

hierarchical breakdown not only improves understanding of the system but also facilitates

more accurate planning, estimation, and control throughout the development life cycle.

At the top level, the product represents the entire software system—its overall objectives,

scope, and features. This is progressively decomposed into subsystems, modules,

components, and tasks. Each level introduces greater detail and specificity, defining clear

deliverables and responsibilities. In parallel, the process decomposition identifies the

activities needed to design, construct, and verify each component—such as requirements

analysis, design modeling, coding, integration, and testing.

By aligning the product hierarchy with corresponding process tasks, managers can ensure that

every element of the software is accounted for in the development plan. This structured

mapping provides better visibility into progress, supports incremental delivery, and enables

precise tracking of quality and performance metrics.

Pressman emphasizes that decomposition simplifies estimation, as smaller units of work are

easier to quantify in terms of effort and cost. It also improves scheduling, since

interdependencies between tasks and components become clearer, allowing for realistic

timelines and parallel development. Finally, testing and maintenance are greatly simplified

because defects and changes can be localized to specific modules or components.

In summary, Figure 5.4 conveys that systematic decomposition is the foundation of effective

software project management—it transforms complexity into clarity, enabling teams to plan,

execute, and control projects with precision and confidence.

SOFTWARE ENGINEERING 5.9 PROJECT MANAGEMENT

5.4 THE PROCESS

The process acts as a roadmap, guiding how software is developed.

5.4.1 MELDING THE PRODUCT AND THE PROCESS

In software project management, every product function—a defined feature or capability

that the software must provide—must correspond to one or more process activities within

the development framework. This mapping ensures that all requirements are systematically

addressed, verified, and validated throughout the software life cycle, rather than being

handled in isolation or overlooked during implementation.

For example, consider the “User Authentication” feature of a software system. This single

function requires multiple coordinated process activities:

• During analysis, requirements are gathered to define what types of users need access,

how credentials are verified, and what security standards must be met.

• In design, logical and physical models of authentication components (e.g., login

interface, encryption methods, database schema) are developed.

• During coding, these designs are translated into executable code using appropriate

libraries and security mechanisms.

• Finally, in testing, the feature undergoes verification (unit and integration tests) and

validation (ensuring that authentication behaves as intended under all conditions).

This one-to-one or one-to-many relationship between product functions and process

activities enforces discipline, traceability, and accountability across all stages of

development. It prevents gaps between customer requirements and delivered functionality,

supports progress monitoring, and helps teams maintain quality by ensuring that every

functional goal is backed by corresponding engineering work.

By aligning each product feature with structured process steps, project managers can better

control timelines, resource allocation, and defect tracking—ultimately leading to a more

reliable and maintainable software product.

Each product function maps to specific process activities.

This ensures that all requirements are addressed through systematic development.

Example:

A “User Authentication” feature maps to analysis, design, coding, and testing activities

within the process.

5.4.2 PROCESS DECOMPOSITION

Process decomposition divides framework activities into well-defined tasks:

1. Communication – with stakeholders.

2. Planning – resources and risk assessment.

3. Modeling – system and software design.

4. Construction – coding and testing.

5. Deployment – delivery and customer feedback.

Metrics (effort, defect density, schedule variance) are used for process improvement.

Centre for Distance Education 5.10 Acharya Nagarjuna University

1. Communication – This activity involves establishing continuous interaction with

stakeholders. Requirements are elicited, clarified, and validated through meetings,

discussions, and documentation. Effective communication ensures a shared

understanding between customers and developers, preventing misinterpretation of

needs.

2. Planning – Involves defining project scope, identifying resources, estimating effort

and cost, assessing potential risks, and developing a detailed project schedule.

Planning sets the foundation for all other activities by providing direction and

measurable milestones.

3. Modeling – Focuses on creating system and software design representations. These

models, which may include data flow diagrams, UML diagrams, and architectural

blueprints, help visualize structure and behavior before coding begins. Modeling

bridges the gap between abstract requirements and technical implementation.

4. Construction – Encompasses the actual building of the software through coding and

subsequent testing. During this phase, developers translate models into source code

and verify its correctness using unit, integration, and system testing.

5. Deployment – Involves delivering the completed software to the customer, collecting

feedback, and performing necessary maintenance or enhancements. Deployment

closes the development loop and provides valuable insights for future projects.

To ensure process maturity and improvement, specific metrics are collected and analyzed at

each stage. These include:

• Effort metrics, which measure the amount of work performed (e.g., person-hours).

• Defect density, which evaluates software quality by tracking the number of defects

per unit of code or function.

• Schedule variance, which compares planned versus actual timelines to assess

adherence to the project schedule.

By monitoring these metrics, organizations can identify process weaknesses, improve

efficiency, and enhance product quality over time. Process decomposition, therefore, is not

merely a way to divide work—it is a systematic approach to manage complexity, promote

accountability, and drive continuous process optimization in software engineering.

5.5 THE PROJECT

Software project management integrates all dimensions — people, product, and process —

under a structured framework.

Key Steps in Project Planning:

1. Define objectives and success criteria.

2. Estimate resources and effort.

3. Create a schedule and assign responsibilities.

4. Track performance using project metrics.

5. Manage risks and implement corrective actions.

SOFTWARE ENGINEERING 5.11 PROJECT MANAGEMENT

Project Tracking Techniques:

• Gantt Charts for task scheduling.

• PERT/CPM Networks for dependency analysis.

• Earned Value Analysis (EVA) for budget and time control.

5.6 THE W⁵HH PRINCIPLE

Pressman’s W⁵HH Principle answers the seven fundamental management questions for any

project:

• Who – Identifies the people responsible for specific tasks, decisions, and deliverables.

This ensures ownership and accountability at every stage of the project.

• What – Defines the objectives, requirements, and tangible outcomes expected from

the project. It clarifies what success looks like from both technical and business

perspectives.

• When – Establishes the project timeline, milestones, and deadlines, enabling effective

scheduling and progress tracking.

• Where – Specifies the operational environment and the locations where work will be

performed, which is particularly important for distributed or global teams.

• Why – Justifies the project’s purpose and its alignment with organizational goals,

ensuring that all stakeholders understand its strategic importance.

• How – Determines the approach, methodologies, tools, and technologies that will be

applied to accomplish the work.

• How Much – Estimates the required resources, budget, and effort, forming the

foundation for cost management and feasibility evaluation.

Question Purpose

Who Is responsible for each activity?

What Are the objectives and deliverables?

When Will each task start and finish?

Where Will the work be performed?

Why Is the project being undertaken?

How Will the work be completed (methods, tools)?

How Much Cost and effort involved?

Figure 5.5 – The W⁵HH Principle Framework

(Circular model representing seven interrelated management questions.)

This framework provides a checklist for defining and reviewing project scope, responsibility,

and feasibility.

Centre for Distance Education 5.12 Acharya Nagarjuna University

Figure 5.5 illustrates Pressman’s W⁵HH Principle Framework, a structured model designed

to guide software project managers in defining, planning, and assessing their projects. The

acronym W⁵HH stands for Who, What, When, Where, Why, How, and How Much —

seven essential questions that must be addressed to ensure project clarity, accountability, and

feasibility. Represented in a circular layout, these questions form an iterative and

interconnected management cycle rather than a one-time checklist, reinforcing the continuous

and adaptive nature of project control.

By addressing these seven dimensions, managers gain a comprehensive view of the project

before execution begins. The circular form of the framework signifies that project

management is iterative—as new information emerges, each question may need to be

revisited and refined.

In practical use, the W⁵HH framework serves as a diagnostic and planning tool. It helps

identify gaps in understanding, prevent scope ambiguity, and ensure that all project

elements—from personnel to cost—are well-defined and manageable. By continuously

cycling through these questions, project managers maintain control, adapt to change, and

drive the project toward successful completion with reduced risk and improved predictability.

5.7 SUMMARY

• Project management unites people, product, process, and project factors.

• Stakeholders and team leaders influence success through coordination.

• Scope definition and problem decomposition guide planning.

• The software process ensures systematic development.

• The W⁵HH Principle offers a structured approach to project planning.

5.8 TECHNICAL TERMS

Management Spectrum, Stakeholder, Team Leader, Agile Team, Scope, Problem

Decomposition, Process Model, Earned Value Analysis, Gantt Chart, PERT, W⁵HH

Principle.

5.9 SELF-ASSESSMENT QUESTIONS

Essay Questions

1. Explain the four dimensions of the management spectrum.

2. Discuss the importance of people in project success.

3. Describe how software scope and decomposition aid planning.

4. Explain the role of process decomposition in software development.

5. Discuss the significance of the W⁵HH principle in project management.

Short Notes

1. Stakeholders and their interests.

2. Coordination and communication in teams.

3. Agile team characteristics.

4. Earned Value Analysis.

5. Process metrics and their importance.

SOFTWARE ENGINEERING 5.13 PROJECT MANAGEMENT

5.10 SUGGESTED READINGS

1. Roger S. Pressman, Software Engineering – A Practitioner’s Approach, 6th Edition,

TMH International.

2. Watts S. Humphrey, Managing the Software Process, Addison-Wesley.

3. Ian Sommerville, Software Engineering, 9th Edition, Pearson Education.

4. Steve McConnell, Rapid Development: Taming Wild Software Schedules, Microsoft

Press.

5. IEEE Std 1058-1998, Software Project Management Plans.

Dr. Kampa Lavanya

LESSON- 06

REQUIREMENT ENGINEERING

AIMS AND OBJECTIVES

After completing this lesson, learners will be able to:

• After completing this lesson, the learner will be able to:

• Understand the concept and significance of requirement engineering.

• Identify and describe the seven key tasks of requirement engineering.

• Apply methods for eliciting, analyzing, specifying, and validating software

requirements.

• Recognize the importance of stakeholder communication and negotiation.

• Explain the role of traceability and requirements management in maintaining project

integrity.

• Appreciate how effective requirement engineering contributes to software quality and

project success.

STRUCTURE

6.1 INTRODUCTION

6.2 REQUIREMENT ENGINEERING TASKS

 6.2.1 INCEPTION

 6.2.2 ELICITATION

 6.2.3 ELABORATION

 6.2.4 NEGOTIATION

 6.2.5 SPECIFICATION

 6.2.6 VALIDATION

 6.2.7 REQUIREMENTS MANAGEMENT

6.3 REQUIREMENTS ENGINEERING TOOLS

6.4 SUMMARY

6.5 TECHNICAL TERMS

6.6 SELF-ASSESSMENT QUESTIONS

6.7 SUGGESTED READINGS

6.1 INTRODUCTION

Requirement Engineering (RE) is the first and most critical stage of the software life cycle.It

focuses on understanding what the customer needs—not merely what they say they want.

A well-executed RE process ensures that software development starts with clear, accurate,

and agreed-upon requirements.

Centre for Distance Education 6.2 Acharya Nagarjuna University

According to Pressman, RE is both a technical and a communication process. It requires

collaboration between software engineers, stakeholders, and domain experts to define what

the system should do, under what constraints, and how success will be measured.

• Importance of Requirement Engineering:

• Establishes a common understanding between stakeholders and developers.

• Minimizes costly changes and rework later in development.

• Provides the foundation for design, testing, and maintenance.

• Enhances predictability and reduces risk.

6.2 REQUIREMENT ENGINEERING TASKS

Pressman identifies seven key activities that define the Requirement Engineering process.

These activities form a framework that can be applied iteratively throughout the project.

Figure 6.1 – The Requirement Engineering Tasks

(Shows Inception → Elicitation → Elaboration → Negotiation → Specification →

Validation → Management)

6.2.1 INCEPTION

The inception phase establishes the basic vision and scope of the project.

Its objective is to understand the business problem, identify key stakeholders, and define

the overall boundaries of the software system.

Activities include:

• Identifying primary and secondary stakeholders.

• Outlining major system functions and constraints.

• Exploring the business context and objectives.

• Preparing an initial vision statement or project charter.

SOFTWARE ENGINEERING 6.3 REQUIREMENT ENGINEERING

Deliverable:

A preliminary scope definition describing what the software will do and why it is being

developed.

At project inception,you establish a basic understanding of the problem, the people who want

a solution, the nature of the solution that is desired, and the effectiveness of preliminary

communication and collaboration between the other stakeholders and the software team.

6.2.2 ELICITATION

Elicitation is the process of gathering information from stakeholders to discover their needs

and expectations.

It’s often described as “requirements discovery” because users may not always know or

articulate what they truly need.

Figure 6.3 illustrates the Requirements Elicitation and Use Case Development Process,

which represents how raw user requirements are systematically gathered, prioritized, and

transformed into structured use cases during the Requirement Engineering phase. This

flowchart outlines a logical sequence of activities that ensure stakeholder needs are captured

clearly and translated into actionable system functions.

The process begins with eliciting requirements, where analysts interact with stakeholders to

collect information about system goals, features, and constraints. This is typically achieved

through interviews, observations, and collaborative discussions. The next step involves

conducting Facilitated Application Specification Technique (FAST) meetings, where

stakeholders and developers jointly identify the system’s major functions, classes, and

constraints.

Figure 6.3 – Requirements Elicitation and Use Case Development Process

Centre for Distance Education 6.4 Acharya Nagarjuna University

After capturing these initial ideas, the team performs prioritization. If the project requires a

structured prioritization approach, Quality Function Deployment (QFD) is used to assign

priorities formally based on customer value and technical importance. Otherwise,

requirements may be informally prioritized based on stakeholder agreement.

Once priorities are set, the team proceeds to create use cases — a technique that describes

how different actors (users or external systems) interact with the system to achieve specific

goals. The right section of the flowchart shows the use case construction process, where

analysts:

• Define actors (who interacts with the system),

• Write scenarios describing step-by-step interactions, and

• Complete use case templates or draw use case diagrams that visually represent

these interactions.

This figure effectively demonstrates the bridge between raw requirements and system

modeling, emphasizing that well-organized elicitation and prioritization lead to clear,

traceable, and testable use cases. In essence, it captures the structured workflow that converts

stakeholder expectations into a solid analytical foundation for software design and

development.

Common Elicitation Techniques:

• Interviews and Questionnaires

• Observation and Shadowing

• Joint Application Design (JAD) sessions

• Brainstorming and Focus Groups

• Use of Prototypes to clarify understanding

Challenges:

• Ambiguity in user statements

• Conflicting needs among stakeholders

• Miscommunication between users and analysts

Solution:

Use structured methods like Quality Function Deployment (QFD) and facilitated meetings

to align requirements with business goals.

a few problems that are encountered as elicitation occurs.

• Problems of scope. The boundary of the system is ill-defined or the customers/users

specify unnecessary technical detail that may confuse, rather than clarify, overall system

objectives.

• Problems of understanding. The customers/users are not completely sure of what is

needed, have a poor understanding of the capabilities and limitations of their computing

environment, don’t have a full understanding of the problem domain, have trouble

communicating needs to the system engineer, omit information that is believed to be

“obvious,” specify requirements that conflict with the needs of other customers/users, or

specify requirements that are ambiguous or untestable.

SOFTWARE ENGINEERING 6.5 REQUIREMENT ENGINEERING

• Problems of volatility. The requirements change over time.

6.2.3 ELABORATION

Elaboration refines the gathered requirements into detailed, analyzable models.

This involves creating representations of data, functions, and behavior that describe the

system more precisely.

Tasks include:

• Developing Use Cases to describe interactions between users and the system.

• Building Data Flow Diagrams (DFD) to model information flow.

• Creating Entity–Relationship Diagrams (ERD) to define data relationships.

• Identifying non-functional requirements such as performance, security, and

reliability.

This stage forms the foundation for analysis modeling in the design phase.

Elaboration is driven by the creation and refinement of user scenarios that describe how the

end user (and other actors) will interact with the system. Each user scenario is parsed to

extract analysis classes—business domain entities that are visible to the end user. The

attributes of each analysis class are defined, and the services4 that are required by each class

are identified. The relationships and collaboration between classes are identified, and a

variety of supplementary diagrams are produced.

6.2.4 NEGOTIATION

Stakeholders often have conflicting priorities. The negotiation phase resolves these conflicts

and sets realistic expectations.

Goals:

• Identify critical versus optional requirements.

• Resolve inconsistencies between user groups.

• Balance cost, schedule, and functionality.

Approach:

• Conduct structured discussions or review meetings.

• Use cost–benefit analysis to determine trade-offs.

• Document agreed-upon outcomes as the requirements baseline.

• Result:

A set of validated and prioritized requirements accepted by all stakeholders.

6.2.5 SPECIFICATION

Specification is the formal documentation of all agreed-upon requirements.

This document becomes the authoritative reference for all subsequent development activities.

Common forms of specification:

Centre for Distance Education 6.6 Acharya Nagarjuna University

• Software Requirements Specification (SRS) – a detailed description of system

requirements, interfaces, and constraints.

• Use Case Specification – defines system interactions.

• Functional and Non-functional Requirement Lists – separate operational and

quality needs.

Typical contents of an SRS (IEEE Std 830-1998):

1. Introduction and Purpose

2. System Overview

3. Functional Requirements

4. Non-functional Requirements

5. External Interfaces

6. Constraints and Assumptions

A well-written SRS ensures traceability, reduces ambiguity, and serves as a contract between

customers and developers.

6.2.6 VALIDATION

Validation checks whether the specified requirements truly represent the customer’s intent

and whether they are feasible.

Techniques:

• Requirement Reviews

• Prototyping and Simulation

• Test Case Generation from Requirements

• Cross-referencing with original stakeholder needs

Key validation questions:

• Are all requirements consistent and complete?

• Can each requirement be implemented and verified?

• Have all constraints been properly captured?

Early validation prevents expensive rework in later stages.

6.2.7 REQUIREMENTS MANAGEMENT

Once requirements are approved, they must be tracked and controlled throughout the project

life cycle.

Requirements Management ensures that changes are evaluated for impact and that

traceability is maintained.

Core activities:

• Version Control of requirement documents.

• Maintaining a Requirements Traceability Matrix (RTM).

• Assessing change impact on design, testing, and cost.

• Recording rationale for every change.

SOFTWARE ENGINEERING 6.7 REQUIREMENT ENGINEERING

Requirements for computer-based systems change, and the desire to change requirements

persists throughout the life of the system. Requirements management is a set of activities that

help the project team identify, control, and track requirements and changes to requirements at

any time as the project proceeds.6 Many of these activities are identical to the software

configuration management (SCM) techniques

Figure 6.3 – Requirements Traceability Matrix

(Shows mapping of Requirement ID → Design Module → Test Case → Status)

Effective management prevents scope creep and maintains project stability.

Figure 6.3 represents the Requirements Traceability Matrix (RTM), a key tool in

Requirements Management that establishes and maintains the relationship between individual

requirements and the different elements of the software development process — such as

design components, code modules, and test cases. The RTM ensures that every requirement is

implemented, verified, and validated, maintaining alignment between what was requested by

stakeholders and what was actually delivered.

Each row in the matrix typically corresponds to a single requirement, identified by a unique

Requirement ID. Across the columns, the RTM traces this requirement through its design

modules, implementation units, test cases, and status (e.g., pending, in progress, completed,

verified). This enables managers and quality assurance teams to monitor the progress of each

requirement throughout the software life cycle.

The traceability matrix provides several important benefits:

• Completeness: Confirms that all requirements have been addressed in design and

testing, ensuring nothing is missed.

• Impact Analysis: When a change occurs, the matrix helps identify which parts of the

design or code will be affected, reducing the risk of unintended side effects.

• Verification and Validation: Supports quality control by confirming that every

requirement has corresponding test coverage.

• Change Management: Helps manage scope and prevent uncontrolled expansion

(scope creep) by linking new or modified requirements to approved project elements.

By using an RTM, software engineers maintain clear visibility and accountability across the

development process. It acts as both a planning and auditing instrument, ensuring that the

Centre for Distance Education 6.8 Acharya Nagarjuna University

final software product fully satisfies stakeholder needs, while promoting stability,

traceability, and control throughout the project’s evolution.

6.3 REQUIREMENTS ENGINEERING TOOLS

Automated tools support all stages of RE by simplifying documentation, traceability, and

change management.

Key features:

• Version control for requirements.

• Traceability and impact analysis.

• Collaborative editing and review.

• Integration with design and testing tools.

Examples:

IBM Rational DOORS, RequisitePro, Jira, Polarion ALM, and Caliber RM.

These tools enhance productivity, maintain consistency, and ensure compliance with industry

standards.

1. IBM Rational DOORS

IBM Rational DOORS (Dynamic Object-Oriented Requirements System) is one of the most

popular enterprise-level tools for managing complex and safety-critical systems.

• Key Features:

o Centralized repository for storing and organizing requirements.

o End-to-end traceability from requirements to design, test cases, and code.

o Advanced change control and impact analysis features.

o Integration with modeling and testing tools like Rational Rhapsody and Rational

Quality Manager.

• Use Case: Ideal for large-scale engineering domains such as aerospace, defense,

automotive, and telecommunications, where regulatory compliance is critical.

2. RequisitePro

IBM Rational RequisitePro integrates requirements management with document-based

environments such as Microsoft Word. It combines the flexibility of word processing with the

power of a database.

• Key Features:

o Allows linking requirements to specific sections in Word documents.

o Supports requirement categorization by type, priority, and status.

o Provides version control and traceability reports.

o Synchronizes documents and requirement databases to maintain consistency.

• Use Case: Best suited for small and medium-sized teams that rely heavily on document-

driven requirements but need traceability and structured organization.

SOFTWARE ENGINEERING 6.9 REQUIREMENT ENGINEERING

3. Jira (with Requirements and Test Management Add-ons)

Originally designed for agile issue tracking, Jira has evolved into a comprehensive

requirements management tool when used with plug-ins such as Atlassian Requirements and

Test Management (RTM) or Jira Align.

• Key Features:

o Supports agile methodologies like Scrum and Kanban.

o Enables creating user stories, epics, and acceptance criteria that act as functional

requirements.

o Provides dashboards for progress tracking, prioritization, and reporting.

o Integrates seamlessly with Confluence for documentation and Bitbucket for version

control.

• Use Case: Ideal for agile and DevOps environments where rapid iteration and

 stakeholder feedback are continuous.

4. Polarion ALM (Application Lifecycle Management)

Polarion ALM by Siemens provides a fully web-based platform that integrates requirements,

development, and testing into a single environment.

• Key Features:

o Real-time collaboration and workflow management for distributed teams.

o Built-in traceability across the entire development life cycle.

o Compliance support for ISO 26262, FDA, and other safety standards.

o Customizable dashboards for project monitoring and reporting.

• Use Case: Suitable for large organizations requiring end-to-end lifecycle traceability

across geographically distributed teams.

5. Caliber RM (Borland/ Micro Focus Caliber)

Caliber RM is a user-friendly tool designed to support requirements capture, analysis, and

visualization.

• Key Features:

o Provides interactive views for hierarchical requirements organization.

o Offers advanced impact analysis and scenario modeling.

o Supports collaboration through comment threads and change tracking.

o Integrates with test management and development tools for unified project visibility.

• Use Case: Appropriate for teams that need a balance of structure and flexibility while.

• maintaining visual clarity of complex requirement relationships.

Centre for Distance Education 6.10 Acharya Nagarjuna University

Benefits of Requirements Engineering Tools

Benefit Description

Traceability Links each requirement to design, code, and tests, ensuring nothing is

overlooked.

Change

Management

Controls updates to requirements and evaluates their impact on project

scope and schedule.

Collaboration Allows multiple stakeholders to contribute, review, and approve

requirements in real time.

Consistency Prevents redundancy and ensures uniform documentation across all

project artifacts.

Compliance Supports adherence to industry standards and audits through version

history and traceability reports.

Requirements Engineering Tools are indispensable in modern software development. They

provide visibility, accountability, and control, helping teams handle evolving requirements

efficiently. Whether in agile startups or large regulated enterprises, these tools ensure that

every requirement is captured, managed, verified, and validated — forming the backbone of

disciplined, high-quality software engineering.

Case Study: Requirement Engineering Using Use Cases

Title:

Online Library Management System (OLMS) – A Case Study in Requirement

Engineering

1. Introduction

The Online Library Management System (OLMS) aims to automate the daily operations

of a university library, including book issuance, return, catalog management, and user

registration. The project demonstrates how the Requirement Engineering (RE) process

captures stakeholder needs and transforms them into structured use cases for analysis and

design.

The case study illustrates the seven RE activities—Inception, Elicitation, Elaboration,

Negotiation, Specification, Validation, and Management—applied in a real-world context.

2. Inception Phase

Objective:

Define the project’s purpose, stakeholders, and system boundaries.

Stakeholders:

• Library Administrator

• Students and Faculty (Users)

• Librarians (Staff)

• IT Maintenance Team

SOFTWARE ENGINEERING 6.11 REQUIREMENT ENGINEERING

Initial Goal Statement:

“The system shall provide online access to library resources, automate book issue and return

transactions, and maintain records of books and members.”

Scope:

The OLMS will manage all library operations but exclude procurement and external digital

library integration in the first version.

3. Elicitation Phase

During elicitation, analysts conducted interviews, distributed questionnaires, and observed

daily library activities. A Facilitated Application Specification Technique (FAST) meeting

was held with stakeholders to identify high-level requirements.

Key Requirements Identified:

• Users can search for books by title, author, or subject.

• Librarians can issue and return books using barcodes.

• The system should maintain a record of issued and returned books.

• Administrators can add or remove books and manage member data.

• The system must display book availability in real-time.

• Login authentication is required for all system users.

4. Elaboration Phase

The elicited requirements were analyzed and modeled using Use Case Diagrams and

Scenarios.

Actors:

• Member – a student or faculty member who borrows books.

• Librarian – manages book transactions.

• Administrator – manages the system and users.

Use Case Diagram:

(Textual description for documentation)

The diagram includes the following main use cases connected to their respective actors:

• Search Book (Member)

• Issue Book (Librarian)

• Return Book (Librarian)

• Add/Remove Book (Administrator)

• Generate Report (Administrator)

• Login/Logout (All Actors)

Centre for Distance Education 6.12 Acharya Nagarjuna University

Figure 6.5 – Use Case Diagram for OLMS

(Depicts relationships among actors and system use cases for book and member

management.)

Sample Use Case: Issue Book

Use Case Name Issue Book

Actors Librarian

Preconditions Member is registered and book is available

Description The librarian scans the member ID and book barcode. The system updates

the issue date, due date, and marks the book as “Issued.”

Postconditions Transaction record stored; book status updated to “Issued.”

Alternative

Flow

If book is not available, system displays “Book already issued.”

5. Negotiation Phase

Conflicts were identified between the librarian’s need for speed and the administrator’s

requirement for data accuracy. The compromise was achieved by introducing batch

updates for non-critical data while keeping transactional operations in real time.

Additionally, both users and administrators agreed to postpone advanced analytics features

(such as usage trends) to a later phase to meet the deadline.

6. Specification Phase

A Software Requirements Specification (SRS) was created based on IEEE Std 830-1998

guidelines.

SOFTWARE ENGINEERING 6.13 REQUIREMENT ENGINEERING

Excerpt from SRS:

Section Description

1. Purpose Automate and centralize library operations

2. Functional Requirements Book search, issue/return, login authentication, report

generation

3. Non-functional

Requirements

Web-based interface, response time < 2s, 99.5% uptime

4. Constraints Runs on existing library servers, uses MySQL backend

5. Assumptions Users have basic computer skills

7. Validation Phase

A prototyping approach was used for validation. The team demonstrated the interface and

workflows to librarians and administrators. Stakeholders confirmed that the system

accurately represented their needs.

Validation Techniques:

• Formal review of SRS by stakeholders.

• Test case generation for each functional requirement.

• Traceability matrix linking requirements to design modules.

8. Requirements Management Phase

Requirements were entered into IBM Rational DOORS for traceability and change control.

Each requirement was assigned a unique ID (e.g., REQ-OLMS-001) and linked to

corresponding design elements and test cases. A change control board (CCB) was

established to evaluate the impact of future modifications.

Sample Requirement Traceability:

Requirement ID Design Module Test Case Status

REQ-OLMS-001 LoginController TC-01 Verified

REQ-OLMS-002 SearchManager TC-02 In Progress

REQ-OLMS-003 TransactionHandler TC-03 Verified

9. Outcome and Lessons Learned

• Structured requirement engineering minimized ambiguity and improved

communication among stakeholders.

• Early validation through prototypes prevented costly changes later.

• Maintaining a traceability matrix ensured alignment between requirements, design,

and testing.

• Using a formal RE tool (DOORS) enhanced version control and change management.

Conclusion:

This case study demonstrates that systematic requirement engineering, when supported by

modeling (use cases, diagrams) and automation tools, results in better quality, reduced risk,

and higher customer satisfaction. It highlights the importance of continuous stakeholder

involvement and formal traceability as pillars of successful software development.

Centre for Distance Education 6.14 Acharya Nagarjuna University

6.4 SUMMARY

• Requirement Engineering (RE) defines what the system should do before it is built.

• It consists of seven major tasks: Inception, Elicitation, Elaboration, Negotiation,

Specification, Validation, and Management.

• RE ensures alignment between customer needs, business goals, and technical

implementation.

• Tools and metrics provide support for consistency and traceability throughout

development.

• Successful RE reduces risk, cost, and time by preventing ambiguity and rework.

6.5 TECHNICAL TERMS

Requirement Engineering, Elicitation, Elaboration, Negotiation, Specification, Validation,

Traceability, Requirements Management, Use Case, SRS, RTM, Stakeholder, QFD.

6.6 SELF-ASSESSMENT QUESTIONS

Essay Questions

1. Define requirement engineering and explain its importance.

2. Describe the seven tasks of the requirement engineering process.

3. Discuss the role of stakeholder communication during elicitation and negotiation.

4. Explain how an SRS document ensures clarity and traceability.

5. What is a Requirements Traceability Matrix? Illustrate with an example.

Short Notes

1. What is the purpose of requirement elicitation in software development?

2. How does QFD help in translating customer needs into technical requirements?

3. Name one technique used to validate software requirements and explain its purpose.

4. What is traceability in requirements management, and why is it important?

5. What is a use case, and how does it help in capturing functional requirements?

6.7 SUGGESTED READINGS

1. Roger S. Pressman, Software Engineering – A Practitioner’s Approach, 6th Edition,

TMH International.

2. IEEE Std 830-1998, Recommended Practice for Software Requirements

Specifications.

3. Ian Sommerville, Software Engineering, 9th Edition, Pearson Education.

4. Karl Wiegers & Joy Beatty, Software Requirements, Microsoft Press.

5. Al Davis, Software Requirements: Objects, Functions, and States, Prentice Hall.

Dr. Kampa Lavanya

LESSON- 07

BUILDING THE ANALYSIS MODEL

AIMS AND OBJECTIVES

After completing this lesson, learners will be able to:

• After completing this lesson, the learner will be able to:

• Understand the concept and significance of requirement engineering.

• Identify and describe the seven key tasks of requirement engineering.

• Apply methods for eliciting, analyzing, specifying, and validating software

requirements.

• Recognize the importance of stakeholder communication and negotiation.

• Explain the role of traceability and requirements management in maintaining project

integrity.

• Appreciate how effective requirement engineering contributes to software quality and

project success.

STRUCTURE

7.1 A BRIEF HISTORY

7.2 THE ELEMENTS OF THE ANALYSIS MODEL

7.3 DATA MODELING

 7.3.1 DATA OBJECTS, ATTRIBUTES, AND RELATIONSHIPS

 7.3.2 CARDINALITY AND MODALITY

 7.3.3 ENTITY/RELATIONSHIP DIAGRAMS

7.4 FUNCTIONAL MODELING AND INFORMATION FLOW

 7.4.1 DATA FLOW DIAGRAMS

 7.4.2 EXTENSIONS FOR REAL-TIME SYSTEMS

 7.4.3 WARD AND MELLOR EXTENSIONS

 7.4.4 HATLEY AND PIRBHAI EXTENSIONS

7.5 BEHAVIORAL MODELING

7.6 THE MECHANICS OF STRUCTURED ANALYSIS

 7.6.1 CREATING AN ENTITY/RELATIONSHIP DIAGRAM

 7.6.2 CREATING A DATA FLOW MODEL

 7.6.3 CREATING A CONTROL FLOW MODEL

 7.6.4 THE CONTROL SPECIFICATION

 7.6.5 THE PROCESS SPECIFICATION

7.7 THE DATA DICTIONARY

7.8 OTHER CLASSICAL ANALYSIS METHODS

7.9 SUMMARY

7.10 TECHNICAL TERMS

7.11 SELF-ASSESSMENT QUESTIONS

7.12 SUGGESTED READINGS

Centre for Distance Education 7.2 Acharya Nagarjuna University

7.1 A BRIEF HISTORY

In the early days of software engineering, analysis was often informal — developers directly

coded based on conversations with users.

This lack of structure led to systems that were difficult to maintain and often failed to meet

user needs.

By the 1970s, Structured Analysis (SA) methods emerged to formalize requirement

understanding.

Notable pioneers like Tom DeMarco, Ed Yourdon, and Chris Gane developed graphical and

textual techniques to model data and process flow, forming the basis for modern analysis

modeling.

Pressman notes that structured analysis introduced:

• Graphical models such as Data Flow Diagrams (DFDs), Entity–Relationship

Diagrams (ERDs), and State Transition Diagrams.

• A focus on abstraction and partitioning, which made complex systems easier to

manage.

The evolution continued with Object-Oriented Analysis (OOA) and Model-Driven

Engineering (MDE), but classical structured analysis remains foundational to understanding

system logic.

7.2 THE ELEMENTS OF THE ANALYSIS MODEL

An analysis model provides a representation of what the software must do — without

specifying how it will be implemented.

It serves as a blueprint for software design and ensures that all requirements are properly

understood and structured.

The analysis model must achieve three primary objectives: (1) to describe what the customer

requires, (2) to establish a basis for the creation of a software design, and (3) to define a set of

requirements that can be validated once the software is built. To accomplish these objectives,

the analysis model derived during structured analysis takes the form illustrated in Figure

12.1.

The five elements of an analysis model are:

Element Description

Data Model Describes the information domain (data objects and their

relationships).

Functional Model Describes the functions or transformations that process the data.

Behavioral Model Depicts system behavior as a response to external events.

Flow Model Defines how information moves between system components.

Process

Specification

Provides detailed logic of each function or process.

SOFTWARE ENGINEERING 7.3 BUILDING THE ANALYSIS MODEL

FIGURE 7.1 The structure of the analysis mode

These elements collectively create a complete view of the system’s logical structure.

7.3 DATA MODELING

Data modeling focuses on identifying, structuring, and relating data objects within the

system.

It defines what information the system must store and how different entities interact.

7.3.1 Data Objects, Attributes, and Relationships

A data object represents an entity (real or abstract) that is relevant to the system. Each object

has attributes that define its properties, and relationships that describe how objects are

connected.

Example (Library System):

• Data Objects: Book, Member, Loan, Librarian

• Attributes (Book): Book_ID, Title, Author, ISBN, Status

• Relationships: A Member can borrow many Books; a Book can be borrowed by one

Member at a time.

Centre for Distance Education 7.4 Acharya Nagarjuna University

FIGURE 7.2 Data objects, attributes and relationships

7.3.2 Cardinality and Modality

Cardinality defines the number of occurrences of one entity that can be associated with

another.

Modality defines whether that relationship is mandatory or optional.

Example Relationship Cardinality Modality

A Member borrows Books 1..n Mandatory

A Book may have a Reservation 0..1 Optional

These definitions ensure accurate modeling of real-world constraints.

FIGURE 7.3 Relationships

7.3.3 Entity/Relationship Diagrams (ERDs)

ERDs graphically represent data objects and their relationships.

Rectangles represent entities, ovals represent attributes, and diamonds represent

relationships.

SOFTWARE ENGINEERING 7.5 BUILDING THE ANALYSIS MODEL

Figure 7.4 – Entity/Relationship Diagram for Library System

(Shows entities: Book, Member, Loan, Librarian; with one-to-many relationships.)

ERDs provide the foundation for database design and logical data modeling.

7.4 FUNCTIONAL MODELING AND INFORMATION FLOW

Functional modeling describes how data is transformed as it moves through the system.

The primary tool for this representation is the Data Flow Diagram (DFD), which depicts

processes, data stores, external entities, and data flows.

Figure 7.5 – Data Flow Diagram (Level 0 Context Diagram)

(Shows interactions between User, Library System, and Database.)

Each process in the DFD corresponds to a function identified during requirement analysis.

7.4.1 Data Flow Diagrams (DFDs)

A DFD models how input data is processed to produce output.

• External Entities: Represent sources or destinations of data.

• Processes: Transform input into output.

Centre for Distance Education 7.6 Acharya Nagarjuna University

• Data Stores: Hold information for later use.

• Data Flows: Arrows showing movement of data.

Levels of DFDs:

• Level 0 (Context Diagram): Shows system as a single process.

• Level 1: Breaks main process into sub-processes.

• Level 2+: Provides more detail as necessary.

7.4.2 Extensions for Real-Time Systems

Real-time systems require modeling of time-dependent data and control information.

Extensions include:

• Control Flows: Represent signals and triggers.

• Time Constraints: Attached to processes and data flows.

7.4.3 Ward and Mellor Extensions

Ward and Mellor proposed Real-Time Structured Analysis, combining data and control

modeling.

It introduces:

• Control Flow Diagrams (CFDs) for event-driven control.

• Process Activation Tables showing event–process relationships.

7.4.4 Hatley and Pirbhai Extensions

Hatley and Pirbhai further refined real-time modeling by integrating:

• System Context Diagrams for external interactions.

• Control Specifications (CSPECs) and Process Specifications (PSPECs) to define

behavior precisely.

7.5 BEHAVIORAL MODELING

Behavioral modeling represents the dynamic behavior of the system in response to events.

Common techniques include:

• State Transition Diagrams (STDs) showing states and events.

• Sequence Diagrams representing message exchanges.

• Control Flow Models describing logic paths.

Example:

A library book changes states: Available → Issued → Overdue → Returned based on user

actions.

SOFTWARE ENGINEERING 7.7 BUILDING THE ANALYSIS MODEL

Figure 7.6 – State Transition Diagrams (Behavioral Modeling)

Figure 7.6 illustrates the concept of State Transition Diagrams (STDs), which are a core

element of behavioral modeling in software engineering. These diagrams describe how a

system or component changes its state in response to internal or external events, providing a

dynamic view of system behavior over time.

A state represents a condition or situation during the life of an object where it satisfies some

condition, performs an activity, or waits for an event. Transitions represent the movement

from one state to another, triggered by specific events or inputs. Each transition is typically

labeled with an event, an optional condition, and an action that occurs when the transition is

taken.

Example (Library Management System):

Consider the lifecycle of a library book:

• Available → Issued → Overdue → Returned → Available

• The initial state is Available. When a librarian issues the book to a member, the

system transitions to the Issued state.

• If the return due date passes without return, the system automatically transitions to

Overdue.

• When the book is finally returned, the state changes to Returned. After processing, it

goes back to Available.

Key Components of a State Transition Diagram:

Element Description

State A condition in which the system or object exists at a specific time.

Transition A directed connection showing movement from one state to another.

Event A trigger that causes a transition (e.g., “Issue Request,” “Return Book”).

Action An activity performed during a transition (e.g., “Update Record,” “Send

Reminder”).

Initial/Final

State

Denoted by filled and hollow circles, representing the beginning and end of

a state sequence.

Centre for Distance Education 7.8 Acharya Nagarjuna University

Advantages of State Transition Diagrams:

• Provide a clear and precise visualization of system dynamics.

• Help identify all possible states and transitions, avoiding omissions.

• Support error handling and exception modeling (e.g., “Book Lost,” “Invalid Login”).

• Facilitate testing by deriving test cases for each transition and event path.

State Transition Diagrams are an essential part of behavioral analysis in structured and

object-oriented modeling. They depict how the system behaves in response to events,

complementing static models like Data Flow Diagrams (DFDs) and Entity–Relationship

Diagrams (ERDs). In essence, they ensure that both data and behavioral aspects of the system

are comprehensively modeled before moving into design and implementation.

Figure 7.7 – Sequence Diagrams (Behavioral Modeling)

Figure 7.7 illustrates a Sequence Diagram, one of the most widely used models in

behavioral analysis and object-oriented software engineering. A sequence diagram

represents the dynamic behavior of a system by showing how objects interact over time to

accomplish a specific use case or function.

SOFTWARE ENGINEERING 7.9 BUILDING THE ANALYSIS MODEL

While State Transition Diagrams (STDs) focus on changes in state, Sequence Diagrams

emphasize the flow of messages between system components or classes. Developed as part of

the Unified Modeling Language (UML), sequence diagrams are instrumental in visualizing

the order of execution, data exchange, and control flow among interacting entities.

Structure of a Sequence Diagram:

A sequence diagram typically contains the following key elements:

Element Description

Actors External users or systems that initiate interactions. Represented by stick

figures on the diagram’s left or right side.

Objects /

Classes

Represent internal system entities (e.g., modules, components) shown as

rectangles at the top of the diagram.

Lifelines Vertical dashed lines below each object showing its existence over time.

Messages Horizontal arrows between lifelines representing communication, function

calls, or data transfers.

Activation

Bars

Narrow rectangles on lifelines indicating periods of activity or execution.

Return

Messages

Dashed arrows showing control returning to the sender after task

completion.

Example (Library Management System – Issue Book Use Case):

Actors & Objects:

Member → Library System → Database → Notification Service

Sequence of Interactions:

1. The Member sends a Book Issue Request to the Library System.

2. The Library System queries the Database to verify book availability.

3. The Database returns a confirmation with the book status.

4. If available, the Library System records the issue transaction and updates the

database.

5. The Notification Service sends an email to the member confirming the successful

issue.

6. Control returns to the Member, completing the interaction.

Figure 7.7 would depict these entities as lifelines connected by sequential message arrows

labeled with actions such as issueRequest(), checkAvailability(), updateRecord(), and

sendNotification().

Purpose and Benefits:

• Clarifies interaction logic: Shows the exact order of operations among system

components.

• Enhances understanding: Bridges the gap between requirement modeling and

detailed design.

• Facilitates test case generation: Each message and event can correspond to a

functional test scenario.

• Supports traceability: Every interaction can be traced back to specific use cases or

requirements.

Centre for Distance Education 7.10 Acharya Nagarjuna

University

Sequence Diagrams are vital for capturing temporal and interactive behavior within a

system. They provide a clear visual representation of who interacts with whom, in what

order, and with what information.

By integrating sequence diagrams with use cases and state models, analysts ensure that both

functional flow and system dynamics are thoroughly understood before design and coding

begin.

Figure 7.8 – Control Flow Models (Structured Analysis)

(Illustrates the logical sequencing of operations, decisions, and control conditions within a

process.)

Explanation:

Figure 7.8 represents a Control Flow Model (CFM) — a graphical technique used in

Structured Analysis to describe how control information (such as decisions, events, and

conditions) directs the execution of processes within a software system.

While Data Flow Diagrams (DFDs) focus on how data moves through the system, Control

Flow Models emphasize how the flow of control and decision-making influences process

execution.

In Pressman’s framework, the Control Flow Model forms part of the behavioral and

process specifications, complementing the CSPEC (Control Specification) and PSPEC

(Process Specification). It provides insight into the logic, sequence, and conditions

governing system operations.

Purpose of Control Flow Models

• To depict decision logic and control dependencies within and between processes.

• To represent events, conditions, and branching actions that determine how

processes are activated or terminated.

• To enhance understanding of real-time or event-driven systems, where timing and

signal control are crucial.

SOFTWARE ENGINEERING 7.11 BUILDING THE ANALYSIS

MODEL

Elements of a Control Flow Model

Symbol / Element Description

Process Block Represents a computational or logical activity (e.g., Validate Input,

Compute Result).

Decision Diamond Indicates a branching point based on a condition or test (e.g., IF book

available?).

Control Arrow Shows the direction of logical flow between processes and decisions.

Connector /

Junction

Represents entry or exit points for control paths.

Event Trigger Signals an external or internal event that initiates a control path.

Example (Library Management System – Issue Book Process)

Control Logic:

1. Start when a Book Issue Request is received.

2. Check Book Availability (Decision).

• If Available, proceed to Update Member Record and Confirm Issue.

• If Not Available, trigger Notify Unavailability.

1. Check Membership Status (Active/Inactive).

o If Inactive, send a Membership Renewal Alert.

2. End once the transaction is completed or rejected.

Figure 7.8 would show this process as a flowchart-style model:

• Rectangular blocks for processes (e.g., Update Record).

• Diamond nodes for decisions (e.g., Book Available?).

• Arrows representing the flow of control between steps.

Applications

Control Flow Models are especially useful in:

• Real-time systems, where event sequencing is critical.

• Complex decision-driven processes, such as transaction validation or workflow

systems.

• Integration with CSPECs, where each control path corresponds to a specific action

or subroutine.

Advantages

• Provides a clear logical structure of decisions and control conditions.

• Helps detect missing branches or dead paths early in analysis.

• Facilitates process optimization and identification of redundant steps.

• Forms the basis for control flow testing, ensuring that every branch and decision is

verified.

SUMMARY

The Control Flow Model is a powerful analytical tool that complements data and behavioral

models. It describes how and when processes execute based on events, conditions, and

decisions, enabling software engineers to visualize complex control logic before

implementation.

Centre for Distance Education 7.12 Acharya Nagarjuna

University

By integrating DFDs, STDs, and CFMs, analysts achieve a complete, multi-dimensional

understanding of both the data-driven and control-driven aspects of the software system.

7.6 THE MECHANICS OF STRUCTURED ANALYSIS

Structured analysis provides a disciplined method for constructing the analysis model.

7.6.1 Creating an Entity/Relationship Diagram

Steps:

1. Identify data objects from requirements.

2. Define their attributes.

3. Determine relationships and cardinalities.

4. Draw ERD with consistent naming and notation.

7.6.2 Creating a Data Flow Model

Steps:

1. Identify major processes and data movements.

2. Draw Level 0 context diagram.

3. Decompose major processes into sub-levels.

4. Label data stores and external entities clearly.

7.6.3 Creating a Control Flow Model

Control flow models depict decision logic and event sequencing.

Tools: Decision tables, state transition diagrams, and control specifications.

Steps in Creating a Control Flow Model

1. Identify Control Events:

Begin by identifying all events (external and internal) that influence system behavior—such

as “Request Received,” “Timer Expired,” or “Error Detected.”

2. Define Control Conditions:

Determine the logical conditions or decision criteria that cause branching in the control path,

e.g., “If Book is Available” or “If Payment Confirmed.”

3. Determine Control Actions:

For each decision, specify the actions or processes triggered by a particular outcome (Yes/No

or True/False paths).

4. Establish Control Flow:

Arrange events, decisions, and actions in a logical sequence using control arrows to indicate

the direction of flow.

5. Integrate with Process Model:

Align each control decision with the relevant process from the DFD or PSPEC, ensuring

consistency between data flow and control flow views.

SOFTWARE ENGINEERING 7.13 BUILDING THE ANALYSIS

MODEL

7.6.4 The Control Specification (CSPEC)

Defines the control behavior of the system, linking events to corresponding control actions.

The CSPEC generally includes two major components:

1. The State Transition Diagram (STD)

o Represents the states of the system and transitions caused by specific events.

o Defines the temporal sequencing of control.

o Example: In a library system, a Book may transition through states such as Available

→ Issued → Overdue → Returned.

2. The Process Activation Table (PAT)

o A tabular form that maps events to process activations.

o Each row corresponds to an event; each column represents a process or function.

o A mark (✓) indicates that a process is triggered by that event.

o This helps visualize which parts of the system respond to which events.

Example (Library Management System)

Scenario: When a Book Issue Request occurs, the system must perform several control

actions.

Event Action / Process Activated

Member Login Validate Member Credentials

Book Issue Request Check Book Availability

Book Available Record Issue Transaction

Book Not Available Display Notification

Book Return Update Book Status, Clear Fine

7.6.5 The Process Specification (PSPEC)

Describes processing logic using structured English, decision tables, or algorithms.

Content of a PSPEC Document

A PSPEC typically includes:

1. Process Identifier: Corresponding to the process number or name in the DFD.

2. Purpose/Description: A short statement of the process’s objective.

3. Inputs and Outputs: Data elements entering or leaving the process (referenced from

the data dictionary).

4. Processing Logic: Step-by-step rules that describe how input data is converted into

output data.

5. Constraints and Exceptions: Business or technical conditions that restrict processing

or handle errors.

Advantages of a PSPEC

• Ensures clarity and precision in process definitions.

• Provides a solid basis for program design, coding, and testing.

• Facilitates verification and validation — each process can be checked against its

requirements.

• Supports maintenance — developers can easily understand the intent behind each

process.

7.7 THE DATA DICTIONARY

The data dictionary acts as a central repository containing definitions of all data elements

used in the system.

Centre for Distance Education 7.14 Acharya Nagarjuna

University

It includes:

• Data names, types, and formats.

• Relationships among data elements.

• Sources and destinations.

Benefits:

• Ensures consistency in naming and data usage.

• Supports traceability between models.

• Simplifies maintenance and future enhancements.

7.8 OTHER CLASSICAL ANALYSIS METHODS

Beyond structured analysis, alternative methods include:

• Jackson System Development (JSD) – focuses on data structure representation.

• SADT (Structured Analysis and Design Technique) – uses hierarchical

decomposition.

• Yourdon and Coad’s Methodology – extends structured analysis to object-oriented

systems.

• These methods share the common goal of improving clarity, structure, and

communication.

7.9 SUMMARY

• The analysis model translates user requirements into structured, logical

representations.

• Major components include data modeling, functional modeling, and behavioral

modeling.

• Techniques such as ERDs, DFDs, and STDs provide graphical clarity.

• The data dictionary and process specifications ensure consistency.

• Structured analysis remains a cornerstone of software engineering practice.

7.10 TECHNICAL TERMS

Analysis Model, Data Flow Diagram, Entity–Relationship Diagram, Behavioral Model,

Control Specification, Process Specification, Data Dictionary, Cardinality, Modality, Ward

and Mellor Extensions, Hatley–Pirbhai Method.

7.11 SELF-ASSESSMENT QUESTIONS

Essay Questions

1. Explain the purpose of the analysis model in software engineering.

2. Describe the elements of the analysis model with examples.

3. Differentiate between data modeling and functional modeling.

4. Discuss the significance of behavioral modeling in system analysis.

5. Explain how DFDs and ERDs complement each other in structured analysis.

SOFTWARE ENGINEERING 7.15 BUILDING THE ANALYSIS

MODEL

Short Notes

1. Write about Cardinality and Modality

2. How Ward and Mellor Extensions

3. The Role of the Data Dictionary. Explain.

4. Describe Control Specification (CSPEC)

5. What is Process Specification (PSPEC)

7.12 SUGGESTED READINGS

1. Roger S. Pressman, Software Engineering – A Practitioner’s Approach, 6th Edition,

TMH International.

2. Ed Yourdon and Tom DeMarco, Structured Analysis and System Specification,

Prentice Hall.

3. Ian Sommerville, Software Engineering, 9th Edition, Pearson Education.

4. Chris Gane & Trish Sarson, Structured Systems Analysis: Tools and Techniques,

Prentice Hall.

5. Yourdon & Coad, Object-Oriented Analysis, Prentice Hall.

Dr. Kampa Lavanya

LESSON- 08

DESIGN ENGINEERING

AIMS AND OBJECTIVES

After completing this lesson, the learner will be able to:

• Explain the role of design in the software engineering process.

• Identify and describe key elements of the design model.

• Understand the design process and factors influencing design quality.

• Apply design concepts such as abstraction, modularity, and information hiding.

• Describe architectural, data, interface, component, and deployment design

elements.

• Understand the importance of patterns, refactoring, and frameworks in modern

design.

• Recognize how pattern-based software design enhances reusability and scalability.

STRUCTURE

8.1 DESIGN WITHIN THE CONTEXT OF SOFTWARE ENGINEERING

8.2 DESIGN PROCESS AND DESIGN QUALITY

8.3 DESIGN CONCEPTS

 8.3.1 ABSTRACTION

 8.3.2 MODULARITY

 8.3.3 INFORMATION HIDING

 8.3.4 FUNCTIONAL INDEPENDENCE

 8.3.5 REFINEMENT

8.4 THE DESIGN MODEL

 8.4.1 DATA DESIGN ELEMENTS

 8.4.2 ARCHITECTURAL DESIGN ELEMENTS

 8.4.3 INTERFACE DESIGN ELEMENTS

 8.4.4 COMPONENT-LEVEL DESIGN ELEMENTS

 8.4.5 DEPLOYMENT-LEVEL DESIGN ELEMENTS

8.5 PATTERN-BASED SOFTWARE DESIGN

 8.5.1 DESCRIBING A DESIGN PATTERN

 8.5.2 USING PATTERNS IN DESIGN

 8.5.3 REFACTORING AND FRAMEWORKS

8.6 SUMMARY

8.7 TECHNICAL TERMS

Centre for Distance Education 8.2 Acharya Nagarjuna University

8.8 SELF-ASSESSMENT QUESTIONS

8.9 SUGGESTED READINGS

8.1 DESIGN WITHIN THE CONTEXT OF SOFTWARE ENGINEERING

Software design is the technical kernel of the engineering process. It begins once the

requirements model has been validated and acts as the foundation for all later phases —

coding, testing, and maintenance.

Pressman emphasizes that design is not coding, but it provides the structural framework that

makes coding systematic and efficient.

Design transforms:

• Information (from analysis) into data structures.

• Functional requirements into software components.

• Behavioral models into architectural and procedural representations.

A good design must satisfy both functional requirements (what the system should do) and

non-functional requirements (performance, reliability, usability, and maintainability).

Figure 8.1 – The Design Process Context

(Depicts flow: Requirements Model → Design Model → Implementation → Testing)

8.2 DESIGN PROCESS AND DESIGN QUALITY

The Design Process

The design process follows a logical progression:

1. Understand the problem domain.

2. Identify design objectives and constraints.

3. Develop representations — data, architecture, interface, and components.

4. Refine these representations into implementable structures.

Each design phase feeds into the next, ensuring traceability from requirement to

implementation.

Design Quality Attributes

A quality design exhibits the following attributes:

• Correctness: The design satisfies all specified requirements.

• Understandability: Easy for developers and maintainers to comprehend.

• Efficiency: Promotes optimal use of resources.

• Maintainability: Supports future enhancements with minimal rework.

SOFTWARE ENGINEERING 8.3 DESIGN ENGINEERING

• Reusability: Encourages reuse of components or design patterns.

Design quality = structure + clarity + flexibility.

Quality Guidelines

• A design should exhibit an architecture which has been created using recognizable

architectural styles or patterns, is composed of components that exhibit is composed

composed of components components that exhibit exhibit good design characteristics

good design characteristics characteristics can be implemented in an evolutionary

fashion.

• A design should be modular

• A design should contain distinct representations A design should contain contain

distinct distinct representations representations of data architecture of data,

architecture architecture, interfaces, and components.

• A design should lead to data structures that are appropriate for the classes to be

implemented appropriate appropriate for the classes classes to be implemented

implemented drawn from recognizable data patterns.

• A design should lead to components that exhibit independent functional

characteristics.

• A design should lead to interfaces that reduce the complexity of connections between

components and with the external environment.

• A design should be represented effectively for communicating its meaning.

8.3 DESIGN CONCEPTS

Pressman identifies key concepts that form the foundation of sound software design.

8.3.1 Abstraction

Abstraction allows designers to focus on essential features without being distracted by

implementation details.

It provides multiple layers of design — from general system architecture to specific

algorithms.

Types of Abstraction:

• Procedural Abstraction: Represents a sequence of instructions.

• Data Abstraction: Encapsulates data with associated operations.

• Control Abstraction: Describes control mechanisms without details.

• Example:

A “Library Account” object abstracts data (member details) and behavior (borrow,

return).

Design Pattern Template (as per Pressman, 6th Edition)

A Design Pattern Template provides a standard structure for documenting reusable design

solutions. It allows developers to describe a recurring design problem, its context, and its

proven solution in a consistent, easy-to-understand format.

Centre for Distance Education 8.4 Acharya Nagarjuna University

Each pattern entry in this template captures what the pattern does, when to use it, and how it

works, ensuring that teams can communicate design knowledge effectively.

Design Pattern Template

Section Description

Pattern Name Provides a short, descriptive, and expressive name for the pattern. The

name should capture the essence of the pattern and make it easy to refer

to and discuss.

Example: Singleton, Observer, Factory Method.

Intent Describes the goal or purpose of the pattern — what it does and why it

exists. It summarizes the problem and the pattern’s solution in one or

two sentences.

Example: “Ensure that a class has only one instance and provide a

global access point to it.”

Motivation Provides a real-world example or scenario that illustrates the problem

context and how the pattern provides a solution. This section helps the

reader understand why the pattern is useful.

Example: In a logging system, multiple instances can cause inconsistent

log data; the Singleton pattern ensures only one instance handles all

logs.

Applicability Specifies situations or contexts where the pattern can be applied. It

describes design problems and conditions that indicate when this pattern

is suitable.

Example: Use the Factory Method pattern when a class cannot anticipate

the class of objects it must create.

Structure Describes the classes and objects that participate in the pattern, typically

illustrated using UML class or interaction diagrams.

This section visually shows the static relationships among components.

Participants Lists and describes the responsibilities of each class or object in the

pattern. It explains what role each participant plays in realizing the

pattern.

Example: In the Observer pattern, the “Subject” maintains a list of

“Observers” and notifies them of changes.

Collaborations Describes how the participants interact to carry out their responsibilities.

It explains the flow of control and data between objects in the pattern.

Example: The Subject calls an update() method on each Observer when

its state changes.

Consequences

(optional)

Explains the results and trade-offs of using the pattern — such as

benefits, drawbacks, or system impacts (e.g., performance, flexibility).

Example: Singleton improves control but reduces testability.

Implementation Provides guidelines or steps for implementing the pattern. May include

sample code or pseudocode showing how classes are defined and

interact.

Known Uses

(optional)

Gives real-world examples or systems where the pattern has been

applied successfully.

Example: The MVC architecture uses the Observer pattern to

synchronize views with the model.

SOFTWARE ENGINEERING 8.5 DESIGN ENGINEERING

Related Patterns Cross-references other patterns that are related in intent or structure.

Helps identify complementary or alternative solutions.

Example: The Abstract Factory pattern is often used with the Factory

Method pattern.

Example (Extract – Singleton Pattern)

Field Example Entry

Pattern Name: Singleton

Intent:
Ensure that only one instance of a class exists and provide a global access

point to it.

Motivation:
Logging, configuration, or driver management requires a single control

object.

Applicability:
Use when a single instance is needed to coordinate actions across the

system.

Structure: One class with a private constructor and a static instance variable.

Participants: Singleton class manages its own instance creation and access.

Collaborations: Clients access the single instance via a static method (e.g., getInstance()).

Related

Patterns:
Abstract Factory, Builder.

This Design Pattern Template ensures uniform documentation and understanding of reusable

solutions across teams.

By defining sections such as Intent, Motivation, Structure, and Collaborations, Pressman’s

approach encourages clarity, consistency, and reusability — key aspects of high-quality

software design.

8.3.2 Modularity

Modularity divides a system into manageable, logically distinct units called modules.

Each module performs a specific function and communicates with others through defined

interfaces.

Advantages:

• Simplifies development and debugging.

• Supports parallel work among teams.

• Improves reusability and testing.

• Facilitates maintenance.

8.3.3 Information Hiding

Proposed by David Parnas, this principle suggests that modules should hide internal details

and expose only necessary interfaces.

Changes inside a module should not affect others — leading to low coupling and high

cohesion.

Centre for Distance Education 8.6 Acharya Nagarjuna University

Example:

A banking module hides interest calculation logic while exposing only public methods for

account operations.

Why Information Hiding?

Information hiding is essential because it:

1. Reduces the likelihood of side effects:

o When one module changes, hidden internal details ensure that other modules remain

unaffected.

o This prevents unintended consequences — also known as side effects — in other parts

of the software.

2. Limits the global impact of local design decisions:

o Internal modifications (like changing data representation or algorithm logic) can be

done without impacting the rest of the system.

o This supports maintainability and evolution of software.

3. Emphasizes communication through controlled interfaces:

o Modules interact via well-defined interfaces (public methods, APIs) rather than

through direct access to internal data.

o This enforces discipline in communication between components.

4. Discourages the use of global data:

o Global variables make programs difficult to debug and maintain because changes can

have widespread effects.

o By hiding data within modules, each component becomes self-contained and robust.

5. Leads to Encapsulation:

o Encapsulation is a design attribute where data and the operations that manipulate

it are bundled together.

o It is a direct result of information hiding and is the core of object-oriented design.

Example: A Bank Account class hides its balance attribute and provides controlled access via

methods like deposit() and withdraw().

6. Results in Higher Quality Software:

o Designs based on information hiding are easier to understand, modify, test, and

reuse.

o They improve modularity, flexibility, and reliability, leading to high-quality

software products.

8.3.4 Functional Independence

A design achieves functional independence when modules:

• Perform unique, cohesive tasks, and

SOFTWARE ENGINEERING 8.7 DESIGN ENGINEERING

• Minimize dependencies (coupling) with other modules.

Cohesion: Measures how closely related the functions within a module are.

Coupling: Measures how much one module depends on others.

The goal is high cohesion, low coupling — a hallmark of good design.

8.3.5 Refinement

Refinement is a top-down process of elaborating design details.

High-level functions are decomposed into more specific operations until each is detailed

enough for coding.

Example:

“Manage Library Accounts” → “Add Member,” “Update Record,” “Deactivate Account.”

8.4 THE DESIGN MODEL

The Design Model represents the structure of the system, its components, interfaces, and

deployment configuration.

Pressman identifies five key design elements, each describing a different aspect of the

system.

8.4.1 Data Design Elements

Define how data structures are organized, stored, and accessed.

Data design ensures consistency with the data model created during analysis.

Includes:

• Data objects, attributes, and relationships.

• Database schema design and normalization.

• Data structures used by algorithms.

8.4.2 Architectural Design Elements

The software architecture defines the overall structure — how major components interact.

It provides a blueprint for system organization, capturing both static structure and dynamic

behavior.

Common Architectural Styles:

• Layered Architecture (e.g., Presentation–Business–Data)

• Client–Server Architecture

• Object-Oriented Architecture

• Component-Based and Service-Oriented Architectures (SOA)

Centre for Distance Education 8.8 Acharya Nagarjuna University

Figure 8.2 – Example of a Layered Software Architecture

Figure 8.2 illustrates the Layered Software Architecture, one of the most widely used and

fundamental architectural styles in software engineering. A layered architecture organizes

software into hierarchical layers, where each layer provides services to the layer above it and

depends on the layer below it.

This design promotes separation of concerns, modularity, and scalability, making it easier to

maintain and evolve large systems.

Advantages of Layered Architecture

Feature Benefit

Separation of

Concerns

Simplifies understanding and maintenance by isolating

functionalities.

Ease of Maintenance Changes in one layer (e.g., UI redesign) do not affect others.

Reusability Each layer’s services can be reused by other applications.

Scalability Additional features (e.g., new services, APIs) can be added with

minimal changes.

Testability Each layer can be unit tested independently.

Example – Library Management System (Layered View)

Layer Example Components

Presentation Layer User interface for librarians and members, web portal

Business Logic

Layer

Book issue/return management, fine calculation, membership

validation

Data Layer Database storing book records, member information, transaction

history

The Layered Software Architecture embodies Pressman’s principle of structured design —

ensuring that systems are built in well-organized, stable, and evolvable layers, leading to

high-quality software.

8.4.3 Interface Design Elements

Defines how modules and users interact with the system.

SOFTWARE ENGINEERING 8.9 DESIGN ENGINEERING

It includes both user interfaces (UI) and inter-module interfaces (APIs).

Principles:

• Consistency in layout and behavior.

• Minimal user effort.

• Clear navigation and feedback.

• Standardization of data exchange protocols.

1. User Interface (UI) Design

The User Interface (UI) represents the visible and interactive part of a software system —

what users see and how they perform tasks.

It involves not only visual appearance but also interaction design, workflow, and user

experience (UX) principles.

Key Goals of UI Design:

• To make the system easy to learn, efficient to use, and pleasant to interact with.

• To translate system functionality into clear visual metaphors (buttons, menus, icons,

forms).

• To ensure that the system supports user goals and reduces cognitive load.

UI Design Principles (as per Pressman)

Principle Description

Consistency Maintain uniformity in layout, color schemes, controls, and

terminology throughout the application. Consistency reduces user

confusion and enhances predictability.

Minimal User

Effort

The interface should minimize the number of steps required to

perform a task. Avoid redundant confirmations and simplify

workflows.

Clarity and

Feedback

Every user action should trigger immediate feedback — visual

(loading indicators), auditory, or textual (error/success messages).

Visibility of System

Status

Users should always know what the system is doing — through

progress indicators, status bars, or confirmation messages.

Error Prevention

and Recovery

Design should minimize user errors and provide clear guidance for

correction. Example: Confirm before deleting data.

Flexibility and

Efficiency

Support novice users through guidance while allowing experts to use

shortcuts or advanced commands.

Aesthetic and

Minimal Design

Avoid unnecessary visual clutter. Present information in a clean,

organized layout aligned with usability goals.

Example – Library Management System (UI Interaction)

• The user logs in via a login form (input validation ensures correct credentials).

• After successful login, the dashboard interface displays menus for book search,

issue, and return operations.

• The system provides real-time feedback — e.g., “Book successfully issued” or

“Book not available.”

• The interface maintains a consistent look (same colors, typography, and navigation

structure).

Centre for Distance Education 8.10 Acharya Nagarjuna University

2. Inter-Module Interface Design (API Design)

Beyond the visual interface, software systems also rely on inter-module communication —

internal and external connections that allow components to exchange data or trigger

operations.

An Application Programming Interface (API) defines how modules communicate through

function calls, messages, or data streams.

Objectives of API Design:

• Enable modules to interact independently without exposing internal details.

• Ensure standardized data exchange protocols (e.g., JSON, XML, REST).

• Support extensibility — new modules can be added without modifying existing ones.

• Promote reuse across applications or systems.

API Design Principles

Principle Description

Encapsulation APIs expose only what is necessary, hiding implementation

details.

Simplicity Keep method signatures and data formats simple and intuitive.

Consistency Follow consistent naming conventions, parameter orders, and

error-handling mechanisms.

Statelessness (for Web

APIs)

Each request should be independent to ensure scalability and

simplicity (as in REST APIs).

Version Control Maintain backward compatibility and version identifiers (v1, v2)

for evolving systems.

Security Protect data exchange through authentication, authorization, and

encryption mechanisms.

Example – Library Management System (API Interface)

API Endpoint Purpose Request/Response Format

/api/books/search Retrieve books

by title or

author

Request: GET /api/books/search?title=AI →

Response: { "bookID": 501, "title": "AI Concepts",

"status": "Available" }

/api/books/issue Issue a book to

a member

Request: POST /api/books/issue → Response: {

"status": "Issued", "dueDate": "2025-11-15" }

/api/members/register Add new

library

members

Request: POST /api/members/register → Response:

{ "memberID": 1023, "status": "Active" }

These APIs ensure smooth interaction between the front-end (Presentation Layer) and the

back-end (Database Layer).

8.4.4 Component-Level Design Elements

Each software component is designed in detail — defining its classes, methods, attributes,

and relationships.

SOFTWARE ENGINEERING 8.11 DESIGN ENGINEERING

This is where object-oriented design principles like encapsulation, inheritance, and

polymorphism are applied.

Example:

Class Book with attributes (title, author, ISBN) and methods (issue(), return()).

Objectives of Component-Level Design

The key objectives are to:

1. Define the structure and behavior of each software component.

2. Specify the internal logic and interactions of classes and functions.

3. Apply object-oriented principles such as encapsulation, inheritance, and

polymorphism.

4. Ensure that each component supports reusability, testability, and maintainability.

5. Align detailed component design with the architectural framework.

Key Elements of Component-Level Design

Element Description

Classes Represent real-world entities or logical abstractions. Each class defines

data (attributes) and behavior (methods).

Attributes Define the data held by a class or component. Attributes represent the

state of an object.

Methods /

Operations

Define the behavior of the class — how it manipulates its data and

interacts with other classes.

Interfaces Define how other classes or components can access the functionality of

the component.

Relationships Describe how classes are connected — through association, aggregation,

composition, or inheritance.

Packages /

Modules

Logical groupings of related classes that form larger components or

subsystems.

Component-Level Design Workflow

1. Identify Components: Based on analysis and architecture models, determine logical

building blocks (e.g., Book, Member, Transaction).

2. Define Class Hierarchies: Establish inheritance and composition relationships.

3. Specify Interfaces: Clearly define the entry points and methods available to other

components.

4. Describe Internal Logic: Use pseudocode, flowcharts, or structured English to

describe behavior.

5. Verify and Refine: Ensure that component logic satisfies design constraints and aligns

with architectural decisions.

Advantages of Component-Level Design

Aspect Benefit

Reusability Components can be reused across projects with minimal modification.

Maintainability Encapsulated components can be updated independently.

Scalability New components can be integrated easily without affecting others.

Testability Each component can be tested in isolation.

Reliability Independent design reduces the risk of failure propagation.

Centre for Distance Education 8.12 Acharya Nagarjuna University

Component-Level Design and UML

Component-level design is often represented using UML diagrams:

• Class Diagrams: Show structure, attributes, methods, and relationships.

• Sequence Diagrams: Illustrate dynamic interactions among components.

• Component Diagrams: Depict system-level organization and dependencies.

8.4.5 Deployment-Level Design Elements

Defines how software components are physically distributed across hardware and networks.

It ensures scalability, reliability, and performance.

Deployment design includes:

• Mapping software elements to physical devices.

• Network topology.

• Load balancing and redundancy.

Example – Library Management System (Deployment Design)

Scenario: The university library system is web-based and must serve both local and

remote users.

Deployment Element Physical Configuration Purpose

Web Interface Hosted on Web Server Handles user requests and displays

results.

Business Logic

(Application Layer)

Deployed on Application

Server

Processes user inputs and executes

core functions.

Database Centralized on Database

Server

Stores book records, user accounts,

and transactions.

Backup Server Remote Site / Cloud Maintains backup copies for disaster

recovery.

Network Secure LAN + Internet

Gateway

Provides connectivity between users

and servers.

Key Characteristics of Deployment Design

Aspect Description

Distribution Defines how components are spread across different physical or virtual

machines.

Concurrency Handles multiple requests simultaneously without performance

degradation.

Fault

Tolerance

Ensures continuity during hardware, software, or network failures.

Security Implements encryption, authentication, and firewalls to protect data and

services.

Scalability Enables the addition of new servers or services as demand grows.

Performance Optimizes response time through caching, compression, and efficient

routing.

SOFTWARE ENGINEERING 8.13 DESIGN ENGINEERING

Advantages of Deployment-Level Design

Benefit Explanation

Improved Reliability Redundancy and fault tolerance minimize downtime.

Enhanced Performance Proper load distribution improves system responsiveness.

Ease of Maintenance Modular deployment allows isolated upgrades.

Scalability Supports growth without redesigning the entire system.

Security and Control Enables secure communication and controlled access.

Best Practices for Deployment Design

1. Use Layered Deployment: Align with layered architecture (UI → Business → Data).

2. Automate Deployment: Use tools like Docker, Kubernetes, Jenkins, or Ansible.

3. Monitor System Health: Implement real-time monitoring for resource utilization and

service uptime.

4. Plan for Disaster Recovery: Maintain offsite backups and failover mechanisms.

5. Document the Configuration: Include diagrams and mapping tables for clarity and

reproducibility.

The Deployment-Level Design is where the logical software model becomes a physical

reality.

It defines how and where each software component will operate, ensuring that the system

delivers scalability, reliability, and performance under real-world conditions.

Example: Object-Oriented Design for Library Management System

Classes:

• Book – Represents each library book.

• Member – Represents library members.

• Librarian – Manages book records and membership.

• Transaction – Handles book issue and return operations.

Relationships:

• Member borrows Book.

• Librarian manages Book and Member.

• Transaction uses both Member and Book.

Object-Oriented Design (OOD) transforms a problem into a network of collaborating objects,

promoting modularity, reusability, and clarity.

It is grounded on the four foundational principles — Encapsulation, Inheritance,

Polymorphism, and Abstraction — and supported by additional concepts like composition,

association, and low coupling with high cohesion.

8.5 PATTERN-BASED SOFTWARE DESIGN

Modern design uses patterns to capture proven solutions to recurring problems.

Centre for Distance Education 8.14 Acharya Nagarjuna University

8.5.1 Describing a Design Pattern

A design pattern is a reusable template describing how to solve a class of problems in a

particular context.

Each pattern typically includes:

• Name – A meaningful label (e.g., Singleton, Observer, Factory).

• Intent – What the pattern accomplishes.

• Motivation – The context or situation where it applies.

• Structure – Class and interaction diagrams.

• Consequences – Trade-offs and results of applying the pattern.

8.5.2 Using Patterns in Design

Patterns improve consistency and reuse. They help teams:

• Apply standard solutions for known challenges.

• Communicate effectively using a common design vocabulary.

• Reduce design time through reuse of existing approaches.

• Categories of Patterns:

• Creational: Deal with object creation (e.g., Singleton, Factory Method).

• Structural: Define composition of classes (e.g., Adapter, Decorator).

• Behavioral: Manage communication (e.g., Observer, Strategy).

8.5.3 Refactoring and Frameworks

• Refactoring is the process of improving internal code structure without changing its

external behavior.

• It enhances readability, performance, and maintainability.

• Example: Reorganizing methods in a class to reduce redundancy.

• Frameworks are semi-complete software architectures that provide reusable designs

for specific domains (e.g., web, GUI, data processing).

Frameworks combine design patterns into a cohesive environment for rapid

application development.

8.6 SUMMARY

• Software design transforms analysis models into an implementation blueprint.

• It involves data, architecture, interface, component, and deployment design.

• Design concepts such as abstraction, modularity, and information hiding ensure

quality and maintainability.

• Patterns, frameworks, and refactoring enhance reuse and long-term adaptability.

A well-structured design leads directly to a robust, reliable, and maintainable software

product.

8.7 TECHNICAL TERMS

Design Model, Architecture, Abstraction, Modularity, Information Hiding, Functional

Independence, Cohesion, Coupling, Design Pattern, Refactoring, Framework, Component,

Interface, Deployment Diagram.

SOFTWARE ENGINEERING 8.15 DESIGN ENGINEERING

8.8 SELF-ASSESSMENT QUESTIONS

Essay Questions

1. Explain the importance of design within the context of software engineering.

2. Describe the key design concepts introduced by Pressman.

3. Discuss the elements of the design model in detail.

4. What are design patterns? Explain their types and advantages.

5. Explain how modularity and information hiding contribute to software quality.

Short Notes

1. What is Abstraction

2. Describe brief Layered Architecture

3. How Functional Independence works.

4. Explain Refactoring.

5. Write about Frameworks

8.9 SUGGESTED READINGS

1. Roger S. Pressman, Software Engineering – A Practitioner’s Approach, 6th Edition,

TMH International.

2. Erich Gamma et al., Design Patterns: Elements of Reusable Object-Oriented

Software, Addison-Wesley.

3. Ian Sommerville, Software Engineering, Pearson Education.

4. Steve McConnell, Code Complete, Microsoft Press.

5. Craig Larman, Applying UML and Patterns, Prentice Hall.

Dr. Kampa Lavanya

LESSON- 09

CREATING AN ARCHITECTURAL DESIGN

AIMS AND OBJECTIVES

After completing this lesson, the learner will be able to:

• Understand the concept and role of software architecture in the development process.

• Explain why architectural design is critical to software success.

• Describe different architectural styles and patterns.

• Illustrate the process of architectural design and data design at both system and

component levels.

• Evaluate alternative architectural designs using ATAM and architectural metrics.

• Explain how architectural description languages (ADL) represent complex systems.

STRUCTURE

9.1 INTRODUCTION

9.2 WHAT IS SOFTWARE ARCHITECTURE?

9.3 WHY IS ARCHITECTURE IMPORTANT?

9.4 DATA DESIGN

 9.4.1 DATA DESIGN AT THE ARCHITECTURAL LEVEL

 9.4.2 DATA DESIGN AT THE COMPONENT LEVEL

9.5 ARCHITECTURAL STYLES AND PATTERNS

 9.5.1 DATA-CENTERED ARCHITECTURE

 9.5.2 DATA FLOW (PIPE-AND-FILTER) ARCHITECTURE

 9.5.3 LAYERED ARCHITECTURE

 9.5.4 CALL-AND-RETURN ARCHITECTURE

 9.5.5 OBJECT-ORIENTED ARCHITECTURE

9.6 ARCHITECTURAL DESIGN PROCESS

 9.6.1 REPRESENTING THE SYSTEM IN CONTEXT

 9.6.2 DEFINING ARCHETYPES

 9.6.3 REFINING THE ARCHITECTURE INTO COMPONENTS

 9.6.4 DESCRIBING INSTANTIATIONS OF THE SYSTEM

9.7 Assessing Alternative Architectural Designs

 9.7.1 ARCHITECTURE TRADE-OFF ANALYSIS METHOD (ATAM)

 9.7.2 ARCHITECTURAL COMPLEXITY

 9.7.3 ARCHITECTURAL DESCRIPTION LANGUAGES (ADL)

9.8 SUMMARY

9.9 TECHNICAL TERMS

9.10 SELF-ASSESSMENT QUESTIONS

9.11 SUGGESTED READINGS

Centre for Distance Education 9.2 Acharya Nagarjuna University

9.1 INTRODUCTION

Software architecture represents the blueprint of a software system—it defines the structure,

components, relationships, and communication among them.

It is the point where high-level design decisions are made that influence performance,

scalability, maintainability, and security.

Roger S. Pressman defines software architecture as:

“The structure or structures of the system, which comprise software components, their

externally visible properties, and the relationships among them.”

Architecture is the bridge between requirements analysis and detailed design. It identifies

how the system will be organized and how components will interact to satisfy functional and

non-functional requirements.

Example:

In a Library Management System:

• The architecture defines modules such as User Interface, Book Catalog, Member

Management, and Database.

• Their relationships specify data flow (e.g., UI → Application Logic → Database →

Response).

Figure 9.1 – The Architectural Context

(Depicts external entities interacting with the software system; e.g., users, devices, external

databases.)

Explanation:

This figure illustrates that every software architecture exists within an environment of

external systems and users.

Arrows represent communication between the software and its external actors — the context

in which the system operates.

SOFTWARE ENGINEERING 9.3 CREATING AN ARCHITECT…

9.2 WHAT IS SOFTWARE ARCHITECTURE?

Software architecture is the skeleton of the system that defines how components are

structured and how they collaborate.

It consists of:

1. Structural Elements – Modules, classes, subsystems.

2. Behavioral Elements – How elements interact and communicate.

3. Patterns – Reusable templates for solving design problems.

4. Constraints – Non-functional attributes such as performance, security, and fault

tolerance.

Architecture is not the final code but an abstraction that guides implementation.

Pressman’s View:

Architecture provides:

• A representation for analyzing effectiveness and design alternatives.

• A template for constructing design models.

• A basis for verifying system quality attributes.

9.3 WHY IS ARCHITECTURE IMPORTANT?

Architecture is the foundation for software quality. Decisions made at this level have a long-

term impact on every phase of the software lifecycle.

Importance of Architecture:

1. Facilitates Communication:

 Acts as a shared understanding between developers, managers, and stakeholders.

2. Enables Early Design Analysis:

 Helps evaluate performance, modifiability, and security before coding begins.

3. Supports Large-Scale Reuse:

 Proven architectural styles (like MVC or Layered) can be reused across systems.

4. Guides Implementation and Maintenance:

 Clear architecture simplifies debugging, testing, and future enhancements.

5. Improves Risk Management:

 Architectural analysis identifies design bottlenecks early.

Example (SafeHome Security System):

In Pressman’s SafeHome case, the architecture defines modules such as Sensor Controller,

User Interface, Alarm Processor, and Database Subsystem.

Changing a single component (like sensor type) doesn’t require rewriting the entire system—

showing architecture’s power to manage complexity.

9.4 DATA DESIGN

Data design determines how information is structured, stored, and accessed within the

software system.

It ensures data integrity, consistency, and efficiency across all system components.

Centre for Distance Education 9.4 Acharya Nagarjuna University

9.4.1 Data Design at the Architectural Level

At the architectural level, data design defines how data entities are organized globally—their

flow between major subsystems.

Key Steps:

1. Identify major data objects (e.g., Books, Members, Transactions).

2. Define relationships (e.g., a Member borrows a Book).

3. Map these objects to system components or databases.

4. Decide data management architecture (centralized, distributed, replicated).

Example:

In the Library System, the database server holds Books, Members, and Loan Records.

The application server retrieves or updates this data through standardized access layers.

9.4.2 Data Design at the Component Level

At the component level, data design focuses on local data structures and algorithms that

process them.

Examples:

• Arrays, linked lists, trees, and hash tables used for data storage.

• Algorithms for searching, sorting, and indexing.

• Data validation and transaction control mechanisms.

Goal:

Optimize data access while maintaining integrity and scalability.

9.5 ARCHITECTURAL STYLES AND PATTERNS

Pressman classifies architectures based on control flow, data management, and component

interaction.

Each style defines a structure and communication pattern.

9.5.1 Data-Centered Architecture

• Data resides in a central repository (e.g., database or file system).

• Clients (components) access or update data through well-defined interfaces.

• Suitable for systems with shared information across multiple components.

SOFTWARE ENGINEERING 9.5 CREATING AN ARCHITECT…

Fig 9.2 Data-Centered Architecture

Example:

Library Management System – centralized database for all member and book data.

9.5.2 Data Flow (Pipe-and-Filter) Architecture

• Components (filters) transform data received from upstream filters and send it

downstream.

• Data flows through a series of processing steps like a pipeline.

Figure 9.3 – Data Flow (Pipe-and-Filter) Architecture

(Shows sequential filters connected by pipes passing data streams.)

Centre for Distance Education 9.6 Acharya Nagarjuna University

Example:

A compiler—source code → lexical analysis → syntax analysis → code generation.

Advantages:

• Easy to extend or modify filters.

• Supports reusability and parallel processing.

9.5.3 Layered Architecture

• The system is organized into layers, each providing services to the layer above it.

• Lower layers handle fundamental operations (e.g., database), while upper layers

manage UI and application logic.

Figure 9.4 – Layered Architecture

(Depicts presentation, business, and data layers in hierarchical order.)

Example:

Three-tier web applications (Presentation, Logic, Database).

Advantages:

• Improves modifiability and testability.

• Each layer can evolve independently.

9.5.4 Call-and-Return Architecture

• Common in procedural systems.

• Components call subroutines and receive control back after execution.

Example:

Traditional C programs with main() calling multiple functions.

SOFTWARE ENGINEERING 9.7 CREATING AN ARCHITECT…

Fig 9.5 Call-and-Return Architecture

9.5.5 Object-Oriented Architecture

• The system is composed of interacting objects, each encapsulating data and behavior.

• Communication occurs via message passing.

•

Figure 9.4 – Object-Oriented Architecture

(Shows objects communicating through defined interfaces.)

Example:

SafeHome: Objects like Sensor, Alarm, and Controller interact through messages.

Centre for Distance Education 9.8 Acharya Nagarjuna University

9.6 ARCHITECTURAL DESIGN PROCESS

Architectural design is a creative and technical process that transforms analysis models into a

structured solution.

It defines how the system will be organized into components, how these will interact, and

how the system will integrate with its environment.

According to Pressman, the architectural design process involves:

1. Representing the system in context.

2. Defining archetypes (fundamental structural abstractions).

3. Refining the architecture into components.

4. Describing the instantiation of the system.

Each step enhances understanding and precision, moving from abstraction to implementable

detail.

9.6.1 Representing the System in Context

Every software system operates within a larger environment — involving users, external

systems, sensors, or databases.

The context diagram models these external entities and their data flow to and from the

system.

Figure 9.5 revisited – The Architectural Context

(Shows software at the center with external entities such as User, Database, Device, and

Network.)

Example (SafeHome System):

• External Entities: Homeowner, Security Company, and Alarm Sensor Network.

• Context: The homeowner interacts through the user interface; the system

communicates with sensors and external monitoring servers.

SOFTWARE ENGINEERING 9.9 CREATING AN ARCHITECT…

Benefits:

• Clarifies system boundaries.

• Defines all external interfaces early.

• Prevents missing external dependencies during design.

The Architectural Context model serves as the first step in architectural design. It defines the

boundaries of the system — what lies inside (the software’s responsibility) and what lies

outside (handled by external systems or users).

By identifying these interfaces early:

• Designers prevent scope creep and missing dependencies.

• Teams can define communication protocols and data formats clearly.

• Stakeholders can visualize how the software fits within the overall enterprise

environment.

Example (SafeHome Security System):

In the SafeHome architecture, the system receives sensor signals (input) and sends alarm

triggers and notifications (output).

External Entities:

• Homeowner: Interacts through the app or keypad.

• Alarm Monitoring Server: Receives alerts.

• Sensor Network: Sends motion or intrusion data.

• Database: Stores system logs and user credentials.

Flow:

Sensors → Controller (SafeHome System) → Alarm/Notification → User & Monitoring

Server.

9.6.2 Defining Archetypes

An archetype is a fundamental abstraction that defines a class of system elements sharing

common behavior and structure.

Archetypes serve as templates for components within the architecture.

Archetypes typically include:

1. Structural archetypes: Represent the physical composition of the system (e.g.,

hardware nodes, modules).

2. Behavioral archetypes: Define control and communication patterns.

3. Functional archetypes: Represent key functional elements of the system.

Example (SafeHome):

• Sensor Archetype – detects intrusions.

• Control Archetype – interprets signals and triggers alarms.

• Interface Archetype – enables user interaction via keypad or app.

Centre for Distance Education 9.10 Acharya Nagarjuna University

Figure 9.6 UML relationships for SafeHome security function archetypes

These abstractions help designers reason about the system without focusing on low-level

details.

Figure 9.6 demonstrates how UML relationships among archetypes convey the structural

organization of the SafeHome system.

• Sensors detect and send signals.

• Controller interprets data and triggers appropriate responses.

• Alarms, UserInterfaces, and MonitoringServices handle responses and

communication.

• Database ensures data persistence.

This architecture ensures modularity, reusability, extensibility, and clear separation of

responsibilities — all hallmarks of a well-structured object-oriented system.

9.6.3 Refining the Architecture into Components

Once archetypes are defined, the system is decomposed into components — each

implementing one or more archetypes.

Each component must:

• Have a clear purpose.

• Communicate through well-defined interfaces.

• Be independent and reusable where possible.

SOFTWARE ENGINEERING 9.11 CREATING AN ARCHITECT…

Process of Refinement:

1. Identify subsystems (e.g., User Interface, Database Access).

2. Decompose each subsystem into components.

3. Specify communication mechanisms (messages, APIs, data flow).

Example (Library Management System):

• UI Component: Displays book search, issue forms.

• Logic Component: Handles business rules (borrow, renew, return).

• Database Component: Manages data storage and retrieval.

Each component encapsulates its data and exposes methods for other components to interact

with it.

9.6.4 Describing Instantiations of the System

Instantiation involves defining the runtime configuration — how components will be

activated and interact during execution.

Architectural views (as per IEEE Std. 1471) are used:

1. Structural view: How modules and classes are organized.

2. Behavioral view: How the system behaves dynamically (via sequence or state

diagrams).

3. Deployment view: Physical mapping of software onto hardware.

4. Example:

In the SafeHome system, the Alarm Controller component runs continuously, while

the User Interface component activates upon user interaction. Both communicate

through defined ports and events.

9.7 ASSESSING ALTERNATIVE ARCHITECTURAL DESIGNS

Architectural design involves trade-offs among competing quality attributes (performance,

security, cost, etc.).

Therefore, multiple architectural alternatives are usually proposed, evaluated, and refined.

Pressman suggests using structured evaluation methods to assess which architecture best

meets stakeholder goals.

9.7.1 Architecture Trade-Off Analysis Method (ATAM)

ATAM is a systematic technique used to assess architectural decisions by analyzing quality

attributes such as performance, reliability, modifiability, and security.

Steps in ATAM:

1. Present the architecture – Review high-level structure and documentation.

2. Identify architectural drivers – Determine goals, constraints, and critical requirements.

3. Generate quality attribute utility tree – Prioritize attributes (e.g., response time,

availability).

4. Analyze architectural approaches – Evaluate design decisions for trade-offs.

5. Identify sensitivity points – Where small changes have big effects.

6. Identify trade-off points – Where improving one attribute degrades another.

7. Summarize findings – Recommend the best-balanced architecture.

Centre for Distance Education 9.12 Acharya Nagarjuna University

Figure 9.5 – Architecture Trade-off Analysis (ATAM) Framework

(Illustrates iterative evaluation of quality attributes and trade-off identification.)

Figure 9.5 illustrates the Architecture Trade-off Analysis Method (ATAM) — a structured,

iterative process designed to evaluate software architectures based on quality attributes such

as performance, modifiability, security, reliability, and usability.

Developed by the Software Engineering Institute (SEI) at Carnegie Mellon University,

ATAM provides a systematic approach for identifying architectural strengths, weaknesses,

risks, and trade-offs before implementation begins.

It is particularly useful during early design reviews, ensuring that the chosen architecture

aligns with business goals and non-functional requirements.

1. Purpose of ATAM

ATAM aims to:

• Identify and analyze trade-offs among competing quality attributes.

• Enable informed architectural decisions early in the development cycle.

• Provide a shared understanding of system priorities among stakeholders.

• Detect sensitivity points where small architectural changes may cause large effects.

• Support risk mitigation through architectural reasoning and documentation.

SOFTWARE ENGINEERING 9.13 CREATING AN ARCHITECT…

2. ATAM Framework Overview

The ATAM process involves four phases (or levels of iteration):

Phase Activity Outcome

1. Present the

Architecture

Review system scope, business drivers,

and architectural documentation.

Shared understanding

of system goals and

context.

2. Identify

Architectural Drivers

Determine functional and non-functional

requirements that most influence the

design (e.g., scalability, performance).

Clear prioritization of

quality attributes.

3. Analyze

Architectural

Approaches

Examine architectural decisions, identify

trade-offs, sensitivity points, and risks.

Evaluation of

architecture against

quality scenarios.

4. Generate

Recommendations

Summarize findings, risks, non-risks, and

trade-offs; propose improvement actions.

Actionable report

guiding refinement or

redesign.

3. Step-by-Step Explanation of the ATAM Process

Step 1 – Present Architecture

The architecture team provides:

• Architectural documentation (diagrams, views, interfaces).

• Business context, stakeholder goals, and constraints.

• A walkthrough of key components and data flow.

Purpose: To build a common baseline understanding among reviewers and stakeholders.

Step 2 – Identify Quality Attributes and Utility Tree

A utility tree is created to represent system qualities and their relative importance.

Top Level: System quality goals (Performance, Reliability, Security).

Branch Level: Scenarios defining how the system responds under certain conditions.

Leaf Level: Measurable attributes (e.g., response time < 2s, uptime 99.9%).

Example (SafeHome System):

• Performance: The system must process sensor input within 1 second.

• Security: Encrypted communication between sensors and the controller.

• Modifiability: Adding a new sensor type without changing core logic.

• Each leaf node in the tree is assigned:

• Importance Rating (High/Medium/Low)

• Difficulty Rating (Easy/Medium/Hard)

This helps prioritize evaluation effort on high-impact areas.

Step 3 – Analyze Architectural Approaches

In this step, architectural decisions are examined in relation to the prioritized quality

attributes.

Centre for Distance Education 9.14 Acharya Nagarjuna University

The review identifies:

• Sensitivity Points: Architectural parameters that affect quality attributes significantly.

(Example: Number of concurrent threads affects system performance.)

• Trade-off Points: Situations where improving one attribute degrades another.

(Example: Adding encryption increases security but may reduce performance.)

• Risks: Architectural decisions that might lead to future problems.

(Example: Using a single centralized database introduces a bottleneck.)

• Non-Risks: Architectural choices that are sound and unlikely to cause problems.

• The team discusses alternative design options and their implications.

Step 4 – Summarize Results

A final report and discussion summarize:

• Discovered risks, trade-offs, and sensitivity points.

• Recommendations for architecture refinement.

• Confidence level in achieving desired quality attributes.

These results guide the design team in balancing conflicting requirements.

4. ATAM Outputs

ATAM produces several key artifacts:

Output Type Description

Utility Tree Captures prioritized quality attributes and scenarios.

Risk Themes Lists recurring architectural risks.

Sensitivity Points Identifies critical design elements influencing system

quality.

Trade-off Points Highlights conflicts between quality goals.

Risk and Non-Risk Reports Documents high and low-risk design decisions.

Architectural Evaluation

Report

Consolidates findings and improvement recommendations.

5. Benefits of ATAM

Benefit Explanation

Early Risk Detection Problems are found before major development costs occur.

Quantitative Decision-

Making

Evaluations are based on measurable attributes.

Improved Communication Ensures stakeholders understand design rationale.

Better Quality Assurance Architecture is validated for performance, reliability, and

modifiability.

Continuous Improvement ATAM can be applied iteratively at different development

stages.

6. Example – ATAM Applied to SafeHome Security System

Architectural Goal: Achieve high reliability, security, and performance.

SOFTWARE ENGINEERING 9.15 CREATING AN ARCHITECT…

Findings:

• Security vs. Performance Trade-off:

Encryption ensures confidentiality but slows down response times.

• Reliability vs. Cost Trade-off:

Introducing redundant controllers improves availability but increases hardware cost.

• Modifiability Sensitivity Point:

Sensor interface design strongly influences ease of future upgrades.

Outcome:

The team adjusts the architecture — optimizing the encryption layer and redesigning the

communication protocol to reduce latency while maintaining strong security.

The Architecture Trade-off Analysis Method (ATAM) is a critical tool in modern software

engineering. It ensures that architecture decisions are data-driven, transparent, and aligned

with organizational priorities.

By identifying trade-offs early, teams can balance competing attributes such as security,

modifiability, and performance — leading to software architectures that are both robust and

sustainable.

Example:

In SafeHome, using encrypted communication enhances security but reduces performance.

ATAM helps quantify and decide which attribute (security or speed) is more critical.

9.7.2 Architectural Complexity

Architectural complexity arises from:

• The number of components and interconnections.

• Degree of coupling among modules.

• Control and data dependencies.

Metrics for Complexity:

1. Fan-in/Fan-out: Number of components that call (in) or are called by (out) another

component.

2. Depth of hierarchy: Levels of control or inheritance.

3. Coupling metrics: Measure inter-component dependency.

Reducing unnecessary dependencies increases maintainability and reliability.

9.7.3 Architectural Description Languages (ADL)

An ADL provides a formal notation to describe, document, and analyze software architecture.

It uses graphical and textual syntax to represent components, connectors, and configurations.

Examples of ADLs:

• ACME – a general-purpose architectural description language.

• Wright – uses CSP (Communicating Sequential Processes) to model component

behavior.

• AADL (Architecture Analysis & Design Language) – used for real-time and

embedded systems.

Centre for Distance Education 9.16 Acharya Nagarjuna University

Advantages:

• Enhances clarity and consistency of architectural documentation.

• Enables simulation and verification before implementation.

• Facilitates tool-based analysis and code generation.

9.8 SUMMARY

• Software architecture provides the structural foundation of a system — defining

components, relationships, and patterns.

• Architecture enables communication, analysis, and reuse of high-level design

concepts.

• Data design ensures that information structures are well-organized at both system and

component levels.

• Common architectural styles include data-centered, layered, and object-oriented

approaches.

• The architectural design process involves defining the system context, archetypes,

components, and runtime instantiations.

• Evaluation techniques like ATAM assess trade-offs among quality attributes.

• Architectural Description Languages (ADL) formally represent and analyze

architectures.

A well-defined architecture ensures software that is scalable, maintainable, reliable, and

adaptable to changing user and business needs.

9.9 TECHNICAL TERMS

Software Architecture, Architectural Style, Data Design, Archetype, ATAM, Layered

Architecture, Object-Oriented Architecture, Architectural Complexity, ADL, Modifiability,

Scalability, Coupling, Cohesion, Deployment View, Context Diagram.

9.10 SELF-ASSESSMENT QUESTIONS

Essay Questions

1. Define software architecture. Discuss its importance in software engineering.

2. Explain the architectural design process with suitable examples.

3. Describe major architectural styles and patterns with diagrams.

4. What is ATAM? Discuss its steps and benefits in evaluating architectures.

5. Explain the role of data design at architectural and component levels.

6. What are Architectural Description Languages (ADL)? Explain their uses and

advantages.

Short Notes

1. What is Layered Architecture

2. Explain Archetypes in Design

3. List Architectural Complexity Metrics

4. Write about SafeHome Example Architecture

5. Describe Pipe-and-Filter Architecture

SOFTWARE ENGINEERING 9.17 CREATING AN ARCHITECT…

9.11 SUGGESTED READINGS

1. Roger S. Pressman, Software Engineering – A Practitioner’s Approach, Sixth Edition,

TMH International.

2. Len Bass, Paul Clements, Rick Kazman, Software Architecture in Practice, Addison-

Wesley.

3. Ian Sommerville, Software Engineering, Pearson Education.

4. Frank Buschmann et al., Pattern-Oriented Software Architecture, Wiley.

5. Shaw & Garlan, Software Architecture: Perspectives on an Emerging Discipline,

Prentice Hall.

Mrs. Appikatla Pushpa Latha

LESSON- 10

PERFORMING USER INTERFACE DESIGN

AIMS AND OBJECTIVES

After completing this lesson, you will be able to:

• Understand the importance of user interface (UI) design in software engineering.

• Explain the principles and golden rules for good interface design.

• Conduct user and task analysis to determine user needs and interaction patterns.

• Apply interface design models, steps, and patterns effectively.

• Design user interfaces for desktop and Web applications (WebApps).

• Evaluate user interfaces using usability and design evaluation techniques.

STRUCTURE

10.1 THE GOLDEN RULES

 10.1.1 PLACE THE USER IN CONTROL

 10.1.2 REDUCE THE USER’S MEMORY LOAD

 10.1.3 MAKE THE INTERFACE CONSISTENT

10.2 USER INTERFACE ANALYSIS AND DESIGN

 10.2.1 INTERFACE ANALYSIS AND DESIGN MODELS

 10.2.2 THE PROCESS

10.3 INTERFACE ANALYSIS

 10.3.1 USER ANALYSIS

 10.3.2 TASK ANALYSIS AND MODELING

 10.3.3 ANALYSIS OF DISPLAY CONTENT

 10.3.4 ANALYSIS OF THE WORK ENVIRONMENT

10.4 INTERFACE DESIGN STEPS

 10.4.1 APPLYING INTERFACE DESIGN STEPS

 10.4.2 USER INTERFACE DESIGN PATTERNS

 10.4.3 DESIGN ISSUES

10.5 WEBAPP INTERFACE DESIGN

 10.5.1 INTERFACE DESIGN PRINCIPLES AND GUIDELINES

 10.5.2 INTERFACE DESIGN WORKFLOW FOR WEBAPPS

10.6 DESIGN EVALUATION

10.7 SUMMARY

10.8 TECHNICAL TERMS

10.9 SELF-ASSESSMENT QUESTIONS

10.10 SUGGESTED READINGS

10.1 THE GOLDEN RULES

User interface (UI) design focuses on the interaction between humans and computers.

A well-designed UI is not just visually pleasing — it determines usability, user satisfaction,

and system success.

Centre for Distance Education 10.2 Acharya Nagarjuna University

Pressman proposes three Golden Rules for UI design that serve as universal principles

guiding software engineers.

10.1.1 Place the User in Control

A good interface ensures that users initiate actions, not the system. Users should always feel

they are in control of navigation, data entry, and execution.

Guidelines:

• Define clearly visible navigation paths.

• Allow undo and redo for reversible actions.

• Minimize unexpected system actions (avoid surprise).

• Provide clear exits from any process.

• Offer customization options (fonts, themes, shortcuts).

Example (SafeHome System):

The homeowner can arm/disarm the system manually, override defaults, and control sensor

groups via the UI dashboard.

10.1.2 Reduce the User’s Memory Load

Humans have limited short-term memory.

The interface should minimize cognitive load by keeping information visible, logical, and

easy to recall.

Guidelines:

• Use icons and visual cues instead of long text.

• Display menus and options rather than requiring users to remember commands.

• Maintain consistency in terminology, layout, and workflows.

• Use default values for common operations.

• Display context-sensitive help and feedback.

Example:

When setting up sensors, the SafeHome interface automatically lists all detected devices

rather than requiring the user to type device IDs.

10.1.3 Make the Interface Consistent

Consistency ensures users can predict system behavior.

It applies to visual elements, workflows, terminology, and response mechanisms.

Guidelines:

• Maintain uniform screen layout, fonts, and colors.

• Keep command sequences consistent.

• Use similar response formats for success and error messages.

• Adopt standard UI conventions (OK/Cancel, Save/Close).

Software Engineering 10.3 Performing User Interface…

Example:

All screens in the SafeHome app use a standard header bar, menu placement, and navigation

icons.

10.2 USER INTERFACE ANALYSIS AND DESIGN

UI analysis and design bridge the gap between user requirements and system interaction

mechanisms.

It defines how the system presents information, receives input, and responds to user

actions.

10.2.1 Interface Analysis and Design Models

There are several models that help describe how users and systems interact:

Model Purpose

User Model Profile of the end user — age, skill, experience, preferences.

Design Model Engineer’s internal representation of the interface structure.

Mental Model User’s internal image of how the system behaves.

Implementation Model Actual interface implemented in code and design.

Example:

The User Model of SafeHome identifies two users:

• Homeowner: uses system daily.

• Security Technician: configures sensors and performs maintenance.

Figure 10.2 – Interface Model (User–System Interaction)

Centre for Distance Education 10.4 Acharya Nagarjuna University

10.2.2 The Process

The interface design process includes:

1. User Analysis — Identify user characteristics and needs.

2. Task Analysis — Define user goals and interactions.

3. Environmental Analysis — Study the context (devices, lighting, mobility).

4. Prototype Design — Create mockups or wireframes.

5. Evaluation — Test usability and make improvements.

Fig 10.1 The user interface design process

1. User Analysis — Identify User Characteristics and Needs

The first and most critical step is to identify who will use the system and understand their

background, skills, goals, and expectations. Different categories of users (novices,

intermediates, experts) require varying levels of interface complexity and support.

This phase includes:

• Conducting interviews, surveys, or contextual observations to collect user data.

• Building user personas to represent different user types.

• Understanding user motivations, pain points, and usage frequency.

• Determining accessibility needs (e.g., visual, auditory, or motor impairments).

Example:

In the SafeHome Security System, two primary users are identified:

• Homeowner: A non-technical user who interacts daily through a mobile app or wall-

mounted keypad.

• Security Technician: A trained user who configures sensors and monitors diagnostics.

The system must accommodate both — simplicity for homeowners, and detailed

control for technicians.

Software Engineering 10.5 Performing User Interface…

2. Task Analysis — Define User Goals and Interactions

After understanding the users, designers must determine what tasks they perform and how

they interact with the system.

Task analysis involves decomposing high-level objectives into smaller, manageable subtasks.

It defines the sequence of actions, inputs, and outputs required to complete each task.

Common techniques include:

• Hierarchical Task Analysis (HTA) – breaking complex tasks into subtasks.

• Use Case Modeling – defining user–system interactions.

• Scenario Building – describing how a user performs a task in real context.

Example (SafeHome):

The task “Arm the security system” can be broken down as follows:

1. Launch the app or open the control panel.

2. Select “Arm System.”

3. Choose a mode (Home, Away, or Night).

4. Confirm with passcode.

5. System provides feedback: “System Armed.”

This structured understanding ensures every interaction is supported by the interface logically

and intuitively.

3. Environmental Analysis — Study the Context

Environmental factors significantly influence user interface design. This analysis examines

where, when, and how the system will be used — including physical surroundings, hardware

constraints, and contextual conditions.

Aspects considered:

• Hardware environment: device type (desktop, mobile, kiosk, wearable).

• Physical conditions: lighting, noise, and user mobility.

• Connectivity and performance limitations: bandwidth, latency, power constraints.

• Organizational or cultural factors: workflow integration, multilingual usage.

Example:

For SafeHome:

• The mobile app must be usable outdoors in bright sunlight.

• The wall panel must remain legible in low light and be accessible to users of different

heights.

• The web dashboard for monitoring personnel should support multi-window operation.

A well-analyzed environment ensures that the UI adapts gracefully to real-world usage

contexts.

Centre for Distance Education 10.6 Acharya Nagarjuna University

4. Prototype Design — Create Mockups or Wireframes

Once user goals and environments are known, the next step is to translate requirements into

visual and interactive representations.

Prototype design is the process of building mockups, storyboards, or interactive wireframes

that represent the layout and workflow of the interface.

Prototypes can be:

• Low-Fidelity (Lo-Fi): Paper sketches or static digital layouts used early for

conceptual validation.

• High-Fidelity (Hi-Fi): Interactive prototypes that simulate real behavior using design

tools (e.g., Figma, Adobe XD, or Balsamiq).

The purpose of prototyping is to:

• Validate early design ideas with users.

• Identify usability issues before coding begins.

• Enable stakeholder feedback and iteration.

Example (SafeHome Prototype):

A dashboard mockup includes:

• A top navigation bar with “Home,” “Sensors,” “Logs,” and “Settings.”

• A central area showing live sensor status (green = active, red = alert).

• Bottom buttons for “Arm,” “Disarm,” and “Help.”

Prototypes serve as a communication bridge between designers, developers, and end users.

5. Evaluation — Test Usability and Make Improvements

Evaluation is an iterative activity performed throughout the UI design cycle to measure

usability, efficiency, learnability, and satisfaction.

The goal is to identify design flaws early and ensure the interface meets user expectations.

Evaluation Methods:

• Heuristic Evaluation: Expert review using usability principles (e.g., Nielsen’s

heuristics).

• Cognitive Walkthrough: Analysts simulate user tasks step by step.

• User Testing: Real users perform tasks while observers record issues.

• Surveys and Feedback: Collect subjective impressions and suggestions.

Metrics:

• Task success rate

• Time-on-task

• Error rate

• User satisfaction score

Software Engineering 10.7 Performing User Interface…

Example:

During SafeHome usability testing, users were confused by the “Arm Away” vs. “Arm

Home” options. The design team simplified the terminology to “Full Arm” and “Partial

Arm,” reducing setup errors by 40%.

10.3 INTERFACE ANALYSIS

Interface analysis identifies what the user sees and does — it captures user goals, tasks, and

environmental conditions.

10.3.1 User Analysis

Goal: Understand user diversity and skill levels.

Parameters:

• Demographics: age, experience, education.

• Cognitive styles: novice vs. expert users.

• Frequency of use.

• Accessibility needs.

Example:

In SafeHome, homeowners interact daily (non-technical users), while security technicians are

experts. This affects menu complexity and terminology.

10.3.2 Task Analysis and Modeling

Task analysis determines what the user does and how they interact with the system.

This is often represented using Use Case Diagrams, Hierarchical Task Models (HTM), or

Sequence Diagrams.

Example (SafeHome):

Tasks include:

• Arm/Disarm system

• Add sensor

• View event logs

Each task can be decomposed into sub-tasks (e.g., “Select Sensor → Enter Details →

Confirm Addition”).

10.3.3 Analysis of Display Content

Analyzes information types and formats presented to the user:

• Textual, graphical, or mixed.

• Real-time updates vs. static information.

• Error/warning messages.

Guidelines:

• Use icons and color codes for status indicators (e.g., Green = Safe, Red = Alert).

• Group related data logically.

• Avoid clutter; prioritize information visually.

Centre for Distance Education 10.8 Acharya Nagarjuna University

10.3.4 Analysis of the Work Environment

Design must adapt to physical and digital contexts.

Environmental factors like lighting, device type, noise, or mobility affect interface decisions.

Example:

The SafeHome mobile app uses larger buttons and higher contrast colors for outdoor

visibility.

In some applications the user interface for a computer-based system is placed in a “user-

friendly location” (e.g., proper lighting, good display height, easy keyboard access), but in

others (e.g., a factory floor or an airplane cockpit), lighting may be suboptimal, noise may be

a factor, a keyboard or mouse may not be an option, display placement may be less than

ideal. The interface designer may be constrained by factors that mitigate against ease of use.

10.4 INTERFACE DESIGN STEPS

Interface design transforms user and task analysis into an actual layout, workflow, and

navigation scheme.

10.4.1 Applying Interface Design Steps

1. Define Interface Objects – Identify all UI elements (buttons, forms, icons).

2. Define Actions – Describe how objects respond to user input.

3. Develop Screen Layouts – Arrange elements for usability.

4. Define Navigation Paths – Map logical transitions between screens.

5. Prototype and Review – Build mockups, gather feedback, and refine.

Based on this use case, the following homeowner tasks, objects, and data items are

identified:

• Accesses the SafeHome system

• Enters an ID and password to allow remote access

• Checks system status

• Arms or disarms SafeHome system

• Displays zones on floor plan

• Changes zones on floor plan

• Displays video camera locations on floor plan

• Selects video camera for viewing

• Views video images (four frames per second)

• Pans or zooms the video camera

• Displays floor plan and sensor locations

Software Engineering 10.9 Performing User Interface…

Figure 10.3 – Interface Design Flow

10.4.2 User Interface Design Patterns

Design patterns capture reusable solutions to common UI challenges.

Pattern Purpose Example

Wizard Guides users through a step-by-step

process.

Device installation setup.

Dashboard Displays real-time summaries and

metrics.

SafeHome system overview

screen.

Modal Dialog Focuses attention on critical actions. Confirm alarm deactivation.

Breadcrumbs Shows navigation path. Home → Settings → Sensors.

10.4.3 Design Issues

Key considerations during UI design:

• Response Time: Keep feedback immediate (< 1 second).

• Error Handling: Offer clear recovery options.

• Help System: Provide contextual, searchable help.

• Accessibility: Ensure compatibility with assistive technologies (screen readers).

• Localization: Support multiple languages and formats.

Centre for Distance Education 10.10 Acharya Nagarjuna University

Fig 10.4 Preliminary screen layout

10.5 WEBAPP INTERFACE DESIGN

Web-based applications (WebApps) require additional design considerations such as

responsiveness, navigation depth, and content hierarchy.

10.5.1 Interface Design Principles and Guidelines

1. Simplicity: Minimize clutter; show only relevant content.

2. Consistency: Maintain uniform layout across pages.

3. User Focus: Adapt to user goals and browsing context.

4. Visual Hierarchy: Use typography and spacing effectively.

5. Responsive Design: Adjust seamlessly to devices (desktop, tablet, mobile).

Example (SafeHome Web Portal):

A three-pane layout — sidebar menu, central dashboard, and activity log — ensures clarity

and quick access.

10.5.2 Interface Design Workflow for WebApps

Workflow:

1. Define information architecture (navigation, page hierarchy).

2. Create wireframes and prototypes.

3. Apply usability principles and test with users.

4. Integrate content and functionality.

5. Conduct accessibility and performance testing.

Software Engineering 10.11 Performing User Interface…

Fig 10.5 Mapping user objectives into interface actions

10.6 DESIGN EVALUATION

Evaluation ensures that the interface meets usability, performance, and accessibility

standards.

Methods:

• Heuristic Evaluation: Experts review UI using usability principles.

• Cognitive Walkthrough: Analysts simulate user actions.

• User Testing: Real users perform tasks under observation.

• Surveys and Analytics: Collect feedback and usage data post-deployment.

1. Heuristic Evaluation

Definition:

Heuristic evaluation involves having usability experts review the user interface based on a

predefined set of usability principles (heuristics).

These heuristics, popularized by Jakob Nielsen, include:

• Visibility of system status

• Match between system and real-world concepts

• User control and freedom

• Consistency and standards

• Error prevention and recovery

• Recognition rather than recall

• Flexibility and efficiency of use

• Aesthetic and minimalist design

Centre for Distance Education 10.12 Acharya Nagarjuna University

Process:

1. A team of evaluators inspects the interface independently.

2. Each expert identifies violations of heuristics.

3. Issues are ranked by severity and frequency.

4. The results are consolidated into a report for design refinement.

Advantages:

• Quick and cost-effective.

• Does not require user involvement.

• Identifies a wide range of usability problems early.

Example (SafeHome):

A heuristic evaluation revealed inconsistent button colors for “Arm” and “Disarm,” violating

the principle of consistency. The design was standardized to improve visual clarity.

2. Cognitive Walkthrough

Definition:

A cognitive walkthrough simulates how new or first-time users will interact with the system.

It focuses on ease of learning and error prevention, assessing whether users can complete

tasks without prior training.

Process:

1. Analysts define representative tasks and user goals.

2. Each step of the interaction is examined:

• Will the user know what to do next?

• Will the user notice the correct control?

• Will the user understand the feedback?

1. Analysts identify points of confusion or hesitation.

2. Design improvements are suggested for clarity and guidance.

Advantages:

• Effective for early-stage prototypes.

• Highlights problems in task flow and labeling.

• Emphasizes user cognition and first impressions.

Example (SafeHome):

During a cognitive walkthrough, analysts found that users hesitated to locate the “Arm

System” option because the icon was unclear. The label was changed to “Secure Home” with

an easily recognizable shield icon, improving intuitiveness.

3. User Testing

Definition:

User testing involves real users performing actual tasks under controlled observation.

It provides direct evidence of how well the interface supports real-world use.

Software Engineering 10.13 Performing User Interface…

Process:

1. Select representative users.

2. Define typical tasks and success criteria.

3. Observe user performance (time taken, errors, confusion).

4. Record both quantitative metrics and qualitative feedback.

5. Summarize findings to improve usability.

Key Metrics:

• Task completion rate

• Average time on task

• Number and type of errors

• User satisfaction (survey or rating scale)

• Advantages:

• Reveals real-world behavior and expectations.

• Provides measurable, actionable feedback.

• Validates design decisions before final release.

Example (SafeHome):

User testing showed that 30% of participants misinterpreted the “Sensor Logs” option.

Renaming it to “Activity History” improved comprehension and reduced task errors

significantly.

4. Surveys and Analytics

Definition:

After deployment, surveys and analytics tools help assess long-term usability and

performance.

They gather quantitative data (usage statistics) and qualitative insights (user opinions).

Approaches:

• Surveys: Post-use questionnaires measuring satisfaction, perceived ease of use, and

suggestions.

• Analytics: Tracking user behavior metrics such as click paths, session duration,

bounce rates, and feature utilization.

• Feedback Widgets: Allow users to report issues or rate features directly within the

interface.

• Advantages:

• Captures real-world usage patterns.

• Identifies recurring pain points and underused features.

• Informs future updates and iterative design improvements.

Example (SafeHome):

Post-deployment analytics revealed that homeowners rarely accessed “Sensor Calibration.”

Surveys showed users found it confusing. Designers moved it under “Advanced Settings” and

added a tooltip guide, improving feature adoption.

Centre for Distance Education 10.14 Acharya Nagarjuna University

Comparative Summary of Evaluation Techniques

Method When Used Who

Performs It

Advantages Limitations

Heuristic

Evaluation

Early design or

prototype stage

Usability

experts

Quick, low cost,

identifies general

issues

May overlook

user-specific

problems

Cognitive

Walkthrough

Early to mid

design

Analysts or

usability team

Focuses on

learnability and

task flow

Subjective;

requires clear task

scenarios

User Testing Prototype or

pre-release

Real users Provides real

behavior data

Resource intensive

Surveys and

Analytics

Post-

deployment

Users and

system

monitors

Tracks long-term

trends

Requires active

user participation

Metrics:

• Task completion rate.

• Error frequency.

• Time-on-task.

• User satisfaction scores.

1. Task Completion Rate

Definition:

The task completion rate indicates the percentage of users who successfully complete a given

task without assistance.

It reflects the effectiveness of the interface design in supporting user goals.

Formula:

Interpretation:

A higher completion rate signifies that users find the interface intuitive and well-structured.

Example (SafeHome):

If 9 out of 10 users can successfully arm the system, the task completion rate is 90%.

Designers may aim for a 95% threshold for critical tasks.

2. Error Frequency

Definition:

Error frequency measures how often users make mistakes while interacting with the

interface.

It evaluates the accuracy and clarity of interface controls, feedback, and instructions.

Software Engineering 10.15 Performing User Interface…

Types of Errors:

• Slip: User intended the correct action but executed it incorrectly (e.g., pressing the

wrong button).

• Mistake: User misunderstood the task or system function (e.g., arming the system

when intending to disarm).

Interpretation:

Frequent errors indicate poor design clarity or confusing interaction flow.

Example (SafeHome):

If users frequently press “Disarm” instead of “Arm,” color differentiation or icon adjustments

are needed.

3. Time-on-Task

Definition:

Time-on-task represents how long a user takes to complete a specific task.

It measures the efficiency of the interface and how easily users can achieve goals.

Formula:

Interpretation:

Lower time-on-task values (without compromising accuracy) reflect smoother navigation and

reduced cognitive load.

Example (SafeHome):

Users took an average of 12 seconds to arm the system after redesign, compared to 20

seconds earlier — showing improved efficiency.

4. User Satisfaction Scores

Definition:

User satisfaction reflects subjective perceptions of comfort, confidence, and overall

experience with the interface.

It is usually gathered through post-test surveys using rating scales or standardized tools like

SUS (System Usability Scale).

Measurement Approaches:

• Likert Scale: Users rate satisfaction on a scale (1 = very dissatisfied to 5 = very

satisfied).

• Open Feedback: Users describe frustrations or positive aspects.

Interpretation:

High satisfaction scores validate the emotional and aesthetic success of the interface,

complementing technical usability results.

Centre for Distance Education 10.16 Acharya Nagarjuna University

Example (SafeHome):

After interface simplification, average satisfaction increased from 3.6 to 4.4 (on a 5-point

scale), indicating better user acceptance.

Summary of Metrics

Metric Purpose Indicates Example (SafeHome)

Task

Completion Rate

Effectiveness How successfully users

complete tasks

95% of users can arm/disarm

the system

Error Frequency Accuracy Frequency of user

mistakes or confusion

Button color confusion

reduced errors by 30%

Time-on-Task Efficiency Speed and intuitiveness of

task flow

Average time reduced from

20s to 12s

User Satisfaction Acceptance Subjective comfort and

preference

User ratings improved to

4.4/5

Fig 10.6 The interface design evaluation cycle

The prototyping approach is effective, but is it possible to evaluate the quality of a user

interface before a prototype is built? If you identify and correct potential problems early, the

number of loops through the evaluation cycle will be reduced and development time will

shorten. If a design model of the interface has been created, a number of evaluation criteria

can be applied during early design reviews:

Software Engineering 10.17 Performing User Interface…

1. The length and complexity of the requirements model or written specification of the

system and its interface provide an indication of the amount of learning required by

users of the system.

2. The number of user tasks specified and the average number of actions per task

provide an indication of interaction time and the overall efficiency of the system.

3. The number of actions, tasks, and system states indicated by the design model imply

the memory load on users of the system.

4. Interface style, help facilities, and error handling protocol provide a general indication

of the complexity of the interface and the degree to which it will be accepted by the

user.

10.7 SUMMARY

• User Interface Design ensures effective communication between human and

machine.

• Pressman’s Golden Rules emphasize control, simplicity, and consistency.

• UI design begins with user, task, and environment analysis.

• WebApps extend UI design with responsive layouts and usability workflows.

• Evaluation is iterative — improving design through feedback.

10.8 TECHNICAL TERMS

User Interface (UI), Usability, Affordance, Task Analysis, Design Model, Wireframe,

Prototype, Heuristic Evaluation, Cognitive Load, Navigation Path, WebApp, Accessibility,

Consistency, Interaction Model.

10.9 SELF-ASSESSMENT QUESTIONS

Essay Questions

1. Explain the three Golden Rules of user interface design with examples.

2. Describe the stages of the user interface design process.

3. What are the common interface design patterns? Discuss with examples.

4. How does task analysis help in UI design?

5. Explain how usability evaluation improves software quality.

Short Notes

1. Explain Interface Design Flow

2. What is User Interface Models

3. State WebApp Design Guidelines

4. What are Usability Testing Metrics

Centre for Distance Education 10.18 Acharya Nagarjuna University

10.10 SUGGESTED READINGS

1. Roger S. Pressman, Software Engineering: A Practitioner’s Approach, Sixth Edition,

TMH International.

2. Ben Shneiderman, Designing the User Interface: Strategies for Effective Human–

Computer Interaction.

3. Alan Dix et al., Human–Computer Interaction, Pearson Education.

4. Jakob Nielsen, Usability Engineering, Academic Press.

5. Steve Krug, Don’t Make Me Think: A Common Sense Approach to Web Usability.

Mrs. Appikatla Pushpa Latha

LESSON- 11

TESTING STRATEGIES

AIMS AND OBJECTIVES

To understand the strategic framework of software testing, covering conventional and

object-oriented approaches, validation and system testing methods, and the art of debugging

to ensure software quality and reliability.

After completing this lesson, you will be able to:

• Explain the role of testing as a critical quality-assurance activity in the software

development life cycle.

• Identify and discuss key strategic issues that influence testing effectiveness and

efficiency.

• Describe the test strategies for conventional software, including unit testing and

integration testing techniques.

• Apply testing methodologies to object-oriented software, focusing on testing classes,

objects, and their interactions.

• Differentiate between verification and validation activities and understand their

significance.

• Analyze different types of system testing, such as performance, stress, and security

testing.

• Illustrate the debugging process and explain various debugging strategies and tools.

• Define and use important technical terms related to software testing.

• Evaluate your understanding through self-assessment questions provided at the end of

the lesson.

STRUCTURE

11.1 A STRATEGIC APPROACH TO SOFTWARE TESTING

11.2 STRATEGIC ISSUES

11.3 TEST STRATEGIES FOR CONVENTIONAL SOFTWARE

 11.3.1 UNIT TESTING

 11.3.2 INTEGRATION TESTING

11.4 TEST STRATEGIES FOR OBJECT-ORIENTED SOFTWARE

 11.4.1 UNIT TESTING FOR OO SOFTWARE

 11.4.2 INTEGRATION TESTING FOR OO SOFTWARE

11.5 VALIDATION TESTING

11.6 SYSTEM TESTING

11.7 THE ART OF DEBUGGING

11.8 SUMMARY

11.9 TECHNICAL TERMS

11.10 SELF-ASSESSMENT QUESTIONS

11.11 SUGGESTED READINGS

Centre for Distance Education 11.2 Acharya Nagarjuna University

10.1 THE GOLDEN RULES

User interface (UI) design focuses on the interaction between humans and computers.

A well-designed UI is not just visually pleasing — it determines usability, user satisfaction,

and system success.

Pressman proposes three Golden Rules for UI design that serve as universal principles

guiding software engineers.

11.1 A Strategic Approach to Software Testing

Introduction

Software testing is not a random activity performed at the end of development—it is a

planned, systematic, and integral part of software engineering. The ultimate purpose of

testing is to ensure that the software system performs according to specified requirements and

delivers the expected value to users.

Pressman describes software testing as both a verification process (“Did we build the

product right?”) and a validation process (“Did we build the right product?”). An effective

testing strategy must therefore span all development phases and link closely with

requirements, design, and implementation.

Testing as a Process

Testing can be viewed as a multi-stage process, including:

1. Planning: Deciding what to test, how to test, and when to test.

2. Designing: Developing test cases and procedures to uncover specific classes of errors.

3. Execution: Running the tests under controlled conditions and recording outcomes.

4. Evaluation: Comparing actual and expected results to determine correctness.

5. Maintenance: Re-testing and regression testing when software is modified.

The Testing V-Model

Testing activities parallel the development stages in a V-Model:

Development Phase Corresponding Testing

Phase

Objective

Requirements Analysis Acceptance / Validation

Testing

Ensure system meets user needs

System Design System Testing Verify overall system behavior

Architecture Design Integration Testing Verify interaction between

components

Module Design &

Coding

Unit Testing Verify correctness of individual

modules

Each right-hand activity validates the deliverable produced on the left side.

Software Engineering 11.3 Testing Strategies

Principles of Software Testing

1. Testing shows the presence of defects, not their absence.

2. Even if no defects are found, it does not prove that the software is error-free.

3. Exhaustive testing is impossible.Because of the vast number of input combinations,

only representative tests can be performed.

4. Testing should begin early.Early detection of errors in requirements and design is far

cheaper than later fixes.

5. Defects cluster together.A few modules usually contain most of the defects (Pareto

principle).

6. The pesticide paradox.Re-running the same tests repeatedly will not find new bugs;

tests must evolve.

7. Testing is context-dependent.Methods differ for embedded, web, safety-critical, and

business systems.

8. Absence of errors is a fallacy.A program that passes tests may still fail to meet user

expectations.

Importance of a Strategy

Without a strategic approach, testing becomes ad hoc, time-consuming, and unreliable. A

formal testing strategy ensures that:

• Testing is systematic and measurable.

• Resources and time are effectively utilized.

• The process integrates with the overall software quality assurance (SQA)

framework.

• Both verification and validation activities are properly balanced.

11.2 Strategic Issues

Software testing strategy must address several overarching strategic issues that influence

success and cost-effectiveness.

1. Defining Measurable Product Requirements

Requirements should be quantifiable so that testing can objectively measure compliance.

For example, instead of stating “the system should be fast,” specify:

“The system shall respond to a query within 2 seconds under a load of 1000 transactions per

hour.”

Clear, measurable requirements enable effective validation and acceptance criteria.

2. Explicit Testing Objectives

Before testing begins, its objectives must be defined:

• To uncover as many defects as possible before release.

• To demonstrate compliance with specifications.

• To evaluate performance, reliability, and usability.

Centre for Distance Education 11.4 Acharya Nagarjuna University

Testing objectives guide the selection of techniques, tools, and metrics.

3. Understanding the Users

Testing must reflect user expectations and operational environments. Realistic test data

simulates how end users will interact with the product. Usability testing and field trials are

especially important for consumer software.

4. Early Test Planning

Testing should start with planning during the requirements phase, not after coding. Early

test planning enables identification of testable requirements, design of test cases, and

estimation of effort.

A test plan document typically includes:

• Scope and objectives

• Test items and features to be tested

• Testing tasks and responsibilities

• Schedule and resources

• Entry and exit criteria

• Test deliverables and reporting format

5. Time Allocation

A general rule of thumb suggests that testing should occupy 30–40% of total project time.

Projects that underestimate testing effort risk quality failures and higher maintenance costs.

6. Independent Testing

Testing performed by an independent team (not the developers) helps eliminate bias and

ensures objectivity. Developers tend to test what they built; independent testers explore what

can go wrong.

7. Building Robust Test Cases

Robust test cases:

• Challenge the software under normal and extreme conditions.

• Include both valid and invalid inputs.

• Are designed to expose hidden errors rather than confirm correctness.

8. Documentation and Test Records

Detailed documentation supports:

• Traceability of requirements to test cases.

• Reproducibility of test results.

• Regression testing after modifications.

Software Engineering 11.5 Testing Strategies

Typical artifacts include:

• Test case specification sheets

• Test logs and reports

• Defect and correction records

9. Testing Metrics

Common metrics help monitor test progress and quality:

• Number of test cases executed / passed / failed

• Defect density per KLOC (thousand lines of code)

• Mean time to detect and fix defects

• Test coverage (percentage of code or requirements tested)

10. Risk-Based Testing

Testing efforts should prioritize high-risk areas of the system—modules that are complex,

newly developed, or business-critical. Risk assessment allows rational allocation of

resources.

11.3 Test Strategies for Conventional Software

Conventional or procedural software (structured programs written in C, Pascal, COBOL,

etc.) is organized as a hierarchy of modules, each performing a well-defined function.

Testing proceeds incrementally, starting from individual modules and gradually building

toward the full system.

11.3.1 Unit Testing

Definition

Unit testing verifies that a single, isolated module functions correctly.

A unit may be a function, procedure, or small program component.

Purpose

• Validate each module’s logic and data handling.

• Ensure boundary conditions and error paths behave as expected.

• Confirm the correctness of algorithms and control structures before integration.

Test Basis

Each module is tested against its design specifications or pseudo-code rather than against

overall system requirements.

Typical Scope

• Internal control logic

• Local data structures

• Interface parameters

• Exception handling

• Performance of critical routines

Centre for Distance Education 11.6 Acharya Nagarjuna University

Techniques Used

Technique Description

White-box

(structural)
Examines internal paths, conditions, loops, and statements.

Basis path testing
Derives test cases to ensure every independent path executes at least

once.

Boundary value

analysis

Tests data values at boundaries (minimum, maximum, just-inside,

just-outside).

Equivalence

partitioning

Divides input data into valid/invalid partitions; one representative

from each is tested.

Error-guessing Relies on tester experience to anticipate likely errors.

Test Drivers and Stubs

Since units are tested in isolation:

• A test driver simulates a calling program or higher-level module.

• A stub substitutes for lower-level components called by the module under test.

Example:

If module A calls module B, and B is not yet built, a stub representing B’s interface returns

expected outputs.

Responsibilities

Unit tests are normally written and executed by developers, often automated through

frameworks like JUnit, CppUnit, or PyTest.

Outcome

A tested and verified set of modules ready for integration testing.

11.3.2 Integration Testing

Once individual modules have been verified, integration testing ensures that modules work

correctly together.

Objectives

• Detect interface mismatches.

• Validate data flow between modules.

• Expose errors in calling sequences, parameter passing, or shared data.

Common Interface Errors

1. Incorrect parameter type or order.

2. Mismatched units (e.g., meters vs. centimeters).

3. Inconsistent global variable use.

4. Missing or extra arguments.

5. Improper error handling between modules.

Software Engineering 11.7 Testing Strategies

Integration Approaches

Approach Description Advantages / Disadvantages

Big-Bang Combine all modules and test the

entire program at once.

Simple but risky; difficult to isolate

faults.

Incremental Integrate and test one module (or a

few) at a time.

Easier fault isolation; progressive

confidence.

Top-Down Integrate top-level control modules

first, using stubs for lower

modules.

Early demonstration of system

behavior; interface issues found early.

Bottom-Up Begin with low-level modules,

using drivers to simulate higher

modules.

Easier to develop test cases for

utilities; late discovery of control

problems.

Sandwich

(Hybrid)

Mix of top-down and bottom-up

strategies.

Balances early integration with

lower-module verification.

Regression Testing

After each integration step, previously tested modules must be re-tested to ensure that new

additions haven’t introduced faults—this is called regression testing.

Automation tools (e.g., Selenium, JUnit suites) are helpful.

Integration Test Plan

A good plan defines:

• Integration order

• Test cases and expected results

• Required stubs/drivers

• Acceptance criteria for each integration stage

Exit Criteria

Integration testing concludes when:

• All critical interfaces are validated.

• No outstanding high-severity defects remain.

• Integrated functionality matches design expectations.

11.4 Test Strategies for Object-Oriented Software

Object-Oriented (OO) software introduces encapsulation, inheritance, and polymorphism—

concepts that both enhance reusability and complicate testing.

Testing must focus on classes and their collaborations rather than purely on functional

decomposition.

Key OO Testing Challenges

1. Encapsulation hides internal data—white-box access becomes harder.

2. Inheritance means changes in a superclass may affect many subclasses.

3. Polymorphism allows dynamic method binding, increasing the number of potential

execution paths.

Centre for Distance Education 11.8 Acharya Nagarjuna University

1. Reusability encourages component reuse, demanding regression across multiple systems.

11.4.1 Unit Testing for OO Software

Definition

The smallest testable unit is usually a class, not a function.

Each class may contain:

• Attributes (state variables)

• Methods (operations)

• Constructors / destructors

• Invariants (conditions that must always hold true)

Focus Areas

Aspect Testing Goal

Methods Verify logic, parameters, and return values.

State behavior Confirm that attribute values change correctly across method calls.

Class invariants Ensure invariant conditions remain valid after all operations.

Error handling Test exceptions and invalid inputs.

Approach

1. Isolate each class using mock objects or test doubles to simulate dependencies.

2. Test each method individually, followed by combinations of method calls to observe

state transitions.

3. Use automated unit frameworks—e.g., JUnit, NUnit, PyTest—to enforce

repeatability.

Example

For a BankAccount class:

• Test deposit(), withdraw(), and checkBalance() individually.

• Test combined sequences like deposit() → withdraw() → checkBalance() to ensure

consistent state.

OO-Specific Test Designs

Technique Application

State-based testing Derive test cases from class state diagrams.

Attribute partitioning Classify input data ranges for object attributes.

Scenario testing Verify interactions through use-case scenarios.

Random object testing Randomly instantiate and execute methods for stress verification.

11.4.2 Integration Testing for OO Software

In OO systems, integration means verifying collaborations among classes rather than

module hierarchies.

Software Engineering 11.9 Testing Strategies

Integration Strategies

1. Thread-Based Testing

o Focuses on testing a complete thread of control (a sequence of collaborating classes

that realize a specific system function).

o Example: Login → Verify → Display Dashboard.

o Effective for testing real-time or event-driven systems.

2. Use-Based Testing

o Classes that provide foundational services (e.g., utility classes) are tested first.

o Dependent classes that use them are integrated later.

o Reduces stub complexity.

3. Cluster Testing

o Related or tightly coupled classes (a cluster) are tested together.

o Example: testing Order, Customer, and Invoice classes as a group.

o Often supported by automated frameworks like JUnit + Mockito.

Polymorphism and Dynamic Binding

Testing polymorphic methods requires additional care:

• Verify that overridden methods behave correctly for each subclass.

• Ensure correct binding at runtime, especially with interfaces and abstract classes.

Automated tools can instrument code to track dynamic dispatch paths.

Challenges in OO Integration

• Inherited behaviors may produce side effects not visible at compile time.

• Complex object interactions make it difficult to determine test coverage.

• Dependencies through aggregation and composition increase test complexity.

Guidelines for Effective OO Integration Testing

• Develop a collaboration diagram to visualize class interactions.

• Employ incremental cluster testing to contain complexity.

• Use automated test harnesses for repeated regression.

• Include error and exception scenarios in every test thread.

Advantages of OO Testing Approaches

Benefit Explanation

Improved

reusability

Test cases for reusable classes can be stored and re-executed across

projects.

Better traceability Tests link naturally to class design diagrams.

Early defect

detection

Class-level testing uncovers logic errors before system integration.

Automated support Abundant frameworks and tools exist for OO languages.

Centre for Distance Education 11.10 Acharya Nagarjuna University

11.5 Validation Testing

Introduction

After integration testing, we must confirm that the software meets all requirements and

expectations. This is the purpose of validation testing.

Validation asks a crucial question:

“Did we build the right product?”

Whereas verification ensures that the product was built correctly, validation ensures that it

fulfills its intended use and user needs.

Objectives of Validation Testing

1. To demonstrate that the software performs its intended functions under realistic

conditions.

2. To confirm that all functional, behavioral, and performance requirements are

satisfied.

3. To ensure that the software is ready for acceptance testing and deployment.

Validation Testing Process

Stage Description

Requirement Review Ensure that all functional requirements are testable and

traceable.

Test Case Design Develop test cases directly from the Software Requirements

Specification (SRS).

Test Execution Conduct black-box testing using realistic data.

Result Analysis Compare actual outputs with expected results to validate

correctness.

Defect Reporting and

Correction

Document any deviations or failures and re-validate after

correction.

Types of Validation Testing

1. Functional Testing

 Verifies that each feature operates as specified.

 Example: Testing login authentication, file saving, or database updates.

2. Performance Testing

 Checks responsiveness, throughput, and resource usage.

 Example: Verifying if a system supports 1000 concurrent users.

3. Usability Testing

 Evaluates the system’s ease of use and user experience.

 Conducted with representative users.

4. Compatibility Testing

 Ensures software functions correctly on all intended platforms, browsers, or devices.

5. Security Testing

 Confirms that access control, data protection, and encryption mechanisms work as

 intended.

6. Acceptance Testing

 Final stage of validation; performed by the client or end user to decide whether the

 system is acceptable for delivery.

Software Engineering 11.11 Testing Strategies

Acceptance Testing Methods

Type Performed By Environment Purpose

Alpha

Testing

Internal users or client

representatives

Developer’s site Detect issues before public

release

Beta

Testing

Actual users Real operational

environment

Collect real-world feedback

before launch

Pilot

Testing

Selected users within an

organization

Live environment Validate system performance

before full deployment

Outcome of Validation Testing

• The software is validated against its specification.

• All known defects are corrected or documented.

• The product is declared ready for system testing and user acceptance.

11.6 SYSTEM TESTING

Definition

System testing evaluates the entire integrated software system as a whole.

It verifies both functional and non-functional requirements and confirms that the product

works under realistic conditions.

System testing answers:

“Does the complete system meet its specified requirements?”

It is performed by an independent test team after integration and validation are complete.

Objectives of System Testing

1. Verify the end-to-end behavior of the software system.

2. Test both software and external interfaces (hardware, databases, networks).

3. Assess the performance, reliability, and security of the overall product.

4. Ensure readiness for deployment and user acceptance.

System Testing Environment

System testing is performed in an environment closely resembling the production

environment, including:

• Actual databases

• Hardware devices

• Network connections

• Operating systems

• Security configurations

Types of System Testing

Type Description Objective

Recovery Testing Forces the system to fail and checks

recovery procedures.

Ensure robustness and fault-

tolerance.

Security Testing Attempts to violate protection

mechanisms.

Ensure data integrity and

confidentiality.

Stress Testing Executes system beyond normal load

conditions.

Assess stability under

extreme load.

Centre for Distance Education 11.12 Acharya Nagarjuna University

Performance

Testing

Measures speed, response time, and

throughput.

Confirm system meets

performance criteria.

Usability Testing Checks the system’s ease of use,

navigation, and accessibility.

Ensure user satisfaction and

efficiency.

Compatibility

Testing

Runs system across different

configurations.

Verify cross-platform

consistency.

Regression Testing Re-tests previously verified

components after changes.

Detect side effects of

modifications.

Installation

Testing

Tests installation, setup, and

configuration.

Ensure proper deployment

and uninstallation.

Reliability Testing Repeats operations over time. Evaluate long-term stability.

Documentation

Testing

Reviews user manuals and help files. Ensure accuracy and clarity

of instructions.

Stress Testing Example

A banking system may be tested by simulating 10,000 concurrent transactions to ensure

that:

• Response times remain within limits,

• No data corruption occurs,

• System resources remain stable.

Performance Testing Metrics

Metric Meaning

Response Time Time taken to respond to a user request

Throughput Number of transactions processed per second

Resource Utilization CPU, memory, and disk usage during execution

Scalability Ability to handle increasing workload

Acceptance Criteria for System Testing

System testing is deemed successful if:

1. All critical functions operate correctly.

2. Non-functional requirements are met.

3. No major unresolved defects remain.

4. The system performs reliably in simulated operational conditions.

11.7 THE ART OF DEBUGGING

Introduction

While testing detects the presence of errors, debugging locates and removes their cause.

Debugging is often described as an art because it involves intuition, experience, and

analytical skill.

As Brian Kernighan famously said:

“Debugging is twice as hard as writing the code in the first place.”

Software Engineering 11.13 Testing Strategies

Objectives of Debugging

1. Identify the root cause of observed software failures.

2. Correct the identified defects efficiently and safely.

3. Ensure that no new errors are introduced during correction.

Debugging Process

Step Description

1. Symptom

Identification

Observe failure during test execution and note its manifestation.

2. Fault Isolation Trace program logic to find the specific code section

responsible.

3. Fault Correction Modify the faulty code and rebuild the program.

4. Verification Re-run test cases to confirm that the fix resolves the issue.

5. Regression Testing Ensure that no new errors appear elsewhere in the system.

Common Debugging Strategies

1. Brute Force Method

o Insert print statements or logs to observe variable values and control flow.

o Simple but inefficient for large programs.

2. Backtracking

o Start from the point of failure and trace backward through the control path.

o Effective for small, structured programs.

3. Cause Elimination

o Formulate hypotheses about possible causes and test each experimentally.

o Similar to scientific method.

4. Binary Partitioning

o Divide code execution path into halves to isolate the faulty section faster.

5. Automated Debugging Tools

o Use IDEs (e.g., Visual Studio, Eclipse) with features like breakpoints, stack traces,

and variable inspection.

o Tools like Valgrind, GDB, Xdebug, and WinDbg help identify memory leaks and

runtime errors.

Symptoms vs. Causes

Symptom (what we see) Possible Cause (why it happens)

System crash on input Unchecked null pointer or buffer overflow

Incorrect output Logical or arithmetic error

Infinite loop Faulty loop termination condition

Slow performance Inefficient algorithm or memory leak

Intermittent failure Race condition or timing issue

Understanding this distinction is key to efficient debugging.

Guidelines for Effective Debugging

1. Understand the system. Review requirements and design before modifying the code.

2. Reproduce the error.Consistent reproduction is critical for accurate diagnosis.

3. Change one thing at a time.Multiple simultaneous changes obscure the cause of

success or failure.

4. Keep records.Document all observed errors, causes, and corrections.

5. Use version control. Enables rollback if a fix introduces new issues.

Centre for Distance Education 11.14 Acharya Nagarjuna University

6. Learn from errors. Recurrent patterns may indicate deeper design problems.

Debugging in Object-Oriented Systems

OO programs add complexity:

o Encapsulation hides internal states.

o Inheritance may introduce hidden interactions.

o Polymorphism leads to dynamic binding issues.

Strategies:

• Use object state inspection tools.

• Trace method invocations and inheritance hierarchies.

• Employ runtime monitors to capture dynamic behaviors.

Psychological Aspects of Debugging

Developers often feel defensive when their code fails.

An effective debugger must be:

• Patient: Debugging can be iterative.

• Analytical: Must think logically, not emotionally.

• Collaborative: Discussing with peers often reveals overlooked issues.

11.8 . SUMMARY

This lesson presented a comprehensive overview of software testing as a strategic, planned

activity in the software development process.

Key takeaways include:

• Testing must begin early and be integrated throughout the life cycle.

• A clear strategy ensures systematic coverage of both conventional and object-oriented

software.

• Validation confirms that the right product has been built; verification ensures it was

built correctly.

• System testing evaluates the integrated product in its entirety.

• Debugging complements testing by identifying and correcting the root causes of

failures.

• A disciplined, well-documented testing strategy is central to software quality

assurance and to building dependable, user-satisfactory systems.

11.9 TECHNICAL TERMS

• Verification

• Validation

• Unit Testing

• Integration Testing

• System Testing

Software Engineering 11.15 Testing Strategies

11.10 Self-Assessment Questions

Essay Answer Questions

1. Discuss the strategic approach to software testing and explain the role of test

planning.

2. Describe in detail the test strategies used for conventional software.

3. Explain unit testing and integration testing with examples.

4. Describe the special challenges faced in object-oriented testing.

5. Compare and contrast validation testing and system testing.

6. What are the different types of system testing? Explain any five in detail.

7. Elaborate on the debugging process and explain various debugging strategies.

8. Describe how polymorphism and inheritance affect the testing of OO software.

9. Explain the purpose and process of acceptance testing.

10. “Testing is context-dependent.” Discuss with examples.

Short Answer Questions

1. Define software testing and explain its purpose.

2. Differentiate between verification and validation.

3. List the four stages of the software testing process.

4. What is meant by unit testing? Who performs it?

5. Explain the difference between a driver and a stub.

6. What is regression testing, and why is it necessary?

7. Define the term “test case.”

8. What is the main goal of integration testing?

9. List any three strategic issues related to software testing.

10. What is meant by the “Pesticide Paradox”?

11.11 Suggested Readings

1. Pressman, Roger S., and Bruce R. Maxim. Software Engineering: A Practitioner’s

Approach, 7th Edition, McGraw-Hill Education, 2014.

2. Myers, Glenford J., Corey Sandler, and Tom Badgett.The Art of Software Testing,

3rd Edition, Wiley, 2011.

3. Beizer, Boris.Software Testing Techniques, 2nd Edition, Dreamtech Press, 2003.

4. Kaner, Cem, Falk, Jack, and Nguyen, Hung Quoc.Testing Computer Software, 2nd

Edition, Wiley, 1999.

5. Sommerville, Ian.Software Engineering, 10th Edition, Pearson Education, 2015.

6. Desikan, S. and Ramesh, G.Software Testing: Principles and Practices, Pearson

Education, 2006.

7. Patton, Ron.Software Testing, 2nd Edition, Sams Publishing, 2005.

8. Burnstein, Ilene.Practical Software Testing: A Process-Oriented Approach, Springer,

2003.

9. Jorgensen, Paul C.Software Testing: A Craftsman’s Approach, 5th Edition, CRC

Press, 2018.

10. Binder, Robert V.Testing Object-Oriented Systems: Models, Patterns, and Tools,

Addison-Wesley, 1999.

Mrs. Appikatla Pushpa Latha

LESSON- 12

TESTING STRATEGIES FOR OBJECT ORIENTED SOFTWARE

AIMS AND OBJECTIVES

To understand how testing strategies evolve in the context of object-oriented (OO)

software, focusing on verifying and validating classes, objects, and their interactions across

analysis, design, and implementation stages

.

After completing this lesson, you will be able to:

1. Explain how testing approaches differ between procedural and object-oriented

software.

2. Identify techniques for verifying OO analysis and design models before coding

begins.

3. Describe unit, integration, and validation testing strategies within the OO context.

4. Apply object-oriented test-case design methods such as fault-based and scenario-

based testing.

5. Differentiate between class-level, interclass, and behavior-based testing.

6. Recognize how OO features (encapsulation, inheritance, polymorphism) affect testing

complexity.

7. Use appropriate terminology and testing principles to plan OO test activities.

STRUCTURE

12.1 INTRODUCTION

12.2 BROADENING THE VIEW OF TESTING

12.3 TESTING OOA AND OOD MODELS

 12.3.1 CORRECTNESS OF OOA AND OOD MODELS

 12.3.2 CONSISTENCY OF OBJECT-ORIENTED MODELS

12.4 OBJECT-ORIENTED TESTING STRATEGIES

 12.4.1 UNIT TESTING IN THE OO CONTEXT

 12.4.2 INTEGRATION TESTING IN THE OO CONTEXT

 12.4.3 VALIDATION TESTING IN THE OO CONTEXT

12.5 OBJECT-ORIENTED TESTING METHODS

 12.5.1 TEST-CASE DESIGN IMPLICATIONS OF OO CONCEPTS

 12.5.2 APPLICABILITY OF CONVENTIONAL TEST-CASE DESIGN METHODS

 12.5.3 FAULT-BASED TESTING

 12.5.4 TEST CASES AND THE CLASS HIERARCHY

 12.5.5 SCENARIO-BASED TEST DESIGN

 12.5.6 TESTING SURFACE STRUCTURE AND DEEP STRUCTURE

Centre for Distance Education 12.2 Acharya Nagarjuna University

12.6 TESTING METHODS APPLICABLE AT THE CLASS LEVEL

 12.6.1 RANDOM TESTING FOR OO CLASSES

 12.6.2 PARTITION TESTING AT THE CLASS LEVEL

12.7 INTERCLASS TEST-CASE DESIGN

 12.7.1 MULTIPLE CLASS TESTING

 12.7.2 TESTS DERIVED FROM BEHAVIOR MODELS

12.8 SUMMARY

12.9 TECHNICAL TERMS

12.10 SELF-ASSESSMENT QUESTIONS

12.11 SUGGESTED READINGS

12.1 INTRODUCTION

Object-oriented technology changes the way software is designed, implemented, and

therefore tested.

In procedural systems, testing focuses on verifying functions and interfaces between

modules.

In object-oriented (OO) systems, the focus shifts to classes, objects, and their collaborations.

OO programs integrate both data (attributes) and behavior (methods) within a single entity —

the object.

Testing thus must ensure not only that individual methods work correctly, but also that:

• Object states transition properly,

• Invariants are maintained, and

• Interacting objects behave collectively as intended.

Key Characteristics Influencing OO Testing

OO Concept Testing Implication

Encapsulation Hides internal data → tests must rely on public interfaces.

Inheritance Behavior reused from superclasses → changes in base classes may require

re-testing of all derived classes.

Polymorphism Dynamic binding increases the number of execution paths to test.

Reusability Components used across systems demand regression and integration testing

in new contexts.

Thus, an OO testing strategy must accommodate state-based behavior, message passing, and

class hierarchies, not merely procedural control flow.

Software Engineering 12.3 Testing Strategies For Object…

OO Testing in the Software Life Cycle

Testing in OO development begins even before coding:

OO Development Phase Testing Focus

Object-Oriented Analysis

(OOA)

Validating correctness and consistency of analysis models.

Object-Oriented Design (OOD) Reviewing design models – class, object, interaction, and

state diagrams.

Object-Oriented Programming

(OOP)

Implementing and executing unit, integration, and system

tests.

Testing OO software therefore involves model verification as well as code execution.

12.2 BROADENING THE VIEW OF TESTING

Traditional testing has often been limited to executing code to find defects.

In the OO paradigm, the notion of testing extends to verifying the quality of models and

design artifacts long before the first line of code is written.

Testing Beyond Code Execution

Testing OO systems means validating multiple representations:

1. Requirements Model (OOA) – object classes, attributes, relationships, and behavior.

2. Design Model (OOD) – architectural structure, interface definitions, and message

interactions.

3. Implementation (OOP) – actual code representing classes and methods.

Each level requires its own verification activities: reviews, consistency checks, and

traceability analysis.

Why Broaden Testing Early?

• Early detection reduces cost: fixing a modeling error is far cheaper than fixing code.

• OO analysis and design errors propagate: a faulty class relationship can affect

many components.

• Testing models improves communication: analysts, designers, and testers share a

common understanding.

• Quality assurance begins before implementation: preventing defects instead of

detecting them late.

Model Review and Verification Activities

Model Element Typical Errors Detected Verification Method

Class diagrams Missing classes, redundant classes, incorrect

multiplicity

Structured walkthroughs

State diagrams Missing transitions or invalid states Simulation, behavioral

review

Sequence

diagrams

Incorrect message order or timing Trace-based review

Centre for Distance Education 12.4 Acharya Nagarjuna University

Object

collaboration

Unclear responsibilities Role-based inspection

Through such pre-code verification, major logical errors are caught early, supporting a test-

driven mindset across all phases.

Shift from Control Flow to State and Interaction Flow

Procedural testing focused on control paths through functions.

OO testing emphasizes message flow and object state transitions.

Therefore, test cases must consider:

• Sequences of method invocations,

• Valid and invalid state transitions, and

• Consistency of object collaborations.

12.3 Testing OOA and OOD Models

Testing OO Analysis (OOA) and Design (OOD) models is essential to ensure that the

blueprints of the system are accurate, consistent, and testable before coding begins.

This form of testing is primarily static testing, involving formal reviews, inspections, and

automated consistency tools.

12.3.1 Correctness of OOA and OOD Models

Definition

Correctness refers to how accurately the OOA/OOD models represent the system

requirements and intended behavior.

Objectives

1. Confirm that every requirement is correctly represented by one or more model

elements.

2. Ensure all classes, attributes, and relationships reflect real-world entities and

behaviors.

3. Detect missing or redundant functionality at the model stage.

Correctness Criteria

Criterion Description

Completeness All required objects, attributes, and methods are represented.

Traceability Each class and behavior can be traced back to a requirement.

Feasibility Designed architecture can be implemented within constraints.

Testability Model elements are specified in measurable, verifiable terms.

Techniques for Verifying Correctness

1. Model Reviews:

2. Conduct peer reviews of class, state, and interaction diagrams.

3. Walkthroughs:

Simulate the flow of system behavior using example scenarios.

Software Engineering 12.5 Testing Strategies For Object…

4. Formal Verification:

5. Apply mathematical consistency checks on model syntax and semantics.

6. Prototyping:

Build partial executable models to validate object interactions.

Example – Correctness in a Library System

• Requirement: “A member can borrow up to 5 books.”

• Model must represent:

o Member class with attribute borrowedCount,

o Method borrowBook() enforcing the constraint.

If the class diagram omits borrowedCount, the analysis model is incorrect or incomplete.

12.3.2 Consistency of Object-Oriented Models

Definition

Consistency ensures that all model views – structural, behavioral, and functional – agree

with one another and do not contradict system rules.

Objectives

• Maintain alignment between OOA and OOD models.

• Ensure naming, relationships, and behavior are uniform across diagrams.

• Identify conflicts between design representations.

Common Consistency Problems

Issue Example

Naming inconsistency Class “Customer” in one diagram, “Client” in another.

Relationship

inconsistency

Association defined in class diagram but missing in interaction

diagram.

Behavioral mismatch State diagram shows transition not supported by any method.

Multiplicity error One-to-many relationship modeled differently in design and

analysis.

Consistency-Checking Techniques

1. Automated Tool Support – CASE tools can cross-check relationships, names, and

references.

2. Traceability Matrices – Link OOA elements to OOD counterparts for verification.

3. Cross-Diagram Review Meetings – Analysts and designers jointly reconcile

differences.

4. Static Analysis Tools – Check for naming, inheritance, and dependency anomalies.

Outcome of OOA/OOD Model Testing

• Logical design errors are detected early.

• Design models are validated for correctness and consistency.

• Artifacts are ready for code-level implementation and dynamic testing.

Centre for Distance Education 12.6 Acharya Nagarjuna University

12.4 Object-Oriented Testing Strategies

Testing strategies for object-oriented systems extend traditional techniques to address class

structure, object collaboration, and dynamic binding.

The purpose is to validate that individual classes, clusters of cooperating objects, and the

overall system operate correctly and as specified.

12.4.1 Unit Testing in the OO Context

Definition

In object-oriented development, the smallest testable unit is usually a class rather than a

single procedure.

Each class encapsulates both data (attributes) and operations (methods)—therefore, testing

must evaluate how these two interact internally and externally.

Focus Areas

Aspect Testing Focus

Operations (Methods) Verify functional correctness, boundary conditions, and error

handling.

State Behavior Confirm that object state transitions occur as specified.

Attributes (Data

Members)

Check initialization, modification, and persistence of attribute

values.

Invariants Ensure class invariants hold before and after method execution.

Exception Handling Validate that exceptional cases are caught and processed

correctly.

Approach

1. Test Individual Methods – Each method is invoked with valid and invalid inputs.

2. Test Class State Transitions – Observe attribute changes after sequences of method

calls.

3. Use Mock Objects – Replace collaborators with stubs/mocks to isolate the class.

4. Automate Tests – Frameworks such as JUnit, NUnit, or PyTest support repeatable

execution.

Example

Consider a BankAccount class with methods deposit(), withdraw(), and getBalance().

• Test deposit() with negative amounts → expect error.

• Test withdraw() to verify that balance never drops below zero.

• Test sequence deposit() → withdraw() → getBalance() to ensure consistent state.

12.4.2 Integration Testing in the OO Context

Software Engineering 12.7 Testing Strategies For Object…

Definition

Integration testing verifies that collaborating classes work correctly together.

Since OO software often lacks a hierarchical control structure, testing focuses on inter-

object communication through message passing.

Common OO Integration Strategies

Strategy Description Typical Use

Thread-

Based

Testing

Tests each thread of control representing

one system function realized by multiple

classes.

Transaction-based systems

(e.g., booking systems).

Use-Based

Testing

Tests classes based on their “uses”

hierarchy; base utility classes are tested

first.

Systems with reusable service

classes.

Cluster

Testing

Tests groups (clusters) of closely related

or tightly coupled classes.

Framework-oriented designs

where classes collaborate

heavily.

Challenges in OO Integration

• Complex association and composition relationships.

• Hidden dependencies through inheritance.

• Polymorphic calls that alter execution flow at runtime.

• Difficulty isolating a “main module.”

Guidelines

• Integrate incrementally—cluster by cluster.

• Use sequence and collaboration diagrams as test design references.

• Include tests for both normal and exceptional message sequences.

• Re-execute regression tests after every integration step.

12.4.3 Validation Testing in the OO Context

Objective

To ensure that the integrated object-oriented system satisfies the functional requirements

and behavioral expectations defined during analysis and design.

Scope

• Functional Validation – Verify that each class and interaction fulfills the required

use cases.

• Behavioral Validation – Test that objects follow the correct life-cycle states and

transitions.

• Performance Validation – Evaluate whether dynamic binding or inheritance

overhead affects performance.

Centre for Distance Education 12.8 Acharya Nagarjuna University

Approach

1. Use Case Testing – Derive test scenarios directly from use cases.

2. Scenario Execution – Validate end-to-end message flows among classes.

3. User Acceptance Testing (UAT) – Confirm that system behavior matches user

expectations.

4. Regression Validation – Ensure that enhancements preserve previous behavior.

Outcome

The system is deemed validated when all defined scenarios execute correctly and the

behavior of each object collaboration aligns with the system model.

12.5 Object-Oriented Testing Methods

Object-oriented software introduces new fault types and structural relationships.

Therefore, specialized testing methods complement conventional approaches to handle

unique OO characteristics like inheritance and polymorphism.

12.5.1 Test-Case Design Implications of OO Concepts

Key Influences on Test Case Design

OO Concept Implication for Testing

Encapsulation Limits direct access to data; testers must use only public methods to set

and observe state.

Inheritance Changes in parent class affect all descendants—requires regression tests

across hierarchy.

Polymorphism Method invoked depends on runtime type; all polymorphic variants must

be exercised.

Dynamic

Binding

Execution paths cannot be fully determined at compile time—requires

additional path tests.

Guidelines

• Derive test cases from class specifications and state diagrams.

• Test inherited operations in both base and derived contexts.

• Exercise overridden and overloaded methods separately.

• Test combinations of messages that alter object states.

12.5.2 Applicability of Conventional Test-Case Design Methods

Although OO software is structurally different, traditional black-box and white-box

techniques remain useful when adapted properly.

Conventional Method Adaptation for OO Software

Equivalence Partitioning Applied to class input parameters and attribute ranges.

Boundary Value Analysis Tests boundaries of object attributes or collection sizes.

Cause-and-Effect

Graphing

Models interdependencies between method inputs and

outcomes.

Control Flow Testing
Used within methods or small clusters rather than entire

systems.

Software Engineering 12.9 Testing Strategies For Object…

12.5.3 Fault-Based Testing

Definition

Fault-based testing (or error-based testing) designs test cases to intentionally expose

specific categories of probable faults in classes and interactions.

Process

1. Identify Likely Fault Types – e.g., incorrect message order, wrong parameter type,

incorrect overriding.

2. Develop Hypotheses – Predict where such faults may occur.

3. Create Targeted Tests – Craft inputs and sequences likely to trigger those faults.

4. Execute and Analyze – Observe failures, isolate causes, and correct defects.

Common OO Fault Types

Fault Type Description

Inheritance Faults Incorrect method overriding or shadowing.

Polymorphic Faults Wrong binding of messages at runtime.

State Faults Invalid state transitions or missing transitions.

Encapsulation Faults Violation of information hiding or improper data access.

Benefits

• Targets areas statistically prone to errors.

• Efficiently finds subtle defects introduced by OO mechanisms.

• Complements functional testing by exploring “what can go wrong.”

12.5.4 Test Cases and the Class Hierarchy

The class hierarchy is central to OO systems and significantly impacts testing.

Testing Challenges

• Reuse of behavior through inheritance can hide latent defects.

• Overridden methods may alter base behavior unexpectedly.

• Abstract classes define contracts that all subclasses must honor.

Approach

1. Top-Down Hierarchy Testing – Begin with superclasses; ensure their correctness

before testing derived classes.

2. Regression Testing for Inheritance – Re-execute superclass tests on all subclasses.

3. Abstract Class Testing – Define generic test suites for interfaces or abstract

operations.

4. Polymorphic Testing – Validate that correct subclass implementations are invoked

dynamically.

Centre for Distance Education 12.10 Acharya Nagarjuna University

12.5.5 Scenario-Based Test Design

Definition

Scenario-based testing derives test cases from user stories, use cases, or sequence diagrams

that describe realistic flows of object interactions.

Steps in Scenario-Based Design

1. Identify a specific usage scenario (e.g., “Book Flight”).

2. Determine objects participating in the scenario.

3. Trace message sequence among objects.

4. Construct test cases covering normal and exceptional flows.

Advantages

• Direct traceability from requirements to tests.

• Naturally integrates with UML use-case and sequence diagrams.

• Encourages end-to-end behavioral testing.

Example

For an e-commerce checkout scenario:

Objects: Cart, PaymentGateway, Order, Inventory.

Messages: calculateTotal() → validateCard() → createOrder() → updateStock().

Test cases validate normal purchase, payment failure, and stock unavailability.

12.5.6 Testing Surface Structure and Deep Structure

OO software can be viewed at two complementary levels:

Level Description Testing Focus

Surface

Structure

The external interface and visible behavior

of objects.

Black-box testing: public

methods, API validation.

Deep

Structure

The internal implementation, private

methods, and data relationships.

White-box testing: logic,

loops, and data integrity.

Effective OO testing combines both to ensure that visible behaviors correctly reflect internal

logic.

12.6 Testing Methods Applicable at the Class Level

Testing at the class level forms the foundation of OO testing.Each class represents an

abstraction that combines data (attributes) and operations (methods), so the goal is to

verify the correctness of this encapsulated entity before it participates in collaborations.

Key Objectives

1. Ensure each class correctly implements its specified responsibilities.

2. Validate internal state behavior across all possible state transitions.

3. Confirm that public interfaces behave according to design contracts.

4. Detect abnormal or illegal interactions early, before integration.

Software Engineering 12.11 Testing Strategies For

Object…

12.6.1 Random Testing for OO Classes

Concept

Random testing involves generating random sequences of method calls and random input

values within defined ranges to explore unanticipated object behaviors.

Unlike structured test design, it does not rely on exhaustive enumeration of paths—making it

suitable for early fault detection in complex classes.

Steps Involved

1. Identify Public Methods: List all methods accessible through the class interface.

2. Define Input Domains: Specify valid ranges for parameters and state variables.

3. Generate Random Test Sequences: Randomly choose methods and parameter

values.

4. Execute and Monitor: Run sequences, record state transitions, and detect exceptions.

5. Compare with Expected Invariants: Verify that no class invariants are violated.

Advantages

• Simple to automate.

• Uncovers unanticipated faults, especially in exception paths.

• Useful for stress testing classes with multiple states.

Limitations

• Does not guarantee coverage of all functional paths.

• May require numerous runs for adequate confidence.

• Hard to determine exact expected results for random sequences.

Example

In a Stack class:

• Generate 100 random sequences of push() and pop() calls.

• Check that stack never underflows or overflows (invariant: 0 ≤ count ≤ MAX).

If any random run violates this, the class logic or boundary handling needs correction.

12.6.2 Partition Testing at the Class Level

Definition

Partition testing divides the input domain and state space of a class into equivalence

partitions—subsets where system behavior is expected to be similar—so that one

representative test per subset suffices.

Centre for Distance Education 12.12 Acharya Nagarjuna University

Approach

1. Identify Attributes and Parameters: For each attribute and method input, list possible

 value ranges.

2. Define Partitions:

o Valid / Invalid inputs.

o Boundary conditions (e.g., min, max, null).

o Distinct object states (e.g., empty, partially filled, full).

3. Select Representative Values: Choose one or more values from each partition.

4. Develop Test Cases: Combine representative inputs across attributes.

Example

For a Queue class with method enqueue(item) and dequeue():

Partition Test Condition Expected Result

Empty Queue Call dequeue() Should raise “underflow” exception

Partially Filled Queue Call enqueue(item) Item added successfully

Full Queue Call enqueue(item) Should raise “overflow” exception

Advantages

1. Reduces number of test cases while maintaining coverage.

2. Provides systematic coverage of input domain and states.

3. Easy to combine with boundary value analysis.

Result

Partition testing ensures that the class behaves correctly across all significant subsets of

inputs and states without testing every combination exhaustively.

Summary of Class-Level Methods

Technique Purpose Strength

Random Testing Discover hidden or stress-related

faults

Broad exploration of

behaviors

Partition Testing Representative coverage of input/state

space

Efficient systematic testing

State-Based Testing Verify object transitions and lifecycle

rules

High behavioral fidelity

Boundary Value

Testing

Evaluate limits of attribute values Detect off-by-one or limit

faults

12.7 Interclass Test-Case Design

After individual classes are verified, we must test their interactions—how they collaborate

through message passing to fulfill system functionality.

This is called interclass testing, focusing on integration at the object collaboration level

rather than function calls.

Software Engineering 12.13 Testing Strategies For

Object…

Objectives of Interclass Testing

1. Detect errors in message exchange and parameter passing between objects.

2. Ensure that state changes propagate correctly across objects.

3. Validate synchronization and dependency relationships.

4. Confirm that polymorphic dispatch calls invoke appropriate methods at runtime.

12.7.1 Multiple Class Testing

Concept

In many OO systems, a single use case involves multiple interacting classes.

Multiple-class testing aims to verify these coordinated behaviors as a functional cluster.

Approach

1. Identify Collaborating Classes – from UML sequence or communication diagrams.

2. Construct Interaction Graph – nodes represent classes; edges represent messages.

3. Develop Test Scenarios – each path in the graph corresponds to a message sequence.

4. Execute Cluster Tests – run combined objects and observe outputs and state

changes.

5. Verify Results – ensure each class fulfills its responsibility in the interaction.

Example

Online Shopping Checkout involves:

Cart → PaymentGateway → OrderManager → InventoryService.

Test scenario:

1. Add items to cart.

2. Submit payment.

3. Generate order confirmation.

4. Verify stock update in inventory.

Failure at any step indicates an interclass integration error.

Benefits

1. Verifies correct collaboration of objects implementing use cases.

2. Detects interface mismatches and message ordering faults.

3. Closely mirrors real-world execution flows.

Challenges

1. Hard to isolate faults since multiple classes are involved.

2. Requires precise knowledge of object states and message dependencies.

3. Dynamic binding and inheritance can obscure error origin.

Centre for Distance Education 12.14 Acharya Nagarjuna University

12.7.2 Tests Derived from Behavior Models

Behavior models—particularly state transition diagrams, sequence diagrams, and activity

diagrams—provide a basis for designing test cases that capture system dynamics.

State-Based Test Derivation

1. Identify Object States – e.g., Idle, Active, Suspended.

2. List Transitions and Events.

3. Design Tests to cover every valid transition and selected invalid transitions.

4. Include Boundary and Error States to check robustness.

Sequence-Based Test Derivation

1. Extract object interaction sequences from UML sequence diagrams.

2. Develop test scripts that mimic those message flows.

3. Verify correct order, timing, and data exchange.

Activity Diagram Testing

Activity diagrams highlight control flows and parallel activities.

Testing based on these models ensures that:

• Concurrent threads synchronize properly.

• Decision branches cover all alternatives.

• Loops terminate appropriately.

Example

ATM Withdrawal Use Case

State Transitions:

Idle → CardInserted → PIN Verified → Transaction Processing → EjectCard → Idle.

Tests include:

• Valid PIN entry (flow completion).

• Invalid PIN entered three times (error state).

• Transaction cancellation (mid-process state change).

Benefits of Behavior-Model-Based Testing

Benefit Explanation

High coverage of dynamic

behavior

Exercises realistic object interactions.

Early traceability Directly linked to analysis and design models.

Automation potential Sequence/state diagrams can be converted into test

scripts.

Common Pitfalls

• Overlooking rare transition paths or exception states.

• Incomplete mapping between model elements and test cases.

• Misinterpreting parallel activities in concurrent systems.

Software Engineering 12.15 Testing Strategies For

Object…

Summary of Interclass Testing

Technique Focus Strengths Challenges

Multiple Class

Testing

Collaborating classes for a

use case

Realistic system

validation

Complex fault

isolation

Behavior-Based

Testing

Dynamic model execution High coverage,

traceable

Needs complete

models

Scenario Testing End-to-end functional

flows

User-oriented May miss low-level

faults

12.8 SUMMARY (CONCISE PARAGRAPH)

Testing object-oriented software requires a comprehensive strategy that goes beyond

verifying individual functions. It emphasizes validating classes, objects, and their interactions

throughout the software life cycle—from analysis and design to implementation and

validation. Unlike procedural testing, OO testing must handle challenges introduced by

encapsulation, inheritance, and polymorphism, ensuring that objects maintain correct states

and collaborate properly. Testing focuses on class-level verification, integration through

clusters of cooperating classes, and behavior-based validation using scenarios and UML

models. By applying techniques such as fault-based, scenario-based, random, and partition

testing, testers can uncover subtle defects unique to OO systems. Effective OO testing is

therefore both structural and behavioral, aiming to deliver reliable, reusable, and maintainable

software systems.

12.9 TECHNICAL TERMS – TOP 10 KEYWORDS

1. Encapsulation

2. Inheritance

3. Polymorphism

4. Dynamic Binding

5. Class Invariant

6. Cluster Testing

7. Thread-Based Testing

8. Fault-Based Testing

9. Scenario-Based Testing

10. Regression Testing

12.10 Self-Assessment Questions

Essay Questions

1. Explain why testing object-oriented software requires a broader approach compared to

conventional procedural testing.

2. Discuss how the principles of correctness and consistency apply to Object-Oriented

Analysis (OOA) and Design (OOD) models.

3. Describe the strategies used for unit, integration, and validation testing in the OO

context.

Centre for Distance Education 12.16 Acharya Nagarjuna University

4. What are the challenges introduced by inheritance and polymorphism in testing OO

systems? Provide examples.

5. Explain fault-based testing and how it helps in uncovering defects specific to OO

software.

6. Differentiate between thread-based, use-based, and cluster-based integration testing

approaches.

7. Illustrate how scenario-based test design ensures comprehensive testing coverage

using UML use-case and sequence diagrams.

8. Discuss the applicability and adaptation of conventional test-case design methods to

object-oriented testing.

9. Describe the random and partition testing techniques applicable at the class level.

10. Explain the process and importance of testing derived classes in a class hierarchy

when base class behavior changes.

12.11 Suggested Readings

Short Notes

1. Encapsulation and its effect on testing visibility.

2. Significance of message passing in OO testing.

3. Testing challenges caused by dynamic binding.

4. Testing of abstract classes and interfaces.

5. Role of UML diagrams in test-case derivation.

6. Use-based testing in OO systems.

7. Scenario testing advantages.

8. Regression testing for inheritance hierarchies.

9. Comparison of surface structure and deep structure testing.

10. Fault types commonly found in OO programs.

1. Pressman, Roger S., and Bruce R. Maxim. Software Engineering: A Practitioner’s

Approach, 7th Edition, McGraw-Hill Education, 2014.

2. Myers, Glenford J., Corey Sandler, and Tom Badgett.The Art of Software Testing,

3rd Edition, Wiley, 2011.

3. Beizer, Boris.Software Testing Techniques, 2nd Edition, Dreamtech Press, 2003.

4. Kaner, Cem, Falk, Jack, and Nguyen, Hung Quoc.Testing Computer Software, 2nd

Edition, Wiley, 1999.

5. Sommerville, Ian.Software Engineering, 10th Edition, Pearson Education, 2015.

6. Desikan, S. and Ramesh, G.Software Testing: Principles and Practices, Pearson

Education, 2006.

7. Patton, Ron.Software Testing, 2nd Edition, Sams Publishing, 2005.

8. Burnstein, Ilene.Practical Software Testing: A Process-Oriented Approach, Springer,

2003.

9. Jorgensen, Paul C.Software Testing: A Craftsman’s Approach, 5th Edition, CRC

Press, 2018.

10. Binder, Robert V.Testing Object-Oriented Systems: Models, Patterns, and Tools,

Addison-Wesley, 1999.

Mrs. Appikatla Pushpa Latha

LESSON- 13

FUNDAMENTAL TESTING TACTICS

AIMS AND OBJECTIVES

To understand the fundamental concepts, methods, and techniques of software testing that

form the foundation for effective test design and implementation, including both white-box

and black-box strategies.

After completing this lesson, you will be able to:

• Explain the core principles and objectives of software testing.

• Differentiate between verification, validation, and debugging activities.

• Describe the internal and external views of testing.

• Apply white-box testing techniques such as basis path and control structure testing.

• Use black-box testing methods including equivalence partitioning and boundary value

analysis.

• Understand specialized testing tactics for GUIs, client–server, and real-time systems.

• Interpret model-based and graph-based testing methods.

• Define and use key testing terminologies correctly.

• Assess knowledge through essay and short-answer questions.

• Refer to standard texts for deeper understanding of software testing processes.

STRUCTURE

13.1 SOFTWARE TESTING FUNDAMENTALS

13.2 INTERNAL AND EXTERNAL VIEWS OF TESTING

13.3 WHITE-BOX TESTING

13.4 BASIS PATH TESTING

 13.4.1 FLOW GRAPH NOTATION

 13.4.2 INDEPENDENT PROGRAM PATHS

 13.4.3 DERIVING TEST CASES

 13.4.4 GRAPH MATRICES

13.5 CONTROL STRUCTURE TESTING

 • 13.5.1 CONDITION TESTING

 • 13.5.2 DATA FLOW TESTING

 • 13.5.3 LOOP TESTING

13.6 BLACK-BOX TESTING

 • 13.6.1 GRAPH-BASED TESTING METHODS

 • 13.6.2 EQUIVALENCE PARTITIONING

 • 13.6.3 BOUNDARY VALUE ANALYSIS

 • 13.6.4 ORTHOGONAL ARRAY TESTING

13.7 MODEL-BASED TESTING

13.8 TESTING FOR SPECIALIZED ENVIRONMENTS, ARCHITECTURES, AND

 APPLICATIONS

Centre for Distance Education 13.2 Acharya Nagarjuna University

 • 13.8.1 TESTING GUIS

 • 13.8.2 TESTING CLIENT–SERVER ARCHITECTURES

 • 13.8.3 TESTING DOCUMENTATION AND HELP FACILITIES

 • 13.8.4 TESTING FOR REAL-TIME SYSTEMS

13.9 PATTERNS FOR SOFTWARE TESTING

13.10 SUMMARY

13.11 TECHNICAL TERMS

13.12 SELF-ASSESSMENT QUESTIONS

13.13 SUGGESTED READINGS

13.1 SOFTWARE TESTING FUNDAMENTALS

Introduction

Software testing is a critical component of software quality assurance (SQA). It provides a

systematic approach to uncovering defects, ensuring that the software system performs as

intended.

The fundamental goal of testing is to detect errors before the software is delivered to the

end user.

Testing can never prove that a program is completely correct — it can only show that defects

are present under certain conditions.

As Dijkstra famously stated:

“Testing can show the presence of bugs, but never their absence.”

Objectives of Testing

1. To find and correct errors in the software.

2. To ensure that the software performs its required functions.

3. To verify that the software meets both functional and non-functional

requirements.

4. To build confidence in the software’s reliability before deployment.

5. To support maintenance and regression activities after updates or enhancements.

Verification and Validation (V&V)

Aspect Verification Validation

Definition Ensures the product is built

correctly as per design.

Ensures the right product has been built

to meet user needs.

Focus Process compliance. Product correctness.

Performed

by

Developers and quality engineers. End-users or testers.

Example Code inspection, design review. Acceptance testing, usability testing.

Testing contributes to both verification and validation — it verifies software conformance to

specifications and validates the system’s functionality from the user’s perspective.

Software Engineering 13.3 Fundamental Testing Tactics

Fundamental Principles of Testing

1. Testing shows the presence of defects, not their absence.

2. Exhaustive testing is impossible. Only representative tests can be done.

3. Early testing saves time and cost. Start testing activities in the requirements and

design phases.

4. Defects cluster together. A small number of modules contain the majority of defects

(Pareto principle).

5. Pesticide paradox. Reusing the same test cases repeatedly finds fewer new defects —

test cases must evolve.

6. Testing is context dependent. Different systems require different testing approaches.

7. Absence of errors is a fallacy. A program that passes tests may still not meet user

needs.

Testing Process

Software testing follows a defined set of activities:

Phase Description

Test Planning Identify scope, objectives, strategy, and resources.

Test Design Develop test cases, data, and expected results.

Test Execution Run tests, record outcomes, and compare with expectations.

Defect Reporting Log detected defects for resolution.

Test Evaluation Assess results and determine readiness for release.

Levels of Testing

Level Purpose

Unit Testing Verifies individual components or classes.

Integration Testing Validates interaction between integrated units.

System Testing Tests the complete system for functionality and performance.

Acceptance Testing Confirms software’s readiness for delivery to the user.

Types of Testing

Category Examples

Functional Testing Unit, integration, system, acceptance.

Non-Functional Testing Performance, reliability, security, usability.

Maintenance Testing Regression and re-testing after modifications.

Testing vs Debugging

Testing and debugging are closely related but distinct activities:

Activity Purpose Performed By

Testing Identify the presence of defects. Testers / QA team.

Debugging Locate and correct the defects. Developers.

Testing is about detection, while debugging is about correction.

13.2 Internal and External Views of Testing

Software can be tested using two complementary perspectives — internal (white-box) and

external (black-box) testing.

Centre for Distance Education 13.4 Acharya Nagarjuna University

13.2.1 Internal View (White-Box Testing)

White-box testing (also called structural testing) examines the internal logic and structure

of the code.

It is based on the knowledge of the program’s control flow, data flow, and algorithms.

Objective

To ensure that all independent paths, loops, and conditions are executed at least once.

Typical Techniques

• Basis path testing

• Control structure testing

• Loop testing

• Condition and data flow testing

Advantages

• Identifies hidden logic errors and boundary issues.

• Ensures high code coverage.

• Facilitates early defect detection at the developer level.

Disadvantages

• Requires access to source code.

• Time-consuming for large programs.

• Cannot detect missing functionalities.

13.2.2 External View (Black-Box Testing)

Black-box testing (also known as functional testing) treats the program as a “black box,”

focusing only on inputs and outputs without considering internal logic.

Objective

To validate that the software’s observable behavior matches its specification.

Typical Techniques

• Equivalence partitioning

• Boundary value analysis

• Graph-based testing

• Orthogonal array testing

Advantages

• Does not require knowledge of code.

• Tests from the user’s perspective.

• Useful for validation and acceptance testing.

Software Engineering 13.5 Fundamental Testing Tactics

Disadvantages

• Cannot detect internal logic errors.

• Redundant testing possible for overlapping inputs.

• Coverage depends on test case design quality.

13.2.3 Combined Approach

The most effective testing strategy combines both internal (white-box) and external (black-

box) views — a practice often called gray-box testing.

This ensures both structural integrity and functional correctness.

13.3 White-Box Testing

Introduction

White-box testing (also called structural, glass-box, or logic-driven testing) involves

examining the internal workings of a program.

The tester has full visibility into source code, algorithms, and data structures.

This method ensures that every line of code, decision point, and logical path is verified for

correctness.

Objectives of White-Box Testing

1. Ensure that all independent paths in a module are executed at least once.

2. Verify logical conditions (true/false branches) for accuracy.

3. Check loops, data structures, and internal boundaries.

4. Validate error-handling and exception mechanisms.

5. Confirm that unused or dead code is identified and removed.

Steps in White-Box Testing

Step Activity

1. Code Review Examine code for logic and style compliance.

2. Flow Graph Creation Represent control structure visually.

3. Path Identification List independent control paths.

4. Test Case Design Create tests to cover all identified paths.

5. Test Execution Run and observe behavior for expected outcomes.

6. Result Analysis Verify outputs, coverage, and performance.

Advantages

• Detects logical and computational errors early.

• Provides code coverage measurement.

• Ensures thorough testing of loops and decisions.

Limitations

• Requires knowledge of programming logic.

• Ineffective for missing functionalities.

• Can be time-consuming for large systems.

Centre for Distance Education 13.6 Acharya Nagarjuna University

13.4 Basis Path Testing

Definition

Basis Path Testing (developed by Tom McCabe) is a systematic white-box technique used

to derive a logical complexity measure of a program and to design a minimal set of test

cases that ensure coverage of all independent paths.

Concept Overview

Every program can be represented as a control flow graph (CFG), where nodes represent

processing statements, and edges represent control flow between statements.

By analyzing this graph, testers can identify independent paths and derive test cases that

guarantee full coverage of decision structures.

Steps in Basis Path Testing

1. Construct a flow graph of the program.

2. Calculate cyclomatic complexity (V(G)) to determine the number of independent

paths.

3. Identify independent paths through the program.

4. Develop test cases to execute each path at least once.

5. Execute and verify program correctness for each path.

Advantages of Basis Path Testing

• Provides a quantitative measure of program complexity.

• Ensures thorough path coverage.

• Helps in identifying unreachable or redundant code.

13.4.1 Flow Graph Notation

A flow graph (or control flow graph) uses the following basic symbols:

Symbol Meaning

Node A sequence of one or more procedural statements.

Edge / Link Represents the flow of control between nodes.

Decision Node A point where control can branch (e.g., if, while).

Region Area bounded by edges and nodes; represents logical partitions.

Example

1: Read A, B

2: If A > B then

3: Print "A greater"

4: Else

5: Print "B greater"

6: Endif

7: Stop

Software Engineering 13.7 Fundamental Testing Tactics

Flow Graph Description:

• Nodes: 1 to 7

• Edges: Represent transitions between statements

• Decisions: Occur at Node 2

13.4.2 Independent Program Paths

An independent path is any path through the program that introduces at least one new set of

processing statements or decisions not covered by previously tested paths.

Cyclomatic Complexity

Cyclomatic complexity (V(G)) provides a measure of the logical complexity of a program

and indicates the minimum number of test cases required for full path coverage.

It can be computed by:

Where:

• E = number of edges

• N = number of nodes

or equivalently:

where P is the number of decision nodes.

Example

For the earlier flow graph:

Nodes (N) Edges (E) Decisions (P) Cyclomatic Complexity (V(G))

7 8 1 2

Therefore:

→ At least 2 independent test paths are needed to ensure coverage.

13.4.3 Deriving Test Cases

After calculating complexity, derive test cases so that each independent path is executed at

least once.

Steps:

1. List all paths through the program.

2. Identify independent paths.

3. Assign input data to force execution of each path.

4. Document expected outputs.

5. Execute tests and compare results.

Centre for Distance Education 13.8 Acharya Nagarjuna University

Example

For the “Compare A and B” example:

Path Description Input Example Expected Output

P1 A > B path A = 8, B = 5 “A greater”

P2 A ≤ B path A = 4, B = 7 “B greater”

13.4.4 Graph Matrices

A graph matrix (also called a connectivity matrix) is a tabular representation of the flow

graph showing which nodes are connected by edges.

From / To 1 2 3 4 5 6 7

1 0 1 0 0 0 0 0

2 0 0 1 1 0 0 0

3 0 0 0 0 0 1 0

4 0 0 0 0 1 0 0

5 0 0 0 0 0 1 0

6 0 0 0 0 0 0 1

A ‘1’ indicates the presence of a control link between nodes.

Uses of Graph Matrices

• Visually identify control flow paths.

• Validate logical completeness and reachability.

• Support automated path analysis tools.

Benefits of Basis Path Testing

Advantage Explanation

Quantitative control over test design Cyclomatic complexity provides an exact measure.

High coverage Ensures all paths and decisions are tested.

Error detection Uncovers untested branches or unreachable code.

Process improvement Simplifies maintenance and regression test planning.

Limitations

• Not suitable for very large programs with numerous paths.

• Focuses only on control flow; data flow errors may remain.

• Assumes deterministic behavior (no randomness).

13.5 CONTROL STRUCTURE TESTING

Introduction

Control structure testing focuses on the logical control structures of the program —

decisions, conditions, loops, and data flows.

It is a white-box testing technique that supplements basis path testing by providing targeted

tests for specific constructs in the code.

Software Engineering 13.9 Fundamental Testing Tactics

This method helps ensure that all possible control paths and logical branches behave as

expected under various conditions.

Types of Control Structure Testing

1. Condition Testing

2. Data Flow Testing

3. Loop Testing

Each of these is explained below.

13.5.1 Condition Testing

Definition

Condition testing focuses on the logical conditions (Boolean expressions) that control the

execution of program statements.

The goal is to ensure that all possible outcomes of each decision condition are tested at least

once.

Objectives

• Detect logical errors in conditions.

• Verify that all parts of a composite condition are evaluated correctly.

• Identify incorrect relational or logical operators.

Example

if ((A > B) && (C == D))

 printf("Valid");

Test Cases Should Cover:

1. Both conditions true → print "Valid".

2. A > B true, C == D false.

3. A > B false, C == D true.

4. Both false.

This ensures every component of the decision expression is exercised.

Common Techniques

Technique Description

Simple Condition Testing Each condition tested independently.

Compound Condition Testing All combinations of conditions evaluated.

Relational Condition Testing Tests boundary values in relational operators.

Boolean Operator Testing Tests each AND, OR, NOT operation outcome.

13.5.2 Data Flow Testing

Definition

Data flow testing examines the lifecycle of data variables — from their definition to their

use.

Centre for Distance Education 13.10 Acharya Nagarjuna University

It helps detect uninitialized variables, incorrect data usage, and redundant definitions.

Basic Idea

Each variable has:

• Definition (def): where it is assigned a value.

• Use (use): where its value is accessed.

• Kill (kill): where its lifetime ends.

Data flow testing ensures that all valid def-use pairs are tested.

Example

1: int x;

2: x = 10; // def(x)

3: if (x > 0)

4: y = x + 2; // use(x)

Objective: Verify that variable x is defined before it is used, and not redefined or killed

prematurely.

Common Anomalies Detected

Anomaly Description

DU anomaly Variable used before definition.

DD anomaly Variable defined twice before being used.

UK anomaly Variable used after being killed or out of scope.

13.5.3 Loop Testing

Definition

Loop testing validates the correctness of iterative constructs, such as for, while, or do-while

loops.

It ensures that the loop executes the correct number of times under different conditions.

Objectives

• Validate initialization and termination conditions.

• Test off-by-one errors and boundary conditions.

• Detect infinite or skipped loops.

Typical Loop Test Cases

Type Test Case Example

Zero Iterations Verify loop skipped correctly when condition false initially.

One Iteration Ensure loop executes once correctly.

Multiple Iterations Test normal operation (e.g., 3–5 times).

Maximum Iterations Validate loop limit conditions.

Beyond Maximum Ensure termination when exceeding limit.

Software Engineering 13.11 Fundamental Testing Tactics

Example

for i in range(1, 6):

 print(i)

Test with:

• Start > End (loop never executes).

• Start = End (one iteration).

• Normal range (five iterations).

Advantages of Control Structure Testing

• High defect detection in logic and flow.

• Ensures all program paths are evaluated.

• Supports automated tools (e.g., static analyzers).

Limitations

• Requires access to source code.

• Complex for large, nested control structures.

• Focuses on control logic, not functionality.

13.6 BLACK-BOX TESTING

Introduction

Black-box testing, also known as behavioral or functional testing, focuses on the external

behavior of software without considering its internal logic or structure.

It answers the question:

“Does the software perform what it is supposed to do?”

Objectives

1. Verify functional correctness according to requirements.

2. Validate input/output behavior.

3. Identify missing or incorrect functionalities.

4. Ensure proper error and boundary handling.

Common Black-Box Testing Techniques

1. Graph-Based Testing Methods

2. Equivalence Partitioning

3. Boundary Value Analysis

4. Orthogonal Array Testing

Centre for Distance Education 13.12 Acharya Nagarjuna University

13.6.1 Graph-Based Testing Methods

These methods model program behavior as a graph of nodes and edges, representing inputs,

states, and transitions.

Example:

In a menu-driven system, each menu is a node, and user actions are edges.

Graph-based testing ensures that all menu combinations and transitions are validated.

13.6.2 Equivalence Partitioning

Concept

Input data is divided into equivalence classes (partitions) such that all values in a class are

treated similarly by the program.

Testing just one value from each partition is sufficient to represent all values.

Example

For a function that accepts integers between 1 and 100:

Partition Representative Value Expected Result

Less than 1 0 Invalid

1 to 100 50 Valid

Greater than 100 150 Invalid

13.6.3 Boundary Value Analysis (BVA)

Concept

Since most errors occur at boundaries, testing should focus on values at, below, and above

boundaries.

Example

For valid input range 1–100, test values:

0, 1, 2, 99, 100, 101.

13.6.4 Orthogonal Array Testing (OAT)

Used when the number of input combinations is large.

OAT uses a mathematical matrix (orthogonal array) to systematically select a small but

representative set of combinations for testing.

Example

In a system with 3 parameters (each having 3 possible values), instead of 27 combinations,

OAT may require only 9.

Advantages of Black-Box Testing

• Applicable early (before code is available).

• Based on user requirements, not design.

• Effective for detecting missing or incorrect functionalities.

Software Engineering 13.13 Fundamental Testing Tactics

Limitations

• Limited coverage of internal logic.

• Redundant test cases possible.

• Difficult to determine internal error causes.

13.7 MODEL-BASED TESTING

Definition

Model-based testing (MBT) uses models of system behavior or structure to automatically

generate and execute test cases.

It bridges the gap between specification and testing.

Common Models Used

Model Type Example / Usage

State Models Finite State Machines (FSM) for user interfaces.

Data Flow Models Identify variable dependencies and transformations.

Decision Tables Logical conditions and resulting actions.

Use-Case Models Scenario-based tests for functional requirements.

Model-Based Testing Process

1. Model Construction – Represent system behavior using UML, FSM, or data flow

diagrams.

2. Test Derivation – Generate test cases automatically or manually from model paths.

3. Test Execution – Run tests on actual software implementation.

4. Result Evaluation – Compare results to model predictions.

Example

A login system modeled as a state machine:

State Input Next State Expected Output

Start Enter valid credentials LoggedIn Welcome message

Start Enter invalid credentials Start Error message

Test cases are derived directly from these state transitions.

Advantages

• Provides strong traceability from requirements to tests.

• Supports automation of test generation.

• Detects specification and design errors early.

Limitations

• Requires accurate and updated models.

• Building complex models can be time-intensive.

• May not capture all non-functional aspects (e.g., performance).

Centre for Distance Education 13.14 Acharya Nagarjuna University

13.8 TESTING FOR SPECIALIZED ENVIRONMENTS, ARCHITECTURES, AND

 APPLICATIONS INTRODUCTION

Modern software systems operate in diverse environments such as graphical interfaces,

distributed client–server architectures, and real-time systems.

Each of these domains introduces unique challenges that require specialized testing

strategies.

13.8.1 Testing GUIs (Graphical User Interfaces)

Characteristics

GUI testing ensures that user interactions, screen layouts, and visual feedback work

correctly and intuitively.

Testing Focus

• Window navigation and event handling.

• Input validation through text boxes, buttons, and menus.

• Consistency of visual components (alignment, labels, colors).

• Error messages and dialog behavior.

Approach

1. Manual Usability Testing: Observe actual user interactions.

2. Automated GUI Testing Tools: Use scripts and frameworks (e.g., Selenium, QTP).

3. Event Sequence Testing: Validate valid/invalid user actions and sequences.

4. Cross-Platform Testing: Verify GUI consistency on different operating systems and

screen resolutions.

Common GUI Defects

• Unresponsive controls or buttons.

• Misaligned UI elements.

• Inconsistent shortcut keys or menu labels.

• Input fields not handling special characters properly.

13.8.2 Testing Client–Server Architectures

Definition

Client–server systems divide functionality between clients (front-end) and servers (back-

end) connected via a network.

Testing Focus

• Communication integrity between client and server.

• Data consistency across distributed databases.

• Network latency and throughput performance.

• Failure recovery in case of server unavailability.

Software Engineering 13.15 Fundamental Testing Tactics

Approach

1. Integration Testing: Validate message protocols and API calls.

2. Performance Testing: Simulate multiple clients to measure response time.

3. Security Testing: Verify authentication, encryption, and access control.

4. Compatibility Testing: Ensure clients on different platforms function correctly.

13.8.3 Testing Documentation and Help Facilities

Objective

Ensure that user manuals, online help, and tutorials are accurate, complete, and consistent

with the actual software behavior.

Key Activities

• Validate that help topics correspond to existing features.

• Verify hyperlinks and search functions in online documentation.

• Test examples and screenshots for accuracy.

• Confirm version control between documentation and software release.

13.8.4 Testing for Real-Time Systems

Definition

Real-time systems respond to external events within strict time constraints. Examples

include flight control systems, medical monitors, and industrial controllers.

Testing Focus

• Timing constraints: Verify deadlines and response latency.

• Concurrency: Test simultaneous event handling.

• Reliability and safety: Validate fail-safe behavior under stress.

• Hardware–software integration: Check synchronization between sensors and

actuators.

Techniques

• Simulation-based testing: Use virtual environments to simulate real-world

conditions.

• Stress and Load Testing: Evaluate performance under extreme input frequency.

• Interrupt Testing: Ensure timely handling of hardware interrupts.

• Boundary Timing Tests: Measure response time near deadline limits.

13.9 PATTERNS FOR SOFTWARE TESTING

Definition

A software testing pattern provides a reusable solution to a recurring testing problem.

Patterns serve as guides for test organization, design, and execution.

Centre for Distance Education 13.16 Acharya Nagarjuna University

Categories of Testing Patterns

Pattern Type Purpose Example

Process

Patterns

Define the order and strategy

of testing activities.

“Regression After Fix” pattern ensures re-

testing after each bug fix.

Design

Patterns

Suggest methods for creating

effective test cases.

“Boundary Value Pattern” or

“Equivalence Partitioning Pattern.”

Execution

Patterns

Describe how tests are run and

managed.

“Parallel Test Execution” or “Smoke Test

Suite.”

Defect

Patterns

Identify common error types

for test targeting.

“Off-by-One Error” or “Uninitialized

Variable.”

Advantages of Using Patterns

• Promotes consistency and reusability in testing.

• Simplifies test planning and maintenance.

• Facilitates knowledge sharing among teams.

• Enhances quality through established best practices.

Example Pattern: Smoke Testing

Intent: Verify basic functionality after each new build.

Context: Large systems with frequent updates.

Solution: Execute a small subset of critical tests (smoke tests) before detailed testing.

Result: Early detection of integration issues.

13.10 SUMMARY

Software testing is a structured process of verification and validation that ensures oftware

reliability and conformance to requirements.This lesson presented fundamental testing

tactics, focusing on both white-box and black-box approaches, and extended the discussion

to model-based and specialized testing techniques.

White-box methods like basis path and control structure testing verify internal logic, while

black-box techniques such as equivalence partitioning and boundary value analysis

validate external behavior.Model-based testing bridges design and implementation by

deriving tests directly from behavioral models.

Specialized environments — including GUIs, client–server systems, and real-time

applications — require adapted strategies to handle unique challenges such as event

sequencing, concurrency, and timing constraints.

By combining these tactics with testing patterns and best practices, testers can design robust

test processes that enhance overall software quality.

Software Engineering 13.17 Fundamental Testing Tactics

13.11 TECHNICAL TERMS

1. White-Box Testing

2. Basis Path Testing

3. Cyclomatic Complexity

4. Control Structure Testing

5. Data Flow Testing

6. Equivalence Partitioning

7. Boundary Value Analysis

8. Model-Based Testing

9. Smoke Testing

10. Regression Testing

13.12 SELF-ASSESSMENT QUESTIONS

Essay Questions

1. Explain the fundamental objectives of software testing and discuss its role in software

quality assurance.

2. Describe the steps involved in basis path testing and explain how cyclomatic

complexity helps determine test cases.

3. Compare and contrast white-box and black-box testing approaches with suitable

examples.

4. Discuss various types of control structure testing and how they detect logical errors

in programs.

5. Explain data flow testing and its importance in verifying variable usage.

6. What are equivalence partitioning and boundary value analysis? Illustrate with

examples.

7. Describe model-based testing and explain how models are used to generate test

cases.

8. Explain the testing strategies for real-time systems and client–server architectures.

9. What are software testing patterns? Give examples and discuss their benefits.

10. Discuss how automated testing tools assist in GUI and regression testing.

Short Notes

1. Condition testing.

2. Data flow anomalies.

3. Loop testing categories.

4. Graph-based testing methods.

5. Orthogonal array testing.

6. GUI event-sequence testing.

7. Smoke testing and sanity testing.

8. Timing constraints in real-time systems.

9. Testing documentation accuracy.

10. Process and defect testing patterns.

Centre for Distance Education 13.18 Acharya Nagarjuna University

13.13 SUGGESTED READINGS

1. Pressman, Roger S., and Bruce R. Maxim, Software Engineering: A Practitioner’s

Approach, 7th Edition, McGraw-Hill Education, 2014.

2. Myers, Glenford J., Corey Sandler, and Tom Badgett, The Art of Software Testing,

3rd Edition, Wiley, 2011.

3. Beizer, Boris, Software Testing Techniques, 2nd Edition, Dreamtech Press, 2003.

4. Burnstein, Ilene, Practical Software Testing: A Process-Oriented Approach, Springer,

2003.

5. Desikan, S., and Ramesh, G., Software Testing: Principles and Practices, Pearson

Education, 2006.

6. Patton, Ron, Software Testing, 2nd Edition, Sams Publishing, 2005.

7. Jorgensen, Paul C., Software Testing: A Craftsman’s Approach, 5th Edition, CRC

Press, 2018.

8. Sommerville, Ian, Software Engineering, 10th Edition, Pearson Education, 2015.

9. Kaner, Cem, Falk, Jack, and Nguyen, Hung Quoc, Testing Computer Software, 2nd

Edition, Wiley, 1999.

10. Binder, Robert V., Testing Object-Oriented Systems: Models, Patterns, and Tools,

Addison-Wesley, 1999.

Dr. U. Surya Kameswari

LESSON- 14

OBJECT ORIENTED TESTING METHODS

AIMS AND OBJECTIVES

To understand and apply the specialized methods of object-oriented testing, including how

object-oriented concepts such as encapsulation, inheritance, and polymorphism influence

test-case design, fault detection, and scenario construction.

After completing this lesson, you will be able to:

1. Explain how object-oriented features affect test-case design and test coverage.

2. Identify conventional test methods that remain applicable to OO software.

3. Describe and apply fault-based testing to detect OO-specific defects.

4. Understand testing implications in class hierarchies and inheritance.

5. Develop scenario-based test cases from use cases and sequence diagrams.

6. Differentiate between surface structure and deep structure testing.

7. Summarize the unique challenges and benefits of OO testing methods.

8. Define important technical terms related to OO test methodologies.

9. Answer both conceptual and applied questions on OO testing principles.

STRUCTURE

14.1 INTRODUCTION

14.2 THE TEST-CASE DESIGN IMPLICATIONS OF OO CONCEPTS

14.3 APPLICABILITY OF CONVENTIONAL TEST-CASE DESIGN METHODS

14.4 FAULT-BASED TESTING

14.5 TEST CASES AND THE CLASS HIERARCHY

14.6 SCENARIO-BASED TEST DESIGN

14.7 TESTING SURFACE STRUCTURE AND DEEP STRUCTURE

14.8 SUMMARY

14.9 TECHNICAL TERMS (TOP 10 KEYWORDS)

14.10 SELF-ASSESSMENT QUESTIONS

14.11 SUGGESTED READINGS

14.1 INTRODUCTION

Object-oriented (OO) software development introduces a paradigm shift in both program

design and testing. Unlike procedural systems where functions and data are separate, OO

systems encapsulate data and behavior within classes and objects. This encapsulation

fundamentally alters the way software is tested.

Centre for Distance Education 14.2 Acharya Nagarjuna University

Traditional testing techniques focus on procedural control flow — verifying the correctness

of input–output transformations in individual functions. However, OO software emphasizes

interacting objects, class relationships, and dynamic behaviors that emerge only during

runtime.

The Nature of Testing in OO Systems

In OO systems, testing must validate not only:

• Individual methods and operations,

• But also, how objects interact, inherit behavior, and respond to polymorphic calls.

Testing, therefore, needs to address both static structure (class hierarchy and relationships)

and dynamic behavior (object states and message passing).

Unique Characteristics of OO Testing

OO Feature Testing Challenge

Encapsulation Limits direct access to internal data — testers must rely on public

interfaces.

Inheritance Changes in superclass behavior can affect all derived classes, requiring

regression testing.

Polymorphism The same message can invoke different methods at runtime; dynamic

binding complicates coverage.

Dynamic

Interaction

Objects may collaborate in complex ways that cannot be predicted

from static code inspection.

Objectives of OO Testing

1. Validate object states and method behaviors.

2. Ensure inter-object communication works correctly.

3. Detect faults caused by inheritance and dynamic binding.

4. Guarantee consistency between class specifications and actual implementations.

5. Build reusable and automated test cases for evolving OO architectures.

Why Specialized Testing Methods Are Needed

Conventional testing techniques (like control-flow testing) are insufficient for OO software

because:

• They focus on functions, not objects.

• They do not consider class hierarchies or message passing.

• They cannot easily trace dynamic object interactions during runtime.

OO testing methods therefore extend and adapt traditional strategies, introducing fault-based,

scenario-based, and hierarchical test approaches.

Software Engineering 14.3 Object Oriented Testing Methods

14.2 THE TEST-CASE DESIGN IMPLICATIONS OF OBJECT-ORIENTED

 CONCEPTS

Object-oriented concepts influence how test cases are selected, designed, and executed.

Because classes encapsulate both data (attributes) and behavior (methods), the test designer

must ensure that test cases cover all relevant combinations of object states and interactions.

14.2.1 Key Object-Oriented Concepts Affecting Testing

1. Encapsulation

Encapsulation hides implementation details.

This means that internal data cannot be directly tested — tests must access it indirectly

through the class’s public interface.

Implication:

Test cases should:

• Verify that each method correctly manipulates internal data.

• Ensure that the class invariant remains valid after every public operation.

2. Inheritance

Inheritance allows subclasses to reuse and extend the behavior of parent classes.

Implication:

• Changes in a superclass require retesting of all derived classes (regression testing).

• Test cases for parent classes must be reapplied to subclasses.

• Subclass extensions need new test cases for overridden or additional behavior.

3. Polymorphism

Polymorphism allows the same operation name to invoke different methods depending on the

object type.

Implication:

• All binding variations of a polymorphic message must be tested.

• Testers must verify that each implementation correctly fulfills the intended behavior.

• Additional runtime tests are required since method binding occurs dynamically.

4. Dynamic Binding

Dynamic (late) binding defers method resolution until runtime.

Implication:

• Complete path coverage cannot be determined statically.

• Test cases should simulate different runtime configurations to observe binding

behavior.

• Automated test frameworks (e.g., JUnit, NUnit) can help capture runtime execution

paths.

Centre for Distance Education 14.4 Acharya Nagarjuna University

5. Object State and Identity

Each object maintains a unique identity and a set of states.

Implication:

• Test cases must verify state transitions as defined by state diagrams.

• Multiple test cases may be required to cover all valid and invalid transitions.

• Object identity testing ensures that distinct objects maintain independent states.

14.2.2 General Guidelines for OO Test Design

Guideline Description

Design tests from class

specifications

Use contracts, preconditions, and postconditions as the

test basis.

Ensure coverage of all methods Each operation must be tested for all relevant input

combinations.

Test interactions and

collaborations

Focus on message passing between cooperating classes.

Test state-dependent behavior Validate transitions using class/state diagrams.

Maintain traceability Map test cases to class design elements and use cases.

14.2.3 Example – Implications Illustrated

Consider a Shape superclass with subclasses Circle, Square, and Triangle, each implementing

a draw() method.

Concept Implication for Testing Example Test Case

Inheritance Verify that subclass overrides

maintain superclass contract.

Test draw() in each subclass to ensure

correct rendering.

Polymorphism Confirm correct method dispatch

for runtime type.

Call shape.draw() where shape points

to different subclass objects.

Encapsulation Ensure internal coordinates are

updated correctly.

After move(x, y), validate position

using public getters.

14.2.4 OO Test Case Design Example

Let’s design test cases for a class Bank Account:

Method Test Objective Example Test

Input

Expected

Output

deposit(amount) Validate correct

balance update.

deposit(100) Balance increases

by 100.

withdraw(amount) Test boundary

conditions (zero,

overdraft).

withdraw(0),

withdraw(2000)

Error or rejection

if invalid.

transfer(targetAccount,

amount)

Test collaboration

with another object.

transfer(acc2, 500) Balances updated

in both accounts.

Here, the last test involves inter-object collaboration, illustrating how OO testing extends

beyond single-function verification.

Software Engineering 14.5 Object Oriented Testing Methods

14.3 APPLICABILITY OF CONVENTIONAL TEST-CASE DESIGN METHODS

 INTRODUCTION

Although object-oriented software introduces new design paradigms, many traditional test-

case design methods remain useful and relevant.

Methods such as equivalence partitioning, boundary value analysis, and state transition

testing can be adapted to the OO context with modifications to account for class structure and

object interactions.

14.3.1 Conventional Techniques Still Applicable

Traditional

Method

OO Adaptation Example Application

Equivalence

Partitioning

Define partitions for method

inputs and object states.

Divide valid/invalid ranges for

method parameters or attributes.

Boundary Value

Analysis (BVA)

Identify boundary conditions for

class attributes and inherited

variables.

Test withdraw(amount) at balance

limit boundaries.

Decision Table

Testing

Use decision logic embedded

within methods or event

handlers.

Verify response of

calculateInterest() under various

conditions.

State-Based

Testing

Apply to object states and

lifecycle transitions.

Test transitions between “Active”,

“Suspended”, and “Closed” states.

Use-Case Testing Derive from interactions among

collaborating objects.

Test entire user scenario such as

“Process Online Order”.

14.3.2 Applying Conventional Methods to Classes

At the Method Level

Each method within a class can be treated as a small functional unit.

For example:

• Apply equivalence partitioning to method parameters.

• Use BVA for numerical or range-based inputs.

• Apply decision testing for conditional logic.

At the Class Level

When testing the class as a whole:

• Consider the class as a state machine.

• Identify transitions between object states.

• Apply state transition diagrams to derive tests for valid/invalid transitions.

At the Integration Level

Conventional data flow and control flow testing can be extended to message passing:

• Replace function calls with object messages.

• Track the sequence of method invocations across collaborating objects.

Centre for Distance Education 14.6 Acharya Nagarjuna University

14.3.3 Enhancements Needed for OO Systems

Aspect Enhancement Required

Data Access Due to encapsulation, tests must access state indirectly through accessor

methods.

Inheritance Regression testing needed when parent classes change.

Polymorphism Ensure all runtime bindings of a polymorphic message are tested.

Dynamic

Behavior

Use sequence diagrams and interaction diagrams for dynamic test

generation.

14.3.4 Example – Adaptation of BVA to OO Class

Class: Temperature Sensor

Attribute Range Test Values

temperature -50°C to 150°C -50, -49, 0, 149, 150, 151

sensorID Must be positive integer 0, 1, 2, -1

Each attribute’s boundaries become targets for BVA test cases.

Conventional test methods remain foundational for OO testing but must be augmented with

OO-specific considerations such as class relationships, message sequences, and inheritance-

based dependencies.

This hybrid approach leverages the strength of traditional methods while embracing the

complexity of OO architectures.

14.4 Fault-Based Testing

Fault-based testing is an OO-specific technique designed to identify particular categories of

faults likely to occur in object-oriented systems.

Instead of simply testing for correctness, this method tests for known fault patterns derived

from common programming and design mistakes.

14.4.1 Concept

Fault-based testing operates on the assumption that:

“If the software is free of certain fault types, it is likely to be reliable.”

Hence, the goal is to:

1. Identify typical faults introduced by OO features.

2. Design test cases that deliberately attempt to expose these faults.

3. Observe system behavior to confirm correct fault handling or absence.

Software Engineering 14.7 Object Oriented Testing Methods

14.4.2 Fault Categories in OO Systems

Fault Type Description Example

Encapsulation Faults Violation of data hiding; incorrect

use of private/protected data.

Method directly manipulates

another object’s private field.

Inheritance Faults Incorrect inheritance hierarchy or

overridden behavior.

Subclass fails to call superclass

constructor.

Polymorphic Faults Incorrect dynamic binding of

overridden methods.

Wrong method invoked at

runtime due to invalid type cast.

State Transition

Faults

Object enters an illegal state. “Account” object transitions

from “Closed” to “Active.”

Method Interaction

Faults

Errors in message passing between

objects.

Incorrect sequence of method

calls leads to inconsistency.

Operator/Overload

Faults

Misuse of operator overloading or

type conversions.

Overloaded “==” operator

doesn’t correctly compare

objects.

14.4.3 Steps in Fault-Based Testing

1. Identify likely faults — analyze class hierarchy, design patterns, and known risks.

2. Inject test conditions designed to reveal those faults.

3. Execute test cases that simulate both valid and invalid interactions.

4. Observe results and compare with expected class contracts (invariants,

postconditions).

5. Report and categorize discovered faults for regression verification.

14.4.4 Example – Inheritance Fault Testing

Suppose a superclass Employee defines:

class Employee {

 double salary;

 double calculateBonus() { return salary * 0.10; }

}

Subclass Manager overrides calculateBonus():

class Manager extends Employee {

 double calculateBonus() { return salary * 0.20; }

}

Fault-based tests should verify:

• Correct bonus calculation for Manager.

• No unintended side effects on inherited fields.

• Proper invocation of overridden methods.

If the subclass fails to call the superclass constructor or manipulates inherited variables

incorrectly, the fault is detected.

Centre for Distance Education 14.8 Acharya Nagarjuna University

14.4.5 Mutation-Based Testing (Variant of Fault-Based Testing)

Mutation testing introduces small syntactic changes (mutations) in the program to check

whether existing test cases can detect them.

Each modified version is called a mutant.

Example Mutations

• Replace > with >=

• Change arithmetic operators (+ to -)

• Swap logical conditions (& to ||)

If a test case fails to detect a mutant, it indicates inadequate coverage.

14.4.6 Advantages of Fault-Based Testing

• Targets high-risk fault areas unique to OO systems.

• Improves the effectiveness of test suites.

• Encourages better understanding of class contracts.

• Detects subtle errors due to inheritance and polymorphism.

14.4.7 Limitations

• Requires deep domain and design knowledge.

• Test design effort is higher due to complexity.

• May not capture unforeseen or emergent faults.

14.4.8 Fault-Based Testing Tools

Modern testing tools support fault injection and analysis:

• Jester – Mutation testing for Java.

• PIT (Pitest) – Mutation testing framework.

• MuJava – Mutation system for Java with OO fault models.

• JUnit/NUnit – For executing customized fault-based tests.

14.4.9 Summary Table – OO Fault Types and Test Strategies

OO Fault Type Testing Strategy

Encapsulation Fault Interface validation tests.

Inheritance Fault Regression and subclass consistency testing.

Polymorphic Fault Dynamic binding and message dispatch testing.

State Fault State transition and boundary testing.

Method Interaction Fault Sequence and collaboration-based tests.

14.5 Test Cases and the Class Hierarchy

A key feature of object-oriented software is the class hierarchy, where classes are related

through inheritance.

Software Engineering 14.9 Object Oriented Testing Methods

Testing within a class hierarchy is challenging because changes in one class can impact

multiple subclasses, and behaviors may vary due to method overriding, extension, or

polymorphism.

Therefore, test cases must be carefully designed to ensure completeness, consistency, and

non-redundancy across the hierarchy.

14.5.1 Class Hierarchies and Reuse

In OO systems, classes are organized in hierarchies to promote reuse.

For instance, a Vehicle superclass may define generic behavior, while subclasses like Car,

Bike, and Truck extend or override it.

However, reuse introduces testing challenges:

• Reused code may inherit latent defects from parent classes.

• New subclasses must be tested not only for their new methods, but also for the

inherited ones.

14.5.2 Testing Objectives in Class Hierarchies

Objective Description

Verify inheritance

integrity

Ensure that subclass correctly inherits and uses parent class

attributes and methods.

Test overridden

methods

Confirm that new behavior maintains parent class contracts.

Detect side effects Identify if new behavior in subclass breaks parent or sibling

functionality.

Regression testing Retest superclass behavior when inherited features are modified.

14.5.3 Testing Strategies

1. Reuse Parent Test Cases

Inherited methods should be tested with the same test cases used for the parent class to ensure

consistent behavior.

Example:

If the superclass Account has test cases for deposit() and withdraw(), these tests must be

rerun for subclass Savings Account.

2. Extend Test Coverage for Overridden Methods

Overridden methods may change logic or constraints. Design new test cases specifically

targeting the new or extended logic.

Example:

If SavingsAccount.withdraw() adds a “minimum balance” rule, new tests should cover that

condition.

3. Regression Testing Across Hierarchies

When a parent class changes, all subclasses must be retested because:

• Behavior may be implicitly dependent on the parent’s implementation.

• Modifications may alter subclass behavior even if not directly changed.

Centre for Distance Education 14.10 Acharya Nagarjuna University

4. Incremental Hierarchy Testing

Begin testing at the root of the hierarchy, then proceed incrementally downward:

1. Test base class first.

2. Integrate subclasses one by one.

3. Reuse and extend test cases progressively.

14.5.4 Example – Class Hierarchy Testing

Class Structure:

Shape

 ├── Circle

 ├── Rectangle

 └── Triangle

Level Method Test Objective

Shape draw() Verify basic method functionality.

Circle draw() Validate correct circle rendering; ensure no interference with Shape

contract.

Rectangle resize() Test overridden behavior and aspect ratio constraints.

Triangle area() Verify mathematical correctness and boundary conditions.

14.5.5 Common Problems in Hierarchy Testing

1. Unintended Method Overriding – Subclass overrides a method accidentally, altering

system behavior.

2. Tight Coupling – Subclasses depend heavily on superclass internals.

3. Broken Polymorphism – Incorrect runtime type behavior.

4. Unreachable or Redundant Code – Dead methods inherited but never used.

14.5.6 Best Practices

• Document and reuse parent class test cases.

• Use regression testing tools to automate re-execution across subclasses.

• Maintain a mapping table linking test cases to class levels.

• Apply coverage analysis tools to track inheritance testing completeness.

14.6 Scenario-Based Test Design

Scenario-based testing focuses on how objects collaborate to fulfill a specific use case or user

interaction.

It is one of the most practical and intuitive testing methods for OO systems because it mirrors

real-world workflows.

Software Engineering 14.11 Object Oriented Testing Methods

14.6.1 Concept

A scenario represents a sequence of events and interactions among objects that achieve a

defined goal.

Each scenario serves as the basis for designing a set of test cases.

14.6.2 Scenario Sources

Scenarios are usually derived from:

1. Use Case Diagrams – Describe user-system interactions.

2. Sequence Diagrams – Show object message flows.

3. Activity Diagrams – Represent event-driven workflows.

4. State Diagrams – Identify transitions between object states.

14.6.3 Steps in Scenario-Based Test Design

Step Description

1. Identify Scenarios Select real-world use cases involving multiple objects.

2. Model Interactions Create sequence or collaboration diagrams.

3. Derive Test Objectives Determine what functionality or performance is tested.

4. Design Test Cases Define inputs, expected outputs, and event sequences.

5. Execute and Validate Run test cases and observe object collaboration correctness.

14.6.4 Example – ATM Withdrawal Scenario

Use Case: “Withdraw Cash”

Objects Involved:

• UserInterface, Account, BankServer, ATMController, Dispenser

Scenario Steps:

1. User inserts card → validated by ATMController.

2. UserInterface prompts for PIN → verified by BankServer.

3. User requests amount → Account checks balance.

4. If valid, Dispenser releases cash.

5. Transaction logged → receipt printed.

Test Objectives:

• Verify correct message passing sequence.

• Check correct balance updates.

• Validate exception handling (e.g., insufficient funds).

14.6.5 Scenario-Based Test Case Example

Scenario Input Expected Output

Normal

withdrawal

Valid card, correct PIN,

sufficient balance

Cash dispensed, balance reduced,

receipt printed.

Centre for Distance Education 14.12 Acharya Nagarjuna University

Invalid PIN Wrong PIN thrice Card blocked, warning message.

Insufficient

balance

Request > balance Display “Insufficient Funds”.

Dispenser fault Machine jam Display “Hardware Error”, rollback

transaction.

14.6.6 Benefits of Scenario-Based Testing

• Represents realistic user behavior.

• Ensures end-to-end validation of multiple object interactions.

• Effective for integration testing and system testing.

• Facilitates communication with stakeholders (test cases are intuitive).

14.6.7 Challenges

• May miss internal faults if only high-level behavior is tested.

• Scenarios can grow complex with many interacting objects.

• Requires accurate and stable use-case models.

14.6.8 Example – Online Shopping Scenario

Use Case: “Place Order”

Objects: User, Cart, Payment, Inventory, OrderManager.

Scenario Flow:

1. Add items to cart.

2. Proceed to checkout.

3. Confirm payment.

4. Generate order ID.

5. Update inventory.

Test Objectives:

• Validate complete transaction flow.

• Detect synchronization or timing errors between Payment and Inventory.

• Verify rollback if payment fails.

14.6.9 Scenario Coverage and Traceability

Scenario-based tests should ensure:

• All use cases are covered.

• Alternative and exceptional flows are included.

• Each scenario is traceable to requirements and test cases in the documentation.

Software Engineering 14.13 Object Oriented Testing Methods

14.6.10 Best Practices

• Create scenario templates aligned with use cases.

• Automate scenario execution where possible (e.g., with Selenium or JUnit

frameworks).

• Include both nominal (expected) and exceptional (error) paths.

• Revalidate scenarios whenever the design model changes.

14.7 TESTING SURFACE STRUCTURE AND DEEP STRUCTURE

 INTRODUCTION

In object-oriented systems, testing cannot stop at verifying external interfaces or visible

behaviors.

Objects interact internally through hidden connections, inheritance, and state transitions —

all of which may conceal subtle defects.

Therefore, OO testing must consider two complementary dimensions:

• The Surface Structure – visible interactions (public interfaces, message passing,

collaborations).

• The Deep Structure – hidden mechanisms (internal data, private methods,

inheritance chains, polymorphic bindings).

14.7.1 Surface Structure Testing

Definition

Surface structure testing focuses on external object behaviors — how the class interacts

with other classes and how its public operations respond to user or system inputs.

Objective

To ensure that:

• The public interface functions as specified.

• Interactions between collaborating objects occur correctly.

• Input/output behavior matches the system requirements.

Typical Techniques

Technique Purpose

Interface Testing Validate correctness of public methods and attributes.

Integration Testing Verify message passing among classes.

Scenario-Based Testing Test real-world object interactions through use cases.

Example

In a LibrarySystem:

• Surface testing verifies that borrowBook() and returnBook() behave correctly when

invoked.

• It checks interface parameters (e.g., bookID, userID) and confirms correct messages

are sent to Inventory and UserAccount classes.

Centre for Distance Education 14.14 Acharya Nagarjuna University

This level ensures external correctness and interoperability.

14.7.2 Deep Structure Testing

Definition

Deep structure testing examines the internal logic, state management, and inheritance

behavior within objects — aspects hidden from external users.

Objective

To validate that:

• Internal states are consistent with class invariants.

• Inherited attributes and methods operate correctly.

• Polymorphic and overridden methods perform as intended.

Typical Techniques

Technique Focus

State-Based Testing Check transitions and conditions of private attributes.

Inheritance Testing Confirm correct reuse and overriding behavior.

Fault-Based Testing Detect internal logic and inheritance faults.

Example

For a Payment superclass and a CreditCardPayment subclass:

• Deep testing ensures that private attributes like paymentStatus and transactionID are

updated correctly.

• It also verifies that overridden methods still call required superclass operations.

14.7.3 Relationship Between Surface and Deep Structures

Aspect Surface Structure Deep Structure

Visibility Public methods, external

messages

Private attributes, internal logic

Testing Focus Functional behavior and

interaction

Structural integrity and hidden logic

Methods Used Interface, integration, scenario

testing

State-based, inheritance, fault-based

testing

Defect Types

Found

Interface and communication

errors

Hidden logical and design faults

Both testing layers complement each other — surface testing ensures usability and

correctness, while deep testing ensures reliability and robustness.

Software Engineering 14.15 Object Oriented Testing Methods

14.7.4 Challenges

• Testing encapsulated data requires indirect observation.

• Inheritance and polymorphism complicate path coverage.

• Deep structure tests often require specialized tools (e.g., debuggers, profilers,

coverage analyzers).

14.7.5 Best Practices

• Combine surface and deep testing in every test plan.

• Use instrumentation tools to monitor object states.

• Validate both visible outputs and internal invariants.

• Apply automated regression tests for deep structures that change frequently.

14.8 SUMMARY

Testing object-oriented systems requires a multi-dimensional approach that considers both

the structural and behavioral aspects of software.

Traditional methods are extended to accommodate object-oriented concepts such as

encapsulation, inheritance, and polymorphism.

OO-specific techniques like fault-based testing, hierarchy-based test reuse, and scenario-

based design address the unique challenges introduced by object collaboration and dynamic

binding.

A successful OO testing strategy involves:

• Applying conventional techniques (like boundary and equivalence tests) at the class

level.

• Using fault-based testing to target common OO errors.

• Testing class hierarchies incrementally to ensure inheritance integrity.

• Employing scenario-based testing for real-world interaction validation.

• Covering both surface (interface) and deep (internal) structures for complete

reliability.

By combining these methods, developers can ensure that object-oriented systems are robust,

reusable, maintainable, and aligned with user expectations.

14.9 TECHNICAL TERMS – TOP 10 KEYWORDS

1. Encapsulation

2. Inheritance

3. Polymorphism

4. Fault-Based Testing

5. Scenario-Based Testing

6. Regression Testing

7. Class Hierarchy

8. Surface Structure

9. Deep Structure

10. State-Based Testing

Centre for Distance Education 14.16 Acharya Nagarjuna University

14.10 Self-Assessment Questions

Essay Questions

1. Explain how object-oriented features such as encapsulation and polymorphism affect

test-case design.

2. Describe the applicability of traditional test-case design methods (like equivalence

partitioning and BVA) to object-oriented systems.

3. What is fault-based testing? Discuss its role in detecting object-oriented specific

faults.

4. Explain the challenges and strategies involved in testing class hierarchies.

5. Define scenario-based test design. Describe its importance in OO testing.

6. Compare surface structure and deep structure testing with suitable examples.

7. Discuss how inheritance affects regression testing in OO systems.

8. Outline a step-by-step approach for testing polymorphic behavior.

9. Explain mutation-based testing and its relevance to OO fault detection.

10. Describe the relationship between use cases, sequence diagrams, and scenario-based

test cases.

Short Notes

1. Test-case design implications of inheritance.

2. Types of OO-specific faults.

3. Mutation-based testing tools.

4. Scenario coverage and traceability.

5. Testing strategies for polymorphism.

6. Incremental testing across class hierarchies.

7. Fault injection in OO systems.

8. Difference between surface and deep structure testing.

9. Regression testing in inherited classes.

10. Combining traditional and OO testing methods.

14.11 SUGGESTED READINGS

1. Pressman, Roger S., and Bruce R. Maxim, Software Engineering: A Practitioner’s

Approach, 7th Edition, McGraw-Hill Education, 2014.

2. Binder, Robert V., Testing Object-Oriented Systems: Models, Patterns, and Tools,

Addison-Wesley, 1999.

3. Myers, Glenford J., Corey Sandler, and Tom Badgett, The Art of Software Testing,

3rd Edition, Wiley, 2011.

4. Beizer, Boris, Software Testing Techniques, 2nd Edition, Dreamtech Press, 2003.

5. Burnstein, Ilene, Practical Software Testing: A Process-Oriented Approach, Springer,

2003.

6. Desikan, S., and Ramesh, G., Software Testing: Principles and Practices, Pearson

Education, 2006.

7. Jorgensen, Paul C., Software Testing: A Craftsman’s Approach, 5th Edition, CRC

Press, 2018.

8. Sommerville, Ian, Software Engineering, 10th Edition, Pearson Education, 2015.

9. Kaner, Cem, Falk, Jack, and Nguyen, Hung Quoc, Testing Computer Software, 2nd

Edition, Wiley, 1999.

10. Patton, Ron, Software Testing, 2nd Edition, Sams Publishing, 2005.

Dr. U. Surya Kameswari

LESSON- 15

TESTING FOR SPECIALIZED ENVIRONMENTS

AIMS AND OBJECTIVES

To understand the unique challenges and strategies required to test software systems

developed for specialized environments such as graphical user interfaces (GUIs), client–

server architectures, documentation and help systems, and real-time applications.

After completing this lesson, you will be able to:

• Explain the need for specialized testing approaches.

• Design and implement GUI test cases using state models and automation tools.

• Conduct systematic testing of client–server systems across clients, servers, and

networks.

• Evaluate and test the accuracy and usability of documentation and help facilities.

• Plan and execute real-time system testing that includes timing and concurrency

verification.

• Identify suitable testing tools, frameworks, and metrics for each environment.

• Apply best practices for test automation and continuous integration in specialized

contexts.

.

STRUCTURE

15.1 INTRODUCTION

15.2 TESTING GUIS (GRAPHICAL USER INTERFACES)

15.3 TESTING CLIENT–SERVER ARCHITECTURES

15.4 TESTING DOCUMENTATION AND HELP FACILITIES

15.5 TESTING FOR REAL-TIME SYSTEMS

15.6 SUMMARY

15.7 TECHNICAL TERMS

15.8 SELF-ASSESSMENT QUESTIONS

15.9 SUGGESTED READINGS

15.1 INTRODUCTION

Modern software systems increasingly operate in heterogeneous and specialized

environments.Unlike standalone applications, these systems interact with users, hardware,

databases, and networks in real time.

As a result, traditional testing techniques—which assume sequential execution and single-

threaded control—are no longer sufficient.

Centre for Distance Education 15.2 Acharya Nagarjuna University

The diversity of environments has given rise to environment-specific testing strategies,

each addressing unique challenges such as:

• Complex event-driven behaviors (in GUIs),

• Distributed processing and network reliability (in client–server systems),

• Documentation accuracy and user guidance validation, and

• Timing, concurrency, and synchronization (in real-time systems).

Testing for specialized environments thus requires:

1. A deep understanding of the architecture and interaction patterns.

2. The use of simulation, automation, and monitoring tools.

3. Integration of functional, performance, and usability metrics.

In this lesson, we explore the four major specialized testing areas discussed in Pressman’s

Software Engineering – A Practitioner’s Approach (Section 5.10):

• Testing Graphical User Interfaces (GUIs)

• Testing Client–Server Architectures

• Testing Documentation and Help Facilities

• Testing Real-Time Systems

Each of these environments imposes unique requirements on test design, execution, and

evaluation.

15.2 TESTING GUIS (GRAPHICAL USER INTERFACES)

15.2.1 Overview

Graphical user interfaces are event-driven systems.

User interactions trigger sequences of events that invoke underlying application logic.

Testing GUIs ensures that every visual component and user action results in the correct

response.

15.2.2 Objectives of GUI Testing

• Verify the correctness of all visual elements and controls.

• Ensure proper navigation between screens and dialogs.

• Validate event handling and input validation mechanisms.

• Test cross-platform consistency and layout rendering.

• Evaluate usability, accessibility, and responsiveness.

15.2.3 GUI Testing Challenges

Challenge Description

Event Explosion Thousands of possible event sequences.

Platform Diversity Different browsers, resolutions, and devices.

Dynamic Layouts Responsive design and localization changes.

Human-Centered Usability Subjective perception of design and flow.

SOFTWARE ENGINEERING .15.3 TESTING STRATEGIES FOR OBJECT

ORIENTED SOFTWARE

❖ Event Explosion

A major challenge in GUI testing is the event explosion problem—the exponential growth in

the number of possible event sequences that can occur during user interaction.

Unlike procedural programs with predictable control flow, GUI-based systems respond to a

virtually infinite combination of user actions such as clicks, drags, gestures, menu selections,

or keyboard inputs.Each sequence of events can produce a different application state, making

exhaustive testing practically impossible.To address this, testers must use finite-state

modeling, event-pair coverage, and model-based testing techniques to prioritize the most

critical and high-risk event paths while maintaining reasonable test effort and coverage.

❖ Platform Diversity

Modern GUI applications are expected to run seamlessly on multiple platforms—different

browsers, operating systems, screen resolutions, and device types.

This diversity leads to challenges such as inconsistent rendering of visual components,

varying font sizes, missing controls, or differences in event-handling behavior across

platforms. For example, a web button may function properly in Chrome but fail to display or

respond correctly in Safari or Edge. Effective testing in such environments requires the use of

cross-platform automation frameworks (e.g., Selenium Grid, Browser Stack) and responsive

design validation to ensure visual and functional consistency across all supported

configurations.

❖ Dynamic Layouts

Dynamic layouts refer to interfaces that adjust in real time to screen size, user preferences, or

content changes — a key feature of responsive web and mobile applications.Such flexibility

complicates testing because UI components may shift position, resize, or change visibility

dynamically, making traditional coordinate-based or object-recognition tests

unreliable.Moreover, real-time content loading using AJAX or asynchronous APIs further

adds to the complexity.To manage this, GUI test scripts must employ object identifiers

(XPath, CSS locators) that adapt to layout variations and should be reinforced with visual

validation tools capable of detecting layout shifts, missing elements, and design regressions

automatically.

❖ Human-Centered Usability

GUI testing extends beyond functional validation to include human-centered usability

evaluation, which assesses how intuitively and efficiently users can interact with the

software.This aspect is inherently subjective and focuses on factors like layout clarity,

feedback quality, color contrast, accessibility, and cognitive load.A functionally correct

interface can still fail usability tests if it causes user confusion or fatigue.

Therefore, usability testing combines automated validation with manual, heuristic-based

reviews and user experience (UX) studies to ensure the GUI aligns with human expectations,

accessibility standards (WCAG 2.1), and overall user satisfaction.

Centre for Distance Education 15.4 Acharya Nagarjuna University

15.2.4 Finite-State Model for GUI Testing

Each interface screen can be treated as a state, and each user action as a transition.

Finite-State Modeling (FSM) systematically enumerates possible sequences.

Example:

[Login] → [Home] → [Settings] → [Logout]

Each transition path defines a distinct test case (e.g., Login → Home → Logout).

15.2.5 GUI Testing Process

Step Description

1. Identify GUI Elements Buttons, menus, forms, icons, dialogs.

2. Model Event Flow Create event-driven state diagrams.

3. Design Test Cases Include valid/invalid sequences.

4. Automate Tests Record/replay actions using test scripts.

5. Execute Regression Tests Re-run after GUI changes.

15.2.6 Tools for GUI Testing

Tool Environment Functionality

Selenium WebDriver Web Scripted automation.

Appium Mobile Cross-platform testing.

Ranorex / TestComplete Desktop Object-based event testing.

QTP/UFT Enterprise Record-and-playback testing.

Sikuli All Image-based testing for GUIs.

1. Selenium WebDriver

Selenium WebDriver is an open-source framework designed for automating web-based

application testing across browsers and operating systems.

It controls the browser directly using native automation APIs instead of relying on JavaScript

execution.

Key Features

• Cross-browser testing (Chrome, Firefox, Edge, Safari).

• Supports multiple programming languages (Java, Python, C#, Ruby, JavaScript).

• Integration with CI/CD tools such as Jenkins, Maven, and Docker.

• Ability to handle dynamic web elements and AJAX-based content.

• Parallel test execution via Selenium Grid.

Architecture

• Client Libraries: Language bindings for different programming languages.

• JSON Wire Protocol / W3C Protocol: Facilitates communication between client and

browser driver.

SOFTWARE ENGINEERING .15.3 TESTING STRATEGIES FOR OBJECT

ORIENTED SOFTWARE

• Browser Drivers: ChromeDriver, GeckoDriver, EdgeDriver, etc., that control

specific browsers.

• Browser Instance: Executes commands and returns results.

Use Cases

• Functional and regression testing of web applications.

• Data-driven and keyword-driven testing frameworks.

• Integration with TestNG or JUnit for test orchestration.

Advantages

• Free and community-supported.

• Highly extensible and customizable.

• Works with major browsers and operating systems.

Limitations

• Supports only web applications (no desktop or mobile).

• No built-in object repository or reporting.

• Requires skilled programming knowledge.

2. Appium

Appium is an open-source test automation framework for mobile applications.

It allows testing of native, hybrid, and mobile web apps on both Android and iOS

platforms using the WebDriver protocol.

Key Features

• Cross-platform support using a single API.

• No need to recompile or modify the app under test.

• Supports testing in multiple languages (Java, Python, C#, Ruby, JS).

• Compatible with mobile browsers (e.g., Chrome, Safari).

• Integrates with CI/CD and cloud-based test services (BrowserStack, Sauce Labs).

Architecture

• Appium Server: Acts as a REST server written in Node.js.

• Appium Client: Sends automation commands.

• Mobile JSON Wire Protocol: Communicates between client and device.

• Device Drivers: UIAutomator2 (Android), XCUITest (iOS).

Use Cases

• Testing login flows, gesture interactions, and mobile UI consistency.

• Regression testing across multiple OS versions.

• Cloud-based parallel execution of mobile test suites.

Centre for Distance Education 15.6 Acharya Nagarjuna University

Advantages

• Unified automation for Android and iOS.

• Supports native device features (GPS, camera, notifications).

• Easily integrates with Selenium frameworks.

Limitations

• Slower execution compared to device-native frameworks.

• Complex setup for real device testing.

• Limited support for older OS versions.

3. Ranorex / TestComplete

Ranorex and TestComplete are commercial GUI testing tools designed for desktop, web,

and mobile applications.

They provide record-and-playback functionality, scripting, and built-in object recognition

engines.

Key Features

• Supports Windows, macOS, web, and mobile apps.

• Codeless test creation with advanced scripting (C#, VB.NET, Python).

• Robust object identification using XPath and image recognition.

• Data-driven and keyword-driven testing capabilities.

• Built-in reporting and test analytics dashboards.

Architecture

• Object Repository: Centralized storage of UI elements.

• Recording Engine: Captures user actions for playback.

• Test Executor: Executes automated scripts.

• Reporting Module: Generates test execution reports.

Use Cases

• Desktop GUI validation (e.g., accounting or ERP systems).

• Regression testing of web portals.

• Multi-environment test automation with minimal coding.

Advantages

• User-friendly interface for non-programmers.

• Integrated debugging and reporting features.

• Strong support for visual verification testing.

Limitations

• Commercial licensing cost.

• Resource-intensive on large test suites.

• Platform-dependent features may vary.

SOFTWARE ENGINEERING .15.3 TESTING STRATEGIES FOR OBJECT

ORIENTED SOFTWARE

4. QTP/UFT (QuickTest Professional / Unified Functional Testing)

QTP/UFT, developed by Micro Focus, is a widely used commercial tool for functional and

regression testing of desktop, web, and packaged applications.

It supports both keyword-driven and VBScript-based test automation.

Key Features

• Supports multiple application technologies (web, Java, SAP, Oracle, .NET).

• Record-and-playback for quick test development.

• Integration with HP ALM (Application Lifecycle Management).

• Advanced object repository for GUI components.

• Built-in test reporting and debugging tools.

Architecture

• Test Design Interface: Allows test case creation using keywords or VBScript.

• Object Repository: Stores application objects for reuse.

• Test Execution Engine: Controls application and logs results.

• Result Viewer: Generates detailed HTML reports.

Use Cases

• Functional testing of enterprise web and desktop systems.

• End-to-end regression testing in corporate environments.

• Integration testing with databases and APIs.

Advantages

• Easy to learn for testers with minimal coding experience.

• Strong integration with enterprise testing ecosystems.

• Comprehensive object recognition engine.

Limitations

• High licensing cost.

• Limited cross-platform support (mainly Windows).

• Slower execution for large web applications.

5. Sikuli

Sikuli is an open-source visual automation tool that uses image recognition to automate GUI

operations.

It can interact with any visible element on the screen — web, desktop, or even within remote

desktop sessions.

Centre for Distance Education 15.8 Acharya Nagarjuna University

Key Features

• Uses screenshots as references for UI elements.

• Supports all types of graphical environments (no DOM dependency).

• Built on Java; supports scripting in Jython and Java.

• Capable of automating legacy or Flash-based systems.

Architecture

• Sikuli IDE: Visual editor for writing and executing scripts.

• Image Matching Engine: Uses OpenCV for pattern recognition.

• Script Runner: Executes visual actions (click, type, drag).

• API Library: For integration with Python and Java applications.

Use Cases

• Automating image-based workflows and legacy systems.

• Testing games, Flash, or video-based interfaces.

• Automating repetitive desktop operations.

Advantages

• Works with any visible GUI element regardless of technology.

• No access to application source code is required.

• Simple to learn and use for quick automation.

Limitations

• Dependent on image accuracy; sensitive to resolution changes.

• Not ideal for large-scale or complex test suites.

• Limited reporting and debugging facilities.

Summary Comparison Table

Tool Type Supported

Platforms

Key Strength Limitation

Selenium

WebDriver

Open-

source

Web Cross-browser

automation

Web only

Appium Open-

source

Mobile

(Android, iOS)

Unified API for

mobile

Slower, complex

setup

Ranorex /

TestComplete

Commercial Desktop, Web,

Mobile

Record–playback,

strong reporting

Licensing cost

QTP/UFT Commercial Desktop, Web Enterprise

integration

High cost,

Windows-centric

Sikuli Open-

source

All visual UIs Image-based

automation

Sensitive to UI

changes

SOFTWARE ENGINEERING .15.3 TESTING STRATEGIES FOR OBJECT

ORIENTED SOFTWARE

15.2.7 Example – Login Page Testing

Test Case Input Expected Result

Valid credentials Correct username & password Dashboard opens.

Invalid credentials Wrong username/password Error message.

Blank fields Empty inputs “Required fields” alert.

Browser compatibility Chrome, Firefox Consistent layout.

❖ Valid Credentials

This test verifies that when a user enters the correct username and password, the system

successfully logs in and displays the main application screen or dashboard. It confirms that

the authentication process works properly for legitimate users.

❖ Invalid Credentials

This test checks how the system handles wrong username or password entries. The

expected result is that access is denied and an error message (such as “Invalid Login” or

“Incorrect Password”) is displayed, without revealing sensitive information.

❖ Blank Fields

This case tests the scenario where the user does not enter any input in the username or

password fields and clicks the login button. The system should display a validation message

like “Username and Password are required,” ensuring input completeness before submission.

❖ Browser Compatibility

This test ensures that the login page behaves consistently across different web browsers

(e.g., Chrome, Firefox, Edge, Safari). It checks that all visual elements (buttons, forms,

labels) and functionality (form submission, navigation) work correctly on each platform.

15.2.8 Best Practices

• Use model-based testing for event sequences.

• Test accessibility (keyboard navigation, color contrast).

• Combine automated regression with exploratory testing.

• Prioritize high-frequency user actions.

15.3 Testing Client–Server Architectures

15.3.1 Overview

Client–server software distributes functionality across clients and servers connected via a

network.

Testing must confirm that both ends operate correctly — independently and together — while

ensuring data consistency, reliability, and performance.

15.3.2 Levels of Client–Server Testing

Level Objective

1. Client Application Testing Validate client behavior and user interface independently.

2. Integration Testing Test client–server communication and API correctness.

3. System Testing Evaluate complete architecture, including network behavior.

Centre for Distance Education 15.10 Acharya Nagarjuna University

15.3.3 Common Testing Types

• Functional Testing: Verifies client requests and server responses.

• Database Testing: Ensures transaction consistency and integrity.

• Performance Testing: Measures response time and throughput.

• Security Testing: Validates encryption, authentication, and access control.

• Recovery Testing: Assesses fault tolerance under failures.

15.3.4 Tools and Frameworks

Tool Purpose

Apache JMeter Load and performance testing.

Postman REST API testing.

Wireshark Network traffic analysis.

SoapUI Web service validation.

DbUnit Database verification.

1. Apache JMeter

Apache JMeter is an open-source tool developed by the Apache Software Foundation,

primarily used for performance, load, and stress testing of client–server applications.

It simulates multiple concurrent users sending requests to a target server, thereby evaluating

the system’s scalability and reliability.

Key Features

• Supports multiple protocols: HTTP, HTTPS, FTP, JDBC, SOAP, REST, and JMS.

• Provides thread groups to simulate virtual users.

• Offers detailed graphs and reports on response time, throughput, and error rates.

• Enables parameterization and scripting through JSR223 and Groovy.

• Integration with CI/CD tools such as Jenkins for automated performance testing.

Use Cases

• Load testing of web servers, APIs, and databases.

• Stress testing to determine system breaking points.

• Baseline performance comparison before and after updates.

Advantages

• 100% free and open source.

• Highly extensible via plugins.

• Supports distributed testing across multiple machines.

Limitations

• Requires technical knowledge for complex scenarios.

• GUI mode consumes memory during high-load tests.

SOFTWARE ENGINEERING .15.3 TESTING STRATEGIES FOR OBJECT

ORIENTED SOFTWARE

2. Postman

Postman is a powerful API testing platform used to develop, send, and verify API requests

and responses.

It provides a user-friendly interface for testing RESTful and SOAP-based web services.

Key Features

• Supports HTTP methods (GET, POST, PUT, DELETE, PATCH).

• Allows creating collections of API requests.

• Provides built-in JavaScript scripting for pre- and post-test validation.

• Enables automated testing via the Newman CLI.

• Integration with CI/CD tools and version control (Git).

Use Cases

• Functional and regression testing of REST APIs.

• Validating server response codes, headers, and payload data.

• Testing authentication mechanisms (OAuth 2.0, JWT, API keys).

Advantages

• Intuitive GUI suitable for developers and testers.

• Supports both manual and automated testing.

• Provides real-time API documentation and mock servers.

Limitations

• Primarily limited to API-level testing (not end-to-end).

• Limited performance/load-testing capabilities.

3. Wireshark

Wireshark is an open-source network packet analyzer used to inspect data flowing between

clients and servers in real time. It is essential for diagnosing network-level issues, verifying

protocol compliance, and analyzing traffic security.

Key Features

• Captures and decodes live network packets.

• Supports hundreds of network protocols (TCP, IP, HTTP, SSL/TLS, DNS, etc.).

• Provides real-time filtering and color coding for packet types.

• Enables decryption and inspection of SSL/TLS sessions (with proper keys).

• Allows export of captured data for further analysis.

Use Cases

• Network debugging and troubleshooting.

• Identifying performance bottlenecks due to packet loss or latency.

• Verifying secure communication in client–server applications.

Centre for Distance Education 15.12 Acharya Nagarjuna University

Advantages

• Free and open source.

• Deep inspection of network traffic.

• Suitable for both network administrators and QA engineers.

Limitations

• Steep learning curve for beginners.

• Generates very large log files for long capture sessions.

4. SoapUI

SoapUI is a dedicated testing tool for SOAP and REST web services.

It provides both open-source and commercial (ReadyAPI) versions for functional, security,

and performance testing of APIs.

Key Features

• Supports SOAP, REST, GraphQL, and JMS protocols.

• Offers drag-and-drop test case creation.

• Facilitates data-driven testing using external files (CSV, Excel, databases).

• Includes built-in assertions for validating API responses.

• Supports security tests such as SQL injection, XML bombs, and fuzzing.

Use Cases

• Functional and regression testing of web services.

• API contract and schema validation.

• Security and load testing of endpoints.

Advantages

• Comprehensive API testing capabilities.

• Graphical interface for complex API workflows.

• Easy integration with CI/CD tools and Jenkins.

Limitations

• GUI can be resource-intensive.

• Learning curve for advanced scripting.

5. DbUnit

DbUnit is a Java-based testing framework designed for database testing.

It integrates with JUnit and helps manage test data consistency by comparing database

contents before and after test execution.

SOFTWARE ENGINEERING .15.3 TESTING STRATEGIES FOR OBJECT

ORIENTED SOFTWARE

Key Features

• Supports importing and exporting data sets (XML, CSV, Excel).

• Automates validation of database state during integration testing.

• Enables rollback of changes after test completion to maintain a clean environment.

• Easily integrates with Java-based build tools like Maven and Ant.

Use Cases

• Verifying database CRUD (Create, Read, Update, Delete) operations.

• Ensuring data integrity and consistency after transactions.

• Validating stored procedures and triggers.

Advantages

• Automates database verification tasks.

• Works well with continuous integration pipelines.

• Ensures database remains in a known state for each test.

Limitations

• Designed primarily for Java ecosystems.

• Limited GUI support (script-based configuration).

Tool Category Primary Use Key Strength Limitation

Apache

JMeter

Performance &

Load Testing

Simulate user load

and analyze

performance

Scalable and

extensible

Complex for

beginners

Postman API Testing Validate RESTful &

SOAP APIs

User-friendly,

automated

validation

No load

testing

Wireshark Network

Analysis

Monitor and debug

client–server traffic

Deep protocol

inspection

Complex

packet data

SoapUI Web Service

Testing

Test and secure

SOAP/REST services

Security & data-

driven testing

Resource-

heavy GUI

DbUnit Database Testing Validate database

integrity and

consistency

JUnit integration,

data rollback

Java-specific

In client–server testing, no single tool covers all aspects of validation.

JMeter ensures performance under load, Postman validates functional correctness of APIs,

Wireshark inspects network-level data flow, SoapUI ensures web service integrity, and

DbUnit maintains database consistency.

Centre for Distance Education 15.14 Acharya Nagarjuna University

15.3.5 Case Study – Online Reservation System

A client–server application was tested at three levels:

• Client-side: UI validation of booking form.

• Integration: API correctness for payment gateway.

• System: 500 concurrent users simulated via JMeter.

Outcome: 98% success rate with average response time < 1.5 seconds.

Testing Objectives

The primary goals of testing were to:

1. Validate the functional accuracy of both client and server components.

2. Ensure secure and reliable communication between the client, application server,

and database.

3. Measure system performance under heavy concurrent user load.

4. Verify the integration of the external payment gateway and transaction logging.

Testing Approach

The application was tested at three hierarchical levels, consistent with client–server testing

methodology:

1. Client-Side Testing

The user interface (UI) of the reservation module was validated on multiple browsers

(Chrome, Edge, and Firefox).

Tests included:

• Verification of mandatory input fields (origin, destination, travel date).

• Validation of date pickers, seat selection, and confirmation dialogs.

• Error-handling tests for invalid or incomplete entries.

• Cross-browser layout and rendering checks for consistent appearance.

Automated scripts created using Selenium WebDriver executed 120 test cases covering

navigation, input validation, and responsive behavior.

Minor UI issues, such as misaligned icons and inconsistent font sizes, were detected and

corrected during early iterations.

2. Integration Testing

Integration testing focused on validating the communication between the client interface,

application server, and payment gateway APIs.

Using Postman and SoapUI, testers verified that API calls correctly transmitted booking

data and payment details.

SOFTWARE ENGINEERING .15.3 TESTING STRATEGIES FOR OBJECT

ORIENTED SOFTWARE

Assertions were defined to confirm:

• Accurate HTTP status codes and response payloads.

• Correct encryption and authentication using OAuth 2.0 tokens.

• Proper handling of failed payment responses (timeouts, invalid card).

Transaction integrity was further checked by comparing client logs with

corresponding database entries through DbUnit scripts.

3. System and Performance Testing

For full-scale performance evaluation, Apache JMeter simulated 500 concurrent virtual

users executing typical reservation workflows.

Key metrics observed included:

• Average response time per transaction < 1.5 seconds.

• 98 percent overall success rate for all simulated transactions.

• Peak throughput of 2,300 requests per minute.

• CPU usage < 75 percent and database connection pooling efficiency within expected

thresholds.

Wireshark traces were analyzed concurrently to ensure that all network communications

were properly encrypted (TLS 1.3) and free from retransmission or packet-loss anomalies.

15.3.6 Best Practices

• Create separate test environments for client and server.

• Simulate peak user loads.

• Monitor real-time network statistics.

• Perform regression after each backend update.

15.4 Testing Documentation and Help Facilities

15.4.1 Importance

• Documentation is part of the software configuration.

• Inaccurate documentation can lead to user frustration and operational failure.

Testing ensures alignment between actual system behavior and written instructions.

15.4.2 Phases of Documentation Testing

1. Technical Review (Static Testing)

o Check grammar, structure, and completeness.

o Ensure consistent terminology.

2. Live Testing (Dynamic Testing)

o Follow documentation while using the system.

o Verify that expected outcomes match actual system responses.

Centre for Distance Education 15.16 Acharya Nagarjuna University

15.4.3 Methods

Method Purpose

Graph-Based Testing Trace navigation through help topics.

Equivalence Partitioning Group valid and invalid commands.

Boundary Value Analysis Verify example input limits.

Model-Based Testing Compare documentation models to program execution.

15.4.4 Example

Manual: “Select ‘Save As’ → Enter file name → Click Save.”

Observed: System prompts “File Exists” even on new names → documentation error.

Result: Updated user guide to reflect confirmation behavior.

15.4.5 Tools

• Acrolinx – Language consistency analysis.

• Selenium Docs – Automated help link validation.

• MadCap Analyzer – Documentation cross-link testing.

15.4.6 Best Practices

• Maintain documentation under version control.

• Update documentation in sync with software releases.

• Perform periodic usability reviews.

15.5 Testing for Real-Time Systems

15.5.1 Definition

A real-time system must process input and deliver responses within a defined time frame.

Failure to meet timing deadlines can cause critical failures in control, aviation, or healthcare

systems.

15.5.2 Four-Step Real-Time Testing Strategy

Step Description

1. Task Testing Verify each independent task for logic and computation accuracy.

2. Behavioral Testing Simulate events to observe system response.

3. Intertask Testing Examine synchronization among concurrent tasks.

4. System Testing Integrate hardware and software to validate end-to-end timing.

15.5.3 Timing and Performance Analysis

Metrics:

• Response latency

• Deadline hit ratio

• Average jitter

• CPU and memory utilization

Tools: Tracealyzer, Perf, NI LabVIEW Real-Time Monitor.

SOFTWARE ENGINEERING .15.3 TESTING STRATEGIES FOR OBJECT

ORIENTED SOFTWARE

15.5.4 Interrupt and Concurrency Testing

Aspect Focus

Interrupt Priority Correct scheduling and queue management.

Concurrency Deadlocks and race conditions.

Shared Data Consistency under parallel access.

15.5.5 Simulation and Hardware-in-the-Loop

Simulators reproduce external stimuli while hardware-in-the-loop (HIL) connects real

hardware devices to software for full-scale testing.

Tools: dSPACE, NI PXI, Simulink Real-Time.

15.5.6 Case Study – Air Traffic Control Subsystem

• Update interval: every 0.5 seconds.

• Interrupt handling verified for 200 simultaneous inputs.

• Fail-safe alarm triggered in 2.2 seconds under overload.

15.5.7 Best Practices

• Combine simulation with actual hardware.

• Test under stress and fault conditions.

• Log event timestamps for timing verification.

• Include power failure and sensor fault scenarios.

15.6 SUMMARY

Testing for specialized environments ensures that software performs correctly in its

operational context. GUI testing validates event handling and usability. Client–server testing

confirms distributed reliability and data integrity. Documentation testing ensures consistency

and user satisfaction. Real-time system testing verifies timing, concurrency, and

responsiveness. Together, these domains strengthen the overall software quality assurance

process.

15.7 TECHNICAL TERMS

1. GUI Testing

2. Finite-State Model

3. Client–Server Architecture

4. Transaction Testing

5. Documentation Live Test

6. Timing Analysis

7. Intertask Testing

8. Hardware-in-the-Loop (HIL)

9. Event Simulation

10. Performance Profiling

Centre for Distance Education 15.18 Acharya Nagarjuna University

15.8 SELF-ASSESSMENT QUESTIONS

Essay Questions

1. Discuss the unique challenges in testing GUIs and how model-based approaches help.

2. Explain the three levels of testing in client–server architectures.

3. Describe the two phases of documentation testing and provide examples.

4. Outline the four-step real-time testing strategy.

5. What are timing and concurrency issues in real-time testing?

6. List tools commonly used in client–server performance testing.

7. How does documentation testing improve software quality?

8. Compare GUI and real-time system testing methodologies.

9. Explain the purpose of hardware-in-the-loop testing.

10. Develop a test plan for an IoT-based real-time control system.

Short Notes

1. Event-driven GUI testing

2. Cross-platform interface validation

3. Network simulation in client–server testing

4. Documentation link verification

5. Race condition testing

6. Interrupt priority handling

7. Performance profiling tools

8. Regression testing in GUIs

9. Timing fault detection

10. Continuous integration for specialized testing

15.9 SUGGESTED READINGS

1. Pressman, Roger S. & Maxim, Bruce R., Software Engineering: A Practitioner’s

Approach, 7th Ed., McGraw-Hill, 2014.

2. Beizer, Boris, Software Testing Techniques, 2nd Ed., Dreamtech Press, 2003.

3. Desikan, S. & Ramesh, G., Software Testing: Principles and Practices, Pearson

Education, 2006.

4. Burnstein, Ilene, Practical Software Testing, Springer, 2003.

5. Kaner, Cem et al., Testing Computer Software, 2nd Ed., Wiley, 1999.

6. Jorgensen, Paul C., Software Testing: A Craftsman’s Approach, 5th Ed., CRC Press,

2018.

7. Myers, Glenford J., The Art of Software Testing, 3rd Ed., Wiley, 2011.

8. Patton, Ron, Software Testing, 2nd Ed., Sams Publishing, 2005.

9. Sommerville, Ian, Software Engineering, 10th Ed., Pearson Education, 2015.

10. Binder, Robert V., Testing Object-Oriented Systems: Models, Patterns, and Tools,

Addison-Wesley, 1999.

Dr. U. Surya Kameswari

LESSON- 16

TESTING PATTERNS

AIMS AND OBJECTIVES

To introduce the concept of testing patterns as reusable and proven solutions to recurring

software testing problems, and to demonstrate how these patterns enhance the structure,

efficiency, and consistency of the software testing process.

After completing this lesson, you will be able to:

• Define the term testing pattern and explain its role in software engineering.

• Distinguish between test process, test design, test automation, and test refactoring

patterns.

• Apply common testing patterns to design and execute effective test cases.

• Recognize how testing patterns promote reusability, maintainability, and

standardization.

• Describe the template structure of a testing pattern, including problem, context, and

solution components.

• Identify situations where specific testing patterns can be applied for maximum

efficiency.

• Integrate testing patterns into test planning, automation frameworks, and quality

assurance strategies.

.

STRUCTURE

16.1 INTRODUCTION

16.2 CONCEPT OF TESTING PATTERNS

 16.2.1 DEFINITION AND PURPOSE

 16.2.2 STRUCTURE OF A TESTING PATTERN

 16.2.3 COMPONENTS: PROBLEM, CONTEXT, FORCES, SOLUTION,

 CONSEQUENCES

16.3 CLASSIFICATION OF TESTING PATTERNS

 16.3.1 OVERVIEW OF PATTERN CATEGORIES

 16.3.2 MAJOR TYPES OF TESTING PATTERNS

16.4 TEST PROCESS PATTERNS

 16.4.1 DEFINITION AND IMPORTANCE

 16.4.2 EXAMPLES OF TEST PROCESS PATTERNS

16.5 TEST DESIGN PATTERNS

 16.5.1 PURPOSE AND APPLICATION

 16.5.2 COMMON TEST DESIGN PATTERNS

16.6 TEST AUTOMATION PATTERNS

 16.6.1 ROLE OF AUTOMATION PATTERNS

 16.6.2 COMMON AUTOMATION PATTERNS

16.7 TEST REFACTORING PATTERNS

 16.7.1 NEED FOR REFACTORING TEST SUITES

 16.7.2 COMMON REFACTORING PATTERNS

Centre for Distance Education 16.2 Acharya Nagarjuna University

16.8 TEST PATTERN TEMPLATE

 16.8.1 STANDARD PATTERN DOCUMENTATION STRUCTURE

 16.8.2 EXAMPLE TEMPLATE FIELDS

16.9 BENEFITS OF USING TESTING PATTERNS

16.10 SUMMARY

16.11 TECHNICAL TERMS

16.12 SELF-ASSESSMENT QUESTIONS

16.13 SUGGESTED READINGS

16.1 INTRODUCTION

In modern software engineering, the increasing complexity of systems has made software

testing not only a crucial activity but also an engineering discipline in its own right.

To manage this complexity, professionals have adopted patterns—structured, reusable

solutions to common problems that recur during software development and testing.

A testing pattern captures the collective experience of the software testing community in

dealing with frequently encountered testing challenges.

It provides a proven approach to handle a recurring problem within a particular testing

context, considering specific constraints such as time, cost, and risk.

By following such patterns, testers can avoid reinventing the wheel and focus on applying

effective, time-tested strategies to ensure software quality.

Understanding the Concept of Patterns

The notion of a pattern was originally introduced in architecture by Christopher Alexander

and later adapted for software engineering by the Gang of Four (Gamma et al.) in the context

of design patterns.

Similarly, testing patterns extend this idea into the domain of software verification and

validation.

They serve as a knowledge-sharing mechanism, allowing test engineers to record,

exchange, and apply established testing methods that have worked effectively in real projects.

Why Testing Patterns are Needed

Testing software is not a single, uniform activity—it involves diverse challenges such as:

• Determining what to test (test design).

• Deciding when to test (test process).

• Implementing how to test (test automation).

• Maintaining test quality over time (test refactoring).

Software Engineering 16.3 Testing Patterns

Each of these areas presents recurring problems—for example, designing test cases for large

input domains, automating unstable GUI tests, or managing test data dependencies.

Testing patterns provide structured solutions for each such challenge and thus promote

uniformity, reliability, and efficiency across projects.

Benefits of Using Testing Patterns

The use of testing patterns brings several advantages to software teams:

• They accelerate test planning by offering ready-made strategies.

• They enhance communication between developers and testers by using a common

vocabulary.

• They improve quality and reusability of test artifacts.

• They facilitate training, as new testers can learn established approaches quickly.

• They support process improvement by encouraging systematic reuse of proven

methods.

Relation to Other Software Engineering Patterns

Testing patterns are closely related to, but distinct from, other types of patterns in software

engineering:

• Design Patterns describe reusable software architecture solutions.

• Process Patterns define best practices for managing the development process.

• Testing Patterns, on the other hand, focus specifically on testing strategy, test

design, automation frameworks, and maintenance.

Together, these patterns contribute to a holistic, pattern-oriented approach to software

development—where design, implementation, and testing are integrated seamlessly through

shared, reusable structures.

16.2 CONCEPT OF TESTING PATTERNS

A testing pattern is a reusable and well-documented solution to a common testing problem

that arises in specific situations.

It records what problem occurs, why it occurs, and how it can be effectively solved.

Testing patterns are created from industry experience, research findings, and best

practices observed across multiple projects.

Each testing pattern is generally composed of five key elements:

1. Problem: The recurring testing issue or challenge.

2. Context: The situation or environment where the problem occurs.

3. Forces: Constraints and factors that influence the solution.

4. Solution: A proven, practical approach that resolves the problem.

5. Consequences: The benefits, limitations, and trade-offs of applying the solution.

Centre for Distance Education 16.4 Acharya Nagarjuna University

Patterns make the testing process predictable, maintainable, and reusable, much like

design patterns do for coding.

16.3 CLASSIFICATION OF TESTING PATTERNS

Testing patterns are broadly classified into four major categories based on their purpose and

level of application:

1. Test Process Patterns – Define best practices for planning, managing, and executing

testing activities within the software lifecycle.

2. Test Design Patterns – Provide structured approaches to create effective, efficient,

and comprehensive test cases.

3. Test Automation Patterns – Describe methods to develop robust, scalable, and

maintainable automation frameworks.

4. Test Refactoring Patterns – Suggest strategies for optimizing existing test suites for

clarity, maintainability, and reuse.

Each category addresses different dimensions of software testing, ensuring coverage from

planning to execution and maintenance.

16.4 Test Process Patterns

Test process patterns provide structured guidance on how to organize and manage the

testing workflow.

They emphasize early involvement, prioritization, automation, and risk-based management of

the testing lifecycle.

Common Test Process Patterns

Pattern Name Purpose / Description

Early Test Involvement Include testers during requirements and design phases to detect

defects early and reduce rework.

Risk-Based Testing Focus testing efforts on components that have the highest

business or technical risks.

Regression Control Maintain a library of reusable test cases for detecting side effects

after software changes.

Continuous Integration

Testing

Automatically run tests whenever new code is integrated to

ensure build stability.

Defect Clustering Prioritize testing in areas historically prone to defects (Pareto

principle).

Advantages

• Enhances collaboration between testers and developers.

• Reduces cost and defect leakage.

• Aligns testing with project risks and priorities.

16.5 Test Design Patterns

Test design patterns provide reusable techniques for constructing effective and

comprehensive test cases.

Software Engineering 16.5 Testing Patterns

They focus on designing tests that maximize coverage while minimizing redundancy.

Common Test Design Patterns

Pattern Name Problem Addressed Solution Strategy

Input

Partitioning

Large input domain with

redundant values.

Divide input data into equivalence classes

and test one representative value from each.

Boundary Value

Analysis

Errors occur near

boundaries.

Create test cases at, below, and above

boundary values.

State Transition

Testing

System behaves

differently in various

states.

Identify states and transitions; design tests

for valid and invalid transitions.

Scenario-Based

Testing

Complex user workflows. Derive test cases from real-world use cases

and business scenarios.

Orthogonal

Array Testing

Combinatorial explosion

of inputs.

Apply orthogonal arrays to minimize test

combinations while maintaining high

coverage.

Advantages

• Structured, repeatable test design process.

• Better coverage of functional and non-functional aspects.

• Simplified traceability from requirements to test cases.

1. State Transition Testing

State Transition Testing is a black-box test design technique used when a system or

component behaves differently depending on its current state or previous inputs.

It focuses on the valid transitions between states triggered by specific events or actions.

Explanation:

In many software systems—such as online banking, shopping carts, or user login flows—the

output of a function depends on the current state of the application.

For example, in a shopping site:

• When an item is added to the cart, the system moves from the “Empty Cart” state to

the “Items in Cart” state.

• When the user checks out, it transitions to the “Payment Pending” state.

• Once payment succeeds, it moves to the “Order Confirmed” state.

Each state and transition can be represented in a state diagram, and tests are designed to

verify:

• Valid transitions (e.g., “Add to Cart” → “Checkout”)

• Invalid transitions (e.g., “Checkout” without items)

Purpose:

To ensure that the system behaves correctly for all valid and invalid state changes and that no

unauthorized transitions occur.

Centre for Distance Education 16.6 Acharya Nagarjuna University

Advantages:

• Captures dynamic behavior of systems.

• Detects missing or unexpected transitions.

• Helps in modeling real-world workflows.

2. Scenario-Based Testing

Scenario-Based Testing is a test design approach where test cases are derived from real-life

use cases or user stories that represent typical workflows or interactions with the system.

Explanation:

This technique focuses on how the software will be used in practical situations rather than

testing individual functions in isolation.

Each scenario represents a sequence of user actions that achieve a business goal.

Example (Shopping Application):

A test scenario might be:

“User logs in, searches for a product, adds it to the cart, applies a discount coupon, and

completes payment.”

Each step represents a functional path that the system must handle smoothly.

Testers design multiple scenarios, including:

• Normal (expected) usage paths.

• Alternate flows (e.g., coupon expired, item out of stock).

• Error scenarios (e.g., payment declined).

Purpose:

To validate the end-to-end functionality and ensure that the system supports real user

workflows effectively.

Advantages:

• Reflects actual user behavior and business requirements.

• Detects integration issues between modules.

• Improves usability and user satisfaction testing.

3. Orthogonal Array Testing

Orthogonal Array Testing (OAT) is a statistical and combinatorial testing method used to

reduce the number of test cases required while maintaining maximum coverage of input

combinations.

Explanation:

When a system has multiple input parameters (e.g., payment method, browser type, location),

testing all possible combinations can become impossible due to the combinatorial explosion

problem.

Software Engineering 16.7 Testing Patterns

OAT solves this by selecting a representative subset of combinations using mathematical

orthogonal arrays that ensure each input factor is tested with every other factor at least once.

Example (Shopping Application):

Payment Type Browser Location

Credit Card Chrome India

Debit Card Firefox USA

PayPal Edge UK

Instead of testing all 3×3×3 = 27 combinations, OAT selects the minimal set (like 9 cases)

that still ensures pairwise coverage of all parameter interactions.

Purpose:

To achieve broad test coverage with fewer test cases, making testing more efficient and cost-

effective.

Advantages:

• Minimizes test effort while maintaining strong coverage.

• Detects interaction faults between different input parameters.

• Highly suitable for configuration and compatibility testing.

Summary Comparison

Technique Main Focus Best Used For Example (Shopping

App)

State Transition

Testing

Valid and invalid

state changes

Systems with multiple

states

Cart → Checkout →

Payment → Confirmation

Scenario-Based

Testing

Real-world user

workflows

End-to-end

functionality testing

Search → Add to Cart →

Apply Coupon → Pay

Orthogonal

Array Testing

Optimized input

combinations

Configuration and

compatibility testing

Payment type × Browser

× Country

16.6 TEST AUTOMATION PATTERNS

Test automation patterns describe reusable solutions for building and managing automation

frameworks effectively.

They address challenges such as script maintainability, reusability, and data separation.

Common Test Automation Patterns

Pattern Description Use Case

Record–Playback Automate user actions by

recording and replaying.

Quick setup for UI regression testing.

Data-Driven

Testing

Separate test logic from input

data for flexibility.

Validating forms, calculations, and

workflows.

Keyword-Driven

Testing

Use keywords to represent

actions and operations.

Enables non-programmers to create

test cases.

Centre for Distance Education 16.8 Acharya Nagarjuna University

Page Object

Model (POM)

Store UI elements and methods

in dedicated classes.

Improves maintainability in

Selenium/Appium frameworks.

Test Factory

Pattern

Centralize creation of test

instances and data sets.

Scalable enterprise-level test

frameworks.

Advantages

• Reduces redundancy and improves framework consistency.

• Simplifies maintenance of large test suites.

• Promotes reusable and modular automation architecture.

16.7 TEST REFACTORING PATTERNS

Over time, automated test suites can become bloated, unstable, or redundant.

Test refactoring patterns help reorganize and clean up existing tests to make them more

efficient and reliable.

Common Refactoring Patterns

Pattern Name Purpose

Extract Utility Move repetitive setup or helper code to reusable functions or

classes.

Remove Duplication Merge similar test cases into parameterized tests.

Stub External Service Replace unreliable external dependencies with stubs or mocks.

Consolidate

Assertions

Group related verifications logically to simplify debugging.

Isolate Test Case Ensure each test runs independently and produces consistent

results.

Benefits

• Improves maintainability and readability of tests.

• Reduces flakiness caused by inter-test dependencies.

• Supports continuous integration and agile testing environments.

16.8 TEST PATTERN TEMPLATE

A standard documentation template helps record testing patterns systematically for reuse.

Field Description

Pattern Name Unique name that identifies the pattern.

Intent / Goal The testing objective of the pattern.

Problem The recurring issue that needs resolution.

Context The environment or condition under which the problem occurs.

Forces Constraints or challenges (e.g., time, data, complexity).

Solution The strategy or process to solve the problem.

Consequences The outcomes, benefits, or trade-offs.

Related Patterns Other testing patterns that complement or contrast this one.

This standardization enables knowledge sharing and pattern repository creation across QA

teams.

Software Engineering 16.9 Testing Patterns

Pattern Name

The Pattern Name gives a short and meaningful title to the testing pattern. It should clearly

reflect the problem being solved or the method applied, such as “Risk-Based Testing” or

“Page Object Model.” A clear name helps testers easily identify and refer to the pattern when

documenting or discussing testing approaches.

Intent / Goal

The Intent or Goal explains what the pattern aims to achieve. It describes the main purpose or

objective of using the pattern, such as improving test coverage, reducing maintenance, or

organizing test cases more effectively. It tells readers why this pattern exists and what

benefits it provides.

Problem

The Problem section defines the recurring testing issue or challenge that the pattern

addresses. It describes the difficulties faced during testing—such as unstable automation

scripts, redundant test data, or inefficient regression testing—that require a proven and

reusable solution.

Context

The Context specifies the situation or environment in which the problem occurs. It outlines

when and where the pattern is applicable—for example, in large-scale enterprise projects,

agile testing environments, or continuous integration setups—so testers know the right

conditions for using it.

Forces

The Forces describe the factors, limitations, or constraints that influence the testing problem

and its possible solutions. These may include time, cost, risk, resource availability, tool

limitations, or project deadlines. Understanding these forces helps testers select the most

appropriate strategy.

Solution

The Solution explains the recommended approach or steps to resolve the problem. It outlines

the testing method, design structure, or workflow that has been proven to work effectively in

the described context. This section provides practical guidance for applying the pattern in real

testing situations.

Consequences

The Consequences describe the results of applying the solution, including its advantages, side

effects, and trade-offs. It helps testers understand what to expect after implementing the

pattern—for example, improved test reliability, longer setup time, or higher initial cost but

long-term benefits.

Centre for Distance Education 16.10 Acharya Nagarjuna University

Related Patterns

The Related Patterns section lists other patterns that complement, extend, or contrast with the

current one. It helps testers see how this pattern connects with others, so they can combine

multiple patterns—such as linking “Data-Driven Testing” with “Keyword-Driven Testing”—

to build stronger testing strategies.

Example Testing Pattern Template

Pattern Name:

Page Object Model (POM)

Intent / Goal:

To create a maintainable and reusable test automation framework by separating the user

interface (UI) elements and their operations from the test scripts.

The goal is to ensure that any change in the UI of the shopping application requires minimal

modification in the test code.

Problem:

In an e-commerce (shopping) web application, UI layouts and element locators often change

due to frequent updates in product listings, promotions, or interface design.

Without a structured approach, testers have to manually update every affected test script,

leading to code duplication, high maintenance cost, and inconsistent results across regression

cycles.

Context:

This pattern is applicable when automated tests are created for web-based applications with

multiple pages and dynamic user interfaces—such as product listings, shopping carts, and

checkout forms.

The testing environment involves frequent UI modifications, multiple browser versions, and

the use of tools like Selenium WebDriver or Appium.

Forces:

• UI elements (like buttons, menus, and input fields) change frequently.

• Testers need cross-browser compatibility and reusability.

• Manual updates to multiple scripts cause effort duplication.

• Tight release cycles demand fast regression testing.

• Teams may include both technical and non-technical testers.

Solution:

Create a Page Object class for each significant page or screen of the shopping application.

Each class stores:

• The locators for all UI elements (e.g., “Add to Cart” button, “Search” box,

“Checkout” link).

• The methods that perform user actions (e.g., click, enter text, submit form).

Software Engineering 16.11 Testing Patterns

Test scripts then interact only with these Page Object classes rather than directly with the

UI.This abstraction allows the test logic to remain unchanged even if the UI changes, as only

the corresponding Page Object file needs updating.

Example in Selenium (Python-style pseudo code):

class CartPage:

 def __init__(self, driver):

 self.driver = driver

 self.checkout_button = driver.find_element(By.ID, "checkout")

 def click_checkout(self):

 self.checkout_button.click()

Test script:

cart = CartPage(driver)

cart.click_checkout()

Here, the test remains unaffected even if the button ID changes — only the Page Object is

updated.

Consequences:

Advantages:

• Improved maintainability: UI changes affect only one file.

• Reusability: Same Page Object used across multiple test scripts.

• Enhanced readability and modularity.

• Supports data-driven and keyword-driven frameworks easily.

Trade-offs:

• Requires initial setup and design effort.

• May introduce minor overhead for small applications.

In large shopping portals, however, these costs are easily justified by long-term gains in

stability and efficiency.

Related Patterns:

• Data-Driven Testing – for managing large sets of input data like user credentials or

product IDs.

• Keyword-Driven Testing – for enabling non-programmers to run POM-based tests.

• Test Factory Pattern – for managing the creation and execution of Page Objects

dynamically.

Example Application: Online Shopping Portal

Scenario: Testing the “Add to Cart and Checkout” flow on an e-commerce website.

Using the Page Object Model, the tester defines:

• A ProductPage class (for selecting products).

• A CartPage class (for verifying items in the cart).

• A CheckoutPage class (for handling payments).

Centre for Distance Education 16.12 Acharya Nagarjuna University

If the web designer changes the “Buy Now” button’s ID from btnBuy to buyItem, only the

ProductPage file needs updating.

All tests using the class continue to function without modification.

The Page Object Model (POM) testing pattern provides a scalable, object-oriented way to

design automation frameworks for dynamic web applications like shopping portals.It ensures

stability, reduces redundancy, and simplifies maintenance — making it one of the most

powerful and reusable automation patterns in software testing.

16.9 Benefits of Using Testing Patterns

Testing patterns provide several tangible benefits to organizations and testers:

• Promote reuse of successful testing practices.

• Establish a common language between testers and developers.

• Increase testing efficiency and reduce design time.

• Improve coverage and defect detection rates.

• Enhance test automation maintainability.

• Facilitate continuous process improvement.

• Simplify onboarding and training of new QA personnel.

By documenting testing experiences in the form of patterns, teams create an evolving

knowledge base that grows stronger with each project.

Pattern Name:

Data-Driven Testing Pattern

Intent / Goal:

To separate test data from test logic so that the same test script can run multiple times with

different sets of input values.

The goal is to increase coverage, reduce duplication, and make it easier to maintain and scale

automated tests — especially when testing features like login, search, or checkout in a

shopping application.

Problem:

In an online shopping platform, various features such as user login, payment, and product

search require testing with multiple data combinations (e.g., different usernames, passwords,

product IDs, payment methods).

Hardcoding test data into scripts makes it difficult to update and maintain tests, especially

when the number of input combinations grows rapidly.

This leads to repetitive code, increased maintenance effort, and limited flexibility when test

data changes frequently.

Software Engineering 16.13 Testing Patterns

Context:

This pattern is applicable when the application has repetitive test cases that differ only by

data, such as testing multiple user accounts, addresses, or products.

It fits best in automation frameworks using tools like Selenium, JUnit, or TestNG, where test

data can be read from external sources such as Excel sheets, CSV files, JSON, or databases.

Forces:

• Test data changes more frequently than test logic.

• There is a need to run tests with different datasets efficiently.

• Large datasets require automated execution and reporting.

• Manual data entry is error-prone and time-consuming.

• The testing team must maintain consistency and scalability.

Solution:

Store all test data externally (e.g., in an Excel file or database) and configure the automation

script to read these values dynamically at runtime.

Each iteration of the test script retrieves a new data set, executes the same logic, and records

the results.

Example:

In the shopping application, create an Excel file UserLoginData.xlsx with columns:

Username Password Expected Result

user1@example.com Pass123 Success

user2@example.com WrongPass Failure

user3@example.com Pass789 Success

The automation framework (e.g., Selenium + TestNG) reads each row and executes the login

test using these values:

def test_login(username, password, expected):

 login_page.enter_username(username)

 login_page.enter_password(password)

 login_page.click_login()

 assert login_page.get_result() == expected

By separating the data, the same script runs multiple scenarios without rewriting code.

Consequences:

Advantages:

• Simplifies maintenance: Data changes don’t require modifying test scripts.

• Enhances reusability of code and flexibility for test execution.

• Supports bulk testing and improves test coverage.

• Enables integration with databases or external APIs for data sourcing.

Centre for Distance Education 16.14 Acharya Nagarjuna University

Trade-offs:

• Requires initial setup of data-reading mechanisms.

• Debugging may be harder if data files contain errors.

• Performance may slow with very large datasets if not optimized.

Related Patterns:

• Keyword-Driven Testing Pattern – Combines with data-driven tests to create hybrid

frameworks.

• Page Object Model (POM) – Manages UI interactions while the Data-Driven layer

manages input data.

• Test Factory Pattern – Generates tests dynamically from external data sources.

Example Application: Online Shopping Portal

Scenario: Testing the “Add to Cart and Checkout” process for multiple users.

Each test case uses a different user profile, payment type, and product category stored in an

Excel sheet.

The automation framework reads these data entries and executes the same workflow for

each one:

1. Log in with credentials from data source.

2. Search for a product.

3. Add to cart.

4. Proceed to checkout and verify success message.

If new user profiles or payment methods are added, the tester only updates the Excel sheet —

no script modification is needed.

16.10 SUMMARY

Testing patterns provide a structured and reusable way to approach software testing

challenges.

They document proven methods for managing the testing process, designing effective test

cases, automating efficiently, and maintaining long-term quality.

By using testing patterns, organizations can make testing activities more predictable,

systematic, and sustainable — resulting in higher software quality, reduced effort, and faster

delivery.

Each pattern is documented using a standard template consisting of:

• Pattern Name (identifying the pattern),

• Intent/Goal (purpose of use),

• Problem (testing challenge),

Software Engineering 16.15 Testing Patterns

• Context (applicable situations),

• Forces (constraints or influencing factors),

• Solution (proven approach),

• Consequences (benefits and trade-offs), and

• Related Patterns (connections with other testing approaches).

In summary, Testing Patterns transform testing from an activity into an engineering

discipline. They provide a shared vocabulary and systematic methodology for testers to

design, execute, and maintain tests efficiently. By applying process, design, automation, and

refactoring patterns, testing teams achieve higher test maturity, better defect detection, and

continuous improvement in software quality assurance. Ultimately, testing patterns ensure

that software testing evolves beyond ad-hoc verification—into a disciplined, knowledge-

based practice that supports reliability, maintainability, and excellence in software

engineering.

16.11 TECHNICAL TERMS

1. Testing Pattern

2. Process Pattern

3. Design Pattern

4. Test Automation Pattern

5. Refactoring Pattern

6. Page Object Model (POM)

7. Keyword-Driven Testing

8. Risk-Based Testing

9. Orthogonal Array

10. Continuous Integration Testing

16.12 Self-Assessment Questions

Essay Questions

1. Define a testing pattern and explain its importance.

2. Discuss the four major categories of testing patterns with examples.

3. Describe test design patterns and their benefits.

4. Explain test automation patterns and their role in framework design.

5. Discuss the need for test refactoring patterns in large test suites.

6. Explain the structure of a testing pattern template.

7. How do process patterns help in early defect detection?

8. Compare data-driven and keyword-driven testing patterns.

9. Discuss how testing patterns contribute to maintainability.

10. Explain the relationship between design and testing patterns.

Short Questions

1. Risk-Based Testing

2. Regression Control Pattern

3. Orthogonal Array Testing

Centre for Distance Education 16.16 Acharya Nagarjuna University

4. Page Object Model (POM)

5. Extract Utility Pattern

6. Continuous Integration Testing

7. Keyword-Driven Testing

8. Defect Clustering

9. Scenario-Based Testing

10. Test Factory Pattern

16.13 SUGGESTED READINGS

1. Pressman, Roger S. & Maxim, Bruce R., Software Engineering: A Practitioner’s

Approach, McGraw-Hill, 7th Ed., 2014.

2. Meszaros, Gerard, xUnit Test Patterns: Refactoring Test Code, Addison-Wesley,

2007.

3. Binder, Robert V., Testing Object-Oriented Systems: Models, Patterns, and Tools,

Addison-Wesley, 1999.

4. Beizer, Boris, Software Testing Techniques, Dreamtech Press, 2003.

5. Desikan, S. & Ramesh, G., Software Testing: Principles and Practices, Pearson,

2006.

6. Burnstein, Ilene, Practical Software Testing, Springer, 2003.

7. Myers, Glenford J., The Art of Software Testing, Wiley, 2011.

8. Jorgensen, Paul C., Software Testing: A Craftsman’s Approach, CRC Press, 2018.

9. Kaner, Cem et al., Testing Computer Software, Wiley, 1999.

10. Sommerville, Ian, Software Engineering, Pearson Education, 2015.

Dr. U. Surya Kameswari

