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FOREWORD 

Since its establishment in 1976, Acharya Nagarjuna University has been 

forging ahead in the path of progress and dynamism, offering a variety of courses 

and research contributions. I am extremely happy that by gaining ‘A+’ grade from 

the NAAC in the year 2024, Acharya Nagarjuna University is offering educational 

opportunities at the UG, PG levels apart from research degrees to students from 

over 221 affiliated colleges spread over the two districts of Guntur and Prakasam.  

The University has also started the Centre for Distance Education in 2003-

04 with the aim of taking higher education to the door step of all the sectors of the 

society. The centre will be a great help to those who cannot join in colleges, those 

who cannot afford the exorbitant fees as regular students, and even to housewives 

desirous of pursuing higher studies. Acharya Nagarjuna University has started 

offering B.Sc., B.A., B.B.A., and B.Com courses at the Degree level and M.A., 

M.Com., M.Sc., M.B.A., and L.L.M., courses at the PG level from the academic 

year 2003-2004 onwards.  

To facilitate easier understanding by students studying through the distance 

mode, these self-instruction materials have been prepared by eminent and 

experienced teachers. The lessons have been drafted with great care and expertise 

in the stipulated time by these teachers. Constructive ideas and scholarly 

suggestions are welcome from students and teachers involved respectively. Such 

ideas will be incorporated for the greater efficacy of this distance mode of 

education. For clarification of doubts and feedback, weekly classes and contact 

classes will be arranged at the UG and PG levels respectively.  

It is my aim that students getting higher education through the Centre for 

Distance Education should improve their qualification, have better employment 

opportunities and in turn be part of country’s progress. It is my fond desire that in 

the years to come, the Centre for Distance Education will go from strength to 

strength in the form of new courses and by catering to larger number of people. My 

congratulations to all the Directors, Academic Coordinators, Editors and Lesson-

writers of the Centre who have helped in these endeavors.  

Prof. K. Gangadhara Rao 

M.Tech., Ph.D., 

Vice-Chancellor I/c  

Acharya Nagarjuna University. 
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2 (a) Define critical function and critical region with an example.   

 (b) Explain Type I and Type II errors. Derive an expression for the power function for a  
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  UNIT – II 

3. (a) Explain the concept of Monotone Likelihood Ratio (MLR).   
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 (b) Explain the sign test and median test and compare them. 

  UNIT – V 

9. (a) Explain the theoretical construction of SPRT.   
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 (b) Explain the applications of OC and ASN functions in sequential testing. 



 

 

CONTENTS 

S.No TITLES PAGE No 

1  BASIC OF TESTING OF HYPOTHESIS 1.1-1.13 

2 POWER FUNCTION & TEST PERFORMANCE 2.1-2.17 

3  MP and UMP Tests 3.1-3.14 

4  NEYMAN–PEARSON LEMMA & RANDOMIZED TESTS 4.1-4.12 

5  GENERALIZED NEYMAN–PEARSON LEMMA 5.1-5.9 

6  UMP TESTS FOR SIMPLE NULL 6.1-6.19 

7  TWO-SIDED ALTERNATIVES & UMP LIMITS 7.1-7.17 

8  UMP UNBIASED TESTS 8.1-8.13 

9  LMP Tests (Locally Most Powerful Tests) 9.1-9.9 

10  LIKELIHOOD RATIO TESTS (LRT) 10.1-10.10 

11 
 NON-PARAMETRIC TESTS AND GOODNESS-OF-FIT 

METHODS 
11.1-11.9 

12 
 KENDALL’S TAU, KRUSKAL–WALLIS & FRIEDMAN 

TESTS 
12.1-12.13 

13 
 STATISTICAL METHODS FOR MODEL VALIDATION 

AND LARGE SAMPLE INFERENCE 
13.1-13.9 

14  SEQUENTIAL TESTS & SPRT 14.1-14.9 

15 
 WALD’S FUNDAMENTAL IDENTITY & RELATIONSHIP 

BETWEEN A, B, α and β 
15.1-15.8 

16 
 OPERATING CHARACTERISTIC (OC) AND AVERAGE 

SAMPLE NUMBER (ASN) FUNCTIONS IN SPRT 
16.1-16.9 

17 
 APPLICATIONS OF BINOMIAL, POISSON, NORMAL 

DISTRIBUTIONS & SEQUENTIAL TESTING EFFICIENCY 
17.1-17.18 

 

 



 

 

LESSON -1 

BASIC OF TESTING OF HYPOTHESIS 
 

OBJECTIVES:  

By the end of this lesson, students will be able to: 

⚫ Define and explain statistical hypotheses. 

⚫ Distinguish between null and alternative hypotheses. 

⚫ Describe the concept of a critical region and its role in decision-making. 

⚫ Understand the idea of a critical function and how it represents a test rule. 

⚫ Explain Type I and Type II errors with examples. 

⚫ Interpret and apply the level of significance in hypothesis testing. 

⚫ Identify the essential components of a hypothesis testing procedure. 

STRUCTURE 

 

1.1 INTRODUCTION 

1.2 CONCEPT OF HYPOTHESES (NULL & ALTERNATIVE) 

1.3 CRITICAL REGION 

1.4 CRITICAL FUNCTION 

1.5 TYPES OF ERRORS (TYPE I & TYPE II) 

1.6 LEVEL OF SIGNIFICANCE 

1.7 CONCLUSION 

1.8 SELF-ASSESSMENT QUESTIONS 

1.9 SUGGESTED READING BOOKS 

 

1.1. INTRODUCTION TO HYPOTHESIS TESTING 

Many times, we strongly believe that certain results or claims are true. However, when we 

collect a sample from the population, the observed data may not fully support our belief. This 

disagreement may occur due to two possibilities: 

Our original belief or assumption may actually be incorrect, or 

The sample we selected may be unusual or one-sided, purely by chance. 

Therefore, we need statistical tests to distinguish between these two situations. These tests 

determine whether the observed difference in data can be attributed to chance variations or 

whether the difference is too large to be explained by randomness alone. 
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If the difference cannot reasonably be explained by chance, it is called statistically 

significant, and the corresponding procedures are known as tests of significance. The overall 

methodology is referred to as Testing of Hypothesis. 

Setting up and testing hypotheses is a crucial part of statistical inference. Usually, a 

hypothesis is a claim or theory proposed either because it is believed to be true or because it 

serves as a basis for further investigation. However, such claims must be supported by data. 

For example: 

⚫ A pharmaceutical company may claim that a new drug works better than the existing 

one. 

⚫ A manufacturer may claim that the average lifetime of light bulbs is 2,000 hours. 

⚫ An education researcher may claim that a new teaching method improves performance. 

In all such cases, we simplify the question into two competing claims or hypotheses: 

The null hypothesis, denoted by H0, and 

The alternative hypothesis, denoted by H1. 

These hypotheses are not treated equally. Special consideration is given to the null 

hypothesis. We reject H0 only when the evidence against it is strong enough. 

Two common situations arise: 

(i) Testing to challenge a specific claim 

Often the experiment aims to disprove or reject a claim. 

Example: 

H0: There is no difference in taste between Coke and Diet Coke. 

H1: There is a difference in taste. 

The null hypothesis is rejected only if the evidence from the sample is compelling. 

(ii) Testing a claim assumed to be true 

Sometimes a hypothesis is treated as true unless evidence contradicts it. 

Example: 

A company claims that the average potency of a tablet is 250 mg. The quality control unit 

tests this claim. 

H0: Mean potency = 250 mg 

H1: Mean potency ≠ 250 mg 
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Again, the burden of proof lies on sample evidence. 

The process involves two competing statements: 

Null Hypothesis (H₀): This is the default or status quo assumption. It represents the claim 

being tested. 

Alternative Hypothesis (H₁ or Hₐ): This reflects the conclusion we seek evidence for, 

indicating a change or difference. 

Hypothesis testing provides a structured framework for deciding whether observed 

differences in data are statistically significant or likely due to chance. 

This framework is critical in various fields: 

In agriculture, to evaluate the effect of a new fertilizer 

In medicine, to compare the effectiveness of treatments 

In manufacturing, to assess product quality control 

To make these decisions, we use test statistics, compare them to critical values, and 

determine the likelihood of committing errors—namely, Type I and Type II errors. The 

power of a test, defined as the ability to correctly reject a false null hypothesis, helps 

evaluate test efficiency. 

Furthermore, the Neyman-Pearson Lemma provides the foundation for constructing the 

most powerful tests, especially for comparing simple hypotheses. When optimal tests are 

needed across a range of alternatives, we seek uniformly most powerful (UMP) tests. 

1.2 CONCEPT OF HYPOTHESES (NULL & ALTERNATIVE) 

A statistical hypothesis is an assumption or claim about a numerical characteristic of a 

population, known as a parameter. This might involve claims such as “the average income is 

₹30,000,” “the defect rate is 5%,” or “the mean lifespan of bulbs is 800 hours.” Such 

hypotheses cannot be verified directly because the entire population is rarely observed, so we 

use sample data to test whether the claim appears to be true or not. 

1.2.1 Null Hypothesis (H₀) 

The null hypothesis, denoted by H0, is a fundamental component of hypothesis testing. It is 

the statement that assumes no effect, no difference, and no change exists in the population. 

In other words, it reflects the current belief, the standard condition, or the baseline situation 

that is considered true unless the sample provides convincing evidence to the contrary. 

The null hypothesis serves as a starting point for statistical testing because it provides a 

specific, testable claim about a population parameter—for example, “the average 

performance has not improved,” “the new medicine is no more effective than the existing 

one,” or “there is no relationship between two variables.” By assuming H0 to be true, we 

calculate the likelihood of obtaining the observed sample data purely by chance. 
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The null hypothesis is treated with special importance because it is only rejected when the 

data present sufficiently strong evidence against it. This cautious approach prevents us from 

making false claims of improvement or change based on random fluctuations in the sample. 

In practice, we compare the observed data with what would be expected if the null hypothesis 

were true; if the observed outcome is extremely unlikely under H0, then we reject it in favor 

of the alternative hypothesis. 

Thus, the null hypothesis acts as the reference point in every statistical test, helping us 

evaluate whether the sample provides enough proof to support the claim of an effect or 

difference. 

Examples: 

H0:μ = 50→ The average lifespan is 50 years. 

H0:p = 0.3→ The proportion of defective items is 30%. 

H0:μ1 = μ2 → Two teaching methods produce the same average score 

The null hypothesis usually includes the equality sign (=). 

1.2.2 Alternative Hypothesis (H₁ or Hₐ) 

The alternative hypothesis, denoted by H1 or Ha, is the statement that proposes the presence 

of an effect, change, or difference in the population. It represents the claim we want to 

investigate or provide evidence for. In contrast to the null hypothesis—which assumes no 

effect—the alternative hypothesis suggests that something meaningful or significant is 

occurring. 

The alternative hypothesis is accepted only when the sample data provide strong enough 

evidence to reject the null hypothesis. It reflects what we expect or hope to demonstrate 

based on theory, prior research, or practical considerations. For example, a researcher may 

believe that a new teaching method improves student performance, or a company may expect 

that a new machine produces fewer defective items. These beliefs are expressed through the 

alternative hypothesis. 

Depending on the nature of the research question, the alternative hypothesis may take 

different forms: 

One-sided (one-tailed): suggests that the parameter is either greater than or less than a 

specific value. 

Example: H1:μ > 50 (mean has increased) 

Two-sided (two-tailed): suggests that the parameter is simply different from a specified 

value, without specifying direction. 

Example: H1:μ≠50  H1 :μ = 50 
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The alternative hypothesis guides the direction of the test and determines the shape of the 

critical region. It is the statement that the statistical test ultimately seeks to support by 

providing evidence strong enough to contradict the null hypothesis. 

Forms of alternative hypothesis: 

Left-tailed: H1:μ<μ0 

Right-tailed: H1:μ>μ0 

Two-tailed: H1:μ≠μ0 

Real-life examples: 

A pharmaceutical company wants to prove a new drug is better: 

H0:μnew=μold    VsH1:μnew>μold 

A company claims machine lifespan is at least 5 years 

H0:μ≥5    Vs    H1:μ<5 

A psychologist tests whether two groups differ: 

H0:μ1=μ2Vs    H1:μ1≠μ2 

The entire process of hypothesis testing relies on comparing the results obtained from a 

sample with what we would typically expect to observe if the null hypothesis were actually 

true. In other words, we begin by assuming that the null hypothesis is correct and then 

examine whether the sample data are consistent with this assumption. 

If the data closely follow the expected pattern under the null hypothesis, we do not have 

sufficient grounds to reject it. This suggests that any differences between the sample and the 

hypothesized value are likely due to normal sampling variability. 

On the other hand, if the observed data deviate substantially from what the null hypothesis 

predicts—so much so that such a result would occur only rarely by chance—it indicates that 

the null hypothesis may not be a reasonable explanation. In such cases, we take the observed 

evidence as strong enough to reject the null hypothesis in favor of the alternative. 

Thus, hypothesis testing is fundamentally about determining whether the observed 

differences can be explained by random chance or whether they point toward a real effect 

or change. This comparison between observed sample outcomes and expected outcomes 

under H0 forms the basis of our decision-making in statistical inference. 

1.3 CRITICAL REGION 

The critical region, also known as the rejection region, is one of the most important 

concepts in hypothesis testing. It represents the set of values of a test statistic for which we 
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decide to reject the null hypothesis. In simple terms, it is the portion of the sampling 

distribution where observed results 

If the sample result falls in the critical region → reject H0. 

If the sample result does not fall in the critical region → fail to reject H0. 

Definition: 

A critical region is a specific portion of the sample space that plays a central role in 

hypothesis testing. It is defined as the set of all sample outcomes that are considered 

sufficiently extreme or unusual if the null hypothesis H0 were actually true. The probability 

of the test statistic falling in this region 

Illustrative example: 

Suppose we test, H0: μ = 100 

using the Z-test at 5% significance. 

The critical region for a two-tailed test is: 

Reject H0  if Z < −1.96 or Z > 1.96 

Here, the critical region includes extreme values unlikely under H0. 

Real-life interpretation: 

In real-world situations such as clinical drug trials, the concept of the critical region 

becomes especially meaningful. When researchers test whether a new drug is more effective 

than an existing treatment, they collect data on patient outcomes—such as reduction in 

symptoms, improvement in health scores, or recovery rates. Under the assumption that the 

new drug has no real advantage (the null hypothesis), the results should fall within a range 

that can reasonably be attributed to normal biological variability or random fluctuations 

among patients. 

The critical region represents those sample outcomes that are so extreme—either showing 

much greater improvement or, in some cases, far worse outcomes—that it becomes highly 

unlikely they occurred merely by chance. If the observed data for the new drug fall within 

this critical region, the evidence suggests that the drug’s effect is too large (or too small) to be 

explained by randomness alone. 

In such situations, we reject the null hypothesis and conclude that the new drug truly differs 

in effectiveness. Thus, the critical region helps researchers make scientifically sound 

decisions by identifying results that indicate a genuine effect rather than routine variation. 

1.4 CRITICAL FUNCTION 

A critical function provides an alternative and more formal way of representing a hypothesis 

test. Instead of describing the test in terms of specific critical regions or thresholds, the 
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critical function expresses the test as a mathematical rule that assigns a decision—either to 

reject or not reject the null hypothesis—for every possible sample outcome. 

It is typically written as a function ϕ(x), where xxx represents the observed sample or test 

statistic.  

Instead of describing a rejection region, we define a function φ(x): 

ϕ(x)={1,x∈critical region (reject H0) 

0,x ∉critical region (accept H0)}   

ϕ(x)={1,0,x ∈critical region (reject H0)  

For randomized tests, 

0<ϕ(x)<1  

means we reject H0 with some probability between 0 and 1. 

Why critical function? 

⚫ Required for theoretical proofs (like Neyman–Pearson Lemma). 

⚫ Useful when exact significance cannot be achieved with a fixed critical region. 

Small example: 

Suppose the critical region is Z > 1.645. 

Then the critical function is: 

φ(x) = 1 if Z  > 1.645 

φ(x) = 0 otherwise 

This gives an exact size α = 0.05. 

1.5 Types of Errors (Type I & Type II) 

In a hypothesis test, a Type-I error occurs when the null hypothesis H0H_0H0 is rejected 

even though it is actually true. In other words, we conclude that there is an effect or 

difference when, in reality, none exists. 

For example, in a clinical trial comparing a new drug with an existing one, the null 

hypothesis might state that the new drug is no more effective than the current drug. A Type-I 

error would occur if the analysis leads us to conclude that the two drugs differ in 

effectiveness when, in fact, they do not. This represents a false positive result. 
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Table 12.1 summarizes the possible outcomes of any hypothesis test: 

Decision Reject (H0) Do Not Reject (H0) 

Truth: (H0) Type-I Error Correct Decision 

Truth: (H1) Correct Decision Type-II Error 

A Type-I error is often considered more serious than a Type-II error, especially in fields such 

as medicine or public safety, because it leads us to claim a discovery or effect that is not truly 

present. Therefore, hypothesis testing procedures are designed to ensure that the probability 

of committing a Type-I error is kept very low. This probability is never exactly zero but is 

carefully controlled. 

The probability of making a Type-I error is known as the significance level, denoted by: 

P(Type-I Error)=α 

Common values include 0.05, 0.01, or 0.10, depending on how strict the test needs to be. 

On the other hand, a Type-II error occurs when we fail to reject the null hypothesis even 

though it is false. This may happen if the sample size is too small to detect the true difference, 

especially when the true value lies close to the hypothesized value. The probability of a Type-

II error, denoted by β\betaβ, is generally harder to calculate exactly. 

Importantly, for any given test and sample size, Type-I and Type-II errors are inversely 

related. Reducing the chance of one usually increases the chance of the other. For example, 

if we choose a very small α (making it very hard to reject H0), we increase the likelihood of 

missing a real effect, leading to more Type-II errors. 

A Type-I error is sometimes referred to as an error of the first kind, while a Type-II error is 

called an error of the second kind. 

Graphical Interpretation (Bell Curve Diagram) 

Type-I Error Area (α) Under H0 

      Distribution under H0 

       ┌─────────── 

       │                               │ 

       │           ____            │ 

       │         /          \          │ 

       │ _α  /             \_       │ ← Critical region 

       │__ /               \__│ 
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The shaded region α is the Type-I error: rejecting H0 when it is true. 

Type-II Error Area (β) Under H1 

      Distribution under H1 

       ┌────────────────────────────┐ 

       │                                   │ 

       │                ____           │ 

       │   β ______/      \         │ ← Failing to reject H0  

       │             _/          \        │    when H1 is true 

       │_______/             \_______│ 

The shaded region β is the Type-II error. 

Relationship Between Errors 

If we make α smaller (stricter test), Type-II error β often increases. 

If we reduce β (more sensitive test), α often increases. 

The only way to reduce both errors is to increase sample size. 

This inverse relationship is crucial in designing powerful tests. 

Real-life example: 

Approving a medicine that does NOT work. 

Convicting an innocent person. 

Type II Error (False Negative) 

Failing to reject H0 when H0 is false. 

Denoted by β. 

Real-life example: 

Rejecting a life-saving drug that actually works. 

Letting a guilty person go free. 

Power of a Test 

Power=1−β 
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Probability of correctly rejecting a false null hypothesis. 

Important Note: 

Lower α → Higher β (and lower power). 

Lower β → Often requires larger sample size. 

1.6 LEVEL OF SIGNIFICANCE 

If we choose a significance level of α = 0.05, it means that we are accepting a 5% risk of 

rejecting the null hypothesis even when it is actually true. In other words, we allow a small 

probability—5 out of 100 decisions—of making a Type-I error, also known as a false 

positive. 

This choice reflects our willingness to tolerate a limited amount of error in order to detect 

meaningful effects. A 5% significance level is commonly used in many scientific fields 

because it strikes a balance between being too strict (which may miss real effects) and too 

lenient (which may lead to false claims). 

Thus, setting α = 0.05 means that only sample results falling in the most unusual 5% of 

outcomes assuming the null hypothesis is correct—will be considered strong enough 

evidence to reject H0.. 

Selecting the significance level α\alphaα is one of the most important decisions in hypothesis 

testing because it determines how strict the test will be in deciding whether to reject the null 

hypothesis H0H_0H0. The value of α reflects the amount of risk of a Type-I error (false 

positive) that the researcher is willing to tolerate. 

Different situations demand different levels of caution, so the choice of α depends on the 

context, severity of error, and practical importance of the decision. 

1. When the Consequences Are Serious → Choose a Small α 

In high-stakes situations, rejecting a true null hypothesis could lead to harmful or dangerous 

consequences. In these cases, we want to minimize the chance of a false positive, so we 

choose a very small α, such as 0.01, 0.005, or even 0.001. 

Examples: 

(a) Medical Research 

Suppose a new drug is being tested. 

H0: The new drug is no better than the existing drug. 

If we wrongly reject H0 (Type-I error), we might approve a drug that does not work—

or worse, causes harm. 

To avoid this danger, researchers choose α = 0.01 or smaller. 
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(b) Aviation and Engineering Safety 

When testing the safety of aircraft parts, bridges, elevators, or nuclear equipment: 

A Type-I error could cause approval of a component that is defective. 

Human lives depend on accuracy. 

Therefore, a very small α, such as 0.001, is used. 

(c) Environmental Protection 

Testing whether water, air, or food is contaminated. 

False approval could expose people to toxins. 

Hence, only very strong evidence should reject H0. 

2. When the Consequences Are Less Serious → Choose a Moderate α (0.05 or 0.10) 

In many everyday business, social science, or educational studies, the cost of a Type-I error is 

lower. Here, researchers are willing to accept a slightly higher risk of a false positive. 

Common choices: α = 0.05 or 0.10 

Examples: 

(a) Market Research 

A company tests whether a new advertisement is more effective. 

A Type-I error may cost money, but not lives. 

α = 0.05 is usually acceptable. 

(b) Education Studies 

A school tests whether a new teaching method improves scores. 

The impact of being wrong is small (short-term experimental effect). 

α = 0.10 might be reasonable. 

(c) Customer Satisfaction Surveys 

Testing whether customer satisfaction improved after a new policy. 

A false conclusion has mild consequences. 

Thus, α = 0.05 or 0.10 is used. 
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3. Trade-Off Between α and β 

When choosing α, we must also consider Type-II error (β). 

If α decreases (more strict), β generally increases. 

If α increases (less strict), β decreases. 

So the choice should balance both errors depending on the situation. 

4. Standard Scientific Practice 

In many fields (biology, psychology, economics), α = 0.05 has become a convention. 

It represents a compromise between being too strict and too lenient. 

It allows reasonable sensitivity while keeping false positives at an acceptable level. 

However, this is not a rule—researchers adjust α depending on the importance of the 

decision. 

5. Summary: Why Choose α Carefully? 

α determines the strictness of your test. 

Small α → more caution, fewer false positives. 

Larger α → more sensitivity, fewer false negatives. 

The choice depends on risk, context, ethics, and practicality. 

Example: 

A court uses α close to 0 → reducing the chance of convicting an innocent person. 

1.7 CONCLUSION 

In this lesson, we learned the basic framework that forms the foundation of statistical 

hypothesis testing. First, we understood that hypotheses are statements about unknown 

population parameters—such as the mean, proportion, or variance—and these statements can 

be tested using sample data. Hypotheses help us translate real-life questions into statistical 

form so they can be objectively examined. 

The null hypothesis (H0) represents the position that there is no change, no difference, or no 

effect. It acts as a benchmark or reference point. The alternative hypothesis (H1), on the 

other hand, represents the statement we want to investigate. It typically reflects the presence 

of an effect, improvement, reduction, or difference. Hypothesis testing is essentially a 

decision-making process between these two competing claims. 

We also learned that the critical region plays a central role in decision-making. It consists of 

the values of the test statistic that are considered too unlikely if the null hypothesis were true. 

When the observed data fall in this region, we reject H0, concluding that the evidence 

suggests a real effect or difference. Complementing this, the critical function provides a 
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mathematical rule that determines whether a particular sample outcome should lead to 

rejection or acceptance of the null hypothesis. Together, these tools allow us to convert 

statistical reasoning into a clear decision rule. 

Because hypothesis testing relies on sample data rather than complete population 

information, decisions are subject to uncertainty. As a result, two types of errors can occur: 

Type I error, where a true null hypothesis is wrongly rejected, and 

Type II error, where a false null hypothesis fails to be rejected. 

The significance level (α) is a key element in hypothesis testing because it specifies the 

maximum probability of committing a Type I error. By choosing α (commonly 0.05 or 0.01), 

we control how strict our decision rule should be. A smaller α makes us more cautious in 

rejecting the null hypothesis. 

These fundamental ideas—hypotheses, critical regions, decision functions, error types, and 

significance level—form the theoretical basis for more advanced topics in statistical 

inference. Concepts such as Most Powerful (MP) tests, Uniformly Most Powerful (UMP) 

tests, the Neyman–Pearson lemma, and likelihood ratio tests rely deeply on the principles 

introduced in this lesson. Even modern approaches such as Bayesian decision theory build 

on these ideas, though from a different philosophical viewpoint. 

Thus, this lesson provides the essential groundwork for understanding how statistical 

decisions are made, how accuracy and reliability are measured, and how optimal tests are 

developed in more advanced chapters. 

1.8 SELF-ASSESSMENT QUESTIONS 

1. Define a statistical hypothesis with one example. 

2. What is the difference between H0 and H1? Give examples. 

3. Explain the meaning of the critical region in hypothesis testing. 

4. What is a critical function? How is it related to the critical region? 

5. Distinguish between Type I and Type II errors with real-life examples. 

6. Explain the significance level α. 

7. Why is it impossible to reduce both α and β at the same time without increasing sample 

size? 

8. Create a real-life situation where a Type II error is more serious than a Type I error. 

1.9 SUGGESTED READING 

1. Hogg & Tanis, Probability and Statistical Inference. 

2. Gibbons & Chakraborti, Nonparametric Statistical Inference. 

3. Casella & Berger, Statistical Inference. 

4. Mood, Graybill & Boes, Introduction to the Theory of Statistics. 

5. SP Gupta, Statistical Methods. 

6. Goon, Gupta & Dasgupta, Fundamentals of Statistics. 

Dr. G V S R Anjaneyulu 



LESSON -2 

POWER FUNCTION & TEST PERFORMANCE 

 

OBJECTIVES:  

By the end of this lesson, students will be able to: 

• Define Most Powerful (MP) tests and state their importance. 

• Understand the concept of maximizing power under a fixed significance level. 

• Explain the definition and properties of Uniformly Most Powerful (UMP) tests. 

• Describe the limitations of UMP tests, especially for two-sided alternatives. 

• Apply MP and UMP concepts to simple distributional problems. 

• Compare MP and UMP tests and identify when each is applicable. 

 

STRUCTURE 

2.1 INTRODUCTION 

2.2 POWER FUNCTION 

2.3 SIZE OF A TEST 

2.4 POWER CURVE AND INTERPRETATION 

2.5 FACTORS AFFECTING POWER 

2.6 CONCLUSION 

2.7 SELF-ASSESSMENT QUESTIONS 

2.8 FURTHER READINGS 

2.9 SUGGESTED READING BOOKS 

2.1 INTRODUCTION 

In the previous lesson, we learned how hypothesis testing provides a systematic framework 

for making decisions about population parameters using sample data. We formulated the null 

and alternative hypotheses, defined critical regions, and explored the meaning of Type I and 

Type II errors. These concepts form the foundation of all statistical testing. 

However, simply defining a hypothesis test and ensuring that the probability of committing a 

Type I error (α) remains within acceptable limits is not sufficient. A well-designed test must 

do more than avoid false positives. It must also be capable of detecting incorrect null 

hypotheses whenever they truly are false. 
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In practical terms, this means that when the null hypothesis does not hold, the test should 

correctly reject it with high probability. A test that frequently fails to identify a false null 

hypothesis is said to have low power, which can lead to misleading or inconclusive results. 

For example, a medical test with low power may fail to detect that a new treatment is 

genuinely effective, or a quality control test may fail to identify a defective production 

process. 

Therefore, an important goal in hypothesis testing is to evaluate how effective a test is 

at identifying real differences or effects. This motivates the study of concepts such as: the 

power function, which shows how the probability of rejecting H0H_0H0 changes for 

different parameter values, the size of a test, which formalizes the maximum risk of 

incorrectly rejecting a true null hypothesis, power curves, which provide a graphical 

understanding of test performance, and the various factors that influence power, such as 

sample size, variance, effect size, and significance level. 

By the end of this lesson, you should be able to: 

Goal 1: Understand how the power function measures the sensitivity of a statistical test and 

indicates how likely the test is to detect false null hypotheses. 

Goal 2: Define and clearly distinguish between the size of a test and the power of a test, and 

understand their roles in hypothesis testing. 

Goal 3: Interpret a power curve and explain what it reveals about the performance and 

effectiveness of a statistical test. 

Goal 4: Identify the major factors that affect power—such as sample size, effect size, 

variability, and significance level—and understand how each factor strengthens or weakens a 

test. 

Goal 5: Recognize why it is important to design tests with high power, particularly in fields 

like scientific research, medicine, engineering, and quality control. 

Goal 6: Apply the concepts of power, size, and power curves to compare different 

statistical tests and to plan studies where reliable detection of effects is essential. 

Overall, this lesson focuses not only on controlling errors but also on ensuring that statistical 

tests are genuinely effective tools for discovering truth in uncertain situations. 

To evaluate how well a test performs in this respect, statisticians study: 

1. Power Function 

2. Size of a Test 

3. Power Curve 

4. Factors that influence power 
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These concepts help us compare different tests and choose the most effective one. They are 

essential for designing studies and experiments where sensitivity and reliability are important. 

For example, in clinical research, a test with low power may fail to detect that a useful drug 

works. Similarly, in manufacturing, a quality control test with poor power may overlook 

defects and allow faulty products to reach customers. 

Thus, the study of power is fundamental in practical statistics. 

2.2 POWER FUNCTION 

2.2.1 Definition and Meaning 

The power function shows the probability that a test will reject the null hypothesis for every 

possible value of the population parameter. It tells us how sensitive a test is to detecting real 

differences. A good test has low power near the null value (to avoid false positives) and high 

power when the true parameter moves away from the null (to detect actual effects). 

Thus, the power function gives a complete picture of the test’s ability to correctly identify 

false null hypotheses. 

Formally, if θ is the true parameter, the power function is: 

π(θ) = Pθ(Reject H0) 

Interpretation: 

For values of θ under H0 → the power function gives the Type I error probability (α) For 

values of θ∈H1 ** → the power function gives the probability of correctly rejecting H0. 

This is the power of the test. 

Thus, the power function evaluates the performance of a test across all possible true states of 

nature. 

2.2.2 Characteristics of a Power Function 

A  power function is one that reflects how a good statistical test should perform under 

different parameter values. The following conditions describe its desirable behavior: 

1. It should be low for all parameter values under H0. 

When the null hypothesis H0 is true, the test should rarely reject it. 

This means the power function should have low values (close to α, the significance level) for 

all parameter values consistent with the null hypothesis. If the power were high under H0, it 

would mean the test is frequently rejecting a true null hypothesis, leading to many Type-I 
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errors. A stable, low power function under H0H_0H0 ensures that the test is reliable and 

conservative when the null is true. 

2. It should be high for parameter values under H1. 

When the alternative hypothesis H1 is true, the test should correctly detect the difference and 

reject the null hypothesis. Therefore, the power function should take high values (close to 1) 

for parameter values in the alternative region. This reflects a low probability of Type-II error. 

A high power under H1 indicates that the test is effective and sensitive in identifying real 

departures from the null hypothesis. 

3. The function should increase as the true value moves further away from the null value. 

In most practical situations, the effect becomes easier to detect when the true parameter value 

is far from what the null hypothesis claims. Thus, the power function should increase 

smoothly as the parameter moves away from the null value in the direction of the alternative. 

Near the null value, the power is close to α. As we move further away, the power rises, 

ultimately approaching 1. This behavior shows that the test becomes more powerful and 

more likely to detect true differences as the deviation from the null hypothesis becomes 

larger. 

Summary 

A well-behaved power function should: 

Stay low under H0 → avoids false positives 

Rise high under H1 → detects true effects 

Increase as deviation from H0H_0H0 grows → reflects improved detectability 

Such a power function indicates that the test is both statistically valid (controls errors 

correctly) and practically useful (detects differences when they exist). 

2.2.3 A Simple Example (Bernoulli Model) 

Let X∼Bernoulli(p). 

Test: 

H0:p = 0.4 Vs H1:p = 0.7 

Suppose the critical region is X=1 (i.e., reject H0 if X = 1). 

Then, 

π(p) = P(X = 1) = p  
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Thus: 

π(0.4) = 0.4→ Type I error probability 

π(0.7) = 0.7 → Power at p=0.7 

This demonstrates how power changes with parameter values. 

2.2.4 Real-Life Example (Quality Control) 

A manufacturer claims that the defect rate of products is only 3%. 

A test is designed to detect if the defect rate has increased. 

H0:p = 0.03 Vs H1:p > 0.03 

If the power at p=0.05 is 0.90, it means: 

“If the true defect rate is 5%, the test will detect this increase 90% of the 

time.” 

This is crucial for maintaining product quality and avoiding customer dissatisfaction. 

2.3 SIZE OF A TEST 

2.3.1 Definition 

The size of a test is the maximum value of the power function under the null hypothesis: 

Size = sup π(θ) 

θ∈Θ0 

In simple vs. simple hypotheses, size = α. 

2.3.2 Why Size Matters 

Size tells us: 

• How much risk we take of wrongly rejecting a true null hypothesis. 

• Whether the test respects the significance level (α). 

• How conservative or liberal the test is. 

• A test with size greater than α violates the acceptable error limit. 
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2.3.3 Size vs. Significance Level 

Although the size of a test and the significance level (α) are closely related, they are not 

exactly the same. Understanding the difference between them is essential for evaluating 

whether a test is properly designed and valid. 

Significance Level (α) 

The significance level, usually denoted by α, is the pre-decided limit on the probability of 

committing a Type I error—rejecting a true null hypothesis. 

⚫ It is chosen before conducting the test. 

⚫ It reflects how cautious we want to be. 

⚫ Common choices are 0.05, 0.01, and 0.10. 

Significance level is essentially the researcher’s tolerance for risk. 

Example: 

If α = 0.05, we allow a 5% chance of wrongly rejecting H0. 

Size of a Test 

The size of a test is the actual maximum probability that the test will reject the null 

hypothesis when it is true. 

Formally: 

Size =sup Pθ (Reject H0) 

θ∈Θ0       

• This depends on the structure of the test, not on our intended choice. 

• It tells us whether the test respects the intended significance level. 

• For composite hypotheses, size is the largest Type I error probability among all 

parameter values satisfying H0. 

Why the Difference Matters 

Even if we set α = 0.05, the test may not actually achieve this value. 

For example: 

The true maximum Type I error could be less than 0.05 (making the test conservative). 

Or it could be more than 0.05 (meaning the test violates the allowed error rate). 

Thus, the size is the realized Type I error probability, while α is the intended limit. 
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Validity Condition 

For a statistical test to be considered valid, the size must not exceed the chosen significance 

level: 

Size ≤α 

This ensures that the test does not reject the null hypothesis too often when it is actually true. 

Example to Clarify the Difference 

Suppose the significance level is set at α = 0.05. However, because of the way the critical 

region is constructed (for example, due to discreteness of data), the actual probability of 

rejecting H0 might be: 

For some parameter values under H0: 0.03 

For others: 0.04 

For the worst case: 0.047 

Thus: 

Size = 0.047 ≤ 0.05  

The test is valid. 

But if the maximum probability under H0H_0H0 turned out to be: 

Size = 0.058 > 0.05  

Then the test violates α and is invalid. 

Summary 

Concept Meaning Chosen vs. Actual Purpose 

Significance Level 

(α) 

Intended risk of Type I 

error 

Chosen before 

testing 
Controls strictness 

Size 
Actual maximum Type I 

error 

Determined by the 

test 

Validates 

correctness 

A test is valid only if Size ≤ α, ensuring that the actual risk of falsely rejecting H0H_0H0 

does not exceed the allowed limit. 

2.3.4 Example 

Let a test reject H0 if sample mean  x ̅ > 10 for H0:μ=8. 
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Compute: 

ɑ =P8(x ̅ >10) 

This value is the size of the test. 

If this exceeds the allowed α, the test must be redesigned. 

2.4 POWER CURVE AND INTERPRETATION 

2.4.1 Definition 

A power curve is a visual representation of the power function of a statistical test. It is 

created by plotting the power function π(θ)\pi(\theta)π(θ) on the vertical axis against different 

possible values of the parameter θ on the horizontal axis. 

In simple terms: 

Power Curve =Graph of π(θ) versus θ 

The power curve displays how the probability of rejecting the null hypothesis changes as the 

true parameter value varies. It provides an immediate picture of: 

• How well the test performs near the null hypothesis (where power should be low) 

• How quickly the power increases as the parameter moves into the alternative region 

• Whether the test is capable of detecting even small deviations from the null 

• How the test compares to other candidate tests 

Because graphs are easier to interpret than formulas, the power curve is a powerful tool for 

researchers and students to understand the effectiveness, sensitivity, and reliability of a 

statistical test. 

2.4.2 Importance 

It visually shows: 

• How well the test can detect departures from H0 

• For which values of the parameter the test is most effective 

• Where the test is weak 

2.4.3 Interpretation of the Curve 

A power curve not only displays the mathematical behavior of the power function but also 

provides valuable insights into how effective a statistical test is in practice. Interpreting the 
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power curve helps us understand the strengths and weaknesses of a test across different 

situations. 

Typically: 

Near H0: power is low (close to α) 

Far from H0: power increases (approaches 1) 

A steep power curve indicates a highly sensitive test. 

Here are the key points of interpretation: 

1. Power Near the Null Hypothesis (H0) 

For values of the parameter that fall under the null hypothesis, the power curve should be 

low, i.e., close to the significance level α. 

• This indicates that the test is not too aggressive in rejecting a true null hypothesis. 

• If the power is high near H0, the test is unreliable because it produces many false 

positives (Type-I errors). 

Thus, a low power near H0 reflects good Type-I error control. 

2. Power in the Alternative Region (H1) 

When the parameter lies in the alternative region, the power curve should rise significantly, 

ideally approaching 1. 

This means: 

• The test becomes more capable of correctly rejecting a false null hypothesis. 

• A power close to 1 indicates a very effective and sensitive test. 

If the power remains low in the alternative region, the test has poor ability to detect real 

differences. 

3. Rate at Which the Curve Rises 

How fast the power curve rises as the parameter moves away from the null value tells us how 

sensitive the test is. 

• A steep rise in the curve means the test quickly gains power and is effective at 

detecting even small departures from H0. 
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• A flat curve means the test is weak and may fail to detect meaningful differences, 

even when they exist. 

This steepness is often used to compare different tests. 

4. Maximum Power 

• The highest value of the power curve is ideally 1 (or very close to 1). 

This means the test almost always rejects the null hypothesis when it is false. 

• If the power never approaches 1, the test may not be suitable for practical use. 

5. Comparison of Tests Using Power Curves 

Power curves allow comparison of two or more tests. The test whose power curve lies above 

the others for most parameter values is usually better. 

Higher curve = better performance 

Lower curve = weaker test 

This method is widely used in test selection and experimental design. 

6. Symmetry or Direction of the Curve 

For two-sided tests, power curves often have symmetric shapes around the null value. 

For one-sided tests, the curve rises only in one direction. 

This visual cue helps identify the type of hypothesis being tested. 

Overall Interpretation 

A power curve helps answer the question: 

“How good is the test at detecting departures from the null hypothesis?” A good power 

curve should: 

• Stay low near H0 

• Rise steadily and steeply as the parameter moves into H1 

• Approach 1 for large deviations 

Clearly show the advantage of one test over another. 

Thus, the power curve is a practical tool for evaluating test performance and guiding 

researchers in choosing the most effective statistical method. 
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2.4.4 Example (Normal Distribution) 

To better understand how a power curve behaves, consider a test based on the normal 

distribution, where the goal is to compare the mean of a population to a known value. 

Suppose we are testing: 

H0:μ = μ0 vs. H1:μ > μ0  

Here, the test is designed to detect whether the true mean μ is greater than the hypothesized 

mean μ0. 

Because of the properties of the normal distribution, the test statistic (typically the sample 

mean or a standardized z-statistic) shifts to the right as the true mean μ increases. As a result: 

1. Power increases quickly as μ moves above μ₀ 

When the actual mean is only slightly larger than μ0\mu_0μ0, the test has a moderate ability 

to detect this difference. But as μ becomes further and further above μ0\mu_0μ0, the test 

statistic is more likely to fall into the rejection region. 

This causes the power function to increase. In graphical form, the power curve begins close 

to the significance level α at μ=μ0, then rises as μ increases. 

2. A Steeply rising power curve indicates a good test 

If the power curve rises very sharply as μ increases above μ₀, this means the test is: 

• Highly sensitive 

• Able to detect even small differences 

• Effective at distinguishing false null hypotheses 

Such a test is desirable because it has low Type-II error when the true mean deviates from 

μ0. 

Example: 

A test with large sample size (n = 100 or more) often produces a steep power curve, because 

the sample mean becomes more precise. 

3. A Slowly Rising Power Curve Indicates Poor Sensitivity 

If the power curve rises slowly, the test struggles to detect differences even when μ is 

noticeably larger than μ₀. 

This indicates: 
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• Low sensitivity 

• High Type-II error (β) 

• Weak performance 

Reasons for slow rise may include: 

• Small sample size 

• High variance 

• Poorly designed test 

Using a two-tailed test when a one-tailed test is appropriate 

Such a test may fail to detect meaningful effects in practical applications. 

4. Visual Summary 

A typical power curve for a normal-distribution mean test looks like this: 

 

The curve starts near α at μ = μ₀ 

• Rises as μ increases 

• A steep rise = good test 

• A flat rise = weak test 

Conclusion of the Example 

This example illustrates how the shape of the power curve directly reflects the effectiveness 

of the test. For normal-based tests of the mean, the curve provides a clear visual indicator of 

whether the test is properly detecting changes in the true mean. 

2.5 FACTORS AFFECTING POWER 

The power of a statistical test reflects its ability to detect a false null hypothesis. A test with 

high power correctly identifies real effects or differences more frequently. Several factors 
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influence the power of a test, and understanding them helps researchers design stronger, more 

reliable studies. 

Below are the major factors that affect the power of a test: 

2.5.1 Sample Size (n) 

How it affects power: 

The sample size is one of the most important determinants of power. As sample size 

increases: 

• The standard error decreases 

• The sampling distribution becomes narrower 

• The test statistic becomes more precise 

• The chance of detecting small differences increases 

Result: 

Larger sample size → higher power 

Example: 

A clinical trial with 30 patients may fail to detect a moderate improvement caused by a new 

drug. The same trial with 300 patients is far more likely to detect the true effect. 

2.5.2 Effect Size 

How it affects power: 

Effect size is the magnitude of the true difference or the strength of the effect between the 

null and alternative hypothesis. 

Large effect size → test easily detects the difference 

Small effect size → test struggles to detect the difference 

Result: 

Larger effect size → higher power 

Example: 

Detecting a change in average weight from 60 kg to 80 kg is easier (large effect). 

Detecting a change from 60 kg to 62 kg is much harder (small effect), requiring larger 

sample size. 
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2.5.3 Population Variance (σ²) 

How it affects power: 

Variance measures how spread out the data are. High variability makes it harder to detect 

differences, because: 

• The signal (effect) is drowned by noise (random variation) 

• The test statistic becomes less precise 

Result: 

Lower variance → higher power 

Higher variance → lower power  

Example: 

A blood pressure study with very variable readings (σ = 20) has lower power than one with 

stable readings (σ = 5). 

2.5.4 Significance Level (α) 

How it affects power: 

The significance level determines the size of the critical region. Increasing α makes it easier 

to reject H0. 

Higher α → larger critical region → higher power 

Lower α → smaller critical region → lower power 

Trade-off: 

• High α increases Type-I error risk 

• Low α increases Type-II error risk 

Result: 

Increasing α increases power but increases false positives 

Example: 

A test with α = 0.10 is more likely to detect an effect (higher power) than a test with α = 0.01. 

2.5.5 Type of Test (One-Tailed vs. Two-Tailed) 
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How it affects power: 

A one-tailed test concentrates the entire significance level in one tail, giving: 

⚫ A larger critical region 

⚫ Higher chance of rejecting H0H_0H0 in the specified direction 

A two-tailed test splits α into two tails, reducing power. 

Result: 

One-tailed test → higher power (if direction is correct) 

Two-tailed test → lower power 

Example: 

If we know a new fertilizer can only increase crop yield, a one-tailed test is more powerful 

than a two-tailed test. 

2.5.6 Shape of the Sampling Distribution 

How it affects power: 

Normal, symmetric, and well-behaved sampling distributions typically yield higher power 

because: 

⚫ The location shift under H1is easier to detect 

⚫ Critical values are well-defined 

Non-normal or skewed distributions often require larger sample sizes to achieve the same 

power. 

Result: 

More regular sampling distribution → higher power 

2.5.7 Measurement Precision and Study Design 

How it affects power: 

Improved measurement tools and better study design can reduce variability and improve 

accuracy. 

⚫ High-quality instruments → lower noise 

⚫ Better experimental protocols → fewer errors 
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Result: 

Better quality data → higher power 

Example: 

A precise thermometer (accurate to 0.01°C) increases power compared to a rough instrument 

(accurate to only 1°C). 

2.5.8 Summary of Factors Affecting Power 

Overall Insight 

A well-designed test aims for: 

⚫ High power (to detect real differences) 

⚫ Controlled α (to avoid false positives) 

⚫ Minimal β (to avoid missing real effects) 

Understanding how different factors affect power allows researchers to plan studies that are 

statistically strong and scientifically reliable. 

2.6 CONCLUSION 

In this lesson, we studied key concepts that evaluate the effectiveness of a statistical test: 

The power function tells us how likely the test is to reject H0H_0H0 across different 

parameter values. The size of the test measures the maximum Type I error probability. The 

power curve provides a visual understanding of test performance. Power depends on sample 

size, effect size, variance, significance level, and test direction. These ideas help researchers 

design better experiments and choose optimal statistical tests. Understanding power also 

prevents incorrect conclusions caused by weak tests. 

Factor Increases Power Decreases Power 

Sample Size (n) Larger n Smaller n 

Effect Size Larger effect Smaller effect 

Variance (σ²) Low variance High variance 

Significance Level (α) Larger α Smaller α 

Test Type One-tailed Two-tailed 

Sampling Distribution Normal/low noise Skewed/high noise 

Measurement Quality High precision Low precision 
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2.7 SELF-ASSESSMENT QUESTIONS 

1. Define the power function. 

2. What is the difference between size and significance level? 

3. Why is sample size important for power? 

4. Explain effect size with an example. 

5. Draw and interpret a power curve. 

6. Explain the relationship between α and β. 

7. Why do one-tailed tests have more power than two-tailed tests? 

8. A test has low power. What does this imply? 

9. List three factors that can increase the power of a test. 

10. Calculate the power function for a Bernoulli distribution with critical region X = 1. 

2.8 FURTHER READINGS 

1. Casella & Berger, Statistical Inference 

2. Hogg & Tanis, Probability and Statistical Inference 

3. Mood, Graybill & Boes, Introduction to the Theory of Statistics 

4. Goon, Gupta & Dasgupta, Fundamentals of Statistics 

5. Wackerly, Mendenhall & Scheaffer, Mathematical Statistics with Applications 

6. Lehmann & Romano, Testing Statistical Hypotheses 

7. Gibbons & Chakraborti, Nonparametric Statistical Inference 

 

 

 Dr. G V S R Anjaneyulu 

 

  

 



LESSON -3 

MP and UMP Tests 

OBJECTIVES:  

By the end of this lesson, students will be able to: 

• Define Most Powerful (MP) tests and state their importance. 

• Understand the concept of maximizing power under a fixed significance level. 

• Explain the definition and properties of Uniformly Most Powerful (UMP) tests. 

• Describe the limitations of UMP tests, especially for two-sided alternatives. 

• Apply MP and UMP concepts to simple distributional problems. 

• Compare MP and UMP tests and identify when each is applicable. 

 

STRUCTURE 

3.1 INTRODUCTION 

3.2 MOST POWERFUL (MP) TESTS 

3.3 UNIFORMLY MOST POWERFUL (UMP) TESTS 

3.4 MP VS UMP – COMPARISON & LIMITATIONS 

3.5 ILLUSTRATIVE EXAMPLES 

3.6 CONCLUSION 

3.7 SELF-ASSESSMENT QUESTIONS 

3.8 SUGGESTED READING BOOKS 

3.1 INTRODUCTION 

In hypothesis testing, there may be many different statistical tests available for examining the 

same hypothesis. However, these tests are not equally effective. Some tests are better at 

identifying false null hypotheses, while others may miss important differences. This brings us 

to the concept of optimality in hypothesis testing—the idea that among all possible tests, 

some perform better than others according to specific criteria. 

One of the most important criteria used to judge the quality of a test is its power, which 

measures the probability that the test will correctly reject the null hypothesis when it is false. 

A test with higher power is more sensitive and more reliable in detecting true effects. The 

search for tests that maximize power leads to two central concepts: 
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⚫ Most Powerful (MP) Tests: These tests provide the highest power for a specific 

alternative hypothesis when both the null and alternative are simple (i.e., completely 

specified). 

⚫ Uniformly Most Powerful (UMP) Tests: These tests extend the idea of MP tests to 

situations where the alternative is composite. A UMP test has the highest power for all 

parameter values in the alternative hypothesis, not just one specific value. 

Understanding MP and UMP tests is crucial because they offer a systematic way to identify 

or construct the best possible test under given conditions. They form the theoretical backbone 

of classical hypothesis testing and provide a framework for comparing different statistical 

procedures. 

By the end of this lesson, you should be able to: 

Goal 1: Understand the concept of Most Powerful (MP) tests, including how they maximize 

power for simple alternatives. 

Goal 2: Explain the Neyman–Pearson Lemma, which provides the foundation for 

identifying MP tests. 

Goal 3: Understand the idea of **Uniformly Most 

3.2 MOST POWERFUL (MP) TESTS  

In hypothesis testing, we often need to decide which statistical test is best for detecting a false 

null hypothesis. The concept of Most Powerful (MP) tests helps us formalize this idea. MP 

tests are designed to maximize the probability of correctly rejecting H0 for a given 

significance level when the alternative hypothesis is true. 

3.2.1 Definition of MP Tests 

A statistical test is said to be Most Powerful (MP) for testing a simple null hypothesis 

against a simple alternative hypothesis if: 

⚫ It has significance level α,  

⚫ No other test with the same significance level has higher power at the specified 

alternative value. 

Formally, a test with critical region C is MP of size α if: 

Pθ1(X∈C) ≥ Pθ1(X∈C′) 

for any other test with critical region C′satisfying Pθ0(X∈C′) ≤ α 

“Among all tests that control Type I error” means that when comparing different statistical 

tests, we only consider those that keep the probability of rejecting a true null hypothesis at or 

below the pre-chosen significance level α. In other words, we compare only tests that are 

valid—tests that do not exceed the allowed chance of making a Type I error. 
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Once this condition is met, we look for the test that provides the highest probability of 

rejecting H0 when the alternative hypothesis is true. That test is called the Most Powerful 

(MP) test. 

⚫ Among all tests that keep the Type I error probability at most α, an MP test is the 

one that maximizes the probability of detecting a false null hypothesis. 

⚫ This ensures the test is both statistically valid (controls α) and optimally sensitive 

(highest power). 

3.3 UNIFORMLY MOST POWERFUL (UMP) TESTS 

In hypothesis testing, we often need to decide which statistical test is best for detecting a false 

null hypothesis. The concept of Most Powerful (MP) tests helps us formalize this idea. MP 

tests are designed to maximize the probability of correctly rejecting H0 for a given 

significance level when the alternative hypothesis is true. 

3.4 MP Vs. UMP – COMPARISON & LIMITATIONS 

This section presents a detailed comparison between Most Powerful (MP) tests and 

Uniformly Most Powerful (UMP) tests, outlining their conceptual foundations, practical 

differences, and the challenges involved in constructing them. The discussion begins by 

explaining how MP tests and UMP tests differ in scope: MP tests are designed for simple 

hypothesis scenarios, targeting maximum power at a specific alternative, whereas UMP tests 

aim to be optimal uniformly over an entire class of alternatives. Because of this narrower 

focus, MP tests are generally easier to derive, typically using the Neyman–Pearson Lemma in 

simple vs. simple hypothesis settings. 

In contrast, UMP tests are far more difficult to obtain. They often do not exist, especially 

when dealing with composite or two-sided alternatives, because no single test can dominate 

all others across the entire range of parameter values. The section explains how this non-

existence issue arises from conflicting power requirements and the absence of monotone 

likelihood ratios in many models. It further notes that in two-sided testing problems, 

constructing a UMP test is usually impossible, and one must instead rely on UMP unbiased 

(UMPU) tests, which balance power and fairness by ensuring that the test does not 

systematically favor any direction of the alternative. 

Finally, the section discusses practical limitations when applying MP or UMP concepts in 

real-world data analysis. These include model misspecification, the presence of nuisance 

parameters, small-sample complications, and deviations from the theoretical assumptions that 

underpin optimality results. Together, these points underscore the theoretical elegance but 

practical constraints of MP and UMP testing frameworks. 

3.5 ILLUSTRATIVE EXAMPLES 

This section presents a set of carefully worked-out examples designed to reinforce the 

theoretical concepts of MP and UMP tests. Each example demonstrates how likelihood ratios, 

test statistics, and rejection regions are constructed under different probability models, 

highlighting the practical application of the Neyman–Pearson Lemma and the conditions 

under which UMP tests exist. The examples cover both continuous and discrete distributions, 

offering a balanced and intuitive understanding of hypothesis-testing procedures. 
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The first example illustrates a Most Powerful (MP) test for the mean of a normal 

distribution under simple versus simple hypotheses. Using the Neyman–Pearson Lemma, 

the likelihood ratio is derived explicitly, followed by the determination of the rejection region 

based on the observed sample mean. This example emphasizes how MP tests exploit the 

complete specification of both hypotheses to achieve maximum power at a particular 

alternative. 

Next, the section provides a Uniformly Most Powerful (UMP) test for a one-sided 

hypothesis about the mean of a normal distribution with known variance. Here, the 

monotone likelihood ratio property allows the construction of a UMP test valid for all 

parameter values under the one-sided alternative. The example clarifies why UMP tests exist 

in this setting and how they lead to familiar z-test procedures. 

To broaden applicability, the section also includes examples involving binomial and 

Poisson distributions, demonstrating how MP and UMP tests are derived in discrete 

settings. These examples highlight the role of probability mass functions, monotone 

likelihood ratios, and critical values based on cumulative distribution functions. They also 

show how to manage discrete rejection regions when exact significance levels are not 

possible. 

Each example is accompanied by an interpretation of the corresponding rejection region 

through likelihood ratios—explaining intuitively what it means for observed data to “favor” 

the alternative hypothesis. 

Where appropriate, the section incorporates graphical illustrations, such as plots of 

likelihood functions, rejection regions, and power curves. These visual aids help develop 

intuition about how evidence accumulates against the null hypothesis and how test optimality 

is reflected in the likelihood ratio structure. 

Example 1: MP Test for Normal Mean (Simple vs. Simple) 

Model: X1,X2,…,Xn ∼N(μ,σ2) 

Hypotheses: 

H0:μ = μ
0
 vs.H1:μ = μ

1
(μ

1 
> μ

0
)  

Step 1: Likelihood Ratio 

Λ(x)=  
L(μ0)

L(μ1)
 =exp(

n

σ2
 (μ

1
− μ

0
)(2x̅ −((μ

1
+ μ

0
) ))     

Reject H0 when Λ(x)  is small → equivalently when x̅  is large. 

MP Rejection Region 

x̅ >c 

For size α: 

Pμ0(x̅ >c) = α ⇒ c = μ0 + z1−ασn  
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Interpretation 

The data rejects H0 when the sample mean is sufficiently larger than μ0. 

This test is MP because NP Lemma applies to simple vs. simple hypotheses. 

Example 2: UMP One-Sided Test for Normal Mean (Composite Alternative) 

Model: Xi ∼N(μ,σ2); σ known. 

Hypotheses: 

H0:μ ≤ μ0 vs. H1:μ > μ0   

Reason UMP Exists 

Normal family has a monotone likelihood ratio (MLR) in x̅ . 

UMP Test 

Reject H0 when 

x̅  > μ0 + z1−ασn  

This is the standard one-sided z-test. 

Interpretation 

This test is optimal for all μ>μ0, not just a specific value. 

Example 3: Binomial Distribution – MP and UMP Test 

Model: X∼Binomial(n,p) 

Case A: MP Test (Simple vs. Simple) 

H0:p = p0 vs H1:p = p1,  p1 > p0 

Likelihood ratio: 

P(X=x∣p1)

P(X=x∣p0)
 = (

(P1(1−P0)

(P0(1−P1)
)

x

 

Increasing in x. 

Thus MP test: 

Reject H0 if X ≥ k  

Choose k such that: 
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Pp0(X ≥ k) ≤ α 

Case B: UMP Test for Composite Alternative 

H0:p ≤ p0 vs H1: p > p0 

Binomial family has MLR in X. 

Thus UMP test exists: 

Reject when X is large. 

This parallels the normal example but in discrete form. 

Example 4: Poisson Distribution – MP/UMP Test 

Model: X∼Poisson(λ) 

Hypotheses 

H0:λ ≤ λ0 vs H1:λ > λ0  

Likelihood ratio: 

P(X=x∣λ1)

P(X=x∣λ0)
 = (

λ1

λ0
)

x

 exp(-(λ1-λ0)) 

Increasing in x. 

→ Poisson family has MLR in X. 

UMP Test 

Reject H0 if  X ≥ k 

where k is chosen so that 

Pλ0(X ≥ k) ≤ α 

Example 5: Likelihood-Ratio Interpretation (Graphical Insight) 

Given a sample statistic T(x), the LR test defines the rejection region: 

L(θ0)

L(θ1)
 ≤ c   
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Graphically: 

⚫ Plot likelihood under H0 and H1. 

⚫ Regions where L(H1) > L(H0) indicate stronger evidence against H0. 

⚫ The rejection region corresponds to the tail where the likelihood ratio is smallest. 

1. Likelihood Ratio – Normal Distribution (MP Test) 
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2. UMP One-Sided Test – Normal Mean (Z-Test) 
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Interpretation: 

The rejection region is the right tail beyond z1−α. 

This test is UMP for all μ>μ0 due to monotone likelihood ratio. 

3. Binomial MP / UMP Test – Rejection Region 
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Interpretation: 

⚫ Bars on the right tail form the rejection region when p1 > p0. 

⚫ For composite alternative p>p0, the same structure becomes UMP. 

4. Poisson Distribution – UMP Test 

 

Interpretation: 

⚫ For H1:λ > λ0, large values of X favor the alternative. 

⚫ Right-tail rejection region is used. 

5. Likelihood Ratio Function – Conceptual Diagram 

 

Interpretation: 

⚫ The LR test rejects when the ratio L(H0)/L(H1)L(H_0)/L(H_1)L(H0)/L(H1) is small. 

⚫ Graph shows where likelihood under the alternative surpasses the null. 

MP vs. UMP Tests – Visual Summary 

1. MP Test – Simple vs. Simple (Narrow Focus) 
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Key Idea 

⚫ MP tests maximize power for one specific alternative (e.g., μ1). 

⚫ Rejection region chosen using the likelihood ratio between H0 and H1. 

⚫ Optimal only at one point. 

2. UMP Test – Composite Alternative (Uniform Optimality) 

 

Key Idea 

⚫ UMP tests maximize power uniformly for all alternatives in a direction (e.g., all μ > 

μ0). 

⚫ Exists only when the family has monotone likelihood ratio (MLR). 

⚫ One-sided normal mean test is the classic example. 
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3. Why UMP Often Does Not Exist 

 

Key Idea 

⚫ In two-sided testing, no single test dominates everywhere. 

⚫ Power trade-offs across alternatives prevent uniform optimality. 

⚫ Often need UMP unbiased (UMPU) tests instead. 

Summary Table 

Feature MP Test UMP Test 

Hypotheses Simple vs simple Simple vs composite 

Optimality At one specific parameter Uniform across parameter range 

Existence Always (NP Lemma) Rare (requires MLR) 

Two-sided tests Works Usually impossible 

Unbiasedness 

needed? 
No Often required 

Interpretation 
Best test for a specific 

alternative 

Best test for all alternatives in a 

direction 

3.6 CONCLUSION 

This section brings together the central ideas developed throughout the chapter on Most 

Powerful (MP) and Uniformly Most Powerful (UMP) tests. MP tests are grounded in the 

Neyman–Pearson framework and provide the highest possible power when comparing simple 

hypotheses—where both the null and alternative specify a single parameter value. Their 

strength lies in the ease of construction and the guarantee of optimality for that specific 

alternative. 
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In contrast, UMP tests aim for a more demanding objective: maximizing power uniformly 

over an entire range of alternatives rather than at a single point. Because of this requirement, 

UMP tests exist only under special structural conditions in the underlying probability 

model—most notably the presence of a monotone likelihood ratio (MLR), which ensures 

that the rejection region can be chosen consistently across all alternatives in the specified 

direction. 

However, the chapter also emphasizes that UMP tests are rare in practice. They often fail to 

exist, especially in two-sided testing problems or in models with nuisance parameters, where 

no single test can dominate all others for every alternative value. As a result, real-world 

statistical analysis frequently involves compromises, such as relying on UMP unbiased 

(UMPU) tests, approximate methods, or tests chosen for robustness rather than strict 

optimality. 

Overall, the chapter highlights both the theoretical elegance and the practical limitations of 

MP and UMP tests, providing a foundation for understanding more advanced topics in 

optimal hypothesis testing. 

3.7 SELF-ASSESSMENT QUESTIONS 

1. Define a Most Powerful (MP) test. 

2. State the Neyman–Pearson Lemma and explain its importance in hypothesis testing. 

3. What conditions are necessary for a Uniformly Most Powerful (UMP) test to exist? 

4. Explain the difference between MP and UMP tests using appropriate examples. 

5. Why do UMP tests often fail to exist for two-sided alternatives? 

6. Explain the concept of a monotone likelihood ratio (MLR). 

7. Why does MLR guarantee the existence of UMP tests in one-sided testing problems? 

8. What is meant by a “simple” versus a “composite” hypothesis? 

9. Give an example of an MP test in the normal distribution for simple vs. simple 

hypotheses. 

10. Construct a UMP test for testing H0:μ ≤ μ0  vs. H1:μ > μ0  in a normal model with 

known variance. 

11. Explain how the rejection region is determined in an MP test using the likelihood ratio. 

12. Describe how hypothesis tests change when dealing with discrete distributions such as 

the Binomial or Poisson. 

13. Why do discrete distributions sometimes make it impossible to achieve the exact desired 

significance level? 

14. What is a UMP unbiased (UMPU) test? 

15. Why is unbiasedness required in many two-sided testing scenarios? 

16. Explain why UMP tests fail in the presence of nuisance parameters. 

17. What role does the Karlin–Rubin theorem play in UMP testing? 

18. Give an example where no UMP test exists, and explain why. 

19. Discuss the limitations of MP tests when the alternative hypothesis is composite. 

20. Explain why MP tests are relatively easy to derive compared with UMP tests. 

21. Explain the concept of monotone likelihood ratio. 
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3.8 SUGGESTED READING BOOKS 

Recommended references include: 

 Casella & Berger, Statistical Inference 

 Lehmann & Romano, Testing Statistical Hypotheses 

 Mood, Graybill & Boes, Introduction to the Theory of Statistics 

 Hogg & Tanis, Probability and Statistical Inference 

 Wackerly, Mendenhall & Scheaffer, Mathematical Statistics with Applications 

 Goon, Gupta & Dasgupta, Fundamentals of Statistics 

 Bickel & Doksum, Mathematical Statistics 

 

  

 Dr. G V S R Anjaneyulu 

 

 

      

        



LESSON -4 

NEYMAN–PEARSON LEMMA & RANDOMIZED TESTS 
 

OBJECTIVES:  

By the end of this lesson, students will be able to: 

• State the Neyman–Pearson Lemma and explain its theoretical significance. 

• Construct MP tests for simple hypotheses using the NP Lemma. 

• Describe the need for randomized tests in certain testing situations. 

• Distinguish between randomized and non-randomized tests with examples. 

• Use likelihood ratio forms to derive optimal tests. 

• Apply NP-based test construction to real statistical problems. 

 

STRUCTURE 

4.1 INTRODUCTION 

4.2 NEYMAN–PEARSON LEMMA 

4.3 CONSTRUCTING MP TESTS USING NP LEMMA 

4.4 RANDOMIZED TESTS 

4.5 NON-RANDOMIZED TESTS 

4.6 APPLICATIONS / EXAMPLES 

4.7 CONCLUSION 

4.8 SELF-ASSESSMENT QUESTIONS 

4.9 SUGGESTED READING BOOKS 

 

 4.1 INTRODUCTION 

Hypothesis testing is one of the fundamental components of statistical inference, enabling 

researchers to make informed decisions about population characteristics based on sample 

data. In many situations, more than one statistical test may be available for assessing the 

same hypothesis, and these tests can differ considerably in terms of their effectiveness. A 

natural question, therefore, is: Which test should we choose to obtain the strongest possible 

evidence against the null hypothesis when it is false? This question leads us to the study of 

Most Powerful (MP) and Uniformly Most Powerful (UMP) tests. 

MP and UMP tests belong to a class of optimal procedures that are designed to maximize the 

ability of a test to detect deviations from the null hypothesis. An MP test is the most effective 

test for discriminating between two simple hypotheses, but its optimality is restricted to a 
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single alternative parameter value. UMP tests extend this idea by seeking optimality across 

an entire range of alternatives, making them extremely desirable when they exist. 

However, such tests require special mathematical conditions and may not be available in 

many practical scenarios. 

The starting point for developing MP tests is the Neyman–Pearson Lemma, a foundational 

result in statistical theory. This lemma provides a precise rule for constructing the most 

powerful test of a given size when testing simple hypotheses. It introduces the concept of the 

likelihood ratio, a central idea that forms the backbone of many optimal testing procedures. 

Because of its clarity and generality, the Neyman–Pearson framework is widely regarded as 

one of the most elegant and impactful contributions to modern statistical methodology. 

While MP tests are straightforward to derive for simple hypotheses, real-world problems 

frequently involve composite hypotheses, where the parameter space includes multiple 

possible values. In such cases, the construction of optimal tests becomes more complicated. 

Some situations allow the development of UMP tests through properties such as the 

monotone likelihood ratio (MLR), but these cases are exceptions rather than the rule. When 

UMP tests do not exist, statisticians must rely on alternative approaches, such as UMP 

unbiased tests or likelihood ratio–based methods. 

This chapter also distinguishes between randomized and non-randomized tests. 

Randomized tests may appear theoretical, but they play an important role in situations 

involving discrete distributions—such as the binomial or Poisson models—where achieving 

an exact significance level is not always possible. In contrast, non-randomized tests are more 

intuitive and are typically used in continuous models like the normal distribution. 

To strengthen conceptual understanding, the chapter includes detailed examples illustrating 

how MP tests are developed in the context of the normal, binomial, and Poisson distributions. 

These examples highlight the mechanics of computing likelihood ratios, identifying rejection 

regions, and interpreting the optimality of the resulting tests. 

The chapter concludes with a set of self-assessment questions aimed at reinforcing key ideas, 

along with a list of suggested readings for students who wish to explore optimal testing 

theory more deeply. 

4.2 THE NEYMAN–PEARSON LEMMA 

The Neyman–Pearson Lemma (NP Lemma) is one of the foundational results in the theory 

of hypothesis testing. It provides a rigorous method for identifying the Most Powerful (MP) 

test when comparing two simple hypotheses. A simple hypothesis is one that specifies the 

parameter completely, leaving no uncertainty about its value. The hypotheses considered in 

the NP Lemma take the form: 

H0:θ=θ0 Vs H1:θ=θ1  

Statement (Informal) 

Among all tests having a fixed significance level α, the test that is most powerful for 

distinguishing H0 from H1 is the one that rejects H0 for small values of the likelihood ratio: 
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Λ(x)= 
f(x∣θ0)

f(x∣θ1)
. 

Implications 

• The test based on the likelihood ratio maximizes power for the specified alternative. 

• The lemma applies only to simple vs. simple hypotheses. 

• It gives a constructive method for identifying the rejection region. 

This likelihood ratio compares how plausible the observed data x is under the null hypothesis 

relative to the alternative. Smaller values of Λ(x) indicate stronger evidence against H0. 

Thus, the MP test rejects H0 when: 

Λ(x) ≤ k, 

where the constant k is chosen so that the test has significance level α. 

Why the Likelihood Ratio? 

The likelihood ratio is a natural and intuitive measure of evidence: If the data are much more 

likely under H1 than under H0, the ratio becomes small, suggesting rejection of H0. If the 

data are more compatible with H0H_0H0, the ratio remains large, and we retain the null. 

The ratio therefore quantifies the relative plausibility of the two hypotheses. Implications of 

the Neyman–Pearson Lemma (Expanded) 

1. The likelihood ratio test is most powerful 

The NP Lemma guarantees that, among all tests with the same level, no other test has greater 

power at θ1, and no alternative rejection rule performs better for this simple alternative. 

This gives the likelihood ratio test a unique optimality that no other method can surpass for 

this setting. 

2. Valid only for simple vs. simple hypotheses 

The lemma cannot be applied directly when: the null hypothesis is composite (e.g., H0: θ ≤ 

θ0), or the alternative is composite (e.g., H1:θ > θ0). In these cases, finding UMP tests 

becomes far more challenging, and sometimes impossible. 

3. Provides a constructive method for deriving the rejection region 

The lemma doesn’t just assert that an optimal test exists—it tells us exactly how to build it. 

The steps are: 

• Compute the likelihoods under H0 and H1. 

• Form the likelihood ratio. 

• Determine how the ratio behaves (increasing or decreasing in a statistic like  x̅. 

• Use this to construct the rejection region in terms of a sample statistic. 
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• Choose the constant k so that the test has size α. 

• This makes MP test construction highly systematic. 

4. The likelihood ratio reflects strength of evidence 

The NP Lemma establishes that evidence is best captured not by: the sample mean alone, or 

variance, or a test statistic chosen arbitrarily, but by the likelihood ratio, which directly 

compares how well the two hypotheses explain the data. 

This interpretation forms the basis of: likelihood ratio tests (LRT), generalized likelihood 

ratio tests (GLRT), and many optimality principles in modern statistics. 

Graphical Interpretation (Conceptual) 

When plotting the density under H0 and H1: The rejection region corresponds to the area 

where the curve for H1 dominates the curve under H0. The point where the two curves 

intersect often marks the boundary between acceptance and rejection. The likelihood ratio is 

small in the region where the alternative is more plausible. This visual perspective helps 

understand why the NP-based rejection region is optimal. 

Summary 

The Neyman–Pearson Lemma: identifies the optimal test for simple hypotheses, establishes 

the likelihood ratio as the most informative statistic, provides a concrete recipe for 

constructing MP tests, and lays the foundation for the broader family of likelihood-based 

tests. 

Neyman–Pearson Lemma — statement and proof 

    Let X be a random variable (or vector) with densities (or probability mass functions) f0(x) 

under H0 and f1(x) under H1, defined on a common measurable space (X,A). A (possibly 

randomized) test is a measurable function φ:X→[0,1] where φ(x) is the probability of 

rejecting H0 at observation x. 

For a test φ define its size and power as 

α(φ)=E0[φ]=∫φ(x) f0(x) dx, 

β(φ)=E1[φ]=∫φ(x) f1(x) dx, 

where Ei denotes expectation under fi. 

We fix a significance level 0 < α < 1. The goal is to find, among all tests with size ≤α, a test 

that maximizes the power β(φ). 

Theorem (Neyman–Pearson) 

Define the likelihood ratio 
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λ(x) = 
f(x/θ1)

f(x/θ0)
  (interpreted appropriately where f0(x)=0) 

For any constant c > 0 and γ∈[0,1], consider the test φ given by 

φ(x)  = {
1 ,  

γ , 

0,  

λ(x)>c

λ(x)=c

λ(x)<c

 (1) 

Choose c and γ so that α(φ∗) = α  (this is always possible by varying c and γ; if exact equality 

is not possible without randomization, choose γ∈(0,1)\gamma\in(0,1)γ∈(0,1) appropriately on 

the boundary). Then: φ has size α. 

For any test φ with α(φ) ≤ α, we have β(φ) ≤ β(φ∗). That is, φ∗ is most powerful among all 

tests of size α. 

Moreover, if P0(λ(X) = c) = 0 (no mass on the boundary), the test is nonrandomized (γ is 

irrelevant) and is unique (up to a.s. equivalence) among size-α MP tests. 

Proof 

1. Existence / construction and size 

Define the sets 

Ac = { x: λ(x) > c},Bc ={x: λ(x) = c},Cc ={x:λ(x) < c}. 

For a given c, choose γ∈[0,1] so that the test φ∗defined by (1) satisfies 

α(φ∗)  =  ∫ 1⋅f
0
(x) dx

Ac
  +  ∫ γ ⋅f

0
(x) dx 

Bc
  =  α. 

Because ∫ f
0Ac
 is a decreasing right-continuous function of c and ∫Ac∪Bc f

0
  is its left-limit, 

by varying c and then γ we can achieve any target level in the interval [0,1]. Hence we can 

choose c and γ that make α(φ∗) = α. (This is the place where randomization on the boundary 

Bc can be required if ∫ f
0Ac
 jumps over α) 

Thus φ∗ is a valid test of size α. 

2. Optimality (main inequality) 

Let φ be any other test with α(φ) ≤ α. Consider the difference in powers: 

β(φ∗) − β(φ)  =  ∫(φ∗(x)−φ(x)) f1(x) dx 

Fix the constant c used in φ. Multiply and subtract c times the corresponding difference in 

sizes: 

β(φ∗)−β(φ)−c(α(φ∗)−α(φ)) = ∫(φ∗(x)−φ(x))(f1(x)−cf0(x)) dx.   (2) 
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But α(φ∗)=α and α(φ) ≤ α, so α(φ∗)−α(φ) ≥ 0 Therefore 

β(φ∗) − β(φ) ≥  ∫(φ∗(x)−φ(x))(f1(x)−cf0(x)) dx. (3)  

Now analyze the integrand pointwise. Note that 

f1(x)−cf0(x) = f0(x)(λ(x)−c) 

Consider three regions: 

If λ(x)>c then φ∗(x) =1, so 

(φ∗(x) − φ(x))(f1(x)−cf0(x)) = (1−φ(x)) f0(x) (λ(x)−c) ≥ 0. 

If λ(x) < c then φ∗(x) = 0 and λ(x)−c < 0, so 

(φ∗(x) − φ(x))(f1(x) − cf0(x)) = −φ(x) f0(x) (λ(x) − c) ≥ 0. 

If λ(x)=c then f1(x)−cf0(x) = 0 

Thus the integrand (φ∗−φ)(f1−cf0) is everywhere nonnegative, and hence the integral is ≥ 0. 

Combining with (3) we obtain 

β(φ∗)−β(φ) ≥ 0.  

So β(φ∗) ≥ β(φ). Because φ was any test with α(φ) ≤ α, φ∗ is most powerful at level α. 

This proves optimality 

3. Comments on equality and uniqueness 

If P0(λ(X) = c) = 0 (i.e., the boundary set Bc has zero f0 -mass), we can take γ equal to 0 or 1 

without changing α(φ∗). In that case φ∗ is nonrandomized and the inequality above is strict 

wherever φ differs from φ∗ on a set of positive f0-mass, which implies uniqueness (modulo 

null sets). 

If P0(λ(X)=c) > 0, different choices of γ (or different assignments on the boundary) can 

produce different MP tests, all having the same size and the same power. Randomization is 

therefore essential in discrete situations to achieve exact size and to make the lemma cover all 

possibilities. 

Remarks and intuition 

The key trick is (2): subtracting c times the size-difference converts the difference in powers 

into an integral where the integer and has a definite sign because of how φ∗ was built in terms 

of where f1exceeds cf0. This is the heart of the NP argument. 
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The likelihood ratio λ(x) = λ(x) = 
f1(x)

f0(x)
 orders observations by how much they favor H1 over 

H0. The NP test simply rejects when the evidence (as measured by λ) is large — or 

equivalently when Λ(x) = 
f1

f0
 is small. 

Randomization appears only to exactly hit a prescribed size α when the distribution under H0 

has point-masses (discrete models); for continuous models the boundary usually has 

probability zero and no randomization is needed. 

Example (discrete, showing need for randomization) 

Suppose X takes integer values and under H0 we have P0(X ≥ 5) = 0.06, P0(X ≥ 4) = 0.12. If 

α=0.1, no nonrandomized cut of the form {reject if X ≥ k} attains α exactly (because 0.06 and 

0.12 sandwich 0.10). The NP solution randomly rejects when X=4 with appropriate 

probability γ∈(0,1) chosen so that 0.06 + γP0(X=4) =0.10 

Conclusion 

The Neyman–Pearson Lemma provides a complete and practical framework for constructing 

the most powerful test when comparing two simple hypotheses. It shows that the key 

quantity for making an optimal decision is the likelihood ratio, which evaluates how much 

more likely the observed data are under the alternative hypothesis than under the null. 

According to the lemma, the best strategy is to reject the null hypothesis whenever the 

likelihood ratio  
f1(x)

f0(x)
  becomes sufficiently large, or equivalently, whenever the inverse ratio  

f0(x)

f1(x)
 becomes sufficiently small. In other words, we reject the null precisely in those regions 

of the sample space  where the evidence most strongly favors the alternative. 

What makes the lemma especially powerful is that it offers not just an abstract optimality 

result but a constructive recipe: 

• Compute the likelihood ratio. 

• Identify the values of the data for which this ratio is smallest under H0. 

• Choose the rejection region by selecting a threshold that ensures the test has the 

correct significance level. 

This guarantees that no other test of the same size can achieve higher power against the 

specified alternative. 

In situations involving discrete distributions, the exact significance level may not be 

attainable using a simple cut-off rule. The NP Lemma resolves this issue by allowing 

randomization at the boundary, meaning that for certain observations, the test rejects the 

null hypothesis with a probability between 0 and 1. This ensures that the test’s size is 

controlled exactly at the prescribed level α. Randomization is therefore not a complication of 

the theory but a necessary component for achieving precise optimality when the probability 

distribution has jumps. 

The mathematical proof of the lemma is both elegant and accessible. It relies on analysing the 

sign of a key integrand that represents the difference in power between any candidate test 
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and the NP test. By showing that this integrand is always nonnegative, the proof demonstrates 

that the NP test dominates all competitors. This argument does not require complex 

mathematical tools—only careful algebra and an understanding of how the likelihood ratio 

orders the data. 

Overall, the Neyman–Pearson Lemma stands as one of the most influential results in 

statistics. It not only establishes a gold standard for optimal testing but also lays the 

groundwork for the broader class of likelihood-based methods, including generalized 

likelihood ratio tests and many modern developments in statistical decision theory. 

4.3 CONSTRUCTING MP TESTS USING THE NP LEMMA 

To build an MP test, the following steps are typically used: 

• Write down the likelihood function under H0 and H1. 

• Form the likelihood ratio: Λ(x) = 
L(θ0)

L(θ1)
  

• Determine how the ratio changes with the sample statistic. 

• Define the rejection rule: reject H0 when Λ(x) ≤ k. 

• Find the constant k so that the test has size α. 

4.4 RANDOMIZED TESTS 

In some cases—especially with discrete distributions—it is impossible to select a non-

randomized test that achieves an exact significance level α. 

To handle this, randomized tests assign probability values between 0 and 1 to the decision at 

specific boundary points. 

When randomization is used 

• Hypothesis tests for binomial or Poisson distributions. 

• Cases where the significance level cannot be achieved exactly using cut-off values. 

Illustrative Example (Binomial) 

If X ∼Bin(n,p0)  and Pp0 (X ≥ k) < α <  Pp0 (X ≥ k−1),  then the test may randomize at X = 

k−1: 

Reject H0 with probability γ, where γ is chosen to make the total size equal to α. Randomized 

tests are mathematically essential, although rarely used in day-to-day applied work. 

4.5 NON-RANDOMIZED TESTS 

A non-randomized test always makes a definitive decision—either reject or fail to reject the 

null. 

These tests are: 

• Preferred in practice, 

• Perfectly suitable for continuous distributions, 
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• Easy to interpret and implement. 

General form 

ϕ(x)={1,x∈R(reject) 

0, x∉R(fail to reject)   

In continuous models (normal, exponential), non-randomized tests can exactly satisfy the 

significance level without any randomization. 

4.6 APPLICATIONS AND EXAMPLES 

Examples Using Likelihood Ratio 

Simple Example (Bernoulli Distribution) 

Let X~Bernoulli(θ) test: 

H₀: θ = 0.5 

H₁: θ = 0.7 

Sample: one observation x = 0 or 1 

Step 1: Write pmf (probability mass function): 

f(x;θ)=θx(1−θ)1−x 

Step 2: Likelihood ratio: 

λ((x) = 
f(x;0.7)

f(x;0.5)
 = {

0.7

0.5
 = 1.4, if x = 1

0.3

0.5
 = 0.6,if x = 0

 

Step 3: Apply the rule: 

If λ((x)>k, reject H₀. 

Choose k so that total probability of rejecting H₀ when H₀ is true equals α. 

Example 1: Binomial Distribution (Discrete Case) 

Problem: 

Let X~Binomial(n=10,θ). 

We want to test: 

H₀: θ = 0.5 

H₁: θ = 0.7 

At significance level α = 0.05 
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Step 1: Likelihood Function 

f(x;θ)=(
10

x
)θx(1−θ)10−x 

Under H₀: θ = 0.5 

Under H₁: θ = 0.7 

Step 2: Likelihood Ratio 

λ((x) = 
f(x;0.7)

f(x;0.5)
 =(

0.7

0.5
)
x

(
0.3

0.5
)

10-x

 

This is an increasing function in x ⇒ Larger x means more evidence against H₀ 

Step 3: Critical Region 

Use critical region: Reject H₀ if X ≥ k 

Find value of k such that: 

P(X ≥ k~H0:θ=0.5)≤0.05 

Using Binomial(10, 0.5) table: 

P(X≥8)=P(8)+P(9)+P(10)=0.044+0.010+0.001=0.055 

P(X ≥ 9)=0.010+0.001=0.011 

So, set k = 9 to ensure α ≈ 0.011 < 0.05 

Conclusion: 

Reject H₀ if X ≥ 9 

This is the most powerful test of size ≤ 0.05 

Example 2: Normal Distribution (Continuous Case) 

Problem: 

Let X~N(μ,σ2=1). 

We want to test: 

H₀: μ = 0 

H₁: μ = 1 

Based on a single observation x, at α = 0.05 

Step 1: Likelihood Function 

f(x, μ) = 
1

√2π
e

-1
2
(x-μ)2
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Under H₀: μ = 0 

Under H₁: μ = 1 

Step 2: Likelihood Ratio 

λ(x) = 
f(x;1)

f(x;0)
 = e

-1

2
(x-1)2-(x)2

 

This is an increasing function in x 

⇒ Larger x gives more support to H₁ 

Step 3: Critical Region 

Choose k such that: 

Λ(x) = exp(x−0.5) > c 

⇒x > ln(c) +0.5 

We need to find critical value x₀ such that: 

P(X > x0 ~H0: μ = 0) = 0.05 

From standard normal table: 

Z0.05=1.645 

Conclusion: 

Reject H₀ if x > 1.645 

This is the most powerful test of size α = 0.05 for testing μ = 0 vs μ = 1. 

4.7 CONCLUSION 

This chapter developed the theoretical foundation for most powerful tests, showing how the 

Neyman–Pearson Lemma provides a clear and optimal way to handle simple hypotheses. The 

chapter differentiated between randomized and non-randomized tests, explained why 

randomization appears in discrete models, and showed how MP tests are constructed using 

the likelihood ratio. 

Although MP tests are the most efficient for simple hypotheses, they have limited use when 

dealing with composite alternatives. The existence of UMP tests requires special 

mathematical structure—such as the presence of a monotone likelihood ratio—so they are not 

available for many commonly encountered testing problems. Consequently, practical 

applications often rely on approximate procedures, unbiased tests, or likelihood ratio–based 

methods. 

4.8 SELF-ASSESSMENT QUESTIONS 

1. Define a Most Powerful (MP) test. 

2. State the Neyman–Pearson Lemma in your own words. 

3. What is meant by a simple hypothesis? 
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4. Describe the idea behind the likelihood ratio. 

5. When does a MP test become a UMP test? 

6. Explain why UMP tests are rare for two-sided alternatives. 

7. What is a randomized test? Give an example. 

8. Why are non-randomized tests sufficient for continuous distributions? 

9. Construct the MP test for testing H0:μ=μ0 vs. H1:μ=μ1 . 

10. What is the monotone likelihood ratio property? 

11. Why is MLR important for the existence of UMP tests? 

12. Compare the rejection regions for MP and UMP tests. 

4.9 SUGGESTED READING – BRIEF GUIDE 
 

1. Lehmann & Romano – Testing Statistical Hypotheses 

2. Casella & Berger – Statistical Inference 

3. Hogg, Tanis & Zimmerman – Probability and Statistical Inference 

4. Mood, Graybill & Boes – Theory of Statistics 

5. Wasserman – All of Statistics 

  

 Dr. M.Vijaya Lakshmi 

 

 

                                                                      

 

 

 

 

 

 

 

 



  LESSON -5 

GENERALIZED NEYMAN–PEARSON LEMMA 
 

OBJECTIVES:  

By the end of Lesson 5, students will be able to: 

• Understand the limitations of the classical NP Lemma for composite hypotheses. 

• Define and explain the Generalized Neyman–Pearson (GNP) Lemma. 

• Distinguish between simple and composite null/alternative hypotheses. 

• Apply the GNP Lemma to derive most powerful tests in constrained parameter 

spaces. 

• Explain the power function in composite settings using supremum/infimum 

arguments. 

• Identify situations where GNP Lemma is useful in theoretical test construction. 

STRUCTURE 

5.1 INTRODUCTION TO COMPOSITE HYPOTHESES 

5.2 REVIEW OF CLASSICAL NP LEMMA 

5.3 NEED FOR GENERALIZED NP LEMMA 

5.4 STATEMENT AND INTERPRETATION OF GNP LEMMA 

5.5 OPTIMALITY FOR COMPOSITE HYPOTHESES 

5.6 APPLICATIONS AND EXAMPLES 

5.7 LIMITATIONS OF GNP LEMMA 

5.8 CONCLUSION 

5.9 SELF-ASSESSMENT QUESTIONS 

5.10 SUGGESTED READINGS 

5.1 INTRODUCTION TO COMPOSITE HYPOTHESES 

In statistical hypothesis testing, the form of the hypotheses plays a crucial role in determining 

how a test is constructed and how optimality is defined. A hypothesis is called simple if it 

specifies the parameter of interest exactly, leaving no ambiguity about the distribution under 

that hypothesis. For example, 

H0:θ = θ0 

is a simple hypothesis because the parameter takes one specific value. 

However, in real-world applications, hypotheses rarely specify a single value. Instead, they 

represent a range or set of possible parameter values. Such hypotheses are known as 

composite hypotheses. 

Examples of Composite Hypotheses 

Consider the hypotheses: 

H0:θ ≤ θ0 vs H1:θ > θ0.  
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These are composite because: 

⚫ Under H0, the parameter θ can take any value less than or equal to θ0 

⚫ Under H1, the parameter can be any value greater than θ0. 

Thus, each hypothesis corresponds to a set of parameter values, not a single value. 

Why Composite Hypotheses Are More Complex 

Composite hypotheses are more difficult to handle because a test must perform well 

uniformly over many possible parameter values. For simple hypotheses, optimality is 

straightforward: compare the likelihoods under two fixed parameter values. But for 

composite hypotheses, several challenges arise: 

Multiple Likelihood Functions 

Under a composite null or alternative, the likelihood function changes depending on the 

specific value of the parameter. This means the likelihood ratio is no longer a single function 

but a family of functions. 

Type I Error must be controlled for all values 

For a test to maintain a given significance level α, it must satisfy: 

sup

θ∈Θ0
 Pθ(Reject H0) ≤ α 

That is, the worst-case Type I error across all parameter values in the null space must be 

controlled. 

Power Must Be Good for Every Alternative 

Power is no longer checked at one point but across an entire set: 

inf

θ∈Θ1
 Pθ(Reject H0) 

This means the test must perform uniformly well across all alternatives. 

Optimal Tests may not exist 

Because of conflicting performance requirements over a range of parameter values, there may 

not exist a test that is uniformly superior across all alternatives. 

Relation to the Generalized Neyman–Pearson Lemma 

The classical Neyman–Pearson Lemma is powerful but applies only when both hypotheses 

are simple. It identifies a test that maximizes power at a single alternative parameter value. 
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Composite hypotheses require an extension of this framework. 

This leads to the Generalized Neyman–Pearson (GNP) Lemma, which provides conditions 

under which a test can be considered uniformly most powerful over sets of parameter values. 

The GNP Lemma shifts the optimality conditions from pointwise comparisons to uniform 

comparisons across entire parameter ranges. This is essential for constructing UMP tests in 

one-sided testing problems, particularly within structured families such as the exponential 

family. 

5.2 REVIEW OF CLASSICAL NEYMAN–PEARSON LEMMA (EXPANDED 

EXPLANATION) 

The classical Neyman–Pearson Lemma provides the most powerful test for distinguishing 

between two simple hypotheses: 

H0:θ = θ0 H1:θ = θ1 

The key result can be summarized as: 

Among all level-α tests, the likelihood ratio test (LRT) that rejects H0 when 

Λ(x) = 
f(x∣θ0)

 f(x∣θ1)
  ≤ k is the Most Powerful (MP) test. 

What the Classical NP Lemma Guarantees 

• Optimality at one specific alternative value (θ1) 

• Exact control of Type I error 

• A specific rejection region determined by the likelihood ratio 

What the NP Lemma Cannot Do 

It cannot tell us how to construct tests when the null or alternative involves multiple 

parameter values. 

It cannot guarantee uniform power across a range of alternatives. 

It cannot determine UMP tests for composite hypotheses. 

Thus, although the NP Lemma is powerful and elegant, it is limited to simple-vs-simple 

testing problems. As soon as either hypothesis becomes composite, we must extend the 

theory. 

5.3 Need for Generalized NP Lemma 

In real statistical practice, hypotheses almost never specify a single parameter value. Instead, 

they usually specify ranges or sets of values. Examples: 

H0:μ ≤ μ0 vs H1:μ > μ0 
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H0:p = p0  vs H1:p = p0 

H0:θ ≥ 0 vs H1:θ < 0 

In all these cases, the parameter under either H0 or H1 is not a single number. The NP 

Lemma cannot handle such situations, because: 

1. Multiple Likelihood Ratios 

For composite hypotheses, each value inside the parameter space gives a different likelihood 

ratio: 

Λθ(x) = 
f(x∣θ0)

f(x∣θ)
 

which varies as θ. 

2. Type I Error must be controlled for all values 

To be a level-α test, the test must maintain the error bound uniformly: 

sup

θ∈Θ0
 Pθ(reject H0) ≤ α 

This is far stricter than the simple-case requirement. 

3. Power must be maximized across a set 

For composite alternatives, optimality requires: 

sup

θ∈Θ1
Pθ(reject H0) to be as large as possible. A test that is powerful at one value of θ might 

not be powerful at another. 

4. Optimal tests may not exist 

Conflicting power requirements over ranges of parameters often make it impossible to find a 

single test that is best for all alternative values. This is why UMP tests rarely exist in two-

sided or multi-parameter settings. 

Conclusion 

These difficulties lead naturally to the Generalized NP Lemma, which extends NP Lemma 

to composite hypotheses by using supremum and infimum power comparisons instead of 

pointwise comparisons. 

5.4 STATEMENT AND INTERPRETATION OF GNP LEMMA (EXPANDED) 

Let: 

Θ0 = parameter space under H0 
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Θ1 = parameter space under H1 

A test φ(x) is of level α if: 

sup

θ∈Θ0
Eθ[φ(X)] ≤ α 

Generalized NP Lemma 

A test φ∗is Uniformly Most Powerful (UMP) for testing H0 vs H1 if: 

inf

θ∈Θ1
Eθ[φ∗(X)] ≥ 

inf

θ∈Θ1
Eθ[φ(X)] 

for all level-α tests φ. 

Interpretation 

• The test must be valid (size ≤ α) for every θ in Θ₀. 

• The power of φ∗ must dominate every other test for every θ in Θ₁. 

• This ensures uniform superiority, not just pointwise superiority. 

5.5 OPTIMALITY FOR COMPOSITE HYPOTHESES (EXPANDED) 

To be optimal under composite hypotheses: 

1. Size across Θ₀ 

sup

θ∈Θ0
 Pθ(reject) ≤ α 

The worst-case Type I error determines validity. 

2. Power Across Θ₁ 
sup

θ∈Θ1
 Pθ(reject) 

This ensures performance does not drop for any alternative. 

3. Uniform Dominance 

A test is optimal only if its power curve never falls below that of any competitor for any 

alternative parameter value. This strong requirement explains why UMP tests are rare unless 

additional structural properties (like MLR) exist. 

5.6 APPLICATIONS AND EXAMPLES  

Example 1: Normal Distribution (One-Sided Alternative) 

Testing: 
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H0: μ ≤ μ0 vs H1: μ > μ0..  

The likelihood ratio is a monotone function of  x̅. 

Thus, the UMP test is: 

Reject H0 if  x̅  > c.  

Example 2: Binomial Parameter 

Testing: 

H0: p ≤ p0 vs H1: p > p0 

Reject H0 when X (number of successes) is large. 

Example 3: Poisson Mean 

Testing: 

H0: λ ≤ λ0 vs H1: λ > λ0  

Reject for large values of X. 

These examples demonstrate how the GNP Lemma guides the construction of UMP one-

sided tests. 

5.7 LIMITATIONS OF GNP LEMMA  

Although the Generalized Neyman–Pearson Lemma provides a powerful theoretical 

framework for identifying optimal tests under composite hypotheses, its practical application 

is often limited by several important factors. These limitations help explain why UMP tests 

are relatively rare and why additional structural properties—such as monotone likelihood 

ratios—play a crucial role in modern hypothesis testing. 

1. The GNP Lemma Does Not Directly Construct the Test 

Unlike the classical NP Lemma, which gives a clear likelihood ratio rule for the rejection 

region, the GNP Lemma does not specify an explicit decision rule. 

It tells us what an optimal test must satisfy, but it does not provide: a functional form of the 

test statistic, the exact threshold, or the structure of the rejection region. 

As a result, the lemma is more of a theoretical criterion than a constructive tool. In many 

cases, solving the supremum/infimum inequalities required by the lemma is mathematically 

challenging. 

2. UMP Tests rarely exist when testing two-sided alternatives 

The GNP Lemma can guarantee existence of UMP tests only when the structure of the 

problem aligns perfectly with its conditions. 
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However, in a large number of important testing scenarios—particularly two-sided tests such 

as: 

H0: θ = θ0 vs H1: θ ≠ θ0, a UMP test does not exist. 

This is because: 

• Maximal power for detecting θ>θ0 forces the rejection region toward one tail. 

• Maximal power for detecting θ<θ0 forces it toward the opposite tail. 

Since no single rejection region can simultaneously dominate all others in both directions, 

uniform optimality fails. 

Thus, the GNP Lemma reveals why UMP tests do not exist, but it cannot fix the problem on 

its own. 

3. Supremum/Infimum over parameter spaces can be difficult to evaluate 

The GNP Lemma requires evaluating the following two expressions: 

The supremum of Type I error over Θ0 

sup

θ∈Θ0
 Eθ[φ(X)] 

The infimum of power over Θ1 

inf

θ∈Θ1
 Eθ[φ(X)] 

These quantities may be: computationally intensive, analytically intractable, or impossible to 

compute without numerical methods. In many real applications, these extremum values do 

not have neat closed-form solutions. This makes the use of GNP Lemma impractical unless 

the model has simple mathematical properties. 

4. The Lemma needs additional structural properties to be useful 

The GNP Lemma is most effective when used together with other structural properties such 

as: 

(a) Monotone Likelihood Ratio (MLR) 

MLR allows us to reduce the test to a rejection region based on an ordered statistic. 

Without MLR, even if the GNP Lemma states that a UMP test exists, we may not know how 

to construct it. 

(b) Exponential Family Structure 

The one-parameter exponential family has:sufficient statistics, natural MLR properties. well-

behaved likelihood ratios. These properties allow the GNP Lemma to provide meaningful 
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results. In general distributions lacking such structure, the lemma may not yield practical 

conclusions. 

5. The GNP Lemma ensures optimality but not feasibility 

A test that satisfies the GNP optimality criteria may: exist mathematically but not be easy to 

compute, depend on unknown parameters, require randomization to achieve exact level, or 

be sensitive to model assumptions. Thus, while theoretically sound, GNP-based tests may not 

always be practical for real-world data analysis. 

6. Does not address nuisance parameters 

Many common problems in statistics involve nuisance parameters. 

The GNP Lemma: does not provide guidance for eliminating or adjusting for nuisance 

parameters, cannot guarantee uniform optimality across multidimensional parameter spaces. 

This significantly restricts its applicability to simple, well-structured models. 

Summary of Limitations 

• It does not provide explicit test rules like the classical NP Lemma. 

• UMP tests derived using the GNP Lemma often do not exist for two-sided or multi-

parameter alternatives. 

• Requires solving supremum/infimum optimizations, which are mathematically 

demanding. 

• The lemma is useful only when combined with additional conditions like MLR or 

exponential family properties. 

• Does not naturally address nuisance parameters or complex models. 

• Sometimes optimal tests exist mathematically but are not practically implementable. 

5.8 CONCLUSION 

The Generalized Neyman–Pearson Lemma broadens the scope of the classical NP Lemma by 

addressing the more realistic and commonly encountered case of composite hypotheses, 

where parameters vary over a range rather than being fixed at a single value. It establishes a 

rigorous theoretical foundation for identifying Uniformly Most Powerful (UMP) tests in 

situations involving one-sided composite alternatives, thereby extending optimality 

principles beyond simple-vs-simple comparisons. 

However, the practical usefulness of the GNP Lemma is limited unless the underlying 

probability model possesses additional structural properties. In many settings, the lemma 

alone cannot guarantee the existence or explicit form of a UMP test. This is why further 

assumptions—such as those found in the one-parameter exponential family or in 

distributions exhibiting the Monotone Likelihood Ratio (MLR) property—become 

essential. These structural features help simplify the supremum/infimum comparisons 

required by the lemma and allow the construction of concrete, implementable tests. 

In summary, while the GNP Lemma provides the conceptual framework for optimal testing 

under composite hypotheses, it typically requires the support of stronger model 
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characteristics—such as MLR or exponential family structure—to yield practical and fully 

specified UMP tests. 

5.9 SELF-ASSESSMENT QUESTIONS 

1. What is a composite hypothesis? 

2. How does the classical NP Lemma differ from the GNP Lemma? 

3. State the Generalized Neyman–Pearson Lemma in your own words. 

4. What are the two main conditions an optimal test must satisfy under composite 

hypotheses? 

5. Give an example of a UMP test derived using the GNP Lemma. 

6. Why might UMP tests fail to exist in some composite testing scenarios? 

5.10 SUGGESTED READINGS 

1. Lehmann, E.L. & Romano, J. P. (Testing Statistical Hypotheses) 

2. Casella, G. & Berger, R. L. (Statistical Inference) 

3. Rao, C. R. (Linear Statistical Inference and Its Applications) 

4. Mood, A. M., Graybill, F. A. & Boes, D. C. (Introduction to the Theory of Statistics) 

 

Dr. M.Vijaya Lakshmi 

 

 

 



  LESSON -6 

UMP TESTS FOR SIMPLE NULL 

OBJECTIVES 

• By the end of Lesson 6, students will be able to: 

• Define Uniformly Most Powerful (UMP) tests. 

• Use Neyman–Pearson (NP) and Generalized Neyman–Pearson (GNP) Lemmas to 

construct UMP tests for one-sided alternatives. 

• Understand uniform power and why UMP tests are preferred when they exist. 

• Derive UMP tests for simple null vs. one-sided alternatives using the likelihood ratio. 

• Apply UMP principles to Normal, Binomial, and Poisson models. 

• Recognize the conditions required for the existence of UMP tests, especially the role 

of monotone likelihood ratio (MLR). 

• Identify scenarios where UMP tests fail to exist even for one-sided alternatives. 

STRUCTURE 

6.1 INTRODUCTION TO UMP TESTS 

6.2 ONE-SIDED ALTERNATIVES: MOTIVATION & SETUP 

6.3 UMP TESTS FOR SIMPLE NULL: THEORY 

6.4 LIKELIHOOD RATIO ORDERING AND REJECTION REGION 

6.5 EXAMPLES: NORMAL, BINOMIAL, POISSON 

6.6 POWER FUNCTION AND UNIFORMITY 

6.7 NONEXISTENCE CASES FOR ONE-SIDED TESTS 

6.8 CONCLUSION 

6.9 SELF-ASSESSMENT QUESTIONS 

6.10 SUGGESTED READINGS 

6.1 INTRODUCTION TO UMP TESTS  

In hypothesis testing, we often compare a null hypothesis H0 with an alternative hypothesis 

H1. For a given significance level α (probability of Type I error), many different tests may 

satisfy the condition “size = α”. However, not all of them perform equally well in detecting 

true departures from H0. 

A Uniformly Most Powerful (UMP) test is the test that performs the best among all valid 

tests of size α. 

What does “most powerful” mean? 

The power of a test at a parameter value θ is: 

β(θ)=Pθ(Reject H0)  

Higher power means the test is better at detecting when the alternative hypothesis is true. 

What does “uniformly” mean? 
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For a composite alternative (for example, H1:θ>θ0), there are many possible parameter 

values under H1. A test is UMP if it has the largest power for every one of those values of θ. 

A test is UMP if β(θβ∗(θ)for all tests β∗, and for all θ∈H1..  

So uniformity means: 

No other test beats it anywhere in the entire alternative region. 

Why NP Lemma is not enough 

The Neyman–Pearson Lemma provides the most powerful test only when: 

H0 is simple (only one value of θ), and H1 is simple (only one value of θ1). 

But in many problems, the alternative has many possible values. 

For example: 

H0:μ = μ0, H1:μ > μ0  

Here, μ can be 10.1, 10.5, 11, 15, etc. NP Lemma alone cannot tell us how to find a single 

test that is best for all these values. This is where UMP theory becomes important. 

When UMP Tests Exist 

UMP tests are not guaranteed to exist for all kinds of hypotheses. 

They exist mainly when: The distributions belong to a one-parameter exponential family, 

and The family has the Monotone Likelihood Ratio (MLR) property. 

Under these conditions, we can extend the NP result to composite alternatives (especially 

one-sided ones). 

If a UMP test exists: 

• It is always the best choice because no other test can outperform it. 

• It simplifies testing: the decision rule is clear and optimal. 

• It avoids searching through many possible tests. 

However, UMP tests do not generally exist for: Two-sided alternatives, Multi-parameter 

models, Models without MLR. These limitations explain why this topic is important and why 

statisticians sometimes use UMPU or Likelihood Ratio Tests instead. 

Example  

Consider testing: H0: p = 0.3, H1: p > 0.3  

using a Binomial model. 
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Because the binomial family has MLR in the number of successes X: The test that rejects H0 

for large values of X turns out to be UMP for all p > 0.3. This means: No other size-α test 

gives higher power for any p>0.3. The test is best everywhere in the one-sided alternative. 

6.2 ONE-SIDED ALTERNATIVES: MOTIVATION & SETUP — EXPANDED 

EXPLANATION 

In many real-world situations, we are interested in detecting a change in one particular 

direction. 

For example: 

• Has the average weight of a product increased after a new machine was installed? 

• Has the defect probability of a process exceeded the acceptable limit? 

• Has the rate of accidents increased after a policy change? 

• Is a new fertilizer causing higher crop yield? 

In these cases, we don’t care if the parameter is lower—we are specifically interested in 

whether it has become larger. This leads to one-sided hypothesis testing. 

Typical One-Sided Hypothesis Setup 

H0: θ = θ0 vs. H1: θ>θ0or H0: θ = θ0 vs. H1: θ < θ0  

Here the alternative hypothesis includes many possible values of the parameter. 

Example: 

If H1: μ > 50 can be 51, 55, 70, or any value greater than 50. This is a composite alternative. 

Why One-Sided Tests Are Easier for UMP 

For one-sided alternatives, the parameter moves in only one direction, and this often results 

in: A clear ordering in the likelihood ratio. A natural test statistic (like sample mean, number 

of successes). A rejection rule of the form: 

T(X) > c or T(X) < c  

If the distribution has the Monotone Likelihood Ratio (MLR) property, then the model 

behaves in a predictable way: higher values of the statistic correspond to higher parameter 

values. 

This allows us to use a single threshold to reject H0. 

This forms the mathematical basis for the existence of UMP tests in one-sided cases. 

Practical Interpretation 

A one-sided UMP test tells us: 

“Whenever the parameter increases beyond the null value, this test is the most 

sensitive and effective detector—better than all other size-α tests.” 

This uniform superiority is what makes UMP tests so valuable in one-sided problems. 
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Simple Real-Life Example 

Quality Control Problem: 

A machine is supposed to produce bolts with average length μ=10\mu = 10μ=10 cm. 

If the company wants to check only whether the machine is producing longer bolts, the 

test is: 

H0: μ = 10 Vs H1:μ > 10 

A sample mean greater than expected would lead to rejecting H0. 

Since the normal distribution (with known variance) has MLR in the sample mean, the 

Numerical Example 

A sample of 25 items has an average weight of 102 grams. 

The historical mean is 100 grams, and the standard deviation is known to be 8 grams. 

To test: 

H0:μ = 100 vs H1: μ > 100 

Compute: 

Z = 
(102−1008)

8

√25
25

 =  
21

6
  = 1.25 

If z 0.05 = 1.645, then 1.25 < 1.645, so do not reject H0. 

This test is the UMP test for detecting an increase in the mean. 

6.3 UMP TESTS FOR SIMPLE NULL:  

In this section, we explore how UMP tests arise from the Neyman–Pearson framework 

when the null hypothesis is simple and the alternative is one-sided. The starting point is the 

Neyman–Pearson Lemma (NP Lemma), which states: For testing a simple null against a 

simple alternative, the most powerful test of size α is based on the likelihood ratio. Although 

NP Lemma only deals with simple vs simple, it lays the foundation for constructing UMP 

tests when the alternative is one-sided and composite. 

1. NP Lemma for Simple Hypotheses 

Consider: 

H0: θ = θ0, H1: θ = θ1 > θ0 

Let the likelihoods be: 

L0(x) = f(x;θ0) 
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L1(x) = f(x;θ1) 

The NP Lemma says: 

Reject H0 if  
L1(x)

L0(x)
   > k 

for some constant k chosen to ensure size α. 

This is the most powerful test for distinguishing θ0 from a single alternative value θ1. 

2. Moving to a One-Sided Composite Alternative 

Now consider: 

H0: θ = θ0, H1 : θ > θ0 

Here, the alternative includes infinitely many values: θ1, θ2, θ3,… where each θi > θ0. A 

UMP test must be most powerful simultaneously against all these values. 

This is only possible if the likelihood ratio: 

f(x;θ)

f(x;θ0)
 

changes in a consistent direction as θ increases. 

This property is known as the Monotone Likelihood Ratio (MLR). 

 

3. The Role of Monotone Likelihood Ratio (MLR) 

A family of distributions has MLR in a statistic T(X) if: 

f(x;θ1)

f(x;θ0)
increases as T(X) increases whenever θ1 > θ0..  

This means larger values of T(X) provide stronger evidence against H0. 

Examples of statistics with MLR: 

• Sample mean in Normal distribution 

• Number of successes in Binomial distribution 

• Count in Poisson distribution 

When MLR holds, the NP test for each θ1 > θ0 has the same rejection region shape: 

T(X) > cT(X)  >  cT(X) > c  
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so a single test works best for all one-sided alternatives. 

This test becomes the UMP test. 

4. UMP Test Form for Simple Null vs One-Sided Alternatives 

If the distribution has MLR in T(X), the UMP test for: 

H0: θ = θ0 vs H1: θ > θ0  

is: 

Reject H0 if T(X) > cα   

where cα is chosen so that: 

Pθ0(T(X) > cα) = α. 

This test is: 

Simple to compute 

Based on an intuitively increasing statistic 

Uniformly most powerful for all θ > θ0 

5. Example: Binomial Model  

Let X ∼Bin(n,p). 

Test: 

H0: p = 0.3, H1: p > 0.3 

The likelihood ratio: 

f(x;p1)

f(x;0.3)
is increasing in x.Thus, MLR holds, and the UMP test becomes:  

Reject H0 if X ≥ c for a suitable cutoff c. 

This test is UMP because higher numbers of successes are more consistent with higher p. 

6. Numerical Example (Simple) 

Suppose X ∼Poisson(λ). 

Test: 

H0: λ = 3 vs H1: λ >3 
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Since Poisson distribution has MLR in X, the UMP test is: 

Reject H0 if X ≥ c 

For α=0.05: 

Find ccc such that: 

P(X ≥c∣λ=3) = 0.05 

Using values: 

P(X ≥ 7) = 0.033 

P(X ≥ 6) = 0.084 

So c = 7. 

Test rule: 

Reject H0 if number of events ≥ 7. This is the UMP test. 

6.4 LIKELIHOOD RATIO ORDERING AND REJECTION REGION  

To construct a UMP test for a one-sided alternative, the crucial idea is to understand how the 

likelihood ratio behaves as the data changes. If the likelihood ratio increases (or decreases) 

in a predictable way with a statistic T(X), then we can form a simple and optimal rejection 

region. This behaviour is captured by the Monotone Likelihood Ratio (MLR) property. 

1. Likelihood Ratio for a Simple Null vs. Composite One-Sided Alternative 

Suppose we test: 

H0: θ = θ0 vs H1: θ > θ0. 

For any θ1 > θ0, consider the likelihood ratio: 

Λ(x) = 
𝑓(𝑥; θ1)

𝑓(𝑥; θ0)
 

If the family has MLR in some statistic T(X), then: 

⚫ When the parameter increases, 

⚫ The likelihood ratio also tends to increase whenever T(X) increases. 

This gives a natural order for deciding when data provides stronger evidence against H0. 

2. The MLR Property and Ordering of Evidence 

A family {f(x;θ)} has MLR in T(X) if: 
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𝑓(𝑥; θ1)

𝑓(𝑥; θ0)
 is increasing in T(X)whenever θ1 > θ0.  

Interpretation: 

⚫ Higher values of T(X) make the alternative more likely relative to the null. 

⚫ Lower values of T(X) make the null more likely. 

So evidence accumulates along a single direction. 

This allows us to use a single cut-off in T(X) to define a test. 

3. Form of the UMP Rejection Region 

If MLR holds, the UMP test for H1:θ > θ0 always has the form: 

Reject H0 if T(X) > cα  

where the constant c is chosen such that: 

Pθ0(T(X) > cα) = α.  

No other test of size α can have higher power for all θ>θ0. 

This simple threshold rule is a hallmark of UMP tests. 

4. Why This Rejection Region is Optimal 

Because of the MLR property: 

For any fixed alternative value θ1, the likelihood ratio is highest when T(X) is large. 

The Neyman–Pearson test for H1:θ=θ1H_1:\theta=\theta_1H1:θ=θ1 is: 

• Reject H0 if T(X) is large. 

Since the same direction works for every θ1 > θ0, a single test works against all one-sided 

alternatives. 

Thus, the rejection region is both: 

⚫ Simple 

⚫ Uniformly Most Powerful 

5. Illustrative Example (Binomial) 

Let X ∼Bin(n,p).  

Test: 
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H0: p = p0 vs. H1: p > p0. 

The likelihood ratio: 

Λ(x) = (
p1

p0
)

x

 (
1−p1

1−p0
)

n−x

    

is increasing in x because the exponent of  
p1 

p0 
 is x and p1 > p0. 

Thus, the UMP test is: 

Reject H0 if X ≥ c.  

6. Illustrative Example (Normal Mean) 

Suppose X1,X2,…,Xn are i.i.d. N(μ,σ2) 

Test: 

H0: μ = μ0 vs H1: μ > μ0.  

The likelihood ratio is monotone in the sample mean 𝑥̅ . 

Thus, the UMP test is: 

Reject H0 if 
𝑥̅−μ

σ

√n

−> Zα. Reject H0 

Again, we get a threshold-based test. 

Summary 

When the model has MLR, the likelihood ratio increases or decreases in a predictable way 

with a statistic T(X). This leads to a single ordered rejection region of the form T(X)>c. 

This region works simultaneously for all one-sided alternatives, giving a UMP test. Many 

common distributions (Normal, Binomial, Poisson) have MLR structure. 

6.5 EXAMPLES: NORMAL, BINOMIAL, POISSON  

To understand how UMP tests work in practice, it is helpful to see how they arise in familiar 

statistical models.The three most common one-parameter families—Normal, Binomial, and 

Poisson—all possess the Monotone Likelihood Ratio (MLR) property. As a result, UMP 

tests for one-sided alternatives exist in each case. Below, we examine each model separately 

and derive the UMP test. 

A. UMP Test in the Normal Distribution (Variance Known) 

Consider independent observations 
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X1,X2,…,Xn ∼iidN(μ,σ2) 

where the variance σ2 is known. 

We want to test: 

H0: μ = μ0 vs H1: μ > μ0..  

1. Likelihood Ratio  

The likelihood ratio for two means μ1 > μ0 is increasing in the sample mean  𝑥̅. Thus, the 

Normal family has MLR in 𝑥̅. 

2. UMP Test Form 

Reject H0 if Z = 
𝑥̅−μ

σ

√n

−> Zα {Reject }   

This is the classical one-sample Z-test for a one-sided alternative. 

3. Simple Numerical Example 

A machine produces items with known standard deviation σ = 4. Sample size n=25, sample 

mean 𝑥̅ = 52. 

Test: 

H0:μ = 50 vs H1: μ > 50 

Compute: 

Z = 
(52−50)

4

√25

  = 
2

0.8
 = 2.5 

Critical value: z0.05 = 1.645. 

Because 2.5 >1.645, we reject H0. This is the UMP test for this setup. 

B. UMP Test in the Binomial Distribution 

Let: 

X∼Bin(n,p) 

Test: 

H0:p = p0 vs H1: p > p0..  

1. Likelihood Ratio Behavior 
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The likelihood ratio 

f(x;p1)

f(x;p0)
 =  (

p1

p0
)

x
 (

1−p1

1−p0
)

n−x
is increasing in x when p1 > p0 . 

Thus, larger values of X support the alternative more strongly. 

2. UMP Test Form 

Reject H0 if X ≥ c 

where c is chosen so that: 

P(X ≥c∣p = p0) = α.  

This is a right-tail rejection region. 

3. Simple Numerical Example 

Suppose a production process has defect probability p0 = 0.10. A sample of n = 20 items 

shows 5 defectives. 

Test: 

H0: p = 0.10 vs H1: p > 0.10 

Compute: 

p-value = P(X ≥ 5∣p = 0.10) 

Using binomial table: 

P(X ≥ 5) ≈ 0.044. 

Since 0.044 < 0.05, we reject H0. 

This test is the UMP test for detecting an increase in the defect rate. 

C. UMP Test in the Poisson Distribution 

Let: 

X∼Poisson(λ) 

Test: 

H0: λ = λ0 vs H1: λ > λ0.  

1. Likelihood Ratio  

The likelihood ratio for Poisson is: 
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f(x;;λ1)

f(x;λ0)
 =  (

λ1

λ0
)

x
 (𝑒)−(λ1−λ0) 

Because the expression depends on x through a term of the form  (𝑎)x
, it is increasing in x 

when λ1 > λ0. 

Thus, the family has MLR in X. 

2. UMP Test Form 

Reject H0 if X ≥ c. The cutoff c is selected so that: P(X ≥ c∣λ = λ0) = α. 

3. Simple Numerical Example 

A call center expects λ0 = 5 calls per hour. After an advertising campaign, they observe X=9 

calls in an hour. 

Test: 

H0: λ = 5 vs H1: λ > 5. 

Find: 

p-value = P(X ≥ 9∣λ = 5). 

Using Poisson table: 

P(X ≥ 9) ≈ 0.048. 

Since 0.048<0.05, we reject H0. 

This is the UMP test for an increased call rate. 

Summary  

Normal, Binomial, and Poisson distributions all have MLR, so UMP tests exist for one-

sided alternatives. 

The UMP rejection rule is always a right-tail test of the form: 

T(X) > c 

Thresholds depend on the distribution and significance level. These tests are provably 

optimal for detecting parameter increases. 

6.6 POWER FUNCTION AND UNIFORMITY  

The power function tells us how effective a test is at detecting departures from the null 

hypothesis. 

Understanding this concept is essential because the definition of a Uniformly Most Powerful 
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(UMP) test is based entirely on how the power function behaves across different parameter 

values. 

1. What is the Power Function? 

For a test of H0 against H1, the power function is: 

β(θ) = Pθ(Reject H0) 

This represents: 

The probability that the test correctly rejects the null hypothesis 

When the true parameter value is θ 

At the null value: 

β(θ0) = α because the test is constructed to have size α. 

Inside the alternative: 

We want β(θ)to be as large as possible for every θ∈H1. 

2. How Power Behaves in One-Sided Tests 

In one-sided tests (e.g., H1:θ > θ0): As θ increases above θ0, The probability of rejecting H0 

also increases. Thus, a “good” test will have a power function that rises quickly. 

For example, in a test of H0: μ = 10 Vs H1: μ > 10 

β(10) = α, β(12) > β(11) > β(10) 

This means the test gets stronger as the true parameter moves further into the alternative. 

3. Uniformity in UMP Tests 

A test is Uniformly Most Powerful if: 

β(θ) ≥ β∗(θ)for every θ∈H1,  

for every other test β∗of the same size. 

Uniformity means: 

⚫ The test is best not only at one value, 

⚫ But at all values in the alternative hypothesis. 

No competing test beats it at any point. Most tests may perform well for some parameter 

values but poorly for others. A UMP test performs better or equal everywhere. 

This makes UMP tests the “gold standard” whenever they exist. 
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4. Power Function Example: Normal Mean Test 

Consider: 

X1,…,Xn ∼N(μ,σ2) 

Testing: 

H0:μ = μ0 vs H1:μ > μ0 

The UMP test is: 

Reject H0 if Z = Z = 
𝑥̅−μ0

σ

√n

−> Zα.  

Power Function Derivation 

Under true mean μ: 

Z ∼N(
μ−μ0

σ

√n

,  1) 

Power is: 

β(μ)=P (Z > zα∣μ) = 1−Φ(zα − 
μ−μ0

σ

√n

), 

where Φ is the standard normal CDF. 

Behavior: 

⚫ When μ = μ0: β(μ) = α 

⚫ As μ increases, β(μ) increases 

⚫ As μ→∞, β(μ)→1 

This rising curve confirms high sensitivity for detecting increases in μ. 

5. Power Function Example: Binomial Test 

Suppose: 

X∼Bin(20,p) 

Test: 

H0:p = 0.3 vs H1:p > 0.3 

UMP test: Reject H0 if X ≥ 9. 
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Compute power at different p: 

p Power β(p)=P(X ≥ 9) 

0.30 0.05 (size) 

0.40 0.21 

0.50 0.53 

0.60 0.80 

This monotonic increase shows uniform improvement as p increases. 

6. Why Power & Uniformity Matter 

Understanding power is essential because: 

⚫ A test with low power is practically useless even if it has correct size. 

⚫ UMP tests guarantee the best performance for detecting changes in the direction of 

interest. 

⚫ Uniformity ensures no other test outperforms it anywhere in the alternative region. 

Thus, UMP tests, when available, are the optimal choice for one-sided hypothesis testing. 

6.7 NONEXISTENCE CASES FOR ONE-SIDED TESTS  

Although UMP tests exist for many common one-parameter families (Normal, Binomial, 

Poisson), there are important situations where UMP tests do not exist, even for one-sided 

alternatives. 

Understanding why they fail is essential because it shows the limitations of the Neyman–

Pearson approach and motivates more general testing methods (like UMPU and LRTs). 

1. When UMP Tests Fail to Exist 

UMP tests may fail to exist when: 

a) The model does not have the MLR property 

UMP tests rely heavily on the fact that the likelihood ratio can be ordered using a simple 

statistic T(X). If the distribution does not exhibit MLR, then: The likelihood ratio may 

increase for some values of X and decrease for others. This means we cannot find a single 

direction in which evidence for H1 grows, so no single test works best for all θ > θ0. 

b) The distribution depends on more than one parameter 

In multi-parameter settings (e.g., Normal with unknown mean and unknown variance): 

X1,…,Xn ∼N(μ,σ2)  
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Test: 

H0:μ = μ0 vs H1: μ > μ0  

But since σ2 is unknown: 

⚫ The likelihood depends on both μ and σ2 . 

⚫ We cannot order the likelihood ratio cleanly 

⚫ Thus, UMP test does not exist 

This is why we use the t-test, which is optimal in a different sense (UMPU under symmetry), 

not UMP. 

c) The test statistic has a complicated or non-monotonic likelihood ratio 

Sometimes the LR behaves irregularly; This prevents identifying a single cutoff region. Such 

cases occur in distributions like: Gamma with unknown shape, Non-standard mixture models, 

Non-exponential family distributions, Without MLR, UMP tests generally do not exist. 

2. Example where ump does not exist (normal with unknown variance) 

Consider: 

H0:μ = μ0 vs H1: μ > μ0  

but σ2 is unknown. 

The likelihood ratio involves both μ and σ2. The test that is most powerful for one value of σ2 

might not be most powerful for another. 

Conclusion: 

There is no single test that dominates all others for all σ2. 

Thus, no UMP test exists. Instead, the classical t-test is used, which is UMP unbiased, not 

UMP overall. 

3. Example where ump does not exist (gamma distribution) 

Suppose: 

X ∼Gamma(α,β) 

If we test the rate or shape parameter and the other is unknown, the likelihood ratio cannot be 

arranged in a monotone way. Thus, UMP tests fail, and instead likelihood ratio tests or Rao 

score tests are used. 

4. Key points 

A UMP test for one-sided alternatives exists only when: The distribution belongs to a one-

parameter exponential family, and There is a statistic T(X) with monotone likelihood 
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ratio (MLR). If either condition fails: Likelihood ratios cannot be consistently ordered. 

Multiple competing tests will dominate different parts of the alternative. Therefore, no UMP 

test is possible. This explains why UMP tests are powerful but rare, and why we rely on 

other methods in many practical situations. 

6.8 CONCLUSION  

In this lesson, we developed a complete understanding of Uniformly Most Powerful (UMP) 

tests, their construction, and their limitations. The idea of a UMP test is central in hypothesis 

testing because it represents the best possible test for detecting a change in a parameter in 

one specific direction. A UMP test is one that has the highest power among all tests of a 

given size αfor every parameter value in the alternative hypothesis. This is a very strong 

requirement. For a test to be UMP, it must: Control Type I error at level α, and Perform 

better than every other test across the entire alternative region. This is why UMP tests are 

rare—they demand consistent superiority everywhere. 

We found that UMP tests do exist in some very important situations: 

a) One-parameter exponential families 

Examples include: 

⚫ Normal distribution with known variance 

⚫ Binomial distribution 

⚫ Poisson distribution 

These families have simple forms and are mathematically well-behaved. 

b) When there is a Monotone Likelihood Ratio (MLR) 

If the likelihood ratio increases or decreases in a predictable manner with a statistic T(X), 

then a simple cutoff rule: 

Reject H0 if T(X) > c, becomes optimal for all values of the alternative. 

This is what allows the existence of UMP tests for one-sided alternatives. 

3. When UMP Tests Do Not Exist 

Despite their advantages, UMP tests do not exist in many realistic situations: 

⚫ Two-sided alternatives 

⚫ Multiple unknown parameters (e.g., unknown variance) 

⚫ Distributions without MLR 

⚫ Complicated or irregular likelihood behavior 

In such cases, no single test can dominate all others uniformly. This naturally leads to 

alternative test concepts, such as: 

⚫ UMPU (Uniformly Most Powerful Unbiased) tests 



Center for Distance Education  9.18   Acharya Nagarjuna University 

 

⚫ Likelihood Ratio Tests (LRT) 

⚫ Wald and Score tests 

These methods fill the gap when UMP tests are not available. 

4.  Importantance UMP Tests  

Even though UMP tests are limited, they are important because: 

They give clear, simple rejection rules (usually based on one statistic). 

They provide optimal performance for detecting directional changes. 

They serve as the theoretical foundation for many standard tests. 

For example: 

⚫ The one-sided Z-test for a mean 

⚫ The Binomial right-tail test for proportions 

⚫ The Poisson count test 

are all UMP tests. 

This makes them extremely useful in practical applications across engineering, agriculture, 

medicine, manufacturing, and economics. 

 Summary: 

⚫ UMP tests are powerful, elegant solutions when the statistical model is simple, one-

parameter, and well-structured. 

⚫ Their existence relies heavily on the MLR property. 

⚫ When these conditions hold, UMP tests give us the best possible decision rule for one-

sided hypotheses. 

⚫ When they don’t hold, we must move to more general testing ideas like UMPU or LRTs. 

Thus, UMP tests are both a cornerstone and a limit case of classical hypothesis testing 

theory. 

6.9 SELF-ASSESSMENT QUESTIONS 

1. Define a Uniformly Most Powerful (UMP) test. How does the Neyman–Pearson Lemma 

relate to UMP tests? 

2. What is the Monotone Likelihood Ratio (MLR) property? 

3. Explain why UMP tests typically exist only for one-sided alternatives. 

4. Why do UMP tests fail when the variance in a Normal distribution is unknown? 

5. How is the rejection region of a UMP test typically structured? 

6. A sample of size 25 is taken from a Normal distribution with known variance σ = 6. You 

want to test H0:μ = 50 vs H1:μ > 50. The sample mean is 53. At α=0.05, determine 

whether to reject H0. (Hint: compute a Z-value) 
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7. A Binomial random variable X∼Bin(20,p)X \sim \text{Bin}(20, p)X∼Bin(20,p) is used 

to test: H0: p = 0.3 vs H1: p > 0.3. Suppose you observe X = 8. Compute the p-value. 

8. A Poisson random variable X has mean λ. Test H0:λ = 4 vs H1:λ > 4. 

If X = 9, estimate the p-value. 

6.10 SUGGESTED READINGS 

·  Testing Statistical Hypotheses — E. L. Lehmann & J. P. Romano 

·  Statistical Inference — George Casella & Roger L. Berger 

·  Introduction to the Theory of Statistics — Mood, Graybill & Boes 

·  Mathematical Statistics with Applications — Wackerly, Mendenhall & Scheaffer 

·  Theory of Point Estimation & Testing — Hogg, McKean & Craig 
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 LESSON -7 

TWO-SIDED ALTERNATIVES & UMP LIMITS 

OBJECTIVES 

By the end of Lesson 7, students will be able to: 

⚫  Explain UMP tests in the one-parameter exponential family. 

⚫  Describe the Monotone Likelihood Ratio (MLR) property and its role in constructing    

UMP tests. 

⚫  Apply the Karlin–Rubin theorem to derive UMP tests for one-sided hypotheses. 

⚫  Extend UMP results from exponential family models to general MLR distributions. 

⚫  Understand why UMP tests do not exist for simple null vs. two-sided alternatives. 

⚫  Distinguish between UMP, UMPU, and LRT when UMP does not exist. 

⚫  Analyze examples illustrating existence and nonexistence of UMP tests. 

 

STRUCTURE 

7.1  Introduction of Exponential Family and MLR 

7.2 UMP Tests for One-Sided Null vs. One-Sided alternatives 

7.3 Construction of UMP Tests under MLR property 

7.4 Extension to General Distributions with MLR 

7.5 Why UMP Tests fail for two-sided alternatives 

7.6 Alternative Optimality Concepts When UMP does not exist 

7.7. Conclusion 

7.8 Summary and Key Takeaways 

7.9 Self-Assessment Questions 

7.10 Suggested Readings 

 

7.1  INTRODUCTION OF EXPONENTIAL FAMILY AND MLR 

Many widely used probability models—such as the Normal distribution with known 

variance, Binomial, Poisson, and Exponential distributions—can be written in a special 

mathematical form called the one-parameter exponential family. This form is important 

because it automatically gives us: a natural sufficient statistic T(X), and a structured way to 

study how evidence changes as the data changes. 
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1. Why Exponential Families Matter for UMP Tests 

A distribution belongs to the one-parameter exponential family if it can be written as: 

f(x;θ)=h(x)exp[η(θ)T(x)−A(θ)]. 

Here: 

⚫ T(X) is a statistic that captures all the information about the parameter θ; 

⚫ η(θ)\ is the natural parameter; 

⚫ A(θ) ensures the density integrates (or sums) to 1. 

This structure makes the behavior of the likelihood ratio much easier to analyze. 

2. Understanding the Monotone Likelihood Ratio (MLR) 

The Monotone Likelihood Ratio (MLR) property means: 

f(x;θ1)

f(x;θ0)
 is increasing in T(X)whenever θ1>θ0.  

Interpretation: 

As T(X) increases, the data becomes more supportive of a larger parameter value. This 

“one-directional” change is crucial because it lets us order data from least to most favorable 

for the alternative. 

3. Why MLR Leads to UMP Tests 

If the likelihood ratio always rises as T(X) rises, then rejecting H0 for large values of T(X)is 

a uniformly optimal strategy. Thus, when MLR holds: Reject H0 if T(X) > c.This gives the 

UMP test for one-sided alternatives. 

4. Examples: How MLR Looks in Common Distributions 

(a) Normal Distribution (Known Variance) 

For X1,…,Xn∼N(μ,σ2): Sufficient statistic: T(X) = 𝑋̅  is MLR in 𝑋̅  . If the true mean 

increases above μ0, the likelihood ratio increases continuously with 𝑋̅  . So large sample 

means give stronger evidence against H0. This yields the UMP test: 

Reject H0 if 𝑋̅ > μ0+zα σn..  

(b) Binomial Distribution 

Let X∼Bin(n,p). 

Likelihood ratio for p1 > p0: 
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f(x;p1)

f(x;p0)
 =  (

p1

p0
)

x
 (

1−p1

1−p0
)

n−x
 

This clearly increases with x. Thus, the number of successes T(X)=X is the ordering statistic. 

UMP test: 

Reject H0 if X ≥ c.  

(c) Poisson Distribution 

If X∼Poisson(λ): 

f(x;;λ1)

f(x;λ0)
 =  (

λ1

λ0
)

x
 (𝑒)−(λ1−λ0)

 

For λ1>λ0, Λ(x) increases in x. 

So large counts provide stronger evidence for higher λ. 

UMP test: 

Reject H0 if X ≥ c. 

5. Why This Matters for Testing 

Because exponential families have MLR, they are the main class of models where we can 

systematically construct UMP tests. 

Whenever MLR holds: 

⚫ Evidence increases consistently with T(X). 

⚫ No data “contradicts itself” in different regions. 

⚫ The rejection region is always a simple threshold. 

⚫ The UMP test exists and is easy to compute. 

This is why many classical tests—Z-test, t-test when variance is known, Binomial test, 

Poisson test—are UMP for one-sided alternatives. 

7.2 UMP TESTS FOR ONE-SIDED NULL VS ONE-SIDED ALTERNATIVES  

One of the main strengths of exponential families with MLR is that they allow us to build 

Uniformly Most Powerful (UMP) tests for one-sided alternatives. These are among the 

few situations in statistics where a test can be shown to be optimal for all parameter values in 

the alternative region. 

1. Structure of One-Sided Hypotheses 

A one-sided test focuses on detecting a change in a specific direction: 
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H0:θ ≤ θ0 vs. H1: θ > θ0.   

Here: 

⚫ H0 allows values up to θ0. 

⚫ H1includes all values greater than θ0. 

⚫ The direction of the test is clearly defined ("greater than"). 

This type of hypothesis is common in real applications, e.g.: Checking if machine output has 

increased. Testing if a treatment improves recovery time. Determining if a defect rate has 

exceeded a quality threshold. 

2. Extending NP Lemma to one-sided composite alternatives 

The Neyman–Pearson Lemma (NP Lemma) gives the most powerful test for: 

H0:θ = θ0 vs. H1:θ = θ1, a simple vs simple comparison. 

However, in one-sided problems, the alternative is composite (many possible θ). 

To find a test that is most powerful for all θ>θ0, we need: 

A statistic T(X) that orders the data, and 

Likelihood ratios that move consistently with T(X). 

This is exactly what the MLR property provides. 

3. The Key Role of MLR in UMP Tests 

When the family has MLR in T(X), then for any θ1>θ0: 

f(x;θ1)

f(x;θ0)
  increases as T(X) increases. 

This means: 

⚫ Larger values of T(X) give stronger evidence for θ>θ0. 

⚫ The NP rejection region for any θ1 > θ0 has the same form. 

⚫ A threshold rule T(X)>c works for all alternatives. 

Thus, the UMP test is guaranteed to exist. 

4. Form of the UMP Test 

For the one-sided alternative H1:θ>θ0, the UMP test always takes the form: 

Reject H0 if T(X) > cα, Reject H0 if T(X) > cα,  

where the constant cα is chosen so that: 
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Pθ0(T(X) > cα) = α.  

This gives a size-α test with uniformly maximum power. 

5. Real Examples of UMP One-Sided Tests 

Example 1: Normal Distribution (Mean Test) 

X1,…,Xn ∼N(μ,σ2),σ2 known., 

Test:  H0:μ ≤ μ0 Vs H1:μ>μ0.  

MLR in T(X) = 𝑋̅ ensures a UMP test: 

Z = 
X̅−μ0

σ

√𝑛

.  

Reject H0 if Z> zα.. 

Interpretation: 

Large sample means signal a larger μ. 

Example 2: Binomial Distribution 

Suppose X∼Bin(n,p). 

Test: 

H0:p  ≤  p0 Vs H1:p > p0..  

Since MLR holds in T(X)=X: 

UMP test: 

Reject H0 if X ≥ c. 

Interpretation: 

More successes indicate larger p. 

Example 3: Poisson Distribution 

If X∼Poisson(λ): 

Test: 

H0:λ ≤ λ0 Vs H1:λ > λ0..  

UMP test: 

Reject H0 if X ≥ c. 
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Interpretation: 

Larger counts suggest a larger rate λ. 

6. Why UMP Tests are so useful here 

⚫ For one-sided hypotheses in exponential families: 

⚫ The test is simple and easy to implement. 

⚫ The decision rule follows clear logic: large T(X) means evidence for H1 

⚫ The test is provably the best for detecting increases in the parameter. 

⚫ No other test, regardless of form, has better power for every θ>θ0. 

⚫ This makes UMP tests extremely valuable in practice. 

7.3 CONSTRUCTION OF UMP TESTS UNDER MLR PROPERTY  

Once we know that a distribution has the Monotone Likelihood Ratio (MLR) property in a 

statistic T(X), constructing a UMP test for a one-sided hypothesis becomes systematic and 

straightforward. The MLR ensures that larger values of T(X) always support larger values 

of the parameter θ. This provides a natural ordering of evidence and guarantees the 

existence of a uniformly most powerful test. 

1. Using the Likelihood Ratio to Form the Test 

For testing: 

H0:θ ≤ θ0 vs H1:θ > θ0, consider any point θ1>θ0. 

The likelihood ratio is: 

Λ(x) = 
f(x;θ1)

f(x;θ0)
.  

If the family has MLR in T(X), then: 

⚫ Λ(x) increases whenever T(X) increases; 

⚫ All NP most powerful tests for different θ1’s reject for large values of T(X); 

⚫ The rejection regions have the same shape. 

Thus, one single test works for all alternatives θ>θ0\theta>\theta_0θ>θ0. 

2. The General Form of the UMP Test 

Because of MLR, the UMP test is always of the form: 

Reject H0, if T(X) > cα 

The cutoff cα: 

Pθ0(T(X) > cα)= α..  

⚫ This construction ensures: 

⚫ Size α (correct Type I error), 
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⚫ Maximum power for all θ>θ0, 

⚫ A simple, threshold-based rule. 

3. Why this Construction Works 

MLR means: 

⚫ As T(X)gets larger, the distribution under θ1 > θ0 becomes more likely relative to θ0. 

⚫ Therefore, large values of T(X) correspond to stronger evidence against H0. 

This justifies: 

⚫ Rejecting for large values of T(X), 

⚫ Using a single cutoff for the entire one-sided alternative. 

⚫ This makes UMP tests very easy to construct in exponential families. 

4. Step-by-Step Construction Procedure 

Identify the statistic T(X) in which the family has MLR. 

Find the distribution of T(X) under H0:θ = θ0. 

Determine the cutoff cα such that 

1. Pθ0(T(X) > cα) = α. 

Define the test: 

2. Reject H0 if T(X) > cα.\ 

State that this test is UMP against H1:θ>θ0 due to the MLR property. 

5. Examples 

(a) Normal Distribution (Known Variance) 

X1,…,Xn ∼N(μ,σ2) . MLR in T(X) = 𝑋̅. 

Test: 

H0:μ ≤ μ0 Vs H1:μ > μ0 

Construct UMP test: 

Statistic: T(X) =𝑋̅ 

Under H0: 

1. 𝑋̅ ∼N(μ0,σ2/n)  

Cutoff: 
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2. Cα = μ0+Zασn 

Rejection rule: 

3. Reject H0 if 𝑋̅ > μ0+Zα σn  

This is the classical Z-test, and it is UMP for the one-sided alternative. 

(b) Binomial Distribution 

Let X∼Bin(n,p). 

MLR in the statistic T(X)=X. 

Test: 

H0:p ≤ p0 Vs H1:p > p0  

Construction: 

Statistic: T(X)=X 

Under H0: 

1. X ∼Bin(n,p0) 

Find cα such that: 

2. Pp0(X ≥ cα) = α 

Rejection rule: 

3. Reject H0 if X ≥ cα..  

This is the UMP test for increased proportion. 

(c) Poisson Distribution 

Let X∼Poisson(λ). 

MLR in T(X)=X. 

Test: 

H0:λ ≤ λ0 Vs H1:λ>λ0 

Construction: 

Under H0: 
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1. X ∼Poisson(λ0) 

Cutoff cα solves 

2. Pλ0(X ≥ cα) = α 

Rejection region: 

3. X ≥ cα 

Again, a simple and optimal test. 

7.4 EXTENSION TO GENERAL DISTRIBUTIONS WITH MLR  

Although exponential families provide the most natural setting for UMP tests, the existence 

of a Uniformly Most Powerful (UMP) test does not depend on whether a distribution 

belongs to the exponential family. What actually matters is whether the distribution has the 

Monotone Likelihood Ratio (MLR) property in some statistic T(X). If MLR holds—even 

outside exponential families—we can still construct a UMP test for one-sided alternatives. 

This makes MLR a general and powerful concept for hypothesis testing. 

1. UMP Tests Depend on MLR, Not Just Exponential Form 

The main requirement for UMP tests is: 

f(x;θ1)f(x;θ0)is monotone in T(X). 

for all θ1 > θ0. 

If this holds, then: 

⚫ Data can be arranged from “least to most favorable” for the alternative. 

⚫ A simple rejection region of the form T(X )> c is optimal. 

⚫ UMP tests exist even if the distribution is not exponential. 

Thus, exponential families are sufficient for UMP tests, but not necessary. 

2. Examples of Non-Exponential Families with MLR 

Below are situations where MLR holds outside the classical exponential family structure. 

Example 1: Shifted Distributions (General Form) 

Suppose we have a density of the form: 

f(x;θ) = f0(x−θ), a shift family. If f0(x) is log-concave (e.g., logistic, Laplace), the likelihood 

ratio often satisfies MLR in the statistic: 

T(X) = sample mean or location-type statistic.T(X) = \text{sample mean or location-type 

statistic}.T(X) = sample mean or location-type statistic.  
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UMP test exists for testing increases in θ: 

H0:θ ≤θ0  H1:θ>θ0. 

Even though the logistic distribution is not an exponential family, MLR holds in many cases. 

Example 2: Hypergeometric Distribution (Finite Population) 

Let X = number of successes in a sample drawn without replacement. 

X ∼Hypergeometric(N,K,n) 

Here: 

⚫ N= population size 

⚫ K = number of successes in population 

⚫ n = sample size 

For testing: 

H0:K ≤ K0   H1:K > K0, the likelihood ratio increases with X: 

𝑓(𝑥;𝐾0)

𝑓(𝑥;𝐾1)
 Thus MLR holds, and: Reject H0 if X≥c.UMP test exists, even though the 

hypergeometric distribution is not exponential. 

Example 3: Certain Lifetime Distributions in Reliability 

Many reliability models (e.g., Weibull with known shape) have likelihood ratios that are 

monotone in the total time on test T(X) = ∑Xi. 

UMP tests exist for testing: H0:θ ≤ θ0  H1:θ > θ0,  even though these models are not strictly 

exponential families. 

3. Why This Extension Is Important 

Understanding that MLR is the key requirement provides flexibility when dealing with 

applied problems: 

⚫ Quality-control sampling (hypergeometric) 

⚫ Nonparametric rank tests with MLR properties 

⚫ Lifetime and reliability models 

⚫ Distributions arising from engineering and environmental applications 

This helps in designing optimal tests even outside classical textbook settings. 

4. General Steps to Construct a UMP Test Under MLR (Any Distribution) 

If you know the distribution has MLR in statistic T(X): 
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⚫ Identify the statistic T(X). 

⚫ Confirm that likelihood ratio increases with T(X). 

⚫ Find distribution of T(X) under θ0. 

⚫ Choose cutoff cαsuch that: 

1. Pθ0(T(X) > cα) = α.  

Use rejection rule: 

2. Reject H0 if T(X) > cα.  

This works whether or not the distribution belongs to an exponential family. 

7.5 WHY UMP TESTS FAIL FOR TWO-SIDED ALTERNATIVES  

Up to this point, we saw that UMP tests exist for one-sided alternatives in distributions with 

the MLR property. However, for two-sided alternatives, even in the simplest one-parameter 

exponential families, UMP tests do NOT exist. This failure is fundamental—not a technical 

difficulty. No test can maximize power in both directions simultaneously. 

1. Structure of a Two-Sided Hypothesis 

A typical two-sided test looks like: H0:θ = θ0vs.H1:θ ≠ θ0; This means the parameter could 

be: greater than θ0, or less than θ0; So the alternative hypothesis contains two distinct 

directions. 

2. Conflict between both directions 

To understand why UMP tests fail, imagine two different alternatives: 

θ1 > θ0 and θ2 < θ0. For θ1: Large values of T(X)support H1. The MP test for this direction 

rejects when T(X) is large. 

For θ2: Small values of T(X) support H1. The MP test for this direction rejects when T(X) is 

small. 

Thus: 

⚫ One NP test says reject when T(X) is large. 

⚫ The other NP test says reject when T(X) is small. 

These two tests contradict each other. 

⚫ No single rule can be best for both directions. 

⚫ This makes a UMP test impossible. 

3. Example: Normal Mean Test (Known Variance) 

Let: 
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X1,…,Xn ∼N(μ,σ2) with known σ2.  

Test: 

H0:μ = μ0  H1:μ ≠ μ0..  

One-sided MP tests: 

For H1:μ > μ0: reject for large  𝑋̅. 

For H1:μ < μ0: reject for small 𝑋̅. 

But two-sided alternative requires BOTH: 

Reject if 𝑋̅ > c1 or𝑋̅ < c2.  

There is no single test that is simultaneously most powerful against:all μ > μ0, and all μ < μ0. 

Even this simplest case (Normal, known variance) has no UMP two-sided test. This is why 

two-sided Z-tests are not UMP—they are UMPU (unbiased). 

4. Example: Binomial Proportion Test 

Let X ∼Bin(n,p) 

Test: 

H0:p = p0   H1:p≠p0. If p > p0 : reject for large X. If p < p0: reject for small X. A two-sided 

test needs both: X ≥ c1 or X ≤ c2.  Any test that increases power for p > p0  necessarily 

decreases power for p<p0 and vice versa. Thus, no UMP test exists. 

5. Summary of Reasons for Failure 

UMP tests fail for two-sided alternatives because: 

(a) Conflicting optimal rejection regions 

MP tests for θ > θ0 and θ <θ0 are opposite in direction. 

(b) No single test can dominate in both regions 

A test optimal on the right tail is inferior in the left tail and vice versa. 

(c) MLR only gives ordering in ONE direction 

MLR cannot order data for both an increase and a decrease at the same time. 

(d) Rejection region becomes two-sided 

UMP theory is built on one monotone decision rule. 

Two-sided decisions violate this structure. 
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6. What We use instead of UMP 

Because UMP two-sided tests are impossible, we rely on: 

⚫ UMPU tests (Uniformly Most Powerful Unbiased) 

⚫ Likelihood Ratio Tests (LRT) 

⚫ t-tests (for unknown variance) 

⚫ Wald and Score tests 

These have good optimality properties even though they are not UMP. 

7.6 ALTERNATIVE OPTIMALITY CONCEPTS WHEN UMP DOES NOT EXIST  

When UMP tests do not exist—especially for two-sided hypotheses or multi-parameter 

models—statisticians rely on other optimality criteria that still guarantee good 

performance. 

These substitutes are not “best for all alternatives,” but they are “best under certain fairness or 

generality conditions.” The main alternative concepts are: 

⚫ UMPU tests (Uniformly Most Powerful Unbiased) 

⚫ Likelihood Ratio Tests (LRT) 

⚫  Invariant Tests (Using Symmetry) 

Each of these methods solves the limitation of UMP theory in a different way. 

1. Uniformly Most Powerful Unbiased (UMPU) Tests 

A test is unbiased if: 

β(θ) ≥ α for all θ∈H1. This prevents tests from having low power near the null. Among all 

unbiased tests, if one test has the highest power everywhere in H1, it is called UMPU. 

Most common example: 

Two-sided t-test and two-sided Z-test are UMPU, not UMP. 

These tests avoid favoring one side of the alternative and maintain balanced behavior. 

2. Likelihood Ratio Tests (LRT) 

The LRT compares how well the data fits: the null model, and the best-fitting model under 

the alternative. 

LRT statistic: 

Λ = 
sup

θ ∈ H0
L(θ) 

Λ = 
sup

θ ∈ H1
L(θ)  
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Reject H0 if −2ln(Λ) is too large. 

Why LRT is used: 

⚫ Very general 

⚫ Works for multi-parameter problems 

⚫ Asymptotically optimal 

⚫ Does not require MLR 

Example: 

Testing variance in a Normal distribution, or comparing nested regression models. Although 

LRT is not always UMP, it often has good power and is widely used. 

3. Invariant Tests (Using Symmetry) 

When a model has symmetry (e.g., location or scale invariance), we can construct tests that 

respect this structure. These tests often have optimality within the class of invariant tests. 

Example: 

Testing the mean of a Normal distribution with unknown variance. 

The t-test is the uniformly most powerful invariant test under location-scale 

transformations. 

This is why the t-test is the standard method even though no UMP test exists. 

Summary  

Situation UMP Exists? Best Alternative 

One-sided exponential family Yes UMP test 

Two-sided alternative No UMPU or LRT 

Unknown nuisance parameters No LRT / t-test 

Regression models No Wald / Score / LRT 

Symmetric (location-scale) models No Invariant tests 

7.7 CONCLUSION  

In this lesson, we deepened our understanding of how UMP tests arise, why they are 

powerful, and importantly—why they cannot always be constructed.While Lesson 6 focused 

on UMP tests for one-sided alternatives, Lesson 7 extends this framework, emphasizing 

structure, conditions, generalizations, and limitations. Here are the main ideas brought 

together clearly. 



Testing of Hypothesis                                   7.15           Two-sided alternatives & UMP limits  
  

1. Exponential Families Provide Structure for UMP Tests 

We began by revisiting the one-parameter exponential family, where many common 

distributions—Normal (with known variance), Binomial, Poisson, Exponential—are 

included. 

These distributions share: 

⚫ A clear sufficient statistic 

⚫ A structured likelihood 

⚫ Often, the crucial Monotone Likelihood Ratio (MLR) property 

This structure is what makes UMP tests for one-sided alternatives possible. 

2. MLR is the Key Engine Behind UMP Tests 

The MLR property ensures that: As the parameter increases, the statistic T(X) also tends to 

increase. This creates a single direction of evidence, making it possible to design tests that 

always reject for: T(X)>cα. This simple threshold-based rule is the heart of UMP testing. 

3. UMP Tests for One-Sided Hypotheses are powerful and simple 

When MLR holds, the UMP test for: H0:θ ≤ θ0 vs H1: θ > θ0 is straightforward to derive and 

implement. 

Examples: 

⚫ Large sample mean in Normal distribution 

⚫ Large number of successes in Binomial distribution 

⚫ Large counts in Poisson distribution 

Each is a UMP test for detecting increases in the parameter. 

This shows how optimal tests arise naturally in simple, well-structured models. 

4. UMP Tests fail for two-sided alternatives 

When testing: 

H0:θ = θ0 vs H1: θ≠θ0, the direction of departure can be: to the right (large T(X)), or to the 

left (small T(X)). The most powerful test for increases requires rejecting for large T(X), 

while the most powerful test for decreases requires rejecting for small T(X).These conflict. 

Thus: No single test can maximize power for all alternatives on both sides of θ0. Even in the 

Normal distribution, with all its simplicity, no UMP test exists for two-sided problems. 

5. Alternative optimality criteria save the situation 

Because UMP tests fail in many common settings, we rely on alternative principles: 

⚫ UMPU tests: Best among unbiased tests 

⚫ Likelihood Ratio Tests (LRT): Very general and widely applicable 
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⚫ Wald and Score tests: Useful in regression and large samples 

⚫ Invariant tests: Optimal under symmetry (e.g., t-test) 

These alternative approaches provide strong, practical solutions where UMP tests cannot be 

used. 

⚫ Key Takeaway 1: Exponential Families Provide Structure 

Many common distributions—Normal (with known variance), Binomial, Poisson, 

Exponential—belong to the one-parameter exponential family.These families naturally 

provide: a sufficient statistic T(X),a well-structured likelihood, and often the Monotone 

Likelihood Ratio (MLR) property. This structure is critical for UMP tests. 

⚫ Key Takeaway 2: MLR Enables UMP One-Sided Tests 

The Monotone Likelihood Ratio (MLR) property states that the likelihood ratio is 

monotone (increasing or decreasing) in T(X) whenever the parameter changes. MLR 

guarantees: A consistent direction of evidence. A threshold-based rejection rule. m Existence 

of a Uniformly Most Powerful (UMP) test for one-sided alternatives. The general UMP test 

form is: Reject H0 if T(X)>cα.  

⚫  Key Takeaway 3: One-Sided UMP Tests are Common and Simple 

Because MLR exists in many classical models, UMP tests for one-sided alternatives are easy 

to construct. Typical examples: Normal mean test (variance known) → reject if 𝑋̅ is large. 

Binomial proportion test → reject if X is large. Poisson rate test → reject if count X is large. 

In these settings, UMP tests provide the strongest possible evidence for increases in the 

parameter. 

⚫ Key Takeaway 4: UMP Tests do not exist for two-sided alternatives 

For hypotheses like: H0:θ=θ0vsH1:θ≠θ0, there is a fundamental conflict: Detecting θ>θ0 

requires rejecting for large T(X). Detecting θ < θ0 requires rejecting for small T(X). No 

single test can maximize power in both directions. This impossibility holds even for simple 

models like the Normal distribution. Thus: There is no UMP test for two-sided alternatives 

in one-parameter exponential families. 

⚫ Key Takeaway 5: Alternative optimality concepts are needed 

Since UMP tests fail in many cases, other testing principles become essential: 

⚫ UMPU tests (Uniformly Most Powerful Unbiased) 

⚫ Likelihood Ratio Tests (LRT) 

⚫ Wald and Score Tests 

⚫ Invariant Tests (e.g., the t-test) 

These methods provide robust and theoretically sound solutions for two-sided, complex, and 

multi-parameter problems. 

⚫ Key Takeaway 6: UMP is ideal, but rare 
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UMP tests are theoretically elegant and highly powerful when they exist. 

However: Their existence relies heavily on MLR,They apply mainly to one-sided tests, They 

rarely extend to multi-parameter or two-sided cases. Thus, UMP tests represent an ideal 

benchmark, while more flexible methods like LRT or UMPU are used in practice. 

7.9 SELF-ASSESSMENT QUESTIONS 

1. Define the Monotone Likelihood Ratio (MLR) property. 

2. What is the general form of a UMP test under MLR? 

3. What characteristics of the one-parameter exponential family help in deriving UMP 

tests? 

4. Why do UMP tests exist for one-sided hypotheses but not for two-sided hypotheses? 

5. Explain in your own words why likelihood ratios cannot be uniformly ordered for 

two-sided alternatives. 

6. What is the difference between UMP and UMPU tests? 

7. Binomial Example 

X∼Bin(20,p). 

 Test: H0:p = 0.3 vs H1:p > 0.3. (a) State the UMP test.(b) If X=8, compute the p-

value. 

8. Poisson Example 

X∼Poisson(λ). Test: H0:λ=4 vs H1:λ>4. If X=9, find the p-value (approximate using 

cumulative probabilities). 

9. Normal Mean Example (Known Variance) 

A sample of size n = 25 from N(μ,9) gives  𝑋̅ =12.Test: H0:μ = 10 vs H1:μ > 10 at α 

= 0.05. (a) State the UMP test. (b) Decide whether to reject H0. 

7.10 Suggested Readings 

1. Testing Statistical Hypotheses — E. L. Lehmann & J. P. Romano 

2. Statistical Inference — George Casella & Roger L. Berger 

3. Introduction to the Theory of Statistics — Mood, Graybill & Boes 

4. Mathematical Statistics with Applications — Wackerly, Mendenhall & Scheaffer 

5. Theory of Point Estimation & Testing — Hogg, McKean & Craig 

 

 

 

Dr. M.Vijaya Lakshmi 

 

 

 

 



  LESSON -8 

UMP UNBIASED TESTS 

OBJECTIVES 

Learning Objectives (By the end of Lesson 8, students will be able to): 

• Define unbiased tests and explain the need for unbiasedness. 

• Understand why UMP tests may not exist and how UMP Unbiased (UMPU) tests fill 

this gap. 

• Apply Neyman structure to derive UMPU tests in exponential families. 

• Construct UMPU tests for two-sided hypotheses. 

• Recognize similarities and differences between UMP and UMPU rejection regions. 

STRUCTURE 

8.1 INTRODUCTION 

8.2 UMP UNBIASED (UMPU) TESTS  

8.3 NEYMAN STRUCTURE FOR UMPU TESTS 

8.4 SIMILARITY AND SIMILAR REGIONS  

8.5 EXAMPLES OF UMPU TESTS  

8.6 PROPERTIES AND INTERPRETATION  

8.7 CONCLUSION  

8.8 SELF-ASSESSMENT QUESTIONS  

8.9 SUGGESTED READINGS 

8.1 INTRODUCTION  

Why unbiasedness is needed in two-sided hypotheses. For two-sided testing: If a test puts too 

much weight in the upper tail, it loses power for detecting decreases. If it puts too much 

weight in the lower tail, it loses power for detecting increases. Unbiasedness guarantees:  

⚫ Balanced sensitivity in both directions 

⚫ Fairness across the entire alternative 

⚫ No direction of the alternative is penalized 

Thus, unbiased tests form the correct class in which we can search for optimal two-sided 

tests. 
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UMP tests and their limitations 

• A Uniformly Most Powerful (UMP) test is one that has the highest chance of rejecting 

a false null hypothesis compared to all other tests of the same size. 

• These tests work well for one-sided alternatives in certain families of distributions. 

• However, for many problems such as two-sided hypotheses, a UMP test may not 

exist, which creates the need for other approaches. 

 “unbiasedness” is imposed in hypothesis testing 

• A test is called unbiased if it does not give an unfair advantage to the null hypothesis. 

• In other words, under any alternative, the probability of rejecting the null should be at 

least as large as under the null itself. 

• This rule helps us design tests that are reliable and meaningful, especially when a 

UMP test cannot be found. 

Role of locally most powerful (LMP) tests for local alternatives 

• Sometimes the difference between the null and alternative values is very small. 

• LMP tests are designed to be the most effective in detecting such small departures 

from the null. 

• They are useful when we want sensitivity around the null value, for example, 

checking if a parameter is just slightly greater than the hypothesized value. 

Real-world applications of these concepts 

• In medical studies, to detect small improvements from a new drug compared to the 

standard. 

• In quality control, to notice even small deviations in a production process. 

• In economics, to test whether a new policy has a slight but real effect. 

• In scientific experiments, unbiased tests avoid misleading results and help ensure fair 

conclusions. 

  Before know about but UMP learn Classical Neyman-Pearson Lemma, Generalized 

Neyman-Pearson Lemma (GNP Lemma). 

CLASSICAL NEYMAN-PEARSON LEMMA 

 

8.1.1 Statement of the Lemma 

 

Let H0:θ = θ0  vs H1:θ = θ1  be two simple hypotheses. The Neyman-Pearson Lemma states: 

A test that maximizes power among all level α tests is one that rejects H0  when the 

likelihood ratio  

λ(x) = 
f(x;θ1)

f(x;θ0) 
 exceeds a certain constant k. That is, the most powerful (MP) test of level α has 

the critical region: 

R={x  :λ(x) > k} 
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8.1.2 Assumptions and Interpretation 

Assumptions: 

• Both H0 and H1` are simple hypotheses 

• Likelihood functions f(x;θ0) f and f(x;θ1) are well-defined 

• Random variable X has a known distribution under both hypotheses 

 

Interpretation: 

• The lemma identifies the best possible test (in terms of power) for a fixed significance 

level α. 

• The decision rule depends on comparing likelihoods under both hypotheses. 

• It forms the foundation for most classical hypothesis testing procedures. 

8.1.3 Concept of Most Powerful (MP) Tests 

A test ϕ(x)is most powerful of level α if for all ψ(x) with Eθ0[ψ]≤α, Eθ1[ϕ] ≥ Eθ1 

That is: Among all tests that control the Type I error at α, ϕ maximizes the probability of 

detecting H1 (power) 

8.1.4 Critical Function and Test Construction 

The test function ϕ(x)is usually defined as: 

ϕ(x)={1,λ(x) > kγ, λ(x) = k0, λ(x) < k}   

Where, k is chosen such that the test has level α: 

• Eθ0[ϕ(X)]=α  

• γ∈[0,1]is used for randomization when λ(x)=k occurs with positive 

probability. 

8.1.5 Example: Normal Distribution with Known Variance 

Problem: 

Test H0:μ = μ0 vs H1:μ=μ1, where μ1 > μ0, using X1,X2,…,Xn∼iid N(μ,σ2),σ2 known  

Step 1: Likelihoods 

λ(x) = L(μ1)/ L(μ0) = exp[
n(μ1-μ0)

σ2
(x̅ -

μ1+μ0)

2
)] 

Since λ(x) is monotonic in x̅, we can rewrite the test: 

Reject H0 if x̅  > c  

Step 2: Determine Critical Value 

For level α, find c such that: 
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Pμ0(x  ̅> c)=α⇒c =μ0+ zα⋅  

UMP Test: 

ϕ(x̅)={1,x̅ > c0,otherwise}) =  1,  

This is the most powerful test of level  for testing μ = μ0 vs μ = μ1. 

Generalized Neyman-Pearson Lemma (GNP Lemma) 

8.1.6 Motivation for Generalization: Simple vs Composite Hypotheses 

The classical Neyman-Pearson Lemma applies only to simple hypotheses, i.e., both H0 and 

H1 specify a single value of the parameter. In real applications, we often face composite 

hypotheses, such as: 

H0:θ ≤ θ0 vs H1:θ > θ0 

H0:μ = 0 vs H1:μ ≠ 0 

Challenge: 

Multiple parameter values exist under H0 or H1. We need a way to construct optimal tests that 

work uniformly across all parameter values in one set. 

8.1.7 Statement and Formulation of the GNP Lemma 

Let Φ be the class of test functions ϕ(x) such that: 

Sup

θ∈Θ0
Eθ[ϕ(X)] ≤ ;α; θ∈Θ0sup Eθ[ϕ(X)] ≤ α  

Then, the Generalized Neyman-Pearson Lemma states: 

A test ϕ∗∈Φ is Uniformly Most Powerful (UMP) if: 

Inf

θ∈Θ1
Eθ[ϕ∗(X)] ≥

Inf

θ∈Θ1
Eθ[ϕ(X)],∀ϕ∈Φ 

Key idea: 

We seek a test that: 

Controls the Type I error over all θ∈Θ0. Maximizes the minimum power over all θ∈Θ1 

Formulation Summary: 

Θ0: Null parameter space (composite) 

Θ1: Alternative parameter space (composite) 
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ϕ: Test function 

Goal: Find ϕ ∈ Φ such that: Power ϕ=
Inf

θ∈Θ1
Eθ[ϕ(X)] is maximized 

8.1.8 Application: Finding UMP Tests in Constrained Settings 

Problems where the test must perform uniformly well across a range of values. Especially 

useful in:One-sided tests with composite nulls, Invariance-based tests (location, scale 

families) and Constrained parameter problems. 

Example: 

Suppose X∼N(μ,σ2), H0:μ ≤ μ0 vs H1:μ>μ0 Use Generalised NP Lemma and monotonicity of 

power in μ to justify: 

ϕ(x̅) ={1,(x̅ > c0,ϕ(x̅)={1,0,x̅  > c, x̅  ≤  c}  

Choose ‘c’ to control level: Pμ = μ0 (x̅ > c) = α 

8.1.9 Limitations and Comparison with Classical Lemma 

Feature Classical NP Lemma Generalized NP Lemma 

Type of Hypotheses Simple vs Simple Composite (both H0  and H1) 

Test derived via Likelihood ratio Infimum/supremum of expectations 

Guarantees 
Point wise power 

maximization 

Uniform performance over parameter 

spaces 

Randomization Sometimes needed More common 

Practical Use Direct formula Often guides theory or asymptotics 

Limitations: 

⚫ Often hard to compute infimum/supremum in practice 

⚫ UMP test may not exist even if GNP lemma gives the form 

⚫ In practice, other methods (like Likelihood Ratio Tests or invariance principles) may be 

more feasible 

Summary  

⚫ GNP Lemma extends NP Lemma to composite hypotheses 

⚫ It helps construct UMP tests where NP Lemma cannot be directly applied 

⚫ Practical application depends heavily on the structure of parameter space 

⚫ It lays the foundation for UMP tests under monotone likelihood ratio, explored in the 

next lesson 
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8.2 UMP UNBIASED (UMPU) TESTS 

Definition of Uniformly Most Powerful (UMP) Tests 

• A UMP unbiased test is the best test among all unbiased tests of the same size. 

• It is called “uniformly most powerful” because it gives the highest power for all 

parameter values in the alternative, but only within the class of unbiased tests. 

Let Φα be the set of all level-α tests for testing H0:θ∈Θ0 against H1:θ∈Θ1. A test function 

ϕ∗(x)∈Φα is said to be Uniformly Most Powerful (UMP) if: 

Eθ[ϕ∗(X) ]≥ Eθ[ϕ(X)] for all θ∈Θ1 and all ϕ∈Φα 

That is, ϕ∗ has the highest power function uniformly over all values in the alternative space 

Θ1, among all tests that control the size at level α. 

Note: 

UMP tests may not always exist, especially in two-sided alternatives or multi-parameter 

families. 

Limitations of UMP tests for two-sided hypotheses 

• For one-sided alternatives (e.g., testing if mean > 0), a UMP test often exists. 

• But for two-sided hypotheses (e.g., mean ≠ 0), a UMP test generally does not exist 

because no single test is best for both directions. 

• In such cases, we rely on UMP unbiased tests to ensure fairness and optimality. 

Example: Two-sided test for normal mean 

• Suppose we test H0: μ = 0 vs. H1:μ≠0 with known variance. 

• A simple UMP test cannot be found because we need to be powerful against both 

positive and negative shifts. 

• By imposing the unbiasedness condition, we can construct a test based on the absolute 

value of the test statistic (e.g., the two-sided Z-test). 

• This gives us a UMP unbiased test for the problem. 

UMP unbiased tests extend the idea of UMP tests to situations where perfect UMP tests do 

not exist, especially in two-sided testing problems. 

In hypothesis testing, we aim to design tests that have the highest probability of correctly 

rejecting a false null hypothesis  i.e., tests with the greatest power. 

Importance in Hypothesis Testing 

⚫ Optimal Performance: They offer the best possible chance of detecting false null 

hypotheses, across the entire alternative parameter space. 

⚫ Uniqueness: If a UMP test exists, it is often unique (up to randomization). 

⚫ Simplicity in One-Sided Tests: In many problems (especially one-sided alternatives), the 

UMP test has a simple and interpretation form. 
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⚫ Foundation for Classical Procedures: Many standard tests (e.g., one-sided Z-test, t-test, 

tests in exponential families) are special cases of UMP tests. 

⚫ Benchmark Tool: They serve as a benchmark against which other tests can be evaluated 

for efficiency and performance. 

A Uniformly Most Powerful Unbiased (UMPU) test is:The most powerful test among all 

unbias ed tests. 

This is the best possible optimality concept when UMP tests do not exist. 

Difference between UMP and UMPU 

UMP Tests UMPU Tests 

Best among all tests of size α Best among all unbiased tests of size α 

Exist mainly in one-sided cases Designed mainly for two-sided cases 

Uses MLR property Uses unbiasedness + similarity 

UMP is stronger, but often impossible; UMPU is achievable. 

UMPU tests typically exist in:  

⚫ One-parameter exponential families 

⚫ Two-sided hypotheses 

⚫ Problems where a complete sufficient statistic is available 

⚫  Situations where similarity conditions can be imposed 

⚫ Many classical two-sided tests (Z-test, t-test, exact Binomial test) are UMPU. 

8.3 NEYMAN STRUCTURE FOR UMPU TESTS 

The Neyman Structure provides a constructive method for deriving UMPU tests. 

Conditioning on sufficient statistics 

In exponential families, the sufficient statistic can be decomposed so that: 

⚫ One part contains information about the null 

⚫ The other can be conditioned on to remove nuisance parameters 

This leads to conditional distributions that are easier to test. 

Exact test construction 

Steps: 

1. Identify a complete sufficient statistic for θ. 

2. Condition on that statistic to eliminate nuisance parameters. 

3. Choose a rejection region RRR such that 
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Pθ0(X∈R)=α. 

Ensure 

β(θ )≥ α for all θ∈H1 

to satisfy unbiasedness. 

Relation to exponential families 

⚫ Exponential families have natural sufficient statistics. 

⚫ These statistics allow exact unbiased tests. 

⚫ UMPU tests in exponential families arise from this conditioning framework. 

This is why UMPU tests are standard in classical models. 

8.4 SIMILARITY AND SIMILAR REGIONS 

Tests with constant size across H0 

A test is similar if: 

Pθ(X∈R)=α for all θ∈H0.  

This requirement ensures that: 

The test maintains exact size across the whole null hypothesis. 

No part of the null is unfairly penalized or advantaged. 

Importance in two-sided testing 

Two-sided alternatives require: 

⚫ Equal sensitivity to increases and decreases 

⚫ Balanced rejection region 

⚫ No bias toward one direction 

Similarity ensures this balance. 

Thus: 

Similarity + Unbiasedness → UMPU optimality 

8.5 EXAMPLES OF UMPU TESTS 

1. Two-sided Normal mean test (Z-test or t-test 

⚫ Variance known → two-sided Z-test 

⚫ Variance unknown → two-sided t-test 
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Both are UMPU tests. 

Rejection region: 

Z = 
X̅−μ0

σ

√n

> zα/2 

or 

∣t∣> tα/2,n−1..  

2. Binomial two-sided test 

Testing: 

H0:p=p0 vs p ≠ p0  

The exact binomial test with equal tail areas is UMPU. 

3. Poisson two-sided test 

Testing: 

H0:λ= λ0 vs λ ≠ λ0. 

An exact two-tailed Poisson test yields a UMPU test. 

Why these are UMPU 

All three models are: 

⚫ One-parameter exponential families 

⚫ Having complete sufficient statistics 

⚫ Allowing similarity + unbiasedness 

Hence UMPU tests arise naturally from their structure. 

8.6 Properties and Interpretation 

Unbiasedness 

The test never has lower power in the alternative than at the null: 

β(θ) ≥ α∀θ∈H1.  

This guarantees fairness. 

Optimality within a restricted class 
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The UMPU test is the best (most powerful) among all unbiased tests. Because UP tests do 

not exist in two-sided settings, UMPU tests are the strongest available. 

Other key properties 

⚫ Two-sided rejection region 

⚫ Often symmetric around the null parameter 

⚫ Based on similar regions 

⚫ Derived using Neyman structure 

⚫ Exact (not asymptotic) 

These properties make UMPU tests both practical and theoretically sound. 

One-Parameter Exponential Family 

A probability distribution belongs to the exponential family if its probability density function 

(pdf) or probability mass function (pmf) can be expressed in the form: 

f(x;θ)=h(x)exp[η(θ)⋅T(x)−A(θ)] 

Components: 

Θ: The natural parameter (real-valued for one-parameter case) 

T(x): A sufficient statistic for θ 

η(θ): The canonical parameter, possibly a transformation of θ 

A(θ): The log-partition function (ensures integration/summation equals 

h(x): The base measure, does not depend on θ 

This form is very useful for: 

• Deriving sufficient statistics 

• Applying the Neyman-Fisher factorization theorem 

• Establishing Monotone Likelihood Ratio (MLR) properties 

 Examples: Normal, Binomial, and Poisson Distributions 

(a) Normal Distribution (Known Variance) 

Let X ∼ N(μ,σ2), where σ2 is known. 

f(x;μ) = 
e

-1

2σ2
(xi  -μ)2

√2πσ2
 

This can be rewritten as: 
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f(x;θ) = h(x)exp[η(θ)⋅T(x)−A(θ)] 

Where: 

T(x) = x, η(μ) = 
 μ

σ2
, A(μ) = 

μ

Aσ2 and h(x) = 
e

-1

2σ2
(xi)

2

√2πσ2
 

(b) Binomial Distribution 

Let X∼Bin(n,p), with fixed n 

P(X = x) = (ncx
) px (1−p)n−x 

Rewritten as: 

f(x;θ) = h(x)exp[η(θ)⋅T(x)−A(θ)] 

Where: 

T(x) = x 

η(p) = log(
p

1-p
) 

A(p)=nlog(1+exp(η(p))) = −nlog(1−p) 

h(x) = ncx
 

(c) Poisson Distribution 

Let X∼Poisson(λ) 

P(X = x) = 
e- - λλ

x

x!
 

Expressed in exponential family form: 

f(x;λ) = h(x)exp[η(λ)T(x)−A(λ)] 

Where: 

T(x) = x,  

η(λ) = log(λ),  

A(λ)=λ and h(x) = 
1

x!
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Summary 

Many standard distributions fall under the one-parameter exponential family form. This 

structured representation is powerful and practically useful, as it helps in: 

⚫ Deriving sufficient statistics via the factorization theorem 

⚫ Identifying the Monotone Likelihood Ratio (MLR) property in the sufficient statistic 

⚫ Constructing Uniformly Most Powerful (UMP) tests, especially for one-sided 

alternatives 

8.7 CONCLUSION 

UMP tests provide ideal optimality for one-sided problems, but they completely break down 

for two-sided hypotheses. This failure occurs because the best rejection rule for detecting 

values greater than the null parameter uses large values of the test statistic, while the best 

rule for detecting values less than the null uses small values. A single test cannot 

simultaneously maximize power in both directions, making a UMP test impossible for two-

sided alternatives. 

To overcome this, statisticians restrict attention to unbiased tests, which guarantee that the 

test’s power is never lower in the alternative than at the null boundary. Unbiasedness ensures 

fairness and balanced sensitivity toward both upward and downward departures from the 

null value. This balance is essential in symmetric two-sided testing situations. 

Within this class of unbiased tests, we can identify a test that is best—the Uniformly Most 

Powerful Unbiased (UMPU) test. UMPU tests achieve maximum power among all unbiased 

competitors and therefore represent the strongest possible tests in settings where UMP tests 

cannot exist. 

The construction of UMPU tests relies on two key ideas: 

⚫ Similarity, which ensures the test has the correct size for every value in the null 

hypothesis; 

⚫ Neyman structure, which uses conditioning on sufficient statistics to eliminate nuisance 

parameters and obtain exact, unbiased tests. 

These principles are the foundation behind many well-known two-sided procedures. In fact, 

several classical tests—such as the two-sided Z-test, t-test, and the exact two-sided tests for 

Binomial and Poisson distributions—are all examples of UMPU tests. 

Thus, in summary: 

UMPU tests extend the concept of optimality to the two-sided setting, providing 

the best possible tests when UMP optimality is impossible. 

8.8 SELF-ASSESSMENT QUESTIONS 

1. Why can’t UMP tests exist for two-sided alternatives? 

2. Define an unbiased test. 

3. What makes a test UMPU rather than UMP? 
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4. What is the Neyman structure, and how does it help develop UMPU tests? 

5. Explain the concept of a “similar test.” 

6. Why are two-sided Z-tests and t-tests considered UMPU? 

7. Give an example of a UMPU test in the Binomial or Poisson setting. 

8. How do unbiasedness and similarity together ensure fair testing? 

8.9 SUGGESTED READINGS  

⚫ Testing Statistical Hypotheses — Lehmann & Romano 

⚫ Statistical Inference — Casella & Berger 

⚫ Introduction to the Theory of Statistics — Mood, Graybill & Boes 

⚫ Mathematical Statistics with Applications — Wackerly, Mendenhall & Scheaffer 

⚫ Theory of Point Estimation & Testing — Hogg, McKean & Craig 

 

Dr. M.Vijaya Lakshmi 

 

 

 



 LESSON -9 

LMP Tests (Locally Most Powerful Tests) 

OBJECTIVES 

Learning Objectives (By the end of Lesson 9, students will be able to): 

• Define Locally Most Powerful (LMP) tests. 

• Understand why LMP tests are used when global UMP tests do not exist. 

• Derive LMP tests using the derivative of the power function. 

• Apply LMP methods in small-departure (local alternative) contexts. 

• Explain the idea of LMP (Locally Most Powerful) tests and when they are useful. 

• Describe the concept of similar regions in hypothesis testing. 

• Compare LMP tests with UMP and UMPU tests. 

• Understand Neyman’s structure for constructing tests and its application. 

• Solve illustrative examples involving UMP unbiased and LMP tests. 

STRUCTURE 

9.1 Introduction 

9.2 Definition of LMP Test 

9.3 Derivation of LMP Tests 

9.4 Form of LMP Test Statistic and similar regions in hypothesis testing 

9.5 Examples 

9.6  Neyman’s structure   

9.7 Conclusion 

9.8 Summary and Key Takeaways 

9.9 Self-Assessment Questions 

9.10 Suggested Readings 

 

9.1 INTRODUCTION 

Earlier lessons showed: 

• UMP tests exist only under strict conditions (one-sided, MLR). 

• UMPU tests solve two-sided problems but require unbiasedness and often 

conditioning. 

However, in many real scenarios: 

• UMP may not exist even for one-sided alternatives. 
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• Unbiasedness may be too restrictive or not required. 

We may want a test that is most powerful for alternatives that are close to the null.This 

leads to the idea of Locally Most Powerful (LMP) tests. 

LMP tests maximize power at the null, in the infinitesimal neighborhood of θ = θ0. 

They provide the best performance for detecting small deviations: 

H1:θ=θ0+δ(δ small). 

This is useful when: 

• Alternatives are known to be slight changes 

• Sample size is small 

• Exact UMP tests don’t exist 

• The direction of the alternative is known 

LMP tests are the “best available” when global UMP tests fail. 

9.2 DEFINITION OF LMP TESTS 

Let the power function be β(θ). At θ0, all size-α tests satisfy: β(θ0) = α.  

A test is Locally Most Powerful (LMP) if its derivative of the power function at the null is 

maximized: β′(θ0) is as large as possible. 

Equivalently: 

The LMP test has the steepest immediate rise in power when θ moves away from θ0 

in the direction of the alternative. 

This is a local optimality criterion, unlike UMP which is global. 

• A Locally Most Powerful (LMP) test is designed to be the best test for detecting 

very small departures from the null hypothesis. 

• “Locally” means the test is most powerful in a neighborhood very close to the null 

value. 

• It is useful when the alternative hypothesis is not far from the null, but we still want to 

catch small differences. 

When LMP tests are useful (local alternatives near H0) 

• In real problems, sometimes the parameter may differ only slightly from the null 

value. 

• For example, testing if a new medicine improves survival by a small margin. 

• In such cases, LMP tests are preferred because they maximize the chance of detecting 

those tiny shifts. 
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Mathematical derivation using Taylor expansion around null 

• The idea is based on expanding the power function of a test around the null 

hypothesis. 

• The test that makes this slope (rate of increase in power) the largest at H0  is called the 

LMP test. 

• This involves using derivatives of the likelihood function, leading to tests based on 

the score function. 

Solving an LMP test problem 

• Problem: Test H0:μ=0 vs H1:μ>0 for X∼N(μ,σ2), variance known. 

• Solution outline: 

1. For very small alternatives close to 0, the test with maximum slope in power 

function is desired. 

2. Use the test statistic Z = 
𝑋̅

𝜎
√𝑛
⁄

. 

3. Reject H0 if Z > zα. 

4. This is the LMP test for local alternatives near μ=0. 

9.3 DERIVATION OF LMP TESTS 

Let the likelihood be L(θ), and consider alternatives close to θ0: 

Θ = θ0 + h, h > 0, h small. 

Using Taylor expansion: L(θ0+h) ≈ L(θ0) + hL′(θ0).  

The most powerful test for local alternatives rejects for large values of the score. 

Thus the LMP test statistic is: 

U(X,θ0).  

Reject H0 when: 

U(X,θ0) > cα.  

Where cα is chosen to ensure the test has size α. 

9.4 FORM OF LMP TEST STATISTIC AND SIMILAR REGIONS IN HYPOTHESIS 

TESTING 

Thus: 

✔ LMP tests are score-type tests 

They are the earliest form of what later becomes the Score Test or Lagrange Multiplier 

Test in advanced settings. 
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✔ LMP tests reject for large values of the score 

Indicating evidence that the parameter is increasing beyond θ0\theta_0θ0. 

✔ The LMP test does not require MLR 

Identifying and using similar regions in practice 

• Example: Suppose X∼ Binomial (n, p) and we test H0:p=0.5. 

• A rejection region is chosen such that P (reject H0∣p=0.5)=α. 

• If this probability remains the same for all values of p in H0, the region is similar. 

• Such regions ensure the test keeps the correct size no matter which value in H0 is 

true. 

Definition of similar regions in hypothesis testing 

• A region is called similar if the probability of the test statistic falling in that region is 

the same for all parameter values under the null hypothesis. 

• In other words, the test keeps the significance level constant across all cases of the 

null. 

 Intuition: maintaining significance level for all θ∈H0  

• When the null hypothesis includes more than one parameter value, we want our test to 

behave fairly for all of them. 

• Similar regions guarantee that the test does not accidentally favor one part of the null 

space over another. 

 Role in deriving UMP unbiased tests 

• In many two-sided testing problems, a UMP test does not exist. 

• By restricting ourselves to similar regions, we can ensure the test is unbiased and has 

a fixed size across all values of H0. 

• This condition is key in constructing UMP unbiased tests. 

 Example: Similar regions in exponential families 

• For distributions belonging to the exponential family (like normal, binomial, 

Poisson), it is possible to identify similar regions. 

• Example: In testing H0:μ=0 vs H1:μ≠0 for a normal distribution, the rejection region 

based on ∣Z∣ is a similar region because the probability of rejection remains the same 

for all μ=0. 

Similar regions help ensure that tests remain fair and valid across all null values, and they 

are essential in building UMP unbiased tests. 

9.5 EXAMPLES OF LMP TESTS 

Example: LMP test in normal distribution (mean testing) 



Testing of Hypothesis                                             9.5                                              LMP Tests               
 

• Suppose we test H0:μ=0 against H1:μ>0 when variance is known. 

• A one-sided Z-test is not just UMP but also LMP, since it is the most powerful test in 

the neighborhood of μ=0. 

• If the alternative is only slightly greater than zero (say μ=0.1), the LMP test has the 

highest chance of detecting it. 

LMP tests are specialized tools for alternatives very close to the null, giving us maximum 

sensitivity for detecting small but important differences. 

Example 1: Normal Distribution (Mean Known Variance) 

Let: 

X∼N(μ,σ2) 

Test: 

H0:μ=μ0 vs H1:μ>μ0. 

Compute the score: U(X, μ0) = 
X−μ0

σ2
.  

Reject for large U(X,μ0): 

X>c.  

This yields the familiar one-sided Z-test: 

X−μ0

σ
 > zα.  

Interpretation: 

LMP coincides with UMP when UMP exists. 

Here, since MLR holds, the LMP test = UMP test. 

Example 2: Exponential Distribution 

Let: 

X1,...,Xn ∼Exponential 

Test: 

H0:θ =θ0 vs H1:θ >θ0.  

The score: U(θ0) = 
∂

∂θ
ln(L(θ)) = nθ0 −∑Xiθ0

2..  



Center for Distance Education  9.6   Acharya Nagarjuna University 

 

Reject when the score is large: 

∑Xi < constant.So the LMP test rejects for small sample sums. 

Example 3: Binomial Distribution 

Let: 

X∼Bin(n,p) 

Test: 

H0:p = p0 H1:p > p0.  

Score: 

U(p0)= 
X−np0

p0(1−p0)
..  

Reject when X is large. 

Again, LMP test matches UMP when MLR holds. 

9.6 NEYMAN’S STRUCTURE   

Concept of Neyman’s structure in hypothesis testing 

• Neyman introduced a systematic way to construct good tests. 

• His idea was to use likelihood ratios and critical regions to build tests with controlled 

size (significance level) and maximum power. 

• This approach gives a general framework for hypothesis testing. 

General framework for test construction 

• Step 1: Choose the significance level α (probability of rejecting H0 when it is true). 

• Step 2: Construct a rejection region so that the probability of falling into it under H0  

is exactly α. 

• Step 3: Among all such tests, pick the one that has the greatest power for detecting 

alternatives. 

 Relation to UMP unbiased and LMP tests 

• UMP tests can be derived directly using Neyman’s framework when they exist. 

• For cases where UMP tests do not exist, adding conditions like unbiasedness and 

similar regions helps us find UMP unbiased tests. 

• LMP tests can also be explained through Neyman’s structure when alternatives are 

very close to H0. 
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Application: Example problems using Neyman’s structure 

• Example: Testing the mean of a normal distribution with known variance. 

o Using Neyman’s structure, we build the rejection region around the tails of the 

distribution to maintain level α. 

o This leads naturally to the Z-test, which is the most powerful test in this 

setting. 

• In more complex cases, Neyman’s structure guides us to construct tests that are either 

UMP unbiased or LMP, depending on the problem. 

Neyman’s structure provides a blueprint for building optimal tests, and it connects directly 

to the ideas of UMP, UMP unbiased, and LMP tests. 

✔ LMP vs UMP 

UMP: globally optimal 

LMP: optimal only for very small deviations from θ0\theta_0θ0 

When UMP exists, LMP = UMP. 

When UMP does not, LMP is the next-best option. 

✔ LMP vs UMPU 

UMPU used for two-sided hypotheses 

LMP used for one-sided, near-null testing 

LMP does not require unbiasedness 

✔ LMP vs Likelihood Ratio / Score / Wald Tests 

LMP forms the foundation for: 

Score test (derivative of log-likelihood) 

Lagrange Multiplier test 

Asymptotic tests in large samples 

Thus LMP tests connect classical testing to modern, general-purpose methods. 

9.7 CONCLUSION 

Locally Most Powerful (LMP) tests occupy an important middle ground in statistical 

hypothesis testing, especially in situations where uniformly most powerful (UMP) tests do 

not exist. As we have seen in earlier lessons, the Neyman–Pearson Lemma provides a clear 

and elegant solution for constructing most powerful tests in the case of simple hypotheses. 

However, when hypotheses become composite—particularly one-sided composite—or when 
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the distribution does not have the monotone likelihood ratio (MLR) property, a UMP test 

often does not exist. Similarly, for two-sided alternatives, UMP tests are impossible because 

the directions of evidence required for detecting increases and decreases in a parameter are 

fundamentally incompatible. Because full, global optimality may be unattainable in these 

cases, statisticians often focus instead on local optimality—how the test performs for 

alternatives infinitesimally close to the null hypothesis. This approach leads naturally to LMP 

tests. 

The idea behind LMP tests is straightforward yet powerful: instead of maximizing power 

everywhere in the alternative, we maximize the initial slope of the power function at the 

null parameter value. This is a realistic goal when we expect departures from the null to be 

small or when detecting early, subtle deviations is important. Formally, among all size-α 

tests, an LMP test ensures that the derivative of the power function at the null, denoted β'(θ₀), 

is as large as possible. In other words, if the true parameter moves away from θ₀ by a very 

small amount, the LMP test will be the one that reacts most rapidly and most efficiently. This 

approach is especially valuable in scientific disciplines where early detection of a slight 

change is critical, such as quality control, medical diagnostics, environmental monitoring, or 

reliability engineering. 

A remarkable feature of LMP tests is that they are based on the score function, which is the 

derivative of the log-likelihood function with respect to the parameter. The score reflects how 

sensitive the likelihood is to small changes in the parameter near the null value. If the score 

tends to be large for values of the sample that support the alternative, then rejecting for large 

values of the score makes the test naturally aligned with the direction of evidence. The LMP 

rule therefore becomes: Reject the null when the score function is sufficiently large. This use 

of the score function immediately connects LMP tests to a major component of modern 

statistical inference—the Score Test, also known as the Lagrange Multiplier Test. Indeed, 

the score test used in regression models, generalized linear models, and many likelihood-

based procedures is a direct extension of the LMP idea to multi-parameter and large-sample 

settings. 

Another important property of LMP tests is that they often coincide with UMP tests when 

UMP exists. The same statistical structure that gives rise to UMP tests—particularly the 

MLR property—also ensures that the LMP test points in the correct rejection direction. Thus, 

the LMP test matches the UMP test in problems like testing the mean of a normal distribution 

with known variance or testing the parameter of an exponential distribution. In these cases, 

LMP tests act as a check or confirmation of the UMP result, showing that both global and 

local optimality criteria select the same test. This dual justification strengthens the theoretical 

basis for using classical tests such as the one-sided Z-test and t-test. 

However, the true value of LMP tests appears in scenarios where UMP tests are not available. 

When the likelihood ratio is not monotone or when multiple parameters are involved, 

constructing a UMP test is either impossible or impractical. In such settings, the LMP test 

offers a meaningful and attainable optimality principle. Instead of asking, “What is the 

globally best test for all alternatives?”—a question that may not have an answer—we instead 

ask: “What is the best test for alternatives that lie very close to the null?” This local 

perspective avoids the contradictions that arise in two-sided or multi-parameter settings, yet 

still grounds the test in rigorous optimality. 
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LMP tests also play an important foundational role in asymptotic theory. In large samples, 

the power function can often be approximated by its first derivative at the null, meaning that 

local properties of the test become dominant. As a result, many widely used large-sample 

tests—the Wald test, the Score test, and the Likelihood Ratio test—are deeply connected to 

LMP ideas. Among these, the Score test most directly reflects the LMP structure, since it 

rejects for large values of the score statistic scaled by the observed Fisher information. 

Because of this, the Score test is particularly effective when testing involves nuisance 

parameters fixed under the null or when estimating parameters under the full model is 

computationally difficult. 

In summary, Locally Most Powerful tests provide a crucial bridge in statistical theory 

between the ideal but limited world of UMP tests and the more flexible framework of UMPU 

tests. They are based on the score function, maximize power for alternatives close to the 

null, coincide with UMP tests when UMP exists, and form the theoretical foundation for 

modern likelihood-based tests, especially the Score test. By focusing on local optimality, 

LMP tests offer a practical and elegant solution in many realistic testing situations where 

global optimal solutions do not exist. This makes LMP testing one of the most important 

intermediate concepts in the theory of hypothesis testing. 

9.8 SELF-ASSESSMENT QUESTIONS 

 Define a Locally Most Powerful (LMP) test. 

 Why do we need LMP tests when UMP tests do not exist? 

 What is the role of the score function in LMP tests? 

 How is an LMP test different from a UMP test? 

 Derive the score function for a Normal distribution with known variance. 

 In which situations would an LMP test be most appropriate? 

 Explain why LMP tests are “local” optimality tests. 

 How do LMP tests relate to the score (Lagrange multiplier) test? 

 Describe the concept of similar regions in hypothesis testing. 

 Explain  Neyman’s structure for constructing tests and its application. 

9.9 SUGGESTED READINGS  

• Testing Statistical Hypotheses — Lehmann & Romano 

• Statistical Inference — Casella & Berger 

• Introduction to the Theory of Statistics — Mood, Graybill & Boes 

• Mathematical Statistics with Applications — Wackerly, Mendenhall & Scheaffer 

• Theory of Point Estimation & Testing — Hogg, McKean & Craig 
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 LESSON -10 

LIKELIHOOD RATIO TESTS (LRT) 

 

OBJECTIVES 

• Define the likelihood ratio test and explain its construction. 

• Derive and interpret the likelihood ratio statistic for simple vs. composite hypotheses. 

• Understand key properties of the LRT (consistency, invariance, optimality in certain 

cases). 

• Explain the asymptotic distribution of the LRT statistic (chi-square approximation). 

• Apply the LRT to real examples and interpret results in statistical decision-making.. 

STRUCTURE 

10.1 INTRODUCTION 

10.2 CONSTRUCTION OF THE LRT 

10.3 PROPERTIES OF LRT 

10.4 EXAMPLES OF LRT IN PRACTICE 

10.5 ASYMPTOTIC DISTRIBUTION OF LRT STATISTIC 

10.6 USING LRT IN MULTI-PARAMETER MODELS 

10.7 LIMITATIONS OF LRT 

10.8 CONCLUSION 

10.9 SELF-ASSESSMENT QUESTIONS 

10.10 SUGGESTED READINGS 

10.1  INTRODUCTION 

Hypothesis testing in parametric models often relies on the likelihood function: 

L(θ)=f(x1,x2,…,xn;θ), which measures how well the parameter θ explains the observed data. 

Key ideas: 

Larger likelihood → better fit 

Likelihood maximization → Maximum Likelihood Estimator (MLE) 

Hypothesis testing compares the likelihoods under restricted and unrestricted models 

This naturally leads to the Likelihood Ratio Test (LRT). 

Motivation for Likelihood-Based Testing 
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• The likelihood function measures how well different parameter values explain the 

observed data. 

• In hypothesis testing, we want to compare how likely the observed data are under the 

null hypothesis (H₀) versus the alternative hypothesis (H₁). 

• The likelihood ratio test (LRT) formalizes this comparison by taking the ratio of the 

maximum likelihood under H₀ to the maximum likelihood under H₁. 

• The intuition: 

o If the data fit much better under H₁ than under H₀, the ratio will be small, 

leading us to reject H₀. 

o If the data fit almost equally well under H₀, then the ratio will be close to 1, 

and we do not reject H₀. 

• The LRT provides a general and systematic framework for hypothesis testing, 

applicable across many statistical models (means, variances, regression, etc.). 

• It is considered a powerful and flexible approach, especially when UMP tests are 

not available. 

Distinction Between Simple and Composite Hypotheses 

• Simple Hypothesis: A hypothesis that completely specifies the distribution of the 

data. 

o Example: H0:μ=10 in a normal distribution with known variance. 

o Here, all parameters are fixed under H₀. 

• Composite Hypothesis: A hypothesis that does not fully specify the distribution; 

some parameters remain unknown. 

o Example: H0:μ=10 in a normal distribution with unknown variance. 

o Here, variance is not specified and must be estimated from the data. 

• Why this matters for LRT: 

o In simple vs. simple cases, we can directly compare likelihoods of fully 

specified models. 

o In simple vs. composite or composite vs. composite, we must maximize the 

likelihood under both H₀ and H₁ before taking the ratio. 

Thus, the LRT is especially valuable in handling composite hypotheses, where traditional 

UMP tests often fail to exist. 

10.2 CONSTRUCTION OF THE LRT 

Likelihood Ratio Test Principle 

For testing: 

H0:θ∈Θ0  vs H1:θ∈Θ1, 

define: 

Likelihood Ratio Statistic 

λ(x)=     
𝑠𝑢𝑝𝜃∈𝛩0𝐿(𝜃) 

𝑠𝑢𝑝𝜃∈𝛩𝐿(𝜃) 
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Interpretation: 

⚫ Numerator: best likelihood under the null 

⚫ Denominator: best likelihood under the entire parameter space 

Since the numerator  ≤  denominator, λ∈[0,1]. 

LRT Rule 

Reject H0 when: −2lnλ > cα, 

where cα is chosen to obtain size α. 

⚫ −2lnλ has an asymptotic χ2 distribution 

⚫ Easier to work with 

⚫ Always nonnegative 

The LRT is one of the most general test procedures in statistics. 

10.3 PROPERTIES OF LRT 

Likelihood Ratio Tests have several appealing properties: 

1. General Applicability 

⚫ LRTs can be applied to: 

⚫ Any parametric model 

⚫ Any hypothesis (simple, composite, multi-parameter) 

⚫ Problems with nuisance parameters 

⚫ Complex models (e.g., regression, GLMs) 

⚫ They do not require MLR or exponential family structure. 

2. Invariance 

LRTs are invariant under reparameterization: 

If ϕ = g(θ), the LRT for ϕ is the same as for θ. This is a major theoretical advantage. 

3. Asymptotic Optimality 

As sample size → ∞: 

⚫ LRTs are asymptotically most powerful among all tests of size α\alphaα. 

⚫ This property is due to a fundamental result by Wald. 

4. Connection to Neyman–Pearson Lemma 

For simple vs simple hypotheses: 

LRT = UMP test. 
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Thus LRT generalizes the NP Lemma. 

5. Basis for Many Practical Tests 

Many standard tests are special cases of LRT: 

⚫ t-test 

⚫ F-test 

⚫ ANOVA 

⚫ Chi-square tests 

⚫ Tests in regression and GLMs 

⚫ Model comparison in likelihood frameworks 

This makes LRT one of the most widely used tools in statistical practice. 

Chi-Square Approximation of the LRT Statistic 

• In practice, for large n , we approximate: 

λ(x) ∼ χ2
α ,df 

• This allows us to set a critical region: 

o Reject H0 if 

• λ(x)∼χ2
α ,df 

where χ2
α ,df  is the upper α - quantile of the chi-square distribution. 

• Example: 

o Suppose we test H0:μ=0 vs. H1:μ≠0 in a normal distribution with unknown 

variance. 

o Here, df = 1 (only one parameter, the mean, is being tested). 

o For large samples, the LRT statistic follows approximately a χ1
2  distribution. 

o At significance level α=0.05, the critical value is χ2
0.05,1≈3.84. 

If λ(x) > 3.84, we reject H0 

10.4 EXAMPLES OF LRT IN PRACTICE 

Example 1: Normal Mean (Variance Known) 

X1,…,Xn ∼N(μ,σ2) 

Test: 

H0:μ = μ0 vs H1:μ ≠ μ0.  

The MLE under: 

H0: μ̂ = μ0 

Full model: μ̂ = 𝑋̅ 
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Compute: 

λ(x) = −2lnλ(x) = 
𝑛(𝑋̅−𝜇0)2 

𝜎2  

Reject when: 

|
(𝑋̅−𝜇0) 

𝜎
√𝑛⁄

|> zα/2, which is the familiar two-sided Z-test. 

Conclusion: 

The Z-test is an LRT. 

Example 2: Testing Population Means 

• Problem Setup: 

Suppose X1,X2,…,Xn∼N(μ,σ2) with known variance σ2. 

o Null hypothesis: H0:μ = μ0 

o Alternative: H1:μ ≠ μ0  

o  

• Likelihoods: 

o Under H0, the MLE is fixed at μ = μ0. 

o Under the full model, the MLE is   𝜇̂ = 𝑋̅.  
• Likelihood ratio: 

λ(x) =  
𝐿(𝜇0)

𝐿(𝜇̂)
   

• LRT statistic: 

λ(x) = −2lnλ(x) = 
𝑛(𝑋̅−𝜇0)2 

𝜎2
 

• Distribution: 

o For large nnn, λ (x)∼χ1
2 . 

• Interpretation: 

This coincides with the classical z-test for the mean. 

Example 3: Testing Population Variances 

• Problem Setup: 

Suppose X1,X2,…,Xn ∼ N(μ,σ2) with unknown mean. 

o Null hypothesis: H0:σ
2=σ0

2   

• Alternative: H1:σ2 ≠ σ0
2  

• Likelihoods: 

o Under H0: MLE of mean is  𝑋̅, variance fixed at σ0
2. 

• Under full model: MLEs are 𝜎̂2 = 
1

𝑛
 ∑(𝑋𝑖 −  𝑋̅)2 

• LRT statistic: 
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λ (x)=n*ln(
𝜎0

2

𝜎̂2 
) + 

1

𝜎0
2 ∑(𝑋𝑖 −  𝑋̅)2 - n 

• Distribution: 

o For large n, λ (x) ∼ χ1
2 . 

• Interpretation 

Equivalent to the chi-square test for variance. 

 Applications in Regression and Other Models 

• Linear Regression Example: 

Consider the model 

Y = Xβ + ϵ, ϵ∼N(0,σ2I)  

Null hypothesis: H0: βj = 0 (test whether a specific predictor contributes). 

o Alternative: H1: βj ≠ 0. 

• Likelihoods: 

o Under H0: Fit restricted regression (without predictor). 

o Under full model: Fit full regression (with predictor). 

• LRT statistic: 

λ = −2ln(
𝐿 𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑

𝐿 𝑓𝑢𝑙𝑙
) 

o For large samples, λ∼χ2
df , where df = number of restrictions (predictors 

tested). 

• Interpretation: 

o Equivalent to the F-test (or partial F-test) used in regression. 

o Generalizes naturally to logistic regression and other generalized linear 

models (GLMs). 

10.5 ASYMPTOTIC DISTRIBUTION OF LRT STATISTIC 

One of the fundamental results in statistics is Wilks' Theorem: 

Wilks' Theorem 

For large samples: −2lnλ→ 𝜕χ𝑘
2,  

where 

k = difference in dimensionality between Θ1 and Θ0. 

This means: 

⚫ LRTs become chi-square tests for large nnn. 

⚫ Critical values are obtained from the χ2 distribution. 

⚫ The result does not depend on the underlying model. 
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Why this is powerful 

⚫ Provides a unified method for constructing tests. 

⚫ Allows hypothesis testing in complex models including regression. 

⚫ Applies even when the exact distribution is complicated. 

10.6 USING LRT IN MULTI-PARAMETER MODELS 

LRTs are especially important when multiple parameters are involved. Nested Models 

Model M0is nested inside M1 if: 

Θ0⊂Θ1.  

Example: 

Testing whether a regression coefficient is zero. 

LRT statistic: λ = −2ln(
𝐿 𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑

𝐿 𝑓𝑢𝑙𝑙
) 

Under H0: 

−2lnλ ∼χ𝑘
2    

where k = number of restricted parameters. 

This is widely used in: 

⚫ Logistic regression 

⚫ Poisson regression 

⚫ Survival analysis 

⚫ Mixed models 

⚫ Time-series models 

10.7 LIMITATIONS OF LRT 

Although LRT is powerful, it has some limitations: 

1. Small-sample inaccuracy 

Wilks' theorem is asymptotic. 

For small samples, −2lnλ may not follow χ2 well. 

2. Boundary issues 

If parameters lie on the boundary (e.g., variance components), the chi-square approximation 

fails. 

3. Non-regular models 
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Certain models (e.g., mixtures, change-point models) violate assumptions of Wilks' theorem. 

4. Computational complexity 

Finding supL(θ) may be difficult in:  

⚫ High-dimensional problems 

⚫ Non-convex likelihoods 

Nonetheless, LRT is still the preferred method in most realistic situations. 

10.8 CONCLUSION 

The Likelihood Ratio Test (LRT) is one of the most fundamental and widely used tools in 

statistical hypothesis testing. It provides a unified framework for comparing how well 

different hypotheses explain the observed data. 

1. Compares the Best Likelihoods Under Competing Hypotheses 

The LRT is built on a simple yet powerful idea: 

⚫ Compute the maximum likelihood of the data under the null hypothesis (H₀). 

⚫ Compute the maximum likelihood under the alternative hypothesis (H₁). 

⚫ Compare these two values through their ratio. 

If the data fits the alternative substantially better than the null, the ratio will be small, 

providing evidence against H₀. 

2. Has Strong Theoretical Foundations 

The LRT arises naturally from the likelihood principle and decision theory. 

Key theoretical results supporting it include: 

⚫ Neyman–Pearson Lemma, which shows LRT is optimal for simple hypotheses. 

⚫ Invariance and sufficiency principles, which justify its general use. 

⚫ Information-theoretic interpretations, linking LRT to Kullback–Leibler divergence. 

3. Asymptotically Optimal 

As the sample size grows, the LRT enjoys several optimality properties: 

⚫ The test statistic 2 log(LRT) converges to a chi-square distribution (Wilks’ theorem). 

⚫ It becomes Uniformly Most Powerful (UMP) among a wide class of tests. 

⚫ It attains maximal power against local alternatives (locally asymptotically most 

powerful). 

Thus, even when exact finite-sample properties are complex, LRT performs extremely well 

asymptotically. 

4. Works Universally Across Models 
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Unlike specialized tests designed for specific distributions, the LRT: 

⚫ Applies to any parametric model, including non-normal, non-linear, or mixed models. 

⚫ Works for simple vs simple, simple vs composite, and composite vs composite 

hypotheses. 

⚫ Remains valid regardless of the form of the likelihood, as long as it is identifiable and 

regular. 

This generality makes it the default choice in many modern statistical analyses. 

5. Reduces to Many Classical Tests 

Many well-known classical hypothesis tests are special cases of the LRT: 

⚫ Z-test for means ➝ LRT for normal mean with known variance 

⚫ t-test ➝ LRT for normal mean with unknown variance 

⚫ F-test ➝ LRT for comparing nested regression models 

⚫ Chi-square tests ➝ LRT for categorical data and contingency tables 

⚫ ANOVA tests ➝ also derived from LRT framework 

Thus, LRT unifies a large portion of classical statistics. 

6. Backbone of Modern Statistical Inference 

LRT is central to modern methods such as: 

⚫ Generalized Linear Models (GLMs) 

⚫ Logistic and Poisson regression 

⚫ Mixed-effects models 

⚫ Survival analysis (Cox models) 

⚫ Structural equation models 

⚫ Model selection and deviance analysis 

In machine learning and econometrics, deviance, AIC, and other model comparison tools are 

derived directly from LRT principles. 

7. Despite Limitations, LRT Remains Dominant 

LRT has a few limitations: 

⚫ Performance may drop in small samples. 

⚫ Boundary problems (e.g., testing variance components) can distort the asymptotic chi-

square distribution. 

⚫ Requires maximum likelihood estimates, which may be computationally heavy in 

complex models. 

Even so, in large-sample settings, LRT remains: 

⚫ The most general 
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⚫ The most principled 

⚫ One of the most powerful 

methods for hypothesis testing. 

10.9 SELF-ASSESSMENT QUESTIONS 

1. Define the likelihood ratio statistic. 

2. Why do we reject when −2lnλ? 

3. Explain Wilks' theorem. 

4. What is the relationship between LRT and the Neyman–Pearson Lemma? 

5. How does LRT relate to the Z-test or t-test? 

6. In a multi-parameter model, how is the degrees of freedom determined for the chi-

square approximation? 

7. Give an example where LRT is not accurate due to small sample size. 

8. Why is the LRT invariant under reparameterization? 

10.10 SUGGESTED READINGS 

• Testing Statistical Hypotheses — Lehmann & Romano 

• Statistical Inference — Casella & Berger 

• Introduction to the Theory of Statistics — Mood, Graybill & Boes 

• Mathematical Statistics with Applications — Wackerly, Mendenhall & Scheaffer 

• Theory of Point Estimation & Testing — Hogg, McKean & Craig 

 

Dr. M.Vijaya Lakshmi 



LESSON -11 
NON-PARAMETRIC TESTS AND GOODNESS-

OF-FIT METHODS 
 

OBJECTIVES:  
 

After studying this unit, you should be able to:  
 

• To develop an overall understanding of non-parametric tests, which are distribution-

free methods suitable for ordinal or non-normal data.  

• To learn Wolfowitz’s definition of non-parametric tests and understand why such 

tests do not depend on population distribution assumptions.  

• To understand the concept and procedure of the Chi-square Goodness-of-Fit test, 

which compares observed and expected frequencies to check distributional fit.  

• To learn the purpose and method of the Kolmogorov–Smirnov (K–S) Goodness-of-Fit 

test, this compares sample and theoretical distribution functions. 

 

STRUCTURE 

 
 

11.1 INTRODUCTION  

11.2 NON-PARAMETRIC TESTS 

11.3 WOLFOWIFZ DEFINITION OF NON – PARAMETER TEST 

11.4 CHI – SQUARE TEST FOR GOODNESS OF FIT 

11.5 KOLMOGOROV – SMIRNOV TEST FOR GOODNESS OF FIT 

11.6 CONCLUSION 

11.7 SELF ASSESSMENT QUESTIONS 

11.8 FURTHER READINGS 

 

11.1. INTRODUCTION 

 Most of the standard methods of statistical inference are based on the familiar 

assumptions that the random variables have normal distributions. Then the given procedures 

are optimum. But for non-normal distributions the standard procedures may be far from 

optimum. In such cases non-parametric methods are used the non-parametric methods are 

concerned with the treatment of the population. Another term which is often used about the 

population. Another term which is often used interchangeably with “non-parametric” is 

“Distribution Free”. 

 For the sake of definiteness, classified methods based on specific population 

assumptions may be termed as “parametric methods”. A procedure will be called 

“Distribution free”, if the statistic used has a distribution which does not depend on the 

distribution function of the population from which the sample is drawn.  

Non-parametric tests are statistical methods that do not rely on any specific 

population distribution and are especially useful when data are ordinal, skewed, or when 

sample sizes are small. Wolfowitz defined non-parametric tests as procedures whose validity 

does not depend on the form of the underlying distribution, making them flexible and 

distribution-free. Among the commonly used non-parametric methods, the Chi-square 

Goodness-of-Fit test helps determine whether observed frequencies match expected 



Center for Distance Education  11.2   Acharya Nagarjuna University 

 

frequencies from a theoretical distribution, while the Kolmogorov–Smirnov test compares the 

sample cumulative distribution with a theoretical distribution using the maximum difference 

between them. Together, these methods provide powerful tools for analyzing real-world data 

where classical parametric assumptions may not hold. 

11.2 NON-PARAMETRIC TESTS  

Definition: Non-parametric tests are statistical tests that do not assume any specific 

population distribution and are used when data are ordinal, nominal, or when parametric 

assumptions (like normality) are violated. 

Advantages: 

1. No assumption of normality 

Example: Mann–Whitney U test can compare two groups even if data are skewed. 

2. Useful for small samples 

Example: Sign test can be used even when sample size = 8 or 10. 

3. Works with ordinal and nominal data 

Example: Chi-square test is used for categorical data like gender vs preference. 

4. Less affected by extreme values (outliers) 

Example: Wilcoxon signed-rank test gives good results even when one or two values 

are very high. 

5. Simple to compute and interpret 

Example: Run test for randomness is very easy to apply. 

Disadvantages: 

1. Less powerful than parametric tests 

Example: Mann–Whitney U test has lower power than t-test when data are normal. 

2. Ignores actual numerical values (uses ranking) 

Example: Wilcoxon rank-sum test converts values to ranks, losing information. 

3. Limited advanced procedures 

Example: No direct non-parametric equivalent for complex ANOVA models. 

4. Cannot compare means directly 

Example: Kruskal–Wallis test compares medians/ranks, not means. 

5. Large samples needed for more accuracy 

Example: Chi-square test requires expected cell frequency ≥ 5 for valid results. 

 11.3 WOLFOWIFZ DEFINITION OF NON – PARAMETER TEST: 

 The term non-parametric is, who used it to indicate that the population could not be 

specified by a finite number of parameters. Non – parametric test is concerned with the form 

of the population and not with any parametric values. 

NOTE: 

 Thus the distribution free and on parametric not actually synonynomons terms. From 

theoretical considerations, it is convenient assume that the random variables have continuous 

distribution functions. Theoretically, then it is unnecessary to deal with ties. 
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11.4 CHI – SQUARE TEST FOR GOODNESS OF FIT: 

 A single random sample of size ‘n’ is drawn from a population with unknown 

cumulative distribution function Fx. We wish to test the null hypothesis. 

 H0: Fx (x) = F0 (x) ; for all x. 

Where F0 (x) is completely specified, against the gen alternatives.  

 H1 : Fx (x) ≠ F0 (x) ; for all x. 

In order to apply the chi-square – goodness of fit test provides probability basis for affecting 

the comparison and deciding whether the lack of agreement is too great to have occur by 

chance.  

 Assume that the ‘n’ observations have been grouped into k mutually exclusive 

categorise and is denoted by fiand either ei the observed and expected frequencies 

respectively for the ith group i=1,2,…,k. The decision regarding fit is to be based on the 

deviations fi - ei.  

Suggest by Pearson (1900) is the statistic  

2

1

( )k
i i

i i

f e
q

e=

−
=

                                                                                                                    (1)

 

where,  q is the chi - square test,  is the summation operator, O is observed frequency, ei is 

expected frequency . 

 A large value of q would reflect an incompatibility between the observed and 

expected relative frequencies and therefore the null hypothesis on which the ei were 

calculated should be rejected for q large.   

 The likelihood function of the sample then is  

 ;               0,1,2,...if n=  

                                        1 1

; 1
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= =

= = 
                                                                        (2) 

The maximum likelihood estimates of the parameters in equation (2) are if

n
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likelihood ratio statistic for this hypothesis is 
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The distribution of the quantity ‘-2logT’ approximates the chi-square distribution. The 

degrees of freedom are k-1, since the restriction  leaves only k-1 parameters in Ω 

to be estimated independently. We have here, 
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Equation (3) as a test criterion for goodness of fit. 

Example:1 

The number of accidents per day in a city during 100 days was recorded: 

No. of accidents (x) 0 1 2 3 4 

Observed (O) 23 27 25 17 8 

Test whether accidents follow a Poisson distribution at 5% significance. 

Solution: 

H₀: Data follow Poisson distribution. 

 

Mean accidents (λ) = (0×23 + 1×27 + 2×25 + 3×17 + 4×8) / 100 = 174 / 100 = 1.74 

 

Expected frequencies using Poisson distribution: 

P(0) = 0.175 → E(0) = 17.5 

P(1) = 0.304 → E(1) = 30.4 

P(2) = 0.264 → E(2) = 26.4 

P(3) = 0.153 → E(3) = 15.3 

P(4+) = 0.104 → E(4+) = 10.4 

 

Observed 

(O) 

Expected 

(E) 
O-E (O-E)^2 (O-E)^2/E 

23 17.5 5.5 30.25 1.73 

27 30.4 -3.4 11.56 0.38 

25 26.4 -1.4 1.96 0.07 

17 15.3 1.7 2.89 0.19 

8 10.4 -2.4 5.76 0.55 

χ² = Σ((O - E)² / E) = 2.92 

Degrees of freedom = (5 - 1 - 1) = 3 

Table value χ²(0.05,3) = 7.815 

Inference: 

Since 2.92 < 7.815, we accept H₀. The Poisson distribution is a good fit. 

11.5 KOLMOGOROV – SMIRNOV TEST FOR GOODNESS OF FIT: 

THEORM: 

 The statistic Dn, Dn
+ and Dn

- are completely distribution free for any continuous Fx. 
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PROOF: sup ( ) ( ) max( , )n n x n n
xx

D S x f x D D+ −= − =  

Defining the additional order statistics X(0) = - ∞ and X(n+1) = ∞, we can write 

( ) ( ) ( 1)i j iX X X +   

The probability distribution of Dn, Dn
+ and Dn

- , therefore there are seen to depend only on the 

random variables Fx(X(i)) ;i=1,2,3,..,n. These are the order statistics from the uniform 

distribution on (0,1), regardless of the original Fx(X) as long as it is continuous because of the 

probability integer transformation. Thus Dn, Dn
+ and Dn

- have distributions which are 

independent of particular Fx. 

 A simple proof can be given by making the transformation u = Fx(X) in Dn, Dn
+ and 

Dn
-. This will be left to the reader as an exercise. The above proof has the advantage of giving 

definitions of the Kolmogorov– Smirnov statistic in terms of order statistics. 

 In order to use the Kolmogorov statistics for inference their sampling distributions 

must be known since distributions are independent of Fx. we can assume without loss of 

generality that Fx is the uniform distribution on (0,1). The derivation of the distribution Dn is 

rather tedious. However, the approach below illustrates a number of properties of order 

statistics and is therefore included here (for an in testing alternative deviation). 

11.5.1 KOLMOGOROV – SMIRNOV TWO SAMPLE TEST: 

 The Kolmogorov – Smirnov one sample test can be adopted to the two sample 

problem. In the one sample case, the Kolmogorov – Smirnov statistics compares the 

population CDF with the empirical distribution function. In the two sample case, the 

Kolmogorov – Smirnov well compare the two empirical distributions of the two samples.  

 For two random samples of m x’s and n y’s from continuous populations Fx and Fy 

respectively. We, define the two empirical distributions functions Sm and Tn. They are 

estimates of their populations CDF’s and if  

 H0 : Fx(x) = Fy (x) ; for all x is true. 

 Then Smand Tn are estimates of the common CDF. The one sample Kolmogorov – 

Smirnov procedure suggests that two sample Kolmogorov – Smirnov statistic should be as 

follows… 

, max ( ) ( )m n n n
x

D S x T x= −  

, max ( ) ( )m n m n
x

D S x T x+ = −  

 and        , ,max ( ) ( )m n n m n m
x

D T x S x D+= − =  

Smirnov statistic if we replace Tn(x) by T0(x) and by Supremum. Also the empirical 

distribution form converges in probability to its population CDF uniformly; therefore we get 

the following results. 
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For the asymptotic null hypothesis 
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Then test given by the statistics (1) are consistent again as the following types of alternatives  

STATISTICS ALTERNATIVES 

Dm,n Fx(x) ≠ Fy(x) 

D+
m,n 

Fx(x) ≥ Fy(x), with strict inequality for 

some x. 

D-
m,n 

Fx(x) ≤ Fy(x), with strict inequality for 

some x. 

The statistics are distribution free in the case of continuous Fx and Fy. 

Example 1: Checking if data follows Uniform (0,1) 

Data 

0.10, 0.20, 0.25, 0.40, 0.70 

Step 1: Sort (already sorted) 

Step 2: Compute empirical CDF: 

• For 0.10 → 1/5 = 0.20 

• For 0.20 → 2/5 = 0.40 

• For 0.25 → 3/5 = 0.60 

• For 0.40 → 4/5 = 0.80 

• For 0.70 → 5/5 = 1.00 

Step 3: Compare with theoretical CDF of Uniform(0,1): 

F(x) = x 
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Compute |F(x) – Sₙ(x)| at each point. 

Step 4: Largest difference = D 

Step 5: Compare with K–S critical value 

If D > D(critical) → Reject H₀ 

If D ≤ D(critical) → Accept H₀ 

Example 2: Testing Normality 

Data: 

12, 15, 18, 19, 20, 22, 24, 25 (n = 8) 

H₀: Data comes from a normal distribution. 

Process: 

1. Standardize each value: 

x x
Z

s

−
=  

2. Compute theoretical CDF Φ(z) 

3. Compute empirical CDF 

4. Find largest vertical difference 

5. Compare D with K–S table value 

If D < critical value → Normal distribution is acceptable 

Advantages of K–S Test 

1. Distribution-free (non-parametric) 

Does not depend on the form of distribution of the data. 

2. No need for histogram or grouping 

Uses raw data directly. 

3. Works for any continuous distribution 

Normal, Exponential, Weibull, Uniform, Logistic, etc. 

4. Easy to compute 

Only requires CDF comparisons. 

5. Very useful for small sample sizes 
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Even n = 5, 6, 7 works. 

Disadvantages of K–S Test 

1. Only for continuous distributions 

Not suitable for discrete data (use Chi-square instead). 

2. Less powerful than other tests for normality 

Shapiro–Wilk and Anderson–Darling are stronger. 

3. Sensitive in the middle, not tails 

It focuses on maximum vertical difference → Tail behavior is not well detected. 

4. Parameters must be known 

If mean and variance are estimated from data → K–S becomes less accurate (Lilliefors 

correction needed). 

5. Not suitable for large samples 

Even small deviations cause rejection. 

11.6 CONCLUSION  

In conclusion, non-parametric tests play an important role in statistical analysis when the 

assumptions of parametric tests—such as normality or equal variances—are not satisfied. 

Wolfowitz’s definition highlights that these tests are distribution-free and rely mainly on 

ranks, counts, or order of data rather than actual numerical values. The Chi-square Goodness-

of-Fit test checks how well observed frequencies match theoretical expectations, making it 

valuable for categorical data. Similarly, the Kolmogorov–Smirnov test evaluates the 

agreement between a sample distribution and a theoretical distribution using cumulative 

frequencies. Together, these methods provide flexible, robust, and widely applicable tools for 

analyzing real-world datasets that do not follow classical distributional assumptions. 

11.7 SELF ASSESSMENT QUESTIONS 

1. Explain the assumptions and uses of non-parametric tests. 

2. Describe Wolfowitz’s definition and importance of non-parametric methods. 

3. Explain the procedure for the Chi-square Goodness-of-Fit test with an example. 

4. Discuss the steps involved in performing the Kolmogorov–Smirnov test. 

5. Compare Chi-square and Kolmogorov–Smirnov Goodness-of-Fit tests. 

6. Describe the Kolmogorov–Smirnov test with assumptions, procedure, test statistic, 

and interpretation. 

7. Compare parametric and non-parametric tests with examples and discuss when each 

type is appropriate. 
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LESSON -12 
KENDALL’S TAU, KRUSKAL–WALLIS & 

FRIEDMAN TESTS 
 

OBJECTIVES:  
 

After studying this unit, you should be able to:  

 

• To understand the basic concepts of non-parametric statistical methods used when 

data do not satisfy normality assumptions. 

•  To learn how to measure strength and direction of association using Kendall’s Tau 

based on concordant and discordant pairs. 

• To acquire knowledge of how rank-based tests such as Kruskal–Wallis and 

Friedman’s ANOVA help compare multiple groups. 

•  To understand the purpose of the Kruskal–Wallis test in comparing three or more 

independent samples using median ranks. 

•  To understand the purpose of Friedman’s test in comparing three or more related or 

repeated-measure samples. 

 

STRUCTURE 

 
 

12.1 INTRODUCTION  

12.2 KENDALL’S TAU COEFFICIENT:  

12.3 KRUSKAL – WALLLIS TEST:  

12.4 FRIEDMAN’S TWO-WAY ANOVA BY RANKS: 

12.5 CONCLUSION 

12.6  SELF ASSESSMENT QUESTIONS 

12.7  FURTHER READINGS 

 

12.1. INTRODUCTION 

  

Kendall’s Tau (τ) is a non-parametric measure of correlation that evaluates the 

strength and direction of association between two variables measured on ordinal, interval, or 

ratio scales. 

 

It is based on comparing the number of concordant and discordant pairs rather than actual 

numerical distances. Because it uses ranks, Kendall’s Tau is robust to outliers, suitable for 

small sample sizes, and ideal when the underlying relationship is monotonic but not 

necessarily linear. It is commonly used in behavioral sciences, social sciences, and quality 

control where data may not follow normality. 

 

The Kruskal–Wallis H test is a non-parametric alternative to one-way ANOVA, used when 

comparing three or more independent groups on a continuous or ordinal outcome. 

It is applied when normality or homogeneity of variance assumptions are violated. The test 

works by ranking all observations across groups and evaluating whether the median ranks 

differ significantly. 

 

It is widely used in medical research, education, psychology, and other fields where data are 
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not normally distributed. If the Kruskal–Wallis test is significant, it suggests that at least one 

group median differs, requiring post-hoc pairwise comparisons. 

 

Friedman’s test is a non-parametric alternative to repeated-measures ANOVA, used for 

comparing three or more related or matched groups.  It is applied when the same subjects are 

measured under different conditions or times, and normality assumptions are not satisfied. 

 

The method converts raw data into ranks within each block (subject) and tests whether the 

treatments produce significantly different median ranks.  Friedman’s test is widely used in 

psychology, medicine, engineering, and preference studies where repeated measures are 

common. 

12.2 KENDALL’S TAU COEFFICIENT 

 The Kendall’s tau a measure of association between random variables from any 

bivariate population and is defined as  

                                               e d =  −  

Where, for any two independent pairs of observations (Xi,Yi), (Xj,Yj) from the population.  

 

                            
 ( )( ) 0i j i je
P X X Y Y= − −   

In order the estimate the parameter …… from a random sample of n pairs (X1,Y1), 

(X2,Y2),…(Xn,Yn) drawn from this bivariate population we must find point estimates of the 

probabilities . For each set of pairs (Xi,Yi), (Xj,Yj) of sample observation define the 

indicator variables . 

 

where, Sgn(u) = - 1 if  u< 0 

  > 0 if  u = 0 

  = 1 if  u = 0 

Then the values assumed by Aij are  

1  if these pairs are concordent

-1 if these pairs are discordent  

0 if these pairs are either concordent nor discordent because of a tie in either component





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ija =

The marginal probability distribution of these indicator variables is  
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And then expected value is  

( )( ) 1 ( 1)ij e d e dE A =  + −  = − =  

Since, obviously we have   and . There are only (n2) sets of pairs which need 

to be considered. An unbiased estimator of …… is therefore provided by  

1 0 ( 1)

ij

ij

i j n

A
A

n n


  

= =
−

    

This means of the association in the paired observation is called Kendall’s sample au 

coefficient. 

2

: ( )

var : ( ) ( ) ( )

iij

ij e d e d

Mean E A

iance v A

=

=  − −  −
 

Advantages of Kendall’s Tau 

1. Suitable for ordinal data 

Does not require numerical/interval data. 

2. More robust to outliers 

Since it uses order (rank) instead of raw values. 

3. Easy to understand 

Based on concordance and discordance → intuitive. 

4. Works well for small sample sizes 

Better than Spearman's rho when n < 30. 

5. Measures monotonic relationship 

Detects increasing or decreasing patterns. 

6. Distribution-free (Non-parametric) 

No assumption about normality. 

7. Handles ties better (Tau-b and Tau-c) 

Useful in real survey or social science data. 

Disadvantages of Kendall’s Tau 
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1. More time-consuming to compute 

Requires pairwise comparisons: 

( )1

2

n n −
 pairs → slow for large datasets. 

2. Less powerful with large datasets 

Spearman’s rho is more popular for large n. 

3. Cannot handle nominal data 

Needs rankings/order. 

4. Lower numerical magnitude than Pearson/Spearman 

Values stay smaller, sometimes misinterpreted as “weak correlation”. 

5. Sensitive to many ties in the data 

If many tied ranks → Tau value shrinks. 

6. Not suitable for non-monotonic relationships 

Only detects monotonic trends. 

12.3 KRUSKAL – WALLLIS TEST:  

 The median test for k – samples used information about the magnitude of each of the 

N observations relative to a single number which is the median of the pooled samples. Most 

of the other k – sample ti use more of the available information by considering the relative 

magnitude of each observation when compare with every other observation. The comparison 

is offer in terms of ranks.  

 Since under H0 we have essentially a single sample of size N from the common 

population combine the N observations into a single ordered sequence from smallest to 

largest, keeping track of which observation is from W sample and assign the rank 1, 2,..., N to 

the sequence. If adjacent – ranks are well distributed among the k sample which would be 

true for a random sample from a single population, the total sum of ranks  

will be divided proportionally, the ith sample which contains ni observations, the expected sim 

of ranks would be 

                                             

( 1)( 1)

2 2

i in n NN N

N

++
=  

Equivalently since the expect rank for any observation average rank  for ni observations 

the expected sum of ranks is ni(N+1) denoted by Ri. The actual sum of ranks assigned to the 

elements in the ith sample. A reasonable test statistic could be based on a function of the 
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deviations between these observed and expected rank sums. Since deviations in either 

direction indicate disparity between the samples and absolute values are not particular 

treatable mathematically the sum of squares of theses deviations can be employed as  

                                   

2
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( 1)
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n N
S R
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                                                               (1)

 

The null hypothesis is rejected for large values of S. (In order to determine the null 

probability distribution of S consider the ranked sample data recorded in a table with K 

columns, where he entire in the ith column are the ni ranks occupied by the elements in the ith 

sample. Ri is then the ithcolumn sum. Under H0 the integers 1,2,3,..,N are assigned at random 

to the K column except for the restriction that there be ni integers in column i). The total 

number of ways to make the assignment of ranks then the number of partitions of N distinct 

elements into K ordered sets, the ith of size ni and this is  

                                              1

!

i

k

i

N

n
=


 

 Each of these probabilities must be enumerated and the values of S valuated for each. 

If t(S) denotes the number of assignments with the particular values ‘S’ calculated from 

equation (1) then, i=1,2,….,n  Obviously, the calculation required are expected 

tedious and therefore will not be illustrated here of exact probabilities for ‘S’ are available in 

Kij (1952), for k=3,4 and 5 but only for ni equal and very critical values for some large equal 

sample size are also given. 

 Somewhat more useful test criterion is weighted sum of squares of deviation with the 

reciprocal of the respective sample sizes used as weights, thus the Kruskal – Wallis statistics 

is denoted as  
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The consistency of H is investigated Kruskal. H and S are equivalent test criteria only for all 

ni equal exact probabilities for H have been tabulated in Kruskal Wallis (1952) for k = 3 all 

<5 and more extensive tables for k = 3 are given in Alexander and Quacle (1968). 

 Under the null hypothesis, the ni entries in column were randomly selected from the 

set {1,2,3,…,N}. They actually constitute a random sample of size ni drawn without 

replacement from the finite population consisting of the first N integers. 

 The mean and variance of this population are  

                        

2 2
2

1 1

1 1 1 1
,

2 2 12

N N

i i

N N N
i

N
 

= =

+  +  − 
= = = − =  
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   

The only assumption made initially was that the population was continuous exact this is of 

course was it avoid the problem of ties when two or more observation are tied with in a 



Center for Distance Education  12.6   Acharya Nagarjuna University 

 

column, the value of H is the same regardless of the method used to resolve the ties since 

rank sum is not affected when tis occur across columns, the midrank method is generally 

used. Alternative for a conservative test the ties can be broken in the way which is least 

conductive to rejection of H0 

Example 

We want to test whether three fertilizers give the same yield. 

Data: 

• F1: 3, 4, 5 

• F2: 2, 3, 4 

• F3: 6, 7, 8 

Step 1: Combine and rank all values 

Value Rank 

2 1 

3 2.5 

3 2.5 

4 4 

4 4 

5 6 

6 7 

7 8 

8 9 

Step 2: Sum of ranks 

• F1: 4 + 6 + 7 = 17 

• F2: 1 + 2.5 + 4 = 7.5 

• F3: 8 + 9 + 6 = 23 

(You may recompute exactly—values may slightly vary depending on ties; idea 

remains same.) 

Step 3: Calculate H 

N=9,   k=3 

Compute simplified: 

            
( )

( )
2 2 212 17 7.5 23

3 10
9 10 3 3 3

H
 

= + + − 
 

 

                                H≈6.5  
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Interpretation: 

• df = k – 1 = 2 

• Chi-square critical @ 5% = 5.99 

Since 6.5 > 5.99, 

Reject H₀ → Fertilizer types show significant difference in median yield. 

Advantages of Kruskal–Wallis Test 

1. Non-parametric (no normality required) 

Works well for skewed data, outliers, ordinal data. 

2. Can compare 3 or more groups 

Unlike Wilcoxon/Mann–Whitney (only 2 groups). 

3. Simple to compute and interpret 

Based on ranks → easy to explain and teach. 

4. Robust to outliers 

Ranks reduce the influence of extreme values. 

5. Works with small sample sizes 

Does not need large n for validity. 

6. Useful when variances are unequal 

Unlike classical ANOVA, equal variance is not mandatory. 

Disadvantages of Kruskal–Wallis Test 

1. Does not indicate which groups differ 

Post-hoc tests (Dunn, Conover) required. 

2. Less powerful than ANOVA 

If data are normally distributed → ANOVA is better. 

3. Requires comparable distributions 

If group shapes differ (skewness), results may be misleading. 
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4. Cannot be used for repeated measures 

Uses independent samples only. 

5. Information loss 

Converting data to ranks reduces numerical precision. 

6. Sensitive when many ties occur 

Ties reduce accuracy → correction needed. 

12.4 FRIEDMAN’S TWO-WAY ANOVA BY RANKS: 

 Let us denote the ranked observations by . So, that  is 

the rank of treatment number ‘j’ when observed in block number i. Then  is 

the set of ranks given to treatment number ‘j’ ibn all blocks. We represent the data in tabular 

from as follows 

                                                                       TREATMENTS                                   

                        1 2 3 j n                ROWS TOTAL 

                                BLOCKS           

1

2

3

i

k





11 12 13 1 1

21 22 23 2 2

31 32 33 3 3

1 2 3

1 2 3

j n

j n

j n

i i i ij in

k k k kn

R R R R R

R R R R R

R R R R R

R R R R R

R R R R

 
 
 
 
 
 
 
 
 
 
 















( 1)

2

n n +
 

                      COLUMN TOTAL             1 2 3 nR R R R
( 1)

(1)
2

kn n +
→  

 In the treatments area all the same, each expected colum total is the same and equals 

the average column total  . Therefore, the sampling distribution of the random variable 

is the average ranks sum for the ith column, Ri-Ri/n the mean of this random sample and as for 

any mean from a finite population. 

                                 
( )iE R =  ,     ( )

2 ( )

( 1)

i
i

i

N n
Var R

n N

 −
=

−
 

then we have  

                           

1
( )

2
i

N
E R

+
=   , 

( 1)( )
( )

12

i
i

i

N N n
V R

n

+ −
=  
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 Since,  is a sample mean, if ni is a large, the central limit theorem allows us to 

approximate the distribution of  

                                              

1

2

( 1)( )

12

i

i

i

i

N
R

Z
N N n

n

+ 
−  
 =

+ −

                                                     (2)

 

 By the standard normal consequently  is distributed approximately as chi-square 

with one degrees of freedom. This holds for i=1,2,3…,k but the zi are clearly not independent 

random variables 

since,  a constant. Thus it should to be surprising that if no. ni is very 

small, the random variable. 

                           

2

2

1 1

( 1)
12

2

( 1)

i ik k
i
i

i i

N
n R

N n
z H

N N N= =

+ 
− −  = =
+

 
                                               (3)

 

is distributed approximately as chi-square with (k-1) degrees of freedom. The statistic H is 

easier to calculate in the following from, which is algebraically equivalent to equation (2) and 

equation (3) 

                        H=
2

1

12
3( 1)

( 1)

k
i

i i

R
N

N N n=

− +
+
  

 The rejection region is   some other approximations to the null distribution 

of H are discussed in Alexander and Quade (1968) 

2

1

( 1)

2

n

j

j

k n
s R

=

− 
= − 

 


2

1 1

( 1)

2

n k

ij

j i

n
R

= =

− 
− 

 
 

                                                                        (4)

 

The probability distribution of S is  

( )
( )

( !)

s
s k

Nf s
f s

n
=  

Where ‘us’ is the number of these assignments which yields as the sum of squares of column 

total deviations. Using the symbol  to denote  . Equation (4) can be written as, 

( ) ( )( )
2

1 1 1 1

2
n k n

ij ij ij

j i j i p k

S R R R  
= = =   

= − + − −    
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( )
2

1

2
n

j

j

k R U
=

= − +  

2( 1)
2

12

kn n
U

−
= +

                                                                                                                    (5)
 

By spearman’s Rank Correlation. 

2 11 1
( ) , ( ) , ( , )

2 12 12
ij ij ij iq

n n n
E R V R COV R R

−+ − +
= = =  

 Furthermore, by the design assumptions, observations in different rows are 

independent, so that  the expected value of a product of functions of  and   is 

the product of expected values and . 

 Then ( ),( ) , 0
2

ij pj

k
E U n COV R R

 
= = 

 
  

  So, that 2( ) ( )V U E U= where 

( ) ( ) ( )( )( )( ) 
2 2

2

1 1 1 1 1

2 (4)
n

ij pj ij pj rq sq

j i p k j q n i p k r s k

U R R R R R R     
=            

= − − + − − − − → 

 

Since,  and  are independent whenever , we have  

( ) ( ) ( ) ( )2( ) 2 ,
2

ij pi ij iq q

k
E U V R V R COV R R COV R

 
= +  

 
   

( ) ( )
2

2 21 1)
2

2 2 2144 144

n nk n k
n

− +    
= +    

    
 

( )
( )22

1
1

2 144

k n
n n

− 
= + 

 
 

Using these results back in equation (3), we find  

( ) ( )( )( )
22 21 1 1 1

( ) , ( )
12 12

kn n n k k n n
E S V S

− − − +
= =  

A linear function of the random variable defined as  

( )
( )

2

1

125
125

3 1
1 ( 1)

n

j

j

R

F k n
kn n kn n

=
= = − +

+ +


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Has moments 
( )( )

( )
2 1 1

( ) 1, ( ) 2 1
n k

E F n V F n
k

− −
= − =  − ,which are the first two moments 

of a chi-square distribution with (n-1) degrees of freedom.  

 The total sum of squares of deviations of all nk values around the average rank is  

( )
2 2

2

1 1 1

1 1

2

k n n

t ij

i j j

n n
S r r k j kn

k= = =

 + − 
= − = − =   

   
   

And thus we could write Friedman’s test statistic in equation (5) as  

1

t

n
F S

S

 −
=  
 

 

 Even though St is a constant, as in classic ANOVA problem it can be portioned into a 

sum of square of deviations between columns plus a error sum of squares.  

 The grand mean and column mean by 

1
,

2

ij j ij

j

r r rn
r r

nk k k

+
= = = =   

We have,  

( ) ( )
2 2

1.jt ij ij jS r r r r r r−= − = − −   

tS ( ) ( ) ( ) ( )
2 2

2ij j j j ij jr r k r r r r r r= − + − + − −     

tS ( )

( )
2

2

1
.

2
j

ij j

n
r k

r r
k

+ 
 
 = − +


  

tS ( )
2

ij j

S
r r

K
= − +  

2 1
t

n
S kn

k

−
=  
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ANOVA TABLE: 

S.V D.F SS MSS F-STATISTIC 

Between 

columns 
(n-1) s/k s/k(n-1) (k-1)s/k st-s 

Between 

Rows 
(k-1) 0 0 0 

Errors (n-1)(k-1) St-S/k St-S/k(n-1)(k-1)  

Total nk-1 St   

There is no variation between rows here since row sums are all equal. 

12.5 CONCLUSION  
 

In conclusion, Kendall’s Tau, the Kruskal–Wallis test, and Friedman’s two-way ANOVA by 

ranks together provide a powerful set of non-parametric statistical tools for analyzing data 

that do not meet the assumptions of normality or equal variances. Kendall’s Tau measures the 

strength and direction of association between two ranked variables, while the Kruskal–Wallis 

test compares three or more independent groups based on their median ranks. Friedman’s test 

extends this approach to three or more related or repeated-measure samples, identifying 

differences in treatments across the same subjects. 

 

Collectively, these methods rely on ranking rather than actual values, making them robust to 

outliers, suitable for ordinal data, and especially useful in real-world situations where 

classical parametric assumptions fail. 

 

12.6 SELF ASSESSMENT QUESTIONS 

1. Discuss Kendall’s Tau coefficient in detail with its computation steps, formula, 

interpretation, and applications. 

2. Given a set of rank data, compute Kendall’s Tau and interpret the result. 

3. Explain the advantages, disadvantages, and real-life applications of Kendall’s Tau 

with examples. 

4. Explain the Kruskal–Wallis test in detail, including assumptions, procedure, formula, 

test statistic distribution, and interpretation. 

5. Using a numerical example, perform the Kruskal–Wallis test and draw conclusions. 
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6. Describe Friedman’s test in detail, including assumptions, ranking procedure, test 

statistic, and interpretation. 

7. Solve a numerical example using Friedman’s two-way ANOVA by ranks. 

12.7 SUGGESTED READING BOOKS: 

 

1. Statistical Inference by H.C, Saxena & Surendran 

2. An outline of Statistical theory vol.2 by A.M. Goon and B. Das Gupta. 

3. An Introduction to probability and Mathematical statistics by V.K. Rohatgi. 

4. Mathematical Statistics- Parimal Mukopadhyay(1996), New central Book Agency 

(P)Ltd., Calcutra. 

       

  Dr. Syed Jilani     

 

 

 



LESSON -13 
STATISTICAL METHODS FOR MODEL 

VALIDATION AND LARGE SAMPLE 

INFERENCE 
 
OBJECTIVES:  
 

After studying this unit, you should be able to:  

• To understand the concept and purpose of Bartlett’s Test, which is used to determine 

whether several independent samples have equal population variances, an important 

assumption for many parametric statistical procedures. 

• To learn the Chi-square Test for Homogeneity of Correlation Coefficients, which 

examines whether correlation coefficients obtained from different independent 

samples represent the same underlying population correlation. 

• To understand the F-Test for Linearity of Regression, which evaluates whether a 

linear regression model is adequate or whether significant lack-of-fit indicates the 

need for a nonlinear relationship. 

• To learn the concept and application of Variance-Stabilizing Transformations, which 

are used to make the variance approximately constant across different levels of a 

variable, thereby satisfying assumptions of parametric tests. 

• To acquire knowledge about Tests of Significance for Large Samples, which rely on 

the Central Limit Theorem and involve Z-tests for means, proportions, and variances 

when the sample size is sufficiently large. 

 

STRUCTURE 
 

13.1 INTRODUCTION  

13.2 BARTLETT’S TEST FOR HOMOGENEITY OF SEVERAL INDEPENDENT 

ESTIMTES OF THE SAME POPULATION VARIANCE  

13.3 CHI-SQUARE TEST FOR HOMOGENEITY OF CORRELATION 

COEFFICIENTS 

13.4 F – TEST FOR LINEARITY OF REGRESSSION 

13.5 VARIANCE STABILIZING TRANSFORMATION 

13.6 TESTS OF SIGNIFICANCE FOR LARGE SAMPLES 

13.7 CONCLUSION 

13.8 SELF ASSESSMENT QUESTIONS 

13.9 FURTHER READINGS 

 

13.1. INTRODUCTION 

 In advanced statistical analysis, several specialized tests are used to verify 

assumptions, compare estimates, and ensure the validity of inferential procedures. Sections 

13.2 to 13.6 focus on important methods that help assess variability, correlation, regression 

behavior, and sample-based inference. 
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Bartlett’s Test is used to check whether multiple independent estimates of variance come 

from populations with the same true variance. It is especially important when applying 

parametric methods like ANOVA, which assume homogeneity of variances. 

The Chi-square Test for Homogeneity of Correlation Coefficients allows us to test 

whether correlation coefficients computed from different independent samples represent the 

same underlying population correlation. This becomes crucial in meta-analysis, reliability 

studies, and comparative research. 

The F-test for Linearity of Regression is used to verify whether a linear regression model is 

appropriate, or whether there exists significant curvature that suggests a nonlinear 

relationship. It checks the adequacy of the linear form before proceeding with prediction or 

interpretation. 

Variance-Stabilizing Transformations are mathematical transformations applied to data to 

make the variance approximately constant across different levels of the variable. This allows 

parametric tests, which assume constant variance, to be more valid and effective. 

Finally, Tests of Significance for Large Samples rely on the Central Limit Theorem, which 

ensures that for large sample sizes, many statistics approximate a normal distribution. This 

allows the use of Z-tests and Chi-square tests for making inferences about population means, 

proportions, and variances. 

13.2 BARTLETT’S TEST FOR HOMOGENEITY OF SEVERAL INDEPENDENT 

ESTIMTES OF THE SAME POPULATION VARIANCE: - 

We know that the sample variance is  

( ) ( )
2

2

1

1
, 1,2,......,

1

ni

i ij i

j

S X X i k
ni =

= − =
−
  

be the unbiased estimate of the population variance obtained from the ithsamplexij(j=1,2,…ni) 

and based on vi=(ni-1) d.f all the k samples being independent. 

Under the null hypothesis that the samples come from the same population with variance 

σ2,i.e. the independent estimates Si
2(i=1,2,…k) of σ2 are homogenous Bartlett’s proved that 

the statistic 

( )

2
2

2
1

1 1 1
.log 1 1

3 1

k

i e

i ii i

S
V

S k V V


=

      
= − −     

−        
   

Where, 

2

2 i i

i

V S
S

V
=


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Follows chi-square distribution with (k-1) DF  

S2defined in k is also an unbiased estimate σ2,since 

 

( )
( ) 22

2 2
( ) ii i

i i

VVE S
E S

V V


= = =


 

 

 

Let Si
2 and Sj

2; i≠j, 1≤(i,j)≤k be the smallest and the largest values of the unbiased estimates 

of σ2 respectively. If on the basic of  F-test these do not differ significantly, then all the 

estimates St
2 which lie between Si

2 and Sj
2 won’t differ significantly either and consequently 

all the estimates can be reasonable regarded as homogenous, coming from the same 

population. In this case, therefore, there is no need to apply Bartlett’s test. 

 

13.3. CHI-SQUARE TEST FOR HOMOGENEITY OF CORRELATION 

COEFFICIENTS: 

 

                 Let r1,r2,…rk be correlation coefficients from independent samples of sizes 

n1,n2,…nk respectively we want to test the hypothesis that these sample correlation 

coefficients are the estimates of the same correlation coefficients from bivariate normal 

population obtain the value of z1,z2,…,zt 

From the table of fisher’s z-transformation of form 

  

111
log tanh ; 1,2,.....,

2 1

i
i e i

i

r
Z r i k

nr

− +
= = = 

− 
 

 

These zi’s are normally distributed about a common 

 

1 1
log

2 1
e

p

p


 +
=  

− 
 and variance

1

3ni
=

−
 

 

 The minimum variance estimate z of the common mean of zi’s is obtained by 

weighting the values zi’s inversely with their respectively variances. The estimates of z is, 

therefore 

( )

( )

3

3

i

i

i

Z ni

Z

ni

−

=

−




, so that ( ) 3iZ Z ni− − ; i=1,2,3,…,k are independent 

standard normal variate . 
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 Hence, ( )( )
2

1

3
k

i

i

ni Z Z
=

− − is a Chi-square variate with (k-1) d.f. If  value thus 

obtained is greater than 5 percent value of  for (k-1) d.f, the null hypothesis of 

homogeneity of correlation coefficient is rejected. If not, the correlation coefficients are 

supposed to be homogenous in which case we combine the sample correlation coefficient to 

find the estimate P of the population correlation coefficient P 

We have 




( ) ( ) 21 1

log 1 1
2 1

Z

e

P
Z P P e

P

 +
=  + = −  − 

 

 2 21 Z ZP e Pe + = −  

  2 2 1Z ZP Pe e + = −  

 ( )2 21 1Z ZP e e + = −  


2

1

2

1
tan

1

Z

Z

e
P hZ

e

−−
 = =

+
 

 1tanR hZ−=  

 

13.4 F – TEST FOR LINEARITY OF REGRESSSION:  

F-Distribution:  

 If x and y are two independent chi-square variables with v1 and v2 degrees of freedom 

respectively. Then F-Statistic defined by  

1

2

X
v

F
Y
v

=  

 

 A statistic F follows F-Distribution with (v1, v2) degrees of freedom will be denoted 

by . 

Linear regression:  

 If the curve is a straight line, it is call the linear of regression and that is said to be 

linear regression between the variable otherwise regression said to be curvilinear. 

 Let us suppose that in the bivariate distribution (xi,yi); i=1,2,..,n, y is dependent 

variable and x is independent variable . let the line of regression of y on x be y = a+bx. 

 For a sample of size N arranged in n arrays, from a bivariate normal population, the 

test statistic foe testing the hypothesis of linearity of regression is  

2 2

2
.

1 2

r N h
F

h





− −
=

− −
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13.5 Variance stabilizing transformation  

 

Variance-stabilizing transformations are mathematical functions applied to data to make 

the variance approximately constant when the original data exhibit heteroscedasticity, that is, 

when the variability changes with the mean. Many statistical methods, such as regression, 

ANOVA, and t-tests, assume that the variance of the observations is uniform across all levels 

of the predictor variables. When this assumption is violated, the results may become 

unreliable. To overcome this problem, variance-stabilizing transformations such as the 

logarithmic, square-root, reciprocal, and arcsine transformations are used depending on the 

nature of the data. For example, the square-root transformation is suitable for Poisson count 

data, the log transformation is used when variance increases proportionally to the square of 

the mean, and the arcsine transformation is applied to proportions. By stabilizing the variance 

and often reducing skewness, these transformations help the data better satisfy model 

assumptions and improve the accuracy and interpretability of statistical conclusions. 

1. Square-root Transformation 

Used when variance is proportional to the mean 

                               ( )  Var X    

Typical for: 

• Poisson counts (events, accidents, phone calls) 

Transformation: 

                                ( )T X X=  

2. Log Transformation 

Used when variance is proportional to the square of the mean 

                             ( ) 2 Var X    

Typical for: 

• Right-skewed data 

• Income 

• Biological growth data 

Transformation: 

                         ( ) ( )logT X X=  
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3. Arcsine (Arcsin√p) Transformation 

Used for proportions or percentages: 

                        ( )
( )p 1-p

= 
n

Var p  

Transformation: 

                      ( ) ( )arcsinT p p=  

Used in: 

• Binomial data 

• Success–failure proportions 

4. Reciprocal Transformation 

Used when variance increases rapidly with mean: 

                           ( )
1

T X
X

=  

5. Box–Cox Transformation 

A general method to determine the best transformation: 

                    ( )
1

,  0

 X,  0

X

T X

Log








 −


= 
 =

  

Advantages  

• Makes variance constant → satisfies ANOVA/regression assumptions 

• Reduces heteroscedasticity 

• Improves normality of data 

• Stabilizes residual patterns 

• Helps remove skewness 

Disadvantages 

• Choice of transformation may not be obvious 

• Interpretation becomes more difficult (in transformed units) 

• Over- or under-transformation can distort results 

• Back-transformation may introduce bias 
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13.6 TESTS OF SIGNIFICANCE FOR LARGE SAMPLES: 

 In section, we will discuss the test of significance when samples are large, we have 

seen that for large values of n, the number of trails, almost all the distributions. E.g.: 

Binomial, Poisson, Negative binomial etc…, are very closely approximated by normal 

distribution. Thus in this case we apply the normal i.e., which is based upon the following 

fundamental property (are property) of the normal probability curve. 

                       If  2( , )X N   ,then 
( )

(0,1)
( )

x x f x
Z N

v x





− −
= =   

Thus from the normal probability, we have  

( 3 3) 0.9973P Z−   =   i.e.,  ( )3P Z   

( )3 0.001P Z  = ,   ( )1 3 0.0021P Z−  =  

 i.e., in all probability we should expect a standard normal variate to lie between ± 3. 

Also from the normal probability 

tables, we get  

( 1.96 1.96) 0.95P Z−   =    i.e.,           ( 1.96) 0.95P Z  =  

( 1.96) 1 0.95 0.05P Z  = − =  

       and ( )2.58 0.99P Z  = ( )2.58 0.01P Z  =  

thus the significant values of z at 5% and 1% levels of significance for a two trailed test are 

1.96 and 2.58 respectively. Thus the steps to be used in the normal test is as follows 

i) Compute the test statistic ‘Z’ under H0 

ii) If |Z| > 3, H0 is always rejected.  

iii) If |Z| ≤ 3, we test its significance at certain levels of significance, usually at 5% and 

sometimes at 1% level of significance. Thus for a two – tailed test if |Z| > 1.96, H0 

is rejected at 5% level of significance. 

From the normal probability tables, we have  

( 1.645) 0.5 (0 1.645) 0.5 0.45 0.05P Z P Z = −   = − =  

( 2.33) 0.5 (0 2.33) 0.5 0.49 0.01P Z P Z = −   = − =  

 

 Hence for the single tailed test (Right tail (or) Left tail) we compare value of |Z| with 

1.645 (at 5% level) and 2.33 (at 1% level) and accept otherwise reject H0 accordingly.  

 

13.6.1 COMPARISION OF  AND KOLMOGOROV SMIRNOV TEST: 

 We compare the two test of goodness of fit. 
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Chi – square test Kolmogorov – Smirnov test 

1) This groups the data and often 

loses information through 

grouping. 

This treat individual sample 

observations directly. 

2) This test is designed mostly 

for large samples. 

Applicable even in the case of 

small samples. 

3) It allows the estimation of 

unknown parameters in F0. 

Then suggests a test with 

modified degrees of freedom. 

These tests have no much 

provision. 

4) This can be used in both the 

case when data are in the form 

of natural categorise (or) 

continuous. 

This test essentially assumes the 

continuity of the parent CDF, 

therefore, it provides more refined 

analysis of data. It is conservative 

in the sense that it is more H0 

when applied in case Fx is not 

continuous. 

 

13.7 CONCLUSION  

The methods discussed in Sections 13.2 to 13.6 play a vital role in ensuring the reliability and 

accuracy of statistical inference. Bartlett’s test safeguards analyses that rely on equal 

variances, while the Chi-square test for homogeneity of correlation coefficients helps 

compare relationships across different samples. The F-test for linearity ensures that 

regression models are correctly specified before interpretation or prediction. Variance-

stabilizing transformations allow data to meet essential assumptions required by many 

statistical procedures. Tests of significance for large samples, grounded in the Central Limit 

Theorem, provide powerful tools for inference when sample sizes are sufficiently large. 

Together, these techniques strengthen the foundations of applied statistics by validating 

assumptions, correcting irregularities in data, and enabling more precise decision-making. 

They collectively form an essential toolkit for researchers, analysts, and students working 

with real-world data. 

13.8 SELF ASSESSMENT QUESTIONS 

1. Explain the purpose of Bartlett’s test and describe a situation where it is necessary to 

check the homogeneity of variances. 

2. Using Fisher’s Z-transformation, show how correlation coefficients from different 

samples can be compared for homogeneity. 

3. Write the null and alternative hypotheses for testing the linearity of a regression 

model using the F-test. 
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4. What is a variance-stabilizing transformation? Give two practical examples where 

such transformations are applied. 

5. Derive the Z-test statistic used to test the significance of a large sample mean. 

6. Discuss the steps involved in testing the homogeneity of several independent 

correlation coefficients using the Chi-square test. 

 

13.9 SUGGESTED READING BOOKS: 

 

1. Statistical Inference by H.C, Saxena & Surendran 

2. An outline of Statistical theory vol.2 by A.M. Goon and B. Das Gupta. 

3. An Introduction to probability and Mathematical statistics by V.K. Rohatgi. 

4. Mathematical Statistics- Parimal Mukopadhyay(1996), New central Book Agency 

(P)Ltd., Calcutra. 

 

        Dr. Syed Jilani     

 



LESSON -14 

SEQUENTIAL TESTS & SPRT 
 

OBJECTIVES: 

 

By the end of this lesson, students will be able to: 

❖ Understand the fundamental concept of sequential hypothesis testing, and distinguish it 

from fixed-sample classical hypothesis testing. 

❖ Describe the mechanism by which the SPRT makes real-time decisions by continuously 

evaluating accumulating data. 

❖ Apply the correct notation for sequential tests, including likelihood ratios ( ),nL  decision 

boundaries ( ) and BA , and error probabilities ( ) and   . 

❖ Explain and construct Sequential Probability Ratio Tests (SPRT) based on likelihood 

ratios for different statistical models. 

❖ Work through examples of SPRT applications, such as in quality control or clinical trials, 

to determine when to accept the null hypothesis ( )0H , reject the null hypothesis (accept 

( )1H , or continue sampling. 

 

STRUCTURE: 

 

14.1   Introduction 

14.2 Notation of Sequential Tests 

14.3 Sequential Probability Ratio Test (SPRT) 

14.4 Example 

14.5 Properties of Sequential Probability Ratio Test (SPRT) 

14.6 Summary 

14.7 Key words 

14.8 Self Assessment Questions 

14.9 Suggested Reading 

 

14.1 INTRODUCTION:  

 

In classical (fixed-sample) hypothesis testing, the sample size n is predetermined before 

data collection. After all observations are collected, the test statistic is computed and a 

decision is made.   

 

However, this fixed-sample approach may be inefficient in many real-world situations 

where: 

• Data arrives sequentially over time (quality control, clinical trials, industrial processes). 

• Observations are costly, and fewer samples should be used when evidence is strong. 

• Early decisions are required to reduce time, cost, or risk. 

    To address these issues, Sequential Analysis was developed - primarily by Abraham 

Wald (1940s) - as a methodology where data is evaluated as it is collected, and decisions can 

be made at any stage. 

 



 

 

 

 

Center for Distance Education                      14.2                   Acharya Nagarjuna University 

 

14.2 NOTATION OF SEQUENTIAL TESTS: 
 

A Sequential Test is a method of hypothesis testing in which: 

• Observations are taken one at a time (or in small groups). 

• After each observation, a decision is made whether to: 

• Accept the null hypothesis ( 0H ). 

• Reject the null hypothesis (Accept the alternative hypothesis, 1H ). 

• Continue sampling (take another observation). 

Definition 

A sequential test is a statistical procedure where the sample size is not fixed in advance. 

Instead, the number of observations required is a random variable determined by a 

stopping rule. 

 

Key Features 

• Sample size is variable and data-dependent. 

• Decisions are dynamic and updated step-by-step. 

• The test typically requires fewer observations than fixed-sample tests. 

• Optimality results exist (Ex: SPRT minimizes the expected sample size). 

 

Applications: 

Sequential testing is widely used across various fields:  

 

• Clinical Trials: Patients are enrolled sequentially, and interim analyses are conducted 

to determine if a new drug is effective, ineffective (futility), or if the trial should 

continue. This can stop an ineffective trial early, saving costs and ethical concerns. 

• Quality Control/Manufacturing: In a production line, sequential sampling can 

monitor the defect rate. Testing items one by one allows for immediate intervention if a 

defect threshold is crossed, minimizing waste. 

• Ecological Monitoring: Assessing pest counts or environmental conditions (like 

radiation leaks) sequentially enables rapid response to hazardous levels. 

• Finance: Sequential analysis can be applied to market trends, allowing for quick 

investment decisions (buy/sell) based on fluctuating market data to maximize returns or 

minimize losses. 

14.3 SEQUENTIAL PROBABILITY RATIO TEST (SPRT): 

 

So far, you studied the hypothesis testing after observing the entire data. Alternatively, in 

various practical experiments, the data is analysed sequentially as they are collected, and 

further sampling is stopped once there is already enough evidence for making a conclusion. 

Sequential testing may save experimental costs ad time. Furthermore, in some situations, the 

decision must be made in “real-time.” For example, a quality control engineer controls a 

certain chemical technological process that requires keeping the temperature at a fixed level. 

The temperature is measured every 5 minutes, and the engineer must decide whether the 

process is still operating properly or the temperature has been changed and the process should 

be terminated. This is also an example, where sequential hypothesis testing is essential. 

 

In traditional hypothesis testing, we fix the sample size in advance. As you have seen 

in the Neyman-Pearson lemma for testing a simple null hypothesis against a simple 

alternative hypothesis. Abraham Wald in 1945 (during World War II, Wald was a member of 



 

 

 

Testing of Hypothesis                               14.3                       Sequential Tests & Sprt                       
 

the Statistical Research Group at Columbia University, where he applied his statistical skills 

to various wartime problems. They included methods of sequential analysis and sampling 

inspection) proposed an extension of the Neyman-Pearson lemma in which both Type-I error 

and Type-II error are fixed and the sample size is not fixed and considered as a random 

variable. It is a statistical method for hypothesis testing in which data is evaluated 

sequentially as it is collected, instead of requiring a fixed sample size. This means that rather 

than waiting until a pre-determined number of observations have been collected, decisions 

can be made at any point in the sampling process based on the accumulated evidence. This 

technique is called Sequential Probability Ratio Test (SPRT). This approach is more efficient 

than traditional hypothesis testing methods because it minimises the average sample size 

(ASN) needed to reach a conclusion while maintaining the desired levels of accuracy. Due to 

this, sequential probability ratio test has found applications in a wide range of fields, 

including medical, quality control, industrial inspections, finance, defence systems, etc.  

  Let us discuss the formal statement of the sequential probability ratio test. 

 

Let 1 2, ,......X X be a sequence of independent observations taken from a population whose 

probability density/ mass function is ( );f X   which depends on a parameter θ which takes 

one of the two values 0 1 or   . Suppose we want to test a simple null hypothesis 

  0 0:H  =  

Against a simple alternative hypothesis 

 1 1:H  =  

and 0 1( ); ( )  ;L an L XdX   are the likelihood functions of the sample observations under the null 

hypothesis 0 0:H  =  and alternative hypothesis 1 1:H  = respectively, then at each stage m , 

the likelihood ratio is calculated as  

         
( )

( )
1

0

;
 for every m = 1,2,.....

;

m

m

m

X

X

L

L




 =  

        
( ) ( ) ( )

( ) ( ) ( )
1 1 2 1 1

1 0 2 0 0

; ; ...... ;

; ; ...... ;

m

m

m

X X Xf f f

f f fX X X

  

 



=  

       
( )

( )1

1

0

;

;

i

i

m

m
i

X

X

f

f




=

=  

The decision regarding the null hypothesis ( 0H ) is based on comparing m  with two                       

pre-determined constants ( )     .A and B B A  

Thus, the sequential probability ratio test for testing a simple null hypothesis 0H against a 

simple alternative hypothesis 1H  is defined as follows:  

(i) If ,m A  then we stop the process and reject the null hypothesis 0H . 

(ii) If ,m B  then we stop the process and accept the null hypothesis 0H .  

(iii) ,mB A   then we continue sampling by taking an additional observation.  

We determine the constants A  and B  so that the sequential probability ratio test will have 

pre assigned   .and   The actual determination of both A  and B  is in general quite 

difficult. Therefore, we use approximate values of A  and B  which are given as follows: 

      
1

 and  B = 
1

A
 

 

−
=

−
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For the computational point of view, we deal with ( )log m instead of m , 

therefore, we calculate 

( )
( )

( )

( )
( )

( )

( )

1

1

1

1

0

1

0

;
log log

;

;
log log

;

log

i

i

i

m

m
i

m

m
i

m

m i
i

i

X

X

f

f

f

f

Z

X

X















=

=

=

= 

  
=   

  

= 

 

( )

( )
1

0

;
 Z log

;
i

i

i

f
where

f

X

X





  
=  

  
 

We can define the sequential probability ratio test in terms of Z as follows: 

 

(i) If ( )
1

log A
m

i
i

Z
=

 , then we stop the process and reject the null hypothesis 0H .  

(ii) If ( )
1

log B
m

i
i

Z
=

 , then we stop the process and accept the null hypothesis 0H .  

(iii) If ( ) ( )
1

log B log A
m

i
i

Z
=

  , then we continue sampling by taking an additional observation. 

Since this test is given by Wald so it is also known as a sequential Wald test. Note 

that unlike the “standard” hypotheses testing setup, where there are two possible decisions: to 

accept or to reject the null, in sequential testing at any given time there is an additional 

“neutral” option: not to decide yet and wait for the next observation. This process continues 

until we reach one of the two thresholds, ensuring an efficient decision with the minimum 

expected sample size compared to fixed-sample tests. It can be shown that the stopping time 

T is finite with probability one, that is, ( ) 1P T  = . 

Note 1: The proof of this theorem is beyond the scope of this course.  

 

Procedure to Apply Sequential Probability Ratio Test:  

 

The sequential probability ratio test is an extension of the Neyman-Pearson lemma so 

it has almost the same procedure as the Neyman-Pearson lemma but for simplicity, we use it 

in terms of Z . Let us discuss as follows:  

 

Step 1: First of all, we identify a simple null hypothesis ( 0H ) and a simple alternative 

hypothesis ( 1H ) as we formulated in the Neyman-Pearson lemma, that is, both hypotheses 

specify exact parameter values.  

              0 0:H  =  against 1 1:H  = , 

 

Step 2: After identifying the simple null and alternative hypotheses, we find the probability 

density/mass function of the data. Then we compute the probability density/mass function 

under the null and alternative hypotheses as ( )0;if X  and ( )1;if X  . 

Step 3: After that, we compute iZ as follows:  
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( )

( )
1

0

;
log

;

i

i

i

Xf

f X
Z





  
=  

  
 

and then we find the sum  

                         
( )

( )
1

1
0

1

;
log

;

i

i

m m

i
i i

f
Z

f

X

X



= =

  
=   

  
 

 

Step 4: Finally, we define the sequential probability ratio test in terms of Z as follows:  

(i) If ( )
1

log A
m

i
i

Z
=

 , then we stop the process and reject the null hypothesis 0H .  

(ii) If ( )
1

log B
m

i
i

Z
=

 , then we stop the process and accept the null hypothesis 0H .  

(iii) If ( ) ( )
1

log B log A
m

i
i

Z
=

  , then we continue sampling by taking an additional observation. 

After understanding the procedure to apply the sequential probability ratio test, let us discuss 

how to apply it with the help of an example. 

 

14.4 Example:  

 

An environmental monitoring agency of a city regularly measures the Air Quality 

Index (AQI) to assess pollution levels. On the basis of past data, it is observed that the AQI 

follows a normal distribution with a mean AQI 50 =  and a known standard deviation 

10 = . The agency observed that due to increasing vehicles and construction sites, the AQI 

has increased. 

 

(i) Derive sequential probability ratio test for testing the hypothesis 

0 0 1 1: =50 against : 65H H   = = =  for given 0.05 and 0.1 = = .  

(ii) If the agency takes observations/samples 52, 55, 58, 63, 66, 70, 74 sequentially then show 

the step-by-step decision using SPRT.  

Solution: The AQI follows a normal distribution, and we know that the probability density 

function of the normal distribution with mean   and variance 2  as 

                ( )
( )

2

2

1

2 2

2

1
; ,

2

x

f X e


 


− −

=


 

Since the AQI follows a normal distribution with a known standard deviation, therefore, we can 

write the probability density function of the normal distribution as follows: 

                    ( )
( )

2

2

1

2

2

1
;

2

x

f X e





− −

=


 

We now compute the pdf under the null hypothesis ( 0H ) and alternative hypothesis ( 1H ) as 

follows: 

                  ( )
( )

2

02

1

2
0

2

1
;

2

x

f X e





− −

=


 

Similarly, 
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                ( )
( )

2
12

1

2
1

2

1
;

2

x

f X e





− −

=


 

Therefore, we can compute 
( )

( )
1

0

;
log

;

i

i

i

Xf

f X
Z





  
=  

  
as follows: 

( )

( )

( )

( )

2

12

2

02

1

2

2
1

1

0 2

2

;
log log

;

1

2

1

2

i

i

x

i

i

x
i

f
Z

e
X

f X
e















− −

− −





 
 

    
= =   

    
 
 

 

We now try to simplify it as follows: 

( ) ( )

 

 

( )( ) ( ) 

( ) ( )

( ) ( )

1 02 2

02

02

1 0 1 0 1 02

1 0 1 0

2

1 0 1 0

2 2

2 2 2 2

1 1 0

2 2

1 0 1

1
2

1

1 1

1
2 2

1
2 2

1
2

2

2 2

2

2

,

2

2

i i i

i i i i i

i i i

i i

i i

m m

i i
i i

Z X X

Z X X X X

Z X X

Z X

Z X

Hence

m
Z X

 









 

   

   

     

   

  





= =

= − − + −

= − + − − − +

= − − − +

= − + − −

−

−

 
= − 

 

 
= −  

 

+

− +

 

Hence, the SPRT for testing 0 0 1 1: =50 against : 65H H   = = =  is given as 

(i) Reject 0H
 
if  

         
1

1
log

m

i
i

Z


=

− 
  

 
 

          
( ) ( )1 0 1 0

1
2

1
log

2

m

i
i

m
X

   





=

  − 
−    



− +


 

We now try to simplify it, multiplying the inequality by 
( )

2

1 0

0




−
  

   ( )1 0 ,  :we get   

       
( )

( )

2
1

0
1

0

1

1
log

2

m

i
i

m
X

  

  



=

− 
−

+

−
  

 
 

 

Now, we try to simplify in terms of the 
1

m

i
i

X
=

 as follows: 

    
( )

( )2
1 0

0
1

1

1
log

2

m

i
i

m
X

 

  



=

− 
 + 



+

−



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(ii) Accept 0H  if  

1

log
1

m

i
i

Z


=

 
  

− 
 

( ) ( )1 0 1 0

1
2

log
2 1

n

i
i

m
X

   





=

   
− 

− +
   

−  
 

( )

( )2
1 0

0
1

1

log
1 2

m

i
i

m
X

 





 =

 
 +  

+

− − 
 

 

(iii) Continue taking additional observations as long as  

1

1
log log

1

m

i
i

Z
 

 =

−   
    

−   
 

( ) ( )1 0 1 0

2
1

1
log log

1 2

m

i
i

m
X

   



 

 =

  −   
 −   

− +
 

−    
 

( )

( )

( )

( )2 2
1 0 1 0

1 0 1 0
1

1
log log

1 2 2

m

i
i

m m
X

     

  



  =

−   
+   +   

−   

+ +

− −
 

 

Here, it is given that  

0 150,  65,  =10, =0.05, =0.1,    = = therefore we calculate 

( ) ( )

1 1 0.1
18

0.05

log log 18

A

2 89

=

.A





− −
= =

= =

 

Similarly, 

( ) ( )

0.1
0.105

1 1 0.05

log log 0.105 2.25

B

B




= = =

− −

= = −

 

   

 

Therefore, we the SPRT is give as follows: 

(i) Reject 0H
 
if  

( )

( )2
1 0

0
1

1

1
log

2

m

i
i

m
X

 

  



=

− 
 + 



+

−



 

( )
( )

( )
1

100
2.89 19.2

65 50

6
7 57

5
5

20
.

5

m

i
i

m
X m

=

 + = +
+

−
  

(ii) Accept 0H
 
if 

( )

( )2
1 0

0
1

1

log
1 2

m

i
i

m
X

 





 =

 
 +  

+

− − 
 

( )
( )

( )
1

100
2.2

6
5 15 57.5

5 50

65 0 25

m

i
i

m
X m

=

 = − +
+

− +
−

 

(iii) Continue taking additional observations as long as  

1

15 57.5 19.27 57.5
m

i
i

m X m
=

− +   +  
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We now show the step-by-step decision using SPRT.  

( ) ( ) ( )1 0 1 0

2

65 50 115
0.15 8.625

2 100 2
i i i iZ X X X



      
= − = − = −   

 

− +



−


 

We calculate 
1

m

i
i

Z
=

 at each step and compare it with log(A) and log(B) and take the decision 

about the null hypothesis H0 as shown in the following table: 

Sample X 0.15 8.625i iZ X= −  Cumulative  

1

m

i
i

Z
=

  

Decision 

1 52 -0.825 -0.825 Continue 

2 55 -0.375 -1.20 Continue 

3 58 0.075 -1.125 Continue 

4 63 0.825 -0.30 Continue 

5 66 1.275 0.975 Continue 

6 70 1.875 2.85 Continue 

7 74 2.625 5.475 Reject H0 

 

Hence, the SPRT method efficiently detected an increase in AQI with only 7 

observations/samples instead of using a fixed-sample test (which may require 30 or more 

than 30 observations). 

 

14.5 PROPERTIES OF SEQUENTIAL PROBABILITY RATIO TEST: 

 

The sequential probability ratio test is a statistical method for hypothesis testing in 

which data is evaluated sequentially as it is collected, instead of requiring a fixed sample size. 

It has several key properties that make it widely applicable in hypothesis testing. Some 

important properties of it are as follows:  

 

1. The sequential probability ratio test evaluates data as it is collected and the test stops as 

     soon as sufficient evidence is found to accept or reject the hypothesis.  

2. The SPRT minimizes the expected number of observations while maintaining pre-

specified     Type-I and Type-II errors.  

3. It is the most efficient sequential test under certain conditions.  

4. The test is designed to control the probabilities of Type-I and Type-II errors. The         

      thresholds A and B are chosen based on desired errors.  

5. The test often reaches a decision faster than fixed-sample tests, reducing costs and time.  

 

14.6 SUMMARY: 

 

         Sequential Probability Ratio Testing is a powerful and efficient method for hypothesis 

testing when observations arrive one at a time. Using likelihood ratios and decision 

boundaries, SPRT achieves rapid and accurate decisions while controlling Type I and Type II 

errors. Its optimality in terms of the expected sample size makes it superior to traditional 

fixed-sample procedures. The theory-supported by OC and ASN functions-demonstrates that 

sequential tests can save time, cost, and resources in many real-world applications. Overall, 

SPRT provides a scientific, data-driven, and resource-efficient framework for continuous 

decision-making in statistics. 
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14.7  KEY WORDS:  

          The most important keywords for this topic are: 

• Sequential Test (or Sequential Analysis) 

• Sequential Probability Ratio Test (SPRT) 

• Hypothesis Testing ( 0H vs. 1H ) 

• Likelihood Ratio ( nL ) 

• Acceptance/Rejection Boundaries (   BA and ) 

• Continuation Region 

 

14.8  SELF-ASSESSMENT QUESTIONS: 

 

1. What is meant by sequential analysis? How does it differ from classical (fixed-sample) 

hypothesis testing? 

2. Explain why sequential tests can be more efficient than fixed-sample tests. 

3. Give two real-life situations where sequential testing is preferable to fixed-sample tests. 

4. Define a stopping rule (T) and a decision rule (d) in a sequential test. 

5. What do the quantities  and    represent? How are they used in designing sequential 

tests? 

6. Write the general structure of a sequential test procedure using likelihood ratios. 

7. State the decision rule of SPRT using likelihood ratio boundaries   BA and . 

8. Why is SPRT considered the most efficient sequential test? 

9. Describe the continuation region in SPRT. 

10. Construct an SPRT for testing 0 0 1 1:  vs. :H p p H p p= =  for Bernoulli trials. 

 

14.9  SUGGESTED READINGS: 

 

• Mathematical Statistics- Parimal Mukopadhyay(1996), New Central Book Agency 

         (P)Ltd., Calcutta 

• Statistical Inference by H.C, Saxena & Surendran 

• An outline of Statistical Theory, vol.2 by A.M. Goon and B. Das Gupta 

• An Introduction to probability and Mathematical Statistics by V.K. Rohatgi 

• Wald, A. – Sequential Analysis 

•  Ghosh, J.K. – Sequential Analysis 

•  Hogg, McKean & Craig – Introduction to Mathematical Statistics 

•  Casella & Berger – Statistical Inference 

• Rao, C.R. – Linear Statistical Inference and Its Applications. 

 

 

                                                                                                 Dr. K. Kalyani 

 

 

 

 

 

  

 



LESSON -15 

WALD’S FUNDAMENTAL IDENTITY &  

RELATIONSHIP BETWEEN A, B, α and β 
 

OBJECTIVES: 
 

By the end of this lesson, students will be able to: 

❖ Understand Wald’s Fundamental Identity in the context of sequential analysis. 

❖ Explain the meaning of Type I error (α), Type II error (β), and decision boundaries A and 

B. 

❖ Establish the relationship between Wald’s decision boundaries and the error probabilities. 

❖ Apply Wald’s identity to derive approximations for A and B in the Sequential Probability 

Ratio Test (SPRT). 

❖ Interpret how error probabilities influence the design of sequential tests. 

❖ Use Wald’s identity to evaluate stopping rules in practical testing situations. 

 

STRUCTURE: 

15.1     Introduction 

15.1.1   Overview of Sequential Hypothesis Testing 

15.1.2   Role of Wald in Sequential Analysis 

15.2     Wald’s Fundamental Identity 

15.3     Error Probabilities and Decision Boundaries 

15.4     Examples 

15.5     Relationship Between A, B, α, and β 

15.6     Applications in SPRT 

15.7     Summary 

15.8     Key words 

15.9     Self Assessment Questions 

15.10 Suggested Reading 

 

15.1 INTRODUCTION:  

 Sequential analysis is a powerful methodology in statistical inference where data are 

evaluated as they are collected, and decisions are made at any stage of sampling. Unlike 

fixed-sample hypothesis tests, sequential tests allow early acceptance or rejection of a 

hypothesis, often reducing the average sample size while maintaining desired error 

probabilities. Among the foundational contributions to sequential testing is the work of 

Abraham Wald, who developed the Sequential Probability Ratio Test (SPRT)-a test proven to 

be optimal in terms of expected sample size. 

 

 A key component of Wald’s theory is the likelihood ratio, which is monitored 

continuously during sequential testing. Decisions are made by comparing this likelihood ratio 

to two constants, A and B, which define the upper and lower stopping boundaries. The 
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selection of these boundaries is crucial because it directly controls the Type I error (α) and 

Type II error (β) of the test. 

 

Wald introduced a fundamental identity that links the expected values of the 

likelihood ratio under different hypotheses to the error probabilities. This leads to the well-

known approximate relationships: 

1
,  B

1
A

 

 

−
 

−
 

These relationships form the practical basis for designing an SPRT. By choosing α 

and β (the desired error probabilities), one can compute A and B, thereby establishing 

decision rules for the sequential test. 

This lesson explains Wald’s fundamental identity and shows how it provides the 

connection between decision boundaries (A, B) and error probabilities (α, β), forming the 

core of sequential test design. 

15.1.1 OVERVIEW OF SEQUENTIAL HYPOTHESIS TESTING:  

Sequential hypothesis testing is designed to test: 

0 1 vs. H H  

by observing data one point at a time. After each new observation, a likelihood ratio is 

computed: 

                                    
( )

( )
1

10

1,......

,.....
,

.
 

n

n

n

L X X

X XL
 =  

and compared with two boundaries: 

• Upper boundary (A): Reject 0H  

• Lower boundary (B): Accept 0H  

• Intermediate region: Continue sampling 

This dynamic decision-making leads to tests that often require many fewer observations than 

fixed-sample tests with the same error probabilities. 

Sequential tests are optimal in many settings and provide strong control over: 

• Type I error (α): Probability of rejecting 0H  when it is true 

• Type II error (β): Probability of accepting 0H  when 1H  is true 

These error probabilities determine the stopping boundaries A and B. 

15.1.2  ROLE OF WALD IN SEQUENTIAL ANALYSIS:  

Abraham Wald is the founder of modern sequential analysis. His contributions include: 
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1. Development of the Sequential Probability Ratio Test (SPRT) 

• Wald introduced SPRT as a test that compares the likelihood ratio to fixed thresholds               

A and B. 

• He proved that SPRT is optimal, meaning it minimizes the expected sample size 

among all tests satisfying the same error constraints. 

2. Wald’s Fundamental Identity 

• Wald derived a key identity relating the expected value of the likelihood ratio to the 

error probabilities. 

• This identity provides the basis for determining the decision boundaries A and B. 

3. Linking A, B to α and β 

Using Wald’s reasoning: 

                                          
1

,  B
1

A
 

 

−
 

−
. 

This remarkable relationship allows practitioners to choose α and β first, then derive A and 

B to construct the test. 

4. Establishing the theory of optimal sequential tests 

• Wald’s work laid the theoretical foundation for sequential designs used today. 

• His methods influence sequential clinical trials, quality control charts, and adaptive 

algorithms. 

 

15.2  WALD’S FUNDAMENTAL IDENTITY: 

 Consider the SPRT for testing 0H  that the probability distribution of X is given by 

( )0,f X  against the alternative hypothesis 1H  that the probability distribution of  X is given 

by ( )1,f X  . 

        

( )

( )

( )

( )

1

0

1

0

 log

   

,

o
,

 

,

,
 l g

i

i

i

f
Le

X

X

f
Z

f

X

X

t Z
f









=

=

 

 Where iX denote the ith   observation on X then the SPRT Procedure is given below.  

i) Continue observation taking as 1 2log ...... logmB Z Z Z A + + +  . Where 

 and B (B < A)A are constants determined before the experiment start. 

ii)  Accept 0H  
when  ( )

1

log B
m

i
i

Z
=

  
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iii) Reject 0H  
when ( )

1

log A
m

i
i

Z
=

  

Let us denote ‘n’ the number of observations required by the tests clearly ‘n’ is a 

random variable. 

Let ‘D’ be the subset of the random variable such that ( ) ( )E Zte M t= exists, and these 

are finite for any point  and Dt . 

Consider the following identity 

( )( )
E .....(1)n N n N

MS t S S t S t
e E e M t

+ −   = =        

Where       

                
1 2

1 2

......

......  

n n

N N

S Z Z Z

S Z Z Z

= + + +

= + + +
 and N is any positive integer. 

 Let Pn denote the probability that n N for any random variable  . Let ( )NE 

denote S the conditional expected value of ‘  ’ and restriction n N and Let ( )NE   denote 

the conditional expected value of ‘  ’ and under the restriction when n N . 

                       ( ) ( ) ( )( )
1 ......(2)n N n N

MS t S S t S t

N N N NP E e P E e E M t
+ −   + −      

The expression N nS S− is independent of nS  

We have  

                          ( )( )
......(3)n N n n

N nS t S S t S t

N NE e E e M t
−+ −    =      

 

( ) ( ) ( ) ( )1 ......(4)n N
N n NS t S t

N N N NP E e M t P E e M t
−   + − =       

 

dividing ( )
N

M t    on both sides we get  

        
( )

( )

( ) ( )
( )

( )

( )

1
n

N

N nS t NS t
N N N N

N N N

P E e M t P E e M t

M t M t M t

−
   −      + =

          

  

          ( )
( ) ( )

( )

1
1......(5)

N

n

S t
n N NS t

N N N

P E e
P E e M t

M t


− −

  + =      

 

Let ‘D’ be the set of complex plain which ( ) 1M t    . Let ‘D’ denote the common part of 

subsets D1 and D11 SPRT eventually terminates with probability one.  
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( )
( )
( )

1

1 1

1 0.....(6)

N

N

N

S t

N

N N
N

P

P

E e
PLim

M t



→

=

− =

− =
  

 

        ( ) ( ) . .....(7)n n
n nS t S t

N N
N

P E e M t E e M tLim
− −

→

    =         
 

   Substitute equation (6) & (7) in equation (5) 

   we obtain the fundamental identity  

         ( ) .n
nS t

E e M t
−    

 

  For any point ‘t’ in the set D that is wald’s fundamental identity. 

 

15.3 ERROR PROBABILITIES AND DECISION BOUNDARIES: 

The SPRT operates by calculating the likelihood ratio (or its logarithm) as data accumulates 

and comparing it to two pre-defined boundaries,  

Likelihood Ratio ( )Ln
: At step n, 

( )

( )
1

10

1,......

,...
L

...
.

n

n

n

P X

XP

X

X
=  

❖ Decision Rule: 

( )

( )

1 0

0 1

 L ,  stop and accept H  .

 L ,  stop and accept H  .

 B < L ,  continue sampling.

n

n

n

If A reject H

If B reject H

If A







 

The boundaries A and B are determined by the desired Type I error rate ( , the probability 

of rejecting 0H when it is true) and Type II error (  , the probability of accepting 0H when 

1H is true). 

 

15.4 Example 1 : 

Consider testing 0 0:H  =  against
 1 1:H  = , for a normal distribution with known 

variance. The log-likelihood ratio at stage n  often simplifies to a cumulative sum related to 

the observations.  

The boundaries can be set using the approximations 
1

A




−
  and B

1






−
. The test then 

proceeds by plotting the cumulative log-likelihood ratio against the sample number 𝑛 and 

stopping when the path crosses either the upper boundary ( )nl A  or the lower boundary 

( )nl B .  

   Example 2 : 

          Consider testing the mean of a normal distribution with known variance 2 : 
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                                                0 0:H  =  against
 1 1:H  = , 

For a sample 1 2, ,.......,X X the log-likelihood ratio per observation is: 

( )

( )
1 1 0 1 0

2

0

/
log .

/ 2

i

i

i

f X
X

f X

    

 

− + 
= − 

 
 

After n observations: 

                                           1 0 1 0

2
1

log .
2

n

n i
i

X
   

=

− + 
 = −  

 
 

Stop as soon as  

                                          log log lognB A    

is violated. 

This example illustrates how sequential testing accumulates evidence until the likelihood ratio 

crosses a boundary. 

 15.5 RELATIONSHIP BETWEEN A,B,α,β : 

      A sample ( )1 2, ,....., mX X X leads to acceptance of  0 0:H  =  if 

                           

( ) ( )

( ) ( )
1 1 11

0 1 0 0

, ,.......... ,
.......(1)

, ,.......... ,

                                             1,2,........, 1

m

m

f X f XLm
B A

L m f X f X

for m n

 

 
 = 

= −

 

        1

0

 .......(2)
L n

and B
L n

  

        and the sample leads to rejection of 0H . 

            1

0

 ,  1,2,........, 1
Lm

If B A for m n
L m

  = −  

           1

0

   .......(3)
L n

and A
L n

  

            From (3) we have 1 0 L n A L n  

              

1  ......(4)

1
......(5)

A

A

 





− 

−


 

             Thus 
1 



−
 is an upper limit of A 

             Similarly from equation (2) we have 1 0 L n B L n  



 

 

 

Testing of Hypothesis                                        15.7                 Wald’s Fundamental Identity                                
 

             

( )1

........(6)
1

B

B

 





 −


−

 

      Example: Find the SPRT Procedure with stopping bounds 1B A   for testing 0 0:H P P=         

      against 1 1:H P P=  when X has the p.d.f. given by  

        ( )
( )

1
. 1 if X=0,1 

,
       0            otherwise       

XxP P
f X P

− −
= 


 

     Solution: The densities function under 0H  and 1H is 

                            
( )

( )

1

01

10

0

log   if   X=1 
,

1,
log  if X=0        

1

log
i

i

i

P

PX Pf
Z

PP

P

f X
=





−

−

=





 

     If ‘r’ is the no.of  sequence of first n-observations, then 

     ( )1 1

1
0 0

1
 log  + log 

1i

n

i

P P
Z r n r

P P=

−
= −

−
 

     

0

0

)  log , reject 

) log , accept 

) If log log

i
i

i
i

i
i

i If Z A H

ii If Z B H

iii B Z A





 

 

     continuous sampling by testing one more observation.        

 15.6 APPLICATIONS IN SPRT: 

  

The SPRT's ability to reduce the average sample size makes it valuable in various 

fields, especially where data collection is costly or time-consuming.  

Key applications include: 

 

• Quality Control/Industrial Inspection: Efficiently checking if a batch of products meets 

    standards. 

• Clinical Trials/Medical Research: Stopping a trial early if a new treatment is clearly 

       effective (or ineffective), saving time and resources. 

• A/B Testing (Online Experiments): Quickly identifying whether a website change 

       improves a conversion rate. 

• Reliability Testing: Lifetime testing of components and Accelerated failure tests 

• Finance and Econometrics.  
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15.7 SUMMARY: 

         The Sequential Probability Ratio Test (SPRT), developed by Abraham Wald, is a 

powerful methodology for hypothesis testing where observations are evaluated sequentially. 

By using the likelihood ratio and Wald’s decision boundaries, SPRT provides an optimal 

balance between accuracy and efficiency, minimizing the expected sample size while 

controlling Type I and Type II error probabilities. Wald’s fundamental identity serves as the 

theoretical foundation of the test. The flexibility and efficiency of SPRT make it useful in 

quality control, medical testing, real-time signal detection, and other fields where quick 

decisions are crucial.  
 

15.8 KEY WORDS: 
 

• Sequential Analysis 

• SPRT 

• Likelihood Ratio 

• Wald’s Fundamental Identity 

• Decision Boundaries:  

    Alpha Error ( ) , Beta Error ( )  

• Sequential Testing  
 

15.9  SELF-ASSESSMENT QUESTIONS: 

1. Explain Wald’s contribution to sequential analysis. Write Wald’s fundamental identity. 

2. What are the decision boundaries A and B in SPRT? Describe the role of error 

probabilities  α and β in SPRT. 

3. State Wald's Fundamental Identity and explain the conditions under which it holds. 

4. Derive the decision rules for SPRT using the likelihood ratio. 

5. Explain the relationship between A, B, α, and β. 

6. Describe the OC and ASN functions in the context of SPRT. 

7. Discuss real-world applications of SPRT with examples. 

8. Solve a full example of SPRT for a Bernoulli or normal distribution case.  
 

15.10 SUGGESTED READINGS: 

1 An outline of Statistical Theory, vol.2 by A.M. Goon and B. Das Gupta 

2 An Introduction to probability and Mathematical Statistics by V.K. Rohatgi 

3 Wald, A. – Sequential Analysis 

4 Ghosh, J.K. – Sequential Analysis 

5 Hogg, McKean & Craig – Introduction to Mathematical Statistics 

6 Mathematical Statistics- Parimal Mukopadhyay(1996), New Central Book Agency 

  (P)Ltd., Calcutta. 

                                                            

 

 

   Dr. K. Kalyani 



LESSON -16 

OPERATING CHARACTERISTIC (OC) AND  

AVERAGE SAMPLE NUMBER (ASN) 

FUNCTIONS IN SPRT 

 
OBJECTIVES: 

By the end of this lesson, students will be able to: 

❖ Explain the concepts of Operating Characteristic (OC) and Average Sample Number 

(ASN) in the context of SPRT. 

❖ Understand how OC and ASN functions evaluate test performance in sequential 

hypothesis testing. 

❖ Derive the OC function using Wald’s fundamental identity. 

❖ Obtain the ASN function for SPRT under both hypotheses ( )0H  and ( )1H  

❖ Interpret decision boundaries, Type I and II error probabilities in terms of OC and ASN. 

❖ Apply OC and ASN properties to design efficient SPRTs in practical scenarios. 

 

STRUCTURE: 

16.1   Introduction 

16.2   Operating Characteristic (OC) Function 

16.2.1 Interpretation of the OC Function  

16.2.2 Mathematical Expression for OC Function 

16.3   Average Sample Number (ASN) Function 

         16.3.1 Mathematical Expression for ASN Function 

16.4   Practical Example 

16.5   Relationship Between OC, ASN and SPRT Boundaries 

16.6   Applications  

16.7   Summary 

16.8   Key words 

16.9   Self Assessment Questions 

16.10 Suggested Reading 

16.1 INTRODUCTION:  

The Sequential Probability Ratio Test (SPRT), introduced by Abraham Wald, is one 

of the most powerful and efficient procedures for sequential hypothesis testing. Unlike fixed-



 

 

 

 

Center for Distance Education                                14.2           Acharya Nagarjuna University 

 

sample tests, SPRT evaluates data as it is collected and terminates the experiment as soon as 

sufficient evidence is accumulated. 

Two major functions used to study and evaluate the performance of an SPRT are: 

• Operating Characteristic (OC) function 

• Average Sample Number (ASN) function 

The OC function gives the probability of accepting the null hypothesis for different 

parameter values, while the ASN function indicates the expected number of observations 

required before the test stops. 

 

These functions help researchers understand the efficiency, error control, and behaviour of 

the SPRT under various conditions. 

 

16.2  OPERATING CHARACTERISTIC (OC) FUNCTION: 

In the sequential probability ratio test, decisions are made sequentially based on 

sequential data. To analyse the performance of the sequential probability ratio test, we use the 

operating characteristic (OC) function, which measures the probability of accepting the null 

hypothesis ( )0H  for different values of the parameter being tested. The OC function helps us 

to know how well the test distinguishes between null and alternative hypotheses and gives the 

probability of making the correct or incorrect decision at different parameter values.  

We denote the operating characteristic function as ( )P   and define it as follows: 

      ( )P   = Probability of accepting 0H when   is the true value of the parameter  

     
( ) ( )0 /P P Accepting H =  

Also, by the definition of the power function of a test, we have  

   ( )   = Probability of rejecting 0H when   is the true value  

Therefore,  

 
( ) ( )1P   = −  

16.2.1  INTERPRETATION OF THE OC FUNCTION:  

(i) If the true parameter is exactly 0 (the null hypothesis value), the OC function gives the 

     probability of correctly not rejecting 0H , that is,  

( ) ( ) ( )0 0 0 /  / 1P P Accepting H P Accepting H    = = = = −  

    Since the probability of rejecting 0H  is  , the probability of accepting 0H  is 1- .  

    This means that if the null hypothesis ( 0H ) is actually true, the probability of correctly 

accepting it is high. 

(ii) If the true parameter is exactly 1  (the alternative hypothesis value), the OC function 

      gives the probability of incorrectly accepting 0H (Type II error,  ).  

( ) ( ) ( )0 0 1 /  /L P Accepting H P Accepting H    = = = =  
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     This means that if the alternative hypothesis ( )1H is true, the probability of incorrectly 

     accepting the null hypothesis is low. 

(iii) As the true parameter   shifts from 0  toward 1 , the probability of accepting  0H

      decreases. This is because more evidence accumulates in favor of 1H , leading to a higher 

       probability of rejecting 0H .  

16.2.2 MATHEMATICAL EXPRESSION FOR OC FUNCTION:  

If 1 2,  ,  ...X X is a sequence of independent observations taken from a population 

whose probability density / mass function is ( ),f X   which depends on a parameter   

which takes one of the two values  0 or 1 , then to test a simple null hypothesis 

     0 0:H  =  

against a simple alternative hypothesis  

    1 1:H  =  

The OC function of a sequential probability ratio test is given by 

   
( )

( )

( ) ( )

1
h

h h

A
P

A B



 


−
=

−
 

Where 

• 
1

and 
1-

A B
 

 

−
= =  are the decision boundaries. 

• ( )h   is the expected number of observations required before making a decision. We can 

determine its value as  

( )

( )

( )

1

0

;
1

;

h

f X
E

f X







 
= 

 
 

It has been proved that under very simple conditions on the nature of the probability density 

function, there exists a unique value of h(θ) such that the above condition is satisfied.  

In some cases, calculating the OC function is found to be more complicated. In such cases, 

we may use the following formula: 

( )
( )

( ) ( )

1

1

h

h h

B
P

B A



 


−
=

− +
 

where ( )h   is the expected number of samples/observations required before making a 

decision and given as 
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( )
( ) ( ) ( )

 

1 log log

/

A B
h

E Z

 




− +
=  

To calculate the OC function, first, we have to calculate ( )h  . You will study in the next 

session how to calculate it, therefore, we will take an example to calculate the OC function in 

the next session.  

 

After understanding the OC function of the sequential probability ratio test and how we can 

analyse the performance of the sequential probability ratio test, let us discuss another function 

which measures the expected number of samples required to reach a decision in the next 

section. 

 

16.3 AVERAGE SAMPLE NUMBER (ASN) FUNCTION: 

The sequential probability ratio test is an efficient hypothesis testing method that does 

not require a fixed sample size. Instead, samples are evaluated sequentially, and the test stops 

as soon as enough evidence is gathered to accept or reject the null hypothesis.  

 
 

One of the most important characteristics of SPRT is the Average Sample Number 

(ASN), which represents the expected number of samples/ observations required to reach a 

decision. The average sample number function denoted as  E N   and is defined as follows:  

 

The average sample number is defined as the average (expected) number of 

observations required to reach a decision when the true parameter is  .  

 

16.3.1 MATHEMATICAL EXPRESSION FOR ASN FUNCTION:  

If 1 2,  ,  ...X X is a sequence of independent observations taken from a population 

whose probability density / mass function is ( ),f X   which depends on a parameter   

which takes one of the two values  0 or 1 , then to test a simple null hypothesis 

     0 0:H  =  

against a simple alternative hypothesis  

    1 1:H  =  

The ASN function of a sequential probability ratio test is given by 

 
( )  ( ) ( ) ( )

 

1 log logL A L B
E N

E Z

 − +
=  

When the null hypothesis ( )0 0:H  =  is true, then 

( ) ( ) ( )0 0 0 /  1P P Accepting H P Accepting H    = = = = −  

When the alternative hypothesis ( )0 1:H  =  is true: 
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( ) ( ) ( )0 0 1 /  P P Accepting H P Accepting H    = = = =  

Therefore, we can write the expression of ASN as follows: 

 
( ) ( ) ( )

 

log 1 log
 is true

 is true

A B
E N H

E Z H




 + −
=  

And 

 
( ) ( ) ( )

 1

1

1 log log
 is true

 is true

A B
E N H

E Z H

 − +
=  

Let us take an example for illustration purposes. 

16.4 PRACTICAL EXAMPLE:  

Consider Example in 14.4 of Air Quality Index (AQI). Find ASN and OC functions for μ = 

60, σ = 2, α = 0.05 and β = 0.1.  

Solution: Here, it is given that  

μ0 = 50, μ1 = 65, μ = 60, σ = 2, α = 0.05 and β =0.1. 

The average sample function is given by 

 
( ) ( ) ( )

 

log 1 log
 is true

 is true

A B
E N H

E Z H




 + −
=  

To calculate ASN, we first compute these terms: 

1 1 0.1
18

0.05
A





− −
= = =  

( ) ( )

( ) ( )

log log 18 2.89

0.1
0.105

1- 1- 0.05

log log 0.105 2.25

A

B

B





= =

= = =

= = −

 

In Example in 14.4, we calculated the term Z as 

1 0 1 0

2 2
Z X

   



− + 
= − 

 
 

Therefore, we can calculate the expected value of Z as 

 
( )

 

( ) ( )
 

( )

  ( )

1 0 1 0

2

2

1 0 1 0

2

2

,
         =        

2

65 60 65 60
         =

100 2

15
= 2 115

200

E Z E X

X N

E X

E Z

   



    


 





− + 
= − 

 

 − +   
−   

   =  

− − 
− 

 

−

  
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Therefore, 

  ( ) ( )

  ( ) ( )

0 0

0 1

15 15
 is true 2 115 2 50 115 1.125

200 200

15 15
 is true 2 115 2 65 115 1.125

200 200

E Z H

E Z H





= − =  − = −

= − =  − =

 

Thus, we can calculate ASN under 0 1 and HH as follows: 

 
( ) ( ) ( )

 

 

 
( ) ( ) ( )

 

0

0

0

1

1

log 1 log
 is true

 is true

0.05 2.98 0.95 2.25
                          

1.125

1.989
 is true 1.768 2

1.125

1 log log
 is true

 is true

0.90 2.89 0
                          

A B
E N H

E Z H

E N H

A B
E N H

E Z H

 

 

+ −
=

 + −
=

−

−
= = 
−

− +
=

 +
=

 1

.1 2.25

1.125

 2.376
 is true 2.112 3

1.125
E N H

−

−

= = 

 

Thus, on average, the SPRT requires only about 3 observations to make a decision which is 

much lower than a fixed-sample test.  

We now calculate the OC function. We know the OC function of a sequential probability ratio 

test is given by 

( )
( )

( ) ( )

1

1

h

h h

B
P

B A



 


−
=

− +
 

where ( )h   is the expected number of samples required before making a decision and given as 

( )
( ) ( ) ( )

 

1 log logA B
h

E Z

 




− +
=  

Therefore, we first find  E Z  as follows: 

  ( )

  ( )

 

15
60 2 115

200

15
60 2 60 115

200

60 0.375

E Z

E Z

E Z

 





= = −

= =  −

= =

 

We now calculate ( )h  as 
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( )
( ) ( ) ( )

 

( )

( )

1 log log

0.90 2.89 0.1 2.25

0.375

 2.376
6.336 7

0.375

A B
h

E Z

h

h

 








− +
=

 + −
=

= = 

 

Therefore, we can calculate the OC function as  

( )
( )

( ) ( )

( )
( )

( )

7

7 7

1

1

1 0.105
0

1 0.105 18

h

h h

B
P

B A

P



 




−
=

− +

−
= 

− +

 

Since P(μ = 60) is very small, it means that the probability of wrongly accepting 0H  when the 

average AQI has shifted to 60 is approximately zero. 

16.5 RELATIONSHIP BETWEEN OC, ASN AND SPRT BOUNDARIES: 

The OC and ASN functions are the primary performance measures used to characterize 

the efficiency of sequential probability ratio tests (SPRT).  

• SPRTs use upper and lower boundaries (often denoted as A and B, related to the 

producer's risk (α) consumer risk (β) to decide whether to accept, reject, or continue 

sampling. 

• The specific location of these boundaries, determined by the desired risks (α and β) 

directly impacts the shape of both the OC and ASN curves. 

• The ASN for an SPRT is typically much lower than for a fixed sample size test, 

especially when the true quality is either very good or very bad, requiring only a few 

samples to make a decision. The ASN function generally peaks near the "action 

threshold" or indifference quality level, where discrimination is most difficult and thus 

more samples are needed to reach a conclusion.  

 

16.6 APPLICATIONS: 

OC and ASN functions have wide applications beyond manufacturing, including: 

• Ecology and Pest Management: Determining sampling plans for monitoring pest 

populations in fields to decide whether to apply treatment. 

• Clinical Trials: Designing sequential tests for comparing the effectiveness of new drugs, 

balancing the need for reliable results with minimizing the number of patients or duration 

of the trial. 

• Auditing: Deciding the optimal sample size for financial audits to ensure a certain level 

of confidence in the financial records 

• Industrial Quality Control: Acceptance sampling, production inspection. 

• Reliability Testing: Failure detection, lifetime testing. 

• Surveillance and Detection: Signal processing, intrusion detection. 
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• Econometrics & Finance: Sequential decision making in markets. 

• Machine Learning: Online learning, adaptive testing. 

16.7 SUMMARY: 

           The OC and ASN functions are fundamental tools in statistics for designing and 

evaluating sampling plans and hypothesis tests. The OC function quantifies the probability of 

making correct or incorrect decisions for varying population quality levels, while the ASN 

function quantifies the average amount of sampling (cost) required to reach a decision. 

Together, they allow practitioners to balance the risks of wrong decisions with the costs of 

inspection.  

 

• The OC Function describes the probability of accepting 0H for different parameter values. 

• The ASN Function gives expected sample size needed by the SPRT. 

• Both functions are essential to evaluate the performance of the SPRT. 

• OC and ASN depend on decision boundaries A and B, which in turn depend on error     

    probabilities. 

• SPRT provides extremely efficient testing compared to fixed-sample procedures. 

 

16.8 KEY WORDS:  

The most important keywords for this topic are: 

• Acceptance Sampling 

• Acceptable Quality Level (AQL) 

• Average Sample Number (ASN) 

• Consumer's Risk ( ) 

• Lot Tolerance Percent Defective (LTPD) 

• Operating Characteristic (OC) Curve/Function 

•  Producer's Risk ( ) 

•  Sequential Probability Ratio Test (SPRT)  
 

16.9 SELF-ASSESSMENT QUESTIONS: 

1. Define the Operating Characteristic (OC) function of an SPRT. 

2. What is the role of ASN in evaluating a sequential test? 

3. Derive the approximate relationship between ASN and OC. 

4. Explain how decision boundaries affect OC and ASN. 

5. Compute A and B for 0.01, 0.05 = =  

6. Let X  have the distribution ( ) ( )
1

, 1 ; 0,1;0 1
xxf x x   

−
= − =    for testing 

0 0 1 1:  against :H H   = = , construct S.P.R.T. and obtain it’s A.S.N. and O.C. function. 

7. For a Bernoulli SPRT, derive 
( )

( )
1

0

ln
f X

Z
f X

= . 

8. Why is the ASN larger near the “indifference” region? 

9.  Explain the applications of OC and ASN functions in sequential testing. 
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LESSON -17 

APPLICATIONS OF BINOMIAL, POISSON, 

NORMAL DISTRIBUTIONS & SEQUENTIAL 

TESTING EFFICIENCY 

 
OBJECTIVES: 

By the end of this lesson, students will be able to: 

❖ Understand how the Sequential Probability Ratio Test (SPRT) is applied to common 

statistical distributions such as Binomial, Poisson and Normal. 

❖  Derive likelihood ratios and decision boundaries for each distribution under simple  

hypotheses. 

❖ Compute stopping boundaries and implement practical sequential testing procedures. 

❖ Evaluate the efficiency of sequential tests relative to fixed-sample-size tests. 

❖ Apply SPRT principles in real-life scenarios where data arrive sequentially. 

❖ Interpret OC and ASN functions in the context of these distributions. 

❖ Identify advantages and limitations of sequential tests across distributions. 

 

STRUCTURE: 

17.1   Introduction 

17.2   SPRT for Binomial Distribution 

17.3    SPRT for Poisson Distribution 

17.4   SPRT for Normal Distribution 

17.5    Efficiency of a Sequential test  

17.6    Applications 

17.7    Summary 

17.8    Key words 

17.9    Self Assessment Questions 

17.10 Suggested Reading 

 

17.1 INTRODUCTION:  

 
Sequential analysis deals with statistical procedures in which the sample size is not 

fixed in advance, but is determined by the data as they are observed. Among all sequential 
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procedures, the Sequential Probability Ratio Test (SPRT) proposed by Abraham Wald is one 

of the most important and widely used methods for testing statistical hypotheses. 

 

In a classical (fixed-sample) test, the researcher collects a predetermined number of 

observations and then makes a decision. However, in many practical situations—such as 

industrial inspection, clinical trials, quality control, or communication systems—data arrive 

one at a time, and it is desirable to reach a conclusion as early as possible. Collecting 

unnecessary samples increases cost, time, and risk. SPRT provides an optimal framework for 

such real-time decision making. 

 

The SPRT is based on evaluating the likelihood ratio after each observation and comparing it 

with two decision boundaries. Depending on where the likelihood ratio falls, the test may: 

• accept the null hypothesis 0H , 

• accept the alternative 1H , or 

• continue sampling. 

This procedure is repeated until enough evidence is accumulated in favour of either 

hypothesis. An important feature of SPRT is that, for given Type I and Type II error 

probabilities (α and β), it is the most efficient test among all sequential tests and typically 

requires fewer observations than fixed-sample procedures. 

 

Because many real-life data sets follow binomial, Poisson, or normal distributions, the 

application of SPRT to these models is especially important: 

 

• Binomial distribution arises in situations involving success–failure data, such as defect 

detection or medical treatment response. 

• Poisson distribution describes counts of rare events, such as accidents, machine 

breakdowns, or call arrivals. 

• Normal distribution models continuous measurements like weight, length, pressure, or 

temperature. 

 

In each of these cases, the likelihood ratio and decision process take a specific mathematical 

form, allowing SPRT to be implemented efficiently. The efficiency of sequential tests is 

studied using measures such as the Average Sample Number (ASN) and the Operating 

Characteristic (OC) function, which help quantify the reduction in sampling effort. 

 

Thus, the study of SPRT applications to binomial, Poisson, and normal models, along with its 

efficiency, forms a crucial part of sequential analysis and plays a significant role in modern 

statistical decision making. 

 

17.2  SPRT FOR BINOMIAL DISTRIBUTION: 

   Let X has the distribution ( ) ( )
1

, 1 ; 0,1  0 < 1
xxf x x   

−
= − =   for testing  

0 0 1 1: :  againstH H   = = , construct SPRT and obtain its ASN and OC function. 
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( )

( )

( ) ( )1 1

1

1 2. 1

1 2. 0

1 1 0 0

1 1

0 0

, ,......, /

, ,......, /

1 1

1

1

i i

i

m

m

m

m x m xx x

m

x m x

m

L x x x H

L x x x H


    

 


 

− −

−

=

     = − −
      

 
   −

=    
−   

 

( )

( )

( )

1 1

0 0

1 0 1

1 00

1
og log log

1

1 1
log log  log

1 1

m i i

m i

l x m x

x m

 


 

  


  

   −
= + −    

−   

 −  −
= +    

− −    

 

Hence, SPRT for testing 0 0:H  =  against
 1 1:H  =

     

(i) Accept 0H  if log log ,
1

m b





 
 = 

−         

(ii) If  

( ) ( )

( ) ( )
1 0

1 0 10

 log 1 / 1

log 1 / 1
i m

b m
x a

 

   

− − −   =
 − − 

        

(iii)   Reject H0 if 
1

log log ,m a





− 
 = 

 
 

If 
( ) ( )

( ) ( )
1 0

1 0 0 1

 log 1 / 1

log 1 / 1
i m

a m
x r

 

   

− − −   =
− −  

 

Continue sampling if log m m i mb a a x r      

OC function 

                  OC function is given by  

( )
( )

( ) ( )

1
h

h h

A
L

A B



 


−
=

−
 

Where for each value of  , ( ) 0h   is to be determined such that 

( )

( )

( )

( )

( )

( )

( )

1

0

1
1

0 0

,
1

,

,
, 1

,

h

h

x

f x
E

f x

f x
f x

f x












=

 
= 

 

 
= 

 

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( )

( )

( )

( )
( )

1
1

11 1

0 0 0

1 1

0 0

1
1 1

1

1
    . 1 1

1

h
x x

x

x

h h



 

 
 

 

 
 

 

−

−

=

    −
  − =   

−     

    −
 − + =   

−     


 

 This equation for ( )h h = is very tedious from practical point of view, instead of solving for 

h  we regard h as a parameter and solve it for  . Thus giving 

( ) ( ) ( )

( ) ( )
( )

( )
( )

( ) ( )
( ) ( )

( )
( )

( ) ( )
( )

1 1 1

0 0 0

1 0

1 0 1 0

1 1
1

1 1

1 1 1

1 1

1 / 1
,

1 / 1

h h h

h

hh

h

h h

h

L L h

  





  


  

 
 

   

 
 

   

      − −
 − = −     

− −       

− − −   = =
− − −  

− −   = =
− − −      

 

Various points on the OC curve are obtained by assigning arbitrary values to ‘h’ and 

computing the corresponding values of  and ( )L  . 

ASN Function 

( )

( )

( )
( )

( )
( )

1

0

1
1

0 0

, 1
 log  ;  A=  B=

, 1

,
log . ,

,x

f x
Z

f x

f x
E Z f x

f x

  

  




=

  −
=  

− 

 
=  

 


 

          

( )

( )
1

1
11 1

0 0 0

1
log 1

1

h
x x

xx

x



 
 

 

−

−

=

    −
 = −   

−     
  

          ( ) 1 1

0 0

1
1 log  log  

1

 
 

 

   −
= − +   

−   
 

( )
( )

( )
1 0 1

0 1 0

1 1
log log

1 1
E Z

  


  

 −  −
= +   

− −  
 

ASN is given by  

( )
( ) ( )

( )

log 1 logL B L A
E n

E Z

 + −  =  

Substituting the values of ( )E Z and ( )L  , we get ASN function. 
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17.3  SPRT FOR POISSON DISTRIBUTION: 

Example 1: First of all, we formulate the null hypothesis ( 0H ) and alternative hypothesis                 

                     ( 1H ) as follows:  

0 0: 2H  = = (average defect rate per hour is 2) 

1 1: 5H  = =  (average defect rate per hour is 5) 

Since the number of defective parts per hour follows the Poisson distribution, therefore, the 

probability mass function of the Poisson distribution with parameter λ is given as follows: 

  ; 0,1,...& 0
!

xe
P X x X

x




−

= = =   

Solution: We now compute the probability mass function under the null hypothesis (H0) and 

alternative hypothesis (H1) as follows: 

 
0

0
0;

!

ix

i

i

e
P X x

x

 


−

= =  

Similarly,  
1

1
1;

!

ix

i

i

e
P X x

x

 


−

= =  

Therefore, we can compute 
( )

( )
1

0

;
log

;

i

i

i

f X
Z

f X





  
=  

  
 as follows: 

( )

( )

( )

( )

1

0

1 0

1

0

1

0

1

0

1
1 0

0

;
log

;

!
    log

!

    log

log

i

i

i

i

i

i

i

x

i

x

i

x

x

i i

f X
Z

f X

e

x

e

x

e

Z X





 














 



−

−

− −

  
=  

  

 
 
 

=  
 
  

   
=   

   

   
= − − +   

   

 

Hence, 

( ) 1
1 0

1 1
0

log

ix
m m

i i
i i

Z m X


 
= =

 
= − − +  

 
 

Hence, the SPRT for testing 0 0: 2H  = =  against 1 1: 5H  = = is given as  
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(i) Reject 0H if 

1

1
log

m

i
i

Z


=

− 
  

 
 

( ) 1
1 0

1
0

1
log log

ix
m

i
i

m X
 

 
 =

  − 
− − +    

  
 

( )1 0
1

1

0

1 1
log

log

i

m

i x
i

X m


 




=

 −  
 + −   

   
 
 

 

(ii) Accept 0H if 

1

log
1

m

i
i

Z


=

 
  

− 
 

( )1 0
1

1

0

1
log

1
log

i

m

i x
i

X m


 




=

  
 + −   

−   
 
 

 

(iii) Continue taking additional observations as long as 

1

1
log log

1

m

i
i

Z
 

 =

−   
    

−   
 

( ) 1
1 0

1
0

1
log log log

1

ix
m

i
i

m X
 

 
  =

  −   
 − − +     

−    
 

( ) ( )1 0 1 0
1

1 1

0 0

1 1 1
log log

1
log log

i i

m

ix x
i

m X m
 

   
  

 

=

   −    
+ −   + −      

−         
   
   

 

Here, it is given that 

0 12, 5, 0.1 and =0.1   = = =  

 

Therefore, we compute 

1

0

5
log log 0.92

2





   
= =   

  
 

1 0.9
9

0.1
A





−
= = =  

Similarly, 
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( ) ( )log log 9 2.20A = =  

0.1
0.11

1 1 0.1
B




= = =

− −
 

( ) ( )log log 0.11 2.21B = = −  

Putting these values in the SPRT test, we get the SPRT for testing 0 0: 2H  = =  against 

1 1: 5H  = =  is given as 

(i) Reject 0H if 

            
( )

1

1.09 2.20 3
m

i
i

X m
=

 +  

(ii) Accept 0H if 

           
( )

1

1.09 3 2.21
m

i
i

X m
=

 −  

(iii) Continue taking additional observations as long as  

( ) ( )
1

1.09 3 2.21 1.09 2.20 3
m

i
i

m X m
=

−   +  

Example 2: Here, it given that 

0 12, 5, 0.05 and =0.1   = = =  

In Example 1, we calculated 

( ) ( )1

0

log 0.92, 9, log 2.20, 0.11, log 2.21A A B B




 
= = = = = − 

 
 

We can calculate value of Z as follows: 

( ) 1
1 0

0

log 3 0.92Z X X


 


 
= − − + = − + 

 
 

Thus, 

   0  is true 3 0.92E Z H E X= − +  

( )

 
0                          = 3 0.92*  

X Poiss

E X






  
− +  

 =  


 

                          = 3 0.92*2 =-1.168− +  

   1 is true 3 0.92E Z H E X= − +  

1                          = 3 0.92*− +  

                          = 3 0.92*5 =1.58− +  
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Therefore, the average sample umber is given by 

 
( ) ( ) ( )

 

 

 
( ) ( ) ( )

 

0

0

0

1

1

log 1 log
 is true

 is true

0.1 2.20 0.9 2.21
                          

1.168

1.769
 is true 1.51 2

1.168

1 log log
 is true

 is true

0.90 2.20 0.1
                          

A B
E N H

E Z H

E N H

A B
E N H

E Z H

 

 

+ −
=

 + −
=

−

−
= = 
−

− +
=

 + 
=

 1

2.21

1.58

 1.759
 is true 1.11

1.58
E N H

−

−

= =

 

Thus, on average, the SPRT requires only about 2 observations to make a decision which is 

much lower than a fixed-sample test.  

We now calculate the OC function. We know the OC function of a sequential probability 

ratio test is given by 

( )
( )

( ) ( )

1

1

h

h h

B
P

B A



 


−
=

− +
 

where ( )h   is the expected number of samples required before making a decision and given 

as ( )
( ) ( ) ( )

 

1 log logA B
h

E Z

 




− +
=  

Therefore, 

   4 3 0.916

                   = 3 0.916*4 0.664

E Z E X = = − +

− + =
 

 

 

 

We calculate ( )h   as 

( )
( ) ( ) ( )

 

1 log logA B
h

E Z

 




− +
=  

         

0.90 2.20 0.1 2.21

0.664

1.759
2.65

0.664

 + −
=

= =
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Therefore, we can calculate the OC function as 

( )
( )

( ) ( )

( )
( )

( ) ( )

2.65

2.65 2.65

1

1

1 0.11

1 0.11 2.20

0.997
         = 0.11

9.077

h

h h

B
P

B A

P



 




−
=

− +

−
=

− +

=

 

Since L(4) is small, it means that the probability of wrongly accepting 0H  when the defect 

rate increases to 4 per hour is approximately 11%. 

 

17.4 SPRT FOR NORMAL DISTRIBUTION:  

We set up the hypothesis for the variance as follows:  

2 2

0 0: 1H  = = (The machine is working fine, variance remains at 1)  

2 2

0 0: 2H  = =  (The machine is malfunctioning, variance increases to 2) 

The deviation from the expected whole size follows the normal distribution with mean 0 and 

variance 2 , therefore, we can write the probability density function of the normal 

distribution as follows: 

( )
2

2
 

2 2

2

1
;

2

x

f X e 


−

=  

We now compute the pdf under the null hypothesis ( 0H ) and alternative hypothesis ( 1H ) as 

follows: 

( )
2

2
0

 
22

0
2

0

1
;

2

x

f X e




−

=  

 

Similarly, 

( )
2

2
1

 
22

1
2

1

1
;

2

x

f X e 


−

=  

Therefore, we can compute 
( )
( )

2

1

2

0

;
log

;

i

i

i

f X
Z

f X





  
=  

  

 as follows: 
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( )
( )

2

2
1

2

2
0

2

2 2
1 1

2

0 2

2

0

1

; 2
log log

; 1

2

x

i

i x
i

e
f X

Z
f X

e





 





−

−

 
 

      
= =   

    
 
  

 

2

2 2
0 1

1 11 2
2

20

2

1

log

x

e
 



 
− 

 
 

 
  

=   
   

 

We now try to simplify it as follows: 

2 2

0

2 2 2

1 0 1

2 2 2 2

0 1 0

2 2 2

1 0 1

2 2 2
20 1 0

2 2 2

1 0 1

1 1 1
log

2 2

1
     = log

2 2

1
     = log

2 2

i
i

i

i

x
Z

x

x



  

  

  

  

  

  
= + −  

   

   −
+   

   

   −
+   

   

 

2 2 2
20 1 0

2 2 2
1 1

1 0 1

 = log
2 2

m m

i i
i i

m
Z x

  

  = =

   −
+    

   
 

Hence, the SPRT for testing 2 2

0 0: 1H  = =  against 2 2

0 0: 2H  = = is given as 

(i) Reject 0H  if  

1

1
log

m

i
i

Z


=

− 
  

   

2 2 2
20 1 0

2 2 2
1

1 0 1

1
log log

2 2

m

i
i

m
x

   

   =

   − − 
+      

    
 

 

2 2 2
2 0 1 0

2 2 2
1

1 0 1

2 1
log log

2

m

i
i

m
x

  

   =

  −  
 −    

−     
 

 

(ii) Accept 0H  if  

1

log
1

m

i
i

Z


=

 
  

−   

2 2 2
2 0 1 0

2 2 2
1

1 0 1

2
log log

1 2

m

i
i

m
x

  

   =

    
 −    

− −    
 

(iii) Continue taking additional observations as long as  
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1

1
log log

1

m

i
i

Z
 

 =

−   
    

−   
 

2 2 2 2 2 2
20 1 0 0 1 0

2 2 2 2 2 2
1

1 0 1 1 0 1

2 2 1
log log log log

1 2 2

m

i
i

m m
x

      

       =

      −      
−   −         

− − −            
 

Here, it is given that 

2 2

0 11, 2, 0.05 and =0.10   = = =  

Therefore, 

( )
0.1

log log log 0.105 2.25
1 1 0.05





   
= = = −   

− −   
 

( )
1 1 0.1

log log log 18 2.89
0.05





− −   
= = =   

   
 

2

0

2

1

1
log log 0.69

2





   
= = −   

  
 

2 2

0 1

2 2

1 0

2 2 1 2
4

2 1

 

 

 
= =

− −
 

(i) Reject 0H  if  

2 2 2
2 0 1 0

2 2 2
1

1 0 1

2 1
log log 4 2.89 0.69

2 2

m

i
i

m m
x

  

   =

  −    
 − = − −      

−       
 

( )2

1

4 2.89 0.345
m

i
i

x m
=

 +  

(ii) Accept 0H  if  

 
2 2 2

2 0 1 0

2 2 2
1

1 0 1

2
log log 4 2.25 0.345

1 2

m

i
i

m
x m

  

   =

    
 − = − +    

− −    
 

(iii) Continue taking additional observations as long as  

2 2 2 2 2 2
20 1 0 0 1 0

2 2 2 2 2 2
1

1 0 1 1 0 1

2 2 1
log log log log

1 2 2

m

i
i

m m
x

      

       =

      −      
−   −         

− − −            
 

( ) ( )2

1

4 2.25 0.345 4 2.89 0.345
m

i
i

x m
=

− +   +  

We now show the step-by-step decision using SPRT.  

 

We have 

2 2 2
20 1 0

2 2 2

1 0 1

1
= log

2 2
Z X

  

  

   −
+   

   
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2

2

1
= 0.69

2 4

   = 0.345+
4

X
Z

X

− +

−

 

We calculate 
1

m

i
i

Z
=

  at each step and compare it with the log(A) and log(B) and take the 

decision about the null hypothesis 0H  as shown in the following table: 

Sample X X2 2

= 0.345+
4

X
Z −  Cumulative Sum 

1

m

i
i

Z
=

  
Decision 

1 0.5 0.25 -0.283 -0.283 Continue 

2 0.6 0.36 1.095 0.813 Continue 

3 0.7 0.49 1.615 2.428 Continue 

4 0.8 0.64 2.215 4.643 Continue 

Hence, the SPRT method efficiently detected the defect rate increases with only 4 

observations/samples instead of using a fixed-sample test (which may require 30 or more 

than 30 observations).  

We now compute the average sample number. 

 
( )

 

2

2

0 2 2

2

0

0

0,1
 is true 0.345

4

1
                         0.345

4

1
                         0.345 1

4

                         0.345 0.25

 is true 0.095

X N
E Z H E X

E X

E Z H







 
 

 = − +   
  =   

= − +

= − + 

= − +

= −



 

 

 

2

1 1

1

1
 is true 0.345

4

2
                         0.345

4

                         0.345 0.50

 is true 0.155

E Z H

E Z H

= − +

= − +

= − +

=

 

 

 Therefore, the average sample function is given by 
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We now calculate the OC function. We know the OC function of a sequential probability 

ratio test is given by 
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Where ( )h   is the expected number of samples required before making a decision and 

given as 
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We find the average sample number ( )h  for 2 =1.5 as follows:  

( ) ( ) ( )2

2

1

2

2

2

1 log log
1.5

1.5

0.90 2.89 0.1 2.25
1.5

0.03

2.826
1.5

0.03

1.5 94.2 95

A B
E N

E Z

E N

E N

E N

 










− +
 = =   = 

 + 
 = = 

 = = 

 = =  

 

( )
( )

( ) ( )

( )
( )

( ) ( )

2

2 2

2

95

2

95 95

1

1

1 0.105
0

1 0.105 2.89

h

h h

B
P

B A

P



 




−
=

− +

−
= 

− +

 

Since P(1.5) is very small, it means that the probability of wrongly accepting 0H  when the 

average AQI has shifted to 60 is approximately zero. 

  

17.5 EFFICIENCY OF A SEQUENTIAL TEST: 

 Sequential tests are designed to reach a decision using, on average, fewer observations than 

fixed-sample tests while maintaining the same error probabilities. The concept of efficiency in 

sequential testing is primarily measured using the Average Sample Number (ASN). Wald’s 

Sequential Probability Ratio Test (SPRT) is known to be the most efficient sequential test in a 

precise optimality sense. 

 
 In general many different tests may be derived for given 0 1& , &    . There is no point 

in comparing their power for given sample numbers because they are arranged. So as to have the 

same   - errors. We may how ever define efficiency in terms of sample size of ASN. 

 

 The test with the smaller ASN may reasonably be said to be more efficient following 

wald (1947) we shall prove that when end effects are negligible the SPRT is most efficient test. 

More precisely if ‘S’ is a SPRT and S is some other test based on the sum of the logarithms of 

identically distributed variables.  

( ) ( );  i = 0, 1.......(1)i iE n s E n s  

 Where iE denotes the expected value of  ‘m’ on hypothesis. 

Note, first of all that if ‘ u ’ is any random variable  ( )u E u− is the value measured from the 

mean. 

                and ( )  ( ) 1Exp u E u u E u−  + −  

on taking expectation we have, 
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                       ( )  1.......(2)E exp u E u −    

Which gives, 

                     ( ) ( ) E exp. exp .......(3)u E u  

 We also have for any closed sequential test based on the sum of type Zn . 

               ( )
( )( )( )

( )

log
.......(4)
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i

i

E L S
E n s

E Z
=  

If E  denotes the conditional expectation when 0H  is true and E  the conditional expectation 

when 1H is true, neglecting end effects.  

                             ( )E .......(5)
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and similarly 
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Hence, 
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In virtue of (3), (5), (6) equations we have  
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and interchanging  0H  & 1H . &   in equation (8) given  

( )
( )

( )1

1

1 1
E log 1 log .......(9)

1
n s

E Z

 
 

 
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When 1S = S  these inequalities are replaced by equalities 

Efficiency Advantages: 

• Reduced Sample Size: Generally requires significantly fewer samples than traditional fixed-

   sample tests (like Neyman-Pearson), saving time and cost. 

• Dynamic Decisions: Allows for timely decisions in dynamic environments (e.g., 

   manufacturing, medicine, AI testing).          
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17.6 APPLICATIONS: 

Applications of Binomial Distribution 

The binomial distribution models the probability of a specific number of successes in a 

fixed number of independent trials, where each trial has only two outcomes (success/failure).  

• Quality Control: Manufacturers use it to determine the probability of a certain number of 

defective items in a batch of products, ensuring quality standards are met. 

• Medicine: It helps assess a new drug's effectiveness by modeling the probability of a 

patient being cured or experiencing side effects. 

• Finance/Insurance: Banks and insurance companies use it for risk assessment, such as 

modeling the number of loan defaults or fraudulent transactions within a given period. 

• Market Research: Businesses use "yes/no" surveys to predict consumer preferences or 

behaviors for new products. 

• Computer Networking: It can determine the probability of a certain number of users 

transmitting data simultaneously on a network.  

Applications of Poisson Distribution 

The Poisson distribution models the number of times an event occurs within a fixed interval 

of time or space, given a constant average rate.  

• Traffic Analysis: City planners and insurance companies use it to predict the number of  

cars arriving at a traffic light per hour or the number of accidents per month to inform 

road   safety measures and insurance pricing. 

• Healthcare: Hospitals use it to model the number of patients arriving at an emergency 

room per day, helping them manage staffing levels and resources. 

• Telecommunications: Call centers use it to model the number of calls received per 

minute to optimize staffing and ensure minimal customer wait times. 

• Ecology/Astronomy: It can estimate the number of trees of a certain species in a forest 

area or the number of meteorites striking the Earth per year. 

• Manufacturing: It helps analyze the number of defects (e.g., typographical errors in a 

book or flaws in a fabric roll) per unit to maintain quality.  

     Applications of Normal Distribution 

The normal distribution (or "bell curve") is a continuous probability distribution that is 

fundamental in statistics and finance due to its symmetry around the mean. It describes many 

natural phenomena and is key to the Central Limit Theorem.  

• Human Characteristics: It is used to model physical attributes like height, weight, and 

shoe size in a population. 

• Testing and Scores: Standardized test scores (like the ACT or GMAT) and IQ scores 

are designed to follow a normal distribution, allowing for easy comparison of individual 

performance relative to the average. 

• Quality Control: Manufacturers measure product weights or dimensions, using the 

normal distribution to determine if variations are due to random chance or a production 

issue that needs addressing. 

• Finance: It is used to model stock prices and asset returns, although real-world data 

often shows "fat tails" (more extreme movements than the normal distribution predicts). 
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• Engineering/Architecture: The distribution of human height is used to determine 

optimal design parameters, such as the standard height of doors, to accommodate most 

people comfortably.  

      Efficiency of a Sequential Test 

Sequential analysis is a statistical method that analyzes data as it is collected, allowing for 

conclusions to be reached before the entire predetermined sample size is gathered. The main 

advantage is its efficiency, as it can lead to significant savings in time and resources.  

• Clinical Trials: This is a key application. If interim analysis of a new medication's data 

shows it is overwhelmingly effective or unexpectedly harmful, the trial can be stopped 

early. This brings beneficial treatments to market sooner or prevents further patient 

exposure to an unsafe treatment more efficiently than a traditional fixed-sample trial. 

• A/B Testing (Website/Marketing): In digital marketing, companies test different website 

layouts or ad designs. Sequential testing allows them to "peek" at the results continuously 

and stop the test as soon as a clear "winner" emerges, saving time and allowing for faster 

data-driven decisions. 

• Quality Control in Manufacturing: Instead of testing a large, fixed batch of ammunition 

(as in its historical origins), sequential testing allows for item-by-item inspection with the 

possibility of stopping the process early if quality thresholds are consistently met or missed, 

making the inspection process more efficient. 

• Cyber security: By continuously analyzing network traffic, sequential methods can detect 

anomalies indicative of an intrusion in real-time, enabling prompt mitigation of potential 

damage.  

 

17.7  SUMMARY: 

 

           This lesson focuses on the application of Wald’s Sequential Probability Ratio Test 

(SPRT) to three major probability models-Binomial, Poisson and Normal distributions—

commonly encountered in statistical inference and quality control. 

 

The lesson begins with a review of key probability distributions and the foundational 

concepts required for constructing likelihood ratios. For each distribution, the SPRT is 

formulated by deriving the sequential likelihood ratio, defining decision boundaries based on 

pre-specified Type I and Type II error probabilities, and developing stopping rules. Worked-

out examples are included for the Binomial, Poisson, and Normal cases to illustrate 

computation of the sequential likelihood ratio after each observation and the decision-making 

process. 

 

Further, the concept of efficiency of sequential tests is discussed, emphasizing how 

SPRT typically requires a smaller Average Sample Number (ASN) compared to fixed-sample 

tests while maintaining specified error rates. Practical applications in quality control, 

reliability testing, industrial production, medical trials, and real-time monitoring systems are 

highlighted. 
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17.8  KEY WORDS:  

• Sequential Probability Ratio Test (SPRT) 

• Sequential Testing 

• Likelihood Ratio 

• Decision Boundaries (A and B) 

• Type I Error (α) 

• Type II Error (β) 

• Operating Characteristic (OC) Function 

• Average Sample Number (ASN) 

• Efficiency of a Sequential Test 

• Wald’s SPRT 

• Binomial Distribution 

• Poisson Distribution 

• Normal Distribution 

• Log-Likelihood Ratio (LLR). 
 

17.9 SELF-ASSESSMENT QUESTIONS: 
 

1. What is the Sequential Probability Ratio Test (SPRT), and how does it differ from a 

fixed-sample test? 

2. Explain the roles of the decision boundaries A and B in the SPRT. 

3. What is meant by efficiency in the context of sequential tests? 

4. Describe how the test proceeds after each observation in a binomial SPRT. 
5. Provide a real-life example where a Poisson-based SPRT may be used. 
6. Give an industrial or scientific example where a normal-distribution SPRT is appropriate. 
7. Define the log-likelihood ratio (LLR) for sequential testing. 

8. What assumptions are needed for the SPRT to be optimal according to Wald? 

9. Under what circumstances can the SPRT be significantly more efficient than a fixed-

sample test? 
10. Why the SPRT is considered asymptotically optimal compared to other sequential tests? 
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