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FOREWORD 

Since its establishment in 1976, Acharya Nagarjuna University has been 

forging ahead in the path of progress and dynamism, offering a variety of courses 

and research contributions. I am extremely happy that by gaining ‘A+’ grade from 

the NAAC in the year 2024, Acharya Nagarjuna University is offering educational 

opportunities at the UG, PG levels apart from research degrees to students from 

over 221 affiliated colleges spread over the two districts of Guntur and Prakasam.  

The University has also started the Centre for Distance Education in 2003-

04 with the aim of taking higher education to the door step of all the sectors of the 

society. The centre will be a great help to those who cannot join in colleges, those 

who cannot afford the exorbitant fees as regular students, and even to housewives 

desirous of pursuing higher studies. Acharya Nagarjuna University has started 

offering B.Sc., B.A., B.B.A., and B.Com courses at the Degree level and M.A., 

M.Com., M.Sc., M.B.A., and L.L.M., courses at the PG level from the academic 

year 2003-2004 onwards.  

To facilitate easier understanding by students studying through the distance 

mode, these self-instruction materials have been prepared by eminent and 

experienced teachers. The lessons have been drafted with great care and expertise 

in the stipulated time by these teachers. Constructive ideas and scholarly 

suggestions are welcome from students and teachers involved respectively. Such 

ideas will be incorporated for the greater efficacy of this distance mode of 

education. For clarification of doubts and feedback, weekly classes and contact 

classes will be arranged at the UG and PG levels respectively.  

It is my aim that students getting higher education through the Centre for 

Distance Education should improve their qualification, have better employment 

opportunities and in turn be part of country’s progress. It is my fond desire that in 

the years to come, the Centre for Distance Education will go from strength to 

strength in the form of new courses and by catering to larger number of people. My 

congratulations to all the Directors, Academic Coordinators, Editors and Lesson-

writers of the Centre who have helped in these endeavors.  

Prof. K. Gangadhara Rao 

M.Tech., Ph.D., 

Vice-Chancellor I/c  

Acharya Nagarjuna University. 

 



 

Semester 2 

M.Sc. Physics  

202PH24 SOLID STATE PHYSICS    

 

Course Objectives: 

➢ The present syllabus Sequence of articles in each unit enables the student to 

understand the gradual development of the subject regarding solid state matter. 

➢ Solid-state physics is provided an understanding of structure concerned with their 

association and regular, periodic arrangement in crystals. 

➢ Understand the physics of insulators, semiconductor and conductors with special 

emphasis on the elementary band theory of semiconductors. 

 

 

UNIT I  

CRYSTAL STRUCTURE: Periodic array of atoms—Lattice translation vectors and 

lattices, symmetry operations, The Basis and the Crystal Structure, Primitive Lattice cell, 

Fundamental types of lattices—Two-Dimensional lattice types, three-Dimensional lattice 

types, Index system for crystal planes, Packing density: SC, BCC and FCC, simple 

crystal structures-- sodium chloride, cesium chloride, diamond structures and Zinc 

Sulfide. 

Learning Outcomes: 

• To understand the arrangement of atoms and the possible arrangements in solid 

stale materials. 

• To know about different parameters regarding the structure of the materials and 

crystal planes. 

• Discussing structures of some familiar materials NaCl, CsCl, diamond and ZnS. 

 

 

UNIT II 

CRYSTAL DIFFRACTION AND RECIPROCAL LATTICE: Bragg’s law, 

Experimental diffraction methods- Laue method and powder method, Derivation of 

scattered wave amplitude, Geometrical Structure Factor, Reciprocal lattice, Reciprocal 

lattice to SC lattice, BCC lattice and FCC Lattice, Propertiesof reciprocal lattice, 

Brillouin Zone, Neutron diffraction, Electron diffraction. 

Learning Outcomes: 

• Clear understanding of X-ray diffraction techniques like Laue, powder methods 

using Bragg’s law. 

• To know some useful parameters about cubic and non-cubic crystal systems. 

• Understanding of positions of the atoms in a unit cell further useful to obtain 

knowledge on reciprocal lattice for different systems. 

 

UNIT III  

Lattice Vibrations and Thermal Properties: Elastic waves in one dimensional array of 

identical atoms. Vibrational modes of a diatomic linear lattice and dispersion relations. 

Acoustic and optical modes. Infrared absorption in ionic crystals. Phonons and 

verification of dispersion relation in crystal lattices. Lattice heat capacity– Einstein and 

Vibrational modes of continuous medium-Debye theory. Origin of thermal expansion 

and Gruneisen relation. 

 



 

Learning Outcomes: 

• To obtain expressions for one dimensional linear lattice and diatomic lattice. 

• Distinguish between acoustical and optical modes. 

• Understand the importance of Einstein’s theory and Debye’s theory. 

 

UNIT IV 

FREE ELECTRON FERMI GAS: Failures of free electron theory of metals (Qualitative 

only) Energy levels and density of orbits in one dimension, Free electron gas in 3 

dimensions-Fermi-Dirac distribution function and variation of Fermi function with 

temperature (Qualitative only)-Density of states-Heat capacity of the electron gas, 

Experimental heat capacity of metals-Electrical conductivity and Ohm’s law-Thermal 

conductivity of metals-Wiedemann-Franz law-Motion of magnetic field-Hall effect. 

Learning Outcomes: 

• Understanding the classical free electron theory - their failure and quantum free 

electron theory. 

• Understanding about electrical and thermal conductivity. 

 

UNIT V   

THE BAND THEORY OF SOLIDS: Nearly free electron model, Origin of the energy 

gap, The Block Theorem, Kronig-Penny Model, wave equation of electron in a periodic 

potential, Approximate solution near a zone boundary, Effective mass of electron, The 

distinction between metals, insulators and semiconductors. 

Learning Outcomes: 

• Understanding the conduction, valance bands and reasons for energy band gap. 

• Understanding about the band theory of solids and must be able to differentiate 

insulators, conductors and semiconductors. 

 

Course Outcome: 

• A brief idea about crystalline and amorphous substances, about lattice, unit cell, 

miller indices, reciprocal lattice, concept of Brillouin zones. 

• The students should be able to clucidate the important features of solid state 

physics by covering structural aspects like lattice cell parameters which are 

studied by diffraction techniques. 

• A detailed understanding on band theory of solids helps to distinguish metals, 

insulators and semiconductors. 

 

Text and Reference books:   

 

1. Introduction to Solid State Physics, C. Kittel, 5th Edition,  

2. Solid State Physics, A.J. Dekker. 

3. Solid State Physics, S.O. Pillai 7th Edition 

4. Solid State Physics H.C. Gupta, Vikas Publisher, Noida, 2nd Edition 

5. Fundamentals of quantum Mechanics, Statistical Mechanics & Solid State Physics by 

S.P.Kuila, Books and Allied, Kolkata  

6. Solid State Physics, M.A. Wahab, Narosa publishing house.  

 

 

 

 



 

                                                                                                        (202PH24) 

M.Sc. DEGREE EXAMINATION 

Physics 

Paper-II: SOLID STATE PHYSICS 

 

Time: Three hours                                                                Maximum:70 marks. 

                                  All questions carry equal marks. 

 

1     (a)    What are Lattice translation vectors and lattices? 

       (b)    What is Basis, Crystal structure and a Primitive cell? 

                                                 OR 

       (c)     Explain the structures SC and BCC. 

       (d)     Explain the structures Caesium chloride and Dimond structures. 

 

2     (a)     Explain Laue method to determine crystal structure. 

       (b)     Derive Bragg’s Law. 

                                                  OR 

       (c)     What is Neutron diffraction? Explain. 

       (d)     Explain Reciprocal lattice and Reciprocal Brillouin zone.  

 

3     (a)     What are vibrational modes and derive dispersion relations. 

       (b)     Explain Infrared absorption in ionic crystals. 

                                                   OR 

       (c)      How do you verify dispersion relation in crystal lattices. 

       (d)     Derive the expression for specific heat in Einstein model. 

 

4     (a)     Explain Fermi-Dirac distribution function. 

       (b)     Derive the expression for density of states. 

                                                    OR 

       (c)      Explain the thermal conductivity of metals. 

       (d)     What is Hall effect? Explain to determine Hall coefficient. 

 

5     (a)     What is the origin of energy gap? Explain 

       (b)     Derive the expression for effective mass. 

                                                     OR 

       (c)      What is Bloch Theorem? Explain Kronig- Penny model to determine  

                  band structure in the crystals. 
 

 

 

 
 



 

CONTENTS 

S.No TITLES PAGE No 

1  Crystal Structure 1.1-1.16 

2  Types of Lattices 2.1-2.12 

3  Simple Crystal Structures 3.1-3.6 

4  Crystal Diffraction 4.1-4.15 

5  Reciprocal Lattice 5.1-5.12 

6  Lattice Vibration & Thermal Properties 6.1-6.12 

7  Debye Theory of Specific Heat 7.1-7.10 

8  Free Electron Fermi Gas 8.1-8.9 

9  Fermi-Dirac Distribution Function 9.1-9.7 

10  Electrical And Thermal Conductivity if Metals 10.1-10.11 

11  The Bloch Theorem 11.1-11.9 

12  Kronig-Penny Model 12.1-12.7 

13  Effective Mass of Electron 13.1-13.11 

 



LESSON-1 

CRYSTAL STRUCTURE 
 Aim: 

To study and understand the periodic arrangement (periodic array) of atoms in the 

modern periodic table and the basis on which elements are classified. A crystal structure is 

formed by the combination of a mathematical abstraction (the lattice) and a physical entity (the 

basis).To study symmetry operations in crystal lattices and understand how the basis combined 

with a lattice leads to the formation of different crystal structures. 

Objectives: 

• To understand the concept of the periodic array of atoms in crystalline solids. 

• To study the arrangement of atoms in a regular and repeating lattice. 

• To learn about lattice points and lattice translational vectors. 

• To understand the concept of symmetry in crystals. 

• To study different symmetry operations such as translation, rotation, reflection, and 

inversion. 

• To understand the role of symmetry operations in classifying crystal structures. 

• To learn the meaning of a basis and its importance in crystal formation. 

• To understand how a lattice combined with a basis forms a crystal structure. 

• To identify and study common crystal structures such as simple cubic, body-centered 

cubic, and face-centered cubic. 

• To relate atomic arrangement and symmetry to the physical properties of solids. 

STRUCTURE: 

1.1  Crystal Structure 

1.2  Lattice Translational vectors and lattices 

1.3  Symmetry Operations 

1.4  Basis & Crystal Structure 

1.5  Summary 

1.6  Technical Terms 

1.7  Self Assessment Questions 

1.8  Suggested Readings 

1.1 Crystal Structure: 

A crystal structure is formed by the combination of a mathematical abstraction (the 

lattice) and a physical entity (the basis). 

• Lattice: A regular, periodic arrangement of points in space. It is a purely mathematical 

concept where every point has an identical environment. 
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• Basis (or Motif): An atom or a group of atoms associated with each lattice point. The 

basis must be identical in composition, arrangement, and orientation for every point. 

Crystal Structure = Lattice + Basis 

Basic definitions: 

The study of crystal physics aims to interpret the macroscopic properties in terms of 

properties of the microscopic particles of which the solid is composed.  The geometric form & 

physical properties of crystalline solids can be determined by using X-rays, electron beams & 

neutron beams.  

The main difference between the crystals & other solids is that there is a arrangement of 

atoms, ions (or) molecule in three dimensional periodic manner in crystals and this is absent in 

other solids.  In order to explain this periodicity Bravais introduced the concept of space lattice 

in 1848.  Space lattice is obtained by simply considering the translation of an object (J) to a finite 

distance (a) & when repeated systematically along the three crystallographic directions i.e. x, y 

& z.  The one-dimensional periodic array of object is shown in below fig. 1.8a. 

It is easy to represent this periodicity by replacing each object in the array with a point.  It 

should be remembered that a point is an imaginary infinitesimal spot in space i.e. lattice points 

are imaginary  i.e.Fig 1.8a represents real objects whereas Fig 1.8b shows the same array 

intermsof  imaginary lattice points. 

 

 

 

If  translation “a” is combined with another non collinear translation “b” then a two 

dimensional array is obtained  as shown in 1.8 c and 1.8d 

 

 

 

 

 

 

Similarly if “a” & “b” is combined with a third non-coplanar translation c, then a three 

dimensional array is obtained, which is shown in fig1.4. 

J J J J J 

Fig 1.1(a) 
   Fig 1.2(b) 

J J J 

J J J 

J J J 

J J J 

a 

b 

(c) 
(d) 

Fig 1.3 Two dimensional array of: (c) Objects, (d) Points; a plane lattice 
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The characteristic feature of the space lattice is that the environment around any one 

point is identical.  The location of any lattice point can be defined as, T=n1a+n2b+n3c.    Where 

n1, n2, n3 are arbitrary integers. 

 

 

 

 

 

 

Basis: 

In preceding section we studied the periodicity & lattice points.  Now it is essential to 

distinguish a lattice from a crystal.  A crystal structure is formed only when a group of atoms (or) 

molecules are attached identically to each lattice points.  This group of atoms (or) molecules is 

called basis.  Basis is identical in composition, arrangement and orientation, which is repeated 

periodically in space to form the crystal structure. 

   Lattice + Basis = crystal structure  

 

 

 

 

 

 

 

 

 

 

 

b 

J 

J 

J 
J 

J 

J 
J 

J 

J 

J 

J 

J 
J 

J 

J 
J 

J 

J 

J 

J 

J 
J 

J 

J 
J 

J 

J 

a 

c 

(a) (b) 

Fig 1.4 Three dimensional array of: (a) Objects, (b) Points; a space lattice 

Fig 1.5(a) space lattice 

 

Fig 1.5 (b) Basis containing two 

different atoms 

 

 

 lattice points 

Fig 1.5 (c) Crystal structure (lattice + Basis) 

Basis containing two different 

atoms 
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Unit cell: - 

The atomic order in crystalline solids indicates that the small groups of atoms 

form a repetitive pattern.  Thus, in describing crystal structure, it is often convenient to 

subdivide the structure into small repeat entities called unit cells. i.e. in every crystal 

some fundamental grouping of particles is repeated.  Such collection of particles is called 

a “Unit Cell”.  Unit cells for most crystals are parallelopiped (or) cubes having 3 set of 

parallel faces. 

It can be used to represent the crystal symmetry.  It is a “building block” of the crystal 

structure.  The fig 1.6(a) shows a unit cell of a 3 dimensional crystal lattice.  The lattice is 

made-up of a repetition of unit cells, and a unit cell can be completely described by the 

three vectors a, b, c & the angles between them ( ,  , ).  If the values of these 

intercepts & interfacial angles are known, we can easily determine the form & actual size 

of the unit cell. 

 

 

 

 

 

 

Table 1  Unit cell volume of different lattice types 

Lattice type 

 

Volume 

 

Cubic  

 

a3 

 

Orthorhombic  

 

abc 

Tetragonal  

 

a2c 

 

Hexagonal 

 
c/2a 3 2

 

 

Rhombohedra 

 
a3  32 cos2cos31 +−  

 

Monoclinic  

 
abc sin 

 

Triclinic 

 
abc  coscoscos2coscoscos1 +−−−  

a 

b 
a 

b 

c 

c 

  

 

Fig 1.6 (a) Lattice parameter of  

a unit cell 
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1.2 Lattice Translation Vectors: 

The defining feature of a lattice is its translational symmetry. This means that if you shift 

the entire lattice by a specific vector, the resulting arrangement is indistinguishable from 

the original. 

Mathematical Definition 

In three dimensions, any lattice point can be reached from an origin point by a Lattice 

Translation Vector T defined as: 

T = n1 a1 + n2a2 + n3a3 

• Vector a1, a2, a3 These are the fundamental translation vectors (or primitive 

vectors) that define the axes of the crystal. 

• n1,n2,n3: These are any set of integers. 

If a vector T satisfies the condition that the atomic environment at r is identical to the 

environment at r+T for all  rit is a valid translation vector. 

Types of Lattices 

While there are infinite ways to arrange atoms, symmetry constraints limit the number of 

possible lattice types. 

Primitive vs. Non-Primitive 

• Primitive Lattice Vectors: The smallest possible vectors that can build the lattice. 

A unit cell formed by these vectors contains exactly one lattice point. 

• Non-Primitive Vectors: These vectors may be easier to work with (e.g., they might 

be orthogonal) but result in a unit cell that contains more than one lattice point 

(like Body-Centered Cubic or Face-Centered Cubic). 

Bravais Lattices 

In 3D space, there are only 14 unique ways to arrange points such that each point has an 

identical environment. These are known as the Bravais Lattices, which are further 

categorized into 7 Crystal Systems: 

1. Cubic (SC, BCC, FCC) 

2. Tetragonal 

3. Orthorhombic 

4. Monoclinic 

5. Triclinic 

6. Trigonal (Rhombohedral) 

7. Hexagonal 
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Seven Crystal Systems:      

     In 3 dimensional case by applying the restrictions on the lattice translations a, b, c and 

angles  ,  , , one can verify that only 7 crystal groups (or) basic systems are possible.  

They are collectively known as Bravais lattices.  In order to specify the given 

arrangement of points in a space lattice (or) of atoms in a crystal, it is customary to define 

its co-ordinates with reference to a set of axes chosen with its origin at a lattice point.  

The three axes & angles are defined as shown in fig 1.11(b).  Each space lattice has a 

convenient set of axes, however only seven different systems of axes have been found to 

be sufficient for representing all Bravais lattices. 

 

 

 

 

 

They are  

1.Triclinic 

2. Monoclinic 

3. Orthorhombic 

4. Tetragonal 

 5. Trigonal        

6. Hexagonal 

7. Cubic 

     Explanation of each crystal system is given below. 

(1) Cubic crystal system: -  

The crystal axes are perpendicular to one 

another & the repetitive interval is the 

same along all the 3 axes.   

Cubic crystallites may be simple (or) 

body centered (or) face centered. 

 

a = b = c;  =  = =900; 

 

 

 

 

 

a 
c 

b 

Fig 1.7 The crystallographic axes and the corresponding angles 

a 
b 

x 

y 

z 

c 
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(2) Tetragonal crystal system:-

     The crystal axes are perpendicular to 

one another.  The repetitive intervals 

along two axes are the same, but the 

interval along the third axis is different. 

Tetragonal lattices may be simple (or) 

body centered. 

 

 

 

 

 

a=b c;    =  = =900;     

(3) Orthorhombic crystal system:-

The crystal axes are 

perpendicular to one another, but the 

repetitive intervals are different along all 

the three axes.  Orthorhombic lattices 

may be simple, base centered, body 

centered (or) face centered. 

 

 

 

 

 a  b  c;    =  = =900; 

(4) Monoclinic Crystal system:-

Two of the crystal axes are 

perpendicular to each other, but the third 

is obliquely inclined.  The repetitive  

intervals are different along all 

the three axes.  Monoclinic lattices may 

be simple  (or) base centered. 

 

 

 

 

 

a  b  c;    =  =900   

 

(5) Triclinic crystal system:- 

     None of the crystal axes is 

perpendicular to any of the others, and 

the repetitive intervals are different 

along all the three axes. 

 

 

   a  b  c;          900 
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(6) Trigonal (or) rhombohedral crystal system:- 

     The three axes are equal in length and 

are equally inclined to each other at an 

angle other than 900. 

 

 

(7) Hexagonal crystal system:- 

     Two of the crystal axes are 600 apart 

while the third is perpendicular to both 

of them.  The repetitive intervals are the 

same along the axes that are 600 apart, 

but the interval along the third axis is 

different.  The properties of seven are 

shown in table 1. 

 
S. 

No. 

Crystal system Axial length of 

unit cell (a,b&c) 

Inter axial angles ( ,

 & ) 

    Example 

 1 Cubic a=b=c  =  = =900 Au, Cu, NaCl 

 2 Tetragonal a=b c  =  = =900 TiO2, SnO2 

 3 Orthorhombic a  b  c  =  = =900 KNO3, BaSO4 

 4 Monoclinic a  b  c  =  =900   CaSO4, 2H2O,FeSO4 

 5 Triclinic  a  b  c       900 K2Cr2O7 

 6 Trigonal a=b=c  =  =  900 As, Sb, Bi, Calcite 

 7 Hexagonal a=b c  =  =900& =1200 SiO2, Zn, Mg, Cd 

 

Table 1.4 
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1.3 SYMMETRY OPERATIONS:  

The definite ordered arrangement of the faces and edges of a crystal is known as “crystal 

symmetry”.  It is a powerful tool for the study of the internal structure of crystal. 

A crystal possesses different symmetries (or) symmetry elements.  They are described by 

certain operations.  A symmetry operation is one that leaves the crystal and its environment 

invariant, i.e. the body becomes indistinguishable from its initial configuration after symmetry 

operation.  The geometrical locus about which a group of finite operations act is known as 

“symmetry element”.   A crystalline solid can have the following symmetry elements. 

(i) Pure translation 

(ii) Proper rotation 

(iii) Reflection 

(iv) Inversion 

 

(i) Pure translation: -     

A two dimensional space lattice is shown in fig1.6(a) The distance between any two nearest 

neighbours along the x direction is “a” and along the y direction is “b”.  A perfect crystal 

maintains this periodicity in both x and y directions from  – to  i.e. the periodicity of atoms A, 

B and C are equivalent. In other words, to an observer located at any of the atomic sites, the 

crystal appears exactly the same.  From the above point we can say that a crystal possesses a 

translation symmetry.  If the crystal is translated by any vector joining two atoms say R in 

fig.1.8, the crystal appears exactly the same as before the translation.  Therefore crystal remains 

invariant under any translation.  A translation operation is a displacement vector represented in 

terms of the basis vectors a, b and c as 

T  = n1a +n2b+n3c     

 where n1, n2 and n3 are integers. 

(ii) Proper rotation (through an angle  ): - 

     The proper rotation is shown in fig1.9.  Let us imagine a line (or) axis passing through the 

centre & normal to the fig.1.7, so that the J’s are represented by a rotation through any angle  = 

2 /n about the axis of rotation, the axis is said to have n-fold symmetry. 

 

 

 

 

 

 

x 

y 

R 

a 

b 

C 

A B 

Fig 1.8 Translation in two dimensional 

lattice 

J 

J 

J 

J J 

J 

J 

J 
Fig 1.9 Rotation 
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     Because of reticular structure of crystals, only 1-,2-,3-,4- & 6- fold rotational symmetries are 

possible.  Crystalline solid cannot possess either 5-fold (or) any other rotational symmetry higher 

than 6-fold. 

 

 

 

 

 

(iii) Reflection: -  

 

 

The proper reflection is shown in fig 1.8.  In the fig, we find that a plane transforms left-handed 

object into a right-handed one and vice-versa.  The element of symmetry in this case is known as 

a symmetry plane (or) a mirror plane and symbolically represented by the letter “m”.  i.e. A plane 

in a cell such that, when a mirror reflection in this plane is performed, the cell remains invariant. 

iv) Inversion center (center of symmetry):  

The proper inversion is shown in fig 1.9(a).  A cell has an inversion center if there is a point at 

which the cell remains invariant when the mathematical transformation  →  - is performed on 

it.  This is similar to reflection, with the difference that reflection occurs in a plane of mirror, 

while inversion is equivalent to reflection through point called inversion centre (or) centre of 

symmetry.  The inversion centre has the property of inverting all space through points. 

Ex:  All bravoes lattices have inversion symmetry.  A Non-bravais lattice may or may not 

have an inversion centre, depending on the symmetry of the basis. 

 

 

 

 

 

 

1.4 Basis & Crystal Structures 

In preceding section we studied the periodicity & lattice points.  Now it is essential to 

distinguish a lattice from a crystal.  A crystal structure is formed only when a group of atoms (or) 

molecules are attached identically to each lattice points.  This group of atoms (or) molecules is 

Fig 1.9(a) Some Possible and Non-existent Symmetry axes  

FFfgFFfF 1.6(d) 

reflection 

Fig 1.9(b) Inversion 
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called basis.  Basis is identical in composition, arrangement and orientation, which is repeated 

periodically in space to form the crystal structure. 

   Lattice + Basis = crystal structure  

 

 

 

 

 

 

 

The Fourteen Bravais Lattices:- 

A three-dimensional unit cell is defined by vectors a, b, &c representing its edges (or) crystal 

axes and the angles  ,  &  defined as shown in fig 1.11 

     The number of bravais lattices is 14 with 32-point groups & 230 space groups.  Based on the 

relationship between a, b &c in terms of magnitude and relative orientation  ,  & .  The 14 

types are grouped into seven different classes of crystal lattices.  A description of the 14 bravais 

lattices of 3 dimensions along with the axial relationship for the class of crystal lattices to which 

each belongs is entered in table 2. 

The simple cube (SC):- 

     The unit cell is cube having one atom (or) molecule at each corner.  So there are eight atoms 

(or) molecules at eight corners of the cube.  Since each corner atom is shared by eight 

surrounding cubes, share of each cube comes to one eighth of an atom, shown in fig 1.13a. 

 

 

 

Total No. of atoms = 8
8

1
  = 1 atom. 

 

 

 a 
c 

b 

1/8th of an Atom  

                  (corner atoms) 

Fig 1.10(a) space lattice 

 

Fig 1.10 (b) Basis containing two 

different atoms 

 

 

 lattice points 

Fig 1.10 (c) Crystal structure (lattice + Basis) 

Basis containing two different 

atoms 
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The Body Centered cube (BCC):-The unit cell of body centered cube structure is shown in fig 

1.13(b).  It has eight corner atoms & one center atom.  The number of atoms belonging to this 

cube are (a) One center atom & 

(b) 8
8

1
  = 1 corner atom 

Total No. of atoms per cube =1+1=2 

The Face centered cube (FCC):  -  

The unit cell of face centered cube structure is shown in fig 1.13c.  It has 6 face centered and 

eight corner atoms.  The six face centered atoms at six faces of the cube are shared by their 

adjacent cubes.  Hence, a total of 6/2=3 such atoms belong to the cube.  As each corner atom is 

shared by eight surrounding cubes, the share of each cube comes to one eighth of an atom. 

Total no. of atoms per cube =3 + 8
8

1
 =3+1=4. 

     Similarly monoclinic lattice has two types simple and base centered.  Orthorhombic has four 

types three as mentioned above for cubic and base centered, Tetragonal has two types of lattices.   

 

 

 

 

     Fig 1.13(b) Body centered cube 

Corner Atoms 

1/8 th of the Atoms 

Center Atom 

Corner Atoms 

1/8 th of the Atoms 

Face centered 

Atoms (1/2 

Atom) 

Fig 1.13(c) Face centered cube 
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Table 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

      Class      Bravais lattice    No. of lattices         Unit cell      Characteristics 

Triclinic Simple 1 a  b  c &      900 

Monoclinic Simple Base centered 2 a  b  c & =  =900   

Orthorhombic Simple base-centered 

body-centered 

4 a  b  c & =  = =900 

Tetragonal Simple Body 

centered 

2 a = b c & =  = =900 

Cubic Simple body-

centered face-

centered 

3 a = b = c & =  = =900 

Trigonal Simple 1 a = b = c & =  =  900 

Hexagonal Simple 1 a = b c & =  =900  =1200 
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Simple orthorhombic 

Triclinic  

 Simple monoclinic Base-centered 

monoclinic 

 Body-centered cubic  Simple cubic 

Base-centered 

orthorhombic 
Body-centered 

orthorhombic 

Body-centered 

tetragonal 
Face-centered 

orthorhombic 

Simple tetragonal 

       Face-centered cubic 
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1.5 Summary: 

The periodic array of atoms forms the foundation of crystalline solids, where atoms are 

arranged in a regular, repeating three-dimensional pattern known as a lattice. This ordered 

arrangement determines the physical and chemical properties of materials. The study of 

lattices, symmetry, and crystal structures helps in understanding the internal structure of 

solids. 

Lattice Translational Vectors and Lattices: 

A lattice is an infinite, regular arrangement of points in space, each representing the position 

of an atom or a group of atoms. The entire lattice can be generated by translating a point 

through lattice translational vectors. These vectors define the periodicity of the crystal and 

ensure that the arrangement of atoms repeats uniformly throughout the solid. 

Symmetry Operations: 

Symmetry operations are movements that bring a lattice or crystal structure into a position 

indistinguishable from its original one. Common symmetry operations include translation, 

rotation, reflection, and inversion. These operations play a crucial role in classifying crystal 

structures and understanding their physical properties such as optical behavior and 

mechanical strength. 

The Basis and Crystal Structures: 

A crystal structure is formed when a basis (one atom or a group of atoms) is attached to each 

lattice point. While the lattice defines the geometric framework, the basis determines the 

actual atomic arrangement. Different combinations of lattices and bases lead to various 

crystal structures such as simple cubic, body-centered cubic, and face-centered cubic 

structures. 

Primitive Lattice Cell: 

The primitive lattice cell is the smallest volume of a crystal lattice that can be repeated 

through translational symmetry to generate the entire lattice. It contains exactly one lattice 

point and represents the fundamental building block of a crystal. Understanding the primitive 

cell is essential for analyzing crystal geometry and packing efficiency. 

a 
b 

c 

Hexagonal  
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1.6 Technical terms 

 

Crystal Structure, Lattice Translational vector and lattices, Symmetry Operations, Basis 

& Crystal Structure. 

 

1.7 Self assessment questions 

 

1. Explain about the Crystal structure 

2. Briefly explain about Lattice Translational vector and lattices 

3. Explain about the Basis & Crystal Structure. 

 

1.8 Suggested readings 

 

1. Introduction to Solid State Physics, C. Kittel, 5th Edition. 

      2. Solid State Physics, A. J. Dekker. 

3. Solid State Physics, S. O. Pillai, 7th Edition. 

4. Solid State Physics, H. C. Gupta, Vikas Publisher, Noida, 2nd Edition. 

5. Fundamentals of Quantum Mechanics, Statistical Mechanics & Solid State Physics, by S. 

P. Kuila, Books and Allied, Kolkata. 

6. Solid State Physics, M. A. Wahab, Narosa Publishing House. 

 

 

Prof. R.V.S.S.N. Ravi Kumar 



LESSON - 2 

TYPES OF LATTICES 
Aim: 
 
To study the concept of a primitive lattice, understand the fundamental types of two-dimensional 
and three-dimensional lattices, and learn the index system used to describe crystal lattices.To 
understand the primitive lattice and its unit cell, classify the fundamental types of two-dimensional 
and three-dimensional lattices, and study the index system of crystal lattices used to represent 
lattice planes and directions. 
 
Objectives: 
 

 To understand the concept of a lattice and a primitive lattice. 
 To study the primitive unit cell and its significance in crystal structures. 
 To learn about lattice points and translational symmetry. 
 To classify and understand the fundamental types of two-dimensional lattices. 
 To study the fundamental types of three-dimensional lattices (Bravais lattices). 
 To compare two-dimensional and three-dimensional lattice structures. 
 To understand the need for an index system in crystal lattices. 
 To learn the Miller indices used to represent crystal planes. 
 To understand how lattice directions and planes are identified using the index system. 
 To appreciate the importance of lattice indexing in the study of crystal properties. 

 
STRUCTURE: 
 

2.1 Primitive Lattice Cell 

2.2 Fundamental Types of Lattice 

2.3 Two Dimensional Crystalline Lattice 

2.4 Three Dimensional Crystalline Lattice 

2.5 Index system for crystal planes 

2.6  Packing Density in Crystal Structures (SC, BCC and FCC). 

2.7 Summary 

2.8 Technical terms 

2.9 Self Assessment Questions 

2.10 Suggested readings 

 
2.1 PRIMITIVE LATTICE CELL: 
 

A Primitive Lattice Cell is the smallest possible repeating unit of a crystal lattice that 
contains exactly one lattice point. While a "conventional" unit cell is often chosen to highlight the 
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symmetry of the crystal (like the cube in Face-Centred Cubic), the primitive cell is the most 
fundamental mathematical building block. 
 
Key Characteristics 

 Minimum Volume: It is the smallest volume that can tile the entire space by simple 
translation without gaps or overlaps. 

 Single Lattice Point: Although it may have points at its corners, the total contribution 
equals exactly one point (e.g., 8 corners X 1/8 per corner = 1). 

 Defined by Primitive Vectors: It is spanned by the primitive translation vectors a1,a2,a3 
 Non-Unique: For any given lattice, there are infinite ways to choose a primitive cell, 

provided the volume remains the same. 
 
Construction Methods 
There are two primary ways to define or visualize a primitive cell: 
A. The Parallelepiped Method 
This is the standard geometric approach where you choose three primitive translation vectors a1,
a2, a3 that reach the nearest neighbours. The volume of this cell is given by the triple scalar 
product: 
Vp = |a1.(a2 X a3)| 
The Wigner-Seitz Cell 
The Wigner-Seitz cell is a special type of primitive cell that displays the full symmetry of the 
lattice. It is defined as the region of space around a lattice point that is closer to that point than to 
any other. 
How to construct it: 

1. Draw lines connecting a central lattice point to all its nearest neighbors. 
2. Draw planes (in 3D) or lines (in 2D) that perpendicularly bisect these connecting lines.
3. The smallest enclosed volume created by these intersecting planes is the Wigner-Seitz cell. 

 
Comparison: Primitive vs. Conventional 
It is often more convenient to use a Conventional Unit Cell (which may contain 2 or 4 lattice 
points) because it aligns with the x, y, z axes, making calculations easier. 

Feature Primitive Cell Conventional Unit Cell 

Lattice Points Exactly 1 1 or more (often 2 or 4) 

Volume Smallest possible Vp Integer multiple of Vp 

Symmetry May not show full symmetry Always shows full crystal symmetry 

Example (BCC) Rhombic parallelepiped Cube (contains 2 points) 

 
Examples in Cubic Systems 

 Simple Cubic (SC): The conventional cube is already primitive (1 point). 
 Body-Centered Cubic (BCC): The conventional cube has 2 points. The primitive cell is a 

slanted parallelepiped with Vp = a3/2. 
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 Face-Centered Cubic (FCC): The conventional cube has 4 points. The primitive cell is a 
parallelepiped with Vp = a3/4. 

 
2.2 FUNDAMENTAL TYPES OF LATTICES: 
 
 Lattice 
A lattice is a regular, periodic arrangement of points in space. Each point represents the position of 
an atom or a group of atoms. 
All lattice points are identical and equivalent. 
 
Fundamental Types of Lattices (Based on Centring) 
Lattices are classified according to the position of lattice points in the unit cell. There are four 
fundamental lattice types: 
 
(a) Simple (Primitive) Lattice  P 

 Lattice points only at the corners of the unit cell 
 Each corner atom is shared by 8 unit cells 

Lattice points per unit cell: 

Examples: 
 Simple cubic (Polonium) 

 
(b) Body-Centered Lattice  I 

 Lattice points at: 
o All corners 
o One at the center of the unit cell 

Lattice points per unit cell: 

Examples: 
 BCC structure: Iron (Fe), Chromium (Cr) 

 
(c) Face-Centered Lattice  F 

 Lattice points at: 
o All corners 
o Centers of all six faces 

Lattice points per unit cell: 

Examples: 
 FCC structure: Copper (Cu), Aluminum (Al), Silver (Ag) 

 
(d) Base-Centered (End-Centered) Lattice  C 

 Lattice points at: 
o All corners 
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o Centers of two opposite faces (usually top and bottom) 
Lattice points per unit cell: 

 
Examples: 

 Some orthorhombic and monoclinic crystals 
Summary Table 
Lattice Type               Symbol Lattice Points per Unit Cell 

Simple (Primitive) P 1 

Body-Centered I 2 

Face-Centered F 4 

Base-Centered C 2 
2.3 Two dimensional crystalline lattices: 
        Introduction to Space lattice 

In general infinite number of lattices are possible because there is no restriction on the 
length a, b of the lattice translations and on angle  between them. Such a lattice is known as 
oblique lattice and is shown in fig 2.1(a). 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Oblique lattice is invariant under the rotation 2 /n (n= 1 & 2) about any lattice point.  However, 
this can also be invariant under the rotation 2 /n with n=3,4,6 (or) mirror reflection if some 
suitable restrictions are imposed on a, b & .  These symmetry elements in turn put restrictions on 
the shape of the lattice.  The resulting lattices are known as special lattices.  They are 
1. Square lattice = ,  (or)  = 900        

2. Hexagonal lattice = ,  = 1200 

b 
a  

Fig2.1(c) Hexagonal lattice 

a1 

b1 

Fig 2.2 (b) square 

a2 

b2 

Fig 2.1 (a) Obliqe 

Fig 2.1(d) Rectangular lattice  

a3 

b3 

Fig 2.1(e) centred rectangle 

a4 

b4 
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3. Rectangular lattice  ,  = 900         

4. Centred rectangular 
Lattice axes are shown for both the primitive cell and the rectangular unit cell for which 
dimensions.  Out of the five Bravais lattices, one is general and other four are obtained by 
exhausting the feasible axial relationships between a and b and the relative orientations of the two.  
The general lattice is termed as oblique lattice. 
 

 

Table 1 Bravais lattice in two dimension 
 
     There are in all five Bravais lattices, ten point groups and seventeen space groups in two- 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2.4 Three dimensional crystalline lattices:  

In previous section, we observe that in two dimensions suitable restrictions on lattice 
translations & angles allow only five types of lattices.  By extending the same idea to a 3-
dimensional case and applying the similar restrictions on the lattice translations a, b &c and angles 

,  and   we obtain a Bravais lattice. 
 

 

S.No. 

 

 

 

1. 

 

2. 

3. 

4. 

 

5. 

Lattice type 

 

 

  

Oblique  

 

Square 

Hexagonal  

Primitive 

Rectangular 

Centred 

 rectangular 

Conventional unit 
cell 

 

 

 

Parallelogram 

 

Square  

Rhombus  

 

Rectangle 

Rectangle 

 

Axes & angles 
 

 

 

 

a  b;  (or)  900 

 

a = b;  = 900 

a = b;  = 1200 

 

a  b;  = 900 

a  b;  = 900 

Point group 
symmetry about 
lattice point 

 

 

 

         2mm 

 

           4mm 

 

           6mm 

 

           2mm 

 

2mm
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A three-dimensional unit cell is defined by vectors a, b &c representing its edges (or) 

crystal axes and the angles , & .  The numbers of Bravais lattices is14 with 32 points groups 
and 230 space groups.  Based on relationships between a, b & c in terms of magnitude and relative 
orientations , & , the 14 types of unit cells are grouped into seven different classes of crystal 
lattices.  They are Triclinic, monoclinic, orthorhombic, tetragonal, cubic, trigonal & hexagonal.  
The table 2 gives the 7 classes of crystal lattices. 
Table 2 Crystal classes 
 
 
P stands for Primitive, C for Side centered (or) base centered, I for Body centered and 
F for Face centered 
Index System for Crystal planes 
 

Crystal system  Restriction on 
conventional cell, 
axes & angles 

Associate lattice Characteristic 
symmetry 
element 

Number Symbol 

Triclinic a b c; 
900 

1   P   None 

Monoclinic a b c; 
= =900  

2 P, C One 2-fold-
rotation axis. 

Orthorhombic a b c;  
 = = =900; 

  4  P, C, F, 
I 

Three 2-fold 
rotation axis 

Tetragonal a=b c;  
 = = =900; 

  2 P, I One 4-fold 
rotation axis 

Cubic a=b=c;   
 = = =900; 

  3 P, I, F Four 3-fold 
rotation axis 

Trigonal a=b=c; = =
<1200 900; 

  1 P One 3-fold 
rotation axis 

Hexagonal a=b c; = =900; 
=1200; 

  1 P One 6-fold-
rotation axis. 
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2.5 INDEX SYSTEM FOR CRYSTAL PLANES 
 
  It is difficult to designate the different planes in a crystal.  To avoid this difficulty Miller evolved 
a method to designate a set of parallel planes in a crystal by three numbers (h, k, l) know  as Miller 
indices. 
     The steps for the determination of Miller indices of a set of parallel planes are illustrated as 
follows  
(1) Determine the intercepts made by the plane along the three 

crystallographic axes (x, y, z) 
 

i.e                 x            y           z 
                    2a          3b          c 
                    p           q             r 
 
 
 
 
 
 
where  p = 2;    q = 3;     r = 1; 
(2) Express the intercepts as  
      multiples of the unit cell dimensions, (or) lattice parameters along the axes i.e. 

  2    3    1 

(3) Determine the reciprocals of these numbers i.e.  

(4) Reduce the reciprocals to the smallest set of integral number and enclose them in      

      brackets   (3   2   6) 

Thus Miller indices may be defined as the reciprocal of the intercepts made by the plane on 
the crystallographic axes when reduced to smallest number. Important features of Miller indices of 
crystal planes are, 

a) All the parallel equidistant planes have the same Miller indices.   
b) A plane parallel to one of the Co-ordinate axes has an intercept of infinity.   
c) If the Miller indices of two planes have the same ratio i.e.(844) and (422) or (211) then the 

planes are parallel to each other. 
d) If (h, k, l) are the Miller indices of a plane, then the plane cuts the axes into h, k & l equal 

segments respectively. 
The Miller indices define a set of parallel planes or a set of parallel planes.  If (h, k, l) are the 

Miller indices of a plane, then, the plane cuts the axes into h, k and l equal segments respectively.  
If a plane cuts an axis on the negative side of the origin, the corresponding index is negative and is 

indicated by placing a bar above the index; .  The cube faces of a cubic crystal are (100); 

y c 
2c 
3c 

b 2b 3b 4b a 
2a 

3a 
x 

z 

Fig 2.2(a) 
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(010); (001);  Planes equivalent by symmetry are denoted by curly 

brackets around miller indices; the cube faces are {100}.  Regarding direction the x axis is the 

[100] direction; the y axis is the  direction.  A full set of equivalent directions is denoted 

this way: <uvw>.  In cubic crystals a direction [uvw] is perpendicular to a plane (uvw) having the 
same indices, but this is not generally true in other crystal systems. 

The positions of points in a unit cell are specified in terms of lattice coordinates, in which each 
coordinate is a fraction of the axial length, a, b or c, in the direction of the coordinate, with the 

origin taken at the corner of unit cell.  Thus the coordinates of the central point of a cell are , 

and the face center positions are  

 
2.3 Spacing between planes of same Miller indices: - 

 
It is necessary to know the inter planar distance between planes labeled by the same Miller 

indices for the x-ray diffraction from the crystal.  Let us call this distance dhkl.   
     Now, we shall derive a formula for the spacing between two parallel planes in a given cell with 
the help of figure shown in fig 2.3. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
For convenience, we shall take a simple unit cell in which co-ordinate axes are orthogonal, 

therefore they are mutually perpendicular (cubic, tetragonal and orthorhombic cells), for the 
calculation of inter-planer spacing using cartesian co-ordinates. 

 
     In the fig ox, oy & oz are orthogonal axes the origin O is taken at any lattice point.  Now we 
consider any set of crystal planes defined by the Miller indices, (h, k, l).  Suppose the reference 
plane passes through the origin and the next plane makes intercepts a/h, b/k & c/l on x, y & z-axes 
respectively.   
 

x 

y 

z 

A 

B 

C 

 
 

 O 

c/e 

a/h b/k 

Normal to plane ABC 

 

Fig 2.3 
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planewill be the distance between the adjacent planes. 

Now we have to find an expression for d in terms of a, b, c & h, k, l. 

     Since d is normal to the plane ABC, we write 

                Cos  = ;       Cos  = ;     Cos  = ; 

Where  = NOA,    = NOB,  &  = NOC 

 

According to law of direction co-sines, 

 

   cos 2 +  cos2  + cos 2  = 1 

 +    +   = 1 

 

 d2  

 

 

 

The above relation is applicable to the primitive lattice in cubic, orthorhombic & tetragonal 

systems.  For tetragonal crystal a = b 

 

 

 

For cubic system a = b = c 

 

 

 

Note:- In non-orthogonal lattice, calculation of inter planer spacing is more complex. 
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2.6 Packing Density in Crystal Structures (SC, BCC and FCC) 

Packing density (also called Atomic Packing Factor  APF) is the fraction of volume of a unit cell 

occupied by atoms. 

 

Atoms are considered as hard spheres. 

The simple cube (SC):- 

     The unit cell is cube having one atom (or) molecule at each corner.  So there are eight atoms 

(or) molecules at eight corners of the cube.  Since each corner atom is shared by eight 

surrounding cubes, share of each cube comes to one eighth of an atom, shown in fig 1.13a. 

Total No. of atoms =  = 1 atom. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The Body Centered cube (BCC):-
The unit cell of body centered cube structure is shown in fig 2.6.  It has eight corner atoms & one 
center atom.  The number of atoms belonging to this cube are (a) One center atom & 

(b)  = 1 corner atoms 

Total No. of atoms per cube =1+1=2 
 
The Face centred cube (FCC):  -  

The unit cell of face centred cube structure is shown in fig 2.7. It has 6 face centered and 
eight corner atoms.  The six face centred atoms at six faces of the cube are shared by their 
adjacent cubes.  Hence, a total of 6/2=3 such atoms belong to the cube.  As each corner atom is 
shared by eight surrounding cubes, the share of each cube comes to one eighth of an atom. 

Fig 2.4 Notation for angles between the 
crystal axis 

 

 

 a 

c 

b 

Fig 2.5 The simple cube 

1/8th of an Atom  

                  (Corner atoms) 
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Total no. of atoms per cube =3 + =3+1=4. 

     Similarly monoclinic lattice has two types simple and base centred.  Orthorhombic has four 
types three as mentioned above for cubic and base centred, Tetragonal has two types of lattices.  
These are shown in fig 2.7. 
 

 

 

 

 

 
2.7 Summary: 

 
The structure of crystalline solids is based on the regular and periodic arrangement of 

atoms in space, known as a crystal lattice. Understanding primitive lattices, lattice types, 
indexing systems, and packing density helps explain the physical properties of materials. 

 
Primitive Lattice: 

 
A primitive lattice is the simplest lattice that represents the entire crystal structure 

through repetition. The primitive unit cell is the smallest volume that, when translated in space, 
can generate the whole lattice. It contains exactly one lattice point and reflects the fundamental 
symmetry of the crystal. 
 
Fundamental Types of Lattice (Two-Dimensional): 

Two-dimensional lattices represent periodic arrangements in a plane. There are five 
fundamental 2D lattice types: oblique, rectangular, centered rectangular, square, and hexagonal. 
These lattices are used to study surface structures and thin crystalline layers. 
 
Fundamental Types of Lattice (Three-Dimensional): 

Three-dimensional lattices describe the full spatial arrangement of atoms in crystals. 
There are fourteen fundamental 3D lattices known as Bravais lattices, grouped into seven crystal 
systems such as cubic, tetragonal, orthorhombic, and others. These lattices form the backbone of 
all crystal structures. 
 
Index System of Crystal Lattice: 

The index system, commonly known as Miller indices, is used to represent crystal planes 
and directions. Miller indices are a set of integers that define the orientation of planes within a 
crystal lattice. This system is essential for analyzing crystal geometry, diffraction patterns, and 
material properties. 

     Fig 2.6 Body centred 

Corner Atoms 

Centre 

Corner Atoms 

Face 
centred 

Fig 2.7 Face centred cube 
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Packing Density in Crystal Structures 

Packing density (or packing fraction) is defined as the fraction of volume in a crystal structure 
that is actually occupied by atoms, assuming atoms to be hard spheres. It depends on the type of 
crystal structure: 

 Simple cubic (SC): low packing density 
 Body-centered cubic (BCC): intermediate packing density 
 Face-centered cubic (FCC) and hexagonal close-packed (HCP): maximum packing 

density 

Packing density plays a crucial role in determining mechanical strength, stability, and physical 
properties of crystalline materials. 
 
2.8 Technical terms 
 

Primitive Lattice Cell, Fundamental Types of Lattice, Two Dimensional Crystalline Lattice, 
Three Dimensional Crystalline Lattice, Index system for crystal planes, Packing Density in 
Crystal Structures. 
 

2.9 Self assessment questions 
 

1. Explain about the Primitive Lattice Cell 
2. Write about the Fundamental Types of Lattice 
3. Explain about the Two Dimensional Crystalline Lattice 
4. Explain about the Three Dimensional Crystalline Lattice 
5. Write about the Index system for crystal planes 
6. Explain about the Packing Density in Crystal Structures. 

 
2.10 Suggested readings 
 

1. Introduction to Solid State Physics, C. Kittel, 5th Edition. 
2. Solid State Physics, A. J. Dekker. 
3. Solid State Physics, S. O. Pillai, 7th Edition. 
4. Solid State Physics, H. C. Gupta, Vikas Publisher, Noida, 2nd Edition. 
5. Fundamentals of Quantum Mechanics, Statistical Mechanics & Solid State Physics, by S. 

P. Kuila, Books and Allied, Kolkata. 
6. Solid State Physics, M. A. Wahab, Narosa Publishing House. 

 
        

Prof. R.V.S.S.N. Ravi Kumar



 

 

LESSON- 3 

SIMPLE CRYSTAL STRUCTURES 
Aim: 

 

To study and understand simple crystal structures such as Sodium Chloride, Cesium 

Chloride, Diamond, and Zinc Sulfide, and relate their atomic arrangements to their physical 

properties. 

 

Objectives: 

 

1. To understand the concept of crystal structures in solids. 

2. To study the arrangement of atoms or ions in simple crystal structures. 

3. To examine the structure of Sodium Chloride (NaCl) crystal. 

4. To study the Cesium Chloride (CsCl) crystal structure. 

5. To understand the Diamond crystal structure. 

6. To study the Zinc Sulfide (ZnS) crystal structure. 

7. To compare ionic and covalent crystal structures. 

8. To determine coordination numbers in different crystal structures. 

9. To understand the role of bonding and atomic arrangement in determining crystal 

properties. 

10. To appreciate the importance of simple crystal structures in material science. 

 

STRUCTURE: 

 

3.1 Simple Crystal Structure 

3.2 Sodium Chloride 

3.3 Cesium Chloride 

3.4 Diamond Structure 

3.5 Zinc Sulphide 

3.6 Summary 

3.7 Technical Terms 

3.8 Self Assessment Questions 

3.9 Suggested readings 

 

3.1 SIMPLE CRYSTAL STRUCTURES 

Common Crystal Structures:- 

 

A large percentage of metallic structures crystallize in hcp, fcc, bcc.  Simple cubic is 

very rare in metals. 

 

Simple Cubic:- 

 

The simplest crystal structure that we can think of is that of simple cubic symmetry 

with a basis of one atom.  In this structure the atoms are situated at the corners of the cube 

touching each other along the edges, which can be shown in fig 3.1. 
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Each atom surrounded by 6 nearest neighbors.  So, that the Co-ordination number is 6. The 

atomic radius is a/2 (r = a/2).  Where a is the cube edge.  

The number of atoms per unit cell is 1.  Polonium is the lone known example of 

thisclass in nature. 

 

 

 

 

 

 

 

 

3.2 THE NACL STRUCTURE:- 

 

Bravais lattice is fcc.  An atom on the edge contributes 1/4th of the atom.  Thus, the unit 

cell gets three sodium atom from those on the edges 







= 3

4

12
& one from that at the centre.  

The total cell consists of 4 Na atoms.  Similarly the contribution of chlorine atoms to the unit 

cell comes to 4 [ 8/8 + 6/2 = 4 ].  A single unit cell accommodates four formula unit cells of 

NaCl.  The positions of atoms in the unit cell are, 

              Na:     
2

1

2

1

2

1
         0  0  

2

1
            0  

2

1
  0             

2

1
  0  0 

              Cl:       0  0  0          
2

1

2

1
  0           

2

1
  0  

2

1
            0  

2

1

2

1
. 

The Sodium Chloride (NaCl) structure is shown in below fig 3.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 3.2: (a) The arrangement of Na and Cl (shown bigger) atoms on the unit cell of NaCl 

crystal.  (b) Locations of Na and Cl (shown bigger) atoms in the cube representing the 

unit cell.  The separation between the basis partners is half the length of the body 

diagonal 
2

3a
 

Since each ion has six nearest neighbors of opposite kind, the co-ordination number is 

6.Some of the crystals representative of NaCl arrangement, along with their lattice parameter 

are shown in table. 

 

Fig 3.1  
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Na 
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3.3 THE CSCL STRUCTURE:- 

 

The structure of Cesium Chloride is shown in fig 3.3.  The space lattice is simple cube.   

 

 

 

 

 

 

 

 

 

 

 

 

The basis has one Cs+ ion of 000 and one Cl- ion at ½ ½ ½.  The central atom is 

surrounded by eight atoms of the other type at the corners, the co-ordination number is thus 

eight.  It may be noticed that this structure cannot be interpreted as body centred cubic (BCC).  

The lattice points of CsCl are two interpenetrating simple cubic lattices,  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The corner of one sub-lattice is the body centre of the other.  One sub-lattice is 

occupied by Cs+ ions and the other by Cl- ions.  The lattice parameter of some ionic crystal 

having this structure is given below. 

    Crystal             Lattice parameter A0 

     NaCl                       5.63 

      LiH                         4.08 

     KBr                         6.50 

     RbI                          7.33 

     NH4I                       4.37 

     NiO                         4.17 

     UO                          4.92 

     PbS                         5.92 

 

  Cs 

Cl 

 

Fig 3.3(a) The unit cell structure of CsCl crystal 

         Crystal                 Lattice parameter A0 

                                           (A0 = 10-10m) 

           CsCl                       4.11 

          CsBr                       4.29 

          CSI                         4.56 

          TICI                        3.84 

          TIBr                        3.97 

          TII                          4.18 
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Crystal of Alkali Metals:- 

 

Crystals of alkali metals (Li, Na, K, Rb, Cs) are typical representatives of the body 

centered cubic (bcc) structure.  The unit cell is non-primitive with 2 lattice points and the basis 

of one atom.  The cell consist of one atom of each corner & one atom in the centre of the cube 

which is shown in fig 3.2(b).  Each atom has only 8 nearest neighbors. Therefore e Co-

ordination number is 8. 

(1) Total No. of atoms = 1 + 1 = 2 

(2) Atomic radius r = 
4

3a
 

(3) Volume of atoms in unit cell u = 
8

3

3

4
2

3
3 a

rr


 =  

(4) Volume of a unit cell V = a3. 

(5) Packing factor .68.0~
8

3~
3

3

−


=−
a

a

V

u 
 

 

 

Crystals of Noble Metals:- 

 

The Noble metals Cu, As, Au, crystallize in another structure, the face centered cubic 

(fcc).  The unit cell has four lattice points with the basis of one atom.  The positions of the 

atoms in the unit cell are 000, ½ ½ 0, 0 ½ ½ , ½ 0 ½.  The Co-ordination number is 12.  The 

structure is also close packed.  The lattice parameters are given below (in 
0

A ). 

 

 

 

 

 

 

3.4 DIAMOND STRUCTURE:- 

 

The diamond lattice can be considered to be formed by inter penetrating two fcc lattice 

along the body diagonal by (1/4)th cube edge.  One sub-lattice has its origin at the point 0, 0, 0 

and the other at a point quarter of the way along the body diagonal 








4
,

4
,

4

aaa
.  The basic 

diamond lattice and the atomic positions in the cubic cell of diamond projected on a cube face 

are shown in fig 3.3. 

The fractions denote height about the base in units of cube edge.  The print at 0 and ½ 

are on the fcc lattice, those at ¼ and ¾ are on a similar lattice displace among the body 

diagonals by ¼ of the cube edge. 

The packing factor is (XZ)2 = (XY)2 + (YZ)2 = 
16

3

168

222 aaa
=+  

     But, XZ = 2r 

 (2r)2 = 
16

3 2a
 a = .

3

8r
 

Fig 3.2(b)  

Cu                   3.61 

Ag                   4.08 

 

             4.08 

Au                   4.07  
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Packing factor = %34 )( 34.0
16
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3
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Thus it is a loosely packed structure.  Carbon, Silicon and Germanium crystallize in 

thisstructure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.5 Zinc Sulfide structure: 

 

In diamond structure consists of two fcc lattice displaced from each other by one-

quarter of a body diagonal.  The cubic zinc sulfide structure results from the diamond structure 

when Zn atoms are placed on one fcc lattice and S atoms on the other fcc lattice.  The 

coordinates oZn atoms are 000;  there are four atoms of ZnS per unit cell. 

 

Each atom has about it four equally distant atoms of the opposite kind arranged at the 

corners of a regular tetrahedron.  The diamond structure possesses a center of symmetry at the 

mid point of each line connecting neighbor atoms; the ZnS structure does not have inversion 

symmetry.  Examples of the cubic zinc sulfide structure are CuF, CuCl, ZnS,ZnSe, CdS, InAs, 

InSb, 
 

3.6 SUMMARY:  

 

Simple Crystal Structures 

Sodium Chloride (NaCl) Structure: 

 

• Sodium Chloride has a face-centered cubic (FCC) lattice of chloride ions with sodium 

ions occupying all the octahedral voids. 

• Each Na⁺ ion is surrounded by 6 Cl⁻ ions, and each Cl⁻ is surrounded by 6 Na⁺ ions 

(coordination number = 6:6). 

• This is an ionic crystal, and its cubic arrangement gives NaCl its characteristic high 

melting point and hardness. 

 

Cesium Chloride (CsCl) Structure: 

 

• Cesium Chloride has a simple cubic lattice where Cl⁻ ions occupy the corners of the cube 

and Cs⁺ ions sit at the body center. 

• Each Cs⁺ ion is surrounded by 8 Cl⁻ ions, and each Cl⁻ is surrounded by 8 Cs⁺ ions 

(coordination number = 8:8). 

1/2 

1/2 

1/2 

1/2 

1/4 

1/4 

3/4 

3/4 

a 

X 

Y 

Z 

/4 

/4 

Fig 3.3 Diamond structure. 
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• This structure is also ionic and results in a cubic crystal with relatively lower packing 

efficiency compared to NaCl. 
 

Diamond Structure: 

 

• Diamond is a covalent crystal where each carbon atom is tetrahedrally bonded to 4 other 

carbon atoms. 

• It has a face-centered cubic (FCC) lattice with a basis of 2 carbon atoms per lattice point. 

• Diamond has very high hardness, high melting point, and excellent thermal conductivity 

due to strong covalent bonding and rigid 3D network. 
 

Zinc Sulfide (ZnS) Structure: 
 

• ZnS exists in two common forms: zinc blende (cubic) and wurtzite (hexagonal). 

• In the cubic (zinc blende) structure, Zn²⁺ ions occupy half the tetrahedral sites in an FCC 

lattice of S²⁻ ions. 

• Each Zn²⁺ is surrounded by 4 S²⁻ ions, and each S²⁻ is surrounded by 4 Zn²⁺ ions 

(coordination number = 4:4). 

• ZnS is a covalent/ionic mixed crystal used in optoelectronic applications due to its wide 

band gap. 

 

Conclusion: 

Simple crystal structures demonstrate how atoms or ions arrange themselves in 3D 

space based on bonding type and size. Coordination number, lattice type, and packing 

efficiency are key factors in determining their physical and chemical properties. Ionic crystals 

like NaCl and CsCl show high melting points, while covalent crystals like Diamond and ZnS 

have strong bonds and specific applications in technology and materials science. 

 

3.7 TECHNICAL TERMS 

 

Simple Crystal Structure, Sodium Chloride, Cesium Chlordie, Diamond Structure, Zinc 

Sulfide. 
 

3.8 SELF ASSESSMENT QUESTIONS 
 

1. Explain about the Simple Crystal Structure 

2. Write about the Sodium Chloride crystal structure 

3. Write about the Cesium Chlordie crystal structure 

4. Write about the Diamond Structure 

5. Write Zinc Sulfide crystal structure 

 

3.9 SUGGESTED READINGS 
 

1. Introduction to Solid State Physics, C. Kittel, 5th Edition. 

2. Solid State Physics, A. J. Dekker. 

3. Solid State Physics, S. O. Pillai, 7th Edition. 

4. Solid State Physics, H. C. Gupta, Vikas Publisher, Noida, 2nd Edition. 

5. Fundamentals of Quantum Mechanics, Statistical Mechanics & Solid State Physics, by S. 

P. Kuila, Books and Allied, Kolkata. 

6. Solid State Physics, M. A. Wahab, Narosa Publishing House. 

 

  

Prof. R.V.S.S.N. Ravi Kumar 
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LESSON -4 

CRYSTAL DIFFRACTION 
 

Aim: 

 

To study the principles of X-ray diffraction in crystals, understand Bragg’s law, 

explore experimental diffraction methods (Laue and powder techniques), derive the 

amplitude of scattered waves, and analyze the geometrical structure factor of crystal 

lattices. 

 

Objectives: 

 

1. To understand the phenomenon of X-ray diffraction by crystals. 

2. To study and derive Bragg’s law relating diffraction angle, wavelength, and 

interplanar spacing. 

3. To learn about experimental diffraction techniques, including the Laue method 

and powder method. 

4. To understand the concept of scattered wave amplitude and its derivation from 

crystal lattice planes. 

5. To study the geometrical structure factor and its role in determining diffraction 

intensity. 

6. To relate crystal symmetry and atomic arrangement to diffraction patterns. 

7. To analyze how diffraction data can be used to determine crystal structure and 

interatomic distances. 

8. To develop practical understanding of X-ray diffraction experiments and 

interpretation of results. 

 

STRUCTURE: 

 

4.1 Braggs Law in terms of Reciprocal Lattice Vectors 

4.2 Experimental Methods on X- Ray Diffractions 

4.2.1 The Laue Method 

4.2.2 The Powder Method 

4.3 Derivation of Amplitude of Scattered Wave 

4.4 Geometrical Structure Factor 

4.5 Summary 

4.6 Technical terms 

4.7 Self Assessment Questions 

4.8 Suggested Readings 
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4.1BRAGG’S LAW IN TERMS OF RECIPROCAL LATTICE VECTORS:- 

 

  We learn more about x ray diffraction in the forth coming lesson and for the present the 

Bragg’s law derived for the X ray diffraction condition can be expressed suitably in the 

reciprocal lattice, We now see how to do this. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     

 

 

 

 

 

 In the X ray diffraction phenomenon, the crystal planes are believed to act like plane 

mirrors.  Radiations reflected from two successive parallel planes under certain 

conditions may interfere constructively to produce a diffraction maximum. The Bragg 

diffraction shown in fig4.1.  Occurs for secular reflections (angle of incidence = angle of 

reflection).  The constructive interference occurs when the path difference (2d sin) 

between the interfering rays equals an integral multiple of the X-ray wavelength  .  That 

is, 

2d sin  = n  ----------------- (1) 

where d is the inter planar spacing  is the angle of the incident radiation with the plane 

n = 1, 2, 3 …… (order of diffraction)  

         The relation (1), which is a mathematical statement of the Bragg law, shows that the 

diffraction effects cannot be observed from a family of planes for any arbitrary angle of 

incidence.   

Bragg’s diffraction condition in terms of reciprocal lattice: 

The Bragg condition can be expressed as a relation between vectors in the reciprocal 

lattice.  The Bragg condition can be expressed as  

d 
d sin  d sin  

  

  

Fig 4.1 Bragg reflection from a family of planes with inter planar spacing 

d.  Note that the incident beam is deflected by twice the Bragg angle . 



Centre for Distance Education         4.3      Acharya Nagarjuna 

University  

 

 

hkl

hkl
d2

sin


 = ----------------  (2) 

in which the order of reflection is already included.  The equation (2) can also be written 

as  




/1

/1
sin hkl

hkl

d
= ---------------  (3)        

     A geometrical interpretation of eqn.(3) is given in fig (1).  SO is a vector whose length 

is 1/.  This vector is drawn in the direction of incident X-ray beam and ending at the 

origin of reciprocal lattice.  Now a sphere of radius 1/ is constructed about a point S as 

centre.  Let this sphere intersect some point (h, k, l) of the reciprocal lattice at P.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The vector OP then represents a vector counting the origin of the reciprocal lattice and a 

point (h, k, l) of that lattice.  The vector is normal to h, k, l plane of direct lattice and its 

length is 1/dhkl.  From the figure the length of the vector OP can be calculated from fig. 

which is 2 sin /. 

Hence      
hkld

1
/sin2 =      --------------   (4) 

i.e. = 2d sin  

and the Bragg condition is satisfied.  Thus the vector OP represents a normal to the 

reflecting planes (h, k, l) and the vector SP is in the direction of diffracted beam.  The 

direction of the diffracted beam is shown in figure (2).  For any experimental set up, the 

direction of X-ray beam is defined as AO. 

Diffraction occurs only when the orientation of the crystal is such that a reciprocal lattice 

point P comes to lie on the circumference of a circle S of radius 1/.  When this occurs, a 

diffracted beam is developed in the direction SP. 

S 

O 

P 

G 

k 

k 

 

Fig: 4.1 Vector geometry of Bragg reflection in the reciprocal lattice. 
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     It is customary to imagine all the vectors of fig (2) to be multiplied by a constant 

factor of 2 as represented in figure (3).  Here the vector K is 2 times the vector SO and 

the vector G is 2 times the vector OP.  Again the disposition of vector is such that 

vector SP must be vector sum of K and G. 

 

 

 

 

 

 

 

 

 

 

 

 

 

     Now the magnitude of the vector SP i.e., K+G and the magnitude of the incident beam 

vector SO i.e., K must be equal.  Applying this condition the Bragg condition is satisfied ; the 

Bragg condition must imply that 

 

(K+G)2 = (K+G).( K+G) = K2 

i.e.,    2K . G + G2 = 0        --------------   (5) 

Equation (3.17) represents the vector form of Bragg equation. 

Here G = h*a + k*b + l*c (h, k, l= integers) 

 

4.2 Experimental method in X-ray Diffraction: 

4.2.1 The Laue Method: 

     The experimental equipment here is relatively simple and is shown in figure 4.4.  The crystal 

is held stationary in the beam of X– rays.  The rays after passing through the crystal are 

diffracted and are recorded on the photographic plate place at a certain distance from the crystal.  

Before passing through the crystal, the X– rays are limited to a fine pencil by a slit system.  The 

diameter of the pinhole is importance from the stand point of detail in diffraction pattern.  The 

smaller is the diameter the sharper is the interference.  The crystal is set on a holder to adjust its 

orientation.  The Laue method employs white radiation (X– rays beam of continuous range of 

wavelength) which is usually obtained from a tungsten target at about 60,000 volts. 

 

 

Fig: 4.1 Showing the direction of 

diffracted beam. 

X-ray 

Beam 

Crystal plane 

A 

Reflected beam 

Reflected 

beam 

 

1/ 

2 

1/ 
S 

 

O 
900 

hkld

1
=  

S 

P 

O 

GK


+
 

K


 

G


 

Fig :4.1 Vector diagram of the figure 

expanded by a scale factor 2 
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     We have seen that if a beam of X– rays of a given wavelength  is passed in a given 

direction through a crystal, the diffraction is not in general to be expected.  This is 

because very few sets of planes would be in a favourable position to meet the 

requirements of the Bragg equation and reflections would of course be rare.  But since 

there is a whole range of wavelengths in the continuous spectrum, there will be discrete 

values of  which satisfy the Bragg condition-no matter what may be the orientation of 

the lattice planes.  In another words, for any values of d and 0, there will be found in the 

beam some value of  such that diffraction can occur.  We know that atoms of crystal 

have an orderly arrangement in all the these dimensions in space, hence the diffraction of 

X-ray will occur from many families of atomic planes at once, each family picking out 

the wavelength which it can diffract at the angle at which it finds itself.  The sort of 

diffraction pattern obtained is illustrated in figure 4.5. 

 

Examination of the Laue photograph shows that the spots do actually occur at the 

positions to be expected from the reflection law.  When the primary beam passes along 

the axis symmetry of the crystal, the Laue pattern consists of a series of spots whose loci 

are ellipses which pass through the central image made by primary beam.  The spots on 

any one ellipse are produced by planes belonging to the same zone i.e. planes which are 

parallel to one common direction.   

 

     The Laue pattern can be used to orient crystal for solid state experiments.  Let us 

consider the case of a crystal with four fold axial symmetry which is oriented with the 

axis parallel to the beam.  Each reflecting plane then selects a wavelength satisfying the 

Bragg equation from the incident beam.  The Laue pattern obtained in this case shows the 

four fold symmetry.  
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LEAD DIAPHRAGMS  

Fig: 4.5 Diffraction of white X-rays by a single 

stationary crystal 

Fig: 4.6 The arrangement of the spots in a 

Laue photograph of simple cubic crystal 



Solid State Physics    4.6           Crystal Diffraction  

 

 

Filter  

Powder  
X-Rays  

 

Film 

2 

R  

A

  O  

l  

Fig 4.7 Design of an arrangement for taking powder photographs. 

   

  Practically this method is never used for crystal structure determination.  In this case 

several wavelengths may be reflected in different orders from a single plane, so that 

different orders of reflection may superpose on a single spot.  Due to this fact the 

determination of a reflected intensity is difficult and thus the determination of the basis. 

 

4.2.2 The Powder-Photograph Method: 

     The powder method is the only method which can be used with that large class of 

substances which cannot be obtained easily in the form of perfect crystals of appreciable 

size.  This class includes not only the most metals and their alloys but also a large number 

of compounds.  The method was devised independently by Debye and Scherrer in 

Germany and by Hill in America.  In this method a monochromatic X-rays beam is used 

and instead of using a single crystal, fine powders of crystalline aggregates of all kinds, 

having random of chaotic orientations are used.  Such a powder requires no rotation 

because every atomic plane is present in every possible orientation and hence the 

diffraction depends upon the fact that in a fine powder the grains are arrange in an 

entirely chaotic manner.  The entirely random orientations of the grains with respect to 

the beam means that some of them will be in a position to reflect the radiation from an 

important set of planes.  Now diffracted rays go out from individual crystallites, which 

happen to be oriented with planes making an angle  with the beam satisfying the Bragg 

equation.  Any fragment in which the normal to the plane in questions makes an angle 

(90 - 0) with the incident beam will be in a position to reflect and since all orientations 

of the fragment are equally likely, the reflected rays will form a cone, concentric with the 

original beam and whose semi vertical angle is 2.  There is such a cone of diffracted 

rays for each set of planes.  The cones intercept the film in a series of concentric circular 

halves, from the radii of which the angle  and hence the spacing of the planes can be 

deduced.    The formation of powder photograph is shown in fig (4.7). 
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 The radiation is made approximately monochromatic with the help of filter as shown in 

fig 4.8.  P is the powder and O is the point where the direct beam would have struck the 

film.  Point A on the film corresponds at which a spectrum with glancing angle is 

formed.  The diffracted maxima lie on cones coaxial with the direct beam, and if a 

photographic plate is mounted normal to the direct beam, and if a photographic plate is 

mounted normal to the direct beam, concentric circles are registered upon it as shown in 

fig 4.8(b).  Usually a plate or film in the form of cylindrical shame is employed whose 

axis is perpendicular to the beam.  There appear arcs of the circles as shown in fig 4.9. 

 

     From fig. 4.9 it is observed that when rays are different through small angles, they 

make arcs around the central spot on the film, when the rays are diffracted through 900, 

the cones become flat and the corresponding trace is a straight line.  When the diffracted 

angle increases above 900, the curvature is reversed and when the angle approaches to 

1800, the traces are nearly circular.  Thus the curvature of lines changes from the centre to 

the outside of the film.   

 

     Now considering fig 4.8, if l is the distance from O to A, measured on the film and R 

is the radius of camera, then  = l/2R.  In this way by measuring l, the value of  can be 

calculated. 

Fig 4.9 Arrangement of lines in a powder photograph 

180L 1800R 90L 900R 00 

Monochromatic X-

rays beam Specimen 

2 

Film  

Fig 4.8 X-ray powder diffraction camera. 
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     This method is very useful in investigating the structures of simple crystals 

particularly belonging to cubic system of which spacings a, b, c of unit cell are all equal.  

In these crystals, there are certain definite relationship between the angles at which 

spectra can occur.  The spacings of all planes parallel to faces of the same form {h, k, l} 

are equal and therefore produce spectra at the same–angle.  In the most general case, in 

which all h, k, l are different, there are 48 faces in the form and 24 sets of planes all 

having the same spacing.  These all co-operate to produce one line on the film.  When the 

three axes of different length are at right angles to one another, the general form {h, k, l} 

corresponds to six different spacing and hence there are six different lines on the film.  

 

4.3 DERIVATION OF AMPLITUDE OF SCATTERED WAVE: 

 

     Let us consider the case of a plane wave which is incident on a small crystal.  Again 

let in the free space at point x the amplitude be F, then  
) (

0)( tieFxF −= xK
---------------  (6) 

Referred to an origin at x = 0.  Equation (6) represents a traveling wave having wave 

vector K, angular frequency  and the wavelength  = 2/K, Now we place the crystal in 

the beam with origin O chosen anywhere within the crystal.  Here it is assumed that the 

incident beam is not greatly disturbed by crystal i.e., neither by the refractive index nor 

by the loss of energy through scattering.  At a point 
→

 , the amplitude of the incident 

wave is given by 

F(
→

 ) = F0e
i(K.

→

 )   [at instant of time  t = 0]  ------------  (7) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Fig: 4.10 Showing an electromagnetic wave 

incident upon a small crystal. 
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Fig: 4.11 Showing the radiation 
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Fig: 4.12 Showing the wave scattered at O as received at R 
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   The atom at 
→

  will scatter some of the radiation out of the incident beam.  As in fig 

4.10 (a) and (b), the amplitude of the scattered radiation as seen at point P is R = 
→

  + r 

i.e., at a point distant r from 
→

  outside the crystal will be proportional to  









→

r

iKreiK
eF )( 0


--------------  (8) 

where the first parenthesis contains the amplitude and phase factor of the incident beam 

and the second parenthesis describes the spatial variation of the radiation scattered from a 

point atom at 
→

 .  The total phase factor at R is  

eiK .

→

 . eiKr = e(iK .

→

  + iKr)   -------------  (9) 

From fig 4.10(c), we have  

r2 = (R – 
→

 )2 = R2 + 2− 2R cos (
→

 , R) = R2








−+

→

),cos(
2

1
22

2

R
RR




 

when R is at a large distance so that /R<< 1, we have  

 R2









−

→

),cos(
2

1
2

R
R




 

or                  r R[1 – (2/R) cos (
→

 , R)]1/2  

 R –  cos (
→

 , R) 

     now from equation (4.30), the total phase factor of the scattered wave on arriving at R 

is  
)],cos([ RiRiie  KKK −+ ----------------  (10) 

     Now it can be assumed that the amplitude of the wave scattered from an element of 

volume of the crystal is proportional to the electron concentration n(
→

 ) in the volume 

element.  Hence the amplitude of the scattered radiation at R will be proportional to the 

integral  

)]cos([ . )( . RiiendV  −
→


KK --------------  (11) 

     The factor iKRe  is omitted, being constant over the volume.  Equation (11) can be 

written in more compact form i.e. 

Ri
endV

−


→ .

 . )( . 


    --------------    (12) 

where 

iK .
→

 −iK cos (
→

 ,R) i
→

 (K - K) −i
→

 . K,  
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K is the wave vector in scattering direction R and  

K K− K. 

      Equation (4.33) gives the amplitude of the scattered wave.   

Scattering from lattice of point atoms. 

     Consider a finite crystal and let all points be scattering centers. 

The lattice points are defined by  
→

  = ma + nb + pc  -------------  (13) 

where m, n, p are integers.  The amplitude a of radiation by entire crystal seen at R will 

be proportional to  

    a  −
→

  .   



ie  

      = 
]).([ ++− pcnbmai

mnp

e   

      = )(  )(  )( )].([)].([)].([ −−−  cip

p

bin

n

aim

m

eee ---------------  (14) 

     We know that the intensity is the square of the amplitude, hence 

Intensity = 
222 |K)] . (c [-ip . exp| |K)] . (b[-in  . exp| |K)] . (a [-im . exp| 

pnm
 

-------------  (15) 

     Now we shall consider the value of one sum out of the three from equation (15).  Let 

us consider the crystal of dimension Ma is the direction a where M is integer.  We may 

let that m, n and p run from 0 to (M – 1), the crystal will have M3 primitive cells because 

the total volume will be M3abc; abc is the volume of one cell.  Thus  

 |)] . (.[exp| 2
1

0

−
−

=

aim
M

m

 

     This is a geometric series and the summation therefore will be  

2

)].(.[exp1

)].(.[exp1









−−

−−

ai

aiM
-------------  (16) 

     Now using the series. 

x

x

x
xxx

M
m

Mm

m

m

m
M

m −
−

−
=−=



=



=

−

= 11

1

0

1

0

 with x exp . [-i (a. K)]   -----------  (17) 

Thus sum in equation (17) can be written as 

 
 

   
   

2

2
1

2
1

2
1

2
1

2
1

2
1

).(.exp).(.exp

).(.exp).(exp.
 . 

).(.exp

).(.exp









−−

−−

−

−

aiai

aiMaiM

ai

aiM
 

Multiplying by its complex conjugate, we get 
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Fig : 4.13 Plot of function in equation 14 for M = 

20 

x    → 
si

n
2  2

0
x 

/ 
si

n
2
x 

  →
 

).(sin

).(sin

2
12

2
12





a

aM
 

,
).(sin

).(sin
   )] . (.[exp

2
12

2
122




=−

a

aM
aim

m

-------------  (18) 

     A plot of the function in equation (18) is shown in figure (4.13) for M = 20.  The 

intensity will be maximum when each term in the sum on left hand side is unity i.e. 

a .K = 2q  -------------  (19) 

where q is an integer.  At these values 

equation (18) has a value M2.,

   Now we shall consider the width of the 

maxima as the value of a .K is slightly 

changed.  Let it be changed by  where 

 is the smallest non-zero number i.e. 

 

 

a .K = 2q + . 

When  = 2/M, we have 

Sin ½ M (a .K) = Sin ½ M (2q + 2/M) = sin  (Mq + 1) = 0 

     In this way if we choose  = 2/M, the width of maxima is proportional to 2/M or 

1/M.  This shows that larger is the length of the crystal, smaller will be the width of 

maxima. 

     The area under the central maxima of equation (18) is given by the height (M2) times 

the width (, 1/M), so the area is proportional to M, the number of atoms in the line.  If 

the crystal in three dimensions has M3 atoms, the scattered intensity will be directly 

proportional to M3. 

 

 

4.4 Geometrical structure factor 

 

For a crystal with atoms at positions 

𝐫𝑗inside the unit cell: 

𝐹ℎ𝑘𝑙 = ∑𝑓𝑗
𝑗

 𝑒2𝜋𝑖(ℎ𝑥𝑗+𝑘𝑦𝑗+𝑙𝑧𝑗)  
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where: 

• 𝑓𝑗= atomic scattering factor of atom 𝑗 

• (𝑥𝑗 , 𝑦𝑗, 𝑧𝑗)= fractional coordinates of atom 𝑗 

• ℎ, 𝑘, 𝑙= reciprocal lattice indices 

This is purely a geometrical phase sum when all 𝑓𝑗are equal. 

 

Meaning in reciprocal space 

• The reciprocal lattice determines where diffraction spots occur 

• The structure factor determines their intensity 

• If 𝐹ℎ𝑘𝑙 = 0, that reciprocal lattice point is systematically absent 

 

Examples of geometrical structure factors 

(a) Simple cubic (SC) 

One atom at (0, 0, 0): 

𝐹ℎ𝑘𝑙 = 𝑓 

 

→ All reciprocal lattice points allowed. 

 

(b) Body-centered cubic (BCC) 

Atoms at: 

• (0, 0, 0) 

• (
1

2
, 1
2
, 1
2
) 

𝐹ℎ𝑘𝑙 = 𝑓[1+𝑒𝜋𝑖(ℎ+𝑘+𝑙)] 

𝐹ℎ𝑘𝑙 = {
2𝑓 ℎ + 𝑘 + 𝑙 = even

0 ℎ + 𝑘 + 𝑙 = odd
 

 

➡Only even ℎ + 𝑘 + 𝑙reciprocal lattice points exist. 

 

(c) Face-centered cubic (FCC) 

Atoms at: 

• (0, 0, 0) 

• (0,
1

2
, 1
2
) 

• (
1

2
, 0,

1

2
) 

• (
1

2
, 1
2
, 0) 

𝐹ℎ𝑘𝑙 = 𝑓[1+𝑒𝜋𝑖(𝑘+𝑙)+𝑒𝜋𝑖(ℎ+𝑙)+𝑒𝜋𝑖(ℎ+𝑘)] 

𝐹ℎ𝑘𝑙 = {
4𝑓 ℎ, 𝑘, 𝑙 all even or all odd

0 otherwise
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Physical interpretation 

• The structure factor is a Fourier transform of the basis 

• Extinctions arise from destructive interference of waves scattered by atoms 

• Reciprocal lattice = geometry of periodicity 

• Structure factor = geometry of basis inside the unit cell 

 

Compact statement 

Diffraction pattern = Reciprocal lattice × Structure factor  

 

4.5 SUMMARY: 

 

X-ray Diffraction and Crystal Structure Analysis 

Bragg’s Crystal Diffraction: 

• X-rays incident on a crystal lattice are scattered by atoms in the lattice planes. 

• Constructive interference of scattered X-rays occurs only at specific angles, producing a 

diffraction pattern. 

• This diffraction provides information about interplanar spacing and crystal structure. 

Bragg’s Law: 

• Bragg’s Law gives the condition for constructive interference: 

𝑛𝜆 = 2𝑑sin⁡ 𝜃 

where: 

• 𝑛= order of reflection 

• 𝜆= wavelength of incident X-rays 

• 𝑑= distance between lattice planes 

• 𝜃= angle of incidence (Bragg angle) 

• Bragg’s law allows determination of lattice spacing from diffraction angles. 

 

Experimental Diffraction Methods: 

a) Laue Method: 

• Uses a single crystal and a continuous X-ray spectrum. 

• Produces a pattern of spots on a photographic plate. 

• Useful for determining crystal orientation and symmetry. 

b) Powder Method: 

• Uses finely powdered crystalline sample with monochromatic X-rays. 

• Diffraction occurs from many randomly oriented crystals, producing concentric rings. 

• Used to determine lattice parameters and identify unknown crystalline materials. 

Derivation of Scattered Wave Amplitude: 

• The amplitude of X-rays scattered by a crystal is the sum of waves scattered by all 

atoms in the lattice: 
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𝐴 = ∑𝑓𝑗
𝑗

𝑒𝑖𝐤⋅𝐫𝑗  

 

where 𝑓𝑗= scattering factor of the j-th atom, 𝐫𝑗= position vector, and 𝐤= scattering vector. 

• Constructive interference occurs when the phase difference between waves from 

successive planes is 2𝜋𝑛, leading to Bragg’s law. 

Geometrical Structure Factor: 

• The structure factor (F) accounts for the relative positions of atoms in a unit cell and 

determines the intensity of diffracted beams: 

𝐹ℎ𝑘𝑙 = ∑𝑓𝑗
𝑗

 𝑒2𝜋𝑖(ℎ𝑥𝑗+𝑘𝑦𝑗+𝑙𝑧𝑗) 

 

• ℎ𝑘𝑙= Miller indices of the reflecting plane 

• 𝑓𝑗= atomic scattering factor 

• (𝑥𝑗 , 𝑦𝑗, 𝑧𝑗)= fractional coordinates of atoms in the unit cell 

• The magnitude of 𝐹ℎ𝑘𝑙determines the intensity of each diffraction spot; some reflections 

may vanish if F = 0. 

Conclusion: 

X-ray diffraction provides a powerful tool to determine crystal structure, interatomic 

distances, and symmetry. Bragg’s law, combined with Laue and powder diffraction methods, 

allows analysis of both single crystals and polycrystalline materials. The structure factor is 

essential for predicting the intensity of diffracted X-rays and understanding the arrangement of 

atoms within the unit cell. 

 

4.6 TECHNICAL TERMS 

 

Braggs Law in terms of Reciprocal Lattice Vectors,  Experimental Methods on X-Ray 

Diffractions, The Laue Method, The Powder Method,  Derivation of Amplitude of Scattered 

Wave, Geometrical Structure Factor 

 

4.7 SELF ASSESSMENT QUESTIONS 

 

1. Explain about the Braggs Law in terms of Reciprocal Lattice Vectors 

2. Write about the Experimental Methods on X-Ray Diffractions, 

3. Write about the Laue Method 

4. Write about the Powder Method 

5. Explain bout the Derivation of Amplitude of Scattered Wave 

6. Explain about the Geometrical Structure Factor 
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4.8 Suggested Readings 

1. Introduction to Solid State Physics, C. Kittel, 5th Edition. 

      2. Solid State Physics, A. J. Dekker. 

3. Solid State Physics, S. O. Pillai, 7th Edition. 

4. Solid State Physics, H. C. Gupta, Vikas Publisher, Noida, 2nd Edition. 

5. Fundamentals of Quantum Mechanics, Statistical Mechanics & Solid State Physics, by S. 

P. Kuila, Books and Allied, Kolkata. 

6. Solid State Physics, M. A. Wahab, Narosa Publishing House. 
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LESSON -5 

RECIPROCAL LATTICE 
Aim: 

 

To study the concept of reciprocal lattices, construct reciprocal lattices for simple cubic (SC), body-

centered cubic (BCC), and face-centered cubic (FCC) crystals, understand the properties of 

reciprocal lattices and Brillouin zones, and explore experimental diffraction methods using neutrons 

and electrons. 

 

Objectives: 

 

1. To understand the concept and definition of a reciprocal lattice. 

2. To construct reciprocal lattices for simple cubic (SC), body-centered cubic (BCC), and face-

centered cubic (FCC) structures. 

3. To study the properties of reciprocal lattices, including their relation to the direct lattice. 

4. To understand Brillouin zones and their significance in solid-state physics. 

5. To explore neutron diffraction as a method to study crystal structures. 

6. To explore electron diffraction and its applications in determining lattice spacing and crystal 

symmetry.. 

 

STRUCTURE: 

 

5.1 Reciprocal Lattice 

5.1.1 Reciprocal Lattice to Simple Cubic Lattice 

5.1.2 Reciprocal Lattice to BCC Lattice 

5.1.3 Reciprocal Lattice to FCC Lattice 

5.2 Properties of Reciprocal Lattice 

5.3 Brillouin Zones 

5.4 Neutron Diffraction 

5.5 Electron Diffraction 

5.6 Summary 

5.7 Technical terms 

5.8 Self Assessment Questions 

5.9 Suggested Readings 

 

5.1 RECIPROCAL LATTICE:- 

 

     It is necessary to consider sets of planes in a crystal.  This can be done in terms of their normal.  

Geometrically we have an advantage, that is, the planes are of 2-dimensions while normal lines are 

of one-dimensional nature.  But it is not enough if we consider the orientation of planes alone to 
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study the diffraction of x-rays by crystals but it is also necessary to know the inter-planar spacing d 

since they only determine the reflection angles .  These inter-planar spacing may also be 

represented in the normal to the planes by appropriately limiting their lengths. 

 

     From the above discussion it is clear that one can indicate the orientation of a set of parallel 

planes by their common normal and the inter planar spacing by restricting the lengths of the normal 

proportionately.  

 

Consider any given space lattice and apply the following.  

1. From a common origin draw a normal to each crystal plane.   

2. Set the length of each normal equal to (or) 2 times the reciprocal of the inter planar spacing 

dhkl. 

3. Mark a point at the end of each normal, which represents the crystal plane.  

     A collection of points obtained in this way corresponding to various crystal planes form a lattice 

array and is known as “reciprocal lattice”.  The points in the reciprocal lattice are called reciprocal 

lattice points.  These points in 3 dimensional space form the reciprocal lattice space.  This is also 

called k-space.  From the concept of reciprocal lattice it may be understood that the “Co-ordinates of 

Points” in the reciprocal lattice space are defined by (h k l), the Miller indices.  The concept of 

reciprocal lattice plays a very important role in the field of x-ray crystallography. 

 

 

 

 

 

 

 

 

 

 

5.1.1Reciprocal lattice to (sc) simple cubic lattice:- 

     The primitive translation vectors of a sc lattice may be written as, 

a = a î ; b = b ĵ ; c = c k̂ ;  where the volume of the unit cell is a . b x c = a3.  The Primitive translation 

vectors of the reciprocal lattice of the sclattice will be, 

Fig 5.1 Direct and reciprocal lattice for a rectangular system 

a 

b 

a* 

b* 

(a) 

Real space 

Reciprocal space 

(b) 

a 

b 

b* 

a* 

 

90- 
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a = 
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cba
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
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ˆ
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)(ˆ

2 
 

b = 
)(

2
cba

ac




  = y

a
orj

a
ˆ

2
)(ˆ
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and                                    c = 
)(

2
cba

ba




  = z

a
ork

a
ˆ

2
)(ˆ

2 
 

From these equations, it is evident that the reciprocal lattice to sc lattice is itself a sc lattice with a 

lattice const 
a

2 .  The boundaries of the resulting primitive unit cell are the planes normal to the 

six reciprocal lattice vectors a, b, c at their mid points, 

 

 i
a

ˆ
2

* 
=

a
 ;   j

b
ˆ

2

* 
=

b
 ;  k

c
ˆ

2

* 
=

c
. 

 

 

 

 

 

 

 

 

 

The space bounded by these Six planes is a cube of side 
a

2  and volume ( )32
a

 .   This cube is 

known as the first Brillouin Zone of the sc lattice is shown in fig 5.2. 

 

5.1.2Reciprocal lattice to bcc lattice:- 

    The primitive translation vectors or the bcc lattice shown in fig 5.3 are given by, 

kx 

ky 

kz 

Fig 5.1 The first Brillouin zone of a simple cubic lattice 
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a1 = 
2

a
)( kji −+  

b1 = 
2

a
)( kji ++−  

c1 = 
2

a
)( kji +−  

Volume of the unit cell is
2

3a
.   

The primitive translation vectors a, b and cof the reciprocal lattice are defined by 

a = ) (  
2

ji +
a


 

b  = ) (  
2

kj+
a


         -------------   (1) 

c = ) (  
2

ik +
a


 

We observe that, these reciprocal lattice vectors are just the primitive vectors of the fcc lattice, 

showing that an fcc lattice is the reciprocal lattice of the bcc lattice.  The rhombohedron formed by 

a, b and c represents the primitive cell of volume V expressed as 

V = a (bc)  = 
3

316

a


 

Similarly, it can be shown that the reciprocal lattice of the fcc lattice is a bcc lattice.  There are in all 

12 shortest vectors for the lattice described by (1): 

)   (  
2

yx 
a


;    )  (  

2
zy 

a


;   )  (  

2
xz 

a


 

with the choices of signs being independent. 

Planes perpendicular to these vectors at their mid-points enclose the volume of the first Brillouin 

zone which turns out to be a rhombododecahedron (Fig.5.4). 

 

 

 

x y 

z 

a 

b c 
a 

Fig 5.1.2 Primitive translation vectors  

of the bcc lattice 
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5.1.3 Face-Centered Cubic Lattice: 

     The primitive translation vectors of the fcc lattice as shown in fig.5.5 may be taken as  

 

 

 

 

 

 

 

a = 
2

a
 (i + j); 

b = 
2

a
 (i + k);   --------------  (2) 

c= 
2

a
(j + k). 

Fig 5.1.2 The first Brillouin zone of a bcc crystal.  It is 

rhombododecahedral in shape. 

Fig 5.1.3 The first Brillouin zone in 

the FCC lattice. 

a 

x 
y 

z 

a 

b 
c 

Fig 5.1.3 Primitive translation vectors of 

the FCC lattice. 
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The volume of the primitive cell is a .bc = 
3

4
1 a .  Using the primitive translations of the 

reciprocal lattice are found to be 

a* = )- (  
2

kji +
a


 

b* = ) (  
2

kji ++−
a


;    -----------------  (3) 

c* = ) (  
2

kji +−
a


 

These are the primitive translations of a bcc lattice.  We have now  

G = (2/a) [(h −k + l) i + (h + k−l) j + (−h + k + l) k]----------------  (4) 

The shortest non-zero G’s are the eight vectors 

(2/a) (ij  k).   ---------------  (5) 

The zone boundaries are determined for the most part by the eight planes normal to these 

vectors at their midpoints, but it may be seen that the corners of the octahedron thus formed are 

truncated by the planes which are the perpendicular bisectors of the six vectors. 

(2/a) (2i); (2/a) (2j); (2/a) (2k).  ---------------  (6) 

The first zone is then the truncated octahedron shown in fig 5.6. 

5.2 PROPERTIES OF RECIPROCAL LATTICE: 

 

General Properties The reciprocal lattice of a reciprocal lattice is the (original) direct 

lattice. The length of the reciprocal lattice vectors is proportional to the reciprocal of the length 

of the direct lattice vectors. This is where the term reciprocal lattice arises from. In real space, 

there are lattice vectors a and b. And in reciprocal space, there are lattice vectors a2 and b2 , 

which are perpendicular to their real counterpart. As you can see here, a change in real space 

produces an inverse result in reciprocal space. The reciprocal lattice plays a very fundamental 

role in most analytic studies of periodic structures, particularly in the theory of diffraction. In 

neutron and X-ray diffraction, due to the Laue conditions, the momentum difference between 

incoming and diffracted X-rays of a crystal is a reciprocal lattice vector. Reciprocal Lattice 

which represents the scattering possibilities of a given crystal (planes, then lines, then points for 

1D-, 2D- and 3D-crystals respectively). There are rules about the precise dimensions of the 

reciprocal lattice for the different types of crystal systems but we do not need to get involved in 

them here; however, you will have noted that reciprocal parameters keep occurring (we have 

seen planes 1/a, 1/b and 1/c apart, and finally the parameter 1/d) hence "reciprocal lattice" is a 

good name in both senses (in the just-mentioned algebraic sense, and that it is an alternative 

"view" of crystal structure). 1 Suffice to say that many crystallographers think of the reciprocal 

lattice almost as though it were real; which, of course, it is not; its just an abstract property of the 

crystal whereas it is the crystal which possesses the "real lattice". The reciprocal lattice basically 

consists of points on a regular grid which represent diffraction possibilities. Each point can be 



Centre for Distance Education  5.7         Acharya Nagarjuna University  

 

labelled with a Miller index (h,k,l) which corresponds to the planes from which diffraction would 

occur (if it did). ith a bar above the number and pronounced "bar n"). 

5.3BRILLOUIN ZONES: 

 

If we consider a parallelepiped formed by reciprocal lattices a*, b* and c*, then this may be taken 

as the primitive cell of the reciprocal lattice.  It can be observed that the eight corner points are 

shared among eight parallelepiped or we can say that one parallelepiped contains one-eighth of 

each of eight corner points.  In this way the parallelepiped contains one reciprocal lattice point.  

But in solid state physics, a primitive cell of a reciprocal lattice is taken as the smallest volume 

bounded by planes normal to each of (shorter) G’s at its midpoint. 

 

     Each of the new cell contains on lattice point and the point is at the centre of the cell as shown 

in fig 5.6. The primitive cell formed in this way in the reciprocal lattice is called the first 

Brillouin zone.  The same procedure adopted for real crystal lattice results in a real primitive cell 

called Wigner-Seitz cell. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.4 Neutrons Diffraction: 

      

As neutrons are associated with wave and hence they can be diffracted from crystals like 

electrons.  Here we shall consider the neutron diffraction by crystal in connection with the 

exploration the crystal structure, of course, the discussion will be confined to a comparison 

between X-ray, electron and neutron diffraction. 

 

First of all we shall calculate the wavelength of suitable neutrons.  We know that the wavelength 

in case of neutrons can be expressed as 

 

 

 

vM

h

p

h

n

== ------------  (6) 

E = )(                
22

222

Kp
m

K

m

p



==  

Jouls
27

2168

103

1010
−

−




=  

jouls21103 −=  

a* 

b* 

Fig 5.3 Construction of first Brillouin zone. 
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   = 200K = 0.02 Ev 

 

where Mn is the mass of the neutrons.  The mass of a neutron is 2000 times large in comparison 

to an electron i.e., the wavelength associated with a neutron is about 1/2000 times that for an 

electron of the same velocity.  The energy  of the suitable neutrons may be calculated by the 

following expression 

 

)M2( nv

h


= ------------  (7) 

    

 By equation (4.26), the energy  of neutrons is approximately 0.1 e.V. for  = 1Å which is 

required for diffraction work.  It is important to note that for X-rays of 1Å the energy required is 

104e.V. while for electron it is about 102e.V.  In case of neutrons, the diffraction patterns are 

formed in a similar manner a in case of X-rays. 

 

     Some special features of the neutrons diffraction are : 

1. Neutrons are scattered chiefly by the nuclei of the atoms. 

2. As the wavelength of the neutrons is much greater than the dimensions of the scattering 

nucleus (10-13 cm), the atomic scattering factor is nearly independent of the scattering 

angle. 

3. The scattering power does not vary in a regular manner with atomic number.  Due to this 

fact the light elements such as hydrogen and carbon produce relatively strong scattering 

than X-rays scattering because the X-rays scattering is done by electrons.  This feature of 

the neutron diffraction enable us to deduce the positions of hydrogen and carbon atoms in 

a number of organic crystals. 

 

4. The scattering from neighboring elements in the periodic system may differ appreciably.  

Hence neutron diffraction allows to detect with relative ease, ordered phases of an alloy, 

such as FeCo, where as their detection by X-rays is difficult. 

5. The neutrons possess magnetic moments and these moments interact with the magnetic 

moments of the scattering atoms of the solid.  This gives an additional scattering 

mechanism for neutrons, which often out-weights the nuclear scattering.  Thus neutron 

diffraction methods are exceedingly valuable in structural studies of magnetic crystals. 

 

     In paramagnetic substances in which the atomic moments are randomly oriented, the 

magnetically scattered neutrons are incoherent in phase resulting in a diffuse background.  This 

diffuse background of magnetic scattering is then superimposed on the lines produced by the 

nuclear scattering.    

    

     In ferromagnetic substances in which the magnetic moments within a domain are linked up in 

parallel, the diffuse background is absent. 

 

     In an antiferromagnetic solid the magnetic moments are aligned antiparallel and hence from 

the point of view of the neutron such atoms would appear to be different. 

 

     Figure (5.8) shows neutron diffraction patterns for Mno (Mn ion has a permanent moment), 

which is known to be an anti-ferromagnetic solid below and above its curie temperature (1200). 
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At room temperature (2930K) the pattern shows coherent diffraction peaks, like those of X-ray 

diffraction, and in the positions expected from a lattice of NaCl structure.  The diffuse 

background of magnetic scattering is also a visible, which is inductive of no magnetic order at 

all.  At low temperatures, in a addition to these peaks certain other peaks are located at positions 

which one cannot expect on the basis of chemical structure of a unit cell. 

 

5.5 Electrons Diffraction: 

 

     In 1924 de Broglie suggested that a material particle like electron in motion is always 

associated with a wave whose wavelength is given by  = h/mv = h/p, where h be the Plank’s 

constant and p, the momentum of the particle.  The experimental evidence of this fact was 

provided by Davisson and Germer and G.P. Thomson.  Since the material particle (electron) can 

be described by wave, it can be diffracted by crystals like X-rays.  The amount of matter required 

to produce electron diffraction is small as compared with X-rays diffraction and the time of 

exposure required for a photographic record is measured in a fraction of a second.  Thus we here 

introduce the diffraction of electrons in connection with the exploration of the crystal structure.  

The discussion would be confined to comparison between the electron diffraction and X-rays 

diffraction.  

 

First of all we shall calculate the wavelength of an electron beam appropriate to the crystal 

diffraction work.  According to de Broglie idea, the wavelength  associated withthe particle is 

given by  

mv

h
= ------------  (8) 

If the electrons are accelerated by an applied electric potential V, then the kinetic energy 

½.mv2of the electron is given by  

½ mv2 = eV   -----------  (9) 

where e is the electronic charge. 

     From equation (4.22) and (4.23) we have 
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







=


=

VmeV

h 150

)2(
 -----------  (10) 

where  is in Å and V in volts. 

    It is evident from equation (4.24) that only 150 volts are required to produce electrons of a 

wavelength of one Å suitable for diffraction work.  The X-rays suitable for diffraction work 

require approximately 12000 volts for the same wavelength. 

 

     The diffraction of electrons takes place in a similar way as in case of X-rays and the    

diffraction pattern obtained can be interpreted exactly in the same way as X-rays diffraction 

pattern. 

 

     Some special features of electron diffraction are:  

1. In contrast with X-rays, electrons are scattered by the nucleus as well as by the electrons 

in atoms. 

2. The scattering factor for electrons decreases with increasing value of Bragg’s angle  as 

in X-rays.  However, the scattering efficiency of atoms is considerably greater for 

electrons than X-rays.  Due to this reason the diffraction of electrons by gases requires 

much shorter exposure times than does X-rays diffraction.  

3. Electrons are charged and interact strongly with matter as compare with X-rays. 

4. Electrons penetrate a relatively short distance into a crystal.  At normal incidence, an 

electron of about 50keV has a penetration depth of only about 500Å, whilest for small 

angles of incidence this may be only about 50 Å measured perpendicular to the surface.  

Thus the electron diffraction is particularly useful in investigating the structure of thin 

surface layers such as oxide layers on metals.  These layers are not detected by X-rays 

diffraction because they penetrate deep into the solids and produce a pattern, which is the 

characteristic of the interior of the solid. 

5. Electron diffraction can be used for the studies of orientation, lattice parameter and 

perfection of evaporated thin films. 

6. By electron diffraction, the dislocation patterns in thin metallic foils can be seen. 

 

5.6 SUMMARY:  

 Reciprocal Lattice: 

• A reciprocal lattice is a mathematical construct used in crystallography to represent 

diffraction conditions in momentum space. 

• It is defined such that wave vectors of diffracted waves correspond to points in the 

reciprocal lattice. 

• If a, b, care primitive vectors of the direct lattice, the reciprocal lattice vectors are: 

a∗ =
2𝜋(b × c)

a ⋅ (b × c)
, b∗ =

2𝜋(c × a)

a ⋅ (b × c)
, c∗ =

2𝜋(a × b)

a ⋅ (b × c)
 

 

Reciprocal Lattices for Common Structures: 

• Simple Cubic (SC): Reciprocal lattice is also simple cubic, with lattice constant 𝑎∗ =
2𝜋

𝑎
. 

• Body-Centered Cubic (BCC): Reciprocal lattice is face-centered cubic (FCC). 
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• Face-Centered Cubic (FCC): Reciprocal lattice is body-centered cubic (BCC). 

• This duality is fundamental in analyzing diffraction patterns. 

Properties of Reciprocal Lattice: 

• Each point represents a set of lattice planes in real space. 

• Diffraction occurs when the difference in wavevectors of incident and scattered waves 

equals a reciprocal lattice vector (Δk = G). 

• Reciprocal lattice simplifies Bragg diffraction conditions and helps define Brillouin 

zones. 

Brillouin Zones: 

• A Brillouin zone is the Wigner-Seitz cell of the reciprocal lattice. 

• It defines the unique region of wavevectors that represents all possible electron or wave 

states in the crystal. 

• The first Brillouin zone contains all distinct diffraction conditions without redundancy. 

Neutron Diffraction: 

• Neutrons, being uncharged, penetrate deeply into materials and interact with atomic 

nuclei. 

• Neutron diffraction provides structural information, especially for light atoms and 

magnetic structures. 

• Diffraction patterns correspond to points in the reciprocal lattice. 

Electron Diffraction: 

• Fast electrons act as matter waves and undergo diffraction by crystal lattices. 

• Electron diffraction is used for thin films, nanomaterials, and surface structures. 

• It is sensitive to small lattice spacings and allows determination of crystal symmetry and 

interplanar distances. 

Conclusion: 

The reciprocal lattice provides a powerful framework to understand diffraction from 

crystals. Constructing reciprocal lattices for SC, BCC, and FCC structures helps predict 

diffraction patterns. Brillouin zones define the fundamental wavevector space of the crystal. 

Neutron and electron diffraction techniques utilize the reciprocal lattice concept to extract 

detailed structural information about materials. 

5.7 TECHNICAL TERMS 

 

Reciprocal Lattice, Reciprocal Lattice to Simple Cubic Lattice, Reciprocal Lattice to BCC 

lattice, Reciprocal Lattice to FCC Lattice,  Properties of Reciprocal Lattice, Brillouin, Zones,  

Neutron Diffraction, Electron Diffraction 
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5.8 SELF ASSESSMENT QUESTIONS 

 

1. Explain about the Reciprocal Lattice 

2. Write about the Reciprocal Lattice to Simple Cubic Lattice 

3. Write about the Reciprocal Lattice to BCC lattice, 

4. Write about to Reciprocal Lattice to FCC Lattice 

5. Write about the Properties of Reciprocal Lattice 

6. Explain about the Brillouin, Zones 

7. Write about the Neutron Diffraction and Electron Diffraction 

 

5.9 SUGGESTED READING 

 

1. Introduction to Solid State Physics, C. Kittel, 5th Edition. 

2. Solid State Physics, A. J. Dekker. 

3. Solid State Physics, S. O. Pillai, 7th Edition. 

4. Solid State Physics, H. C. Gupta, Vikas Publisher, Noida, 2nd Edition. 

5. Solid State Physics, M. A. Wahab, Narosa Publishing House. 

 

 

Prof. M. Rami Reddy 

 



LESSON -6 

LATTICE VIBRATION & THERMAL 

PROPERTIES 
 

Aim: 

 

To study elastic waves in a one-dimensional array of identical atoms, understand 

vibrational modes of diatomic linear lattices, derive dispersion relations for acoustic and 

optical modes, and explore infrared absorption in ionic crystals.\ 

 

Objectives: 

 

1. To understand the concept of elastic waves in a one-dimensional chain of identical 

atoms. 

2. To study vibrational motion in a diatomic linear lattice. 

3. To derive the dispersion relation for diatomic chains and understand the relationship 

between frequency and wavevector. 

4. To distinguish between acoustic modes (atoms oscillate in phase) and optical modes 

(atoms oscillate out of phase). 

5. To understand the physical origin of optical modes and their role in crystal 

dynamics. 

6. To study infrared absorption in ionic crystals due to optical vibrations. 

7. To relate vibrational modes to thermal and optical properties of solids. 

8. To develop a conceptual understanding of phonons and their significance in solid-

state physics. 

 

STRUCTURE: 

 

6.1 Elastic Wave in One Dimension Array of identical Atoms 

6.2 Vibrational Modes of Diatomic Linear Lattice 

6.3 Dispersion Relation 

6.4 Acoustic and Optical modes 

6.5 Infrared Absorption in Ionic Crystal 

6.6 Summary 

6.7 Technical terms 

6.8 Self Assessment Questions 

6.9 Suggested readings 

 

6.1 ELASTIC WAVE IN A ONE-DIMENSIONAL ARRAY OF IDENTICAL ATOMS: 

 

An elastic wave in a one-dimensional array of identical atoms is the standard model for 

lattice vibrations (phonons) in a crystal. Below is a clear, step-by-step explanation, 

suitable for exams and understanding. 

Physical model 



Solid State Physics    6.2 Lattice vibration & Thermal Properties 

 

Consider: 

• Identical atoms of mass m 

• Arranged in a straight line with equal spacing 𝑎 

• Nearest neighbours connected by identical springs with force constant 𝐶 

• Motion allowed only along the line (longitudinal waves) 

Let 𝑢𝑛(𝑡)be the displacement of the 𝑛thatom from equilibrium. 

 

Equation of motion 

The force on atom 𝑛comes from its neighbors: 

𝐹𝑛 = 𝐶(𝑢𝑛+1 − 𝑢𝑛) + 𝐶(𝑢𝑛−1 − 𝑢𝑛) 

 

Using Newton’s second law: 

𝑚
𝑑2𝑢𝑛
𝑑𝑡2

= 𝐶(𝑢𝑛+1 + 𝑢𝑛−1 − 2𝑢𝑛)  

 

This is the lattice wave equation. 

Trial wave solution (plane wave) 

Assume a traveling wave solution: 

𝑢𝑛(𝑡) = 𝐴𝑒𝑖(𝑛𝑘𝑎−𝜔𝑡)  

where: 

• 𝑘= wave number 

• 𝜔= angular frequency 

• 𝐴= amplitude 

Dispersion relation 

Substitute the trial solution into the equation of motion: 

𝜔2 =
4𝐶

𝑚
sin⁡2 (

𝑘𝑎

2
)  

or 

𝜔 = 2√
𝐶

𝑚
∣ sin⁡ (

𝑘𝑎

2
) ∣  

 

This relation links frequency and wave vector. 

 Important features of the elastic wave 

(a) Long-wavelength limit (𝒌𝒂 ≪ 𝟏) 
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sin⁡ (
𝑘𝑎

2
) ≈

𝑘𝑎

2
 

𝜔 ≈ 𝑣𝑘 with𝑣 = 𝑎√
𝐶

𝑚
 

➡ Behaves like a classical sound wave. 

 

(b) Maximum frequency 

At the Brillouin zone boundary 𝑘 =
𝜋

𝑎
: 

𝜔max = 2√
𝐶

𝑚
 

 

(c) Group velocity 

𝑣𝑔 =
𝑑𝜔

𝑑𝑘
= 𝑎√

𝐶

𝑚
cos⁡ (

𝑘𝑎

2
) 

 

• Maximum at 𝑘 = 0 

• Zero at zone boundary 

 

6.2 VIBRATIONAL MODES OF A DIATOMIC LINEAR LATTICE: 

A diatomic linear lattice refers to a one-dimensional lattice structure composed of two 

different types of atoms. In this lattice, the atoms alternate along the linear array. 

 

The vibrational modes of a diatomic linear lattice can be described by considering the motion 

of the atoms within the lattice. There are two primary types of vibrational modes: 

1. Longitudinal modes: In a longitudinal mode, the atoms oscillate back and forth along 

the direction of the lattice. Both atoms in the unit cell move in the same direction at 

the same time. This mode is similar to a compression and expansion of the lattice. 

2. Transverse modes: In a transverse mode, the atoms oscillate perpendicular to the 

direction of the lattice. The atoms move in opposite directions, with one atom moving 

to the right while the other moves to the left. This mode is similar to a shearing or 

bending of the lattice. 

 

The vibrational modes of a diatomic linear lattice depend on factors such as the masses and 

bond strengths of the atoms involved. The frequency and energy of these modes can be 

calculated using mathematical models, such as the harmonic approximation, which assumes 

simple harmonic motion for the atoms around their equilibrium positions. 
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The study of vibrational modes in diatomic linear lattices is important for understanding the 

thermal and mechanical properties of materials, as well as their behavior in different phases, 

such as solids or liquids. It provides insights into phenomena like thermal conductivity, 

phonons (quantized lattice vibrations), and the lattice-specific heat capacity. 

 

Let's consider a linear chain of atoms having mass m and M such that M>m. Let 2_n-2, 2_n-

1, 2n, 2_n+1 .......are positions of atoms having mass m and M respectively in alternate 

position. Two atoms are connected by an ideal spring having force constant c. Let U_2n-1, 

U2n, .....U2n+2 are displacement of atoms 2n-1 .....2n+1 respectively from their equilibrium 

position. We are considering the elastic response of crystal, the force applied on 2nth atom is 

linear function of displacement and we are considering the nearesr neighbour interaction. 

 

From Newton's 2nd law of motion, 

On equating i and iii, ii and iv 

we seek the solution of eq v and vi 

Substituting eq vii and viii in vand vi we have 

Eq ix and x are homogeneous equation with two unknowns so eq ix and x is possible only if 

determinant of coefficient vanishes. 
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At k-> 0, sin ka -> 0 

At k ->𝜋/ 2a 

For lower frequency, 
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Upper branch is called optical branch and lower branch w- is called acoustic branch. 

At the region 𝜋/ 2a, the value of w+ is √ 2C / m and w- is √ 2C / M. In between 

frequency √ 2C / m and √ 2C / M, there are no wave like solution i.e e^i(kx -wt). The region 

in which wave like solution is absent in forbidden band gap. The width of band gap depends 

upon the ratio of masses of two types of atoms i.e band gap depends on ratio M/m. The larger 

is the ratio, the width the frequency gap. If two masses are equal, the two branches join at k = 

𝜋/ 2a and frequency disappear. 
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6.3 DISPERSION RELATION: 

Substituting into the equations of motion and solving gives: 

𝜔2 = 𝐶 (
1

𝑚1
+

1

𝑚2
)    ±   𝐶√(

1

𝑚1
+

1

𝑚2
)
2

−
4

𝑚1𝑚2
sin⁡2 (

𝑘𝑎

2
)  

 

This yields two branches of solutions. 

Vibrational modes 

(a) Acoustic mode (lower branch, “–” sign) 

• Atoms move in phase 

• Frequency → 0 as 𝑘 → 0 

𝜔 ≈ 𝑣𝑘(𝑘 → 0)  

 

➡ Corresponds to sound waves 

(b) Optical mode (upper branch, “+” sign) 

• Atoms move out of phase 

• Non-zero frequency at 𝑘 = 0 

𝜔(0) = √2𝐶 (
1

𝑚1
+

1

𝑚2
)  

 

6.4 Acoustic and Optical Modes (Lattice Vibrations): 

In a crystal, atoms vibrate collectively. When there is more than one atom per unit 

cell (e.g., a diatomic lattice), these vibrations split into acoustic and optical modes. 

 

Acoustic modes 

Definition 

Acoustic modes are lattice vibrations in which atoms in the unit cell move in phase with 

each other. 

Key characteristics 

• Frequency goes to zero as wave vector 𝑘 → 0 

• Correspond to sound waves in the crystal 

• Restore force arises from stretching of interatomic bonds between cells 
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Motion 

At small 𝑘: 

• All atoms move together 

• Whole lattice oscillates as a rigid body 

Dispersion behavior 

𝜔 ∝ 𝑘(𝑘 → 0)  

 

Energy transport 

• Carry heat and sound 

• Always present in any crystal 

Optical modes 

Definition 

Optical modes are lattice vibrations in which atoms in the unit cell move out of phase with 

each other. 

Key characteristics 

• Have finite frequency at 𝑘 = 0 

• Do not correspond to rigid translation 

• Common in crystals with two or more atoms per unit cell 

Motion 

At 𝑘 = 0: 

• Atoms oscillate against each other 

• Center of mass remains fixed 

Dispersion behavior 

𝜔 ≠ 0at 𝑘 = 0  

 

Interaction with light 

• In ionic crystals, optical modes interact with infrared radiation 

• Hence the name optical 

 

Comparison table 

Feature Acoustic mode Optical mode 

Phase relation In phase Out of phase 
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Feature Acoustic mode Optical mode 

Frequency at 𝑘 = 0 0 Finite 

Physical meaning Sound waves Internal vibrations 

Present in monoatomic lattice Yes No 

Present in diatomic lattice Yes Yes 

 

Number of modes (1D example) 

For a diatomic linear lattice: 

• 1 acoustic branch 

• 1 optical branch 

In 3D: 

• 3 acoustic modes 

• 3𝑁 − 3optical modes (for 𝑁atoms per unit cell) 

 

Simple physical picture 

• Acoustic mode: atoms move together → wave travels like sound 

• Optical mode: atoms vibrate oppositely → creates oscillating dipolesss 

 

6.5 Infrared Absorption in an Ionic Crystal: 

Infrared (IR) absorption in an ionic crystal arises from the interaction of infrared 

radiation with optical lattice vibrations (optical phonons). 

Basic idea 

• Ionic crystals contain positive and negative ions 

• In optical modes, these ions vibrate out of phase 

• This creates a time-varying electric dipole moment 

• The oscillating electric field of IR radiation couples to this dipole 

Energy of IR light →  lattice vibrations  

Role of optical phonons 

Optical modes 

• Positive and negative ions move in opposite directions 

• Net dipole moment oscillates 

• These modes are IR active 
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Acoustic modes 

• Ions move in phase 

• No dipole moment 

• No IR absorption 

Only optical phonons cause IR absorption  

 

Condition for absorption 

Infrared absorption occurs when: 

ℏ𝜔IR = ℏ𝜔optat 𝑘 ≈ 0  

 

Reason: 

• Photon momentum is very small 

• Only zone-center optical phonons are excited 

 

Physical explanation (simple picture) 

• The electric field of IR radiation exerts opposite forces on +and −ions 

• This excites optical vibrations 

• Energy is absorbed from the radiation 

Reststrahlen band 

• Strong IR absorption occurs in a specific frequency range 

• Called the Reststrahlen band 

• Lies between transverse optical (TO) and longitudinal optical (LO) phonon 

frequencies 

 

Mathematical viewpoint (brief) 

The dielectric constant depends on frequency: 

𝜖(𝜔) = 𝜖∞
𝜔2 − 𝜔𝐿𝑂

2

𝜔2 − 𝜔𝑇𝑂
2  

 

• Absorption is strong when 𝜔 ≈ 𝜔𝑇𝑂 

Examples 

• NaCl, KBr, LiF show strong IR absorption 
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• Covalent crystals (e.g., Si, Ge) show weak or no IR absorption 

6.6 SUMMARY:  

 

Elastic Waves in a 1D Array of Identical Atoms: 

• Consider a one-dimensional chain of identical atoms connected by springs 

representing interatomic forces. 

• Small vibrations propagate as elastic waves, with frequency 𝜔depending on the 

wavevector 𝑘and force constant 𝐶. 

• The dispersion relation for a monoatomic chain is: 

𝜔 = 2√
𝐶

𝑀
  ∣ sin⁡

𝑘𝑎

2
∣ 

 

where 𝑀= atomic mass, 𝑎= lattice spacing, 𝑘= wavevector. 

Vibrational Modes of Diatomic Linear Lattice: 

• In a diatomic lattice (alternating masses 𝑀1and 𝑀2), each unit cell has two atoms. 

• Two types of vibrations occur: 

1. Acoustic Mode: Atoms move in phase, long-wavelength vibrations, 

frequency approaches zero as 𝑘 → 0. 

2. Optical Mode: Atoms move out of phase, higher frequency even at 𝑘 = 0. 

• The dispersion relation for a diatomic chain is: 

𝜔2 = 𝐶 (
1

𝑀1
+

1

𝑀2
) ± 𝐶√(

1

𝑀1
+

1

𝑀2
)
2

−
4sin⁡2(𝑘𝑎/2)

𝑀1𝑀2
 

 

Acoustic and Optical Modes: 

• Acoustic Modes: Responsible for sound propagation, low frequencies at small 𝑘. 

• Optical Modes: Arise in ionic or diatomic crystals, involve opposite motion of ions, 

interact with electromagnetic radiation. 

Infrared Absorption in Ionic Crystals: 

• Optical vibrations in ionic crystals (e.g., NaCl, KBr) can couple with infrared light. 

• The frequency of IR absorption corresponds to the optical mode frequency. 

• This property is used to study lattice vibrations, crystal structure, and phonon-related 

optical properties. 

 

 

Conclusion: 

Vibrations in 1D lattices provide fundamental insight into crystal dynamics. Acoustic 

and optical modes explain how phonons propagate and interact with light. Infrared 

absorption in ionic crystals arises due to optical vibrations, linking lattice dynamics to 

observable physical properties. 

 

6.7 TECHNICAL TERMS 

 

• Elastic Wave in One Dimension Array of identical Atoms  

• Vibrational Modes of Diatomic Linear Lattice 

• Dispersion Relation 

• Acoustic and Optical modes 

• Infrared Absorption in Ionic Crystal 



Solid State Physics    6.12 Lattice vibration & Thermal Properties 

 

6.8 SELF ASSESSMENT QUESTIONS 

 

1. Explain about the Elastic Wave in One Dimension Array of identical Atoms 

2. Explain about the Vibrational Modes of Diatomic Linear Lattice 

3. Write about the Dispersion Relation 

4. Explain about the Acoustic and Optical modes 

5. Explain bout the Infrared Absorption in Ionic Crystal 

 

6.9 SUGGESTED READINGS 

 

1. Introduction to Solid State Physics, C. Kittel, 5th Edition. 

      2. Solid State Physics, A. J. Dekker. 

3. Solid State Physics, S. O. Pillai, 7th Edition. 

4. Solid State Physics, H. C. Gupta, Vikas Publisher, Noida, 2nd Edition. 

5. Fundamentals of Quantum Mechanics, Statistical Mechanics & Solid State Physics, by 

S. P. Kuila, Books and Allied, Kolkata. 

6. Solid State Physics, M. A. Wahab, Narosa Publishing House. 

 

 

 

 

 Prof. M. Rami Reddy 



LESSON 7 

DEBYE THEORY OF SPECIFIC HEAT 
 

Aim:  

To study phonons in crystal lattices, verify the dispersion relation for lattice vibrations, 

understand lattice heat capacity using Einstein and Debye theories, explore vibrational modes 

in continuous media, and investigate the origin of thermal expansion and its relation to the 

Grüneisen parameter. 

 

Objectives: 

 

1. To understand the concept of phonons as quantized lattice vibrations in solids. 

2. To study vibrational waves in crystal lattices and their energy quantization. 

3. To verify the dispersion relation for monoatomic and diatomic crystal lattices. 

4. To distinguish between acoustic and optical modes in lattice vibrations. 

5. To study lattice heat capacity and its temperature dependence using: 

• Einstein model (assuming identical independent oscillators) 

• Debye model (considering a continuous spectrum of vibrational modes) 

6. To understand vibrational modes in a continuous medium and their contribution to 

thermal properties. 

7. To investigate the origin of thermal expansion in solids due to anharmonicity of 

atomic vibrations. 

8. To study the Grüneisen relation, linking thermal expansion, heat capacity, and elastic 

properties. 

9. To relate experimental and theoretical results to the thermal and mechanical behavior 

of solids. 

 

STRUCTURE: 

 

7.1 Phonon 

7.2 Dispersion Relation 

7.3 Einstein Quantum theory of Specific heat 

7.4 Debye Theory of Specific Heat 

7.5 Origin of Thermal Expansion & Gruneisen Relation 

7.6 Summary 

7.7 Technical terms 

7.8 Self Assessment Questions 

7.9 Suggested Readings 

 

7.1 Phonon: 

A phonon is the quantized unit of lattice vibration in a crystal. 

• Atoms in a crystal vibrate about their equilibrium positions 
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• These collective vibrations behave like waves 

• In quantum mechanics, the vibrational energy is quantized → phonons 

Energy and momentum of a phonon 

𝑬 = ℏ𝝎, 𝒑 = ℏ𝒌  

 

where: 

• 𝝎= angular frequency 

• 𝒌= wave vector (crystal momentum) 

 

Types of phonons 

(a) Acoustic phonons 

• Atoms vibrate in phase 

• 𝝎 → 𝟎as 𝒌 → 𝟎 

• Responsible for sound propagation and heat conduction 

(b) Optical phonons 

• Atoms vibrate out of phase 

• Finite 𝝎at 𝒌 = 𝟎 

• Interact with infrared radiation (ionic crystals) 

 

 

7.2 Dispersion relation: 

The dispersion relation gives the relationship between frequency and wave vector: 

𝝎 = 𝝎(𝒌)  

 

Examples: 

• Monoatomic lattice → single acoustic branch 

• Diatomic lattice → one acoustic + one optical branch 

 Need for experimental verification 

Theoretical dispersion relations are derived using: 

• Harmonic approximation 

• Interatomic force constants 

They must be verified experimentally to: 

• Confirm lattice dynamics 

• Determine phonon frequencies and velocities 

Experimental verification methods 

(a) Inelastic neutron scattering (primary method) 

Why neutrons? 

• Wavelength comparable to lattice spacing 

• Energy comparable to phonon energies 

• No electric charge → deep penetration 
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Principle 

• Neutrons exchange energy and momentum with phonons 

𝚫𝑬 = ℏ𝝎
𝚫𝒌 = 𝑮 ± 𝒌

 

 

By measuring: 

• Energy change of scattered neutrons 

• Change in momentum 

➡ Full phonon dispersion curves are obtained 

(b) Raman scattering 

• Inelastic scattering of light by phonons 

• Measures optical phonons near 𝒌 ≈ 𝟎 

• Useful for symmetry studies 

Infrared absorption 

• Optical phonons absorb IR radiation 

• Confirms phonon frequencies at zone center 

X-ray scattering (limited) 

• Thermal diffuse scattering gives indirect information 

Experimental confirmation 

Experiments show: 

• Linear 𝝎 ∝ 𝒌at small 𝒌(acoustic phonons) 

• Existence of optical phonon branches 

• Good agreement with theoretical predictions 

Importance of phonons 

• Explain specific heat of solids 

• Govern thermal conductivity 

• Affect electrical resistivity 

• Play a role in superconductivity 

 

 

7.3 Einstein quantum theory of specific heat 

 

1. Lattice Heat Capacity 

 In a crystalline solid, atoms vibrate about their equilibrium positions. 

These vibrations (phonons) store thermal energy and give rise to the lattice (phonon) heat 

capacity. 

Classical physics (Dulong–Petit law) predicts: 

𝐶𝑉 = 3𝑁𝑘𝐵 

 

which agrees with experiments only at high temperatures, but fails at low temperatures. 
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Quantum theories: 

• Einstein Theory 

• Debye Theory 

 

2. Einstein Theory of Lattice Heat Capacity 

Assumptions 

1. Each atom vibrates independently. 

2. All atoms vibrate with the same frequency 𝜈𝐸. 

3. Vibrations are quantized (quantum harmonic oscillators). 

 

Energy of an Einstein Oscillator 

For one oscillator: 

⟨𝐸⟩ =
ℎ𝜈𝐸

𝑒ℎ𝜈𝐸/𝑘𝐵𝑇 − 1
 

 

For a solid with 𝑁atoms (3N oscillators): 

𝑈 = 3𝑁
ℎ𝜈𝐸

𝑒𝜃𝐸/𝑇 − 1
 

 

where 

𝜃𝐸 =
ℎ𝜈𝐸
𝑘𝐵

(Einstein temperature) 

 

 

Heat Capacity 

𝐶𝑉 = (
∂𝑈

∂𝑇
)
𝑉

 

𝐶𝑉 = 3𝑁𝑘𝐵 (
𝜃𝐸
𝑇
)
2 𝑒𝜃𝐸/𝑇

(𝑒𝜃𝐸/𝑇−1)2
 

 

 

Limits of Einstein Model 

High Temperature (𝑻 ≫ 𝜽𝑬) 

𝐶𝑉 → 3𝑁𝑘𝐵 

 

✔ Correct (Dulong–Petit law) 

Low Temperature (𝑻 ≪ 𝜽𝑬) 

𝐶𝑉 ∝ 𝑒−𝜃𝐸/𝑇 

 

✘ Experimental result: 𝐶𝑉 ∝ 𝑇3 
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Limitations 

• Assumes single frequency → unrealistic 

• Fails at low temperatures 

 

7.4 Debye Theory (Vibrational Modes of a Continuous Medium) 

 Debye improved Einstein’s model by treating the crystal as a continuous elastic 

medium. 

 

Assumptions 

1. Solid behaves like a continuous elastic medium. 

2. Vibrations are elastic waves (phonons). 

3. Frequencies range from 0 to a maximum 𝜈𝐷. 

4. Total number of modes = 3N. 

 

Density of Vibrational States 

𝑔(𝜈) 𝑑𝜈 =
9𝑁

𝜈𝐷
3 𝜈

2𝑑𝜈 

 

 

Internal Energy 

𝑈 = ∫
ℎ𝜈

𝑒ℎ𝜈/𝑘𝐵𝑇 − 1

𝜈𝐷

0

𝑔(𝜈) 𝑑𝜈 

 

Introduce: 

𝜃𝐷 =
ℎ𝜈𝐷
𝑘𝐵

(Debye temperature) 

 

 

Debye Heat Capacity 

𝐶𝑉 = 9𝑁𝑘𝐵 (
𝑇

𝜃𝐷
)
3

∫
𝑥4𝑒𝑥

(𝑒𝑥−1)2

𝜃𝐷/𝑇

0

 𝑑𝑥  

 

 

Temperature Limits 

Low Temperature (𝑻 ≪ 𝜽𝑫) 

𝐶𝑉 =
12𝜋4

5
𝑁𝑘𝐵 (

𝑇

𝜃𝐷
)
3
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✔ Debye 𝑇3law (matches experiment) 

 

High Temperature (𝑻 ≫ 𝜽𝑫) 

𝐶𝑉 → 3𝑁𝑘𝐵 

 

✔ Dulong–Petit law 

 

Comparison: Einstein vs Debye 

Feature Einstein Theory Debye Theory 

Frequency Single frequency Continuous spectrum 

Low-T behavior Exponential 𝑇3law 

High-T limit Correct Correct 

Physical realism Limited Excellent 

Agreement with experiment Partial Very good 

Conclusion 

• Einstein model introduces quantization but oversimplifies vibrations. 

• Debye theory treats lattice vibrations realistically as phonons in a continuous medium. 

• Debye theory successfully explains: 

o Low-temperature 𝑇3behavior 

o High-temperature Dulong–Petit law 

 

 

7.5 Origin of Thermal Expansion and Grüneisen Relation 

    

 Thermal expansion arises from the anharmonicity of atomic vibrations in solids. 

Let’s go step by step. 

 

Origin of Thermal Expansion 

• Atoms in a solid vibrate about their equilibrium positions. 

• The interatomic potential 𝑈(𝑟)is not perfectly symmetric; it is anharmonic. 

• At low vibrations, it can be approximated as: 

𝑈(𝑟) = 𝑈0 +
1

2
𝑘(𝑟 − 𝑟0)

2 −
1

3
𝛼(𝑟 − 𝑟0)

3 +⋯ 

 

where: 

• 𝑟0= equilibrium separation 

• 𝑘= harmonic force constant 

• 𝛼= measure of anharmonicity 
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Mechanism 

• If the potential is anharmonic, the average atomic position shifts as temperature increases. 

• This increases the average interatomic separation, leading to expansion of the solid. 

 

Coefficient of Thermal Expansion 

  

 For a linear solid, the linear thermal expansion coefficient is: 

𝛼𝐿 =
1

𝐿

𝑑𝐿

𝑑𝑇
 

 

where 𝐿is the length. 

For volume: 

𝛼𝑉 =
1

𝑉

𝑑𝑉

𝑑𝑇
≈ 3𝛼𝐿  

 

 

Grüneisen Parameter: 

  

 The Grüneisen parameter 𝛾links thermal expansion to vibrational properties of 

the lattice. 

𝛾 = −
𝑉

𝜔

∂𝜔

∂𝑉
 

where: 

• 𝜔= phonon frequency 

• 𝑉= volume 

• ∂𝜔/ ∂𝑉 < 0(frequency decreases as volume increases) 

 

Interpretation: 

• 𝛾measures the sensitivity of phonon frequencies to volume changes. 

 

Grüneisen Relation: 

 

 The linear thermal expansion coefficient can be expressed as: 

 

𝛼 =
𝛾𝐶𝑉
3𝐵𝑉

 

 

where: 

• 𝛼= linear thermal expansion coefficient 

• 𝐶𝑉= specific heat at constant volume 
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• 𝐵= bulk modulus 

• 𝑉= volume 

• 𝛾= Grüneisen parameter 

 

Significance 

• Explains why materials expand when heated 

• Thermal expansion is proportional to specific heat and inversely proportional to stiffness 

• At low temperatures (𝐶𝑉 ∼ 𝑇3), 𝛼 ∼ 𝑇3 

 

 

7.6 SUMMARY:  

 

Phonons and Lattice Vibrations: 

• Phonons are quantized modes of lattice vibrations in a crystal, behaving as quasi-particles 

that carry energy. 

• In a crystal lattice, atoms vibrate about their equilibrium positions, leading to elastic 

waves. 

• Acoustic modes: Atoms move in phase; responsible for sound propagation. 

• Optical modes: Atoms move out of phase; occur in diatomic or ionic lattices. 

 

Dispersion Relation in Crystal Lattice: 

• The dispersion relation 𝜔(𝑘)describes how the frequency of lattice vibrations depends on 

the wavevector 𝑘. 

• For a monoatomic chain: 

𝜔 = 2√
𝐶

𝑀
  ∣ sin⁡

𝑘𝑎

2
∣ 

For a diatomic chain, acoustic and optical branches arise. 

• Verification of dispersion relation can be done experimentally via X-ray, neutron, or 

electron scattering. 

 

Lattice Heat Capacity: 

• Einstein Model: 

o Assumes each atom vibrates independently with the same frequency 𝜔𝐸. 

o Heat capacity: 

𝐶𝑉 = 3𝑁𝑘𝐵 (
ℏ𝜔𝐸

𝑘𝐵𝑇
)
2 𝑒ℏ𝜔𝐸/𝑘𝐵𝑇

(𝑒ℏ𝜔𝐸/𝑘𝐵𝑇−1)2
 

 

o Works well at high temperatures; fails at low temperatures (𝑇3 dependence not 

captured). 
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• Debye Model: 

o Considers a continuous spectrum of vibrational modes up to a maximum 

frequency (Debye frequency 𝜔𝐷). 

o Heat capacity: 

𝐶𝑉 = 9𝑁𝑘𝐵 (
𝑇

Θ𝐷
)
3

∫
𝑥4𝑒𝑥

(𝑒𝑥−1)2

Θ𝐷/𝑇

0

𝑑𝑥 

 

Accurately predicts 𝐶𝑉 ∝ 𝑇3at low temperatures and approaches Dulong-Petit limit at high 

temperatures. 

 

 

Vibrational Modes of Continuous Medium: 

• Treats the solid as a continuous elastic medium. 

• Phonons correspond to normal modes of vibration, forming a phonon spectrum that 

determines thermal properties. 

 

Thermal Expansion and Grüneisen Relation: 

• Origin of Thermal Expansion: Due to anharmonicity in interatomic potential; the average 

atomic separation increases with temperature. 

• Grüneisen Parameter (𝛾) links volume change to lattice vibrations: 

𝛾 = −
𝑉

𝜔

∂𝜔

∂𝑉
 

 

• The Grüneisen relation connects thermal expansion coefficient (𝛼), heat capacity (𝐶𝑉), 

and bulk modulus (𝐵): 

•  

𝛼 =
𝛾𝐶𝑉
𝐵𝑉

 

 

• Explains how lattice vibrations lead to expansion and influence thermodynamic 

properties. 

 

Conclusion: 

 Phonons and their dispersion relations govern the vibrational and thermal 

behavior of solids. Lattice heat capacity can be explained using Einstein and Debye models, 

while thermal expansion originates from anharmonic vibrations and is quantified via the 

Grüneisen parameter. Understanding these concepts is fundamental in solid-state physics, 

materials science, and thermal engineering. 
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7.7 TECHNICAL TERMS 

 

 Phonon, Dispersion Relation, Einstein Quantum theory of Specific heat, Debye Theory of 

Specific Heat, 

Origin of Thermal Expansion & Gruneisen Relation 

 

7.8 SELF ASSESSMENT QUESTIONS 

 

1. Explain about the Phonons 

2. Explain about the verification of dispersion relation in crystal lattice 

3. Explain about the Einstein Quantum theory of Specific heat 

4. Explain about the Debye Theory of Specific Heat 

5. Explain about the Origin of Thermal Expansion & Gruneisen Relation 

 

7.9 Suggested Readings 

 

1. Introduction to Solid State Physics, C. Kittel, 5th Edition. 

2. Solid State Physics, A. J. Dekker. 

3. Solid State Physics, S. O. Pillai, 7th Edition. 

4. Solid State Physics, H. C. Gupta, Vikas Publisher, Noida, 2nd Edition. 

5. Fundamentals of Quantum Mechanics, Statistical Mechanics & Solid State Physics, by 

S. P. Kuila, Books and Allied, Kolkata. 

6. Solid State Physics, M. A. Wahab, Narosa Publishing House. 

 

 

 

Prof. Sandhya Cole 



 

 

LESSON - 8 

FREE ELECTRON FERMI GAS 
 

Aim and Objective of the lesson 

 

This lesson aims to bridge the gap between classical and quantum physics by evaluating the 

limitations of the Classical Free Electron Theory and introducing the Quantum Free Electron 

Model. Students will qualitatively examine why classical models fail to explain phenomena 

like specific heat, subsequently transitioning to a wave-mechanical approach.  

 

The objectives are to derive quantized energy levels and the density of orbits in a one-

dimensional system, before generalising these concepts to a three-dimensional free electron 

gas. Ultimately, students will synthesize how the Pauli Exclusion Principle and Fermi-Dirac 

statistics define the electronic properties and energy distribution within metallic solids. 

 

STRUCTURE 

 

8.1 Introduction 

8.2 Definitions 

8.3 Failures of free electron theory of metals (Qualitative only) 

8.4Energy levels and density of orbits in one dimension 

8.5 Free electron gas in 3 dimensions 

8.6 Summary 

8.7 Technical terms 

8.8 Self-assessment 

8.9 Suggested books 

 

8.1 INTRODUCTION 

 

For decades, the Classical Free Electron Theory, pioneered by Drude and Lorentz, served 

as the bedrock for understanding metals. By treating valence electrons as a "gas" of classical 

particles bouncing off stationary ions, physicists successfully explained Ohm’s Lawand the 

relationship between electrical and thermal conductivity. However, as experimental precision 

grew, the classical model began to falter. It predicted a specific heat for electrons that was 

nearly a hundred times larger than observed values and failed to explain why some metals 

with more free electrons were poorer conductors than those with fewer. 

 

The fundamental flaw lay in treating electrons like classical billiard balls. This lesson 

explores the Quantum Free Electron Model, a revolutionary shift that applies the principles 

of wave mechanics to the metallic interior. We begin by examining the qualitative failures of 

the classical approach—specifically its inability to account for the electronic heat capacity 

and the temperature dependence of conductivity. 

 

To resolve these discrepancies, we move into the quantum realm, treating electrons as waves 

confined within the boundaries of the metal. We will analyze the one-dimensional (1D) 
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model to derive discrete energy levels and the "density of orbits," which tells us how many 

states are available at a given energy. Finally, we expand this into three dimensions (3D), 

visualizing the "Fermi Sphere" in momentum space. This transition from a classical gas to a 

quantum Fermi Gas provides the necessary framework to understand why only a small 

fraction of electrons contribute to a metal's thermal and electrical properties. 

 

8.2 DEFINITIONS 

 

1. Drude Model (Classical Free Electron Theory): A classical model that treats valence 

electrons in a metal as a gas of non-interacting classical particles (like a billiard ball 

gas) to explain electrical and thermal conductivity. 

 

2. Mean Free Path: The average distance an electron travels between successive 

collisions with lattice ions or impurities. 

 

3. Schrödinger Equation: The fundamental equation of quantum mechanics used here to 

determine the allowed wavefunctions and energy levels of an electron in a potential 

well. 

 

8.3 FAILURES OF FREE ELECTRON THEORY OF METALS (QUALITATIVE 

ONLY) 

 

The classical free electron theory, primarily the Drude model, was a significant milestone in 

solid-state physics. It successfully explained Ohm’s law and the Wiedemann-Franz law, 

which relates electrical and thermal conductivity. However, it encountered several 

"conspicuous failures" because it relied on classical Maxwell-Boltzmann statistics, treating 

electrons like a classical gas of "billiard balls." 

 

1. The Specific Heat Capacity Paradox 

The most striking failure involves the electronic heat capacity. According to classical 

equipartition of energy, every free electron should contribute 3/2kBto the heat capacity. In 

reality, the measured electronic heat capacity at room temperature is roughly 100 times 

smaller than this prediction. The classical theory failed because it assumed all electrons could 

absorb thermal energy, whereas quantum mechanics reveals that only a tiny fraction of 

electrons near the Fermi level can change their energy states. 

 

2. Magnetic Susceptibility 

Classical theory predicted a large paramagnetic contribution from electron spins (Langevin 

paramagnetism). However, experimental observations showed that the actual magnetic 

susceptibility of conduction electrons is much smaller and nearly independent of temperature. 

 

3. The Mean Free Path Problem 

In the classical model, electrons were expected to collide frequently with ion cores, limiting 

their mean free path to roughly the interatomic spacing (a few Angstroms). Yet, experiments 

on pure metals at low temperatures showed that electrons could travel distances of millions of 

atomic spacings (centimeters) without being deflected. 
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4. Dependence of Conductivity 

The classical theory could not adequately explain why some materials are excellent 

conductors while others are insulators or semiconductors, nor could it precisely account for 

the temperature dependence of resistivity in complex alloys. 

 

Note: These were not necessarily failures of the "free electron" concept itself, but failures of 

the classical distribution function. These issues were resolved by adopting Fermi-Dirac 

statistics and the Pauli Exclusion Principle, which dictate that electrons occupy states in a 

"Fermi sea" where only the most energetic electrons participate in thermal and transport 

processes. 

 

8.4 Energy levels in one dimension 

Consider a free electron gas in one dimension, taking account of quantum theory and of the 

Pauli principle. An electron of mass m is confined to a length L by infinite barriers (Fig. 1).  

 

 

Fig. 1 First three energy levels and wave functions of a free electron of mass m confined to a 

line of length L. The energy levels are labelled according to the quantum number n which 

gives the number of half-wavelengths in the wavefunction. The wavelengths are indicated on 

the wavefunctions. The energy 𝜖𝑛 of the level of quantum number n is equal to 

(h2/2m)(n/2L)2. 

 

The wavefunction 𝜓𝑛 (𝑥)of the electron is a solution of the Schrodinger equationℋψ =  ϵψ; 

with the neglect of potential cnergy we have ℋ = p2/2m, where p is the momentum. In 

quantum theory p may be represented by the operator -iħ d/dx, so that 

     (1) 
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where 𝜖𝑛 is the encra of the electron in the orbital. 

We use the term orbital to denote a solution of the wave equation for a system of only one 

electron. The term allows us to distinguish between an exact quantum state of the wave 

equation of a system of N interacting electrons and an approximate quantum state which we 

construct by assigning the N electrons to N different orbitals, where each orbital is a solution 

of a wave equation for one electron. The orbital model is exact only if there are no 

interactions between electrons. The boundary conditions are𝜓𝑛(0) = 0; 𝜓𝑛(𝐿) = 0,as 

imposed by the infinite potential energy barriers. They are satisfied if the wavefunction is 

sinelike with an integral number n of half-wavelengths between 0 and L: 

     (2) 

where A is a constant. \Ve see that (2) is a solution of (1), because 

  

whence the energy 𝜖𝑛 is given by 

        (3) 

We want to accommodate N electrons on the linc. According to the Pauli exclusion principle, 

no two electrons can have all their quantum numbersidentical. That is, each orbital can be 

occupied by at most one electron. This applies to electrons in atoms, molecules, or solids.  

In a linear solid the quantum numbers of a conduction electron orbital are n and ms, where n 

is any positive integer and the magnetic qnantum number ms = ±½, according to spin 

orientation. A pair of orbitals labeled by the quantum number n can accommodate two 

electrons, one with spin up and one with spin down.  

If there are six electrons, then in the ground state of the system the filled orbitals are those 

given in the table: 

 

 

More than one orbital may have the same energy. The number of orbitals with the same 

energy is called the degeneracy. 
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Let nF denote the topmost filled energy level, where we start filling the levels from the 

bottom (n = 1) and continue filling higher levels with electrons until all N electrons are 

accommodated. It is convenient to suppose that N is an even number. The condition 2nF = N 

determines nF, the value of n for the uppermost filled level. 

 

The Fermi energy 𝜖𝐹 is defined as the energy of the topmost filled level in the ground state of 

the N electron system. By (3) with n = nF, we have in one dimension: 

     (4) 

8.5 Free electron gas in 3 dimensions 

The free-particle Schrodinger equation in three dimensions is  

    (5) 

If the electrons are confined to a cube of edge L, the wavefunction is the standing wave  

   (6) 

where nx, ny, nzare positive integers. The origin is at one corner of the cube. 

It is convenient to introduce wave functions that satisfy periodic boundary conditions. We 

now require the wavefunctions to be periodic in x, y, z with period L. Thus  

      (7) 

and similarly for the y and z coordinates. Wavefunctions satisfying the free-particle 

Schrodinger equation and the periodicity condition are of the form of a travelling plane wave: 

       (8) 

provided that the components of the wavevector k satisfy 

 ….        (9) 

and similarly forky, and kz. 

Any component of k of the form 2nπ/L will satisfy the periodicity condition over a length L, 

where n is a positive or negative integer. The components of k are the quantum numbers of 

the problem, along with the quantum number m, for the spin direction. We confirm that these 

values of kx, satisfy (7), for  
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  (10) 

On substituting (8) in (5) we have the energy𝜖𝑘 of the orbital with wavevector k:  

     (11) 

The magnitude k of the wavevector is related to the wavelength λ by k = 2π/λ. The linear 

momentum p may be represented by the operator p = -iħ∇, whence for the orbital (8):  

     (12) 

so that the plane wave 𝜓𝑘 is an eigenfunction of the linear momentum with the eigenvalue 

ħk. The particle velocity in the orbital k is given by v = ħk/m. 

In the ground state of a system of N free electrons, the occupied orbitals may be represented 

as points inside a sphere in k space. The energy at the surface of the sphere is the Fermi 

energy; the wavevectors at the Fermi surface have a magnitude k, such that (Fig. 2): 

      (13) 

From (9) we see that there is one allowed wavevector - that is one distinct triplet of quantum 

numbers kx, ky, kz,-for the volume element (2π/L)3of k space. Thus in the sphere of volume 

4π𝑘𝐹
3/3 the total number of orbitals is 

,    (14) 

where the factor 2 on the left comes from the two allowed values of the spin quantum number 

for each allowed value of k. Then (14) gives  

      (15) 

which depends only on the particle concentration.  
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Fig. 2 In the ground state of a system of N free electrons the occupied orbitals of the system 

fill a sphere of radius kF where 𝜖𝑛 = ħ2𝑘𝐹
3/2m is the energy of an electron having a 

wavevector kF. 

 

 

Fig. 3 Density of single-particle states as a function of energy, for a free electron gas in three 

dimensions. The dashed curve represents the density 𝑓(𝜖, 𝑇)𝐷(𝜖) of filled orbitals at a finite 

temperature, but such that kBT is small in comparison with 𝜖𝐹. The shaded area represents the 

filled orbitals at absolute zero. The average energy is increased when the temperature is 

increased from 0 to T, for electrons are thermally excited from region 1 to region 2. 

 

Using equations (13) and (15),  

        (16) 

This relates the Fermi energy to the electron concentration N/V. The electron velocity vFat the 

Fermi surface is 

      (17) 
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Calculated values of kF, vF, and 𝜖𝐹, are given in Table 1 for selected metals; also given are 

values of the quantity TF which is defined as 𝜖𝐹/kB. (The quantity TF has nothing to do with 

the temperature of the electron gas!) 

 

 

8.6 SUMMARY 

 

The transition from classical to quantum physics in metallic conduction is the core focus of 

this lesson. It begins by evaluating the qualitative failures of the Classical Free Electron 

Theory, specifically its inability to explain why the experimental electronic specific heat is 

much lower than predicted and why the mean free path of electrons varies so significantly 

with temperature. These failures stem from the incorrect application of Maxwell-Boltzmann 

statistics to subatomic particles. 

 

The lesson then introduces the Quantum Free Electron Model, where electrons are treated 

as waves confined in a potential well. In a one-dimensional system, we observe that energy 

levels are quantized, and the "density of orbits" describes how many states exist at each 

energy level. 

 

By extending this logic to a three-dimensional free electron gas, the model accounts for the 

Pauli Exclusion Principle, which prevents electrons from crowding into the lowest energy 

state. Instead, they fill states up to a maximum level known as the Fermi Energy, forming a 

"Fermi Sphere" in momentum space. 

 

This quantum framework successfully resolves classical discrepancies by showing that only 

electrons near the Fermi surface contribute to thermal and electrical processes, providing a 

precise summary of metallic behaviour. 
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8.7 TECHNICAL TERMS 

 

Free electron gas 

Mean free path 

Schrödinger Equation 

 

8.8 SELF-ASSESSMENT 

 

1. Write a note on failures of the Classical Free Electron theory. 

2. Define Fermi energy. 

3. Derive an equation for the free electron gas in 3 dimensions. 

 

8.9 SUGGESTED BOOKS 

 

1. Introduction to Solid State Physics, C. Kittel, 5th Edition. 

2. Solid State Physics, A.J. Dekker. 

3. Solid State Physics, S.O. Pillai 7th Edition. 

4. Solid State Physics, H.C. Gupta, Vikas Publisher, Noida, 2nd Edition. 

5. Fundamentals of Quantum Mechanics, Statistical Mechanics & Solid State Physics by 

S.P. Kuila, Books and Allied, Kolkata. 
6. Solid State Physics, M.A. Wahab, Narosa publishing house. 

 

 

 

 Prof. Sandhya Cole 



LESSON - 9 

FERMI-DIRAC DISTRIBUTION FUNCTION 
 

Aim and Objective of the lesson 

 

The aim of this lesson is to provide a comprehensive understanding of the quantum statistical 

behavior of electrons in metals, moving beyond classical approximations to explain 

thermodynamic properties. By exploring the Fermi-Dirac distribution function, the lesson 

seeks to demonstrate how the Pauli Exclusion Principle governs electron occupancy and how 

the Fermi function evolves from a sharp step-function at absolute zero to a smoother 

distribution as temperature increases. 

 

A primary objective is for students to define and calculate the density of states, which is 

critical for determining how many quantum states are available for electrons at specific 

energy levels. Furthermore, the lesson aims to derive the heat capacity of the electron gas 

using quantum mechanics, allowing students to resolve the long-standing discrepancy 

between classical predictions (3/2kB per electron) and the much smaller values observed in 

experimental heat capacity measurements. By the conclusion, students should be able to 

qualitatively and quantitatively explain why only electrons near the Fermi level contribute to 

a metal's thermal properties, thereby synthesizing a modern view of electronic transport and 

energy storage in solid-state systems. 

 

STRUCTURE 

 

9.1 Introduction 

9.2 Definitions 

9.3 Fermi-Dirac distribution function and variation of Fermi function with temperature 

(Qualitative only) 

9.4 Density of states 

9.5 Heat capacity of the electron gas 

9.6 Experimental heat capacity of metals 

9.7 Summary 

9.8 Technical terms 

9.9 Self-assessment 

9.10 Suggested books 

 

9.1 INTRODUCTION 

 

The transition from the classical Drude model to a modern quantum understanding of solids 

requires a deep dive into the statistical mechanics of particles that obey the Pauli Exclusion 

Principle. This lesson introduces the Fermi-Dirac distribution function, the fundamental 

mathematical tool used to describe the probability of an electron occupying a specific energy 

state at a given temperature.1 Unlike classical particles that follow Maxwell-Boltzmann 
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statistics—where any number of particles can crowd into the lowest energy state—electrons 

are fermions, meaning they fill energy levels from the bottom up, much like water filling a 

container. This "filling" process creates a sharp boundary at absolute zero known as the 

Fermi Level, and understanding how this boundary "blurs" as thermal energy is added is 

essential for predicting the physical properties of metals. 

 

Central to this discussion is the density of states, which provides the geometric and 

quantum-mechanical framework for calculating how many electronic states exist within a 

specific energy range. By combining the Fermi-Dirac distribution with the density of states, 

we can finally address the "specific heat catastrophe" of classical physics. Classical theory 

erroneously predicted that every free electron should contribute 3/2 kB to the heat capacity; 

however, experimental data consistently showed values nearly a hundred times smaller. 

Through this lesson, we will demonstrate that because of the exclusion principle, only the 

tiny fraction of electrons within a small thermal energy range kBT of the Fermi surface are 

capable of being excited. This quantum refinement not only aligns theory with experimental 

heat capacity measurements but also clarifies the underlying physics of how energy is stored 

and transferred within the "electron sea" of a metallic crystal. 

 

9.2 DEFINITIONS 

 

1. Fermi-Dirac Distribution Function: A quantum statistical distribution used to describe 

the probability of an electron occupying a specific energy state at a given temperature, 

accounting for the Pauli Exclusion Principle. 

 

2. Fermi Energy (EF): The maximum energy level occupied by electrons in a metal at 

absolute zero temperature (0 K). 

 

3. Fermi Temperature (TF): The temperature at which the thermal energy (kBT) is equal 

to the Fermi energy. 

 

4. Density of States: The number of electronic energy states available per unit volume 

per unit energy interval at a specific energy level. 

 

9.3 FERMI-DIRAC DISTRIBUTION FUNCTION AND VARIATION OF FERMI 

FUNCTION WITH TEMPERATURE (QUALITATIVE ONLY) 

 

The Fermi Dirac distribution function describes the probability that a fermion, such as an 

electron, will occupy a particular energy level at a given temperature. 

 

Variation of Fermi function with temperature: 

The kinetic energy of the electron gas increases as the temperature is increased: some energy 

levels are occupied which were vacant at absolute zero, and some levels are vacant which 

were occupied at absolute zero (Fig. 1). The Fermi-Dirac distribution gives the probability 

that an orbital at energy E will be occupied in art ideal electron gas in thermal equilibrium: 

       (1) 

The quantity μ is a function of the temperature; μ is to be chosen for the particular problem in 

such a way that the total number of comes out correctly-that is, equal to N. At absolute zero 

𝜇 = 𝜖𝐹, in the system because in the limit T → 0 the function𝑓(𝜖) changes discontinuously 
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from the value 1 (filled) to the value 0 (empty) at 𝜖 = 𝜖𝐹 = 𝜇. At all temperatures 𝑓(𝜖)is 

equal to ½ when 𝜖 = 𝜇, for then the denominator of (1) has the value 2.  

 

 
Fig. 1 Fermi-Dirac distribution function (5) at the various labelled temperatures, for 𝜖𝐹/kB = 

50,000. The results apply to a gas in three dimensions. The total number of particles is 

constant, independent of temperature. The chemical potential p at each temperature may be 

read off the graph as the energy at which 𝑓 = 0.5. 

 

The quantity μ is the chemical potential (TP), and we see that at absolute zero the chemical 

potential is equal to the Fermi energy, defined as the energy of the topmost filled orbital at 

absolute zero. 

 

The high energy tail of the distribution is that part for which 𝜖 − 𝜇 ≫ kBT; here the 

exponential term is dominant in the denominator of (1), so that 𝑓(𝜖) ≅ exp⁡[(𝜖 − 𝜇)/kBT]. 

This limit is called the Boltzmann or Maxwell distribution. 

 

9.4 DENSITY OF STATES 

 

We now find an expression for the number of orbitals per unit energy range, D(𝜖), called the 

density of states1. We use  

 
 to obtain the total number of orbitals of energy ≤ 𝜖:  

     (2) 

so that the density of states (Fig. 2) is  
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   (3) 
1Strictly, D(𝜖) is the density of one-particle states, or density of orbitals.  

 
Fig. 3 Density of single-particle states as a function of energy, for a free electron gas in three 

dimensions. The dashed curve represents the density 𝑓(𝜖, 𝑇)𝐷(𝜖) of filled orbitals at a finite 

temperature, but such that kBT is small in comparison with 𝜖𝐹. The shaded area represents the 

filled orbitals at absolute zero. The average energy is increased when the temperature is 

increased from 0 to T, for electrons are thermally excited from region 1 to region 2. 

 

This result may be expressed more simply by comparing (2) and (3) to obtain at𝜖 

     (4) 

Within a factor of the order of unity, the number of orbitals per unit energy range at the Fermi 

energy is the total number of conduction electrons divided by the Fermi energy, just as we 

would expect.  

 

9.5 HEAT CAPACITY OF THE ELECTRON GAS 

 

1. The Classical Discrepancy 

• Classical Prediction: According to classical statistical mechanics, a free particle 

should have a heat capacity of 3/2 kB. If each atom in a metal contributes one valence 

electron, the electronic contribution should be 3/2 NkB. 

• The Problem: Observed values at room temperature are typically less than 1% of 

this prediction. This discrepancy exists because electrons, as fermions, obey the Pauli 

Exclusion Principle. 
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2. Qualitative Quantum Explanation 

The exclusion principle dictates that at absolute zero, electrons fill orbitals up to the Fermi 

energy (𝝐F). 

• When a metal is heated, only electrons in orbitals within an energy range ~kBT of the 

Fermi level can be excited thermally. 

• Electrons deep within the Fermi sphere cannot gain energy because the states above 

them are already occupied. 

• If N is the total number of electrons, only a fraction of roughly T/TF is thermally 

excited (where TF = 𝝐F/kB). 

• Since each of these electrons gains thermal energy ~kBT, the total internal energy 

Uel≈ (NT/TF)kBT. 

• Differentiating with respect to temperature gives Cel≈NkB(T/TF), showing a linear 

dependence on T. 

 

3. Quantitative Derivation 

At low temperatures where kBT≪ 𝝐F, the electronic heat capacity is derived by differentiating 

the internal energy ΔU: 

 
Where: 

• D(𝝐) is the density of states. 

• 𝒇(𝝐, 𝑻) is the Fermi-Dirac distribution function. 

By evaluating D(𝝐) at the Fermi level and solving the integral, we obtain the standard result: 

 
For a free electron gas where D(𝝐F)= 3N/2𝝐F, this simplifies to:  

 
 

9.6 EXPERIMENTAL HEAT CAPACITY OF METALS 

 

The experimental heat capacity of metals is characterized by the coexistence of electronic and 

lattice contributions, often analyzed through the Sommerfeld parameter. 

 

1. Theoretical Framework for Experimental Analysis 

At temperatures much lower than both the Debye temperature and the Fermi temperature 

(TF), the total heat capacity (C) of a metal is expressed as the sum of its electronic and 

phonon contributions: 

 
• Electronic term (γT): This term is linear in temperature and becomes the dominant 

factor at sufficiently low temperatures. 

• Phonon term (AT3): This represents the lattice contribution, following the Debye T3 

law. 

 

2. Experimental Methodology: The C/T vs. T2 Plot 

To separate these two contributions experimentally, physicists plot the total heat capacity in a 

modified linear form: 
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• Interpretation: When experimental data is plotted this way, the points should fall on 

a straight line. 

• The Intercept (γ): The y-axis intercept gives the Sommerfeld parameter (γ), which 

is characteristic of the material's electronic properties. 

• The Slope (A): The slope of the line provides the constant A, which is related to the 

lattice vibrations (phonons). 

 

3. The Sommerfeld Parameter (γ) 

The observed Sommerfeld parameter (γ) is of the expected magnitude but often deviates from 

the theoretical value calculated for perfectly free electrons of mass m. 

 

Calculated Free Electron Value: For a free electron gas, γ is proportional to the density of 

states at the Fermi level. 

 

Experimental Discrepancy: The ratio between the observed γand the free electron value is 

used to define a thermal effective mass (mth): 

 
 

4. Factors Influencing Experimental Values 

The departure of the mth/m ratio from unity (as seen in metals like Lithium with a ratio of 

~1.63 or Beryllium at ~0.17) is attributed to three primary physical effects: 

• Band Effective Mass: Interaction of conduction electrons with the rigid periodic 

potential of the crystal lattice. 

• Electron-Phonon Interaction: A moving electron distorts the nearby lattice, "dragging" 

ions along and increasing its effective mass. 

• Electron-Electron Interaction: Moving electrons cause inertial reactions in the 

surrounding electron gas, further increasing effective mass. 

 

5. Notable Exceptions: Heavy Fermions 

Some metallic compounds, such as UBe13 and CeCu2Si2, exhibit Heavy Fermion behaviour. 

These materials have enormousγ values—two to three orders of magnitude higher than 

standard metals—suggesting inertial masses as high as 1000m due to weak overlap of f-

electron wavefunctions. 

 

9.7 SUMMARY 

 

This lesson provides an in-depth exploration of the quantum mechanical framework required 

to understand the thermodynamic behaviour of electrons in solids, specifically focusing on 

the transition from classical to quantum statistics. It begins by introducing the Fermi-Dirac 

distribution function, which is the fundamental probability function describing how 

fermions, such as electrons, occupy available energy states. Unlike classical particles, 

electrons are governed by the Pauli Exclusion Principle, which dictates that no two electrons 

can occupy the same quantum state. At absolute zero, this leads to a step-like distribution 

where all states are filled up to a specific level known as the Fermi Energy, while all states 

above remain empty. As the temperature increases, the lesson qualitatively explores how this 
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"Fermi sea" becomes thermally excited, with only those electrons near the Fermi surface 

gaining enough energy to move into higher, unoccupied states. 

 

To bridge the gap between statistical probability and physical reality, the lesson defines the 

density of states, which represents the number of quantum states available per unit energy 

interval. This concept is vital for calculating the total internal energy of the system. A major 

highlight of the lesson is the resolution of the "specific heat catastrophe" found in classical 

Drude theory. While classical physics incorrectly predicted that every free electron should 

contribute 3/2 kB to the heat capacity, leading to a constant molar value of 3/2 R, 

experimental heat capacity data reveals a much smaller, linear temperature dependence. 

 

By synthesizing the Fermi-Dirac distribution with the density of states, the lesson 

demonstrates that only a tiny fraction of electrons—those within a thermal energy range of 

approximately kB T from the Fermi energy—can actually absorb heat. This quantum 

refinement perfectly matches experimental observations and explains why the electronic 

contribution to heat capacity is negligible at room temperature compared to lattice vibrations. 

Ultimately, the lesson summarizes how these quantum constraints are essential for accurately 

modelling the thermal and electrical properties of modern metallic materials, providing a 

definitive correction to classical misconceptions. 

 

9.8 TECHNICAL TERMS 

 

Fermi-Dirac Distribution Function 

Fermi Energy (EF) 

Fermi Temperature (TF) 

Density of States 

 

9.9 SELF-ASSESSMENT 

 

1. Explain the variation of Fermi function with temperature. 

2. Define Fermi energy and Fermi temperature. 

3. Explain the density of states. 

 

9.10 SUGGESTED BOOKS 

 

1. Introduction to Solid State Physics, C. Kittel, 5th Edition. 

2. Solid State Physics, A.J. Dekker. 

3. Solid State Physics, S.O. Pillai 7th Edition. 

4. Solid State Physics, H.C. Gupta, Vikas Publisher, Noida, 2nd Edition. 

5. Fundamentals of Quantum Mechanics, Statistical Mechanics &Solid State Physics by 

S.P. Kuila, Books and Allied, Kolkata. 
6. Solid State Physics, M.A. Wahab, Narosa publishing house. 

 

 

Prof. Sandhya Cole 



LESSON - 10 

ELECTRICAL AND THERMAL CONDUCTIVITY 

OF METALS 
 

Aim and Objective of the lesson 

 

The aim of this lesson is to establish a comprehensive understanding of the transport 

properties of metals through the lens of the classical free electron model. Students will 

explore how the "electron gas" concept provides a physical basis for electrical conductivity 

and the derivation of Ohm’s law, while also examining the mechanisms of thermal 

conductivity. 

 

A primary objective is for students to analyze the relationship between these two transport 

phenomena by deriving and validating the Wiedemann-Franz law, which relates electrical 

and thermal conductivities via the Lorenz number. Furthermore, the lesson aims to broaden 

the scope of electron dynamics by investigating the motion of electrons in a magnetic field, 

specifically focusing on the Hall effect. Through this, students will learn to determine crucial 

material parameters, such as the charge carrier concentration and the Hall coefficient. By the 

end of the lesson, learners will be able to define key technical terms, perform self-

assessments on transport equations, and evaluate the successes and limitations of classical 

transport theory in predicting the behavior of real metallic conductors. 

 

STRUCTURE 

 

10.1 Introduction 

10.2 Definitions 

10.3 Electrical conductivity and Ohm’s law 

10.4Thermal conductivity of metals 

10.5Wiedemann-Franz law 

10.6 Motion of magnetic field 

10.7 Hall Effect 

10.8Summary 

10.9 Technical terms 

10.10 Self-assessment 

10.11 Suggested books 

 

10.1 INTRODUCTION 

 

The study of solid-state physics is fundamentally a quest to understand how the microscopic 

arrangement of atoms and electrons dictates the macroscopic properties of the materials we 

use every day. Among all classes of solids, metals stand out due to their exceptional ability to 

conduct both electricity and heat. This lesson provides a comprehensive exploration of the 

electronic properties of metals, focusing on how electrons move and interact within a 
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crystalline lattice to produce the phenomena of conductivity. By examining the underlying 

principles of transport theory, we can bridge the gap between quantum mechanical 

descriptions of individual particles and the observable laws of classical physics, such as 

Ohm’s Law. 

 

The journey begins with the foundational definitions required to describe a system of many 

particles. Central to this is the Fermi-Dirac distribution function, which describes how 

electrons—being fermions—occupy various energy states at a given temperature. Unlike 

classical particles, electrons are governed by the Pauli Exclusion Principle, meaning they 

cannot all settle into the lowest energy state. This quantum "stacking" leads to the concept of 

the Fermi level, a critical energy threshold that determines which electrons are available to 

participate in conduction. Understanding the density of states, or the number of available 

"seats" for electrons at specific energy levels, is the first step in predicting a metal's behavior. 

As we move into the dynamics of these electrons, we address electrical conductivity and 

Ohm’s law. Here, we treat the metal as a lattice of positive ions through which a "gas" of free 

electrons flows. When an external electric field is applied, these electrons experience a force 

that causes them to drift. However, their motion is not unimpeded; they constantly collide 

with impurities, defects, and lattice vibrations (phonons). These collisions give rise to 

electrical resistance. By analyzing the average time between these collisions, known as the 

relaxation time, we can derive the microscopic basis for conductivity and demonstrate why 

some materials are better conductors than others. 

 

Beyond electricity, metals are also renowned for their thermal conductivity. In a metal, heat 

is carried primarily by the same free electrons that carry charge. This dual role leads to one of 

the most elegant relationships in physics: the Wiedemann-Franz law. This law reveals that 

the ratio of thermal conductivity to electrical conductivity is directly proportional to the 

temperature, with the proportionality constant known as the Lorenz number. This relationship 

underscores the deep physical connection between the transport of energy and the transport of 

charge in metallic systems. 

 

The lesson further expands into the behavior of electrons under the influence of magnetic 

fields. When a magnetic field is applied to a moving charge, it experiences the Lorentz force, 

which deflects its path. This leads to the Hall effect, a phenomenon where a transverse 

voltage is generated across a conductor. The Hall effect is a powerful diagnostic tool in 

material science, as it allows us to determine the sign and density of charge carriers, proving 

that in metals, the primary carriers are indeed negatively charged electrons. Through a 

structured progression from basic definitions to complex interactions in electromagnetic 

fields, this lesson equips students with the theoretical toolkit necessary to master the 

fundamental physics of metallic conduction. 

 

10.2 DEFINITIONS: 

1. Free Electron Gas: A model that treats the valence electrons in a metal as a gas of 

particles that are free to move throughout the volume of the solid, restricted only by 

the surface boundaries. 

 

2. Electrical Conductivity: A measure of a material's ability to allow the flow of 

electric current, defined as the ratio of current density to the applied electric field. 

 

3. Ohm’s Law: The principle stating that the current through a conductor between two 

points is directly proportional to the voltage across those two points (V = IR). 
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4. Mean Free Time (Relaxation Time): The average time interval between two 

successive collisions of an electron with the lattice ions. 

 

5. Drift Velocity (vd): The average velocity that an electron attains in a conductor due to 

an applied electric field. 

 

6. Thermal Conductivity (K): The property of a material that indicates its ability to 

conduct heat, primarily driven in metals by the movement of free electrons. 

 

7. Wiedemann-Franz Law: An empirical law stating that the ratio of the thermal 

conductivity to the electrical conductivity of a metal is proportional to its absolute 

temperature. 

 

8. Lorenz Number (L): The proportionality constant in the Wiedemann-Franz Law, 

theoretically calculated in classical models as L = 3/2 (kB/e)2. 

 

9. Lorentz Force: The force exerted on a charged particle (electron) moving through a 

magnetic field, given by F = q(v x B). 

 

10. Hall Effect: The production of a voltage difference (the Hall voltage) across an 

electrical conductor, transverse to an electric current in the conductor and to an 

applied magnetic field perpendicular to the current. 

 

11. Hall Coefficient (RH): A constant that characterizes a material's Hall effect, defined 

as the ratio of the induced electric field to the product of the current density and the 

applied magnetic field; its sign indicates whether charge carriers are positive or 

negative. 

 

10.3 ELECTRICAL CONDUCTIVITY AND OHM’S LAW 

 

1. Local Form of Ohm’s Law 

While the circuit form is V = IR, the microscopic (vector) form is more relevant for solids: 

J = σE 

• J: Current density (Amperes per unit area). 

• E: Applied electric field. 

• σ: Electrical conductivity. 

In an isotropic solid, σ is a scalar; in an anisotropic crystal (like graphite), σ is a rank-2 

tensor, meaning the current J might not be parallel to the applied field E. 

2. The Drude Model (Classical Derivation) 

The simplest explanation for Ohm's Law comes from Paul Drude (1900), who treated 

electrons as a classical gas. 

The Equation of Motion 
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An electron with mass $m$ and charge -e in an electric field E experiences a force F = -eE. In 

a solid, it also experiences "friction" due to collisions with ion cores, characterized by a 

relaxation time (τ). 

 

Steady-State Solution 

At steady state (dv/dt = 0), the drift velocity (vd) is: 

 

Since J = -nevd (where n is electron density): 

 

Thus, the Drude Conductivity is: 

 

10.4 Thermal conductivity of metals 

1. Microscopic Theory of Thermal Conduction 

According to kinetic theory, the thermal conductivity (κ) of a gas of particles is given by: 

 

Where: 

• C: Heat capacity per unit volume. 

• v: Average particle velocity. 

• λ: Mean free path (distance between collisions). 

In a metallic solid, the total thermal conductivity is the sum of two components: 

κtotal = κe + κph 

• κe (Electronic): Transport of energy by delocalized conduction electrons. 

• κph(Phononic/Lattice): Transport by quantized lattice vibrations (phonons). 

2. Electronic Thermal Conductivity (κe) 

To derive κe, we use the Sommerfeld Model (Quantum Free Electron Theory). 

A. The Derivation 

1. Electronic Specific Heat (Cel): In the quantum model,  
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. 

2. Velocity: The electrons participating in transport are those near the Fermi surface, so 

v ≈vF. 

3. Substitution: 

 

 

B. Temperature Dependence of κe 

The behavior of κe depends on the scattering relaxation time (τ): 

• At High T (T >ΘD): Scattering is dominated by phonons. Since the number of 

phonons ∝ T, thenτ∝ 1/T. Becauseκe∝ Tτ, the T and 1/T terms cancel out, making 

κeapproximately constant. 

• At Low T (T ≪ΘD): Scattering is dominated by impurities/defects. Here τis constant, 

so κe∝ T. 

 

Thermal conductivity 

3. Lattice Thermal Conductivity (κph) 

While secondary in metals, the lattice contribution follows the Debye model: 

• HighT: Phonon-phonon scattering (Umklapp processes) dominates. κph∝ 1/T. 

• Low $T$: Boundary scattering dominates. Since Cph∝ T3, then κph∝T3. 
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4. Comparison for Pure Metals 

Regime 
Scattering 

Mechanism 

Electrical 

Resistivity (ρ) 

Thermal 

Conductivity (κ) 

High T Electron-Phonon ∝ T Constant 

Intermediate 

T 
Inelastic scattering Complex Decreases 

Low T Impurity/Defects Constant (Residual) ∝T 

 

10.5 WIEDEMANN-FRANZ LAW 

The Wiedemann-Franz Law is a cornerstone of the free electron theory of metals. It 

quantifies the empirical observation that good electrical conductors are also good thermal 

conductors. 

1. Statement of the Law 

The law states that the ratio of the electronic contribution to the thermal conductivity (κ) to 

the electrical conductivity (σ) of a metal is directly proportional to its absolute temperature 

(T). 

Mathematically: 

 

where L is a proportionality constant known as the Lorenz number. 

2. Theoretical Derivations 

Classical Drude Model (1900) 

Drude treated electrons as a classical "ideal gas". 

Electrical Conductivity: 

 

Thermal Conductivity: 

 

By substituting the classical kinetic energy 

 

the ratio becomes: 
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Result: This yielded a Lorenz number 

 

This was about half of the experimental value. 

 

10.6 Motion of the magnetic field 

 

In solid-state physics and plasma physics, the "motion" of a magnetic field usually refers to 

Magnetic Convection or the Frozen-in Flux Theorem. This concept explains how a 

magnetic field behaves when it is embedded in a moving, highly conductive medium (like a 

metal or plasma). 

 

1. The Induction Equation 

To understand the motion of the field, we start with Maxwell’s equations and Ohm’s Law. In 

a moving conductor with velocity v, the current density is: 

 

By combining this with Faraday's Law 

 

and Ampere's Law 

 

we derive the Induction Equation: 

 

Where is the magnetic diffusivity. 

 

2. Two Regimes of Motion 

The behavior of the magnetic field depends on the Magnetic Reynolds Number (Rm): 

 

A. The Diffusion Limit (Rm≪1) 

In poorly conducting materials (low σ), the magnetic field "slips" through the matter. If the 

motion of the material stops, the magnetic field simply decays away. The field does not 

follow the motion of the atoms.4 

B. The Frozen-in Limit (Rm≫1) 
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In perfect conductors (σ→∞) or very large-scale systems (like stellar interiors), the diffusion 

term vanishes.6 The equation becomes: 

 

This is known as Alfvén’s Theorem.7 It implies that the magnetic field lines are "frozen" into 

the material.8 If the material moves, the field lines are carried along with it, stretching and 

twisting as the material deforms. 

 

3. Physical Implications in Solids 

While the "frozen-in" concept is most famous in astrophysics, it has critical applications in 

solid-state physics: 

• Eddy Currents: When a bulk metal moves through a magnetic field, the field 

"resists" being left behind. This relative motion creates loops of current (Eddy 

currents) that exert a dragging force, essentially trying to keep the field and matter 

together. 

• Flux Pinning in Superconductors: In Type-II superconductors, magnetic field lines 

(vortices) can become "pinned" to defects in the crystal lattice. If you move the 

superconductor, the magnetic field lines move with it perfectly. This is a literal 

"motion of the field" used in maglev technology. 

• Magnetic Domain Wall Motion: In ferromagnetic solids, the "motion" of the field is 

observed as the movement of domain walls under an external force. This is not the 

movement of individual field lines, but the collective reconfiguration of electron 

spins. 

 

10.7 Hall effect 

 

The Hall Effect is a fundamental phenomenon in solid-state physics that provides a direct 

method for determining the sign and concentration of charge carriers in a material. 

Discovered by Edwin Hall in 1879, it remains one of the most powerful diagnostic tools for 

characterizing semiconductors and metals. 

 

1. Physical Principle 

When a magnetic field is applied perpendicular to a current-carrying conductor, a transverse 

electric field (the Hall field) is generated. This happens because the magnetic field exerts a 

Lorentz force on the moving charge carriers, pushing them toward one side of the material. 
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As charges accumulate on one surface, an internal electric field EH is established. This field 

opposes the Lorentz force. Equilibrium is reached when these two forces balance each other 

out. 

 

Mathematical Derivation 

For a steady state, the net transverse force on the charge carriers is zero: 

 

In a simplified 1D geometry where the current I is in the x-direction and the magnetic field B 

is in the z-direction: 

 

Using the relation for current density Jx = nqvx (where n is carrier density and q is the 

charge): 

 

2. Key Parameters 

The Hall Coefficient (RH) 

The Hall coefficient is defined as the ratio of the induced electric field to the product of the 

current density and the applied magnetic field: 

 

• Sign of $R_H$: If the carriers are electrons (q = -e), RH is negative. If the carriers are 

holes (q = +e), RH is positive. 

• Magnitude: RH is inversely proportional to the carrier concentration n. 

Hall Voltage (VH) 

For a sample of thickness t and width w, the measured Hall voltage is: 

 

10.8 SUMMARY 

 

This lesson provides a comprehensive analysis of how electrons behave within a metallic 

solid, transitioning from static quantum distributions to dynamic transport phenomena. The 

core of the lesson focuses on the "Free Electron Model," which treats conduction electrons as 
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a gas that can move throughout the volume of the metal, restricted only by the boundaries of 

the material and the laws of quantum mechanics. 

 

The foundation is built upon the Fermi-Dirac Distribution and the Density of States. These 

concepts explain that electrons do not behave like a classical gas; instead, they fill energy 

levels from the bottom up due to the Pauli Exclusion Principle. The Fermi energy acts as a 

crucial boundary, as only the electrons near this energy level have the mobility to respond to 

external electric or magnetic fields. By establishing these definitions, the lesson provides the 

necessary framework to calculate how many electrons are actually available to participate in 

conduction. 

 

The discussion then moves to Electrical Conductivity and Ohm’s Law. By applying a 

classical approach to a quantum system (the Drude Model), we see that an electric field 

causes electrons to drift with a specific velocity. This motion is punctuated by collisions with 

the lattice, creating electrical resistance. This leads naturally into Thermal Conductivity, 

where we discover that in metals, electrons are the primary carriers of heat as well as charge. 

This dual responsibility is quantified by the Wiedemann-Franz Law, which proves that the 

ratio of thermal to electrical conductivity is a constant (the Lorenz number) multiplied by the 

absolute temperature. This law is a triumph of solid-state physics, as it links two seemingly 

different physical properties through a single carrier: the electron. 

 

Finally, the lesson explores the Motion in a Magnetic Field and the Hall Effect. When a 

magnetic field is introduced, the Lorentz force acts on the moving electrons, pushing them to 

one side of the conductor. The resulting "Hall voltage" is a critical experimental tool, as it 

allows for the direct measurement of the carrier concentration and the sign of the charge 

carriers. This confirms that the current in metals is carried by negative electrons rather than 

positive charges. 

 

In conclusion, the lesson synthesizes these topics to show that the macroscopic properties of 

metals—their shine, their heat, and their electricity—are all direct consequences of the 

quantum behavior of the electron gas. 

 

10.9 TECHNICAL TERMS 

 

Electrical conductivity and Ohm’s law 

Thermal conductivity of metals 

Wiedemann-Franz law 

Motion of the magnetic field 

Hall Effect 

 

10.10 SELF-ASSESSMENT 

 

1. Write about the Wiedemann-Franz field. 

2. Discuss the thermal conductivity of metals. 

3. What is the Hall effect? 
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10.11 SUGGESTED BOOKS 

 

1. Introduction to Solid State Physics, C. Kittel, 5th Edition. 

2. Solid State Physics, A.J. Dekker. 

3. Solid State Physics, S.O. Pillai 7th Edition. 

4. Solid State Physics, H.C. Gupta, Vikas Publisher, Noida, 2nd Edition. 

5. Fundamentals of Quantum Mechanics, Statistical Mechanics &Solid State Physics by 

S.P. Kuila, Books and Allied, Kolkata. 
6. Solid State Physics, M.A. Wahab, Narosa publishing house. 

 

  

Prof. Ch. Linga Raju 



 

 

LESSON-11 

THE BLOCH THEOREM 
 

AIM: 

 

To study the behavior of electrons in a periodic crystal lattice and to understand the form of 

the electron wavefunction using Bloch’s theorem. 

 

Objectives 

• To analyze the motion of electrons in a periodic potential of a crystalline solid. 

• To apply the translational symmetry of the lattice to the Schrödinger equation. 

• To state and explain Bloch’s theorem and its physical significance. 

• To obtain the general form of the electron wavefunction known as a Bloch function. 

 

STRUCTURE 

 

11.1 Nearly free electron model 

11.2 Origin of the energy potential 

11.3 The Bloch theorem 

11.4 Summary 

11.5 Technical terms 

11.6 Self assessment questions 

11.7 Suggested readings 

 

11.1 Nearly free electron model 

The electronic properties of crystalline solids are governed by the behavior of 

electrons moving in a periodic potential created by the lattice of ions. Early attempts to 

understand electron motion in solids led to two limiting models: the free electron model, in 

which electrons move freely without any interaction with the lattice, and the tight-binding 

model, in which electrons are strongly bound to atoms. Real solids, however, lie between 

these two extremes. 

 

The nearly free electron (NFE) model provides an improved and more realistic description 

by considering electrons that are almost free but experience a weak periodic potential due to 

the crystal lattice. This model successfully explains fundamental phenomena such as energy 

band formation, band gaps at Brillouin zone boundaries, and the distinction between 

metals and insulators. 

 

Basic Assumptions of the Nearly Free Electron Model 

The nearly free electron model is based on the following assumptions: 

1. Electrons move in a periodic potential V(r) due to the regular arrangement of ions. 

2. The periodic potential is weak compared to the kinetic energy of electrons. 

3. Electron–electron interactions are neglected or treated approximately. 

4. The crystal is infinite and perfectly periodic. 
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Under these assumptions, the behavior of electrons can be treated as a small perturbation of 

the free electron motion. 

 

 Schrödinger Equation in a Periodic Potential 

The motion of an electron in a crystal is governed by the time-independent Schrödinger 

equation: 

 
 

Here, V(r) is a periodic function satisfying: 

V(r+R)=V(r) 

where R is a lattice translation vector. 

Because of this periodicity, the solutions of the Schrödinger equation are given by Bloch’s 

theorem. 

 

Effect of a Weak Periodic Potential 

In the nearly free electron model, the periodic potential is treated as a small perturbation to 

the free electron states. The potential can be expanded as a Fourier series: 

𝑉(𝑟) = ∑ 𝑉𝐺𝑒𝑖𝐺.𝑟

𝐺

 

 

where G are reciprocal lattice vectors. 

The weak periodic potential couples free electron states whose wave vectors differ by a 

reciprocal lattice vector. This coupling has significant effects near the Brillouin zone 

boundaries. 

 

Free Electron Limit 

If the periodic potential is neglected (V=0), the electron behaves as a free particle with 

energy: 

  

 
This results in a parabolic energy–wave vector relation. However, this simple model fails to 

explain why real solids exhibit band gaps and why some materials are insulators rather than 

metals. 

 

 Physical Interpretation and Importance 

The nearly free electron model provides a clear physical picture of how the crystal lattice 

modifies electron motion: 

• Electrons propagate almost freely through the lattice. 

• Periodic scattering by the lattice leads to standing waves at zone boundaries. 

• These standing waves result in forbidden energy regions. 

The model explains why: 

• Metals have partially filled bands. 

• Insulators and semiconductors have filled valence bands separated by band gaps. 

• Electrical conductivity depends on band structure. 
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Applications of the Nearly Free Electron Model 

The NFE model is particularly useful for: 

• Alkali and noble metals 

• Simple metals with weak ionic potentials 

• Understanding Fermi surfaces 

• Explaining electronic band structures in weakly bound solids 

It forms the conceptual foundation for more sophisticated band structure methods. 

  

Limitations of the Model 

Despite its success, the nearly free electron model has limitations: 

• Not suitable for strongly bound or covalent solids 

• Neglects strong electron–electron interactions 

• Cannot accurately predict band widths and gap sizes for complex materials 

Nevertheless, it remains invaluable for building intuition about electronic structure. 

  

Comparison with Other Models 

• Free electron model: Ignores lattice effects completely. 

• Nearly free electron model: Includes weak periodic potential. 

• Tight-binding model: Assumes strong atomic binding. 

The nearly free electron model occupies a central position between these two extremes. 

  

Conclusion 

The nearly free electron model represents a major step forward in understanding the 

electronic structure of crystalline solids. By incorporating the weak periodic potential of the 

lattice into the free electron picture, it successfully explains the formation of energy bands 

and band gaps, which are essential for distinguishing metals, semiconductors, and insulators. 

For M.Sc. solid state physics, the nearly free electron model provides a clear and physically 

transparent framework that links quantum mechanics, crystal symmetry, and electronic 

properties of solids. 

 

11.2 ORIGIN OF THE ENERGY POTENTIAL 

 

In solid state physics, the concept of energy potential plays a central role in determining the 

electronic properties of crystalline solids. When atoms come together to form a solid, 

electrons no longer experience the potential of isolated atoms. Instead, they move under the 

influence of a periodic potential created by the regular arrangement of positively charged 

ion cores in a crystal lattice. 

This periodic energy potential is responsible for the formation of energy bands and 

forbidden energy gaps, which ultimately determine whether a material behaves as a metal, 

semiconductor, or insulator. 

 

Physical Origin of the Energy Potential 

The total potential energy experienced by an electron in a crystal originates from several 

microscopic interactions: 

 

(a) Coulomb Attraction due to Ion Cores 

Each atom in a solid loses one or more valence electrons, becoming a positively charged 

ion. The remaining electrons move in the electrostatic (Coulomb) field of these ion cores. 
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Since the ions are arranged periodically in space, the electrostatic potential also becomes 

periodic. 

Mathematically, this potential satisfies: 

V(r+R)=V(r) 

where R is a lattice translation vector. 

 

(b) Electron–Electron Interaction (Screened Potential) 

Electrons repel each other due to Coulomb repulsion. However, in solids, this interaction is 

screened by the presence of other electrons. As a result, the effective potential experienced 

by a single electron is weaker than the bare Coulomb potential. 

In most band theory models, electron–electron interactions are either neglected or 

incorporated approximately into an effective periodic potential. 

 

(c) Exchange and Correlation Effects 

Due to the Pauli exclusion principle and quantum mechanical exchange effects, electrons 

with parallel spins avoid each other. These effects slightly modify the potential energy 

landscape but are generally included implicitly in advanced theories. 

 

3. Periodic Nature of the Potential 

The defining feature of the energy potential in a crystal is its periodicity, which arises 

directly from the periodic arrangement of atoms. Unlike isolated atoms where the potential is 

spherically symmetric, the potential in a solid varies periodically along each crystallographic 

direction. 

This periodicity allows the potential to be expressed as a Fourier series: 

𝑉(𝑟) = ∑ 𝑉𝐺𝑒𝑖𝐺.𝑟

𝐺

 

where G are reciprocal lattice vectors. 

This form is fundamental to the development of Bloch’s theorem and modern band theory. 

 

Importance in Solid State Physics 

The origin of the energy potential explains several key phenomena: 

• Electrical conductivity of solids 

• Distinction between metals, semiconductors, and insulators 

• Effective mass of electrons 

• Optical and thermal properties 

Hence, understanding the origin of the energy potential is fundamental to electronic band 

theory. 

 

 Conclusion 

The energy potential in solids originates primarily from the Coulomb attraction between 

electrons and periodically arranged ion cores, modified by electron–electron interactions 

and quantum mechanical effects. Its periodic nature reflects the symmetry of the crystal 

lattice and forms the foundation of modern solid state physics. The periodic energy potential 

is the key factor responsible for the formation of energy bands and gaps, making it central to 

the understanding of electronic properties of crystalline materials. 
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11.3 THE BLOCH THEOREM 

 

Suppose V(x) denotes the potential energy of an electron in a linear lattice of lattice constant 

a and that V(x) = V(x+a). i.e., the period of the potential is also a .  The wave functions of the 

electron in this potential are then obtained from Schrodinger wave equation. 

 
𝜕2𝛹0

𝜕𝑥2
 +  

2𝑚

ħ2
 (E-V) Ψ0   = 0        

  It has solutions of the form             

                                                        Ψ(x) = 𝑒−
+𝑖𝑘𝑥𝑢𝑘(𝑥) 

𝑢𝑘(𝑥)  =  𝑢𝑘(𝑥 + 𝑎) 

               The solutions are plane waves Ψ(x) = 𝑒−
+𝑖𝑘𝑥 modulated by a function 𝑢𝑘(𝑥)  which 

depends in general on the wave vector k and have periodicity of potential.  This theorem is 

known as Bloch theorem .  The function 𝑢𝑘(𝑥)  is said to be bloch function. 

 

                                                 V(x) =  0    0 < x < a   ----I region 

                                                  V(x) =  V   -b < x < 0   --- II region  }   -------(1) 

 
𝜕2𝛹0

𝜕𝑥2  +  
2𝑚

ħ2  (E) Ψ0   = 0       ---  I region   ---(2) 

 
𝜕2𝛹0

𝜕𝑥2  +  
2𝑚

ħ2  (E-V) Ψ0   = 0     ---- II region ---(3)  

 

Let us  define real quantities   α  and  β   by  

𝛼2  = 
2𝑚𝐸

ħ2  and  𝛽2 =  
2𝑚(𝑉−𝐸)

ħ2    ( E <V)-----(4) 

                                                          

 The equations are after substitution these constants 
𝜕2𝛹0

𝜕𝑥2  +  𝛼2Ψ0   = 0  --------   (5) 

 
𝜕2𝛹0

𝜕𝑥2  + 𝛽2Ψ0   =0  --------   (6) 

 

   Since the solution must have Bloch form. We may expect that 

 

                                              Ψ(x) = 𝑒−𝑖𝑘𝑥𝑢𝑘(𝑥)    -------(7) 

 

                  Substituting (7)  in  (5) and (6) equations we get 
𝑑2𝑢1

𝑑𝑥2
  + 2 i k

𝑑𝑢1

𝑑𝑥
+  (𝛼2- 𝑘2)𝑢1  =  0   ---------(8)  

 
𝑑2𝑢2

𝑑𝑥2
  + 2 i k

𝑑𝑢2

𝑑𝑥
-  (𝛽2+ 𝑘2)𝑢2  =  0   ---------(9)  

 

      The solutions of these equations may be written as  

 

𝑢1    =   A 𝑒𝑖(𝛼−𝑘)𝑥  +  B  𝑒−𝑖(𝛼+𝑘)𝑥                ……..(10) 

𝑢2=  C𝑒(𝛽−𝑖𝑘)𝑥  + D 𝑒−(𝛽+𝑖𝑘)𝑥 
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Where A,B,C, and D are constants.  These constants will be calculated by applying boundary 

conditions. 

 

(1)               (𝑢1)x=0=  (𝑢2)x=0: 

(2)               (
𝑑𝑢1

𝑑𝑥
)x=0  = (

𝑑𝑢2

𝑑𝑥
)x=0:                                               -------(11) 

(3)                (𝑢1)x=a=  (𝑢2)x=-b: 

(4)                  (
𝑑𝑢1

𝑑𝑥
)x=a  = (

𝑑𝑢2

𝑑𝑥
)x=-b: 

 

  Applying the boundary equations to the equations (10) it gives. 

 

                                                A + B  =C  +  D                                 ----------------(12) 

                      A i(α-k) – B i (α+k)   =    C (β- ik)  -D(β+ ik)              ---------------(13) 

                     A 𝑒i(α−k)a+  B𝑒−i(α+k)a   = C 𝑒−(β− ik)b + D 𝑒(β+ ik)b  -----(14) 

 A i(α-k)𝑒i(α−k)a __ B i (α+k) 𝑒−i(α+k)a=  C (β- ik) 𝑒−(β− ik)b __ D(β+ ik)𝑒(β+ ik)b----(15) 

 

These equations will have no zero solution only if the determinant of the coefficient of 

A,B,C,D vanishes.  This leads to the following equations. 

 

                                                        

(𝛽2−𝛼2)

2𝛼𝛽
sin ℎ𝛽𝑏 sin 𝛼𝑎   + cos ℎ𝛽𝑏 cos 𝛼𝑎    = cos 𝑘(𝑎 + 𝑏) 

V → ∞     b→ 0 sin ℎ𝛽𝑏  = βb, and cos ℎ𝛽𝑏 = 1 

(𝛽2−𝛼2)

2𝛼𝛽
𝛽𝑏 sin 𝛼𝑎    +    cos 𝛼𝑎        = cos 𝑘𝑎 

                Since 𝛽2 =  
2𝑚(𝑉−𝐸)

ħ2
   and 𝛼2  = 

2𝑚𝐸

ħ2
 

𝛽2-- 𝛼2  =  
2𝑚(𝑉−2𝐸)

ħ2
since V>>2E 

𝛽2-- 𝛼2 ≈
2𝑚𝑉

ħ2  

Multiplying numerator and denominator with a we get  

 

(
𝑚𝑉𝑎𝑏

ħ2 )
sin 𝛼𝑎

𝛼𝑎
  + cos 𝛼𝑎  = cos 𝑘𝑎 

 

Let P=
𝑚𝑉𝑎𝑏

ħ2
is called scattering power  

                              P
sin 𝛼𝑎

𝛼𝑎
  + cos 𝛼𝑎  = cos 𝑘𝑎 
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The left side of the equation imposes a limitation on the values that the right side function can 

have, namely, a maximum value of +1 and a minimum value of -1.  Hence only certain range 

of values of α are allowed. 

 

 Conclusions of the results: 

1) Allowed bands are shown in figure .  There are allowed bands and in between there are 

forbidden bands. 

2) As the value of α increases the width of the allowed energy bands also increases and the 

width of the forbidden band decreases. 

3) If the potential barrier strength P is large, the function described by the right hand side 

of the equation crosses +1 and -1 region at a steeper angle.  Thus the allowed bands 

become narrower and forbidden bands become wider. 

 

 

4) In the limit P → ∞ the allowed band reduces to onle single energy level corresponding 

to the discrete energy level of an isolated atom. 

5) In the other extreme case when P→0  

 

cos 𝑘𝑎  =     cos 𝛼𝑎 

                                                 K2=  α2       = 
2𝑚𝐸

ħ2  

 

E = 
ħ2𝑘2

2𝑚
    =

𝑃2

2𝑚
 

This indicates that the particle is completely free and no energy levels exist. 
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                            K = 
𝑛𝜋

𝑎−

+
 

When n =1 First Brilluin zone extends from  -
𝜋

𝑎
  to + 

𝜋

𝑎
  Similarly for n=2 second brilluin 

zone. 

 

11.4 SUMMARY 

 

The nearly free electron (NFE) model describes electrons in a crystalline solid as almost free 

particles moving under the influence of a weak periodic potential due to the lattice ions. It 

is an improvement over the free electron model and provides a realistic picture of electron 

behavior in simple metals. 

 

In this model, the Schrödinger equation includes a weak periodic potential V(r). The 

periodicity of the lattice causes coupling between electron states whose wave vectors differ 

by a reciprocal lattice vector. This interaction becomes significant near Brillouin zone 

boundaries, where free electron energy levels are degenerate. 

 

The energy (periodic) potential in a solid originates primarily from the Coulomb attraction 

between electrons and the positively charged ion cores arranged periodically in a crystal 

lattice. When isolated atoms come together to form a solid, their individual atomic potentials 

overlap, producing a periodic potential field. 

 

Bloch’s theorem is a fundamental result in solid state physics that describes the form of 

electron wavefunctions in a periodic potential. It states that the solutions of the Schrödinger 

equation for an electron in a crystal can be written as: 

                                              Ψ(x) = 𝑒−𝑖𝑘𝑥𝑢𝑘(𝑥) 

where 𝑢𝑘(𝑥) has the same periodicity as the lattice. 

 

11.5 TECHNICAL TERMS 

 

Nearly free electron 

Origin of the energy potential 

The Bloch theorem 
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11.6 SELF ASSESSMENT QUESTIONS 

 

1. Write about the nearly free electron 

2. Explain about the Origin of the energy potential 

3. Briefly explain about the the Bloch theorem 

 

11.7 SUGGESTED READINGS 

 

1. Introduction to Solid State Physics, C. Kittel, 5th Edition. 

2. Solid State Physics, A. J. Dekker. 

3. Solid State Physics, S. O. Pillai, 7th Edition. 

4. Solid State Physics, H. C. Gupta, Vikas Publisher, Noida, 2nd Edition. 

5. Fundamentals of Quantum Mechanics, Statistical Mechanics & Solid State Physics, by S. 

P. Kuila, Books and Allied, Kolkata. 

6. Solid State Physics, M. A. Wahab, Narosa Publishing House. 
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LESSON-12 

KRONIG-PENNY MODEL 

 
Aim: 
 

To study the motion of an electron in a one-dimensional periodic potential and to 

understand the origin of allowed energy bands and forbidden energy gaps in crystalline 

solids using the Kronig–Penney model. 

 

To formulate and analyze the Schrödinger wave equation for an electron moving in a 

periodic lattice potential and to understand how lattice periodicity modifies free-electron 

behavior in crystalline solids. 

 

Objectives: 

 

• To represent the crystal lattice potential by a simplified periodic potential. 

• To apply the time-independent Schrödinger equation to an electron moving in a 

periodic field. 

• To use Bloch’s theorem to obtain permissible solutions of the wavefunction. 

• To derive the dispersion relation between energy and crystal wave vector. 

• To explain the formation of energy bands and forbidden gaps at Brillouin zone 

boundaries. 

• To establish the theoretical basis of electronic band structure in solids. 

• To incorporate the periodic potential of the crystal lattice into the Schrödinger 

equation. 

• To study the consequences of translational symmetry in crystalline solids. 

• To apply Bloch’s theorem to obtain the general form of the electron wavefunction. 

• To understand the concept of Bloch waves and crystal wave vector k. 

• To explain the formation of energy bands and forbidden energy gaps. 

• To distinguish between free electron motion and electron motion in a periodic potential. 

• To provide a theoretical foundation for nearly free electron, Kronig–Penney, and 

tight-binding models. 

 

STRUCTURE 

 

12.1 Kronig-Penny Model 

12.2 Wave equation of electron in a periodic potential 

12.3 Summary 

12.4 Technical Terms 

12.5 Self assessment questions 

12.6 Suggested readings 

 

12.1 KRONIG-PENNY MODEL 

 

         One of the most important problems in solid state physics is understanding how the 

periodic arrangement of atoms in a crystal affects the motion and energy of electrons. 
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While free electrons have a continuous energy spectrum, electrons in a crystal exhibit 

allowed energy bands and forbidden energy gaps. The Kronig–Penney model is a 

simplified but powerful theoretical model that demonstrates how a periodic potential leads 

naturally to the formation of energy bands. 

 

Proposed by R. de L. Kronig and W. G. Penney (1931), this model provides a clear 

mathematical foundation for energy band theory and serves as a bridge between the nearly 

free electron model and more realistic band-structure calculations. 

 

2. Physical Basis of the Kronig–Penney Model 

In a crystalline solid, positively charged ion cores are arranged periodically. An electron 

moving through the crystal experiences an effective periodic potential due to these ions. The 

Kronig–Penney model replaces the complicated real potential by a one-dimensional periodic 

array of rectangular potential wells or barriers, which retains the essential physics while 

remaining mathematically tractable. 

 

The model assumes: 

• Motion of electrons in one dimension 

• A periodic potential with period aaa 

• Non-interacting electrons 

• Perfect crystal without defects 

Despite its simplicity, the model captures the essential feature of band formation. 

 

Form of the Periodic Potential 

The Kronig–Penney potential consists of a repeating sequence of potential wells and barriers: 

• Potential height: V0 

• Barrier width: b 

• Well width: a−b 

• Period of the lattice: a 

Mathematically, the potential satisfies: 

 
 This periodicity allows the use of Bloch’s theorem to solve the Schrödinger equation. 

 

 Schrödinger Equation for the Model 

The time-independent Schrödinger equation for an electron of mass m is: 

 
Since the potential is piecewise constant, the equation is solved separately in the well region 

and the barrier region. 

 

5. Solutions in Different Regions 

(a) Region I: Inside the Potential Well 

Here, V(x) =V0 and the Schrödinger equation becomes: 

where 
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The general solution is: 

 
 

(b) Region II: Inside the Potential Barrier 

Here, V(x)=V0V(x) = V_0V(x)=V0 and for E<V0E < V_0E<V0: 

d2ψdx2−κ2ψ=0\frac{d^2\psi}{dx^2} - \kappa^2\psi = 0dx2d2ψ−κ2ψ=0  

where 

 
The solution is: 

 
  

Boundary Conditions 

To obtain a physically acceptable solution, the wavefunction and its first derivative must be 

continuous at the boundaries between regions. Applying these boundary conditions leads to a 

set of linear equations for the constants A,B,C,A, B, C,A,B,C, and DDD. 

However, the most important constraint arises from Bloch’s theorem. 

Using Bloch’s condition along with boundary conditions, one obtains the Kronig–Penney 

dispersion relation, which relates the electron energy to the crystal wave vector. 

 Kronig–Penney Dispersion Relation 

After applying continuity and Bloch conditions, the final result is: 

 
This transcendental equation determines the allowed and forbidden energy regions. 

 

1. physical interpretation 

 

The Kronig–Penney model provides a clear physical explanation for band formation: 

• At Brillouin zone boundaries, electron waves are Bragg reflected 

• Standing waves are formed 

• Degeneracy of energy levels is lifted 

• Energy gaps appear 

The stronger the periodic potential, the wider the energy gaps. 

 

2. Limiting Cases 

(a) Free Electron Limit 
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If V0→0, the dispersion relation reduces to that of free electrons: 

 
 (b) Strong Potential Limit 

For very large V0, electrons become localized near ions, and the band width decreases, 

approaching the tight-binding limit. 

 Significance of the Kronig–Penney Model 

The model is significant because it: 

• Provides the first rigorous proof of energy band formation 

• Explains the origin of band gaps 

• Validates Bloch’s theorem 

• Forms the foundation of modern electronic band theory 

It is extensively used as a pedagogical model in M.Sc. solid state physics. 

 

1. Limitations of the Model 

Despite its importance, the Kronig–Penney model has limitations: 

• One-dimensional approximation 

• Oversimplified potential 

• Neglects electron–electron interaction 

• Not quantitatively accurate for real solids 

Nevertheless, it remains invaluable for conceptual understanding. 

  

Conclusion 

The Kronig–Penney model is a cornerstone of solid state physics. By introducing a simple 

periodic potential and applying Bloch’s theorem, it clearly demonstrates how energy bands 

and forbidden gaps arise in crystalline solids. Although idealized, the model provides deep 

physical insight and forms the conceptual basis for understanding the electronic structure of 

materials 

 

12.2 WAVE EQUATION OF ELECTRON IN A PERIODIC POTENTIAL 

 

In solid state physics, the behavior of electrons in a crystalline solid is fundamentally 

different from that of free electrons. Unlike free space, a crystal consists of atoms arranged in 

a regular periodic lattice, and an electron moving through such a lattice experiences a 

periodic potential due to the positively charged ion cores. The study of the wave equation 

of an electron in a periodic potential is therefore central to understanding the electronic 

properties of solids, such as electrical conductivity, band structure, optical properties, and 

thermal behavior. 

 

The mathematical description of electron motion in a crystal begins with the Schrödinger 

wave equation modified to include a periodic potential. The solutions of this equation lead to 

the concept of Bloch waves, energy bands, and forbidden energy gaps, which are the 

foundation of modern band theory. 

 

 Periodic Potential in a Crystal 

When isolated atoms combine to form a solid, their individual atomic potentials overlap. The 

resulting potential experienced by an electron reflects the periodicity of the crystal lattice. If 

R\mathbf{R}R denotes a lattice translation vector, the potential energy function satisfies: 



Centre for Distance Education  12.5  Acharya Nagarjuna University  

 

V(r+R)=V(r)  

This periodicity is the defining feature of crystalline solids and distinguishes them from 

amorphous materials. The periodic potential arises mainly from: 

• Coulomb attraction between electrons and ion cores 

• Screened electron–electron interactions 

• Exchange and correlation effects 

For theoretical treatment, these contributions are combined into an effective periodic  

potential. 

Schrödinger Wave Equation in a Periodic Potential 

The time-independent Schrödinger equation for an electron of mass m moving in a periodic 

potential V(r) is given by: 

 
This equation is known as the wave equation of an electron in a periodic potential. Unlike 

the free electron case (V=0), this equation cannot be solved exactly for arbitrary V(r). 

However, the periodicity of the potential allows powerful symmetry-based methods to be 

used. 

  Fourier Expansion of the Periodic Potential 

The periodic potential can be expressed as a Fourier series: 

𝑉(𝑟) =∑𝑉𝐺𝑒
𝑖𝐺.𝑟

𝐺

 

Similarly, the periodic part of the wavefunction can also be expanded: 

𝑢𝑘(𝑟) =∑𝐶𝐺𝑒
𝑖𝐺.𝑟

𝐺

 

Substituting these expansions into the Schrödinger equation transforms the wave equation 

into a set of coupled algebraic equations. 

Free Electron and Weak Potential Limits 

(a) Free Electron Case 

If V(r)=0 the wave equation reduces to: 

  
This corresponds to free electrons with a continuous energy spectrum. 

(b) Weak Periodic Potential 

For weak potentials, the energy deviates slightly from the free electron value except near 

Brillouin zone boundaries, where strong coupling occurs and energy gaps appear. 

 Physical Consequences of the Wave Equation 

The wave equation of an electron in a periodic potential explains several important 

phenomena: 

• Formation of energy bands and gaps 

• Effective mass of electrons 
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• Electrical conductivity of solids 

• Distinction between metals, semiconductors, and insulators 

These properties cannot be explained by free electron theory alone. 

 

 Applications in Solid State Physics 

The wave equation in a periodic potential forms the basis of: 

• Nearly free electron model 

• Kronig–Penney model 

• Tight-binding approximation 

• Semiconductor physics 

• Modern band structure calculations 

It is fundamental to understanding electronic transport and optical processes in solids. 

 

Limitations of the Approach 

Despite its importance, this treatment has limitations: 

• Exact solutions are not possible for real crystals 

• Electron–electron interactions are treated approximately 

• Lattice imperfections are neglected 

Advanced theories such as density functional theory build upon this basic framework. 

 

Conclusion 

The wave equation of an electron in a periodic potential is the cornerstone of solid state 

physics. By incorporating the periodicity of the crystal lattice into the Schrödinger equation 

and applying Bloch’s theorem, it provides a unified framework for understanding the 

electronic structure of solids. The resulting concepts of Bloch waves, energy bands, and 

forbidden gaps are essential for explaining the electrical, thermal, and optical properties of 

materials. 

 

12.3 SUMMARY 

 

The Kronig–Penney model is a simplified one-dimensional model used to explain the origin 

of energy bands and forbidden energy gaps in crystalline solids. In this model, the 

complex periodic potential of a real crystal is approximated by a periodic array of 

rectangular potential wells or barriers. Despite its simplicity, the model captures the 

essential physics of electron motion in a periodic lattice. 

 

An electron moving in this periodic potential obeys the time-independent Schrödinger 

equation. Since the potential is periodic with lattice constant a, Bloch’s theorem is applied 

to the wave function: 

 
Solving the Schrödinger equation in the well and barrier regions and applying boundary and 

Bloch conditions leads to the Kronig–Penney dispersion relation, which relates electron 

energy E to the crystal wave vector k. 

 

In a crystalline solid, an electron experiences a periodic potential arising from the regular 

arrangement of ion cores. The motion of such an electron is described by the Schrödinger 

wave equation: 
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where the potential satisfies: 

V(r+R)=V(r)  

The periodicity of the potential leads to translational symmetry, allowing the application of 

Bloch’s theorem. According to this theorem, the electron wavefunction can be written as: 

 
where uk(r) has the same periodicity as the lattice. 

This form of the wavefunction implies that electron states are characterized by a crystal 

wave vector k, and their energies form continuous bands rather than discrete levels. By 

expanding the periodic potential and wavefunction in Fourier series, the Schrödinger equation 

reduces to a set of coupled equations whose solutions yield the energy band structure. 

 

12.4 TECHNICAL TERMS 

 

Kronig-Penny Model 

Wave equation of electron in a periodic potential 

 

12.5 SELF ASSESSMENT QUESTIONS 

 

1. Briefly explain about the Kronig-Penny Model 

2. Write about the Wave equation of electron in a periodic potential 

 

12.6 SUGGESTED READINGS 

 

1. Introduction to Solid State Physics, C. Kittel, 5th Edition. 

2. Solid State Physics, A. J. Dekker. 

3. Solid State Physics, S. O. Pillai, 7th Edition. 

4. Solid State Physics, H. C. Gupta, Vikas Publisher, Noida, 2nd Edition. 

5. Fundamentals of Quantum Mechanics, Statistical Mechanics & Solid State Physics, by S. 

P. Kuila, Books and Allied, Kolkata. 

6. Solid State Physics, M. A. Wahab, Narosa Publishing House. 
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LESSON-13 

EFFECTIVE MASS OF ELECTRON 
 

Aim: 

 

To introduce the concept of effective mass and to understand how the motion of an electron 

in a crystal lattice differs from that of a free electron. 

To classify solids into metals, insulators, and semiconductors on the basis of energy band 

theory and to understand their electrical behavior. 

 

Objectives: 

• To study the influence of the periodic lattice potential on electron dynamics. 

• To define effective mass in terms of the curvature of the energy band. 

• To understand the significance of positive and negative effective mass. 

• To explain the concept of holes in the valence band. 

• To apply the effective mass concept to explain electrical conduction and transport 

phenomena in solids. 

• To treat electrons in crystals as quasi-particles for simplified analysis. 

• To study the energy band structure of solids. 

• To analyze the role of the valence band, conduction band, and forbidden energy gap. 

• To understand the significance of the Fermi level in determining electrical properties. 

• To distinguish between metals, insulators, and semiconductors based on band gap and 

band occupancy. 

• To explain the temperature dependence of electrical conductivity. 

• To understand the importance of semiconductors in electronic devices. 

 

STRUCTURE 

 

13.1 Approximation solution near a zone boundary 

13.2 Effective mass of electron 

13.3 The distinction between metals, insulators and semiconductors 

13.4 Summary 

13.5 Technical terms 

13.6 Self assessment questions 

13.7 Suggested readings 

 

13.1 APPROXIMATION SOLUTION NEAR ZONE BOUNDARY 

 

In solid state physics, the behavior of electrons in a crystal is governed by the Schrödinger 

equation in the presence of a periodic lattice potential. Exact solutions of this equation are 

generally not possible for real crystals. However, important physical insight can be obtained 

by studying approximate solutions in specific regions of reciprocal space. One such crucial 

region is the Brillouin zone boundary, where the effects of the periodic potential are most 

pronounced. 
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Near the zone boundary, free-electron energy levels become degenerate, and even a weak 

periodic potential causes a significant modification of the electron energy spectrum. The 

approximate solution near the zone boundary explains the opening of energy gaps, which is 

a central result of band theory. This treatment forms the theoretical basis of the nearly free 

electron model. 

 

 Electron in a Periodic Potential 

The motion of an electron in a crystal is described by the time-independent Schrödinger 

equation: 

 
where V(r) is the periodic potential satisfying: 

V(r+R)=V(r)  

Using Bloch’s theorem, the electron wavefunction can be written as: 

 
Free Electron Approximation and Its Breakdown 

If the periodic potential is neglected, the electron behaves as a free particle with energy: 

  
In this free-electron approximation, the energy spectrum is continuous and parabolic. 

However, this approximation fails near certain values of k, specifically at the Brillouin zone 

boundaries, where the Bragg condition is satisfied: 

𝑘 =
𝐺

2
  

At these points, two or more free-electron states become degenerate, and the periodic 

potential can no longer be treated as a small perturbation. 

 

 Physical Meaning of the Zone Boundary 

The Brillouin zone boundary corresponds to the condition where the electron wavelength is 

comparable to the lattice spacing. Under this condition, the electron wave undergoes Bragg 

reflection from the crystal planes. 

As a result: 

• Electron waves traveling in opposite directions interfere strongly 

• Standing waves are formed 

• Degenerate energy levels split 

This splitting gives rise to forbidden energy gaps, which are absent in the free-electron 

model. 

 

Approximation Near the Zone Boundary 

To obtain an approximate solution near the zone boundary, we consider a weak periodic 

potential and focus only on the most important Fourier component VG. Other components 

are neglected since their contribution is small. 

Let the electron wave vector be close to the zone boundary: 
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 Two-Wave Approximation 

In the two-wave approximation, the Bloch wavefunction is written as a linear combination 

of two plane waves: 

 
Substituting this form into the Schrödinger equation and using the Fourier expansion of the 

potential, one obtains a pair of coupled linear equations for the coefficients C1 and C2. 

 

Coupled Equations and Energy Eigenvalues 

The coupled equations can be written as: 

 

 
For non-trivial solutions, the determinant of the coefficients must vanish: 

 
Solving this determinant yields the approximate energy eigenvalues. 

 

 Energy Splitting at the Zone Boundary 

At the exact zone boundary: 

𝑘 =
𝐺

2
  

we have: 

 
The energy eigenvalues then become: 

 
Thus, the degeneracy of the free-electron states is lifted, and an energy gap of magnitude: 

 
appears at the Brillouin zone boundary. 

 Dispersion Relation Near the Zone Boundary 

Away from the exact zone boundary, the energy eigenvalues are given approximately by: 
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This expression shows how the free-electron parabolic energy curve is modified near the 

zone boundary, resulting in two branches separated by an energy gap. 

 

Effective Mass Near Band Edges 

Near the edges of the energy bands, the curvature of the E−k relation changes. This leads to 

the concept of effective mass: 

  
The effective mass may differ significantly from the free-electron mass and can even become 

negative near the top of a band, which is essential for understanding hole conduction. 

 

 Significance of the Approximate Solution 

The approximate solution near the zone boundary explains several fundamental features of 

solids: 

• Formation of forbidden energy gaps 

• Origin of energy bands 

• Difference between metals, semiconductors, and insulators 

• Role of weak periodic potential in modifying free-electron motion 

This approach forms the core of the nearly free electron model. 

 

Limitations of the Approximation 

Although highly instructive, the approximation has limitations: 

• Valid only for weak periodic potentials 

• Considers only a small number of plane waves 

• Not suitable for strongly bound electrons 

Nevertheless, it provides deep physical insight into band structure formation. 

Together, these models give a comprehensive understanding of electron behavior in solids. 

 

Conclusion 

The approximate solution of the electron wave equation near the Brillouin zone boundary is a 

cornerstone of solid state physics. By considering the interaction between nearly degenerate 

free-electron states and a weak periodic potential, it clearly explains the splitting of energy 

levels and the formation of forbidden energy gaps. This treatment provides a powerful and 

physically transparent explanation of band structure and underpins the modern theory of 

electronic properties of crystalline solids. 

 

13.2 EFFECTIVE MASS OF ELECTRON 

 

In free space, an electron behaves as a particle with a constant mass mmm, and its motion 

under an external force is well described by Newton’s laws and quantum mechanics. 

However, in a crystalline solid, electrons do not move freely; instead, they move through a 

periodic potential created by the regular arrangement of atoms in the lattice. As a result, 

their response to external forces such as electric and magnetic fields differs significantly from 

that of free electrons. 

 

To account for this modified behavior, the concept of effective mass is introduced. The 

effective mass allows electrons in a crystal to be treated as if they were free particles, but 

with a modified mass that incorporates the influence of the lattice potential. This concept is 
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central to understanding electrical conduction, carrier dynamics, optical properties, and 

semiconductor physics. 

 

 Origin of the Concept of Effective Mass 

The need for effective mass arises from the band structure of solids. When electrons move 

in a periodic potential, their allowed energies form energy bands rather than discrete levels. 

The relation between energy E and crystal wave vector k, known as the dispersion relation, 

deviates from the simple free-electron parabolic form: 

 
In a crystal, the dispersion relation is generally more complex. However, near the extrema 

(minima or maxima) of energy bands, the E−k relation can often be approximated by a 

parabola. In this region, electron motion can still be described in a free-particle-like manner 

by introducing an effective mass. 

 

 Semi classical Motion of Electrons in a Crystal 

The effective mass concept emerges naturally from the semi classical theory of electro 

dynamics. In this approach: 

• Electrons are described by wave packets of Bloch waves 

• Their motion in real space follows classical equations of motion 

• Their energy and momentum are governed by quantum mechanics 

The velocity of an electron in a band is given by: 

  
When an external force F acts on the electron, the crystal momentum changes according to: 

 
These equations form the basis for defining the effective mass. 

 

 Derivation of Effective Mass 

Differentiating the velocity with respect to time: 

 
Using the chain rule and the force equation: 

 
In one dimension, this simplifies to: 

 
Comparing this with Newton’s second law F=m∗a, the effective mass m∗ is defined as: 
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This expression shows that the effective mass depends on the curvature of the energy band. 

 

 Physical Interpretation of Effective Mass 

The effective mass reflects how strongly the periodic lattice potential modifies electron 

motion: 

• Large curvature of the E−k curve → small effective mass 

• Small curvature → large effective mass 

Thus, electrons near the bottom of a conduction band, where the curvature is large, behave as 

light particles and respond easily to external fields. Conversely, electrons in flatter bands 

have large effective masses and move more sluggishly. 

 

Effective Mass in Free Electron Case 

For a free electron: 

 
Differentiating twice with respect to k: 

 
Substituting into the effective mass expression: 

m∗=m  

Thus, the effective mass reduces to the actual electron mass in the absence of a periodic 

potential. 

 

 Effective Mass in Nearly Free Electron Model 

In the nearly free electron model, the periodic potential slightly perturbs the free-electron 

dispersion. Near Brillouin zone boundaries, the curvature of the energy bands changes 

significantly due to band splitting. 

As a result: 

• Effective mass near band edges can differ greatly from m 

• Effective mass may increase or decrease depending on the strength of the periodic 

potential 

This explains why electrons in simple metals and semiconductors exhibit different transport 

properties. 

  

Role of Effective Mass in Electrical Conductivity 

The electrical conductivity σ of a material is given by: 

 
where: 

• n is the carrier concentration 
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• e is the electronic charge 

• τ is the relaxation time 

A smaller effective mass leads to higher conductivity, highlighting the importance of band 

curvature in determining material properties. 

 

Effective Mass and Optical Properties 

Effective mass also influences optical phenomena such as: 

• Absorption edge in semiconductors 

• Cyclotron resonance frequency 

• Plasma frequency 

The cyclotron frequency is given by: 

 
Thus, experimental measurement of ω provides a direct method for determining effective 

mass. 

 

Experimental Determination of Effective Mass 

Effective mass can be measured using: 

• Cyclotron resonance 

• Shubnikov–de Haas oscillations 

• Optical absorption experiments 

These methods confirm that effective mass varies widely between materials and even 

between different bands in the same material. 

 

 Limitations of the Effective Mass Approximation 

Although extremely useful, the effective mass approximation has limitations: 

• Valid mainly near band extrema 

• Fails for strongly non-parabolic bands 

• Does not include many-body interactions explicitly 

Advanced theories extend this concept using energy-dependent effective mass. 

 

Conclusion 

The effective mass of an electron is a fundamental concept in solid state physics that 

encapsulates the influence of the crystal lattice on electron motion. By relating electron 

dynamics to the curvature of the energy band structure, the effective mass provides a 

powerful and intuitive way to understand electrical, optical, and transport properties of solids. 

It allows complex quantum mechanical behavior to be treated using classical equations of 

motion with modified parameters. 

 

13.3 THE DISTINCTION BETWEEN METALS, INSULATORS AND 

SEMICONDUCTORS 

 

One of the central problems in solid state physics is to understand why different solids exhibit 

vastly different electrical conductivities. Some materials such as copper and silver conduct 

electricity extremely well, while others like glass and rubber are excellent insulators. 

Between these two extremes lie semiconductors, whose conductivity can be controlled by 

temperature, impurities, and external fields. 
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The fundamental distinction between metals, insulators, and semiconductors arises from 

the quantum mechanical energy band structure of electrons in a crystalline solid. 

According to band theory, electrons in a solid can occupy only certain allowed energy ranges 

called energy bands, separated by forbidden regions known as band gaps. The way these 

bands are filled with electrons determines the electrical behavior of the material. 

 

When isolated atoms come together to form a crystal, the discrete atomic energy levels 

broaden into bands due to the interaction between neighboring atoms. The most important 

bands for electrical conduction are: 

• Valence band (VB): The highest occupied energy band at absolute zero 

• Conduction band (CB): The lowest unoccupied or partially occupied band above the 

valence band 

• Forbidden energy gap (band gap, Eg): The energy separation between VB and CB 

where no allowed electron states exist 

Electrical conduction depends on: 

1. The availability of free charge carriers 

2. The ease with which electrons can be excited to higher energy states 

 

Metals 

 Band Structure of Metals 

In metals, the valence band is either partially filled or overlaps with the conduction band. 

As a result, electrons can move freely under the influence of even a small applied electric 

field. 

 

 
 

 Key Features 

• No forbidden energy gap at the Fermi level 

• Large number of free electrons available for conduction 

• High electrical conductivity even at low temperatures 

In many metals, such as sodium and copper, the conduction band overlaps with the valence 

band. In others, the highest occupied band is only partially filled, allowing electrons to gain 

energy and move to nearby empty states without crossing a band gap. 

 

 Temperature Dependence 

The conductivity of metals decreases with increasing temperature due to enhanced 

electron–phonon scattering, even though the number of charge carriers remains nearly 

constant. 
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 EXAMPLES 

 

Copper, silver, gold, aluminum, iron 

Insulators 

 Band Structure of Insulators 

In insulators, the valence band is completely filled and the conduction band is completely 

empty, separated by a large energy gap. 

 

 
 

 Key Features 

• Large band gap (Eg>3 eV) 

• Negligible number of free charge carriers at room temperature 

• Extremely low electrical conductivity 

Because the band gap is very large, thermal energy at room temperature is insufficient to 

excite electrons from the valence band to the conduction band. 

 

 Temperature Dependence 

Even at high temperatures, very few electrons can cross the large band gap. Hence, insulators 

remain poor conductors under normal conditions. 

 Examples 

Diamond, glass, mica, rubber, ceramics 

 Semiconductors 

 Band Structure of Semiconductors 

Semiconductors have a moderate energy gap between the valence and conduction bands. 

• Small band gap (Eg≈0.1–3 eV) 

• At absolute zero: valence band full, conduction band empty 

• At room temperature: some electrons are thermally excited to the conduction band 

The electrons excited into the conduction band contribute to electrical conduction, while the 

vacancies left behind in the valence band behave as holes, which also act as charge carriers. 

 Intrinsic Semiconductors 

In a pure semiconductor: 

• Number of electrons = number of holes 

• Conductivity increases rapidly with temperature 

 Extrinsic Semiconductors 

By adding small amounts of impurities (doping): 

• n-type: extra electrons 
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• p-type: extra holes 

This controllable conductivity is the key reason semiconductors are used in electronic 

devices. 

 

 Examples 

Silicon, germanium, gallium arsenide 

 Fermi Level and Its Role 

The Fermi level is the energy level at which the probability of electron occupation is 50% at 

thermal equilibrium. 

• Metals: Fermi level lies inside a band 

• Insulators: Fermi level lies in the middle of a large band gap 

• Semiconductors: Fermi level lies within a small band gap 

The position of the Fermi level plays a decisive role in determining the electrical properties 

of solids. 

 

 Electrical Conductivity Comparison 

Property Metals Semiconductors Insulators 

Band gap Zero / overlap Small Large 

Charge carriers Many electrons Electrons + holes Almost none 

Conductivity Very high Moderate, controllable Very low 

Temperature effect Conductivity decreases Conductivity increases Slight increase 

Physical Explanation Using Band Theory 

The distinction among metals, semiconductors, and insulators can be fully explained using 

quantum mechanics and band theory, without invoking classical free-electron ideas alone. 

The presence or absence of available energy states near the Fermi level determines whether 

electrons can respond to an external electric field. 

 Importance in Solid State Physics 

Understanding this distinction is fundamental for: 

• Electronic materials design 

• Semiconductor device fabrication 

• Solid-state electronics 

• Modern technologies such as transistors, solar cells, LEDs, and integrated circuits 

 

Exam-Oriented Summary 

• Metals: No band gap → high conductivity 

• Insulators: Large band gap → negligible conductivity 

• Semiconductors: Small band gap → temperature and doping dependent conductivity 

• Electrical properties are governed by band structure and Fermi level position 

 

Conclusion 

The distinction between metals, insulators, and semiconductors is one of the most important 

outcomes of band theory in solid state physics. By examining the arrangement and occupancy 

of energy bands, we gain a unified and powerful explanation for the electrical behavior of 

solids. This classification not only enhances our theoretical understanding but also forms the 

foundation of modern electronic and semiconductor technology. 

 

 

13.4 SUMMARY 
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The approximation solution near a zone boundary explains the formation of energy band 

gaps due to Bragg reflection in a periodic lattice. The concept of effective mass describes 

how electrons respond to external forces within a crystal. Together with band theory, these 

ideas provide a complete explanation for the distinction between metals, semiconductors, 

and insulators, forming the foundation of modern solid state physics. 

 

13.5 TECHNICAL TERMS 

 

Approximation solution near a zone boundary 

 Effective mass of electron 

 metals, insulators and semiconductors 

 

13.6 SELF ASSESSMENT QUESTIONS 

 

1. Write about the Approximation solution near a zone boundary. 

2. Explain about the Effective mass of electron. 

3. Briefly explain about the distinguish between the metals, insulators and semiconductors 

 

13.7 SUGGESTED READINGS 

 

1. Introduction to Solid State Physics, C. Kittel, 5th Edition. 

2. Solid State Physics, A. J. Dekker. 

3. Solid State Physics, S. O. Pillai, 7th Edition. 

4. Solid State Physics, H. C. Gupta, Vikas Publisher, Noida, 2nd Edition. 

5. Fundamentals of Quantum Mechanics, Statistical Mechanics & Solid State Physics, by S. 

P. Kuila, Books and Allied, Kolkata. 

6. Solid State Physics, M. A. Wahab, Narosa Publishing House. 
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