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FOREWORD 
Since its establishment in 1976, Acharya Nagarjuna University has been forging 

ahead in the path of progress and dynamism, offering a variety of courses and research 

contributions. I am extremely happy that by gaining ‘A+’ grade from the NAAC in the 

year 2024, Acharya Nagarjuna University is offering educational opportunities at the UG, 

PG levels apart from research degrees to students from over 221 affiliated colleges spread 

over the two districts of Guntur and Prakasam. 

The University has also started the Centre for Distance Education in 2003-04 with 

the aim of taking higher education to the doorstep of all the sectors of the society. The 

centre will be a great help to those who cannot join in colleges, those who cannot afford 

the exorbitant fees as regular students, and even to housewives desirous of pursuing 

higher studies. Acharya Nagarjuna University has started offering B.Sc., B.A., B.B.A., 

and B.Com courses at the Degree level and M.A., M.Com., M.Sc., M.B.A., and L.L.M., 

courses at the PG level from the academic year 2003-2004 onwards. 

To facilitate easier understanding by students studying through the distance mode, 

these self-instruction materials have been prepared by eminent and experienced teachers. 

The lessons have been drafted with great care and expertise in the stipulated time by these 

teachers. Constructive ideas and scholarly suggestions are welcome from students and 

teachers involved respectively. Such ideas will be incorporated for the greater efficacy of 

this distance mode of education. For clarification of doubts and feedback, weekly classes 

and contact classes will be arranged at the UG and PG levels respectively. 

It is my aim that students getting higher education through the Centre for 

Distance Education should improve their qualification, have better employment 

opportunities and in turn be part of country’s progress. It is my fond desire that in the 

years to come, the Centre for Distance Education will go from strength to strength in the 

form of new courses and by catering to larger number of people. My congratulations to 

all the Directors, Academic Coordinators, Editors and Lesson-writers of the Centre who 

have helped in these endeavors. 

Prof. K. Gangadhara Rao 
M.Tech., Ph.D., 

Vice-Chancellor I/c                 
Acharya Nagarjuna University 

 



M.Sc. – MATHEMATICS SYLLABUS 
 

SEMESTER – II 
 

202MA24 :: ANALYSIS – II 

 
UNIT-I:   Sequences and series of functions: Discussion of main problem, Uniform   

                 convergence, Uniform convergence and Continuity, Uniform convergence and   

                 Integration. (7.1 to 7.16 of Chapter 7 of the Text Book) 

 

UNIT-II:   Uniform Convergence and Differentiation, Equicontinuous families of functions,  

                   Stone-Weierstrass theorem. (7.17 to 7.27 of  Chapter 7 of the Text Book) 

 

UNIT-III:  Algebra of functions, Power series, Exponential and logarithmic functions,  

                   Trigonometric functions. (7.28 to 7.33 of Chapter 7 and 8.1 to 8.7 of Chapter 8 of  

                    the Text Book) 

 

UNIT-IV:  Linear transformations, Differentiation, Contraction principle, Inverse function  

                   theorem. (9.1 to 9.25 of Chapter 9 of the Text Book)  

 

UNIT-V: Implicit function theorem, Determinants, Derivatives of higher order,   

                 Differentiation of integrals.  

                 (9.26 to 9.29 and 9.33 to 9.43 of Chapter 9 of the Text Book) 

 

TEXT BOOK:  Principles of Mathematics Analysis by Walter Rudin, 3rd Edition. 

 

REFEREBCE BOOK: 

1. Mathematical Analysis by Tom M. Apostal, Narosa Publishing House, 2nd 

Edition,1985. 

2. Mathematical Analysis by S.C. Malik and Savita Arora, New Age International (P) 

Limited, 2nd Edition, 1997. 

 
 
 
 
 
 



CODE: 202MA24 
M.Sc DEGREE EXAMINATION 

Second Semester 
Mathematics:: Paper II - ANALYSIS-1I 

MODEL QUESTION PAPER 

Time : Three hours              Maximum : 70 marks 
 

Answer ONE question from each Unit.                                                              (5 x 14 = 70) 
 
 

UNIT-I 
 

1. State and prove Weierstross M-Test for uniform convergence theorem. 

or 

2. State and prove uniform convergence and integration theorem. 

 

UNIT-II 

 

3. Suppose {fn} is a sequence of functions, differentiable on [a, b] and such that {fn(x0)}   

       converges for some point x0 on [a, b]. If  nf  converges uniformly on [a, b], then {fn}   

       converges uniformly on [a, b], to a function f , and ( ) lim ( )n
n

f x f x


    (a ≤ x ≤ b). 

or 

4. (a) If  nf  is a point wise bounded sequence of complex functions on a countable set E,   

            then  nf has a sub sequence  nkf such that ( )nkf x converges for every x E  . 

       (b) If  K is compact metric space. If 𝑓௡ ∈ ℂ(𝐾) for n = 1, 2, 3,…. and if  nf converges   

            uniformly on K, then nf is Equicontinuous on K. 

 

UNIT-III 

 

5. Let 𝒜 be an algebra of real continuous functions on a compact set 𝐾. If 𝒜 seperates   

       points on 𝐾 and if 𝒜 vanishes at no point of 𝐾, then the uniform closure ℬ of 𝒜 consists  

       of all real continuous functions on 𝐾. 

or 

6. Suppose ∑ 𝑐௡ converges. Put 𝑓(𝑥) = ∑ 𝑐௡𝑥௡         (−1 < 𝑥 < 1).ஶ
௡ୀ଴   

                    Then prove that  lim
௫→ଵ

𝑓(𝑥) = ∑ 𝑐௡.ஶ
௡ୀ଴  



UNIT-IV 

 

7. (a) Let 𝑟 be a positive integer. If a vector space 𝑋 is spanned by a set of 𝑟 vectors,   

            then dim𝑋 ≤ 𝑟. 

                    (b) 𝐴 linear operator 𝐴 on a finite-dimensional vector space 𝑋 is one-to-one if and only if     

                         the range of 𝐴 is all of 𝑋. 

or 

8. Suppose 𝑓‾ maps a convex open set 𝐸 ⊂ 𝑅௡ into 𝑅௠, 𝑓‾ is differentiable in 𝐸, and there   

        is a real number 𝑀 such that ฮ𝑓‾ᇱ(𝑥)ฮ ≤ 𝑀 for every 𝑥‾ ∈ 𝐸. Then ห𝑓‾൫𝑏‾൯ − 𝑓‾(𝑎‾)ห ≤

          𝑀ห𝑏‾ − 𝑎‾ห for all 𝑎‾ ∈ 𝐸, 𝑏‾ ∈ 𝐸. 

 

UNIT-V 

 

9. a) Prove that a linear operator 𝐴 on 𝑅௡ is invertible if and only if det [𝐴] ≠ 0. 

       b) Suppose 𝑓 is defined in an open set 𝐸 ⊂ 𝑅ଶ. Suppose that 𝐷ଵ𝑓, 𝐷ଶଵ𝑓 and 𝐷ଶ𝑓 exist     

at every point of 𝐸, and 𝐷ଶଵ𝑓 is continuous at some point (𝑎, 𝑏) ∈ 𝐸. 

or 

10. If [𝐴] and [𝐵] are 𝑛 by 𝑛 matrices, then prove that det([𝐵][𝐴]) = det[𝐵] det [𝐴]. 
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LESSON - 1 

SEQUENCES AND SERIES OF FUNCTIONS: 
DISCUSSION AND MAIN PROBLEM AND 

UNIFORM CONVERGENCE 
 

OBJECTIVE: 

After studying the lesson you should able to understand the concept of point wise convergence 

and uniform convergence of functions. 

STRUCTURE:  

1.1 Introduction 

1.2 Definition of point wise convergence  

1.3 Lemma and examples 

1.4 Uniform convergence and related theorems   

1.5 Summary  

1.6 Technical terms  

1.7 Self -Assessment Questions  

1.8 Suggested readings  

1.1 INTRODUCTION: 

In this lesson, we define and study the convergence of sequences and series of functions. 

There are many different ways to define the convergence of a sequence of functions, and 

different definitions lead to in equivalent types of convergence. We consider here two basic 

types: point wise and uniform convergence.  

1.2  DEFINITION: 

Let 𝐸 be a set, {𝑓௡}, 𝑛 = 1,2,3. . . ∞ sequence of functions defined on E and let 𝑓 be a function 

defined on E. 

i. We say that the sequence {𝑓௡} converges to f pointwise or converges pointwise to 𝑓 on 

𝐸 if for every 𝑥 ∈ 𝐸, lim
௡→ஶ

𝑓௡(𝑥) = 𝑓(𝑥) (if for every positive number 𝜀 and 𝑥 ∈ 𝐸, there 

corresponds a positive integer 𝑁 (depending on 𝜀 and 𝑥 as well) such that 
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|𝑓௡(𝑥) − 𝑓(𝑥)| <∈ whenever 𝑛 ≥ 𝑁). In this case we say that 𝑓 is the pointwise limit 

of  {𝑓௡} on 𝐸, and we write lim
௡→ஶ

𝑓௡ = 𝑓(pointwise) for 𝑛 = 1,2,3. .. 

ii. 𝐹𝑜𝑟 𝑛 = 1,2,3. . . ∞, let 𝑆௡(𝑥) = 𝑓ଵ(𝑥) + 𝑓ଶ(𝑥) + 𝑓ଷ(𝑥)+. . . +𝑓௡(𝑥) 𝑓𝑜𝑟 𝑥 ∈ 𝐸. If the 

sequence {𝑆௡} of functions (called the partial sums of ∑ 𝑓௡
ஶ
௡ୀଵ ) converges to 𝑓 pointwise 

on 𝐸, we say that the series ∑ 𝑓௡
ஶ
௡ୀଵ (𝑥) converges to 𝑓(𝑥) for every 𝑥 ∈ 𝐸, and we 

write it as  ∑ 𝑓௡
ஶ
௡ୀଵ = 𝑓 (pointwise). 

iii. We say that the sequence {𝑓௡} converges uniformly to 𝑓 on 𝐸 is every positive number 

∈ there corresponds a positive integer N such that |𝑓௡(𝑥) − 𝑓(𝑥)| < 𝜀 when ever 𝑛 ≥

𝑁 and for all 𝑥 ∈ 𝐸. In this case we say that f is the uniform limit of {𝑓௡} and write it as 

lim
௡→ஶ

𝑓௡(𝑥) = 𝑓(𝑥) (𝑥 ∈ 𝐸) or lim
௡→ஶ

𝑓௡ = 𝑓 uniformly on 𝐸. 

iv. We say that the series ∑ 𝑓௡
ஶ
௡ୀଵ  converges uniformly to 𝑓 on 𝐸  if the sequence {𝑆௡} of 

partial seems converges uniformly on 𝐸 to 𝑓 i.e., for every positive number 𝜀 there 

corresponds a positive integer N such that  |𝑆௡(𝑥) − 𝑓(𝑥)| <∈ whenever 𝑛 ≥ 𝑁 and 

for all 𝑥 ∈ 𝐸. 

 

1.3  LEMMA:  

 

 If {𝑓௡} converges uniformly to f on E, then  {𝑓௡} converges pointwise to f on E. 

Proof: Let 𝑥଴  ∈ 𝐸 take 𝜀 > 0 

Claim: 𝑓௡(𝑥଴) → 𝑓(𝑥଴) as 𝑛 → ∞  

Since 𝑓௡ → 𝑓 uniformly on E, ∃ a positive integer N such that |𝑓௡(𝑥) − 𝑓(𝑥)| < 𝜀  

whenever 𝑛 ≥ 𝑁 for all 𝑥 ∈ 𝐸  

In particular, |𝑓௡(𝑥଴) → 𝑓(𝑥଴)| < 𝜀  whenever 𝑛 ≥ 𝑁  

This shows that lim
୬→ஶ

𝑓௡(𝑥଴) = 𝑓(𝑥଴)  

That is, {𝑓௡} converges pointwise to f on E. 

Remark: The converse of the above Lemma is not true. 

Justification: For 𝑛 = 1,2,3. . . ∞ 

Define 𝑓௡: (0,1) → ℝ by 𝑓௡(𝑥) =
௡

௡௫ାଵ
 for all x in (0,1).  
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Then ∀ 𝑥 ∈ (0,1) lim
௡→ஶ

𝑓௡(𝑥) = lim
௡→ஶ

௡

௡௫ାଵ
= lim

௡→ஶ

௡

௡ቀ௫ା
భ

೙
ቁ

= lim
௡→ஶ

ଵ

௫ା
భ

೙

=
ଵ

௫
= 𝑓(𝑥)(say) 

Now we show that this convergence is not uniform. 

Consider |𝑓௡(𝑥) − 𝑓(𝑥)| = ቚ
௡

௡௫ାଵ
−

ଵ

௫
ቚ = ቚ

௡௫ି(௡௫ାଵ)

௫(௡௫ାଵ)
ቚ =

ଵ

(௡௫ାଵ)௫
  

Take 𝜀 > 0  

Claim: ∃ a positive integer N such that |𝑓௡(𝑥) − 𝑓(𝑥)| <∈ ∀  𝑛 ≥ 𝑁  

1 < (𝑛𝑥 + 1)𝑥 for all 𝑛 ≥ 𝑁 for all 𝑥 

⇔ 1 < 𝑛𝑥ଶ + 𝑥 for all 𝑛 ≥ 𝑁 for all 𝑥 

⇔ 1 − 𝑥 ≤ 𝑛𝑥ଶ for all 𝑛 ≥ 𝑁 for all 𝑥 

⇔
ଵି௫

௫మ
≤ 𝑛 for all 𝑛 ≥ 𝑁 for all 𝑥 

⇔
ଵ

௫మ
−

ଵ

௫
≤ 𝑛 for all 𝑛 ≥ 𝑁 for all 𝑥 

Let 𝑥 =
ଵ

ଶே
 

Therefore 
ଵ

௫మ
−

ଵ

௫
= 4𝑁ଶ − 2𝑁 = 2𝑁(2𝑁 − 1) > 𝑁 

Let N be a smallest positive integer such that N >
ଵିఌ௫

ఌ௫మ
+ 1 

Then N is a positive integer and |𝑓௡(𝑥) − 𝑓(𝑥)|  =
ଵ

(௡௫ାଵ)௫
< 𝜀 ∀  𝑛 ≥ 𝑁  ∀ 𝑥 ∈ 𝐸 

Thus the convergence of  {𝑓௡} is pointwise convergence, but not uniform.  

1.3.1 Example: The following is an example concerns a “double sequence”: 

     For m=1,2,3….; n=1,2,3… , let 𝑠௠,௡ =
௠

௠ା௡
 

Now for every fixed n, 𝑠௠,௡ =
௠

௠ା௡
=

௠

௠(ଵା(
೙

೘
))

=
ଵ

(ଵା
೙

೘
)
  

So, for every fixed n, lim
௠→ஶ

𝑠௠,௡ = lim
௠→ஶ

ଵ

ଵା(
೙

೘
)

= 1  

∴ lim
௡→ஶ

 lim
௠→ஶ

𝑠௠,௡ = lim
௡→ஶ

 (1) = 1  

On the other hand for every fixed m, lim
௡→ஶ

𝑠௠,௡ = lim
௡→ஶ

 
௠

௠ା௡
= 0  
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∴ lim
௠→ஶ

lim
௡→ஶ

𝑠௠,௡ = lim
௠→ஶ

(0) = 0 

Hence, lim
௡→ஶ

 lim
௠→ஶ

𝑠௠,௡ ≠ lim
௠→ஶ

lim
௡→ஶ

𝑠௠,௡ . 

1.3.2 Example: 𝑚 = 1,2,3. .. let 𝑓௠(𝑥)  = lim
௡→ஶ

 (cos(𝑚! 𝜋𝑥))ଶ௡ 

If 𝑚! 𝑥 = 𝑘, an integer, then 𝑓௠(𝑥) = lim
௡→ஶ

(cos(𝑘𝑥))ଶ௡ = lim
௡→ஶ

 (±1)ଶ௡ = lim
௡→ஶ

(1) = 1   

If 𝑚! 𝑥 is not an integer, then 𝑓௠(𝑥) = lim
௡→ஶ

 ൫cos(𝑚! 𝜋𝑥)൯
ଶ௡

= 0  

Now let 𝑓(𝑥) = lim
௠→ஶ

𝑓௠(𝑥)                             ∵ 0 < cos(𝑚! 𝜋𝑥) < 1 𝑖𝑓 𝑚! 𝑥 is not a limit 

If x is irrational then 𝑓௠(𝑥) = 0 ∀ 𝑚 and hence  

𝑓(𝑥) = lim
௠→ஶ

𝑓௠(𝑥) = lim
௠→ஶ

(0) = 0 

Suppose x is rotational then 𝑥 =
௣

௤
 where p, q are integer and q ≠ 0 

For every m, 𝑚! 𝑥 = 𝑚!
௣

௤
 is an integer if 𝑚 ≥ 𝑞 so that  

𝑓௠(𝑥) = lim
௡→ஶ

൫cos(𝑚! 𝜋𝑥)൯
ଶ௡

= 0 = lim
௡→ஶ

(1) = 1 and hence  

𝑓(𝑥) = lim
௠→ஶ

𝑓௠(𝑥) = lim
௠→ஶ

(1) = 1 . 

𝑓(𝑥) = lim
௠→ஶ

lim
௡→ஶ

 ൫cos(𝑚! 𝜋𝑥)൯
ଶ௡

= {ଵ,௜௙ ௫ ௜௦ ௥௔௧௜௢௡௔௟
଴,௜௙ ௫ ௜௦ ௜௥௥௔௧௜௢௡௔௟  

We know that if 𝑓(𝑥) = 0 for all irrational 𝑥, 𝑓(𝑥) = 1 for all rational 𝑥, then 𝑓 ∉ ℝ on 

[𝑎, 𝑏] for any 𝑎 < 𝑏 

Thus the limit function f is discontinuous everywhere and not Riemann integrable. 

1.3.3  Example: For 𝑛 = 1,2. . ..  let 𝑓௡(𝑥) =
ୱ୧୬ ௡௫

√௡
 (𝑥 real), and let 𝑓(𝑥) = lim

௡→ஶ
𝑓௡(𝑥)  

Then 𝑓(𝑥) = lim
௡→ஶ

𝑓௡(𝑥) = lim
௡→ஶ

ୱ୧୬ ௡௫

√௡
= 0  

(∵
ୱ୧୬ ௡௫

√௡
≤

ଵ

√௡
 𝑓𝑜𝑟 𝑛 = 1,2. . . 𝑎𝑛𝑑 

ଵ

√௡
→ 0 𝑎𝑠 𝑛 → ∞)   

Now 𝑓ᇱ(𝑥) = 0 ∀ 𝑥 ∈ ℝ  𝑓௡
ᇱ(𝑥) =

௡௖௢௦௡௫

√௡
= √𝑛cos𝑛𝑥  

Since lim
௡→ஶ

cos𝑛𝑥 does not exist, we have that 𝑓௡
ᇱ ↛ 𝑓′ as 𝑛 → ∞  
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That is, {𝑓௡
ᇱ} does not converge to ′ . 

(for instance, 𝑓௡
ᇱ(0) =

௡௖௢௦௡(଴)

√௡
= √𝑛 

∴ lim
୬→ஶ

𝑓௡
ᇱ(0) = ∞, 𝑤ℎ𝑒𝑟𝑒 𝑓ᇱ(0) = 0    (∵  √n → +∞ as 𝑛 → ∞)) 

1.3.4 Example: For 𝑛 = 1,2,3. . .. 𝑙𝑒𝑡 𝑓௡(𝑥) = 𝑛ଶ𝑥(1 − 𝑥ଶ)௡ (0 ≤ 𝑥 ≤ 1)   (1) 

      Now for 𝑛 = 1,2,3. . .. 𝑓௡(0) = 0 and 𝑓௡(1) = 0  

     ∴ lim
௡→ஶ

𝑓௡(0) = 0 𝑎𝑛𝑑 lim
௡→ஶ

𝑓௡(1) = 0     (2) 

For 0 < 𝑥 < 1, we have 𝑓௡(𝑥) = 𝑛ଶ𝑥(1 − 𝑥ଶ)௡ =
௡మ௫

(ଵି௫మ)ష೙
=

௡మ௫

(
భ

భషೣమ)೙
=

௡మ௫

(ଵା
ೣమ

భషೣమ)೙
  

We know that if 𝑝 > 0 and 𝛼 is real, then lim
௡→ஶ

௡ഀ

(ଵା௣)೙
= 0 (Theorem 3.20 d) 

So, lim
௡→ஶ

𝑓௡(𝑥) = 𝑥 lim
௡→ஶ

௡మ

(ଵା
ೣమ

భషೣమ)೙
= 0(∵ 0 < 𝑥 < 1 ⇒

௫మ

ଵି௫మ
> 0)  

lim
௡→ஶ

𝑓௡(𝑥) = 0 (0 < 𝑥 < 1)    (3) 

From 2 & 3 , lim
௡→ஶ

𝑓௡(𝑥) = 0(0 ≤ 𝑥 ≤ 1) 

Consider ∫ 𝑥
ଵ

଴
(1 − 𝑥ଶ)௡𝑑𝑥 = ∫ 𝑡௡଴

௧ୀଵ
ቀ

ିଵ

ଶ
ቁ 𝑑𝑡 =

ିଵ

ଶ
∫ 𝑡௡଴

ଵ
𝑑𝑡 

=
ିଵ

ଶ
ቂ

௧೙శభ

௡ାଵ
ቃ

ଵ

଴

=
ିଵ

ଶ
ቂ0 −

ଵ

௡ାଵ
ቃ =

ଵ

ଶ(௡ାଵ)
  

∴  𝑓𝑜𝑟 𝑛 = 1,2,3. . . , ∫ 𝑓௡(𝑥)
ଵ

଴
𝑑𝑥 = ∫ 𝑛ଶ𝑥(1 − 𝑥ଶ)௡ଵ

଴
𝑑𝑥 = 𝑛ଶ ∫ 𝑥(1 − 𝑥ଶ)௡ଵ

଴
𝑑𝑥 =

௡మ

ଶ௡ାଶ
  

Now ∫ 𝑓௡(𝑥)
ଵ

଴
𝑑𝑥 =

௡మ

ଶ௡ାଶ
→ ∞ 𝑎𝑠 𝑛 → ∞  

If, in equation 1, we replace 𝑛ଶ 𝑏𝑦 𝑛 , then lim
௡→ஶ

𝑓௡(𝑥) = 0 , 0 ≤ 𝑥 ≤ 1  

So that න ቀ lim
௡→ஶ

𝑓௡(𝑥)ቁ
ଵ

଴

𝑑𝑥 = ∫ (0)
ଵ

଴
𝑑𝑥 = 0  

But lim
௡→ஶ

∫ 𝑓௡(𝑥)
ଵ

଴
𝑑𝑥 = lim

௡→ஶ

௡

ଶ௡ାଶ
= lim

௡→ஶ

௡

௡(ଶା
మ

೙
)

= lim
௡→ஶ

ଵ

ଶା
మ

೙

=
ଵ

ଶ
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∴ lim
௡→ஶ

∫ 𝑓௡(𝑥)
ଵ

଴
𝑑𝑥 =

ଵ

ଶ
≠ 0 = න ቀ lim

௡→ஶ
𝑓௡(𝑥)ቁ

ଵ

଴

𝑑𝑥  

Thus the limit of the integral need not be equal to the integral of the limit, even if both are 

finite. 

Note: Give an example to show that a convergent series of continuous functions may have 

a discontinuous term. 

1.3.5 Example: Let 𝑓௡(𝑥) =
௫మ

(ଵା௫మ)೙
  for 𝑛 = 1,2,3. . ..   for 𝑥 ∈ ℝ 

For 𝑛 = 1,2,3. . . . 𝑥 ∈ ℝ write 𝑆௡(𝑥) = ෌ 𝑓௞(𝑥)
௡

௞ୀ଴
 for 𝑥 ∈ ℝ 

We know that for 𝑥 ∈ ℝ with  𝑥 ≠ 1  

෍ 𝑥௞ =
ଵି௫೙శభ

ଵି௫

௡

௞ୀ଴
  

Observe that for every 0 ≠ 𝑥 ∈ ℝ, 0 <
ଵ

ଵା௫మ
< 1  

For 0 ≠ 𝑥 ∈ ℝ, 𝑆௡(𝑥) = ෍
௫మ

(ଵା௫మ)ೖ

௡

௞ୀ଴
  

 = 𝑥ଶ ෍
ଵ

(ଵା௫మ)ೖ

௡

௞ୀ଴
 

 = 𝑥ଶ ቊ
ଵି(

భ

భశೣమ)೙శభ

ଵି
భ

భశೣమ

ቋ                 (∵ ∀ 0 ≠ 𝑥 ∈ ℝ,
ଵ

ଵା௫మ
≠ 1) 

 = 𝑥ଶ ൝
൬

(భశೣమ)೙శభషభ

(భశೣమ)೙శభ ൰

൬
(భశೣమ)షభ

(భశೣమ)
൰

ൡ 

 = 𝑥ଶ ቄ
(ଵା௫మ)೙శభିଵ

(ଵା௫మ)೙శభ
 𝑋 

ଵା௫మ

௫మ
ቅ  

 = (1 + 𝑥ଶ) ቄ1 −
ଵ

(ଵା௫మ)೙శభ
ቅ 

So, lim
௡→ஶ

ቀ
ଵ

ଵା௫మ
ቁ

௡

= 0 

∴ lim
௡→ஶ

𝑆௡(𝑥) = 1 + 𝑥ଶ 𝑖𝑓 𝑥 ≠ 0      (𝑓|𝑥| < 1, 𝑡ℎ𝑒𝑛 lim
௡→ஶ

𝑥௡ = 0) 

Also clearly lim
௡→ஶ

𝑆௡(0) = 0 
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For 𝑥 ∈ ℝ, define 𝑓(𝑥) = {
ଵା௫మ  ௜௙ ௫ஷ଴

  ଴         ௜௙ ௫ୀ଴
, 

Then ෌ 𝑓௡(𝑥)
ஶ

௡ୀ଴
= lim

௡→ஶ
𝑆௡(𝑥) = 𝑓(𝑥) (𝑥 ∈ ℝ) 

The series converges point wise on ℝ to 𝑓. 

Now we prove that the convergence is not uniform on ℝ. 

If possible suppose that the convergence is uniform on ℝ. 

Then {𝑆௡} converges uniformly on ℝ to 𝑓. 

So corresponding to 𝜀 =
ଵ

ଶ
, there exists a positive integer such that 

 |𝑆௡(𝑥) − 𝑓(𝑥)| <
ଵ

ଶ
    (1) 

Whenever 𝑛 ≥ 𝑁 for all 𝑥 ∈ ℝ in particular (1) is true for 𝑛 = 𝑁 and 𝑥 ≠ 0 

So we have |𝑆௡(𝑥) − 𝑓(𝑥)| <
ଵ

ଶ
⇒ ቚ(1 + 𝑥ଶ) ቄ1 −

ଵ

(ଵା௫మ)೙శభ
ቅ − (1 + 𝑥ଶ)ቚ <

ଵ

ଶ
  ∀𝑥 ≠ 0 

⇒
ଵ

(ଵା௫మ)ಿ
<

ଵ

ଶ
 for all 𝑥 ≠ 0 ⇒ (1 + 𝑥ଶ)ே > 2  ∀𝑥 ≠ 0 

⇒ 𝑥ଶ > 2
భ

ಿ − 1 ∀𝑥 ≠ 0 

 ⇒ |𝑥| > ቀ2
భ

ಿ − 1ቁ

భ

మ
 ∀𝑥 ≠ 0 

∴ ℝ − {0} ⊆ ൝𝑥| |𝑥| > ቀ2
భ

ಿ − 1ቁ

భ

మ
ൡ , 

Which is not possible. 

Hence the convergence is not uniform on ℝ. 

1.4  UNIFORM CONVERGENCE: 

            In this section, we introduce a stronger notion of convergence of functions than point 

wise convergence, called uniform convergence. The difference between point wise 

convergence and uniform convergence is analogous to the difference between continuity and 

uniform continuity. 
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1.4.1 Definition: we say that a sequence of functions {𝑓௡}, 𝑛 = 1,2,3, …, converges uniformly 

on 𝐸 to a function 𝑓 if for every 𝜀 > 0 there is an ingeter 𝑁 such that 𝑛 ≥ 𝑁 implies  

|𝑓௡(𝑥) − 𝑓(𝑥)| ≤ 𝜀 for all 𝑥 ∈ 𝐸   (1) 

It is clear that every uniformly convergent sequence is point wise convergent. Quite 

explicitly, the difference between the two concepts in this: if {𝑓௡} converges point wise on 

𝐸, then there exists a function 𝑓 such that, for every 𝜀 > 0, and for every 𝑥 ∈ 𝐸, there is an 

integer 𝑁, depending on 𝜀 and on 𝑥, such that (1) holds if 𝑛 ≥ 𝑁; if {𝑓௡} converges 

uniformly on 𝐸, it is possible, for each 𝜀 > 0, to find one interger 𝑁 which will do for all 

𝑥 ∈ 𝐸. 

We say that the series ∑ 𝑓௡(𝑥) converges uniformly on 𝐸 if the sequence {𝑠௡} of partial 

sums defined by  

∑ 𝑓௜(𝑥) = 𝑠௡(𝑥)௡
௜ୀଵ   

Converges uniformly on 𝐸. 

1.4.2 Theorem: Cauchy criterion for uniform convergence of sequence of functions. 

Statement: Let {𝑓௡} be a sequence of functions defined on E.  Then the sequence {𝑓௡} 

convergence uniformly on E if and only if for every 𝜀 > 0 there exist an integer N such 

that 𝑚 ≥ 𝑁, 𝑛 ≥ 𝑁, 𝑥 ∈ 𝐸 implies |𝑓௡(𝑥) − 𝑓௠(𝑥)| ≤ 𝜀 

Proof: Suppose {𝑓௡} converges uniformly on E  

Let 𝑓 be its limit function. 

Then for every 𝜀 > 0 there corresponds a positive integer N such that implies 

|𝑓௡(𝑥) − 𝑓(𝑥)| ≤
ఌ

ଶ
 

So that |𝑓௡(𝑥) − 𝑓௠(𝑥)| ≤ |𝑓௡(𝑥) − 𝑓(𝑥)| + |𝑓(𝑥) − 𝑓௠(𝑥)| ≤
ఌ

ଶ
+

ఌ

ଶ
= 𝜀  if  𝑚 ≥ 𝑁, 𝑛 ≥

𝑁, 𝑥 ∈ 𝐸 

Conversely, suppose that the Cauchy condition holds. 

i.e., for every real number 𝜀 > 0, there corresponds a positive integer N such that 

|𝑓௡(𝑥) − 𝑓௠(𝑥)| ≤ 𝜀 𝑚 ≥ 𝑁, 𝑛 ≥ 𝑁 for all  𝑥 ∈ 𝐸 

then for every 𝑥 ∈ 𝐸, {𝑓௡(𝑥)} is a sequence of numbers that satisfies cauchy’s general 

principle for convergence.  
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So, there exists a number 𝑓(𝑥)  depending on 𝑥 to which 𝑓௡(𝑥) converges. 

Clearly, 𝑓(𝑥)is uniquely fixed with 𝑥  (∵ limit of a sequence is unique) 

Now 𝑥 → 𝑓(𝑥) defines a function on E and 𝑓(𝑥) = lim
௡→ஶ

𝑓௡(𝑥) 

To show that the convergence is uniform. 

Take 𝜀 > 0 

By our Supposition there exists a positive integer N such that |𝑓௡(𝑥) − 𝑓௠(𝑥)| ≤ 𝜀 

whenever 𝑚 ≥ 𝑁, 𝑛 ≥ 𝑁 for all 𝑥 ∈ 𝐸 

Fix m, and let n → ∞  

Then we get ቚ lim
௡→ஶ

𝑓௡(𝑥) − 𝑓௠(𝑥)ቚ ≤ 𝜀 for every 𝑚 ≥ 𝑁 for every 𝑥 ∈ 𝐸 

So, from (1) |𝑓(𝑥) − 𝑓௠(𝑥)| ≤ 𝜀 for every 𝑚 ≥ 𝑁 for every 𝑥 ∈ 𝐸 

Hence, {𝑓௠}  converges uniformly on E to f (or) {𝑓௡}Converges uniformly on E to f. 

1.4.3 Theorem: Suppose lim
௡→ஶ

𝑓௡(𝑥) = 𝑓(𝑥) 𝑥 ∈ 𝐸  Put 𝑀௡ = 𝑠𝑢𝑝
௫∈ா

|𝑓௡(𝑥) − 𝑓(𝑥)|  

                    Then 𝑓௡ → 𝑓 uniformly on E if and only if  𝑀௡ → 0  as 𝑛 → ∞ 

Proof: Suppose lim
௡→ஶ

𝑀௡ = 0   (1) 

Take 𝜀 > 0 

Then from (1), there exists a positive integer N depending on E such that  

0 ≤ 𝑀௡ ≤ 𝜀  whenever 𝑛 ≥ 𝑁  

This implies that for every 𝑥 ∈ 𝐸 and 𝑛 ≥ 𝑁, |𝑓௡(𝑥) − 𝑓(𝑥)| ≤ 𝑀௡ < 𝜀 

This shows that {𝑓௡} converges uniformly on E to f. 

Conversely, suppose that sequence {𝑓௡} converges uniformly on E, to f 

Choose 𝜀 > 0 

Then by our supposition, ∃ a positive integer N, depending on ∈ such that |𝑓௡(𝑥) − 𝑓(𝑥)| <

ఌ

ଶ
 whenever ≥ 𝑁 ∀ 𝑥 ∈ 𝐸.  
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This implies that 0 ≤ 𝑀௡ = ൜𝑠𝑢𝑝
௫∈ா

|𝑓௡(𝑥) − 𝑓(𝑥)| ൠ ≤
ఌ

ଶ
<∈ ∀ 𝑛 ≥ 𝑁  

Hence, lim
௡→ஶ

𝑀௡ = 0 

1.4.4 Theorem: (Weierstross M-Test for uniform convergence) 

Statement: Suppose {𝑓௡} is a sequence of functions defined on E, and suppose  

|𝑓௡(𝑥)| ≤ 𝑀௡ (𝑥 ∈ 𝐸, 𝑛 = 1,2,3. . . ) Then ∑𝑓௡ convergence uniformly on E if  ∑𝑀௡ 

converges. 

Proof: Given that |𝑓௡(𝑥)| ≤ 𝑀௡ (𝑥 ∈ 𝐸, 𝑛 = 1,2,3. . . )    (1) 

For 𝑥 ∈ 𝐸, let 𝑆௡(𝑥) = 𝑓ଵ(𝑥) + 𝑓ଶ(𝑥) + 𝑓ଷ(𝑥)+. . . +𝑓௡(𝑥)  ∀𝑛 ≥ 1  

And let 𝑈௡ = 𝑀ଵ + 𝑀ଶ+. . . +𝑀௡ ∀𝑛 ≥ 1  

Suppose ∑ 𝑀௡
ஶ
௡ୀଵ  converges. Then the partial terms sequence {𝑈௡} is convergent. 

We know that every convergent sequence in a metric space is a Cauchy sequence so {𝑈௡} 

is a Cauchy sequence        (2) 

Take 𝜀 > 0  

then from (2) there exists a positive integer N such that |𝑈௠ − 𝑈௡| < 𝜀 whenever       𝑚 >

𝑛 ≥ 𝑁  

Now for 𝑚 > 𝑛 ≥ 𝑁 and 𝑥 ∈ 𝐸, 

|𝑆௠(𝑥) − 𝑆௡(𝑥)| = |(𝑓ଵ(𝑥) + 𝑓ଶ(𝑥)+. . . +𝑓௠(𝑥)) − (𝑓ଵ(𝑥) + 𝑓ଶ(𝑥)+. . . +𝑓௡(𝑥))| 

 = |(𝑓௡ାଵ(𝑥) + 𝑓௡ାଶ(𝑥)+. . . +𝑓௠(𝑥))| 

 = |𝑓௡ାଵ(𝑥)| + |𝑓௡ାଶ(𝑥)|+. . . +|𝑓௠(𝑥)| 

 = 𝑀௡ାଵ + 𝑀௡ାଶ+. . . . +𝑀௠  

 = |𝑈௠ − 𝑈௡|  

 < 𝜀 

∴ By theorem (1), {𝑆௡} converges uniformly on E. 

Hence ∑ 𝑓௡
ஶ
௡ୀଵ  converges uniformly on E, to some function defined on E. 
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1.5  SUMMARY: 

In the present Lesson we confine our attention to point wise convergence, related theorems 

and examples as well as uniform convergence, related theorems and examples.  

1.6  TECHNICAL TERMS: 

1.  Uniform convergence 

2.  Point wise convergence 

3.  Weierstrass M-Test 

1.7  SELF-ASSESSMENT QUESTIONS:  

1. Prove that every uniformly convergent sequence of bounded is uniformly bounded. 

2. If {𝑓௡} and {𝑔௡} converges uniformly on a set 𝐸, prove that {𝑓௡ + 𝑔௡} converges 

uniformly on 𝐸. If, in addition, {𝑓௡} and {𝑔௡} are sequences of bounded functions, prove 

that {𝑓௡𝑔௡} converges uniformly on 𝐸. 

3. Construct sequences {𝑓௡}, {𝑔௡} which converges uniformly on some set E, but such that 

{𝑓௡𝑔௡} does not converge uniformly on E (of course, {𝑓௡𝑔௡} must converges on E).  
 

1.8  SUGGESTED READINGS: 

1. Principles of Mathematics Analysis by Walter Rudin, 3rd Edition. 

2. Mathematical Analysis by Tom M.Apostal, Narosa Publishing House, 2nd Edition, 

1985. 

- Dr. K. Gangadhar 

 



 

 

LESSON- 2 

SEQUENCES AND SERIES OF FUNCTIONS:  
UNIFORM CONVERGENCE AND CONTINUITY 

 

OBJECTIVES: 

After studying the lesson you should able to understand the concept of uniform convergence 

and continuity. Definition of Normed Linear Space. 

STRUCTURE: 

2.1   Introduction  

2.2   Uniform convergence and continuity  

2.3   Summary 

2.4   Technical terms 

2.5   Self- Assessment Questions 

2.6   Suggested readings 
 

2.1  INTRODUCTION: 

          In this lesson, we define and study the uniform convergence and continuity, and also 

integration of sequences and series of functions. There are many different ways to define the 

uniform convergence of a sequence of functions, and different definitions lead to in equivalent 

types of convergence.  

2.2  UNIFORM CONVERGENCE AND CONTINUITY:  

2.2.1 Theorem: Suppose 𝑓௡ → 𝑓 uniformly on a set E in a metric space (𝑥, 𝑑). Let x be a limit 

point of E, and suppose that lim
௧→௫

𝑓௡(𝑡) = 𝐴௡ (𝑛 = 1,2, . . . ). Then {𝐴௡} converges, and 

lim
௧→௫

𝑓௡(𝑡) = lim
௡→ஶ

𝐴௡ In other words, the conclusion is that 

 lim
௧→௫ 

lim
௡→ஶ

𝑓௡(𝑡) = lim
௡→ஶ

 lim
௧→௫

𝑓௡(𝑡) 

Proof: Suppose 𝑓௡ → 𝑓uniformly on E and lim
௧→௫

𝑓௡(𝑡) = 𝐴௡(𝑛 = 1,2, . . . ) 

Claim: {𝐴௡} is a Cauchy’s sequence  

Let 𝑥 be a limit point of E  

Let 𝜀 > 0 be given 
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Then by Cauchy’s general principle for uniform convergence, there exists a positive integer 

𝑁ଵ such that |𝑓௡(𝑡) − 𝑓௠(𝑡)| ≤
ఌ

ଶ
 for 𝑛 ≥ 𝑁ଵ, 𝑚 ≥ 𝑁ଵ 𝑎𝑛𝑑 𝑡 ∈ 𝐸    (1) 

Letting 𝑡 → 𝑥 in (1), we obtain ቚlim
௧→௫

𝑓௡(𝑡) − lim
௧→௫

𝑓௠(𝑡)ቚ ≤
ఌ

ଶ
 for 𝑛 ≥ 𝑁ଵ, 𝑚 ≥ 𝑁ଵ  

So, Since lim
௧→௫

𝑓௞(𝑡) = 𝐴௞(𝑘 = 1,2, . . . ), it follows that  

for 𝑛 ≥ 𝑁ଵ, 𝑚 ≥ 𝑁ଵ, |𝐴௡ − 𝐴௠| ≤
ఌ

ଶ
<∈  

Hence, {𝐴௡} is a Cauchy sequence and hence converges, say to A i.e., lim
௡→ஶ

𝐴௡ = 𝐴  

In ℝ௞, every cauchy sequence is convergent 

Claim: ∃ a positive integer N and ∃ a 𝛿 > 0 such that  

i) |𝑓ே(𝑡) − 𝑓(𝑡)| ≤
ఌ

ଷ
 ∀ 𝑡 ∈ 𝐸 

ii) |𝐴௡ − 𝐴| ≤
ఌ

ଷ
 and  

iii) |𝑓ே(𝑡) − 𝐴ே| ≤
ఌ

ଷ
 𝑖𝑓 𝑡 ∈ 𝐸 0 < 𝑑(𝑡, 𝑥) < 𝛿  

We first choose positive integers 𝑁ଶ𝑎𝑛𝑑 𝑁ଷsuch that  

|𝑓௡(𝑡) − 𝑓(𝑡)| ≤
ఌ

ଷ
 for 𝑛 ≥ 𝑁ଶ and ∀ 𝑡 ∈ 𝐸 and |𝐴௡ − 𝐴| ≤

ఌ

ଷ
 for 𝑛 ≥ 𝑁ଷ  

(∵  𝑓௡ → 𝑓 𝑢𝑛𝑖𝑓𝑜𝑟𝑚𝑙𝑦 𝑜𝑛 𝐸 𝑎𝑛𝑑 lim
௡→ஶ

𝐴௡ = 𝐴)  

Put 𝑁 = 𝑚𝑎𝑥{𝑁ଶ, 𝑁ଷ} 

Then we have |𝑓ே(𝑡) − 𝑓(𝑡)| ≤
ఌ

ଷ
 ∀ 𝑡 ∈ 𝐸 and |𝐴ே − 𝐴| ≤

ఌ

ଷ
  

Since lim
௧→௫

𝑓ே(𝑡) = 𝐴ே , ∃ 𝑎 𝛿 > 0 such that 0 < 𝑑(𝑡, 𝑥) < 𝛿 𝑡 ∈ 𝐸  

implies |𝑓ே(𝑡) − 𝐴ே| ≤
ఌ

ଷ
  

Claim: lim
௧→௫

𝑓(𝑡) = 𝐴  

Choose a 𝛿 > 0 and a positive integer N satisfying (i),(ii) and (iii) 

If 0 < 𝑑(𝑡, 𝑥) < 𝛿 𝑡 ∈ 𝐸 

∴ |𝑓(𝑡) − 𝐴| ≤ |𝑓(𝑡) − 𝑓ே(𝑡)| + |𝑓ே(𝑡) − 𝐴ே| + |𝐴ே − 𝐴| ≤
ఌ

ଷ
+

ఌ

ଷ
+

ఌ

ଷ
= 𝜀  
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When ever 0 < 𝑑(𝑡, 𝑥) < 𝛿  𝑓𝑜𝑟 𝑡 ∈ 𝐸. 

Hence, lim
௧→௫

𝑓(𝑡) = 𝐴 that is lim
௧→௫

𝑓(𝑡) = lim
௡→ஶ

𝐴௡ 

2.2.2 Theorem: Let (𝑥, 𝑑) be a metric space and 𝐸 ⊆ 𝑋. If {𝑓௡} is a sequence of continuous 

functions on E, and if 𝑓௡ → 𝑓 uniformly on E, then f is continuous on E. 

Proof: Let 𝑥 ∈ 𝐸 and 𝜀 > 0  

Since {𝑓௡} converges uniformly on E to f, there exists a positive integer N such that 

|𝑓௡(𝑦) − 𝑓(𝑦)| ≤
ఌ

ଷ
  for 𝑛 ≥ 𝑁 and ∀ 𝑦 ∈ 𝐸  

In particular, |𝑓ே(𝑦) − 𝑓(𝑦)| ≤
ఌ

ଷ
 ∀ 𝑦 ∈ 𝐸  (1) 

Since 𝑓ே is continuous at  , there exists 𝛿 > 0 such that  

0 < 𝑑(𝑥, 𝑦) < 𝛿 ⇒ |𝑓ே(𝑦) − 𝑓ே(𝑦)| ≤
ఌ

ଷ
 ∀ 𝑦 ∈ 𝐸  (2) 

∴ |𝑓(𝑥) − 𝑓(𝑦)| ≤ |𝑓(𝑥) − 𝑓ே(𝑥)| + |𝑓ே(𝑥) − 𝑓ே(𝑦)| + |𝑓ே(𝑦) − 𝑓(𝑦)| <
𝜀

3
+

𝜀

3
+

𝜀

3
= 𝜀 

Whenever 0 < 𝑑(𝑥, 𝑦) < 𝛿 𝑓𝑜𝑟 𝑥 ∈ 𝐸  (by (1)&(2)) 

Hence, 𝑓 is continuous at 𝑥  

This is true for every 𝑥 ∈ 𝐸 

∴ 𝑓 is continuous on E. 

Remark: The converse of the above theorem is not true. 

That is, a sequence of continuous functions may converge to a continuous function, although 

the convergence is not uniform. 

Justification: 

Example: Define 𝑓௡: [0,1] → ℝ by 𝑓௡(𝑥) = 𝑛ଶ𝑥(1 − 𝑥ଶ)௡, 0 ≤ 𝑥 ≤ 1  

Then lim
௡→ஶ

𝑓௡(𝑥) = lim
௡→ஶ

𝑛ଶ𝑥(1 − 𝑥ଶ)௡ = lim
௡→ஶ

௡మ௫

ቆ
భ

൫భషೣమ൯
೙ቇ

 

= 𝑥 lim
௡→ஶ

௡మ

൬ଵା
ೣమ

భషೣమ൰
೙ = 𝑥(0) = 0;  0 < 𝑥 < 1  
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∵ 0 < 𝑥 < 1 ⇒
௫మ

ଵି௫మ
> 0 lim

௡→ஶ

௡మ

(ଵା௣)೙
= 0 𝑓𝑜𝑟  𝑝 > 0, 𝛼 ∈ ℝ  

Now 𝑓௡(0) = 0 & 𝑓௡(1) = 0 

∴  lim
௡→ஶ

𝑓௡(𝑥) = 0, 0 ≤ 𝑥 ≤ 1  

For 0 ≤ 𝑥 ≤ 1, define 𝑓(𝑥) = 0  

Then 𝑓 is continuous on [0,1] and lim
௡→ஶ

𝑓௡(𝑥) = 𝑓(𝑥)  

Also, each 𝑓௡ is continuous on [0,1] for 𝑛 = 1,2, . ..  

Put 𝑀௡ = 𝑠𝑢𝑝
଴ஸ௫ஸଵ

|𝑓௡(𝑥) − 𝑓(𝑥)| = 𝑠𝑢𝑝
଴ஸ௫ஸଵ

𝑓௡(𝑥) 

Now 𝑓௡
ᇱ(𝑥) = 𝑛ଶ(1 − 𝑥ଶ)௡ + 𝑛ଶ𝑥(−2𝑥). 𝑛(1 − 𝑥ଶ)௡ିଵ  

𝑓௡
ᇱ(𝑥) = 0 ⇒ (1 − 𝑥ଶ)௡ିଵ𝑛ଶ[(1 − 𝑥ଶ) − 2𝑥ଶ𝑛] = 0  

                 ⇒ (1 − 𝑥ଶ)௡ିଵ = 0     ,    1 − 𝑥ଶ − 2𝑥ଶ𝑛 = 0  

                 ⇒ 1 − 𝑥ଶ = 0               ,     1 − (1 + 2𝑛)𝑥ଶ = 0 

                       ⇒ 𝑥 = ±1                      ,     𝑥 = ±
ଵ

√ଵାଶ௡
 

As 𝑥 ≥ 0, we consider 𝑥ଵ = +1 , 𝑥ଶ =
ଵ

√ଵାଶ௡
  

Now 𝑓௡
" (𝑥) = 𝑛ଶ(𝑛 − 1)(1 − 𝑥ଶ)௡ିଶ(−2𝑥)[(1 − 𝑥ଶ) − 2𝑥ଶ𝑛] + (1 − 𝑥ଶ)௡ିଵ𝑛ଶ[−2𝑥 − 4𝑛𝑥]  

For 𝑥ଵ = 1, 𝑓௡
" (𝑥ଵ) = 𝑓௡

" (1) = 0  

So, we cannot decide anything at 𝑥ଵ = 1  

For 𝑥ଶ =
ଵ

√ଵାଶ௡
,  

𝑓௡
" (𝑥ଶ) = 𝑓௡

" (
ଵ

√ଵାଶ௡
) = 𝑛ଶ(𝑛 − 1) ቀ1 −

ଵ

ଶ௡ାଵ
ቁ

௡ିଶ

(−2𝑛) ቂ1 −
ଵ

ଶ௡ାଵ
−

ଶ௡

ଶ௡ାଵ
ቃ + ቀ1 −

ଵ

ଶ௡ାଵ
ቁ

௡ିଵ

(𝑛ଶ) ቂ−2
ଵ

√ଶ௡ାଵ
−

ସ௡

√ଶ௡ାଵ
ቃ  

= −2 ቀ
ଶ௡

ଶ௡ାଵ
ቁ

௡ିଵ

𝑛ଶ ቀ
ଵାଶ௡

√ଵାଶ௡
ቁ < 0  

∴  𝑓௡  has maximum at 
ଵ

√ଶ௡ାଵ
 and the maximum value of 𝑓௡  is  
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𝑓௡ ቀ
ଵ

√ଵାଶ௡
ቁ = 𝑛ଶ ଵ

√ଵାଶ௡
ቀ1 −

ଵ

ଶ௡ାଵ
ቁ

௡

=
௡మ

√ଵାଶ௡
ቀ

ଶ௡

ଶ௡ାଵ
ቁ

௡

  

For 𝑛 = 1,2,3. .. 

𝑀௡ = 𝑠𝑢𝑝
଴ஸ௫ஸଵ

|𝑓௡(𝑥) − 𝑓(𝑥)| = ቚ
௡మ

√ଵାଶ௡
ቀ

ଶ௡

ଶ௡ାଵ
ቁ

௡

− 0ቚ  

=
ଶ೙.௡೙శమ

(ଶ௡ାଵ)೙శ
భ
మ

=
ଶ೙.௡೙శమ

௡
೙శ

భ
మቀଶା

భ

೙
ቁ

೙శ
భ
మ

=
ଶ೙.௡

య
మൗ

ቀଶା
భ

೙
ቁ

భ
మൗ

ቀଶା
భ

೙
ቁ

೙
  

=
ଶ೙.௡

య
మൗ

ଶ೙ቀଶା
భ

೙
ቁ

భ
మൗ

ቀଵା
భ

మ೙
ቁ

೙
=

௡
య

మൗ

ටଶା
భ

೙
ቀଵା

భ

మ೙
ቁ

೙  

So, 𝑀௡ → ∞ as 𝑛 → ∞  

That is 𝑀௡ ↛ 0 as 𝑛 → ∞  

Thus 𝑓௡ → 𝑓 is not uniform on [0,1].      (by theorem 1.11) 

2.2.3 Theorem: Suppose 𝐾 is a compact subset of a metric space (𝑥, 𝑑), and  

a) {𝑓௡} is a sequence of continuous functions on 𝐾, 

b) {𝑓௡} converges pointwise to a continuous function of on 𝐾 

c) 𝑓௡(𝑥) ≥ 𝑓௡ାଵ(𝑥) ∀ 𝑥 ∈ 𝐾, 𝑛 = 1,2,3. ..  

Then 𝑓௡ → 𝑓 uniformly on 𝐾. 

Proof: For 𝑛 ≥ 1 write 𝑔௡(𝑥) = 𝑓௡(𝑥) − 𝑓(𝑥)∀𝑥 ∈ 𝐾  

Since each 𝑓௡ and 𝑓 are continuous, we have that each 𝑔௡ is a continuous function on K. 

Since, lim
௡→ஶ

𝑓௡(𝑥) = 𝑓(𝑥)∀𝑥 ∈ 𝐾,    lim
௡→ஶ

𝑔௡(𝑥) = 0 ∀𝑥 ∈ 𝐾  

Also, 𝑔௡(𝑥) ≥ 𝑔௡ାଵ(𝑥)∀𝑥 ∈ 𝐾, 𝑛 = 1,2,3, . .. as 𝑓௡(𝑥) ≥ 𝑓௡ାଵ(𝑥)∀𝑥 ∈ 𝐾  

We have to prove that the sequence {𝑔௡} converges uniformly on K to 0. 

Let ∈> 0 and 𝑥 ∈ 𝐾. 

Since, lim
௡→ஶ

𝑔௡(𝑥) = 0, ∃ a positive integer 𝑁(𝜀, 𝑥) such that 

 0 ≤ 𝑔௡(𝑥) <
ఌ

ଶ
 for 𝑛 ≥ 𝑁(𝜀, 𝑥) 

We denote this 𝑁(∈, 𝑥) by 𝑁(𝑥). 
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In particular, 0 ≤ 𝑔ே(ఌ,௫) = 𝑔ே(௫) <
ఌ

ଶ
  

Since, 𝑔ே(௫) is continuous at 𝑥, ∃ 𝑎  real number 𝛿 > 0 (depending on x) such that 

ห𝑔ே(௫)(𝑦) − 𝑔ே(௫)(𝑥)ห <
ఌ

ଶ
 for 𝑦 ∈ 𝐾 such that 𝑑(𝑥, 𝑦) < 𝛿   (1) 

Put 𝐽(𝑥) = {𝑦 | 𝑦 ∈ 𝐾 𝑎𝑛𝑑 𝑑(𝑥, 𝑦) < 𝛿}  

Then clearly 𝐽(𝑥) is an open set in K (∵ 𝐽(𝑥)  is neighbourhood) 

Now the family {𝐽(𝑥) | 𝑥 ∈ 𝐾} is an open cover of the compact space K, so that there exist finitely 

many x in K, say 𝑥ଵ, 𝑥ଶ, . . . . 𝑥௥ such that 𝐾 = 𝑈
௜ୀଵ

௥

𝐽(𝑥௜)  

Write 𝑁(∈) = 𝑚𝑎𝑥{𝑁(𝑥ଵ), . . . 𝑁(𝑥௥)}  

It is clear that 𝑁(𝜀) depends on 𝜀 only  

Let 𝑦 ∈ 𝐾   

Then 𝑦 ∈ 𝐽(𝑥௜) for some 1 ≤ 𝑖 ≤ 𝑟  

So, ห𝑔ே(௫௜)(𝑦) − 𝑔ே(௫௜)(𝑥𝑖)ห <
ఌ

ଶ
   (by (1)) 

⇒ 𝑔ே(௫௜)(𝑥𝑖) −
ఌ

ଶ
< 𝑔ே(௫௜)(𝑦) < 𝑔ே(௫௜)(𝑥𝑖) +

ఌ

ଶ
  

Since 𝑔௡(𝑦) ≤ 𝑔ே(௫௜)(𝑦) for 𝑛 ≥ 𝑁(𝑥𝑖) and 𝑔ே(௫௜)(𝑦) < 𝑔ே(௫௜)(𝑥𝑖) +
ఌ

ଶ
< 𝜀,  

We have that 𝑔௡(𝑦) < 𝜀 for 𝑛 ≥ 𝑁(𝑥𝑖) 

If 𝑛 ≥ 𝑁(𝜀), then 𝑛 ≥ 𝑁(𝑥𝑖) for 𝑖 = 1,2,3, . . . . 𝑟  

∴ for all 𝑦 ∈ 𝐾 , 0 ≤ 𝑔௡(𝑦) < 𝜀 whenever 𝑛 ≥ 𝑁(𝜀). 

Hence {𝑔௡} converges uniformly on K to 0 

That is, 𝑓௡ → 𝑓 uniformly on K. 

Example: For = 1,2,3. . .. , define 𝑓௡(𝑥) =
ଵ

௡௫ାଵ
, 0 < 𝑥 < 1  

Then each 𝑓௡ is continuous on (0,1) 

We have 𝑛 < 𝑛 + 1 ⇒ 𝑛𝑥 < (𝑛 + 1)𝑥 ⇒ 𝑛𝑥 + 1 < (𝑛 + 1)𝑥 + 1 

⇒
ଵ

௡௫ାଵ
>

ଵ

(௡ାଵ)௫ାଵ
 ⇒ 𝑓௡(𝑥) > 𝑓௡ାଵ(𝑥) ∀ 𝑥 & ∀ 𝑛 
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Also, 𝑓௡(𝑥) → 0 as 𝑛 → ∞     (1) 

Let 𝜀 > 0 be given  

Then by (1), ∃ a positive integer N such that |𝑓௡(𝑥)| < 𝜀 ∀ 𝑛 ≥ 𝑁  

⇒
ଵ

௡௫ାଵ
< 𝜀 ⇒ 𝑛𝑥 + 1 >

ଵ

ఌ
 ⇒ 𝑛𝑥 >

ଵ

ఌ
− 1 ⇒ 𝑛 > ቀ

ଵ

ఌ
− 1ቁ

ଵ

௫
   

Choose  𝑁 = ቀ
ଵ

ఌ
− 1ቁ

ଵ

௫
+ 1. Then ∀ 𝑛 ≥ 𝑁 , we have |𝑓௡(𝑥)| =

ଵ

௡௫ାଵ
< 𝜀  

Observe that N depends on both 𝜀 & 𝑥. 

∴ the convergence of {𝑓௡} to 0 is not uniform  

Hence, compactness of interval is really needed. 

2.2.4 Definition: Normed Linear Space: Let X be a vector space over scalar field K. A map ∥

. ∥: 𝑋 → ℝ  

Is called as norm (on X) if it satisfies the following conditions 

i) ∥ 𝑥 ∥≥ 0, and ∥ 𝑥 ∥= 0 ⇔ 𝑥 = 0  

ii) ∥ 𝛼𝑥 ∥= |𝛼| ∥ 𝑥 ∥ for all 𝛼 ∈ 𝐾 & 𝑥 ∈ 𝑋 

iii) ∥ 𝑥 + 𝑦 ∥≤∥ 𝑥 ∥ +∥ 𝑦 ∥ ∀ 𝑥, 𝑦 ∈ 𝑋 

Here (𝑋, ∥. ∥) is called a normed linear space. 

2.2.5 Lemma: Every normed linear space (𝑋, ∥. ∥) is a metric space with respect to the metric ‘d’ 

defined by 𝑑(𝑥, 𝑦) =∥ 𝑥 − 𝑦 ∥ ∀ 𝑥, 𝑦 ∈ 𝑋.  

Proof: Let X be a normed linear space. 

Let 𝑥, 𝑦, 𝑧 ∈ 𝑋 

i) 𝑑(𝑥, 𝑦) =∥ 𝑥 − 𝑦 ∥≥ 0 and 𝑑(𝑥, 𝑦) = 0 ⇔∥ 𝑥 − 𝑦 ∥= 0 ⇔ 𝑥 − 𝑦 = 0 ⇔ 𝑥 = 𝑦  

ii) 𝑑(𝑥, 𝑦) =∥ 𝑥 − 𝑦 ∥=∥ −(𝑦 − 𝑥) ∥= | − 1| ∥ 𝑦 − 𝑥 ∥=∥ 𝑦 − 𝑥 ∥= 𝑑(𝑦, 𝑥) 

iii) 𝑑(𝑥, 𝑦) =∥ 𝑥 − 𝑦 ∥=∥ 𝑥 − 𝑧 + 𝑧 − 𝑦 ∥≤∥ 𝑥 − 𝑧 ∥ +∥ z − 𝑦 ∥= 𝑑(𝑥, 𝑧) + 𝑑(𝑧, 𝑦) 

∴ (𝑋, 𝑑) is a metric space. 

2.2.6 Definition: Let X be a normed linear space. Let {𝑥௡} be a sequence in X. 

i) We say that the sequence {𝑥௡} converges to a point 𝑥 in X. if given 𝜀 > 0, ∃ a 

positive integer N such that ∥ 𝑥௡ − 𝑥 ∥< 𝜀 ∀ 𝑛 ≥ 𝑁   
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ii) We say that the sequence  {𝑥௡} is a Cauchy sequence if given  𝜀 > 0, ∃ a positive 

integer N such that ∥ 𝑥௡ − 𝑥௠ ∥< 𝜀 ∀ 𝑛 ≥ 𝑁 & ∀ 𝑚 ≥ 𝑁. 

2.2.7 Definition: A normed linear space X is said to be complete if every Cauchy sequence in 

X is convergent to an element of X. 

2.2.8 Notation: If X is a metric space then the set of all complex- valued, continuous, bounded             

functions with domain X is denoted by ℂ(𝑋). 

2.2.9 Result: ℂ(𝑋) is a normed linear space. 

Proof: Define ‘+’ & ‘.’ on ℂ(𝑋) as follows 

                  For any 𝑓, 𝑔 ∈ ℂ(𝑋), (𝑓 + 𝑔)(𝑥) = 𝑓(𝑥) + 𝑔(𝑥) and  

(𝛼𝑓)(𝑥) = 𝛼𝑓(𝑥) ∀𝛼 ∈ 𝐾 & ∀ 𝑥 ∈ 𝑋  

Now ℂ(𝑋) is a vector space under the above binary operation ‘+’ and scalar 

multiplication ‘.’ 

For any 𝑓 ∈ ℂ(𝑋), define ∥ 𝑓 ∥= 𝑠𝑢𝑝
௫∈௑

|𝑓(𝑥)|  

Let 𝑓 ∈ ℂ(𝑋)   

Then 𝑓 is bounded on X, so that 𝑠𝑢𝑝
௫∈௑

|𝑓(𝑥)| exists and hence ∥ 𝑓 ∥ exists.  

i) ∥ 𝑓 ∥= 0 ⇔ 𝑠𝑢𝑝
௫∈௑

|𝑓(𝑥)| = 0 ⇔ |𝑓(𝑥)| = 0 ∀ 𝑥 ∈ 𝑋  

                                                          ⇔ 𝑓(𝑥) = 0  

                                                          ⇔ 𝑓 = 0 

ii) Since |𝑓(𝑥)| ≥ 0∀ 𝑥 ∈ 𝑋, ∥ 𝑓 ∥= 𝑠𝑢𝑝
௫∈௑

|𝑓(𝑥)| ≥ 0 

iii) Let 𝛼 ∈ 𝐾  

Now ∥ 𝛼𝑓 ∥= 𝑠𝑢𝑝
௫∈௑

|(𝛼𝑓)(𝑥)| = 𝑠𝑢𝑝
௫∈௑

|𝛼𝑓(𝑥)| = |𝛼|𝑠𝑢𝑝
௫∈௑

|𝑓(𝑥)| = |𝛼| ∥ 𝑓 ∥ 

iv) Let 𝑓, 𝑔 ∈ ℂ(𝑋) 

For 𝑥 ∈ 𝑋, |(𝑓 + 𝑔)(𝑥)| = |𝑓(𝑥) + 𝑔(𝑥)| ≤ |𝑓(𝑥)| + |𝑔(𝑥)| 

≤ 𝑠𝑢𝑝
௫∈௑

|𝑓(𝑥)| + 𝑠𝑢𝑝
௫∈௑

|𝑔(𝑥)| 

=∥ 𝑓 ∥ +∥ 𝑔 ∥ 

∴ 𝑠𝑢𝑝
௫∈௑

|(𝑓 + 𝑔)(𝑥)| ≤∥ 𝑓 ∥ +∥ 𝑔 ∥  

⇒∥ 𝑓 + 𝑔 ∥≤∥ 𝑓 ∥ +∥ 𝑔 ∥  
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∴ (ℂ(𝑥), ∥. ∥) is a normed linear space. $ 

Remark: For any 𝑓, 𝑔 ∈ ℂ(𝑋), define 𝑑(𝑓, 𝑔) =∥ 𝑓 − 𝑔 ∥ then ‘d’ is a metric on ℂ(𝑋) and 

hence (ℂ(𝑋), 𝑑) is a metric space. 

2.2.10 Lemma: A sequence {𝑓௡} converges to f with respect to the metric of ℂ(𝑋), X is a metric 

space if and only if 𝑓௡ → 𝑓 uniformly on X. 

Proof: 𝑓௡ → 𝑓 with respect to the metric of ℂ(𝑋)  

           ⇔ for any 𝜀 > 0, ∃  a positive integer 𝑁(𝜀) such that 

  ∥ 𝑓௡ − 𝑓 ∥< 𝜀 ∀ 𝑛 ≥ 𝑁 

          ⇔ for any 𝜀 > 0, ∃ a positive integer 𝑁(𝜀) such that 

  𝑠𝑢𝑝
௫∈௑

|𝑓௡(𝑥) − 𝑓(𝑥)| <∈ ∀ 𝑛 ≥ 𝑁 

          ⇔ for any 𝜀 > 0, ∃ a positive integer 𝑁(𝜀) such that 

  |𝑓௡(𝑥) − 𝑓(𝑥)| < 𝜀 ∀ 𝑛 ≥ 𝑁 & ∀𝑥 ∈ 𝑋 

          ⇔ 𝑓௡ → 𝑓 uniformly on X. 

2.2.11 Theorem: The metric space ℂ(𝑋) of all complex-valued bounded continuous functions 

on a metric space X is complete with respect to the uniform metric defined by 𝑑(𝑓, 𝑔) =∥ 𝑓 −

𝑔 ∥ 

For all 𝑓, 𝑔 ∈ ℂ(𝑋). 

Proof: We know that (ℂ(𝑋), 𝑑) is a metric space. 

Now we prove that (ℂ(𝑋), 𝑑) is a complete metric space. 

Let {𝑓௡} be a Cauchy sequence in ℂ(𝑋)    (1) 

Let 𝜀 > 0 be given  

Then by (1) there exists a positive integer N such that ∥ 𝑓௡ − 𝑓௠ ∥<∈ ∀ 𝑛, 𝑚 ≥ 𝑁  

⇒ 𝑠𝑢𝑝
௫∈௑

|𝑓௡(𝑥) − 𝑓௠(𝑥)| <∈  ∀ 𝑛, 𝑚 ≥ 𝑁  

⇒ |𝑓௡(𝑥) − 𝑓௠(𝑥)| < 𝜀∀ 𝑛, 𝑚 ≥ 𝑁 𝑎𝑛𝑑 ∀𝑥 ∈ 𝑋    (2) 
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This shows that for every 𝑥 ∈ 𝑋, {𝑓௡(𝑥)} is a Cauchy sequence in the complete metric space ℂ 

and hence converge to some number 𝑓(𝑥) (say) 

That is lim
௡→ஶ

𝑓௡(𝑥) = 𝑓(𝑥)∀𝑥 ∈ 𝑋  

Now we show that this convergence is uniform. 

Fixing n and letting 𝑚 → ∞ in (2) 

ቚ𝑓௡(𝑥) − lim
௠→ஶ

𝑓௠(𝑥)ቚ < 𝜀 ∀𝑥 ∈ 𝑋  

|𝑓௡(𝑥) − 𝑓(𝑥)| < 𝜀 ∀𝑥 ∈ 𝑋  

𝑠𝑢𝑝
௫∈௑

|𝑓௡(𝑥) − 𝑓(𝑥)| < 𝜀  

∴∥ 𝑓௡ − 𝑓 ∥< 𝜀 ∀𝑛, ≥ 𝑁  

Hence, {𝑓௡} converges to f uniformly on X. 

To show that 𝑓 ∈ ℂ(𝑋). 

Since {𝑓௡} is a sequence of continuous functions and 𝑓௡ → 𝑓 uniformly on X, by theorem (5), 

f is continuous. 

Since each 𝑓௡ , 𝑛 ≥ 1 is bounded, and {𝑓௡} converges uniformly on X, we have that {𝑓௡} is 

uniformly bounded. 

So, ∃ 𝑀 > 0 such that |𝑓௡(𝑥)| ≤ 𝑀 ∀𝑥 ∈ 𝑋 𝑎𝑛𝑑 ∀𝑛 ≥ 1. 

Since 𝑓௡ → 𝑓 uniformly on X, ∃ a positive integer N such that 

 |𝑓௡(𝑥) − 𝑓(𝑥)| < 1 ∀𝑥 ∈ 𝑋 𝑎𝑛𝑑 ∀𝑛 ≥ 𝑁 

In particular, |𝑓ே(𝑥) − 𝑓(𝑥)| < 1 ∀𝑥 ∈ 𝑋 

Now for any 𝑥 ∈ 𝑋, |𝑓(𝑥)| = |𝑓(𝑥) − 𝑓ே(𝑥) + 𝑓ே(𝑥)| ≤ |𝑓(𝑥) − 𝑓ே(𝑥)| + |𝑓ே(𝑥)| < 1 + 𝑀 

This shows that f is bounded on X and hence 𝑓 ∈ ℂ(𝑋). 

Hence, {𝑓௡} converges to f in ℂ(𝑋). 

∴ every Cauchy sequence in ℂ(𝑋) is convergent. 

Thus, (ℂ(𝑋), 𝑑) is a complete metric space. 
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2.3  SUMMARY:  

In this Lesson we are given detailed explanation about uniform convergence and continuity of 

function through definitions and theorems and also, the detailed explanation about uniform 

convergence and integration of function through definitions and theorems.  

2.4  TECHNICAL TERMS: 

 Continuous function 

 Metric space 

 Normed linear space 

2.5  SELF-ASSESSMENT QUESTIONS: 

1.  Consider 𝑓(𝑥) = ∑
ଵ

ଵା௡మ௫
ஶ
௡ୀଵ  for what values of 𝑥 does tha series converges 

absolutely? On what intervals does it converge uniformly? On what intervals does it 

fail to converge uniformly? Is 𝑓 continuous wherever the series converges? Is 𝑓 

bounded?. 

2. Let 

𝑓௡(𝑥) =

⎩
⎪
⎨

⎪
⎧ 0                        ቀ𝑥 <

ଵ

௡ାଵ
ቁ ,

𝑠𝑖𝑛ଶ గ

௫
       ቀ

ଵ

௡ାଵ
≤ 𝑥 ≤

ଵ

௡
ቁ ,

0                              ቀ
ଵ

௡
< 𝑥ቁ ,

 show that {𝑓௡} converges to a continuous 

function, but not uniformly. Use the series ∑ 𝑓௡ to show that absolute convergence, even 

for all 𝑥, does not imply uniform convergence.  

3. Prove that the series ∑ (−1)௡ ௫మା௡

௡మ
ஶ
௡ୀଵ  converges uniformly in every bounded interval, 

but does not converge absolutely for any value of 𝑥. 

2.6  SUGGESTED READINGS: 

1. Principles of Mathematics Analysis by Walter Rudin, 3rd Edition. 

2. Mathematical Analysis by Tom M.Apostal, Narosa Publishing House, 2nd Edition, 

1985. 

-  Dr. K. Gangadhar 

 

 



 

 

LESSON - 3 

SEQUENCES AND SERIES OF FUNCTIONS: 
UNIFORM CONVERGENCE AND INTEGRATION 

 
OBJECTIVES: 
 
After studying the lesson you should able to understand the concept of uniform convergence 

and continuity and also uniform convergence and integration of functions. 

STRUCTURE: 

3.1  Introduction 

3.2  Definitions  

3.3  Uniform convergence and Integration 

3.4  Examples 

3.5  Summary 

3.6  Technical terms 

3.7   Self-Assessment Questions 

3.8   Suggested readings 
 

3.1 INTRODUCTION: 

          In this lesson, we define and study the uniform convergence and integration of sequences 

and series of functions. There are many different ways to define the uniform convergence of a 

sequence of functions, and different definitions lead to in equivalent types of convergence. We 

consider here two basic types of uniform convergences: Continuity and Integration. 

3.2. DEFINITIONS: 

3.2.1 Definition (Uniform Convergence):  

We say that a sequence of functions {𝑓௡}, 𝑛 = 1, 2, 3, …, converges uniformly on E to a function 

f if for every 𝜖 > 0 there is an integer N such that 𝑛 ≥ 𝑁 implies  

|𝑓௡(𝑥) − 𝑓(𝑥)| ≤ 𝜖                                                                      (1) 

For all 𝑥𝜖𝐸. 

It is clear that every uniformly convergent sequence is point wise convergent.  
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If {𝑓௡} convergence point wise on 𝐸, then there exists a function 𝑓 such that, for every 𝜖 > 0, 

and for every 𝑥𝜖𝐸, there is an integer 𝑁, depending on 𝜖 and on x, such that (1) holds if 𝑛 ≥ 𝑁; 

if {𝑓௡} convergence uniformly on E, it is possible, for each 𝜖 > 0, to find one integer 𝑁 which 

will do for all 𝑥𝜖𝐸. 

We say that the series ∑ 𝑓௡(𝑥) converges uniformly on 𝐸 if the sequence {𝑠௡} of partial sums 

defined by  

∑ 𝑓௜(𝑥) = 𝑠௡(𝑥)௡
௜ୀଵ   

Converges uniformly on 𝐸.  

3.2.2 Definition: Let 𝐸 be a set, {𝑓௡}, 𝑛 = 1,2,3. . . ∞ sequence of functions defined on E and 

let 𝑓 be a function defined on E. 

i. We say that the sequence {𝑓௡} converges to f pointwise or converges pointwise to 𝑓 on 

𝐸 if for every 𝑥 ∈ 𝐸, lim
௡→ஶ

𝑓௡(𝑥) = 𝑓(𝑥) (if for every positive number 𝜀 and 𝑥 ∈ 𝐸, there 

corresponds a positive integer 𝑁 (depending on 𝜀 and 𝑥 as well) such that |𝑓௡ − 𝑓(𝑥)| <

∈ whenever 𝑛 ≥ 𝑁). In this case we say that 𝑓 is the pointwise limit of  {𝑓௡} on 𝐸, and 

we write lim
௡→ஶ

𝑓௡ = 𝑓(pointwise) for 𝑛 = 1,2,3. .. 

ii. 𝐹𝑜𝑟 𝑛 = 1,2,3. . . ∞, let 𝑆௡ = 𝑓ଵ(𝑥) + 𝑓ଶ(𝑥) + 𝑓ଷ(𝑥)+. . . +𝑓௡(𝑥) 𝑓𝑜𝑟 𝑥 ∈ 𝐸. If the 

sequence {𝑆௡} of functions (called the partial sums of ∑ 𝑓௡
ஶ
௡ୀଵ ) converges to 𝑓 pointwise 

on 𝐸, we say that the series ∑ 𝑓௡
ஶ
௡ୀଵ (𝑥) converges to 𝑓(𝑥) for every 𝑥 ∈ 𝐸, and we 

write it as  ∑ 𝑓௡
ஶ
௡ୀଵ = 𝑓 (pointwise). 

iii. We say that the sequence {𝑓௡} converges uniformly to 𝑓 on 𝐸 for every positive number 

∈ there corresponds a positive integer N such that |𝑓௡(𝑥) − 𝑓(𝑥)| < 𝜀 when ever 𝑛 ≥

𝑁 and for all 𝑥 ∈ 𝐸. In this case we say that f is the uniform limit of {𝑓௡} and write it as 

lim
௡→ஶ

𝑓௡(𝑥) = 𝑓(𝑥) (𝑥 ∈ 𝐸) or lim
௡→ஶ

𝑓௡ = 𝑓 uniformly on 𝐸. 

iv. We say that the series ∑ 𝑓௡
ஶ
௡ୀଵ  converges uniformly to 𝑓 on 𝐸  if the sequence {𝑆௡} of 

partial seems converges uniformly on 𝐸 to 𝑓 i.e., for every positive number 𝜀 there 

corresponds a positive integer N such that  |𝑆௡(𝑥) − 𝑓(𝑥)| <∈ whenever 𝑛 ≥ 𝑁 and 

for all 𝑥 ∈ 𝐸. 

3.3  UNIFORM CONVERGENCE AND INTEGRATION: 

3.2.1 Theorem: State and prove uniform convergence and integration theorem. 
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Statement: Let 𝛼 be monotonically increasing on [𝑎, 𝑏]. Suppose 𝑓௡ ∈ ℝ(𝛼) on [𝑎, 𝑏] , for 

 𝑛 = 1,2,3, . .. , and suppose 𝑓௡ → 𝑓 uniformly on [𝑎, 𝑏]. Then 𝑓 ∈ ℝ(𝛼) on [𝑎, 𝑏], and 

∫ 𝑓𝑑𝛼
௕

௔
= lim

௡→ஶ
∫ 𝑓௡𝑑𝛼

௕

௔
  

It is sufficient to prove the theorem for real 𝑓௡,𝑛 ≥ 1 

Claim:  f is bounded 

Take 𝜀 = 1 > 0 

Since 𝑓௡ → 𝑓 uniformly on [𝑎, 𝑏], there exists a positive integer N  

such that |𝑓௡(𝑥) − 𝑓(𝑥)| < 𝜀∀ 𝑥 ∈ [𝑎, 𝑏]  

In particular, |𝑓ே(𝑥) − 𝑓(𝑥)| < 1 ∀ 𝑥 ∈ [𝑎, 𝑏] 

⇒ |𝑓(𝑥)| − |𝑓ே(𝑥)| ≤ |𝑓(𝑥) − 𝑓ே(𝑥)| < 1 ∀ 𝑥 ∈ [𝑎, 𝑏]  

⇒ |𝑓(𝑥)| < 1 + |𝑓ே(𝑥)| ≤ 1 + 𝑀 ∀ 𝑥 ∈ [𝑎, 𝑏]  

Where M is an upper bound of |𝑓ே| on [𝑎, 𝑏] 

∴ f is bounded. 

Let 𝑔 and ℎ be two bounded real functions and 𝑔(𝑥) ≤ ℎ(𝑥)∀ 𝑥 ∈ [𝑎, 𝑏]  

For any partition 𝑝 = {𝑎 = 𝑥଴ < 𝑥ଵ <. . . . < 𝑥௡ିଵ < 𝑥௡ = 𝑏} 𝑜𝑓 [𝑎, 𝑏] 

With 𝑚௜ = 𝑔. 𝑙. 𝑏{𝑔(𝑥) | 𝑥௜ିଵ ≤ 𝑥 ≤ 𝑥௜} 

         𝑀௜ = 𝑙. 𝑢. 𝑏{𝑔(𝑥) | 𝑥௜ିଵ ≤ 𝑥 ≤ 𝑥௜} 

         𝑚୧
ᇱ = 𝑔. 𝑙. 𝑏{ℎ(𝑥) | 𝑥௜ିଵ ≤ 𝑥 ≤ 𝑥௜} 

         𝑀௜
ᇱ = 𝑙. 𝑢. 𝑏{ℎ(𝑥) | 𝑥௜ିଵ ≤ 𝑥 ≤ 𝑥௜} 𝑓𝑜𝑟 𝑖 = 1,2,3, . . . . 𝑛  

We have 𝑚௜ ≤ 𝑚୧
ᇱ and 𝑀௜ ≤ 𝑀௜

ᇱ                      (∵ 𝑔(𝑥) ≤ ℎ(𝑥)∀𝑥 ∈ [𝑎, 𝑏]) 

∴  𝐿(𝑝, 𝑔, 𝛼) = ∑ 𝑚௜∆𝛼௜
௡
௜ୀଵ ≤ ෌ 𝑚୧

ᇱ∆𝛼௜
௡

௜ୀଵ
= 𝐿(𝑝, ℎ, 𝛼)  

𝑈(𝑝, 𝑔, 𝛼) = ∑ 𝑀௜∆𝛼௜
௡
௜ୀଵ ≤ ෌ 𝑀௜

ᇱ∆𝛼௜
௡

௜ୀଵ
= U(𝑝, ℎ, 𝛼)  

This is true for every partition P of [𝑎, 𝑏]  
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So, ∫ 𝑔𝑑𝛼
௕

௔
= 𝑠𝑢𝑝{𝐿(𝑝, 𝑔, 𝛼) | 𝑝 𝑖𝑠 𝑎 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 [𝑎, 𝑏] }  

≤ 𝑠𝑢𝑝{𝐿(𝑝, 𝑔, 𝛼) | 𝑝} = ∫ ℎ𝑑𝛼
௕

௔
  

Similarly ∫ 𝑔𝑑𝛼
௕ത

௔
≤ ∫ ℎ𝑑𝛼

௕ത

௔
 

Claim: 𝑓 ∈ ℝ(𝛼) and lim
௡→ஶ

∫ 𝑓௡𝑑𝛼
௕

௔
= ∫ 𝑓𝑑𝛼

௕

௔
 

Let 𝜀 > 0 be given 

Since {𝑓௡} converges uniformly on [𝑎, 𝑏] to 𝑓, there exists a positive integer 𝑁(𝜀) such that 

|𝑓௡(𝑥) − 𝑓(𝑥)| <
ఌ

ଶ[ଵାఈ(௕)ିఈ(௔)]
 𝑤ℎ𝑒𝑛𝑒𝑣𝑒𝑟 𝑛 ≥ 𝑁(𝜀)∀𝑥 ∈ [𝑎, 𝑏]  

𝑓(𝑥) −
ఌ

ଶ[ଵାఈ(௕)ିఈ(௔)]
< 𝑓௡(𝑥) < 𝑓(𝑥) +

ఌ

ଶ[ଵାఈ(௕)ିఈ(௔)]
  whenever 𝑛 ≥ 𝑁(𝜀)∀𝑥 ∈ [𝑎, 𝑏]  

Now by the proof given above, it follows that  

න ቀ𝑓 −
ఌ

ଶ[ଵାఈ(௕)ିఈ(௔)]
ቁ 𝑑𝛼

௕

௔

≤ ∫ 𝑓௡𝑑𝛼
௕

௔
≤ න ቀ𝑓 +

ఌ

ଶ[ଵାఈ(௕)ିఈ(௔)]
ቁ 𝑑𝛼

௕

௔

  for 𝑛 ≥ 𝑁(𝜀) 

∫ 𝑓𝑑𝛼
௕

௔
− 𝜀 < ∫ 𝑓௡𝑑𝛼

௕

௔
< ∫ 𝑓𝑑𝛼

௕

௔
+ 𝜀 𝑓𝑜𝑟 𝑛 ≥ 𝑁(𝜀)  

ቚ∫ 𝑓௡𝑑𝛼
௕

௔
− ∫ 𝑓𝑑𝛼

௕

௔
ቚ < 𝜀 𝑓𝑜𝑟 𝑛 ≥ 𝑁(𝜀)  

∴ lim
௡→ஶ

∫ 𝑓௡𝑑𝛼
௕

௔
= ∫ 𝑓𝑑𝛼

௕

௔
  

By symmetry, we have that lim
௡→ஶ

∫ 𝑓௡𝑑𝛼
௕

௔
= ∫ 𝑓𝑑𝛼

௕

௔
 

So, since ∫ 𝑓௡𝑑𝛼
௕

௔
= ∫ 𝑓𝑑𝛼

௕

௔
, 

 lim
௡→ஶ

∫ 𝑓௡𝑑𝛼
௕

௔
= lim

௡→ஶ
∫ 𝑓௡𝑑𝛼

௕

௔
  

∴ ∫ 𝑓𝑑𝛼
௕

௔
= lim

௡→ஶ
∫ 𝑓௡𝑑𝛼

௕

௔
= lim

௡→ஶ
∫ 𝑓௡𝑑𝛼

௕

௔
= ∫ 𝑓𝑑𝛼

௕

௔
  

Hence, 𝑓 ∈ ℝ(𝛼) and ∫ 𝑓𝑑𝛼
௕

௔
= lim

௡→ஶ
∫ 𝑓௡𝑑𝛼

௕

௔
. 
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3.3.2. Theorem: Let 𝛼 be a bounded variation on [𝑎, 𝑏]. Assume that each term of the sequence 

{𝑓௡} is a real valued function such that 𝑓௡𝜖𝑅(𝛼) on [𝑎, 𝑏] for each 𝑛 = 1, 2, … Assume that 

𝑓௡ → 𝑓 uniformly on [𝑎, 𝑏] and define 𝑔௡(𝑥) = ∫ 𝑓௡(𝑡)𝑑𝛼(𝑡)
௫

௔
 if 𝑥𝜖[𝑎, 𝑏], 𝑛 = 1, 2, … Then we 

have: 

a) 𝑓𝜖𝑅(𝛼) on [𝑎, 𝑏]. 

b) 𝑔௡ → 𝑔 uniformly on [𝑎, 𝑏], where 𝑔(𝑥) = ∫ 𝑓(𝑡)𝑑𝛼(𝑡)
௫

௔
. 

Note: The conclusion implies that, for each x in [a, b], we can write  

lim
௡→ஶ

∫ 𝑓௡ (𝑡)𝑑𝛼(𝑡) = ∫ lim
௡→ஶ

𝑓௡ (𝑡)𝑑𝛼(𝑡).
௫

௔

௫

௔
  

This property is often described by saying that a uniformly convergent sequence can be 

integrated term by term. 

Proof: we can assume that 𝛼 is increasing with 𝛼(𝑎) < 𝛼(𝑏). 

To prove (a) 

We will show that f satisfies Riemann’s condition with respect to 𝛼 on [a, b]. 

Given 𝜀 > 0, choose N so that 

|𝑓(𝑥) − 𝑓ே(𝑥)| <
ఌ

ଷ[ఈ(௕)ିఈ(௔)]
, for all x in [a, b]. 

Then, for every partition P of [a, b], we have 

|𝑈(𝑃, 𝑓 − 𝑓ே , 𝛼)| ≤
ఌ

ଷ
 and |𝐿(𝑃, 𝑓 − 𝑓ே , 𝛼)| ≤

ఌ

ଷ
 

For this N, choose 𝑃ఌ so that P finer than 𝑃ఌ implies 

 𝑈(𝑃, 𝑓ே , 𝛼) − 𝐿(𝑃, 𝑓ே , 𝛼) <
ఌ

ଷ
. 

Then for such P we have 

𝑈(𝑃, 𝑓, 𝛼) − 𝐿(𝑃, 𝑓, 𝛼) ≤ 𝑈(𝑃, 𝑓 − 𝑓ே , 𝛼) − 𝐿(𝑃, 𝑓 − 𝑓ே , 𝛼) 

                                        +𝑈(𝑃, 𝑓ே , 𝛼) − 𝐿(𝑃, 𝑓ே , 𝛼) 

< |𝑈(𝑃, 𝑓 − 𝑓ே , 𝛼)| + |𝐿(𝑃, 𝑓 − 𝑓ே , 𝛼)| +
𝜀

3
≤ 𝜀. 

This proves (a). 
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To prove (b), let 𝜀 > 0 be given and choose N so that 

|𝑓௡(𝑡) − 𝑓(𝑡)| <
𝜀

2[𝛼(𝑏) − 𝛼(𝑎)]
 , 

For all 𝑛 > 𝑁 and every 𝑡 in [𝑎, 𝑏]. If 𝑥 ∈ [𝑎, 𝑏], we have 

|𝑔௡(𝑥) − 𝑔(𝑥)| ≤ ∫ |𝑓௡(𝑡) − 𝑓(𝑡)|𝑑𝛼(𝑡) ≤
ఈ(௫)ିఈ(௔)

ఈ(௕)ିఈ(௔)

ఌ

ଶ
≤

ఌ

ଶ
< 𝜀.

௫

௔
  

This proves that 𝑔௡ → 𝑔 uniformly on [𝑎, 𝑏]. 

3.3.3 Theorem: If a series ∑ 𝑓௡ uniformly converges to 𝑓 on [𝑎, 𝑏] and each 𝑓௡ is continuous 

on [𝑎, 𝑏] then 𝑓 is integrable on [𝑎, 𝑏] and the series ∑൫∫ 𝑓௡𝑑𝑡
௫

௔
൯ converges uniformly to 

∫ 𝑓 𝑑𝑡
௫

௔
, for all x in [𝑎, 𝑏], i.e.,  

∫ 𝑓 𝑑𝑡
௫

௔
 = ∑ ൫∫ 𝑓௡𝑑𝑡

௫

௔
൯ஶ

௡ୀଵ , for all 𝑥 ∈ [𝑎, 𝑏] 

Proof: Since ∑ 𝑓௡ is uniformly convergent to 𝑓 on [𝑎, 𝑏] and each 𝑓௡ continuous on [𝑎, 𝑏], 

therefore the sum function 𝑓 is continuous and hence integrable on [𝑎, 𝑏]. 

Again, since all the functions 𝑓௡ are continuous, therefore the sum of finite number of functions, 

∑ 𝑓௥
௡
௥ୀଵ  is also continuous and integrable on [𝑎, 𝑏], and  

∑ ∫ 𝑓௥𝑑𝑡
௫

௔
= ∫ ∑ 𝑓௥𝑑𝑡௡

௥ୀଵ
௫

௔
௡
௥ୀଵ   

By the uniform convergence of the series, for 𝜀 > 0, we can find an integer 𝑁 such that for all 

𝑥 in [𝑎, 𝑏] 

|𝑓 − ∑ 𝑓௥
௡
௥ୀଵ | <

ఌ

(௕ି௔)
, for all 𝑛 ≥ 𝑁 

For such values of 𝑛, and all 𝑥 in [𝑎, 𝑏] 

ห∫ 𝑓𝑑𝑡 − ∑ 𝑓௥𝑑𝑡௡
௥ୀଵ

௫

௔
ห = ห∫ (𝑓 − ∑ 𝑓௥

௡
௥ୀଵ )𝑑𝑡

௫

௔
ห  

                                 ≤ ∫ |𝑓 − ∑ 𝑓௥
௡
௥ୀଵ |

௫

௔
𝑑𝑡 

                                 <
ఌ

௕ି௔
∫ 𝑑𝑡 ≤ 𝜀

௫

௔
 

That implies ∑ ൫∫ 𝑓௡𝑑𝑡
௫

௔
൯ஶ

௡ୀଵ  converges uniformly to ∫ 𝑓 𝑑𝑡
௫

௔
 on [𝑎, 𝑏] 

That is ∫ 𝑓 𝑑𝑡
௫

௔
 = ∑ ൫∫ 𝑓௡𝑑𝑡

௫

௔
൯ஶ

௡ୀଵ , for all 𝑥 ∈ [𝑎, 𝑏] 
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3.4  EXAMPLES: 

3.4.1 Example 1: The series  

1 − 𝑥 + 𝑥ଶ − 𝑥ଷ + ⋯ =
ଵ

ଵା௫
, (0 < 𝑥 < 1)  

Each term is integrable. 

Solution: Given equations is  

1 − 𝑥 + 𝑥ଶ − 𝑥ଷ + ⋯ =
ଵ

ଵା௫
, (0 < 𝑥 < 1)   

Integrating from 0 to a, the right hand side gives 

∫
ௗ௫

ଵା௫
= 𝑙𝑜𝑔 2

ଵ

଴
  

While the other side gives  

∫ (1 − 𝑥 + 𝑥ଶ − 𝑥ଷ + ⋯ )𝑑𝑥
ଵ

଴
= ቂ𝑥 −

௫మ

ଶ
+

௫య

ଷ
−

௫ర

ସ
+ ⋯ ቃ

଴

ଵ

  

                                                = 1 −
ଵ

ଶ
+

ଵ

ଷ
−

ଵ

ସ
+ ⋯ 

But we know that 

𝑙𝑜𝑔 2 = 1 −
ଵ

ଶ
+

ଵ

ଷ
−

ଵ

ସ
+ ⋯  

Thus the two sides are equal at 𝑥 = 1, and so term by term integration is possible over [0,1], 

even though the given series is not uniformly convergent on [0,1]. 

3.4.2 Example 2: The sequence {𝑓௡}, where  

𝑓௡(𝑥) = 𝑛𝑥𝑒ି௡௫మ
, 𝑛 = 1, 2, 3, ….  

Converges point wise to zero on [0,1]. 

Solution: Given that 

𝑓௡(𝑥) = 𝑛𝑥𝑒ି௡௫మ
, 𝑛 = 1, 2, 3, ….  

Here  

∫ 𝑓 𝑑𝑥 = 0
ଵ

଴
  

and 
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∫ 𝑓௡𝑑𝑥 =
ଵ

ଶ
ൣ−𝑒ି௡௫మ

൧
଴

ଵ
=

ଵ

ଶ
(1 − 𝑒ି௡)

ଵ

଴
  

Therefore 

lim
௡→ஶ

∫ 𝑓௡𝑑𝑥 = lim
௡→ஶ

ଵ

ଶ
(1 − 𝑒ି௡) =

ଵ

ଶ
≠ ∫ 𝑓 𝑑𝑥.

ଵ

଴

ଵ

଴
  

Hence, convergence cannot be uniform on [0,1]. 

Note: if we, first, show that the sequence is non-uniformly convergent, then this is an example 

of a sequence which, though not uniformly convergent yet, has an integrable limit function.  

3.4.3 Example 3: Show that the sequence {𝑓௡}, where 

𝑓௡(𝑥) = ቐ

𝑛ଶ𝑥,                 0 ≤ 𝑥 ≤ 1/𝑛

−𝑛ଶ𝑥 + 2𝑛          1/𝑛 ≤ 𝑥 ≤ 2/𝑛
0,                        2/𝑛 ≤ 𝑥 ≤ 1

  

is not uniformly convergent on [0,1]. 

Solution: Given that  

𝑓௡(𝑥) = ቐ

𝑛ଶ𝑥,                 0 ≤ 𝑥 ≤ 1/𝑛

−𝑛ଶ𝑥 + 2𝑛          1/𝑛 ≤ 𝑥 ≤ 2/𝑛
0,                        2/𝑛 ≤ 𝑥 ≤ 1

  

The sequence converges to 𝑓, where 𝑓(𝑥) = 0, for all 𝑥 belongs to [0,1]. Each function 𝑓௡ and 

𝑓 are continuous on [0,1]. 

Also 

∫ 𝑓௡ 𝑑𝑥 = ∫ 𝑛ଶ𝑥 𝑑𝑥 + ∫ (−𝑛ଶ𝑥 + 2𝑛)𝑑𝑥 + ∫ 0 𝑑𝑥 = 1
ଵ

ଶ/௡

ଶ/௡

ଵ/௡

ଵ/௡

଴

ଵ

଴
  

But 

 ∫ 𝑓 𝑑𝑥 = 0
ଵ

଴
 

Therefore  

lim
௡→ஶ

∫ 𝑓௡𝑑𝑥 ≠ ∫ 𝑓 𝑑𝑥.
ଵ

଴

ଵ

଴
  

So (Theorem 3.2.1) the sequence {𝑓௡} cannot convergent uniformly on [0,1]. 

3.4.4 Example 4: Show that the sequence {𝑓௡}, where  
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𝑓௡(𝑥) =
୪୭୥ (ଵା௡య௫మ)

௡మ
  

is uniformly convergent on the interval [0,1]. 

Solution: Given function is  

𝑓௡(𝑥) =
୪୭୥ (ଵା௡య௫మ)

௡మ
  

The sequence {𝜑௡}, where 𝜑௡(𝑥) =
ଶ௡௫

ଵା௡య௫మ
≡ 𝑓ᇱ

௡
(𝑥), may be easily shown to be uniformly 

convergent to 𝜑, where 𝜑(𝑥) = 0, on [0, 1]. Also each function 𝜑௡ is continuous on the given 

interval.  

Therefore (by Theorem 3.2.1) the sequence of its integrals, {𝑓௡} converges uniformly to 

∫ 𝜑
௫

଴
 𝑑𝑡 = 0 on [0, 1]. 

3.5  SUMMARY:  

In this Lesson we are given detailed explanation about uniform convergence and integration of 

function through definitions and theorems.  

3.6  TECHNICAL TERMS: 

 Non-uniformly convergent  

 Integrable limit function  

 Uniformly convergent  

3.7  SELF-ASSESSMENT QUESTIONS: 

1. If 𝐼(𝑥) = ൜
0        (𝑥 ≤ 0),
1         (𝑥 > 0),

 if {𝑥௡} is a sequence of district points of (𝑎, 𝑏), and if ∑|𝑐௡| 

converges, prove that the series 𝑓(𝑥) = ∑ 𝑐௡𝐼(𝑥 − 𝑥௡)ஶ
௡ୀଵ    (𝑎 ≤ 𝑥 ≤ 𝑏) converges 

uniformly, and that 𝑓 is continuous for every 𝑥 ≠ 𝑥௡. 

2. Let {𝑓௡} be a sequence of continuous functions which converges uniformly to a function 

𝑓 on a set 𝐸. Prove that lim
௡→ஶ

𝑓௡(𝑥௡) = 𝑓(𝑥) for every sequence of points 𝑥௡ ∈ 𝐸 such 

that 𝑥௡ → 𝑥, and 𝑥 ∈ 𝐸. Is the converse of this true?. 

3. Let 𝛼 be bounded variation on [𝑎, 𝑏] and assume that ∑ 𝑓௡(𝑥) = 𝑓(𝑥) (uniformly on 

[𝑎, 𝑏]), where each 𝑓௡ is a real-valued function such that 𝑓௡ ∈ 𝑅(𝛼) on [𝑎, 𝑏].  

Then we have 

a) 𝑓 ∈ 𝑅(𝛼) on [𝑎, 𝑏]. 
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b) ∫ ∑ 𝑓௡(𝑡)𝑑𝛼(𝑡) = ∑ ∫ 𝑓௡(𝑡)𝑑𝛼(𝑡)
௫

௔
ஶ
௡ୀଵ

ஶ
௡ୀଵ

௫

௔
 (uniformly on [𝑎, 𝑏]). 

Hint: Apply Theorem 2.2.2 to the sequence of partial sums. 

Note: This theorem is described by saying that a uniformly convergent series can be integrated 

by term by term.  

3.8  SUGGESTED READINGS: 

1. Principles of Mathematics Analysis by Walter Rudin, 3rd Edition. 

2. Mathematical Analysis by Tom M.Apostal, Narosa Publishing House, 2nd Edition, 

1985. 

3. Mathematical Analysis by S.C. Malik and Savita Arora, New Age International (P) 

Limited, 2nd Edition, 1997. 

 

-  Dr. K. Gangadhar 

 

 



LESSON - 4 

UNIFORM CONVERGENCE AND 
DIFFERENTIATION 

 
OBJECTIVES: 
 

After studying the lesson you should able to: 
Understand the concept of Uniform convergence, concept of Differentiation, solved problems 
and related Theorems. 
 

STRUCTURE: 
 

4.1  Introduction  

4.2  Theorems 

4.3  Solved Examples 

4.4  Summary 

4.5  Technical terms 

4.6  Self -Assessment Questions   

4.7  Suggested readings 
 

4.1 INTRODUCTION: 

In this chapter we learn about the definitions of Uniform convergence, Differentiable, 
Monotonically increasing, Monotonically decreasing and Riemann Integrable. We also know 
about some Theorems and Solved problems. 
 

4.1.1 Definition: Uniform convergence 

  A function :f D R  is uniformly continuous if for every 0 , there exist a 0   

such that ( ) ( )f x f t  for all ,x t D  satisfying x t   . 

Examples: 
1) Linear functions are examples of uniformly continuous functions. 
2) Every continuous function on a compact interval is uniformly continuous functions. 

 

4.1.2 Definition: Differentiable 

Let :[ , ]f a b R  and [ , ]x a b . Suppose a < t < b and t x . If 
( ) ( )

lim
t x

f t f x

t x




exist. 

Then it is called derivative of f at x. We write it by ( )f x . 

( ) ( )
( ) lim .

t x

f t f x
f x

t x

 


 

Then we say that f is differentiable at x. 

4.1.3 Definition: Monotonically increasing  

Let f be a real valued function on (a, b). Then f is said to be Monotonically increasing, 
if ( ) ( ).a x y b f x f y      
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(or) 
Suppose f is differentiable function on (a, b). If ( ) 0, ( , )f x x a b     then we say that 

f  is Monotonically increasing. 
 

4.1.4 Definition: Monotonically decreasing 

Let f be a real valued function on (a, b). Then f is said to be Monotonically 
decreasing, if ( ) ( ).a x y b f x f y      

(or) 
Suppose f is differentiable function on (a, b). If ( ) 0, ( , )f x x a b    then we say that f 

is Monotonically decreasing. 
 

4.1.5 Definition: Compact set 

Let X be a metric space and E X . Then the E is said to be compact, if every open 

cover for E has a finite sub cover for E. 

 
1 2

1

...... .
n

E G E G G G   






        Here  G is a collection of open sets. 

4.1.6 Definition: Riemann Integrable  

Let f be a bounded function on [a, b] and P = {x0, x1, …,xn} be the partition of [a, b], 

then  1{ ( ) / [ , ]},1i i im Inf f x x x x i n    , 

 1{ ( ) / [ , ]},1i i iM Sup f x x x x i n    , 

 1i i ix x x    . 

1

( , )
n

i i
i

L P f m x


    is called Lower Riemann sum and  

    1

( , )
n

i i
i

U P f M x


  is called Upper Riemann sum. 

Also
b

a

f dx  = Sup {L(P, f) / P is a partition of [a, b] } is called Lower Riemann integral and 

b

a

f dx  = Inf {U(P, f) / P is a partition of [a, b] } is called Upper Riemann integral. 

If 
b b

a a

f dx f dx   then we say that f is Riemann integrable over [a, b]. It is denoted by
b

a

f dx  . 

.
b b b

a aa

f dx f dx f dx      
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4.2  THEOREMS: 
 

4.2.1 Theorem: Suppose {fn} is a sequence of functions, differentiable on [a, b] and such 
that {fn(x0)} converges for some point x0 on [a, b]. If  nf  converges uniformly on [a, b], then  

{fn} converges uniformly on [a, b], to a function f , and ( ) lim ( )nn
f x f x


    (a ≤ x ≤ b). 

Proof:  

Let {fn} is a sequence of differentiable functions on [a, b] and {fn(x0)} converges for some 
point x0 on [a, b]. 

For given 0 there exist a positive integer N1 such that 0 0( ) ( )
2n mf x f x


 
 
 n ,m ≥ N1.  

Let  nf  converges uniformly on [a, b]. 

For given 0  there exist a positive integer N2 such that ( ) ( )
2( )n mf t f t

b a

  


,   

 n, m ≥ N2 and [ , ].t a b   

Let N = Max {N1, N2} then 0 0( ) ( )
2n mf x f x


 
 
and ( ) ( )

2( )n mf t f t
b a

  


,  n, m ≥ N and 

[ , ].t a b   (1)  

By applying the Lagrange’s Mean value Theorem to the function (fn- fm), 

We have for , [ , ]x t a b , ( )( ) ( )( ) . ( ) ( )n m n m n mf f x f f t x t f f p     
 
for some point p 

between x and t, if n, m ≥ N.   

For any , [ , ]x t a b , we have 

 ( ) ( ) ( ) ( ) . (1)
2( )

1
2 ( )

( ) ( ) ( ) ( ) (2)
2

n m n m

n m n m

f x f x f t f t x t by
b a

x t

b a

f x f x f t f t


    



  
   


     



  n, m ≥ N. 

For any x [a, b] and n, m ≥ N, 

We have 
0 0 0 0

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )n m n m n m n mf x f x f x f x f x f x f x f x         

      

0 0 0 0
( ) ( ) ( ) ( ) ( ) ( )

(1) (2)
2 2

n m n m n mf x f x f x f x f x f x

by and

     

 
 



  

( ) ( ) , , , [ , ].n mf x f x n m N x a b       



Centre for Distance Education   4.4                  Acharya Nagarjuna University  

  {fn} converges uniformly on [a, b]. 

Claim: ( ) lim ( )nn
f x f x


 

  
[ , ].x a b   

Since {fn} converges uniformly to a function f on [a, b]. 

  lim ( ) ( )nn
f x f x


  

Fix x [a, b]. 

For any a t b   with t x , define 
( ) ( )

( )
f t f x

t
t x

 



and

( ) ( )
( ) n n

n

f t f x
t

t x
 




.    

Now 
( ) ( )

lim ( ) lim ( ), , 1,2,3....n n
n n

t x t x

f t f x
t f x a x b n

t x


 

     


  (3)  

From (1) we have ( ) ( )
2( )n mf t f t

b a

  


,  n, m ≥ N, [ , ]t a b   

lim ( ) lim ( ) , ( (3))
2( )n m

t x t x
t t by

b a
 

 


  


  

 ( ) ( ) ,
2( )n mt t

b a
  

  


 n, m ≥ N, [ , ]t a b  . 

Therefore by Cauchy - Criterion for uniform convergence we have { ( )}n x converges 

uniformly for t x . 
Since {fn} converges to f, we conclude that    

( ) ( ) ( ) ( )
lim ( ) lim ( )n n

n
n n

f t f x f t f x
t t

t x t x
 

 

 
  

 
Uniformly for a t b    

with t x .  (4)  

Then by known theorem, (3) and (4) shows that lim ( ) lim ( ).nt x n
t f x

 
  

 
( ) ( )

lim ( ) lim ( ) lim ( )n
n t x t x

f t f x
f x t f x

t x


  

   


 , for .a x b   

  lim ( ) ( ) [ , ]nn
f x f x x a b


    . 

4.2.2 Theorem: There exists a real continuous function on the real line which is nowhere 
differentiable. 
 

Proof:  
Define ( )x x   where 1 1x   , and  

We extend  to R  by ( 2) ( )x x   in the following. 

We know that every real number must be in an interval of the form [2n-1, 2n+1], for some 
integer n. 
Define : R R  by ( ) 2x x n    if 2n-1≤ x ≤ 2n+1. 
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Then 1, int .
0, int .( ) if m is aneven egre

if m is anodd egerm   

 ( )x x   , for -1≤ x ≤ 1 and also ( 2 ) ( )x n x    for all ,x R n Z  . 

Let m Z ,  

We have 2m-1≤ x ≤ 2m+1 

  (2m-1)+2n ≤ x+2n ≤ (2m+1)+2n. 

 2(m+n)-1 ≤ x+2n ≤ 2(m+n)+1. 

( 2 ) ( 2 ) 2( ) 2 ( ).x n x n m n x m x           

Since 2 is the least positive period, so  is periodic function with period 2.  

Clearly is continuous on R . 

For x R , Define  
0

3
( ) 4 .

4

n
n

n

f x x




   
 

  

Since0 ( ) 1x   so  3 3
4 .

4 4

n n
n x      

   
 

Since 
0

3

4

n

n





 
 
 

 is convergent then by weierstrass M-Test, the series 
0

3
(4 )

4

n
n

n

x




 
 
 

 converges 

uniformly on R. 
Since f is the uniform limit of sequence of continuous functions it follows that f is continuous 
on R.      
Prove that f is differentiable at nowhere. 

Let x R be a fixed real number and m is any positive integer. 

Define 
1

2.4m m
    

1 1

2.4 2.4m m m
     

1
4

2
m

m  is not an integer. 

Define
   4 ( ) 4 ( )n n

m

n
m

x x  




 
 . 

If n > m then n = m + p, for some positive integer p. 

To prove 0n   and 4 .n
m is an even integer. 

Consider 
1

4 . 4 .
2.4

n n
m m

    
 
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2 1

1
.4 .4

2
1

.4
2
1

.4 ( )
2
1

.4
2
2

n m

n m

m p m

p

p

n m p





 



 

 

   

 

 

  

  2k   is an even integer. 
 4 .n

m is an even integer. 

Consider 
   4 ( ) 4 ( )n n

m

n
m

x x  




 
  

                   

   

     

4 4 4 ( )

4 4 ( )
( 2 ) ( )

0

n n n
m

m

n n

m

x x

x x
x n x

  



 
 



 



  



  

 0n   if n > m.   (1)  

Show that 4n
n  if n m . 

Since 
   4 ( ) 4 ( )n n

m

n
m

x x  




 


 

   

   

 

4 ( ) 4 ( )

4 ( ) 4 4 ( )

4 ( ) 4 4 ( )
( )

n n
m

n
m

n n n
m

m

n n n
m

m

x x

x x

x x
x x

  




  








 
 

 


 
 

 

4 ( ) 4 4 ( )

4

4
4

n n n
m

m

n
m

m

n
nm

m

x x










 




 

 



Analysis – II     4.7          Uniform Convergence and Differ… 

 
 

 4n
n  if n m . (2)  

Now 
 

0 0

3 3
4 ( ) (4 )

( ) ( ) 4 4

n n
n n

m
n nm

m m

x x
f x f x

  

 

 

 

            
 

 

 
0

0

4 ( ) (4 )3

4

3
( )

4

n nn
m

n m

n

n n
n

x x

by definition of

  



 









    
 

   
 



 

 

0 1

3 3

4 4

n nm

n n
n n m

 


  

       
   

   

0

3
0 ( (1) )

4

nm

n
n

by for n m


    
 

   

0

3
4 ( (2) )

4

nm
n

n

by for n m


   
 

   

0

0

3
4

4

3

nm
n

n
n

m
n

n












 

0

( ) ( )
3

m
nm

nm

f x f x
 

 
   

1

0 0

( ) ( )
3 3 3

m m
n m nm

n nm

f x f x




 

 
      

Take as m  then 0m  . 

 f  is not differentiable, because 
1

0

3 3
m

m n

n





 is large value as m  . 

The function f  is continuous at everywhere on R but nowhere differentiable on R. 
 

4.3  SOLVED EXAMPLES: 
 

4.3.1 Example: Give an example the limit of integral need not be equal to the Integral of 

limit. 

Solution:  

Consider 2( ) (1 ) ,0 1, 1, 2,3,....n
nf x nx x x n      
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Claim: 
1 1

0 0

lim ( ) lim ( )n n
n n

f x dx f x dx
 

     . 

Now 
1 1 1

2 2

0 0 0

( ) (1 ) 2 (1 )
2

n n
n

n
f x dx nx x dx x x dx    

    

12 1

0

(1 ) 1 0 1
0

1 12 1 2 1 2( 1) 2 (1 ) 2(1 )

nn x n n n

n n n n
n n

                   

  

1

0

1 1 1
lim ( ) lim

1 2(1 0) 22(1 )
nn n

f x dx

n

 
  


 . (1)  

Now 2lim ( ) lim (1 )n
nn n

f x nx x
 

    . 

1

0

lim ( )n
n

f x dx


     (2)  

From (1) and (2) we have
1 1

0 0

lim ( ) lim ( )n n
n n

f x dx f x dx
 

     . 

4.3.2 Example: If f is real function and  
0

lim ( ) ( ) 0
h

f x h f x h


    . Thus this implies that f 

is continuous on R. 

Solution:  

Consider :f R R  be a function defined by
( ) 0

1 0

f x x if x

if x

 

 
.                       

Since 
0 0

lim ( ) lim 0
x x

f x x
 

   and f (0) = 1. 

0
lim ( ) (0)
x

f x f


  so  f is not continuous at x = 0. 

If x = 0 then  
0

lim ( ) ( )
h

f x h f x h


    

      

 
0

0

0

lim ( ) ( )

lim

lim

0

h

h

h

f h f h

h h

h h







  

     

    


 

  
0

lim ( ) ( ) 0
h

f x h f x h


     does not implies that f is continuous on R. 
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4.4  SUMMARY: 
 

 Uniform convergence allows us to interchange limits and differentiation under certain if 
a sequence of differentiable functions converges uniformly and the derivatives also 
conditions. That means converges uniformly. Also the limit function is differentiable and its 
derivative is the limit of the derivatives. 
 

4.5  TECHNICAL TERMS: 
 

 Differentiable 
 Monotonically increasing 
 Monotonically decreasing 
 Compact set 
 Riemann integrable  

 
4.6  SELF- ASSESSMENT QUESTIONS:   
 

1. For n = 1, 2, 3,.., x real, put
2

( )
1n

x
f x

nx



. Show that {fn} converges uniformly to a 

function f, and that the equation '( ) lim ' ( )nn
f x f x


  is correct if 0x  , but false if x = 0. 

2. If 
0 ( 0),

( )
1 ( 0),

x
I x

x


  

 if {xn} is a sequence of distinct points of (a, b), and if nc  

converges, prove that the series 
1

( ) ( ) ( )n n
n

f x c I x x a x b




     converges uniformly, and 

that f  is continuous for every nx x . 

3. Let {fn}be a sequence of continuous functions which converges uniformly to a function f 

on a set E. Prove that lim ( ) ( )n nn
f x f x


 for every sequence of points nx E such that nx x

,and x E . Is the converse of this true? 

4. Letting g(x) denotes the fractional part of the real number x, consider the function 

2
1

( )
( )

n

nx
f x

n





  (x real). Find all discontinuities of f, and show that they from a countable 

dense set. Show that f  is nevertheless Riemann-integral on every bounded interval.  

5. Suppose {fn}, {gn} are defined on E, and 

(a) nf has uniformly bounded partial sums; 

(b) 0ng   Uniformly on E; 

(c) 1 2 3( ) ( ) ( ) ....g x g x g x   for every .x E  

Prove that n nf g converges uniformly on E. 

6. Suppose g and fn (n = 1, 2, 3,…) are defined on (0,  ), are Rieman- integrable on  
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[t, T] whenever 0< t < T <  , ,n nf g f f  uniformly on every compact subset of (0,  ), 

and 
0

( ) .g x dx


  Prove that 
0 0

lim ( ) ( ) .n
n

f x dx f x dx
 


 

 

7. Assume that {fn} is a sequence of monotonically increasing functions on R1 with 

0 ( ) 1nf x  for all x and all n.  

 (a) Prove that there is a function f and a sequence such that ( ) lim ( )nkk
f x f x


 for 

every 1x R . 

 (b) If, moreover, f is continuous, prove that nkf f uniformly on R1. 

 8. Let f  be a continuous real function on R1 with the following properties: for every t, 

and 

1
0 (0 )

3( )
2

1 ( 1).
3

t
f t

t

   
  


   

Put ( ) ( ( ), ( ))t x t y t  , where 2 1 2

1 1

( ) 2 (3 ), ( ) 2 (3 ).n n n n

n n

x t f t y t f t
 

  

 

   Prove that   is 

continuous and that   maps I = [0, 1] onto the unit square 2 2I R . If fact, show that 

maps the Cantor set onto I2. 

 

4.7  SUGGESTED READINGS: 

 

1.  Principles of Mathematical Analysis by Walter Rudin, 3rd Edition. 

2.  Mathematical Analysis by Tom M. Apostal, Narosa Publishing House, 2nd Edition, 1985. 

 

- Dr. N.S.L.V. Narasimharao. 

 

 



 

 

LESSON - 5 

EQUICONTINUOUS FAMILY OF FUNCTIONS 
 

OBJECTIVES: 
 

After studying the lesson you should able to: 

Illustrate the effects of Equicontinuous, Uniform bounded Family of functions and Uniformly 
convergent subsequence. 
 

STRUCTURE: 
 

5.1  Introduction 

5.2  Solved Examples 

5.3  Theorems 

5.4  Summary 

5.5  Technical Terms 

5.6  Self- Assessment Questions   

5.7  Suggested Readings 

 

5.1 INTRODUCTION: 
 

 In this chapter we learn about the definitions of Point Wise Bounded Sequence, 

Uniform Bounded Sequence, Equicontinuous and Riemann Integrable. We also know about 

some Theorems and Solved problems. 
 

5.1.1 Definition: Point Wise Bounded Sequence  

Let E be a subset of a Metric space ‘X’ and let {fn} be a sequence of functions defined 

on E. We say that {fn} is point wise bounded on E, if the sequence {fn(x)} is bounded for 

every xE if there exists a finite valued function   defined on E such that 

( ) ( ) , 1,2,3,....nf x x x E n     

 

5.1.2 Definition: Uniform Bounded Sequence  

Let E be a subset of a Metric space ‘X’ and let {fn} be a sequence of functions defined 

on E. We say that {fn} is Uniform bounded on E, if there exists a number M such that 

( ) , 1,2,3,....nf x M x E n     
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5.1.3 Definition: Equicontinuous  

A family ‘F’ of complex functions defined on E in a metric space (X, d) is said to be 

Equicontinuous on E if for every  >0 there exists a  >0 such that ( ) ( )f x f y  

whenever d(x, y) <  for x, yE and f F. 
 

5.1.4  Definition: Riemann Integrable  

Let f be a bounded function on [a, b] and P = {x0, x1, …,xn} be the partition of [a, b], 

then  1{ ( ) / [ , ]},1i i im Inf f x x x x i n    , 

 1{ ( ) / [ , ]},1i i iM Sup f x x x x i n    , 

 1i i ix x x    . 

1

( , )
n

i i
i

L P f m x


    is called Lower Riemann sum and  

    1

( , )
n

i i
i

U P f M x


  is called Upper Riemann sum. 

Also
b

a

f dx  = Sup {L(P, f) / P is a partition of [a, b] } is called Lower Riemann integral and 

b

a

f dx  = Inf {U(P, f) / P is a partition of [a, b] } is called Upper Riemann integral. 

If 
b b

a a

f dx f dx   then we say that f is Riemann integrable over [a, b]. It is denoted by
b

a

f dx  . 

 

5.2  SOLVED EXAMPLES: 
 

5.2.1 Example: If 
2

2 2
( ) , [0,1], 1,2,3,...

(1 )n

x
f x x n

x nx
  

 
 then show that nf is 

Uniformly bounded on [0,1] and It has no subsequence which converges uniformly on [0,1]. 

     (or) 

The sequence nf converges on [0,1], but not uniformly. 

Solution:  

Let 
2

2 2
( ) , [0,1], 1,2,3,...

(1 )n

x
f x x n

x nx
  

 
 

Since  2
1  0nx   
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 

 2

2

2

22

2

0

1

( ) 1, [0,1], 1, 2,3,...

1

1

n

x

x

f

n

x x

x nx

n

x x

  

 

    

 

 
 

  nf is uniformly bounded on [0,1].  

Now 
2 2

2 2 2
lim ( ) lim 0

(1 )nn n

x x
f x

x nx x 
  

  
. 

  nf converges to ‘0’. 

Let positive integer ‘n’ there exist 
1

[0,1]
n
 . 

Now
2 2

2 2 2

(1/ ) (1/ )
(1/ ) 1

(1/ ) (1 .(1/ )) (1/ ) 0n

n n
f n

n n n n
  

  
 

   (1/ )nf n converges to 1. 

  nf has no subsequence which converges uniformly on[0,1]. 

 

5.2.2 Example:  If fn(x) = sin nx, 0 ≤ x ≤ 2n, n = 1, 2, 3,….then there is no subsequence 

which converges point wisely on [0, 2 ] .  

Solution:  

Let fn(x) = sin nx, 0 ≤ x ≤ 2n, n = 1,2,3,…. 

Now ( ) sin 1nf x nx   

( ) 1 [0,2 ],nf x x n      

  nf is uniformly bounded sequence of continuous functions on a compact set [0, 2 ] . 

In contrary way, we suppose that a subsequence { fnk } of converges point wisely on 

[0, 2 ] . 

Now  1lim sin sin 0 0 0k k
k

n x n x
    . 

The sub sequence  nkf converges to ‘0’. 

Since  2

1lim sin sin 0k kk
n x n x

   

By Lebesgue Integral formula on bounded convergent sequence, we have 

 
2

2

1

0

lim sin sin 0k k
k

n x n x



  so 2 0  .It is a contradiction. 
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Hence there is no subsequence { fnk }  which converges point wisely on[0, 2 ] . 

 

5.3 THEOREMS: 
 

5.3.1 Theorem: If  nf  is a point wise bounded sequence of complex functions on a countable set E, 

then  nf has a sub sequence  nkf such that ( )nkf x converges for every x E  .  

Proof:  

Let  nf  is a point wise bounded sequence of complex functions on a countable set E. 

Since E is Countable set then the elements of E can be arranged distinct sequence. 

Let E = {x1, x2, ….}, where xi  xj, for i   j. 

Since  nf  is a point wise bounded on E. 

 ( )n if x is bounded for all ix E . 

Since  1( )nf x is bounded then by known theorem (since every bounded sequence have 

convergence sub sequence)  1( )nf x have a convergent subsequence 1 1( )kf x say. 

Let  1 11 12 13, , ,.....S f f f  

Since  2( )nf x is bounded then by known theorem (since every bounded sequence have 

convergence sub sequence)  2( )nf x have a convergent subsequence 2 2( )kf x say. 

Let  2 21 22 23, , ,.....S f f f  

Continuing this process we get  

 1 11 12 13, , ,.....S f f f  

 
 

2 21 22 23

3 31 32 33

, , ,.....

, , ,.....

.................................

S f f f

S f f f



  

From above argument we have  

(i) Sn is a sub sequence of Sn-1, for n = 2,3,4…. 

(ii)  ( )nk nf x Converges. 

Consider the diagonal elements  11 22 33, , ,.....S f f f  

Clearly S is sub sequence Sn for n = 1, 2, 3,…. and  ( )nn if x is converges. ix E   

Hence  nf has a sub sequence  nnf such that ( )nn if x converges for every ix E . 
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5.3.2 Theorem:  If  K is compact metric space. If 𝑓௡ ∈ ℂ(𝐾) for n = 1, 2, 3,…. and if  nf converges 

uniformly on K, then nf is Equicontinuous on K. 

Proof:  

Given K is compact metric space. 

Given 𝑓௡ ∈ ℂ(𝐾) for n = 1, 2, 3,…. 

 fn is complex valued continuous bounded function on K, for n = 1,2,3,…. 

Since fn is continuous function on K and K is compact 

  fn is Uniformly continuous on K. 

For given 0 0 ( ) ( )
3n nf x f y 

      whenever ( , ) , ,d x y x y K   , 

for n = 1, 2, 3,…  (1)   

Since {fn} is Converges Uniformly on K. 

For given 0,  a positive integer N ( ) ( ) , , ,
3n mf x f x n m N x K


       . (2)   

 ( ) ( ) , ,
3n Nf x f x n N x K


      .  (3)   

Claim:  nf is Equicontinuous on K. 

Let ( , ) , ,d x y x y K   . 

Consider ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )n n n N N N N nf x f y f x f x f x f y f y f y        

      ≤ ( ) ( ) ( ) ( ) ( ) ( )n N N N N nf x f x f x f y f y f y      

      < ( (1), (2), (3))
3 3 3

By
  
   

      =  

Hence for given 0 0 ( ) ( )n nf x f y      , whenever ( , ) , ,d x y x y K   , 

for n = 1,2,3,… 

  nf is Equicontinuous on K. 

 

5.3.3 Theorem:  If  K is compact. If 𝑓௡ ∈ ℂ(𝐾) for n = 1, 2, 3,…. and nf  is point wise bounded 

and  Equicontinuous on K, then (a)  nf is Uniform bounded on K. 

                 (b)  nf contains Uniformly convergent subsequence. 
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Proof:  

Given K is compact and 𝑓௡ ∈ ℂ(𝐾) for n = 1,2,3,…. 

Given  nf  is point wise bounded and Equicontinuous on K. 

Proof (a):  

Since  nf  is Equicontinuous on K. 

For given 0 0 ( ) ( )n nf x f y      when ever ( , ) , ,d x y x y K   ,  

for n = 1,2,3,…  (1)         

Since K is compact set 

There exist finite points 1 2 1 2, ,.... ( ) ( ) ...... ( )r rp p p K K N p N p N p           

Since  nf  is point wise bounded on K 

  ( )n if p is bounded, for i = 1,2,3,…..  

There exist positive integer Mi ( )n i if p M   , for i = 1,2,3,…..  (2)    

Let M = Max {M1, M2,……Mr} 

Mi ≤ M , for i = 1,2,3,…..  (3)         

Let 1 2( ) ( ) ...... ( )rx K x N p N p N p         

      ( )ix N p , for some i = 1,2,3,….. 

      ( , )id x p   

      ( ) ( )n n if x f p   (since by (1)) 

       ( ) ( )n n if x f p x y x y      

      ( ) ( )n n if x f p   

      ( ) ( (2))n if x M by   

      ( ) ( (3))nf x M by   

( )nf x M x K    , for n = 1,2,3,…… 

  nf is Uniform bounded on K. 

Proof (b): 

Let E be the countable dense sub set of K. i.e) E K . 

Then by known theorem (Theorem 1) we have  nf has sub sequence  nif such that  ( )nif x  

convergent, for every x E . 



Analysis – II      5.7        Equicontinuous Family of Functions 

 
 

  nf has sub sequence  ig such that ( )ig x  convergent, for every x E , where gi = fni . 

Claim:  ig is uniformly convergent on K. 

Since K is compact set 

There exist finite points 1 2 1 2, ,.... ( ) ( ) ...... ( )r rx x x E K N x N x N x         

Since  ( )ig x convergent for every x E  

  ( )i sg x convergent for every sx E  

For given 0,   a positive integer N ( ) ( ) , ,
3i s j sg x g x i j N


      (4)    

Since 𝑓௡ ∈ ℂ(𝐾) 

 fn is continuous function on K. 

gi is continuous function on K.( since {gi} is a sub sequence of {fn}) 

If x K  

1 2( ) ( ) ...... ( )

( ) 1

( , )

( ) ( ) ( ) (5)
3

r

s

s

i i s i

x N x N x N x

x N x for some s r

d x x

g x g x g iscontinuous on K

  





    

   

 


   

     

Consider  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( (4), (5))
3 3 3

( ) ( )

i j i i s i s j s j s j

i j i i s i s j s j s j

i j

i j

g x g x g x g x g x g x g x g x

g x g x g x g x g x g x g x g x

g x g x by

g x g x

      

      

  
   

 


 

( ) ( )i jg x g x    

Hence for given 0, a positive integer N ( ) ( ) , , ,i jg x g x i j N x K        

  ig is Uniformly convergent on K. 

 

5.3.4 Theorem: Prove that a subset S of ℂ(K) is compact if and only if it is uniformly closed, 

pointwise bounded, and equicontinuous, where K is a compact metric space. 

Proof: 

Given K is a compact metric space. 

Given S is a subset of ℂ(K), the set of continuous functions on K. 
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Necessary part:  

Let S is compact. 

Claim: S is uniformly closed, pointwise bounded and equicontinuous. 

Since S is compact, then it is closed. 

Thus, S is uniformly closed because the convergence is uniform. 

Since S is compact, it is totally bounded. 

Thus, for any x K  , the set { ( ) : }f x f S  is bounded. 

Hence, S is pointwise bounded. 

Since S is compact, it is totally bounded. For each 0   there exist a finite set  

1{ ,..., }nf f  S  such that for any f S , there exist if  with ( , )
3id f f


  

Each if  is uniformly continuous, so there exists 0   such that  ,d x y   implies 

( ) ( )
3i if x f y


   , for all i. 

For any f S , choose if  such that d(f , if ) < 
3


. 

Then 

  ( ) ( ) ( ) ( ) ( ) ( ) ( )
3 3 3i i i if x f y f x f x f x f y f y f y
              . 

Hence, S is equicontinuous. 

 

Sufficient part: 

Let S is uniformly closed, pointwise bounded and equicontinuous. 

Claim: S is compact. 

By the Arzela-Ascoli Theorem, since S is pointwise bounded and equicontinuous, S is relatively 

compact. 

Since S is uniformly closed, it contains all its limit points, and thus is compact. 

 

5.4  SUMMARY:  

 

An Equicontinuous family of functions exhibit similar changes in output when small 

changes in input, ensuring a uniform approach to convergence and compactness. 
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5.5  TECHNICAL TERMS:  

 

Point Wise Bounded Sequence 

Uniform Bounded Sequence 

Equicontinuous 

Riemann Integrable  

 

5.6  SELF ASSESSMENT QUESTIONS: 

 

1. Suppose f  is a real continuous function on R1, fn(t) = f(nt) for n = 1,2, 3,… and { fn}                 

     is equicontinuous on [0,1]. What conclusion can you draw about f  ? 

2. Suppose {fn} is an equicontinuous family of functions on a compact set K, and  

    {fn}converges point wise on K. Prove that {fn} converges uniformly on K.  

3. Let {fn}be a uniform bounded sequence of functions which are Riemann-integrable on [a,    

     b], and put ( ) ( ) ( ).
x

n n

a

F x f t dt a x b   Prove that there exists a subsequence {Fnk}  

      which converges uniformly on [a, b]. 

4. Let K be a compact metric space, let S be a subset of C(K). Prove that S is a compact if and      

    only if S is uniformly closed, point wise bounded, and equicontinuous. 

 

5.7  SUGGESTED READINGS: 
 

1. Principles of Mathematical Analysis by Walter Rudin, 3rd Edition. 

2. Mathematical Analysis by Tom M. Apostal, Narosa Publishing House, 2nd Edition, 1985. 

 

- Dr. N.S.L.V. Narasimharao. 



LESSON - 6 

STONE – WEIERSTRASS THEOREM 
 

OBJECTIVES: 
 

After studying the lesson you should able to: 

Illustrate about Stone – Weierstrass Theorem and its applications. 

 

STRUCTURE: 
 

6.1  Introduction 

6.2  Solved Examples 

6.3  Theorems 

6.4   Summary 

 6.5  Technical Terms 

 6.6  Self Assessment Questions   

 6.7  Suggested Readings 

 

6.1  INTRODUCTION: 

 

 In this lesson we know about the definitions of Sequences, complex valued functions, 

compact set, continuous and uniform continuous. We also learn about Stone – Weierstrass 

Theorem and its corollary. We also learn some solved examples.  

 

6.1.1 Definition: Sequence  

A function f defined on the set J of all positive integers is said to be a Sequence.  

If f (n) = xn , for n J . 

We denote the sequence f  by the symbol{ }nx . The value of f  that is, the element xn , 

are called the terms of the sequence. 

If A is a set and if nx A  for all n J , then is said to be a sequence in A (or) a 

sequence of elements of A. 
 

6.1.2 Definition: Complex Valued Function  

A complex valed function on the interval [a, b] is a function that takes real numbers 

from the interval [a, b] and maps them to complex numbers. This can be expressed as a 

function 𝑓: [𝑎, 𝑏] → 𝐶, where C represents the set of all complex numbers. 



Centre for Distance Education    6.2                  Acharya Nagarjuna University  

6.1.3 Definition: Continuous Function  

A function :f D R  is continuous at x D  , if for every 0 , there exist a 0   

such that ( ) ( )f x f t  satisfying x t   . 

 

6.1.4 Definition: Uniformly Convergent 

 A sequence of functions {fn(x)}converges uniformly to a function f(x) on a set E, if 

given 0 , there exists an integer N such that ( ) ( )nf x f x   , for all n N and all x E . 

 

6.1.5 Definition: Compact Set  

Let X be a metric space and E X . Then the E is said to be compact, if every open 

cover for E has a finite sub cover for E. 

 
1 2

1

...... .
n

E G E G G G   






        Here  G is a collection of open sets. 

 

6.1.6 Definition: Bounded function 

 A bounded function is a function whose out put values are contained within a finite 

range, meaning they have both a finite upper and lower bound. 

 In other words, there exist real numbers m and M such that ( )m f x M   for all x in 

the functions domine. 

 If there exist a positive integer M such that ( )f x M , for all x in the functions 

domine. 

 

6.2  SOLVED EXAMPLES: 

6.2.1 Example  If f  is continuous on [0,1] and if 
1

0

( ) 0nf x x dx   (n = 0,1,2,…),  

prove that f (x) = 0 on [0,1]. 

    (or) 

If 
1

0
( ) 0nf x x dx   for all n in N. Show that f = 0 on [0,1]. 

Solution:  

Assume that 
1

0
( ) ( ) 0f x p x dx  , for all polynomials p(x) on [0,1]. 

By Stone – Weierstrass Theorem, there exists a sequence of polynomials pn on C[0,1] which 

converges uniformly to f. 
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0np f


    

Since given integral is convergent, we have
1 1

2

0 0

np f f  . 

But we have 
1

0

0np f   for all n then 
1

2

0

0f   (Since 0f  ) 

1

0

( ) 0f x dx   then  f  = 0 for all x   [0,1]. 

Hence  f = 0. 
 

6.2.2 Example: By Weierstrass approximation there is a sequence of polynomials *nP such 

that { *}nP converges uniformly on [-a,a] to x . Then lim *(0) *(0).nn
P P


   

Solution: 

If ( ) *( ) *(0),{ }n n n nP x P x P P  converges uniformly on [-a,a] to x   

and (0) 0nP  . 

6.2.3 Example: Let 2( ) (1 )n
n nQ x C x  . Find nC  if 

1

1

( ) 1.nQ x


  

Solution:  

Let 2( ) (1 )n
n nQ x C x  then  

2 4 2( ) 1 ... ( 1)
1 2

n n
n n

n n
Q x C x x x

    
         

    
. 

Given 1 = 
1

1

( )nQ x

  then 

1 1 1 1
2 4 2

1 1 1 1

1 1 ... ( 1)
1 2

n n
n

n n
C x dx x dx x dx

   

    
         

    
     

We know that 
11 2 1

2

1 1

2

2 1 2 1

k
k x

x dx
k k



 

 
    

 . 

So 
2 2 2

1 2 ... ( 1)
1 23 5 2 1

n
n

n n
C

n

    
              

 

1 1 ( 1)
1 2 1 ...

1 23 5 2 1

n

n

n n
C

n

     
              
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1
1 1 1 ( 1)

1 ...
1 22 3 5 2 1

n

n

n n
C

n


     

              
. 

6.2.4 Example: Show that, if f is continuous on R, then there exist a sequence { nP  } of 

polynomials converging uniformly to f on each bounded subset of R. 

Solution: 

Given f is continuous on R. 

Step 1 

For each positive integer n, f is continuous on the interval [-n, n]. 

By the weierstrass Approximation theorem, there exist a polynomial ( )nP x such that for all 

1
[ , ], ( ) ( ) .nx n n P x f x

n
     

This means nP  uniformly approximated f on [-n, n].  

Step 2 

Let B be any bounded sub set of R. 

Then there exist an integer N such that [ , ]B N N  . 

For all n N  and for all x B , we have [ , ]x n n  . 

Therefore, 
1 1

( ) ( )nP x f x
n N

    for all x B and n N . 

Given any 0  , choose N such that 
1

N
 . 

Then for all n N and for all x B , 
1 1

( ) ( )nP x f x
n N

    . 

Thus, the sequence of polynomials { nP  } converges to f on B. 

 

6.3 THEOREMS: 
 

6.3.1 Theorem: State and Prove Stone – Weierstrass Theorem 

If f is a continuous complex function on [a, b], there exist a sequence of polynomials 

{Pn} such that lim ( ) ( )nn
P x f x


  uniformly on [a, b]. If  f  is real, the Pn may be taken real. 

Proof:  

Let f  be a complex valued continuous function on [a, b]. 

Without loss of generality, we may assume [a, b] = [0,1] and f (0) = f (1) = 0. 

Since f continuous on [0,1] and [0,1] is compact . 
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 f  is uniformly continuous on [0,1]. 

For given 0 0 ( ) ( )
2

f x f y 
       when ever , , [0,1]x y x y     (1)   

Since f is continuous on [0,1]. 

  f  is bounded on [0,1]. (since every continuous function is bounded) 

a positive integer M ( ) , [0,1]f x M x    .  (2)   

Define ( ) 0, [0,1]f x x    

Clearly f is uniformly continuous on R. 

Define 2( ) (1 )n
n nx C x    where Cn is a constant

1

1

( ) 1n x dx


  . (3)   

Consider 
1 1

2 2

1 0

(1 ) 2 (1 )n nx dx x dx


     

    ≥
1/

2

0

2 (1 ) ( 1 1/ )
n

nx dx n    

    ≥
1/

2

0

2 (1 ) ( (1 ) 1 ( 1) / 2 ....)
n

nnx dx x nx n n x         

    = 
1/3

0

2
3

n
x

x n
 
 

 
 

    = 31 1
2 ( )

3

n

n n

   
 

    =
1 1

2
3

n

n n n

   
 

    =
2 1

1
3n

   
 

    =
4

3 n
 

    ≥
1

n
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1
2

1

1
2

1

1

1

1
(1 )

(1 )

( )

1

n

n n
n

n
n

n

n

n

x dx
n

C
C x dx

n

C
x dx

n

C

n

n C

C n









  

  

 

 

 

 







 

Now 2( ) (1 )n
n nx C x    

         

2

2

2

(1 ) ( )

(1 ) ( )

( ) (1 ) 0 .

n
n

n

n
n

n x C n

n x

x n as n

 

 

  

  

    



  

( ) 0n x as n   uniformly. 

For given 0 there exist positive integer N ( )
8n x n N

M
 

     (4)   

Define 
1

1

( ) ( ) ( )n nP x f x t t dt


 
 

1 1

1 1

( ) ( ) ( ) ( ) ( ) ( ) (5)
x x

n n n

x x

f x t t dt f x t t dt f x t t dt  
 

  

         
     

          
 

Consider 
0 0

1 1 1

( ) ( ) ( ) ( ) 0. ( ) 0
x

n n n

x x

f x t t dt f v v x dt v x dv  


  

         where v = x + t

1

( ) ( ) 0
x

nf x t t dt




    (6)   

Consider 
1 1

0

( ) ( ) ( ) ( )
x

n n

x

f x t t dt f v v x dv 




      (7)   

Consider 
1 1

1 1

( ) ( ) 0 ( ) 0
x

n n

x

f x t t dt v x dv 




                        (8)        

Substituting (6) (7) and (8) in (5),we get 

1

0

( ) ( ) ( )n np x f v v x dv   
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{ np } is sequence of polynomials on [0, 1]. 

To Prove    lim  n
n

x f xP


  uniformly on [0,1]. 

Let x [0,1]  

Consider  
1

1

( ) ( ) ( ) ( ) ( )n np x f x f x t t dt f x


        

 

1 1

1 1

1

1

1

1

( ) ( ) ( ) ( ) ( ) ( ) ( (3))

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

n n n

n n

n n

p x f x f x t t dt f x t dt By

p x f x f x t f x t dt

p x f x f x t f x t dt

 





 





   

   

   

 







 

1

1

1

1

1

1

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

2 ( ) ( ) ( ) ( ) 2 ( ) ( (2))

2 ( ) ( ) 2 ( ) ( (1))
2

n n n

n n n

n n n

f x t f x t dt f x t f x t dt f x t f x t dt

M t dt f x t f x t dt M t dt By

M t dt t dt M t dt By

 

 

 

 

 

 

  

  

  



 



 



 

        

    


  

  

  

  





 

1

1

2 ( ) 2 ( (4))
8 2 8

(1 ) ( ) (1 )
4 2 4

n

n

M dt t dt M dt By
M M

t dt

 

 







  



 



  
  

  
    

  





 

1

1

(1 ) ( )
2 2

(1 ) ( )
2 2

n

n

t dt

t dt





 

 





 
  

 
  




 

(1) ( (3))
2 2

By
 

 



  

( ) ( ) , , [0,1]np x f x n N x        

    lim n
n

xP x f


 Uniformly on [0,1]. 
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6.3.2 Corollary: For every interval [-a, a] there is a sequence of real polynomials { Pn } such 

that Pn (0) = 0 and such that  lim  n
n

x xP


  uniformly on [-a, a]. 

Proof:  

Define f(x) = x  on [-a, a]. 

Clearly f  is real valued function on [-a, a]. 

Then by Stone- weiestrass theorem there exist a sequence of real polynomials 

 * *( ) ( )n nP P x f x   uniformly on [-a, a]. 

*nP x   Uniformly on [-a, a]. 

If x = 0 then *(0) 0nP  uniformly on [-a, a]. 

Define a polynomial ( ) *( ) *(0)n n nP x P x P   

Now (0) *(0) *(0) 0n n nP P P   . 

(0) 0nP   

Consider ( ) *( ) *(0) 0 0n n nP x x P x P x x x        uniformly on [-a, a]. 

Hence  lim  n
n

x xP


  uniformly on [-a, a]. 

Therefore there exist a sequence of real polynomials { Pn } such that Pn (0) = 0 and such that

 lim  n
n

x xP


  uniformly on [-a, a]. 

 

6.4  SUMMARY:  
 

 The Stone-Weierstrass theorem is generalization of Weierstrass approximation. 

The Stone-Weierstrass theorem, a cornerstone of mathematical analysis, stated that any 

continuous function on a compact set can be approximated to ant desired degree of accuracy 

by a polynomial function.  

 

6.5  TECHNICAL TERMS:  

 

 Sequence 

 Complex valued function 

 Bounded function 

 Continuous function  

 Compact set 
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 Uniformly convergent 

 Stone-Weierstrass theorem   

 

6.6  SELF- ASSESSMENT QUESTIONS: 

1.  If f  is continuous on [0,1] and if 
1

0

( ) 0nf x x dx   (n = 0,1,2,…), prove that f (x) = 0 on   

      [0,1].  

2.  Find 
2

0

( ) ( )n nS x tQ t x dx   for n = 1,2,3,4. 

     The sequence ( 1)nS n  converges to x on [-2,2]. 

     The sequence 
1

0

( ) ( )n nR x tQ t x dx  , for n = 1,2,3,4 converges to x on [-1,1]. 

     We know these facts from Weiestrass approximation. Is Sn restricted to [-1,1] equal to Rn ? 

 

3.  Show that there does not exist a sequence of polynomials converging uniformly on R to f,  

     where f(x)  = ex. 
 

4.  Show that there does not exist a sequence of polynomials converging uniformly on R to f,   

     where f(x)  = sin x. 

 

6.7  SUGGESTED READINGS: 

 

1. Principles of Mathematical Analysis by Walter Rudin, 3rd Edition. 

2. Mathematical Analysis by Tom M. Apostal, Narosa Publishing House, 2nd Edition, 1985. 

 

- Dr. N.S.L.V. Narasimharao. 



LESSON- 7 

ALGEBRA OF FUNCTIONS 
 
OBJECTIVES: 
 

After studying the lesson, you should able to illustrate algebra of complex or real function 

uniform closure of complex or real function and the stone generalization of the weierstrass 

Theorem. 

 

STRUCTURE: 
 

7.1   Introduction 

7.2   Definitions 

7.3   Algebra of functions 

7.4   Summary  

7.5   Technical Terms 

7.6   Self-Assessment Questions 

7.7   Suggested Readings 

 

7.1 INTRODUCTION: 
 

        In this Lesson, we define and study the Algebra of functions, uniformly closed Algebra 

and some examples. There are many definitions which leads some theorems  
 

7.2 DEFINITIONS: 
 

7.2.1 Definition: 

A family A of complex functions defined on a set E is said to be an algebra if  

i) ,Agf   

ii) ,fg A and  

iii) forallandAgfforallAcf  ;  

Complex constants C (that if A is closed under addition, multiplication and scalar 

multiplication) 
 

7.2.2 Definition (Uniformly Closed): 

A family A of complex functions defined on a set E is said to be uniformly closed, if  A has the 

property ,Af  whenever ( 1 , 2 , 3 . . )nf A n  and ff n  uniformly on E. 
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7.2.3 Example: The set of all polynomials is an algebra. 

 

7.2.4 Definition (Uniformly Closure) 

Let A be an algebra of all complex functions defined on a set E. The set B of all function which 

are limits of uniformly convergent sequence of members of A , is called The uniform closure 

of A. 
 

7.2.5 Example:  

Let [a,b] a closed interval in R. then the set A of all polynomials defined on [a,b] is an algebra. 

By the stone-Weierstrass theorem, the set of continuous functions on [a,b] is the uniform 

closure of A 
 

7.3  ALGEBRA OF FUNCTIONS: 

 

7.3.1 Theorem 

Let B be the uniform closure of an algebra A of bounded functions, then B is an uniformly 

closed algebra. 

Proof: 

Let A be an algebra of bounded functions defined on a a set E, and let B be the uniform closure 

of A. First, we show that B is an algebra 

Let for all CcandBgf  ,,  

Since B is the uniform closure of A, there exist sequences }{ nf and }{ ng in A such that ff n   

and gg n  uniformly on E. 

i) let 0  be given  

Since  nf f  uniformly on E,   a +ve integer  

1 ( ) ( )
2nN f x f x


    1n N and x E     (1) 

Since  ng g  uniformly on E,   a +ve integer  

2 ( ) ( )
2nN g x g x


    2n N and x E     (2) 

As 
nf and 

ng are bounded, 
n nf g is also bounded and so 

n nf g A   for n=1,2,3…. 

 Clearly        n nf g   is a sequence in A. 

Write  1 2m ax ,N N N  (3) 

Now for all Nn   and for all Ex  , consider 
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    xgfxgf nn  )(  xgxfxgxf nn  )()()(
 

                        
 xgxgxfxf nn  )()()(

 

       








22  (from (1),(2) and (3) ) 

This shows that n nf g f g   uniformly on E  

Bgf   

ii) since f and g are bounded,   real numbers 1M  and 2M  such that  

1( )f x M  and 
2( )g x M x E     (4) 

Now we show that fggf nn  uniformly on E 

Since ff n  uniformly on E,  a +ve integer N, )1(2
)()(

21 



MM

xfxf n

 

For all 1Nn  and for all Ex      (5) 

Consider )( xf n    xfxfxfxfxfxf nn  )()()()(  

   
11

21

,
)1(2

NnandExM
MM







 

(from (4) and (5) ) 

Since gg n  uniformly on E,  a +ve integer 2N such that  

2

1
1 2

( ) ( ) ,

2
( 1)

ng x g x n N a n d x E

M
M M


     

 
   

 

Write  21 ,max NNN    (6) 

For all Nn   and for all ,Ex   consider  

  )()()()()()()()())(()( xgxfxgxfxgxfxgxfxfgxgf nnnnnn 
 

                                     
)()()()()()( xgxfxfxgxgxf nnn 

 

1 1 2
1 2 1 2

1
1 2

2 ( 1 ) 2 ( 1 )
2

1

M M M
M M M M

M
M M

 
 

                      

     

(from (4),(5) and (6))  








22  

  a +ve integer N such that   ( ) ( )( )n nf g x fg x     n N and x E     

Hence, n nf g fg  uniformly on E so, fg B  

iii) let C be any constant and f B  



Centre for Distance Education   7.4       Acharya Nagarjuna University  

 
 

since f B ,a sequence { }nf in A nf f   uniformly on E 

since A is an algebra, 
nc f A n   

if 0C  , then clearly ncf cf uniformly on E 

if 0C  , then 0C  . 

Since nf f  uniformly on E, a +ve integer ( ) ( )nN f x f x
c


    

n N and x E     (7) 

so, for n N  and for x E ,  

consider    ( ) ( ) ( ) ( )n ncf x cf x c f x f x c
c


                ( from(7) ) 

   ( ) ( )ncf x cf x   n N and x E     

ncf cf  uniformly on E. so, cf B  

Hence B is an algebra. 

Finally, we show that B is uniformly closed 

Let { }nf  be a sequence in B nf f  uniformly on E 

Since each nf B , we have that each nf  is bounded for 1n  , 

And so each nf A  for 1n  . 

Now { }nf  is a sequence in A nf f  uniformly on E 

Since B is the uniform closure of A, we have f B  

Hence, B is uniformly closure of A, we have f B . 
 

7.3.2 Definition: 

Let A be a family of functions defined on a set E. then A is said to separate point on E if to 

every pair of distinct point 1 2, ,x x E there corresponds a function f A such that 

1 2( ) ( )f x f x . 

 

7.3.3 Definition (Vanishes at no point of E) 

If to each x E  there corresponds a function g A  such that ( ) 0g x  , we say that A 

vanishes at no point of E. 
 

7.3.4 Note: the algebra of all polynomials in one variable clearly has these properties on R 
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7.3.5 Example: 

The set of all even polynomials define on [-1,1] is an algebra which doesn’t separate points  

Since ( ) ( )f x f x   for every even polynomial f but 0 [ 1,1]x x x           

 

7.3.6 Theorem 

Suppose A is an algebra of function on a set E, A separates points on E, and A vanishes at no 

point of E. suppose 1,x x  are distinct point of E , and 1 2,c c  are constants (real if A is real algebra) 

.then A contains a function f such that 1 1( )f x c , 2 2( )f x c . 

Proof:  

let A an algebra of functions defined on a set E 

Since A separates points on E, there is a function g in 1 2( ) ( )A g x g x    

Since A vanishes at no point of E, there exist h, 1 2( ) 0 ( ) 0K A h x and K x     

Put 1( )u gk g x k  , 2( )gh g x h    

Then u A and A   

Now  1 1 1 1 1 1 1( ) ( ) ( ) ( ) ( ) ( ) ( ) 0u x gk g x k x g x k x g x k x      and  

2 2 2 1 2( ) ( ) ( ) ( ) ( ) 0u x g x k x g x k x    

|| ly  1( ) 0x   and 2( ) 0x   

Put 1 2

1 2( ) ( )

c c u
f

x u x




  . 

Then f A and 1 1 2 1
1 1 1

1 2

( ) ( )
( ) 0

( ) ( )

c x c u x
f x c c

x u x




     , 

   1 2 2 2
2 2 2

1 2

( ) ( )
( ) 0

( ) ( )

c x c u x
f x c c

x u x




      

Thus, 1 1 2 2( ) ( )f A f x c and f x c      

The following theorem is the stones generalization of the weierstrass theorem: 
 

7.3.7 Theorem: 

Let A be an algebra of real continuous functions on a compact set k. If A separates points 

on K and if A vanishes at no point of K, then the uniform closed B of A consists of all real 

continuous function on K. 
 

Proof: 

Let A is an algebra of real; continuous functions on a compact set K 
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Suppose that A separates point on K and A vanishes at no point of K. 

Let B be the uniform closed of A 

Since A is an algebra of continuous function on K and K is compact, by a know theorem (If f 

is a continuous function of a compact metric space X into RK , then f(x) is closed and bounded 

and hence f is bounded) every member of A is a bounded function on K. 

Since B is the uniform closure of A , by the theorem (Let B be the uniform closure of an algebra 

bounded functions. Then B is a uniformly closed algebra), 

B is an uniformly closed algebra. 

We shall divide the proof into four steps 

Step 1: 

If f B , then f B  

Let f B  

Put 
sup

( )a f x
x k




. Consider the closed interval [-a,a] in R 

By a known corollary ( For every interval [-a,a] there is a sequence of real polynomials nP  such 

that (0) 0nP   and such that lim ( )n
n

P x x


  uniformly on [-a,a] ) for [-a,a], there exist a 

sequence of real polynomial nP define by 
1

( )
n

i
n i

i

P y c y


   such that (0) 0nP   and 

lim ( )n
n

P y y


  uniformly on [-a,a] -(1) 

Take 0  

Then by (1),   a +ve integer N such that ( ) [ , ]nP y y n N y a a       

( )NP y y a y a       

1

(2)
N

i
i

i

c y y a y a


         

Put 
1

N
i

i
i

g c f


  

Since B is an algebra, then g B  

Since ( ) , ,f x a x K   by (2) ,  

we have    
1

( ) ( ) ( ) ( ) ( )
N

i

i
i

g x f x x c f x f x x K


        

                                   ( ) ( )g x f x x K     
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This shows that the constant sequence { }g converges to f  uniformly on K 

So, f B . 

Step 2: 

In this step, we prove that, if f B  and g B , then max( , )f g  and min( , )f g  are in B 

Let 𝑓, 𝑔 𝜖 𝐵. 

By max( , )f g , we mean the function h define by  

( ) ( ) ( ),
( )

( ) ( ) ( );

f x if f x g x
h x

g x if f x g x


  

     and 

min( , )f g , we mean the function K defined by  

( ) ( ) ( ),
( )

( ) ( ) ( );

f x if f x g x
K x

g x if f x g x


  

 

Then max( , )
2 2

f gf g
f g


   and min( , )

2 2

f gf g
f g


   

Since B is an algebra and , ,f g B f g B   . 

So, by step1, f g B   

max( , )f g , min( , )f g B  

By induction, we can prove that if 1 2, ,..... nf f f B ,  

then  1 2max , ,..... nf f f  and  1 2min , ,..... nf f f B . 

Step 3: 

Prove that given a real function f continuous on K, a point x K , and 0 , there exist a 

function xg B  such that ( ) ( )xg x f x  and ( ) ( )xg t f t t K     

Let f be a real continuous function on K, x K  and 0 . Clearly, A B  

Claim:  B separates point on K and B vanishes at no point of K  

Let 1 2 1 2,x x K x x    

Since A separates point on K, then 1 2( ) ( )g A g x g x     as ,A B g B   

Since B separates point on K 

Let y K   

Since A vanishes at no point on K, ( ) 0h A h y     

As ,A B h B   

 B vanishes at no point of K 
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Hence B is an algebra of function on K, such that B separates point on K and B vanishes at no 

point of K.  

So, by a known theorem (7.26) for every y K , we can find a function 

( ) ( ) ( ) ( )y y yh B h x f x and h y f y     

  ( ) 0yf h y    

Since yh f  is continuous at y ,   an open set yJ of 

   ( ) ( )y y yy h f t h f y t J       

( ) ( )y yh t f t t J      

( ) ( )y yh t f t t J      

( ) ( )y yh t f t t J      (3) 

Now the family  /yJ y K of open sets is an open cover for K 

Since K is compact, 1 2 3, , ,..., ny y y y K   such that 
1

j

n

y
j

K J


  

Put  
1 2 3

max , , ,...,
nx y y y yg h h h h  

Since each 
1y

h B for i=1,2,3,….n , by step 2, xg B  

Consider  
1 2

( ) max ( ), ( ),..., ( )
nx y y yg x h x h x h x  

   max ( ), ( ),..., ( )f x f x f x  

   ( )f x  

Consider  
1 2

( ) max ( ), ( ),..., ( ) ( )
nx y y yg t h t h t h t f t    

( ) ( )xg t f t t K     

Thus, for every real continuous function f on K and a point x K  

and 0 ,  a function xg B ( ) ( )xg x f x   and ( ) ( ) ,xg t f t t K     

Step 4: 

In this step, we prove that for a given real continuous function f on K and 0 , a function 

( ) ( ) ( )h B h x f x x K      

Let f be a real continuous function on K. let 0  
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For each x K , consider the function xg , constructed as in step(3) by the continuity of xg , 

there exist open sets xV  containing x,  

Such that ( ) ( ) ( )x xg t f t t V    

( ) ( )xg t f t     for all xt V  

( ) ( )x xg t f t t V     (4) 

Now the family  /xV x K of open sets forms an open cover for K 

Since K is compact, 1 2 3, , ,...., nx x x x in 
1

i

n

x
i

K K V


   

Take  
1 2

min , ,...,
nx x xh g g g  

Since each 
ixg B for i=1 to n , by step(2), h B  

For any ,t K  
1 2

( ) min ( ), ( ),..., ( ) ( )
nx x xh t g t g t g t f t    

       ( ) ( )h t f t t K     (5)  (by step(3)) 

Let 
1

i

n

x
i

t K V


   

ixt V  for some 1 i n   

( ) ( )
ixg t f t     (by (4)) 

 
1 2

( ) min ( ), ( ),..., ( ) ( )
nx x xh t g t g t g t f t t K      (6) 

Form (5) & (6), we have ( ) ( )h t f t t K    

Since B is uniformly closed algebra, we have f B  

Hence, the uniform closure B of A consists of all real continuous function on K 
 

7.3. 8 Definition:  

An algebra A of complex function defined on a set E is said to be self-adjoint, if for every 

f A , its complex conjugate f A . 
 

7.3.9 Theorem: 

Suppose A is a self-adjoint algebra of complex continuous function on a compact set K, A 

separates points on K, and A vanishes at no point of K. then the uniform closure B of A consists 

of all complex continuous function on K. in other words, A is dense in  (K). 
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Proof: suppose A is a self-adjoint algebra of complex continuous functions on a compact set 

K. 

Also given that A separates point on K 

Let RA  be the set of all real continuous function on K which belong to A  

i.e  /RA f A f isareal continuous functiononK   

Let f A  

Then f u i   where u and   are real continuous function on K 

Since A is self-adjoint, then u i f A    

So, 
2

f f
u A


   and 

2

f f
A

i
 
   

Claim:   RA is an algebra  

Let , ,Rf g A f g A    

Since A is an algebra, by definition ,f g fg and cf are in A for any real constant C 

It is clear that ,f g fg and cf are real continuous function on K 

So, ,f g fg and cf are in RA for any real constant C 

 RA is an algebra 

Claim:     RA separates point on K 

Let 1 2 1 2,x x K x x    

Since A separates point on K, then 1 2( ) ( )f A f x f x     

 either 1 2(Re. )( ) (Re. )( )f x f x or 1 2(Im. )( ) (Im. )( )f x f x (1) 

Where Re.f and Im.f are real and imaginary parts of f respectively 

Since Re.f and Im.f are functions in RA , by (1) RA separates point on K 

Claim: RA vanishes at no point of K 

Since A vanishes at no point of K, for , ( ) 0x K f A f x      

 either (Re. )( ) 0f x   or (Im . )( ) 0f x   

As Ref, Imf Rf A , RA  vanishes at no point of K 

RA  satisfies the hypothesis of stones generalization of weierstrass theorem 

It follows that every real continuous function on K is in the uniform closure of RA and hence 

in B 
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If f is a complex continuous function on K and f u i   where u  and   are real and 
imaginary parts of f respectively, then u  and real continuous function on K,  
i.e., ,u B  and hence f B  

This completes the proof. 
 

7.4  SUMMARY: 
 
 

This lesson is designed to introduce learners to the fundamental concept the Algebra of 
functions, exploring their properties and applying them to real-world contexts. This lesson 
provides a solid foundation for learners to develop their understanding. Key takeaways of their 
lesson are definitions and theorems, applications of the Algebra of functions in mathematical 
and real-world problems and examples. 
 
7.5  TECHNICAL TERMS: 
 

 Algebra of functions 
 Uniformly closure 

 Self-adjoint 
 

7.6  SELF-ASSESSMENT QUESTIONS: 

 

1. Let K be the unit in the complex plane (i.e, the set of all z with |z| =1) and 

 
0

( )
N

i in
n

n

f e C e real  


 , Then A separates points on K and A vanishes at no points of K, 

but never the less there are continuous on K which are not in the uniform closure of Hint:  For 

every f A ,  
2

0

0,i if e e d


    and this is also true for every f in the closure of A. 

2. If f is continuous on [0,1] and if 
1

0

( ) 0 ( 0,1, 2,3,...)nf x x dx n  , prove that ( ) 0f x   on 

[0,1] 

3. If 
2

2 2
( ) (0 1, 1,2,...)

(1 )n

x
f x x n

x nx
   

 
, then show that  

i)  nf is uniformly bounded on [0,1] 

ii) No sub sequence of  nf is converge uniformly on [0,1], 

iii) The sequence  nf is equi continuous on [0,1] 

 

7.7  SUGGESTED READINGS: 
 

1. Principles of mathematical analysis by Walter Rudin , 3rd Edition      

2. Mathematical Analysis by Tom M.Apostal, Narosa Publishing House, 2nd Edition, 1985 

        

-  Dr. L. Krishna 



LESSON- 8 

POWER SERIES 
 
OBJECTIVES: 
 

The objective of the lesson is to understand the concepts of the power series. We shall 
derive some properties of functions which are represented by power series  
 

STRUCTURE: 
 

8.1  Introduction 

8.2  Definition 

8.3  Power Series 

8.4  Summary  

8.5  Technical Terms 

8.6  Self-Assessment Questions 

8.7  Suggested Readings 
 

8.1 INTRODUCTION: 
 
 

In this lesson we shall derive some properties of functions which represented by power 

series, that is functions of the form 
0

( ) n
n

n

f x C x




 , which convergence uniformly on some 

interval and different definitions such as converges uniformly and it’s derivatives 
 

8.2  DEFINITION:  

A series of the form 
0

n
n

n

a x



 where the ‘ na ’ are independent of ‘x’ is called a power series in x 

8.2.1 Result 

1) let 
0

( ) n
n

n

f x a x




 (1) 

If the series given in (1) converges for all x in (-R,R) , for some R>0 (R  may be + ), we say 

that f is expanded in a power series about the point x=0 

2) let  
0

( ) ( )nn
n

f x a x a




  (2)  

If the series given in (2) converges for all x with x a R  , foe some R>0, we say that  f is 

expanded in a power series about the point x=a 
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8.2.2 Note:  

The number R associated with the power series given in (1) is called the radius of convergence 

of the series and it is defined as 
1

R


  where lim sup n
n

n
a


 . The interval (-R,R) is called 

the interval of convergence of the series. 
 

8.3  POWER SERIES: 
 

8.3.1 Theorem 

Suppose the series 
0

n
n

n

c x



  converges for x R  and define 

0

( ) n
n

n

f x c x




  x R , then  

0

n
n

n

c x



  converges uniformly on [ , ]R R   , no matter which 0  is chosen. The function 

f is continuous and differentiable in (-R,R), and  1

0

( ) n
n

n

f x nc x x R






   . 

Proof: 

Suppose the series
0

n
n

n

c x



  converges for x R  

Define 
0

( ) n
n

n

f x c x




  x R . 

i)let 0  consider the interval [ , ]R R    

let [ , ]x R R     then x R  

so, for 0n  ( )n n n
n n nc x c x c R   (1) 

since every power series converges absolutely in the interior of its interval of convergence, 

0

( )nn
n

c R




  converges absolutely 

since n
nc x ( ) 0n

nc R n     and 
0

( )
n

n
n

c R




  is convergent by a known 

theorem(Suppose nf is a sequence of functions defined on E, and suppose 

( ) ( , 1, 2,3,....)n nf x m x E n   . Then nf converges uniformly on E if nm converges ) 

0

n
n

n

c x



  converges on [ , ]R R   . 

ii) since lim 1n

n
n


 , we have lim sup lim supn n

n n
n n

n c c
 

  

The two series 
0

n
n

n

c x



  and 1

0

n
n

n

nc x





  have the same interval of converges 
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Since 1

0

n
n

n

nc x





  is a power series which converges for x R , by the first part, 1

0

n
n

n

nc x







converges uniformly on [ , ]R R    for all 0  for 0n  , write ( ) n
n nf x c x  then 

1( ) n
nf x nc x    

Since 
0

( ) n
n

n

f x c x





0

( )n
n

f x




 converges uniformly on [ , ]R R   for all 0 , 

1

( )n
n

f x




  converges uniformly on [ , ]R R    and , we have 
0

( ) ( )n
n

f x f x




 

1

0

n
n

n

nc x






  

But given any x such that x R , we can find an 0 such that x R which shows that 

 1

0

( ) n
n

n

f x nc x for x R






    

Since f is differentiable, by a known result, f is continuous. 

8.3.2 Corollary: 

Suppose series 
0

n
n

n

c x



 converges for x R  and define 

0

( ) n
n

n

f x c x




  x R . Then f has 

derivatives of all orders in (-R,R), which are given by 

( )( ) ( 1)( 2)......( 1)k n k
n

n k

f x n n n n k c x






      

In particular, ( ) (0) !k
Kf k c  (k=0,1,2,…..) 

(here (0)f  means f, and ( )kf  is the Kth derivatives of   f , for K=1,2,3….) 

 

Proof: 

Suppose the series 
0

n
n

n

c x



 converges for x R  and defined 

0

( ) n
n

n

f x c x




  n=0 

Then by the above theorem(8.21), f is differentiable in (-R,R) and 

2
1 2 3( ) 2 3 .....f x C C x C x for x R       

Again by applying the same the and continuing the process, we get f is differentiable in (-R,R) 

and 
( )( ) ! ..... ( 1)( 2)....( 1) .... .....,k n k

K nf x k c n n n n k c x for x R           

Putting x=0, ( ) (0) ! ,k
Kf k c  for K=0,1,2,3…. 
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8.3.3 Theorem: 

(Abels Theorem): suppose 
0

n
n

C



 converges, put 

0

( ) ( 1 1)n
n

n

f x C x x




    then 

1
0

lim ( ) nx
n

f x C





 . 

Proof: 

Suppose 
0

n
n

C



 converges 

Let 
0

n
n

C s




  

For each n, write 0 1 .....n ns C C C    , and 1 0s   

Then lim n
n

s s


 (1) 

Set 0  be given from(1),   a +ve integer 
2nN s s n N


     (2) 

Now 0 1 1 1..... 0n n n n ns C C C C s C n           

1 0n n nC s s n      

 1
0 0

n n
n n n

n n

C x s s x
 


 

     

For any m,          2
1 0 1 1 0 2 1 1

0

....
m

n m
n n m m

n

s s x s s s s x s s x s s x  


           

   2 2
0 1 1 0 2 1 1..... m m

m ms s s x s x s x s x s x s x           

   2 1
0 1 2 1(1 ) ..... m m

m mx s s x s x s x s x
          

   
1

0

(1 )
m

n m
n m

n

x s x s x




    

  
1

1
0 0

(1 )
m m

n n m
n n n m

n n

s s x x s x s x



 

      (3) 

For 1, lim lim . lim .0 0m m
m mm m m

x s x s x s
  

    (4) 

Put 
0

( ) ( 1 1)n
n

n

f x C x x




      

for 1x  , 
0

1

1
n

n

x
x






  
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0

(1 ) 1n

n

x x




   , for 1x  (5) 

Fix 1x   

Consider 
0 0

( ) limn n
n n

m
n n

f x C x C x
 


 

    

   1
0

lim
m

n
n n

m
n

s s x


   

  
1

0

lim(1 ) lim
m

n m
n m

m m
n

x s x s x


 


    

  
1

0

lim(1 )
m

n
n

m
n

x s x





    

 
1

0 0

( ) lim(1 ) (1 )
m

n n
n n

m
n n

f x x s x s x x



 

       

Hence ( ) ( ) .1f x s f x s    

  
0

( ) (1 ) ( (2) )n

n

f x s x x by




     

  
0 0

(1 ) (1 ) (1 )n n
n

n n

x s x x s x x
 

 

       

  
0

(1 )( )n
n

n

x x s s




    

Now , ( )f x s
0

(1 )( )n
n

n

x x s s




    

  
0

1n
n

n

x x s s




    

1

0

( ) 1 1
n

n n
n n

n n N

f x s x x s s x x s s
 

 

          

1

0

1 1 ( (2) )
2

n
n n

n
n n N

x s s x x x by
 

 


       (6) 

Since 
1

0

1
N

n
n

n

x s s x




   is continuous at x=1, then   a 1 0   

Such that 
1

0

1
2

N
n

n
n

x s s x





    for all x with 1 11 1x     (7) 
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We have 21 1 (1 ...)n N

n N

x x x x x x




       

   
1

1 1
1

N Nx x x
x

   


 for all x with 1 11 1x     (8) 

So, from(6),(7),(8),  ( )
2 2

f x s
 

     for all 1 11 1x      

Thus, 1 0 ( )f x s     when ever 1 11 1x      

1
lim ( )
x

f x s


   

1
0

. ., lim ( ) n
x

n

i e f x C





  

 

8.3.4 Corollary:  

Suppose the series 
0 0 0

, ,n n n
n n n

a b c
  

  
   converge to A,B,C respectively for each 0n  , put 

0 1 1 0....n n n nC a b a b a b     then C=AB 

Proof: 

let 
0

( ) n
n

n

f x a x




 , 
0

( ) n
n

n

g x b x




 ,
0

( ) n
n

n

h x c x




  for 0 1x   

for 0 1x  , these series converge absolutely and hence may be multiplied  

so, we have 
0 0

( ) ( ) .n n
n n

n n

f x g x a x b x
 

 

   

   2
0 0 0 1 1 0 0 2 1 1 2 0( ) ( ) ....a b a b a b x a b a b a b x        

    2
0 1 2 ........c c x c x       where 0 1 1 0.... , 0n n n nC a b a b a b n       

   
0

( ) (0 1)n
n

n

C x h x x




    (1) 

By the theorem(8.23), ( ) , ( ) , ( )f x A g x B h x C    as 1x   

From(1),  
1 1

lim ( ) ( ) lim ( )
x x

f x g x h x
 

  

 
1 1 1

lim ( ).lim ( ) lim ( )
x x x

f x g x h x
  

   

 AB C   
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8.3.5 Theorem 

Given a double sequence   ,ija  1,2,3,....i    ,  1,2,3,....j  , 

Suppose that 
1

ij i
j

a b




    ( 1,2,3,....i  ) and ib  converges. Then 
1 1 1 1

ij ij
i j j i

a a
   

   

   

Proof: 

Given a double sequence   ,ija  1,2,3,....i    and  1,2,3,....j  , 

Suppose that 
1

ij i
j

a b




 for 1,2,3,....i   and 
1

i
i

b



 converges (1) 

Let E be a countable set consisting of the point 0 1 2, , ,.......x x x  

Suppose 0nx x  as n  

Define 
0

1

( )i ij
j

f x a




    ( 1,2,3,....i  )  (2) 

1

( )
n

i n ij
j

f x a


    ( , 1,2,3,....i n )  (3) 

1

( ) ( )i
i

g x f x




              ( )x E (4) 

Now we show that each if  is continuous at x0 , for   1,2,3,....i   

From(1), we have that 
1

ij
j

a



 converges absolutely 

   
1

ij
j

a




  converges  

Now 
1

lim ( ) lim
n

i n ij
n n

j

f x a
 



      ( by(3) ) 

   0
1

( )
n

ij i
j

a f x


   

  0lim ( ) ( )i n i
n

f x f x


   

  
0

0lim ( ) ( )
n

i n i
x x

f x f x


   

  if  is continuous at x0 for 1,2,3,....i   

For each 1n  ,
1 1 1

( )
n n

i n ij ij ij i
j j j

f x a a a b


  

       

( ) 1i n if x b n     
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Also, 0
1

( )i ij i
j

f x a b




   

( )i n if x b x E     

Since 
1

i
i

b



  converges and ( ) ,i n if x b i   then by weierstrassin-test theorem 

1
i

i

f



  

converges uniformly on E. 

Since g is the limit of the series 
1

i
i

f



  and 

1
i

j

f



 converges uniformly on E and each if  is 

continuous at x0 , by a known theorem(if  nf is a sequence of continuous functions on E, and 

if nf f uniformly on E, then f is continuous on E), g is continuous at x0. 

Since g is continuous at x0 and 0nx x  as n , we have 0lim ( ) ( )n
n

g x g x


  

Consider 0 0
1 1 1

( ) ( ) lim ( )ij i n
n

i j i

a f x g x g x
  


  

     

  
1 1 1

lim ( ) lim
n

i n ijn n
i i j

f x a
 

   
  

     

  
1 1

lim
n

ijn
i j

a


 
 

    

 
1 1 1 1

n

ij ij
i j j i

a a
  

   

    

8.3.6 Theorem (Taylors Theorem) 

Suppose, the series converging in x R . If R a R   , then f can be expanded in a power 

series about the point x=a which converges in x a R a   , and 
( )

0

( )
( ) ( )

!

n
n

n

f a
f x x a

n





  ( x a R a   ). 

Proof: 

suppose the series 
0

n
n

n

C x



 converges in x R  and ( ) n

nf x C x  ( x R ). 

Also, suppose R a R    and x a R a   . 

Since n
nC x  converges in x R  the radius of converges of the series 

n
nC x  is greater than 

or equal to R we have x x a a x a a R a a R           

x x a a R      

So, the series  
0

n
n

n

C x a a




  converges. 
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 
0 0

n
mn m

n
n m

n
C a x a

m




 

 
  

 
  converges in x a R a   . 

 
0 0

n
mn m

n
n m

n
C a x a

m




 

 
  

 
 converges absolutely in x a R a    

Consider  
0 0

( ) ( )n n
n n

n n

f x C x C x a a
 

 

      

   
0 0

n
mn m

n
n m

n
C a x a

m




 

 
  

 
   

0 1

0

( ) ( ) .... ( )
0 1

n
n n n

n
m

n n n
C a x a a x a x a

n




      
            

      
  

2 2 1
0 1 2

1 1 2 2 2
( ) ( ) ( ) .... ( ) .... ( ) .....

0 1 0 1 2 0 1
n n n

n

n n n
C C a x a C a a x a x a C a a x a x a

n
                    

                                    
                    

 

2 0 1
0 1 2 1

2 2 2
2 3 4

1

1 2
... .... ( ) .... .... ( )

0 1 1

2 3 4
... ... ( ) ...

2 2 2 2

1

n n
n n

n
n

n n n

n
C C a C a C a x a C a C a x a

n
C C a C a C a x a

n n
C C a C

n n





 

      
                      

      
        

               
        

   
    

   
2 2

2

2
..... ( ) ... ....nn

a x a
n

   
     

  

 

 
0

mn m
n

n n m

n
C a x a

m

 


 

 
  

 
 (1) , By Know Theorem (8.21), 

( )( ) ( 1).......( 1)m n m
n

n m

f a n n n m C a






     consider         

!

!( )!
n m n m

n n
n m n x

n n
C a C a

m m n m

 
 

 

 
   

   

 1.2..... ( 1) ( )( 1).....( 1)

! ( )!
n m

n
n m

n m n m n m n n
C a

m n m






     


  

( 1)( 2)......( 1)

!
n m

n
n m

n n n n m
C a

m






   
  

( )1
( )

!
mf a

m
 (2) 

 from(1) & (2),  
0

( )
mn m

n n
m n m

n
f x C C a x a

m

 


 

  
   

  
   

    
( )

0

( )

!

m
m

m

f a
x a

m





   
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8.3.7 Theorem: 

Suppose the series 
n

na x and 
n

nb x converges in the segment ( , )S R R  .  

Let E be the set of all x S at which 
0 0

n n
n n

n n

a x b x
 

 

  . If E has a limit point in S, then n na b  

for n=0,1,2,….  

Hence 
0 0

n n
n n

n n

a x b x
 

 

  holds for all x S  

Proof: 

Suppose that E has a limit point in S 

For 0n  , put n n nc a b   , let 
0

( ) ( )n
n

n

f x C x x S




   

Then ( ) 0f x   on E.    , ,n n
n nforevery x E a x b x given    

Let A be the set of all limit point of E in S 

Since E has a limit Point in S, then A   
It is clear that A is closed in S. 

Claim:  A  is open in S. 

Let 0x A  

Then 0 0 ,x S x R    i.e, 0R x R    

By the Taylors theorem, 0
0

( ) ( )nn
n

f x d x x




   in 0 0x x R x    (1) 

Now, we show that 0nd   for all n 

If possible, suppose that 0nd   for some n. 

Let K be the smallest +ve integer such that 0nd  . 

Then 1 2 1..... 0kd d d     . 

So, from(1) 1
0 1 0( ) ( ) ( ) ......K K

K Kf x d x x d x x 
      

  2
0 1 0 2 0( ) ( ) ( ) ......K

K K Kx x d d x x d x x          

  0( ) ( )Kx x g x   where 1 0( ) ( ) .......K Kg x d d x x    (2) 

Since g has the power series expansion about the point 0x , g is differentiable at 0x and hence g 

is continuous at 0x  

Since g is continuous at 0x and 0( ) 0Kg x d  , then 0  such that 0( ) 0g x   whenever  

0x x   . 
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It follows from(2) that ( ) 0f x  whenever 00 x x    . 

That is the deleted mod 00 x x     dose not contain any print of E 

 0x is not a limit point of E, which is a contradiction to the fact that 0x  is a limit point of E 

0nd  for all n 

Hence from(1), ( ) 0f x  in 0 0x x R x    

  ( ) 0f x  for all  0 0,x x x     where 0R x   

   0 0,x x E      

Let  0 0,x x x     

Then 1 0  such that    0 1 0 1 0 0, ,x x x x         

    0 1 0 1,x x E      

So, every nbd of 1x  contains a point of E  

( every nbd of 1x  intersects  0 1 0 1,x x   ) 

1x is a limit point of E 

1x A   

 0 0,x x A      

So, 0x  is an interior point of A 

Hence, A is open 

Write 
cB A i.e, B  is the set of all other points of S 

Then B is both open and closed, S A B   and A B    

Since ( , )S R R   ,S is connected  

Since S A B  ,and S is connected, one of A and B must be empty 

since E has a limit point, then A    and B   

S A B A A       

 Every point of S is a limit point of E 

 E is dense in S 

Since E is dense in S and ( ) 0f x x E   , and F is continuous in S, then by a known result 

( ) 0f x x E   . 
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( ) ( ) 0nf x x S     

( ) (0) 0nf   

! 0nn C n    

0nC n    

n na b n    

 

8.4  SUMMARY:  
 

This lesson focuses on helping learners comprehend power series, including derivatives and 
converges and apply power series properties to solve mathematical problems. High lights of 
this lesson definition and theorem application and examples of power series with solutions. 
 
8.5  TECHNICAL TERMS: 
 

 Power series 

 Abels theorem 

 Taylors theorem  
 

8.6  SELF-ASSESSMENT QUESTIONS: 
 

1. Define 2

1

( 0)( )
0 ( 0)

xe xf x
x

  
 

prove that F has Derivatives of all orders at 0x  and that    

        ( )(0) 0nf  for n=1,2,3,…… 

2. Let ija be the number in the ith row and jth column of the array   

1 0 0 0

1
1 0 0

2
1 1

1 0
4 2
1 1 1

1
8 4 2

    

    

    

    

 so, that  
0 ( ),

1 ( ),

2 ( ).
ij

j i

i j

a i j

i j


  
 

prove that 

 2,ij
i j

a     0.ij
i j

a   

3. Prove that , 0ij ij ij
i j j i

a a if a    for all I and j (The case     may occur) 

8.7  SUGGESTED READINGS: 
 

1. Principles of mathematical analysis by Walter Rudin, 3rd Edition      

2. Mathematical Analysis by Tom M.Apostal, Narosa Publishing House, 2nd Edition, 1985 

-  Dr. L. Krishna 



 

 

LESSON- 9 
THE EXPONENTIAL LOGARITHMIC AND 

TRIGNOMETRIC FUNCTION 
 
OBJECTIVES:  
 

The objective of the lesson is to understand the concepts of exponential, Logarithm and 
trigonometric functions. We shall derive some properties  
 

STRUCTURE: 
 

9.1  Introduction 

9.2  Definitions 

9.3  Exponential and Logarithmic functions 

9.4  Trigonometric Functions 

9.5  Summary  

9.6  Technical Terms 

9.7   Self-Assessment Questions 

9.8   Suggested Readings 
 

9.1  INTRODUCTION: 
 

In this lesson we shall derive bexponential, logarithm and trigonometric functions and some 
properties such as investigation of the properties of , logxe x and trigonometric functions. 

For every complex number Z, consider the series 
0 !

n

n

z

n




  Since the radius of convergence of this 

series is ,then the series converges for every Complex Z 
 

9.2  DEFINITIONS: 
 

9.2.1 Definition 

 The function 
0

( )
!

n

n

z
E z

n





 for all complex number z, is called the exponential function. 

9.2.2 Note 

1) The function E is continuous on ( , )   

2) For any complex number z and w, 
0 0

( ) ( ) .
! !

n n

n m

z w
E z E w

n m

 

 

 
0 0 ! ( )!

k n kn

n k

z w

k n k



 


   

0 0

1 !

! !( )!

n
k n k

n k

n
z w

n k n k




 


   

0

( )

!

n

n

z w

n






  
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( )E z w   

( ) ( ) ( )E z E w E z w    for every ,z w C  

        In general, if 1 2, ,..... nz z z C , Then 1 2 1 2( ..... ) ( ) ( ),.....( )n nE z z z E z E z z     

3) ( ) 0E z z C    

4) For any z C , ( ) ( ) ( ) (0) 1E z E z E z z E      

       ( ) 0E z z C     

5) ( ) 0E x   for all real x   ( from definition) 

6) for any +ve integer n, nx as x  . 

       
2

( ) ( ( ) 1 ...)
2!

x
E x as x E x x        

7) since ( ) ( ) 1E x E x  , then 
1

( )
( )

E x
E x




 for all real x 

       ( ) 0E x as x    

8) i) Let , 0x y R x y     by the definition of E, ( ) ( )E x E y  (1) 

       ii) let ,x y R  0x y   then 0 y x  then, by (7), ( ) ( )E y E x    

     
1 1

( ) ( )E y E x
   

     ( ) ( )E x E y   

      for any , ,x y R x y   then ( ) ( )E x E y  . This shows that E is strictly increasing   

       function on R. 

9) Let z C  

      Consider 
0

( ) ( )
( ) lim

n

E z h E z
E z

h

    

  
0

( ) ( ) ( )
lim
n

E z E h E z

h


  

2

0 0

1 .. 1
2 !( ) 1

( ) lim ( ) lim
n h

h
h

E h
E z E z

h h 

  
         

 
 
 

 

( )E z  

   ( ) ( )E z E z z C     
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9.2.3 Definition 

 We have the exponential function e defined as 
0

1

!n

e
n





  

9.2.4 Note 

1) For any +ve integer p, ( ) (1 1 ....1( ))E p E ptimes    

   (1) (1)...... (1)E E E . ........ ,e e e Where 
0

1

!n

e
n





  

               pe  

2) Let p>0 be any rational number then 
n

p
m

  where m and n are +ve integers                

pm n   Then  ( ) ( ) ( )
m nE p E mp E n e    

  ( )
n

pmE p e e    

( ) pE p e   for every +ve rational number ‘p’ (1) 

3) Let p be a -ve rational number then -p>0. Then by (1),  

          ( ) pE p e   but ( ) ( ) 1E p E p   

           
1 1

( )
( )

p
p

E p e
E p e

   


 

( ) pE p e   for every -ve rational number p 

Hence, ( ) pE p e  for all rational number p 

 

9.3 EXPONENTIAL AND LOGARITHMIC FUNCTIONS: 
 

9.3.1 Definition 

 For any real number x, we define ( ) xE x e  

9.3.2 Theorem  

Let xe be defined on R by ( )xe E x  where 
0

( )
!

n

n

x
E x

n





  Then  

a) xe is continuous and differentiable for all x; 
b) 1( )x xe e  

c) xe is a strictly increasing function of x, and 0xe  ; 

d) x y x ye e e   

e) , 0x xe as x e as x       

f) lim 0n x

x
x e


 , for every n. 
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Proof: 

a) Let x R , then 
0

( )
!

n
x

n

x
e E x

n





   for 0n  , write 
1

!na n
   

Now 1 ! 1
lim lim lim 0

( 1)! 1
n

n n n
n

a n

a n n


  
  

 
 

so, the radius of convergence of the series 
0 !

n

n

x

n




  is . 

by a known theorem(8.21) E(x) is continuous and differentiable for all x R  Hence, xe  is 

continuous and differentiable on R. 

b) Now 
0 0

( 1)
( ) ( ) lim lim

x h x x h
x x

n n

d e e e e
e e

dx h h



 

      

2

0

1
lim 1 ... 1

2!
x

n

h
e h

h

  
      

  
 

3

0
lim 1 .....

2! 3!
x

n

h h
e h



 
     

 
 

(1 0 0 ....)xe     

xe  

   ( ) ,x xe e x R     

c) Let ,x y R  such that 0 x y   

! !

n nx y

n n
   for every +ve integer n 

So, 
0 0! !

n n

n n

x y

n n

 

 

   

      ( ) ( )E x E y  , where ever x y  

( )E x  is a strictly increasing function and 0xe   on R 

d) Consider 
0 0

( ) ( )
! !

n m

n m

x y
E x E y

n m

 

 

   

0 0 ! ( )!

k n kn

n k

x y

k n k



 


  (By Cauchy theorem ) 

0 0

1 !

! !( )!

k n kn

n k

n x y

n k n k



 


   
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0

1
( )

!
n

n

x y
n





   

( )E x y   

     ( ) ( ) ( )E x E y E x y    

   .x y x ye e e   

e) we know that 
0 !

n
x

m

x
e

n





  

taking limit on both sides as x , we have 
2

lim lim 1 .....
2!

x

x x

x
e x

 

 
    

 
 

so, xe as x   We have ( ) ( ) 1E x E x   

   
1 1

( )
( )

x
x

E x e
E x e

   


 

Now, 
1

lim lim 0x
xx x

e
e 

  so, 0xe as x   

f) Let n be any +ve integer 

we have 
0

( )
!

k
x

k

x
e E x

k





   

 
1

0

( )
! ( 1)!

k n
x

k

x x
e E x

k n





   
 , for all 0x   

 
( 1)!

.
x

n

n
e

x x
 

  , for all 0x   

 
( 1)!n x n

x e
x

 
  , for all 0x   

 
( 1)!

lim lim 0n x

x x

n
x e

x


 


    

lim 0n x

x
x e


    for all +ve integer n 

 

9.3.3 Definition (Logarithmic Function) 

Since 𝐸 is a strictly increasing and differentiable function on R. it has an inverse 

function ‘L’ which is also strictly increasing and differentiable and whose domain is ( )E R , 

i.e., the set of all positive number. 

L is defined by  ( ) ( 0)E L y y y   or  ( )L E x x   for all x R  
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For any 0x  , we denote ( )L x by logx  i.e ( ) logL x x  

Properties of Logarithmic functions: consider  ( ) , (1)L E x x x R     

1) Differentiating on both sides w.r.to x, we have  ( ) . ( ) 1L E x E x  

 ( ) . ( ) 1L E x E x x R                ( ) ( )E x E x   

 We have for every , ( ) 0x R E x   So,   1
( )

( )
L E x x R

E x
     

2) Taking x=0 in (1), we have  (0) 0L E  b 

(1) 0L   

log1 (1) 0L    

3) By the fundamental theorem of calculus, 
1

( ) ( ) (1) ( )
y

L x dx L y L L y     

1 1

1
( ) ( )

y y

L y L x dx dx
x

    b 

 Hence, 
1

1
log

y

y dx
x

  b 

4) Let ( )u E x   and ( )E y    where ,x y R  Then 0u   and 0    ,  

and  ( ) ( )L u L E x x  and  ( ) ( )L L E x y    Now, 

   ( ) ( ). ( ) ( )L u L E x E y L E x y x y       ( ) ( )L u L    

 ( ) ( ) ( )L u L u L    , For all , ( )u E R  

5) i) Let 0  put  Ee      i.e., ( )E    

Then 0   Suppose x  . Then  ( ) ( ) ( )L x L L E     

( )L x  So, for 0 , 0 ( )x L x       

  lim ( )
x

L x


  

 Hence, logx as x   

ii) Let 0  then 0   put Ee   then 0   

suppose x   then  ( ) ( ) ( ) ( )L x L L e L E          

( )L x  
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  So, for 0 , 0 ( )x L x       when ever x   

   lim ( )
x

L x


    

  Hence, log 0x as x    

6) We have  ( ) ( ( )) ( ( . ............ (int ))n n nx E L x x E L x x E L x x x res      

( ( ) ( ) ........... ( )) ( ( ))nx E L x L x L x E nL x       

llly  
1 1

( )nx E L x
n

   
 

   ( ( ))x E L x    for all rational   

7) Let 0   

Take 0 0 1and x     

Consider 1

1 1

1
log

x x

x x x dt x t dt
t

         

   1

1 1

xx t
x t dt x 


    

    
         1 10 1 1 et E      

   1ex x x x
x

 


 
   

      
 

  1
log ; 0x x

x





   


 

Hence, lim log 0
x

x x


  ( 0 0)     

8) We have  . ( )x E L x   now      1
. ( ) . ( )x E L x L x     

  1
. ( ) ( ) . .E L x L x x

x
   

 

 1 1.x x   
 

9.4  TRIGONOMETRIC FUNCTION: 

 

9.4.1 Definition  

 For any x R , define 
( ) ( )

( )
2

E ix E ix
C x

 
  and 

( ) ( )
( )

2

E ix E ix
S x

i

 
  

9.4.2 Note: 

 1) Consider, 
( ) ( )

( )
2

E ix E ix
C x

 
  
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   0 0

( ) ( )

! !
2

n n

n n

ix ix

n n

 

 





 

 

   

2 2( ) ( )
1 .... 1 ( ) ....

2! 2!

2

ix ix
ix ix

   
          

     

  
2 4 6

1 .... cos
2! 4! 6!

x x x
x

 
      
 

 

  ( ) cosC x x   

 2) Consider 
( ) ( )

( )
2

E ix E ix
S x

i

 
  

   

2 2( ) ( )
1 .... 1 ( ) ....

2! 2!

2

ix ix
ix ix

   
          

     

   
3 5 7

....
3! 5! 7!

x x x
x      

   sin x  

  ( ) sinS x x   

 3) Clearly ( ) ( ) ( )E ix C x iS x   

       So, ( )C x  and ( )S x  are the real and imaginary parts of ( )E ix  

 4)    ,Z E z E z   

 5) For any x R , 
2

( ) ( ). ( )E ix E ix E ix  

     ( )E ix E ix  

    ( ) ( )E ix E ix   

    1  

   
2

( ) 1E ix x R     

  ( ) 1E ix x R     

 6) Since (0) 1E  , we have (0) 1C   and (0) 0S   

 7) ( ) ( )C x S x    and '( ) ( )S x C x  
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Proof: 

 We have 
( ) ( )

( )
2

E ix E ix
C x

 
  

  Differentiating on both sides w.r.to x  

    1
( ) ( ) ( )( )

2
C x E ix i E ix i       

     1
( ) ( )( )

2

i
E ix i E ix i

i
      

    
( ) ( )

( 1)
2

E ix E ix

i

 
   

    ( )S x  

   ( ) ( )C x S x    

We have 
( ) ( )

( )
2

E ix E ix
S x

i

 
  

 Differentiating on both sides w.r.to x 

   1
( ) ( ) ( )( )

2
S x E ix i E ix i

i
       

    1
( ) ( )( )

2
E ix i E ix i

i
     

   
( ) ( )

2

E ix E ix

i

 
  

   ( )C x  

  ( ) ( )S x C x   
 

9.4.3 Definition  

A function f is said to be periodic, if there is a smallest positive number  such that 

( ) ( )f x f x x    in domain of f here  is called a period of f. 
 

9.4.4 Theorem 

a) The function E is periodic, with period 2 i . 

b) The functions C and S are periodic, with period 2  

c) If 0 2t   , then ( ) 1E it   

d) If z is a complex number with |z|=1, there is an unique t in [0,2𝜋] such that ( )E it t  

Proof: 

a) First, we show that there exists a number 0x   such that ( ) 0C x   
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if possible, suppose that ( ) 0C x   for every 0x  (1) 

clearly (0) 1C   

If for some elements 0 0x  , 0( ) 0 1C x   , then by a know result, there exists  00 ,x x  such 

that ( ) 0C x  which is a contradiction to eq(1) 

  ( ) 0C x   for all 0x   

 ( ) 0S x  for all 0x      ( ) ( )S x C x x    

  S  is strictly monotonically increasing function for 0x   

  So, ( ) (0) 0S x S  for all 0x   

   ( ) 0S x    for all 0x   

  Hence, if 0 x y  , we have ( ) ( ) ( ) ( )
y y

x x

y x S x S t dt C t dt      

     ( ) ( ) ( ) 1 1 2
y

x
C t C x C y        

   ( ) ( ) 2,y x S x y x      

   
2

( )
y x y x

S x
     , which can’t be true for  large y , since 

( ) 0S x   

  There exists 0x  such that ( ) 0C x   

let 0x be the smallest positive number such that 0( ) 0C x   

this exists, since the set of 3ems of a continuous function is closed and (0) 0C   

define 02x  . Then ( ) 0C y   for all 0y x  

0
2

C
   
 

and hence 1
2

S
    
 

 

Since ( ) 0C x  in 0,
2

 
 
 

, S is increasing in 0,
2

 
 
 

 and hence 1
2

S
   
 

 

0 .1
2 2 2

i
E C iS i i

                 
     

 

So, ( ) . 1
2 2 2 2

i i i i
E i E E E i i

                  
     

and 

(2 ) ( ) ( ) ( ) ( 1)( 1) 1E i E i i E i E i            
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( 2 ) ( ) (2 ) ( )E z i E z E i E z      for all complex number z 

Hence, E is a periodic function, with period 2 i  

b)  For any real x, consider    1
( 2 ) ( 2 ) ( 2 )

2
C x E i x E i x           

   1
. ( 2 ) (

2
E ix E ix E i E       is period with period 2 )i  

   1
( )

2
E ix E ix C x       

And    1
( 2 ) ( 2 ) ( 2 )

2
S x E i x E i x

i
           

   1

2
E ix E ix

i
      

( )S x  

 C and S are periodic with period 2  

c) suppose 0
2

t


  and ( )E it x iy   where ,x y R  ( )E it x iy     

1 (0) ( ) ( ) ( ) ( )( )E E it it E it E it x iy x iy          

  2 21 (1)x y     

  0 1 0 1x and y      

Consider (4 ) ( )E it E it it it it     

           ( ) ( ) ( ) ( )E it E it E it E it  

   4( )x iy   

   4 4 2 2 2 26 4 ( )x y x y ixy x y      

If (4 )E it is a real no.,  then 2 24 ( ) 0 (2)xy x y    

As 0& 0, 0x y xy    

So, from(2) , 2 2 0x y   

  2 2x y   

Hence , from(1), 
1

2
x  and 

1

2
y   

 
4 4 2 2

1 1 1 1
( 4 ) 6

2 2 2 2
E i t

                 
       

1 (3)    
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We have 0
2

t


  0 4 2t     

From(3), 1( ) 1E it    where 1 4t t 1 1( ) 1 0 2E it if t      

Hence , 0 2t       ( ) 1E it   

d) Fix a complex number 𝑧 such that |𝑧| = 1 

Let 𝑧 = 𝑥 + 𝑖𝑦 where 𝑥, 𝑦 ∈ 𝑅 

As |𝑧| = 1, 𝑥ଶ + 𝑦ଶ = 1 

Case i: suppose 𝑥 ≥ 0 of 𝑦 ≥ 0 

Since ‘C’ is decreases on (0,
గ

ଶ
) from 1 to 0, by a known result, 𝐶(𝑡) = 𝑥 for some 𝑡 ∈ (0,

గ

ଶ
). 

Since 𝐶ଶ + 𝑆ଶ = 1 and 𝑆 ≥ 0 on (0,
గ

ଶ
), we get 𝑆(𝑡) = 𝑦 for some 𝑡 ∈ (0,

గ

ଶ
). 

Therefore 𝐸(𝑖𝑡) = 𝐶(𝑡) + 𝑖𝑆(𝑡) = 𝑥 + 𝑖𝑦 = 𝑧 for some 𝑡 ∈ ቀ0,
గ

ଶ
ቁ ⊆ [0,2𝜋] 

Case ii: Suppose 𝑥 < 0 and 𝑦 ≥ 0 

Then −𝑥 > 0 and 𝑦 ≥ 0, we have 𝑧 = 𝑥 + 𝑖𝑦 

So, −𝑖𝑧 = −𝑖𝑥 + 𝑦 that implies −𝑖𝑧 = 𝑦 + 𝑖𝑥ଵ, where 𝑥ଵ = −𝑥 > 0 

Clearly, |−𝑖𝑧| = ඥ𝑦ଶ + 𝑥ଵ
ଶ = ඥ𝑦ଶ + (−𝑥)ଶ = |𝑧| = 1 

So, by Case (i), 𝐸(𝑖𝑡) = −𝑖𝑧 for some 𝑡 ∈ (0,
గ

ଶ
). 

That implies 𝑧 =
ିଵ

௜
𝐸(𝑖𝑡) = 𝑖𝐸(𝑖𝑡) = 𝐸 ቀ

௜గ

ଶ
ቁ 𝐸(𝑖𝑡) = 𝐸 ቀ𝑖𝑡 +

௜గ

ଶ
ቁ ≤ 1 

       = 𝐸 ൬𝑖 ቀ𝑡 +
గ

ଶ
ቁ൰ 

                                                                               = 𝐸(𝑖𝑡ଵ)  

where 𝑡ଵ = 𝑡 +
గ

ଶ
∈ ቂ

గ

ଶ
, 𝜋ቃ ⊆ [0,2𝜋] 

Case iii: Suppose 𝑦 < 0 and 𝑥 > 0 

Then 𝑥 > 0 and −𝑦 > 0, we have 𝑧 = 𝑥 + 𝑖𝑦 

That implies −𝑧 = 𝑥 + 𝑖(−𝑦) 

          = 𝑥 + 𝑖𝑦ଵ where 𝑦ଵ = −𝑦 > 0 

Now, |−𝑧| = |𝑧| = 1 

So, by Case (ii), we get 𝑡 ∈ (0,
గ

ଶ
) such that 𝐸(𝑖𝑡) = −𝑧 

That implies 𝑧 = −𝐸(𝑖𝑡) = 𝐸(𝑖𝜋)𝐸(𝑖𝑡) = 𝐸(𝑖𝜋 + 𝑖𝑡) 

    = 𝐸൫𝑖(𝜋 + 𝑡)൯ = 𝐸(𝑖𝑡ଶ) 

Where 𝑡ଶ = 𝜋 + 𝑡 ∈ (0,2𝜋) 

Therfore 𝑧 = 𝐸(𝑖𝑡) for some 𝑡 ∈ (0,2𝜋) 
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Case iv: Suppose 𝑥 < 0 and 𝑦 < 0, then −𝑥 > 0 and −𝑦 > 0 

We have 𝑧 = 𝑥 + 𝑖𝑦 

That implies −𝑧 = −𝑥 + 𝑖(−𝑦) = 𝑥ଵ + 𝑖𝑦ଵ 

Where 𝑥ଵ = −𝑥 > 0 and 𝑦ଵ = −𝑦 > 0 

Now |−𝑧| = |𝑧| = 1 

So, by Case (i), we get 𝑡 ∈ (0,
గ

ଶ
) such that 𝐸(𝑖𝑡) = −𝑧 

That implies 𝑧 = −𝐸(𝑖𝑡) = 𝐸(𝑖𝜋)𝐸(𝑖𝑡) = 𝐸(𝑖(𝜋 + 𝑡)) 

    = 𝐸(𝑖𝑡ଷ) 

Where 𝑡ଷ = 𝑡 + 𝜋 ∈ [0,2𝜋] 

Therefore 𝐸(𝑖𝑡) = 𝑧 for some 𝑡 ∈ [0, 2𝜋] 

 

9.5  SUMMARY: 

   

This lesson is designed to introduce learners to the fundamental concepts of the 

Exponential, Logarithmic and Trigonometric, exploring their properties and applying them to 

real-world contexts. This lesson provides a solid foundation for learners to develop their 

understanding. Key takeaways of this lesson are definitions and theorems, applications of the 

Exponential, Logarithmic and Trigonometric in mathematical and real-world problems and 

examples and exercises to their force understanding.  

 

9.6  TECHNICAL TERMS: 

 

 Exponential functions 

 Logarithemic functions 

 Trigonometric functions 

 Periodic functions  
 

9.7  SELF-ASSESSMENT QUESTION: 

 

1. Prove the following limit relations 

a. 
0

1
lim log ( 0)

x

x

b
b b

x


   

b. 
0

log(1 )
lim 1
x

x

x


  

c. 
1

0
lim(1 ) x

x
x e


   
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d. lim 1
n

x

n

x
e

n

   
 

 

2. Find the following limits. 

a. 

1

0

(1 )
lim

x

x

e x

x

 
 

b.  1

lim 1
log

x

x

x
n

x
  

c. 
0

tan
lim

(1 log )x

x x

x x




 

d. 
0

sin
lim

tanx

x x

x x




 

3. Suppose ( ) ( ) ( )f x f y f x y   for all real x and y  

a.   Assuming that f is differentiable and non-zero Prove that  ( ) cxf x e , where c is a constant 

b. Prove That something, assuming only that f is continuous  

4. If  0
2

x


  , Prove that 
sin

1
2

x

x


   

5. For 0,1,2,3.....n  , and x real, Prove That sin( ) sinnx n x  

 

9.8  SUGGESTED READINGS: 

 

1)  Principles of mathematical analysis by Walter Rudin, 3rd Edition      

2)  Mathematical Analysis by Tom M.Apostal, Narosa Publishing House, 2nd Edition, 1985 

 

- Dr. L Krishna 

 

 



 

 

LESSON- 10 

LINEAR TRANSFORMATIONS 
 
OBJECTIVES: 
 
The objective of this unit is to explore the concepts of linear transformations and their 

applications in advanced mathematical analysis.  

It aims to 

1. Understand the principles of linear transformations and their role in differentiating 

functions 

2. Analyse the contraction principle and its significance in fixed-point theory. 

3. Examine the inverse function theorem and its applications in multivariable calculus. 

4. Develop problem-solving skills related to differentiability and transformations in    

higher dimensions. 
 

STRUCTURE:  
 

10.1  Introduction 

10.2  Definitions 

10.3  Theorems on linear transformations 

10.4  Summary 

10.5  Technical terms 

10.6  Self Assessment Questions 

10.7  Suggested readings 

 

10.1  INTRODUCTION: 
 

This lesson starts with an exploration of sets of vectors in Euclidean 𝑅௡space. While the 

algebraic principles discussed here apply to any finite-dimensional vector space over any 

field of scalars, we will focus on the familiar framework of Euclidean spaces for simplicity. 

 

10.2 DEFINITIONS: 
 

1. A nonempty set  nRX   is a vector space over R  if 

i. Xyx   and 

ii. Xxc  for all Xyx , and for all scalars 𝑐 
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2. If n
k Rxxx ,,........., 21 and kccc ,........, 21 are scalars then 

kk xcxcxc  .........2211 Is called a linear combination of .,,........., 21 kxxx  

3. If nRS   and if  E  is the set of all linear combinations of elements of S  

We say that S spans E (or) that E  is the span of S . 

10.2.1 Note: - Every span is a vector space. 

4. A set consisting of vectors kxxx ,,........., 21 is said to be linearly dependent if there 

exists a scalars  kccc ,........, 21 ,not all zero, such that 0.........2211  kk xcxcxc  

5. A set consisting of vectors kxxx ,,........., 21 is said to be linearly independent if there 

exists a scalars kccc ,........, 21 ,not all zero, such that 0.........2211  kk xcxcxc

implies 0,........21  kccc . 

10.2.2 Note: Observe that no independent set contains the null vector. 

6. If a vector space 𝑋 contains an independent set of ′𝑟′ vectors but does not contain 

independent set of 𝑟 + 1 vectors, then we say that 𝑋 has dimension𝑟, and we 

writedim 𝑋 = 𝑟. 

10.2.3 Note: The set consisting of 0  alone is a vector space; its dimension is 0. 

7. Let 𝑋 be a vector space. A subset 𝐵 of 𝑋 is called a basis of 𝑋 if 

i. 𝐵 is linearly independent and 

ii. 𝐵 spans  𝑋 

10.2.4 Note 1. Observe that if 𝐵 = ቄ .,,........., 21 kxxx ቅ is a basis of 𝑋, then every element x  

in 𝑋 has a unique representation of the form  i

K

i
ixcx 




1

the numbers 

kccc ,........, 21 are called the coordinates of x   with respect to the basis𝐵. 

10.2.5 Note 2. Consider the vector space 𝑅௡. 

The set{𝑒‾ଵ, 𝑒‾ଶ, … , 𝑒‾௡} where 𝑒‾௝is the vector in 𝑅௡whose jth coordinate is 1 

And whose other coordinates are all 0, is a basis for 𝑅௡ 

This basis is called as the standard basis of 𝑅௡ 
 

10.3 THEOREMS ON LINEAR TRANSFORMATIONS: 
 

10.3.1 Theorem Let 𝑟 be a positive integer. If a vector space 𝑋 is spanned by a set of 𝑟 

vectors, then dim𝑋 ≤ 𝑟. 



Analysis – II      10.3         Linear Transformations 

 
 

Proof: Given that  𝑟 is a positive integer 

Suppose 𝑋is a vector space, spanned by a set 𝑆 of vectors. 

Let the  𝑟 vectors of 𝑆 be𝑥‾ଵ, … , 𝑥‾௥.Then 

𝑠 = {𝑥ଵ, 𝑥ଶ, … , 𝑥௥}. 

Claim: dim𝑋 ≤ 𝑟 

If possible suppose that dim 𝑋 > 𝑟 

Then we get a linearly independent set, say 𝑄 = {𝑦‾ଵ, … , 𝑦‾௥ , 𝑦‾௥ାଵ}of 𝑟 + 1 vectors in 𝑋. 

Since 𝑦‾ଵ ∈ 𝑋and 𝑆 spans𝑋, we have that 𝑦‾ଵ is a linear combination of elements of 𝑆   …..(1) 

So, 𝑆 ∪ {𝑦‾ଵ} is a linear dependent set in 𝑋. 

Write 𝑆ଵ = {𝑦‾ଵ, 𝑥ଵ, … , 𝑥‾௥} 

Then 𝑆ଵ is linearly dependent and 𝑆ଵ spans𝑋. 

By (1) ∃ scalars 𝑏ଵ, 𝑏ଶ, 𝑏ଷ, … . . 𝑏௥ such that 𝑦‾ଵ + 𝑏ଵ𝑥‾ଵ + ⋯ + 𝑏௥𝑥‾௥ = 0                     …..(2) 

If all𝑏௜’s are zero, then𝑦‾ଵ = 0, 

So, some 𝑏௞ ,1 ≤ 𝑘 ≤ 𝑟 is non zero. 

Therefore from (2), 𝑥‾௞is a linear combination of 𝑥‾ଵ, ⋯ , 𝑥‾௞ିଵ, 𝑥‾௞ାଵ, ⋯ , 𝑥‾௥ and 𝑦‾ଵ     ….. (3) 

Write   𝑠ଶ = {𝑦‾ଵ, 𝑥‾ଵ, … , 𝑥‾௞ିଵ, 𝑥‾௞ାଵ, … , 𝑥‾௥}. 

Now we prove that 𝑆ଶ spans𝑋. 

Let 𝑢‾ ∈ 𝑋. 

Since 𝑆ଵ spans𝑋,we have 

11
1

ybxcu i

r

i
i 



                     ….. (4) 

By (3)𝑥‾௞ =   𝑑ଵ𝑦‾ଵ + 𝑎ଵ𝑥‾ଵ + ⋯ + 𝑎௞ିଵ𝑥‾௞ିଵ + a௞ାଵ𝑥‾௞ାଵ + ⋯ + 𝑎௥𝑥‾௥. 

Where𝑎ଵ, … 𝑎௞ିଵ, 𝑎௞ାଵ, … , 𝑎௥ and 𝑑ଵ are some scalars. 

So, from (4) we get  

𝑢‾ = 𝑐ଵ𝑥‾ଵ + ⋯ + 𝑐௞ିଵ𝑥‾௞ିଵ + 𝑐௞൫𝑑ଵ𝑦‾ଵ + 𝑎ଵ𝑥‾ଵ + ⋯ + 𝑎௞ିଵ𝑥‾௞ିଵ +      𝑎௞ାଵ𝑥‾௞ାଵ + ⋯ 𝑎௥𝑥‾௥)

+ 𝑐௞ାଵ𝑥‾௞ାଵ+. . . +𝑐௥𝑥‾௥+𝑏ଵ 𝑦‾ଵ. 

𝑢‾ = (𝑐ଵ+𝑎ଵ𝑐௞ )𝑥‾ଵ + ⋯ + (𝑐௞ିଵ   +𝑎௞ିଵ𝑐௞ )𝑥‾௞ିଵ + (𝑐௞ାଵ + 𝑎௞ାଵ𝑐௞)𝑥‾௞ାଵ + ⋯ + 

                (𝑐௥ + 𝑎௥𝑐௞)𝑥‾௥++(𝑏ଵ + 𝑑ଵ𝑐௞)𝑦‾ଵ. 

⇒ 𝑢‾ is a linear combination of 𝑥‾ଵ, … , 𝑥‾௞ିଵ, 𝑥‾௞ାଵ, ⋯ , 𝑥‾௥ and 𝑦‾ଵ. 

∴ 𝑆ଶ spans 𝑋. 

Since 𝑦‾ଶ ∈ 𝑋 and 𝑆ଶ spans 𝑥, we have that 𝑦‾ଶ is a linear combination of vectors of𝑆ଶ 

⇒ 𝑆ଶ ∪ {𝑦‾ଶ} is linearly dependent. 

Write 𝑆ଷ = 𝑆ଶ ∪ {𝑦‾ଶ},  = {𝑦‾ଵ, 𝑦‾ଶ, 𝑥‾ଵ, … , 𝑥‾௞ିଵ, 𝑥‾௞ାଵ, ⋯ , 𝑥௥} 
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Then 𝑆ଷ is a linearly dependent set in𝑋. 

It is clear that ∃𝑥௝ in 𝑆ଷ\{𝑦‾ଵ, 𝑦ଶ}∃𝑥௝ is a linear combination of𝑦‾ଵ, 𝑦‾ଶ, 𝑥‾ଵ, … , 𝑥‾௝ିଵ, 𝑥‾௝ାଵ, … , 𝑥௥. 

Write 𝑆ସ  = ൛𝑦‾ଵ, 𝑦‾ଶ, 𝑦‾ଷ, 𝑥‾ଵ, … , 𝑥‾௝ିଵ, 𝑥‾௝ାଵ, … , 𝑥‾௞ିଵ, 𝑥‾௞ାଵ, … , 𝑥‾௥ൟ.  

Clearly, 𝑆ସ spans𝑋. 

Proceeding like this, after 𝑟 steps, we get ar set {𝑦‾ଵ, … , 𝑦‾௥} and 𝑦‾௥ାଵ is a linear combination  

of 𝑦‾ଵ, 𝑦‾ଶ, … , 𝑦‾௥. 

So, 𝑄 = {𝑦‾ଵ, … , 𝑦‾௥ , 𝑦‾௥ାଵ} is linearly dependent. 

∴ dim𝑋 ≤ 𝑟  
 

10.3.2 Corollary:  dim 𝑅௡ = 𝑛. 

Proof: since {𝑒‾ଵ, 𝑒‾ଶ, … , 𝑒‾௡} spans 𝑅௡, by the above Theorem, dim(R௡) ⩽ 𝑛       → (1) 

since {𝑒‾ଵ, 𝑒‾ଶ, … , 𝑒‾௡} is a L .I set in 𝑅௡  ,      dim(𝑅௡) ≥ 𝑛                                         → (2) 

From (1) & (2), dim𝑅௡ = 𝑛. 
 

10.3.3 Theorem Suppose 𝑋 is a vector space, and dim𝑋 = 𝑛. 

(a) A set 𝐸 of 𝑛 vectors in 𝑋 spans 𝑋 if and only if 𝐸 is independent. 

(b) 𝑋 has a basis, and every basis consists of 𝑛 vectors. 

(c) If 1 ≤ 𝑟 ≤ 𝑛 and {𝑦‾ଵ, … , 𝑦‾௥} is an independent set in 𝑋, then 𝑋 has a basis  

Containing{𝑦‾ଵ, … , 𝑦‾௥}. 

Proof: Given, 𝑋 is a Vector spaceanddim 𝑋 = 𝑛. 

a) Let𝐸 = {𝑥‾ଵ, 𝑥‾ଶ, … , 𝑥‾௡} ⊆ 𝑋. 

𝑋 = ⟨𝐸⟩ 

Suppose 𝐸spans𝑋. 

Now we prove that E is linearly independent in X. 

If possible suppose that 𝐸 is linearly dependent. 

Then ∃scalars𝛼ଵ, 𝛼ଶ, ⋯ 𝛼௡, not all zero such that 

𝛼ଵ𝑥‾ଵ + 𝛼ଶ𝑥‾ଶ + ⋯ + 𝛼௡𝑥‾௡ = 0 

Suppose 𝛼௞ ≠ 0 for some1 ≤ 𝐾 ≤ 𝑛. 

Then 𝑥‾௞ is a linear combination of 𝑥‾ଵ, … , 𝑥‾௞ିଵ, 𝑥‾௞ାଵ, … , 𝑥‾௡. 

∴ {𝑥‾ଵ, … , 𝑥‾௞ିଵ, 𝑥‾௞ାଵ, … , 𝑥‾௡}Spans 𝑋 

So, by the above Th., dim𝑋 ≤ 𝑛 − 1. 

⇒ 𝑛 ≤ 𝑛 − 1This is not possible. 

∴ 𝐸is a linearly independent set in 𝑋. 

Conversely, suppose that𝐸 is linearly independent. 
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Set of 𝑛 vectors, we have that. 

Sincedim 𝑋 = 𝑛, and 𝐸 is linearly independent 𝑋,  

For any 𝑦‾ ∈ 𝑥, 𝐸 ∪ {𝑦}‾  is a linearly dependent set in 𝑋. 

Let𝑦‾ ∈ 𝑋. 

Then 𝐸𝑈 {𝑦}‾  is linearly dependent. 

so, ∃ scalars 𝑎ଵ, … , 𝑎௡, 𝑎௡ାଵ not all zero,  

such that 𝑎ଵ𝑥‾ଵ + ⋯ + 𝑎௡𝑥‾௡ + 𝑎௡ାଵ𝑦‾ = 0                                                           → (1) 

If 𝑎௡ାଵ = 0, then 𝑎ଵ𝑥‾ଵ + ⋯ + 𝑎௡𝑥‾௡ = 0. 

⇒ 𝑎௜ = 0 ∀ 1 ≤ 𝑖 ≤ 𝑛                       (∵ 𝐸 is L.I. ) 

This is a Contradiction. 

∴ 𝑎௡ାଵ ≠ 0. 

So, from (1), 𝑦‾ is a linear combinationof𝑥ଵ, … , 𝑥‾௡. 

∴ 𝐸 Spans  𝑋. 
 

b) Since dim 𝑋 = 𝑛,   

𝑋 Contains alinearly independentSet𝐵of 𝑛 vectors and does not containonly linearly 

independent Set of 𝑛 + 1 vectors. 

By part (a), B spans x. 

Hence, 𝐵 is 𝑎 basis of 𝑋containing n vectors. 

Let ' 𝑆 ' be any basis of ' 𝑋 ' containing 𝑚 eles. 

Then by the above Th., dim𝑥 ≤ 𝑚                                                                             → (1) 

since 𝑠 is a linearly independent set of 𝑚vectors, by the definition of dim 𝑋, 𝑚 ≤ 𝑛  → (2) 

From (1) & (2), 𝑚 = 𝑛. 

Hence, any basis of 𝑋 contains 𝑛 vectors. 

 

C) Suppose, 1 ≤ 𝑟 ≤ 𝑛,  𝑎𝑛𝑑 {𝑦‾ଵ, … , 𝑦‾௥} is a, linearly independent set in 𝑋. 

Sincedim𝑋 = 𝑛, we get a basis {𝑥‾ଵ, … , 𝑥‾௡} of 𝑛 vectors in X.  

Write𝑆 = {𝑦‾ଵ, … , 𝑦‾௥ , 𝑥‾ଵ, … , 𝑥‾௡} 

clearly, 𝑆spans𝑋. 

Also, 𝑆 is linearly dependentin 𝑋. 

So, one of the vectors,say𝑥‾௜ is a linear combination of 𝑦‾ଵ, … , 𝑦‾௥ , 𝑥‾ଵ, … , 𝑥‾௜ିଵ, 𝑥‾௜ାଵ, … , 𝑥‾௜ 

Remove 𝑥‾௜ from𝑆. 
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Then the set 𝑆ᇱ = 𝑆 ∖ {𝑥‾௜} still spans 𝑋. 

If we repeat this process 𝑟 times, by (a),  

We get a basis of 𝑋 which Contains{𝑦‾ଵ, ⋯ , 𝑦‾௥}. 

 

10.3.4 Definition: A mapping 𝐴 from a vector space 𝑋 into a vector space 𝑌 is  said to be a 

linear transformation if  (i) 𝐴(xଵ + xଶ) = 𝐴xଵ + 𝐴xଶ 

                                                          (ii) 𝐴(𝑐x) = 𝑐𝐴x 

for all x, xଵ, xଶ ∈ 𝑋 and all scalars 𝑐.  

 

10.3.4.1 Note: Set 𝐴: 𝑋 → 𝑌 be a linear transformation. 

i) 𝐴(0) = 𝑂ఊ. 

ii) we write 𝐴𝑋 instead of 𝐴(𝑥). 

 

10.3.5 Definition: A linear transformation of a vector spaceX into itself is called a linear 

operator on 𝑋. 

 

10.3.6 Definition: - Let 𝑋 be a vector space. A linear operator 𝐴 on 𝑋 is Said to be invertible 

if 

i)𝐴is one-one, and 

ii) A maps 𝑋onto 𝑋. 
 

10.3.6.1 Note: -If 𝐴 is a linear operator on 𝑋, then 𝐴ିଵ is an operator on 𝑋,  defined by 

𝐴ିଵ൫𝐴(𝑥)൯ = 𝑥∀𝑥 ∈ 𝑋. 

 

10.3.6.2 Note: 𝐴൫𝐴ିଵ(x)൯ = 𝑥 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ 𝑋. 

Proof: Let 𝑥 ∈ 𝑋. 

since𝐴 is onto, ∃𝑦 ∈ 𝑥 such that 𝐴(𝑦) = 𝑥. 

By the def of 𝐴ିଵ,    𝑦 = 𝐴‾ିଵ൫𝐴(𝑦)൯ = 𝐴ିଵ(𝑥) 

 
⇒ 𝐴(𝑦) = 𝐴൫𝐴ିଵ(𝑥)൯

⇒ 𝑥 = 𝐴൫𝐴ିଵ(𝑥)൯
 

 

10.3.6.3 Note: Aିଵ is a linear operator on 𝑋. 

Proof: we have 𝐴 is a linear operator on 𝑋. 

Let 𝑥ଵ, 𝑥ଶ ∈ 𝑋. 

since A maps 𝑋 onto 𝑋, ∃𝑦ଵ, 𝑦ଶ ∈ 𝑋 such that 𝐴(𝑦ଵ) = 𝑥ଵ, &𝐴(𝑦ଶ) = 𝑥ଶ. 
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⇒ 𝐴ିଵ൫𝐴(𝑦ଵ)൯ = 𝐴ିଵ(𝑥ଵ) and 𝐴ିଵ൫𝐴(𝑦ଶ)൯ = 𝐴ିଵ(𝑥ଶ).

⇒ 𝑦ଵ = 𝐴ିଵ(𝑥ଵ) ad 𝑦ଶ = 𝐴ିଵ(𝑥ଶ).
 

𝑁𝑜𝑤  𝐴ିଵ(𝑥ଵ + 𝑥ଶ)= 𝐴ିଵ൫𝐴(𝑦ଵ) + 𝐴(𝑦ଶ)൯

= 𝐴ିଵ൫𝐴(𝑦ଵ + 𝑦ଶ)൯

= 𝑦ଵ + 𝑦ଶ

= 𝐴ିଵ(𝑥ଵ) + 𝐴ିଵ(𝑥ଶ).

 

Let 𝑥 ∈ 𝑋 and let ' 𝑐 ' be a scalar. 

since A maps 𝑋 onto 𝑋, ∃ 𝑦 ∈ 𝑋 ∋ 𝐴(𝑦) = 𝑥. 

So, 𝑦 = 𝐴ିଵ൫𝐴(𝑦)൯ = 𝐴ିଵ(𝑥) 

Now 𝐴ିଵ(𝑐𝑥) = 𝐴ିଵ൫𝑐𝐴(𝑦)൯ = 𝐴ିଵ൫𝐴(𝑐𝑦)൯ = 𝑐𝑦 = 𝑐𝐴ିଵ(𝑥). 

Hence, 𝐴ିଵ is a linear operator on𝑋. 
 

10.3.7 Theorem 𝐴 linear operator 𝐴 on a finite-dimensional vector space 𝑋 is one-to-one if 

and only if the range of 𝐴 is all of 𝑋. 

Proof: Let 𝐴 be a linear operator on a finite dimensional vector space𝑋. 

Since 𝑋 is a finite dimensional vector space, 

We get a basis, say 𝐵 = {𝑥‾ଵ, 𝑥ଶ, … , 𝑥௡} of 𝑋. 

Consider  𝑅(𝐴), the range of𝐴. 

Write 𝑄 = {𝐴𝑥ଵ, 𝐴𝑥‾ଶ, … , 𝐴𝑥௡}. 

Then 𝑄 ⊆ 𝑅(𝐴) 

Now we Show that 𝑄 spans 𝑅(𝐴). 

Let 𝑦‾ ∈ 𝑅(𝐴) ⇒ 𝑦‾ = 𝐴(𝑥‾) for some 𝑥‾ ∈ 𝑋 

Since 𝐵 spans 𝑋 and 𝑥‾ ∈ 𝑋, we have that 

𝑥‾ = 𝛼ଵ𝑥‾ଵ + 𝛼ଶ𝑥‾ଶ + ⋯ . +𝛼௡𝑥‾௡ for some scalars 𝛼ଵ, 𝛼ଶ, … , 𝛼௡. 

So, 𝑦‾ = 𝐴(𝑥‾) 

= 𝐴(𝛼ଵ𝑥‾ଵ + 𝛼ଶ𝑥ଶ + ⋯ + 𝛼௡𝑥‾௡)

= 𝛼ଵ𝐴(𝑥‾ଵ) + 𝛼ଶ𝐴(𝑥‾ଶ) + ⋯ + 𝛼௡𝐴(𝑥‾௡)
 

∴ 𝑦 ‾ is the linear combination of vectors of 𝑄 

                               ∴ 𝑄 spans 𝑅(𝐴)                                                            →   (1) 

We know that a set 𝐸 of 𝑛vectors in 𝑋 spans 𝑋 iff𝐸 is independent (put (a) of Th-4.3) 

                              Span of  𝑄 = 𝑋 

So, we have 𝑅(𝐴) = 𝑥 iff 𝑄 is independent                                           →   (2) 

From (1) &(2)  

So, it is enough if we show that 𝑄 is independent iff𝐴 is 1 − 1. 
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Suppose 𝐴 is 1 − 1. 

Let 𝑐ଵ, 𝑐ଶ, … , 𝑐௡ be scalars ∋ 

𝑐ଵ𝐴(𝑥‾ଵ) + 𝐶ଶ𝐴(𝑥‾ଶ) + ⋯ + 𝐶௡𝐴(𝑥‾௡) = 0

⇒𝐴(𝐶ଵ𝑥‾ଵ + 𝑐ଶ𝑥‾ଶ + ⋯ + 𝑐௡𝑥‾௡) = 0

⇒𝑐ଵ𝑥‾ଵ + 𝑐ଶ𝑥‾ଶ + ⋯ + 𝑐௡𝑥‾௡ = 0(∵ 𝐴 is 1 − 1)

 

⇒ 𝐶ଵ = 𝐶ଶ =. = 𝐶௡ = 0 ⋅ (∵ since𝐵 is independent )
∴ 𝑄 is independent .

 

Conversely, suppose that 𝑄 is independent. 

Let 𝑥‾ ∈ 𝑋 ∋ 𝐴(𝑥‾) = 0                                                                              → (3) 

Since 𝐵spans 𝑋, and 𝑥‾ ∈ 𝑋, 

𝑥‾ = 𝑐ଵ𝑥‾ଵ + 𝑐ଶ𝑥‾ଶ + ⋯ + 𝑐௡𝑥‾௡ → (4) 

for some scalars 𝑐ଵ, 𝑐ଶ, … , 𝑐௡. 

So, (3) ⇒ 𝐴(𝑐ଵ𝑥‾ଵ + 𝑐ଶ𝑥‾ଶ + ⋯ + 𝑐௡𝑥‾௡) = 0 

𝑐ଵ𝐴(𝑥‾ଵ) + cଶ𝐴(𝑥‾ଶ) + ⋯ + 𝐶௡𝐴(𝑥‾௡) = 0

⇒ 𝑐ଵ = 𝑐ଶ = ⋯ = 𝑐௡ = 0 (𝑄 is 𝐿. I)                                                  → (5)
 

So, from (4) & (5), we get 𝑥‾ = 0. 

Hence the Theorem follows. 

Suppose 𝐴(𝑥‾) = 𝐴(𝑦‾)where 𝑥‾ , 𝑦‾ ∈ 𝑋. 

          ⇒ 𝐴(𝑥‾) − 𝐴(𝑦‾) = 0. 

          ⇒ 𝐴(𝑥‾ − 𝑦‾) = 0 

          ⇒ 𝑥‾ − 𝑦‾ = 0 ⇒ 𝑥‾ = 𝑦‾ 

∴ 𝐴 is  1-1 

10.3.7.1 Notations 

Let 𝑋, 𝑌 be two vector spaces. 

i) The set of all linear transformations of 𝑋 into Y is denoted by 𝐿(𝑋, 𝑌). 

ii) We simply write 𝐿(𝑋) instead of 𝐿(𝑋̇, 𝑋). 

 

10.3.8 Definition-Cum-Remark: 

Let 𝐴ଵ, 𝐴ଶ ∈ 𝐿(𝑋, 𝑌) and 𝑐ଵ, 𝑐ଶ be scalars. 

For any 𝑥‾ ∈ 𝑋, define (𝑐ଵ𝐴ଵ + 𝑐ଶ𝐴ଶ)(𝑥‾) = 𝑐ଵ𝐴ଵ(𝑥‾) + 𝑐ଶ𝐴ଶ(𝑥‾). 

Then 𝑐ଵ𝐴ଵ + 𝑐ଶ𝐴ଶ ∈ 𝐿(𝑋, 𝑌) 

Proof: Let 𝑥ଵ, 𝑥‾ଶ ∈ 𝑋 and let 𝛼, 𝛽 be scalars. 

Consider (𝑐ଵ𝐴ଵ + 𝑐ଶ𝐴ଶ)(𝛼𝑥ଵ + 𝛽𝑥ଶ) = 
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= 𝑐ଵ𝐴ଵ(𝛼𝑥‾ଵ + 𝛽𝑥ଶ) + 𝑐ଶ𝐴ଶ(𝛼𝑥ଵ + 𝛽𝑥ଶ)

= 𝑐ଵ[𝐴ଵ(𝛼𝑥‾ଵ) + 𝐴ଵ(𝛽𝑥‾ଶ)] + 𝑐ଶ[𝐴ଶ(𝛼𝑥‾ଵ) + 𝐴ଶ(𝛽𝑥ଶ)]

= 𝑐ଵ[𝛼𝐴ଵ(𝑥‾ଵ) + 𝛽𝐴ଵ(𝑥ଶ)] + 𝑐ଶ[2𝐴ଶ(𝑥ଵ) + 𝛽𝐴ଶ(𝑥ଶ)]

= [𝑐ଵ𝛼𝐴ଵ(𝑥ଵ) + 𝑐ଵ𝛽𝐴ଵ(𝑥‾ଶ)] + [𝑐ଶ𝛼𝐴ଶ(𝑥‾ଵ) + 𝑐ଶ𝛽𝐴ଶ(𝑥ଶ)]

= [𝛼(𝑐ଵ𝐴ଵ)(𝑥‾ଵ) + 𝛽(𝑐ଵ𝐴ଵ)(𝑥ଶ)] + [𝛼(𝑐ଶ𝐴ଶ)(𝑥‾ଵ) + 𝛽(𝑐ଶ𝐴ଶ)(𝑥ଶ)]

= 𝛼(𝑐ଵ𝐴ଵ + 𝑐ଶ𝐴ଶ)(𝑥ଵ) + 𝛽(𝑐ଵ𝐴ଵ + 𝑐ଶ𝐴ଶ)(𝑥ଶ).

∴ 𝑐ଵ𝐴ଵ+𝑐ଶ𝐴ଶ ∈ 𝐿(𝑋, 𝑌).

 

 

10.3.9 Definition-Cum-Remark:  

Let 𝑋, 𝑌 and 𝑍 be vector spaces. If 𝐴 ∈ 𝐿(𝑋, 𝑌) and 𝐵 ∈ 𝐿(𝑌, 𝑍), we define their product 𝐵𝐴 

to be the composition of 𝐴B and BA. 𝑖 ⋅e, for any 𝑥‾ ∈ 𝑋̇, (𝐵𝐴)(𝑥‾) = 𝐵൫𝐴(𝑥‾)൯. Then 

 𝐵𝐴 ∈ 𝐿(𝑥, 𝑧). 

Proof: Let 𝑥‾, 𝑦‾ ∈ 𝑋 and let 𝛼, 𝛽 be scalars 

Consider 𝐵𝐴(𝛼𝑥‾ + 𝛽𝑦‾) = 𝐵൫𝐴(𝛼𝑥‾ + 𝛽𝑦‾)൯ 

= 𝐵[𝐴(𝛼𝑥‾) + 𝐴(𝛽𝑦‾)]

= 𝐵[𝛼𝐴(𝑥‾) + 𝛽𝐴(𝑦‾)]

= 𝐵൫𝛼𝐴(𝑥‾)൯ + 𝐵൫𝛽𝐴(𝑦‾)൯

= 𝛼𝐵൫𝐴(𝑥‾)൯ + 𝛽𝐵൫𝐴(𝑦‾)൯

= 𝛼(𝐵𝐴)(𝑥‾) + 𝛽(𝐵𝐴)(𝑦‾)

∴ 𝐵𝐴 ∈ 𝐿(𝑋, 𝑍).

 

Note: -𝐵𝐴 need not be the some as 𝐴𝐵 even if 𝑋 = 𝑌 = 𝑍. 
 

10.3.10 Definition: For 𝐴 ∈ 𝐿(R௡, 𝑅௠), define the norm ‖𝐴‖ of 𝐴 as the supremum of all 

numbers|𝐴𝑥‾|, where 𝑥‾ ranges over all vectors in 𝑅௡with |𝑥‾| ⩽ 1. 

𝑖. 𝑒  ‖𝐴‖ = sup
௫∈ℝ

|௫‾|⩽ଵ

 |𝐴𝑥‾| 

Observation (1): Let 𝐴 ∈ 𝐿(R௡, 𝑅௠)then|𝐴𝑥‾| ≤ ‖𝐴‖|𝑥‾|∀𝑥‾ ∈ R௡.  

Proof: 

Let𝑥‾ ∈ R௡. 

If𝑥‾ = 0, then clearly|𝐴𝑥‾| ≤ ‖𝐴‖|𝑥‾|. 

Suppose𝑥‾ ≠ 0. Put𝑦‾ =
௫‾

|௫‾|∣
then|𝑦‾| = 1. 

By the def of ‖𝐴‖, ‖𝐴(𝑦)‖ᇱ ≤ ‖𝐴‖ 

⇒ ฬ𝐴 ൬
𝑥‾

∣ 𝑥 ∣‾
൰ฬ ≤ ‖𝐴‖ ⇒

1

|𝑥‾|
|𝐴𝑥‾| ≤ ‖𝐴‖ ⋅ (∵ 𝐴 is linear)

⇒ |𝐴𝑥‾| ≤ ‖𝐴‖|𝑥‾|

 

Hence, 

|𝐴𝑥‾| ≤ ‖𝐴‖|𝑥‾|∀𝑥‾ ∈ R௡. 
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2) If 𝜆 is such that|𝐴𝑥‾| ≤ 𝜆|𝑥‾|∀𝑥‾ ∈ R௡, then‖𝐴‖ ≤ 𝜆.  

Proof: Let𝑥‾ ∈ R௡|𝑥‾| ≤ 1. 

Suppose|𝐴𝑥‾| ≤ 𝜆|𝑥‾| ≤ 𝜆. 

∴ 𝜆is an upper bound of|𝐴𝑥‾|,𝑥‾ ∈ R௡|𝑥‾| ≤ 1. 

Since 

‖𝐴‖ is the supremum of 𝜆, then 

‖𝐴‖ ≤ 𝜆 

 

10.3.11 Theorem 

(a) If𝐴 ∈ 𝐿(𝑅௡, 𝑅௠), then ‖𝐴‖ < ∞ and 𝐴 is a uniformly continuous mapping of 𝑅௡ into 𝑅௠. 

(b) If 𝐴, 𝐵 ∈ 𝐿(𝑅௡, 𝑅௠) and 𝑐 is a scalar, then 

‖𝐴 + 𝐵‖ ≤ ‖𝐴‖ + ‖𝐵‖, ‖𝑐𝐴‖ = |𝑐|‖𝐴‖ 

With the distance between 𝐴 and 𝐵 defined as ‖𝐴 − 𝐵‖, 𝐿(𝑅௡, 𝑅௠) is a metric space. 

(c) If 𝐴 ∈ 𝐿(𝑅௡, 𝑅௠) and 𝐵 ∈ 𝐿(𝑅௠, 𝑅௞), then 

‖𝐵𝐴‖ ≤ ‖𝐵‖‖𝐴‖. 

Proof: 

(a) Suppose     𝐴 ∈ 𝐿(𝑅௡, 𝑅௠) 

Let 𝐸 = {𝑒‾ଵ, … … 𝑒௡} be the standard basis of 𝑅௡. 

Let 𝑥‾ ∈ 𝑅௡ ∋ |𝑥‾| ≤ 1. 

Since 𝐸 spans 𝑅௡, we get some scalars𝑐ଵ → 𝑐௡ such that 

𝑥‾ = 𝑐ଵ𝑒ଵ + ⋯ + 𝑐௡𝑒௡. 

|𝑧ଵ + 𝑧ଶ| ≤ 1. 

we have |𝑥‾| ⩽ 1. 

⇒ |𝑐ଵ𝑒‾ଵ + 𝑐௡𝑒‾௡| ≤ 1⇒ |(𝑐ଵ, 𝑐ଶ, … … 𝑐௡)| ≤ 1
 

⇒ ට𝑐ଵ
ଶ + ⋯ + 𝑐௡

ଶ ≤ 1 ⇒ |𝑐௜| ≤ 1   ∀  1 ≤ 𝑖 ≤ n 

Now consider 

|𝐴𝑥‾| = |𝐴(𝑐ଵ𝑒‾ଵ + ⋯ + 𝑐௡𝑒‾௡)| = |𝑐ଵ𝐴(𝑒‾ଵ) + ⋯ + 𝑐௡𝐴(𝑒‾௡)|. 

≤ |𝑐ଵ||𝐴(𝑒‾ଵ)| + ⋯ + |𝑐௡||𝐴(𝑒‾௡)|

≤ |𝐴(𝑒‾ଵ)| + ⋯ +∣ 𝐴(𝑒‾௡ ∣)(∵  |𝑐௜| ≤ 1 ∀𝑖 )

< ∞

 

∴For every 𝑥‾ ∈ 𝑅௡ with |𝑥‾| ⩽ 1; |𝐴𝑥‾| < ∞ 

Hence, 

‖A‖ = sup {|𝐴𝑥‾|/|𝑥| ≤ 1} < ∞,  
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                                    i. e     ‖A‖ < ∞. 

Let 𝜖 > 0. 

If 𝐴 = 0, then clearly 𝐴 is uniformly continuous. 

sup. 𝐴 ≠ 𝑂‾. Then‖𝐴‖ ≠ 0. 

write 𝛿 =
ఢ

‖஺‖
. Then 𝛿 > 0 

Let 𝑥‾, 𝑦‾ ∈ 𝑅௡ such that ∣ 𝑥‾ − 𝑦‾ ∣< 𝛿. 

Consider |𝐴𝑥‾ − 𝐴𝑦‾| = |𝐴(𝑥‾ − 𝑦‾)| ≤ ‖𝐴‖ ∣ 𝑥‾ − 𝑦‾ ∣ 

< ‖𝐴‖𝛿 = ‖𝐴‖
𝜖

‖𝐴‖
= 𝜖. 

Thus, for every 𝜖 > 0, ∀𝛿 > 0 

|𝑥‾ − 𝑦‾| < 𝛿 ⇒ |𝐴𝑥‾ − 𝐴𝑦‾| <∈ ∀𝑥‾, 𝑦‾ ∈ R௡. 

This shows that 𝐴 is uniformly continuous fromR௡to𝑅௠. 

 

b) Let 𝐴, 𝐵 ∈ 𝐿(𝑅௡, 𝑅௠) and let 'c' be any scalar 

For any 𝑥‾ ∈ 𝑅௡with|𝑥‾| ≤ 1, consider 

|(𝐴 + 𝐵)𝑥‾|= |𝐴𝑥‾ + 𝐵𝑥‾| ≤ |𝐴𝑥‾| + |𝐵𝑥‾| ≤ ‖𝐴‖|𝑥‾| + ‖𝐵‖|𝑥‾|

= (‖𝐴‖ + ‖𝐵‖| 𝑥‾ ∣≤ ‖𝐴‖ + ‖𝐵‖(∵ |𝑥‾| ≤ 1) �
 

So, {|(A + B)(𝑥‾)|/𝑥‾ ∈ 𝑅௡ with |𝑥‾| ≤ 1} is bounded above by‖𝐴‖ + ‖𝐵‖ 

∴ sup. {|(𝐴 + 𝐵)𝑥‾|/𝑥‾ ∈ 𝑅௡With|𝑥‾| ≤ 1} ≤ ‖𝐴‖ + ‖𝐵‖ 

⇒ ‖𝐴 + 𝐵‖ ⩽ ‖𝐴‖ + ‖𝐵‖. 

Consider 

  

‖𝐶𝐴‖ = sup{|(𝑐𝐴)(𝑥‾)|/𝑥‾ ∈ 𝑅௡ with |𝑥‾| ≤ 1}

            = |𝑐|sup{|𝐴𝑥‾|/𝑥‾ ∈ 𝑅௡ with |𝑥‾| ≤ 1}

            = |𝑐| ||𝐴‖.
 

Define 𝑑: 𝐿(𝑅௡, 𝑅௠) → R as 𝑑(𝐴, 𝐵) = ‖𝐴 − 𝐵‖∀𝐴, 𝐵 ∈ 𝐿(𝑅௡, 𝑅௠) 

claims: 𝑑 is a metric on𝐿(𝑅௡, 𝑅௠). 

Let𝐴, 𝐵, 𝐶 ∈ 𝐿൫(𝑅௡, 𝑅௠). 

Clearly, 

i.𝑑(𝐴, 𝐵) = ‖𝐴 − 𝐵‖ ⩾ 0. 

ii.𝑑(𝐴, 𝐵) = 0 ⇔ ‖𝐴 − 𝐵‖ = 0 

⟺ sup{|(𝐴 − 𝐵)(𝑥‾)|/𝑥‾ ∈ 𝑅௡ with |𝑥| ≤ 1} = 0 

 ⇔ (𝐴 − 𝐵)(𝑥‾) = 0∀𝑥‾ ∈ 𝑅௡ with |𝑥| ≤ 1 
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               ⇔ (𝐴 − 𝐵) ൬
𝑥

|𝑥‾|

‾
൰ = 0, ∀𝑥‾ ∈ 𝑅௡ 

               ⇔ (𝐴 − 𝐵)(𝑥‾) = 0, ∀𝑥‾ ∈ 𝑅௡ 

⇔ 𝐴(𝑥‾) = 𝐵(𝑥‾), ∀𝑥‾ ∈ 𝑅௡ 

⇔ 𝐴 = 𝐵. 

            ∴ 𝑑(𝐴; 𝐵) = 0 ⇔ 𝐴 = 𝐵. 

Consider 

iii.‖𝐴 − 𝐵‖ = ‖(−1)(𝐵 − 𝐴)‖ = |−1|‖𝐵 − 𝐴‖ = ‖𝐵 − 𝐴‖  

⇒ 𝑑(𝐴, 𝐵) = 𝑑(𝐵, 𝐴). 

Consider 

iv.‖𝐴 − 𝐶‖ = ‖(𝐴 − 𝐵) + (𝐵 − 𝐶)‖ ≤ ‖𝐴 − 𝐵‖ + ‖𝐵 − 𝐶‖ 

            ⇒ 𝑑(𝐴, 𝐶) ≤ 𝑑(𝐴, 𝐵) + 𝑑(𝐵, 𝐶). 

∴  𝑑is a metric on 𝐿(𝑅௡, 𝑅௠) 

c.) Let 𝐴 ∈ 𝐿(𝑅௡, 𝑅௠)and𝐵 ∈ 𝐿(𝑅௠, 𝑅௞). 

Let 𝑥‾ ∈ 𝑅௡ such that|𝑥‾| ≤ 1. 

Consider. |(𝐵𝐴)(𝑥‾)| = ห𝐵൫𝐴(𝑥‾)൯ห ≤ ‖𝐵‖|𝐴𝑥‾| 

≤ ‖𝐵‖‖𝐴‖|𝑥‾| ≤ ‖𝐵‖‖𝐴‖(1) 

So, the set {|(𝐵𝐴)(𝑥‾)|/𝑥‾ ∈ 𝑅௡ with |𝑥‾| ≤ 1} is bounded above by ‖𝐵‖‖𝐴‖. 

                       ∴ ‖𝐵𝐴‖ ≤ ‖𝐵‖‖𝐴‖. 

 

10.3.12 Theorem Let Ω be the set of all invertible linear operators on 𝑅௡. 

(a) If 𝐴 ∈ Ω, 𝐵 ∈ 𝐿(𝑅௡), and 

‖𝐵 − 𝐴‖ ⋅ ‖𝐴ିଵ‖ < 1then 𝐵 ∈ Ω. 

 (b) Ω is an open subset of 𝐿(𝑅௡), and the mapping 𝐴 → 𝐴ିଵ is continuous on Ω. 

(This mapping is also obviously a 1 − 1 mapping of Ω onto Ω, which is its own inverse.) 

Proof:  Let Ω be the set of all invertible linear operators on𝑅௡ 

(a) Suppose𝐴 ∈ Ω, 𝐵 ∈ 𝐿(𝑅௡) and ‖𝐵 − 𝐴‖ ⋅ ‖𝐴ିଵ‖ < 1 → (1) 

 Put 𝛼 =
ଵ

‖஺‖
and  𝛽 = ‖𝐵 − 𝐴‖. 

Then by (1), 𝛽 < 𝛼 ⇒ 𝛼 − 𝛽 > 0 

For any 𝑥‾ ∈ 𝑅௡, Consider 𝛼|𝑥‾| = 𝛼|(𝐴‾ଵ𝐴) ⋅ 𝑥‾| 

                                                          ≤ 𝛼‖𝐴ିଵ‖ ⋅ |𝐴 𝑥‾| 

= |𝐴𝑥‾| ≤ |(𝐴 − 𝐵)𝑥‾| + |𝐵𝑥‾| 
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                                                          ≤ 𝛽|𝑥‾| + |𝐵𝑥‾| → (2) 

Since 𝛼 − 𝛽 > 0, (𝛼 − 𝛽)|𝑥‾| > 0 for all 0 ≠ 𝑥‾ ∈ 𝑅௡. 

So, from (2), |𝐵𝑥‾| ≠ 0 for all𝑥‾ ∈ 𝑅௡ → (3) 

one-one: suppose 𝑥ଵ, 𝑥ଶ ∈ 𝑅௡ such tit 𝑥ଵ ≠ 𝑥ଶ. 

⇒ 𝑥‾ଵ − 𝑥‾ଶ ∈ 𝑅௡ and 𝑥‾ଵ − 𝑥‾ଶ ≠ 0. 

So, by (2) ,𝐵(𝑥ଵ − 𝑥‾ଶ) ≠ 0. 

⇒ 𝐵(𝑥‾ଵ) ≠ 𝐵(𝑥‾ଶ). 

Onto: the linear operator 𝐵 on a finite dimensional vector space 𝑅௡ is one-to-one. 

So, by known Result (Th-8.3.5), the range of 𝐵 is all of 𝑅௡. 

This shows that 𝐵 is onto. 

Hence, 𝐵 is a bijective mapping from 𝑅௡ onto 𝑅௡ 

⇒ 𝐵 is an invertable linear operator on 𝑅௡. 

⇒ 𝐵 ∈ Ω. 

Claim:𝐴 is an interior point of Ω. 

(b) Let 𝐴 ∈ Ω. Then 𝐴 is invertable 

⇒ ‖𝐴ିଵ‖ ≠ 0.  

Write𝛿 =
ଵ

‖஺షభ‖
. Then 𝛿 > 0. 

Consider𝑆ఋ(𝐴); the nbd of 𝐴. 

Let 𝐵 ∈ 𝑆ఋ(𝐴) 

⇒ ‖𝐵 − 𝐴‖ < 𝛿 ⇒ ‖𝐵 − 𝐴‖ <
1

‖𝐴ିଵ‖
⇒ ‖𝐵 − 𝐴‖‖𝐴ିଵ‖ < 1 

So, by part (a), 𝐵 ∈ Ω. 

∴ 𝑆ఋ(𝐴) ⊆ Ω. Thus Ω is an open setin𝐿(𝑅௡).. 

Now we show that the mapping 

𝑓: Ω → Ω, defined by 𝑓(𝐴) = 𝐴ିଵ∀𝐴 ∈ Ω, is continuous. 

For any𝐵 ∈ Ω, consider ‖𝐵ିଵ − 𝐴ିଵ‖ = ‖𝐵ିଵ𝐴𝐴ିଵ − 𝐵‾ ିଵ𝐵𝐴ିଵ‖ 

= ‖𝐵ିଵ(𝐴 − 𝐵)𝐴ିଵ‖ 

≤ ‖𝐵ିଵ‖‖(𝐴 − 𝐵)‖‖𝐴ିଵ‖∀𝐵 ∈ Ω 

Since ‖𝐵 − 𝐴‖ → 0as 𝐵 → 𝐴, it follows that the R.H.S.of  (1) tends to 0 as 𝐵 → 𝐴. 

So, from (1),  

‖𝐵ିଵ − 𝐴ିଵ‖ → 0as𝐵 → 𝐴. 

⇒ ‖𝑓(𝐵) − 𝑓(𝐴)‖ → 0 as 𝐵 → 𝐴. 
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  ⇒ 𝑓is continuous at 𝐴. 

∴ 𝑓is continual on Ω. 
 

10.3.13 Matrices 

Suppose{𝑥‾ଵ, 𝑥‾ଶ, … , 𝑥‾௡} and {𝑦‾ଵ, 𝑦‾ଶ, … , 𝑦‾௠} are bases of vector spaces 𝑋 ad 𝑌, respectively. 

Let 𝐴 ∈ 𝐿(𝑋, 𝑌). 

Then 𝐴𝑥‾௝ ∈ 𝑋 for 𝑗 = 1to 𝑛. 

Since {𝑦‾ଵ, 𝑦‾ଶ, → 𝑦‾௠} is a boris for 𝑌, 𝐴𝑥‾௝ = ∑  ௠
௜ୀଵ 𝑎௜௝𝑦‾௜(1 ≤ 𝑗 ≤ 𝑛).→ (1) 

So, for 𝐴 ⊂ 𝐿(𝑋, Y), we get as set of nos. 𝑎௜௝, 1 ≤ 𝑖 ≤ 𝑚  𝑎𝑛𝑑    1 ≤ 𝛿 ≤ 𝑛. 

We arrange these numbers in a rectangular array of m rows and 𝑛 Columns, called an  

m by 𝑛 matrix: 

[𝐴] = ൦

𝑎ଵଵ 𝑎ଵଶ ⋯ 𝑎ଵ௡

𝑎ଶଵ 𝑎ଶଶ ⋯ 𝑎ଶ௡

⋮ ⋮ ⋮
𝑎௠ଵ 𝑎௠ଶ ⋯ 𝑎௠௡

൪ 

Observe that the coordinates a௜௝ of the vector 𝐴𝑥‾௝ (with respect to the bases {𝑦ଵ, 𝑦௡}appear in 

the 𝑗 th column of [𝐴]. 

The vectors 𝐴𝑥‾௝, 1 ≤ 𝑗 ≤ 𝑛are therefore sometimes called the column vectors of [𝐴]. 

With this terminology, the range of 𝐴 is spanned by the column vectors of[𝐴]. 

Let 𝑥‾ ∈ 𝑋. 

Then 𝑥‾ = 𝑐ଵ𝑥‾ଵ + 𝑐ଶ𝑥‾ଶ + ⋯ + 𝑐௡𝑥‾௡ for some scalars 𝑐ଵ, 𝑐ଶ, … . . , 𝑐௡. 

So,    𝐴𝑥‾ = 𝐴(𝑐ଵ𝑥‾ଵ + 𝑐ଶ𝑥ଶ + ⋯ + 𝑐௡𝑥‾௡) 

= 𝑐ଵ𝐴(𝑥‾ଵ) + 𝑐ଶ𝐴(𝑥‾ଶ) + ⋯ + 𝑐௡𝐴(𝑥‾௡)

= 𝑐ଵ(𝑎ଵଵ𝑦‾ଵ + 𝑎ଶଵ𝑦‾ଶ + ⋯ + 𝑎௠ଵ𝑦‾௠) + 𝑐ଶ(𝑎ଵଶ𝑦‾ଵ + 𝑎ଶଶ𝑦‾ଶ + ⋯ + 𝑎௠ଶ𝑦‾௠) + ⋯

⋯ + 𝑐௡(𝑎ଵ௡𝑦‾ଵ + 𝑎ଶ௡𝑦‾ଶ + ⋯ + 𝑎௠௡𝑦‾௠)            → ൫𝑏𝑦(1)൯

= (𝑎ଵଵ𝑐ଵ + 𝑎ଵଶ𝑐ଶ + ⋯ + 𝑎௡𝑐௡)𝑦‾ଵ + (𝑎ଶଵ𝑐ଵ + 𝑎ଶଶ𝑐ଶ + ⋯ + 𝑎ଶ௡𝑐௡)𝑦‾ଶ + ⋯

⋯ + (𝑎௠ଵ𝑎ଵ + 𝑎௠ଶ𝑐ଶ + ⋯ + 𝑎௠௡𝑐௡)𝑦‾௠.

 

∴ 𝐴𝑥‾ = ෍  

௠

௜ୀଵ

 ቌ෍  

௡

௝ୀଵ

 𝑎௜௝𝑐௝ቍ 𝑦‾௜                                                           →  (2) 

Thus the Coordinates of 𝐴𝑥‾ are ∑  ௡
௝ୀଵ 𝑎௜௝𝑐௝for 𝑖 = 1,2, … , 𝑚. 

Note that in (1), the summation ranges over the first subscript of 𝑎௜௝, but that we seem over 

the second subscript when Computing coordinates. Suppose next that an𝑚 by 𝑛 matrix is 

given, with real entries 𝑎௜௝, so, we have matrix𝑎௜௝ ൦

𝑎ଵଵ 𝑎ଵଶ ⋯ 𝑎ଵ௡

𝑎ଶଵ 𝑎ଶଶ ⋯ 𝑎ଶ௡

⋮ ⋮ ⋮
𝑎௠ଵ 𝑎௠ଶ ⋯ 𝑎௠௡

൪with real entries. 
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If 𝐴 is then defined by (2), it is clear that 𝐴 ∈ 𝐿(𝑋, 𝑌) and that [𝐴] is the given matrix, 

𝑖. e; [𝐴] = ൦

𝑎ଵଵ 𝑎ଵଶ ⋯ 𝑎ଵ௡

𝑎ଶଵ 𝑎ଶଶ ⋯ 𝑎ଶ௡

⋮ ⋮ ⋮
𝑎௠ଵ 𝑎௠ଶ ⋯ 𝑎௠௡

൪. 

Thus there is a one-to-one correspondence between 𝐿(𝑋, 𝑌) and the set of all real 𝑚 by 𝑛 

matrices. 

Observe that [𝐴] depends not only on 𝐴 but also on the choice of bases of 𝑋 and  𝑌. 

The same 𝐴 may give rise to many different matrices if we change bases, and vice versa. We 

shall not pursue this observation any further, since we shall usually work with fixed bases.  

If 𝑍 is a third vector space, with basis ൛𝐳ଵ, … , 𝐳௣ൟ, if 𝐴 is given by (1), and if 

𝐵𝐲௜ = ෍  

௞

𝑏௞௜𝐳௞,   (𝐵𝐴)𝐱௝ = ෍  

௞

𝑐௞௝𝐳௞ 

then 𝐴 ∈ 𝐿(𝑋, 𝑌), 𝐵 ∈ 𝐿(𝑌, 𝑍), 𝐵𝐴 ∈ 𝐿(𝑋, 𝑍), and since 

𝐵൫𝐴𝐱௝൯= 𝐵 ෍  

௜

 𝑎௜௝𝐲௜ = ෍  

௜

 𝑎௜௝𝐵𝐲௜

= ෍ 𝑎௜௝ ෍  

௞

 𝑏௞௜𝐳௞ = ෍  

௞

 ൭෍  

௜

 𝑏௞௜𝑎௜௝൱ 𝐳௞ ,

 

the independence of ൛𝐳ଵ, … , 𝐳௣ൟ implies that 

𝑐௞௝ = ෍  

௜

 𝑏௞௜𝑎௜௝(1 ≤ 𝑘 ≤ 𝑝, 1 ≤ 𝑗 ≤ 𝑛)                  →     (3)  

This shows how to compute the 𝑝 by 𝑛 matrix [𝐵𝐴] from [𝐵]and [𝐴]. If we define the 

product [𝐵][𝐴] to be [𝐵𝐴], then (3) describes the usual rule of matrix multiplication. 

Finally, suppose {𝐱ଵ, … , 𝐱௡} and {𝐲ଵ, … , 𝐲௠} are standard bases of 𝑅௡ and 𝑅௠, and 𝐴 is given 

by (4). The Schwarz inequality shows that 

|𝐴𝐱|ଶ = ෍  

௜

ቌ෍  

௝

 𝑎௜௝𝑐௝ቍ

ଶ

≤ ෍  

௜

ቌ෍  

௝

 𝑎௜௝
ଶ ⋅ ෍  

௝

  𝑐௝
ଶቍ = ෍  

௜,௝

𝑎௜௝
ଶ |𝐱|ଶ. 

Thus 

‖𝐴‖ ≤ ቐ෍  

௜,௝

 𝑎௜௝
ଶ ቑ

భ

మ

                         →         (4)  

If we apply (4) to 𝐵 − 𝐴 in place of 𝐴, where 𝐴, 𝐵 ∈ 𝐿(𝑅௡, 𝑅௠), we see that if the matrix 

elements 𝑎௜௝ are continuous functions of a parameter, then the same is true of 𝐴. More 

precisely: 



Centre for Distance Education   10.16        Acharya Nagarjuna University  

 

If 𝑆 is a metric space, if 𝑎ଵଵ, … , 𝑎௠௡ are real continuous functions on 𝑆, and if, for each 𝑝 ∈

𝑆, 𝐴௣ is the linear transformation of 𝑅௡ into 𝑅௠ whose matrix has entries 𝑎௜௝(𝑝), then the 

mapping 𝑝 → 𝐴௣ is a continuous mapping of 𝑆 into 𝐿(𝑅௡, 𝑅௠). 

 

10.4  SUMMARY:  

 

In this lesson we are discussed about linear transformations of functions with the detailed 

definitions, examples and theorems. 
 

10.5  TECHNICAL TERMS: 

 

 Fixed point theory 

 Inverse function theorem 

 Linear operator 

 Invertable linear operators 

 

10.6  SELF ASSESSMENT QUESTIONS: 

 

1. If 𝑆 is a nonempty subset of a vector space 𝑋, prove that the span of 𝑆 is a vector space. 

2. Prove that 𝐵𝐴 is a linear if 𝐴 and 𝐵 are linear transformations. Prove also that 𝐴ିଵ is 

linear and invertable. 

3. Assume 𝐴 ∈ 𝐿(𝑋, 𝑌) and 𝐴𝐱 = 0 only when 𝐱 = 0. Prove that 𝐴 is than 1-1. 

4. Prove that null spaces and ranges of linear transformations are vector spaces. 

5. Prove that to every 𝐴 ∈ 𝐿(𝑅௡, 𝑅ଵ) corresponds a unique 𝑦 ∈ 𝑅௡ such that 𝐴𝐱 = 𝐱 ∙ 𝐲. 

Prove also that |𝐴ଵ| = |𝐲|. 

Hint: under certain conditions, quality holds in the Schwarz inequality.  

 

10.7  SUGGESTED READINGS: 
 

1. Principles of Mathematics Analysis by Walter Rudin, 3rd Edition. 

2. Mathematical Analysis by Tom M. Apostal, Narosa Publishing House, 2ndEdition, 1985. 
 

- Dr. K. Bhanu Lakshmi 



 

 

LESSON - 11 

DIFFERENTIATION ON LINEAR 
TRANSFORMATIONS 

 
OBJECTIVES: 
 
After studying the lesson you should able to understand the concept of differentiation on 
linear transformations. 

1. Learn what it means for a function to be differentiable for both single and 
multivariable functions. 

2. Study partial derivatives and how they describe the behavior of functions with more 
than one variable. 

3. Use important differentiation rules, including the Chain Rule, and understand their 
practical applications. 

4. Understand Jacobian matrices and their role in representing the derivatives of 
functions with multiple variables. 

5. Explore the relationship between differentiability and continuity, including the 
conditions under which functions remain constant. 

 

STRUCTURE: 
 

11.1  Introduction 

11.2  Definitions and Theorems  

11.3  Partial Derivatives 

11.4   Summary 

11.5  Technical terms 

11.6   Self-Assessment Questions 

11.7   Suggested readings 

  

11.1  INTRODUCTION: 
 

In functional analysis, differentiation of a linear transformation, or Fréchet derivative, 

is a linear operator that describes the best linear approximation of a function at a point, 

generalizing the concept of a derivative from single-variable calculus.  

 

11.2  DEFINITIONS AND THEOREMS: 

 

11.2.1 Definitions 

(a)  Let (𝑎, 𝑏) be an open internal in R and 𝑓 of be a real function defined on (𝑎, 𝑏) .We say    

that 𝑓 is differentiable at 𝑥 ∈ (𝑎, 𝑏) if lim
௛→଴

 
௙(௫ା௛)ି௙(௫)

௛
 exists and we denote it by 𝑓ᇱ(𝑥) Thus  
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  𝑓ᇱ(𝑥) = lim
௛→଴

 
௙(௫ା௛)ି௙(௫)

௛
． 

(b) Let 𝑓ଵ, 𝑓ଶ, ⋯ , 𝑓௞ be real functions defined on a metric space 𝑋． 

Define a mapping 𝑓‾: 𝑥 → 𝑅௞by  

𝑓(𝑥) = ൫𝑓ଵ(𝑥), 𝑓ଶ(𝑥), ⋯ , 𝑓௞(𝑥)൯for all 𝑥 ∈ 𝑋． 

 In this case，𝑓ଵ, 𝑓ଶ, … , 𝑓௞ are called the components of𝑓‾. 

Note: 

1．𝑓‾ is continual on 𝑋  iff each 𝑓௜is continuous on 𝑋 ,for𝑖 = 1 to 𝑘． 

2. 𝑓‾ is differentiable at 𝑋 iff each 𝑓௜ is differentiable at X，for 𝑖 = 1 to 𝑘． 

  

11.2.2 Definition: 

 Suppose 𝐸 is an open set in 𝑅௡, 𝑓‾maps 𝐸 into 𝑅௠, and 𝑥‾ ∈ 𝐸. If there exists a linear 

transformation 𝐴 of 𝑅௡ into 𝑅௠ such that 

lim
𝐡→଴

 
|f(𝑥‾ + ℎ‾) − f(𝑥‾) − 𝐴ℎ‾|

|ℎ‾ |
= 0                                         (1)  

then we say that 𝑓‾ is differentiable at 𝑥‾, and we write 

f ᇱ(𝑥‾) = 𝐴                                                                               (2)  

If 𝑓‾ is differentiable at every 𝑥‾ ∈ 𝐸, we say that 𝑓‾ is differentiable in 𝐸. 

Note:   

1)      In the above definitionℎ‾ ∈ 𝑅௡. 

If |ℎ‾| is small, then 𝑥‾ + ℎ‾ ∈ 𝐸     (since 𝐸 is open)  

Thus f(𝑥‾ + ℎ‾) is defined, f(𝑥‾ + ℎ‾)  ∈ 𝑅௠, and since 𝐴 ∈ 𝐿(𝑅௡, 𝑅௠), 𝐴ℎ ∈ 𝑅௠. 

 Hence   f(𝑥‾ + ℎ‾) − f(𝑥‾) − 𝐴ℎ‾ ∈ 𝑅௠ 

2)      The norm in the numerator of (1) is that of 𝑅௠ and the norm in the denominator of (1) 

is that of the 𝑅௡. 

There is an obvious uniqueness problem which has to be settled before we go any further. 

 

11.2.3 Theorem: 

 suppose 𝐸 is an open set in 𝑅௡, 𝑓 ̅maps 𝐸 into 𝑅௠, 𝑥⃗ ∈ 𝐸, and suppose 𝐴ଵ, 𝐴ଶ are linear 

transformations of 𝑅௡ into 𝑅௠ such that  

lim
௛‾ →଴

 
ห௙‾(௫‾ା௛‾ )ି௙(௫‾)ି஺భ௛‾ ห

|௛‾ |
= 0 and lim

௛‾ →଴
 
ห௙‾(௫‾ା௛‾ )ି௙(௫‾)ି஺మ௛‾ ห

|௛‾ |
= 0   then 𝐴ଵ = 𝐴ଶ. 

Proof: 

suppose that 𝐴ଵ ad 𝐴ଶ are linear transformations of 𝑅௡ into 𝑅௠such that  
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lim
௛‾ →଴

 
ห௙‾(௫‾ା௛‾ )ି௙(௫‾)ି஺భ௛‾ ห

|௛‾ |
= 0 and lim

௛‾ →଴
 
ห௙‾(௫‾ା௛‾ )ି௙(௫‾)ି஺మ௛‾ ห

|௛‾ |
= 0                →   (1) 

 Put 𝐵ଵ = 𝐴ଵ − 𝐴ଶ.  

For any ℎ‾ ∈ 𝑅௡, 

Consider            

ห𝐵ℎ‾ห = ห𝐴ଵℎ‾ − 𝐴ଶℎ‾ห

= ห𝐴ଵℎ‾ + 𝑓൫𝑥‾ + ℎ‾൯ + 𝑓(𝑥‾) − 𝑓൫𝑥‾ + ℎ‾൯ − 𝑓(𝑥‾) − 𝐴ଶℎ‾ห

= ห൫𝑓൫𝑥‾ + ℎ‾൯ − 𝑓(𝑥‾) − 𝐴ଶℎ‾൯ − ൫𝑓൫𝑥‾ + ℎ‾൯ − 𝑓(𝑥‾) − 𝐴ଵℎ‾൯ห

≤ ห𝑓൫𝑥‾ + ℎ‾൯ − 𝑓(𝑥‾) − 𝐴ଵℎ‾ห + ห𝑓൫𝑥‾ + ℎ‾൯ − 𝑓(𝑥‾) − 𝐴ଶℎ‾ห

So,
ห𝐵ℎ‾ ห

หℎ‾ห
≤

ห𝑓൫𝑥‾ + ℎ‾൯ − 𝑓(𝑥‾) − 𝐴ଵℎ‾ห

หℎ‾ห
+

ห𝑓൫𝑥‾ + ℎ‾൯ − 𝑓(𝑥‾) − 𝐴ଶℎห

หℎ‾ห
   ∀ 𝑜‾ ≠ ℎ‾ ∈ 𝑅௡ 

 

Taking limit  on both sides asℏ‾ → 0, by (1), we get 

 lim
௛→଴

 
ห𝐵h ห

หℎ‾ห
= 0. →   (2) 

For fixedℎ‾ ≠ 0, it follows that 

ห𝐵൫𝑡ℎ‾൯ห

ห𝑡ℎ‾ห
→ 0 as 𝑡 → 0  → (3)൫∵ for fixed t → 0 ⇒ thത → 0൯.

 

 Also, 
ห𝐵൫𝑡ℎ‾൯ห

ห𝑡ℎ‾ห
=

ห𝑡൫𝐵ℎ‾൯ห

ห𝑡ℎ‾ห
=

|𝑡|ห𝐵ℎ‾ห

|𝑡|หℎ‾ห
=

ห𝐵ℎ‾ห

หℎ‾ห
 

(∵ 𝛽 is a linear transformation) 

So, the left hand side of (3) is independent of ' 𝑡 '. 

∴ ห𝐵ℎ‾ห = 0∀ℎ‾ ∈ ℝ௡

⇒ 𝐵ℎ‾ = 0 ⇒ (𝐴ଵ − 𝐴ଶ)ℎ‾ = 0 ∀ℎ‾ ∈ 𝑅௡.

⇒ 𝐴ଵℎ‾ = 𝐴ଶℎ‾

⇒ 𝐴ଵ = 𝐴ଶ.

 

Note 

1) The reaction lim
௛‾ →଴

 
ห௙‾(௫‾ା௛‾ )ି௙‾(௫‾)ି஺௛‾ ห

|௛‾ |
= 0 can be written in the form  

 𝑓‾ ൫𝑥‾ + ℎ‾൯ − 𝑓‾(𝑥‾) = 𝑓‾ᇱ(𝑥‾)ℎ‾ + 𝛾൫ℎ‾൯ →   (4) 

Where  lim
௛ഥ‾ →଴

 
|ఊ(௛‾ )|

|௛‾ |
= 0.           (In the definition derivative, 𝐴 = 𝑓ᇱ(𝑥‾) ) 

2) The derivative defined in by (1) or (4) is called the differentiable of 𝑓‾ at 𝑥‾ or the total 

derivative of 𝑓‾ at 𝑥‾. 
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11.2.4 Example 

Let 𝐴 ∈ 𝐿(𝑅௡, 𝑅௠). If 𝐴 is differentiable on 𝑅௡and𝑥‾ ∈ 𝑅௡, then 𝐴ᇱ(𝑥‾) = 𝐴 →   (5) 

൜
 Note that 𝑥‾ appears on the left side of (5), but not on the right. 
 Both sides of  are members of 𝐿(𝑅௡, 𝑅௠) where as 𝐴𝑥‾ ∈ 𝑅௠.

 

Proof: 

Let 𝑥‾ ∈ 𝑅௡. 

Consider      
|  ஺(௫‾ା௛‾ )ି஺(௫‾)ି஺(௛‾ )|

|௛‾ |
=

|஺(௫‾)ା஺(௛‾ )ି஺(௫‾)ି஺(௛‾ )|

|௛‾ |
 

                                                                                   (by the linearity of A ) 

 = 0

⇒ lim
௛→଴

 
ห𝐴൫𝑥‾ + ℎ‾൯ − 𝐴𝑥‾ − 𝐴ℎ‾ห

หℎ‾ห
= 0

⇒ 𝐴ᇱ(𝑥‾) = 𝐴.

 

 

11.2.5 Theorem (Chain Rule):- 

 suppose 𝐸 is an open set in 𝑅௡, 𝑓 ̅maps 𝐸 into 𝑅௠, 𝑓‾ is differentiable at 𝑥‾଴ ∈ 𝐸, 𝑔‾ maps an 

open set containing 𝑓‾(𝐸) into R௞, and 𝑔‾ is differentiable at 𝑓(̅𝑥଴). Then the mapping 𝐹 of   𝐸 

into 𝑅௞ defined by Fത(𝑥‾) = 𝑔‾ ቀ𝑓‾(𝑥‾)ቁ is differentiable at 𝑥‾଴, and 𝐹‾ ᇱ(𝑥଴) = 𝑔‾ᇱ ቀ𝑓ᇱ(𝑥଴)ቁ 𝑓‾ᇱ(𝑥‾଴) 

Proof: 

Define𝐹 ഥ : 𝐸 → 𝑅௞ by Fത(𝑥‾) = 𝑔‾ ቀ𝑓‾(𝑥‾)ቁ  ∀𝑥‾ ∈ R    

Claim: 𝐹 is differentiable at 𝑥‾଴ ∈ 𝐸and 𝐹‾ ᇱ(𝑥‾଴) = 𝑔‾ᇱ ቀ𝑓‾(𝑥‾଴)ቁ 𝑓ᇱ൫𝑥‾଴ )).  

Let 𝑦‾଴ = 𝑓(𝑥‾଴). 

Given 𝑓‾ is differentiable at 𝑥‾௢ and 𝑔‾ is differentiable at 𝑦‾଴. 

So , 𝑓‾ᇱ(𝑥‾଴) ad 𝑔‾ᇱ(𝑦‾଴) exists. 

Put 𝐴 = 𝑓‾ᇱ(𝑥‾଴)add 𝐵 = 𝑔‾ᇱ(𝑦‾଴). 

Then 𝐴 is a linear transformation from 𝑅௡ into 𝑅௠, 𝐵 is a linear transformation  

from 𝑅௠ into 𝑅௞, and 

lim
௛‾‾ →଴

 
ห𝑓‾൫𝑥‾଴ + ℎ‾൯ − 𝑓‾(𝑥‾଴) − 𝐴ℎ‾ห

หℎ‾ห
= 0‾                                      →   (1) 

lim
௛‾‾ →଴

 
ห𝑔‾൫𝑦‾଴ + 𝑘‾൯ − 𝑔‾(𝑦‾଴) − 𝐵𝑘‾ห

ห𝑘‾ห
= 0‾                                     →   (2) 

 Define 

 
𝑢‾൫ℎ‾൯ = 𝑓‾൫𝑥‾଴ + ℎ‾൯ − 𝑓‾(𝑥‾଴) − 𝐴ℎ‾      ∀ℎ‾ ∈ 𝑅௡ ad 

𝑣‾൫𝑘‾൯ = 𝑔‾൫𝑦‾଴ + 𝑘‾൯ − 𝑔‾(𝑦‾଴) − 𝐵𝑘‾     ∀𝑘‾ ∈ R௠
ቋ .      → (3) 
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So 

(1) ⇒ lim
௛‾ →଴

 
|௨‾ (௛‾ )|

|௛‾ |
= 0‾  and     (2) ⇒ lim

௞ሬ⃗ →଴
 
|௩‾(ோ)|

|௞‾ |
= 0 

                               ∴
ห𝑢‾൫ℎ‾൯ห

หℎ‾ห
= 𝜖൫ℎ‾൯ where ∈ ൫ℎ‾൯ → 0 as ℎ‾ → 0 and

ห𝑣‾൫𝑘‾൯ห

ห𝑘‾ห
= 𝜂(𝑘‾) where 𝜂(𝑘‾) → 0 as 𝑘 → 0 

⎭
⎪
⎬

⎪
⎫

                    → (4) 

    For given  ℎ‾ ,                     put 𝑘‾ = 𝑓‾൫𝑥‾଴ + ℎ‾൯ − 𝑓‾(𝑥‾଴).                                   → (5) 

 Now ห𝑘‾ห = ห𝑓‾൫𝑥‾଴ + ℎ‾൯ − 𝑓‾(𝑥‾଴)ห = ห𝑢‾ ⋅ ൫ℎ‾൯ + 𝐴ℎ‾ห        (from (3))

≤ |𝑢‾(ℎ‾)| + |𝐴ℎ‾| ≤ |𝑢‾(ℎ‾)| + ||𝐴‖|ℎ‾|

= 𝜖൫ℎ‾൯|ℏ| + ‖𝐴‖หℎ‾ห൫from(4)൯.

 

                                                                  ∴ |𝐾‾ |⩽ ൫𝜖൫ℎ‾൯ + ‖𝐴‖൯൫ൣℎ‾ൿ൯                       →  (6)  

Consider 
หி൫௫‾బାℎ‾൯ିி(௫‾బ)ି஻஺ℎ‾ห

หℎ‾ห
= 

=
1

หℎ‾ห
ቄቚ𝑔‾ ቀ𝑓‾൫𝑥‾଴ + ℎ‾൯ቁ − 𝑔‾ ቀ𝑓‾(𝑥‾଴)ቁ − 𝐵𝐴ℎ‾ቚቅ ቀ∵ 𝐹 = 𝑔൫𝑓(𝑥‾)൯ቁ. 

=
1

หℎ‾ห
ห𝑔‾൫𝑦଴ + 𝑘‾൯ − 𝑔‾(𝑦‾଴) − 𝐵𝐴ℎ‾ห   ∵ 𝑓(𝑥଴) = 𝑦଴ 

(5) ⇒ 𝑓‾൫𝑥‾଴ + ℎ‾൯ − 𝑓‾(𝑥‾଴) = 𝑘‾  

=
1

หℎ‾ห
ห𝜗‾൫𝑘‾൯ + 𝐵𝑘‾ − 𝐵𝐴ℎ‾ห(from (3) 

=
1

หℎ‾ห
ห𝜗‾(𝑟‾) + 𝐵൫𝐾‾ − 𝐴ℎ‾൯ห 

=
1

หℎ‾ห
ቚ𝜗‾൫𝑘‾൯ + 𝐵 ቀ𝑢‾൫ℎ‾൯ቁቚ (from (3) & (5)) 

≤
1

หℎ‾ห
ห𝜗‾൫𝑘‾൯ห +

ቚห𝐵ሬ⃗ หቚ ห𝑢‾൫ℎ‾൯ห

หℎ‾ห
 

=
𝜂൫𝑘‾൯ห𝑘‾ห

หℎ‾ห
+ ‖𝐵‖

ห𝑢‾൫ℎ‾൯ห

หℎ‾ห
⋅ ( from (4) ) 

≤ 𝜂൫𝑘‾൯൫𝜖൫ℎ‾൯ + ‖𝐴‖൯ + ‖𝐵‖
ห𝑢‾൫ℎ‾൯ห

หℎ‾ห
⋅ ൫from(6)൯.  

∴
ห𝐹‾൫𝑥‾଴ + ℎ‾൯ − 𝐹‾(𝑥‾଴) − 𝐵𝐴ℎ‾ห

หℎ‾ห
≤  𝜂൫𝑘‾൯൫𝜖൫ℎ‾൯ + ‖𝐴‖൯ + ‖𝐵‖

ห𝑢‾൫ℎ‾൯ห

หℎ‾ห
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Taking limits on both sides as ℎ‾ → 0, by (6),  

we have 𝜂൫𝑘‾൯ → 0 and 
|௨‾ (௛‾ )|

|௛‾ |
→ 0. 

∴ lim
௛→଴

 
ห𝐹‾൫𝑥‾଴ + ℎ‾൯ − 𝐹‾(𝑥‾଴) − 𝐵𝐴ℎ‾ห

หℎ‾ห
= 0.

⇒ 𝐹‾ ᇱ(𝑥‾଴) = 𝐵𝐴 = 𝑔‾ᇱ(𝑦‾଴)𝑓‾ᇱ(𝑥‾଴) = 𝑔‾ᇱ ቀ𝑓‾(𝑥‾଴)ቁ 𝑓‾ᇱ(𝑥‾଴)

∴ 𝐹‾ ᇱ(𝑥଴) = 𝑔‾ᇱ ቀ𝑓‾(𝑥଴)ቁ 𝑓‾ᇱ(𝑥‾଴).

 

 

11.3  PARTIAL  DERIVATIVES: 

 

Let 𝐸 be an open set in 𝑅௡, and let {𝑒‾ଵ, 𝑒‾ଶ, → 𝑒‾௡} and {𝑢‾ଵ, 𝑢‾ଶ, −𝑢‾௠} be the standard bases of 

𝑅௡ ad 𝑅௠ respectively. Suppose 𝑓‾ maps 𝐸into 𝑅௠ : The  components of 𝑓‾ are the real 

functions 𝑓ଵ, 𝑓ଶ, … , 𝑓௠ defined by 𝑓‾(𝑥‾) = ൫𝑓ଵ(𝑥‾), 𝑓ଶ(𝑥‾), … . . , 𝑓௡(𝑥‾)൯ 

= ෍  

௠

௜ୀଵ

 𝑓௜(𝑥‾)u𝒊(𝐱 ∈ 𝐸) 

or, equivalently, by 𝑓௜(𝑥‾) = f(𝑥‾) ⋅ u௜, 1 ≤ 𝑖 ≤ 𝑚 

 For 𝑥‾ ∈ 𝐸 ad for 1 ≤ 𝑖 ≤ 𝑚, 𝑖 ≤ 𝑗 ≤ 𝑛) 

we define ൫𝐷௝𝑓௜൯(𝑥‾) = lim
௧→଴

 
௙೔൫௫‾ା൫୲௘‾ೕ൯ି௙೔(௫‾)

௧
, provided the 

limit exists. 

 Writing(𝑥ଵ, 𝑥ଶ, … , 𝑥௡)inplace of 𝑥‾ ∈ 𝐸, We see that 𝐷௝𝑓௜ is the deravatave &𝑓௜ with 

respect 𝑥௝ keeping (𝑥ଵ, 𝑥ଶ, → 𝑥௡) in place of 𝑥‾ ∈ 𝐸, we see that 𝐷௝𝑓௜ is the devalative of 𝑓௜ 

with respect to 𝑥௝, keeping the other variables fixed. It is denoted by 
డ௙೔

డ௫ೕ
. Thus 

൫𝐷௝𝑓௜൯(𝑥ଵ, … , 𝑥௡) =
డ௙೔

డ௫೔
(𝑥ଵ, … , 𝑥௡)for  

డ௙೔

డ௫ೕ
= (𝑥ଵ, … , 𝑥௡) ∈ 𝐸. 

Here 𝐷௝𝑓௜ is called as partial derivative. 

In many cases where the existence of a derivative is sufficient when dealing with functions of 

one variable, continuity or at least boundedness of the partial derivatives is needed for 

functions of several variables. 
 

11.3.1 Theorem:  Suppose 𝑓‾ maps an open set 𝐸 ⊆ 𝑅௡into 𝑅௠, and 𝑓‾ is differentiable at a 

point 𝑥‾ ∈ 𝐸. Then the partial derivatives ൫𝐷௝𝑓௜൯(𝑥‾) exist, and 𝑓̅ᇱ(𝑥‾)𝑒‾௝ =

∑  ௠
௜ୀଵ ൫𝐷௝𝑓௜൯(𝑥‾)𝑢௜(1 ≤ 𝑗 ≤ 𝑛). 

Proof: 

Let 𝐸 ⊆ 𝑅௡.  
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Suppose 𝑓‾ maps 𝐸 into 𝑅௠ and 𝑓‾ is differentiable at 𝑥‾ ∈ 𝐸. 

Let {𝑒‾ଵ, … , 𝑒‾௡} and {𝑢‾ଵ, → 𝑢௠} be the standard bases of  𝑅௡and  R௠, respectively. 

Take ∈> 0. 

Since 𝑓‾ is differentiable at 𝑥‾,  lim
௛‾ →଴

 
ห௙‾(௫‾ା௛‾ )ି௙‾(௫‾)ି௙ᇲ(௫‾)௛‾ ห

|௛‾ |
= 0 

ie, ∃𝛿 > 0 ⋅
ห௙‾(௫‾ା௛‾ )ି௙‾(௫‾)ି௙ᇲ(௫‾)௛‾ ห

|௛‾ |
< 𝜖 when ever 0 < หℎ‾ห < 𝛿           

If 𝑡 ∈ 𝑅 such that 0 < |𝑡| < 𝛿, then ห𝑡𝑒‾௝ห = |𝑡| < 𝛿. 

So, from (1), 
ห௙‾൫௫‾ା௧௘‾ೕ൯ି௙‾(௫‾)ି௙‾ᇲ(௫‾)௧௘‾ೕห

ห௧௘‾ೕห
< 𝜖 whenever ห𝑡𝑒‾௝ห = |𝑡| < 𝛿. 

⇒ ฬ
௙‾൫௫‾ା௧௘‾ೕ൯ି௙‾(௫‾)

௧
−

௧ ௙‾ᇲ(௫‾)௘‾ೕ

௧
ฬ < 𝜖 Wheneverห𝑡𝑒‾௝ห = |𝑡| < 𝛿. 

⇒ lim
௧→଴

 
ห𝑓‾൫𝑥‾ + 𝑡𝑒ఫഥ൯ − 𝑓‾(𝑥‾)ห

|𝑡|
= 𝑓‾ᇱ(𝑥‾)𝑒௝                        → (1) 

 we have 𝑓‾(𝑥‾)= ൫𝑓ଵ(𝑥‾), 𝑓ଶ(𝑥‾), … , 𝑓௠(𝑥‾)൯

= ෍  

௠

௜ୀଵ

 𝑓௜(𝑥‾)𝑢‾ ௜∀𝑓for all 𝑥‾ ∈ 𝐸.

 So, (1) ⇒ 𝑓‾ᇱ(𝑥‾)𝑒‾௝= lim
௧→଴

 ෍  

௠

௜ୀଵ

 
𝑓௜൫𝑥‾ + 𝑡𝑒‾௝൯ − 𝑓௜(𝑥‾)

𝑡
𝑢‾ ௜ ∈ (𝑥‾)

 ie, 𝑓‾ᇱ(𝑥‾)𝑒‾௝= ෍  

௠

௜ୀଵ

  ൫𝐷௝𝑓௜൯(𝑥‾)𝑢‾ ௜ for all 𝑗 = 1 to n. 

 

Note: Consequences of Theorem  

We know that there is a one-to-one correspondence between matrices and linear 

transformations. 

Let ൣ𝑓‾ᇱ(𝑥‾)൧ be the matrix the represents 𝑓‾ᇱ(𝑥‾) with respect to the standard bases {𝑒‾ଵ, … , 𝑒‾௡} 

of 𝑅௡ and {𝑢‾ଵ, … , 𝑢௠}of 𝑅௠. Then 𝑓‾ᇱ(𝑥‾)𝑒‾௝ is the 𝑗௧௛ column ൣ𝑓‾ᇱ(𝑥‾)൧ and 

ൣ𝑓‾ᇱ(𝑥‾)൧ =

⎣
⎢
⎢
⎢
⎡
(𝐷ଵ𝑓ଵ)(𝑥‾) (𝐷ଶ𝑓ଵ)(𝑥‾) ⋯ (𝐷௡𝑓ଵ)(𝑥‾)

(𝐷ଵ𝑓ଶ)(𝑥‾) (𝐷ଶ𝑓ଶ)(𝑥‾) ⋯ (𝐷௡𝑓ଶ)(𝑥‾)

        ⋮          ⋮           ⋮
(𝐷ଵ𝑓௠)(𝑥‾) (𝐷ଶ𝑓௠)(𝑥‾) ⋯ (𝐷௡𝑓௠)(𝑥‾)

⎦
⎥
⎥
⎥
⎤

 

This matrix is called the Jacobin matrix of 𝑓‾ᇱat𝑥‾. Sometimes we denote it as ൫D𝑓൯̅(𝑥‾). 

 

11.3.2 Example:Let(𝑎, 𝑏) ⊂ 𝑅ᇱ, 𝐸 ⊂ R௡  be open sets and let 𝛾: (𝑎, 𝑏) → 𝐸 be a     

differentiable curve. ( 𝛾is continuous and 𝛾ᇱ is exists and is continuous in (a,b)) 



Centre for Distance Education   11.8               Acharya Nagarjuna University  

 

let 𝑓 be a real-valued differentiable function with domain𝐸. i.e, 𝑓: 𝐸 → 𝑅ᇱ. 

Define 𝑔(𝑡) = 𝑓(𝑡) = (𝑓 ∘ 𝛾)(𝑡) = 𝑓(𝑓(𝑡)), (𝑎 < (𝑡 < 𝑏)          →(1) 

By chain Rule, 𝑔ᇱ(𝑡) = 𝑓ᇱ൫𝛾(𝑡)൯𝑔ᇱ(𝑡), 𝑎 < 𝑡 < 𝑏                           → (2) 

Since 𝛾ᇱ(𝑡) ∈ 𝐿(𝑅, 𝑅௡) and 𝑓ᇱ൫𝛾(𝑡)൯ ∈ 𝐿(𝑅, 𝑅௡), 

by (2), 𝑔ᇱ(𝑡) ∈ 𝐿(𝑅, 𝑅). 

ie, 𝑔ᇱ(𝑡) is a linear operator on 𝑅 

This agrees with the fact that 𝑔 maps (𝑎, 𝑏) into 𝑅 

However, 𝑔ᇱ(𝑡) can also be identified as a real number. 

(Now we compute the no. 𝑔ᇱ(𝑡)in terms of the partial derivatives of 𝑓 and the derivatives of 

the components of 𝛾 ) 

Let {𝑒‾ଵ, … , 𝑒‾௡} be the standard basis of 𝑅௡ and  

let 𝛾(𝑡) = ൫𝛾ଵ(𝑡), … , 𝛾௡(𝑡)൯ ∈ 𝑅௡. 

Now 𝛾ᇱ(𝑡) = ൫𝛾ଵ
ᇱ(𝑡), … , 𝛾௡

ᇱ (𝑡)൯ = ∑  ௡
௜ୀଵ  𝛾୧

ᇱ(𝑡)𝑒௜ → (3) 

 

So, [𝛾ᇱ(𝑡) ] is the 𝑛 × 1 matrix which has 𝛾୧
ᇱ(𝑡) in the ith row. 

 ie, [𝛾ᇱ(𝑡)] = ൥
𝛾ଵ

ᇱ(𝑡)
⋮

𝛾௡
ᇱ (𝑡)

൩

௡×ଵ

 

For every 𝑥‾ ∈ 𝐸, [𝑓ᇱ(𝑥‾)] is the 1 × 𝑛 matrix which has ൫𝐷௝𝑓൯(𝑥‾) in the 𝑗th  column, 

 i.e[𝑓ᇱ(𝑥‾)] = [(𝐷ଵ𝑓)(𝑥‾) ⋅ (𝐷ଶ𝑓)(𝑥‾) ⋯ (D௡ 𝑓)(𝑥‾)]ଵ×௡

∴    [𝑔ᇱ(𝑡)] = ൣ𝑓ᇱ൫𝛾(𝑡)൯൧[𝛾ᇱ(𝑡)] = ൣ(𝐷ଵ𝑓)൫𝛾(𝑡)൯ − (𝐷ଶ𝑓)𝛾(𝑡) ⋯ (𝐷௡𝑓)𝛾(𝑡)൧ ൥
𝛾ଵ

ᇱ(𝑡)
⋮

𝛾௡
ᇱ (𝑡)

൩
 

[𝑔ᇱ(𝑡)] = ∑  ௡
௜ୀଵ (𝐷௜𝑓)𝛾(𝑡)𝛾ᇱ(𝑡) → (4) 

Def For each𝑥‾ ∈ 𝐸, the gradient of f  at 𝑥‾is defined as 

(∇𝑓)(𝑥‾) = ෍  

௡

௜ୀଵ

(𝐷௜𝑓)(𝑥‾)𝑒௜ 

From (3) & (4)   𝑔ᇱ(𝑡) = ∑  ௡
௜ୀଵ (𝐷௜𝑓)൫𝛾(𝑡)൯𝛾ᇱ(𝑡) 

                                    =ൣ(𝐷ଵ𝑓)൫𝛾(𝑡)൯ − (𝐷ଶ𝑓)𝛾(𝑡) ⋯ (𝐷௡𝑓)𝛾(𝑡)൧ ൥
𝛾ଵ

ᇱ(𝑡)
⋮

𝛾௡
ᇱ (𝑡)

൩ 

                                       =  (∇𝑓)𝛾(𝑡) ෍  

௡

௜ୀଵ

𝛾ᇱ(𝑡)𝑒௜ = (∇𝑓)𝛾(𝑡)𝛾ᇱ(𝑡) 

                                         Fix 𝑥‾ ∈ 𝐸. Let 𝑢‾ ∈ 𝑅௡ be a unit vector        →(5) 
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                                                                          i. e, |𝑢‾ | = 1  

Put 𝛾(𝑡) = 𝑥‾ + 𝑡𝑢‾(−∞ < 𝑡 < ∞). Then 𝛾ᇱ(𝑡) = 𝑢‾ , ∀𝑡. 

So, from (4), 𝑔ᇱ(0) = (∇𝑓)𝛾(0)𝛾ᇱ(0) = (∇𝑓)(𝑥‾)𝑢‾                         → (6) 

∴ lim
௧→଴

 
𝑓(𝑥‾ + 𝑡𝑢‾) − 𝑓(𝑥‾)

𝑡
= lim

௧→଴
 
𝑔(𝑡) − 𝑔(0)

𝑡
= (∇𝑓)(𝑥‾)𝑢‾              → (7) 

The limit in(7) is usually the directional derivative of 𝑓 at 𝑥‾, in the direction of the unit 

vector 𝑢‾ , and is denoted by (𝐷௨‾ 𝑓)(𝑥‾). 

 Thus (𝐷௨‾ 𝑓)(𝑥‾) = lim
௧→଴

 
𝑓(𝑥‾ + 𝑡𝑢‾) − 𝑓(𝑥‾)

𝑡
= (∇𝑓)(𝑥‾)𝑢‾                    → (8) 

If 𝑢‾ = ∑  ௡
௜ୀଵ 𝑢௜𝑒‾௜, then from (8), (𝐷௨‾ 𝑓)(𝑥‾) = 

= ൫(𝐷ଵ𝑓)(𝑥‾), (𝐷ଶ𝑓)(𝑥‾), → (𝐷௡𝑓)(𝑥)൯(𝑢ଵ, 𝑢ଶ, ⋯ , 𝑢௡) = ∑  ௡
௜ୀଵ   (𝐷௜𝑓)(𝑥‾)𝑢௜   → (9)

ie, (𝐷௨‾ 𝑓)(𝑥‾) can be expressed in terms of the partial derivatives of 𝑓 at 𝑥‾. 

In particular, if 𝑢‾̇ = 𝑒௜, then (9) becomes ൫𝐷௘೔
𝑓൯(𝑥‾) = (𝐷௜𝑓)(𝑥‾) which is the partial 

derivative of 𝑓 w.r.to 𝑥‾. 

 

11.3.3 Definition:  A subset 𝐸 of 𝑅௡ is called a convex set if, for any 𝑥‾, 𝑦‾ ∈ 𝐸 

0 ≤ 𝜆 ≤ 1, 𝜆𝑥‾ + (1 − 𝜆)𝑦‾ ∈ 𝐸. 
 

11.3.4  Theorem 

Suppose 𝑓‾ maps a convex open set 𝐸 ⊂ 𝑅௡ into 𝑅௠, 𝑓‾ is differentiable in 𝐸, and there is a 

real number 𝑀 such that ฮ𝑓‾ᇱ(𝑥)ฮ ≤ 𝑀 for every 𝑥‾ ∈ 𝐸. Then ห𝑓‾൫𝑏‾൯ − 𝑓‾(𝑎‾)ห ≤ 𝑀ห𝑏‾ − 𝑎‾ห for 

all 𝑎‾ ∈ 𝐸, 𝑏‾ ∈ 𝐸. 

Proof: Let 𝐸 ∈ 𝑅௡ and  𝐸 is a convex set in 𝑅௡. 

suppose𝑓‾ maps 𝐸 into 𝑅௠, 𝑓‾ is differentiable in E and there is a real neember𝑀 such that 

ฮ𝑓‾ᇱ(𝑥)ฮ ≤ 𝑀 for all 𝑥‾ ∈ E. 

Fix 𝑎‾, 𝑏‾ ∈ 𝐸. Define 𝛾: [0,1] → 𝐸 as 

𝛾(𝑡) = (1 − 𝑡)𝑎‾ + 𝑡𝑏‾  for all 𝑡 ∈ [0,1]. 

Now  𝛾(1) = 𝑏‾&   𝛾(0) = 𝑎‾. 

Since 𝐸 is convex, 𝛾(𝑡) ∈ 𝐸 for all 𝑡 ∈ [0,1]. 

So, 𝛾 is differentiable on [0,1] and 𝛾ᇱ(𝑡) = ൫0 − 1൯𝑎‾ + 𝑏‾ = −𝑎‾ + 𝑏‾      → (1) 

put 𝑔‾(𝑡) = 𝑓‾൫𝛾(𝑡)൯ for all 𝑡 ∈ [0,1]. 

Then 𝑔‾ is differentiable on [0,1], 𝑔‾(1) = 𝑓‾൫𝑓(1)൯ = 𝑓‾൫𝑏‾൯, 𝑔‾(0) = 𝑓‾൫𝛾(0)൯ = 𝑓‾(𝑎‾), 

and 
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𝑔ᇱ(𝑡)= 𝑓‾ᇱ൫𝛾(𝑡)൯𝛾ᇱ(𝑡)

= 𝑓‾ᇱ൫𝛾(𝑡)൯൫𝑏‾ − 𝑎‾൯

⇒ |𝑔‾ᇱ(𝑡)|= ห𝑓‾ᇱ൫𝛾(𝑡)൯൫𝑏‾ − 𝑎‾൯ห

≤ ‖𝑓‾ᇱ൫𝛾(𝑡)൯|| |𝑏‾ − 𝑎‾ ∣ 

 

                                           ≤ 𝑀ห𝑏‾ − 𝑎‾ห → (2) 

(By Chain Rule) 

                               ⇒ |𝑔‾ᇱ(𝑡)| ≤ 𝑀ห𝑏‾ − 𝑎‾ห∀𝑡 ∈ [0,1].  

Since𝑔‾: [0,1] → 𝑅௡ is continuous and differentiable on[0,1], 

Then |𝑔‾(1) − 𝑔‾(0)| ≤ |𝑔‾ᇱ(t)|(1 − 0) for some 𝑡 ∈ [0,1]. 

                       ⇒ ห𝑓‾(𝑏) − 𝑓‾(𝑎)ห ≤ |𝑔‾ᇱ(t)|                      → (3)൫𝑔‾(1) = 𝑓‾(𝑏)&𝑔‾(0)) = 𝑓‾(𝑎)൯ 

From (2) & (3), ห𝑓‾(𝑏) − 𝑓‾(𝑎)ห ≤ 𝑀 ∣ 𝑏‾ − 𝑎‾  | for all 𝑎‾, 𝑏‾ ∈ 𝐸. 

2.) If  ℎ‾ = ∑  ௡
௝ୀଵ ℎ௝𝑒‾௝, then 𝑓ᇱ(𝑥‾)ℎ‾ = 𝑓ᇱ(𝑥‾)൫∑  ௡

௝ୀଵ  ℎ௝𝑒‾௝൯ 

= ෍  

௡

௝ୀଵ

 ℎ௝𝑓ᇱ(𝑥‾)𝑒‾௝       (∵ 𝑓ᇱ(𝑥‾) is linear ).

= ෍  

௡

௝ୀଵ

 ℎ௝ ൭෍  

௠

௜ୀଵ

  ൫𝐷௝𝑓௜൯(𝑥‾)𝑢‾ ௜൱

 

11.3.5  Corollary 

Suppose 𝑓‾ maps a convex open set 𝐸 ⊆ 𝑅௡ into 𝑅௠, 𝑓‾ is differentiable in 𝐸 and 𝑓̅ᇱ(𝑥) = 0 

for all 𝑥 ∈ 𝐸. Then 𝑓‾ is constant. 

Proof: 

Supposeฮ𝑓̅ᇱ(𝑥)ฮ ≤ 0 for all 𝑥 ∈ 𝐸. 

Then by the above Theorem, ห𝑓‾൫𝑏‾൯ − 𝑓‾(𝑎‾)ห ≤ (0)ห𝑏‾ − 𝑎‾ห for all 𝑎‾, 𝑏ሬ⃗ ∈ 𝐸 

⇒ 𝑓‾൫𝑏‾൯ − 𝑓‾(𝑎‾) = 0 for all x∈E. 

⇒ 𝑓‾(𝑎‾) = 𝑓‾൫𝑏‾൯for all𝑥 ∈ 𝐸.
 

This shows that𝑓‾ is a constant function on 𝐸. 

 

11.3.6  Definition 

A differentiable mapping 𝑓‾ of an open set 𝐸 ⊆ 𝑅௡ into 𝑅௠ is said to be continuously 

differentiable in 𝐸 if 𝑓ᇱ is a continuous mapping of 𝐸into 𝐿(𝑅௡, 𝑅௠). 

(ie., for each 𝑥‾ ∈ 𝐸 and for each ∈> 0, ∃𝛿 > 0) 

ฮ𝑓̅ᇱ(𝑦‾) − 𝑓̅ᇱ(𝑥‾)ฮ < 𝜖 whenever 𝑦‾ ∈ 𝐸 with |𝑥‾ − 𝑦‾| < 𝛿., 

Note: In this above definition we also say that 𝑓‾ is a 𝒞ᇱ-mapping, or  𝑓‾ ∈ 𝒞ᇱ(𝐸) 
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11.3.7 Theorem 

Suppose 𝑓‾ maps an open set 𝐸 ⊂ 𝑅௡ into 𝑅௠. Then 𝑓‾ ∈ 𝒞ᇱ(𝐸) if and only if the partial 

derivatives D, 𝑓௜ exist and are continuous on 𝐸 for 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛. 

Proof:  Given that 𝑓‾ maps an open set 𝐸 ⊆ 𝑅௡into 𝑅௠. 

Assume that𝑓‾ ∈ 𝒞ᇱ(𝐸). 

Then 𝑓‾ᇱ is continuous in 𝐸. 

Let 𝑥‾ ∈ 𝐸 and∈> 0. Let {𝑒‾ଵ, … , 𝑒‾௡} ad {𝑢‾ଵ, … , 𝑢‾௠} be the standard bases of 𝑅௡ and 𝑅௠, 

respectively 

since 𝑓‾ᇱ is continuous at 𝑥‾, for ∈> 0, ∃𝛿 > 0 ⇒∣ ൛𝑓‾ᇱ(𝑦‾) − 𝑓‾ᇱ(𝑥‾)|| < 0 whenever 𝑦‾ ∈ 𝐸 with 

|𝑋‾ − 𝑦‾| < 𝛿. Fix 𝑦‾ ∈ 𝐸 with|𝑥‾ − 𝑦‾| < 𝛿. 

By the definition of norm, ฮ𝑓‾ᇱ(𝑦‾) − 𝑓‾ᇱ(𝑥‾)ฮ = 

= sup ቄቚቀ𝑓‾ᇱ(𝑦‾) − 𝑓‾ᇱ(𝑥‾)ቁ (𝑧‾)ቚ /𝑧‾ ∈ 𝑅௡ and |𝑧‾| ≤ 1ቅ             →  (1)     

Sinceห𝑒‾୨ห = 1  then ห𝑓‾ᇱ(𝑦‾)𝑒‾୨ − 𝑓‾ᇱ(𝑥‾)𝑒‾୨ห ≤ ฮ𝑓‾ᇱ(𝑦‾) − 𝑓‾ᇱ(𝑥‾)ฮ <∈   for 𝑗 = 1𝑡𝑜 𝑛 → (2) 

Since 𝐹‾  is differentiable on 𝐸, by  theorem (4.17), the partial derivatives 

൫𝐷௝𝑓௜൯(𝑥‾) exists and 𝑓‾ᇱ(𝑥‾)𝑒‾௝ = ෍  

௠

௜ୀଵ

൫𝐷௝𝑓௜൯(𝑥‾)𝑢‾ ௜∀𝑥‾ ∈ 𝐸 

              ⇒ 𝑓‾ᇱ(𝑥‾)𝑒‾௝𝑢‾ ௜ = ൫𝐷௝𝑓௜൯(𝑥‾)∀𝑥‾ ∈ 𝐸 and ∀𝑖, 𝑗 with 1 ≤ 𝑖 ≤ 𝑚,1 ≤ 𝑗 ≤ 𝑛. 

 Consider ൫D௝𝑓௜൯𝑦‾ − ൫D௝𝑓௜൯𝑥⃗൯ = 𝑓‾ᇱ(𝑦‾)𝑒௝𝑢‾ ௜ − 𝑓‾ᇱ(𝑥‾)𝑒‾௝𝑢‾ ௜ = ൫𝑓ᇱ(𝑦‾) − 𝑓ᇱ(𝑥‾)൯൫𝑒௝൯𝑢௜ 

⇒ ห൫𝐷௝𝑓௜൯(𝑦‾) − ൫𝐷௝𝑓௜൯(𝑥‾)ห = ห൫𝑓‾ᇱ(𝑦‾)𝑒‾௝ − 𝑓ᇱ(𝑥‾)𝑒௝൯ ⋅ 𝑢‾ ௜ห 

≤ ห൫𝑓‾ᇱ(𝑦‾)𝑒‾௝ − 𝑓ᇱ(𝑥‾)𝑒௝൯ห   (Since|𝑢‾ ௜| = 1) 

                                                ≤ ฮ𝑓‾ᇱ(𝑦‾) − 𝑓‾ᇱ(𝑥‾)ฮ <∈    

𝑦‾ ∈ 𝐸with  |𝑦‾ − 𝑥‾| < 𝛿      (𝑏𝑦 (2)). 

Thus for 𝜖 > 0, ∃ 𝑎  𝛿 > 0 𝜕ห൫𝐷௝𝑓௜൯(𝑦ത) − ൫𝐷௝𝑓௜൯(𝑥‾)ห <∈ 

When ever 𝑦‾ ∈ 𝐸 and|𝑦‾ − 𝑥‾| < 𝛿. 

⟹ 𝐷௝𝑓௜is continuous at 𝑥  ‾ ∀ i and 𝑗. 

This is true for every 𝑥‾ ∈ 𝐸. 

∴ 𝐷௝𝑓௜is continuous on 𝐸 for all 1 ≤ 𝑖 ≤ m   and    1 ≤ 𝑗 ≤ 𝑛. 

Conversely, suppose that the partial derivatives   𝐷௝𝑓௜ exist and are continuous on 𝐸for 1 ≤

𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛, where 𝑓‾ = (𝑓ଵ, 𝑓ଶ, … , 𝑓௠). 

We have each 𝑓௜ is a real function on  𝐸. 

By a Known Result,𝑓‾ᇱ is continuous on E   iff   each 𝑓௜
ᇱ is Continuous on 𝐸. 
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ie,𝑓‾ is a 𝒞ᇱ-mapping iff each 𝑓௜ is a 𝒞ᇱ − mapping. 

So, it is enough if we show that each  𝑓௜ is a 𝒞ᇱ − mapping. 

Let 𝑥‾ ∈ 𝐸 and ∈> 0 We may assume that 𝑓௜ = 𝑓 for fixed 𝑖 with 1 ≤ 𝑖 ≤ 𝑚.  

Since 𝑥‾ ∈ 𝐸 and 𝐸 is open, ∃ 𝛿ୡ > 0 ⇒ 𝑆ఋ೎
(𝑥‾) ⊆ 𝐸. 

Since 𝐷௝𝑓 is continucus at 𝑥‾, ∃𝛿௝ > 0 ∃ห൫𝐷௝𝑓൯(𝑥‾) − ൫𝐷௝𝑓൯(𝑦‾)ห <
ఢ

௡
 whenever 𝑦‾ ∈ 𝐸 and 

|𝑥‾ − 𝑦‾| < 𝑓𝑜𝑟1 ≤ 𝑗 ≤ 𝑛 

write𝛿 = min{𝛿଴, 𝛿ଵ, … , 𝛿௡}. 

Then 𝛿 > 0, 𝑆ఋ(𝑥‾) ⊆ 𝐸 and ห൫𝐷௝𝑓൯(𝑥‾) − ൫𝐷௝𝑓൯(𝑦‾)ห <
ఢ

௡
 whenever 

𝑦‾ ∈ 𝐸 with |𝑥‾ − 𝑦‾| < 𝛿 for 1 ≤ 𝑗 ≤ 𝑛.                   →  (3)     

 

 Claim:    𝑓ᇱ(𝑥‾)𝑒‾௝ = ∑  ௡
௝ୀଵ 𝐷௝𝑓(𝑥‾). 

 Suppose ℎ‾ = (ℎଵ, ℎଶ, … . , ℎ௡) = ∑  ௡
௝ୀଵ ℎ௝𝑒‾௝ and หℎ‾ห < 𝛿. 

put 𝜗‾଴ = 0 and 𝜗‾௞ = ℎଵ𝑒‾ଵ + ℎଶ𝑒‾ଶ + ⋯ + ℎ௞𝑒‾௞ for 1 ⩽ 𝑘 ⩽ 𝑛. 

Then  𝜗‾௞ = ℎଵ𝑒‾ଵ + ℎ ⋯ + ℎ௞ିଵ𝑒‾௞ିଵ + ℎ௞𝑒‾௞ = 𝜗‾௞ିଵ + ℎ௞𝑒‾௞ for 𝑘 = 1 to n. 

It follows that 

So 𝑓൫𝑥‾ + ℎ‾൯ − 𝑓(𝑥‾) = ∑  ௡
௝ୀଵ   ൣ𝑓൫𝑥‾ + 𝜗‾௝൯ − 𝑓൫𝑥‾ + 𝜗‾௝ିଵ൯൧ 

Since each ห𝜗‾௝ห < 𝛿, 1 ≤ 𝑗 ≤ 𝑛 and 𝑆ఋబ
(𝑥̅)is convex, we have  

the segments with end points 𝑥‾ + 𝜗‾௝ିଵ, 𝑥‾ + 𝜗‾‾௝ lie in 𝑆ఋబ
(𝑥̅) 

Define 𝜙: [0,1] → 𝑅 as 𝜙(𝑡) = 𝑓൫𝑥‾ + 𝜗‾௝ିଵ + 𝑡ℎ௝𝑒‾௝൯ for all 𝑡 ∈ [0,1]. 

Now        𝜙(1) = 𝑓൫𝑥‾ + 𝜗‾௝ିଵ   + ℎ௝𝑒‾௝൯ = 𝑓൫𝑥‾ + 𝜗‾௝൯  and 

                   𝜙(0) = 𝑓൫𝑥‾ + 𝜗‾௝ିଵ൯. 

Since. 𝐷௞f exits in 𝐸, we get 𝜙 is differentiable on [0,1] and 

𝜙ᇱ(𝑡) =
𝑑

𝑑𝑡
൫𝜙(𝑡)൯ =

𝑑

𝑑𝑡
ቀ𝑓൫𝑥‾ + 𝜗‾௝ିଵ   + 𝑡ℎ௝ᇲ𝑒‾୨൯ቁ: 

= ℎ௝𝐷௝𝑓൫𝑥‾ + 𝜗‾௝ିଵ   + 𝑡ℎ௝ᇲ𝑒‾୨൯ 

By Mean value Theorem, ∃𝜃௝  in (0,1) such that 𝜙(1) − 𝜙(0) = 𝜙ᇱ൫𝜃௝൯(1 − 0). 

⇒ 𝑓൫𝑥‾ + 𝜗‾௝൯ − 𝑓൫𝑥‾ + 𝜗‾௝ିଵ൯ = ℎ୨𝐷௝𝑓൫𝑥‾ + 𝜗‾௝ିଵ + 𝜃௝ℎ௝𝑒‾௝൯ 

∴ 𝑓൫𝑥‾ + ℎ‾൯ − 𝑓(𝑥‾) = ෍  

௡

௝ୀଵ

  ൣ𝑓൫𝑥‾ + 𝜗‾௝൯ − 𝑓൫𝑥‾ + 𝜗‾௝ିଵ   ൯൧ 

                          = ෍  

௡

௝ୀଵ

 ℎ௝𝐷௝𝑓൫𝑥‾ + 𝜗‾௝ିଵ   + 𝜃௝ℎ௝𝑒௝൯ 
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⟹ 𝑓൫𝑥‾ + ℎ‾൯ − 𝑓(𝑥‾) − ෍  

௡

௝ୀଵ

 𝑛௝൫𝐷௝𝑓൯(𝑥‾) = ෍  

௡

௝ୀଵ

 ℎ௝𝐷௝𝑓൫𝜗‾௝ିଵ   + 𝜃௝ℎ௝𝑒௝൯ 

⟹ ቮ𝑓൫𝑥‾ + ℎ‾൯ − 𝑓(𝑥‾) − ෍  

௡

௝ୀଵ

 𝑛௝൫𝐷௝𝑓൯(𝑥‾)ቮ = ቮ෍  

௡

௝ୀଵ

 ℎ௝𝐷௝𝑓൫𝜗‾௝ିଵ   + 𝜃௝ℎ௝𝑒௝൯ቮ 

≤ ෍  

௡

௝ୀଵ

  หℎ௝หห൫𝐷௝𝑓൯൫𝑥‾ + 𝚥‾௝ିଵ + 𝜃௝ℎ௝𝑒‾௝൯ − ൫𝐷௝𝑓൯(𝑥‾)ห ≤ ෍  

௡

௝ୀଵ

  หℎ௝ห
𝜖

𝑛
 

(by (3)) 

                   ⟹ ห𝑓൫𝑥‾ + ℎ‾൯ − 𝑓(𝑥‾) − ∑  ௡
௝ୀଵ  𝑛௝൫𝐷௝𝑓൯(𝑥‾)ห < 𝜖หℎ‾หfor all ℎ‾  such that หℎ‾ห < 𝛿. 

 

⟹
ቚ௙(௫‾ା௛‾ )ି௙(௫‾)ି∑  ೙

ೕసభ  ௡ೕ൫஽ೕ௙൯(௫‾)ቚ

|௛‾ |
< 𝜖 When ever หℎ‾ห < 𝛿 

∴ 𝑓 is differentiable at 𝑥‾ 

and that 𝑓ᇱ(𝑥‾) is the linear function which assigns the number∑ ℎ௝൫𝐷௝𝑓௝൯(𝑥‾) to the vector 

ℎ‾ = ∑ ℎ௝𝑒‾௝, ie. if ℎ‾ = ∑  ௡
௝ୀଵ ℎ௝𝑒‾௝, then 𝑓ᇱ(𝑥‾)ℎ‾ = ∑  ௡

௝ୀଵ ℎ௝൫𝐷௝𝑓൯(𝑥‾). 

The matrix [𝑓ᇱ(𝑥‾)] consists of the row [(𝐷ଵ𝑓)(𝑥‾)(𝐷ଶ𝑓)(𝑥‾) … … … . (𝐷௡𝑓)(𝑥‾)]                 

 Since 𝐷ଵ𝑓, 𝐷ଶ𝑓, … 𝐷௡𝑓 are continuous functions on 𝐸, it follows that 

𝑓ᇱis continuous on 𝐸, 𝑖. 𝑒 𝑓‾ ∈ 𝒞ᇱ(𝐸). 

 

11.4  SUMMARY: 

 

In this lesson we are discussed about differentiation of functions with the detailed definitions, 

examples and theorems. 

 

11.5  TECHNICAL TERMS: 
 

 Chain rule 
 Partial derivatives 
 Jacobian matrix 
 Convex set  
 Continuously differentiable 
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11.6  SELF ASSESSMENT QUESTIONS: 

 

1. If 0)0,0( f and 

22
),(

yx

xy
yxf


  if )0,0(),( yx  

Prove that ),)(( 1 yxfD and ),)(( 2 yxfD exist at every point of 2R , although f  is not 

continuous at (0,0). 

2. Suppose that f is a real valued function defined in an open set nRE  and that the 

partial derivatives fDfD n11 ............  are bounded in E .Prove that f is continuous in E  

3. Suppose that f is a real valued function defined in an open set nRE  and that f  

has a local maximum at a point Ex prove that .0)(  xf  

4. If f  is differentiable mapping of a connected open set nRE  in to mR ,and if 0)(  xf  

for every Ex , prove that f is constant in .E  

5. If f  and  g  are differentiable real functions in nR , prove that 

fggffg  )(  and that fff  2)/1(  where 0f  

6. Explain the role of the Jacobian matrix in the context of differentiable mappings. How 

does the Jacobian relate to the partial derivatives of the function? 

 

11.7  SUGGESTED READINGS: 

 

1. Principles of Mathematics Analysis by Walter Rudin, 3rd Edition. 

2. Mathematical Analysis by Tom M.Apostal, Narosa Publishing House, 2ndEdition,1985. 

 

-  Dr. K. Bhanu Lakshmi 

 

 

 

 

 



 

 

LESSON- 12 

CONTRACTION MAPPINGS AND THE 
INVERSE FUNCTION THEOREM 

 
OBJECTIVES: 
 
The objectives of this study are to explore key mathematical concepts related to metric 
spaces, integrals, and differentiability. These include: 
 

1. To apply the contraction mapping theorem in complete metric spaces, demonstrating 
the existence of unique fixed points. 

2. To analyze the relationship between differentiation and integrals, providing essential 
knowledge for advanced calculus. 

3. To understand the conditions for local invertibility using the inverse function theorem 
and its implications. 

4. To establish the continuity of mappings derived from differentiable functions and 
their relevance to the inverse function theorem. 

5. To examine the role of Cauchy sequences in proving convergence and their 
connection to fixed points in complete metric spaces. 

 

STRUCTURE: 
 

12.1  Introduction 

12.2  Definition 

12.3  Contraction Mapping theorem 

12.4  Inverse Function theorem 

12.5 The Implicit Function Theorem 

12.6  Summary 

12.7  Technical terms 

12.8  Self Assessment Questions 

12.9  Suggested readings 

 

12.1 INTRODUCTION: 
 

The contraction principle, Differentiation of integrals 
We now interrupt our discussion of differentiation to insert a fixed point theorem that is valid 
in arbitrary complete metric spaces. It will be used in the proof of the inverse function 
theorem. 
 
12.2  DEFINITION:  
 

Let 𝑋 be a metric space with metric 𝑑.A mapping 𝜑: X →X is said to be a 
Contraction of  𝑋 into 𝑋 and if there is a number 𝑐 < 1 such that 
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                      𝑑൫𝜑(𝑥), 𝜑(𝑦)൯ ≤ 𝑐𝑑(𝑥, 𝑦)for all 𝑥, 𝑦 ∈ 𝑋 

 

12.3  THEOREM: 
 

 

(Contraction Mapping theorem or Fixed point theorem) 

If 𝑋 is a complete metric space, and if 𝜙 is a contraction of 𝑋 into 𝑋, then there exists one 

and  only 𝑥 ∈ 𝑋 such that 𝜙(𝑥) = 𝑥. 

Proof: suppose 𝑋 is a complete metric space and 𝜙 is as contraction of 𝑋 into 𝑋. 

claim:∃  a unique 𝑥 ∈ 𝑋 ⇒ 𝜙(𝑥) = 𝑥. 

Suppose 𝑥, 𝑦 ∈ X such that 𝜙(𝑥) = 𝑥and 𝜙(𝑦) = 𝑦. 

 If possible suppose the 𝑥 ≠ 𝑦. 

Since 𝜙: X →X  is a contraction, ∃ os real no. 𝑐 < 1 Such that 

𝑑൫𝜙(𝑝), 𝜙(𝑞)൯ ≤ 𝑐 ⋅ 𝑑(𝑝, 𝑞)∀𝑝,𝑞 ∈ 𝑋                         → (1)  

In particular, 0 < 𝑑(𝑥, 𝑦) = 𝑑൫𝜙(𝑥), 𝜙(𝑦)൯ ≤ 𝑐 ⋅ 𝑑(𝑥, 𝑦) < 𝑑(𝑥, 𝑦) 

(∵ 𝑐 < 1).  

⇒ 𝑑(𝑥, 𝑦) < 𝑑(𝑥, 𝑦) 

∴ 𝑥 = 𝑦 

So, 𝜙 has a unique point. 

First we show that 𝜙 had a fixed point. 

Let 𝑥଴ ∈ 𝑋. 

Define {𝑥௡} recursively, by setting 𝑥௡ାଵ = 𝜙(𝑥௡) for 𝑛 = 0,1,2 … … .. 

So, from (1), 𝑑(𝑥௡ାଵ, 𝑥௡) = 𝑑൫𝜙(𝑥௡), 𝜙(𝑥௡ିଵ)൯ ≤ 𝑐𝑑(𝑥௡, 𝑥௡ିଵ) 

for 𝑛 ⩾ 1. 

For 𝑛 = 1, 𝑑(𝑥ଶ, 𝑥ଵ) ⩽ cd(𝑥ଵ, 𝑥ଶ). 

For 𝑛 = 2, 𝑑(𝑥ଷ, 𝑥ଶ) ≤ 𝑐𝑑(𝑥ଶ, 𝑥ଵ) ≤ 𝑐ଶ𝑑(𝑥ଵ, 𝑥଴) 

By induction, that it follows that 

𝑑(𝑥௡ାଵ, 𝑥௡) ⩽ 𝑐௡𝑑(𝑥ଵ, 𝑥଴) for 𝑛 = 0,1,2, … 

For 

 
𝑚 >𝑛 ⩾ 1, 𝑑(𝑥௡, 𝑥௠) ≤ 𝑑(𝑥௡, 𝑥௡ାଵ) + 𝑑(𝑥௡ାଵ, 𝑥௡ାଶ) + ⋯ 𝑑(𝑥௠ିଵ𝑥௡).

⩽ 𝑐௡𝑑(𝑥ଵ, 𝑥଴) + 𝑐௡ାଵ𝑑(𝑥ଵ, 𝑥଴) + ⋯ + 𝑐௠ିଵ𝑑(𝑥ଵ, 𝑥଴).

= (𝑐௡ + 𝑐௡ାଵ + ⋯ + 𝑐௠ିଵ)𝑑(𝑥ଵ, 𝑥଴).

 

Now we show that {𝑥௡} is a cauchy sequence. 

Let 𝜖 > 0. 

Since 1 + 𝑐 + 𝑐ଶ + ⋯ is a convergent series, ∃ +ve integer 𝑁 such that  
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∑  ௠ିଵ
௞ୀ௡ 𝐶௞ <

ఢ

ଵାௗ(௫భ,௫బ)
&𝑚 ⩾ 𝑛 ⩾ 𝑁. 

So, for𝑚 ⩾ 𝑛 ⩾ 𝑁, 𝑑(𝑥௡, 𝑥௠) ≤ (𝑐௡ + 𝑐௡ାଵ + ⋯ + 𝑐௠ିଵ)𝑑(𝑥ଵ, 𝑥଴) 

<
𝜖

1 + 𝑑(𝑥ଵ, 𝑥଴)
⋅ 𝑑(𝑥ଵ, 𝑥଴) < 𝜖 

                                         ∴ {𝑥௡}is a Cauchy sequence in 𝑋. 

Since 𝑋 is complete, the sequence {𝑥௡} converges to a point 𝑥in 𝑋, ie, lim
௡→ஶ

 𝑥௡ = 𝑥. 

Claim: 𝜙 is Continuous on 𝑋. 

Let 𝑦 ∈ 𝑋 and 𝜖 > 0.  Put 𝛿 =
ఢ

௖
 

suppose 𝑑(𝑦, 𝑧) < 𝛿 where𝑧 ∈ 𝑥. 

Consider  𝑑൫𝜙(𝑦), 𝜙(𝑧)൯ ≤ 𝑐𝑑(𝑦, 𝑧) < 𝑐 ⋅ 𝛿 = 𝑐 ⋅
ఢ

௖
= 𝜖. 

∴ 𝑑൫𝜙(𝑦), 𝜙(𝑧)൯ < 𝜖 When ever   𝑑(𝑦, 𝑧) < 𝛿 ∀𝑧 ∈ 𝑋. 

This shows that 𝜙 is continuous at 𝑦. 

∴ 𝜙 is continuous on 𝑋. 

So, since 𝑥௡ → 𝑥, 𝜙(𝑥௡) → 𝜙(𝑥) 

Hence, 𝜙(𝑥) = lim
௡→ஶ

 𝜙(𝑥௡) = lim
௡→ஶ

 𝑥௡ାଵ = 𝑥. 

Thus 𝜙 has a fixed paint 𝑥in 𝑋.  

Hence 𝜙 has a unique fixed point in x. 

 

12.4  THE INVERSE  FUNCTION THEOREM: 

 

The inverse function theorem states, roughly speaking, that a continuously differentiable 
mapping f is invertible in a neighborhood of any point 𝑥 at which the linear transformation 
f ᇱ(𝑥) is invertible. 
 

Theorems on Inverse function Theorem 

12.4.1 Theorem 

Suppose 𝐟 is a 𝒞ᇱ-mapping of an open set 𝐸 ⊂ 𝑅௡ into 𝑅௡, 𝑓ᇱ(a) is invertible for some 𝑎‾ ∈

𝐸, 𝑏‾ = 𝑓‾(𝑎).‾  Then 

(a) there exist open sets 𝑈 and 𝑉 in 𝑅௡ such that 𝑎‾ ∈ 𝑈, 𝑏‾ ∈ 𝑉𝑓‾ is one-to-one on 𝑈, and       

𝑓(𝑈) = 𝑣 

(b) If 𝑔‾ is the inverse of 𝑓 [which exists, by (𝑎)], defined in 𝑉 by 

𝑔‾ ቀ𝑓‾(𝑥‾)ቁ = 𝑥‾(𝑥‾ ∈ 𝑢) then 𝑔‾ ∈ 𝒞ᇱ(𝑉). 
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𝐩𝐫𝐨𝐨𝐟: 

Given𝑓‾ is 𝒞ᇱ-mapping from 𝐸 into 𝑅௡ where 𝐸 in to 𝑅௡ where 𝐸 is an open set in 𝑅௡，

𝑓ିଵ(𝑎‾) is invertible   and𝑏‾ = f(𝑎‾). 

(f‾ is a 𝒞ᇱ-mapping of E into R୬  i.e  f‾is continuous differentiation 

f ିଵ is a continuously mapping of E into L(R୬, R୫)) 

Put 𝐴 = 𝑓ିଵ(𝑎‾) Then 𝐴 is invertible． 

Put  𝜆 =
ଵ

ଶ||஺షభ‖
 Then 𝜆 > 0. 

Since 𝑓ିଵ is continuous on 𝐸, f ିଵ  is continuous at 𝑎‾． 

So∃ a 𝛿 > 0 such that 𝑁ఋ(𝑎‾) ⊆ 𝐸 and for any 𝑥‾ ∈ 𝑁ఋ(𝑎‾)， 

‖𝑓ିଵ(𝑥‾) − 𝑓ିଵ(𝑎‾)‖ < 𝜆. 

Write 𝑈 = 𝑁ఋ(𝑎‾)． 

Then 𝑈 is a convex open subset of 𝐸, 𝑎‾ ∈ 𝑈 and ‖𝑓ିଵ(𝑥‾) − 𝐴‖ < 𝜆 

for all 𝑥‾  ∈ 𝑈                                                  →（1） 

For each 𝑦‾ ∈ 𝑅௡ ,define as mapping 𝜙: 𝐸 → 𝑅௡ as 

𝜙(𝑥‾) = 𝑥‾ + Aିଵ ቀ𝑦‾ − 𝑓‾(𝑥‾)ቁ  for all 𝑥‾ ∈ 𝐸

 Fix 𝑦‾ ∈ 𝑅௡.
 

 For any 𝑥̅ ∈ 𝐸, Consider 𝜙൫𝑥̅ + ℎത൯ − 𝜙(𝑥̅) − ൫𝐼 − 𝐴ିଵf ିଵ(𝑥̅)൯ℎത

= 𝑥̅ + ℎത + Aିଵ ቀ𝑦ത − 𝑓൫̅𝑥̅ + ℎത൯ቁ − ቀ𝑥̅ + 𝐴̅ିଵ ቀ𝑦ത − 𝑓(̅𝑥̅)ቁ −

− ቀ𝐼 − 𝐴̇ିଵ f ିଵ(𝑥̅)ቁ ℎത

= 𝑥̅ + ℎത + Aିଵ(𝑦ത) − 𝐴ିଵ ቀ𝑓൫̅𝑥̅ + ℎത൯ቁ − 𝑥̅ − Aିଵ(𝑦ത) + 𝐴ିଵ ቀ𝑓(̅𝑥̅)ቁ − ℎത

+𝐴ିଵ𝑓ିଵ(𝑥̅)ℎത

= 𝑥̅ + ℎത + 𝐴ିଵ(𝑦ത) − 𝐴ିଵ ቀ𝑓൫𝑥̅ + ℎത൯ቁ − 𝑥̅ − Aିଵ(𝑦ത) + Aିଵ൫𝑓(𝑥̅)൯ℎത.

+𝐴ିଵ𝑓ିଵ(𝑥̅)ℎത

 

         = −𝐴̅ିଵ൫𝑓൫̅𝑥̅ + ℎത൯ − 𝑓(̅𝑥̅) − 𝑓ିଵ(𝑥̅)ℎത൯ 

 

Consider    lim
    ௛→଴

 
ቚ𝜙൫𝑥̅ + ℎത൯ − 𝜙(𝑥̅) − ቀ𝐼 − 𝐴ି௞𝑓ିଵ(𝑥̅)ቁℎതቚ

หℎതห
 

                                  =     lim
    ௛→଴

 
∣ −𝐴ିଵ ⋅ ൫𝑓൫̅𝑥̅ + ℎത൯ − 𝑓(̅𝑥̅) − f ିଵ(𝑥̅)ℎത ∣

หℎതห
 

                       ≤    ∑‖∣ 𝐴ିଵ‖    lim
    ௛→଴

 
ห𝑓൫̅𝑥̅ + ℎത൯ − 𝑓(̅𝑥̅) − f ିଵ(𝑥̅)ℎതห

หℎതห
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= ‖𝐴ିଵ‖ ⋅ 0 = 0 

          ∴     lim
    ௛→଴

 
ห𝜙൫𝑥̅ + ℎത൯ − 𝜙(𝑥̅) − ൫𝐼 − 𝐴ିଵ𝑓ିଵ(𝑥̅)൯ℎതห

หℎതห
= 0 

Hence, 𝜙 is differentiable at 𝑥‾ and 𝜙ᇱ(𝑥‾) = I − Aିଵf ିଵ(𝑥‾)∀ 𝑥‾ ∈ 𝐸 

𝜙(𝑥‾) = 𝑥‾ ⇔ 𝑥‾ +  𝐴ିଵ ቀ𝑦‾ − 𝑓‾(𝑥‾)ቁ = 𝑥‾ 

⇔ 𝐴ିଵ ቀ𝑦‾ − 𝑓‾(𝑥‾)ቁ = 0 

⇔ 𝑦‾  − 𝑓‾(𝑥‾) = 0 

⇔ 𝑓‾(𝑥‾) = 𝑦‾. 

∴ 𝜙(𝑥‾) ≡ 𝑥‾ ⇔ 𝑓‾(𝑥‾) = 𝑦‾ 
 

a) To prove part (a) 

Now we show that 𝑓‾ is one - to - one on U. 

suppose 𝑥‾ଵ, 𝑥‾ଶ ∈ 𝑈 such that 𝑓‾(𝑥‾ଵ) = 𝑓‾(𝑥‾ଶ). 

Let 𝑦‾ = 𝑓‾(𝑥‾ଵ) = 𝑓‾(𝑥‾ଶ) →（2） 

for this 𝑦‾, the  function  𝜙: 𝐸 → 𝑅௡ defined by  

𝜙(𝑥‾) = 𝑥‾ + 𝐴ିଵ ቀ𝑦‾ − 𝑓‾(𝑥‾)ቁ ∀𝑥‾ ∈ 𝐸 is differentiable, 

𝜙ᇱ(𝑥‾) = 𝐼 − 𝐴ିଵ𝑓‾ିଵ(𝑥‾) and 𝜙(𝑥‾) = 𝑥‾iff 𝑦‾ = 𝑓‾(𝑥‾) for all 𝑥‾ ∈ 𝐸. →（3) 

Consider 𝜙ᇱ(𝑥‾) = 𝐼 − 𝐴‾ିଵ𝑓ିଵ(𝑥‾) = 𝐴ିଵ𝐴 − 𝐴‾ିଵf ିଵ(𝑥‾) 

= 𝐴ିଵ൫𝐴 − f ିଵ(𝑥‾)൯ = 𝐴ିଵ൫𝑓ିଵ(𝑎‾) − 𝑓ିଵ(𝑥‾)൯.

⇒ ‖𝜙ᇱ(𝑥‾)‖ = ‖𝐴ିଵ(𝑓ିଵ(𝑎‾) − 𝑓ିଵ(𝑥‾)‖

≤ ‖𝐴ିଵ‖‖𝑓ᇱ(𝑎‾) − 𝑓ᇱ(𝑥‾)‖

< ‖𝐴ିଵ‖𝜆 =
1

2
 ∀𝑥‾ ∈ 𝑈.

 

‖𝜙ᇱ(𝑥‾)‖  <
1

2
 ∀𝑥‾ ∈ 𝑈 

we have |𝜙(𝑥‾) − 𝜙(𝑧‾)| ⩽
ଵ

ଶ
|𝑥‾ − 𝑧‾|∀𝑥 ,‾ 𝑧‾  ∈ 𝑈 →（4) 

In particular |𝜙(𝑥‾ଵ) − 𝜙(𝑥‾ଶ)| ≤
ଵ

ଶ
|𝑥‾ଵ − 𝑥‾ଶ| →（5) 

But from (2)&(3), 𝑦‾ = 𝑓‾(𝑥‾ଵ), 𝑦‾ = 𝑓‾(𝑥‾ଶ) ⇒ 𝜙(𝑥‾ଵ) = 𝑥‾ଵ 𝑎𝑛𝑑𝜙(𝑥‾ଶ) = 𝑥‾ଶ. 

So, (5) ⇒ |𝑥‾ଵ − 𝑥‾ଶ| ≤
ଵ

ଶ
|𝑥‾ଵ − 𝑥‾ଶ|. 

This is possible only when 𝑥ଵ = 𝑥ଶ. 

∴ 𝑓‾is one- to-one on U. 
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put 𝑉 = 𝑓‾(𝑢). 

Since 𝑎‾ ∈ 𝑈, 𝑏‾ = 𝑓‾(𝑎‾) ∈ 𝑉. 

Now we show that 𝑉 is an open set. 

Let 𝑦‾଴ ∈ 𝑉. Then 𝑦‾଴ ∈ 𝑓‾(𝑢) ⇒ 𝑦‾଴ = 𝑓‾(𝑥‾଴) for some𝑥‾଴ ∈ 𝑈. 

Let 𝐵 be an open ball with centre 𝑥‾଴ and radius 𝑟 > 0 such that 

𝐵‾ ⊆ U, where 𝐵‾  is the closure of 𝐵. 

Consider the open ball 𝑁ఒ௥(𝑦‾଴). 

To prove 𝑁ఒ௥(𝑦‾଴) ⊆ 𝑉. 

Let 𝑦‾ ∈ 𝑁ఒ௥(𝑦‾଴). ⇒ |𝑦‾ − 𝑦‾଴| < 𝜆𝑟. 

For this 𝑦‾, we have a differentiable function 𝜙: 𝐸 → ℝ௡ defined by 

𝜙(𝑥‾) = 𝑥‾ + Aିଵ ቀ𝑦‾ − 𝑓‾(𝑥‾)ቁ ∀𝑥‾ ∈ 𝐸 and 𝜙ᇱ(𝑥‾) = I − Aିଵ𝑓ିଵ(𝑥‾), and 

𝜙(𝑥) = 𝑥‾ iff 𝑦‾ = 𝑓‾(𝑥‾) 

 Now |𝜙(𝑥‾଴) − 𝑥‾଴| = ቚ𝑥‾଴ + Aିଵ ቀ𝑦‾ − 𝑓‾(𝑥‾଴)ቁ − 𝑥‾଴ቚ 

= ቚ𝐴‾ ቀ𝑦‾ − 𝑓‾(𝑥଴)ቁቚ 

                                     ≤ ‖𝐴‾‖ห𝑦‾ − 𝑓‾(𝑥‾଴)ห 

= ‖𝐴‾‖|𝑦‾ − 𝑦‾଴| 

< ‖Aିଵ‖𝜆𝑟 

                                      =
1

2𝜆
⋅ 𝜆𝑟 

                                       =
𝑟

2
 

                         ∴ |𝜙(𝑥‾଴) − 𝑥‾଴| <
𝑟

2
→   (6) 

Let 𝑥‾ ∈ 𝐵‾ . Then 𝑥‾ ∈ 𝑈. 

Consider |𝜙(𝑥‾) − 𝑥‾଴| = |𝜙(𝑥‾) − 𝜙(𝑥‾଴) + 𝜙(𝑥‾଴) − 𝑥‾଴| 

≤ |𝜙(𝑥‾) − 𝜙(𝑥‾଴)| + |𝜙(𝑥‾଴) − 𝑥‾଴|

<
1

2
|𝑥‾ − 𝑥‾଴| +

𝑟

2
൫ from (4)൯

<
𝑟

2
+

𝑟

2
= 𝑟.

 

⇒ |𝜙(𝑥‾) − 𝑥‾଴| < 𝑟 

                                          ⇒ 𝜙(𝑥‾) ∈ 𝐵 

                              ∴ 𝑥‾ ∈ 𝐵‾ ⇒ 𝜙(𝑥‾) ∈ 𝐵 

Since 𝐵‾ ⊆ U, by (4), we have |𝜙(𝑥‾) − 𝜙(𝑧‾)| ⩽
ଵ

ଶ
|𝑥‾ − 𝑧‾|∀𝑥 ,‾ 𝑧‾  ∈ 𝐵 
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for all 𝑥‾, 𝑧‾ ∈ 𝐵‾ . 

∴ 𝜙 is a contraction of 𝐵‾  into 𝐵‾ . 

Since 𝐵‾  is a closed subset of 𝑅௡ and 𝑅௡ is complete, we have 𝐵‾  is complete. 

By Contraction mapping Theorem, 𝜙 has a fixed point, say 𝑥‾ ∈ 𝐵‾ . 

⇒ 𝜙(𝑥‾) = 𝑥‾ ⇒ 𝑦‾ = 𝑓‾(𝑥‾).

 so, 𝑦‾ = 𝑓‾(𝑥‾) ∈ 𝑓‾(𝐵‾ ) ⊆ 𝑓‾൫(𝑈)൯ = 𝑉

⇒ 𝑦‾ ∈ 𝑉.

∴ 𝑁ఒ௥(𝑦‾଴) ⊆ 𝑉

 

Hence 𝑉 is an open subset of 𝑅௡.|𝜙(𝑥‾) − 𝜙(𝑧‾)| ⩽
ଵ

ଶ
|𝑥‾ − 𝑧‾|∀𝑥 ,‾ 𝑧‾  ∈ 𝑈 

Thus there exist open sets 𝑢 add 𝑉 in 𝑅௡ such that a ∈ 𝑈, 𝑏‾ ∈ 𝑉, 𝑓‾ is one-to-one on 𝑢 and 

𝑓‾(𝑢) = 𝑣. 

b) Suppose 𝑔‾ is the inverse of 𝑓‾ defined in 𝑉 by 

 𝑔 ‾ ቀ𝑓‾(𝑥‾)ቁ = 𝑥‾    ∀𝑥‾ ∈ 𝑉 

claim: 𝑔 ‾ is a 𝒞ᇱ-mapping  in 𝑉, i.e 𝑔‾ ∈ 𝒞ᇱ(𝑉). 

First we show the 𝑔ିଵ exists in 𝑉.  

Let 𝑦‾ ∈ 𝑉. 

Since 𝑉is open, there exists 𝑟 > 0 such that 𝑆௥(𝑦‾) ⊆ 𝑉. 

Let 𝑘‾ ∈ 𝑅௡ such that |𝑘‾| < 𝑟. 

Then ห𝑦‾ + 𝑘‾ − 𝑦‾ห = ห𝑘‾ห < 𝑟 

⇒ 𝑦‾ + 𝑘‾ ∈ 𝑆୰(𝑦‾) ⊆ 𝑉 ⇒ 𝑦‾ + 𝑘‾ ∈ 𝑉 

Since 𝑦‾, 𝑦‾ + 𝑘‾ ∈ 𝑉 = 𝑓(𝑈), ∃𝑥‾, 𝑧‾ ∈∪ such that 

𝑦‾ = 𝑓‾(𝑥‾)and 𝑦‾ + 𝑘‾ = 𝑓‾(𝑧‾). 

Put ℎ‾ = 𝑧‾ − 𝑥‾. 

Then 𝑥‾ + ℎ‾ = 𝑧‾ ∈ Uand 𝑓‾൫𝑥‾ + ℎ‾൯ = 𝑓‾(𝑧‾) = 𝑦‾ + 𝑘‾ . 

So, 𝑦‾ = 𝑓‾(𝑥‾) and 𝑦‾ + 𝑘‾ = 𝑓‾൫𝑥‾ + ℎ‾൯                                       →   (7) 

For this 𝑦‾, we get a differentiable function 𝜙: 𝐸 → 𝑅௡ defined by 

 𝜙(𝜔‾ ) = 𝜔‾ + 𝐴ିଵ ቀ𝑦‾ − 𝑓‾(𝑥‾)ቁ   iff 𝑦‾ = 𝑓‾(𝜔‾ ). 

Consider 𝜙൫𝑥‾ + ℎ‾൯ − 𝜙(𝑥‾) = 𝑥‾ + ℎ‾ + 𝐴ିଵ ቀ𝑦‾ − 𝑓‾൫𝑥‾ + ℎ‾൯ቁ − 𝑥‾ − 𝐴ିଵ ቀ𝑦‾ − 𝑓‾(𝑥‾)ቁ 

= 𝑥‾ + ℎ‾ + 𝐴ିଵ(𝑦‾) − 𝐴ିଵ𝑓‾൫𝑥‾ + ℎ‾൯ − 𝑥‾ − 𝐴ିଵ(𝑦‾) + 𝐴ିଵ𝑓‾(𝑥‾) 

                              = ℎ‾ + 𝐴ିଵ ቀ𝑓‾(𝑥‾) − 𝑓‾൫𝑥‾ + ℎ‾൯ቁ 

= ℎ‾ + Aିଵ൫𝑦‾ − (𝑦‾ + 𝐾‾ )൯ 



Centre for Distance Education   12.8        Acharya Nagarjuna University  

 

 = ℎ‾ − Aିଵ𝑘‾  

                 ⇒ 𝜙൫𝑥‾ + ℎ‾൯ − 𝜙(𝑥‾) = ℎ‾ − 𝐴ିଵ𝑘‾. 

By (4), ห𝜙൫𝑥‾ + ℎ‾൯ − 𝜙(𝑥‾)ห ⩽
1

2
ห𝑥‾ + ℎ‾ − 𝑥‾ห =

1

2
หℎ‾ห 

                ⇒ ห𝜙൫𝑥‾ + ℎ‾൯ − 𝜙(𝑥‾)ห ⩽
1

2
หℎ‾ห 

                ⇒ หℎ‾ − Aିଵ𝑘‾ห ≤
1

2
หℎ‾ห 

               ⇒ ቚหℎ‾ห − หAିଵ𝑘‾หቚ ≤ หℎ‾ − Aିଵ𝑘‾ห ≤
1

2
หℎ‾ห 

⇒
−1

2
หℎ‾ห ≤ หℎ‾ห − หAିଵ𝑘‾ห ≤

1

2
หℎ‾ห 

⇒ −หℎ‾ห −
1

2
หℎ‾ห ≤ −หAିଵ𝑘‾ห ≤

1

2
หℎ‾ห − หℎ‾ห 

                 ⇒ −
3

2
หℎ‾ห ≤ −หAିଵ𝑘‾ห ≤ −

1

2
หℎ‾ห 

                  ⇒
1

2
|ℎ‾| ≤ หAିଵ𝑘‾ห ≤ ‖Aିଵ|||𝐾‾ | 

                  ⇒ หℎ‾ห ≤ 2  | ฬAିଵ‖|𝑘‾| =
1

𝜆
ฬ 𝑘‾ฬ 

 ⇒ หℎ‾ห ≤
1

𝜆
ห𝑘‾ห             → (8) 

we have ‖𝑓ିଵ(ω‾ ) − 𝐴‖ < 𝜆 for   𝑎𝑙𝑙 ω‾ ∈ U. 

So, for each ‖𝑓ିଵ(ω‾ ) − 𝐴‖‖𝐴ିଵ‖ < 𝜆 ⋅
ଵ

ଶఒ
=

ଵ

ଶ
< 1 

⇒ ‖𝑓ିଵ(ω‾ ) − 𝐴‖𝐴ିଵ‖ < 1 for all ω‾ ∈U 

So, by a known Theorem (4.8),𝑓ିଵ(ω‾ ) is invertible for all ω‾ ∈U 

In particular,  𝑓ିଵ(𝑥‾) is invertible:  

Let the inverse of  𝑓ିଵ(𝑥‾) be 𝑇 

Consider 𝑔‾൫𝑦‾ + 𝑘‾൯ − 𝑔‾(𝑦‾) − 𝑇𝑘‾ = 𝑔‾ ቀ𝑓‾൫𝑥‾ + ℎ‾൯ቁ − 𝑔‾ ቀ𝑓‾(𝑥‾)ቁ − 𝑇𝑘‾  

= −𝑇൫𝑘‾ −  𝑓ିଵ(𝑥)ℎ‾൯ 

                                                         = −𝑇൫𝑓‾൫𝑥‾ + ℎ‾൯ − 𝑓‾(𝑥‾) −  𝑓ିଵ(𝑥‾)ℎ‾൯(𝑏𝑦)(7) 

    ⇒
ห𝑔‾൫𝑦‾ + 𝑘‾൯ − 𝑔‾(𝑦‾) − 𝑇𝑘‾ห

ห𝑘‾ห
   ≤      

‖𝑇‖ห𝑓‾൫𝑥‾ + ℎ‾൯ − 𝑓‾(𝑥‾) −  𝑓ିଵ(𝑥‾)ℎ‾ห

ห𝑘‾ห
 

                                                                            ≤
‖𝑇‖

𝜆
⋅

ห𝑓‾൫𝑥‾ + ℎ‾൯ − 𝑓‾(𝑥‾) −  𝑓ିଵ(𝑥‾)ℎ‾ห

หℎ‾ห
         → (9) 
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By (8) ,ℎ‾ → 0 os 𝑘‾ → 0 

Taking limit on both sides of (9) as 𝑘‾ → 0‾ , we get 

lim
௞‾ →଴

ห𝑔‾൫𝑦‾ + 𝑘‾൯ − 𝑔‾(𝑦‾) − 𝑇𝑘‾ห

ห𝑘‾ห
∈  0 

                                          i.e.
|௚‾(௬‾ା௞‾ )ି௚‾(௬‾)ି்௞‾ |

|௞‾ |
= 0 

So, 𝑔is differentiable and 𝑔‾ିଵ(𝑦‾) = 𝑇. 

⇒ 𝑔‾ିଵ(𝑦‾) = T = [𝑓ିଵ(𝑥‾)]ିଵ = ൣ𝑓ିଵ൫𝑔‾(𝑦‾)൯൧
ିଵ

→   (10)ቆ
:.  𝑓‾(𝑥‾) = 𝑦‾ and𝑔‾ 

 inverse of 𝑓‾)
ቇ    

Since every differentiable mapping is continuous, 𝑔‾ is a Continous mapping of 𝑉onto 𝑈. 

Now 𝑓‾ᇱ is a Continuous mapping of 𝑈 into Ω, where Ωis the set of all invertible elements of 

𝐿(𝑅௡); and the mapping 𝐵 → 𝐵ିଵ of Ω into Ω is continuous on Ω. 

∴ The inverse of 𝑓ିଵ൫𝑔‾(𝑦‾)൯ is continuous. 

So, by (10), 𝑔‾ିଵ is continuous on 𝑉, i.e𝑔‾ ∈ 𝒞ᇱ(𝑉). 
 

12.4.2 Theorem   

 If 𝑓‾ is a 𝒞ᇱ-mapping of an open set 𝐸 ⊂ 𝑅௡ into 𝑅௡ and if 𝑓ିଵ(𝑥‾) is invertible for every𝑥‾ ∈

𝐸, then 𝑓‾(𝑤) is an open subset of 𝑅௡ for every open set 𝑊 ⊂ 𝐸. [In other words, 𝑓‾ is an open 

mapping of 𝐸into 𝑅௡ ]  

Proof: Suppose that𝑓‾ is a 𝒞ᇱ-mapping 

Let 𝑊 be any open subset of 𝑅௡ such that 𝑊 ⊂ 𝐸.  

Claim;𝑓‾(𝜔) is an open subset of 𝑅௡. 

Let 𝑥‾ ∈ 𝑊 ⊂ 𝐸 

⇒ 𝑥‾ ∈ 𝐸. 

By our supposition, 𝑓ିଵis continuous at 𝑥‾ and 𝑓ିଵ(𝑥‾) is invertible 

So by part (a) of the Inverse function Theorem there exists open sets 𝑈௫‾  in 𝑅௡ such that  

𝑓: 𝑢௫‾ → 𝑓(𝑈௫‾) is one-to-one and 𝑓(𝑈௫‾) is open in 𝑅௡． 

Now x
Wx

UW

  and that x

Wx
UWf


)(  

we know that union of open sets is open． 

Hence，𝑓‾(𝜔) is an open subset of  𝑅௡ for every open subset 𝑊 ⊂ 𝐸． 

Note: The hypotheses in this theorem ensure that each point 𝑥‾ ∈ 𝐸 has a neighborhood  in 

which 𝑓‾is one-to-one .This may be exposed by saying the 𝑓‾ is locally one-to-one in 𝐸  But  

𝑓‾need not be one-to-one in 𝐸 under these circumstances． 
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12.5  THE IMPLICIT FUNCTION THEOREM: 

 

If 𝑓 is a continously differentiable real function in the plane，then the equation 𝑓(𝑥, 𝑦) = 0 

can be solved for 𝑦 in terms of 𝑥 in 𝑎 neighborhood of any point (𝑎, 𝑏) at which 𝑓(𝑎, 𝑏) = 0 

and 
డ௙

డ௬
≠ 0．Likewise one can solve for 𝑥 in terms of 𝑦 near (𝑎, 𝑏) if 

డ௙

డ௫
≠ 0 at (𝑎, 𝑏) For a 

simple example which illustrates the need for assuming 
డ௙

డ௬
≠ 0． 

Consider𝑓(𝑥, 𝑦) = 𝑥ଶ + 𝑦ଶ − 1 

 

12.5.1 Notations: 

1) If 𝑥‾ = (𝑥ଵ, 𝑥ଶ, → 𝑥௡) ∈ 𝑅௡and 𝑦‾ = (𝑦ଵ, 𝑦ଶ, … , 𝑦௠) ∈ 𝑅௠, then the point (or vector) 

(𝑥ଵ, 𝑥ଶ, ⋯ , 𝑥௡, 𝑦ଵ, 𝑦ଶ, … , 𝑦௠) ∈ 𝑅௡ା௠, and is denoted by (𝑥‾, 𝑦‾). 

Thus (𝑥‾, 𝑦‾) = (𝑥ଵ, 𝑥ଶ, … 𝑥௡, 𝑦ଵ, 𝑦ଶ, … , 𝑦௠) ∈ 𝑅௡ା௠ 

In (𝑥‾, 𝑦‾) the first entry 𝑥‾is 𝑎 vector in 𝑅௡ and the second entry𝑦‾ is a vector in 𝑅௠. 

2) Every 𝐴 ∈ 𝐿(R௡ା௠, R௡) can be split into two linear transformations 𝐴௫‾ and 𝐴௬‾ , defined by 

𝐴௫‾ℎ‾ = 𝐴൫ℎ‾, 0൯ and 𝐴௬‾ 𝐾‾ = 𝐴൫0, 𝐾‾ ൯ for ant any ℎ‾ ∈ 𝑅௡ ad for any 𝑘‾ ∈ R௠. 

Then 𝐴௫‾ ∈ 𝐿(𝑅௡), 𝐴௬‾ ∈ 𝐿(𝑅௠, 𝑅௡) and 

𝐴൫ℎ‾, 𝑘‾൯ = 𝐴௫‾ℎ‾ + 𝐴௬‾ 𝑘‾∀ℎ‾ ∈ 𝑅ఎ and ∀𝑘‾ ∈ R௠.  

 

12.6  SUMMARY: 
 

This lesson covers the contraction mapping theorem, which states that if a mapping is a 

contraction in a complete metric space, it has a unique fixed point. The proof involves showing 

that a generated sequence is Cauchy and converges. The lesson then discusses the inverse 

function theorem, indicating that a continuously differentiable mapping is locally invertible 

when the Jacobian is non-zero. It establishes that such mappings are one-to-one on a 

neighborhood and that their inverses are also continuous. Finally, the lesson briefly introduces 

the implicit function theorem for solving equations involving continuously differentiable 

functions. 

 

12.7  TECHNICAL TERMS: 

 Contraction mapping theorem 
 Fixed point theorem 
 Inverse function theorem  
 Implicit function theorem  
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12.8  SELF ASSESSMENT QUESTIONS: 

 

1. Show that the continuity  of f ' at the  point  a  is needed in the inverse function     

        theorem, even in the case n=1;If 

𝑓(t) = t + 2tଶsin (1/t) 

        For 0t  and 0)0( f  then ,1)0( f f   is bounded in (-1, 1) but f is not one-to-one    

        in any neighborhood of 0. 

2. Define a contraction mapping and state the contraction mapping theorem. 

3. Prove the existence and uniqueness of a fixed point for a contraction mapping. 

4. Explain the conditions under which the inverse function theorem applies. 

5. Describe the significance of the Jacobian matrix in the inverse function theorem. 

6. State and explain the implicit function theorem. 

 

12.9  SUGGESTED READINGS: 
 

1. Principles of Mathematics Analysis by Walter Rudin, 3rd Edition. 

2. Mathematical Analysis by Tom M. Apostal, Narosa Publishing House, 2ndEdition, 1985. 

 

-  Dr. K. Bhanu Lakshmi  



 

 

LESSON- 13 

THE IMPLICIT FUNCTION THEOREM 
 
OBJECTIVES: 
 
After reading this Lesson, the students should be able to:  

 state and prove linear version of Implicit Function Theorem. 
 state and prove Implicit Function Theorem for functions of several variables. 

 

STRUCTURE:  
 

13.1  Introduction 

13.2 Notation 

13.3 Linear version of Implicit Function Theorem 

13.4 Implicit Function Theorem 

13.5  Summary  

13.6 Technical terms 

13.7 Self -Assessment Questions 

13.8 Suggested readings 
 

13.1 INTRODUCTION: 

In this lesson, two important theorems are introduced. First the linear version of the theorem is 
introduced and then the main theorem is discussed. Some of the basic definitions and notations 
are discussed before establishing the theorems. 
 

If 𝑓 is a continuously differentiable real function in the plane, then the equation 𝑓(𝑥, 𝑦) = 0 
can be solved for 𝑦 in terms of 𝑥 in a neighbourhood of any point (𝑎, 𝑏) at which 𝑓(𝑎, 𝑏) = 0 

and 
డ௙

డ௬
≠ 0. Likewise, one can solve for 𝑥 in terms of 𝑦 near (𝑎, 𝑏) if 

డ௙

డ௬
≠ 0 at (𝑎, 𝑏). 

For a simple example which illustrates the need for assuming 
డ௙

డ௬
≠ 0,  

consider 𝑓(𝑥, 𝑦) = 𝑥ଶ + 𝑦ଶ − 1. 

 

13.2 NOTATION:  

1) If 𝒙 = (𝑥ଵ, 𝑥ଶ, 𝑥ଷ,. . . , 𝑥௡) ∈ ℝ௡ and 𝒚 = (𝑦ଵ, 𝑦ଶ, 𝑦ଷ,. . . , 𝑦௡) ∈ ℝ௡, then the point 

(or vector) (𝑥ଵ, 𝑥ଶ, 𝑥ଷ,. . . , 𝑥௡, 𝑦ଵ, 𝑦ଶ, 𝑦ଷ,. . . , 𝑦௠) ∈ ℝ௡ା௠, and is denoted by (𝒙, 𝒚) . 
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Thus (𝒙, 𝒚) = (𝑥ଵ, 𝑥ଶ, 𝑥ଷ,. . . , 𝑥௡, 𝑦ଵ, 𝑦ଶ, 𝑦ଷ,. . . , 𝑦௠) ∈ ℝ௡ା௠.In (𝒙, 𝒚), the first 

entry 𝒙 is a vector in ℝ௡ and the second entry 𝒚 is a vector in ℝ௠. 

2) Every 𝐴 ∈ 𝐿(ℝ௡ା௠, ℝ௡) can be split into two linear transformations 𝐴𝒙 and 𝐴𝒚, 

defined by 𝐴𝒙𝒉 = 𝐴(𝒉, 𝟎) 𝑎𝑛𝑑 𝐴𝒚𝒌 = 𝐴(𝟎, 𝐤) for any 𝒉 ∈ ℝ௡and for any 𝒌 ∈

ℝ௠. Then 𝐴𝒙 ∈ 𝐿(ℝ௡) ,𝐴𝒚 ∈ 𝐿(ℝ௠, ℝ௡) and 

      𝐴(𝒉, 𝐤) = 𝐴𝒙𝒉 + 𝐴𝒚𝒌  ∀ 𝒉 ∈ ℝ௡ 𝑎𝑛𝑑 ∀ 𝐤 ∈ ℝ௠. 

13.3  THE LINEAR VERSION OF THE IMPLICIT FUNCTION THEOREM: 
 

Theorem:  

If 𝐴 ∈ 𝐿(ℝ௡ା௠, ℝ௡) and if 𝐴𝒙 is invertible, then there corresponds to every 𝐤 ∈ ℝ௠ a unique 

𝒉 ∈ ℝ௡ such that 𝐴(𝒉, 𝒌) = 𝟎. This 𝒉 can be computed from 𝒌  by the formula 𝒉 =

−(𝐴𝒙)ିଵ𝐴𝒚𝐤  

Proof: Let 𝐤 ∈ ℝ௠ then 𝐴𝒚𝐤 ∈ ℝ௠  

Since 𝐴𝒙 is invertible, 𝐴𝒙
ିଵ exists.    

Put 𝐡 = −(𝐴𝒙)ିଵ𝐴𝒚𝐤      

Clearly 𝐡 ∈ ℝ௡      

Consider 𝐴(𝒉, 𝒌)   = 𝐴𝒙𝐡 + 𝐴𝒚𝐤 

= 𝐴𝒙൫−(𝐴𝒙)ିଵ𝐴𝒚𝐤൯ + 𝐴𝒚𝐤  

= −𝐴𝒙(𝐴𝒙)ିଵ𝐴𝒚𝐤 + 𝐴𝒚𝐤  

= −𝐴𝒚𝐤 + 𝐴𝒚𝐤 = 𝟎  

Thus for 𝐤 ∈ ℝ௠ there exists 𝐡 ∈ ℝ௡ such that 𝐴(𝐡, 𝐤) = 𝟎  

Uniqueness: Suppose 𝐡𝟏, 𝐡𝟐 ∈ ℝ௡ such that 𝐴(𝐡𝟏, 𝐤) = 𝟎 and 𝐴(𝐡𝟐, 𝐤) = 𝟎  

⇒ 𝐴𝒙𝐡𝟏 + 𝐴𝒚𝐤 = 0 𝑎𝑛𝑑 𝐴𝒙𝐡𝟐 + 𝐴𝒚𝐤 = 0  

⇒ 𝐴𝒙
ିଵ൫𝐴𝒙𝐡𝟏 + 𝐴𝒚𝐤൯ = 0 𝑎𝑛𝑑 𝐴𝒙

ିଵ൫𝐴𝒙𝐡𝟐 + 𝐴𝒚𝐤൯ = 0  

⇒ 𝐡𝟏 + 𝐴𝒙
ିଵ൫𝐴𝒚𝐤൯ = 0 𝑎𝑛𝑑 𝐡𝟐 + 𝐴𝒙

ିଵ൫𝐴𝒚𝐤൯ = 0  

⇒ 𝐡𝟏 = −(𝐴𝒙)ିଵ𝐴𝒚𝐤 = 𝐡𝟐     

Hence, there exists a unique 𝐡 ∈ ℝ௡ such that 𝐴(𝐡, 𝐤) = 0 
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13.4. THE IMPLICIT FUNCTION THEOREM: 

13.4.1 Statement: Let f be a C ‘′-mapping of an open set E ⊆ ℝ୬ା୫ into ℝ୬, such that 

𝐟(𝐚, 𝐛) = 𝟎 for some point (𝐚, 𝐛) ∈ E.  

Put A = 𝐟′(𝐚, 𝐛) and assume that A𝐱  is invertible. Then there exist open sets U ⊂ ℝ୬ା୫ and 

W ⊂ ℝ୫ , with (𝐚, 𝐛) ∈ U and 𝐛 ∈ W, having the following property:  

To every 𝐲 ∈ W corresponds a unique 𝐱 such that 

 (𝐱, 𝐲) ∈ U and 𝐟(𝐱, 𝐲) = 𝟎        (I) 

If this 𝐱  is defined to be 𝐠(𝐲), then 

 𝐠  is a C ‘′-mapping of W into ℝ୬, 𝐠(𝐛) = 𝐚 ,  

𝐟(𝐠(𝐲), 𝐲) = 𝟎 (𝐲 ∈ W), 𝐠ᇱ(𝐛) = −(A𝐱)ିଵA𝐲     (II) 

Proof: Define  𝐅: E → ℝ୬ା୫ as 𝐅(𝐱, 𝐲) = (𝐟(𝐱, 𝐲), 𝐲)  ∀ (𝐱, 𝐲) ∈ E 

As 𝐟(𝐚, 𝐛) = 𝟎,  𝐅(𝐚, 𝐛) = (𝐟(𝐚, 𝐛), 𝐛) = (𝟎, 𝐛)    (1) 

Since f is a C ‘′-mapping on E, it follows that F is also a C ‘′-mapping. 

To prove that 𝐅ᇱ(𝐚, 𝐛) is an invertible element of L(ℝ௡ା௠) 

Since 𝐟 is differentiable at (𝐚, 𝐛), we have 

𝐟(𝐚 + 𝐡, 𝐛 + 𝐤) − 𝐟(𝐚, 𝐛) = 𝐟ᇱ(𝐚, 𝐛)(𝐡, 𝐤) + 𝛄(𝐡, 𝐤) where 

 lim
(𝐡,𝐤)→𝟎

ቚ
𝛄(𝐡,𝐤)

(𝐡,𝐤)
ቚ = 𝟎 where 𝛄 is the remainder that occurs in the definition of 𝐟ᇱ(𝐚, 𝐛)   

⇒ 𝐟(𝐚 + 𝐡, 𝐛 + 𝐤) = 𝐀(𝐡, 𝐤) + 𝛄(𝐡, 𝐤)      (2)       (∵  𝐴 = 𝐟ᇱ(𝐚, 𝐛) 𝑎𝑛𝑑 𝐟(𝐚, 𝐛) = 0).  

Consider 𝑭(𝐚 + 𝐡, 𝐛 + 𝐤) − 𝑭(𝐚, 𝐛)   

 = (𝐟(𝐚 + 𝐡, 𝐛 + 𝐤), 𝐛 + 𝐤) − (𝐟(𝐚, 𝐛), 𝐛) 

 = (𝐟(𝐚 + 𝐡, 𝐛 + 𝐤), 𝐛 + 𝐤) − (0, 𝐛) 

 = (𝐟(𝐚 + 𝐡, 𝐛 + 𝐤), 𝐛) + (𝟎, 𝐤) − (𝟎, 𝐛) 

 = (𝐟(𝐚 + 𝐡, 𝐛 + 𝐤), 𝟎) + (𝟎, 𝐤) 

 = (𝐟(𝐚 + 𝐡, 𝐛 + 𝐤), 𝐤) 



Centre for Distance Education   13.4       Acharya Nagarjuna University  

 

 = (𝐀(𝐡, 𝐤) + 𝛄(𝐡, 𝐤), 𝐤)   (from (2)) 

 = (𝐀(𝐡, 𝐤), 𝐤) + (γ(𝐡, 𝐤), 𝟎)  

⇒ 𝑭(𝐚 + 𝐡, 𝐛 + 𝐤) − 𝑭(𝐚, 𝐛) − (𝐀(𝐡, 𝐤), 𝐤) = (𝛄(𝐡, 𝐤), 𝟎)  

⇒ lim
(𝐡,𝐤)→𝟎

|𝑭(𝐚ା𝐡,𝐛ା𝐤)ି𝑭(𝐚,𝐛)ି(𝐀(𝐡,𝐤),𝒌)|

|(𝐡,𝐤)|
  

 = lim
(𝐡,𝐤)→଴

|(𝛄(𝐡,𝐤),𝟎)|

|(𝐡,𝐤)|
= 0  

So, 𝐅ᇱ(𝐚, 𝐛) is a linear operator on ℝ୬ା୫ that maps (𝐡, 𝐤) to (𝐀(𝐡, 𝐤), 𝐤). 

To prove 𝐅ᇱ(𝐚, 𝐛) is one-to-one 

𝐅ᇱ(𝐚, 𝐛)(𝐡, 𝐤) = 𝟎 where (𝐡, 𝐤) ∈ ℝ୬ା୫  

⇔ (𝐀(𝐡, 𝐤), 𝐤) = (𝟎, 𝟎)  

⇔ 𝐀(𝐡, 𝐤) = 𝟎 and 𝐤 = 𝟎 

⇔ A𝐱𝐡 + A𝐲𝐤 = 𝟎 and 𝐤 = 𝟎 [∵ A ∈L (ℝ୬ା୫, ℝ௡) can be split into linear transformations 

A𝐱 and A𝒚 defined by A𝐱𝐡 = 𝐀(𝐡, 𝟎), A𝐲𝐤 = 𝐀(𝟎, 𝐤) ∀ 𝐡 ∈ ℝ୬ , 𝐤 ∈ ℝ୫] 

⇔ A𝐱𝐡 = 𝟎 and 𝐤 = 𝟎 

⇔ 𝐡 = 𝟎 and 𝐤 = 𝟎      ( ∵ A𝐱  is invertible) 

Therefore 𝐅ᇱ(𝐚, 𝐛) is one-to-one 

By a known theorem (9.5) , 𝐅ᇱ(𝐚, 𝐛) is onto 

Hence, 𝐅ᇱ(𝐚, 𝐛) is invertible on ℝ୬ା୫  

Therefore F satisfies all conditions of Inverse mapping theorem. 

So, by the Inverse mapping theorem, there exist open sets U and V in ℝ୬ା୫ such that 

 (𝐚, 𝐛) ∈ 𝑈, 𝑭(𝒂, 𝒃) ∈ 𝑉        (3) 

𝑭(𝑈) = 𝑉 and F is a one-to-one mapping of U onto V. 

Write 𝑊 = {𝐲 ∈ ℝ௠/(𝟎, 𝐲) ∈ 𝑉} 

From (1) & (3), (𝟎, 𝐛) ∈ 𝑉 ⇒ 𝐛 ∈ W  

Now we show that W is an open set in ℝ୫ 
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Let 𝐲 ∈ W.  Then (𝟎, 𝐲) ∈ V 

Since V is an open set in ℝ୬ା୫, there exists δ > 0 such that Nஔ(𝟎, 𝐲) ⊆ V  

Consider Nஔ(𝐲), which is a neighbourhood in ℝ୫. 

Let 𝐡 ∈ Nஔ(𝐲) 

⇒ |𝐡 − 𝐲| < 𝛿  

Now (𝟎, 𝐡) ∈ ℝ୬ା୫ and |(𝟎, 𝐡) − (𝟎, 𝒚)| = |𝐡 − 𝐲| < 𝛿 

    ⇒ (𝟎, 𝐡) ∈ Nஔ(𝟎, 𝒚) ⊆ V 

    ⇒ (𝟎, 𝐡) ∈ V ⇒ 𝐡 ∈ W 

Since 𝐡 ∈ Nஔ(𝐲) is arbitrary, Nஔ(𝐲) ⊆ W 

Therefore W is an open set in ℝ୫. 

To Prove (I): Let 𝐲 ∈ W. Then (𝟎, 𝒚) ∈ V 

    ⇒ (𝟎, 𝒚) ∈ 𝐅(U) 

    ⇒ (𝟎, 𝒚) = 𝐅(𝐱, 𝐳) for some (𝐱, 𝐳) ∈ U  

    ⇒ (𝟎, 𝒚) = (𝐟(𝐱, 𝐳), 𝐳) 

    ⇒ 𝐟(𝐱, 𝐳) = 𝟎 and 𝐳 = 𝐲 

    ⇒ 𝐟(𝐱, 𝐲) = 𝟎 

So, for 𝐲 ∈ W, there exists 𝐱 ∈ ℝ୬ such that (𝐱, 𝐲) ∈ U and 𝐟(𝐱, 𝐲) = 𝟎  

Uniqueness: Suppose 𝐟(𝐱𝟏, 𝐲) = 𝟎 and 𝐟(𝐱𝟐, 𝐲) = 𝟎 where 𝐱𝟏, 𝐱𝟐 ∈ ℝ୬  

Now 𝐅(𝐱𝟏, 𝐲) = (𝐟(𝐱𝟏, 𝐲), 𝐲) = (𝟎, 𝒚) = (𝐟(𝐱𝟐, 𝐲), 𝐲) = 𝑭(𝐱𝟐, 𝐲) 

Therefore 𝐅(𝐱𝟏, 𝐲) = 𝐅(𝐱𝟐, 𝐲)  

⇒ 𝐱𝟏 = 𝐱𝟐      (∵ 𝐅 is one − one) 

Thus there exists unique 𝐱 ∈ ℝ୬ such that (𝐱, 𝐲) ∈ U and 𝐟(𝐱, 𝐲) = 𝟎. 

To Prove (II):  

Define 𝐠: W → ℝ୬ as follows:  
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Let 𝐲 ∈ W 

Then by the proof given above there exists unique 𝐱 ∈ ℝ୬ 

such that (𝐱, 𝐲) ∈ 𝐔 and 𝐟(𝐱, 𝐲) = 𝟎  

Now define 𝐠(𝐲) = 𝐱  

 For 𝐲 ∈ W, (𝐠(𝐲), 𝐲) = (𝐱, 𝐲) ∈ U and 𝐟(𝐠(𝐲), 𝐲) = 𝟎 and so  

𝐅(𝐠(𝐲), 𝐲) = (𝐟(𝐠(𝐲), 𝐲), 𝐲) = (𝟎, 𝐲)  

Therefore 𝐅(𝐠(𝐲), 𝐲) = (𝟎, 𝐲) for all 𝐲 ∈ W 

Define 𝐆: V → U as 𝐆൫𝐅(𝐳)൯ = 𝐳 for all 𝐳 ∈ U 

Then G is the inverse of F  

So, by Inverse function theorem, G ∈ C ‘′ (V) 

Since 𝐅(𝐠(𝐲), 𝐲) = (𝟎, 𝐲) for all 𝐲 ∈ W, we have 

 (𝐠(𝐲), 𝐲) = 𝐅ିଵ(𝟎, 𝐲) = 𝑮(𝟎, 𝐲) for all 𝐲 ∈ W.  

As 𝐆 ∈ C ‘′ (V),  𝐠 ∈ C ‘′ (W). 

Also, (𝐠(𝐛), 𝐛) = 𝐆(𝟎, 𝐛) = 𝐅ିଵ(𝟎, 𝐛) = (𝐚, 𝐛)     (by (1)) 

⇒ (𝐠(𝐛), 𝐛) = (𝐚, 𝐛)  

⇒ 𝐠(𝐛) = 𝐚  

Now we show that 𝐠ᇱ(𝐛) = −(𝐀𝐱)ି𝟏𝐀𝐲  

Define ∅: W → ℝ୬ା୫ as ∅(𝐲) = (𝐠(𝐲), 𝐲)   ∀   𝒚 ∈ W  

Then ∅(𝐛) = (𝐠(𝐛), 𝐛) = (𝐚, 𝐛) and 𝐟൫∅(𝐲)൯ = 𝐟(𝐠(𝐲), 𝐲) = 𝟎 ∀  𝒚 ∈ W  

Now ∅ᇱ(𝐲)𝐤 = (𝐠ᇱ(𝐲)𝐤, 𝐤)    ∀   𝒚 ∈ W   and 𝐤 ∈ ℝ୫    (4) 

By chain Rule, 𝐟ᇱ൫∅(𝐲)൯∅ᇱ(𝐲) = 𝟎     ∀    𝒚 ∈ W      (5) 

Now ∅(𝐛) = (𝐠(𝐛), 𝐛) = (𝐚, 𝐛) 

When 𝐲 = 𝐛, equation (5) becomes 

 𝐟ᇱ൫∅(𝐛)൯∅ᇱ(𝐛) = 𝟎 
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⇒ 𝐟ᇱ(𝐚, 𝐛)∅ᇱ(𝐛) = 𝟎  

⇒ A∅ᇱ(𝐛) = 𝟎  (∵ 𝐛 ∈ W)      (6) 

⇒ A∅ᇱ(𝐛)(𝐤) = 𝟎     ∀     𝐤 ∈ ℝ୫  

⇒ A(𝐠ᇱ(𝐛)𝐤, 𝐤) = 𝟎   ∀   𝐤 ∈ ℝ୫  

⇒ A𝐱𝐠ᇱ(𝐛)𝐤 + A𝐲𝐤 = 𝟎    ∀   𝐤 ∈ ℝ୫  

⇒ A𝐱𝐠ᇱ(𝐛) + A𝐲 = 𝟎  

⇒ A𝐱𝐠ᇱ(𝐛) = −A𝐲  

⇒ 𝐠ᇱ(𝐛) = −(A𝐱)ିଵA𝐲  

Hence the theorem. 

13.4.2 Example: The following is an example for the Implicit Function Theorem and find‘ g′  

Take n = 2, m = 3  

Consider the mapping 𝐟 = (fଵ, fଶ) of ℝହ into ℝଶ,  

given by fଵ൫xଵ,  xଶ,  yଵ, yଶ, yଷ൯ = 2e୶భ + xଶyଵ − 4yଶ + 3 and 

                 fଶ൫xଵ,  xଶ, yଵ,   yଶ,   yଷ൯ = xଶcosxଵ − 6xଵ + 2yଵ − yଷ 

Put 𝐚 = (0, 1) and 𝐛 = (3, 2, 7) 

Then f𝟏(𝐚, 𝐛) = fଵ(0, 1, 3, 2, 7) = 2e଴ + 1x3 − 4x2 + 3 = 0 

fଶ(𝐚, 𝐛) = fଶ(0,1,3,2,7) = 1. 𝑐𝑜𝑠0 − 6x0 + 2x3 − 7 = 0  

So, 𝐟(𝐚, 𝐛) = ൫fଵ(𝐚, 𝐛), fଶ(𝐚, 𝐛)൯ = (0,0)  

Put A = 𝐟ᇱ(𝐚, 𝐛)  

With respect to the standard bases, the matrix of the transformation A is given by 

[A] = ൤
Dଵfଵ

Dଵfଶ
   

Dଶfଵ

Dଶfଶ
   

Dଷfଵ

Dଷfଶ
   

Dସfଵ

Dସfଶ
   

Dହfଵ

Dହfଶ
൨

ୟ୲(𝐚,   𝐛)

  

[A] = ൤
2e୶భ

−6 − xଶsinxଵ 
   

yଵ

cosxଵ
  
xଶ

2
  

−4
0

  
0

−1
൨

ୟ୲(଴,   ଵ,   ଷ,   ଶ,   ଻)
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= ቂ
2

−6
     

3
1

1
2

    
−4
0

    
0

−1
ቃ  

Hence [A୶] = ቂ
2

−6
    

3
1

ቃ andൣA୷൧ = ቂ
1
2

    
−4
0

    
0

−1
ቃ  

It is clear that A୶ is invertible and  

[(A୶)ିଵ] = [A୶]ିଵ =
ଵ

ଶ଴
ቂ
1
6

  
−3
2

ቃ  

Now [𝐠′(𝐛)] = [𝐠′(3,2,7)] = −[A௫]ିଵൣA୷൧  

= −
ଵ

ଶ଴
ቂ
1
6

    
−3
2

ቃ ቂ
1
2

    
−4
0

    
0

−1
ቃ = ൥

1
4ൗ

−1
2ൗ

     
1

5ൗ

6
5ൗ

     
−3

20ൗ

1
10ൗ

൩  

In terms of partial derivatives, 

Dଵ𝑔ଵ = 1
4   ൗ Dଶ𝑔ଵ = 1

5ൗ    Dଷ𝑔ଵ = −3
20ൗ   

Dଵ𝑔ଶ = −1
2ൗ   Dଶ𝑔ଶ = 6

5ൗ    Dଷ𝑔ଶ = 1
10ൗ  at the point (3, 2, 7). 

13.5  SUMMARY: 
 
In this lesson we have discussed two theorems: Linear version of the implicit function 
theorem and the implicit function theorem. 
The implicit function theorem gives the condition, under which an implicit relationship 
between variables can be expressed in an explicit manner. 
 

 
13.6  TECHNICAL TERMS: 
 
 

 Explicit function 
 Implicit function theorem  

 
13.7  SELF – ASSESSMENT QUESTIONS: 
 
1. Can 𝑓(𝑥, 𝑦) = 𝑥ଷ + 𝑦ଷ − 2𝑥𝑦 be expressed by an explicit function 𝑦 = 𝑔(𝑥) in a 
neighbourhood of the point (1,1)? 

2. Check whether theorem 13.4.1 can be applied at all points, where 𝑥ଶ − 𝑦ଶ = 0.  
 

13.8  SUGGESTED READINGS: 

1. Principles of Mathematical Analysis by Walter Rudin, 3rd Edition. 
2. Mathematical Analysis by Tom M.Apostal, Narosa Publishing House, 2nd Edition, 1985. 
 
 

-  Dr. K. Siva Prasad. 



LESSON- 14 

DETERMINANTS 
 
OBJECTIVES: 
 

After reading this lesson, the students should be able to 

 understand the concepts of determinant of a matrix of a linear operator A on ℝ୬ and 
Jacobian. 

 Prove det[I] = 1 where I is the identity operator on ℝ୬. 
 Prove det[A]ଵ = −det[A] where [A]ଵ is obtained from [A] by interchanging two 

columns. 
  Prove det([B][A]) = det[B]det[A]   for any two nxn matrices [A] and [B]. 
 Prove a linear operator A on ℝ୬ is invertible if and only if det[A] ≠ 0. 

 

STRUCTURE:  

14.1       Introduction 

14.2       Definitions 

14.3       Theorems 

14.4       Remark 

14.5       Jacobians  

14.6       Summary 

14.7       Technical terms 

14.8       Self- Assessment Questions 

14.9       Suggested readings 
 

14.1 INTRODUCTION: 

In this lesson we define the determinant of the matrix of a linear operator on ℝ୬, and also we 
discuss properties of the determinant. 

Determinants are numbers associated to square matrices, and hence they are numbers 
associated to linear operators represented by such matrices. 

It is 0 if and only if the corresponding operator fails to be invertible. 
 

14.2. DEFINITION: 

If (jଵ, jଶ, … … , j୬) is an ordered n-tuple of integers,  

define s(jଵ, jଶ, … … , j୬) = Π
୮ழ୯

sgn൫j୯ − j୮൯ where sgnx = ൝
1 if x > 0

−1 if x < 0
0 if x = 0
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Thus s(jଵ, jଶ, … … , j୬) = 1, −1 or 0 and it changes sign if any two of the j’s are interchanged. 

14.2.1 Example: 

s(2, 3, 1) = sgn(1-3).sgn(1-2).sgn(3-2) 

              = sgn(-2).sgn(-1).sgn(1) 

              = (-1).(-1).1 =1 

14.2.2 Definition: 

Let [A] be the matrix of a linear operator A on ℝ୬ relative to the standard basis 

{𝐞ଵ, 𝐞ଶ, 𝐞ଷ, … … , 𝐞୬} with entries a(i, j) or a୧୨  in the ith row and jth column. The determinant 

denoted by det[A] is defined as the number 

det[A] = Σs൫jଵ, jଶ,   ...  , j୬൯  a(1, jଵ)a(2, jଶ) . . . . a(n, j୬)     (1) 

The sum in (1) extends over all ordered n-tuples of integers (jଵ, jଶ, … … , j୬)with 1 ≤ j୰ ≤ n  

The column vectors 𝐱୨ of [A] are 𝐱୨ = Σ
୧ୀଵ

୬

a(i, j)𝐞୧     (1 ≤ j ≤ n) 

It is convenient to think of det[A] as a function of the column vectors of [A]. If we write 

det(𝐱ଵ, 𝐱ଶ, . . .   , 𝐱୬) = det[A],  det is a real valued function defined over the set of all 

ordered n-tuples of vectors in ℝ୬. 

14.2.3 Example: 

If [A] = ൤
𝑎(1, 1) 𝑎(1, 2)

𝑎(2, 1) 𝑎(2, 2)
൨, then det[A] = s(1, 1) a(1, 1) a(2, 1) + s(1, 2) a(1, 1) a(2, 2) 

                                                                    + s(2, 1) a(1, 2) a(2, 1) + s(2, 2) a(1, 2) a(2, 2)  

                                                                  = a(1, 1) a(2, 2) - a(1, 2) a(2, 1) 

14.3.  THEOREMS: 

14.3.1  THEOREM: 

a) If I is the identity operator on ℝ୬, then det[I]= det(𝐞ଵ, 𝐞ଶ, . . . … , 𝐞୬) = 1 

b) det is a linear function of each of the column vectors 𝐱୨, if the others are held fixed. 

c) If [A]ଵ is obtained from [A] by interchanging two columns, then det[A]ଵ = −det[A]. 

d) If [A] has two equal columns, then det[A] = 0. 
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Proof: 

a) Let A be the identity operator on ℝ୬, i.e, A = I. 

Consider the matrix [ I ]. 

In [ I ], the ith row jth column entry, a(i, j) = ൜
1, i = j
0, i ≠ j

 

So, det[I]= Σs൫jଵ,  jଶ,   ……  ,j୬൯ a(1, jଵ)a(2, jଶ) . . . . a(n, j୬)  

                 = s(1, 2, … … , n)a(1,1)a(2,2) . . . . a(n, n) 

                 =1. 

Therefore det[I] = 1  

Also, by the definition, det[I] = det(𝐱ଵ, 𝐱ଶ, . . . 𝐱୬) where each 𝐱୧ is a column vector 

of I. 

That is det[I] = det(𝐞ଵ, 𝐞ଶ, 𝐞ଷ, . . .  , 𝐞୬) = 1. 

    b)   By the definition, s൫jଵ, jଶ,… ...  ,j୬൯ = 0 if any two of the j’s are equal. Each of 

            the remaining n! products in the summation det[A] contains exactly 

            one factor from each column. 

            Therefore det[A] is a linear function of each of the column vectors 𝐱୨ . 

c)   Let [A]ଵ, be a matrix, obtained from[A] by interchanging two columns. Then 

s൫jଵ, jଶ,   … ...  ,j୬൯ changes sign. 

Therefore det[A]ଵ = −det[A]. 

d)  Suppose [A] has two equal columns. 

If we interchange the two equal columns, there is no change in [A]  

So, by (c), det[A] = −det[A] ⇒ 2det[A] = 0 ⇒ det[A] = 0 .   

14.3.2 THEOREM:  

             If [A] and [B] are n by n matrices, then det([B][A]) = det[B]det[A]    

 Proof: Suppose [A] and [B] are nxn matrices. 

          Let 𝐱ଵ, 𝐱ଶ, . . .  , 𝐱୬  be the column vectors of [A]. 

          Define Δ୆(𝐱ଵ, 𝐱ଶ, . . .  , 𝐱୬) = Δ୆[A] = det([B][A])      (1) 

          Since the columns of [B][A] are the vectors B𝐱ଵ, B𝐱ଶ, . . . B𝐱୬, 
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          we have Δ୆(𝐱ଵ, 𝐱ଶ, . . . 𝐱୬) = det(B𝐱ଵ, B𝐱ଶ, . . . B𝐱୬)       (2) 

          By (2) and Theorem (14.3.1), Δ୆ also has the following properties: 

i) Δ୆ = det is a linear function of each of the column vectors B𝐱୨.  

ii) If ([B][A])ଵ is obtained from [B][A] by interchanging two columns, then 

det([B][A])ଵ = −det([B][A])     (3) 

iii) If [B][A] has two equal columns, then det([B][A]) = 0  

Since 𝐱୨ = ෌ a(i, j)𝐞୧
୬

୧ୀଵ
,  and  Δ୆ = det is a linear function of each of the column 

vectors,  

we have Δ୆[A] = Δ୆(𝐱ଵ, 𝐱ଶ, . . .  , 𝐱୬) 

          ⇒ Δ୆[A] = Δ୆(∑ a(i, 1)𝐞୧,  𝐱ଶ, . . . 𝐱୬
୬
୧ୀଵ ) 

          ⇒ Δ୆[A] = ෌ a(i, 1)Δ୆(𝐞୧,  𝐱ଶ, . . . 𝐱୬)
୬

୧ୀଵ
 

Also, 𝐱ଶ = ෌ a(i, 2)𝐞୧
୬

୧ୀଵ
  

So Δ୆[A] = ෌ (a୧, 1)
୬

୧ୀଵ
Δ୆ ൬𝐞୧, ෍ ൫a୧మ

, 2൯𝐞୧, 𝐱ଷ, . . .  , 𝐱୬

୬

୧ୀଵ
൰ 

                  = ∑ (a୧, 1)୬
୧ୀଵ (a୧మ

, 2)Δ୆൫𝐞୧,  𝐞୧మ
, 𝐱ଷ, . . .  , 𝐱୬൯ 

Repeating this process with 𝐱ଷ,  𝐱ସ, . . .  , 𝐱୬ , we have  

Δ୆[A] = 𝛴a(iଵ, 1). a(iଶ, 2). . . a(i୬, n)Δ୆൫𝐞୧భ
, 𝐞୧మ

, . . .  , 𝐞୧౤
൯    (4) 

when the sum is extended over all ordered n-tuples(iଵ,  iଶ, . . .  , i୬) with i ≤ i୰ ≤ n But 

we have 

Δ୆൫𝐞୧భ
, 𝐞୧మ

, . . .  , 𝐞୧౤
൯ = t(iଵ, iଶ, . . .  , i୬)Δ୆(𝐞ଵ, 𝐞ଶ, . . .   , 𝐞୬) where t = 1, 0, −1. (5) 

Substituting (5) in (4), we get 

Δ୆[A] = {𝛴a(iଵ, 1). a(iଶ, 2). . . a(i୬, n)t(iଵ,  iଶ, . . .  , i୬)}Δ୆(𝐞ଵ,  𝐞ଶ, . . .  , 𝐞୬) (6) 

Since [B][I] = [B], by (1), we have  Δ୆(𝐞ଵ, 𝐞ଶ, . . .  , 𝐞୬) = det [B]   (7) 

Using (7) in (6), we get det([B][A]) = Δ୆[A]  

det([B][A]) = {𝛴a(iଵ, 1). a(iଶ, 2). . . a(i୬, n)t(iଵ, iଶ, . . .  , i୬)}det [B]   (8) 

for all nxn matrices [A] and [B] 

Taking B = I in (8), we get 

Δ୍[A] = {𝛴a(iଵ, 1). a(iଶ, 2). . . a(i୬, n)t(iଵ, iଶ, . . .  , i୬)}det [I]  

det[A] = {𝛴a(iଵ, 1). a(iଶ, 2) … a(i୬, n)t(iଵ, iଶ, …  , i୬)}(1)  

(∵ Δ୍[A] = det([I][A]) = det[A])  

So, (8) becomes Δ୆[𝐴] = det [A]det [B]. 
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14.3.3 THEOREM: 

                A linear operator A on ℝ୬ is invertible if and only if det[A] ≠ 0 

Proof:     Let A be a linear operator on ℝ୬  

                 Suppose that A is invertible. 

                Then by the above theorem,  

                det[A]det[Aିଵ] = det[AAିଵ] = det[I] = 1, 

                so that det[A] ≠ 0.  

                Conversely, suppose that det[A] ≠ 0 

                Claim:  A is invertible.  

                On the contrary suppose that A is not invertible  

                Then the column vectors 𝐱ଵ, 𝐱ଶ, . . .  , 𝐱୬ of [A] are linearly dependent  

                So, there is one 𝐱୩ with 1 ≤ k ≤ n such that  

                𝐱୩ + ෍ c୨𝐱୨
୨ஷ୩

= 0 for some scalar c୨ , 1 ≤ j ≤ n & j ≠ k (1) 

                By a known theorem (14.3.1) the det is a linear function of each of the column  

                vectors 𝐱୨,                         

                if the others held fixed, and 

                det[A] = 0 if [A] has two equal columns. 

                So, 𝐱୩ can be replaced by  𝐱୩ + c୨𝐱୨ without changing the  

                 determinant, if j ≠ k . 

                 Repeating, we see that 𝐱୩ can be replaced by the left side of (1) 

                 i.e., by 0, without changing the determinant. 

                 But a matrix which has 0 for one column has determinant 0. 

                 Therefore det[A] = 0 

                 Hence, A is invertible. 

14.4  REMARK: 

                 Suppose {𝐞ଵ, 𝐞ଶ, . . .  , 𝐞୬} and {𝐮ଵ, 𝐮ଶ, . . .  , 𝐮୬} are bases in ℝ୬. 

                 Every linear operator A on ℝ୬ determines matrices [A] and [A]୳,  
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                 with entries a୧୨ and α୧୨, given by 

                 A𝐞୨ = ∑  ௜ a୧୨𝐞୧ and A𝐮୨ = ∑  ୧ α୧୨𝐮୧  

                 Let B be an invertible linear operator on ℝ୬. Suppose [B] = [ b୧୨] 

                 If 𝐮୨ = 𝐵𝐞𝐣 = ∑  ௜ b୧୨𝐞୧, then the matrix [B] is invertible and 

    A𝐮୨ = ∑  ୩ α୩୨ ∑ b୧୩𝐞୧୧  

        = ∑  ୧ ∑  ୩ ൫b୧୩α୩୨൯𝐞୧ 

                Also, A𝐮୨ = AB𝐞୨ = A ∑  ୩ b୩୨𝐞୩ = ∑  ୧ ൫∑  ୩ a୧୩b୩୨൯𝐞୧. 

                Therefore ∑  ୩ b୧୩α୩୨ = ∑  ୩ a୧୩b୩୨. 

                 ⇒ [B][A]୳ = [A][B]        (1) 

                Since B is invertible, det[B] ≠ 0. 

                From (1), we have  det([B][A]୳) = det([A][B])  

            ⇒ det[B] . det[A]୳ = det[A]. det[B]  

             ⇒ det[A] = det [A]୳. 

Therefore the determinant of the matrix of a linear operator does not depend on the basis 

which is used to construct the matrix. 

Hence, it is meaningful to speak of the determinant of a linear operator, without having any 

basis in mind. 

14.5  JACOBIANS: 

If f maps an open set E ⊆ ℝ୬ into ℝ୬, and if f is differentiable at a Point 𝐱 ∈ E, the 

determinant of the linear operator 𝐟ᇱ(𝐱) is called the Jacobian of 𝐟 at x 

In symbols, J𝐟(𝐱) = det 𝐟′(𝐱). 

Notation: We write 
డ(୷భ,   ୷మ,   … …  ,୷౤)

డ(୶భ,  ୶మ,   … …   ,୶౤)
  for J𝐟(𝐱), if (yଵ, yଶ, … … , y୬) = 𝐟(xଵ, xଶ, …  , x୬).  

In terms of Jacobians, the hypothesis in the inverse function theorem is that J𝐟(𝒂) ≠ 0. If the 

implicit function theorem is stated in terms of the functions 
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𝐟𝟏(xଵ, xଶ, …  , x୬, yଵ, yଶ, … … , y௠) = 0  

𝐟𝟐(xଵ, xଶ, …  , x୬, yଵ, yଶ, … … , y௠) = 0  

----------------------------------------------------- 

----------------------------------------------------- 

𝐟𝒏(xଵ, xଶ, …  , x୬, yଵ, yଶ, … … , y௠) = 0  

The assumption made there on A amounts to 
డ(𝐟𝟏,   𝐟𝟐,   … …,   𝐟𝐧)

డ(୶భ,  ୶మ,   … …   ,୶౤)
≠ 0 

14.6  SUMMARY: 

In this lesson we have defined the determinant of the matrix of a linear operator on ℝ୬, and 

we have discussed related theorems and examples as well as the term “Jacobian”. 

14.7  TECHNICAL TERMS: 

 Matrix of a linear operator 

 Determinant of a matrix 

 Jacobian 

14.8  SELF- ASSESSMENT QUESTIONS: 

1. Find s(2, 3, 2) 

2. Prove that the determinant of a linear operator A on ℝ୬ is independent from the choices of 

basis on ℝ୬.  

14.9  SUGGESTED READINGS: 

1. Principles of Mathematical Analysis by Walter Rudin, 3rd Edition. 

2. Mathematical Analysis by Tom M.Apostal, Narosa Publishing House, 2nd Edition, 1985. 

- Dr. K. Siva Prasad. 



LESSON- 15 

DERIVATIVES OF HIGHER ORDER AND 
DIFFERENTIATION OF INTEGRALS 

 
OBJECTIVES:  
 
After reading this lesson, the students should be able to 

 understand the concept of second order partial derivatives of a real function defined in 
an open set 𝐸 ⊆ ℝ௡. 

  state and prove mean value theorem for real functions of two variables 

 understand that under what conditions on ∅ can one prove that the equation 

ௗ

ௗ௧
∫ 𝜙(𝑥, 𝑡)𝑑𝑥

௕

௔
= න

డథ

డ௧
(𝑥, 𝑡)𝑑𝑥

௕

௔

 is true, where ∅ is a function of two variables 

which can be differentiated with respect to the other. 

STRUCTURE: 

15.1       Introduction 

15.2       Definitions 

15.3       Theorems 

15.4       Differentiation of Integrals 

15.5       Summary 

15.6       Technical terms 

15.7       Self Assessment Questions 

15.8       Suggested readings 
 

15.1  INTRODUCTION: 

In this lesson we define second order partial derivatives of a real function of two variables and 

we established two theorems. We shall first discuss the mean- value theorem for real functions 

of two variables and also we shall discuss another theorem on a function ∅ of two variables 

which can be integrated with respect to one and which can be differentiated with respect to the 

other.  

15.2.  DEFINITIONS: 

15.2.1 Definition: Suppose f is a real function defined in an open set 𝐸 ⊆ ℝ௡, with  
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partial derivatives 𝐷ଵ𝑓, 𝐷ଶ𝑓, . . .  , 𝐷௡𝑓. If the functions 𝐷௝𝑓 are themselves differentiable, 

then the second-order partial derivatives of f are defined by  

𝐷௜௝𝑓 = 𝐷௜𝐷௝𝑓  (i,j=1, 2, 3, …. ,n). 

If all these functions D୧୨f are continuous in E, we say that f is of class C ‘′′ in E, or that          

𝐟 ∈ C ‘′′ (E).  

15.2.2 Definition: A mapping f of E into ℝ௠ is said to be of class C ‘′′ if each component of f 

is of class C ‘′′. 

Note: 

1)  𝐷௜௝(𝒇) =  𝐷௜൫𝐷௝𝒇൯ =
డమ𝒇

డ𝒙೔డ𝒙ೕ
 

2) 𝐷௜௝(𝒇) and 𝐷௝௜(𝒇) need not be the same. 

 

15.3. THEOREM (MEAN- VALUE THEOREM):  

15.3.1 Statement:  Suppose f is defined in an open set E ⊆ ℝଶ, and Dଵf and Dଶଵf exist at 

every point of E. Suppose Q ⊆ E is a closed rectangle with sides parallel to the coordinate 

axes, having (𝑎, 𝑏) and (𝑎 + ℎ, 𝑏 + 𝑘) as opposite vertices (h ≠ 0, k ≠ 0).  

put 𝛥(𝑓, 𝑄) = 𝑓(𝑎 + ℎ, 𝑏 + 𝑘) − 𝑓(𝑎 + ℎ, 𝑏) − 𝑓(𝑎, 𝑏 + 𝑘) + 𝑓(𝑎, 𝑏). 

 Then there is a point (𝑥, 𝑦) in the interior of Q such that  

Δ(𝑓, 𝑄) = ℎ𝑘(𝐷ଶଵ𝑓)(𝑥, 𝑦). 

Proof: Suppose 𝑓 is a real function defined in 𝐸 where 𝐸 is an open set in ℝଶ  

Put 𝛥(𝑓, 𝑄) = 𝑓(𝑎 + ℎ, 𝑏 + 𝑘) − 𝑓(𝑎 + ℎ, 𝑏) − 𝑓(𝑎, 𝑏 + 𝑘) + 𝑓(𝑎, 𝑏) 

For 𝑡 ∈ [𝑎, 𝑎 + ℎ], put 𝑢(𝑡) = 𝑓(𝑡, 𝑏 + 𝑘) − 𝑓(𝑡, 𝑏)    (1) 

Then ‘𝑢’ is continuous on [𝑎, 𝑎 + ℎ] and differentiable in (𝑎, 𝑎 + ℎ) 

So, by a known theorem () there exists 𝑥 ∈ (𝑎, 𝑎 + ℎ) such that  

𝑢(𝑎 + ℎ) − 𝑢(𝑎) = (𝑎 + ℎ − 𝑎)𝑢ᇱ(𝑥) = ℎ𝑢ᇱ(𝑥)      (2) 

Note that 𝐷ଵ𝑓 =
డ௙

డ௫
= 𝑢ᇱ(𝑥)       (3) 
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And 𝐷ଶଵ𝑓 =
డ

డ௬
(𝐷ଵ𝑓) 

Since 𝐷ଶଵ𝑓 exists, 𝐷ଵ𝑓 is differentiable in (𝑏, 𝑏 + 𝑘) and continuous on [𝑏, 𝑏 + 𝑘] 

So, by a known theorem () there exists 𝑦 ∈ (𝑏, 𝑏 + 𝑘) such that  

𝐷ଵ𝑓(𝑥, 𝑏 + 𝑘) − 𝐷ଵ𝑓(𝑥, 𝑏) = (𝑏 + 𝑘 − 𝑏)𝐷ଶଵ𝑓(𝑥, 𝑦)  

         = 𝑘𝐷ଶଵ𝑓(𝑥, 𝑦)     (4) 

Consider 𝛥(𝑓, 𝑄) = 𝑓(𝑎 + ℎ, 𝑏 + 𝑘) − 𝑓(𝑎 + ℎ, 𝑏) − 𝑓(𝑎, 𝑏 + 𝑘) + 𝑓(𝑎 + 𝑏) 

 =𝑢(𝑎 + 𝑏) − 𝑢(𝑎)      (by (1)) 

 = ℎ𝑢ᇱ(𝑥) 

 = ℎ[(𝐷ଵ𝑓)(𝑥, 𝑏 + 𝑘) − (𝐷ଵ𝑓)(𝑥, 𝑏)] 

 = ℎ𝑘𝐷ଶଵ𝑓(𝑥, 𝑦) 

⇒ 𝛥(𝑓, 𝑄) = ℎ𝑘𝐷ଶଵ𝑓(𝑥, 𝑦). 

But (𝑥, 𝑦) is a point in the interior of 𝑄. 

Therefore there exists a point (𝑥, 𝑦) in the interior of 𝑄 such that 

 𝛥(𝑓, 𝑄) = ℎ𝑘𝐷ଶଵ𝑓(𝑥, 𝑦) 

15.3.2 Theorem: Suppose 𝑓 is defined in an open set 𝐸 ⊆ ℝଶ, suppose that 𝐷ଵ𝑓, 𝐷ଶଵ𝑓, and 

𝐷ଶ𝑓 exist at every point of 𝐸, and 𝐷ଶଵ𝑓 is continuous at some point (𝑎, 𝑏) ∈ 𝐸. Then 𝐷ଵଶ𝑓 

exists at (𝑎, 𝑏) and (𝐷ଵଶ𝑓)(𝑎, 𝑏) = (𝐷ଶଵ𝑓)(𝑎, 𝑏). 

Proof: Suppose 𝑓 is a real function defined in 𝐸, where 𝐸 is an open set in ℝଶ. 

Also suppose that 𝐷ଵ𝑓, 𝐷ଶଵ𝑓, and 𝐷ଶ𝑓 exist at every point of 𝐸, and 𝐷ଶଵ𝑓 is continuous at 

some point (𝑎, 𝑏) ∈ 𝐸. 

Put 𝐴 = (𝐷ଶଵ𝑓)(𝑎, 𝑏). 

Let ε > 0 be given 

Since 𝐷ଶଵ𝑓 is continuous at (𝑎, 𝑏), there exists δ > 0 such that  

 |(𝐷ଶଵ𝑓)(𝑎, 𝑏) − (𝐷ଶଵ𝑓)(𝑥, 𝑦)| < ε  whenever |(𝑎, 𝑏) − (𝑥, 𝑦)| < δ  ∀  (𝑥, 𝑦) ∈ 𝐸 

⇒ |𝐴 − (𝐷ଶଵ𝑓)(𝑥, 𝑦)| < ε whenever |(𝑎, 𝑏) − (𝑥, 𝑦)| < δ     (1) 
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Choose ℎ and 𝑘 such that |ℎ| <
ఋ

ଶ
   and  |𝑘| <

ఋ

ଶ
. 

Let 𝑄 ⊆ 𝐸 be the closed rectangle with sides parallel to the coordinate axes having  (𝑎, 𝑏) 

and (𝑎 + ℎ, 𝑏 + 𝑘) as opposite vertices (h ≠ 0, k ≠ 0). 

Put 𝛥(𝑓, 𝑄) = 𝑓(𝑎 + ℎ, 𝑏 + 𝑘) − 𝑓(𝑎 + ℎ, 𝑏) − 𝑓(𝑎, 𝑏 + 𝑘) + 𝑓(𝑎, 𝑏)  

So, the above theorem, there exists a point (𝑥, 𝑦) in the interior of 𝑄 such that 

 𝛥(𝑓, 𝑄) = ℎ𝑘(𝐷ଶଵ)𝑓(𝑥, 𝑦) 

⇒ (𝐷ଶଵ𝑓)(𝑥, 𝑦) =
௱(௙,   ொ)

௛௞
          (2) 

From (1) & (2),  |𝐴 − (𝐷ଶଵ𝑓)(𝑥, 𝑦)| < ε ⇒ ቚ
௱(௙,ொ)

௛௞
− 𝐴ቚ < ε 

Fix h. 

As 𝑘 → 0 i.e., 𝑏 + 𝑘 → 𝑏,  𝑓(𝑎 + ℎ, 𝑏 + 𝑘) → 𝑓(𝑎 + ℎ, 𝑏) and 

 𝑓(𝑎, 𝑏 + 𝑘) → 𝑓(𝑎, 𝑏) 

Since 𝐷ଶ𝑓 exists in 𝐸, we have lim
௞→଴

ቚ
௱(௙,ொ)

௛௞
− 𝐴ቚ < 𝜀 

⇒ ቚ
(஽మ௙)(௔ା௛,௕)ି(஽మ௙)(௔,௕)

௛
− 𝐴ቚ < 𝜀  

Since 𝜀 is arbitrary and the above inequality holds for all ℎ with |ℎ| <
ఋ

ଶ
, we have that 

(𝐷ଵଶ𝑓)(𝑎, 𝑏) = 𝐴  

⇒ (𝐷ଶଵ𝑓)(𝑎, 𝑏) = (𝐷ଵଶ𝑓)(𝑎, 𝑏)  

15.3.3 COROLLARY: 𝐷ଶଵ𝑓 = 𝐷ଵଶ𝑓  if   𝑓 ∈ C ‘′′ (E) 

Proof: Suppose 𝑓 ∈ C ‘′′ (E) 

Then 𝑓 is a real function defined in the open set 𝐸 ⊆ ℝଶ, with partial derivatives 𝐷ଵ𝑓, 𝐷ଶ𝑓 

which are differentiable in 𝐸 and the 2nd order partial derivatives 𝐷௜௝𝑓, 1 ≤ 𝑖, 𝑗 ≤ 2 are 

continuous in 𝐸.         (1) 

Let (𝑎, 𝑏) ∈ 𝐸. 

From (1),  𝐷ଶଵ𝑓 is continuous at (𝑎, 𝑏) 
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Now we prove that  

(𝐷ଵଶ𝑓)(𝑎, 𝑏) = (𝐷ଶଵ𝑓)(𝑎, 𝑏). 

Suppose 𝑓 is a real function defined in 𝐸, where 𝐸 is an open set in ℝଶ 

Put 𝐴 = (𝐷ଶଵ𝑓)(𝑎, 𝑏). 

Let ε > 0 be given 

Since 𝐷ଶଵ𝑓 is continuous at (𝑎, 𝑏), there exists δ > 0 such that 

 |(𝐷ଶଵ𝑓)(𝑎, 𝑏) − (𝐷ଶଵ𝑓)(𝑥, 𝑦)| < ε whenever |(𝑎, 𝑏) − (𝑥, 𝑦)| < δ   ∀(𝑥, 𝑦) ∈ 𝐸 

⇒ |𝐴 − (𝐷ଶଵ𝑓)(𝑥, 𝑦)| < ε whenever |(𝑎, 𝑏) − (𝑥, 𝑦)| < δ     (1) 

Choose ℎ and 𝑘 such that |ℎ| <
ఋ

ଶ
   and   |𝑘| <

ఋ

ଶ
. 

Let 𝑄 ⊆ 𝐸 be the closed rectangle with sides parallel to the coordinate axes having  (𝑎, 𝑏) 

and (𝑎 + ℎ, 𝑏 + 𝑘) as opposite vertices (h ≠ 0, k ≠ 0). 

Put 𝛥(𝑓, 𝑄) = 𝑓(𝑎 + ℎ, 𝑏 + 𝑘) − 𝑓(𝑎 + ℎ, 𝑏) − 𝑓(𝑎, 𝑏 + 𝑘) + 𝑓(𝑎, 𝑏)  

By the above theorem, there exists a point (𝑥, 𝑦) in the interior of 𝑄 such that 

 𝛥(𝑓, 𝑄) = ℎ𝑘(𝐷ଶଵ𝑓)(𝑥, 𝑦) 

⇒ (𝐷ଶଵ𝑓)(𝑥, 𝑦) =
௱(௙,   ொ)

௛௞
          (2) 

From (1) & (2),  |𝐴 − (𝐷ଶଵ𝑓)(𝑥, 𝑦)| < ε ⇒ ቚ
௱(௙,ொ)

௛௞
− 𝐴ቚ < ε 

Fix h. 

As 𝑘 → 0 i.e., 𝑏 + 𝑘 → 𝑏, 𝑓(𝑎 + ℎ, 𝑏 + 𝑘) → 𝑓(𝑎 + ℎ, 𝑏) and 

 𝑓(𝑎, 𝑏 + 𝑘) → 𝑓(𝑎, 𝑏) 

Since 𝐷ଶ𝑓 exists in 𝐸, we have lim
௞→଴

ቚ
௱(௙,   ொ)

௛௞
− 𝐴ቚ < 𝜀 

⇒ ቚ
(஽మ௙)(௔ା௛,   ௕)ି(஽మ௙)(௔,   ௕)

௛
− 𝐴ቚ < 𝜀  

Since 𝜀 is arbitrary and the above inequality holds for all ℎ with |ℎ| <
ఋ

ଶ
,  we have that 

(𝐷ଵଶ𝑓)(𝑎, 𝑏) = 𝐴  
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⇒ (𝐷ଵଶ𝑓)(𝑎, 𝑏) = (𝐷ଶଵ𝑓)(𝑎, 𝑏)  

This is true for every (𝑎, 𝑏) ∈ 𝐸 

Therefore 𝐷ଵଶ𝑓 = 𝐷ଶଵ𝑓  

15.4  DIFFERENTIATION OF INTEGRALS: 

Suppose ∅ is a function of two variables which can be integrated with respect to one and 

which can be differentiated with respect to the other. Under what condition on ∅ can one 

prove that the equation  

ௗ

ௗ௧
∫ 𝜙(𝑥, 𝑡)𝑑𝑥

௕

௔
= න

డథ

డ௧
(𝑥, 𝑡)𝑑𝑥

௕

௔

 is true? 

Notation: It is convenient to use the notation 𝜙௧(𝑥) = 𝜙(𝑥, 𝑡). 

Thus, for each t, 𝜙௧ is a function of one variable. 

We recall the following theorem. 

15.4.1 Theorem:  Let 𝛼 be monotonically increasing on [𝑎, 𝑏]. 

Suppose 𝑓௡ ∈ ℛ(𝛼) on [𝑎, 𝑏] for n=1,2,…  and suppose 𝑓௡ → 𝑓 uniformly on [𝑎, 𝑏].  

Then 𝑓 ∈ ℛ(𝛼) on [𝑎, 𝑏] and ∫ 𝑓𝑑𝛼
௕

௔
= lim

௡→ஶ
∫ 𝑓௡𝑑𝛼

௕

௔
. 

15.4.2 Theorem: Suppose 

(a) 𝜙(𝑥, 𝑡) is defined for 𝑎 ≤ 𝑥 ≤ 𝑏, 𝑐 ≤ 𝑡 ≤ 𝑑; 

(b) 𝛼 is an increasing function on [𝑎, 𝑏]; 

(c) 𝜙௧ ∈ ℛ(𝛼) for every 𝑡 ∈ [𝑐, 𝑑]; 

(d) 𝑐 < 𝑠 < 𝑑, and to every 𝜀 > 0 corresponds a 𝛿 > 0 

such that |(𝐷ଶ𝜙)(𝑥, 𝑡) − (𝐷ଶ𝜙)(𝑥, 𝑠)| < 𝜀 for all 𝑥 ∈ [𝑎, 𝑏] and for all  

𝑡 ∈ (𝑠 − 𝛿, 𝑠 + 𝛿). 

Define 𝑓(𝑡) = ∫ 𝜙(𝑥, 𝑡)𝑑𝛼(𝑥)
௕

௔
   (𝑐 ≤ 𝑡 ≤ 𝑑) 

Then (𝐷ଶ𝜙)௦ ∈ ℛ(𝛼), 𝑓ᇱ(𝑠) exists, and 𝑓ᇱ(𝑠) = ∫ (𝐷ଶ𝜙)(𝑥, 𝑠)
௕

௔
𝑑𝛼(𝑥). 

Proof: Suppose (a), (b), (c) & (d) 
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For any 𝑡 ∈ [𝑐, 𝑑], 

define 𝑓(𝑡) = ∫ 𝜙(𝑥, 𝑡)𝑑𝛼(𝑥)             
௕

௔
 

Now we prove that 

  (𝐷ଶ𝜙)௦ ∈ ℛ(𝛼), 𝑓ᇱ(𝑠) exists, and 𝑓ᇱ(𝑠) = ∫ (𝐷ଶ𝜙)(𝑥, 𝑠)
௕

௔
𝑑𝛼(𝑥)  

Consider the difference quotients 

𝜓(𝑥, 𝑡) =
థ(௫,   ௧)ିథ(௫,   ௦)

௧ି௦
 for 0 < |𝑡 − 𝑠| < 𝛿      (1) 

Since 𝐷ଶ𝜙 exists, 𝜙 is differentiable in (𝑠, 𝑡) and continuous on [𝑠, 𝑡], by a known result 

(Lagrange’s mean-value theorem applied to 2nd variable of 𝜙) there corresponds to each      

(𝑥, 𝑡) a number ‘u’ between 𝑠 and 𝑡 such that 𝜙(𝑥, 𝑡) − 𝜙(𝑥, 𝑠) = (𝑡 − 𝑠)𝐷ଶ𝜙(𝑥, 𝑢). 

⇒
థ(௫,   ௧)ିథ(௫,   ௦)

௧ି௦
= 𝐷ଶ𝜙(𝑥, 𝑢)  

⇒ 𝜓(𝑥, 𝑡) = 𝐷ଶ𝜙(𝑥, 𝑢)         (by (1)) 

By our supposition (d), we have 

 |𝜓(𝑥, 𝑡) − 𝐷ଶ𝜙(𝑥, 𝑠)| = |𝐷ଶ𝜙(𝑥, 𝑢) − 𝐷ଶ𝜙(𝑥, 𝑠)| < 𝜀 for all 𝑎 ≤ 𝑥 ≤ 𝑏 and 

 0 < |𝑡 − 𝑠| < 𝛿. 

i.e., lim
௧→௦

  𝜓(𝑥, 𝑡) = 𝐷ଶ𝜙(𝑥, 𝑠) uniformly on [𝑎, 𝑏]     (2) 

Consider  

௙(௧)ି௙(௦)

௧ି௦
= න

థ(௫,   ௧)

௧ି௦
𝑑𝛼(𝑥)

௕

௔

− න
థ(௫,   ௦)

௧ି௦
𝑑𝛼(𝑥)

௕

௔

  

= න
థ(௫,௧)ିథ(௫,௦)

௧ି௦
𝑑𝛼(𝑥)

௕

௔

  

= ∫ 𝜓(𝑥, 𝑡)𝑑𝛼(𝑥)
௕

௔
  (by (1))       (3) 

= ∫ 𝜓௧(𝑥)𝑑𝛼(𝑥)
௕

௔
  

By (2),  𝜓௧ → (𝐷ଶ∅)௦, uniformly on [𝑎, 𝑏]  as 𝑡 → 𝑠. 

By our supposition (c), ∅௧ ∈ ℛ(𝛼) for all 𝑡 ∈ [𝑐, 𝑑] 



Centre for Distance Education   15.8       Acharya Nagarjuna University 

So,  𝜓௧ ∈ ℛ(𝛼) for all 𝑡 ∈ [𝑐, 𝑑]. 

Therefore by Theorem () (𝐷ଶ∅)௦ ∈ ℛ(𝛼) and  

∫ (𝐷ଶ∅)௦(𝑥)𝑑𝛼(𝑥)
௕

௔
= lim

௧→௦
∫ 𝜓௧௕

௔
𝑑𝛼(𝑥)  

                                      = lim
௧→௦

௙(௧)ି௙(௦)

௧ି௦
      (by (3)) 

                                      =𝑓ᇱ(𝑠) 

Hence, (𝐷ଶ∅)௦ ∈ ℛ(𝛼) and 𝑓ᇱ(𝑠) exists and 𝑓ᇱ(𝑠) = ∫ (𝐷ଶ𝜙)(𝑥, 𝑠)
௕

௔
𝑑𝛼(𝑥) 

15.5  SUMMARY:  

        In this lesson we have defined second order partial derivatives of a real function of two 

variables and we have discussed related theorems and also we have discussed one theorem 

related to differentiation of integrals. 

15.6 TECHNICAL TERMS: 

 Differentiation of integrals  

 Mean-value theorem 

15.7 SELF- ASSESSMENT QUESTIONS: 

1. Prove analogues of theorem 15.4.2 with (−∞, ∞) in the place of [𝑎, 𝑏]. 

2. Put 𝑓(0,0) = 0 and 𝑓(𝑥, 𝑦) =
௫௬(௫మି௬మ)

௫మା௬మ
 if (𝑥, 𝑦) ≠ (0,0). Prove that  

(i) 𝑓, 𝐷ଵ𝑓, 𝐷ଶ𝑓 are continuous in ℝଶ; 

(ii) 𝐷ଵଶ𝑓 and 𝐷ଶଵ𝑓 exists at every point of ℝଶ, and are continuous except at (0,0); 

(iii) (𝐷ଵଶ𝑓)(0,0) = 1 and (𝐷ଶଵ𝑓)(0,0) = −1. 

15.8  SUGGESTED READINGS: 

1. Principles of Mathematical Analysis by Walter Rudin, 3rd Edition. 

2. Mathematical Analysis by Tom M.Apostal, Narosa Publishing House, 2nd Edition, 1985. 

-  Dr. K. Siva Prasad. 

 


