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FOREWORD

Since its establishment in 1976, Acharya Nagarjuna University has been forging
ahead in the path of progress and dynamism, offering a variety of courses and research
contributions. I am extremely happy that by gaining ‘A"’ grade from the NAAC in the
year 2024, Acharya Nagarjuna University is offering educational opportunities at the UG,
PG levels apart from research degrees to students from over 221 affiliated colleges spread

over the two districts of Guntur and Prakasam.

The University has also started the Centre for Distance Education in 2003-04 with
the aim of taking higher education to the doorstep of all the sectors of the society. The
centre will be a great help to those who cannot join in colleges, those who cannot afford
the exorbitant fees as regular students, and even to housewives desirous of pursuing
higher studies. Acharya Nagarjuna University has started offering B.Sc., B.A., B.B.A.,
and B.Com courses at the Degree level and M.A., M.Com., M.Sc., M.B.A., and L.L.M.,
courses at the PG level from the academic year 2003-2004 onwards.

To facilitate easier understanding by students studying through the distance mode,
these self-instruction materials have been prepared by eminent and experienced teachers.
The lessons have been drafted with great care and expertise in the stipulated time by these
teachers. Constructive ideas and scholarly suggestions are welcome from students and
teachers involved respectively. Such ideas will be incorporated for the greater efficacy of
this distance mode of education. For clarification of doubts and feedback, weekly classes

and contact classes will be arranged at the UG and PG levels respectively.

It is my aim that students getting higher education through the Centre for
Distance Education should improve their qualification, have better employment
opportunities and in turn be part of country’s progress. It is my fond desire that in the
years to come, the Centre for Distance Education will go from strength to strength in the
form of new courses and by catering to larger number of people. My congratulations to
all the Directors, Academic Coordinators, Editors and Lesson-writers of the Centre who

have helped in these endeavors.

Prof. K. Gangadhara Rao

M.Tech., Ph.D.,
Vice-Chancellor I/c

Acharya Nagarjuna University
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MODEL QUESTION PAPER

Time : Three hours Maximum : 70 marks

Answer ONE question from each Unit. (5x14=170)

UNIT-1

1. State and prove Weierstross M-Test for uniform convergence theorem.
or

2. State and prove uniform convergence and integration theorem.
UNIT-II

3. Suppose {f:} is a sequence of functions, differentiable on [a, b] and such that {f.(x0)}

converges for some point Xo on [a, b]. If { fn'} converges uniformly on [a, b], then {f,}
converges uniformly on [a, b], to a function /', and f'(x) = ,1,13.1 fn'(x) (a<x<bh).
or
4. (a)If {,} is a point wise bounded sequence of complex functions on a countable set £,
then { f, } has a sub sequence { f,, }such that{ s (x)}converges foreveryxe E .
(b) If K is compact metric space. If f, € C(K) forn=1,2,3,.... and if { f, } converges

uniformly on X, then{ 1, } is Equicontinuous on K.

UNIT-III

5. Let A be an algebra of real continuous functions on a compact set K. If A seperates
points on K and if A vanishes at no point of K, then the uniform closure B of A consists
of all real continuous functions on K.
or
6. Suppose Y ¢, converges. Put f(x) = Yo cnx™ (-1<x<1).

Then prove that lirr% f(x) = Y=o Cn-
X—>



10.

UNIT-1V

(a) Let r be a positive integer. If a vector space X is spanned by a set of r vectors,
then dimX <.
(b) A linear operator A on a finite-dimensional vector space X is one-to-one if and only if
the range of A is all of X.
or
Suppose f maps a convex open set E € R™ into R™, f is differentiable in E, and there
is a real number M such that ||f'(x)|| < M for every X € E. Then |f(b) — f(@)| <
M|5—d| foralla € E,b € E.

UNIT-V

a) Prove that a linear operator A on R™ is invertible if and only if det [A] # 0.
b) Suppose f is defined in an open set E € R?. Suppose that D, f, D, f and D, f exist
at every point of E, and D, f is continuous at some point (a, b) € E.
or

If [A] and [B] are n by n matrices, then prove that det([B][A]) = det[B] det [4].
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LESSON - 1
SEQUENCES AND SERIES OF FUNCTIONS:

DISCUSSION AND MAIN PROBLEM AND
UNIFORM CONVERGENCE

OBJECTIVE:

After studying the lesson you should able to understand the concept of point wise convergence

and uniform convergence of functions.
STRUCTURE:

1.1 Introduction

1.2 Definition of point wise convergence

1.3 Lemma and examples

1.4 Uniform convergence and related theorems
1.5 Summary

1.6 Technical terms

1.7 Self -Assessment Questions

1.8 Suggested readings
1.1 INTRODUCTION:

In this lesson, we define and study the convergence of sequences and series of functions.
There are many different ways to define the convergence of a sequence of functions, and
different definitions lead to in equivalent types of convergence. We consider here two basic

types: point wise and uniform convergence.
1.2 DEFINITION:

Let E be a set, {f,},n = 1,2,3... 00 sequence of functions defined on E and let f be a function

defined on E.

i.  We say that the sequence {f;,} converges to f pointwise or converges pointwise to f on

E ifforevery x € E, lim f,(x) = f(x) (if for every positive number € and x € E, there
n—->0oo

corresponds a positive integer N (depending on ¢ and x as well) such that
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il.

1il.

|fn(x) — f(x)| <€ whenever n = N). In this case we say that f is the pointwise limit

of {f,,} on E, and we write lim f,, = f(pointwise) for n = 1,2,3...
n—-oo

Forn=1,23...0, let S,(x) = fi(x) + fo(x) + f3(x)+... +f,(x) for x € E. If the
sequence {S,, } of functions (called the partial sums of ), f;,) converges to f pointwise
on E, we say that the series Y,;—; fn () converges to f(x) for every x € E, and we
write itas Ypeq fn = f (pointwise).

We say that the sequence {f,,} converges uniformly to f on E is every positive number
€ there corresponds a positive integer N such that |f,,(x) — f(x)| < € when ever n >
N and for all x € E. In this case we say that f is the uniform limit of {f;,} and write it as

lim f,,(x) = f(x) (x € E) or lim f,, = f uniformly on E..
n—-oo n—-oo

iv.  We say that the series )., —; f,, converges uniformly to f on E if the sequence {S,,} of
partial seems converges uniformly on E to f i.e., for every positive number &€ there
corresponds a positive integer N such that |S,(x) — f(x)| <€ whenever n > N and
forallx € E.

1.3 LEMMA:

If {f,,} converges uniformly to f'on E, then {f,,} converges pointwise to fon E.
Proof: Let x, € E takee >0
Claim: f,,(xg) = f(xp) asn — oo

Since f, — f uniformly on E, 3 a positive integer N such that |f,(x) — f(x)| <¢

whenevern > N forall x € E
In particular, |f,,(x,) = f(xo)| < € whenevern > N

This shows that lim f;,(x,) = f(x,)
n—oo

That is, {f,,} converges pointwise to f'on E.
Remark: The converse of the above Lemma is not true.

Justification: Forn = 1,2,3... 00

Define fp: (0,1) = R by f(x) = —— forall x in (0,1).
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Then V x € (0,1) llmfn(x) = lim — = lim —x = lim — = - = f(x)(say)

n-ooo nx+1 n—-oo n(x+1) n—-oo x+

Now we show that this convergence is not uniform.

1

nx+1 X

nx—(nx+1)| _ 1
x(nx+1) _(nx+1)x

Consider |f,(x) — f(x)| =

Take e > 0

Claim: 3 a positive integer N such that |f,(x) — f(x)| <EV n >N
1< (nx+ 1)x foralln > N forall x

& 1<nx?+xforalln > N forall x

& 1—x <nx?foralln > N forall x

@t—ZxSnforalanNforallx

& —%SnforalanNforallx

%, =

Letx = L
2N

Therefore xiz —i =4N2 —2N =2N(2N—-1) > N

<evVn>=2NVxeE

Then N is a positive integer and |f;,(x) — f(x)| =

(nx+1)x
Thus the convergence of {f,} is pointwise convergence, but not uniform.
1.3.1 Example: The following is an example concerns a “double sequence”:
m
Form=1,23...;n=1,23... ,let s, = p——

m _ m _ 1
min m1+E)  (1+5)

Now for every fixed n, S, , =

1n=1

m-oo 1+(E)

So, for every fixedn, lim s, , =
m-—co

~ lim lim 1 Smn = hm =1
n—>oco m—

On the other hand for every fixed m, 11m 0 S = = lim % =0
n—-oo
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~ lim lims,,, = lim (0) =0
m—oo

m—-oon—>oo

Hence, lim lim s, , # lim lims,, , .

n—>00 m—0o m—-oon—>oo

1.3.2 Example: m = 1,2,3... let f;,,(x) = lim (cos(m!mx))?"
n—->oo

If m! x = k, an integer, then f;,,(x) = lim (cos(kx))?" = lim (x1)*" = lim (1) =1

If m! x is not an integer, then f,, (x) = 711_r)£1o (cos(m! nx))zn =0
Now let f(x) = Jli_r)rgofm(x) v 0 < cos(m!mx) < 1if m!xisnota limit
If x is irrational then f,,,(x) = 0 V m and hence
f(x) = lim f,(x) = lim (0) =0
m—oo m—o0
Suppose x is rotational then x = g where p, g are integer and g # 0

For every m, m!x = m!g is an integer if m > q so that

fin(x) = lim (cos(m! nx))zn =0 = lim (1) = 1 and hence
n—-oo

fO) = lim f(x) = lim (1) = 1.

T . 2n _ 0,if x is irrational
f(x) - nllliréog?o (cos(m! nx)) - {1,ifx is rational

We know that if f(x) = 0 for all irrational x, f(x) = 1 for all rational x, then f € R on
[a, b] forany a < b
Thus the limit function f is discontinuous everywhere and not Riemann integrable.

sin nx

Vn

1.3.3 Example: Forn = 1,2.... let f,(x) = (x real), and let f(x) = lim f,(x)
n—>oo

sin nx

Then f(x) = lim f,(x) = lim —== =0

(o.~m%§%forn= 1,2...and \/iﬁ—>0asn—>°°)

Now f'(x) =0Vx ER f,(x) = nci;%nx = +/ncosnx

Since lim cosnx does not exist, we have that f,, +» f asn - o

n—-oo
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That is, {f,,} does not converge to '

. ' __ncosn(0) _
(for instance, f,, (0) = == Vn

- lim £1(0) = o0, where f'(0) = 0 (+ Vi = +o0asn - o))

1.3.4 Example: Forn = 1,2,3.... let f,(x) =n?x(1 —x)" (0 <x < 1) (1)
Now forn = 1,2,3.... f,(0) =0and f,(1) =0
~ limf,(0) =0and limf,(1) =0 (2)
n—oo n—oo

2

n2x n2 2

X n

“n n 22
G R 1+ p)n

X

For 0 < x < 1, we have f,,(x) = n?x(1 — x*)"

= 0 (Theorem 3.20 d)

n—oo ( p)"

2
So, hm fn(x) = x lim % =
n—->oo (1+ xz)n

limf,(x) =0(0<x<1) (3)
n—-oo
From2 &3, limf,(x) =0(0<x<1)

n—->0oo

C0n51derf x(1—x)"dx = ft [ t" (_71) dt = %1]10 t" dt

tn+1
T2 [n+1] - _[ T ntt 2(n+1)

n2

~ forn = 1,2,3...,f01 fa(x) dx = fol n?x(1—x*)"dx = nzf x(1—xH)"dx =

2n+2

2
Nowfolfn(x)dxzz;lﬁﬁooasn%oo

If, in equation 1, we replace n? by n , then lim f,,(x) =0,0<x <1
n—-oo

1

So thatj (Tlli_glofn(x)) dx = fol(o) dx =0

But 11m f fu(x)dx = hm = lim — = lim — =%

2
o0 2n+2 n—oo n(2+z) n—oo 2+
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1
: 1 1 :
s lim () dx=5#0= jo (Tlll_{gofn(x))dx
Thus the limit of the integral need not be equal to the integral of the limit, even if both are
finite.

Note: Give an example to show that a convergent series of continuous functions may have

a discontinuous term.

1.3.5 Example: Let f,,(x) = forn=123.... forx €R

(1+ a+x)n
Forn =1,2,3....x € R write S,,(x) = ZZ=0fk(x) forx € R

We know that for x € Rwith x # 1

n
1+l
E xk =
k=0 1-x

2

n
ForOixE]R,Sn(x)=Z ol

k=0 (1+xDk

= xz " _1
k=0 (1+xDk
{ 2)n+1}
+Xx
T14x2
(1+x2)n+1—1
{ (1+x2)n+1 }

(1+x%)-1
(1+x2)

(1+x2)n+i—g 1+x2}
(1+x2)n+1 52

= 1+ ) {1 - ]

S0, 7{1_{?0 (1+1x2)" =0

L limS,(x) =1+ x2if x #0  (flx| < 1,then limx™ = 0)
n—oo n—oo

Also clearly 1limS,(0) =0
n—>oo
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For x € R, define f(x) = { 0 ifx=0

1+x2 if x+0’
0 =
Then ). _ f(x) = limS,(x) = f(x) (x ER)
n=0 n—oo
The series converges point wise on R to f.
Now we prove that the convergence is not uniform on R.

If possible suppose that the convergence is uniform on R.

Then {S,,} converges uniformly on R to f.

. 1 . .. .
So corresponding to € = p there exists a positive integer such that

ISn () = FOO < 5 (1)

Whenever n > N for all x € R in particular (1) is true forn = N and x # 0

1
(14x2)n+1

So we have |S,,(x) — f ()| <%:> |(1 + x?) {1 — }— (1+x?) <% vx # 0

1

m<§foraux;to:>(1+x2)N>z Vx # 0

1
=>x2>2N—1Vx#0

1

= |x| >(2%—1)EVx¢o

~R—-{0}c {x| |x| > (2% — 1)%},

Which is not possible.
Hence the convergence is not uniform on R.
1.4 UNIFORM CONVERGENCE:

In this section, we introduce a stronger notion of convergence of functions than point
wise convergence, called uniform convergence. The difference between point wise
convergence and uniform convergence is analogous to the difference between continuity and

uniform continuity.
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1.4.1 Definition: we say that a sequence of functions {f,,}, n = 1,2,3, ..., converges uniformly

on E to a function f if for every € > 0 there is an ingeter N such that n > N implies

lfn(x) — f(x)| < eforallx e E (1)

It is clear that every uniformly convergent sequence is point wise convergent. Quite
explicitly, the difference between the two concepts in this: if {f,,} converges point wise on
E, then there exists a function f such that, for every € > 0, and for every x € E, there is an
integer N, depending on & and on x, such that (1) holds if n > N; if {f,} converges
uniformly on E, it is possible, for each € > 0, to find one interger N which will do for all
x €EE.

We say that the series ). f,,(x) converges uniformly on E if the sequence {s,} of partial

sums defined by
=1 fi(x) = sp(x)

Converges uniformly on E.
1.4.2 Theorem: Cauchy criterion for uniform convergence of sequence of functions.

Statement: Let {f,} be a sequence of functions defined on E. Then the sequence {f;}
convergence uniformly on E if and only if for every € > 0 there exist an integer N such

thatm > N,n > N,x € E implies |f,(x) — fn(x)| < &

Proof: Suppose {f,,} converges uniformly on E£

Let f be its limit function.

Then for every & > 0 there corresponds a positive integer N such that implies
o) = FOl < -

So that |f,(¥) = fn ()] < 1fa(6) = FOOI +1f(X) = fn()| S S +-=¢e if m=N, n 2
N,x e E

Conversely, suppose that the Cauchy condition holds.

i.e., for every real number € > 0, there corresponds a positive integer N such that

lfn(x) — fm(x)|<em=N,n=>N forall x €E

then for every x € E, {f,,(x)} is a sequence of numbers that satisfies cauchy’s general

principle for convergence.
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So, there exists a number f(x) depending on x to which f,, (x) converges.
Clearly, f(x)is uniquely fixed with x (- limit of a sequence is unique)

Now x = f(x) defines a function on E and f(x) = lim f,,(x)
n—-oo

To show that the convergence is uniform.
Take € > 0

By our Supposition there exists a positive integer N such that |f,(x) — fn(x)| < ¢

wheneverm > N,n = N forall x € E

Fix m, and letn - o
Then we get | lim f,(x) — fr(x)| < € forevery m > N for every x € E
n—->0oo

So, from (1) |f(x) — fin(x)| < & for every m > N for every x € E
Hence, {f,,} converges uniformly on E to f (or) {f,, }JConverges uniformly on E to f.

1.4.3 Theorem: Suppose lim f,,(x) = f(x) x € E Put M,, = sup|f,(x) — f(x)|
n—0oo X€EE

Then f,, = f uniformly on E if and only if M,, - 0 asn — oo

Proof: Suppose limM,, =0 (1)
n—->oo

Take € > 0

Then from (1), there exists a positive integer N depending on E such that
0 <M, <¢& whenevern > N

This implies that for every x € E andn = N, |f,(x) — f(x)| < M, < &
This shows that {f, } converges uniformly on E to f.

Conversely, suppose that sequence {f,,} converges uniformly on E, to f
Choose € > 0

Then by our supposition, 3 a positive integer N, depending on € such that | f, (x) — f(x)| <

%wheneverZN‘v’x €E.



Centre for Distance Education 1.10 Acharya Nagarjuna University

This implies that 0 < M,, = {suplfn(x) — f(x)] } < % <eEVn=N
X€EE

Hence, limM,, =0

n—-oo

1.4.4 Theorem: (Weierstross M-Test for uniform convergence)
Statement: Suppose {f,,} is a sequence of functions defined on E, and suppose

()| <M, (x € E,n=123...) Then }f, convergence uniformly on E if YM,

converges.
Proof: Given that |f,(x)| <M, (x € E,n=1,23...) (1)
Forx € E,let S, (x) = f1(x) + fLb(x) + f5(0)+...+f,(x) vn =1

AndletU, = M; + My+...+M, Vn > 1

Suppose Y.o-1 M,, converges. Then the partial terms sequence {U,,} is convergent.

We know that every convergent sequence in a metric space is a Cauchy sequence so {U,}

is a Cauchy sequence (2)
Take € > 0

then from (2) there exists a positive integer N such that |U,, — U,,| < € whenever —m >

n>N
Now form >n > Nandx € E,
1Sm(X) = Sp (O] = [(fi(¥) + () +... +fn (X)) = (i(0) + L) +... + ()]
= |(far1(0) + frs2 () +... +f (X))
= |fur1 G + | fr2 O+ + fin ()

=My + Myo+....+M,y,
= |Upn — Uyl
<é&g

~ By theorem (1), {S,,} converges uniformly on E.

Hence Y., fn converges uniformly on E, to some function defined on E.
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1.5 SUMMARY:

In the present Lesson we confine our attention to point wise convergence, related theorems

and examples as well as uniform convergence, related theorems and examples.
1.6 TECHNICAL TERMS:

1. Uniform convergence

2. Point wise convergence

3. Weierstrass M-Test
1.7 SELF-ASSESSMENT QUESTIONS:

1. Prove that every uniformly convergent sequence of bounded is uniformly bounded.

2. If {f,} and {g,} converges uniformly on a set E, prove that {f, + g,} converges
uniformly on E. If, in addition, {f;,} and {g,,} are sequences of bounded functions, prove
that {f,,g,} converges uniformly on E.

3. Construct sequences {f, }, {gn} which converges uniformly on some set E, but such that

{f9n} does not converge uniformly on E (of course, {f,,g,} must converges on E).

1.8 SUGGESTED READINGS:

1. Principles of Mathematics Analysis by Walter Rudin, 3™ Edition.
2. Mathematical Analysis by Tom M.Apostal, Narosa Publishing House, 2" Edition,
1985.
- Dr. K. Gangadhar



LESSON- 2
SEQUENCES AND SERIES OF FUNCTIONS:

UNIFORM CONVERGENCE AND CONTINUITY

OBJECTIVES:
After studying the lesson you should able to understand the concept of uniform convergence

and continuity. Definition of Normed Linear Space.
STRUCTURE:

2.1 Introduction

2.2 Uniform convergence and continuity
2.3 Summary

2.4 Technical terms

2.5 Self- Assessment Questions

2.6 Suggested readings

2.1 INTRODUCTION:

In this lesson, we define and study the uniform convergence and continuity, and also
integration of sequences and series of functions. There are many different ways to define the
uniform convergence of a sequence of functions, and different definitions lead to in equivalent

types of convergence.
2.2 UNIFORM CONVERGENCE AND CONTINUITY:

2.2.1 Theorem: Suppose f,, — f uniformly on a set E in a metric space (x, d). Let x be a limit

point of E, and suppose that limfn(t) =A,(n=12,...). Then {4,} converges, and
->X

lim fn(t) = lim A,, In other words, the conclusion is that
X n—-oo

lim lim £, (t) = lim limf,(t)
t n—-oo t-x

—>X N>
Proof: Suppose f,, = funiformly on E and ltimfn ) =4,(n=12,...)
>X
Claim: {A,} is a Cauchy’s sequence
Let x be a limit point of E

Let € > 0 be given
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Then by Cauchy’s general principle for uniform convergence, there exists a positive integer

N; such that |f,,(t) — fr,(®)] < %forn >N, m=N,andt €E (1)
Letting t — x in (1), we obtain li_)mxfn(t) — lti_rafm(t) < gfor n=>N;,m=>N,;

So, Since lti_r};lfk(t) = A, (k = 1,2,...), it follows that

forn > N;,m > Ny, |A, — 4| < % <€

Hence, {4, } is a Cauchy sequence and hence converges, say to A i.e., Tlll_g)lo A, =A

In R¥, every cauchy sequence is convergent

Claim: 3 a positive integer N and 3 a § > 0 such that

i) fu@® —fOI < VteE

i) |4, — Al < and

i) |fy(®) — Ayl sgif tEE0<d(t,x) <6

We first choose positive integers N,and Nisuch that

[t — f(O] < gforn >N,andVt€Eand|A, —A|l < gforn > N,
(v fu— funiformlyonE andrlli_g)loAn =A)

Put N = max{N,, N5}

Then we have |fy (t) — ()] S§ VteEand|Ay —A| < §
Since lti_>mfo(t) =Ay,3ad >0suchthat0 < d(t,x) <St€E
implies | fy (t) — Ay| < §

Claim: li_)mxf(t) =A

Choose a § > 0 and a positive integer N satisfying (1),(ii) and (iii)
If0<d(t,x)<StE€E

S =A< IF@) = a1 + I fy(@) — Ayl + 1Ay — A| S§+§+§:g
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Whenever 0 < d(t,x) < § fort €E.
Hence, limf (t) = A thatis limf(t) = lim 4,
t-x t-x n—-oo
2.2.2 Theorem: Let (x, d) be a metric space and E € X. If {f,,} is a sequence of continuous
functions on E, and if f,, — f uniformly on E, then fis continuous on E.
Proof: Letx € Eande > 0
Since {f,} converges uniformly on E to f, there exists a positive integer N such that

1) — FO)I S§ forn>NandVy€E

In particular, |fy(y) = f()| <= Vy€E (1)
Since fy is continuous at , there exists § > 0 such that

0<d(xy)<8=Ify(0)—fuG)I < Vy€eE 2)

L) = FO S G = @I+ () = WD+ a0 = fOI <z +z+z=¢

Whenever 0 < d(x,y) < 6 forx €E (by (1)&(2))
Hence, f is continuous at x

This is true for every x € E

=~ f is continuous on E.

Remark: The converse of the above theorem is not true.

That is, a sequence of continuous functions may converge to a continuous function, although

the convergence is not uniform.
Justification:
Example: Define f,:[0,1] - Rby f;,(x) = n?x(1 —x*)",0<x <1

Then lim f,(x) = lim n2x(1 — x2)" = lim —%—
n—oo n—oo n—-oo ( 1 )

(1-x2)"

2
=x1imn—n=x(0)=0;0<x<1

2
n—o (1+ d 2)
1-x
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=0for p>0,0d€R

n-oo (1+ m
Now f,(0) =0& f,(1) =0

~ limf,,(x) =0,0<x<1
n—-oo

For 0 < x <1, define f(x) =0

Then f is continuous on [0,1] and lim f,(x) = f(x)
n—-oo

Also, each f,, is continuous on [0,1] forn = 1,2,...

Put M, = sup |f,(x) = f(x)| = SUp fa(X)

Now f;/(x) = n?(1 — x®)" + n?x(—2x).n(1 — x?)" !
fi(x) =0= (1 —-x>)"""n?[(1-x*) —2x*n] =0

>50—-x)"1=0 , 1-x>-2x*n=0

51-x2=0 , 1—-(1+2n)x2=0
>x =41 , +m

1

As x > 0, we consider x; = +1, x, = i

Now f, (x) = n?(n — 1)(1 — x?)*2(=2x)[(1 — x?) — 2x*n] + (1 — x*)" n?[-2x — 4nx]

Forx; =1,fy () = f (1) =0

So, we cannot decide anything at x; = 1

1
For x, = T

fie) = fr (Jliﬂ) == (1-55)" o [1- -2+ (1-

1 )" 1 (nz)[ 4n
2n+1 V2n+1 V2n+1

=2 ()" e (E) <o

~ fn has maximum at

1 . .
Noresi and the maximum value of f,, is
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) = mm-an) A=)

Forn =1,2,3...

M, = sup |f,(x) — f(0)| = |\/1n+2W (272121)71 B O|

0=<x=<1

2N pnt2 2N pnt2 2m 1%/

@™ (o (24) (el

_ 2”.n3/2 _ n3/2
n(242) (142)" Jeri(as )"

So, M,, > c0oasn — o

Thatis M,, » 0 asn — oo
Thus f,, = f is not uniform on [0,1].  (by theorem 1.11)
2.2.3 Theorem: Suppose K is a compact subset of a metric space (x, d), and

a) {f,} is a sequence of continuous functions on K,
b) {f,} converges pointwise to a continuous function of on K
) fn(®¥) = fry1(x)VxeK,n=1.23..

Then f,, = f uniformly on K.

Proof: Forn > 1 write g, (x) = f,(x) — f(x)Vx € K

Since each f,, and f are continuous, we have that each g, is a continuous function on K.
Since, Ai_{?of"(x) = f(x)Vx € K, Ai_lglogn(x) =0Vx €K

Also, gn(%) = gny1(X)Vx € K,n=1,23,...as f,(x) = fry1(x)Vx €K

We have to prove that the sequence {g,} converges uniformly on K to 0.
Lete>0and x € K.

Since, lim g, (x) = 0, 3 a positive integer N (g, x) such that
n—->oo
0<g,(x) < %forn > N(g, x)

We denote this N(€, x) by N(x).
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In particular, 0 < gy(ex) = Iner) < %

Since, gn(x) 1s continuous at x, 3a real number § > 0 (depending on x) such that
|gN(x)(y) — IN@) (x)| < %fory € K such thatd(x,y) < & (1)
Put/(x) ={y|y € Kand d(x,y) < 6}

Then clearly J(x) is an open set in K (*+ J(x) is neighbourhood)

Now the family {/(x) | x € K} is an open cover of the compact space K, so that there exist finitely
many X in K, say x4, x,,....x, such that K = ié]l](xl-)

Write N(€) = max{N(x;),...N(x,)}

It is clear that N (&) depends on € only

Lety €K

Theny € J(x;) forsome 1 <i<r
80, |gney ) = Ineeny (D] < 2 (by (1))
= N i) (x1) — % < Ineeiy (V) < Gy (D) +§

Since gn(¥) < gniy(Y) for n = N(xi) and gy iy (V) < Gy (X0) + § <eg,
We have that g, (y) < & forn = N(xi)

Ifn>N(g),thenn > N(xi) fori =1,2,3,....7r

~forally € K,0 < g,(y) < € whenever n = N(¢).

Hence {g,} converges uniformly on K to 0

That is, f, = f uniformly on K.

Example: For = 1,2,3...., define f,,(x) = —~0<x<1

nx+1’
Then each f, is continuous on (0,1)

Wehaven<n+l=an<h+Dx=>nx+1<n+Dx+1

1 1
nx+1 (n+1)x+1

S fu(x) > fra1(x))Vx&Vn
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Also, fp(x) > 0asn - o (D
Let € > 0 be given

Then by (1), 3 a positive integer N such that |f,,(x)| < eVn =N

<s:>nx+1>l::>nx>l—1:>n>(l—1)l
nx+1 & & & X

1
nx+1

Choose N =(3—1):+1.Then¥n > N, wehave |f,(x)| = —— <

Observe that N depends on both € & x.
= the convergence of {f,,} to 0 is not uniform
Hence, compactness of interval is really needed.

2.2.4 Definition: Normed Linear Space: Let X be a vector space over scalar field K. A map ||

A X >R

Is called as norm (on X) if it satisfies the following conditions

1) IlxlI=0,andll xI=0&x=0
i) laxll=|a|ll x|l foralla € K & x € X
1ii) lx+yl<llxll+lyllvxyeX

Here (X, II. 1) is called a normed linear space.

2.2.5 Lemma: Every normed linear space (X, |l. ||) is a metric space with respect to the metric ‘d’

defined by d(x,y) =llx —y I Vx,y € X.
Proof: Let X be a normed linear space.
Letx,y,z€e X

1) dix,y)=llx—ylI=0andd(x,y) =0ellx—yll=0x—-y=0x=y

i1) deoy)=lx=—yl=l—-@—-x)lI=|-1lly—-xl=ly —x = d(y,x)
iii) dx,y)=lx=yl=sllx—z+z—yl<lx—zl+llz—-yll=d(x,z) +d(zy)

~ (X, d) is a metric space.
2.2.6 Definition: Let X be a normed linear space. Let {x,,} be a sequence in X.

1) We say that the sequence {x,} converges to a point x in X. if given € >0, 3 a

positive integer N such that || x,, —x < eVn = N
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1) We say that the sequence {x,} is a Cauchy sequence if given & > 0, 3 a positive

integer N such that || x,, —x,,, I eVn>=N&Vm=N.

2.2.7 Definition: A normed linear space X is said to be complete if every Cauchy sequence in

X is convergent to an element of X.

2.2.8 Notation: If X is a metric space then the set of all complex- valued, continuous, bounded

functions with domain X is denoted by C(X).
2.2.9 Result: C(X) is a normed linear space.
Proof: Define ‘+’ & “.” on C(X) as follows
Forany f,g € C(X), (f + 9)(x) = f(x) + g(x) and

(af)(x) =af(x)Va eEK&Vx€EX

Now C(X) is a vector space under the above binary operation ‘+’ and scalar

multiplication °.

For any f € C(X), define || f II= sup|f (x)|
XEX

Let f € C(X)

Then f is bounded on X, so that sup|f (x)| exists and hence || f |l exists.
xeX

1) ||f||=0<:>su)z()|f(x)|=0(:>|f(x)|=0VxEX

S f(x)=0
©f=0

ii) Since [f(x)]| =0Vx €X, |l f I=sup|f(x)| =0

xXEX

1) Leta €K

Now |l af lI= itg;l(af)(x)l = ig;laf(x)l = Ialitéglf(x)l = lal Il £
iv)  Letf,g € C(X)

Forx € X, [(f + g)(0)| = |f (x) + g()| < [f ()] + [g ()]

< ité)rglf(x)l +§1é§|g(x)|
=lfN+lgl
ilé);{9|(f+g)(x)| <hfu+lgl

20 f+glsifl+lgl
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% (C(x), II. 1) is a normed linear space. $

Remark: For any f,g € C(X), define d(f,g) =Il f — g |l then ‘d’ is a metric on C(X) and
hence (C(X), d) is a metric space.

2.2.10 Lemma: A sequence {f,, } converges to f with respect to the metric of C(X), X is a metric

space if and only if f,, = f uniformly on X.
Proof: f,, = f with respect to the metric of C(X)
& forany € > 0,3 a positive integer N (&) such that
lf,—fll<Kevn=N
& for any € > 0,3 a positive integer N (&) such that

suplfu(x) — f(x)| <€Vn =N
xeX

& for any € > 0,3 a positive integer N(&) such that
/() —f(xX)| <eVn=N&Vx€X
S f, = f uniformly on X.

2.2.11 Theorem: The metric space C(X) of all complex-valued bounded continuous functions

on a metric space X is complete with respect to the uniform metric defined by d(f, g) =Il f —

gl

Forall f,g € C(X).

Proof: We know that (C(X), d) is a metric space.

Now we prove that (C(X), d) is a complete metric space.

Let {f,,} be a Cauchy sequence in C(X) (D
Let € > 0 be given

Then by (1) there exists a positive integer N such that || f, — f,,, IKEVn,m =N

= suplfu(x) — fn(x)| <€ YVn,m =N
XEX

= |fu(x) = ()| <evnm=Nand Vx € X ()
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This shows that for every x € X, {f,,(x)} is a Cauchy sequence in the complete metric space C

and hence converge to some number f(x) (say)

Thatis lim f,,(x) = f(x)Vx € X
n—-oo

Now we show that this convergence is uniform.

Fixing n and letting m — oo in (2)
fu(@) = lim f,(x)| < eVx €X
m—oo

() = fx)| <evVx€X

Stet)zglfn(x) —f)l<e

“Mfp—fli<evn,=N
Hence, {f, } converges to f uniformly on X.
To show that f € C(X).

Since {f,,} is a sequence of continuous functions and f,, = f uniformly on X, by theorem (5),

f is continuous.

Since each f,, , n > 1 is bounded, and {f,} converges uniformly on X, we have that {f, } is

uniformly bounded.

So,3 M > 0 such that |f,,(x)| < M Vx € X and Vn > 1.

Since f,, = f uniformly on X, 3 a positive integer N such that
Ifn(X)—f(x)|<1Vx€e€XandVvn=N

In particular, |fy(x) — f(x)| < 1Vx € X

Now forany x € X, [f () = [f(x) = fu(x) + fu ) < [f (%) = fn () + [fw () <1+ M
This shows that f is bounded on X and hence f € C(X).

Hence, {f,} converges to fin C(X).

=~ every Cauchy sequence in C(X) is convergent.

Thus, (C(X), d) is a complete metric space.
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2.3 SUMMARY:

In this Lesson we are given detailed explanation about uniform convergence and continuity of
function through definitions and theorems and also, the detailed explanation about uniform

convergence and integration of function through definitions and theorems.
2.4 TECHNICAL TERMS:

e Continuous function
e Metric space

e Normed linear space

2.5 SELF-ASSESSMENT QUESTIONS:

1. Consider f(x) =Yy

for what values of x does tha series converges
1+n2x

absolutely? On what intervals does it converge uniformly? On what intervals does it
fail to converge uniformly? Is f continuous wherever the series converges? Is f
bounded?.
2. Let
(0 (x<73);

— in2 L L el
fn(X) sin x (n+1_x_n

0 (%<x),

function, but not uniformly. Use the series Y. f;, to show that absolute convergence, even

), show that {f,} converges to a continuous

for all x, does not imply uniform convergence.

x%+n . . .
-— converges uniformly in every bounded interval,
n

3. Prove that the series Yo (—1)"

but does not converge absolutely for any value of x.
2.6 SUGGESTED READINGS:

1. Principles of Mathematics Analysis by Walter Rudin, 3™ Edition.
2. Mathematical Analysis by Tom M.Apostal, Narosa Publishing House, 2" Edition,
1985.
- Dr. K. Gangadhar



LESSON -3
SEQUENCES AND SERIES OF FUNCTIONS:
UNIFORM CONVERGENCE AND INTEGRATION

OBJECTIVES:

After studying the lesson you should able to understand the concept of uniform convergence

and continuity and also uniform convergence and integration of functions.
STRUCTURE:

3.1 Introduction

3.2 Definitions

3.3 Uniform convergence and Integration
3.4 Examples

3.5 Summary

3.6 Technical terms

3.7 Self-Assessment Questions

3.8 Suggested readings

3.1 INTRODUCTION:

In this lesson, we define and study the uniform convergence and integration of sequences
and series of functions. There are many different ways to define the uniform convergence of a
sequence of functions, and different definitions lead to in equivalent types of convergence. We

consider here two basic types of uniform convergences: Continuity and Integration.
3.2. DEFINITIONS:
3.2.1 Definition (Uniform Convergence):

We say that a sequence of functions {f,,},n = 1, 2, 3, ..., converges uniformly on E to a function

fif for every € > 0 there is an integer N such that n > N implies

() —f()| <€ (D
For all xeE.

It is clear that every uniformly convergent sequence is point wise convergent.
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If {f,,} convergence point wise on E, then there exists a function f such that, for every € > 0,

and for every xeFE, there is an integer N, depending on € and on X, such that (1) holds ifn > N;

if {f,,} convergence uniformly on E, it is possible, for each € > 0, to find one integer N which

will do for all xeE.

We say that the series ), f,,(x) converges uniformly on E if the sequence {s,} of partial sums

defined by

i=1fi(x) = sp(x)

Converges uniformly on E.

3.2.2 Definition: Let E be a set, {f,,},n = 1,2,3... o sequence of functions defined on E and

let f be a function defined on E.

1l.

iil.

1v.

We say that the sequence {f,,} converges to f pointwise or converges pointwise to f on

E ifforevery x € E, lim f,(x) = f(x) (if for every positive number € and x € E, there
n—->0o

corresponds a positive integer N (depending on € and x as well) such that | f;, — f(x)| <
€ whenever n > N). In this case we say that f is the pointwise limit of {f,} on E, and

we write lim f,, = f(pointwise) forn = 1,2,3...
n—->oo

Forn=1,23...00, let S, =fi(x)+ fL(x)+ fz3(x)+...+fn(x) for x € E. If the
sequence {S, } of functions (called the partial sums of ),;—, f;,) converges to f pointwise
on E, we say that the series Y,;—; fn () converges to f(x) for every x € E, and we
write itas Ypeq fn = f (pointwise).

We say that the sequence {f,,} converges uniformly to f on E for every positive number
€ there corresponds a positive integer N such that |f,,(x) — f(x)| < &€ when ever n >
N and for all x € E. In this case we say that f is the uniform limit of {f;,} and write it as

lim f,,(x) = f(x) (x € E)or limf,, = f uniformly on E.
n—oo n—-oo

We say that the series Y,o—4 f, converges uniformly to f on E if the sequence {S,,} of
partial seems converges uniformly on E to f i.e., for every positive number ¢ there
corresponds a positive integer N such that |S,(x) — f(x)| <€ whenever n > N and

forall x € E.

3.3 UNIFORM CONVERGENCE AND INTEGRATION:

3.2.1 Theorem: State and prove uniform convergence and integration theorem.
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Statement: Let @ be monotonically increasing on [a, b]. Suppose f,, € R(a) on [a, b] , for
n=1,23,..., and suppose f, = f uniformly on [a,b]. Then f € R(a) on [a,b], and
[, fda = lim [} foda
It is sufficient to prove the theorem for real f, n = 1
Claim: fis bounded
Takee =1>0
Since f,, = f uniformly on [a, b], there exists a positive integer N
such that |f,,(x) — f(x)| < eV x € [a, b]
In particular, |fy(x) — f(x)| <1V x € [a, b]
= fO =1 < 1f () - x| <1V x € [a,b]
SO <1+ |fy)|<1+MVxE€]ab]
Where M is an upper bound of |fy| on [a, b]
=~ f1s bounded.
Let g and h be two bounded real functions and g(x) < h(x)V x € [a, b]
For any partition p = {a = xy < x; <....< X1 < x, = b} of [a,b]
Withm; = g.L.b{g(x) | x;—1 < x < x;}
M; =Lub{g(x)]|x_1 <x<x}
mj = g.Lb{h(x) | x;_1 < x < x;}
M; =Lubfh(x)|xi.1 <x<x}fori=123,....n
We have m; < m{ and M; < M; (v g(x) < h(x)Vx € [a, b])
=~ L(p, g a) =2 mAa; < Z?zlmi’Aai =L(p,h,a)
Up,g @) = By Mibay < 3 Miha; = U(p, h,)

This is true for every partition P of [a, b]
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So, f:gda = sup{L(p,g,a) | p is a partition of [a,b] }
b
< sup{L(p,g,@) | p} = |, hda
.. b b
Similarly [ gda < [ hda
Claim: f € R(a) and lim [} fuda = [} fda

Let € > 0 be given

Since {f,,} converges uniformly on [a, b] to f, there exists a positive integer N (¢) such that

() — f(x0)| < m whenever n > N(¢)Vx € [a, b]

€ €
f(x)— 2irat)—a(a)] < fu@) <f(x)+ 2lira)—a(a)] whenever n > N(&)Vx € [a, b]

Now by the proof given above, it follows that

b b
£ b £
fa (f—m)daﬁfgfndaﬁfa U+ sivatrmatan) 4 forn 2 NG

fgbfda—e < fgbfnda < f:fda+£forn > N(¢)

[} fude = [ fda| < & for n = N(e)

(b b
rlzl—{go fg frda = fg fda
By symmetry, we have that lim fbfnda = fbfda

n—-oo “a a
. b b

So, since [ foda = [ fda,
lim [° f,da = lim fgf da
nooo“a /™ noowva’m

b . b . b b
fg fda = lim fg foda = lim J, fada = [, fda

Hence, f € R(a) and [} fda = lim [ f,da.
n—-o0o
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3.3.2. Theorem: Let @ be a bounded variation on [a, b]. Assume that each term of the sequence

{f.} is a real valued function such that f,eR(a) on [a, b] for each n = 1, 2, ... Assume that
fn = f uniformly on [a, b] and define g, (x) = f; fn(®)da(t) ifxe[a,b],n = 1,2, ... Then we

have:

a) feR(a)on|[a,b].
b) gn — g uniformly on [a, b], where g(x) = [ f(t)da(t).

Note: The conclusion implies that, for each x in [a, b], we can write
lim [3 fu (Oda(t) = J lim f, (Oda().

This property is often described by saying that a uniformly convergent sequence can be

integrated term by term.

Proof: we can assume that « is increasing with a(a) < a(b).

To prove (a)

We will show that f satisfies Riemann’s condition with respect to @ on [a, b].

Given € > 0, choose N so that

&

lf(x) — fy()] < T for all x in [a, b].

3[a(b)-a(a

Then, for every partition P of [a, b], we have
[UP, f — fy, @)l <5 and |L(P, f — fy, @) <2
For this N, choose P so that P finer than P, implies
UP, fy,a) — L(P, fy, @) < g
Then for such P we have
U, f,a) —L(P,f,a) <UP,f — fy, @) = L(P,f — fx, @)
+U(P, fy,a) — L(P, fy, @)

<WEP.f = fu @I +ILP.f = fr ) +5 < e

This proves (a).
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To prove (b), let € > 0 be given and choose N so that

&

[a(b) — a(a)]’

JAGEI{OIS

Foralln > N and every t in [a, b]. If x € [a, b], we have

a(x)—a(a) € £
a(b)-a(a) 2 S 2 <E

190(0) — g(O| < [J1£u(®) = FOIda(t) <

This proves that g, — g uniformly on [a, b].

3.3.3 Theorem: If a series . f,, uniformly converges to f on [a, b] and each f,, is continuous

on [a,b] then f is integrable on [a, b] and the series Z( f; fndt) converges uniformly to

I f dt, forallx in [a, b], ie.,

IS fdt=3p(J fudt), forall x € [a,b]

Proof: Since ). f,, is uniformly convergent to f on [a, b] and each f, continuous on [a, b],

therefore the sum function f is continuous and hence integrable on [a, b].

Again, since all the functions f;, are continuous, therefore the sum of finite number of functions,

Yr—1 f is also continuous and integrable on [a, b], and

r ) frdt = [ X0y frdt

By the uniform convergence of the series, for € > 0, we can find an integer N such that for all

x in [a, b]
If —Zr=1 /el < ﬁ, foralln > N
For such values of n, and all x in [a, b]
|Ja fdt = X7 frde] = | (F = e f)ee]
< JIf = Eheafrldt
< ﬁf; dt <e
That implies Yy ( f; fndt) converges uniformly to f; f dt on [a, b]

Thatis [ f dt =S5, (f) fudt), forall x € [a, b]
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3.4 EXAMPLES:

3.4.1 Example 1: The series

lox+x2—x3+-=—,(0<x<1)
1+x

Each term is integrable.

Solution: Given equations is

l—x+x2—x3+-=—,(0<x<1)
1+x

Integrating from 0 to a, the right hand side gives

1d—x=l0gZ

0 1+x

While the other side gives

1q _ 2 3 odr e B ]
Jy(—x+x*—x%+ )dx—[x —+5 -+ ]0

But we know that
1.1 1
1092—1—5+§—Z+'”

Thus the two sides are equal at x = 1, and so term by term integration is possible over [0,1],

even though the given series is not uniformly convergent on [0,1].
3.4.2 Example 2: The sequence {f;,}, where

fr(x) = nxe‘"xz,n =123, ...

Converges point wise to zero on [0,1].

Solution: Given that

fr(x) = nxe ™ n=1,23,..

Here

J, fdx=0

and



| Centre for Distance Education 3.8 Acharya Nagarjuna University ‘

1 _ 1 _
kﬁ@x=§penﬂk=§u—en)
Therefore

lim folfndx = lim %(1 —e™™) = % # folf dx.
n—-oo

n—-oo

Hence, convergence cannot be uniform on [0,1].

Note: if we, first, show that the sequence is non-uniformly convergent, then this is an example

of a sequence which, though not uniformly convergent yet, has an integrable limit function.

3.4.3 Example 3: Show that the sequence {f,}, where

n’x, 0<x<1/n
fa(x) ={—n?x + 2n 1/n<x<2/n
0, 2/n<x<1

is not uniformly convergent on [0,1].

Solution: Given that

n’x, 0<x<1/n
fa(x) =4 —n?x + 2n 1/n<x<2/n
0, 2/n<x<1

The sequence converges to f, where f(x) = 0, for all x belongs to [0,1]. Each function f,, and

f are continuous on [0,1].

Also
1 1 2 1
Jo fodx = fo/nnzx dx + fl//:(—nzx + 2n)dx + fz/nO dx =1
But
1
Jo fdx=0
Therefore
.1 1
Al_r}ilo Jo fadx # [ f dx.
So (Theorem 3.2.1) the sequence {f,,} cannot convergent uniformly on [0,1].

3.4.4 Example 4: Show that the sequence {f,}, where
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+n3x2?)

folx) =228

nZ
is uniformly convergent on the interval [0,1].
Solution: Given function is

log (1+n3x?)
n2

fax) =

2nx
1+n3x2

The sequence {¢,,}, where @, (x) = = f' (x), may be easily shown to be uniformly

convergent to ¢, where @ (x) = 0, on [0, 1]. Also each function ¢, is continuous on the given

interval.

Therefore (by Theorem 3.2.1) the sequence of its integrals, {f,,} converges uniformly to
f(f(p dt = 0 on [0, 1].

3.5 SUMMARY:

In this Lesson we are given detailed explanation about uniform convergence and integration of

function through definitions and theorems.
3.6 TECHNICAL TERMS:

¢ Non-uniformly convergent
e Integrable limit function

e Uniformly convergent
3.7 SELF-ASSESSMENT QUESTIONS:

Ciw=f) 550

converges, prove that the series f(x) = Yo—; cp l(x — x,,) (a < x < b) converges

if {x,,} is a sequence of district points of (a, b), and if }}|c,,|

uniformly, and that f is continuous for every x # x,,.
2. Let{f,} be asequence of continuous functions which converges uniformly to a function

f on aset E. Prove that lim f,(x,) = f(x) for every sequence of points x,, € E such
n—>oo

that x,, = x, and x € E. Is the converse of this true?.

3. Let a be bounded variation on [a, b] and assume that Y, f,,(x) = f(x) (uniformly on
[a, b]), where each f;, is a real-valued function such that f;, € R(«) on [a, b].
Then we have

a) f € R(a) on [a, b].
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b) [ Zes fu(®Dda(t) = Ty [ fu(Oda(t) (uniformly on [a, b]).

Hint: Apply Theorem 2.2.2 to the sequence of partial sums.

Note: This theorem is described by saying that a uniformly convergent series can be integrated

by term by term.
3.8 SUGGESTED READINGS:

1. Principles of Mathematics Analysis by Walter Rudin, 3™ Edition.

2. Mathematical Analysis by Tom M.Apostal, Narosa Publishing House, 2" Edition,
1985.

3. Mathematical Analysis by S.C. Malik and Savita Arora, New Age International (P)
Limited, 2™ Edition, 1997.

- Dr. K. Gangadhar



LESSON - 4
UNIFORM CONVERGENCE AND

DIFFERENTIATION

OBJECTIVES:

After studying the lesson you should able to:
Understand the concept of Uniform convergence, concept of Differentiation, solved problems
and related Theorems.

STRUCTURE:

4.1 Introduction

4.2 Theorems

4.3 Solved Examples

4.4 Summary

4.5 Technical terms

4.6 Self -Assessment Questions

4.7 Suggested readings

4.1 INTRODUCTION:

In this chapter we learn about the definitions of Uniform convergence, Differentiable,
Monotonically increasing, Monotonically decreasing and Riemann Integrable. We also know
about some Theorems and Solved problems.

4.1.1 Definition: Uniform convergence

A function f:D — R is uniformly continuous if for everye> 0, there exist a 0 >0
such that |f(x) —f(t)| <e forall x,teD satisfying|x —t| <0.

Examples:
1) Linear functions are examples of uniformly continuous functions.
2) Every continuous function on a compact interval is uniformly continuous functions.

4.1.2 Definition: Differentiable
Let f:[a,b] > R andx €[a,b]. Suppose a <t <b andt# x. If limM

—x I—x

exist.

Then it is called derivative of f'at x. We write it by f"(x).
s f'(x) = limM.
t—>x t - X
Then we say that f'is differentiable at x.
4.1.3 Definition: Monotonically increasing

Let f'be a real valued function on (a, b). Then f'is said to be Monotonically increasing,
ifa<x<y<b=fx)Lf(»).
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(or)
Suppose fis differentiable function on (a, b). If f'(x)>0,Vx € (a,b) then we say that

f 1s Monotonically increasing.

4.1.4 Definition: Monotonically decreasing

Let f be a real valued function on (a, b). Then f is said to be Monotonically
decreasing, if a<x<y<b= f(x)= f(»).

(or)
Suppose fis differentiable function on (a, b). If f'(x) <0, Vx € (a,b) then we say that f

is Monotonically decreasing.

4.1.5 Definition: Compact set
Let X be a metric space and E — X . Then the E is said to be compact, if every open

cover for E has a finite sub cover for £.

~Ec U G,2EcG, VG, V....uG, . Here {G,}is a collection of open sets.

a=1
4.1.6 Definition: Riemann Integrable
Let f'be a bounded function on [a, b] and P = {xo, x1, ...,xa} be the partition of [a, b],
then m, =Inf{f(x)/xel[x_,x]1},1<i<n,

M, =Sup{f(x)/xe[x,_,,x]},1<i<n,

i-1°

Ax, =x,—x,_,.

~L(P, )= Z m, Ax, is called Lower Riemann sum and

i=1

UP, f)= ZM . Ax; 1s called Upper Riemann sum.

i=1

b
Also J. fdx =Sup {L(P, f) / P is a partition of [a, b] } is called Lower Riemann integral and

a

b
J fdx =Inf {U(P, f) / Pis a partition of [a, b] } is called Upper Riemann integral.

b

b b
If j fdx= I f dx then we say that f'is Riemann integrable over [a, b]. It is denoted byj fdx .

a

fdx:j.fdx:jlfdx.

Q| C— >
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4.2 THEOREMS:

4.2.1 Theorem: Suppose {f,} is a sequence of functions, differentiable on [a, ] and such
that {f.(x0)} converges for some point xo on [a, b]. If { fn'} converges uniformly on [a, b], then
{fn} converges uniformly on [a, b], to a function /', and f’(x)=lim f "(x) (@a<x<b).

Proof:

Let {f»} is a sequence of differentiable functions on [a, b] and {f.(X0)} converges for some
point xo on [a, b].

= For given e> 0 there exist a positive integer N; such that

fn(xo)—fm(xo)|<§ ¥ n,m>Ni.

Let { fn'} converges uniformly on [a, b].

= For given e> 0 there exist a positive integer N2 such that|f,'(z)— f, (t)| < 2(; )’
—-a
V n,m> N, and V¢ €[a,b].
Let N = Max {Ni, Nao} then | £, (x,)— £, (%) <§ and|£/(6)— £1(1)| < 2(; 2 ¥ mm=Nand
—-a

Vtela,b]. ——>(1)
By applying the Lagrange’s Mean value Theorem to the function (fa- fm),
(fy = £, = (f, = £,)0] =[x =|.|(f, = £,)(p)| for some point p

between x and ¢, if n, m > N.

We have forx,t €[a,b],

For any x,f €[a,b] we have

(S

£,(0) = [,(x) = £,(0)+ £,,(0)] < |x_t|'2(b—a) (. by(D))
<< (Mg] v n,m>N.
2 (h—a)

L@ L0= L0+ [,0]<5 —=>@)

For any x <[a, b] and n, m > N,

1,0~ 1,0 =[ 4,0~ 1,60 = £,Ge)+ £, (6 ) + £ (x)) = £, (x,)
[0 = L) = 1,60+ fo )|+, G = £ ()

< §+§ (- by(and(2))

We have

< +

=€

fn(x)—fm(x)| <g,Vn,m> N,x €|a,b].
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= {fn} converges uniformly on [a, b].
Claim: f'(x)=lim f(x) Vxe€[a,b].

Since {fn} converges uniformly to a function f'on [a, b].

= lim £,(x)= f(x)

Fix x €[a, b].
For any a <t <b witht # x, define w(t):wandlyn(t):w.
—X —X
Now liml//n(t)=limM=fn'(x),a <x<hn=1273.. ——>0)
—x —x —X
From (1) we have fn'(t)—fn;(t)| << , Vn,m>N, Vtela,b]
2(b—a)
. . S
= [limy, ()~ limy, ()] < TG

(S

,V n,m>N, Vte[a,b].
2(b—a)

=

v, (0) -, ()<

Therefore by Cauchy - Criterion for uniform convergence we have {y, (x)}converges

uniformly fors # x.
Since {f,} converges to f, we conclude that

LO-£) _fO-f()
t —_

limy, (t) =lim
=0 X r—x

n—>0

= (t) Uniformly for a <t <b

with? # x . ——4)

Then by known theorem, (3) and (4) shows that limy (¢) = lim f]'(x).
s lim f(x) =limy(¢) = limw = f'(x) ,fora<x<bh.
n—»0 t—>x t—>Xx —X

= li_r)gfn'(x):f'(x) Vx €la,b].

4.2.2 Theorem: There exists a real continuous function on the real line which is nowhere
differentiable.

Proof:
Define ¢(x) = |x| where—1< x <1, and

We extend @to R by @(x+2)=¢(x)in the following.

We know that every real number must be in an interval of the form [2n-1, 2n+1], for some
integer n.

Define ¢: R — Rby ¢(x)=|x—2n| if 2n-1<x <2n+l1.
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Then ¢(m) — {1, if m isanevenintegre.

0, if mis anodd integer.

SoP(x) = |x

Letme Z,

, for-1<x <1 and also #(x+2n)=¢(x) forall xeR,neZ.

We have 2m-1<x < 2m+1

= (2m-1)+2n <x+2n < (2m+1)+2n.

= 2(m+n)-1 <x+2n < 2(m+n)+1.

S +2n) =|(x+20) = 2(m+n)| = |x - 2m| = $(x).

Since 2 is the least positive period, so @is periodic function with period 2.

Clearly ¢is continuous on R .

Forx e R, Define f(x) = i(%)n ¢(4nx).

2 oen)<3].

Since )’ (%j is convergent then by weierstrass M-Test, the series Z(%j #(4" x) converges
n=0

n=0

Since 0 < @(x) <1 so

uniformly on R.

Since fis the uniform limit of sequence of continuous functions it follows that f'is continuous
on R.

Prove that f'is differentiable at nowhere.

Let x € Rbe a fixed real number and m is any positive integer.

Define 6, =+ 1
2.4"
=10,|=% L1
24" 24"

1. .
= 4" |5m| = EIS not an integer.

#(4'(x+35,))-9(4"()
. .

m

Definey, =

If n > m then n = m + p, for some positive integer p.

To prove y, =0 and 4".0, is an even integer.

Consider 4".0, = 4”.(J_r 1 j
2.4"
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=127

=22k is an even integer.
. 4".0, 1s an even integer.

#(4'(x+5,))-9(4"()
1)

B ¢(4"x+4”5m)—¢(4"(x))
B 5,
¢(4"x)—¢(4”(x))

Consider y, =

= ( d(x+2n)= ¢(x))

o

m

=0
cy =0ifn>m ——()

Show that |y,|<4"if n<m.

$(4" (x+5,))-4(4"(x)

Since y, =

5}'}1
- #(4 (x+8,))-p(4' )|
6,
i (4 ) +48,)-4(4' ()
5,
4"(x)+4"5 | -|a”
_ ‘ (x)+ ”" ‘ (X)H ( ¢(x):|x|)
15,
[4 (o) +]475, ][4 |
<
5,
_|#al
5,
_|#e]_
S
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<4'ifn<m.——>(2)

Ly,

=0

Now |[LG+38,) =/ )| _

S{Juortorf2acs

I \‘” 5,
< (3 |$(4"(x+8,))-g# )
Z(Z) S, |
zi(% n v | ¢ by definitionof y)
m (3 = (3
23w S5
:i(% 1140 G by () forn > m)
< i(%)n 4" (. by(2) forn<m)
m 31’1 .,
_;474
zign
.._|f<x+5g>—f(x>§gi3n

m

m

\ If(x+5) S| E
=53 >3 3
Z ?| | Z

Take asm — oo thens, — 0.

m—1

. f 1s not differentiable, because 3" — 23" is large value as m — .

n=0

.. The function f* is continuous at everywhere on R but nowhere differentiable on R.

4.3 SOLVED EXAMPLES:

4.3.1 Example: Give an example the limit of integral need not be equal to the Integral of

limit.
Solution:

Consider f,(x)=nx(1-x*)",0<x<L,n=12,3,....
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1 1
Claim: lim [ £, (x)dx # | [lim fn(x)}dx.
0 0

1 1 |
Now Ifn(x)dx - jnx(l—xz)" dx = %I—2x(1—x2)" dx
0 0 — 0

_i{u} _—_"{ _1—0}_ no_n 1
n n

1
1 1 1
lim j £.(x)dx = lim = =—. —>()
o S aqly 20+0) 2
n

Now lim £, (x) = limnx(1-x*)" = .

[%ﬂu) =0 — > (2)

S —

From (1) and (2) we have lgngo_i‘ﬁ (x)dx # j[lgg f (x)}dx.

4.3.2 Example: If fis real function and %m(}[ f(x+h)— f(x—h)]=0. Thus this implies that

1s continuous on R.

Solution:

f(x):|x| if x#0

Consider f:R— R be a function defined by :
=1 ifx=0

Since lim f/(x) = lirr(}|x| =0 and f(0) = 1.
lirr(} f(x)# f(0)so fis not continuous at x = 0.
Ifx=0 then%irr(}[f(x+h)—f(x—h)]

= lim[ £ ()~ f(~)]

=lim| |4 [~
= lim| ||~ [A]
=0

%ing[f(x +h)— f(x—h)]=0 does not implies that fis continuous on R.
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4.4 SUMMARY:

Uniform convergence allows us to interchange limits and differentiation under certain if
a sequence of differentiable functions converges uniformly and the derivatives also
conditions. That means converges uniformly. Also the limit function is differentiable and its
derivative is the limit of the derivatives.

4.5 TECHNICAL TERMS:

Differentiable
Monotonically increasing
Monotonically decreasing
Compact set

Riemann integrable

4.6 SELF- ASSESSMENT QUESTIONS:

X
1+ nx?

1. For n =1, 2, 3,.., x real, put f (x)= . Show that {fn} converges uniformly to a

function f, and that the equation f"'(x) =lim /' (x) is correct if x # 0, but false if x = 0.

0 (x<0),

if {xn} is a sequence of distinct points of (a, b), and if
ey q p (a, b) >

Cf’l

2. If I(x) :{

converges, prove that the series f(x)= Z ¢, [(x—x,) (a<x<b) converges uniformly, and

n=1
that f* is continuous for every x # x, .
3. Let {fn}be a sequence of continuous functions which converges uniformly to a function f

on a set E£. Prove that lim f, (x,) = f(x) for every sequence of points x, € Esuch that x, - x

,and x € E . Is the converse of this true?

4. Letting g(x) denotes the fractional part of the real number x, consider the function

f(x)= Z(n—);) (x real). Find all discontinuities of f, and show that they from a countable
n

n=1
dense set. Show that /" is nevertheless Riemann-integral on every bounded interval.

5. Suppose {fn}, {gn} are defined on E, and
(a) Z /, has uniformly bounded partial sums;

(b) g, = 0 Uniformly on E;
(c) g(x)=g,(x)=gs(x)=...forevery x e E.
Prove that z /. g, converges uniformly on E.

6. Suppose gand f, (n =1, 2, 3,...) are defined on (0, «), are Rieman- integrable on
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[z, T] whenever 0<¢< T < o,

fn| <g,f, = f uniformly on every compact subset of (0, «),
and I g(x)dx < . Prove that lim.[ S, (x)dx = j J(x)dx.
0 0 0

7. Assume that {f,} is a sequence of monotonically increasing functions on R’ with

0< f (x)<lforall x and all n.

(a) Prove that there is a function f and a sequence such that f(x)= llcim S (x) for

everyxeR'.
(b) If, moreover, fis continuous, prove that f,, — f uniformly on R’.
8. Let f be a continuous real function on R’ with the following properties: for every ¢,
0 (0<¢t< l)

and f(¢)=
l(gﬁtél).

Put®(¢) = (x(¢), y(t)), where x(t)= i 27 F3), y(t) = i 27" £(3*"t). Prove that @ is

n=1 n=l1

continuous and that ® maps 7/ = [0, 1] onto the unit square /> — R*. If fact, show that ®

maps the Cantor set onto /.
4.7 SUGGESTED READINGS:

1. Principles of Mathematical Analysis by Walter Rudin, 3™ Edition.
2. Mathematical Analysis by Tom M. Apostal, Narosa Publishing House, 2" Edition, 1985.

- Dr. N.S.L.V. Narasimharao.



LESSON -5
EQUICONTINUOUS FAMILY OF FUNCTIONS

OBJECTIVES:

After studying the lesson you should able to:

[lustrate the effects of Equicontinuous, Uniform bounded Family of functions and Uniformly
convergent subsequence.

STRUCTURE:

5.1 Introduction

5.2 Solved Examples

5.3 Theorems

5.4 Summary

5.5 Technical Terms

5.6 Self- Assessment Questions

5.7 Suggested Readings

5.1 INTRODUCTION:

In this chapter we learn about the definitions of Point Wise Bounded Sequence,
Uniform Bounded Sequence, Equicontinuous and Riemann Integrable. We also know about

some Theorems and Solved problems.

5.1.1 Definition: Point Wise Bounded Sequence
Let E be a subset of a Metric space ‘X" and let {f»} be a sequence of functions defined
on E. We say that {fu} is point wise bounded on E, if the sequence {fu(x)} is bounded for

every xeE if there exists a finite valued function ¢ defined on E such that

f,(x)|<p(x) Vxe E,n=1,23,....

5.1.2 Definition: Uniform Bounded Sequence
Let E be a subset of a Metric space ‘X” and let {f»} be a sequence of functions defined
on E. We say that {f;} is Uniform bounded on E, if there exists a number M such that

f,(0)|<M VxeE,n=1,2,3,....
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5.1.3 Definition: Equicontinuous

A family ‘F’ of complex functions defined on E in a metric space (X, d) is said to be

Equicontinuous on E if for every £>0 there exists a 6 >0 such that | f(x)—f (y)|<g

whenever d(x, y) < 6 forx, ye Eand f e F.

5.1.4 Definition: Riemann Integrable

Let f'be a bounded function on [a, b] and P = {xo, x1, ...,xn} be the partition of [a, b],
then m =Inf{f(x)/xelx,_,x]},1<i<n,

M, =Sup{f(x)/xe[x_,x]},1<i<n,

Ax,=x,—x_,.

S~ L(P, )= Z m, Ax, 1s called Lower Riemann sum and

i=1

UP,f)= ZM . Ax, is called Upper Riemann sum.

i=1

b
Also I fdx =Sup {L(P, f) / P is a partition of [a, b] } is called Lower Riemann integral and

b
j fdx =Inf {U(P, f)/ P is a partition of [a, b] } is called Upper Riemann integral.

a

b b b
If J. fdx= I f dx then we say that f'is Riemann integrable over [a, b]. It is denoted byj fdx .

5.2 SOLVED EXAMPLES:

2
X

~,x€[0,1],n=1,2,3,... then show that{f,}is

5.2.1 Example: If [ (x)=———
x4+ (1-nx)

Uniformly bounded on [0,1] and It has no subsequence which converges uniformly on [0,1].
(or)

The sequence { fn} converges on [0,1], but not uniformly.

Solution:

2
X

Let f (x)= -, x€[0,1],n=1,2,3,...

x* +(1—nx)

Since (1—nx)2 > (0
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:>xz+(1—nx)2 >0+ x°
I
x2+(1—nx)2

= f,(x)<1, Vxe€[0,1],n=1,2,3,...

<1

{ fn} is uniformly bounded on [0,1].

2 2
X

Now lim f, (x) =lim = =0.
Hoof"() oo x? +(1-nx)’ x* +o0

. {f,} converges to ‘0’

e 1
Let positive integer ‘n’ there exist —<[0,1].
n

(1/n)? __Wn®
A/n) +(1-n(/n)’ A/n)’+0

Now f,(1/n) =

= {f,(1/n)} converges to 1.

{ fn} has no subsequence which converges uniformly on[0,1].

5.2.2 Example: If fo(x) = sin nx, 0 < x < 2n, n = 1, 2, 3,....then there is no subsequence
which converges point wisely on [0,27].

Solution:

Let fo(x) =sinnx, 0 <x<2n,n=1,23,....

Now |fn (x)| = |sin nx| <1
=|f,(x)|<1Vxe[0,27],Vn
{ fn} is uniformly bounded sequence of continuous functions on a compact set [0,27].

In contrary way, we suppose that a subsequence { fox } of converges point wisely on

[0,27].

Now [lcig(sin nx—sinn,x)=0-0=0.
The sub sequence { f;, } converges to ‘0’
Since %iglo(sin nx—sinn, x) =0

By Lebesgue Integral formula on bounded convergent sequence, we have

2
. . . 2 . o e
lim | (sinnx—sinn,,x)” =0so 27 =0.It is a contradiction.

k—o
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Hence there is no subsequence { fuk } which converges point wisely on[0, 2] .
5.3 THEOREMS:

5.3.1 Theorem: If { fn} is a point wise bounded sequence of complex functions on a countable set £,

then { fn} has a sub sequence { fnk} such that{ ok (x)} converges foreveryx € £ .
Proof:
Let { fn} is a point wise bounded sequence of complex functions on a countable set E.

Since E is Countable set then the elements of £ can be arranged distinct sequence.

Let £ = {x1, x2, ....}, where x; #x;, fori # j.

Since { fn} is a point wise bounded on E.

= { f,(x,)} is bounded for all x, € E .

Since { fn(xl)} is bounded then by known theorem (since every bounded sequence have
convergence sub sequence) { fn(xl)} have a convergent subsequence { Ju (xl)} say.

Let S, ={ /11, fiss frasens)

Since { fn(xz)} is bounded then by known theorem (since every bounded sequence have
convergence sub sequence) { f (xz)} have a convergent subsequence { for (xz)} say.

Let S, ={fi» fons fogoooms)

Continuing this process we get

Slz{f“,flz,fm, ..... }

Szz{fzpfzz,fB, ..... }
S3:{f;1,f32,f33, ..... }

From above argument we have

(1) S» 1s a sub sequence of Sn.1, forn=2,34....
(ii) { ik (xn)} Converges.
Consider the diagonal elements S ={f,,, /3, f135----.}

Clearly S is sub sequence S, forn =1, 2, 3,.... and {f,,(x,)} is converges. Vx, € E

Hence { f, } has a sub sequence { f,, } such that{ f, (x,)} converges for everyx, € E .
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5.3.2 Theorem: If K is compact metric space. If f,, € C(K) forn=1, 2, 3,.... and if {fn} converges

uniformly on K, then { fn} is Equicontinuous on K.

Proof:

Given K is compact metric space.

Given f, € C(K) forn=1,2,3,....

= fu 1s complex valued continuous bounded function on K, forn=1,2,3,....
Since f, is continuous function on K and K is compact

= f» 1s Uniformly continuous on K.

= For givene>036 > 0>

£, = f,(0)|< %whenever d(x,y)<0,9x,yeK

forn=1,2,3,... ——>()

Since {f,} is Converges Uniformly on K.

= For given €> 0,3 a positive integer N>

fn(x)—fm(x)|<§, Vn,m>N,Vxe K . — - (2)

=

£,(0) = fy () <§, VnzN,VxeK. ———(3)
Claim: { fn} is Equicontinuous on K.
Letd(x,y)<5,Vx,yeK.

L,0)—f,(0)|=

<

Consider

L) = £+ ()= L)+ f,(0) = £,0)]
GRS ERVME R NGY EEVMCORIACY]

€ € €
< §+§+§ (By(1),(2),(3))

= €

Hence for given €>036 > 0>

fn(x)—fn(y)| <e , whenever d(x,y)<0,Vx,ye K
forn=1,2,3,...

= {/, }is Equicontinuous on K.

5.3.3 Theorem: If K is compact. If f,, € C(K) forn=1, 2, 3,.... and{ fn} is point wise bounded
and Equicontinuous on K, then (a) { fn} is Uniform bounded on X.

(b) { fn} contains Uniformly convergent subsequence.
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Proof:

Given K is compact and f,, € C(K) forn=12,3,....
Given { fn} is point wise bounded and Equicontinuous on K.
Proof (a):

Since { fn} is Equicontinuous on K.

= For given €>035>0>

fn(x)—fn(y)| <e when everd(x,y)<o,Vx,ye K,
forn=1,2,3,... ——>()
Since K is compact set

= There exist finite points p,, p,,....p, € K 3 K < Ny(p,) UNs(p,)U.....0Ns(p,)

Since {f,} is point wise bounded on K

= {fn(pl.)} is bounded, fori=1,2,3,.....

= There exist positive integer M; > fn(pl.)| <M, fori=123,.... ——=(2)

Let M = Max {Mi, M,,...... M}
=>M <M, fori=1,273,..... ——>03)

Let xe K=>xeNy(p)UN;(p,)U.....0Ns(p,)

= xe Ny(p,), forsomei=1,2,3,.....

— d(x,p) <5

= |/.(x)—f,(p,)|<e (since by (1))

= |1, =1/ )l <e (e = ]2 x| )
= |/, ()| <e +|/,(p)]

= |f,(x)|<e+M, (. by(2))
= | f (x)| <e+M (-by(3))
|fn(x)|£e +M VxeK, forn=123,......

= {/, }is Uniform bounded on K.
Proof (b):
Let E be the countable dense sub set of K. i.e) E=K.

Then by known theorem (Theorem 1) we have { f, } has sub sequence {f, } such that { f,, (x)}

convergent, for everyx € E .
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= { fn} has sub sequence { gi} such that{ g, (x)} convergent, for every x € E , where gi = f: .

Claim: { gl.} is uniformly convergent on K.

Since K is compact set

= There exist finite points X,,x,,...x, € £ 3 K < N;(x,) U Ns(x,)U.....U Ns(x,)
Since { g, (x)} convergent for every x € £

= {g.(x,)} convergent for every x, € E

= For givene> 0,3 a positive integer N> ‘ g,(x,)—g;(x,)

<§,vl',ij s (4)

Since f,, € C(K)

= f, is continuous function on K.

= g, is continuous function on K.( since {g;} is a sub sequence of {f,})
If xeK

= xe N;y(x,)UN;(x,)U....."U Ny(x,)
= x € Ny(x,) for somel<s<r

=d(x,x,)<0

= |gl. (x)—g,(x,)|< § (. gjiscontinuous on K) —— — (5)
Consider

2,0~ g, ()| = |2, ()~ g, (x) + &,(x,)~ g, (x) + g, (x,)~ g, (x)|
+|g;(x) - g, ()

+\g,~(xs) -g,(x,)

e € €
g g @f<sHHs (b))

|20 —g,()|<|g () -g(x)

|g:(x)— g, (x)| =<
g () - g, ) <e
Hence for given e> 0,3a positive integer N > ‘gi(x) -g; (x)‘ <e,Vi,j>2N,VxekK

= { gl.} is Uniformly convergent on K.

5.3.4 Theorem: Prove that a subset § of C(K) is compact if and only if it is uniformly closed,
pointwise bounded, and equicontinuous, where K is a compact metric space.

Proof:

Given K is a compact metric space.

Given S is a subset of C(K), the set of continuous functions on K.
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Necessary part:

Let S is compact.

Claim: S is uniformly closed, pointwise bounded and equicontinuous.
Since S is compact, then it is closed.

Thus, S is uniformly closed because the convergence is uniform.
Since § is compact, it is totally bounded.

Thus, forany x € K , the set {f(x): f € S} is bounded.

Hence, S is pointwise bounded.

Since S is compact, it is totally bounded. For each & >0 there exist a finite set

{f,,.... f,} <8 such that for any f €S, there exist f, with d(f,fl.)<§

Each f; is uniformly continuous, so there exists & >0 such that d(x, y)>¢& implies
2 .
/i) = £,(»)] < 3 for all i.

Forany f € S, choose f, such thatd(f, f,) < g

Then

1f (%)= O | f @ = L+ @ = LD+ - f D) < Z+=+= =&,

Hence, S is equicontinuous.

Sufficient part:

Let S is uniformly closed, pointwise bounded and equicontinuous.

Claim: S is compact.

By the Arzela-Ascoli Theorem, since S is pointwise bounded and equicontinuous, S is relatively

compact.

Since S is uniformly closed, it contains all its limit points, and thus is compact.
5.4 SUMMARY:

An Equicontinuous family of functions exhibit similar changes in output when small

changes in input, ensuring a uniform approach to convergence and compactness.
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5.5 TECHNICAL TERMS:

Point Wise Bounded Sequence
Uniform Bounded Sequence
Equicontinuous

Riemann Integrable
5.6 SELF ASSESSMENT QUESTIONS:

1. Suppose /" is a real continuous function on R, fuo(f) = finf) forn=1,2, 3,... and { fi}
is equicontinuous on [0,1]. What conclusion can you draw about f* ?

2. Suppose {fn} 1s an equicontinuous family of functions on a compact set K, and
{fn}converges point wise on K. Prove that {f»} converges uniformly on K.

3. Let {fn}be a uniform bounded sequence of functions which are Riemann-integrable on [a,

b], and put F,(x)= I f,(t)dt (a <x<b).Prove that there exists a subsequence {Fnk}

which converges uniformly on [a, b].

4. Let K be a compact metric space, let S be a subset of G(K). Prove that S is a compact if and

only if S is uniformly closed, point wise bounded, and equicontinuous.

5.7 SUGGESTED READINGS:

1. Principles of Mathematical Analysis by Walter Rudin, 3™ Edition.
2. Mathematical Analysis by Tom M. Apostal, Narosa Publishing House, 2" Edition, 1985.

- Dr. N.S.L.V. Narasimharao.



LESSON - 6
STONE — WEIERSTRASS THEOREM

OBJECTIVES:

After studying the lesson you should able to:

[llustrate about Stone — Weierstrass Theorem and its applications.

STRUCTURE:

6.1 Introduction

6.2 Solved Examples

6.3 Theorems

6.4 Summary

6.5 Technical Terms

6.6 Self Assessment Questions

6.7 Suggested Readings

6.1 INTRODUCTION:

In this lesson we know about the definitions of Sequences, complex valued functions,
compact set, continuous and uniform continuous. We also learn about Stone — Weierstrass

Theorem and its corollary. We also learn some solved examples.

6.1.1 Definition: Sequence

A function f defined on the set J of all positive integers is said to be a Sequence.
Iff(n)=xn, for "€J

We denote the sequence f by the symbol {x, }. The value of f/ that is, the element x, ,
are called the terms of the sequence.

If 4 1s a set and if x, € 4 for all neJ, then is said to be a sequence in 4 (or) a

sequence of elements of 4.

6.1.2 Definition: Complex Valued Function
A complex valed function on the interval [a, b] is a function that takes real numbers
from the interval [a, b] and maps them to complex numbers. This can be expressed as a

function f: [a, b] = C, where C represents the set of all complex numbers.
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6.1.3 Definition: Continuous Function

A function f:D — R is continuous at x€ D , if for everye>0, there exist a 0 >0

such that |f(x) —f(t)| <e satisfying|x — t| <0.

6.1.4 Definition: Uniformly Convergent

A sequence of functions {fu(x)}converges uniformly to a function f(x) on a set E, if

fn(x)—f(x)|<8,f0rall n>Nandall xeE.

givene> 0, there exists an integer N such that

6.1.5 Definition: Compact Set
Let X be a metric space and £ — X . Then the E is said to be compact, if every open

cover for £ has a finite sub cover for £.

S Ec U G,»EcG,vG, v....uG, . Here {Ga} is a collection of open sets.

a=l1

6.1.6 Definition: Bounded function
A bounded function is a function whose out put values are contained within a finite
range, meaning they have both a finite upper and lower bound.

In other words, there exist real numbers m and M such that m < f(x) < M for all x in
the functions domine.

If there exist a positive integer M such that | f (x)| <M, for all x in the functions

domine.

6.2 SOLVED EXAMPLES:

6.2.1 Example If f is continuous on [0,1] and if jf(x)x”dx =0 (n=0,1,2,...),
0
prove that /' (x) = 0 on [0,1].
(or)
If Ll f(x)x"dx =0 for all nin N. Show that f=0 on [0,1].
Solution:
Assume that Ll f(x)p(x)dx =0, for all polynomials p(x) on [0,1].

By Stone — Weierstrass Theorem, there exists a sequence of polynomials p, on C[0,1] which

converges uniformly to f.
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Ao, 11, >0

1 1
Since given integral is convergent, we have I p.f —)I fr.
0 0

1 1
But we have Ipnf=0 for all n then If2=0 (Since f>0)
0 0

1
j F(x)dx=0 then f =0 forall x € [0,1].
0

Hence f=0.

6.2.2 Example: By Weierstrass approximation there is a sequence of polynomials P *such
that {P, *} converges uniformly on [-a,a] to |x| . Then lim P, *(0) = P*(0).

Solution:
If P(x)=P, *(x)—P *(0),{P,} converges uniformly on [-a,a] to |x|

and P (0)=0.
1
6.2.3 Example: LetQ (x)=C,(1-x*)". Find C, if IQn (x)=1.

Solution:

Let O, (x)=C,(1—-x7)"then

0.(x)=C, [1—(?}8 +(ij4 - (—1)”x2"].

1
Given 1 = IQ (x) then

Ul (j 2dx+(2] 4dx—...+(—l)”ix2”dxj

2k+1

1
2k+1} 2k+1

|
sot-c (o[-
w15

=

We know that j kdx =
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=C, Zl[l—l(nJ+l(nJ—...+ " j_l.
2 3(1) 5\2 2n+1

6.2.4 Example: Show that, if f'is continuous on R, then there exist a sequence { P, } of

polynomials converging uniformly to f on each bounded subset of R.
Solution:

Given f'is continuous on R.

Step 1

For each positive integer n, fis continuous on the interval [-n, n].

By the weierstrass Approximation theorem, there exist a polynomial P (x)such that for all

xelmnl. |B() - f()] <.
n

This means P uniformly approximated f'on [-n, n].

Step 2
Let B be any bounded sub set of R.

Then there exist an integer N such that B < [-N, N].

Forall n> N and for all x € B, we have x €[-n,n].

Therefore,

Pn(x)—f(x)|<lgi forall xe Band n> N .
n N
Given any ¢ >0, choose N such that %< €.

Then for all »> N and for all x € B,

11
P”(x)—f(x)|<zﬁﬁ<g.

Thus, the sequence of polynomials { P, } converges to fon B.

6.3 THEOREMS:

6.3.1 Theorem: State and Prove Stone — Weierstrass Theorem
If fis a continuous complex function on [a, b], there exist a sequence of polynomials

{Pn} such that lim P, (x) = f(x) uniformly on [a, b]. If f is real, the P, may be taken real.

Proof:
Let f be a complex valued continuous function on [a, b].
Without loss of generality, we may assume [a, b] =[0,1] and /(0) =/ (1) = 0.

Since f continuous on [0,1] and [0,1] is compact .



| Analysis — 11 6.5 Stone-Weierstrass Theorem

=/ is uniformly continuous on [0,1].
= For givene> 035 > 03|/ (x)— /(»)| <§ when ever [x—y|<5,Vx,y€[0,]] —— ()

Since f'is continuous on [0,1].

= f is bounded on [0,1]. (since every continuous function is bounded)
= Ja positive integer M > |f(x)| <M,vxe[0,1]. ——=(2)
Define f(x)=0,Vx¢[0,1]

Clearly fis uniformly continuous on R.

1
Define ¢, (x)=C,(1—x")" where Cyis a constant> J.¢n (x)dx=1. ——->(3)
-1

1 1
Consider j (-x*)"dc=2 j (1-x*)"dx
-1 0

1/[n
=2 [ (1=x*)'dx (2121//n)
0

1~n
zzj (1=nx>)dx (- (1=x)" =1—nx+n(n—-1)x/2+....)
0
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‘ 1
.'.j(l—xz)”dx>—
-1

Jn
1
C
= [ C,(0-x)"dx>—~
J 7
1
C
= | ¢,(x)dx >—=~
Joe> T
:>1>&
Jn
=>n>C,
:>Cn<\/2

Now ¢ (x)=C,(1-x)"

<~n(1=x*)"(:C, <~/n)
<n(1-8%)"(:5<x)
s ¢ (x)<n(1=38%)" > 0asn — .

= ¢ (x) = 0asn — couniformly.

= For givene> 0 there exist positive integer N |¢, (x)| < ﬁVn >N — > (4)

Define P (x) = j Fx+)g,(1)dt

_ j f(x+0,(6)dt + lf f(x+0)¢,(1)dt + j f(x+0¢,()dt ———(5)

Consider j f+0g,0dt = [ 0, (v=x)dt = [ 0.,(v=x)dv =0 where v=1x+1

j F(x+0), (H)dt =0 — 5 (6)
Consider j Fx+0), (H)dt = j FO)é (v—x)dv — ()
Consider j F(x+0)g (0)dr = j 0¢,(v—x)dv=0 — > (8)

Substituting (6) (7) and (8) in (5),we get

p,(0)=[f(")4,(r=x)dv
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~.{p,} 1s sequence of polynomials on [0, 1].
To Prove lim P, (x) = f(x) uniformly on [0,1].

Let xe[0,1]

Consider | p,(x)—f (x)| =

[ FGe+08,(0dt - 1 (x)

|2, ()= )| =| [ £+ 0) ¢, (00t~ £ (x) [ ¢,(0)t| - By(3))

1

1P, ()= S| =|[ [/ (x+D)= /()] 4, (0)ar

-1

P, ()= f )| < [|Fx+0)= £ ()16, 0)| e

= [1f Gt 0= F e+ [|F Gt )= £, 0 de + [ b1 (0, 0)|
< j 2M |g, (1)|dt + j‘| fGct+8)= £, de + [ 2M |g, ()] de (- By(2))
< j 2M |g, (0)]de + | §|¢n (0)|dt+ [ 2M g, (1)t - By(1))
? € ‘e l €
< jl 2M i+ L 5|¢n (1)) dt + ! 2M - di (2 By(4))

=§(1—5)+§L|¢n(t)|dt+§(1—5)

=§(1—5)+§:|;|¢”(t)|dt

<§(1—5)+§_jl|¢n(t)|dt

_ § + § (1) (- By(3))
=c

pn(x)—f(x)| <g,Vn> N,Vx€[0,1]

= limP, (x) = f(x) Uniformly on [0,1].

n—0
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6.3.2 Corollary: For every interval [-a, a] there is a sequence of real polynomials { P, } such

that Py (0) = 0 and such thatlim P, (x) =|x| uniformly on [-a, a].

n—0

Proof:
Define f(x) = |x| on [-a, a].

Clearly £ is real valued function on [-a, a].

Then by Stone- weiestrass theorem there exist a sequence of real polynomials
{P}7 *} 5> P *(x) > f(x) uniformly on [-a, a].

=>P*> |x| Uniformly on [-a, a].

If x =0 then P, *(0) — O uniformly on [-a, a].

Define a polynomial P (x)=P, *(x)—P, *(0)

Now P,(0)=F, *(0)~ B, *(0)=0.

S P(0)=0

Consider ‘Pn (x)— |x” =

P *(x)—P *(0)— |x” - Hx| -0- |x” — O uniformly on [-a, a].

Hence lim P, (x) = |x| uniformly on [-a, a].

n—x0

Therefore there exist a sequence of real polynomials { P, } such that P, (0) = 0 and such that

limP,(x) = |x| uniformly on [-a, a].

6.4 SUMMARY:

The Stone-Weierstrass theorem is generalization of Weierstrass approximation.
The Stone-Weierstrass theorem, a cornerstone of mathematical analysis, stated that any
continuous function on a compact set can be approximated to ant desired degree of accuracy

by a polynomial function.
6.5 TECHNICAL TERMS:

e Sequence

e Complex valued function
¢ Bounded function

e Continuous function

e Compact set
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e Uniformly convergent

e Stone-Weierstrass theorem

6.6 SELF- ASSESSMENT QUESTIONS:

1
1. Iff is continuous on [0,1] and if If(x)x”dx =0 (n=0,1,2,...), prove that f (x) =0 on
0
[0,1].
2
2. Find S, (x) = [0, (t—x)dx forn=1,234.
0
The sequence S, (n > 1) converges to |x| on [-2,2].
1
The sequence R, (x)= _[th (t—x)dx, for n =1,2,3,4 converges to |x| on [-1,1].
0
We know these facts from Weiestrass approximation. Is Sy restricted to [-1,1] equal to R, ?

3. Show that there does not exist a sequence of polynomials converging uniformly on R to f,

where f(x) =e*.

4. Show that there does not exist a sequence of polynomials converging uniformly on R to f,

where f(x) = sin x.
6.7 SUGGESTED READINGS:

1. Principles of Mathematical Analysis by Walter Rudin, 3™ Edition.
2. Mathematical Analysis by Tom M. Apostal, Narosa Publishing House, 2™ Edition, 1985.

- Dr. N.S.L.V. Narasimharao.



LESSON- 7
ALGEBRA OF FUNCTIONS

OBJECTIVES:

After studying the lesson, you should able to illustrate algebra of complex or real function
uniform closure of complex or real function and the stone generalization of the weierstrass

Theorem.

STRUCTURE:

7.1 Introduction

7.2 Definitions

7.3 Algebra of functions

7.4 Summary

7.5 Technical Terms

7.6 Self-Assessment Questions

7.7 Suggested Readings

7.1 INTRODUCTION:

In this Lesson, we define and study the Algebra of functions, uniformly closed Algebra

and some examples. There are many definitions which leads some theorems

7.2 DEFINITIONS:

7.2.1 Definition:

A family A of complex functions defined on a set E is said to be an algebra if
i /reged,

1) fge A, and

iii) cf € A forall ; ge Aand forall

Complex constants C (that if A is closed under addition, multiplication and scalar

multiplication)

7.2.2 Definition (Uniformly Closed):

A family A of complex functions defined on a set E is said to be uniformly closed, if A has the

S e A

property »whenever f e 4 (n =1,2,3..)and fv =/ uniformly on E.
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7.2.3 Example: The set of all polynomials is an algebra.

7.2.4 Definition (Uniformly Closure)
Let A be an algebra of all complex functions defined on a set E. The set B of all function which

are limits of uniformly convergent sequence of members of A, is called The uniform closure

of A.

7.2.5 Example:
Let [a,b] a closed interval in R. then the set A of all polynomials defined on [a,b] is an algebra.
By the stone-Weierstrass theorem, the set of continuous functions on [a,b] is the uniform

closure of A

7.3 ALGEBRA OF FUNCTIONS:

7.3.1 Theorem

Let B be the uniform closure of an algebra A of bounded functions, then B is an uniformly
closed algebra.

Proof:

Let A be an algebra of bounded functions defined on a a set E, and let B be the uniform closure

of A. First, we show that B is an algebra
Let forall /-&€B, and ceC

Since B is the uniform closure of A, there exist sequences Uk and 18} in A such that /» > /
and &+ ~ & uniformly on E.

i) let €>0 be given

Since f, — f uniformly on E, 3 a +ve integer

N,os|f (x) = f(x)]< i— Vn>=N,andV xeE — (1)

Since g, — g uniformly on E, 3 a +ve integer

N,> g, (x)- g(x)|< ‘Z_ Vn>N,andV xeE - (2)

As rand g are bounded, f, + g, is also bounded andso f, + g, € 4 forn=1,23....

Clearly - {f, + g,} 1sasequenceinA.

Write N = max {N,,N,} - (3)

Now forall 72N and for all * € £ | consider
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£,(0)+g,(x) - f(x)-g(x)
£,(0)= f(x)]+

(7, + g, )= (f —g)x) =

<

g, () —g(x)

2 (from (1),(2) and (3))
This shows that / + ¢ — f + g uniformly on E
. f+geB
ii) since f and g are bounded, 3 real numbers # 1 and M > such that
|/ (x)|<m,and [g(x)|<M,vxeE —(4)

Now we show that /+8» ™ /& uniformly on E

€

> 11 G0 = SOl s

Since /» = / uniformly on E, 3 a +ve integer N,
Forall "= Niand forall Y€E = (5)
L@ =100 =f@+ fE)<|f,0) = f @]+ ]7(x)

Consider |

€
<
2(M  + M, +1)

+M,,VxeE and YV nzN,

(from (4) and (5) )

Since € 7~ & uniformly on E, ¥ a +ve integer N> such that

|gn(x)_g(-x)|< [ ee J,VnZN2 and ¥V x € E
1

+ M
(M, +M,+1)
Write N = max {N,,N,} - (6)
Forall =2 N and forall * € £ consider

(/2. X00) = ()X = |/, () g, (x) = £,(x)g(x) + [, (x)g(x) = f(x)g(x)]

<|fo()|lg, (x) = g ()| + | £, (x) = £ (x)]g (x)]
<( < +M1J < + M, |+ M, <
2(M  + M, +1) ) e + 2(M [+ M, +1)
(M1+M2+1 1]

S S
<=+ ==
(from (4),(5) and (6)) 2 2
.. 3 a +ve integer N such that |(fngn )(x) - (fg)(x)| <e Vn>2N and VxekE
Hence, f,g, — fg¢ uniformlyonEso, fg € B

ii1) let C be any constant and f € B
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since f € B,3asequence {f,}inA > f — f uniformly on E
since A is an algebra, cf ¢ 4 v

if C =0, then clearly ¢f, — ¢f uniformly on E

if C#0, then |C]>0.

Since f, — f uniformly on E, 3a +ve integer N > <

()= f)|<

l
V n>N and ¥V xe€E — (7)

so, for n> N and for xe E,

consider |(Cfn)(x) - (cf)(x)| =|c|

f,(0) = f(x)] < |c|ﬁ —e ( from(7))

= ‘(cfn)(x)—(cf)(x)‘ <eV n=N and ¥V xeE

. ¢f,, = ¢f uniformly on E. so, ¢f € B

Hence B is an algebra.

Finally, we show that B is uniformly closed

Let {f,} be asequencein B 5 f, — f uniformly on E

Since each f, € B, we have that each f, is bounded for n>1,
Andsoeach f €4 forn>1.

Now {f } isasequencein A > f, = f uniformly on E

Since B is the uniform closure of A, we have f € B

Hence, B is uniformly closure of A, we have f € B.

7.3.2 Definition:
Let A be a family of functions defined on a set E. then A is said to separate point on E if to

every pair of distinct point x,x, € E,there corresponds a function f € 4 such that
Sx)#= f(x,).

7.3.3 Definition (Vanishes at no point of E)

If to each x e E there corresponds a function g € 4 such that g(x)=0, we say that A

vanishes at no point of E.

7.3.4 Note: the algebra of all polynomials in one variable clearly has these properties on R
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7.3.5 Example:
The set of all even polynomials define on [-1,1] is an algebra which doesn’t separate points

Since f(—x)= f(x) for every even polynomial fbut —x# x V 0= x e[-1,1]

7.3.6 Theorem
Suppose A is an algebra of function on a set E, A separates points on E, and A vanishes at no

point of E. suppose x,,x are distinct point of E , and ¢,,c, are constants (real if A is real algebra)
.then A contains a function f such that f(x,)=¢,, f(x,)=c,.

Proof:
let A an algebra of functions defined on a set E

Since A separates points on E, there is a function g in 45 g(x,) = g(x,)

Since A vanishes at no point of E, there existh, K € 45 h(x,) #0 and K(x,)#0
Put u =gk —g(x)k, $=gh-g(x,)h

Then ue A and 9e A

Now u(x,)= ( gk—g(x, )k) (x,)=g(x)k(x))—g(x)k(x)=0 and

u(x,) = g(x,)k(x,) = g (x,)k(x,) # 0

1Y $(x)#0 and H(x,)=0

a9 c,u
M =0 a
_ad(x) | qu(x) _ _
Then fe Aand f(x))= 90 + u(r,) =¢+0=c¢ ,
o x,)  cu(x,) _
T g0 ey T

Thus, 3 fed> f(x)=¢, and f(x,)=c,

The following theorem is the stones generalization of the weierstrass theorem:

7.3.7 Theorem:
Let A be an algebra of real continuous functions on a compact set k. If A separates points
on K and if A vanishes at no point of K, then the uniform closed B of A consists of all real

continuous function on K.

Proof:

Let A is an algebra of real; continuous functions on a compact set K
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Suppose that A separates point on K and A vanishes at no point of K.

Let B be the uniform closed of A

Since A is an algebra of continuous function on K and K is compact, by a know theorem (If f
is a continuous function of a compact metric space X into R, then f(x) is closed and bounded
and hence f is bounded) every member of A is a bounded function on K.

Since B is the uniform closure of A , by the theorem (Let B be the uniform closure of an algebra
bounded functions. Then B is a uniformly closed algebra),

B is an uniformly closed algebra.

We shall divide the proof into four steps

Step 1:

If feB ,then |f|€B

Let feB
sup . . .
Put g = k| f(x)|. Consider the closed interval [-a,a] in R
xe

By a known corollary ( For every interval [-a,a] there is a sequence of real polynomials P, such

that P,(0)=0 and such that lim P,(x) =|x| uniformly on [-a,a] ) for [-a,a], there exist a

sequence of real polynomial P, define by p (y)-= Z ¢,y such that P(0)=0 and

i=1

lim Pﬂ (y) = |y| unifOI‘mly on [_a’a] _9(1)

Take €>0
Then by (1), 3 a +ve integer N such that ‘Pn(y) —|y” <eVn>NV ye[-a,a]

:‘PN(y)—|y”<eV—aSySa

= ZN:c[yi—|y|<eV—aSy£a—>(2)
i=1

Put g=ﬁ:cifi

i=1

Since B is an algebra, then g € B

Since |/ (x)|<a,VxeK, by (2),

we have |g(x)—(|f(x)|)(x)|= Z Ci(f(x))i _|f(x)| <eVxekK

= g -|/](x)|<eVxek
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This shows that the constant sequence {g} converges to | f | uniformly on K

f|eB.
Step 2:

So,

In this step, we prove that, if /'€ B and g € B, then max(f,g) and min(f,g) arein B
Let f,g € B.
By max(f,g), we mean the function h define by
b {f(x) i /()2 g,
glx) i f(x)<gx);

min( f, g), we mean the function K defined by

P {f(x) if f(0)<g),
(x) = .
g(x) if f(x)2g(x);
Then max(f,g) =—fJ2rg +_|f;g| and min(f, g) =_f;g __|f;g|

Since B is an algebraand f,geB, f—geB.
f—QeB
~max(f,g),min(f,g) € B

By induction, we can prove thatif f, f,,.....f, € B,

n

then maX(fl,fz, ..... f ) and min(fl,fz, ..... L)EB.
Step 3:

So, by stepl,

Prove that given a real function f continuous on K, a point x € K, and >0, there exist a
function g_€ B suchthat g (x)= f(x) and g (t)> f(t)-€ VteK

Let f be a real continuous functionon K, xe K and €>0. Clearly, AcC B

Claim: B separates point on K and B vanishes at no point of K

Let x,x, e K> x, #x,

Since A separates point on K, then 3 ge 45 g(x,)# g(x,) as Ac B, geB

Since B separates point on K

Let ye K
Since A vanishes at no pointon K, 3 he A3 h(y) =0
As AcB,heB

.. B vanishes at no point of K
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Hence B is an algebra of function on K, such that B separates point on K and B vanishes at no
point of K.

So, by a known theorem (7.26) for every ye K, we can find a function
b€ B>h,(x)=f(x) and h,(y)= f(»)

=(f=h)(y)=0<e

Since &, — f* is continuous at'y , 3 an open set J, of

ya‘(hy - 1)~ (h, —f)(y)‘<e Vied,

=

h() = f()|<eV ted,
=>-—e<h()-f()<e Viel,
=>h()-fH)<e Vied - (3)

Now the family {Jy /yekK } of open sets is an open cover for K

Since K is compact, 3 y,,¥,,5,...,y, € K such that K <[ JJ,

J=1

Put g, :max{h},l,h h ’hyn}

2?32t

Since each 4, € B fori=1,2,3,...n,bystep2, g € B
Consider g, (x)=max {A, (x),h, (x),...h, (x)}

=max{ f(x), f(x),.... f ()}

= f(x)
Consider g, (t)=max{h, (1).h, (¢)....h, ()} > f()-€
~g.()> f(-eVitek

Thus, for every real continuous function fon K and a point x € K

and e>0, 3 afunction g € B 3g (x)=f(x) and g (¢)> f(t)-€,VtekK

Step 4:

In this step, we prove that for a given real continuous function fon K and €> 0,3 a function
heB3|h(x)—f(x)| <e(xeK)

Let f be a real continuous function on K. let €> 0
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For each x € K, consider the function g_, constructed as in step(3) by the continuity of g _,

there exist open sets J_ containing X,

g~ f)|<e(teV)

=-e<g (t)-f({t)<e forall teV,

Such that

=g M<ft)+te VielV >4)

Now the family {Vx /xekK } of open sets forms an open cover for K

n
Since K is compact, 3 x,,x,,x;,....,x, iIn K > K = UVX[
i=1

Take h= min{gxl - - }

Since each g, € B fori=1ton, by step(2), ke B

Forany r e K, h(t)=min{g, (1),g, ()....g, ()} > f()-€
= k(1) > f(t)—e ¥V te K >(5) (by step(3))

Let te K =0in
i=1

:>terifor some 1<i<n

=g, (N<f)+e (by @)

h(t)=min{g, (1).g, ()...g, (O} < f()+eV teK >(6)
Form (5) & (6), we have |h(1)— f(1)|<e V teK

Since B is uniformly closed algebra, we have f € B

Hence, the uniform closure B of A consists of all real continuous function on K

7.3. 8 Definition:

An algebra A of complex function defined on a set E is said to be self-adjoint, if for every

f e A, its complex conjugate 7 eA.

7.3.9 Theorem:
Suppose A is a self-adjoint algebra of complex continuous function on a compact set K, A
separates points on K, and A vanishes at no point of K. then the uniform closure B of A consists

of all complex continuous function on K. in other words, A is dense in & (K).
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Proof: suppose A is a self-adjoint algebra of complex continuous functions on a compact set
K.
Also given that A separates point on K

Let A, be the set of all real continuous function on K which belong to A
ied, = { f € A/ fisareal continuous functionon K }
Let fe4

Then f =u+i9 where 4 and 4 are real continuous function on K

Since A is self-adjoint, then u—i9= J_’ €A

So,u=fJ2rfeA and 19=f2_'feA
i

Claim: A4, is an algebra

Let f,geAd,= f,ge€4

Since A is an algebra, by definition f + g, fg and cf are in A for any real constant C
It is clear that f + g, fg and cf are real continuous function on K
So, f+g, fg and cf are in A, for any real constant C

. A, 1s an algebra

Claim: A, separates point on K

Let x,,x, e K>3 x, #x,

Since A separates point on K, then 3 f € 45 f(x,) # f(x,)

= either (Re.f)(x,) # (Re.f)(x,) or (Im.f)(x,) = (Im.f)(x,) =(1)
Where Re.f and Im.f are real and imaginary parts of f respectively

Since Re.f and Im.f are functions in 4,, by (1) 4, separates point on K
Claim: A4, vanishes at no point of K

Since A vanishes at no point of K, for xe K,3 f e 45 f(x)#0

= either (Re.f)(x)# 0 or (Im.f)(x)#0

As Ref, Imf f € 4,, A, vanishes at no point of K

.. A, satisfies the hypothesis of stones generalization of weierstrass theorem

It follows that every real continuous function on K is in the uniform closure of A4, and hence
in B
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If f is a complex continuous function on K and f=u+i9 where » and ¢ are real and

imaginary parts of f respectively, then « and $real continuous function on K,
i.e., u,%e€ B and hence f € B

This completes the proof.

7.4 SUMMARY:

This lesson is designed to introduce learners to the fundamental concept the Algebra of
functions, exploring their properties and applying them to real-world contexts. This lesson
provides a solid foundation for learners to develop their understanding. Key takeaways of their
lesson are definitions and theorems, applications of the Algebra of functions in mathematical
and real-world problems and examples.

7.5 TECHNICAL TERMS:

e Algebra of functions
e Uniformly closure

e Self-adjoint

7.6 SELF-ASSESSMENT QUESTIONS:

1. Let K be the unit in the complex plane (i.e, the set of all z with |z =1) and
N

f (e“g) = Z C.e" (0 real ), Then A separates points on K and A vanishes at no points of K,
n=0

but never the less there are continuous on K which are not in the uniform closure of Hint: For

2z
every feA, I f (e“g )einH =0, and this is also true for every fin the closure of A.
0

1

2. Iffis continuous on [0,1] and if jf(x) x"dx=0 (n=0,1,2,3,...), prove that f(x)=0 on
0

[0,1]

3. If f,(x)=— -(0<x<1,n=12,...), then show that

o
x"+(1—nx)

i) { £, }is uniformly bounded on [0,1]
i1) No sub sequence of { fn} is converge uniformly on [0,1],
i11) The sequence { fn} is equi continuous on [0,1]

7.7 SUGGESTED READINGS:

1. Principles of mathematical analysis by Walter Rudin , 3™ Edition

2. Mathematical Analysis by Tom M.Apostal, Narosa Publishing House, 2™ Edition, 1985

- Dr. L. Krishna




LESSON- 8
POWER SERIES

OBJECTIVES:

The objective of the lesson is to understand the concepts of the power series. We shall
derive some properties of functions which are represented by power series

STRUCTURE:

8.1 Introduction

8.2 Definition

8.3 Power Series

8.4 Summary

8.5 Technical Terms

8.6 Self-Assessment Questions

8.7 Suggested Readings

8.1 INTRODUCTION:

In this lesson we shall derive some properties of functions which represented by power

series, that is functions of the form f(x)= ZCnx” , which convergence uniformly on some
n=0

interval and different definitions such as converges uniformly and it’s derivatives

8.2 DEFINITION:

0
A series of the form z a,x" where the ‘ a, ’ are independent of ‘x’ is called a power series in x
n=0

8.2.1 Result
Dlet f(x)=) a,x">(1)
n=0

If the series given in (1) converges for all x in (-R,R) , for some R>0 (R may be +x ), we say

that f is expanded in a power series about the point x=0

2)let f(x)=Y a,(x-a) >Q)

n=0

If the series given in (2) converges for all x with ‘x—a‘ <R, foe some R>0, we say that fis

expanded in a power series about the point x=a
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8.2.2 Note:

The number R associated with the power series given in (1) is called the radius of convergence
1

of the series and it is defined as R=— where a = limsup#/a, . The interval (-R,R) is called
a n—>0

the interval of convergence of the series.

8.3 POWER SERIES:

8.3.1 Theorem

Suppose the series ic .+ converges for |x|<R and define f(x):icnxn (M<R), then

chx" converges uniformly on [-R+ €, R— €], no matter which €>0 is chosen. The function
n=0
f is continuous and differentiable in (-R,R), and f"(x) = chnx'”l (|x| < R) :

n=0

Proof:

Suppose the series Z c,x" converges for M <R

n=0

Define f(x)= icnxn (|Jc1<R)

n=0

i)let €>0 consider the interval [-R+ €, R—€]

let x e[-R+ €, R— €] then M <R-€

<le,|(R-9)">(1)

xn

so, for n>0 cnx"‘ =‘Cn‘
since every power series converges absolutely in the interior of its interval of convergence,

ch (R—€)" converges absolutely

n=0

X'

< ‘cn (R-9)

since "1s convergent by a known

Vn>0 and i|cn(R— )
n=0

theorem(Suppose f,is a sequence of functions defined on E, and suppose

| fn(x)| <m, (xeE, n=12,3,...). Then Z /, converges uniformly on E if Zmn converges )

chxn converges on [-R+ €, R—€].
n=0

i1) since lim4/n =1 , we have lim sup *"/”|Cn| = lim sup o Cn|
n— 0

n—>0 n—>0

o0 o0

. . -1 .

.. The two series E ¢, X' and E ne,x"" have the same interval of converges
n=0 n=0
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Since chnx"_l is a power series which converges for ‘x‘ <R, by the first part, chnx"_l

n=0 n=0

converges uniformly on [-R+¢€, R—€] for all €>0 for n>0, write f (x)=cx" then

f'(x)=nc,x""

Since f(x)= chx" = Z f.(x) converges uniformly on [-R+e, R—€]for all 0,

n=0 n=0

Zﬂ'(x) converges uniformly on [-R+€,R—€] and , we have f '(x)=2fn'(x)
n=0

n=l1

o0
_ 2 n-1
= IlCnXT
n=0

But given any x such that ‘X‘ <R, we can find an €>0such that M <R—€which shows that

f'(x)= incnx'”1 for (|x| < R)

Since f'is differentiable, by a known result, f is continuous.

8.3.2 Corollary:
Suppose series icnx" converges for ‘X‘ <R and define f(x)= icnx” (‘x‘ <R ) . Then f has
n=0 n=0

derivatives of all orders in (-R,R), which are given by

In particular, /' (0)=k!c, (k=0,1,2,.....)

(here f” means f,and /) is the K derivatives of f, for K=1,2,3...))

Proof:
Suppose the series icnx” converges for ‘x‘ <R and defined f(x)= icnx" n=0

n=0 n=0
Then by the above theorem(8.21), f is differentiable in (-R,R) and
f'()=C +2Cx+3Cx" +..... for  |q<R
Again by applying the same the and continuing the process, we get f'is differentiable in (-R,R)
and f(X) =kl g+t n(n=)(n=2)...n—k+Dc X" +...+..., for |x<R

Putting x=0, £*(0)=k!c,, for K=0,1,2,3....
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8.3.3 Theorem:

(Abels Theorem): suppose Z C , converges, put f(x) zi C.x"(~1< x <1) then

n=0 n=0
lim £ (x) =§Cn -
Proof:

Suppose Z C, converges

n=0
Let iCﬂ =s
n=0

For eachn, write 5, =C,+ C, +.....4+C, ,and 5 , =0

Then lims, =5 >(1)
Set € >0 be given from(1), 3 a +ve integer N > |Sn —s| < % Vn=N—2(2)

Now s, =C, +C, +....+C

n-1

+C, =s, ,+C Vnz0

=C =s, -5, Vnz0

0 0
ZCnx” :Z(sn — 8, X"
n=0 n=0

For any m, Zm:(sn =5, " =5y =5, )+ (s, =80 ) x+ (5, —5,) ¥+ (s, =5, ) X"
n=0

_ 2 2 m
—SO—S71+S1.X'—SOX+SZX — 85X +..... +S5 X =5 X

=(1-x) |:SO +8X+ 85X o+ sm_lxmfl} +5, X

m—1
=(1- x)ZSnx” +s x"
n=0

m

2 (s, =8, ) =(1 —x)isnx” +5, X" >(3)

n=0

For |x| <Llims x" =lims, .limx" =5.0=0->(4)

m-—>0 m—»0

Put ) :i C,x" (1< x<1)

> 1
for M <1, Zx” =:

n=0
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S 1-0> " =1, for | <1>(5)
n=0
Fix M <l

Consider f(x)= ZCnx” =lim ZCnx”
m—>0 e

n=0

= lim i(sn —5, X"
n

m—»0
n

m=1
= lim(1- x)anx” + lim s, x"
m—>x =0 —>0

m=1
=lim(1— x)anx"
m—>o0 =

S f(x)= Ligl(l —x)gsnx” = isnx” (1-x)
Hence f(x)—s=f(x)—s.1
= @) -s1-03" (By(2)

=(1- x)isnx” (1-x)—s(1- x)ix"
= ix" (1-x)(s, =)

Now , ‘f(x)—s‘ =

ix" 1=x)(s, —s)

n
x 1—x||sn —s|

n=0

s, —s|

-1 0
|f(x) —S|S nZ‘x"Hl —x||sn —s| +< Z‘x"HI —X
n=0 n=N

E 0
+|1_x|5§

by (2)) >(6)

xn

xn

<|1 —x|nf:|sn -5
n=0

N-1
Since |1 — x| Z
n=0

s, —SHX”‘ is continuous at x=1, then 3 a &, >0

N-1
Such that [1=x| > s, =5[] <§ for all x with 18, < x <1+8,>(7)
n=0
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We have |1—x| i‘x”‘ = |1—x”xN(l Fx+x +...)‘
n=N

=|1—xHxN‘

i |:xN<1 for all x with 1 -6, < x <1+, >(8)
—X

So, from(6),(7),(8),

f(x)—s|<§+§=e forall 1-6, <x <1+,

Thus, 361 >O3‘f(x)—5‘ >€ when ever 1 -9, <x <1+,

= lin} f(x)=s
ie. lim £ (x) = Z(;C

8.3.4 Corollary:

Suppose the series Zan ,Zb,, ,ch converge to A,B,C respectively for each n>0, put

n=0 n=0 n=0
C +ab +ab  +..+ab, then C=AB

Proof:
let f(x) =ianx”, g(x)= ibnx”,h(x) = icnx" foro<x<1
=0 n=0 n=0
for 0 < x <1, these series converge absolutely and hence may be multiplied
so, we have f(x)g(x)= ianx” .ibﬂx”
=0 =0
= a,b, + (a,h, + a,by)x + (ayh, + a,b, + a,b)x* + ...
=cy+ X+ X F o, where C, =ab, +ab,  +..+ab,,¥ n=0
=iCnx” = h(x) 0<x<D)>(1)
n=0
By the theorem(8.23), f(x) > 4, g(x) > B, h(x) >C as x - 1
From(1), lxlgl f(x)g(x)= £i£r11h(x)
= lim f(x).lim g (x) = limA(x)

= AB=C
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8.3.5 Theorem

Given a double sequence {a,.j}, i=1,23,.. , j=1L23...,

Suppose that i‘a”‘ =b (i=12,3,...)and Zb, converges. Then i i% =i i a,
Jj=1 y y

Proof:

Given a double sequence {al.j}, i=123,.. and j=123,....,
Suppose that Z‘al.j‘ =b for i=1,2,3,.... and Zbi converges (1)
J=1 i=1

Let E be a countable set consisting of the point x,,x,,X,,.......

Suppose x, = x, as n—>©

Define fi(xo)zzw:% (i=123,...) >Q)
£6)=Ya, (,n=123..) >3)
=

2= 10 (xeE)>4)

Now we show that each f; is continuous at xo, for i=1,2,3,....

From(1), we have that Za_i/ converges absolutely
=

o0
= z a, converges
Jj=1

Now lim £,(x,)=1im > a, (by(3))
n— n—» j=1

=>4, = fi(x)
= lim £;(x,) = £;(%,)
= lim f(x,) = f,(x,)

= f; is continuous at xo for i =1,2,3,....

n n
Zaij < Z‘aij‘ < Z
j=1 =1

Foreach n>1,
Jj=1

fi(x,)| =

Ja,| =2,

=|/f(x) <b Vn=1
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fi(x)) si\a,j\ =b
Jj=1

‘fl <b VxeE

Since ib, converges and Sbj Vi, then by weierstrassin-test theorem i /i
i=1 i=1
converges uniformly on E.
Since g is the limit of the series i f, and i f; converges uniformly on E and each f; is
i=1 j=1
continuous at xo , by a known theorem(if { f, } is a sequence of continuous functions on E, and
if f, — f uniformly on E, then fis continuous on E), g is continuous at Xo.

Since g is continuous at xoand x, — x, as n — oo, we have ll_>nolo g(x)=2g(x,)

o0 0

Consider z a;= i fi(x)=g(x,) = hm g(x )

i=1l j=1 i=1

0

Z (x")—ll Z a,
i=1 =1 j=1

8.3.6 Theorem (Taylors Theorem)

Suppose, the series converging in ‘x‘ <R.If ~R < a < R, then f can be expanded in a power

series about the point x=a which converges in ‘x —a‘ <R and

0 (n)
=300y (|x-d<R-|d)

Proof:
suppose the series iCnx” converges in ‘x‘ <R and f(x)= ZCLX" (‘X‘ <R).
n=0

Also, suppose —R < a < R and ‘x—a‘ <R—‘a‘_
Since ZQX" converges in ‘x‘ < R the radius of converges of the series ZC;lx” is greater than
or equal to R we haveM Z‘X—CH-CZ‘ S‘x—a‘ +‘Cl‘ <R—‘a‘ +‘a‘ =R

=/ <x—d+d <R

(|x - a| + |a|) " converges.
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Power Series

converges in ‘x — a‘ <R —‘a‘ _

n m
C n—m _
|G (mja (x—a)

=>>cC, [:J a""(x—a)" converges absolutely in \x—a\ < R—‘a‘

Consider f(x)= icnx" = icﬂ (x—a+a)

n=0 n=0
—Z(:)C Z}[ j "”’(x a)

n |:(nj N 0 (}’lj el [nj n:|
=>C, a"(x—a) + a (x—a)+...+ (x—a)
m=0 O 1 n

_CCII C222 2 ) Cnnnml n .\
=C,+ l(oja+[1](x—a) +C, [Oja +[1]a(x—a)+[zj(x—a) +..+C, (O]a +[1ja (x—a)+....+[}J(x—a) +
n

[I]a"lJr...}(x—a)ﬁL

1 2
- [CO +Ca+Cya’+.+C,a" +....]+(x—a)° +C, [[Oj+[1]a+....+ C,

|: [4] 2 [nj - :| 2
a+C a +..+C, a .| (x—a) +..+
2 2
|: ] (n—i_zj 2 :| 2n
C, a+C,,, a +.. (x—a)" +...+...
n

i(njCa "(x-a)" (1), By Know Theorem (8.21),

0n=m

a

2

SMS

" (a) = Zn(n —Deccec..(n—=m+1)C,a"™" consider

m'(n m)'

[0 Samtamee

= 1.2.... [n—(m+1)](n—m)(n—m+l) ..... (n—l)nC

:Z‘,, m! (n—m)! o
n(n—=1)(n-2)...(n—m+1) nm
_nzm m! C.a
1
=;!f (@)
" from(1) & (2), f(x) :2{ Ca"™" }(x—a)m
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8.3.7 Theorem:

Suppose the series Zanx" and anxn converges in the segment S =(—R,R).

Let E be the set of all x e § at which Zanx" = anx" . If E has a limit point in S, then a, = b,

n=0 n=0
for n=0,1,2,....
Hence Zanx” = Zb,,x” holds for all x e §
n=0 n=0
Proof:

Suppose that E has a limit point in S

For n>0,put ¢, =a, - b, , let f(x):ZCnx” (xel)
n=0

Then f(x)=0 onE. ( forevery x € E,Zanx" = anx",given )
Let A be the set of all limit point of E in S

Since E has a limit Point in S, then 4# ¢
It is clear that A is closed in S.

Claim: A isopenin S.

Let x, € 4

Then X, €S={x|<R, i.e, ~R<x, <R

By the Taylors theorem, f(x)= Zdn (x—x,)" in ‘x—xo‘ <R< ‘xo‘ ->(1)
n=0
Now, we show that d, = 0 for all n

If possible, suppose that d, # 0 for some n.
Let K be the smallest +ve integer such that d, # 0.

=(r=x) [ dy +dy, (x=%) gy (=3 ) ...
=(x—x,)" g(x) where g(x)=d, +d,, (x—x))+....... 2>Q2)

Since g has the power series expansion about the point x,, g is differentiable at x,and hence g
is continuous at x,

Since g is continuous at x,and g(x,)=d, # 0, then 30 >0such that g(x,) # 0 whenever

‘x—xo‘ <0.
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It follows from(2) that f(x) # O whenever 0< ‘x _xo‘ <0.

That is the deleted mod 0< ‘x —XO‘ <0 dose not contain any print of E

= Xx,1s not a limit point of E, which is a contradiction to the fact that x, is a limit point of E
~.d =0foralln

Hence from(1), f(x)=0in ‘X—XO‘ <R <‘XO‘
= f(x)=0for all XG(XO —a,X, +0!) where OlZR"XO‘
=(x,—a,x,—a)cE

Let x€(x,—a,x, +)

Then 38 >O0such that (%, 4, +6) (% ~a.x, +a)

=(x,—6,%+6)cE

So, every nbd of x, contains a point of E

(*+ every nbd of x, intersects(x, —&,,x,+5,))

= x,1s a limit point of E

=>x €4

xp—ax+a)c4

So, x, is an interior point of A

Hence, A is open
Write B=A’i.e, B is the set of all other points of S

Then B is both open and closed, S = 4 U B and ANB=¢

Since S'=(—R,R) ,S is connected

Since S=4uB,and S is connected, one of A and B must be empty
since E has a limit point, then A=¢ and B=¢

~S=AUB=A4A0¢=A4

= Every point of S is a limit point of E

= Eisdensein S

Since E is dense in S and f(x)=0 V x € E, and F is continuous in S, then by a known result

f(x)=0V xeE.
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= P (x)=0V xeS
= f"(0)=0
=>n!C,=0Vn
=C,=0Vn

=a,=b, Vn

8.4 SUMMARY:

This lesson focuses on helping learners comprehend power series, including derivatives and
converges and apply power series properties to solve mathematical problems. High lights of
this lesson definition and theorem application and examples of power series with solutions.

8.5 TECHNICAL TERMS:

e Power series
e Abels theorem

e Taylors theorem

8.6 SELF-ASSESSMENT QUESTIONS:

L
1. Define s(yy=Je * (x=0)prove that F has Derivatives of all orders at x=0and that
0 (x=0)

£"(0)=0forn=1,2,3,......

2. Let a,be the number in the i row and j™ column of the array
100 0 oo 0 (<))

1 ..

> -1 0 0 ---- sothat g = —‘1‘ (i = j), prove that
L R 277 (@> ).

4 2

rr .

8 4 2

™

a, = -2, ZZaij:O'
i

i

-

3. Prove that ZZ""/‘ =Zza,-j, if a; = 0 for all I and j (The case +00=+00 may occur)

J J

8.7 SUGGESTED READINGS:

1. Principles of mathematical analysis by Walter Rudin, 3™ Edition
2. Mathematical Analysis by Tom M.Apostal, Narosa Publishing House, 2" Edition, 1985
- Dr. L. Krishna




LESSON-9
THE EXPONENTIAL LOGARITHMIC AND

TRIGNOMETRIC FUNCTION

OBJECTIVES:

The objective of the lesson is to understand the concepts of exponential, Logarithm and
trigonometric functions. We shall derive some properties

STRUCTURE:

9.1 Introduction

9.2 Definitions

9.3 Exponential and Logarithmic functions
9.4 Trigonometric Functions

9.5 Summary

9.6 Technical Terms

9.7 Self-Assessment Questions

9.8 Suggested Readings

9.1 INTRODUCTION:

In this lesson we shall derive bexponential, logarithm and trigonometric functions and some
properties such as investigation of the properties of e* logx and trigonometric functions.

For every complex number Z, consider the series Z _ Since the radius of convergence of this
|
n=0 N:
series is 00,then the series converges for every Complex Z

9.2 DEFINITIONS:

9.2.1 Definition

The function E(z) = ZZ—' for all complex number z, is called the exponential function.
n!

n=0
9.2.2 Note
1) The function E is continuous on (—00,0)
© n © 0 n n—k
2) For any complex number z and w, E(z)E(w)= ZZ— Z Z Z—
n=0 n' m=0 ' n=0 Ok' (n k)'

wl k n—k
=2 Zok'(n o "

n=0

Z+W)

Ms

n=0
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=E(z+w)

3)
4)

5)
6)

7)

8)

9)

Consider E'(z) =1

~E@Q)EW=E(z+W) ¢ every z,weC
In general, if z,z,,....z, € C, Then E(z, + z, +....+ z,) = E(z))E(z,),.....(z,)
E(z)#0 VzeC
Forany z e C, E(2)E(-z)=E(z—-z)=E(0) =1
S E(z)#0 VzeC
E(x)>0 forall real x ( from definition)

for any +ve integer n, x" > as x —> ©.

2
L E(X)—>w as x—w ('.'E(x):1+x+%+...)

since E(x)E(—x)=1,then E(x)=

for all real x
E(—x)

LE(x)—>0as x >
i) Let x,y€R> 0<x<y by the definition of E, E(x) < E(y) =>(1)
ii) let x,y € R3> x<y <0 then 0<—y <—xthen, by (7), E(—y) < E(—x)

1 1
> ——<—
E(y) E(x)

= E(x)<E(y)

c.forany x,y€R> x<y,then = E(x) < E()) . This shows that E is strictly increasing

function on R.

Let zeC

im E(z+h2—E(z)

—0

Mim E(z)E(h)—-E(z)

n—0

2
1+h+h+..j—1
2!

= E(z)lin}) %: E(z)lim [

h—0 h

=E(2)
~E(z)=E(z)VzeC
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9.2.3 Definition

o0

We have the exponential function e defined as e= Z—'
n=01:

9.2.4 Note
1) For any +ve integer p, E(p)=E(1+1+....1(ptimes))

=EMEQD)....E(]) = ce........ e, Where e= il,

n=0 1
= eP

2) Let p>0 be any rational number then p — " wWhere m and n are +ve integers
m

= pm =n Then (E(p))" =E(mp)=E(n)=¢"
= E(p) = e% =e”
- E(p)=e” for every +ve rational number ‘p” 2 (1)
3) Let p be a -ve rational number then -p>0. Then by (1),
E(-p)=e" but E(p)E(-p)=1

= E(p) ===’

E(-p) e”
- E(p) =e” for every -ve rational number p

Hence, E(p) = e” for all rational number p

9.3 EXPONENTIAL AND LOGARITHMIC FUNCTIONS:

9.3.1 Definition
For any real number x, we define E(x)=¢"

9.3.2 Theorem

Let € be defined on R bye* = E(x) where g(x)= ix_ Then
|

n=0 n.

a) €' is continuous and differentiable for all x;
b) (¢*)' =e"

c) €'is a strictly increasing function of x, and e* >0 ;
d) e =e" e’
e) e >+ as x —> +oo, e >0 as x> -

f) lim x"e™* =0, for every n.

X—>+00
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Proof:

R X" ) 1
a) Let xe R,then e =E(x)=2— for n>0, write a,=—
,,,:On n!

. a ) n! ) 1
Now lim—L =1im =lim =0
n—o an n—o0 (}’l + 1)' n—w gy 4 1

s} n

s0, the radius of convergence of the series Z—' is 00,
n=0 1:

.".by a known theorem(8.21) E(x) is continuous and differentiable for all x e R Hence, €' is

continuous and differentiable on R.

X+h xo h
b) Now (¢') = i(eX) —lim& el -1
dx n—>0

€ "% _lim
h
2
=e" liml((l +h +h—+ ] - lj
n~>0h 2|

n—0
3
:e"lim[1+h+%+h—+ ..... j

n—0 3‘

=e"(1+0+0+...)

X

=€
S(e)=¢€e",V xeRrR
c) Let x,y€R suchthat 0<x<y

n n

Yy .
= - < = for every +ve integer n
n!  n!

= E(x) < E(y), where ever x < y

.. E(x) is a strictly increasing function and e* >0 onR

n

d) Consider E(x)E(y) = ZX—,Z - :
n=0 * m=0 m:

= z kzoﬂ =11 (" By Cauchy theorem )

n=0
k _ .n—k

Sl & nlx'y
-313

n=0 n!k=0 k'(n_k)'
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=g%(x +y)
=E(x+Y)
LEX)E(y)=E(x+y)
= =e'e
¢) we know that e* = 2 ):'

X—>0 X—>00

2
taking limit on both sides as x — 0, we have lime* = lim [1 +x+ % + . j

s0, e —> o0 as x — oo We have E(x)E(—x)=1

1

= E(x)= E) e =

. 1
Now, lime* =lim—=0 so, ¢ >0 as x > —x©

X—> 0 x—)ooe

f) Letn be any +ve integer

) .xk

we have e" = E(x) = Z—
im0 k!

n+l

(n+1)!

o0 k
:>e"zE(x)zZ%>
k=0 -

,forall x>0

(n+1)!

X . X

w e (m+1)

=>xe <
X

=e ' <

,forall x>0

,forall x>0

|
s limxe < im D g

X—>00 X—>0 X

s limx"e™ =0 for all +ve integer n

X—>0
9.3.3 Definition (Logarithmic Function)
Since E is a strictly increasing and differentiable function on R. it has an inverse
function ‘L’ which is also strictly increasing and differentiable and whose domain is E(R),

1.e., the set of all positive number.

L is defined by E(L(y)) =y (¥>0) or L(E(X)) =X forall xeR
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For any x>0, we denote L(x)by logx i.e L(x)=logx

Properties of Logarithmic functions: consider L(E (x)) =x,VxeR—>(1)
1) Differentiating on both sides wrto X, we have L'(E(X)) E (x) =1

:>L'(E(x)) E(x)=1 VxeR (E(x)=EX))

VxeR

We have for every XeR, E(x)>0 So, = L'(E(x)) =
X

2) Taking x=0 in (1), we have L(E(0))=0b
= L(1)=0
~logl=L(1)=0

y
3) By the fundamental theorem of calculus, .[L'(x)a’x =L(y)-L(1)=L(y)
1

S L(y)= j.L'(x)a’x =|—dx b

——
S| =

y
Hence, logy = Ildx b
x

1

4) Let u=FE(x) and $=E(y) where x,y€R Then 4>0 and 9 >0 ,
and L) =L(E(x)) =x and L($=L(E(x)) =y Now,

L(u9) =L(E(x).E(y)) =L(E(x+ y)) =x+y =L{u)+L(9)
- Lu®)= L)+ L(9) , For all u,9€ E(R)
5) i) Lete>0 put 0=¢€" ie., d=E(€)
Then & > 0 Suppose x > 5. Then L(x) > L(5) = L(E(e))=¢
= L(x)>€ So, for e>0, 36>0> x>0=L(x)>¢€

- limL(x) = o0

X—>0

Hence, logx —00as x >

i1) Let e>0 then —-e>0 put S=e’ thens>0
suppose x < § then L(x)>L(8)=L(e")=L(E(-€))=—-¢

= L(x)<-¢€
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So, for e>0, 36>0> x> = L(x)<—€ whenever x <5

< lim L(x) = —0

X—>0

Hence, logx —>—0as x -0
6) Wehave x=E(L(x)) = x" = E(L(x")) = x" = E(L(XX.cco..... x(int res))

=x"=EWLX)+L(x)+........... + L(x)) = E(nL(x))

1

= 1
ny x» = E(—L(x)j - x* = E(aL(x)) for all rational &
n

7) Let a >0

Take €>03 O<e<a and x>1

Consider x “logx = x’”‘jldt = x*”‘J'fldt
t 1

1

< x“jt“dt: x {i}x ( e>0=e-1>-1="> El)

1 €4
ol xf=1 xC—xT" x
=x = <
€ € €
SLx “logx<———; Vex>0
€x

Hence, limx “logx=0 (.0<e<a=>a—e>0)
1
8) Wehave x“ = E(a.L(x)) now (x“) =E'(a.L(x)) (a.L'(x))
=E(a.L(x))aL'(x)=x". 05.l
X

1
(x“) =a.x*"!

9.4 TRIGONOMETRIC FUNCTION:

9.4.1 Definition

E(ix) - E(—ix)

Forany x e R, define C(x) = 5
1

E(ix) — E(—ix) and S(x) =
2

9.4.2 Note:

E(ix) + E(~ix)

1) Consider, C(x) = 5
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i (ix?" N i (—ix)"

— n=0 n. n=0 n'
2

{1+ix+(ix)2 + } +{1+ (—ix) +@ +}
2! 2!

~.C(x)=cosx

E(ix) - E(-ix)

2) Consider S(x)= 5
l

3) Clearly E(ix) =C(x)+iS(x)
So, C(x) and S(x) are the real and imaginary parts of E(ix)

4) Z €&, E(E) = E(Z)

E(ix)| = E(ix).E(ix)

5)Forany x e R,
= E(ix)E(Ec)
= E(ix) E(~ix)
=1
|E@)| =1V xeR
= |E(ix)|=1V xeR
6) Since E(0)=1, we have C(0)=1 and S(0)=0
7) C'(x)=-S(x) and S'(x)=C(x)
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Proof:

E(ix) + E(~ix)

We have C(x) = 5

Differentiating on both sides w.r.to x
C'(x)= %[E’(ix)i + E'(—ix)(—i)]

_ %[ E'(ix)i + E'(=ix)(~i)]~
1

(1) E(ix) - F(—ix)
2i
=-5()
~C(x)==S(x)

E(ix) — E(—ix)

We have S(x) = 5
l

Differentiating on both sides w.r.to x

S'(x) = %[E'(ix)i — E'(=ix)(—i)]
1 N . .
= E[E(ZX)Z - E(—lx)(—l)]
_ E(ix) + E(—ix)
- 2i
=C(x)
~.8'(x) = C(x)

9.4.3 Definition

A function f is said to be periodic, if there is a smallest positive number 7 such that

f(x+7)=f(x) V x in domain of fhere 7 is called a period of f.

9.4.4 Theorem

a) The function E is periodic, with period 27 .

b) The functions C and S are periodic, with period 27

¢c) If 0<t<2x,then E(it)#1

d) Ifzis a complex number with |z|=1, there is an unique t in [0,27] such that E(it) =t
Proof:

a) First, we show that there exists a number x > 0 such that C(x) =0
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if possible, suppose that C(x) #0 forevery x > 0 =>(1)
clearly C(0)=1
If for some elements x, >0, C(x,) <0 <1, then by a know result, there exists x e (0,x,) such
that C(x) =0 which is a contradiction to eq(1)

S C(x)>0 forall x>0

=S8'(x)>0forall x>0 (8'(x)=C'(x) Vx)
= § is strictly monotonically increasing function for x > 0
So, S(x)>S(0)=0 forall x>0

= S5(x)>0 forall x >0

y y
Hence, if 0<x <y, we have (y—x)S(x) < [S(r) dt = [-C'(¢) dt

X

—[-CO) =Cw)-CO)< 1+1 =2

=>-x)Skx)<2,Vy>x

2
:>y<x+m V y>x, which can’t be true for large y , since
b

S(x)>0
.". There exists x > 0 such that C(x) =0
let x,be the smallest positive number such that C(x,) =0
this exists, since the set of 3ems of a continuous function is closed and C(0)# 0

define 7 = 2x,. Then C(y)#0 forall y<x,

C(zj =0 and hence S(zj =+]
2 2

Since C(x)>0in (0,7—2[), S is increasing in (0,%) and hence S (%j =1

ATl

So, E(in) = E(K Jﬂj - E(ZJE[E] —ii=—1 and
2 2 2 )72

EQi) = E(in +ir) = E(in)E(ir) = (-1)(-1) =1
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~.E(z+2ir)=E(z)EQ2ir) = E(z) for all complex number z

Hence, E is a periodic function, with period 2ir

b) For any real x, consider C(x +27) = %[E(i(x +27))+ E(—i(x+ 27[))]
= %[E (ix)+ E(—ix).E (—21‘7[)] (.~ E is period with period 2ir)
:%[E(ix)+E(—ix)] —C()
And S(x+27)= %[E(i(x + 27r)) - E(—i(x + 27[))]

1

~ [ £ (i)~ £(-ix)]
=S5(x)

. Cand S are periodic with period 2~
c) suppose 0<t <% and E(it)=x+iy where x,ye R = E(—it)=x—iy

S 1=E0)=E@t—it)= E(t)E(=it) = (x+iy)(x—iy)
=1=x"+3> > (1)
=0<x<1 and 0<y<l
Consider E(4it) = E(it +it + it +it)
= E@t)E(it)E(it)E(it)
=(x+iy)’
=x*+ "' —6x"y" +dixy(x’ — %)
If E(4it) is areal no., then 4xy(x* —y*)=0 = (2)
As x#0&y#0, xp#0

So, from(2), x* - y* =0

Hence , from(1), x =

E(im{%}“+(%j‘_6%j%f 50
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We have 0<t<% =0<4t<2x

From(3), E(it)) =—1 where ¢, =4t = E(it,)#1 if 0<t, <27
Hence, 0<t<2n = E(it)#1

d) Fix a complex number z such that |z| = 1
Letz = x + iy where x,y € R
As|z|=1,x2+y%2 =1

Case i: suppose x = 0 of y > 0

Since ‘C’ is decreases on (0, g) from 1 to 0, by a known result, C(t) = x for some t € (0, g).
Since C2+S?=1and S = 0on (0,%), we get S(t) = y for some t € (0,%).
Therefore E(it) = C(t) +iS(t) = x + iy = z forsome t € (0, g) C [0,2m]

Case ii: Suppose x < Oandy >0
Then —x > 0 and y > 0, we have z = x + iy

So, —iz = —ix + y that implies —iz = y + ix;, where x; = —x > 0

Clearly, |—iz| = Jy2 +x? = \/y2 + (—x)2 =|z| =1

So, by Case (i), E(it) = —iz for some t € (0, g).

. . -1 . J in , , in
That implies z = TE(lt) ={E(it) = E (?) E(it) =E (lt + ?) <1

=F (i (t + g))
= E(it;)
where t; =t +§ € E,n] C [0,2m]
Case iii: Supposey < 0and x > 0
Thenx > 0 and —y > 0, we have z = x + iy
That implies —z = x + i(—y)
=x +1iy, wherey; = -y >0

Now, |—z| =|z| =1
So, by Case (ii), we get t € (0, g) such that E (it) = —z
That implies z = —E(it) = E(im)E(it) = E(im + it)

=E(i(m +t)) = E(ity)
Where t, =+t € (0,2m)
Therfore z = E (it) for some t € (0,2m)
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Case iv: Suppose x < 0 and y < 0, then —x > 0and —y > 0
We have z = x + iy

That implies —z = —x + i(—y) = x; + iy,

Where x; = —x >0andy; = -y >0

Now |—z| =|z| =1

So, by Case (i), we get t € (0, g) such that E(it) = —z

That implies z = —E(it) = E(in)E(it) = E(i(mw + t))
= E(it3)

Where t; =t + w € [0,2r]

Therefore E (it) = z for some t € [0, 2]

9.5 SUMMARY:

This lesson is designed to introduce learners to the fundamental concepts of the
Exponential, Logarithmic and Trigonometric, exploring their properties and applying them to
real-world contexts. This lesson provides a solid foundation for learners to develop their
understanding. Key takeaways of this lesson are definitions and theorems, applications of the
Exponential, Logarithmic and Trigonometric in mathematical and real-world problems and

examples and exercises to their force understanding.
9.6 TECHNICAL TERMS:

e Exponential functions

e Logarithemic functions
e Trigonometric functions
e Periodic functions

9.7 SELF-ASSESSMENT QUESTION:

1. Prove the following limit relations

X

a. lim

x—0

=logh (b>0)

b. hmlog(l—+x) -1

x—0 X

1
C. ling(l +x) =e
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d. lim£1 +1j — ¢

n—© n

2. Find the following limits.

_ VA
o mes D"
x—0 X

b. 1imi(n% -1)

= log x
tanx—x
C. m——-—
0 x(1-log x)
4 LmX= sin x

—0tan x — x
3. Suppose f(x)f(y)=f(x+y) forall real x and y
a. Assuming that f'is differentiable and non-zero Prove that f(x) = e, where c is a constant

b. Prove That something, assuming only that f is continuous

sin x

4. If 0<x<%,ProvethatZ< <1

X

5. For n=0,1,2,3....., and x real, Prove That |sin(nx)| < nsin x|

9.8 SUGGESTED READINGS:

1) Principles of mathematical analysis by Walter Rudin, 3™ Edition
2) Mathematical Analysis by Tom M.Apostal, Narosa Publishing House, 2™ Edition, 1985

- Dr. L Krishna



LESSON- 10
LINEAR TRANSFORMATIONS

OBJECTIVES:

The objective of this unit is to explore the concepts of linear transformations and their
applications in advanced mathematical analysis.
It aims to
1. Understand the principles of linear transformations and their role in differentiating
functions
2. Analyse the contraction principle and its significance in fixed-point theory.
3. Examine the inverse function theorem and its applications in multivariable calculus.
4. Develop problem-solving skills related to differentiability and transformations in

higher dimensions.
STRUCTURE:

10.1 Introduction

10.2 Definitions

10.3 Theorems on linear transformations
10.4 Summary

10.5 Technical terms

10.6 Self Assessment Questions

10.7 Suggested readings

10.1 INTRODUCTION:

This lesson starts with an exploration of sets of vectors in Euclidean R"space. While the
algebraic principles discussed here apply to any finite-dimensional vector space over any

field of scalars, we will focus on the familiar framework of Euclidean spaces for simplicity.
10.2 DEFINITIONS:

1. Anonempty set X < R" is a vector space over R if
1. X+yeX and

11. cx € X forall x,ye X and for all scalars ¢
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C X, +CyXy Fenn, +c¢, X, Is called a linear combination of X, ,X, ,......... X -

3. If SC R" andif FE is the set of all linear combinations of elements of S
We say that S spans E (or) that £ is the span of S .

10.2.1 Note: - Every span is a vector space.

4. A set consisting of vectors X,,X, ,......... ,X, 1s said to be linearly dependent if there
exists a scalars ¢;,c, ,........ c, ,not all zero, such thatc, X, +c,x, +......... +¢,x,=0

5. A set consisting of vectors X,,X, ,......... ,X, 1s said to be linearly independent if there
exists a scalarsc;, ¢, ,........ c, ,not all zero, such thatc, X, +¢,x, +......... +¢,%,=0
implies ¢, =c, =,........ ¢, =

10.2.2 Note: Observe that no independent set contains the null vector.

6. Ifa vector space X contains an independent set of 'r' vectors but does not contain
independent set of 7 + 1 vectors, then we say that X has dimensionr, and we
writedim X = r.

10.2.3 Note: The set consisting of 0 alone is a vector space; its dimension is 0.

7. Let X be a vector space. A subset B of X is called a basis of X if

i. B is linearly independent and
ii. Bspans X

10.2.4 Note 1. Observe that if B = { Xp 5 Xy peveeenne , Xy } is a basis of X, then every element 3
K

in X has a unique representation of the form x = Zcifi the numbers
i=1

[N c, are called the coordinates of 3 with respect to the basisB.
10.2.5 Note 2. Consider the vector space R™.
The set{éy, &;, ..., €,} where &;is the vector in R"whose jth coordinate is 1

And whose other coordinates are all 0, is a basis for R™

This basis is called as the standard basis of R™

10.3 THEOREMS ON LINEAR TRANSFORMATIONS:

10.3.1 Theorem Let r be a positive integer. If a vector space X is spanned by a set of r

vectors, then dimX < r.
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Proof: Given that r is a positive integer

Suppose Xis a vector space, spanned by a set S of vectors.

Let the r vectors of § bexy, ..., X,-.Then

s = {x1, X5, o, X1}

Claim: dimX <r

If possible suppose that dim X > r

Then we get a linearly independent set, say Q = {y, ..., ¥, Vr+1J0f 7 + 1 vectors in X.
Since y; € Xand S spansX, we have that y; is a linear combination of elements of S .....(1)
So, S U {y,} is a linear dependent set in X.

Write S; = {y1, X1, ..., X}

Then S; is linearly dependent and S; spansX.

By (1) 3 scalars by, by, bs, ..... b, such that y; + by %; + -+ b, %, = 0 ()
If allb;’s are zero, theny; = 0,

So, some by, ,1 < k < r is non zero.

Therefore from (2), X} is a linear combination of Xy, ***, X1, Xx41,*» X and y;  ..... (3)
Write Sy = {J1, X1, eoo) Xi—1) Xk g1y veer X}

Now we prove that S, spansX.

Letu € X.

Since S; spansX,we have
7=YcF +b, RNC)
i=1

By Q)X = diy1 + a1Xy + -+ Qo1 X1 + Qg1 Xper1 + o0+ A X
Whereay, ... ax_1, g 41, ---» A and d, are some scalars.
So, from (4) we get
U =%y + -+ Cporfpor + C(day + Xy + o 4 Qo Xmq + A Xper + 0 A %y)
+ Cpy1Xpp1+--- +Cp X +by V5.
=U = (cr+ascp )oy + 4 (Cko1 +Ag-1C W1+ (Cprr + A1) Xpar + - +
(cr + arc) % ++(by + dici )y
= uis a linear combination of X, ..., Xx_1, Xx41,***, X, and y;.
=~ S, spans X.
Since y, € X and S, spans x, we have that y, is a linear combination of vectors ofS,
= S, U {¥,} is linearly dependent.

Write S3 = S, U {2}, = {J1, V2, X1, o) X1, Xie1, 5 X
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Then S5 is a linearly dependent set inX.

It is clear that 3x; in S3\{y;,y,}3x; is a linear combination ofy,, y, X1, ..., Xj_1, Xj 11, «-r ) Xy

Write 54_ = {)71, )72, )73, fll ’fj—ll JZ]'+1, ey fk—ll fk+1’ ,f—r}.
Clearly, S, spansX.

Proceeding like this, after r steps, we get ar set {yy, ..., ¥,-} and ¥,-,, is a linear combination

of Y1, V2, «-o) Vr-
So, Q = {J1, ..., ¥r, Vr+1} 1s linearly dependent.

s dimX <r

10.3.2 Corollary: dim R™ = n.
Proof: since {&}, &,, ..., &,} spans R™, by the above Theorem, dim(R") <n  — (1)
since {&;, &, ...,e,}isal IsetinR™ , dim(R")>n - (2)

From (1) & (2), dimR"™ = n.

10.3.3 Theorem Suppose X is a vector space, and dimX = n.
(a) A set E of n vectors in X spans X if and only if E is independent.
(b) X has a basis, and every basis consists of n vectors.
() If1 <r <nand{y, .., ¥} is an independent set in X, then X has a basis
Containing{y, ..., y-}.
Proof: Given, X is a Vector spaceanddim X = n.
a) LetE = {x;, %, ..., X} S X.
X =(E)

Suppose EspansX.
Now we prove that E is linearly independent in X.
If possible suppose that E is linearly dependent.
Then 3scalarsaq, ay, -+ @y, not all zero such that

a1X1 + ax, + -+ apx, =0
Suppose aj # 0 for somel < K < n.
Then X}, is a linear combination of Xy, ..., Xx_1, Xx41, ---» Xn.-
o AKXy, ey X1, Xg1y - X JSpans X
So, by the above Th., dimX < n — 1.
= n < n — 1This is not possible.
=~ Eis a linearly independent set in X.

Conversely, suppose thatE is linearly independent.
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Set of n vectors, we have that.

Sincedim X = n, and E is linearly independent X,

For any ¥ € x, E U {y} is a linearly dependent set in X.
Lety € X.

Then EU {y} is linearly dependent.

so, 3 scalars a4, ..., a,, a,,1 not all zero,

such that a; %, + =+ + A%y + apsry = 0 - (1)
If a4, = 0, then a; %, + - + a, %, = 0.

>aq;=0vV1I<i<n (v EisLlI)

This is a Contradiction.

Slpeq 0.

So, from (1), y is a linear combinationofXxy, ..., X,.

~ E Spans X.

b) Since dim X = n,

X Contains alinearly independentSetBof n vectors and does not containonly linearly
independent Set of n + 1 vectors.

By part (a), B spans x.

Hence, B is a basis of Xcontaining n vectors.

Let'S 'be any basis of ' X ' containing m eles.

Then by the above Th., dimx < m - (1)

since s is a linearly independent set of mvectors, by the definition of dimX,m <n - (2)
From (1) & (2), m = n.

Hence, any basis of X contains n vectors.

C) Suppose, 1 <r <n_and {y, ..., ¥} is a, linearly independent set in X.
SincedimX = n, we get a basis {X;, ..., X, } of n vectors in X.

WriteS = {y1, oo, Yy X1, o) X }

clearly, SspansX.

Also, S is linearly dependentin X.

So, one of the vectors,sayx; is a linear combination of yy, ..., V-, X1, -, Xj_1, Xj11, - Xi

Remove x; fromS.
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Then the set S" = S\ {x;} still spans X.
If we repeat this process r times, by (a),

We get a basis of X which Contains{y;, -+, .}

10.3.4 Definition: A mapping A from a vector space X into a vector space Y is said to be a
linear transformation if (i) A(x; + x3) = Ax; + Ax,
(i1) A(cx) = cAx

for all x,x4,x, € X and all scalars c.

10.3.4.1 Note: Set A: X — Y be a linear transformation.
i) A(0) = 0,.

ii) we write AX instead of A(x).

10.3.5 Definition: A linear transformation of a vector spaceX into itself is called a linear

operator on X.

10.3.6 Definition: - Let X be a vector space. A linear operator A on X is Said to be invertible
if
1)Ais one-one, and

i1) A maps Xonto X.

10.3.6.1 Note: -If A is a linear operator on X, then A™1 is an operator on X, defined by
A (A(x)) = xvx € X.

10.3.6.2 Note: A(A™1(x)) = x forall x € X.
Proof: Let x € X.

sinceA is onto, 3y € x such that A(y) = x.

By the defof A™Y, y = A71(A(y)) = A1 (x)

= A(y) = A(A71 (%))
=>x=A(A"1(x))

10.3.6.3 Note: A1 is a linear operator on X.
Proof: we have A is a linear operator on X.
Let x4, x, € X.

since A maps X onto X, 3y,,y, € X such that A(y;) = x;, &A(y,) = x5.
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= A7 (A(yy)) = A1 (x;) and A1 (A(y2)) = A7 (xp).
=y, = A (x) ad y, = A7 (xy).

Now A (x; + x,)= A_l(A(y1) + A(Vz))

= A_l(A(}ﬁ + YZ))

=y1t)2
S A_l(xl) + A_l(xZ).

Letx € X and let' ¢ ' be a scalar.

since Amaps X onto X,3y € X 3 A(y) = x.

So,y = A" (A(y)) = A71(x)

Now A7 (cx) = A7 (cA(y)) = A7 (A(cy)) = cy = cA™1(x).

Hence, A™! is a linear operator onX.

10.3.7 Theorem A linear operator A on a finite-dimensional vector space X is one-to-one if
and only if the range of 4 is all of X.

Proof: Let A be a linear operator on a finite dimensional vector spaceX.
Since X is a finite dimensional vector space,

We get a basis, say B = {X;, X3, ..., X, } of X.

Consider R(A), the range ofA.

Write Q = {Ax{, AX,, ..., AX,}.

Then Q € R(A)

Now we Show that Q spans R(A).

Lety € R(A) = y = A(X) for some X € X

Since B spans X and X € X, we have that

X = ai1X%, + ayx, + -+ . +a,x, for some scalars a4, ay, ..., ay.

So, ¥ = A(X)

= A(alfl + azz + -+ O(nfn)
= 0(114(3?1) + azA(fz) + -+ anA(fn)

=~ y is the linear combination of vectors of Q

=~ Q spans R(A) - (1)
We know that a set E of nvectors in X spans X iffE is independent (put (a) of Th-4.3)
Spanof Q =X
So, we have R(A) = x iff Q is independent - (2)

From (1) &(2)
So, it is enough if we show that @ is independent iffA is 1 — 1.
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Suppose Ais 1 — 1.
Let ¢4, ¢y, ..., ¢, be scalars 3
c1A(X)) 4 C,A(X,) + 4 CLAX,) =0
:>A(le1 + szz + e + Cnfn) - 6
:>C1.f1 + szz + e + Cnfn - 6('0' A IS 1 - 1)

= C; = C, =.= C, = 0- (~ sinceB is independent )
~ @ 1s independent .

Conversely, suppose that Q is independent.
Letx €EX3A®X) =0
Since Bspans X, and x € X,

- (3)

X = lel + szz + -+ Cnfn - (4’)

for some scalars ¢4, ¢y, ..., Cp.

SO, (3) = A(lel + szz + -+ Cnfn) = 6
0

ClA(fl) + CzA(fz) + -+ CTLA(JZTL) =
=2>c=c=-=¢,=0(QisL.IT)

So, from (4) & (5), we get ¥ = 0.
Hence the Theorem follows.
Suppose A(x) = A(y)where x,y € X.
= A(%) — A(¥) = 0.
> AFx—-75)=0

=Y

x|

>x—-y=0=
~Ais 1-1
10.3.7.1 Notations

Let X,Y be two vector spaces.

- (5)

i) The set of all linear transformations of X into Y is denoted by L(X,Y).

ii) We simply write L(X) instead of L(X, X).

10.3.8 Definition-Cum-Remark:
Let A;,A, € L(X,Y) and ¢4, ¢, be scalars.

FOI‘ any X E X, deﬁne (ClAl + CzAz)(f) = ClAl(f) + C2A2 (f).

Then c;A; + ¢, A, € L(X,Y)
Proof: Let x;, X, € X and let , § be scalars.

Consider (c;4; + c,4,) (ax; + Bx;) =
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= 1A (ax; + Bxz) + c; A (axq + BXx;)
= ¢1[A1(ax;) + A1 (BX)] + c;[Ax(aXy) + A, (Bx;)]
= c1[ad;(x1) + BAL ()] + c2[245(x1) + BA,(X2)]
= [c1aA;(x1) + ¢1fA1(XR)] + [caAy (1) + c28A5(x;)]
= [a(c1A) (%) + B(c141)(x2)] + [a(c242) (k) + B(c242)(x7)]
= a(c14; + c4)(x1) + B(c141 + c245) ().
nc Aj+cA, € L(X,Y).

10.3.9 Definition-Cum-Remark:
Let X,Y and Z be vector spaces. If A € L(X,Y) and B € L(Y, Z), we define their product BA
to be the composition of AB and BA. i -e, for any X € X, (BA)(¥) = B(A(JZ)). Then
BA € L(x, z).
Proof: Let X,y € X and let a, § be scalars
Consider BA(ax + By) = B(A(ax + By))
= B[A(ax) + A(By)]
= BlaA(x) + BA(Y)]
= B(aA(x)) + B(BA())
= aB(A(x)) + BB(A(9))

= a(BA)(X) + B(BA)()
~BAE€LX,Z).

Note: -BA need not be the some as AB evenif X =Y = Z.

10.3.10 Definition: For A € L(R™, R™), define the norm ||A|| of A as the supremum of all

numbers|Ax|, where X ranges over all vectors in R™with |x| < 1.

i.e ||A|| = sup |Ax]
x€R
|Zl<1
Observation (1): Let A € L(R™, R™)then|Ax| < ||A|||X|VX € R™.
Proof:
Letx € R™.

If% = 0, then clearly|A%| < ||A]l|%].
Supposex # 0. Puty = |%“thenlyl = 1.

By the def of ||A]], |[AQ)II" < ||All
X 1
B |A (_)| < |lAll = 5 14%| < ||A]| - (~ Ais linear)
| x| ||
= |Ax| < ||Alllx]
Hence,

|Ax| < ||All|x|vx € R™.
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2) If A is such that|Ax| < A|x|Vx € R™, then||A|| < A.
Proof: Letx € R"|x| < 1.

Suppose|Ax| < A|x| < A

~ Ais an upper bound of]|Ax|,x € R"|x| < 1.

Since

||A]| is the supremum of A, then

Al < 2

10.3.11 Theorem
(a) IfA € L(R™, R™), then ||A|| < oo and A is a uniformly continuous mapping of R™ into R™.
(b)IfA,B € L(R™, R™) and c is a scalar, then
IA + Bl < lAll + [[Bl, llcAll = Icll|All
With the distance between A and B defined as ||A — B||, L(R™, R™) is a metric space.
(c)IfA € L(R™,R™) and B € L(R™, R¥), then
IBA|l < |IB]IIIAIl
Proof:
(a) Suppose A € L(R™,R™)
LetE = {e, ... ... e, } be the standard basis of R™.
Letx € R" 3 |x] < 1.
Since E spans R", we get some scalarsc; — ¢, such that
X =cie + -+ e,
|zy + 25| < 1.
we have |x]| < 1.

= |Cle_1 + Cne_nl <l=> |(C1, Coy enn v Cn)l <1

:11512+"'+C%S1:>|Ci|$1 V1<i<n

Now consider

|Ax| = [A(ci8y + - + cpép)| = |c1A(&) + - + cr A(e)].
< lellA@D)] + -+ + |enl|A(En) |
< |A(e)| + -+l A(é, D(+ || = 1Vi)
< o

~For every X € R™ with |x| < 1; |Ax| < o0

Hence,

1Al = sup {|Ax|/]x| < 1} < oo,
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ie |[A]l < oo
Lete > 0.
If A = 0, then clearly A is uniformly continuous.
sup. A # 0. Then||A]| # 0.

write 8 = —. Then § > 0
1Al

Letx,y € R™" such that | X — y [< 4.
Consider |Ax — Ay| = [AG —P| <Al | x =y |

€

< [IAll& = [ Al Al

€.

Thus, for every € > 0,V6 > 0
|x —y| <& = |Ax — Ay| <€ Vx,y € R™.

This shows that A is uniformly continuous fromR™toR™.

b) Let A, B € L(R™, R™) and let 'c' be any scalar
For any X € R™with|x| < 1, consider

|(A + B)x|= |Ax + Bx| < |Ax| + |Bx| < ||All|x] + [[B]l|%|
= (IAll + IBlll x 1< lAll + 1B ¢+ 1x] < 1)

So, {|(A + B)(%)|/x € R™ with |x| < 1} is bounded above by||A]|| + ||B|
~ sup. {|(4 + B)x|/x € R™With|x| < 1} < ||A]| + ||B]|

= [[A+ Bl < llAll + lIBII.

Consider

ICA|| = sup{|(cA)(X)|/x € R™ with |X| < 1}
= |c|sup{|Ax|/x € R™ with |x| < 1}
= |c[ [|A]]-

Define d: L(R™,R™) - Rasd(4,B) = |A — B||VA,B € L(R™,R™)
claims: d is a metric onL(R"™, R™).
Let4, B, C € L((R™, R™).
Clearly,
i.d(4,B) = ||A—-B| > 0.
ii.d(A,B) =0 ||A-B||=0
< sup{|(A — B)(¥)|/x € R™" with |x| <1} =10
& (A—B)(x) = 0vVx € R"with x| <1
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X
@(A—B)(m)zo,VEeR"

© (A—-B)(x) =0,vx € R"
© A(x) = B(x),Vx € R"
< A=B.
~d(4;B)=0e A=B.

Consider
iii.|[A = Bl = [|(=1D)(B — Al = [-1]||B — All = ||IB — Al|

= d(A,B) = d(B, A).
Consider
iv]|[A-Cll=1(A-B)+ B -0l <llA-Bl+I1B -l
= d(A,C) <d(A,B)+d(B,C).
. dis a metric on L(R™, R™)
c)Let A € L(R",R™)andB € L(R™, R").
Let X € R™ such that|x| < 1.
Consider. |[(BA)(X)| = [B(A(®))| < |IB|l|Ax|
< lIBlllIAllx] < IBIIAIIC1)
So, the set {|(BA)(x)|/x € R™ with |x| < 1} is bounded above by || B||||A]l.
=~ IBAIl < lIBIIIIAIl.

10.3.12 Theorem Let Q) be the set of all invertible linear operators on R™.

(a)IfA € Q,B € L(R™), and

IB—A|l -||A7Y|| < 1then B € Q.

(b) Q is an open subset of L(R™), and the mapping A — A1 is continuous on Q.

(This mapping is also obviously a 1 — 1 mapping of () onto (), which is its own inverse.)
Proof: Let Q be the set of all invertible linear operators onR™

(a) Supposed € O, B € L(R™") and ||[B — Al - |47 <1 - (1)

Putax = ﬁand B =B — Al

Thenby (1), <a=a—->0
For any X € R"™, Consider a|x| = a|(A'A) - x|
<allA7M - 1A |
= |Ax| < |(A — B)x| + |Bx|
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< Blx| + |Bx| = (2)
Sincea — 8 >0, (a — B)|x| >0 forall 0 # X € R™.
So, from (2), |Bx| # 0 for allx € R™ — (3)
one-one: suppose X1, x, € R™ such tit x; # x,.
= X; —X, € R"and x; — x, # 0.
So, by (2) ,B(x; — ix,) # 0.
= B(x;) # B(xy).
Onto: the linear operator B on a finite dimensional vector space R™ is one-to-one.
So, by known Result (Th-8.3.5), the range of B is all of R™.
This shows that B is onto.
Hence, B is a bijective mapping from R™ onto R"
= B is an invertable linear operator on R™.
= B e .
Claim:A is an interior point of ().
(b) Let A € Q. Then A is invertable

= ||A71]| # 0.

1
la=t

ConsiderSs(A); the nbd of A.
LetB € 55 (A)

Writed = Then § > 0.

= |B-All <é=|B-All < = 1B -AlllA7 <1

1
1A=
So, by part (a), B € (0.
=~ Ss(A) € Q. Thus Q is an open setinL(R™)..

Now we show that the mapping
f:Q - Q, defined by f(4) = A"1VA € Q, is continuous.
For anyB € Q, consider ||B™1 — A71|| = ||B714A™t — B~1BA™Y||
=IB~'(A - B)A7!||

< IB7HIIA = B)IIIA~]IVB € Q
Since ||B — A|| - 0as B — A, it follows that the R.H.S.of (1) tends to 0 as B — A.
So, from (1),
|IB~* — A7|| - 0asB - A.
= [If(B) = f(A)Ill » 0as B - A.
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= fis continuous at A.

= fis continual on ().

10.3.13 Matrices

Suppose{X;, X, ..., X, } and {y1, ¥, ..., ¥} are bases of vector spaces X ad Y, respectively.
LetA € L(X,Y).

Then Ax; € X for j = 1to n.

Since {1, ¥2, = Ym} is a boris for Y, Ax; = Y%y a;;5;(1 < j <n).—> (1)

So, for A € L(X,Y), we getas setof nos. a;;,1<i<mand 1<6<n.

We arrange these numbers in a rectangular array of m rows and n Columns, called an

m by n matrix:

aj; Qg2 0 Qi

A1 Qpz = dzpn
a]=| 2 - ;

Am1 Amz  *° Amn

Observe that the coordinates a;; of the vector AX; (with respect to the bases {y;, y, }appear in

the j th column of [A].

The vectors Ax;, 1 < j < nare therefore sometimes called the column vectors of [A].

With this terminology, the range of A is spanned by the column vectors of[A].
Letx € X.
Then x = ¢1Xq + c3%, + -+ + ¢, X, for some scalars ¢4, ¢, ....., Cp.
So, Ax = A(ciXy + cox5 + -+ + € Xn)
= c;A(xy) + c,A(%,) + -+ + ¢, A(X,)
= ¢1(a11Y1 + a21¥2 + -+ i Im) + €2(A12Y1 + A2Y2 + 0+ Vi) +
et Cn(aln}71 + aZn}72 + o+ amnfm) - (b:V(l))
= (a1161 + a126; + - + ancy) V1 + (@161 + A6, + - + anCp)y, + -
o (A1 aq F A€y + o F A Cn) Vime

m n
i=1 \j=1

Thus the Coordinates of AX are Z;-‘zl a;jcifori =1,2,...,m.
Note that in (1), the summation ranges over the first subscript of a;;, but that we seem over

the second subscript when Computing coordinates. Suppose next that anm by n matrix is
A1 A2 . Qip
. . . . vt Qon | .
given, with real entries a;;, so, we have matrixa;; | . . . |with real entries.

Am1 Amz " Amn
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If A is then defined by (2), it is clear that A € L(X,Y) and that [A] is the given matrix,

a1 Qe - Qqp
, a1 Az -+ dap
i.e;[Al = . . .

Am1 Amz2 " Qmn

Thus there is a one-to-one correspondence between L(X,Y) and the set of all real m by n
matrices.

Observe that [A] depends not only on A but also on the choice of bases of X and Y.

The same A may give rise to many different matrices if we change bases, and vice versa. We
shall not pursue this observation any further, since we shall usually work with fixed bases.
If Z is a third vector space, with basis {zl, s zp}, if A is given by (1), and if

By; = Z byizy, (BA)X; = Z CkjZk
i

K
thenA € L(X,Y),B € L(Y,Z),BA € L(X,Z), and since

B(AX]): BZ aini = z aijByl-
i i
= Z ajj Z byizy = Z <Z bkiaij> Zi,
k k

i

the independence of {zl, e zp} implies that
ijzz bklau(lﬁkﬁp,l S]Sn) - (3)
i

This shows how to compute the p by n matrix [BA] from [B]and [A]. If we define the
product [B][A] to be [BA], then (3) describes the usual rule of matrix multiplication.
Finally, suppose {Xy, ..., X, } and {y;, ..., ¥} are standard bases of R™ and R™, and A is given

by (4). The Schwarz inequality shows that

2
— 2 2 _ 2
= (S ae) <3 (35 )= 3 e
[ j J J

i j i i,j
Thus
1
2
lal <> at - @
Lj
If we apply (4) to B — A in place of A, where A, B € L(R™, R™), we see that if the matrix

elements a;; are continuous functions of a parameter, then the same is true of A. More

precisely:
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If S is a metric space, if a;4, ..., Ay are real continuous functions on S, and if, for each p €

S, A, is the linear transformation of R™ into R™ whose matrix has entries a;;(p), then the

mapping p — A, is a continuous mapping of S into L(R", R™).
10.4 SUMMARY:

In this lesson we are discussed about linear transformations of functions with the detailed

definitions, examples and theorems.

10.5 TECHNICAL TERMS:

¢ Fixed point theory
e Inverse function theorem
e Linear operator

e Invertable linear operators
10.6 SELF ASSESSMENT QUESTIONS:

1. IfS is a nonempty subset of a vector space X, prove that the span of S is a vector space.

2. Prove that BA is a linear if A and B are linear transformations. Prove also that A7 is
linear and invertable.

3. Assume 4 € L(X,Y) and Ax = 0 only when x = 0. Prove that A is than 1-1.

4. Prove that null spaces and ranges of linear transformations are vector spaces.

5. Prove that to every A € L(R™, R!) corresponds a unique y € R™ such that AX = x - y.
Prove also that |A;| = |y|.

Hint: under certain conditions, quality holds in the Schwarz inequality.

10.7 SUGGESTED READINGS:

1. Principles of Mathematics Analysis by Walter Rudin, 3™ Edition.
2. Mathematical Analysis by Tom M. Apostal, Narosa Publishing House, 2"‘Edition, 1985.

- Dr. K. Bhanu Lakshmi



LESSON - 11
DIFFERENTIATION ON LINEAR

TRANSFORMATIONS

OBJECTIVES:

After studying the lesson you should able to understand the concept of differentiation on
linear transformations.
1. Learn what it means for a function to be differentiable for both single and
multivariable functions.
2. Study partial derivatives and how they describe the behavior of functions with more
than one variable.
3. Use important differentiation rules, including the Chain Rule, and understand their
practical applications.
4. Understand Jacobian matrices and their role in representing the derivatives of
functions with multiple variables.
5. Explore the relationship between differentiability and continuity, including the
conditions under which functions remain constant.

STRUCTURE:

11.1 Introduction

11.2 Definitions and Theorems
11.3 Partial Derivatives

11.4 Summary

11.5 Technical terms

11.6 Self-Assessment Questions

11.7 Suggested readings

11.1 INTRODUCTION:

In functional analysis, differentiation of a linear transformation, or Fréchet derivative,
is a linear operator that describes the best linear approximation of a function at a point,

generalizing the concept of a derivative from single-variable calculus.
11.2 DEFINITIONS AND THEOREMS:

11.2.1 Definitions
(a) Let (a, b) be an open internal in R and f of be a real function defined on (a, b) .We say

that f is differentiable at x € (a, b) if }lirr(l) w exists and we denote it by f'(x) Thus
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fx+h)—f(x)
—

f() = lim
(b) Let £, f, -+, fx be real functions defined on a metric space X.
Define a mapping f: x — R¥by
F) = (f1(0), fo(0),+, fie (O))for all x € X.

In this case, fi,f,, ..., fx are called the components off.

Note:

1. fis continual on X iff each f;is continuous on X ,fori = 1 to k.

2. f is differentiable at X iff each f; is differentiable at X, fori = 1 to k.

11.2.2 Definition:
Suppose E is an open set in R™, fmaps E into R™, and X € E. If there exists a linear
transformation A of R™ into R™ such that
|f(x + h) — f(x) — Ah|
ho0 7| -

(1)

then we say that f is differentiable at ¥, and we write
f'(x)=A (2)
If f is differentiable at every X € E, we say that f is differentiable in E.
Note:
1)  Inthe above definitionh € R™.
If |h| is small, then X + h € E  (since E is open)
Thus f(x + h) is defined, f(X + h) € R™, and since A € L(R"™,R™), Ah € R™.
Hence f(x + h) —f(x) — Ah € R™
2)  The norm in the numerator of (1) is that of R™ and the norm in the denominator of (1)
is that of the R™.

There is an obvious uniqueness problem which has to be settled before we go any further.

11.2.3 Theorem:
suppose E is an open set in R™, f maps E into R™, ¥ € E, and suppose 4,, A, are linear

transformations of R™ into R™ such that

lim LEHRT@O-MR] _ o g iy LEHR SO 45h]

— — =0 thend, = A,.
ho0 IA| R0 IA| 1 2

Proof:

suppose that A; ad A, are linear transformations of R™ into R"such that
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lim |f(9?+h)—]_‘(f)—A1h| = 0 and lim |f(f+h)—]_‘(9?)—A2h| _
h—-0 |h| h-0 [h|

Put Bl S Al _Az.

0 - (1

For any h € R™,

Consider
|BR| = |A1h — Ash|
= |Ah+ f(x + R) + f(®) — f(x + k) — F(X) — Azh|
=|(f(x +h) — f(x) — A;h) — (f(x + h) — f(x) — A1h)]
<|f(x+h) = f(x) — Ah| + |f(x + h) — f(X) — Az

|Bh| - |f(x + h) — F(X) — Ash| N |f(x + h) — F(2) — Az

So,—— < ~ a Vo+h€ER"
|| || ||

Taking limit on both sides ash — 0, by (1), we get

G B
—_— = U.—
A ] (2)

For fixedh # 0, it follows that

[B(¢h)]

|¢h]

> 0ast—>0 - (3)(~ forfixedt > 0 = th - 0).

i, [BER _ 1eBR)] _ el _ |8
h] ~ JE WA A

(= B is a linear transformation)
So, the left hand side of (3) is independent of ' ¢ .
« |Bh| = OVh € R™
= Bh=0>= (4, —A,)h = 0Vh € R™.
= Alﬁ = Azﬁ
= Al = Az.
Note
|F(x+R)—fF(X)—AR|
||
fE+hR)-f@ =Ff@r+y(h) > @
Where lim % = 0. (In the definition derivative, A = f'(x) )
h-0
2) The derivative defined in by (1) or (4) is called the differentiable of f at X or the total

1) The reaction }_lim = 0 can be written in the form
-0

derivative of f at X.
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11.2.4 Example
Let A € L(R™ R™). If A is differentiable on R™andx € R", then A'(x) = A —» (5)

{ Note that X appears on the left side of (5), but not on the right.
Both sides of are members of L(R™, R™) where as Ax € R™.

Proof:
Letx € R™.
Consider | AG+R)-A@)-AR)| _ |[A@)+AR)-AX)—-A(R)]
R |kl
(by the linearity of A)
=0
[A(X + h) — A% — Ah| _
= lim
h—0 |h|
AKX =A

11.2.5 Theorem (Chain Rule):-
suppose E is an open set in R™, f maps E into R™, f is differentiable at X, € E, § maps an

open set containing f(E) into R¥, and g is differentiable at f(x,). Then the mapping F of E
into R* defined by F(%) = g ( f (f)) is differentiable at X,, and F'(x,) = g’ (]T’(xo)) f' (%)
Proof:

DefineF : E - R¥ by F(x) = g_(f_(f)) VX €R

Claim: F is differentiable at X, € Eand F'(%,) = ( (xo)) (xo))

Let yy = f(Xp)-

Given f is differentiable at X, and g is differentiable at ¥,.

So, f'(%,) ad g’ () exists.

Put A = f'(xy)add B = g’ (¥,).

Then A is a linear transformation from R™ into R™, B is a linear transformation

from R™ into R¥, and

|f(x0+h) f(xy) — Ah|

lim 7 =0 > (1)
7(yo + k) — g(3,) — Bk| _

lim |90 + k) — 9G0) |=0 . @

h—0 |k|

Define

a(h) =f(xo+h)—f(xy) —Ah VheR" ad} L@

v(k) =g +k)—g(F,) —Bk VkeR"™
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So
(1) = Jim '”;’i)' =0and () =1lim "’l(Rl)' 0
|a|(f_ﬁ)| = €(h) where € (h) > 0ash— 0 and]
- - (4)
7] _ (k) where n(k) > 0ask —» 0
For given h, put k = f(%, + h) — f (%) - (5)
Now |k| = |f(%, + k) — f(xo)| = |- (R) + Ah| (from (3))
< |ﬁ(ﬁ)_| +|Ah| < |1_f(ﬁ)| +[14][|A|
= e(h)lhl + ||A|||h|(from(4)).
~ |KI< (e(h) + 141D ([R)) - (6)

Consider |F(%o+h)—F(xo)-BAh| _

g

{|g (F(7 + 1)) - 3 (F(%0)) — BAR|} (+ F = g(f(®)).

Al
1, . o — —
Al 17 + k) = g(0) — BAR| = f(%0) = o
(5) = f(%o +h) — f(x) =k

|19(k) + Bk — BAh|(from (3)

|19(r) + B(K — Ah)|

~hl
- 10+ 5 () om0
=T _|5(R)| + ||B||||T(h)|
n(i‘g"ﬂ + ||B||| |( |)| ( from (4))
a(h)|

<n(k)(e(h) + lIAll) + 1Bl ||T| (from(6)).

|F(x0+h) F(x,) — BAR|
A

[a(p)]

< n(k)(e(h) +114ll) + 1Bl Al
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Taking limits on both sides as h — 0, by (6),
we have (k) — 0 and % - 0.
_|F(xo + h) — F(x,) — BAA|
~ lim — =
h—-0 |h|
= F'(%) = BA = § Go)f' (%) = §' (F (%)) F' (o)
S F'(5) = ' (FG)) ' (o).

11.3 PARTIAL DERIVATIVES:

Let E be an open set in R™, and let {&;, &,, — &,} and {i14, @i, —1,, } be the standard bases of

R™ ad R™ respectively. Suppose f maps Einto R™ : The components of f are the real

functions fi, fy, ..., frn defined by f(%) = (f1 (), f2(), oo, [n(X))
=) f@ulxeE)

or, equivalently, by f;(¥) =f(x) -u;,1<i<m
Forx € Eadfor1<i<m,i<j<n)

m, provided the

we define (Dj fl-)(f) = ltirr(}
limit exists.
Writing(xy, X3, ..., X, )inplace of ¥ € E, We see that D; f; is the deravatave &f; with

respect x; keeping (xq, X, = x;,) in place of X € E, we see that D; f; is the devalative of f;
with respect to x;, keeping the other variables fixed. It is denoted by %. Thus
J

ofi

ofi
(Djfi)(xl, vy Xp) = 6—xi(x1, o, Xp)for o, = (x4, ...,Xy) EE.

Here D; f; is called as partial derivative.
In many cases where the existence of a derivative is sufficient when dealing with functions of
one variable, continuity or at least boundedness of the partial derivatives is needed for

functions of several variables.

11.3.1 Theorem: Suppose f maps an open set E € R™into R™, and f is differentiable at a
point X € E. Then the partial derivatives (Dj fi) (%) exist, and f’ xX)e =

2 (D) @w <j<n).
Proof:

Let E € R™.
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Suppose f maps E into R™ and f is differentiable at x € E.
Let {e;, ..., &,} and {ii;, > U,, } be the standard bases of R™and R™, respectively.

Take €> 0.

Since f is differentiable at %, lim |fGE+R)-FCO-1"GOR| _

= 0
h—0 [h|

|f +h)—F(©)—f' (R
|hl

ie, 36 >0 - < ewhenever0 < |h| <&

If t € R such that 0 < [¢| < §, then |tgj| = |¢| < 8.

|f(x+te;)-f@—f' (©te;]
|te;|

So, from (1),

< € whenever |te'j| = |t| < 6.

=

f(x+te;)—f () _ t f'(D)e;
t t

< EWhenever|te'j| = |t] <34.

i G4 8) - o)

t—0 |t

we have f(©)= (fi(X), (%), ..., fu ()
= z fi(UY froran X € E.

= f’(f)ej - (1)

So, (1) = f"(¥)§= lim

z fi(x + te_']t-) — fi(%) i€ (D

m
ie, f'(X)é;= z (D;f;)(®)@; forall j = 1 to n.
i=1

Note: Consequences of Theorem

We know that there is a one-to-one correspondence between matrices and linear
transformations.

Let [ f' (f)] be the matrix the represents f'(X) with respect to the standard bases {é, ..., &,}
of R™ and {it, ..., u,, Jof R™. Then f_’(f)e_j is the j* column [f_’(f)] and

D1fE) (Df)E) - (Dufi)(X)

. (D1f2)(x)  (D2f2)(X) =+ (Duf2) (%)
[F@] = : : s

(lem)(f) (szm)(f) (anm)(f)

This matrix is called the Jacobin matrix of f'atX. Sometimes we denote it as (D f) (%).

11.3.2 Example:Let(a, b) € R',E c R™ be open sets and let y: (a,b) - E be a

differentiable curve. ( yis continuous and y' is exists and is continuous in (a,b))
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let f be a real-valued differentiable function with domainE. i.e, f: E - R’'.

Define g(t) = f(t) = (f e ¥)(®) = f(f (1)), (a < (¢ < b) ~(1)

By chain Rule, g'(t) = f'(y(©))g'(D),a <t <b - (2)

Since y'(t) € L(R,R™) and f'(y(t)) € L(R,R™),

by (2), g'(t) € L(R,R).

ie, g'(t) is a linear operator on R

This agrees with the fact that g maps (a, b) into R

However, g'(t) can also be identified as a real number.

(Now we compute the no. g'(t)in terms of the partial derivatives of f and the derivatives of
the components of y )

Let {&;, ..., &,} be the standard basis of R™ and
lety(®) = (y2(0), .., vu (D)) € R™.
Now y'() = (y1(0), ... a(®) = Eiy ¥{ (O - (3)

So, [y'(t) ] is the n X 1 matrix which has | (t) in the i row.
y1(0)
ie, [yl =] :
Ya(O1,,
For every X € E, [f'(X)] is the 1 X n matrix which has (Dj f ) (%) in the j™ column,

Le[f' ()] = [(D1f)(X) - (D2f) (%) -+ (Dy (D] 1n

y1(0)
[9' O] =[f'(r®O)]ly'©®] = [(le)(y(t))—(sz)y(t)---(an)y(t)][ : ]

Yn(0)
[9'®] = X1 DiHy@®y'(t) = (4)

Def For eachx € E, the gradient of f at Xis defined as
n

WH@ =) DHEe
i=1

From 3) & (4) g'(t) =X DN ®O)y'(t)

V1(t)
=[N ®) — D)y @) -+ (D Ny ()] [ ( )]
Yn(t

= WHY® Z y'(©F = (VYO (©)

Fix X € E. Let 4 € R™ be a unit vector —(5)
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ie|ul=1
Puty(t) = x + tit(—o0 < t < ). Then y'(t) = u, Vt.
So, from (4), g'(0) = (V/)y(0)y'(0) = (V) (X)u - (6)
i fGE+ u—? —f@) _ im 9(®) ;g(O) _OH@E -

The limit in(7) is usually the directional derivative of f at X, in the direction of the unit

vector i, and is denoted by (Dzf) (X).

fG+) - f(X)
t

Thus (Dzf) (%) = lim = (V)(u - (8)
Ifu =Y, u;é;, then from (8), (Dzf)(x) =

= (01N ), (D)), » D f) (X)) (g, U, -+, un) = Xy (D)@ = (9)
ie, (Dzf) (%) can be expressed in terms of the partial derivatives of f at x.

In particular, if i = ¢;, then (9) becomes (De—i f ) (%) = (D;f) (%) which is the partial

derivative of f w.r.to x.

11.3.3 Definition: A subset E of R" is called a convex set if, for any X,y € E
0<A<1,Ax+(1—-A)yE€EE.

11.3.4 Theorem

Suppose f maps a convex open set E € R™ into R™, f is differentiable in E, and there is a

real number M such that ||f'(x)|| < M for every x € E. Then |f(b) — f(@)| < M|b — a| for

alla e E,b €EE.

Proof: Let E € R™ and E is a convex set in R™.

supposef maps E into R™, f is differentiable in E and there is a real neemberM such that

||f’(x)|| < M forall x € E.

Fix @, b € E. Define y: [0,1] - E as

y(t) = (1 —t)a+th forall t € [0,1].

Now y(1) = b& y(0) = a.

Since E is convex, y(t) € E forall t € [0,1].

So, y is differentiable on [0,1] and y'(t) = (6 — T)d +b=-a+b - (1)

put g(t) = f(y(t)) forall t € [0,1].

Then g is differentiable on [0,1], g(1) = f(f(l)) = f_(E),g_(O) = f(y(O)) = f(a),

and
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g®=f'r®)y'®

=f'(y(®)(b - a)
= 1g'OI=|F(r©®)(b - a)|

<|If'(r@)lljb—al

<M|b-a|l- (2)
(By Chain Rule)
= |g'(®)| < M|b — a|vt € [0,1].
Sinceg: [0,1] = R™ is continuous and differentiable on[0,1],
Then |g(1) — g(0)| < |g'(t)[(1 — 0) for some t € [0,1].
= |f(b) - f@] < 17 ®! - (3)(g(D) = F(1)&g(0)) = f(a))

From (2) & (3), |f(b) — f(a)] <M | b—a |forallab €E.

2)If h=3X7_; hjej, then f'(X)h = f'(X) (X}, hié;)

_ z hf'(®e (v f'(%) is linear ).
j=1

Sh (i o)

=1 i=1
11.3.5 Corollary
Suppose f maps a convex open set E € R™ into R™, f is differentiable in E and f'(x) = 0
for all x € E. Then f is constant.
Proof:
Suppose||f'(x)|| < 0 forall x € E.
Then by the above Theorem, |f(b) — f(a@)| < (0)|b — a| for all abeE
= f(b) — f(@) = 0 for all x€EE.
= f(a) = f(b)forallx € E.

This shows thatf is a constant function on E.

11.3.6 Definition

A differentiable mapping f of an open set E € R™ into R™ is said to be continuously
differentiable in E if f' is a continuous mapping of Einto L(R™, R™).

(ie., for each x € E and for each €> 0,36 > 0)

') — f'(®)|| < € whenever y € E with |x — | < &.,

Note: In this above definition we also say that f is a C’-mapping, or f € C'(E)
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11.3.7 Theorem
Suppose f maps an open set E € R™ into R™. Then f € C’(E) if and only if the partial
derivatives D, f; exist and are continuouson E for1 <i<m,1 <j <n.
Proof: Given that f maps an open set E S R™into R™.
Assume thatf € C'(E).
Then f’ is continuous in E.
Let X € E ande> 0. Let {éy, ..., &, } ad {4, ..., U, } be the standard bases of R™ and R™,
respectively
since f” is continuous at X, for €> 0,38 > 0 =| {f'(7) — f'(¥)|| < 0 whenever y € E with
|X — 9| < §8. Fix y € E with|x — y| < 6.
fo-f®l|=

=sup{|(F M -F@®)@|/zeRMand izl <1} > @)
Since|g| = 1 then |[f'()e; — F/(De| < ||f' () — f'(X)|| <€ forj = 1ton - (2)

By the definition of norm, |

Since F is differentiable on E, by theorem (4.17), the partial derivatives

m

(D;f;) (%) exists and f'(X)é; = z (D;f;)(®)u;vx € E

i=1
= f'(X)eiu; = (Djf;)(X)Vk € Eand Vi,jwith 1 <i<m,1<j<n.
Consider (D;£;)y — (D;£1)%) = f' Mejt; — f' @i = (f' ) — f' (D) (e)w
= (D)) — (D)@ = |(F e - f' @) - il
<|(F'oe — ') (Sincelt;] = 1)
<|f O -fF®| <e
y € Ewith |y—x| <6 (by (2)).
Thus fore > 0,3 a § > 08|(D;f;)(» — (D;f;)(%)| <€
When ever y € E and|y — x| < 4.
= D; f;is continuous at X Viandj.
This is true for every x € E.
=~ Djfiis continuous on E forall1<i<m and 1<j<n.
Conversely, suppose that the partial derivatives D;f; exist and are continuous on Efor 1 <
i<m,1<j<n where f = (fi,far ) fin)-
We have each f; is a real function on E.

By a Known Result,f" is continuous on E iff each f; is Continuous on E.
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ie,f is a C'-mapping iff each f; is a C' — mapping.

So, it is enough if we show that each f; is a C' — mapping.

Let X € E and €> 0 We may assume that f; = f for fixed i with1 < i < m.

Since X € E and E is open, 3 6. > 0 = S5 _(¥) S E.

Since D;f is continucus at X,36; > 0 E||(D]- £ — (D]- O < %whenever y € E and
X —y| < forl1<j<n

writed = min{8,, &, ..., 6, }.

Then § > 0,S5(x) € E and |(Djf)(f) - (Djf)(y)| < %whenever

yEEwith |[x —y|<dforl <j<n. - (3)

Claim: f'(x)e; = X7, D;f(%).
Suppose h = (hy, by, ..., hy) = - hygand || < 6.
putdy = 0and 9 = h,&; + hy&, + -+ hy & for 1 < k < n.
Then Oy = hi& + h-++ hy_18_1 + hyéx = O_1 + hy €, for k = 1 ton.
It follows that
So f(%+h) = f(®) = Xjy [f(+9;) - f(X+ )]
Since each |19_]| < 6,1 <j <nand S5, (X)is convex, we have
the segments with end points ¥ + J;_, % + 19=J lie in S, (%)
Define ¢: [0,1] = R as ¢p(t) = f()? + 5]-_1 + thje_j) forall t € [0,1].
Now ¢ =f(x+9;1 +hié)=f(x+7;) and
¢(0) = f(x +5;_4).
Since. D, fexits in E, we get ¢ is differentiable on [0,1] and
¢'(t) = %(d)(t)) = %(f(f + 05 +thyg)):
= yDif (£ + 951 +thye)

By Mean value Theorem, 36; in (0,1) such that ¢(1) — ¢(0) = ql)’(Hj)(l —0).

= f(&+9) = f(£+9j-1) = KD f (% + 951 + 1))

n
SFEHR) = f@ =) [FE+) - f(7+ 5 )]

=1

j
n

= Z WDif (% + 951 +0ihyej)
=
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= f(x+h)-f®) - Z n; (Dif)(®) = Z hiDif (-1 + O5hye;)
j=1 j=1

= |f(x+h) - f(D —Z n;(D;f)(®)| = z WD f (85-1 + 6;h;e;)
j=1 j=1

n

= Z I 1I(Dif ) (% + Jj-1 + O58;) = (D) ()] < Z |hj|§
=1

j=1
(by (3))
= |f(x+h) - f(&) — X}, n;j(D;f)(®)| < €|h]for all h such that |h| < §.

- |f(f+ﬁ)—f(f)—él}’=1 nj(D;f)(®)|

< € Whenever |h| < &

~ f is differentiable at X

and that f'(%) is the linear function which assigns the number}; h; (Dj f])(f) to the vector
h =Y hjg, ie.if h = ¥, h;é;, then f'(X)h = X7, hi(Dif)(%).

The matrix [f'(X)] consists of the row [(D;f) (%) (D2 f)(X) .o cee oo . (D f) ()]

Since D, f, D,f, ... D, f are continuous functions on E, it follows that

f'is continuous on E, i.e f € C'(E).
11.4 SUMMARY:

In this lesson we are discussed about differentiation of functions with the detailed definitions,

examples and theorems.

11.5 TECHNICAL TERMS:

e Chain rule

e Partial derivatives

e Jacobian matrix

e (Convex set

e Continuously differentiable
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11.6 SELF ASSESSMENT QUESTIONS:

1. If £(0,0)=0and

f(%,y) = —2— if (x,) # (0,0)
X +y

Prove that (D, f)(x,y)and (D, f)(x,y) exist at every point of R, although f is not
continuous at (0,0).

2. Suppose that 1 is a real valued function defined in an open set £ — R" and that the
partial derivatives D, f............ D, f are bounded in E .Prove that f is continuousin E

3. Suppose that 1 is a real valued function defined in an open set £ — R" and that f

has a local maximum at a point x € £ prove that f'(x) = 0.

4. If f is differentiable mapping of a connected open set £ < R"into R"” ,and if f'(x)=0
for every x € E, prove that f is constant in E.

5. If f and g are differentiable real functions in R", prove that

V(fg)= fVg+ gVf and that V(1/ f)=— fVf where f =0

6. Explain the role of the Jacobian matrix in the context of differentiable mappings. How

does the Jacobian relate to the partial derivatives of the function?

11.7 SUGGESTED READINGS:

1. Principles of Mathematics Analysis by Walter Rudin, 3™ Edition.
2. Mathematical Analysis by Tom M.Apostal, Narosa Publishing House, 2"Edition,1985.

- Dr. K. Bhanu Lakshmi




LESSON- 12

CONTRACTION MAPPINGS AND THE
INVERSE FUNCTION THEOREM

OBJECTIVES:

The objectives of this study are to explore key mathematical concepts related to metric
spaces, integrals, and differentiability. These include:

1. To apply the contraction mapping theorem in complete metric spaces, demonstrating
the existence of unique fixed points.

2. To analyze the relationship between differentiation and integrals, providing essential
knowledge for advanced calculus.

3. To understand the conditions for local invertibility using the inverse function theorem

and its implications.

4. To establish the continuity of mappings derived from differentiable functions and
their relevance to the inverse function theorem.

5. To examine the role of Cauchy

sequences in proving convergence and their

connection to fixed points in complete metric spaces.

STRUCTURE:

12.1 Introduction

12.2 Definition

12.3 Contraction Mapping theorem
12.4 Inverse Function theorem

12.5 The Implicit Function Theorem
12.6 Summary

12.7 Technical terms

12.8 Self Assessment Questions

12.9 Suggested readings

12.1 INTRODUCTION:

The contraction principle, Differentiation of integrals
We now interrupt our discussion of differentiation to insert a fixed point theorem that is valid
in arbitrary complete metric spaces. It will be used in the proof of the inverse function

theorem.

12.2 DEFINITION:

Let X be a metric space with metric d.A mapping ¢: X =X is said to be a

Contraction of X into X and if there is

a number ¢ < 1 such that
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d(p(x), p(y)) < cd(x,y)forall x,y € X
12.3 THEOREM:

(Contraction Mapping theorem or Fixed point theorem)

If X is a complete metric space, and if ¢ is a contraction of X into X, then there exists one
and only x € X such that ¢(x) = x.

Proof: suppose X is a complete metric space and ¢ is as contraction of X into X.

claim:3 aunique x € X = ¢(x) = x.

Suppose x,y € X such that ¢(x) = xand ¢p(y) = y.

If possible suppose the x # y.

Since ¢: X =X is a contraction, 3 os real no. ¢ < 1 Such that

d(¢(),¢(@)) < c-d(p,q)Vpg X - (1)
In particular, 0 < d(x,y) = d(d)(x), gb(y)) <c-d(xy) <d(xy)
(v c<1).

=>d(x,y) <d(x,y)
X =Y

So, ¢ has a unique point.
First we show that ¢ had a fixed point.
Let x, € X.
Define {x,} recursively, by setting x,,; = ¢(x,) forn =0,1,2 ... .....
So, from (1), d(Ctns1,Xn) = d(® (), ¢ Cn-1)) < cdCon, X1
forn > 1.
Forn =1,d(x,, x;) < cd(xq, x2).
Forn = 2,d(x3,%;) < cd(xy,x1) < c?d(xq, %)
By induction, that it follows that

d(Xp41,xn) < c™d(xq,x0) forn =0,1,2, ...
For

m>n>1,d0g, X)) < d(Xg, Xpe1) + Ap1, Xna2) + o d(Xp_1X)-
< cd(xq,x0) + c™d (xq, x0) + -+ + ™ d (xq, x0).
=(c"+ ™+ ™D d(xq, x).

Now we show that {x,,} is a cauchy sequence.
Lete > 0.

Since 1 + ¢ + ¢? + -+ is a convergent series, 3 +ve integer N such that
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m—1 rk €
Yo, CF < 1+d(x1,x0)&m >n>N.

So,form >n > N, d(x,, x,) < (c™ + ™1 + -+ ™ Dd(xy, x0)
€

< m ~d(xqy,x0) < €

~ {x,}is a Cauchy sequence in X.
Since X is complete, the sequence {x,} converges to a point xin X, ie, lim x,, = x.
n—-oo
Claim: ¢ is Continuous on X.

Lety € Xand e > 0. Put5=§

suppose d(y,z) < 6 wherez € x.
Consider d(¢p(),p(2)) Scd(y,z) <c-§=c--=e.

d(d)(y),d)(z)) < € Whenever d(y,z) <dVzE€EX.
This shows that ¢ is continuous at y.

=~ ¢ is continuous on X.

So, since x,, = x, $(x,) = P(x)

Hence, p(x) = lim (xn) = lim xpy = x.

Thus ¢ has a fixed paint xin X.

Hence ¢ has a unique fixed point in x.
12.4 THE INVERSE FUNCTION THEOREM:

The inverse function theorem states, roughly speaking, that a continuously differentiable
mapping f is invertible in a neighborhood of any point x at which the linear transformation
f’(x) is invertible.

Theorems on Inverse function Theorem

12.4.1 Theorem

Suppose f is a C'-mapping of an open set E < R™ into R™, f'(a) is invertible for some a €

E,b = f(a). Then

(a) there exist open sets U and V in R™ such that @ € U, b € Vf is one-to-one on U, and
f) =v

(b) If g is the inverse of ]_C [which exists, by (a)], defined in V by

§(F@®) =% € u) then g € €' (V).
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proof:

Givenf is C'-mapping from E into R™ where E in to R™ where E is an open set in R",
£~1(a) is invertible andb = f(a).

(fis a C’-mapping of E into R™ i.e fis continuous differentiation

f~1 is a continuously mapping of E into L(R", R™))

Put A = f~1(a) Then A is invertible.

1
2[la~1|

Put 1 = Then A > 0.

Since f 1 is continuous on E,f~1 is continuous at a.
So3 a § > 0 such that Ng(a) € E and for any X € Ng(a),
171G — @l < 4.
Write U = Ng(a).
Then U is a convex open subset of E,@ € U and ||f ~1(%) — A|| < A
forallx € U - (1)
For eachy € R™ ,define as mapping ¢: E = R™ as
(%) = ¥ + A1 (37 - f(f)) forall € E
Fix y € R™
For any ¥ € E, Consider ¢(X + h) — p(x) — (I — A" f71(x))h
=x+h+a (F-Ff(E+h)-(2+47(5-F@) -
—(1-A7 @) h
=%+h+A"1(F)— A1 (f(f + E)) — % —A1(F) + A1 (f(az)) —h
+A71 1 (O)h
=Z+h+471 @ - A7 (f(E+R)) - T-AG) + A (F@)R.
+AT Y ()R

=AY (f(x+h) — f(x) — f1(2)h)

|6(x+R) - p(@) — (1— 471 (D)R|
i
_ g AT HR) - @ @R
e 1]
(% + 1) = F(®) — £ (DA
|A]

Consider lim
h-0

< S Jim
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=[lA7-0=0

S0 T A (] — A-1E=10\\T
Ai_%l|¢(x+h) d)(x)“_l'(l A f (x))h|=0

Hence, ¢ is differentiable at X and ¢'(¥) =1 — A" 1(X)VX €E
p@=tot+ 4 (5-f@)=x
S A (7-F®)=0
©y -fE®=0
e f(x) =7y.
sp@=xe f(@=y
a) To prove part (a)
Now we show that f is one - to - one on U.
suppose ¥, ¥, € U such that f(x;) = f(x,).
Lety = f(x) = f(%) » (2)
for this y, the function ¢: E — R™ defined by
d(X) =T + A (y - f_(f)) VX € E is differentiable,
¢' () =1—A"1f1(x) and ¢p(¥) = xiffy = f(x) forallx € E. > (3)
Consider ¢'(x) =1 — A1 f1(x) = A4 - A7 (%)

=AM (A-fT@) =A@ - (@),
= llp’ @I =147 @ - fF @
< [1A7HIIf"(@ — f (ol

1
<|lA7A = 2 Vi € U.
v 1 =
g’ <5 vEeU
we have |¢(X) — ¢(2)| <% — 2Iv¥,Z €U - (4)
In particular | (%) — p(T)| < 51T — %ol > (5)

But from (2)&(3), ¥ = f(%1),7 = f (%) = ¢(x1) = %; andp(%,) = %,.
S0, (5) = |%1 — % < 5 |%1 — %,
This is possible only when x; = x,.

=~ fis one- to-one on U.
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put V = f(u).

Sincea € U,b = f(a) € V.

Now we show that I is an open set.

Let ¥, € V. Then ¥, € f(u) = ¥, = f(¥,) for someX, € U.

Let B be an open ball with centre X, and radius r > 0 such that

B € U, where B is the closure of B.

Consider the open ball N, ().

To prove Ny,-(7,) S V.

Lety € Njr (70).= |V — ol < 4r.

For this y, we have a differentiable function ¢: E — R™ defined by

¢ =7+A7 (7- f(®)VZ € Eand ¢'(F) =1 — A f (), and
p(x) = xiff y = (%)

Now (o) — %ol = | + A7 (5 = F(7)) — %
= |A(y - 76|
< 1141l|y - f (%)
= 141115 = ol
< llat)iar

1) — Kol <5 (6)
Letx € B.Then X € U.
Consider |(2) — %ol = () — $(Fo) + (o) — Tl
< 16() — BTl + |9 (Fo) — ol

<%If—fol+£(from(4))
Tr r
<§ §=7".
= |p(x) — X%l <7
= ¢(x) €EB

~X€EB=¢(x)€EB

Since B € U, by (4), we have |¢(%) — ¢(2)| < %pz —z|lV¥,Z €B
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for all X, Z € B.

~ ¢ is a contraction of B into B.
Since B is a closed subset of R™ and R™ is complete, we have B is complete.
By Contraction mapping Theorem, ¢ has a fixed point, say ¥ € B.
=) =x=>y=f.
so,y=f(® € f(B) < f(V) =V
>yevV.
N)Lr()70) cv
Hence V is an open subset of R™.|¢p(x) — ¢p(2)] < %lf —Z|VX,Z €U

Thus there exist open sets u add V in R™ such thata € U, b € V, f is one-to-one on u and

f@ =v.

b) Suppose g is the inverse of f defined in V by
g (f(f)) —% VEEV

claim: g is a C'-mapping inV,i.e g € C'(V).
First we show the g~1 exists in V.

Lety €V.

Since Vis open, there exists r > 0 such that S,.(y) € V.
Let k € R™ such that |k| <.

Then |7+ k—y| = |k| <7
>y+keSHSV=>y+keV

Since ¥,y + k € V = f(U), 3%, Z €U such that
y=f@andy+k = f(2).

Puth =7 — x.
Thenx +h =z € Uand f(x + h) = f(2) =F + k.
So,y=f(X) andy + k = f(x + h) - (7)

For this 7, we get a differentiable function ¢: E —» R™ defined by
$(@) = 6+47 (7 - f®) ity = f(@.
Consider p(Z+h) —p(@) =2 +h+ 47 (5- f(Z+h)) -2 - 47 (7 - (D)
=X+h+A'@G) —Af(x+h)—x— A1)+ A7f (%)
=h+47 (f(®) - f( + 1))
=h+A Y (J-(F+K)
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=h—-A"k
=>¢(x+h)—¢p(x)=h—A"k

_ 1 _ 1,
By@ﬂ¢@+ﬁ)—¢@ﬂ<§W+h—fL=ﬂM
_ 1,_
= |¢(x+h) —p@)| <5 |A|
= |- A1] < 1]

= |1R] ~ a7 || < |~ ak] < 5|5

1 - _ _
= S|kl < |A7k| < IATH]IR]
_ _ 1 -
= |7 <2 1| = 5| &
= |7 <3
A
we have ||f"1(®) — A]| < A for all ® € U.

|| > (8)

SQﬁnmwufﬂwn—Ammﬂu<A-%=§<1
= ||f (@) — Al|A7Y| < 1 for all ®EU
So, by a known Theorem (4.8),f ~1(®) is invertible for all ®EU
In particular, f~1(X) is invertible:
Let the inverse of f~1(x) be T
Consider §(7 + k) — g3 — Tk = g (F(x + 1)) - 7 (F(®)) - Tk
= -T(k— f~*(x)h)
=-T(f(x+h) - f(@ - fT @)Y
g0+ g Tkl _ ITNIF(E+R) - F@) = fT (A
k| - k|
Tl [f(x+R) - fG) — f71 (DA
-4 A

- (9)
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By(8),h > 0o0sk =0

Taking limit on both sides of (9) as k — 0, we get

137 + k) — §G) — Tk|
k|

. e_lg(wl‘c)l—’_fli(y)—ﬂ‘cl —0

lim €0
k—0

So, gis differentiable and g~ 1(y) = T.
L fGO) =y andg>

=g =T=["@" = [ g»)] - (10)< inverse of /)
Since every differentiable mapping is continuous, g is a Continous mapping of Vonto U.
Now f' is a Continuous mapping of U into Q, where Qis the set of all invertible elements of
L(R™); and the mapping B —» B~ of Q) into £ is continuous on .

= The inverse of f~1(g(¥)) is continuous.

So, by (10), g~ is continuous on V, i.eg € C' (V).

12.4.2 Theorem

If f is a C’-mapping of an open set E € R™ into R™ and if f~1(¥) is invertible for everyx €
E, then f(w) is an open subset of R™ for every open set W c E. [In other words, f is an open
mapping of Einto R™ ]

Proof: Suppose thatf is a C’'-mapping

Let W be any open subset of R™ such that W C E.

Claim;f (w) is an open subset of R™.

LetxeW cCE

=>x€E.

By our supposition, f ~1is continuous at X and f ~1(%) is invertible

So by part (a) of the Inverse function Theorem there exists open sets Uz in R™ such that
f:uz = f(Ug) is one-to-one and f(Uy) is open in R™.

Now # = U U, and that fw) = VUs

we know that union of open sets is open.

Hence, f(w) is an open subset of R™ for every open subset W c E.

Note: The hypotheses in this theorem ensure that each point X € E has a neighborhood in
which fis one-to-one .This may be exposed by saying the f is locally one-to-one in E But

fneed not be one-to-one in E under these circumstances.
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12.5 THE IMPLICIT FUNCTION THEOREM:

If f is a continously differentiable real function in the plane, then the equation f(x,y) =0

can be solved for y in terms of x in a neighborhood of any point (a, b) at which f(a,b) =0
and Z—f] # 0. Likewise one can solve for x in terms of y near (a, b) if Z—£ # 0 at (a,b) Fora

. D .0
simple example which illustrates the need for assuming é * 0.

Considerf (x,y) = x* +y% —1

12.5.1 Notations:
1) Ifx = (xq,x5, > x,) € R™and y = (y4, V3, ..., ¥m) € R™, then the point (or vector)

Rn+m

(%1, X2, , X, V1) Va2» o) Yim) € , and is denoted by (X, ).
Thus (X, 7) = (X1, X2, . X, V1) V2 -er Vi) € RV
In (X, y) the first entry Xis a vector in R™ and the second entryy is a vector in R™.

2) Every A € L(R™™,R™) can be split into two linear transformations Az and Ay, defined by
Agh = A(h,0) and A;K = A(0,K) for ant any h € R™ ad for any k € R™.
Then Ag € L(R™), Ay € L(R™, R™) and

A(h, k) = Azh + Agkvh € R" and Vk € R™,

12.6 SUMMARY:

This lesson covers the contraction mapping theorem, which states that if a mapping is a
contraction in a complete metric space, it has a unique fixed point. The proof involves showing
that a generated sequence is Cauchy and converges. The lesson then discusses the inverse
function theorem, indicating that a continuously differentiable mapping is locally invertible
when the Jacobian is non-zero. It establishes that such mappings are one-to-one on a
neighborhood and that their inverses are also continuous. Finally, the lesson briefly introduces
the implicit function theorem for solving equations involving continuously differentiable

functions.
12.7 TECHNICAL TERMS:

e Contraction mapping theorem
¢ Fixed point theorem

e Inverse function theorem

e Implicit function theorem
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12.8 SELF ASSESSMENT QUESTIONS:

1. Show that the continuity of f'atthe point a is needed in the inverse function
theorem, even in the case n=1;If
f(t) = t+ 2t%sin (1/t)
For ¢t #0 and f(0)=0 then f'(0)=1, f' is bounded in (-1, 1) but f is not one-to-one
in any neighborhood of 0.
Define a contraction mapping and state the contraction mapping theorem.
Prove the existence and uniqueness of a fixed point for a contraction mapping.
Explain the conditions under which the inverse function theorem applies.

Describe the significance of the Jacobian matrix in the inverse function theorem.

A

State and explain the implicit function theorem.

12.9 SUGGESTED READINGS:

1. Principles of Mathematics Analysis by Walter Rudin, 3™ Edition.
2. Mathematical Analysis by Tom M. Apostal, Narosa Publishing House, 2"Edition, 1985.

- Dr. K. Bhanu Lakshmi



LESSON- 13
THE IMPLICIT FUNCTION THEOREM

OBJECTIVES:

After reading this Lesson, the students should be able to:

e state and prove linear version of Implicit Function Theorem.
e state and prove Implicit Function Theorem for functions of several variables.

STRUCTURE:

13.1 Introduction

13.2 Notation

13.3 Linear version of Implicit Function Theorem
13.4 Implicit Function Theorem

13.5 Summary

13.6 Technical terms

13.7 Self -Assessment Questions

13.8 Suggested readings

13.1 INTRODUCTION:

In this lesson, two important theorems are introduced. First the linear version of the theorem is
introduced and then the main theorem is discussed. Some of the basic definitions and notations
are discussed before establishing the theorems.

If f is a continuously differentiable real function in the plane, then the equation f(x,y) = 0
can be solved for y in terms of x in a neighbourhood of any point (a, b) at which f(a,b) = 0

and Z_f; # 0. Likewise, one can solve for x in terms of y near (a, b) ifg—f] # 0at(a,b).

For a simple example which illustrates the need for assuming g—f] * 0,
consider f(x,y) = x*> + y% — 1.

13.2 NOTATION:

1) Ifx = (xy,%x2,%3...,%,) ER"and y = (¥1,¥2,¥3,...,¥n) € R", then the point

(or vector) (X4, X2, X3, Xn, Y1, V2, V3,---» ¥m) € R**™ and is denoted by (x,y) .
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Thus (x,y) = (X1, X2, X3, -, Xn, Y1, V2, V3,---» Ym) € R*"*™.In (x,y), the first
entry x is a vector in R™ and the second entry y is a vector in R™.

2) Every A € L(R™™, R™) can be split into two linear transformations A, and 4,,
defined by A h = A(h,0) and A,k = A(0,K) for any h € R"and for any k €
R™. Then A, € L(R") ,A, € L(R™,R™) and
A(hK) = Axh+ Ak Vh € R"and Vk € R™.

13.3 THE LINEAR VERSION OF THE IMPLICIT FUNCTION THEOREM:

Theorem:

If A € L(R™™, R™) and if A, is invertible, then there corresponds to every k € R™ a unique
h € R" such that A(h, k) = 0. This h can be computed from k by the formula h =

~(A) Ak

Proof: Let k € R™ then A )k € R™
Since 4, is invertible, A, exists.
Puth = —(4,) "4,k
Clearly h € R"
Consider A(h, k) = Ah+ Ak
= A, (—(4)7'A)K) + 4,k
= —A,(4) Ak + Ayk
=-A,k+ A4, k=0
Thus for k € R™ there exists h € R™ such that A(h,k) = 0
Uniqueness: Suppose hy, h, € R™ such that A(hy,K) = 0 and A(hy, k) =0
= Ayhy + Ay)k =0and Ayh, + A )k =0
= A, '(Ashy + A)K) = 0 and 4, (Achy + AJk) =0
= h; + 4, '(A)k) =0and h, + 4,7 (4,k) = 0
= h; = —(4,)" "4k = h,

Hence, there exists a unique h € R™ such that A(h,k) = 0
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13.4. THE IMPLICIT FUNCTION THEOREM:

13.4.1 Statement: Let f be a #'-mapping of an open set E € R™™ into R, such that
f(a,b) = 0 for some point (a,b) € E.

Put A = f'(a, b) and assume that A, is invertible. Then there exist open sets U ¢ R™*™ and

W c R™, with (a,b) € Uand b € W, having the following property:

To every y € W corresponds a unique X such that

(x,y) e Uand f(x,y) =0 q))
If this x is defined to be g(y), then

g is a #'-mapping of W into R*, g(b) = a,

f(g(y), y) =0 (y € W), g'(b) = —(A)7'A, (1)
Proof: Define F:E » R"™™Mas F(x, y) = (f(x,y), y) V(x, y) €E
Asf(a,b) =0, F(a,b) = (f(a,b), b) = (0,b) (1)
Since f is a #'-mapping on E, it follows that F is also a #’-mapping.

To prove that F'(a, b) is an invertible element of L(R™*™)

Since f is differentiable at (a, b), we have

f(a+h,b+ k) —f(a,b) =f'(a,b)(h k) + y(h, k) where

. v(h,K)
i | )

| = 0 where y is the remainder that occurs in the definition of f'(a, b)
>f(a+hb+k) =AMk +y(hk) (2) (v A=f'(ab)andf(ab)=0).
Consider F(a+ h,b + k) — F(a,b)

= (f(a+h,b+Kk),b+Kk)—(f(a,b),b)

= (f(a+h,b + k),b + k) — (0,b)

= (f(a+h,b+Kk),b) + (0,k) — (0,b)

= (f(a+h,b+k),0)+ (0,k)

= (f(a+h,b + k), k)
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= (A(h,k) + y(h,Kk),k) (from (2))
= (A(h,k),Kk) + (y(h,k),0)

= F(a+h,b+Kk)—F(ab) — (A(h k), k) = (y(h k),0)

|[F(a+hb+k)—F(ab)—(A(hKk),k)|
(hk)—0 |(hK)|

_ |y(hl),0)] _
(hk)—»o [(hKk)|

So, F'(a,b) is a linear operator on R™*™ that maps (h, k) to (A(h, k), k).
To prove F’(a, b) is one-to-one

F'(a,b)(h,k) = 0 where (h, k) € R**™

& (A(h, k), k) = (0,0)

< Ahk)=0andk=0

© Ah+Aj)k =0and k =0 [ A €L (R™™,R™) can be split into linear transformations

Ay and A,, defined by Ayh = A(h,0), Ay)k = A(0,k) Vh € R" ,k € R™]
©Ash=0and k=0

©h=0andk=0 (~ Ay isinvertible)
Therefore F'(a, b) is one-to-one

By a known theorem (9.5) , F'(a, b) is onto

Hence, F'(a, b) is invertible on R**™

Therefore F satisfies all conditions of Inverse mapping theorem.
So, by the Inverse mapping theorem, there exist open sets U and V in R®*™ such that

(a,b)€e U,F(a,b) eV 3)
F(U) =V and F is a one-to-one mapping of U onto V.

Write W = {y € R"/(0,y) € V}

From (1) & (3), (0,b) eV =>beW

Now we show that W is an open set in R™
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Lety € W. Then (0,y) €V
Since V is an open set in R"™™ there exists § > 0 such that Ng(0,y) €V
Consider Ng(y), which is a neighbourhood in R™.
Let h € Ng(y)
=>|h—-y|<§
Now (0,h) € R**™ and |(0,h) — (0,y)| =|h—y| < §
= (0,h) € Ng(0,y) €V
=((0,h)eV=>heWw
Since h € Ng(y) is arbitrary, Ns(y) € W
Therefore W is an open set in R™.
To Prove (I): Lety € W. Then (0,y) € V
= (0,y) € F(U)
= (0,y) = F(x,z) for some (x,z) € U
= (0,y) = (f(x,2),2)
=>f(x,z) =0andz =y
=>f(x,y) =0
So, for y € W, there exists x € R" such that (x,y) € U and f(x,y) =0
Uniqueness: Suppose f(X4,y) = 0 and f(X5,y) = 0 where x4,X, € R”
Now F(xq,y) = (f(x1,¥),y) = (0,y) = (f(x2,¥),y) = F(x2,y)
Therefore F(x4,y) = F(X2,y)
=X, =X, (+ Fis one — one)
Thus there exists unique X € R" such that (x,y) € U and f(x,y) = 0.
To Prove (II):

Define g: W — R" as follows:
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Letye W

Then by the proof given above there exists unique x € R"

such that (x,y) € U and f(x,y) =0

Now define g(y) = x

Fory € W, (g(y),y) = (x,y) € U and f(g(y),y) = 0 and so

F(g(y),y) = (f(g(y),y),y) = (0,y)

Therefore F(g(y),y) = (0,y) forally € W
Define G:V - U as G(F(z)) =zforallze U
Then G is the inverse of F

So, by Inverse function theorem, G €z’ (V)
Since F(g(y),y) = (0,y) forall y € W, we have
(g).,y) =F (0,y) = G(0,y) forally € W.
AsGez' (V), gez' (W)

Also, (g(b),b) = G(0,b) = F~1(0,b) = (a,b)
= (g(b),b) = (a,b)

=>g()=a

Now we show that g'(b) = —(A,)'A,

Define @: W - R™™M as ¢(y) = (g(y),y) V yEW

(by (1)

Then @(b) = (g(b),b) = (a,b) and f(@(y)) = f(g(y).y) =0V y e W

Now @' (y)k=(g'(y)k,k) V yeW andk € R™

By chain Rule, f'(@(y))®'(y) =0 V yeW
Now @(b) = (g(b),b) = (a,b)
When y = b, equation (5) becomes

f'(0(b))®'(b) = 0

4
)
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= f'(a,b)0'(b) =0
= Ap'(b) =0 (+beW) (6)
=>Ap'(b)(K) =0 VvV keR™
=>A(g'(b)kk) =0 Vv ke R™
= Ag'(b)k+A)k=0 VvV keR™
= Acg'(b) +A, =0
= Asg'(b) = —Ay
=g'(b) =—-(A07'4y
Hence the theorem.
13.4.2 Example: The following is an example for the Implicit Function Theorem and find g’
Taken=2,m = 3
Consider the mapping f = (f;, f,) of R® into R2,
given by fl(xl' X2, Y1, Y2, y3) = 2e*1 + x,y; — 4y, + 3 and
fz(Xl, X2, Y1 Y2, Y3) = XpC€08X; — 6X1 +2y; — V3
Puta=(0,1)and b = (3,2,7)
Then f;(a,b) =£,(0,1,3,2,7) =2e°+ 1x3 —4x2+3 =0
f,(a,b) =£,(0,1,3,2,7) = 1.cos0 — 6x0 + 2x3 —7 =0
So, f(a,b) = (f;(a,b),f,(a, b)) = (0,0)
PutA =f'(a,b)
With respect to the standard bases, the matrix of the transformation A is given by

_ [Dafy Dofy Dafy Dufy Dsfy

[Al=|p.f, Dyf, Dsf, Dyf, Dof,

]at(a, b)

2e™ yi X2 -4 0

[A] = [—6 — Xpsinxy C€OSX; 2 0 _1]at(o, 1, 3, 2, 7)
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:[z 31 —4 ]

-6 12 0 -1
Hence [A4] = [—26 i and[Ay] = B _04 _01]

It is clear that A is invertible and

(A0 = (A =2 [ 7?

T 20l6 2

Now [g'(b)] = [g'(3,2,7)] = _[Ax]_l[Ay]

g e I B RGNV eY

-1 6 1
/ 2 / 5 / 10
In terms of partial derivatives,

D1gs = /4 Dagri =1/c D3gi =73/,

Dlgz = _1/2 ngz = 6/5 D3g2 = 1/10 at the pOint (3, 2, 7)

13.5 SUMMARY:

In this lesson we have discussed two theorems: Linear version of the implicit function
theorem and the implicit function theorem.

The implicit function theorem gives the condition, under which an implicit relationship
between variables can be expressed in an explicit manner.

13.6 TECHNICAL TERMS:

e Explicit function
e Implicit function theorem

13.7 SELF — ASSESSMENT QUESTIONS:

1. Can f(x,y) = x® + y3 — 2xy be expressed by an explicit function y = g(x) in a
neighbourhood of the point (1,1)?

2. Check whether theorem 13.4.1 can be applied at all points, where x? — y2 = 0.
13.8 SUGGESTED READINGS:

1. Principles of Mathematical Analysis by Walter Rudin, 3™ Edition.
2. Mathematical Analysis by Tom M.Apostal, Narosa Publishing House, 2" Edition, 1985.

- Dr. K. Siva Prasad.



LESSON- 14
DETERMINANTS

OBJECTIVES:

After reading this lesson, the students should be able to

e understand the concepts of determinant of a matrix of a linear operator A on R" and
Jacobian.

e Prove det[I] = 1 where I is the identity operator on R".

e Prove det[A]; = —det[A] where [A]; is obtained from [A] by interchanging two
columns.

e Prove det([B][A]) = det[B]det[A] for any two nxn matrices [A] and [B].

e Prove a linear operator A on R" is invertible if and only if det[A] # 0.

STRUCTURE:

14.1 Introduction

14.2 Definitions

14.3 Theorems

14.4 Remark

14.5 Jacobians

14.6 Summary

14.7 Technical terms

14.8 Self- Assessment Questions

14.9 Suggested readings

14.1 INTRODUCTION:
In this lesson we define the determinant of the matrix of a linear operator on R", and also we
discuss properties of the determinant.

Determinants are numbers associated to square matrices, and hence they are numbers
associated to linear operators represented by such matrices.

It is 0 if and only if the corresponding operator fails to be invertible.

14.2. DEFINITION:

If Guyjoy ven oon ,jn) 1s an ordered n-tuple of integers,

1 if x>0
define s(jy, jz, .- - jn) = 11 sgn(jq —jp) where sgnx ={—1 if x<0
p=a 0 if x=0
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Thus s(jq,jo, - - ,jn) = 1, —1 or 0 and it changes sign if any two of the j’s are interchanged.
14.2.1 Example:
s(2, 3, 1) =sgn(1-3).sgn(1-2).sgn(3-2)
= sgn(-2).sgn(-1).sgn(1)
=(-1).(-1).1 =1
14.2.2 Definition:

Let [A] be the matrix of a linear operator A on R" relative to the standard basis

{e;, e, €5, ... ... ,e,} with entries a(i, j) oraj; in the i"" row and j"" column. The determinant

denoted by det[A] is defined as the number

det[A] = Z5(jy, Jz, .. »in) a(L,i1)a(2,j2) ----a(0,jn) (1

The sum in (1) extends over all ordered n-tuples of integers (jq,jz, - .- Jowith 1 <j. <n
n

The column vectors X; of [A] are X; = _Zla(i, jei (1<j<n)
i=

It is convenient to think of det[A] as a function of the column vectors of [A]. If we write
det(x4, X5, ... ,X,) = det[A], detis a real valued function defined over the set of all

ordered n-tuples of vectors in R".
14.2.3 Example:

_[a(1,1) a(1,2)

FlAl=1,21) a@22)

, then det[A] = s(1, 1) a(1, 1) a2, 1) +s(1, 2) a(1, 1) a(2, 2)

+5(2, ) a(l,2) a2, 1) +s(2,2) a(1, 2) a(2, 2)
=a(l, 1) a(2,2) - a(1,2) a(2, 1)

14.3. THEOREMS:

14.3.1 THEOREM:

a) If1is the identity operator on R, then det[I]= det(e,, e5,......,e,) =1

b) detis a linear function of each of the column vectors x;, if the others are held fixed.
c) If[A]; is obtained from [A] by interchanging two columns, then det[A]; = —det[A].
d) If[A] has two equal columns, then det[A] = 0.




Analysis — II 14.3 Determinants

Proof:

a) Let A be the identity operator on R", i.e, A= 1.
Consider the matrix [ 1].

1, i=j

In [ 1], the i row j column entry, a(i,j) = {0 %]

So, det[1]=25(jy, jz, ... jn) a(L,j1)a(2,j2) ... -a(n,jn)
=s(1, 2, ... ,n)a(1,1)a(2,2)....a(n,n)
=1.
Therefore det[I] = 1
Also, by the definition, det[I] = det(x;,X,,...X,) where each X; is a column vector
of L.
That is det[I] = det(e,, e, €3, ... ,e,) = 1.

b) By the definition, s(jl, j2. . 'jn) = 0 if any two of the j’s are equal. Each of
the remaining n! products in the summation det[A] contains exactly
one factor from each column.
Therefore det[A] is a linear function of each of the column vectors X; .

c) Let[A];, be a matrix, obtained from[A] by interchanging two columns. Then

s(jv Jz, ... in) changes sign.
Therefore det[A]; = —det[A].

d) Suppose [A] has two equal columns.
If we interchange the two equal columns, there is no change in [A]

So, by (c), det[A] = —det[A] = 2det[A] = 0 = det[A] = 0.
14.3.2 THEOREM:
If [A] and [B] are n by n matrices, then det([B][A]) = det[B]det[A]
Proof: Suppose [A] and [B] are nxn matrices.
Letx;, X5, ... ,X, be the column vectors of [A].
Define Ag(x4, X5, ... ,X,) = Ag[A] = det(|B][A]) (1)

Since the columns of [B][A] are the vectors Bx4, Bx,, ... Bx,,
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we have Ag(X4,X,,...X,) = det(Bxy, Bx,,...Bx,) (2)
By (2) and Theorem (14.3.1), Ag also has the following properties:

Ag = det s a linear function of each of the column vectors Bx;.
If ([B][A]), is obtained from [B][A] by interchanging two columns, then
det([B][A]); = —det([B][A]) (€)
If [B][A] has two equal columns, then det(|B][A]) = 0
Since x; = Zl ) a(i, j)e;, and Ag = det is a linear function of each of the column
vectors,
we have Ag[A] = Ag(Xq, X3, ..., Xp)
= Ag[A] = Ag(XiL  a(i, e, X5, ... Xy)
= Ag[A] = ).~ a(i, DAg(ey, Xy, -..Xp)

Also,x, = ). a(i, 2)e;

n
So Ag[A] = Z?zl(ai, 1) Ag (ei, Z 1(312, Z)ei,xg,... ,xn)
i=

=Y (a;, D (i, 2)Ap(ey, €5, X3, ... ,Xy)

Repeating this process with X3, X4, ... ,X, , we have
Ag[A] = Za(i;, 1).a(iy 2)...a(in, n)Ag(ei, €, ..., € ) 4)
when the sum is extended over all ordered n-tuples(iy, iy, ... ,i,) withi < i. < n But
we have
Ag(ei,, e, ..., ) =t(y, iz ... ,in)Ap(ey, €, ... ,€,) wheret =1,0,—1.(5)
Substituting (5) in (4), we get

Ag[A] = {Za(i;, 1).a(iz, 2)...a(iy, nMt(y, iy, ... ,ip)}Ag(ey, €4, ... ,€,) (6)
Since [B][I] = [B], by (1), we have Ag(eq, e,, ... ,e,) = det [B] (7)
Using (7) in (6), we get det([B][A]) = Ag[A]
det([B][A]) = {Za(i;, 1).a(iz, 2)...a(iy, nt(iy, iz, ... ,iy)}det[B] (8)
for all nxn matrices [A] and [B]
Taking B =1 in (8), we get
A[A] = {Za(iy, 1).a(iy, 2)...a(iy, n)t(y, iy,..., i)} det[I]
det[A] = {Xa(i;, 1).a(iy, 2)...a(iy, n)t(y, iz, ... ,inp) }(1)
(< Ay[A] = det([1][A]) = det[A])
So, (8) becomes Ag[A] = det [A]det [B].
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14.3.3 THEOREM:
A linear operator A on R" is invertible if and only if det[A] # 0
Proof: Let A be a linear operator on R"
Suppose that A is invertible.

Then by the above theorem,
det[A]det[A™1] = det[AA™!] = det[l] = 1,

so that det[A] # 0.

Conversely, suppose that det[A] # 0
Claim: A is invertible.
On the contrary suppose that A is not invertible

Then the column vectors X4, X,, ... ,X, of [A] are linearly dependent

So, there is one X with 1 < k < n such that

Xk+z ¢jX; = 0 for some scalar¢j, 1 <j<n&j#Kk (1)
j£k

By a known theorem (14.3.1) the det is a linear function of each of the column
vectors X;,

if the others held fixed, and

det[A] = 0 if [A] has two equal columns.

So, Xy can be replaced by xy + ¢;x; without changing the

determinant, if j # k .

Repeating, we see that X can be replaced by the left side of (1)
i.e., by 0, without changing the determinant.

But a matrix which has 0 for one column has determinant 0.
Therefore det[A] = 0

Hence, A is invertible.

14.4 REMARK:
Suppose {e;, e,, ... ,e,}and {u,;, u,, ... ,u,} are bases in R".

Every linear operator A on R" determines matrices [A] and [A],,
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with entries aj; and a;, given by
Aej =Y, ajjejand Au; = ¥ ayu;
Let B be an invertible linear operator on R". Suppose [B] = [ bj;]
If u; = Bej = }; bj;e;, then the matrix [B] is invertible and
Au; = Y oy Xibige;
=Y Yk (bikoyg)e;

Also, Au; = ABe; = ATy bijex =% (Xk aucby)es
Therefore Yk bjkoy; = Xk aikby;-
= [B][A]. = [A][B] (1)
Since B is invertible, det[B] # 0.
From (1), we have det([B][A],) = det([A][B])

= det[B].det[A], = det[A]. det[B]

= det[A] = det[A],.

Therefore the determinant of the matrix of a linear operator does not depend on the basis

which is used to construct the matrix.

Hence, it is meaningful to speak of the determinant of a linear operator, without having any

basis in mind.
14.5 JACOBIANS:

If f maps an open set E € R" into R", and if f is differentiable at a Point x € E, the

determinant of the linear operator f'(x) is called the Jacobian of f at x

In symbols, J¢(x) = det f'(x).

Notation: We write 232 Yz -~ Z“; for J¢(X), if (y1, V2, «r .- V) = (X4, X5, o, Xp).

a(Xl, X2, ey,

In terms of Jacobians, the hypothesis in the inverse function theorem is that J¢(a) # 0. If the

implicit function theorem is stated in terms of the functions
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f1(X1, X2, oo ,Xny Vs Y25 eon e ,VYm) =0
fo(X1, X2, o Xny V1o Y2r eer oo ,Ym) =0
f.(X1, X2, o, Xn, V1, V2, con e ,Ym) =0
. A(fy, f2, .. fn)
The assumption made there on A amounts to 0
0(X1, X2, e ,Xn)

14.6 SUMMARY:

In this lesson we have defined the determinant of the matrix of a linear operator on R", and

we have discussed related theorems and examples as well as the term “Jacobian”.
14.7 TECHNICAL TERMS:

e Matrix of a linear operator
e Determinant of a matrix

e Jacobian
14.8 SELF- ASSESSMENT QUESTIONS:
1. Find s(2, 3, 2)

2. Prove that the determinant of a linear operator A on R" is independent from the choices of

basis on R".
14.9 SUGGESTED READINGS:
1. Principles of Mathematical Analysis by Walter Rudin, 3" Edition.
2. Mathematical Analysis by Tom M.Apostal, Narosa Publishing House, 2" Edition, 1985.

- Dr. K. Siva Prasad.



LESSON- 15
DERIVATIVES OF HIGHER ORDER AND

DIFFERENTIATION OF INTEGRALS

OBJECTIVES:

After reading this lesson, the students should be able to

e understand the concept of second order partial derivatives of a real function defined in
an open set E € R™.
e state and prove mean value theorem for real functions of two variables

¢ understand that under what conditions on @ can one prove that the equation
d b Pag
= fa ¢(x, t)dx = J- Fn (x, t)dx is true, where @ is a function of two variables
a
which can be differentiated with respect to the other.
STRUCTURE:

151 Introduction

15.2 Definitions

15.3  Theorems

15.4 Differentiation of Integrals
15.5 Summary

15.6  Technical terms

15.7 Self Assessment Questions

15.8 Suggested readings

15.1 INTRODUCTION:

In this lesson we define second order partial derivatives of a real function of two variables and
we established two theorems. We shall first discuss the mean- value theorem for real functions
of two variables and also we shall discuss another theorem on a function @ of two variables
which can be integrated with respect to one and which can be differentiated with respect to the

other.
15.2. DEFINITIONS:

15.2.1 Definition: Suppose f'is a real function defined in an open set E € R", with
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partial derivatives D, f, D,f, ... ,Dnf.If the functions D; f are themselves differentiable,

then the second-order partial derivatives of f are defined by
Dl]f = DlD]f (i,jzl, 2, 3, ,l'l).

If all these functions Dj;f are continuous in E, we say that f'is of class "’ in E, or that

fez" (E).

15.2.2 Definition: A mapping f of £ into R™ is said to be of class # "' if each component of f

is of class #"'.

Note:

1) Di(f) = Di(D;f) = i

6xl-6x]-

2) D;;(f) and Dj;(f) need not be the same.

15.3. THEOREM (MEAN- VALUE THEOREM):

15.3.1 Statement: Suppose fis defined in an open set E € R?, and D, f and D, f exist at
every point of E. Suppose Q € E is a closed rectangle with sides parallel to the coordinate

axes, having (a,b) and (a + h, b + k) as opposite vertices (h # 0, k # 0).

put A(f, Q) =f(a+h, b+k)—f(a+h, b)—f(a, b+k)+ f(a, b).

Then there is a point (x, y) in the interior of Q such that

A(f, Q) = hk(D1 f)(x, y).

Proof: Suppose f is a real function defined in E where E is an open set in R?
PutA(f, Q) =f(a+h, b+k)—f(a+h, b)—f(a, b+k)+ f(a, b)

Fort € [a, a+ h],putu(t) = f(t, b+ k) —f(t, b) (1)
Then ‘u’ is continuous on [a, a + h] and differentiable in (a, a + h)

So, by a known theorem () there exists x € (a, a + h) such that

u(a+h)—u(a) =(a+h—-a)u'(x) = hu'(x) 2)

Note that D, f = Z—i =u'(x) 3)
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And Dy, f = 2= (D1f)
Since D, f exists, D, f is differentiable in (b, b + k) and continuous on [b, b + k]
So, by a known theorem () there exists y € (b, b + k) such that
Dif(x, b+k)—Dif(x, b) =(b+k—>b)Dy1f(x, y)
= kDy1f(x, ¥) (4)
Consider A(f, Q) =f(a+h, b+k)—f(a+h, b)—f(a, b+ k) + f(a+Db)
=u(a +b) —u(a) (by (1))
= hu'(x)
= h[(D1f)(x,b + k) — (D1f)(x, b)]
= hkDy f(x, ¥)
= A(f, Q) = hkDy f(x, ¥).
But (x, y) is a point in the interior of Q.
Therefore there exists a point (x, y) in the interior of Q such that

A(f,Q) = hkDy, f (x,y)

15.3.2 Theorem: Suppose f is defined in an open set E € R?, suppose that D, f, D,,f, and
D, f exist at every point of E, and D, f is continuous at some point (a, b) € E. Then D;,f
exists at (a, b) and (D,,f)(a, b) = (D,1f)(a, b).

Proof: Suppose f is a real function defined in E, where E is an open set in R?.

Also suppose that D, f, D,4f, and D, f exist at every point of E, and D, f is continuous at

some point (a, b) € E.

Put A = (D,1f)(a, b).

Let € > 0 be given

Since D, f is continuous at (a, b), there exists § > 0 such that

|(D21f)(a, b) = (D21f)(x, ¥)| <& whenever [(a, b) = (x,¥)| <8 V (x, y) EE

= |A — (D,1f)(x, y)| < € whenever |(a, b) — (x, y)| <& (1)
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Choose h and k such that |h| < g and |k| < g.

Let Q € E be the closed rectangle with sides parallel to the coordinate axes having (a, b)

and (a + h, b + k) as opposite vertices (h = 0, k # 0).
PutA(f, Q) =f(a+h, b+k)—f(a+h, b)—f(a, b+k)+f(a, b)
So, the above theorem, there exists a point (x, y) in the interior of Q such that

A(f,Q) = hk(D21)f (x, y)

= (D f)(x, y) =212 )

A(f,
From (1) & (2), 14— (D1 f)(x, Yl <e= L2 4| <&
Fix h.
Ask—-0ie,b+k—-b, f(a+h, b+k)- f(a+h, b)and
f(a, b+k) - f(a, b)
Since D, f exists in E, we have ’lci_r)r(l) |%—A| <eg

. (sz)(a"'h,b’z_(sz)(a.b)

- A| <e&
Since ¢ is arbitrary and the above inequality holds for all h with |h| < g, we have that

(D12f)(a,b) = A

= (D21f)(a,b) = (D12f)(a, b)

15.3.3 COROLLARY: D, f = Dy,f if f€#" (E)
Proof: Suppose f € #" (E)

Then f is a real function defined in the open set E € R?, with partial derivatives D, f, D,f

which are differentiable in E and the 2" order partial derivatives D; fr1<1,j<2are

continuous in E. (1)
Let (a,b) € E.

From (1), D,4f is continuous at (a, b)
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Now we prove that
(D12f)(a, b) = (D21f)(a,b).
Suppose f is a real function defined in E, where E is an open set in R?
Put A = (D,1f)(a, b).
Let € > 0 be given
Since D, f is continuous at (a, b), there exists § > 0 such that
|(D21/)(a, b) — (D1f)(x, y)| < e whenever |(a, b) — (x, )| <8 V(x, y) EE

= |A = (D21/)(x, y)| < € whenever |(a,b) — (x, y)| <& (1)
Choose h and k such that |h| < g and |k| < g.

Let Q < E be the closed rectangle with sides parallel to the coordinate axes having (a, b)

and (a + h, b + k) as opposite vertices (h # 0,k # 0).
PutA(f, Q) =f(a+h, b+k)—f(a+hb)—f(a, b+k)+ f(a, b)
By the above theorem, there exists a point (x, y) in the interior of Q such that

A(f,Q) = hk(Do1 f)(x, y)

= (D f)(x, y) =212 )

A(f,
From (1) & (2), 14— (D1 f)(x, Yl <e= L2l <&
Fix h.
Ask—-0ie,b+k—-b,f(a+h b+k)— f(a+h, b)and
f(a, b+ k) - f(a, b)
. S . AG, Q)
Since D, f exists in E, we have ’lcl_r)r(l) |T_A| <e

. (D2f)(a+h, b;—(sz)(a, b)

- A| <e&
Since ¢ is arbitrary and the above inequality holds for all h with |h| < g, we have that

(D12f)(a, b) = A
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= (D12f)(a, b) = (D21f)(a, b)

This is true for every (a, b) € E

Therefore D, f = Dy1f

15.4 DIFFERENTIATION OF INTEGRALS:

Suppose @ is a function of two variables which can be integrated with respect to one and
which can be differentiated with respect to the other. Under what condition on @ can one

prove that the equation

d rb ba

—J, ¢Cx, )dx = f 6—‘f(x, t)dx is true?
a

Notation: It is convenient to use the notation ¢*(x) = ¢(x, t).

Thus, for each t, ¢! is a function of one variable.

We recall the following theorem.

15.4.1 Theorem: Let a be monotonically increasing on [a, b].

Suppose f,, € R(a) on [a, b] for n=1,2,... and suppose f,, = f uniformly on [a, b].

Then f € R(a) on [a, b] and [} fda = lim [ f,da.
n—00

15.4.2 Theorem: Suppose

(a) ¢(x, t)isdefinedfora <x < bh,c <t <d;

(b) a is an increasing function on [a, b];

(c) ' € R(a) forevery t € [c,d];

(d) c <s < d,andtoevery € > 0 correspondsa § > 0

such that | (D,$)(x, t) — (D,¢)(x, s)| < & forall x € [a, b] and for all
te(s—5, s+0).

Define f(t) = [, ¢(x, )da(x) (c <t<d)

Then (D,)° € R(a), f'(s) exists, and f'(s) = [ (D) (x, s) da(x).

Proof: Suppose (a), (b), (¢) & (d)
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Forany t € [c, d],

define f(t) = f;qb(x, t)da(x)

Now we prove that
(D29)° € R(a), f'(s) exists, and f'(s) = [ (Do) (x, 5) dac(x)
Consider the difference quotients
Ylx, ) =220 D0 < e —s| < 6 (1)

Since D, ¢ exists, ¢ is differentiable in (s, t) and continuous on [s, t], by a known result
(Lagrange’s mean-value theorem applied to 2" variable of ¢) there corresponds to each

(x, t) anumber ‘u’ between s and t such that ¢(x, t) — ¢dp(x, s) = (t —s)D,p(x, w).

= (I)(X, t)_d)(x' S) — D2¢(X, u)

t—s
=P, t) = D¢p(x, u) (by (1))
By our supposition (d), we have
[Y(x, t) — Dyp(x, s)| = |Dyp(x, u) — Dyp(x, s)| < eforalla < x < b and
0<|t—s|<3d.

ie., ltim Y(x, t) = D,¢p(x, s) uniformly on [a, b] (2)
-Ss

Consider

t—s t—s

b b
FB=-1() :f 260 4o () _f 2 ) 10 (x)
t—s
a a

b
_ f PEDIES g4 (x)
a

= [V (x, O)da(x) (by (1)) 3)

= [} ¥t (0)da(x)
By (2), Y* — (D,0)%, uniformly on [a, b] ast — s.

By our supposition (c), ¢ € R(a) forall t € [c, d]



Centre for Distance Education 15.8 Acharya Nagarjuna University

So, Yt € R(a) forall t € [c,d].

Therefore by Theorem () (D,0)° € R(a) and
[, (028)° (0)da(x) = lim [/ " da(x)

= im [0/ (by (3))

=f'(s)
Hence, (D,0)° € R(a) and f'(s) exists and f'(s) = f:(D2¢)(x, s)da(x)
15.5 SUMMARY:

In this lesson we have defined second order partial derivatives of a real function of two
variables and we have discussed related theorems and also we have discussed one theorem

related to differentiation of integrals.
15.6 TECHNICAL TERMS:

e Differentiation of integrals

e Mean-value theorem
15.7 SELF- ASSESSMENT QUESTIONS:

1. Prove analogues of theorem 15.4.2 with (—oo, ) in the place of [a, b].

2. Put £(0,0) = 0 and £(x,y) = 22D if (x,y) # (0,0). Prove that

x%+y?
(i) f,D1f, D,f are continuous in R?;
(i) D1, f and D, f exists at every point of R?, and are continuous except at (0,0);
(iff) (D12£)(0,0) = 1 and (D, £)(0,0) = —1.
15.8 SUGGESTED READINGS:
1. Principles of Mathematical Analysis by Walter Rudin, 3™ Edition.
2. Mathematical Analysis by Tom M.Apostal, Narosa Publishing House, 2™ Edition, 1985.

- Dr. K. Siva Prasad.




