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FOREWORD

Since its establishment in 1976, Acharya Nagarjuna University has been
forging ahead in the path of progress and dynamism, offering a variety of courses
and research contributions. I am extremely happy that by gaining ‘A+’ grade from
the NAAC in the year 2024, Acharya Nagarjuna University is offering educational
opportunities at the UG, PG levels apart from research degrees to students from

over 221 affiliated colleges spread over the two districts of Guntur and Prakasam.

The University has also started the Centre for Distance Education in 2003-
04 with the aim of taking higher education to the door step of all the sectors of the
society. The centre will be a great help to those who cannot join in colleges, those
who cannot afford the exorbitant fees as regular students, and even to housewives
desirous of pursuing higher studies. Acharya Nagarjuna University has started
offering B.Sc., B.A., B.B.A., and B.Com courses at the Degree level and M.A.,
M.Com., M.Sc., M.B.A., and L.L.M., courses at the PG level from the academic
year 2003-2004 onwards.

To facilitate easier understanding by students studying through the distance
mode, these self-instruction materials have been prepared by eminent and
experienced teachers. The lessons have been drafted with great care and expertise
in the stipulated time by these teachers. Constructive ideas and scholarly
suggestions are welcome from students and teachers involved respectively. Such
ideas will be incorporated for the greater efficacy of this distance mode of
education. For clarification of doubts and feedback, weekly classes and contact

classes will be arranged at the UG and PG levels respectively.

It is my aim that students getting higher education through the Centre for
Distance Education should improve their qualification, have better employment
opportunities and in turn be part of country’s progress. It is my fond desire that in
the years to come, the Centre for Distance Education will go from strength to
strength in the form of new courses and by catering to larger number of people. My
congratulations to all the Directors, Academic Coordinators, Editors and Lesson-

writers of the Centre who have helped in these endeavors.

Prof. K. Gangadhara Rao
M.Tech., Ph.D.,
Vice-Chancellor I/c
Acharya Nagarjuna University.
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ANSWER ONE QUESTION FROM EACH UNIT
(Each question carries equal marks)

Define the p-variate normal distribution with mean vector 1z and dispersion matrix .

Derive two important properties of the multivariate normal distribution.

Prove that the marginal distribution obtained from the multivariate normal distribution is normal.
Define the characteristic function of a p-dimensional random variable. Obtain the characteristic
function of multivariate normal distribution.

In the p-variate normal case, show that the sample mean vector and the sample covariance matrix are
independently distributed.

UNIT-1I

Define Hotelling’s 7> statistic. Show that Hotelling’s 7> statistic can be used to test the equality
of means of corresponding variables in two MVN populations having the same variance-covariance
matrix.

Explain in detail the likelihood ratio principle.

Stating the assumptions clearly, discuss the problem of comparing several multivariate normal
population means.

State and prove the invariance property of Hotelling’s T statistic.
UNIT-III
Describe the classification between two unknown multivariate normal populations.
Explain the problem of classification. Distinguish between discrimination and classification.
Derive Fisher’s linear discriminant function in case of two unknown p-variate populations.

Describe the method of classification of an individual into one of several p-variate normal
populations having a common dispersion matrix &, where all the parameters are known.

UNIT-1V
Distinguish between cluster analysis and discriminant analysis. Consider the hypothetical distance
between pairs of five objects as follows.
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Cluster the five objects using single linkage method
Explain the following methods of cluster analysis.
1) Centeroid Linkage method 2) K-means method.



8 (a) Explain various similarity measures. Explain complete linkage method.
(b) Explain non-hierarchical methods. Describe Ward’s method in cluster analysis.
UNIT-V

9 (a) Define principal components. If X ~N » (n,X), then explain how you would compute various

principal components.

(b) Define Canonical variables and Canonical correlations. Explain how you estimate canonical
correlations.

10 (a) Explain the orthogonal factor model. Explain the ML estimation method of factor loadings.

(b) e and prove two properties of principal components.
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LESSON -1
MULTIVARIATE NORMAL DISTRIBUTION

OBJECTIVES:

R/
A X4

X/
°e

X/
°e

Understand the concepts of the multivariate normal distribution and multivariate analysis
and their importance in multivariate statistical analysis.

Distinguish between different measurement scales, with special emphasis on metric and
non-metric measurement scales.

Identify and classify non-metric & metric measurement scales and understand their role in
multivariate techniques.

% Understanding the Multivariate Normal (MVN) distribution.
% Learning the properties of Multivariate Normal (MVN) distribution.
STRUCTURE:
1.1 Introduction to Multivariate analysis
1.1.1 Some Basic Concepts of Multivariate Analysis
1.1.2 Measurement Scales
1.1.3 Non Metric Measurement Scales
1.1.4 Metric Measurement Scales
1.1.5 Measurement Error & Multivariate Measurement
1.2 Applications of Multivariate Techniques
1.3 The Organization of Data
1.4 Multivariate Normal Distribution
1.5 Symbols and Notations
1.6 Understanding MVN Distribution
1.7 Properties of MVN distribution
1.8 Summary
1.9 Self Assessment Questions

1.10 Suggested Reading

1.1 INTRODUCTION TO MULTIVARIATE ANALYSIS:

Multivariate analysis is not easy to define. Broadly speaking, it refers to all
statistical methods that simultaneously analyze multiple measurements on each
individual or object under investigation. Any simultaneous analysis of more than two
variables can be loosely considered multivariate analysis. As such, many multivariate
techniques are extensions of univariate analysis (analysis of single-variable distributions)
and bivariate analysis (cross-classification, correlation, analysis of variance, and simple
regression used to analyze two variables). For example, simple regression (with one
predictor variable) is extended in the multivariate case to include several predictor
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variables. Likewise, the single dependent variable found in analysis of variance is
extended to include multiple dependent variables in multivariate analysis of variance. In
many instances, multivariate techniques are a means of performing in a single analysis
what once took multiple analyses using univariate techniques. Other multivariate
techniques, however, are uniquely designed to deal with multivariate issues, such as
factor analysis, which identifies the structure underlying a set of wvariables, or
discriminant analysis, which differentiates among groups based on a set of variables.

One reason for the difficulty of defining multivariate analysis is that the term
multivariate is not used consistently in the literature. Some researchers use multivariate
simply to mean examining relationships between or among more than two variables.
Others use the term only for problems in which all the multiple variables are assumed to
have a multivariate normal distribution. To be considered truly multivariate, however, all
the variables must be random and interrelated in such ways that their different effects
cannot meaningfully be interpreted separately. Some authors state that the purpose of
multivariate analysis is to measure, explain, and predict the degree of relationship among
variates (weighted combinations of variables). Thus the multivariate character lies in the
multiple variates (multiple combinations of variables), and not only in the number of
variables or observations.

The multivariate normal (MVN) distribution plays a central role in multivariate
statistical analysis, just as the univariate normal distribution does in classical statistics.
Many real-world phenomena-such as measurements in biology, finance, engineering,
and social sciences-naturally involve several correlated variables. The MVN distribution
provides a powerful framework for modeling such jointly distributed random variables,
capturing both their individual behaviors and the dependence structure among them.

1.1.1 SOME BASIC CONCEPTS OF MULTIVARIATE ANALYSIS:

Although multivariate analysis has its roots in univariate and bivariate statistics, the
extension to the multivariate domain introduces additional concepts and issues that have
particular relevance. These concepts range from the need for a conceptual understanding of
the basic building block of multivariate analysis the variate to specific issues dealing with the
types of measurement scales used and the statistical issues of significance testing and
confidence levels. Each concept plays a significant role in the successful application of any
multivariate technique.

The Variate: As previously mentioned, the building block of multivariate analysis is the
variate, a linear combination of variables with empirically determined weights. The variables
are specified by the researcher, whereas the weights are determined by the multivariate
technique to meet a specific objective. A variate of n weighted variables (X, to X, ) can be

stated mathematically as:
variate value = w.X, +w, X, +w X, +....+w X,

where X is the observed variable and w is the weight determined by the multivariate
technique.

The result is a single value representing a combination of the entire set of variables
that best achieves the objective of the specific multivariate analysis. In multiple regression,
the variate is determined so as to best correlate with the variable being predicted. In
discriminant analysis, the variate is formed so as to create scores for each observation that
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maximally differentiates among groups of observations. In factor analysis, variates are
formed to best represent the underlying structure or dimensionality of the variables as
represented by their inter correlations.

In each instance, the variate captures the multivariate character of the analysis.
Thus, in our discussion of each technique, the variate is the focal point of the analysis in
many respects. We must understand not only its collective impact in meeting the technique’s
objective but also each separate variable’s contribution to the overall variate effect.

1.1.2 MEASUREMENT SCALES:

Data analysis involves the partitioning, identification, and measurement of variation
in a set of variables, either among themselves or between a dependent variable and one or
more independent variables. The key word here is measurement because the researcher
cannot partition or identify variation unless it can be measured. Measurement is important in
accurately representing the concept of interest and is instrumental in the selection of the
appropriate multivariate method of analysis. Next we discuss the concept of measurement as
it relates to data analysis and particularly to the various multivariate techniques.

There are two basic kinds of data: non-metric (qualitative) and metric (quantitative).
Non-metric data are attributes, characteristics, or categorical properties that identify or
describe a subject. Non-metric data describe differences in type or kind by indicating the
presence or absence of a characteristic or property. Many properties are discrete in that by
having a particular feature, all other features are excluded; for example, if one is male, one
cannot be female. There is no “amount” of gender, just the state of being male or female. In
contrast, metric data measurements are made so that subjects may be identified as differing in
amount or degree. Metrically measured variables reflect relative quantity or degree. Metric
measurements are appropriate for cases involving amount or magnitude, such as the level of
satisfaction or commitment to a job.

1.1.3 NON-METRIC MEASUREMENT SCALES:

Non-metric measurements can be made with either a nominal or an ordinal scale.
Measurement with a nominal scale assigns numbers used to label or identify subjects or
objects in each category. Nominal scales, also known as categorical scales, provide the
number of occurrences or symbols assigned to the objects that have no quantitative meaning
beyond indicating the presence or absence of an attribute or characteristic. Therefore, the
numbers on the nominally scaled data include no inherent meaning beyond categorization.
Examples of nominally scaled data include an individual’s sex, religion, or political party. In
working with these data, the researcher might assign numbers to each category or class, for
example, 2 for females and 1 for males. These numbers only represent categories or classes
and do not imply amounts of an attribute or characteristic.

Ordinal scales are the next higher level of measurement precision. Variables can be
ordered or ranked with ordinal scales in relation to the amount of the attribute possessed.
Every subclass example, different levels of an individual consumer’s satisfaction with several
new products can be illustrated on an ordinal scale. Numbers utilized in ordinal scales such
as these are non-quantitative because they indicate only relative positions in an ordered
series. There is no measure of how much satisfaction the consumer receives in absolute
terms, nor does the researcher know the exact difference between points on the scale of
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satisfaction. Many scales in the behavioral sciences fall into this ordinal category.
1.1.4 METRIC MEASUREMENT SCALES:

Interval scales and ratio scales (both metric) provide the highest level of measurement
precision, permitting nearly all mathematical operations to be performed. These two scales
have constant units of measurement, so differences between any two adjacent points on any
part of the scale are equal. The only real difference between interval and ratio scales is that
interval scales have an arbitrary zero point, whereas ratio scales have an absolute zero point.
The most familiar interval scales are the Fahrenheit and Celsius temperature scales. Each has
a different arbitrary zero point, and neither indicates a zero amount or lack of temperature,
because we can register temperatures below the zero point on the scale. Therefore, it is not
possible to say that any value on an interval scale is a multiple of some other point on the
scale. For example, an 80°F day cannot correctly be said to be twice as hot as a 40°F day,
because we know that 80°F, on a different scale, such as Celsius, is 26.7°C. Similarly, 40°F
on Celsius is 4.4°C. Although 80°F is indeed twice 40°F, one cannot state that the heat of
80°F is twice the heat of 40°F because, using different scales, the heat is not twice as great;
that is, 4.4°C x 2 #26.7°C.

Ratio scales represent the highest form of measurement precision because they
possess the advantages of all lower scales plus an absolute zero point. All mathematical
operations are permissible with ratio-scale measurements. The bathroom scale or other
common weighing machines are examples of these scales, for they have an absolute zero
point and can be spoken of in terms of multiples when relating one point on the scale to
another; for example, 100 pounds is twice as heavy as 50 pounds.

Understanding the different types of measurement scales is important for two reasons.
First, the researcher must identify the measurement scale of each variable used, so that non-
metric data are not incorrectly used as metric data and vice versa. Second, the measurement
scale is critical in determining which multivariate techniques are the most applicable to the
data, with considerations made for both independent and dependent variables. In the
discussion of the techniques and their classification in later sections of this chapter, the metric
or non-metric properties of independent and dependent variables are the determining factors
in selecting the appropriate technique.

1.1.5 MEASUREMENT ERROR & MULTIVARIATE MEASUREMENT:

The use of multiple variables and the reliance on their combination (the variate) in
multivariate techniques also focuses attention on a complementary issue—measurement
error. Measurement error is the degree to which the observed values are not representative of
the “true” values. Measurement error has many sources, ranging from data entry errors to the
imprecision of the measurement (e.g., imposing seven-point rating scales for attitude
measurement when the researcher knows the respondents can accurately respond only to a
three-point rating) to the inability of respondents to accurately provide information (e.g.,
responses as to household income may be reasonably accurate but rarely totally precise).
Thus, all variables used in multivariate techniques must be assumed to have some degree of
measurement error. The impact of measurement error is to add “noise” to the observed or
measured variables. Thus, the observed value obtained represents both the “true” level and
the “noise.” When used to compute correlations or means, the “true” effect is partially
masked by the measurement error, causing the correlations to weaken and the means to be
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less precise. The specific impact of measurement error and its accommodation in dependence
relationships.

The researcher’s goal of reducing measurement error can follow several paths. In
assessing the degree of measurement error present in any measure, the researcher must
address both the validity and reliability of the measure. Validity is the degree to which a
measure accurately represents what it is supposed to. For example, if we want to measure
discretionary income, we should not ask about total household income. Ensuring validity
starts with a thorough understanding of what is to be measured and then making the
measurement as “correct” and accurate as possible. However, accuracy does not ensure
validity. In the above example, the researcher could very precisely define total household
income but still have an invalid measure of discretionary income because the “correct”
question was not being asked.

If validity is assured, the researcher must still consider the reliability of the
measurements. Reliability is the degree to which the observed variable measures the “true”
value and is “error free”; thus, it is the opposite of measurement error. If the same measure is
asked repeatedly, for example, more reliable measures will show greater consistency than less
reliable measures. The researcher should always assess the variables being used and if valid
alternative measures are available, choose the variable with the higher reliability.

The researcher may also choose to develop multivariate measurements, also known as
summated scales, for which several variables are joined in a composite measure to represent a
concept (e.g., multiple-item personality scales or summed ratings of product satisfaction).
The objective is to avoid the use of only a single variable to represent a concept, and instead
to use several variables as indicators, all representing differing facets of the concept to obtain
a more “well-rounded” perspective. The use of multiple indicators allows the researcher to
more precisely specify the desired responses. It does not place total reliance on a single
response, but instead on the “average” of “typical” response to a set of related responses. For
example, in measuring satisfaction, one could ask a single question, “How satisfied are you?”
and base the analysis on the single response. or a summated scale could be developed that
combined several responses of satisfaction, perhaps in different response formats and in
differing areas of interest thought to comprise overall satisfaction. The guiding premise is that
multiple responses reflect the “true” response more accurately than does a single response.
Assessing reliability and incorporating scales in the analysis are methods the researcher
should employ. The impact of measurement error and poor reliability cannot be directly seen
because they are embedded in the observed variables. The researcher must therefore always
work to increase reliability and validity, which in turn will result in a “truer” portrayal of the
variables of interest. Poor results are not always due to measurement error, but the presence
of measurement error is guaranteed to distort the observed relationships and make
multivariate techniques less powerful. Reducing measurement error, although it takes effort,
time, and additional resources, may improve weak or marginal results and strengthen proven
results as well.

1.2 APPLICATIONS OF MULTIVARIATE TECHNIQUES:

The published applications of multivariate methods have increased tremendously in
recent years. It is now difficult to cover the variety of real-world applications of these
methods with brief discussions, as we did in earlier editions of this book. However, in order
to give some indication of the usefulness of multivariate techniques, we offer the following
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short descriptions of the results of studies from several disciplines. These descriptions are
organized according to the categories of objectives given in the previous section. Of course,
many of our examples are multifaceted and could be placed in more than one category.

Data reduction or simplification

e Using data on several variables related to cancer patient responses to radiotherapy, a
simple measure of patient response to radiotherapy was constructed.

e Track records from many nations were used to develop an index of performance for both
male and female athletes.

e Multispectral image data collected by a high-altitude scanner were reduced to a form that
could be viewed as images (pictures) of a shoreline in two dimensions.

e Data on several variables relating to yield and protein content were used to create an
index to select parents of subsequent generations of improved bean plants.

e A matrix of tactic similarities was developed from aggregate data derived from
professional mediators. From this matrix the number of dimensions by which professional
mediators judge the tactics they use in resolving disputes was determined.

Sorting and grouping

e Data on several variables related to computer use were employed to create clusters of
categories of computer jobs that allow a better determination of existing (or planned)
computer utilization.

e Measurements of several physiological variables were used to develop a screening
procedure that discriminates alcoholics from non alcoholics.

e Data related to responses to visual stimuli were used to develop a rule for separating
people suffering from a multiple-sclerosis-caused visual pathology from those not
suffering from the disease.

e The U.S. Internal Revenue Service uses data collected from tax returns to sort
taxpayers into two groups: those that will be audited and those that will not.

Investigation of the dependence among variables

e Data on several variables were used to identify factors that were responsible for
success in hiring external consultants.

e Measures of variables related to innovation, on the one hand, and variables related to
business environment and business organization, on the other hand, were used to
discover why some firms are innovative and some firms are not.

e Data on variables representing the outcomes of the 10 decathlon events in the
Olympics were used to determine the physical factors responsible for success in the
decathlon.

e The associations between measures of risk-taking propensity and measures of
socioeconomic characteristics for top-level business executives were used to assess
the relation between risk-taking behavior and performance.

Prediction

e The associations between test scores and several high school performance variables
and several college performance variables were used to develop predictors of success
in college.

e Data on several variables related to the size distribution of sediments were used to
develop rules for predicting different depositional environments.

e Measurements on several accounting and financial variables were used to develop a
method for identifying potentially insolvent property-liability insurers.
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e Data on several variables for chickweed plants were used to develop a method for
predicting the species of a new plant.

Hypotheses testing

e Several pollution-related variables were measured to determine whether levels for a
large metropolitan area were very consistent throughout the period or whether there
was a noticeable difference between weekdays and weekends.

e Experimental data on several variables were used to see whether the nature of the
instructions makes any difference in perceived risks, as quantified by test scores.

e Data on many variables were used to investigate the differences in structure of
American occupations to determine the support for one of two competing sociological
theories.

e Data on several variables were used to determine whether different types of firms in
newly industrialized countries exhibited different patterns of innovation.

e The preceding descriptions offer glimpses into the use of multivariate methods in
widely diverse fields.

1.3 THE ORGANIZATION OF DATA:

Throughout this lesson, the reader is going to be concerned with analyzing
measurements obtained on several variables. As mentioned in the introduction, the data are
usually obtained from a sample of some population. That is, we measure or observe the
values of p variables for each of n experimental units or individuals. This lesson is intended
to introduce the preliminary concepts underlying these first steps of data collection, property
measurement (definition), and the organization of the data.

Arrays

Multivariate data arise whenever an investigator is seeking to understand a social or
physical phenomenon based on a number of measurements. The principal focus is on
understanding the relationships among variables all recorded for each distinct individual or
experimental unit in the study.

We will use the notation x, to indicate the particular value of the k™ variable that is

observed on the j™ item.
x, =measurement of the k" variable on the j" item

Consequently, measurements on variables can be displayed as follows:
Variable 1 ~ Variable 2 ... Variable k --- Variable p

Item 1:  x,, X, X, X,
Item 2:  x,, X, Xy, X,,
Item]; X X5, X X,
lItemn:  x, X, X, X,

Or we can display these data as a rectangular array called X of n rows and p columns:
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X X1k Xip

Xy Xy X X2p
X =

i Xj Yk Yip

xnl xn2 e ‘xnk xnp

The array X, then, contains the data consisting of all of the observations on all of the
variables.

Example 1(A data array)

A selection of four receipts from a university bookstore was obtained in order to
investigate the nature of book sales. Each receipt provided, among other things, the number
of books sold and the total amount of each sale. Let the first variable be total dollar sales and
the second variable be the number of books sold. We can regard the corresponding numbers
on the receipts as four measurements on two variables. Suppose the data, in tabular form, are:

Variable 1 (dollar sales): 42 52 48 58
Variable 2 (number of books): 4 5 4 3

Using the notation just introduced, we have:
x, =42 x,=52 x, =48 x, =58

X, =4 Xp,=5 x, =4 x, =3
and the data array X is:
42 4
52 5
X =
48 4
58 3

with _four rows and two columns.

Considering data in the form of arrays facilitates the exposition of the subject matter and
allows numerical calculations to be performed in an orderly and efficient manner. The
efficiency is twofold, as gains are attained in both describing the numerical calculations as
operations on arrays and the implementation of the calculations on computers, which now
use many languages and statistical packages to perform array operations. We consider the
manipulation of arrays of numbers. At this point, we are concerned only with their value as
devices for displaying data.

Example 2 (The arrays X,S_,and R for bivariate data)

Consider the data introduced in Example 1, Each receipt yields a pair of
measurements, total dollar sales, and number of books sold. Find the arrays )_(,Sn, and R .

Since there are four receipts, we have a total of four measurements (observations) on
each variable.
The sample means are:

_ 4
X, :inﬂ :i(42+52+48+58)=50
Jj=1
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_ 4
xzziz)cﬂ:%(4+5+4+3)=4
Jj=1

e

The sample variances and covariances are:
2

4 _
S, =iz(xj1 ~x) =i((42—50)2 +(52-50)" +(48-50)" +(58-50)" ) =34
Jj=1

S, :ii(xﬂ —)72)2 =%((4—4)2 +(5-4) +(4—4) +(3—4)2)=.5
|
4

-1

~

S(y- %) (s %)

J=1

- %((42—50)(4—4)+(52—50)(5—4)+(48—50)(4—4)+(58—50)(3—4)) =_15

S, =

S21 = S12
34 -1.5
and S, =
-1.5 )

The sample correlation is

S
12
7"12

-15

hy =h

1 -36
So, R=
-.36 1

1.4 MULTIVARIATE NORMAL DISTRIBUTION:

36

In multivariate analysis, the MVN distribution serves as the foundation for numerous
methods, including principal component analysis (PCA), discriminant analysis, regression
analysis, confidence region construction, and hypothesis testing. Its mathematical
tractability, especially regarding linear transformations and conditional distributions, makes
it one of the most widely used models in theory and practice.

A thorough understanding of the MVN distribution includes knowledge of its
definition, key properties, and associated matrix algebra. Equally important is the
estimation of its parameters-the mean vector and covariance matrix-which forms the basis
for inferential procedures in multivariate settings. This lesson introduces the multivariate
normal distribution and explores its essential properties., and discusses parameter
estimation techniques under this model.
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1.5 SYMBOLS AND NOTATIONS:

To describe multivariate quantities, the following symbols and notations are commonly used:

» X Random vector of order p x 1.

o ju:Mean vector of order p x 1.

s X Covariance matrix of order p x p, symmetric and positive definite.
o S hInverse of 3, also called the precision matrix.

o Y| Determinant of Z.

N, (1, Z): p-variate normal distribution with mean 1. and covariance Z.
o X Realization of the random vector X.
E(X) = pand Cov(X) = E.

o Superscript T denotes matrix franspose.

1.6 UNDERSTANDING MVN DISTRIBUTION:

Suppose X is a scalar normal variate with mean x and variance o then the p.d.f of X can
be written as

Gl IO I

f(x:u,0)=ke 2 ,0°>0,—00< <o 2> (1)
Where, k= !
’ o\2r
Xl
XZ . .
Now suppose X =| is a p-variate random vector and
XP

Its mean vector is given by

EX) | ([ #
E(X, )

px)=| ) o > @
E(X,))| \4,

and its variance —covariance matrix is given by

VX) = E[(X-EX)) X~ EX)) ]

= E[(X-m(X-w]
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E[Xl'ul]z E[(X,-u)(X,-p)] - E[(Xl-up)(Xp_“p)]
V(X): E[(Xz'uz.)(Xl'Ml)] E[Xz.'uz] E[(XZ-HZ.)(XP-HP)]
E[(X,-1,)(X-u)] - E[CX -1, )(Xp-1,)] E[X,-4,]°
o, Op . O,
O, Oy .. O,
=0 U |FE G >03)
O, O, - O,
Where,

Gy = E[(xl. - 14:) (%, _ﬂj)] =0
clearly, X is symmetric & positive definite matrix.

Now the multivariate normal density of X can be obtained by replacing
the positive quantity (x— u)(c”) ' (x— ) by the quadratic form

(x-W'E(x-p) > @

and is given by

—l(z&-u)’ = (x-p)
f(x:pXE)=ke 27~ i )

Where (k>0) is chosen so that the integral over the entire p-dimensional
Euclidean space of X, X,,.... X » 1s unity. we observe that
f(x: n, 2)>0 ( .k is chosen as positive)
since X is positive definite
(x-p)'Z 7 (x-p) >0
= ) (3 p) <0
1

—~(x-p'T(x-p)
= e 2 <=1

Le. 0<f(x:pE)<k ie. f(x)isbounded.

Now we should find k(>0) such that
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o0 —l(x-g)’z_l(fs-g)

Of...off(x):kof... [e 2 dx=1

1 1
T =i ¢ S DI & O
kKt=] .. ]e? dx
—00 —00
since X' is positive definite 3 a non singular matrix A such that

>'=A'4

then (7) can be written as

4 ® @ —l(z&-g)’A’A(z&-g)
K l=1] .. [e? dx

—00 —00
If we use the linear transformation from X to a new random vector Y such that

Y = AX-p)

then (9) becomes

-1 L © fly’y
kK =JXx) | ... | e? dy
-0  —00 N

> (6)

> ()

EQNC)

EQC)

> (10)

> (11)

where J(x) is the Jacobian obtained when X is transformed into Y and is given by

J ddy
=mod|—=
() o
Lo T
ox, Ox, Ox,
D D
=mod|Ox, Ox, pr
ox,  ox, ox,
:mod‘A’l‘
__ 1 (.,.‘A—I‘ZL
mod| 4| |4]

Where  |4| is determinant of A.

.. Equation (11) becomes
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o1
mod|A|

m0d|A| H 0 vy

12
2’dy_1)

Ve = e

m0d|A|

/2
- (27211 _ [ =44 =|4])
1e., ‘ ‘

B 1
| |1/2(2 )p/2

1/2 ‘ l‘1/2 1

|1/2 )

(- X7'is positive definite to mod‘Zl ‘ _|
x

substituting k in (5) we get the p.d.f of the random normal vector X and is given by

1 —%(z&- W'E(x-p)
p/2€
(27)

thus (12) is the p.d.f of a multivariate normal vector X whose mean vector

Sxip,X)=

| |1/2

> (12)

and variance-covariance matrix are respectively given by p and X
and is denoted as n(x/p, X) and its distribution is denoted as N, (p,X).

NOTE 1:
From (10) ,we may see that
E(Y) = AE(X-p)
= A(E(X)—p)
= A-p)
=0

i.e. Y has zero mean vector.
The variance-covariance matrix Y of is given by

V(Y) = El(y - E@)y ~ Ey))']
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=Elyy'l (- E(y)=0)
~E[AGX-)(X-1)'A]
—AV(X)A'
=AZA’
but from (8),
Y =(A4)"
=A47'(A4)" (. 4 is a non-singular)
LV(Y) = A4 (AY A
=11,
= ]k

Thus if Xis N, (n,X) ,then the random vector Y defined as
Y=A(X-p) (where A is defined as in (8) ) follows N ,(0,7,).

In other words , the individual element of Y are standard normal variates and mutually
independent ie. Y, ~ N(0,1) with cov(Y,Y,)=0.

NOTE 2:
In the practical situations ‘A’ can be computed as follows .since Xis a symmetric p.d.
matrix we may write QXQ = A =diag(4,4,,...,4,) ,when Q is the normalized latent vector

matrix and A is the latent root matrix and since Xis p.d. all 21,22,...,/117 are positive
.Therefore A can be written A =(A"?)'(A"?)

Where, A" = diag(J2 4, JZ )

then
QYO = (A1/2)7(A1/2)
=X =(Q)(AYAPQ =47 (AT
where
AT =@y
= A=A"Q  ((A?)Y=A"?)
thus, Y = A"Q'(X-p)
1

1

The transformation from X to Y follows N, (0,1,) .This transformation is called

where A"? =diag(

“whitening”.
Eq (7) is the p.d.f . of the multivariate normal variate X where mean is p and variance —

covariance matrix is X and is denoted by n(x/p,X).

The distribution function of X is denoted as N, (n,X) .
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Definition: Suppose X is a random vector with mean p and the variance-covariance matrix
, &. Then X is said to follow multivariate normal distribution if its p.d.f. is given by

1 Ly Elx
SR =———=75¢ > (D
~ (27[)p/2|2|1/2

Itis denoted as X~ N, (1, ).

1.7 PROPERTIES OF MVN DISTRIBUTION:

THEOREM 1:
Let X (with p components) be distributed according to N (u,X) then, Y =CX

is distributed according to N(Cp,CXC") for C non-singular.

PROOF:
Since X~ N, (1, X) & its p.d.f. is given as

—l(z&-g)’E_l(zﬁ-g)
| 2

S(X)=———75e€ 2> 1)
(27z_)p/2|2|1/2

Now ,consider the linear transformation
Y = CX where C is non-singular

=X=C"Y 2 (2)

Now the p.d.f. 1 becomes in terms of Y as

| o ly-prrlely-p
e J(y) > )

g(y)=
T enP?y

where J(y) is the Jacobian and is given by

ox

J(y)=mod
(y)moay

=m0d‘C‘1‘

R
~ mod|C]|

2> @
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Using (4) & (3) ,we get

I -1 ro—1, —1
1 —5C y-wE (€ -
172 ¢

gly)=
Q) |czc’

| —tc ! y-cwrz e - cw
1/2°

p/2

) Qr)r TjcEC

1 !’ n—
. —S -z y-cw
1/2¢

enP%esc

= n(y/Cp,CEC) 2 )

But
E(Y)=CE(X)=Cp > (©

& V(Y)=CV(X)C'=CXC 2>

Now, if we write the multivariate normal p.d.f. of Y with mean p and the variance-

covariance matrix CEC' that will becomes as (5) and therefore

CX ~ N(Cp,CEC)).

Hence the proof.

THEOREM 2:
If a multivariate normal vector is divided into two sub vectors and one sub -vector is
uncorrelated with other sub-vector ,then those two sub-vectors of variables are independent

and each sub-vector is also a multivariate normal vector.
(OR)

X
Let X, ~N,(mY)&X= (; J

<2

1]
Where X, is gx1 and X, is (p—¢g)x1 and uzL”IJ
~
Z:(Z” Z]2)
2‘21 E22

where, X is variance-covariance matrix of

=4

Yl A

X, is variance-covariance matrix of
and X, is covariance matrix of X, &X,
X,, is covariance matrix of X, &X, .
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Nowif X,=X%, =0,
then, X, &X, areindependentand X, ~N (n.%,) & X,~N, (p,,X,).
PROOF: ~ -

We are given X, =0, = x,/

i.e. the covariance matrix of X, is given by

X, 0
= { 0 ZZJ
In order to show that, the random vectors X, & X, are independently normally
distributed, we have to show that

n({(/l}, Y)= n(gl/ljl ) Ell)n(gz/gz )
we have,

W= o)

(¥ L) = ————e
- (27[)19/2 |Z|1/z

> D

consider the Q.F in (1),
ie, Q=(x-p'X'(x-p

RN {zu 0 T X~ th
X~k 0 X, o)

= [(351 _1{:11)’ (x, = /fz)i{z(;_ll 201”:5 H :|

n ||

(" X,, 1s the variance-covariance matrix of X, and hence positive definite)

= [(2‘1 - Hl)rz;ll (Z‘z - ljz)'EZ ] [31 = ]

.Sl 2}

= (351 -y )’E;ll (’51 - E’l) + (’52 - Ez)lzgzl ()52 - Ez)

:Q1+Qz - (2)
also we have,
2
|2|= 011 > :|211||222| 2 (3
Using (2) & (3) in (1) we get,
Q Lo
1 5 | 5D
n(¥/p, X) = L 12¢ ? (-2l 12 ?
@) ‘211‘ @my P ‘222‘

where Q,&Q, areis as given in (2),
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(. E) = n(x 2 D,y E o)
Thus ,the joint p.d.f. of the normal variates X,,X,,..., X, is the product of the marginal
p.d.f. of X, X0 X, and the marginal p.d.f. of X

PRTIID, G Thus, the two sets of normal

variates are independent.

THEOREM 3:
If X, &X, are independent and are distributed as N (p,,X)&N, (n,,%,,)

. Xl ! Zn 0
respectively then , ~N, , .
X, n, 0 2,

PROOF:-

we have given ,
X, ~ N, &)

XZ - Np-q (l;lz ’ Z:22)
and X, & X, areindependent i.e. X,,X, are uncorrelated.
ie. cov(X,X,)=2%,=2, =0.

X
We have to find out the joint p.d.f. of f(x) of X= (; j
2

we have,
gx)=f(x,)f(x,) (X, &X, are independent)

= n(X,/1y, X)X,/ By

1 1
1 2 1 e, (where O = (x, )T, (x,-,), i=1,2)

= e
(2”)q/2 |211|”2 (277)(/H])/2 |222|l/2
1 Lo+0) X, 0
= me’ wE= =[Z,,|[Z..] > (D)
(27)” |Z| 0 X,
Where O +0, = (x, -1t Z,) (X, -1y + (%, - 11,) T, (X, - 1) >
Let us consider
Q=(x-wWX ' (x-p > ()

n
where , x= (” J, n= ( ~1J is E(X) and the variance-covariance matrix X1is
L) " M

. VX))  cov(X,X,)
~Leov(X,, X)) V(X,)

:(211 212}
L, X
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But ,since X, =X, =0

9Xp—q
z 0
) :( ! j > 4
0 X,
Now, 0= - (Zl_ll O_lj o
XK, 0 IINPIRS -H,
=(x, 'E]),Zﬂl (x 'E])"‘(Z‘z 'Ez)lzz (X, 'Hz) 2> (5

from(2) & (5) , O, +0,=0
1
1 —5¢

1/2

TS p——
enP!?|y

Where, Q is given by (3) but g(X) is nothing but n(x/p,X).

X
Thus X = [ilj ~N, (E, Y) where, X is as given by (4).

~2

THEOREM 4:
If X,,X,,..,X, have a joint normal distribution , a necessary & sufficient

condition for one subset of some random variables and the subset consisting of the remaining
random variables be independent is that each covariance of a variable from one set and a
variable from the other set be ‘0’.

PROOF:-
Necessary condition:

Without loss of generality let us assume that the first q variables form the first
subset and the remaining p-q variables form the second subset.

In order to prove the necessary condition, we have given that the variables of
X, X,,...., X, are independently distributed with the variables X ,,, X ., X, and we have

g+12 X g2
to prove
cov(X,, X)) = E[(X, - ECX))(X, ~ E(X,)]=0
where, 1<i<g&q+1<j<p

we have
cov(X,, X ) = jj (%, = EQX)(x, = E(X ) (X, X500 X, ),y X,

= [T T (x, —E(Xl.))fl(xl...xq)dxl...dxqj.

—00 —00

(]2 T (x; —E(X,—))fz(xqﬂ...xp)dxqﬂ...dxpJ

—00 —00

( S (x5 x,) = fl(xl,...,xq)]‘z(xq+l,...,xp))
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= ELX, — E(X)JELY, — E(X )]
=[E(X,)) - E(X)IE(X;)-E(X))]
=0.0
=0
Thus if one set of variables is independent of the remaining variables then, the set of
variables are uncorrelated with the other set of variables.

Sufficient condition:
Here we have given

X
X{;J&X ~N,(LY)  &cov(X,X;)=0
~2
where , X, is from X,
X, is from X,
i'e' COV(X]’XZ) = Z12 = qup—q
The proof of this sufficient condition is given in Theorem 2 given above.

and we have to prove X, & X, are independently distributed.

Note:
To prove the necessary condition of the above theorem we need not assume X,,..., X, are

normally distributed.
1.8 SUMMARY:

In this lesson, the concept of the Multivariate Normal (MVN) distribution was
introduced as a fundamental model for describing the joint behaviour of several
correlated random variables. Beginning with basic symbols and notations, we established
a clear mathematical framework for representing vectors, matrices, mean vectors, and
covariance structures-elements essential for multivariate analysis.

The probability density function (p.d.f.) of the MVN distribution was presented both
in its standard form and through an alternative method of derivation, highlighting the role
of linear transformations of normal variables. These derivations illustrated how
dependence among variables is incorporated through the covariance matrix, and how
geometric features such as ellipsoidal contours arise naturally from the structure of the
MVN density.

The section on Estimation in MVN Models discussed the methods used to estimate
the mean vector and covariance matrix of a multivariate normal population. Maximum
likelihood estimation (MLE) procedures were shown to provide efficient and unbiased
estimators, while the sampling distributions of the sample mean vector and sample
covariance matrix (Wishart distribution) were described. These results form the backbone
of multivariate inference.

Overall, the Multivariate Normal distribution occupies a central position in
multivariate statistical analysis. Its mathematical tractability, well-defined inferential
properties, and broad applicability make it indispensable for modern statistical modeling.
Understanding its density, derivations, estimation procedures, and applications equips
students and researchers with a strong foundation for advanced multivariate methods.
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1.9 SELF-ASSESSMENT QUESTIONS:

1.
2.
3.

hd

1.9

SNk Ww

What is multivariate analysis? How does it differ from univariate and bivariate analysis?
What are measurement scales? How do they influence multivariate analysis?

Define the multivariate normal distribution and obtain the bivariate normal density as a
particular case of MVN.

Let X be a p - variate normal random vector. State and prove a necessary and sufficient
condition for one subset of the random variables and the subset consisting of the
remaining variables to be independent.

Explain and derive any two properties of Multivariate normal distribution.

If a multivariate normal vector is divided into two sub vectors and one sub-vector is
uncorrelated with other sub-vector, then those two sub-vectors of variables are
independent and each sub-vector is also a multivariate normal vector.

If X, &X, are independent and distributed as N (n, X )&N, (n,,X,)
X P> 0

respectively then ,( -t ] ~N, - ,{ ! } .
X, n, 0 2,

SUGGESTED READINGS:

. Anderson, T.W.(2000). An Introduction to Multivariate Statistical Analysis, 3rd Edition,

Wiley Eastern.

Johnson, A. and Wichern, D.W.(2001). Applied Multivariate Statistical Analysis,
Prentice Hall and International.

Mardia, Kent & Bibby. Multivariate Analysis

Kshirsagar, A.M. Multivariate Analysis

Brenner, D., Bilodeau, M. (1999). Theory of Multivariate Statistics. Germany: Springer.
Giri Narayan C. (1995). Multivariate Statistical Analysis.

Prof. A. Vasudeva Rao



LESSON -2
MARGINAL AND CONDITIONAL

DISTRIBUTIONS

OBJECTIVES:

/7
A X4

Understand the concept and importance of marginal and conditional distributions in

multivariate analysis.

* To derive marginal distribution in the context of the Multivariate Normal
Distribution.

s To derive conditional distribution in the context of the Multivariate Normal

Distribution.

STRUCTURE:

2.1 Introduction

2.2 Marginal Distribution of MVN Distribution
2.3 Conditional Distribution of MVN Distribution
2.4 Summary

2.5 Self Assessment Questions

2.6 Suggested Reading

2.1 INTRODUCTION:

In multivariate analysis, the study of joint distributions of two or more random variables
is essential for understanding their combined behavior. However, in many practical
situations, interest lies in the behavior of a subset of variables or in the behavior of one
variable given the values of others. This leads to the concepts of marginal and conditional
distributions, which are fundamental tools in multivariate probability theory and statistical
inference. These distributions play a crucial role in understanding dependence structures and
in simplifying complex multivariate problems.

The Multivariate Normal (MVN) Distribution is a fundamental probability
distribution in multivariate statistics. It generalizes the univariate normal distribution to
higher dimensions and plays a central role in inference, estimation, classification, regression,
and many applied statistical methods.

A random vector

X=(X, X0 X))
is said to follow a multivariate normal distribution with mean vector g and covariance
matrix Y., written as

X~N P ('u ? Z)

if every linear combination «'X is univariate normally distributed.

2.2 MARGINAL DISTRIBUTION OF MVN DISTRIBUTION:

The marginal distribution of a subset of random variables is obtained from the joint
distribution by integrating (or summing) over the remaining variables. It describes the
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probability behavior of individual variables or groups of variables without reference to the
others.
In multivariate analysis, marginal distributions help in:
e Understanding individual variable behaviour within a multivariate framework
o Examining the distributional properties of subsets of variables
o Establishing results such as the marginal normality of components of an MVN
distribution.
Marginal distributions are especially important in simplifying multivariate problems
and form the basis for many inferential procedures.

THEOREM:

If X has MVN, then any subset of the components of X have a (multivariate) normal

distribution.
(OR)
Prove that the marginal distribution obtained from the multivariate normal distribution is
normal.
(OR)
If X~ Np(tl, Y), then the marginal distribution of any (sub) set of components of X is

multivariate normal with means, variances and co-variances obtained by taking the proper
components of p and X respectively.

PROOF:

)51 E‘ ):‘11 2'12
Let X= = , X =
X,)~ K, X, X,

where
B =EX))hu, = E(X,)
, = V(X,).Z, = V(X,)
z, =cov(X,,X,) =[cov(X,. X))| =X,

Now we shall make a non singular linear transformation to sub vectors
Y, =X, tMX,
Y, =X,

> (D)

choosing M so that the components of Y, are uncorrelated with the components of Y, =X, .

The matrix M must satisfy the equation.

cov(Y,, Y,) =0, , =E[(Y; -EQY)XY, -E(Y,))']

E[{Xl E(X,)+M(X, EX,)HX, -E(zg)}’}

E{{X1 EX)HX,EX,)) }+ME {{Xz EX,)}HX, -E(Xz)}'}
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=cov(X;,X,) + M V(X,)
=%, +MZ,, 2> (2
Thus , M=-x %] > (3)
and now, the vector Y, becomes
Y, =X, -IL, XX, > @

and the vector

Y= Y, — X1'2122-212X2 =C X =CX,
Y, X, X

Iq _2122;
1

(p—q)xq P4

2 ()
where C =(

Since |C| =1, C is anon singular matrix.
.. Y is non-singular transformation of X.
.Y has a normal distribution with mean vector
TR TAED 39 ueyTH IYEY
E(¥)=Cu=C S| B &l [V (say) > (6)
” n, ) )2

and the variance —covariance matrix

(XJ ( V(Y) COV(¥19¥2)j
v =v| |-
Y, Cov(Y,,Y)) V(Y,)

(VYY) 0
_( 0 V(Yz)j (from Eq.(2))

_ Z11'2122-2122‘21 0 > (7)
0 z,

Y,
which implies Y = (; Jhas multivariate normal distribution,where Y, &Y, are uncorrelated.
~2

Therefore Y, &Y, are independent and have multivariate normal distributions.
In particular, Y, =X, has a MVN distribution
- X, ~N, ,(n,,X,). Thatis the marginal distribution of X, is MVN.

2.3 CONDITIONAL DISTRIBUTION OF MVN DISTRIBUTION :

The conditional distribution describes the probability distribution of one set of
random variables given that another set takes specific values. It provides insight into how
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variables behave in the presence of information about other variables.
In multivariate analysis, conditional distributions are used to:
e Study dependence and association among variables
e Make predictions and perform regression-type analyses
e Understand conditional normality in multivariate normal distributions.
Conditional distributions are central to modeling relationships and are widely used in
multivariate inference and prediction.

CONDITIONAL DISTRIBUTION
THEOREM:

If X has multivariate normal distribution, then the conditional distribution of any
subset of the components of X given the subset of the remaining components of X is a

(multivariate) normal distribution.

(OR)
Prove that the conditional distribution obtained from the multivariate normal distribution is
normal.
PROOF:

)51 H‘ 211 2'12
Let X= = L X =
X,) - u, X, X,

B =EX))hu, = E(X,)
X, = V()&)a Xy, = V(Xz)

where

X, =cov(X;,X,) = [COV(Xz’ X, )] = Z’21
Now we shall make a non singular linear transformation to sub vectors

Y, =X, +MX,
Y, =X,

> (D)

choosing M so that the components of Y, are uncorrelated with the components of Y, =X, .
The matrix M must satisfy the equation.

cov(Y,Y,)=0 :COV(XI +ND~(29)~(2)

WXp=q
==Cov(X,.X,)+MV (X,) =X, +MX,, > ()
Thus, M=-X %) )

and now, the vector Y, becomes
Y, =X, -L,I,X, > @

and the vector
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Y= ¥1 — XI-ZIZZ-ZIZXZ =C Xl =CX,
¥z Xz XZ

1 -x . x!
whereC:( K 12 22}

(p—q)xq r=q

> )

Since |C| =1, C is anon singular matrix.

.. Y is non-singular transformation of X.
.Y has a normal distribution with mean vector

1 1_21222 2
E(¥)=Cu=C(E }{E ; Hy‘j (say) > ©)
~ u, n, V2

and the variance —covariance matrix

[XJ ( V(Y) COV(¥19¥2)j
ron=v| |-
Y, Cov(Y,,Y)) V(Y,)

= (V(‘”{l) 0 j (from Eq.(2))
0 V(Y

_ Z11'2122-2122‘21 0 > (7)
0 z,

Y,
which implies Y =[;jhas multivariate normal distribution, where Y, &Y, are
~2

uncorrelated.

Therefore Y, &Y, are independent and are MVN variates. More specifically,
Y ~ Nq(lfl _2‘122-212152’211.2) > (8)

Y,~-N,, (Ezaz‘n)

where X=Xy - 2122-212221 .

Now, the joint p.d.f. of Y is given by
g(Y)=g(Y)g(Y,) (Y, and Y, are independent)
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= n(¥1/”1 z z“zzuz 52112)'”(}:2/152 ’222)

1 ] .
=<2ﬁ>w—2|>:|e"p{‘5<¥r&+lezztaz>2ﬁ.z<¥l-ul+z znm}
11.2

Xp {_% (Y, - Ez)lz-zlz (Y, - n, )} - (9

X €
(277)([)7(1)/2 |222|

If we make use of the linear transformation (non singular) as given in (5).

The density function of X is given by

SX)=g(YX)IX)
Where, J(X) is the Jacobian and is given by

J(X) =mod

oy
a—;‘:mod|c|:‘lq‘.‘lpq‘:l

S (X Xy) = £(X) = g(Y(X)

! -1
1 2(122‘.)( p1+2‘.

-1y -1
12E90%, -X X +X X

_ 125228 1120 7By My T E T pky)
(2”)q/2‘211.2‘ > (10)
! gl
1 _E(gz'ljz)zzz(’fz'gz)

X (2”)(17_(1)/2‘222‘6

Now, By the definition conditional density of X, given that X, =x, is that

_ S ExpX,)
S(x,/%,)= 1(x,) 2 (11)

where f(X,,X,) is given by (2) and f(x,)1s the marginal density of X, at the point x,

where is nothing but n(x,/pn,,%,,).

ie. f(x,)= n(’fz/l}zszzz)

1 1 o
- (27) 0" |Z | cXp {_E(Z‘z 'Ez) X, (X, - E2)} 2> (12)
2

Using (10) & (12) in (11) we get,

1
f(x /%)= ! Tl EE 22(X "2)]2112[( 1) 2,55 (3 -1,)]
417%,

q/Z‘ ‘
ST
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2>(13)
which is the conditional p.d.f. of X, given that X, =x,.
From (13), itis clear that the density f(x,/X,) is clearly a g-variate normal density with
mean,
B(X, /X, =%,)=p, +Z,X5(X, -11,)
=v(Xx,) ,say -2 (14)
and the variances matrix,
var(x, /X, =x%,)=X%,,, =%, - X, %, > (15)
From (14)&(15) we may observe that the conditional mean of X, is simply a linear function
of x, and the conditional co-variance of X, does not depend on x, at all.

Problem:

Let X has a trivariate normal distribution with £(X) = 0and variance-covariance matrix

172 -1/2 1/2
X=|-1/2 1 -1/2 .
/2 -1/2 1

Find the conditional distribution of X, given X, =x, and X, =x; .

The above result may be put in the following theorem:-

Let the components of X be divided in to two groups composing the sub vectors
X, & X, . Suppose the mean p is similarly divided into n, & n, and suppose the co-variance
matrix X of Xis divided into X,,,X,, =X,,,X,, the co-variance matrices of X, of X, & X,
, and of X, respectively. Then if the distribution of X is normal, the conditional distribution
of X, is given X, =X, is normal with mean p, +X,,X;, (x, -,) and
co-variance matrix X, -X, X} % .

NOTE:-
The above theorem may simply be asked as follows.If X|,X,,..., X, have a joint

normal distribution, then the conditional distribution of a subset of r.v’s given that the
remaining r.v’s is also having normal distribution.
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2.4 SUMMARY:

The Multivariate Normal Distribution possesses elegant and powerful properties
regarding marginal and conditional distributions. Marginal distributions of an MVN random
vector are themselves multivariate normal, and conditional distributions retain normality with
easily interpretable mean and covariance structures. These results greatly simplify
multivariate modeling and inference and are central to many multivariate statistical methods.

Marginal and conditional distributions are key concepts in multivariate analysis that
allow the study of complex joint distributions in a simplified and meaningful way. Marginal
distributions focus on subsets of variables independently of others, while conditional
distributions examine variable behavior under given conditions. Together, they provide a
comprehensive understanding of dependence, prediction, and inference in multivariate
statistical models.

2.5 SELF-ASSESSMENT QUESTIONS:

1. What is meant by the marginal distribution of an MVN vector?

2. Prove that the conditional distribution of a partitioned MVN vector is also normal and
derive its mean vector and covariance matrix.

3. Let xbea p - variate normal. Obtain the marginal and conditional distributions of x.

111
4. Let X~N, (y, Z) with ,u:[Z -3 1] and 2 =|13 2 |. Obtain the conditional
122
distribution of X, given that X, =x, and X, =x,
5. Show that the marginal distribution of any subset of variables from an MVN vector is

also normal.
6. What is a conditional distribution? How does it differ from a marginal distribution?

2.6 SUGGESTED READINGS:

1. Anderson, T. W. (2003). An Introduction to Multivariate Statistical Analysis. Wiley. (A
classic and comprehensive reference on MVN distribution and multivariate inference.)

2. Johnson, R. A. & Wichern, D. W. (2007). Applied Multivariate Statistical Analysis.
Pearson. (Excellent for applied understanding and properties of MVN.)

3. Mardia, K. V., Kent, J. T., & Bibby, J. M. (1979). Multivariate Analysis. Academic
Press. (Foundational theory, properties, and proofs of MVN results)

4. Seber, G. A. F. (1984). Multivariate Observations. Wiley. (Strong theoretical treatment

of multivariate distributions.)

Rencher, A. C., Methods of Multivariate Analysis

6. Bilodeau, M. & Brenner, D. (1999). Theory of Multivariate Statistics. Springer.
(Accessible theoretical treatment.)

“
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LESSON -3
CHARACTERISTIC FUNCTION OF MVN

DISTRIBUTION

Objectives:

¢ Define the characteristic function of a random variable and a random vector.
¢ Derive the characteristic function of the MVN distribution.
¢ Use the characteristic function to derive key properties of the MVN distribution.

STRUCTURE:

3.1 Introduction

3.2 Definition of Characteristic Function

3.3 Characteristic Function of the MVN Distribution

3.4 Some more properties of MVN Distribution based on the characteristic function
3.5 Summary

3.6 Self Assessment Questions

3.7 Suggested Reading

3.1 INTRODUCTION:

The characteristic function is an important tool in probability theory and statistical
inference. It uniquely determines the distribution of a random variable or random vector and is
especially useful in multivariate analysis. In this unit, the concept of the characteristic
function is introduced and applied to the Multivariate Normal (MVN) distribution.

3.2 DEFINITION OF CHARACTERISTIC FUNCTION:

The characteristic function is a mathematical function that completely defines the
probability distribution of a random variable (or random vector). It is a unique transformation,
similar to a Fourier transform, that always exists for any real-valued random variable, which
is a key advantage over the moment-generating function which may not exist for some
distributions (e.g., the Cauchy distribution).

For a random vector X, its characteristic function, denoted by ¢ (t) , 1s defined as the
expected value of a complex exponential function:
where (z'2 = —1) , tis a vector of real numbers, and the prime notation denotes the transpose.

The characteristic function of a random vector X is

b (0 = ECEX)

defined for every real vector t.
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RESULT:-
If the components of a random vector X are independently distributed,

Then,

)4

iy tX,
it'’X ,Z:" !
E(e~~)=E|e-

)= 11 )

j=1
3.3 CHARACTERISTIC FUNCTION OF THE MVN DISTRIBUTION:

The multivariate normal (MVN) distribution is a generalization of the one-dimensional
normal distribution to multiple dimensions. A random vector X is said to follow an MVN
distribution with mean vector g and covariance matrix (denoted as X~(u,X)) if its

characteristic function is given by:
-caltu-rz]

This specific functional form is a defining property of the multivariate normal
distribution and is frequently used to derive other properties, such as the distributions of linear

combinations of MVN variables.

THEOREM 1:-
The characteristic function of X which is distributed according to

1
ex.  ith-tEt
N s go=B )= " 2

for every real vector t.

PROOF:-
We have given X~ N (p,X) .

Since, £ and hence X' is symmetric and positive definite matrix there exists a non-singular

matrix C such that
cr'c=1 > (1)

X' =(CC)" orZ=CC > (l.a)

we have the p.d.f. of X is
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1 e
o 1 -—5(3-9)2 l(z-g) 5@
X)= e
(2ﬂ)p/2 |Z|1/2
Let us make use of the linear transformation,
X-p=CY (C is defined as in (1)) 2> (3)
Then the p.d.f. of the new random vector Y is
| Lyezley
g(Y)= e <~ Iy >#®
(2ﬁ)p/2|2|1/2 ~

where J(y) is the jacobian transformation and is given by

o

=mod|C| (
oy

oCy +
J()Nf):mod x_M E:CJ

4 %

~mod|x/*  (from 1)/ =|CC]|=|cf)

1/2

=[=" (~[2>0)

Therefore (4) becomes from (1),

1,
1 Yy
gY)=——r7e =n(y/0,1,)
@)
ie. Y~N,(0,1,).
The characteristic function of Y is
)4
N
vy ZJE Y
puy=E(e )=Ee
p luJYj , .
=[] E|e (. Y; s are independent )
Jj=1
J—,
= He 2 ( . the characteristic function of the standard
j=1
12 1 2
—— u . —_——
2Z J i

normal variate Y; is e 2 )
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N | —
=
=

> )

Il
®

Now,

o0 =B %) = p YY) (from (3))

1.€.

s = EC =g )

tn (i
—e” EE(elgy) (where u=C't)
1 u'u
ty —=u'u
= el~ l~le 2 (from (5))
’ 1 ! !
itn——t'CC't
2 (-u'=£C)
I 1 '
itp——t' Tt
=e 2 (from 1.a)

Hence the proof.

3.4 SOME MORE PROPERTIES OF THE MVN DISTRIBUTION
BASED ON THE CHARACTERISTIC FUNCTION:

THEOREM 2:-
If every linear combination of the components of a vector X is normally

distributed ,then X is normally distributed .

PROOF:-
Suppose X is a random vector of p random variables with mean vector p and co-

variance matrix X.
Let us consider an arbitrary linear combination of X viz...¢’X , where ¢'=(c,c,,...,c,).

We have given, ¢'X is normal variate.

We have,
E(CX) =cE(X)

=c'p

V(e'X) = V(c'X)
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=¢'V(X)e
=c'Xc (variance)
If may be noted g';}&g'):g are scalars and they are respectively the mean & variances of the
univariate random variables ¢’X. We have given that ¢’X ~ N(¢'p,¢'2¢).
Let Y =c¢'X and
from the univariate normal distribution theory, the characteristic function of Y is given by
w(H=E@E")

iE(Y) -~ £2V(1)
e 2

1
itc'p—~12¢'Ee
=e - 2
If we write t=1 then, y/(¢) becomes

. 1 i
iCp——cXe
pe)=e ~ 2 where, X ~ N(p,X)

which is the characteristic function of a multivariate random vector X whose mean vector is p &

variance-covariance matrix is of X .

But the mean & variance-covarince matrix of X respectively same as p& X and therefore,
X~N P(H’z)' Hence the proof.

THEOREM 3:-

If X~N,(n,2) then, ¢'X is uni-normal variate with mean ¢'X and variance ¢'>¢c.

(OR)

If X,,X,,...,X  are jointly distributed as p-variate normal then its linear combination follows

univariate normal distribution.

PROOF:-

Xl
Let X=| : |~N,(n,2)
X

p
Then its characteristic function is given by
it'’X
d(t)=E(e=7))
o 1
it ——tEt
=e = 2 > (1)
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t l.c
) t, t.c,
Letuswrite t=| . |=| .
: = tg
t, te,

Then (1) becomes ,
.0 1 r
ircp——tc Xet
dtH=¢€

itg’g—%‘@g’ig

=€
:E(eitY)

=w(t) .say 22

where Y is normal variate with mean ¢'p and variance ¢’Xc.
In other words (2) is the characteristic function /(¢) of a uni-normal variate whose mean is Q'E and
variance is ¢'X¢ .
If we consider the linear combination of the components of the normal random vector X viz.,
Y=¢X
=X, +6,X, +...+¢, X,

its mean and variance are given by

EY)=EX)=cp & V(Y)=V(X)=c'V(X)c=cZc

Thus, from the above explanation it follows that Y = Q'X follows uvi-variate normal distribution,
ie., .Y=¢X~N(c'pcZc)

Hence the proof.

3.5 SUMMARY:

e The multivariate normal distribution is one of the most important and widely used
distributions in statistics and data science due to its analytical tractability and rich
geometric and probabilistic properties.

e [ts behavior is completely determined by its mean vector and covariance matrix, making
it mathematically elegant and practically useful.

e The characteristic function offers a powerful tool for deriving and proving many results

about MVN distributions, including linear transformations and independence
properties.

e The structural properties such as marginals, conditionals, and affine transformations make

the MVN family closed under many operations commonly used in statistical inference.
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Because of these features, the MVN distribution forms the foundation of many classical
multivariate methods and modern machine-learning techniques.

3.6 SELF-ASSESSMENT QUESTIONS:

1. Derive the characteristic function of an MVN vector X ~ N, ( 7 Z).

9]

. Define the characteristic function of p-variate normal distribution.Hence find the

Cov(X, X))

. State and prove characteristic function of X which is distributed according to N(p,X) is

o R-StTt
dt)=E@E*)=e ~ 27 ~forevery real vector t.

State two important properties of characteristic functions.

. Explain the significance of the characteristic function in multivariate analysis.

3.7 SUGGESTED READINGS:

. Anderson, T. W. (2003). An Introduction to Multivariate Statistical Analysis. Wiley. (A

classic and comprehensive reference on MVN distribution and multivariate inference.)

. Johnson, R. A. & Wichern, D. W. (2007). Applied Multivariate Statistical Analysis.

Pearson. (Excellent for applied understanding and properties of MVN.)

. Mardia, K. V., Kent, J. T., & Bibby, J. M. (1979). Multivariate Analysis. Academic Press.

(Foundational theory, properties, and proofs of MVN results.)

. Bilodeau, M. & Brenner, D. (1999). Theory of Multivariate Statistics.Springer.(Accessible

theoretical treatment.).

Prof. A. Vasudeva Rao



LESSON -4
ML ESTIMATION AND SAMPLING

DISTRIBUTIONS

OBJECTIVES:

Understand the concept of random sampling from a Multivariate Normal (MVN)
distribution.

Derive and explain the sampling distribution of the sample mean vector.

Derive and interpret the sampling distribution of the sample covariance matrix.

Apply Maximum Likelihood Estimation (MLE) to estimate the mean vector and
covariance matrix of an MVN distribution.

Analyze the independence properties of the sample mean and sample covariance matrix.

STRUCTURE:

4.1 Introduction

4.1.1 Overview of multivariate normal distribution
4.1.2 Importance in statistical modeling and data analysis

4.2 Sampling from the MVN Distribution
4.3 ML Estimation of Mean Vector (p) and Dispersion Matrix (X)

4.4 Sampling Distributions of the MLE’S Ji and 2 and their Independence

4.5 Sampling Distribution of the Sample Mean Vector ()_()

4.6 Sampling Distribution of the Sample Covariance Matrix (S)

4.7 Sample Mean Vector and Sample Dispersion Matrix are Independent
4.8 Summary

4.9 Self Assessment Questions

4.10 Suggested Reading

4.1 INTRODUCTION:

Maximum likelihood estimation is a method for estimating the parameters of a
probability distribution by finding the values that make the observed data most likely,
given the model. In multivariate analysis, it is used to estimate the parameters of a
model, such as covariance matrix and mean vector.

Here is a step-by-step explanation:

1. Specify the model: Define the multivariate model, such as a multivariate normal
distribution.

2. Define the likelihood function: The likelihood function is the probability of observing
the data given the model parameters.

3. Define the log-likelihood function: The log-likelihood function is the logarithm of the
likelihood function, which is used for computational convenience.

4. Find the maximum likelihood estimates: Find the values of the model parameters that
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maximize the log-likelihood function. This is typically done using numerical
optimization methods, such as the Newton-Raphson method or gradient-based
method.

5. Estimate the model parameters: The maximum likelihood estimates are the values of
the model parameters that maximize the log-likelihood function. These estimates are
used to summarize the data and make inferences about the population.

In multivariate statistical analysis, sample data are used to make inferences about
unknown population parameters. Two of the most important sample statistics are the sample
mean vector and the sample covariance matrix, as they provide information about the central
tendency and variability of multivariate data. To use these statistics effectively in estimation
and hypothesis testing, it is necessary to understand their sampling distributions.

The sampling distribution describes the probability distribution of a statistic obtained
from repeated random samples of the same size drawn from a population. When the
underlying population follows a multivariate normal distribution, the sampling distributions
of the sample mean vector and the sample covariance matrix have well-defined and tractable
forms. The sample mean vector follows a multivariate normal distribution, while the sample
covariance matrix follows a Wishart distribution.

Knowledge of these sampling distributions forms the theoretical basis for many
multivariate inference techniques such as confidence regions for the mean vector, hypothesis
testing using Hotelling’s 77 statistic, multivariate analysis of variance (MANOVA), and
likelihood-based estimation methods. Hence, the study of sampling distributions of the
sample mean vector and covariance matrix is fundamental to multivariate statistical theory
and applications.

4.1.1 OVERVIEW OF MULTIVARIATE NORMAL DISTRIBUTION:

The multivariate normal distribution is a generalization of the one-dimensional
(univariate) normal distribution to a higher number of dimensions. A random vector X of p
dimensions is considered to be multivariate normal, denoted as X~ N, (n,2), if every linear

combination of its components is normally distributed.

It is completely characterized by two parameters: the mean vector (u), which is a
p-dimensional vector of the expected values for each variable, and the covariance matrix(X'),
a px p symmetric, positive semi-definite matrix that contains the variances of each variable

on the diagonal and the co-variances between variable pairs in the off-diagonal elements. The
contours of constant density for the MVN distribution are ellipsoids centered at p.
Key properties include:

e Any subset of variables from a MVN vector also has a MVN distribution (marginal
distributions are normal).
e Any linear combination of the components is also normally distributed.

e Zero covariance between components implies statistical independence, a property unique
to the normal distribution family.

e Conditional distributions of any subset of variables, given values of other variables, are
also multivariate normal.
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4.1.2 IMPORTANCE IN STATISTICAL MODELLING AND DATA ANALYSIS:

The MVN distribution plays a central and fundamental role in multivariate statistical
analysis, similar to the univariate normal in standard statistics. Its theoretical tractability and
desirable mathematical properties, such as being closed under affine transformations, make it
the default assumption for many classical multivariate techniques like Principal Component
Analysis, Factor Analysis, and Discriminant Analysis. It is widely used in:

e Regression modeling, especially in econometrics and psychometrics.

e Machine learning, where it is used to approximate feature distributions in classification
and Bayesian inference.

o  Finance, particularly in portfolio modeling and risk assessment (though its lack of tail
dependence can be a limitation).

e Biological and social sciences, for analyzing relationships between multiple correlated
variables, such as the classic example of father's and son's heights.

Its importance also stems from the multivariate central limit theorem, which states
that the distribution of sample means from a large variety of underlying distributions
approaches a multivariate normal distribution.

4.2 SAMPLING FROM MVN DISTRIBUTION:

Let us assume that the px/ vectors X X, ... X  represent a random sample from a

n

multivariate normal population with mean vector L and covariance matrix 2. Since

X X000 X

distributed as the joint p.d.f. of all the observations is the product of the marginal normal
densities.

e, S(XpXpenX,)=F(X)f(X,) - f(X,)
- | ., ;(z&j-g)'ﬂ’](z&j-g)
| (27) | 2F
S =n(x;/mE) |
1 - ;Zn:(z&j-g)’z‘l(xrg)

(2 np/2 n/2 € — (1
7[) | X | ¢))

When the numerical values of the observations become available, there may be substituted

~

are mutually independent (by virtue of randomization) and each has

n

for X,5X,4...9X in equation (1). The resulting expression, now considered as a function of

i and X and for a fixed set of observations X;sX,5.-+5X,, it is called as “the likelihood

function” and is denoted as L(I;la ).
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4.3 ML ESTIMATION OF MEAN VECTOR (1) AND DISPERSION MATRIX (Z):
Consider the likelihood function L£(Ms2) given in Eq. (1). i.e.

1 . . 1(’51"3)' =" (x;n)
L(n,X) = e
(E’ ) (zﬂ)np/2 |Z n/2 —-(2)

Now the maximum likelihood estimates of M and X can be obtained by maximizing
L(p,X),

In order to obtain the MLE’s of i and X ,let us consider logarithms of (2) and is given by

-np n | o
log L(, £) = — log (2) - —log x| '—Z(zi. WX (X -p)
T2 2 1e T T =G

Consider the last term of (3) and as if is a scalar we may write if as

]an’,(gj - EN(x; )
_ tr[ i(g,. S)ET(x, -g)}
=S| (xn) = (xow)
_ itr :2‘ (Jsj -E)(’Sj 'E)I:

(- trAB)=tr(BA)

!

—tr| ! j:(gj -n)(x;-n] _—

Now consider

Z(X -n)(x,-n)
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=3 (x,-%)(x,-%) + 2 (5-1)(3-n)

(Since the cross product terms)

Z(X -I)(F-n) =(X %) (F-n) =0

|:.'. : :gj — n§:|
J=1
and similarly

Zn:(g_g)(& -X =0
j=1

[Since tr (AB) =tr (BA)]

=1{21 {i(’fj"5)(’51'2‘),}}”{(’5'*3) =

=




‘ Multivariate Analysis 4.6 Ml Estimation And Sampling Distributions

(Since trace of scalar is scalar)

Substituting (5) in (3),we get
logL(,u,Z) _Zp 10g(27z —log‘Z ‘

1

- { Z( -x) (%, Y)}

2

—§(¥-E)' ="' (X-n) e

SO L :
Since is positive definite

From (6), we can observe that if the last term is zero then (6) becomes maximum that is

log L (Ll, Z) can be maximized with respect to p at p=X

.« The MLE of R is X and substituting the MLE of p (X ) in (6)

We get
logL(E,E) = _2p log(27r) +glog‘21‘

_i[n»{z' (Z(z( -?)(2&. -x) )}} —(7)

Now we have to maximize (7) w.r.t. X as the equation is free of p

We can prove that (7) attains its maximum value at X = )

~ 1 & L N
Where, ZZ;Z}(Z‘J.'?S)(Z(J.'X) - (8)

Thus ¥ (given by (8)) is the MLE of X .
The maximum value of the likelihood can be obtained by substituting the MLEs of p and X

respectively given by

i_—Z(X —X)(X —X

1|

l}:
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in (2) and it is given by
—n
—np/2 | & —n/2 —tr(I )
=(27) e2 7
_ (272_)—71]9/2 A |—n/2 e_np/z
_n
s | 2
= const. X
2
—const. x (generilised variance) 2

A

p

peakedness of the likelihood function and consequently is a natural measure of variability
when the parent population is multivariate normal.
NOTE:-

since generalized variance is defined as .The generalized variance determines the

1. MLEs posses an invariance property which means if 6 is the MLE of @ then /(0) is
the MLE of A(60) ,where A(6) is a function of 6 .
For Example :-

e If i MLEof p and X isthe MLE of X, then i’ 2 'flis the MLE of ' X'

- <th a - -th
o If O-g/ isthe ZJ  element of 2= and O-ij isthe ZJ  element of

2. where X is the MLE of Gij .

Where OA_ij :%i(Xik _)_(i)(Xjk _)_(j)

k=1
=COV(X,.X,).
2. From equation (6) the log-likelihood and hence the joint p.d.f depends on the whole set of

observations X7q s - « =« 5 X, only through the sample mean )5 and the sum of

—~—

squares and cross product matrix,
7z 14
> (x;-%) (’S.i ‘X) = >
J=1
We may express this fact by saying that fu (or X) and ¥ are sufficient statistics. Thus the
MLEs l} and ¥ are sufficient statistics of N oand 2.

3. The MLE of 2~ is
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Multivariate Analysis

1 n /
Z ( ’5) (~J "5)
=
Thus formula is not convenient to compute X and the following is the convenient formula

for computation

1 rn
2 = — X;X;-X X'
71 =1
Explanation:-
1 n 4
£ = 5 2 (%) (x-%)
n ‘3
1< I R e A
== XXj——> XX —— D> XX[+—> XX
n -S4 n 55 n 54 n 55
1 n
_ ’ > <’ < P
=2 %X XX — XX +XX'
Jj=l1
. r _— ==
Z‘-——n > x,;x7-XX
J7=1

4.4 SAMPLING DISTRIBUTIONS OF THE MLEs Ji & X AND THEIR

INDEPENDENCE:

Before going to obtain the sampling distribution of ft and X, let us prove the

following result which is useful in obtaining the sampling distributions of ft and X

Result: Suppose X|,....X,, are independent where X ~N (p, ). Let

C = (Ca yi )n><n be an orthogonal matrix then

=2 ., X;~ Np(v,.X)
=1

Where &0, — E <o M5 and X, 5. .., X, areindependent.

J=1
Theorem:- Let X, , ..., X be an independent random sample from /V, (u, Z) .

Then the MLE of pu  say ﬁ ( also the sample mean) is distributed according to
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N P (E’Z/ I’l) and is independent of the MLE of 2 given by
o 1
2= X, X X, X
L3 (X% -R)(X, - )

and nX is distributed as Z~u~a where Z, ~N » (Q, Z) and is Z, Z, are

a=1

independent.

Proof:- We have given a random sample Xl 5> Xn where Xa ~ Np (l~l, 2) and

is independent of X p for O # ,B .We have the MLE’s of M and 2 are respectively
given by

ﬂ:l/ni)ga:)f( and ﬁ=%Zn)(XQ-X)(&-X)' (1)
a=l1 a=1

Now there exists an #n x n orthogonal matrix B = (baﬂ ) with the last row i.e.
b,, =1/~n \v @ (1.a)
z 1 , o o o ’ Z

Let us define a new random sample ~n from the given random sample

Xl 5> Xn using the orthogonal transformation from the orthogonal matrix B .

Thus

Xﬁ for X = 19 29 e, N -—(2)

1
; /n B [The last row of B isas given in (1.a) ]

z, =\nX [From (1)] —@3)

’_
aga_ le Za]~1

[ Using (2) ]



Multivariate Analysis 4.10 Ml Estimation And Sampling Distributions

333 b XX

a=l1 1 1
n n n n

_ 2 ’ ’
T baiXiXi + baibanin

i=j=1 o=l i#=j=1 a=1

n n n n
_ ’ 2 ’
_ Z XiXi bai + Xin Z baibaj

i=1 a=1 i#j=1 a=1

n

=>» XX

a=1 e —®@

[°.° B is the orthogonal matrix and as a consequence

Sty =0, S0

Now consider I’ZZ from (1) i.e.

nE = (X, -X)(X, -X)
a=1
= > XX, - XX
a=1 a=1
XY(x.-%) 0]
a=1

[
e
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’ 4
2 L ~o'~o ‘<n'<n [Using (3) and (4)]

~ O ~ O —(5)

From (3) and (5) we observe that X ( E ) is distributed according to the distribution of

N

Z n and N2 (and hence 2 )is distributed according to the distribution of
Lys--sZLyg.

V4 X

Also, since Zl 2°°°%n are obtained from Xl 5+ 5 <™y using the

Z

orthogonal linear transformation (using orthogonal matrix B )Zl >°**522n are
independently distributed as Multivariate normal distribution with common covariance

matrix ¢ 2 ’. Therefore ]:l and X are independently distributed.

Z Z

Now let us obtain the mean vectorof <12°°°2“<n
From (3)

E(z,)=nE(X)
Z%%(E(Xl_k},v{z_'_"""xn))
XS

[ ~ i

:\/;%ZZ:,E(XJ

(3.~ p(u2)
Thus Zn ™ NP(\/;[%Z)

o NnX ~ Np(</np, )

are independent ]

1 n
ZJ;;Z/FJZH
i=1
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o 2
i e. XNNP R, —

1.

n
From (2), we have
n
= .o '
9 (ZG ) ; b“ﬂE (XB ) [ ° XB S are independent ]
£=1

|
3
Q@‘
H
&

Thus each of Zl 5o %n-l are distributed as Np (Q, Z) .Therefore from (5)
n—1
- ’
N2 is distributed as ZoZy | where Z, ~ N(Q, E)
a=1

and is independent of Zg ( ﬂ A )

Thus the MLE’s of p and X are independently distributed.
Hence the proof.

4.5 SAMPLING DISTRIBUTION OF THE SAMPLE MEAN VECTOR()_() :

In multivariate normal (MVN) models, the sampling distributions for the sample mean
vector and the sample covariance matrix are the Multivariate Normal distribution and
the Wishart distribution, respectively. A key property is that these two sample statistics are

statistically independent of each other.

Suppose a random sample of m observation vectors X;,X,,e.., X, is drawn

independently from a p - dimensional multivariate normal population with mean vector u

and covariance matrix Y, denoted as X, ~ NV » (u, ) ,

—_ 1n
The sample mean vector is defined as X = ; ; X;

We have
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E(X)=—(E(X,)+ E(X)++-+ E(X,))

np

_— =l“l‘
71 —~

Thus X is an unbiased estimator of Ju . Thus sample mean is an unbiased estimator of the

population mean vector U .

The sampling distribution of the sample mean vector ()_() is also a multivariate normal

distribution with:

e Mean Vector: The same mean vector as the population, £ (X) =np

e Variance-covariance Matrix: The population covariance matrix scaled by the

: . o\ |
inverse of the sample size, Var(X) =—X.
n

So, the distribution is:

S 1
n

This result holds exactly for any sample size when the population is MVN.
4.6 SAMPLING DISTRIBUTION OF THE SAMPLE COVARIANCE MATRIX (S ) :

We have from Eq. (5),
N 1 n—1
_ = ’
£(2)-LE(S e
n a=1

1

n—1

= — E(Z z' ) oz !

) z ~0~a [ * ga \) are independent]
a=1

N

Thus E is not an unbiased estimator of Z .

n 2 1 < = =\
b 5,7 = = 57 2 K - X (X, -X) =8
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no oA
(say) is an unbiased estimator of 2= [.'. E( 1 Zj = ]

1 < — — N’
Hence S =~ ——— Z X, - (Xq - X) is called the

71— 1 a=1

sample covariance matrix and is an unbiased estimator of 2 . The sampling distribution of
the scaled sample covariance matrix is the Wishart distribution, which is the multivariate
generalization of the chi-squared distribution.

Specifically, the matrix (ﬂ —1) S follows a Wishart distribution with parameters:

e Degrees of Freedom: v=n-1.
e Scale Matrix (or parameter): 2, the population covariance matrix..
This is denoted as:

(n-1)S~W,(v,X) or W, (X,n—1)
where p is the dimension of the vectors. The Wishart distribution is a distribution over
symmetric, positive-definite matrices.

4.7 SAMPLE MEAN VECTOR AND SAMPLE DISPERSION MATRIX ARE
INDEPENDENT:

Theorem:- Let X;9X;4¢.¢9X be a random sample of size » from N, (y,Z) . ThenXis
distributed according to N, ( u, >/ n) and is independent of sample covariance matrix S is given

by S=—— 3 (X, ~X)(X, -X) and (n—1)Sis distributed as > 2,7h where 7, ~ N, (0.%)

n—1a=1 o=1

andis Z,,Z,,....,L, are independent.
Proof: We have given a random sample X;sXj,ecesX, where X, ~N (H,Z) and is

independent of X, for a# f# where the sample mean of X and sample variance-covariance

— 1
matrix S respectively given by X=—3 X,
n o=1

s=— 3 (x,-%)(x,-%) . (1)

n—1a=

Now Ja nxn orthogonal matrix B = (bX Y
1

N
(%%%j ......

Let us define a new random sample Z;sZ,,...yZ, from the given random sample

)With the last row

e, b, =

X,sX,5.++5 X, using the orthogonal transformation from the orthogonal matrix B .

Thus,
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Z af’~ B for a=1,2,---,n

In particular, Z,,

ﬁM=
||
I M:

i#j=l1

{In orthogonal matrix sum of squares is one}

()+ZXX()

Z
o
=
(@)
]
=]
z.
o
(€}
=
S
;—A
~—
%)

XX'(zb2)+zXX'

2)

[The last row of B is as given in (1.A) ]

. (3)

b b XX

i"aj =~

o)

.. (4)
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From (3) and (5) we observe that X is distributed according to the distribution of Z,, and
(n—1)S is distributed according to the distribution of .

Also, since z,,Z,,...,Z  are obtained from X;5X,,...,X using the orthogonal linear
Z15Z, Z 21922 2n g g

n

transformation z,,z,,...,Z, are independently distributed as Multivariate normal distribution

with common covariance matrix are independently distributed.

Now, let us obtain the mean vector of z,,z,,...,Z,

From (3) E(gn) :\/;E(X)
:\/;%(E(X1+X2+"'+Xn))
[ X,;'s are independent]
1 & n
=«/;;;E(Xi) :Jﬁ%;g:\/ﬁ/f
(%~ Np(.2)
Thus Z, ~Np(«/;lja>3)

ie. \/;X ~ Np (\/;l;l; Z)

— p
1e. X - Np(pj,—j

n
From (2), we have

E(Za) = ZbaﬂE(X[i) [~ X;'s are independent]
B=1
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Thus each of ZjsZ,9e++9Z,_; are distributed as N (O,E).
n—1

’
Therefore from (5) (n-1)S is distributed as Z4Zy , where z, ~N(0.X)

a=1

and is independent of Zg ( B*a )

. Sample mean vector X and sample covariance matrix S respectively are independently
distributed.

4.8 SUMMARY:

This lesson focused on sampling from the multivariate normal (MVN)
distribution and the associated maximum likelithood estimation (MLE) and sampling
distributions of key sample statistics. The multivariate normal distribution was introduced
as a fundamental model in multivariate analysis, characterized completely by its mean
vector and variance—covariance matrix.

A random sample drawn from an MVN population was considered, and the
behaviour of important sample statistics was examined. The sample mean vector was
shown to follow a multivariate normal distribution with the same mean vector and a
scaled covariance matrix. The sample covariance matrix was shown to follow the Wishart
distribution, which serves as the multivariate analogue of the chi-square distribution.

These sampling distributions form the theoretical basis for multivariate inference.
Maximum Likelihood Estimation was applied to estimate the unknown parameters of the
MVN distribution. The MLE of the mean vector was obtained as the sample mean vector,
while the MLE of the variance-covariance matrix was derived as a scaled version of the
sample dispersion matrix. The distinction between the MLE and the unbiased estimator of
the covariance matrix was highlighted.

A key and unique result of multivariate normal theory-that the sample mean
vector and the sample covariance matrix are statistically independent-was also



‘ Multivariate Analysis 4.18 Ml Estimation And Sampling Distributions

4.9

1.

kW

* N

10.

established. This property greatly simplifies the development of multivariate test statistics
and confidence regions.

Overall, understanding sampling and estimation under the multivariate normal
framework is essential for effective statistical modelling, inference, and data analysis
involving multiple correlated variables.

SELF-ASSESSMENT QUESTIONS:

Derive the MLEs of the mean vector, ¢ and the variance-covariance matrix , ¥ based
on a random sample of size n draw from the normal population N, (4,%) .

Obtain the maximum likelihood estimates of the mean vector and the covariance matrix
ina p - variate normal.

Describe the method of sampling from a multivariate normal distribution.

Derive the MLEs of the mean vector and covariance matrix for an MVN distribution.
What are the sampling distributions of the sample mean and sample covariance matrix?
In the p -variate normal case, show that mean vector and the sample variance- covariance

matrix are independently distributed.

Derive Sample mean vector for Multivariate normal distribution.

Find the covariance matrix of the multivariate normal distribution which has the
quadratic form 2x; +x; +4x; —x,x, —2X,X, .

Derive the Samping distribution of Sample Variance-Covariance Matrix.

Let X,,X,......X, be a random sample of size n from N, ( y7A Z) . If X denotes the sample

and S denote the sample covariance matrix. Then determine the distribution of X and

(n—l)S.

4.10 SUGGESTED READINGS:

NowvhEwWw

Anderson, T.W.(2000). An Introduction to Multivariate Statistical Analysis, 3rd Edition,
Wiley Eastern.

Johnson, A. and Wichern, D.W.(2001). Applied Multivariate Statistical Analysis, Prentice
Hall and International.

Mardia, Kent & Bibby. Multivariate Analysis

Kshirsagar, A.M. Multivariate Analysis

Brenner, D., Bilodeau, M. (1999). Theory of Multivariate Statistics. Germany: Springer.
Giri Narayan C. (1995). Multivariate Statistical Analysis.

Tong, Y. L. (1990). The Multivariate Normal Distribution.

Dr. U. Ramkiran



LESSON-5
WISHART’s DISTRIBUTION

OBJECTIVES:

% Understanding the role of Wishart distribution
Explain the importance of the Wishart distribution as the sampling distribution of the
sample covariance matrix in multivariate normal populations.

s Define the Wishart distribution formally
State the definition, parameters, and notation of the Wishart distribution and relate it to
the chi-square distribution.

% Understanding connections with multivariate normal theory
Explain how the Wishart distribution arises from multivariate normal random vectors and
its role in multivariate inference.

% Understanding the properties of Wishart distribution
Build the necessary theoretical background for further study in multivariate hypothesis
testing and estimation.

STRUCTURE

5.1 Introduction

5.2 Definition of Wishart Distribution

5.3 Some Properties of the Wishart Distribution
5.4 Importance of Wishart Distribution

5.5 Summary

5.6 Self Assessment Questions

5.7 Suggested Reading

5.1 INTRODUCTION:

The Wishart distribution is a probability distribution used in statistics and probability
theory to describe the behaviour of a sample covariance matrix or a sample correlation
matrix. It is named after John Wishart, who first introduced it in 1928.

Given a set of p-dimensional multivariate normal random vectors, the Wishart
distribution describes the probability distribution of the sample covariance matrix, which is a
pxp matrix. The distribution is characterized by two parameters: the degrees of freedom (n)
and the scale matrix ().

Multivariate inference deals with statistical procedures for drawing conclusions about
population parameters when observations are in the form of vectors rather than single
measurements. Unlike univariate inference, multivariate inference accounts for the
interrelationships among variables.

The Wishart distribution has several important applications in statistics and data analysis,
including:
(1) Covariance Matrix Estimation

(i1) Multivariate Analysis of Variance (MANOVA)
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(ii1) Principal Component Analysis (PCA)
(iv) Factor Analysis
(v) Bayesian Analysis
The Wishart distribution is a generalization of the Chi-Squared distribution and is

closely related to other distributions, such as the multivariate gamma distribution and the
inverse Wishart distribution.

5.2 DEFINITION OF WISHART DISTRIBUTION:

From Lesson 4, we know that the sample mean ( X ) and the sample covariance matrix

(S Pra— E (X, - (X X) are independently

distributed. Also it may be seen that

=-~(e3)

S = Z~a~a , where ~a N (O 2)

77 — l
2—1
14
Z,Z

ie. (n-1)S is distributed according to the distribution of o , where

a=1
Z,,.-->Z, arc independently distributed as N p (99 Z) . The matrix
—1

4
Z ~o’<~a js called *“ Wishart random matrix” and it is distributed according to

a=1

“wishart distribution” with (n-1) degrees of freedom.

And 1s denoted as ] ’ n—1 (2) , Where Z 1s the covariance matrix of Wishart random

matrix . Hence it may be noted that

n—1 . .
>=F 1 2.7, |= E Wishart random matrix
n—153" degrees of freedom

Thus (n-1)S (and hence S ) provides independent information about 2. and the distribution

os S does not depend on E . This allows us to construct a statistics for making inferences

about ';l’ as we shall see in the later lessons.

Definition of Wishart distribution:
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If 2,,2,,...,Z, are independently distributed as N, (Q, Z) Then the matrix A written

as A= Zglg{ is called as Wishart random matrix and its distribution is called as Wishart
i=1

distribution with ‘n’ degrees of freedom and if may be denoted as A ~W, (Z), where X is

the parametric matrix of wishart distribution. The P.d.f. of wishart distribution is given by
P.D.F. Of Wishart Distribution :

The p.d.f. of A~ Wn (2)
[Aj _ |A|(n—p—1)/2 etr(AE_l)/Z

= np/2 _p(p—1)/4 n/2 2 1 .
272 e 2 | S (1 =1)

2
i=1

is given by

A is positive definite and r() is gamma function.

5.3 SOME PROPERTIES OF THE WISHART DISTRIBUTION:

Property —1:
Sum Property: The sum of independent Wishart matrices with the same covariance

matrix is also Wishart.

> If Al is distributed as =~ " 'ml (2) independently of A2 , which is

ng (E) Al + A2 1s distributed as

distributed as , then

v’y my +m, (Z) . That is the degrees of freedom are added.
Proof: - Since Al ~\ Vi, (Z)

A may be written as

ny

A =22,2, z, ~ Np(0,X)

, where
a=1

A

We may write

Also since 2 is independently distributed as ' ‘ m, (Z) ,
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nmy +ni,

A,= D z,z, ~ Np(0.X)

, where ~(l

Al and A2

and as a consequence .

Z

. . Z e o o .
Since are independent, ~1 2 > ’~my;+m, areindependent

my +m,
— — ' —~
A_A1+A2_ : ‘, Zaga “ml—l—mz (Z)
a=1
Hence the proof.

Property —2:

> If A - Wm (Z),then CAC’ - Wm (CEC’)
A=W, (X)

Proof:-Given

3

CAC':WmZm:cZ 'C' = Z~a~a

Where CZ Np (Q, CZC’)
‘E(¥a)=CE(za)=0

~

[

V(¥a) = V(Cga) - CZC’ and ¥a is normal random

vector]
CAC -~ W, (CZ=C)

Hence the proof.
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5.4 IMPORTANCE OF WISHART DISTRIBUTION

Sampling Distribution: Models the distribution of sample covariance matrices from
multivariate normal data, essential for understanding data variability.

Bayesian Statistics: Acts as a conjugate prior for the inverse of the covariance matrix
(precision matrix), simplifying Bayesian computations.

Multivariate Inference: Underpins likelihood-ratio tests and statistics like Hotelling's T2,
used for multivariate mean comparisons.

Eigenvalue Analysis: Its eigenvalues reveal insights into data dimensionality and structure,
used in random matrix theory and analyzing functional brain networks.

Applications: Found in wireless communication (MIMO channels), finance, and medical
imaging (Diffusion Tensor Imaging).

5.5 SUMMARY:

The Wishart distribution provides the theoretical foundation for statistical inference
involving covariance matrices, particularly when dealing with data sampled from a
multivariate normal population. Its properties, such as additivity and the ability to model
positive definite matrices, make it an efficient and mathematically convenient tool for the
analysis of variance-covariance structures in high-dimensional data.

Its primary use is in modeling sample covariance matrices and serving as a key
component in more complex Bayesian models, such as the Normal-Wishart conjugate prior
for vector autoregression models. The development of related models, such as the Wishart
Autoregressive (WAR) processes, demonstrates its continued relevance in modern fields like
quantitative finance and signal processing for modeling time-varying volatility.

5.6 SELF-ASSESSMENT QUESTIONS:

1. Define the Wishart distribution. State and prove the additive property of Wishart
distribution.

2. Let A follows Wishers distribution W, (1, %) what is the distribution of W, (n,X).

. State the conditions under which a random matrix follows a Wishart distribution. What is the
relationship between the Wishart distribution and the multivariate normal distribution?

. Explain the importance of the Wishart distribution in multivariate analysis.

. Show that the Wishart distribution generalizes the chi-square distribution.

. State and explain the reproductive property of the Wishart distribution.

. Derive the marginal distribution of a principal submatrix of a Wishart matrix.

. Explain the conditional distribution of partitioned Wishart matrices.

. Discuss the role of Wishart distribution in multivariate hypothesis testing.

(O8]

O 0 3 O\ L A

5.7 SUGGESTED READINGS:

1. Anderson, T.W.(2000). An Introduction to Multivariate Statistical Analysis, 3rd Edition,
Wiley Eastern.

2. Johnson, A. and Wichern, D.W.(2001). Applied Multivariate Statistical Analysis, Prentice
Hall and International.


https://www.google.com/search?q=Hotelling%27s+T%C2%B2&sca_esv=c45750cdfde14b5c&sxsrf=AE3TifMOs0ntzcMmmQUXc0AwcfvdCjY5Mg%3A1767739237072&ei=ZY9dadqWBMmgseMPqYG4qQI&ved=2ahUKEwjmq7ai_veRAxXQT2wGHYvBBe4QgK4QegQIBRAD&uact=5&oq=Importance+of+wishart+distribution+and+its+properties&gs_lp=Egxnd3Mtd2l6LXNlcnAiNUltcG9ydGFuY2Ugb2Ygd2lzaGFydCBkaXN0cmlidXRpb24gYW5kIGl0cyBwcm9wZXJ0aWVzMggQABiABBiiBDIFEAAY7wUyBRAAGO8FSOxKUNoWWOVCcAJ4AZABAJgBnAKgAfwVqgEFMC45LjW4AQPIAQD4AQGYAg2gArYSwgIHECMYsAMYJ8ICChAAGLADGNYEGEfCAgcQIxiwAhgnwgIIEAAYogQYiQWYAwCIBgGQBgmSBwUyLjQuN6AH4EiyBwUwLjQuN7gHjBLCBwUyLTQuOcgHgQGACAA&sclient=gws-wiz-serp&mstk=AUtExfAHzwgYv4hvShgH5LjgWnbHqoOtkHGxrvTqamTp4-h-XOfEeokMXPn5Z5B7uI4T_oEOCV9ZheKh6OOdORzMXbehBGK0oLu-KA6JAJjMmYAsynOloPNh1bTeDcZmY0GBCj0stBlm-p9WrsQSxt11B1DSpXgS4g1eyp2Qd3YB8v-z0I6dwjUHAb61Z_Dxd55M-o1KJKTsEpiZFN8rRPpeXQ3SlusWFsAPSi7AAPUSKut98hos7yYxPEhVSYxigM6erRV4KLcWetdTTkwGZwZA2BbP&csui=3
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LESSON-6
HOTELLING’S T?> STATISTIC AND ITS

APPLICATIONS

OBJECTIVES:

After completing this lesson, students will be able to:

R/
A X4

R/
A X4

X/
°

Understand the inferences about mean vector(s) of a MVN distribution(s) and the need
for multivariate testing when multiple correlated variables are involved.

Define and derive Hotelling’s T? statistic and explain its role as the multivariate analogue
of Student’s #-test.

State and interpret the assumptions underlying Hotelling’s T? test and assess their
importance in practical applications.

Perform statistical inference on population mean vectors, including one-sample and two-
sample Hotelling’s T2 problems.

Develop appropriate test statistics for testing hypotheses about mean vectors when the
population covariance matrix is known and unknown.

Understand the distribution of Hotelling’s T? and its transformation to the F-distribution
for hypothesis testing.

Derive Hotelling’s T? as a Likelihood Ratio Test (LRT) under multivariate normality
assumptions.

Understand and apply the invariance property of Hotelling’s T? statistic under linear
transformations.

STRUCTURE:

6.1 Introduction

6.2 Inferences About Mean Vector(s)

6.3 Developing Test Statistics when X is known
6.4 Hotelling’s T? Statistic

6.4.1 Assumptions of Hotelling’s T?

6.4.2 Definition of Hotelling’s T?- statistic (distribution)

6.5 Deriving Hotelling’s T?2-Statistic as the Likelihood Ratio Test of Hy: p =y,

6.6 Invariance Property of Hotelling’s T?

6.7 Applications of Hotelling’s T2 _ statistic

6.7.1 For testing the significance of one sample mean vector.
6.7.2 A Two Sample Problem when the covariance matrices are equal but
unknown

6.7.3 The Two Sample Problem when the covariance matrices are not equal

6.8 Distribution of Hotelling’s T2
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6.9 Summary
6.10 Self Assessment Questions

6.11 Suggested Readings

6.1 INTRODUCTION:

In many practical situations, researchers are interested in comparing groups or testing
hypotheses involving several related response variables simultaneously. Performing separate
univariate t-tests for each variable ignores the correlations among the variables and leads to
an increased risk of Type I error. To address this limitation, Hotelling introduced the
T? statistic, which serves as the multivariate extension of Student’s t-test.

Hotelling’s T2 statistic is designed to test hypotheses about mean vectors of
multivariate normal populations. It provides a single test that jointly considers all variables
and incorporates their covariance structure, thereby offering a more powerful and informative
assessment of group differences than separate univariate tests.

The statistic plays a central role in multivariate inference and forms the theoretical
foundation for several important techniques, including Multivariate Analysis of Variance
(MANOVA). In particular, the two-sample Hotelling’s T? test is equivalent to a one-way
MANOVA with two groups.

Hotelling’s T? has wide applicability in fields such as medicine, engineering,
psychology, education, economics, and quality control, where outcomes are inherently
multivariate. By accounting for inter-relationships among variables, it enables researchers to
draw valid and meaningful conclusions from complex multivariate data.

Thus, Hotelling’s T? statistic is a fundamental and powerful tool in multivariate
analysis, providing a coherent framework for hypothesis testing involving multiple correlated
variables.

6.2 INFERENCES ABOUT MEAN VECTOR (S): ONE SAMPLE PROBLEM:

Suppose X,,X,,....,X, is a random sample from a multivariate normal

population. Now, our statistical problem is whether the given sample has come from
the multivariate normal population, whose mean vector is given by p=p,. In other

words, we have to test

H, :

=

vs H, :p=p,

1
n -

By
based on the given random sample X,,X,,....,X

TWO SAMPLE PROBLEM:

Suppose we have two different samples from two different multivariate
normal populations Np(p(”,Z) and Np(pfz),Z) with common variance-covariance
matrix X . Now, our statistical problem is whether the two normal populations have the

same mean vector or not. In other words, our problem is equivalent to test the
hypothesis
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2 2

vs H, :p®=p

Hy: p® =p
based on the given two samples.

For developing the test statistics in the above two problems, we have to
consider whether the common covariance matrix X is known or not. First, let us
develop the test statistics for the above one-sample case as well as two-sample case
assuming the population variance-covariance matrix X is known.

6.3 TEST STATISTICS WHEN X IS KNOWN :

One-Sample problem:
Before discussing one-sample problem, let us prove the following important
result.

Result 1: If a p-component vector Y ~ N_(0,X), where Z is non- singular
(positive definite), then

Y'Y~ %, —>(1)
where Xf) is Chi-square distribution with p d.f.
Solution: We have given Y ~ N_(0,X).
Since, £ is p.d.f 3 a non-singular matrix C such that,

CxC =1

= z=C'1(C) =(CC) —(2)

Let us define the linear transformation,
7=CY d®)
Then, E(Z) = CE(Y) =0
V(Z)=V(CY)=CV(Y)C'= CXZEC' =1 (from(2))

Since the transformation is linear,
Z~ N, 0,0 ie. Z,Z,,..,Z,, the individual components of Z are distributed
as N(0,1).
Further, since the covariances are zeros, Z,,Z,,..., Z, are independent which follows

from the normality of the components.
27 =ZAZA............. +Zo ~ %y
= Y'CCY ~ %, ( from (3))

= Y'Y ~ y; (from (2)
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Hence the result (1) .
Result 2:

If X,,X,,....X, is a random sample of size n drawn from a multivariate

normal population with known variance-covariance matrix X, then obtain the test

statistic for testing
H, : H=p, Vs H, : B~ Ly

and the critical region of size ‘0’ as well as the confidence region for | of

confidence 1- Q.

Solution: We have given the random sample X,X,,...,X, from N (n,X), where
Y is known .Now, we know that, the sample mean, )_5 ~N, (E,Z/n).
Define the random vector, Y=n (X- 1) —(4)
With E(Y) = vn EX-p) =n (p-p)=0.
MY)=V(n (X-p))=n N(X) = n¥n = x.

Thus, the mean vector of Y is 0 and covariance matrix is X.

Further, since the transformation in (4) is linear,
Y - Np (Q’ 2)

Now, from the above Result 1, it immediately follows

2

YEY ~
= I E-pz'&-pvh ~ g (from (4))
= n(X-w X~ %

Thus, the test statistic for H, :p=p, 1s given by
n (X-p) T (X-p,) —(5)
which follows 7’ distribution with p d.f.
2 2 2 —
Let x,(a) be the number such that Pr{ X = %, () }—a.
Thus, Pri{nX-p,) Z'X-p,) 2 x(0) } =«

and to test Hy: pn=p, (given ), we use
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n(X-p,) &' X-p,) = % (0) —(6)
as critical region.

Similarly, we use the inequality,
X-p') E' (X-p) < xo(@) —(7)
for obtaining the confidence region for [ (the set of all p satisfying (7)) with

confidence 1-a.
Hence the result.

Two Sample Problem :-

Result 3:
Suppose we have a sample X, XP. ... ,Z(S]) from N, (n®,X)and another
sample X, X9 ............ , X from N, (n?,X), where ¥ is known . Now, under

the null hypothesis

0

H,: p® =L‘(2)

My I:(X(l) _X® )' ¥l (X(l) _)—(a))} ~ 2
-4 X -2 P>

n,+n,

where, X(I)Zmean of the random sample X{",X{,...cccue... ,)~(f,1l)

and X?=mean of the random sample X?,X%,........... X
Solution:

From the given hypothesis, we have

Xm ~Np(lj(l)’2/”1) & X® ~Np(l}(2)»2/”z) (1)
Now define, Y = X®-X? —>(2)
with mean vector, E(Y) = p'-p® —(3)

and variance- covariance matrix,
V(Y) = V(X¥-X?)
= V(XD)+V(X?)-Cov(X?,X?) - Cov(X?,X?)
n, n, n, n,

(since the two samples are independent and as a consequence the covariance
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matrices Co V():((l) , ):((2)) =0&Co V(X(z) , ):((1)) =0

Since the transformation used in (2) is linear, we have

¥ ~ Np [u(l) - u(2)9 b (L%-L))
-7 n, 1,

= ¥_(u(1) _u(Z)) _~ Np [Q’ Y EL+LJJ

n, n,

Now, from the above theorem (1), it immediately follows

PRI NP

But, under the null hypothesis, H;: p

(Xu)_ga))' {Z [LJFLJ } ():(U)_}:((Z)) ~ Xﬁ (from(2))

n, m

() (5

Hence the proof.

6.4 HOTELLING’S T? STATISTIC:

The Hotelling’s T? was develop by Harold Hotelling (1895-1973) to extend the
univariate t-test with one dependent variable to a multivariate t-test with two or more
dependent variables (Hotelling, 1931).

Hotelling's T2 test is indeed an extension of the univariate t-test to analyze data with
multiple response variables. It is commonly used in multivariate analysis to compare means
across groups or to test hypotheses about the mean vector of multivariate data. The power of
Hotelling's T tests for one-group and two-group designs can be calculated based on sample
sizes, alpha level, effect size, and the variance-covariance structure of the data. Options are
provided to specify these parameters and solve for required sample sizes.

6.4.1 ASSUMPTIONS OF HOTELLING’S T2:

The following assumptions are made when using Hotelling’s T? to analyze one or two
samples of data:

(1) Multivariate Normality: The data should follow a multivariate normal distribution within
each group.

(i1)) Homogeneity of Covariance Matrices: The covariance matrices of the groups should be
equal (homoscedasticity).

(111) Independence: Observations within and between groups should be independent.
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6.4.2 DEFINITION OF HOTELLING’S T>- STATISTIC (DISTRIBUTION):

Suppose Yy is a p-variate random vector distributed according to Np (0,X) and let

B= z z,Z; (where each Z, ~ N (0,Z) and are independent) is a Wishart random
P

matrix and is distributed as Wishart distribution with n degrees of freedom i.e.B

~ W,_(X). Now, if y and B are independent then the quantity

Yi—1Y
o R R ¢

is called as Hotelling’s T?statistic and it distribution is called as Hotelling’s T?-
distribution with n d.f. and is denoted as 7> ~ 1 2,

Nature Of T°- statistic ( Distribution) :-

T2

We can write,
1

i(& - X) (Xl - Xi)'

T = Xopg) | Vi (X - o)

which is of the form,

multivariate | Wishart random matrix " ( multivariate

( j ( d.f j [ j

Since the multivariate normal random vector and the Wishart random matrix,
given in T? are independently distributed ( *.° X &S are independently
distributed ). Their joint distribution is the product of the marginal normal and
Wishart distributions and therefore T?-distribution can be obtained from this.

normal r.v normal r.v

6.5 DERIVING HOTELLING’S T STATISTIC AS THE
LIKELIHOOD RATIO TEST OF H,: p=p,:

There is a general principle for constructing test procedures called the
Likelihood Ratio (LR) principle method and the T’ -statistic can be derived as the LR
testof H,: p =, as explained below.

Suppose X, X,,...,X, (n > p) is given random sample from N (u,X), the

likelihood function is
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n
| -%Z (Xo-1t) =1 (xg-p1)
o=1

L) = - ()
Under the hypothesis, H,: n=Ny, the likelihood becomes,
IR ry-1
) . -20;(&-90) 2 (Xg1o)
LigoB) = > (2)

The likelihood ratio criterion is

max L(p,, X)
A = —Z ~ —>(3)
max L(p, X)
b ~

i.e., the numerator is the maximum of the likelihood function for p, X is the parameter

space restricted by the null hypothesis (m=p,) and X is positive definite and the

denominator is the maximum over the entire parameter space ( X is positive definite).

When the parameters are unrestricted the MLE’s of pand X from (1) are given by

Q

e —b%
|

X,=

=R

= =\’
XX, %) (X -X) -4
a
When p = p,, the likelihood function given by (2), minimizes at

| ,
Zo=—2(X " Bo)(X - o) —(5)
n . -
o
Substituting (4) in (1), we get (after simplification),
1

max L(p,X) = —7 e ™2 — (6)
t ~ (2n)np/2 ‘ZQ‘
Similarly, substituting (5) in (2), we get
— 1 -np/2
max L(p,,2) = e —(7)

2" ‘ﬁo‘n/z

Substituting (6) & (7) in (3),we get,
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n n/2
EQ
A==
Z0
£, Z (X, ~ D)X, - X)
= A== — (7a)
p '
0 Z(Z‘u _HO)(Z‘,Q _EO)
a=1
= XZ/n — ‘A‘
At n (X-py) -1y
Where A= > (X, —X)(X, — X)’ —(8)
a=1

A \/;(X -1,)
Consider the matrix, B = ~
(p+D)x(p+1) \/;(i - uo)l _1

Bll B12

_B21 B22
We have, [B|=[B,,| B,, - B,,B}\B,,

= |B22| ‘Bn -B,,B;;B,,

s B = A - Vi @) (DR )

~|A+nE-p) G-y,
A
A \/H (X'Eo)
\/H (X'Eo)l -1
_ A
- |A] |1 @) AR (R - )

3 }\lZ/n _
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_ A
A] [l 4+n (R-pe) A (Z-p1y)

1
I+nX-p) A (X-1,)

Where A is as given in (8) . But we have,

s- 1A=L Sk, -0, - %)

n-1 n-14

= A=(@01S

7\‘2/n — 1
I+n(X - p,) [(0-DS]' (X - 1,)
- n : 1 ) 1+T2}(n-1) =0
1+ (X-py)' ST (X-py)
(n-1) ~ ~
where, T* =n(X - 1, YS! (x- HO) is Hotelling’s T - statistic.
Now, from (7a) & (9), we can see
T2 Z(Z‘u _HO)(Z‘Q _EO),
1+ - “—
S ) JC T S
a=l
Z(gu o EO)(Z‘Q o !’30),
= T = (n-1)| = -1
DX, ~ D)X, - %)
a=1 B
%,
= (1) | +— -1 —(10)
S

In this formula, we need not find the inverse of a matrix, where as in the

original formula we have to evaluate S~

6.6 INVARIANCE PROPERTY OF HOTELLING’S T?STATISTIC:
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Result : T’- statistic is invariant (unchanged) under changes in the units of

measurements for X of the form,
Y =CX+d, where C is non-singular —>(1)
Proof :- We have, X ~ N_ (E ,Y),
Le,EX)=p = EY)=Cp+d (from(l)) —(2)

Now, we have the T”- statistic for testing, H,: p=p, vs H,;: u#p, based on the

given sample X, X,y X, 18

T, =n(X-p,)'S; X-py) - ()
1 & N
where SX=—IZ(&-§)(§1-§) — (3a)
n-154

From (1) we cansee Y ~ Np(CpNL +d,CxC).
Now, the T°- statistic for testing,
Hy iy =py vs Hy Dy #py
where, Hy =C],~L+(~i & My, =CBO +d —4)
based on the sample Y,,Y,,...., Y, is given by
Ty =n(Y-p, ) Sy(Y-py,) —(5)

where, Y=CX+d (from (1))

] n
— 2. 0"y —(6)

S =
Y on-1 i=1
and Hy, is given by (4).

In order to show that the Hotelling’s T? is invariant under the changes in the

units of measurements, we have to show, Ty2 =T .
For that, consider Ty2 given from (5),
2 _ — I o-1 —
T =n@-m)S, q-1,)
=n(CX-Cp,)'S; (CX-Cp,)  (using(4))

ZH(X-EO)'C' S-yl C(X'Eo) —>(7)
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I 3 '
But, Sy=—2(yi-Y)(yi'Y)
n-13 -~ "
_ Ll 3 (Cx, - CD)(Cx, - CY) (using (1))
n-1 54

- L Y -9-9C
n-1 45

=CS.C (from (3a))
= S, =(C)'s;C"’
= C'SjC=§]
Using this in (7), we get
T, =n(X-p,)) 'Sy (X-n,) =T} (from (3))

2. . . . .
Thus, T* is invariant under the changes in the units of measurements.

NOTE : The above theorem may be stated as “ The Hotellings T? is invariant under
linear transformation ( or under changes in the location and scale ) of the sample .

6.7 APPLICATIONS OF HOTELLING’S T STATISTIC:

6.7.1 For testing the significance of one sample mean vectorX :

Suppose X,,X,,....X, 1S a random sample from a p-variate normal
populatioan(p,Z), where both pand X are assumed as unknown. Now, our

statistical problem is whether the given sample has come from the multivariate
normal population, whose mean vector is MW,. In other words, we want to test

the hypothesis
HO:LL=;~10 Vs H,:LH&LLO - (1),
where M, is the given mean vector.

For testing the above hypothesis, derive the test statistic.
Solution:

We have given a random sample of size n viz., X, X, ..., X, from N (p,X), where
both p and X are unknown.

Now, we know that the mean vector

X ~N, (E’E/ n) (since X is a linear function of the sample)

Define the random vector, ¥=\/;()j(-u) —(2)

Whose population mean vector and population variance-covariance matrix are
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respectively given by

E(Y)=\nE(X-py=/n(p-p)=0.

MY)=V(n (X-p))=n V(X-p)=n¥(X) =n In =3.
Thus, the mean vector of Y is Q and covariance matrix is X.

Further, since the transformation in (2) is linear, we have

Y ~N,(0,%) —>(3)
We have the sample variance-covariance matrix
— L3 XXX, X >
n-143

Now, we know that (n-1)S follows Wishart distribution with n-1 degrees freedom and
parameter X that is

(0-DS ~ W, (X) —(5)
Further, we know that the sample mean vector X and the sample variance-covariance

matrix S are independently distributed.
From (2), it immediately follows that the random vector y and the random matrix(n-1)S

distribute independently.
Now, by the definition of Hotelling’s T? distribution, the statistic

-1
n—1S
roy Uy —(6)
(n=1)
follows Hotelling’s T? distribution with n-1d.£. i.e.
2 2
r~T1.,

Substituting (2) in (6), we can see that

T =nX-p)'S"X-p) ~ T, —(7)
Now, under H, : n=p, (7) becomes
T’ =n(X-l~l0)'S'l(X-l~l0)~7f_l —(®)
I n _ _
where, =37, and -~ X DK

Thus, the formula (8) gives us the Hotelling’s T ® statistic which can be used to test (1)

and follows T,

At the given O level of significance, H, may be rejected infavour of H, if

T?> (n-p
—(—j >F (@ () T">T; . —(5)
n-10 p
Where, T, = (-Dp E,, (@ ad E_ (o) is the upper 100 " percentile

n-p
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of the F-distribution and can be obtained from the F-tables.

6.7.2 A Two Sample Problem when the covariance matrices are equal but
unknown (A Use Of Tz-statistic):

Another situation in which the T2 -statistic is used is that in which
the null hypothesis is that the mean of one normal population is equal to the mean

of the other, where the covariance matrices are assumed equal but unknown.
Suppose X", X{",.., X" is a sample from Np(p(l),Z) and
X?,XP,...,X? is a another sample (independent of the first sample ) from

@
N, (n*,X).

Now, we wish to test the null hypothesis,

H, : u(l) = u(z) or u(l) - u(z) = 0,against H, : u(l) * u(z) —(1)

~

The sample means from the hypothesis ,

1 <

X — M _ M
X0 =YX N, (0", 2/n)
1 1=
— ] &
@ - - @ _ 2)
and X . ZX N, (n®,2/n,)
Now define, Y =X - X® —(2)
with mean, E(Y)=E(X")-EX®?) = p® -p® -0

and the variance- covariance matrix,
V(Y)=V( X(l)) + V( X(z)) (*.* The two samples are independent)

1y 1y
n, n,

= [i + ij): > (4)
nl nZ

Since the transformation in (2) is linear, from (3) and (4) it follows
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¥~Np(gm_ga>,(g¢)2}
(k)
1

e, Y- (u®-p®)~ N[
"

()_(“)-}_(‘2)) _ (ll(l) (z))
ie., ~— - = ~N,(0,X) (using(2) —(5)
1.1
n, n,

The sample covariance matrix from sample 1, which is denoted by S, and is

given by
= Z(Xm X0y (XO - XY |

Similarly, the sample covariance matrix from sample 2, denoted by S, and is
given by
1 n, _ _
S,=—— (Xi(z)— X®) (ng) - X(Z))' :
TP QIR
(n,-DS,+ (n,-1)S,
n,+n, -2

Let us denote, S = — (6)

We know that (n,-1)S, and (n,-1)S, are Wishart random matrices and are
distributed as W, (%) & w,_,(X) respectively, where W (X) is Wishart
distribution with (n, —1) d.f and w,_ ,(X) is Wishart distribution with
(n, —1) d.f. both have the parametric matrix X .

By assumption, the samples are independent, so (n,-1) S, and (n,-1) S, are
also independent . Therefore from (6), (n,+n, —2)S is distributed as Wishart
distribution with n,+n, —2 d.f and with the parametric matrix X,

ie. (040, -2)S ~ w, ., (%) —(7)

Since, the sample variance-covariance matrix is independently distributed with the

sample mean vector, S, is independently distributed with X" and since the two
p 1 Y y A
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samples are independent, S, is independently distributed with }j((z) and
therefore S, is independently distributed with ):((1)— ):((2).
Similarly, S, is independently distributed with X~ X®.

(n-1)S+(m,-DS,

Therefore, S =
n,+n, -2

is independently distributed with

XO_X@

Thus, from the above explanation and from (5) & (6) and by the definition of T?

-distribution, we have

— —r — -

= (X(n_ X@)) ) (E‘(l)' H(Z)) o (X(l)- Xa)) ) (H(l)' Lj(z))
1
+

11 1
nl n2 nl n2

B S

=

- [&][@”-r)x ) S E)- ()] > ®)

n,tn,

is distributed as T? -distribution with n,+n, -2 4df.

Now, by virtue of the relation between T? and F - distribution, we have

T P .
n,+n,-2 n,+n,-2 - (p-1) ps M+ ny-2-(p-1)
. T p
Y hAn,-2  n4n,-pl P

under Hy : p® =p® ie, p -pu® =0, (8)becomes

2= | Dl (}:{“’-X‘Z))S'l (X(l)-X(Z)) )
n,+n,
+n,-2
it T* > Mprnﬁnz_p_l((x),Wherer,n1+n2_p_1((1) is table F-

n,+n,-p-1



Centre for Distance Education 6.17 Acharya Nagarjuna University

value at @ level of significance with ( p, n,+n,-p-1) d.f, then

H, : ;1(1) = ;1(2) may be rejected .

6.7.3 The Two Sample Problem when the Covariance matrices are unequal :
In the above problem, we have assumed that the covariance matrices of

both the populations are assumed as equal i.e., 2, =2, =2X.

Now, let us suppose that X, #2X, i.e., the population covariance matrices
are not equal .

In this case, no tests are available for making inferences about u(])Z },L(z) ,when

the sizes of the samples are small . However, if nl& n, are large i.e., incase of

large samples, we have the following result.

Result : Let the sample sizes be such that n,-p and n,-p are large. An
approximation 100(1- o) % confidence region for pu'"- u®is given by all

_ @
=

il satisfying ,

-1

[(X(l)' X@)) ) (E(l)' E(z))}' {i S, +ni2 S,

n,

(6-2°)- (6"-1)] < @

where, szj () is Xz-table values with p.d.f at 1000% level of significance.
Proof:- E (X"V-X®)=p"-p®
O GRS ORI CI 1
EV(XTV-XT)=V(X)+V(XT)=— Z+— X,
n
By the central limit theorem,

XO_X@ N, [M(l)- u@),iZﬁiEz) ,

~ ~

If X, &%, are known,

-1
[(X(n_g@) ) (H(l)' H@))] {l 5, +L 22}

[(X(l)' X@)) ) (E‘(l)' El(2))] - Xf,(a),

approximately, when n,& n, are large, with high probabilityS, > X, and S, - Z,.
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Consequently, the approximation holds with S, &S,, in place of X, and X,

respectively . Hence the theorem .

6.8 DISTRIBUTION OF HOTELLING’S T>STATISTIC:
Theorem :- Let ¥ ~N » (y, X)) and let A be a Wishart random matrix independently

m
distributed as 7 7 , where Z. 's are iid ~ N _(0,X) . Also let
~a'~a ~a p\=?

a=l1
T’ =mY'A'Y — (1)
T°(m-p+1) |
then , is distributed as a non-central F with
m P
p and m-p+1 d.f. and non-centrality parameter Y'Z_ly. Further, if V = Q , then
T’ (m-p+1
~Fp,m—p+] _)(2)
m P

and the distribution of 1’ 2 iscalled T 2 -distribution.

Proof :- Since Xis positive definite, there exists a non-singular C such that

CEZC' =1 sothat, =(C'C)" —(3)
Define, Y =CY and A" = CAC’ —(4)
We can see that, E(Y )=Cv =V (say)
VIY)=V(CY)=CEC'=1  @sing®) —(5)
Thus, Y ~ N, (v',D).

m
Since A is distributed as ZZ aZ’a , A* = CAC is distributed as

a=l1
CY2.2.C =Y 2.2 —(6)
-1 -1

where, Z, =CZ, ~ N ,(C0,CZC)=N,(0,1) .
Eq (1) can be written as
T’ =mY'A'Y
=mY'C'(CYy'A(O)'CY
=m(CY)'(CAC)"(CY)
=mY A"Y —(7)
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where, ¥* ~N , (0,I) and A’ s independently distributed as ZZZ Z*a' in which

a=1
Z,’s aciid~ N, (0,I).

Also, since Y and A are independently distributed, from eq. (4) , Y* and A" are also
independently distributed .

Let Q= (a)l.j )pxp is an orthogonal matrix in which first row is defined by
Y,
o, ===, j=L2,...p —>(8)
Y*,Y*

* . th *
where , Y] is J component of ¥ .

Now define , U = Qy*

B=QAQ —(9)
The i" component of U is given by
2 *
U, =2 0,7,
J=1
Y4 = £ a)l“
=JY'Y' Y o, [using (8)]
J=1
0 otherwise

(Since , €2 is orthogonal matrix)

*! *

YY

~ ~

0

Thus , 0 — (10)

T
Il

From equation (7) ,
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*

Tz
m

— ¥*IIA*IIY

~

Y'QOQA'QQY" (- Q is orthogonal)
_ (Q¥* )' (QA*Q’)_I (Q\j*) ( Q! = Qr)
= UB'U [ using (9)]
_bll p2 ... blp__ vy’

200 12 72p

bpl bp2 ceo pPP 0

=YY’ (1)
where , b'! is first diagonal element of B!
But we know that ,
1 b, b/
bll = _— , where B= =1
bu 'l)l BZZbl l31 bzz
Thus , fromeq (11),
° Y'Y
=== —(12)
m b, D
where, b;;, p by, -l~)1’B'12l~)1 :

Let us suppose that €)X is fixed (given). Then, just as we show A" s distributed as

m m

* */ * %
ZZaZa , we can show that QA Qs distributed as ZYaYa', when Ya = QZa
a=1

a=1

and YG'S are 1.1.d ~ Np (Q,I) .

Now, with little difficult , we may show that bI 120p b] ;- l)llB-zlzbl is conditionally

m-(p-1) 5
distributed as Z @, ,
a=1

where each @, is iid ~ N(0,1) .
m-(p-1) 5 5
Therefore, Z w, ~ )(m_( Py

a=l1
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More over, the conditional distribution of bl 12

bl 1.2.....

» does not dependent on €2, we have

. .- .. 2
p 18 unconditionally distributed as Kn(p-1) -

P
. * * */ * %2
Also, since 'Y ~Np(y D, Y'Y = E Yl

i=1

where , Yl* ~N (Vl* ,1) and Yl* ’s are independent .

%/ *
Thus, Y Y hasnon-central } > _distribution with non-centrality
L *2 % f
= ZV. =V V =YV C CY [from(5)]

=y X'y [from (3)]

Thus, T’ is distributed as the ratio of non-central zz and an independent central Z2 .
. p m~(p-1)

T | m-(p-1) B

Thus , (p.m-p+1) (non-central) and non-centrality parameter

m P
vIly.

~ ~

If v= 0 then, Y’Z-ly = and therefore in this case, the distribution is central .
F

(om-p+1) -the distribution of T? iscalled T -distribution with ‘m’ degrees of freedom .

6.9 SUMMARY:

Hotelling’s T? statistic is a fundamental tool in multivariate statistical analysis,
developed as a natural extension of Student’s #-test to situations involving multiple correlated
response variables. It provides a unified framework for testing hypotheses about population
mean vectors while accounting for the covariance structure among variables.

The statistic is constructed using the sample mean vector and sample covariance
matrix and, under the assumption of multivariate normality, follows a distribution that can be
transformed into an F-distribution for hypothesis testing. Hotelling’s T? can be applied in
both one-sample and two-sample problems, enabling simultaneous comparison of several
characteristics across populations.

A key theoretical feature of Hotelling’s T? is its close relationship with the
Mahalanobis distance, showing that it measures the standardized multivariate distance
between mean vectors. The statistic also possesses the important invariance property,
ensuring that results remain unchanged under linear transformations and changes of
measurement units. These properties make Hotelling’s T? a robust and reliable method for
multivariate inference.

Hotelling’s T? - statistic plays a central role in multivariate analysis by:
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e Providing an effective method for simultaneous testing of multiple means
o Preserving the overall significance level, unlike multiple univariate tests
e Serving as the theoretical foundation for MANOV A and multivariate control charts
e Being widely applicable in medicine, engineering, economics, psychology, and social
sciences.

[ ]
Despite its strengths, the method requires adherence to assumptions such as multivariate
normality and adequate sample size relative to the number of variables. When these
conditions are satisfied, Hotelling’s T? offers a powerful, elegant, and statistically sound
approach for multivariate hypothesis testing.

In conclusion, Hotelling’s T? statistic remains an indispensable tool in modern
statistical methodology, bridging theory and application in the analysis of multivariate data.

6.10 SELF ASSESSMENT QUESTIONS:

1. Define Hotelling’s T statistic. Show that Hotelling’s 7 statistic can be used to test the
equality of means of corresponding variables in two MVN populations having the same
variance-covariance matrix.

2. Explain in detail the likelihood ratio principle in multivariate testing.

Derive the invariance property of Hotelling’s T? statistic.

4. Discuss the applications of Hotelling’s T? statistic in fields such as medicine, quality
control, economics, and social sciences with suitable examples.

5. Explain the construction of confidence regions for the population mean vector using
Hotelling’s T? statistic.

6. Derive the test statistic and explain how it is used to compare two multivariate population
mean vectors.

7. Given a multivariate sample from a normal population, apply the one-sample
Hotelling’s T test to test whether the mean vector equals a specified value.

8. What is meant by the pooled covariance matrix in the two-sample T test? List any four
practical applications of Hotelling’s T? statistic.

[98)
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LESSON-7
MAHALANOBIS D?> STATISTIC AND ITS

APPLICATIONS

OBJECTIVES:

After successful completion of this unit, the students will be able to:

% Understand the concept of statistical distance in a multivariate framework and the need
for Mahalanobis D? over Euclidean distance.

% Define and derive Mahalanobis D? statistic and to know its properties.

< Know the relationship between Mahalanobis D? and Hotelling’s T? statistic.

< Apply Mahalanobis D? in hypothesis testing.

STRUCTURE:

7.1 Introduction

7.2 Definition of Mahalanobis D? Statistic (Mahalanobis squared distance)

7.3 Properties of Mahalanobis D? Statistic

7.4 Derivation of Mahalnobis D’ test statistic for two sample problem and it’s
relationship with Hotelling’s 7°.

7.5 Summary

7.6 Self Assessment Questions

7.7 Suggested Readings

7.1 INTRODUCTION:
7.2

In multivariate statistical analysis, it is often necessary to measure the distance or
dissimilarity between observations or populations described by several correlated variables.
Traditional distance measures such as the Euclidean distance treat all variables as independent
and equally scaled, making them inappropriate when variables are correlated or measured in
different units.

To overcome these limitations, Professor P. C. Mahalanobis introduced the
Mahalanobis D? statistic, a covariance-adjusted measure of distance that incorporates both
the variances and covariances of the variables. Unlike Euclidean distance, Mahalanobis D?
standardizes the data using the variance—covariance matrix, providing a meaningful measure
of separation in a multivariate setting.

The Mahalanobis D? statistic plays a central role in multivariate inference, serving as the
basis for important techniques such as Hotelling’s T? test, discriminant analysis, cluster
analysis, and multivariate outlier detection. Under the assumption of multivariate normality,
the statistic follows a chi-square distribution, which allows it to be used for hypothesis testing
and statistical decision-making.

Because of its ability to account for correlation structure and scale differences among
variables, Mahalanobis D? has wide applications in biology, medicine, quality control,
economics, psychology, and social sciences. It remains one of the most fundamental and
powerful tools in multivariate statistical analysis.
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7.3 DEFINITION OF MAHALANOBIS D? STATISTIC
(MAHALANOBIS SQUARED DISTANCE):

The Mahalanobis D? statistic, introduced by P. C. Mahalanobis, is a measure of
distance between a multivariate observation and a population (or between two populations)
that takes into account the variances and covariances among the variables.

For a p -variate random vector X with mean vector p and covariance matrix 4, the

Mabhalanobis D? statistic is defined as

D’ =(X-p) T (X-p)
Where X = observation vector, p = population mean vector, and

¥ = variance—covariance (dispersion) matrix.

For measuring the distance between two multivariate populations with mean vectors
w,and x,, the Mahalanobis distance is:

D =(m -1, ) =7 (1 -,
The Mahalanobis D? statistic is scale-invariant, accounts for correlation among
variables, and reduces to the squared Euclidean distance when the variables are uncorrelated

with equal variances. It is widely used in multivariate hypothesis testing, classification, outlier
detection, and discriminant analysis.

7.4 PROPERTIES OF MAHALANOBIS D? STATISTIC:

e Scale Invariance: The value of the value of D? does not change if the units of
measurement of the variables are changed.

e Accounts for Covariance: It considers the correlation structure of the variables, which is
a significant advantage over Euclidean distance.

e Dimensionless: It is a unitless measure of distance.

e Zero Minimum: The minimum possible value is zero, occurring when the observation.

¢ Robust to Linear Transformations:The distance remains unchanged under non-singular
linear transformations of the data.

7.5 DERIVATION OF MAHALNOBIS D’ TEST STATISTIC FOR TWO-SAMPLE

PROBLEM AND IT’S RELATIONSHIP WITH HOTELLING’S T’
STATISTIC:

Suppose 7, : N, (n,X) and 7,: N (n,,X) are two p-variate normal populations with
mean vectors p, and p, respectively. Both the populations have the common dispersion

matrix X

' '

Suppose X,;,X;;5-X;, be a random sample of size 'm' from population
nlsz(El,Z)and let X,,,Xy,eX,, be a random sample of size'n,'from population
TN, (1, X). Hypy=p, vs Hyiip #p,.

Now our problem is to test H;:p, =p, vs H,:p, #p, or to test the significance of
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the difference p, —p, or to test the separation between the two populations m, and m, is

significant based on the above given samples based on Mahalanobis D* statistic, which is as
explained below.

The Mahalanobis D’ test statistic (which is nothing but Mahalanobis squared distance
between X, and X, ) is given by

D' =(X,-%)5 (% -X%,) M
where
X, :% igw (unbiased estimator of p, )
1 g=1
X, = Ligm (unbiased estimator of p, )
2 o=1
S (n, =S, +(n, =1)S, @)
n+n,—2

is an unbiased estimator of X based on the pooled samples.

1 & _ _
S, = 1 Z(Z‘m -X)(x, - X))
—Lla=l

n

1 & _ —
Z(’Sm -X,) (X5, - X,)
n, -1 a=1

S, =

Now define, Y=X,-X, (3)
with mean, E(Y)=E(X; —X,)=p, — R, and the variance- covariance matrix,
V(Y)=V(X)+V(X,) (. The two samples are independent)
1 1 1 1
=—X+—X=|—+— X 4
n, n, o,

Thus, we have

1 1
Y~N, (El — _+_)Z]
n, n,

Y
= = =—~N (Qaz) (5)
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We know that

(,-DS,~w, (X)) & (n,-1)S,~w, (X)
Since, the samples are independent, we have (n,-1) S, and (n,-1) S, are also
independent . Therefore from (2), (n,+n, —2)S is distributed as Wishart distribution
with n,+n, —2 d.f and with the parametric matrix X,
ie. (ntn, =2)S~w, . (%) (6)
Since, S and Y =X, —X, are independently distributed, by applying the definition of

T? -distribution to the Egs. (5) & (6), we have

— —r — —

Y-(p—n,) g Y- —n,)
n, + n, n, + n,
T2 - L n,n, i i nn,

) ( o Jb{(&&):'s'l[if(&'b)] @)

n1+n2

and is distributed as T? -distribution with n,+n, — 2 d.f.

Now, under H; :p, =p, 1.e.p,—p,=0, (7)becomes

T2 | M |\yrgty ~T2,
n+n, )~ ~ b

:»( %= ](Xl %) S (@ -%) T, (FomEe ()

N (&] D’~T?. . , (FromEq. (1)) (8)

Now, by virtue of the relation between T? and F - distribution, we have

2
T _ | nn, 2 p v
n,+n,-2 n+n,-2\ n,+n n+n,-2-(p-1) > el
1 2 1 2 1 2 1 2
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n+n, |(n,+n,-2)p

2
=D ~ nn n+n.-on-1 p,ntny-p-l
) T N,-p

n+n, |(n,+n,-2)p

Thus,if D* > E oinpi(®) ©)

nn, )n+n,-p-1
where Fp’nl e p_1(0L) is table F-value at & level of significance with (p, n,+n,-p-1)

d.f., then H,:p, =p, may be rejected .

Thus, the D test statistic can be used for testing Hyp, =p, vs H,:p, #p, or equally for
testing the significance of the difference p, —p, .

If H, is rejected , we can conclude that the separation between the two populations
m, and m, is significant.

Thus, from Eq. (8), we may notice that the Hotelling’s 7° and Mahalanobis D* are closely

associated as with the following relationship between them

T :[ﬂjzf (10)

n +n,

7.6 SUMMARY:

Mahalanobis D? statistic is a fundamental measure in multivariate statistical analysis
used to quantify the distance between observations or populations when multiple correlated
variables are involved. Unlike Euclidean distance, Mahalanobis D? incorporates the variance—
covariance structure of the data, thereby adjusting for differences in scale and correlation
among variables.

The statistic is defined as a quadratic form involving the inverse of the covariance
matrix and follows a chi-square distribution under the assumption of multivariate normality.
Mahalanobis D? serves as the theoretical foundation for several important multivariate
techniques, including Hotelling’s T? test, discriminant analysis, and multivariate outlier
detection. Its invariance under linear transformations makes it a robust and reliable distance
measure in multivariate space.

Mabhalanobis D? statistic provides a powerful and meaningful way to assess similarity
or dissimilarity in multivariate data by accounting for correlation and variability among
variables. Its applications extend across diverse fields such as biology, medicine, quality
control, economics, psychology, and social sciences, where simultaneous consideration of
multiple characteristics is essential.

Despite its reliance on assumptions such as multivariate normality and a non-singular
covariance matrix, Mahalanobis D? remains an indispensable tool in modern statistical
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practice. When these assumptions are reasonably satisfied, the statistic offers accurate
inference, effective classification, and insightful interpretation of complex multivariate
datasets. Overall, Mahalanobis D? continues to play a crucial role in both theoretical
development and practical applications of multivariate statistics.

7.7 SELF-ASSESSMENT QUESTIONS:

. Define Mahalanobis D’ and explain its importance in multivariate analysis.

. Explain in detail the properties of Mahalanobis D? statistic.

. Establish the relationship between Mahalanobis D? and Hotelling’s T? statistic.

. Explain the use of Mahalanobis D? in hypothesis testing.

. Given a multivariate observation and the corresponding covariance matrix, compute the
Mahalanobis D? statistic.

. Using Mahalanobis D?, identify whether an observation is an outlier at a given level of
significance.

DN D W N =

o))

7.7 SUGGESTED READINGS:

1. Anderson, T.W.(2000). An Introduction to Multivariate Statistical Analysis, 3rd Edition,
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LESSON-8
MANOVA FOR ONE - WAY CLASSIFICATION

OBJECTIVES:

After completing this lesson, students will be able to:
% Understand the need for MANOVA
Explain why Multivariate Analysis of Variance (MANOVA) is required when multiple
correlated response variables are analyzed simultaneously.
Formulate the one-way MANOVA model
Express the one-way classification MANOV A model using matrix notation and identify
treatment and error components.
% Understand distributional assumptions
State and verify assumptions such as multivariate normality, homogeneity of covariance
matrices, and independence of observations.

X/
°e

STRUCTURE:

8.1 Introduction to MANOVA
8.1.1 Limitations of univariate ANOVA
8.1.2 Motivation for multivariate testing
8.1.3 [Examples of one-way classification with multiple responses
8.2 Comparision of Several Multivariate Population Means
8.2.1 Definition of MANOVA
8.2.2 One-Way MANOVA Model
8.3 Summary
8.4 Self Assessment Questions

8.5 Suggested Reading

8.1 INTRODUCTION TO MANOVA:

Multivariate Analysis of Variance (MANOVA) is a generalization of the univariate
Analysis of Variance (ANOVA) employed when two or more correlated response variables are
observed for each experimental unit. Unlike ANOVA, which tests for differences among group
means for a single dependent variable, MANOV A simultaneously examines differences among
the mean vectors of multiple groups.

The principal aim of MANOVA is to assess whether variations in the levels of one or
more independent (classification) variables produce statistically significant effects on a set of
dependent variables considered jointly. By incorporating all response variables into a single
analysis, MANOVA effectively accounts for the interrelationships among the variables and
provides a more comprehensive evaluation of group effects.
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MANOVA is especially appropriate for experimental and observational studies
involving multidimensional outcomes. It overcomes the limitation of inflated Type I error rates
that arise when multiple univariate ANOVA tests are conducted independently for each
response variable, by offering a single global test of significance.

In many agricultural experiments, generally the data on more than one character is
observed. One common example is grain yield and straw yield. The other characters on which
the data is generally observed are the plant height, number of green leaves, germination count,
etc. The analysis is normally done only on the grain yield and the best treatment is identified
on the basis of this character alone. The straw yield is generally not taken into account. If we
see the system as a whole, the straw yield is also important either for the cattle feed or for
mulching or manuring, etc. Therefore, while analyzing the data, the straw yield should also be
taken into consideration. Similarly, in varietal trials also the data is collected on several plant
characteristics and quality parameters. In these experimental situations also the data is
generally analyzed separately for each of the characters. The best treatment or genotype is
identified separately for each of the characters. In these situations, Multivariate Analysis of
Variance (MANOVA) can be helpful.

In the case of one-way classification, MANOVA tests the hypothesis that the mean
vectors corresponding to different levels of a single factor are equal. Owing to its ability to
handle multiple correlated responses simultaneously, MANOVA is extensively applied in
disciplines such as medicine, psychology, education, agriculture, economics, and the social
sciences.

Consequently, MANOVA constitutes a powerful and efficient statistical technique for
investigating group differences in multivariate data, yielding more meaningful and reliable
inferences than those obtained from separate univariate analyses.

8.1.1 LIMITATIONS OF UNIVARIATE ANOVA:

Univariate Analysis of Variance (ANOVA) is designed to compare group means for a
single response variable. When multiple response variables are present, applying separate
ANOVA tests to each variable leads to several problems:

o Inflated Type I error rate due to multiple testing

o Ignoring correlations among response variables

o Loss of overall group effect interpretation

o Reduced statistical power in detecting joint differences

Thus, univariate ANOVA is inadequate when responses are correlated and must be analyzed
simultaneously.

8.1.2 MOTIVATION FOR MULTIVARIATE TESTING:

Multivariate Analysis of Variance (MANOVA) extends ANOVA to situations involving two
or more dependent variables. The main motivations are:

o To test equality of mean vectors across groups

e To account for correlations among responses

e To provide a single overall test for group differences

o To increase efficiency and interpretability of results.
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8.1.3 EXAMPLES OF ONE-WAY CLASSIFICATION WITH MULTIPLE
RESPONSES:

e Agriculture: Effect of fertilizer type on yield, plant height, and leaf area
e Medicine: Effect of treatment on blood pressure, cholesterol, and heart rate
e Education: Teaching methods compared using math score, reading score, and
reasoning ability
In all cases, there is one classification factor (grouping variable) and multiple response
variables.

8.2 COMPARISION OF SEVERAL MULTIVARIATE POPULATION MEANS:

In multivariate analysis, interest often lies in comparing several population mean vectors
corresponding to different groups. MANOVA provides a formal framework for testing
whether these mean vectors are equal.

The null hypothesis is:
Hy:ip, =p,=..=p,

against the alternative that at least one mean vector differs.

This comparison is carried out using SSCP matrices and appropriate multivariate test
statistics.

8.2.1 Definition of MANOVA:

MANOVA is a statistical method for comparing means of multiple dependent
variables across different levels of one or more independent variables. Instead of comparing
univariate means, MANOVA compares vectors of group means. The fundamental idea is to
create a linear combination of the dependent variables that maximizes the differences
between the groups.

8.2.2 ONE-WAY MANOVA MODEL:
(ONE-WAY MANOVA ) MULTIVARIATE ANALYSIS OF VARIANCE :-
Suppose we have ‘g’ populations, each is distributed multivariate normal with mean

vectors El ,];12,........, tlg respectively. Let us suppose that all populations have the same

covariance matrix 2~. Thus, we have the ‘g’ populations.

Hl - Np(,'jl92)
H2 - Np(HZ9Z)

IT, ~ Np(;jg,):)

. -th . s
Now , we have a sample of size ‘72, from i’ population Hl. . Thus, we have ‘g

samples from the ‘g’ populations as follows :
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Population IT;, : X, X;seeeeees X

~ 1“1

Population IT, : X,,,X,,,eeeeees X

~ 21,

Population IT, : X, Xy seeeeees Xop,

Using the above random samples , MANOVA is used to investigate whether the
population mean vectors are same and if not , which mean components differ
significantly. Thus , the null hypothesis is

Hoipy =p, ==, — (1)

ASSUMPTIONS CONCERNING THE STRUCTURE OF THE DATA:

e Observation Independence: Each observation should be independent of one another. For
example, one student’s performance should not influence another’s. The random samples
from different populations are independent.

e Multivariate Normality: The combined dependent variables should be approximately
normally distributed for each group of the independent variable.

e All populations have a common covariance matrix 2. That is Homogeneity of Variance-
Covariance Matrices: The variance-covariance matrix of the dependent variables should
be similar for all groups. This means that the spread and relationship between variables
should be consistent across groups.

e Absence of Multicollinearity: The dependent variables should not be too highly
correlated. If two variables are very similar, it doesn’t add value to have both.

Suppose, the mean vector of I th population is written as
B =p+T, —(2)
Here, W is the overall mean vector of all population and T, is a component due to the
speciﬁc~ population, then the null hypothesis (1) can be written as
Hy:t,=1,5 e =1, =0 —(3)
The response Xij , distributed as N » ('Ll + T, ,Z) , can be expressed in the suggestive
form,

X. = pnp + T + €

ij Li Cij — (4)
overall | ( treatment | { random

mean effect error
i=12,0g & j=12,..., 1, .

where , & ~ N » (Q,E) are independent random variables. (4) is called as MANOVA

model for comparing of population mean vectors. Here L is overall mean vector and T,

-th .
represents the i"™ treatment effect with
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g
21T =0 —(5)
i=1
A vector of observations may be decomposed as suggested by model (4) . Thus,
X;i = X t X- * (x;-X;) — (6)
overall estimated
. residual
(observation) | sample | | treatment .
€.
mean p | | effect T, !
- _ -th
When X; = mean of i sample X;;, Xy 5eeeees X;
I _
X = —()51 +X, t...... + Xg) (general mean)

From (6), we may write the cross product,

(3 -%) (% -%) =((3-5)+(%-9))((% %)+ (% -9))
=(% %) (- 5) +(x %) (% -%)

!
+(Xi -X)(Xl 'X)l +(Xi _X)()Sij _Xi)

Summing the cross product over i and j , we get

ZZ(XU (le -X)' = ZZ(~1J ~1J )

i=1 j=1 i=l j=l

+ ZZ(XU -Xi)(gi ')_5),

i=1 j=1

+ ZZ(E -X)(Xij -Xi)l

i=1 j=1

+ 33 G -DE -9 NT)

i=1 j=1

n;
But, since Z ()fij - Xl) = Q Eq (7) becomes ,
j=1

PIIACHS EHS LD 3 FEHE RS S

i=l j=1 i=l j=1
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total(corrected)
= | sum of square

& cross products

g
'
+> (% -9F - %) —(8)
i=1
residual(within) treatment(between)
=| sum of squares |+ sum of squares
& cross products & cross products
That is (8) may be written as
g N
[
ZZ(Xij-X)(gij-X) =W+B —(9)

i=1 j=1

g
where, W = ZZ(&J‘ -X; )(Z‘ij - Xi)’

i=1 j=1

= (1, -1)S, + (1, -1)S, + .o (1, -1)S

. . . -th
where, S ; Is sample covariance matrix of 1 sample .

g
and B=7 n(% -9 -%)
=1

Now, we summarise the calculations leading to the test statistic in a MANOVA table .
MANOVA table for comparing population mean vectors :-

Source of Matrix of sum of Degrees of
variation squares & cross product freedom
g
Treatments B= ;ni & -¥(E; -Y) ol
g i
W= ZZ(Z‘H 'Xi)(l‘ij -X)
Residual(error) ==l n-g
Total 1
(correlated for g n ,
the mean) B+W = ZZ(Z‘H -X(x;-%)
i=l j=I

Now one of the test statistic for testing (3) involves generalized variances and is given by

__Im

10
|B+W| — 19

The quantity A is called Wilk’s lamda and related to likelihood ratio criterion. The exact

distribution of A can be derived for the special cases listed in the following table .

Distribution of Wilk’s lamda , A* -

No . of
variables

No .of
groups

Sampling distribution for
multivariate normal data
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- -
P N PN
~F .

p=2 g=2 g-1 \//T [ﬂg-l)@Zm-g-l]

i=1

p>1 g=2 P A (p’gni-p-q
- _
-p-2 "
len P20 [
* ~ F g
p VA [217,2(21%-17-2)]
p=>1 g=3 =

g
Bartlett has shown that if H o 1s true and an. =n is large,
i=l

—{n-l—(p—_kg)}ln A Z—[n-l— (p"'g)}ln |W|
2 2 B+ W]

has approximately a Xz - distribution with p(g-1) d.f. consequently.

8.3 SUMMARY:

MANOVA is an option for statistical testing of multivariate experiments. The
dependent variables are random normal. The test is more senstive than other parametrics to
violations of normality and homogeneity of variance. MANOVA tests whether independent
variables affect an abstract combination of dependent variables. For most, use MANOVA as
an omnibus test followed by post hoc comparisons of interest to control FWER. Care should
be taken in selecting the dependent variables of interest.

Multivariate Analysis of Variance (MANOVA) for one-way classification is a natural
extension of univariate ANOVA to situations where multiple correlated response variables
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are observed for each experimental unit. In this framework, observations are classified
according to a single factor, and the primary objective is to test whether the population mean
vectors corresponding to different groups are equal.

MANOVA overcomes the limitations of conducting separate univariate ANOVA tests
by jointly analyzing all response variables. It accounts for the correlation structure among the
variables and provides a single overall test of group differences, thereby controlling the
inflation of Type I error. The method is based on the partitioning of total variation into
between-groups (hypothesis) and within-groups (error) components using Sum of Squares
and Cross-Products (SSCP) matrices.

The comparison of several multivariate population means is carried out using standard
MANOVA test criteria such as Wilks’ Lambda, Pillai’s Trace, Hotelling—Lawley Trace, and
Roy’s Largest Root. Each statistic offers a different perspective on group separation, with
Pillai’s Trace being the most robust under departures from assumptions.

The validity of one-way MANOVA depends on key assumptions, including multivariate

normality, homogeneity of covariance matrices, and independence of observations. When these
assumptions are reasonably satisfied, MANOVA provides reliable and efficient inference. In
cases of assumption violations, careful interpretation and the choice of robust test statistics are
essential.

In conclusion, MANOVA for one-way classification is a powerful and comprehensive

statistical technique for comparing groups when multiple responses are involved. By integrating
information across correlated variables, it yields more meaningful and interpretable results than
separate univariate analyses and is widely applicable in disciplines such as medicine, education,
psychology, agriculture, economics, and the social sciences

8.4 SELF-ASSESSMENT QUESTIONS:

1.
2.

3.

4.

5.

Explain in detail the procedure of carrying out MANOVA of one way classification.

Discuss the multivariate analysis of variance for one-way classified data. How can we test
the equality of means of several groups using MANOVA?

An experiment was conducted to evaluate the effects of various training programs (Program
A, Program B, and Program C) on employee productivity and job satisfaction over a three
month period. The data collected for each training program, with five replications, are
shown in the Table. Perform a one- way MANOVA at 5% significance level and draw an
inference using Wilks' lambda.

Replication Program A Program B Program C
1 50 7 32 6 35 5
2 46 6 45 7 40 4
3 48 7 60 8 47 5
4 53 9 48 5 50 5
5 48 6 50 4 38 6

Explain the key difference between comparing means in ANOVA versus comparing mean
vectors in MANOVA.
Name at least three assumptions required for the proper application of MANOVA.



Centre for Distance Education 8.9 Acharya Nagarjuna University
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LESSON -9
DISCRIMINANT ANALYSIS

OBJECTIVES:

After studying this unit, you should be able to:
e To understand the concept and purpose of Expected (or average) cost of
misclassification and Total Probability of Misclassification
e To know the concept of Discriminant analysis
e To acquire knowledge about significance of Discriminant analysis
e To understand the purpose and objectives of pivotal provisions of the ECM and TPM
regions

STRUCTURE

9.1 Introduction

9.2 Discrimination and classification

9.3 Standards of good classification

9.4  Expected (or average) cost of misclassification (ECM)
9.5 Optimal total probability of misclassification (TPM)
9.6 Conclusion

9.7 Self Assessment Questions

9.8  Further Readings

9.1. INTRODUCTION

Discriminant analysis and classification are multivariate techniques concerned with
separating distinct sets of objects (or observations) and with allocating new objects
(observations) to previously defined groups. Discriminant analysis is rather exploratory in
nature. As a seperatory procedure, it is often employed on a onetime basis in order to
investigate observed differences when causal relationships are not well understood.
Classification procedure are less exploratory in the sense that they lead to well defined rules,
which can be used for assigning new objects. Classification ordinarily requires more problem
structure than discrimination. Thus, the immediate goals of discrimination and classification,
respectively, are as follows:

Goal 1: To describe either graphically (in three or fewer dimensions) or algebraically, the
differential features of objects (observations) from several known collections (populations).
We try to find “discriminants” whose numerical values are such that the collections are
separated as much as possible.

Goal 2: To sort objects (observations) into two or more labeled classes. The emphasis is on
deriving a rule that can be used to optimally assign a new object to the labeled classes.
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We shall follow convention and use the term discrimination to refer to ‘Goal 1°. This
terminology was introduced by R. A. Fisher in the first modern treatment of separatory
problems. A more descriptive term for this goal, however, is separation. We shall refer to the
second goal as classification, or allocation. A function that separates may sometimes serve as
an allocator, and, conversely, an allocator rule may suggest a discriminatory procedure. Thus,
in practice Goal 1& Goal2 frequently overlap and distinction between separation and
allocation is not clear.

The problem of classification arises when an investigator makes a number of
measurements on an individual and wishes to classify the individual into one of several
categories on the basis of these measurements. The investigator cannot identify the individual
with a category directly but must use these measurements. In many cases it can be assumed
that these are a finite number of categories or populations from which the individual may
have come and each population is characterized by a probability distribution of the
measurements. Thus, an individual is considered as a random observation from this
population. The question is: Given an individual with certain measurements, from which
population did it arise?

In some, instances, the categories are specified before hand in the sense that the
probability distributions of the measurements are completely known. In other cases, the form
of each distribution may be known, but the parameters of the distribution must be estimated
from a sample from that population .In some other cases, the form of the distribution of the
populations may not be known.

Let us give an example of a problem of discrimination and classification. Prospective
students applying for admission into college are given a battery of tests; the vector of scores
is a set of measurements x. The prospective students may be a member of one population

consisting of these students who will successfully complete college training or, rather, have
potentialities for successfully completing training, or he/she may be member of the other
population, those who will not complete the course successfully. The problem is to classify a
student applying for admission on the basis of these scores on the entrance examination.
Before that we have to describe or explore the differential scores between the two categories
of the students from the past information. Also, we have to prepare a discriminant function
that separates the two categories of students clearly as much as possible. This problem is
called discrimination.

9.2 DISCRIMINATION AND CLASSIFICATION:

To fix ideas, we list below situations where one may be interested in
(1). Separating or discriminating two classes of objects.
Or (2). Assigning a new object to one of the two classes .
Or  both (1)&(2).

It is convenient to label the classes @, & @, . The objects are ordinarily separated or
classified on the basis of measurements on, for instance, P associated random variables.
X' =(X,X,,... X ,) - The observed values of X differ to some extend from one class to the
other (of the values of X were not very different for objects inz, & @, , there would be no
problem; i.e., it would be indistinguishable and new objects could be assigned to either class
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indiscriminately). We can think of the totality of values from the first class as being the
population of x values for @, and those from the second class as the population of x values

for m,. These two populations can then be described by probability density
functions f,(x) & f,(x), and consequently, we can talk of assigning observations to

populations (or objects to classes).

The following are some more examples:

(1). Separation of two species of chickweed based on the measurements sepal and petal
lengths, petal left depth, bract length, scarious tip length and pollen diameter.

(2). Discrimination of successful and unsuccessful college students based on the entrance
examination scores, high school grade point average and number of high school
activities.

(3). Classification of purchasers of a new product and laggards (those slow to purchase)
based on particulars of education, income, family size and amount of previous brand
switching.

(4). Discriminating male-skulls and female-skulls based on the anthropological
measurements like circumference and volume on ancient skulls.

(5). Separating good and poor credit risks based on the particulars of income, age, member
of credit cards and family size.

From the above examples, it is clear that allocation or classification rules are usually
developed from learning samples. Measured characteristics of randomly selected objects
known to come from each of the two populations are examined for differences. Essentially,
the set of possible sample outcomes is divided into two regions R, & R, , such that is a new

observation falls in R,, it is allocated to population 7, and is it falls in R,, we allocate it to
population m,. Thus one set of observed values favours =, , the other set of values favours
m,. Here, it may be noted that classification rules cannot usually provide and error-free

method of assignment. This is because there may not be a clear distinction between the
measured characteristics of the populations ; i.e. the groups may overlap. It is then possible,
for example, to incorrectly classify a m, object as belonging to m, or a m, object as belonging

to m,.

A good classification procedure should result in a few misclassifications. In other
words, the chances or probabilities of misclassification should be small. As we shall see,
there are additional features that an “optimal” classification rule should be possessed.

9.3 STANDARDS OF GOOD CLASSIFICATION:

In constructing a procedure of classification, it is desired to minimize the probability of
misclassification or more specifically it is desired to minimize on the average the bad effects
of misclassification.

Suppose an individual is an observation from either population @, or population m, .

The classification of an observation depends on the vector of measurements
!

g:(xl,xz,....xp) p)(]
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on that individual. We set up a rule that if an individual is characterized by certain sets of
values of X;,X,,...,X,, it will be classified as from =, ; if it has other values it is classified as

from =, .

We can think of an observation x as a point in a P-dimensional space. We divide this
space into two regions R, & R, if the observation falls in R, we classify it as coming from

m, and if it falls in R, we classify it as coming from =, .

Usually, the statistician can make two kinds of errors in classification. If the individual
is actually from =, and is misclassified into @,; or if it is actually from m,and is

misclassified into @, . We need to know the relative undesirability of these two kinds of
misclassification.

Let f,(x)& f,(x)be the p.d.f.’s associated with the pxIrandom vector X for
populations @, & m, respectively. An object, with associated measurementsx, must be
assigned to eitherm, (or)m,. Let Q be the sample space that is the collection of all possible
observationsx. Let R, be that set of x values for which we classify objects as @, and
R, =Q—R, be the remaining x values for which we classify objects as m,. Since every
object must be assigned to one and only one of the two populations, the sets R & R, be
mutually exclusive and exhaustive.

9.4 EXPECTED (OR AVERAGE) COST OF MISCLASSIFICATION (ECM):

In order to obtain ECM we consider the following conditional probabilities:

P (correctly classifying an observation (object) that actually is drawn from =, )

=P(XeR/m) =[fi(x)dx =P(/1) (say) (1)

P(correctly classifying an observation that actually is drawn from =, )

=P(XeR /m)= [ f(0dx =P(22) (say) )

R,=Q-R

P(misclassifying an observation that is drawn from ;)

=P(XeR,/m)=[ fix)dx =PQ/1) (say) (3)

Ry

P(misclassifying an observation that is drawn from =, )

=P(XeR/m)=[f,(0dx =P(1/2) (say) (4)

R

Misclassification probabilities when p=1:
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ELey 15

A

classifying as m <lass Eing as o,

Let
p, = prior probability of =,

= P(drawing an observation from m,) =P(m,) %)
and p,= prior probability of =,
= P(drawing an observation from =, ) =P(m,) (6)

Now the overall probabilities of correctly or incorrectly classifying objects can be derived as
the product of the prior and conditional classification probabilities. Thus we get

P(correctly classified as m, )=P(observations comes from m, and is correctly
Classified as ;)
= P(XeR /mn).P(r;)) =P(1/1). p, (from (1)&(5)) (7)

similarly
P(correctly classified as =, )=P(2/2). p, (from (2)&(6)) (8)
P(misclassified as =@, ) = P(observations comes from o, and is misclassified as @, )

= P(XeR /=n,).P(n,) =P(1/2). p, (from (4)&(6)) )
P(misclassified as , ) = P(observation comes from #@, and is misclassified as«, )

=P(XeR,/n).P(m) =P2/1). p, (from (3)&(5)) (10)

A good classification rule must take into account the misclassification costs. Although the
statistician may not know these costs in each case, he will often have at least a rough idea of
them. The costs of misclassification can be defined by a cost matrix C:

True population| Classified as
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| !
0 2
m | o) 0

The costs are
(1). Zero for correct classification .
(2). C(1/2) 1s cost involved when an observation drawn from =, is incorrectly classified

into m, .
(3). C(2/1) is cost involved when an observation actually drawn from =, is
incorrectly classified as m, .

Clearly, a good classification procedure is one which minimize in some sense or the cost
of misclassification. Now , the expected cost of misclassification(ECM) is obtained by
multiplying the off-diagonal entries in (11) by their probabilities of occurrence. Consequently
a reasonable classification rule should has an ECM as small as possible. From the above the
ECM may be defined as follows :

ECM= C(1/2) .P(misclassification intoz, ) + C(2/1) .P(misclassification into m,)

=C(1/2) P(172). p, +C(2/1).P/1). p, (11)

Definition:
Expected (or average) cost of misclassification (ECM) is the sum of the products of costs of
each misclassification multiplied by the probability of its occurrence. Its formula is given by

Eq. (11).

Result (Optional ECM regions or Bayes regions):
The regions R, & R, that minimize ECM are defined by the values

of x for which the following inequalities hold.

R ={§ il zic(l/z)j/(plj} (1)
L&) \C2/))  p,
(density ratio) > (cost ratio)/(prior probability ratio)
R, ={>5 /%) <(C(1/2)j/(pl} )
LX) \C2/D))  p,
Proof:

From Eq. (11), we have the expected cost of misclassification (ECM) as
ECM=C(1/2) .P(1/2). p, +C(2/1) . P(2/1). p, 3)

But , we have
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P(1/2)=[ f,(x)dx and P2/1)= [ f,(x)dx )

R, Ry
using Egs. (4) in (3) we get

ECM = C(1/2) p, [ f,()dx +CQ/) p, | £,(x)dx (5)

Rl RZ
Noting that 2= R, U R, so that the total probability
1= j fi(x)dx= j fi(X)dx+ j fi(®dx (R &R, are disjoint) 6)
O R R

using (6) in (5),we get

ECM=C(12) p, | f,(X)dx+cem p| 1= [ fi(x)dx
R R

1

- [[C/2)p, /,(®-CQ/Mp, fXHx+C2/Dp, 9
Rl

Now p,, p,,C(1/2) and C(2/1) are non-negative. In addition f,(x) & f,(x) are Non-negative
for all xand are the only qualities in ECM that depend on x. Therefore, minimization of

ECM is equivalent to minimize the function

[[CA/2)p, f,(x)-CQ2/Mp, fi(X) KX @®)

K

But, from the theory of integration (8) will be minimized is R, includes there values of x for

which the integrand

C(172) p, L®-C2/Dp fi(x)<0 ©)
and for all x those not included in R, or equivalently for all x those included in R,

CA/2)p,/,(¥)=C2/Dp f,(X)>0 (10)
Thus from (9),

R ={x/CA/2)p,f,(x)-C2/Dp, f(¥) <0}

=X/ C2/Mpfi(x) 2 CA/2)p, [, (%)

= {x f,({()Z(C(l/Z)j/[pl]} (1)
LX) €2/ p,

C.-allf,, 15, p, p,,C(1/2) & C(2/1) are all positive)

Similarly from Eq. (10),
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RZZ{ZK /(%) <(C(1/2)J/(pl]} (12)
LX) \C2/D))  p,

where (12) gives (2).

REMARK:

It is clear from Egs. (1) & (2) that the implementation of the minimum ECM
rules requires
(1). The ratio of p.d.f.’s is f,/ f,is to be evaluated at a new observation X, .

C(1/2)

(2). The cost ratio
C2/1)

(3). The prior probability ratio P
P>

The appearance of ratios in the definition of the optimal classification regions has
significance as often it is much easier to specify the ratios than their component parts.

Special cases of ECM regions:

Case(1): (Equal prior probabilities i.e. p, = p, or Py =1)

V2
In this case (1) & (2) become
gL CWD). R A 072
LX) C@2/) LX) €2/
Case (2): (Equal misclassification costs that is C(1/2)=C(2/1))

C(1/2)

In this case D =1 and therefore (1) & (2) become

R P o g IR D

U A® P LM
Case (3): p=p,&C1A/2)=C(2/1)
In this case 2L =1= cas2) and therefore (1) & (2) become
)2 C@2/1)
RI:&ZI; RZ:&<1
LX) £(x)

NOTE:
(1). When the prior probabilities are not known, they are often taken to be equal.

(2). Similarly when the misclassification costs are unknown, they are often taken to be equal.
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3). If %:% then C(1/2)p, =C(2/1)p, and hence
RI:&ZI; R2:&<1
L, () L)

9.5 OPTIMAL TOTAL PROBABILITY OF MISCLASSIFICATION (TPM)
REGIONS :

Criteria other than the ECM can be used to derive “optimal” classification
procedures. For example, one might ignore the costs of misclassification and

Choose R, & R, to minimize the total probability of misclassification (TPM).
TPM=P(misclassifying as m, observation or misclassifying a m, observation)
= P(x comes from =@, and is misclassified )+
P(x comes from w, and is misclassified)

— TPM =P(XeR,/n,).P(n,)+P(X R /m,).P(,)

=R [ fi(x)dx+P, [ f,(x)dx

=pP2/1)+ p,P(1/2) (1)
But, when C(1/2)=C(2/1) (i.e. when misclassification costs are equal)
we get from equation (12) of page 14,
ECM =C(1/2)[p,P(2/1)+ p,P(1/2)] (2)
Now, from (1) & (2), it can be easily seen that minimizing (1) is equivalent
to minimizing (2). In other words, minimizing TPM is equivalent to
minimizing ECM with equal misclassification costs. Thus the optional TPM

regions R, & R, are same as those given in case(2) of page 20. Thus

R :{x/&>&}

LX) p 3)
R, = {x/& < &}
T LX) p

ALOCATING A NEW OBSERVATION x, BASED ON BAYE’S POSTERIOR
PROBABILITIES
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We can also allocate a new observation X, to the population with the largest posterior
probability P(w,/x,). By Baye’s rule, the “posterior” probabilities are

P(m,/x,)=P(m, occurs and observe x, )/P(observe X, )
= P(observe x,/m,).P(m,) | { P(observe x,/m, ).P(m,)
+P(observe x,/m,).P(m,)}

- S1(Xo)-p,
S1(Xo)-01 + £2(X0)-P,

_ p.Ji(X%)
P+ Py S (%)

P(nz/go)zl_P(m/Z‘o)
_ (%)
LX)+ pofo(X0)

_ PoJ5 (%)
LX)+ P, fr(Xe)

Now classify an observation x, into @, when

(1)

2

P(m /x,)>P(m,/X,)
= pifi(%0) > P2 (%)
(" Numerators of (1) & (2) are equal)
— 1K) P 3)
L&) p
Now from(3), it can be seen that allocating a new observation to a population based on
Baye’s posterior probabilities is same as optional TPM rule.
NOTE:
The above method is also equivalent to classify a new observation using optional
ECM (Baye’s method ) rule when misclassification costs are equal.

9.6 CONCLUSION

Discriminant Analysis and Classification provide systematic statistical tools to separate
known groups and to allocate new observations into appropriate populations. This lesson
emphasized two major goals:

(1) Describing the differences between populations (separation) and

(i1) Assigning new observations to one of the populations (classification).

(111)Using probability density functions, prior probabilities, and misclassification costs,
we derived rules that minimize the chance or cost of wrong decisions.
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The Expected Cost of Misclassification (ECM) serves as a fundamental criterion. The Bayes
Rule provides the regions (decision boundaries) that minimize ECM or, in special cases,
minimize the Total Probability of Misclassification (TPM).

Special cases such as equal prior probabilities or equal misclassification costs simplify the
classification rule. When misclassification costs and priors are unknown, they are commonly
assumed equal. Bayes posterior probabilities offer another intuitive approach for assigning
new observations.

9.7 SELF ASSESSMENT QUESTIONS

Explain discriminant analysis. Distinguish between discrimination and classification.

Explain in detail the standards of good classification.

Obtain the minimum expected or average cost of misclassification regions.

Discuss different special cases of minimum ECM regions and show how each case leads

to simplified classification rules.

5. Derive the total probability of misclassification (TPM) regions and show that minimizing
TPM is equivalent to minimizing ECM under equal misclassification costs.

6. Explain Bayes posterior probability classification and prove that it leads to the same rule

as the minimum-TPM classifier.

AW N —
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LESSON -10
CLASSIFICATION BETWEEN TWO

MULTIVARIATE NORMAL (MVN)
POPULATIONS

OBJECTIVES:

After studying this unit, you should be able to:

e To understand the concept and purpose of classification into one of two known
multivariate normal populations and classification into one of two multivariate normal
populations when the parameters are unknown

e To know the concept of classification analysis

e To acquire knowledge about significance of classification analysis

e To understand the purpose and objectives of pivotal provisions of the classification into
one of two known multivariate normal populations and classification into one of two
multivariate normal populations when the parameters are unknown

STRUCTURE

10.1 Introduction

10.2 Classification into one of two MVN populations when the parameters are known

10.3 Classification into one of two MVN populations when the parameters are
unknown

10.4 Classification into one of two MVN populations with unequal dispersion
matrices

10.5 Conclusion

10.6 Self Assessment Questions

10.7 Further Readings

10.1. INTRODUCTION
10.1.1 classification into one of two mvn populations when the parametrers are known

One of the most fundamental problems in multivariate statistics is to classify an observation
vector x into one of two populations, say nl and n2. When both populations are assumed to
follow multivariate normal distributions with completely specified parameters (mean vectors
and covariance matrices are known), the classification rule is obtained by comparing their
likelihood functions.

If rl ~ Np(ul, X) and n2 ~ Np(p2, X) with common covariance matrix, then the optimal rule
is based on a linear discriminant function.
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10.1.2

10.1.3

classification into one of two mvn populations when the parametrers are
unknown

In practice, the true mean vectors pl, p2 and covariance matrices ¥ (or X1, X2) are
rarely known. Instead, they must be estimated from sample data obtained from each
population.

The sample mean vectors are used to estimate pl and p2.

If equal covariance matrices are assumed, the pooled sample covariance matrix is
used to estimate X.

The resulting empirical discriminant function resembles Fisher’s Linear Discriminant,
but with estimated parameters.

This approach makes the method applicable in real-world classification problems
(medicine, finance, biology, etc.). It also introduces new issues, such as the impact of
estimation error on misclassification probabilities and the need for large-sample
approximations.

classification into one of two mvn populations with unequal dispersion mataries

When the two multivariate normal populations have unequal (Dispersion) covariance
matrices, the problem becomes more complex. Unlike the equal covariance case,
where the decision boundary is linear, here the likelihood ratio test leads to a
quadratic classification rule.

For n1 ~ Np(ul, £1) and n2 ~ Np(p2, £2), the log-likelihood ratio contains quadratic
terms in X.

The resulting Quadratic Discriminant Function (QDF) is used for classification.
Geometrically, the separating surface between populations is no longer a hyperplane,
but a quadratic surface (ellipsoidal, hyperbolic, or parabolic).

This case is the most general form of the normal classification problem and is
particularly important when populations have markedly different variances and
correlations. However, it requires large sample sizes for stable estimation of separate
covariance matrices and is more computationally demanding.

10.2 CLASSIFICATION INTO ONE OF TWO MVN POPULATIONS (with common
covariance matrix >,) WHEN THE PARAMETRERS ARE KNOWN

Classification procedures based on normal populations predominate in statistical

practice because of their simplicity and reasonably high efficiency across a wide variety of

population models. We assume f,(x) & f,(x) are multivariate normal densities; the first with

mean vector p,,and the second with mean vector p, and both with common matrix X . Now

the p.d.f. of the

two populations &, & 7, are given by
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1 |
1 —5(5-;31-)2 (x-p,)

1/26 for 1=1,2,....

f.(x)=
l (2n)p/2|2|

(D

The ratio of densities after simplification is

h® —%(z‘-gl)'z_l(x-gl)+%(g-92)’2—1(3-52)
15

o1 -1 11 1o o1 1 -1 1 -1 Lore—1 1 -1
__ — — __ — __ __ +—
2)5)2 )~(+2§E El+2l~112 b'e 2;31)2 ;Ntl+2)5')2 X 2)5')2 B, QEZZ X 2;32)2 B,

=e

[ _1 ' _1
L mE Xy T oo oy o)

=e
J5(X)

=

W E'x=xT 1, for i=1,2)
[ty -1, = xSy )
. 8 BLp) LN S ) o WL}

2)

1

1 o1 S T
B R L R o L R )

for (-1, X7 (g +iy) =y 27

1 1

_ ’ —1 _ [A—— .. [ _ ! —1
SHZOR TR, G E s )

By minimum ECM classification rule, we have
PRwAC) Z(C(l/Z)][&j
L Am Lc@m)p

PRty {ca/z)j[&j
£ Lcem )\ p

where p, and p, are prior probabilities of &, and =, .

C(1/2) = cost involved when an observation drawn from m, is incorrectly classified into m, .

C(2/1) = cost involved when an observation drawn from =, is incorrectly classified into , .

From (2) we have, after taking logarithms on both sides
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—— i
R :(El'gz)z I)N(_E(EI-EZ)Z 1(H1+l~12)210gK

Iy - 1 ry -
Ryt (i - o) Z7X— (1 - )T (1 +pty) <log K 3)
where K = C/2).p,

C2/p,

The regions R, & R, given by (3) are called as minimum ECM regions for two normal

populations.
NOTES:
1. The first term of (3) viz
(y-p)E 'x=0x,  where I=X7(u -p,) @)

is the well known Fisher (linear) discriminant function, which is actually obtained by

Fisher with entirely different argument which we will discuss later.

10.3 CLASSIFICATION INTO ONE OF TWO MVN POPULATIONS (with common
covariance matrix >,) WHEN THE PARAMETRERS ARE UNKNOWN

Now the p.d.f. of the two populations @, & m, are given by

1 |
1 —5(5-131-)2 (x-1,)

f(X)= T

1

for i=1,2,....
emP’?|x|

(1)

The ratio of densities after simplification is

/1®) :e—%(z-gl)’z_l(g-gl)+%(g-;~12)’2‘1(g-,~12)
I5(X)

1. 1, 1

11 ,—1 1 o= -1 1 =1 1 ,.-1 re—1 1 o1
g+§7~(2 ;~11+5;~t12‘. g—EHIE ;~11+55~('Z‘. 3—575'2 EZ_EEZE )~(+5E22 B’y

_lg,z_
=e 2

' _1 i _1 1 ' _1 i _1
f® P ox-p, X 5—5(912 Bi-By T,

=e -
5

=

(o Tx=xT ' for i=1,2)
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[(ry -52)’2_13—%(131 -132)'2_1([}1 tr,)]
=e

2

1 1

1 o 1 1 o
for (my-py) 2 (i) = 2 gy -, By -y By

1

S T A B
SRR E o, GRSy E )

By minimum ECM classification rule, we have
RS (00/2)}(&)
L,x) \C2/D)\ p
R, H (ca/z)J(&J
L L C2/D ) p

where p, and p, are prior probabilities of &, and =, .

C(1/2) = cost involved when an observation drawn from @, is incorrectly classified into m, .
C(2/1) = cost involved when an observation drawn from =, is incorrectly classified into =, .

From (2) we have, after taking logarithms on both sides
Iy — 1 ry -
R, :(El 'Hz) X 12‘_5(81 'Ez) z l(l;ll +Ez) 2logK

. .
R, :(El 'Elz)E 12‘_5(81'[‘2)2 I(E'l +}~12)<10gK

C(1/2).p,
C@2/Np,

where K =

©)

The regions R, & R, given by (3) are called as minimum ECM regions for two normal

populations.

Suppose X, X;,-..X,, , be a random sample of size 'n,', from population z, : N(n,,X) and
let X,;,X,500X,, be a random sample of size'n,'from population @, : N(n,,X). Since

R, 1, &X are unknown we replace them with their unbiased estimators viz.,

_ ny _ 1 ny
X == Z X105 X7 =_ZX2a
nig=1 Ny a=1
4)
and S = (nl _I)Sl +(n2 _I)Sz

n+n,—2

©)
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where
1 & — = .,
S, = Z(Xla - XX, - X))
n -1 a=1
1 & = = .,
S, =——> (X0 - X;)X;, - X;)
n, -1 a=1
(6)

Now, the estimated (or sample) minimum ECM regions can be obtained from the above

method replacing p,,p, & X with their unbiased estimators X,,X, &S (given by (1) & (2))

respectively. They are form equations as follows :
o l = = vais =
R (X, -X0)S"X = (X, -X,)'S (X, +Xy) 2 log [e(1/2)p, /e2/1)p]

(7)

o

R, :(X;-X,)'S IX_E(XI -X,)'ST(X, +X,) <log [c(l/2)p2/C(2/l)pl]
®)
from (4)&(5), the estimated sample minimum classification ECM rule for two normal
populations is given by

Allocate X, to =, if
(Xl 'Xz)S_lX'%(zg 'Xz)’S_l(Xl +Xz) 2 log K
©)

where K= [c(1/2)p,/c(2/1)p;]

Allocate X, to m, otherwise.

NOTE:

(1) The estimated or sample minimum TPM rule for two normal populations with

unknown parameters can be obtained from (6) replacing K with ( D,/ pl) .

(2) When p =p, & c(l/ 2) :c(2/ 1) ,the estimated or sample minimum ECM rule is

equivalent to sample ML rule and is given by

Allocate x, to m, if
e 1 o — —
(X, -%,)'S'x, 22 (%-%)'S (X +%,) (10)

Allocate x, to m, otherwise.
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3) The estimated minimum ECM rule or sample ML rule amounts to comparing the

scalar variable (univariate normal variable)
y=Ix  where[=5"(%-%,) (1n

evaluated at x, 1s

Yo = [’50
with the number
= (%5 (5 + )
(12)
—_ 1 o b
_E(yl +,)
where
7=%-%)'S'%, =%,
v, = Z'Xz
Thus allocate x, to @, if
Vo2 (13)

otherwise allocate x, to m,

That is, the estimated minimum ECM rule for two normal populations is to creating two
univariate normal populations for the y values by taking an appropriate linear combination of
the observations from populations

m, and m, and then assigning a new new observation X, to m, or m, depending upon
whether y, = Z X, falls to the right or left of the midpoint 7 , between the two normal means
7 and 3,.

4) The linear function (7) 1s known as Fisher linear discriminant function, which is

obtained by Fisher with a different argument for separating two populations.

10.4 CLASSIFICATION INTO ONE OF TWO MVN POPULATIONS
WHEN X, =X,

Now the p.d.f. of the two populations @, & m, are given by

1 1
1 6_5(’5'51')2 (x-1,)
|z|1/2

fl.(§)= for i=1,2 (1)

(2n)p/2
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The ratio of densities after simplification is

[(®) _ —%(X-gl)'z_l(x-gl)+%(g-;~12)’>:—1(,5-52)
150

1 1

1 1 1 -1 _1 -1 _ ra—1 1 e —
l~11+5§'2 X Eg'E B, EEZZ ’~‘+EE‘22 By

I -1 1 = I =1 1 ,o—
——xX x+—xX +op X x——pX
xR hmphs 2k

=e

!

1L el 1 o1
B Z p-py X,

SO Rl S U

1
= =e” 2
I5(X)

Cow Ex=xE'y, for i=1,2)
[(p,-p )’E_IX—l(u ) VE )]
I B! *To1 TR "1 2

(2)
for (po-p Y X M +p)=p T e B w2
u o) TR SIS I TINE s T s,

1 1

_ ’ —1 _ ’ _ .. ! _ _ ’ —1
SHZOR TR, G E s E )

By minimum ECM classification rule, we have
2 S >(c<1/2>](&j
- >
L) \CE2/D ) p

R, A {ca/z)j(&]
A cem ) p

Where p, and p, are prior probabilities of m, and =, .

C(1/2) .P(misclassification intoa, ), C(2/1) .P(misclassification into =, )

From (2) we have, after taking logarithms on both sides
Iy — 1 ry -
R, :(El 'Hz) X 12‘_5(81 'Ez) X l(l;ll +Ez) 2logK

ool 1 .
Ryt (- o) Z7X— 2 (- ) T (1 +p,) <log K

_¢d/2).p,
C(2/1)p,

where K

3)
The regions R, & R, given by (3) are called as minimum ECM regions for two normal

populations.



Centre for Distance Education 10.9 Acharya Nagarjuna University

Here we have 7, : N(,, X)) and 7, : N(n,,X,) whenX, #X,.
Let f,(x) be the p.d.f. of @, and f,(x) be the p.d.f. of m,. Then on simplification,

log{%} =log f,(x) —log 1,(x)

(X

4)
=1/2x'(Z -2, )%+ (/' E] -, T, - 4

Z ! ’
where 1=1/2log (%} +1/2(w ) 'y —p, o'y
2

©)

we have general formula for minimum ECM region and is given by
R :log[ /,(x)/ f,(x)]=1og k ,where K=c(1/2)p,/c(2/1)p,
R, :log[ fi(x)/ f,(x)] <log k
where A=1/2log {%J +1/2(0 2 ', -, Z',)
2
(6)

Now, the minimum ECM regions for classification of two normal populations when X, # X,
is given by:
R:—1/2x'(E = )%+ (14 &' - 1,5, )x - A > log k
R, —1/2x'(E - )x + (14 &' — 11, Ty )x— A <log k
where 4 & k are given as (2) & (3) (7)

The allocation rule that minimizes the ECM is given by :

Allocate x, tom, if
—1/ 2% (] = 2%, + (Z — X)X, —A > log k ®)
Allocate x, to m, otherwise.

In practice, the classification rule in (5) is implemented by substituting the sample

quantities X,X,,S, and S, forp,p,,X and X, respectively.

QUADRATIC CLASSIFICATION RULE (NORMAL
POPULATIONS WITH X #X,)

Allocate x, tom, if
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1/2x(S, = 8,)%, +(XIS, ! — %38, )%, — A > log k ©)

allocate x, to @, otherwise.

A S
Where A :1/210g[H]+1/2(X{S11)§1 -X.5,'%,) (10)
2

NOTE:
(1). Minimum TPM rule or quadratic classification rule when X, # X, is a special

case of (6) when K =p,/p,.

(2). If the misclassification costs are equal and prior probabilities are equal
(ie. C(1/2)=C(2/1) & p, = p,). Then the MC rule or QCR is obtained by

taking K=1 or log K=0 in the rule (6).
10.5 CONCLUSION

Discriminate analysis is a powerful multivariate statistical tool used for classification and
separation of groups based on several quantitative variables. Fisher’s discriminate function
provides an optimal linear combination of variables that maximizes the separation between
populations. Using methods such as Mahalanobis distance, prior probabilities, and
classification rules, it enables researchers to classify new observations with high accuracy.
The technique is widely applicable in medical diagnosis, finance, quality control, biological
studies, and social sciences. Overall, discriminant analysis gives a systematic and
mathematically sound procedure for discriminating and classifying individuals into
predefined groups.

10.6 SELF ASSESSMENT QUESTIONS:

1. Explain the procedure for classification into one of two multivariate normal (MVN)
populations when the parameters (mean vectors and common dispersion matrix) are
known.

2. Describe the method of classification into one of two multivariate normal (MVN)
populations when the parameters are unknown and must be estimated from samples.

3. Discuss the classification procedure for two multivariate normal (MVN) populations
when the dispersion matrices of the two populations are unequal.

10.7 SUGGESTED READING BOOKS:

1. Applied Multivariate Statistical Analysis by Richard A. Johnson and Dean W.
Wichern

An Introduction to Multivariate Statistical Analysis by T.W. Anderson

Multivariate Statistical Methods: A Primer by Bryan F.J. Manly

Multivariate Data Analysis by Joseph F. Hair & William C. Black

Psychometric Theory by Jum C. Nunnally & Ira H. Bernstein

N

Dr. A. Vasudeva Rao



LESSON -11
CLASSIFICATION WITH SEVERAL MVN

POPULATIONS

OBJECTIVES:

After studying this unit, you should be able to:
e To understand the concept and purpose of classification with several populations
e To know the concept of classification with several populations
e To acquire knowledge about the importance of classification with several populations
e To understand the purpose and objectives of classification with several populations.

STRUCTURE

11.1 INTRODUCTION
11.2  CLASSIFICATION AMONG SEVERAL MVN POPULATIONS WITH
COMMON DISPERSION MATRIX

11.3 CLASSIFICATION AMONG SEVERAL MVN POPULATIONS WITH
UNEQUAL DISPERSION MATRICES

11.4 CONCLUSION

11.5 SELF ASSESSMENT QUESTIONS

11.6 FURTHER READINGS

11.1. INTRODUCTION

In multivariate statistical analysis, one of the major objectives is classifying an individual
(observation) into one of several known populations. These populations may represent
different groups such as disease categories, customer segments, manufacturing quality levels,
or species classifications.

When each population is described by a p-variate distribution, usually the Multivariate
Normal (MVN) distribution, classification rules are constructed to minimize
misclassification.

For more than two populations, the classification problem becomes more complex because
we must compute posterior probabilities, compare them across all populations, and assign the
observation to the group with the minimum expected classification cost (ECM) or maximum
posterior probability (TPM).

If the parameters (means, covariance matrices, and prior probabilities) are known,
classification rules are direct.

If parameters are unknown, they must be estimated from samples, leading to estimated
versions of the Bayes allocation rules.
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11.2 CLASSIFICATION WITH SEVERAL MVN POPULATIONS WITH COMMON
DISPERSION MATRIX

We have ‘g’ multivariate normal populations
m N, (1, X)
7, N, (14, E)

n,:N, (,gg,):.)
Let f,(x) be the density associated with population =,i=1,2......g.
Let p, = the prior probability of population &,,i =1,2,...g
Since, m,,i =1,2,...g are MVN populations, we have

1 f%(x-g,-)'ﬁ"(x-g,-)

[ (X)=———7e fori=1,2,....,g
()| O
1 1 —
= logfi(x) = —(gj log(27) — - log[ X[~ ((x-p 2™ (x-p.))
Now, the linear discriminant scores are given by
d;(x) =logf,(x) +log p,

— p 1 1 re—1 v -1 1 ' —1
=—| 5 |log(2m) ~—log| =~ xE -+ B~ By, +log p )

(after simplification)
The first three terms are same for d, (x),d,(X),....d,(X) and consequently, they can be

ignored for allocatory purposes. Now, the linear discriminant scores become
' |-
d,(0) =/ X2y, +log p, 3)

The relevant sample quantities for population z, are

X, = sample mean vector
S, = sample covariance matrix and
n, = sample size
and the pooled estimate of X,
. (m =DS, +(n, =S, +...+(n, - 1)S, @)

mtn,+..tn,—g

Now, an estimate of d,(X) viz, c}l. (x) is given by

d,(0=%'5"x-3%/S "x+logp, (5)
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consequently, the estimated minimum TPM rule for equal covariance normal populations is

as follows:

Allocate x tom,_ if the linear discriminant score d L(x)= max{c?i(g)} (6)

Where c?l. (x)1s given by (5)
NOTE:-

1. In the above minimum TPM rules , for any case , if p,=p,=p, =...... =p,=l/g,

we may ignore those term log p, is discriminant scores , as it is same for all

discriminant scores. In this case the minimum TPM rule is reduced to ML rule in
which case the allocation rules are same as above except ignoring log p, .

2. An equivalent classifier for common covariance matrix case can be obtained from (1)
by ignoring the term

—;log‘E‘ and is given by

1 '
_E(Z‘_Ei) 2 (Z‘_Ei)"'logpi

The classification rule with sample estimates instead for unknown populations
quantities is given by Allocate x to =, ,if

—%D,f (x)+log p, is largest for k=1,2,...,g.
(7
where D] (x)=(x-X,)'S"'(x-X,) is Mahalnobis squared distance between x and the
sample mean X, .
Thus , we see the rule (7) or equivalently rule (6) assigns x to the closest population
(the distance in penalized by log p,).
3. Innote(2), if we assume py, p,, p;......, p, are equal and hence allocation rule may be

significant as follows:
Allocate x tom,, if —%Dkz (x) is largest
Or equivalently D} (x) smallest (8)

In other words, we are allocating x to that population whose sample mean vector is
closest to x . This rule is also called as ML classification rule.

11.3 CLASSIFICATION AMONG SEVERAL MVN POPULATIONS WITH
UNEQUAL DISPERSION MATRICES

We have ‘g’ multivariate normal populations

N, (1,x)
T, ‘N, (4, X))

T, :Np(gg’zg)
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Let f.(x) be the density associated with population =, i=12...g
Let p,; =the prior probability of population &,,i =1,2,...g

Since, m,,i =1,2,...g are MVN populations, we have

1 ey e .
f(X)=——5e? ) fori=1,2,.....,g (1)
(272_)19/2 |Zi|1/2
From Eq. (1) we have
1 1 e -
log(p,/,(x)) =log p, ~ £ log(2m) ~~ log| |~ (x-, Y, (x-,) )

Allocate x to m, if

log(p, f:(¥)) = max log(p./:(x))
S | P jog(2m)— 1 1 b ©
~log p, — log(2m) — log|Z, [~ (x-p V2 (x-.)

The constant p/2 log(2m) can be ignored in (2) since it is same for all populations. We

therefore define the quadratic discrimination score for ith

population is
d?(x)=log p, - %log|2i| —%(g -p)'E (x-p,)  for i=1,2,..g 4)

The quadratic score d?(x) is composed contributions from the generalized variance ‘le. , the

prior probability p,, and Mahalnobis (or statistical) squared distance between x and
population mean £, .

Using discriminant scores the classification rule (4) becomes

Allocatex to m,

The quadratic score d¢ (X) = max{id’(x)} (5)

where d°(x) is given by (4).
In practice, the p, andX; are unknown and hence a training set of correctly

classified observations is often available for the construction of estimates. The relevant
sample quantities for population =, are
X, = sample mean vector

S, = sample covariance matrix and

n, = sample size
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Using the above estimation in (4) , we get the estimate of the quadratic discriminant score

d?(x) as

32 (x) = log p,~ logl$ | - (6-%)'S, (- %) ©

and the classification rule based on the sample is as follows:

Allocate x to m, if the quadratic score

d?(x) =max {d’(»)} (7)

where d(x) is given by (6) for i=1,2,....g .
NOTE.:-

(1). In the above minimum TPM rules , for any case , if p,=p, =p,=...... =p,=1l/g, we

may ignore those term log p, is discriminant scores , as it is same for all discriminant scores.

In this case the minimum TPM rule is reduced to ML rule in which case the allocation rules
are same as above except ignoring log p, .

114 CONCLUSION

In this unit, we examined several important methods for classifying multivariate observations
into populations. Fisher’s Linear Discriminant Function provides a powerful approach for
separating two populations by transforming multivariate data into a single discriminating
variable. This method does not require normality, but it implicitly assumes equal covariance
matrices.

For more than two populations, two general decision-theoretic approaches were discussed:
the Minimum Total Probability of Misclassification (TPM) rule and the Minimum Expected
Cost of Misclassification (ECM) rule. The TPM rule focuses on minimizing overall
misclassification probability, whereas ECM incorporates prior probabilities and
misclassification costs, making it more flexible and realistic for practical applications.
When the populations follow multivariate normal distributions, classification rules become
more explicit through quadratic or linear discriminant scores.
e With unequal covariance matrices, we derive the quadratic discriminant function.
e With equal covariance matrices, the rule simplifies to a linear discriminant function,
which corresponds to the Bayes rule, ML rule, and in special cases to Fisher’s
discriminant.

11.5 SELF ASSESSMENT QUESTIONS:

1. Explain the problem of classification into one of the two known multivariate normal
populations

2. Describe the method of classification of an individual into one of several p-variate
normal populations having a common dispersion matrix. £ where all the parameters

are known.
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11.6 SUGGESTED READING BOOKS:

1. Applied Multivariate Statistical Analysis by Richard A. Johnson and Dean W.
Wichern

An Introduction to Multivariate Statistical Analysis by T.W. Anderson

Multivariate Statistical Methods: A Primer by Bryan F.J. Manly

Multivariate Data Analysis by Joseph F. Hair, William C. Black, et al.

Psychometric Theory by Jum C. Nunnally & Ira H. Bernstein

Nl

Dr. Syed Jilani
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FISHERS LINEAR DISCRIMINANT ANALYSIS

OBJECTIVES:

After studying this unit, you should be able to:
e To understand the concept and purpose of Fishers linear discriminate analysis
e To know the concept of Fishers linear discriminate analysis
e To acquire knowledge about significance of Fishers linear discriminate analysis

STRUCTURE

12.1 INTRODUCTION

12.1.1 FISHERS DISCRIMINANT FUNCTION-SEPARATION OF TWO
POPULATION

12.1.2 FISHER’S METHOD FOR DISCRIMINATING AMONG SEVERAL
POPULATIONS WHEN PARAMETERS ARE SPECIFIED

12.2  FISHERS METHOD FOR DISCRIMINATING SEVERAL POPULATIONS
WHEN PARAMETERS ARE UNKNOWN

12.3 CONCLUSION

12.4 SELF ASSESSMENT QUESTIONS

12.5 FURTHER READINGS

12.1. INTRODUCTION

In multivariate statistical analysis, one of the central problems is the classification
(discrimination) of an observation into one of several known populations. This problem arises
frequently in practice—for example, assigning patients to diagnostic groups based on medical
measurements, classifying credit applicants as low-risk or high-risk based on financial
indicators, or determining the origin of agricultural products using chemical characteristics.

When the probability distributions of the populations are fully specified—that is, the
functional form of the distribution and all of its parameters (means, variances, and
covariances) are known—statistical theory provides optimal decision rules for classification.
This setting represents the “ideal” or theoretical case, as in practice parameters are usually
estimated from data. Nonetheless, studying this case is fundamental because it provides the
benchmark for performance and forms the basis for practical extensions.

One of the earliest and most influential approaches to this problem was proposed by Sir
Ronald A. Fisher (1936) in his seminal work on linear discriminate analysis (LDA). Fisher’s
method aims to construct a linear discriminate function, i.e., a linear combination of the
observed variables, such that the separation among populations is maximized.
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The method works by finding the projection (linear function) of the multivariate data that best
separates the groups relative to the within-group variability. For two populations, this reduces
to Fisher’s linear discriminate function; for more than two populations, it leads to a set of
discriminate functions that can be used for classification.

12.2 FISHERS DISCRIMINANT FUNCTION-SEPARATION OF TWO
POPULATIONS (NOT NECESSARY MULTIVARIATE NORMAL)

Fishers idea was to transform the multivariate observationsx’s to univariate
observation y’s such that the y’s derived from population m, and @, were separated as
much as possible . Fisher suggested taking linear combination of x ’s to create y’s because
they are simple function of x and are easily handled mathematically .

Fisher’s approach does not assume that the populations are normal.
If does, however , implicitly assume the population covariance matrices are equal because a
pooled estimate of the common covariance matrix is used.
Let x,.X x,, be a random sample of size n, from population m, and let

~11’~]2""’~ln1

ST ST S be a random sample of size n, from populationw, Now

X, be the mean of 1% sample
S, be the sample covariance matrix of 1% sample
X, be the mean of 2™ sample

S, be the sample covariance matrix of 2" sample
(n—=1S, +(n, =1)S,

Denote S = (1
n+n,—2
Which is a pooled sampled covariance matrix.
Now, Fisher’s idea is as follows
Consider the linear combination
y=w'x, when wis |x| vector of real number (2)

using the linear transformation, the multivariate observation of 1* sample will be transformed

into univariate observations given by
-)}11’-);12""').)21111

when y,=w'x,,i=12,..,n

~219722% 0%

Vo1V ""’y2n2

similarly the second sample X, ,x X0, will be transformed into

— ’ ;] —
when y, =w'x,,,i=12,...,n,
- e
Now y =w’

— =
Y, = WX,
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m . 1, .
i i
E V=) +§ (Vo =7)
im1

and s> =1L 3
g n+n,—2 3
consider
separation = |yls_—y2| 4)

y
Now, Fisher’s idea is to select the linear combination w such that the separation given in (4)

is maximum. In other words, the objective is to select the linear combination of x (i.e. w'x)
to achieve maximum separation between the sample means y, & y,. Equation (4) may be

written as
» _ (squared distance between sample mean'y, and y,)

separartion” = :
pooled sample variance of y
— 6’1 —V 2 )2
)
[wE -5
= B — (from (3))
y

but s> =wSw (from (3) & (1))

squared distance betweeny, &y, (w'd)’
. 59 ! i &Y, :(7) _ ¢ say (5)
pooled variance of y w'Sw

where d=(X,-X,)

Now, as per Fisher’s idea, (5) has to be maximized w.r.t. w.

Which implies

(W'SW)i(W'd)2 —(w'd)? i(W'SW)
9p_ " "ow "~ " ow - T,
ow w'Sw

= (W'Sw)2(w'd).d - 2(w'd)* Sw = 0
= (W'Sw)d—(W'd)Sw =0

' . . . 6
=>Ww= (W'Sw) S7'd (- Sis positive defined matrix) ©)
To(wd T
=CS’'d
w'Sw : . . -
where C == 'd~ and C is ratio of two scalars thus w is a scalar multiplier of the vector
w
Sd.

Using
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w=CS"'d in(5) we get
4= c’@d's'dy
C’d'S™'SS'd
=d's™'d

(7

Now using w=CS"'d in (5) we get
¢=d'S"d ®)
Thus, from (7) & (8), we can see that for either
w=CS"'d or w=S"d

the same ratio ¢, we are setting . Thus ¢ will be maximized if we take

w=5"d=5"(X,-%,) ©)
and the maximum value of ¢ is

¢,=d's"d

=(%-%,)S' (X %,) (10)

=D* (say)
Now, the linear function

Y=wX

“EEISX (from ()& O) (b

is called as Fisher’s linear discriminant function . and the maximum ratio D?,where D’
given by (10),1s called the sample squared distance or squared Mahalnobis distance between

sample means X, and X, .

The linear discriminant function given by (11) converts the two multivariate
samples into two univariate samples such that the corresponding univariate sample means are
sepearted as much as possible to the relative to pooled sample variance .

We can employ (11) as a classification device as given below.

12.2.1 an allocation rule based on fisher’s discriminant function:
We have the Fisher’s linear discriminant function
y=wx, where w = S7(X, - X,) (1)
Let ‘m’ be the midpoint between y, and Yy, and is given by

m=(f1+372)/2

s (2)
=12(X,-X,)S (X, +X,)
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Now , the allocation rule or classification rule based on Fisher’s discriminant function is as

follows:

Allocate x, tom, ,if
Yy =(X -X,)S'x,=mor y,—-m=>0
Allocate x, tom, ,if
Yo<m ory,—m<0 3)

NOTE:
(1). If 7,~p,,X and 7t,~p, . X then the Mahalnobis distance between p, and p, is

denoted by A and is given by
s Bl ot
3 ko)
A? :(u1 'uz),z_l(ul 'uz)
E'l’ljz ~ ~ ~ ~
2 | - 4 71 -
2). Ag,u (x-p)' =7 (x-p)

(3). Mahalnobis D’ test statistic to test separation between =, and m, (or)
Hyp=p, vs Hyip#p,
suppose m;:N, (1,,X) and m: N, (p,.X) X,,S, are the sample mean and
sample covariance matrix of a sample drawn from =, and X,.S, are | A

Now Mahalnobis D* test statistic is given by
D = X _Xz)’S_] (X, -X,)
(n,-DS, +(n, -1)S,

where S=
n+n,—2
+n,—p-1
under H,: mTh TP WL p? -~ F, i p
(n,+n,=2)p )\ n, +n,

which can be used as for testing the significant difference p, —p, . If H is

rejected , we can conclude that the separation between the two populations

m, and m, 1is significant.

(4). Two sample T* and Mahalnobis D’ are closely associated as

T2 — nlnz D2
n, + n,

(5). In case of two normal populations with common covariance matrix, Fisher’s
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method is corresponds to a particular case of minimum ECM rule with equal
prior probabilities and equal costs of TPM rule with equal prior probabilities .
Further, it is same as ML rule .

(6). The expression in minimum ECM rule for two multivariate normal populations

w=(X,-X,)'S"(x-1/2(X, +X,)) is frequently called Anderson’s classification.

(7). Fisher’s method is also a special case of allocation rule based on Bayeson
posterior probabilities when the prior probabilities p, and p, are same for

the case of two multivariate normal populations.

12.3 FISHER’S METHOD FOR DISCRIMINATING AMONG SEVERAL
POPULATIONS WHEN PARAMETERS ARE SPECIFIED

Fisher also proposed a several population extension of his discriminant method,
which was discussed for the case of two populations. The motivation behind the Fisher
discriminant analysis is the need to obtain a reasonable representation of the population that
involves only a few linear combinations of the observations, such as 1'x,1'x and so on. His
approach has several advantages and one is interested in separating several populations for
1) Visual inspection or
2) Graphical descriptive purposes.

It allows for the follows:-

1. Convenient representation of the g populations that reduce the dimension from a very
large number of characteristics to a relatively few linear combinations. Of course,
some information — needed for optimal classification- may be lost unless the
population means lie completely in the lower dimensional space selected.

2. Plotting of the means of the first two or three linear combinations (discriminates).
This helps display the relationship and possible groupings of the populations.

3. Scatter plots of the sample values of the first two discriminates, which can indicate
outliers or other abnormalities in the data.

The primary purpose of Fishers Discriminant analysis is to separate populations.
However, it can also be used to classify a new observation into one of the populations. It is
not necessary to assume that the g populations are multivariate normal. However we assume
the population covariance matrices are equal and of full rank. That

is¥ =X,=———=X =X. Thus, we have g populations with mean vectors

RLI,........ [, and common covariance matrix 2. .
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g
and B=2 (1 ~m(; - ) (1)
i=1

we consider the linear combination ) = Ig
which has expected value
E(y)= !'E(X/ 7Tl-) = l’lji (for population 7;)
= M, (say)
and variance V(y)=/["cov(X,X")/
=['"%] = o, for all populations. (2)

we defuse the overall mean,

=1't (From (1)) ®)

and form the ratio

sum of squared distances from populations to over all mean of Y

common population variance of Y

S = \2
> (= J1,)
_ =
oy
g
2 L —1'n)’
— i=l
Y
g —
I (=)~ 'L
— =l
I'21
= ll"gll (from (1))
Z(/Jy _/l’_ly)2
: I'Bl
i=l1 Y
Thus g = ISl “4)
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The ratio (4) measures the variability between the groups of Y- values relative to the common

variability within the groups. We can then choose [to maximize the ratio (4) Thus if we

write
_IBI
A= ] (5)
Then we have to maximize (5) with respectto [ when implies
%’} (I zz) Bl (1'31)51'21 0
DB EI=0
~ I'B]
= Bl-(5p) TL=0
I'Bl
=2 Bl-Gspl
=>1B-AN]=0 (using (5)) (6)

Thus [ is the latent vector corresponding to a latent root A of >'B. As, we are seeking for
a | which maximizes A, let ﬂl be the non zero largest latent root of 2B and Zl be the
corresponding latent vector. Now, the linear combination, Yl = Z{)g is called Fisher’s first
linear discriminant .

Similarly if ﬂz is the next non Zero largest latent root of >'B  and lz
correspondent latent vector then ,Y2 = £2')~( 1s Fisher’s second linear discriminant.

Let ﬂl>ﬂ2 > ieee >ﬂ,s >(0 denote the s<min(g-1,p) non zero eigen values of

/

by ceveennnns l; be the corresponding latent vectors. Now, the linear

combinations
=L X(k<s) 7
is Fisher’s k' linear discriminant.

12.4 FISHERS METHOD FOR DISCRIMINATING SEVERAL POPULATIONS
WHEN PARAMETERS ARE UNKNOWN

Fisher’s sample linear discriminants:
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In general, Y. and the ,ul.’s are unknown, but we have a training set consisting of

correctly classified observations. Suppose the training set consist of a random sample of size

n; from population 7,,i=1,2,3.....g

Let X/ be the mean vector and S, be the covariance matrix of ith sample. Now denote the

sample between groups matrix.
g
B, = Z;,(zci —X)(X,—X%)
1=
g

_1&
_gz)fz

i=1

Where,

1=

BO is an estimate of B

Also, an estimate of 2 is based on the sample within groups matrix is

W=>(n-DS,
i=1

g
Consequently, S, = L= Zn
(n g) i=1 '

1S an estimate of z .
We consider the linear transformation,

y=1Ix

®)

©)

(10)

(11)

Under the linear transformation, (11) the given multi variate samples can be transformed into

univariate samples whose means and variances are given by

Means : Jp, 1 oeee. Vg

Variances: 2 o 52 Yy peenees S

We denote the overall sample as

g
i

1
g
Now form the ratio,

A = sum of squared distances fro sample means to overall mean

Total within samples variation

(12)
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==l (from (11))

(By using the definition of sample covariance matrix)
_IBy
Wi

The ratio (13) measures the variability between the groups of g values relative to the total

(from (8) & (9)) (13)

variability within the groups.
Now, Fisher suggested to choose [ such thatAgiven by (13) is maximum,

Maximization of A with respect to [ implies.

oA
ol

(See (6) of page 29 for derivation particulars)

=0=>W"'B,-AI)[=0 (14)

Now, if we denote 4 >4, >...... > A, >0(where s=min(g—1, p)) are s eigen

values of (14) and let A, lz, .......... ZS the corresponding eigen vectors, then

Fisher’s K-th sample linear discriminate is given by

Vi =Lx(k <s)

Thus, Fisher’s sample linear discriminates are eigen vectors of W_lBO,
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Where Bjjand W are as assigned in (8) & (9).

Note:
1. If sample means  X,X,,......... Xo and sample covariance  matrix
S1>S2’ .......... Sg are given , then Boand W can be completed using (8) and (9)
respectively.

2. If raw samples from g populations are given, then BO and W can be computed as
follows:

First compute the individual sample covariance matrices S,,S,,.......... S, from the given

samples and then use (9) to compute W . Now, compute the sample covariance matrix S
from the combined samples of g samples given by
g

1 Nx. — FY N
S = o 2.2, D — %) when n=2 ;.

i=l j=
Now, BO can be computed from the following relationship.
(n-1)S=W+B, .
3. It may be noted that the pooled sample covariance matrix S p and combined sample
covariance matrix S are connected by the
(n—1)S=W+B,

Thus, if the individual sample covariance matrix S,,S,,.......... S, and the

combined sample covariance matrix S are given, then one can obtain W and BO can be

obtained as follows
W =(n, =1)S, + (1, = 1)S, +..ooo0...+ (1, ~1)Sg
B,=(n-D)S-w

Now, Fisher’s discriminates can be constructed using the eigen vectors of W_lBo .

4. We know that W_IBO is not a symmetric matrix. Many computer
Packages can compute eigen values and eigen vectors only for the symmetric matrices.

However, the eigen vectors of W_IBO can be computed as follows:
Suppose, A is a ch root and [ is Ch. Vector of W_IBO ,then we have
W-'B,— A =0

The above equations may be rewritten as
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11
W~'B,— AW 2W 2)[ =0

_1 1
—> (W 2B,— W 2)[=0
R 1
—> (W 2BW 2= W2 =0
_1 _1
—>(W 2B 2-2)w=0
1 1 1

(W2 is square root of W and W 2 is a inverse of W 2).
1

1 [
Where, W=W?2[ or [=W 2w.
1 1
Thus if W is latent vector of the matrix, W 2B W 2. Corresponding to the latent root
1 1
of A, then latest vector [ of W 2Bo corresponding root A may be obtained as [ =W 2w

For all practical purposes, for the construction of Fisher’s discriminant functions we use
the above method.

Classification of a new observation among several populations using Fisher’s
discriminants

Mainly, Fisher’s discriminates were derived for the purpose of obtaining a low
dimensional representation of the data that separate the populations as much as possible.
Although they were derived from separatory considerations, the discriminates also provide
the basis for a classification rule.

12.5 CONCLUSION

We extended Fisher’s discriminate analysis from two populations to the more general case of
several (g) populations, both when the population parameters are known and when they are
unknown and must be estimated from sample data.

Fisher’s central idea remains the same:
to find linear combinations of the original variables that maximize the separation among
population means relative to the within-population variability.

When the parameters are fully specified, the discriminate functions are obtained through the
Eigen value—eigenvector decomposition of the matrix X 'B, where

e B represents between-group variability, and

e X represents the common within-group covariance matrix.
The eigenvectors corresponding to the largest eigenvalues provide the Fisher’s discriminant
functions. These linear combinations reduce dimensionality and allow clear visual separation
of the groups.

When parameters are unknown, they are replaced by sample-based estimates:
e B is estimated using sample means (between-group matrix), and
e W is estimated using pooled within-group sample covariance matrices.
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The discriminate functions obtained in this case are called Fisher’s sample discriminants, and
they are the eigenvectors of W'B. These functions not only help visualize differences
between populations but also serve as the basis for classification rules, allowing new
observations to be assigned to the population whose discriminant scores they most closely
match.

12.6 SELF ASSESSMENT QUESTIONS:

1. Explain Fisher’s method for discriminating among several populations when parameters
are specified

2. Explain Fishers method for discriminating several populations when parameters are
Unknown

12.7 SUGGESTED READING BOOKS:

1. Applied Multivariate Statistical Analysis by Richard A. Johnson and Dean W.
Wichern

An Introduction to Multivariate Statistical Analysis by T.W. Anderson
Multivariate Statistical Methods: A Primer by Bryan F.J. Manly

Multivariate Data Analysis by Joseph F. Hair, William C. Black, et al.
Psychometric Theory by Jum C. Nunnally & Ira H. Bernstein

Nk

Dr. Syed Jilani
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CLUSTER ANALYSIS

OBJECTIVES:

After studying this unit, you should be able to:
e To understand the concept and purpose of Cluster analysis
e To know the concept of Cluster analysis
e To acquire knowledge about significance of Cluster analysis

STRUCTURE

13.1 INTRODUCTION
13.2 SIMILARITY MEASURES
13.2.1 Squared Euclidean Distance
13.2.2 Chebyshev Distance
13.2.3 Minkowski Distance
13.3 EUCLIDIAN DISTANCE
13.4 MAHALANOBIS SQUARED DISTANCE D?
13.5 CONCLUSION
13.6 SELF ASSESSMENT QUESTIONS
13.7 FURTHER READINGS

13.1. INTRODUCTION

Cluster Analysis 1s an unsupervised multivariate statistical technique used to group a set of
objects (observations, variables, or cases) into clusters such that:

e Objects within the same cluster are highly similar

e Objects from different clusters are dissimilar
The goal is to uncover the natural structure or pattern present in multivariate data without
using any prior group labels.

Cluster analysis is widely used in:
e Data mining
Marketing segmentation
Bioinformatics
Image recognition
Pattern classification
e Social sciences and medical research
Cluster analysis relies on similarity (or dissimilarity) measures, which quantify how close or
far apart two observations are. The most commonly used measures are based on distance.

In multivariate analysis, the concept of similarity or dissimilarity plays a central role in
understanding relationships among objects. When observations are described by several
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variables, the distance between them indicates how close or far they are in multidimensional
space. These distance measures form the foundation of several multivariate techniques such
as cluster analysis, multidimensional scaling (MDS), discriminant analysis, and nearest-
neighbour classification.

A similarity measure quantifies how alike two objects are. In most applications, this is
expressed in terms of a distance, where:

e Small distance — high similarity

e Large distance — low similarity
Different measures capture different aspects of variation, and choosing the appropriate
distance metric is crucial for accurate data analysis.

The most commonly used distance-based similarity measures include the Squared Euclidean
Distance, Chebyshev Distance, and Minkowski Distance, each with its mathematical form
and geometric interpretation.

13.2 SIMILARITY MEASURES

Cluster analysis groups objects so that objects within the same cluster are similar and
objects in different clusters are dissimilar. To do this, we use similarity or distance measures.
- Squared Euclidean Distance
- Chebyshev Distance
- Minkowski Distance

Distance, such as the Euclidean distance, is a dissimilarity measure and has some well known
properties:

1. d(p, q) > 0 for all p and ¢, and d(p, q) = 0 if and only if p = ¢,

2.d(p, q) =d(q,p) for all p and ¢,

3. dp,r) <d(p,q) +d(q,r) for all p, g, and r, where d(p, q) is the distance (dissimilarity)
between points (data objects), p and g.

A distance that satisfies these properties is called a metric. Following is a list of several
common distance measures to compare multivariate data. We will assume that the attributes
are all continuous.

13.2.1 Squared Euclidean Distance:

The Squared Euclidean Distance (SED) between two points (objects) in a p-dimensional
space is defined as the sum of the squared differences between the corresponding coordinates
of the two points.

For two observations

Xz‘z(xil,xiz, ..... ,xi)
X:(x ¥ x)

j 12 j2omeep
the Squared Euclidean Distance is:

a2 (i, 3) =3 (0~

Interpretation
e It measures how far apart two objects are in multidimensional space.
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e It gives more weight to large differences because the differences are squared.
e It is widely used in clustering algorithms like k-means, Ward’s method, and MDS
when distances are required.

Squared Euclidean Distance: Advantages
1. Computationally simpler and faster
e The square root is not computed, unlike Euclidean distance.
e This reduces computation time, especially in large datasets and high-dimensional
clustering (e.g., k-means).
2. Emphasizes larger differences
e Squaring magnifies large deviations.
e Hence, objects that differ strongly on some variables are placed much farther apart.
e Useful when large deviations are important for clustering or classification.
3. Consistent with many clustering criteria
e Methods like k-means, Ward’s method, and minimum-variance clustering are based
on minimizing sum of squared distances.
e SED directly matches the Within-Cluster Sum of Squares (WCSS) objective.
4. Geometrically interpretable
e Although the square root is removed, the interpretation of distance is still consistent
with Euclidean geometry.
e Preserves relative ordering of distances (monotonic with Euclidean distance).

Disadvantages
1. Sensitive to outliers
e Squaring increases the effect of extreme values disproportionately.
e A single large deviation can dominate the distance and distort clustering results.
2. Requires variables to be on the same scale
e If variables have different units (e.g., height in cm, weight in kg), the larger-scale
variable dominates the squared distance.
e Standardization (z-scores) is necessary before computing SED.
3. Ignores correlation between variables
e Assumes variables are independent.
e In multivariate data with correlated variables, SED may misrepresent true
dissimilarity.
e (Mahalanobis distance handles this better.)
4. Provides distances in squared units
e Distances are not in original units, so interpretation (e.g., “actual distance”) is less
intuitive compared to Euclidean distance.
5. Can lead to over-separation of clusters
e Because large differences are heavily penalized, clusters may appear artificially
separated in high-dimensional spaces.

Example:
Let two observations be:

X1=(2,4,5), X>»=(3,7,1)
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di=(2-3) +(4-7) +(5-1)

= (1) +(:3) +(4)
“149+16=26

So, Squared Euclidean Distance = 26.

13.2.2 Minkowski Distance
The Minkowski distance is a generalization of the Euclidean distance.

With the measurement, xi, i=1,...,N, k=1, ..., p, the Minkowski distance is

1
L p 2 N
dy (1, J) = [Z‘xz‘k _xjk‘ j
k=1
where A > 1. It is also called the Ly metric.
e A =1:L; metric, Manhattan or City-block distance.

e A =2:L,metric, Euclidean distance.

e A — o0 : L, metric, Supremum distance.

P 2 2
lim A — OO[Z‘x[k —X; j = max(‘x” =X
k=1

Note that A and p are two different parameters. Dimension of the data matrix remains finite.

Advantages of Minkowski Distance
1. Highly flexible
e By varying q, it can behave like several popular distance metrics.
e Users can tune the distance measure depending on the structure of the data.
2. Includes many useful metrics as special cases
o Useful in clustering, pattern recognition, and machine learning because one formula
COVers:
o Manhattan
o Euclidean
o Chebyshev
3. Can control contribution of variable differences
e Lower q reduces the influence of large differences.
o Higher q highlights large deviations.
o Helps adapt to different data patterns.
4. Useful in machine learning and pattern recognition
e Many algorithms allow selecting the order qqq to improve classification or clustering
performance.

Disadvantages of Minkowski Distance
1. Sensitive to variable scale
e Like FEuclidean and Manhattan distances, variables with larger numeric values
dominate the distance.
e Requires standardization (z-scores).
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2. Sensitive to outliers (for large q)
e For g>2, large deviations are magnified.
e Makes clustering unstable if dataset contains extreme values.
3. Computational difficulty for non-integer q
e For fractional orders (e.g., g=1.5), computation becomes slower and more complex.
4. Choosing the right q is not straightforward
e No universal rule for selecting qqq.
e Often requires trial-and-error or cross-validation.
5. Not suitable for categorical variables
e Only applicable to continuous or numeric variables.

13.2.3 Chebyshev Distance

The Chebyshev Distance (also called Lo norm or maximum metric) between two points in a
p-dimensional space is defined as the maximum absolute difference among their
corresponding coordinates.

For two observations
X, =(xl.1,xi2, ..... ,xl.p),Xj =(xj1,xj2, ..... X, )

the Chebyshev distance is:

Interpretation
o It measures the greatest deviation between two points along any coordinate.
e Only the largest coordinate difference contributes to the distance; smaller differences
are ignored.
e Geometrically, it forms square-shaped (in 2D) or cube-shaped (in 3D) contours,
unlike the circular Euclidean distance.
Example
Let
X1=(4,9,2), X>=(7,3,5)

|4-7|=3
|9 —3| =3
2-5]=3
Chebyshev distance:

d,, =max(3,6,3)=6
Advantages of Chebyshev Distance

1. Simple and fast to compute
e Requires only absolute differences and a max operation.
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o Useful in large datasets and real-time systems.
2. Captures the dominant difference
e Good when the largest coordinate difference decides similarity.
o Useful in quality control, chess (king’s moves), and bottleneck problems.
3. Robust when small variations are unimportant
e If similarity should depend only on the worst-case difference, Chebyshev is
appropriate.
4. Works well in grid-based or discrete spaces
e Frequently used in:
o Image processing
o Pattern recognition
o Chessboard distances
o Robotics path planning

Disadvantages
1. Ignores all but the largest difference
e Smaller but meaningful differences across several variables are completely
neglected.
o Poor for datasets where overall variation matters.
2. Very sensitive to noise / outliers
e A single noisy measurement (large deviation) dominates the distance.
3. Requires variables to be on the same scale
o Same issue as Euclidean, Manhattan, and Minkowski distances.
o Standardization is necessary in multivariate applications.
4. Geometry may not match natural clustering
e Square/cube contours may not reflect the natural shapes of clusters in real data.
e Often gives unnatural groupings compared to Euclidean distance.

13.3 EUCLIDEAN DISTANCE

The Euclidean Distance between two points in a p-dimensional space is the straight-line
distance between them. It is derived from the Pythagorean theorem.
For two observations:

X, :(leaxl'z, ..... X, )
X,:(x x X )

j 1o 2oty

the Euclidean distance is defined as:

p
dy. = ’kzzll(xik =X, )2

Interpretation
o It measures the actual geometric distance between two objects.
e Most commonly used in cluster analysis, MDS, nearest-neighbour classification, and
multivariate space.
e Produces circular (2D) or spherical (3D) distance contours.
Example
Let
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X1=(2,5,6), X2=(5,1,3)

=5.83

Advantages of Euclidean Distance
1. Intuitive and easy to understand
o Direct extension of the Pythagorean theorem.
e Matches our natural perception of distance.
2. Geometrically meaningful
o Represents actual spatial distance.
e Good for visualization, clustering, and MDS.
3. Most commonly used in clustering
o Works well when clusters are spherical or compact.
e Basis for many algorithms like k-means, hierarchical clustering (single, complete,
average linkage).
4. Sensitive to overall differences
o Takes all variable differences into account, not just maximum (Chebyshev) or sum of
absolute differences (Manhattan).

Disadvantages
1. Sensitive to scale of measurement
e Variables with large numeric range dominate the distance.
Solution: Standardize (z-scores) before computing distance.
2. Sensitive to outliers
e Squaring magnifies extreme deviations (similar to squared Euclidean).
3. Assumes variables are uncorrelated
e Does not consider variable relationships.
Solution: Use Mahalanobis distance when variables are correlated.
4. Less effective in high dimensions
o Suffers from curse of dimensionality:
o Distances converge
o Loss of discriminating power
o Clustering performance deteriorates
5. Not suitable for categorical variables
e Only applicable to continuous or numeric variables.

13.4 Mahalanobis Distance

Let X be a N x p matrix. Then the i row of X is
x! :(xl.l,.....,xip)

The Mahalanobis distance is
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R

where ) is the pxp sample covariance matrix.

13.5 CONCLUSION

Similarity and distance measures play a foundational role in multivariate analysis, as they
provide the quantitative basis for comparing observations in multidimensional space. The
choice of an appropriate distance metric directly influences the outcomes of clustering,
classification, and dimensionality reduction techniques.

The Squared Euclidean Distance, Chebyshev Distance, and Minkowski Distance represent
flexible and widely used dissimilarity measures, each capturing different patterns of variation
depending on whether overall differences, maximum deviations, or generalized norms are
emphasized. The Euclidean Distance, being the most intuitive and geometrically interpretable
metric, remains central to many multivariate techniques, especially when variables are on
similar scales and uncorrelated.

However, real-world datasets often contain variables that differ in scale and exhibit
interdependence. In such cases, the Mahalanobis Squared Distance (D?) provides a more
robust and statistically sound measure by incorporating variance—covariance structure,
allowing for meaningful comparisons even when variables are correlated.

Overall, understanding and selecting the appropriate distance measure is essential for
accurate data interpretation, effective clustering, and reliable multivariate modeling. A clear
knowledge of these measures enhances analytical decisions and leads to more insightful
conclusions in multivariate statistical studies.

13.6 SELF ASSESSMENT QUESTIONS:

1. Explain the concept of similarity and dissimilarity measures in multivariate analysis.
Why are they important for clustering and multidimensional scaling?
2. Derive the formula for Squared Euclidean Distance and discuss its advantages and
disadvantages. In what situations is it preferred over Euclidean Distance?
. Define Chebyshev Distance. Provide a numerical example
4. What is Minkowski Distance? Discuss how Euclidean Distance and Manhattan Distance
arise as special cases.

5. Derivation of Mahalnobis D’ test statistic to test Hy:p, =p, vs H,:p, #p, and the

(O8]

relationship between Hotelling’s 7 and Mahalnobis D’
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13.7 SUGGESTED READING BOOKS:

kv

Applied Multivariate Statistical Analysis by Richard A. Johnson and Dean W.
Wichern

An Introduction to Multivariate Statistical Analysis by T.W. Anderson
Multivariate Statistical Methods: A Primer by Bryan F.J. Manly

Multivariate Data Analysis by Joseph F. Hair, William C. Black, et al.
Psychometric Theory by Jum C. Nunnally & Ira H. Bernstein.

Dr. Syed Jilani
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14.1. INTRODUCTION

Multivariate methods deal with the analysis of data of more than two variables recorded
from n sample objects selected from a specified population. Since the sample objects are
selected from a specified population, the units are assumed to be homogeneous in respect of
some characteristics. However, the values of different variables recorded from sample objects
are not strictly uniform, though there should not be any systematic difference in the objects.
In general, we expect some variations in the values of the variables, even if the sample
objects are uniform in respect of some characters. For example, the income or the expenditure
of middle class of people in a country are not exactly uniform, though they belong to the
same class.

Again, the people of a country can be classified as rich, upper middle class, lower middle
class and poor. For each class of people there may be common variable which influences the
economic condition. For example, the income of a person depends on his education. This is
true for every class of people. But their income or expenditure are not uniform. Therefore,
there may be some systematic difference in values of the variables recorded from sample
objects, there may be some similarities in the recorded observations of sample objects. Those
sample objects which are similar in their recorded information may form a group. Dissimilar
objects fall in different groups. In general, the objects that share similar characteristics are
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found together. In statistics, the search for relatively homogeneous objects is called cluster
analysis.

The cluster analysis has wide application in biology, medicine, agriculture, marketing,
etc. The numerical taxonomy in the field of biology is used to classify the animals into class,
order and families. Different species of plants have different characteristics. Therefore, plant
specimens can be classify into homogeneous groups. In agriculture, the land fertility of a
particular region may not be homogeneous for any type of crop. Then the pieces of land
sharing similar fertility for a particular may be grouped together. The milk production of
cows, even of the same type, may vary due to lactation period. Then the cows of the same
lactation period may be grouped together. In economics, the people of a city center may be
grouped according to their socio-economic condition. In marketing, people can be grouped
according to the similar buying habits. In medicine, the patients having similar disease may
be clustered together.

Since similar objects form a cluster, all the sample points in any cluster will provide
similar information about the population characteristics. Thus, for further analysis one may
include one object from each cluster analysis is a data reduction technique in rows of the data
matrix.

What is Clustering?

Cluster analysis is a technique used in data mining and machine learning to group similar
objects into clusters. K-means clustering is a widely used method for cluster analysis
where the aim is to partition a set of objects into K clusters in such a way that the sum of
the squared distances between the objects and their assigned cluster mean is minimized.
Hierarchical clustering and k-means clustering are two popular techniques in the field of
unsupervised learning used for clustering data points into distinct groups. While k-means
clustering divides data into a predefined number of clusters, hierarchical clustering
creates a hierarchical tree-like structure to represent the relationships between the
clusters.

Example:

Let’s try understanding this with a simple example. A bank wants to give credit card
offers to its customers. Currently, they look at the details of each customer and, based on
this information, decide which offer should be given to which customer.

Now, the bank can potentially have millions of customers. Does it make sense to look at
the details of each customer separately and then make a decision? Certainly not! It is a
manual process and will take a huge amount of time.

So what can the bank do? One option is to segment its customers into different groups.
For instance, the bank can group the customers based on their income:
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Can you see where I’'m going with this? The bank can now make three different strategies
or offers, one for each group. Here, instead of creating different strategies for individual
customers, they only have to make 3 strategies. This will reduce the effort as well as the
time.

The groups I have shown above are known as clusters, and the process of creating these
groups is known as clustering. Formally, we can say that:

In clustering, we do not have a target to predict. We look at the data, try to club similar
observations, and form different groups. Hence it is an unsupervised learning problem.
We now know what clusters are and the concept of clustering. Next, let’s look at the
properties of these clusters, which we must consider while forming the clusters.

Let X(nx p)be a data matrix from a specified population. Let the values of the p
variables observed from n sample objects be denoted by X,,X,,...,. X, . The objective of the
cluster analysis is to group these n vector of values into n,(n, <n) vectors so that the

elements in a group are homogeneous. Here the method of clustering is on the basis of one-
sample observations. Let X i [i=1, 2,.,n;j=1, 2,...,m] be the vector of values of p variables

of i-th object in j-th sample. Here the objective of clustering is to form m, groups (m,<m)of
sample observations in different groups are heterogeneous.

From above discursion is is clear that the CA reduces the sample observations in
size. It has similar property of other data reduction technique. Namely, PCA . this analysis
has a similarity with DA in respect of classification of observations. But DA derives a rule
for an allocating an object to its proper properties based on some prior information of the
group membership of the object. Whereas, the CA identifies homogeneous groups or clusters.

There is no unified approach on what actually constitute a cluster. As per the
definition what we have discussed above, a cluster constitutes with a similar object. Then,
we need to decide on a measure of inter-object similarities. Also, a decision is needed to
specify a procedure for forming the clusters, based on the chosen measure of similarity. The
criterion  of similarity in observations varies from researcher to researcher. However, the
basic criterion is that the objects in a cluster should be closer to each other than to objects in
other clusters. As a preliminary technique to identify the similarity of objects, one can use
the diagram of sample objects. Let us consider that from each of ‘n’ sample object values of
p variables are recorded. These values can be represented a p-dimensional diagram. The
values of each variable are plotted in each separate axis. If n sets of values are plotted in p-
axes, a diagram will be formed. The cluster can be formed with those objects, which lie
nearer in an area of the diagram but are dispersed from another area. The cluster can also be
formed mathematically calculating distances among sample objects.

14.2 BASIC STEPS OF CLUSTER ANALYSIS:

In CA, the sample objects are clustered on the basis of some characteristics. Therefore, to
start with the analysis, a number of decisions must be made regarding the characteristics to be
considered, the variables to be included in the analysis, the measurement of distance between
objects and the criterion to group the objects.
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The selection of variables for any CA is important, since the exclusion of important
variables will be poor or misleading findings. For eg., if any marketing research the
consumers are needed to be clustered, their tastes and habits and their economic capacities
must be considered. Otherwise, the clustering of consumers will not be fruitful. The initial
choice of variables determines the characteristics that can be used to identify subgroups.

After the selection of variables, the next important point to be considered is to
measure the distance and similarity become objects. Two objects will be included in two
separate groups, if their distance is maximum and they will be included in one group if they
are close to each other. Therefore, one of the important steps in cluster analysis is to measure
the distance among objects.

The measurement of similarity of their distance is divided into two main parts. One of
this is (a) distance — type measure, and another is (b) matching — type measure.

14.3 CLUSTER LINKAGE METHODS:

The linkage method that you choose determines how the distance between two clusters is
defined. At each amalgamation stage, the two closest clusters are joined. At the beginning,
when each observation constitutes a cluster, the distance between clusters is just the inter-
observation distance. Subsequently, after observations are joined together, a linkage rule is
necessary for calculating inter-cluster distances when there are multiple observations in a
cluster. You might want to try several linkage methods and compare results. Depending on
the characteristics of your data, some methods may provide "better" results than others.

14.3.1 Single Linkage Method:
Single linkage agglomerative clustering is a hierarchical clustering algorithm that works by
iteratively merging the two closest clusters based on the minimum distance between their
closest members. The steps involved in it are:

1. Start with assigning each observation to its own cluster.

2. Compute the distance between all pairs of clusters using a chosen distance metric
(e.g., Euclidean distance).
Merge the two closest clusters into a single cluster.
Recompute the distance between the new cluster and all remaining clusters.

5. Repeat steps 3 and 4 until all observations belong to a single cluster, or until a pre-

defined number of clusters has been reached.

In single linkage agglomerative clustering, the distance between two clusters is defined as
the minimum distance between any two points in the clusters. This is why it’s also called
the “nearest neighbor” or “single linkage” clustering.

B
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One disadvantage of single linkage agglomerative clustering is that it can produce long,
trailing clusters that do not represent well-defined groups, also known as chaining
phenomenon. This can be overcome by using other linkage criteria such as complete
linkage, average linkage, or Ward’s linkage.

Example 1: Numerical Example

A B C D
Ao ks 10 |
B | o s E |
c s s o 4 |
D 10 9 4 0

Distance Matrix:

A-B=2
A-C=6
A-D=10
B-C=5
B-D=9
C-D=4

Step 1: Smallest distance =2 — Merge A & B — Cluster {A,B}
Step 2: Update distances:

(A,B)-C =min(6,5) =5

(A,B)-D =min(10,9) =9

Step 3: Next smallest =4 — Merge C & D — Cluster {C,D}
Step 4: Distance between clusters:

D({A,B},{C,D}) =min(6,10,5,9) =5

Final:

A-B merge at 2

C-D merge at 4

(AB)-(CD) merge at 5

14.3.2 Complete linkage agglomerative clustering

Complete linkage agglomerative clustering is another hierarchical clustering algorithm that
works by iteratively merging the two closest clusters based on the maximum distance
between their furthest members.

The steps involved in the complete linkage agglomerative clustering algorithm are:
1. Start with assigning each observation to its own cluster.
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2. Compute the distance between all pairs of clusters using a chosen distance metric

(e.g., Euclidean distance).

Merge the two closest clusters into a single cluster.

Recomputed the distance between the new cluster and all remaining clusters.

5. Repeat steps 3 and 4 until all observations belong to a single cluster, or until a pre-
defined number of clusters has been reached.

nalie

1) In complete linkage agglomerative clustering, the distance between two clusters is
defined as the maximum distance between any two points in the clusters. This is why it’s
also called the “furthest neighbor” or “complete linkage™ clustering.

2)

Compared to single linkage agglomerative clustering, complete linkage tends to produce
more compact, spherical clusters that are less prone to the chaining phenomenon. However,
it’s more sensitive to outliers and can produce unbalanced clusters if there are extreme
values or noise in the data.

Example:

This document provides a detailed, step-by-step explanation of Complete Linkage
Agglomerative Hierarchical Clustering using a sample dataset of five objects: A, B, C, D, and
E. Complete Linkage considers the **maximum distance** between elements of two clusters
when merging.

1. Distance Matrix

A B C D E
A 0 4 6 7 10
B 4 0 5 9 11
C 6 5 0 4 8
D 7 9 4 0 6
E 10 11 8 6 0

The above table contains the pairwise Euclidean distances between all objects.
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2. Step-by-Step Clustering Process

Step 1: Find the Closest Pair

We examine all distances and identify the smallest value. The minimum distance is **4**,
which occurs for the pairs (A, B) and (C, D). We merge one pair first—here, we merge (A,
B).

Step 2: Update Distances Using Complete Linkage
Complete linkage defines the distance between two clusters as the maximum pairwise
distance between elements of the clusters. Thus, distances from cluster (AB) to other objects
are computed as:

* d(AB, C) =max(d(A, C)=6,d(B, C)=5)=6

* d(AB, D) =max(d(A, D)=7,d(B, D)=9)=9

* d(AB, E) =max(d(A, E)=10,d(B, E)=11)=11

The updated distance matrix becomes:

AB C D
AB 0 6 9
C 6 0 4
D 9 4 0

Distances to E are handled separately in continuation tables to avoid clutter.

Step 3: Merge the Next Closest Pair
The smallest remaining distance is 4 for the pair (C, D). Thus, we merge C and D to form
cluster (CD).

Step 4: Recompute Distances Between Clusters (AB), (CD), and E
Compute complete linkage distances:

* d(AB, CD) =max(6, 7, 5,9)=9

* d(CD, E) =max(8, 6) =8

Thus, the updated distance matrix (clusters AB, CD, and E) becomes:

AB CD E
AB 0 9 11
CD 0 8
E 11 8 0

Step 5: Merge Clusters (CD) and E
The smallest distance is 8, so we merge (CD, E) to form cluster (CDE).

Step 6: Final Merge

Compute complete linkage distance between clusters (AB) and (CDE):
Distances involved: A—C=6, A-D=7, A-E=10, B-C=5, B-D=9, B-E=11.
Complete linkage distance = max(all above) = 11.

Thus, clusters (AB) and (CDE) are merged to form the final single cluster.

3. Final Dendrogram Structure
1. Merge A and B at height 4.
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2. Merge C and D at height 4.
3. Merge (CD) with E at height 8.
4. Merge (AB) with (CDE) at height 11.

11

14.3.3 AVERAGE LINKAGE METHOD

Another hierarchical clustering algorithm that is commonly used in bioinformatics and
evolutionary biology is the Unweighted Pair Group Method with Arithmetic Mean
(UPGMA).

The steps involved in the UPGMA algorithm:

1. Begin by assigning each data point to its own cluster.

2. Compute the pairwise distances between all clusters based on the distance metric of
choice, such as Euclidean distance, Manhattan distance, or Pearson correlation.

3. Find the two closest clusters based on the pairwise distances and merge them into a
single cluster. The distance between the two clusters is calculated as the average of
the pairwise distances between their members.

4. Update the pairwise distances between the new cluster and all remaining clusters.
The distance between the new cluster and any other cluster is calculated as the
average of the pairwise distances between the members of the new cluster and the
members of the other cluster.

5. Repeat steps 3 and 4 until all data points belong to a single cluster.
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Example:
We have five observations in R?:

Xi=(1,1)

X2=(2,1)

X3=(4,3)

Xa=(5,4)

Xs= (5, 5)

We use Euclidean distance:

d(Xi, Xj) = sqrt[ (xil —x;1)* + (xi2 — x;2)* .

Step 1: Compute the Distance Matrix

Compute distances between all pairs (Xi, Xj).

1. d(Xl, Xz)l

d(X1, X2)=sqrt[ (1 —2)>+ (1 — 1)*]
=sqrt[ 12+ 07 ]
=1.000 (approx)

2. d(Xl, Xs)l

d(X1, Xs)=sqrt[ (1 —4)*+ (1 —3)*]
=sqrt[ (=3)*+(=2)* ]

=sqrt[ 9 +4 ]
= sqrt[13] = 3.606
3. d(Xl, X4)Z

d(Xi, Xa) =sqrt[ (1 =5)*+ (1 —4)*]
=sqrt[ (—4)* +(=3)*]
=sqrt[ 16 +9 ]
= sqrt[25] = 5.000

4. d(X1, Xs):

d(X1, Xs)=sqrt[ (1 =5)*+ (1 —5)*]
=sqrt[ (—4)* + (=4)* ]
=sqrt] 16 + 16 ]
=sqrt[32] = 5.657

5. d(Xz, Xs):

d(Xz, X3)=sqrt[ (2 —4)*+ (1 —3)*]
=sqrt[ (—=2)*+ (=2)* ]
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=sqrt[ 4 +4 ]
=sqrt[8] = 2.828

6. d(Xz, Xa):

d(Xz, Xa) =sqrt[ (2 —5)*+ (1 —4)*]
=sqrt[ (=3)*+(=3)*]
=sqrt[ 9+ 9]
=sqrt[18] = 4.243

7. d(Xz, Xs):

d(Xz, Xs)=sqrt[ (2 —5)*+ (1 = 5)*]
=sqrt[ (=3)*+ (=4)* ]
=sqrt[ 9+ 16 ]
= sqrt[25] = 5.000

8. d(Xs, Xa):

d(Xs, Xa)=sqrt[ (4 —5)*+ (3 —4)*]
=sqrt (=1)*+ (=1)*]

=sqrt[ 1 +1 ]
=sqrt[2] = 1.414
9. d(X3, XS)Z

d(Xs, Xs)=sqrt[ (4 —5)*+ (3 —5)*]
= sqrtf (1) + (-2)°]
=sqrt[ 1 +4]
=sqrt[5] = 2.236

10. d(Xa4, Xs):

d(Xa, Xs)=sqrt[ (5 —5)*+ (4 —5)*]
=sqrt[ 0>+ (—1)? ]

=1.000
Distance matrix (0 on the diagonal, rounded to 3 decimals):
X1 X2 X3 X4 X5
X1 0.000 1.000 3.606 5.000 5.657
X2 1.000 0.000 2.828 4.243 5.000
X3 3.606 2.828 0.000 1.414 2.236
X4 5.000 4.243 1.414 0.000 1.000
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X1 X2 X3 X4 XS

X5 5.657 5.000 2.236 1.000 0.000

Step 2: Hierarchical Agglomerative Clustering (Average Linkage)

Initially, each object is its own cluster:

Ci= {Xi}
Co = (X}
Cs = {Xs}
Ca= {Xa}
Cs = {Xs)

We repeatedly merge the two clusters with the smallest inter-cluster distance, using average

linkage.

Stage 1: First Merge

From the distance matrix, the smallest non-zero distances are:
d(Xi, X2) =1.000

d(Xa4, X5) =1.000

We have a tie; we may merge either pair first.

Assume we merge Xi and X first.

Merge clusters: Ci = {Xi} and C2 = {Xz}

New cluster: Ciz = {X1, X2}

Height (distance level): 1.000

Current clusters:

Ciz = (X1, X}
Cs = {Xs}
Cs = {Xa}
Cs = {Xs}

Now compute distances from Ci2 to the remaining singletons using average linkage:
d(Ci2, C3)=(1/(2 - 1)) - [ d(X1, X5) + d(X2, X3) ]

=(3.606 +2.828) /2

~6.434/2

~3.217
d(Ci2, Co)=(1/@2 - 1)) - [ d(X1, Xa) + d(X2, X4) ]
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=(5.000 +4.243) /2
~90.243/2
~4.622
d(Ci2, Cs)=(1/(2 - 1)) - [ d(X1, X5) + d(X2, X5) ]
=(5.657 +5.000) / 2
~10.657 /2
~5.329
Distances among {Cs, Ca, Cs} remain as in the original matrix:
d(GCs, Ca) =d(Xs, Xa) = 1.414
d(GCs, Cs) = d(Xs, Xs5) =2.236
d(Cs, Cs) = d(Xa4, X5) =1.000

New inter-cluster distances (rounded):

Cl2 C3 C4 Cs

Cl12 - 3.217 4.622 5.329

C3 3217 — 1.414 2.236

C4 4.622 1414 — 1.000

C5 5.329 2.236 1.000 —

Stage 2: Second Merge

The smallest distance is now:

d(C4, Cs) =1.000

So we merge clusters Cs and Cs:

Merge clusters: Ca = {Xa}, Cs = {Xs}

New cluster: Cas = {X4, X5}

Height (distance level): 1.000

Current clusters:

Ciz = {Xi, X2}

G = {Xs}

Cas = {Xa, X5}

Compute distances involving Cas:

d(Ci2, Cas)=(1/(2-2)) - Z {i € {Xi, X2}} X {j € {Xa, Xs5}} d(i,])
=(1/4) [ d(Xi, Xa) +d(X1, X5) + d(Xz, Xa) + d(X2, X5) ]
=(1/4)-[5.000 +5.657 +4.243 + 5.000 ]
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=(1/4)-19.900 = 4.975
d(Cs, Cas) = (1 /(1 - 2)) - [ d(Xs, Xa) + d(Xs, X5) ]

=(1/2)-[1.414+2236]

~3.650/2
~1.825
Existing distance d(Ci2, C3) = 3.217 remains.
Updated distances:
C12 C3 C45
C12 — 3.217 4.975
C3 3.217 — 1.825
C45 4.975 1.825 —

Stage 3: Third Merge

The smallest distance now is:

d(C3, Cas) = 1.825

So we merge Cs and Cas:

Merge clusters: Cs = {Xs}, Cas = {Xa, X5}
New cluster: Caas = { X3, Xa, X5}
Height (distance level): = 1.825

Current clusters:

Ci = {Xl, Xz}

Caas = {Xs, Xa, Xs}

Now compute the distance between these two clusters using average linkage:

d(Ciz, Caas) =(1/(2-3)) " Z {i € (X1, Xo}} T {j € {Xs, Xa, Xs}} d(i, j).

We need the 6 pairwise distances:
d(Xi1, Xs5) = 3.606
d(X1, X4) =5.000
d(Xi, Xs) = 5.657
d(X2, X3) = 2.828
d(X2, X4) = 4.243
d(X2, Xs) =5.000
Sum = 3.606 + 5.000 + 5.657 + 2.828 + 4.243 + 5.000 =~ 26.334
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So:

d(Ciz, Csas) =26.334 / 6 = 4.389

There are now only two clusters, so the final merge is at height ~ 4.389.
Stage 4: Final Merge

Merge clusters: Ciz = {X1, Xa}, Caas = {Xs, X4, X5}

New cluster: Cizzas = {X1, X2, X3, X4, X5}

Height (distance level): = 4.389

Summary of merges:

Step Merged Clusters New Cluster Distance (Height)

1 (X, (X! Cr.  1.000
2 {Xa}, {Xs) Css  1.000
3 {Xs}, Cas Cas  =1.825
4 Cua, Caas Cines  ~4.389

14.3.4 Ward Linkage Method
Ward’s method (also called the minimum variance method) is a hierarchical agglomerative
clustering technique in which, at each stage, the pair of clusters merged is the one that causes
the smallest increase in the total within-cluster sum of squares (WSS).
Let Ca and Cb be two clusters with sizes
na = |Ca| and nb = |Cb|, and let

e a=mean vector of cluster Ca

e b =mean vector of cluster Cb

Then the increase in WSS when Ca and Cb are merged is
|@— b

where || 2 — b ||? is the squared Euclidean distance between the two cluster means.

Algorithm idea (Ward’s method):

A(Ca, Cb) = nb :
a, N (na na + nb) |

1. Start with each observation as its own cluster.
2. At each step, compute A(Ca, Cb) for all pairs of current clusters.
3. Merge the pair with the smallest A(Ca, Cb).
4. Continue until all observations are in a single cluster.
(b) Worked Example with the 6 Observations
We have six points in R*2:

e XI=(1,1)
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X2=(2,1)
X3=3,2)
X4=(8,8)
X5=(9, 8)
X6=(9, 9)

We use squared Euclidean distance:

[x=y[P=&l =yl +(x2—y2).

Step 1: Squared Euclidean Distance Matrix

Compute pairwise squared distances:

PX1,X2)=(1-22+(1-1p=1

X1, X3)=(1 =32+ (1-2P=4+1=5
d2(X1,X4)= (1 -8+ (1 —8)2 =49 + 49 =98
(X1, X5)=(1-972+(1-8)2=64+49=113
d2(X1,X6) = (1 -9+ (1 —-9)2 =64 + 64 =128
(X2, X3)=(2-32+(1-22=1+1=2
d2(X2, X4) = (2 — 82 + (1 — 8)2 = 36 + 49 = 85
d2(X2, X5)= (2 - 9% + (1 - 8)> =49 + 49 =98
(X2, X6)=(2 -9 + (1 -9 =49 + 64 =113
(X3, X4) = (3 - 8) + (2 - 8)> =25 + 36 =61
d(X3,X5)=(3 -9+ (2 -8 =36+36="72
d2(X3,X6) = (392 + (2 — 9)2 = 36 + 49 = 85
d2(X4, X5)=(8— 92 +(8—8P2=1+0=1
d2(X4, X6)= (8 — 92 + (8 — 9P =1+1=2
d2(X5,X6)=(9— 92+ (8- 9P =0+1=1

Now form the squared distance matrix:

X1 X2 X3 X4 X5 X6
X1 0 1 5 98 113 128
X2 1 0 2 85 98 113
X3 5 2 0 61 72 85
X4 98 85 61 0 1 2
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X1 X2 X3 X4 X5 X6
X5 113 98 72 1 0 1
X6 128 113 85 2 1 0

Step 2: Hierarchical Clustering Using Ward’s Method
Initial clusters (each point is its own cluster):

o Cl={X1}

o (C2={X2}

e (C3={X3}

o (C4={X4}

e (C5={X5}

e C6={X6}

For singletons (na =nb = 1), we have

12 1
a1 — R
ja— ]| ( 2) a2,

So the Ward distance between two singletons is half of their squared Euclidean distance.

1
A(Ca, Cb) = (1 T 1) .

We proceed stage by stage.
Stage 1: First Merge
Look at the smallest squared distances in the matrix:
o d¥(XI1,X2)=1
o d¥((X4,X5)=1
o d¥(X5,X6)=1
All give A =(1/2)*1 = 0.5. There is a tie; we may choose any.
For definiteness, merge X1 and X2 first.
Merge: C1 = {X1},C2 = {X2} — CI2 = {X1, X2}
Cluster size: n12 =2
Cluster mean:
x12=((1+2)2,1+1D2)=(1.5,1)
Increase in WSS:
A(C1, C2) = (I*1/(1+1)) * d¥(X1, X2) = (1/2)*1 =0.5
Current clusters:
o Cl2={Xl, X2}
o (C3={X3}
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e C4={X4)
e C5={X5}
e C6={X6}

Stage 2: Second Merge

Among the remaining singletons {X3, X4, X5, X6}, the smallest squared distances are

o d¥((X4,X5)=1

o d¥(X5,X6)=1
So again A = 0.5 for these possible merges.
Choose to merge X4 and X5 next.
Merge: C4 = {X4}, C5 = {X5} — C45 = {X4, X5}
Cluster size: n45 =2
Cluster mean:
x45=((8+9)2,(8+8)2)=(8.5,8)
Increase in WSS:
A(C4, C5) = (1*1/(1+1)) * d¥(X4, X5) = (1/2)*1 =0.5
Current clusters:

o Cl2={Xl, X2}

o (C3={X3}

o (45={X4,X5}

o C6={X6}
Stage 3: Third Merge
We now have four clusters: C12, C3, C45, C6.
We must compute A(Ca, Cb) for all pairs using
A(Ca, Cb) = (na*nb/(na+nb)) *||a—b |
First compute means:

e Cl2:x12=(1.5,1),n12=2

e (C3:x3=(3,2),n3=1

o (45:x45=(8.5,8),n45=2

e C6:x6=(9,9),n6=1
Now compute A for the pairs:

1. ACI2,C3)
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k12 — %3 |P

= (1.5-3)2+(1 -2

— (-5 + (-1

=225+1=325

A(C12, C3) = (2¥1/(2+1)) * 3.25 = (2/3)*3.25 = 2.167
2. A(C45,C6)

| %45 — %6 |P

—(8.5-9)+ (8 — 9

= (~0.5) + (—1)

—025+1=125

A(C45, C6) = (2*1/(2+1)) * 1.25 = (2/3)*1.25 =~ 0.833
3. A(C12,C45)

| R12 — %45 |P

=(1.5—- 8.5+ (1 — 8y

=7+ (77

— 49 + 49 = 98

A(C12, C45) = (2%2/(2+2)) * 98 = (4/4)*98 = 98.0

4. A(C12,C6)

K12 — %6 |P

—(1.5-9P+ (1 -9

— (~7.5) + (-8)

=56.25 + 64 = 120.25

A(C12, C6) = (2*1/(2+1)) * 120.25 = (2/3)*120.25 = 80.17
5. A(C3,C45)

| X3 — %45 |P

—(3-8.5)2+(2 -8y

= (-5.5) + (—6)

=30.25 + 36 = 66.25

A(C3, C45) = (1%2/(1+2)) * 66.25 = (2/3)%66.25 = 44.17
6. A(C3,C6)

1%3 - %6 |P

—(3-92+(2-9p
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= (=6 + (=7
=36 +49=285
A(C3, C6) = (1*1/(1+1)) * 85=(1/2)*85=42.5
The smallest A is:
A(C45, C6) =~ 0.833
So we merge C45 and Cé6.
Merge: C45 and C6 — C456 = {X4, X5, X6}
Cluster size: n456 =3
Cluster mean:
X456 =((8+9+9)/3,(8+8+9)/3)=(26/3,25/3)=(8.67, 8.33)
Increase in WSS:
A(C45, C6) = 0.833
Current clusters:
o Cl2={Xl, X2}
e (3={X3}
o (456 = {X4, X5, X6}
Stage 4: Fourth Merge
Now we have three clusters: C12, C3, C456.
Means and sizes:
o Cl2:x12=(1.5,1),n12=2
e (C3:x3=(3,2),n3=1
o (456:x456 =~ (8.67,8.33),n456 =3
Compute A again:
1. A(C12, C3) (already calculated)
|| X12 —x3 |*=3.25
A(C12, C3) = (2*1/(2+1)) * 3.25 =(2/3)*3.25 = 2.167
2. A(C12, C456)
|| X12 — X456 ||
~(1.5—-8.67)*+ (1 —8.33)?
= (=7.17)* + (=7.33)?
~51.39+53.73 = 105.12
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A(C12, C456) = (2*¥3/(2+3)) * 105.12
=(6/5)*105.12

~126.17

3. A(C3, C456)

|| X3 — X456 |]?

~(3-8.67)*+ (2 —8.33)?

= (=5.67)* + (—6.33)?
~32.15+40.07=72.22

A(C3, C456) = (1*3/(1+3)) * 72.22
=(3/4)*72.22

~54.17

Smallest A is:

A(C12,C3)=2.167

So we merge C12 and C3.

Merge: C12 and C3 — C123 = {X1, X2, X3}
Cluster size: n123 =3

Cluster mean:

K123 =((1+2+3)3,(1+1+2)3)=(6/3,4/3) = (2, 1.33)

Increase in WSS:
A(C12,C3)=2.167
Current clusters:
o Cl123={Xl, X2, X3}
o (456 = {X4, X5, X6}
Stage S: Final Merge
Only two clusters remain: C123 and C456.
Sizes and means:
e C(Cl123:n123=3,x123=(2,1.33)
e (456:n456 =3, X456 = (8.67, 8.33)
Compute A(C123, C456):
|| X123 — X456 |
~(2-8.67)*+(1.33 —8.33)
= (—6.67)* + (—7.00)*
~44.49 +49.00 =~ 93.49
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A(C123, C456) = (3*3/(3+3)) * 93.49
= (9/6)%93.49

= (3/2)%93.49

~140.17

This is a very large increase in WSS compared to previous merges.

Merge: C123 and C456 — C123456 (all points in one cluster).

This completes the clustering.

Step |[Merged Clusters New Cluster A (Increase in WSS)
1 {X1}, {X2} C12 0.50

2 {X4}, {X5} C45 0.50

3 C45, {X6} C456 ~0.83

4 C12, {X3} C123 ~2.17

5 C123, C456 C123456 ~ 140.17

(c) Suggested 2-Cluster Solution and Interpretation

From the merge sequence and the jump in A:

Up to Step 4, increases in WSS are small (0.5, 0.5, 0.83, 2.17).
The final merge (Step 5) has a massive increase in WSS (= 140.17).

So, a natural 2-cluster solution is obtained before the last merge:

Cluster 1: C123 = {X1, X2, X3}
Cluster 2: C456 = {X4, X5, X6}

Interpretation:

Cluster {X1, X2, X3} lies in the lower-left region of the plane, with small internal
variation.
Cluster {X4, X5, X6} lies in the upper-right region, again with small internal
variation.
Merging these two clusters causes a very large increase in within-cluster sum of

squares, so Ward’s method strongly supports two compact, well-separated clusters.

14.3.5 Centroid Linkage Method:

In hierarchical agglomerative clustering, the centroid linkage method defines the distance

between two clusters as the Euclidean distance between their centroids (mean vectors).
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Let Ca and Cb be two clusters with sizes
e na=|Cal,
e nb=|Cb|,
and let
e m_a = centroid (mean vector) of Ca,

e m_b = centroid (mean vector) of Cb.

Then

1 1 Z
Mg = — XiMy = — X,
a n, i b n, ]

ieCy iECp

and the centroid linkage distance is

dcentmid (Ca- Ch) = ||'ma - Jmh” = JZ(”la.k - ”lh.k)z
Kk

Algorithm (Centroid Linkage):
1. Start with each observation as its own cluster.
2. Ateach step, compute d_centroid(Ca, Cb) for all pairs of clusters.
3. Merge the pair of clusters whose centroids are closest (smallest d_centroid).
4. Recompute centroids for the new clusters and repeat.
This method is described in multivariate analysis texts such as Anderson (2000) and Johnson
& Wichern (2001).
Worked Example with the S Observations

Observations in R?;

e X1=(1,2)
o« X2=(2,1)
e X3=(3,2)
o X4=(7,8)
e X5=(8,9)

We use Euclidean distance:

d(X,.,Xj)=\/(X,.1 _Xj1)2 +(Xf2 _ij)z

Step 1: Distance Matrix Between All Pairs
Compute d(Xi, Xj) for all i<j.
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1. d(X1, X2)
d(X1, X2)="[(1-2p+ 2 -1y
=V[(-172+ (1)
=V(1+1)=2~1414

2. d(X1, X3)

d(X1, X3)="[(1 -3+ (2 -2)]
=[(-2)* + 07]

=(4) =2.000

3. d(X1, X4)

d(X1, X4)=~[(1 - 772+ (2 - 8)]
=V[(-6)* + (-6)*]

=(36 +36) =72 ~ 8.485

4. d(X1, X5)

d(X1, X5)="[(1 — 82+ (2 - 9)?]
=V[(=7p + (=77

= (49 + 49) = V98 =~ 9.899

5. d(X2, X3)

d(X2, X3)="[(2 -3+ (1 —2)]
=V[(-13+ (-1)]
=\V(1+1)=2~=1414

6. d(X2, X4)

d(X2, X4)=[2 - 72+ (1 - 8)?]
=V[(=5) + (=77

=(25 +49) =74 ~ 8.602

7. d(X2, X5)

d(X2, X5)="[(2 - 82 + (1 — 9)?]
=V[(-6)* + (-8)]

=(36 + 64) = V100 = 10.000

8. d(X3, X4)

d(X3, X4)=V[(3 - 72+ (2 — 8)?]
=V[(-4)* + (-6)]

= (16 +36) =52 = 7.211

9. d(X3, X5)
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d(X3, X5)=V[(3 — 82+ (2 — 9)?]
=5+ (-77]

=(25 + 49) =74 ~ 8.602

10.  d(X4, X5)

d(X4, X5)=[(7 — 82 + (8 — 9)?]
=N+ (17
=J1+1)=V2~=1414

Distance matrix (rounded to 3 decimals):

X1 X2 X3 X4 X5

X1 /0.000 1.414 2.000 8.485 9.899

X2 |1.414 0.000 1.414 8.602 10.000
X3 |2.000 1.414 0.000 7.211 8.602
X4 |8.485 8.602 7.211 0.000 1.414

X5 19.899 10.000 8.602 1.414 0.000

Step 2: Hierarchical Clustering with Centroid Linkage
Initially, each observation is its own cluster:
o Cl={Xl1}
o (C2={X2}
o (3={X3}
o (C4={X4}
o (C5={X5}
For a cluster C with points Xi, the centroid is
m(C)=(1/|C|) £ _{ie C} Xi.
The cluster distance is:
d_centroid(Ca, Cb) = || m(Ca) — m(Cb) ||.
For singletons, m({Xi}) = Xi, so initially d_centroid({Xi}, {Xj}) = d(Xi, Xj).
Stage 1: First Merge
From the distance matrix, the smallest non-zero distances are:
o d(XI1,X2)=1.414
o d(X2,X3)=1.414
o d(X4,X5)=1.414
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We have a tie. We can choose one pair.
Assume we first merge X1 and X2.
Merge: C1 = {X1},C2 = {X2} — CI2 = {X1, X2}
Cluster size: |C12| =2
Centroid of C12:
m(C12)=((1+2)2,2+1)2)=(1.5,1.5)
Current clusters:

o Cl2={XI, X2}

e (C3={X3}

o (C4={X4}

o C5={X5}
Now compute centroid distances from C12 to the remaining singletons:
1. d_centroid(C12, C3)
m(C3)=X3=(3,2)
Difference: (1.5 —3, 1.5 —2)=(-1.5,-0.5)
I m(C12) — m(C3) |
=\[(~=1.5)2 + (=0.5)]
=(2.25+0.25)=2.5~ 1.581
2. d centroid(C12, C4)
m(C4)=X4=(7,8)
Difference: (1.5 —7, 1.5 —8) =(—5.5, —6.5)
I m(C12) — m(C4) ||
=[(-5.5)* + (—6.5)]
=(30.25 + 42.25)
=72.5=8.515
3. d_centroid(C12, C5)
m(C5)=X5=(8,9)
Difference: (1.5 — 8, 1.5 = 9) = (-6.5, —7.5)
I m(C12) — m(C5) |
=V[(-6.5)* + (-7.5)]
= (42.25 + 56.25)
=98.5 = 9.925

Distances among C3, C4, C5 are still the original point distances:
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o d(C3,C4)=d(X3,X4)=7.211
e d(C3,C5)=d(X3, X5) = 8.602
e d(C4,C5)=d(X4, X5)= 1.414

Updated inter-cluster distances (Stage 1):

C12 C3 C4 C5s
Cl12 |- 1.581 8.515 9.925
C3 1.581 — 7.211 8.602
C4 8.515 7.211 — 1.414
C5 9.925 8.602 1.414 —

Stage 2: Second Merge
The smallest distance now is:

e d(C4,C5)=1.414
So we merge C4 and CS5.
Merge: C4 = {X4}, C5 = {X5} — C45 = {X4, X5}
Cluster size: |[C45| =2
Centroid of C45:
m(C45)=((7+8)/2,(8+9)2)=(7.5,8.5)
Current clusters:

o Cl2={Xl1, X2}

o (C3={X3}

o (45={X4, X5}
Now compute distances:
1. d centroid(C12, C3) (unchanged from before)
d(C12, C3) = 1.581
2. d_centroid(C3, C45)
m(C3) = (3, 2), m(C45)=(7.5, 8.5)
Difference: (3 —7.5,2 — 8.5) =(—4.5, —6.5)
| m(C3) —m(C45) ||
=[(—4.5)* + (=6.5)?]
=(20.25 + 42.25)
=62.5=7.906
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3. d centroid(C12, C45)

m(C12) = (1.5, 1.5), m(C45) = (7.5, 8.5)
Difference: (1.5 — 7.5, 1.5 — 8.5) = (-6, —7)
| m(C12) — m(C45) ||

=[-6y + (7]

= (36 + 49)

=85 ~9.220

Updated inter-cluster distances (Stage 2):

C12 C3 C45
Cl12 — 1.581 9.220
C3 1.581 — 7.906
C45 9.220 7.906 —

Stage 3: Third Merge

The smallest distance is:

. d(C12,C3) = 1.581

So we merge C12 and C3.

Merge: C12 and C3 — C123 = {X1, X2, X3}
Cluster size: |C123|=3

Centroid of C123:

1+2+32+1+2
3 ' 3

m(C123) = ( ) = (z,g ~ (2.1.667)

C45 remains as before with centroid (7.5, 8.5).
Now compute

d_centroid(C123, C45):

Difference: (2 — 7.5, 1.667 — 8.5) = (5.5, —6.833)
|| m(C123) — m(C45) ||

~\[(=5.5) + (=6.833)?]

~(30.25 + 46.71)

~76.96 = 8.772

Only two clusters remain:

. C123 = {X1, X2, X3}
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. C45 = {X4, X5}
Final distance between them = 8.772.

Summary of merges (Centroid linkage):

Step|Merged Clusters||New Cluster|Centroid of New Cluster|Distance at Merge
1 {X1}, {X2} Cl12 (1.5, 1.5) 1.414
2 {X4}, {X5} C45 (7.5, 8.5) 1.414
3 C12, {X3} C123 (2,1.667) 1.581
4 |IC123,C45 C12345 (all points) 8.772

Note the large jump from about 1.581 to 8.772 in the last merge.

(c¢) 2-Cluster Solution and Interpretation
From the merge sequence:
e Up to Step 3, the distances between merging clusters are small (1.414, 1.414, 1.581).
e At Step 4, merging C123 and C45 requires a much larger distance (~8.772).
A natural 2-cluster solution is to cut the dendrogram before the last big jump:
e Cluster 1: C123 = {X1, X2, X3}
e Cluster 2: C45 = {X4, X5}
Interpretation:
e Cluster {XI1, X2, X3} forms a compact group in the lower-left region of the (x1, x2)
plane.
e Cluster {X4, X5} forms a compact group in the upper-right region.
o The centroids of these two clusters are far apart, so centroid linkage clearly separates

the data into two well-separated clusters, consistent with the geometry of the points.

14.4 CONCLUSION

Cluster analysis is a powerful and versatile multivariate statistical technique that helps
researchers group a set of objects into clusters based on their similarity across multiple
characteristics. The primary goal is to ensure that objects within the same cluster are highly
similar, while objects in different clusters are significantly different. To achieve this, several
clustering methods are available, each offering a distinct strategy for measuring similarity
and forming clusters. Methods such as single linkage, complete linkage, and average linkage
differ in the way they compute inter-cluster distances—whether based on the nearest
neighbour, farthest neighbour, or average pairwise distance. Ward’s method, on the other
hand, focuses on minimizing within-cluster variance and tends to create compact,
homogeneous groups, while the centroid method relies on the geometric center of clusters to
guide the merging process.
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The selection of an appropriate clustering method depends on multiple factors: the nature of
the dataset, the scale and measurement of the variables, the expected cluster shapes, and the
presence of noise or outliers. For example, single linkage works well for elongated clusters
but may produce chaining effects, whereas complete and average linkage generate more
compact and stable clusters. Ward’s method is particularly effective when the goal is to
minimize variability within clusters and form clusters of roughly equal size.

The process of cluster analysis involves several well-defined steps, beginning with careful
selection and standardization of variables, computation of similarity or distance measures,
selection of a suitable clustering algorithm, and finally, determining the optimal number of
clusters. Once clusters are formed, their validity must be assessed using visual tools such as
dendrograms or quantitative indices such as silhouette scores. Proper interpretation of clusters
is crucial to ensure they reflect meaningful patterns rather than random groupings.

Overall, cluster analysis serves as an essential exploratory tool in many fields—including
market segmentation, biology, psychology, finance, and machine learning—by revealing
hidden structures and relationships within complex datasets. By applying appropriate
methodological choices and thorough validation, researchers can derive insightful, data-
driven classifications that support strong decision-making and deeper understanding of
underlying phenomena.

14.5 SELF ASSESSMENT QUESTIONS:

o Explain the different types of clustering with suitable examples.

e Describe the basic steps involved in performing cluster analysis.

o Compare and contrast single linkage, complete linkage, and average linkage methods.
o Discuss the advantages and disadvantages of Ward’s method.

o Explain how the centroid method works. What are reversals in dendrograms?

o Elaborate on the role of distance measures in cluster analysis. Give examples.

14.6 SUGGESTED READING BOOKS:

1. Applied Multivariate Statistical Analysis by Richard A. Johnson and Dean W.
Wichern

An Introduction to Multivariate Statistical Analysis by T.W. Anderson

Multivariate Statistical Methods: A Primer by Bryan F.J. Manly

Multivariate Data Analysis by Joseph F. Hair, William C. Black, et al.

Psychometric Theory by Jum C. Nunnally & Ira H. Bernstein

Nl

Dr. Syed Jilani
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NON-HIERARCHICAL CLUSTERING

METHODS
OBJECTIVES:

After studying this unit, you should be able to:
e To understand the concept and purpose of Non-Hierarchical Clustering methods
e To know the concept of Non-Hierarchical Clustering methods
e To acquire knowledge about significance of is Non-Hierarchical Clustering methods

STRUCTURE

15.1 INTRODUCTION

15.2 K-MEANS CLUSTERING METHOD:
15.3 MULTIDIMENSIONAL SCALING (MDS)
15.4 CONCLUSION

15.5 SELF ASSESSMENT QUESTIONS

15.6 FURTHER READINGS

15.1. INTRODUCTION

K—Means is one of the most widely used partitioning clustering techniques in multivariate
data analysis. Its objective is to divide a set of » homogeneous observations into & distinct,
non-overlapping groups (clusters) such that observations within a cluster are as similar as
possible, while observations between clusters are as different as possible.
The method is based on minimizing the within-cluster sum of squares (WCSS) and uses the
Euclidean distance as the primary measure of similarity. Because of its simplicity,
computational efficiency, and ability to handle large datasets, K—-Means is frequently applied
in data mining, pattern recognition, market segmentation, and bioinformatics.

Multidimensional Scaling (MDS) is a powerful exploratory technique used to convert a
matrix of similarities or dissimilarities among a set of objects into a geometric representation
in a low-dimensional space, usually 2D or 3D. The central idea of MDS is to position objects
in such a way that distances on the map reflect their original dissimilarities: similar items
appear close together, while dissimilar items appear far apart.

MDS is widely used in behavioural sciences, psychometrics, marketing (perceptual
mapping), ecology, and machine learning. It accommodates both metric (interval/ratio
distances) and non-metric (ordinal) data and provides an intuitive visual understanding of
complex multivariate relationships.
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15.2. NON-HIERARCHICAL CLUSTERING METHODS - DEFINITION

Non-hierarchical clustering methods, also called partitioning methods, are clustering
techniques in which the dataset is divided directly into a pre-specified number of clusters (k)
without forming a hierarchical structure.

Unlike hierarchical clustering, these methods do not produce a dendrogram. Instead, they
assign objects to clusters based on distance or similarity measures, and iteratively update the
cluster centers or cluster memberships until an optimal partition is obtained.

These methods aim to minimize within-cluster variation and maximize between-cluster
separation.

Examples of Non-Hierarchical Methods
1. K-Means Clustering
2. K-Medoids (PAM — Partitioning Around Medoids)
3. CLARA (Clustering Large Applications)
4. CLARANS (Clustering Large Applications based on Randomized Search)

15.2.1: K-Means Clustering Method:

K-means clustering is a popular unsupervised machine learning algorithm used for
partitioning a dataset into a pre-defined number of clusters. The goal is to group similar
data points together and discover underlying patterns or structures within the data.

Recall the first property of clusters — it states that the points within a cluster should be
similar to each other. So, our aim here is to minimize the distance between the points
within a cluster.

There is an algorithm that tries to minimize the distance of the points in a cluster with
their centroid — the k-means clustering technique.

K-means is a centroid-based algorithm or a distance-based algorithm, where we calculate
the distances to assign a point to a cluster. In K-Means, each cluster is associated with a
centroid.

The main objective of the K-Means algorithm is to minimize the sum of distances
between the points and their respective cluster centroid.

Optimization plays a crucial role in the k-means clustering algorithm. The goal of the
optimization process is to find the best set of centroids that minimizes the sum of squared
distances between each data point and its closest centroid.

Here’s how it works:

1. Inmitialization: Start by randomly selecting K points from the dataset. These points
will act as the initial cluster centroids.

2. Assignment: For each data point in the dataset, calculate the distance between that
point and each of the K centroids. Assign the data point to the cluster whose
centroid is closest to it. This step effectively forms K clusters.

3. Update centroids: Once all data points have been assigned to clusters, recalculate
the centroids of the clusters by taking the mean of all data points assigned to each
cluster.


https://www.analyticsvidhya.com/blog/2017/09/common-machine-learning-algorithms/
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4. Repeat: Repeat steps 2 and 3 until convergence. Convergence occurs when the

centroids no longer change significantly or when a specified number of iterations
is reached.

Final Result: Once convergence is achieved, the algorithm outputs the final
cluster centroids and the assignment of each data point to a cluster.

Objective of k means Clustering

The main objective of k-means clustering is to partition your data into a specific number
(k) of groups, where data points within each group are similar and dissimilar to points in
other groups. It achieves this by minimizing the distance between data points and their
assigned cluster’s center, called the centroid.

Here’s an objective:

Grouping similar data points: K-means aims to identify patterns in your data by
grouping data points that share similar characteristics together. This allows you to
discover underlying structures within the data.

Minimizing within-cluster distance: The algorithm strives to make sure data
points within a cluster are as close as possible to each other, as measured by a
distance metric (usually Euclidean distance). This ensures tight-knit clusters with
high cohesiveness.

Maximizing between-cluster distance: Conversely, k-means also tries to
maximize the separation between clusters. Ideally, data points from different
clusters should be far apart, making the clusters distinct from each other.

How to Apply K-Means Clustering Algorithm?
Let’s now take an example to understand how K-Means actually works:

Time needed: 10 minutes
We have these 8 points, and we want to apply k-means to create clusters for these points.

Here’s how we can do it.

1.

Choose the number of clusters &
The first step in k-means is to pick the number of clusters, k.

2. Select k random points from the data as centroids

Next, we randomly select the centroid for each cluster. Let’s say we want to have
2 clusters, so k is equal to 2 here. We then randomly select the centroid:


https://www.analyticsvidhya.com/blog/2021/11/understanding-k-means-clustering-in-machine-learningwith-examples/
https://cdn.analyticsvidhya.com/wp-content/uploads/2019/08/Screenshot-from-2019-08-09-12-21-43.png
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Here, the red and green circles represent the centroid for these clusters.
3. Assign all the points to the closest cluster centroid
Once we have initialized the centroids, we assign each point to the closest cluster

centroid:

Here you can see that the points closer to the red point are assigned to the red
cluster, whereas the points closer to the green point are assigned to the green
cluster.

4. Recompute the centroids of newly formed clusters
Now, once we have assigned all of the points to either cluster, the next step is to
compute the centroids of newly formed clusters:

Here, the red and green crosses are the new centroids.

5. Repeat steps 3 and 4
We then repeat steps 3 and 4:
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The step of computing the centroid and assigning all the points to the cluster based on
their distance from the centroid is a single iteration.

Stopping Criteria for K-Means Clustering
There are essentially three stopping criteria that can be adopted to stop the K-means
algorithm:

6. Centroids of newly formed clusters do not change

7. Points remain in the same cluster

8. Maximum number of iterations is reached
We can stop the algorithm if the centroids of newly formed clusters are not changing.
Even after multiple iterations, if we are getting the same centroids for all the clusters, we
can say that the algorithm is not learning any new pattern, and it is a sign to stop the
training.

Another clear sign that we should stop the training process is if the points remain in the
same cluster even after training the algorithm for multiple iterations.

Finally, we can stop the training if the maximum number of iterations is reached. Suppose
we have set the number of iterations as 100. The process will repeat for 100 iterations
before stopping.

15.3 MULTIDIMENSIONAL SCALING (MDS)

Multidimensional Scaling (MDS) is a multivariate technique used to visually represent the
similarity or dissimilarity among a set of objects.

It maps high-dimensional data into a low-dimensional space (usually 2D or 3D) such that:
e Similar objects are placed close to each other.
e Dissimilar objects are placed far apart.
MDS is commonly used in:
e Psychology and behavioural sciences
e Marketing (perceptual mapping)
e Ecology and genetics
e C(lassification and clustering diagnostics
1. Basic Idea of MDS
e Suppose we have n objects and a matrix of pairwise distances (dissimilarities):

D:[dy], i, j=1& n
MDS attempts to find points x,,x,......... x, in a lower-dimensional space such that:
[ =~ 4,
Algorithms:
e C(lassical MDS (Torgerson-Gower)
e Metric Scaling (Kruskal)
2. Non-metric MDS

e  Only the rank order of dissimilarities is preserved.

e Perfect for ordinal or non-metric distances (Likert ratings, preferences).
Goal:

by l=s(a)

where f is a monotonic transformation.
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Used extensively in perceptual mapping and psychological research.
3. Classical (Torgerson-Gower) MDS
Classical MDS works directly with the distance matrix.

Step 1: Start with distance matrix D’

Compute squared distances:
2 [ 2

D =[]

Step 2: Double-centering

Convert the distance matrix into a scalar product matrix B:

B= lJDZJ
2
Where
J=1- leel
n

is the centering matrix.

Step 3: Obtain eigenvalues and eigenvectors

If

B=yvy!

then:
e A= Lambda = diagonal matrix of eigenvalues
e V =matrix of eigenvectors

Step 4: Form the configuration

Coordinates in a k-dimensional space:
|
X, =V}
This gives the best-fitting low-dimensional representation.

4. Stress and Goodness-of-Fit
Kruskal’s Stress Formula

R 2
Stress = \/ZKJ (d,,- —d,-j) 12 dyz‘

Where:

e d, observed dissimilarity

o c?y reproduced distance
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Rules of thumb

Stress Value Interpretation

< 0.05 Excellent fit

0.05-0.10 Good

0.10-0.20 Fair

>0.20 Poor fit

Applications of MDS:
Marketing: perceptual maps of brands (taste similarity, quality)
Psychology: similarity of stimuli, personality traits
Sociology: social distance, attitude analysis
Bioinformatics: genetic distance visualization
Machine Learning: visualizing high-dimensional clusters
Advantages:

e Works with a distance or dissimilarity matrix directly.

¢ Enables visualization of high-dimensional relationships.

e Non-metric MDS handles ordinal data.

e Flexible and widely applicable.
Limitations:

e Sensitive to local minima (for non-metric MDS).

e Computation can be heavy for very large n.

e Interpretation of axes is often subjective.

e Requires a good metric of dissimilarity.

15.4 CONCLUSION

K—Means is an efficient and conceptually simple clustering tool for partitioning a dataset into
k homogeneous groups. By iteratively updating cluster centroids and minimizing within-
cluster variance, it produces compact and well-separated clusters. However, it is sensitive to
initial seed selection and assumes spherical cluster shapes, which may limit performance for
complex or non-linear structures. Despite these limitations, it remains a fundamental and
widely applied clustering technique due to its speed, scalability, and interpretability.

MDS offers a flexible framework for visualizing the hidden structure of multivariate data by
mapping objects onto a low-dimensional coordinate system that preserves their pairwise
distances as faithfully as possible. It simplifies complex similarity relationships into an
interpretable spatial form, making patterns, groupings, and underlying dimensions readily
apparent. Although computationally intensive for large datasets and somewhat subjective in
interpreting dimensions, MDS remains a valuable tool for exploratory data analysis,
perceptual mapping, and evaluating clustering and classification results.
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15.5 SELF ASSESSMENT QUESTIONS:

1. Explain the steps involved in the K-Means clustering algorithm.

2. What are the main differences between metric and non-metric Multidimensional Scaling
(MDS)?

3. Discuss the advantages and limitations of the K-Means clustering method.

15.6 SUGGESTED READING BOOKS:

1. Applied Multivariate Statistical Analysis by Richard A. Johnson and Dean W.
Wichern

An Introduction to Multivariate Statistical Analysis by T.W. Anderson

Multivariate Statistical Methods: A Primer by Bryan F.J. Manly

Multivariate Data Analysis by Joseph F. Hair, William C. Black, et al.

Psychometric Theory by Jum C. Nunnally & Ira H. Bernstein

A

Dr. Syed Jilani



LESSON -16
PRINCIPLE COMPONENT ANALYSIS

Learning Objectives

To understand the concept and purpose of Principle Component Analysis (PCA).
To learn the Mathematical Derivation and Computation of Principle Components.
To study the properties and computation of Principle Components.

STRUCTURE

16.1 Introduction

16.2  Principle Component Definition

16.3  Derivation of the Principle Components
16.4  Properties of Principle Components
16.5 Computation of Principle Components
16.6 Summary

16.7  Self-Assessment Questions

16.8  Suggested Readings

16.1. INTRODUCTION

Suppose Xl,Xz,...,Xp are the given random variables. Then, principle component analysis

(P.C.A) is concerned with explaining the variance-covariance structure of the variables
through a few standardized linear combinations (SLC) of the original variables (we call a

linear combination /X, +,,X, +............ +1,X, as an SLC if le.z =1).

Algebraically, principal components (PCs) are particular standard linear combinations (SLCs)
of the components of the original pattern and geometrically, these LCs represent the selection
of new coordinate system obtained by rotating the original system with X1, Xo,..., X, as the
coordinate axes. The new axes represent the directions with maximum variability an provide
a simpler and more parsimonious (avoiding of excess) description of the covariance structure.
As we shall see, principle components depend solely on the covariance matrix (or the
correlation matrix) of the random variables Xl,Xz,...,Xp. Their development does not

require a multivariate normal assumption.

The general objections of P.C.A are
(1) Data-reduction and
(i1) Interpretation.

Although p components required to reproduce the total system variability, often much of this
variability can be accounted by a small number ‘k’(<p) of the principal components. If there
is almost as much information in the k components as there is in the original ‘p’ variables,
then the ‘k’ principal components replace the original ‘p’ components of the pattern. And the
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original data set consisting of n measurements on p-component pattern is reduced to one
consisting of n measurements on k-principal component pattern. In other words, PCA reduces
the dimensionality of the given data, losing as little information as possible. This technique
was developed by Hotelling(1933).

An analysis of principle components often reveals relationships that were not previously
suspected and there by allows interpretations that would not ordinarily result. In other words,
the key problem is the interpretation of the principle components.

PCs may be inputs to a multiple regression analysis or cluster analysis. Moreover, (scaled)
principle components are one factoring of the covariance matrix for the factor analysis model.
Suppose we consider a sample of » students and they are asked to write five papers
mechanics (X,), vectors (X,), algebra (X;), analysis(X,) and statistics (X). The

examination in the first two papers is conducted in the closed book system, where as in the
remaining three papers in the open book system.

Thus, we have totally ‘5n’ observations so that n observations on each paper. One question
which can be asked concerning this data is how the results on the five different papers should
be combined to produce an overall scare various answers are possible. One obvious answer
would be to use the overall mean that 1is the linecar combination

(X1 +X, + X5+ X, + X, )/ 5. But, can one do better than this? This is one of the questions

that principle component analysis seeks to answer.

If X is a random vector with mean p and variance — covariance matrix X, then the principle

component transformation is the transformation.
XY =Q'X-w—>1)

where, Q is orthogonal matrix, such that
QZO=A= diag(A;, A eeeeeenenne Ay A Z A Z 221,>0

The strict positivity of the eigen values A, is guaranteed if, £ is positive definite. The i"
principle component of X may be defined as the i" element of the vector Y, namely as
Y= @] (x-1), where @, is the i" column of Q and may be called the i" vector of

principle components leadings.

16. 2 DEFINITION OF PRINCIPLE COMPONENT

If X is a pattern (random vector) with covariance matrix X, then the first PC is defined as the
SLC of X given by

Y =0/X=0,X+ 0,X,*..t0,X,
a)ll
27

where ®, =

P
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such that v(Y1) is larger than the variance of any other SLC Y=a'X thatis V(¥)) 2V (Y).

In other words, Y1 has the largest variance among all SLCs of X.
The second PC Y> of X is defined as the SLC of X given by

Y, =m,X
which is uncorrelated with Y1 (the first PC) and V' (Y,) < V(Y)).
In general the k™ PCYyof X is defined as the SLC of X given by
Y, =0,X
which is uncorrelated with first k-1 PCs and V'(Y,) < V(Y)) fori=1,2,... k-1.

16.3 DERIVATION OF THE PRINCIPLE COMPONENTS

Suppose X is pxl random vector with mean vector P and covariance-matrix X i.e.,

X [ (n,X), then by definition, the first principle component is the SLC of X which has

largest variance among all SLC’s of X. Thus, we should seek a LC of X viz.,
Y=oX-(1
with largest variance,
V) =o' VX)o=0'X0 - (2)
such that @'® = 1.
Thus, we have to maximize (2) subject to the condition
00 =1 —>@)
which is equivalent to maximizing the function,
P00 = 0L - Mo'e-1) > (4)
w.r.t @ and A, where ‘A’ is a Lagranges multiplier. This implies to solve the equations,

op _

— =0=20=\
0w -7

ie., CADw=0—(5)

2% _,
O\

Using (5) & (6), from (2), we get, V(Y) = Ao'o = A —(7)

= o0'o=1-—(6)

From (5), to have a non-zero solution for ®, we must have,

=Ml =0 —(8)
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We know that (8) is a characteristic equation, and ‘A’ is a latent root andfrom (5),® is the

corresponding latent vector of the equation. But, weknow that, solving (8) for ‘A’ gives p-

latent roots (positive),

M2, 2h 2, >h, 20 —(9)
With the corresponding latent vectors, ®,,®,,............... ,®, respectively,
i.e., we have from (5), 2o, =A.0.,i=1,2,............ p —0.a)

Since A, is the largest latent root among all latent roots and @, is the corresponding latent
vector.

From (1) and (7), Y, = ©; X, is the first principle component with variance,
V(Y,) =1,.
Let us denote the first principle component by Y,. Now, Y, =@ X — (10)
V(Y) =\ —>(11
Now, let us show that for 2 < k < p, Yy =0 X —(12)
is the K" principle component with variance, V(Y, ) =X, —(13)
By definition, Y, should uncorrelated with Y ,Y,,.............. Y,_,, which can be easily verified
as follows (forJ =1,2,........... k-1).
Cov(Yk,Yi)=Cov (0, X, ®;X)
=, Cov(X,X") o,
=0, X,
=100, [From(5)]
=0 (" oy & w, are orthogonal vectors )

Also by definition, the k™ PC Yi has largest variance than Yi:1,...,Y, which can also be
verifying from (13).

Mg Z Ay 2o 2A, 20

=SV )ZV(Y ) Z e >2V(Y,)=0.

Hence the proof.

Remark :-
The above result may be asked as no standard linear combination (SLC) of X has a variance

larger than A, ,the variance of first principle combination.
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From the above result, we may say that construction (derivation ) of principle components of
a given random vector X is equivalent to theproblem of the construction (derivation) of the

latent roots and latent vectorsof the variance-covariance matrix £ of X in case of known X .

Note:-
(1) If £ is not known, we may construct the principle component of the random vector X

based on the sample variance — covariance matrix or sample correlation matrix.
(2) If the population correlation matrix ‘p’ is given, we may use it in place of X to

construct the principle components.
(3) The principle components of the random vector X derived frompopulation (sample)

correlation matrix are different from the principle components derived from population
(sample) covariance matrix.

16.4 PROPERTIES OF PRINCIPLE COMPONENTS

Property 1. Sum of the variances of all p.c’s equal to the trace of .
OR
Sum of the variances of all PCs is equal to the sum of the variances of the components of

original pattern (or equal to the trace of covariance matrix of the pattern).

Proof :- Let Y,,Y,,ccceeiennnes ,Y, are the p.c’s obtained from random variable X .
Let us denote, A =diag( A, A,sececeeenuennne ,Xp)pxp
Q=(0,,0) e ,~p)pxp

where, As are the latent roots and @,'s are the latent vectors of
the covariance matrix X of the random variable X . Then, we have,
QIQ = A.
= Tr(A) = Tr(Q'ZQ)

= A A, = Tr(ZQQ) = Tr(ZI) ( - Qis orthogonal matrix)
= VYY) VY, oo +V(Y,) =Tr®) (A = V(Y,)
VA (0 . FV(Y,) = V)V ) oo +V(X,)

Hence Proved.

Property 2. Product of the variances of PC’s is equal to the determinant of X i.e.,

| (or

generalized variance).

OR

The generalized variance of Y is equal to the generalized variance of X. That is| A| = |Z| .
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Proof :- Let Y,,Y,,ceceeiennens ,Y, are the PC’s obtained from random vector X.
Let us denote A =diag( A, A, scceeeeenuennne M) pep
Q=(0,0,eeereeeeuanens ,@p)pxp

where, A's are the latent roots and @,'s are the latent vectors of
the covariance matrix ¥ of the random vector X. Then, we have,
We have Q'ZQ = A
= |A| = |Q¥=0)

=20 8)70'S V(Y,) = |ZI]= [z

Hence the proof.

Property 3. The sum of the first k eigen values divided by the sum of all eigen values

represents the ‘Proportion of total variation’ explained by the first K principle components.
Property 4. The principle components of a random vector are not scale invariant. It is

one disadvantage of principle component analysis.

Theorem :-An orthogonal transformation Y = CX of a random vector X leaves invariant

the generalized variance and the sum of the variance of the components.

Proof :- We have given X is the original random vector and Y is the transformed random
variable using the orthogonal matrix C.

Now, we have to show that,

3

COV(X,X')‘ = ‘COV(Y,Y')

where | | is determinant and ZP:V(Xi) = ZP:V(Yi)
i=1

)
since, ‘C’ is orthogonal we have, C'C = CC' =1 -1
Now, cov (Y,Y") = cov (CX,(CX)")
=C cov (X, X'
=Cx(C’
= |cov(Y,Y")| = |C=C|

= [c=c
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= [z]|cC

= 3|1 (- from (1))
= [

= ‘COV(X,X')

= generalized variance of Y = generalized variance of X.
p
We have, D_V(X,) =Tr (%)
i=1
=Tr(X])
=Tr (X CC") (v from (1))
=Tr (CZC")
p
= ZV(Yi) (. CZC' is covariance matrix of Y')
i1
= Sum of the variances of original variables (total population variance)

= Sum of variances of principle components.

Note :-The above theorem may be stated as follows. The generalized variance of the vector of
principle components is the generalized variance of the original vector and the sum of the

variances of the principle components is the sum of the variances of the original variates.

Results :-If X is a random vector with covariance matrix £ and Y,= X is the i" principle
component of the random vector X = (X,X,,..ccccoceruee ,Xp)' ,then the correlation coefficient

between i" principle component and J™ originalvariable (that correlation coefficient

between Y, and X, ) is given by

1

Py x, = ——® LJ=12,.......... ,p, where o,, = V(X))

A, is i" largest root of T and w,, is J™ component of ®,, when w, is thelatent vector of ¥

1

corresponding to A,.
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Proof :- Denote [, = | |- J" position

0
Now, X, = [[X. Also we have given, Y, = o/ X — (1)

Dy = (@X,1X) cov (VX))
R VAo JV(Y)V(X))

X, I'X . .
_ covieX, LX) (. V(Y,) = A, the i" larger latent rootof X, using (1) &

\/;\'iGJJ

, is J™ diagonalelement of = ).

o; cov (X, X) ]
\/Z‘\/GJJ
o X

( - X is covariance matrix of X )

Since ; is the latent vector of X corresponding to latent root A, we have
2o, = Mo
= /X = Lo (Taking transpose &% =3') —(3)

Using (3) in (2), we get,

P _ Mol
Y.X, T
v \/Z‘\/GJJ
&
= (0, 0+0,0+............... +o,1+o,,,0+......... +0)
Oy
E
= o, fori,J=12,............ P
Oy

Hence the proof.
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16.5 COMPUTATION OF PRINCIPLE COMPONENTS

From the given data, we have to calculate the sample dispersion matrix S.
compute the first principal component Y, and its variance

Y=o, X, +0,X, +..+0,X, =0, wherewo =1 and Var(Y)=4 (1)
from the following iterative equation.

So, =40, , where S,=S (2)
Equation (2) can be written as an  iterative  equation
2™ = p=S0/’, i=0,1,... (3)

From Eq.(3), we can compute

ﬂl(m) _ \/ETE and @YH) _ l}//L(Hl) (4)

Now, the above iterative equation (3) will be initiated with @, =

0

pxl

given

Now, we can

by

Eq. (3) will be solved iteratively until two successive values of 4, (computed using Eq. (4))

do agree upto 4 decimal places. The corresponding ®, is the first principal component and

it’s variance is 4, .

Computing second principal component:

We have to replace the sample dispersion matrix S, with the adjusted dispersion matrix S,,

given by,
S,=S, - 4w, (5

Now, the second PC can be computed in the same way as computed the first PC by solving

the following equation iteratively.

$,0, =40, (6)

Thus, the second PC and it’s variance are given by
Y,=0)x, and Var(Y,)=4, (7)

Computing third principal component:

We have to replace the matrix S, with the adjusted dispersion matrix S,, given by,
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S;=8S, - 4,0,0) (8)
Now, the third PC can be computed in the same way as computed the second PC by solving

the following equation iteratively.

S,0, = 40, )
Thus, the third PC and its variance are given by
Y=oy and Var(¥)=4 (10)

Similarly, one can compute the remaining PCs iteratively.

16.6 SUMMARY

This lesson introduces the concept and methodology of Principal Component Analysis
(PCA), a powerful statistical tool used for dimensionality reduction and data interpretation by
transforming a set of correlated variables into a smaller set of uncorrelated principal
components (PCs) that preserve as much variability as possible. PCA achieves this by
identifying standardized linear combinations (SLCs) of the original variables, which are
determined by the eigen values and eigenvectors of the covariance or correlation matrix. The
derivation of principal components involves maximizing variance under orthonormal
constraints using Lagrange multipliers, resulting in mutually uncorrelated PCs. The lesson
also explores important properties of PCA, such as the sum and product of the variances of
PCs, their lack of scale invariance, and the invariance of generalized variance under
orthogonal transformations. Applications of PCA are highlighted in fields like regression,
clustering, and factor analysis, and the mathematical derivation of the correlation between
original variables and principal components is provided to aid interpretation.

16.7 SELF ASSESSMENT QUESTIONS

What is the primary objective of Principal Component Analysis (PCA)?

Define a standardized linear combination (SLC) and explain its role in PCA.

How is the first principal component of a random vector derived?

What condition ensures that the eigen values of a covariance matrix are strictly positive?

How does PCA achieve dimensionality reduction while preserving information?

Explain why principal components are uncorrelated.

What is meant by the “proportion of total variation explained” in PCA?

Why are principal components not scale-invariant, and what are the implications of this?

What is the relationship between the variance of PCs and the trace of the covariance

matrix?

10. How can the correlation between an original variable and a principal component be
computed?

11. Describe the iterative method for computing principal components from sample data.

WXk W=
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16.8 SUGGESTED READINGS

1.

SIS

Applied Multivariate Statistical Analysis by Richard A. Johnson and Dean W.
Wichern

An Introduction to Multivariate Statistical Analysis by T.W. Anderson

Principal Component Analysis by .T. Jolliffe

Modern Multivariate Statistical Techniques by Alan J. [zenman

Multivariate Data Analysis by Joseph F. Hair, William C. Black, et al.

The Elements of Statistical Learning by Trevor Hastie, Robert Tibshirani, and
Jerome Friedman

Dr. S. BHANU PRAKASH



LESSON -17
CANONICAL CORRELATION ANALYSIS

Learning Objectives

To understand the concept and purpose of Canonical Correlation Analysis (CCA).
To define and interpret canonical variates.

To learn the Mathematical Derivation

To compute canonical correlation using covariance matrices.

STRUCTURE

17.1  Introduction

17.2  Definition of Canonical Variate

17.3  Definition of Canonical Correlations

17.4  Derivation and Computation of Canonical Correlation
17.5  Summary

17.6  Self-Assessment Questions

17.7  Suggested Readings

17.1. INTRODUCTION

Canonical correlations analysis seeks to identify and quantity the associations between two
sets of variables. Holding (1936), who initially developed the technique, provided the
example of relating arithmetic seed and arithmetic power to reading speed and reading power.
Other example includes relating governmental policy variables with economic goal variables
and relating college” performance “variables with pre college “Achievement” variables.

A statistical method for examining the connections between two sets of variables is canonical
correlation analysis, or CCA. CCA explores the underlying structure of two multi-variable
datasets and looks into how they relate to one another overall, in contrast to simple
correlation, which measures the relationship between two individual variables. When
examining complicated data, where variables within each set may be interrelated and
straightforward pairwise correlations may not provide the whole picture, this is especially
helpful.

CCA achieves this by creating canonical variates — new, composite variables formed by
taking weighted sums (linear combinations) of the original variables within each of the two
sets. The primary goal is to find these weights in a way that maximizes the correlation
between the resulting canonical variates from the two different sets. The strength of these
relationships between the paired canonical variates is then quantified by canonical
correlations, which are essentially the correlation coefficients between these newly formed
variables.

Consider the following scenario: a researcher wishes to investigate the relationship between a
collection of personality qualities and a collection of academic performance metrics. The
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degree of correlation between "overall personality" and "academic aptitude" could be
determined by using CCA to find latent dimensions or canonical variates that represent these
concepts.

17. 2 DEFINITION OF CANONICAL VARIATE

Canonical variates are new composite variables formed by taking linear combinations
(weighted sums) of the original variables within each of two distinct sets. Canonical
Correlation Analysis (CCA) seeks to determine the weights for each variable that maximize
the correlation between the canonical variates derived from these two sets. For instance,
given one set of physiological variables (such as weight and waist circumference) and
another set of exercise variables (like the number of chin-ups and sit-ups), CCA might
generate a "body size" canonical variate from the physiological measures and an "exercise
capacity" canonical variate from the exercise measures.

Suppose X, X,,..., X, andY.Y,,..., Y, are two sets of p and ¢ variables then the variates

U=aX +a,X,+..+a,X, and V=bY +b,Y,+..+b Y,

are said to be canonical variates if the coefficients a's and b's are selected such that the
correlation between U and V' is maximum.

17. 3 DEFINITION OF CANONICAL CORRELATIONS

Canonical correlations are the correlation coefficients that quantify the strength of the linear
relationship between corresponding pairs of canonical variates derived from the two sets of
original variables. The objective of Canonical Correlation Analysis (CCA) is to identify the
linear combinations that maximize the correlation between these pairs of canonical variates.

For example, for two sets of variables, X=(X1,X2,...,Xp) and Y=(Y1,Y2,...,K]), the first

canonical correlation p, is defined as:

T T
cov(a' X,b'Y
p, =max corr(a’ X,b"Y)=max ( 2 )
2 “b V(@ X)W @B'Y)
where 'a' and 'b' are weight vectors (coefficients) for linear combinations.
Subsequent canonical correlations are found similarly, with the constraint that the new

canonical variates are uncorrelated with the previously found canonical variates.

17.4 DERIVATION AND COMPUTATION OF CANONICAL CORRELATION

Suppose the random vector X of p components has the covariance matrix 2., (which is
assumed to be positive definite). We partition X into two sub vectors of p, and p,
components respectively, that is

X=" X"is pyx1 and X® is p,x1(p=p,+p,) (1)
~ px1
For convenience we shall assume p, < p,.The covariance matrix 2. is partitioned similarly

p, and p,rows and columns.
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>y 2

z: (P1xp2) (p1%p2) o)
> 21 > 22 @
(P1xpy) (p1xpy)

Now we are interested in measures of association between first group of p, variables X" and
the second group of p, variables X .The p,p,elements of 2., measure the association

between two groups. When p,and p,are relatively large, interpreting the elements of 212

collectively is ordinarily hopeless. Moreover, it is often linear combinations of variables that
are interesting and useful for predictive purposes.The main task of canonical correlation

analysis is to summarize the associations between the X and X® sets in terms of a few

carefully chosen conversances (or correlations) rather than the p, p, covariance in DI
Consider an arbitrary linear combination

U=q' X" 3)
Of the components of X and an arbitrary linear combination.
V — g’X(Z) (4)

Of the components of X ® . Since the correlation of multiple of U and a multiple of V' is the
same as the correlations of U and V', we can make an arbitrary normalizations of ¢ and @ .
We therefore require ¢¢ and g to be such that

V) =cov(@ X, XVe)=a'coi( X", X =a' T, a=1 )

and V(V)=p'2, =1 (6)

Then the correlation between U and V' is

cov(U,V)

V@V ()

=cov(U,V) (using (5) & (6))

cov(U,V)=

=cov(@' X", X )
=g'2., (7
Now, we shall ¢ and [ such that cov(U,V)is as large as possible. Thus, the algebraic

~

problem is to find ¢ and /£ such that Q{'le £ 1s maximum subject to (5) &(6) consider.

¢:g’212§_%p(glznQ‘_l)_%ﬂ(grzzzg_l) )

When p and A are Lagrange multiplies. Now, our problem is to solve the following

equations simultaneously or jointly.
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%20:>212[~3—,021]@=Q ©)

a_¢:(~):>z{2q_/1222§:9 (10)

op

remultiplying (9) by ¢ and (10) by ﬂ "and using (5) & (6),we get

a2, B=p

@'Z{zq:iz> a2, p=A=2

That p=q'2., f=4 (11)
Thus, the equations (9) and (10) because

20 B-pLia=0,, (12)
And 2, a-p¥, B=0,., (13)

Since 2, is positive definite, being principle diagonal sub matrices 2., and X.,, are also
.. . —1 1 .

positive definite and hence 2_;| and 2.;, are also exist.

On the above equation can be solved simultaneously to get solutions for o, gzand f as

follows:

re-multiplying (12) by p and (13) by 2., we get
212(:0@):,02 2 (14)

ZZ 221@:,0@ (15)
Using (15) and (14) we get
TpXnXya=p'% (16)

Since 2, is positive finite, we may write

1 1 1
>, =22 2%, when X2 is square root matrix. (17)

using (17) in (16), we get
20 2, 2=pB (18)

1] 1

121 151 :|211|¢0
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1
#0=>2 2 inverse of

L
2

ol exists

1
‘2211

1
re-multiplying (18) with X 2 we get

1 1
Z121 Z12 2552212112‘!:,02‘3 (19)
1
Where a =22 « (20)
1
:>@:zllzg (21)

(19)causes written as

1 1
(21 P2 2y X2 —p Da=0 (22)
Thus p’is a latent root and @ is the corresponding latent vector of

1 1 1
IFDIED FED D I (23)

Once after getting ¢, can be obtained using (21).

Now, from equations (15),

P=p'tnksa (24)

Where ¢ is given by (21)

Let o’ >p>........ > p; are the eigen values of (23) and ¢, @,,......d , are the
corresponding eigen vectors of (23), then the i pair of canonical variables are given by

U, = Q‘;X(l) and V.= ﬂiX(Z) (25)

1

When @, =Y, 2 a, (from (21))
And B =p ' >3, a (from (24))
And the canonical correlation of the ith pair of canonical variables is given by p,
Since a;,a,,......... a, are orthogonal vectors, we can see easily,q, .....q, and

B> Py . B, are also orthogonal vectors. As a consequence,
cov(U,,U))=¢ 2., @; (from (25))
= ;QJ.:Ofori;tj (26)

(Since @;,a; are orthogonal)
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Similarly,

cov(V,V)) =5 2,

=Bip;' 2, @ (from (13))

=P, pe 2, ¢, (from (12)

=0 (from (26))

And cov(U,, V) =g 2., B; = p,&/ 2, a, (from (12))
=0 (from (26))

Thus, a canonical variable is uncorrelated with any other canonical variable except its

paired canonical variable. More clearly, the canonical variable U, is highly correlated with
V. and uncorrelated with all other canonical variables U, = (j #i) and V; = (j #1)

For example, from Johnson, R. A. & Wichern, D. W. (2007).
Applied Multivariate Statistical Analysis (6th ed., pp. 545-555) a small dataset with 3

observations and two sets of variables are considered:

Set X: X1, Xz SetY: Y, Y-
Data Table:
Obs | X/ | X2 | Y| Y2
1 2 |3 |4 |6
2 4 |5 16 |8
3 6 |7 [8 |10
Compute the means:
¥ - 2+4+6 _4 X, - 3+5+7 _57 = 4+6+8 6, T.- 6+8+10 _g
3 3 3
Subtract the means from each value to get the centered matrices:
-2 2 -2 -2
X.={0 0}, YL={0 O
2 2 2 2
sample covariance matrix
S = %X "X  (for centered data)
n f—

With n = 3, we use 1/2 as the scaling factor.
Now compute each covariance matrix:

o _Llyry 1] (D042 (D(D)+0(0)+2(2) | _1 {8 8} _ {4 4}
we T2/ ((2)(=2)+0(0)+2(2)  (=2)*+0*+2° | 4 4

2

2 ¢ 2 8 8

Similarly,
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4 4 4 4
Sw=l g4 4 S0 T4 4

We compute the canonical correlation matrix:
M = S)_Ql(SXYS;;SYX

_ 4 4
Butsince: S,, =S,, =S, = 44

This matrix is singular (non-invertible), as:
det(S,,)=4-4-4-4=0

Hence, only one canonical correlation can be found.
Therefore,

- First Canonical Correlation p, =1.0 (perfect correlation)

- Second Canonical Correlation p, =0 (undefined due to rank deficiency)

17.5 SUMMARY

This lesson introduces Canonical Correlation Analysis (CCA), a technique developed
by Hotelling (1936) to examine relationships between two sets of variables. CCA creates
canonical variates—linear combinations of variables in each set—that are maximally
correlated. The method identifies these combinations by solving an eigenvalue problem
derived from the partitioned covariance matrix. The resulting canonical correlations measure
the strength of association between the variates. The lesson also includes a numerical
example and highlights that when covariance matrices are singular, only one valid canonical
correlation may exist.

17.6 SELF ASSESSMENT QUESTIONS

1. Who originally developed Canonical Correlation Analysis (CCA), and what was the
initial example provided?

Define canonical variates.

Define canonical correlation.

What are canonical variates, and how are they formed?

What are canonical correlations, and how do they relate to canonical variates?

Derive the canonical correlations step by step.

In the numerical example provided, why was only one canonical correlation found?

Nk wDD

17.7 SUGGESTED READINGS

1. Applied Multivariate Statistical Analysis by Richard A. Johnson and Dean W.
Wichern

2. An Introduction to Multivariate Statistical Analysis by T.W. Anderson

Methods of Multivariate Analysis(2nd ed., Section 11.1-11.5) by Rencher, A. C.

4. Multivariate Analysis by Mardia, K. V., Kent, J. T., & Bibby, J. M.
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LESSON -18
FACTOR ANALYSIS

Learning Objectives

To understand the concept and purpose of Factor Analysis.

To learn the main estimation methods for factor loading and commonalties.
To recognize the properties and challenges of factor analysis.

To understand how to evaluate the adequacy of factor models.

STRUCTURE

18.1 Introduction

18.2 Orthogonal Factor Model

18.3 Scale Invariance Property

18.4 Non-Uniqueness of Factor Loadings Property

18.5 Methods of Estimation

18.6 Principal Component Method (Principal Component Solution of the Factor
Model)

18.7 Maximum Likelihood Factor Analysis

18.8 Factor Rotation

18.9  Summary

18.10 Self-Assessment Questions

18.11 Suggested Readings

18.1. INTRODUCTION

Factor analysis is a mathematical model which attempts to explain the correlation between a
large set of variables in terms of a small number of underlying unobservable factors. In other
words, the essential purpose of factor analysis is to describe, if possible, the covariance
relationships among many variables in terms of a few underlying but unobservable, random
quantities called factors. Basically, the factor model is motivated by the following argument.
Suppose variables can be grouped by their correlations. That is all variables within a
particular group are highly correlated among themselves but have relatively small
correlations with variables in a different group. It is conceivable that each group of variables
represents a single underlying construct, or factor, that is responsible for the observed
correlations. Factor analysis was originally developed by psychologists interested in
psychometric measurement.

Arguments over the psychological interpretations of several early studies and the lack of
powerful computing facilities impelled its developments a statistical method. The advent of
high-speed computers has generated a renewed interest in the theoretical and computational
aspects of factor analysis. Most of the original techniques have been abandoned and early
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controversies resolved in the make of recent developments.It is still true that each application
of the technique must be examined on its own merits to determine its success.

Factor analysis can be considered as an extension of principal component analysis. Both can
be viewed as attempts to approximate the covariance matrix X .However, the approximation
based on the factor analysis model is more elaborate. The primary question is factor analysis
is whether the data are consistent with a prescribed structure.

In order to get a feel for the subject we first describe a simple example.
Example 1 (Spearmon,1904): In children examinations performance in classics (x,),French

(x,)and English (x,).It is found that the correlation matrix is given by

1 0.83 0.78
1 0.67
1

Although this matrix has full rank, its dimensionality can be effectively reduced from p=3 to
p=1by expressing the three variables as follows

xl :ﬂﬁf+ul
x,=A,f+u, €]
x,=A,f+u,

In these equations f is an underlying ‘common factor’ and 4,4, and A are known as factor
loadings.The terms u,,u, and u, represent random disturbance terms. The common factor may
be interpreted as ‘general ability’ (or ‘intelligence’) and u, will have small variance x is
closely related to general ability. The variation is u consist of two parts which we shall not

try to disentangle in practice.First,this variance represents the extent to which an individual’s
ability at classics, say, differs from his general ability and second it represents the fact that
the examination is only an approximate measure of his ability in the subject.The model

defined in (1) can be generalized to include k >1 common factors.

18.2 ORTHOGONAL FACTOR MODEL

The observable random vector x with p component has mean pand covariance matrix X . The

factor model postulates that xis linearly dependent upon a few unobservable random
variables F,...,F, called common factors and p additional sources of variations u,,u,,---,u

called random disturbances or error or specific factors. In particular, the factor analysis model
is
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N

Xl :ﬂl +111E+2'12Fv2 +- - .+ﬂlkF;c +ul

sz =4 +/’l’21E+2’22F"2 +- “+ﬂ’2kEc +ie, (1)

X, =pt,+A F+A F 4+ --+A F +u, |

(or) in matrix notation.

=n_+A F +

Bt T B ) T R g S T e @)
Xl lLll E 1 11 2‘]2 ﬂ/lk
Xz ILIZ F; uz 2121 2/22 iZk

Where X=| | n= ,F = S|, u= ,A = :
Xp H, E u, ﬂ'ﬂ' ﬂ'ﬁl o ﬂl”f

The matrix A is called the matrix of factor loadings, where A is the loading of i® variable
(Xi) on j" factor (Fj).Note that the i" specific factor u, is associated only with the i"

response X, .
The p deviations X, —p,, X, —p,, -+, X, —, are expressed in terms of k+p random variables
E,E, -, F,u,1,, -, 1, are unobservable.

From (1),it may be noted that each equation looks like a multiple regression equation but
for one exception. The common factor in (1) F,F,---,F are unobservable where as in
multiple regression equation the independent variables can be observed.This distinguishes the
factor model from the multivariate regression model. With so many unobservable quantities

(k+p) a direct verification of the factor model (1) from observations on X,,...,X  is hopeless.
However, with some additional assumptions about the random vectors F and p, the model

in(2) implies certain covariance relationships,which can be checked.

We assume that

E(F)=0, V(E)=E(FF')=I,,

E(u)=0, V(u)=E(uu’)
=y=doag(y,,¥,,"**,y,)

and cov(u,F)=E(uF’)=0_,

3)

The model (2) with the assumptions (3) is called the 'Orthogonal Factor model'

The assumption (3) implies the following implicit assumptions.
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e All common factors are standardized to have variance 1 and uncorrelated with one another

(V(F)-T)

e All specific factors (random disturbances) are have zero means and uncorrelated
(V(wy=y=doag(y,,y,,--v,))

eCommon factor and specific factor are uncorrelated (cov(g, lj‘)=0).

The Orthogonal model with k common factors

)5( pxl) — E‘(pxl) +A( pxk)E(kxl) +U . 4)
Where X. =i" response variable

p, = mean of X,

A;; = loading of X; on F;

F, = j" common factor

u, = i" specific factor.

The unobservable random vectors F and u satisfy Fand u are independent

E(u)=0, V(u)y=y=doag(y,.,y,, --,y,)
The orthogonal factor model implies a covariance structure for X .From the model in (4), we

have

=AA +y (from(3)) (5)
Also from the model (4),we have
(X-p)F =(AF+u)F = AFF'+uF’

cov(X,F) = E((X n)F ) = AE(FF')+E(uF)=A  (From(3)) (6)

From the model (1), we have
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K
X, =u, +z}"iij+ui S ) 4
i1

Covariance-structure for the orthogonal factor model

L.V(X)=AA +y

k
or X, =L, = ZXU.FJ.+ui
L k @)
V(X,)= foj +y, and cov(X;,X,)=D ki,
=1 j=1

2.cov(X,F)=A or cov(X,F)=1,

127 1

From the above,thus V(Xi) can be split into two parts.
k

First h’ = Zki is called the communality and represents the variance of X, which is shared
j=l1

with the other variables via the common factors.

2
In particular ki = [cov(Xi,Fj)] represents the extent to which X, depends on the j"

common factor. On the other hand . is called specific or unique variance and is due to the

specific factor U, it explains the variability in X, not shared with other variables.

Thus from (7)
— 22 2 2
%i = xil +}‘“i2 o .}\‘ik * Vi ®)
V(Xi) communality specific variance
— 2
oy, = k4 W ©)

V(Xi) communality  specific variance

so that the i" communality is the sum of squares of the loadings of the i"variable on k
common factors.

Note:The validity of the k-factor model can be expressed in terms of a simple condition on X
From (5) we have

T=AA"+vy (10)

The converse also holds. If X can be decomposed into the form (10), then the k-factor model

holds For X . However, Fand u are not uniquely determined by X.

18.3 SCALE INVARIANCE PROPERTY

Statement: Factor analysis is invariant of scaling of variables
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18.6

Factor Analysis ‘

Proof: Suppose X=p+A F+u

is the factor model.

Now rescaling the variables of X is equivalent to set

Y = CX, where C=diag(c,,c,, ,cp)

¢, 0 O

0 ¢ O

=0 0 ¢

0 0 O

K CIXI

Y2 C2X2

| =]

YP CPXP

2)

0
0
0

Xl
XZ

Premultiplying (1) with C we get
Y =Cp+CAF+Cu
and V(Y)=CA A C'+Cy C'

ie, T, =A N +y,(3)

when A =CA,

y,=Cy.C
=diag(ciy,.Cop, aciwp)

From (1)

VX)=A A +y,

=2 =AAN +y (4

But we have

s, =C2.C

=CA A C'+Cy,C

=A N +y,

Which is nothing but (3).

(wC=C)

(~C=C)

(1)
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Thus the factor loading matrix A for the scaled random vector Y is obtained by scaling the
factor loading matrix A of the original random vector X. Similarly the specific variance
matrix y, for the scaled random vector Y is obtained by premultiplying and postmuliplying

the specific variance matrix w of the original rv. X by C. In other words,factor

analysis(unlike principal component analysis) is unaffected by a rescaling of the variables.
18.4 NON-UNIQUENESS OF FACTOR LOADINGS PROPERTY

Statement: Non-uniqueness of factor loadings(Rotated Factors)
Proof: Let T is any k x k orthogonal matrix. So that, 77" =T'T = I .Then the factor model
X=p+AF +u (1)

X=p+ATTF +u
Can be written as ~
=p+(AT)(TF)+u
=p+AF +u (2)
where , A" =AT and F* =TF
Since, E(F)=TEF)=0and V=TV =TIT =1.
It is impossible, on the basis of observations on X to distinguish the loadings A from those
of A". That is the factor Fand F~ = T'F have the same statistical properties and even though

the loadings A" are in general different from the loadings A, they both generate the same

covariance matrix. That is

S=AA 4y 3)
=ATT'A +y
=Ny @)

Thus the variance-covariance matrix X can be decomposed as either (3) or (4).And if A is
the factor loadings, then A" = AT (for any orthogonal matrix T), is also the factor loadings.
However, the communalities given by the diagonal elements of AA’=A"A” are uneffected
by the choice of T.

This determinacy in the definition of factor loadings is usually resolved by rotating

(multiplying by an orthogonal matrix). The factor loadings A to satisfy an arbitrary constant
such as A'w'A is diagonal or A'D™'A is diagonal, D =diag(o,,,0y,......0,,). Where in

either case the diagonal elements are written in decreasing order.. Once the loadings and
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specific variances are obtained, factors are identified and estimated values for the factors

themselves (called factor scores) are frequently constructed.

18.5 METHODS OF ESTIMATION

Given observations X, X,,....... ,X, on p generally correlated variables, factor analysis seeks

to the question,’Does the factor model

X=p+AF+u (1)

With a small number of factors, adequately represent the data?

In essence, we tackle this statistical model building problem by trying to verify the
covariance relationship
E=AN+y (2)
The sample covariance matrix S is an estimator of the unknown X .If the off-diagonal
elements are small or those of the sample correlation matrix R are essentially zero,the
variables are not related and factor analysis will not prove useful.In these circumstances,the
specific factors play the dominant role,whereas the major aim of the factor analysis is to
determine a few important common factors.

If X appears to deviate significantly from diagonal matrix then a factor model can be

entertained and the initial problem is one of the estimating the factor loadings 4;'s and

specific variances y,'s .We shall consider two of the most popular methods of parameter

estimation.

1.Principal factor method (Analysis).

2. Maximum likelihood method (factor analysis)

The solution from either method can be rotated in order to simplify the interpretation of
factors

Principal factor analysis:

We have the factor model (k-factor)

)5( pxl) — E‘(pxl) +A( pxk)E(kxl) +U .

(1)

Where X = p-component random vector

p=mean of X

A = matrix of factor loadings
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F = vector of common factors

u = p-component random vector

with covariance matrix of X

T=AA'+y @)

Where y =V (u) = diag (v, W, W, )

In practical situation,since X is not known, Xis replaced by its estimate the sample
covariance matrix S which is obtained from the observations X,,..., X, .Since,factor analysis

is invariant of the scaling of the variables the correlation matrix R ,computed from the

observations X,,..., X, on p-variable random vector X ,may also be used in place of S.

Let us suppose the data is summarized by the correlation matrix R so that an estimate of A

and y is rough for the standardized variables.
Now our problem is to obtain the estimates of A and y from equation (2),replacing the

unknown X with known R (when the variables standardized X is equivalent to the population

correlation matrix p ). Then we have

R=AA"+{ (3)
Comparing the diagonal elements on both sides,we get

1= le.z +y, fori=1,2,---p

k

12 22

where h’ = E kij
J=

Is the preliminaryestimate of the i"communality 4’ and may be obtained either of the

following two ways:

1) The square of the multiple correlation coefficient of the i" variable X, on the remaining

p-1 variables.

2) The largest absolute correlation coefficient between X and one of the remaining p-1

variables. i.e., max

Vi

J#i

Note that the estimated communality % is higher when X, is highly correlated with the other
as we would expect. Now y=diag(\y;)= diag(l —ﬁf) has to be subtracted from R to

obtained the matrix
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2
hl R =0 Ry
72
r, h, - 7
~ 12 2 2
R-y=| = | S “4)
2
Ip r2p hp

Which is called the reduced correlation matrix because the 1’s on the diagonal have been
replaced by the estimatedcommunalities h? .

Suppose a, > a, >---> a are eigen values of R—y and ®,,0,, --,®, are the corresponding

eigen vectors, then we may decompose R— as

p
R-y=> 000 ()

p A A
R-y = Zai@i@; = AN (6)
i=1
A 1
Where, A :[ a0, Ja,0, - akcpk] = QA2 @)
p)(
Q= ((p1 o, - (pk)and A= diag(al,az,- . -,ak)is the estimate of the factor loading

matrix A .Since, Qis orthogonal matrix, we may see that

IA\’/A\=A”29’QA”2 :AI/ZIAI/Z —A (8)

Finally, the revised estimates of the specific variances are given in terms of A by
~ k - 2
W, =1-> 4 ,i=12,,p 9)
J=1

Where ):é/ is the (i, J )th element of the estimated factor loading s matrix A given by (7). Then

the principal factor solution is permissible is all the {, are non-negative.
Thus for the k factor model (1) the principal factor estimates of the factors loading matrix A
is given by (7) and the estimates of communalities 4’ are given by the diagonal elements of
k A
ie. B'=Y A (10)
j=1
The estimates of the specific variables ;s are given by (9)

Note:
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eThe principal factor analysis can be performed iteratively with the communality estimates
given by (10)

ebecoming the initial estimates for the next stage.

o[f we are given the sample covariance matrix S,it may be converted into R and then above
analysis can be performed.

For example, consider the open/closed book data of the following table with correlation
matrix.

1 0.553 0.547 0.410 0.389]
1 0.610 0.485 0.437
1 0711 0.665
1 0.607

1

If k>2 then S<O0 and the factor model is not well defined. The principal factor solutions for

k=1 and k=2, where we estimate the i" communality fzf by max‘rij ,are given in the table.

The eigen values of the reduced correlation matrix are 2.84,0.38, 0.08,0.02 and -0.05,
suggesting that the two-factor solution fits the data well.

In the above table principal factor solutions for the open/closed book data with k=1 and k=2

factors.
pa k=2
variable | 72 a1y | B2 A1) A(2)
1 0417  0.646 0.543 0.646 0.354
2 0.506  0.711 0.597 0.711 0.303
3 0.746  0.864 0.749 0.864 -0.051
4 0.618 0.786 0.680 0.786 -0.249
5 0.551 0.742 0.627 0.742 -0.276

The first factor represents overall performance and for k=2, the second factor, which is much

less important (a, =0.38 <<2.84=gq, ), represents a contrast acrossthe range A’ <<1 for all i,

and therefore a fair proportion of the variance of each variable is left unexplained

by the common factor.
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18.6 PRINCIPAL COMPONENT METHOD (PRINCIPAL COMPONENT
SOLUTION OF THE FACTOR MODEL)

Suppose Xx,,...,X, are observations on p generally correlated variables and the data is

summarized either into the sample correlation matrix R.

Let the orthogonal factor model with k common factors

X(pxl) =Ry + A(pxk)E(le) RELLIN (1)
Where X = p-component random vector

p =mean of X

A = matrix of factor loadings
F = vector of common factors

u = vector of random disturbances

with V(X)=X=AA"+y (1.a)

v =V(u)

Now the principal component method is to obtain the estimates of A and y using the sample
covariance matrix S or sample correlated matrix R.

Suppose a, = a, 2--- 2 a,are the latent roots of S (or R ) and let us consider the first 'k' roots
1.€. a,,ay, -+, a,
Let ®,,0,,---,0,be the corresponding latent vectors. Then the estimated matrix of factor
loadings is given by

A= [\/Z@] GO, G W :|pxk ()

and the estimated specific variances are provided by the diagonal elements of the matrix
s-AA'(R—[\A') 3)
k k .
so  that  y=diag(y,,P,, -, p,)  with{, =s; - Zkﬁ Y =7 - Zli estimates  of
=1 j=1
communalities are given by the diagonal elements of AA'
k
: 2 22
ie.h = Z‘ﬂij
=

Note:

eConsider the residual matrix S-(AA'Jr\i/) resulting from the approximation of S by the
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principal componentsolution. The diagonal elements are zero and if the other elements are

also small,we may subjectively take the 'k' factor model to be appropriate.

eThe contribution to the total sample variance = Tr(S) from the j" common factor is given

by
iz (o o (7 )
=a, (v o=1)

= j" latent root of § (Where isa; the j" latent root of )

Thus, proportion of total sample variance due to j" factor

4,

Tr(S)

for factor analysis of 'S'

a
—~  for factor analysis of 'R’
p

o(For worked out examples see page no’s: 388-391 of Applied Multivariate Analysis by
Johnson&Wichern)

18.7 MAXIMUM LIKELIHOOD FACTOR ANALYSIS

Suppose X,,...,X,are 'n' observations drawn on X which follows population Np(E,E) and

X is having the following k factor model

X( o) = B +A( pxk)E(kxl) U,
(D
Where,

p =mean of X

A = matrix of factor loadings

F = vector of common factors

u = vector of random disturbances

with the assumptions

E(F)=0=E(w)
VE=L,  V(w=y=doag(y,,y,,--.y,)
cov(F,u)=0

These assumptions implicitly imposes the restriction on X as follows
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T=AA"+vy (2)
Since X ~ Np ( 18 E) ,its log -likelihood is given by

log L= %nlog|2ﬂ2|—%2()~(i -;})'2_1 (gi 'E)

i=1

if we with its MLE X, then log L becomes

[=logL :%nlog|27r2|—%zn:(gi -E)'Z’l (gi 'E)

(3)
= —(glog|27r2|+% Tr(E’ISn)j
Where
1< '
S, = 2(xn) (x.-m)
X is as given by (2)

Maximizing (3) is equivalent to minimizing the following function w.r.t. A and y

F(A,w)=log |Z| +Tr (Z_ISn ) —log|S, |—p “4)

Since from (2), A is not uniquely determined. We have minimize (4) subject to the following

Sn

and p are constants)

SH

uniqueness condition

A'y'A = A, a diagonal matrix (5)

The MLEs A and  obtained by minimizing (4) subject to (5) satisfy
A = A
(WSHWJ[WA}[WAJ(HA) ©6)
2 40
so that the j" column of {y2A is the (non-normalised) eigen vector of 2S {2
corresponding to eigen value 1+Ai

where A/ 2A,>---2A,

clearly,for the above, the MLE of A can be obtained only for a given \,whose initial value

can be taken as

9 = diag (1”90, 9"
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- “th . nS
where 5" is the 1" diagonal element of S = 2

(n=1)

The next modified value of \yis given by
9" = diag (.9 9)

Where \il(l) is the 1" diagonal element of the computed matrix S, —AA

)

Using this '’ ,we can obtained the revised value of A using (6).

This procedure is to be continued until the latest estimates A and  satisfy the relation (5).

Note:Ordinarily the observations are standardized and a sample correlation matrix is factor
analyzed.Of the data is summarized into a sample correlation matrix R ,then the above

method of maximum likelihood factor analysis may becarried out replacing S, or Sby R to

get the some estimates of A and y .This is due to the fact that the MLEs are scale invariant.

An workedout example is given in page no:394 of Applied Multivariate Statistical analysis

by Richard A.Jhon and Wichern.

18.8 FACTOR ROTATION

We have
Y=AA"+vy
=ATT'A"+vy

= (AT)(AT) +y
= A'(A) +y
where A= AT, T is an orthogonal matrix

Thus if A is a factor loadings matrix which reproduce X ,then any other factor loadings
matrix A~ obtained from A by an orthogonal transformation (T ) have the same ability to
reproduce the covariance matrix (or correlation matrix).From matrix algebra,we know that an
orthogonal transformation corresponds to a rigid rotation of the coordinate axes.For this
reason, an orthogonal transformation of the factor loadings and the implied orthogonal
transformation of the factor is called "factor rotation".

Let A be the pxk matrix of estimated factor loadings obtained by any method, then
A" = AT where TT'=T'T=I (1)
is a pxk matrix of rotated loadings. Moreover, the estimated covariance (or correlation)

matrix remains unchanged,

!

since AA'+{ = A*(A*) +V )
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since, the original loadings may not be readily interpretable, it is usual practice to rotate them
until a " sample structure" is achieved. Ideally, we should like to see a pattern of loadings
such that each variable loadings highly on a single factor and has small-to-moderate loadings
on the remaining factors. Of course, it is not always possible to get this simple structure.

A convenient analytical choice of rotation is given by the "varimax method" described below:
The varimax method of orthogonal rotation was provided by kaiser(1958).1Its rationale is to
provide axes with a few large loadings and as many near zero loadings as possible. This is
accomplished by an iterative maximization of a quadratic function of the loadings.

Devote the matrix of rotated loadings as

A= AT

Now the (i, )’h element of A viz; &, represents the loadings of the /"

variable on the ;"

factor.
The function ¢ that the variance criterion maximizes is the sum of the variances of the
squared loadings within each column of the loadings is normalized by its communality, that

1S
2

p=33(4-) =33 -y

i=l j=1 i=l j=1

2 - 1,
Where dl.j :7 and d :—Zd[j

; P j=
R’ is the i" communality is the /" diagonal element of A A’
The varimax criterion¢ is a function of T, and the iterative algorithm proposed by Kariser
finds the orthogonal matrix G which maximizes ¢ .

In the case where k=2,the calculations simplify. For then T is given by
cos@ sind
= .
—sin@ cosd
and represents a rotation of the coordinate axis clockwise by an angle 6. The value of 6 can
be determined by the relation T'T=I.
In the case where k>2,an iterative solution for the rotation is used.

See example 9.8,9.9,9.10,9.11 in the pages 401-408 of AMVA by Richard Johanson &
Wichern.

18.9 SUMMARY

This lesson explains Factor Analysis, a method that models the correlations among many
observed variables using a smaller number of unobservable common factors. It introduces the
orthogonal factor model, where observed variables are expressed as linear combinations of
uncorrelated common factors and specific unique factors, with assumptions on their variances
and independence. The covariance matrix is decomposed into communalities and specific
variances, and factor analysis is shown to be scale invariant but allows non-unique factor
loadings that can be rotated—commonly by the varimax method—to improve interpretability.
The lesson covers estimation techniques such as Principal Factor Analysis, Principal
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Component Method, and Maximum Likelihood, focusing on how to estimate factor loadings
and specific variances from sample data, and emphasizes the importance of factor rotation for
clearer, meaningful factor structures.

18.10 SELF ASSESSMENT QUESTIONS

1.

2.

What is the primary purpose of factor analysis and how does it explain correlations
among variables?

How is the covariance matrix decomposed in the orthogonal factor model, and what do
communalities and specific variances represent?

Why is factor analysis invariant to the scaling of variables, and how does this differ
from principal component analysis?

What does the non-uniqueness of factor loadings mean, and how is this ambiguity
resolved in factor analysis?

Describe the principal factor method of estimating factor loadings and communalities.
How are communalities initially estimated?

Outline the principal component method for estimating factor loadings and specific
variances. How does this method relate to the sample covariance or correlation matrix?
What is the maximum likelihood approach in factor analysis, and what are its main
estimation steps?

Explain the purpose of factor rotation and how an orthogonal rotation preserves the
covariance structure.

What is the varimax rotation method, and why is it commonly used in factor analysis?

18.11 SUGGESTED READINGS

1.

Nl

Applied Multivariate Statistical Analysis by Richard A. Johnson and Dean W.
Wichern

An Introduction to Multivariate Statistical Analysis by T.W. Anderson

Multivariate Statistical Methods: A Primer by Bryan F.J. Manly

Multivariate Data Analysis by Joseph F. Hair, William C. Black, et al.

Psychometric Theory by Jum C. Nunnally & Ira H. Bernstein
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