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FOREWORD 

Since its establishment in 1976, Acharya Nagarjuna University has been 

forging ahead in the path of progress and dynamism, offering a variety of courses 

and research contributions. I am extremely happy that by gaining ‘A+’ grade from 

the NAAC in the year 2024, Acharya Nagarjuna University is offering educational 

opportunities at the UG, PG levels apart from research degrees to students from 

over 221 affiliated colleges spread over the two districts of Guntur and Prakasam.  

The University has also started the Centre for Distance Education in 2003-

04 with the aim of taking higher education to the door step of all the sectors of the 

society. The centre will be a great help to those who cannot join in colleges, those 

who cannot afford the exorbitant fees as regular students, and even to housewives 

desirous of pursuing higher studies. Acharya Nagarjuna University has started 

offering B.Sc., B.A., B.B.A., and B.Com courses at the Degree level and M.A., 

M.Com., M.Sc., M.B.A., and L.L.M., courses at the PG level from the academic 

year 2003-2004 onwards.  

To facilitate easier understanding by students studying through the distance 

mode, these self-instruction materials have been prepared by eminent and 

experienced teachers. The lessons have been drafted with great care and expertise 

in the stipulated time by these teachers. Constructive ideas and scholarly 

suggestions are welcome from students and teachers involved respectively. Such 

ideas will be incorporated for the greater efficacy of this distance mode of 

education. For clarification of doubts and feedback, weekly classes and contact 

classes will be arranged at the UG and PG levels respectively.  

It is my aim that students getting higher education through the Centre for 

Distance Education should improve their qualification, have better employment 

opportunities and in turn be part of country’s progress. It is my fond desire that in 

the years to come, the Centre for Distance Education will go from strength to 

strength in the form of new courses and by catering to larger number of people. My 

congratulations to all the Directors, Academic Coordinators, Editors and Lesson-

writers of the Centre who have helped in these endeavors.  

Prof. K. Gangadhara Rao 

M.Tech., Ph.D., 

Vice-Chancellor I/c  

Acharya Nagarjuna University. 
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The multivariate normal distribution and estimation: The multivariate normal distribution and 

its properties. Characteristic function of multivariate normal distribution. Sampling from 

multivariate normal distribution and maximum likelihood estimation, sampling distributions 

of Sample mean and sample covariance matrix. 

 

UNIT-II: 

Inference: Wishart’s distribution and its properties. Definition of Hotelling’s T²-distribution 
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SET-I                                      MODEL QUESTION PAPER                               (201ST24) 

M.Sc. DEGREE EXAMINATION 

SECOND SEMESTER 

STATISTICS 

201ST24 :: MULTIVARIATE ANALYSIS 

         Time: 3 hours                                                                                                      Maximum: 70 marks 

ANSWER ONE QUESTION FROM EACH UNIT 

(Each question carries equal marks) 

 

1. (a) Define the p-variate normal distribution with mean vector   and  dispersion matrix  . 

Derive two important properties of the multivariate normal distribution. 

 (b) 1. Prove that the marginal distribution obtained from the multivariate normal distribution is normal. 

2 (a) 2. Define the characteristic function of a p-dimensional random variable.  Obtain the  characteristic 

function of multivariate normal distribution. 

 (b) 3. In the p-variate normal case, show that the sample mean vector and the sample covariance matrix are 

independently distributed. 

  UNIT–II 

3 (a) Define Hotelling’s 
2T  statistic.  Show that Hotelling’s 

2T  statistic can be used to test the equality          

of means of corresponding variables in two MVN populations having the same variance-covariance 

matrix. 

 (b)  Explain in detail the likelihood ratio principle. 

4 (a) Stating the assumptions clearly, discuss the problem of comparing several multivariate normal 

population means. 

 (b) State and prove the invariance property of Hotelling’s 
2T  statistic. 

  UNIT–III 

5 (a) 5. Describe the classification between two unknown multivariate normal populations.       

 (b) Explain the problem of classification.  Distinguish between discrimination and classification. 

6 (a) 6.  Derive Fisher’s linear discriminant function in case of two unknown p-variate populations. 

 (b) 7. Describe the method of classification of an individual into one of several  p-variate normal              

populations having a common dispersion matrix  , where all the parameters are known.                                                                                              

 

  UNIT–IV 

7 (a)   (a) Distinguish between cluster analysis and discriminant analysis. Consider the hypothetical distance     

      between pairs of five objects as follows. 

            1  2  3 4 5

1 0

2 9 0

3 3 7 0

4 6 5 9 0

5 11 10 2 8 0

=

 
 
 
 
 
 
  

D
 

            Cluster the five objects using single linkage method  

 (b) Explain the following methods of cluster analysis. 

              

1) Centeroid Linkage method    2) K-means method.   



 

8 (a) 5. Explain various similarity measures. Explain complete linkage method.     

 (b) Explain non-hierarchical methods.  Describe Ward’s method in cluster analysis. 

  UNIT–V 

9 (a) 6. Define principal components.  If X ~ ( ),pN μ,Σ   then  explain how you would compute various            

principal components.       

 (b) 7. Define Canonical variables and Canonical correlations.   Explain how you estimate canonical 

correlations. 

10 (a) 8. )     Explain the orthogonal factor model.  Explain the ML estimation method of factor loadings. 

 (b) 9. State and prove two properties of principal components. 
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LESSON -1 

 MULTIVARIATE NORMAL DISTRIBUTION  
 

OBJECTIVES: 

 

❖ Understand the concepts of the multivariate normal distribution and multivariate analysis 

and their importance in multivariate statistical analysis. 

❖ Distinguish between different measurement scales, with special emphasis on metric and 

non-metric measurement scales. 

❖ Identify and classify non-metric & metric measurement scales and understand their role in 

multivariate techniques. 

❖ Understanding the Multivariate Normal (MVN) distribution. 

❖ Learning the properties of Multivariate Normal (MVN) distribution. 

 

STRUCTURE: 

 

1.1    Introduction to Multivariate analysis 

1.1.1  Some Basic Concepts of Multivariate Analysis 

1.1.2  Measurement Scales 

1.1.3  Non Metric Measurement Scales 

1.1.4  Metric Measurement Scales 

1.1.5  Measurement Error & Multivariate Measurement 

1.2    Applications of Multivariate Techniques 

1.3    The Organization of Data 

1.4    Multivariate Normal Distribution 

1.5    Symbols and Notations  

1.6    Understanding MVN Distribution 

1.7    Properties of MVN distribution 

1.8    Summary  

1.9    Self Assessment Questions 

1.10 Suggested Reading 

 

1.1 INTRODUCTION TO MULTIVARIATE ANALYSIS: 

 

        Multivariate analysis is not easy to define. Broadly speaking, it refers to all 

statistical methods that simultaneously analyze multiple measurements on each 

individual or object under investigation. Any simultaneous analysis of more than two 

variables can be loosely considered multivariate analysis. As such, many multivariate 

techniques are extensions of univariate analysis (analysis of single-variable distributions) 

and bivariate analysis (cross-classification, correlation, analysis of variance, and simple 

regression used to analyze two variables). For example, simple regression (with one 

predictor variable) is extended in the multivariate case to include several predictor 
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variables. Likewise, the single dependent variable found in analysis of variance is 

extended to include multiple dependent variables in multivariate analysis of variance. In 

many instances, multivariate techniques are a means of performing in a single analysis 

what once took multiple analyses using univariate techniques. Other multivariate 

techniques, however, are uniquely designed to deal with multivariate issues, such as 

factor analysis, which identifies the structure underlying a set of variables, or 

discriminant analysis, which differentiates among groups based on a set of variables. 

 

         One reason for the difficulty of defining multivariate analysis is that the term 

multivariate is not used consistently in the literature. Some researchers use multivariate 

simply to mean examining relationships between or among more than two variables. 

Others use the term only for problems in which all the multiple variables are assumed to 

have a multivariate normal distribution. To be considered truly multivariate, however, all 

the variables must be random and interrelated in such ways that their different effects 

cannot meaningfully be interpreted separately. Some authors state that the purpose of 

multivariate analysis is to measure, explain, and predict the degree of relationship among 

variates (weighted combinations of variables). Thus the multivariate character lies in the 

multiple variates (multiple combinations of variables), and not only in the number of 

variables or observations.  

 

           The multivariate normal (MVN) distribution plays a central role in multivariate 

statistical analysis, just as the univariate normal distribution does in classical statistics. 

Many real-world phenomena-such as measurements in biology, finance, engineering, 

and social sciences-naturally involve several correlated variables. The MVN distribution 

provides a powerful framework for modeling such jointly distributed random variables, 

capturing both their individual behaviors and the dependence structure among them. 

 

1.1.1 SOME BASIC CONCEPTS OF MULTIVARIATE ANALYSIS: 

 

 Although multivariate analysis has its roots in univariate and bivariate statistics, the 

extension to the multivariate domain introduces additional concepts and issues that have 

particular relevance. These concepts range from the need for a conceptual understanding of 

the basic building block of multivariate analysis the variate to specific issues dealing with the 

types of measurement scales used and the statistical issues of significance testing and 

confidence levels. Each concept plays a significant role in the successful application of any 

multivariate technique. 

 

The Variate: As previously mentioned, the building block of multivariate analysis is the 

variate, a linear combination of variables with empirically determined weights. The variables 

are specified by the researcher, whereas the weights are determined by the multivariate 

technique to meet a specific objective. A variate of n weighted variables ( 1  to XnX ) can be 

stated mathematically as: 

     variate value = 1 1 2 2 3 3 ..... n nw X w X w X w X+ + + +  

where X is the observed variable and w is the weight determined by the multivariate 

technique. 

 

   The result is a single value representing a combination of the entire set of variables 

that best achieves the objective of the specific multivariate analysis. In multiple regression, 

the variate is determined so as to best correlate with the variable being predicted. In 

discriminant analysis, the variate is formed so as to create scores for each observation that 
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maximally differentiates among groups of observations. In factor analysis, variates are 

formed to best represent the underlying structure or dimensionality of the variables as 

represented by their inter correlations. 

 

   In each instance, the variate captures the multivariate character of the analysis. 

Thus, in our discussion of each technique, the variate is the focal point of the analysis in 

many respects. We must understand not only its collective impact in meeting the technique’s 

objective but also each separate variable’s contribution to the overall variate effect. 

 

1.1.2 MEASUREMENT SCALES: 

 

Data analysis involves the partitioning, identification, and measurement of variation 

in a set of variables, either among themselves or between a dependent variable and one or 

more independent variables. The key word here is measurement because the researcher 

cannot partition or identify variation unless it can be measured. Measurement is important in 

accurately representing the concept of interest and is instrumental in the selection of the 

appropriate multivariate method of analysis. Next we discuss the concept of measurement as 

it relates to data analysis and particularly to the various multivariate techniques. 

 

There are two basic kinds of data: non-metric (qualitative) and metric (quantitative). 

Non-metric data are attributes, characteristics, or categorical properties that identify or 

describe a subject. Non-metric data describe differences in type or kind by indicating the 

presence or absence of a characteristic or property. Many properties are discrete in that by 

having a particular feature, all other features are excluded; for example, if one is male, one 

cannot be female. There is no “amount” of gender, just the state of being male or female. In 

contrast, metric data measurements are made so that subjects may be identified as differing in 

amount or degree. Metrically measured variables reflect relative quantity or degree. Metric 

measurements are appropriate for cases involving amount or magnitude, such as the level of 

satisfaction or commitment to a job. 

 

1.1.3  NON-METRIC MEASUREMENT SCALES: 

 

Non-metric measurements can be made with either a nominal or an ordinal scale. 

Measurement with a nominal scale assigns numbers used to label or identify subjects or 

objects in each category. Nominal scales, also known as categorical scales, provide the 

number of occurrences or symbols assigned to the objects that have no quantitative meaning 

beyond indicating the presence or absence of an attribute or characteristic. Therefore, the 

numbers on the nominally scaled data include no inherent meaning beyond categorization. 

Examples of nominally scaled data include an individual’s sex, religion, or political party. In 

working with these data, the researcher might assign numbers to each category or class, for 

example, 2 for females and 1 for males. These numbers only represent categories or classes 

and do not imply amounts of an attribute or characteristic. 

 

Ordinal scales are the next higher level of measurement precision. Variables can be 

ordered or ranked with ordinal scales in relation to the amount of the attribute possessed. 

Every subclass example, different levels of an individual consumer’s satisfaction with several 

new products can be illustrated on an ordinal scale.   Numbers utilized in ordinal scales such 

as these are non-quantitative because they indicate only relative positions in an ordered 

series. There is no measure of how much satisfaction the consumer receives in absolute 

terms, nor does the researcher know the exact difference between points on the scale of 
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satisfaction. Many scales in the behavioral sciences fall into this ordinal category. 

 

1.1.4 METRIC MEASUREMENT SCALES: 

 

Interval scales and ratio scales (both metric) provide the highest level of measurement 

precision, permitting nearly all mathematical operations to be performed. These two scales 

have constant units of measurement, so differences between any two adjacent points on any 

part of the scale are equal. The only real difference between interval and ratio scales is that 

interval scales have an arbitrary zero point, whereas ratio scales have an absolute zero point. 

The most familiar interval scales are the Fahrenheit and Celsius temperature scales. Each has 

a different arbitrary zero point, and neither indicates a zero amount or lack of temperature, 

because we can register temperatures below the zero point on the scale. Therefore, it is not 

possible to say that any value on an interval scale is a multiple of some other point on the 

scale. For example, an 80°F day cannot correctly be said to be twice as hot as a 40°F day, 

because we know that 80°F, on a different scale, such as Celsius, is 26.7°C. Similarly, 40°F 

on Celsius is 4.4°C. Although 80°F is indeed twice 40°F, one cannot state that the heat of 

80°F is twice the heat of 40°F because, using different scales, the heat is not twice as great; 

that is, 4.4°C × 2 ≠ 26.7°C. 

 

Ratio scales represent the highest form of measurement precision because they 

possess the advantages of all lower scales plus an absolute zero point. All mathematical 

operations are permissible with ratio-scale measurements. The bathroom scale or other 

common weighing machines are examples of these scales, for they have an absolute zero 

point and can be spoken of in terms of multiples when relating one point on the scale to 

another; for example, 100 pounds is twice as heavy as 50 pounds. 

 

Understanding the different types of measurement scales is important for two reasons. 

First, the researcher must identify the measurement scale of each variable used, so that non-

metric data are not incorrectly used as metric data and vice versa. Second, the measurement 

scale is critical in determining which multivariate techniques are the most applicable to the 

data, with considerations made for both independent and dependent variables. In the 

discussion of the techniques and their classification in later sections of this chapter, the metric 

or non-metric properties of independent and dependent variables are the determining factors 

in selecting the appropriate technique. 

 

1.1.5 MEASUREMENT ERROR & MULTIVARIATE MEASUREMENT: 

 

The use of multiple variables and the reliance on their combination (the variate) in 

multivariate techniques also focuses attention on a complementary issue—measurement 

error. Measurement error is the degree to which the observed values are not representative of 

the “true” values. Measurement error has many sources, ranging from data entry errors to the 

imprecision of the measurement (e.g., imposing seven-point rating scales for attitude 

measurement when the researcher knows the respondents can accurately respond only to a 

three-point rating) to the inability of respondents to accurately provide information (e.g., 

responses as to household income may be reasonably accurate but rarely totally precise). 

Thus, all variables used in multivariate techniques must be assumed to have some degree of 

measurement error. The impact of measurement error is to add “noise” to the observed or 

measured variables. Thus, the observed value obtained represents both the “true” level and 

the “noise.” When used to compute correlations or means, the “true” effect is partially 

masked by the measurement error, causing the correlations to weaken and the means to be 
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less precise. The specific impact of measurement error and its accommodation in dependence 

relationships. 

 

The researcher’s goal of reducing measurement error can follow several paths. In 

assessing the degree of measurement error present in any measure, the researcher must 

address both the validity and reliability of the measure. Validity is the degree to which a 

measure accurately represents what it is supposed to. For example, if we want to measure 

discretionary income, we should not ask about total household income. Ensuring validity 

starts with a thorough understanding of what is to be measured and then making the 

measurement as “correct” and accurate as possible. However, accuracy does not ensure 

validity. In the above example, the researcher could very precisely define total household 

income but still have an invalid measure of discretionary income because the “correct” 

question was not being asked. 

 

If validity is assured, the researcher must still consider the reliability of the 

measurements. Reliability is the degree to which the observed variable measures the “true” 

value and is “error free”; thus, it is the opposite of measurement error. If the same measure is 

asked repeatedly, for example, more reliable measures will show greater consistency than less 

reliable measures. The researcher should always assess the variables being used and if valid 

alternative measures are available, choose the variable with the higher reliability. 

 

The researcher may also choose to develop multivariate measurements, also known as 

summated scales, for which several variables are joined in a composite measure to represent a 

concept (e.g., multiple-item personality scales or summed ratings of product satisfaction). 

The objective is to avoid the use of only a single variable to represent a concept, and instead 

to use several variables as indicators, all representing differing facets of the concept to obtain 

a more “well-rounded” perspective. The use of multiple indicators allows the researcher to 

more precisely specify the desired responses. It does not place total reliance on a single 

response, but instead on the “average” of “typical” response to a set of related responses. For 

example, in measuring satisfaction, one could ask a single question, “How satisfied are you?” 

and base the analysis on the single response. or a summated scale could be developed that 

combined several responses of satisfaction, perhaps in different response formats and in 

differing areas of interest thought to comprise overall satisfaction. The guiding premise is that 

multiple responses reflect the “true” response more accurately than does a single response. 

Assessing reliability and incorporating scales in the analysis are methods the researcher 

should employ. The impact of measurement error and poor reliability cannot be directly seen 

because they are embedded in the observed variables. The researcher must therefore always 

work to increase reliability and validity, which in turn will result in a “truer” portrayal of the 

variables of interest. Poor results are not always due to measurement error, but the presence 

of measurement error is guaranteed to distort the observed relationships and make 

multivariate techniques less powerful. Reducing measurement error, although it takes effort, 

time, and additional resources, may improve weak or marginal results and strengthen proven 

results as well. 

 

1.2 APPLICATIONS OF MULTIVARIATE TECHNIQUES: 

 

The published applications of multivariate methods have increased tremendously in 

recent years. It is now difficult to cover the variety of real-world applications of these 

methods with brief discussions, as we did in earlier editions of this book. However, in order 

to give some indication of the usefulness of multivariate techniques, we offer the following 
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short descriptions of the results of studies from several disciplines. These descriptions are 

organized according to the categories of objectives given in the previous section. Of course, 

many of our examples are multifaceted and could be placed in more than one category. 

Data reduction or simplification 

 

• Using data on several variables related to cancer patient responses to radiotherapy, a 

simple measure of patient response to radiotherapy was constructed. 

• Track records from many nations were used to develop an index of performance for both 

male and female athletes. 

• Multispectral image data collected by a high-altitude scanner were reduced to a form that 

could be viewed as images (pictures) of a shoreline in two dimensions. 

• Data on several variables relating to yield and protein content were used to create an 

index to select parents of subsequent generations of improved bean plants. 

• A matrix of tactic similarities was developed from aggregate data derived from 

professional mediators. From this matrix the number of dimensions by which professional 

mediators judge the tactics they use in resolving disputes was determined. 

 

 Sorting and grouping 

• Data on several variables related to computer use were employed to create clusters of 

categories of computer jobs that allow a better determination of existing (or planned) 

computer utilization. 

• Measurements of several physiological variables were used to develop a screening 

procedure that discriminates alcoholics from non alcoholics. 

• Data related to responses to visual stimuli were used to develop a rule for separating 

people suffering from a multiple-sclerosis-caused visual pathology from those not 

suffering from the disease. 

• The U.S. Internal Revenue Service uses data collected from tax returns to sort 

taxpayers into two groups: those that will be audited and those that will not.  

Investigation of the dependence among variables 

• Data on several variables were used to identify factors that were responsible for 

success in hiring external consultants.  

• Measures of variables related to innovation, on the one hand, and variables related to 

business environment and business organization, on the other hand, were used to 

discover why some firms are innovative and some firms are not.  

• Data on variables representing the outcomes of the 10 decathlon events in the 

Olympics were used to determine the physical factors responsible for success in the 

decathlon.  

• The associations between measures of risk-taking propensity and measures of 

socioeconomic characteristics for top-level business executives were used to assess 

the relation between risk-taking behavior and performance. 

Prediction 

• The associations between test scores and several high school performance variables 

and several college performance variables were used to develop predictors of success 

in college. 

• Data on several variables related to the size distribution of sediments were used to 

develop rules for predicting different depositional environments.  

• Measurements on several accounting and financial variables were used to develop a 

method for identifying potentially insolvent property-liability insurers.  
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• Data on several variables for chickweed plants were used to develop a method for 

predicting the species of a new plant. 

Hypotheses testing 

• Several pollution-related variables were measured to determine whether levels for a 

large metropolitan area were very consistent throughout the period or whether there 

was a noticeable difference between weekdays and weekends.  

• Experimental data on several variables were used to see whether the nature of the 

instructions makes any difference in perceived risks, as quantified by test scores. 

• Data on many variables were used to investigate the differences in structure of 

American occupations to determine the support for one of two competing sociological 

theories.  

• Data on several variables were used to determine whether different types of firms in 

newly industrialized countries exhibited different patterns of innovation.  

• The preceding descriptions offer glimpses into the use of multivariate methods in 

widely diverse fields. 

1.3  THE ORGANIZATION OF DATA: 

 

Throughout this lesson, the reader is going to be concerned with analyzing 

measurements obtained on several variables. As mentioned in the introduction, the data are 

usually obtained from a sample of some population. That is, we measure or observe the 

values of p variables for each of n experimental units or individuals. This lesson is intended 

to introduce the preliminary concepts underlying these first steps of data collection, property 

measurement (definition), and the organization of the data. 

 

Arrays 

Multivariate data arise whenever an investigator is seeking to understand a social or 

physical phenomenon based on a number of measurements. The principal focus is on 

understanding the relationships among variables all recorded for each distinct individual or 

experimental unit in the study. 

We will use the notation jkx  to indicate the particular value of the kth variable that is 

observed on the  jth item. 

             jkx =measurement of the kth variable on the jth item 

Consequently, measurements on variables can be displayed as follows: 

                                Variable 1     Variable 2   …  Variable k  ⋯   Variable p 

                    Item 1:      11x                 12x         ⋯        1kx        …       1 px  

                    Item 2:      21x                 22x        ⋯        2kx        …       2 px  

                                                                       ⋯                     ⋯         

                    Item j:      1jx                     2jx        ⋯        jkx        ⋯       jpx  

                                                                           ⋯                     ⋯         

                   Item n:      1nx                     2nx       ⋯         nkx         ⋯       npx  

              

Or we can display these data as a rectangular array called X  of n  rows and p columns: 
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                          X =

11 12 1 1

21 22 2

1 2

1 2

k p

k p

j j jk jp

n n nk np

x x x x

x x x x

x x x x

x x x x

 
 
 
 
 
 
 
 
 
 













 

The array X , then, contains the data consisting of all of the observations on all of the 

variables. 

 

Example 1(A data array) 

A selection of four receipts from a university bookstore was obtained in order to 

investigate the nature of book sales. Each receipt provided, among other things, the number 

of books sold and the total amount of each sale. Let the first variable be total dollar sales and 

the second variable be the number of books sold. We can regard the corresponding numbers 

on the receipts as four measurements on two variables. Suppose the data, in tabular form, are: 

                                    Variable 1 (dollar sales):      42    52    48    58 

                           Variable 2 (number of books):       4      5      4      3 

 

Using the notation just introduced, we have: 

11 21 31 41

12 22 32 42

  42       52        48        58 

  4         5         4          3

x x x x

x x x x

= = = =

= = = =
 

and the data array 𝐗 is: 

                    X =  

42 4

52 5

48 4

58 3

 
 
 
 
 
 

 

with four rows and two columns. 

Considering data in the form of arrays facilitates the exposition of the subject matter and 

allows numerical calculations to be performed in an orderly and efficient manner. The 

efficiency is twofold, as gains are attained in both  describing the numerical calculations as 

operations on arrays and  the implementation of the calculations on computers, which now 

use many languages and statistical packages to perform array operations. We consider the 

manipulation of arrays of numbers. At this point, we are concerned only with their value as 

devices for displaying data. 

 

Example 2 (The arrays nX,S , and R  for bivariate data) 

Consider the data introduced in Example 1, Each receipt yields a pair of 

measurements, total dollar sales, and number of books sold. Find the arrays nX,S , and R . 

Since there are four receipts, we have a total of four measurements (observations) on 

each variable. 

The sample means are: 
4

1 1

1

1 1

4 4
j

j

x x
=

= = (42 + 52 + 48 + 58) = 50 
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4

2 2

1

1 1

4 4
j

j

x x
=

= = (4 + 5 + 4 + 3) = 4 

1

2

x
X

x

 
=  
 
 

=
50

4

 
 
 

 

The sample variances and covariances are: 

( ) ( ) ( ) ( ) ( )( )
24

2 2 2 2

11 1 1

1

1 1
42 50 52 50 48 50 58 50 34

4 4
j

j

S x x
=

= − = − + − + − + − =  

( ) ( ) ( ) ( ) ( )( )
24

2 2 2 2

22 2 2

1

1 1
4 4 5 4 4 4 3 4 .5

4 4
j

j

S x x
=

= − = − + − + − + − =  

( )( )
4

12 1 1 2 2

1

1

4
j j

j

S x x x x
=

= − −  

( )( ) ( )( ) ( )( ) ( )( )( )
1

42 50 4 4 52 50 5 4 48 50 4 4 58 50 3 4 1.5
4

= − − + − − + − − + − − = −  

21 12S S=  

and =
n

S  
34 1.5

1.5 .5

− 
 
− 

 

The sample correlation is 

12
12

11 22

1.5

34 .5

s
r

s s

−
= = = -.36  

21 12r r=  

So,  
    1 .36

.36   1
R

− 
=  

− 
 

 

1.4   MULTIVARIATE NORMAL DISTRIBUTION: 

 

     In multivariate analysis, the MVN distribution serves as the foundation for numerous 

methods, including principal component analysis (PCA), discriminant analysis, regression 

analysis, confidence region construction, and hypothesis testing. Its mathematical 

tractability, especially regarding linear transformations and conditional distributions, makes 

it one of the most widely used models in theory and practice. 

 

     A thorough understanding of the MVN distribution includes knowledge of its 

definition, key properties, and associated matrix algebra. Equally important is the 

estimation of its parameters-the mean vector and covariance matrix-which forms the basis 

for inferential procedures in multivariate settings. This lesson introduces the multivariate 

normal distribution and explores its essential properties., and discusses parameter 

estimation techniques under this model. 
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1.5   SYMBOLS AND NOTATIONS: 

 

1.6   UNDERSTANDING  MVN DISTRIBUTION: 

 

Suppose X  is a scalar normal variate with mean   and variance 2  then the p.d.f of X  can 

be written as 

 

1 2 1( )( ) ( )
22( : , ) , 0,

x x
f x ke

  
   

−− − −
=  −                           →  (1) 

 

 Where,    k=
1

2 
 

 

Now suppose 

1

2

:

p

X

X
X

X

 
 
 =
 
  
 


     is a p-variate random vector and  

Its mean vector is given by 

  

                 

1 1

2 2

( )

( )
( )

: :

( )p p

E X

E X
E

E X







   
  
  = = =
  
    

    

X μ
 

                                                                    →  (2) 

 

and its variance –covariance matrix is given by          

 

            ( )V( ) ( ) ( ( ))E E E = − −  X X X X X


 

                
                         [( )( ) ]E = − −X μ X μ

 
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2

1 1 1 1 2 2 1 p p p

2

2 2 1 1 2 2 2 2 p p

2

p p 1 1 p p 2 2 p p

E[X -μ ] E[(X -μ )(X -μ )] ... E[(X -μ )(X -μ )]

E[(X -μ )(X -μ )] E[X -μ ] ... E[(X -μ )(X -μ )]
V(X)=

: : : :

E[(X -μ )(X -μ )] E[(X -μ )(X -μ )] ... E[X -μ ]

 
 
 
 
 
  


 

 

              =

11 12 1

21 22 2

1 2

...

...

: : : :

...

p

p

p p pp

  

  

  

 
 
  =
 
 
  

Σ  (say)                                                                    →(3) 

 

Where,  

               
( ) ( )ij i i j j jiE x x    = − − =   

clearly, Σ  is symmetric & positive definite matrix. 

 

Now the multivariate normal density of  X


 can be obtained  by replacing  

 the positive quantity   2 1( )( ) ( )x x  −− −   by the quadratic form 

 

                      1( ) ( )−x-μ Σ x-μ


                                                                                       →  (4) 

 

and is given by 

            

1 1( )  ( )
2( )f ke

−−
=

x -μ Σ x -μ
x :μ,Σ 
 

                                                             →  (5) 

 

Where (k>0) is chosen so that the integral over the entire p-dimensional  

 

Euclidean space of  1 2, ,..., pX X X is unity. we observe that 

 

            ( ) 0f x :μ,Σ
 

                     (  k is chosen as positive) 

 

since  Σ  is positive definite 

 

                    

1

1

        ( ) ( ) 0

1
  ( ) ( ) 0

2

−

−

 

 − 

x -μ Σ x -μ

x -μ Σ x -μ





 

                    

1

0

1
( ) ( )

2    = 1 e e

−−
 

x -μ Σ x -μ
   

 

i.e.  0 ( , )f k x :μ Σ
 

  i.e. ( )f x


is bounded. 

 

Now  we should find k(>0) such that 
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1 1( ) ( )
2... ( ) ... 1f x k e

−−    
= =   

− − − −

x -μ x -μ
dx


                                             →  (6) 

 

              

1 1( ) ( )
1 2...k e

−−  
− =  

− −

x -μ x -μ
dx


                                                        →  (7) 

since  1−
Σ  is positive definite  a non singular matrix A such that 

 

              1 A A− =Σ                                                                                                             →   (8) 

 

then (7) can be written as 

 

           

1
( ) ( )

1 2...
A A

k e

 − 
− =  

− −

x -μ x -μ
dx


                                                             →  (9) 

 

If we use the linear transformation from X


to a new random vector Y


such that 

 

             )AY = (X -μ
 

                                                                                                      →  (10) 

then (9) becomes 

 

         

1

21 ( ) ...k J e
− 

− =  
− −

y y

x dy

 
                                                                               →  (11) 

 

where ( )J x


  is the Jacobian obtained when X


 is transformed into Y


 and is given by 

             ( ) mod
d

J
d

=
y

x
x





 

                    

1 1 1

1 2

2 2 2

1 2

1 2

1

1

...

...
mod

: : : :

...

mod

1 1
     ( )

mod

Where       is determinant of A.

p

p

p p p

p

y y y

x x x

y y y

x x x

y y y

x x x

A

A
A A

A

−

−

  

  

  

  =

  

  

=

= =

 

 

 Equation  (11) becomes  
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1
11 2...

mod
k e

A

− 
− =  

− −

y y
dy


 

                        

                       
1

1

1 2
1 2

mod

1 2
1 1 22 ( 1)

mod 2

p

i

p

i

i

y
i

e dy
iA

y
i

e dy
A




=



= −

 
− 

=  
 −
 

−
= =



 

 

              

  i.e.,              

/ 2
21

1/ 2
1

1/ 2 / 2

(2 )
          ( )

mod

1

(2 )

p

p

A A A

k





−

−
= = =

=

Σ
Σ

Σ



 

                                     1( −
Σ is positive definite to  

1/ 2 1/ 2
1 1

1/ 2

1
mod − −= =Σ Σ

Σ
 )   

 

substituting k in (5) we get the p.d.f of the random normal vector  X


and is given by 

 

            

1

1/ 2

1
( ) ( )

1 2( , )
/ 2

(2 )

f e
p



−−
=

x -μ Σ x -μ
x :μ Σ

Σ

 


                                      →  (12) 

thus (12) is the p.d.f of a  multivariate  normal vector X


whose mean  vector  

 

and variance-covariance matrix are respectively given by μ


  and Σ  

 

and is denoted  as ( , )n x/μ Σ
 

 and its distribution is denoted  as ( , )pN μ Σ


. 

 

NOTE 1: 

                 

               From (10) ,we may see that   

 
              ( ) ( )E AE=Y X -μ

 
 

                       

( ( ) )

( )

A E

A

= −

=

=

X μ

μ -μ

0

 





 

i.e. Y


  has zero mean vector. 

The variance-covariance matrix Y


of is given by  

 
                V( ) [( ( )) ( )) ]E E E = − −Y y y (y y

 
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=E[ ]      ( E( )=0)

=E[A( -μ)( -μ) A ]

=AV( )A

=AΣA



 





yy y

X X

X








 

but from (8), 

 

                    1( )A A −=Σ  

                        1 1( )    (A A A− −=   is a non-singular) 

           1 1V( ) ( )AA A A− −  =Y


 

                       
k k

k

I I

I

=

=
 

 

Thus  if X


is ( , )pN μ Σ


 ,then the random vector Y


defined as 

( )A=Y X -μ
 

    (where A is defined as in (8) ) follows ( , )p kN I0


. 

In other words , the individual element  of Y


are standard normal variates  and mutually 

independent          i.e. (0,1)iY N  with cov( , ) 0i jY Y = . 

 

NOTE 2: 

 In the practical situations ‘A’ can be computed as follows .since Σ is a  symmetric p.d. 

matrix we may write  1 2( , ,..., )pdiag    = =ΩΣΩ Λ ,when Ω  is the normalized latent vector  

matrix and Λ  is the latent root matrix and since Σ is p.d. all 1 2, ,..., p    are positive 

.Therefore Λ can be written 1/ 2 1/ 2( ) ( )=Λ Λ Λ  

Where,         1/ 2

1 2( , ,..., )pdiag   =Λ  

then  

                  

1/ 2 1/ 2

1 1/ 2 1/ 2 1 1 1

( ) ( )

( ) ( ) ( )A A− − − −

 =

   = =

ΩΣΩ Λ Λ

Σ Ω Λ Λ Ω
 

 

where 

       

1 1 1/ 2

1/ 2 1/ 2

1/ 2

1

( ) ( )

      ( ( ) )

thus, 

1 1
where     ( ,..., )

p

A

A

diag
 

− −  =

  =  = 

=

=

-1/2

1/2

Ω Λ

Λ Ω

Y Λ Ω (X -μ)

Λ



 
 

 

The transformation from X


 to Y


 follows ( , )p kN 0 I


.This transformation is called 

“whitening”. 

Eq (7) is the p.d.f . of  the multivariate normal variate X


 where mean is μ


 and variance –

covariance  matrix is Σ and is denoted by ( , )n x/μ Σ
 

. 

The distribution function of X


 is denoted as  ( , )pN μ Σ


. 
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Definition: Suppose X


 is a random vector with mean μ


 and  the variance-covariance matrix 

, Σ .  Then X


 is said to follow multivariate normal distribution if  its  p.d.f. is given by  

/ 2

1 1( ) ( )
21

( )
1/ 2

(2 ) p

f x e


−− 

=
x-μ Σ x-μ

Σ




                                                    →  (1) 

 It is denoted  as   ( , ).pN X μ
 

 

 

1.7   PROPERTIES OF MVN DISTRIBUTION: 

 

THEOREM 1:   

                    Let  X


 (with p components) be distributed according to ( , )pN μ Σ


then, C=Y X


 

is distributed according to ( , )N C C Cμ Σ


 for C non-singular.  

PROOF: 

         Since ( , )pNX μ Σ
 

 & its p.d.f. is given  as 

                     
/ 2

1 1( ) ( )
21

( )
1/ 2

(2 ) p

f x e


−−

=

x -μ Σ x -μ

Σ

 


                                        →  (1) 

 

Now ,consider the linear transformation  

                  C=Y X


 where C is non-singular 

              1C− =X Y


                                                                                                       →  (2) 

 

Now the p.d.f. 1 becomes in terms of Y


 as 

 

1 1 1 1( ) ( )
1 2( ) ( )

/ 2 1/ 2
(2 )

C C
g e J

p


− − −−
=

y -μ Σ y -μ
y y

Σ




                                    →  (3) 

 

where ( )J y


 is the Jacobian  and is given by  

 

             
1( ) mod modJ C −

= =


x
y

y





 

                      
2

1

mod

1

C

C

C C

=

=

=


Σ

Σ

 

                     =

1/ 2

1/ 2
C C

Σ

Σ
                                                                                              →  (4) 
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Using (4) &  (3)  ,we get  

 

                 
/ 2

1 1 1 1( ) ( )1 2( )
1/ 2

(2 ) p

C C
g e

C C

− − −−
=



y -μ Σ y -μ
y

Σ




 

                         

1 1 1 1[ ( )] [ ( )]
1 2

/ 2 1/ 2
(2 )

1 1( ) ( ) ( )
1 2

/ 2 1/ 2
(2 )

C C C C
e

p
C C

C C C C
e

p
C C





− − −− − −
=



− − − −
=



y μ Σ y μ

Σ

y μ Σ y μ

Σ





 

 

                         = ( / , )n C C Cy μ Σ


                                                                               →  (5) 

But  

                ( ) ( )E CE C= =Y X μ
 

                                                                                   →  (6) 

         & V( V( )C C C C = = Y) X


                                                                            →  (7) 

 

 Now, if we write the multivariate normal p.d.f. of  Y


 with mean μ


 and  the variance-

covariance matrix C CΣ  that will becomes as (5) and therefore  

 

                   ( , )C N C C CX μ Σ
 

. 

 

                                     Hence the proof. 

 

THEOREM 2: 

      If a multivariate normal vector is divided into two sub vectors and one sub -vector is 

uncorrelated with other sub-vector ,then those two sub-vectors of variables  are independent  

and each sub-vector is also a multivariate normal vector. 

                                                                      (OR)  

Let   
1

1

2

( , ) &p pN

 
 =  

 

X
X μ X

X
 

 


 

Where 1
X


 is 1q  and  2
X


 is ( ) 1p q−   and 
1

2

 
=  
 
 

μ
μ

μ





 

                  
11 12

21 22

 
=  
 

Σ Σ
Σ

Σ Σ
 

 

where ,  11Σ  is variance-covariance matrix of  1
X


 

              22Σ  is variance-covariance matrix of  2
X


 

and       12Σ  is covariance matrix of 1
X


& 2
X


 

              21Σ  is covariance matrix of 2
X


& 1
X


. 
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Now if 12 21 0q p q −
= =Σ Σ  

then , 
2

X


&
1

X


 are independent and  
1 11 2 2 22( , )      &   ( , ).q p qN N −1X μ Σ X μ Σ

 
 

 PROOF: 

            We are given 12 21pxq
= =Σ 0 Σ  

i.e. the covariance matrix of 1pX


 is given by  

 

                            
11

22

0

0

 
=  
 

Σ
Σ

Σ
 

In order to show that, the random vectors 
1

X


 & 
2

X


are independently normally 

distributed, we have to show that  

 

                 
1 11 22( , ) ( , ) ( , )n n n= 1 2 2x/μ Σ x /μ Σ x /μ Σ


 

we have, 

                      
1/ 2

1 1( ) ( )
1 2( , )
/ 2

(2 )

n e
p



−−
=

x -μ Σ x -μ
x/μ Σ

Σ

 
 

                                →  (1) 

 

consider the Q.F in (1), 

        i.e.,     1Q ( ) ( )−= x-μ Σ x-μ


 

                      

1

1 1 1 111

222 2 2 2

1
1 111

1 1 2 2 1
2 222

0

0

0
( ) ( )

0

x x

x x

x
x x

x

 

 


 



−

−

−

− −    
=     

− −       

−  
  = − −     −    

Σ

Σ

Σ

Σ

 

 

 
 

 

 

                   ( 11Σ  is the variance-covariance matrix of 1
X


 and hence positive definite) 

                      

1 1

1 11 2 22

1 1

11 2 22

( ) ( )

( ( ) ( ) (

− −

− −

 
  =   

  

 = +

1 1

1 2

2 2

1 1 1 1 2 2 2

x -μ
x -μ Σ x -μ Σ

x -μ

x -μ ) Σ x -μ x -μ Σ x -μ )

 
 

 



 

 

                      1 2Q +Q=                                                                                                 →  (2) 

also we have, 

               
11

11 22

22

0

0


 = =  


                                                                       →  (3) 

Using (2) & (3) in (1) we get , 

 

            

1 1
Q Q1 11 22 2( , )

1/ 2 1/ 2/ 2 ( ) / 2
(2 ) (2 )

11 22

n e e
q p q

 

− −
=

−
x/μ Σ

Σ Σ
 

 

where 1 2Q &Q  are is as  given in (2), 
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        ( , ) ( , ). ( , )
1 11 22

n n n =x/μ Σ x /μ Σ x /μ Σ
1 2 2

 

Thus ,the joint p.d.f. of the  normal variates 1 2, ,..., pX X X  is the product  of the marginal 

p.d.f. of 1 2, ,..., qX X X  and the marginal p.d.f. of 1,...,q pX X+ . Thus, the two sets of normal 

variates are independent. 

 

THEOREM 3: 

          If 1X


& 2X


 are independent and are distributed as 
11 2 22( , )& ( , )q p qN N −1μ Σ μ Σ


 

respectively then ,
11

22

0
,

0
pN
      
            

11

2 2

μX

X μ
 

 

. 

 

PROOF:-  

 

              we have given , 

                                   
1 q 1 11

2 p-q 2 22

X N (μ ,Σ )

X N (μ ,Σ )


 


 

 

and 1X


& 2X


  are independent   i.e. 
1

X


,
2

X


 are uncorrelated. 

  i.e. 12 21cov( ) 0=  =  =
1 2

X , X


. 

We have to find out the joint p.d.f. of  )f (x


 of   
 
 
 

1

2

X
X =

X





 

we have, 

( ) ( ) (      (g f f=
1 2

x x x ) 
 1

X


& 2
X


 are independent) 

                                 

1 2

11 2 22

1 1

12 2
1/ 2 1/ 2/ 2 ( ) / 2

11 22

       ( , ). ( , )

1 1
       ,  (where ( ) ( ),  i=1,2)

(2 ) (2 )

Q Q

i ii iq p q

n n

e e Q
 

− −
−

−

=

= =

1 1 2

i i i

x /μ Σ x /μ Σ

x -μ Σ x -μ
Σ Σ



 

 

 

        
1 2

1
( )

112
11 221/ 2/ 2

22

01
   

0(2 )

Q Q

p
e



− +  
= = = 

 

Σ
Σ Σ Σ

ΣΣ
                                → (1) 

 

                        Where 1 1

1 2 11 22( ) ( ) ( ) ( )Q Q − − + = +1 1 1 1 2 2 2 2x -μ Σ x -μ x -μ Σ x -μ


           → (2) 

 

Let us consider  

                           1Q ( ) ( )−= x-μ Σ x-μ


                                                                          →  (3) 

where  , 
  
       

11

2 2

μx
x = ,μ =

x μ
 

 
 

  is ( )E X


 and the variance-covariance matrix X


is 

                 
1V ) cov( )

cov( ) V( )

 
=  
 

1 2

2 1 2

(X X , X
Σ

X , X X




 

                     = 
11 12

21 22

 
 
 

Σ Σ

Σ Σ
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But ,since 12 21 qXp q−
= =Σ Σ 0  

                 
11

22

0

0

 
=  
 

Σ
Σ

Σ
                                                                                         →  (4) 

Now,    

1

11

1

22

0

0
Q

−

−

    
=        

    

1 1 1 1

2 2 2 2

x -μ x -μΣ

x -μ x -μΣ
 

 

 

                1 1

11 1 2 22( ) ( ) ( ) (− − = +1 1 1 2 2 2x -μ Σ x -μ x -μ Σ x -μ )


                                       →  (5) 

 

from (2) & (5)  ,  1 2Q Q Q+ =  

 
1/ 2

1
1 2( )
/ 2

(2 )

Q
g e

p


−
 =X

Σ
 

 

Where, Q is given by (3) but ( )g X


 is nothing but  ( , )n x/μ Σ
 

. 

Thus ( )pN
 

=  
 

1

2

X
X μ,Σ

X


 


    where, Σ  is as given by (4). 

 

THEOREM 4: 

                 If 1 2, ,..., pX X X  have a joint normal distribution , a necessary & sufficient 

condition for one subset of some random variables and the subset consisting of the remaining 

random variables be independent is that each covariance of a variable from one set and a 

variable from the other set be ‘0’. 

 

PROOF:-     

Necessary condition: 

                  Without loss of generality let us assume that the first q variables form the first 

subset and the remaining p-q variables form the second subset. 

                 In order to prove the necessary condition, we have given that the variables of 

1 2, ,..., qX X X  are independently distributed with the variables 1 2, ,...,q q pX X X+ + and we have 

to prove  

                  cov( , ) [( ( ))( ( ))] 0i j i i j jX X E X E X X E X= − − =   

where , 1 & 1i q q j p  +    

 we have  

         1 2 1 2cov( , ) ... ( ( )( ( )) ( , ,..., ) ...i j i i j j p pX X x E X x E X f x x x dx dx dx

 

− −

= − −   

                             1 1 1... ( ( )) ( ... ) ...i i q qx E X f x x dx dx

 

− −

 
= − 
 
  . 

                                         2 1 1... ( ( )) ( ... ) ...j j q p q px E X f x x dx dx

 

+ +

− −

 
− 

 
    

( )1 1 1 2 1( ,...., ) ( ,..., ) ( ,..., )p q q pf x x f x x f x x+=  
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[ ( )] [ ( )]

[ ( ) ( )][ ( ) ( )]

0.0

0

i i j j

i i j j

E X E X E X E X

E X E X E X E X

= − −

= − −

=

=

                                                                                                                                                                                                                                                                         

Thus if one set of variables is independent of the remaining variables then, the set of 

variables are uncorrelated with the other set of variables. 

Sufficient condition: 

      Here we have given 

                        ( )       &cov( , ) 0p i jN X X
 

= 
 

1

2

X
X = & X μ,Σ

X


 


 

 where , iX  is from 
1

X


 

            jX  is from 
2

X


 

i.e.  12cov( ) 0q p q −=  =1 2X , X


 and  we  have to prove 21
X & X


are independently distributed. 

              The proof of this sufficient condition is given in Theorem 2 given above. 

 

Note: 

To prove the necessary condition of the above theorem we need not assume 1,..., pX X  are 

normally distributed. 

 

1.8  SUMMARY: 

 

   In this lesson, the concept of the Multivariate Normal (MVN) distribution was 

introduced as a fundamental model for describing the joint behaviour of several 

correlated random variables. Beginning with basic symbols and notations, we established 

a clear mathematical framework for representing vectors, matrices, mean vectors, and 

covariance structures-elements essential for multivariate analysis. 

 

       The probability density function (p.d.f.) of the MVN distribution was presented both 

in its standard form and through an alternative method of derivation, highlighting the role 

of linear transformations of normal variables. These derivations illustrated how 

dependence among variables is incorporated through the covariance matrix, and how 

geometric features such as ellipsoidal contours arise naturally from the structure of the 

MVN density. 

 

      The section on Estimation in MVN Models discussed the methods used to estimate 

the mean vector and covariance matrix of a multivariate normal population. Maximum 

likelihood estimation (MLE) procedures were shown to provide efficient and unbiased 

estimators, while the sampling distributions of the sample mean vector and sample 

covariance matrix (Wishart distribution) were described. These results form the backbone 

of multivariate inference. 

 

Overall, the Multivariate Normal distribution occupies a central position in 

multivariate statistical analysis. Its mathematical tractability, well-defined inferential 

properties, and broad applicability make it indispensable for modern statistical modeling. 

Understanding its density, derivations, estimation procedures, and applications equips 

students and researchers with a strong foundation for advanced multivariate methods. 
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1.9  SELF-ASSESSMENT QUESTIONS: 

 

1. What is multivariate analysis? How does it differ from univariate and bivariate analysis? 

2. What are measurement scales? How do they influence multivariate analysis? 

3. Define the multivariate normal distribution and obtain the bivariate normal density as a 

particular case of MVN.  

4. Let X be a p - variate normal random vector. State and prove a necessary and sufficient 

condition for one subset of the random variables and the subset consisting of the 

remaining variables to be independent.    

5. Explain and derive any two properties of Multivariate normal distribution. 

6. If a multivariate normal vector is divided into two sub vectors and one sub-vector is 

uncorrelated with other sub-vector, then those two sub-vectors of variables are 

independent and each sub-vector is also a multivariate normal vector. 

 

7.  If 1X


& 2X


 are independent and distributed as 
11 2 22( , )& ( , )q p qN N −1μ Σ μ Σ


 

respectively then ,
11

22

0
,

0
pN
      
            

11

2 2

μX

X μ
 

 

. 
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LESSON -2 

 MARGINAL AND CONDITIONAL 

DISTRIBUTIONS 
 

OBJECTIVES: 

 

❖ Understand the concept and importance of marginal and conditional distributions in 

multivariate analysis. 

❖ To derive marginal distribution in the context of the Multivariate Normal 

Distribution.  

❖ To derive conditional distribution in the context of the Multivariate Normal 

Distribution. 

 

STRUCTURE: 

 

2.1    Introduction 

2.2    Marginal Distribution of MVN Distribution 

2.3    Conditional Distribution of MVN Distribution 

2.4    Summary  

2.5    Self Assessment Questions 

2.6    Suggested Reading 

 

2.1 INTRODUCTION: 

 

In multivariate analysis, the study of joint distributions of two or more random variables 

is essential for understanding their combined behavior. However, in many practical 

situations, interest lies in the behavior of a subset of variables or in the behavior of one 

variable given the values of others. This leads to the concepts of marginal and conditional 

distributions, which are fundamental tools in multivariate probability theory and statistical 

inference. These distributions play a crucial role in understanding dependence structures and 

in simplifying complex multivariate problems.  

 

The Multivariate Normal (MVN) Distribution is a fundamental probability 

distribution in multivariate statistics. It generalizes the univariate normal distribution to 

higher dimensions and plays a central role in inference, estimation, classification, regression, 

and many applied statistical methods. 

A random vector               

                              ( )1 2, ,....., pX X X X


=  

is said to follow a multivariate normal distribution with mean vector   and covariance 

matrix  , written as  

                            ( ), .pX N    

if every linear combination  a X  is univariate normally distributed. 

 

2.2 MARGINAL DISTRIBUTION OF  MVN DISTRIBUTION: 

 

The marginal distribution of a subset of random variables is obtained from the joint 

distribution by integrating (or summing) over the remaining variables. It describes the 
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probability behavior of individual variables or groups of variables without reference to the 

others. 

In multivariate analysis, marginal distributions help in: 

• Understanding individual variable behaviour within a multivariate framework 

• Examining the distributional properties of subsets of variables 

• Establishing results such as the marginal normality of components of an MVN 

distribution. 

Marginal distributions are especially important in simplifying multivariate problems 

and form the basis for many inferential procedures. 

 

THEOREM: 

 

 If X


 has MVN, then any subset of the components of X


  have a (multivariate) normal 

distribution. 

(OR) 

Prove that the marginal distribution obtained from the multivariate normal distribution is 

normal. 

(OR) 

If ( , )pNX μ Σ
 

, then the marginal distribution of  any (sub) set of components of X


 is 

multivariate normal with means, variances and co-variances obtained by taking the proper 

components of μ


 and Σ  respectively. 

 

PROOF: 

 Let 
11 12

21 22

,
    

=         

11

2 2

μX Σ Σ
X = ,μ = Σ

X Σ Σμ
 

 
 

     

 where 

          

 

1 2

11 22

12 21

( ( )

V( ), V( )

cov( ) cov( , )

E E= =

= =

 = = =

1 2

1 2

1 2 2 1

μ X ),μ X

Σ X Σ X

Σ X ,X X X Σ







 

Now  we shall make a non singular linear transformation to sub vectors 

              
1 1 2

2 2

Y = X + MX

Y = X




                                                                                   →  (1) 

choosing M  so that the components of 1
Y


 are uncorrelated with the components of 2 2
Y = X


. 

The matrix M  must satisfy the equation. 

         1cov( ) E ( E ))( E ))qXp q−
= =1 2 1 2 2Y ,Y 0 Y - (Y Y - (Y


 

                                         =   1 1 2 2 2 2E -E( )+ ( -E( )) -E( ) 
  

X X M X X X X


 

     =        1 1 2 2 2 2 2 2E -E( ) -E( ) + E -E( ) -E( ) X X X X M X X X X

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                    = cov( ) M V( )+
1 2 2

X , X X


 

                           = 12 22M+Σ Σ                                                                      →  (2) 

Thus ,           1

12 22M −= −Σ Σ                                                                                            →  (3) 

and now, the vector 1
Y


 becomes 

                      1

11 22

−−
1 1 2

Y = X Σ Σ X


                                                                               →  (4) 

and the vector 

               
1

12 22

( )

,   

                                             where 
q

p q xq p q

I

I

−

− −

    
= =    

    

 −
=   
 

-1
1 11 12 22 2

2 22

Y XX -Σ Σ X
Y = = C CX

Y XX

Σ Σ
C

0

 


                      →  (5)           

Since 1,    =C C  is a non singular matrix.   

 Y


is non-singular transformation of X


. 

 Y


 has a normal distribution with mean vector  

         ( )
1

12 22 2
      (say)E

− −   
 = = = =           

1 1 1

22 2

μ μ Σ Σ μ ν
Y Cμ C

νμ μ
 

 
                         

→  (6)  

and the variance –covariance matrix  

                 

1 1

1

1

( ) ov( )
)

ov( ) ( )

( )
                                 (from Eq.(2))

( )

V C
V V

C V

V

V

   
= =   

   

 
=  
 

1 2

2 2 2

2

Y Y Y ,Y
(Y

Y Y ,Y Y

Y 0

0 Y










    

                                         
 

=  
 

-1

11 12 22 21

22

Σ -Σ Σ Σ 0

0 Σ
                  →  (7) 

which implies 
 
 
 

1

2

Y
Y =

Y





has multivariate normal distribution,where 1 2
Y & Y


are uncorrelated. 

Therefore 1 2
Y & Y


 are independent and have multivariate normal distributions. 

In particular,  2 2
Y = X


 has a MVN distribution  

         22( , )p qN − 2 2X μ Σ
 

.  That is the marginal distribution of 2
X


is MVN. 

2.3 CONDITIONAL DISTRIBUTION OF MVN DISTRIBUTION : 

 

The conditional distribution describes the probability distribution of one set of 

random variables given that another set takes specific values. It provides insight into how 
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variables behave in the presence of information about other variables. 

             In multivariate analysis, conditional distributions are used to: 

• Study dependence and association among variables 

• Make predictions and perform regression-type analyses 

• Understand conditional normality in multivariate normal distributions. 

Conditional distributions are central to modeling relationships and are widely used in 

multivariate inference and prediction. 

 

CONDITIONAL DISTRIBUTION 

THEOREM: 

            If X


  has multivariate normal distribution, then the conditional distribution of any 

subset of the components of X


  given the subset of the remaining components of  X


 is a 

(multivariate) normal distribution. 

(OR) 

Prove that the conditional distribution obtained from the multivariate normal distribution is 

normal. 

PROOF: 

 Let 
11 12

21 22

,
    

=         

11

2 2

μX Σ Σ
X = ,μ = Σ

X Σ Σμ
 

 
 

       

 where 

          

 

1 2

11 22

12 21

( ( )

V( ), V( )

cov( ) cov( , )

E E= =

= =

 = = =

1 2

1 2

1 2 2 1

μ X ),μ X

Σ X Σ X

Σ X ,X X X Σ







 

Now  we shall make a non singular linear transformation to sub vectors 

              
1 1 2

2 2

Y = X + MX

Y = X




                                                                             →  (1) 

choosing M  so that the components of 1
Y


 are uncorrelated with the components of 2 2
Y = X


. 

The matrix M  must satisfy the equation. 

        ( )cov( ) ,qXp q Cov−= =1 2 1 2 2Y ,Y 0 X +MX X


 

                                         = ( ) ( ),Cov V= +1 2 2X X M X


 = 12 22M+Σ Σ                    →  (2) 

Thus ,           
1

12 22M −= −Σ Σ                                                                                       →  (3) 

and now, the vector 1
Y


 becomes 

                      
1

11 22

−−
1 1 2

Y = X Σ Σ X


                                                                           →  (4) 

and the vector 
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1

12 22

( )

,   

                                             where 
q

p q xq p q

I

I

−

− −

    
= =    

    

 −
=   
 

-1
1 11 12 22 2

2 22

Y XX -Σ Σ X
Y = = C CX

Y XX

Σ Σ
C

0

 


                   →  (5)           

Since 1,    =C C  is a non singular matrix.   

 Y


is non-singular transformation of X


. 

 Y


 has a normal distribution with mean vector  

         ( )
1

12 22 2
      (say)E

− −   
 = = = =           

1 1 1

22 2

μ μ Σ Σ μ ν
Y Cμ C

νμ μ
 

 
                      

→  (6) 

                 

and the variance –covariance matrix  

 

                 

1 1

1

1

( ) ov( )
)

ov( ) ( )

( )
                                 (from Eq.(2))

( )

V C
V V

C V

V

V

   
= =   

   

 
=  
 

1 2

2 2 2

2

Y Y Y ,Y
(Y

Y Y ,Y Y

Y 0

0 Y










    

                                         
 

=  
 

-1

11 12 22 21

22

Σ -Σ Σ Σ 0

0 Σ
                  →  (7) 

 

which implies 
 
 
 

1

2

Y
Y =

Y





has multivariate normal distribution, where 1 2
Y & Y


 are 

uncorrelated. 

Therefore 1 2
Y & Y


 are independent and are MVN variates.  More specifically,  

                          
1 1

22

( )

( , )

q

p q

N

N −

− -1

12 22 2 11.2

2 2

Y μ Σ Σ μ ,Σ

Y μ Σ


 


 

                  →  (8) 

                          where        
-1

11.2 11 12 22 21Σ = Σ - Σ Σ Σ . 

 

Now,  the joint p.d.f. of Y


 is given by     

   1( ) ( ) ( )g g g=
2

Y Y Y


       ( 1    and
2

Y Y


 are independent) 
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( ) ( )1 .2 2 2 22

1/ 2

11.2

( ) / 2

22

, . ,

1 1
exp ( )

(2 ) 2

1 1
     x exp ( )                             

(2 ) 2

q

p q

n n



 −

=

 
= − + 

 

 
− 

 

-1

1 12 22 2 11 2

-1 -1 -1

1 12 22 2 11.2 1 1 12 22 2

-1

2 2 22 2 2

y μ - Σ Σ μ Σ y μ Σ

Y -μ Σ Σ μ ) Σ (Y -μ + Σ Σ μ
Σ

Y -μ ) Σ (Y -μ
Σ



 

 
      (9)→

 

If we make use of the linear transformation (non singular) as given in (5). 

The density function of  X


 is given by 

                        ( ) ( )f g=X Y(X)).J(X


 

 Where, ( )J X


is the Jacobian and is given by 

            ( ) mod mod . 1q p qJ I I −


= = = =



y
X C

x





 

        ( ) ( ) ( ( ))f f g = =
1 2

X , X X Y X


 

                                           

1 1 1 1 1 1) ( )
1 12 22 1 12 22 2 11.2 1 12 22 12 22 22

/ 2
(2 )

11.2

1 1( ) ( )
1 222     x                                                           

( ) / 2
(2 )

22

e
q

e
p q





− − − − −− − − + − − +
=

−−

−

(x Σ Σ x μ Σ Σ μ Σ x Σ Σ x μ Σ Σ μ
1 2 2 1

Σ

x -μ Σ x -μ
2 2 2 2

Σ

 

                               

 →  (10) 

 

Now, By the definition conditional density of  X


, given that 2 2
X = x


 is that 

                 2

( )
( )

( )

f
f

f
= 1 2

1

2

x ,x
x /x

x





                                                                                →  (11) 

where ( )f
1 2

x ,x


 is given by (2) and 2( )f x


is the marginal density of 2
X


 at the point 2x


 

where is nothing but 22( , )n 2 2x /μ Σ
 

. 

            i.e. 2 22( ) ( , )f n=2 2x x /μ Σ
 

  

                 
1

22 2( ) / 2

22

1 1
exp ( ) ( )

(2 ) 2p q

−

−

 
= − 

 
2 2 2x -μ Σ x -μ

Σ  
                        →  (12) 

Using (10) & (12) in (11) we get, 

 

1 1 1 1[( ) ( )] [( ) ( )]
1 12 22 11.2 12 222( )

/ 2
(2 )

11.2

f e
q



− − −− − −
=

x -μ Σ Σ x -μ Σ x -μ Σ Σ x -μ
1 1 2 2 1 1 2 2

x /x
1 2

Σ



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                                                                                                                                    →(13)  

which is the conditional p.d.f. of 1
X


 given that 2 2
X = x


. 

From  (13), it is clear  that the density (f
1 2

x /x )


 is clearly a q-variate normal density with 

mean, 

                      1

1 12 22 2E( ) ( )−= = +1 2 2 2X X x μ Σ Σ x -μ
 

 

                           ( )=
2

x


  , say                                                                      →  (14) 

and the variances matrix, 

            1

11.2 11 12 22 21var( ) −= = = −1 2 2x X x Σ Σ Σ Σ Σ


                                                   →  (15) 

From (14)&(15) we may observe that the conditional mean of 1
x


 is simply a linear function 

of 2x


 and the conditional co-variance of 1
x


does not depend on 2x


 at all. 

Problem:  

Let X


 has a trivariate normal distribution with ( )E =X 0
 

and variance-covariance matrix       

                                  

1/ 2 1/ 2 1/ 2

1/ 2 1 1/ 2

1/ 2 1/ 2 1

− 
 

= − −
 
 − 

Σ .  

Find the conditional  distribution of 1 2 2 3 3 given X  and XX x x= = . 

The above result may be put in the following theorem:- 

                Let the components of X


 be divided  in to two groups  composing the sub vectors 

1 2
X & X


. Suppose the mean μ


 is similarly divided into 
1 2μ &μ


 and suppose the co-variance 

matrix Σ  of X


is divided into 1=
11 12 2 22

Σ ,Σ Σ ,Σ  the co-variance matrices of 1
X


 of 1 2
X & X


, and of 2
X


 respectively. Then if the distribution of X


 is normal, the conditional distribution 

of 1
X


 is given 2 2
X = x


 is normal with mean ( )+ -1

1 12 22 2 2μ Σ Σ x -μ


and  

co-variance matrix 
-1

11 12 22 21
Σ - Σ Σ Σ . 

 

NOTE:-  

               The above theorem may simply be asked as follows.If 1 2, ,..., PX X X have a joint 

normal distribution, then the conditional distribution of a subset of r.v’s given that the 

remaining r.v’s is also having normal distribution. 
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2.4  SUMMARY: 

  

The Multivariate Normal Distribution possesses elegant and powerful properties 

regarding marginal and conditional distributions. Marginal distributions of an MVN random 

vector are themselves multivariate normal, and conditional distributions retain normality with 

easily interpretable mean and covariance structures. These results greatly simplify 

multivariate modeling and inference and are central to many multivariate statistical methods.    

Marginal and conditional distributions are key concepts in multivariate analysis that 

allow the study of complex joint distributions in a simplified and meaningful way. Marginal 

distributions focus on subsets of variables independently of others, while conditional 

distributions examine variable behavior under given conditions. Together, they provide a 

comprehensive understanding of dependence, prediction, and inference in multivariate 

statistical models. 

 

 2.5  SELF-ASSESSMENT QUESTIONS: 

 

1. What is meant by the marginal distribution of an MVN vector? 

2. Prove that the conditional distribution of a partitioned MVN vector is also normal and 

derive its mean vector and covariance matrix. 

3. Let x be a p - variate normal. Obtain the marginal and conditional distributions of x . 

4. Let ( )1 ,X N   with  2 3  1 = − and 

1  1  1

1  3  2 

1  2  2

 
 

 =
 
  

. Obtain the conditional 

distribution of 3X given that 1 1 2 2 and X x X x= =  

5. Show that the marginal distribution of any subset of variables from an MVN vector is 

also normal. 

6. What is a conditional distribution? How does it differ from a marginal distribution? 

2.6  SUGGESTED READINGS: 

 

1. Anderson, T. W. (2003). An Introduction to Multivariate Statistical Analysis. Wiley. (A 

classic and comprehensive reference on MVN distribution and multivariate inference.) 

2. Johnson, R. A. & Wichern, D. W. (2007). Applied Multivariate Statistical Analysis. 

Pearson. (Excellent for applied understanding and properties of MVN.) 

3. Mardia, K. V., Kent, J. T., & Bibby, J. M. (1979). Multivariate Analysis. Academic 

Press. (Foundational theory, properties, and proofs of MVN results) 

4. Seber, G. A. F. (1984). Multivariate Observations. Wiley. (Strong theoretical treatment 

of multivariate distributions.) 

5. Rencher, A. C., Methods of Multivariate Analysis 

6. Bilodeau, M. & Brenner, D. (1999). Theory of Multivariate Statistics. Springer. 

(Accessible theoretical treatment.) 
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LESSON -3 

CHARACTERISTIC FUNCTION OF MVN 

DISTRIBUTION 
Objectives: 

 
❖ Define the characteristic function of a random variable and a random vector. 

❖ Derive the characteristic function of the MVN distribution. 

❖ Use the characteristic function to derive key properties of the MVN distribution. 

 

STRUCTURE: 

 
3.1    Introduction 

3.2    Definition of Characteristic Function 

3.3    Characteristic Function of the MVN Distribution 

3.4    Some more properties of MVN Distribution based on the characteristic function 

3.5    Summary  

3.6    Self Assessment Questions 

3.7    Suggested Reading 

 

3.1  INTRODUCTION: 
 
The characteristic function is an important tool in probability theory and statistical 

inference. It uniquely determines the distribution of a random variable or random vector and is 

especially useful in multivariate analysis. In this unit, the concept of the characteristic 

function is introduced and applied to the Multivariate Normal (MVN) distribution. 

 

3.2  DEFINITION OF CHARACTERISTIC FUNCTION: 

 
The characteristic function is a mathematical function that completely defines the 

probability distribution of a random variable (or random vector). It is a unique transformation, 

similar to a Fourier transform,  that always exists for any real-valued random variable, which 

is a key advantage over the moment-generating function which may not exist for some 

distributions (e.g., the Cauchy distribution). 

For a random vector 𝐗, its characteristic function, denoted by ( )X t , is defined as the 

expected value of a complex exponential function: 

where ( )2 1i = − , 𝐭 is a vector of real numbers, and the prime notation denotes the transpose.  

            The characteristic function of a random vector X


 is  

                                            ( ) ( )
i

E e


=X

t X
t 


   

 defined for every real vector t


. 
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RESULT:- 

             If the components of a random vector X


are independently distributed, 

 Then, 

                              1( )

p

j j

j

i t X
i

E e E e =

 
 

  =
 
 
 


t X
  

                  ( )
i

E e
t X
 ( )

1

j j
p it X

E e

j

= 
=

 

 

3.3   CHARACTERISTIC FUNCTION OF THE MVN DISTRIBUTION: 

The multivariate normal (MVN) distribution is a generalization of the one-dimensional 

normal distribution to multiple dimensions. A random vector 𝐗 is said to follow an MVN 

distribution with mean vector 𝝁 and covariance matrix (denoted as 𝐗∼(𝝁,𝜮)) if its 

characteristic function is given by: 

                                          
1

( ) exp t μ
2

i t t
 
 = −  

 
X t


 

This specific functional form is a defining property of the multivariate normal 

distribution and is frequently used to derive other properties, such as the distributions of linear 

combinations of MVN variables.  

 

THEOREM 1:- 

              The characteristic function of X


 which is distributed according to  

      ( , )N μ Σ


 is       

1

2( ) ( )
i

i
E e e

 −


= =
t μ t Σt

t X
t 


 

for every real vector t


. 

PROOF:- 

         We have given ( , )pNX μ Σ
 

 .  

Since, Σ  and hence 1−
Σ  is symmetric and positive definite matrix there exists a non-singular 

matrix C  such that  

 

  =-1CΣ C I                                                                                                      →  (1) 

 

             
1 1( )  or − −  = =Σ CC Σ CC                                                                      →  (1.a) 

we have the p.d.f. of X


 is 
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1 1( ) ( )
1 2( )

/ 2 1/ 2
(2 )

f e
p



−−
=

x -μ Σ x -μ
x

Σ

 


                                         → (2) 

Let us make use of the linear transformation, 

 

                      =X -μ CY
 

         (C  is defined as in (1))                                           → (3) 

Then the p.d.f. of the new random vector Y


is 

              

1 1
1 2( ) J( )

/ 2 1/ 2
(2 )

g e
p



− −
=

y C Σ Cy
Y y

Σ


 

                                           → (4) 

where J( )y


 is the jacobian transformation and is given by 

                 J( ) mod mod


= =


x
y C

y





=
  +

= 
   

Cy μx
C

y y
  



 

                          
1/ 2

mod= Σ       ( )2
from 1(a) = =Σ CC C  

                          
1/ 2

= Σ       ( )0Σ  

Therefore (4) becomes from (1), 

                
1

( ) ( , )
/ 2

(2 )
pg e n I

p




= =

1
- y y

2Y y/0
 

 

          i.e.   ( , )p pN IY 0
 

. 

 The characteristic function of Y


is  

                  
1

( ) ( )
i

p
i u Yj j

j
E Ee e



=

 
 

= =  
 
 

u Y
u 


 

                          

1

iu Yj jp
E

j

e 
=   

 =

            ( jY s  are independent ) 

                           
1

1 2

2
p

j

u
j

e
=

−
=                   (   the characteristic function of the standard  

                            1

1 2

2

p

j

u
j

e =

−

=


                                   normal variate  Yj  is 

1 2

2
u

j
e
−

) 
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                          =

1

2e

− u u
                                                                                          → (5) 

Now,  

             
( )

( ) ( ) ( )
ii

E e E e


= =
t CY +μt X

t 


             (from (3)) 

  i.e.  

             ( ) ( )
i i i

E e e E e
   

= =  
 

t μ t μ t CY
t  


 

                                    
i i

e E e
  

=  
 

t μ u Y
             (where  =u C t


) 

                                   = 

1

2i
e e

− u ut μ                 (from (5)) 

 

                                    

1

2
i

e

  −
=

t μ t CC t
             (  =u t C


) 

                                    

1

2
i

e

 − 
=

t μ t t
             (from 1.a) 

                           Hence the proof.                              

   

3.4   SOME MORE PROPERTIES OF THE MVN DISTRIBUTION 

BASED ON THE CHARACTERISTIC FUNCTION: 

 
THEOREM 2:- 

                 If every linear combination of the components of a vector X


 is normally 

distributed ,then X


 is normally distributed . 

PROOF:- 

                 Suppose X


 is a random vector of p random variables with mean vector  μ


 and co-

variance matrix Σ . 

 Let us consider an arbitrary linear combination of X


 viz… c X


 ,    where  1 2( , ,..., )pc c c =c


. 

We have given , c X


 is normal variate. 

We have, 

                          ( ) ( )E E =c X c X


 

                                      = c μ
 

 

                         V( ) V( ) =c X c X

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V( )

                 (variance)

=

=

c X c

c Σc




              

If  may be noted  c μ&c Σc


 are scalars and they are respectively the mean & variances of the 

univariate random variables c X


.  We have given that ( , )N  c X c μ c c
 

. 

      Let  Y = c X


 and  

from the univariate normal distribution theory, the characteristic function of Y is given by  

                      
Y( ) E( )itt e =  

                               

1 2E(Y) V( )
2

1 2

2

it t Y
e

it t
e

−
=

 −
=

c μ c Σc


 

If we write t=1  then, ( )t becomes  

                           

1

2(
i

e
 −

=
c μ c Σc

c) 


             where, ( , )NX μ Σ
 

 

which is the characteristic function of a multivariate random vector X


 whose mean vector is μ


  & 

variance-covariance matrix is of Σ  . 

But the mean & variance-covarince matrix of X


 respectively same as &μ Σ


 and therefore, 

( , )pN X μ
 

.   Hence the proof. 

THEOREM 3:- 

If ( , )pN X μ
 

  then,  c X


 is uni-normal variate with mean c X


 and  variance  c c


. 

(OR) 

If 1 2, ,..., pX X X are jointly distributed as p-variate normal then its linear combination follows 

univariate  normal distribution. 

PROOF:- 

            Let 

1

( , )p

p

X

N

X

 
 

=  
 
 

X μ
 

 

Then its characteristic function is given by  

                  ( ) ( ))
i

E e


=
t X

t 


 

                          

1

2
i

e

 −
=

t μ t Σt
                                                                                   → (1) 
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 Let us write 

1 1

2 2

.

.

.p p

t t c

t t c

t t c

   
   
   = =
   
   
   

t


 
t= c


 

Then (1) becomes , 

                          

1

2( )
it t t

e
 −

=
c μ c Σc

t 


 

                                 

( )itY

21it t
2

E e

e
− 

=

=

c μ c Σc


  

                                   ( )t=     ,say                                                                              → (2)  

where Y is normal variate with mean c μ
 

 and variance cΣc


. 

In other words  (2) is the characteristic function ( )t of a uni-normal variate whose mean is c μ
 

 and 

variance is cΣc


. 

If we consider the linear combination of the components of the normal random vector X


 viz., 

                 Y = c X


 

                     1 1 2 2X X ... Xp pc c c= + + +   

its mean and variance are given by 

                 (Y) (E E  = =c X) c μ
 

   &     V(Y) V ) V(  = =(c X c X)c = cΣc


                                                                   

Thus, from the above explanation it follows that  Y = c X


 follows uvi-variate normal distribution, 

              i.e. ,   . Y N( )  = c X c μ,c Σc
 

 

                 Hence the proof. 

 

3.5  SUMMARY:  

• The multivariate normal distribution is one of the most important and widely used 

distributions in statistics and data science due to its analytical tractability and rich 

geometric and probabilistic properties. 

• Its behavior is completely determined by its mean vector and covariance matrix, making 

it mathematically elegant and practically useful. 

• The characteristic function offers a powerful tool for deriving and proving many results 

    about MVN distributions, including linear transformations and independence 

properties. 

• The structural properties such as marginals, conditionals, and affine transformations make 

     the MVN family closed under many operations commonly used in statistical inference. 
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• Because of these features, the MVN distribution forms the foundation of many classical 

    multivariate methods and modern machine-learning techniques. 

 

3.6  SELF-ASSESSMENT QUESTIONS: 

1. Derive the characteristic function of an MVN vector ( ), .pX N    

2. Define the characteristic function of p-variate normal distribution.Hence find the

( ),i jCov X X   

3. State and prove characteristic function of X


 which is distributed according to ( , )N μ Σ


 is       

1

2( ) ( )
i

i
E e e

 −


= =
t μ t Σt

t X
t 


for every real vector t

. 

4. State two important properties of characteristic functions. 

5. Explain the significance of the characteristic function in multivariate analysis. 

3.7  SUGGESTED READINGS: 

 

1. Anderson, T. W. (2003). An Introduction to Multivariate Statistical Analysis. Wiley. (A 

classic and comprehensive reference on MVN distribution and multivariate inference.) 

2. Johnson, R. A. & Wichern, D. W. (2007). Applied Multivariate Statistical Analysis. 

Pearson. (Excellent for applied understanding and properties of MVN.) 

3. Mardia, K. V., Kent, J. T., & Bibby, J. M. (1979). Multivariate Analysis. Academic Press. 

(Foundational theory, properties, and proofs of MVN results.) 

4. Bilodeau, M. & Brenner, D. (1999). Theory of Multivariate Statistics.Springer.(Accessible 

theoretical treatment.). 

 

 

 

Prof. A. Vasudeva Rao 
 



LESSON -4 

 ML ESTIMATION AND SAMPLING 

DISTRIBUTIONS 
 

OBJECTIVES: 

 

❖ Understand the concept of random sampling from a Multivariate Normal (MVN) 

    distribution. 

❖ Derive and explain the sampling distribution of the sample mean vector. 

❖ Derive and interpret the sampling distribution of the sample covariance matrix. 

❖ Apply Maximum Likelihood Estimation (MLE) to estimate the mean vector and 

    covariance matrix of an MVN distribution. 

❖ Analyze the independence properties of the sample mean and sample covariance matrix. 

 

STRUCTURE: 

 

4.1  Introduction  

4.1.1  Overview of multivariate normal distribution 

4.1.2   Importance in statistical modeling and data analysis 

4.2  Sampling from the MVN Distribution 

4.3  ML Estimation of Mean Vector ( )μ


and Dispersion Matrix ( )Σ                            

4.4 Sampling Distributions of the MLE’S ˆˆ   andμ Σ


 and their Independence 

4.5  Sampling Distribution of the Sample Mean Vector ( )X   

4.6  Sampling Distribution of the Sample Covariance Matrix ( )S              

4.7  Sample Mean Vector and Sample Dispersion Matrix are Independent         

4.8 Summary 

4.9 Self Assessment Questions 

4.10  Suggested Reading 

 

4.1 INTRODUCTION: 

 

Maximum likelihood estimation is a method for estimating the parameters of a 

probability distribution by finding the values that make the observed data most likely, 

given the model.  In multivariate analysis, it is used to estimate the parameters of a 

model, such as covariance matrix and mean vector.  

 

Here is a step-by-step explanation:  

1. Specify the model: Define the multivariate model, such as a multivariate normal    

distribution.  

2. Define the likelihood function: The likelihood function is the probability of observing   

 the data given the model parameters.  

3. Define the log-likelihood function: The log-likelihood function is the logarithm of the   

likelihood function, which is used for computational convenience.  

4. Find the maximum likelihood estimates: Find the values of the model parameters that   
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maximize the log-likelihood function. This is typically done using numerical 

optimization methods, such as the Newton-Raphson method or gradient-based 

method.  

5. Estimate the model parameters: The maximum likelihood estimates are the values of      

the model parameters that maximize the log-likelihood function. These estimates are 

used to summarize the data and make inferences about the population. 

 

In multivariate statistical analysis, sample data are used to make inferences about 

unknown population parameters. Two of the most important sample statistics are the sample 

mean vector and the sample covariance matrix, as they provide information about the central 

tendency and variability of multivariate data. To use these statistics effectively in estimation 

and hypothesis testing, it is necessary to understand their sampling distributions. 

 

The sampling distribution describes the probability distribution of a statistic obtained 

from repeated random samples of the same size drawn from a population. When the 

underlying population follows a multivariate normal distribution, the sampling distributions 

of the sample mean vector and the sample covariance matrix have well-defined and tractable 

forms. The sample mean vector follows a multivariate normal distribution, while the sample 

covariance matrix follows a Wishart distribution. 

 

Knowledge of these sampling distributions forms the theoretical basis for many 

multivariate inference techniques such as confidence regions for the mean vector, hypothesis 

testing using Hotelling’s T2 statistic, multivariate analysis of variance (MANOVA), and 

likelihood-based estimation methods. Hence, the study of sampling distributions of the 

sample mean vector and covariance matrix is fundamental to multivariate statistical theory 

and applications. 

 

4.1.1  OVERVIEW OF MULTIVARIATE NORMAL DISTRIBUTION: 

 

The multivariate normal distribution is a generalization of the one-dimensional 

(univariate) normal distribution to a higher number of dimensions. A random vector X of p 

dimensions is considered to be multivariate normal, denoted as ( , )pN X μ
 

, if every linear 

combination of its components is normally distributed.  

It is completely characterized by two parameters: the mean vector (𝝁), which is a                    

p-dimensional vector of the expected values for each variable, and the covariance matrix(𝜮), 

a p p symmetric, positive semi-definite matrix that contains the variances of each variable 

on the diagonal and the co-variances between variable pairs in the off-diagonal elements. The 

contours of constant density for the MVN distribution are ellipsoids centered at 𝝁. 

Key properties include: 

 

• Any subset of variables from a MVN vector also has a MVN distribution (marginal 

distributions are normal). 

• Any linear combination of the components is also normally distributed. 

• Zero covariance between components implies statistical independence, a property unique 

to the normal distribution family. 

• Conditional distributions of any subset of variables, given values of other variables, are 

also multivariate normal. 
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4.1.2 IMPORTANCE IN STATISTICAL MODELLING AND DATA  ANALYSIS:  

 

 The MVN distribution plays a central and fundamental role in multivariate statistical 

analysis, similar to the univariate normal in standard statistics. Its theoretical tractability and 

desirable mathematical properties, such as being closed under affine transformations, make it 

the default assumption for many classical multivariate techniques like Principal Component 

Analysis, Factor Analysis, and Discriminant Analysis. It is widely used in:  

• Regression modeling, especially in econometrics and psychometrics. 

• Machine learning, where it is used to approximate feature distributions in classification 

       and Bayesian inference. 

• Finance, particularly in portfolio modeling and risk assessment (though its lack of tail 

      dependence can be a limitation). 

• Biological and social sciences, for analyzing relationships between multiple correlated 

       variables, such as the classic example of father's and son's heights.  

Its importance also stems from the multivariate central limit theorem, which states 

that the distribution of sample means from a large variety of underlying distributions 

approaches a multivariate normal distribution. 

 

4.2 SAMPLING FROM MVN DISTRIBUTION: 

 

Let us assume that the p×1 vectors 1, 2, , nX X X


 represent a random sample from a 

multivariate normal population with mean vector  μ


 and covariance matrix  .  Since  

, , ,1 2 nX X X


 are mutually independent (by virtue of randomization) and each has 

distributed as the joint p.d.f. of all the observations is the product of the marginal normal 

densities. 

     i.e. 
  1 1 2( ) ( ) ( ) ( )nf f f f=2 nx ,x ,…,x x x x


 

                                            ( )

1

1
2 2

1
  ( ) ( )

2

1

1

2 | |
p

n

j

e


−−

=

 
 

=  
  


j jx -µ Σ x -µ

Σ

 

 

                                                                ( )( ) / ,f n =
 j jx x μ Σ


 

                                         ( )

1

1

1
  ( ) ( )

2

/ 2 / 2

1

2 | |

n

j

np n
e



−

=

− 
=

j jx -µ Σ x -µ

Σ

 

  --- (1)    

When the numerical values of the observations become available, there may be substituted 

for 1 2 nx ,x ,…,x


in equation (1).  The resulting expression, now considered as a function of 

 and μ Σ


 and for a fixed set of observations 1 2 nx ,x ,…,x


, it is called as “the likelihood 

function” and is denoted as ( )L μ, Σ


. 
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4.3 ML ESTIMATION OF MEAN VECTOR ( )μ


AND DISPERSION  MATRIX ( )Σ :                           

 Consider the likelihood function ( )L μ, Σ


given  in Eq. (1). i.e.  

( )

( ) ( )
1

/ 2 / 2

1

21
( )

2

n

j

np n
L e



=


−

=


 -1
j jx -µ Σ x -µ

μ, Σ
 


             

 ---- (2) 

Now the maximum likelihood estimates of  and μ Σ


can be obtained by maximizing 

( )L μ, Σ


. 

In order to obtain the MLE’s of   and μ Σ


 ,let us consider logarithms of  (2) and is given by 

( ) 
n

-1

j j

j=1

-np n 1
log L(μ, Σ) = log 2π - log Σ

2 2 2

(x - µ) Σ (x - µ)-      
                    ---- (3)                                                                                                                                           

Consider the last term of (3) and as if is a scalar we may write if as 

    
( ) ( )

( )( )

1

1

n
1

j=1

n
1

j=1

1

1

 

 ( ) ( )

( ) ( )

 

                  (  tr( )=tr( )

n

j

n

j

tr

tr

tr

−

=

−

−

−

=

=


=


=



 
 
 

 
  

 
  









j j

j j

j j

j j

x - µ Σ x - µ

x - µ Σ x - µ

Σ x - µ x - µ

x -µ Σ x -µ

AB BA

 

 

 

 



                                                                                              

( )( )
n

1

=1

                     
j

tr −
  

  
  
    


=  j j

Σ x -µ x -µ
 

                                                    

---- (4) 

Now consider                                                                                             

 

( )( )

  

1

1

n

j

n

j

=

=




=





j j

j j

x - µ x - µ

x - x + x - μ x - x + x - μ

 

 
                                                                                                     

                                    Where    ( )
1

n
= + +1 2 nx x + x x

     
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( )( ) ( )( )
1 1

n n

j j= =

= + j j
x - x x - x x - μ x - μ
   

 (Since the cross product terms) 

( )( ) ( )( )
1

0

n

j

n n
=

 = − = j
x - x x - μ x x x - μ
   

1

n

j

n
=

=
 
 
 
 j

x x
  

and  similarly    

   
( )( )

1

0
n

j=

 = j
x - μ x - x
       

Thus  

( )( )

( )( ) ( )( )

1

1

n

j

n

j

n

=

=




= +





j j

j j

x -µ x -µ

x - x x - x x - μ x - μ

 

 

 

 Substituting  this  in (4) we get , 

( ) ( )

( )( ) ( )( )

1

1

1

1

n

j

n

j

tr n

−

=

−

=



  
= +  

   





j j

j j

x -µ Σ x -µ

Σ x - x x - x x - μ x - μ

 

 

 

( )( ) ( )( )1 1

1

n

j

tr n tr− −

=

     
= +     

      
 j jΣ x - x x - x Σ x - μ x - μ

   

( )( ) ( ) ( )1 1

1

n

j

tr n tr− −

=

     
= +     

      
 j jΣ x - x x - x x - μ Σ x - μ

 
                                                         

[Since tr (AB) =tr (BA)] 

( )( ) ( ) ( )1

1

n

j

tr n−

=

    
= +    

    
 -1

j jΣ x - x x - x x -μ Σ x -μ
 

  

--- (5) 
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            (Since trace of scalar is scalar) 

 

Substituting (5)  in  (3),we get  

( ) ( ) 1log , log 2 log
2 2

np n
L   −−

 = + Σ


             

                                  
( ) ( ) 1

1

1

2

n

j

tr
−

=

−
   

     
 j j

Σ x - x x - x
  

                              
( ) ( )1

2

n
−− x - μ Σ x - μ

                     ---- (6) 

Since 
1−

Σ   is positive definite   

( ) ( )1
0  

−
  x - μ Σ x - μ μ x


       

                                                               
0  if  = =μ x


      

From (6), we can observe that if the last term is zero then (6) becomes maximum that is 

( )log L μ, Σ


 can be maximized with respect to  μ


 at   =μ x


 

The MLE of   is  μ x


 and substituting the MLE of    (  )μ x


 in (6)   

We get 

( ) ( ) 1
log log 2 log

2 2

np n
L 

−−
= +μ, Σ Σ


      

   
( )( )( ) 1

1

1

2

n

j

tr
−

=

−
 
  


j j

Σ x - x x - x
                   --- (7) 

Now we have to maximize (7) w.r.t. Σ as the equation is free of  μ


  

We can prove that (7) attains its maximum value at ˆ=Σ Σ  , 

Where,    
( )( )

1

1
ˆ

n

jn =

=  j j
Σ x - x x - x

                                             --- (8) 

Thus Σ̂  (given by (8)) is the MLE of Σ  . 

The maximum value of the likelihood can be obtained by substituting the MLEs of  and μ Σ


 

respectively given by 

          ( )( )
1

1
ˆˆ   and 

n

jn =

==  j j
Σ x - x x - xμ x


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 in (2) and it is given by                                

                              

( )
( )

( )

p
/ 2 I/ 2

2

/ 2/ 2 / 2

ˆ2

ˆ2

n
n trnp

nnp np

e

e





−
−−

−− −

=

=

Σ

Σ
      

                                = const. x 

2ˆ
n

−

Σ
 

                                =const. x 

-n

2(generilised variance)  

 since generalized variance is defined as Σ̂ .The generalized  variance determines the 

peakedness of the likelihood function and consequently is a natural measure of variability 

when the parent population is multivariate normal. 

NOTE:- 

1. MLEs posses an invariance property which means if ̂  is the MLE of   then 
ˆ( )h   is 

the MLE of ( )h   ,where ( )h   is a function of  . 

 For Example :- 

• If  μ̂


 MLE of   μ


 and Σ̂ is the MLE of Σ , then 
1ˆˆ ˆ −μ Σ μ


is the MLE of 1 −μ Σ μ


. 

• If  ij
  is the   

thij  element of Σ  and ˆ
ij is the   

thij  element of  

         Σ̂  where Σ̂ is the MLE of ij .  

      Where ( )( )
1

1
ˆ

n

ij ik i jk j

k

X X X X
n


=

= − −  

                        ( ), .i jCOV X X=  

2. From equation (6) the log-likelihood and  hence the joint  p.d.f depends on the whole set of 

observations 1, , nx x


only  through the sample mean x


 and  the sum of 

squares and cross product matrix, 

( ) ( )
1

ˆ
n

j

n


=

= j jx -x x -x Σ
  

We may express this fact by saying that  ( )ˆ or μ x


 and  Σ̂  are sufficient statistics. Thus the 

MLEs μ̂


 and   Σ̂  are sufficient statistics of μ   and Σ . 

3. The MLE of Σ  is  
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( ) ( )
1

1
ˆ

n

j
n

=

=
 j jΣ x -x x -x

  

Thus formula is not convenient to compute Σ̂ and the following is the convenient formula 

for computation  

1

1
ˆ  

n

j
n

=

 =  j jΣ x x -x x
  

Explanation:- 

   

( ) ( )
1

1
ˆ

n

j
n

=

=
 j jΣ x -x x -x

  

               

1 1 1 1

1

1 1 1 1

1

n n n n

j j j j

n

j

n n n n

n

= = = =

=

   = − − +

   = − − +

   



j j j j

j j

x x x x xx x x

x x x x xx xx





       

        
1

1ˆ
n

jn =

 =  -j jΣ x x x x
  

4.4 SAMPLING DISTRIBUTIONS OF THE MLEs μ̂


 & Σ̂  AND THEIR        

INDEPENDENCE:      

           

           Before going to obtain the sampling distribution of  ˆˆ   andμ Σ


,   let us prove the 

following result which is useful in obtaining the sampling distributions of  ˆˆ   andμ Σ


 .    

Result:   Suppose  1
,..., nX X


 are independent where ( , )pN X μ

 
.       Let   

( )j n n
c
 

=C be an orthogonal matrix then 

( )
1

,
n

j

j

c Np 
=

=α jY X Σ
   

Where  
1

n

j

j

c 
=

= jμ
 

  and   1 nY , ,Y


are independent. 

Theorem:- Let 1, , nX X


be an independent random sample from ( )pN μ, Σ


. 

Then the MLE of μ   say  μ̂  ( also the sample mean) is distributed according to  
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( ), /pN nμ Σ


 and is independent of  the MLE  of  Σ  given by 

               ( )( )
1

1ˆ
n

n =

=  α αΣ X - X X - X


 

and  ˆnΣ  is distributed as 
1

n

=

 α αz z


where ( ),pNαz 0 Σ
 

 and is 
1,......... nZ Z


  are 

independent. 

Proof:-  We have given a random sample , ,1 nX X


where ( ),pNαX μ Σ
 

 and 

is independent of βX


 for    .We have the MLE’s of  μ  and  Σ are respectively 

given by  

  
1

ˆ 1/
n

n X X



=

= =       

 ( )( )
1

1ˆand   
n

n =

=  α αΣ X - X X - X


    (1)                                    

Now there exists an  n x n  orthogonal matrix  ( )b=B with the last row i.e. 

     1/     nb n =                                                                            (1.a) 

Let us define a new random sample  , ,1 nz z


 from the given  random sample  

, ,1 nX X


using the orthogonal transformation from the orthogonal matrix  .  

 

Thus   

             
1

n

b
 =

=α βz X
       for  1,2, ,n =                                    ---(2) 

In particular, 

nb 


=n βz X
   

      

1

n

= βX
             [The last row of  is as given in (1.a) ] 

        

      n=nz X


                        [From (1)]                                                                   --- (3) 

Let us consider   

1 1 1 1

n n n n

i j

i j

b b 
 = = = =

  
 =   

  
   α α i jz z X X

      [ Using (2) ] 

 i.e.  
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1 1 1

n n n

i j i j
i j

b b X X 
= = =

=
  

                             

2

1 1 1 1

n n n n

i i j

i j i j

b b b  
 = = =  = =

 = + i i i jX X X X
                                      

                                              

2

1 1 1 1

n n n n

i j i j

i i j

b b b  
 = =  = =

   
 = +   
   

   i i iX X X X
  

1

n

=

= α αX X
                                                                                                  --- (4) 

                      [   is the orthogonal matrix and as a consequence  

                                   
1

0
n

i jb b 
=

=
     and     

2

1

1
n

ib
=

=
       ] 

Now consider   
ˆnΣ   from (1) i.e. 

( )( )
1

ˆ
n

n
=

= α αΣ X - X X - X
  

            
1 1

n n

 = =

 = − α αX X XX
        

( )
1

0
n

=

  = 
 

 αX X - X
  

            
1

n

n
=

 = − α αX X XX
  
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1

n

=

 = α α n nz z - z z
                [Using (3) and (4)] 

            

1

1

n



−

=

= α αz z
                                                                                     --- (5) 

From (3) and (5) we observe that  X


 ( μ̂


) is distributed according to the distribution of  

nz


 and  
ˆnΣ (and hence Σ̂  )is distributed according to the distribution of  

, ,1 n-1z z


. 

Also, since  
, ,1 nz z


 are obtained from , ,1 nX X


 using the 

orthogonal linear transformation (using orthogonal  matrix Β )
, ,1 nz z


 are 

independently distributed as  Multivariate normal distribution with common covariance 

matrix  ‘ Σ ’.  Therefore ˆˆ  and μ Σ


 are  independently distributed. 

Now let us obtain the mean vector of  , ,1 nz z


  

From (3) 

( ) ( )E nE=nz X
  

                 
( )( )

1
n E

n
= +1 2 nX + X + X

  

                                                      [  'siX


  are independent ] 

                   
( )

1

1 n

i

i

n E X
n =

= 
  

1

1 n

i

n n
n

 
=

= =


            

( )( ),NpiX μ Σ
 

      

Thus  ( ),Np nnz μ Σ
 

 

i.e. ( ),n Np nX μ Σ
 
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i.e. 
,Np

n

 
 
 

Σ
X μ
 

 

From (2), we have  

 
( ) ( )

1

n

E b E
 =

=α βz X
      [  

'sβX
   are independent ]  

                    
1

n

b
 =

= μ


                

                   
1

1n

b n
n


 =

= μ
  

                   
1

n

nn b b 
 =

= μ
           [

1
nb

n
 =

 ] 

                      n=  0


 

Thus each of  , ,1 n-1z z


 are distributed as ( )0,Np Σ


.Therefore from (5) 

ˆnΣ is distributed as  

1

1

n



−

=

 α αz z
 , where ( ),Nαz 0 Σ

 
 

and is independent of  ( ) βz


 

Thus the MLE’s of μ  and  Σ  are independently distributed. 

Hence the proof. 

 

4.5  SAMPLING DISTRIBUTION OF THE SAMPLE MEAN VECTOR ( )X :     

                 

             In multivariate normal (MVN) models, the sampling distributions for the sample mean 

vector and the sample covariance matrix are the Multivariate Normal distribution and 

the Wishart distribution, respectively. A key property is that these two sample statistics are 

statistically independent of each other.  

Suppose a random sample of 𝑛 observation vectors 1 2 n
X , X ,...., X  is drawn 

independently from a p - dimensional multivariate normal population with mean vector   

and covariance matrix  , denoted as ( , )i pN X μ , 

The sample mean vector is defined as      
n

i
i=1

1
X = X

n  
We have 
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    ( ) ( ) ( ) ( )( )
1

E E E E
n

= + + +1 2 nX X X X


 

                            

                         

n

n
= =

μ
μ


 

 Thus X


is an unbiased estimator of μ


. Thus sample mean is an unbiased estimator of the 

population mean vector μ


. 

The sampling distribution of the sample mean vector ( )X  is also a multivariate normal 

distribution with:  

 

• Mean Vector: The same mean vector as the population, ( )E =X μ
 

 

• Variance-covariance Matrix: The population covariance matrix scaled by the 

inverse of the sample size, ( )
1

Var
n

=X Σ


. 

So, the distribution is:  

                                      
1

,pN
n

 
 
 

X μ Σ
 

 

      This result holds exactly for any sample size when the population is MVN.  

 

4.6  SAMPLING DISTRIBUTION OF THE SAMPLE COVARIANCE MATRIX ( )S :  

 

        We have from Eq. (5),  

  
( )

1

1

1ˆ
n

E E
n 

−

=

 
=  

 
 α αΣ z z

  

                              
( )

1

1

1 n

E
n 

−

=

=  α αz z
     [ 'z s


 are independent] 

                             
( )

1

1

1 n

V
n 

−

=

=  αz
  [ ( )E αz = 0

 
] 

                              

1

1

1 1n n

n n

−

=

−
= =Σ Σ

 

Thus Σ̂ is not an unbiased estimator of Σ .   

But ( )
1

1ˆ ( )
1 1

nn

n n =

= =
− −

 α αΣ X - X X - X S
  
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(say) is an unbiased estimator  of Σ [
ˆ

1

n
E

n

 
= 

− 
Σ Σ ] 

Hence  ( )
1

1
( )

1

n

n =

=
−
 α αS X - X X - X


 is called the 

sample covariance matrix and is an unbiased estimator of Σ .    The sampling distribution of 

the scaled sample covariance matrix is the Wishart distribution, which is the multivariate 

generalization of the chi-squared distribution. 

Specifically, the matrix ( )1n S−  follows a Wishart distribution with parameters:  

• Degrees of Freedom: 1v n= − . 

• Scale Matrix (or parameter): , the population covariance matrix.. 

This is denoted as: 

                                  ( ) ( ) ( )1 ,  or W , 1p pn S W v n−   −  

where p  is the dimension of the vectors. The Wishart distribution is a distribution over 

symmetric, positive-definite matrices.  

 

4.7 SAMPLE MEAN VECTOR AND SAMPLE DISPERSION MATRIX  ARE 

INDEPENDENT: 

 

    Theorem:- Let 1 2 nx ,x ,…,x


be a random sample of size n from ( ),pN   . Then x


is 

distributed according to ( )μ,pN n


 and is independent of sample covariance matrix S is given 

by ( ) ( )
1

1

1

n

S
n

 
=

= − −
−

X X X X


 and ( )1n S− is distributed as 

n
1

α α
α=1

z z


where ( )α pz N 0,
 

and is 1 2 n,Z ,....,ZZ  are independent. 

Proof: We have given a random sample 1 2 nx ,x ,…,x


where ( )pX N μ, 
 

 and is 

independent of X


for    where the sample mean of X


and sample variance-covariance 

matrix S  respectively given by 
n

α=1

1
X= X

n



 

                 ( ) ( )
1

1

1

n

S
n

 
=

= − −
−

X X X X


                                                      ……(1) 

Now  a n n  orthogonal matrix ( )XB b = with the last row  

i.e., 
1

nb
n

 =   

                          
1 1 1

, , ,
n n n

 
 
 

                                                            ……(1. A) 

Let us define a new random sample 1 2 nz ,z ,…,z


 from the given random sample  

1 2 nx ,x ,…,x


using the orthogonal transformation from the orthogonal matrix  .  

 

Thus,   
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1

n

b
 =

=α βz X
     for  1,2, ,n =                                               …..(2) 

In particular,  nb 


=n βz X


  

                                

1

n

= βX
                        [The last row of  is  as given in (1.A) ] 

        

                         

1
 nX

X

n

n

=

=

n

n

z

z





                                                                                    ….. (3) 

Let us consider   

1 1 1 1

n n n n

i j

i j

b b 
 = = = =

  
 =   

  
   α α i jz z X X

       

1

n

=

 α αz z
 1 1 1

n n n

i j i j
i j

b b X X 
= = =

=


 

                     
2

1 1 1 1

n n n n

i i j

i j i j

b b b  
 = = =  = =

 = + i i i jX X X X
       

( ) ( )2

1 1 1 1 1

n n n n n

i j i j
i i j

b b b  
  = = =  = =

  = +    α α i i iz z X X X X
  

 

        In orthogonal matrix sum of squares is one  

    

( ) ( )
n n

i i i j
i=1 i¹j=1

n

α α
α=1

= X X 1 + X X 0

z z

  

= 





                                                      ……(3A) 

Now consider ( )1n S−  from (1) i.e., 

( ) ( )( )α α
1

1  = X -X X -X
n

n S
=

− 


                                                                             ….. (4) 
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( ) ( )( )

( )

( )

α α
1

n n

=1 =1

n

=1

n

α α
α=1

1  = X -X X -X

1  = X X XX

             X X nXX

1  = z z z z

n

n n

n S

n S

n S



 
 

 


=

− 

 − − 

 = −

 − −









 

 

                         

1

1

n



−

=

= α αz z
                                                                  …….(5) 

From (3) and (5) we observe that X


 is distributed according to the distribution of  nz


and  

( )1n S−  is distributed according to the distribution of  . 

Also, since 1 2 n
z ,z ,…,z


 are obtained from 1 2 nx ,x ,…,x


using the orthogonal linear 

transformation 1 2 n
z ,z ,…,z


 are independently distributed as Multivariate normal distribution 

with common covariance matrix are independently distributed. 

 

Now, let us obtain the mean vector of  1 2 n
z ,z ,…,z


 

From (3)       ( ) ( )E nE=nz X


 

                                    ( )( )
1

n E
n

= +1 2 nX + X + X


 

                                                      [ 'siX


 are independent] 

                                   ( )
1

1 n

i

i

n E X
n =

= 
1

1 n

i

n n
n

 
=

= =


            

( )( ),NpiX μ Σ
 

      

Thus  ( ),Np nnz μ Σ
 

 

i.e. ( ),n Np nX μ Σ
 

 

i.e. ,Np
n

 
 
 

Σ
X μ
 

 

From (2), we have  

( ) ( )
1

n

E b E
 =

=α βz X
      [ 'sβX


  are independent]  
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( ) ( )

( )

( )

( )

( )

1

1

1

1

 

1
 

   

 

 

n

n

n

n

n

E b E

E b

E b n
n

E n b b

E n










 




=

=

=

=

= 

= 

= 

= 

=  

α β

α

α

α

α

z X

z μ

z μ

z μ

z 0



 

 

 

 

                  

                                       

Thus each of  1−1 2 n
z , z ,…,z


 are distributed as ( )pN 0,Σ


.  

Therefore from (5) ( )n-1 S  is distributed as 

1

1

n



−

=

 α αz z


, where ( ),Nαz 0 Σ
 

 

and is independent of  ( ) βz


 

 Sample mean vector X


 and sample covariance matrix S  respectively are independently 

     distributed. 

 

 

4.8   SUMMARY:  

 

       This lesson focused on sampling from the multivariate normal (MVN) 

distribution and the associated maximum likelihood estimation (MLE) and sampling 

distributions of key sample statistics. The multivariate normal distribution was introduced 

as a fundamental model in multivariate analysis, characterized completely by its mean 

vector and variance–covariance matrix. 

 

       A random sample drawn from an MVN population was considered, and the 

behaviour of important sample statistics was examined. The sample mean vector was 

shown to follow a multivariate normal distribution with the same mean vector and a 

scaled covariance matrix. The sample covariance matrix was shown to follow the Wishart 

distribution, which serves as the multivariate analogue of the chi-square distribution.     

   

       These sampling distributions form the theoretical basis for multivariate inference. 

Maximum Likelihood Estimation was applied to estimate the unknown parameters of the 

MVN distribution. The MLE of the mean vector was obtained as the sample mean vector, 

while the MLE of the variance-covariance matrix was derived as a scaled version of the 

sample dispersion matrix. The distinction between the MLE and the unbiased estimator of 

the covariance matrix was highlighted. 

 

         A key and unique result of multivariate normal theory-that the sample mean 

vector and the sample covariance matrix are statistically independent-was also 
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established. This property greatly simplifies the development of multivariate test statistics 

and confidence regions. 

 

         Overall, understanding sampling and estimation under the multivariate normal 

framework is essential for effective statistical modelling, inference, and data analysis 

involving multiple correlated variables. 

      

4.9   SELF-ASSESSMENT QUESTIONS: 

 

1. Derive the MLEs of the mean vector,   and the variance-covariance matrix ,    based 

on a random sample of size n draw from  the normal population ( , )pN   . 

2. Obtain the maximum likelihood estimates of the mean vector and the covariance matrix 

in a p - variate normal.  

3. Describe the method of sampling from a multivariate normal distribution. 

4. Derive the MLEs of the mean vector and covariance matrix for an MVN distribution. 

5. What are the sampling distributions of the sample mean and sample covariance matrix? 

6. In the p -variate normal case, show that mean vector and the sample variance- covariance 

matrix are independently distributed. 

7. Derive Sample mean vector for Multivariate normal distribution. 

8. Find the covariance matrix of the multivariate normal distribution which has the 

quadratic form 2 2 2

1 2 2 1 2 1 22 4 2x x x x x x x+ + − − . 

9. Derive the Samping distribution of Sample Variance-Covariance Matrix.   

10. Let 1 2 nX ,X ,....,X be a random sample of size n from ( ),pN   . If X denotes the sample 

and S denote the sample covariance matrix. Then determine the distribution of X and 

( )1n S− . 
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LESSON-5 

WISHART’s DISTRIBUTION 
 

OBJECTIVES: 

 

❖ Understanding the role of Wishart distribution 

Explain the importance of the Wishart distribution as the sampling distribution of the 

sample covariance matrix in multivariate normal populations. 

❖ Define the Wishart distribution formally 

State the definition, parameters, and notation of the Wishart distribution and relate it to 

the chi-square distribution. 

❖ Understanding connections with multivariate normal theory 

Explain how the Wishart distribution arises from multivariate normal random vectors and 

its role in multivariate inference. 

❖ Understanding the properties of Wishart distribution 

Build the necessary theoretical background for further study in multivariate hypothesis 

testing and estimation. 
 

STRUCTURE 

 

5.1  Introduction 

5.2  Definition of Wishart Distribution 

5.3   Some Properties of the Wishart Distribution  

5.4  Importance of  Wishart Distribution 

5.5 Summary 

5.6  Self Assessment Questions 

5.7  Suggested Reading 

 

5.1  INTRODUCTION: 

 

The Wishart distribution is a probability distribution used in statistics and probability 

theory to describe the behaviour of a sample covariance matrix or a sample correlation 

matrix. It is named after John Wishart, who first introduced it in 1928.  

 

Given a set of 𝑝-dimensional multivariate normal random vectors, the Wishart 

distribution describes the probability distribution of the sample covariance matrix, which is a 

𝑝×𝑝 matrix. The distribution is characterized by two parameters: the degrees of freedom (𝑛) 

and the scale matrix (Σ).  

 

Multivariate inference deals with statistical procedures for drawing conclusions about 

population parameters when observations are in the form of vectors rather than single 

measurements. Unlike univariate inference, multivariate inference accounts for the 

interrelationships among variables. 

 

The Wishart distribution has several important applications in statistics and data analysis, 

including:  

(i)  Covariance Matrix Estimation  

(ii)  Multivariate Analysis of Variance (MANOVA)  



Multivariate Analysis 5.2  Wishart’s Distribution  
 

 

(iii)  Principal Component Analysis (PCA)  

(iv)  Factor Analysis  

(v)  Bayesian Analysis  

 

The Wishart distribution is a generalization of the Chi-Squared distribution and is 

closely related to other distributions, such as the multivariate gamma distribution and the 

inverse Wishart distribution. 

 

5.2  DEFINITION OF WISHART DISTRIBUTION: 

 

From Lesson 4, we know that the sample mean ( X


) and the sample covariance matrix 

( )
1

1
( )

1

n

n =

 = 
− 
 α αS X - X X - X


  are independently 

distributed. Also it may  be seen that 

    ,N
n

 
 
 

Σ
X μ
 

 

1

1

1

1

n

S
n 

−

=

=
−
 α αz z

  , where ( ),pNαz 0 Σ
 

 

i.e.  (n-1)S is distributed according to the distribution of  

1

1

n



−

=

 α αz z
 , where 

, ,1 nz z


are independently distributed as  ( ),pN 0 Σ


. The matrix 

1

1

n



−

=

 α αz z
 is called  “ Wishart random matrix” and it is distributed according to 

“wishart distribution” with (n-1) degrees of freedom. 

And is denoted as ( )1nW − Σ , where Σ is the covariance matrix of Wishart random 

matrix .   Hence it may be noted that 

1

1

1 Wishart random matrix 

1 degrees of freedom

n

E E
n 

−

=

  
= =   

−   
 α αΣ z z

  

         

Thus (n-1)S (and hence S ) provides independent information about Σ  and the distribution 

os S does not depend onμ


. This allows us to construct a statistics for making inferences 

about  μ


 as we shall see in the later lessons. 

Definition of Wishart distribution: 
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If 1 2 nz ,z ,…,z


are independently distributed as ( )PN 0,Σ


Then the matrix A written 

as 
n

i i

i=1

A = z z


 is called as Wishart random matrix and its distribution is called as Wishart 

distribution with ‘n’ degrees of freedom and if may be denoted as ( )WnA Σ , where Σ is 

the parametric matrix of wishart distribution.  The P.d.f. of wishart distribution is given by  

P.D.F.  Of  Wishart  Distribution :  

The p.d.f. of   ( )WnA Σ  is given by 

( ) ( )

( )

1 / 21 / 2

/ 2/ 2 ( 1) / 4

1

W
1

2 1
2

trn p

n p
nnp p p

i

e

n i

−
− −

−

=

 
= 

   
+ − 

 


AΣ
AA

Σ
Σ

 

A   is positive definite and (.)   is gamma function. 

 

 

5.3  SOME PROPERTIES OF THE WISHART DISTRIBUTION:   

Property – 1:  

Sum Property: The sum of independent Wishart matrices with the same covariance 

matrix is also Wishart. 

➢ If  1A  is distributed as  ( )
1

Wm Σ   independently of   2A , which is 

distributed as ( )
2

Wm Σ , then 1 2+A A  is distributed as 

( )
1 2

Wm m+ Σ . That is the degrees of freedom are added. 

 Proof: - Since ( )
11 WmA Σ . 

         1A   may be written as 

     

1

1

1

 =
m

=

 α αA z z
  , where   ( ),Npαz 0 Σ

 
 

        Also since   2A  is independently distributed as ( )
2

Wm Σ , 

        We may write   
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1 2

1

2

1

 =
m m

m

+

= +

 α αA z z
 , where  ( ),Npαz 0 Σ

 
 

    Since  1A  and  2A  are independent, 
, ,

1 21 m +mz z
  are independent    

     and as a consequence   .  

   
( )

1 2

1 21 2

1

W
m m

m m



+

+

=

= + =  α αA A A z z Σ
   

                       

                               Hence the proof. 

Property – 2:   

➢ If   ( )WmA Σ ,then  ( )Wm
 CAC CΣC  

Proof:-Given ( )WmA Σ  

 
1

 =
m

=

  α αA z z
 , where ( ),pNαz 0 Σ

 
 

    
1 1

W
m m

m 
 = =

   = = α α αCAC Cz z C Y Y
  

         where ( )pN =α αY Cz 0,CΣC
 

 

             [ ( ) ( )E CE= =α αY z 0
 

   

                            

                        ( ) ( )V V=α αY Cz


= CΣC   and  αY


   is normal random 

vector] 

      ( )Wm
 CAC CΣC  

                                 Hence  the  proof . 
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5.4  IMPORTANCE OF WISHART DISTRIBUTION 

 

• Sampling Distribution: Models the distribution of sample covariance matrices from 

multivariate normal data, essential for understanding data variability. 

• Bayesian Statistics: Acts as a conjugate prior for the inverse of the covariance matrix 

(precision matrix), simplifying Bayesian computations. 

• Multivariate Inference: Underpins likelihood-ratio tests and statistics like Hotelling's T², 

used for multivariate mean comparisons. 

• Eigenvalue Analysis: Its eigenvalues reveal insights into data dimensionality and structure, 

used in random matrix theory and analyzing functional brain networks. 

• Applications: Found in wireless communication (MIMO channels), finance, and medical 

imaging (Diffusion Tensor Imaging).  

 

5.5  SUMMARY:  

 

The Wishart distribution provides the theoretical foundation for statistical inference 

involving covariance matrices, particularly when dealing with data sampled from a 

multivariate normal population. Its properties, such as additivity and the ability to model 

positive definite matrices, make it an efficient and mathematically convenient tool for the 

analysis of variance-covariance structures in high-dimensional data.  

 

Its primary use is in modeling sample covariance matrices and serving as a key 

component in more complex Bayesian models, such as the Normal-Wishart conjugate prior 

for vector autoregression models. The development of related models, such as the Wishart 

Autoregressive (WAR) processes, demonstrates its continued relevance in modern fields like 

quantitative finance and signal processing for modeling time-varying volatility.  

 

5.6  SELF-ASSESSMENT QUESTIONS: 

 

1. Define the Wishart distribution. State and prove the additive property of Wishart  

 distribution. 

2. Let A follows Wishers distribution ( ),pW n  what is the distribution of ( )1 ,W n  . 

3. State the conditions under which a random matrix follows a Wishart distribution. What is the  

 relationship between the Wishart distribution and the multivariate normal distribution? 

4. Explain the importance of the Wishart distribution in multivariate analysis. 

5. Show that the Wishart distribution generalizes the chi-square distribution. 

6. State and explain the reproductive property of the Wishart distribution. 

7. Derive the marginal distribution of a principal submatrix of a Wishart matrix. 

8. Explain the conditional distribution of partitioned Wishart matrices. 

9. Discuss the role of Wishart distribution in multivariate hypothesis testing. 

 

5.7  SUGGESTED READINGS: 

 

1. Anderson, T.W.(2000). An Introduction to Multivariate Statistical Analysis, 3rd Edition, 

       Wiley Eastern. 

2. Johnson, A. and Wichern, D.W.(2001). Applied Multivariate Statistical Analysis, Prentice 

Hall and International. 

https://www.google.com/search?q=Hotelling%27s+T%C2%B2&sca_esv=c45750cdfde14b5c&sxsrf=AE3TifMOs0ntzcMmmQUXc0AwcfvdCjY5Mg%3A1767739237072&ei=ZY9dadqWBMmgseMPqYG4qQI&ved=2ahUKEwjmq7ai_veRAxXQT2wGHYvBBe4QgK4QegQIBRAD&uact=5&oq=Importance+of+wishart+distribution+and+its+properties&gs_lp=Egxnd3Mtd2l6LXNlcnAiNUltcG9ydGFuY2Ugb2Ygd2lzaGFydCBkaXN0cmlidXRpb24gYW5kIGl0cyBwcm9wZXJ0aWVzMggQABiABBiiBDIFEAAY7wUyBRAAGO8FSOxKUNoWWOVCcAJ4AZABAJgBnAKgAfwVqgEFMC45LjW4AQPIAQD4AQGYAg2gArYSwgIHECMYsAMYJ8ICChAAGLADGNYEGEfCAgcQIxiwAhgnwgIIEAAYogQYiQWYAwCIBgGQBgmSBwUyLjQuN6AH4EiyBwUwLjQuN7gHjBLCBwUyLTQuOcgHgQGACAA&sclient=gws-wiz-serp&mstk=AUtExfAHzwgYv4hvShgH5LjgWnbHqoOtkHGxrvTqamTp4-h-XOfEeokMXPn5Z5B7uI4T_oEOCV9ZheKh6OOdORzMXbehBGK0oLu-KA6JAJjMmYAsynOloPNh1bTeDcZmY0GBCj0stBlm-p9WrsQSxt11B1DSpXgS4g1eyp2Qd3YB8v-z0I6dwjUHAb61Z_Dxd55M-o1KJKTsEpiZFN8rRPpeXQ3SlusWFsAPSi7AAPUSKut98hos7yYxPEhVSYxigM6erRV4KLcWetdTTkwGZwZA2BbP&csui=3
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LESSON-6 

HOTELLING’S T2 STATISTIC AND ITS 

APPLICATIONS 
 

OBJECTIVES: 

 

After completing this lesson, students will be able to: 

❖ Understand the inferences about mean vector(s) of a MVN distribution(s) and the need 

for multivariate testing when multiple correlated variables are involved. 

❖ Define and derive Hotelling’s T2 statistic and explain its role as the multivariate analogue 

of Student’s t-test. 

❖ State and interpret the assumptions underlying Hotelling’s T2 test and assess their 

importance in practical applications. 

❖ Perform statistical inference on population mean vectors, including one-sample and two-

sample Hotelling’s T2 problems. 

❖ Develop appropriate test statistics for testing hypotheses about mean vectors when the 

population covariance matrix is known and unknown. 

❖ Understand the distribution of Hotelling’s T2 and its transformation to the F-distribution 

for hypothesis testing. 

❖ Derive Hotelling’s T2 as a Likelihood Ratio Test (LRT) under multivariate normality 

assumptions. 

❖ Understand and apply the invariance property of Hotelling’s T2 statistic under linear 

transformations. 

 

STRUCTURE: 

 

6.1  Introduction 

6.2  Inferences About Mean Vector(s) 

6.3 Developing Test Statistics when Σ  is  known  

6.4 Hotelling’s T2 Statistic 

6.4.1  Assumptions of Hotelling’s T2 

6.4.2  Definition  of  Hotelling’s 
2T - statistic (distribution) 

6.5  Deriving Hotelling’s 
2T -Statistic as the Likelihood  Ratio Test  of  

0 0H : μ = μ


 

6.6 
 
Invariance Property of Hotelling’s 

2T  

6.7  Applications of Hotelling’s 2T - statistic 

6.7.1 For testing the significance of one sample mean vector. 

6.7.2  A  Two Sample Problem when the covariance matrices are equal but     

          unknown  

6.7.3  The Two  Sample  Problem  when the covariance matrices are not equal 

6.8   Distribution  of Hotelling’s 
2T  
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6.9   Summary 

6.10  Self Assessment Questions 

6.11  Suggested Readings 

 

6.1 INTRODUCTION:  

 

In many practical situations, researchers are interested in comparing groups or testing 

hypotheses involving several related response variables simultaneously. Performing separate 

univariate t-tests for each variable ignores the correlations among the variables and leads to 

an increased risk of Type I error. To address this limitation, Hotelling introduced the            

T2 statistic, which serves as the multivariate extension of Student’s t-test. 

 

Hotelling’s T2 statistic is designed to test hypotheses about mean vectors of 

multivariate normal populations. It provides a single test that jointly considers all variables 

and incorporates their covariance structure, thereby offering a more powerful and informative 

assessment of group differences than separate univariate tests. 

 

The statistic plays a central role in multivariate inference and forms the theoretical 

foundation for several important techniques, including Multivariate Analysis of Variance 

(MANOVA). In particular, the two-sample Hotelling’s T2 test is equivalent to a one-way 

MANOVA with two groups. 

 

Hotelling’s T2 has wide applicability in fields such as medicine, engineering, 

psychology, education, economics, and quality control, where outcomes are inherently 

multivariate. By accounting for inter-relationships among variables, it enables researchers to 

draw valid and meaningful conclusions from complex multivariate data. 

 

Thus, Hotelling’s T2 statistic is a fundamental and powerful tool in multivariate 

analysis, providing a coherent framework for hypothesis testing involving multiple correlated 

variables. 

 

6.2 INFERENCES ABOUT MEAN VECTOR (S):  ONE  SAMPLE  PROBLEM: 

 

Suppose 1 2 n
X , X ,...., X


 is a  random  sample  from   a   multivariate normal  

population. Now, our  statistical  problem  is  whether  the  given  sample   has  come  from  

the  multivariate  normal  population, whose  mean  vector  is  given  by  
0μ = μ


.  In other 

words, we have  to  test  

0H  : 
0μ = μ


  vs   1H  :  0μ μ


 

based   on  the  given  random  sample 1 2 n
X , X ,...., X


 .  

  

 TWO  SAMPLE  PROBLEM: 

Suppose  we  have  two  different  samples  from  two  different  multivariate  

normal  populations ( , )pN (1)
μ Σ


 and 2( , )pN ( )
μ Σ


  with  common  variance-covariance  

matrix Σ .  Now, our statistical problem is whether the two normal populations have the 

same mean vector or not.  In other words, our problem is equivalent to  test  the    

hypothesis  
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0H : (1) (2)
μ = μ


  vs   1H  : (1) (2)
μ μ


 

based on  the  given  two  samples.   

For developing  the  test  statistics in the above two problems, we  have  to  

consider   whether the common  covariance matrix Σ  is  known  or  not.  First, let us 

develop the test statistics for the above one-sample case as well as two-sample case 

assuming the population variance-covariance matrix Σ  is  known.   

                 

6.3  TEST STATISTICS  WHEN Σ  IS  KNOWN : 

 

One-Sample problem: 

Before discussing one-sample problem,  let  us  prove  the  following  important 

result. 

Result 1:   If a p-component  vector Y

 pN (0, )


, where    is  non- singular  

(positive definite),  then  

           Y Y− 


2

pχ                                                  (1)→                                             

where 
2

pχ   is Chi-square distribution  with  p d.f . 

Solution:  We  have  given  Y


   pN ( )0,Σ


. 

Since,    is  p.d.f      a  non-singular  matrix  C  such  that,  

                                  C Σ C  = I   

                             = ( )
-1-1

C  I C  = ( )
-1

 C  C                             (2)→  

Let  us  define  the  linear  transformation,  

                                               Z = CY


                                           (3)→  

Then,  E (Z)


 =  C E(Y)


 = 0


  

           V ( Z


 ) = V ( CY


) =  C V ( Y


) C  =  C Σ C  =  I   ( from (2) ) 

Since the transformation is linear,  

Z

  pN (0 , I)


  i.e ., 1 2 pZ , Z ,..., Z ,  the  individual  components  of  Z


  are distributed 

as  N(0,1).    

Further, since the  covariances  are  zeros,  1 2 pZ , Z ,..., Z  are independent which follows 

from the normality of the components. 

   Z Z


 = 2 2 2

1 2 pZ +Z +.............+Z   
2

pχ  

  Y C CY 


    
2

pχ                           ( from (3)) 

  
-1Y Σ Y


     

2

pχ                            (from  (2)) 
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Hence  the  result (1) . 

Result  2: 

If 1 2 n
X , X ,...., X


 is  a  random  sample  of  size n drawn  from  a  multivariate  

normal  population  with known variance-covariance matrix  , then obtain   the  test  

statistic  for  testing  

              0H  : 
0μ = μ


   vs   1H  : 

0μ μ


    

and  the  critical  region  of  size  ‘ α ’  as  well  as  the  confidence  region  for  μ


  of  

confidence  1- α . 

Solution:   We  have  given  the  random  sample 1 2 n
X , X ,...., X


 from pN ( )μ, Σ


,  where 

Σ  is known .Now, we  know  that,  the  sample  mean,  X

 pN ( / )nμ, Σ


. 

Define  the  random  vector, Y


= n  ( X - μ )
 

                                     (4)→  

With (Y)E


 = n E (X - μ)
 

 = n ( μ - μ )


 = 0


 .  

         V( Y


) = V( n ( )X - μ 
 

) = n  V(  X 


)   =  n  Σ n   =    . 

 Thus, the  mean  vector  of  Y


 is  0


 and  covariance matrix  is  .  

  Further, since the transformation in (4)  is  linear, 

                                                 Y

 pN (0, )


                                           

  Now, from the above Result 1, it immediately follows 

                                                
-1Y Σ Y


   

2

pχ   

                      n (X - μ)
 

-1
Σ (X - μ)

 
n     

2

pχ                      (from (4)) 

                             n (X - μ)
 

-1
Σ (X - μ)

 
  

2

pχ      

Thus,  the test statistic for 0H  :
0μ = μ


  is  given  by                                                                            

                                n 
0
(X - μ )

 

-1
Σ 0(X - μ )

 
                                 (5)→  

which  follows  
2χ distribution  with  p d.f. 

Let  
2

pχ (α)  be  the  number  such  that  Pr  2 2

p p χ   χ  (α)  =α . 

Thus,                        Pr { n
0
(X - μ )

 

-1
Σ 0(X - μ )

 
    

2

pχ (α)  }  = α    

and  to  test  0H : 
0μ = μ


 ( given ), we  use  
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              n
0
(X - μ )

 

-1
Σ 0(X - μ )

 
     

2

pχ (α)                                (6)→    

as  critical region. 

Similarly,  we  use  the  inequality,  

                           * (X - μ )
 

-1
Σ

*
(X - μ )
 

    
2

pχ (α)                     (7)→  

for obtaining the confidence region for μ


 (the  set  of  all *
μ


satisfying  (7))  with 

confidence  1 - α . 

Hence  the  result. 

Two  Sample  Problem :-                                                                                                  

Result 3: 

Suppose  we  have  a  sample  
1

(1) (1) (1)

1 2 nX ,X ,............,X


  from  pN ( )(1)
μ ,Σ


and  another 

sample 
2

(2) (2) (2)

1 2 nX ,X ,...........,X


 from pN 2( )( )
μ ,Σ


,  where  Σ   is  known .  Now,  under  

the  null  hypothesis  

                    0H : (1) (2)
μ = μ


                                                                      

 1 2

1 2

n n

n + n
 ( ) ( ) 
 
 

(1) (2) -1 (1) (2)X - X Σ  X - X


   
2

pχ , 

where, 
(1)

X


= mean  of  the  random  sample 
1

(1) (1) (1)

1 2 nX ,X ,............,X


   

           and     
(2)

X


= mean  of  the  random  sample  
2

(2) (2) (2)

1 2 nX ,X ,...........,X


. 

Solution: 

From the given hypothesis, we have 

    ( )(1)
1,pN n(1)X μ Σ

 
  & ( )2 (2)

2,pN n( )X μ Σ
 

                   (1)→  

Now  define,   Y


 = 
(1) (2)

X - X


                                                           (2)→    

with  mean  vector, E( )Y


 = (1) (2)-μ  μ


                                                (3)→  

and variance- covariance  matrix,  

       ( )V Y


 = ( )V (1) (2)
X - X


                        

                           = 
2 1( ) ( ) v( , ) v( , )V V Co Co+ − −(1) (2) (1) (2) ( ) ( )

X  X X X X X


 

                  =
1 2

+
n n

Σ Σ
=

1 2

1 1
+

n n

 
 
 

Σ                                                   (4)→  

 (since  the  two  samples  are  independent and  as  a consequence the covariance 
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matrices 
2 1v( , ) & v( , )Co Co= =(1) (2) ( ) ( )

X X 0 X X 0


                                                    

Since  the  transformation  used  in  (2)  is  linear, we have  

                        Y


   
1 2

1 1
, +

n n
pN
  
   

  

(1) (2)
μ - μ Σ 


  

                              ( )− (1) (2)
Y μ - μ
 


1 2

1 1
, +

n n
pN
  
   

  
0 Σ 


 

     Now, from the above theorem (1), it immediately follows 

    ( )
 − 

(1) (2)Y μ - μ
 

-1

1 2

1 1
 +  

n n

  
  

  
Σ ( ) − 

(1) (2)
Y μ - μ
 

  2

pχ  

But, under  the  null  hypothesis, 0H : (1) (2)
μ = μ


 

      ( )(1) (2) X - X




-1

1 2

1 1
Σ +  

n n

  
  

  
( )(1) (2) X - X


  
2

pχ       (from(2))        

  1 2

1 2

n n

n + n
( )(1) (2) X - X




1−  ( )(1) (2) X - X


  

2

pχ  

           Hence  the  proof . 

 

6.4  HOTELLING’S T2 STATISTIC: 

 

The Hotelling’s 𝑇2 was develop by Harold Hotelling (1895−1973) to extend the 

univariate t-test with one dependent variable to a multivariate t-test with two or more 

dependent variables (Hotelling, 1931). 

 

Hotelling's 𝑇2 test is indeed an extension of the univariate t-test to analyze data with 

multiple response variables. It is commonly used in multivariate analysis to compare means 

across groups or to test hypotheses about the mean vector of multivariate data. The power of 

Hotelling's 𝑇2 tests for one-group and two-group designs can be calculated based on sample 

sizes, alpha level, effect size, and the variance-covariance structure of the data. Options are 

provided to specify these parameters and solve for required sample sizes. 

 

6.4.1 ASSUMPTIONS OF HOTELLING’S T2: 
 

The following assumptions are made when using Hotelling’s 𝑇2 to analyze one or two 

samples of data:  

(i) Multivariate Normality: The data should follow a multivariate normal distribution within 

each group.  

(ii) Homogeneity of Covariance Matrices: The covariance matrices of the groups should be 

equal (homoscedasticity).  

(iii) Independence: Observations within and between groups should be independent.  
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6.4.2   DEFINITION  OF  HOTELLING’S 
2T - STATISTIC (DISTRIBUTION): 

 

   Suppose y


 is a  p-variate random vector distributed according to pN ( )0,Σ


 and let 

n

i=1

 i i
=B z z


 ( where each iz


 pN (0, )


  and are independent) is a Wishart random 

matrix and is distributed as Wishart distribution with n degrees of freedom i.e. B

n (Σ)W .  Now, if y


 and B  are independent then the quantity 

            
2  = T

n

 
  
 

-1
B

y   y


  

is called as  Hotelling’s 
2T statistic and it distribution is called as Hotelling’s 

2T -

distribution with n d.f. and is denoted as  
2T  2

nT . 

Nature Of  2T - statistic ( Distribution) :-  

   

We can write, 

                 

-1
n

i i i
2 i=1

0 0

(X  - X) (X  - X )

T  = n (X - μ )  n  (X - μ )
n - 1

 
 

 
 
 
 





     

    which is of the form,                       

              

-1
multivariate multivariateWishart random matrix

normal r.v normal r.vd.f

    
    

    
. 

 Since   the multivariate normal random vector and the Wishart random matrix, 

given in 2T  are independently distributed  ( X & S 


  are independently 

distributed ). Their joint distribution is the product of the marginal normal and 

Wishart  distributions and therefore  2T -distribution can be obtained from this. 

 

6.5  DERIVING HOTELLING’S 
2T STATISTIC AS  THE        

         LIKELIHOOD  RATIO  TEST  OF  0H : 0μ = μ


: 

 

There is a general principle for constructing  test  procedures called  the 

Likelihood Ratio (LR) principle method  and  the 2T -statistic can be derived as the LR 

test of   0H : 0μ = μ


 as explained below. 

   Suppose  1 2 n
X , X ,...., X


 (n > p) is given random sample from 
pN (μ , Σ)


, the 

likelihood function is                                                                           
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( )

np 2 n 2

n
-1

α=11
L( )  =  

2π

1- ( )  Σ ( )
2

 e
 α α

μ,Σ
Σ

x -μ x -μ



 
           (1)→  

Under the hypothesis, 0H : 0μ = μ


, the likelihood becomes, 

     
( )

np 2 n 20

n
-1

α=11
L( )  =  

2π

1- ( )  Σ ( )
2

 e
 0 0α α

μ ,Σ
Σ

x -μ x -μ



 
      (2)→  

The likelihood ratio criterion is 

                            Σ

μ,Σ

max  L( )
λ  = 

max  L( )

0μ , Σ

μ , Σ







                                         (3)→  

i.e., the numerator is the maximum of the likelihood function for μ , Σ


 is the parameter 

space restricted by the null hypothesis (
0μ = μ


) and Σ  is positive definite and the 

denominator is the maximum over the entire parameter space ( Σ  is positive definite). 

When the parameters are unrestricted the MLE’s of andμ  Σ


from (1) are given by   

                            Ω
ˆ = μ x


 

                           Ω

1ˆ = ( - ) ( - )
α αn α

Σ x x x x


                                  (4)→  

When  0 = μ μ


, the likelihood function given by (2), minimizes at  

                           0 0 0

1ˆ = ( - )( - )
α αn α

Σ x μ x μ
 

                               (5)→   

Substituting (4) in (1), we get (after simplification), 

               
-np 2

n 2μ,Σ np 2
Ω

1
max  L( ) =  e

ˆ(2π)  
μ,Σ

Σ 
                   (6)→   

Similarly, substituting (5) in (2), we get  

                
-np 2

n 2Σ np 2

1
max  L( ) =  e

ˆ(2π)  
0

0

μ ,Σ

Σ
               (7)→    

Substituting (6) & (7) in (3),we get, 
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n 2
ˆ

λ = 
ˆ

 
 
 
 
 

Ω

0

Σ

Σ
 

                 
2 n

ˆ

  λ  = 
ˆ


Ω

0

Σ

Σ
 = 

n

=1

n

=1

( )( )

( )( )





− −

− −





α α

α 0 α 0

x  x x x

x μ x μ



 

   (7a)→   

                 
2 n  = 

+ n ( )
  λ




0 0

A

A x - μ ) (x - μ
 

  

     Where    A= 

n

=1

( )( )


− − α αx  x x x


                                    (8)→  

Consider the matrix, 
( 1) ( 1)

( )

( ) 1p p

n

n+  +

 
 =
  − 

0

0

A x - μ
B

x - μ

 

 

 

                                               = 

11 12

21 22

 
 
 
  

B B

B B







. 

    We have, 
-1

11 22 21 11 12B = B  B - B B B  

                          
-1

22 11 12 22 21= B  B - B B B  

-1 = -1   - n  ( ) (-1) n  ( )   0 0B A x - μ x - μ
 

 

              =  + n ( )0 0A x - μ ) (x - μ
 

. 

2 n  = 
n  ( )

- 
n  ( ) -1

  λ




0

0

A

A x - μ

x - μ

 

 

 

                =  
-1-  -1 - n  n  ( )

0 0

A

A (x - μ )  A x - μ
 
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                =  
  1 +n ( )   ( ) -1

0 0

A

A x - μ A x - μ
 

 

                =  
1

  1 + ( )n  -1

0 0x - μ )  A  (x - μ
 

. 

Where  A  is as given in (8) . But we have, 

                S = 
1 1

= )
n-1 n-1

 α α

α

A (x - x) (x - x


  

                          A  =  (n-1) S       

2 n 1
λ  = 

1+n
 




-1

0 0(x - μ )  [(n -1)S] (x - μ )
 

 

              =  
1

n
1+ )

(n-1)
 -1

0 0(x - μ )  S (x - μ
 

 =  
2

1

1+T /(n-1)
         (9)→   

where, 
2T  = n( ) -1

0 0x - μ )  S (x - μ
 

 is  Hotelling’s 2T - statistic. 

Now, from (7a) & (9),  we can see 

                  

2T
1 + 

(n - 1)
 = 

n

=1

n

=1

( )( )

( )( )





− −

− −





α 0 α 0

α α

x μ x μ

x  x x x

 



 

                           2T   =  

n

=1

n

=1

( )( )

(n-1)  -1

( )( )





 
− − 

 
 

− − 
 





α 0 α 0

α α

x μ x μ

x  x x x

 



 

                                        =  (n-1)  
0

Ω

Σ̂
 - 1

Σ̂

 
 
 
 

                                   (10)→  

             In this formula, we need not find the inverse of a matrix, where as in the 

original formula we have to evaluate 
1S −
. 

 

6.6  INVARIANCE PROPERTY OF HOTELLING’S 
2T STATISTIC: 
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         Result : 2T - statistic is invariant (unchanged) under changes in the units of  

measurements for X


 of the form,  

                              Y = CX + d
 

, where C is non-singular              (1)→  

          Proof :- We have, 
p

N (X μ , Σ)
 
 , 

                                i.e., E(X) = μ
 

   E (Y) = Cμ + d
 

  ( from (1))      (2)→   

Now, we have the 2T - statistic for testing, 0H : 
0μ = μ


 vs 1H : 

0μ μ


 based on the 

given sample 1 2 n
X , X ,...., X


 is  

                         
2

xT  = n ( ) -1

0 x 0x - μ )  S  (x - μ
 

                                (3)→    

where         
n

x i i

i=1

S
1

=  (x - x) (x - x)
n -1 

                                 (3a)→     

From (1) we can see  
pY N Cμ + d , CΣC )(

 
. 

Now, the 2T - statistic  for  testing,    

       0H  :
0Y Y μ = μ


 vs   1H  : 

0Y Yμ  μ


 

where, Y μ = Cμ + d


    &     
0Y 0 μ = Cμ  + d


                                         (4)→       

based  on the sample 1 2 nY Y Y, , ....,


 is given by  

                        
2

yT  = n 
0 0Y

-1

Y Y(Y - μ )  S (Y - μ )
   

                                 (5)→    

where, Y = C x + d
 

  (from (1) ) 

                  
1

 
n - 1

 
n

i i

i=1

y  (y y) (y - y)S  = -


                                        (6)→  

and  
0Yμ


 is given by (4). 

   In order to show that the  Hotelling’s 
2T  is invariant under the changes in the 

units of measurements, we have to show, 
2 2

y xT  = T  . 

For that, consider 
2

yT  given from (5), 

                      
2

yT  = n ( 
0 0

-1

y y ySy - μ )   (y - μ )


 

                            = n ( ) -1

0 y 0SCx - Cμ )   (Cx - Cμ
 

         (using (4) )    

                            = n ( )  -1

0 y 0Sx - μ )  C   C(x - μ
 

                            (7)→  
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          But,  
1

n - 1


n

i i

i=1

y   (y y) (y - y)S  = -


 

              
1

=  
n -1


n

i i

i=1

(Cx  - Cx) (Cx - Cx)


                  (using (1) ) 

              
1

=  
n -1

 
n

i i

i=1

C(x  - x) (x - x) C


 

              
x= CS C                                                                 (from (3a)) 

     -1 -1 -1 -1

y xS  = (C ) S C  

    -1 -1

y x C S C = S   

Using this in (7), we get 

    
2

yT  = n( ) -1

0 x 0Sx - μ ) (x - μ
 

  = 
2

xT                  (from (3))  

Thus, 
2T  is invariant under the changes in the units of measurements. 

NOTE : The above theorem may be stated as “ The  Hotellings  
2T  is invariant under 

linear transformation ( or under changes in the location and scale ) of the sample . 

 

6.7  APPLICATIONS  OF HOTELLING’S 
2T STATISTIC: 

 

6.7.1  For testing the significance of one sample mean vector x


 : 

Suppose 1 2 n
X , X ,...., X


 is  a  random  sample  from   a   p-variate   normal  

population pN ( )μ,Σ


, where  both  and μ Σ


 are  assumed as unknown. Now, our  

statistical  problem  is  whether  the  given  sample   has  come  from  the  multivariate  

normal  population, whose  mean  vector  is   
0 μ


.    In other words, we  want  to  test  

the hypothesis 

0H  : 
0μ = μ


  vs   1H  :  0μ  μ


                                               (1)→ ,  

where  0μ


 is the given mean vector. 

For testing the above hypothesis, derive the test statistic. 

Solution: 

We have given a random sample of size n viz., 1 2 n
X , X ,...., X


 from pN ( )μ,Σ


, where 

both  and μ Σ


 are unknown. 

Now, we know that the mean vector  

              X

 pN ( / )nμ, Σ


  (since X


is a linear function of the sample) 

Define  the  random  vector, = ( )nY X - μ
 

                                              (2)→  

Whose population mean vector and population variance-covariance matrix are   
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respectively given by 

                  ( )= E( )= ( )E n n =Y  X - μ  μ - μ 0
 

.  

         V( Y


) = V( n ( )X - μ 
 

) = n  V ( )X - μ 
 

=n V(  X 


)   =  n  Σ n   =    . 

Thus, the  mean  vector  of  Y


 is  0


 and  covariance matrix  is  .  

Further, since the transformation in (2)  is  linear, we have 

                                                 Y

 pN (0, )


                                          (3)→                

We have the sample variance-covariance matrix    

                            
n

i=1

1
 = ( - )( - )

n-1
 i i

S X X X X


                                   (4)→   

Now, we know that (n-1)S follows Wishart distribution with n-1 degrees freedom and 

parameter Σ that is  

                                (n-1)S  n-1W ( )Σ                                                       (5)→  

Further, we know that the sample mean vector X


 and the sample variance-covariance 

matrix  S are independently distributed.     

From (2), it immediately follows that the random vector Y


and the random matrix(n-1)S  

distribute independently. 

Now, by the definition  of  Hotelling’s 
2T distribution, the statistic 

              
2 ( 1)
 = 

( 1)

n S
T

n

 −
  

− 

-1

Y   Y


                                               (6)→  

follows Hotelling’s 
2T distribution with n-1d.f.  i.e. 

           
2T  2

1nT −  

Substituting (2) in (6), we can see that 

         

2  = ( ) ( )T n  -1
X - μ  S X - μ
 

 2

1nT −                                      (7)→  

Now, under 0H  :
0μ = μ


  (7) becomes                                                                            

      
2

0 0 = ( ) ( )T n  -1
X - μ  S X - μ
 

 2

1nT −                                    (8)→  

 where, 

n

i=1

1

n
 =  ixx


  and     

n

i=1

1
 = ( - )( - )

n-1
 i i

S X X X X


          

Thus, the formula (8) gives us the Hotelling’s 
2T  statistic which can be used to test (1) 

and follows 
2

1nT −  

At  the given α  level of significance, 0H  may be rejected infavour of  1H  if 

                   

2

p,n-p

T n - p
 (α)

n - 1 p
 F

 
 
 

     (or)   
2 2

0T  > T   .         (5)→  

Where, 
2

0 p,n-p

(n - 1) p
T  =   (α)

n - p
 F    and    p,n-p  (α)F   is  the  upper 

th100 α percentile 
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of   the  F-distribution  and  can  be obtained  from  the F-tables. 

 

6.7.2  A  Two Sample Problem when the covariance matrices are equal but    

           unknown  (A Use Of  
2T -statistic): 

                    Another  situation  in which the  
2T -statistic is used is that in which 

the null hypothesis is that the mean of one normal population is equal to the mean 

of the other, where the covariance matrices are assumed equal but unknown. 

                    Suppose  (1) (1) (1)

1 2 nX , X , ..., X


 is a sample from  pN ( )(1)
μ ,Σ


 and  

(2) (2) (2)

1 2 nX , X , ..., X


 is a another sample (independent of the first sample ) from  

pN ( )(2)
μ ,Σ


. 

 

 Now, we wish to test the null hypothesis, 

  
(1) (2) (1) (2)

0H  : μ  = μ  or  μ  - μ  = 0


,against 
(1) (2)

1H  : μ   μ


     (1)→  

 The sample means from the hypothesis , 

             ( )
1n

(1) (1)

i p 1

i=11

1
 = /

n
N n (1)

X X μ , Σ
 

      

  and     ( )
2n

(2) (2) 2

i p 2

i=12

1
 = /

n
N n ( )

X X μ , Σ
 

   

 Now define, 
(1) (2)

Y = X  - X


                                                         (2)→  

with  mean,  E E E(1) (2)
(Y) = (X ) - (X )


 =  
(1) (2)

μ - μ


                   (3)→     

and the variance- covariance matrix, 

 V( Y


) = V(
(1)X


) + V(

(2)X


)    ( The two samples are independent)                  

                = 

1 2

1 1
 + 

n n
Σ Σ  

                =  

1 2

1 1
 + 

n n

 
 
 

Σ                                                                  (4)→   

Since the transformation in (2) is linear, from (3) and (4) it follows                   
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               p

1 2

1 1
, +

n n
N

  
  

  

(1) (2)
Y μ - μ Σ
 
  

      i.e., p

1 2

1 1
( ) , +

n n
N

  
−   

  

(1) (2)
Y μ - μ 0 Σ
 

       

      i.e., 
( ) ( )

p

1 2

 - 
N ( )

1 1
+

n n

(1) (2) (1) (2)
X - X μ - μ

0 ,Σ 


       (using (2))     (5)→  

 The sample covariance matrix from sample 1, which is denoted  by 1S  and is 

given by 

                   
1n

(1)

1 i

i=11

1
= ( - )

n - 1
 (1) (1) (1)

iS X  X ) (X - X


 . 

Similarly, the sample covariance matrix from sample 2, denoted by  2S  and is 

given by 

                    
2n

(2) 2 2 2

2 i

i=12

1
= ( - )

n - 1
 ( ) ( ) ( )

iS X  X ) (X - X


 . 

 Let us denote, 1 1 2 2

1 2

(n -1) + (n -1)
 =

n + n  - 2

S S
S                         (6)→   

 We know that  1 1(n -1)S   and  2 2(n -1)S    are Wishart random matrices and are 

distributed as  
1 2n -1 n -1w ( )  &  w ( )Σ Σ  respectively, where 

1n -1w ( )Σ   is  Wishart 

distribution with 1(n 1)−  d.f  and  
2n -1w ( )Σ  is  Wishart  distribution with  

2(n 1)−  d.f.  both have the parametric matrix  Σ . 

  By  assumption, the samples are independent, so 1 1(n -1) S  and 2 2(n -1) S  are  

also independent . Therefore from (6), 1 2(n +n 2)S−  is distributed as Wishart  

distribution with  1 2n + n 2−  d.f  and with the parametric matrix  Σ ,  

i.e.  
1 21 2 n + n -2(n +n 2)S  w (Σ)−                                  (7)→  

     

Since, the sample variance-covariance matrix is independently distributed with the 

sample mean vector, 1S  is  independently  distributed with 
(1)X


 and since the two 
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samples are independent, 1S  is  independently  distributed with  
(2)X


 and 

therefore  1S  is  independently  distributed with  
(1) (2)X - X


. 

Similarly, 2S  is   independently  distributed with  
(1) (2)X - X


. 

Therefore, 1 1 2 2

1 2

(n - 1) S + (n - 1) S
S = 

n + n  - 2
     is  independently  distributed with  

(1) (2)X - X


.  

Thus, from the above explanation and from (5) & (6) and by the definition of   
2T

-distribution, we have  

      
2T  =  

( ) ( )(1) (2) (1) (2)

-1

1 2

X - X  - μ - μ
 S

1 1
+

n n

 
 
 
 
 
 

   
( ) ( )(1) (2) (1) (2)

1 2

X - X  - μ - μ

1 1
+

n n

 
 
 
 
 
 

   

   

  

           =  ( ) ( ) ( ) ( )-11 2

1 2

n n

n +n

         
 

(1) (2) (1) (2) (1) (2) (1) (2)

X - X - μ - μ X - X - μ - μS
 

(8)→  

                                                                                                                            

is  distributed  as   
2T -distribution with  1 2n + n 2−  d.f  . 

Now, by virtue of  the  relation  between  
2T  and  F – distribution, we have 

         
1 2

2

p , n + n - 2 - (p-1)

1 2 1 2

T p
  F

n + n - 2 n + n - 2 - (p-1)
   

    i.e.,      
1 2

2

p , n + n - p-1

1 2 1 2

T p
  F

n + n - 2 n + n - p-1
   

under  
(1) (2)

0H  : μ  = μ


  i.e.,  
(1) (2)μ  - μ  = 0


 ,    (8) becomes 

2T =  ( ) ( )1 2

1 2

n n

n +n

 
 
 

(1) (2) -1 (1) (2)
X - X  S X - X


                  (9)→  

if  
2T  >  

1 2

1 2
p , n +n - p -1

1 2

p(n + n - 2)
 F (α)

n + n - p - 1
, where

1 2p , n +n - p -1F (α)   is  table  F- 
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value  at     level  of  significance  with  ( p, 1 2n + n - p - 1) d.f.,   then 

0H  : (1) (2)
μ  = μ


 may be rejected . 

 

6.7.3  The Two  Sample  Problem  when the Covariance matrices are unequal : 

In  the above  problem, we have  assumed  that  the  covariance matrices  of  

both  the  populations are assumed as equal  i.e., 1 2 =  =  . 

Now, let  us  suppose  that  1 2    i.e.,  the  population  covariance  matrices  

are  not  equal . 

In this case, no tests are available for making  inferences   about 
(1) (2)μ = μ


,when 

the sizes  of  the samples are  small . However, if  1 2n & n  are  large  i.e.,  in case  of  

large  samples, we have  the  following  result. 

 

Result : Let  the  sample  sizes  be  such  that  1 2n -p  and  n -p   are  large .  An  

approximation  100(1- α) %  confidence  region  for  
(1) (2)μ - μ


is  given  by  all 

(1) (2)μ - μ


satisfying , 

            ( ) ( )
-1

(1) (2) (1) (2)

1 2

1 2

1 1
X - X  - μ - μ  S  +  S

n n

  
  
  

 

                                                     ( ) ( )(1) (2) (1) (2) 2
px - x  - μ - μ   χ (α) 

 


 
 

where, 
2
pχ (α)  is  

2χ - table  values with  p.d.f  at  100α%   level  of  significance. 

Proof:-   
(1) (2) (1) (2)E (X - X ) = μ - μ

 
  

        & V(
(1) (2)X - X


) = V(

(1)X


) + V(
(2)X


) = 1 2

1 2

1 1
 Σ +  Σ

n n
. 

By  the  central  limit  theorem,                     

                    
(1) (2) (1) (2)

p 1 2

1 2

1 1
X - X μ - μ , Σ + Σ

n n
N

 
 
  

   . 

If  1 2&   are known,  

         ( ) ( )
-1

(1) (2) (1) (2)

1 2

1 2

1 1
X - X  - μ - μ   +  

n n

      
  

    

                                                                 

( ) ( )(1) (2) (1) (2) 2
pX - X  - μ - μ  χ (α)  

  
 , 

approximately, when 1 2n & n  are  large, with  high  probability 1 1 2 2S Σ   and  S  Σ→ → . 
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Consequently, the approximation  holds  with  1 2S & S , in  place  of  1 2Σ   and  Σ  

respectively .  Hence  the  theorem .  

                                                                                         

 6.8   DISTRIBUTION  OF  HOTELLING’S 
2T STATISTIC: 

Theorem :- Let  pNY (ν,Σ)
 
  and  let A be  a  Wishart  random matrix  independently  

distributed as 

1

m

 
=

Z Z


, where  'sαZ


  are  i.i.d pN (0,Σ)


  . Also let   

                                
2T m  -1

= Y A Y


                                          (1)→    

then , 

2T m - p + 1

m p

 
 
 

is  distributed  as  a  non-central  F  with  

p and m-p+1 d.f.  and non-centrality parameter  -1
ν Σ ν


.   Further, if ν = 0


, then 

                           

2

p, m - p +1

T m - p + 1
F

m p

 
 
 

                         (2)→  

and the distribution of  
2T  is called   

2T -distribution. 

Proof :- Since  Σis positive definite, there exists a non-singular  C such that 

                     
pCΣC = I  so that ,   -1

Σ = (C C)                     (3)→  

Define ,  and * *
Y = CY  A = CAC


                                         (4)→    

We can see that , 
* *

E(Y ) = Cν = ν
 

 (say) 

         V V *
(Y ) = (CY) = CΣC = I


         (using (3))       (5)→   

Thus ,  
pN* *

Y (ν ,I)
 
 . 

Since A is distributed as  

1

m

 
=

Z Z


,   *
A = CAC  is distributed as   

                              
m m

* *

α α α α

α=1 α=1

C Z Z C = Z Z


                   (6)→   

where , (p pN N =*

α αZ = CZ C0,CΣC ) (0,I)
 

  . 

Eq (1) can be written as   

                              

    

                              (7)

2T m

m

m

m



  

 

  →

-1

-1 -1 -1

-1

* * *

= Y A Y

= Y C (C ) A (C) CY

 = (CY) (CAC ) (CY)

= Y A Y








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where,  
pN*

Y (0,I)
 
  and  

*
A  is independently distributed as * *

1

m

 
=

Z Z


 in which  

's*

αZ


 are i.i.d pN (0,I)


 . 

Also, since  and Y A


 are independently distributed,  from eq. (4) ,  and * *
Y A


 are also 

independently distributed . 

Let ( )ij p p Ω = is an orthogonal matrix in which first row is defined by  

                
1       ,  j=1,2,......,p

*

j

j

Y


* *

=

Y Y


             (8)→  

where , 
*

jY  is 
thj  component of  

*
Y


. 

Now define , 
*

U = ΩY


 

                     *
B = ΩA Ω                                             (9)→  

The  
thi  component of U


 is given by  

                                 [using (8)]

     
    

0          otherwise  

         (Since ,   is orthogonal matrix) 

p
*

i ij j

j=1

p
ij

1j

j=1

U Y

if   i = 1






 





* *

* *

=

= Y Y

Y Y
=

Ω





   

Thus ,                                               (10)

0

0

0

 
 
 
  →
 
 
 
 

* *
Y Y

U =






   

From equation (7) ,  
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( ) ( ) ( )

2

1

 

                        (   is orthogonal)

           (  )

                                             [ using (9)]

T

m

−

 

  

  



* * *

* * *

* * * -1

-1

= Y IA IY

= Y Ω ΩA Ω ΩY Ω

  = ΩY ΩA Ω ΩY Ω = Ω

= U B U











   

  

11 12 1

21 22 2
*

1 2

00 0

0

p

p

p p pp

b b b

b b b

b b b

   
  
         
  
    

* *

*

Y Y

= Y Y







  



 

  
11b * *

= Y Y


                                                                         (11)→    

where , 
11b  is first diagonal element of  

-1
B . 

But we know that , 

                    
11

11

1
b

b  -1

1 22 1

=
- b B b


  ,    where    11

22

b

b

 
 
  

1

1

b
B =

b




 

 

Thus , from eq (11) , 

                                      

2

11.2.......p

T

m b

* *
Y Y

=                                 (12)→  

where , 11.2.......p 11b = b  -1

1 22 1- b B b


 . 

 Let us suppose that  Ω  is fixed (given). Then, just as we show 
*

A  is distributed as  

*

1

m


=

 *

αZ Z


, we can show that *
ΩA Ω is distributed as  

1

m

 
=

V V


,  when  
*

α αV = ΩZ


 

and 'sαV


 are  i.i.d pN (0,I)


  .  

Now,  with little difficult , we may show that 11.2.......p 11b = b  -1

1 22 1- b B b


 is conditionally 

distributed as  

-( -1)
2

1

m p





=

 , 

where   each   is . . (0,1)i i d N  .  

Therefore,        

-( -1)
2 2

-( -1)

1

 
m p

m p


 
=

 . 
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More over,  the conditional distribution of 11.2....... pb  does not dependent on  Ω , we have 

11.2....... pb  is  unconditionally  distributed as  
2

-( -1)m p  . 

Also, since  
pN* *

Y (ν ,I)
 
 ,      

2*

1

p

i

i

Y
=

 * *
Y Y =


 

where , 
* *( ,1)i iY N    and  

*

iY ’s are independent . 

Thus , * *
Y Y


 has non-central  
2 -distribution with non-centrality 

       = 
2*

1

p

i

i


=

 = * *
ν ν =


 ν C Cν


                                  [from(5)] 

                                       -1
= ν Σ ν


                                    [from (3)]  

Thus ,  
2T

m

 is distributed as the ratio of non-central  2

p   and  an independent central 2

-( -1)m p .  

Thus , 

2

( , - 1)

- ( -1)
p m p

T m p
F

m p
+

 
 
 

  (non-central) and non-centrality parameter 

 -1
ν Σ ν


. 

 If  ν = 0


 then,  -1
ν Σ ν = 0


 and therefore in this case, the distribution is central .

(p,m- p+1)F  ,the distribution of  
2T  is called   

2T -distribution with ‘m’ degrees of freedom . 

 

6.9  SUMMARY: 

 

Hotelling’s T2 statistic is a fundamental tool in multivariate statistical analysis, 

developed as a natural extension of Student’s t-test to situations involving multiple correlated 

response variables. It provides a unified framework for testing hypotheses about population 

mean vectors while accounting for the covariance structure among variables. 

 

The statistic is constructed using the sample mean vector and sample covariance 

matrix and, under the assumption of multivariate normality, follows a distribution that can be 

transformed into an F-distribution for hypothesis testing. Hotelling’s T2 can be applied in 

both one-sample and two-sample problems, enabling simultaneous comparison of several 

characteristics across populations. 

 

A key theoretical feature of Hotelling’s T2 is its close relationship with the 

Mahalanobis distance, showing that it measures the standardized multivariate distance 

between mean vectors. The statistic also possesses the important invariance property, 

ensuring that results remain unchanged under linear transformations and changes of 

measurement units. These properties make Hotelling’s T2 a robust and reliable method for 

multivariate inference. 

 

Hotelling’s T2 - statistic plays a central role in multivariate analysis by: 
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• Providing an effective method for simultaneous testing of multiple means 

• Preserving the overall significance level, unlike multiple univariate tests 

• Serving as the theoretical foundation for MANOVA and multivariate control charts 

• Being widely applicable in medicine, engineering, economics, psychology, and social 

sciences. 

•  

Despite its strengths, the method requires adherence to assumptions such as multivariate 

normality and adequate sample size relative to the number of variables. When these 

conditions are satisfied, Hotelling’s T2 offers a powerful, elegant, and statistically sound 

approach for multivariate hypothesis testing. 

In conclusion, Hotelling’s T2 statistic remains an indispensable tool in modern 

statistical methodology, bridging theory and application in the analysis of multivariate data. 

 

 

6.10   SELF ASSESSMENT QUESTIONS: 

 

1. Define Hotelling’s 2T  statistic.  Show that Hotelling’s 2T  statistic can be used to test the 

equality of means of corresponding variables in two MVN populations having the same 

variance-covariance matrix. 

2. Explain in detail the likelihood ratio principle in multivariate testing. 

3. Derive the invariance property of Hotelling’s T² statistic. 

4. Discuss the applications of Hotelling’s T2 statistic in fields such as medicine, quality 

control, economics, and social sciences with suitable examples. 

5. Explain the construction of confidence regions for the population mean vector using                   

Hotelling’s T2 statistic. 

6. Derive the test statistic and explain how it is used to compare two multivariate population 

mean vectors. 

7. Given a multivariate sample from a normal population, apply the one-sample                    

Hotelling’s T2 test to test whether the mean vector equals a specified value. 

8. What is meant by the pooled covariance matrix in the two-sample T2 test? List any four 

practical applications of Hotelling’s T2 statistic. 
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LESSON-7 

MAHALANOBIS D2  STATISTIC AND ITS 

APPLICATIONS 
 

OBJECTIVES: 

 

After successful completion of this unit, the students will be able to: 

❖ Understand the concept of statistical distance in a multivariate framework and the need 

for Mahalanobis D2 over Euclidean distance. 

❖ Define and derive Mahalanobis D2 statistic and to know its properties. 

❖ Know the relationship between Mahalanobis D2 and Hotelling’s T2 statistic. 

❖ Apply Mahalanobis D2 in hypothesis testing. 

 

STRUCTURE: 

 

7.1  Introduction 

7.2  Definition of Mahalanobis D2 Statistic (Mahalanobis squared distance) 

7.3  Properties of Mahalanobis D2 Statistic 

7.4  Derivation of Mahalnobis 2D  test statistic  for two sample problem and it’s     

 relationship with  Hotelling’s  2T . 

7.5    Summary 

7.6   Self Assessment Questions 

7.7   Suggested Readings 

 

7.1  INTRODUCTION: 

7.2  

  In multivariate statistical analysis, it is often necessary to measure the distance or 

dissimilarity between observations or populations described by several correlated variables. 

Traditional distance measures such as the Euclidean distance treat all variables as independent 

and equally scaled, making them inappropriate when variables are correlated or measured in 

different units. 

 

 To overcome these limitations, Professor P. C. Mahalanobis introduced the                        

Mahalanobis D2 statistic, a covariance-adjusted measure of distance that incorporates both 

the variances and covariances of the variables. Unlike Euclidean distance, Mahalanobis D2 

standardizes the data using the variance–covariance matrix, providing a meaningful measure 

of separation in a multivariate setting. 

 

 The Mahalanobis D2 statistic plays a central role in multivariate inference, serving as the 

basis for important techniques such as Hotelling’s T2 test, discriminant analysis, cluster 

analysis, and multivariate outlier detection. Under the assumption of multivariate normality, 

the statistic follows a chi-square distribution, which allows it to be used for hypothesis testing 

and statistical decision-making. 

 

 Because of its ability to account for correlation structure and scale differences among 

variables, Mahalanobis D2 has wide applications in biology, medicine, quality control, 

economics, psychology, and social sciences. It remains one of the most fundamental and 

powerful tools in multivariate statistical analysis. 
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7.3  DEFINITION OF MAHALANOBIS D2 STATISTIC     

    (MAHALANOBIS SQUARED DISTANCE): 

 

  The Mahalanobis D2 statistic, introduced by P. C. Mahalanobis, is a measure of 

distance between a multivariate observation and a population (or between two populations) 

that takes into account the variances and covariances among the variables. 

              For a p -variate random vector X


with mean vector μ


 and covariance matrix å , the 

Mahalanobis D2 statistic is defined as  

( ) ( )2 1D −
= − −X μ Σ X μ

 
 

Where   X


 =  observation vector,  μ


   =  population mean vector,  and   

Σ  =  variance–covariance (dispersion) matrix. 

 

For measuring the distance between two multivariate populations with mean vectors 

1 2μ and  , the Mahalanobis distance is: 

( ) ( )2 1

1 2 1 2D −
= − −μ μ Σ μ μ


 

  The Mahalanobis D2 statistic is scale-invariant, accounts for correlation among 

variables, and reduces to the squared Euclidean distance when the variables are uncorrelated 

with equal variances. It is widely used in multivariate hypothesis testing, classification, outlier 

detection, and discriminant analysis. 

 

7.4  PROPERTIES OF MAHALANOBIS D2 STATISTIC: 

 

• Scale Invariance: The value of the value of D2 does not change if the units of 

measurement of the variables are changed. 

• Accounts for Covariance: It considers the correlation structure of the variables, which is 

a significant advantage over Euclidean distance. 

• Dimensionless: It is a unitless measure of distance. 

• Zero Minimum: The minimum possible value is zero, occurring when the observation. 

• Robust to Linear Transformations:The distance remains unchanged under non-singular 

linear transformations of the data. 

 

7.5  DERIVATION OF MAHALNOBIS 2D  TEST STATISTIC FOR TWO-SAMPLE 

PROBLEM AND IT’S RELATIONSHIP WITH      HOTELLING’S  2T  

STATISTIC: 

 

Suppose 
1 1 2 2: ( , ) and  : ( , )p pN Nπ μ Σ π μ Σ


 are two p-variate normal populations with 

mean vectors   
2 and 1μ μ


respectively.  Both the populations have the common dispersion 

matrix Σ  

Suppose
111 12 1nx , x , ...x


 be a random sample of size 1' 'n  from population  

1 1: ( , )pNπ μ Σ


and let 
221 22 2nx , x , ..., x


be a random sample of size 2' 'n from population 

2 2: ( , )pNπ μ Σ


.   0 2 1 2:   vs   H : .H = 1 1μ μ μ μ


 

Now our problem is to test 
0 2 1 2:   vs   H :H = 1 1μ μ μ μ


 or to test the significance of 
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the difference  
1 2−μ μ


 or to test the separation between the two populations  
1 2
    andπ π  is 

significant based on the above given samples based on Mahalanobis 2D  statistic, which is as 

explained below. 

The Mahalanobis 2D  test statistic (which is nothing but Mahalanobis squared distance 

between 1 2 and x x


)  is given by  

                          
2 1

1 2 1 2( ) ( )D S −= − −x x x x


                                           (1) 

 

where  

               

1
1

2 2

2

1
 (unbiased estimator of    )

1
   (unbiased estimator of   )  

n

n

=

=





1

2

n

1α 1

α=1

n

2α

α=1

x x μ

x x μ

 

           

                1 1 2 2

1 2

( 1) ( 1)

2

n n

n n

− + −
=

+ −

S S
S                                                                       (2) 

is an unbiased estimator of  Σ  based on the pooled samples.   

                     

1

1 1 1

11

2 2 2

2

1
( )

1

1
)

1

n

n

n

=

=
−

=
−




2

1α 1α

n

2α 2α

α=1

S x - x )(x - x

S (x - x )(x - x





                 

Now define,      1 2−Y = x x


                                                                                         (3) 

with  mean,  1 2 2E E − = −1(Y) = (x x ) μ μ
 

 and the variance- covariance matrix, 

 1 2( ) ( ) ( )V V V+Y  =  x x


    ( The two samples are independent)                  

                = 

1 2

1 1
 + 

n n
Σ Σ =  

1 2

1 1
 + 

n n

 
 
 

Σ                                                         (4)                                                                                                     

Thus, we have                               

               

p 2

1 2

1 1
~ , +

n n
N

  
−  

  
1Y μ μ Σ

 
 

      

1 2
2 p

1 2

n n
( ) ~ ,

n n
N

  +
 − −   

  
1Y μ μ 0 Σ

 
      

      
2

p

1 2

1 2

( )
~N ( )

n n

n n

− −


+

1Y μ μ
0 ,Σ 


                                                                     (5) 
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We know that      

1 21 1 n -1 2 2 n -1(n -1) ~w ( )  &  (n -1) ~w ( )S Σ S Σ
 

Since, the samples are independent, we have 1 1(n -1) S  and 2 2(n -1) S  are  also 

independent . Therefore from (2), 1 2(n +n 2)S−  is distributed as Wishart  distribution 

with  1 2n + n 2−  d.f  and with the parametric matrix  Σ , 

i.e.  
1 21 2 n + n -2(n +n 2)S ~w (Σ)−                                                                      (6) 

Since, S   and  1 2−Y = x x


 are independently distributed, by applying the definition of   

2T -distribution to the Eqs. (5) & (6), we have  

2T  =  

2 -1

1 2

1 2

( )
 S

n n

n n

 
 − −
 
 +
 
 

1Y μ μ
 

 

2

1 2

1 2

( )

n n

n n

 
 − −
 
 +
 
 

1Y μ μ
 

 

                                     =  
2 2

-11 2

1 2

( ) ( )
n n

n +n
− − − −

         
 

1 1
Y μ μ Y μ μS
 

              (7)                                                                                                                         

and is  distributed  as   
2T -distribution with  1 2n + n 2−  d.f. 

Now, under  0 2 2H  :    i.e. 0= − =1 1μ μ μ μ


 ,    (7) becomes 

2T =  1 2

1 2

n n

n +n

 
 

 

-1
Y  S Y


  
1 2

2

n + n 2~T −       

     ( ) ( )
1 2

21 2
1 2 1 2 n + n 2

1 2

n n
~

n +n
T −

   − − 
 

-1
x x  S x x


        (From Eq. (3))        

      
1 2

2 21 2
n + n 2

1 2

n n
~  

n +n
D T −

 
 

 
 (From Eq. (1))                                                 (8) 

Now, by virtue of  the  relation  between  
2T  and  F – distribution, we have 

  
1 2

2
21 2

p , n + n - 2 - (p-1)

1 2 1 2 1 2 1 2

T 1 n n p
 = ~  F

n + n - 2 n + n - 2 n +n n + n - 2 - (p-1)
 D

 
 
   
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1 2

2 1 2 1 2
p , n + n - p-1

1 2 1 2

n +n (n + n - 2)p
 ~  F

n n n + n - p-1
 D
 

  
   

Thus, if    
1 2

2 1 2 1 2
p , n + n - p-1

1 2 1 2

n +n (n + n - 2)p
 >  F (α)

n n n + n - p-1
 D
 
 
 

                          (9)  

where
1 2p , n +n - p -1F (α)   is  table  F- value  at   level  of  significance with (p, 1 2n + n - p - 1) 

d.f.,   then 0 1 2H :μ = μ  


may be rejected . 

Thus, the 
2D  test statistic can be used  for testing 

0 2 1 2:   vs   H :H = 1 1μ μ μ μ


 or equally for 

testing the significance of the difference  
1 2−μ μ


. 

If 0H  is rejected , we can conclude that the separation between  the two populations 

1 2    andπ π is significant. 

Thus, from Eq. (8), we may notice that the  Hotelling’s  2T  and Mahalanobis 2D  are closely 

associated as with the following relationship between them  

                                            2 21 2

1 2

n n
T D

n n

 
=  

+ 
                                                       (10) 

 

7.6 SUMMARY: 

 

  Mahalanobis D2 statistic is a fundamental measure in multivariate statistical analysis 

used to quantify the distance between observations or populations when multiple correlated 

variables are involved. Unlike Euclidean distance, Mahalanobis D2 incorporates the variance–

covariance structure of the data, thereby adjusting for differences in scale and correlation 

among variables. 

 

  The statistic is defined as a quadratic form involving the inverse of the covariance 

matrix and follows a chi-square distribution under the assumption of multivariate normality. 

Mahalanobis D2 serves as the theoretical foundation for several important multivariate 

techniques, including Hotelling’s T2 test, discriminant analysis, and multivariate outlier 

detection. Its invariance under linear transformations makes it a robust and reliable distance 

measure in multivariate space. 

 

  Mahalanobis D2 statistic provides a powerful and meaningful way to assess similarity 

or dissimilarity in multivariate data by accounting for correlation and variability among 

variables. Its applications extend across diverse fields such as biology, medicine, quality 

control, economics, psychology, and social sciences, where simultaneous consideration of 

multiple characteristics is essential. 

 

  Despite its reliance on assumptions such as multivariate normality and a non-singular 

covariance matrix, Mahalanobis D2 remains an indispensable tool in modern statistical 
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practice. When these assumptions are reasonably satisfied, the statistic offers accurate 

inference, effective classification, and insightful interpretation of complex multivariate 

datasets. Overall, Mahalanobis D2 continues to play a crucial role in both theoretical 

development and practical applications of multivariate statistics. 

 

7.7   SELF-ASSESSMENT QUESTIONS: 

 

1. Define Mahalanobis 2D and explain its importance in multivariate analysis. 

2. Explain in detail the properties of Mahalanobis D2 statistic. 

3. Establish the relationship between Mahalanobis D2 and Hotelling’s T2 statistic. 

4. Explain the use of Mahalanobis D2 in hypothesis testing. 

5. Given a multivariate observation and the corresponding covariance matrix, compute the 

Mahalanobis D2 statistic. 

6. Using Mahalanobis D2, identify whether an observation is an outlier at a given level of 

significance. 

 

7.7  SUGGESTED READINGS: 

 

1. Anderson, T.W.(2000). An Introduction to Multivariate Statistical Analysis, 3rd Edition, 
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Hall and International. 
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6. Giri Narayan C. (1995). Multivariate Statistical Analysis.  
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 LESSON-8 

MANOVA FOR ONE - WAY CLASSIFICATION 
 

OBJECTIVES: 

 

After completing this lesson, students will be able to: 

❖ Understand the need for MANOVA 

Explain why Multivariate Analysis of Variance (MANOVA) is required when multiple 

correlated response variables are analyzed simultaneously. 

❖ Formulate the one-way MANOVA model 

Express the one-way classification MANOVA model using matrix notation and identify 

treatment and error components. 

❖ Understand distributional assumptions 

State and verify assumptions such as multivariate normality, homogeneity of covariance 

matrices, and independence of observations. 

 

STRUCTURE: 

 

8.1 Introduction to MANOVA 

8.1.1 Limitations of univariate ANOVA 

8.1.2 Motivation for multivariate testing 

8.1.3 Examples of one-way classification with multiple responses 

8.2 Comparision of  Several  Multivariate Population Means 

8.2.1 Definition of MANOVA  

8.2.2 One-Way MANOVA Model 

8.3  Summary 

8.4 Self Assessment Questions 

8.5 Suggested Reading 

 

8.1 INTRODUCTION TO MANOVA:  

 

Multivariate Analysis of Variance (MANOVA) is a generalization of the univariate 

Analysis of Variance (ANOVA) employed when two or more correlated response variables are 

observed for each experimental unit. Unlike ANOVA, which tests for differences among group 

means for a single dependent variable, MANOVA simultaneously examines differences among 

the mean vectors of multiple groups. 

The principal aim of MANOVA is to assess whether variations in the levels of one or 

more independent (classification) variables produce statistically significant effects on a set of 

dependent variables considered jointly. By incorporating all response variables into a single 

analysis, MANOVA effectively accounts for the interrelationships among the variables and 

provides a more comprehensive evaluation of group effects. 
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MANOVA is especially appropriate for experimental and observational studies 

involving multidimensional outcomes. It overcomes the limitation of inflated Type I error rates 

that arise when multiple univariate ANOVA tests are conducted independently for each 

response variable, by offering a single global test of significance. 

In many agricultural experiments, generally the data on more than one character is 

observed. One common example is grain yield and straw yield. The other characters on which 

the data is generally observed are the plant height, number of green leaves, germination count, 

etc. The analysis is normally done only on the grain yield and the best treatment is identified 

on the basis of this character alone. The straw yield is generally not taken into account. If we 

see the system as a whole, the straw yield is also important either for the cattle feed or for 

mulching or manuring, etc. Therefore, while analyzing the data, the straw yield should also be 

taken into consideration. Similarly, in varietal trials also the data is collected on several plant 

characteristics and quality parameters. In these experimental situations also the data is 

generally analyzed separately for each of the characters. The best treatment or genotype is 

identified separately for each of the characters. In these situations, Multivariate Analysis of 

Variance (MANOVA) can be helpful.  

In the case of one-way classification, MANOVA tests the hypothesis that the mean 

vectors corresponding to different levels of a single factor are equal. Owing to its ability to 

handle multiple correlated responses simultaneously, MANOVA is extensively applied in 

disciplines such as medicine, psychology, education, agriculture, economics, and the social 

sciences. 

Consequently, MANOVA constitutes a powerful and efficient statistical technique for 

investigating group differences in multivariate data, yielding more meaningful and reliable 

inferences than those obtained from separate univariate analyses. 

8.1.1 LIMITATIONS OF UNIVARIATE ANOVA: 

 

Univariate Analysis of Variance (ANOVA) is designed to compare group means for a 

single response variable. When multiple response variables are present, applying separate 

ANOVA tests to each variable leads to several problems: 

• Inflated Type I error rate due to multiple testing 

• Ignoring correlations among response variables 

• Loss of overall group effect interpretation 

• Reduced statistical power in detecting joint differences 

Thus, univariate ANOVA is inadequate when responses are correlated and must be analyzed 

simultaneously. 

 

8.1.2  MOTIVATION FOR MULTIVARIATE TESTING: 

 

Multivariate Analysis of Variance (MANOVA) extends ANOVA to situations involving two 

or more dependent variables. The main motivations are: 

• To test equality of mean vectors across groups 

• To account for correlations among responses 

• To provide a single overall test for group differences 

• To increase efficiency and interpretability of results. 
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8.1.3  EXAMPLES OF ONE-WAY CLASSIFICATION WITH MULTIPLE  

RESPONSES:  

 

• Agriculture: Effect of fertilizer type on yield, plant height, and leaf area 

• Medicine: Effect of treatment on blood pressure, cholesterol, and heart rate 

• Education: Teaching methods compared using math score, reading score, and 

reasoning ability 

In all cases, there is one classification factor (grouping variable) and multiple response 

variables. 

 

8.2 COMPARISION OF  SEVERAL MULTIVARIATE POPULATION   MEANS: 

 

In multivariate analysis, interest often lies in comparing several population mean vectors 

corresponding to different groups. MANOVA provides a formal framework for testing 

whether these mean vectors are equal. 

      

The null hypothesis is: 

0 1 2 gH :μ = μ = ..... = μ  

against the alternative that at least one mean vector differs. 

This comparison is carried out using SSCP matrices and appropriate multivariate test 

statistics. 

8.2.1 Definition of MANOVA:  

MANOVA is a statistical method for comparing means of multiple dependent 

variables across different levels of one or more independent variables. Instead of comparing 

univariate means, MANOVA compares vectors of group means. The fundamental idea is to 

create a linear combination of the dependent variables that maximizes the differences 

between the groups.  

 

8.2.2 ONE-WAY MANOVA MODEL: 

( ONE–WAY  MANOVA )  MULTIVARIATE  ANALYSIS  OF VARIANCE :-  

               Suppose we have ‘g’ populations, each is distributed multivariate normal with mean 

vectors 1 2 gμ ,μ ,........,μ


 respectively. Let us suppose that all populations have the same 

covariance matrix Σ. Thus, we have the ‘g’ populations. 

                                

1

2

 

p

p

g p

N

N

N







1

2

g

(μ ,Σ)

(μ ,Σ)

(μ ,Σ)














  

               Now , we have a sample of size ‘ in ’ from 
thi  population i  . Thus, we have ‘g’ 

samples from the ‘g’ populations as follows : 
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2

1

2

Population   

Population   

        

Population g g







111 12 1n

21 22 2n

g1 g2 gn

: X ,X ,......,X

: X ,X ,......,X

 : X ,X ,......,X








 

Using the above random samples , MANOVA is used to investigate whether the 

population mean vectors are same and if  not , which mean components differ 

significantly. Thus , the null hypothesis is 

                        0H 1 2 g:μ = μ = ...... = μ


                                                       (1)→  

 

ASSUMPTIONS  CONCERNING  THE  STRUCTURE  OF  THE  DATA : 

 

• Observation Independence: Each observation should be independent of one another. For 

example, one student’s performance should not influence another’s.  The random samples 

from different populations are independent. 

• Multivariate Normality: The combined dependent variables should be approximately 

normally distributed for each group of the independent variable.  

• All populations have a common covariance matrix Σ .  That is Homogeneity of Variance-

Covariance Matrices: The variance-covariance matrix of the dependent variables should 

be similar for all groups. This means that the spread and relationship between variables 

should be consistent across groups.  

• Absence of Multicollinearity: The dependent variables should not be too highly 

correlated. If two variables are very similar, it doesn’t add value to have both.  

Suppose, the mean vector of  
thi  population is written as  

                                         i iμ = μ + τ


                                                                   (2)→  

Here, μ


 is the overall mean vector of all population and  iτ


 is a component due to the 

specific population, then the null hypothesis (1) can be written as   

                       0H 1 2 g: τ = τ = ...... = τ = 0


                                            (3)→  

The response ijX


 , distributed as ( )pN iμ + τ ,Σ


, can be expressed in the suggestive 

form, 

                 

                                                                 (4)

overall treatment random
               

 mean    effect   error

→

     
     
     

ij i ijX = μ + τ + ε
 

   

                                       i = 1,2,…..,g   &  j = 1,2,….., in  .  

where , pNijε (0,Σ)


 are independent random variables. (4) is called as MANOVA  

model for comparing of population mean vectors. Here  μ


 is overall mean vector and iτ


 

represents the 
thi  treatment effect with 
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1

g

i

i

n
=

 iτ = 0


                                                                      (5)→  

A vector of observations may be decomposed as suggested by model (4) . Thus, 

( )

                                 (                    (6)

overall estimated
residual

observation    sample   treatment   
ˆ    

mean effect 

→

   
    
    
   

  

ij i ij i

ij

i

x = x + x - x) + (x - x )

ε
μ τ




When 

   mean of sample thi
ii i1 i2 inx = x ,x ,......,x


 

                 ( )
1

  
g

1 2 gx = x + x + ...... + x


                          (general mean) 

      From (6), we may write the cross product, 

( )( ) ( ) ( )( ) ( ) ( )( )i


+ij ij ij i ij i ix - x x - x = x - x + x - x x - x x - x


       

                                   ( )( ) ( )( ) 
ij i ij i ij i i= x - x x - x + x - x x - x


                                                 

                                                    ( )( ) ( )( )
i i i ij i+ x - x x - x + x - x x - x


 

 Summing the cross product over i and j , we get  

1 1 1

( (    
i in ng

j i j= = =

  
g

ij ij ij i ij i

i=1

x  - x)(x - x) = x  - x )(x - x )  


  

                                                      

1 1

 (  
ing

i j= =

 ij i i+ x  - x )(x - x)


 

                                                      

1 1

 (  
ing

i j= =

 i ij i+ x  - x)(x - x )


 

                                                      

1 1

  
ing

i j= =

 i i+ (x  - x)(x - x)


                           (7)→  

But, since 

1

(
in

j=

 ij ix  - x ) = 0
 

.,  Eq (7) becomes , 

1 1 1 1

( (    
i in ng g

i j i j= = = =

  ij ij ij i ij ix  - x)(x - x) = x  - x )(x - x )  

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1

g

i

i

n
=

 i i+ ( x - x)(x - x)


                         (8)→  

 total(corrected) residual(within) treatment(between)

 sum of square   sum of squares +    sum of squares 

& cross products & cross products   & cross products

 =

     
     
     
     

 

That is (8) may be written as  

              

1 1

(
ing

i j

W B
= =

 + ij ijx - x)(x - x) =


                                                (9)→   

   where , 

1 1

(
ing

i j

W
= =

 ij i ij i= x - x )(x - x )


   

                1 1 2 2( -1) ( -1) ...... ( -1)g gn S n S n S= + + +    

  where , iS  is sample covariance matrix of 
thi  sample . 

 and  

1

(
g

i

i

B n
=

 i i= x - x)(x - x)


                      

Now, we summarise the calculations leading to the test statistic in a MANOVA table . 

MANOVA  table  for  comparing  population  mean  vectors :- 

    Source   of 

     variation 

             Matrix  of  sum  of           

          squares & cross product 

Degrees  of 

     freedom 

      

   Treatments 

  

 

Residual(error) 

1

g

i

i

B n
=

 i i= (x - x)(x - x)


 

1 1

( ( )
ing

i j

W
= =

 ij i ij i= x - x ) x - x


 

 

g-1 

 

 

n-g 

              Total 

(correlated for 

    the mean)               

 

1 1

(
ing

i j

B W
= =

+  ij ij= x - x)(x - x)


 

n-1 

Now one of the test statistic for testing (3) involves generalized variances and is given by 

                                   
* W

B W


+
=                                                            (10)→   

The quantity  
*  is called Wilk’s lamda  and related to likelihood ratio criterion. The exact 

distribution of  
*  can be derived for the special cases listed in the following table . 

Distribution of Wilk’s lamda , 
*  :- 

    No . of 

   variables 

    No .of       

    groups 

          Sampling    distribution    for 

            multivariate   normal   data 
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      p - 1 

 

 

 

 

 

     p = 2     

 

 

 

 

 

      p 1  

 

 

 

 

 

      p 1    

 

        

 

     

     g 2  

 

 

 

 

 

      g 2  

 

 

 

 

 

      g = 2   

 

 

 

 

 

      g = 3  

1

*

1

*
-1, -

-
1-

-1
g

i

i

g

i

i

g n g

n g

F
g

=

=

 
 
 
 

 
   
   

    
 
 


  

1

*

1

*
2( -1),2 - -1

- -1
1-

-1
g

i

i

g

i

i

g n g

n g

F
g

=

=

 
 
 
 

 
   
   
     
 
 


  

1

*

1

*
, - -1

- -1
1-

g

i

i

g

i

i

p n p

n p

F
p

=

=

 
 
 
 

 
   
   

    
 
 


  

1

*

1

*
2 ,2( - -2)

- - 2
1-

g

i

i

g

i

i

p n p

n p

F
p

=

=

 
 
 
 

 
   
   
     
 
 




 

 Bartlett has shown that if  oH  is true and 

1

g

i

i

n n
=

=  is large, 

  

*( ) ( )
-1- ln  -1- ln  

2 2

Wp g p g
n n

B W

+ +   
−  = −    +   

   

has approximately a  
2
χ - distribution with  p(g-1) d.f. consequently.   

 

8.3  SUMMARY:  

 

MANOVA is an option for statistical testing of multivariate experiments. The 

dependent variables are random normal. The test is more senstive than other parametrics to 

violations of normality and homogeneity of variance. MANOVA tests whether independent 

variables affect an abstract combination of dependent variables. For most, use MANOVA as 

an omnibus test followed by post hoc comparisons of interest to control FWER.  Care should 

be taken in selecting the dependent variables of interest. 

Multivariate Analysis of Variance (MANOVA) for one-way classification is a natural 

extension of univariate ANOVA to situations where multiple correlated response variables 
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are observed for each experimental unit. In this framework, observations are classified 

according to a single factor, and the primary objective is to test whether the population mean 

vectors corresponding to different groups are equal. 

MANOVA overcomes the limitations of conducting separate univariate ANOVA tests 

by jointly analyzing all response variables. It accounts for the correlation structure among the 

variables and provides a single overall test of group differences, thereby controlling the 

inflation of Type I error. The method is based on the partitioning of total variation into 

between-groups (hypothesis) and within-groups (error) components using Sum of Squares 

and Cross-Products (SSCP) matrices. 

The comparison of several multivariate population means is carried out using standard 

MANOVA test criteria such as Wilks’ Lambda, Pillai’s Trace, Hotelling–Lawley Trace, and 

Roy’s Largest Root. Each statistic offers a different perspective on group separation, with 

Pillai’s Trace being the most robust under departures from assumptions. 

The validity of one-way MANOVA depends on key assumptions, including multivariate 

normality, homogeneity of covariance matrices, and independence of observations. When these 

assumptions are reasonably satisfied, MANOVA provides reliable and efficient inference. In 

cases of assumption violations, careful interpretation and the choice of robust test statistics are 

essential. 

In conclusion, MANOVA for one-way classification is a powerful and comprehensive 

statistical technique for comparing groups when multiple responses are involved. By integrating 

information across correlated variables, it yields more meaningful and interpretable results than 

separate univariate analyses and is widely applicable in disciplines such as medicine, education, 

psychology, agriculture, economics, and the social sciences 

8.4  SELF-ASSESSMENT QUESTIONS: 

 

1. Explain in detail the procedure of carrying out MANOVA of one way classification.  

2. Discuss the multivariate analysis of variance for one-way classified data. How can we test 

the equality of means of several groups using MANOVA? 

3. An experiment was conducted to evaluate the effects of various training programs (Program 

A, Program B, and Program C) on employee productivity and job satisfaction over a three 

month period. The data collected for each training program, with five replications, are 

shown in the Table. Perform a one- way MANOVA at 5% significance level and draw   an 

inference using Wilks' lambda. 

Replication Program A Program B Program C 

1 50 7 32 6 35 5 

2 46 6 45 7 40 4 

3 48 7 60 8 47 5 

4 53 9 48 5 50 5 

5 48 6 50 4 38 6 

4. Explain the key difference between comparing means in ANOVA versus comparing mean 

vectors in MANOVA. 

5. Name at least three assumptions required for the proper application of MANOVA. 

 

 

                        



Centre for Distance Education  8.9                            Acharya Nagarjuna University 
 

8.5   SUGGESTED READINGS: 

 

1. Anderson, T.W.(2000). An Introduction to Multivariate Statistical Analysis, 3rd Edition, 

   Wiley Eastern. 

2. Johnson, A. and Wichern, D.W.(2001). Applied Multivariate Statistical Analysis, Prentice 

Hall and International. 

3. Morrison, D.F. (2004): Multivariate Statistical Methods (Fourth Edition). Duxbury Press, 

New York.  

4. Rao, C.R. (2001): Linear Statistical Inference and its Applications (Second Edition), Wiley 

Inter Science, New York.  

5. Mardia, K.V., Kent, J. T and Bibby, J. M. (1979): Multivariate Analysis. Academic Press, 

New York.  

6. Brenner, D., Bilodeau, M. (1999). Theory of Multivariate Statistics. Germany: Springer.  

7. Giri Narayan C. (1995). Multivariate Statistical Analysis.  

 

 

       

  Dr. U. Ramkiran 

 



LESSON -9 

DISCRIMINANT ANALYSIS 
 

OBJECTIVES:  

 

After studying this unit, you should be able to:  

• To understand the concept and purpose of Expected (or average) cost of 

misclassification and Total Probability of Misclassification 

• To know the concept of Discriminant analysis 

• To acquire knowledge about significance of Discriminant analysis 

• To understand the purpose and objectives of pivotal provisions of the ECM and TPM 

regions 

 

STRUCTURE 

 

9.1 Introduction 

9.2 Discrimination and classification 

9.3 Standards of good classification 

9.4 Expected (or average) cost of misclassification (ECM) 

9.5 Optimal total probability of misclassification (TPM)        

9.6 Conclusion 

9.7 Self Assessment Questions 

9.8 Further Readings 

 

9.1. INTRODUCTION 

 

         Discriminant analysis and classification are multivariate techniques concerned with 

separating distinct sets of objects (or observations) and with allocating new objects 

(observations) to previously defined groups.  Discriminant analysis is rather exploratory in 

nature. As a seperatory procedure, it is often employed on a onetime basis in order to 

investigate observed differences when causal relationships are not well understood. 

Classification procedure are less exploratory in the sense that they lead to well defined rules, 

which can be used for assigning new objects. Classification ordinarily requires more problem 

structure than discrimination. Thus, the immediate goals of discrimination and classification, 

respectively, are as follows: 

 

Goal 1: To describe either graphically (in three or fewer dimensions) or algebraically, the 

differential features of objects (observations) from several known collections (populations). 

We try to find “discriminants” whose numerical values are such that the collections are 

separated as much as possible. 

 

Goal 2: To sort objects (observations) into two or more labeled classes. The emphasis is on 

deriving a rule that can be used to optimally assign a new object to the labeled classes. 
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       We shall follow convention and use the term discrimination to refer to ‘Goal 1’. This 

terminology was introduced by R. A. Fisher in the first modern treatment of separatory 

problems. A more descriptive term for this goal, however, is separation. We shall refer to the 

second goal as classification, or allocation.  A function that separates may sometimes serve as 

an allocator, and, conversely, an allocator rule may suggest a discriminatory procedure. Thus, 

in practice Goal 1& Goal2 frequently overlap and distinction between separation and 

allocation is not clear. 

 

          The problem of classification arises when an investigator makes a number of 

measurements on an individual and wishes to classify the individual into one of several 

categories on the basis of these measurements. The investigator cannot identify the individual 

with a category directly but must use these measurements. In many cases it can be assumed 

that these are a finite number of categories or populations from which the individual may 

have come and each population is characterized by a probability distribution of the 

measurements. Thus, an individual is considered as a random observation from this 

population. The question is: Given an individual with certain measurements, from which 

population did it arise? 

 

           In some, instances, the categories are specified before hand in the sense that the 

probability distributions of the measurements are completely known.  In other cases, the form 

of each distribution may be known, but the parameters of the distribution must be estimated 

from a sample from that population .In some other cases, the form of the distribution of the 

populations may not be known. 

 

            Let us give an example of a problem of discrimination and classification. Prospective 

students applying for admission into college are given a battery of tests; the vector of scores 

is a set of measurements x


. The prospective students may be a member of one population 

consisting of these students who will successfully complete college training or, rather, have 

potentialities for successfully completing training, or he/she may be member of the other 

population, those who will not complete the course successfully. The problem is to classify a 

student applying for admission on the basis of these scores on the entrance examination. 

Before that we have to describe or explore the differential scores between the two categories 

of the students from the past information. Also, we have to prepare a discriminant function 

that separates the two categories of students clearly as much as possible. This problem is 

called discrimination. 

 

9.2  DISCRIMINATION AND CLASSIFICATION: 

 

       To fix ideas, we list below situations where one may be interested in  

        (1). Separating or discriminating two classes of objects.  

Or   (2). Assigning a new object to one of the two classes .  

Or      both (1)&(2). 

 

              It is convenient to label the classes 1 2
π &π . The objects are ordinarily separated or 

classified on the basis of measurements on, for instance, P associated random variables. 

1 2( , ,..., )pX X X =X


. The observed values of X


differ to some extend from one class to the 

other (of the values of X


were not very different for objects in 1 2
π &π , there would be no 

problem; i.e., it would be indistinguishable and new objects could be assigned to either class 



Centre for Distance Education   9.3 Acharya Nagarjuna University 

 

 

indiscriminately).  We can think of the totality of values from the first class as being the 

population of x


values for 1
π  and those from the second class as the population of x


 values 

for 2
π .  These two populations can then be described by probability density 

functions 1 2( ) & ( )f fx x


, and consequently, we can talk of assigning observations to 

populations (or objects to classes).  

 

The following are some more examples: 

(1). Separation of two species of chickweed based on the measurements sepal  and petal 

lengths, petal left depth, bract length, scarious tip length and pollen diameter. 

(2). Discrimination of  successful and unsuccessful college students based  on the entrance 

examination scores, high school grade point average and number of  high school 

activities. 

(3). Classification of purchasers of a new product and laggards (those slow to purchase) 

based on particulars of education, income, family size and amount of previous brand 

switching. 

(4). Discriminating male-skulls and female-skulls based on the anthropological 

measurements like circumference and volume on ancient skulls. 

(5). Separating good and poor credit risks based on the particulars of income, age, member 

of credit cards and family size. 

 

 From  the above examples, it is clear that allocation or classification  rules  are usually 

developed from learning samples. Measured characteristics of randomly selected objects 

known to come from each of the two populations are examined for differences. Essentially, 

the set of possible sample outcomes is divided into two regions 1 2&R R , such that is a new 

observation falls in 1R , it is allocated to population 1
π  and is it falls in 2R , we allocate it to 

population 2
π .  Thus one set of observed values favours 1

π , the other set of values favours 

2
π .  Here, it may be noted that classification rules cannot usually provide and error-free 

method of assignment. This is because there may not be a clear distinction between the 

measured characteristics of the populations ; i.e. the groups may overlap. It is then possible, 

for example, to incorrectly classify a 2
π object as belonging to 1

π  or a 1
π object as belonging 

to 2
π .  

 

          A good classification procedure should result in a few misclassifications.  In other 

words, the chances or probabilities of misclassification should be small.  As we shall see, 

there are additional features that an “optimal” classification rule should be possessed. 

 

9.3 STANDARDS OF GOOD CLASSIFICATION: 

 

          In constructing a procedure of classification, it is desired to minimize the probability of 

misclassification or more specifically it is desired to minimize on the average the bad effects 

of misclassification. 

 

         Suppose an individual is an observation from either population 1
π  or population 2

π . 

The classification of an observation depends on the vector of measurements  

                              ( )1 2 1
, ,.... p p

x x x


=


x


 



Multivariate Analysis    9.4   Discriminant Analysis 

 
 

on that individual. We set up a rule that if an individual is characterized by certain sets of 

values of 
1 2
, ,..., px x x  it will be classified as from 1

π ; if it has other values it is classified as 

from 2
π . 

 

        We can think of an observation x


 as a point in a P-dimensional space.  We divide this 

space into two regions 1 2&R R  if the observation falls in 1R , we classify it as coming from 

1
π  and if it falls in 2R we classify it as coming from 2

π . 

 

        Usually, the statistician  can make two kinds of errors in classification. If the individual 

is actually from 1
π  and is misclassified into 2

π ;  or if it is actually from 2
π and is 

misclassified into 1
π . We need to know the relative undesirability of these two kinds of 

misclassification. 

 

             Let 1 2( ) & ( )f fx x


be the p.d.f.’s associated  with the 1p random vector X


 for 

populations 1
π & 2

π  respectively. An object, with associated measurements x


, must be 

assigned to either 1 2
π (or)π .   Let Ω  be the sample space that is the collection of all possible 

observations x


. Let 1R  be that set of x


 values for which we classify objects as 1
π  and 

2 1R R= −  be the remaining x


values for which we classify objects as 2
π . Since every 

object must be assigned to one and only one of the two populations, the sets 1 2&R R  be 

mutually exclusive and exhaustive. 

 

9.4 EXPECTED (OR AVERAGE) COST OF MISCLASSIFICATION (ECM): 

 

      In order to obtain ECM we consider the following conditional probabilities: 

P  (correctly classifying an observation (object) that actually is drawn from 1
π ) 

       

1

1 1( / )  ( )
R

P R f d=  = 1X π x x


   = P(1/1)  (say)                                                                (1)  

P(correctly classifying an observation that actually is drawn from 2
π ) 

       

2 1

2 2( / ( )
R R

P R f d
=−

=  = 2X π ) x x


  = P(2/2)      (say)                                                       (2) 

P(misclassifying an observation that is drawn from 1
π ) 

        

2

2 1 1( / ) (
R

P R f d=  = X π x) x


      = P(2/1)      (say)                                                          (3) 

P(misclassifying an observation that is drawn from 2
π ) 

        

1

1 2( / ) ( )
R

P R f d=  = 2X π x x


   = P(1/2)     (say)                                                          (4) 

Misclassification probabilities when p=1: 
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Let  

        1p = prior probability of 1
π  

            = P(drawing an observation from 1
π )     = P( 1

π )                                                       (5) 

and 2p = prior probability of 2
π   

           = P(drawing an observation from 2
π )       = P( 2

π )                                                     (6) 

Now the overall probabilities of correctly or incorrectly classifying objects can be derived as 

the product of the prior and conditional classification probabilities. Thus we get 

P(correctly classified as 1
π )=P(observations comes from 1

π  and is correctly  

                                                       Classified as 1
π ) 

                                           = 1 1 1( / ). ( )P R PX π π


  = P(1/1). 1p   (from (1)&(5))                  (7)  

similarly 

 P(correctly classified as 2
π )=P(2/2). 2p                   (from (2)&(6))                                      (8) 

P(misclassified as 1
π ) = P(observations comes from 2

π and is misclassified as 1
π  )      

                                    = 1 2( / ). ( )P R P
2

X π π


  = P(1/2). 2p   (from (4)&(6))                        (9) 

P(misclassified as 2
π ) = P(observation comes from 1

π  and is misclassified as 2
π ) 

                                    = 2 1( / ). ( )P R P
1

X π π


 = P(2/1). 1p    (from (3)&(5))                      (10) 

A good classification rule must take into account the misclassification costs.  Although the 

statistician may not know these costs in each case, he will often have at least a rough idea of 

them. The costs of misclassification can be defined by a cost matrix C: 

                      True population|   Classified as 
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The  costs are  

      (1). Zero for correct classification . 

      (2). C(1/2) is cost involved when an observation drawn from 2
π  is  incorrectly classified 

into 1
π . 

      (3). C(2/1) is cost involved when an observation actually drawn from 1
π  is              

incorrectly classified as 2
π . 

      Clearly, a good classification procedure is one which minimize in some sense  or the cost 

of misclassification. Now , the expected cost of misclassification(ECM) is obtained by 

multiplying the off-diagonal entries in (11) by their probabilities of occurrence. Consequently 

a reasonable classification rule should has an ECM as small as possible.  From the above the 

ECM may be defined as follows : 

ECM= C(1/2) .P(misclassification into 1
π ) + C(2/1) .P(misclassification into 2

π ) 

         =C(1/2) .P(1/2). 2p  +C(2/1) . P(2/1) . 1p                                                                 (11) 

 

 

Definition: 

Expected (or average) cost of misclassification (ECM) is the sum of the products of costs of 

each misclassification multiplied by the probability of its occurrence. Its formula is given by 

Eq. (11). 

 

Result (Optional ECM regions or Bayes regions): 

                   The regions 1 2&R R that minimize ECM are defined by the values  

of x


 for which  the following inequalities hold. 

            1 1
1

2 2

( ) (1/ 2)
/

( ) (2 /1)

f pC
R

f C p

    
=    
     

x
x

x





                                                                          (1) 

              (density ratio)   (cost ratio)/(prior probability ratio)  

         1 1
2

2 2

( ) (1/ 2)
/

( ) (2 /1)

f pC
R

f C p

    
=    
     

x
x

x





                                                                          (2) 

Proof: 

                   From Eq. (11), we have the expected cost of misclassification (ECM) as  

         ECM=C(1/2) .P(1/2). 2p  +C(2/1) . P(2/1) . 1p                                                            (3) 

But , we have  
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1

2(1/ 2) ( )
R

P f d=  x x


  and    

2

1(2 /1) ( )
R

P f d=  x x


                                             (4)              

using Eqs. (4)  in (3) we get  

        ECM = C(1/2) 2p

1

2 (
R

f d x) x


 + C(2/1) 1p

2

1(
R

f d x) x


                                                     (5) 

Noting that 1 2R R =   so that the total probability 

1 2

1 1 1 1 2
1 ( ) ( ) ( )   ( &

R R

f d f d f d R R


= = +  x x x x x x 


 are disjoint)                               (6) 

using (6) in (5),we get  

   ECM = C(1/2) 2p

1

2
( )

R

f d x x


+ C(2/1) 1p

1

1
1 (

R

f d
 
 
 
 
 

−  x) x


 

            = 

1

2 2 1 1 1
[ (1/2) ( ) (2/1) ( )] (2/1)

R

C p f C p f d C p− + x x x


                                  (7) 

Now 1p , 2p ,C(1/2) and C(2/1) are non-negative. In addition  1 2( ) & ( )f fx x


are Non-negative 

for all x


and are the only qualities in ECM that depend on x


. Therefore, minimization of 

ECM is equivalent to minimize the function 

          

1

2 2 1 1
[ (1/2) ( ) (2/1) ( )]

R

C p f C p f d− x x x


                                                          (8) 

But, from the theory of integration (8) will be minimized is 1R  includes there values of x


 for 

which the integrand   

           C(1/2) 2p 2 1 1( ) (2 /1) ( ) 0f C p f− x x


                                                                           (9) 

and  for all x


 those not included in 1R  or equivalently for all x


 those included in 2R  

           2 2 1 1(1/ 2) ( ) (2 /1) ( ) 0C p f C p f− x x


                                                                          (10) 

Thus from (9), 

            1 2 2 1 1{ / (1/ 2) ( ) (2 /1) ) 0}R C p f C p f= − x x (x


 

                1 1 2 2{ / (2 /1) ( ) (1/ 2) }C p f C p f= x x (x)


 

                =  1 1

2 2

( ) (1/ 2)
/

( ) (2 /1)

f pC

f C p

    
   

     

x
x

x





                                                                      (11) 

                                1 2 1 2( , , , , (1/ 2) & (2 /1)allf f p p C C  are all positive) 

Similarly from Eq. (10), 
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                 1 1
2

2 2

( ) (1/ 2)
/

( ) (2 /1)

f pC
R

f C p

    
=    
     

x
x

x





                                                                    (12) 

where (12) gives (2). 

REMARK: 

                  It is clear from Eqs. (1) & (2) that the implementation of the minimum ECM  

rules requires  

(1). The ratio of p.d.f.’s is 1 2/f f is to be evaluated at a new observation 0x


. 

(2). The cost ratio 
(1/ 2)

(2 /1)

C

C
 

(3). The prior probability ratio 1

2

p

p
 

The appearance of ratios in the definition of the optimal classification regions has 

significance as often it is much easier to specify the ratios than their component parts. 

Special cases of  ECM regions:  

Case(1):     (Equal prior probabilities i.e. 1 2p p=  or 1

2

1
p

p
= ) 

In this case (1) & (2) become  

                  1 1
1 2

2 2

( ) ( )(1/ 2) (1/ 2)
: ;                :

( ) (2 /1) ( ) (2 /1)

f fC C
R R

f C f C
 

x x

x x




 

Case (2):        (Equal misclassification costs that is C(1/2)=C(2/1)) 

In this case 
(1/ 2)

1
(2 /1)

C

C
=  and therefore (1) & (2) become 

                  1 2 1 2
1 2

2 1 2 1

( ) ( )
:       &      :
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f p f p
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f p f p
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x x
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Case (3):               1 2 & (1/ 2) (2 /1)p p C C= =  

In this case 1

2

(1/ 2)
1

(2 /1)

p C

p C
= =   and therefore (1) & (2) become  

                   1 1
1 2

2 2

( ) ( )
: 1;         : 1

( ) ( )

f f
R R

f f
 

x x

x x




  

NOTE: 

(1). When the prior probabilities are not known, they are often taken to be equal. 

(2). Similarly when the misclassification costs are unknown, they are often taken to be equal. 
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(3). If 1

2

(1/ 2)

(2 /1)

pC

C p
=   then 2 1(1/ 2) (2 /1)C p C p=  and hence 

                         1 1
1 2

2 2

( ) ( )
: 1;         : 1

( ) ( )

f f
R R

f f
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x x

x x

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9.5    OPTIMAL TOTAL PROBABILITY OF MISCLASSIFICATION (TPM)        

          REGIONS : 

 

                       Criteria other than the ECM can be used to derive “optimal” classification 

procedures. For example, one might ignore the costs of misclassification and  

Choose  1 2&R R  to minimize the total probability of misclassification (TPM). 

  TPM=P(misclassifying as 1
π  observation or misclassifying a 2

π  observation) 

       = P( x


comes from 1
π  and is misclassified )+ 

                                              P( x


comes from 2
π and is misclassified) 

          2 1 1 2 2( / . ( ) ( / ). ( )TPM P R P P R P =  + 
1

X π ) π X π π


 

                         

2 1

1 1 2 2( ) ( )
R R

P f d P f d= + x x x x


 

                         1 2(2 /1) (1/ 2)p P p P= +                                                                                    (1)  

But, when C(1/2)=C(2/1) (i.e. when misclassification costs are equal) 

we get from equation (12) of page 14,  

           1 2(1/ 2)[ (2 /1) (1/ 2)]ECM C p P p P= +                                                                         (2) 

Now, from (1) & (2), it can be easily seen that minimizing (1) is equivalent  

to minimizing (2). In other words, minimizing TPM is equivalent to  

minimizing ECM with equal misclassification costs. Thus the optional TPM 

regions 1 2&R R  are same as those given in case(2) of page 20. Thus 
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                                                                                             (3) 

ALOCATING A NEW OBSERVATION 0x


 BASED ON BAYE’S POSTERIOR  

PROBABILITIES  
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        We can also allocate a new observation 0x


 to the population with the largest posterior 

probability ( / )iP
0

π x


. By Baye’s rule, the “posterior” probabilities are 

                  ( / )iP
0

π x


=P( 1
π  occurs and observe 0x


)/P(observe 0x


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                                  = P(observe 0x

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                                                                         (2) 

Now classify an observation 0x


 into 1
π  when  

                              
1 2

1 1 0 2 2

( / ) ( / )

( ) ( )

P P

p f p f



 

0 0

0

π x π x
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                                                         ( Numerators of (1) & (2) are equal) 

                              1 2

2 1

( )

( )

f p

f p
 0

0

x

x




                                                                                        (3) 

   Now from(3), it can be seen that allocating a new observation to a population  based  on 

Baye’s posterior probabilities is same as optional TPM rule. 

NOTE:  

           The  above method is also equivalent  to classify a new observation using  optional 

ECM  (Baye’s method ) rule when misclassification costs are equal. 

 

9.6 CONCLUSION  

 

Discriminant Analysis and Classification provide systematic statistical tools to separate 

known groups and to allocate new observations into appropriate populations. This lesson 

emphasized two major goals: 

 

(i) Describing the differences between populations (separation) and 

(ii) Assigning new observations to one of the populations (classification). 

(iii)Using probability density functions, prior probabilities, and misclassification costs, 

we derived rules that minimize the chance or cost of wrong decisions. 
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The Expected Cost of Misclassification (ECM) serves as a fundamental criterion. The Bayes 

Rule provides the regions (decision boundaries) that minimize ECM or, in special cases, 

minimize the Total Probability of Misclassification (TPM). 

Special cases such as equal prior probabilities or equal misclassification costs simplify the 

classification rule. When misclassification costs and priors are unknown, they are commonly 

assumed equal. Bayes posterior probabilities offer another intuitive approach for assigning 

new observations. 

 

9.7 SELF ASSESSMENT QUESTIONS 

 

1. Explain discriminant analysis.  Distinguish between discrimination and classification. 

2. Explain in detail the standards of good classification. 

3. Obtain the minimum expected or average cost of misclassification regions. 

4. Discuss different special cases of minimum ECM regions and show how each case leads 

to simplified classification rules. 

5. Derive the total probability of misclassification (TPM) regions and show that minimizing 

TPM is equivalent to minimizing ECM under equal misclassification costs. 

6. Explain Bayes posterior probability classification and prove that it leads to the same rule 

as the minimum-TPM classifier. 

 

9.8 SUGGESTED READING BOOKS: 

 

1. Applied Multivariate Statistical Analysis by Richard A. Johnson and  

2. D. W. Wichern. 

3. An Introduction to Multivariate Statistical Analysis by T.W. Anderson 

4. Multivariate Statistical Methods: A Primer by Bryan F.J. Manly 

5. Psychometric Theory by Jum C. Nunnally & Ira H. Bernstein 

 

 

                                                                          

 

  Dr. A. Vasudeva Rao 



LESSON -10 

CLASSIFICATION BETWEEN TWO 

MULTIVARIATE NORMAL (MVN) 

POPULATIONS 
 

OBJECTIVES:  

 

After studying this unit, you should be able to:  

• To understand the concept and purpose of classification into one of two known 

multivariate normal populations and classification into one of two multivariate normal 

populations when the parameters are unknown 

• To know the concept of classification analysis 

• To acquire knowledge about significance of classification analysis 

• To understand the purpose and objectives of pivotal provisions of the classification into 

one of two known multivariate normal populations and classification into one of two 

multivariate normal populations when the parameters are unknown 

 

STRUCTURE 

 

10.1 Introduction 

10.2 Classification into one of two MVN populations when the parameters are known 

10.3 Classification into one of two MVN populations when the parameters are   

       unknown 

10.4 Classification into one of two MVN populations with unequal dispersion  

      matrices 

10.5 Conclusion 

10.6 Self Assessment Questions 

10.7 Further Readings 

 

10.1.  INTRODUCTION 

 

10.1.1 classification into one of two mvn populations when the parametrers are known 

 

One of the most fundamental problems in multivariate statistics is to classify an observation 

vector x into one of two populations, say π1 and π2. When both populations are assumed to 

follow multivariate normal distributions with completely specified parameters (mean vectors 

and covariance matrices are known), the classification rule is obtained by comparing their 

likelihood functions. 

 If π1 ~ Np(μ1, Σ) and π2 ~ Np(μ2, Σ) with common covariance matrix, then the optimal rule 

is based on a linear discriminant function. 
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10.1.2  classification into one of two mvn populations when the parametrers are 

unknown 

 

• In practice, the true mean vectors μ1, μ2 and covariance matrices Σ (or Σ1, Σ2) are 

rarely known. Instead, they must be estimated from sample data obtained from each 

population. 

• The sample mean vectors are used to estimate μ1 and μ2. 

• If equal covariance matrices are assumed, the pooled sample covariance matrix is 

used to estimate Σ. 

• The resulting empirical discriminant function resembles Fisher’s Linear Discriminant, 

but with estimated parameters. 

• This approach makes the method applicable in real-world classification problems 

(medicine, finance, biology, etc.). It also introduces new issues, such as the impact of 

estimation error on misclassification probabilities and the need for large-sample 

approximations. 

 

10.1.3  classification into one of two mvn populations with unequal dispersion mataries 

 

• When the two multivariate normal populations have unequal (Dispersion) covariance 

matrices, the problem becomes more complex. Unlike the equal covariance case, 

where the decision boundary is linear, here the likelihood ratio test leads to a 

quadratic classification rule. 

• For π1 ~ Np(μ1, Σ1) and π2 ~ Np(μ2, Σ2), the log-likelihood ratio contains quadratic 

terms in x. 

• The resulting Quadratic Discriminant Function (QDF) is used for classification. 

• Geometrically, the separating surface between populations is no longer a hyperplane, 

but a quadratic surface (ellipsoidal, hyperbolic, or parabolic). 

• This case is the most general form of the normal classification problem and is 

particularly important when populations have markedly different variances and 

correlations. However, it requires large sample sizes for stable estimation of separate 

covariance matrices and is more computationally demanding. 

 

10.2 CLASSIFICATION INTO ONE OF TWO MVN POPULATIONS (with common   

         covariance matrix ) WHEN THE PARAMETRERS ARE KNOWN 

 

        Classification procedures based on normal populations predominate in statistical 

practice because of their simplicity and reasonably high efficiency across a wide variety of 

population models. We assume 1 2( ) & ( )f fx x


 are multivariate normal densities; the first with 

mean vector 
1μ


,and the second with mean vector  
2μ


 and both with common matrix Σ . Now 

the p.d.f. of the  

two populations 1 2
π &π  are given by 
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By minimum ECM classification rule, we have 
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where 1p  and  2p   are prior probabilities of 1
π and 2

π .  

C(1/2) = cost involved when an observation drawn from 2
π  is  incorrectly classified into 1

π . 

C(2/1) = cost involved when an observation drawn from  1
π is  incorrectly classified into 2

π . 

 

From (2) we have, after taking logarithms on both sides  
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                                                            (3) 

The regions 1 2&R R given by (3) are called as minimum ECM regions for two normal 

populations. 

NOTES: 

1. The first term of (3) viz  

               1( )
2

l− =μ -μ Σ x x
1  

,     where 1( )−=l Σ μ -μ
1 2 

                                                  (4) 

        is the well known Fisher (linear) discriminant function, which is actually obtained  by 

Fisher with entirely different argument which we will  discuss later. 

 

 

10.3 CLASSIFICATION INTO ONE OF TWO MVN POPULATIONS (with common    

          covariance matrix ) WHEN THE PARAMETRERS ARE UNKNOWN 

 

          Now the p.d.f. of the two populations 1 2
π &π  are given by 
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By minimum ECM classification rule, we have 
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where 1p  and  2p   are prior probabilities of 1
π and 2

π .  

C(1/2) = cost involved when an observation drawn from 2
π  is  incorrectly classified into 1

π . 

C(2/1) = cost involved when an observation drawn from  1
π is  incorrectly classified into 2

π . 

From (2) we have, after taking logarithms on both sides  
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(3) 

The regions 1 2&R R given by (3) are called as minimum ECM regions for two normal 

populations. 

  Suppose
111 12 1nX , X , ...X


, be a random sample of size 1' 'n , from population 

1 1: ( , )Nπ μ Σ


 and 

let 
221 22 2nX , X , ..., X
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be a random sample of size 2' 'n from population 

2 2: ( , )Nπ μ Σ


. Since  

1 2μ ,μ &Σ
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 are unknown we replace them with their unbiased estimators viz., 
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Now, the estimated (or sample) minimum ECM regions can be obtained from the above 

method replacing 
1 2μ ,μ &Σ


 with their unbiased estimators 2 & S
1

X , X


 (given by (1) & (2)) 

respectively. They  are form equations as follows : 
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from (4)&(5), the estimated sample minimum classification ECM rule for two  normal 

populations is given by  

Allocate 0
X


 to  1
π  if  

1 11
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                              where K=   2 1(1/ 2) (2/1)c p c p  

Allocate 0
X


 to 2
π  otherwise. 

NOTE: 

(1) The estimated or sample minimum TPM rule for two normal populations with 

unknown parameters can be obtained from (6) replacing K with ( )2 1/p p . 

(2) When 1 2p p= & ( ) ( )1/ 2 2/1c c= ,the estimated or sample minimum ECM rule is 

equivalent to sample ML rule and is given by  

Allocate  0
x


 to 1
π  if 

        
1 11

( ) ( ) ( )
2

S S− −  +1 2 0 1 2 1 2x - x x x - x x x


                                                                 (10) 

Allocate 0
x


 to 2
π  otherwise. 
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(3) The estimated minimum ECM rule or sample ML rule amounts to comparing the                  

scalar variable (univariate normal variable) 

                        1

2
ˆ ˆ           ,where ( )y l l S−= = 1x x - x


                                                            (11) 

   evaluated at 0
x


   is 

                                     
0 0

ˆy l= x


 

with the number 

                              

1

1 2

1
ˆ ( ) ( )

2

1
    = ( )               

2

m S

y y

−= +

+

1 2 1 2x - x x x


                                                               (12) 

where  

              

1 1

1

2

ˆ( )

ˆ

y S l

y l

− − = =

=

1 2 1 1

2

x - x x x

x
 



  

Thus allocate 0
x


 to 1
π  if  

                      0
ˆy m                                                                                                       (13) 

otherwise allocate 0
x


 to 2
π  

    That is, the estimated minimum ECM rule for two normal populations is to creating two 

univariate normal populations for the y values by taking an appropriate linear combination of 

the observations from populations  

1
π  and 2

π  and then assigning a new new observation 0
x


 to 1
π  or 2

π  depending upon 

whether 
0 0

ˆy l= x


 falls to the right or left of the midpoint m̂ , between the two normal means 

1 2  and  yy . 

(4) The linear function (7) is known as Fisher linear discriminant function, which is 

obtained by Fisher with a different argument for separating two populations. 

 

10.4   CLASSIFICATION INTO ONE OF TWO MVN POPULATIONS 

           WHEN 1 2Σ Σ  

 

           Now the p.d.f. of the two populations 1 2
π &π  are given by 

              

1 1( ) (
1 2(

/ 2 1/ 2
(2 )

i
f e
i p

−−
=

x -μ Σ x -μ )
i

x)

π Σ

 


          for i=1,2                           (1) 
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      The  ratio of densities after simplification is  

                  

1 11 1( ) ( ) ( ) ( )( )
1 1 2 21 2 2

( )
2

f
e

f

− − − +
=

x -μ Σ x -μ x -μ Σ x -μx

x
 



 

                  

1 1

1 1 1 1 1 1 1 11 1 1 1 1 1 1 1
1 1 22 2 2 2 2 2 2 2e

− − − − − − − −      − + + − + − −
=

xΣ x xΣ μ μ Σ x μ Σ μ xΣ x xΣ μ μ Σ x+ μ Σ μ
2 2 2   

           

1 1

11 1 1 1( )( ) 1 21 2
( )

2

                                            (     1,2)i

f
e

f

for i− −

− − − −   −
 =

 = =i

μ Σ x -μ Σ x μ Σ μ -μ Σ μx
2 1 1 2

x

μ Σ x xΣ μ

 






 

                                  

11 1[( ) ( ) ( )]
2 2e

− − −
=

μ -μ Σ x μ -μ Σ μ +μ
1 1 2 1 2                                        

(2)  

            for  1 1 1 1 1( ( )
2 1 1 2

− − − − −    = +μ -μ ) μ +μ μ Σ μ μ Σ μ -μ Σ μ -μ Σ μ
1 2 1 1 2 1 2 2

 

                                              
1

1 1 1 1     ( )
2 2

− − − −   =  =μ μ -μ Σ μ μ Σ μ μ Σ μ
1 1 2 2 1




     

By minimum ECM classification rule, we have 

                    

1 2
1

2 1

1 2
2

2 1

( ) (1/ 2)
:

( ) (2 /1)

( ) (1/ 2)
:

( (2 /1)

f pC
R

f C p

f pC
R

f C p

  
   
  

  
   
  

x

x

x

x)









 

      Where 1p  and  2p   are prior probabilities of 1
π and 2

π .   

C(1/2) .P(misclassification into 1
π ),  C(2/1) .P(misclassification into 2

π ) 

From (2) we have, after taking logarithms on both sides  

  

1 1

1 2

1 1

2 2 2 2

2

1

1
: ( ) ( ) ( ) log

2

1
: ( ) ( ) ( ) log

2

(1/ 2).
  

(2 /1)

R K

R K

C p
where K

C p

− −

− −

 − 

 − 

=

1 2 1 2 1

1 1 1

μ -μ Σ x μ -μ Σ μ +μ

μ -μ Σ x μ -μ Σ μ +μ




                                                              

(3) 

The regions 1 2&R R given by (3) are called as minimum ECM regions for two normal 

populations. 
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 Here we have 
1 1 2 2 2 1 2: ( , ) and  : ( , )  when N N 1π μ Σ π μ Σ Σ Σ


. 

 Let 1( )f x


 be the p.d.f. of 1
π  and 2 ( )f x


 be the p.d.f. of 2

π . Then on simplification, 

    

1
1 2

2

1 1 1 1

1 2 1 1 2 2

( )
log log ( ) log ( )

( )

                   =1/2 ( ) ( )   

f
f f

f

− − − −

 
= − 

 

  − + − −

x
x x

x

x Σ Σ x μ Σ μ Σ






 

                                                     (4) 

1 1 1

1 1 1 2 2 2

2

    where  =1/2log 1/ 2( )    − −
 

 + −  
 

Σ
μ Σ μ μ Σ μ

Σ 
                                                                     

(5) 

we have general formula for minimum ECM region and is given by  

             
 

 
1 1 2 2 1

2 1 2

: log ( ) / ( ) log  k   ,where  K=c(1/2)p / (2 /1)

: log ( ) / ( ) log  k                                       

R f f c p

R f f





x x

x x




                         

1 1 1

1 1 1 2 2 2

2

    where  =1/2log 1/ 2( )    − −
 

 + −  
 

Σ
μ Σ μ μ Σ μ

Σ 
                                                                     

(6)   

Now, the minimum ECM regions for classification of two normal populations when 1 2Σ Σ  

is given by: 

1 1 1 1

1 1 2 1 1 2 2

1 1 1 1

2 1 2 1 1 2 2

: 1/ 2 ( ) ( ) log  k

R : 1/ 2 ( ) ( ) log  k

R   

  

− − − −

− − − −

 − − + − − 

 − − + − − 

x Σ Σ x Σ Σ x

x Σ Σ x Σ Σ x

 

 

 

       where   & k are given as (2) & (3)                                                                                (7) 

The allocation rule that minimizes the ECM is given by : 

Allocate 0   to 
1

x π


 if  

1 1 1 1

0 1 2 0 1 1 2 2 01/ 2 ( ) ( ) log  k− − − −  − − + − − x Σ Σ x μ Σ μ Σ x
 

                                                           (8) 

Allocate 0 2  to x π


 otherwise. 

           In practice, the classification rule in (5) is implemented by substituting the sample 

quantities  
1 2 1 2 1 2 1 2, ,   and     for , ,   and  S Sx x μ μ Σ Σ
 

  respectively. 

 

QUADRATIC CLASSIFICATION RULE (NORMAL          

       POPULATIONS WITH  1 2Σ Σ ) 

            Allocate 0   to 
1

x π


 if  
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                   1 1 1 1

0 1 2 0 1 1 2 2 0
ˆ1/ 2 ( ) ( ) log  kS S S S − − − −  − + − − x x x x x


                                             (9) 

allocate 0 2  to x π


 otherwise. 

                 Where  
1 1 1

1 1 1 2 2 2

2

ˆ 1/ 2log 1/ 2( )
S

S S
S

 − −
 

 = + −  
 

x x x x


                                             (10) 

NOTE: 

(1). Minimum TPM rule or quadratic classification rule when 1 2Σ Σ  is a special             

        case of  (6) when 2 1/K p p= . 

(2). If the misclassification costs are equal and prior probabilities are equal  

       (i.e. 1 2(1/ 2) (2 /1) &C C p p= = ). Then the MC rule or QCR is obtained by      

       taking   K=1 or log K=0  in the rule (6). 

 

10.5 CONCLUSION  

 

Discriminate analysis is a powerful multivariate statistical tool used for classification and 

separation of groups based on several quantitative variables. Fisher’s discriminate function 

provides an optimal linear combination of variables that maximizes the separation between 

populations. Using methods such as Mahalanobis distance, prior probabilities, and 

classification rules, it enables researchers to classify new observations with high accuracy. 

The technique is widely applicable in medical diagnosis, finance, quality control, biological 

studies, and social sciences. Overall, discriminant analysis gives a systematic and 

mathematically sound procedure for discriminating and classifying individuals into 

predefined groups. 

 

10.6 SELF ASSESSMENT QUESTIONS: 

 

1. Explain the procedure for classification into one of two multivariate normal (MVN) 

populations when the parameters (mean vectors and common dispersion matrix) are 

known. 

2. Describe the method of classification into one of two multivariate normal (MVN) 

populations when the parameters are unknown and must be estimated from samples. 

3. Discuss the classification procedure for two multivariate normal (MVN) populations 

when the dispersion matrices of the two populations are unequal. 

 

10.7 SUGGESTED READING BOOKS: 

 

1. Applied Multivariate Statistical Analysis by Richard A. Johnson and Dean W. 

Wichern 

2. An Introduction to Multivariate Statistical Analysis by T.W. Anderson 

3. Multivariate Statistical Methods: A Primer by Bryan F.J. Manly 

4. Multivariate Data Analysis by Joseph F. Hair & William C. Black 

5. Psychometric Theory by Jum C. Nunnally & Ira H. Bernstein 

 

                                                                           

 

 Dr. A. Vasudeva Rao 

 



LESSON -11 

CLASSIFICATION WITH SEVERAL MVN 

POPULATIONS 
 

OBJECTIVES:  

 

After studying this unit, you should be able to:   

• To understand the concept and purpose of classification with several populations 

• To know the concept of classification with several populations 

• To acquire knowledge about the importance of classification with several populations 

• To understand the purpose and objectives of  classification with several populations. 

 

STRUCTURE 

 

11.1 INTRODUCTION 

11.2 CLASSIFICATION AMONG SEVERAL MVN POPULATIONS WITH   

     COMMON DISPERSION MATRIX 

11.3 CLASSIFICATION AMONG SEVERAL MVN POPULATIONS WITH   

      UNEQUAL DISPERSION MATRICES 

11.4 CONCLUSION 

11.5 SELF ASSESSMENT QUESTIONS 

11.6 FURTHER READINGS 

 

11.1. INTRODUCTION 

 

In multivariate statistical analysis, one of the major objectives is classifying an individual 

(observation) into one of several known populations. These populations may represent 

different groups such as disease categories, customer segments, manufacturing quality levels, 

or species classifications. 

 

When each population is described by a p-variate distribution, usually the Multivariate 

Normal (MVN) distribution, classification rules are constructed to minimize 

misclassification. 

 

For more than two populations, the classification problem becomes more complex because 

we must compute posterior probabilities, compare them across all populations, and assign the 

observation to the group with the minimum expected classification cost (ECM) or maximum 

posterior probability (TPM). 

 

If the parameters (means, covariance matrices, and prior probabilities) are known, 

classification rules are direct. 

 

If parameters are unknown, they must be estimated from samples, leading to estimated 

versions of the Bayes allocation rules. 
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11.2 CLASSIFICATION WITH SEVERAL MVN POPULATIONS WITH COMMON   

        DISPERSION MATRIX 

 

            We have ‘g’ multivariate normal populations  

                        

1 1

2 2

: ( , )

: ( , )

: ( , )

p

p

g p g

N

N

N







π Σ

π Σ

π Σ








 

Let ( )
i
f x


 be the density associated with population   , 1,2..
i
i=π ….g.  

Let       i prior probability of population , 1,2,...ip the i g= =π  

            Since, i , 1,2,...i g=π  are MVN populations, we have  

         

11
( ) ( )

2
1/ 2/ 2

1

1
( )          for i=1,2,....,g

(2 )

1 1
log ( ) log(2 ) log (( ) ( ))   

2 2 2

i i

i p

i i i

f e

p
f





−−

−

=

 
 = − − − 

 

x-μ Σ x-μ

x
Σ

x Σ x -μ Σ x -μ





 

                            (1) 

Now, the linear discriminant scores are given by 

    1 1 1

( ) log ( ) log

1 1 1
        log(2 ) log log

2 2 2 2

                              (after simplification)

i i i

i i i i

d f p

p
p − − −

= +

   = − − − + − + 
 

x x

Σ xΣ x μ Σ x μ Σ μ



 
                    (2)          

The first three terms are same for 
1 2( ), ( ),..... ( )gd d dx x x


 and consequently, they can be 

ignored  for allocatory purposes.  Now,  the linear discriminant scores become  

                       
1 11

( ) log  
2

i i i i id p− − = − +x μ Σ x μ Σ μ
 

                        (3) 

The relevant sample quantities for population i
π  are  

                                     
i

i

 sample mean vector

S  = sample covariance matrix  and 

n  = sample size 

i =x


 

and  the pooled estimate of Σ ,   

                        
1 1 2 2

1 2

( 1) ( 1) ... ( 1)

...

g g

g

n S n S n S
S

n n n g

− + − + + −
=

+ + + −
                                                     (4) 

Now, an estimate of ( )id x


viz, ˆ ( )id x


 is  given by  

                          
1 11ˆ ( ) log  

2
i i i id S S p− − = − +x x x x x


                                                              (5) 
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consequently, the estimated minimum TPM rule for equal covariance normal populations is 

as follows: 

 Allocate 
k

  to x π


 if  the linear discriminant score ˆ ˆ( ) max{ ( )}k i
i

d d=x x


                             (6) 

  Where  ˆ ( )id x


is given by (5) 

NOTE:- 

1. In the above minimum TPM rules , for any case , if 1 2 3 ...... 1/gp p p p g= = = = = ,   

we may ignore those term log ip  is discriminant scores , as it is same for all 

discriminant  scores. In this case the minimum TPM rule is reduced to ML rule in 

which case the allocation rules are same  as above except ignoring log ip . 

2. An equivalent classifier for common covariance matrix case can be obtained from (1) 

by     ignoring the term   

                                      
1

log
2

− Σ  and is given by   

                                     11
( ) ( ) log

2
i i i

p−− − − +x μ Σ x μ


 

The classification rule with sample estimates instead for unknown populations    

quantities is given by  Allocate 
k

  to x π


,if  

                          
21
( ) log

2
k kD p− +x


 is largest   for k=1,2,…,g.                                            

(7) 

where 
2 1( ) ( ) ( )k k kD S −=x x - x x - x


 is Mahalnobis squared distance between x


 and the 

sample mean kx


. 

Thus , we see the rule (7) or equivalently  rule (6) assigns x


 to the closest  population 

(the distance in penalized by log ip ). 

3. In note(2) , if we assume 1 2 3, , ......, gp p p p  are equal and hence allocation rule may be   

significant as follows:  

       Allocate 
k

  to x π


, if 
21
( )

2
kD− x


 is largest 

           Or  equivalently 
2 ( )kD x


 smallest                                                                                (8) 

In other words, we are allocating  x


 to that population whose sample mean vector is 

closest to  x


 . This rule is also called as ML classification rule. 

 

11.3 CLASSIFICATION AMONG SEVERAL MVN POPULATIONS WITH     

         UNEQUAL DISPERSION MATRICES 

 

          We have ‘g’ multivariate normal populations  

                        

1 1 1

2 2 2

: ( , )

: ( , )

: ( , )

p

p

g p g g

N

N

N






π Σ

π Σ

π Σ





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         Let ( )
i
f x


 be the density associated with population   ,  1,2...i i g=π  

   Let       i prior probability of population , 1,2,...ip the i g= =π  

            Since, i , 1,2,...i g=π  are MVN populations, we have  

                
11

( ) ( )
2

1/ 2/ 2

1
( )          for i=1,2,....,g  

(2 )

i i i

i p

i

f e


−−

=
x-μ Σ x-μ

x
Σ




                            (1) 

From Eq. (1) we have  

            
11 1

log( ( )) log log(2 ) log ( ) ( )
2 2 2

i i i i i i i

p
p f p −= − − −x π Σ x -μ Σ x -μ

 
         (2) 

   

Allocate 
k

  to x π


if  

        
1

k

log( ( )) log( ( ))

1 1
                     =log p log(2 ) log ( ) ) 

2 2 2

maxk k i i
i

k i i i

p f p f

p −

=

− − −

x x

π Σ x -μ Σ (x -μ



 

                          (3) 

The constant /2 log(2 )p π  can be ignored in (2) since it is same for all populations. We 

therefore define the quadratic discrimination score for thi  population is 

 
11 1

( ) log log ( ) )    for  i=1,2,...,g 
2 2

Q

i i i i i id p −= − −x Σ x -μ Σ (x -μ
 

                                     (4) 

 The quadratic score ( )Q

id x


 is composed contributions from the generalized variance 
iΣ , the 

prior probability ip , and Mahalnobis (or statistical) squared distance between x


 and 

population mean i . 

        Using discriminant scores the classification rule (4) becomes  

Allocate
k

  to x π


                        

                   The quadratic score ( ) { ( )} max
Q Q

k i
i

d d=x x


                                                (5) 

where ( )Q

id x


 is given by (4). 

              In practice, the i
 and 
i

μ Σ


 are unknown and hence a training set of correctly 

classified observations is often available for the construction of estimates. The relevant 

sample quantities for population i
π  are  

                                     
i

i

 sample mean vector

S  = sample covariance matrix  and 

n  = sample size 

i =x

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Using the above estimation in (4) , we get the estimate of the quadratic discriminant score 

ˆ ( )Q

id x


 as  

                  
11 1ˆ ( ) log log ) )

2 2

Q

i i i i i id p S S −= − −x (x - x (x - x


                                                   (6) 

and the classification rule based on the sample is as follows: 

                        Allocate 
k

  to x π


 if the quadratic score  

                                 ˆ ˆ( ) ( )} max{Q Q

k i

i

d d=x x


                                                                       (7) 

where ˆ ( )Q

id x


 is given by (6) for 1,2,...,i g= . 

NOTE:- 

 

(1). In the above minimum TPM rules , for any case , if 1 2 3 ...... 1/gp p p p g= = = = = ,   we 

may ignore those term log ip  is discriminant scores , as it is same for all discriminant  scores. 

In this case the minimum TPM rule is reduced to ML rule in which case the allocation rules 

are same  as above except ignoring log ip . 

 

11.4 CONCLUSION  

 

In this unit, we examined several important methods for classifying multivariate observations 

into populations. Fisher’s Linear Discriminant Function provides a powerful approach for 

separating two populations by transforming multivariate data into a single discriminating 

variable. This method does not require normality, but it implicitly assumes equal covariance 

matrices. 

 

For more than two populations, two general decision-theoretic approaches were discussed: 

the Minimum Total Probability of Misclassification (TPM) rule and the Minimum Expected 

Cost of Misclassification (ECM) rule. The TPM rule focuses on minimizing overall 

misclassification probability, whereas ECM incorporates prior probabilities and 

misclassification costs, making it more flexible and realistic for practical applications. 

When the populations follow multivariate normal distributions, classification rules become 

more explicit through quadratic or linear discriminant scores. 

• With unequal covariance matrices, we derive the quadratic discriminant function. 

• With equal covariance matrices, the rule simplifies to a linear discriminant function, 

which corresponds to the Bayes rule, ML rule, and in special cases to Fisher’s 

discriminant. 

 

11.5 SELF ASSESSMENT QUESTIONS: 

 

1. Explain the problem of classification into one of the two known  multivariate normal 

populations 

2. Describe the method of classification of an individual into one of several p-variate 

normal populations having a common dispersion matrix.    where all the parameters 

are known. 
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11.6  SUGGESTED READING BOOKS: 

 

1. Applied Multivariate Statistical Analysis by Richard A. Johnson and Dean W. 

Wichern 

2. An Introduction to Multivariate Statistical Analysis by T.W. Anderson 

3. Multivariate Statistical Methods: A Primer by Bryan F.J. Manly 

4. Multivariate Data Analysis by Joseph F. Hair, William C. Black, et al. 

5. Psychometric Theory by Jum C. Nunnally & Ira H. Bernstein 

 

                                                                    

 

  Dr. Syed Jilani  
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FISHERS LINEAR DISCRIMINANT ANALYSIS 
 

OBJECTIVES:  

 

After studying this unit, you should be able to:  

• To understand the concept and purpose of Fishers linear discriminate analysis 

• To know the concept of Fishers linear discriminate analysis 

• To acquire knowledge about significance of Fishers linear discriminate analysis 

 

STRUCTURE 

 

12.1 INTRODUCTION 

12.1.1 FISHERS DISCRIMINANT FUNCTION-SEPARATION OF TWO  

POPULATION 

12.1.2 FISHER’S METHOD FOR DISCRIMINATING AMONG SEVERAL      

POPULATIONS WHEN PARAMETERS ARE SPECIFIED 

12.2 FISHERS METHOD FOR DISCRIMINATING SEVERAL POPULATIONS   

      WHEN PARAMETERS ARE UNKNOWN 

12.3 CONCLUSION 

12.4 SELF ASSESSMENT QUESTIONS 

12.5 FURTHER READINGS 

 

12.1. INTRODUCTION 

 

In multivariate statistical analysis, one of the central problems is the classification 

(discrimination) of an observation into one of several known populations. This problem arises 

frequently in practice—for example, assigning patients to diagnostic groups based on medical 

measurements, classifying credit applicants as low-risk or high-risk based on financial 

indicators, or determining the origin of agricultural products using chemical characteristics. 

 

When the probability distributions of the populations are fully specified—that is, the 

functional form of the distribution and all of its parameters (means, variances, and 

covariances) are known—statistical theory provides optimal decision rules for classification. 

This setting represents the “ideal” or theoretical case, as in practice parameters are usually 

estimated from data. Nonetheless, studying this case is fundamental because it provides the 

benchmark for performance and forms the basis for practical extensions. 

 

One of the earliest and most influential approaches to this problem was proposed by Sir 

Ronald A. Fisher (1936) in his seminal work on linear discriminate analysis (LDA). Fisher’s 

method aims to construct a linear discriminate function, i.e., a linear combination of the 

observed variables, such that the separation among populations is maximized. 
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The method works by finding the projection (linear function) of the multivariate data that best 

separates the groups relative to the within-group variability. For two populations, this reduces 

to Fisher’s linear discriminate function; for more than two populations, it leads to a set of 

discriminate functions that can be used for classification. 

 

12.2 FISHERS DISCRIMINANT FUNCTION-SEPARATION OF TWO   

        POPULATIONS (NOT NECESSARY MULTIVARIATE NORMAL) 

 

                 Fishers idea was to transform the multivariate observations x


’s to univariate 

observation y’s such that the y’s derived from population 1 2  and  π π  were separated as  

much as possible . Fisher suggested taking linear combination of x


’s to create y’s because 

they are simple function of x


 and are easily handled mathematically . 

 

Fisher’s approach does not assume that the populations are normal. 

  If does, however , implicitly assume the population covariance matrices are equal because a 

pooled estimate of the common covariance matrix is used. 

          Let 
11 12 1

1
, ,...,

n
x x x


 be a random sample of size 1
n  from population 1

π  and let 

21 22 2
2

, ,...,
n

x x x


 be a random sample of size 2n  from population 2
π .Now  

                   1x


 be the mean of 1st sample  

              1S  be the sample covariance matrix of 1st sample 

                   2x


 be the mean of 2nd sample 

                   2S  be the sample covariance matrix of 2nd sample 

Denote 1 2 2

1 2

( 1) ( 1)

2

n S n S
S

n n

− + −
=

+ −
                                                                                             (1) 

Which is a pooled sampled covariance matrix. 

Now, Fisher’s idea is as follows 

      Consider the linear combination 

                y =w x


, when w


is x  vector of real number                                                      (2) 

using the linear transformation, the multivariate observation of 1st sample will be transformed 

into univariate observations given by 
                   

11 12 1
1

, ,...,
n

y y y  

       when  1 1 1, 1,2,...,i iy i n= =w x


 

similarly the second sample 
21 22 2

2
, ,...,

n
x x x


will be transformed into  

                           
21 22 2

2
, ,...,

n
y y y  

         when 2 2 2, 1,2,...,i iy i n= =w x


 

Now 1 1y = w x


 

         2 2y = w x

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and   

1 2

2 2

1 1 2 2
2 1 1

1 2

( ) ( )

2

n n

i i

i i
y

y y y y

s
n n

= =

− + −

=
+ −

 
                                                                                 (3) 

consider 

       separation 1 2

y

y y

s

−
=                                                                                                        (4) 

Now, Fisher’s idea is to select the linear combination w


 such that the separation given in (4) 

is maximum. In other words, the objective is to select the linear combination of x


 (i.e. w x


) 

to achieve maximum separation between the sample means 1 2&y y . Equation (4) may be 

written as 

 

2 1 2

2

1 2

2

2

1 2

2

(squared distance between sample mean y   )

pooled sample variance of y

(y )
                     =

( )
                     =           (from (3))

y

y

and y
separartion

y

s

s

=

−

 −w x x


 

but  2

ys S=w w


    (from (3) & (1)) 

2

1 2squared distance between y & ( )

pooled variance of y

y

S



 = =



w d

w w




 say                                                            (5)     

                                                                              where  1 2( )= −d x x


 

Now, as per Fisher’s idea, (5) has to be maximized w.r.t. w


. 

Which implies  

2 2( ) ( ) ( ) ( )

0

S S

S



 
   −

  
= =



w w w d w d w w
w w

w w w






              

          

2

1

-1

( )2( 2( ) 0

( ( ) 0

( )
   (  S is positive defined matrix)   

( )

        =CS                                                                 

S S

S S

S
S −

   − =

  − =


 =



w w w d).d w d w

w w)d w d w

w w
w d

w d

d











 

                                           (6)     

where 
S

C


=


w w

w d




  and C is ratio of two scalars thus w


 is a scalar multiplier of the vector  

1S −
d


. 

Using    
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1

2 1 2

2 1 1

1

  in (5)  we get 

C ( )
          =

             =                                 

CS

S

C S SS

S



−

−

− −

−

=







w d

d d

d d

d d









                                                                        (7)     

Now using 1CS −=w d


 in (5) we get  

                   1=    S −d d


                                                                                                    (8) 

Thus, from (7) & (8), we can see that for either  

                                 1CS −=w d


 or w


= 1S −
d


 

the same ratio   , we are setting . Thus    will be maximized if we take  

                          w


= 1S −
d


=
1

1 2( )S − −x x


                                                                                 (9) 

and the maximum value of    is  

                     

1

-1

1 2 1 2

2

     =( - ) S ( - )

     =D     (say)                                                

m S −=



d d

x x x x



                                                 (10) 

Now, the linear function  

                       
-1

1 2   =( - ) S          (from (2) & (9))       

Y =



w X

x x X




                                                    (11) 

is called as Fisher’s linear discriminant  function . and the maximum ratio 2D ,where 2D  

given by (10),is called the sample squared distance or squared Mahalnobis distance between 

sample means 1 2  and  x x


. 

                    The linear discriminant function given by (11) converts the two multivariate 

samples into two univariate samples such that the corresponding univariate sample means are 

sepearted as much as possible to the relative to pooled sample variance . 

We can employ (11) as a classification device as given below. 

 

12.2.1 an allocation rule based on fisher’s discriminant  function: 

 

           We have the Fisher’s linear discriminant  function  

                        
1

1 2,           where ( )   y S −= = −w x w x x


                                                      (1) 

Let ‘m’ be the midpoint between 1 2   and   yy  and is given by  

                            
1 2

-1

1 2 1 2

( ) / 2

    =1/2 ( ) S ( )         

m y y= +

− +x x x x


                                                          (2) 
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Now , the allocation rule or classification rule based on Fisher’s discriminant function is as 

follows: 

Allocate 0   to 
1

x π


 ,if    

                        
1

0 1 2 0 0( )  or  y 0y S m m−= −  − x x x


 

Allocate 0 2  to x π


 ,if  

                            0 0  or y 0y m m −                                                                               (3) 

NOTE: 

    (1). If 1 2 2
~ ,  and ~ ,

1
π μ Σ π μ Σ


 then the Mahalnobis distance between 

2 and  1μ μ


 is                

            denoted by  
,

2


μ μ

1

 and is given by  

                                   2 -1
2 2

 =( - ) ( - )
,

2


1 1

μ μ Σ μ μ
μ μ

1 


 

(2).   2 1 =( - ) ( - )
,

− x μ Σ x μ
x μ  

 

(3). Mahalnobis 2D  test statistic  to test separation between  
1 2
    andπ π  (or )    

      
0 2 1 2:   vs   H :H = 1 1μ μ μ μ


 

     suppose 1 1 2 2
: ( , )    and  : ( , )

p p
N Nπ μ Σ π μ Σ


 1 1,Sx


 are the sample mean and      

     sample covariance matrix of a sample drawn from 
1 2 2 2
 and  ,  are        Sπ x π


. 

     Now Mahalnobis 2D  test statistic is given by  

                   

2 1

1 2 1 2

1 1 2 2

1 2

( ) ( )

(n -1)S ( 1)
                                where S=

2

D S

n S

n n

−= − −

+ −

+ −

x x x x


 

     under 
1 2

21 2 1 2
0 , 1

1 2 1 2

1
: ~

( 2)
p n n p

n n p n n
H D F

n n p n n
+ − −

  + − −
  

+ − +  
 

     which can be used as for testing the significant difference  
1 2−μ μ


. If 0H  is     

     rejected , we can conclude that the separation between  the two populations    

     
1 2
    andπ π  is significant. 

(4). Two sample  2T  and Mahalnobis 2D  are closely associated as  

                                               2 21 2

1 2

n n
T D

n n

 
=  

+ 
 

(5). In case of two normal populations with common covariance matrix, Fisher’s     
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      method is corresponds to a particular case of minimum ECM rule with equal   

      prior probabilities  and equal costs of TPM rule with equal prior probabilities .    

      Further, it is same as ML rule . 

(6). The expression in minimum ECM rule for two multivariate normal populations   

       1

1 2 1 2( ) ( 1/ 2( ))w S −= − − +x x x x x


 is frequently called Anderson’s classification. 

(7). Fisher’s method is also a special case of allocation rule based on Bayeson   

      posterior  probabilities when the prior probabilities 1 2  and  pp  are same for  

      the case of two multivariate normal populations. 

 

12.3 FISHER’S METHOD FOR DISCRIMINATING AMONG SEVERAL   

        POPULATIONS WHEN PARAMETERS ARE SPECIFIED 

 

                Fisher also proposed a several population extension of his discriminant method, 

which was discussed for the case of two populations. The motivation behind the Fisher 

discriminant analysis is the need to obtain a reasonable representation of the population that 

involves only a few linear combinations of the observations, such as 
1 2
 l x, l x


and so on.  His 

approach has several advantages and one is interested in separating several populations for  

1) Visual inspection or  

2) Graphical descriptive purposes.  

 It allows for the follows:-                      

1. Convenient representation of the g populations that reduce the dimension from a very 

large number of characteristics to a relatively few linear combinations. Of course, 

some information – needed for optimal classification- may be lost unless the 

population means lie completely in the lower dimensional space selected.  

 

2. Plotting of the means of the first two or three linear combinations (discriminates). 

This helps display the relationship and possible groupings of the populations. 

 

3. Scatter plots of the sample values of the first two discriminates, which can indicate 

outliers or other abnormalities in the data. 

 

               The primary purpose of Fishers Discriminant analysis is to separate populations.  

However, it can also be used to classify a new observation into one of the populations. It is 

not necessary to assume that the g populations are multivariate normal. However we assume 

the population covariance matrices are equal and of full rank. That 

is 1 2 g= = −−− = =Σ Σ Σ Σ .  Thus, we have g populations with mean vectors 

1 2, ,........ gμ μ μ


 and common covariance matrix .  

Let  
1

1 g

i
ig =

= μμ

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and  
1

( )B
g

i=

−= i iμ μ)(μ -μ


                                                                                                  (1) 

we consider the linear combination y= lx


 

which has expected value 

E(y) E( / )i i= = l X l μ
 

 (for population i ) 

                                  iy=  (say) 

and variance V(y) l cov( )l=  X,X


 

                             2

yl l = =Σ


 for all populations.                                                                  (2) 

we defuse the overall mean, 

                  
1

1 1
g

y iy
ig g

 
=

= =  
g

i
i=1

l μ
 

 

                                       
1

1
( )

g

i
i

l
g


=

=  
 

 

                                       l = 
 

                 (From (1))                                                             (3) 

 and form the ratio  

2

1
2

sum of squared distances from populations to over all mean of Y

common population variance of Y

( )

        

g

yiy
i

y

 


=

−

=


                                                                 

2

1

( )

                

g

i
i

l l

l l

 
=

− 

=







 

  1

( )( )
g

i i
i

l l

l l

   
=

− − 

=



 



 

  
l Bl

l l


=




                        (from (1)) 

     Thus     

2

1
2

( )
g

yiy
i

y

 


=

− l Bl

l l


=




                                                                                     (4) 
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The ratio (4) measures the variability between the groups of Y- values relative to the common 

variability within the groups. We can then choose l


to maximize the ratio (4) Thus if we 

write    

                                    
l Bl

l l



=




                                                                                          (5) 

 Then we have to maximize (5) with respect to   l


   when implies 

                       0 ( ) ( ) 0
ll

l l Bl l Bl l
l l l
   
= =  −  = 

  


                           

                                  ( ) ( ) 0l l Bl l Bl l=  −  = 


 

                                      ( ) 0
l Bl

Bl l
l l


= −  =




 

                                   
1 ( ) 0

l Bl
Bl l

l l
− 

=  − =




  

                                    1( ) 0B I l−=  − =


    (using (5))                                                (6) 

Thus l


 is the latent vector corresponding to a latent root  of 
1B− . As, we are seeking for 

a l


 which maximizes , let 
1
  be the non zero largest latent root of  

1B−  and 
1
l


 be the 

corresponding latent vector. Now, the linear combination,   
1 1
Y l X= 


 is called Fisher’s first 

linear discriminant . 

             Similarly if 
2
  is the next non Zero largest latent root of 

1B−   and 
2
l


  

correspondent latent vector then ,
2 2
Y l X= 


 is Fisher’s second linear discriminant.  

         Let 
1 2

...... 0s       denote the smin(g-1,p) non zero eigen values of 

1B−  and let 
1, 2,

.......... sl l l


 be the corresponding latent vectors. Now, the linear 

combinations 

                                                 ( )
k k
Y l X k s= 


                                                                  (7) 

is Fisher’s kth linear discriminant. 

 

12.4 FISHERS METHOD FOR DISCRIMINATING SEVERAL POPULATIONS    

        WHEN PARAMETERS ARE UNKNOWN 

 

Fisher’s sample linear discriminants: 
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     In general,   and the is


 are unknown, but we have a training set consisting of 

correctly classified observations. Suppose the training set consist of a random sample of size 

in from population , 1,2,3.....i i g =  

Let ix
 be the mean vector and iS  be the covariance matrix of ith sample. Now denote the 

sample between groups matrix. 

                          
0

1

( )( )
g

i i
i

B x x x x
=

= − −  
 

Where,                 
1

1
g

i
i

x x
g =

= 


                           .                                                                   (8) 

0
B  is an estimate of B  

Also, an estimate of  is based on   the sample within groups matrix is  

                                                
1

( 1)
g

i i
i

W n S
=

= −                                                                    (9) 

Consequently, 
1

,
( )

g

p i
i

W
S n n

n g =

= =
−                          .                                                    (10) 

is an estimate of  . 

We consider the linear transformation, 

                                            y l x= 


                                                                                      (11) 

Under the linear transformation, (11) the given multi variate samples can be transformed into 

univariate samples whose means and variances are given by 

Means  :  
1 2,
, ....... gy y y  

Variances: 
1 2

2 2 2, ,......
gy y ys s s  

We denote the overall sample as 

                                            
1

1
g

i
i

y y
g =

=                                                                               (12) 

Now form  the ratio, 

                 = sum of squared distances fro sample means to overall mean 

                                           Total within samples variation 
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2

1

2

1 1

( )

( )
i

g

i
i
ng

ij i
i j

y y

y y

=

= =

−

=

−




 

                    

2

1

2

1 1

( )

( )
i

g

i
i
ng

ij i
i j

l x l x

l x l x

=

= =

− 

=

− 









        (from (11)) 

                    1

1 1

( )( )

( )( )
i

g

i i
i
ng

ij j ij i
i j

l x x x x l

l x x x x l

=

= =

− − 

=

− − 









 

                    1

1

( )( )

( 1)

g

i i i
i

g

i i
i

l x x x x l

l n S l

=

=

− − 

=

−









 

(By using the definition of sample covariance matrix) 

                    0
l B l

l Wl


=





             (from (8) & (9) )                                                                     (13) 

The ratio (13) measures the variability between the groups of g values relative to the total 

variability within the groups. 

               Now, Fisher suggested to choose l

 such that given by (13) is maximum, 

Maximization of   with respect to l


 implies. 

                          
1

0
0 ( ) 0W B I l

l


−
= = − =

 


                                                             (14) 

(See (6) of page 29 for derivation particulars) 

          Now, if we denote 
1 2

...... 0s      (where min( 1, ))g ps −=  are s eigen 

values of (14) and let 
1 2
, ,.......... sl l l


 the corresponding eigen vectors, then  

Fisher’s K-th sample linear discriminate is given by  

                                                ( )
k k
y l x k s= 


 

 Thus, Fisher’s sample linear discriminates are eigen vectors of   1
0

W B− , 
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Where 
0
B andW are as assigned in (8) & (9). 

 

Note:  

1. If sample means 
1 2
, ,......... gx x x


 and sample covariance matrix  

1 2
, ,.......... gS S S are given , then 

0
B and W can be completed using (8) and (9) 

respectively. 

2. If raw samples from g populations are given, then 
0
B  and W can be computed as 

follows: 

First compute the individual sample covariance matrices 1 2, ,.......... gS S S from the given 

samples and then use (9) to compute W . Now, compute the sample covariance matrix S  

from the combined samples of g samples given by  

                         
1 1

1
( )( )

1

ing

ij ij
i j

S x x x x
n = =

= − − 
− 


  ,when 

1

g

i
i

n n
=

= . 

Now, 
0
B can be computed from the following relationship. 

                                 
0

( 1)n S W B− = +   . 

3. It may  be noted that the pooled sample covariance matrix pS  and combined sample 

covariance matrix S are connected by the  

                                 
0

( 1)n S W B− = +  

                         Thus, if the individual sample covariance matrix 1 2, ,.......... gS S S  and the 

combined sample covariance matrix S  are given, then one can obtain W and 
0
B can be 

obtained as follows 

                            
1 1 2 2

0

( 1) ( 1) ......... ( 1)

( 1)

gW n S n S n Sg

B n S W

= − + − + + −

= − −
 

 Now, Fisher’s discriminates can be constructed using the eigen vectors of 1
0

W B− . 

4. We know that 1
0

W B−  is not a symmetric matrix. Many computer   

Packages can compute eigen values and eigen vectors only for the symmetric matrices. 

However, the eigen vectors of 1
0

W B−  can be computed as follows: 

 Suppose,   is a ch root and l


is Ch. Vector of 1
0

W B− ,then we have  

                              1
0

( ) 0W B I l− − =


 

 The above equations may be rewritten as  
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1 1
1 2 2

0

1 1
2 2

0

1 1 1
2 2 2

0

1 1
2 2

0

( ) 0

( ) 0

( ) 0

( ) 0

W B W W l

W B W l

W BW W l

W BW w









− −−

−

− −

− −

− =

= − =

= − =

= − =









 

(
1
2W  is square root of W  and 

1
2W

−
 is a inverse of 

1
2W ). 

  Where, 

1
2w W l=


 or 

1
2l W w

−
=


. 

        Thus if w


 is latent vector of the matrix, 

1 1
2 2

0
W BW

− −
. Corresponding to the latent root 

of  , then latest vector l


of 

1
2

0
W B

−
corresponding root   may be obtained as  

1
2l W w

−
=


 

        For all practical purposes, for the construction of Fisher’s discriminant functions we use 

the above method. 

 

Classification of a new observation among several populations using Fisher’s 

discriminants 

 

             Mainly, Fisher’s discriminates were derived for the purpose of obtaining a low 

dimensional representation of the data that separate the populations as much as possible. 

Although they were derived from separatory considerations, the discriminates also provide 

the basis for a classification rule.   

 

12.5 CONCLUSION  

 

We extended Fisher’s discriminate analysis from two populations to the more general case of 

several (g) populations, both when the population parameters are known and when they are 

unknown and must be estimated from sample data. 

 

Fisher’s central idea remains the same: 

to find linear combinations of the original variables that maximize the separation among 

population means relative to the within-population variability. 

 

When the parameters are fully specified, the discriminate functions are obtained through the 

Eigen value–eigenvector decomposition of the matrix Σ -1B, where 

• B represents between-group variability, and 

• Σ represents the common within-group covariance matrix. 

The eigenvectors corresponding to the largest eigenvalues provide the Fisher’s discriminant 

functions. These linear combinations reduce dimensionality and allow clear visual separation 

of the groups. 

 

When parameters are unknown, they are replaced by sample-based estimates: 

• B is estimated using sample means (between-group matrix), and 

• W is estimated using pooled within-group sample covariance matrices. 
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The discriminate functions obtained in this case are called Fisher’s sample discriminants, and 

they are the eigenvectors of W-1B. These functions not only help visualize differences 

between populations but also serve as the basis for classification rules, allowing new 

observations to be assigned to the population whose discriminant scores they most closely 

match. 

 

12.6 SELF ASSESSMENT QUESTIONS: 

 

1. Explain Fisher’s method for discriminating among several populations when parameters  

    are specified 

2. Explain Fishers method for discriminating several populations when parameters are    

    Unknown 

 

 

12.7  SUGGESTED READING BOOKS: 

 

1. Applied Multivariate Statistical Analysis by Richard A. Johnson and Dean W. 

Wichern 

2. An Introduction to Multivariate Statistical Analysis by T.W. Anderson 

3. Multivariate Statistical Methods: A Primer by Bryan F.J. Manly 

4. Multivariate Data Analysis by Joseph F. Hair, William C. Black, et al. 

5. Psychometric Theory by Jum C. Nunnally & Ira H. Bernstein 

 

                                                                    

 

    Dr. Syed Jilani  

 

 

 

 

 

 



LESSON -13 

CLUSTER ANALYSIS 
 

OBJECTIVES:  

 

After studying this unit, you should be able to:  

• To understand the concept and purpose of Cluster analysis 

• To know the concept of Cluster analysis 

• To acquire knowledge about significance of Cluster analysis 

 

STRUCTURE 

 

13.1 INTRODUCTION 

13.2 SIMILARITY MEASURES 

13.2.1 Squared Euclidean Distance 

13.2.2 Chebyshev Distance 

13.2.3 Minkowski Distance 

13.3  EUCLIDIAN DISTANCE 

13.4  MAHALANOBIS SQUARED DISTANCE D2 

13.5 CONCLUSION 

13.6 SELF ASSESSMENT QUESTIONS 

13.7 FURTHER READINGS 

 

13.1. INTRODUCTION 

 

Cluster Analysis is an unsupervised multivariate statistical technique used to group a set of 

objects (observations, variables, or cases) into clusters such that: 

• Objects within the same cluster are highly similar 

• Objects from different clusters are dissimilar 

The goal is to uncover the natural structure or pattern present in multivariate data without 

using any prior group labels. 

 

Cluster analysis is widely used in: 

• Data mining 

• Marketing segmentation 

• Bioinformatics 

• Image recognition 

• Pattern classification 

• Social sciences and medical research 

Cluster analysis relies on similarity (or dissimilarity) measures, which quantify how close or 

far apart two observations are. The most commonly used measures are based on distance. 

 

In multivariate analysis, the concept of similarity or dissimilarity plays a central role in 

understanding relationships among objects. When observations are described by several 
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variables, the distance between them indicates how close or far they are in multidimensional 

space. These distance measures form the foundation of several multivariate techniques such 

as cluster analysis, multidimensional scaling (MDS), discriminant analysis, and nearest-

neighbour classification. 

 

A similarity measure quantifies how alike two objects are. In most applications, this is 

expressed in terms of a distance, where: 

• Small distance → high similarity 

• Large distance → low similarity 

Different measures capture different aspects of variation, and choosing the appropriate 

distance metric is crucial for accurate data analysis. 

 

The most commonly used distance-based similarity measures include the Squared Euclidean 

Distance, Chebyshev Distance, and Minkowski Distance, each with its mathematical form 

and geometric interpretation. 

 

13.2 SIMILARITY MEASURES 

 

         Cluster analysis groups objects so that objects within the same cluster are similar and 

objects in different clusters are dissimilar. To do this, we use similarity or distance measures. 

   - Squared Euclidean Distance 

   - Chebyshev Distance 

   - Minkowski Distance 

 

Distance, such as the Euclidean distance, is a dissimilarity measure and has some well known 

properties: 

1. d(p, q) ≥ 0 for all p and q, and d(p, q) = 0 if and only if p = q, 

2. d(p, q) = d(q,p) for all p and q, 

3. d(p, r) ≤ d(p, q) + d(q, r) for all p, q, and r, where d(p, q) is the distance (dissimilarity) 

between points (data objects), p and q. 

 

A distance that satisfies these properties is called a metric. Following is a list of several 

common distance measures to compare multivariate data. We will assume that the attributes 

are all continuous. 

 

13.2.1 Squared Euclidean Distance: 

The Squared Euclidean Distance (SED) between two points (objects) in a p-dimensional 

space is defined as the sum of the squared differences between the corresponding coordinates 

of the two points. 

For two observations 

( )

( )
1 2

1 2

, ,.....,

, ,.....,

i i i ip

j j j jp

X x x x

X x x x

=

=
 

the Squared Euclidean Distance is: 

( ) ( )
2

2

1

i, j
p

ik jk

k

d x x
=

= −  

Interpretation 

• It measures how far apart two objects are in multidimensional space. 
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• It gives more weight to large differences because the differences are squared. 

• It is widely used in clustering algorithms like k-means, Ward’s method, and MDS 

when distances are required. 

 

Squared Euclidean Distance: Advantages 

1. Computationally simpler and faster 

• The square root is not computed, unlike Euclidean distance. 

• This reduces computation time, especially in large datasets and high-dimensional 

clustering (e.g., k-means). 

2. Emphasizes larger differences 

• Squaring magnifies large deviations. 

• Hence, objects that differ strongly on some variables are placed much farther apart. 

• Useful when large deviations are important for clustering or classification. 

3. Consistent with many clustering criteria 

• Methods like k-means, Ward’s method, and minimum-variance clustering are based 

on minimizing sum of squared distances. 

• SED directly matches the Within-Cluster Sum of Squares (WCSS) objective. 

4. Geometrically interpretable 

• Although the square root is removed, the interpretation of distance is still consistent 

with Euclidean geometry. 

• Preserves relative ordering of distances (monotonic with Euclidean distance). 

 

Disadvantages 

1. Sensitive to outliers 

• Squaring increases the effect of extreme values disproportionately. 

• A single large deviation can dominate the distance and distort clustering results. 

2. Requires variables to be on the same scale 

• If variables have different units (e.g., height in cm, weight in kg), the larger-scale 

variable dominates the squared distance. 

• Standardization (z-scores) is necessary before computing SED. 

3. Ignores correlation between variables 

• Assumes variables are independent. 

• In multivariate data with correlated variables, SED may misrepresent true 

dissimilarity. 

• (Mahalanobis distance handles this better.) 

4. Provides distances in squared units 

• Distances are not in original units, so interpretation (e.g., “actual distance”) is less 

intuitive compared to Euclidean distance. 

5. Can lead to over-separation of clusters 

• Because large differences are heavily penalized, clusters may appear artificially 

separated in high-dimensional spaces. 

  

Example: 

Let two observations be:     

X1=(2,4,5), X2=(3,7,1) 
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( ) ( ) ( )

( ) ( ) ( )

2 2 22

12

2 2 2

2 3 4 7 5 1

      = -1 -3 4

       =1 9 16 26

d = − + − + −

+ +

+ + =

 

So, Squared Euclidean Distance = 26. 

 

13.2.2  Minkowski Distance 

The Minkowski distance is a generalization of the Euclidean distance. 

With the measurement,  xik ,  i = 1, … , N,  k = 1, … , p, the Minkowski distance is 

( )

1

1

i, j
p

M ik jk

k

d x x


=

 
= − 
 
  

where λ ≥ 1.  It is also called the Lλ metric. 

• λ = 1 : L1 metric, Manhattan or City-block distance. 

• λ = 2 : L2 metric, Euclidean distance. 

• λ → ∞ : L∞ metric, Supremum distance. 

( )
1

1 1

1

lim  max ,.....,
p

ik jk i j ip jp

k

x x x x x x



=

 
→ − = − − 

 
  

Note that λ and p are two different parameters. Dimension of the data matrix remains finite. 

 

Advantages of Minkowski Distance 

1. Highly flexible 

• By varying q, it can behave like several popular distance metrics. 

• Users can tune the distance measure depending on the structure of the data. 

2. Includes many useful metrics as special cases 

• Useful in clustering, pattern recognition, and machine learning because one formula 

covers: 

o Manhattan 

o Euclidean 

o Chebyshev 

3. Can control contribution of variable differences 

• Lower q reduces the influence of large differences. 

• Higher q highlights large deviations. 

• Helps adapt to different data patterns. 

4. Useful in machine learning and pattern recognition 

• Many algorithms allow selecting the order qqq to improve classification or clustering 

performance. 

 

Disadvantages of Minkowski Distance 

 1. Sensitive to variable scale 

• Like Euclidean and Manhattan distances, variables with larger numeric values 

dominate the distance. 

• Requires standardization (z-scores). 
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2. Sensitive to outliers (for large q) 

• For q>2, large deviations are magnified. 

• Makes clustering unstable if dataset contains extreme values. 

 3. Computational difficulty for non-integer q 

• For fractional orders (e.g., q=1.5), computation becomes slower and more complex. 

 4. Choosing the right q is not straightforward 

• No universal rule for selecting qqq. 

• Often requires trial-and-error or cross-validation. 

5. Not suitable for categorical variables 

• Only applicable to continuous or numeric variables. 

 

13.2.3 Chebyshev Distance 

The Chebyshev Distance (also called L∞ norm or maximum metric) between two points in a 

p-dimensional space is defined as the maximum absolute difference among their 

corresponding coordinates. 

For two observations 

( ) ( )1 2 1 2, ,....., , , ,.....,i i i ip j j j jpX x x x X x x x= =  

the Chebyshev distance is: 

1,.....,pmaxij k ik jkd x x== −  

Interpretation 

• It measures the greatest deviation between two points along any coordinate. 

• Only the largest coordinate difference contributes to the distance; smaller differences 

are ignored. 

• Geometrically, it forms square-shaped (in 2D) or cube-shaped (in 3D) contours, 

unlike the circular Euclidean distance. 

Example 

Let 

        X1=(4,9,2),     X2=(7,3,5) 

4 7 3

9 3 3

2 5 3

− =

− =

− =

 

Chebyshev distance: 

( )12 max 3,6,3 6d = =  

Advantages of Chebyshev Distance 

1. Simple and fast to compute 

• Requires only absolute differences and a max operation. 
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• Useful in large datasets and real-time systems. 

2. Captures the dominant difference 

• Good when the largest coordinate difference decides similarity. 

• Useful in quality control, chess (king’s moves), and bottleneck problems. 

3. Robust when small variations are unimportant 

• If similarity should depend only on the worst-case difference, Chebyshev is 

appropriate. 

4. Works well in grid-based or discrete spaces 

• Frequently used in: 

o Image processing 

o Pattern recognition 

o Chessboard distances 

o Robotics path planning 

 

Disadvantages 

1. Ignores all but the largest difference 

• Smaller but meaningful differences across several variables are completely 

neglected. 

• Poor for datasets where overall variation matters. 

2. Very sensitive to noise / outliers 

• A single noisy measurement (large deviation) dominates the distance. 

3. Requires variables to be on the same scale 

• Same issue as Euclidean, Manhattan, and Minkowski distances. 

• Standardization is necessary in multivariate applications. 

4. Geometry may not match natural clustering 

• Square/cube contours may not reflect the natural shapes of clusters in real data. 

• Often gives unnatural groupings compared to Euclidean distance. 

 

13.3 EUCLIDEAN DISTANCE 

 

The Euclidean Distance between two points in a p-dimensional space is the straight-line 

distance between them. It is derived from the Pythagorean theorem. 

For two observations: 

( )

( )
1 2

1 2

, ,.....,

, ,.....,

i i i ip

j j j jp

X x x x

X x x x

=

=
 

the Euclidean distance is defined as: 

( )
2

1

p

ij ik jk

k

d x x
=

= −  

Interpretation 

• It measures the actual geometric distance between two objects. 

• Most commonly used in cluster analysis, MDS, nearest-neighbour classification, and 

multivariate space. 

• Produces circular (2D) or spherical (3D) distance contours. 

Example 

Let 
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X1=(2,5,6),      X2=(5,1,3) 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

2 2 2

12

2 2 2

2 2 2

2 5 5 1 6 3

       = 3 4 3

      3 4 3

         = 5.83

d = − + − + −

− + +

= − + +

 

Advantages of Euclidean Distance 

1. Intuitive and easy to understand 

• Direct extension of the Pythagorean theorem. 

• Matches our natural perception of distance. 

2. Geometrically meaningful 

• Represents actual spatial distance. 

• Good for visualization, clustering, and MDS. 

3. Most commonly used in clustering 

• Works well when clusters are spherical or compact. 

• Basis for many algorithms like k-means, hierarchical clustering (single, complete, 

average linkage). 

4. Sensitive to overall differences 

• Takes all variable differences into account, not just maximum (Chebyshev) or sum of 

absolute differences (Manhattan). 

 

Disadvantages 

1. Sensitive to scale of measurement 

• Variables with large numeric range dominate the distance. 

Solution: Standardize (z-scores) before computing distance. 

2. Sensitive to outliers 

• Squaring magnifies extreme deviations (similar to squared Euclidean). 

3. Assumes variables are uncorrelated 

• Does not consider variable relationships. 

Solution: Use Mahalanobis distance when variables are correlated. 

4. Less effective in high dimensions 

• Suffers from curse of dimensionality: 

o Distances converge 

o Loss of discriminating power 

o Clustering performance deteriorates 

5. Not suitable for categorical variables 

• Only applicable to continuous or numeric variables. 

 

13.4 Mahalanobis Distance 
 

Let X be a N × p matrix. Then the ith row of X is 

( )1,.....,
T

i i ipx x x=  

The Mahalanobis distance is 
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( ) ( ) ( )( )
1

21

 H i, j
T

M i j i jd x x x x−= −  −  

where ∑ is the p×p sample covariance matrix. 

 

13.5 CONCLUSION  

 

Similarity and distance measures play a foundational role in multivariate analysis, as they 

provide the quantitative basis for comparing observations in multidimensional space. The 

choice of an appropriate distance metric directly influences the outcomes of clustering, 

classification, and dimensionality reduction techniques. 

 

The Squared Euclidean Distance, Chebyshev Distance, and Minkowski Distance represent 

flexible and widely used dissimilarity measures, each capturing different patterns of variation 

depending on whether overall differences, maximum deviations, or generalized norms are 

emphasized. The Euclidean Distance, being the most intuitive and geometrically interpretable 

metric, remains central to many multivariate techniques, especially when variables are on 

similar scales and uncorrelated. 

 

However, real-world datasets often contain variables that differ in scale and exhibit 

interdependence. In such cases, the Mahalanobis Squared Distance (D²) provides a more 

robust and statistically sound measure by incorporating variance–covariance structure, 

allowing for meaningful comparisons even when variables are correlated. 

 

Overall, understanding and selecting the appropriate distance measure is essential for 

accurate data interpretation, effective clustering, and reliable multivariate modeling. A clear 

knowledge of these measures enhances analytical decisions and leads to more insightful 

conclusions in multivariate statistical studies. 

 

13.6 SELF ASSESSMENT QUESTIONS: 

 

1. Explain the concept of similarity and dissimilarity measures in multivariate analysis. 

Why are they important for clustering and multidimensional scaling? 

2. Derive the formula for Squared Euclidean Distance and discuss its advantages and 

disadvantages. In what situations is it preferred over Euclidean Distance? 

3. Define Chebyshev Distance. Provide a numerical example  

4. What is Minkowski Distance? Discuss how Euclidean Distance and Manhattan Distance 

arise as special cases.  

5.  Derivation of Mahalnobis 2D  test statistic  to test 
0 2 1 2:   vs   H :H = 1 1μ μ μ μ


 and the 

relationship between   Hotelling’s  2T  and Mahalnobis 2D   
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13.7 SUGGESTED READING BOOKS: 

 

1. Applied Multivariate Statistical Analysis by Richard A. Johnson and Dean W. 

Wichern 

2. An Introduction to Multivariate Statistical Analysis by T.W. Anderson 

3. Multivariate Statistical Methods: A Primer by Bryan F.J. Manly 

4. Multivariate Data Analysis by Joseph F. Hair, William C. Black, et al. 

5. Psychometric Theory by Jum C. Nunnally & Ira H. Bernstein. 

 

 

                                                                 Dr. Syed Jilani 

 

 

 

 

 

 



LESSON -14 

HIERARCHICAL CLUSTERING METHODS 
 

OBJECTIVES:  

 

After studying this unit, you should be able to:  

• To understand the concept and purpose of Hierarchical Clustering methods 

• To know the concept of Hierarchical Clustering methods 

• To acquire knowledge about significance of is Hierarchical Clustering methods  

 

STRUCTURE 

 

14.1 INTRODUCTION 

14.2 TYPES OF CLUSTERING 

14.3 BASIC STEPS OF CLUSTER ANALYSIS 

14.3.1 SINGLE LINKAGE METHOD: 

14.3.2 COMPLETE LINKAGE METHOD 

14.3.3 AVERAGE LINKAGE METHOD 

14.3.4 WARD’S METHOD 

14.3.5 CENTROID METHOD 

14.4 CONCLUSION 

14.5 SELF ASSESSMENT QUESTIONS 

14.6 FURTHER READINGS 

 

14.1. INTRODUCTION 

              

  Multivariate methods deal with the analysis of data of more than two variables recorded 

from n sample objects selected from a specified population. Since the sample objects are 

selected from a specified population, the units are assumed to be homogeneous in respect of 

some characteristics. However, the values of different variables recorded from sample objects 

are not strictly uniform, though there should not be any systematic difference in the objects. 

In general, we expect some variations in the values of the variables, even if the sample 

objects are uniform in respect of some characters. For example, the income or the expenditure 

of middle class of people in a country are not exactly uniform, though they belong to the 

same class.  

 

Again, the people of a country can be classified as rich, upper middle class, lower middle 

class and poor. For each class of people there may be common variable which influences the 

economic condition. For example, the income of  a person depends on his education. This is 

true for every class of people. But their income or expenditure are not uniform. Therefore, 

there may be some systematic difference in values of the variables recorded from sample 

objects, there may be some similarities in the recorded observations of sample objects. Those 

sample objects which are similar in their recorded information may form a group. Dissimilar 

objects fall in different groups. In general, the objects that share similar characteristics are 
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found together. In statistics, the search for relatively homogeneous objects is called cluster 

analysis.  

 

            The cluster analysis has wide application in biology, medicine, agriculture, marketing, 

etc. The numerical taxonomy in the field of biology is used to classify the animals into class, 

order and families. Different species of plants have different characteristics. Therefore, plant 

specimens can be classify into homogeneous groups. In agriculture, the land fertility of a 

particular region may not be homogeneous for any type of crop. Then the pieces of land  

sharing similar fertility for a particular may be grouped together. The milk production of 

cows, even of the same type, may vary due to lactation period. Then the cows of the same 

lactation period may be grouped  together. In economics, the people of a city center may be 

grouped  according  to their socio-economic condition. In marketing, people can be grouped 

according to the similar buying habits. In medicine, the patients having similar disease may 

be clustered together. 

 

            Since similar objects form a cluster, all the sample points in any cluster will provide 

similar information about the population characteristics. Thus, for further analysis one may 

include one object from each cluster analysis is a data reduction technique in rows of the data 

matrix. 

 

What is Clustering? 

Cluster analysis is a technique used in data mining and machine learning to group similar 

objects into clusters. K-means clustering is a widely used method for cluster analysis 

where the aim is to partition a set of objects into K clusters in such a way that the sum of 

the squared distances between the objects and their assigned cluster mean is minimized.  

Hierarchical clustering and k-means clustering are two popular techniques in the field of 

unsupervised learning used for clustering data points into distinct groups. While k-means 

clustering divides data into a predefined number of clusters, hierarchical clustering 

creates a hierarchical tree-like structure to represent the relationships between the 

clusters. 

 

Example: 

Let’s try understanding this with a simple example. A bank wants to give credit card 

offers to its customers. Currently, they look at the details of each customer and, based on 

this information, decide which offer should be given to which customer. 

Now, the bank can potentially have millions of customers. Does it make sense to look at 

the details of each customer separately and then make a decision? Certainly not! It is a 

manual process and will take a huge amount of time. 

So what can the bank do? One option is to segment its customers into different groups. 

For instance, the bank can group the customers based on their income: 

 

 

https://cdn.analyticsvidhya.com/wp-content/uploads/2019/08/Screenshot-from-2019-08-07-15-19-27.png
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Can you see where I’m going with this? The bank can now make three different strategies 

or offers, one for each group. Here, instead of creating different strategies for individual 

customers, they only have to make 3 strategies. This will reduce the effort as well as the 

time. 

 

The groups I have shown above are known as clusters, and the process of creating these 

groups is known as clustering. Formally, we can say that: 

In clustering, we do not have a target to predict. We look at the data, try to club similar 

observations, and form different groups. Hence it is an unsupervised learning problem.  

We now know what clusters are and the concept of clustering. Next, let’s look at the 

properties of these clusters, which we must consider while forming the clusters.  

 

                Let  ( )X n p be a data matrix from a specified population. Let the values of the p 

variables observed from n sample objects be denoted by  1 2, ,..., nX X X . The objective of the 

cluster analysis is to group these n vector of values into 1 1( )n n n  vectors so that the 

elements in a group are homogeneous. Here the method of clustering is on the basis of one-

sample observations. Let [ 1,2,..., ; 1,2,..., ]ij jX i n j m= =  be the vector of values of p variables 

of i-th object in j-th sample. Here the objective of clustering is to form 1 1  groups (m <m)m of 

sample observations in different groups are heterogeneous. 

 

                    From above discursion is is clear that the CA reduces the sample observations in 

size. It has similar property of other data reduction technique. Namely, PCA . this analysis 

has a similarity with DA in respect of classification of observations. But DA derives a rule 

for an allocating an object to its proper properties based on some prior information of the 

group membership of the object. Whereas, the CA identifies homogeneous groups or clusters.  

 

 There is no unified approach on what actually constitute a cluster.  As per the 

definition what we have discussed above, a cluster constitutes with a similar object.  Then, 

we need to decide on a measure of inter-object similarities.  Also, a decision is needed to 

specify a procedure for forming the clusters, based on the chosen measure of similarity.  The 

criterion   of similarity in observations varies from researcher to researcher.  However, the 

basic criterion is that the objects in a cluster should be closer to each other than to objects in 

other clusters.  As a preliminary technique to identify the similarity of objects, one can use 

the diagram of sample objects.  Let us consider that from each of ‘n’ sample object values of 

p variables are recorded.  These values can be represented a p-dimensional diagram.  The 

values of each variable are plotted in each separate axis.  If n sets of values are plotted in p-

axes, a diagram will be formed.  The cluster can be formed with those objects, which lie 

nearer in an area of the diagram but are dispersed from another area.  The cluster can also be 

formed mathematically calculating distances among sample objects. 

 

14.2 BASIC STEPS OF CLUSTER ANALYSIS: 

 

In CA, the sample objects are clustered on the basis of some characteristics.  Therefore, to 

start with the analysis, a number of decisions must be made regarding the characteristics to be 

considered, the variables to be included in the analysis, the measurement of distance between 

objects and the criterion to group the objects. 
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 The selection of variables for any CA is important, since the exclusion of important 

variables will be poor or misleading findings.  For eg., if any marketing research the 

consumers are needed to be clustered, their tastes and habits and their economic capacities 

must be considered.  Otherwise, the clustering of consumers will not be fruitful.  The initial 

choice of variables determines the characteristics that can be used to identify subgroups. 

 

 After the selection of variables, the next important point to be considered is to 

measure the distance and similarity become objects.  Two objects will be included in two 

separate groups, if their distance is maximum and they will be included in one group if they 

are close to each other.  Therefore, one of the important steps in cluster analysis is to measure 

the distance among objects. 

 

          The measurement of similarity of their distance is divided into two main parts.  One of 

this is (a) distance – type measure, and another is (b) matching – type measure.    

 

14.3 CLUSTER LINKAGE METHODS: 

 

The linkage method that you choose determines how the distance between two clusters is 

defined. At each amalgamation stage, the two closest clusters are joined. At the beginning, 

when each observation constitutes a cluster, the distance between clusters is just the inter-

observation distance. Subsequently, after observations are joined together, a linkage rule is 

necessary for calculating inter-cluster distances when there are multiple observations in a 

cluster.  You might want to try several linkage methods and compare results. Depending on 

the characteristics of your data, some methods may provide "better" results than others.  

 

14.3.1 Single Linkage Method: 

Single linkage agglomerative clustering is a hierarchical clustering algorithm that works by 

iteratively merging the two closest clusters based on the minimum distance between their 

closest members. The steps involved in it are: 

1. Start with assigning each observation to its own cluster. 

2. Compute the distance between all pairs of clusters using a chosen distance metric 

(e.g., Euclidean distance). 

3. Merge the two closest clusters into a single cluster. 

4. Recompute the distance between the new cluster and all remaining clusters. 

5. Repeat steps 3 and 4 until all observations belong to a single cluster, or until a pre-

defined number of clusters has been reached. 

In single linkage agglomerative clustering, the distance between two clusters is defined as 

the minimum distance between any two points in the clusters. This is why it’s also called 

the “nearest neighbor” or “single linkage” clustering. 
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One disadvantage of single linkage agglomerative clustering is that it can produce long, 

trailing clusters that do not represent well-defined groups, also known as chaining 

phenomenon. This can be overcome by using other linkage criteria such as complete 

linkage, average linkage, or Ward’s linkage. 

 

Example 1: Numerical Example 

 A B C D 

A 0 2 6 10 

B 2 0 5 9 

C 6 5 0 4 

D 10 9 4 0 

 

Distance Matrix: 

A-B = 2 

A-C = 6 

A-D = 10 

B-C = 5 

B-D = 9 

C-D = 4 

Step 1: Smallest distance = 2 → Merge A & B → Cluster {A,B} 

Step 2: Update distances: 

(A,B)-C = min(6,5) = 5 

(A,B)-D = min(10,9) = 9 

Step 3: Next smallest = 4 → Merge C & D → Cluster {C,D} 

Step 4: Distance between clusters: 

D({A,B},{C,D}) = min(6,10,5,9) = 5 

Final: 

A-B merge at 2 

C-D merge at 4 

(AB)-(CD) merge at 5 

 

14.3.2 Complete linkage agglomerative clustering 

Complete linkage agglomerative clustering is another hierarchical clustering algorithm that 

works by iteratively merging the two closest clusters based on the maximum distance 

between their furthest members. 

 

The steps involved in the complete linkage agglomerative clustering algorithm are: 

1. Start with assigning each observation to its own cluster. 
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2. Compute the distance between all pairs of clusters using a chosen distance metric 

(e.g., Euclidean distance). 

3. Merge the two closest clusters into a single cluster. 

4. Recomputed the distance between the new cluster and all remaining clusters. 

5. Repeat steps 3 and 4 until all observations belong to a single cluster, or until a pre-

defined number of clusters has been reached. 

 

1) In complete linkage agglomerative clustering, the distance between two clusters is 

defined as the maximum distance between any two points in the clusters. This is why it’s 

also called the “furthest neighbor” or “complete linkage” clustering. 

2)  

Compared to single linkage agglomerative clustering, complete linkage tends to produce 

more compact, spherical clusters that are less prone to the chaining phenomenon. However, 

it’s more sensitive to outliers and can produce unbalanced clusters if there are extreme 

values or noise in the data. 

 

 
 

Example:  

This document provides a detailed, step-by-step explanation of Complete Linkage 

Agglomerative Hierarchical Clustering using a sample dataset of five objects: A, B, C, D, and 

E. Complete Linkage considers the **maximum distance** between elements of two clusters 

when merging. 

 

1. Distance Matrix 

 A B C D E 

A 0 4 6 7 10 

B 4 0 5 9 11 

C 6 5 0 4 8 

D 7 9 4 0 6 

E 10 11 8 6 0 

The above table contains the pairwise Euclidean distances between all objects. 
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2. Step-by-Step Clustering Process 

Step 1: Find the Closest Pair 

We examine all distances and identify the smallest value. The minimum distance is **4**, 

which occurs for the pairs (A, B) and (C, D). We merge one pair first—here, we merge (A, 

B). 

 

Step 2: Update Distances Using Complete Linkage 

Complete linkage defines the distance between two clusters as the maximum pairwise 

distance between elements of the clusters. Thus, distances from cluster (AB) to other objects 

are computed as: 

• d(AB, C) = max(d(A, C)=6, d(B, C)=5) = 6 

• d(AB, D) = max(d(A, D)=7, d(B, D)=9) = 9 

• d(AB, E) = max(d(A, E)=10, d(B, E)=11) = 11 

 

The updated distance matrix becomes: 

 

 AB C D 

AB 0 6 9 

C 6 0 4 

D 9 4 0 

 

Distances to E are handled separately in continuation tables to avoid clutter. 

 

Step 3: Merge the Next Closest Pair 

The smallest remaining distance is 4 for the pair (C, D). Thus, we merge C and D to form 

cluster (CD). 

 

Step 4: Recompute Distances Between Clusters (AB), (CD), and E 

Compute complete linkage distances: 

• d(AB, CD) = max(6, 7, 5, 9) = 9 

• d(CD, E) = max(8, 6) = 8 

Thus, the updated distance matrix (clusters AB, CD, and E) becomes: 

 

 AB CD E 

AB 0 9 11 

CD 9 0 8 

E 11 8 0 

 

Step 5: Merge Clusters (CD) and E 

The smallest distance is 8, so we merge (CD, E) to form cluster (CDE). 

 

Step 6: Final Merge 

Compute complete linkage distance between clusters (AB) and (CDE): 

Distances involved: A–C=6, A–D=7, A–E=10, B–C=5, B–D=9, B–E=11. 

Complete linkage distance = max(all above) = 11. 

Thus, clusters (AB) and (CDE) are merged to form the final single cluster. 

 

3. Final Dendrogram Structure 

1. Merge A and B at height 4. 
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2. Merge C and D at height 4. 

3. Merge (CD) with E at height 8. 

4. Merge (AB) with (CDE) at height 11. 

 

 

          11 

     -----|-------------------- 

     |                      | 

     |                      | 

     4                      8 

  ---|---               ----|---- 

  |     |               |        | 

  A     B               4        E 

                     ---|--- 

                     |     | 

                     C     D 

 

14.3.3 AVERAGE LINKAGE METHOD 

 

Another hierarchical clustering algorithm that is commonly used in bioinformatics and 

evolutionary biology is the Unweighted Pair Group Method with Arithmetic Mean 

(UPGMA). 

 

The steps involved in the UPGMA algorithm: 

1. Begin by assigning each data point to its own cluster. 

2. Compute the pairwise distances between all clusters based on the distance metric of 

choice, such as Euclidean distance, Manhattan distance, or Pearson correlation. 

3. Find the two closest clusters based on the pairwise distances and merge them into a 

single cluster. The distance between the two clusters is calculated as the average of 

the pairwise distances between their members. 

4. Update the pairwise distances between the new cluster and all remaining clusters. 

The distance between the new cluster and any other cluster is calculated as the 

average of the pairwise distances between the members of the new cluster and the 

members of the other cluster. 

5. Repeat steps 3 and 4 until all data points belong to a single cluster. 
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Example: 

We have five observations in ℝ²: 

 

X₁ = (1, 1) 

X₂ = (2, 1) 

X₃ = (4, 3) 

X₄ = (5, 4) 

X₅ = (5, 5) 

 

We use Euclidean distance: 

d(Xᵢ, Xⱼ) = sqrt[ (xᵢ1 − xⱼ1)² + (xᵢ2 − xⱼ2)² ]. 

Step 1: Compute the Distance Matrix 

Compute distances between all pairs (Xᵢ, Xⱼ). 

1. d(X₁, X₂): 

d(X₁, X₂) = sqrt[ (1 − 2)² + (1 − 1)² ] 

           = sqrt[ 1² + 0² ] 

           = 1.000  (approx) 

2. d(X₁, X₃): 

d(X₁, X₃) = sqrt[ (1 − 4)² + (1 − 3)² ] 

           = sqrt[ (−3)² + (−2)² ] 

           = sqrt[ 9 + 4 ] 

           = sqrt[13] ≈ 3.606 

3. d(X₁, X₄): 

d(X₁, X₄) = sqrt[ (1 − 5)² + (1 − 4)² ] 

           = sqrt[ (−4)² + (−3)² ] 

           = sqrt[ 16 + 9 ] 

           = sqrt[25] = 5.000 

4. d(X₁, X₅): 

d(X₁, X₅) = sqrt[ (1 − 5)² + (1 − 5)² ] 

           = sqrt[ (−4)² + (−4)² ] 

           = sqrt[ 16 + 16 ] 

           = sqrt[32] ≈ 5.657 

5. d(X₂, X₃): 

d(X₂, X₃) = sqrt[ (2 − 4)² + (1 − 3)² ] 

           = sqrt[ (−2)² + (−2)² ] 
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           = sqrt[ 4 + 4 ] 

           = sqrt[8] ≈ 2.828 

6. d(X₂, X₄): 

d(X₂, X₄) = sqrt[ (2 − 5)² + (1 − 4)² ] 

           = sqrt[ (−3)² + (−3)² ] 

           = sqrt[ 9 + 9 ] 

           = sqrt[18] ≈ 4.243 

7. d(X₂, X₅): 

d(X₂, X₅) = sqrt[ (2 − 5)² + (1 − 5)² ] 

           = sqrt[ (−3)² + (−4)² ] 

           = sqrt[ 9 + 16 ] 

           = sqrt[25] = 5.000 

8. d(X₃, X₄): 

d(X₃, X₄) = sqrt[ (4 − 5)² + (3 − 4)² ] 

           = sqrt[ (−1)² + (−1)² ] 

           = sqrt[ 1 + 1 ] 

           = sqrt[2] ≈ 1.414 

9. d(X₃, X₅): 

 

d(X₃, X₅) = sqrt[ (4 − 5)² + (3 − 5)² ] 

           = sqrt[ (−1)² + (−2)² ] 

           = sqrt[ 1 + 4 ] 

           = sqrt[5] ≈ 2.236 

10. d(X₄, X₅): 

d(X₄, X₅) = sqrt[ (5 − 5)² + (4 − 5)² ] 

           = sqrt[ 0² + (−1)² ] 

           = 1.000 

Distance matrix (0 on the diagonal, rounded to 3 decimals): 

 X1 X2 X3 X4 X5 

X1 0.000 1.000 3.606 5.000 5.657 

X2 1.000 0.000 2.828 4.243 5.000 

X3 3.606 2.828 0.000 1.414 2.236 

X4 5.000 4.243 1.414 0.000 1.000 
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 X1 X2 X3 X4 X5 

X5 5.657 5.000 2.236 1.000 0.000 

 

Step 2: Hierarchical Agglomerative Clustering (Average Linkage) 

Initially, each object is its own cluster: 

C₁ = {X₁} 

C₂ = {X₂} 

C₃ = {X₃} 

C₄ = {X₄} 

C₅ = {X₅} 

We repeatedly merge the two clusters with the smallest inter-cluster distance, using average 

linkage. 

 

Stage 1: First Merge 

From the distance matrix, the smallest non-zero distances are: 

d(X₁, X₂) = 1.000 

d(X₄, X₅) = 1.000 

We have a tie; we may merge either pair first. 

Assume we merge X₁ and X₂ first. 

Merge clusters: C₁ = {X₁} and C₂ = {X₂} 

New cluster: C₁₂ = {X₁, X₂} 

Height (distance level): 1.000 

Current clusters: 

C₁₂ = {X₁, X₂} 

C₃  = {X₃} 

C₄  = {X₄} 

C₅  = {X₅} 

Now compute distances from C₁₂ to the remaining singletons using average linkage: 

d(C₁₂, C₃) = (1 / (2 · 1)) · [ d(X₁, X₃) + d(X₂, X₃) ] 

            = (3.606 + 2.828) / 2 

            ≈ 6.434 / 2 

            ≈ 3.217 

d(C₁₂, C₄) = (1 / (2 · 1)) · [ d(X₁, X₄) + d(X₂, X₄) ] 
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            = (5.000 + 4.243) / 2 

            ≈ 9.243 / 2 

            ≈ 4.622 

d(C₁₂, C₅) = (1 / (2 · 1)) · [ d(X₁, X₅) + d(X₂, X₅) ] 

            = (5.657 + 5.000) / 2 

            ≈ 10.657 / 2 

            ≈ 5.329 

Distances among {C₃, C₄, C₅} remain as in the original matrix: 

d(C₃, C₄) = d(X₃, X₄) ≈ 1.414 

d(C₃, C₅) = d(X₃, X₅) ≈ 2.236 

d(C₄, C₅) = d(X₄, X₅) = 1.000 

New inter-cluster distances (rounded): 

 

        C12    C3     C4     C5 

C12     –    3.217  4.622  5.329 

C3    3.217    –    1.414  2.236 

C4    4.622  1.414    –    1.000 

C5    5.329  2.236  1.000    – 

Stage 2: Second Merge 

The smallest distance is now: 

d(C₄, C₅) = 1.000 

So we merge clusters C₄ and C₅: 

Merge clusters: C₄ = {X₄}, C₅ = {X₅} 

New cluster: C₄₅ = {X₄, X₅} 

Height (distance level): 1.000 

Current clusters: 

C₁₂ = {X₁, X₂} 

C₃  = {X₃} 

C₄₅ = {X₄, X₅} 

Compute distances involving C₄₅: 

d(C₁₂, C₄₅) = (1 / (2 · 2)) · Σ_{i ∈ {X₁, X₂}} Σ_{j ∈ {X₄, X₅}} d(i, j) 

             = (1 / 4) · [ d(X₁, X₄) + d(X₁, X₅) + d(X₂, X₄) + d(X₂, X₅) ] 

             = (1 / 4) · [ 5.000 + 5.657 + 4.243 + 5.000 ] 
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             = (1 / 4) · 19.900 ≈ 4.975 

d(C₃, C₄₅) = (1 / (1 · 2)) · [ d(X₃, X₄) + d(X₃, X₅) ] 

            = (1 / 2) · [ 1.414 + 2.236 ] 

            ≈ 3.650 / 2 

            ≈ 1.825 

Existing distance d(C₁₂, C₃) ≈ 3.217 remains. 

Updated distances: 

   C12 C3 C45 

C12 – 3.217 4.975 

C3 3.217 – 1.825 

C45 4.975 1.825 – 

 

Stage 3: Third Merge 

The smallest distance now is: 

d(C₃, C₄₅) ≈ 1.825 

So we merge C₃ and C₄₅: 

Merge clusters: C₃ = {X₃}, C₄₅ = {X₄, X₅} 

New cluster: C₃₄₅ = {X₃, X₄, X₅} 

Height (distance level): ≈ 1.825 

Current clusters: 

C₁₂  = {X₁, X₂} 

C₃₄₅ = {X₃, X₄, X₅} 

Now compute the distance between these two clusters using average linkage: 

d(C₁₂, C₃₄₅) = (1 / (2 · 3)) · Σ_{i ∈ {X₁, X₂}} Σ_{j ∈ {X₃, X₄, X₅}} d(i, j). 

We need the 6 pairwise distances: 

d(X₁, X₃) ≈ 3.606 

d(X₁, X₄) = 5.000 

d(X₁, X₅) ≈ 5.657 

d(X₂, X₃) ≈ 2.828 

d(X₂, X₄) ≈ 4.243 

d(X₂, X₅) = 5.000 

Sum = 3.606 + 5.000 + 5.657 + 2.828 + 4.243 + 5.000 ≈ 26.334 
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So: 

d(C₁₂, C₃₄₅) = 26.334 / 6 ≈ 4.389 

There are now only two clusters, so the final merge is at height ≈ 4.389. 

Stage 4: Final Merge 

Merge clusters: C₁₂ = {X₁, X₂}, C₃₄₅ = {X₃, X₄, X₅} 

New cluster: C₁₂₃₄₅ = {X₁, X₂, X₃, X₄, X₅} 

Height (distance level): ≈ 4.389 

Summary of merges: 

Step  Merged Clusters        New Cluster  Distance (Height) 

1     {X₁}, {X₂}            C₁₂         1.000 

2     {X₄}, {X₅}            C₄₅         1.000 

3     {X₃}, C₄₅             C₃₄₅        ≈ 1.825 

4     C₁₂, C₃₄₅             C₁₂₃₄₅      ≈ 4.389 

14.3.4 Ward  Linkage Method 

Ward’s method (also called the minimum variance method) is a hierarchical agglomerative 

clustering technique in which, at each stage, the pair of clusters merged is the one that causes 

the smallest increase in the total within-cluster sum of squares (WSS). 

Let Ca and Cb be two clusters with sizes 

na = |Ca| and nb = |Cb|, and let 

• ā = mean vector of cluster Ca 

• b̄ = mean vector of cluster Cb 

Then the increase in WSS when Ca and Cb are merged is 

 

where || ā − b̄ ||² is the squared Euclidean distance between the two cluster means. 

Algorithm idea (Ward’s method): 

1. Start with each observation as its own cluster. 

2. At each step, compute Δ(Ca, Cb) for all pairs of current clusters. 

3. Merge the pair with the smallest Δ(Ca, Cb). 

4. Continue until all observations are in a single cluster. 

(b) Worked Example with the 6 Observations 

We have six points in R^2: 

• X1 = (1, 1) 
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• X2 = (2, 1) 

• X3 = (3, 2) 

• X4 = (8, 8) 

• X5 = (9, 8) 

• X6 = (9, 9) 

We use squared Euclidean distance: 

|| x − y ||² = (x1 − y1)² + (x2 − y2)². 

 

Step 1: Squared Euclidean Distance Matrix 

Compute pairwise squared distances: 

• d²(X1, X2) = (1 − 2)² + (1 − 1)² = 1 

• d²(X1, X3) = (1 − 3)² + (1 − 2)² = 4 + 1 = 5 

• d²(X1, X4) = (1 − 8)² + (1 − 8)² = 49 + 49 = 98 

• d²(X1, X5) = (1 − 9)² + (1 − 8)² = 64 + 49 = 113 

• d²(X1, X6) = (1 − 9)² + (1 − 9)² = 64 + 64 = 128 

• d²(X2, X3) = (2 − 3)² + (1 − 2)² = 1 + 1 = 2 

• d²(X2, X4) = (2 − 8)² + (1 − 8)² = 36 + 49 = 85 

• d²(X2, X5) = (2 − 9)² + (1 − 8)² = 49 + 49 = 98 

• d²(X2, X6) = (2 − 9)² + (1 − 9)² = 49 + 64 = 113 

• d²(X3, X4) = (3 − 8)² + (2 − 8)² = 25 + 36 = 61 

• d²(X3, X5) = (3 − 9)² + (2 − 8)² = 36 + 36 = 72 

• d²(X3, X6) = (3 − 9)² + (2 − 9)² = 36 + 49 = 85 

• d²(X4, X5) = (8 − 9)² + (8 − 8)² = 1 + 0 = 1 

• d²(X4, X6) = (8 − 9)² + (8 − 9)² = 1 + 1 = 2 

• d²(X5, X6) = (9 − 9)² + (8 − 9)² = 0 + 1 = 1 

Now form the squared distance matrix: 

 X1 X2 X3 X4 X5 X6 

X1 0 1 5 98 113 128 

X2 1 0 2 85 98 113 

X3 5 2 0 61 72 85 

X4 98 85 61 0 1 2 
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 X1 X2 X3 X4 X5 X6 

X5 113 98 72 1 0 1 

X6 128 113 85 2 1 0 

Step 2: Hierarchical Clustering Using Ward’s Method 

Initial clusters (each point is its own cluster): 

• C1 = {X1} 

• C2 = {X2} 

• C3 = {X3} 

• C4 = {X4} 

• C5 = {X5} 

• C6 = {X6} 

For singletons (na = nb = 1), we have 

 

So the Ward distance between two singletons is half of their squared Euclidean distance. 

We proceed stage by stage. 

Stage 1: First Merge 

Look at the smallest squared distances in the matrix: 

• d²(X1, X2) = 1 

• d²(X4, X5) = 1 

• d²(X5, X6) = 1 

All give Δ = (1/2)*1 = 0.5. There is a tie; we may choose any. 

For definiteness, merge X1 and X2 first. 

Merge: C1 = {X1}, C2 = {X2} → C12 = {X1, X2} 

Cluster size: n12 = 2 

Cluster mean: 

x̄12 = ( (1 + 2)/2 , (1 + 1)/2 ) = (1.5, 1) 

Increase in WSS: 

Δ(C1, C2) = (1*1/(1+1)) * d²(X1, X2) = (1/2)*1 = 0.5 

Current clusters: 

• C12 = {X1, X2} 

• C3 = {X3} 
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• C4 = {X4} 

• C5 = {X5} 

• C6 = {X6} 

 

Stage 2: Second Merge 

Among the remaining singletons {X3, X4, X5, X6}, the smallest squared distances are 

• d²(X4, X5) = 1 

• d²(X5, X6) = 1 

So again Δ = 0.5 for these possible merges. 

Choose to merge X4 and X5 next. 

Merge: C4 = {X4}, C5 = {X5} → C45 = {X4, X5} 

Cluster size: n45 = 2 

Cluster mean: 

x̄45 = ( (8 + 9)/2 , (8 + 8)/2 ) = (8.5, 8) 

Increase in WSS: 

Δ(C4, C5) = (1*1/(1+1)) * d²(X4, X5) = (1/2)*1 = 0.5 

Current clusters: 

• C12 = {X1, X2} 

• C3 = {X3} 

• C45 = {X4, X5} 

• C6 = {X6} 

Stage 3: Third Merge 

We now have four clusters: C12, C3, C45, C6. 

We must compute Δ(Ca, Cb) for all pairs using 

Δ(Ca, Cb) = (na * nb / (na + nb)) * || ā − b̄ ||². 

First compute means: 

• C12: x̄12 = (1.5, 1), n12 = 2 

• C3: x̄3 = (3, 2), n3 = 1 

• C45: x̄45 = (8.5, 8), n45 = 2 

• C6: x̄6 = (9, 9), n6 = 1 

Now compute Δ for the pairs: 

1. Δ(C12, C3) 
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|| x̄12 − x̄3 ||² 

= (1.5 − 3)² + (1 − 2)² 

= (−1.5)² + (−1)² 

= 2.25 + 1 = 3.25 

Δ(C12, C3) = (2*1/(2+1)) * 3.25 = (2/3)*3.25 ≈ 2.167 

2. Δ(C45, C6) 

|| x̄45 − x̄6 ||² 

= (8.5 − 9)² + (8 − 9)² 

= (−0.5)² + (−1)² 

= 0.25 + 1 = 1.25 

Δ(C45, C6) = (2*1/(2+1)) * 1.25 = (2/3)*1.25 ≈ 0.833 

3. Δ(C12, C45) 

|| x̄12 − x̄45 ||² 

= (1.5 − 8.5)² + (1 − 8)² 

= (−7)² + (−7)² 

= 49 + 49 = 98 

Δ(C12, C45) = (2*2/(2+2)) * 98 = (4/4)*98 = 98.0 

4. Δ(C12, C6) 

|| x̄12 − x̄6 ||² 

= (1.5 − 9)² + (1 − 9)² 

= (−7.5)² + (−8)² 

= 56.25 + 64 = 120.25 

Δ(C12, C6) = (2*1/(2+1)) * 120.25 = (2/3)*120.25 ≈ 80.17 

5. Δ(C3, C45) 

|| x̄3 − x̄45 ||² 

= (3 − 8.5)² + (2 − 8)² 

= (−5.5)² + (−6)² 

= 30.25 + 36 = 66.25 

Δ(C3, C45) = (1*2/(1+2)) * 66.25 = (2/3)*66.25 ≈ 44.17 

6. Δ(C3, C6) 

|| x̄3 − x̄6 ||² 

= (3 − 9)² + (2 − 9)² 
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= (−6)² + (−7)² 

= 36 + 49 = 85 

Δ(C3, C6) = (1*1/(1+1)) * 85 = (1/2)*85 = 42.5 

The smallest Δ is: 

Δ(C45, C6) ≈ 0.833 

So we merge C45 and C6. 

Merge: C45 and C6 → C456 = {X4, X5, X6} 

Cluster size: n456 = 3 

Cluster mean: 

x̄456 = ( (8 + 9 + 9)/3 , (8 + 8 + 9)/3 ) = (26/3, 25/3) ≈ (8.67, 8.33) 

Increase in WSS: 

Δ(C45, C6) ≈ 0.833 

Current clusters: 

• C12 = {X1, X2} 

• C3 = {X3} 

• C456 = {X4, X5, X6} 

Stage 4: Fourth Merge 

Now we have three clusters: C12, C3, C456. 

Means and sizes: 

• C12: x̄12 = (1.5, 1), n12 = 2 

• C3: x̄3 = (3, 2), n3 = 1 

• C456: x̄456 ≈ (8.67, 8.33), n456 = 3 

Compute Δ again: 

1. Δ(C12, C3) (already calculated) 

|| x̄12 − x̄3 ||² = 3.25 

Δ(C12, C3) = (2*1/(2+1)) * 3.25 = (2/3)*3.25 ≈ 2.167 

2. Δ(C12, C456) 

|| x̄12 − x̄456 ||² 

≈ (1.5 − 8.67)² + (1 − 8.33)² 

≈ (−7.17)² + (−7.33)² 

≈ 51.39 + 53.73 ≈ 105.12 
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Δ(C12, C456) ≈ (2*3/(2+3)) * 105.12 

= (6/5)*105.12 

≈ 126.17 

3. Δ(C3, C456) 

|| x̄3 − x̄456 ||² 

≈ (3 − 8.67)² + (2 − 8.33)² 

≈ (−5.67)² + (−6.33)² 

≈ 32.15 + 40.07 ≈ 72.22 

Δ(C3, C456) ≈ (1*3/(1+3)) * 72.22 

= (3/4)*72.22 

≈ 54.17 

Smallest Δ is: 

Δ(C12, C3) ≈ 2.167 

So we merge C12 and C3. 

Merge: C12 and C3 → C123 = {X1, X2, X3} 

Cluster size: n123 = 3 

Cluster mean: 

x̄123 = ( (1 + 2 + 3)/3 , (1 + 1 + 2)/3 ) = (6/3, 4/3) = (2, 1.33) 

Increase in WSS: 

Δ(C12, C3) ≈ 2.167 

Current clusters: 

• C123 = {X1, X2, X3} 

• C456 = {X4, X5, X6} 

Stage 5: Final Merge 

Only two clusters remain: C123 and C456. 

Sizes and means: 

• C123: n123 = 3, x̄123 = (2, 1.33) 

• C456: n456 = 3, x̄456 ≈ (8.67, 8.33) 

Compute Δ(C123, C456): 

|| x̄123 − x̄456 ||² 

≈ (2 − 8.67)² + (1.33 − 8.33)² 

≈ (−6.67)² + (−7.00)² 

≈ 44.49 + 49.00 ≈ 93.49 
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Δ(C123, C456) = (3*3/(3+3)) * 93.49 

= (9/6)*93.49 

= (3/2)*93.49 

≈ 140.17 

This is a very large increase in WSS compared to previous merges. 

Merge: C123 and C456 → C123456 (all points in one cluster). 

This completes the clustering. 

Step Merged Clusters New Cluster Δ (Increase in WSS) 

1 {X1}, {X2} C12 0.50 

2 {X4}, {X5} C45 0.50 

3 C45, {X6} C456 ≈ 0.83 

4 C12, {X3} C123 ≈ 2.17 

5 C123, C456 C123456 ≈ 140.17 

(c) Suggested 2-Cluster Solution and Interpretation 

From the merge sequence and the jump in Δ: 

• Up to Step 4, increases in WSS are small (0.5, 0.5, 0.83, 2.17). 

• The final merge (Step 5) has a massive increase in WSS (≈ 140.17). 

So, a natural 2-cluster solution is obtained before the last merge: 

• Cluster 1: C123 = {X1, X2, X3} 

• Cluster 2: C456 = {X4, X5, X6} 

Interpretation: 

• Cluster {X1, X2, X3} lies in the lower-left region of the plane, with small internal 

variation. 

• Cluster {X4, X5, X6} lies in the upper-right region, again with small internal 

variation. 

• Merging these two clusters causes a very large increase in within-cluster sum of 

squares, so Ward’s method strongly supports two compact, well-separated clusters. 

 

14.3.5 Centroid Linkage Method: 

In hierarchical agglomerative clustering, the centroid linkage method defines the distance 

between two clusters as the Euclidean distance between their centroids (mean vectors). 
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Let Ca and Cb be two clusters with sizes 

• na = |Ca|, 

• nb = |Cb|, 

and let 

• m_a = centroid (mean vector) of Ca, 

• m_b = centroid (mean vector) of Cb. 

Then 

 

and the centroid linkage distance is 

 

Algorithm (Centroid Linkage): 

1. Start with each observation as its own cluster. 

2. At each step, compute d_centroid(Ca, Cb) for all pairs of clusters. 

3. Merge the pair of clusters whose centroids are closest (smallest d_centroid). 

4. Recompute centroids for the new clusters and repeat. 

This method is described in multivariate analysis texts such as Anderson (2000) and Johnson 

& Wichern (2001). 

Worked Example with the 5 Observations 

Observations in ℝ²: 

• X1 = (1, 2) 

• X2 = (2, 1) 

• X3 = (3, 2) 

• X4 = (7, 8) 

• X5 = (8, 9) 

We use Euclidean distance: 

( ) ( ) ( )
2 2

1 1 2 2,i j i j i jd X X X X X X= − + −  

Step 1: Distance Matrix Between All Pairs 

Compute d(Xi, Xj) for all i< j. 
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1. d(X1, X2) 

d(X1, X2) = √[(1 − 2)² + (2 − 1)²] 

= √[(−1)² + (1)²] 

= √(1 + 1) = √2 ≈ 1.414 

2. d(X1, X3) 

d(X1, X3) = √[(1 − 3)² + (2 − 2)²] 

= √[(−2)² + 0²] 

= √(4) = 2.000 

3. d(X1, X4) 

d(X1, X4) = √[(1 − 7)² + (2 − 8)²] 

= √[(−6)² + (−6)²] 

= √(36 + 36) = √72 ≈ 8.485 

4. d(X1, X5) 

d(X1, X5) = √[(1 − 8)² + (2 − 9)²] 

= √[(−7)² + (−7)²] 

= √(49 + 49) = √98 ≈ 9.899 

5. d(X2, X3) 

d(X2, X3) = √[(2 − 3)² + (1 − 2)²] 

= √[(−1)² + (−1)²] 

= √(1 + 1) = √2 ≈ 1.414 

6. d(X2, X4) 

d(X2, X4) = √[(2 − 7)² + (1 − 8)²] 

= √[(−5)² + (−7)²] 

= √(25 + 49) = √74 ≈ 8.602 

7. d(X2, X5) 

d(X2, X5) = √[(2 − 8)² + (1 − 9)²] 

= √[(−6)² + (−8)²] 

= √(36 + 64) = √100 = 10.000 

8. d(X3, X4) 

d(X3, X4) = √[(3 − 7)² + (2 − 8)²] 

= √[(−4)² + (−6)²] 

= √(16 + 36) = √52 ≈ 7.211 

9. d(X3, X5) 
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d(X3, X5) = √[(3 − 8)² + (2 − 9)²] 

= √[(−5)² + (−7)²] 

= √(25 + 49) = √74 ≈ 8.602 

10. d(X4, X5) 

d(X4, X5) = √[(7 − 8)² + (8 − 9)²] 

= √[(−1)² + (−1)²] 

= √(1 + 1) = √2 ≈ 1.414 

Distance matrix (rounded to 3 decimals): 

 X1 X2 X3 X4 X5 

X1 0.000 1.414 2.000 8.485 9.899 

X2 1.414 0.000 1.414 8.602 10.000 

X3 2.000 1.414 0.000 7.211 8.602 

X4 8.485 8.602 7.211 0.000 1.414 

X5 9.899 10.000 8.602 1.414 0.000 

Step 2: Hierarchical Clustering with Centroid Linkage 

Initially, each observation is its own cluster: 

• C1 = {X1} 

• C2 = {X2} 

• C3 = {X3} 

• C4 = {X4} 

• C5 = {X5} 

For a cluster C with points Xi, the centroid is 

m(C) = (1 / |C|) Σ_{i∈ C} Xi. 

The cluster distance is: 

d_centroid(Ca, Cb) = || m(Ca) − m(Cb) ||. 

For singletons, m({Xi}) = Xi, so initially d_centroid({Xi}, {Xj}) = d(Xi, Xj). 

Stage 1: First Merge 

From the distance matrix, the smallest non-zero distances are: 

• d(X1, X2) = 1.414 

• d(X2, X3) = 1.414 

• d(X4, X5) = 1.414 
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We have a tie. We can choose one pair. 

Assume we first merge X1 and X2. 

Merge: C1 = {X1}, C2 = {X2} → C12 = {X1, X2} 

Cluster size: |C12| = 2 

Centroid of C12: 

m(C12) = ( (1 + 2)/2 , (2 + 1)/2 ) = (1.5, 1.5) 

Current clusters: 

• C12 = {X1, X2} 

• C3 = {X3} 

• C4 = {X4} 

• C5 = {X5} 

Now compute centroid distances from C12 to the remaining singletons: 

1. d_centroid(C12, C3) 

m(C3) = X3 = (3, 2) 

Difference: (1.5 − 3, 1.5 − 2) = (−1.5, −0.5) 

|| m(C12) − m(C3) || 

= √[(−1.5)² + (−0.5)²] 

= √(2.25 + 0.25) = √2.5 ≈ 1.581 

2. d_centroid(C12, C4) 

m(C4) = X4 = (7, 8) 

Difference: (1.5 − 7, 1.5 − 8) = (−5.5, −6.5) 

|| m(C12) − m(C4) || 

= √[(−5.5)² + (−6.5)²] 

= √(30.25 + 42.25) 

= √72.5 ≈ 8.515 

3. d_centroid(C12, C5) 

m(C5) = X5 = (8, 9) 

Difference: (1.5 − 8, 1.5 − 9) = (−6.5, −7.5) 

|| m(C12) − m(C5) || 

= √[(−6.5)² + (−7.5)²] 

= √(42.25 + 56.25) 

= √98.5 ≈ 9.925 

Distances among C3, C4, C5 are still the original point distances: 
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• d(C3, C4) = d(X3, X4) ≈ 7.211 

• d(C3, C5) = d(X3, X5) ≈ 8.602 

• d(C4, C5) = d(X4, X5) ≈ 1.414 

 

Updated inter-cluster distances (Stage 1): 

 C12 C3 C4 C5 

C12 – 1.581 8.515 9.925 

C3 1.581 – 7.211 8.602 

C4 8.515 7.211 – 1.414 

C5 9.925 8.602 1.414 – 

Stage 2: Second Merge 

The smallest distance now is: 

• d(C4, C5) = 1.414 

So we merge C4 and C5. 

Merge: C4 = {X4}, C5 = {X5} → C45 = {X4, X5} 

Cluster size: |C45| = 2 

Centroid of C45: 

m(C45) = ( (7 + 8)/2 , (8 + 9)/2 ) = (7.5, 8.5) 

Current clusters: 

• C12 = {X1, X2} 

• C3 = {X3} 

• C45 = {X4, X5} 

Now compute distances: 

1. d_centroid(C12, C3) (unchanged from before) 

d(C12, C3) ≈ 1.581 

2. d_centroid(C3, C45) 

m(C3) = (3, 2), m(C45) = (7.5, 8.5) 

Difference: (3 − 7.5, 2 − 8.5) = (−4.5, −6.5) 

|| m(C3) − m(C45) || 

= √[(−4.5)² + (−6.5)²] 

= √(20.25 + 42.25) 

= √62.5 ≈ 7.906 
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3. d_centroid(C12, C45) 

m(C12) = (1.5, 1.5), m(C45) = (7.5, 8.5) 

Difference: (1.5 − 7.5, 1.5 − 8.5) = (−6, −7) 

|| m(C12) − m(C45) || 

= √[(−6)² + (−7)²] 

= √(36 + 49) 

= √85 ≈ 9.220 

 

Updated inter-cluster distances (Stage 2): 

 C12 C3 C45 

C12 – 1.581 9.220 

C3 1.581 – 7.906 

C45 9.220 7.906 – 

Stage 3: Third Merge 

The smallest distance is: 

• d(C12, C3) ≈ 1.581 

So we merge C12 and C3. 

Merge: C12 and C3 → C123 = {X1, X2, X3} 

Cluster size: |C123| = 3 

Centroid of C123: 

 

C45 remains as before with centroid (7.5, 8.5). 

Now compute 

d_centroid(C123, C45): 

Difference: (2 − 7.5, 1.667 − 8.5) = (−5.5, −6.833) 

|| m(C123) − m(C45) || 

≈ √[(−5.5)² + (−6.833)²] 

≈ √(30.25 + 46.71) 

≈ √76.96 ≈ 8.772 

Only two clusters remain: 

• C123 = {X1, X2, X3} 
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• C45 = {X4, X5} 

Final distance between them ≈ 8.772. 

Summary of merges (Centroid linkage): 

Step Merged Clusters New Cluster Centroid of New Cluster Distance at Merge 

1 {X1}, {X2} C12 (1.5, 1.5) 1.414 

2 {X4}, {X5} C45 (7.5, 8.5) 1.414 

3 C12, {X3} C123 (2, 1.667) 1.581 

4 C123, C45 C12345 (all points) 8.772 

Note the large jump from about 1.581 to 8.772 in the last merge. 

 

(c) 2-Cluster Solution and Interpretation 

From the merge sequence: 

• Up to Step 3, the distances between merging clusters are small (1.414, 1.414, 1.581). 

• At Step 4, merging C123 and C45 requires a much larger distance (~8.772). 

A natural 2-cluster solution is to cut the dendrogram before the last big jump: 

• Cluster 1: C123 = {X1, X2, X3} 

• Cluster 2: C45 = {X4, X5} 

Interpretation: 

• Cluster {X1, X2, X3} forms a compact group in the lower-left region of the (x1, x2) 

plane. 

• Cluster {X4, X5} forms a compact group in the upper-right region. 

• The centroids of these two clusters are far apart, so centroid linkage clearly separates 

the data into two well-separated clusters, consistent with the geometry of the points. 

 

14.4 CONCLUSION  

 

Cluster analysis is a powerful and versatile multivariate statistical technique that helps 

researchers group a set of objects into clusters based on their similarity across multiple 

characteristics. The primary goal is to ensure that objects within the same cluster are highly 

similar, while objects in different clusters are significantly different. To achieve this, several 

clustering methods are available, each offering a distinct strategy for measuring similarity 

and forming clusters. Methods such as single linkage, complete linkage, and average linkage 

differ in the way they compute inter-cluster distances—whether based on the nearest 

neighbour, farthest neighbour, or average pairwise distance. Ward’s method, on the other 

hand, focuses on minimizing within-cluster variance and tends to create compact, 

homogeneous groups, while the centroid method relies on the geometric center of clusters to 

guide the merging process. 
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The selection of an appropriate clustering method depends on multiple factors: the nature of 

the dataset, the scale and measurement of the variables, the expected cluster shapes, and the 

presence of noise or outliers. For example, single linkage works well for elongated clusters 

but may produce chaining effects, whereas complete and average linkage generate more 

compact and stable clusters. Ward’s method is particularly effective when the goal is to 

minimize variability within clusters and form clusters of roughly equal size. 

 

The process of cluster analysis involves several well-defined steps, beginning with careful 

selection and standardization of variables, computation of similarity or distance measures, 

selection of a suitable clustering algorithm, and finally, determining the optimal number of 

clusters. Once clusters are formed, their validity must be assessed using visual tools such as 

dendrograms or quantitative indices such as silhouette scores. Proper interpretation of clusters 

is crucial to ensure they reflect meaningful patterns rather than random groupings. 

Overall, cluster analysis serves as an essential exploratory tool in many fields—including 

market segmentation, biology, psychology, finance, and machine learning—by revealing 

hidden structures and relationships within complex datasets. By applying appropriate 

methodological choices and thorough validation, researchers can derive insightful, data-

driven classifications that support strong decision-making and deeper understanding of 

underlying phenomena. 

 

14.5 SELF ASSESSMENT QUESTIONS: 

 

• Explain the different types of clustering with suitable examples. 

• Describe the basic steps involved in performing cluster analysis. 

• Compare and contrast single linkage, complete linkage, and average linkage methods. 

• Discuss the advantages and disadvantages of Ward’s method. 

• Explain how the centroid method works. What are reversals in dendrograms? 

• Elaborate on the role of distance measures in cluster analysis. Give examples. 

 

14.6 SUGGESTED READING BOOKS: 

 

1. Applied Multivariate Statistical Analysis by Richard A. Johnson and Dean W. 

Wichern 

2. An Introduction to Multivariate Statistical Analysis by T.W. Anderson 

3. Multivariate Statistical Methods: A Primer by Bryan F.J. Manly 

4. Multivariate Data Analysis by Joseph F. Hair, William C. Black, et al. 

5. Psychometric Theory by Jum C. Nunnally & Ira H. Bernstein 

 

                                                              

 

   Dr. Syed Jilani 

 

 

 



LESSON -15 

NON-HIERARCHICAL CLUSTERING 

METHODS 
 

OBJECTIVES:  

 

After studying this unit, you should be able to:  

• To understand the concept and purpose of Non-Hierarchical Clustering methods 

• To know the concept of Non-Hierarchical Clustering methods 

• To acquire knowledge about significance of is Non-Hierarchical Clustering methods  

 

STRUCTURE 

 

15.1 INTRODUCTION 

15.2 K-MEANS CLUSTERING METHOD: 

15.3 MULTIDIMENSIONAL SCALING (MDS) 

15.4 CONCLUSION 

15.5 SELF ASSESSMENT QUESTIONS 

15.6 FURTHER READINGS 

 

15.1. INTRODUCTION 

 

K–Means is one of the most widely used partitioning clustering techniques in multivariate 

data analysis. Its objective is to divide a set of n homogeneous observations into k distinct, 

non-overlapping groups (clusters) such that observations within a cluster are as similar as 

possible, while observations between clusters are as different as possible. 

The method is based on minimizing the within-cluster sum of squares (WCSS) and uses the 

Euclidean distance as the primary measure of similarity. Because of its simplicity, 

computational efficiency, and ability to handle large datasets, K–Means is frequently applied 

in data mining, pattern recognition, market segmentation, and bioinformatics. 

 

Multidimensional Scaling (MDS) is a powerful exploratory technique used to convert a 

matrix of similarities or dissimilarities among a set of objects into a geometric representation 

in a low-dimensional space, usually 2D or 3D. The central idea of MDS is to position objects 

in such a way that distances on the map reflect their original dissimilarities: similar items 

appear close together, while dissimilar items appear far apart. 

 

MDS is widely used in behavioural sciences, psychometrics, marketing (perceptual 

mapping), ecology, and machine learning. It accommodates both metric (interval/ratio 

distances) and non-metric (ordinal) data and provides an intuitive visual understanding of 

complex multivariate relationships. 
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15.2. NON-HIERARCHICAL CLUSTERING METHODS – DEFINITION 

 

Non-hierarchical clustering methods, also called partitioning methods, are clustering 

techniques in which the dataset is divided directly into a pre-specified number of clusters (k) 

without forming a hierarchical structure. 

 

Unlike hierarchical clustering, these methods do not produce a dendrogram. Instead, they 

assign objects to clusters based on distance or similarity measures, and iteratively update the 

cluster centers or cluster memberships until an optimal partition is obtained. 

These methods aim to minimize within-cluster variation and maximize between-cluster 

separation. 

 

Examples of Non-Hierarchical Methods 

1. K-Means Clustering 

2. K-Medoids (PAM – Partitioning Around Medoids) 

3. CLARA (Clustering Large Applications) 

4. CLARANS (Clustering Large Applications based on Randomized Search) 

 

15.2.1: K-Means Clustering Method: 

K-means clustering is a popular unsupervised machine learning algorithm used for 

partitioning a dataset into a pre-defined number of clusters. The goal is to group similar 

data points together and discover underlying patterns or structures within the data.  

 

Recall the first property of clusters – it states that the points within a cluster should be 

similar to each other. So, our aim here is to minimize the distance between the points 

within a cluster. 

 

There is an algorithm that tries to minimize the distance of the points in a cluster with 

their centroid – the k-means clustering technique. 

 

K-means is a centroid-based algorithm or a distance-based algorithm, where we calculate 

the distances to assign a point to a cluster. In K-Means, each cluster is associated with a 

centroid. 

 

The main objective of the K-Means algorithm is to minimize the sum of distances 

between the points and their respective cluster centroid. 

 

Optimization plays a crucial role in the k-means clustering algorithm. The goal of the 

optimization process is to find the best set of centroids that minimizes the sum of squared 

distances between each data point and its closest centroid. 

 

Here’s how it works: 

1. Initialization: Start by randomly selecting K points from the dataset. These points 

will act as the initial cluster centroids. 

2. Assignment: For each data point in the dataset, calculate the distance between that 

point and each of the K centroids. Assign the data point to the cluster whose 

centroid is closest to it. This step effectively forms K clusters. 

3. Update centroids: Once all data points have been assigned to clusters, recalculate 

the centroids of the clusters by taking the mean of all data points assigned to each 

cluster. 

https://www.analyticsvidhya.com/blog/2017/09/common-machine-learning-algorithms/
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4. Repeat: Repeat steps 2 and 3 until convergence. Convergence occurs when the 

centroids no longer change significantly or when a specified number of iterations 

is reached. 

5. Final Result: Once convergence is achieved, the algorithm outputs the final 

cluster centroids and the assignment of each data point to a cluster.  

 

Objective of k means Clustering 

The main objective of k-means clustering is to partition your data into a specific number 

(k) of groups, where data points within each group are similar and dissimilar to points in 

other groups. It achieves this by minimizing the distance between data points and their 

assigned cluster’s center, called the centroid. 

 

Here’s an objective: 

• Grouping similar data points: K-means aims to identify patterns in your data by 

grouping data points that share similar characteristics together. This allows you to 

discover underlying structures within the data. 

• Minimizing within-cluster distance: The algorithm strives to make sure data 

points within a cluster are as close as possible to each other, as measured by a 

distance metric (usually Euclidean distance). This ensures tight-knit clusters with 

high cohesiveness. 

• Maximizing between-cluster distance: Conversely, k-means also tries to 

maximize the separation between clusters. Ideally, data points from different 

clusters should be far apart, making the clusters distinct from each other. 

 

How to Apply K-Means Clustering Algorithm? 

Let’s now take an example to understand how K-Means actually works: 

                                    
Time needed: 10 minutes 

We have these 8 points, and we want to apply k-means to create clusters for these points.  

 

Here’s how we can do it. 

1. Choose the number of clusters k 

The first step in k-means is to pick the number of clusters, k. 

2. Select k random points from the data as centroids 

Next, we randomly select the centroid for each cluster. Let’s say we want to have 

2 clusters, so k is equal to 2 here. We then randomly select the centroid:  

https://www.analyticsvidhya.com/blog/2021/11/understanding-k-means-clustering-in-machine-learningwith-examples/
https://cdn.analyticsvidhya.com/wp-content/uploads/2019/08/Screenshot-from-2019-08-09-12-21-43.png


Multivariate Analysis    15.4    Non-Hierarchical Clustering Methods 

 

                           
Here, the red and green circles represent the centroid for these clusters.  

3. Assign all the points to the closest cluster centroid 

Once we have initialized the centroids, we assign each point to the closest cluster  

centroid:  

Here you can see that the points closer to the red point are assigned to the red 

cluster, whereas the points closer to the green point are assigned to the green 

cluster. 

4. Recompute the centroids of newly formed clusters 

Now, once we have assigned all of the points to either cluster, the next step is to 

compute the centroids of newly formed clusters: 

                  
Here, the red and green crosses are the new centroids. 

 

5. Repeat steps 3 and 4 

We then repeat steps 3 and 4: 

                 



Centre for Distance Education  15.5  Acharya Nagarjuna University 

 

 

The step of computing the centroid and assigning all the points to the cluster based on 

their distance from the centroid is a single iteration.  

 

Stopping Criteria for K-Means Clustering 

There are essentially three stopping criteria that can be adopted to stop the K-means 

algorithm: 

6. Centroids of newly formed clusters do not change 

7. Points remain in the same cluster 

8. Maximum number of iterations is reached 

We can stop the algorithm if the centroids of newly formed clusters are not changing. 

Even after multiple iterations, if we are getting the same centroids for all the clusters, we 

can say that the algorithm is not learning any new pattern, and it is a sign to stop the 

training. 

 

Another clear sign that we should stop the training process is if the points remain in the 

same cluster even after training the algorithm for multiple iterations. 

Finally, we can stop the training if the maximum number of iterations is reached. Suppose 

we have set the number of iterations as 100. The process will repeat for 100 iterations 

before stopping. 

 

15.3 MULTIDIMENSIONAL SCALING (MDS) 

 

Multidimensional Scaling (MDS) is a multivariate technique used to visually represent the 

similarity or dissimilarity among a set of objects. 

 

It maps high-dimensional data into a low-dimensional space (usually 2D or 3D) such that: 

• Similar objects are placed close to each other. 

• Dissimilar objects are placed far apart. 

MDS is commonly used in: 

• Psychology and behavioural sciences 

• Marketing (perceptual mapping) 

• Ecology and genetics 

• Classification and clustering diagnostics 

1. Basic Idea of MDS 

• Suppose we have n objects and a matrix of pairwise distances (dissimilarities): 

,  ,  1&  ijD d i j n = =   

MDS attempts to find points 1 2, ......... nx x x  in a lower-dimensional space such that: 

i j ijx x d−   

Algorithms: 

• Classical MDS (Torgerson-Gower) 

• Metric Scaling (Kruskal) 

2.  Non-metric MDS 

• Only the rank order of dissimilarities is preserved. 

• Perfect for ordinal or non-metric distances (Likert ratings, preferences). 

Goal: 

( )i j ijx x f d−   

where  f  is a monotonic transformation. 



Multivariate Analysis    15.6    Non-Hierarchical Clustering Methods 

 

Used extensively in perceptual mapping and psychological research. 

3. Classical (Torgerson-Gower) MDS  

Classical MDS works directly with the distance matrix. 

Step 1: Start with distance matrix 2D  

Compute squared distances: 

2 2

ijD d =    

Step 2: Double-centering 

Convert the distance matrix into a scalar product matrix B: 

21

2
B JD J=  

Where  

11
J I ee

n
= −  

is the centering matrix. 

Step 3: Obtain eigenvalues and eigenvectors 

If 

1B V V=   

then: 

• Λ= Lambda = diagonal matrix of eigenvalues 

• V = matrix of eigenvectors 

Step 4: Form the configuration 

Coordinates in a k-dimensional space: 

1
2

k k kX V=   

This gives the best-fitting low-dimensional representation. 

4. Stress and Goodness-of-Fit 

Kruskal’s Stress Formula 

( )
2

2ˆ /i j ij ij i j ijStress d d d =  −   

Where: 

• ijd  observed dissimilarity 

• ˆ
ijd  reproduced distance 
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Rules of thumb 

Stress Value Interpretation 

< 0.05 Excellent fit 

0.05–0.10 Good 

0.10–0.20 Fair 

> 0.20 Poor fit 

 

Applications of MDS: 

• Marketing: perceptual maps of brands (taste similarity, quality) 

• Psychology: similarity of stimuli, personality traits 

• Sociology: social distance, attitude analysis 

• Bioinformatics: genetic distance visualization 

• Machine Learning: visualizing high-dimensional clusters 

  Advantages: 

• Works with a distance or dissimilarity matrix directly. 

• Enables visualization of high-dimensional relationships. 

• Non-metric MDS handles ordinal data. 

• Flexible and widely applicable. 

   Limitations: 

• Sensitive to local minima (for non-metric MDS). 

• Computation can be heavy for very large n. 

• Interpretation of axes is often subjective. 

• Requires a good metric of dissimilarity. 

 

15.4 CONCLUSION  

 

K–Means is an efficient and conceptually simple clustering tool for partitioning a dataset into 

k homogeneous groups. By iteratively updating cluster centroids and minimizing within-

cluster variance, it produces compact and well-separated clusters. However, it is sensitive to 

initial seed selection and assumes spherical cluster shapes, which may limit performance for 

complex or non-linear structures. Despite these limitations, it remains a fundamental and 

widely applied clustering technique due to its speed, scalability, and interpretability.  

 

MDS offers a flexible framework for visualizing the hidden structure of multivariate data by 

mapping objects onto a low-dimensional coordinate system that preserves their pairwise 

distances as faithfully as possible. It simplifies complex similarity relationships into an 

interpretable spatial form, making patterns, groupings, and underlying dimensions readily 

apparent. Although computationally intensive for large datasets and somewhat subjective in 

interpreting dimensions, MDS remains a valuable tool for exploratory data analysis, 

perceptual mapping, and evaluating clustering and classification results. 
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15.5 SELF ASSESSMENT QUESTIONS: 

 

1. Explain the steps involved in the K–Means clustering algorithm. 

2. What are the main differences between metric and non-metric Multidimensional Scaling 

(MDS)? 

3. Discuss the advantages and limitations of the K–Means clustering method. 

 

15.6 SUGGESTED READING BOOKS: 

 

1. Applied Multivariate Statistical Analysis by Richard A. Johnson and Dean W. 

Wichern 

2. An Introduction to Multivariate Statistical Analysis by T.W. Anderson 

3. Multivariate Statistical Methods: A Primer by Bryan F.J. Manly 

4. Multivariate Data Analysis by Joseph F. Hair, William C. Black, et al. 

5. Psychometric Theory by Jum C. Nunnally & Ira H. Bernstein 

                                                                   

 

  Dr. Syed Jilani 



LESSON -16 

PRINCIPLE COMPONENT ANALYSIS 
 

Learning Objectives 

 

To understand the concept and purpose of Principle Component Analysis (PCA). 

To learn the Mathematical Derivation and Computation of Principle Components. 

To study the properties and computation of Principle Components. 

 

STRUCTURE 

 

16.1  Introduction 

16.2  Principle Component Definition 

16.3  Derivation of the Principle Components  

16.4  Properties of Principle Components  

16.5  Computation of Principle Components 

16.6  Summary 

16.7  Self-Assessment Questions 

16.8  Suggested Readings 

 

16.1. INTRODUCTION 

 

Suppose 1 2 pX ,X ,...,X  are the given random variables. Then, principle component analysis 

(P.C.A) is concerned with explaining the variance-covariance structure of the variables 

through a few standardized linear combinations (SLC) of the original variables (we call a 

linear combination 1 1 2 2 pX X ............ Xpl l l+ + + as an SLC if 
2
i

i

l =1 ). 

Algebraically, principal components (PCs) are particular standard linear combinations (SLCs) 

of the components of the original pattern and geometrically, these LCs represent the selection 

of new coordinate system obtained by rotating the original system with X1, X2,…, Xp as the 

coordinate axes. The new axes represent the directions with maximum variability an provide 

a simpler and more parsimonious (avoiding of excess) description of the covariance structure. 

As we shall see, principle components depend solely on the covariance matrix (or the 

correlation matrix) of the random variables 1 2 pX ,X ,...,X . Their development does not 

require a multivariate normal assumption. 

 

The general objections of P.C.A are  

(i) Data-reduction and 

(ii) Interpretation.   

 

Although p components required to reproduce the total system variability, often much of this 

variability can be accounted by a small number ‘k’(<p) of the principal components. If there 

is almost as much information in the k components as there is in the original ‘p’ variables, 

then the ‘k’ principal components replace the original ‘p’ components of the pattern. And the 
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original data set consisting of n measurements on p-component pattern is reduced to one 

consisting of n measurements on k-principal component pattern. In other words, PCA reduces 

the dimensionality of the given data, losing as little information as possible. This technique 

was developed by Hotelling(1933).  

 

An analysis of principle components often reveals relationships that were not previously 

suspected and there by allows interpretations that would not ordinarily result. In other words, 

the key problem is the interpretation of the principle components. 

 

PCs may be inputs to a multiple regression analysis or cluster analysis. Moreover, (scaled) 

principle components are one factoring of the covariance matrix for the factor analysis model. 

Suppose we consider a sample of n students and they are asked to write five papers 

mechanics ( 1X ), vectors ( 2X ), algebra ( 3X ), analysis( 4X ) and statistics ( 5X ). The 

examination in the first two papers is conducted in the closed book system, where as in the 

remaining three papers in the open book system.       

 

Thus, we have totally ‘5n’ observations so that n observations on each paper. One question 

which can be asked concerning this data is how the results on the five different papers should 

be combined to produce an overall scare various answers are possible. One obvious answer 

would be to use the overall mean that is the linear combination 

( )1 2 3 4 5X X X X X 5/+ + + + . But, can one do better than this? This is one of the questions 

that principle component analysis seeks to answer. 

 

If X


 is a random vector with mean μ


 and variance – covariance matrix  , then the principle 

component transformation is the transformation. 

X Y→


 = Ω  (X - μ)
 

→ (1) 

where,   is orthogonal matrix, such that  

1 2 p 1 2Ω ΣΩ= = diag(λ ,λ ,............,λ ),    ................ 0Λ p        

The strict positivity of the eigen values iλ  is guaranteed if,   is positive definite. The 
thi  

principle component of X


 may be defined as the 
thi element of the vector Y


, namely as 

i iY = ω  (x-μ)
 

, where iω


 is the 
thi column of   and may be called the 

thi  vector of 

principle components leadings. 

 

16. 2 DEFINITION OF PRINCIPLE COMPONENT  
 

If X is a pattern (random vector) with covariance matrix Σ, then the first PC is defined as the 

SLC of X given by 

 1 1 11 1 12 2 1 pX + X + ...+ X        pY   = =ω X  

where 

11

12

1

1

.

.

p







 
 
 
 =
 
 
 
 

ω  
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such that v(Y1) is larger than the variance of any other SLC Y= α Χ  that is 1( ) ( )V Y V Y .  

In other words, Y1 has the largest variance among all SLCs of X. 

The second PC Y2 of X is defined as the SLC of X given by 

2 2   Y =ω X  

which is uncorrelated with Y1 (the first PC) and 2 1( )  ( )V Y V Y . 

In general the kth PCYkof X is defined as the SLC of X given by 

   k kY =ω X   

which is uncorrelated with first k-1 PCs and ( )  ( )k iV Y V Y for i = 1,2,…,k-1. 

 

16.3  DERIVATION OF THE PRINCIPLE COMPONENTS 
 

Suppose X


 is px1 random vector with mean vector μ


 and covariance-matrix   i.e., 

X  (μ,Σ)
 

, then by definition, the first principle component is the SLC of X


 which has 

largest variance among all SLC’s of X


. Thus, we should seek a LC of X


 viz.,  

Y  = ω X


(1)→  

with largest variance,  

V(Y) = ω  V(X) ω


= ω  Σ ω


(2)→  

  such that ω ω


 = 1. 

Thus, we have to maximize (2) subject to the condition 

ω ω


 = 1   (3)→  

which is equivalent to maximizing the function,  

( ,λ) =  - λ( -1)  ω ω Σω ω ω


(4)→  

w.r.t ω


 and λ , where ‘ λ ’ is a Lagranges multiplier. This implies to solve the equations,  

 = 0
ω



 


= Σω = λω


 

i.e., (Σ-λI)ω 0=


(5)→  

0
λ


=


= ω ω = 1


(6)→  

Using (5) & (6), from (2), we get, V(Y)  = λω ω


 = λ (7)→  

From (5), to have a non-zero solution for ω


, we must have,  

Σ-λI  = 0 (8)→  
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We know that (8) is a characteristic equation, and ‘ λ ’ is a latent root andfrom (5),ω


 is the 

corresponding latent vector of the equation. But, weknow that, solving (8) for ‘ λ ’ gives p-

latent roots (positive), 

1 2 3 pλ λ λ ................. λ 0     (9)→  

With the corresponding latent vectors, 1 2 pω ,ω ,...............,ω  respectively, 

i.e., we have from (5), i i iΣω  = λ ω


, i= 1,2,…………p    (9. )a→  

Since 1λ  is the largest latent root among all latent roots and 1


 is the corresponding latent 

vector. 

From (1) and (7), 1 1Y  = ω X


, is the first principle component with variance,  

1 1V(Y ) = λ . 

Let us denote the first principle component by 1Y . Now, 1 1Y  = ω X


(10)→  

1 1V(Y ) = λ (11)→  

Now, let us show that for 2   k   p, K KY  = ω X


(12)→  

is the thK principle component with variance, K KV(Y ) = λ (13)→  

By definition, KY  should uncorrelated with 1 2 K-1Y ,Y ,..............Y , which can be easily verified 

as follows (for J = 1,2,………..k-1).              

Cov(Yk,Yi)=Cov ( ) 
k i

ω Χ,ω Χ  

  = i Cov ( )  
k

ω X, X ω  

= 
k i

ω Σ ω  

= i 
k i

ω ω    [From(5)] 

 = 0  ( K


& J


 are orthogonal vectors ) 

Also by definition, the kth PC Yk has largest variance than Yk+1,…,Yp which can also be 

verifying from (13). 

K K+1 Pλ λ ............. λ 0     

K K+1 PV(Y ) V(Y ) ............... V(Y ) 0     . 

 Hence the proof.  

 

Remark :- 

The above result may be asked as no standard linear combination (SLC) of X


 has a variance 

larger than 1λ ,the variance of first principle combination. 



Centre for Distance Education  16.5  Acharya Nagarjuna University 

 

From the above result, we may say that construction (derivation ) of principle components of 

a given random vector X


 is equivalent to theproblem of the construction (derivation) of the 

latent roots and latent vectorsof the variance-covariance matrix   of X


 in case of known  . 

 

Note:- 

(1) If   is not known, we may construct the principle component of the random vector X


 

based on the sample variance – covariance matrix or sample correlation matrix. 

(2) If the population correlation matrix ‘ ρ ’ is given, we may use it in place of   to 

construct the principle components. 

(3) The principle components of the random vector X


 derived frompopulation (sample) 

correlation matrix are different from the principle components derived from population 

(sample) covariance matrix.       

 

16.4   PROPERTIES OF PRINCIPLE COMPONENTS 
 

Property 1. Sum of the variances of all p.c’s equal to the trace of  .  

OR 

Sum of the variances of all PCs is equal to the sum of the variances of the components of 

original pattern (or equal to the trace of covariance matrix of the pattern). 

Proof :- Let 1 2 pY ,Y ,................,Y  are the p.c’s obtained from random variable X


. 

    Let us denote, 1 2 p p×pΛ = diag( λ ,λ ,..................,λ )  

                          1 2 p p×pΩ = ( ω ,ω ,...................,ω )


 

    where, iλ 's  are the latent roots and iω 's


 are the latent vectors of  

    the covariance matrix   of the random variable X


. Then, we have, 

   =  . 

 Tr(Λ)  = Tr(Ω ΣΩ)  

 1 2 pλ +λ +..................+λ  = Tr(ΣΩΩ ) = Tr(ΣI)  ( Ω is orthogonal matrix)    

 1 2 pV(Y )+V(Y )+......................+V(Y )   = Tr(Σ)       i( λ  = iV(Y ))  

   

  1 2 pV(Y )+V(Y )+......................+V(Y )  = 1 2 pV(X )+V(X )+.......................+V(X )  

    Hence Proved. 

Property 2. Product of the variances of PC’s is equal to the determinant of   i.e.,  ( or 

generalized variance). 

OR 

The generalized variance of Y is equal to the generalized variance of X. That is   = Σ . 
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Proof :- Let 1 2 pY ,Y ,................,Y  are the PC’s obtained from random vector .X


 

    Let us denote  1 2 p p×pΛ = diag( λ ,λ ,..................,λ )  

                           1 2 p p×pΩ = ( ω ,ω ,...................,ω )


 

    where, iλ 's  are the latent roots and iω 's


 are the latent vectors of  

    the covariance matrix   of the random vector X


. Then, we have, 

We have    =   

   =   

 1 2 pλ λ ...............λ  =   

  1 2 pV(Y )V(Y )...............V(Y )  = ΣI =   

     Hence the proof.  

Property 3. The sum of the first k eigen values divided by the sum of all eigen values  

                

1 2 k

1 2 p

λ +λ +....................+λ

λ +λ +....................+λ
 = 1 2 kλ +λ +....................+λ

Tr(Σ)
 

represents the ‘Proportion of total variation’ explained by the first K principle components.  

Property 4. The principle components of a random vector are not scale invariant. It is  

one disadvantage of principle component analysis. 

 

Theorem :-An orthogonal transformation Y


 = CX


 of a random vector X


 leaves invariant 

the generalized variance and the sum of the variance of the components. 

Proof :- We have given X


 is the original random vector and Y


 is the transformed random     

variable using the orthogonal matrix C.  

Now, we have to show that, ( )cov X,X


 = ( )cov Y,Y


,  

where  is determinant and 
p

i

i=1

V(X )  = 
p

i

i=1

V(Y )  

since, ‘C’ is orthogonal we have, C C  = CC  = I       → (1)  

Now, cov ( Y,Y ) = cov ( CX,(CX)


) 

             = C cov ( X,X )C 


 

  = C ΣC  

 cov(Y,Y )


 = CΣC  

= C Σ C  
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= Σ CC  

    = Σ I    (  from (1)) 

  =   

  = ( )cov X,X


 

  generalized variance of Y


 = generalized variance of X


. 

We have, 
p

i

i=1

V(X )  = Tr ( )  

             = Tr ( I) 

    = Tr ( CC )             (  from (1)) 

    = Tr ( CΣC ) 

   = 
p

i

i=1

V(Y )    ( CΣC  is covariance matrix of Y


)  

  Sum of the variances of original variables (total population variance)  

= Sum of variances of principle components. 

= 1 2 pλ +λ +.......................+λ .  

Note :-The above theorem may be stated as follows. The generalized variance of the vector of 

principle components is the generalized variance of the original vector and the sum of the 

variances of the principle components is the sum of the variances of the original variates. 

 

Results :-If X


 is a random vector with covariance matrix   and i iY = ω X


 is the 
thi  principle 

component of the random vector 1 2 pX = (X ,X ,................,X )


,then the correlation coefficient 

between 
thi  principle component and thJ  originalvariable (that correlation coefficient 

between iY  and JX  ) is given by  

i JY ,Xρ  = 
i

iJ

JJ

λ
ω

σ
i,J = 1,2,……….,p, where JJσ  = JV(X )  

iλ  is 
thi  largest root of   and iJω  is thJ  component of iω


, when iω


 is thelatent vector of   

corresponding to iλ . 
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Proof :- Denote Jl


 = th 

0

0

:
 J

J

0

0

 
 
 
 

→ 
 
 
  
 

position     

Now, JX  = JXl


. Also we have given, iY  = iω X


(1)→  

 
i JY ,Xρ  = i J

i JJ

cov (ω X , l X)

λ σ

 


( )i J

i J

cov Y ,X

V(Y )V(X )
 

= i J

i JJ

cov (ω X , l X)

λ σ

 
    (  iV(Y )  = iλ , the 

thi  larger latent rootof  , using (1) & 

JJσ  is thJ  diagonalelement of   ). 

      = i J

i JJ

ω  cov (X , X ) 

λ σ

l 
  

        = i J

i JJ

ω  Σ 

λ σ

l
 (2)→  

  (    is covariance matrix of X


 ) 

  Since iω


 is the latent vector of   corresponding to latent root iλ , we have  

iΣω


 = i iλ ω


 


iω Σ


 = i iλ ω 


  (Taking transpose &  =  )      (3)→  

  Using (3) in (2), we get, 

i JY ,Xρ  = i i J

i JJ

λ ω  

λ σ

l
  

= 
i

JJ

λ

σ
 ( i1 i2 iJ iJ+1ω 0+ω 0+................+ω 1+ω 0+............+0 ) 

    = 
i

JJ

λ

σ
iJω   for i,J = 1,2,…………,p 

      Hence the proof. 
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16.5 COMPUTATION OF PRINCIPLE COMPONENTS 

 

From the given data, we have to calculate the sample dispersion matrix S .   Now, we can 

compute the first principal component 1Y and its variance 

1 11 1 12 2 1 1 1 1 1 1... ,      where 1  and   ( )p pY X X X Var Y    = + + + = = =ω x ω ω


 (1) 

from the following iterative equation. 

1 1 1 1 ,         where     ==
1

S ω ω S S


                                                                  (2) 

Equation (2) can be written as an iterative equation given by      

( 1) ( 1) ( )

1 1 1 1      ,           i=0,1,...i i i + + = =ω β S ω
 

   (3) 

From Eq.(3), we can compute  

( 1) ( 1) ( 1)

1 1 1             and          i i i + + += =β β ω β


           (4)  

Now, the above iterative equation (3) will be initiated with 
(0)

1

1

0

.

.

.

0
px

 
 
 
 

=  
 
 
  
 

1ω


 

Eq. (3) will be solved iteratively until two successive values of 1  (computed using Eq. (4)) 

do agree upto 4 decimal places.  The corresponding 1ω


 is the first principal component and 

it’s variance is 1 . 

Computing second principal component: 

We have to replace the sample dispersion matrix 1S  with the adjusted dispersion matrix 2S , 

given by, 

2 1 1 1 1=   −S S ω ω   (5) 

Now, the second PC can be computed in the same way as computed the first PC by solving 

the following equation iteratively. 

2 2 2 2  =S ω ω


   (6) 

Thus,  the second PC and it’s variance are given by 

2 2 2 2,      and   ( )       Y Var Y = =ω x


     (7) 

Computing third principal component: 

We have to replace the matrix 2S  with the adjusted dispersion matrix 3S , given by, 
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 3 2 2 2 2=  −S S ω ω  (8) 

Now, the third PC can be computed in the same way as computed the second PC by solving 

the following equation iteratively. 

3 3 3 3=S ω ω


                                          (9) 

Thus, the third PC and its variance are given by 

3 3 3 3,      and   ( )Y Var Y = =ω x


                      (10) 

Similarly, one can compute the remaining PCs iteratively. 

 

16.6   SUMMARY 

 

This lesson introduces the concept and methodology of Principal Component Analysis 

(PCA), a powerful statistical tool used for dimensionality reduction and data interpretation by 

transforming a set of correlated variables into a smaller set of uncorrelated principal 

components (PCs) that preserve as much variability as possible. PCA achieves this by 

identifying standardized linear combinations (SLCs) of the original variables, which are 

determined by the eigen values and eigenvectors of the covariance or correlation matrix. The 

derivation of principal components involves maximizing variance under orthonormal 

constraints using Lagrange multipliers, resulting in mutually uncorrelated PCs. The lesson 

also explores important properties of PCA, such as the sum and product of the variances of 

PCs, their lack of scale invariance, and the invariance of generalized variance under 

orthogonal transformations. Applications of PCA are highlighted in fields like regression, 

clustering, and factor analysis, and the mathematical derivation of the correlation between 

original variables and principal components is provided to aid interpretation. 

 

16.7   SELF ASSESSMENT QUESTIONS 

 

1. What is the primary objective of Principal Component Analysis (PCA)? 

2. Define a standardized linear combination (SLC) and explain its role in PCA. 

3. How is the first principal component of a random vector derived? 

4. What condition ensures that the eigen values of a covariance matrix are strictly positive? 

5. How does PCA achieve dimensionality reduction while preserving information? 

6. Explain why principal components are uncorrelated. 

7. What is meant by the “proportion of total variation explained” in PCA? 

8. Why are principal components not scale-invariant, and what are the implications of this? 

9. What is the relationship between the variance of PCs and the trace of the covariance 

matrix? 

10. How can the correlation between an original variable and a principal component be 

computed? 

11. Describe the iterative method for computing principal components from sample data. 
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16.8  SUGGESTED READINGS 

 

1. Applied Multivariate Statistical Analysis by Richard A. Johnson and Dean W. 

Wichern 

2. An Introduction to Multivariate Statistical Analysis by T.W. Anderson 

3. Principal Component Analysis by I.T. Jolliffe 

4. Modern Multivariate Statistical Techniques by Alan J. Izenman 

5. Multivariate Data Analysis by Joseph F. Hair, William C. Black, et al. 

6. The Elements of Statistical Learning by Trevor Hastie, Robert Tibshirani, and 

Jerome Friedman 

 

            

 

   Dr. S. BHANU PRAKASH 



LESSON -17 

CANONICAL CORRELATION ANALYSIS 
 

Learning Objectives 

 

To understand the concept and purpose of Canonical Correlation Analysis (CCA). 

To define and interpret canonical variates. 

To learn the Mathematical Derivation  

To compute canonical correlation using covariance matrices. 

 

STRUCTURE 

 

17.1  Introduction 

17.2  Definition of Canonical Variate  

17.3  Definition of Canonical Correlations 

17.4  Derivation and Computation of Canonical Correlation 

17.5  Summary 

17.6  Self-Assessment Questions 

17.7  Suggested Readings 

 

17.1. INTRODUCTION 

 

Canonical correlations analysis seeks to identify and quantity the associations between two 

sets of variables. Holding (1936), who initially developed the technique, provided the 

example of relating arithmetic seed and arithmetic power to reading speed and reading power. 

Other example includes relating governmental policy variables with economic goal variables 

and relating college” performance “variables with pre college “Achievement” variables. 

 

A statistical method for examining the connections between two sets of variables is canonical 

correlation analysis, or CCA. CCA explores the underlying structure of two multi-variable 

datasets and looks into how they relate to one another overall, in contrast to simple 

correlation, which measures the relationship between two individual variables. When 

examining complicated data, where variables within each set may be interrelated and 

straightforward pairwise correlations may not provide the whole picture, this is especially 

helpful. 

 

CCA achieves this by creating canonical variates – new, composite variables formed by 

taking weighted sums (linear combinations) of the original variables within each of the two 

sets. The primary goal is to find these weights in a way that maximizes the correlation 

between the resulting canonical variates from the two different sets. The strength of these 

relationships between the paired canonical variates is then quantified by canonical 

correlations, which are essentially the correlation coefficients between these newly formed 

variables. 

 

Consider the following scenario: a researcher wishes to investigate the relationship between a 

collection of personality qualities and a collection of academic performance metrics. The 



Centre for Distance Education 6.2 Acharya Nagarjuna University 
 

degree of correlation between "overall personality" and "academic aptitude" could be 

determined by using CCA to find latent dimensions or canonical variates that represent these 

concepts. 

 

17. 2 DEFINITION OF CANONICAL VARIATE  
 

Canonical variates are new composite variables formed by taking linear combinations 

(weighted sums) of the original variables within each of two distinct sets. Canonical 

Correlation Analysis (CCA) seeks to determine the weights for each variable that maximize 

the correlation between the canonical variates derived from these two sets. For instance, 

given one set of physiological variables (such as weight and waist circumference) and 

another set of exercise variables (like the number of chin-ups and sit-ups), CCA might 

generate a "body size" canonical variate from the physiological measures and an "exercise 

capacity" canonical variate from the exercise measures. 

Suppose 1 2, ,..., pX X X  and 1 2, ,..., qY Y Y  are two sets of p and q variables then the  variates  

1 1 2 2 1 1 2 2...  and  V ...p p q qU a X a X a X bY b Y b Y= + + + = + + +  

are said to be canonical variates if the coefficients a's and b's are selected such that the 

correlation between U and V is maximum. 

 

17. 3 DEFINITION OF CANONICAL CORRELATIONS 
 

Canonical correlations are the correlation coefficients that quantify the strength of the linear 

relationship between corresponding pairs of canonical variates derived from the two sets of 

original variables. The objective of Canonical Correlation Analysis (CCA) is to identify the 

linear combinations that maximize the correlation between these pairs of canonical variates. 

For example, for two sets of variables, 1 2( , ,..., )pX X X X=  and 1 2( , ,..., )qY Y Y Y= , the first 

canonical correlation 1 is defined as: 

1
, ,

max ( , ) max
( ) ( )

cov( , )T T

T Ta b a b

T T

corr a X b Y
V a X V b Y

a X b Y
 ==  

where 'a' and 'b' are weight vectors (coefficients) for linear combinations. 

Subsequent canonical correlations are found similarly, with the constraint that the new 

canonical variates are uncorrelated with the previously found canonical variates. 

 

17.4 DERIVATION AND COMPUTATION OF CANONICAL CORRELATION 

 

Suppose the random vector X


of p components has the covariance matrix  (which is 

assumed to be positive definite). We partition X


 into two sub vectors of 1p  and 2p  

components respectively, that is  

(1)

(2)

1p

X

X
X



 
 
 
 

= 




(1)X


is 1 1p   and (2)X


 is 2 1p  1 2( )p p p= +
  

(1) 

For convenience we shall assume 1 2p p .The covariance matrix   is partitioned similarly 

1p  and 2p rows and columns. 
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1 2 1 2

1 2 1 2

( ) ( )

( ) ( )

11 12

21 22

p p p p

p p p p

 

 

 
 
 
 
 

=
 

 
       

(2) 

Now we are interested in measures of association between first group of 1p variables
(1)X


 and 

the second group of 2p  variables
(2)X


.The 1 2p p elements of 12 measure the association 

between two groups. When 1p and 2p are relatively large, interpreting the elements of 12

collectively is ordinarily hopeless. Moreover, it is often linear combinations of variables that 

are interesting and useful for predictive purposes.The main task of canonical correlation 

analysis is to summarize the associations between the 
(1)X


 and

(2)X


 sets in terms of a few 

carefully chosen conversances (or correlations) rather than the 1 2p p covariance in 12 . 

 Consider an arbitrary linear combination 

    
(1)U X= 

      
(3) 

Of the components of 
(1)X


 and an arbitrary linear combination. 

    (2)V X= 
      

(4) 

Of the components of
(2)X


. Since the correlation of multiple of U  and a multiple of V  is the 

same as the correlations of U  and V , we can make an arbitrary normalizations of 


and


. 

We therefore require 


 and 


 to be such that  

(1) (1) (1) (2)( ) cov( , ) cov( , )V u X X X X   = = 
 11

1 =  =
  

(5) 

and 22 1( )V V  == 
        

(6) 

Then the correlation between U and V  is  

( ) ( )

cov( , )
cov( , )

V U V U

U V
U V =  

 cov( , )U V=   (using (5) & (6)) 

 (1) (2), )cov( XX  = 
 

 

 
12 = 
         

(7) 

Now, we shall 


 and 


 such that cov( , )U V is as large as possible. Thus, the algebraic 

problem is to find 


 and 


 such that 
12  


 is maximum subject to (5) &(6) consider. 

12 11 22( 1) ( 1)
1 1
2 2

         −  − −  −= 
     

(8) 

When   and   are Lagrange multiplies. Now, our problem is to solve the following 

equations simultaneously or jointly. 
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12 110 0  



= =  −  =

  
       

(9) 

12 220 0  



= =  −  =

  
       

(10) 

remultiplying (9) by


and (10) by 


and using (5) & (6),we get  

12   =


 

12 12       = =  = = 
 

 

That  
12    == 
        

(11) 

Thus, the equations (9) and (10) because 

112 11 10p   −  =
        

(12) 

And  
221 22 ( 1)0 p   −  =

         
(13) 

Since   is positive definite, being principle diagonal sub matrices 11  and 22  are also 

positive definite and hence 
1

11

−  and 
1

22

−  are also exist. 

 On the above equation can be solved simultaneously to get solutions for  , 


and 


 as 

follows: 

re-multiplying (12) by   and (13) by 
1

22

− we get  

2

12 11( )  = 
         

(14) 

1
22 21 −  =

          
(15) 

Using (15) and (14) we get  

11

1 2
12 22 21  −   = 

        
(16) 

Since 11 is positive finite, we may write 

1 1

2 2
11 11 11 =   , when 

1

2
11  is square root matrix.                           (17) 

using (17) in (16), we get  

1
22 21 −  =

                                                                       
(18) 

1 1

2 2
11 11 11 0  =    
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1 1

2 2
11 110

−

  =   inverse of 
1

2
11  exists 

re-multiplying (18) with 
1

2
11

−

  we get  

1 1
1 22 2

11 12 22 21 11 a a
−−     =

                                              
(19) 

Where 
1

2
11a =
                                                                                      

(20) 

   
1

2
11 a
−

= =
                                                                             

(21) 

(19)causes written as  

1 1

1 22 2
11 12 22 21 11 ) 0( I a
− −

−    − =
       

(22) 

Thus 
2 is a latent root and a


is the corresponding latent vector of  

1 1 1

2 2 2
11 12 22 21 11

− − −

   
        

(23) 

Once after getting a


,


 can be obtained using (21). 

Now, from equations (15), 

1 1

22 21 − − =
         

(24) 

Where 


 is given by (21) 

Let 
1

2 2 2

1 2 ........       are the eigen values of (23) and 
11, 2,...... pa a a


are the 

corresponding eigen vectors of (23), then the thi  pair of canonical variables are given by  

(1)

i i XU =


 and  (2)

i i XV =
       

(25) 

When 
1

2
11i ia
−

= 


   (from (21)) 

 And 1 1

22 21i i i  − −=  


 (from (24)) 

And the canonical correlation of the ith pair of canonical variables is given by i  

    Since 
11 2, ,......... pa a a


 are orthogonal vectors, we can see easily

11 2,, ...... p  


 and 

11 2,, ...... p  


are also orthogonal vectors. As a consequence, 

11cov( , )i j i iU U  = 


 (from (25)) 

0i ja a= =


 for i j
        

(26) 

           (Since ,i jaa 


 are orthogonal) 
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Similarly, 

22cov( , )i j i jV V  = 


 

1

21j ji  −= 


 (from (13)) 

1

11j i i j − = 
 

 (from (12)) 

0=   (from (26)) 

And 
12cov( , )i j i jU V  = 

 
11j i j  = 


  (from (12)) 

0=        (from (26))    

   Thus, a canonical variable is uncorrelated with any other canonical variable except its 

paired canonical variable. More clearly, the canonical variable iU  is highly correlated with 

iV  and uncorrelated with all other canonical variables ( )j j iU =   and ( )jV j i=   

For example, from Johnson, R. A., & Wichern, D. W. (2007). 

Applied Multivariate Statistical Analysis (6th ed., pp. 545–555) a small dataset with 3 

observations and two sets of variables are considered: 

Set X: X₁, X₂                  Set Y: Y₁, Y₂ 

Data Table: 

Obs X1 X2 Y1 Y2 

1 2 3 4 6 

2 4 5 6 8 

3 6 7 8 10 

 

Compute the means: 

1 2

2 4 6 3 5 7
4, 5

3 3
X X

+ + + +
= = = = 1 2

4 6 8 6 8 10
6, 8

3 3
Y Y

+ + + +
= = = =  

Subtract the means from each value to get the centered matrices: 

2 2 2 2

0 0 , 0 0

2 2 2 2

c cX Y

− − − −   
   

= =
   
      

 

sample covariance matrix 

1
(for centered data)

1

TS X X
n

=
−

 

With n = 3, we use 1/2 as the scaling factor. 

Now compute each covariance matrix: 
2 2 2

2 2 2

8 8 4 4( 2) 0 2 ( 2)( 2) 0(0) 2(2)1 1 1

8 8 4 42 2 2( 2)( 2) 0(0) 2(2) ( 2) 0 2

T

XX c cS X X
 − + + − − + +    

= = = =     
− − + + − + +     

 

Similarly, 
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4 4 4 4
,

4 4 4 4
YY XYS S

   
= =   
   

 

We compute the canonical correlation matrix: 
1 1

XX XY YY YXM S S S S− −=  

But since:
4 4

4 4
XX YY XYS S S

 
= = =  

 
 

This matrix is singular (non-invertible), as: 

det( ) 4 4 4 4 0XXS =  −  =  

Hence, only one canonical correlation can be found. 

Therefore,  

- First Canonical Correlation 1 . 1 0 =  (perfect correlation) 

- Second Canonical Correlation 2 0  =  (undefined due to rank deficiency) 

 

17.5   SUMMARY 

 

 This lesson introduces Canonical Correlation Analysis (CCA), a technique developed 

by Hotelling (1936) to examine relationships between two sets of variables. CCA creates 

canonical variates—linear combinations of variables in each set—that are maximally 

correlated. The method identifies these combinations by solving an eigenvalue problem 

derived from the partitioned covariance matrix. The resulting canonical correlations measure 

the strength of association between the variates. The lesson also includes a numerical 

example and highlights that when covariance matrices are singular, only one valid canonical 

correlation may exist. 

 

17.6 SELF ASSESSMENT QUESTIONS 

 

1. Who originally developed Canonical Correlation Analysis (CCA), and what was the 

initial example provided? 

2. Define canonical variates. 

3. Define canonical correlation.  

4. What are canonical variates, and how are they formed? 

5. What are canonical correlations, and how do they relate to canonical variates? 

6. Derive the canonical correlations step by step. 

7. In the numerical example provided, why was only one canonical correlation found? 

 

17.7 SUGGESTED READINGS 

 

1. Applied Multivariate Statistical Analysis by Richard A. Johnson and Dean W. 

Wichern 

2. An Introduction to Multivariate Statistical Analysis by T.W. Anderson 

3. Methods of Multivariate Analysis(2nd ed., Section 11.1–11.5) by Rencher, A. C. 

4. Multivariate Analysis by Mardia, K. V., Kent, J. T., & Bibby, J. M. 

 

                     

 

 Dr. S. BHANU PRAKASH 



LESSON -18 

FACTOR ANALYSIS 
 

Learning Objectives 

 

To understand the concept and purpose of Factor Analysis. 

To learn the main estimation methods for factor loading and commonalties. 

To recognize the properties and challenges of factor analysis. 

To understand how to evaluate the adequacy of factor models. 

 

STRUCTURE 

 

18.1  Introduction 

18.2  Orthogonal Factor Model 

18.3  Scale Invariance Property 

18.4  Non-Uniqueness of Factor Loadings Property 

18.5  Methods of Estimation 

18.6  Principal Component Method (Principal Component Solution of the Factor    

            Model) 

18.7  Maximum Likelihood Factor Analysis 

18.8  Factor Rotation 

18.9     Summary 

18.10  Self-Assessment Questions 

18.11  Suggested Readings 

 

18.1.  INTRODUCTION 

 

Factor analysis is a mathematical model which attempts to explain the correlation between a 

large set of variables in terms of a small number of underlying unobservable factors. In other 

words, the essential purpose of factor analysis is to describe, if possible, the covariance 

relationships among many variables in terms of a few underlying but unobservable, random 

quantities called factors. Basically, the factor model is motivated by the following argument. 

Suppose variables can be grouped by their correlations. That is all variables within a 

particular group are highly correlated among themselves but have relatively small 

correlations with variables in a different group. It is conceivable that each group of variables 

represents a single underlying construct, or factor, that is responsible for the observed 

correlations. Factor analysis was originally developed by psychologists interested in 

psychometric measurement. 

 

Arguments over the psychological interpretations of several early studies and the lack of 

powerful computing facilities impelled its developments a statistical method. The advent of 

high-speed computers has generated a renewed interest in the theoretical and computational 

aspects of factor analysis. Most of the original techniques have been abandoned and early 
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controversies resolved in the make of recent developments.It is still true that each application 

of the technique must be examined on its own merits to determine its success. 

 

Factor analysis can be considered as an extension of principal component analysis. Both can 

be viewed as attempts to approximate the covariance matrix Σ .However, the approximation 

based on the factor analysis model is more elaborate. The primary question is factor analysis 

is whether the data are consistent with a prescribed structure.  

 

 In order to get a feel for the subject we first describe a simple example. 

Example 1 (Spearmon,1904): In children examinations performance in classics 
1

( )x ,French 

2
( )x and English 

3
( )x .It is found that the correlation matrix is given by 

 

1   0.83   0.78

       1      0.67

                  1

 
 
 
 
 

 

 

Although this matrix has full rank, its dimensionality can be effectively reduced from p=3 to 

p=1by expressing the three variables as follows 

 

1 1 1

2 2 2

3 3 3

x f u
x f u
x f u





= + 
= + 
= + 

          (1) 

In these equations f is an underlying ‘common factor’ and 
1 2
,   and 

3
 are known as factor 

loadings.The terms 
1 2
,u u  and 

3
u represent random disturbance terms. The common factor may 

be interpreted as ‘general ability’ (or ‘intelligence’) and 
i

u  will have small variance 
i

x is 

closely related to general ability. The variation is 
i

u consist of two parts which we shall not 

try to disentangle in practice.First,this variance represents the extent to which an individual’s 

ability at classics, say, differs from his general ability and second it represents the fact that 

the examination is only an approximate measure of his ability in the subject.The model 

defined in (1) can be generalized to include k >1 common factors. 

 

18.2 ORTHOGONAL FACTOR MODEL 
 

The observable random vector x


with p component has mean μ


and covariance matrix Σ . The 

factor model postulates that x


is linearly dependent upon a few unobservable random 

variables 
1
, ,

k
F F  called common factors and p additional sources of variations 1 2

, , ,  
p

u u u  

called random disturbances or error or specific factors. In particular, the factor analysis model 

is  
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1 1 11 1 12 2 11

2 2 21 1 22 2 22

1 1 2 2

k k

k k

p p pp p pk k

X F F F u

X F F F u

X F F F u

   

   

   









= + + + + +

= + + + + +

= + + + + +








                                      (1) 

(or) in matrix notation. 

( ) ( ) ( ) ( ) ( )
p×1

p×kp×1 k×1 p×1
x = μ + Λ F +u  
 

                                                                             (2) 

Where 

11 1

22 2

P P

X

X
= , ,

X
k

F

F

F







    
    
    = =
    
    

     

X μ F
 

, 

11 12 11

21 22 22

1 2P

= ,

k

k

p p pk

u

u

u

  

  

  

  
  
   =
  
    

   

u Λ









 

 

The matrix Λ  is called the matrix of factor loadings, where ijλ  is the loading of thi  variable 

( )iX  on thj factor ( )jF .Note that the thi  specific factor iu  is associated only with the thi  

response iX . 

The p deviations 1 1 2 2 p pX μ ,X μ , ,X μ− − − are expressed in terms of k+p random variables  

1 2 k 1 2 pF ,F , ,F ,μ ,μ , ,μ  are unobservable. 

   From (1),it may be noted that each equation looks like a multiple regression equation but 

for one exception. The common factor in (1) 1 2 kF ,F , ,F  are unobservable where as in 

multiple regression equation the independent variables can be observed.This distinguishes the 

factor model from the multivariate regression model. With so many unobservable quantities 

(k+p) a direct verification of the factor model (1) from observations on 1X , , X p is hopeless. 

However, with some additional assumptions about the random vectors F


 and μ


, the model 

in(2) implies certain covariance relationships,which can be checked. 

 

 We assume that  

k k

1 2 p

p k

E( )=0 , V( )=E( )=I

E( )=0 , V( )=E( )

                      = =doag(ψ ,ψ , ,ψ ) 

 and cov( , )=E( )=0  





 
 


 

F F FF

u u uu

ψ

u F uF






       

(3)        

 

The model (2) with the assumptions (3) is called the 'Orthogonal Factor model' 

The assumption (3) implies the following implicit assumptions. 
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• All common factors are standardized to have variance 1 and uncorrelated with one another 

( )V( )=IF


 

• All specific factors (random disturbances) are have zero means and uncorrelated 

( )1 2 p V( )= =doag(ψ ,ψ , ,ψ )u ψ 


 

•Common factor and specific factor are uncorrelated ( )cov( )=0u,F


. 

 The Orthogonal model with k common factors  

( )( 1) ( 1) ( 1) ( 1)p p k pp k   
= + +X μ F u

         
(4)         

  Where 
th

i i=X response variable 

iμ  = mean of iX  

ijλ  = loading of iX  on 
jF  

jF  = thj common factor 

iu  = thi specific factor. 

The unobservable random vectors F


 and  u


 satisfy F


and  u


 are independent 

1 2 pE( )=0 , V( )=ψ=doag(ψ ,ψ , ,ψ )u u 


 

The orthogonal factor model implies a covariance structure for X


.From the model in (4), we 

have 

( )( ) ( )( )

                        

 =

     = + + +

X-µ X-µ ΛF +u ΛF +u

ΛFF Λ ΛFu uF Λ uu
 

 

 

so that 

( ) ( )( )

( ) ( ) ( ) ( )

V E

                 E E E E

 
= =  

 

     = + + +

Σ X X -µ X -µ

Λ FF Λ Λ Fu uF Λ uu

 

 

 

                 ψ                                   = +ΛΛ  (from(3))                                             (5) 

 

Also from the model (4),we have  

( ) ( )     = = +X -µ F ΛF + u F ΛFF uF
 

 

( ) ( )( ) ( ) ( )cov , E E E      (From(3))      = = + =X F X-µ F Λ FF uF Λ
 

                      (6) 

From the model (1), we have 
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k

i i ij j i

j=1

X μ λ F +u  ,       i=1,2, , p= +   

Covariance-structure for the orthogonal factor model 

( )

( ) ( )

( ) ( )

ij

k

i i ij j i

j=1

k k
2

i i i ij j

j=1 j=1

i j ij

1. V ψ

    X μ λ F +u

            

   V X λ ψ   cov X ,X λ λ

2. cov ,     cov X ,F λ

l l

or

and

or

 = +

= =



= + =



= = 



 

X ΛΛ

X F Λ





                                      (7) 

From the above,thus ( )iV X  can be split into two parts.  

 First 
k

2 2

1

i ij

j

h
=

=λ  is called the communality and represents the variance of iX  which is shared 

with the other variables via the common factors.  

In particular ( )
ij

2
2

i jλ   cov X ,F =
 

represents the extent to which iX  depends on the thj

common factor. On the other hand iψ  is called specific or unique variance and is due to the 

specific factor iu  it explains the variability in iX  not shared with other variables. 

Thus from (7) 

( )
 

i

i1 i2 ik

2 2 2
ii i

specific varianceV X communality

λ λ λ  ψ = + + +




     

(8) 

( )
  

i

2
ii i

communality specific varianceV X

ψih = +

       

(9) 

 so that the thi communality is the sum of squares of the loadings of the thi variable on k 

common factors. 

Note:The validity of the k-factor model can be expressed in terms of a simple condition on Σ  

From (5) we have 

ψ= +Σ ΛΛ          (10) 

The converse also holds. If Σ can be decomposed into the form (10), then the k-factor model 

holds For X


. However, F


and u


 are not uniquely determined by X


. 

 

18.3   SCALE INVARIANCE PROPERTY 

Statement: Factor analysis is invariant of scaling of variables 
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Proof:   Suppose 
x= + +X μ F u

          
(1)  

 is the factor model.              

Now rescaling the variables of X


 is equivalent to set  

1 2 p

11

21

1

p1

,  C=diag(c ,c , ,c )

Xc 0 0 0

X0 c 0 0

    =     0 0 c 0

X0 0 0 c

C where=

  
  
  
  
  
  

   
   

Y X 












 

 

1 1 1

2 2 2

p p

c X

c X

c Xp

Y

Y

Y

   
   
   
    =
   
   
   
   





(2)  

Premultiplying (1) with C we get  

 V( )= x x x

C C C

and C C C C

= +  +

    +

Y μ F u

Y
 



 

y. .,  y y yi e  =   + (3) 

( )
2 2 2

1 1 2 2

when 

                     

                 =diag(c ,c , ,c )

y x

y x

p p

C

C C C C 

  

 = 

= =



 

 

From (1)  

V( )= x x x  +X


 

x x x x  =   + (4) 

But we have  

( )y                                 

    C                            

     =

x

x x x

y y y

C C C C

C C C



 =  =

 =   +

  +



 

Which is nothing but (3). 
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Thus the factor loading matrix y for the scaled random vector Y


is obtained by scaling the 

factor loading matrix x of the original random vector X


. Similarly the specific variance 

matrix y  for the scaled random vector Y


 is obtained by premultiplying and postmuliplying 

the specific variance matrix x of the original r.v. X


 by C. In other words,factor 

analysis(unlike principal component analysis) is unaffected by a rescaling of the variables. 

 

18.4  NON-UNIQUENESS OF FACTOR LOADINGS PROPERTY 

 

Statement: Non-uniqueness of factor loadings(Rotated Factors) 

Proof: Let T is any k k  orthogonal matrix. So that, TT T T I = = .Then the factor model  

= + +X μ F u
           

(1)    

Can be written as   
( )( )    =

TT

T T

= +  +

+  +

X μ F u

μ F u
 

 

 

 * *    =                        + +μ F u
       

(2) 

* *where ,  and T T  =  =F F


 

Since, * *( ) ( )  and V( ) ( )E T E T V T T IT I  = = = = =F F 0 F F
 

. 

 It is impossible, on the basis of observations on X


 to distinguish the loadings  from those 

of * . That is the factor F


and * T =F F


have the same statistical properties and even though 

the loadings 
*  are in general different from the loadings  , they both generate the same 

covariance matrix. That is 

 =  +            (3) 

   = TT    +  

* *   = +                                                                                                           (4) 

 Thus the variance-covariance matrix Σ  can be decomposed as either (3) or (4).And if   is 

the factor loadings, then * T =  (for any orthogonal matrix T), is also the factor loadings. 

However, the communalities given by the diagonal elements of 
* * =    are uneffected 

by the choice of T. 

     This determinacy in the definition of factor loadings is usually resolved by rotating  

(multiplying by an orthogonal matrix). The factor loadings   to satisfy an arbitrary constant 

such as 1   is diagonal or 1D−   is diagonal, 11 22( , ,....., )ppD diag   = . Where in 

either case the diagonal elements are written in decreasing order.. Once the loadings and 
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specific variances are obtained, factors are identified and estimated values for the factors 

themselves (called factor scores) are frequently constructed. 

 

18.5  METHODS OF ESTIMATION 

 

Given observations 2, ,......., n1
X X X


 on p generally correlated variables, factor analysis seeks 

to the question,’Does the factor model  

= + +X μ F u
 

                                                                                                          (1) 

With a small number of factors, adequately represent the data? 

    In essence, we tackle this statistical model building problem by trying to verify the 

covariance relationship  

 =  +                                                                                                                (2) 

The sample covariance matrix S is an estimator of the unknown Σ .If the off-diagonal 

elements are small or those of the sample correlation matrix R are essentially zero,the 

variables are not related and factor analysis will not prove useful.In these circumstances,the 

specific factors play the dominant role,whereas the major aim of the factor analysis is to 

determine a few important common factors. 

   If Σ  appears to deviate significantly from diagonal matrix then a factor model can be 

entertained and the initial problem is one of the estimating the factor loadings 'ij s  and 

specific variances 'i s .We shall consider two of the most popular methods of parameter 

estimation. 

1.Principal factor method (Analysis). 

2. Maximum likelihood method (factor analysis) 

The solution from either method can be rotated in order to simplify the interpretation of 

factors  

Principal factor analysis: 

We have the factor model (k-factor)  

( )( 1) ( 1) ( 1) ( 1)p p k pp k   
= + +X μ F u

                                                                                                         

(1) 

Where X


 = p-component random vector 

μ


= mean of X


 

Λ  = matrix of factor loadings            
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F


 = vector of common factors 

u


 = p-component random vector 

with covariance matrix of X


 

= +Σ ΛΛ ψ           (2) 

Where ( )1 2( ) , , , kV diag= =ψ u ψ ψ ψ


. 

In practical situation,since Σ  is not known, Σ is replaced by its estimate the sample 

covariance matrix S  which is obtained from the observations 1, , nX X


.Since,factor analysis 

is invariant of the scaling of the variables the correlation matrix R ,computed from the 

observations 1, , nX X


 on p-variable random vector X


,may also be used in place of S . 

Let us suppose the data is summarized by the correlation matrix R  so that an estimate of Λ  

and ψ  is rough for the standardized variables. 

Now our problem is to obtain the estimates of Λ  and ψ  from equation (2),replacing the 

unknown Σ with known R (when the variables standardized Σ  is equivalent to the population 

correlation matrix ρ ).Then we have  

ˆ ˆ ˆ=  +R ψ                                                                                                                 (3) 

Comparing the diagonal elements on both sides,we get  

2

k
2 2

1

ˆ1   for i=1,2,---,p

ˆ ˆ   

i i

i ij

j

h

where h



=

= +

=λ



 

Is the preliminaryestimate of the thi communality 
2

ih  and may be obtained either of the 

following two ways: 

1) The square of the multiple correlation coefficient of the thi  variable iX  on the remaining 

p-1 variables. 

2) The largest absolute correlation coefficient between iX and one of the remaining p-1 

variables. i.e., max
j i

ijr


 

Note that the estimated communality 
2

ih  is higher when iX  is highly correlated with the other 

as we would expect. Now ( ) ( )2

i i
ˆˆ ˆ=diag 1diag h= −ψ ψ  has to be subtracted from R  to 

obtained the matrix     
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2

1 12 1p

2

12 2 2p

2

1p 2p p

ˆ

ˆ
ˆ

ˆ

h r r

r h r

r r h

− =

 
 
 
 
 
  

R ψ








                                                                                               

(4)        

 Which is called the reduced correlation matrix because the 1’s on the diagonal have been 

replaced by the estimatedcommunalities 2ˆ
ih . 

 Suppose 1 2 pa a a   are eigen values of ˆ−R ψ  and , ,1 2 pω ,ω ω


 are the corresponding 

eigen vectors, then we may decompose ˆ−R ψ  as  

p

1

ˆ
i

i

a
=

− = i iR ψ ω ω
                                                                                                               

(5) 

 Suppose the first K eigen values 1 2 k, , ,a a a are positive then 

 
p

1

ˆ ˆˆ
i

i

a
=

 − = =  i iR ψ ω ω
                                                                                        

(6)    

 Where, 
1 2 k

p k

ˆ a a a


  =
 1 2 kω ω ω

  

1

2=ΩA                                                 (7)  

( )= 1 2 kω ω ω


and ( )1 2 k, , ,diag a a a=A  is the estimate of the factor loading 

matrix Λ̂ .Since, Ω is orthogonal matrix, we may see that 

 

 
1/ 2 1/ 2 1/ 2 1/ 2ˆ ˆ  = =Λ Λ = A Ω ΩA A IA A                                                                                  (8)  

Finally, the revised estimates of the specific variances are given in terms of Λ̂  by  

k
2

1

ˆˆ 1 , 1,2, ,ij
j

i p
=

= − =i
ψ λ 

                                                                                           

(9) 

Where ˆ
ijλ  is the ( ),

th
i j element of the estimated factor loading s matrix Λ̂  given by (7).Then 

the principal factor solution is permissible is all the ˆ
iψ  are non-negative. 

Thus for the k factor model (1) the principal factor estimates of the factors loading matrix Λ

is given by (7) and the estimates of communalities 
2

ih are given by the diagonal elements of

ˆ ˆ  . 

     i.e.  
k

2 2

1

ˆ
i ij

j

h
=

=λ

                                                                                                           

(10) 

The estimates of the specific variables ˆ 
iψ s are given by (9) 

Note: 
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•The principal factor analysis can be performed iteratively with the communality estimates 

given by (10)  

•becoming the initial estimates for the next stage. 

•If we are given the sample covariance matrix S,it may be converted into R and then above 

analysis can be performed. 

For example, consider the open/closed book data of the following table with correlation 

matrix. 

1 0.553 0.547 0.410 0.389

1 0.610 0.485 0.437

1 0.711 0.665

1 0.607

1

 
 
 
 
 
 
  

 

If k>2 then S<0 and the factor model is not well defined. The principal factor solutions for 

k=1 and k=2, where we estimate the thi communality 2ˆ
ih by max

j

ijr ,are given in the table. 

The eigen values of the reduced correlation matrix are 2.84,0.38, 0.08,0.02 and -0.05, 

suggesting that the two-factor solution fits the data well. 

In the above table principal factor solutions for the open/closed book data with k=1 and k=2 

factors.      

variable 
1

2ˆ                  (1) 

k

ih 

=

 ( ) ( )

2

2ˆ              1          2  

k

ih  

=

 

1 0.417       0.646 0.543  0.646  0.354 

2 0.506       0.711 0.597  0.711  0.303 

3 0.746       0.864 0.749  0.864  -0.051 

4 0.618      0.786 0.680  0.786  -0.249   

5 0.551      0.742 0.627  0.742  -0.276  

The first factor represents overall performance and for k=2, the second factor, which is much 

less important ( )2 10.38 2.84a a=  = , represents a contrast acrossthe range 
2 1ih   for all i, 

and therefore a fair proportion of the variance of each variable is left unexplained  

by the common factor. 
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18.6  PRINCIPAL COMPONENT METHOD (PRINCIPAL COMPONENT   

          SOLUTION OF THE FACTOR MODEL) 

 

Suppose 1, , nx x


 are observations on p generally correlated variables and the data is 

summarized either into the sample correlation matrix R . 

Let the orthogonal factor model with k common factors 

( )( 1) ( 1) ( 1) ( 1)p p k pp k   
= + +X μ F u

                                                                                     
(1) 

Where X


 = p-component random vector 

μ


 = mean of X


 

Λ  = matrix of factor loadings            

F


 = vector of common factors 

u


 = vector of random disturbances 

with    V( ) = = +X Σ ΛΛ ψ
                                                                                              (1.a) 

V( )=ψ u


 

Now the principal component method is to obtain the estimates of Λ and ψ  using the sample 

covariance matrix S or sample correlated matrix R . 

Suppose 1 2 pa a a   are the latent roots of S (or R  ) and let us consider the first 'k' roots 

i.e. 1 2 p, , ,a a a  

Let 1 2 , , kω ,ω ω


be the corresponding latent vectors. Then the estimated matrix of factor 

loadings is given by 

1 2 k
p k

ˆ a a a


 =
 1 2 kΛ ω ω ω

                                                                                  
(2) 

and the estimated specific variances are provided by the diagonal elements of the matrix 

( )ˆ ˆ ˆ ˆ −S - ΛΛ R ΛΛ
                                                                                                                   

(3) 

so that ( )1 2 k
ˆ ˆ ˆ ˆ=diag , , ,ψ ψ ψ ψ  with

k
2

i ii ij

j=1

ˆˆ -s= ψ λ
k

2

i ii ij

j=1

ˆˆ -r
 

= 
 

ψ λ estimates of 

communalities are given by the diagonal elements of ˆ ˆ ΛΛ  

i.e.
2 2

1

ˆ
k

i ij

j

h 
=

=  

Note: 

•Consider the residual matrix ( )ˆ ˆ ˆ +S - ΛΛ ψ  resulting from the approximation of S  by the 
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principal componentsolution. The diagonal elements are zero and if the other elements are 

also small,we may subjectively take the 'k' factor model to be appropriate. 

•The contribution to the total sample variance = Tr( )S  from the thj  common factor is given 

by 

( ) ( )
p

2

ij

i=1

ˆ   j ja a


= j jλ ω ω


 

( )            1ja = =j jω ω


 

= thj  latent root of S  (Where is ja  the thj  latent root of S ) 

Thus, proportion of total sample variance due to thj factor                               

  for factor analysis of  'S'
Tr(S)

  

    for factor analysis of  'R'
p

j

j

a

a





= 

  

•(For worked out examples see page no’s: 388-391 of Applied Multivariate Analysis by 

Johnson&Wichern) 

 

18.7  MAXIMUM LIKELIHOOD FACTOR ANALYSIS 

 

Suppose 1, , nx x


are 'n' observations drawn on X


 which follows population ( ),Np μ Σ


 and 

X


 is having the following k factor model  

( )( 1) ( 1) ( 1) ( 1)p p k pp k   
= + +X μ F u

                                                                                                         

(1)
 

Where, 

μ


 = mean of X


 

Λ  = matrix of factor loadings            

F


 = vector of common factors 

u


 = vector of random disturbances 

with the assumptions 

1 2 p

E(F)=0=E(u)

V(F)=I ,    V(u)=ψ=doag(ψ ,ψ , ,ψ ) 

cov(F,u)=0 

 


 

   

These assumptions implicitly imposes the restriction on Σ as follows  
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ψ= +Σ ΛΛ                                                                                                              (2) 

Since ( )~ ,NpX μ Σ
 

,its log -likelihood is given by  

( ) ( )
n

1

i i

i=1

1
 log log 2

2 2

n
L  −− 
= − Σ x -µ Σ x -µ

 
 

if we with its MLE X , then  log L  becomes  

( ) ( )
n

1

i i

i=1

1

n

1
 log log 2

2 2

n
                 = log 2  Tr( S )                  

2 2

n
l L

n





−

−

− 
= = −

 
− + 
 

Σ x -µ Σ x -µ

Σ Σ

 

                                            

(3) 

Where 

( ) ( )
n

n i i

i=1

1
 S         

n


=  x -µ x -µ

   

Σ is as given by (2) 

Maximizing (3) is equivalent to minimizing the following function w.r.t. Λ  and ψ  

( )1

n nF(Λ, )=log +Tr S log S p− − −ψ Σ Σ
                                                                       

(4) 

( )nS and p are constants
 

Since from (2), Λ  is not uniquely determined. We have minimize (4) subject to the following 

uniqueness condition  

-1ψ ,a diagonal matrix = Λ Λ                                                                                          (5) 

The MLEs Λ̂  and ψ̂  obtained by minimizing (4) subject to (5) satisfy  

( )
-1 -1 -1 -1

2 2 2 2
n

ˆ ˆ ˆˆ ˆ ˆ ˆψ S ψ ψ ψ 1
    

= +    
    

Λ Λ Δ

                                                                             

(6) 

so that the thj  column of 
-1

2 ˆψ̂ Λ  is the (non-normalised) eigen vector of 
-1 -1

2 2
n

ˆ ˆψ S ψ

corresponding to eigen value 
i

ˆ1+Δ  

where   
1 2 k

ˆ ˆ ˆ  Δ Δ Δ  

clearly,for the above, the MLE of Λ̂ can be obtained only for a given ψ̂ ,whose initial value 

can be taken as 

( ) ( ) ( ) ( )( )0 0 0 0

1 2
ˆ ˆ ˆ ˆ, , , kdiag=ψ ψ ψ ψ

 

where i

1 1
ˆ 1

2 ii

k

p s

  
= −  

  
ψ  
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where iis  is the 
thi diagonal element of 

 

( 1)

nn

n
=

−

S
S  

The next modified value of ψ̂ is given by  

( ) ( ) ( ) ( )( )1 1 1 1

1 2
ˆ ˆ ˆ ˆ, , , kdiag=ψ ψ ψ ψ

 

Where 
( )1

ψ̂  is the 
thi  diagonal element of the computed matrix ˆ ˆ

n
−S ΛΛ  

Using this 
( )1

ψ̂ ,we can obtained the revised value of Λ̂  using (6). 

This procedure is to be continued until the latest estimates Λ̂  and ψ̂ satisfy the relation (5). 

Note:Ordinarily the observations are standardized and a sample correlation matrix is factor 

analyzed.Of the data is summarized into a sample correlation matrix R ,then the above 

method of maximum likelihood factor analysis may becarried out replacing  or nS S by R  to 

get the some estimates of Λ  and ψ .This is due to the fact that the MLEs are scale invariant. 

An workedout example is given in page no:394 of Applied Multivariate Statistical analysis 

by Richard A.Jhon and Wichern. 

 

18.8  FACTOR ROTATION 

 

We have  

         

( )( )

( )* *

   TT

   T T

     

= +

 = +

= +


= +

Σ ΛΛ ψ

Λ Λ ψ

Λ Λ ψ

Λ Λ ψ

 

where *  T=Λ Λ ,   T  is an orthogonal matrix 

Thus if Λ  is a factor loadings matrix which reproduce Σ ,then any other factor loadings 

matrix *
Λ  obtained from Λ  by an orthogonal transformation ( T ) have the same ability to 

reproduce the covariance matrix (or correlation matrix).From matrix algebra,we know that an 

orthogonal transformation corresponds to a rigid rotation of the coordinate axes.For this 

reason, an orthogonal transformation of the factor loadings and the implied orthogonal 

transformation of the factor is called "factor rotation". 

Let Λ̂  be the p k  matrix of estimated factor loadings obtained by any method, then  

*ˆ ˆ T  where TT =T T=I =Λ Λ                                                                                        (1) 

is a p k  matrix of rotated loadings. Moreover, the estimated covariance (or correlation) 

matrix remains unchanged,  

since  ( )* *ˆ ˆ ˆ ˆˆ ˆ     


 + = +ΛΛ ψ Λ Λ ψ
                                                                                 

(2) 
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since, the original loadings may not be readily interpretable, it is usual practice to rotate them 

until a " sample structure" is achieved.  Ideally, we should like to see a pattern of loadings 

such that each variable loadings highly on a single factor and has  small-to-moderate loadings 

on the remaining factors. Of course, it is not always possible to get this simple structure. 

 

A convenient analytical choice of rotation is given by the "varimax method" described below: 

The varimax method of orthogonal rotation was provided by kaiser(1958).Its rationale is to 

provide axes with a few large loadings and as many near zero loadings as possible. This is 

accomplished by an iterative maximization of a quadratic function of the loadings. 

Devote the matrix of rotated loadings as  

ˆˆ  T = Λ  

Now the ( ),
th

i j  element of Δ  viz; ij represents the loadings of the thi  variable on the thj  

factor. 

The function   that the variance criterion maximizes is the sum of the variances of the 

squared loadings within each column of the loadings is normalized by its communality, that 

is  

( )
2

2 4 2

1 1 1 1 1

p pk k k

ij i ij i

i j i j i

d d d p d
= = = = =

= − = −    

   Where 
2

1

1
  

p
ij

ij ij

ji

d and d d
h p



=

= =   

2

ih  is the thi  communality is the thi  diagonal element of  ˆ ˆ    

The varimax criterion  is a function of T , and the iterative algorithm proposed by Kariser 

finds the orthogonal matrix G  which maximizes  . 

In the case where k=2,the calculations simplify.  For then T  is given by 

cos sin
T=

sin cos

 

 

 
 
− 

 

and represents a rotation of the coordinate axis clockwise by an angle  . The value of   can 

be determined by the relation T T=I . 

In the case where k>2,an iterative solution for the rotation is used. 

See example 9.8,9.9,9.10,9.11 in the pages 401-408 of AMVA by Richard Johanson & 

Wichern. 

 

18.9 SUMMARY 

 

This lesson explains Factor Analysis, a method that models the correlations among many 

observed variables using a smaller number of unobservable common factors. It introduces the 

orthogonal factor model, where observed variables are expressed as linear combinations of 

uncorrelated common factors and specific unique factors, with assumptions on their variances 

and independence. The covariance matrix is decomposed into communalities and specific 

variances, and factor analysis is shown to be scale invariant but allows non-unique factor 

loadings that can be rotated—commonly by the varimax method—to improve interpretability. 

The lesson covers estimation techniques such as Principal Factor Analysis, Principal 
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Component Method, and Maximum Likelihood, focusing on how to estimate factor loadings 

and specific variances from sample data, and emphasizes the importance of factor rotation for 

clearer, meaningful factor structures. 

 

18.10   SELF ASSESSMENT QUESTIONS 

 

1. What is the primary purpose of factor analysis and how does it explain correlations 

among variables? 

2. How is the covariance matrix decomposed in the orthogonal factor model, and what do 

communalities and specific variances represent? 

3. Why is factor analysis invariant to the scaling of variables, and how does this differ 

from principal component analysis? 

4. What does the non-uniqueness of factor loadings mean, and how is this ambiguity 

resolved in factor analysis? 

5. Describe the principal factor method of estimating factor loadings and communalities. 

How are communalities initially estimated? 

6. Outline the principal component method for estimating factor loadings and specific 

variances. How does this method relate to the sample covariance or correlation matrix? 

7. What is the maximum likelihood approach in factor analysis, and what are its main 

estimation steps? 

8. Explain the purpose of factor rotation and how an orthogonal rotation preserves the 

covariance structure. 

9. What is the varimax rotation method, and why is it commonly used in factor analysis? 

 

18.11  SUGGESTED READINGS 

 

1. Applied Multivariate Statistical Analysis by Richard A. Johnson and Dean W. 

Wichern 

2. An Introduction to Multivariate Statistical Analysis by T.W. Anderson 

3. Multivariate Statistical Methods: A Primer by Bryan F.J. Manly 

4. Multivariate Data Analysis by Joseph F. Hair, William C. Black, et al. 

5. Psychometric Theory by Jum C. Nunnally & Ira H. Bernstein 
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