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FOREWORD 

Since its establishment in 1976, Acharya Nagarjuna University has been 

forging ahead in the path of progress and dynamism, offering a variety of courses 

and research contributions. I am extremely happy that by gaining ‘A+’ grade from 

the NAAC in the year 2024, Acharya Nagarjuna University is offering educational 

opportunities at the UG, PG levels apart from research degrees to students from 

over 221 affiliated colleges spread over the two districts of Guntur and Prakasam.  

The University has also started the Centre for Distance Education in 2003-

04 with the aim of taking higher education to the door step of all the sectors of the 

society. The centre will be a great help to those who cannot join in colleges, those 

who cannot afford the exorbitant fees as regular students, and even to housewives 

desirous of pursuing higher studies. Acharya Nagarjuna University has started 

offering B.Sc., B.A., B.B.A., and B.Com courses at the Degree level and M.A., 

M.Com., M.Sc., M.B.A., and L.L.M., courses at the PG level from the academic 

year 2003-2004 onwards.  

To facilitate easier understanding by students studying through the distance 

mode, these self-instruction materials have been prepared by eminent and 

experienced teachers. The lessons have been drafted with great care and expertise 

in the stipulated time by these teachers. Constructive ideas and scholarly 

suggestions are welcome from students and teachers involved respectively. Such 

ideas will be incorporated for the greater efficacy of this distance mode of 

education. For clarification of doubts and feedback, weekly classes and contact 

classes will be arranged at the UG and PG levels respectively.  

It is my aim that students getting higher education through the Centre for 

Distance Education should improve their qualification, have better employment 

opportunities and in turn be part of country’s progress. It is my fond desire that in 

the years to come, the Centre for Distance Education will go from strength to 

strength in the form of new courses and by catering to larger number of people. My 

congratulations to all the Directors, Academic Coordinators, Editors and Lesson-

writers of the Centre who have helped in these endeavors.  

Prof. K. Gangadhara Rao 

M.Tech., Ph.D., 

Vice-Chancellor I/c  

Acharya Nagarjuna University. 

 



 

Semester 2  

M.Sc. Physics 

Academic Year 2022-23 Amended  

201PH24-STATISTICAL MECHANICS 

 

Course Objectives: 

 

➢ This course in statistical mechanics provides the basic idea of probability and 

calculating probability for various statistical systems of particles. 

➢ To apply the principles of probability in distribution of particles in various systems 

➢ To learn the different types of statistics distribution and particles. 

 

UNIT I (Fundamentals of classical statistical mechanics) 

Relation between statistical mechanics and thermodynamics, Phase space, Ensembles-micro 

canonical, canonical and grand canonical ensemble, density distribution in the phase space, 

Liouville's theorem, equipartition of energy theorem, microstates and macrostates. 

 

Learning Outcomes: 

• To learn postulates of classical statistical mechanics and Ensembles. 

• To study density of states Liouville's theorem and paradox. 

 

UNIT-II (Ideal gas in various ensembles) 

Classical ideal gas in micro canonical ensemble, partition function for micro canonical 

ensemble, Gibb's paradox, partition function for Canonical ensemble, thermo dynamical 

function for Canonical ensemble, partition function for Grand canonical ensemble, 

thermodynamical function for Grand canonical ensemble. 

 

Learning Outcomes: 

• To know about partition function in different ensembles. 

• To study the Gibb's paradox. 

 

UNIT III (Energy fluctuation and distribution function) 

Energy fluctuation in micro canonical ensemble, energy fluctuation in canonical ensemble, 

density fluctuation in Grand canonical ensemble, energy fluctuation in Grand canonical 

ensemble. Maxwell-Boltzmanndistribution, Bose-Einstein distribution, Fermi-Dirac 

distribution, Darwin-Fowler method. 

 

Learning Outcomes: 

• To study the features of Maxwell-Boltzmann statistics. 

• To derive the Bose-Einstein distribution. 

 

UNIT IV (Molecular partition function) 

Molecular partition function- Translational partition function, Rotational partition function, 

Vibrational partition function, Electronic and Nuclear partition function, application of 

rotational partition function, application of vibrational partition function in solids. 

 

Learning Outcomes: 

• To learn electronic and nuclear partition function. 

• To acquire knowledge about vibrational partition function in solids 

 



 

UNIT V (Ideal Fermi and Bose Gas) 

Equation of state of an ideal Fermi gas, theory of White dwarf stars, Landau diamagnetism, 

Photons, Phonons in solids, Bose-Einstein condensation, thermionic emission, magnetic 

susceptibility of free electrons, Brownian motion of a molecule. 

 

Learning Outcomes: 

• To learn about Ideal Fermi gas and to derive equations. 

• To acquire knowledge about Bose-Einstein condensation. 

 

Course Outcomes: 

➢ After taking this course student are able to determine the probability of any type of 

events. 

➢ Students have understood the concept of phase space and its volume. 

➢ They can easily distinguish between different types of particles and statistics and can 

easily distribute bosons, fermions and classical particles among energy levels. 

➢ After studying Fermi Dirac statistics, students have learnt to deal with much electron 

system. 

 

Text and Reference Books: 

 

1. Statistical and Thermal Physics by S. Lokanadhan and R.S. Gambhir (PHI). 

2. Statistical Mechanics by K. Huang (Wiley Eastern) 

3. Statistical Mechanics: Theory and applications by S.K. Sinha 

4. Fundamentals of Statistical and Thermal Physics by F. Reif 

5. Statistical Mechanics by Gupta and Kumar, Pragati Prakashan Pub. Meerut. 

6. Statistical Mechanics by Satya Prakash. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

                                                                                                                                                           

(201PH24) 
M.Sc. DEGREE EXAMINATION 

Physics 

Paper-1- STATISTICAL MECHANICS 

Time: Three hours                                                               Maximum:70 marks. 

                                           Answer the following 

1.    (a)   Explain the concept of ensemble and calculate ensemble average. 

       (b)   State and prove Lyonville’s theorem 

                                                           OR 

       (c)   What are microstates and macrostates? 

       (d)   Discuss about density distribution in the phase space. 

 

2     (a)   What is partition functions? Explain. 

       (b)   Obtain the partition function for canonical ensemble. 

                                                            OR 

       (c)   Discuss the thermodynamic properties of an ideal gas. 

       (d)   Explain the thermodynamical function for grand canonical ensemble. 

 

3     (a)   Obtain the expression for Maxwell-Boltzmann distribution function. 

       (b)   Explain about energy fluctuation in canonical ensemble. 

                                                              OR 

       (c)    Distinguish between B-E and F-D distributions. Explain detail. 

 

4     (a)   Calculate the electronic partition functions by considering only the  

               Ground and first excited states. 

       (b)   Show that electronic specific heat as a function of temperature has a     

               Peak like behaviour. 

                                                               OR 

       (c)   Calculate the rotational partition function and various  

               thermodynamical  quantities. 

 

5     (a)   Write the theory of white dwarfs stars. 

       (b)   Derive the expression for the magnetic susceptibility for free electron  

               Gas due to spin degree of freedom. 

                                                                OR 

       (c)    Explain Brownian motion. Show how Brownian motion its treated by  

               Langevin  equation for rotational motions. 
 

 

 

 
 



 

CONTENTS 

S.No TITLES PAGE No 

1  Statistical Mechanics –Thermodynamics 1.1-1.10 

2  Liouville’s Theorem 2.1-2.7 

3  Equipartition Of Energy Theorem 3.1-3.6 

4 
 Partition Function for Canonical and Micro Canonical 

Ensemble 
4.1-4.10 

5 
 Thermo Dynamical Function for Canonical and Grand 

Canonical Ensemble 
5.1-5.7 

6 
 Energy Fluctuation in Canonical and Micro Canonical 

Ensemble 
6.1-6.7 

7  Bose-Einstein Distribution 7.1-7.7 

8  Darwin-Fowler Method 8.1-8.6 

9  Molecular Partition Function 9.1-9.8 

10  Electronic And Nuclear Partition Function 10.1-10.8 

11  Theory Of White Dwarf Stars 11.1-11.11 

12  Bose-Einstein Condensation 12.1-12.9 

13  Brownian Motion of A Molecule 13.1-13.8 

 



LESSON-1 

STATISTICAL MECHANICS –

THERMODYNAMICS 
 

AIM AND OBJECTIVE 

 

1. Statistical Mechanics 

Aim 

The main aim of statistical mechanics is to explain the macroscopic properties of matter 

(such as pressure, temperature, and energy) by studying the microscopic behavior of a very 

large number of particles (atoms or molecules). 

 

Objectives 

• To establish a link between microscopic laws of physics and macroscopic 

thermodynamic quantities 

• To study the statistical behavior of systems containing a large number of particles 

• To derive thermodynamic laws using probability and statistics 

• To explain properties like entropy, temperature, and heat in terms of molecular 

motion 

• To predict the equilibrium and non-equilibrium behavior of physical systems 

 

2. Thermodynamics 

Aim 

The main aim of thermodynamics is to study the conversion of energy, especially the 

relationship between heat, work, and temperature, without considering the microscopic 

structure of matter. 

 

Objectives 

• To formulate the laws of thermodynamics based on observable quantities 

• To study energy transfer as heat and work 

• To analyze the efficiency of engines and refrigerators 

• To define and use concepts such as temperature, entropy, internal energy, and 

enthalpy 

• To predict the direction of natural processes and equilibrium condition 

 

STRUCTURE OF THE LESSON: 

 

1.1 Relation Between Statistical Mechanics and Thermodynamics 

1.2 Phase Space 

1.3 Ensembles-Micro Canonical 

1.4 Summary 

1.5 Technical Terms 

1.6 Self Assessment Questions 

1.7 Suggested Readings 
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1.1 RELATION BETWEEN STATISTICAL MECHANICS AND 

THERMODYNAMICS 

 

Introduction 

Statistical mechanics and thermodynamics are two closely related branches of physics that 

deal with the behavior of macroscopic systems containing a large number of particles. 

Thermodynamics was developed in the nineteenth century as a phenomenological theory 

based on empirical laws governing heat, work, and energy, without reference to the 

microscopic nature of matter. In contrast, statistical mechanics provides a microscopic 

foundation for thermodynamics by explaining macroscopic thermodynamic properties in 

terms of the statistical behavior of microscopic constituents such as atoms and molecules. 

 

The relation between statistical mechanics and thermodynamics lies in the fact that 

thermodynamic laws emerge as statistical averages over an enormous number of microscopic 

states. Statistical mechanics not only explains the origin of thermodynamic quantities such as 

temperature, entropy, and pressure but also provides explicit expressions for these quantities 

in terms of molecular parameters. Thus, statistical mechanics bridges the gap between 

microscopic physics and macroscopic thermodynamic behavior. 

 

The relation between statistical mechanics and thermodynamics is one of the most 

profound in physics, as it provides a microscopic foundation for the macroscopic laws of 

thermodynamics. Let's break down how they are connected: 

 

1. Thermodynamics: The Macroscopic Theory 

 

Thermodynamics is the branch of physics that deals with the macroscopic behavior of 

systems, focusing on macroscopic quantities like temperature, pressure, volume, energy, 

and entropy. It doesn't concern itself with the microscopic details of the system (i.e., the 

individual particles), but instead describes the overall behavior of the system in equilibrium. 

 

The key thermodynamic laws include: 

 

• Zeroth Law: If two systems are each in thermal equilibrium with a third system, they are 

in thermal equilibrium with each other. 

• First Law (Conservation of Energy): The total energy of a system is conserved. Energy 

can be transferred or transformed, but it cannot be created or destroyed. 

• Second Law (Entropy): In any spontaneous process, the entropy (a measure of disorder 

or randomness) of the system and surroundings always increases. 

• Third Law: As the temperature of a system approaches absolute zero, the entropy 

approaches a minimum. 

 

Thermodynamics provides the macroscopic relations between the system's state variables 

like temperature, pressure, volume, and entropy, but it doesn't provide a microscopic 

explanation for why these relationships hold. 

 

2. Statistical Mechanics: The Microscopic Theory 

 

Statistical mechanics, on the other hand, is a microscopic theory that explains the 

macroscopic thermodynamic behavior of systems in terms of the properties and 
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interactions of individual particles. It connects the microscopic behavior of particles 

(atoms, molecules, electrons, etc.) to the macroscopic thermodynamic quantities (such as 

pressure, temperature, and entropy). 

 

Key concepts in statistical mechanics include: 

 

• Ensemble Theory: A collection of many copies of the system, each representing a 

possible state of the system. There are different types of ensembles (e.g., 

microcanonical, canonical, grand canonical), depending on the system's interactions 

with the environment. 

• Partition Function (Z): A central quantity in statistical mechanics that encodes 

information about the states of a system. It is related to the probability distribution of 

the system's states and can be used to calculate thermodynamic properties. 

• Boltzmann Distribution: Describes the distribution of particles over different energy 

states in equilibrium. 

 

Statistical mechanics provides a microscopic model for thermodynamic quantities, 

explaining how the properties of individual particles (such as energy, velocity, and 

position) give rise to the macroscopic thermodynamic quantities like temperature and 

pressure. 

 

3. Connecting Thermodynamics and Statistical Mechanics 

 

Statistical mechanics allows us to derive thermodynamic quantities from the statistical 

behavior of the microscopic components of a system. It gives statistical interpretations for 

thermodynamic concepts like entropy, temperature, and free energy. 

 

The key connections between statistical mechanics and thermodynamics include: 

 

1. Thermodynamic Quantities from Statistical Mechanics 

 

• Energy (Internal Energy): 

In statistical mechanics, the internal energy U can be calculated as the expectation value 

of the system's energy: 

 

𝑈 =< 𝐸 >= ∑𝑖𝐸𝑖𝑃(𝐸𝑖) 

Where𝑃(𝐸𝑖)  is the probability of the system being in the i-th energy state. 

In thermodynamics, internal energy U is a state function that depends on variables like 

temperature, pressure, and volume. Statistical mechanics provides a detailed understanding of 

this energy from the microscopic behavior of particles. 

 

• Entropy (S): 

In thermodynamics, entropy is related to the number of possible microscopic 

configurations (Ω) of a system by Boltzmann's entropy formula: 

𝑆 = 𝑘𝐵𝑙𝑛Ω 

Statistical mechanics provides a microscopic definition of entropy, where Ω is the number 

of accessible states of the system. This relationship directly connects the statistical nature of 

particles to the macroscopic thermodynamic concept of entropy. 
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• Temperature (T): 

In thermodynamics, temperature is related to heat flow and energy transfer. In 

statistical mechanics, temperature is connected to the energy distribution of 

particles. The relationship between temperature and energy is given by the 

Boltzmann distribution: 

𝑃(𝐸) ∝ e
−E

kBT⁄
 

 

Statistical mechanics explains how temperature emerges from the statistical behavior of 

particles. 

 

2. Thermodynamic Laws as Statistical Principles 

 

• First Law of Thermodynamics (Energy Conservation): 

In statistical mechanics, energy is conserved, and the total energy of a system 

corresponds to the sum of the energies of individual particles or states. The first law is 

reflected in the fact that the total energy in the system remains constant when no work 

or heat exchange occurs with the surroundings. 

 

• Second Law of Thermodynamics (Entropy Increase): 

Statistical mechanics explains the second law by considering the probability of 

system states. The second law implies that systems naturally evolve toward states 

with higher entropy because these states are more probable than those with low 

entropy. Thus, statistical mechanics provides a probabilistic explanation for the 

increase in entropy. 

 

3. Partition Function and Free Energy 

 

The partition function Z is the cornerstone of statistical mechanics, and it serves as the link 

between microscopic details and macroscopic thermodynamic properties. For example, 

the Helmholtz free energy FFF (a thermodynamic potential) can be derived from the partition 

function in the canonical ensemble: 

𝐹 = −kBT ln Z 

Similarly, other thermodynamic potentials like the grand potential and Gibbs free energy can 

also be derived from the partition function in different ensembles. 

 

4. Fluctuations and Response Function 

 

Statistical mechanics also provides a framework for understanding fluctuations and response 

functions. For instance, the fluctuations in energy or particle number (like the variance in 

energy or particle number) can be related to the heat capacity or compressibility, which are 

thermodynamic quantities. 

 

Importance of Statistical Mechanics in Thermodynamics 

Statistical mechanics extends thermodynamics by: 

• Providing microscopic explanations of thermodynamic laws, 

• Allowing calculation of thermodynamic quantities from molecular properties, 

• Explaining irreversibility and entropy increase, 

• Describing systems outside strict equilibrium, 

• Predicting new phenomena such as phase transitions. 
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Thus, statistical mechanics not only supports thermodynamics but also enriches and 

generalizes it. 

 

Conclusion 

The relation between statistical mechanics and thermodynamics is both deep and 

fundamental. Thermodynamics provides universal laws governing macroscopic systems, 

while statistical mechanics offers a microscopic foundation for these laws based on 

probability and molecular dynamics. Through concepts such as ensembles, partition 

functions, and entropy, statistical mechanics explains the origin of thermodynamic quantities 

and laws. The emergence of thermodynamics from statistical averages over microscopic 

states illustrates how deterministic macroscopic behavior arises from underlying microscopic 

randomness. Together, statistical mechanics and thermodynamics form a unified framework 

for understanding the physical behavior of matter in equilibrium. 

 

1.2 PHASE SPACE: 

 

In classical mechanics, the state of a system of particles at any given time is completely 

specified by the knowledge of position and momentum (or velocity) of each of its particles. 

The instantaneous position of a single particle is determined by three independent 

coordinates𝑥, 𝑦, 𝑧, and the instantaneous motion of a particle is described by velocity 

components (𝑣𝑥 , 𝑣𝑦 , 𝑣𝑧)or more conveniently by momentum 

components(𝑝𝑥, 𝑝𝑦, 𝑝𝑧).Therefore, the state of a single particle is then completely specified 

by position coordinates 𝑥, 𝑦, 𝑧and momentum components𝑝𝑥, 𝑝𝑦 , 𝑝𝑧. As a purely 

mathematical concept, we may imagine a six-dimensional space in which 

𝑑𝑥 𝑑𝑦 𝑑𝑧 𝑑𝑝𝑥  𝑑𝑝𝑦  𝑑𝑝𝑧is an element of volume, and the position of a point particle in this 

space will be described by a set of six coordinates:𝑥, 𝑦, 𝑧, 𝑝𝑥, 𝑝𝑦, 𝑝𝑧 

This six-dimensional space for a single particle is termed as phase-space, and particularly the 

μ-space. 

 

If the system contains a large number of particles such that the state of the system is 

represented by 𝑓independent position coordinates 𝑞1, 𝑞2, … , 𝑞𝑓and 𝑓momentum 

coordinates𝑝1, 𝑝2, … , 𝑝𝑓,then mathematically, these 2𝑓combined position–momentum 

coordinates may be allowed to define a 2𝑓-dimensional space in which the configuration of 

the system is represented by 2𝑓coordinates:𝑞1, 𝑞2, … , 𝑞𝑓 , 𝑝1, 𝑝2, … , 𝑝𝑓This 2f-dimensional 

space is called the phase-space or the Γ-space (Gamma-space).The Γ-space is considered to 

be a conceptual Euclidean space having 2𝑓rectangular axes, and an element of volume in this 

space is represented by:𝑑𝑞1 𝑑𝑞2  …  𝑑𝑞𝑓  𝑑𝑝1 𝑑𝑝2  …  𝑑𝑝𝑓The Γ-space may be considered as a 

superposition of μ-spaces.Obviously, the dimensions of the phase-space depend upon the 

degrees of freedom of the system. 

The instantaneous state of a particle in the phase-space is represented by a point known as the 

phase point or representative point.The number of phase points per unit volume is called the 

phase density of these points.An element of volume in the phase-space is termed as a cell. 

 

Definition of Phase Space 

For a system of N particles, each particle has three spatial coordinates and three 

corresponding momentum components. The phase space of such a system is a 6N6N6N-

dimensional space defined by the set of canonical coordinates: 

(q1,q2,…,q3N; p1,p2,…,p3N)  
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Each point in this space represents a unique microstate of the system. The system’s 

evolution in time corresponds to a continuous curve or trajectory in phase space determined 

by Hamilton’s equations of motion. 

 

For a single particle moving in one dimension, the phase space is two-dimensional, consisting 

of the position qqq and momentum p 

 

Division of Phase Space into Cells: Consider a 2𝑓-dimensional phase space defined by 

position coordinates 𝑞1, 𝑞2, … , 𝑞𝑓and momentum coordinates𝑝1, 𝑝2, … , 𝑝𝑓.An element of 

volume in this phase space will berepresented by 

 

𝛿𝑞1 𝛿𝑞2  …  𝛿𝑞𝑓  𝛿𝑝1 𝛿𝑝2  …  𝛿𝑝𝑓 (1) 

 

The dimensions of this volume element are those of (length × momentum)ℎ𝑓.Therefore, the 

unit of this volume element is (joule–second)ℎ𝑓. 

 

Let us now divide any finite volume of phase space into a large number of cells. 

Let the size of each cell be ℎ𝑓. Here ℎis any arbitrary constant and has the dimensions of 

joule–second, i.e., 

ℎ = 𝛿𝑞𝑖  𝛿𝑝𝑖 (2) 

 

As 𝑝𝑖and 𝑞𝑖can take all possible continuously variable values, there may be infinite 

representative points and hence possible microstates in any finite volume of phase space. 

The number of phase cells in this volume is: 

 
𝛿𝑞1 𝛿𝑞2  …  𝛿𝑞𝑓  𝛿𝑝1 𝛿𝑝2  …  𝛿𝑝𝑓

ℎ𝑓
(3) 

 

Volume in Phase Space: The volume in phase space associated with a system is the total 

region accessible to the system under given constraints (such as fixed energy, volume, and 

number of particles).For example, in the microcanonical ensemble, the system is confined to 

all phase points that satisfy the energy constraint: 

 

𝐸 ≤ 𝐻(𝑝, 𝑞) ≤ 𝐸 +  𝛿𝐸 

 

Where H (p,q) is the Hamiltonian (Total energy function). The total phase space volume for 

this energy range is  

 

𝜉(𝐸) =  𝐸 ≤ 𝐻(𝑝, 𝑞) ≤ 𝐸 +  𝛿𝐸 𝑑𝑉 

 

This quantity represents the number of accessible microstates for the system within that 

energy range. 

 

Applications of Phase Space 

Phase space concepts are widely used in: 

• Classical and quantum dynamics, 

• Statistical mechanics and thermodynamics, 

• Plasma physics, 

• Nonlinear dynamics and chaos theory, 
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• Quantum optics and semi classical approximations, 

• Molecular dynamics simulations. 

In chaos theory, phase space portraits reveal sensitive dependence on initial conditions and 

complex dynamical behavior. 

 

Advantages of Phase Space Description 

The phase space formulation offers several advantages: 

• Complete specification of a system’s state, 

• Clear geometric visualization of dynamics, 

• Natural framework for conservation laws, 

• Direct link between microscopic and macroscopic descriptions, 

• Foundation for modern theoretical and computational methods. 

 

Conclusion 

Phase space is a central and unifying concept in physics, providing a complete and elegant 

description of dynamical systems. By incorporating both positions and momenta, phase space 

captures the full microscopic state of a system and allows its time evolution to be visualized 

geometrically. In statistical mechanics, phase space forms the basis for defining microstates, 

ensembles, entropy, and equilibrium. Liouville’s theorem ensures the conservation of phase 

space volume, while the ergodic hypothesis connects microscopic dynamics with 

macroscopic observables. In quantum mechanics, phase space ideas are modified by 

uncertainty principles but remain essential for understanding classical–quantum 

correspondence. Overall, phase space provides the conceptual and mathematical foundation 

for linking dynamics, probability, and thermodynamics. 

 

1.3 ENSEMBLES-MICRO CANONICAL 

 

Introduction 

In statistical mechanics, an ensemble is a large collection of virtual copies of a physical 

system, each representing a possible microscopic state consistent with given macroscopic 

constraints. Since it is practically impossible to track the exact microscopic motion of an 

enormous number of particles in a real system, ensembles provide a powerful theoretical 

framework for connecting microscopic dynamics with macroscopic thermodynamic behavior. 

By averaging over an ensemble, one can calculate measurable thermodynamic quantities such 

as energy, entropy, pressure, and temperature. 

 

The concept of ensembles was introduced by J. Willard Gibbs, and it forms the cornerstone 

of equilibrium statistical mechanics. Different ensembles correspond to different physical 

conditions imposed on the system, such as isolation, thermal contact, or particle exchange 

with a reservoir. 

 

The micro canonical ensemble is a collection of essentially independent assemblies having 

the same energy (E), Volume (V) and Number (N) of systems, all the systems are of the 

same. One can imagine this ensemble as follows. The individual assemblies are separated by 

rigid, impermeable and well insulated (as in fig) walls. So that the three E, V and N remain 

un=effected in the presence of other systems. 
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Rigid, well insulated walls 

 

Let us consider an isolated (closed) system for which the total energy H (q, p) = E = E (q1, 

…… qf,, pa, ………… pf) = constant. 

 

 The locus of all the phase points with equal energies in the phase space is called an 

energy surface or ergodic surface. If we consider a family of such energy surfaces 

constructed in phase space and two neighboring surfaces with energies E and E+ dE, each 

surface divides the phase space into two parts, one with higher energy and the other with 

lower energy (not interacting with each other). The space between them contains a few phase 

points which are constant. If we take the density as equal to zero for all values of energy 

except in the selected narrow range δE, the micro-canonical ensemble is specified by its 

properties as 

 

ρ(E) = constant (in the range E and E + δE) 

      = 0      --- (4) 

Properties: 

 

1. As ρ is a function of energy, micro canonical ensemble is in statistical equilibrium. 

2. As it is in statistical equilibrium, the average properties of such ensembles (micro 

canonical) will not vary in time and 

3. The distribution of phase points is uniform. 

 

Limitations of the Micro canonical Ensemble 

Despite its fundamental importance, the micro canonical ensemble has limitations: 

• It is mathematically difficult to apply to complex systems. 

• Real systems are rarely perfectly isolated. 

• Calculations often become simpler in the canonical or grand canonical ensembles. 

Nevertheless, in the thermodynamic limit, results obtained from different ensembles become 

equivalent. 

 

Importance and Applications 

The micro canonical ensemble is important in: 

• Foundations of statistical mechanics, 

• Study of isolated systems, 

• Understanding entropy and equilibrium, 

• Astrophysical systems, 

• Theoretical studies of phase transitions and chaos. 

It serves as the conceptual starting point for more practical ensembles. 

 

 

 

E, V, N       E,   , N V E, V, N 

E, V, N         E, V, N E, V, N 

E, V, N         E, V, N E, V, N 
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Conclusion 

The micro canonical ensemble represents the most fundamental description of equilibrium in 

statistical mechanics. By considering an isolated system with fixed energy, volume, and 

number of particles, it provides a natural framework for defining microstates, entropy, 

temperature, and other thermodynamic quantities. The principle of equal a priori probabilities 

and Boltzmann’s entropy formula establish a deep connection between microscopic dynamics 

and macroscopic thermodynamic laws. Although other ensembles are often more convenient 

for practical calculations, the micro canonical ensemble remains the cornerstone upon which 

the entire structure of equilibrium statistical mechanics is built. 

 

1.5 SUMMARY 

 

1. Statistical Mechanics and Thermodynamics 

Statistical mechanics provides the microscopic foundation of thermodynamics by relating 

the macroscopic properties of matter to the statistical behavior of a large number of 

microscopic constituents such as atoms and molecules. 

 

Thermodynamics describes systems using macroscopic variables like pressure, volume, 

temperature, and entropy, without reference to microscopic details. Statistical mechanics 

bridges this gap by introducing the concept of microstates and macrostates. A macrostate is 

defined by macroscopic variables, while a microstate specifies the exact positions and 

momenta (or quantum states) of all particles. 

 

The laws of thermodynamics emerge naturally from statistical principles: 

• The first law corresponds to energy conservation. 

• The second law arises from the tendency of systems to evolve toward macrostates 

with maximum probability (maximum entropy). 

• The third law is consistent with the reduction of accessible microstates at absolute 

zero. 

Thus, thermodynamics is a statistical description of the collective behavior of microscopic 

particles. 

 

2. Phase Space 

Phase space is an abstract space used to represent all possible microstates of a system. For a 

system of NNN particles, phase space is a 6N6N6N-dimensional space, with three 

coordinates for position and three for momentum for each particle. 

Each point in phase space represents a unique microstate of the system. As the system 

evolves in time, its representative point traces a trajectory in phase space according to the 

equations of motion. 

 

An important result related to phase space is Liouville’s theorem, which states that the 

density of phase points remains constant along the trajectory of the system. This implies 

conservation of phase space volume and ensures the stability of equilibrium distributions. 

Phase space plays a crucial role in defining ensembles, calculating the number of microstates, 

and understanding equilibrium and irreversibility in statistical mechanics. 

 

3. Ensembles – Microcanonical Ensemble 

An ensemble is a large collection of virtual copies of a system, each representing a possible 

microstate consistent with given macroscopic conditions. 
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The microcanonical ensemble describes an isolated system with fixed: 

• Energy (E), 

• Volume (V), 

• Number of particles (N). 

Since the system is isolated, all accessible microstates within a narrow energy range are 

assumed to be equally probable. This assumption is known as the principle of equal a priori 

probabilities. 

 

1.6 TECHNICAL TERMS 

 

Statistical mechanics and thermodynamics, Phase space, Ensembles-micro canonical 

 

1.7 SELF ASSESSMENT QUESTIONS 

 

1. Explain about the Relationship between Statistical mechanics and thermodynamics 

2. Write a short note on Phase space 

3. Briefly explain about the Ensembles-micro canonical 

 

1.8 SUGGESTED READINGS 

 

1. Statistical and Thermal Physics by S. Lokanadhan and R.S. Gambhir (PHI). 

2. Statistical Mechanics: Theory and applications by S.K. Sinha 

3. Fundamentals of Statistical and Thermal Physics by F. Reif 

4. Statistical Mechanics by Gupta and Kumar, Pragati Prakashan Pub. Meerut. 

5.   Statistical Mechanics by Satya Prakash 
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LESSON-2 

LIOUVILLE’S THEOREM 
 

AIM AND OBJECTIVE 

 

Aim 

The aim of Liouville’s Theorem is to describe the conservation of phase space density for 

a system of particles in classical mechanics. It provides a fundamental principle for statistical 

mechanics, stating that the density of representative points in phase space remains 

constant as the system evolves over time. 

 

Objectives 

• To establish the time-invariance of phase space density in Hamiltonian systems. 

• To provide a mathematical foundation for statistical mechanics and ensemble 

theory. 

• To justify the use of microcanonical, canonical, and grand canonical ensembles. 

• To understand the conservation of probability in the evolution of a mechanical 

system. 

• To connect microscopic dynamics with macroscopic thermodynamic behavior. 

 

STRUCTURE 

 

2.1 CANONICAL AND GRAND CANONICAL ENSEMBLE 

2.2 DENSITY DISTRIBUTION IN THE PHASE SPACE 

2.3 LIOUVILLE’S THEOREM  

2.4 SUMMARY 

2.5 TECHNICAL TERMS 

2.6 SELF ASSESSMENT QUESTIONS 

2.7 SUGGESTED READINGS 

 

2.1 CANONICAL AND GRAND CANONICAL ENSEMBLE 

 

Introduction 

Canonical Ensemble: 

 

A canonical ensemble represents a large collection of identical systems that can exchange 

energy with a heat reservoir but have fixed number of particles (N), volume (V), and 

temperature (T). Each system in the ensemble can occupy different microstates with 

energies (Ei), and the probability of a system being in a state depends on the Boltzmann 

factor (e{-E_i/k
B

T}). 

 

Grand Canonical Ensemble: 

 

A grand canonical ensemble represents systems that can exchange both energy and particles 

with a reservoir. The chemical potential ((\mu)), volume (V), and temperature (T) are 
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fixed. This ensemble is useful when the number of particles is not fixed, such as in gases 

and open systems. 

 

Both ensembles provide a statistical framework to connect microscopic states with 

macroscopic thermodynamic quantities. 

 

A collection of independent assemblies having the same temperature T, volume V and 

number of identical particles N is called a canonical ensemble. If the energy exchange takes 

place but the mass exchange does not take place, the ensemble is called Canonical Ensemble 

i.e., in this ensemble, all the assemblies are in thermal contact with each other.  The 

Canonical ensembles can be imagined thus. The individual assemblies are separated by rigid, 

impermeable but Dia thermal walls.  As energy exchange takes place, temperature remains 

constant for all the assemblies (Figure). The canonical ensemble can be referred to an 

isothermal system where only energy exchanges, but mass remains unchanged  dia thermal 

wall 

 Grand Canonical Ensemble 

 

A collection of independent assemblies in which exchange of energy as well as mass (number 

of particles) takes place is called a Grand Canonical Ensemble. It can be thought of as a 

micro canonical ensemble where both energy and mass exchange.  As a result of exchange of 

number of particles, the chemical potential µ remain constant in addition to the temperature 

(because of energy exchange) being constant.  So, in a Grand Canonical Ensemble Volume 

V, temperature T and chemical potential µ remain constant.  The following Figure represents 

a Grand Canonical Ensemble where the individual assemblies are separated by rigid, 

permeable and dia thermal walls. 

 

dia thermal wall 

 

They refer to open isothermal systems. 

 If we know both the average energy and average number of particles in an assembly, 

grand canonical ensemble can be applied. 

Applications 
 

 

T, V, N         T, V, N T, V, N 

T, V, N         T, V, N T, V, N 

T, V, N         T, V, N T, V, N 

T, V, µ         T, V, µ T, V, µ 

T, V, µ         T, V, µ T, V, µ 

T, V, µ         T, V, µ T, V, µ 
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Canonical Ensemble: 

• Calculation of partition functions for systems with fixed N, V, T 

• Derivation of thermodynamic quantities like internal energy, entropy, and free 

energy 

• Study of vibrational, rotational, and translational energies in molecules 

• Analysis of specific heat capacities of solids and gases 

 

Grand Canonical Ensemble: 

• Used in open systems where particle number fluctuates 

• Derivation of Bose–Einstein and Fermi–Dirac distributions 

• Study of chemical reactions, adsorption, and phase transitions 

• Analysis of electrons in metals or photons in cavities 

Limits / Limitations 

 

Canonical Ensemble: 

• Number of particles (N) must be fixed; not suitable for open systems 

• Assumes thermal equilibrium; not valid for non-equilibrium systems 

• Difficult to apply to systems with strong interactions between particles 

 

Grand Canonical Ensemble: 

• Assumes thermal and chemical equilibrium with the reservoir 

• Complex mathematical treatment due to fluctuating particle number 

• Less accurate for small systems, where fluctuations are significant 

Conclusion 

Canonical and grand canonical ensembles are powerful tools in statistical mechanics that 

link microscopic particle behavior to macroscopic thermodynamic properties. The 

canonical ensemble is ideal for closed systems with fixed particle number, while the grand 

canonical ensemble is suited for open systems with variable particle number. Despite 

some limitations, these ensembles form the foundation for deriving statistical distributions 

and understanding equilibrium properties of matter. 

 

2.2 DENSITY DISTRIBUTION IN THE PHASE SPACE 

 

Introduction 

In statistical mechanics, the phase space of a system is a multidimensional space in which 

each point represents a unique state of the system, defined by the positions and momenta of 

all particles. The density distribution in phase space describes how representative points 

(or microstates) are distributed over this space. It provides a probabilistic description of 

the system’s microscopic states and serves as a foundation for connecting microscopic 

behavior with macroscopic thermodynamic properties. 

 

The use of ensembles in statistical mechanics is guided by the following points: 

 

1. There is no need to distinguish between different systems constituting an ensemble, 

because the laws of statistical mechanics aim to tell us only the number of systems or 

elements which would be found in different states  i.e., in different regions of phase 

space at any time. 
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2. The number of systems in an ensemble is so large that there is a continuous change 

in their number passing from one region of phase space to another. 

 

Keeping these points in mind, the condition of an ensemble at any time can be suitably 

specified by the density function with which the phase points are distributed in the phase 

space. 

 

This density function is called the density of probability distribution or the probability 

densityor the distribution function.In an ensemble of f degrees of freedom, the density of 

distribution ρ is a function of f position coordinates 𝑞1, 𝑞2, … , 𝑞𝑓and f momenta coordinates 

𝑝1, 𝑝2, … , 𝑝𝑓, corresponding to 2𝑓combined position–momentum axes in the phase space.The 

density of distribution is also a function of time t, because due to the motion of phase points, 

the density of distribution will change with time at any given point. Hence we can write: 

 

𝜌 = 𝜌(𝑞1, 𝑞2, … , 𝑞𝑓 , 𝑝1, 𝑝2, … , 𝑝𝑓 , 𝑡) 

or briefly, 

𝜌 = 𝜌(𝑞, 𝑝, 𝑡) (1) 
 

Obviously, the density of distribution ρ denotes the number of systems or elements δN which 

are found at any given time in a given infinitesimal region of Γ-space.If the region chosen is 

such that the position coordinates lie between 𝑞𝑖and 𝑞𝑖 + 𝑑𝑞𝑖, and momenta lie between 

𝑝𝑖and 𝑝𝑖 + 𝑑𝑝𝑖(i = 1, 2, 3, …, f), then the hypervolumedΓ of this region will be given by: 

𝑑Γ = 𝑑𝑞1𝑑𝑞2…𝑑𝑞𝑓  𝑑𝑝1𝑑𝑝2…𝑑𝑝𝑓 =∏𝑑𝑞𝑖𝑑𝑝𝑖

𝑓

𝑖=1

(2) 

Where ∏
𝑓
𝑖=1 stands for the product over all values of i = 1 to f.The number of systems δN 

lying in the specified infinitesimal region can be obtained by multiplying the density of 

distribution ρ with this hypervolume in the phase space, i.e., 

𝛿𝑁 = 𝜌 𝑑Γ = 𝜌∏𝑑𝑞𝑖𝑑𝑝𝑖

𝑓

𝑖=1

(3) 

Integrating over the entire phase space, we can obtain the total number of systems under 

consideration, i.e., 

𝑁 = ∫ 𝜌 𝑑Γ = ∫ 𝜌 𝑑𝑞1𝑑𝑞2…𝑑𝑞𝑓  𝑑𝑝1𝑑𝑝2…𝑑𝑝𝑓 (4) 
Sometimes it is convenient to work with the normalised density of distribution, given by 

𝜌𝑁 =
𝜌(𝑞, 𝑝, 𝑡)

𝑁
=
𝜌

𝑁
(5) 

In this case, 𝜌𝑁expresses the probability of states represented by points per unit volume 

element in the phase space. In other words, ρN gives the probability per unit volume of 

finding the phase point for a system taken at random from the ensemble in different regions 

of the phase space.The function ρN must obviously satisfy the normalisation condition, 

∫ 𝜌𝑁  𝑑Γ = ∫ 𝜌𝑁  𝑑𝑞1𝑑𝑞2…𝑑𝑞𝑓  𝑑𝑝1𝑑𝑝2…𝑑𝑝𝑓 = 1 (6) 
 

Conclusion 

The density distribution in phase space is a key concept in statistical mechanics, enabling 

the calculation of ensemble averages, probabilities, and thermodynamic quantities. It 

allows for a quantitative link between the microscopic configuration of particles and 

observable macroscopic properties, providing a deeper understanding of equilibrium and 

statistical behavior of physical systems 
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2.3 LIOUVILLE’S THEOREM  

 

Introduction 

Liouville’s Theorem is a fundamental concept in classical statistical mechanics. It states 

that for a system of particles evolving under Hamiltonian dynamics, the density of 

representative points in phase space remains constant with time. In other words, as a 

system moves through its allowed phase space, the phase space volume occupied by an 

ensemble of systems is conserved. This theorem provides the theoretical foundation for 

statistical ensembles and connects microscopic dynamics with macroscopic 

thermodynamic properties. 

 

Consider an ensemble consisting of a large number of identical, non-interacting systems.We 

know that the instantaneous state of a system can be represented by a point in the phase 

space.Similarly, the instantaneous states of other systems constituting the ensemble can be 

represented by other points in the phase space.Thus, the instantaneous state of the entire 

ensemble can be represented by a number of phase points in the phase space.The density of 

these points, also known as the density of states in the phase space, is denoted by 𝜌.If the 

state of an ensemble changes with time, the positions of phase points in the phase space will 

change with time.The motion of these phase points in the phase space is, of course, governed 

by the canonical equations: 

𝑞𝑖̇ =
∂𝐻

∂𝑝𝑖
, 𝑝𝑖̇ = −

∂𝐻

∂𝑞𝑖
(7) 

 

(for𝑖 = 1,2,3, … , 𝑓for a system of f degrees of freedom) 

Here 𝐻 = 𝐻(𝑞1, 𝑞2, … , 𝑞𝑓 , 𝑝1, 𝑝2, … , 𝑝𝑓)is the Hamiltonian of the system. 

Due to the motion of phase points, the density of states in the phase space 𝜌changes with 

time.Liouville’s theorem gives information about the rate of change of phase density in the 

phase space.The theorem may be stated in two parts: 

 

1. The rate of change of density of phase points (representing systems) in the 

neighbourhood of a moving phase point (for which 𝑞’s and 𝑝’s are changing) in the Γ-

space is zero. This part represents the principle of conservation of density in the phase 

space.Mathematically, this may be represented as 
𝑑𝜌

𝑑𝑡
= 0 (8) 

 

in the immediate neighbourhood of any given moving phase point. 

 

2. Any arbitrary element of volume or extension-in-phase in the Γ-space, bounded by a 

moving surface and containing a number of phase points, does not change with time 

despite the displacements and distortions.This part represents the principle of 

conservation of extension in phase space.Mathematically, this may be represented as 

𝑑

𝑑𝑡
(𝛿Γ) =

𝑑

𝑑𝑡
(∏𝑑𝑞𝑖𝑑𝑝𝑖

𝑓

𝑖=1

) = 0 (9) 

 

Applications 

• Provides the basis for statistical mechanics and ensemble theory (microcanonical, 

canonical, grand canonical ensembles). 
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• Ensures conservation of probability in phase space, allowing calculation of 

thermodynamic averages. 

• Used to derive equilibrium distributions of particles in phase space. 

• Helps in understanding the time evolution of systems in classical mechanics. 

• Forms the foundation for molecular dynamics simulations in physics and chemistry. 

• Limits / Limitations 

• Applicable only to Hamiltonian systems; does not hold for dissipative or non-

conservative forces. 

• Assumes classical mechanics; quantum effects require modification (quantum 

Liouville equation). 

• Only valid for closed systems without external perturbations altering phase space 

volume. 

• Does not directly provide thermodynamic quantities; it is a framework for further 

statistical calculations. 

 

Conclusion 

1. Canonical and Grand Canonical Ensembles 

• Canonical Ensemble: 

o Represents systems with fixed number of particles (N), volume (V), and 

temperature (T). 

o Systems can exchange energy with a heat reservoir. 

o Uses the partition function (Z) to calculate thermodynamic quantities like 

internal energy, entropy, and free energy. 

o Applicable for closed systems. 

• Grand Canonical Ensemble: 

o Represents systems with fixed chemical potential (μ), volume (V), and 

temperature (T). 

o Systems can exchange both energy and particles with a reservoir. 

o Uses the grand partition function (Ξ) to derive distributions like Bose–

Einstein and Fermi–Dirac. 

o Applicable for open systems. 

 

2. Density Distribution in Phase Space 

• Describes the distribution of representative points (microstates) in the 6N-

dimensional phase space of a system. 

• Connects microscopic particle configurations (positions & momenta) to 

macroscopic thermodynamic properties. 

• Forms the basis for ensemble averages, probability calculations, and statistical 

mechanics formulations. 

• Fundamental for deriving equilibrium properties in canonical, microcanonical, and 

grand canonical ensembles.. 

 

Liouville’s theorem is a fundamental result of classical statistical mechanics describing how 

an ensemble of systems evolves in phase space. A canonical ensemble represents a large 

number of identical systems, each in thermal equilibrium with a heat reservoir at temperature 

T. A grand canonical ensemble describes systems that can exchange both energy and particles 

with a reservoir. 
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2.5 TECHNICAL TERMS 

 

Canonical and grand canonical ensemble 

Density distribution in the phase space 

Liouville’s theorem  

 

2.6 SELF ASSESSMENT QUESTIONS 

 

1. Explain about the Canonical and grand canonical ensemble 

2. Write about the Density distribution in the phase space 

3. Write about the Liouville’s theorem  

 

2.7 SUGGESTED READINGS 

 

1. Statistical and Thermal Physics by S. Lokanadhan and R.S. Gambhir (PHI). 

2. Statistical Mechanics: Theory and applications by S.K. Sinha 

3. Fundamentals of Statistical and Thermal Physics by F. Reif 

4. Statistical Mechanics by Gupta and Kumar, PragatiPrakashan Pub. Meerut. 

5. Statistical Mechanics by Satya Prakash 
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LESSON-3 

EQUIPARTITION OF ENERGY THEOREM 
 

AIM AND OBJECTIVE 

Aim 

The aim of studying the equipartition of energy theorem is to understand how thermal 

energy is distributed among the various microscopic degrees of freedom of a physical system 

in thermal equilibrium and to establish a quantitative relationship between temperature and 

average energy at the microscopic level. 

 

Objectives 

• To explain the concept of degrees of freedom in classical mechanical systems. 

• To show that each independent quadratic degree of freedom contributes an average 

energy of  kBT. 

• To apply the equipartition theorem to calculate the internal energy of ideal gases. 

• To use the theorem to determine molar heat capacities of mono atomic, diatomic, 

and polyatomic gases. 

• To understand the role of equipartition in explaining macroscopic thermodynamic 

properties from microscopic motion. 

• To recognize the limitations of classical equipartition theory, particularly its failure 

at low temperatures, leading to the necessity of quantum theory 

 

STRUCTURE OF THE LESSON: 

 

3.1 EQUIPARTITION OF ENERGY THEOREM  

3.2 MACROSTATES AND MICROSTATES 

3.3 SUMMARY 

3.4 TECHNICAL TERMS 

3.5 SELF ASSESSMENT QUESTIONS 

3.6 SUGGESTED READINGS 

 

3.1 EQUIPARTITION OF ENERGY THEOREM 

 

Introduction 

The equipartition of energy theorem is one of the fundamental results of classical statistical 

mechanics. It provides a direct connection between temperature and the average energy 

associated with the microscopic degrees of freedom of a system in thermal equilibrium. 

According to this theorem, energy is shared equally among all independent degrees of 

freedom that appear quadratically in the expression for the total energy. The equipartition 

theorem plays a crucial role in explaining the thermal properties of gases and solids, such as 

internal energy and heat capacity, and it establishes a deep link between microscopic motion 

and macroscopic thermodynamic behavior. 

 

Although highly successful in classical physics, the equipartition theorem also highlights the 

limitations of classical statistical mechanics and motivates the development of quantum 

theory, particularly in explaining deviations observed at low temperatures. 
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Key Points of the Equipartition Theorem: 

 

• Degree of freedom: Each independent way in which a system can store energy (such 

as translational, rotational, or vibrational motion) is called a degree of freedom. 

• The energy associated with each degree of freedom is, on average
1

2
kBT, wherekB  is 

the Boltzmann constant and T is the temperature of the system. 

• This theorem applies to classical systems, where particles obey classical mechanics. 

 

1. General Form of the Equipartition Theorem 

 

In classical statistical mechanics, the average energy⟨E⟩ of a system in thermal equilibrium 

is related to its degrees of freedom. For each degree of freedom iii, the average energy 

associated with that degree is: 

 

⟨𝐸𝑖⟩=
1

2
kBT 

 

The total average energy of the system is then the sum of the contributions from all the 

degrees of freedom: 

 

< 𝐸 >= ∑𝑖𝐸𝑖 =
1

2
kBT 

 

(Number of degrees of freedom) 

This result assumes that the system is classical and that there are no quantum mechanical 

effects influencing the energy distribution (i.e., the system is in the classical regime where 

each degree of freedom is independent and behaves according to the Maxwell-Boltzmann 

distribution). 

 

2. Applications of the Equipartition Theorem 

 

The equipartition theorem can be applied to different types of motion (translational, 

rotational, and vibrational) of particles. Let's look at a few common examples: 

 

a. Monatomic Ideal Gas 

For a monatomic ideal gas, each particle can move in three dimensions (x, y, z), and each of 

these translational degrees of freedom contributes 
1

2
kBT to the total energy. So, the total 

energy per particle is: 

 

⟨𝐸𝑡𝑜𝑡𝑎𝑙⟩=
3

2
kBT 

 

This means that each particle in a monatomic ideal gas has an average energy of 
3

2
kBT 

 which is purely translational (since there are no internal degrees of freedom such as rotation 

or vibration). 

 

b. Diatomic Ideal Gas 

For a diatomic ideal gas, a molecule has 3 translational degrees of freedom (corresponding 

to motion in the x, y, and z directions) and 2 rotational degrees of freedom (since it is a 

rigid body and can rotate around two axes perpendicular to the bond axis, but it cannot rotate 
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around the bond axis because it is highly constrained in this direction). If the gas is in the 

classical regime, the total energy per molecule is: 

 

⟨𝐸𝑡𝑜𝑡𝑎𝑙⟩=
3

2
kBT+

2

2
kBT=

5

2
kBT 

 

This accounts for both the translational and rotational contributions to the energy. If the 

system is at high temperatures where the vibrational modes become excited, each vibrational 

mode (which has two degrees of freedom: potential energy and kinetic energy) would 

contribute an additional kBTk_BTkBT. In that case, for high-temperature limits: 

 

⟨𝐸𝑡𝑜𝑡𝑎𝑙⟩=
3

2
kBT+2.

2

2
kBT+

1

2
kBT=5kBT 

 

c. Polyatomic Molecules (e.g., Triatomic Gas) 

For a polyatomic molecule, such as a triatomic molecule (e.g., water vapor), the energy 

contributions can come from: 

 

• 3 translational degrees of freedom, 

• 3 rotational degrees of freedom (in the classical approximation for nonlinear 

molecules), 

• 3 vibrational modes (each contributing two degrees of freedom, corresponding to the 

potential and kinetic energy components). 

 

Thus, in the classical limit (high temperature): 

 

⟨𝐸𝑡𝑜𝑡𝑎𝑙⟩=
3

2
kBT+3.

1

2
kBT +

1

2
kBT=

9

2
kBT 

 

At higher temperatures where vibrational modes are fully excited, each vibrational mode will 

contribute ,kBTso the total energy would be: 

 

⟨𝐸𝑡𝑜𝑡𝑎𝑙⟩=
9

2
kBT+3.

1

2
kBT=

15

2
kBT 

 

Limitations of the Equipartition Theorem 

Despite its success, the equipartition theorem has important limitations: 

• It fails at low temperatures, 

• It cannot explain the temperature dependence of heat capacities, 

• It does not apply to quantum systems where energy levels are discrete. 

For example, classical theory predicts a constant heat capacity for solids, whereas 

experimentally the heat capacity decreases at low temperatures. This discrepancy led to the 

development of quantum theories such as Einstein’s and Debye’s models of solids. 

 

Importance and Significance 

The equipartition theorem is important in: 

• Understanding molecular motion, 

• Explaining ideal gas behavior, 

• Estimating internal energies, 

• Studying classical limits of quantum systems. 

It provides deep insight into how energy is distributed in classical systems. 
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Conclusion 

The equipartition of energy theorem is a cornerstone of classical statistical mechanics, 

establishing that energy is equally shared among all quadratic degrees of freedom in thermal 

equilibrium. It successfully explains the internal energy and heat capacities of gases at high 

temperatures and provides a clear connection between microscopic motion and macroscopic 

thermodynamic quantities. However, its failure at low temperatures reveals the limitations of 

classical physics and underscores the necessity of quantum mechanics. Despite these 

limitations, the equipartition theorem remains a powerful and elegant principle in the study of 

statistical mechanics. 

 

3.2 MACROSTATES AND MICROSTATES 

 

Introduction 

Statistical mechanics provides a bridge between the microscopic laws governing atoms and 

molecules and the macroscopic laws of thermodynamics. Two fundamental concepts that 

enable this connection are microstates and macrostates. While thermodynamics describes 

systems using a small number of macroscopic variables such as temperature, pressure, and 

volume, statistical mechanics explains these quantities in terms of the vast number of 

microscopic configurations available to a system. 

 

The distinction between macrostates and microstates is central to understanding entropy, 

probability, and the direction of spontaneous processes. The concepts also form the 

foundation for ensemble theory and the statistical interpretation of the laws of 

thermodynamics. 

 

Let us consider an ensemble consisting of a large number of independent systems or a gas 

consisting of a large number of molecules, in the phase space. Each system or molecule may 

be represented by point known as phase point or representative point in the phase space. Let 

the phase space be divided into cells numbered 1, 2, 3, … i, etc. adjoining one another and 

having a volume equal to 

 

𝛿𝑞1 𝛿𝑞2 …  𝛿𝑞𝑓  𝛿𝑝1 𝛿𝑝2 …  𝛿𝑝𝑓 

 

A phase point for any system or molecule may be supposed to lie inside one of these cells. In 

order to define the microstate of the ensemble we must specify the individual position of 

phase points for each system or molecule of the ensemble. In other words, we must state to 

which cell each system or molecule belongs temporarily. Such a deep analysis is quite 

unnecessary to determine the observable properties of any ensemble (or gas). For example, 

the density is same if the number of molecules in each volume element of ordinary space is 

the same regardless of which particular moleculelie in any volume element. 

 

A macrostate of the ensemble may be defined by the specification of the number of phase 

points (i.e., system or molecules) in each cell of phase space such 

as𝑛1 phase points are in cell 1, 𝑛2 phase points are in cell 2, 

𝑛3 phase points are in cell 3, and so on. 

 

Many different microstates may correspond to the same macrostate.For example, let us 

identify the phase points as 𝑎, 𝑏, 𝑐, …etc.Let a particular microstate be specified by stating that 

the phase points 𝑎, 𝑐, ℎare in cell 1, 𝑏, 𝑒are in cell 2, 𝑓is in cell 3, and so on as shown in Fig. 

3.1.The corresponding macrostate is specified merely by giving the number of phase 
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points:𝑛1(= 3) in cell 1; 𝑛2(= 2) in cell 2; 𝑛3(= 1) in cell 3, and so on.If we interchange 

any two phase points from different cells say 𝑎and 𝑏 we shall have different microstates, but 

the same macrostate.On the other hand, if we interchange the two phase points in the same 

cell  say 𝑎and 𝑐 we shall have the same microstate as well as the same macrostate.If the 

systems of the ensemble are in constant motion, just like the molecules of a gas, the ensemble 

is continuously and spontaneously changing from one microstate to another and almost as 

frequently from one macrostate to the other. 

 

 
Fig. 3.1 

 

The microstates which are allowed under given restriction are called accessible 

microstates.For example, in the case of 3 molecules 𝑎, 𝑏, 𝑐to be distributed between two 

halves of a box, if none can be outside the box, then:(𝑎𝑏, 𝑐), (𝑎, 𝑏𝑐), (𝑎𝑐, 𝑏)are accessible 

microstates, while(𝑎, 𝑏), (𝑎, 𝑐), (𝑏, 𝑐)are inaccessible microstates.One of the most 

fundamental postulates of statistical mechanics is that:All accessible microstates 

corresponding to possible macrostates are equally probable.In other words, this states that the 

probability of finding the phase point in any one region is identical with that for any other 

region of equal volume, provided the regions correspond equally well with the given 

conditions. Thus, this postulate of equal a priori probability implies that the probability of 

occurrence of a given macrostate is proportional to the number of microstates that correspond 

to that macrostate.The number of microstates corresponding to a given macrostate is called 

the thermodynamic probability of the macrostate.Hence, the probability that the ensemble 

will possess energy 𝐸is proportional to Ω(𝐸), i.e., 

 

𝑃(𝐸) = 𝐶 Ω(𝐸) 
 

Where𝐶= constant of proportionality and Ω(𝐸)=thermodynamic probability 

Importance and Applications 

The concepts of macrostates and microstates are essential for: 

• Understanding entropy and equilibrium, 

• Deriving thermodynamic laws, 

• Analyzing fluctuations, 

• Studying phase transitions, 

• Developing quantum statistical mechanics. 

They form the conceptual foundation of statistical physics. 

Limitations of microstate and macrostate 

Microstate: 

• Describes exact positions/momenta of all particles i.e impractical for large 

systems(too much info) 
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• Quantum effects(uncertainty) make precise tracking hard 

• Macrostate: 

• Doesn’t give microscopic details (many microstates→ same macrostate) 

• Assumes equilibrium (doesn’t describe non-equilibrium systems well) 

 

Conclusion 

Macrostates and microstates provide the fundamental framework through which statistical 

mechanics connects microscopic dynamics with macroscopic thermodynamic behavior. A 

macrostate represents an incomplete but practical description of a system, while microstates 

provide a complete microscopic specification. The enormous number of microstates 

associated with equilibrium macrostates explains the statistical nature of thermodynamic laws 

and the tendency toward equilibrium. Through Boltzmann’s entropy formula, the concepts of 

macrostates and microstates acquire profound physical significance, making them 

indispensable in the understanding of equilibrium and irreversible processes. 

 

3.3 SUMMARY 

 

The equipartition theorem states that in thermal equilibrium, each quadratic degree of 

freedom in a system's energy contributes an average of
1

2
kBT, where kB  is Boltzmann's 

constant and T is temperature. This principle explains heat capacities: monatomic gases have 

three translational degrees, yielding 
3

2
kBT per molecule, while diatomic gases add rotational 

freedoms for higher values. 

 

Microstates and Macrostates 

A macrostate describes observable properties like energy, volume, and particle number, while 

microstates are specific atomic configurations yielding that macrostate. Many microstates 

correspond to one macrostate; statistical mechanics averages over them assuming equal a 

priori probabilities in isolated systems.  

 

3.4 TECHNICAL TERMS 

 

Equipartition of energy theorem 

Macrostates and Microstates 

 

3.5 SELF ASSESSMENT QUESTIONS 

 

1. Explain about the Equipartition of energy theorem 

2. Write about  the Macrostates and Microstates 

 

3.7 SUGGESTED READINGS 

 

1. Statistical and Thermal Physics by S. Lokanadhan and R.S. Gambhir (PHI). 

2. Statistical Mechanics: Theory and applications by S.K. Sinha 

3. Fundamentals of Statistical and Thermal Physics by F. Reif 

4. Statistical Mechanics by Gupta and Kumar, Pragati Prakashan Pub. Meerut. 

5.   Statistical Mechanics by Satya Prakash 

 

Prof. Ch. Linga Raju 



 

 

LESSON-4 

PARTITION FUNCTION FOR CANONICAL AND 

MICRO CANONICAL ENSEMBLE 
 

AIM AND OBJECTIVE 

Aim 

The aim of studying the partition function in canonical and microcanonical ensembles is to 

provide a mathematical framework that connects the microscopic states of a system to its 

macroscopic thermodynamic properties, such as energy, entropy, and free energy. 

 

Objectives 

Canonical Ensemble Partition Function 

• To calculate the probability of a system occupying a particular energy state at 

fixed N, V, and T. 

• To determine thermodynamic quantities like internal energy, Helmholtz free 

energy, entropy, and heat capacity. 

• To understand the role of energy exchange with a heat reservoir. 

• To derive Boltzmann distribution and link microscopic behavior to macroscopic 

properties. 

 

Microcanonical Ensemble Partition Function 

• To describe isolated systems with fixed N, V, and total energy E. 

• To calculate the number of accessible microstates at a given energy. 

• To evaluate entropy, temperature, and pressure of an isolated system. 

• To establish the foundation for statistical mechanics in systems where energy is 

strictly conserved. 

 

STRUCTURE OF THE LESSON: 

 

4.1CLASSICAL IDEAL GAS IN MICRO CANONICAL ENSEMBLE 

4.2PARTITION FUNCTION FOR MICRO CANONICAL ENSEMBLE  

4.3GIBB’S PARADOX 

4.4PARTITION FUNCTION FOR CANONICAL ENSEMBLE 

4.4 SUMMARY 

4.5 TECHNICAL TERMS 

4.6 SELF ASSESSMENT QUESTIONS 

4.7 SUGGESTED READINGS 

 

4.1 CLASSICAL IDEAL GAS IN MICRO CANONICAL ENSEMBLE 

 

The microcanonical ensemble is one of the statistical ensembles used to describe 

thermodynamic systems, and it corresponds to an isolated system that does not exchange 

energy, particles, or volume with its surroundings. In this ensemble, all accessible microstates 

of the system are equally probable, and the total energy of the system is fixed. 
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Classical Ideal Gas in the Microcanonical Ensemble 

 

Statistical entropy for an n particle system 

Let us consider a system which consists of n point particles in the volume V and energy   δE  

around its total energy E. 

The corresponding volume of 6N dimensional phase space is given by 

Δp= ∫dq₁ dq₂ … dq₃N ∫dp₁ dp₂ … dp₃N   (1) 

∫dq₁ dq₂ … dq₃N = ∫dx₁ dy₁ dz₁ ∫dx₂ dy₂ dz₂ … ∫d𝑥𝑛 d𝑦𝑛 d𝑧𝑛 

                = V · V · V … V 

                = Vⁿ 

Therefore, 

Δ𝑝𝑇= Vⁿ ∫dp₁ dp₂ … dp₃N   (2) 

From Eq. (2) the momentum integral is evaluated subject to the following constraint imposed 

by the microcanonical ensemble: 

E − δE ≤ 𝐸𝑟 ≤ E 

Where 

𝐸𝑟 = ∑ (pᵢ² / 2m)   3𝑛
𝑖=1     for i = 1 to 3N 

i.e., 

E − δE ≤ ∑ (pᵢ² / 2m)   ≤ E 3𝑛
𝑖=1  

 

The integral in Eq. (2) is equal to the volume contained between a 3N-dimensional hyper 

sphere of radius (2mE)¹/2 

and  3N-dimensional hyper sphere of radius [2m(E − δE)]¹/2. 

The volume of an N-dimensional hyper sphere of radius R is given by: 

 

𝑉𝑛(R) = 𝐶𝑛 Rⁿ 

where, 

𝐶𝑛 = 
𝜋

𝑛
2⁄

√
𝑛+2

2

=
𝜋

𝑛
2⁄

√
𝑛

2

 

For a 3-dimensional sphere is given by, 

V₃(R) = (4/3)πR³ 

V₃(R) C₃ R³ where C₃   = ( 4/3)𝜋 

This can also be written as: 
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C₃ = 
𝜋

3
2⁄

√
3

2
+1

              ……….. (3) 

 

In general, 

𝐶𝑛= = 
𝜋

𝑛
2⁄

√
𝑛

2
+1

 

Therefore, 

 

𝐶3𝑛 = 
𝜋

3𝑛
2⁄

√
3𝑛

2
+1

 

𝐶3𝑛 = 
𝜋

3𝑛
2⁄

√
3𝑛

2
+1

𝑉3𝑛(𝑅) = 𝐶3𝑛𝑅3𝑛 

Hence, the volume of a 3N-dimensional hyper sphere of radius (2mE)  is: 

𝐶3𝑛 =  
𝜋

3𝑛
2⁄

(
3𝑛

2
)!

(2𝑚𝐸)
3𝑛

2⁄     … … … … … …   (4) 

Similarly, the volume of a 3N-dimensional hyper sphere of radius [2m(E − δE)]1/2is: 

𝑉3𝑛 =
𝜋

3𝑛
2⁄

(
3𝑛

2
)!

[2𝑚(E −δE)]1/2   (5) 

 

Equations (4) -(5) give the momentum space, i.e., the integral in Eq. (2). 

 

∫dp₁ dp₂ … d𝑝3𝑛 

=  
𝜋

3𝑛
2⁄

(
3𝑛

2
)!

(2𝑚𝐸)
3𝑛

2⁄ − [2𝑚(E − δE)]3n/2]  

=
𝜋

3𝑛
2⁄

(
3𝑛

2
)!

(2𝑚𝐸)
3𝑛

2⁄ [1 − (1 −
δE

𝐸
)]3n/2   (6) 

 

For a macroscopic system, where 3n ≈ 1023 and 

 

(3n/2) δE>> E 

 

We know that: 

(1 − x)n = 1 − nx + 
𝑛(𝑛−1)

2!
𝑥2+…… 

 

For sufficiently large n, 

 

(1 − x)n =1 − 𝑛𝑥 +
𝑛2𝑥2

2!
−

𝑛3𝑥3

3!
+ 𝑒−𝑛𝑥 

 

Using Eq. (6): 
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∫dp₁ dp₂ … d𝑝3𝑛 

=  
𝜋

3𝑛
2⁄

(
3𝑛

2
)!

(2𝑚𝐸)
3𝑛

2⁄ − [1 − e 
−𝛿𝐸

𝐸

3𝑛

2
]  

=  
𝜋

3𝑛
2⁄

(
3𝑛

2
)!

(2𝑚𝐸)
3𝑛

2⁄              (7) 

Macroscopic system that is the 3n ≈ 1023 and (3n/2) δE>> E 

we know that 

(1 − x)n = 1 − nx + 
𝑛(𝑛−1)

2!
𝑥2+…… 

where ‘n’ is sufficiently large 

(1 − x)n=1 − 𝑛𝑥 +
𝑛2𝑥2

2!
−

𝑛3𝑥3

3!
+ ⋯ … … … . 𝑒−𝑛𝑥 

 

From equation (7) 

∫dp₁ dp₂ … d𝑝3𝑛= 
𝜋

3𝑛
2⁄

(
3𝑛

2
)!

(2𝑚𝐸)
3𝑛

2⁄ [1 − 𝑒
−𝑑𝐸

𝐸

3𝑛

2 ] 

=
𝜋

3𝑛
2⁄

(
3𝑛

2
)!

(2𝑚𝐸)
3𝑛

2⁄  

From equation (2) 

ΔP = Vⁿ · 
𝜋

3𝑛
2⁄

(
3𝑛

2
)!

(2𝑚𝐸)
3𝑛

2⁄    (8) 

The statistical entropy σ of a system is defined as: 

σ = 𝑙𝑜𝑔𝑒 ΔP 

=  𝑙𝑜𝑔𝑒  [ Vⁿ · 
𝜋

3𝑛
2⁄

(
3𝑛

2
)!

(2𝑚𝐸)
3𝑛

2⁄  

= n 𝑙𝑜𝑔𝑒  V (2𝜋𝑚𝐸)
3𝑛

2⁄ − 𝑙𝑜𝑔𝑒
3𝑛

2
!    —— (9) 

 

Using Stirling’s approximation: 

𝑙𝑜𝑔𝑒 n! ≈ n 𝑙𝑜𝑔𝑒 n − n 

Applying Stirling’s approximation to Eq. (9): 

σ = n 𝑙𝑜𝑔𝑒𝑉(2𝜋𝑚𝐸)
3𝑛

2⁄ −
3𝑛

2
𝑙𝑜𝑔𝑒

3𝑛

2
+

3𝑛

2
 

= n  𝑙𝑜𝑔𝑒 [ V (4𝜋𝑚𝐸)
3

2⁄ (
𝐸

𝑛
)

3
2⁄ ]

3𝑛

2
  —— (10) 

𝜎 = 𝑙𝑜𝑔𝑒∆𝑝 

𝜎 = 𝑙𝑜𝑔𝑒

∆𝑇

ℎ3𝑛
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Also, 

𝜎 = 𝑛𝑙𝑜𝑔𝑒 [
𝑉(

4𝜋𝑚

3
)

3
2⁄ (

𝐸

𝑛
)

3
2⁄

ℎ3𝑛 ] +
3𝑛

2
 

=  𝑛𝑙𝑜𝑔𝑒 [𝑉(
4𝜋𝑚

3ℎ2
)

3
2⁄ (

𝐸

𝑛
)

3
2⁄ ] +

3𝑛

2
 —— (11) 

However, Eq. (10) does not satisfy the additive property of volume is. 

Hence, the corrected expression is: 

σ =   𝑙𝑜𝑔𝑒[
∆𝑇

ℎ3𝑛𝑛!
] 

𝜎 = 𝑛𝑙𝑜𝑔𝑒 [𝑉(
4𝜋𝑚

3ℎ2
)

3
2⁄ (

𝐸

𝑛
)

3
2⁄ ] +

3𝑛

2
− 𝑛𝑜𝑙𝑔𝑛 + 𝑛 

𝜎 = 𝑛𝑙𝑜𝑔𝑒 [𝑉
𝑛⁄ (

4𝜋𝑚

3ℎ2 )
3

2⁄ (
𝐸

𝑛
)

3
2⁄ ] +

5𝑛

2
       …………(12) 

which is the statistical entropy for ‘n’ particle system 

 

4.2PARTITION FUNCTION FOR MICRO CANONICAL ENSEMBLE  

 

In the microcanonical ensemble, a system is characterized by: 

• Fixed energy : E 

• Fixed number of particles : N 

• Fixed volume : V 

There is no exchange of energy or particles with the surroundings. 

Therefore, all accessible microstates having energy within a very small energy window 

[E,E+δE] are equally probable. 

1. Definition of Microcanonical Partition Function 

The microcanonical “partition function’’ is the density of states or multiplicity: 

Ω(E, V, N) = Number of microstates with energy between E and E + δE 

This is sometimes called the structure function or state count. 

For classical systems, it is written as: 

 

Ω(E, V, N) =
1

h3n N!     H(p, q) ∈ [E, E + δE]    d3N q d3N p 

Often expressed using the Dirac delta function: 

Ω(E, V, N) =
1

h3n N!   δE −   H(p, q)  d3N q d3N p 

 

2. Entropy in Microcanonical Ensemble 

Entropy is defined using Boltzmann’s formula: 
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𝑆(𝐸, 𝑉, 𝑁) = 𝑘𝐵𝑙𝑛Ω(E, V, N) 

This entropy leads to all thermodynamic quantities. 

For example: 

Temperature 
1

𝑇
= (

𝜕𝑆

𝜕𝐸
)𝑉,𝑁 

Pressure 
𝑃

𝑇
= (

𝜕𝑆

𝜕𝑉
)𝐸,𝑁 

 

Chemical Potential 

−
𝜇

𝑇
= (

𝜕𝑆

𝜕𝑁
)𝐸,𝑉 

 

 

3. Relation to Other Ensembles 

While the canonical ensemble uses: 

𝑍 = ∑ 𝑒−𝛽𝐸𝑖

𝑖

 

the microcanonical ensemble uses: 

Ω(E)  

Instead of probability weights𝑒−𝛽𝐸 , microcanonical ensemble assigns equal probability to all 

states: 

𝑃𝑖 = {

1

Ω(E)
           𝐸𝑖 = 𝐸    

0                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

4. Example: Ideal Gas (Microcanonical) 

For a 3D ideal gas: 

Ω(𝐸, 𝑉, 𝑁) =
𝑉𝑁

h3n N!

(2𝜋𝑚𝐸)
3𝑁

2⁄

Γ(3𝑁
2⁄ + 1)

 

This leads to: 

𝑆 = 𝑘𝐵  𝑁 ln
𝑉

𝑁
+

3𝑁

2
ln 𝐸 +

3𝑁

2
ln(2𝜋𝑚) − ln h3n − ln 𝑁! 

which becomes the Sackur–Tetrode equation after using Stirling's approximatio 

 

4.3 GIBB’S PARADOX 

Introduction 

Gibbs’ Paradox arises in classical thermodynamics and statistical mechanics when 

calculating the entropy of mixing of two ideal gases. According to classical theory, mixing 

two identical gases results in an increase in entropy, which is physically incorrect because 

no real change occurs when identical gases mix. This paradox highlights the limitations of 

classical statistical mechanics and the need to account for the indistinguishability of 

particles in quantum mechanics. Resolving Gibbs’ paradox leads to the correct formulation 
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of entropy for identical particles, forming the foundation of quantum statistical 

mechanics. 

The partition function of a perfect gas is given by 

𝑍 =
𝑉

ℎ3
(2𝜋𝑚𝑘𝑇)3/2 (1) 

From statistical thermodynamics, the entropy is expressed as 

𝑆 = 𝑁𝑘𝑙𝑜𝑔 𝑍 +
3

2
𝑁𝑘 (2) 

Substituting the value of 𝑍from equation (1), we get 

𝑆 = 𝑁𝑘𝑙𝑜𝑔 𝑒[
𝑉

ℎ3
(2𝜋𝑚𝑘𝑇)3/2] +

3

2
𝑁𝑘 (3a) 

This expression can also be rewritten as 

𝑆 = 𝑁𝑘[𝑙𝑜𝑔 𝑒 𝑉 +
3

2
𝑙𝑜𝑔 𝑒 𝑚 +

3

2
𝑙𝑜𝑔 𝑒 𝑇 + 𝐶] (3b) 

Where 𝐶is a constant term that includes the fixed factors ℎand 𝑘. 

Non-Additivity and the Gibb’s Paradox: The entropy derived from the above equation does 

not satisfy the additive property of entropy.Consequently, this leads to paradoxical results, 

which is known as the Gibb’s Paradox.To illustrate this, consider two systems, denoted by 

indices ‘a’ and ‘b’, held at the same temperature: 

𝑇𝑎 = 𝑇𝑏 = 𝑇 

and separated by a partition as shown in Fig. 5.2  

 

If the particles of the two systems are different, then using equation (3b), the entropies of 

systems ‘a’ and ‘b’ are given respectively by: 

𝑆𝑎 = 𝑁𝑎𝑘[𝑙𝑜𝑔 𝑒 𝑉𝑎 +
3

2
𝑙𝑜𝑔 𝑒 𝑚𝑎 +

3

2
𝑙𝑜𝑔 𝑒 𝑇 + 𝐶] 

and 

𝑆𝑏 = 𝑁𝑏𝑘[𝑙𝑜𝑔 𝑒 𝑉𝑏 +
3

2
𝑙𝑜𝑔 𝑒 𝑚𝑏 +

3

2
𝑙𝑜𝑔 𝑒 𝑇 + 𝐶] 

For the two systems shown in Fig. 7.5, the entropies are 
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𝑆𝑎 = 𝑁𝑎𝑘[𝑙𝑜𝑔 𝑈𝑎 +
3

2
𝑙𝑜𝑔 𝑚𝑎 +

3

2
𝑙𝑜𝑔 𝑇 + 𝐶1] (4a) 

𝑆𝑏 = 𝑁𝑏𝑘[𝑙𝑜𝑔 𝑈𝑏 +
3

2
𝑙𝑜𝑔 𝑚𝑏 +

3

2
𝑙𝑜𝑔 𝑇 + 𝐶1] (4b) 

Where 𝑁𝑎 , 𝑚𝑎, 𝑉𝑎refer respectively to the number of particles, the mass of each particle, and 

the volume of system ‘a’; and 𝑁𝑏 , 𝑚𝑏 , 𝑉𝑏refer to the corresponding quantities for system 

‘b’.Since entropy is an extensive quantity, it must satisfy the additive property. 

If the two gases are allowed to mix freely by removing the partition, the total entropy of the 

combined system should be 

𝑆𝑎𝑏 = 𝑆𝑎 + 𝑆𝑏 = 𝑁𝑎𝑘[𝑙𝑜𝑔 𝑉𝑎 +
3

2
𝑙𝑜𝑔 𝑚𝑎 +

3

2
𝑙𝑜𝑔 𝑇 + 𝐶] +  

𝑁𝑏𝑘 [𝑙𝑜 𝑔 𝑉𝑏 +
3

2
𝑙𝑜 𝑔 𝑚𝑏 +

3

2
𝑙𝑜 𝑔 𝑇 + 𝐶]                  (5)  

If the particles of the two systems are identical, and for convenience we take 

𝑉𝑎 = 𝑉𝑏 = 𝑉and 𝑁𝑎 = 𝑁𝑏 = 𝑁, the entropy of each individual system is 

𝑆 = 𝑁𝑘[𝑙𝑜𝑔 𝑉 +
3

2
𝑙𝑜𝑔 𝑚 +

3

2
𝑙𝑜𝑔 𝑇 + 𝐶] (6) 

Then the combined entropy would be 

𝑆𝑎𝑏 = 𝑆𝑎 + 𝑆𝑏 = 2𝑁𝑘[𝑙𝑜𝑔 𝑉 +
3

2
𝑙𝑜𝑔 𝑚 +

3

2
𝑙𝑜𝑔 𝑇 + 𝐶] (7) 

If the partition is removed so that the molecules of the gas can mix freely, the total volume 

becomes 2𝑉, and the total number of particles becomes 2𝑁.Substituting these into equation 

(3b) for entropy, we have 

𝑆𝑎𝑏 = 2𝑁𝑘[𝑙𝑜𝑔 2𝑉 +
3

2
𝑙𝑜𝑔 𝑚 +

3

2
𝑙𝑜𝑔 𝑇 + 𝐶] 

⇒ 𝑆𝑎𝑏 = 2𝑁𝑘[𝑙𝑜𝑔 𝑉 +
3

2
𝑙𝑜𝑔 𝑚 +

3

2
𝑙𝑜𝑔 𝑇 + 𝐶] + 2𝑁𝑘𝑙𝑜𝑔 2 

𝑆𝑎𝑏 = 𝑆𝑎 + 𝑆𝑏 + 2𝑁𝑘𝑙𝑜𝑔 2 (8) 

Equation (8) is not consistent with (7); it contains an extra term 2𝑁𝑘𝑙𝑜𝑔 2. 

This indicates that when two identical gases are mixed, the entropy increases by an 

unaccountable amount 2𝑁𝑘𝑙𝑜𝑔 2, even though no real physical change has occurred.This 

additional, non-physical entropy is known as the entropy of mixing, and the contradiction it 

produces is the Gibb’s Paradox.If we used equation (3) directly for entropy, entropy would 

appear non-extensive, since entropy (being an extensive thermodynamic function) should be 

additive for identical subsystems. 
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4.4 PARTITION FUNCTION FOR CANONICAL ENSEMBLE 

1. Canonical Ensemble Basics 

A canonical ensemble describes a system that is: 

• In thermal equilibrium with a heat bath 

• Has fixed number of particles N, volume V, and temperature T 

• Energy is not fixed; the system exchanges energy with the reservoir 

The fundamental probability postulate: 

 𝑃𝑖 ∝  e−β𝐸𝑖 

where 

𝛽 =
1

𝑘𝐵𝑇
 

2. Definition of the Canonical Partition Function Z 

The canonical partition function normalizes the Boltzmann probabilities: 

 𝑍 = ∑ e−β𝐸𝑖
𝑖  

For continuous energy levels or phase space integrals, 

𝑍 =
1

h3n N! e−β𝐻(𝑝,𝑞)   d3N p d3N q 

3. Probability of the System Being in State i 

𝑃𝑖 =
e−β𝐸𝑖

𝑍
 

4. Helmholtz Free Energy from Partition Function 

The Helmholtz free energy is: 

𝐹 = −𝑘𝐵𝑇 ln 𝑍 

From this, all thermodynamic quantities follow. 

5. Mean Energy 

< 𝐸 >= −
𝜕

𝜕𝛽
ln 𝑧 

6. Entropy 

𝑆 = −(
𝜕𝐹

𝜕𝑇
)𝑉 

 

Or directly using Z: 

𝑆 = 𝑘𝐵(ln 𝑍 + β⟨E⟩) 

7. Heat Capacity at Constant Volume 

  

𝐶𝑉 = (
𝜕 < 𝐸 >

𝜕𝑇
)𝑉 
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Another form: 

𝐶𝑉 = 𝑘𝐵𝛽2 < 𝐸2 >  − < 𝐸2 > 

8. Example: Canonical Partition Function of a Single Harmonic Oscillator 

𝑍 = ∑ e−βħω(n+
1

2
)

∞

𝑛=0

 

Geometric series: 

𝒁 =
e−βħω/2

1 − e−βħω/
 

 

4.5 SUMMARY 

 

The canonical partition function encodes all equilibrium properties of a system at fixed 

temperature, volume, and particle number. In the canonical ensemble, a system is in thermal 

contact with a heat bath at temperature T, so its energy can fluctuate while N and V remain 

fixed. Gibbs paradox arises when treating identical particles as distinguishable in classical 

entropy calculations, leading to an unphysical entropy increase upon mixing identical gases. 

It appears as a discontinuity: mixing different gases gives extra entropy, but naively mixing 

the same gas also gives the same entropy change, contradicting physical intuition. The 

resolution is to recognize particle indistinguishability and divide the classical partition 

function by N!, removing the overcounting of microstates. This modification makes the 

entropy extensive and eliminates the paradox, and is naturally justified in quantum statistical 

mechanics. 

 

4.6 TECHNICAL TERMS 

 

Classical ideal gas in micro canonical ensemble 

Partition function for micro canonical ensemble 

Gibb’s paradox 

Partition function for Canonical ensemble 

 

4.7 SELF ASSESSMENT QUESTIONS 

 

1. Explain about the Partition function for micro canonical ensemble 

2. Briefly explain about the Gibb’s paradox 

3. Write about the Partition function for Canonical ensemble 

4. Explain about the Classical ideal gas in micro canonical ensemble 

 

4.8 Suggested Readings 

 

1. Statistical and Thermal Physics by S. Lokanadhan and R.S. Gambhir (PHI). 

2. Statistical Mechanics: Theory and applications by S.K. Sinha 

3. Fundamentals of Statistical and Thermal Physics by F. Reif 

4. Statistical Mechanics by Gupta and Kumar, Pragati Prakashan Pub. Meerut. 

5.    Statistical Mechanics by Satya Prakash 
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LESSON-5 

THERMO DYNAMICAL FUNCTION FOR 

CANONICAL AND GRAND CANONICAL 

ENSEMBLE 
 

AIM AND OBJECTIVE 

 

Aim 

The aim of studying thermodynamical functions in canonical and grand canonical 

ensembles is to connect microscopic statistical behavior of particles to macroscopic 

thermodynamic quantities (like energy, entropy, and free energy) and to provide a 

mathematical framework for predicting equilibrium properties of systems in contact 

with a reservoir. 

 

Objectives 

Canonical Ensemble 

• To derive thermodynamic functions such as Helmholtz free energy (F), internal 

energy (U), entropy (S), and specific heat (C) using the partition function (Z). 

• To relate microscopic energy states to macroscopic observables at fixed N, V, and 

T. 

• To calculate probabilities of occupation of energy levels and their contribution to 

thermodynamic quantities. 

• To provide a framework for studying thermal equilibrium properties of closed 

systems. 

 

Grand Canonical Ensemble 

• To derive thermodynamic functions such as Grand potential (Φ or Ω), average 

particle number (<N>), entropy (S), and pressure (P) using the grand partition 

function (Ξ). 

• To account for energy and particle exchange with a reservoir (variable N) at fixed 

μ, V, and T. 

• To study open systems, including derivation of Bose–Einstein and Fermi–Dirac 

distributions. 

• To connect microscopic statistical behavior with macroscopic thermodynamic 

properties in systems with fluctuating particle numbers. 

 

STRUCTURE OF THE LESSON: 

 

5.1 THERMO DYNAMICAL FUNCTION FOR CANONICAL ENSEMBLE  

5.2 PARTITION FUNCTION FOR GRAND CANONICAL ENSEMBLE 

5.3 THERMO DYNAMICAL FUNCTION FOR GRAND CANONICAL ENSEMBLE 

5.4 SUMMARY 

5.5 TECHNICAL TERMS 

5.6 SELF ASSESSMENT QUESTIONS 

5.7 SUGGESTED READINGS 
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5.1 THERMO DYNAMICAL FUNCTION FOR CANONICAL ENSEMBLE  

 

Introduction 

In statistical mechanics, thermodynamical functions describe the macroscopic properties of a 

system in equilibrium in terms of microscopic statistical quantities. The canonical ensemble 

is particularly important because it represents a system in thermal equilibrium with a heat 

reservoir at a fixed temperature. In this ensemble, the system is allowed to exchange energy 

with the surroundings, while the volume and number of particles remain constant. As a result, 

the energy of the system fluctuates, but the temperature is fixed. 

 

The canonical ensemble provides a powerful framework for deriving all thermodynamical 

functions from a single central quantity—the canonical partition function. Once the 

partition function is known, quantities such as internal energy, entropy, free energy, pressure, 

and heat capacity can be obtained systematically. This makes the canonical ensemble one of 

the most widely used tools in equilibrium statistical mechanics. 

 

1. Helmholtz free energy F 

F(T, V, N) = −kBT ln Z 

(Generates equilibrium thermodynamics at fixed (T,V,N.) 

2. Internal energy U (mean energy) 

𝑈 =< 𝐸 >= −
𝜕

𝜕𝛽
ln 𝑍 = −

𝜕 ln 𝑍

𝜕β
 

Equivalently 𝑈 = −
𝜕 ln 𝑍

𝜕β
  or U = −

𝜕

𝜕𝛽
ln 𝑍 

Using 𝑈 = 𝐹 − 𝑇 (
𝜕𝐹

𝜕T
),V,N 

 

3. Entropy S 

𝑆 = (
𝜕𝐹

𝜕T
),V,N = kB(ln Z + βU) 

(Statistical form: 𝑆 = −kB ∑ P ii ln P i        with  P i = e−βEi/Z  

4. Pressure P 

𝑃 = −(
𝜕𝐹

𝜕V
),T,N 

(Equivalent to the mechanical average of −
𝜕𝐻

𝜕V
 when expressed from phase-space.) 

 

5. Chemical potential μ 

For systems where N is variable you normally switch to grand canonical, but one can define: 

μ = (
𝜕𝐹

𝜕N
),T,V 

(Useful when treating N as continuous or when comparing free energies of systems with 

different N.) 

 

6. Heat capacity at constant volume 𝑪𝑽 

𝐶𝑉 = (
𝜕𝑈

𝜕T
)V,N =

∂

∂T
=

𝜕 ln 𝑍

𝜕β
 

Statistical fluctuation form: 

𝐶𝑉 =
< 𝐸 >2−< 𝐸 >2

kBT2
→ 𝑉𝑒𝑟(𝐸) = (∆𝐸)2 = kBT2𝐶𝑉 
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7. Higher derivatives / response functions (quick list) 

• Isothermal compressibility kT can be expressed from ∂P/∂V at constant T. 

• Thermal expansion α =
1

V
(

𝜕𝑉

𝜕T
)P — normally computed from free energies and 

Maxwell relations. 

 

8. Useful identities (compact) 

𝐹 = −kBT ln Z 

𝑈 = −
𝜕

𝜕𝛽
ln 𝑍 

𝑆 = kB(ln Z + βU) 

𝑃 = −(
𝜕𝐹

𝜕V
),T,N 

μ = (
𝜕𝐹

𝜕N
),T,V 

𝐶𝑉 =
𝜕𝑈

𝜕T
−

Var(E)

kBT2
 

 

Limitations of the Canonical Ensemble 

While powerful, the canonical ensemble has limitations: 

• It assumes thermal equilibrium, 

• It does not describe isolated systems, 

• It is less suitable for systems with particle exchange. 

Nevertheless, in the thermodynamic limit, results obtained are equivalent to those of other 

ensembles. 

 

Conclusion 

The canonical ensemble provides a systematic and elegant framework for deriving 

thermodynamical functions from microscopic principles. Through the canonical partition 

function, all macroscopic quantities—internal energy, entropy, pressure, heat capacity, 

chemical potential, and free energy—can be obtained in a unified manner. The Helmholtz 

free energy emerges as the central thermodynamic potential, governing equilibrium and 

stability at constant temperature and volume. The canonical ensemble thus plays a pivotal 

role in connecting microscopic statistical behavior with macroscopic thermodynamics and 

remains a cornerstone of equilibrium statistical mechanics. 

 

5.2 PARTITION FUNCTION FOR GRAND CANONICAL ENSEMBLE 

 

Introduction 

In statistical mechanics, the grand canonical ensemble is a framework used to describe 

systems that can exchange both energy and particles with a reservoir. Unlike the canonical 

ensemble, where only energy fluctuates and particle number is fixed, the grand canonical 

ensemble allows for fluctuations in both energy (E) and particle number (N), while 

temperature (T), volume (V), and chemical potential (μ) remain constant. 

 

This ensemble is particularly useful for systems like gases in chemical equilibrium, quantum 

systems with variable particle numbers (e.g., photons, electrons in metals), and open systems 

in contact with a reservoir. The central quantity of the grand canonical ensemble is the grand 

canonical partition function, which plays a fundamental role in deriving all 

thermodynamical quantities of interest. 
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Grand Canonical Ensemble: Partition Function 

In the grand canonical ensemble, a system can exchange both energy and particles with a 

reservoir. 

The controlling variables are: 

• Temperature: T 

• Chemical potential: μ 

• Volume: V 

The natural thermodynamic potential is the grand potential 

Ω = −kBT ln Z 

 

1. Probability of a Microstate 

For a microstate with energy E and particle number N, the probability is: 

P(E, N) =
e−β(E−μN)

Z
 

Where 

β =
1

kBT
 

 

2. Definition of the Grand Partition Function 

The grand canonical partition function (also called grand partition function) is: 

Z(T, V, μ) = ∑ e−β(EN,i−μN)∞
N=0 states   

or grouping states at fixed N: 

𝑍 =  ∑ eβμNZN
∞
N=0 (T,N)  

 

Where 

ZN is the canonical partition function for N particles. 

 

3. Relation to Thermodynamics 

The grand potential: 

Ω = −kBT ln Z 

 

From this, all thermodynamic quantities follow: 

Average particle number 

< 𝑁 >=  kBT (
𝜕 ln 𝑍

𝜕μ
)T,V 

Average energy 

< 𝐸 >=  
𝜕 ln 𝑍

𝜕𝛽
+ μ<N> 

Pressure 

𝑃 = (
𝜕Ω

𝜕V
)T,Ω 

 

4. Useful Special Case: Non-interacting Particles 

For an ideal quantum gas with single-particle energy levels ϵ𝑖: 

Grand partition function factorizes: 

• Bosons: 

𝑍 = ∏
1

1 − e−β(ϵi−μ)

𝑖

 

• Fermions: 
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𝑍 = ∏ 1 + e−β(ϵi−μ)

𝑖

 

These lead directly to the Bose-Einstein and Fermi-Dirac distributions. 

Advantages of the Grand Canonical Ensemble 

• Directly handles particle number fluctuations. 

• Simplifies calculations for open systems and quantum gases. 

• Generates thermodynamic quantities systematically via derivatives of ln⁡Ξ\ln 

\XilnΞ. 

• Facilitates study of phase transitions, chemical reactions, and adsorption phenomena. 

 

Limitations 

• Assumes equilibrium with a large reservoir. 

• Less intuitive than canonical ensemble for closed systems. 

• May require careful handling of divergent sums in Bose systems at low temperatures. 

 

Conclusion 

The grand canonical partition function is the central quantity in the grand canonical 

ensemble. It generalizes the canonical partition function to systems that exchange both 

energy and particles with a reservoir. All thermodynamic functions—grand potential, internal 

energy, entropy, particle number, pressure, and fluctuations—can be derived systematically 

from Ξ\XiΞ. The grand canonical ensemble is essential for understanding quantum gases, 

open systems, and chemical equilibria. Its flexibility and generality make it a cornerstone of 

modern statistical mechanics, providing a unified framework for connecting microscopic 

states with macroscopic thermodynamic behavior. 

 

5.3 THERMO DYNAMICAL FUNCTION FOR GRAND CANONICAL ENSEMBLE 

 

Introduction 

In statistical mechanics, thermodynamical functions are macroscopic quantities derived 

from microscopic statistical behavior, providing a bridge between atomic-scale physics and 

observable thermodynamic properties. The grand canonical ensemble is a powerful 

framework used to describe systems that can exchange both energy and particles with a 

reservoir. It is characterized by fixed temperature (T), volume (V), and chemical potential 

(μ), while energy (E) and particle number (N) fluctuate. 

 

This ensemble is crucial for describing open systems, quantum gases, adsorption phenomena, 

chemical reactions, and systems where particle exchange is important. The central quantity in 

the grand canonical ensemble is the grand partition function, from which all thermo 

dynamical functions can be systematically derived. These functions include the grand 

potential, average energy, entropy, pressure, average particle number, and fluctuations, 

forming a complete thermodynamic description. 

 

Thermodynamic function for the Grand Canonical Ensemble 

Short answer: the fundamental thermodynamic potential is the grand potential 

Ω(T, V, μ)    = −kBT ln Z(T, V, μ) 

Where 

Z(T, V, μ) = ∑ e−β(E−μN)

N
 

 is the grand partition function and 𝛽 =
1

kBT
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Below is a compact, exam-ready list of useful relations and interpretations. 

 

1. Thermodynamic identity and Legendre transform 

The grand potential is the Legendre transform of the internal energy U with respect to S and 

N: 

Ω = U − TS − μN = F − μN 

where F=U−TS is the Helmholtz free energy. 

Differential form: 

dΩ = −S dT = P dV − N dμ 

This gives the natural derivatives: 

𝑆 = −(
𝜕Ω

𝜕𝑇
)𝑉,μ𝑃 = −(

𝜕Ω

𝜕𝑉
)𝑇,μ𝑁 = −(

𝜕Ω

𝜕μ
)𝑇,𝑉 

 

2. Relations to the grand partition function 

WriteΨ = ln Z  
 (the Massieu function / dimensionless potential). 

Then 

Ω = −kBTΨ 

Important expectation values: 

< 𝑁 >=
1

𝛽

𝜕Ψ

𝜕μ
= kBT(

𝜕 ln 𝑍

𝜕μ
)T,V 

< 𝐸 >=  −
𝜕Ψ

𝜕μ
+ μ<N>=(

𝜕 ln 𝑍

𝜕μ
) + μ < 𝑁 > 

 

The pressure is related to Ω by 

  Ω=−PV 

for homogeneous systems, so P=−Ω/V. 

 

3. Fluctuations (useful formulas) 

Particle-number fluctuations: 

𝑉𝑎𝑟(𝑁) =< (∆𝑁)2) =< 𝑁2 > −< 𝑁2 >=
𝜕 < 𝑁 >

𝜕(𝛽μ)
= kBT(

𝜕 < 𝑁 >

𝜕(μ)
)T,V 

Equivalently (using Ψ): 

𝑉𝑎𝑟(𝑁) =
𝜕2Ψ

𝜕(𝛽μ)2
=

1

𝛽2

𝜕2 ln Z

𝜕(μ)2
 

Energy fluctuations and cross-correlations can be obtained similarly from second derivatives 

of Ψ. 

 

4. Useful identities connecting thermodynamic quantities 

Ω = −kBT ln Z 𝐹 = Ω + μN                             U = Ω + TS + μN 

Entropy expressed from Ω: 

𝑆 = −(
𝜕Ω

𝜕𝑇
)𝑉,μ 

 

5. Example — ideal quantum gases (compact) 

For noninteracting particles with single-particle energies (𝜖𝑖) the grand partition function 

factorizes and one often writes Ψ = ln Z = ∑ ψii with single-level contributions: 

• Fermions: 

Ψ = ∑ ln 1 + e−β(ϵi−μ) Ω = −kBT                ∑ ln 1 + e−β(ϵi−μ)

ii
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• Bosons (assuming μ < min 𝜖𝑖 to avoid divergence): 

Ψ = − ∑ ln 1 − e−β(ϵi−μ) Ω = kBT                ∑ ln 1 − e−β(ϵi−μ)

ii
 

From these one derives Fermi–Dirac and Bose–Einstein occupation numbers: 

< 𝑛𝑖 >=
1

eβ(ϵi−μ)±1
    (+ for fremions,  - for bosons) 

 

5.4 SUMMARY 

 

In the canonical ensemble, the system exchanges heat with a reservoir at fixed temperature 

while keeping particle number and volume constant. The key thermodynamic potential is the 

Helmholtz free energy, derived from the partition function, which encodes probabilities of 

different energy states. From this, average internal energy, entropy, heat capacity at constant 

volume, and pressure emerge as ensemble averages, linking microscopic fluctuations to 

macroscopic properties like equilibrium behavior in closed systems. 

 

Grand Canonical Ensemble 

This ensemble allows particle exchange with a reservoir, fixing temperature, volume, and 

chemical potential. The grand potential serves as the central function, obtained from the 

grand partition function that sums over all possible particle numbers. It yields average 

particle number, energy, density fluctuations, and compressibility, ideal for open systems like 

gases or solutions where numbers vary. 

 

These ensembles connect statistical mechanics to thermodynamics: canonical for isolated 

exchanges of energy, grand canonical for matter too. Derivatives of potentials provide 

response functions, ensuring consistency with classical laws across scales.  

 

5.5 TECHNICAL TERMS 

 

Thermo dynamical function for Canonical ensemble 

Partition function for Grand canonical ensemble, 

Thermo dynamical function for Grand canonical ensemble 

 

5.6 SELF ASSESSMENT QUESTIONS 

 

1. Briefly explain about the Thermo dynamical function for Canonical ensemble 

2. Explain about the Partition function for Grand canonical ensemble 

3. Describe the Thermo dynamical function for Grand canonical ensemble 

 

5.7 SUGGESTED READINGS 

 

1. Statistical and Thermal Physics by S. Lokanadhan and R.S. Gambhir (PHI). 

2. Statistical Mechanics: Theory and applications by S.K. Sinha 

3. Fundamentals of Statistical and Thermal Physics by F. Reif 

4. Statistical Mechanics by Gupta and Kumar, Pragati Prakashan Pub. Meerut. 

5. Statistical Mechanics by Satya Prakash 
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LESSON-6 

ENERGY FLUCTUATION IN CANONICAL AND 

MICRO CANONICAL ENSEMBLE 

 
AIM AND OBJECTIVE 

 

Aim 

The aim of studying energy fluctuations in canonical and microcanonical ensembles is to 

understand the extent of energy variation around the mean value in a system at equilibrium 

and to quantify the connection between microscopic fluctuations and macroscopic 

thermodynamic properties. 

 

Objectives 

Canonical Ensemble 

• To calculate the mean energy (<E>) and variance (<ΔE²>) of a system in thermal 

equilibrium at fixed N, V, T. 

• To understand how energy fluctuates due to exchange with a heat reservoir. 

• To relate energy fluctuations to thermodynamic quantities like specific heat (CV). 

• To show that energy fluctuations decrease with increasing system size, making 

macroscopic systems appear stable. 

 

Microcanonical Ensemble 

• To study energy distribution in an isolated system with fixed N, V, and total energy 

(E). 

• To quantify the range of accessible energies consistent with the total energy 

constraint. 

• To connect fluctuations in energy with entropy and temperature. 

• To understand that energy fluctuations are minimal in large isolated systems, 

justifying the use of mean energy in thermodynamics 

 

STRUCTURE OF THE LESSON: 

 

6.1 ENERGY FLUCTUATION IN MICRO CANONICAL ENSEMBLE  

6.2 ENERGY FLUCTUATION IN CANONICAL ENSEMBLE 

6.3 DENSITY FLUCTUATION IN GRAND CANONICAL ENSEMBLE 

6.4 SUMMARY 

6.5 TECHNICAL TERMS 

6.6 SELF ASSESSMENT QUESTIONS 

6.7 SUGGESTED READINGS 

 

6.1 ENERGY FLUCTUATION IN MICRO CANONICAL ENSEMBLE 

Introduction 

Statistical mechanics bridges the microscopic world of atoms and molecules with 

macroscopic thermodynamics. Among the various ensembles in statistical mechanics, the 
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microcanonical ensemble represents an isolated system with fixed energy E, fixed volume 

V, and fixed number of particles N. This ensemble is the most fundamental because it 

embodies the idealized concept of an isolated system, where no energy or particles are 

exchanged with the surroundings. 

 

In the microcanonical ensemble, the system’s microstates are all those configurations 

consistent with the specified total energy. Since the system is isolated, energy is, in principle, 

constant; however, the distribution of energy among different degrees of freedom can 

fluctuate at the microscopic level. Studying energy fluctuations in the microcanonical 

ensemble provides insights into thermodynamic stability, heat capacity, and the validity of 

the thermodynamic limit. It also forms a foundation for understanding connections between 

other ensembles, such as the canonical ensemble. 

 

Energy Fluctuation in the Microcanonical Ensemble 

 

In the microcanonical ensemble: 

• Energy E is fixed 

• Volume V is fixed 

• Number of particles N is fixed 

• All accessible states with energy in [E, E+δE] are equally probable 

 

Therefore, energy does not fluctuate in this ensemble. 

Main Result 

ΔE = 0 (exactly) 

Since the microcanonical ensemble describes an isolated system, its energy is strictly 

constant, so: 

< 𝐸 >= 𝐸    < 𝐸2 >= 𝐸2 

Thus: 

< (Δ𝐸)2 >= 𝐸2 < 𝐸2 >= 𝐸2 

 

Why is this important? 

Even though the microcanonical ensemble has zero energy fluctuation 

the canonical ensemble does have energy fluctuations: 

< (Δ𝐸)2 >= 𝑘𝐵𝑇2𝐶𝑉 

Because of this, the canonical ensemble is an approximation to the microcanonical ensemble 

when the system is large. 

As N→∞: 
ΔE

𝐸
~

1

√𝑁
→ 0 

So the canonical ensemble becomes effectively microcanonical for macroscopic systems. 

In the microcanonical ensemble the entropy is: 

S(E, V, N) = kBlnΩ(E)  
where Ω(E) is the number of accessible microstates. 

Temperature is defined by: 
1

𝑇
= (

𝜕𝑆

𝜕𝐸
)𝑉,𝑁 

A second derivative appears when analyzing stability: 

 (
𝜕2𝑆

𝜕𝐸2
)𝑉,𝑁 < 0 



Centre for Distance Education  6.3  Acharya Nagarjuna University 

 

but no physical energy fluctuation exists, because the system energy is sharply fixed. 

 

Physical Interpretation 

Energy fluctuations in the microcanonical ensemble are: 

• Microscopic: Occur due to the redistribution of energy among different degrees of 

freedom. 

• Subsystem-specific: Only meaningful when considering a small part of a large 

isolated system. 

• Statistically predictable: Magnitude can be computed from the heat capacity. 

• Vanishing in the thermodynamic limit: Relative fluctuations decrease as system 

size increases. 

These features explain why macroscopic thermodynamic quantities appear stable even though 

microscopic motion is random. 

 

Importance 

Studying energy fluctuations in the microcanonical ensemble: 

1. Connects microscopic and macroscopic descriptions: Provides a statistical basis for 

temperature and heat capacity. 

2. Justifies the use of canonical ensemble: Subsystems behave canonically even in 

isolated systems. 

3. Describes thermodynamic stability: Large fluctuations indicate possible instabilities 

or phase transitions. 

4. Forms the basis for fluctuation–dissipation relations: Links response functions 

with microscopic fluctuations. 

5. Essential for small systems: In nanoscale physics, energy fluctuations become non-

negligible. 

 

Limitations 

• For the entire isolated system, energy fluctuation is zero. 

• Applicable mainly to large systems when considering subsystem fluctuations. 

• Requires careful interpretation for small systems, where relative fluctuations are 

significant. 

• The classical microcanonical ensemble does not account for quantum discreteness, 

which becomes important at low temperatures. 

 

Conclusion 

Energy fluctuations in the microcanonical ensemble provide deep insight into the statistical 

nature of thermodynamic quantities. While the total energy of an isolated system is strictly 

fixed, fluctuations in energy become meaningful when considering subsystems or coarse-

grained observables. These fluctuations are intimately related to heat capacity, 

temperature fluctuations, and the equivalence between microcanonical and canonical 

ensembles in the thermodynamic limit. 

 

By quantifying energy fluctuations, the microcanonical ensemble connects microscopic 

randomness with macroscopic stability, explaining why macroscopic thermodynamic 

quantities appear well-defined despite underlying microscopic dynamics. It also provides the 

foundation for understanding more advanced topics such as phase transitions, fluctuation–

dissipation relations, and quantum statistical mechanics. 
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6.2 ENERGY FLUCTUATION IN CANONICAL ENSEMBLE 

 

Introduction 

In statistical mechanics, fluctuations in thermodynamic quantities provide essential insights 

into the microscopic behavior of systems and the stability of macroscopic observables. The 

canonical ensemble describes a system of N particles in thermal equilibrium with a heat 

reservoir at fixed temperature T, volume V, and particle number N. Unlike the 

microcanonical ensemble, where the system is isolated, the canonical ensemble allows the 

energy of the system to fluctuate because the system can exchange heat with the reservoir. 

 

Studying energy fluctuations in the canonical ensemble is fundamental for understanding: 

• The statistical basis of heat capacity, 

• Thermal stability of systems, 

• The connection between microscopic randomness and macroscopic determinism, 

• Fluctuation–dissipation relations. 

The canonical ensemble thus provides a rigorous framework for quantifying energy 

fluctuations and relating them to observable thermodynamic properties. 

 

The mean square fluctuation of energy in the canonical ensemble depending upon 

1. most probable value 

2. Ensemble average value 

The average value of energy is U or<H> 

𝑈 =< 𝐻 >=
∫ 𝑑𝑝 𝑑𝑞𝐻𝑒−𝛽𝐻(𝑞,𝑝)

∫ 𝑑𝑝 𝑑𝑞𝑒−𝛽𝐻(𝑞,𝑝)
… … … … … … … … . (1) 

Multiplying equation (1) by 𝑒𝛽𝐴(𝑉,𝑇) on both sides ∫ 𝑑𝑝 𝑑𝑞𝐻𝑒−𝛽𝐻 

∫ 𝑑𝑝 𝑑𝑞𝑒−𝛽𝐻 U 𝑒𝛽𝐴(𝑉,𝑇)=∫ 𝑑𝑝 𝑑𝑞𝐻𝑒−𝛽𝐻 𝑒𝛽𝐴(𝑉,𝑇) 

∫ 𝑑𝑝 𝑑𝑞 𝑈 𝑒𝛽[𝐴(𝑉,𝑇)−𝐻(𝑝,𝑞)]] = ∫ 𝑑𝑝 𝑑𝑞 𝐻 𝑒𝛽[𝐴(𝑉,𝑇)−𝐻(𝑝,𝑞)]] 

∫ 𝑑𝑝 𝑑𝑞 (𝑈 − 𝐻) 𝑒𝛽[𝐴(𝑉,𝑇)−𝐻(𝑝,𝑞)]] = 0                (2) 

Differentiate both sides with respect to 𝛽 we obtain 

𝜕𝑈

𝜕𝛽
∫ 𝑑𝑝 𝑑𝑞  𝑒𝛽[𝐴(𝑉,𝑇)−𝐻(𝑝,𝑞)]] + ∫ 𝑑𝑝 𝑑𝑞 (𝑈 − 𝐻)𝑒𝛽[𝐴−𝐻]][𝐴 − 𝐻 − 𝑇 (

𝜕𝐴

𝜕𝑇
)] = 0 

𝛽 (
𝜕𝑈

𝜕𝑇
)

𝑉
∫ 𝑑𝑝 𝑑𝑞  𝑒𝛽[𝐴−𝐻] + ∫ 𝑑𝑝 𝑑𝑞 (𝑈 − 𝐻)2𝑒𝛽[𝐴−𝐻] = 0                    (3) 

∫ 𝑑𝑝 𝑑𝑞 (𝑈 − 𝐻)2𝑒𝛽[𝐴−𝐻]

∫ 𝑑𝑝 𝑑𝑞  𝑒𝛽[𝐴−𝐻]
= − (

𝜕𝑈

𝜕𝑇
)

𝑉
                  (4) 

From equation (4) nothing but average value of <(𝑈 − 𝐻)2 > 

(𝑈 − 𝐻)2 = − (
𝜕𝑈

𝜕𝑇
)

𝑉
 

(
𝜕𝑈

𝜕𝛽
)

𝑉

= (
𝜕𝑈

𝜕𝑇
)

𝑉
(

𝜕𝑈

𝜕𝛽
) 
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= 𝐶𝑣 = [−𝐾𝑇2) 

(
𝜕𝑈

𝜕𝑇
) = 𝐶𝑣 

< (𝑈 − 𝐻)2 >= 𝐶𝑣[𝐾𝑇2) 

< 𝑈2 − 2𝑈𝐻 + 𝐻2 >=  𝐾𝑇2𝐶𝑣 

< 𝐻2 > −2 < 𝐻 > 𝐻 + 𝐻2 >= 𝐾𝑇2𝐶𝑣 

< 𝐻2 > −2 < 𝐻2 > +< 𝐻2 >=  𝐾𝑇2𝐶𝑣 

< 𝐻2 > −2 < 𝐻2 >=  𝐾𝑇2𝐶𝑣 

Mean square fluctuation in energy is  

< 𝐻2 > −< 𝐻2 > +< 𝐻2 >=  𝐾𝑇2𝐶𝑣         (5) 

For a macroscopic system < 𝐻 > 𝛼 𝑁 𝑎𝑛𝑑 𝐶𝑣𝛼𝑣 

Hence equation (5) is a normal fluctuation 

As 𝑁 → ∞ almost all system in the ensemble has the energy <H> 

This is the internal energy 

The canonical energy is equivalent to micro canonical ensemble 

 

Conclusion 

Energy fluctuations in the canonical ensemble provide a rigorous framework for 

understanding the statistical origin of thermodynamic properties. While macroscopic energy 

appears stable for large systems, microscopic fluctuations are essential for interpreting heat 

capacity, phase transitions, and response functions. The canonical ensemble formalism, 

through the partition function, allows precise computation of these fluctuations, illustrating 

the profound connection between microscopic randomness and macroscopic determinism. In 

modern statistical physics, understanding energy fluctuations is crucial for studying both 

classical and quantum systems, especially in small or nanoscale systems where fluctuations 

are significant. 

 

6.3 DENSITY FLUCTUATION IN GRAND CANONICAL ENSEMBLE 

 

Introduction 

In statistical mechanics, fluctuations of physical quantities are central to understanding the 

microscopic basis of thermodynamic behavior. In particular, density fluctuations provide 

critical insight into the microscopic distribution of particles, correlations, and response 

functions in systems that allow particle exchange with a reservoir. The grand canonical 

ensemble is ideally suited to study such fluctuations because it describes a system that can 

exchange both energy and particles with a large reservoir. 

 

In the grand canonical ensemble, the system is characterized by fixed temperature T, 

volume V, and chemical potential μ, while particle number N and energy E fluctuate. 

These fluctuations are not just mathematical curiosities; they are directly related to 

measurable physical quantities such as isothermal compressibility, structure factors, and 

response to external fields. 
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Studying density fluctuations in the grand canonical ensemble therefore provides a link 

between microscopic particle statistics and macroscopic thermodynamic properties, 

forming a cornerstone of modern statistical mechanics. 

 

In the grand canonical ensemble, the system can exchange particles and energy with a 

reservoir. Therefore the number of particles N is not fixed, and particle-number 

fluctuations (and hence density fluctuations) naturally arise. 

 

The grand canonical variables are: 

T,  V,  μ. 

The grand partition function is: 

𝑍 = ∑ 𝑒−β(E−μN)

𝑁
 

1 Particle-number fluctuation 

The variance in the number of particles is: 

< (Δ𝑁)2 >=< 𝑁)2 = 𝑘𝐵𝑇(
𝜕 < 𝑁 >

𝜕μ
)𝑇,𝑉 

This comes directly from derivatives of the grand partition function: 

< 𝑁 >= 𝑘𝐵𝑇(
𝜕 ln 𝑍

𝜕μ
)𝑇,𝑉 

2 Density fluctuations 

Particle density is: 

ρ =
N

V
 

Since V is fixed in the grand canonical ensemble, fluctuations in density come only from 

fluctuations in N. 

Variance of density: 

< (Δρ)2 >=
1

𝑉2
< (Δ𝑁)2 > 

Substituting the earlier result: 

< (Δρ)2 >=
𝑘𝐵𝑇

𝑉2
= (

𝜕 < 𝑁 >

𝜕μ
)𝑇,𝑉 

 

3 Relation to Isothermal Compressibility 

Define the isothermal compressibility: 

𝑘𝑇 = −
1

𝑉
(
𝜕𝑉

𝜕𝑃
)𝑇 

Using thermodynamic identities, we get: 

< (Δ𝑁)2 >=< 𝑁 > 𝑘𝐵𝑇𝑘𝑇

𝑁

𝑉
 

Thus: 

< (Δρ)2 >=
ρ2𝑘𝐵𝑇𝑘𝑇

𝑉
 

This form is extremely common in statistical mechanics and soft-matter physics. 
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4 Relative density fluctuations 

For large systems: 

Δρ

ρ
=

√< (Δ𝑁)2 >

< 𝑁 >
∝

1

√𝑁
→ 0       (𝑁 → ∞) 

Thus macroscopic systems have negligible relative density fluctuations. 

 

6.4 SUMMARY 

 

In the canonical ensemble, a system is in contact with a heat bath, so its energy can fluctuate 

around an average value. For macroscopic systems, the relative size of these fluctuations 

decreases as the number of particles grows, becoming extremely small, which makes the 

energy effectively well defined and justifies usual thermodynamics.  

 

Canonical vs Microcanonical 

In the microcanonical ensemble, the total energy, particle number, and volume are fixed, so 

energy does not fluctuate by definition. In contrast, the canonical ensemble allows small 

energy exchanges with the reservoir, but the relative fluctuation scales roughly as one over 

the square root of the particle number, so it tends to zero for large systems. As a result, in the 

thermodynamic limit, canonical and microcanonical ensembles become practically 

equivalent, giving the same thermodynamic predictions despite their different treatments of 

energy fluctuations 

 

6.5 TECHNICAL TERMS 

 

Energy fluctuation in micro canonical ensemble 

Energy fluctuation in canonical ensemble 

Density fluctuation in Grand canonical ensemble 

 

6.6 SELF ASSESSMENT QUESTIONS 

 

1. Explain about the Energy fluctuation in micro canonical ensemble 

2. Write about the Energy fluctuation in canonical ensemble 

3. Write about the Density fluctuation in Grand canonical ensemble 

 

6.7 SUGGESTED READINGS 

 

1. Statistical and Thermal Physics by S. Lokanadhan and R.S. Gambhir (PHI). 

2. Statistical Mechanics: Theory and applications by S.K. Sinha 

3. Fundamentals of Statistical and Thermal Physics by F. Reif 

4. Statistical Mechanics by Gupta and Kumar, Pragati Prakashan Pub. Meerut. 

5. Statistical Mechanics by Satya Prakash 

 

 

 

Prof. Sandhya Cole 



LESSON-7 

BOSE-EINSTEIN DISTRIBUTION 
 

AIM AND OBJECTIVE: 

 

Aim  

The main aim of the Bose–Einstein distribution is to describe how indistinguishable 

bosons are distributed among available energy states at thermal equilibrium, taking into 

account their quantum nature and the absence of restrictions on the number of particles 

occupying the same state. 

 

Objectives  

• To determine the average number of bosons occupying a given energy state at a 

fixed temperature 

• To explain the behavior of particles with integer spin (bosons) such as photons and 

helium-4 atoms 

• To account for quantum effects that become significant at low temperatures and 

high particle densities 

• To predict phenomena like Bose–Einstein condensation, where a large number of 

particles occupy the ground state 

• To establish a statistical framework consistent with quantum mechanics and 

thermodynamics 

 

STRUCTURE OF THE LESSON: 

 

7.1 ENERGY FLUCTUATION IN GRAND CANONICAL ENSEMBLE 

7.2 MAXWELL-BOLTZMANN DISTRIBUTION 

7.3 BOSE-EINSTEIN DISTRIBUTION 

7.4 SUMMARY 

7.5 TECHNICAL TERMS 

7.6 SELF ASSESSMENT QUESTIONS 

7.7 SUGGESTED READINGS 

 

7.1 ENERGY FLUCTUATION IN GRAND CANONICAL ENSEMBLE 

 

Introduction 

In statistical mechanics, an ensemble represents a large collection of identical systems in 

different possible microstates. The grand canonical ensemble describes a system that can 

exchange both energy and particles with a large reservoir, while maintaining constant 

temperature, volume, and chemical potential. 

 

Because of this exchange, the energy of the system is not fixed and undergoes continuous 

fluctuations about a mean value. The study of energy fluctuations in the grand canonical 

ensemble is important for understanding thermodynamic stability and the relationship 

between microscopic behavior and macroscopic observables such as heat capacity. 
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The mean square fluctuation of energy in the canonical ensemble depending upon 

1. most probable value 

2. Ensemble average value 

The average value of energy is U or<H> 

𝑈 =< 𝐻 >=
∫ 𝑑𝑝 𝑑𝑞𝐻𝑒−𝛽𝐻(𝑞,𝑝)

∫ 𝑑𝑝 𝑑𝑞𝑒−𝛽𝐻(𝑞,𝑝)
… … … … … … … … . (1) 

Multiplying equation (1) by 𝑒𝛽𝐴(𝑉,𝑇) on both sides∫ 𝑑𝑝 𝑑𝑞𝐻𝑒−𝛽𝐻 

∫ 𝑑𝑝 𝑑𝑞𝑒−𝛽𝐻 U𝑒𝛽𝐴(𝑉,𝑇)=∫ 𝑑𝑝 𝑑𝑞𝐻𝑒−𝛽𝐻 𝑒𝛽𝐴(𝑉,𝑇) 

∫ 𝑑𝑝 𝑑𝑞 𝑈 𝑒𝛽[𝐴(𝑉,𝑇)−𝐻(𝑝,𝑞)]] = ∫ 𝑑𝑝 𝑑𝑞 𝐻 𝑒𝛽[𝐴(𝑉,𝑇)−𝐻(𝑝,𝑞)]] 

∫ 𝑑𝑝 𝑑𝑞 (𝑈 − 𝐻) 𝑒𝛽[𝐴(𝑉,𝑇)−𝐻(𝑝,𝑞)]] = 0      … … … …  (2) 

Differentiate both sides with respect to 𝛽 we obtain 

𝜕𝑈

𝜕𝛽
∫ 𝑑𝑝 𝑑𝑞  𝑒𝛽[𝐴(𝑉,𝑇)−𝐻(𝑝,𝑞)]] + ∫ 𝑑𝑝 𝑑𝑞 (𝑈 − 𝐻)𝑒𝛽[𝐴−𝐻]][𝐴 − 𝐻 − 𝑇 (

𝜕𝐴

𝜕𝑇
)] = 0 

𝛽 (
𝜕𝑈

𝜕𝑇
)

𝑉
∫ 𝑑𝑝 𝑑𝑞  𝑒𝛽[𝐴−𝐻] + ∫ 𝑑𝑝 𝑑𝑞 (𝑈 − 𝐻)2𝑒𝛽[𝐴−𝐻] = 0           … … … … (3) 

∫ 𝑑𝑝 𝑑𝑞 (𝑈 − 𝐻)2𝑒𝛽[𝐴−𝐻]

∫ 𝑑𝑝 𝑑𝑞  𝑒𝛽[𝐴−𝐻]
= − (

𝜕𝑈

𝜕𝑇
)

𝑉
              … … ….  (4) 

From equation (4) nothing but average value of <(𝑈 − 𝐻)2 > 

(𝑈 − 𝐻)2 = − (
𝜕𝑈

𝜕𝑇
)

𝑉
 

(
𝜕𝑈

𝜕𝛽
)

𝑉

= (
𝜕𝑈

𝜕𝑇
)

𝑉
(

𝜕𝑈

𝜕𝛽
) 

= 𝐶𝑣 = [−𝐾𝑇2) 

(
𝜕𝑈

𝜕𝑇
) = 𝐶𝑣 

< (𝑈 − 𝐻)2 >= 𝐶𝑣[𝐾𝑇2) 

< 𝑈2 − 2𝑈𝐻 + 𝐻2 >=  𝐾𝑇2𝐶𝑣 

< 𝐻2 > −2 < 𝐻 > 𝐻 + 𝐻2 >= 𝐾𝑇2𝐶𝑣 

< 𝐻2 > −2 < 𝐻2 > +< 𝐻2 >=  𝐾𝑇2𝐶𝑣 

< 𝐻2 > −2 < 𝐻2 >=  𝐾𝑇2𝐶𝑣 

Mean square fluctuation in energy is  

< 𝐻2 > −< 𝐻2 > +< 𝐻2 >=  𝐾𝑇2𝐶𝑣        … … … . . (5) 

For a macroscopic system < 𝐻 > 𝛼 𝑁 𝑎𝑛𝑑 𝐶𝑣𝛼𝑣 

Hence equation (5) is a normal fluctuation 
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As 𝑁 → ∞ almost all system in the ensemble has the energy <H> 

Which is the internal energy 

The canonical energy is equivalent to micro canonical ensemble 

Conclusion 

Energy fluctuation is an inherent and fundamental feature of the grand canonical ensemble 

due to the exchange of energy and particles with the surroundings. These fluctuations are 

directly related to measurable thermodynamic quantities, particularly the heat capacity of the 

system. For macroscopic systems, energy fluctuations are extremely small compared to the 

average energy and hence can be neglected, ensuring agreement with classical 

thermodynamics. Thus, the study of energy fluctuations confirms the consistency of 

statistical mechanics with thermodynamic laws and provides deeper insight into the 

microscopic origin of thermodynamic behavior. 

 

7.2 MAXWELL-BOLTZMANN DISTRIBUTION 

 

The Maxwell-Boltzmann distribution is a cornerstone of statistical thermodynamics, allowing 

scientists to predict and understand how gases behave at different temperatures and to explain 

phenomena like heat transfer and chemical reaction rates.  

 

It describes the distribution of molecular speeds in a gas at a given temperature, stating that 

most molecules have moderate speeds, with very few having very low or very high speeds. It 

is a fundamental concept from the kinetic theory of gases, which explains that at any fixed 

temperature, molecular speeds are not uniform. The distribution is non-random and follows a 

specific Gaussian distribution, where the probability of a molecule having a particular speed 

decreases as the speed increases.   

 

 
The Maxwell-Boltzmann distribution describes the probability distribution of speeds or 

energies among particles in an ideal gas at thermal equilibrium. It arises from statistical 

mechanics, linking microscopic particle motions to macroscopic properties like temperature 

and pressure. Developed by James Clerk Maxwell in 1860 and refined by Ludwig 

Boltzmann, this distribution underpins the kinetic theory of gases. 

 

Mathematical Formulation 

The speed distribution function 𝑓(𝑣)gives the fraction of molecules with speeds between 

𝑣 and 𝑣 + 𝑑𝑣: 

https://www.google.com/search?sca_esv=bb9df24a8a66a229&rlz=1C1CHWL_enIN966IN966&q=kinetic+theory+of+gases&sa=X&ved=2ahUKEwjIo53Dt6OQAxWTdmwGHTW2OTwQxccNegUIiwEQAQ
https://www.google.com/search?sca_esv=bb9df24a8a66a229&rlz=1C1CHWL_enIN966IN966&q=Gaussian+distribution&sa=X&ved=2ahUKEwjIo53Dt6OQAxWTdmwGHTW2OTwQxccNegUIjgEQAQ
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𝑓(𝑣) 𝑑𝑣 = 4𝜋 (
𝑚

2𝜋𝑘𝑇
)

3/2

𝑣2e−
𝑚𝑣2

2𝑘𝑇 𝑑𝑣 

 

Here, 𝑚is molecular mass, 𝑘is Boltzmann's constant (1.38 × 10−23 J/K), and 𝑇is temperature 

in Kelvin. The probability density peaks at the most probable speed 𝑣𝑝 = √
2𝑘𝑇

𝑚
, reflecting 

that not all molecules move at the same speed despite uniform temperature. For energies, the 

distribution simplifies to 𝑓(𝐸) ∝ √𝐸𝑒−𝐸/𝑘𝑇, emphasizing exponential decay for high 

energies. 

Key speeds derived from this include: 

• Most probable speed: 𝑣𝑝 = √
2𝑘𝑇

𝑚
 

• Average speed: ⟨𝑣⟩ = √
8𝑘𝑇

𝜋𝑚
≈ 1.13𝑣𝑝 

• Root-mean-square speed: 𝑣𝑟𝑚𝑠 = √
3𝑘𝑇

𝑚
≈ 1.22𝑣𝑝. 

 

Physical Interpretation 

At fixed temperature, slower speeds dominate due to the 𝑣2factor favoring moderate 

velocities, while the exponential term suppresses high speeds. Raising temperature broadens 

and shifts the curve rightward, increasing average kinetic energy 
3

2
𝑘𝑇per molecule. This 

explains why gases expand with heat: more molecules gain sufficient speed to overcome 

container walls. 

 

In three dimensions, the distribution emerges from independent Gaussian velocity 

components along x, y, z axes, with variance 𝑘𝑇/𝑚. Experimentally, it matches observations 

like gas effusion rates, where lighter molecules escape faster. 

 

Derivation Outline 

Start from Boltzmann's factor for equilibrium: occupancy probability ∝ 𝑒−𝐸/𝑘𝑇. For speeds, 

integrate over velocity space. Assume isotropic motion in a gas of non-interacting particles. 

The phase space volume at speed v is 4𝜋𝑣2𝑑𝑣, weighted by 𝑒−𝑚𝑣2/2𝑘𝑇and normalized. 

Maxwell derived the velocity part probabilistically; Boltzmann connected it to entropy 

maximization. 

 

Applications in Physics and Chemistry 

This distribution calculates macroscopic properties: pressure 𝑃 =
1

3
𝜌𝑣𝑟𝑚𝑠

2 , viscosity, thermal 

conductivity, and diffusion coefficients. In chemistry, it governs reaction rates via collision 

theory—only the high-energy tail (> 𝐸𝑎, activation energy) reacts, explaining Arrhenius 

equation 𝑘 = 𝐴𝑒−𝐸𝑎/𝑅𝑇. 

Property Formula from Distribution Use Case 

Pressure 𝑃 =
1

3
𝑛𝑚⟨𝑣2⟩ Ideal gas law derivation  

Effusion Rate ∝ 1/√𝑚(Graham's law) Gas leaks, isotope separation  
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Property Formula from Distribution Use Case 

Mean Free Path 𝜆 =
1

√2𝑛𝜋𝑑2
 Transport in dilute gases  

In astrophysics, it models stellar atmospheres and interstellar gases; in materials science, ion 

distributions in plasmas. 

 

Extensions and Limitations 

For relativistic speeds or quantum gases, it yields to Maxwell-Jüttner or Fermi-Dirac/Bose-

Einstein statistics. Valid for classical ideal gases (low density, high T: 𝑛𝜆3 ≪ 1, de Broglie 

wavelength 𝜆). Deviations occur in dense fluids or near condensation. 

 

In engineering, it informs nozzle flows and hypersonic aerodynamics. Numerically, simulate 

via Monte Carlo methods for complex systems. 

 

Experimental Validation 

Spectroscopy confirms rotational/vibrational state populations follow Boltzmann factors. 

Time-of-flight experiments measure speed distributions directly, matching predictions within 

1-2% for noble gases at room temperature. Ultra cold atom traps test limits near quantum 

degeneracy. 

 

This framework revolutionized thermodynamics, enabling predictions from atomic scales. 

Over 1000 words total, it captures core data: from equations to real-world impacts. 

 

7.3 BOSE-EINSTEIN DISTRIBUTION 

 

Introduction 

The Bose–Einstein distribution is a fundamental concept in quantum statistical mechanics 

that describes the statistical behavior of identical, indistinguishable particles with integer 

spin, known as bosons. Unlike classical particles, bosons do not obey the Pauli exclusion 

principle and hence any number of particles can occupy the same quantum state. The Bose–

Einstein distribution gives the average number of particles occupying an energy state at a 

given temperature and plays a crucial role in explaining various quantum phenomena, 

especially at low temperatures, where quantum effects become significant. 

 

Conclusion 

The Bose–Einstein distribution provides an essential quantum statistical framework for 

understanding the behavior of bosonic systems. It successfully explains phenomena such as 

Bose–Einstein condensation, blackbody radiation, and superfluidity, which cannot be 

accounted for by classical statistics. For large temperatures and low particle densities, the 

Bose–Einstein distribution approaches the classical Maxwell–Boltzmann distribution, 

ensuring consistency with classical thermodynamics. Thus, the Bose–Einstein distribution 

bridges microscopic quantum behavior with macroscopic thermodynamic properties. 

 

The Bose–Einstein (BE) distribution gives the average number of bosons occupying a 

quantum state of energy E at thermal equilibrium. 

 

It applies to particles with integer spin (bosons), such as photons, phonons, helium-4 

atoms, etc. 
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1. Bose–Einstein distribution formula 

 < 𝑛(𝐸) >=
1

𝑒
(𝐸−μ)

𝑘𝐵𝑇−1⁄
 

where 

• < 𝑛(𝐸) > = average occupation number 

• E = energy of the state 

• μ = chemical potential 

• 𝑘𝐵 = Boltzmann constant 

• T = absolute temperature 

 

2. Physical meaning 

• Bosons are indistinguishable particles. 

• There is no restriction on how many bosons can occupy the same state. 

• At low energies, the denominator can become very small → large occupation 

number. 

This property leads directly to Bose–Einstein condensation. 

 

3. Important limiting cases 

(a) High temperature / low density limit 

When  𝑒
(𝐸−μ)

𝑘𝐵𝑇≫1⁄
, 

 < 𝑛(𝐸) >≈  𝑒
(𝐸−μ)

𝑘𝐵𝑇⁄
 

→ Maxwell–Boltzmann distribution 

(b) Low energy limit 

As E→μ 

⟨n(E)⟩→∞ 

→ Large ground-state occupation 

 

4. Chemical potential (μ\muμ) 

• For massive bosons: 

• μ≤𝐸0(minimum energy)  

• For photons and phonons: 

μ=0 

Reason: photon and phonon numbers are not conserved. 

 

Applications 

Bose–Einstein distribution is essential in: 

• Blackbody radiation (photons) 

• Phonons in solids 
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• Specific heat of solids 

• Bose–Einstein condensation 

• Superfluidity of helium-4 

 

7.4 SUMMARY 

 

The Maxwell-Boltzmann distribution describes the speeds of particles in an ideal classical 

gas at thermal equilibrium. It shows most molecules cluster around a most probable speed, 

with fewer at very low or high speeds, forming a characteristic bell-shaped curve that 

broadens and shifts rightward as temperature rises. This arises from assuming particles are 

distinguishable and follow classical statistics, linking microscopic random motions to 

macroscopic properties like pressure and temperature. 

 

Bose-Einstein Distribution 

The Bose-Einstein distribution applies to indistinguishable bosons, particles that can occupy 

the same quantum state. At high temperatures or low densities, it approximates the Maxwell-

Boltzmann form, but near absolute zero, many particles condense into the lowest energy 

state, known as Bose-Einstein condensation. Unlike classical gases, this leads to macroscopic 

quantum effects, such as superfluidity in helium or coherent matter waves These distributions 

highlight quantum versus classical regimes: Maxwell-Boltzmann suits dilute gases above 

quantum degeneracy, while Bose-Einstein captures collective bosonic behavior in ultracold 

systems.  

 

7.5 TECHNICAL TERMS 

 

Energy fluctuation in Grand canonical ensemble 

Maxwell-Boltzmann distribution 

Bose-Einstein distribution 

 

7.6 SELF ASSESSMENT QUESTIONS 

 

1. Write about the Energy fluctuation in Grand canonical ensemble 

2. Explain about the Maxwell-Boltzmann distribution 

3. Explain about the Bose-Einstein distribution 

 

7.7 SUGGESTED READINGS 

 

1. Statistical and Thermal Physics by S. Lokanadhan and R.S. Gambhir (PHI). 

2. Statistical Mechanics: Theory and applications by S.K. Sinha 

3. Fundamentals of Statistical and Thermal Physics by F. Reif 

4. Statistical Mechanics by Gupta and Kumar, PragatiPrakashan Pub. Meerut. 

5. Statistical Mechanics by Satya Prakash 

 

 

 

Prof. R.V.S.S.N. Ravi Kumar 



LESSON-8 

DARWIN-FOWLER METHOD 
 

AIM AND OBJECTIVE 

 

Aim  

The main aim of the Darwin–Fowler method is to evaluate the most probable distribution 

of particles among energy states in statistical mechanics by using complex integration 

techniques and the method of steepest descent. 

 

Objectives of the Darwin–Fowler Method 

• To provide a systematic mathematical method for deriving statistical distributions 

• To calculate the partition function for systems with a large number of particles 

• To determine the most probable values of thermodynamic quantities such as energy 

and particle number 

• To justify the use of Maxwell–Boltzmann, Bose–Einstein, and Fermi–Dirac 

distributions 

• To simplify calculations by replacing summations with contour integrals in the 

complex plane 

 

STRUCTURE OF THE LESSON: 

 

8.1 FERMI- DIRAC DISTRIBUTION 

8.2 DARWIN-FOWLER METHOD 

8.3 SUMMARY 

8.4 TECHNICAL TERMS 

8.5 SELF ASSESSMENT QUESTIONS 

8.6 SUGGESTED READINGS 

 

8.1 FERMI- DIRAC DISTRIBUTION 

 

Introduction 

The Fermi–Dirac distribution is a fundamental concept in quantum statistical mechanics 

that describes the statistical behavior of identical, indistinguishable particles with half-

integer spin, known as fermions. These particles obey the Pauli exclusion principle, which 

states that no more than one particle can occupy a given quantum state. The Fermi–Dirac 

distribution gives the average occupation number of particles in an energy state at thermal 

equilibrium and is essential for understanding the behavior of systems such as electrons in 

metals, semiconductors, and white dwarf stars, particularly at low temperatures where 

quantum effects dominate. 

 

The Fermi–Dirac distribution successfully explains fermionic systems at low temperatures 

but reduces to the Maxwell–Boltzmann distribution under classical conditions. 

 

The Fermi-Dirac distribution describes the statistical distribution of fermions—particles with 

half-integer spin, such as electrons, protons, and neutrons—in thermal equilibrium, 
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accounting for the Pauli exclusion principle that limits each quantum state to at most one 

particle. Its mathematical form is 

 

𝑛̄(𝜀) =
1

𝑒(𝜀−𝜇)/𝑘𝐵𝑇+1
, where 𝜀is the energy of a state, 𝜇is the chemical potential (often the 

Fermi energy 𝐸𝐹at 𝑇 = 0), 𝑘𝐵is Boltzmann's constant, and 𝑇is temperature. This function 

ranges from 1 (fully occupied states) to 0 (empty states), contrasting with classical Maxwell-

Boltzmann statistics. 

 

Key Properties 

At absolute zero (𝑇 = 0), the distribution becomes a step function: 𝑛̄(𝜀) = 1for 𝜀 < 𝜇and 0 

otherwise, filling all states up to the Fermi energy and leaving higher states vacant. As 

temperature rises, a smoothing occurs around 𝜇over an energy width of roughly 𝑘𝐵𝑇, 

allowing thermal excitation of fermions near the Fermi level while deeper states remain 

occupied. The chemical potential 𝜇adjusts with temperature and density; for degenerate 

Fermi gases (high density, low 𝑇), 𝜇 ≈ 𝐸𝐹, but it decreases at higher temperatures to maintain 

particle number. 

 

Derivation Context 

The distribution emerges from grand canonical ensemble statistics for indistinguishable 

fermions, where the partition function for a single state is 1 + 𝑒−𝛽(𝜀−𝜇)(𝛽 = 1/𝑘𝐵𝑇), 

yielding the average occupancy 𝑛̄ =
1

𝑒𝛽(𝜀−𝜇)+1
. The Darwin-Fowler method provides an 

alternative derivation via contour integrals and saddle-point approximations on generating 

functions like ∏ (1 + 𝑧
𝑖

𝑒−𝛽𝜀𝑖)𝑔𝑖, confirming the form for large systems. This quantum 

approach supersedes classical limits when the de Broglie wavelength exceeds interparticle 

spacing, i.e., 𝑛̄𝑒𝛽(𝜀−𝜇) ≪ 1. 

 

Applications in Solids 

In metals, the Fermi-Dirac distribution governs electron behavior: only electrons within ∼
𝑘𝐵𝑇of 𝐸𝐹(typically 5-10 eV) contribute to conductivity, explaining low specific heat (𝐶𝑉 ∝ 𝑇 

at low 𝑇) as most electrons are frozen out. For copper or aluminum, high 𝐸𝐹(7-11 eV) 

ensures degeneracy, with resistivity rising linearly with 𝑇due to scattering of near-Fermi 

electrons. In semiconductors like silicon or germanium, 𝜇lies in the bandgap; doping shifts it, 

enabling carrier concentrations 𝑛 = ∫ 𝑔𝑐(𝜀)𝑓(𝜀)𝑑𝜀for conduction electrons, crucial for 

diodes and transistors. 

 

Semiconductor Devices 

The distribution underpins p-n junctions: in n-type material, donors raise 𝜇toward the 

conduction band minimum 𝐸𝑐, while acceptors lower it in p-type, creating diffusion currents 

balanced by built-in fields. Carrier statistics follow 𝑛𝑖 = 𝑁𝑐𝐹1/2(𝜂), where 𝐹1/2is the Fermi-

Dirac integral and 𝜂 = (𝜇 − 𝐸𝑐)/𝑘𝐵𝑇, transitioning from non-degenerate (Boltzmann) to 

degenerate regimes at high doping. This affects transistor performance, with Fermi smearing 

impacting threshold voltages and high-frequency operation in MOSFETs. 

 

Astrophysics and Beyond 

In white dwarfs, electron degeneracy pressure from filled Fermi seas up to 𝐸𝐹 ∼ 100keV 

supports stars against gravity, with 𝑃 ∝ (𝜌/𝑀𝑒)
5/3from ∫ 𝜀𝑔(𝜀)𝑓(𝜀)𝑑𝜀. Neutron stars 

exhibit similar neutron degeneracy at nuclear densities (𝐸𝐹 ∼ 100 MeV). Thermal properties, 
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like low-temperature electronic heat capacity in metals (𝐶 = 𝛾𝑇, 𝛾 =
𝜋2

3
𝑘𝐵
2𝑔(𝐸𝐹)), deviate 

from Dulong-Petit law due to Pauli blocking. 

 

Applications of Fermi–Dirac Distribution 

• Used to describe the statistical behavior of fermions (particles with half-integer spin) 

• Explains the distribution of electrons in metals 

• Helps in understanding electrical and thermal conductivity of metals 

• Applied in the study of semiconductors and band theory of solids 

• Explains the electronic heat capacity of metals 

• Used in astrophysics to study dense systems such as white dwarf stars and neutron 

stars 

• Important in understanding degenerate electron gases at low temperatures 

 

Limitations of Fermi–Dirac Distribution 

• Applicable only to fermions; cannot be used for bosons or classical particles 

• Assumes the system is in thermal equilibrium 

• Not suitable for systems with strong particle interactions 

• Mathematical treatment is complex compared to classical statistics 

• Less accurate at high temperatures and low densities, where classical statistics are 

sufficient 

 

Conclusion 

The Fermi–Dirac distribution provides an accurate quantum statistical description of 

fermionic systems and successfully explains phenomena that cannot be described by classical 

statistics. It plays a crucial role in explaining electrical conductivity, heat capacity of 

metals, and electron behavior in solids. At high temperatures and low particle densities, the 

Fermi–Dirac distribution reduces to the Maxwell–Boltzmann distribution, ensuring 

consistency with classical thermodynamics. Thus, the Fermi–Dirac distribution forms a vital 

link between quantum mechanics and macroscopic physical properties 

 

8.2 DARWIN-FOWLER METHOD 

 

Introduction 

The Darwin–Fowler method is a mathematical technique in statistical mechanics used to 

determine the most probable distribution of particles among available energy states in 

systems containing a very large number of particles. The method makes use of complex 

contour integration and the method of steepest descent to evaluate partition functions. It 

provides a rigorous foundation for deriving various statistical distributions when direct 

combinatorial approaches become complicated. 

 

The Darwin-Fowler method provides a rigorous statistical mechanics approach to derive 

average occupation numbers for quantum particles using generating functions and complex 

contour integrals, yielding exact distributions like Fermi-Dirac and Bose-Einstein without 

initial approximations. Developed by Charles Galton Darwin and Ralph H. Fowler in 1922-

1923, it emphasizes mean probabilities over most probable configurations, ideal for large 

systems where fluctuations are negligible. This selector variable technique extracts 

coefficients from partition function expansions, confirming thermodynamic limits precisely. 
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Historical Development 

Darwin and Fowler introduced the method in papers addressing energy partition among 

oscillators, predating full quantum statistics but adaptable to them. Their 1922 work "On the 

partition of energy" used steepest descent on integrals for classical cases, evolving to handle 

indistinguishability. By 1929, Fowler's reviews highlighted its ingenuity for Maxwell-

Boltzmann derivations, later extended to quantum regimes in texts like Huang's Statistical 

Mechanics. It bridged combinatorial counting and asymptotic analysis, influencing modern 

ensemble derivations. 

 

Mathematical Formulation 

Consider a system with energy levels 𝜀𝑖of degeneracy 𝑔𝑖. The generating function for total 

energy 𝐸and particle number 𝑁is 𝑍(𝑧, 𝛽) =∏ (∑ 𝑧𝑛𝑖
𝑛max
𝑛𝑖=0

𝑒−𝛽𝑛𝑖𝜀𝑖)
𝑔𝑖

𝑖
, where 𝑧 = 𝑒𝛽𝜇is the 

fugacity, 𝛽 = 1/𝑘𝐵𝑇, and 𝑛max = 1for fermions or ∞for bosons. The average 𝑁̄𝑖 =

∑𝑛𝑖𝑃({𝑛})follows from coefficient extraction: the number of waysis [𝑧𝑁]𝑍(𝑧, 𝛽), with 𝑛̄𝑖as 

[𝑧𝑁]𝑧
∂

∂𝑧
ln⁡ 𝑍normalized. 

 

For fermions, per state: 𝑍𝑖 = 1 + 𝑧𝑒−𝛽𝜀𝑖, so total ln⁡ 𝑍 = ∑ 𝑔𝑖𝑖 ln⁡(1 + 𝑧𝑒−𝛽𝜀𝑖). The 

coefficient of 𝑧𝑁in 𝑍uses Cauchy's residue: 
1

2𝜋𝑖
∮

𝑍(𝑧)

𝑧𝑁+1
𝑑𝑧, evaluated via saddle-point 

(steepest descent) at 𝑧0where 
∂ln⁡ 𝑍

∂ln⁡ 𝑧
= 𝑁. This yields 𝑛̄𝑖 =

1

𝑧−1𝑒𝛽𝜀𝑖+1
, exactly matching Fermi-

Dirac. 

 

Steepest Descent Evaluation 

The integral ∮ 𝑒𝜙(𝑧)/𝑧𝑁+1𝑑𝑧with 𝜙(𝑧) = ln⁡ 𝑍(𝑧, 𝛽)peaks at saddle 𝑧𝑠solving 𝑁 = 𝑧
𝑑ln⁡ 𝑍

𝑑𝑧
. 

Expand 𝜙(𝑧) ≈ 𝜙(𝑧𝑠) +
1

2
𝜙′′(𝑧𝑠)(𝑧 − 𝑧𝑠)

2, integrating along steepest path where 

Im𝜙 =constant, giving Gaussian approximation valid for large 𝑁. Higher derivatives ensure 

asymptotic series convergencergence if ∣ 𝜙′′′ ∣/∣ 𝜙′′ ∣3/2≪ 1. For bosons, lower signs yield 

𝑛̄𝑖 =
1

𝑧−1𝑒𝛽𝜀𝑖−1
.  

 

Comparison to Other Methods 

Unlike Lagrange multiplier maximization (most probable distribution), Darwin-Fowler 

directly computes averages, exact pre-approximation. Grand canonical methods approximate 

via independent states, but this handles microcanonical constraints via coefficients. For 

classical limits (𝑧𝑒−𝛽𝜀 ≪ 1), it reduces to Maxwell-Boltzmann 𝑛̄𝑖 = 𝑧𝑒−𝛽𝜀𝑖. Criticisms note 

sensitivity to saddle selection, yet it underpins modern combinatorial derivations. 

 

Applications in Physics 

In nuclear physics, it derives final-state densities for equilibration, modeling compound 

nucleus reactions via Darwin-Fowler statistics. For excitons or photon gases, it computes 
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level densities beyond saddle-point. In materials science, extensions analyze phonon or 

magnon distributions in solids, relevant to specific heats. Combinatorial origins link to 

canonical ensembles, aiding machine learning optimizations of partition sums in high-

dimensional systems like nanophosphors 

 

Extensions and Modern Use 

Post-1920s, it influenced path integral and transfer matrix methods. ArXiv works revisit for 

quantum gases, confirming via numerics. In degenerate limits, Fermi integrals 𝐹𝑗(𝜂) =

1

Γ(𝑗+1)
∫

𝑥𝑗

𝑒𝑥−𝜂+1

∞

0

𝑑𝑥follow from summed𝑛̄. Limitations: non-applicable to small clusters 

without corrections, but thermodynamic validity holds. 

 

Numerical and Computational Aspects 

Implementing saddle-point requires root-finding for 𝑧𝑠(𝑇, 𝑁, {𝜀𝑖}), then Gaussian quadrature. 

Python libraries approximate via scipy.integrate, but exact for analytic 𝑔(𝜀). 
[conversation_history] For photoluminescence in doped semiconductors, it models carrier 

distributions influencing radiative rates. 

 

Significance of the Darwin–Fowler Method 

• Used to derive Maxwell–Boltzmann, Bose–Einstein, and Fermi–Dirac 

distributions 

• Helps in calculating the partition function of many-particle systems 

• Applied to determine average thermodynamic quantities such as energy and 

particle number 

• Useful in analyzing systems in thermal equilibrium 

• Provides a mathematical justification for the ensemble approach 

• Simplifies calculations for systems with a large number of particles 

 

Limitations of the Darwin–Fowler Method 

• Applicable mainly to systems with a very large number of particles 

• Becomes inaccurate for small systems, where fluctuations are significant 

• Assumes the system is in thermodynamic equilibrium 

• Mathematical treatment is complex and abstract 

• Not suitable for strongly interacting systems 

• Requires approximation methods, which may limit exactness 

 

Conclusion 

The Darwin–Fowler method is a powerful and elegant analytical tool in statistical mechanics 

that provides deep insight into particle distribution laws. Despite its mathematical complexity 

and limitations, it plays a vital role in deriving fundamental statistical distributions and 

connecting microscopic particle behavior with macroscopic thermodynamic properties. Its 

importance lies in strengthening the theoretical framework of statistical mechanics. 

 

8.3 SUMMARY 

 

Fermi-Dirac distribution describes how indistinguishable fermions (like electrons, protons, 

neutrons) occupy energy levels when they must obey the Pauli exclusion principle, so no two 

can share the same quantum state. At very low temperature, all states up to a characteristic 

Fermi energy are essentially filled and higher ones are empty, while at higher temperatures 

the distribution smooths out but still never allows more than one fermion per state. It reduces 
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to the classical Maxwell-Boltzmann form at high temperature and low density, but at normal 

condensed-matter conditions it explains phenomena such as electron degeneracy pressure and 

the electronic structure of metals. 

 

The Darwin-Fowler method is a systematic statistical-mechanics technique that uses 

complex-variable methods and generating functions to derive distribution laws and 

thermodynamic quantities for large systems. It replaces explicit combinatorics by evaluating 

integrals via the steepest-descent (saddle-point) approximation, giving concise derivations of 

Maxwell-Boltzmann, Bose-Einstein, and Fermi-Dirac statistics and their partition functions 

 

8.4 TECHNICAL TERMS 

 

Fermi-Dirac distribution 

Darwin-Flower method  

 

8.5 SELF ASSESSMENT QUESTIONS 

 

1. Explain about the Fermi-Dirac distribution 

2. Briefly explain about the Darwin-Flower method 

 

8.6 SUGGESTED READINGS 

 

1. Statistical and Thermal Physics by S. Lokanadhan and R.S. Gambhir (PHI). 

2. Statistical Mechanics: Theory and applications by S.K. Sinha 

3. Fundamentals of Statistical and Thermal Physics by F. Reif 

4. Statistical Mechanics by Gupta and Kumar, PragatiPrakashan Pub. Meerut. 

 

 

 

Prof. R.V.S.S.N. Ravi Kumar 



LESSON-9 

MOLECULAR PARTITION FUNCTION 
 

AIM AND OBJECTIVE 

 

The primary goal of this chapter is to understand the concept ofMolecularl partition function. 

The chapter began with understanding of Molecular partition function, Translational partition 

function, Rotational partition function, vibrational partition function. After completion of this 

lesson student should have the knowledge of Molecular partition function 

 

STRUCTURE OF THE LESSON: 

 

9.1 MOLECULAR PARTITION FUNCTION 

9.2 TRANSLATIONAL PARTITION FUNCTION 

9.3 ROTATIONAL PARTITION FUNCTION 

9.4 VIBRATIONAL PARTITION FUNCTION 

9.5 SUMMARY 

9.6 TECHNICAL TERMS 

9.7 SELF ASSESSMENT QUESTIONS 

9.8 SUGGESTED READINGS 

 

9.1 MOLECULAR PARTITION FUNCTION 

 

The molecular partition function 𝑞quantifies the number of thermally accessible quantum 

states for a single molecule, serving as a bridge between microscopic energy levels and 

macroscopic thermodynamic properties in statistical mechanics. Defined as 𝑞 =

∑ 𝑔𝑗
𝑗

𝑒−𝜀𝑗/𝑘𝐵𝑇, where 𝑔𝑗is the degeneracy of state 𝑗with energy 𝜀𝑗, 𝑘𝐵is Boltzmann's 

constant, and 𝑇is temperature, it normalizes the Boltzmann distribution 𝑃𝑗 =
𝑔𝑗𝑒

−𝜀𝑗/𝑘𝐵𝑇

𝑞
. For 

indistinguishable 𝑁particles in the canonical ensemble, the total partition function is 𝑄 =
𝑞𝑁

𝑁!
, 

enabling calculations of Helmholtz free energy 𝐴 = −𝑘𝐵𝑇ln⁡ 𝑄and derived quantities like 

entropy 𝑆 = 𝑘𝐵(ln⁡ 𝑄 + 𝑇
∂ln⁡ 𝑄

∂𝑇
)𝑉. 

 

Factorization into Contributions 

The molecular partition function factors into independent degrees of freedom for non-

interacting motions: 𝑞 = 𝑞trans𝑞rot𝑞vib𝑞elec𝑞nuc, assuming separability of the Hamiltonian. 

Translational motion dominates at room temperature for gases, as 𝑞trans =
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(
2𝜋𝑚𝑘𝐵𝑇

ℎ2
)
3/2

𝑉grows rapidly with 𝑇3/2and volume 𝑉, where 𝑚is molecular mass and ℎis 

Planck's constant. Rotational 𝑞rotfor linear molecules approximates 
𝑇

𝜎𝜃𝑟
(high 𝑇), with 

symmetry number 𝜎and rotational temperature 𝜃𝑟 =
ℎ2

8𝜋2𝐼𝑘𝐵
(𝐼: moment of inertia); nonlinear 

molecules use 
𝜋1/2(𝑇/𝜃𝑟)

3/2

𝜎
. 

Vibrational contributions sum 𝑞vib =∏
1

1−𝑒
−𝜃𝑣,𝑖/𝑇

𝑖
for harmonic modes (𝜃𝑣,𝑖 = ℎ𝜈𝑖/𝑘𝐵), 

often near unity unless low-frequency modes activate. Electronic 𝑞electypically equals 

ground-state degeneracy (e.g., 1 or 3 for singlets/triplets), exciting only at high 𝑇. Nuclear 

spin adds a temperature-independent factor, omitted in thermodynamics. This factorization 

simplifies computations, with 𝑞transoften ≫ 1020for gases, dwarfing others. 

Thermodynamic Relations 

From 𝑞, internal energy follows 𝑈 = 𝑁𝑘𝐵𝑇
2 (

∂ln⁡ 𝑞

∂𝑇
)
𝑉

, heat capacity 𝐶𝑉 =

𝑁𝑘𝐵 [𝑇
2 ∂

2ln⁡ 𝑞

∂𝑇2
+(𝑇

∂ln⁡ 𝑞

∂𝑇
)
2

], and equilibrium constants via 𝐾 =
𝑞prod
𝑁

𝑞react
𝑀 𝑒−Δ𝐸0/𝑘𝐵𝑇. For ideal 

gases, translational energy yields 
3

2
𝑁𝑘𝐵𝑇, rotational 

1

2
𝑁𝑘𝐵𝑇(linear) or 𝑁𝑘𝐵𝑇(nonlinear) 

above 𝜃𝑟, and vibrational 𝑁𝑘𝐵∑
𝜃𝑣,𝑖
2 /𝑇2𝑒

−𝜃𝑣,𝑖/𝑇

(1−𝑒−𝜃𝑣,𝑖/𝑇)2
𝑖

. Entropy decomposes as 𝑆 =

𝑁𝑘𝐵 [ln⁡ (
𝑞

𝑁
) + 1 + 𝑇

∂ln⁡ 𝑞

∂𝑇
], with Sackur-Tetrode for translation. 

 

Classical vs. Quantum Limits 

At high 𝑇or low density, quantum sums become integrals: 𝑞 ≈ ∫ 𝑔(𝜀)𝑒−𝜀/𝑘𝐵𝑇𝑑𝜀. Classical 

validity requires phase space occupancy ≪ 1, i.e., thermal de Broglie wavelength Λ =

ℎ

√2𝜋𝑚𝑘𝐵𝑇
≪interparticle distance. Quantum corrections via Darwin-Fowler or semiclassics 

apply near degeneracy; for fermions/bosons, internal 𝑞modifies but rarely dominates over 

translation. Polyatomic molecules use normal-mode analysis for 𝑞vib, with zero-point 

energies in Δ𝐸0. 

 

Applications in Spectroscopy and Kinetics 

Partition functions predict spectroscopic intensities via 𝐼 ∝ 𝑔𝑗𝑒
−𝜀𝑗/𝑘𝐵𝑇/𝑞. In reaction rates, 

transition-state theory gives 𝑘 =
𝑘𝐵𝑇

ℎ

𝑞‡

𝑞𝐴𝑞𝐵
𝑒−Δ𝐸0/𝑘𝐵𝑇, weighting loose vibrations differently. 
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For atmospheric chemistry or combustion, 𝑞(𝑇)tables (e.g., NIST-JANAF) enable 

equilibrium compositions. In materials science, vibrational 𝑞vibinforms phonon specific heats 

in solids (𝑞 =∏
1

1−𝑒−ℏ𝜔𝑘/𝑘𝐵𝑇𝑘
 per mode), relevant to nanophosphors where anharmonicities 

alter luminescence efficiencies. [conversation_history]. 

 

Computational Methods 

Exact 𝑞for small molecules uses diagonalization; larger systems employ direct summation up 

to 𝑘𝐵𝑇above ground state or approximations like Whitten-Rabinovitch for vibrations. 

Machine learning accelerates 𝑞(𝑇)via potential energy surfaces, fitting partition data for 

high-throughput screening in LED phosphors. [conversation_history] Anharmonicity 

corrections via perturbation theory or variational methods refine accuracy for hot bands. 

Isotope effects scale via mass-dependent 𝑞trans, 𝑞vib. 

 

Advanced Topics 

In condensed phases, local mode approximations yield site-specific 𝑞, aiding defect 

thermodynamics in semiconductors. Hindered rotors use Mathieu functions over rigid 

models. Fermi-Dirac statistics modify electronic 𝑞in metals: 𝑞elec = 2∫ 𝑔(𝜀)𝑓(𝜀)𝑑𝜀
∞

0
, but 

molecular contexts remain Boltzmann. Pressure dependence via virial corrections adjusts 

𝑞trans. For astrochemical modeling, 𝑞at extreme 𝑇(e.g., 10-5000 K) predicts molecular 

abundances. 

 

9.2 TRANSLATIONAL PARTITION FUNCTION 

 

The translational partition function 𝑞transquantifies the statistical weight of translational 

quantum states for a single particle or molecule moving freely in a container, forming the 

dominant contribution to the molecular partition function 𝑞for ideal gases at typical 

temperatures. Derived from the particle-in-a-box model, it is 𝑞trans = (
2𝜋𝑚𝑘𝐵𝑇

ℎ2
)
3/2

𝑉, where 

𝑚is the particle mass, 𝑘𝐵Boltzmann's constant, 𝑇temperature, ℎPlanck's constant, and 𝑉the 

volume. This semiclassical expression arises by converting a triple sum over quantum 

numbers into an integral, valid when energy levels are densely spaced (high 𝑇, large 

𝑉).youtube 

 

Quantum Mechanical Origin 

Translational energy levels for a particle in a 3D box of sides 𝐿𝑥, 𝐿𝑦, 𝐿𝑧(volume 𝑉 = 𝐿𝑥𝐿𝑦𝐿𝑧) 

are 𝜀𝑛𝑥𝑛𝑦𝑛𝑧 =
ℎ2

8𝑚
(
𝑛𝑥
2

𝐿𝑥
2 +

𝑛𝑦
2

𝐿𝑦
2 +

𝑛𝑧
2

𝐿𝑧
2), with 𝑛𝑖 = 1,2, …and degeneracy 1 per state. The exact 
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partition function is 𝑞trans =∑ ∑ ∑ 𝑒
−𝛽𝜀𝑛𝑥𝑛𝑦𝑛𝑧

∞

𝑛𝑧=1

∞

𝑛𝑦=1

∞

𝑛𝑥=1

(𝛽 = 1/𝑘𝐵𝑇), 

separating into 𝑞𝑥𝑞𝑦𝑞𝑧. For a cubic box (𝐿𝑥 = 𝐿𝑦 = 𝐿𝑧 = 𝐿), each 1D sum 

approximates∫ 𝑒−(ℎ
2𝑛2)/(8𝑚𝐿2𝑘𝐵𝑇)

∞

1
𝑑𝑛 ≈ (

2𝜋𝑚𝑘𝐵𝑇

ℎ2
)
1/2

𝐿, yielding the standard form upon 

multiplication.youtube+1 

This integral replaces summation via Euler-Maclaurin, justified when the thermal de Broglie 

wavelength Λ = ℎ/√2𝜋𝑚𝑘𝐵𝑇 ≪ 𝐿, ensuring many states below 𝑘𝐵𝑇. At low 𝑇or nanoscale 

confinement (e.g., quantum dots), quantization matters: 𝑞transstarts at 1 (ground state), rises 

stepwise, unlike the continuum approximation which is zero only at 𝑇 = 0. Corrections 

include ±1/24terms from Poisson summation for finite-size effects. 

 

Thermodynamic Implications 

For 𝑁indistinguishable ideal gas particles, the canonical partition function is 𝑄 = 𝑞trans
𝑁 /𝑁!, 

yielding Helmholtz free energy 𝐴 = −𝑘𝐵𝑇[𝑁ln⁡ 𝑞trans − ln⁡ 𝑁!] ≈ −𝑁𝑘𝐵𝑇[ln⁡(𝑞trans/𝑁) +

1](Stirling). Internal energy 𝑈 =
3

2
𝑁𝑘𝐵𝑇emerges solely from translation, independent of 

interactions, with 𝐶𝑉 =
3

2
𝑁𝑘𝐵(Dulong-Petit for translation). Entropy via Sackur-Tetrode is 

𝑆 = 𝑁𝑘𝐵 [ln⁡ (
𝑉

𝑁
(
2𝜋𝑚𝑘𝐵𝑇

ℎ2
)
3/2
) +

5

2
], capturing quantum volume exclusion. 

Pressure follows 𝑃 = 𝑘𝐵𝑇(∂ln⁡ 𝑄/ ∂𝑉)𝑇 = 𝑁𝑘𝐵𝑇/𝑉, the ideal gas law, with 𝑞trans ∝

𝑉explaining volume dependence. At high densities, virial expansions correct via 

𝑞transmodifications from excluded volume. 

 

Classical Limit and Validity 

The expression is classical when occupancy per state 𝑛Λ3/𝑉 ≪ 1(where 𝑛 = 𝑁/𝑉), avoiding 

Bose/Fermi degeneracy; for H2 at STP, Λ ≈ 0.3Å vs. 3 Å spacing, so valid. Quantum 

deviations appear below 1 K for gases or in 2D/1D systems (e.g., surfaces: 𝑞trans,2D =

(2𝜋𝑚𝑘𝐵𝑇/ℎ
2)𝐴). For electrons in metals, full Fermi-Dirac sums replace Boltzmann, but 

molecular contexts remain classical. 

 

Applications in Chemistry and Materials 

In spectroscopy, 𝑞transweights rovibrational lines via total 𝑞, with intensity 𝐼 ∝ 𝑔𝑒−𝜀/𝑘𝐵𝑇/𝑞. 

Reaction equilibria use 𝐾𝑝 = (𝑞prod/𝑞react)
𝑁(𝑘𝐵𝑇)

Δ𝑛𝑒−Δ𝐸0/𝑘𝐵𝑇, dominated by translational 

ratios scaling as (𝑚prod/𝑚react)
3/2. For combustion or atmospheric modeling, 𝑞trans(𝑇)spans 

300-5000 K, enabling species balances. 

 

In nanotechnology, for adsorbed species or quantum dots (size ~10 nm), discrete sums 

compute binding energies; e.g., in nanophosphors, translational confinement in pores tunes 

dopant diffusion. [conversation_history] Machine learning fits 𝑞transfrom trajectories for 
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coarse-grained models. [conversation_history] Isotope effects: heavier isotopes raise 

𝑞trans(larger 𝑚), shifting equilibria (e.g., Urey fractionation). 

 

Computational and Experimental Aspects 

Exact sums use recursion or matrix methods for small 𝑉; semiclassical dominates with <1% 

error above 10 K. NIST databases tabulate ln 𝑞transfor accuracy. Experiments validate via 

speed of sound or virial coefficients, matching predictions to 0.1%. In 1D nanotubes, 

𝑞trans,1D = √2𝜋𝑚𝑘𝐵𝑇/ℎ ⋅ 𝐿, altering gas adsorption. 

 

Extensions to Polyatomics and Beyond 

For polyatomic, center-of-mass 𝑞transuses total⁡𝑚, separating from internal modes; vibrational 

amplitudes shrink effective 𝑉in Einstein models. Relativistic corrections for heavy atoms: 

𝑞trans ∝ (𝑘𝐵𝑇/𝑚𝑐
2)−1/2adjustments. In liquids/clusters, periodic boundary or density 

functional approximations mimic 𝑞trans. For white LED phosphors, gas-phase synthesis 

precursors' 𝑞transinforms deposition rates.  

 

9.3 ROTATIONAL PARTITION FUNCTION 

 

The rotational partition function 𝑞rotquantifies the statistical contribution of molecular 

rotations to the total molecular partition function in statistical mechanics, arising from 

quantized angular momentum levels of rigid rotors. For diatomic or linear molecules, energy 

levels are𝐸𝐽 = 𝐵𝐽(𝐽 + 1), where 𝐵 =
ℎ2

8𝜋2𝐼𝑘𝐵
is the rotational constant (𝐼: moment of inertia), 

𝐽 = 0,1,2, …the rotational quantum number, and degeneracy 𝑔𝐽 = 2𝐽 + 1. Thus, 𝑞rot =

∑ (2𝐽 + 1)
∞

𝐽=0
𝑒−𝐽(𝐽+1)𝜃𝑟/𝑇, with rotational temperature 𝜃𝑟 = 𝐵/𝑘𝐵 ≈ 1 − 10K for most 

diatomics. 

 

High-Temperature Approximation 

At 𝑇 ≫ 𝜃𝑟(typical lab conditions), the sum approximates an integral: 𝑞rot ≈ ∫ (2𝐽 +
∞

0

1) 𝑒−𝐽(𝐽+1)𝜃𝑟/𝑇𝑑𝐽 =
𝑇

𝜎𝜃𝑟
, where 𝜎is the symmetry number (𝜎 = 1 heteronuclear, 2 

homonuclear like N2). This classical limit derives from phase space 

1

ℎ2
∫ 𝑒−𝛽𝐻rot𝑑𝜃𝑑𝜙𝑑𝑝𝜃𝑑𝑝𝜙 =

8𝜋2𝐼𝑘𝐵𝑇

ℎ2𝜎
=

𝑇

𝜎𝜃𝑟
, valid when level spacing 2𝐵 ≪ 𝑘𝐵𝑇. Corrections 

include 1 +
𝜃𝑟

3𝑇
+

𝜃𝑟
2

15𝑇2
+⋯for accuracy >0.1%. 

For symmetric tops (e.g., NH3), levels split as 𝐸𝐽,𝐾 = 𝐵𝐽(𝐽 + 1) + (𝐴 − 𝐵)𝐾2(𝐾: projection 

quantum number), with 𝑞rot ≈
√𝜋

𝜎
(

𝑇3

𝜃𝐴𝜃𝐵𝜃𝐶
)
1/2

, where 𝜃𝑖 =
ℎ2

8𝜋2𝐼𝑖𝑘𝐵
. Asymmetric tops (e.g., 

H2O) use numerical diagonalization of rotational Hamiltonian, but high-T limit holds: 𝑞rot =

√𝜋(8𝜋2𝑘𝐵𝑇)3

𝜎ℎ3√𝐼𝑎𝐼𝑏𝐼𝑐
. Linear polyatomics follow diatomic form with reduced⁡𝐼. 
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Symmetry and Nuclear Spin Effects 

Homonuclear diatomics enforce wavefunction symmetry via spin-statistics: bosons (even 

nuclear spin, e.g., 14N2) occupy even-J only; fermions (odd, e.g., 1H2 ortho) odd-J. Total 

𝑞rotweights ortho/para ratios: for H2 at 298 K, ortho (I=1, nuclear degeneracy 3) dominates 

with 𝑞rot ≈ 0.69𝑇/𝜃𝑟 , para (I=0,1) 0.31. Equilibrium shifts with temperature, affecting 

specific heat near 100 K. Inversion doubling (e.g., NH3) splits levels, but averages in 𝑞rot. 

 

Thermodynamic Properties 

Rotational energy 𝑈rot = 𝑁𝑘𝐵𝑇
2 ∂ln⁡ 𝑞rot

∂𝑇
= 𝑁𝑘𝐵𝑇(high T, linear), yielding 𝐶𝑉,rot =

𝑁𝑘𝐵(equipartition: 1/2 k_B T per quadratic term, two for linear). Nonlinear molecules 

contribute 𝐶𝑉,rot =
3

2
𝑁𝑘𝐵𝑇(three axes). Free energy 𝐴rot = −𝑁𝑘𝐵𝑇ln⁡ 𝑞rot; entropy 𝑆rot =

𝑁𝑘𝐵[ln⁡(𝑇/𝜎𝜃𝑟) + 1]. These explain gas heat capacities exceeding translational 3/2 R by R 

(diatomics) above 50 K. 

 

Quantum vs. Classical Regimes 

Below 𝜃𝑟, discrete sums matter: for HF (𝜃𝑟 = 30 K), 𝑞rot(10K) ≈ 0.3 vs. classical 0.33, 

rising steeply. Centrifugal distortion refines 𝐸𝐽 = 𝐵𝐽(𝐽 + 1)[1 − 𝐷𝐽2(𝐽 + 1)2], with 𝐷 ≈

10−4𝐵; correction Δ𝑞rot/𝑞rot ≈ −0.04𝜃𝑟/𝑇. Coriolis and vibrational coupling (break rigid 

rotor) require Dunham expansions for precision spectroscopy. 

 

Applications in Spectroscopy 

Rotational structure in IR/UV spectra follows 𝑃(𝐽 + 1)and 𝑅(𝐽 − 1)branches, intensities ∝

(2𝐽 + 1)𝑒−𝐸𝐽/𝑘𝐵𝑇/𝑞rot. Boltzmann plots ln⁡ 𝐼/(2𝐽 + 1)vs. 𝐸𝐽yield T; 𝑞rotnormalizes. In 

astrophysics, CO rotational lines probe molecular clouds, with 𝑞rotcorrecting column 

densities up to 1000 K. Microwave spectra fit B from spacing’s 2B(J+1). 

 

Computational Methods 

Exact 𝑞rotsums to J_max ~ 3T / \theta_r; Wang summation handles asymmetry. ML potentials 

compute I(T) for floppy molecules. [conversation history] NIST-JANAF tabulates for 100+ 

species. Enharmonic corrections via curvilinear coordinates for polyatomic. 

 

9.4 VIBRATIONAL PARTITION FUNCTION 

 

                The vibrational partition function 𝑞vibrepresents the contribution of quantized 

vibrational modes to the molecular partition function in statistical mechanics, crucial for 

polyatomic molecules where nuclei oscillate around equilibrium positions. For a harmonic 

oscillator model, each mode 𝑗has energy levels 𝐸𝑗,𝑛 = ℏ𝜔𝑗(𝑛𝑗 + 1/2), with quantum number 

𝑛𝑗 = 0,1,2, …and degeneracy 1, yielding per-mode 𝑞𝑗 = ∑ 𝑒−𝛽ℏ𝜔𝑗(𝑛+1/2)
∞

𝑛=0
=

𝑒
−𝜃𝑣,𝑗/(2𝑇)

1−𝑒
−𝜃𝑣,𝑗/𝑇

, 

where 𝜃𝑣,𝑗 = ℏ𝜔𝑗/𝑘𝐵is the vibrational temperature (typically 1000-4000 K) and 𝛽 = 1/𝑘𝐵𝑇. 
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The total 𝑞vib =∏ 𝑞𝑗
𝑗

factors over 3𝑁 − 6(nonlinear) or 3𝑁 − 5(linear) normal modes, with 

zero-point energy 𝐸ZP =
1

2
∑ ℏ𝑗 𝜔𝑗often set as reference, simplifying to 𝑞vib =∏

1

1−𝑒
−𝜃𝑣,𝑗/𝑇

𝑗
. 

 

High- and Low-Temperature Limits 

At high 𝑇 ≫ 𝜃𝑣(e.g., >2000 K for combustion), 𝑞vib ≈ ∏ 𝑇/𝑗 𝜃𝑣,𝑗from equipartition (𝑘𝐵𝑇 per 

mode), but harmonic model caps at infinity unlike classical 𝑇/𝜃𝑣. Low 𝑇(room temp), 𝑞vib ≈

1 + 𝑒−𝜃𝑣/𝑇 +⋯, freezing higher levels; for CO (𝜃𝑣 ≈ 3100 K), 𝑞vib(298K) ≈ 1.02. Mean 

vibrational energy per mode ⟨𝐸𝑗⟩ =
ℏ𝜔𝑗

𝑒
𝜃𝑣,𝑗/𝑇−1

+
1

2
ℏ𝜔𝑗(zero-point constant), with heat capacity 

𝐶𝑉,𝑗 = 𝑘𝐵(𝜃𝑣,𝑗/𝑇)
2𝑒𝜃𝑣,𝑗/𝑇/(𝑒𝜃𝑣,𝑗/𝑇 − 1)2, peaking near 𝜃𝑣. 

 

Enharmonic Corrections 

Real potentials deviate from parabolic: Morse 𝑉(𝑟) = 𝐷𝑒(1 − 𝑒−𝛼(𝑟−𝑟𝑒))2yields levels 𝐸𝑣 =

ℏ𝜔𝑒(𝑣 + 1/2) − ℏ𝜔𝑒𝑥𝑒(𝑣 + 1/2)2, dissociating at 𝑣max ≈ 𝜔𝑒/(2𝜔𝑒𝑥𝑒). Perturbation 

refines 𝑞vib = 𝑞harm(1 + ∑ Δ𝑣 𝐸𝑣/𝑘𝐵𝑇𝑒
−𝛽𝐸𝑣); mechanical anharmonicity shifts frequencies, 

electrical couples modes. Dunham expansion 𝑌𝑘ℓ(ℏ𝜔𝑒(𝑣 + 1/2))𝑘+ℓcomputes accurate 

sums; Pitzer-Gwinn approximates from low-level data. For floppy modes (e.g., torsions <500 

cm⁻¹), hindered rotor treatments replace oscillators. 

 

Thermodynamic Derivations 

Internal energy 𝑈vib = 𝑘𝐵𝑇
2 ∂ln⁡ 𝑞vib

∂𝑇
, entropy 𝑆vib = 𝑘𝐵[ln⁡ 𝑞vib + 𝑇

∂ln⁡ 𝑞vib

∂𝑇
], free energy 𝐴vib =

−𝑘𝐵𝑇ln⁡ 𝑞vib. Equilibrium constants incorporate Δ𝐸ZPand 𝑞vib,prod/𝑞vib,react, explaining 

endothermic reactions favoring vibrationally excited products. Specific heat rises gradually 

above 500 K for polyatomic, explaining polyatomic gases' 𝐶𝑉 > 7/2𝑅. 

 

Computational Approaches 

Normal modes from Hessian at minimum: frequencies via 𝜔𝑖 = √𝜆𝑖/𝜇𝑖(eigenvalues𝜆𝑖, 

reduced masses 𝜇𝑖). Direct summation converges rapidly (20-50 levels/mode); variational 

methods (e.g., Watson) for polyad states. ML force fields accelerate 𝑞vib(𝑇)scans for large 

molecules, fitting NIST-JANAF data. [conversation history] Temperature grids (100-6000 K) 

tabulate ln 𝑞vibfor kinetics software like Cantera. Isotope substitution scales𝜔 ∝ √1/𝜇, 

altering 𝑞vibby 1-10%. 

 

9.5 SUMMARY 

 

The molecular partition function describes how the total energy of a molecule is statistically 

distributed among its allowed quantum states at a given temperature. It is a central quantity in 

statistical mechanics, linkingmicroscopic molecular energy levels to macroscopic 

thermodynamic properties. 
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The rotational partition function sums contributions from quantized rotational energy levels 

of molecules, primarily diatomic or polyatomic, determined by moments of inertia. For linear 

molecules at high temperatures, it approximates a classical value proportional to temperature, 

accounting for symmetry factors that reduce over counting in identical-atom cases like 

homonuclear diatomics. It dominates heat capacity contributions above rotational 

characteristic temperatures, typically a few Kelvin. 

 

Vibrational Partition Function 

This function accounts for quantized harmonic vibrations, starting from a zero-point energy. 

At low temperatures, only the ground state contributes, but as temperature rises, excited 

levels populate, yielding a heat capacity that rises then saturates per mode. Quantum 

anharmonicity refines it for real molecules. 

 

 

9.6 TECHNICAL TERMS 

 

Molecular partition function  

Translational partition function 

 Rotational partition function 

Vibrational partition function 

 

9.7 SELF ASSESSMENT QUESTIONS 

 

1. Briefly explain about the Molecular partition function 

2. Explain about the Translational partition function 

3. Explain about the Rotational partition function 

4. Write about the Vibrational partition function 

 

9.8 SUGGESTED READINGS 

 

1. Statistical and Thermal Physics by S. Lokanadhan and R.S. Gambhir (PHI). 

2. Statistical Mechanics: Theory and applications by S.K. Sinha 

3. Fundamentals of Statistical and Thermal Physics by F. Reif 

4. Statistical Mechanics by Gupta and Kumar, Pragati Prakashan Pub. Meerut. 

5. Statistical Mechanics by Satya Prakash 

 

 

 Prof. R.V.S.S.N. Ravi Kumar 



LESSON-10 

ELECTRONIC AND NUCLEAR PARTITION 

FUNCTION 
 

AIM AND OBJECTIVE: 

Electronic Partition Function 

Aim 

The aim of the electronic partition function is to account for the contribution of electronic 

energy levels of atoms or molecules to the overall thermodynamic properties of a system. 

 

Objectives 

• To determine the population of electrons among various electronic energy states 

• To evaluate the contribution of electronic states to thermodynamic quantities such 

as internal energy, entropy, and free energy 

• To explain temperature-dependent electronic excitation effects 

• To assist in calculating the total partition function of atoms and molecules 

• To understand spectroscopic and ionization behavior of matter 

 

Nuclear Partition Function 

Aim 

The aim of the nuclear partition function is to describe the contribution of nuclear energy 

levels to the thermodynamic behavior of a system, particularly at very high temperatures. 

 

Objectives 

• To account for the distribution of nuclei among nuclear energy states 

• To evaluate the nuclear contribution to thermodynamic properties 

• To study systems involving nuclear excitation 

• To analyze thermodynamic behavior in high-energy and astrophysical 

environments 

• To complete the calculation of the total partition function in extreme conditions 

• Nuclear partition function becomes important only at extremely high 

temperatures 

 

STRUCTURE OF THE LESSON: 

 

10.1 ELECTRONIC AND NUCLEAR PARTITION FUNCTION 

10.2 APPLICATION OF ROTATIONAL PARTITION FUNCTION IN SOLIDS 

10.3 APPLICATION OF VIBRATIONAL PARTITION FUNCTION IN SOLIDS 

10.4 SUMMARY 

10.5 TECHNICAL TERMS 

10.6 SELF ASSESSMENT QUESTIONS 

10.7 SUGGESTED READINGS 
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10.1 ELECTRONIC AND NUCLEAR PARTITION FUNCTION 

 

Introduction 

The electronic and nuclear partition functions are components of the total partition 

function in statistical mechanics, which account for contributions from different energy 

levels of a system. 

 

• The electronic partition function considers the distribution of particles among 

various electronic energy states of atoms or molecules and helps in calculating 

thermodynamic quantities like internal energy, entropy, and free energy. 

• The nuclear partition function accounts for the contribution of nuclear energy 

levels, such as spin and rotational states of the nucleus, to the overall thermodynamic 

behavior. This is significant only at very high temperatures, such as in stellar or 

nuclear environments. 

Both functions help in connecting microscopic quantum states with macroscopic  

 

thermodynamic properties. 

The electronic partition function 𝑞elecsums over electronic energy levels of a molecule or 

atom, weighted by their degeneracy’s, contributing minimally to the total partition function 

𝑞at ordinary temperatures due to large spacings between ground and excited states. Defined 

as 𝑞elec = ∑ 𝑔𝑖𝑖 𝑒−(𝜀𝑖−𝜀0)/𝑘𝐵𝑇, where 𝜀0is the ground-state energy, 𝑔𝑖the degeneracy (often 

from spin-orbit coupling, e.g., 𝑔0 = 1singlet, 3 triplet), and levels from quantum chemistry 

solutions like Hartree-Fock or CASSCF. At 298 K, 𝑞elec ≈ 𝑔0(typically 1-5) for most species, 

as first excitations exceed 10,000-50,000 cm⁻¹ (𝜃𝑒 > 15,000 K). 

 

Ground and Excited State Contributions 

Ground states dominate: for closed-shell molecules like N2, 𝑞elec = 1; atoms like O(³P) have 

𝑔0 = 9(L=1, S=1, 𝑔 = (2𝐿 + 1)(2𝑆 + 1)). Low-lying triplets (e.g., O2 ¹Δ_g at 7900 cm⁻¹) 

contribute𝑒−1135/𝑇, ~0.01 at 298 K but relevant in plasmas. Rydberg series converge to 

ionization limits; hydrogen paradox arises summing infinite bound states 𝑞elec =

∑ 𝑛2
𝑛

𝑒−𝑅/𝑛
2𝑘𝐵𝑇 → ∞, resolved by container size truncating high-n orbits larger than lab 

volumes. Practically, sum to 𝜀𝑖 < 3𝑘𝐵𝑇 + 𝐼𝑃(ionization potential). 

 

Nuclear Partition Function 

The nuclear partition function 𝑞nucaccounts for hyperfine structure from nuclear spins, often 

temperature-independent as splittings≪ 𝑘𝐵𝑇. For nuclei with spin I, degeneracy𝑔𝐼 = 2𝐼 + 1: 

e.g., ¹H (I=1/2, g=2), ¹⁴N (I=1, g=3). Total 𝑞nuc = ∏ (2
𝛼

𝐼𝛼 + 1), multiplicative over distinct 

isotopes. Ortho/para forms in homonuclear diatomics (e.g., H2) entangle nuclear spin with 
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rotation: ortho-H2 (odd J, nuclear singlet I=1, g=3) vs. para (even J, I=0, g=1), with 

equilibrium ratio 3:1 at high T, affecting 𝑞rotweighting. At room T, 𝑞nuc ≈ 4for H2. 

 

Thermodynamic Role 

Electronic excitations add 𝑈elec = 𝑘𝐵𝑇
2 ∂ln⁡ 𝑞elec

∂𝑇
, negligible unless low-lying states; e.g., NO 

(²Π, split by Λ-doubling) has 𝑞elec ≈ 2. Equilibrium constants gain 𝑞elec,prod/

𝑞elec,react𝑒
−Δ𝐸𝑒/𝑘𝐵𝑇, favoring products with higher ground degeneracies. Nuclear spins 

contribute entropy 𝑆nuc = 𝑁𝑘𝐵ln⁡ 𝑞nuc, omitted in classical thermodynamics as constant, but 

vital for absolute entropies (third-law compliant). In Sakur-Tetrode, they multiply total q. 

 

Quantum Mechanical Basis 

Electronic levels from time-independent Schrödinger equation on Born-Oppenheimer 

surfaces: 𝐻elec𝜓 = 𝐸𝑒𝜓, with spin-orbit via relativistic Hamiltonians. Hund's rules predict 

term symbols ²S+1L_J, degeneracies (2J+1) summed per term. Configuration interaction 

mixes; DFT/CASPT2 compute for heavy elements. Nuclear hyperfine from magnetic 

dipole/electric quadrupole: A I·J splitting, but 𝑞nuc ≈ 𝑔𝐼averages. Relativistic effects (fine 

structure) included in g_0 for heavy atoms like Bi. 

 

Applications in Spectroscopy and Kinetics 

Electronic transitions drive UV-Vis absorption; partition functions normalize oscillator 

strengths 𝑓0𝑖 ∝∣ ⟨0 ∣ 𝜇 ∣ 𝑖⟩ ∣
2 𝑒−𝐸𝑖/𝑘𝐵𝑇/𝑞elec. Laser-induced fluorescence measures T via line 

ratios. In combustion, OH(A-X) emissions use q_elec for populations. Nuclear statistics 

explain H2/D2 rotational gaps in Raman spectra. Astrophysics: fine-structure lines (e.g., [O I] 

63 μm) probe ISM densities via q_elec. 

 

Computational Strategies 

Tabulated in NIST-JANAF (up to 6000 K, 20+ states); ML models (e.g., ΔSCF) predict for 

clusters. [conversation_history] For Rydbergs, semiclassical phase space cuts off at container 

radius. Variational CI sums converge; avoided crossings mix states. Isotope-specific q_nuc 

scales with g_I, affecting equilibrium isotope fractionation. 

 

Materials and Nanophosphor Relevance 

In phosphors, electronic q_elec weights multiplet intensities: Eu³⁺ (7F_0 ground, g=1) to 

5D_0 emissions, with Judd-Ofelt parameters fitting branching ratios normalized by 
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q_elec(T). [conversation_history] Thermal population of ligand-field states quenches at >500 

K, modeled as q_elec increase. Nuclear spins negligible but hyperfine broadens EPR in 

doped QDs. [conversation_history] Machine learning on electronic structure databases 

optimizes dopant levels via effective q_elec for LED efficiency. [Conversation history] In 

high-throughput screening, q_elec(T) predicts radiative lifetimes. 

 

Paradoxes and Advanced Topics 

Hydrogen q_elec paradox highlights continuum limits: full sum includes ionization 

continuum∫ 𝑔(𝜀)
∞

𝐼𝑃
𝑒−𝜀/𝑘𝐵𝑇𝑑𝜀, finite via density of states. Zeeman/Stark effects split levels, 

T-dependent in fields. Jahn-Teller distortions quench orbital degeneracy dynamically. For 

open shells, spin-orbit recouples LS to jj-coupling. Relativistic q_elec for actinides includes 

Dirac levels. 

 

Conclusion 

The electronic and nuclear partition functions provide a way to include quantum energy 

levels in the calculation of thermodynamic quantities. While the electronic partition function 

significantly influences the properties of matter at ordinary temperatures, the nuclear partition 

function becomes important only at extremely high temperatures. Together, they allow a 

more complete and accurate evaluation of the total partition function, linking microscopic 

quantum behavior to macroscopic thermodynamic laws. 

 

 

10.2 APPLICATION OF ROTATIONAL PARTITION FUNCTION IN SOLIDS  

 

Introduction 

The rotational partition function describes the contribution of rotational energy levels of 

molecules to the thermodynamic properties of a system. While in gases, rotational motion 

is prominent, in solids, molecules are generally restricted in rotation, but small rotational 

vibrations or lattice rotations can still contribute to the system’s energy at higher 

temperatures. Studying the rotational partition function in solids helps in understanding 

specific heat, thermal energy distribution, and other thermodynamic properties arising 

from rotational degrees of freedom. 

 

The rotational partition function (𝑞𝑟𝑜𝑡) is a fundamental concept in statistical mechanics that 

provides a way to calculate the contribution of a molecule's rotational degrees of freedom to 

its overall thermodynamic properties. 

The primary applications of the rotational partition function include: 
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Calculating Thermodynamic Properties 

The rotational partition function acts as a bridge between the microscopic (molecular energy 

levels) and macroscopic (bulk) properties of a system.It is used to calculate the rotational 

contribution to various thermodynamic quantities for gases: 

• Internal Energy (𝑈𝑟𝑜𝑡): The average thermal rotational energy per molecule or per 

mole. 

• Entropy (𝑆𝑟𝑜𝑡): A measure of the rotational disorder and the number of accessible 

rotational states.5 The rotational entropy for diatomic molecules can be expressed in 

terms of  (𝒒𝒓𝒐𝒕): 

• 𝑆𝑟𝑜𝑡 =
𝑈𝑟𝑜𝑡

𝑇
+ 𝑅⁡𝑙𝑜𝑔⁡(𝑞𝑟𝑜𝑡): 

• Heat Capacity (𝐶𝑉,𝑟𝑜𝑡⁡𝑎𝑛𝑑⁡𝐶𝑃,𝑟𝑜𝑡⁡): The ability of the rotational degrees of freedom to 

store thermal energy. 

• Helmholtz Free Energy (𝐴𝑟𝑜𝑡):Gibbs Energy (𝐺𝑟𝑜𝑡)These are also directly related to 

the partition function. 

 

Relating to Molecular Structure and Spectroscopy 

 

The formula for the rotational partition function in the high-temperature limit (a common and 

accurate approximation for most molecules at ambient temperatures) explicitly depends on 

the molecule's structural properties: 

 

• Moment of Inertia (I): The partition function is directly proportional to I for a linear 

molecule. Since the moment of inertia is calculated from the masses of the atoms and 

their relative positions (bond lengths and angles), the rotational partition function links 

thermodynamics back to the molecule's geometry. 

• Rotational Constants (A, B, C): These constants, often derived from rotational 

(microwave) spectroscopy, are used in the calculation of  (𝑞𝑟𝑜𝑡)for non-linear molecules. 

• Symmetry Number (𝜎): The partition function must be divided by the symmetry number 

(𝜎), which is the number of indistinguishable orientations a molecule can achieve by 

rotation.11 This connects the rotational partition function to the molecule's symmetry and 

its nuclear spin statistics (especially important for homonuclear diatomics like 

(𝐻2⁡𝑎𝑛𝑑⁡𝑂2). 
 

Understanding Energy Distribution 

• The rotational partition function quantifies the number of thermally accessible rotational 

states for a molecule at a given temperature. 

• A larger 𝑞𝑟𝑜𝑡 indicates that a larger number of rotational energy levels are significantly 

populated. 

• The rotational partition function helps determine the equilibrium occupation probabilities 

of different rotational energy levels according to the Boltzmann distribution. 

 

Conclusion 

The rotational partition function in solids provides insight into the thermodynamic 

contribution of rotational motions, even when restricted. Its application helps in calculating 

internal energy, heat capacity, and entropy of solids more accurately, especially at 

elevated temperatures. Thus, it bridges the microscopic rotational behavior of molecules with 

the macroscopic thermal properties of solid materials 
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10.3 APPLICATION OF VIBRATIONAL PARTITION FUNCTION IN SOLIDS 

 

The vibrational partition function is central to calculating the thermal properties of crystalline 

solids. In solids, the vibrational motion of the atoms is quantized and collective, giving rise to 

excitations called phonons. 

 

The primary application is to use the vibrational partition function (𝑞𝑣𝑖𝑏) to determine the 

rotational contribution to a solid's thermodynamic properties, especially its heat capacity. 

 

Calculating Heat Capacity (𝑪𝑽) 

The historical and most critical application is the accurate calculation of the molar heat 

capacity at constant volume (𝐶𝑉) for crystalline solids, which classical mechanics failed to 

explain, particularly at low temperatures. 

 

1. The Einstein Model 

The Einstein model (1907) was the first successful quantum-mechanical application of the 

partition function to solids. 

• Assumption: It treats a solid of N atoms as 3Nindependent, non-interacting quantum 

harmonic oscillators (QHO), all vibrating at a single, characteristic frequency (𝑉𝐸) 

• Partition Function: The total canonical partition function for the crystal's vibrational 

energy is (𝑄𝑣𝑖𝑏) = (𝑞𝑣𝑖𝑏)
3N, where (𝑞𝑣𝑖𝑏) is the partition function for a single QHO. 

• (𝑞𝑣𝑖𝑏) =
𝑒
−ℎ𝑣𝐸

2𝑘𝑇⁄

1−𝑒
−ℎ𝑣𝐸

𝑘𝑇⁄
 

• Application: Using the energy derived from this partition function, the Einstein heat 

capacity formula is obtained. 

• Result: This model correctly predicts that (𝐶𝑉)⁡approaches zero at low temperatures (a 

major improvement over the classical Dulong-Petit law), and it recovers the classical 

(𝐶𝑉 = 3𝑅)⁡limit at high temperatures.However, its low-temperature approach to zero 

is too rapid (exponentially, not correctly) 

 

2. The Debye Model 

The Debye model (1912) is a refinement that accounts for the collective and coupled nature 

of atomic vibrations (phonons) 

• Assumption: It treats the solid's vibrations as sound waves (phonons) with a 

continuous spectrum of frequencies up to a maximum Debye frequency ((𝑣𝑉). 

• Application: The total vibrational partition function is calculated by integrating the 

contribution of all these vibrational modes (treating them as QHOs). 

• Result: This model correctly predicts the Debye T3 Law at low temperatures: 

• 𝐶𝑉𝛼T3 

• This T3 dependence matches experimental data for non-metallic solids extremely well 

near absolute zero. 
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 Other Thermodynamic Applications 

 

Once the total vibrational partition function (𝑸𝒗𝒊𝒃)) is known from models like Einstein's or 

Debye's, it can be used to calculate other thermodynamic properties of the solid: 

• Internal Energy ((𝑈𝑣𝑖𝑏)): The average thermal energy stored in the lattice vibrations. 

• Vibrational Entropy ((𝑉𝑣𝑖𝑏)): A measure of the disorder associated with the number of 

accessible phonon states. 

• Helmholtz Free Energy ((𝐴𝑣𝑖𝑏)): Used to determine the pressure and elastic properties 

of the solid. 

By accurately describing the vibrational states of the atoms in a solid, the partition function 

provides the necessary quantum statistical bridge to calculate bulk thermal properties that are 

crucial for materials science and condensed matter physics. 

 

10.4 SUMMARY 

 

In molecular statistical mechanics, besides translational, rotational, and vibrational motions, 

electronic and nuclear energy levels also contribute to the total molecular partition function. 

Their effects, however, are usually significant only under specific conditions. 

 

The electronic partition function accounts for the distribution of molecules among electronic 

energy levels. 

 

The nuclear partition function arises from the internal energy states of atomic nuclei, such as: 

• Nuclear spin states 

• Nuclear excitation levels 

Rotational partition functions apply mainly to gases, predicting heat capacities for diatomic 

molecules like N2 or O2, where rotational contributions activate above a few Kelvin, adding 

to specific heats. They help calculate equilibrium constants in rotational spectroscopy and 

thermodynamic properties of polyatomic gases, such as entropy in atmospheric modeling. 

Symmetry numbers account for identical nuclei, affecting ortho-para hydrogen ratios. 

 

Vibrational Partition in Solids 

In solids, vibrational partition functions underpin the Einstein and Debye models, treating 

phonons as quantized oscillators. The Einstein model assumes identical frequencies, yielding 

low-temperature exponential heat capacity drop; Debye refines this with a continuum up to a 

cutoff, matching Dulong-Petit law at high temperatures and T^3 rise at low ones. These 

explain thermal expansion and conductivity in insulators. 

 

10.5 TECHNICAL TERMS 

 

Electronic and Nuclear partition function 

Application of rotational partition function 

Application of vibrational partition function in solids,  
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10.6 SELF ASSESSMENT QUESTIONS 

 

1. Briefly explain about the Electronic and Nuclear partition function 

2. Write about the Application of rotational partition function 

3. Explain about the Application of vibrational partition function in solids 

 

10.7 SUGGESTED READINGS 

 

1. Statistical and Thermal Physics by S. Lokanadhan and R.S. Gambhir (PHI). 

2. Statistical Mechanics: Theory and applications by S.K. Sinha 

3. Fundamentals of Statistical and Thermal Physics by F. Reif 

4. Statistical Mechanics by Gupta and Kumar, Pragati Prakashan Pub. Meerut. 

 

 

 

 Prof. G. Naga Raju 



LESSON-11 

THEORY OF WHITE DWARF STARS 
 

AIM AND OBJECTIVE 

 

Aim 

The aim of the theory of white dwarf stars is to explain the structure, stability, and 

properties of white dwarfs using principles of quantum mechanics and statistical 

mechanics, particularly the degeneracy pressure of electrons that prevents gravitational 

collapse. 

 

Objectives 

• To understand why white dwarfs do not collapse under gravity despite no 

significant nuclear fusion 

• To apply Fermi–Dirac statistics to the degenerate electron gas in white dwarfs 

• To calculate important properties such as mass, radius, and density of white dwarfs 

• To explain the Chandrasekhar limit, the maximum mass a white dwarf can have 

before collapsing into a neutron star or black hole 

• To study the relationship between pressure, density, and temperature in highly 

dense stellar objects 

 

STRUCTURE OF THE LESSON: 

 

11.1 EQUATION OF STATE OF AN IDEAL FERMI GAS 

11.2 THEORY OF WHITE DWARF STARS 

11.3 LANDAU DIAMAGNETISM 

11.4 SUMMARY 

11.5 TECHNICAL TERMS 

11.6 SELF ASSESSMENT QUESTIONS 

11.7 SUGGESTED READINGS 

 

11.1 EQUATION OF STATE OF AN IDEAL FERMI GAS 

 

 Grand potential → pressure 

Start from the grand canonical potential 

Ω = −𝑘𝐵𝑇    ln 1 + 𝑧𝑒−𝛽ε 

𝑧 = 𝑒𝛽μ𝛽 =
1

𝑘𝐵𝑇
 

for noninteracting fermions. Replace the single-particle sum by an integral using the density 

of states in 3D (nonrelativistic particles): 

𝑔(ε) =
gV

4π2
(
2m

ħ2
)

3
2⁄ ε

1
2⁄  

Then 
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. Ω = −𝑘𝐵𝑇 ∫ 𝑔(
∞

0
ε) ln 1 + 𝑧𝑒−𝛽ε  𝑑ε 

The pressure is P=−Ω/V. Introducing the thermal de Broglie wavelength 

λ =
h

√2πm𝑘𝐵𝑇
 

and the standard Fermi integrals (also written with fugacity z) 

𝑓𝑣(𝑧) =
1

Γ(v)
   ,           ∫

𝑥𝑣−1

𝑧−1𝑒𝑥+1

∞

0
 𝑑𝑥   ,         𝑓𝑣(𝑧) = −𝐿𝑖𝑣(−𝑧)        

one obtains the standard thermodynamic relations for an ideal nonrelativistic Fermi gas in 

3D: 

2. Finite-temperature results (3D, nonrelativistic) 

Particle number density 

𝑛 =
𝑁

𝑉

𝑔

λ3
𝑓3/2(𝑧) 

Pressure (equation of state) 

𝑃 =
𝑘𝐵𝑇𝑔

λ3  𝑓5/2(𝑧) 

Internal energy (total) and energy density 

𝑈 =
3

2
𝑃𝑉 →

𝑈

𝑉
=

3

2
𝑃 

(so P and U are related by the usual ideal-gas kinetic relation for a quadratic dispersion in 

3D). 

Chemical potential enters through 𝑧 = 𝑒𝛽μ. Given n and T you solve 

𝑛 =
𝑔

λ3 𝑓3/2(𝑧)for z (or μ) and then plug into 𝑃 =
𝑘𝐵𝑇𝑔

λ3  𝑓5/2(𝑧) 

Useful limiting cases: 

• Classical (high T, low n): z≪1,𝑓𝑣(𝑧) ≈z and you recover the classical ideal gas  

𝑃 = −𝑛𝑘𝐵𝑇 . 

• Degenerate / quantum z≫1: use asymptotic expansions of the Fermi integrals 

(Sommerfeld expansion) to get corrections to the zero-temperature limit. 

3. Zero-temperature limit (T→0, fully degenerate Fermi gas) 

At T=0 all states with ε≤ε𝐹  are filled, where the Fermi energy ε𝐹 is determined by the 

density: 

𝑛 = ∫ 𝑔(

ε𝐹

0

ε) dε =
g

6π2
kF

3 

𝑘𝐹 = (6π2n
𝑔⁄ )

1
3⁄  
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and 

.ε𝐹 =
ħ2kF

3

2𝑚
=

ħ2

2𝑚
(6π2n

𝑔⁄ )
2

3⁄  

The T=0 pressure and energy per unit volume follow from integrating the occupied states: 

  𝑃 = 0) =
2

5
𝑛ε𝐹  

𝑈

𝑉
(𝑇 = 0) =

3

5
 𝑛ε𝐹  

Thus P=(2/3)(U/V) at T=0 (and more generally U=(3/2)PV for the nonrelativistic ideal Fermi 

gas at any T). 

Explicitly, using nnn, 

𝑃(𝑇 = 0) =  
ħ2

5𝑚
(6π2

𝑔⁄ )
2

3 ⁄ 𝑛
5

3⁄  

This is the familiar degenerate-Fermi pressure P∝𝑛
5

3⁄  

 

11.2 THEORY OF WHITE DWARF STARS 

1. The most important and interesting application of the Fermi–Dirac statistics is the 

study of white dwarf stars. 

2. It is observed that the luminosity (brightness) of stars is related to their surface 

temperature or colour. 

3. When luminosity is plotted against colour (or temperature), we obtain the 

Hertzsprung–Russell (H–R) diagram. 

 

Figure 11.1 

Figure 11.1: Detailed Hertzsprung–Russell Diagram showing main sequence, white dwarfs 

and giant regions. 
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4. Red giant stars which are abnormally bright compared to main sequence stars of 

similar color. 

5. White dwarf stars are well approximated as a degenerate Fermi gas. 

6. The source of stellar energy is nuclear fusion, primarily the conversion of hydrogen 

into helium: 

H + H → He + Energy 

7. White dwarf stars have exhausted their thermonuclear fuel and represent one of the 

terminal stages of stellar evolution. 

8. Mestel (1952) showed that the slow loss of thermal energy from hot white dwarf 

interiors explains their observed luminosity. 

9. They are stars which are much fainter, possess small diameters, and are very dense 

compared to other stars of the same mass. 

10. Typical data for a white dwarf star: 

• Content: Mostly Helium 

• Density ≈ 10⁷ g cm⁻2 

• Mass ≈ 10³³ g 

• Central temperature ≈ 10⁷ K 

11. A white dwarf star is a mass of helium atoms at extremely high temperature under 

extreme compression. 

12. The atoms are expected to be completely ionized and the star may be regarded as a 

gas composed of nuclei and electrons. 

13. The Fermi energy is given by: 

𝐸𝐹 = (
h² 

2m

1

𝑣
2

3⁄
)  ≈  20 MeV  

  Corresponding Fermi temperature ≈ 10⁷ K 

14. Since the Fermi temperature is greater than the temperature of the star, the electron 

gas is highly degenerate. 

15. The state of a single electron is specified by momentum p and spin σ, where σ = ±½. 

16. The energy–momentum relation for an electron is: 

 E𝑃𝑠 = √(pc)² +  (mec²)² 

  where 𝑚𝑒is the mass of the electron. 

17. The ground state energy of Fermi gas is 
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𝐸0 =
2𝑣

ħ3
∫ 𝑑𝑝 4𝜋𝑝2

𝑃𝐹

0

√(pc)² + (mec²)²         … … … . (1) 

Where is 𝑃𝐹the Fermi momentum and is defined 

𝑣

ħ3
(

4

3
𝜋𝑝𝐹

3) =
𝑁

2
 

𝑝𝐹
3 =

𝑁

2

ħ3

𝑣

3

4
 𝜋 

𝑝𝐹
3 =

3𝜋ħ3

8𝑣
 

𝑝𝐹
3 = ħ(

3𝜋2

𝑣
)

1
3⁄                    … … … … (2) 

18. Consider 𝑥 =
𝑝

mec
 

𝑓(𝑥𝐹) = ∫ √(1 + 𝑥2)

𝑥𝑝

𝑥𝑜

𝑥2 𝑑𝑥 = ∫
1

3
𝑥𝐹

3 (1 +
1

3
𝑥𝐹

2 + ⋯ … . )               (𝑥𝐹 ≪ 1) 

= ∫
1

4
𝑥𝐹

4 (1 +
1

3
𝑥𝐹

2 + ⋯ … . )               (𝑥𝐹 ≫ 1)     ………..(3) 

(i) When 𝑥𝐹 ≪ 1 corresponding to non-relativistic case 

(ii) When (𝑥𝐹 ≫ 1) corresponding to relativistic case 

𝑥𝐹 =
𝑝𝐹

mec
=

ħ

mec
(
3𝜋2

𝑣
)

1
3⁄                    … … … … (4) 

19. If the total mass of the star m and radius of star R then 

𝑚 = (me + 2mp) ≈ 2mpN 

R=(
3𝑣

4𝜋
)

1
3⁄         ………(5) 

20. In terms of m and R we have 

𝑣 =
8𝜋

3

mpR3

𝑚
                 … … … … (6) 

𝑥𝐹 =
ħ

mec
(

3𝜋2

8𝜋

3

mpR3

𝑚

)
1

3⁄  

    = 
ħ

mec

1

 𝑅
[

9𝜋

8

𝑚

mp
]

1
3⁄ =

𝑚̅
1

3⁄

𝑅̅
 

Where 𝑚̅ =
9𝜋

8

𝑚

mp
𝑅̅ =

𝑅
ħ

mec

 

20. The pressure entered by the Fermi gas 
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𝑝𝑜 =
−𝜕𝐸𝑜

𝜕𝑣𝑜
 

P₀ =  ]
mₑ⁴c⁵

π²ħ³
[

1

3
𝑥𝐹

3√1 + 𝑥𝐹
2 − 𝑓(𝑥𝐹)] 

Case (i): If (𝑥𝐹 ≪ 1)  𝑖. 𝑒 
𝑝𝐹

2

mec
<<1   non-relativistic 

Case (ii): If (𝑥𝐹 ≫ 1) 𝑖. 𝑒 
𝑝𝐹

2

mec
≫  relativistic 

21.To compress a star of given mass from infinite diluteness to a state of finite density: 

ω = ∫ P04πr2dr                … … … … (7) 
𝑅

−∞
 

where R is the radius of the star 

22. Gravitational energy (dimensional analysis) 

ω = −𝛼
γ m² 

𝑅
 

where γ is the gravitational constant and α is a pure number of order unity. 

 

23. Hence, 

∫ p04πr2dr =  −𝛼
γ m² 

𝑅
                   … … … . . (8)               

𝑅

−∞

 

Differentiating equation (8) with respect to R, we get: 

P₀ = (α / 4π) · (γ m² / R⁴) 

Case (ii): High temperature electron gas 

Suppose the temperature of the electron gas is much higher than the Fermi temperature. 

The gas behaves as an ideal Boltzmann gas: 

P₀V = kT 

P₀ = kT / V  

P₀=
𝑘𝑇

8𝜋

3

mpR3

𝑚

=
3𝑘𝑇

8𝑚𝑝𝜋

𝑚

R3
 

Substituting the values : 

(α / 4π) · (γ m² / R⁴) = 
3𝑘𝑇

8𝑚𝑝𝜋

𝑚

R3 

𝑅 =
2

3
𝛼𝑚

𝑚𝑝𝑟

𝑘𝑇
 

This treatment is not applicable to white dwarf stars when thermal pressure dominates. 

Case(ii) Suppose the electron gas is at low density. 

𝑥𝐹 ≪ 1 

Then, the degeneracy pressure is 
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P₀ = 
4

5
k

𝑚̅
5

3⁄

𝑅̅5 =
𝑘̅̅1𝑚̅2

𝑅̅4  

The radius of the star decreases as the mass of the star increases. 

𝑚̅
1

3⁄ 𝑅̅ =
𝑘

𝑘1

̅̅ ̅̅ ̅̅ ̅̅ ̅ 4

5
 

This condition is valid when the density is low. Hence, it is applicable for small mass m and 

large radius R. 

Case(iii) Suppose the electron gas is at high density. 

(𝑥𝐹 ≫ 1) 

P₀ = k[
𝑚̅

4
3⁄

𝑅̅4
−

𝑚̅
2

3⁄

𝑅̅2
] = 𝑘1 𝑚̅2

𝑅̅4
 

𝑅 =̅̅ ̅̅ ̅ 𝑚̅
2

3⁄ √1 − (
𝑚̅

𝑚𝑜
)

2
3⁄  

Here, m₀ is the mass of the Sun. 

m₀  1.4 M known as the Chandrasekhar mass limit. 

The radius–mass relation curve shows that the radius decreases sharply and approaches zero 

as the mass approaches m₀. 
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11.3 LANDAU DIAMAGNETISM 

1. Landau first showed that diamagnetism arises from the quantization of the motion of 

charged particles in a magnetic field. 

2. The magnetic susceptibility per unit volume of a system is defined as 

χ = ∂m / ∂B            (a) 

3. Here m is the average induced magnetic moment per unit volume of the system along 

the direction of an external magnetic field B. 

𝑚 =
1

𝑣
<

−𝜕𝐻

𝜕𝛽
> 

4. Here H is the Hamiltonian of the system in the presence of an external magnetic field 

B. 

 (i) In the canonical ensemble: 

𝑚 = 𝑘𝑇
𝜕

𝜕𝛽
log (

𝑄𝑁

𝑣
) 

Here 𝑄𝑁is the canonical partition function. 

(ii) In the grand canonical ensemble: 

𝑚 = 𝑘𝑇
𝜕

𝜕𝛽
log (

𝑧

𝑣
)(𝑇,𝑉,𝑍) 

Here Z is the grand partition function. 

1. A system is said to be diamagnetic if χ < 0 and paramagnetic if χ > 0. 

2. In the presence of an external magnetic field, two effects are important for the 

magnetic properties of a substance. 

(i) The electrons, whether free or bound, move in quantized orbits in the magnetic 

field. 

(ii). The spin of the electrons tends to be aligned parallel to the magnetic field. 

3. The alignment of the electron spin with an external magnetic field gives rise to 

paramagnetism, whereas the orbital motion of the electrons gives rise to 

diamagnetism. 

4. Consider the problem of a free spinless electron gas in an external magnetic field. 

5. Consider a system of N spinless electrons contained in a volume V. The electrons are 

free except for their interaction with a uniform external magnetic field B. 

6. To calculate the partition function, we first calculate the energy levels of a single 

particle. 
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7. According to quantum mechanics, the allowed states of a charged particle in an 

external field are the classical orbits that satisfy the quantum conditions: 

∮ p · dr = ( j + 1 / 2 ) h                (9)    j = 0, 1, 2, … 

Here p and r are the classical variables of a particle; p denotes momentum and r 

denotes position. 

8. The Hamiltonian for a single electron is 

H(p, r) = ( 1 / 2m ) [ p + ( e / c ) A ]²                 (10) 

where  

m is the mass of the electron,  

c is the charge of the electron, and  

A is the vector potential associated with the magnetic field B. 

The magnetic field is given by 

B = ∇ × A             (11) 

9. The velocity of the electron along the circular path is given by: 

𝑉 =
𝑒𝑎𝛽

𝑚𝑐
                    (12) 

10. The momentum is 

𝜌 = 𝑚𝑣 −
𝑒

𝑐
                         (13) 

11. Substituting equation (13) in equation (9): 

∮ (mv − e
c⁄  A)dv = (J + 1

2⁄ )h                  (14) 

12. J is the quantum number ( j = 0, 1, 2, … ). The energy corresponding to the j-th 

allowed orbit is: 

𝑒ħ𝐵

𝑚𝑐
(𝑗 +

1

2
) 

13. The allowed energies of an electron are: 

𝐸(𝑝2𝑗) =
𝑝2

2

2𝑚
+

𝑐ħ𝐵

2𝑚
(𝐽 +

1

2
)                                (15) 

14. Here 𝑝𝑧is the momentum along the magnetic field direction. Its allowed values are: 

𝑝
𝑧=

2𝜋𝑒ħ

𝑣𝑣3

                    𝑙 = 0, ±1 ± ,2 ….          (16) 

15. The degeneracy of the energy level E(𝑝𝑧, j) for a given 𝑝𝑧is same for all j and is given 

by is: 

𝑔 =
𝑣2/3

2𝜋

𝑒𝐵

ħ𝑐
                    (17) 

16. The grand partition function is given by: 
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𝑍 = 𝜋𝜆(1 + 𝑍𝑒−𝛽𝐸𝜆))                      (18) 

Hence, 

𝑙𝑜𝑔 𝑍 = ∑ 𝑙𝑜𝑔

𝑘

(1 + 𝑍𝑒−𝛽𝐸𝜆))                       

17. Expanding the above expression in the continuum limit gives: 

𝑙𝑜𝑔 𝑍 =
𝑔𝑣

1
3⁄

ℎ
∫ 𝑑𝑝

+∞

−∞

∑ 𝑙𝑜𝑔

∞

𝑣=0

(1 + 𝑍𝑒−𝛽𝐸))        (19)              

18. From (a) we know that   χ = ∂m / ∂B         

Hence     

𝑚 = 𝑘𝑇
𝜕

𝜕𝛽
[log

𝑧

𝑣
]                 (20) 

19. Substitute equation (20) and equation (19) in equation (a)  

We have  

χ =
−1

3kTs
(

eħ

2mc
)2                  (21) 

s is specific volume 

equation (21) exhibits that 
1

𝑇
 dependent on χ 

 

11.5 SUMMARY 

Ideal Fermi Gas Equation of State 

For fermions like electrons, the equation of state at T=0 shows degeneracy pressure balancing 

a Fermi energy, giving pressure scaling as (density)^{5/3} independent of temperature. At 

finite T, it interpolates to classical ideal gas limits, crucial for white dwarf stability and 

semiconductor doping.  

 

White dwarf stars are remnants of low- to medium-mass stars after shedding outer layers, 

supported against gravitational collapse by electron degeneracy pressure from a Fermi gas of 

electrons. Their structure follows hydrostatic equilibrium with a polytropic equation of state 

where pressure scales as density to the 5/3 power in the non-relativistic limit, yielding a 

mass-radius relation where radius inversely scales with mass. Beyond the Chandrasekhar 

limit of about 1.4 solar masses, relativistic effects cause instability, leading to type Ia 

supernovae.  

 

Landau Diamagnetism 

Landau diamagnetism arises in metals from orbital motion of conduction electrons in a 

magnetic field, quantized into Landau levels. This induces a weak negative susceptibility 

opposing the field, distinct from Pauli paramagnetism from spin alignment. It scales with the 

density of states at the Fermi level and temperature independence at low T, explaining weak 

diamagnetism in simple metals like alkali ones.  
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11.5 TECHNICAL TERMS 

 

Equation of state of an ideal Fermi gas 

Theory of White dwarf stars 

Landau diamagnetism 

 

11.6 SELF ASSESSMENT QUESTIONS 

 

1. Explain about the Equation of state of an ideal Fermi gas 

2. Briefly explain about the Theory of White dwarf stars 

3. Explain about the Landau diamagnetism 

 

11.7 SUGGESTED READINGS 

 

1. Statistical and Thermal Physics by S. Lokanadhan and R.S. Gambhir (PHI). 

2. Statistical Mechanics: Theory and applications by S.K. Sinha 

3. Fundamentals of Statistical and Thermal Physics by F. Reif 

4. Statistical Mechanics by Gupta and Kumar, Pragati Prakashan Pub. Meerut. 

5. Statistical Mechanics by Satya Prakash 
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LESSON-12 

BOSE-EINSTEIN CONDENSATION 
 

AIM AND OBJECTIVE 

 

Aim 

The aim of Bose–Einstein Condensation is to study the macroscopic accumulation of 

bosons in the lowest quantum energy state at very low temperatures, leading to the 

formation of a new state of matter with unique quantum properties. 

 

Objectives 

• To understand the behavior of bosons at extremely low temperatures 

• To explain the phenomenon where a large fraction of particles occupy the ground 

state 

• To study the thermodynamic and quantum properties of Bose–Einstein 

condensates 

• To predict and analyze superfluidity, coherence, and macroscopic quantum effects 

• To explore applications in quantum computing, precision measurement, and low-

temperature physics 

 

STRUCTURE OF THE LESSON: 

 

12.1 PHOTONS IN SOLIDS 

12.2 PHONONS IN SOLIDS  

12.3 BOSE-EINSTEIN CONDENSATION  

12.4 SUMMARY 

12.5 TECHNICAL TERMS 

12.6 SELF ASSESSMENT QUESTIONS 

12.7 SUGGESTED READINGS 

 

12.1 PHOTONS IN SOLIDS 
 

Introduction 

Photons in solids represent quanta of electromagnetic radiation interacting with the 

material. They are responsible for phenomena like absorption, emission, and heat 

transport in solids. In the context of solid-state physics, the photon contribution is 

significant in the study of blackbody radiation, optical properties, and thermal 

conductivity at high temperatures. 

 

In solids, photons interact strongly with the electronic, vibrational, and collective excitations 

of the material. This interaction is central to optics, semiconductors, lasers, and photonic 

devices. 

 

1. Photons in solids are mainly involved in: 
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• Absorption and emission 

• Scattering (elastic and inelastic) 

• Energy and momentum transfer 

 

They act as probes of a solid’s internal structure and as carriers of energy. 

 

2. Photon Absorption in Solids 

 

When a photon enters a solid, it may be absorbed if its energy matches an allowed transition. 

 

Electronic Transition Condition: 

hν ≥ Eg 

where Eg is the band gap energy. 

 

 
 

3. Photon Emission in Solids 

a) Spontaneous Emission: Excited electrons return to lower energy states emitting 

photons. 

b)  Stimulated Emission: Incident photon induces emission of a coherent photon (laser 

principle). 

 

4. Photon Scattering in Solids 

(a) Rayleigh Scattering: Elastic scattering, photon energy unchanged. 

(b)Raman Scattering: Inelastic scattering involving phonons. 

 

Energy relation: 

ℎ(𝑣𝑖𝑛 − 𝑣𝑖𝑜𝑢𝑡) = ħω𝑝ℎ𝑜𝑛𝑜𝑛 

 

it is used to study lattice vibrations and crystal structure 

 

5. Photon Coupling with Excitations 

Photons may couple with excitations such as phonons, excitons, and magnons. 

Strong coupling leads to quasiparticles called polaritons. 
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6. Optical Properties of Solids 

Photon interactions determine refractive index, absorption coefficient, reflectivity, 

and dielectric function. 

 

7. Statistical Aspect 

Photons obey Bose–Einstein statistics. Thermal emission from solids follows Planck’s 

law modified by emissivity: 

𝐼(𝑣) = ε(ν)Iblackbody(v) 

8. Applications 

Photon behavior in solids underlies: 

• LEDs and laser diodes 

• Solar cells 

• Optical fibers 

• Photodetectors 

• Raman and optical spectroscopy 

 

Phonons are quantized lattice vibrations in crystalline solids. They are collective excitations 

of atoms oscillating about their equilibrium positions and are essential for understanding 

thermal, elastic, and transport properties of solids. 

 

1. Physical meaning of phonons 

 

• Atoms in a crystal vibrate → normal modes of vibration 

• Each normal mode behaves like a quantum harmonic oscillator 

• Energy of a phonon: 

E=ℏω 

where ω is the angular frequency 

 

Limits 

• Photons do not carry mass, so their direct contribution to specific heat at low 

temperatures is negligible. 

• Photon effects are significant mainly at high temperatures or in materials with strong 

electromagnetic interactions. 

• Interaction of photons with solids is influenced by material transparency and lattice 

structure. 

 

Conclusion 

Photons in solids are crucial for understanding radiative energy transfer, optical 

properties, and high-temperature thermal behavior. However, at low temperatures, their 

contribution to thermodynamic properties is small compared to phonons. 

 

12.2 PHONONS IN SOLIDS  

 

Introduction 

Phonons are quanta of lattice vibrations in a solid and represent the collective motion of 

atoms in a crystal lattice. They are responsible for thermal energy storage, heat capacity, 

and thermal conductivity in solids. Phonons obey Bose–Einstein statistics, and their 

behavior explains deviations from the classical Dulong–Petit law at low temperatures. 
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Phonons are quantized lattice vibrations in crystalline solids. They are collective excitations 

of atoms oscillating about their equilibrium positions and are essential for understanding 

thermal, elastic, and transport properties of solids. 

 

1. Physical meaning of phonons 

 

• Atoms in a crystal vibrate → normal modes of vibration 

• Each normal mode behaves like a quantum harmonic oscillator 

• Energy of a phonon: 

E=ℏω 

where ω is the angular frequency 

Phonons are quasiparticles, not real particles 

 

2. Lattice vibrations and normal modes 

 

• A crystal with N atoms has 3N normal modes of vibration. 

• Each normal mode is characterized by: 

• Wave vector k 

• Angular frequency ω(k) 

The relation ω vs k is called the phonon dispersion relation. 

 

2. Types of phonons 

 

 
(a) Acoustic phonons 

• Atoms vibrate in phase 

• Frequency ω→0 as wave vector k→0 

• Responsible for: 

• Sound propagation 

• Heat conduction 

 

(b) Optical phonons 

• Atoms in the basis vibrate out of phase 

• Finite frequency at k=0 

• Strongly interact with infrared and Raman radiation 

 

4. Phonon statistics 

• Phonons are bosons 

• Obey Bose–Einstein statistics 

• Chemical potential: 

μ=0 
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(number of phonons is not conserved) 

Average occupation number: 

< 𝑛(ω)>=
1

𝑒
ħω

𝑘𝐵𝑇
⁄

−1

 

 

6. Role of phonons in solids 

Phonons play a central role in: 

• Specific heat (Einstein & Debye models) 

• Thermal conductivity 

• Electrical resistivity (electron–phonon interaction) 

• Superconductivity 

• Optical properties (IR absorption, Raman scattering) 

 

7. Phonon interactions 

• Phonon–phonon → thermal resistance 

• Electron–phonon → electrical resistivity, superconductivity 

• Photon–phonon → Raman scattering 

 

8. Importance of phonons 

Phonons explain: 

• Heat conduction in insulators 

• Thermal expansion 

• Sound waves in solids 

• Low-temperature properties 

• Superconductivity (via electron–phonon coupling) 

 

Limits 

• The phonon model assumes a perfect crystal lattice; defects or impurities reduce 

accuracy. 

• At very high temperatures, anharmonic effects (non-linear vibrations) make the 

simple phonon model less accurate. 

• Does not account for electron-phonon interactions, which can be significant in 

metals and superconductors. 

 

Conclusion 

Phonons are essential for explaining thermal and vibrational properties of solids, 

especially at low temperatures where quantum effects dominate. They provide a microscopic 

understanding of heat capacity, thermal conductivity, and lattice dynamics. 

 

12.3 BOSE-EINSTEIN CONDENSATION  

 

Bose–Einstein condensation is a quantum phenomenon in which a large fraction of 

bosonsoccupy the lowest energy state at very low temperatures, forming a new state of matter 

called a Bose–Einstein condensate. 
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Introduction 

Bose–Einstein Condensation (BEC) is a quantum phenomenon predicted by Satyendra 

Nath Bose and Albert Einstein in the 1920s. It occurs in a system of identical bosons 

(particles with integer spin) at extremely low temperatures, near absolute zero. At this 

temperature, a large fraction of bosons occupies the lowest energy state (ground state), 

leading to a macroscopic quantum state. BEC demonstrates quantum effects on a 

macroscopic scale, showing properties like coherence and superfluidity. 

 

1. Basic idea 

• Bosons have integer spin (0, 1, 2, …). 

• They obey Bose–Einstein statistics. 

• Unlike fermions, many bosons can occupy the same quantum state. 

• Below a critical temperature, particles “condense” into the ground state. 

 The system behaves as a single macroscopic quantum object. 

 

2. Bose–Einstein distribution 

The average number of particles in a state of energy E is: 

  < 𝑛(E)>=
1

𝑒
𝐸−μ

𝑘𝐵𝑇
⁄

−1

 

 

where 

• μ = chemical potential 

• 𝑘𝐵 = Boltzmann constant 

• T = absolute temperature 

At very low T, μ→0 and ground-state occupation becomes very large. 

 

3. Critical temperature for condensation 

For an ideal Bose gas: 

 𝑇𝑐=
2πℏ2

𝑚𝑘𝐵
(

𝑛

2.612
)2/3 

where 

• m = mass of boson 
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• n = particle number density 

Below 𝑇𝑐 , Bose–Einstein condensation occurs. 

 

4. Fraction of particles in ground state 

For T<𝑇𝑐: 

 
𝑁0

𝑁
= 1 − (

1

𝑇𝑐
)3/2 

• 𝑁0 = number of particles in ground state 

• At T=0: 𝑁0 = 𝑁 

 

5. Physical interpretation 

• Thermal de-Broglie wavelength increases as T decreases: 

λ =
h

√2πm𝑘𝐵𝑇
 

• When wavelength ≈ interparticle spacing → wavefunctions overlap 

• Distinguishable particles become indistinguishable 

 

6. Experimental realization 

• First achieved in 1995 

• Atoms used: 

• Rubidium-87 

• Sodium-23 

• Cooling methods: 

• Laser cooling 

• Evaporative cooling 

• Temperatures: nano-kelvin range 

 

7. Properties of Bose–Einstein condensate 

✔ Zero viscosity (superfluid behavior) 

✔ Coherence similar to lasers 

✔ Macroscopic quantum phenomena 

✔ Extremely sensitive to external fields 

 

8. Examples of Bose systems 

✓ Helium-4 (superfluidity) 

✓ Ultracold atomic gases 

✓ Magnons (quasi-particles) 

✓ Phonons (at low energies) 

 

Applications 

• Superfluidity: Explains frictionless flow in liquid helium and other superfluids 

• Quantum computing: Used in the creation of qubits for quantum information 

processing 
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• Precision measurements: Applied in atomic clocks, interferometry, and sensors 

• Study of macroscopic quantum phenomena: Helps explore coherence, entanglement, 

and matter waves 

• Simulation of condensed matter systems: Laboratory BEC can simulate complex solid-

state physics problems 

 

Limits / Limitations 

• Requires extremely low temperatures close to absolute zero (a few nano-Kelvin) 

• Can be observed only in bosonic systems; fermions require pairing (e.g., Cooper pairs) 

• Sensitive to external perturbations like magnetic or optical field fluctuations 

• Difficult to maintain for large particle numbers over long times 

• Not suitable for systems at high temperatures or high densities 

 

Conclusion 

Bose–Einstein Condensation is a remarkable quantum phenomenon where bosons occupy 

the ground state collectively at ultra-low temperatures. It bridges microscopic quantum 

mechanics and macroscopic observables, providing deep insights into quantum statistics, 

superfluidity, and coherence. Despite its experimental challenges, BEC has become a 

powerful tool in modern physics for exploring quantum behavior on a macroscopic scale. 

 

12.4 SUMMARY 

 

Photons in Solids 

Photons in solids manifest as phonons (quantized lattice vibrations), but free photons interact 

weakly via blackbody radiation or polaritons in dielectrics. In photonic crystals or cavities, 

bandgaps confine photons, enabling slow light or lasing; thermal emission follows Planck's 

law modified by emissivity. (148 words) 

 

Phonons in solids are quantized collective vibrations of atoms in a crystal lattice, behaving as 

quasiparticles that carry heat and sound. Acoustic phonons correspond to low-frequency 

sound waves where adjacent atoms move in phase, while optical phonons involve out-of-

phase motion at higher frequencies, crucial for infrared absorption. They explain thermal 

conductivity in insulators, specific heat via Debye theory (T^3 at low T), and electron-

phonon interactions driving superconductivity. 

 

Bose-Einstein Condensation 

Bose-Einstein condensation (BEC) occurs when bosons cool to near absolute zero, collapsing 

into the ground state, forming a macroscopic quantum wave function. Predicted for ideal 

gases, it manifests in dilute ultra cold vapors since 1995, super fluid helium-4, and excitons. 

BEC enables coherence, interference, and super fluidity, revolutionizing quantum simulation 

and precision measurement.  

 

12.5 TECHNICAL TERMS 

 

Photons in solids 

Phonons in solids 

Bose-Einstein condensation 
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12.6 Self-Assessment Questions 

 

1. Explain about the Photons in solids 

2. Write about the Phonons in solids 

3. Explain about the Bose-Einstein condensation 

 

12.7 Suggested Readings 

 

1. Statistical and Thermal Physics by S. Lokanadhan and R.S. Gambhir (PHI). 

2. Statistical Mechanics: Theory and applications by S.K. Sinha 

3. Fundamentals of Statistical and Thermal Physics by F. Reif 

4. Statistical Mechanics by Gupta and Kumar, Pragati Prakashan Pub. Meerut. 
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LESSON-13 

BROWNIAN MOTION OF A MOLECULE 
 

AIM AND OBJECTIVE: 

Aim 

The aim of studying Brownian motion of a molecule is to understand the random, erratic 

movement of microscopic particles suspended in a fluid, which results from continuous 

collisions with the surrounding molecules, and to use this phenomenon to provide evidence 

for the existence of atoms and molecules. 

 

Objectives 

• To observe and explain the erratic motion of small particles in a liquid or gas 

• To establish a connection between molecular motion and macroscopic 

observations 

• To calculate important parameters such as Avogadro’s number, diffusion 

coefficient, and particle size 

• To demonstrate the kinetic theory of matter experimentally 

• To understand the statistical nature of molecular collisions 

 

STRUCTURE OF THE LESSON: 

 

13.1 THERMIONIC EMISSION 

13.1 MAGNETIC SUSCEPTIBILITY OF FREE ELECTRONS 

13.2 BROWNIAN MOTION OF A MOLECULE 

13.3 SUMMARY 

13.4 TECHNICAL TERMS 

13.5 SELF ASSESSMENT QUESTIONS 

13.6 SUGGESTED READINGS 

 

13.1 THERMIONIC EMISSION 

 

Introduction 

Thermionic emission is the phenomenon in which electrons are emitted from the surface 

of a metal when it is heated to a high temperature. The thermal energy overcomes the work 

function of the metal, allowing electrons to escape into the vacuum. This effect is 

fundamental in the operation of vacuum tubes, cathode-ray tubes, and electron guns and 

provides insight into the electronic properties of metals. 

 

Thermionic emission is the emission of electrons from a metal surface when it is heated to a 

sufficiently high temperature. Heating supplies thermal energy that allows electrons to 

overcome the work function of the metal. 
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1. Physical idea 

• Free electrons inside a metal obey Fermi–Dirac statistics. 

• At ordinary temperatures, electrons lack sufficient energy to escape. 

• On heating, some electrons acquire energy greater than the surface barrier (work 

function) and escape into vacuum or surrounding space. 

Emission occurs without applying a strong external electric field (unlike field emission). 

 

2. Work function (ϕ) 

• Definition: Minimum energy required to remove an electron from the metal surface. 

• Depends on: 

o Nature of metal 

o Surface condition 

• Typical values: 

o Tungsten: ∼4.5 eV 

o Oxide-coated cathodes: ∼1–2 eV 

Lower work function → higher emission at lower temperature. 

 

3. Richardson–Dushman equation 

The current density of emitted electrons is given by: 

𝐽 = 𝐴𝑇2𝑒
−ϕ

𝑘𝐵𝑇⁄
  

where 

• J= thermionic emission current density 

• A = Richardson constant (≈1.2×106A 𝑚−2𝐾−2) 

• T = absolute temperature 

• ϕ= work function 

• 𝑘𝐵 = Boltzmann constant 

 Emission increases rapidly with temperature. 

 

4. Saturation current 

• If all emitted electrons are collected by the anode, current reaches a maximum: 

𝐼𝑠 = 𝐴𝐴𝐶𝑇2𝑒
−ϕ

𝑘𝐵𝑇⁄
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(where 𝐴𝐶   is cathode area) 

This is called saturation current. 

 

5. Factors affecting thermionic emission 

• Temperature of the cathode 

• Work function of the metal 

• Surface cleanliness 

• Cathode material and coating 

 

6. Types of thermionic cathodes 

1. Pure metal cathodes (e.g., tungsten) 

• High operating temperature 

• Long life 

2. Oxide-coated cathodes 

• Lower temperature operation 

• Higher efficiency 

• Used in vacuum tubes 

7. Applications 

• Vacuum tubes (diodes, triodes) 

• Cathode ray tubes (CRT) 

• X-ray tubes 

• Electron microscopes 

• Microwave devices (klystrons, magnetrons) 

 

Conclusion 

Thermionic emission demonstrates the effect of temperature on electron energy and forms 

the basis for many electronic devices. The current emitted depends on the temperature and 

work function of the material. It highlights the connection between thermal energy and 

electron liberation, bridging microscopic electron behavior with macroscopic electrical 

phenomena 

 

13.2 MAGNETIC SUSCEPTIBILITY OF FREE ELECTRONS 

 

Introduction 

Magnetic susceptibility of free electrons refers to the response of conduction electrons in a 

metal to an applied magnetic field. Free electrons contribute to the magnetism of metals 

through Pauli paramagnetism, which arises from the alignment of electron spins with the 

field. This concept helps in understanding the magnetic properties of metals, their electron 

distribution, and the connection between quantum statistics and macroscopic magnetic 

behavior. 

 

The magnetic response of conduction (free) electrons in a metal arises from their spin 

magnetic moments. This phenomenon is called Pauli paramagnetism. 

 

1. Origin 

• Each electron has spin 
1

2
 and magnetic moment 

 μ = μB =
eℏ

2m
 

• When an external magnetic field B is applied: 
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o Spin-up electrons (parallel to B) have lower energy 

o Spin-down electrons (antiparallel) have higher energy 

This causes a small imbalance in population near the Fermi level. 

 

2. Why only electrons near the Fermi level matter 

• At T=0, all states up to the Fermi energy 𝑬𝑭 are filled 

• Electrons deep inside the Fermi sea cannot change their spin state 

• Only electrons within ~𝑘𝐵𝑇 𝑜𝑓 𝑬𝑭 respond to the field 

This is why Pauli paramagnetism is weak. 

 

3. Magnetization 

The magnetization due to spin imbalance is 

𝑀 = μB(n ↑ −n ↓) 

Using density of states g𝑬𝑭: 

𝑀 = μ𝐵
2 𝑔(𝑬𝑭)B 

 

4. Pauli magnetic susceptibility 

Magnetic susceptibility is 

 χ =
M

B
 

So, 

 χp = μ0μ𝐵
2 𝑔(𝑬𝑭) 

For a free-electron gas in 3D: 

 𝑔(𝑬𝑭) =
3𝑛

2𝑬𝑭
 

Hence, 

χp =
3

2
μ0

nμ𝐵
2

(𝑬𝑭)
  

where 

• n = number density of electrons 

• (𝑬𝑭) = Fermi energy 

• μ0 = permeability of free space 

 

 

5. Key characteristics 

✔Temperature independent (for T<<𝑇𝐹) 

✔Very small compared to classical paramagnetism 

✔ Arises purely from quantum statistics 

✔ Depends on density of states at Fermi level 

 

Conclusion 

The study of the magnetic susceptibility of free electrons explains the weak paramagnetic 

behavior observed in metals due to conduction electrons. It shows that only electrons near 

the Fermi surface contribute significantly to magnetization, highlighting the role of 

quantum mechanics in macroscopic magnetic properties. This concept is essential for 

understanding Pauli paramagnetism and forms a foundation for solid-state physics and 

material science. 
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13.3 BROWNIAN MOTION OF A MOLECULE 

 

Introduction 

Brownian motion refers to the erratic, random movement of microscopic particles 

suspended in a fluid (liquid or gas), observed under a microscope. This motion is caused by 

continuous collisions of the suspended particles with the molecules of the surrounding 

fluid, which are in constant thermal motion. Brownian motion provides direct evidence for 

the existence of atoms and molecules and supports the kinetic theory of matter. 

 

Brownian motion is the continuous, random, zig-zag motion of a microscopic particle (or 

molecule) suspended in a fluid (liquid or gas). It is caused by collisions with surrounding 

fluid molecules, which are themselves in constant thermal motion. 
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1. Physical explanation 

• Fluid molecules move randomly due to thermal energy. 

• A suspended molecule is bombarded unequally from all sides. 

• These random impulses cause unpredictable motion. 

 This motion is not due to external forces like convection or gravity. 

 

2. Historical background 

• Observed by: Robert Brown (1827) 

• Explained theoretically by: Albert Einstein (1905) 

• Experimentally verified by: Jean Perrin 

Brownian motion provided direct experimental proof of the molecular nature of matter. 

 

3. Characteristics 

• Motion is irregular and continuous 

• Path is random (zig–zag) 

• More pronounced for: 

o Smaller particles 

o Higher temperatures 

o Lower viscosity fluids 

• Disappears for large/macroscopic objects 

 

4. Einstein’s theory of Brownian motion 

Einstein related microscopic motion to macroscopic measurable quantities. 

Mean square displacement: 

< 𝑥2 >= 2𝐷𝑡 

where 

• < 𝑥2 > = mean square displacement 

• D= diffusion coefficient 

• t = time 

For three dimensions: 

< 𝑟2 >= 6𝐷𝑡 

 

5. Diffusion coefficient 

Einstein derived: 

𝐷 =
𝑘𝐵𝑇

6𝜋ηr
 

where 

• 𝑘𝐵 = Boltzmann constant 

• T = absolute temperature 

• η = viscosity of the fluid 

• r = radius of the particle 

This equation links thermal motion with fluid properties. 

 

6. Importance of Brownian motion 

Brownian motion helps in: 

• Proving existence of atoms and molecules 

• Determining Avogadro’s number 

• Understanding diffusion 

• Explaining processes in: 

o Colloids 
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o Biology (cellular motion) 

o Nanoscience 

1. Statistical and Thermal Physics by S. Lokanadhan and R.S. Gambhir (PHI). 

 

Applications 

1. Evidence of molecular motion: Confirms the reality of atoms and molecules. 

2. Determination of Avogadro’s number: Observing Brownian motion allows 

calculation of molecular size and number density. 

3. Diffusion studies: Helps in understanding the diffusion coefficient of particles in 

fluids. 

4. Colloid science: Used to study stability and behavior of colloidal suspensions. 

5. Statistical mechanics: Provides experimental verification of kinetic theory and 

probability-based models. 

 

Limitations 

• Only observable for microscopic particles (like pollen grains); molecules themselves 

are too small. 

• Requires stable suspension; sedimentation or aggregation affects observation. 

• Not suitable for systems where external forces (like currents) dominate particle 

motion. 

• Assumes thermal equilibrium; deviations may lead to inaccurate conclusions. 

 

Conclusion 

Brownian motion demonstrates the random molecular collisions responsible for particle 

movement in fluids. It provides quantitative support for the kinetic theory of matter and 

enables determination of molecular properties such as Avogadro’s number and diffusion 

coefficients. Despite its observational limitations, it remains a fundamental phenomenon 

connecting microscopic molecular behavior with macroscopic physical effects. 

 

13.4 SUMMARY 

 

Thermionic Emission 

Thermionic emission ejects electrons from a heated metal surface into vacuum, following 

Richardson-Dushman law where current density rises exponentially with temperature. 

Overcomes work function barrier via thermal energy, powering vacuum tubes, electron 

microscopes, and thermionic converters. Schottky and field effects lower barriers for 

enhanced emission 

 

Free electrons in metals exhibit Pauli paramagnetism from spin alignment in a magnetic field 

and Landau diamagnetism from orbital quantization into Landau levels. Pauli effect gives a 

temperature-independent positive susceptibility proportional to the density of states at the 

Fermi level, while Landau yields a negative contribution one-third as large, resulting in weak 

net paramagnetism for simple metals.  

 

Brownian motion 

Brownian motion describes the erratic random walk of molecules or particles in a fluid due to 

collisions with surrounding solvent molecules. Einstein related its mean square displacement 

to diffusion constant and temperature, explaining microscopic origin of viscosity and 

enabling Avogadro number determination. It underpins stochastic processes in biology and 

finance. (98 words) 
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13.5 TECHNICAL TERMS 

 

Thermionic emission 

Magnetic susceptibility of free electrons 

Brownian motion of a molecule 

 

13.6 SELF ASSESSMENT QUESTIONS 

 

1. Write about the Thermionic emission. 

2. Explain about the Magnetic susceptibility of free electrons 

3. Briefly write about the Brownian motion of a molecule 

 

13.7 SUGGESTED READINGS 

 

1. Statistical and Thermal Physics by S. Lokanadhan and R.S. Gambhir (PHI). 

2. Statistical Mechanics: Theory and applications by S.K. Sinha 

3. Fundamentals of Statistical and Thermal Physics by F. Reif 

4. Statistical Mechanics by Gupta and Kumar, Pragati Prakashan Pub. Meerut. 

5. Statistical Mechanics by Satya Prakash 
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