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FOREWORD

Since its establishment in 1976, Acharya Nagarjuna University has been
forging ahead in the path of progress and dynamism, offering a variety of courses
and research contributions. I am extremely happy that by gaining ‘A+’ grade from
the NAAC in the year 2024, Acharya Nagarjuna University is offering educational
opportunities at the UG, PG levels apart from research degrees to students from

over 221 affiliated colleges spread over the two districts of Guntur and Prakasam.

The University has also started the Centre for Distance Education in 2003-
04 with the aim of taking higher education to the door step of all the sectors of the
society. The centre will be a great help to those who cannot join in colleges, those
who cannot afford the exorbitant fees as regular students, and even to housewives
desirous of pursuing higher studies. Acharya Nagarjuna University has started
offering B.Sc., B.A., B.B.A., and B.Com courses at the Degree level and M.A.,
M.Com., M.Sc., M.B.A., and L.L.M., courses at the PG level from the academic
year 2003-2004 onwards.

To facilitate easier understanding by students studying through the distance
mode, these self-instruction materials have been prepared by eminent and
experienced teachers. The lessons have been drafted with great care and expertise
in the stipulated time by these teachers. Constructive ideas and scholarly
suggestions are welcome from students and teachers involved respectively. Such
ideas will be incorporated for the greater efficacy of this distance mode of
education. For clarification of doubts and feedback, weekly classes and contact

classes will be arranged at the UG and PG levels respectively.

It is my aim that students getting higher education through the Centre for
Distance Education should improve their qualification, have better employment
opportunities and in turn be part of country’s progress. It is my fond desire that in
the years to come, the Centre for Distance Education will go from strength to
strength in the form of new courses and by catering to larger number of people. My
congratulations to all the Directors, Academic Coordinators, Editors and Lesson-

writers of the Centre who have helped in these endeavors.

Prof. K. Gangadhara Rao
M.Tech., Ph.D.,
Vice-Chancellor I/c
Acharya Nagarjuna University.



Semester 2
M.Sc. Physics
Academic Year 2022-23 Amended
201PH24-STATISTICAL MECHANICS

Course Objectives:

» This course in statistical mechanics provides the basic idea of probability and
calculating probability for various statistical systems of particles.

» To apply the principles of probability in distribution of particles in various systems

» To learn the different types of statistics distribution and particles.

UNIT I (Fundamentals of classical statistical mechanics)

Relation between statistical mechanics and thermodynamics, Phase space, Ensembles-micro
canonical, canonical and grand canonical ensemble, density distribution in the phase space,
Liouville's theorem, equipartition of energy theorem, microstates and macrostates.

Learning Outcomes:
e To learn postulates of classical statistical mechanics and Ensembles.
e To study density of states Liouville's theorem and paradox.

UNIT-II (Ideal gas in various ensembles)

Classical ideal gas in micro canonical ensemble, partition function for micro canonical
ensemble, Gibb's paradox, partition function for Canonical ensemble, thermo dynamical
function for Canonical ensemble, partition function for Grand canonical ensemble,
thermodynamical function for Grand canonical ensemble.

Learning Outcomes:
e To know about partition function in different ensembles.
e To study the Gibb's paradox.

UNIT III (Energy fluctuation and distribution function)

Energy fluctuation in micro canonical ensemble, energy fluctuation in canonical ensemble,
density fluctuation in Grand canonical ensemble, energy fluctuation in Grand canonical
ensemble. Maxwell-Boltzmanndistribution, Bose-Einstein  distribution, Fermi-Dirac
distribution, Darwin-Fowler method.

Learning Outcomes:
e To study the features of Maxwell-Boltzmann statistics.
e To derive the Bose-Einstein distribution.

UNIT IV (Molecular partition function)

Molecular partition function- Translational partition function, Rotational partition function,
Vibrational partition function, Electronic and Nuclear partition function, application of
rotational partition function, application of vibrational partition function in solids.

Learning Outcomes:
e To learn electronic and nuclear partition function.
e To acquire knowledge about vibrational partition function in solids



UNIT V (Ideal Fermi and Bose Gas)

Equation of state of an ideal Fermi gas, theory of White dwarf stars, Landau diamagnetism,
Photons, Phonons in solids, Bose-Einstein condensation, thermionic emission, magnetic
susceptibility of free electrons, Brownian motion of a molecule.

Learning Outcomes:
e To learn about Ideal Fermi gas and to derive equations.
e To acquire knowledge about Bose-Einstein condensation.

Course Outcomes:

» After taking this course student are able to determine the probability of any type of
events.

» Students have understood the concept of phase space and its volume.

» They can easily distinguish between different types of particles and statistics and can
easily distribute bosons, fermions and classical particles among energy levels.

» After studying Fermi Dirac statistics, students have learnt to deal with much electron
system.

Text and Reference Books:

1. Statistical and Thermal Physics by S. Lokanadhan and R.S. Gambhir (PHI).
2. Statistical Mechanics by K. Huang (Wiley Eastern)

3. Statistical Mechanics: Theory and applications by S.K. Sinha

4. Fundamentals of Statistical and Thermal Physics by F. Reif

5. Statistical Mechanics by Gupta and Kumar, Pragati Prakashan Pub. Meerut.
6. Statistical Mechanics by Satya Prakash.
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M.Sc. DEGREE EXAMINATION
Physics
Paper-1- STATISTICAL MECHANICS

Time: Three hours Maximum:70 marks.
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Answer the following
Explain the concept of ensemble and calculate ensemble average.
State and prove Lyonville’s theorem
OR
What are microstates and macrostates?
Discuss about density distribution in the phase space.

What is partition functions? Explain.
Obtain the partition function for canonical ensemble.
OR
Discuss the thermodynamic properties of an ideal gas.
Explain the thermodynamical function for grand canonical ensemble.

Obtain the expression for Maxwell-Boltzmann distribution function.
Explain about energy fluctuation in canonical ensemble.

OR
Distinguish between B-E and F-D distributions. Explain detail.

Calculate the electronic partition functions by considering only the
Ground and first excited states.
Show that electronic specific heat as a function of temperature has a
Peak like behaviour.

OR
Calculate the rotational partition function and various
thermodynamical quantities.

Write the theory of white dwarfs stars.
Derive the expression for the magnetic susceptibility for free electron
Gas due to spin degree of freedom.

OR
Explain Brownian motion. Show how Brownian motion its treated by
Langevin equation for rotational motions.
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LESSON-1
STATISTICAL MECHANICS -

THERMODYNAMICS

AIM AND OBJECTIVE

1. Statistical Mechanics

Aim

The main aim of statistical mechanics is to explain the macroscopic properties of matter
(such as pressure, temperature, and energy) by studying the microscopic behavior of a very
large number of particles (atoms or molecules).

Objectives

To establish a link between microscopic laws of physics and macroscopic
thermodynamic quantities

To study the statistical behavior of systems containing a large number of particles

To derive thermodynamic laws using probability and statistics

To explain properties like entropy, temperature, and heat in terms of molecular
motion

To predict the equilibrium and non-equilibrium behavior of physical systems

2. Thermodynamics

Aim

The main aim of thermodynamics is to study the conversion of energy, especially the
relationship between heat, work, and temperature, without considering the microscopic
structure of matter.

Objectives

To formulate the laws of thermodynamics based on observable quantities

To study energy transfer as heat and work

To analyze the efficiency of engines and refrigerators

To define and use concepts such as temperature, entropy, internal energy, and
enthalpy

To predict the direction of natural processes and equilibrium condition

STRUCTURE OF THE LESSON:

1.1 Relation Between Statistical Mechanics and Thermodynamics

1.2 Phase Space

1.3 Ensembles-Micro Canonical

1.4 Summary

1.5 Technical Terms

1.6 Self Assessment Questions

1.7 Suggested Readings
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1.1 RELATION BETWEEN STATISTICAL MECHANICS AND
THERMODYNAMICS

Introduction

Statistical mechanics and thermodynamics are two closely related branches of physics that
deal with the behavior of macroscopic systems containing a large number of particles.
Thermodynamics was developed in the nineteenth century as a phenomenological theory
based on empirical laws governing heat, work, and energy, without reference to the
microscopic nature of matter. In contrast, statistical mechanics provides a microscopic
foundation for thermodynamics by explaining macroscopic thermodynamic properties in
terms of the statistical behavior of microscopic constituents such as atoms and molecules.

The relation between statistical mechanics and thermodynamics lies in the fact that
thermodynamic laws emerge as statistical averages over an enormous number of microscopic
states. Statistical mechanics not only explains the origin of thermodynamic quantities such as
temperature, entropy, and pressure but also provides explicit expressions for these quantities
in terms of molecular parameters. Thus, statistical mechanics bridges the gap between
microscopic physics and macroscopic thermodynamic behavior.

The relation between statistical mechanics and thermodynamics is one of the most
profound in physics, as it provides a microscopic foundation for the macroscopic laws of
thermodynamics. Let's break down how they are connected:

1. Thermodynamics: The Macroscopic Theory

Thermodynamics is the branch of physics that deals with the macroscopic behavior of
systems, focusing on macroscopic quantities like temperature, pressure, volume, energy,
and entropy. It doesn't concern itself with the microscopic details of the system (i.e., the
individual particles), but instead describes the overall behavior of the system in equilibrium.

The key thermodynamic laws include:

e Zeroth Law: If two systems are each in thermal equilibrium with a third system, they are
in thermal equilibrium with each other.

o First Law (Conservation of Energy): The total energy of a system is conserved. Energy
can be transferred or transformed, but it cannot be created or destroyed.

e Second Law (Entropy): In any spontaneous process, the entropy (a measure of disorder
or randomness) of the system and surroundings always increases.

e Third Law: As the temperature of a system approaches absolute zero, the entropy
approaches a minimum.

Thermodynamics provides the macroscopic relations between the system's state variables
like temperature, pressure, volume, and entropy, but it doesn't provide a microscopic
explanation for why these relationships hold.

2. Statistical Mechanics: The Microscopic Theory

Statistical mechanics, on the other hand, is a microscopic theory that explains the
macroscopic thermodynamic behavior of systems in terms of the properties and
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interactions of individual particles. It connects the microscopic behavior of particles
(atoms, molecules, electrons, etc.) to the macroscopic thermodynamic quantities (such as
pressure, temperature, and entropy).

Key concepts in statistical mechanics include:

o Ensemble Theory: A collection of many copies of the system, each representing a
possible state of the system. There are different types of ensembles (e.g.,
microcanonical, canonical, grand canonical), depending on the system's interactions
with the environment.

o Partition Function (Z): A central quantity in statistical mechanics that encodes
information about the states of a system. It is related to the probability distribution of
the system's states and can be used to calculate thermodynamic properties.

e Boltzmann Distribution: Describes the distribution of particles over different energy
states in equilibrium.

Statistical mechanics provides a microscopic model for thermodynamic quantities,
explaining how the properties of individual particles (such as energy, velocity, and
position) give rise to the macroscopic thermodynamic quantities like temperature and
pressure.

3. Connecting Thermodynamics and Statistical Mechanics

Statistical mechanics allows us to derive thermodynamic quantities from the statistical
behavior of the microscopic components of a system. It gives statistical interpretations for
thermodynamic concepts like entropy, temperature, and free energy.

The key connections between statistical mechanics and thermodynamics include:
1. Thermodynamic Quantities from Statistical Mechanics

e Energy (Internal Energy):
In statistical mechanics, the internal energy U can be calculated as the expectation value
of the system's energy:

WhereP (E;) is the probability of the system being in the i-th energy state.

In thermodynamics, internal energy U is a state function that depends on variables like
temperature, pressure, and volume. Statistical mechanics provides a detailed understanding of
this energy from the microscopic behavior of particles.

o Entropy (S):
In thermodynamics, entropy is related to the number of possible microscopic
configurations (2) of a system by Boltzmann's entropy formula:
S = kglnQ
Statistical mechanics provides a microscopic definition of entropy, where Q is the number
of accessible states of the system. This relationship directly connects the statistical nature of
particles to the macroscopic thermodynamic concept of entropy.
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e Temperature (T):
In thermodynamics, temperature is related to heat flow and energy transfer. In
statistical mechanics, temperature is connected to the energy distribution of
particles. The relationship between temperature and energy is given by the
Boltzmann distribution:

P(E) x e ’ksT

Statistical mechanics explains how temperature emerges from the statistical behavior of
particles.

2. Thermodynamic Laws as Statistical Principles

o First Law of Thermodynamics (Energy Conservation):
In statistical mechanics, energy is conserved, and the total energy of a system
corresponds to the sum of the energies of individual particles or states. The first law is
reflected in the fact that the total energy in the system remains constant when no work
or heat exchange occurs with the surroundings.

e Second Law of Thermodynamics (Entropy Increase):
Statistical mechanics explains the second law by considering the probability of
system states. The second law implies that systems naturally evolve toward states
with higher entropy because these states are more probable than those with low
entropy. Thus, statistical mechanics provides a probabilistic explanation for the
increase in entropy.

3. Partition Function and Free Energy

The partition function Z is the cornerstone of statistical mechanics, and it serves as the link
between microscopic details and macroscopic thermodynamic properties. For example,
the Helmholtz free energy FFF (a thermodynamic potential) can be derived from the partition
function in the canonical ensemble:

F =—-kgTInZ
Similarly, other thermodynamic potentials like the grand potential and Gibbs free energy can
also be derived from the partition function in different ensembles.

4. Fluctuations and Response Function

Statistical mechanics also provides a framework for understanding fluctuations and response
functions. For instance, the fluctuations in energy or particle number (like the variance in
energy or particle number) can be related to the heat capacity or compressibility, which are
thermodynamic quantities.

Importance of Statistical Mechanics in Thermodynamics
Statistical mechanics extends thermodynamics by:
e Providing microscopic explanations of thermodynamic laws,
e Allowing calculation of thermodynamic quantities from molecular properties,
o Explaining irreversibility and entropy increase,
o Describing systems outside strict equilibrium,
e Predicting new phenomena such as phase transitions.
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Thus, statistical mechanics not only supports thermodynamics but also enriches and
generalizes it.

Conclusion

The relation between statistical mechanics and thermodynamics is both deep and
fundamental. Thermodynamics provides universal laws governing macroscopic systems,
while statistical mechanics offers a microscopic foundation for these laws based on
probability and molecular dynamics. Through concepts such as ensembles, partition
functions, and entropy, statistical mechanics explains the origin of thermodynamic quantities
and laws. The emergence of thermodynamics from statistical averages over microscopic
states illustrates how deterministic macroscopic behavior arises from underlying microscopic
randomness. Together, statistical mechanics and thermodynamics form a unified framework
for understanding the physical behavior of matter in equilibrium.

1.2 PHASE SPACE:

In classical mechanics, the state of a system of particles at any given time is completely
specified by the knowledge of position and momentum (or velocity) of each of its particles.
The instantaneous position of a single particle is determined by three independent
coordinatesx, y,z, and the instantaneous motion of a particle is described by velocity
components (Vx, vy, v, )or more conveniently by momentum
components(py, py, ;). Therefore, the state of a single particle is then completely specified
by position coordinates x,y,zand momentum componentspy,p,,p,. As a purely
mathematical concept, we may imagine a six-dimensional space in which
dx dy dz dp, dp, dp,is an element of volume, and the position of a point particle in this
space  will be described by a set of six coordinates:x,y, z, py, Dy, Pz
This six-dimensional space for a single particle is termed as phase-space, and particularly the
p-space.

If the system contains a large number of particles such that the state of the system is
represented by  findependent position coordinates qy,qy, ...,qrand  fmomentum
coordinatespy, p,, ..., py,then mathematically, these 2fcombined position-momentum
coordinates may be allowed to define a 2f-dimensional space in which the configuration of
the system is represented by 2fcoordinates:qq, gz, .., Qf, D1, P2, -, PfThis 2f-dimensional
space is called the phase-space or the I'-space (Gamma-space).The I'-space is considered to
be a conceptual Euclidean space having 2 frectangular axes, and an element of volume in this
space is represented by:dq, dq, ... dqf dp;, dp;, ... dpsThe I'-space may be considered as a
superposition of p-spaces.Obviously, the dimensions of the phase-space depend upon the
degrees of freedom of the system.
The instantaneous state of a particle in the phase-space is represented by a point known as the
phase point or representative point.The number of phase points per unit volume is called the
phase density of these points.An element of volume in the phase-space is termed as a cell.

Definition of Phase Space

For a system of N particles, each particle has three spatial coordinates and three
corresponding momentum components. The phase space of such a system is a 6NON6N-
dimensional space defined by the set of canonical coordinates:

(91,92, --,q3N; pL,p2,...,p3N)
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Each point in this space represents a unique microstate of the system. The system’s
evolution in time corresponds to a continuous curve or trajectory in phase space determined
by Hamilton’s equations of motion.

For a single particle moving in one dimension, the phase space is two-dimensional, consisting
of the position qqq and momentum p

Division of Phase Space into Cells: Consider a 2f-dimensional phase space defined by
position coordinates @y, ¢y, ..., rand momentum coordinatespy, py, ..., Pr.An element of
volume in this phase space will berepresented by

89164, ... 6qf 6py 6p, ... Opf (1)

The dimensions of this volume element are those of (length x momentum)h/ . Therefore, the
unit of this volume element is (joule—second)h” .

Let us now divide any finite volume of phase space into a large number of cells.
Let the size of each cell be h/. Here his any arbitrary constant and has the dimensions of
joule—second, i.e.,

h =6q;6p; (2)

As p;and g;can take all possible continuously variable values, there may be infinite
representative points and hence possible microstates in any finite volume of phase space.
The number of phase cells in this volume is:

8q1 684, ... 6qf 6py 6p, ... Opf
- 3)

Volume in Phase Space: The volume in phase space associated with a system is the total
region accessible to the system under given constraints (such as fixed energy, volume, and
number of particles).For example, in the microcanonical ensemble, the system is confined to
all phase points that satisfy the energy constraint:

E<H(p,q) <E+ 6E

Where H (p,q) is the Hamiltonian (Total energy function). The total phase space volume for
this energy range is

§(E)= E<H(p,q) <E+ SEdV

This quantity represents the number of accessible microstates for the system within that
energy range.

Applications of Phase Space
Phase space concepts are widely used in:
e (lassical and quantum dynamics,
o Statistical mechanics and thermodynamics,
e Plasma physics,
e Nonlinear dynamics and chaos theory,
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e Quantum optics and semi classical approximations,

e Molecular dynamics simulations.
In chaos theory, phase space portraits reveal sensitive dependence on initial conditions and
complex dynamical behavior.

Advantages of Phase Space Description
The phase space formulation offers several advantages:
o Complete specification of a system’s state,
e (lear geometric visualization of dynamics,
o Natural framework for conservation laws,
o Direct link between microscopic and macroscopic descriptions,
o Foundation for modern theoretical and computational methods.

Conclusion

Phase space is a central and unifying concept in physics, providing a complete and elegant
description of dynamical systems. By incorporating both positions and momenta, phase space
captures the full microscopic state of a system and allows its time evolution to be visualized
geometrically. In statistical mechanics, phase space forms the basis for defining microstates,
ensembles, entropy, and equilibrium. Liouville’s theorem ensures the conservation of phase
space volume, while the ergodic hypothesis connects microscopic dynamics with
macroscopic observables. In quantum mechanics, phase space ideas are modified by
uncertainty principles but remain essential for understanding classical-quantum
correspondence. Overall, phase space provides the conceptual and mathematical foundation
for linking dynamics, probability, and thermodynamics.

1.3 ENSEMBLES-MICRO CANONICAL

Introduction

In statistical mechanics, an ensemble is a large collection of virtual copies of a physical
system, each representing a possible microscopic state consistent with given macroscopic
constraints. Since it is practically impossible to track the exact microscopic motion of an
enormous number of particles in a real system, ensembles provide a powerful theoretical
framework for connecting microscopic dynamics with macroscopic thermodynamic behavior.
By averaging over an ensemble, one can calculate measurable thermodynamic quantities such
as energy, entropy, pressure, and temperature.

The concept of ensembles was introduced by J. Willard Gibbs, and it forms the cornerstone
of equilibrium statistical mechanics. Different ensembles correspond to different physical
conditions imposed on the system, such as isolation, thermal contact, or particle exchange
with a reservoir.

The micro canonical ensemble is a collection of essentially independent assemblies having
the same energy (E), Volume (V) and Number (N) of systems, all the systems are of the
same. One can imagine this ensemble as follows. The individual assemblies are separated by
rigid, impermeable and well insulated (as in fig) walls. So that the three E, V and N remain
un=effected in the presence of other systems.
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Rigid, well insulated walls
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Let us consider an isolated (closed) system for which the total energy H (q, p) = E = E (q1,
...... qf, Pas «-++--...... Pf) = constant.

The locus of all the phase points with equal energies in the phase space is called an
energy surface or ergodic surface. If we consider a family of such energy surfaces
constructed in phase space and two neighboring surfaces with energies E and E+ dE, each
surface divides the phase space into two parts, one with higher energy and the other with
lower energy (not interacting with each other). The space between them contains a few phase
points which are constant. If we take the density as equal to zero for all values of energy
except in the selected narrow range OE, the micro-canonical ensemble is specified by its
properties as

p(E) = constant (in the range E and E + 3E)
=0 - (4)
Properties:

1. As p is a function of energy, micro canonical ensemble is in statistical equilibrium.

2.As it is in statistical equilibrium, the average properties of such ensembles (micro
canonical) will not vary in time and

3.The distribution of phase points is uniform.

Limitations of the Micro canonical Ensemble
Despite its fundamental importance, the micro canonical ensemble has limitations:

o [t is mathematically difficult to apply to complex systems.

o Real systems are rarely perfectly isolated.

o Calculations often become simpler in the canonical or grand canonical ensembles.
Nevertheless, in the thermodynamic limit, results obtained from different ensembles become
equivalent.

Importance and Applications
The micro canonical ensemble is important in:
o Foundations of statistical mechanics,
o Study of isolated systems,
e Understanding entropy and equilibrium,
e Astrophysical systems,
o Theoretical studies of phase transitions and chaos.
It serves as the conceptual starting point for more practical ensembles.
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Conclusion

The micro canonical ensemble represents the most fundamental description of equilibrium in
statistical mechanics. By considering an isolated system with fixed energy, volume, and
number of particles, it provides a natural framework for defining microstates, entropy,
temperature, and other thermodynamic quantities. The principle of equal a priori probabilities
and Boltzmann’s entropy formula establish a deep connection between microscopic dynamics
and macroscopic thermodynamic laws. Although other ensembles are often more convenient
for practical calculations, the micro canonical ensemble remains the cornerstone upon which
the entire structure of equilibrium statistical mechanics is built.

1.5 SUMMARY

1. Statistical Mechanics and Thermodynamics

Statistical mechanics provides the microscopic foundation of thermodynamics by relating
the macroscopic properties of matter to the statistical behavior of a large number of
microscopic constituents such as atoms and molecules.

Thermodynamics describes systems using macroscopic variables like pressure, volume,
temperature, and entropy, without reference to microscopic details. Statistical mechanics
bridges this gap by introducing the concept of microstates and macrostates. A macrostate is
defined by macroscopic variables, while a microstate specifies the exact positions and
momenta (or quantum states) of all particles.

The laws of thermodynamics emerge naturally from statistical principles:
e The first law corresponds to energy conservation.
e The second law arises from the tendency of systems to evolve toward macrostates
with maximum probability (maximum entropy).
e The third law is consistent with the reduction of accessible microstates at absolute
Zero.
Thus, thermodynamics is a statistical description of the collective behavior of microscopic
particles.

2. Phase Space

Phase space is an abstract space used to represent all possible microstates of a system. For a
system of NNN particles, phase space is a 6NO6N6N-dimensional space, with three
coordinates for position and three for momentum for each particle.

Each point in phase space represents a unique microstate of the system. As the system
evolves in time, its representative point traces a trajectory in phase space according to the
equations of motion.

An important result related to phase space is Liouville’s theorem, which states that the
density of phase points remains constant along the trajectory of the system. This implies
conservation of phase space volume and ensures the stability of equilibrium distributions.
Phase space plays a crucial role in defining ensembles, calculating the number of microstates,
and understanding equilibrium and irreversibility in statistical mechanics.

3. Ensembles — Microcanonical Ensemble
An ensemble is a large collection of virtual copies of a system, each representing a possible
microstate consistent with given macroscopic conditions.
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The microcanonical ensemble describes an isolated system with fixed:

« Energy (E),

e Volume (V),

e Number of particles (N).
Since the system is isolated, all accessible microstates within a narrow energy range are
assumed to be equally probable. This assumption is known as the principle of equal a priori
probabilities.

1.6 TECHNICAL TERMS
Statistical mechanics and thermodynamics, Phase space, Ensembles-micro canonical
1.7 SELF ASSESSMENT QUESTIONS

1. Explain about the Relationship between Statistical mechanics and thermodynamics
2. Write a short note on Phase space
3. Briefly explain about the Ensembles-micro canonical

1.8 SUGGESTED READINGS

. Statistical and Thermal Physics by S. Lokanadhan and R.S. Gambhir (PHI).
. Statistical Mechanics: Theory and applications by S.K. Sinha

. Fundamentals of Statistical and Thermal Physics by F. Reif

. Statistical Mechanics by Gupta and Kumar, Pragati Prakashan Pub. Meerut.
Statistical Mechanics by Satya Prakash

Sll-lkwl\.)r—*

Prof. Ch. Linga Raju



LESSON-2
LIOUVILLE’S THEOREM

AIM AND OBJECTIVE

Aim

The aim of Liouville’s Theorem is to describe the conservation of phase space density for
a system of particles in classical mechanics. It provides a fundamental principle for statistical
mechanics, stating that the density of representative points in phase space remains
constant as the system evolves over time.

Objectives

e To establish the time-invariance of phase space density in Hamiltonian systems.

e To provide a mathematical foundation for statistical mechanics and ensemble
theory.

e To justify the use of microcanonical, canonical, and grand canonical ensembles.

e To understand the conservation of probability in the evolution of a mechanical
system.

e To connect microscopic dynamics with macroscopic thermodynamic behavior.

STRUCTURE

2.1 CANONICAL AND GRAND CANONICAL ENSEMBLE
2.2 DENSITY DISTRIBUTION IN THE PHASE SPACE

2.3 LIOUVILLE’S THEOREM

2.4 SUMMARY

2.5 TECHNICAL TERMS

2.6 SELF ASSESSMENT QUESTIONS

2.7 SUGGESTED READINGS

2.1 CANONICAL AND GRAND CANONICAL ENSEMBLE

Introduction
Canonical Ensemble:

A canonical ensemble represents a large collection of identical systems that can exchange
energy with a heat reservoir but have fixed number of particles (N), volume (V), and
temperature (T). Each system in the ensemble can occupy different microstates with
energies (E;), and the probability of a system being in a state depends on the Boltzmann
factor (e! -k,

Grand Canonical Ensemble:

A grand canonical ensemble represents systems that can exchange both energy and particles
with a reservoir. The chemical potential ((\mu)), volume (V), and temperature (T) are
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fixed. This ensemble is useful when the number of particles is not fixed, such as in gases
and open systems.

Both ensembles provide a statistical framework to connect microscopic states with
macroscopic thermodynamic quantities.

A collection of independent assemblies having the same temperature T, volume V and
number of identical particles N is called a canonical ensemble. If the energy exchange takes
place but the mass exchange does not take place, the ensemble is called Canonical Ensemble
1.e., in this ensemble, all the assemblies are in thermal contact with each other. The
Canonical ensembles can be imagined thus. The individual assemblies are separated by rigid,
impermeable but Dia thermal walls. As energy exchange takes place, temperature remains
constant for all the assemblies (Figure). The canonical ensemble can be referred to an
isothermal system where only energy exchanges, but mass remains unchanged dia thermal
wall
Grand Canonical Ensemble
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A collection of independent assemblies in which exchange of energy as well as mass (number
of particles) takes place is called a Grand Canonical Ensemble. It can be thought of as a
micro canonical ensemble where both energy and mass exchange. As a result of exchange of
number of particles, the chemical potential p remain constant in addition to the temperature
(because of energy exchange) being constant. So, in a Grand Canonical Ensemble Volume
V, temperature T and chemical potential p remain constant. The following Figure represents
a Grand Canonical Ensemble where the individual assemblies are separated by rigid,
permeable and dia thermal walls.

dia thermal wall
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They refer to open isothermal systems.

If we know both the average energy and average number of particles in an assembly,
grand canonical ensemble can be applied.
Applications

W
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Canonical Ensemble:
e (alculation of partition functions for systems with fixed N, V, T
e Derivation of thermodynamic quantities like internal energy, entropy, and free
energy
e Study of vibrational, rotational, and translational energies in molecules
e Analysis of specific heat capacities of solids and gases

Grand Canonical Ensemble:

e Used in open systems where particle number fluctuates
Derivation of Bose—Einstein and Fermi—Dirac distributions
Study of chemical reactions, adsorption, and phase transitions

e Analysis of electrons in metals or photons in cavities
Limits / Limitations

Canonical Ensemble:
e Number of particles (N) must be fixed; not suitable for open systems
e Assumes thermal equilibrium; not valid for non-equilibrium systems
¢ Difficult to apply to systems with strong interactions between particles

Grand Canonical Ensemble:

e Assumes thermal and chemical equilibrium with the reservoir

e Complex mathematical treatment due to fluctuating particle number

e Less accurate for small systems, where fluctuations are significant
Conclusion
Canonical and grand canonical ensembles are powerful tools in statistical mechanics that
link microscopic particle behavior to macroscopic thermodynamic properties. The
canonical ensemble is ideal for closed systems with fixed particle number, while the grand
canonical ensemble is suited for open systems with variable particle number. Despite
some limitations, these ensembles form the foundation for deriving statistical distributions
and understanding equilibrium properties of matter.

2.2 DENSITY DISTRIBUTION IN THE PHASE SPACE

Introduction

In statistical mechanics, the phase space of a system is a multidimensional space in which
each point represents a unique state of the system, defined by the positions and momenta of
all particles. The density distribution in phase space describes how representative points
(or microstates) are distributed over this space. It provides a probabilistic description of
the system’s microscopic states and serves as a foundation for connecting microscopic
behavior with macroscopic thermodynamic properties.

The use of ensembles in statistical mechanics is guided by the following points:

1. There is no need to distinguish between different systems constituting an ensemble,
because the laws of statistical mechanics aim to tell us only the number of systems or
elements which would be found in different states i.e., in different regions of phase
space at any time.
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2. The number of systems in an ensemble is so large that there is a continuous change
in their number passing from one region of phase space to another.

Keeping these points in mind, the condition of an ensemble at any time can be suitably
specified by the density function with which the phase points are distributed in the phase
space.

This density function is called the density of probability distribution or the probability
densityor the distribution function.In an ensemble of f degrees of freedom, the density of
distribution p is a function of f position coordinates ¢4, gz, ..., Grand f momenta coordinates
D1, D2, -, Py, corresponding to 2fcombined position—momentum axes in the phase space.The
density of distribution is also a function of time ¢, because due to the motion of phase points,
the density of distribution will change with time at any given point. Hence we can write:

p = p(41,92) Q5 D1, P25 » Pfs t)
or briefly,

p=p(qpt) (1)

Obviously, the density of distribution p denotes the number of systems or elements 6N which
are found at any given time in a given infinitesimal region of I'-space.If the region chosen is
such that the position coordinates lie between q;and q; + dq;, and momenta lie between

p;and p; +dp;(i=1, 2, 3, ..., f), then the hypervolumedI" of this region will be given by:
f

dr = dqdg, -.dq; dpdp, .dp; = | [dadpe @)
i=1
Where ]_[{=1 stands for the product over all values of i = 1 to £.The number of systems 6N
lying in the specified infinitesimal region can be obtained by multiplying the density of

distribution p with this hypervolume in the phase space, i.e.,
f

oN=pdr=p| [dadn )
i=1
Integrating over the entire phase space, we can obtain the total number of systems under
consideration, i.e.,

N=[pdl=[pdgdq,..dqs dp,dp, ...dps (4)
Sometimes it is convenient to work with the normalised density of distribution, given by
p(a.p.t) _p
== 5
PN N N (5)

In this case, pyexpresses the probability of states represented by points per unit volume
element in the phase space. In other words, pN gives the probability per unit volume of
finding the phase point for a system taken at random from the ensemble in different regions
of the phase space.The function pN must obviously satisfy the normalisation condition,

J py dT = [ py dq,dqs, ...dqy dp,dp, ...dpy = 1 (6)

Conclusion

The density distribution in phase space is a key concept in statistical mechanics, enabling
the calculation of ensemble averages, probabilities, and thermodynamic quantities. It
allows for a quantitative link between the microscopic configuration of particles and
observable macroscopic properties, providing a deeper understanding of equilibrium and
statistical behavior of physical systems
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2.3 LIOUVILLE’S THEOREM

Introduction

Liouville’s Theorem is a fundamental concept in classical statistical mechanics. It states
that for a system of particles evolving under Hamiltonian dynamics, the density of
representative points in phase space remains constant with time. In other words, as a
system moves through its allowed phase space, the phase space volume occupied by an
ensemble of systems is conserved. This theorem provides the theoretical foundation for
statistical ensembles and connects microscopic dynamics with macroscopic
thermodynamic properties.

Consider an ensemble consisting of a large number of identical, non-interacting systems.We
know that the instantaneous state of a system can be represented by a point in the phase
space.Similarly, the instantaneous states of other systems constituting the ensemble can be
represented by other points in the phase space.Thus, the instantaneous state of the entire
ensemble can be represented by a number of phase points in the phase space.The density of
these points, also known as the density of states in the phase space, is denoted by p.If the
state of an ensemble changes with time, the positions of phase points in the phase space will
change with time.The motion of these phase points in the phase space is, of course, governed
by the canonical equations:
0H . 0H

= —, = — — 7

q.
(fori = 1,2,3, ..., ffor a system of f'degrees of freedom)
Here H = H(q1, 92, -, 45, P1, D2, --» Py )is the Hamiltonian of the system.
Due to the motion of phase points, the density of states in the phase space pchanges with
time.Liouville’s theorem gives information about the rate of change of phase density in the
phase space.The theorem may be stated in two parts:

1. The rate of change of density of phase points (representing systems) in the
neighbourhood of a moving phase point (for which g’s and p’s are changing) in the I'-
space is zero. This part represents the principle of conservation of density in the phase
space.Mathematically, this may be represented as

dp

- =0 ®)

in the immediate neighbourhood of any given moving phase point.

2. Any arbitrary element of volume or extension-in-phase in the I'-space, bounded by a
moving surface and containing a number of phase points, does not change with time
despite the displacements and distortions.This part represents the principle of
conservation of extension in phase space.Mathematically, this may be represented as

f
d d
- (00 =— (1;[ dq;dp;) =0 ©)

Applications
e Provides the basis for statistical mechanics and ensemble theory (microcanonical,
canonical, grand canonical ensembles).
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e Ensures conservation of probability in phase space, allowing calculation of
thermodynamic averages.

e Used to derive equilibrium distributions of particles in phase space.

e Helps in understanding the time evolution of systems in classical mechanics.

e Forms the foundation for molecular dynamics simulations in physics and chemistry.

e Limits / Limitations

e Applicable only to Hamiltonian systems; does not hold for dissipative or non-
conservative forces.

e Assumes classical mechanics; quantum effects require modification (quantum
Liouville equation).

e Only valid for closed systems without external perturbations altering phase space
volume.

e Does not directly provide thermodynamic quantities; it is a framework for further
statistical calculations.

Conclusion
1. Canonical and Grand Canonical Ensembles
e Canonical Ensemble:
o Represents systems with fixed number of particles (N), volume (V), and
temperature (T).
o Systems can exchange energy with a heat reservoir.
o Uses the partition function (Z) to calculate thermodynamic quantities like
internal energy, entropy, and free energy.
o Applicable for closed systems.
e Grand Canonical Ensemble:
o Represents systems with fixed chemical potential (p), volume (V), and
temperature (T).
o Systems can exchange both energy and particles with a reservoir.
o Uses the grand partition function (Z) to derive distributions like Bose—
Einstein and Fermi-Dirac.
o Applicable for open systems.

2. Density Distribution in Phase Space

o Describes the distribution of representative points (microstates) in the 6N-
dimensional phase space of a system.

e Connects microscopic particle configurations (positions & momenta) to
macroscopic thermodynamic properties.

o Forms the basis for ensemble averages, probability calculations, and statistical
mechanics formulations.

o Fundamental for deriving equilibrium properties in canonical, microcanonical, and
grand canonical ensembles..

Liouville’s theorem is a fundamental result of classical statistical mechanics describing how
an ensemble of systems evolves in phase space. A canonical ensemble represents a large
number of identical systems, each in thermal equilibrium with a heat reservoir at temperature
T. A grand canonical ensemble describes systems that can exchange both energy and particles
with a reservoir.
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2.5 TECHNICAL TERMS

Canonical and grand canonical ensemble
Density distribution in the phase space
Liouville’s theorem

2.6 SELF ASSESSMENT QUESTIONS

1. Explain about the Canonical and grand canonical ensemble
2. Write about the Density distribution in the phase space
3. Write about the Liouville’s theorem

2.7 SUGGESTED READINGS

Statistical and Thermal Physics by S. Lokanadhan and R.S. Gambhir (PHI).
Statistical Mechanics: Theory and applications by S.K. Sinha
Fundamentals of Statistical and Thermal Physics by F. Reif

Statistical Mechanics by Gupta and Kumar, PragatiPrakashan Pub. Meerut.
Statistical Mechanics by Satya Prakash
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LESSON-3
EQUIPARTITION OF ENERGY THEOREM

AIM AND OBJECTIVE

Aim

The aim of studying the equipartition of energy theorem is to understand how thermal
energy is distributed among the various microscopic degrees of freedom of a physical system
in thermal equilibrium and to establish a quantitative relationship between temperature and
average energy at the microscopic level.

Objectives

e To explain the concept of degrees of freedom in classical mechanical systems.

e To show that each independent quadratic degree of freedom contributes an average
energy of kgT.

e To apply the equipartition theorem to calculate the internal energy of ideal gases.

e To use the theorem to determine molar heat capacities of mono atomic, diatomic,
and polyatomic gases.

e To understand the role of equipartition in explaining macroscopic thermodynamic
properties from microscopic motion.

e To recognize the limitations of classical equipartition theory, particularly its failure
at low temperatures, leading to the necessity of quantum theory

STRUCTURE OF THE LESSON:

3.1 EQUIPARTITION OF ENERGY THEOREM
3.2 MACROSTATES AND MICROSTATES

3.3 SUMMARY

3.4 TECHNICAL TERMS

3.5 SELF ASSESSMENT QUESTIONS

3.6 SUGGESTED READINGS

3.1 EQUIPARTITION OF ENERGY THEOREM

Introduction

The equipartition of energy theorem is one of the fundamental results of classical statistical
mechanics. It provides a direct connection between temperature and the average energy
associated with the microscopic degrees of freedom of a system in thermal equilibrium.
According to this theorem, energy is shared equally among all independent degrees of
freedom that appear quadratically in the expression for the total energy. The equipartition
theorem plays a crucial role in explaining the thermal properties of gases and solids, such as
internal energy and heat capacity, and it establishes a deep link between microscopic motion
and macroscopic thermodynamic behavior.

Although highly successful in classical physics, the equipartition theorem also highlights the
limitations of classical statistical mechanics and motivates the development of quantum
theory, particularly in explaining deviations observed at low temperatures.
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Key Points of the Equipartition Theorem:

e Degree of freedom: Each independent way in which a system can store energy (such
as translational, rotational, or vibrational motion) is called a degree of freedom.

e The energy associated with each degree of freedom is, on average% kgT, wherekg 1is

the Boltzmann constant and T is the temperature of the system.
e This theorem applies to classical systems, where particles obey classical mechanics.

1. General Form of the Equipartition Theorem

In classical statistical mechanics, the average energy(E) of a system in thermal equilibrium
is related to its degrees of freedom. For each degree of freedom iii, the average energy
associated with that degree is:

1
(Ei)=;kgT

The total average energy of the system is then the sum of the contributions from all the
degrees of freedom:

1
< E >= Zl’Ei == EkBT

(Number of degrees of freedom)

This result assumes that the system is classical and that there are no quantum mechanical
effects influencing the energy distribution (i.e., the system is in the classical regime where
each degree of freedom is independent and behaves according to the Maxwell-Boltzmann
distribution).

2. Applications of the Equipartition Theorem

The equipartition theorem can be applied to different types of motion (translational,
rotational, and vibrational) of particles. Let's look at a few common examples:

a. Monatomic Ideal Gas
For a monatomic ideal gas, each particle can move in three dimensions (X, y, z), and each of

these translational degrees of freedom contributes %kBT to the total energy. So, the total
energy per particle is:

3
(Etotal>:E kgT

. S . 3
This means that each particle in a monatomic ideal gas has an average energy of 5 kgT

which is purely translational (since there are no internal degrees of freedom such as rotation
or vibration).

b. Diatomic Ideal Gas

For a diatomic ideal gas, a molecule has 3 translational degrees of freedom (corresponding
to motion in the X, y, and z directions) and 2 rotational degrees of freedom (since it is a
rigid body and can rotate around two axes perpendicular to the bond axis, but it cannot rotate
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around the bond axis because it is highly constrained in this direction). If the gas is in the
classical regime, the total energy per molecule is:

3 2 5
(Etotal)zg kg T+§ kBTZE kgT

This accounts for both the translational and rotational contributions to the energy. If the
system is at high temperatures where the vibrational modes become excited, each vibrational
mode (which has two degrees of freedom: potential energy and kinetic energy) would
contribute an additional kBTk BTkBT. In that case, for high-temperature limits:

3 2 1
(Etotal)zg kg T+2. 7 kBT+5 kgT=5kgT

c. Polyatomic Molecules (e.g., Triatomic Gas)
For a polyatomic molecule, such as a triatomic molecule (e.g., water vapor), the energy
contributions can come from:

e 3 translational degrees of freedom,

e 3 rotational degrees of freedom (in the classical approximation for nonlinear
molecules),

e 3 vibrational modes (each contributing two degrees of freedom, corresponding to the
potential and kinetic energy components).

Thus, in the classical limit (high temperature):
(Etotal>:§ kgT+3. % kgT + %kBng kgT

At higher temperatures where vibrational modes are fully excited, each vibrational mode will
contribute ,kgTso the total energy would be:

2 1 15
<Etotal>:E kgT+3. > ](BT:7 kgT

Limitations of the Equipartition Theorem
Despite its success, the equipartition theorem has important limitations:

o [t fails at low temperatures,

e [t cannot explain the temperature dependence of heat capacities,

e It does not apply to quantum systems where energy levels are discrete.
For example, classical theory predicts a constant heat capacity for solids, whereas
experimentally the heat capacity decreases at low temperatures. This discrepancy led to the
development of quantum theories such as Einstein’s and Debye’s models of solids.

Importance and Significance
The equipartition theorem is important in:
e Understanding molecular motion,
e Explaining ideal gas behavior,
e Estimating internal energies,
e Studying classical limits of quantum systems.
It provides deep insight into how energy is distributed in classical systems.
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Conclusion

The equipartition of energy theorem is a cornerstone of classical statistical mechanics,
establishing that energy is equally shared among all quadratic degrees of freedom in thermal
equilibrium. It successfully explains the internal energy and heat capacities of gases at high
temperatures and provides a clear connection between microscopic motion and macroscopic
thermodynamic quantities. However, its failure at low temperatures reveals the limitations of
classical physics and underscores the necessity of quantum mechanics. Despite these
limitations, the equipartition theorem remains a powerful and elegant principle in the study of
statistical mechanics.

3.2 MACROSTATES AND MICROSTATES

Introduction

Statistical mechanics provides a bridge between the microscopic laws governing atoms and
molecules and the macroscopic laws of thermodynamics. Two fundamental concepts that
enable this connection are microstates and macrostates. While thermodynamics describes
systems using a small number of macroscopic variables such as temperature, pressure, and
volume, statistical mechanics explains these quantities in terms of the vast number of
microscopic configurations available to a system.

The distinction between macrostates and microstates is central to understanding entropy,
probability, and the direction of spontaneous processes. The concepts also form the
foundation for ensemble theory and the statistical interpretation of the laws of
thermodynamics.

Let us consider an ensemble consisting of a large number of independent systems or a gas
consisting of a large number of molecules, in the phase space. Each system or molecule may
be represented by point known as phase point or representative point in the phase space. Let
the phase space be divided into cells numbered 1, 2, 3, ... i, etc. adjoining one another and
having a volume equal to

89169 ... 6qf 6py 6p, ... Opf

A phase point for any system or molecule may be supposed to lie inside one of these cells. In
order to define the microstate of the ensemble we must specify the individual position of
phase points for each system or molecule of the ensemble. In other words, we must state to
which cell each system or molecule belongs temporarily. Such a deep analysis is quite
unnecessary to determine the observable properties of any ensemble (or gas). For example,
the density is same if the number of molecules in each volume element of ordinary space is
the same regardless of which particular moleculelie in any volume element.

A macrostate of the ensemble may be defined by the specification of the number of phase
points (i.e., system or molecules) in each «cell of phase space such
asn, phase points are in cell 1, n, phase points are in cell 2,

n3 phase points are in cell 3, and so on.

Many different microstates may correspond to the same macrostate.For example, let us
identify the phase points as a, b, c, ...etc.Let a particular microstate be specified by stating that
the phase points a, c, hare in cell 1, b, eare in cell 2, fis in cell 3, and so on as shown in Fig.
3.1.The corresponding macrostate is specified merely by giving the number of phase
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points:n, (= 3) in cell 1; n,(= 2) in cell 2; n;(= 1) in cell 3, and so on.If we interchange
any two phase points from different cells say aand b we shall have different microstates, but
the same macrostate.On the other hand, if we interchange the two phase points in the same
cell say aand ¢ we shall have the same microstate as well as the same macrostate.If the
systems of the ensemble are in constant motion, just like the molecules of a gas, the ensemble
is continuously and spontaneously changing from one microstate to another and almost as
frequently from one macrostate to the other.

CELL 1 ach n; =3

CELL 2 be n,=2
CELL 3 f |na=1
CELLM dk |'ny=2

CELLS IN PHASE SPACE
Fig. 3.1

The microstates which are allowed under given restriction are called accessible
microstates.For example, in the case of 3 molecules a, b, cto be distributed between two
halves of a box, if none can be outside the box, then:(ab, ¢), (a, bc), (ac, b)are accessible
microstates, while(a, b), (a,c), (b,c)are inaccessible microstates.One of the most
fundamental postulates of statistical mechanics 1is that:All accessible microstates
corresponding to possible macrostates are equally probable.In other words, this states that the
probability of finding the phase point in any one region is identical with that for any other
region of equal volume, provided the regions correspond equally well with the given
conditions. Thus, this postulate of equal a priori probability implies that the probability of
occurrence of a given macrostate is proportional to the number of microstates that correspond
to that macrostate. The number of microstates corresponding to a given macrostate is called
the thermodynamic probability of the macrostate.Hence, the probability that the ensemble
will possess energy Eis proportional to (L(E), i.e.,

P(E) = C Q(E)

WhereC= constant of proportionality and Q(E)=thermodynamic probability
Importance and Applications
The concepts of macrostates and microstates are essential for:
Understanding entropy and equilibrium,
Deriving thermodynamic laws,
Analyzing fluctuations,
Studying phase transitions,
e Developing quantum statistical mechanics.
They form the conceptual foundation of statistical physics.
Limitations of microstate and macrostate
Microstate:
e Describes exact positions/momenta of all particles i.e impractical for large
systems(too much info)
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¢ Quantum effects(uncertainty) make precise tracking hard

e Macrostate:

e Doesn’t give microscopic details (many microstates— same macrostate)
e Assumes equilibrium (doesn’t describe non-equilibrium systems well)

Conclusion

Macrostates and microstates provide the fundamental framework through which statistical
mechanics connects microscopic dynamics with macroscopic thermodynamic behavior. A
macrostate represents an incomplete but practical description of a system, while microstates
provide a complete microscopic specification. The enormous number of microstates
associated with equilibrium macrostates explains the statistical nature of thermodynamic laws
and the tendency toward equilibrium. Through Boltzmann’s entropy formula, the concepts of
macrostates and microstates acquire profound physical significance, making them
indispensable in the understanding of equilibrium and irreversible processes.

3.3 SUMMARY

The equipartition theorem states that in thermal equilibrium, each quadratic degree of
freedom in a system's energy contributes an average of% kgT, where kg is Boltzmann's
constant and T is temperature. This principle explains heat capacities: monatomic gases have
three translational degrees, yielding %kBT per molecule, while diatomic gases add rotational
freedoms for higher values.

Microstates and Macrostates

A macrostate describes observable properties like energy, volume, and particle number, while
microstates are specific atomic configurations yielding that macrostate. Many microstates
correspond to one macrostate; statistical mechanics averages over them assuming equal a
priori probabilities in isolated systems.

3.4 TECHNICAL TERMS

Equipartition of energy theorem
Macrostates and Microstates

3.5 SELF ASSESSMENT QUESTIONS

1. Explain about the Equipartition of energy theorem
2. Write about the Macrostates and Microstates

3.7 SUGGESTED READINGS

Statistical and Thermal Physics by S. Lokanadhan and R.S. Gambhir (PHI).
Statistical Mechanics: Theory and applications by S.K. Sinha
Fundamentals of Statistical and Thermal Physics by F. Reif

Statistical Mechanics by Gupta and Kumar, Pragati Prakashan Pub. Meerut.
Statistical Mechanics by Satya Prakash
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LESSON-4
PARTITION FUNCTION FOR CANONICAL AND

MICRO CANONICAL ENSEMBLE

AIM AND OBJECTIVE

Aim

The aim of studying the partition function in canonical and microcanonical ensembles is to
provide a mathematical framework that connects the microscopic states of a system to its
macroscopic thermodynamic properties, such as energy, entropy, and free energy.

Objectives
Canonical Ensemble Partition Function
e To calculate the probability of a system occupying a particular energy state at
fixed N, V, and T.
e To determine thermodynamic quantities like internal energy, Helmholtz free
energy, entropy, and heat capacity.
e To understand the role of energy exchange with a heat reservoir.
e To derive Boltzmann distribution and link microscopic behavior to macroscopic
properties.

Microcanonical Ensemble Partition Function
e To describe isolated systems with fixed N, V, and total energy E.
e To calculate the number of accessible microstates at a given energy.
e To evaluate entropy, temperature, and pressure of an isolated system.
e To establish the foundation for statistical mechanics in systems where energy is
strictly conserved.

STRUCTURE OF THE LESSON:

4.1CLASSICAL IDEAL GAS IN MICRO CANONICAL ENSEMBLE
4.2PARTITION FUNCTION FOR MICRO CANONICAL ENSEMBLE
4.3GIBB’S PARADOX

4.4PARTITION FUNCTION FOR CANONICAL ENSEMBLE

4.4 SUMMARY

4.5 TECHNICAL TERMS

4.6 SELF ASSESSMENT QUESTIONS

4.7 SUGGESTED READINGS

4.1 CLASSICAL IDEAL GAS IN MICRO CANONICAL ENSEMBLE

The microcanonical ensemble is one of the statistical ensembles used to describe
thermodynamic systems, and it corresponds to an isolated system that does not exchange
energy, particles, or volume with its surroundings. In this ensemble, all accessible microstates
of the system are equally probable, and the total energy of the system is fixed.
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Classical Ideal Gas in the Microcanonical Ensemble

Statistical entropy for an n particle system

Let us consider a system which consists of n point particles in the volume V and energy O6E
around its total energy E.

The corresponding volume of 6N dimensional phase space is given by

Ap=Jdq: dqz ... dgsN [dp: dp2 ... dpsN (1)

[dqi dqa ... dgsN = [dx: dy: dzi [dx2 dy: dz ... [dx, dy,, dz,
=V-V-V..V
— Vo

Therefore,

ApT=Vn [dp: dp2 ... dpsN  (2)

From Eq. (2) the momentum integral is evaluated subject to the following constraint imposed

by the microcanonical ensemble:

E-8E<E,<E

Where

E, =¥ (pi?/2m) fori=1to3N

ie.,

E-3E<X(p®/2m) <E

The integral in Eq. (2) is equal to the volume contained between a 3N-dimensional hyper
sphere of radius (2mE)'/2
and 3N-dimensional hyper sphere of radius [2m(E — 6E)]"/2.

The volume of an N-dimensional hyper sphere of radius R is given by:

Va(R) = C, R
where,

For a 3-dimensional sphere is given by,
V3(R) = (4/3)nR?

V3(R) Cs R?* where C; = (4/3)m

This can also be written as:
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_ 71'3/2

Cs= ﬁﬂ ........... 3)

In general,
W
Cp=="——
\/§+1
Therefore,
",
C3 = u
7_[3n/2 an
C3n =—=V3,(R) = C3,R

3n
7+1

Hence, the volume of a 3N-dimensional hyper sphere of radius (2mE) is:

3n/
Con = e @ME)™2 e (&)

3n
21
!
Similarly, the volume of a 3N-dimensional hyper sphere of radius [2m(E — SE)]"is:

3n/
Van = Tz, [2m(E —8E)]'"? ()

2

Equations (4) -(5) give the momentum space, i.e., the integral in Eq. (2).

.[dpl dp2 N dp3n
311/2
= 7Z3_T),(2mE)3n/2 — [2m(E — 8E)]™?]
5!
3n/2
:7:3_11)' (sz)3”/2 [1 — (1 - %)Pn/z (6)
5!

For a macroscopic system, where 3n = 10 and
(3n/2) OE>>E

We know that:

(1-x)"=1 —nx + 20D 2y
2!

For sufficiently large n,

2 3,3

n?x n3x
2! 3!

(1-x)"=1—nx+ +e™ ™

Using Eq. (6):
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[dp: dp: ... dps,,

3 3 -8E3
= T, @mE)" 2 - [1-e =27
iy
37’1./ 3
= T, (2mE)™2 (7)
iy

Macroscopic system that is the 3n = 10?* and (3n/2) E>> E
we know that

(I-x)"=1 —nx + 20D 2y
21

where ‘n’ is sufficiently large

2 3

n°x

(1—-x)"=1—nx+ -

n?x
2!

From equation (7)
any —dE3n
[dp: dps ... dps,= ’ET,L)Z 2mE)"2[1-eF 2]
)t
7_[311/2

3n 1
2

2mE)*">

From equation (2)

7_[311/2

AP=Vn-

@mE) "2 (8)

!

The statistical entropy o of a system is defined as:

c=1log, AP
11'3n/2 3n/
= loge [ V" —m—-(2mE) /2
Gl
=nlog, V (2nmE)3n/2 — loge%n! —9)

Using Stirling’s approximation:
log,n!=nlog,n—n

Applying Stirling’s approximation to Eq. (9):
c=n logeV(anE)gn/Z — 3711 log, 32—n + 32—n
=n log, [V (4mmE)”2(2)"212 —— (10)

o =log.,Ap

AT
o =log, i
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Also,
v 22| an
o =nlog, |——5"—|+5
= nlog, V(5 25| + 2 ——(11)

However, Eq. (10) does not satisfy the additive property of volume is.

Hence, the corrected expression is:

AT
6= loge[-or-T]

m 3n
o = nlog, il 3/ (—)3/2] + -~ nolgn +n
3 3 5
o = nlog, [V/n (“3’;’2” rO|+Z (12)

which is the statistical entropy for ‘n’ particle system

4.2PARTITION FUNCTION FOR MICRO CANONICAL ENSEMBLE

In the microcanonical ensemble, a system is characterized by:
e Fixed energy : E
e Fixed number of particles : N
e Fixed volume : V

There is no exchange of energy or particles with the

surroundings.

Therefore, all accessible microstates having energy within a very small energy window

[E,E+OE] are equally probable.

1. Definition of Microcanonical Partition Function

The microcanonical “partition function’’ is the density of states or multiplicity:

Q(E,V,N) = Number of microstates with energy between E and E + 6E

This 1s sometimes called the structure function or state count.

For classical systems, it is written as:

1
h3nN!

Q(E,V,N) = H(p,q) € [E,E+8E] d*NqdNp

Often expressed using the Dirac delta function:

Q(E,V,N) = S8E— H(p,q) &N qd™Np

h3n N'

2. Entropy in Microcanonical Ensemble

Entropy is defined using Boltzmann’s formula:
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S(E,V,N) = kglnQ(E,V,N)

This entropy leads to all thermodynamic quantities.
For example:

Temperature

1 _ aS
Pressure

P _ aS

== G)ew
Chemical Potential

p 0§

T ( P N)E,V

3. Relation to Other Ensembles
While the canonical ensemble uses

Z = Z e_ﬁEi
i

the microcanonical ensemble uses:

Q(E)

Instead of probability weightse AF | microcanonical ensemble assigns equal probability to all
states:

! Ei=E
nefom

0 otherwise

4. Example: Ideal Gas (Microcanonical)
For a 3D ideal gas:
yN (anE)3N/2

Q(E,V,N) =
h3nN! 1-.(3]\]/2 + 1)
This leads to:
V 3N 3N
S = kg Nlnﬁ+71nE +71n(2nm) —Inh3" —InN!

which becomes the Sackur—Tetrode equation after using Stirling's approximatio

4.3 GIBB’S PARADOX
Introduction
Gibbs’ Paradox arises in classical thermodynamics and statistical mechanics when

calculating the entropy of mixing of two ideal gases. According to classical theory, mixing
two identical gases results in an increase in entropy, which is physically incorrect because
no real change occurs when identical gases mix. This paradox highlights the limitations of
classical statistical mechanics and the need to account for the indistinguishability of

particles in quantum mechanics. Resolving Gibbs’ paradox leads to the correct formulation
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of entropy for identical particles, forming the foundation of quantum statistical
mechanics.

The partition function of a perfect gas is given by
%4
Z=13 (2mmkT)3/? (1)
From statistical thermodynamics, the entropy is expressed as
3
S = Nklog Z+§Nk (2)
Substituting the value of Zfrom equation (1), we get
%4 3
S = Nklog e[ﬁ (2mmkT)3/?] + ENk (3a)
This expression can also be rewritten as
3 3
S=Nk[logeV+§logem+§logeT+C] (3b)

Where Cis a constant term that includes the fixed factors hand k.
Non-Additivity and the Gibb’s Paradox: The entropy derived from the above equation does
not satisfy the additive property of entropy.Consequently, this leads to paradoxical results,
which is known as the Gibb’s Paradox.To illustrate this, consider two systems, denoted by
indices ‘a’ and ‘b’, held at the same temperature:

T,=T,=T

and separated by a partition as shown in Fig. 5.2

'a' Ibl‘
Na. Va, T, ma, Nb' Vb' T’ mb'
Sa Sb

If the particles of the two systems are different, then using equation (3b), the entropies of

systems ‘a’ and ‘b’ are given respectively by:
3 3
Sq = Nak[logeVa+Elogema +ElogeT+C]
and
3 3
Sy = Npk[log . Vp +El0g e My +Elog e T+ C]

For the two systems shown in Fig. 7.5, the entropies are
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3 3

Sqa = Nyk[log U, + Elog mg +§log T + ] (4a)
3 3

Sy = Npk[log U, + Elog my + Elog T + Cq] (4b)

Where N,, m,, V,refer respectively to the number of particles, the mass of each particle, and
the volume of system ‘a’; and N, m,,Vyrefer to the corresponding quantities for system
‘b’.Since entropy is an extensive quantity, it must satisfy the additive property.
If the two gases are allowed to mix freely by removing the partition, the total entropy of the

combined system should be

3 3
Sap = Sa +Sp = Nyk[log V, +Elog ma+§log T+C]+

3 3
Nypk long+El0gmb+§logT+C (5)

If the particles of the two systems are identical, and for convenience we take
V, =V, =Vand N, = N, = N, the entropy of each individual system is
3 3
S = Nk[log V+§log m+§l0g T +C] (6)

Then the combined entropy would be
3 3
Sap = Sa +Sp = 2Nk|[log V+§log m+zlog T + C] (7)

If the partition is removed so that the molecules of the gas can mix freely, the total volume
becomes 2V, and the total number of particles becomes 2N .Substituting these into equation

(3b) for entropy, we have

3 3
Sap = 2Nk[log 2V +§log m +Elog T + C]

3 3
= Sap = 2Nk[log V+Elog m+§log T + C]+ 2Nklog 2

|Sap = Sq + Sy + 2Nklog 2| (8)

Equation (8) is not consistent with (7); it contains an extra term 2Nklog 2.
This indicates that when two identical gases are mixed, the entropy increases by an
unaccountable amount 2Nklog 2, even though no real physical change has occurred.This
additional, non-physical entropy is known as the entropy of mixing, and the contradiction it
produces is the Gibb’s Paradox.If we used equation (3) directly for entropy, entropy would
appear non-extensive, since entropy (being an extensive thermodynamic function) should be

additive for identical subsystems.



Centre for Distance Education 4.9 Acharya Nagarjuna University

4.4 PARTITION FUNCTION FOR CANONICAL ENSEMBLE
1. Canonical Ensemble Basics

A canonical ensemble describes a system that is:

. In thermal equilibrium with a heat bath
. Has fixed number of particles N, volume V, and temperature T
. Energy is not fixed; the system exchanges energy with the reservoir
The fundamental probability postulate:
P; o e PEi
where
1
 kgT

2. Definition of the Canonical Partition Function Z
The canonical partition function normalizes the Boltzmann probabilities:
Z = Zi e_BEi

For continuous energy levels or phase space integrals,

1
h3n N!

7 =

e BHwq 3N pd™Nq

3. Probability of the System Being in State i
e_BEi
Z

4. Helmholtz Free Energy from Partition Function

Pi=

The Helmholtz free energy is:
F=—kgTInZ
From this, all thermodynamic quantities follow.

5. Mean Energy

<E>= —%lnz
6. Entropy
S = _(O_F)V

aT

Or directly using Z:

S =kg(InZ + B(E))
7. Heat Capacity at Constant Volume

0<E>

Cv =7

v
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Another form:
Cyr=kgP?<E?> —<E?*>

8. Example: Canonical Partition Function of a Single Harmonic Oscillator

7 = z e—ma(n+%)
n=0

Geometric series:
a—Bhw/2

Z= 1 — o—Bhw/

4.5 SUMMARY

The canonical partition function encodes all equilibrium properties of a system at fixed
temperature, volume, and particle number. In the canonical ensemble, a system is in thermal
contact with a heat bath at temperature T, so its energy can fluctuate while N and V remain
fixed. Gibbs paradox arises when treating identical particles as distinguishable in classical
entropy calculations, leading to an unphysical entropy increase upon mixing identical gases.
It appears as a discontinuity: mixing different gases gives extra entropy, but naively mixing
the same gas also gives the same entropy change, contradicting physical intuition. The
resolution is to recognize particle indistinguishability and divide the classical partition
function by N!, removing the overcounting of microstates. This modification makes the
entropy extensive and eliminates the paradox, and is naturally justified in quantum statistical
mechanics.

4.6 TECHNICAL TERMS

Classical ideal gas in micro canonical ensemble
Partition function for micro canonical ensemble
Gibb’s paradox

Partition function for Canonical ensemble

4.7 SELF ASSESSMENT QUESTIONS

Explain about the Partition function for micro canonical ensemble
Briefly explain about the Gibb’s paradox

Write about the Partition function for Canonical ensemble
Explain about the Classical ideal gas in micro canonical ensemble

b=

4.8 Suggested Readings

Statistical and Thermal Physics by S. Lokanadhan and R.S. Gambhir (PHI).
Statistical Mechanics: Theory and applications by S.K. Sinha
Fundamentals of Statistical and Thermal Physics by F. Reif

Statistical Mechanics by Gupta and Kumar, Pragati Prakashan Pub. Meerut.
Statistical Mechanics by Satya Prakash

Nk =

Prof. Sandhya Cole



LESSON-5
THERMO DYNAMICAL FUNCTION FOR

CANONICAL AND GRAND CANONICAL
ENSEMBLE

AIM AND OBJECTIVE

Aim

The aim of studying thermodynamical functions in canonical and grand canonical
ensembles is to connect microscopic statistical behavior of particles to macroscopic
thermodynamic quantities (like energy, entropy, and free energy) and to provide a
mathematical framework for predicting equilibrium properties of systems in contact
with a reservoir.

Objectives
Canonical Ensemble

To derive thermodynamic functions such as Helmholtz free energy (F), internal
energy (U), entropy (S), and specific heat (C) using the partition function (Z).

To relate microscopic energy states to macroscopic observables at fixed N, V, and
T.

To calculate probabilities of occupation of energy levels and their contribution to
thermodynamic quantities.

To provide a framework for studying thermal equilibrium properties of closed
systems.

Grand Canonical Ensemble

To derive thermodynamic functions such as Grand potential (® or (), average
particle number (<N>), entropy (S), and pressure (P) using the grand partition
function (Z).

To account for energy and particle exchange with a reservoir (variable N) at fixed
p,V,and T.

To study open systems, including derivation of Bose—Einstein and Fermi-Dirac
distributions.

To connect microscopic statistical behavior with macroscopic thermodynamic
properties in systems with fluctuating particle numbers.

STRUCTURE OF THE LESSON:

5.1 THERMO DYNAMICAL FUNCTION FOR CANONICAL ENSEMBLE

5.2 PARTITION FUNCTION FOR GRAND CANONICAL ENSEMBLE

5.3 THERMO DYNAMICAL FUNCTION FOR GRAND CANONICAL ENSEMBLE
5.4 SUMMARY

5.5 TECHNICAL TERMS

5.6 SELF ASSESSMENT QUESTIONS

5.7 SUGGESTED READINGS
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5.1 THERMO DYNAMICAL FUNCTION FOR CANONICAL ENSEMBLE

Introduction

In statistical mechanics, thermodynamical functions describe the macroscopic properties of a
system in equilibrium in terms of microscopic statistical quantities. The canonical ensemble
is particularly important because it represents a system in thermal equilibrium with a heat
reservoir at a fixed temperature. In this ensemble, the system is allowed to exchange energy
with the surroundings, while the volume and number of particles remain constant. As a result,
the energy of the system fluctuates, but the temperature is fixed.

The canonical ensemble provides a powerful framework for deriving all thermodynamical
functions from a single central quantity—the canonical partition function. Once the
partition function is known, quantities such as internal energy, entropy, free energy, pressure,
and heat capacity can be obtained systematically. This makes the canonical ensemble one of
the most widely used tools in equilibrium statistical mechanics.

1. Helmholtz free energy F

F(T,V,N) = —kgTInZ

(Generates equilibrium thermodynamics at fixed (T,V,N.)
2. Internal energy U (mean energy)

U=<E>= alZ— dInZ
TSETT T T T o

dlnz
op
UsingU =F —-T (Z_;),V,N

Equivalently U = — orU=— %an

3. Entropy S
oF
S = (ﬁ),V,N = kg(InZ + BU)
(Statistical form: S = —kg Y};;P;InP; with P; = e PBEisz
4. Pressure P

oF
pP=- (W),T,N

(Equivalent to the mechanical average of — Z—z when expressed from phase-space.)

5. Chemical potential p
For systems where N is variable you normally switch to grand canonical, but one can define:

F
= (ﬁ),T,V
(Useful when treating N as continuous or when comparing free energies of systems with
different N.)

6. Heat capacity at constant volume Cy,
d dInZ

au
Cy = (a_T)V,N = O_T = aB

Statistical fluctuation form:
< E >?>—< E >?

Cv = kT2

- Ver(E) = (AE)? = kgT2Cy
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7. Higher derivatives / response functions (quick list)

e Isothermal compressibility kt can be expressed from OP/0V at constant T.
. 1,0V .
e Thermal expansion a = v (ﬁ)]} — normally computed from free energies and

Maxwell relations.

8. Useful identities (compact)

F = —kgTInZ
0
U= —ﬁan
S =kg(InZ + BU)
oF
P = _(W),T,N
oF
u= (a_N),T,V
_0U Var(E)
V79T  kgT?

Limitations of the Canonical Ensemble
While powerful, the canonical ensemble has limitations:
e It assumes thermal equilibrium,
e It does not describe isolated systems,
e [t is less suitable for systems with particle exchange.
Nevertheless, in the thermodynamic limit, results obtained are equivalent to those of other
ensembles.

Conclusion

The canonical ensemble provides a systematic and elegant framework for deriving
thermodynamical functions from microscopic principles. Through the canonical partition
function, all macroscopic quantities—internal energy, entropy, pressure, heat capacity,
chemical potential, and free energy—can be obtained in a unified manner. The Helmholtz
free energy emerges as the central thermodynamic potential, governing equilibrium and
stability at constant temperature and volume. The canonical ensemble thus plays a pivotal
role in connecting microscopic statistical behavior with macroscopic thermodynamics and
remains a cornerstone of equilibrium statistical mechanics.

5.2 PARTITION FUNCTION FOR GRAND CANONICAL ENSEMBLE

Introduction

In statistical mechanics, the grand canonical ensemble is a framework used to describe
systems that can exchange both energy and particles with a reservoir. Unlike the canonical
ensemble, where only energy fluctuates and particle number is fixed, the grand canonical
ensemble allows for fluctuations in both energy (E) and particle number (N), while
temperature (T), volume (V), and chemical potential (i) remain constant.

This ensemble is particularly useful for systems like gases in chemical equilibrium, quantum
systems with variable particle numbers (e.g., photons, electrons in metals), and open systems
in contact with a reservoir. The central quantity of the grand canonical ensemble is the grand
canonical partition function, which plays a fundamental role in deriving all
thermodynamical quantities of interest.
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Grand Canonical Ensemble: Partition Function
In the grand canonical ensemble, a system can exchange both energy and particles with a
reservoir.
The controlling variables are:
e Temperature: T
e Chemical potential: p

e Volume: V
The natural thermodynamic potential is the grand potential
0= —kBT InZ

1. Probability of a Microstate
For a microstate with energy E and particle number N, the probability is:

e~ B(E—uN)
P(E,N) =
EN) = —
Where
B 1
B_kBT

2. Definition of the Grand Partition Function

The grand canonical partition function (also called grand partition function) is:
Z(T,V,pn) = ZI?IO=0 states e PENI—HN)

or grouping states at fixed N:

Z = Y- eP*NZN(T,N)

Where
Zy 1s the canonical partition function for N particles.

3. Relation to Thermodynamics
The grand potential:
Q=—-kgTInZ

From this, all thermodynamic quantities follow:
Average particle number

<N >= kyT (22
= Kp (au )TV
Average energy
dlnz
<E>= op + u<N>
Pressure
—( )m

4. Useful Special Case: Non-interacting Particles
For an ideal quantum gas with single-particle energy levels €;:
Grand partition function factorizes:

Bosons:

Z= 1_[1—6 Blei—w

Fermlons
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7= 1_[ 1 4 e=BE-w
i

These lead directly to the Bose-Einstein and Fermi-Dirac distributions.
Advantages of the Grand Canonical Ensemble
e Directly handles particle number fluctuations.
e Simplifies calculations for open systems and quantum gases.
e Generates thermodynamic quantities systematically via derivatives of Ini/o=\In
\XilnE.
e Facilitates study of phase transitions, chemical reactions, and adsorption phenomena.

Limitations
e Assumes equilibrium with a large reservoir.
e Less intuitive than canonical ensemble for closed systems.
e May require careful handling of divergent sums in Bose systems at low temperatures.

Conclusion

The grand canonical partition function is the central quantity in the grand canonical
ensemble. It generalizes the canonical partition function to systems that exchange both
energy and particles with a reservoir. All thermodynamic functions—grand potential, internal
energy, entropy, particle number, pressure, and fluctuations—can be derived systematically
from E\XiZ. The grand canonical ensemble is essential for understanding quantum gases,
open systems, and chemical equilibria. Its flexibility and generality make it a cornerstone of
modern statistical mechanics, providing a unified framework for connecting microscopic
states with macroscopic thermodynamic behavior.

5.3 THERMO DYNAMICAL FUNCTION FOR GRAND CANONICAL ENSEMBLE

Introduction

In statistical mechanics, thermodynamical functions are macroscopic quantities derived
from microscopic statistical behavior, providing a bridge between atomic-scale physics and
observable thermodynamic properties. The grand canonical ensemble is a powerful
framework used to describe systems that can exchange both energy and particles with a
reservoir. It is characterized by fixed temperature (T), volume (V), and chemical potential
(1), while energy (E) and particle number (N) fluctuate.

This ensemble is crucial for describing open systems, quantum gases, adsorption phenomena,
chemical reactions, and systems where particle exchange is important. The central quantity in
the grand canonical ensemble is the grand partition function, from which all thermo
dynamical functions can be systematically derived. These functions include the grand
potential, average energy, entropy, pressure, average particle number, and fluctuations,
forming a complete thermodynamic description.

Thermodynamic function for the Grand Canonical Ensemble

Short answer: the fundamental thermodynamic potential is the grand potential
Q(T,V,u) = —KkgTInZ(T,V,p)

Where

Z(T,V,p) = Z e~ B(E-uN)
N

is the grand partition function and f = ﬁ
B
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Below is a compact, exam-ready list of useful relations and interpretations.

1. Thermodynamic identity and Legendre transform
The grand potential is the Legendre transform of the internal energy U with respect to S and
N:
Q=U—-TS—puN =F —puN
where F=U—TS is the Helmholtz free energy.
Differential form:
dQ=-SdT =PdV—-Ndu
This gives the natural derivatives:

aQ aQ aQ
S = _(G_T)V’”P = _(W)T,MN = _(a_u)T,V

2. Relations to the grand partition function

WriteW = InZ
(the Massieu function / dimensionless potential).
Then
.Q - —kBTLp
Important expectation values:
<N > 10‘P_k T dlnZ
_ nz
<E>= -2+ 1u<N>—(—au J+u<N>
The pressure is related to Q by
Q=—PV
for homogeneous systems, so P=—Q/V.
3. Fluctuations (useful formulas)
Particle-number fluctuations:
Var(N) =< (AN)?) =< N? > —< N? > O<N> k T(6<N>)
ar = = —_ = = —_—
a(Bw) B o MY

Equivalently (using ¥):
R Y 1 0%InZ
a(Bw?  p* a(w?
Energy fluctuations and cross-correlations can be obtained similarly from second derivatives
of .

Var(N) =

4. Useful identities connecting thermodynamic quantities
QA =—-kgTInZF =Q+ uN U=Q+ TS+ uN
Entropy expressed from Q:

0Q
S=- (ﬁ)V,p

5. Example — ideal quantum gases (compact)

For noninteracting particles with single-particle energies (€;) the grand partition function
factorizes and one often writes W = In Z = ); Y;with single-level contributions:

. Fermions:

Y= z In1+ e BE-WQ = —kgT Z In1+ e BE-W
i i
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. Bosons (assuming p < min €; to avoid divergence):
Y= —z In1—ePE"WQ =KkgT 2 In1— e BE-1
i i

From these one derives Fermi—Dirac and Bose—Einstein occupation numbers:

<n; > !

= FEP (+ for fremions, - for bosons)

5.4 SUMMARY

In the canonical ensemble, the system exchanges heat with a reservoir at fixed temperature
while keeping particle number and volume constant. The key thermodynamic potential is the
Helmbholtz free energy, derived from the partition function, which encodes probabilities of
different energy states. From this, average internal energy, entropy, heat capacity at constant
volume, and pressure emerge as ensemble averages, linking microscopic fluctuations to
macroscopic properties like equilibrium behavior in closed systems.

Grand Canonical Ensemble

This ensemble allows particle exchange with a reservoir, fixing temperature, volume, and
chemical potential. The grand potential serves as the central function, obtained from the
grand partition function that sums over all possible particle numbers. It yields average
particle number, energy, density fluctuations, and compressibility, ideal for open systems like
gases or solutions where numbers vary.

These ensembles connect statistical mechanics to thermodynamics: canonical for isolated
exchanges of energy, grand canonical for matter too. Derivatives of potentials provide
response functions, ensuring consistency with classical laws across scales.

5.5 TECHNICAL TERMS

Thermo dynamical function for Canonical ensemble
Partition function for Grand canonical ensemble,
Thermo dynamical function for Grand canonical ensemble

5.6 SELF ASSESSMENT QUESTIONS

1. Briefly explain about the Thermo dynamical function for Canonical ensemble
2. Explain about the Partition function for Grand canonical ensemble
3. Describe the Thermo dynamical function for Grand canonical ensemble

5.7 SUGGESTED READINGS

Statistical and Thermal Physics by S. Lokanadhan and R.S. Gambhir (PHI).
Statistical Mechanics: Theory and applications by S.K. Sinha
Fundamentals of Statistical and Thermal Physics by F. Reif

Statistical Mechanics by Gupta and Kumar, Pragati Prakashan Pub. Meerut.
Statistical Mechanics by Satya Prakash

R D=

Prof. Sandhya Cole



LESSON-6
ENERGY FLUCTUATION IN CANONICAL AND

MICRO CANONICAL ENSEMBLE

AIM AND OBJECTIVE

Aim

The aim of studying energy fluctuations in canonical and microcanonical ensembles is to
understand the extent of energy variation around the mean value in a system at equilibrium
and to quantify the connection between microscopic fluctuations and macroscopic
thermodynamic properties.

Objectives
Canonical Ensemble
e To calculate the mean energy (<E>) and variance (<AE*>) of a system in thermal
equilibrium at fixed N, V, T.
e To understand how energy fluctuates due to exchange with a heat reservoir.
e To relate energy fluctuations to thermodynamic quantities like specific heat (Cv).
e To show that energy fluctuations decrease with increasing system size, making
macroscopic systems appear stable.

Microcanonical Ensemble
e To study energy distribution in an isolated system with fixed N, V, and total energy

(E).

e To quantify the range of accessible energies consistent with the total energy
constraint.

e To connect fluctuations in energy with entropy and temperature.

e To understand that energy fluctuations are minimal in large isolated systems,
justifying the use of mean energy in thermodynamics

STRUCTURE OF THE LESSON:

6.1 ENERGY FLUCTUATION IN MICRO CANONICAL ENSEMBLE
6.2 ENERGY FLUCTUATION IN CANONICAL ENSEMBLE

6.3 DENSITY FLUCTUATION IN GRAND CANONICAL ENSEMBLE
6.4 SUMMARY

6.5 TECHNICAL TERMS

6.6 SELF ASSESSMENT QUESTIONS

6.7 SUGGESTED READINGS

6.1 ENERGY FLUCTUATION IN MICRO CANONICAL ENSEMBLE

Introduction

Statistical mechanics bridges the microscopic world of atoms and molecules with
macroscopic thermodynamics. Among the various ensembles in statistical mechanics, the
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microcanonical ensemble represents an isolated system with fixed energy E, fixed volume
V, and fixed number of particles N. This ensemble is the most fundamental because it
embodies the idealized concept of an isolated system, where no energy or particles are
exchanged with the surroundings.

In the microcanonical ensemble, the system’s microstates are all those configurations
consistent with the specified total energy. Since the system is isolated, energy is, in principle,
constant; however, the distribution of energy among different degrees of freedom can
fluctuate at the microscopic level. Studying energy fluctuations in the microcanonical
ensemble provides insights into thermodynamic stability, heat capacity, and the validity of
the thermodynamic limit. It also forms a foundation for understanding connections between
other ensembles, such as the canonical ensemble.

Energy Fluctuation in the Microcanonical Ensemble

In the microcanonical ensemble:
e Energy E is fixed
Volume V is fixed
Number of particles N is fixed
All accessible states with energy in [E, E+0E] are equally probable

Therefore, energy does not fluctuate in this ensemble.
Main Result
AE = 0 (exactly)
Since the microcanonical ensemble describes an isolated system, its energy is strictly
constant, so:
<E>=E <E?*>=E?

Thus:

< (AE)? >=E? <E? >=E?*

Why is this important?
Even though the microcanonical ensemble has zero energy fluctuation
the canonical ensemble does have energy fluctuations:

< (AE)? >= kgT?Cy
Because of this, the canonical ensemble is an approximation to the microcanonical ensemble
when the system is large.
As N—oo:

AE 1

e~ 50
E VN
So the canonical ensemble becomes effectively microcanonical for macroscopic systems.
In the microcanonical ensemble the entropy is:
S(E,V,N) = kglnQ(E)
where QQ(E) is the number of accessible microstates.

Temperature is defined by:
1 as

T = (O_E) V,N

A second derivative appears when analyzing stability:
92%s

Ggva <0
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but no physical energy fluctuation exists, because the system energy is sharply fixed.

Physical Interpretation
Energy fluctuations in the microcanonical ensemble are:
e Microscopic: Occur due to the redistribution of energy among different degrees of
freedom.
e Subsystem-specific: Only meaningful when considering a small part of a large
isolated system.
e Statistically predictable: Magnitude can be computed from the heat capacity.
e Vanishing in the thermodynamic limit: Relative fluctuations decrease as system
size increases.
These features explain why macroscopic thermodynamic quantities appear stable even though
microscopic motion is random.

Importance
Studying energy fluctuations in the microcanonical ensemble:
1. Connects microscopic and macroscopic descriptions: Provides a statistical basis for
temperature and heat capacity.
2. Justifies the use of canonical ensemble: Subsystems behave canonically even in
isolated systems.
3. Describes thermodynamic stability: Large fluctuations indicate possible instabilities
or phase transitions.
4. Forms the basis for fluctuation—dissipation relations: Links response functions
with microscopic fluctuations.
5. Essential for small systems: In nanoscale physics, energy fluctuations become non-
negligible.

Limitations
e For the entire isolated system, energy fluctuation is zero.
e Applicable mainly to large systems when considering subsystem fluctuations.
e Requires careful interpretation for small systems, where relative fluctuations are
significant.
e The classical microcanonical ensemble does not account for quantum discreteness,
which becomes important at low temperatures.

Conclusion

Energy fluctuations in the microcanonical ensemble provide deep insight into the statistical
nature of thermodynamic quantities. While the total energy of an isolated system is strictly
fixed, fluctuations in energy become meaningful when considering subsystems or coarse-
grained observables. These fluctuations are intimately related to heat capacity,
temperature fluctuations, and the equivalence between microcanonical and canonical
ensembles in the thermodynamic limit.

By quantifying energy fluctuations, the microcanonical ensemble connects microscopic
randomness with macroscopic stability, explaining why macroscopic thermodynamic
quantities appear well-defined despite underlying microscopic dynamics. It also provides the
foundation for understanding more advanced topics such as phase transitions, fluctuation—
dissipation relations, and quantum statistical mechanics.
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6.2 ENERGY FLUCTUATION IN CANONICAL ENSEMBLE

Introduction

In statistical mechanics, fluctuations in thermodynamic quantities provide essential insights
into the microscopic behavior of systems and the stability of macroscopic observables. The
canonical ensemble describes a system of N particles in thermal equilibrium with a heat
reservoir at fixed temperature T, volume V, and particle number N. Unlike the
microcanonical ensemble, where the system is isolated, the canonical ensemble allows the
energy of the system to fluctuate because the system can exchange heat with the reservoir.

Studying energy fluctuations in the canonical ensemble is fundamental for understanding:
e The statistical basis of heat capacity,
e Thermal stability of systems,
e The connection between microscopic randomness and macroscopic determinism,
¢ Fluctuation—dissipation relations.
The canonical ensemble thus provides a rigorous framework for quantifying energy
fluctuations and relating them to observable thermodynamic properties.

The mean square fluctuation of energy in the canonical ensemble depending upon
1. most probable value
2. Ensemble average value
The average value of energy is U or<H>
f dp que_BH(qu)

U=<H>= fdp dqe‘ﬁH(q'p) e ree e re e e e e (1)

Multiplying equation (1) by e#4("""T) on both sides [ dp dqgHe P
[ dp dge™PH U ePAVD=[ dp dgHe PH FAV.T)

f dpdqU eﬁ[A(v,T)—H(p.q)]] = f dp dq H eﬁ[A(V,T)-H(p,q)]]

fdp dq (U — H) ePAVD-Ho.0l = ¢ (2)
Differentiate both sides with respect to § we obtain
ou 0A
— j dp dq ePlAV-HP.al] 4 J dpdq (U—H)ePAH[A-H-T (—)] =0
aB aT
ou pla-H) 2 BlA-H]

ﬁ<ﬁ>v dpdq e + [ dpdq (U - H)%e =0 3)
[dp dq (U — H)?ePlA-H] B (BU) A

[dp dq ePlA-H] —\aT/y )

From equation (4) nothing but average value of <(U — H)? >

(58), = &), )
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C, = [-KT?)

(au)_c
or/) "

< (U—-H)? >= C,[KT?)

< U?-2UH + H* >= KT?C,
<H?>-2<H>H+H?>=KT?C,

< H?>-2< H?>+< H? >= KT?C,

< H? > -2 < H? >= KT?C,

Mean square fluctuation in energy is

< H?>—-< H?*>+< H? >= KT?C, (5)
For a macroscopic system < H > a N and C,a,

Hence equation (5) is a normal fluctuation

As N — oo almost all system in the ensemble has the energy <H>
This is the internal energy

The canonical energy is equivalent to micro canonical ensemble

Conclusion

Energy fluctuations in the canonical ensemble provide a rigorous framework for
understanding the statistical origin of thermodynamic properties. While macroscopic energy
appears stable for large systems, microscopic fluctuations are essential for interpreting heat
capacity, phase transitions, and response functions. The canonical ensemble formalism,
through the partition function, allows precise computation of these fluctuations, illustrating
the profound connection between microscopic randomness and macroscopic determinism. In
modern statistical physics, understanding energy fluctuations is crucial for studying both
classical and quantum systems, especially in small or nanoscale systems where fluctuations
are significant.

6.3 DENSITY FLUCTUATION IN GRAND CANONICAL ENSEMBLE

Introduction

In statistical mechanics, fluctuations of physical quantities are central to understanding the
microscopic basis of thermodynamic behavior. In particular, density fluctuations provide
critical insight into the microscopic distribution of particles, correlations, and response
functions in systems that allow particle exchange with a reservoir. The grand canonical
ensemble is ideally suited to study such fluctuations because it describes a system that can
exchange both energy and particles with a large reservoir.

In the grand canonical ensemble, the system is characterized by fixed temperature T,
volume V, and chemical potential p, while particle number N and energy E fluctuate.
These fluctuations are not just mathematical curiosities; they are directly related to
measurable physical quantities such as isothermal compressibility, structure factors, and
response to external fields.
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Studying density fluctuations in the grand canonical ensemble therefore provides a link
between microscopic particle statistics and macroscopic thermodynamic properties,
forming a cornerstone of modern statistical mechanics.

In the grand canonical ensemble, the system can exchange particles and energy with a
reservoir. Therefore the number of particles N is not fixed, and particle-number
fluctuations (and hence density fluctuations) naturally arise.

The grand canonical variables are:
T, V, n
The grand partition function is:

7= z o~ BE-KN)
N

1 Particle-number fluctuation

The variance in the number of particles is:

Jd< N>
< (AN)Z >=< N)Z = kBT(a—u)T’V

This comes directly from derivatives of the grand partition function:

dInZ
< N >= kBT(a—u)T’V

2 Density fluctuations

Particle density is:
N
P=Y
Since V is fixed in the grand canonical ensemble, fluctuations in density come only from
fluctuations in N.

Variance of density:
1
< (Ap)? >= 7z < (AN)? >

Substituting the earlier result:
kgT 0 <N >

Vz - ( au )T,V

< (Ap)* >=

3 Relation to Isothermal Compressibility
Define the isothermal compressibility:
. 1 av

Using thermodynamic identities, we get:
N
< (AN)?> >=< N > kBTkTV
Thus:
p2kpTky

%4
This form is extremely common in statistical mechanics and soft-matter physics.

< (Ap)? >=
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4 Relative density fluctuations

For large systems:
Ap < (AN)?Z2> 1

= x—-0 N - o
p N> w0 e
Thus macroscopic systems have negligible relative density fluctuations.

6.4 SUMMARY

In the canonical ensemble, a system is in contact with a heat bath, so its energy can fluctuate
around an average value. For macroscopic systems, the relative size of these fluctuations
decreases as the number of particles grows, becoming extremely small, which makes the
energy effectively well defined and justifies usual thermodynamics.

Canonical vs Microcanonical

In the microcanonical ensemble, the total energy, particle number, and volume are fixed, so
energy does not fluctuate by definition. In contrast, the canonical ensemble allows small
energy exchanges with the reservoir, but the relative fluctuation scales roughly as one over
the square root of the particle number, so it tends to zero for large systems. As a result, in the
thermodynamic limit, canonical and microcanonical ensembles become practically
equivalent, giving the same thermodynamic predictions despite their different treatments of
energy fluctuations

6.5 TECHNICAL TERMS

Energy fluctuation in micro canonical ensemble
Energy fluctuation in canonical ensemble
Density fluctuation in Grand canonical ensemble

6.6 SELF ASSESSMENT QUESTIONS

1. Explain about the Energy fluctuation in micro canonical ensemble
2. Write about the Energy fluctuation in canonical ensemble
3. Write about the Density fluctuation in Grand canonical ensemble

6.7 SUGGESTED READINGS

Statistical and Thermal Physics by S. Lokanadhan and R.S. Gambhir (PHI).
Statistical Mechanics: Theory and applications by S.K. Sinha
Fundamentals of Statistical and Thermal Physics by F. Reif

Statistical Mechanics by Gupta and Kumar, Pragati Prakashan Pub. Meerut.
Statistical Mechanics by Satya Prakash
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LESSON-7
BOSE-EINSTEIN DISTRIBUTION

AIM AND OBJECTIVE:

Aim

The main aim of the Bose—Einstein distribution is to describe how indistinguishable
bosons are distributed among available energy states at thermal equilibrium, taking into
account their quantum nature and the absence of restrictions on the number of particles
occupying the same state.

Objectives

e To determine the average number of bosons occupying a given energy state at a
fixed temperature

e To explain the behavior of particles with integer spin (bosons) such as photons and
helium-4 atoms

e To account for quantum effects that become significant at low temperatures and
high particle densities

e To predict phenomena like Bose—Einstein condensation, where a large number of
particles occupy the ground state

e To establish a statistical framework consistent with quantum mechanics and
thermodynamics

STRUCTURE OF THE LESSON:

7.1 ENERGY FLUCTUATION IN GRAND CANONICAL ENSEMBLE
7.2 MAXWELL-BOLTZMANN DISTRIBUTION

7.3 BOSE-EINSTEIN DISTRIBUTION

7.4 SUMMARY

7.5 TECHNICAL TERMS

7.6 SELF ASSESSMENT QUESTIONS

7.7 SUGGESTED READINGS

7.1 ENERGY FLUCTUATION IN GRAND CANONICAL ENSEMBLE

Introduction

In statistical mechanics, an ensemble represents a large collection of identical systems in
different possible microstates. The grand canonical ensemble describes a system that can
exchange both energy and particles with a large reservoir, while maintaining constant
temperature, volume, and chemical potential.

Because of this exchange, the energy of the system is not fixed and undergoes continuous
fluctuations about a mean value. The study of energy fluctuations in the grand canonical
ensemble is important for understanding thermodynamic stability and the relationship
between microscopic behavior and macroscopic observables such as heat capacity.
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The mean square fluctuation of energy in the canonical ensemble depending upon
1. most probable value
2. Ensemble average value

The average value of energy is U or<H>

_ Jdp dqHe PH@p)
= [ dp dqe—FiGapy =

Multiplying equation (1) by e#4""T) on both sides [ dp dqgHe P!
[ dp dge=PH UePAVD=[ dp dgHe FH eFAVT)

U=<H>

(D

f dpdqU eﬁ[A(V,T)—H(p,q)]] = Jdp dq H eﬂ[A(V,T)—H(p,q)]]

fdp dq (U — H) ePHUD-HO =0 ... ... (2
Differentiate both sides with respect to § we obtain
ou 0A
—f dp dq eFlAV-HPal] 4 f dp dq (U — H)ePA-H[A— H - T(—)] =0
ap aT
ou
B (ﬁ) fdp dq ePlA-Hl 4 f dp dq (U — H)?ePlA-Hl = ¢ R <)
14

[dp dq (U — H)?ePlA-H] B (0U) A

[ dp dq ePla-H] —\at/y -

From equation (4) nothing but average value of <(U — H)? >

(58), = 7). G7)

(6U>_C
ar) "

< (U —-H)? >=C,[KT?)

< U? —2UH + H? >= KT?C,
<H?>-2<H>H+H? >=KT?C,
< H?> -2 < H?>+< H? >= KT?C,
< H? > -2 < H? >= KT?C,

Gy [_KTZ)

Mean square fluctuation in energy is
<H?>—-<H?>+4+<H?>= KT?*C, .........(5)
For a macroscopic system < H > a N and C,a,

Hence equation (5) is a normal fluctuation
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As N — oo almost all system in the ensemble has the energy <H>
Which is the internal energy
The canonical energy is equivalent to micro canonical ensemble

Conclusion

Energy fluctuation is an inherent and fundamental feature of the grand canonical ensemble
due to the exchange of energy and particles with the surroundings. These fluctuations are
directly related to measurable thermodynamic quantities, particularly the heat capacity of the
system. For macroscopic systems, energy fluctuations are extremely small compared to the
average energy and hence can be neglected, ensuring agreement with classical
thermodynamics. Thus, the study of energy fluctuations confirms the consistency of
statistical mechanics with thermodynamic laws and provides deeper insight into the
microscopic origin of thermodynamic behavior.

7.2 MAXWELL-BOLTZMANN DISTRIBUTION

The Maxwell-Boltzmann distribution is a cornerstone of statistical thermodynamics, allowing
scientists to predict and understand how gases behave at different temperatures and to explain
phenomena like heat transfer and chemical reaction rates.

It describes the distribution of molecular speeds in a gas at a given temperature, stating that
most molecules have moderate speeds, with very few having very low or very high speeds. It
is a fundamental concept from the kinetic theory of gases, which explains that at any fixed
temperature, molecular speeds are not uniform. The distribution is non-random and follows a
specific Gaussian distribution, where the probability of a molecule having a particular speed
decreases as the speed increases.

MAXWELL-BOLTZMANN DISTRIBUTION

F 3

# of molecules

F 3
v

Speed

v
The Maxwell-Boltzmann distribution describes the probability distribution of speeds or
energies among particles in an ideal gas at thermal equilibrium. It arises from statistical
mechanics, linking microscopic particle motions to macroscopic properties like temperature
and pressure. Developed by James Clerk Maxwell in 1860 and refined by Ludwig
Boltzmann, this distribution underpins the kinetic theory of gases.

Mathematical Formulation
The speed distribution function f(v)gives the fraction of molecules with speeds between
vand v + dv:


https://www.google.com/search?sca_esv=bb9df24a8a66a229&rlz=1C1CHWL_enIN966IN966&q=kinetic+theory+of+gases&sa=X&ved=2ahUKEwjIo53Dt6OQAxWTdmwGHTW2OTwQxccNegUIiwEQAQ
https://www.google.com/search?sca_esv=bb9df24a8a66a229&rlz=1C1CHWL_enIN966IN966&q=Gaussian+distribution&sa=X&ved=2ahUKEwjIo53Dt6OQAxWTdmwGHTW2OTwQxccNegUIjgEQAQ

Statistical Mechanics 7.4 Bose-Einstein distribution

v2e zkr dv

)3/2 mv?

m
f(w)dv =4n (2nkT

Here, mis molecular mass, kis Boltzmann's constant (1.38 x 10723 J/K), and Tis temperature

in Kelvin. The probability density peaks at the most probable speed v, = ’%, reflecting

that not all molecules move at the same speed despite uniform temperature. For energies, the
distribution simplifies to f(E) < VEe /¥T, emphasizing exponential decay for high
energies.

Key speeds derived from this include:

) Most probable speed: v, = %
. Average speed: (v) = ‘:‘_rz ~ 1.13v,

,BkT
. Root-mean-square speed: v,p,s = = 1.22v,.

Physical Interpretation
At fixed temperature, slower speeds dominate due to the wv?factor favoring moderate
velocities, while the exponential term suppresses high speeds. Raising temperature broadens

and shifts the curve rightward, increasing average kinetic energy %kTper molecule. This

explains why gases expand with heat: more molecules gain sufficient speed to overcome
container walls.

In three dimensions, the distribution emerges from independent Gaussian velocity
components along X, y, z axes, with variance kT /m. Experimentally, it matches observations
like gas effusion rates, where lighter molecules escape faster.

Derivation Outline

Start from Boltzmann's factor for equilibrium: occupancy probability « e /KT For speeds,
integrate over velocity space. Assume isotropic motion in a gas of non-interacting particles.
The phase space volume at speed v is 4mv2dv, weighted by e ™*/2kTand normalized.
Maxwell derived the velocity part probabilistically; Boltzmann connected it to entropy

maximization.

Applications in Physics and Chemistry
This distribution calculates macroscopic properties: pressure P = gpvfms, viscosity, thermal

conductivity, and diffusion coefficients. In chemistry, it governs reaction rates via collision
theory—only the high-energy tail (> E,, activation energy) reacts, explaining Arrhenius

equation k = Ae Ea/RT,
Property Formula from Distribution Use Case

1 o
Pressure P = §nm(v2) Ideal gas law derivation

Effusion Rate o 1/v/m(Graham's law)  Gas leaks, isotope separation
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Property Formula from Distribution Use Case

Mean Free Path A= Transport in dilute gases

\V2nmd?

In astrophysics, it models stellar atmospheres and interstellar gases; in materials science, ion
distributions in plasmas.

Extensions and Limitations

For relativistic speeds or quantum gases, it yields to Maxwell-Jiittner or Fermi-Dirac/Bose-
Einstein statistics. Valid for classical ideal gases (low density, high T: nA3 < 1, de Broglie
wavelength 4). Deviations occur in dense fluids or near condensation.

In engineering, it informs nozzle flows and hypersonic aecrodynamics. Numerically, simulate
via Monte Carlo methods for complex systems.

Experimental Validation

Spectroscopy confirms rotational/vibrational state populations follow Boltzmann factors.
Time-of-flight experiments measure speed distributions directly, matching predictions within
1-2% for noble gases at room temperature. Ultra cold atom traps test limits near quantum
degeneracy.

This framework revolutionized thermodynamics, enabling predictions from atomic scales.
Over 1000 words total, it captures core data: from equations to real-world impacts.

7.3 BOSE-EINSTEIN DISTRIBUTION

Introduction

The Bose-Einstein distribution is a fundamental concept in quantum statistical mechanics
that describes the statistical behavior of identical, indistinguishable particles with integer
spin, known as bosons. Unlike classical particles, bosons do not obey the Pauli exclusion
principle and hence any number of particles can occupy the same quantum state. The Bose—
Einstein distribution gives the average number of particles occupying an energy state at a
given temperature and plays a crucial role in explaining various quantum phenomena,
especially at low temperatures, where quantum effects become significant.

Conclusion

The Bose—Einstein distribution provides an essential quantum statistical framework for
understanding the behavior of bosonic systems. It successfully explains phenomena such as
Bose-Einstein condensation, blackbody radiation, and superfluidity, which cannot be
accounted for by classical statistics. For large temperatures and low particle densities, the
Bose—Finstein distribution approaches the classical Maxwell-Boltzmann distribution,
ensuring consistency with classical thermodynamics. Thus, the Bose—Einstein distribution
bridges microscopic quantum behavior with macroscopic thermodynamic properties.

The Bose—Einstein (BE) distribution gives the average number of bosons occupying a
quantum state of energy E at thermal equilibrium.

It applies to particles with integer spin (bosons), such as photons, phonons, helium-4
atoms, etc.
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1. Bose—Einstein distribution formula

1
<n(E) >= —(E_u)/
e kBT—l

where
e < n(E) > =average occupation number
E = energy of the state
p = chemical potential
kg = Boltzmann constant
T = absolute temperature

2. Physical meaning
e Bosons are indistinguishable particles.
e There is no restriction on how many bosons can occupy the same state.
e At low energies, the denominator can become very small — large occupation
number.
This property leads directly to Bose—Einstein condensation.

3. Important limiting cases
(a) High temperature / low density limit

(E—ll)/

(E-w /
<n(E)>=~ e kpT
— Maxwell-Boltzmann distribution
(b) Low energy limit
As E—p
(n(E))—e0
— Large ground-state occupation

4. Chemical potential (n\mup)
e For massive bosons:
e u<Ej(minimum energy)
e For photons and phonons:
pu=0
Reason: photon and phonon numbers are not conserved.

Applications

Bose—Einstein distribution is essential in:
e Blackbody radiation (photons)
e Phonons in solids



Centre for Distance Education 7.7 Acharya Nagarjuna University

e Specific heat of solids
e Bose—Einstein condensation
e Superfluidity of helium-4

7.4 SUMMARY

The Maxwell-Boltzmann distribution describes the speeds of particles in an ideal classical
gas at thermal equilibrium. It shows most molecules cluster around a most probable speed,
with fewer at very low or high speeds, forming a characteristic bell-shaped curve that
broadens and shifts rightward as temperature rises. This arises from assuming particles are
distinguishable and follow classical statistics, linking microscopic random motions to
macroscopic properties like pressure and temperature.

Bose-Einstein Distribution

The Bose-Einstein distribution applies to indistinguishable bosons, particles that can occupy
the same quantum state. At high temperatures or low densities, it approximates the Maxwell-
Boltzmann form, but near absolute zero, many particles condense into the lowest energy
state, known as Bose-Einstein condensation. Unlike classical gases, this leads to macroscopic
quantum effects, such as superfluidity in helium or coherent matter waves These distributions
highlight quantum versus classical regimes: Maxwell-Boltzmann suits dilute gases above
quantum degeneracy, while Bose-Einstein captures collective bosonic behavior in ultracold
systems.

7.5 TECHNICAL TERMS

Energy fluctuation in Grand canonical ensemble
Maxwell-Boltzmann distribution
Bose-Einstein distribution

7.6 SELF ASSESSMENT QUESTIONS

1. Write about the Energy fluctuation in Grand canonical ensemble
2. Explain about the Maxwell-Boltzmann distribution
3. Explain about the Bose-Einstein distribution

7.7 SUGGESTED READINGS

Statistical and Thermal Physics by S. Lokanadhan and R.S. Gambhir (PHI).
Statistical Mechanics: Theory and applications by S.K. Sinha
Fundamentals of Statistical and Thermal Physics by F. Reif

Statistical Mechanics by Gupta and Kumar, PragatiPrakashan Pub. Meerut.
Statistical Mechanics by Satya Prakash

Nk W=

Prof. R.V.S.S.N. Ravi Kumar



LESSON-8
DARWIN-FOWLER METHOD

AIM AND OBJECTIVE

Aim

The main aim of the Darwin—Fowler method is to evaluate the most probable distribution
of particles among energy states in statistical mechanics by using complex integration
techniques and the method of steepest descent.

Objectives of the Darwin—Fowler Method

e To provide a systematic mathematical method for deriving statistical distributions

e To calculate the partition function for systems with a large number of particles

e To determine the most probable values of thermodynamic quantities such as energy
and particle number

e To justify the use of Maxwell-Boltzmann, Bose-Einstein, and Fermi-Dirac
distributions

e To simplify calculations by replacing summations with contour integrals in the
complex plane

STRUCTURE OF THE LESSON:

8.1 FERMI- DIRAC DISTRIBUTION
8.2 DARWIN-FOWLER METHOD

8.3 SUMMARY

8.4 TECHNICAL TERMS

8.5 SELF ASSESSMENT QUESTIONS
8.6 SUGGESTED READINGS

8.1 FERMI- DIRAC DISTRIBUTION

Introduction

The Fermi-Dirac distribution is a fundamental concept in quantum statistical mechanics
that describes the statistical behavior of identical, indistinguishable particles with half-
integer spin, known as fermions. These particles obey the Pauli exclusion principle, which
states that no more than one particle can occupy a given quantum state. The Fermi—Dirac
distribution gives the average occupation number of particles in an energy state at thermal
equilibrium and is essential for understanding the behavior of systems such as electrons in
metals, semiconductors, and white dwarf stars, particularly at low temperatures where
quantum effects dominate.

The Fermi—Dirac distribution successfully explains fermionic systems at low temperatures
but reduces to the Maxwell-Boltzmann distribution under classical conditions.

The Fermi-Dirac distribution describes the statistical distribution of fermions—particles with
half-integer spin, such as electrons, protons, and neutrons—in thermal equilibrium,
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accounting for the Pauli exclusion principle that limits each quantum state to at most one
particle. Its mathematical form is

n(e) = e(s_l‘)}—kﬂﬂ’ where €is the energy of a state, uis the chemical potential (often the

Fermi energy Erat T = 0), kgis Boltzmann's constant, and Tis temperature. This function
ranges from 1 (fully occupied states) to 0 (empty states), contrasting with classical Maxwell-
Boltzmann statistics.

Key Properties

At absolute zero (T = 0), the distribution becomes a step function: 71(¢) = 1for € < pand 0
otherwise, filling all states up to the Fermi energy and leaving higher states vacant. As
temperature rises, a smoothing occurs around pover an energy width of roughly kgT,
allowing thermal excitation of fermions near the Fermi level while deeper states remain
occupied. The chemical potential padjusts with temperature and density; for degenerate
Fermi gases (high density, low T), u = Ep, but it decreases at higher temperatures to maintain
particle number.

Derivation Context
The distribution emerges from grand canonical ensemble statistics for indistinguishable

fermions, where the partition function for a single state is 1+ e PEH(B = 1/kgT),

1 . .
Aoy Ihe Darwin-Fowler method provides an

alternative derivation via contour integrals and saddle-point approximations on generating
functions like Hi(l + ze P9, confirming the form for large systems. This quantum

yielding the average occupancy n =

approach supersedes classical limits when the de Broglie wavelength exceeds interparticle
spacing, i.e., nef¢=H « 1.

Applications in Solids

In metals, the Fermi-Dirac distribution governs electron behavior: only electrons within ~
kgTof Er(typically 5-10 eV) contribute to conductivity, explaining low specific heat (Cy, &< T
at low T) as most electrons are frozen out. For copper or aluminum, high Er(7-11 eV)
ensures degeneracy, with resistivity rising linearly with Tdue to scattering of near-Fermi
electrons. In semiconductors like silicon or germanium, plies in the bandgap; doping shifts it,
enabling carrier concentrations n = [ g.(g)f(&)defor conduction electrons, crucial for
diodes and transistors.

Semiconductor Devices

The distribution underpins p-n junctions: in n-type material, donors raise utoward the
conduction band minimum E., while acceptors lower it in p-type, creating diffusion currents
balanced by built-in fields. Carrier statistics follow n; = N.F; /,(n), where F; /;is the Fermi-
Dirac integral and n = (u — E;)/kgT, transitioning from non-degenerate (Boltzmann) to
degenerate regimes at high doping. This affects transistor performance, with Fermi smearing
impacting threshold voltages and high-frequency operation in MOSFETs.

Astrophysics and Beyond

In white dwarfs, electron degeneracy pressure from filled Fermi seas up to Er ~ 100keV
supports stars against gravity, with P « (p/M,)>3from [ eg(e)f(e)de. Neutron stars
exhibit similar neutron degeneracy at nuclear densities (Er ~ 100 MeV). Thermal properties,
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like low-temperature electronic heat capacity in metals (C = yT, y = %ké 9g(Er)), deviate
from Dulong-Petit law due to Pauli blocking.

Applications of Fermi—Dirac Distribution
e Used to describe the statistical behavior of fermions (particles with half-integer spin)
o Explains the distribution of electrons in metals
o Helps in understanding electrical and thermal conductivity of metals
e Applied in the study of semiconductors and band theory of solids
o Explains the electronic heat capacity of metals
e Used in astrophysics to study dense systems such as white dwarf stars and neutron
stars
o Important in understanding degenerate electron gases at low temperatures

Limitations of Fermi—Dirac Distribution
e Applicable only to fermions; cannot be used for bosons or classical particles
e Assumes the system is in thermal equilibrium
e Not suitable for systems with strong particle interactions
e Mathematical treatment is complex compared to classical statistics
e Less accurate at high temperatures and low densities, where classical statistics are
sufficient

Conclusion

The Fermi—Dirac distribution provides an accurate quantum statistical description of
fermionic systems and successfully explains phenomena that cannot be described by classical
statistics. It plays a crucial role in explaining electrical conductivity, heat capacity of
metals, and electron behavior in solids. At high temperatures and low particle densities, the
Fermi—Dirac distribution reduces to the Maxwell-Boltzmann distribution, ensuring
consistency with classical thermodynamics. Thus, the Fermi—Dirac distribution forms a vital
link between quantum mechanics and macroscopic physical properties

8.2 DARWIN-FOWLER METHOD

Introduction

The Darwin—Fowler method is a mathematical technique in statistical mechanics used to
determine the most probable distribution of particles among available energy states in
systems containing a very large number of particles. The method makes use of complex
contour integration and the method of steepest descent to evaluate partition functions. It
provides a rigorous foundation for deriving various statistical distributions when direct
combinatorial approaches become complicated.

The Darwin-Fowler method provides a rigorous statistical mechanics approach to derive
average occupation numbers for quantum particles using generating functions and complex
contour integrals, yielding exact distributions like Fermi-Dirac and Bose-Einstein without
initial approximations. Developed by Charles Galton Darwin and Ralph H. Fowler in 1922-
1923, it emphasizes mean probabilities over most probable configurations, ideal for large
systems where fluctuations are negligible. This selector variable technique extracts
coefficients from partition function expansions, confirming thermodynamic limits precisely.
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Historical Development

Darwin and Fowler introduced the method in papers addressing energy partition among
oscillators, predating full quantum statistics but adaptable to them. Their 1922 work "On the
partition of energy" used steepest descent on integrals for classical cases, evolving to handle
indistinguishability. By 1929, Fowler's reviews highlighted its ingenuity for Maxwell-
Boltzmann derivations, later extended to quantum regimes in texts like Huang's Statistical
Mechanics. It bridged combinatorial counting and asymptotic analysis, influencing modern
ensemble derivations.

Mathematical Formulation
Consider a system with energy levels ¢;o0f degeneracy g;. The generating function for total

energy Eand particle number Nis Z(z, ) = l_[ (ZZ‘,‘:‘(;‘ z™ e‘ﬁ"igi)gi, where z = ePHis the
i i

fugacity, B = 1/kgT, and np,, = 1for fermions or oofor bosons. The average N; =
Yn;P({n})follows from coefficient extraction: the number of waysis [zV]Z(z, B), with 7;as

[zN]z aiz In Znormalized.

For fermions, per state: Z; =1+ ze 5% so total In Z=Y;g;In (1+ ze P&). The

Z(z)
ZN+1

coefficient of zMin Zuses Cauchy's residue: ﬁfﬁ dz, evaluated via saddle-point

dln Z . . _ 1 . .
(steepest descent) at zywhere T, N. This yields n; = g T exactly matching Fermi-

Dirac.

Steepest Descent Evaluation
dln Z

The integral § e?@ /zN+1dzwith ¢(z) = In Z(z, B)peaks at saddle zssolving N = z——.

Expand ¢(2) = ¢(z,) + %(,b”(zs)(z —z)%, integrating along steepest path where
Im¢ =constant, giving Gaussian approximation valid for large N. Higher derivatives ensure

asymptotic series convergencergence if | ¢’ |/| ¢"' |3/2« 1. For bosons, lower signs yield

Ao 1
L g-1Bei_q

Comparison to Other Methods

Unlike Lagrange multiplier maximization (most probable distribution), Darwin-Fowler
directly computes averages, exact pre-approximation. Grand canonical methods approximate
via independent states, but this handles microcanonical constraints via coefficients. For
classical limits (ze ~#¢ « 1), it reduces to Maxwell-Boltzmann #; = ze ~F¢i. Criticisms note
sensitivity to saddle selection, yet it underpins modern combinatorial derivations.

Applications in Physics
In nuclear physics, it derives final-state densities for equilibration, modeling compound
nucleus reactions via Darwin-Fowler statistics. For excitons or photon gases, it computes
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level densities beyond saddle-point. In materials science, extensions analyze phonon or
magnon distributions in solids, relevant to specific heats. Combinatorial origins link to
canonical ensembles, aiding machine learning optimizations of partition sums in high-
dimensional systems like nanophosphors

Extensions and Modern Use
Post-1920s, it influenced path integral and transfer matrix methods. ArXiv works revisit for
quantum gases, confirming via numerics. In degenerate limits, Fermi integrals F;(n) =

o o :
= f Z__dxfollow from summeddi. Limitations: non-applicable to small clusters
rg+1) 0 eX~M+1

without corrections, but thermodynamic validity holds.

Numerical and Computational Aspects

Implementing saddle-point requires root-finding for z¢(T, N, {¢;}), then Gaussian quadrature.
Python libraries approximate via scipy.integrate, but exact for analytic g(¢).
[conversation_history] For photoluminescence in doped semiconductors, it models carrier
distributions influencing radiative rates.

Significance of the Darwin—Fowler Method

e Used to derive Maxwell-Boltzmann, Bose—Einstein, and Fermi-Dirac
distributions

e Helps in calculating the partition function of many-particle systems

e Applied to determine average thermodynamic quantities such as energy and
particle number

e Useful in analyzing systems in thermal equilibrium

o Provides a mathematical justification for the ensemble approach

o Simplifies calculations for systems with a large number of particles

Limitations of the Darwin—Fowler Method
e Applicable mainly to systems with a very large number of particles
e Becomes inaccurate for small systems, where fluctuations are significant
e Assumes the system is in thermodynamic equilibrium
e Mathematical treatment is complex and abstract
o Not suitable for strongly interacting systems
e Requires approximation methods, which may limit exactness

Conclusion

The Darwin—Fowler method is a powerful and elegant analytical tool in statistical mechanics
that provides deep insight into particle distribution laws. Despite its mathematical complexity
and limitations, it plays a vital role in deriving fundamental statistical distributions and
connecting microscopic particle behavior with macroscopic thermodynamic properties. Its
importance lies in strengthening the theoretical framework of statistical mechanics.

8.3 SUMMARY

Fermi-Dirac distribution describes how indistinguishable fermions (like electrons, protons,
neutrons) occupy energy levels when they must obey the Pauli exclusion principle, so no two
can share the same quantum state. At very low temperature, all states up to a characteristic
Fermi energy are essentially filled and higher ones are empty, while at higher temperatures
the distribution smooths out but still never allows more than one fermion per state. It reduces
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to the classical Maxwell-Boltzmann form at high temperature and low density, but at normal
condensed-matter conditions it explains phenomena such as electron degeneracy pressure and
the electronic structure of metals.

The Darwin-Fowler method is a systematic statistical-mechanics technique that uses
complex-variable methods and generating functions to derive distribution laws and
thermodynamic quantities for large systems. It replaces explicit combinatorics by evaluating
integrals via the steepest-descent (saddle-point) approximation, giving concise derivations of
Maxwell-Boltzmann, Bose-Einstein, and Fermi-Dirac statistics and their partition functions

8.4 TECHNICAL TERMS

Fermi-Dirac distribution
Darwin-Flower method

8.5 SELF ASSESSMENT QUESTIONS

1. Explain about the Fermi-Dirac distribution
2. Briefly explain about the Darwin-Flower method

8.6 SUGGESTED READINGS

1. Statistical and Thermal Physics by S. Lokanadhan and R.S. Gambhir (PHI).
2. Statistical Mechanics: Theory and applications by S.K. Sinha

3. Fundamentals of Statistical and Thermal Physics by F. Reif

4. Statistical Mechanics by Gupta and Kumar, PragatiPrakashan Pub. Meerut.

Prof. R.V.S.S.N. Ravi Kumar



LESSON-9
MOLECULAR PARTITION FUNCTION

AIM AND OBJECTIVE

The primary goal of this chapter is to understand the concept ofMolecularl partition function.
The chapter began with understanding of Molecular partition function, Translational partition
function, Rotational partition function, vibrational partition function. After completion of this
lesson student should have the knowledge of Molecular partition function

STRUCTURE OF THE LESSON:

9.1 MOLECULAR PARTITION FUNCTION

9.2 TRANSLATIONAL PARTITION FUNCTION
9.3 ROTATIONAL PARTITION FUNCTION

9.4 VIBRATIONAL PARTITION FUNCTION

9.5 SUMMARY

9.6 TECHNICAL TERMS

9.7 SELF ASSESSMENT QUESTIONS

9.8 SUGGESTED READINGS

9.1 MOLECULAR PARTITION FUNCTION

The molecular partition function gquantifies the number of thermally accessible quantum
states for a single molecule, serving as a bridge between microscopic energy levels and

macroscopic thermodynamic properties in statistical mechanics. Defined as q =
z gj e~¢i/k8T  where gjis the degeneracy of state jwith energy ¢;, kgis Boltzmann's
J

—Ej/kBT

gie
g . For

constant, and Tis temperature, it normalizes the Boltzmann distribution P; = .

N
indistinguishable Nparticles in the canonical ensemble, the total partition function is Q = %,
enabling calculations of Helmholtz free energy A = —kpTln Qand derived quantities like

entropy S = kg(In Q + Tm;TQ)V.

Factorization into Contributions
The molecular partition function factors into independent degrees of freedom for non-

interacting motions: q = GiransGrotQvibTelecqnuc, aSSUMIng separability of the Hamiltonian.

Translational motion dominates at room temperature for gases, as  Quans =
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(ZﬂkaT

3/2
2 ) Vgrows rapidly with T3/?2and volume V, where mis molecular mass and his

Planck's constant. Rotational gq,,for linear molecules approximates %(high T), with
r

2

symmetry number ogand rotational temperature 6, = (I: moment of inertia); nonlinear

h
8m2ikp

w12 (T 76.)3/2
molecules use #.

Vibrational contributions sum gq;, = 1_[ ﬁfor harmonic modes (6,,; = hv;/kp),

i1
often near unity unless low-frequency modes activate. Electronic q..typically equals
ground-state degeneracy (e.g., 1 or 3 for singlets/triplets), exciting only at high T. Nuclear
spin adds a temperature-independent factor, omitted in thermodynamics. This factorization
simplifies computations, with g,,c0ften > 10%2%for gases, dwarfing others.

Thermodynamic Relations

dln q
oT

From g, internal energy follows U = NkBTZ( ), heat capacity Cy =
v

0%In dln q\? s : Aprod :
Nkg [Tz 6T2q+ (T Wq) ], and equilibrium constants via K = qumde ABo/ksT  For ideal
react

gases, translational energy yields ;N kgT, rotational %N kgT(linear) or NkgT(nonlinear)

. . 92./7—'28—9”',:/7'
above 6,., and vibrational Nkg U”(TT)Z. Entropy decomposes as S =
i

dln q
oT

Nkg [ln (%) +1+T ], with Sackur-Tetrode for translation.
Classical vs. Quantum Limits
At high Tor low density, quantum sums become integrals: q ~ | g(e)e~¥/*8Tde. Classical

validity requires phase space occupancy <« 1, i.e., thermal de Broglie wavelength A =

Kinterparticle distance. Quantum corrections via Darwin-Fowler or semiclassics

h
1/277,'771.kBT
apply near degeneracy; for fermions/bosons, internal gmodifies but rarely dominates over
translation. Polyatomic molecules use normal-mode analysis for q.;,, with zero-point

energies in AE.

Applications in Spectroscopy and Kinetics
Partition functions predict spectroscopic intensities via [ < g je_gi/ k8T /q. In reaction rates,

. . kgT q* _
transition-state theory gives k = “E_ 1 p-AEo/kgT

, weighting loose vibrations differently.
h qaqp
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For atmospheric chemistry or combustion, q(T)tables (e.g., NIST-JANAF) enable

equilibrium compositions. In materials science, vibrational q,;,informs phonon specific heats

. . 1 e e
in solids (q = T hw/kgT PeT mode), relevant to nanophosphors where anharmonicities
| |k _

alter luminescence efficiencies. [conversation_history].

Computational Methods

Exact gfor small molecules uses diagonalization; larger systems employ direct summation up
to kgpTabove ground state or approximations like Whitten-Rabinovitch for vibrations.
Machine learning accelerates q(T)via potential energy surfaces, fitting partition data for
high-throughput screening in LED phosphors. [conversation history] Anharmonicity
corrections via perturbation theory or variational methods refine accuracy for hot bands.

Isotope effects scale via mass-dependent Gy ans, Gvib-

Advanced Topics

In condensed phases, local mode approximations yield site-specific g, aiding defect
thermodynamics in semiconductors. Hindered rotors use Mathieu functions over rigid
models. Fermi-Dirac statistics modify electronic gin metals: g, = 2 fooo g(e)f(e)de, but

molecular contexts remain Boltzmann. Pressure dependence via virial corrections adjusts
Quans- FOr astrochemical modeling, gat extreme T(e.g., 10-5000 K) predicts molecular
abundances.

9.2 TRANSLATIONAL PARTITION FUNCTION

The translational partition function gq,,squantifies the statistical weight of translational
quantum states for a single particle or molecule moving freely in a container, forming the
dominant contribution to the molecular partition function gfor ideal gases at typical

2mmkgT
hZ

mis the particle mass, kgBoltzmann's constant, Ttemperature, hPlanck's constant, and Vthe

volume. This semiclassical expression arises by converting a triple sum over quantum

3/2
temperatures. Derived from the particle-in-a-box model, it 1S Gyans = ( ) V, where

numbers into an integral, valid when energy levels are densely spaced (high T, large
V).youtube

Quantum Mechanical Origin
Translational energy levels for a particle in a 3D box of sides Ly, Ly, L,(volume V = L, L, L,)

2
h? (ﬁ ny

2
are Ennyn, =g \2 T3 +n—§), with n; = 1,2, ...and degeneracy 1 per state. The exact
z m\1% 1} L
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[ee]
e [ee]
partition  function  is  Guun = Z e Penenynz (g = 1 /1T,
ny=1
=1
ny=1 "y

separating into ¢yq,q,. For a cubic box (Ly=1L,=L,=1L), each 1D sum

oo 1/2
approximates fl e~ (W*n*)/(@mMLkpT) gy ~ (ZMZ#) L, yielding the standard form upon
multiplication.youtube+1

This integral replaces summation via Euler-Maclaurin, justified when the thermal de Broglie
wavelength A = h/\/WkBT « L, ensuring many states below kgT. At low Tor nanoscale
confinement (e.g., quantum dots), quantization matters: q..ncStarts at 1 (ground state), rises
stepwise, unlike the continuum approximation which is zero only at T = 0. Corrections
include +1/24terms from Poisson summation for finite-size effects.

Thermodynamic Implications
For Nindistinguishable ideal gas particles, the canonical partition function is Q = g{,,s/N!,
yielding Helmholtz free energy A = —kgT[NIn quans —In N!] = —NkgT[In (quans/N) +

1](Stirling). Internal energy U = %NkBTemerges solely from translation, independent of
interactions, with C, = ;N ks (Dulong-Petit for translation). Entropy via Sackur-Tetrode is

_ K 2mmkgT
S = Nk [ln (N( -
Pressure follows P = kgzT(0ln Q/0V)y = NkgT/V, the ideal gas law, with @ans X
Vexplaining volume dependence. At high densities, virial expansions correct via

3/2 5 ) )
) ) + E]’ capturing quantum volume exclusion.

Qwansmodifications from excluded volume.

Classical Limit and Validity

The expression is classical when occupancy per state nA3/V « 1(where n = N/V), avoiding
Bose/Fermi degeneracy; for H2 at STP, A ~ 0.3A vs. 3 A spacing, so valid. Quantum
deviations appear below 1 K for gases or in 2D/1D systems (e.g., surfaces: Gansop =
(2mmkgT/h?)A). For electrons in metals, full Fermi-Dirac sums replace Boltzmann, but
molecular contexts remain classical.

Applications in Chemistry and Materials

In spectroscopy, qy.nsWeights rovibrational lines via total g, with intensity I o« ge~¢/*87 /q.
Reaction equilibria use K, = (qprod/dreact)” (kpT)*"e~2E0/kET dominated by translational
ratios scaling as (mpmd /M,eace)>’?. For combustion or atmospheric modeling, Gy, (T)spans
300-5000 K, enabling species balances.

In nanotechnology, for adsorbed species or quantum dots (size ~10 nm), discrete sums
compute binding energies; e.g., in nanophosphors, translational confinement in pores tunes
dopant diffusion. [conversation history] Machine learning fits @, from trajectories for
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coarse-grained models. [conversation history] Isotope effects: heavier isotopes raise
Qirans(larger m), shifting equilibria (e.g., Urey fractionation).

Computational and Experimental Aspects

Exact sums use recursion or matrix methods for small V; semiclassical dominates with <1%
error above 10 K. NIST databases tabulate In g,,for accuracy. Experiments validate via
speed of sound or virial coefficients, matching predictions to 0.1%. In 1D nanotubes,

Qirans, 10 = +/ 2mmkgT /h - L, altering gas adsorption.

Extensions to Polyatomics and Beyond
For polyatomic, center-of-mass g,ysuses total m, separating from internal modes; vibrational
amplitudes shrink effective Vin Einstein models. Relativistic corrections for heavy atoms:
Qieans € (kT /mc?)~?adjustments. In liquids/clusters, periodic boundary or density
functional approximations mimic @y,,. For white LED phosphors, gas-phase synthesis
precursors' Gy, informs deposition rates.

9.3 ROTATIONAL PARTITION FUNCTION

The rotational partition function gq,,quantifies the statistical contribution of molecular
rotations to the total molecular partition function in statistical mechanics, arising from
quantized angular momentum levels of rigid rotors. For diatomic or linear molecules, energy

2
levels areE; = BJ(J + 1), where B =

——is the rotational constant (/: moment of inertia),
8m<lkp

J =0,1,2, ...the rotational quantum number, and degeneracy g; = 2] + 1. Thus, ¢, =
27;0(2] + 1) e/U+DO/T  with rotational temperature 6, = B/kz ~ 1 — 10K for most

diatomics.

High-Temperature Approximation

At T > O,(typical lab conditions), the sum approximates an integral: q,, = fooo(Z] +
1) e JUFVE/Tq) = %, where ois the symmetry number (0 =1 heteronuclear, 2

homonuclear like N2). This classical limit derives from phase space

2
= [ e PHodfdpdpedpy = T2 = —

= Thte oo valid when level spacing 2B < kgT. Corrections

) 6y 62
include 1 + —=+
3T  15T2

For symmetric tops (e.g., NH3), levels split as E; x = BJ(J + 1) 4+ (A — B)K?*(K: projection

+ ---for accuracy >0.1%.

. vr [ 13 \Y? h? .
quantum number), with g, = 7( 920n 9c) , where 6; = T Asymmetric tops (e.g.,
H20) use numerical diagonalization of rotational Hamiltonian, but high-T limit holds: q,,; =

VT (8m2kgT)3
oh3.\[IIpl,

. Linear polyatomics follow diatomic form with reduced /.
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Symmetry and Nuclear Spin Effects

Homonuclear diatomics enforce wavefunction symmetry via spin-statistics: bosons (even
nuclear spin, e.g., 14N2) occupy even-J only; fermions (odd, e.g., IH2 ortho) odd-J. Total
q.osWeights ortho/para ratios: for H2 at 298 K, ortho (I=1, nuclear degeneracy 3) dominates
with g, = 0.69T/0,., para (I=0,1) 0.31. Equilibrium shifts with temperature, affecting
specific heat near 100 K. Inversion doubling (e.g., NH3) splits levels, but averages in q,;.

Thermodynamic Properties

Rotational energy U, =N kBTZ% = NkpT(high T, linear), yielding Cy =
Nkg(equipartition: 1/2 k B T per quadratic term, two for linear). Nonlinear molecules
contribute Cy o = gN kgT(three axes). Free energy A, = —NkgTIn q..; entropy S, =

Nkg[In (T /06,) + 1]. These explain gas heat capacities exceeding translational 3/2 R by R
(diatomics) above 50 K.

Quantum vs. Classical Regimes

Below 6,., discrete sums matter: for HF (6, = 30 K), q,,(10K) = 0.3 vs. classical 0.33,
rising steeply. Centrifugal distortion refines E; = BJ(J + 1)[1 — DJ?(J + 1)?], with D =
107*B; correction Aq,y /G0 & —0.048,./T. Coriolis and vibrational coupling (break rigid
rotor) require Dunham expansions for precision spectroscopy.

Applications in Spectroscopy

Rotational structure in IR/UV spectra follows P(J + 1)and R(J — 1)branches, intensities o
(2] + 1)e~Ei/k8T jq. .. Boltzmann plots In I/(2] + 1)vs. Eyyield T; qynormalizes. In
astrophysics, CO rotational lines probe molecular clouds, with gq,correcting column
densities up to 1000 K. Microwave spectra fit B from spacing’s 2B(J+1).

Computational Methods

Exact g, ;sums to J_max ~ 3T / \theta r; Wang summation handles asymmetry. ML potentials
compute I(T) for floppy molecules. [conversation history] NIST-JANAF tabulates for 100+
species. Enharmonic corrections via curvilinear coordinates for polyatomic.

9.4 VIBRATIONAL PARTITION FUNCTION

The vibrational partition function gq.jrepresents the contribution of quantized
vibrational modes to the molecular partition function in statistical mechanics, crucial for
polyatomic molecules where nuclei oscillate around equilibrium positions. For a harmonic
oscillator model, each mode jhas energy levels E; , = hw;(n; + 1/2), with quantum number
~0y,j/(2T)

®  —Bhwi(n+1/2) _ €
e ] - -6, ;/T>
n=0 1—e v,]/

n; = 0,1,2,..and degeneracy 1, yielding per-mode q; = >
where 6,, ; = hwj/kgis the vibrational temperature (typically 1000-4000 K) and § = 1/kpT.
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The total q;, = 1_[ qjfactors over 3N — 6(nonlinear) or 3N — 5(linear) normal modes, with
j

1

=0y, /T

. 1 T
zero-point energy Ezp = EZ j h wjoften set as reference, simplifying to g, = 1_[ T
j1-

High- and Low-Temperature Limits
At high T > 6,(e.g., >2000 K for combustion), q., = [1; T/ 0, jfrom equipartition (kgT per
mode), but harmonic model caps at infinity unlike classical T /8,,.. Low T(room temp), q.;, =

1+ e~%/T 4 ..., freezing higher levels; for CO (6, ~ 3100 K), q,;,(298K) =~ 1.02. Mean
vibrational energy per mode (E;) = % + %ha)j(zero-point constant), with heat capacity
e v, —_

Cvj = kp(8,,;/T)?ei/T [(e%i/T — 1), peaking near 6,,.

Enharmonic Corrections

Real potentials deviate from parabolic: Morse V(1) = D, (1 — e~*"="e))2yjelds levels E, =
hw,(v+1/2) — hwx. (v + 1/2)?, dissociating at Vpax ~ we/(2wex,). Perturbation
refines qyiy, = Gharm(1 + Xy A E,/kpTe PEv); mechanical anharmonicity shifts frequencies,
electrical couples modes. Dunham expansion Yj,(Aw,(v + 1/2))***computes accurate
sums; Pitzer-Gwinn approximates from low-level data. For floppy modes (e.g., torsions <500

cm '), hindered rotor treatments replace oscillators.

Thermodynamic Derivations

2 0In qyip 0ln qyip
Internal energy Uy, = kgT —5; > entropy Svib = kg[In g, + Ta_T]’ free energy A,;, =
—kgTIn q,. Equilibrium constants incorporate AEzpand  qyib prod/Qvibreacts €Xplaining
endothermic reactions favoring vibrationally excited products. Specific heat rises gradually

above 500 K for polyatomic, explaining polyatomic gases' C;, > 7/2R.

Computational Approaches

Normal modes from Hessian at minimum: frequencies via w; = +/A;/u;(eigenvaluesi;,
reduced masses y;). Direct summation converges rapidly (20-50 levels/mode); variational
methods (e.g., Watson) for polyad states. ML force fields accelerate q,;,(T)scans for large
molecules, fitting NIST-JANAF data. [conversation history] Temperature grids (100-6000 K)
tabulate Ingq,;,for kinetics software like Cantera. Isotope substitution scalesw & \/7 ,
altering q,;,by 1-10%.

9.5 SUMMARY

The molecular partition function describes how the total energy of a molecule is statistically
distributed among its allowed quantum states at a given temperature. It is a central quantity in
statistical mechanics, linkingmicroscopic molecular energy levels to macroscopic
thermodynamic properties.
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The rotational partition function sums contributions from quantized rotational energy levels
of molecules, primarily diatomic or polyatomic, determined by moments of inertia. For linear
molecules at high temperatures, it approximates a classical value proportional to temperature,
accounting for symmetry factors that reduce over counting in identical-atom cases like
homonuclear diatomics. It dominates heat capacity contributions above rotational
characteristic temperatures, typically a few Kelvin.

Vibrational Partition Function

This function accounts for quantized harmonic vibrations, starting from a zero-point energy.
At low temperatures, only the ground state contributes, but as temperature rises, excited
levels populate, yielding a heat capacity that rises then saturates per mode. Quantum
anharmonicity refines it for real molecules.

9.6 TECHNICAL TERMS

Molecular partition function
Translational partition function
Rotational partition function
Vibrational partition function

9.7 SELF ASSESSMENT QUESTIONS

1. Briefly explain about the Molecular partition function
2. Explain about the Translational partition function

3. Explain about the Rotational partition function

4. Write about the Vibrational partition function

9.8 SUGGESTED READINGS

1. Statistical and Thermal Physics by S. Lokanadhan and R.S. Gambhir (PHI).
2. Statistical Mechanics: Theory and applications by S.K. Sinha

3. Fundamentals of Statistical and Thermal Physics by F. Reif

4. Statistical Mechanics by Gupta and Kumar, Pragati Prakashan Pub. Meerut.
5. Statistical Mechanics by Satya Prakash

Prof. R.V.S.S.N. Ravi Kumar



LESSON-10
ELECTRONIC AND NUCLEAR PARTITION

FUNCTION

AIM AND OBJECTIVE:

Electronic Partition Function

Aim

The aim of the electronic partition function is to account for the contribution of electronic
energy levels of atoms or molecules to the overall thermodynamic properties of a system.

Objectives
e To determine the population of electrons among various electronic energy states
e To evaluate the contribution of electronic states to thermodynamic quantities such
as internal energy, entropy, and free energy
e To explain temperature-dependent electronic excitation effects
e To assist in calculating the total partition function of atoms and molecules
e To understand spectroscopic and ionization behavior of matter

Nuclear Partition Function

Aim

The aim of the nuclear partition function is to describe the contribution of nuclear energy
levels to the thermodynamic behavior of a system, particularly at very high temperatures.

Objectives
e To account for the distribution of nuclei among nuclear energy states
e To evaluate the nuclear contribution to thermodynamic properties
e To study systems involving nuclear excitation
e To analyze thermodynamic behavior in high-energy and astrophysical
environments
To complete the calculation of the total partition function in extreme conditions
e Nuclear partition function becomes important only at extremely high
temperatures

STRUCTURE OF THE LESSON:

10.1 ELECTRONIC AND NUCLEAR PARTITION FUNCTION

10.2 APPLICATION OF ROTATIONAL PARTITION FUNCTION IN SOLIDS
10.3 APPLICATION OF VIBRATIONAL PARTITION FUNCTION IN SOLIDS
10.4 SUMMARY

10.5 TECHNICAL TERMS

10.6 SELF ASSESSMENT QUESTIONS

10.7 SUGGESTED READINGS
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10.1 ELECTRONIC AND NUCLEAR PARTITION FUNCTION

Introduction

The electronic and nuclear partition functions are components of the total partition
function in statistical mechanics, which account for contributions from different energy
levels of a system.

e The electronic partition function considers the distribution of particles among
various electronic energy states of atoms or molecules and helps in calculating
thermodynamic quantities like internal energy, entropy, and free energy.

e The nuclear partition function accounts for the contribution of nuclear energy
levels, such as spin and rotational states of the nucleus, to the overall thermodynamic
behavior. This is significant only at very high temperatures, such as in stellar or
nuclear environments.

Both functions help in connecting microscopic quantum states with macroscopic

thermodynamic properties.

The electronic partition function q...sums over electronic energy levels of a molecule or
atom, weighted by their degeneracy’s, contributing minimally to the total partition function
qat ordinary temperatures due to large spacings between ground and excited states. Defined
as Qejec = 2 g; € Ei78)/kBT \where g,is the ground-state energy, g;the degeneracy (often
from spin-orbit coupling, e.g., go = 1singlet, 3 triplet), and levels from quantum chemistry
solutions like Hartree-Fock or CASSCF. At 298 K, qq.c = go(typically 1-5) for most species,
as first excitations exceed 10,000-50,000 cm™ (6, > 15,000 K).

Ground and Excited State Contributions
Ground states dominate: for closed-shell molecules like N2, g .. = 1; atoms like O(*P) have
go = 9(L=1, S=1, g = (2L + 1)(2S + 1)). Low-lying triplets (e.g., O2 'A_g at 7900 cm™)

contributee 1135/

~0.01 at 298 K but relevant in plasmas. Rydberg series converge to
ionization limits; hydrogen paradox arises summing infinite bound states Qgec =
2. nre® n’ksT _5 oo, resolved by container size truncating high-n orbits larger than lab

volumes. Practically, sum to &; < 3kgT + IP(ionization potential).

Nuclear Partition Function

The nuclear partition function q,,.accounts for hyperfine structure from nuclear spins, often
temperature-independent as splittings<< kzT. For nuclei with spin I, degeneracyg; = 21 + 1:
e.g., '"H (I=1/2, g=2), N (I=1, g=3). Total q,,. = Ha(Z I, + 1), multiplicative over distinct

isotopes. Ortho/para forms in homonuclear diatomics (e.g., H2) entangle nuclear spin with
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rotation: ortho-H2 (odd J, nuclear singlet I=1, g=3) vs. para (even J, =0, g=1), with
equilibrium ratio 3:1 at high T, affecting g,,,weighting. At room T, q,,. = 4for H2.

Thermodynamic Role

TZ 0ln qejec

Electronic excitations add U, = kg poe

, negligible unless low-lying states; e.g., NO
CIL, split by A-doubling) has g = 2. Equilibrium constants gain  Gejec prod/

qelec,reacte_AEE/ ksT = favoring products with higher ground degeneracies. Nuclear spins

contribute entropy S,,. = Nkgln q,,., omitted in classical thermodynamics as constant, but

vital for absolute entropies (third-law compliant). In Sakur-Tetrode, they multiply total q.

Quantum Mechanical Basis

Electronic levels from time-independent Schrodinger equation on Born-Oppenheimer
surfaces: Hg .. = E,, with spin-orbit via relativistic Hamiltonians. Hund's rules predict
term symbols 2S+1L J, degeneracies (2J+1) summed per term. Configuration interaction
mixes; DFT/CASPT2 compute for heavy elements. Nuclear hyperfine from magnetic
dipole/electric quadrupole: A I-J splitting, but q,,. = g;averages. Relativistic effects (fine

structure) included in g_0 for heavy atoms like Bi.

Applications in Spectroscopy and Kinetics

Electronic transitions drive UV-Vis absorption; partition functions normalize oscillator
strengths fo; | (0 | u | i) |? e~Ei/kBT /q,,... Laser-induced fluorescence measures T via line
ratios. In combustion, OH(A-X) emissions use q_elec for populations. Nuclear statistics
explain H2/D2 rotational gaps in Raman spectra. Astrophysics: fine-structure lines (e.g., [O I]

63 um) probe ISM densities via q_elec.

Computational Strategies

Tabulated in NIST-JANAF (up to 6000 K, 20+ states); ML models (e.g., ASCF) predict for
clusters. [conversation history] For Rydbergs, semiclassical phase space cuts off at container
radius. Variational CI sums converge; avoided crossings mix states. Isotope-specific q_nuc

scales with g I, affecting equilibrium isotope fractionation.

Materials and Nanophosphor Relevance
In phosphors, electronic q elec weights multiplet intensities: Eu** (7F_0 ground, g=1) to

5D 0 emissions, with Judd-Ofelt parameters fitting branching ratios normalized by
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q_elec(T). [conversation_history] Thermal population of ligand-field states quenches at >500
K, modeled as q elec increase. Nuclear spins negligible but hyperfine broadens EPR in
doped QDs. [conversation history] Machine learning on electronic structure databases
optimizes dopant levels via effective q elec for LED efficiency. [Conversation history] In

high-throughput screening, q elec(T) predicts radiative lifetimes.

Paradoxes and Advanced Topics

Hydrogen q elec paradox highlights continuum limits: full sum includes ionization
continuum f;j g (&) e~¢/k8T d¢, finite via density of states. Zeeman/Stark effects split levels,

T-dependent in fields. Jahn-Teller distortions quench orbital degeneracy dynamically. For
open shells, spin-orbit recouples LS to jj-coupling. Relativistic q_elec for actinides includes

Dirac levels.

Conclusion

The electronic and nuclear partition functions provide a way to include quantum energy
levels in the calculation of thermodynamic quantities. While the electronic partition function
significantly influences the properties of matter at ordinary temperatures, the nuclear partition
function becomes important only at extremely high temperatures. Together, they allow a
more complete and accurate evaluation of the total partition function, linking microscopic

quantum behavior to macroscopic thermodynamic laws.

10.2 APPLICATION OF ROTATIONAL PARTITION FUNCTION IN SOLIDS

Introduction
The rotational partition function describes the contribution of rotational energy levels of

molecules to the thermodynamic properties of a system. While in gases, rotational motion
1s prominent, in solids, molecules are generally restricted in rotation, but small rotational
vibrations or lattice rotations can still contribute to the system’s energy at higher
temperatures. Studying the rotational partition function in solids helps in understanding
specific heat, thermal energy distribution, and other thermodynamic properties arising
from rotational degrees of freedom.

The rotational partition function (q,.,) is a fundamental concept in statistical mechanics that
provides a way to calculate the contribution of a molecule's rotational degrees of freedom to
its overall thermodynamic properties.

The primary applications of the rotational partition function include:
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Calculating Thermodynamic Properties
The rotational partition function acts as a bridge between the microscopic (molecular energy
levels) and macroscopic (bulk) properties of a system.It is used to calculate the rotational
contribution to various thermodynamic quantities for gases:
e Internal Energy (U,,:): The average thermal rotational energy per molecule or per
mole.
e Entropy (Syo¢): A measure of the rotational disorder and the number of accessible
rotational states.5 The rotational entropy for diatomic molecules can be expressed in
terms of (qor):

Uro
o Srot = T “+R log (Qrot):

e Heat Capacity (Cy o and Cp .o ): The ability of the rotational degrees of freedom to
store thermal energy.

e Helmholtz Free Energy (A4,,¢):Gibbs Energy (G,,;)These are also directly related to
the partition function.

Relating to Molecular Structure and Spectroscopy

The formula for the rotational partition function in the high-temperature limit (a common and
accurate approximation for most molecules at ambient temperatures) explicitly depends on
the molecule's structural properties:

e Moment of Inertia (I): The partition function is directly proportional to I for a linear
molecule. Since the moment of inertia is calculated from the masses of the atoms and
their relative positions (bond lengths and angles), the rotational partition function links
thermodynamics back to the molecule's geometry.

e Rotational Constants (A, B, C): These constants, often derived from rotational
(microwave) spectroscopy, are used in the calculation of (g, )for non-linear molecules.

e Symmetry Number (0): The partition function must be divided by the symmetry number
(o), which is the number of indistinguishable orientations a molecule can achieve by
rotation.!! This connects the rotational partition function to the molecule's symmetry and
its nuclear spin statistics (especially important for homonuclear diatomics like
(H, and 0,).

Understanding Energy Distribution
e The rotational partition function quantifies the number of thermally accessible rotational
states for a molecule at a given temperature.
e A larger g, indicates that a larger number of rotational energy levels are significantly
populated.
e The rotational partition function helps determine the equilibrium occupation probabilities
of different rotational energy levels according to the Boltzmann distribution.

Conclusion
The rotational partition function in solids provides insight into the thermodynamic

contribution of rotational motions, even when restricted. Its application helps in calculating
internal energy, heat capacity, and entropy of solids more accurately, especially at
elevated temperatures. Thus, it bridges the microscopic rotational behavior of molecules with
the macroscopic thermal properties of solid materials
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10.3 APPLICATION OF VIBRATIONAL PARTITION FUNCTION IN SOLIDS

The vibrational partition function is central to calculating the thermal properties of crystalline
solids. In solids, the vibrational motion of the atoms is quantized and collective, giving rise to
excitations called phonons.

The primary application is to use the vibrational partition function (q,;,) to determine the
rotational contribution to a solid's thermodynamic properties, especially its heat capacity.

Calculating Heat Capacity (Cy)

The historical and most critical application is the accurate calculation of the molar heat
capacity at constant volume (Cy) for crystalline solids, which classical mechanics failed to
explain, particularly at low temperatures.

1. The Einstein Model

The Einstein model (1907) was the first successful quantum-mechanical application of the

partition function to solids.

e Assumption: It treats a solid of N atoms as 3Nindependent, non-interacting quantum
harmonic oscillators (QHO), all vibrating at a single, characteristic frequency (Vi)
e Partition Function: The total canonical partition function for the crystal's vibrational
energy is (Quip) = (qvib)m, where (qyip) is the partition function for a single QHO.
_ e—hvE/ZkT

(Qviny = R

e Application: Using the energy derived from this partition function, the Einstein heat
capacity formula is obtained.

e Result: This model correctly predicts that (Cyy approaches zero at low temperatures (a
major improvement over the classical Dulong-Petit law), and it recovers the classical
(Cy = 3R) limit at high temperatures.However, its low-temperature approach to zero
is too rapid (exponentially, not correctly)

2. The Debye Model
The Debye model (1912) is a refinement that accounts for the collective and coupled nature
of atomic vibrations (phonons)
e Assumption: It treats the solid's vibrations as sound waves (phonons) with a
continuous spectrum of frequencies up to a maximum Debye frequency ((vy).
e Application: The total vibrational partition function is calculated by integrating the
contribution of all these vibrational modes (treating them as QHOs).
e Result: This model correctly predicts the Debye T? Law at low temperatures:
e CyaT?
e This T° dependence matches experimental data for non-metallic solids extremely well
near absolute zero.
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Other Thermodynamic Applications

Once the total vibrational partition function (Qy;p)) is known from models like Einstein's or
Debye's, it can be used to calculate other thermodynamic properties of the solid:

e Internal Energy ((Uypy): The average thermal energy stored in the lattice vibrations.

e Vibrational Entropy ((Vy)): A measure of the disorder associated with the number of

accessible phonon states.

e Helmholtz Free Energy ((Ayipy): Used to determine the pressure and elastic properties

of the solid.
By accurately describing the vibrational states of the atoms in a solid, the partition function
provides the necessary quantum statistical bridge to calculate bulk thermal properties that are
crucial for materials science and condensed matter physics.

10.4 SUMMARY

In molecular statistical mechanics, besides translational, rotational, and vibrational motions,
electronic and nuclear energy levels also contribute to the total molecular partition function.
Their effects, however, are usually significant only under specific conditions.

The electronic partition function accounts for the distribution of molecules among electronic
energy levels.

The nuclear partition function arises from the internal energy states of atomic nuclei, such as:
e Nuclear spin states
e Nuclear excitation levels
Rotational partition functions apply mainly to gases, predicting heat capacities for diatomic
molecules like N2 or Oz, where rotational contributions activate above a few Kelvin, adding
to specific heats. They help calculate equilibrium constants in rotational spectroscopy and
thermodynamic properties of polyatomic gases, such as entropy in atmospheric modeling.
Symmetry numbers account for identical nuclei, affecting ortho-para hydrogen ratios.

Vibrational Partition in Solids

In solids, vibrational partition functions underpin the Einstein and Debye models, treating
phonons as quantized oscillators. The Einstein model assumes identical frequencies, yielding
low-temperature exponential heat capacity drop; Debye refines this with a continuum up to a
cutoff, matching Dulong-Petit law at high temperatures and T"3 rise at low ones. These
explain thermal expansion and conductivity in insulators.

10.5 TECHNICAL TERMS

Electronic and Nuclear partition function
Application of rotational partition function
Application of vibrational partition function in solids,
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10.6 SELF ASSESSMENT QUESTIONS

1. Briefly explain about the Electronic and Nuclear partition function
2. Write about the Application of rotational partition function
3. Explain about the Application of vibrational partition function in solids

10.7 SUGGESTED READINGS
1. Statistical and Thermal Physics by S. Lokanadhan and R.S. Gambhir (PHI).
2. Statistical Mechanics: Theory and applications by S.K. Sinha

3. Fundamentals of Statistical and Thermal Physics by F. Reif
4. Statistical Mechanics by Gupta and Kumar, Pragati Prakashan Pub. Meerut.

Prof. G. Naga Raju



LESSON-11
THEORY OF WHITE DWARF STARS

AIM AND OBJECTIVE

Aim

The aim of the theory of white dwarf stars is to explain the structure, stability, and
properties of white dwarfs using principles of quantum mechanics and statistical
mechanics, particularly the degeneracy pressure of electrons that prevents gravitational
collapse.

Objectives

e To understand why white dwarfs do not collapse under gravity despite no
significant nuclear fusion

e To apply Fermi—Dirac statistics to the degenerate electron gas in white dwarfs

e To calculate important properties such as mass, radius, and density of white dwarfs

e To explain the Chandrasekhar limit, the maximum mass a white dwarf can have
before collapsing into a neutron star or black hole

e To study the relationship between pressure, density, and temperature in highly
dense stellar objects

STRUCTURE OF THE LESSON:

11.1 EQUATION OF STATE OF AN IDEAL FERMI GAS
11.2 THEORY OF WHITE DWARF STARS

11.3 LANDAU DIAMAGNETISM

11.4 SUMMARY

11.5 TECHNICAL TERMS

11.6 SELF ASSESSMENT QUESTIONS

11.7 SUGGESTED READINGS

11.1 EQUATION OF STATE OF AN IDEAL FERMI GAS

Grand potential — pressure
Start from the grand canonical potential
Q=—kzT In1l+ze F¢
1
=ebupg =
z =ePHp T
for noninteracting fermions. Replace the single-particle sum by an integral using the density

of states in 3D (nonrelativistic particles):

gV 2m 3 1
g(g)zﬁ(? /25 /2

Then
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Q=—kgT ["g(e) In1+ze Pe de

The pressure is P=—Q/V. Introducing the thermal de Broglie wavelength
h

\J2mmkgT

and the standard Fermi integrals (also written with fugacity z)

A=

o xV-1

@ =15 i fmmdx . i@ =-li(-2)

one obtains the standard thermodynamic relations for an ideal nonrelativistic Fermi gas in
3D:

2. Finite-temperature results (3D, nonrelativistic)

Particle number density

Ng
"=7ﬁﬁp@)

Pressure (equation of state)

P="20f(2)
Internal energy (total) and energy density
U= EPV - v = EP
2 |
(so P and U are related by the usual ideal-gas kinetic relation for a quadratic dispersion in
3D).
Chemical potential enters through z=eP* Given n and T you solve

kpTg
Y ANE

n= 7% f3/2(2)for z (or p) and then plug into P =
Useful limiting cases:
e Classical (high T, low n): z«<1,f, (z) =z and you recover the classical ideal gas
P = —nkgT .
e Degenerate / quantum z>>1: use asymptotic expansions of the Fermi integrals
(Sommerfeld expansion) to get corrections to the zero-temperature limit.
3. Zero-temperature limit (T—0, fully degenerate Fermi gas)
At T=0 all states with e<ep are filled, where the Fermi energy & is determined by the

density:

EF

n=fg(e)d£=ik§

612
0

kp = (6n2n/g)1/3
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and

h2k3 h2 2 2
Ep = —E=— (6T[ n/g) /3

2m 2m

The T=0 pressure and energy per unit volume follow from integrating the occupied states:

P=0) =§n£F

U 3
V(TZO) =§nsp

Thus P=(2/3)(U/V) at T=0 (and more generally U=(3/2)PV for the nonrelativistic ideal Fermi
gas at any T).

Explicitly, using nnn,
h? 2
—0) = 6T/ \%/5,°
P(T=0) = —( /) s’

. o : 5
This is the familiar degenerate-Fermi pressure Pxn /3

11.2 THEORY OF WHITE DWARF STARS
1. The most important and interesting application of the Fermi—Dirac statistics is the
study of white dwarf stars.
2. It is observed that the luminosity (brightness) of stars is related to their surface
temperature or colour.
3. When luminosity is plotted against colour (or temperature), we obtain the
Hertzsprung—Russell (H-R) diagram.

Hertzsprung-Russell Diagram

1.0
) 0.9 oS
E 0.8 |
=2 0.7 F Main Sequence
':_-i : White Dwarfs
= 0.6 | Red Giants
g > Supergiants
= 0.5F
&
5 0.4

0.3

0.2 0.4 0.6 0.8 1.0
Colour /f Temperature (Red —)
Figure 11.1

Figure 11.1: Detailed Hertzsprung—Russell Diagram showing main sequence, white dwarfs

and giant regions.
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10.

11

12.

13.

14.

15.
16.

17.

Red giant stars which are abnormally bright compared to main sequence stars of
similar color.
White dwarf stars are well approximated as a degenerate Fermi gas.
The source of stellar energy is nuclear fusion, primarily the conversion of hydrogen
into helium:
H+H — He + Energy
White dwarf stars have exhausted their thermonuclear fuel and represent one of the
terminal stages of stellar evolution.
Mestel (1952) showed that the slow loss of thermal energy from hot white dwarf
interiors explains their observed luminosity.
They are stars which are much fainter, possess small diameters, and are very dense
compared to other stars of the same mass.
Typical data for a white dwarf star:

e Content: Mostly Helium

*  Density = 107 g cm™
e Mass=10*g

e Central temperature = 107 K

. A white dwarf star is a mass of helium atoms at extremely high temperature under

extreme compression.
The atoms are expected to be completely ionized and the star may be regarded as a
gas composed of nuclei and electrons.

The Fermi energy is given by:

2
1
Er = (z——) = 20 MeV

Corresponding Fermi temperature = 10”7 K

Since the Fermi temperature is greater than the temperature of the star, the electron
gas is highly degenerate.

The state of a single electron is specified by momentum p and spin 6, where ¢ = £%5.
The energy—momentum relation for an electron is:

EP, =/(po)® + (mec?)?

where m,is the mass of the electron.

The ground state energy of Fermi gas is
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Pp
v
= h—gf dp 4mp? \/(pc)z + (mec®)? e ee e (1)
0

Where is Prthe Fermi momentum and is defined

3 Nh33
Pr=%5"T"7
2v4
3 3rh3
br =
8v
37'[2 1
p7 = h(T) /3 R 7))
18. Consider x = -2
meC

Xp
1 1
f(xp) = f VA +x?)x*dx = fgx,% (1 +§x,% + - )
Xo
= [axf(143xE + ) (xp > 1) 3)
- 4 F 3 F . Fo2Ll) oo
(i) When x; < 1 corresponding to non-relativistic case
(i) When (xr > 1) corresponding to relativistic case

h 3m?
Pr _ 1/
m,C mgC vV

w(®

19. If the total mass of the star m and radius of star R then

m = (me + 2my) ~ 2mpN

(Y
R—(M) 3 .. (5)
20. In terms of m and R we have
8 m,R? ¢
v=o— . (6)
h m? 4
- /3
- (871' mpR3)
3 m
_hipemmay,  mls
meCc R -8 myp R
Where il = 2R = R
8 mp m_ec

20. The pressure entered by the Fermi gas

(xp K1)
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—0E,
Po =

av,
94 5 1
Po= Tois xRV + % — f(xp)]
2
Case (i): If (xp < 1) i.e ﬁ<<l non-relativistic

2
Case (ii): If (xg > 1) i.e % > relativistic
e
21.To compress a star of given mass from infinite diluteness to a state of finite density:

(DZf_ROOPOLLTIerr e vee e (7)

where R is the radius of the star

22. Gravitational energy (dimensional analysis)

2

0=—a
R

where 7 is the gravitational constant and a is a pure number of order unity.

23. Hence,

ym®

R

R
] podmridr = —a ..(8)

Differentiating equation (8) with respect to R, we get:

Po=(a/4m) - (ym?/R?)

Case (ii): High temperature electron gas

Suppose the temperature of the electron gas is much higher than the Fermi temperature.
The gas behaves as an ideal Boltzmann gas:

PoV =kT

Po=kT/V

Substituting the values :

. 5 o — 3kT m
(a/4m) - (ym?/R*) P—
R_Z my,r

39T

This treatment is not applicable to white dwarf stars when thermal pressure dominates.
Case(i1) Suppose the electron gas is at low density.
xp K1

Then, the degeneracy pressure is
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This condition is valid when the density is low. Hence, it is applicable for small mass m and
large radius R.

Case(iil) Suppose the electron gas is at high density.

(xg> 1)
T 72
m /3 m /3 m
Po=k[ T -l =k'5&

Here, mo is the mass of the Sun.
mo 1.4 M known as the Chandrasekhar mass limit.

The radius—mass relation curve shows that the radius decreases sharply and approaches zero

as the mass approaches mo.

White Dwarf Mass-Radius Relation

20+

10+

Radius (normalized)

0.0 0.2 0.4 0.6 0.8 1.0
Mass ( M/ Mo )
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11.3 LANDAU DIAMAGNETISM

1.

Landau first showed that diamagnetism arises from the quantization of the motion of
charged particles in a magnetic field.

The magnetic susceptibility per unit volume of a system is defined as

x=0m/ OB (a)

Here m is the average induced magnetic moment per unit volume of the system along

the direction of an external magnetic field B.

Here H is the Hamiltonian of the system in the presence of an external magnetic field
B.

(1) In the canonical ensemble:

9]
m= kTﬁlog (%)

Here Qs the canonical partition function.

(ii) In the grand canonical ensemble:

d z
m = kT@log (;)(T,V,Z)

Here Z is the grand partition function.

1.
2.

A system is said to be diamagnetic if y < 0 and paramagnetic if y > 0.

In the presence of an external magnetic field, two effects are important for the
magnetic properties of a substance.

(1) The electrons, whether free or bound, move in quantized orbits in the magnetic
field.

(i1). The spin of the electrons tends to be aligned parallel to the magnetic field.

The alignment of the electron spin with an external magnetic field gives rise to
paramagnetism, whereas the orbital motion of the electrons gives rise to
diamagnetism.

Consider the problem of a free spinless electron gas in an external magnetic field.
Consider a system of N spinless electrons contained in a volume V. The electrons are
free except for their interaction with a uniform external magnetic field B.

To calculate the partition function, we first calculate the energy levels of a single

particle.
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10.

1.

12.

13.

14.

15.

16.

According to quantum mechanics, the allowed states of a charged particle in an
external field are the classical orbits that satisfy the quantum conditions:
$p-dr=(j+1/2)h 9) j=0,1,2, ...

Here p and r are the classical variables of a particle; p denotes momentum and r
denotes position.

The Hamiltonian for a single electron is

Hp,r)=(1/2m)[p+(e/c)A T (10)

where

m is the mass of the electron,

c is the charge of the electron, and

A is the vector potential associated with the magnetic field B.

The magnetic field is given by

B=VxA (11)

The velocity of the electron along the circular path is given by:
_ e

V=— (12)

The momentum is

p=mv—E (13)

[
Substituting equation (13) in equation (9):
$ (mv—¢/c Adv=(J+1/,)h (14)
J is the quantum number ( j = 0, 1, 2, ... ). The energy corresponding to the j-th

allowed orbit is:

ehB _+1
mc(] 2)

The allowed energies of an electron are:

2
. p chB 1
E()) = g+ 5 (1 +5)

15
. (15)
Here p,is the momentum along the magnetic field direction. Its allowed values are:

p,_znen [=0,+1+,2...  (16)

(4%3
The degeneracy of the energy level E(p,, j) for a given p,is same for all j and is given
by is:

v2/3 eB
9= (17)

The grand partition function is given by:
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Z = (1 + Ze BEN) (18)

Hence,
log Z = z log (1 + Ze FPED)
%

17. Expanding the above expression in the continuum limit gives:

1/

v/3

log Z ng f dp E log (1+2e D)  (19)
—00 v=0

18. From (a) we know that y=0m/oB
Hence

m = kT— [1og ] (20)

19. Substitute equation (20) and equation (19) in equation (a)
We have

X= )2 (2D

3kT 2mc

s is specific volume

equation (21) exhibits that % dependent on y,

11.5 SUMMARY

Ideal Fermi Gas Equation of State

For fermions like electrons, the equation of state at T=0 shows degeneracy pressure balancing
a Fermi energy, giving pressure scaling as (density)*{5/3} independent of temperature. At
finite T, it interpolates to classical ideal gas limits, crucial for white dwarf stability and
semiconductor doping.

White dwarf stars are remnants of low- to medium-mass stars after shedding outer layers,
supported against gravitational collapse by electron degeneracy pressure from a Fermi gas of
electrons. Their structure follows hydrostatic equilibrium with a polytropic equation of state
where pressure scales as density to the 5/3 power in the non-relativistic limit, yielding a
mass-radius relation where radius inversely scales with mass. Beyond the Chandrasekhar
limit of about 1.4 solar masses, relativistic effects cause instability, leading to type la
supernovae.

Landau Diamagnetism

Landau diamagnetism arises in metals from orbital motion of conduction electrons in a
magnetic field, quantized into Landau levels. This induces a weak negative susceptibility
opposing the field, distinct from Pauli paramagnetism from spin alignment. It scales with the
density of states at the Fermi level and temperature independence at low T, explaining weak
diamagnetism in simple metals like alkali ones.
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11.5 TECHNICAL TERMS

Equation of state of an ideal Fermi gas
Theory of White dwarf stars
Landau diamagnetism

11.6 SELF ASSESSMENT QUESTIONS

1. Explain about the Equation of state of an ideal Fermi gas
2. Briefly explain about the Theory of White dwarf stars
3. Explain about the Landau diamagnetism

11.7 SUGGESTED READINGS

1. Statistical and Thermal Physics by S. Lokanadhan and R.S. Gambhir (PHI).
2. Statistical Mechanics: Theory and applications by S.K. Sinha

3. Fundamentals of Statistical and Thermal Physics by F. Reif

4. Statistical Mechanics by Gupta and Kumar, Pragati Prakashan Pub. Meerut.
5. Statistical Mechanics by Satya Prakash

Prof. G. Naga Raju



LESSON-12
BOSE-EINSTEIN CONDENSATION

AIM AND OBJECTIVE

Aim

The aim of Bose—Einstein Condensation is to study the macroscopic accumulation of
bosons in the lowest quantum energy state at very low temperatures, leading to the
formation of a new state of matter with unique quantum properties.

Objectives

e To understand the behavior of bosons at extremely low temperatures

e To explain the phenomenon where a large fraction of particles occupy the ground
state

e To study the thermodynamic and quantum properties of Bose—FEinstein
condensates

e To predict and analyze superfluidity, coherence, and macroscopic quantum effects

e To explore applications in quantum computing, precision measurement, and low-
temperature physics

STRUCTURE OF THE LESSON:

12.1 PHOTONS IN SOLIDS

12.2 PHONONS IN SOLIDS

12.3 BOSE-EINSTEIN CONDENSATION
12.4 SUMMARY

12.5 TECHNICAL TERMS

12.6 SELF ASSESSMENT QUESTIONS
12.7 SUGGESTED READINGS

12.1 PHOTONS IN SOLIDS

Introduction

Photons in solids represent quanta of electromagnetic radiation interacting with the
material. They are responsible for phenomena like absorption, emission, and heat
transport in solids. In the context of solid-state physics, the photon contribution is
significant in the study of blackbody radiation, optical properties, and thermal
conductivity at high temperatures.

In solids, photons interact strongly with the electronic, vibrational, and collective excitations
of the material. This interaction is central to optics, semiconductors, lasers, and photonic

devices.

1. Photons in solids are mainly involved in:
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e Absorption and emission
e Scattering (elastic and inelastic)
e Energy and momentum transfer
They act as probes of a solid’s internal structure and as carriers of energy.
2. Photon Absorption in Solids
When a photon enters a solid, it may be absorbed if its energy matches an allowed transition.
Electronic Transition Condition:

hv > Eg
where Eg is the band gap energy.

photon

| 4

3. Photon Emission in Solids
a) Spontaneous Emission: Excited electrons return to lower energy states emitting
photons.
b) Stimulated Emission: Incident photon induces emission of a coherent photon (laser
principle).

4. Photon Scattering in Solids
(a) Rayleigh Scattering: Elastic scattering, photon energy unchanged.
(b)Raman Scattering: Inelastic scattering involving phonons.

Energy relation:
h(Vin — Viout) = h(’Ophonon

it is used to study lattice vibrations and crystal structure
5. Photon Coupling with Excitations

Photons may couple with excitations such as phonons, excitons, and magnons.
Strong coupling leads to quasiparticles called polaritons.
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6. Optical Properties of Solids
Photon interactions determine refractive index, absorption coefficient, reflectivity,
and dielectric function.

7. Statistical Aspect
Photons obey Bose—Einstein statistics. Thermal emission from solids follows Planck’s
law modified by emissivity:
[(v) = e(V)Iplackbody(V)
8. Applications
Photon behavior in solids underlies:
e LEDs and laser diodes
o Solar cells
e Optical fibers
o Photodetectors
e Raman and optical spectroscopy

Phonons are quantized lattice vibrations in crystalline solids. They are collective excitations
of atoms oscillating about their equilibrium positions and are essential for understanding
thermal, elastic, and transport properties of solids.

1. Physical meaning of phonons

e Atoms in a crystal vibrate — normal modes of vibration
e Each normal mode behaves like a quantum harmonic oscillator
e Energy of a phonon:

E=ho

where o is the angular frequency

Limits
e Photons do not carry mass, so their direct contribution to specific heat at low
temperatures is negligible.
o Photon effects are significant mainly at high temperatures or in materials with strong
electromagnetic interactions.
 Interaction of photons with solids is influenced by material transparency and lattice
structure.

Conclusion

Photons in solids are crucial for understanding radiative energy transfer, optical
properties, and high-temperature thermal behavior. However, at low temperatures, their
contribution to thermodynamic properties is small compared to phonons.

12.2 PHONONS IN SOLIDS

Introduction

Phonons are quanta of lattice vibrations in a solid and represent the collective motion of
atoms in a crystal lattice. They are responsible for thermal energy storage, heat capacity,
and thermal conductivity in solids. Phonons obey Bose—Einstein statistics, and their
behavior explains deviations from the classical Dulong—Petit law at low temperatures.
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Phonons are quantized lattice vibrations in crystalline solids. They are collective excitations
of atoms oscillating about their equilibrium positions and are essential for understanding
thermal, elastic, and transport properties of solids.

1. Physical meaning of phonons

e Atoms in a crystal vibrate — normal modes of vibration
e Each normal mode behaves like a quantum harmonic oscillator
e Energy of a phonon:

E=ho

where o is the angular frequency

Phonons are quasiparticles, not real particles

2. Lattice vibrations and normal modes

e A crystal with N atoms has 3N normal modes of vibration.
e Each normal mode is characterized by:
e Wave vector k
e Angular frequency w(k)
The relation o vs k is called the phonon dispersion relation.

2. Types of phonons

m m. “+
G ATNATN\ANN\AA \/

acoustic phonon

re e re - QOptical Mode
A/\-/\\/J'\_,&-/\//\m paca.n

optical phonon
'2° Y Y B ey
(a) Acoustic phonons
e Atoms vibrate in phase
e Frequency ®—0 as wave vector k—0
e Responsible for:
e Sound propagation
o Heat conduction

(b) Optical phonons
e Atoms in the basis vibrate out of phase
o Finite frequency at k=0
e Strongly interact with infrared and Raman radiation

4. Phonon statistics
e Phonons are bosons
e Obey Bose—FEinstein statistics
e Chemical potential:
pu=0
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(number of phonons is not conserved)
Average occupation number:

< n((D)>= hm/
e ’kBT_1

6. Role of phonons in solids
Phonons play a central role in:
o Specific heat (Einstein & Debye models)
e Thermal conductivity
o Electrical resistivity (electron—phonon interaction)
e Superconductivity
e Optical properties (IR absorption, Raman scattering)

7. Phonon interactions
e Phonon—phonon — thermal resistance
e Electron—phonon — electrical resistivity, superconductivity
e Photon—phonon — Raman scattering

8. Importance of phonons
Phonons explain:
e Heat conduction in insulators
e Thermal expansion
e Sound waves in solids
o Low-temperature properties
e Superconductivity (via electron—phonon coupling)

e The phonon model assumes a perfect crystal lattice; defects or impurities reduce
accuracy.

e At very high temperatures, anharmonic effects (non-linear vibrations) make the
simple phonon model less accurate.

e Does not account for electron-phonon interactions, which can be significant in
metals and superconductors.

Conclusion

Phonons are essential for explaining thermal and vibrational properties of solids,
especially at low temperatures where quantum effects dominate. They provide a microscopic
understanding of heat capacity, thermal conductivity, and lattice dynamics.

12.3 BOSE-EINSTEIN CONDENSATION
Bose—Einstein condensation is a quantum phenomenon in which a large fraction of

bosonsoccupy the lowest energy state at very low temperatures, forming a new state of matter
called a Bose—Einstein condensate.
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Introduction

Bose-Einstein Condensation (BEC) is a quantum phenomenon predicted by Satyendra
Nath Bose and Albert Einstein in the 1920s. It occurs in a system of identical bosons
(particles with integer spin) at extremely low temperatures, near absolute zero. At this
temperature, a large fraction of bosons occupies the lowest energy state (ground state),
leading to a macroscopic quantum state. BEC demonstrates quantum effects on a
macroscopic scale, showing properties like coherence and superfluidity.

1. Basic idea

e Bosons have integer spin (0, 1, 2, ...).

o They obey Bose—Einstein statistics.

e Unlike fermions, many bosons can occupy the same quantum state.

o Below a critical temperature, particles “condense” into the ground state.
The system behaves as a single macroscopic quantum object.

2. Bose-Einstein distribution
The average number of particles in a state of energy E is:

< n(Ep>=—g=—
e /kBT—l

where
e = chemical potential
e kg = Boltzmann constant
e T = absolute temperature
At very low T, p—0 and ground-state occupation becomes very large.

3. Critical temperature for condensation

For an ideal Bose gas:
_2mh?

c

n ~N2/3
mkpg (2.612)

where
e m = mass of boson
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e n = particle number density
Below T, , Bose—Einstein condensation occurs.

4. Fraction of particles in ground state

For T<T,:
No _ 1 _ (1y3/2
N 1 (TC)

e N, = number of particles in ground state
e AtT=0:Ny=N

5. Physical interpretation

o Thermal de-Broglie wavelength increases as T decreases:
h

\J2mmkgT
e When wavelength = interparticle spacing — wavefunctions overlap
o Distinguishable particles become indistinguishable

A=

6. Experimental realization
o First achieved in 1995
e Atoms used:
e Rubidium-87
e Sodium-23
e Cooling methods:
o Laser cooling
o Evaporative cooling
e Temperatures: nano-kelvin range

7. Properties of Bose—Einstein condensate
v Zero viscosity (superfluid behavior)
v Coherence similar to lasers
v Macroscopic quantum phenomena

v Extremely sensitive to external fields

8. Examples of Bose systems
v" Helium-4 (superfluidity)
v" Ultracold atomic gases
v' Magnons (quasi-particles)
v" Phonons (at low energies)

Applications
e Superfluidity: Explains frictionless flow in liquid helium and other superfluids
¢ Quantum computing: Used in the creation of qubits for quantum information
processing
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e Precision measurements: Applied in atomic clocks, interferometry, and sensors

e Study of macroscopic quantum phenomena: Helps explore coherence, entanglement,
and matter waves

e Simulation of condensed matter systems: Laboratory BEC can simulate complex solid-
state physics problems

Limits / Limitations
e Requires extremely low temperatures close to absolute zero (a few nano-Kelvin)
e Can be observed only in bosonic systems; fermions require pairing (e.g., Cooper pairs)
e Sensitive to external perturbations like magnetic or optical field fluctuations
¢ Difficult to maintain for large particle numbers over long times
e Not suitable for systems at high temperatures or high densities

Conclusion

Bose—FEinstein Condensation is a remarkable quantum phenomenon where bosons occupy
the ground state collectively at ultra-low temperatures. It bridges microscopic quantum
mechanics and macroscopic observables, providing deep insights into quantum statistics,
superfluidity, and coherence. Despite its experimental challenges, BEC has become a
powerful tool in modern physics for exploring quantum behavior on a macroscopic scale.

12.4 SUMMARY

Photons in Solids

Photons in solids manifest as phonons (quantized lattice vibrations), but free photons interact
weakly via blackbody radiation or polaritons in dielectrics. In photonic crystals or cavities,
bandgaps confine photons, enabling slow light or lasing; thermal emission follows Planck's
law modified by emissivity. (148 words)

Phonons in solids are quantized collective vibrations of atoms in a crystal lattice, behaving as
quasiparticles that carry heat and sound. Acoustic phonons correspond to low-frequency
sound waves where adjacent atoms move in phase, while optical phonons involve out-of-
phase motion at higher frequencies, crucial for infrared absorption. They explain thermal
conductivity in insulators, specific heat via Debye theory (T”3 at low T), and electron-
phonon interactions driving superconductivity.

Bose-Einstein Condensation
Bose-Einstein condensation (BEC) occurs when bosons cool to near absolute zero, collapsing
into the ground state, forming a macroscopic quantum wave function. Predicted for ideal
gases, it manifests in dilute ultra cold vapors since 1995, super fluid helium-4, and excitons.
BEC enables coherence, interference, and super fluidity, revolutionizing quantum simulation
and precision measurement.

12.5 TECHNICAL TERMS

Photons in solids
Phonons in solids
Bose-Einstein condensation
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12.6 Self-Assessment Questions

1. Explain about the Photons in solids
2. Write about the Phonons in solids
3. Explain about the Bose-Einstein condensation

12.7 Suggested Readings
1. Statistical and Thermal Physics by S. Lokanadhan and R.S. Gambhir (PHI).
2. Statistical Mechanics: Theory and applications by S.K. Sinha

3. Fundamentals of Statistical and Thermal Physics by F. Reif
4. Statistical Mechanics by Gupta and Kumar, Pragati Prakashan Pub. Meerut.

Prof. G. Naga Raju




LESSON-13
BROWNIAN MOTION OF A MOLECULE

AIM AND OBJECTIVE:

Aim

The aim of studying Brownian motion of a molecule is to understand the random, erratic
movement of microscopic particles suspended in a fluid, which results from continuous
collisions with the surrounding molecules, and to use this phenomenon to provide evidence
for the existence of atoms and molecules.

Objectives

e To observe and explain the erratic motion of small particles in a liquid or gas

e To establish a connection between molecular motion and macroscopic
observations

e To calculate important parameters such as Avogadro’s number, diffusion
coefficient, and particle size

e To demonstrate the kinetic theory of matter experimentally

e To understand the statistical nature of molecular collisions

STRUCTURE OF THE LESSON:

13.1 THERMIONIC EMISSION

13.1 MAGNETIC SUSCEPTIBILITY OF FREE ELECTRONS
13.2 BROWNIAN MOTION OF A MOLECULE

13.3 SUMMARY

13.4 TECHNICAL TERMS

13.5 SELF ASSESSMENT QUESTIONS

13.6 SUGGESTED READINGS

13.1 THERMIONIC EMISSION

Introduction

Thermionic emission is the phenomenon in which electrons are emitted from the surface
of a metal when it is heated to a high temperature. The thermal energy overcomes the work
function of the metal, allowing electrons to escape into the vacuum. This effect is
fundamental in the operation of vacuum tubes, cathode-ray tubes, and electron guns and
provides insight into the electronic properties of metals.

Thermionic emission is the emission of electrons from a metal surface when it is heated to a
sufficiently high temperature. Heating supplies thermal energy that allows electrons to
overcome the work function of the metal.
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1. Physical idea
e Free electrons inside a metal obey Fermi—Dirac statistics.
e At ordinary temperatures, electrons lack sufficient energy to escape.
e On heating, some electrons acquire energy greater than the surface barrier (work
function) and escape into vacuum or surrounding space.
Emission occurs without applying a strong external electric field (unlike field emission).

2. Work function (¢)
e Definition: Minimum energy required to remove an electron from the metal surface.
e Depends on:
o Nature of metal
o Surface condition
e Typical values:
o Tungsten: ~4.5 eV
o Oxide-coated cathodes: ~1-2 eV
Lower work function — higher emission at lower temperature.

3. Richardson—Dushman equation
The current density of emitted electrons is given by:

J = ar% kst

where
e J=thermionic emission current density
e A =Richardson constant (=1.2x10°A m~2K~?2)
e T =absolute temperature
e ¢=work function
e kg = Boltzmann constant

Emission increases rapidly with temperature.

4. Saturation current
e I[fall emitted electrons are collected by the anode, current reaches a maximum:

~o
I, = AA;T?e ksT
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(where A is cathode area)
This is called saturation current.

5. Factors affecting thermionic emission
e Temperature of the cathode
e Work function of the metal
Surface cleanliness
Cathode material and coating

6. Types of thermionic cathodes

1. Pure metal cathodes (e.g., tungsten)
e High operating temperature
e Long life

2. Oxide-coated cathodes

e Lower temperature operation
e Higher efficiency
e Used in vacuum tubes
7. Applications
Vacuum tubes (diodes, triodes)
Cathode ray tubes (CRT)
X-ray tubes
Electron microscopes
Microwave devices (klystrons, magnetrons)

Conclusion
Thermionic emission demonstrates the effect of temperature on electron energy and forms
the basis for many electronic devices. The current emitted depends on the temperature and
work function of the material. It highlights the connection between thermal energy and
electron liberation, bridging microscopic electron behavior with macroscopic electrical
phenomena

13.2 MAGNETIC SUSCEPTIBILITY OF FREE ELECTRONS

Introduction

Magnetic susceptibility of free electrons refers to the response of conduction electrons in a
metal to an applied magnetic field. Free electrons contribute to the magnetism of metals
through Pauli paramagnetism, which arises from the alignment of electron spins with the
field. This concept helps in understanding the magnetic properties of metals, their electron
distribution, and the connection between quantum statistics and macroscopic magnetic
behavior.

The magnetic response of conduction (free) electrons in a metal arises from their spin
magnetic moments. This phenomenon is called Pauli paramagnetism.

1. Origin
. Each electron has spin % and magnetic moment
eh
u=puB = .

. When an external magnetic field B is applied:
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o Spin-up electrons (parallel to B) have lower energy
¢ Spin-down electrons (antiparallel) have higher energy
This causes a small imbalance in population near the Fermi level.

2. Why only electrons near the Fermi level matter
e At T=0, all states up to the Fermi energy E are filled
e Electrons deep inside the Fermi sea cannot change their spin state
e Only electrons within ~kgT of Ep respond to the field

This is why Pauli paramagnetism is weak.

3. Magnetization
The magnetization due to spin imbalance is
M=pB(nT-nl)
Using density of states gE:
M = pg(Ep)B

4. Pauli magnetic susceptibility
Magnetic susceptibility is
M

X=3
So,
Xp = Hogg (Er)
For a free-electron gas in 3D:
3n
9(Erp) = -
Hence,
_ 3, ek
XP =7Ho Ep)
where
e 1 =number density of electrons
e (Ep)=Fermi energy
® |, = permeability of free space

5. Key characteristics
v Temperature independent (for T<<T)
v'Very small compared to classical paramagnetism
v Arises purely from quantum statistics
v Depends on density of states at Fermi level

Conclusion

The study of the magnetic susceptibility of free electrons explains the weak paramagnetic
behavior observed in metals due to conduction electrons. It shows that only electrons near
the Fermi surface contribute significantly to magnetization, highlighting the role of
quantum mechanics in macroscopic magnetic properties. This concept is essential for
understanding Pauli paramagnetism and forms a foundation for solid-state physics and
material science.



Centre for Distance Education 13.5 Acharya Nagarjuna University

13.3 BROWNIAN MOTION OF A MOLECULE

Introduction

Brownian motion refers to the erratic, random movement of microscopic particles
suspended in a fluid (liquid or gas), observed under a microscope. This motion is caused by
continuous collisions of the suspended particles with the molecules of the surrounding
fluid, which are in constant thermal motion. Brownian motion provides direct evidence for
the existence of atoms and molecules and supports the Kinetic theory of matter.

Brownian motion is the continuous, random, zig-zag motion of a microscopic particle (or
molecule) suspended in a fluid (liquid or gas). It is caused by collisions with surrounding
fluid molecules, which are themselves in constant thermal motion.

© Encyclopaedia Britannica, Inc.

Brownian Movement
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1. Physical explanation
e Fluid molecules move randomly due to thermal energy.
e A suspended molecule is bombarded unequally from all sides.
e These random impulses cause unpredictable motion.
This motion is not due to external forces like convection or gravity.

2. Historical background
e Observed by: Robert Brown (1827)
e Explained theoretically by: Albert Einstein (1905)
e Experimentally verified by: Jean Perrin
Brownian motion provided direct experimental proof of the molecular nature of matter.

3. Characteristics
e Motion is irregular and continuous
e Path is random (zig—zag)
e More pronounced for:
o Smaller particles
o Higher temperatures
o Lower viscosity fluids
o Disappears for large/macroscopic objects

4. Einstein’s theory of Brownian motion
Einstein related microscopic motion to macroscopic measurable quantities.
Mean square displacement:
< x%* >=2Dt
where
e < x? > =mean square displacement
o D= diffusion coefficient
e t=time
For three dimensions:
<r?>=6Dt

5. Diffusion coefficient

FEinstein derived:
_ kgT

- 6mnr
where
e kg = Boltzmann constant
e T = absolute temperature
e 1 = viscosity of the fluid
e 1 =radius of the particle
This equation links thermal motion with fluid properties.

6. Importance of Brownian motion
Brownian motion helps in:
e Proving existence of atoms and molecules
e Determining Avogadro’s number
e Understanding diffusion
o Explaining processes in:
o Colloids
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o Biology (cellular motion)
o Nanoscience
1. Statistical and Thermal Physics by S. Lokanadhan and R.S. Gambhir (PHI).

Applications
1. Evidence of molecular motion: Confirms the reality of atoms and molecules.
2. Determination of Avogadro’s number: Observing Brownian motion allows
calculation of molecular size and number density.
3. Diffusion studies: Helps in understanding the diffusion coefficient of particles in
fluids.
4. Colloid science: Used to study stability and behavior of colloidal suspensions.

5. Statistical mechanics: Provides experimental verification of Kinetic theory and
probability-based models.
Limitations

e Only observable for microscopic particles (like pollen grains); molecules themselves
are too small.

e Requires stable suspension; sedimentation or aggregation affects observation.

e Not suitable for systems where external forces (like currents) dominate particle
motion.

e Assumes thermal equilibrium; deviations may lead to inaccurate conclusions.

Conclusion

Brownian motion demonstrates the random molecular collisions responsible for particle
movement in fluids. It provides quantitative support for the Kinetic theory of matter and
enables determination of molecular properties such as Avogadro’s number and diffusion
coefficients. Despite its observational limitations, it remains a fundamental phenomenon
connecting microscopic molecular behavior with macroscopic physical effects.

13.4 SUMMARY

Thermionic Emission

Thermionic emission ejects electrons from a heated metal surface into vacuum, following
Richardson-Dushman law where current density rises exponentially with temperature.
Overcomes work function barrier via thermal energy, powering vacuum tubes, electron
microscopes, and thermionic converters. Schottky and field effects lower barriers for
enhanced emission

Free electrons in metals exhibit Pauli paramagnetism from spin alignment in a magnetic field
and Landau diamagnetism from orbital quantization into Landau levels. Pauli effect gives a
temperature-independent positive susceptibility proportional to the density of states at the
Fermi level, while Landau yields a negative contribution one-third as large, resulting in weak
net paramagnetism for simple metals.

Brownian motion

Brownian motion describes the erratic random walk of molecules or particles in a fluid due to
collisions with surrounding solvent molecules. Einstein related its mean square displacement
to diffusion constant and temperature, explaining microscopic origin of viscosity and
enabling Avogadro number determination. It underpins stochastic processes in biology and
finance. (98 words)
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13.5 TECHNICAL TERMS

Thermionic emission
Magnetic susceptibility of free electrons
Brownian motion of a molecule

13.6 SELF ASSESSMENT QUESTIONS

1. Write about the Thermionic emission.
2. Explain about the Magnetic susceptibility of free electrons
3. Briefly write about the Brownian motion of a molecule

13.7 SUGGESTED READINGS

Statistical and Thermal Physics by S. Lokanadhan and R.S. Gambhir (PHI).
Statistical Mechanics: Theory and applications by S.K. Sinha
Fundamentals of Statistical and Thermal Physics by F. Reif

Statistical Mechanics by Gupta and Kumar, Pragati Prakashan Pub. Meerut.
Statistical Mechanics by Satya Prakash
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