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FOREWORD

Since its establishment in 1976, Acharya Nagarjuna University has been forging
ahead in the path of progress and dynamism, offering a variety of courses and research
contributions. I am extremely happy that by gaining ‘A*’ grade from the NAAC in the
year 2024, Acharya Nagarjuna University is offering educational opportunities at the UG,
PG levels apart from research degrees to students from over 221 affiliated colleges spread

over the two districts of Guntur and Prakasam.

The University has also started the Centre for Distance Education in 2003-04 with
the aim of taking higher education to the doorstep of all the sectors of the society. The
centre will be a great help to those who cannot join in colleges, those who cannot afford
the exorbitant fees as regular students, and even to housewives desirous of pursuing
higher studies. Acharya Nagarjuna University has started offering B.Sc., B.A., B.B.A.,
and B.Com courses at the Degree level and M.A., M.Com., M.Sc., M.B.A., and L.L.M.,
courses at the PG level from the academic year 2003-2004 onwards.

To facilitate easier understanding by students studying through the distance mode,
these self-instruction materials have been prepared by eminent and experienced teachers.
The lessons have been drafted with great care and expertise in the stipulated time by these
teachers. Constructive ideas and scholarly suggestions are welcome from students and
teachers involved respectively. Such ideas will be incorporated for the greater efficacy of
this distance mode of education. For clarification of doubts and feedback, weekly classes

and contact classes will be arranged at the UG and PG levels respectively.

It is my aim that students getting higher education through the Centre for
Distance Education should improve their qualification, have better employment
opportunities and in turn be part of country’s progress. It is my fond desire that in the
years to come, the Centre for Distance Education will go from strength to strength in the
form of new courses and by catering to larger number of people. My congratulations to
all the Directors, Academic Coordinators, Editors and Lesson-writers of the Centre who

have helped in these endeavors.

Prof. K. GangadharaRao

M.Tech., Ph.D.,
Vice-Chancellor I/c

Acharya Nagarjuna University
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MODEL QUESTION PAPER

Time : Three hours Maximum : 70 marks

Answer ONE question from each Unit. (5x14=70)

1. (a)

(b)

2. (a)

(b)

4. (a)

(b)

6. (a)
(b)

UNIT -1
LetF € E € Kbefield. If[K: E] < ooand [E : F] < oo, then show that
(i) [K: F]< o
(i) [K = F] = [K: E][E : F]
State and Prove Gauss Lemma.
(OR)

If E is an extension of F and u € E is algebraic over F, then prove that F(u) is an
algebraic expansion of F.
State and Prove Kronecker theorem.

UNIT -1I
Prove that for any field K the following are equivalent.
(a) K is algebraically closed,
(b) Every irreducible polynomial in K[x] is of degree 1,
(c) Every polynomial in K[x] of positive degree factor completely in K[x] into linear
factors,
(d) Every polynomial in K[x] of positive degree has atleast one root in K.

(OR)

If f(x) € F|x] is irreducible over F, then show that all roots of f(x) have the same
multiplicity.
State and prove uniqueness of splitting field theorem.

UNIT - I
Show that if E is a finite separable extension of a field F, then E is a simple extension
of F.
(OR)

State and prove Dedekind lemma.

Let H be a finite subgroup of the group of automorphisms of a field E. Then show
that [E : Ey] = |H]|.



8. (a)

(b)

9. (a)

(b)

10.(a)
(b)

UNIT -1V
State and prove fundamental theorem of algebra.

(OR)

Let F be a field let U be a finite subgroup of the multiplicative group F* = F — {0}.
Then show that U is cyclic.
Show that @,(x) = m,(x — w), @ is primitive n®

polynomial of degree @(n) in Z[x].

root in C, is an irreducible

UNIT-V
Show that f(x) € F|[x] is solvable by radicals over F if and only if its splitting field

E over F has solvable Galois group G(E / F)-

Show that the polynomial x> — 9x + 3 is not solvable by radicals over Q.

(OR)

Solve the problem of trisecting an angle.
Prove that it is impossible to construct a cube with a volume equal to twice the
volume of a given cube by using ruler and compass only.
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LESSON- 1
IRREDUCIBLE POLYNOMIALS & EISENSTEIN

CRITERION

OBJECTIVES:

e To define and identify irreducible polynomials over various rings, especially over fields
like Q, R, and finite fields.

e To understand the relationship between irreducibility and factorization in polynomial
rings.

e To determine irreducibility of polynomials using known theorems and tests.

e To state and apply Eisenstein’s Criterion to test the irreducibility of a given polynomial
in Q[x] or other relevant polynomial rings.

STRUCTURE:

1.1 Introduction

1.2 Irreducible Polynomials
1.3 Summary

1.4 Technical Terms

1.5 Self-Assessment Questions

1.6 Suggested Readings

1.1 INTRODUCTION:

Polynomials play a central role in abstract algebra, particularly in understanding the
structure of rings and fields. An important concept in this context is the irreducibility of
polynomials, analogous to primeness in integers. Irreducible polynomials cannot be factored
into non-unit polynomials of lower degree over a given ring. Identifying irreducible
polynomials is crucial in constructing field extensions and understanding algebraic equations.

One of the most powerful tools is Eisenstein’s Criterion, which provides a sufficient
condition for irreducibility. This criterion uses the divisibility properties of the coefficients
relative to a prime number. Though not universally applicable, it simplifies many problems
and reveals deep algebraic structure. In this lesson, we will study irreducibility, understand
Eisenstein’s Criterion, and learn to apply it effectively. We start with irreducible
polynomials, primitive polynomials and finally we provide the proof for the theorem namely
Eisenstein criterion.

1.2 IRREDUCIBLE POLYNOMIALS:

Let us recollect some important definitions and examples which are essential in the study of
this Lesson.

1.2.1 Definition: A commutative ring R is said to be an integral domain if xy = 0,x,y €

R impliesx = 0ory = 0.
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Note: Let R be a commutative integral domain with unity. a € R is a unit in R if there is a

b € R such that ab = 1. For 0 # a, b € R, we say that a divides b, written a|b, if b =

ac forsomec € R.Leta € R. For0# b,c € Rif a = bc then b is divisor of a. We say that
a divisor b of a is improper if a = bc then either b is a unit or c is a unit, where b,c € R.

1.2.2 Definition: A non-zero element a of a commutative integral domain R with unity is
called an irreducible element if it is not a unit and every divisor of a is improper.

1.2.3 Definition: A non-zero element p of a commutative integral domain R with unity is
called a prime element if

(1) it is not a unit

(i) p divides ab then either p divides a (or) p divides b, where a,b € R.

1.2.4 Definition: A commutative Integral domain R with unity is called a unique
factorization domain if (i) every non-zero non-unit of R is a finite product of irreducible
elements and

(i) every irreducible element in R is prime.
Note: Let F be a field and let F[x]be the ring of the polynomials in x over F. Then F[x] is a
commutative integral domain with unity and contains F as a proper subring.

1.2.5 Definition: A polynomial f(x) in F[x] is called irreducible polynomial if the degree of
f(x) > 1 and whenever f(x) = g(x) - h(x) where g(x), h(x) € F[x], then either g(x) € F
(or) h(x) € F. If a polynomial is not irreducible, then it is a called reducible.

1.2.6 Example: x? + 1 is irreducible over R, but it is reducible over C.

1.2.7 Properties of F[x], F is field:

e The division algorithm holds in F[x].This means if f(x) € F[x] and 0 # g(x) €
F[x] then there exist unique polynomials q(x),r(x) € F[x] such that f(x) = g(x) -
q(x) + r(x), where r(x) = 0 or deg(r(x)) < deg(g(x)).

e F[x]is a principal Ideal domain.

e F[x]isaU.F.D.

e The units of F[x] are the non-zero elements of F.

Flx]

e Ifp(x) is irreducible in F[x], then proey is a field and conversely.

1.2.8 Proposition: Let F be a field and f(x) € F[x] be a polynomial of degree > 1. If
f(a) = 0 for some a € F, thenf (x) is reducible over F.

Proof: let F be a field and let f(x) € F[x] be a polynomial such that deg f(x) > 1

and f(a) = 0 for some a € F.

Then (x — @) is a factor of f(x). Here f(x), (x — ) are in F[x]. So by division algorithm,
there exists g(x),r(x) € F[x] &f(x) = (x — a)g(x) + r(x) where r(x) = 0 (or)

deg r(x) <deg (x —a) =1.Ifdeg r(x) <deg (x — a), then r(x) is a constant
polynomial

Therefore r(x) = a wherea € F.

Here 0 = f(a) = (a —a)g(a) + r(a) =r(a). So,a =0and hence r(x) = 0.

= f)=x-a)gx)+0

= f(x) =x—-a)gx)
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Since deg f(x) > 1, we must have f(x) is the product of two non-constant polynomials.
Therefore f(x) is reducible over F.

1.2.9 Definition: Let E be a field and F be a subfield of F, and let f(x) € F[x]. An element
a € E is called a root (or) zero of f(x) if f(a) = 0.

Note:

1If f(x) = ay + agx + - + a,x¥, then f () stands for the element ay + a,a + -+ + aza®
inE

2. If f; (x) is a polynomial of degree one, then f; (x) = ax + b, where a,b € F,a, # 0 and
—ba~tis aroot of f;(x). So we can conclude that if a polynomial f(x) in F(x) has a factor
of degree one in F[x], then f(x) has arootin F.

1.2.10 Proposition: let f (x) € F[x] be a polynomial of degree 2 or 3 , then f(x) is
reducible in F[x] if and only if f(x) has a root in F.

Proof: Let f(x) € F[x] be a polynomial of deg f(x) = 2 or 3.

Suppose that f(x) is reducible over F. Then f(x) can be expressed as the product of two
non-constant polynomials. i.e. f(x) = f;(x). f2(x) where f; (x), f>(x) € F[x] and

deg fi(x) <3 anddeg f,(x) < 3.

Since f;(x), f,(x) are non-constant polynomials, we have deg f;(x) > 1 and deg f,(x) >
1

So we must have deg f;(x) = 1 (or) deg f,(x) = 1(~ deg f(x) = 2 or 3)

Ifdeg fi(x) =1, fi(x) =ax + b,wherea,b € F&a#0

Since a # 0 and F is a field, we have —ba™! € F and f;(—ba™!) = a(-ba )+ b =0
Also f(=ba™) = fi(—ba ") fp(~ba™) =0 fo(~ba™") =0

So, f(x) has aroot in F.

Ifdeg fi(x) > 1,thendeg f;(x) = 2.

Also ifdeg f,(x) = 2,then deg f(x) =deg fi(x) +deg f,(x) =2+ 2 =4, whichisa
contradiction. Therefore deg f,(x) = 1.

So, by the above proof f(x) has a root in F.

Conversely, Suppose that f(x) has arootin F, say 'a'i.e.f(a) = 0.

Then (x — @) is a factor of f(x), thatis, f(x) = (x — a)g(x) for some g(x) € F[x].
Since degf (x) > 1, we must have deg g(x) > 1

i.e. f(x) is the product of two non-constant polynomials.i.e. f(x) is reducible over F.

1.2.11 Definition: A polynomial f(x) € Z[x] is called a primitive polynomial if the greatest
common divisor of the coefficients of f(x) is 1. The g.c.d of the coefficients of f(x) is called
content of f(x) and it is denoted by c(f).

Note: 1. ¢(f) = 1 ifand only if f(x) is a primitive polynomial.

1.2.12 Definition: A polynomial ay + a,x + --- + a,,x™ over a ring R is called a monic
polynomial if a,, = 1.
Note: Every monic polynomial f(x) € Z[x] is primitive.

1.2.13 Proposition: If f(x), g(x) € Z[x] are two primitive polynomials, then the product
f(x) - g(x) is also primitive.
Proof: Given f(x), g(x) are two primitive polynomials inZ[x].
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Let f(x) = ag + a;x + apx® + -+ apx™and g(x) = by + byx + -+ + bpx™; where a;, b; €
Z;i=01,..,n,j=0,1,2,..,m.
Suppose if possible, f(x) - g(x) is not primitive.

Then the g.c.d. of all coefficients of f(x) - g(x) is not a unit. There exist a prime number
p, which divides all the coefficients of f(x) - g(x). Since f(x) is primitive, p does not
divides all the coefficients of f(x). So let' a; ' be the first co-efficient, which is not divisible
by 'p . Since g(x) is primitive, p does not divides all the co-efficients of g(x). So, let' b '
be the first coefficient of g(x), which is not divisible by p.

NOW, Cj+k = Cl]'bk + (Cl]'+1bk_1 + Cl]'+2bk_2 + -+ a]-+kbo) + .-+ (Cl]'_lbk+1 + a]'_zbk+2 +
ot aghya)

Since p|a; fori = 0,1, ...,j — 1, we have p | @objyr + -+ @j1bess

Also, p|b; fori = 0,1, ...,k — 1, we have D (aj+kb0 I aj+1bk—1)
and p divides all the co-efficients of f(x) - g(x).

SO Pplcjik

,that is, pla; by

Since p is a prime number, we have, pla]- or p|by which is a contradiction to selection of ai&
by, So, Our supposition is wrong.

Hence f(x) - g(x) is a primitive polynomial.

1.2.14 Definition: A polynomial f(x) € Z[x] is called irreducible over Z, if f(x) is an
irreducible element in  Z[x].
Note: An irreducible polynomial over Z must be primitive.

1.2.15 Gauss Lemma: Let f(x) € Z[x] be a primitive polynomial. Then f(x) is reducible
over Q if and only if f(x) is reducible over Z.
Proof: Let f(x) € Z[x] be a primitive polynomial.
Assume that f(x) is reducible over Z.
Then f(x) = g(x) - h(x) where g(x),h(x) € Z[x] and deg g(x) > 1&deg h(x) > 1 as
f(x) € Z[x] is primitive.
Since Z € Q, we have g(x), h(x) € Q[x].
This implies f(x) = g(x) - h(x) where g(x), h(x) € Q[x] and deg g(x) > 1;deg h(x) >
1.
i.e. f(x) is expressed as the product of two non-constant polynomials in Q[x].
Therefore f(x) is reducible over Q.
Conversely, suppose that, f(x) is reducible over Q.
Then f(x) = g(x) - h(x) where g(x), h(x) € Q[x] and deg g(x) > 1;deg h(x) > 1.
= %gl (x)hq(x) where g, (x), h;(x) € Z[x] and g,(x), h,(x) are primitive, a,b €
Z,deg g(x) = deg g:(x),and deg h(x) = deg h(x)
= bf(x) = a(g:(x) - 11 (x))
= c(b(f (%) = c(a(gs(x) - h1(x)))
Since f(x) is a primitive polynomial, c(f) = 1. Therefore ¢ (b ( f (x))) = b.

Since g4 (x). h;(x)is primitive, we have C(a(g1 (%) - hl(x))) =a. Soa=h.
This implies f(x) = g1(x) - h;(x) where g;(x) - hy(x) € Z[x], deg h,(x) = deg h(x) >
1 and deg g,(x) =deg g(x) > 1.
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i.e. f(x) is the product of two positive degree polynomials in Z[x].
Therefore f(x) is reducible over Z.

1.2.16 Lemma: If f(x) € Z[x] is reducible over Q, then it is also reducible over Z.
Proof: Let f(x) € Z[x].

We know that any polynomial f(x) in Z[x] can be written as f(x) = df; (x), where d =
c(f) and f; (x) is a primitive polynomial in Z[x].

Suppose f(x) is reducible over Q. Then d f; (x) is reducible over Q.

So f; (x) is reducible over Q & f; (x) is primitive in Z[x].

Then by 1.2.15, we have f; (x) is reducible over Z.

So df; (x) is reducible over Z. Hence f(x) is reducible over Z.

1.2.17 Proposition: Let f(x) = ay + a1x + azx + - + a,_1x™ 1 + x™ € Z[x] be a monic
polynomial. If f(x) has aroot a € Q, then a € Z & a divides a,.

Proof: Let f(x) = ag + a;x + -+ ap_1x™ 1 + x™ € Z[x] be a monic polynomial.

Let 0 # a € Q be aroot of f(x).

Since a € @, we have a = %, where o, B EZ& L # 0, (a,f) = 1. Also since a = %is root

of f(x), we have f (%) = a0t (%) ot ang (%)n_l + (%)" =0

a a,n—l an
= Qo +a1 'E-l' --~+an_1F+B—n= 0.... (*)
Now multiplying the above with 771, we get
a n—1 aTl
aof "+ a, '3 Bt 44 -1 gy B 4+ o prt=0.

Soagf "+ a;af i+t apat+a- g =0.
_n
Now agf™ ! + ayaf™ 2+ -+ a,_1a™ ! = %is an integer.

Since g.c.d ofa,fis1& S € Z, we have § = +1.

Therefore a = +a wherea € Z. soa € Z.

a,n—l an

T

a an—l an

Soay+a,-=++ay,_1-—— =———and that
B Bn—l Bn

apB" + aaf 1+ -+ a,_a™ - B = —a®, thatis,

af"= —a™ — a;af" 7t — a1 @

From (*), we have, a, + a4 ~%+ et apq =0

= —a(a, "+ + a,a" %) —a”
So apf"= —af[a; " + -+ ap_1a™ 2B + a™ 1] and that
al agf™
Now a | ay, since (a, ) = 1. Hence a divides a,.

1.2.18 Proposition: (Eisenstein Criterion): Let f(x) = ag + ayx + -+ + a,x™ € Z[x] with
n > 1. If there is a prime number p such that p|ao, play, play, ..., pla, . P t an,p* tao,
then f(x) is irreducible over Q.

Proof: Let f(x) = ay + a1x + -+ a,x™ € Z[x] withn > 1 and let p be a prime number
such that plag, play, pla, ..., Pla,_,, P t an,p* t aq.

Claim: f(x) is irreducible over Q.
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First we show that f (x) is irreducible in Z[x].

If possible, Suppose that f(x) is reducible over Z. Then f(x) = g(x) - h(x),
g(x) = by + byix + -+ bx"
h(x) =co + c1x + -+ + csx®
Therefore ay = bycy, a, = bycs&a; = byc; + byci_1 + -+ b;cy forall i
Since play, we have p|byc, so p|by (or) p|cy ( since p is prime).

[If p|bo&p|co = p?|bocy = agy, which is a contradiction]

where and b;,¢c; EZ,1r <n,s<n &r+s=n

Case (i) : Suppose p|by and p t ¢

If all the coefficients b; are divisible by 'p' Then p divides all a, (0 < k <n)
and p|a,, which is a contradiction.

So p does not divides all the coefficients b;.

Let 'm' be the least positive integer such that pt b,,.

This means that p divides b4, by, ..., bypy—1.

Now a,, = b;,co + by_1¢1 + -+ bocy S0 b o = A — (byp—q1€1 + -+ + bycin)
p | meO

p|by, (or) plco (+ p is prime)
But pt ¢. So we must have p|b,, which is a contradiction.

So our assumption is wrong.

Since p divides a,y,, byy—1, -.., boCm, We have, so

Case (i) : Suppose plco& p t by
Similarly, as in case(i), we get that our assumption is wrong.
Therefore f(x) is irreducible over Q.

1.3 SUMMARY:

An irreducible polynomial over a field F is a non-constant polynomial that cannot be factored
into polynomials of lower degree over F. This lesson explores conditions under which a
polynomial is irreducible over F. Eisenstein’s Criterion provides a powerful tool for
establishing the irreducibility of polynomials over Q.

1.4 TECHNICAL TERMS:

Field: A commutative ring with unity where every non-zero element has a multiplicative
inverse.

Unit: An invertible element in a ring.

Prime element: A non-zero, non-unit element p such that plab implies pla or plb .
Irreducible element: An element (or polynomial) that is a non-zero non-unit and cannot be
factored into two non-unit factors.

Leading coefficient: The coefficient of the highest-degree term in a polynomial.

Content of a polynomial: The greatest common divisor (g.c.d) of its coefficients.

Primitive polynomial: A polynomial whose content is 1.

Monic polynomial: A polynomial whose leading coefficient is 1.

1.5 SELF-ASSESSMENT QUESTIONS:
Question 1: Why Eisenstein’s Criterion is useful and what are its limitations?

Answer: Eisenstein’s Criterion provides a sufficient (but not necessary) condition to
establish the irreducibility of a polynomial over Q. It is useful because it offers a
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straightforward test when applicable. However, its limitation is that it does not apply to all
irreducible polynomials. Some irreducible polynomials do not satisfy the criterion, and some
polynomials may need to be transformed (e.g., via a change of variable) before the criterion
can be applied.

Question 2: Can Eisenstein’s Criterion be used over arbitrary rings or only over Z and Q?
Explain.

Answer: Eisenstein’s Criterion is primarily stated for polynomials in Z[x] to test
irreducibility over Q. However, generalized forms of the criterion exist for unique
factorization domains, where similar conditions involving prime elements can be applied. But
its standard and most practical usage remains in the context of Z and Q.

Question 3: Test whether the polynomial x3 +3x+ 2 € % [x] (or) Z,[x] is irreducible

Over the field (ZT) or not ?

Solution :
Let f(x) = x> 4+ 3x + 2 be a polynomial in — [x].

(7)
Here degf (x) = 3.
By proposition 1.2.10, we have that f(x) is reducible over %, if f(x) has a root in

Z
7y

Let us check whether f(x) has a root in % or not.

Since f(3) =38, 0 3 € % is not a root of f(x). Similarly one can easily verify that no
element of (ZT) is a root of f(x). Then by proposition 1.2.10, we have that f(x) is irreducible

over z
(7)

Question 4: Test whether the polynomial f(x) =1+ x + -+ +
xP~1, where p is prime number is irreducible over Q or not ?
Solution: Given f(x) = 1+ x + --- + xP~!, where p is a prime number.
xc—Df)=((x—-D[1+x+ -+ xP1]
=x—1+x>—x+-+xP—xP!

So(x —1Df(x)=xP -1
Puty=x—-1sox=1+y.

Now yf(x)=(y+1)P -1

= (1 +py+w},2 +) -1

-1

=py + %},2 —+ ..

So = f(x+y)=p+%y+---+y”
From equation (1), clearly p|p_, where 0 <7 < p — 1 and p? 4t Pey_, andp t1
Therefore by Eisenstein criterion, f(x) is irreducible over Q.

Question 5. Determine which of the following polynomials are irreducible over Q.
a) x3 —5x + 10

b) x* —3x2+9

c) 2x> —5x*+5



‘ Centre for Distance Education 1.8 Acharya Nagarjuna University

Solution :

a) Let f(x) =10—-5x+0-x% +x3.Takep =5

Note that p|10,p|5,p|0,p t 1 & p? 10

Then by Eisenstein criterion, f(x) is irreducible over Q.
Similarly, we can solve (b) and (c¢) by taking appropriate ‘p’

1.6 SUGGESTED READINGS:

1.

Bhattacharya, P. B., S. K. Jain and S. R. Nagpaul, 1997, Basic Abstract Algebra, 2nd
edition, UK: Cambridge University Press (Indian Edition).

Hungerford, Thomas W. Abstract Algebra, 1974, Springer-Verlag, New York.

Khanna, V. K. and S. K. Bhambari, A Course in Abstract Algebra, 3rd edition, New
Delhi: Vikas Publishing House Pvt. Ltd.

Lang, S. 1993. Algebra, 3rd edition, Boston: Addison-Wesley, Mass.

I.S. Luther and I.B.S.Passi, Algebra, Vol. IV-Field Theory, Narosa Publishing
House,2012.

Ian Stewart, Galios Theory, Chapman and Hall/CRC, 2004.

- Prof. R. Srinivasa Rao



LESSON- 2
ADJUNCTION OF ROOTS

OBJECTIVES:

e To construct field extensions by adjoining roots of irreducible polynomials to a base
field.

e To analyze the properties of the extended field such as its degree and structure.

e To study the concept of minimal polynomials of the adjoined roots.

e To provide a foundation for Galois Theory and the study of finite extensions.

STRUCTURE:

2.1 Introduction

2.2 Extension of fields

2.3 Kronecker Theorem and its Applications
2.4 Summary

2.5 Technical Terms

2.6 Self-Assessment Questions

2.7 Suggested Readings

2.1 INTRODUCTION:

Adjunction of roots involves creating field extensions by adding roots of a polynomial that
are not in the given field. This process enriches the field structure and is fundamental in
understanding algebraic extensions. For a field F and an irreducible polynomial f(x) over F,
we adjoin a root o to form F(a). The extension F(a) is the smallest field containing both F and
a, and o satisfying f(x). This concept is crucial for constructing fields which are finite
extensions of the given field. Kronecker’s theorem asserts that for any non-constant
polynomial f(x) € F[x], there exists an extension field, in which f(x) has a root.

2.2 EXTENSION OF FIELDS:

2.2.1. Definition: If F is a subfield of a field E, then E is called an extension field of F (or)
simply an extension of F.

Note that it E is a field and F is a non-empty subset of E. then F is a subfield of E if a =
b,ab,a*(a # 0) areinFforalla,b € F

Note: If E is an extension of F, then trivially E is a vector space over F. The dimension of E
over F is usually written as [E: F].

2.2.2 Definition: Let E be an extension of F. Then the dimension of E considered as a vector
space over F is called the degree of E over F and is denoted by [E: F].



Centre for Distance Education 2.2 Acharya Nagarjuna University

Note: The degree of E over F is written as [E : F]. If [E : F] < oo, then E is called a finite
extension of F. If E is not a finite extension of F, then E is called an infinite extension of F.

2.2.3 Theorem: Let FSFE €K be fields. If [K:E] <o and [E:F]< o, then
(D[K : F] <oo (i) [K: F] = [K : E][E : F]

Proof: Let F, E, K be three fields suchthat F € E € K .

Giventhat [K : E ] < oo and [E : F] < co.

Suppose [K : E]=mand [E : F]=n

So, let {v;, vy, ..., Uy, } be a basis of K over E and {w;, w5, ..., w, } be a basis of E over F.

1<i<m,
/ISan

Write S = {viwj
Now we show that [K : F] < oo, that is, the dimension of K over F is finite.
LetueK.
Since {vy, v, ..., U, } is a basis of K over E , we have u = a,v; + ayv; + -+ + an vy, (1),
where a; EE; 1 <i<m.
Since a; €E, 1 <i <mand{w,..w,}is abasis of E over F, a; can be written as

a; = bjywq + bjpw, + -+ + by w,, where bl-]. EF,1<i<m,
Substituting a; in (1), we have for 1 < j <n

U =(by1wy + b1y + -+ + b1wr) vy + (bW + byywy + -+ bypwy) v,
+ -+ (bmlwl + by, wy + -+ bmnwn)vm
=b11w1v1 + b12w2v1 + cee + bannvl + bz]_lez + cee + bannvz
+ o+ Dy WiV + Do Wo Uy + 0 + D 0 U

. . o 1<i<m
So, u is the linear combination of the vectors yv;w;

1<j<n
Therefore every element in K can be expressed as the linear combination of the set of

1Si£m}
1<j<n)

vectors {viwj

1<i<m

We show that the set § = {viwj 1<j<n

} is linearly independent over F.

Suppose that

C11V1W1 + C1V1 Wy + -+ C1p V1 Wy + Coq Vw1 + CooVowq + -+ CopUpwy + -+ +

Cm1Vm®y + -+ Cpp Uy, = 0, where ¢ € F;1<i<m;1<j<n.

we have (c11wq + C1ow5 + -+ C1@Wp) V1 + (€211 + Coowy + o+ + Copwy)Vy) +
e (cm1w1 + Cp,wp + 0+ cmnwn)vm =0.

Since the set {vy, vy, ..., U, } is linearly independent in K over the field E, we have

C11W1 + Ci12W- + -+ CinWn = 0
C21a)1 + sza)z + -+ CZna)n = O
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Cm1W1 + Cp, Wy + -+ Cpppwy, = 0

Since {w4, Wy, ..., W, } is linearly independent in E over F, we have
cj=0forl<is<ml<j<n

1<i<m
1<j<n

Hence S = {viw]- } is a linearly independent set over F with mn elements.

Therefore [K : F] < oo and the no. of elements in the basis of K over F is mn
So,[K:F]=mn=[K:E][E:F]
Hence [K : F] = [K : E |[E : F]

Note: A one-to-one homomorphism of a field F into a field E is called an embedding of F
into E .

Note that if E and F are fields then a mapping h: F — E is a homomorphism if

(1) h(a + b) = h(a) + h(b) and

(ii) h(ab) = h(a)h(b) foralla,b € E

2.2.4 Proposition: Let E and F be fields and let o: F = E be an embedding of F into E ,

then there exists a field K such that F is a subfield of K and o can be extended to an
isomorphism of K onto E .

Proof: let F and E be fields and o: F — E be an embedding.
that is, 0: F — E is a monomorphism, that is, o: F — E is a homomorphism and one-one.
Let S be the set whose cardinality is same as that of E — ¢(F) and it is disjoint from F.
Consider f: S - E — a(F) be a one-to-one correspondence between S and E — o (F) .
Write K = FUS.
Define a mapping 0*: K — E as follows:
Leta € K.
If a € F, then define o*(a) = o(a).
If a € S, then define o*(a) = f(a).
By the above definition, ¢* is clearly well-defined and onto.
Leta,b € K and o*(a) = o*(b)
Ifa,b € F, theno*(a) = ¢"(b) and that
o(a) = a(b) and that
a=b(wo:F > E isone-one)

Ifa,b €S, then f(a) = f(b)and thata = b
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Leta€eFand b € S.
So, a(a) =f(b)€a(F)n(E —a(F))
But we know that 6(F) N E — o(F) = ¢, which is a contradiction.
Therefore both a, b € F (or) both a,b € S.
Soc™:K — E isone-one and hence a bijection and clearly 0*: K — E is an extension of o.
For any two elements x,y € K, define
x+y=0""("(@) + ')
xy=0"" (") - 0" ()
Under the above defined operations, it is clear that K is a field.
Also, the definitions defined here coincide with the given addition and multiplications of the
elements of the original field F.
Leta,b € F.
a+b=0c"""[o*(a) + o*(b)]
=" [o(a) + a(b)]
=g '[o(a+b)]=0""o"(@a+b)]=a+b
Therefore F is a subfield of K (or) in other words K is the extension of F.

Note: If o is an embedding of a field F into a field E, then we identify F with its
homomorphic image a(F). So, we can write ' a ' in place of a(a) for each a € F and this E
can be regarded as an extension of F. Hence, whenever there is an embedding of an field F
into a field E' , we say that E is an extension of F.

2.2.5 Theorem: Let p(x) be an irreducible polynomial in F[x], then there exists an extension
E of F in which p(x) has a root.

Proof: Let p(x) be an irreducible polynomial in F[x].

So, (p(x)) is a maximal ideal in F[x]. < p(x) > is the ideal of F[x] generated by p(x)

F[x]

v is a field.

Then by known result,

Now we show that E is an extension of F.
Define ¢p: F - E by ¢p(a) = a@ where a = a+< p(x) >.
Now we prove that the mapping ¢: F — E is an embedding.
Leta, b € F such that ¢(a) = ¢(b).

Soa = b , thatis,

a+ (px))=>b+ (p(x)), that is,

a—>b € (p(x)), that is,
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a—b = f(x)p(x) for some f(x) € F[x]. This is possible only when
f(x) =0asdeg p(x) =1
Now a — b = 0, that is,
a=>b
Therefore ¢ is one-one.
We prove now that ¢ is a homomorphism.
Leta,b € F.
Then ¢p(a+b) =a+ b = a+ b= p(a) + ¢(b) and ¢p(ab) = ab = ab = ¢(a) - $(b)
So ¢: F — E is a monomorphism, that is,¢p: F = E is an embedding.
Then by known result, E can be regarded as an extension of F and also we can also identify
F as the homomorphic image ¢ (F).
So we can write a in place of a.
Now we prove p(x) has aroot in E .

Let p(x) =ag+ayx+-+a,x"a,#0,n=>1

Then p(x) = p(x) + (p(x)) = (p(x)) = 0

Soag+a;x+ -+ ax™ =
do + dlf e dnfn S

SagtaX+ - +a,x"=0
Flx]

Sop(x) = 0, where x = x + (p(x)) € () =E

Therefore p(x) has aroot in E .

2.3 KRONECKER THEOREM AND ITS APPLICATIONS:

2.3.1 Kronecker Theorem: Let f(x) € F[x] be a non-constant polynomial, then there exists
an extension E of F in which f(x) has a root.

Proof: Letf (x) € F[x] be a non-constant polynomial.

Case(i):If f(x) has arootin F then put E = F.

Then clearly E is an extension of F and f(x) has arootin E .

Case(ii): If f(x) has no root in F, then let p(x) be an irreducible factor of f(x).
Then, by Theorem 2.2.5, corresponding to the irreducible polynomial p(x),there exists an

extension E of F in which p(x) has a root and hence f(x) has a root in E .
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2.3.2 Corollary: Let f;(x), f2(x), ..., fm(x) be a set of non-constant polynomials over F.
Then there exists an extension E of F in which each f;(x) has a root.

Proof: Let f; (x), f2(x), ..., fin(x) be a set of non-constant polynomials over the field F.
Consider f; (x) be a non-constant polynomial in F[x].

Then by Kronecker theorem, there exists an extension K ; of F such that f; (x) has a root in
K.

Clearly f,(x) € K 1[x] is a non-constant polynomial.

By Kronecker theorem, there exists an extension K , of K ysuch that f,(x) has arootin K .
If we continue the same process, we get successive fields K ; € K , € -+ € K ,,, such that
each K ; contains root of f;(x),1 < i < m.

Therefore K ,, is the required extension of F in which each f;(x) has a root.

2.3.3 Definition: Let p(x) be an irreducible polynomial in F[x] and u be the root of p(x) in
an extension field E of F. Then we denote F (u) to be the subfield of E generated by F U {u},
that is, F(u)is the subfield of E generated by F U {u}, that is, smallest subfield of E
containing F' and u , that is, intersection of all subfields of E containing F and u . In general,
if S is the subset of E', then we denote F(S) to be the smallest subfield of E containing F and
S.

2.3.4 Theorem: Let p(x) be an irreducible polynomial in F[x] and let u be a root of p(x) in
an extension E of F. Then
(1) F(u), the subfield of E generated by F and u, is the set

Flu] = {by + byu + -+ b,u™ /by + b1 x + -+ + b, x™ € F[x]}
(ii) If the degree of p(x) is n, the set {1,u, ...,u™ 1} forms a basis of F(u) over F, i.e each
element of F(u) can be written uniquely ascy + cqu + -+ c,u™ !
[F(u): F] =n.

Proof: let F, E be two fields such that E is an extension of F.

, where ¢; € F and

Let p(x) be an irreducible polynomial in F[x]. Also let u be a root of p(x) in E .
i) Define a mapping ¢: F[x] = E by
¢(ap +a;x + -+ ayx™) =ay+ a;u+ -+ a,uwhere ag + ayx + -+ a,x" € F[x]
Clearly ¢ is well-defined.
Let f(x), g(x) € F[x].
Then ¢(f(x) +g(x)) = f(w) + g(w) = ¢(f (%)) + $(g(x))
d(f(x)-g(x)) = f(w) - gw) = ¢(f(x)) - (g (x))
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Therefore ¢ is a homomorphism.

Then by fundamental theorem of homomorphism, we have that = ¢(F[x]) = F[u]....

(1)

Now we prove that ker ¢ = (p(x))

Here ker ¢ = {f(x) € F[x]/¢(f(x)) = 0} = {f (x) € F[x]/f(w) = 0}
Since p(u) = 0, we have p(x) € ker ¢.

We know that F[x] is a principal ideal domain.

So, ker ¢ is principal ideal of F[x] andker ¢ = (g(x)) for some g(x) € F[x]
Therefore p(x) € ker¢p = (g(x)).

= p(x) = h(x) - g(x) for some h(x) € F[x]

Since p(x) is irreducible in F[x], h(x) is a constant polynomial and hence
<px)>=<gkx)>

Therefore ker d) = (p(x))

So, from (1), —— = F[u]

(())

We know that — is a field as p(x) is irreducible in F[x]

(p ( ))
This implies Fu] is a field and it is the smallest subfield of E containing F & u, F|u]
Therefore Flu] = F(u)
(i1) Letdegp(x) =n.
Then u is not a root of any polynomial in F[x] whose degree is less than'n .
Now we show that the set {1,u, ..., u™ 1} is linearly independent.
Consider, by + by - u + -+ b,_qu™ 1 =0;b; EF.
Suppose that g(x) = by + by - x + =+ + by_1x™ 1 # 0.
Now g(x) € F[x] and deg g(x) < n and g(u) = 0, a contradiction to the irreducibility of
p(x).
So g(x) = 0 and that b; = 0 foralli =0,1,...,n — 1.
Therefore {1,1, ...,u™ 1} is linearly independent over F.
Now we show that the set {1,u, ..., u™ 1} generates F[u] over F.
That is, every element in F[u] can be written uniquely as the linear combination of the set of
vectors {1,u, ..., u™" 1},

Let f(u) € F[u] where f(x) € F[x].
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By division algorithm there exists t(x), r(x) € F[x] such that f(x) = p(x) - t(x) + r(x) where
r(x) = 0 (or) deg r(x) < deg p(x) =n.

Now f(u) = p(w)t(u) + r(u). Since p(u) =0,

f(u) =r(u)

Since deg r(x) < degf(x) = n, we can write r(x) = ap + a;x+ -+ a,_;x"" 1, a; € F.
Therefore f(u) = r(u) = ap + a;u+ -+ +a,_;u"?!
i.e. f(u) is linear combination of vectors {1, u, ..., u™ 1}

Therefore {1,, ..., u™ 1} generates F(u) over F. Therefore it is a basis for F(u) over F.

Hence [F(u):F]=n

2.4 SUMMARY:

Adjunction of roots refers to the process of extending a field F by adjoining a root o of an
irreducible polynomial f(x) € F[x]. The extended field F(a) contains all elements expressible
as rational expressions in a with coefficients from F. This construction allows us to form new
fields. The degree of the extension [F(a):F] equals to the degree of the minimal polynomial of
a over F. Kronecker’s theorem states that for any non-constant polynomial f(x) € F[x], there

exists an extension field of F where f(x) has at least one root.

2.5 TECHNICAL TERMS:

e Root of a polynomial f(x): An element a in some extension field such that f(a)=0.

¢ Adjunction of a root: The process of constructing a field extension by adding a root a of
a polynomial f(x) € F[x] to F.

e Minimal Polynomial of u over F: The monic irreducible polynomial in F[x] for which u
is a root.

e Algebraic Element over F: An element a in an extension field E of F that satisfies a
polynomial equation with coefficients in F.

o Algebraic Extension of F: An extension E of F where every element of E is algebraic
over F.

e Degree of Extension: The dimension of E as a vector space over F and it is denoted by
[E:F]

2.6 SELF-ASSESSMENT QUESTIONS:

Question 1: What is meant by the adjunction of a root to a field?

Answer: The adjunction of a root to a field refers to the process of extending a field F by
including an element a that is a root of a given polynomial f(x) € F[x], which does not

already have a root in F. The resulting extension is denoted F(a), which is the smallest field
containing F and a.
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Question 2: Why is the concept of adjunction important in the theory of field extensions?

Answer: Adjunction is fundamental in building larger fields that contain roots of polynomials
that are not in the base field. This process allows the construction of algebraic extensions and
eventually leads to algebraic closures. It helps in understanding how fields can be
systematically extended and analyzed using the roots of irreducible polynomials, laying the
foundation for Galois theory.

Question 3: Let K be a finite extension of F and E be the subfield of K containing F.
Does|[E: F] divides [K : F]?

Solution: Let F,E ,K be three fields suchthat F € F € K.
Given that the dimension of K over F is finite i.e.[K : F] < oo.

Since K is finite dimensional over F and E is a subspace of K,
we have E is finite dimensional over F.i.e.[E : F] < oo.

We know that any set of elements in K, which are linearly independent over E are also
linearly independent over F.

So, Dimension of K over E = [K : E]

= Maximum no. of linearly independent vectors in K over F
< Maximum no. of linearly independent vectors in K over F.

=The dimension of K over F = [K : F]
i.e.[K : E ] = dimension of K over E < dimension ofK overF = [K : F] < o0
By Theorem 2.2.3, we have that [K : F] = [K : E |[E : F].

So [E : F]|[K : F]

Question 4: Let K be an extension of F and [K : F] is a prime number p. Can there be a
field Lsuchthat Fc Lc K ?

Solution: Let K be an extension of F.

Given that [K : F] = p,p is a prime number.

Suppose, if possible, there is a field ' L 'such that F ¢ L ¢ K
By theorem 2.2.3. we have that [K : F] = [K : L][L: F]

p = [K : L][L: F], where p is prime.

So, [K:Ll=1(or)[L:F]=1

K = L (or) L = F, which is a contradiction.(~ F c L c K )

Therefore there is no field L suchthat Fc L c K.
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LESSON- 3
ALGEBRAIC EXTENSIONS

OBJECTIVES:

e To learn algebraic elements and minimal polynomials.

e To understand the concept of field extensions and field extensions which are generated
by a single algebraic element.

e To distinguish between algebraic extensions and transcendental extensions.

e To explore the properties of finite extensions.

STRUCTURE:

3.1 Introduction

3.2 Algebraic Extensions

3.3 Summary

3.4 Technical Terms

3.5 Self-Assessment Questions

3.6 Suggested Readings

3.1 INTRODUCTION:

In abstract algebra, the concept of an extension field arises naturally when considering how
one field can be expanded to include roots of polynomials that might not exist in the given
field. The study of algebraic extensions is fundamental in understanding how fields can be
enlarged in a controlled way and is a stepping stone to more advanced topics such as Galois
theory. An extension field E of a field F is a field containing F as a subfield. In this lesson,
we discuss simple extension, degree of an extension, properties of algebraic elements,
minimal polynomial of an algebraic element and related theorems.

3.2 ALGEBRAIC EXTENSIONS:

3.2.1 Definition: Let E be an extension of F. An element a € E is said to be an algebraic
element over F if there exists elements ay, a4, ...,a,;n > 1 of F, not all equal to zero such
that ag + a,a + - + a,a™ = 0. In other words, an element « € E is said to be an algebraic
element over F if there exists a non-constant polynomial p(x) € F[x] with p(a) = 0.

3.2.2 Theorem: Let E be an extension field of F and let u € E be an algebraic element over
F.

Let p(x) € F[x] be a polynomial of the least degree such that p(u) = 0. Then
(1) p(x) is irreducible over F.

(i1) If g(x) € F[x] is such that g(u) = 0, then p(x) | g(x).

(ii1) There is exactly one monic polynomial p(x) € F[x] of least degree such that p(u) = 0.



Centre for Distance Education 3.2 Acharya Nagarjuna University ‘

Proof: Let E be an extension of F and u € E be an algebraic element over F. Let p(x) €
F[x] be the least degree polynomial such that p(u) = 0.

(1) Suppose if possible p(x) is not irreducible over F.
Then p(x) is reducible over F.

So by definition p(x) = p;(x) - p2(x), where p;(x),p.(x) € F[x] and 0 < deg p;(x) <
deg p(x)and 0 < deg p,(x) < deg p(x).

Now p(w) = p1 (W) - p2(W) =0 (~ p(u) = 0)

This implies either p; (u) = 0 (or) p,(u) = 0, which is a contradiction
Therefore p(x) is irreducible over F.

(ii) Let g(x) € F[x] be a polynomial in F[x] such that g(u) = 0.

By division algorithm, there exists polynomials q(x),r(x) € F[x] such that
gx) =qx) - p(x) + r(x), where r(x) = 0 (or)deg r(x) < degp(x)

So,g(u) = q(u) - p(w) + r(u). Since g(u) = 0,and p(u) =0,r(u) =0
Now r(x) = 0 as p(x) is the least degree polynomial such that p(u)=0.
So g(x) = g(x) - p(x) and that p(x) | g(x).

(ii1) Suppose that p(x) is monic polynomial.

[Otherwise, if ¢ is the leading co-efficient of p(x) , then ¢~1p(x) is a monic polynomial of
least degree & ¢ 'p(u) = 0.]

Let g(x) be another least degree monic polynomial in F[x] with g(u) = 0.
Then by (ii), p(x)|g(x) and g(x)|p(x) Also p(x), g(x) are monic. So p(x) = g(x)
Hence, there is exactly one monic polynomial of least degree such that p(u) = 0.

3.2.3 Definition: The monic irreducible polynomial in F[x] of which u is a root is called the
minimal polynomial of u over F.

3.2.4 Definition: An extension field E of F is called an Algebraic extension of F if each
element of E is algebraic element over F. If E is not an algebraic extension, then E is called a
transcendental extension.

3.2.5 Theorem: If E is a finite extension of F, then E is an algebraic extension of F (Or)
Every finite extension of F is an algebraic extension of F.

Proof: Let E be a finite extension of F.

Suppose that [E: F] = n.
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Now we show that E is an algebraic extension of F.

Letu € E.

Then the set {1,u, u?, ...,u™} with (n + 1) number of elements is linearly dependent in

E over F. So, there exists ay, a4, ..., a, € F, not all zero such that ay + a,u + -+ + a,u”™ =
i.e. there exists a non-constant polynomial agy + a;x + -+ + a,x™ in F[x] such that a, +
au+-+au*=0

This implies u is algebraic over F. So, every element of E is algebraic over F.

Therefore E is an algebraic extension of F.

Hence every finite extension is an algebraic extension of F.

Note: The converse of Theorem 3.2.5 need not be true. i.e. an algebraic extension need not be
a finite extension.

3.2.6 Theorem: If E is an extension of F and u € FE is algebraic over F, then F(u) is an
algebraic extension of F.

Proof: Let E be an extension of F and let u € E be an algebraic element over F.

By definition of algebraic element, there exists a non-constant polynomial f (x) in F[x] such
that f(u) = 0.

Since f(x) € F[x]& F[x]is a U.F.D, f(x) can be written as, f(x) = dp,(x) - po(x) -~
pn(x) where each p;(x) is an irreducible polynomial in F [x].

Since u is a root of f(x), u is root of the polynomial p;(x) for some i. So let p;(x) is an
irreducible polynomial having u as a root.

Then by known theorem, we have [F(u): F] = deg p(x) = n(say)

i.e.F(u) is a finite extension of F.

Then by Theorem 3.2.6, F(u) is an algebraic extension of F.

3.2.7 Definition: An extension E of F is called finitely generated if there exists a finite
number of elements 14, U, ..., U, in E such that the smallest subfield of E containing F and
{ug, uy, ..., uy, }is E itself. ie. E = F(uq, Uy, ..., Uy)

Note: A finitely generated extension need not be an algebraic extension.

Let F[x] be a polynomial ring in the indeterminate x over the field F. Let E be the field of
quotients of F[x] i.e.,E = {% /g(x) #0,f(x) € F[x] }.Then E = F(x) is finitely
generated extension of F. Also we know that x is not an algebraic element over F. If x is an

algebraic element over F, then there exists ay, a4, ..., a, in F not all zero such that ay +

a;x + -+ apx™ = 0, which is a contradiction. So E = F(x) is not an algebraic extension of

F.
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Hence a finitely generated extension need not be an algebraic extension.

3.2.8 Theorem: Let E = F(uy, U, ..., U,) be a finitely generated extension of F such that
each u;, i = 1,2, ..., r is algebraic over F. Then E is finite over F and hence an algebraic
extension of F.

Proof: Let E = F(uq,u,, ..., u,) be a finitely generated extension of F such that each u; is
algebraic over F.clearly F € F(uy) € F(uy,uy) S -+ € F(uq, uy, ..., Uy)

Write E; = F(uq,uy,...,u;) foralli =1,2,...,r.Then F€ E; € E, S CE,_; SE.=E.
We know that if an element a € E is algebraic over F, then ' a ' is algebraic over any field K
suchthat E2 K2 F.

Given that u; € E is algebraic over F Vi = 1,2, ...,7r. So,u; € E is algebraic over E;_; for all
i=12,..,rwithE, =F.

This implies E;_; (u;) is a finite extension of E;_{Vi = 1,2, ..r

i.e, E; is a finite extension of E;_;Vi = 1,2, ...,r. Solet, [E;: E;_;] =n; foralli =1,2,..,1
We know that [E: F| = [E: Eyp_q|[Er_1: Er_2] ... [Ex: F] =11y .omy < 00

This implies E is a finite extension of F.

Hence E is an algebraic extension of F.

3.2.9 Theorem: Let E be an extension of F if K is the subset of E consisting of all the
elements that are algebraic over F.Then K is a subfield of E and an algebraic extension of F.
Proof: Let E be an extension of F and K = {u € E/u is algebraic over F}

First we show that K is a subfield of E and then K is an algebraic extension of F.

Let a,b € K. Then q, b are algebraic over F.

Since a is algebraic over F, we have F(a) is a finite extension of F. So [F(a): F] is finite.
Since b is algebraic over F, we have b is algebraic over F(a).

So, F(a)(b) is a finite extension of F(a).

Therefore [F(a, b): F(a)] is finite.

and hence [F(a,b):F] = [F(a,b):F(a)][F(a):F] < o

i.e,F(a,b)is a finite extension of F.

Clearly, a,b € F(a,b)&F(a,b) is a field

Thena + b, ab, - (ifb # 0) € F(a,b). So all the elements a £ b, ab, 7 are algebraic

over F and that @ + b, ab, (if b # 0) € K

So 'K 'is a subfield of E & every element of K is algebraic over F.

Therefore K is an algebraic extension of F.
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Note: Let E be an extension of F. An element a € E is algebraic over F < F(a) is a finite
extension of F.

3.2.10 Definition: let E be an extension of F. If K is the subset of E consisting of all the
elements that are algebraic overF, then K is a subfield of E & K is an algebraic extension of

F. This K is called an algebraic closure of F in E.

3.2.11 Definition: Let K & L be the extension fields of a field F. Then a non-zero
homomorphism g: K = L 3 6(a) = a, Va € F, is called F-homomorphism of K into L (or)

an embedding of K into L over F.

3.2.12 Theorem: Let E be an algebraic extension of F and let : E — E be an embedding of
E into itself over F. Then o is onto and hence an automorphism of E..

Proof: Let E be an algebraic extension of F and let o: E — E be an embedding.

Then o:E — E is a monomorphism.

First we show that g: E — E is onto.

Leta € E.

Then a is an algebraic element over F. So, there is a polynomial f(x) € F[x] for which a is
a root.

Suppose p(x)is the minimal polynomial of a over F.

Let E' be the smallest subfield of E containing F and all the roots of p(x) in E i.e .E" isa
subfield of E generated over F with finite no of elements in E which are roots of p(x).

Then E’ is a finite algebraic extension of F. So, [E": F] < oo.

Further ¢ maps every root of p(x) onto the roots of p(x).

So, 0: E' - E'is one -one.

Since 0: E' — E 'is an isomorphism, we have ¢(E’) = E'.

o(E"Y S E'and [6(E"):F] = [E":F] < oo.

Since F € o(E") € E',[E":F] =[E":a0(E")][o(E"):F].
Therefore [E': 6(E")] = 1 and that E’ = a(E").

So there exists an element b in E' such that o(b) = a.
Therefore o is onto E.

Hence o an automorphism of E.
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3.3 SUMMARY:

Every algebraic element a over F has a unique minimal polynomial p(x) € F[x] which
divides any other polynomial in F[x] which is satisfied by a. Also F(a) is isomorphic to the
quotient ring F[x]/(p(x)). Finite extensions are algebraic, but an algebraic extension need

not be finite. The Tower Law is a crucial tool for computing degrees of extensions in stages.

3.4 TECHNICAL TERMS:

e Field extension: A field E is called an extension field of F if F is a subfield of E.

e Degree of extension: [E:F] the dimension of E as a vector space over F if E is an extension
field of F.

e Simple extension: An extension E generated by a single element a, written F(a) is a simple
extension of F.

e Algebraic element: An element a € E is algebraic over F if it is a root of a non-constant
polynomial with coefficients in F.

e Minimal polynomial: The monic irreducible polynomial p(x) € F[x] such that p(a) =0 is
the minimal polynomial of o over F.

e Algebraic extension: A field extension E of F where every element of E is algebraic over
F.

3.5 SELF-ASSESSMENT QUESTIONS:
Q1. What is an algebraic element? How is it different from a transcendental element?

Answer: An element o € K is algebraic over F if it is a root of a non-constant polynomial
with coefficients in F. If no such polynomial exists, a is transcendental over F.

Q2. What is the minimal polynomial of an algebraic element?

Answer: The minimal polynomial of an algebraic element o over a field F is the monic
irreducible polynomial f(x) € F[x] of least degree such that f(a) = 0. It is unique and divides
every other polynomial in F[x] that has a as a root.

Q3. Is every finite extension algebraic? Justify.

Answer: Yes. Every finite extension K over F is algebraic.

Let [K:F]=n and u € K. 1,u,u?,....,u™ are linearly dependent over F and that aq +
a;u + -+ a,u" = 0 for some ay, ay, ..., a, € F which are not all zero.

So u is algebraic over F and that K is algebraic over F.
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Q4. Can an algebraic extension be infinite?

Answer: Yes. An algebraic extension can have infinite degree.
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LESSON- 4
ALGEBRAICALLY CLOSED FIELDS

OBJECTIVES:

e To understand the concept of algebraically closed field and related results.

e To understand the relationship between algebraically closed fields and field extensions,
including how algebraic closures are minimal algebraic extensions.

e To understand the concept of the algebraic closure as the largest possible algebraic
extension of a field that also contains all roots of all polynomials from that field.

e To understand the uniqueness of algebraic closures up to isomorphism.

STRUCTURE:

4.1 Introduction

4.2 Algebraically closed fields
4.3 Algebraic closures

4.4 Summary

4.5 Technical Terms

4.6 Self-Assessment Questions

4.7 Suggested Readings

4.1 INTRODUCTION:

In the study of fields and polynomial equations, an essential question is whether a given field
contains all roots of its polynomials. A field F is called algebraically closed if every non-
constant polynomial with coefficients in F has a root in F. This means that every polynomial
can be completely factored into linear factors over F. This concept generalizes the familiar
property of the field of complex numbers C, where every polynomial over C has a complex
root. However, many fields like R, or Q are not algebraically closed. The general problem is
to determine whether an algebraically closed field containing a given field K exists. This
leads to the notion of the algebraic closure of K, which is a minimal algebraically closed
extension of K. In this lesson, we study the basic properties of algebraically closed fields,
their existence and uniqueness (up to isomorphism), and their fundamental role in
understanding field extensions.

4.2 ALGEBRAICALLY CLOSED FIELDS:

4.2.1 Definition: A field K is called an algebraically closed field if it possesses no proper
algebraic extensions i.e. if every algebraic extension of K coincides with K.
Example: The field of complex numbers is an algebraically closed field.
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4.2.2 Theorem: For any field K, the following are equivalent.

(1) K is algebraically closed.

(i1) Every irreducible polynomial in K [x] is of degree 1.

(iii) Every polynomial in K[x] of positive degree factors completely in K[x] into linear
factors. (iv) Every polynomial in K[x] of positive degree has at least one root in K.

Proof: Let K be a field.

(i) =(ii):-

Assume (i) i.e. K is algebraically closed.

Then by definition K has no proper algebraic extension.

Let p(x) be an irreducible polynomial in K[x] of degree n.

Then by known theorem, there exists an extension E of K such that [E: K | =degree of
p(x) = n. So E is a finite extension of K.

Therefore E is an algebraic extension of K.

By our assumption (i), we haveE = K.

= [E:K] =1

= deg p(x) =1

Therefore every irreducible polynomial in K[x] is of degree 1.

(ii)= (iii):-

Assume (ii) i.e.Every irreducible polynomial in K[x] is of degree 1.

Let f(x) be a polynomial in K[x] of positive degree. Since K[x] is a unique factorization,
domain f(x) can be uniquely written as the product of finite number of irreducible elements.
ie.,f(x) = uyp1(x) - pa(x) - ... pp(x) where uy € K and each p;(x) is an irreducible
polynomial in K [x]. By assumption, we have p;(x) is of degree 1.

So.p;(x) =x —u;,whereu; Ek;1<i<n

Therefore f(x) = ug(x — uy)(x — uy) -+ (x — u,)

So, every polynomial of positive degree in K [x] can be factored completely in K [x] into
linear factors.

(iii)= (iv):-

Assume (iii) i.e.Every polynomial in K[x] of positive degree can be factored completely in

K[x] into linear factors.
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Let f(x) be a polynomial of positive degree in K[x]. By assumption, f(x) can be written as
f(x) =ug(x —uy)(x —uy) — (x —u,) whereu; € K;1 <i<n. Soeachu; € Kisaroot
of f(x).Hencef (x) has atleast one root in K.

Therefore every polynomial of positive degree in K[x] has atleast one root in K.

(iv) = (i):-

Assume (iv) i.e. Every polynomial in K[x] of positive degree has atleast one root in K.

Let E be an algebraic extension of K. let a € E. Then a is an algebraic element over K.
There exists a minimal polynomial f(x) of a in K[x]. By our assumption, this minimal
polynomial has atleast one root in K, say b.

Thenf (x) = (x — b)f;(x), where deg f;(x) < deg f(x), fi(x) € K[x].

If a # b, then f;(a) = 0 we get a contradiction due to the minimality of f(x). So a =b.
Hence E =K.

This mean K doesnot possess any proper algebraic extension.

Therefore K is algebraically closed.

4.3 ALGEBRAIC CLOSURES:

4.3.1: Definition: If F is a subfield of a field E, then E is called an algebraic closure of F if

E is an algebraic extension of F and E is algebraically closed.

4.3.2 Lemma : Let F be a field and let g: F = L be an embedding of F into an algebraically
closed field L. Let E = F(a) be an algebraic extension of F. Then o can be extended to an
embedding n: E — L and the number of such extensions is equal to the number of distinct
roots of the minimal polynomial of .

Proof: Let F be a field and L be an algebraically closed field.

Suppose that : F — L be an embedding.

Then L is an extension of F such that 6(a) = a,Va € F.

Let E = F(0) be an algebraic extension of F. Then a € E is an algebraic element of F.

So, let p(x) = ag + a;x + -+ + x™ be the minimal polynomial of a over F.

Let p?(x) = o(ay) + o(a)x + -+ + x"e L[x]

Since L is algebraically closed, p?(x) has a root, say f in L.

Let us recall, if a is algebraic over F then every element in F (a) can be uniquely written as
by + bia + -+ + bia®, where k + 1 is the degree of the minimal polynomial p(x) of @ over

Fandb; € F;1 <i<k.
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Define a mapping n: F(a) — L by
n(by + by + -+ + ba®) = a(by) + a(by)f) + - + a(b) B*.
Since each element of F(a) has a unique representation as by + by + - + b a*,
by, by,..., by EF,
7 is well-defined.
Let a = by + bya + -+ bpa®, b = by + b + -+ + b,a* € F(a)
n ((b0 + by + -+ ba®) + (by + by + -+ + b,;a"))
=7 ((b0 +by) + (by + by)a+ -+ (b + b,;)ak)
= 0(bo + by) + o(by + by)B + -+ o(by + by ) B*
= 0(by) + a(by) + a(b))B + a(by)B + -+ o (bp) B* + o (by ) B*

= (a(by) + (b)) + 0 + a(b)B*) + (a(by) + o(by)B + - + a(by ) B*)
=n(bo + by + -+ + ba®) + n(by + bya + -+ + bak)

We prove that 1(ab) = n(a) - n(b)
Let f(x) = by + byx + - + byxk,

g(x) = by + byx + - + byx* € F[x].

Now £(x)g(x) = p(x)s(x) + r(x) for some s(x),7(x) € F[x] and r(x) = 0 or
deg r(x) < deg p(x).

Let h(x) = f(x)g(x)

h?(x) = p?(x) s?(x) + r7(x)

n(ab) = n(f(a)g(@)) = n(h(a)) =

n(r(a)) =r?(B) = p?(B) s°(B) + r7(B) = h°(B) = f7(B)g° (B) = n(a)n(b)
Therefore n: F(a) - L is a ring homomorphism and hence an embedding as 1 % 0.

So, n: F(a) — L is an embedding and also an extension of a.

Thus, with each root a of p(x), we have an embedding n: E — L, which is an extension of
0.Also, there is a one-to-one correspondence between the set of distinct roots of p?(x) in
Land the set of embeddings n of F(a) into L, that extends o. Hence the number of such
extensions is equal to the number of distinct roots of the minimal polynomial of « as distinct

roots give distinct embeddings into L.

4.3.3Theorem: Let E be an algebraic extension of a field F and let 0:F — L be an
embedding of F into an algebraically closed field L. Then o can be extended to an embedding

mE->L
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Proof: Let E be an algebraic extension of a field F and let o: F — L be an embedding of F
into an algebraically closed field L.
Define S ={(K , 0) / K is a subfield of E containing F and 0 is an extension of ¢
to an embedding of K into L. }
Since F is the subfield of E containing F and o: F — L is an extension of ¢ itself, we have
(F,o0) € S . Therefore S is non-empty.
Define a relation '<' on S by(K,0) < (K ',8") ifand only if K < K ' and @' is an extension
of 6.
Now we show that‘<’is partial ordering on S.
Reflexive: Let (K ,0) € S
SinceK € K and 6: K — L is an extension of 8: K — L, we have (K, 0) <
(K,0),V (K,0) €S.
Therefore < is reflexive on S.
Anti- Symmetric: Let (K {,60,),(K ,,6,) € S.
Suppose, (K 1,6,) < (K 3,6,) and (K 3,0;) < (K 1,6,)
SoK ; € K ,; 6, is an extension of 8; andK , € K ;; 8, is an extension of 0,.

:>K1:K2& 81:82
= (K 1,60,) = (K 2,0;)

Therefore' <'is antisymmetric on S.

Transitive: Let (K ,6,), (K 5,6,),(K 5,65) € S.

Suppose (K 1,61) < (K 2,6;) and (K 2,8;) < (K 3,65)

So K ;1 € K ,;0, is an extension of f;and K , € K 3; 85 is an extension of 6,

Now K, <SK,; 6,(a)=06,(a);foralla €K &K, S K 3; 6,(a) =05(a);foralla e K,

therefore K { € K 5; 6,(a) = 65(a) foralla € K ; and that
K 1 € K 3 & 05 is an extension of 6. So (K 1,6;) < (K 3,603)
Therefore < is transitive and hence (S, <) is a poset.

Let {(K ;,6;)} be achain in S.

Write K = UK ;; then K is a subfield of E containing F.
Define 68: K — L as follows:

Leta € K , then a € K ; for some i.

We define 6(a) = 6;(a)

Now we show that "8" is well-defined.

LetaEKl-&aEKj
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Then either K ; € K ;& K j © K ;[Since{(K ;, 6;)} is a chain ]

So, we get 0;(a) = 6;(a)

Hence 6 is well-defined.

Clearly 6 is an embedding of K into L, which is an extension of ; for all

i. Therefore (K ,0) € S and it is an upper bound of the chain {(K ;, 6;)}. So, by Zorn's
lemma 'S' has maximal element, Say (K , 7). Therefore, 1 is an embedding of K into L,
which is an extension of .

Now we claim K = E.

If possible, suppose that K # E . Then there exists a € E such that a € K.

Now «a is algebraic over F. (Since E is an algebraic extension of F ). Then by Lemma 4.3.2,
the embedding n: K — L has an extension n*: K (a) — L. Hence (K (a),n*) € S and
(K,n) < (K (a),n*), which is a contradiction(Since(K ,7n) is maximalelement in S.)

Therefore K = E. So, n: E = L is an embedding of E into L, which is an extension of o.

4.3.4 Theorem: Let K and K’ be algebraic closures of a field F. Then K = K’ under an
isomorphism that is an identity on F.(Or) Any two algebraic closures of a field F are
isomorphic.

Proof: Let F be a ficldand K, K’ be two algebraic closures of F.

Consider A: F — K be an embedding, givenby A(a) =aVa €F.

Since K ' is an algebraic extension of F, and K is algebraically closed, by theorem 4.3.3 A
can be extended to an embedding A*: K' > K. SoK' = 1" (K ")

Since K ' is algebraically closed, we have 1*(K ') is also algebraically closed.Also K is an
algebraic extension of F.

This implies K is an algebraic extension of A*(K ")(Since F c 1*(K ') € K)

So, "(K') =Kie. A":K' — Kis onto.

Therefore A*: K' — K is an isomorphism.

Thus K ' = K , under an isomorphism which acts as the identity on F.

Note: From the above Theorem 4.3.4, an algebraic closure of a field F is unique upto

isomorphism and we denote the algebraic closure of F by F.

4.3.5 Definition: let F be a field and let S = (x;);ea be an infinite set of commuting

indeterminants (or) variables. Then the elements of the form Y.nie ;i X, =- X; , a; €

F,x;; € S, with natural addition and multiplication form a ring F[S], called the polynomial
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ring over F in S. Note that for a polynomial Y.niee @;X;, X;, ... X;, to be zero, each coefficient

a; of each monomial x;, x;, ... x; must be zero.

4.3.6 Theorem: Let F be a field. Then there exists an algebraically closed field K
containing F as a subfield.

Proof:

PartI: Let F be a field.

Let us first construct an extension K of F in which every polynomial f(x) € F[x] of degree
> 1 has a root.

Let S be a set which is having one-to-one correspondence with the set of all polynomials in
F[x] of degree > 1.

We suppose that the element corresponding to a polynomial f = f(x) € F[x] of degree >
lisxf €8S.

Consider the polynomial ring F[S].

Part IT: Now we show that if A is an ideal in F[S] generated by all polynomials f (xf) of
degree > 1, then A # F[S]

Suppose if possible A = F[S], where A is an ideal in F[S] generated by all polynomials
f(xf) in F[S] are of degree > 1.

Since A = F[S],wehavel € A

1= glfl(xfl) + ngz(xfz) + ---gnfn(xfn) — — — (Dwhere g; € F[S],xfl,xfz, .. X, €5 and
each fl-(xfl.) is of degree > 1

Since each g; € F[S] i.e., each g; is a polynomial in a finite no. of variable in S.

Write x;, = x;, for each f; € F[x]

After re-indexing we assume that xz, = X1, Xz, = X3, ... ... Xf, = X, and the variables occur in
all g;;1 < i <narein the set{xy, X3, ..., Xp, Xps1, oor Xm}

Then we can write (1) as Y, g;(x1, X2, ..., Xp) * fi(x)---(2)

Now f; (%), f2(x), ..., fn(x) € F[x]. Then there exists an extension E of F in which every
polynomial has a root. So let a; be the root of f;(x) in E;i =1, ...n.

Takingx; = a;;i=1,2,..nandx; =0,i =n+1,..m,

wegetl =YY", gi(ay, ay, ..., 2y, 0,...,0)fi(a;)

= 1 = 0, which is contradiction (Since «; is a root of f;(x) and f;(a;) = 0)

Thus A # F[S]
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So A is a proper ideal in F[S].Then by Zorn's Lemma, A can be embedded in a maximal ideal

say M of F[S].

So, % is a field containing F.

Part I1I: let f € F[x] be a polynomial of degree > 1. Then clearly f (xf) EAcC M

Let f(x) = ap+ ayx + -+ ap,x™, a; € F. Let us denote the coset g + M by g in %

Therefore 0= f(xs)

=ao + ayxp + -+ + apx”

= Qo+ % + 0+ Tpx
= ap + a1 Xp + - + am X"

Therefore X; is a root of f(x) in %

Thus we have constructed a field K ; named by % i.e. an extension of F in which every

polynomial f(x) € F[x] of degree > 1 has a root.

Inductively we can now form a chain of fields K ; € K , € K ;3 € -+ every polynomials
in K ,[x] of degree > 1 hasarootin K ,;4 .Let K = Uj-; K ;. Then clearly K is a field
and every polynomial in K[x] of positive degree has a root in K .

By known result, K is an algebraically closed field containing F as a subfield.

4.3.7 Theorem: Let F be a field. Then there exists an extension F that is algebraic over F
and is algebraically closed, that is, each field has an algebraic closure.

Proof: By theorem 4.3.6, F has an extension K which is algebraically closed.

Let F = {a € K|a is algebraic over F}.

Let F is a subfield of K and it is an algebraic extension of F ... ... ... e ev eev oo(1)

Let f(x) € F[x] be a polynomial of degree > 1.

Note that f(x) € F[x] c K[x].

Since K is algebraically closed, we have f(x) has a root say, a € K.

Therefore a € K is algebraic over F. So a € F.

Therefore every polynomial f(x) € F[x] of positive degree has a root in F.

Then by known result, F is algebraically closed---(2)

From (1) & (2), F is an algebraic closure of F.

Hence every field has an algebraic closure.

Note: Let 0: F — L be an embedding of F into L. Then the mapping from F[x] to L[x] given

by ryg + rix + -+ 1px™ =a(ry) + a(ry))x + -+ a(1r,)x™ is a ring homomorphism.
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Clearly this extends o and we denote this extended mapping by 6" so o*: F[x] — L[x] isa

homomorphism and image of f(x) € F[x] under ¢* will be denoted by f°.

4.4 SUMMARY:

An algebraically closed field is defined as a field in which every non-constant polynomial has
at least one root within the field itself. This implies that every polynomial over such a field
can be factored completely into linear factors. For instance, the field of complex numbers C
is algebraically closed because every polynomial with complex coefficients has all its roots in
C. This lesson emphasizes several equivalent characterizations of algebraically closed fields.

An algebraic closure of a field F is an algebraic extension of F that is also algebraically
closed. This means it contains all roots of all polynomials with coefficients in F. Any two
algebraic closures are unique up to isomorphism. The construction of an algebraic closure of
F involves extending the field F by successively adjoining roots of polynomials over F,
ensuring that the resulting field is both an algebraic extension and algebraically closed.

4.5 TECHNICAL TERMS:

e Algebraically Closed Field: A field K is called an algebraically closed field if it possesses
no proper algebraic extensions i.e. if every algebraic extension of K coincides with K.

e Irreducible Polynomial over F: This is a polynomial f(x) € F[x] that cannot be broken
down into simpler (non-trivial) polynomials in F[x] using multiplication.

e Algebraic Element of F: This refers to an element u is an extension E of F that is a
solution of some polynomial with coefficients F. In other words, it satisfies a polynomial
with coefficients only numbers from the field F.

e Algebraic Extension E of F: This is a bigger field E built from a smaller one F, where
every element of E is algebraic over the smaller field F. i.e, each element of E comes from
solving a polynomial whose coefficients lie in the original field F.

e Algebraic Closure of F: This is the largest possible algebraic extension of a field F that
also contains all roots of all polynomials from the field F.

4.6 SELF-ASSESSMENT QUESTIONS:

Q1. Is the field R of real numbers, algebraically closed? Justify.
Answer: No, R is not algebraically closed because polynomials like x>+1€R[x] do not have
real roots. Hence, not every non-constant polynomial over R has a root in R.

Q2. Prove or disprove: “If a field is algebraically closed, then every irreducible polynomial
over it is linear.”

Answer: True. If a field F is algebraically closed, then every non-constant polynomial in F[x]
splits completely into linear factors. Hence, irreducible polynomials must is of degree one.

Q3. Let KEL and L be a field extension of K. If L is algebraically closed, what can be said
about the algebraic closure of K?

Answer: The algebraic closure of K is contained in L. Since L is algebraically closed, it
contains all roots of algebraic polynomials over K, so the algebraic closure of K lies inside L.
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Q4. Is it true that every algebraic extension of an algebraically closed field is trivial? Explain.

Answer: Yes. If F is algebraically closed and K is an algebraic extension of F, then K=F.
Since all algebraic elements over F already lie in F, there are no proper algebraic extensions
of an algebraically closed field.

Q5. Can a finite field be algebraically closed? Explain.

Answer: No. A finite field cannot be algebraically closed because not all polynomials over it
can have all their roots within the field.

Q6: If F is a subfield of an algebraically closed field K , then is it true that the algebraic
closure F of F in K is also algebraically closed.

Answer: Let F be a subfield of an algebraically closed field K and let F be an algebraic
closureof FinK. SoFSFCcK

Let f(x) € F[x] be any polynomial of positive degree.

Let us recall, F = {u € K/ wu is algebraic over F}. Then F is subfield of K and is an
algebraic extension of F.

For f(x) € F[x], we have f(x) € K [x]. Letdeg f(x) = 1

Therefore f(x) € K [x] is a polynomial of positive degree. Since K 1is algebraically closed,
by theorem 4.2.2, we have f(x) has aroot, say u in K .

Sou € K is algebraic over F [Since F ¢ F c K such that F is an algebraic extension of F.]
and that u € F

Therefore by theorem 4.2.2, F is algebraically closed.

4.7 SUGGESTED READINGS:

1. Bhattacharya, P. B., S. K. Jain and S. R. Nagpaul. 1997. Basic Abstract Algebra, 2nd
edition. UK: Cambridge University Press (Indian Edition).

2. Hungerford, Thomas W. Abstract Algebra, 1974, Springer-Verlag, New York

3. Khanna, V. K. and S. K. Bhambari. A Course in Abstract Algebra, 3rd edition. New
Delhi: Vikas Publishing House Pvt. Ltd.

4. Lang, S. 1993. Algebra, 3rd edition. Boston: Addison-Wesley, Mass.

5. LS. Luther and I.B.S.Passi, Algebra, Vol. IV-Field Theory, Narosa Publishing House
,2012.

6. Ian Stewart, Galios Theory, Chapman and Hall/CRC, 2004.

- Prof. R. Srinvasa Rao



LESSON- 5
SPLITTING FIELDS

OBJECTIVE:

e To determine the extension K of F for a polynomial over a given field F: splitting field.

e To investigate the existence and uniqueness of a splitting field of a polynomial over a
given field.

e To learn and study the construction of a splitting field for the polynomial over a given
field.

STRUCTURE:

5.1 Introduction

5.2 Splitting Fields

5.3 Summary

5.4 Technical terms

5.5 Self- Assessment Questions

5.6 Suggested Readings

5.1 INTRODUCTION:

The idea of splitting fields arose from the necessity to find roots of polynomials, especially
those that do not have roots in the base field, and the first usage can be traced to Galois work
in 1830’s specially in the context of solving congruences modulo a prime. For example, some
polynomials, like x? + 1 over the real numbers R, have no roots with the base field R.

However, it splits in the field of complex numbers C where x2? + 1= (x +i)(x — i)
Therefore, C is the splitting field of x? + 1 over R. Splitting fields provide a way to extend
the field to include these roots.

5.2 SPLITTING FIELDS:

We now give the definition of a splitting field and some examples on it.

5.2.1: Definition: Let F be any field and f(x) € F[x] be a polynomial of degree = 1. Then
an extension K of F is called a splitting field of f(x) over F, if
i)f (x) can be factorized into linear factors in K[x] that is,

f)=alx —a)(x —ay)...(x — a,), a,,a,as, ....,a, € Kand a € F.

ii) K = Flay,ay,as, ..., a, ), that is K is generated by F and the roots a,, a5, as, ..., a, of

fx)inK.
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5.2.2: Examples:

i) Consider f (x) = x? — 2 € Q[x]. Then the field Q(v2) = {a + bv2Z |a, b € 2|} isa
splitting field of x? — 2 € Q[x] over Q.

ii)Consider g(x) = x? + 1 € R[x] Then € = R[i] is a splitting field of g(x) over R.

5.2.3: Note: For a polynomial f(x)in F[x] of degree = 1, a splitting field of f(x) over F

always exists. This is because, for a field F, since f(x) € F[x] € F [x], f(x) has all its roots

say B1, B2, Bs.... By in F and that F(B,, B>, Bs. ... B)) is a splitting field of f(x) over F.

5.2.4: Theorem: Let F be a field and f(x) be a polynomial in F[x] of degree = 1. Then the
degree of the splitting field K of f(x) over F is finite and hence K is an algebraic extension

of F.

Proof: Let F be a field and f(x) € F[x] be a polynomial of degree = 1.
Let F be the algebraic closure of F.

Now f(x) € F[x] has all its roots say a;, a5, a3....a, € F

Then K = F(a,, as, as....a,) 1s a splitting field of f(x) over F.

Since, each of @y, a5, as. .. . a,, are algebraic over F, the degree of K over F is finite and

hence K is an algebraic extension of F.

5.2.5: Theorem (Uniqueness of the splitting field): Let K be a splitting field of a
polynomial f(x) over a field F. If E is another splitting field of f(x) over F then 3 an

isomorphism og: E — K which is an identity on F.

Proof: Let f(x) € F[x] be a polynomial over F.

Also, let K be a splitting field of f(x) over F and E be another splitting field f (x) over F.
Obviously, F is a subfield of E and K.

Let K be the algebraic closure of K.

Let g: F — F be an identity mapping.

Now g: F — K defined by o(a) = a for all @ € F is an embedding of F into K.
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Since E is an algebraic extension of F, by known theorem, & can be extended to an

embedding A: E — Kof E into K.
Now f(x) can be factorized into linear factors in E[x] as
f(x) =a,(x —a)(x —ay)...(x —ay),a, € Fand ay,a;, a3, ....,a, €E
So, E = F(a,,a,,as....a,)
Let f(x) = ag + ayx + ayx?+...4+ a,_1x" ! + a,x™ where ay, a,,a,,...,a, = 0 EF.
Letusset f(x) = fA(x) = fo(x) = an(x —}l(crl))(x —R(az))...(x —A(an))
= f1(x) K[x]
So, A(ay), A(as)..... A(a,,) are the roots of f(x) in K.
Then F()l(.:rl),)l(az) ..... }l(a:n)) — K as K is a splitting field of f(x) over F.

We have K = F(}L(al).ﬂ(ag). ﬂ(an))

Hence E is isomorphic to K by A which is an identity on F.

5.2.6: Examples:

i) The degree of extension of the splitting field of x®> — 2 € Q[x] is 6
Solution: Let f(x) = x> — 2 € Q[x].

Then f(x) is irreducible over Q by Einstein’s criterion.

Also x3 — 2 is the minimal polynomial of 2'/s.

Therefore, LIET Q (Elfs) with [Q (21/3) : Q] = degf(x) =3.

xF-2
But Q (Elfs) is not the splitting field of x* — 2 € Q[x].

Now, f(x) =x3 -2
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- (x _ 21/3) (x2 +2Y3x + 22/3)

So, f(x) = x* — 2 has two complex roots say a and @.

W 2y : I 2/
—-2/3+4i,J3x2 /2 —-27/2—-i,/3x2/2
N a N

The roots are o« = . , .

Thus, p(x) = x? + 2Vax+ 2°3 € Q (21/3) [x] is irreducible over Q (21/3)

and is of degree 2.

1

o(273)Ix]
(p(x))

12

Q (2,1/3) () = Q (2,1/3,c.:).

Hence

Since p(x) € Q (212)3) (x) has degree 2 and its roots o and @ are not in
0(2%). |e(2"5.a):@(273)] = degp(x)) = 2
Now all the roots of f(x), viz., 21/3, o EQ (21f3,a).

Hence, Q (21«’3, 0() is a splitting field of f(x) = x® — 2 € 2[x] over Q.

Also, [Q (21/3..:x) : Q] - [Q (21/3..:x) .Q (21/3)] [Q (21/3) :Q] = (2)(3) =6.
Thus, the solution is completed.

ii) Let » be a prime. Then f(x) = xP — 1 € Q[x] has a splitting field Q(a) where & = 1 and
al? = 1. Also [Q(a): Q] =p — 1.

Solution: we have f(x) = xP — 1 € Q[x] where p is prime.
Now f(x) =xF -1

= (x — 1) (1 + x +x%+...+xP71) € Q[x] is an irreducible polynomial over Q.
We get an extension field E of Q such that E contains a root a of
g(x)=1+x+x?+...+xP71 € Q[x] and g(x) is irreducible over Q.
Now [Q(a): Q] =deg g(x) =p — 1.

Soa # 1and a? = 1 asaisarootof f(x).
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Now we assert that 1, a, a2, ..., aP~1 are the p distinct roots of f(x).
Clearly a? = 1= (rx‘)p = 1V the integer i.

Thus, we need to show that all these roots are distinct.

Suppose thata' = a/,0 =i <j<p—1.

Then '~/ = 1.

Since pis prime and 0 < j — i < p, we have (p, j —i) = 1.

= 1= pxy + (j — i)y, for some integers x, and y;.

Now a = at = @P*e*U-ye

= qP¥o_gJ—D¥o

= (@?y%. (1)

= (1)*. (1) =1

. a = 1, which is a contradiction.

So, 1, @, a4,..., aP~1 are the p distinct roots of f(x) = x? — 1.
Hence, the splitting field of f(x) = xP~* € Q[x] is Q(a).

Since, the minimal polynomial of & 1s g{x)}and deg(g(x)) =p — 1,
We have [Q(a): Q] =deg g(x) =p — 1.

This completes the solution.

iii) Let F = 2 / 2) The splitting field of x* + x% + 1 € F[x] is a finite field with 8 elements.
Solution: Let f(x) = x* + x? + 1 € F[x] where F = Z/(Z) (or) Zs.

Clearly degf(x) = 3.
Also 0,1 € Z, are not the roots of f(x).

Thus, f(x) = x* + x? + 1 is irreducible over F.



Centre for Distance Education 5.6 Acharya Nagarjuna University

So, we get an extension E of F = Z, that contains a root & of f(x).
Z,(a) 1s a subfield of E.
We now prove that Z, (a) or F(«) is a splitting field of f(x) over F = Z,.

Since « is a root of f(x), we have f{&)

>a*+a’*+1=0.
Now f(x) = (x —a)(x* + (¢ + Dx + ala + 1))
=x—a)x—a>)x+a’+a+1)

So, all the roots of f(x) are in Z, (&) and hence Z,(a) is a splitting field of f(x) over Z,.

=7Z,(a) ={01,aa’?1+al+a?a+a?l+a+a?}Wherea®*+a?+1=0

So, Z,(a) is a splitting field of x* + x2 + 1 € F[x] which contains 8 elements.

iv) The splitting field of f(x) = x* — 2 € Q[x] over Qis @ (2154, i) and its degree of
extension is 8.
Solution: we have f(x) = x* — 2 € Q[x]

Clearly f(x) is irreducible over Q by Einstein’s Criterion and degf(x) = 4.

Thus £ (x) is the minimal polynomial of 2"/4 over Q.

So [@ (274):0] = degf(x) = 4

Now f(x) =x* —2 = x*— (;31/4)‘6L = (x2 = 2"2) (x> +2'2)
- (v 2) (o 22) (2 (24))

(e 24) (e 2 (e 28) (e 2°4)

Clearly g(x) = x2 + 2'/2 is irreducible over Q (21f4).
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Thus, the root 2Y/4i has x2 + 2%/2 as its minimal polynomial over @ (Elf 4).
So [@ (272) (2"21): @ (274)] = deg g(x) =2
Now clearly Q (21f4) (21/4i) =Q (21&, i) is the splitting field of f(x) = x* — 2 € Q[x]

and [Q (2,1): @] =[@ (2/,1): @ (2")] [0 (27¢) 0]

—2x4=8.

This completes the solution.

5.3 SUMMARY:

This lesson presented the fundamental concept of constructing the splitting field of a given
polynomial f(x) € F[x] over a field F. In summary, a splitting field of a polynomial f(x)
over a field F is the smallest extension E of F where f(x) splits into linear factors. From
uniqueness theorem, the reader can easily understand that, the splitting field of a polynomial
is unique (up to isomorphism). Few examples of constructing a splitting field for a given
polynomial and their corresponding degrees were also included for better understanding of
the reader. While the concept of splitting fields might seem abstract, its underlying principles,
particularly in Galois theory have real-world applications in areas like coding theory and
cryptography, where they are applied to construct error-correcting codes and secure
communication protocols.

5.4 TECHNICAL TERMS:

Splitting Field:_Let F be any field and f(x) € F[x] be a polynomial of degree = 1. Then an

extension K of F is called a splitting field of f (x) over F, if
i) f(x) can be factorized into linear factors in K[x]. That is,
fx)=alx —a)(x—ay)...(x — a,) a,,a;,as....a, anda € F.

ii) K = F(ay,as,as,..., &) thatis K is generated by F and the roots a,, a5, as, ..., a, of

F(x) inK.

Irreducible polynomial: A polynomial f(x) € F[x] is called irreducible if the degree of
f(x) = 1 and whenever f(x) = g(x)h(x), where g(x), h(x) € F[x] then g(x) € F (or)

h(x) € F. If a polynomial is not irreducible, it is called reducible.

Einstein criterion: Let f(x) = a; + ayx + a;x%+... +a,_1x" 1+ a,x" € Z[x], n = 1.
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If there is a prime p such that p? t ag, plag, play,pla,, ..., pla,—; and p t a, then f{x) is

irreducible over Q.

Algebraic element: Let E be an extension of a field F. An element « € E is said to be

algebraic over F if there exists a non-constant polynomial p(x) € F[x] such that p(a) = 0.

Minimal polynomial: The monic irreducible polynomial in F[x] for which u is a root will be

called the minimal polynomial of u over F.

Algebraic extension: An extension field E of F is called algebraic if each element of E is

algebraic over F.

Algebraically Closed Field: A field K is algebraically closed if it possesses no proper

algebraic extensions, that is, if every algebraic extension of K coincides with K.
Algebraic closure: If F is a subfield of E, then E is called an algebraic closure of F if
i) E is an algebraic extension of F.
ii) E 1s algebraically closed.
5.5 SELF- ASSESSMENT QUESTIONS:
1. Find the splitting field of x* + 4 over Q.
Ans: x* +4 = (x? + 2)% — 4x?
=(x? —2x+ 2)(x? + 2x + 2) in Q[x]

By Eisenstein’s criterion, (x? — 2x + 2) and (x? + 2x + 2) are irreducible over Q. Their

rootsinCare 1 +iand —1 4 i.

Thus, the splitting field of x* + 4 over Qis Q(1 +i,1—i,—1+i,—1 —i) = Q(i).
Here, clearly [Q(i): Q] = 2.

2. Find the splitting field of x® + 1 over Z,.

Ans:Over Z, , x® +1=x°-1=(x*-1)2 = (x + 1D?(x? +x + 1)?

Therootsare 1,1, «, a, 1 +a, 1+ a, where a is the root of the irreducible polynomial

x?+ x4+ 1over Z,.
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Hence, the splitting field of f(x) over Z, is Z, (a).

Also, [Z; (a) : Z,] = 2.

3. Find the splitting field of f(x) = x* + x? + 1 over Q.

Ans: Given f(x) =x*+x?2 +1

Then, f(x) = (x? + 1)? — x?
=(x?—x+1DK%*+x+1)in Q[x].

—1+4/3i
2

So, the roots of f(x) are +w, +w? where w =

Hence, the splitting field of x* + x% + 1 over Q is Q(w, w?) = Q(w) and
[Q(w):Q] = 2 ( w satisfies the irreducible polynomial x? + x + 1 over Q).
4. Construct the splitting field of x* — 1 over Q.

Ans: Let f(x) =x* —1 € Q[x]
f)=x3—-1=(Cx-DE%2+x+1)

Let e = 1 be a cube root of 1.

V3i

So, the roots of f(x) are 1, w, w? where w = _?1 +—

Hence, splitting field of x* — 1 over Q is

01, 0,07 =Q(@)= ¢ (T +3) = 0 (v3i).

Thus, splitting field x* — 1 over Q is @ (w) (or)Q(+/3)

Also, the degree Q(w) over Q is

[Q(w):Q] = 2 (~ x? + x + 1isirreducible over Q which satisfies w )
5. Find a splitting field of x* — 2 € Z5[x]

Ans: Let f(x) =x% — 2 € Z3[x]

Now f(x)=x*—-2=x*+1=(x+1)% in Z5[x]
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Thus, a splitting field of x3 — 2 € Z5[x] is

Z3(—1,-1,-1) = Z5.

6. Identify the splitting field of f(x) = x? — x + 1 over Q(w).

Ans: Let f(x) =x? —x +1 € Q(w)x].

The roots of f(x)are 1 + w,1 + w? € Q(w).

Hence Q(w) 1s the splitting field over itself.

7. Define splitting field of a polynomial f(x) over a field F with 2 examples.
Ans: (Refer: Definition 5.2.1 and Examples 5.2.2).

8. State and prove uniqueness theorem on splitting fields of a polynomial f{x) over a field F.
Ans: (Refer: Theorem 5.2.5).

5.6 SUGGESTED READINGS:

1. P. B. Bhattacharya, S. K. Jain and S. R. Nag Paul, Basic Abstract Algebra, Second
Edition, Cambridge University Press,1995.

2. L. N. Herstein, Topics in Algebra, Second Edition, John Wiley & sons, Inc,1975.

3. Thomas W. Hungerford, Algebra, Springer-Verlag, New York.

- Dr. P. Vijaya Saradhi




LESSON- 6
NORMAL EXTENSIONS

OBJECTIVE:

e To know the splitting field of a family of polynomials of over a given field
e To provide equivalent conditions for an extension E of F to be a splitting field of a family
of polynomials over F: Normal extension of a field F.

e To give illustrative examples which help us to understand how to exhibit an extension of
a given field is either normal or not.

STRUCTURE:

6.1 Introduction

6.2 Normal Extensions

6.3 Summary

6.4 Technical terms

6.5 Self Assessment Questions

6.6 Suggested Readings

6.1 INTRODUCTION:

The concept of normal extension of a field was developed by Evariste Galois in the 1830’s as
a part of his work on Galois theory, which he introduced to solve the problem of finding
general solutions to polynomial equations. In field theory, a normal extension is an algebraic
field extension where every irreducible polynomial over the base field that has a root in the
extension splits completely into linear factors within the extension. For example, the
extension Q(v/2) over Q is normal because the minimal polynomial x? — 2 splits in Q(+/2).
A normal extension is also charecterised as the splitting field of a family of polynomials over
the base field. This means that the extension contains all the roots of polynomials in that
family.

6.2 NORMAL EXTENSIONS:

In lesson 5, we have defined the splitting field of a polynomial over a given field. Now we
define the splitting field of a family of polynomials over a field F. Also, the proof of
uniqueness (up to isomorphism) can be extended to prove the uniqueness of a splitting field
of a family of polynomials over a given field.

6.2.1 Definition:

Let F be any field and {f; (x)/i € I} be a family of polynomials of degree = 1 over F. An
extension E or F is said to be the splitting field of the family of polynomials {f;(x)|i € I}, if
1) Each f; (x) splits into linear factors in E[x].

ii) E is generated over F by all the roots of the polynomials f;(x),i € I.
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6.2.2 Theorem: Let E be an algebraic extension of a field F contained in algebraic closure

F of F. Then the following conditions are equivalent.

1) Every irreducible polynomial in F[x] that has a root in E splits into linear factors in E.

ii) E is the splitting field of a family of polynomial in F[x].

iii) Every embedding o of E into F that keeps each element of F fixed maps E onto E (or, &
may be regarded as an automorphism of E).

Proof: Let E be an algebraic extension of a field F contained in an algebraic closure F of F.
(i) = (ii): Assume that every irreducible polynomial in F[x] that has a root in E splits into
linear facors in E.

Let « € E. Since E is an algebraic extension of F, @ has a minimal polynomial P, (x) € F[x]
such that B, (a) = 0, where P, (x) is an irreducible polynomial over a field F.

By hypothesis, B, (x) splits into linear factors in E[x]. Thus E is an algebraic extension of
F such that the family of polynomials {P,(x)| @ € E} splits into linear factors in E.
Moreover, E is generated over F by all roots of the family of polynomials {E,(x)| a € E}.
Hence E is the splitting field of the family of polynomials {P,(x)| @ € E}, P,(x) € F[x].
This proves condition (ii).

Thus, (i) = (ii). ------ (D).

(ii) = (iii): Assume that E is a splitting field of a family of polynomials {f; (x)|i € I}in F[x].

Let o: E — F be any embedding of E into F such that c(a) =a V a € F.
Note that if « is aroot of f;(x), 1 € I then o(«) is also a root of f; (x) € F[x].

Thus ¢ maps E into E as E is generated over F by the roots of the family of polynomials

{fi(x)|i € I}in F[x].
Therefore ¢: E — E 1s an embedding of E into E such that o(a) = a V a € F.

Now since E is an algebraic extension of F, ¢g: E — E is an embedding of E into E
(i.e.,o(E) = E) and ¢ is an identity on F, by known theorem ¢ is an automorphism of E.

This Proves condition(iii).
Hence (ii) = (iii). ------ (2).
(iii) = (i): Assume that every embedding ¢: E — F which is an identity on F maps E onto E.

Let f(x) € F[x] be an irreducible polynomial over F and f(x) has aroot « € E.
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Since all the roots of f(x) are in F, let § € F be another root of f(x).

Since f (x) is irreducible over F, we have F- isomorphisms

“ = F(p)

I o F(a) and G =

e ~
Therefore, F(a) = F(f).
Let o: F(a) — F(B) be the above isomorphism. Then g(a) =a ¥ a € F and a(a) = S.
Note that g: F(a) — F is an embedding of F () into an algebraically closed field F.
Now since E is an algebraic extension of F, E is also an algebraic extension of F(a).
Thus ¢ can be extended to an embedding ¢*: E — F such that ¢*(a) = o(a) = a forall
a €F.
By hypothesis ¢* is an automorphism of E. i.e., ¢*(E) = E.
Also o*(a) =a(a) = BEE.
Thus, all the roots of f(x) are in E and hence f(x) splits into linear factors in E.
Hence every irreducible polynomial that has a root in E splits into linear factors in E.
This proves condition (i).
Hence (ii1) = (i). ------ (3).
From (1), (2) and (3) we have, (i) = (ii) = (iii) = (i).
Thus, the conditions (i), (ii) and (iii) are all equivalent.

6.2.3: Note: The above theorem proves a set of equivalent conditions for an extension E of F

to be a splitting field of a family of polynomials over a given field F.

6.2.4: Definition:_An extension E of a field F is called normal if E satisifies any one of the

equivalent conditions of Theorem 6.2.2
6.2.5: Examples of normal extensions:

i) C is a normal extension of R.
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Solution: We know that every irreducible polynomial over R have either a real root or a

complex root or both.
Hence any irreducible polynomial in R[x] can split into linear factors in C.
Therefore, C is a normal extension of R.
ii) R is not a normal extension of Q.
Solution: Consider a polynomial x* — 2 € Q[x].
LetP(x)=x3-2
= x3 — (2'/3)3

= (x — 21/3) (xz + 23 ¢ zzfs)

iy iy —
-2 /3+2 /3 xf3i
2

=(x— 21f3)(x —a)(x+ a) wherea =
Thus, P(x) cannot split into linear factors in R as it has complex roots.
Hence R is not a normal extension of Q.
iii) Let E be an extension of a field F such that [E: F] = 2. Then E is a normal extension of F.
Solution: Let E be an extension of a field F such that [E: F] = 2.
= E is a finite extension of F.
Hence E is an algebraic extension.
Leta € Eanda € F.
= There exists a minimal polynomial P(x) € F[x] such that P{(a) = 0 and degP(x) = 1.
= [F(a): F] = degP(x)
Consider [E: F] = [E: F(a)][F(a): F]
= 2= [E:F(a)][F(a): F]
= [E:F(a)] =1and [F(a):F] = 2 = degP(x).

Therefore, E = F(a).
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Thus E is a splitting field of the polynomial P(x).

Hence E is a normal Extension of F.

iv) If @ = cos (g) + isin (g) , then Q(a) 1s a normal extension of Q.

Solution: Let @« = cos (g) + isin (g) =—_ 4

1 i
\,"E \,"'i V2

The polynomial in Q («) having « as arootis x —a = 0.

1+i
=Y =0 = —
V2
=>\2x=1+i
=>2x—1=i

> (W2Zx—1)" =2
=>2x24+1-2V2x =-1
=2(x2+1—+2x) =0
=>x24+1—-v2x=0
= x?+1)2 = (ﬁx)z
S>xt+2x2+1=2x?=2x*+1=0
Thus, the polynomial in Q[x] having « as a root is x* + 1

Now x* +1=(x%)? + 1 — 2x? + 2x?

=2+ 12— (V2x) = (P + 1 +VZ0) (2% + 1 — v2¥)

Thus, the roots of x* + 1 = 0 are 1_4_;—1;;:
v W

%’ all the roots of x* + 1 = 0 are in Q(«).

W

Since ¢ =

(In terms of «, these roots are a, a3, a® and a”).

Therefore, Q(a) is a splitting field of x* + 1 in Q[x].
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Hence Q(«) is a normal extension of Q.

v) Let E be a finite extension of F. Then E is a normal extension of F if and only if E is a

splitting field of a polynomial f(x) € F[x].

Solution: Let E be a finite extension of F.

Then E = F (aq, 5, . ..., a,) where @y, a5,....,a, € E.

Note that each «; is algebraic over F.

Let P; (x) be the minimal polynomial for «; over F foralli=1,2, ...... , .

Let E be a normal extension of F.

Then we have for each i, P, (x) is an irreducible polynomial over F with one root «; € E.
Also P;(x) has all its roots in E as E is the normal extension of F.

Let f(x) = Py(x)P,(x). P (x)....... B,(x).

Clearly f(x) € F[x] as P;(x) € F[x] forall i=1, 2, ..., n.

So, all the roots of f(x) are in E and E is the smallest extension of F containing all the roots

of f(x).

Thus E = F (a,, a3, . ..., ay,) is the splitting field of the polynomial f(x) € F[x].
Conversely, suppose that E is a splitting field of a polynomial f(x) € F[x].
Then E is a normal extension of F by the definition of normal extension.

6.3 SUMMARY:

This lecture imparted the basic concept of the splitting field of a family of polynomials over
the base field namely the normal extension. In short normal extension contains all the roots of
polynomials in that family. Some equivalent conditions were also given for an extension E of
the base field F to be a splitting field of a family of polynomials over F. Few illustrative
examples were also given in this lesson for showing whether the given extension is normal or
not for the benefit of reader. Normal extensions have applications in coding theory,
cryptography and network security, primarily through their use in constructing and analysing
error-correcting codes, building secure cryptographic systems and designing robust network
protocols. In particular normal extensions are crucial in constructing algebraic codes, which
are used for error detection and correction in data transmission and storage.
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6.4 TECHNICAL TERMS:

Splitting field: Let F be any field and f(x) € F[x] be any polynomial of degree = 1. Then

an extension K of F is called a splitting field of f(x) over F, if
i) f(x) can be factorized into liner factors in K[x]. That is,

f)=alx—a))(x—az)...... (x —a,), ay,as,....a, EKanda € F.
i)K=F(a,as,..., a,)- 1.e., K is generated by F and the roots «;, as,..., a, of f(x)InK.

Irreducible polynomial: A polynomial f(x) € F[x] is called irreducible if the degree of
f(x) = 1and whenever f(x) = g(x)h(x), where g(x), h(x) € F[x] then g(x) € F or

h(x) € F.Ifapolynomial is not irreducible, it is called reducible.

Algebraic element: Let E be an extension of a field F. An element « € E is called algebraic

over F if there exists a non-constant polynomial P(x) € F[x] such that P(a) = 0.

Minimal polynomial: The monic irreducible polynomial in F[x] for which a will be a root is

called the minimal polynomial of a over F.

Algebraic Extension: An extension E of a field F is called algebraic if each element of E is

algebraic over F.

Algebraically closed field: A field K is algebraically closed if it possesses no proper

algebraic extensions. That is, if every algebraic extension of K coincides with K.

Normal extension: An extension E of a field F is called normal if E satisfies any one of the

equivalent conditions of theorem 6.2.2 in this lesson.

Splitting field of a family of polynomials: Let F be any field and {f;(x)|i € I} be a family
of polynomials of degree = 1 over F. An extension E of F is said to be the splitting field of

the family of polynomials {f; (x)|i € I}, if

(i) Each f; (x) splits into linear factors in E[x].

(ii) E is generated over F by all the roots of the polynomials f; (x),i € I.
6.5 SELF-ASSESSMENT QUESTIONS:

1. Show that Q(+/2) is a normal extension of Q.
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Ans: The minimal polynomial of 4/2 over Q is x2 — 2.

The polynomial splits completely in Q as
x?—2=(x—V2)(x +v2).

Therefore, Q (/2 )is a normal extension of Q.

2. Show that Q (v/2, i) is a normal extension of Q.

Ans: The polynomial x2 4 1 has a root namely i =v—1 in Q (v/2, i) and it splits completely

Q (W2, asx2+ 1= (x+i)(x—i).

Also, the polynomial x? — 2 has a root namely /2 in Q (+/2, i) and it splits completely in
QW2 i)asx? - 2= (x + \E)(x — \E)

Thus Q(+/2, i) is a normal extension of Q.
3. Show that Q (3/2) is not a normal extension of Q.

Ans: The minimal polynomial of 3/2 over Q is x3 — 2.
3
Also x® — 2 =x%— (21/3) = x3 — (%JE)S

= (x — ¥2)(x% + 2'3x + 2%/3)
This polynomial x3 — 2 has one real root 3/2 in Q(3/2) and two complex roots.
Since the complex roots are not in Q(/2), Q(¥/2) is not a normal extension.
4. Show that Q(¥/2) is not a normal extension of Q.

Ans: The minimal polynomial of /2 is x* — 2.

Also x* — 2 = x*- (15)4

= [ -y + ()]
Thus, the roots of x*-2 are +3/2 and +iy/?2

Clearly +%/2 € Q(¥/2) but the other two complex roots are not in Q(%/2).
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Therefore, Q(3/2) is not a normal extension of Q.

5. Show that Q (+/—2) is a normal extension of Q.

Ans: The minimal polynomial of 4/—2 over Q is x2 + 2

The roots of x2 + 2 in C are v/—2, - /—2 and both of these two roots € Q(v/—2).
Hence Q(+/—2) is a normal extension of Q.

6. If x 1s not algebraic over Q then show that Q (x) is not a normal extension of Q.
Ans: Given x is not algebraic over Q.

Then Q (x) is not an algebraic extension of Q.

Hence Q (x) is not a normal extension of Q.

7. Find the smallest normal extension (up to isomorphism) of Q (21/4,3/4) in Q.
Ans: The minimal polynomial of 21/4 is x* — 2 and

the minimal polynomial of 31/4 is x* — 3.

Thus, the smallest normal extension of @ (21/4,31/4) is the splitting field of
(x*—2)(x* —3).

The splitting field of (x* — 2)(x* — 3) is Q (21/4,31/4, ).

Thus, Q (21/4, 31/4, i) is the smallest normal extension of Q (21/4,31/4) in Q.

8. Define normal extension of a field F and give two examples.

Ans: (Refer: Definition 6.2.4 and Examples 6.2.5)
6.6 SUGGESTED READINGS:

1. P. B. Bhattacharya, S. K. Jain and S. R. Nag Paul, Basic Abstract Algebra, Second
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2. I. N. Herstein, Topics in Algebra, Second Edition, John Wiley & sons, Inc,1975.

3. Thomas W. Hungerford, Algebra, Springer-Verlag, New York.

- Dr. P. Vijaya Saradhi



LESSON- 7
MULTIPLE ROOTS

OBJECTIVE:

e To find the multiplicity of the roots of a polynomial over a given field.

e To construct some simple characterizations for an irreducible polynomial over a given
field to have multiple roots.

e To prove that over any given field all the roots of an irreducible polynomial have the
same multiplicity.

STRUCTURE:

7.1 Introduction

7.2 Multiple roots

7.3 Summary

7.4 Technical Terms

7.5 Self Assessment Questions

7.6 Suggested Readings

7.1 INTRODUCTION:

A multiple root (also called a repeated root) of a polynomial is a root that occur more than
once in its factorization. For example, in the polynomial f(x) = (x — 2)?(x + 5),x =2isa
double root (multiplicity 2) while x = —5 is a simple root (multiplicity 1). Mathematically a
root r of a polynomial f(x) is a multiple root if both f () = 0 and f'(r) = 0, where f’ is the
derivative of f. Even through the study of polynomial equations started much earlier, it
gained a formal algebraic structure through the works of Giralamo Cardino (solution of cubic
equations) and Lodovico Ferrari (solution of quadratic equations). In the early 19" century,
Evariste Galois developed a revolutionary frame work that connected field theory with group
theory to explain the solvability of polynomial equations. One fundamental concept emerged
in this context is the discriminant of a polynomial which closely relates to multiple roots. The
discriminant of a polynomial is zero if and only if the polynomial has a multiple root. If the
discriminant is not equal to zero, then the polynomial is separable. A polynomial is separable
if it has no multiple roots. Multiple roots in Galois theory serve as a gateway to understand
deeper structural properties of field extensions and the behaviour of polynomial equations.
Practically this concept bridges abstract algebra with applications across modern
mathematics, computer science and other fields.

7.2 MULTIPLE ROOTS:

In this lesson we discuss about the multiplicity of roots of a polynomial over a given field.
First, we define the derivative of a polynomial.
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7.2.1: Definition: Let f(x) = ap + a;x + a;x?+ ...+ a,x™" = Z :;0 a; x' be a polynomial

over a field £ We define the derivative of f{x) denoted by f'(x) as f'(x) = )’ :;1 ia;x" 1

7.2.2: Remarks:

1) We may have f'{x} = 0 but f{x) need not be a constant always. For example, let

f(x) = x? inafield of characteristic 2 then f'(x) = 2x = 0.
2) The operation of derivative is a linear operation.
7.2.3: Theorem: (af (x) + bg(x))" = af’'(x) + bg'(x) where a,b € F.

Proof: Let f(x) = )’ ?z Jaxtand g(x) = X7, bjx/ be polynomials over a field F.

Now af (x) + bg(x) =a Y.._ a;x'+ bX_, bx/where a,b € F. Then

(af (x) + bg(x))" = (a ZI_ a;x'+ bXT_ byx ) = (a ZI_ aIx) —l—(bE ):

T T
= az ia;x1 + ijbj-xJ"_l = af’'(x) + bg'(x)

i=1 j=1

7.2.4: Theorem: (f (x)g(x)) = f'(x)g(x) + f(x)g'(x)

Proof: Let f(x) = ). :_I:U a;x"and g(x) = X7_, by be polynomials over a field F.

Now f()g() = ) abyxt

i+j=0

m+ . _' m+1 .
Then, (f()g(x))’ = (Z aibjx‘“) =3 G+ pat
i+j=1

i+j=0
m+n o m+n o
= Z iaby ™77 Z jagbjx+171
i+j=1 +j=1
= X% lax T Yo b + X axt + R jhx T = f1(0)g(x) + fG)g' ().

7.2.5: Definition: Let f(x) € F[x] be any polynomial over a field F and K be the splitting
field of f(x) over F. Let @ € K be aroot of f(x). Then (x — a)|f(x) in K[x]. If (x — a)® is
the highest power of (x — ) that divides f(x), then s is called the multiplicity of a.

If s = 1, then s is called a simple root.
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If s > 1, then s is called a multiple root.

7.2.6: Theorem: Let f(x) € F[x] be a polynomial of degree = 1 with @ as aroot. Then « is

a multiple root if and only if f'{a} = 0.

Proof: Let f(x) € F[x] be a polynomial of degree = 1 with « as a root.

Assume that & is a multiple root.

Then f(x) = (x — a)*g(x) where k > 1 and g(x) = 0.

=)= (x—a)g'(x) + k(x —a) g (x).

= f'(a) = (@ —a)*g'(x) + k(e —a)**g(a) =0+ 0 =0.

Therefore, f'{a) = 0.

Converse: Suppose that f'(a) = 0.

Since « is a root of f(x), we have f(x) = (x — a)g(x). (1)
=) =gk) + (x — a)g’ (x).

= f'(a) =g(a) + (a — a)g'(a).

= 0=g(a)+ 0(" f'(a) = 0 by hypothesis).

= g(a) = 0.

Thus, « is a root of g(x).

Then g(x) = (x — a)h(x), so that equation (1) becomes f(x) = (x — a)(x — a)h(x).
= f(x) = (x — @)*h(x)

Therefore, a is a multiple root.

7.2.7: Corollaryl: Let f(x) be an irreducible polynomial over F. Then f(x) has a multiple
root if and only if f'(x) = 0.

Proof: Let f(x) € F[x] be irreducible over F
Assume that f(x) has a multiple root, say a.

Then by above theorem 7.2.6, f'(a) = 0.
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So, @ 1s a root of both f(x) and f'{x).
To prove that f'(x) =0
If possible, suppose that f'{x) = 0

Now since f(x) is irreducible over F, a~! f(x) is the minimal polynomial of & over F

where a is the leading coefficient of f(x).

= deg f'(x) = deg a~1f (x).

Which is a contradiction (** deg f'(x) < deg f (x), by definition of f'(x)).
So, our assumption that f'(x) = 0 is wrong.

Hence, f'(x) = 0.

Conversely, suppose that f'(x) = 0.

= f'(a) = 0 for all a, a root of f(x).

Then by the above theorem, 7.2.6, « is a multiple root.

7.2.8: Corollary 2: Any irreducible polynomial £ (x) over a field of characteristic zero has
simple roots. Also, any irreducible polynomial over a field F of characteristic p = 0 has

multiple roots if and only if there exists g(x) € F[x] such that f(x) = g(xP).
Proof: Let f(x) € F[x] be an irreducible polynomial over F.

Suppose that f(x) = ag + a;x + azx?+...+a,x" = ). a;x' where ajs € F

1
i=0
To prove the corollary, we consider two cases.

Casel: Let F be a field of characteristic zero.

= 3 no positive integer ‘n’ such that na =0 fora € F (le,na =0 =>a =0).
To prove that f(x) has simple roots.

If possible, suppose that « is a multiple root of f (x).

Then by the above corollary 7.2,7, f'(x) = 0.

= Zlnzl iaixi_l =0
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=iq; =0foralli =1,2,....,n.

=a;,=0foralli =1,2,...,n. (~ charF = 0).

Then f(x) = a,, a constant.

Which is a contradiction to f(x) € F[x] is irreducible over F.
So, f{x) has no multiple roots when char F = 0.

Hence all the roots of f(x) € F[x] are simple when char F = 0.
Case 2: Let F be a field of characteristic p = 0.

Then p is a least positive integer such that pa = 0 ¥V a € F.

Now since f(x) € F[x] is irreducible over F, by corollary 7.2.7, we have that & 1s a multiple

rootof f(x) = f'(x) =0
=3k iaxTl=0.
=iq;=0Vi=12 ..,n
< eitherq; =0 (or) pli Vi=1,2,..,n
If a; = 0, we get a contradiction.
So, p|i = i = pk for some positive integer k.
CFO) =Ty apxt =Xy aPK = T a, () = g(xP).
So, a is a multiple root of f(x) = f(x) = g(xP) for some g(x) € F[x] when
charF=p = 0.

7.2.9: Theorem: If f(x) € F[x] is irreducible over F, then all roots of f(x) have the same

multiplicity.

Proof: Let f(x) € F[x] be an irreducible polynomial over F.

Let @, 8 be any two distinct roots of f(x) with multiplicities k and k' respectively.
We prove that k = k'.

Since «, § are the roots of an irreducible polynomial f(x), we have
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~ Flx] .,
Fm)=G§ﬁ=Fw>

Let g: F(a) — F(f) be this isomorphism defined by
olayg + aya+...+ apa™) =ag+ a;f+... + a, "
Such that (o) = f and o(a) =a ¥ a € F.

Note that g: F(a) — F is an embedding and can be extended to an embedding 6*: F — F

such that *(a) = fand 6" (a) =a V a EF.
Now F is fixed under ¢* and F is an algebraic extension of F.
So ¢*:F — F is an isomorphism.
This isomorphism induces a ring homomorphism n: F[x] — F[x].
given by n(ay + ayx+... +a,.x") = o (ay) + 6" (a)x+... +a” (a, )x".
Nown(x —a) =0c"(1).x—cd*(a)=1l.x—B=x—f.
Let f(x) = ag + a;x+... +a,x" where ay, a4, ...,a, €F.
then n(f(x)) = n(ag + a;x +...+ a,x™)
=0 (ap) + a"(a)x +...4+ o*(a,)x"
=ay +ax +...+ ax™ = f(x).
So, n(x —a) = x — B and (£ () = Fx).
Now since « is a root of f(x) with multiplicity k, we have
fl) = (x —a)glx).
Now f(x) = n(f(x)).
= f(x) =n(lx —a)*g(x)
=n(x —a)*n(g(x)
=nlx —anlx — a)...nlx —a) n(g(x))
=& -Bx—-B)...(x—=Blgx)
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= (x = ¥ g(x).
= k < k' (~ multiplicity of S is k).
Similarly, we can prove that k' < k by interchanging the roles of @ and
Therefore, k = k'
Hence all the roots of f(x) have the same multiplicity.
7.2.10: Corollary: If f(x) € F[x] is irreducible over F, then f(x) = air:rl(x — a;)¥, where
a; are the roots of f(x) in its splitting field over /', and & is the multiplicity of each root.
Proof: Let f(x) € F[x] be irreducible over F.

Also let @y, a,, ..., a, be the distinct roots of f(x) in its splitting field over ' and a be the

leading coefficient of f(x).

Then by the above theorem 7.2.9 all the roots of f(x) have the same multiplicity say k.
Therefore, f(x) = a(x — a;)*(x —ax)¥...(x — a,)* = a_;rl(x —a;)k.
i=

7.2.11: Example: Let K = F(x) be the field of rational functions in one variable x over a
field F of characteristic 3. (Indeed, F(x) is the field of fractions of the polynomial ring F[x]).
Then the polynomial y* — x in the polynomial ring K[y] over K is irreducible over K and

has multiple roots.

Solution: Let ¥ = Flx] = {%:f{x}, gx)+0¢€ F[x]} and let char F = 3.
Consider the polynomial y* — x € K[y].

To show that y® — x is irreducible over K and has multiple roots.

Now deg(y?® —x) = 3.

So y? — x is reducible over K if and only if it has a root in K.

Let a € K be aroot of y? — x.

Then a = % where £(x), g(x) = 0 € F[x] and o — x = 0.
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3

= (f(x))* = x(g(x))?

= 3degf(x) =1+ 3deg g(x)

= 3n = 1+ 3m. This is a contradiction.

= aisnotarootof y* —x ¥ a EK

= y3 — x has no root in K.

= y3 — x is irreducible over K.

Let @, j be any two roots of y — x in its splitting field over K.
Then we have @® —x =0and 8> —x =0
=al=f=2a-p*=0=2@-)P=0=2a—-L=0=2a=§
Thus, all the roots of y* — x are same.

Hence y* — x has a multiple root of multiplicity 3.

Therefore, y* — x has multiple roots.
7.3 SUMMARY:

This lesson provided the concept of multiplicity of the roots of a polynomial over any given
field. If the multiplicity of a root is one then it is called a simple root and if it is greater than
one it is called a multiple root. The derivative of a polynomial is also defined, which plays a
key role in the theory of multiple roots of a given polynomial. Some characterizations were
also developed to decide whether a root « is a multiple root of the given polynomial or not
based on the concept of a derivative of a polynomial. It was also shown that multiplicity of all
the roots of an irreducible polynomial over a given field is same. Multiple roots have several
significant applications in real life areas like cryptography, computer science and error
correction especially when it intersects with the structure of polynomials over finite fields.
Particularly in error correcting codes multiple roots affect the structure and decoding of
certain codes. The codes like BCH and Reed-Solomon codes are constructed using
polynomials over finite fields. If a generator polynomial has multiple roots, some algorithms
fail or behave unpredictably. Ensuring distinct roots (i.e., square free polynomials) guarantees
error detection and correction strength.
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7.4 TECHNICAL TERMS:

Derivative of a polynomial: Let f(x) = XI*, a;x" be a polynomial over a field. We define

the derivative of f(x) denoted by f’'(x) as f'(x) = X, ia;x't.

Splitting field: Let F be any field and f(x) € F[x] be any polynomial of degree= 1. Then an
extension K of F is called a splitting field of f (x) over F, if

i) f(x) can be factorized into linear factors in K[x]. That is,

f(x) =alx —a))(x —a3)...(x —ay), @, as, ..., ay EKanda €EF.
ii) K = F(ay, a3, ..., ay),thatis K is generated by F and the roots a;, a-, ..., a, of f(x)
inkK.

Multiplicity of a root of a polynomial: Let f(x) € F[x] be any polynomial over a field F
and K be the splitting field of f(x) over F. Let « € K be aroot of f(x). Then (x — a) | f(x)
in K[x]. If (x — &) is the highest power of (x — &) that divides f(x) then s is called the

multiplicity of «.
If s = 1, the s is called a simple root.
If s > 1, then s is called a multiple root.

Characteristic of a field: Let F be any field. If there exists a positive integer ‘n’ such that
na = 0V a € F, the smallest such positive integer is called the characteristic of a field F. If

no such positive integer exists, then the characteristic of field F is zero.

Irreducible polynomial: A polynomial f(x) € F[x] is called irreducible if the degree of
f(x) = 1 and whenever f(x) = g(x)h(x), where g(x), h(x) € F[x] then g(x) € F or

h(x) € F.Ifa polynomial is not irreducible, it is called reducible.

Minimal polynomial: The monic irreducible polynomial in F[x] for which u will be a root is

called the minimal polynomial of u over F.

Algebraic element: Let E be an extension of F. An element a € E is called algebraic over F

if there exists a non-constant polynomial p(x) € F[x] such that p(a) = 0.

Algebraic Extension: An extension E of a field F is called algebraic if each element of E is

algebraic over F.
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7.5 SELF- ASSESSMENT QUESTIONS:
1) Verify that (F (x) + g())’ = f'(x) + g'(x)
Ans: Let f(x) = ag + a;x + a;x? +... and g(x) = by + byx + byx? +. ....
Then f(x) + g(x) = (ag + by) + (a; + by)x +... +(a; + b)x' +...
=3 :zﬂ(ai +b)x!  (where r=max {deg f(x),deg g(x)})
By definition of the derivative,
(f(x) + g(x)) =Zi; ila; +b)x?
=Xio i x T XL, bt
= ') +g'(x)
2) Show that x® — x2 — x + 1 = 0 has a repeated root and solve it.
Ans: Let f(x) =x® —x? —x+ 1.
= f'(x)=3x?-2x—1.
Now f'(x) =0=3x?—2x—1=0.
=>Bx+1Dkx-—-1)=0.
=>x =1, _1/3 .
Thus 1, _1/’3 are the roots of f'(x).
Now f(1)=1*—-1*—-1+4+1=1—-1—-1+1=0
= 1is aroot of f(x).
Thus 1 is a common root of f(x) and f'(x).
= 1 is a repeated root (or multiple root) of f(x).
Therefore, roots of f(x) are 1, 1, a.
= (x — 1)? is a factor of f(x).
= (x — 1)? divides f(x).
Thus f(x) = (x — 1)%(x + 1).

Hence the roots of f(x) are 1, 1, and -1 and out of which 1 is a repeated root of f (x).
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3) Show that x® — 3x? — 4 = 0 has no multiple roots.

Ans: Let f(x) = x® —3x%2 — 4.
= f'(x) = 3x% — 6x.

Now f'{ix}=0=3x?—-6x=0. 2x(x—2)=0. =2x=0,2.

Thus 0, 2 are the roots of f'(x).

Now f(0) =03 —30%2 —4 = —4 = 0.
f(2)=23-3(2)>-4=8—-12—4=-8=+0.

So, 0, 2 are not the roots of f(x).

= f(x) and f'(x) have no common root.

Hence f(x) = x — 3x? — 4 =0 has no multiple roots.

4) Solve the equation f(x) = x* + 4x3 — 6x2 — 36x — 27 = 0. given that it has a repeated
root.

Ans: Let f(x) = x* + 4x® — 6x% —36x — 27.
= f'(x) = 4x3 4+ 12x% — 12x — 36.
Given that f(x) has a repeated root.
Therefore, f(x) and f'(x) has at least one common root.
Now f'(x) =0 =4x3+12x? —12x — 36 = 0.
=x3+3x2-3x—-9=0.
=>x?(x+3)—3(x+3)=0.
= (x+3)(x2—-3)=0.
= x = —3,++/3 are the roots of f'(x).
Now f(—3) = (—3)* + 4(—3)* —6(—3)? — 36(—3) — 27
=81 —108 — 54+ 108 — 27 = 0.
Thus -3 is a root of f(x).
= —3 is a common root of f(x) and £’ (x).

= —3 is a multiple root of f(x).



| Centre for Distance Education 7.12 Acharya Nagarjuna University

= (x + 3)? is a factor of f(x) (or) (x + 3)? divides f(x).

Thus, by ordinary method of division (or short division), we have
FX)=x+32E%*2-2x—-3)=x+3)?(x -3+ 1).

Hence the roots of f(x) are —3,—3, —1 and 3. Also, -3 is a multiple root of f(x).

5) Define the derivative of a polynomial over a field F and prove that

i) (af(x) + bg(x}): =af'(x)+ bg' (x).
i) (f()g(x)) = f'()g(x) + f(x)g' (x).
Ans: (Refer theorem 7.2.3 and theorem 7.2.4)

6) If f(x) is a polynomial of degree = 1 over a field F with a as a root, then prove that « is a
multiple root if and only if f'(a) = 0.

Ans: (Refer theorem 7.2.6).

7) If f(x) is an irreducible polynomial over a field F, then show that all the roots of f(x)
have the same multiplicity.

Ans: (Refer theorem 7.2.9).

8) If f(x) is an irreducible polynomial over a field F, then prove that f(x) has a multiple
root if and only if f'(x) = 0.

Ans: (Refer theorem 7.2.7).

7.6 SUGGESTED READINGS:

1. P. B. Bhattacharya, S. K. Jain and S. R. Nag Paul, Basic Abstract Algebra, Second
Edition, Cambridge University Press,1995.

2. L. N. Herstein, Topics in Algebra, Second Edition, John Wiley & sons, Inc,1975.

3. Thomas W. Hungerford, Algebra, Springer-Verlag, New York.

- Dr. P. Vijaya Saradhi



LESSON- 8
FINITE FIELDS

OBJECTIVE:

¢ To understand the concepts of a prime field and a Galois field.

¢ To show that finite fields (or Galois fields) are splitting fields of suitable polynomials over

E,.

e To prove the existence of a field with p™ elements for any prime p and a positive integer
n.

STRUCTURE:

8.1 Introduction

8.2 Finite fields

8.3 Summary

8.4 Technical Terms.

8.5 Self Assessment Questions

8.6 Suggested Readings.

8.1 INTRODUCTION:

It 1s quite interesting to study finite fields rather than infinite fields. Around 1830's, Galois
introduced finite fields implicitly in his work on solving polynomial equations. At that time,
he didn't call them as "fields" or "Galois fields". The terminology and formal Structure came
later in the 19th century. Ferdinand Frobenius (1879) formally described the structure of
finite fields. A finite field or a Galois field is a field with a finite number of elements. Every
finite field has p™ elements where p is a prime number and n is a positive integer. For
example, F, = {0,1} is the simplest prime field with arithmetic mod 2. when n > 1, the field
Fy,n is constructed as an extension of F,. It is built by using irreducible polynomial of degree

n over F,. Finite fields have applications in various fields like Coding Theory, Cryptography
and Computer Science etc.

8.2 FINITE FIELDS:

In this lesson we show that an irreducible polynomial over a finite field has only simple roots.
We first define the concept of prime field for this purpose.

8.2.1 Definition:
A field F is called a prime field if it has no proper sub field.
8.2.2: Examples

1. Q@ isaprime field.

i. Z f(p) or Z, is a prime field where p is prime.
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8.2.3 Remark: Every field F contains a prime field.

Proof: Let F be any field.

Casel: Suppose F has no proper sub field.

Then F itself is a prime field.

Case2: Suppose F has proper sub fields say F;, F,, ...., Fy, ...
Let K be the intersection of the family of sub fields of F.
Thatis, K = F,NF, N... NF, N ...

Then K is the smallest sub field of F.

Also K does not contain any proper sub field.

So, K is a prime field of F.

8.2.4: Theorem: The prime field of a field F is either isomorphic to Q or to Z,, where p is a
prime.

Proof: Let F be a field.

Define a mapping f:Z — F by f(n) = ne, e is the unity of F.
Now for any m, n € Z,
fm+n)=(m+n)e=me+ne=f(m) +f(n)

flmn) = (mn)e = (me)(ne) = f(m)f(n).

Then f is a homomorphism of rings and

kerf ={n€Z|f(n) =0} = {n € Z|ne = 0}.

Casel: Suppose that kerf =0 =ne=0=n=10

So, char F = (0)

We know that kerf = 0 if and only if f is one-one.

Then f is an embedding of Z into F.

This embedding of f can be extended to an embedding
f*:Q — F by defining f* (%) :%, 0+nez

Thus @ embeds in F and the prime field of F is isomorphic to Q.
Case2: Suppose that kerf = {0}.

Then kerf is an ideal of Z.

Since Z is a PID, every ideal in Z is a principal ideal.

= kerf is a non-zero principal ideal in Z.

. By fundamental theorem of homomorphism, % ~ Imf CZ
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z
== ~f(Z)CF.
o =@

As f(Z) € F, f(Z) has nonzero divisors.

z ..
= o has no nonzero divisors
T

= m 1s a prime number = p, say.

z z
== ==
(m) ()

Therefore, f(Z) is a sub field of F and f(Z) ~ Z,,.

= Z, is a prime field.

= f(Z) is also a prime field of F.

Hence the prime field of a field F is isomorphic to % where p is a prime.

8.2.5: Theorem: Let F be a finite field. Then

1) The characteristic of F is a prime number p and F contains a sub field F, = {% .

i1) The no. of elements in F is p™ for some positive integer n.

Proof: Let F be a finite field.

1) We know that for any field F, either char F = 0 or char F = p, where p is a prime number.
Since F is a finite field, char F = p.

We know that every field contains a prime field.

So, F contains a prime field denoted by E,.

By Theorem 8.2.4 above E, ~ [‘%

Hence the characteristic of F is a prime number p and F contains a sub field F, ~ {z_}
p

This proves part (1)

ii) By part(i), we have that F, ~ % .

So, the number of elements in F, is p.

To prove(ii), we regard F as a vector space over its prime field F,.
Since F is finite, F is a finite dimensional vector space over F,.
Then [F : Fp] = n for some positive integer n.

Let {e,,e,,..., e,} be a basis of F over Fp.

Any element x € F can be uniquely expressed as

x = ase; + aze;+... + aye, wWherea; €F,, i =1,2,...,n
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Here each @, in this expression for x can be chosen in p ways and there are n such q,’s in
this expression.

Hence the no. of elements in F is p™ for some positive integer n.

8.2.6: Notation: A finite field F is also called a Galois field. A Galois field with p™ elements

is usually written as GF (p™)

8.2.7: Theorem: A finite field F with p™ elements is the splitting field of x?" —x € E,[x].
Consequently, any two finite fields with p™ elements are isomorphic.

Proof: Let F be a finite field with p™ elements.

Then F* = F\{0} is a multiplicative group of order p™ — 1.

SV0=AEF, "1 =1(vVa€Gaf =e).

=" =A(or) AP" — A =0.

= ] satisfies the equation x?" —x = 0V 0 = A € F and also A = 0 satisfies the equation
xP' —x =0

Now because xP" —x € E, [x] has only p" roots, it follows that F coincides with the set of
roots of xP" — x.

= F is the splitting field of x?" — x over E,.

As a consequence of this now we will now prove that any two finite fields with p™ elements

are isomorphic.

Let E and F be two finite fields with p™ elements.
By Theorem 8.2.5., E and F contains sub fields E, and F, such that

E, z(% ande z{ip].
This implies E, ~ F,.

Moreover, by the above part, E is the splitting field of x?" — x € E,[x] and F is the splitting
field of xP" — x € E,[x]

But since E,, ~ F,, it follows that E = F by uniqueness of splitting fields.

Hence any two finite fields with p™ elements are isomorphic.
8.2.8: Theorem: For each prime p and each positive integer n = 1, the roots of
xP" —x € Zp[x] in its splitting field over Z, are all distinct and form a field F with p"

elements. Also F is the splitting field of x?" — x over Zy-
Proof: Let p be any prime number and n = 1 be a positive integer.

Consider the polynomial f (x) = xP" — x € Z,[x].

Then f'(x) = p™.xP" 1
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Let & be any root of f(x) =0 = f(a) = 0and f'(a) =p™.aP "1 %0
= f'(a) = 0.

= « is a simple root of f(x).

Thus, all the p™ roots of f(x) are distinct.

LetF = {rx: a is aroot of f(x) = xP" — x in its splitting field over Zy }
Since f{x) has p™ distinct roots, F contains p™ elements. i.e, |F| = p™.

Now we will show that F forms a field with p" elements.

For this it is enough to show thata + 8, af ' € FVa,fEF &S + 0.

s

Leta,fEFandf#0 > aP —a=0and 7" — 8 =0

= aP" = q and gF" = §.
Now since, , 8 are the roots of xP" —x € Zy,[x], we have charZ, = p.
Consider (@ + B)P" = aP" + 7" ( charZ, = p).

—a+p ( aP" = a and BP" :,8).

= (@Bl —(a+p)=0. (1)
Also (@f1)P" = a?".(B~1)" = a?"(p?") " = ap.
= (@™ — (ap™b) = 0. (2

From (1) and (2) « + 8 and af8 are the roots of f(x) = x?" —x € Zy[x] over Z,.
=2a+f EFandaf~t EF.

= F is a field with p™ elements (** |F| = p™).

Thus, all the roots of x?” — x over Z, forms a field F with p" elements.

Hence, by above theorem 8.2.7, F is the splitting field of the polynomial x?" — x over Zp.
8.2.9: Theorem: If F is a field with p™ elements and m is a positive integer, then there exists
an extension field E of F such that [E: F] = m, and all such extensions are isomorphic.
Proof: Let F be a finite field with p™ elements and m be any positive integer.

Consider the polynomial f(x) = xP"" — x € F[x].

Note that forany 0 # « € F, a? ~! = 1 because the multiplicative group of F is of order
p" — 1.

This implies @?™"~1 = 1 (= n|mn, (p" — 1)|(™ — 1))

>aP" =a(n)a? —a=0

= « satisfies the polynomial f(x)V « € F.

= a is aroot of f(x)
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Thus, every element of F is a root of f(x).

Now let E be the set of all p™" roots of f(x) = x?" — x € F[x]
Then by the above theorem 8.2.8, all the roots of E are distinct and forms a field.
Therefore, E is a field with p™" elements.

Also, we have [F: E,] =n

= [E: Fp] = [E: F][F: Fp]

= mn = [E:F]n

= [E:F]=m

Let K be another extension of F such that [K: F] = m.

Then K will be a field with p™" elements.

Thus K, E are both finite fields with p™" elements.

Therefore, K ~ E

Hence all such extensions of F are isomorphic.

8.2.10: Note: Let a and b be the elements of a finite abelian group G of orders m and n
respectively. Then there exists an element ¢ € G whose order is the l.c.m of m and n.

8.2.11: Theorem: The multiplicative group of nonzero elements of a finite field is cyclic.

Proof: Let F be a finite field.

Consider the multiplicative group of nonzero elements of F namely, F* = F\{0}.
Now F* is a finite group.

Let r be the l.c.m of the orders of all elements in F*,

By the above note 4.2.10, 3 an element & € F* such that O(a) =r

Now by the choice of r, we have that 0(a)|r Va € F*

>a" =1Va€F"

= Every element of F* satisfies the polynomial x™ — 1.

Since the polynomial x™ — 1 has at most r distinct roots in F, it follows that the no.of
elements in F* < r thatis, |F*| = r. (1)

Further note that as O(a) = r, we have {1, &, a?, ..., a1} are all distinct and belong to F*
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Hence F~is acyclic group.

8.2.12: Corollary: Let E be a finite extension of a finite field F. Then E = F(a) for some
a €E.

Proof: Let E be a finite extension of a finite field F.

Then E is a finite field.

By the above theorem 8.2.11 the multiplicative group E* is cyclic where E* = E\{0}.

1e., E* = (a) for some « € E.

AlsoE =E*U{0}=(e) U {0} S F(a) CE.

= E = F(a) for some a € E.

8.2.13: Theorem: Let F be a finite field. Then there exists an irreducible polynomial of any
given degree n over F.
Proof: Let F be a finite field and n be any positive integer.

Then 3 an extension E of Fsuch that [E: F] = n.

Now since E is a finite extension of F, by the above corollary 8.2.12,

E = F(a) forsome « € E.

Also, because E is a finite extension of F, & € E is algebraic over F.

Let p(x) be the nominal polynomial of « over F.

Then [F(a): F] = deg p(x)

But since F(a) = E and [E: F] = n, we have n = [F(a): F] = deg p(x)
= p(x) 1s an irreducible polynomial of degree n over F.

8.2.14: Examples:
1) Show that a finite field F of p™ elements has exactly one subfield with p™ elements for

each divisor m of n.

Solution: First we state a result in group theory: A cyclic group of order n has a unique
subgroup of order ‘d’ for each divisor d of n.

Let F be a finite field with p™ elements.

Then F* = F\{0} is a cyclic group of order p™ — 1.Now for each divisor m of n,

™ - 1)|E" - 1).

= p™ — 1 is a divisor of the order of the group F* which is cyclic.

= F* has a unique subgroup of order p™ — 1 say H (- by the result stated above)

So, foralla €EH, a?" 1 =1= a?" = a(or) a?" —a =0.

= @isarootof xP" =x V¥ a € H.

Hence H U {0} = K (say) is the set of all roots of xP"" — x € E,[x], which forms a field

contained in F.
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= K is a subfield of F with p™ elements i.e., |[K| = p™.

Now let L be any other subfield of F with p™ elements.

Then L' is a subgroup F* of order p™ — 1

= L° = H (* by the uniqueness of H)

>L=LU{0}=HU{0}=K.

Hence F has exactly one subfield with p™ elements for each divisor m of n.

2) If the multiplicative group F* of nonzero elements of a field F is cyclic then F is finite.
Solution: Let the multiplicative group F* of nonzero elements of a field F be cyclic.
Then F* = (a) for some a € F.

If F* is finite, then F is finite and the proofis complete.

So assume that F* is an infinite cyclic group.

Case 1: charF =p =0 (orp > 0)

Then we have F = F,(a) where E, is the subfield {0,1,2,..., p — 1} of F.

Consider the element 1 + « € F

Thenl+a=0o0r1+a+0

Ifl+a=0thea=—-1=a?=1= (a)is finite

Which is a contradiction to F* is infinite.

If1+a=0thenl +a€F* = (a)

= 1+ a = a where r is some positive or negative integer.

If r is positive then « satisfies the polynomial x™ — x — 1.

If r is negative, i.e., r = —s,5 > 0.

Thenl+a=a*=a’(l+a)=1=2a"" +a° =1

= q satisfies the polynomial x**1 + x5 — 1.

Thus, in both cases, either 1 is positive or negative, we have that the minimal polynomial of
a over F, is of finite degree.

= [F:E,] = [F,(a): F,] = degree of minimal polynomial of & over F, = finite.

= [F:F,] is finite.

= F is a finite field.

= F* is finite, which is a contradiction to F* is infinite.

So, either the characteristic of F is zero or F* must be finite.

Case2: charF = 0.
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Then we have 0 =1 € F.

So, we have —1 € F* = (a).

= a” = —1 where r is some positive or negative integer.
=>a’=1.

= 0(a) is finite.

= (a) is finite.

= F7 is finite, which is a contradiction to F* is infinite.
So, our assumption that F* is infinite is wrong.

= F* is finite.

= F = F* U {0} is finite.

Hence F is a finite field whenever F* is cyclic.

3) If f(x) € F[x] is an irreducible polynomial over a finite field F, then all the roots of f(x)

are distinct.

Solution: Let F be a finite field with p™ elements.
Also let f(x) € F[x] be an irreducible polynomial over F.
To prove that all the roots of f(x) are distinct.
If possible, suppose that f(x) has multiple roots.
We know that f(x) has multiple roots if and only if
f)=gl&?) =X, a;(xP),a; EF (*)
Since @; € F, a;,F" = a; ( a; satisfies the polynomial x?" — x over F)
Set q;?"" " = b; then ;2" = g

= (al-pn_l)p = q;

= b’ =q

Substituting a; = b; in (*), we have
fG) = gG?) =T, bGP =T, (bix')" = (T, bix)’
which is a contradiction, because f (x) is irreducible.
Hence, f(x) must have distinct roots.
4) The group of automorphisms of a field F with p™ elements is cyclic of order n and
generated by ¢, where ¢p(x) = xP,x € F (¢ is called the frobenius endomorphism).
Solution: Let F be a finite field with p™ elements.

Also let Aut(F) denote the group of automorphisms of F.
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Define ¢p: F — Fas ¢p(a) = aP V a € F.
¢ is a homomorphism: For any «, § € F,
¢la+ )= (a+ PP =a? +p? = ¢(a) + $(B) (< charF = p)
Similarly, ¢(af) = (@B)? = a?.BP = $(a). $(B)
» ¢ 1s a homomorphism.
¢ is one-one: For every a,f € F,
$(a@) = () = aP = f¥ = a? — f* =0
= (a — B)P = 0(~ charF = p)
=a—fFf=0
S>a=f
“» ¢ 1s one-one.
¢ is onto: since ¢p: F — F, ¢b is one-one and F is finite, we have ¢ is onto.
Thus ¢ € Aut(F).
Now consider ¢"(a) = ¢"*(p(a))
= "~} (a?)
= ¢""*(¢(a")
— ¢,n-2(ap2)

= " "(al") = a?" =a.
=>¢p" =1
= 0(¢) = n
Now we will show that |Aut (F)| = n.
Note that as F is a finite field, the multiplicative group F* of F is cyclic where F* = F\{0}.
Let F* = (@) and we have F = E,(a) where E, is a subfield of F with p elements.
Let f (x) be the minimal polynomial of & over E,.
Then A:F, — F is an embedding and may be extended to an embedding A*: F, (a) — F (or)
A:F = F (* E,(a) =F).
Now since F,(a) = F is a splitting field of xP" — x over F,, we have that F, (a) is a normal

extension of E,.

Hence, the embedding 4*: F, (&) — F that fixes F, is an automorphism of F.
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This will then give us all the automorphisms of F, because any automorphism of F keeps each
element of F, fixed.

Also, the number of such extensions of A to A* is equal to the number of distinct roots of the
minimal polynomial.

Note that as F = F,(a) and |F| = p", we have

n= [F: Fp] = [Fp (a): Fp] = degf(x) (~ f(x) is the minimal polynomial of & over F,).

= The number of distinct roots of f(x) = degf(x) = n.

Now since f(x) is an irreducible polynomial over the finite field F, f (x) has all simple roots.

Hence, the number of extensions of A to A* is equal to n and each of these A* are
automorphisms of F.

Thus, the order of the group Aut(F) is n. i.e., |Aut(F)| = n.
In the beginning, we have showed that 3 an element ¢ € Aut(F) such that 0(¢) = n.

Hence, Aut(F) is a cyclic group generated by ¢.i.e., Aut(F) =< ¢ >.

8.3 SUMMARY:

This lesson provided the basic idea of prime fields and some properties of finite fields. We
have shown that the number of elements in a finite field is p™ where p is a prime number and

n is a positive integer. A finite field (or Galois field) with p™ elements is denoted by GF (p™).

It was proved that a finite field F with p™ elements is the splitting field of xP" — x € E,[x]

and hence any two finite fields with p™ elements are isomorphic. We have also established
the existence of a finite field with p™ elements for any given prime p and any positive integer
n. It was also verified that the multiplicative group of nonzero elements of a finite field is
cyclic. Finite fields have useful applications in various fields like Cryptography, Coding
theory and Computer networks, Digital signal processing, Random number Generation and
Quantum computing etc. In particular, these are fundamental in the design and analysis of
error-correcting codes, which are used to ensure reliable data transmission. They also play a
crucial role in various cryptographic algorithms, including elliptic curve cryptography and
RSA, due to their unique properties.

8.4 TECHNICAL TERMS:

Prime field: A field F is called a prime field if it has no proper subfield.

Notation: A finite field or Galois field with p™ elements is denoted by GF (p™).

Irreducible polynomial: A polynomial f(x) € F[x] is called irreducible if degf(x) = 1 and
whenever f(x) = g(x)h(x), where g(x), h(x) € F[x] then g(x) € F or h(x) € F.

If a polynomial is not irreducible, it is called reducible.

Splitting field: Let F be any field and f(x) € F[x] be any polynomial of degree = 1.
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Then an extension K of F is called a splitting field of f(x) over F, if
1) f(x) can be factorized into linear factors in K[x]. That is
f(x)=alx —a)x—ay)...(x — a,), ay, as,..., @, EKanda € F.
1) K =F(a,,a,,..., a,), that is K is generated by F and the roots a4, as,. .., a, of f(x)
in K.
Minimal polynomial: The monic irreducible polynomial in F[x] for which u will be a root is
called the minimal polynomial of u over F.
Algebraic element: Let E be an extension of F. An element o € E is called algebraic over F
if there exists a non-constant polynomial p(x) € F[x] such that p(a) = 0.
Algebraic extension: An extension E of a field F is called algebraic if each element of E is
algebraic over F.
Normal extension: An extension E of a field F is called normal extension if E satisfies any
one of the following equivalent conditions.
1) Every irreducible polynomial in F[x] that has a root in E splits into linear factors in E.
ii) E is the splitting field of a family of polynomial in F[x].

iii) Every embedding o of E into F that keeps each element of F fixed maps E onto E (or, &
may be regarded as an automorphism of E).

Simple and multiple roots: Let f(x) € F[x] be any polynomial over a field F and K be the
splitting field of f(x) over F. Let « € K be a root of f(x). Then (x — &)|f(x) in K[x].
If (x — a)® is the highest power of (x — a) that divides f(x) then s is called the multiplicity

of . If s = 1, then s is called a simple root. If s = 1, then s is called a multiple root.

8.5 SELF-ASSESSMENT QUESTIONS:

1) If F is a finite field of characteristic p, show that each element a of F has a unique p" root,
YainF.

Ans: Let F be a finite field of characteristic p.

So, assume that F = GF(p™) for some n > 1.

Leta € F.

Ifa =0,thena? =0

If @ = 0, then a? = 0 since F is a field.

Since F* = F\ {0} is a multiplicative group with p™ — 1 elements, we have a?" 1 = 1.

This implies a?" = a .
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n-1

Letb = af
= pP = (apn_l)p —aP =a

= bisapfrootof g in F.

Moreover, this b is unique p™ root of @ in F.

For, let ¢ € F be any other element such that ¢? = a.
Then ¢ = c?" = (cP)P" " = a?" " = b.

Thus b is the unique p™ root Y/ in F.

Since, a € F was arbitrary, every element a € F has a unique p" root 3/a in F.

2) Show that x? — x — 1 is irreducible over Z,,.

Ans: Let f(x) =xP —x —1 € Z,[x]

= fl)=pxP 1 —-1=-1=0.

So, the roots of f(x) are distinct.

Let a be aroot of f(x) in the algebraic closure of Z,,.

Then (a + 1) is also a root of f(x).

For, fla+1) =(e+ 1) —(a+1)—1=aP+1l—-a—-1—-1=aP—a—1=0.
So, if & is a root of f(x), then (a + 1) is also a root of f(x).

Thus the p roots of f(x) may be writtenas a, a4+ 1, a4+ 2, ..., a+(p —1).
To prove that f(x) = xP —x — 1 s irreducible over Z,,.

Leta € Z,.

Then all theroots @, @+ 1, @ +2, .., a+ (p —1) liein Z,.

= 0 must be a root of p(x) which is not true.

Thus a € Z,,.

This shows that Z, (a) (:t Zp) is a splitting field of f over Z, and [Z,(a): Z,] =p

Hence f(x) = xP —x — 1 s irreducible over Z,,.

3) Find the generator for the multiplicative group of a field with 8 elements.

Ans: By theorem 8.2.7, the Galois field with 8 elements is the splitting field of x® — x over
GF(2).

Let F = GF(2%). Then |F| = 8.

Clearly F* = F\ {0} is a multiplicative group of order 7 which is cyclic and is generated by
any element o # 1 (clearly a = 0 since a« € F* = F\ {0}).
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So, a # 1 is a generator for the multiplicative group F* = F\ {0} of a field F = GF(2%) with
8 elements where F = {0,a,a?, a3, a* a°,a® a’} with 1 + @ + a®+ ... +a® = 0 and

8 _
a- = .

4) Construct a field with 4 elements.

Ans: Consider the polynomial f(x) = x% + x + 1 € Z,[x]
Clearly f(x) has no root in Z,.

So, f(x) = x? + x + 1is irreducible over Z,.

Z5[x]
(xZ+x+1)

Hence the required field is F =

={a + ba/a,b € Z,,a’? + a + 1 = 0}.

={01,a 1 +a}where a? =a + 1.
5) Define a prime field and give two examples.
Ans: (Refer Definition 8.2.1 and Examples 8.2.2).
6) Prove that the prime field of a field F is either isomorphic to Q or to Z, where p is a prime.
Ans: (Refer theorem 8.2.4).
7) Prove that any finite field F with p™ elements is the splitting field of xP" —x € E,[x]
Ans: (Refer theorem 8.2.7).
8) Show that there exists a field with p™ elements for any prime p and positive integer n.
Ans: (Refer theorem 8.2.8).
9) Show that there exists an irreducible polynomial of any given degree n over F.

Ans: (Refer theorem 8.2.13).
10) Prove that the multiplicative group of non-zero elements of a finite field is cyclic.
Ans: (Refer theorem 8.2.11).

8.6 SUGGESTED READINGS:

1. P. B. Bhattacharya, S. K. Jain and S. R. Nag Paul, Basic Abstract Algebra, Second
Edition, Cambridge University Press,1995.

2. L. N. Herstein, Topics in Algebra, Second Edition, John Wiley & sons, Inc,1975.

3. Thomas W. Hungerford, Algebra, Springer-Verlag, New York.

Dr. P. Vijaya Saradhi



LESSON-9
SEPARABLE EXTENSIONS

OBJECTIVE:

e To know the concepts of separable extension and simple extension.

e To get the idea of a perfect field.

e To establish a necessary and sufficient condition for the finite extension to be a simple
extension.

STRUCTURE:

9.1 Introduction

9.2 Separable Extensions

9.3 Summary

9.4 Technical terms

9.5 Self Assessment Questions

9.6 Suggested Readings
9.1 INTRODUCTION:

The concept of separable extensions appeared indirectly during the time of Evariste Galois in
1830 while studying the roots of polynomial equations. At that time, the formal term
“separable” was not introduced. Later Steinitz around 1910 formally introduced separable
elements and separable extensions in the study of field theory. An interesting question in
solving polynomial equations is when do polynomials will have distinct roots. A separable
polynomial is one whose roots are all distinct (i.e., no repeated roots) in its splitting field. An
extension E of a field F is a separable extension if every element of E is a root of a separable

polynomial over F. In fields of characteristic zero (like @, R, ©) all extensions are separable.
For example, Q(xﬁ) is a separable extension of Q. Separable extensions are used in the real-

world areas like Cryptography, Algebraic Geometry, Coding theory, Data Storage and
Quantum Computing etc.

9.2 SEPARABLE EXTENSIONS:

9.2.1: Definition: An irreducible polynomial f(x) € F[x] is called a separable polynomial if
all its roots are simple. Any polynomial f(x) € F[x] is called separable if all its irreducible
factors are separable. A polynomial that is not separable is called inseparable.

9.2.2: Definition: Let E be an extension of a field F. An element a € E that is algebraic over
F is called separable over F if its minimal polynomial over F is separable.
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9.2.3 Definition: An algebraic extension of a field F is called a separable extension if each
element of E is separable over F.

9.2.4: Remarks:
1) Any polynomial over a field of characteristic zero is separable.

Proof: Let f(x) be a polynomial over a field F of characteristic zero.

= f(x) = fi(x) f2(x)... fo(x) where each f;(x) is an irreducible polynomial over F.
If char F = 0, then any irreducible polynomial over F has simple roots.

= Each f; (x) has simple roots.

= Each f;(x) is a separable irreducible polynomial.

= f(x) 1s a separable polynomial.

Hence any polynomial over a field of characteristic zero is separable.

2) If F is a field of characteristic zero then any algebraic extension of F is separable.
Proof: Let F be a field with char F = 0 and E be an algebraic extension of F.

= Every element of E is algebraic over F.

Leta €E

= a 1is algebraic over F.

= 3 a minimal polynomial f(x) € F[x] with « as a root.

= f(x) is a separable polynomial.

= @ 1s a separable element.

= E is a separable extension of F.

Hence any algebraic extension of F is separable when char F = 0.

3) Any algebraic extension of a finite field is separable.

Proof: Let E be an algebraic extension of a finite field F and let « € E.
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= « is algebraic over F.
= 3 a minimal polynomial f(x) € F[x] with « as a root.

We know that all the roots of an irreducible polynomial over a finite field are distinct.

= All the roots of f(x) are simple.
= f(x) is a separable polynomial.
= a € E is a separable.

Hence E is a separable extension.

Thus, any algebraic extension of a finite field is separable.

9.2.5: Example: If K = F[x] is the field of rational functions over a field F of characteristic
3, then the polynomial y3 — x € K[y] is irreducible over K. Also y* — x has all its roots

equal, each being a, say. Hence K [«] is not a separable extension of K.

9.2.6: Definition: A field F is called perfect if each of its algebraic extensions is separable.
9.2.7: Example: F = ( is a perfect field.

For, if E is any algebraic extension of @, then for every a € E, a is separable over Q.

= E is a separable extension of @ for every algebraic extension E of Q.

Hence @ is perfect.

9.2.8: Note: Any field of characteristic zero is perfect and any finite field is also perfect.

9.2.9: Definition: An extension E of a field F is called a simple extension if E = F(«) for

some « € E.

9.2.10: Note: Any finite extension of a finite field is a simple extension.

1.e., if F 1s a finite field and E be any finite extension of F then E = F( «) for some « € E.

9.2.11: Theorem: If E is a finite separable extension of field F then E is a simple extension

of F.

Proof: Let F be a finite field and E be a finite separable extension of F.
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First note that if F is a finite field then any finite extension E of F is simple.
So, consider the case when F is infinite.

Now as E is a finite extension, we have E = F(a4, a;, as ...,a,) where a; € E are

algebraic over F, foreachi = 1,2, ..., n.
Now we prove the result for n = 2 and then the result will follow by induction.
So, let E = F(a, B) where a, 8 € E.

Let p(x) and g(x) be the minimal polynomials for @ and 3, respectively, over F.

= ay,d,,. .., a,, are distinct and £, B,,..., B, are distinct.

a;—a

Since F is infinite, 3a € F such that a # 2 forl=i=nand2<j<=m

]

= a(ﬁ —,Gj-) +a;—afori=12,...,nand j = 23,...,m.

= a+aff #a;+af;fori=12,... nandj=23,..., m.
Now set 8 = a + aff and 6 # a; + af;.

=0 — aﬁj +a; fori =1,2,...,nand j = 2,3,...,m.

Now we prove that F(a, 8) = F(8).

For this we define h(x) = p(6 — ax) € F(8)[x].

Then h(f) = p(8 — af) = p(a) = 0 = S is aroot of h(x).
Consider h(ﬁj) =p(@ —aB;)*=0forj+1landj=23,... m
Hence f is a root of h(x) and no §; (j # 1) is a root of h(x).

Also, we have h(x) € F(8)[x] and g(x) € F[x] € F(8)[x] with £ as the common root.
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Let A(x) € F(8)[x] be the minimal polynomial of # over F(@8) then A(x)|h(x) and
A(x)|q(x).

Thus, any root of A(x) is a root of h(x) as well as a root of g(x).
But the only common root of g(x) and h(x) is 8.
Therefore, A(x) = x — B € F(9)[x]
= B EF(@)
= —af € F(f)and B € F(A)
= —qf € F(8) and « + aff € F(0)
= a€F(@)and f € F(H)
= F(a,B) € F(6)
By definition of 8, we have F(8) = F(a + aff) € F(a, B).
Therefore, F(a, ) = F(8).
By the above argument, we have proved the result for n = 2.
e, if E = F(a;,a;) then E = F(a) for some a € E.
Thus, by induction, we have thatif E = F(a,,a,,..., a,) then E = F(a) for some « € E.
Hence, E is a simple extension of F.
9.2.12: Theorem: Let E be a finite extension of a field F, then the following are equivalent.
i) E = F(a) for some a € E.
i) There are only a finite number of intermediate fields between F and E.
Proof: Let E be a finite extension of a field F.
(i) = (ii) : Assume (). i.e., E = F(«) for some a € E.
= E is a finite extension of F.

= a € E is algebra over F.




Centre for Distance Education 9.6 Acharya Nagarjuna University

Now let K be the subfield of E containing F.

1.e., K is the intermediate field between F and E.
Let g(x) be the minimal polynomial of @ over K.
Then since g(x) € K[x] and f(a) = 0, g(x)|f(x).

Let K’ be the subfield of K containing F and the coefficients of the polynomial g (x) then

g(x) € K'[x], being irreducible over K, is also reducible over K'.

= g(x) is the minimal polynomial of & over K'.

Since E = F(a), we get E = K(a) = K'(a).

Consider [E: K] = [K(a): K] = deg g(x)

Also [E:K'] = [K'(«): K'] = deg g(x)

= [E:K] = [E:K"]

= K=K’

Now let I = {K:K is a subfield of E containing F i.e., F € K C E}.

That is, I is the set of all intermediate fields between F and E.

Also let D be the set of all divisors of f(x) € F[x].1.e., D = {g(x) € Elx]:g(x)|f (x)}
Because there are only finitely many divisors of f(x), the set D is finite. i.e., |D| is finite.
Define a mapping o:1 — D by o(K) = g(x), the minimal polynomial of « over K in D.
Then by the above argument o is one-one. i.e., VK;,K; €I, o(K,) = o(K,) =2 K, = K,
Now since g: I — D is one-one, we have |I| < |D| and hence |I| is finite as |D| is finite.

Hence there are only a finite number of intermediate fields between F and E when E = F(a).

Thus (i) = (ii). (D
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(ii) = (i): Assume that there are only a finite number of intermediate fields between F and

E.

Then as E i1s a finite extension of F, E = F(a) for some a € E by note 9.2.10.

So, assume that F is infinite.

We first prove that for any 2 elements «, § € E there exists » € E such that F(«,8) = F(r).
For each a € F, define r, = a + af.

Then for each of these r,, the fields F(r,) are the intermediate fields between F and E. i.e.,

FCF(,CE.
Now as F is infinite, we have infinitely many such F(r,).

Because there are only a finite number of intermediate fields between F and E(by

hypothesis), so all the fields F(r;) need not be distinct.
=>3a,bEF>3a+bF(r,) =F(ry)
= 1,1y € F(ry)
=1, — 1 €EF(rp)
= (a—b)B € F(rp)
= B EF(rp)
Thus, r, =a + b € F(rp) = a € F(ry,)
= F(a,B) € F(r)
By definition of r,, F(r,) € F(a, )
Therefore, F(a, f) = F(r,) and hence our assertion is proved.
We now choose u € E such that [F(u): F] is as large as possible.
Then we claim that E = F(u).

Otherwise, let x € E but x & F(u).
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Then we can find an element t € E such that F(t) contains both u and x with F(t) 2 F(u).
This contradicts the choice of u.

Hence E = F(u).

Therefore, (ii) = (i). ()
Thus from (1) and (2), the conditions (i) and (ii) in the theorem are equivalent.

9.2.13: Examples:

1) Let E be an extension of a field F and let & € E be algebraic over F. Then « is separable

over F if and only if F(«) is a separable extension of F.

Solution: Let E be an extension of F and a € E be algebraic over F.
Assume that F(a) is a separable extension of F.

Then as @ € F(a), we have « is separable over F.

Conversely, suppose that « is separable over F.

To show that F(a) is a separable extension of F.

i.e., to show that ¥ € F(a), [ is separable over F.

Now let § € F(a)

We show that 3 is separable over F.

We have F C F(ff) C F(a).

Let p, (x) be the minimal polynomial of f§ over F that has m distinct roots.
Let L be an algebraically closed field and o: F — L be an embedding

Note that o can be extended from F to F(f) and no. of such extensions of & to F(f) = m,

the no. of distinct roots of p; (x) over F.
So, there are m distinct extensions, say d4,05,. .., o, of o to F(f8).

Now « is algebraic over F(a) and hence « is algebraic over F(f3).
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= 3 a minimal polynomial p, (x) of & over F(f) such that [F(a): F(f)] = deg p- (x).
Suppose p, (x) has n distinct roots i.e., deg p,(x) = n.

Then by the same argument as above, each g; (i = 1 to m) has exactly n extensions

0,1 < j =ntoF(a).

So clearly, the set of mn embeddings (O'I- J,-), 1=<i<m,1 = j < nare the only possible

embeddings from F(a) to L that extend a: F — L.
Now since « is algebraic over F, 3 a minimal polynomial p; (x) of @ over F such that

[F(a): F] = degps(x) = no. of distinct roots of p; (x) = no. of extensions of o to

F(a).= mn.

= mn = [F(a):F] = [F(a): F(B)][F(B): F] = degp,(x). degp, (x) = n. degp, (x).
= m = degp, (x)= no. of distinct roots of p, (x).

Thus p, (x) is a separable polynomial.

Hence, £ is separable over F.

= f3 is separable over F V 8 € F(a).

= F(a) is a separable extension of F.

2) If K is a field of characteristic p # 0, then K is perfect if and only if KP = K (i.e., if and

only if every element of K has p'" root in K).

Solution: Let K be a field of characteristic p = 0.

Assume that K is perfect.

= Every algebraic extension of K is a separable extension of K.
To prove that K? = K.

It is enough to prove that V @ € K, 3 b € K, such that a = bP .

Let @ € K and consider f(x) = x? —a € K[x].
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Let b be a root of f(x) in some extension field K’ of K.
Then b € K' and b» —a = 01i.e., b € K' and a = bP.
Since bis aroot of f(x) = xP —a € K[x], p(x) is a factor of f (x) in K[x]. i.e., p(x)|f(x).
In K[x], we have f(x) =xP —a = xP —b? = (x — b)? (~ char K = p)
= p(x)|(x — b)? and hence p(x) = (x — b)".

Since K’ = K(b), K’ 1s an algebraic extension of K.

= K' is a separable extension of K and b € K".

= b is a separable element over K in K’.

= p(x) has no multiple roots.

=r=1andp(x) =x —b.

Since p(x) € K[x], it follows that b € K.

So, 3 an element b € K such that @ = bP.

Thus ¥V a € K, 3 b € K such that a = bP.

Hence KP = K.

Conversely, suppose that KP = K.

To prove that K is perfect.

Let E be an algebraic extension of K and « € E

= @ 1s algebraic over K.

= 3 a minimal polynomial f(x) of & over K

It is enough to prove that all the roots of f(x) are simple.
Suppose f(x) has a multiple root.

= f(x) = g(xP) for some polynomial g(x) € K[x],i.e., f(x) =X, a;(x*),a; €K .
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From hypothesis, for all @; € K 3 b; € K such that a; = b,”

= f(0) = ko bPP) =Xy bP P =3, (bx')” = (Biy bix!)" (v chark = p)

= f(x) is reducible, a contradiction to the minimality of £ (x).
Thus, all the roots of f(x) are simple.

= a is a separable element over K for all « € E.

= E is a separable extension of K.

Hence, K is perfect.

3) Let F c E c K be three fields such that E is a finite separable extension of F, and K is a

finite separable extension of E. Then K is a finite separable extension of F.

Solution: Let F — E c K be three fields such that E is a finite separable extension of F, and

K is a finite separable extension of E.
= K is a finite extension of F.
To prove that K is a finite separable extension of F.
Now since E is a finite separable extension of F, 3 « € E such that E = F(a).
Similarly, since K is a finite separable extension of E, 3 f € K such that K = E(f).
= K=F(a)(B) =F(a,p).
Letr € F(a,f) = K but r € F(a).
We prove that r is separable over F.
Let p, (x) = the minimal polynomial of & over F with degree m.
p> (x) = the minimal polynomial of r over F(«) with degree n.
ps (x) = the minimal polynomial of r over F with degree s.

p4(x) = the minimal polynomial of @« over F(r) with degree t.
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Let o: F — L be an embedding of F into an algebraically closed field L.

Because « is separable over F there are exactly m extensions (&;), 1 <i <m of g to F(a).
ie, [F(a):F] =deg p,(x) = m.

Also, since r is separable over F(a), there are exactly n extensions of each g; to F(a, ).
ie., [F(a,7):F(a)]l =deg p,(x) =n.

Let us call these extensions as gy, 0y5,...,0;, Where 1 =i < m.

Thus, there are precisely mn extensions of o: F — L to 0;: F(a,7) — L Where 1 =i =m,

1 = j < n (these are via F(a)). i.e., [F(a,7):F] = [F(a,7): F(a)][F(a):F] = mn---—--- (1)

Now by considering extensions a: F — L to F(a,r) via F(r) we obtain similarly that there
are precisely st extensions to F(a,r). 1.e., [F(a,r):F] = [F(a,r):F(r)][F(r):F] = st --
()

From (1) and (2), mn = st.

Suppose + is not separable over F.

Then the no. of elements of o to F(r) is < s

= the no. of extensions of ¢ to F(a,r) is < st = mn, a contradiction.
Thus r is separable over F.

Hence K is a finite separable extension of F.

9.3 SUMMARY:

This lesson gives the basic idea of a separable polynomial over a field F and hence the
concept of a separable extension of a given field F. It was shown that any algebraic extension
of a finite field is separable. The concept of a perfect field and a simple extension of a field F

are also given. It was also understood that perfect fields are fields of characteristic zero and
finite fields. We have also remarked that infinite fields of characteristic p > Ohave

inseparable extensions and hence such fields are not perfect in general. A necessary and
sufficient condition was also provided for a finite extension to be a simple extension. Some
examples of separable and non-separable extensions are also given for better understanding
of the reader. Even though field extensions and separability sound abstract, separable
extensions matter a lot in the real-world areas like Cryptography, Error-Correcting Codes,
Algebraic Geometry, Robotics, Coding Theory, Data Storage and Quantum computing etc. In
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particular separable extensions are used in the construction of error correcting codes which
are essential for reliable data transmission and storage. They also play a role in the
development of secure communication protocols and algorithms ensuring confidentiality and
integrity of data.

9.4 TECHNICAL TERMS:

Irreducible polynomial: A polynomial f(x) € F[x] is called irreducible if degf(x) = 1
and whenever f(x) = g(x)h(x), where g(x), h(x) € F[x] then g(x) € For h(x) € F.Ifa
polynomial is not irreducible, it is called reducible.

Minimal polynomial: The monic irreducible polynomial in F[x] for which u will be a root
is called the minimal polynomial of u over F.

Algebraic element: Let E be an extension of a field F. An element a € E is called algebraic
over F if there exists a non-constant polynomial p(x) € F[x] such that p(a) = 0.

Algebraic Extension: An extension E of a field F is called algebraic if each element of E is
algebraic over F.

Separable polynomial: An irreducible polynomial f(x) € F[x] is called a separable
polynomial if all its roots are simple. Any polynomial f(x) € F[x] is called separable if all
its irreducible factors are separable. A polynomial that is not separable is called inseparable.

Separable element: Let E be an extension of a field F. An element & € E that is algebraic
over F is called separable over F if its minimal polynomial over F is separable.

Separable Extension: An algebraic extension of a field F is called a separable extension if
each element of E is separable over F.

Perfect field: A field F is called perfect if each of its algebraic extensions is separable.

Simple Extension: An extension E of a field F is called a simple extension if E = F(a) for
some « € E.

Algebraically closed field: A field K is algebraically closed if it possesses no algebraic
extensions. That is if every algebraic extension of K coincides with K.

9.5 SELF -ASSESSMENT QUESTIONS:

1) Prove that Q(ﬁ w@) = Q(ﬁ + w@)
Ans: clearly Q(v2 ++3) < Q(v2,v3). (1)
So, it is enough to show that Q(v2,v/3) c Q(v2 ++/3).

Consider v3 +v2 € Q(v2 +3).
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=3 V2=t eQ(vZ+3)

V32
So V3 +v2,v3-v2€ Q(v2++3).
= (V3++2) +(v3 —+2) € (V2 +/3) and (V3 ++2) — (V3 +V2) € Q(v2 +3).
= 2y/3 € Q(VZ ++3) and 2v2 € (V2 ++3).
=3 € Q(v2 +V3) and v2 € Q(v2 +v/3) and hence Q(v2,v3) c Q(VZ +V3).  (2)
From (1) and (2), Q(vZ,v3) = Q(vZ +3).
2)Prove that every extension of Q is separable.

Ans: We know that @ is a field of characteristic zero and every irreducible polynomial over a

field of characteristic zero is separable.

Let E be any extension of Q.

To prove that E is separable.

Leta € E

Then @ has a minimal polynomial p(x) over Q.

Since @ has characteristic zero, every irreducible polynomial, including the minimal

polynomial p(x) of @ is separable.

Because the minimal polynomial of every element in E is separable, every element in E is

separable over Q.
Therefore, every extension of @ is a separable extension.

3)Define perfect field and give an example

Ans: (Refer Definition 9.2.6 and Example 9.2.7)

4)Give an example of a non-separable extension of a field.
Ans: (Refer Example 9.2.5)

5)If E is a finite separable extension of a field F, show that E is a simple extension of F.
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Ans: (Refer Theorem 9.2.11)

6)Define (i) Separable Extension (ii) Simple Extension
Ans: (Refer Definition 9.2.3 and Definition 9.2.9)
7)Prove that a finite extension of a finite field is separable

Ans: Let F be a finite field and E be the finite extension of F
= E is an algebraic extension of F.

To show that E is a separable extension of F.

Let @ € E and f(x) be the minimal polynomial of & over F.
Then f(x) is irreducible over F.

We know that every irreducible polynomial over a finite field has all its roots distinct.

Since, F is a finite field, all the roots of f(x) are simple.
Thus f(x) is separable and hence « is separable over F.

8)Let a be aroot of xP — x — 1 over a field F of characteristic p. Then show that F(«) is a

separable extension of F.
Ans: Let f(x) =xP —x — 1 € F[x] and let & be a root of f(x).
To show that that F(«) is a separable extension of F.

For this, it is enough to show that « is separable over F.

Let p(x) be the minimal polynomial of « over F.
Then p(x)|f(x) =xP —x—1 € F[x].

Now to show that p(x)is separable, it is enough to show that f(x) = x? — x — 1 does not

have multiple roots.

Let B be a root of f(x) with multiplicity mg then 1 < mgz <p.

If mg = p then f(x) =xP —x —1 = (x — f)P = xP — BP which gives a contradiction.
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Hence mg <p.
Then by known result, mg = the smallest number k such that f E(B) +0.

But note that f'(x) = px?™1 —1=—-1 = 0.

Therefore, k=1=m B

Hence every root of f(x) is simple as required.
So, p(x)is a separable polynomial.

Thus, a is separable over F.

Hence F(a) is a separable extension of F.

9.6 SUGGESTED READINGS:

1. P. B. Bhattacharya, S. K. Jain and S. R. Nag Paul, Basic Abstract Algebra, Second
Edition, Cambridge University Press,1995.

2. L. N. Herstein, Topics in Algebra, Second Edition, John Wiley & sons, Inc,1975.

3. Thomas W. Hungerford, Algebra, Springer-Verlag, New York.

- Dr. P. Vijaya Saradhi




LESSON- 10
AUTOMORPHISM GROUPS AND FIXED FIELDS

OBJECTIVES:

e To define the fixed field of a group of automorphism of a field.

e To introduce the group G(E/F)

e To compare O(G(E/F)) and [E: F] under certain conditions

¢ To introduce Dedekind Lemma

e To obtain necessary and sufficient conditions under which O(G (E/ F)) = [E: F] where E
is a finite separable extension of F.

STRUCTURE:

10.1 Introduction

10.2 Automorphism groups and fixed fields
10.3 Summary

10.4 Technical terms

10.5 Self assessment questions

10.6 Suggested readings

10.1 INTRODUCTION:

In this lesson some basic results of Galois theory are presented. These results are used in
proving the fundamental theorem of Galois theory. The results of this section and the
fundamental theorem of Galois theory are used to give a simple algebraic proof for the
fundamental theorem of algebra.

10.2 AUTOMORPHISM GROUPS AND FIXED FIELDS:

10.2.1 Definition: Let F be a filed and E be an extension field of F. Then the set of
automorphisms of E each of which fixes each element of F, is denoted by G (E/F) that is
G(E/F) ={T/ Tis an automorphism of E and T'(«) = « for all « € F}. Here each element of
G(E/F) is also called an F-automorphism of E.

10.2.2 Result: G(E/F) is a group under composition of mappings, where E is an extension of
the field F.
Proof: Let Ty, T, € G(E/F)

(1) T,0T, € G(E/F)

(i1) (Ty0T;)oTs = Ty0(T,0T3)

(iii) I € G(E/F) and Ty0l = T, = IoT, , 1 is the identity automorphism of E.

(iv) GivenT € G(E/F) thereisa S € G(E/F) suchthat ST =TS =1;; T =S5

To prove (iv)
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LetT € G(E/F).

=T is an automorphism of E.

=T is one-to-one and onto E.

Therefore, T has inverse mapping T~1: E — E which is also a bijection of E onto E where
T~(v) = uifand only if T (u) = v.

Leta, b € E.Thenwe getc, d € E suchthat T(c) =aand T(d) = b

Now a+b=T(c)+T(d)=T(c+ad)

SoT Y a+b)=c+d=T"1a)+T1(b)

Also we have ab = T(¢).T(d) = T(cd). So T™1(ab) = cd = T~ (a)T1(b)
Therefore T~ is a homomorphism of E onto E.

That is, T~! is an automorphism of E.

Letu € EandT(u) =v

(ToT VW =T(T'(v)) =T(W)=v=IW) Vu€eE

So, T1oT = I. Similarly ToT ™1 = I.

Therefore, T~ € G(E/F) is the inverse of T.

Hence G (E/F) is a group under composition of mappings.

10.2.3 Definition: If F is a field and E is an extension field of F, then G(E/F) is called the
group of F-automorphism of E.

10.2.4 Theorem: Let E be a finite simple extension of the field F. Then O(G(E/ F)) < [E:F]
Proof: Let E be a finite simple (separable) extension of the field F.

Since E is a simple extension of F we have E = F(u) for some u € E

Let P(x) be the minimal polynomial of u over F and deg p(x) =n

Now [E:F] = [F(u):F] = deg p(x) =n.

Let k be the number of distinct roots of p(x). Let o: F - E be the identity map of
Flo(e)=a V a€F]

o can be extended to exactly k embeddings of E into E namely ay, 05,..., 0.

Note that each element of G (E/F) is an extension of ¢ from E into E. So

therefore 0(G(E/F)) <k <n = [E:F].

Hence the Result.

10.2.5 Example: We find the automorphism group G (C/R)
Let T € G(C/R).
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Letc € C
Nowc=a+ib a beR
Now T(c) =T(a+ib) =T(a) + T({A)T(b) =a+T(i)b
(T@)?*=TWOTH) =TE*) =T(-1) = -1
SoT(i) =ior—i
T,(a+ib) =a+ib V a+ib € C isidentity automorphism
T,(a +ib) =a+ (—i)b V a+ ib € C is also an automorphism
Therefore G(C/R) = {(I =T,), T,}
Since f(x) = x? + 1 € R[x] is an irreducible polynomial over R and i is a root of f(x),
[R(i): R] = 2 thatis [C: R] = 2. So O(G(C/R)) = [C:R] =2.
10.2.6 Example: Let Q be the field of rational numbers
Consider the field of Q (21/ 3). We have that
g(x) = x3 — 2 € Q[x] is irreducible over Q and
2'/3 is a root of g(x). So [Q (21/3) : Q] =3
The roots of g(x) = x3 — 2 are 21/3, 21/3w, 21/3w2, where w is a primitive 3™ root of
unity.
2
Leta € Q (21/3). Now a = ay + a121/3 + a, (21/3)
LetT €G (Q (21/3) / Q)
2
NowT(a) =T [ao + a121/3 +a, (21/3) ]
2
= T(ao) + T(a)2"/3 + T(a,)T (2'/3)
2
= o+ ayT(2'/3) + a,T (2'3)
3
T(2':) =T(2) =2
SoT (21/3) =23 (or) 230 (or) 2'3w?
Since 23w, 23w?% & Q (21/3), we have T (21/3) =2

Therefore T = I, that is, G (Q (21/3) /Q) = {I}.
So 0 (G (Q (21/3) /Q)) —1<3= [Q (21/3) : Q].
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10.2.7 Definition: Let E be a field and H be a subgroup of the group of automorphisms of E.
Then Ey:={a € E / h(a) = aforall h € H} is called the fixed field of H in E.
Note: Note that E}; is always a subfield of E.

10.2.8 Lemma: (Dedekind lemma)
Let E and F be fields, and gy, g5, . ..., g, be distinct embeddings of F into E.

Ifa, ay, ...., ay € E and a,0;,(x) + ay0,(x)+....+a,0,(x) =0 V x € F,then
0=a,=a, =" =a,.

Proof: Given that E and F are fields and oy, 0,, ...., g, are distinct embeddings of F into E.
We prove that if a;, a,, ...., a, € E and

a,0,(x) + a,05(x)+....+a,0,(x) = 0 for all x € F then

O0=a,=a,=-=a,.

Suppose we have a4, a,, ...., a, € E not all zero such that

a,0,(x) + a,05(x)+....+a,0,(x) = 0 for all x € F. Among all such equations we choose
an equation having least number of non-zero terms, namely

bio1(x) + byoy(x)+....+bror(x) =0 forall x € F

and no by, by, ...., by is0. (1)

We have 0; # g. So we get y € F such that g, (y) # o, (y). Sincey EFV x €F,
bio1(xy) + byo,(xy)+....+bror(xy) = 0 and that

bio1(x)o1(y) + byo,(x)a, (¥)+.... +bro (X))o, (y) = 0 (2)
(1) x 01(y) gives by01(x)01(y) + b0, (x)01 (V) +.... +beox (X)1(y) =0 Vx€F (3)
(3) - (2) gives bpa,(X)[01(y) — G (W]+.... +brox () [1(¥) — o (y)] =0 VX EF (4)
(4) is an equation with fewer terms than k as by [07(y) — g, (¥)] # 0

This is a contradiction to our assumption.

This establishes the lemma.

10.2.9 Theorem: Let E be a field and H be a finite subgroup of the group of automorphisms
of E. Then O(H) = [E: Ey].

Proof: Suppose E is a field and H is a finite subgroup of the group of automorphisms of E.
Let O(H) = n. We prove that [E: Ey] = n.

LetH ={g1, g2, ---, gn} Where e = g,

Case - I: Suppose that [E: Ey] <n

Let [E:Ey] = m and

let {a;, a,, ...., a;} be the basis of E over Ey (A)
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g1(a)x; + g(a))x; + -+ gpla))x, =0

gl T T o

gl(am)xl + gz(am)xz + et gn(am)xn =0

(I) 1s a system of m equations in unknowns x4, x5, ..., x, over E.
Since m < n, the above system (I) has a non-trivial solution y;, y,, ..., y, € E
[not all y;, y,, ..., ¥, are zero's]

So for 1 < j < m, we have

91(a)y1 + g2(a;)yo+... +gn(a;)yn = 0 (1)
Leta € E, From (A), a = a;a4 + aya,+... +aya,, forsome aq, a,, ..., ay € Ey
Now Yin; gi(@)y; = Xiz1 gi(@1a1 + a2az+... +apmam)y;

=2i=1 [gi(aar) + gi(aza)+... +gi(amam)]y;

=Yiz1 [agi(a)) + azgi(az)+... tamgi(an)ly:

= a1[Xi gi(a)yil + ax[¥is gi(adyil+.. . +am[Xis: gi(an)yil

=a;.0+a,.0+... 4+, .0=0 [from (IT)]
By lemma 10.2.8, wehave 0 =y, =y, =...= Yy, as g1, g2, --- gm are distinct
embeddings.

This is a contradiction to not all y4, y,, ..., ¥, are zero.

Therefore m « n.

Case II: Suppose thatn <m

Since [E: Ey] = m, we get n + 1 linearly independent elements a,, a,, ..., a4+, of E over
Ey.

g1(ax; + g1(az)x; + -+ g1(an41)xn41 = 0

g2(a)xs + g2(az)x; + -+ g2(ans1)xns1 = 0 (i

In(a)xs + gn(az)x; + -+ gn(ani1)xney =0
(I1T) is a system of n linear equations in n+1 unknowns over E.
So (IIT) has non-trivial solution y;, ¥, ..., Vn+1. Such that
gj(a)ys + 9;(az)y; + .. +g;(ans1)yns1 =0 forl<j<mn, av)
w.l.g we may assume that y;, y,, ..., ¥, are all non-zero and
0 = V41 = Vyy2=... = Ypsyiandyy, y,, ..., ), are least non-zero elements

satisfying (IV)
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Now (IV) becomes

giladyr + gj(az)y,+....+g;(a)y- =0, 1 <j<n V)
Forg € H, g[gj(al)y1 +gj(a2)y2+....+gj(ar)yr = O] =g(0)=0.AsgH =H,
9i(a)g(y) + gj(a)g(yz)+.... +g;(a)g(y:) = 0,1 <j<n (VD)

(V) x g(y1) = (VD x y, gives

9i(a)[y29(y1) = y19(y)l+... +9;(a)[yrg(y1) =191 =0, 1<sj<sn (VI
In view of our assumption, as (VII) consists of less than n terms,

Y291) = y19(2) = 0,...., %, g (1) — y19(yr) = 0

Thatis, g(y1y. ) = y1¥2. "4, gy ™) = vy ™t
Thatis, y,y; t...y.y," ! € Ey.

Soy,y17t =2y....,¥%y1”* = z, and that

Yo = Y1Z3, -, Yy = V1Zy, Where z,, ..., Z, € Ey.

Now from (V)  gi(ap)ys + 91(az)y1z2+.... +9:1(ar)y12z, = 0

Thatis g,[a; + z,a,+...+2z,a,.] =0

Thatis 1.a; + za,+... +z,.a, = 0. Since a4, a,, ..., a, are independent over Ey,
0=1=2,=23=...= 2,

So0 =y, =y; =...=y,, acontradiction.

Therefore n <« m

Hence n = m.

10.2.10 Theorem: Let E be a finite separable extension of F and H be a subgroup of G (E/F).
Then G(E/Ey) = H and [E: Ey] = 0(G(E/Ey)).
Proof: Suppose E is a finite separable extension of F and H is a subgroup G (E/F) and Ey is
the fixed field of H. We have H € G(E/Ey) and

O(H) = [E:E4] = 0(G(E/Ey)) = O(H)

Therefore O(G(E/EH)) = O(H) and that G(E/Ey) = H

Hence [E: Ey] = O(H) = 0(G(E/Ey)).

10.2.11 Theorem: Let E be a finite separable extension of a field F.Then the following
conditions are equivalent:
1. E is anormal extension of F.

2. F is the fixed field of G(E/F)
3. [E:F] = 0(G(E/P))
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Proof: Given E is a finite separable extension of F.

So, E = F(u) forsome u € E.

Let p(x) be the minimal polynomial of u over F and let deg p(x) =n

So, p(x) has n distinct roots as u is separable over F.
Now [E:F] = [F(u): F] = n.

Let E be the fixed field of G(E/F).

So, [E: Eg] = O(G(E/F)) (by Theorem 10.2.9)

(1) = (2): we have that E is a normal extension of F.

Let o: F — E be an identity mapping of F. (6(a) =a V a € F)

Then o is an embedding of F into the algebraically closed field E. So, o can be extended
to n embeddings oy, 0y, ..., 0, of E = F(u) into E, where n is the number of distinct
roots of p(x). Since E is a normal extension of F, (by Theorem 1.1)

each of gy, 05, ..., 0, is an automorphism of E. So ¢, 03, ..., g, € G(E/F).

More over, each g € G(E/F) is an extension of . So G (E/F) = {0y, 03, ..., 0,} and
that 0(G(E/F)) = n.

Now [E: E,][E,:F] = [E:F] =n = 0(G(E/F)) = [E: E,]

Therefore, [E,:F]=1=>E,=F

(2) = (1): we have that F is the fixed field of G(E/F).

Let G(E/F) = {0, =1, 03, ..., 0n}

Now O(G(E/F)) = [E: F] = n [By Theorem(10.2.10)]

Consider f(x) = (x — w)(x — oz (W)... (x — 0, (w))

Note that u = o, (u), o, (w),...,0,(u) € E

So, f(x) € E[x].

Now ¢*: E[x] = E[x] defined by

0*(g(x) = by + byx+...+bpx*) = g% (x) = a(by) + a(by)x+...+0(b)x¥

is an automorphism of E[x] for all ¢ € G(E/F).

For o € G(E/F),

0" () = (x = a(0:(w)) (x = o(02W)) .. (x = o(0, W)

=f(x) as {00y, 00y, ..., 0do,} = G(E/F).

So the coefficients of f(x) are fixed by all elements of G(E/F). So f(x) € F|[x].
Splitting field of f(x) over F is F(a1 (w) =u, oy,(u), ...,0, (u)) =F(u) =E as

o,(u), o3(u)...0,(w) EE
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Therefore E is a normal extension of F.

(2) = (3): we have that F is a fixed field of G(E/F)
By theorem 10.2.10, O(G(E/F)) = [E: F]

(3) = (2): we have that [E: F] = 0(G(E/F))

We have by theorem 10.2.10, [E: E,] = 0(G(E/F))

= [E:E,] = 0(G(E/F)) = [E: F] = [E: E,][Ey: F]

= |[E,:F] =1, thatis, E, = F

Therefore, the fixed field of G(E/F) is F.

10.2.12 Example: The group G(Q(a)/Q) where a® = 1, a # 1 is a cyclic group of order 4.
Solution: We have a® = 1 and a # 1 . Consider the group G (Q(a)/Q)

Letp(x) =1+ x + x% + x3 + x* € Q[x]. Then p(x) is an irreducible polynomial over Q.
(By Eisenstein criterian).

Since x5 — 1 = (x — 1)p(x), we have that a is a root of p(x). Since p(x) is irreducible over
Q (which is also monic), p(x) is the minimal polynomial of a over Q.

So, [Q(@): Q] = deg p(x) =4

Now Q (@) is a finite separable extension of Q as Q is a field of characteristic ‘0.

Now 1, a, a?, a3
O(ax) =5

Here a, a?, «

, a* are roots of x°> — 1 = (x — 1)p(x), and distinct as @ # 1 and
3, a* are the roots of p(x).

So, Q(a) is the splitting field of p(x) over Q and

Qa, a?, a® a*) =Q(a)

By theorem 10.2.11, 4 = [Q(a): Q] = 0(G(Q(a)/Q))

We have that « is a root of
p(x)=1+x+x?*+x3+x*andthat0 =1+ a + a® + a3 + a*
Leto € G(Q(a)/Q).

Now0=0(0)=c(1l+a+a?+ a3+ a?)

=0(1) +o(a) + o(a?®) + o(a®) + o(a?)

=1+ 0(@) + (@)’ + (6(@)’ + (@)’

So, o(a) is a root of p(x) and that o(a) = a or a? or a> or a*.

Note that ¢ is completely determined by o (a).

Let g, (a) = a, 0y(a) = a?, o3(a) = a3, o,(a) = a*. Then 0y, 0,,0; and o,

are all distinct automorphisms of Q (a) as @, a?, a3, a* are distinct.
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Therefore, G(Q(a)/Q) = {0, = I,0,,03,04}.
6,2(@) = 05(0,(@)) = 0,(a?) = (0,(a))” = (a?)? = a*
0,3 (@) = 0,(0,%(@)) = 0,(a*) = (az(a))4 =a8=0ad
3,4 (@) = 03(0,%(@)) = 0,(a®) = (0,(@))’ = (a?)® = a® =2
So 0,*(a) = I and that 0(a,) = 4
Therefore, G (Q(a)/Q) is a cyclic group of order 4 generated by a,(also by ).

10.3 SUMMARY:

In this lesson, comparison between O(G (E/ F)) and [E: F] is studied, where E is a finite
separable extension of F. Moreover the equality between [E: Ey] and O(H) was established,
where H is a finite subgroup of the group of automorphism of E and E} is the fixed field of
H. Also if E is a finite separable extension of F then some equivalent conditions presented
under which E is a normal extension of E An example was presented to identify the group
G(E/F) for a given Galois extension E of F.

10.4 TECHNICAL TERMS:

1. F- automorphism
2. Fixed field
3. Dedekind lemma

10.5 SELF- ASSESSMENT QUESTIONS:

1. Show that G(Q(B)/Q) is a group of order 2, where 83 = 1 and g # 1.
2. Find 6(Q(v2)/Q).

10.6 SUGGESTED READINGS:

1. Bhattacharya P.B, S.K.Jain, S.R. Nagpaul. “Basic Abstract Algebra”, second Edition
1997, Cambridge University press (Indian Edition).

Hungerford, Thomas W., Abstract algebra, 1974, Springer — Verlag, New York.

Lang S. Algebra third edition, Boston Addison-wesley Moss 1993.

Ian stewart, Galois Theory, Chapman and Hall, CRC 2004.

[.S.Luther and 1.B.S.Passi, Algebra, Volume.IV- Field Theory, Narosa Publishing House
2012.

A S

- Dr. K. Siva Prasad



LESSON- 11
FUNDAMENTAL THEOREM OF GALOIS

THEORY
OBJECTIVES:

e To understand fundamental theorem of Galois theory.

e To establish one-to-one correspondence between the subgroups of G(E/F) and the
intermediate fields between F and E, E is a Galois extension of F.

e To identify how normal subgroups correspond to normal extensions of fields.

STRUCTURE:

11.1 Introduction

11.2 Fundamental Theorem of Galois Theory
11.3 Summary

11.4 Technical Terms

11.5 Self-Assessment Questions

11.6 Suggested Readings

11.1 INTRODUCTION:

The Fundamental Theorem of Galois Theory is a central result in abstract algebra that links
field theory with group theory. It arises from the study of polynomial equations and their
roots, first developed by Evariste Galois. The theorem applies to Galois extensions, which are
both normal and separable. For such an extension, the group of automorphisms that fix the
base field play a crucial role. The theorem sets up a one-to-one correspondence between the
subgroups of the G(E/F) and the intermediate fields lying between F and E, E is a Galois
extension of F. This correspondence is inclusion-reversing, which means larger subgroups
correspond to smaller fields. Normal subgroups of G(E/F) correspond to normal extensions
of F. Moreover, the index of a subgroup G(E/K) of G(E/F) is equal to the degree of K over F
if K is a normal extension of F.

11.2 FUNDAMENTAL THEOREM OF GALOIS THEORY:

11.2.1 Definition: Let f(x) € F[x] be a polynomial and let K be its splitting field over F.
Then the group G(K/F) of F-automorphisms of K is called the Galois group of f(x) over F.

11.2.2 Definition: A finite, normal and separable extension E of a field F is called a Galois
extension of F.

11.2.3 Theorem (Fundamental Theorem of Galois Theory): Let E be a Galois extension
of F. Let K be any subfield of E containing F. Then the mapping K +~ G(E/K) sets up a one-
to-one correspondence from the set of subfields of E containing F to the subgroups of
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G(E/F) such that
(1) K= EgE/x

(ii) For any subgroup H of G(E/F), H = G(E/Ey)
(iii) [E: K] = O(G(E/K)) and [K: F] = index of G(E/K) in G(E/F)

(iv) K is a normal extension of F if and only if G(E/K) is a normal subgroup of G(E/F).

(v) If K is a normal extension of F, then G(K/F) = ggﬁg

Proof: Let E be a Galois extension of F.

Then E is a finite, normal and separable extension of F.

Let K be a subfield of E containing F.

Let S = {K/ Kis a subfield of E containing F} and §' = {H/H is a subgroup of G(E/F)}.
Define a mapping y: S — S’ as follows:

letK € S.

Then K is a subfield of E containing F.

Now we show that G(E/K) is a subgroup of G(E/F), where G(E/F) is the Galois group of F-
automorphisms of E.

let 0 € G(E/K).

Then o is an automorphism of E that keeps every element of K fixed.

This implies that ¢ is an automorphism of E that keeps every element of F fixed as F c K
So, o € G(E/F).

Therefore, G(E/K) © G(E/F) and hence G(E/K) is a subgroup of G(E/F).

Now define §: S = S’ by Y(K) = G(E/K).

(1) Since E is a Galois extension of F and K is a subfield of E containing F, we have that E is

also a Galois extension of K. So, by a known theorem (10.2.11), K is a fixed field of G(E/K).

Therefore K = Egg/x)-

(i1) We show that for any subgroup H of G(E/F), H = G(E/Ep).

Let H be a subgroup of G(E/F).

Since E is a Galois extension of F, we have E is a finite separable extension of F and H is a
subgroup of G(E/F).

By known theorem, H = G(E/Ey)
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From (i), the mapping @ is one-one.

From (ii), the mapping @ is onto.

Hence, @ is a bijection from S onto S’

(ii1) Since E is a normal extension of F, we have E is a normal extension of K
By a known Theorem (10.2.11), [E:F] = O(G(E/F)) and [E: K] = O(G(E/K))
We know that [E:F] = [E:K][K:F]

Therefore O(G(E/F)) = O(G(E/K)) [K: F]

O(G(E/F))

So, [K:F] = OGE/K)’

that is, [K: F] is the index of G(E/K) in G(E/F)

(iv) First we show that K is a normal extension of F iff o(K) € K for all ¢ € G(E/F)
Suppose that K is a normal extension of F.

Let o € G(E/F).

Then o : E — E is an automorphism that keeps every element of F fixed.

Let F be the algebraic closure of F containing E.

That is, o : K - F is an embedding that keeps every element of F fixed.

Let 6* be the restriction of 6 to K. Now ¢* is an embedding of K into Fand 6* = I on F

Since K is a normal extension of F, ¢* is an automorphism of K. So, 6*(K) = K and that
0(K) = K as 6™ = o on K. On the other hand suppose that o(K) € K for all 0 € G(E/F).

LetT:K — F be an embeddingandT =1 onF.

Since E is an algebraic extension of K, T can be extended to an embedding T* of E into F.
Since E is a normal extension of F, we have T* is an automorphism of E.

SinceT*=T =1onF, T" € G(E/F).

By our assumption, T*(K) € K and that T*is an automorphism of K as T*(K) = Kon K, T
is an automorphism of K.

That is, K is a normal extension of F.
Suppose now that K is a normal extension of F.
We prove that G(E/K) is a normal subgroup of G(E/F). It is clear that G(E/K) is a subgroup

of GE/F). Let 6 € G(E/F) and T € G(E/K).

(61T o)(k) = o1 (T(o(k))) = 671(o(k)) = kVk € Kaso(k) € K
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andT =IlonK

Therefore, 6™ T o € G(E/K) and hence G(E/K) is a normal subgroup of G(E/F).
On the other hand suppose that G(E/K) is a normal subgroup of G(E/F).

We prove that K is a normal extension of F, that is 6(K) € K forall 6 € G(E/F).
Leto € G(E/F), andletk € K.

Wehave 6! To € G(E/K) forall T € G(E/K).
Alsowehave k = (671 To)(k) =071 (T(c(k))) forall k € K.

So, T(o(k)) = o(k) for all T € G(E/K),k € K.

Since the fixed field of G(E/K) is K, o(k) € K as o(k) is fixed by all T € G(E/K).
Therefore o(K) € K, that is, K is a normal extension of F.

5) We have that K is a normal extension of F.

We prove that G(K/F) = G(E/F)/G(E/K)

Define Y: G(E/F) = G(K/F) by (o) = ¢*, forall 0 € G(E/F),

where o™ is the restriction of 6 € G(E/F) to K and ¢* € G(E/F)

Leto,,0, € G(E/F). Theno, 00, € G(E/F).So, Y(o, 00,) = (0, 00,)".

Now (07 0 62)* (k) = (01(02(k)) = 01(05 (k) = 07 (03 (k)

= (0] 003)(k) forall k € K.

This implies (0,0 0,)* = 0] 0 05.

So, Y(0y 003) =07 005 = Y(o1) 0 Y(oy).

Therefore, P is a homomorphism of the group G(E/F) into the group G(K/F).
Consider Ker y = {0 € G(E/F)/¥(c) =1onK}

={0 € G(E/F)/o" =1onK}

So, Keryy € G(E/K).Also foro € G(E/K),o(k) = k forall k € K.

This implies o € Ker Y. So, G(E/K) S Ker .

Hence, Ker §y = G(E/K).

Therefore, G(E/F)/G(E/K) = Y(G(E/F)) and Y(G(E/F))is a subgroup of G (K /F).

We have [E: F] = [E:K][K:F] and [E: F] = 0(G(E/F))
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and [E: K] = 0(G(E/K)). So, [K:F] = —ZEEEZQ%

1 _ O(GE/R) _  (GE/FRY _

Since K is a normal extension of F, we have

[K:F] = 0(G(K/F))

50,0(G(K/F)) = 0 (W(G(E/F)))and that G(K/F) = ((G(E/F)))

Therefore, G(E/F)/G(E/K) = G(K/F)
11.3 SUMMARY:

The Fundamental Theorem of Galois Theory describes the deep relationship between fields
and groups. If E is a finite Galois extension of F, then there is a one-to-one correspondence
between the subgroups of G = G(E/F) and the intermediate fields lying between F and E.
This correspondence is inclusion-reversing, meaning that larger subgroups correspond to
smaller fields. Each subgroup H of G gives a fixed field En and each intermediate field K
gives the subgroup G(E/K). Normal subgroups of G(E/F) correspond to normal extensions
of F. For a normal extension K of F, the index of the subgroup G(E/K) equals the degree of
the extension, of K over F. Thus, the subgroup structure of the G(E/F) mirrors the lattice of
intermediate fields. This correspondence allows field-theoretic problems to be translated into
group-theoretic ones, and it explains why certain polynomials are solvable while others are
not.

11.4 TECHNICAL TERMS:

e Degree of Extension: The dimension of E as a vector space over F and it is denoted by
[E:F]

e Splitting Field: The smallest field in which a given polynomial splits completely into
linear factors.

e Separable Extension: A field extension in which every element is the root of a
separable polynomial over the base field.

e Normal Extension: An extension in which every irreducible polynomial over the base
field that has one root in the extension splits completely in it.

e Galois Extension: A finite extension that is both normal and separable.

e Intermediate Field: A field K such that FEKCE, F is a subfield of K and K is a subfield
of E.
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11.5 SELF-ASSESSMENT QUESTIONS:

Question 1. What is a Galois extension?

Answer: A finite extension E of F is called a Galois extension if it is both normal and
separable.

Question 2. State the Fundamental Theorem of Galois Theory.

Answer: If E/F is a finite Galois extension with Galois group G, then there is a one-to-one
inclusion-reversing correspondence between the subgroups of G and the intermediate fields
of E.

Question 3. What type of field extensions correspond to normal subgroups of the Galois
group?
Answer: Normal subgroups of G correspond to intermediate fields that are normal over F.

Question 4. Why is the correspondence inclusion-reversing?
Answer: Because larger subgroups of G (E /F) fix fewer elements, resulting in smaller fields,
and vice versa.

Question 5. Give one application of the Fundamental Theorem of Galois Theory.
Answer: It explains why general equations of degree five or higher over Q cannot always be
solved by radicals.

11.6 SUGGESTED READINGS:

1. Bhattacharya, P. B., S. K. Jain and S. R. Nagpaul. 1997. Basic Abstract Algebra, 2nd
edition. UK: Cambridge University Press (Indian Edition).

2. Hungerford, Thomas W. Abstract Algebra, 1974, Springer-Verlag, New York

3. Khanna, V. K. and S. K. Bhambari. A Course in Abstract Algebra, 3rd edition. New
Delhi: Vikas Publishing House Pvt. Ltd.

4. Lang, S. 1993. Algebra, 3rd edition. Boston: Addison-Wesley, Mass.

5. LS. Luther and I.B.S.Passi, Algebra, Vol. IV-Field Theory, Narosa Publishing
House,2012.

6. lan Stewart, Galios Theory, Chapman and Hall/CRC, 2004.

- Dr. K. Siva Prasad



LESSON- 12
FUNDAMENTAL THEOREM OF ALGEBRA

OBJECTIVES:

e To understand the statement of the fundamental theorem of Algebra that every non-
constant polynomial with complex coefficients has at least one root in the field of
complex numbers.

e To realize the importance of the field of complex numbers as an algebraically closed
field. i.e., every polynomial equation over C can be completely factorized into linear
factors.

STRUCTURE:

12.1 Introduction

12.2 Fundamental Theorem of Algebra
12.3 Summary

12.4 Technical Terms

12.5 Self -Assessment Questions

12.6 Suggested Readings

12.1 INTRODUCTION:

The Fundamental Theorem of Algebra is a central result in Algebra which states that every
non-constant polynomial with complex coefficients has at least one root in the field of
complex numbers. This establishes that the field of complex numbers is algebraically closed.
Consequently, any polynomial of degree n over C can be completely factorized into exactly n
linear factors, counting multiplicities. The theorem highlights the distinction between R and
C, since real numbers are not algebraically closed. Various proofs exist, ranging from
analytic approaches using Liouville’s theorem to purely algebraic and topological methods. A
direct outcome of the theorem is that over C the only irreducible polynomials are linear. It
also guarantees the completeness of polynomial solutions in the complex plane.

12.2 FUNDAMENTAL THEOREM OF ALGEBRA:

12.2.1 Note: Any field of characteristic zero is a perfect field. Since the characteristic of R
and C are zero, the fields R and C are perfect fields. So any algebraic extension over them is a
separable extension.

12.2.2 Note: Let G be a finite group and let p be a prime number. If p™ | 0(G), then G has a
subgroup of order p™.

Theorem 12.2.3: (Fundamental Theorem of Algebra)
Let f(x) € C[x] be a non-constant polynomial. Then f(x) can be factored as linear factors in

Clx].
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Proof: Let f(x) € C[x] be a non-constant polynomial.

We prove that the splitting field of f(x) over C is C, that is, all roots of f(x) are in C.
Let f(x) = ag + a;x + ax? + -+ a,x", a, # 0.

Consider g(x) = (x? + D (ay + a;x + -+ + a,x™) (@ + ayx + - + Gpx™)

Clearly g(x) € R[x]. Let E be the splitting field of g(x) over R.

Clearly C is a subfield of E andthat R € C € E.

We prove that E = C and that all roots of f(x) will be in C. We first prove that there is no
subfield K of E containing C such that [K: C] = 2. Suppose that K is a subfield of E and
C € K and [K: C] = 2. Since K is a finite separable extension of C such that K = C(u) for

some u €K.

Let p(x) be the minimal polynomial of u over C.

Now deg p(x) = 2 and p(x) is irreducible monic polynomial in C[x].
Suppose p(x) = x? + 2ax + b, where a, b € C.

Now p(x) = (x + a)? — (a? — b)

=(x+a)* - (m)z

= ((x+a) — VaZ—b) (x +a) + Va?-b)

— (v~ (V@5 - ) (x - (~a~Va=B))

Since a? — b € C, we have that va? — b € C and that both roots
(Va2 =b —a), (—m —a) arein C.

This is a contradiction to p(x) is irreducible over C.

Therefore there is no subfield K of E containing C such that [K: C] = 2.

Consider the Galois group G(E/R) of g(x) over R.



| Galois Theory 12.3 Fundamental Theorem of Algebra

Now O(G(E/R)) = 2™q, where m is a positive integer and q is an odd integer.
Let G(E/R) has a 2-Sylow subgroup of H of order 2™.

Now H = G(E/L) for some subfield L of E containing R.

Now 2™q = 0(G(E/R)) = [E:R] = [E: L][L: R]

= O0(H)[L:R] = 2™[L: R]

So,[L:R] = q.

Since L is a finite separable extension of R, we have that

L = R(v) for some v € L.

Let q(x) be the minimal polynomial of v over R,

Now q(x) € R[x] is irreducible over R, and its degree is g, an odd integer.
We know that every equation of odd degree over the reals has a real root.

So, q(x) has a root in R. Since g(x) is irreducible over R, and has a root in R, it follows that

deg g(x) = 1andthatq = 1.

So, L =R.Now O(G(E/R)) =2™and RS C S E.

Since 2™ = [E:R] = [E: C][C: R] = [E: C] x 2, we have that
[E:C] = 2™ 1.

Since E is a Galois extension of C, it follows that

[E:C] =0(G(E/C)) =2m~1,

Suppose that m > 1. So, m — 1 = 1. So, G(E/C) has a subgroup of order 2™~2 as 2™m~2/

2m-1
Now by the fundamental theorem of Galois theory,

we get a subfield E, of E containing C such that
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G(E/E,) =T and [E: Eo] = O(G(E/Ey))

Now 2™m~1 = [E: C] = [E: E,][E,: C]

= 0(T)[Eo: C]

= 2M72[E,: C]

Therefore, [E,: C] = 2. This is a contradiction to the fact that E has no subfield K containing
C such that [K: C] = 2. Therefore m * 1, thatis, m = 1.

So, [E:C] = 2m~1 = 2171 =20 =1,

Hence, E = C as required.

12.3 SUMMARY:

The Fundamental Theorem of Algebra is one of the most celebrated results connecting
algebra and analysis. It asserts that every non-constant polynomial with complex coefficients
has at least one root in the field of complex numbers. This property makes the complex
number system an algebraically closed field, a concept of fundamental importance in higher
algebra. The necessity of the theorem arises from the fact that equations of degree higher than
two cannot always be solved explicitly by radicals, yet we still require a guarantee of root
existence. Without such a result, the theory of polynomial factorization would remain
incomplete. The theorem provides the foundation for expressing any polynomial of degree n
as a product of n linear factors over C, ensuring completeness of algebraic equations.

12.4 TECHNICAL TERMS:
Fundamental theorem of algebra.
12.5 SELF-ASSESSMENT QUESTIONS:

Question 1. Why is the field of complex numbers called algebraically closed?

Answer: Because every non-constant polynomial in C[x] has at least one root in C, and
hence every polynomial splits completely into linear factors over C.

Question 2. What are the irreducible polynomials over C?
Answer: Over C, the only irreducible polynomials are linear.

Question 3. What is the necessity of the Fundamental Theorem of Algebra?
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Answer: It guarantees the existence of roots for all complex polynomials, making
factorization possible and ensuring completeness of algebraic equations.

Question 4. How does the Fundamental Theorem of Algebra relate to Galois Theory?

Answer: It ensures that the splitting field of a polynomials exists inside C, which is essential
for studying solvability of polynomials by radicals.

Question 5. Why is the theorem not true over the field of real numbers?

Answer: Because there exist real polynomials, like x>+1 which have no real roots, R is not
algebraically closed.

12.6 SUGGESTED READINGS:

1.

Bhattacharya, P. B., S. K. Jain and S. R. Nagpaul. 1997. Basic Abstract Algebra, 2nd
edition. UK: Cambridge University Press (Indian Edition).
Hungerford, Thomas W. Abstract Algebra, 1974, Springer-Verlag, New York

. Khanna, V. K. and S. K. Bhambari. A Course in Abstract Algebra, 3rd edition. New

Delhi: Vikas Publishing House Pvt. Ltd.

Lang, S. 1993. Algebra, 3rd edition. Boston: Addison-Wesley, Mass.

I.S. Luther and I[.B.S.Passi, Algebra, Vol. IV-Field Theory, Narosa Publishing
House,2012.

Ian Stewart, Galios Theory, Chapman and Hall/CRC, 2004.

- Dr. K. Siva Prasad



LESSON- 13
ROOTS OF UNITY AND CYCLOTOMIC

POLYNOMIALS

OBJECTIVES:

e To understand the concept of roots of unity and its properties.

e To derive the minimal polynomial of primitive roots of unity over the rationals.

e To construct the nth cyclotomic polynomial, which is the minimal polynomial of a
primitive nth root of unity.

o To investigate the irreducibility and degree of cyclotomic polynomials.

STRUCTURE:

13.1 Introduction

13.2 Roots of Unity

13.3 Cyclotomic Polynomials
13.4 Summary

13.5 Technical Terms

13.6 Self- Assessment Questions

13.7 Suggested Readings

13.1 INTRODUCTION:

In algebra, one of the central theme is understanding the roots of polynomials over fields.
This lesson on roots of unity and cyclotomic polynomials introduces the fundamental
concepts that link algebra, number theory, and geometry. It focuses on the study of the nth
roots of unity, which are precisely the solutions to the equation x"= 1 in a suitable field.
The concept of primitive roots of unity, construction and properties of cyclotomic
polynomials is discussed. The elegant algebraic properties of cyclotomic polynomials
including their irreducibility over Q is studied.

13.2 ROOTS OF UNITY:

13.2.1 Definition: Let E be a field and n be a positive integer. An element o€ E is called a
primitive n root of unity in E if ®" = 1 and ®™# 1, for any positive integer m< n.

13.2.2 Note: The set of complex numbers satisfying x" = 1 form a finite subgroup H of the
multiplicative group € = C — {0}, where C is the field of complex numbers. Also this H is
cyclic group generated by a primitive n™ root of unity. For any positive integer ‘n’, there are
exactly @(n) primitive n roots of unity, where @(n) is the number of positive integers less
than n and are relatively prime to n.

(i) If a finite group of order ‘n’ contains an element of order ‘n’, then it must be a
cyclic group.
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(i) If A and B are cyclic groups of orders m and n respectively such that (m,n) =I,
then AXB is a cyclic group.

(iii) Let A be a finite abelian group of order pil.pgz ...... pik where pypy........ Pk are
distinct primes and e>0 then A = S(p1)®S(P2)P.......... @DS(pk) where
IS(p)| = p;* Vi=1,2,....., k and this decomposition of A is unique.

13.2.3 Theorem: Let F be a field and let U be a finite subgroup of the multiplicative group
F*=F — {0}. Then U is cyclic. In particular, roots of x" — 1 € F[x] from a cyclic group.

Proof: Let F be a field and F* = F — {0} be the multiplicative group of non-zero elements,
which is abelian.

Let U be a finite subgroup of F".

Suppose |U| =n>1 and n= pil.pgz ...... Pk, Where p1py ........ pk are distinct prime numbers
andryr,........ Iy are positive integers.

Let S(pi) be a pi- sylow subgroup of U.

Since U is finite abelian group, we have U = S(p1)XS(p2)X.......... XS(px) where [S(p;)|= p;';
1<i<k.

Now we show that U is cyclic.

For this first we show that each S(p;) is a cyclic group.

Let a€ S(p;) be an element such that O(a) is maximal, say piS I

Since 0(a)| 0(S(p;)), we have p;| p;!

This implies si< 1 (1)

Let x €S(pi) with O(x) = p;’

By the selection of the element ‘a’ in S(p;), we have that piti <p;

This implies xPi™ =1 .

Then every element of S(pi) is a root of the polynomial xPl 1,

But we know that the number of roots of the polynomial xPU 1 s piSi
= [S(pi)| < p;’

> pli<pl

= Ii <Si (2)
From (1) and (2), we have ri=s;

> pli=pl

= 0(a) = p;'

Therefore |S(p;)| = 0(a).

So S(pi) is cyclic for all 1 =1,2,......k.

Therefore S(p1), S(P2).eereeen S(px) are cyclic groups of orders p}*, p2,...... , Pk

Thus S(p1)XS(p2)X ..ceuvvne XS(pk) is cyclic and hence U is cyclic.
Let H be the set of roots of x" — 1 € F[x]. Let E be the splitting field of x" — 1.
Then E* = E — {0} is a multiplicative group of non-zero elements.

Letabe H. Thena"=1andb"=1
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Consider, (ab)" = a"b" = 1. So, abe H
This shows that H is a finite subgroup of E” and hence H is a cyclic group

Therefore the set of roots of x" — 1 is a cyclic group.

13.2.4 Theorem: Let F be a field and let n be a positive integer. Then there exists a primitive
h

n"™ root of unity in some extension E of F if and only if either charF = 0 (or) charFin
Proof: Given that F is a field and n is a positive integer.

Consider the polynomial f(x) =x"— 1 € F[x]

Assume that char F =0 or charFin

Let E be the splitting field of f(x) over F.

Let a € E be a root of f(x) € F[x].

Then f'(x) = nx™! (Since f(x) =x"—1)

This implies f'(a) =na™'# 0 (charFin)

Since charF = 0 or charFin, we have f'(a)# 0.

i.e, Each root of the polynomial f(x) is simple.

Therefore f(x) has n distinct roots.

Let H be the set of all these ‘n’ roots of f(x).

Then H € E, |[H| = n and we know that H is a cyclic group of E* = E —{0}.
Therefore H = (a).

Here O(a) =n, a" =1 and a™#1 for any positive integer m<n.

So, a is primitive n root of unity in E, where E is extension of F.

Conversely, Assume that E is an extension of F and a € E is a primitive n™ root of unity.
Then 1,a,a°, ....... , a"! are n distinct roots of the polynomial f(x) = x" — 1€ F[x]
Therefore all the roots of f(x) are simple.

So, f'(x) #0 ie, f'(x)=nx™'#0.

Hence charF = 0 (or) charFin

13.3 CYCLOTOMIC POLYNOMIALS:

13.3.1 Definition: Let n be a positive integer. Let F be a field of characteristic zero or
characteristic ptn. Then the polynomial @n(x) = 1, (X — w) where the product runs over all
the primitive n roots w of unity is called the n™ cyclotomic polynomial.

Example: ¢1(x) = x -1, ¢2(x) = x +1, ¢3(x) = x? +x+1, @a(x) = x> +1 are cyclotomic

polynomials over Q.
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h

13.3.2 Theorem: ¢n(x) = T,(Xx— w), w is primitive n™ root in C, is an irreducible

polynomial of degree ¢(n) in Z[X]

Proof:

Let E be the splitting field of x" — 1 over Q.

Then E is a finite, normal and separable extension of Q ( Since char Q = 0)

Therefore the fixed field of G(E/Q) is Q.

Let w be any primitive n root of unity.

Then for any 0 € G(E/Q), (6 (w))"=0c(w™)=0(1)=1& (6 (w))™=0 (0™) #0(1)=1
for positive integer m<n.

Therefore for any ¢ € G(E/Q), the induced mapping ¢* : E[x] = E[x] keeps ¢n(X) unaltered.
i.e., 0" (pn(X)) = Pn(x) Yo € G(E/Q)

1.e, each coefficient of @n(x) remains unchanged for any o €G(E/Q)

This implies that all the coefficients of @u(x) are in the fixed field of G(E/Q) and hence all the
coefficients of @n(x) are in Q. (- fixed field of G(E/Q) is Q)

Therefore @n(x) € Q[X]

Since @n(X) 1s a factor of X" —1 & @n(X) 1S monic, we have @n(X) € Z[X] (1)
We know that for any positive integer n, the number of primitive n'" root of unity is @(n)

So the degree of @n(X) is ¢(n). 2)
Now we show that @u(x) is irreducible over Z

Let f(x) € Z[x] be an irreducible factor of ¢n(x) and w be a root of f(x).

Here w is also a primitive n™ root of unity.

We shall now prove that wP is also a root of f(x) for any prime number p such that p tn.
Let p be any prime number such that p  n.

Clearly w? is also generator of the cyclic group consisting of the roots of x"-1 (** (p,n) = 1)
This implies that w? is also a primitive n' root of unity.

Since f(x) € Z[x] is a factor of @n(x), there exists a polynomial h(x) € Z[x] such that
¢on(x) = f(x).h(x).

If possible suppose that w? is not a root of f(x).

Then wP isarootof h(x)  (* @n(x) = f(x).h(x))

This implies h(wP) = 0. So, w is a root of h(xP)

Therefore f(x) and h(x?) have a common factor over some extension of Q.

By Euclid’s division algorithm, f(x) and h(x?) have a common factor over Q.

Since f(x) is irreducible in Z[x], we have f(x) is irreducible in Q[x]
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Therefore f(x)|h(xP) in Q[x]. So, there exists g(x) € Z[x] such that h(xP) = f(x).g(x)
Since h(xP) and f(x) are monic polynomials, it follows that g(x) is a monic polynomial over Z.

Let f(x) and h(x) be obtained by replacing the coefficients a € Z by a of Z/ ®)

Since aP=a(modp) for all integers a, we have (h(x))® = h(xP)

So h(xP) = f(x).g(x) and hence h(x) and f(x) have a common factor.

But we know that @n(x) | x™ — 1 and @n(x) = f(x).h(x)

This implies x™ — 1 has a multiple root, Say a.

Then the derivative of x™ — 1 must vanish at «.

=>na"1 =0

= a1 =0 (- charptn)

= o = 0, which is contradiction (** 0 is not a root of x" — 1)

Therefore w? is also a root of f(x).

Thus if w is a root of f(x), then w” is also a root of f(x) for any prime p<n & ptn (*)
Since any primitive nth root of unity can be obtained by raising w to a succession of prime
powers with primes not dividing n, we have that all the primitive nth roots of unity are roots
of f(x). So, @,(x) = 1(x)

Therefore ¢, (x) is irreducible over Z.

13.3.3 Theorem: Let w be a primitive n™ root of unity in C, then Q(w) is the splitting field

of @n(x) and also of x" — 1 € Q[x]. Further [Q(w):Q] = ¢(n)= |G(Q(w)/Q)| and

GQ(w)/Q) = (L) , the multiplicative group formed by the units of <i—>

<n>

Proof: Given that w is a primitive n™ root of unity in C.

Let 1, 0, ®, ....... , ®"! be the n distinct roots of the polynomial x"-1.

So Q(w) is the splitting field of the polynomial x"-1.

Since Q(w) contains w and w is a primitive n™ root of unity, we have that Q(w) contains all
n™ roots of unity. Hence Q(w) is also the splitting field of @, (x).

Now @, (x) € Q[x], and by Theorem 13.3.2, it is irreducible with leading coefficient 1 and w

is aroot of @,(x). Also we have @, (x) is the minimal polynomial of w over Q.

- [Q(w):Q] = deg®y (x) = ¢@(n) (1)
Since Q(w) is a finite, normal and separable extension of Q, by known theorem, we have
1G(Q(w)/Q)| = [Q(w):Q] ()

Let 0 €G(Q(w)/Q) .
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h h

Since w is a primitive n™ root of unity, we have o(w) is also a primitive n™ root of unity.
Therefore o(w) = o*fork <nand k is relatively prime to n.

Denote o by oy.

From (1) and (2), we have |G(Q(w)/Q)| = [Q(w):Q] = @ (n) = degPy (x)

The number of such k’s are equal to ¢(n) and they are precisely the elements of (Z/(n))"
Now we show that the galois group G(Q(w)/Q) is isomorphic to (Z/(n))", where(Z/(n))" is
the multiplicative group formed by the units of Z/(n).

Define a mapping f: (Z/(n))" - G(Q(w)/Q) as f(k) = oy, V k € (Z/(n))"

It is easy to verify that fis one-one and onto.

Now we show that f'is a homomorphism.

Let ki ko€ (Z/(n))" .Then ki ko= qn+r where r <n

Sokiky+(n)=gqn+r+((m)=r+(n) (~qnE_(n))

This implies ki ko= r.So wkikz = "+ = "

Now fikikz) = f(r) = 0, = O, k,= Ok, Ok, = f(ki) .f(k2)

Therefore f is homomorphism.

Hence (<Z$)* = G(Q(w)/Q)

13.4 SUMMARY:

The topic "Roots of Unity and Cyclotomic Polynomials" explores an essential area of algebra
that links polynomial equations, field theory, and number theory. In particular the complex
numbers that satisfying the equation x" = 1 form a cyclic group under multiplication. A
primitive n root of unity is one that generates all the n roots of unity. The study of these
roots is extended through cyclotomic polynomials, which are minimal polynomials of
primitive n™ roots of unity over the rationals. This polynomial denoted by ¢n(x) have integer
coefficients, degree equal to ¢(n) and are irreducible over Q. The cyclotomic polynomial
¢n(Xx) captures the structure of roots of unity and provides a factorization of x" - 1 into
irreducible polynomials over Q. The construction of cyclotomic polynomials is recursive.

13.5 TECHNICAL TERMS:

Root of Unity: A solution to the equation x" = 1.

Primitive n Root of Unity: The primitive nth roots of unity are those that generate all the nth
roots through their powers.

Cyclotomic Polynomial: Let n be a positive integer. Let F be a field of characteristic zero or
characteristic ptn. Then the polynomial @n(x) = 1, (X — w) where the product runs over all

the primitive n roots w of unity is called the n™ cyclotomic polynomial.
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Euler’s Totient Function ¢(n): The number of positive integers k less than n such that
ged(k,n)=1.

Irreducible Polynomial: A nonconstant polynomial that cannot be factored into the product of
two nonconstant polynomials over the field.

13.6 SELF -ASSESSMENT QUESTIONS:

Q1. How many primitive nth roots of unity exist in C?
Answer:
There are ¢(n) primitive nth roots of unity in C, where ¢ is Euler’s totient function.

Q2. Are cyclotomic polynomials irreducible over Q?
Answer:Yes, ¢n(x) is irreducible over Q for every positive integer n.

Q3. Compute ®3(x).
Answer:

We have x’—1=(x—1)(x*+x+1)
So @3(x)=x>+x+1 which is the minimal polynomial of a primitive cube root of unity over Q.

Q4. What is the degree of @u(x)?
Answer:
The degree of @u(x) is ¢p(n), where ¢ is Euler’s totient function.

13.7 SUGGESTED READINGS:

1. Bhattacharya, P. B., S. K. Jain and S. R. Nagpaul. 1997. Basic Abstract Algebra, 2nd
edition. UK: Cambridge University Press (Indian Edition).

2. Hungerford, Thomas W. Abstract Algebra, 1974, Springer-Verlag, New York

3. Khanna, V. K. and S. K. Bhambari. A Course in Abstract Algebra, 3rd edition. New
Delhi: Vikas Publishing House Pvt. Ltd.

4. Lang, S. 1993. Algebra, 3rd edition. Boston: Addison-Wesley, Mass.

5. LS. Luther and I.B.S.Passi, Algebra, Vol. IV-Field Theory, Narosa Publishing
House,2012.

6. lan Stewart, Galios Theory, Chapman and Hall/CRC, 2004.
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LESSON- 14
CYCLIC EXTENSIONS

OBJECTIVES:

To understand the structure and properties of cyclic extensions of fields.

To analyze Galois extensions with cyclic Galois groups.

To explore explicit examples and constructions of cyclic extensions.

To learn how cyclic extensions contribute to solvability of polynomial by radicals.
To apply cyclic extension theory to fundamental algebraic structures and their
automorphisms.

STRUCTURE:

14.1 Introduction

14.2 Cyclic Extensions

14.3 Summary

14.4 Technical Terms

14.5 Self -Assessment Questions

14.6 Suggested Readings

14.1 INTRODUCTION:

A cyclic extension of a field is a Galois extension whose Galois group is cyclic. This concept
plays a crucial role in Galois theory, which connects field extensions with group theory.
Cyclic extensions are particularly important for understanding the solvability of polynomials
by radicals and the structure of field automorphisms. Cyclic extensions also illustrate the
fundamental theorem of Galois theory, which describes a correspondence between subgroups
of the Galois group and intermediate fields. In cyclic extensions, this correspondence is
particularly simple because the Galois group is cyclic and its subgroups are easy to classify.

14.2 CYCLIC EXTENSIONS:

14.2.1 Definition: Let E be a Galois extension of F. Then E is called a cyclic extension of F
if G(E/F) is a cyclic group.

Example: 1. Let w be a primitive n™ root of unity in C. Consider the polynomial x" -1 €
Q[x]. Then w is a root of the polynomial x* -1€ Q[x] which implies that Q(w) is the splitting
field of x" -1, If E = Q(w), then E is a Galois extension of Q as x" -1 is a separable
polynomial . Since G(E/Q) is a cyclic group by known theorem, we have E is cyclic
extension of Q.

Example 2 : All finite extensions of finite fields are separable. Thus the splitting field E of a
polynomial f(x) over a finite field F is a Galois extension. By known theorem, we have
G(E/F) is cyclic. Thus all the splitting fields over finite fields are cyclic extensions.
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14.2.2 Proposition: Let F be a field of non-zero characteristic p. Then for every positive
integer k the mapping m, of F into itself, defined by m(x) = xP* for all elements x € F is an

embedding of F into itself. (The mapping m,(x) = xP* is called Frobenius endomorphism).
Proof: Given that F is a field of characteristic p#0.

Let k be a positive integer.

Define a mapping my: F =F by m(x) = xpk, Vx€F.

Now we show that Ty is an embedding.

Letx,y€F.

Then mp(x +y) = (x + y)pk = xP"+ ypk = mR(x) + mME(y) and
k k k

Te(X. y) = (. )P = xP. yP" = me(x) .k (y)

Therefore my: F — F is homomorphism

Let x, y € F be such that m(x) =m(y).
= xP" = yP
= (x—y)P =xP -7 =0
=x=y

Therefore Ty is one-one

Hence my is an embedding of F into itself.

14.2.3 Lemma: Let E be a finite extension of F. Suppose f: G - E" where E°=E — {0} has
the property that f(on) = o(f(n)) f(0), Vo, n € G. Then there exists @ € E” such that f(g) =
o(a™!) @, Vo € G ( The mapping f in the hypothesis of this lemma is called a crossed
homomorphism).

Proof: Given that E is a finite extension of F and E*= E — {0} be the multiplicative group of
non-zero elements and f is a mapping from G to E* such that f(on) = o(f(n)) f(c), Vo, n € G.

By known theorem, we have |G(E/F)| < [E:F]

Consider, Y. ;¢ f(0)o(a), Va€F

If Y secf(0)o(a)=0, Va € F then by a known theorem, f(¢) = 0, which is a contradiction to
f(o) €E"

Therefore Y, ¢ f(0)a(a) # 0, forsomea € F

Puta=Y,c;f(o)a(a). Letn € G.

Now n(a)

=1Qgec f0)a(a))

= Xoec N (f(0))n(a (@) [+flon) = a(ftm)) flo).fino) = n(f(a)) fn) =fMo)(fm) ~* = n(f(0)) ]
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= Yoec (o) (f) "' n(o(@) [~ {no/o €G} ={o/0 €EG} ]
= Yoea f(0) (f() ~*o(a)
= (f(m) ' Loec f(0) o(a)
= () T«
Thus n(a) = (f(n))_1 a
=>n(@)fm) = «a
=) = M@)o =n(aH)a
Therefore f(n) = n(a)a,vn G

14.2.4 Lemma: (Special Case of Hilbert’s Problem 90):

Let E be a finite extension of F and let G = G(E/F) be a cyclic group of order n generated by
o. If w € Eis such that w. 6(w). 6%(w)...0" (w)= 1, then there exists @ € E such that
w=o(a)a L.

Proof: Given that E is a finite extension of F and G = G(E/F) is a cyclic group of order n
generated by o .

Let w € E be such that w. o(w). 6?(w)...c" 1 (w) =1

LetG={I=0"0"1 ... o2, o}
Define a mapping f: G »E" by f(I) = 1, f(0) = w, f(6') = 6" Y (w)d' ?(w).......... o(w) w
fori=2,3....n-1.

Now we show that this mapping f'is a crossed homomorphism.

Let o', o) € G for 1<i, j<n

Case(i) : Suppose thati+j=0modn 1ie, i+j=nq ie.,1+jisamultiple ofn
Now f(o'0)) = f(c') = f(e™) = f(I) = 1
Consider f(c')o! (f(c)))
= (0" ()02 (W).......... o(w) )o' (0 Hw)d 2 (w).......... o(w) w)
=0 Y w)o' 2(w).......... o(w) wo' T Y (w)e T 2(w).......... o' (w)o' (w)
= oM Y (w)oM2(w).......... o' (w) o' (w)o H(w)o' 3 (w).......... o(w) w
= f(0i+j)
= f(o")
=1(I)
=1
Therefore f(c'c)) = f(o')o' (f(0)))
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Case (ii): Suppose o', 6 € G be such that i +j is not a multiple of n.
Then i+ j=nq+r wherer <n

Here f(c'0)) =f(c'")) =f(c"9*T) =f(6"1 ¢") =f((c™)%6") =f(I)76") = f(c")

=0 Y w)o" 3(w).......... o(w) w
So f(o')o! (f(0)))
= (6" Y w)o'2(w).......... o(w) w)o' (0 Hw)o 2(w).......... o(w) w)
= 6 Y w)o'3(W).......... o(w) wo Y (w)o 2 (w).......... o' (w) o' (w)
=o' Y (w)eM2(w).......... o' (w) o' (w)o Hw)o' A (w).......... o(w) W
=0 Y w)o" %(w).......... o(w)w asoti=¢"9* = (¢")96" = (I)96" =0o"

Therefore f(o'c)) = f(o')o' (f(0)))
Hence fis a crossed homomorphism.
By lemma 14.2.3, there exists @ € E* such that f(c) =o(a™!) a

1 (By def (o) =w. Since a € E, E" is a field, we have a~lexists

Lw=ola)a”
and we can replace a”! by a & a by a™?1)

Hence Proved.

14.2.5 Theorem: Let F contain a primitive n root w of unity. Then the following are

equivalent.

(1) E is a finite cyclic extension of degree n over F

(i1) E is the splitting field of a irreducible polynomial x" — b € F[x]. Further more note = E
= F[a] where a is a root of x"—b

Proof: Given that the field F contains a primitive n™ root w of unity.

Assume (i) i.e, Suppose that E is a finite cyclic extension of degree n over F

By def., of cyclic extension, we have E is a Galois Extension of F and G(E/F) is a cyclic
group.

Since E is finite extension, it implies [E:F] = n(say).

Since G(E/F) is a cyclic group, we have G = G(E/F) = (o) i.e., G is generated by 0 € G

By known theorem, we have |G(E/F)|=[E:F]=n and F is the fixed field of G(E/F).

Since w € F, 0 € G we have o(w) = w

Therefore w. o(w). 62(w)......... O w=w 0. 0=0"=1

By lemma 14.2.4, there exists a € E” such that w = o(a)a ™!

Therefore o(a)= wa

= ol(a)= w'a (1)
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Now o(a™) =(c(@)") = (wa)"=w"a™=a™( vw"=1)
Therefore c'(a™) =a™; Vi=12,....n
So each element in G is fixing a™ .. a" €F.
Putb=a™.
Consider the polynomial f(x) = x" — b€ F[x].
Let g(x) be a monic irreducible factor of the polynomial f(x) in F[x]
Now o, wa, w?a, ......... o™ 1(a) are the n distinct roots of the polynomial f(x)
Suppose w'a is a root of g(x), wherei =0, 1,..., n-1
Suppose 0 < j < n-1
Consider o/ {(w'a)= w'w "o (from(1))
=wa [we know that w €F . So w' € F, o/ {(w!) = w ]
We have o {(w'a)=wla ;Vi=0,1,2,...n-1.
i.e., If wla is aroot of g(x) € F[x] then o !(w'a) is also a root of g(x).
Therefore o, wa, w3a, ......... o™ 1(a) are all the roots of g(x) and deg g(x) = deg f(x) =n
So, f(x)=g(x) .u, where pis a unit in F

Since g(x) is irreducible over F, we have f(x) is also irreducible over F

Therefore F(a, wa, w?a, ......... " 1()) is the splitting field of f(x) over F
Clearly F €F(a) € E and n = [E:F] = [E:F(a)][F(a):F] = [E:F(a))] n
S[E:F(a)] = 1.

Therefore E = F(a) .

So, E is the splitting filed of f(x) over F

Assume (ii) i.e., E is the splitting filed of an irreducible polynomial f(x) = x" — b€ F[x]
We show that E is a finite cyclic extension of F of degree n.

Let ¢ € E be aroot of f(x). So, b=1¢"

Then ¢, wc, w?a, ......... " ¢ are n-distinct roots of f(x) in E [ w is primitive n'" root of
unity]. Since deg f(x) = n, we have f(x) is separable over F.
So F(c) = F(c, wc, w?a, ......... w" 1¢) is the splitting field of f(x) over F and hence it is

normal extension of F.

Therefore E = F(c) and [E:F] =[F(c):F]=n

Since the minimal polynomial of ¢ is separable over F, we have c is separable over F
Therefore E is finite separable normal extension of F.

i.e, E is a Galois extension of F and |G (E/F)| = [E:F] =n

Now it remains to show that G(E/F) is cyclic.
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For this we show that ¢ : G(E/F) — Z/<n> is an isomorphism.
We know that Z/< n> is cyclic group of order n under addition
Let 0 € G(E/F).
Since c is a root of f(x), we have a(c) is also a root of f(x) and o(c) = wic; 0 <i < n-1
Define ¢ : G(E/F) — Z/<n>= {0+(n), 1+(n),.....(n-1)+(n)} by ¢(o) =1+ (n) where 0 < i <
n-1
Now we show that ¢ is homomorphism, one-one and onto
Let 65,0, € G(E/F) and 0,(c) = w'c, 0,(c) = w/c,0 <ij<n-landi+j=nq+r;
where q,r€ Z and 0 < r <n-1
Then (0,0,)(c) = 6,(0,(c)) = 0, (wic) = wo,(c) = w (w'c)=wtc
Now ¢(010,) =1+ n=itjH(n) (v 14j +(n) = nq +r +(n) =r +(n))
= (i+(n)) + ( +(n))
=¢(01) + ¢(02)

Therefore ¢ is homomorphism
Suppose ¢(01) = ¢(02)

= 1+(n) =] +(n)

= 1 = ]

= wlc =w

= 01(c) =03(c)

=0, =0,

¢ is one — one
Since |G(E/F)| = |Z/< n >|=n, we have ¢ is onto.
Since Z/< n > is cyclic group, we have G (E/F) is cyclic.
Therefore E is cyclic extension of F

Hence (ii) = (i) is proved.
14.3 SUMMARY:

A cyclic extension of fields is a special type of field extension where the associated Galois
group is a cyclic group, meaning it is generated by a single automorphism. In such
extensions, the group of automorphisms has a simple and well-understood structure, making
cyclic extensions an important concept in Galois theory. Cyclic extensions help describe how
fields can be expanded by adjoining roots of polynomials, with the symmetry of these
extensions captured by the cyclic structure of their Galois groups. They also demonstrate the
link between field extensions and group theory, which is central to modern algebra. The study
of cyclic extensions focuses on their construction, properties, and how they relate to the
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solvability of polynomial equations. They play a key role in understanding radical extensions
and are fundamental in applications such as the classification of intermediate fields.

14.4 TECHNICAL TERMS:

e Galois Group: Let F be a field and f(x) € F[x] and K be the splitting field of f(x) over F
then G (K /F) is called the Galois group of f(x) over F.

e Cyclic Group: A group G generated by a single element, denoted by (g).

e Cyclic Extension: A Galois extension whose Galois group is cyclic.

e Normal Extension: An extension E of F where every irreducible polynomial in F[x] that
has a root in E splits into linear factors in E.

e Separable Extension: An extension E of a field F is a called a separable extension if each
element of E is separable.

e Splitting Field: Let f(x) be a polynomial over a field F. A splitting field of f(x) over F is
an extension field K of F such that f(x) splits into linear factors over K and K is
generated over F by the roots of f(x).

14.5 SELF- ASSESSMENT QUESTIONS:

Q1. What is a cyclic extension?

Answer: A field extension E of a field F is called a cyclic extension if it is a Galois extension
of F and G(E/F) is a cyclic group.

Q2. When is a polynomial solvable by radicals in terms of cyclic extensions?

Answer: A polynomial is solvable by radicals if its splitting field can be obtained by a tower
of cyclic extensions, i.e., a sequence of field extensions where each intermediate extension is
cyclic and corresponds to extracting radicals.

Q3. Is every Galois extension a cyclic extension? Justify.

Answer: No. A Galois extension E of F is cyclic only if G(E/F) is a cyclic group. Many
Galois extensions E of F have the groups G(E/F) which are non-cyclic, such as the Klein
four-group.

Q4. What condition must a finite field extension E of F satisfy to be a cyclic extension of
degree n?

Answer: Extension field E of F must be a normal and separable extension (i.e., Galois), and
the group G(E/F) must be cyclic of order n.
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LESSON- 15
POLYNOMIALS SOLVABLE BY RADICALS

OBJECTIVES:

To understand the concept of solving polynomial equations using radicals.

To explore conditions under which a polynomial is solvable by radicals.

To learn about radical extensions and their relation to field extensions.

To study the connection between solvability by radicals and the Galois group structure.
To apply Galois theory to determine the solvability of polynomials.

STRUCTURE:

15.1 Introduction

15.2 Definitions and Notations

15.3 Polynomials Solvable by Radicals
15.4 Summary

15.5 Technical Terms

15.6 Self-Assessment Questions

15.7 Suggested Readings

15.1 INTRODUCTION :

The study of polynomials solvable by radicals investigates the conditions under which the
roots of a polynomial can be expressed using basic arithmetic operations and radical
expressions involving nth roots. Historically, mathematicians sought general formulas for
solving polynomial, succeeded for degrees two, three, and four. However, the general and
higher-degree equations are not solvable by radicals in most cases. This realization led to the
development of Galois theory, which examines how the symmetries of roots, encapsulated in
the Galois group determine solvability. A key aspect of this topic is the concept of radical
extensions, where a field is built by successively adjoining radical elements. Polynomials
solvable by radicals correspond to extensions whose Galois groups are solvable, reflecting a
deep interplay between group theory and field theory. In this lesson we find necessary and
sufficient condition for a polynomial over a field F to be solvable by radicals using the
fundamental theorem of Galois theory. Also, we construct a polynomial of degree 5 that is
not solvable by radicals.

15.2 DEFINITIONS AND NOTATIONS:

15.2.1 Definition: An extension E of a field F is called an extension by radical or radical
extension if there exists elements o4, oy, ......... o, € E and positive integers ni,no,........ i
such that E = F(ay, oy, ......... ap); ot € Fand it € F(ay, oy, ......... a_q,); 1 <i<r

Example: 1. Q(21/ 3) is a radical extension of Q. Also Q(21/ 3, 3%/ 5) is a radical extension of

Q.
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Note: If E is a radical extension of F, then there exists a sequence of fields
F=E(CE c....... CE: = E such that for every i, E; = Ei.i(a;) for some «a; € E; with the

property that aini € Ei.1 for some positive integer ni> 1

15.2.2 Result: If E; is a radical extension of F= E¢ with intermediate fields Ei, Ea,.......
E.i(written in ascending order) then there exists radical extension Eg of F = Eo with

intermediate fields Ej, E5,....... E¢_4,(written in ascending order) such that

() E.2E

(i1) Eg is a normal extension of F and

(iii)  Ej is a splitting filed of a polynomial of the form x™i — bi€ E;_,[x] for all i =
1,2....s.

15.2.3 Note: If E is a radical extension of F, then E is a finite algebraic extension of F.

Verification: By definition, for each i, E; = Ei.i(@;) and a?i € Ei.1 which implies that «; is a
root of the polynomial Xin i ain ' € Ei.i [x] and hence E; is an algebraic extension of Ei.; and
[Ei:Ei.1] is finite for all i. Therefore [E:F] = [ExEri] ........ [E2:E1][E1:F] is finite and E is a

finite algebraic extension of F.

15.2.4 Note : A polynomial f(x) € F[x] is solvable by radicals if we can obtain every root of
f(x) by using a finite sequence of operations of addition, subtraction, multiplication, division
and taking n™ roots starting with elements of F.

Notation: In this section, we consider only the fields of characteristic zero unless otherwise

stated.

15.2.5 Result: Suppose n is a positive integer, and the field F contains all the n™ roots of
unity, and K is the splitting field of x" — a € F[x], then

(i) K=F(4), A is any root of x" — a

(i) The Galois group G(K/F) is abelian.
15.2.6 Defnition: The subgroup G’ generated by the set of all commutators aba™’b™! in a group

G is called the derived group of G, a,b € G . For any positive integer n, the n' derived

group of G is denoted by G and is defined as follows GV = G',¢™ = (G D) n>1

15.2.7 Defnition: A group G is said to be solvable if G® = {e} for some positive integer,
where G® is the k™ derived group of G.

Example: Every abelian group is solvable.
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15.2.8 Normal Series: A sequence { Go,Gi,......... G;} of subgroups of a group G is called
normal series of a group G if {e} = Go 9Gi<......... <G; = G. The factors of normal series

are Gi/Gi 1V i=1,2,......

15.2.9 Composition Series: A composition series of a group G is a normal series
Go,G1,eeneenen G: without repetition whose factors Gi/Gi.1 are simple groups. The factors Gi/Gi-

1 are called composition factors of G.

15.2.10 Note:

Every finite group has a composition series

A group G is solvable & G has a normal series with abelian factors.

A finite group is solvable & its composition factors are cyclic groups of prime orders,
Any subgroup of a solvable group is solvable.

b=

15.3 POLYNOMIALS SOLVABLE BY RADICALS:

15.3.1 Theorem: Let E be the splitting field of x" — a € F[x], then G(E/F) is a solvable
group.

Proof:

Case(i): Suppose F contains a primitive n'" root of unity.

Then we can take the primitive n'™ root as a generator of the group of all the n™ roots of
unity, and hence F contains all the n'" roots of unity.

Let @ be aroot of X" —a.

Since E is the splitting field of x" — a, we have E = F(a) and G(E/F) is abelian

So, G(E/F) is solvable. ( Since Every abelian group is solvable)

Case(ii) :Suppose F does not contain any primitive n' root of unity.

Let w be a primitive n root of unity in F, E = F.

Then w € F which implies FE F(w) and F(w) is the splitting field of x" — 1.

Let b be a root of X" —a (i.e., b" = a).

This implies bw is also a root of x" —a and hence bw € E

So bl(bw)€EE. ie, w €EE.

Consider the sequence of fields F € F(w) € E.

Since F(w) is the splitting filed of x" — 1 € F[x], we have F(w) is a normal extension of F.
So, G(E/F(w)) is a normal extension of G(E/F) ( By fundamental theorem of Galois
Theory)

- {e} < G(E/F(w)) <G(E/F) is a normal series of the group G(E/F)
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Since F(w) contains a primitive n™ root of unity, we have G(E/F(w)) is abelian. (D)
By Fundamental Theorem of Galois Theory, we have % = G(F(w)/F) and
By known theorem, we have G(F(w)/F) = (Z/( n))"*, which is abelian
G(E/F) . .
Therefore GE Fay S abelian. 2)

So the normal series {e} < G(E/F(w)) <G(E/F) of the group G(E/F) has abelian factors.
Hence the group G(E/F) is solvable.

15.3.2 Theorem: A polynomial f(x) € F[x] is solvable by radicals & its splitting field E
over F has solvable galois group G(E/F).

Proof: Let f(x) € F[x] be a polynomial and E be the splitting field of f(x)

Then G = G(E/F) is the Galois group of f(x).

Suppose that the Galois group G(E/F) is solvable.

Now we show that f(x) is solvable by radicals over F.

Since the characteristic of F is 0 and E is the splitting field of f(x) over F, we have that E is
finite separable and normal extension of F.

Therefore |G(E/F)| =[E:F] =n (say) and G = G(E/F) is a finite solvable group.

Case-(i):Suppose F contains a primitive n'™ root of unity.

Since G is a finite solvable group, there exists a sequence, G =Go 2 Gi 2......... 2G,= {e}

Gi—1
G;

of subgroups of G such that G; < Gi-1and is cyclic, for each 1.

By Fundamental Theorem of Galois Theory, there exists subfields Fo,Fi,......... F; of E such
that F =EoCE1<.......CE: =E, Fi = Eg, and G(E/Fi)) = Gi V 1

We know that G = G(E/F1) <G(E/F) = G.

This implies that F; is a normal extension of F

Now E can be regarded as the splitting field of f(x) over F;.

So E is a finite normal extension of F.

Then G2<G implies that F» is a normal extension of F.

Continuing this way, since Gi is a normal subgroup of Gi.;, we can show F; is a normal

extension of Fi.; and also % = G(Fy/Fi.y)  (By Fundamental Theorem of Galois

Theory)
= % = G(Fi/F;_,)

= G(F;/F;_;) is acyclic group (% is a cyclic group )
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Therefore F; is a cyclic extension of Fijand we also know that Fi.; contains a primitive n

root of unity.
By known result, F;j is the splitting filed of an irreducible polynomial x™i— b;i.e., aini =b €

Fi.1 This is true for every i =1,2,.....r

Therefore E is radical extension of F. So, the splitting field E of f(x) is contained in the
radical extension of F.

So, f(x) is solvable by radicals over F.

Case-(ii): Suppose F contains no primitive n' root of unity.

Let w be a primitive n'™ root of unity in E.

Then E(w) is the splitting field of f(x), where f(x) is regarded as an element of F(w)[x]
Define ¢ : G(E(w) /F(w)) — G(E/F) as follows:

Leto € G(E(w) /F(w)).

Then o is an automorphism of E(w) that keeps every element of F(w) fixed.

Let g, be the restriction of ¢ to E.

Since E is a normal extension of F, we have gyis an automorphism of E that keeps every
element of F fixed.  So, g, € G(E/F)

Define ¢ : G(E(w) /F(w)) — G(E/F) as (oy) =0y .

Then  is a monomorphism.

Therefore G(E(w) /F(w)) = ¢ ( G(E(w) /F(w)) ) € G(E/F)

This implies G(E(w) /F(w)) = solvable group (~ Any subgroup of a solvable group is
solvable)

Therefore G(E(w) /F(w)) is solvable

i.e, E(w) is the splitting field of f(x) € F(w) [x] and F(w) contains a primitive n root of
unity such that G(E(w) /F(w)) is solvable.

So by case-(i), E(w) is a radical extension of F(w), hence E(w) is a radical extension of F.
In this case, the splitting field is contained in the radical extension E(w) of F.

Therefore f(x) is solvable by radicals over F.

Converse:

Suppose that f(x) is solvable by radicals over F.

Then its splitting field E is contained in some radical extension E; of F.
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By Result 15.2.2, without loss of generality, we assume that ECE,, E; is a normal extension
of F and there exists intermediate fields Eo Ei ........ ,Er.1 such that each E; is a splitting filed
of a polynomial of the form x™ — b;€ Ei.i[x].

So E;is a normal extension of Ei.; and G(E;/E;_;) is solvable foralli=1tor (*)

Since E; is a normal extension of Ei.;, by fundamental theory of Galois theory, we have
G(E,/E;) is a normal subgroup of G(E;/E;_;) for all i

Therefore {e} € G(E./E;_1) € G(E./E;_;) C............. CG(E,/F) is a normal series of the group
G(E./F)

Now we show that the factors of this normal series are solvable.

By Fundamental Theorem of Galois Theory, we have % = G(E,_iy1)/Ersy)
r/ Br—i+1

This implies —=.Er=D_ s solvable for all i ( = R.H.S is solvable by (*))
G(Er/ Bri+1)

So {e} € G(E/E,_;) € G(E\/E;_y) C............. CG(E,/F) is a normal series of the group
G(E,/F) with solvable factors. i.e, G(E,./F)is solvable.

Further, G(E/F) = ggr; g , (+ Eis a normal extension of F) which implies that G(E/F) is

the homomorphic image of G(E,/F).

Hence G(E/F) is solvable. (Since the homomorphic image of a solvable group is solvable)

15.3.3 Definition: A subgroup H of S is said to be a transitive permutation group if for all
i,j € {1,2,....n}, there exists ¢ € H such that a(i) =].
Note: If p is a prime number and if a subgroup of S; is a transitive group of permutations

containing a transposition (a, b), then G = S,

15.3.4 Theorem: Let f(x) be a polynomial over a field F with no multiple roots. Then f(x) is

irreducible over F iff the Galois group G of F(x) is isomorphic to a transitive permutation

group.

Proof : Suppose that f(x) € F[x] be a polynomial over a field F with no multiple roots and
degree of f(x) is n.

Let oy, Qg oeneenn a, be the distinct roots of f(x) in some splitting field E and G be the Galois
group of f(x).

For any o € G, we have a(«,), o(ay),......... o(ay,) are also roots of f(x), which implies that
{04, 0y evnnnn. oy} = {a(ay), a(ay),......... o(ay)
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Thus every element ¢ is a permutation on ‘n’ elements. So, we treat G as subgroup of S.

Suppose f(x) is irreducible over F
F[x]

Foreachi=1.2,...... n; F(oy) = P

by an isomorphism which maps «; to x +(f(x)) and

a € Ftoa+ (f(x)).

So F(ay) is isomorphic to F(o;) by an isomorphism say 1 which maps «; to o and n(a) =
aVainF.

Since E is a normal extension of F, 1 can be extended to an F- automorphism n*: E-E
Therefore n* € G = G(E/F) and n*(o;) = @ .

So for any «, o there exists o € G such that o(a;) = .

Therefore G is a transitive permutation group.

Converse:

Suppose that G is a transitive permutation group.

Let p(x) be the minimal polynomial of a; over F.

Now we show that all the roots of f(x) are roots of p(x).

Let a; be a root of f(x).

Since G is a transitive permutation group, there exists ¢ € G such that o(a,) = q;
Now p(ey) =p(o(ay)) =o(p(a;)) =0 (~+ois a homomorphism)

i.e, ; is aroot of p(x)

Therefore all the roots of f(x) are roots of p(x).

Since p(x) is a minimal polynomial of a;, and f(a;) = 0, we have p(x)|f(x)

So f(x) = ¢ p(x) for some ¢ € F

Therefore f(x) is irreducible.

15.3.5 Theorem: Let f(x) € Q[x] be a monic irreducible polynomial over Q of degree p,
where p is prime. If f(x) has exactly two non-real roots in ¢, then the Galois group of f(x) is
isomorphic to Sp.

Proof: Let E be the splitting field of f(x) over Q.

Then E € € (Since f(x) has exactly two non real roots)

Since f(x) is irreducible, by Th. 15.3.4 the Galois group G(E/Q) of f(x) is isomorphic to a
transitive permutation group which is a subgroup of Sp,

Let oy, Qg eveenn ap, be the roots of f(x).

Let a; be a non-real root among these roots, which implies @, is also a root of f(x) (* f(x) €

Q[x])
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So, & =aqj forsomej#i; 1 <j<p

Defineo : E—> Qaso(z)=7 .

Then o is an automorphism of E  (+ E is a normal extension of Q), which implies that
o € G(E/Q), a(a;j)=a, =aj and o(0) = @ = ;..

Moreover a(ay) = o,V k#1,]j

Therefore o is the transposition (¢, o)

By using result after 15.3.3, we have G = S,

15.4 SUMMARY:

This lesson focuses on determining when polynomial equation can be solved by expressing
their roots using radicals and arithmetic operations. It explores radical extensions, fields
created by adjoining successive roots, and examines how these connect to solvability.  The
key tool is Galois theory, which links the structure of the Galois group to the possibility of
expressing roots in radicals. Specifically, a polynomial is solvable by radicals if and only if
its Galois group is solvable. It also explains why general higher-degree polynomials are not
solvable by radicals.

15.5 TECHNICAL TERMS:

e Radicals: Expressions involving roots (square roots, cube roots, etc.) used to represent
solutions of polynomials.

e Solvability by Radicals: A property of a polynomial equation whose roots can be
expressed using arithmetic operations and radical operations.

e Radical Extension: A field extension built by successively adjoining radicals.

e Normal Extension: An extension E of F where every irreducible polynomial in F[x] that
has a root in E splits into linear factors in E.

o Splitting Field: Let f(x) be a polynomial over a field F. A splitting field of f(x) over F is
an extension field K of F such that f(x) splits into linear factors over K and K is
generated over F by the roots of f(x).

15.6 SELF-ASSESSMENT QUESTIONS:

Q1. What does it mean for a polynomial to be solvable by radicals?

Answer: A polynomial f(x)EF[x] is solvable by radicals if its roots can be expressed using a
finite number of additions, subtractions, multiplications, divisions, and extractions of roots
(radicals) starting from elements of the base field F.

Q2. How is solvability by radicals connected to Galois theory?

Answer: A polynomial is solvable by radicals if and only if its Galois group is a solvable
group.
Q3. Give an example of a polynomial that is solvable by radicals.
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Answer: The quadratic polynomial x>—2 is solvable by radicals because its roots are + V2,
which can be expressed using radicals over Q. Its Galois group over Q is of order 2 and hence
solvable.

Q4. What role do radical extensions play in solving polynomials?

Answer: Radical extensions are field extensions formed by adjoining nth roots of elements.
A polynomial is solvable by radicals if its splitting field can be obtained by a tower of radical
extensions over the base field.

QS: If an irreducible polynomial p(x) € F[x] over a field F has a root in a radical extension of
F, then show that p(x) is solvable by radicals over F.

Answer: Suppose p(x) is an irreducible polynomial over a filed F and p(x) has a root in a
radical extension E, of F. By known result 15.2.2, there exists radical extension E! of F such
that E.C Egand Eg is a normal extension of F.

Given that p(x) has a root in E; that implies p(x) has a root in Eg and we know that Eg is a
normal extension of F. So, Eg is the splitting field of p(x) ( *+ By def. of normal extension)

Therefore the splitting field Eg of p(x) is contained in some radical extension Eg of F.
Hence p(x) is solvable by radicals.

Q6 : Show that polynomial x” — 10x> + 15x +5 is not solvable by radicals over Q
Answer: Let f(x) = x’ — 10x° + 15x +5

By Eisenstein criterion, f(x) is irreducible over Q. Moreover by Descarte’s rule of signs, we
know that the number of positive real roots is < the number of changes in signs in f(x) =2
and the number of negative real roots is < the number of changes in signs in f(-x) = 3

Therefore The number of real roots is < 5

Moreover, by intermediate value theorem, f(x) has five real roots one in each of the intervals
(-4,-3) (-2,-1) (-1,0) (1,2) and (3,4) . So f(x) has exactly two non-real roots.

By Theorem 15.3.5, the Galois group G of f(x) is isomorphic to S7.
This implies that G is not solvable ( - S7 is not solvable)

By Theorem 15.3.2, f(x) is not solvable by radicals over Q.
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LESSON- 16
SYMMETRIC FUNCTIONS

OBJECTIVES:

e To understand the definition and properties of symmetric functions

e To understand that every symmetric polynomial can be expressed as a polynomial in the
elementary symmetric functions.

e To lay the groundwork for the study of Galois theory by examining the symmetries of the
roots of polynomials.

STRUCTURE:

16.1 Introduction

16.2 Symmetric Functions

16.3 Summary

16.4 Technical Terms

16.5 Self Assessment Questions

16.6 Suggested Readings

16.1 INTRODUCTION:

The concept of symmetric functions holds a central place in algebra, especially in the study of
polynomial equations and field extensions. A symmetric function is a polynomial in several
variables that remains unchanged under any permutation of those variables. This invariance
property leads to rich algebraic structures and plays a pivotal role in understanding the
relationships among the roots of a polynomial. Elementary symmetric functions, which sum
products of variables taken a specific number at a time, form the backbone of this theory.
Remarkably, any symmetric polynomial can be expressed as a polynomial in the elementary
symmetric functions, a fact known as the fundamental theorem of symmetric functions. This
result not only simplifies the study of polynomials but also connects algebraic properties to
the roots of equations. The theory of symmetric functions provides a pathway which relate
the coefficients of a polynomial to sums and products of its roots. This linkage serves as a
bridge to field theory, where one explores how the symmetries of roots influence field
extensions and automorphisms.

16.2 SYMMETRIC FUNCTIONS:

Let F be a field, and let y; ... ... ... ...}, be n indeterminates. Consider the field of rational
functions F(yy, ... ... ... ..., yp,) over F. If ¢ is a permutation of {1, 2, 3, .......,n} i.e,0 € Sy
then o gives rise to a natural map o : F(yq ... e e oY) 2F(Vq oo oee oo .. Yy given by
(V1. )\ _ FWg) e Yo(1))

o (g(y1 ____________ yn)) I0atty " where (V1 o vov e e V)s (V1 cov wov ee e Vi)

€F[y; oo v Ypland g(yq veeee oY) # 0.
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Here o is an automorphism of F(yj; ... ...... ... y,) having each element of F fixed.
16.2.1 Definition: An element f(y; ... oo e e V) 7/ (V1 cer v ee e V) OF F(Yq v v oY) 18
called a symmetric function in yj, ... ... ... ..., ¥, over F if it is left fixed by all permutations of

1,....n, thatis, Vo € Sy, that is , E(f(yl """""" y")zf(yl """""" Y1) for all ¢ € Sa.
Jo L2 T Yn o162 Yn)

Note: Let S, be the group of all F-automorphisms & of F(y; ... ... ... ... J3,) corresponding to
o € Sn. Clearly, S, =~ Sn. Let K be the fixed field of S,,.

Consider the polynomial f(x) =[]L;(x — y;), Here f(x) EF(y; v v e . Y)IX] .

Clearly the natural mapping F(y; ... ... .o ... Y )[X] 2F(¥1 e eee e .. Yp)[X] induced by each ¢ €
S, leaves f(x) unaltered. Thus the coefficients are unaltered by each & € S,. Hence, the

coefficients lie in the fixed field K. Let us write the polynomial f(x) as x" + a;x™! + a,x"? +

16.2.2 Definition: If a; is the coefficient of x™~ in th polynomial f(x) = [T,(x — y;), then

(-1)ia; is called the i elementary symmetric function in y; ... ... ... ... y,, and is denoted by s;.
Thus sy =y, + yo +.ceeiniin. Vo, S2=V1Vo+ ViV3 teeeiiinn. + Vn—1Vns ceeene-

......... S =Y1V2 v e e e Y

16.2.3 Theorem: Let sq,........ s, be the elementary symmetric functions in the
indeterminates yj ... ...... ... y,. Then every symmetric function in yj ... .........J,, over F is a
rational function of the elementary symmetric functions. Also, F(y; ... ... ... ... ) 1s a finite
normal extension of F(sj ... .........s,) of degree n! and the Galois group of this extension is

isomorphic to Sp.

Proof: Consider the field E = F(sq ... ... ... ... Sp).

Since K is the field of all symmetric functions in yj ... ... ...... ¥, over F, we have E c K.
Since F(¥q «.v v e .. Y1) 18 @ splitting field of the polynomial f(x) = [[iL;(x — y;), of degree n
over E, we have [F(y; ... ... .. ... ¥): E] < n! (1)
Also we have [F(Vq ... cov e .. V) K] =[S, | =n! (2)
Since E c K, from (1) and (2) we have E =K.

Now F(x) is a separable polynomial over E, and F(y; ... ...... ... },) is its splitting field. Thus,
F(yq ..v o .. ... Y 1s a finite, separable, normal extension of E.

[F(yq o v e e Y0): E]1 = |G(F(Yq v vee e o V) E| 3)
Since G(F(yq ... ..v .. ... ¥3)/ E) is embedded in S,, and [F(y; ... ... ... ... ,): E] = n!, we have

from(3), G(F(Yy ver vve evr ) E) =Sh.
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Finally, the fact K = E shows that every symmetric function can be expressed as a rational

function of the elementary symmetric functions sy ... ... ... ... Sp,.

16.2.4 Example: We express the following symmetric polynomials as rational functions of
the elementary symmetric functions:
(@) xf + x5 +x3
(b) (1 — x2)%(xz — x3)% (%3 — x1)°
Verification:
@) (x2+x2+x2)=(x1+ x, + x3)% — 2(x1x, + XpX3 + X3x;) = S% — 25,
where s; and s, are elementary symmetric functions of x;, x, and x3.

(b) By simple computation it can be checked that

S S S
Yi=%x — ;1, Yy =Xy — ?1, Y3 = X3 — ?aretherootsofx3+3ax+,8=0,

2 3
S 2s 518
Where @ = — - +5;,, f=—s53 =+ ==

Then the cubic equation whose roots are (y; — v2)?, (¥, — ¥3)? and (y; — v;1)?
is GBa+y)l+9%aBa+y)+278%2=0 (1)

Here (x4 — Xz)z(Xz - X3)2(X3 - Xl)z =(y1— YZ)Z(YZ - Y3)2(Y3 - Y1)2
= product of all the roots of (1)
=-27(B? + 4a3)

where a and f§ are expressed in elementary symmetric functions

16.3 SUMMARY:

The topic of symmetric functions revolves around polynomials in several variables that
remain unchanged under any permutation of these variables. These polynomials are called
symmetric polynomials, and their study is crucial in understanding the relationship between a
polynomial’s coefficients and its roots. The elementary symmetric functions are constructed
as sums of products of variables taken 1,2,...,n at a time. The fundamental theorem of
symmetric polynomials states that any symmetric polynomial can be expressed as a
polynomial in the elementary symmetric functions. This provides a powerful tool for
rewriting complex symmetric expressions in a simpler, standardized form.

16.4 TECHNICAL TERMS:

e Symmetric Polynomial / Function: A polynomial f(x1,X2,...,Xa) that remains unchanged
under any permutation of its variables.

e Degree of a Polynomial: The highest total degree of any term in the polynomial.

e Monic Polynomial: A polynomial where the leading coefficient (the coefficient of the
highest degree term) is 1.

e Root of a Polynomial: A value of the variable that makes the polynomial equal to zero.
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16.5 SELF-ASSESSMENT QUESTIONS:

Q1. Is the polynomial xi?+x2*+x3> symmetric? Can it be expressed in terms of elementary
symmetric polynomials?

Answer: Yes, xi*+x2>+x3? is symmetric. It can be expressed in terms of elementary
symmetric polynomials using the identity: x;?+x2?+x3% = s1>—2s, where s;=x;+x>+x3 and
S2=X1X2+X1X31TX2X3.

Q2. What is the significance of symmetric functions in the theory of equations?

Answer: Symmetric functions play a crucial role in understanding the relationship between
the roots and coefficients of a polynomial. According to Viete’s formulas, the coefficients of
a polynomial are (up to sign) the elementary symmetric functions of its roots. This helps in
solving polynomials and studying their properties without explicitly finding the roots.

Q3. Is x1x2+x2x3+x3X1 a symmetric function?

Answer: Yes. The expression is symmetric because it remains unchanged under any
permutation of Xi,x2,x3 . It is a symmetric polynomial of degree 2, and it equals the
elementary symmetric function s> for 3 variables.

Q4. Can a non-symmetric polynomial be written in terms of elementary symmetric
polynomials?

Answer: No, only symmetric polynomials can be expressed in terms of the elementary
symmetric polynomials. Non-symmetric polynomials do not satisfy the invariance under
variable permutations required for such a representation.

Q5. Give an example of a symmetric polynomial that is not elementary.

Answer: The polynomial xi*x+x2*x3+x3°x; iS symmetric in X;,X2,X3, but it is not an

elementary symmetric polynomial.
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LESSON- 17
RULER AND COMPASS CONSTRUCTIONS

OBJECTIVES:

e To define constructible numbers as lengths that can be constructed from the unit segment
using a finite sequence of ruler and compass operations.

e To explore the algebraic characterization of constructible numbers as elements of field
extensions generated by square roots.

e To explain how each construction step corresponds to a quadratic field extension over
the rationals.

e To demonstrate the limitations through the concept of irreducible polynomials and non-
quadratic extensions.

e To understand how classical geometric constructions can be generalized using algebraic
structures like fields and Galois theory.

STRUCTURE:

17.1 Introduction

17.2 Constructible numbers
17.3 Summary

17.4 Technical Terms

17.5 Self Assessment Questions

17.6 Suggested Readings

17.1 INTRODUCTION:

The study of geometric constructions using a ruler and compass dates back to the ancient
Greeks, who sought to solve various problems using these simple tools. While these
constructions appear purely geometric, they are deeply connected to algebra. By translating
geometric steps into algebraic language, we can represent constructed points and lengths
using algebraic numbers—specifically, numbers obtained by repeatedly taking square roots,
starting from rational numbers. This algebraic approach reveals the limitations of ruler and
compass constructions, explaining why certain classical problems, such as angle trisection
and doubling the cube, are impossible with these tools. The theory of constructible numbers
and field extensions provides a rigorous framework for understanding these limitations.This
approach not only enhances our understanding of classical geometry but also bridges it with
modern algebra and number theory, highlighting the power of algebra in solving geometrical
problems. In this section, we see how to find the solutions to some geometric problems using
the Galois Theory. Such problems are given below

(1) To construct by ruler and compass a square having the same area as that of a circle.
(2) To construct by ruler and compass a cube having twice the volume of a given cube.
(3) To trisect a given angle by ruler and compass.

(4) To construct by ruler and compass a regular polygon having n — sides.
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Translation of the geometric problem into an algebraic problem:

Let R be the field of real numbers.
We consider the co-ordinate plane R, Suppose Poc R?

Assume that Py has atleast two points then we construct an ascending chain of subsets P; of R?
for [=0,1,..... inductively as follows.
Let A be the set of points obtained by intersection of

(1) two distinct circles each with its centre in P; and passing through another point in P;,

(or)

(i)  two distinct lines each passing through two distinct points in P;, (or)
(i11))  aline and a circle of the types described in (1) & (i1)
Let Pi+1 be the union of Pi and A.
Suppose that the co-ordinates of points in Pg belong to a subfield K of R.
Then the equation of the line passing through two distinct points in Pois ax+by+c =0 — (1);
where a, b, ¢ € K and the equation of a circle with centre in Po and passing through another
pointin Pois x> +y? +2gx + 2fy +d=0 — 5 (2), where g.,f,d €K
Therefore the co-ordinates of point of intersection of the two such lines of the form (1) lie in
K. Also, the co-ordinates of point of intersection of line (1) and a circle (2) lie in K(Va;)
where a;>0 and a; € K.
Again the co-ordinates of point of intersection of two distinct circles of the form (2) also lie

in K(WVa;) where a;> 0, a, € K.

In similar manner, the co-ordinates of the points in P; lie in K(\/aq ... ... ..... \/Z-) where
A1, Agyoee e e ;> 0, 1 EK, @y EKNVay), cvvvennnn @; E KW v vev v/ @i_q)

So, A geometric problem can be translated into an algebraic problem.

17.2 CONSTRUCTIBLE NUMBERS:

17.2.1 Definition: A point x is constructible from Py if x €P; for some i € {0,1,2,.....}

(a) A line L is constructible from Py if it passes through two distinct points in some P;,
1€{0,1,2,.....}

(b) A circle C is constructible from Py, if its centre is in some Pj, and it passes through
another pointin P;, 1 € {0,1,2,.....}

Note: If a point X or a line L or a circle C is constructible from QXQ, then we say that the

point X or the line L or the circle C is constructible.
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17.2.2 Definition: A real number ‘u’ is constructible from Q if the point (u,0) is constructible
from QXQ, a subset of the plane R2.
Note: If u € R is constructible from Q, then there exists an ascending chain
Q=KocKic Kyc ...c K, of subfields K; , K>, ........ K, of R such that
(1) u€k,
(i) Ki=Kii(a;);0<i<n, a? €Ki,

17.2.3 Theorem: Letu € R be constructible from Q, then there exists a subfield K of R
containing u such that [K:Q] = 2™ for some positive integer m.

Proof: Since u€ R is constructible from Q, we have (u,0) is constructible from QXxQ.

By definition, there exists an ascending chain G =Ko c K;c Kz ........ c Kasuch thatu
€K, and Ki=Ki.i(q;) fori=1,2,.....n and aiz €Kit So, [Ki:Kii]<2,1=1,2,..,n
Therefore [K:Q] = [Kn: Q] =[Kan: Kn1] [Kn-1: Ko2] cvenennns [Ki:Ko=Q] = 2",m<n

(~ [Ki: Ki1] £ 2) where m is some positive integer.

17.2.4 Lemma: The following are equivalent statements.
(i) a € Risaconstructible from Q

(i1) (a,0) is a constructible point from QXQ

(i1i1)) (a, a) is a constructible point from QXQ

(iv) (0, a) is a constructible point from QXQ

Proof:

Assume (i) i.e., a € R is a constructible from Q

Then by def., we have (a,0) is constructible from QXQ.

Therefore (i) =(ii)

Assume (ii) i.e., (a,0) is a constructible point from QXQ

Taking(a,0) as centre and ‘a’ is radius, we can construct a circle (x- a)* + y> = a? and it
passes through a constructible point (0,0).

Also the line x =y is constructible because it passes through the constructible points (0,0) and
(1,1). Now the point (a, a) is a point of intersection of the circle and the line

So, (a, a) is a constructible point from QXQ

Therefore (i) =(iii)

Assume (iii) i.e., (a, a) is a constructible point from QXQ.
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The circle x> + y? = 2 a? is constructible because its centre (0,0) is constructible and the circle
passing through constructible point (a, a).

Also the line y = -x is constructible, since it passes through two distinct constructible points
(0,0) and (1,-1).
Now (-a, a) is a point of intersection of the circle and the line.
Now (0, a) is a constructible point which is the intersection of the line y = 1 which passes
through two distinct constructible points (-a, - a) and (a, a), x =0

So, (0, a) is a constructible point from QXQ.

Therefore (iii) =(iv)

Assume (iv) i.e., (0, a) is a constructible point from QXQ.

Then the line y = a is constructible and the line x = 0 is constructible.

Now, the line y = -x is constructible, and hence we have the point (a,0) is constructible .

So, thereal number ‘a’ is constructible.

Therefore (iv) =(i)

Note: A real number ‘a’ is constructible means that a is constructible from Q.

17.2.5 Lemma: If a is constructible number, then x = a and y = a are constructible lines.
Proof:

Case (1): Suppose a = 0.

Clearly x = 0 and y = 0 are constructible lines.

Case — (i1): Suppose a # 0

Then the line x = a passes through two distinct constructible points (a, 0) and (-a, a).
Therefore x = a is constructible.

Similarly y = a is a line passing through two distinct constructible points (0, a) and (a, a)

and hence y = a is a constructible line.

17.2.6 Lemma: If a and b are constructible numbers, then (a,b) is a constructible point.
Proof: By Lemmal7.2.5, we have x = a and y = b are constructible lines.
Clearly the point (a, b) is the intersection of the constructible lines x =a and y =b.

Therefore the point (a, b) is constructible.

17.2.7 Lemma: If a and b are constructible numbers, then a +b are also constructible.
Proof: Suppose a & b are constructible numbers.

Then by lemma 17.2.4, (a, 0) is constructible.
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So, the circle with centre (a, 0) and radius ‘b’ i.e., (x- a)* + y*> = b? is constructible.
Also, the line y = 0 is always constructible (- It is origin, it is always constructible).
Therefore the point of intersection of the line and the circle are (a £b, 0) are constructible.

So, by lemma 17.2.4, we have a +b are constructible numbers.

17.2.8 Lemma: If a and b are constructible numbers, then

(1) ab is constructible

(i) a/b; b # 0 is constructible

Proof:

(1) Suppose a and b are constructible numbers.

Since b is constructible, by lemma 17.2.4, we have (0, b) is a constructible point.
Since b,1 are constructible numbers, by lemma 17.2.7, we have b-1 is constructible.
Since a, b-1 are constructible, we have (a, b-1) is constructible (by lemmal7.2.6)

The line passing through two constructible points (0, b) and (a, b-1) is

b—1-b
a—0

y-b= (x-0) e, ay—-ab=-x

ie, ay =-x+ ab (1) is constructible
So, the intersection of constructible line (1) and the constructible line y = 0 is the point
(ab,0) which is also a constructible point.

Therefore by lemma 17.2.4, ab is constructible.

(i1) Suppose b # 0

Case-(i): If a = 0, then % = 0 which is always a constructible number.

Case-(ii): Suppose a # 0

Since b is constructible, we have 1 — b is constructible ( by lemma 17.2.7)

So. a(1 —b) is constructible (from part — 1)

Now a is constructible which implies that (0, a) is a constructible (by lemma 17.2.4)
So a is constructible and a(1 — b) is constructible.

This implies that (a, a(1-b)) is a constructible point ( by lemma 17.2.6)

The line passing through two constructible points (0,b) and (a,b-1) is

2 (x-0) [+ y-yi=Z2(x-x1)]

a-0 X2— X1
ie, ay-—a’=-abx

i.e., y-a =-bx(or)bx=a-y isaconstructible line (2)
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So, the intersection of the constructible line (2) with the constructible line y = 0 is the

point (%, 0) which is constructible.

a . .
Hence S 1s constructible.

17.2.9 Lemma: If a> 0 is constructible, then Va is constructible.

Proof:

Suppose a is constructible. Then 1 + a is constructible ( by lemma 17.2.7 )

Since 1+ a and 2 # 0 are constructible numbers, we have by lemma 17.2.8, (t—a) 1S a

constructible number and by lemma 17.2.4 (y;—a , O) is constructible point.

The circle with centre (P;—a ) O) and radius y;—a is (x — 142-_61)2 +y? :(142'_61)2 is constructible (1)
But we know that x = 1 is a constructible line ( by lemma 17.2.5)

Therefore the point of intersection of the constructible circle (1) and the constructible line x =
lis (1 +Va)

So, (1 +V. a) is constructible point.

Since (1, Va) is constructible and a + 1 is constructible, the circle (x-1)> + (y- Va)> =a + 1 is
constructible. (2)
Clearly the point of intersection of constructible circle (2) and the constructible line x = 0 is

(-a,0) or (0,2\/a) which is constructible point. So, by lemma 17.2.4 we have 2Va is

constructible number.

Since 0 # 2 is constructible, by lemma 17.2.8, Zzﬁ =+a is constructible number.

17.2.10 Theorem: Let K be the subset of R consisting of numbers constructible from Q.
Then K is a subfield containing square roots of all nonnegative numbers in K.

Proof: Let K be a subset of R consisting of numbers constructible from Q. Then by lemma
17.2.7 & 17.2.8 we have K is a subfield of constructible numbers. Also by lemma 17.2.9,
K contains square roots of all non-negative numbers of K.

Therefore K is a subfield containing square roots of all non-negative numbers in K.

17.2.11: If u € K, where Ko=Q c Kic Ky ........ c Kn is an ascending chain of fields
Kid [Ki: Ki.1] = 2 then u is constructible. Equivalently if [Q(u): Q] = 2' for some t > 0 then u

1s constructible.
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Proof: Let u € K, and Ko = Q c Kijc Ky ........ c K is an ascending chain of fields K;
such that [K;: Ki.1] = 2.

Since Ko Kic Kr ........ c K., we have there exists a; € Ki- Ko

So K1 = Ko(ay)

Clearly o? € Ko=Q

So, of is constructible (- rationals are constructible)

By lemma 17.2.9, we have Va2 = a; is constructible.

Therefore K1 = Ko(a;) consists of constructible numbers.

Continuing this process we get Kn is a field of constructible numbers. Since u € K, we have

u is constructible.

17.2.12 Definition: An angle a is constructible by ruler and compass if the point (cosa, sina)

is constructible from QXQ.

17.2.13 Proposition: The point (cosa, sina) is constructible from QXQ iff cosa is a
constructible iff sina is a constructible number

Proof :

Suppose that the point (cosa, sina) is a constructible point.

First we show that cosa is a constructible number.

We know that the line y = 0 is always a constructible line and the circle (x - cosa)’> + (y -
sina)? = 1 is constructible.

The point of intersection of this circle and the line y = 0 is (0,0) and (2cosa, 0) which are
constructible points. So, (2cosa, 0) is constructible point.

By lemma 17.2.4, we have 2cosa is a constructible number.

2cosa . .
is a constructible number.

Therefore

By lemma 17.2.8, cosa is constructible number.

Conversely, Suppose that cosa is a constructible number.

Then cosa . cosa = cos?a is constructible.

Since 1 is a constructible number and cos?a is a constructible number, we have (1 - cos?a) is
also constructible number.

By lemma 17.2.9, V (1 — cos?a) = sina is constructible number, which implies (cosa,cosa
), (sina, sina) are constructible points

Therefore x = cosa is a constructible line and y = sina is a constructible line.
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The point of intersection of these two constructible lines is (cosa, sina) which is a

constructible point.
17.3 SUMMARY:

The topic of Ruler and Compass Constructions explores how classical geometric
constructions correspond to algebraic operations. Each construction using a straightedge and
compass represents a point in the plane with coordinates satisfying certain algebraic
equations. These constructed points correspond to numbers known as constructible numbers,
which can be generated by starting with rational numbers and applying square roots
successively. Algebraically, constructible numbers form a field extension of the rational
numbers, built by adjoining square roots, and therefore correspond to extensions of degree a
power of 2.This connection helps in understanding why some constructions, such as angle
trisection or doubling the cube, are impossible: these involve solutions of cubic equations or
higher degrees not solvable by square roots alone. Thus, constructions are limited to points
whose coordinates can be expressed in terms of rational numbers and square roots.

17.4 TECHNICAL TERMS:

Constructible real numbers, Constructible line and Constructible circle.

17.5 SELF- ASSESSMENT QUESTIONS:

Problem of squaring a Circle: If we consider a circle with radius 1, then show that it is
impossible to construct a square equal in area to the area of the circle.

Answer: Consider a circle with radius 1. Let ‘a’ be the side of a square whose area is equal
to the area of the circle. So, a?=m

We know that m is not algebraic over Q.

Therefore a? is not algebraic over Q and hence a is not algebraic over Q.

So, [Q(a): Q] #2™forany m € Z*

By theorem 17.2.3, we have a is not constructible by ruler and compass.

Therefore we cannot construct a square whose area is 7.

Problem of duplicating a Cube: Show that it is impossible to construct a cube with volume
equal to twice the volume of a given cube by ruler and compass.

Answer : Assume that the side of the given cube is 1.

Let x be the side of the cube which should be constructed.

Let us suppose that x3=2.1° ie,x’-2=0

Now 2! is the real cube root of 2 which is a real root of the equation x> —2 =0

We know that the polynomial, f(x) = x> — 2 is irreducible over Q.

By known theorem, we have [Q(2!* ) : Q] = degf(x) = 3, which is not a power of 2.
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By Theorem 17.2.3, 2! is not constructible from Q.

Therefore a cube with volume equal to twice the volume of a given cube cannot be
constructed by ruler and compass.

Problem of Trisecting an Angle: Show that there exists an angle that cannot be trisected by
ruler and compass.

Answer: Consider o= 60° is the given angle.

Now we show that a cannot be trisected by ruler and compass.

Suppose if possible o is trisected by ruler and compass. i.e., the number cos 20° is
constructible number from Q.  Put a = 2c0s20.

We know that cos30 = 4cos*8 — 3cos 6.

Therefore (2c0s20)* = 8c0s*20 = 2(4c0s°20) = 2(c0s3.20 + 3c0s20)

i.e., a® =2cos 60 + 3.2c0s20

=ad= 2.% +3a

=>a®-3a-1=0 (1)

So f(x)=x3-3x — 1 € Q[x] and it is irreducible over Q.

From (1), a is a root of f(x).

Therefore [Q(2'3): Q] = degfi(x) =3 # 2™, for any positive integer.

By theorem 17.2.3, a = 2cos 20 is not constructible.

Hence angle of 20° cannot be constructible by ruler and compass from Q

Problem of constructing a regular n-gon: Show that a regular n-gon is constructible
. 2T . . . . .
(equivalently, the angle — s constructible) if and only if ¢(n) is a power of 2.
Answer:
2T . . 2T . . e th .
Let w = cos — +1 sin—, where w is a primitive n™ root of unity.
_ 2T . . 2T _ 2T
Then w =cos—- isin—. So, w+ ®=2cos—.
n n n
2T
Put cos —=u.
n
. 21 . . 2T 2T . . 2T
Since w = cos — + 1 sin—, we have w - cos — =1 sin—
n n n n
2T 2 .2 2T
=>lw — cos —) =-sin”—

n

2T 2T . 2T
= w? - 2w cos 7+coszT= -sm2?

2T 2T . 2T
= w? - 2w cos 7+c052? +sm2? =0

2T
= w? - 2w cos 7+1 =0
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Therefore w satisfies the polynomial f(x) = x> - (2cos zf)x +1 € Q(u)[x].

Clearly the polynomial f(x) is irreducible over Q(u) and [Q(w) : Q] = [Q(w) : Q()][Q(u) :
Q]

= ¢(n) =2.[Q(w): Q]

= [Q(u) : Q] =43+

Therefore u is constructible iff ¢(n) is a power of 2

Question 1. What is the connection between ruler and compass constructions and field
theory?

Answer: There is a deep algebraic connection: a point in the plane is constructible by ruler
and compass if and only if its coordinates can be obtained from the rational numbers using a
finite number of additions, subtractions, multiplications, divisions, and square roots. This
means that constructible points lie in a field extension of Q of degree a power of 2.

Question 2. What does it mean for a number to be constructible?

Answer: A number is constructible if it can be represented as the coordinate (or distance) of a
point that can be obtained through a finite sequence of ruler and compass constructions,
starting from 0 on the real line.

Question 3. Can cube roots be obtained by ruler and compass constructions?

Answer: No. Cube roots generally cannot be obtained using only ruler and compass, because
solving cubic equations requires constructing elements in field extensions of degree 3, which
is not a power of 2.

Question 4. What is the field of constructible numbers?

Answer: The field of constructible numbers is the smallest subfield of R that contains Q and
is closed under the operations of addition, subtraction, multiplication, division, and extraction
of square roots. It contains all numbers that can be constructed using ruler and compass.

17.6 SUGGESTED READINGS:

1. Bhattacharya, P. B., S. K. Jain and S. R. Nagpaul. 1997. Basic Abstract Algebra, 2nd
edition. UK: Cambridge University Press (Indian Edition).

2. Hungerford, Thomas W. Abstract Algebra, 1974, Springer-Verlag, New York

3. Khanna, V. K. and S. K. Bhambari. A Course in Abstract Algebra, 3rd edition. New
Delhi: Vikas Publishing House Pvt. Ltd.

4. Lang, S. 1993. Algebra, 3rd edition. Boston: Addison-Wesley, Mass.

5. LS. Luther and 1.B.S.Passi, Algebra, Vol. IV-Field Theory, Narosa Publishing
House,2012.

6. lan Stewart, Galios Theory, Chapman and Hall/CRC, 2004.

- Dr. J.L Rama Prasad



