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FOREWORD 
Since its establishment in 1976, Acharya Nagarjuna University has been forging 

ahead in the path of progress and dynamism, offering a variety of courses and research 

contributions. I am extremely happy that by gaining ‘A+’ grade from the NAAC in the 

year 2024, Acharya Nagarjuna University is offering educational opportunities at the UG, 

PG levels apart from research degrees to students from over 221 affiliated colleges spread 

over the two districts of Guntur and Prakasam. 

The University has also started the Centre for Distance Education in 2003-04 with 

the aim of taking higher education to the doorstep of all the sectors of the society. The 

centre will be a great help to those who cannot join in colleges, those who cannot afford 

the exorbitant fees as regular students, and even to housewives desirous of pursuing 

higher studies. Acharya Nagarjuna University has started offering B.Sc., B.A., B.B.A., 

and B.Com courses at the Degree level and M.A., M.Com., M.Sc., M.B.A., and L.L.M., 

courses at the PG level from the academic year 2003-2004 onwards. 

To facilitate easier understanding by students studying through the distance mode, 

these self-instruction materials have been prepared by eminent and experienced teachers. 

The lessons have been drafted with great care and expertise in the stipulated time by these 

teachers. Constructive ideas and scholarly suggestions are welcome from students and 

teachers involved respectively. Such ideas will be incorporated for the greater efficacy of 

this distance mode of education. For clarification of doubts and feedback, weekly classes 

and contact classes will be arranged at the UG and PG levels respectively. 

It is my aim that students getting higher education through the Centre for 

Distance Education should improve their qualification, have better employment 

opportunities and in turn be part of country’s progress. It is my fond desire that in the 

years to come, the Centre for Distance Education will go from strength to strength in the 

form of new courses and by catering to larger number of people. My congratulations to 

all the Directors, Academic Coordinators, Editors and Lesson-writers of the Centre who 

have helped in these endeavors. 

Prof. K.GangadharaRao 
M.Tech., Ph.D., 

Vice-Chancellor I/c 

Acharya Nagarjuna University 
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UNIT - I 
1. (a)  Let 𝐹 ⊆  𝐸 ⊆  𝐾 be field. If [𝐾 ∶  𝐸] <  ∞ and [𝐸 ∶  𝐹] <  ∞, then show that  
 (i)  [𝐾 ∶  𝐹] <  ∞ 

(ii) [𝐾 ∶  𝐹] =  [𝐾 ∶  𝐸][𝐸 ∶  𝐹]  
    (b)  State and Prove Gauss Lemma. 

(OR) 
 

2. (a) If 𝐸 is an extension of 𝐹 and 𝑢 ∈  𝐸 is algebraic over 𝐹, then prove that 𝐹(𝑢) is an 
algebraic expansion of 𝐹. 

    (b) State and Prove Kronecker theorem. 
 

UNIT – II 
3.  Prove that for any field K the following are equivalent. 

(a) 𝐾 is algebraically closed, 
(b) Every irreducible polynomial in 𝐾[𝑥] is of degree 1, 
(c) Every polynomial in 𝐾[𝑥] of positive degree factor completely in 𝐾[𝑥] into linear 
factors, 
(d) Every polynomial in 𝐾[𝑥] of positive degree has atleast one root in 𝐾.  

(OR) 

4. (a)  If 𝑓(𝑥)  ∈  𝐹[𝑥] is irreducible over 𝐹, then show that all roots of 𝑓(𝑥) have the same 
multiplicity. 

    (b)  State and prove uniqueness of splitting field theorem. 
 

UNIT – III 
5. Show that if 𝐸 is a finite separable extension of a field 𝐹, then 𝐸 is a simple extension 

of 𝐹. 
(OR) 

6. (a)  State and prove Dedekind lemma. 

(b)  Let 𝐻 be a finite subgroup of the group of automorphisms of a field 𝐸. Then show 
that [𝐸 ∶  𝐸ு]  =  |𝐻|. 

 



UNIT – IV 
7.  State and prove fundamental theorem of algebra. 
 

(OR) 
 

8. (a)  Let 𝐹 be a field let 𝑈 be a finite subgroup of the multiplicative group 𝐹* =  𝐹 −  {0}. 
Then show that 𝑈 is cyclic. 

(b)  Show that ∅௡(𝑥) =  𝜋ఠ(𝑥 − 𝜔), 𝜔  is primitive 𝑛th root in 𝐶, is an irreducible 
polynomial of degree ∅(𝑛) in 𝑍[𝑥].   

 
UNIT – V 

9. (a)  Show that 𝑓(𝑥)  ∈  𝐹[𝑥] is solvable by radicals over 𝐹 if and only if its splitting field 

𝐸 over 𝐹 has solvable Galois group 𝐺(𝐸
𝐹ൗ ).  

    (b)  Show that the polynomial 𝑥ହ −  9𝑥 + 3 is not solvable by radicals over 𝑄. 
 

(OR) 
 

10.(a)  Solve the problem of trisecting an angle. 
(b)  Prove that it is impossible to construct a cube with a volume equal to twice the 

volume of a given cube by using ruler and compass only. 
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LESSON- 1 

IRREDUCIBLE POLYNOMIALS & EISENSTEIN 
CRITERION 

 
OBJECTIVES: 
 
 To define and identify irreducible polynomials over various rings, especially over fields 

like ℚ, ℝ, and finite fields. 
 To understand the relationship between irreducibility and factorization in polynomial 

rings. 
 To determine irreducibility of polynomials using known theorems and tests. 
 To state and apply Eisenstein’s Criterion to test the irreducibility of a given polynomial 

in ℚ[x] or other relevant polynomial rings. 
 
STRUCTURE: 
 

1.1  Introduction  

1.2  Irreducible Polynomials 

1.3  Summary 

1.4  Technical Terms 

1.5  Self-Assessment Questions 

1.6  Suggested Readings 

 
1.1 INTRODUCTION:  

 
       Polynomials play a central role in abstract algebra, particularly in understanding the 
structure of rings and fields. An important concept in this context is the irreducibility of 
polynomials, analogous to primeness in integers. Irreducible polynomials cannot be factored 
into non-unit polynomials of lower degree over a given ring. Identifying irreducible 
polynomials is crucial in constructing field extensions and understanding algebraic equations. 
        
One of the most powerful tools is Eisenstein’s Criterion, which provides a sufficient 
condition for irreducibility. This criterion uses the divisibility properties of the coefficients 
relative to a prime number. Though not universally applicable, it simplifies many problems 
and reveals deep algebraic structure. In this lesson, we will study irreducibility, understand 
Eisenstein’s Criterion, and learn to apply it effectively. We start with irreducible 
polynomials, primitive polynomials and finally we provide the proof for the theorem namely 
Eisenstein criterion. 
 
1.2 IRREDUCIBLE POLYNOMIALS: 

 
 Let us recollect some important definitions and examples which are essential in the study of 
this Lesson.  
1.2.1 Definition: A commutative ring 𝑅 is said to be an integral domain if 𝑥𝑦 = 0, 𝑥, 𝑦 ∈
𝑅 𝑖𝑚𝑝𝑙𝑖𝑒𝑠 𝑥 = 0 or 𝑦 = 0. 
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Note: Let R be a commutative integral domain with unity. 𝑎 ∈ 𝑅 is a unit in R if there is a 
𝑏 ∈ 𝑅 such that 𝑎𝑏 = 1. For 0 ≠ 𝑎, 𝑏 ∈ 𝑅, we say that 𝑎 divides b, written 𝑎|𝑏, if b =
𝑎𝑐 for some 𝑐 ∈ 𝑅. Let 𝑎 ∈ 𝑅. For 0 ≠ 𝑏, 𝑐 ∈ 𝑅 if 𝑎 = 𝑏𝑐 then 𝑏 is  divisor of 𝑎. We say that 
a divisor 𝑏 of 𝑎 is improper if 𝑎 = 𝑏𝑐 then either 𝑏 is a unit or 𝑐 is a unit, where  𝑏, 𝑐 ∈ 𝑅.  
 
1.2.2 Definition: A non-zero element 𝑎 of a commutative integral domain 𝑅 with unity is 
called an irreducible element if it is not a unit and every divisor of 𝑎 is improper. 
 
1.2.3 Definition: A non-zero element 𝑝 of a commutative integral domain 𝑅 with unity is 
called a prime element if 
    (i) it is not a unit 
   (ii) 𝑝 divides 𝑎𝑏 then either 𝑝 divides 𝑎 (or) 𝑝 divides 𝑏, where 𝑎, 𝑏 ∈ 𝑅. 
 
1.2.4 Definition: A commutative Integral domain 𝑅 with unity is called a unique 
factorization domain if (i) every non-zero non-unit of 𝑅 is a finite product of irreducible 
elements and 
               (ii) every irreducible element in 𝑅 is prime. 
Note: Let 𝐹 be a field and let 𝐹[𝑥]be the ring of the polynomials in 𝑥 over 𝐹. Then 𝐹[𝑥] is a 
commutative  integral domain with unity and contains 𝐹 as a proper subring. 
 
1.2.5 Definition: A polynomial 𝑓(𝑥) in 𝐹[𝑥] is called irreducible polynomial if the degree of 
𝑓(𝑥) ⩾ 1 and whenever 𝑓(𝑥) = 𝑔(𝑥) ⋅ ℎ(𝑥) where 𝑔(𝑥), ℎ(𝑥) ∈ 𝐹[𝑥], then either 𝑔(𝑥) ∈ 𝐹 
(or) ℎ(𝑥) ∈ 𝐹. If a polynomial is not irreducible, then it is a called reducible. 
 
1.2.6 Example: 𝑥ଶ + 1 is irreducible over ℝ, but it is reducible over C. 
 
1.2.7 Properties of 𝑭[𝒙], F is field: 

 The division algorithm holds in 𝐹[𝑥].This means if 𝑓(𝑥) ∈ 𝐹[𝑥] and 0 ≠ 𝑔(𝑥) ∈
𝐹[𝑥] then there exist unique polynomials 𝑞(𝑥), 𝑟(𝑥) ∈ 𝐹[𝑥] such that 𝑓(𝑥) = 𝑔(𝑥) ⋅
𝑞(𝑥) + 𝑟(𝑥), where 𝑟(𝑥) = 0 or deg(𝑟(𝑥)) < 𝑑𝑒𝑔(𝑔(𝑥)). 

 𝐹[𝑥] is a principal Ideal domain. 
 𝐹[𝑥] is a U.F.D.  
 The units of 𝐹[𝑥] are the non-zero elements of F. 

 If 𝑝(𝑥) is irreducible in 𝐹[𝑥], then 
ி[௫]

⟨௣(௫)⟩
 is a field and conversely. 

 
1.2.8 Proposition:  Let F be a field and 𝑓(𝑥) ∈ 𝐹[𝑥] be a polynomial of degree > 1. If 
𝑓(𝛼) = 0 for some 𝛼 ∈ 𝐹, then𝑓(𝑥) is reducible over 𝐹. 
 
Proof: let 𝐹 be a field and let 𝑓(𝑥) ∈ 𝐹[𝑥] be a polynomial such that deg 𝑓(𝑥) > 1 
and 𝑓(𝛼) = 0 for some 𝛼 ∈ 𝐹. 
Then (𝑥 − 𝛼) is a factor of 𝑓(𝑥). Here 𝑓(𝑥), (𝑥 − 𝛼) are in 𝐹[𝑥]. So by division algorithm, 
there exists 𝑔(𝑥), 𝑟(𝑥) ∈ 𝐹[𝑥] &𝑓(𝑥) = (𝑥 − 𝛼)𝑔(𝑥) + 𝑟(𝑥) where 𝑟(𝑥) = 0 (or) 
deg  𝑟(𝑥) < deg  (𝑥 − 𝛼) = 1. If deg  𝑟(𝑥) < deg  (𝑥 − 𝛼), then 𝑟(𝑥) is a constant 
polynomial 
Therefore  r(𝑥) = 𝑎 where 𝑎 ∈ 𝐹. 
Here  0 = 𝑓(𝛼) = (𝛼 − 𝛼)𝑔(𝛼) + 𝑟(𝛼) = 𝑟(𝛼).     So, 𝑎  = 0 and hence r(𝑥) = 0.  
⇒  𝑓(𝑥) = (𝑥 − 𝛼)𝑔(𝑥) + 0 
⇒  𝑓(𝑥) = (𝑥 − 𝛼)𝑔(𝑥) 
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Since deg  𝑓(𝑥) > 1, we must have 𝑓(𝑥) is the product of two non-constant polynomials. 
Therefore 𝑓(𝑥) is reducible over 𝐹. 
 
1.2.9 Definition: Let 𝐸 be a field and 𝐹 be a subfield of 𝐹, and let 𝑓(𝑥) ∈ 𝐹[𝑥].  An element 
𝛼 ∈ 𝐸 is called a root (or) zero of 𝑓(𝑥) if 𝑓(𝛼) = 0. 
Note: 
1 If 𝑓(𝑥) = 𝑎଴ + 𝑎ଵ𝑥 + ⋯ + 𝑎௞𝑥௞, then 𝑓(𝛼) stands for the element 𝑎଴ + 𝑎ଵ𝛼 + ⋯ + 𝑎௞𝛼௞ 
in 𝐸 
2. If 𝑓ଵ(𝑥) is a polynomial of degree one, then 𝑓ଵ(𝑥) = 𝑎𝑥 + 𝑏, where 𝑎, 𝑏 ∈ 𝐹, 𝑎଴ ≠ 0 and 
−𝑏𝑎ିଵ is a root of 𝑓ଵ(𝑥).  So we can conclude that if a polynomial 𝑓(𝑥) in 𝐹(𝑥) has a factor 
of degree one in 𝐹[𝑥], then 𝑓(𝑥) has a root in 𝐹. 
 
1.2.10 Proposition: let 𝑓(𝑥) ∈ 𝐹[𝑥] be a polynomial of degree 2 or 3 , then  𝑓(𝑥) is 
reducible in 𝐹[𝑥] if and only if 𝑓(𝑥) has a root in 𝐹. 
 
Proof:  Let 𝑓(𝑥) ∈ 𝐹[𝑥] be a polynomial of deg  𝑓(𝑥) = 2 or 3. 
Suppose that 𝑓(𝑥) is reducible over 𝐹. Then 𝑓(𝑥) can be expressed as the product of two 
non-constant polynomials. i.e. 𝑓(𝑥) = 𝑓ଵ(𝑥). 𝑓ଶ(𝑥) where 𝑓ଵ(𝑥), 𝑓ଶ(𝑥) ∈ 𝐹[𝑥] and 
deg  𝑓ଵ(𝑥) < 3 and deg  𝑓ଶ(𝑥) < 3.  
Since 𝑓ଵ(𝑥), 𝑓ଶ(𝑥) are non-constant polynomials, we have deg  𝑓ଵ(𝑥) ⩾ 1 and deg  𝑓ଶ(𝑥) ⩾
1 
So we must have deg  𝑓ଵ(𝑥) = 1 (or) deg 𝑓ଶ(𝑥) = 1(∵ deg  𝑓(𝑥) = 2 or 3) 
If deg 𝑓ଵ(𝑥) = 1, 𝑓ଵ(𝑥) = 𝑎𝑥 + 𝑏, where 𝑎, 𝑏 ∈ 𝐹 & 𝑎 ≠ 0 
Since 𝑎 ≠ 0 and 𝐹 is a field, we have  −𝑏𝑎ିଵ ∈ 𝐹 and 𝑓ଵ(−𝑏𝑎ିଵ) = 𝑎(−𝑏𝑎ିଵ) + 𝑏 = 0 
Also 𝑓(−𝑏𝑎ିଵ) = 𝑓ଵ(−𝑏𝑎ିଵ)𝑓ଶ(−𝑏𝑎ିଵ) = 0 ⋅ 𝑓ଶ(−𝑏𝑎ିଵ) = 0 
So, f(x) has a root in F. 
If deg  𝑓ଵ(𝑥) > 1, then deg  𝑓ଵ(𝑥) = 2. 
Also if deg  fଶ(𝑥) = 2, then deg  𝑓(𝑥) = deg  𝑓ଵ(𝑥) + deg  fଶ(𝑥) = 2 + 2 = 4, which is a 
contradiction. Therefore deg 𝑓ଶ(𝑥) = 1.  
So ,  by the above proof 𝑓(𝑥) has a root in F. 
Conversely, Suppose that 𝑓(𝑥) has a root in 𝐹, say '𝛼' i.e.𝑓(𝛼) = 0. 
Then (𝑥 − 𝛼) is a factor of 𝑓(𝑥), that is, 𝑓(𝑥) = (𝑥 − 𝛼)𝑔(𝑥) for some  𝑔(𝑥)  ∈ 𝐹[𝑥]. 
Since deg𝑓(𝑥) > 1, we must have deg 𝑔(𝑥) ⩾ 1  
i.e. 𝑓(𝑥) is the product of two non-constant polynomials.i.e. 𝑓(𝑥) is reducible over 𝐹. 
 
1.2.11 Definition: A polynomial 𝑓(𝑥) ∈ 𝑍[𝑥] is called a primitive polynomial if the greatest 
common divisor of the coefficients of 𝑓(𝑥) is 1. The g.c.d of the coefficients of 𝑓(𝑥) is called 
content of 𝑓(𝑥) and it is denoted by 𝑐(𝑓). 
Note: 1. 𝑐(𝑓) = 1 if and only if  𝑓(𝑥) is a primitive polynomial. 
 
1.2.12 Definition: A polynomial 𝑎଴ + 𝑎ଵ𝑥 + ⋯ + 𝑎௡𝑥௡ over a ring 𝑅 is called a monic 
polynomial if 𝑎௡ = 1. 
Note: Every monic polynomial 𝑓(𝑥) ∈ 𝑍[𝑥] is primitive. 
 
1.2.13 Proposition: If 𝑓(𝑥), 𝑔(𝑥) ∈ 𝑍[𝑥] are two primitive polynomials, then the product 
𝑓(𝑥) ⋅ 𝑔(𝑥) is also primitive. 
Proof: Given 𝑓(𝑥), 𝑔(𝑥) are two primitive polynomials in𝑍[𝑥].  
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Let 𝑓(𝑥) = 𝑎଴ + 𝑎ଵ𝑥 + 𝑎ଶ𝑥ଶ + ⋯ + 𝑎௡𝑥௡and 𝑔(𝑥) = 𝑏଴ + 𝑏ଵ𝑥 + ⋯ + 𝑏௡𝑥௡; where 𝑎௜ , 𝑏௝ ∈

Z; 𝑖 = 0,1, … , 𝑛, 𝑗 = 0, 1, 2, … , 𝑚. 
Suppose if possible, 𝑓(𝑥) ⋅ 𝑔(𝑥) is not primitive.  
 
Then the g.c.d. of all coefficients of    𝑓(𝑥) ⋅ 𝑔(𝑥) is not a unit.   There exist a prime number 
 𝑝, which divides all the coefficients of 𝑓(𝑥) ⋅ 𝑔(𝑥).  Since 𝑓(𝑥) is primitive, 𝑝 does not 
divides  all the coefficients of 𝑓(𝑥). So let ' 𝑎௝ ' be the first co-efficient, which is not divisible 
by ' 𝑝 '. Since 𝑔(𝑥) is primitive, 𝑝 does not divides all the co-efficients of 𝑔(𝑥).  So, let ' 𝑏௞ ' 
be the first coefficient of 𝑔(𝑥), which is not divisible by 𝑝.  
Now, 𝑐௝ା௞ = 𝑎௝𝑏௞ + ൫𝑎௝ାଵ𝑏௞ିଵ + 𝑎௝ାଶ𝑏௞ିଶ + ⋯ + 𝑎௝ା௞𝑏଴൯ + ⋯ + ൫𝑎௝ିଵ𝑏௞ାଵ + 𝑎௝ିଶ𝑏௞ାଶ +

⋯ + 𝑎଴𝑏௝ା୩൯ 

Since 𝑝|𝑎௜ for 𝑖 = 0,1, … , 𝑗 − 1, we have 
 𝑝 ∣ 𝑎଴𝑏௝ା௞ + ⋯ + 𝑎௝ିଵ𝑏௞ାଵ

 

Also, 𝑝|𝑏୧ for 𝑖 = 0,1, … , 𝑘 − 1, we have 
  𝑝 ∣ ൫𝑎௝ା௞𝑏଴ + ⋯ + 𝑎௝ାଵ𝑏௞ିଵ൯

 

and 𝑝 divides all the co-efficients of 𝑓(𝑥) ⋅ 𝑔(𝑥). 
so  𝑝|𝑐௝ା௞ 

  
,that is, 𝑝|𝑎୨ 𝑏௞ 
Since 𝑝 is a prime number, we have, 𝑝|𝑎୨ or 𝑝|𝑏୩ which is a contradiction to selection of 𝑎௝& 
𝑏௞ So,  Our supposition is wrong.   
Hence 𝑓(𝑥) ⋅ 𝑔(𝑥) is a primitive polynomial. 
 
1.2.14 Definition: A polynomial 𝑓(𝑥) ∈ 𝑍[𝑥] is called irreducible over Z, if 𝑓(𝑥) is an 
irreducible element in   𝑍[𝑥]. 
Note: An irreducible polynomial over Z must be primitive. 
 
1.2.15 Gauss Lemma: Let 𝑓(𝑥) ∈ 𝑍[𝑥] be a primitive polynomial. Then 𝑓(𝑥) is reducible 
over 𝑄 if and only if  𝑓(𝑥) is reducible over 𝑍. 
Proof: Let 𝑓(𝑥) ∈ 𝑍[𝑥] be a primitive polynomial. 
Assume that 𝑓(𝑥) is reducible over 𝑍.   
Then 𝑓(𝑥) = 𝑔(𝑥) ⋅ ℎ(𝑥) where 𝑔(𝑥), ℎ(𝑥) ∈ 𝑍[𝑥] and deg  𝑔(𝑥) ⩾ 1&deg  ℎ(𝑥) ⩾ 1 as 
𝑓(𝑥) ∈ 𝑍[𝑥] is primitive. 
Since 𝑍 ⊂ 𝑄, we have 𝑔(𝑥), ℎ(𝑥) ∈ 𝑄[𝑥].    
This implies 𝑓(𝑥) = 𝑔(𝑥) ⋅ ℎ(𝑥) where 𝑔(𝑥), ℎ(𝑥) ∈ 𝑄[𝑥] and deg  𝑔(𝑥) ⩾ 1; deg  ℎ(𝑥) ⩾
1. 
i.e. 𝑓(𝑥) is expressed as the product of two non-constant polynomials in 𝑄[𝑥]. 
Therefore 𝑓(𝑥) is reducible over 𝑄. 
Conversely, suppose that, 𝑓(𝑥) is reducible over 𝑄.  
Then 𝑓(𝑥) = 𝑔(𝑥) ⋅ ℎ(𝑥) where 𝑔(𝑥), ℎ(𝑥) ∈ 𝑄[𝑥] and deg  𝑔(𝑥) ⩾ 1; deg  ℎ(𝑥) ⩾ 1.  
                    =

௔

௕
𝑔ଵ(𝑥)ℎଵ(𝑥) where 𝑔ଵ(𝑥), ℎଵ(𝑥) ∈ 𝑍[𝑥] and  𝑔ଵ(𝑥),ℎଵ(𝑥) are primitive, 𝑎,𝑏 ∈

𝑍, deg  𝑔(𝑥) = deg  𝑔ଵ(𝑥), and deg  ℎ(𝑥) = deg  ℎଵ(𝑥)  
⇒ 𝑏𝑓(𝑥) = 𝑎(𝑔ଵ(𝑥) ⋅ ℎଵ(𝑥)) 
⇒ 𝑐൫𝑏(𝑓(𝑥)) = 𝑐൫𝑎(𝑔ଵ(𝑥) ⋅ ℎଵ(𝑥))൯ 

Since 𝑓(𝑥) is a primitive polynomial,  c(𝑓) = 1.  Therefore 𝑐 ቀ𝑏൫𝑓(𝑥)൯ቁ = 𝑏. 

Since 𝑔ଵ(𝑥). ℎଵ(𝑥)is primitive,  we have 𝑐൫𝑎(𝑔ଵ(𝑥) ⋅ ℎଵ(𝑥))൯ = 𝑎.  So a = b.  
This implies  𝑓(𝑥) = 𝑔ଵ(𝑥) ⋅ ℎଵ(𝑥) where 𝑔ଵ(𝑥) ⋅ ℎଵ(𝑥) ∈ 𝑍[𝑥], deg  ℎଵ(𝑥) = deg  ℎ(𝑥) ⩾
1 and deg  𝑔ଵ(𝑥) = deg  𝑔(𝑥) ⩾ 1.  
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i.e. 𝑓(𝑥) is the product of two positive degree polynomials in 𝑍[𝑥]. 
Therefore 𝑓(𝑥) is reducible over 𝑍. 
 
1.2.16 Lemma:  If 𝑓(𝑥) ∈ 𝑍[𝑥] is reducible over 𝑄,  then it is also reducible over 𝑍. 
Proof: Let 𝑓(𝑥) ∈ 𝑍[𝑥].  
We know that any polynomial 𝑓(𝑥) in 𝑍[𝑥] can be written as 𝑓(𝑥) = 𝑑𝑓ଵ(𝑥), where 𝑑 =
𝑐(𝑓) and 𝑓ଵ(𝑥) is a primitive polynomial in 𝑍[𝑥].  
Suppose 𝑓(𝑥) is reducible over 𝑄. Then 𝑑𝑓ଵ(𝑥) is reducible over 𝑄. 
So 𝑓ଵ(𝑥) is reducible over 𝑄 & 𝑓ଵ(𝑥) is primitive in 𝑍[𝑥].   
Then by 1.2.15, we have 𝑓ଵ(𝑥) is reducible over 𝑍.     
So 𝑑𝑓ଵ(𝑥) is reducible over Z.  Hence 𝑓(𝑥) is reducible over 𝑍. 
 
1.2.17 Proposition: Let 𝑓(𝑥) = 𝑎଴ + 𝑎ଵ𝑥 + 𝑎ଶ𝑥 + ⋯ + 𝑎௡ିଵ𝑥௡ିଵ + 𝑥௡ ∈ 𝑍[𝑥] be a monic 
polynomial. If 𝑓(𝑥) has a root 𝑎 ∈ 𝑄, then 𝑎 ∈ 𝑍 & a divides 𝑎଴.  
Proof: Let 𝑓(𝑥) = 𝑎଴ + 𝑎ଵ𝑥 + ⋯ + 𝑎௡ିଵ𝑥௡ିଵ + 𝑥௡ ∈ 𝑍[𝑥] be a monic polynomial.  
Let 0 ≠ 𝑎 ∈ 𝑄 be a root of 𝑓(𝑥).  
Since 𝑎 ∈ 𝑄, we have 𝑎 =

ఈ

ఉ
, where 𝛼, 𝛽 ∈ ℤ & 𝛽 ≠ 0, (𝛼, 𝛽) = 1. Also since 𝑎 =

ఈ

ఉ
 is root 

of 𝑓(𝑥), we have  𝑓 ቀ
ఈ

ఉ
ቁ = 𝑎଴ + 𝑎ଵ ቀ

ఈ

ఉ
ቁ + ⋯ + 𝑎௡ିଵ ቀ

ఈ

ఉ
ቁ

௡ିଵ

+ ቀ
ఈ

ఉ
ቁ

௡

= 0

= 𝑎଴ + 𝑎ଵ ⋅
ఈ

ఉ
+ ⋯ + 𝑎௡ିଵ

ఈ೙షభ

ఉ೙షభ +
ఈ೙

ఉ೙ = 0 … … … . (∗)

 

Now multiplying the above with 𝛽௡ିଵ, we get 

𝑎଴𝛽௡ିଵ + 𝑎ଵ ⋅
𝛼

𝛽
⋅ 𝛽௡ିଵ + ⋯ + 𝑎௡ିଵ

𝛼௡ିଵ

𝛽௡ିଵ
⋅ 𝛽௡ିଵ +

𝛼௡

𝛽௡
⋅ 𝛽௡ିଵ = 0.

So 𝑎଴𝛽௡ିଵ + 𝑎ଵ𝛼𝛽௡ିଶ + ⋯ + 𝑎௡ିଵ𝛼௡ିଵ + 𝛼௡ ⋅ 𝛽ିଵ = 0.

 

Now 𝑎଴𝛽௡ିଵ + 𝑎ଵ𝛼𝛽௡ିଶ + ⋯ + 𝑎௡ିଵ𝛼௡ିଵ =
ିఈ೙

ఉ
is an integer. 

Since 𝑔. 𝑐. 𝑑 𝑜f 𝛼, 𝛽 𝑖𝑠 1 & 𝛽 ∈ 𝑍, we have 𝛽 = ±1.  
Therefore 𝑎 = ±𝛼 where 𝛼 ∈ 𝑍.  so 𝑎 ∈ Z. 

 From (*), we have, 𝑎଴ + 𝑎ଵ ⋅
ఈ

ఉ
+ ⋯ + 𝑎௡ିଵ

ఈ೙షభ

ఉ೙షభ
+

ఈ೙

ఉ೙
= 0 

𝑆𝑜 𝑎଴ + 𝑎ଵ ⋅
𝛼

𝛽
+ ⋯ + 𝑎௡ିଵ ⋅

𝛼௡ିଵ

𝛽௡ିଵ
= −

𝛼௡

𝛽௡
 and that

𝑎଴𝛽௡ + 𝑎ଵ𝛼𝛽௡ିଵ + ⋯ + 𝑎௡ିଵ𝛼௡ିଵ ⋅ 𝛽 = −𝛼௡, that is,

 

𝑎଴𝛽௡= −𝛼௡ − 𝑎ଵ𝛼𝛽௡ିଵ ⋯ − 𝑎௡ିଵ𝛼௡ିଵ𝛽

= −𝛼(𝑎ଵ𝛽௡ିଵ + ⋯ + 𝑎௡ିଵ𝛼௡ିଶ𝛽) − 𝛼௡

𝑆𝑜 𝑎଴𝛽௡= −𝛼[𝑎ଵ𝛽௡ିଵ + ⋯ + 𝑎௡ିଵ𝛼௡ିଶ𝛽 + 𝛼௡ିଵ] and that

𝛼∣ 𝑎଴𝛽௡

 

Now 𝛼 ∣ 𝑎଴ , 𝑠ince (𝛼, 𝛽) = 1.   Hence α divides 𝑎଴.  
 
1.2.18 Proposition: (Eisenstein Criterion): Let 𝑓(𝑥) = 𝑎଴ + 𝑎ଵ𝑥 + ⋯ + 𝑎௡𝑥௡ ∈ 𝑍[𝑥] with 
𝑛 ⩾ 1. If there is a prime number  𝑝 such that 𝑝|𝑎଴, 𝑝|𝑎ଵ, 𝑝|𝑎ଶ, … , 𝑝|௔೙షభ

, 𝑝 ∤ 𝑎௡, 𝑝ଶ ∤ 𝑎଴ , 
then 𝑓(𝑥) is irreducible over 𝑄.  
Proof: Let 𝑓(𝑥) = 𝑎଴ + 𝑎ଵ𝑥 + ⋯ + 𝑎௡𝑥௡ ∈ 𝑍[𝑥] with 𝑛 ⩾ 1 and let 𝑝 be a prime number 
such that 𝑝|𝑎଴, 𝑝|𝑎ଵ, 𝑝|𝑎ଶ, … , 𝑝|௔೙షభ

, 𝑝 ∤ 𝑎௡, 𝑝ଶ ∤ 𝑎଴. 
Claim: 𝑓(𝑥) is irreducible over 𝑄. 
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First we show that 𝑓(𝑥) is irreducible in 𝑍[𝑥]. 
If possible, Suppose that 𝑓(𝑥) is reducible over Z. Then 𝑓(𝑥) = 𝑔(𝑥) ⋅ ℎ(𝑥), 

where
𝑔(𝑥) = 𝑏଴ + 𝑏ଵ𝑥 + ⋯ + 𝑏௥𝑥௥

ℎ(𝑥) = 𝑐଴ + 𝑐ଵ𝑥 + ⋯ + 𝑐ୱ𝑥ୱ and 𝑏௜ , 𝑐௜ ∈ ℤ, 𝑟 < 𝑛, 𝑠 < 𝑛  & 𝑟 + 𝑠 = 𝑛 

Therefore 𝑎଴ = 𝑏଴𝑐଴, 𝑎௡ = 𝑏௡𝑐௦&𝑎௜ = 𝑏଴𝑐௜ + 𝑏௜𝑐௜ିଵ + ⋯ + 𝑏௜𝑐଴ for all 𝑖 
Since 𝑝|𝑎଴, we have  𝑝|𝑏଴𝑐଴ 𝑠𝑜 𝑝|𝑏଴ (or) 𝑝|𝑐଴ 

 ( since 𝑝 is prime).  
[If 𝑝|𝑏଴&𝑝|𝑐଴ ⇒ 𝑝ଶ|𝑏଴𝑐଴ = 𝑎଴, which is a contradiction] 
 
Case (i) : Suppose  𝑝|𝑏଴ and 𝑝 ∤ 𝑐଴ 
If all the coefficients 𝑏௜ are divisible by '𝑝' Then 𝑝 divides all 𝑎௞

ᇱ  ( 0 ≤ 𝑘 ≤ 𝑛 ) 
and p|𝑎୬, which is a contradiction. 
So  𝑝 does not divides all the coefficients 𝑏௜.  
Let '𝑚' be the least positive integer such that p∤ 𝑏௠.  
This means that 𝑝 divides  𝑏ଵ, 𝑏ଶ, … , 𝑏௠ିଵ. 
Now 𝑎௠ = 𝑏௠𝑐଴ + 𝑏௠ିଵ𝑐ଵ + ⋯ + 𝑏଴𝑐௠       so 𝑏௠𝑐଴ = 𝑎௠ − (𝑏௠ିଵ𝑐ଵ + ⋯ + 𝑏଴𝑐௠) 

Since 𝑝 divides 𝑎௠, 𝑏௠ିଵ, … , 𝑏଴𝑐௠, we have, so 
𝑝 ∣ 𝑏௠𝑐଴

𝑝|𝑏௠ (or) 𝑝|𝑐଴ (∵ 𝑝 is prime) 
 

But p∤ 𝑐଴. So we must have 𝑝|𝑏௠ which is a contradiction. 
So  our assumption is wrong.  
 
Case (ii) : Suppose  𝑝|𝑐଴& 𝑝 ∤ b଴ 
Similarly, as in case(i), we get that our assumption is wrong. 
Therefore f(x) is irreducible over Q. 
 
1.3  SUMMARY:  
 
An irreducible polynomial over a field F is a non-constant polynomial that cannot be factored 
into polynomials of lower degree over F. This lesson explores conditions under which a 
polynomial is irreducible over F. Eisenstein’s Criterion provides a powerful tool for 
establishing the irreducibility of polynomials over Q.  
 
1.4  TECHNICAL TERMS: 
 
Field:  A commutative ring with unity where every non-zero element has a multiplicative 
inverse. 
Unit: An invertible element in a ring. 
Prime element: A non-zero, non-unit element p such that p∣ab implies p∣a or p∣b . 
Irreducible element: An element (or polynomial) that is a non-zero non-unit and cannot be 
factored into two non-unit factors. 
Leading coefficient: The coefficient of the highest-degree term in a polynomial. 
Content of a polynomial: The greatest common divisor (g.c.d) of its coefficients. 
Primitive polynomial: A polynomial whose content is 1. 
Monic polynomial: A polynomial whose leading coefficient is 1. 
 
1.5  SELF-ASSESSMENT QUESTIONS:  
 
Question 1: Why Eisenstein’s Criterion is useful and what are its limitations? 
Answer: Eisenstein’s Criterion provides a sufficient (but not necessary) condition to 
establish the irreducibility of a polynomial over ℚ. It is useful because it offers a 
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straightforward test when applicable. However, its limitation is that it does not apply to all 
irreducible polynomials. Some irreducible polynomials do not satisfy the criterion, and some 
polynomials may need to be transformed (e.g., via a change of variable) before the criterion 
can be applied. 
 
Question 2: Can Eisenstein’s Criterion be used over arbitrary rings or only over ℤ and ℚ? 
Explain. 
Answer: Eisenstein’s Criterion is primarily stated for polynomials in ℤ[x] to test 
irreducibility over ℚ. However, generalized forms of the criterion exist for unique 
factorization domains, where similar conditions involving prime elements can be applied. But 
its standard and most practical usage remains in the context of ℤ and ℚ.  
 

Question 3:  Test whether the polynomial  𝑥ଷ + 3𝑥 + 2 ∈
௓

⟨଻⟩
[𝑥] (or) 𝑍଻[𝑥] is irreducible 

Over the field 
௭

⟨଻⟩
 or not ? 

Solution :  
Let 𝑓(𝑥) = 𝑥ଷ + 3𝑥 + 2 be a polynomial in 

௭

⟨଻⟩
[𝑥].  

Here deg𝑓(𝑥) = 3. 
By proposition 1.2.10, we have that 𝑓(𝑥) is reducible over 

௭

⟨଻⟩
, if 𝑓(𝑥) has a root in 

௭

⟨଻⟩
. 

Let us check whether 𝑓(𝑥) has a root in 
௭

⟨଻⟩
 or not. 

Since 𝑓(3) = 38, 0 ≠ 3 ∈
௭

⟨଻⟩
 is not a root of 𝑓(𝑥). Similarly one can easily verify that no 

element of 
௭

⟨଻⟩
 is a root of 𝑓(𝑥). Then by proposition 1.2.10, we have that 𝑓(𝑥) is irreducible 

over 
௭

⟨଻⟩
. 

 
Question 4: Test whether the polynomial 𝑓(𝑥) = 1 + 𝑥 + ⋯ +
𝑥௣ିଵ, where 𝑝 is prime number is irreducible over 𝑄 or not ?  
Solution: Given 𝑓(𝑥) = 1 + 𝑥 + ⋯ + 𝑥௣ିଵ, where 𝑝 is a prime number. 

(𝑥 − 1)𝑓(𝑥)= (𝑥 − 1)[1 + 𝑥 + ⋯ + 𝑥௣ିଵ]

= 𝑥 − 1 + 𝑥ଶ − 𝑥 + ⋯ + 𝑥௣ − 𝑥௣ିଵ

So (𝑥 − 1)𝑓(𝑥)= 𝑥௣ − 1

 

Put 𝑦 = 𝑥 − 1 so 𝑥 = 1 + 𝑦. 
Now  𝑦𝑓(𝑥)= (𝑦 + 1)௣ − 1

= ൬1 + 𝑝𝑦 +
𝑝(𝑝 − 1)

2!
𝑦ଶ + ⋯ ൰ − 1

= 𝑝𝑦 +
𝑝(𝑝 − 1)

2!
𝑦ଶ + ⋯

So  ⇒  𝑓(𝑥 + 𝑦)= 𝑝 +
𝑝(𝑝 − 1)

2!
𝑦 + ⋯ + 𝑦௣

 

From equation (1), clearly 𝑝|𝑝௖౨
, where 0 < 𝑟 ⩽ 𝑝 − 1 and 𝑝ଶ ∤ 𝑝௖೛షభ

 and 𝑝 ∤ 1 

Therefore by Eisenstein criterion, 𝑓(𝑥) is irreducible over 𝑄. 
 
Question 5. Determine which of the following polynomials are irreducible over 𝑄. 
a) 𝑥ଷ − 5𝑥 + 10 
b) 𝑥ସ − 3𝑥ଶ + 9 
c) 2𝑥ହ − 5𝑥ସ + 5 
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Solution : 
a) Let 𝑓(𝑥) = 10 − 5𝑥 + 0 ⋅ 𝑥ଶ + 𝑥ଷ . Take 𝑝 = 5 
Note that 𝑝|10 , 𝑝|5 , 𝑝|0, 𝑝 ∤ 1 & 𝑝ଶ ∤ 10 
Then by Eisenstein criterion, 𝑓(𝑥) is irreducible over 𝑄. 
Similarly, we can solve (b) and (c) by taking appropriate ‘p’ 
 
1.6  SUGGESTED READINGS: 
 
1. Bhattacharya, P. B., S. K. Jain and S. R. Nagpaul, 1997, Basic Abstract Algebra, 2nd 

edition, UK: Cambridge University Press (Indian Edition). 
2. Hungerford, Thomas W. Abstract Algebra, 1974, Springer-Verlag, New York. 
3. Khanna, V. K. and S. K. Bhambari, A Course in Abstract Algebra, 3rd edition, New 

Delhi: Vikas Publishing House Pvt. Ltd. 
4. Lang, S. 1993. Algebra, 3rd edition, Boston: Addison-Wesley, Mass. 
5. I.S. Luther and I.B.S.Passi, Algebra, Vol. IV-Field Theory, Narosa Publishing 

House,2012. 
6. Ian Stewart, Galios Theory, Chapman and Hall/CRC, 2004.  

 
 

- Prof.  R. Srinivasa Rao 



 LESSON- 2 

ADJUNCTION OF ROOTS 
 

OBJECTIVES: 
 
 

 To construct field extensions by adjoining roots of irreducible polynomials to a base 
field. 

 To analyze the properties of the extended field such as its degree and structure. 
 To study the concept of minimal polynomials of the adjoined roots. 
 To provide a foundation for Galois Theory and the study of finite extensions. 

 
STRUCTURE: 
 
2.1  Introduction  

2.2  Extension of fields 

2.3  Kronecker Theorem and its Applications 

2.4  Summary 

2.5  Technical Terms 

2.6  Self-Assessment Questions 

2.7  Suggested Readings 

 
2.1  INTRODUCTION:  
 
Adjunction of roots involves creating field extensions by adding roots of a polynomial that 
are not in the given field.  This process enriches the field structure and is fundamental in 
understanding algebraic extensions. For a field F and an irreducible polynomial f(x) over F,           
we adjoin a root α to form F(α). The extension F(α) is the smallest field containing both F and 
α, and α satisfying f(x). This concept is crucial for constructing fields which are finite 
extensions of the given field. Kronecker’s theorem asserts that for any non-constant 
polynomial f(x) ∈ F[x], there exists an extension field, in which f(x) has a root. 
 
2.2  EXTENSION OF FIELDS: 
 
2.2.1. Definition: If F is a subfield of a field E, then E is called an extension field of F (or) 
simply an extension of F. 

Note that it E is a field and F is a non-empty subset of E. then F is a subfield of E if 𝑎 =
𝑏, 𝑎𝑏, 𝑎ିଵ(𝑎 ≠ 0) are in F for all 𝑎, 𝑏 ∈ 𝐹 

Note: If E is an extension of F, then trivially E is a vector space over F. The dimension of E 
over F is usually written as [E: F]. 

2.2.2 Definition:  Let E be an extension of F. Then the dimension of E considered as a vector 
space over F is called the degree of E over F and is denoted by [E: F]. 
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Note: The degree of 𝐸  over 𝐹 is written as [𝐸 ∶ 𝐹]. If [𝐸 ∶ 𝐹] < ∞, then 𝐸  is called a finite 
extension of 𝐹. If 𝐸 is not a finite extension of 𝐹,  then 𝐸  is called an infinite extension of 𝐹. 
 
2.2.3 Theorem: Let 𝐹 ⊆ 𝐸 ⊆ 𝐾  be fields. If [𝐾 ∶ 𝐸 ] < ∞  and [𝐸 ∶ 𝐹] < ∞, then  
(i)[𝐾 ∶ 𝐹] < ∞  (ii) [𝐾 ∶ 𝐹] = [𝐾 ∶ 𝐸 ][𝐸 ∶ 𝐹] 

Proof: Let F, E, K be three fields such that 𝐹 ⊆ 𝐸 ⊆ 𝐾 .  

Given that [𝐾 ∶ 𝐸 ] < ∞  and [𝐸 ∶ 𝐹] < ∞.   

Suppose [𝐾 ∶ 𝐸 ] = 𝑚 and [𝐸 ∶ 𝐹] = 𝑛 

So, let {𝑣ଵ, 𝑣ଶ, … , 𝑣௠} be a basis of 𝐾 over 𝐸  and {𝜔ଵ, 𝜔ଶ, … , 𝜔௡} be a basis of 𝐸  over 𝐹. 

Write 𝑆 = ൜𝑣௜𝜔௝/
1 ≤ 𝑖 ≤ 𝑚,
1 ≤ 𝑗 ≤ 𝑛

ൠ 

Now we show that [𝐾 ∶ 𝐹] < ∞, that is, the dimension of 𝐾  over 𝐹 is finite. 

Let 𝑢 ∈ 𝐾 . 

Since {𝑣ଵ, 𝑣ଶ, … , 𝑣௠} is a basis of 𝐾  over 𝐸 , we have 𝑢 = 𝑎ଵ𝑣ଵ + 𝑎ଶ𝑣ଶ + ⋯ + 𝑎௠𝑣௠ (1), 

where 𝑎௜ ∈ E; 1 ≤ 𝑖 ≤ 𝑚. 

Since 𝑎௜ ∈ 𝐸, 1 ≤ 𝑖 ≤ 𝑚 and {𝜔ଵ, … 𝜔௡} is a basis of 𝐸  over 𝐹,  𝑎௜ can be written as 

𝑎௜ = 𝑏௜ଵ𝜔ଵ + 𝑏௜ଶ𝜔ଶ + ⋯ + 𝑏௜௡𝜔௡, where 𝑏௜ೕ
∈ 𝐹, 1 ≤ 𝑖 ≤ 𝑚, 

Substituting 𝑎௜ in (1), we have for 1 ≤ 𝑗 ≤ 𝑛 

𝑢 =(𝑏ଵଵ𝑤ଵ + 𝑏ଵଶ𝜔ଶ + ⋯ + 𝑏ଵ௡𝜔௡)𝑣ଵ + (𝑏ଶଵ𝜔ଵ + 𝑏ଶଶ𝜔ଶ + ⋯ + 𝑏ଶ௡𝜔௡)𝑣ଶ

+ ⋯ + ൫𝑏௠ଵ𝜔ଵ + 𝑏௠మ
𝜔ଶ + ⋯ + 𝑏௠௡𝜔௡൯𝑣௠

=𝑏ଵଵ𝜔ଵ𝑣ଵ + 𝑏ଵଶ𝜔ଶ𝑣ଵ + ⋯ + 𝑏ଵ௡𝑤௡𝑣ଵ + 𝑏ଶଵ𝑤ଵ𝑣ଶ + ⋯ + 𝑏ଶ௡𝜔௡𝑣ଶ

+ ⋯ + 𝑏௠ଵ𝑤ଵ𝑣௠ + 𝑏௠ଶ𝑤ଶ𝑣௠ + ⋯ + 𝑏௠௡𝜔௡𝑣௠

 

So, u is the linear combination of the vectors ൜𝑣௜𝜔௝ ฬ
1 ≤ 𝑖 ≤ 𝑚
1 ≤ 𝑗 ≤ 𝑛

ൠ 

Therefore  every element in 𝐾  can be expressed as the linear combination of the set of 

vectors ൜𝑣௜𝜔௝ ฬ
1 ≤ 𝑖 ≤ 𝑚
1 ≤ 𝑗 ≤ 𝑛

ൠ. 

We show that the set 𝑆 = ൜𝑣௜𝜔௝ ฬ
1 ≤ 𝑖 ≤ 𝑚
1 ≤ 𝑗 ≤ 𝑛

ൠ is linearly independent over 𝐹. 

Suppose that 

𝑐ଵଵ𝑣ଵ𝜔ଵ + 𝑐ଵଶ𝑣ଵ𝜔ଶ + ⋯ + 𝑐ଵ௡𝑣ଵ𝜔௡ + 𝑐ଶଵ𝑣ଶ𝜔ଵ + 𝑐ଶଶ𝑣ଶ𝜔ଵ + ⋯ + 𝑐ଶ௡𝑣ଶ𝜔௡ + ⋯ +

𝑐௠ଵ𝑣௠𝜔ଵ + ⋯ + 𝑐௠௡𝑣௠𝜔௡ = 0, where 𝑐௜௝ ∈ 𝐹; 1 ≤ 𝑖 ≤ 𝑚; 1 ≤ 𝑗 ≤ 𝑛. 

we have (𝑐ଵଵ𝜔ଵ + 𝑐ଵଶ𝜔ଶ + ⋯ + 𝑐ଵ௡𝜔௡)𝑣ଵ + (𝑐ଶଵ𝜔ଵ + 𝑐ଶଶ𝜔ଶ + ⋯ + 𝑐ଶ௡𝜔௡)𝑣ଶ) +

⋯ + ൫𝑐௠ଵ𝜔ଵ + 𝑐௠మ
𝜔ଶ + ⋯ + 𝑐௠௡𝜔௡൯𝑣௠ = 0.

 

 Since the set {𝑣ଵ, 𝑣ଶ, … , 𝑣௠} is linearly independent in 𝐾  over the field 𝐸, we have 

𝑐ଵଵ𝜔ଵ + 𝑐ଵଶ𝜔ଶ + ⋯ + 𝑐ଵ௡𝜔௡ = 0

𝑐ଶଵ𝜔ଵ + 𝑐ଶଶ𝜔ଶ + ⋯ + 𝑐ଶ௡𝜔௡ = 0
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   … … … … … … … … … … … … … … … …. 

    𝑐௠ଵ𝜔ଵ + 𝑐௠మ
𝜔ଶ + ⋯ + 𝑐௠௡𝜔௡ = 0 

 

Since {𝜔ଵ, 𝜔ଶ, … , 𝜔௡} is linearly independent in 𝐸  over 𝐹,  we have 

 𝑐௜௝ = 0 for 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛 

Hence S = ൜𝑣௜𝜔௝ ฬ
1 ≤ 𝑖 ≤ 𝑚
1 ≤ 𝑗 ≤ 𝑛

ൠ is a linearly independent set over 𝐹 with mn elements. 

Therefore [𝐾 ∶ 𝐹] < ∞  and the no. of elements in the basis of 𝐾  over 𝐹 is 𝑚𝑛  

So, [𝐾 ∶ 𝐹] = 𝑚𝑛 = [𝐾 ∶ 𝐸 ][𝐸 ∶ 𝐹] 

Hence [𝐾 ∶ 𝐹] = [𝐾 ∶ 𝐸 ][𝐸 ∶ 𝐹] 

Note: A one-to-one homomorphism of a field 𝐹 into a field 𝐸  is called an embedding of 𝐹 
into 𝐸 . 

Note that if 𝐸 and 𝐹 are fields then a mapping h: 𝐹 → 𝐸  is a homomorphism if  

(i) ℎ(𝑎 + 𝑏) = ℎ(𝑎) + ℎ(𝑏) and 

(ii) ℎ(𝑎𝑏) = ℎ(𝑎)ℎ(𝑏) for all 𝑎, 𝑏 ∈ 𝐸 

2.2.4 Proposition:  Let 𝐸  and 𝐹 be fields and let 𝜎: 𝐹 → 𝐸  be an embedding of 𝐹 into 𝐸 , 
then there exists a field 𝐾  such that 𝐹 is a subfield of 𝐾  and 𝜎 can be extended to an 
isomorphism of 𝐾  onto 𝐸 . 

Proof: let 𝐹 and 𝐸  be fields and 𝜎: 𝐹 → 𝐸  be an embedding. 

that is, 𝜎: 𝐹 → 𝐸  is a monomorphism, that is, 𝜎: 𝐹 → 𝐸  is a homomorphism and one-one. 

Let 𝑆 be the set whose cardinality is same as that of 𝐸 − 𝜎(𝐹) and it is disjoint from F. 

Consider 𝑓: 𝑆 → 𝐸 − 𝜎(F)  be a one-to-one correspondence between 𝑆 and 𝐸 − 𝜎(F) . 

Write 𝐾 = 𝐹 ∪ 𝑆. 

Define a mapping 𝜎∗: 𝐾 → 𝐸  as follows: 

Let 𝑎 ∈ 𝐾 . 

If 𝑎 ∈ 𝐹, then define 𝜎∗(𝑎) = 𝜎(𝑎).  

If 𝑎 ∈ 𝑆, then define 𝜎∗(𝑎) = 𝑓(𝑎). 

By the above definition, 𝜎∗ is clearly well-defined and onto. 

Let 𝑎, 𝑏 ∈ 𝐾  and  𝜎∗(𝑎) = 𝜎∗(𝑏) 

If 𝑎, 𝑏 ∈  F , then 𝜎∗(𝑎) = 𝜎∗(𝑏) and that  

                             𝜎(𝑎) = 𝜎(𝑏) and that 

                               𝑎 = 𝑏(∵ 𝜎: 𝐹 → 𝐸  is one-one ) 

If 𝑎, 𝑏 ∈ 𝑆, then 𝑓(𝑎) = 𝑓(𝑏)and that 𝑎 = 𝑏 
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Let 𝑎 ∈ F and 𝑏 ∈ 𝑆. 

So,   𝜎(𝑎) = 𝑓(𝑏) ∈ 𝜎(𝐹) ∩ (𝐸 − 𝜎(𝐹)) 

But we know that  𝜎(𝐹) ∩ 𝐸 − 𝜎(𝐹) = 𝜙, which is a contradiction. 

Therefore both 𝑎, 𝑏 ∈ 𝐹 (or) both 𝑎, 𝑏 ∈ 𝑆. 

So 𝜎∗: 𝐾 → 𝐸   is one-one and hence a bijection and clearly 𝜎∗: 𝐾 → 𝐸  is an extension of 𝜎. 

For any two elements 𝑥, 𝑦 ∈ 𝐾 ,  define 

 
𝑥 + 𝑦 = 𝜎∗షభ

(𝜎∗(𝑥) + 𝜎∗(𝑦))

     𝑥𝑦 = 𝜎∗షభ
(𝜎∗(𝑥) ⋅ 𝜎∗(𝑦))

 

Under the above defined operations, it is clear that 𝐾  is a field. 

Also, the definitions defined here coincide with the given addition and multiplications of the 

elements of the original field 𝐹. 

Let 𝑎, 𝑏 ∈ 𝐹. 

𝑎 + 𝑏= 𝜎∗షభ
[𝜎∗(𝑎) + 𝜎∗(𝑏)]

= 𝜎∗షభ
[𝜎(𝑎) + 𝜎(𝑏)]

= 𝜎∗షభ
[𝜎(𝑎 + 𝑏)] = 𝜎∗ିଵ[𝜎∗(𝑎 + 𝑏)] = 𝑎 + 𝑏

 

Therefore 𝐹 is a subfield of 𝐾  (or) in other words 𝐾  is the extension of 𝐹.  

Note: If 𝜎 is an embedding of a field 𝐹 into a field 𝐸 , then we identify 𝐹 with its 
homomorphic image 𝜎(𝐹). So, we can write ' 𝑎 ' in place of 𝜎(𝑎) for each 𝑎 ∈ 𝐹 and this 𝐸  
can be regarded as an extension of 𝐹. Hence, whenever there is an embedding of an field 𝐹 
into a field 𝐸 , we say that 𝐸  is an extension of 𝐹. 

2.2.5 Theorem: Let 𝑝(𝑥) be an irreducible polynomial in 𝐹[𝑥], then there exists an extension 

𝐸  of F in which 𝑝(𝑥) has a root. 

Proof: Let 𝑝(𝑥) be an irreducible polynomial in 𝐹[𝑥].   

So, ⟨𝑝(𝑥)⟩ is a maximal ideal in 𝐹[𝑥]. < 𝑝(𝑥) > is the ideal of 𝐹[𝑥] generated by 𝑝(𝑥)  

Then by known result, 
ி[௫]

⟨௣(௫)⟩
 is a field.  

Put 𝐸  =
ி[௫]

⟨௣(௫)⟩
 

Now we show that 𝐸  is an extension of 𝐹. 

Define 𝜙: 𝐹 → 𝐸  by 𝜙(𝑎) = 𝑎‾ where  𝑎‾ = 𝑎+< 𝑝(𝑥) >. 

Now we prove that the mapping 𝜙: 𝐹 → 𝐸  is an embedding. 

Let 𝑎, 𝑏 ∈ 𝐹 such that  𝜙(𝑎) = 𝜙(𝑏). 

                                     So 𝑎‾  = 𝑏 ‾  , that is, 

                                    𝑎 + ⟨𝑝(𝑥)⟩ = 𝑏 + ⟨𝑝(𝑥)⟩ , that is, 

                                    𝑎 − 𝑏 ∈ ⟨𝑝(𝑥)⟩ , that is, 



Galois Theory     2.5            Adjunction of Roots 

                                𝑎 − 𝑏 = 𝑓(𝑥)𝑝(𝑥) for some 𝑓(𝑥) ∈ 𝐹[𝑥]. This is possible only when 

                               𝑓(𝑥) = 0 as deg 𝑝(𝑥) ≥ 1 

                     Now 𝑎 − 𝑏 = 0 , that is, 

                               𝑎 = 𝑏 

Therefore 𝜙 is one-one. 

We prove now that  𝜙 is  a homomorphism. 

Let 𝑎, 𝑏 ∈ 𝐹.   

Then 𝜙(𝑎 + 𝑏) = 𝑎 + 𝑏 = 𝑎‾ + 𝑏‾= 𝜙(𝑎) + 𝜙(𝑏) and 𝜙(𝑎𝑏) = 𝑎𝑏 = 𝑎‾𝑏‾ = 𝜙(𝑎) ⋅ 𝜙(𝑏) 

So 𝜙: 𝐹 → 𝐸  is a monomorphism, that is,𝜙: 𝐹 → 𝐸  is an embedding. 

Then by known result, 𝐸  can be regarded as an extension of 𝐹 and also we can also identify 

𝐹 as the homomorphic image 𝜙(𝐹). 

So we can write 𝑎 in place of 𝑎‾. 

Now we prove 𝑝(𝑥) has a root in 𝐸 . 

Let  𝑝(𝑥) = 𝑎଴ + 𝑎ଵ𝑥 + ⋯ + 𝑎௡𝑥௡; 𝑎௡ ≠ 0, 𝑛 ≥ 1 

Then  𝑝(𝑥) = 𝑝(𝑥) + ⟨𝑝(𝑥)⟩ = ⟨𝑝(𝑥)⟩ = 0 

𝑆𝑜 𝑎଴ + 𝑎ଵ𝑥 + ⋯ + 𝑎௡𝑥௡ = 0 , that is,

𝑎‾଴ + 𝑎‾ଵ𝑥‾ + ⋯ + 𝑎‾௡𝑥‾௡ = 0 , that is,

  

⇒ 𝑎଴ + 𝑎ସ𝑥‾ + ⋯ + 𝑎௡𝑥‾௡ = 0‾

So 𝑝(𝑥‾) = 0‾, where 𝑥‾ = 𝑥 + ⟨𝑝(𝑥)⟩ ∈
𝐹[𝑥]

⟨𝑝(𝑥)⟩
= 𝐸 

 

Therefore p(𝑥) has a root in 𝐸 . 

 
2.3  KRONECKER THEOREM AND ITS APPLICATIONS: 
 
2.3.1 Kronecker Theorem: Let 𝑓(𝑥) ∈ 𝐹[𝑥] be a non-constant polynomial, then there exists 

an extension 𝐸  of 𝐹 in which 𝑓(𝑥) has a root. 

Proof: Let𝑓(𝑥) ∈ 𝐹[𝑥] be a non-constant polynomial. 
 

Case(i):If 𝑓(𝑥) has a root in 𝐹 then put 𝐸 = 𝐹. 

Then clearly 𝐸  is an extension of 𝐹 and 𝑓(𝑥) has a root in 𝐸 . 
 

Case(ii): If 𝑓(𝑥) has no root in 𝐹, then let 𝑝(𝑥) be an irreducible factor of 𝑓(𝑥). 

Then, by Theorem 2.2.5, corresponding to the irreducible polynomial 𝑝(𝑥), there exists  an 

extension 𝐸  of 𝐹 in which 𝑝(𝑥) has a root and hence 𝑓(𝑥) has a root in 𝐸 . 
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2.3.2 Corollary: Let 𝑓ଵ(𝑥), 𝑓ଶ(𝑥), … , 𝑓௠(𝑥) be a set of non-constant polynomials over 𝐹. 

Then there exists an extension 𝐸  of 𝐹 in which each 𝑓௜(𝑥) has a root. 

Proof: Let 𝑓ଵ(𝑥), 𝑓ଶ(𝑥), … , 𝑓௠(𝑥) be a set of non-constant polynomials over the field  𝐹.  

Consider 𝑓ଵ(𝑥) be a non-constant polynomial in 𝐹[𝑥]. 

Then by Kronecker theorem, there exists an extension 𝐾 ଵ of F such that 𝑓ଵ(𝑥) has a root in 

𝐾 ଵ. 

Clearly 𝑓ଶ(𝑥) ∈ 𝐾 ଵ[𝑥] is a non-constant polynomial. 

By Kronecker theorem, there exists an extension 𝐾 ଶ of 𝐾 ଵsuch that  𝑓ଶ(𝑥) has a root in 𝐾 ଶ. 

If we continue the same process, we get successive fields 𝐾 ଵ ⊂ 𝐾 ଶ ⊂ ⋯ ⊂ 𝐾 ௠ such that  

each 𝐾 ௜ contains root of 𝑓௜(𝑥), 1 ⩽ 𝑖 ⩽ 𝑚.  

Therefore  𝐾 ௠ is the required extension of 𝐹 in which each 𝑓௜(𝑥) has a root. 
 

2.3.3 Definition: Let 𝑝(𝑥) be an irreducible polynomial in 𝐹[𝑥] and 𝑢 be the root of 𝑝(𝑥) in 

an extension field 𝐸 of 𝐹. Then we denote 𝐹(𝑢) to be the subfield of 𝐸  generated by 𝐹 ∪ {𝑢}, 

that is, 𝐹(𝑢) is the subfield of 𝐸  generated by 𝐹 ∪ {𝑢}, that is, smallest subfield of 𝐸  

containing 𝐹 and 𝑢 , that is, intersection of all subfields of 𝐸  containing 𝐹 and 𝑢 . In general, 

if 𝑆 is the subset of 𝐸 , then we denote 𝐹(𝑆) to be the smallest subfield of 𝐸  containing 𝐹 and 

𝑆. 

2.3.4 Theorem: Let 𝑝(𝑥) be an irreducible polynomial in 𝐹[𝑥] and let 𝑢 be a root of 𝑝(𝑥) in 

an extension 𝐸 of 𝐹. Then  

(i) 𝐹(𝑢), the subfield of 𝐸  generated by 𝐹 and 𝑢, is the set  

                         𝐹[𝑢] = {𝑏଴ + 𝑏ଵ𝑢 + ⋯ + 𝑏௠𝑢௠/𝑏଴ + 𝑏ଵ𝑥 + ⋯ + 𝑏௠
 𝑥௠ ∈ 𝐹[𝑥]} 

(ii) If the degree of 𝑝(𝑥) is 𝑛, the set {1, 𝑢, … , 𝑢௡ିଵ} forms a basis of 𝐹(𝑢) over 𝐹, i.e each 

element of 𝐹(𝑢) can be written uniquely as 𝑐଴ + 𝑐ଵ𝑢 + ⋯ + 𝑐௡𝑢௡ିଵ, where 𝑐௜ ∈ 𝐹 and 

[𝐹(𝑢): 𝐹] = 𝑛.  

Proof: let 𝐹, 𝐸  be two fields such that 𝐸  is an extension of 𝐹. 

Let 𝑝(𝑥) be an irreducible polynomial in 𝐹[𝑥]. Also let 𝑢 be a root of 𝑝(𝑥) in 𝐸 . 

i) Define a mapping 𝜙: 𝐹[𝑥] → 𝐸  by 

 𝜙(𝑎଴ + 𝑎ଵ𝑥 + ⋯ + 𝑎௡𝑥௡) = 𝑎଴ + 𝑎ଵ𝑢 + ⋯ + 𝑎௡𝑢௡where  𝑎଴ + 𝑎ଵ𝑥 + ⋯ + 𝑎௡𝑥௡ ∈ 𝐹[𝑥] 

Clearly 𝜙 is well-defined. 

Let 𝑓(𝑥), 𝑔(𝑥) ∈ 𝐹[𝑥]. 

Then  𝜙(𝑓(𝑥) + 𝑔(𝑥)) = 𝑓(𝑢) + 𝑔(𝑢) = 𝜙(𝑓(𝑥)) + 𝜙(𝑔(𝑥))  

           𝜙(𝑓(𝑥) ⋅ 𝑔(𝑥)) = 𝑓(𝑢) ⋅ 𝑔(𝑢) = 𝜙(𝑓(𝑥)) ⋅ 𝜙(𝑔(𝑥))  
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Therefore 𝜙 is a homomorphism. 

Then by fundamental theorem of homomorphism, we have that 
ி[௫]

௞௘௥థ
≅ 𝜙(𝐹[𝑥]) = 𝐹[𝑢]….    

(1) 

Now we prove that ker 𝜙 = ⟨𝑝(𝑥)⟩ 

Here  ker 𝜙 = {𝑓(𝑥) ∈ 𝐹[𝑥]/𝜙(𝑓(𝑥)) = 0} = {𝑓(𝑥) ∈ 𝐹[𝑥]/𝑓(𝑢) = 0} 

Since 𝑝(𝑢) = 0, we have 𝑝(𝑥) ∈ ker  𝜙. 

We know that 𝐹[𝑥] is a principal ideal domain. 

So,  ker 𝜙 is principal ideal of 𝐹[𝑥] and ker  𝜙 = ⟨𝑔(𝑥)⟩ for some 𝑔(𝑥) ∈ 𝐹[𝑥] 

Therefore 𝑝(𝑥) ∈ ker𝜙 = ⟨𝑔(𝑥)⟩. 

⇒ 𝑝(𝑥) = ℎ(𝑥) ⋅ 𝑔(𝑥) for some ℎ(𝑥) ∈ 𝐹[𝑥] 

Since 𝑝(𝑥) is irreducible in 𝐹[𝑥], ℎ(𝑥) is a constant polynomial and hence 

 < 𝑝(𝑥) > = < 𝑔(𝑥) > 

Therefore ker 𝜙 = ⟨𝑝(𝑥)⟩ 

So, from (1), 
ி[௫]

⟨௣(௫)⟩
≅ 𝐹[𝑢] 

We know that 
ி[௫]

⟨௣(௫)⟩
 is a field as 𝑝(𝑥) is irreducible in 𝐹[𝑥] 

This implies 𝐹[𝑢] is a field and it is the smallest subfield of 𝐸  containing 𝐹 & 𝑢, 𝐹[𝑢] 

Therefore 𝐹[𝑢] = 𝐹(𝑢) 

(ii) Let deg 𝑝(𝑥) = 𝑛 .  

Then 𝑢 is not a root of any polynomial in 𝐹[𝑥] whose degree is less than ' 𝑛 '. 

Now we show that the set {1, 𝑢, … , 𝑢௡ିଵ} is linearly independent. 

Consider, 𝑏଴ + 𝑏ଵ ⋅ 𝑢 + ⋯ + 𝑏௡ିଵ𝑢௡ିଵ = 0; 𝑏௜ ∈ 𝐹.  

Suppose that 𝑔(𝑥) = 𝑏଴ + 𝑏ଵ ⋅ 𝑥 + ⋯ + 𝑏௡ିଵ𝑥௡ିଵ ≠ 0. 

Now 𝑔(𝑥) ∈ 𝐹[𝑥] and deg g(𝑥) < 𝑛 and 𝑔(𝑢) = 0, a contradiction to the irreducibility of 

p(x). 

So 𝑔(𝑥) = 0 and that  𝑏௜ = 0 for all 𝑖 = 0,1, … , 𝑛 − 1. 

Therefore {1, 𝑢, … , 𝑢௡ିଵ} is linearly independent over 𝐹. 

Now we show that the set {1, 𝑢, … , 𝑢௡ିଵ} generates 𝐹[𝑢] over 𝐹. 

That is,  every element in 𝐹[𝑢] can be written uniquely as the linear combination of the set of 

vectors {1, 𝑢, … , 𝑢௡ିଵ}. 

Let f(u) ∈ F[u] where 𝑓(𝑥) ∈ 𝐹[𝑥]. 



Centre for Distance Education    2.8       Acharya Nagarjuna University 

By division algorithm there exists t(x), r(x) ∈ F[x] such that f(x) = p(x) ⋅ t(x) + r(x) where 

r(x) = 0 (or) deg  r(x) < deg  p(x) = n . 

Now f(u) = p(u)t(u) + r(u). Since 𝑝(𝑢) = 0, 

f(u) = r(u) 

Since deg r(x) < degf(x) = n, we can write r(x) = a଴ + aଵx + ⋯ + a୬ିଵx୬ିଵ, a୧ ∈ 𝐹. 

Therefore f(u) = r(u) = a଴ + aଵu + ⋯ + a୬ିଵu୬ିଵ 

i.e. 𝑓(𝑢) is linear combination of vectors {1, 𝑢, … , 𝑢௡ିଵ} 

Therefore {1, 𝑢, … , 𝑢௡ିଵ} generates 𝐹(𝑢) over 𝐹.  Therefore it is a basis for 𝐹(𝑢) over 𝐹. 

Hence  [𝐹(𝑢): 𝐹] = 𝑛 

 

2.4  SUMMARY: 
 
 Adjunction of roots refers to the process of extending a field F by adjoining a root α of an 

irreducible polynomial f(x) ∈ F[x]. The extended field F(α) contains all elements expressible 

as rational expressions in α with coefficients from F. This construction allows us to form new 

fields. The degree of the extension [F(α):F] equals to the degree of the minimal polynomial of 

α over F. Kronecker’s theorem states that for any non-constant polynomial f(x) ∈ F[x], there 

exists an extension field of F where f(x) has at least one root. 

 
2.5  TECHNICAL TERMS:  
 
 Root of a polynomial 𝒇(𝒙): An element α in some extension field such that f(α)=0. 
 Adjunction of a root: The process of constructing a field extension by adding a root α of 

a polynomial f(x) ∈ F[x] to F. 
 Minimal Polynomial of u over F: The monic irreducible polynomial in F[x] for which 𝑢 

is a root. 
 Algebraic Element over 𝑭: An element α in an extension field E of 𝐹 that satisfies a 

polynomial equation with coefficients in F. 
 Algebraic Extension of 𝑭: An extension E of 𝐹 where every element of E is algebraic 

over F. 
 Degree of Extension: The dimension of E as a vector space over F and it is denoted by 

[E:F] 
 
2.6  SELF-ASSESSMENT QUESTIONS:  

Question 1: What is meant by the adjunction of a root to a field? 

Answer: The adjunction of a root to a field refers to the process of extending a field F by 
including an element α that is a root of a given polynomial f(x) ∈ F[x], which does not 
already have a root in F. The resulting extension is denoted F(α), which is the smallest field 
containing F and α.  
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Question 2: Why is the concept of adjunction important in the theory of field extensions? 

Answer: Adjunction is fundamental in building larger fields that contain roots of polynomials 
that are not in the base field. This process allows the construction of algebraic extensions and 
eventually leads to algebraic closures. It helps in understanding how fields can be 
systematically extended and analyzed using the roots of irreducible polynomials, laying the 
foundation for Galois theory. 

𝐐𝐮𝐞𝐬𝐭𝐢𝐨𝐧 𝟑: Let 𝐾  be a finite extension of 𝐹 and 𝐸  be the subfield of 𝐾  containing 𝐹.  
Does[E: F] divides [𝐾 ∶ 𝐹]? 

Solution: Let 𝐹, 𝐸 , 𝐾  be three fields such that 𝐹 ⊆ 𝐸 ⊆ 𝐾 . 

Given that the dimension of 𝐾  over 𝐹 is finite i.e.[𝐾 ∶ 𝐹] < ∞. 

Since K is finite dimensional over F and E is a subspace of K,  
we have E is finite dimensional over F.𝑖. 𝑒. [𝐸 ∶ 𝐹] < ∞. 

We know that any set of elements in 𝐾 , which are linearly independent over 𝐸  are also 
linearly independent over 𝐹. 

So, Dimension of 𝐾  over 𝐸 = [𝐾 ∶ E] 

                                             = Maximum no. of linearly independent vectors in K over F 
                                                  ⩽ Maximum no. of linearly independent vectors in 𝐾  over 𝐹. 

=The dimension of 𝐾 over F = [𝐾 ∶ 𝐹] 

i.e.[𝐾 ∶ 𝐸 ] = dimension of 𝐾 over 𝐸 ≤ dimension of𝐾  over F = [𝐾 ∶ 𝐹] < ∞ 

By Theorem 2.2.3, we have that [𝐾 ∶ 𝐹] = [𝐾 ∶ 𝐸 ][𝐸 ∶ 𝐹]. 

So [𝐸 ∶ 𝐹]|[𝐾 ∶ 𝐹]  

Question 4: Let  𝐾  be an extension of 𝐹 and [𝐾 ∶ 𝐹] is a prime number p. Can there be a 
field L such that 𝐹 ⊂ 𝐿 ⊂ 𝐾  ? 

Solution:  Let K be an extension of 𝐹. 

Given that [𝐾 ∶ 𝐹] = 𝑝, 𝑝 is a prime number. 

Suppose, if possible, there is a field ' 𝐿 'such that 𝐹 ⊂ 𝐿 ⊂ 𝐾  

By theorem 2.2.3. we have that [𝐾 ∶ 𝐹] = [𝐾 ∶ 𝐿][𝐿: 𝐹] 

𝑝 = [𝐾 ∶ 𝐿][𝐿: 𝐹], where p is prime. 

So, [𝐾 ∶ 𝐿] = 1 (or) [𝐿: 𝐹] = 1 

 𝐾 = 𝐿 (or) 𝐿 = 𝐹, which is a contradiction.(∵ 𝐹 ⊂ L ⊂ 𝐾 ) 

Therefore there is no field 𝐿 such that 𝐹 ⊂ L ⊂ 𝐾 . 
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- Prof. R. Srinivasa Rao 



LESSON- 3 

ALGEBRAIC EXTENSIONS 
 

OBJECTIVES: 

 To learn algebraic elements and minimal polynomials. 
 To understand the concept of field extensions and field extensions which are generated 

by a single algebraic element. 
 To distinguish between algebraic extensions and transcendental extensions. 
 To explore the properties of finite extensions. 

STRUCTURE: 

3.1  Introduction  

3.2 Algebraic Extensions  

3.3  Summary 

3.4  Technical Terms 

3.5  Self-Assessment Questions 

3.6  Suggested Readings 

 

3.1 INTRODUCTION:  

In abstract algebra, the concept of an extension field arises naturally when considering how 
one field can be expanded to include roots of polynomials that might not exist in the given 
field. The study of algebraic extensions is fundamental in understanding how fields can be 
enlarged in a controlled way and is a stepping stone to more advanced topics such as Galois 
theory. An extension field E of a field F is a field containing F as a subfield. In this lesson, 
we discuss simple extension, degree of an extension, properties of algebraic elements, 
minimal polynomial of an algebraic element and related theorems. 

3.2 ALGEBRAIC EXTENSIONS:  
 
3.2.1 Definition: Let E be an extension of  𝐹. An element 𝛼 ∈ 𝐸 is said to be an algebraic 
element over 𝐹 if there exists elements 𝑎଴, 𝑎ଵ, … , 𝑎௡; 𝑛 ⩾ 1 of  𝐹, not all equal to zero such 
that 𝑎଴ + 𝑎ଵ𝛼 + ⋯ + 𝑎௡𝛼௡ = 0. In other words, an element 𝛼 ∈ 𝐸 is said to be an algebraic 
element over 𝐹 if there exists a non-constant polynomial 𝑝(𝑥) ∈ 𝐹[𝑥] with 𝑝(𝛼) = 0. 

3.2.2 Theorem: Let 𝐸 be an extension field of 𝐹 and let 𝑢 ∈ 𝐸 be an algebraic element over 
𝐹. 
Let 𝑝(𝑥) ∈ 𝐹[𝑥] be a polynomial of the least degree such that p(𝑢) = 0. Then  
(i) 𝑝(𝑥) is irreducible over 𝐹. 

(ii) If 𝑔(𝑥) ∈ 𝐹[𝑥] is such that  𝑔(𝑢) = 0, then  𝑝(𝑥) | 𝑔(𝑥). 

(iii) There is exactly one monic polynomial 𝑝(𝑥) ∈ 𝐹[𝑥] of least degree such that   𝑝(𝑢) = 0. 
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Proof: Let 𝐸 be an extension of 𝐹 and 𝑢 ∈ 𝐸 be an algebraic element over 𝐹.  Let  p(𝑥) ∈
𝐹[𝑥] be the least degree polynomial such that 𝑝(𝑢) = 0. 

(i) Suppose if possible 𝑝(𝑥) is not irreducible over 𝐹.  

Then 𝑝(𝑥) is reducible over 𝐹.   

So by definition  𝑝(𝑥) = 𝑝ଵ(𝑥) ⋅ 𝑝ଶ(𝑥), where 𝑝ଵ(𝑥), 𝑝ଶ(𝑥) ∈ 𝐹[𝑥] and  0 < deg  pଵ(x) <

deg  𝑝(x)and 0 < deg pଶ(x) < deg  𝑝(𝑥). 

 Now 𝑝(𝑢) = 𝑝ଵ(𝑢) ⋅ 𝑝ଶ(𝑢) = 0  (∵ 𝑝(𝑢) = 0) 

 This implies either 𝑝ଵ(𝑢) = 0 (or) 𝑝ଶ(𝑢) = 0, which is a contradiction  

 Therefore 𝑝(𝑥) is irreducible over 𝐹.  
 
(ii) Let 𝑔(𝑥) ∈ 𝐹[𝑥] be a polynomial in  𝐹[𝑥] such that 𝑔(𝑢) = 0.   

By division algorithm, there exists polynomials 𝑞(𝑥), 𝑟(𝑥) ∈ 𝐹[𝑥]  such that                        
𝑔(𝑥) = 𝑞(𝑥) ⋅ 𝑝(𝑥) + 𝑟(𝑥), where 𝑟(𝑥) = 0 (or)deg 𝑟(𝑥) < deg 𝑝(𝑥) 

So, 𝑔(𝑢) = 𝑞(𝑢) ⋅ 𝑝(𝑢) + 𝑟(𝑢). Since 𝑔(𝑢) = 0, and p(𝑢) = 0, 𝑟(𝑢) = 0 

Now 𝑟(𝑥) = 0  as p(x) is the least degree polynomial such that p(u)=0. 

So 𝑔(𝑥) = 𝑔(𝑥) ⋅ 𝑝(𝑥) and that  𝑝(𝑥) | 𝑔(𝑥). 

 (iii) Suppose that 𝑝(𝑥) is monic polynomial.  

[Otherwise, if 𝑐 is the leading co-efficient of  𝑝(𝑥) , then 𝑐ିଵ𝑝(𝑥) is a monic polynomial of 
least degree  & 𝑐ିଵ𝑝(𝑢) = 0.] 

Let 𝑔(𝑥) be another least degree monic polynomial in F[x] with  𝑔(𝑢) = 0. 

Then by (ii), 𝑝(𝑥)|𝑔(𝑥)  and 𝑔(𝑥)|𝑝(𝑥)  Also 𝑝(𝑥), 𝑔(𝑥) are monic.  So 𝑝(𝑥) = 𝑔(𝑥) 

Hence, there is exactly one monic polynomial of least degree such that  𝑝(𝑢) = 0. 

3.2.3 Definition: The monic irreducible polynomial in 𝐹[𝑥] of which 𝑢 is a root is called the 
minimal polynomial of 𝑢 over 𝐹. 

3.2.4 Definition: An extension field 𝐸 of 𝐹 is called an Algebraic extension of 𝐹 if each 
element of 𝐸 is algebraic element over 𝐹. If 𝐸 is not an algebraic extension, then 𝐸 is called a 
transcendental extension. 

3.2.5 Theorem: If 𝐸 is a finite extension of 𝐹, then 𝐸 is an algebraic extension of 𝐹 (Or)          
Every finite extension of 𝐹 is an algebraic extension of 𝐹. 

Proof: Let 𝐸 be a finite extension of 𝐹.  

Suppose that [𝐸: 𝐹] = 𝑛.  
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Now we show that 𝐸 is an algebraic extension of 𝐹. 

Let 𝑢 ∈ 𝐸.  

Then the set {1, 𝑢, 𝑢ଶ, … , 𝑢௡} with (𝑛 + 1) number of elements is linearly dependent in 

𝐸 over 𝐹. So, there exists 𝑎଴, 𝑎ଵ, … , 𝑎௡ ∈ 𝐹, not all zero such that 𝑎଴ + 𝑎ଵ𝑢 + ⋯ + 𝑎௡𝑢௡ = 0 

i.e. there exists a non-constant polynomial  𝑎଴ + 𝑎ଵ𝑥 + ⋯ + 𝑎௡𝑥௡ in 𝐹[𝑥] such that   𝑎଴ +

𝑎ଵ𝑢 + ⋯ + 𝑎௡𝑢௡ = 0 

This implies 𝑢 is algebraic over 𝐹. So, every element of 𝐸 is algebraic over 𝐹.  

Therefore 𝐸 is an algebraic extension of 𝐹. 

Hence every finite extension is an algebraic extension of  𝐹.  

Note: The converse of Theorem 3.2.5 need not be true. i.e. an algebraic extension need not be 
a finite extension. 

3.2.6 Theorem: If 𝐸 is an extension of 𝐹 and 𝑢 ∈ 𝐸 is algebraic over 𝐹, then 𝐹(𝑢) is an 
algebraic extension of 𝐹. 

Proof: Let 𝐸 be an extension of 𝐹 and let 𝑢 ∈ 𝐸 be an algebraic element over 𝐹. 

By definition of algebraic element, there exists a non-constant polynomial 𝑓(𝑥) in F[x] such 

that 𝑓(𝑢) = 0. 

Since 𝑓(𝑥) ∈ 𝐹[𝑥]&  𝐹[𝑥] is a U.F.D, 𝑓(𝑥) can be written as, 𝑓(𝑥) = 𝑑𝑝ଵ(𝑥) ⋅ 𝑝ଶ(𝑥) ⋯ ⋅

𝑝௡(𝑥) where each 𝑝௜(𝑥) is an irreducible polynomial in 𝐹[𝑥].  

Since 𝑢 is a root of 𝑓(𝑥), 𝑢 is root of the polynomial 𝑝௜(𝑥) for some i. So let 𝑝௜(𝑥) is an 

irreducible polynomial having 𝑢 as a root.  

Then by known theorem, we have [𝐹(𝑢): 𝐹] = deg p(𝑥) = 𝑛(𝑠𝑎𝑦) 

i.e.𝐹(𝑢) is a finite extension of 𝐹. 

Then by Theorem 3.2.6,  𝐹(𝑢) is an algebraic extension of 𝐹.  
 

3.2.7 Definition: An extension 𝐸 of 𝐹 is called finitely generated if there exists a finite 
number of elements 𝑢ଵ, 𝑢ଶ, … , 𝑢௡ in E such that the smallest subfield of 𝐸 containing 𝐹 and 
{𝑢ଵ, 𝑢ଶ, … , 𝑢௡} is 𝐸 itself. i.e. 𝐸 = 𝐹(𝑢ଵ, 𝑢ଶ, … , 𝑢௡) 

Note: A finitely generated extension need not be an algebraic extension. 

Let 𝐹[𝑥] be a polynomial ring in the indeterminate 𝑥 over the field 𝐹.  Let 𝐸 be the field of 

quotients of 𝐹[𝑥] i.e.,𝐸 = ቄ
௙(௫)

௚(௫)
/𝑔(𝑥) ≠ 0 , 𝑓(𝑥) ∈ 𝐹[𝑥] ቅ . Then E = F(𝑥) is finitely 

generated extension of 𝐹.  Also we know that 𝑥 is not an algebraic element over 𝐹. If 𝑥 is an 

algebraic element over  𝐹, then there exists  𝑎଴, 𝑎ଵ, … , 𝑎௡ in 𝐹 not all zero such that 𝑎଴ +

𝑎ଵ𝑥 + ⋯ + 𝑎௡𝑥௡ = 0, which is a contradiction. So 𝐸 = 𝐹(𝑥) is not an algebraic extension of 

𝐹.  
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Hence a finitely generated extension need not be an algebraic extension. 
 

3.2.8 Theorem: Let 𝐸 = 𝐹(𝑢ଵ, 𝑢ଶ, … , 𝑢௥) be a finitely generated extension of 𝐹 such that 

each 𝑢௜, 𝑖 = 1,2, … , 𝑟 is algebraic over 𝐹. Then 𝐸 is finite over 𝐹 and hence an algebraic 

extension of 𝐹. 

Proof: Let 𝐸 = 𝐹(𝑢ଵ, 𝑢ଶ, … , 𝑢௥) be a finitely generated extension of 𝐹 such that each 𝑢௜ is 

algebraic over 𝐹.clearly 𝐹 ⊆ 𝐹(𝑢ଵ) ⊆ 𝐹(𝑢ଵ, 𝑢ଶ) ⊆ ⋯ ⊆ 𝐹(𝑢ଵ, 𝑢ଶ, … , 𝑢௥) 

Write 𝐸௜ = 𝐹(𝑢ଵ, 𝑢ଶ, … , 𝑢௜) for all 𝑖 = 1,2, … , 𝑟.Then  𝐹 ⊆ 𝐸ଵ ⊆ 𝐸ଶ ⊆ ⋯ ⊆ 𝐸௥ିଵ ⊆ 𝐸௥ = 𝐸. 

We know that if an element 𝛼 ∈ 𝐸 is algebraic over 𝐹, then ' 𝛼 ' is algebraic over any field K 

such that   𝐸 ⊇ 𝐾 ⊇ 𝐹 .  

Given that 𝑢௜ ∈ 𝐸 is algebraic over 𝐹 ∀𝑖 = 1,2, … , 𝑟.   So, 𝑢௜ ∈ 𝐸 is algebraic over 𝐸௜ିଵ for all 

𝑖 = 1,2, …, 𝑟 with 𝐸଴ = 𝐹.  

This implies 𝐸௜ିଵ(𝑢௜) is a finite extension of 𝐸௜ିଵ∀𝑖 = 1,2, …r 

i. e, 𝐸௜ is a finite extension of 𝐸௜ିଵ∀𝑖 = 1,2, … , 𝑟.  So let, [𝐸௜: 𝐸௜ିଵ] = 𝑛௜ for all 𝑖 = 1,2, …, r 

We know that [𝐸: 𝐹] = [𝐸: 𝐸௥ିଵ][𝐸௥ିଵ: 𝐸௥ିଶ] … [𝐸ଵ: 𝐹] = 𝑛௥𝑛௥ିଵ … 𝑛ଵ < ∞ 

This implies E is a finite extension of  𝐹.  

Hence 𝐸 is an algebraic extension of  𝐹. 
 

3.2.9 Theorem: Let 𝐸 be an extension of 𝐹 if 𝐾 is the subset of 𝐸 consisting of all the 

elements that are algebraic over  𝐹.Then 𝐾 is a subfield of 𝐸 and an algebraic extension of  𝐹. 

Proof: Let 𝐸 be an extension of 𝐹 and 𝐾 = {𝑢 ∈ E/𝑢 is algebraic over 𝐹}  

First we show that 𝐾 is a subfield of 𝐸 and then 𝐾 is an algebraic extension of 𝐹.  

Let 𝑎, 𝑏 ∈ K.  Then 𝑎, 𝑏 are algebraic over 𝐹.  

Since 𝑎 is algebraic over  𝐹, we have 𝐹(𝑎) is a finite extension of 𝐹. So    [𝐹(𝑎): 𝐹] is finite. 

Since 𝑏 is algebraic over  𝐹, we have 𝑏 is algebraic over 𝐹(𝑎). 

So, 𝐹(𝑎)(𝑏) is a finite extension of 𝐹(𝑎). 

Therefore [𝐹(𝑎, 𝑏): 𝐹(𝑎)] is finite. 

and hence  [𝐹(𝑎, 𝑏): 𝐹] = [𝐹(𝑎, 𝑏): 𝐹(𝑎)][𝐹(𝑎): 𝐹] < ∞ 

𝑖. 𝑒, 𝐹(𝑎, 𝑏)is a finite extension of 𝐹. 

Clearly, 𝑎, 𝑏 ∈ 𝐹(𝑎, 𝑏)&𝐹(𝑎, 𝑏) is a field  

Then 𝑎 ± 𝑏, 𝑎𝑏,
௔

௕
 ( if 𝑏 ≠ 0) ∈ 𝐹(𝑎, 𝑏). So all the elements 𝑎 ± 𝑏, 𝑎𝑏,

௔

௕
 are algebraic 

over 𝐹 and that 𝑎 ± 𝑏, 𝑎𝑏,
௔

௕
( if 𝑏 ≠ 0) ∈ 𝐾 

So ' 𝐾 ' is a subfield of 𝐸 & every element of 𝐾 is algebraic over 𝐹. 

Therefore 𝐾 is an algebraic extension of 𝐹. 
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Note: Let 𝐸 be an extension of 𝐹. An element 𝑎 ∈ 𝐸 is algebraic over 𝐹 ⇔ 𝐹(𝑎) is a finite 
extension of  𝐹. 
 

3.2.10 Definition: let 𝐸 be an extension of 𝐹. If 𝐾 is the subset of 𝐸 consisting of all the 

elements that are algebraic over𝐹,  then 𝐾 is a subfield of 𝐸 & 𝐾 is an algebraic extension of 

𝐹. This 𝐾 is called an algebraic closure of 𝐹 in 𝐸. 
 

3.2.11 Definition: Let 𝐾 & 𝐿 be the extension fields of a field 𝐹. Then a non-zero 

homomorphism 𝜎: 𝐾 → 𝐿 ∋ 𝜎(𝑎) = 𝑎,   ∀𝑎 ∈ 𝐹, is called 𝐹-homomorphism of 𝐾 into 𝐿 (or) 

an embedding of 𝐾 into 𝐿 over 𝐹. 
 

3.2.12 Theorem: Let 𝐸 be an algebraic extension of 𝐹 and let 𝜎: 𝐸 → 𝐸 be an embedding of 

𝐸 into itself over 𝐹. Then 𝜎 is onto and hence an automorphism of 𝐸. 

Proof: Let 𝐸 be an algebraic extension of 𝐹 and let 𝜎: 𝐸 → 𝐸 be an embedding. 

Then  𝜎: 𝐸 → 𝐸 is a monomorphism.  

First we show that 𝜎: 𝐸 → 𝐸 is onto.  

Let 𝑎 ∈ 𝐸.  

Then 𝑎 is an algebraic element over 𝐹. So, there is a polynomial 𝑓(𝑥) ∈ 𝐹[𝑥] for which  𝑎 is 

a root. 

Suppose p(𝑥)is the minimal polynomial of 𝑎 over 𝐹.  

Let 𝐸ᇱ be the smallest subfield of 𝐸 containing 𝐹 and all the roots of 𝑝(𝑥) in 𝐸 i.e .𝐸ᇱ is a 

subfield of 𝐸 generated over 𝐹 with finite no of elements in 𝐸 which are roots of p(𝑥).             

Then 𝐸ᇱ is a finite algebraic extension of 𝐹. So, [𝐸ᇱ: 𝐹] < ∞. 

Further 𝜎 maps every root of p(𝑥) onto the roots of p(𝑥). 
So, 𝜎: 𝐸ᇱ → 𝐸ᇱis one -one. 

Since 𝜎: 𝐸ᇱ → 𝐸 ᇱis an isomorphism, we have 𝜎(𝐸ᇱ) ≅ 𝐸ᇱ.  

𝜎(𝐸ᇱ) ⊆ 𝐸ᇱ and [𝜎(𝐸ᇱ): F] = [𝐸ᇱ: F] <  ∞. 

Since 𝐹 ⊆ 𝜎(𝐸ᇱ) ⊆ 𝐸ᇱ, [𝐸ᇱ: F] = [𝐸ᇱ: 𝜎(𝐸ᇱ)][𝜎(𝐸ᇱ): F] . 

Therefore [𝐸ᇱ: 𝜎(𝐸ᇱ)] = 1 and that 𝐸ᇱ = 𝜎(𝐸ᇱ). 

So there exists an element b in E' such that 𝜎(𝑏) = 𝑎.  

Therefore  𝜎 is onto E. 

Hence 𝜎 an automorphism of 𝐸. 
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3.3  SUMMARY: 

Every algebraic element α over F has a unique minimal polynomial 𝒑(𝒙) ∈ 𝑭[𝒙] which 

divides any other polynomial in 𝑭[𝒙] which is satisfied by α. Also F(α) is isomorphic to the 

quotient ring 𝑭[𝒙]/(𝒑(𝒙)). Finite extensions are algebraic, but an algebraic extension need 

not be finite. The Tower Law is a crucial tool for computing degrees of extensions in stages.  

3.4 TECHNICAL TERMS: 

 Field extension: A field E is called an extension field of F if F is a subfield of E.  

 Degree of extension: [E:F] the dimension of E as a vector space over F if E is an extension 
field of  F. 

 Simple extension: An extension E generated by a single element α, written F(α) is a simple 
extension of F. 

 Algebraic element: An element α ∈ E is algebraic over F if it is a root of a non-constant 
polynomial with coefficients in F. 

 Minimal polynomial: The monic irreducible polynomial 𝑝(𝑥) ∈ 𝐹[𝑥] such that p(α) = 0 is 
the minimal polynomial of α over F. 

 Algebraic extension: A field extension E of F where every element of E is algebraic over 
F. 

3.5  SELF-ASSESSMENT QUESTIONS:  

Q1. What is an algebraic element? How is it different from a transcendental element? 

Answer: An element α ∈ K is algebraic over F if it is a root of a non-constant polynomial 
with coefficients in F. If no such polynomial exists, α is transcendental over F. 
 

Q2. What is the minimal polynomial of an algebraic element? 

Answer: The minimal polynomial of an algebraic element α over a field F is the monic 
irreducible polynomial f(x) ∈ F[x] of least degree such that f(α) = 0. It is unique and divides 
every other polynomial in F[x] that has α as a root. 

Q3. Is every finite extension algebraic? Justify. 

Answer: Yes. Every finite extension K over F is algebraic.  

Let [𝐾: 𝐹] = 𝑛 and 𝑢 ∈ 𝐾. 1, 𝑢, 𝑢ଶ, . . . . , 𝑢௡ are linearly dependent over F and that 𝑎଴ +
𝑎ଵ𝑢 + ⋯ + 𝑎௡𝑢௡ = 0 for some 𝑎଴, 𝑎ଵ, … , 𝑎௡ ∈ 𝐹 𝑤ℎ𝑖𝑐ℎ 𝑎𝑟𝑒 𝑛𝑜𝑡 𝑎𝑙𝑙 𝑧𝑒𝑟𝑜.  

So 𝑢 is algebraic over F and that K is algebraic over F. 
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Q4. Can an algebraic extension be infinite?  

Answer: Yes. An algebraic extension can have infinite degree. 
 

3.6  SUGGESTED READINGS: 
 

1. Bhattacharya, P. B., S. K. Jain and S. R. Nagpaul, 1997, Basic Abstract Algebra, 2nd 
edition. UK: Cambridge University Press (Indian Edition). 

2. Hungerford, Thomas W. Abstract Algebra, 1974, Springer-Verlag, New York. 
3. Khanna, V. K. and S. K. Bhambari, A Course in Abstract Algebra, 3rd edition, New 

Delhi: Vikas Publishing House Pvt. Ltd. 
4. Lang, S. 1993, Algebra, 3rd edition, Boston: Addison-Wesley, Mass. 
5. I.S. Luther and I.B.S.Passi, Algebra, Vol. IV-Field Theory, Narosa Publishing House, 

2012. 
6. Ian Stewart, Galios Theory, Chapman and Hall/CRC, 2004.  

 

- Prof.  R. Srinivasa Rao 



LESSON-  4 

ALGEBRAICALLY CLOSED FIELDS 
 

OBJECTIVES: 

 To understand the concept of algebraically closed field and related results.  
 To understand the relationship between algebraically closed fields and field extensions, 

including how algebraic closures are minimal algebraic extensions. 
 To understand the concept of the algebraic closure as the largest possible algebraic 

extension of a field that also contains all roots of all polynomials from that field.  
 To understand the uniqueness of algebraic closures up to isomorphism.  

STRUCTURE: 

4.1  Introduction  

4.2  Algebraically closed fields 

4.3  Algebraic closures 

4.4  Summary 

4.5  Technical Terms 

4.6  Self-Assessment Questions 

4.7  Suggested Readings 

 
4.1 INTRODUCTION:  
 
In the study of fields and polynomial equations, an essential question is whether a given field 
contains all roots of its polynomials. A field F is called algebraically closed if every non-
constant polynomial with coefficients in F has a root in F. This means that every polynomial 
can be completely factored into linear factors over F. This concept generalizes the familiar 
property of the field of complex numbers C, where every polynomial over C has a complex 
root. However, many fields like R, or Q are not algebraically closed. The general problem is 
to determine whether an algebraically closed field containing a given field K exists. This 
leads to the notion of the algebraic closure of K, which is a minimal algebraically closed 
extension of K. In this lesson, we study the basic properties of algebraically closed fields, 
their existence and uniqueness (up to isomorphism), and their fundamental role in 
understanding field extensions. 
 

4.2 ALGEBRAICALLY CLOSED FIELDS: 
 
4.2.1 Definition:  A field K   is called an algebraically closed field if it possesses no proper 
algebraic extensions i.e. if every algebraic extension of K coincides with K. 
Example: The field of complex numbers is an algebraically closed field. 
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4.2.2 Theorem: For any field K, the following are equivalent. 

(i) 𝐾  is algebraically closed. 

(ii) Every irreducible polynomial in 𝐾 [𝑥] is of degree 1. 

(iii) Every polynomial in K[𝑥] of positive degree factors completely in K[𝑥] into linear 

factors. (iv) Every polynomial in K[𝑥] of positive degree has at least one root in K. 

Proof: Let K be a field. 

(𝐢) ⇒(ii):- 

Assume (i) i.e. K is algebraically closed.  

Then by definition K has no proper algebraic extension. 

Let p(𝑥) be an irreducible polynomial in K[𝑥] of degree 𝑛.  

Then by known theorem, there exists an extension E of K such that [𝐸: 𝐾 ] =degree of 

p(𝑥) = 𝑛. So E is a finite extension of K.   

Therefore E is an algebraic extension of K. 

By our assumption (i), we have𝐸 = K.  

⇒  [𝐸: K] = 1  

⇒ deg  𝑝(𝑥) = 1 

Therefore every irreducible polynomial in K[𝑥] is of degree 1. 

(ii)⇒ (iii):- 

Assume (ii) i.e.Every irreducible polynomial in K[𝑥] is of degree 1. 

Let 𝑓(𝑥) be a polynomial in K[𝑥] of positive degree.  Since K[𝑥] is a unique factorization, 

domain 𝑓(𝑥) can be uniquely written as the product of finite number of irreducible elements. 

i.e.,𝑓(𝑥) = 𝑢଴ 𝑝ଵ(𝑥) ⋅ pଶ(𝑥) ⋅ … p௡(𝑥) where 𝑢଴ ∈ 𝐾  and each 𝑝௜(𝑥) is an irreducible 

polynomial in 𝐾 [𝑥]. By assumption, we have 𝑝௜(𝑥) is of degree 1. 

 So,𝑝௜(𝑥) = 𝑥 − 𝑢௜, where 𝑢௜ ∈ 𝑘; 1 ≤ 𝑖 ≤ 𝑛 

Therefore 𝑓(𝑥) = 𝑢଴(𝑥 − 𝑢ଵ)(𝑥 − 𝑢ଶ) ⋯ (𝑥 − 𝑢௡) 

So, every polynomial of positive degree in 𝐾 [𝑥] can be factored completely in 𝐾 [𝑥] into 

linear factors. 

(iii)⇒ (iv):- 

Assume (iii) i.e.Every polynomial in K[𝑥] of positive degree can be factored completely in 

K[𝑥] into linear factors. 



Galois Theory     4.3           Algebraically Closed Fields 

Let 𝑓(𝑥) be a polynomial of positive degree in K[𝑥]. By assumption, 𝑓(𝑥) can be written as 

𝑓(𝑥) = 𝑢଴(𝑥 − 𝑢ଵ)(𝑥 − 𝑢ଶ) − (𝑥 − 𝑢௡) where 𝑢௜ ∈ 𝐾 ; 1 ≤ 𝑖 ≤ 𝑛.   So each 𝑢௜ ∈ K is a root 

of 𝑓(𝑥). Hence𝑓(𝑥) has atleast one root in K. 

Therefore every polynomial of positive degree in K[𝑥] has atleast one root in K. 

(𝐢𝐯) ⇒ (𝐢):- 

Assume (iv) i.e. Every polynomial in K[𝑥] of positive degree has atleast one root in K. 

Let 𝐸 be an algebraic extension of K.  let 𝑎 ∈ 𝐸. Then a is an algebraic element over K. 

There exists a minimal polynomial f(x) of a in K[x]. By our assumption, this minimal 

polynomial has atleast one root in K, say 𝑏. 

Then𝑓(𝑥) = (𝑥 − 𝑏)𝑓ଵ(𝑥), where deg  𝑓ଵ(𝑥) < deg  𝑓(𝑥), 𝑓ଵ(𝑥) ∈ K[𝑥] . 

If 𝑎 ≠ 𝑏,  then 𝑓ଵ(𝑎) = 0 we get a contradiction due to the minimality of 𝑓(𝑥). So 𝑎 = b. 

Hence E = K. 

This mean K doesnot possess any proper algebraic extension. 

Therefore K is algebraically closed.  
 

4.3 ALGEBRAIC CLOSURES: 
 

4.3.1: Definition:  If 𝐹 is a subfield of a field 𝐸, then 𝐸 is called an algebraic closure of 𝐹 if 

𝐸 is an algebraic extension of 𝐹 and 𝐸 is algebraically closed. 
 

4.3.2 Lemma :  Let 𝐹 be a field and let 𝜎: 𝐹 → 𝐿 be an embedding of 𝐹 into an algebraically 

closed field 𝐿. Let 𝐸 = 𝐹(𝛼) be an algebraic extension of 𝐹. Then 𝜎 can be extended to an 

embedding 𝜂: 𝐸 → 𝐿 and the number of such extensions is equal to the number of distinct 

roots of the minimal polynomial of 𝛼. 

Proof: Let 𝐹 be a field and 𝐿 be an algebraically closed field. 

Suppose that 𝜎: 𝐹 → 𝐿 be an embedding. 

Then 𝐿 is an extension of 𝐹̇ such that 𝜎(𝑎) = 𝑎, ∀𝑎 ∈ 𝐹. 

Let 𝐸 = F(α) be an algebraic extension of 𝐹.  Then 𝛼 ∈ 𝐸 is an algebraic element of 𝐹.  

So, let 𝑝(𝑥) = 𝑎଴ + 𝑎ଵ𝑥 + ⋯ + 𝑥௡ be the minimal polynomial of 𝛼 over 𝐹. 

Let 𝑝ఙ(𝑥) = 𝜎(𝑎଴) + 𝜎(𝑎ଵ)𝑥 + ⋯ + 𝑥௡ϵ L[x] 

Since 𝐿 is algebraically closed, 𝑝ఙ(𝑥) has a root, say 𝛽 in 𝐿.   

Let us recall, if 𝛼 is algebraic over 𝐹 then every element in 𝐹(𝛼) can be uniquely written as 

𝑏଴ + 𝑏ଵ𝛼 + ⋯ + 𝑏௞𝛼௞, where 𝑘 + 1 is the degree of the minimal polynomial 𝑝(𝑥) of 𝛼 over 

𝐹 and 𝑏௜ ∈ 𝐹; 1 ≤ 𝑖 ⩽ 𝑘. 
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Define a mapping 𝜂: 𝐹(𝛼) → 𝐿 by 

𝜂(𝑏଴ + 𝑏ଵ𝛼 + ⋯ + 𝑏௞𝛼௞) = 𝜎(𝑏଴) + 𝜎(𝑏ଵ)𝛽) + ⋯ + 𝜎(𝑏௞)𝛽௞. 

Since each element of 𝐹(𝛼) has a unique representation as 𝑏଴ + 𝑏ଵ𝛼 + ⋯ + 𝑏௞𝛼௞, 

𝑏଴, 𝑏ଵ, . . . , 𝑏௞ ∈ 𝐹,   

 𝜂 is well-defined. 

Let  𝑎 =  𝑏଴ + 𝑏ଵ𝛼 + ⋯ + 𝑏௞𝛼௞,  𝑏 =  𝑏଴
′ + 𝑏௞

′ 𝛼 + ⋯ + 𝑏௞
′ 𝛼௞ ∈ 𝐹(𝛼) 

 𝜂 ቀ(𝑏଴ + 𝑏ଵ𝛼 + ⋯ + 𝑏௞𝛼௞) + ൫𝑏଴
′ + 𝑏ଵ

′ 𝛼 + ⋯ + 𝑏௞
′ 𝛼௞൯ቁ

= 𝜂 ቀ൫𝑏଴ + 𝑏଴
′ ൯ + ൫𝑏ଵ + 𝑏ଵ

′ ൯𝛼 + ⋯ + ൫𝑏௞ + 𝑏௞
′ ൯𝛼௞ቁ

= 𝜎൫𝑏଴ + 𝑏଴
′ ൯ + 𝜎൫𝑏ଵ + 𝑏ଵ

′ ൯𝛽 + ⋯ + 𝜎൫𝑏௞ + 𝑏௞
′ ൯𝛽௞

= 𝜎(𝑏଴) + 𝜎൫𝑏଴
′ ൯ + 𝜎(𝑏ଵ)𝛽 + 𝜎൫𝑏ଵ

′ ൯𝛽 + ⋯ + 𝜎(𝑏௞)𝛽௞ + 𝜎൫𝑏௞
′ ൯𝛽௞

= (𝜎(𝑏଴) + 𝜎(𝑏ଵ)𝛽 + 𝜎 + 𝜎(𝑏௞)𝛽௞) + ൫𝜎൫𝑏଴
′ ൯ + 𝜎൫𝑏ଵ

′ ൯𝛽 + ⋯ + 𝜎൫𝑏௞
′ ൯𝛽௞൯

= 𝜂(𝑏଴ + 𝑏ଵ𝛼 + ⋯ + 𝑏௞𝛼௞) + 𝜂൫𝑏଴
′ + 𝑏ଵ

′ 𝛼 + ⋯ + 𝑏௞
′ 𝛼௞൯

 

We  prove that  𝜂(𝑎𝑏) = 𝜂(𝑎) ⋅ 𝜂(𝑏)  

Let 𝑓(𝑥) = 𝑏଴ + 𝑏ଵ𝑥 + ⋯ + 𝑏௞𝑥௞,  

 𝑔(𝑥) =  𝑏଴
′ + 𝑏ଵ

′ 𝑥 + ⋯ + 𝑏௞
′ 𝑥௞ ∈ 𝐹[𝑥].  

Now 𝑓(𝑥)𝑔(𝑥) = 𝑝(𝑥)𝑠(𝑥) + 𝑟(𝑥) for some 𝑠(𝑥), 𝑟(𝑥) ∈ 𝐹[𝑥] 𝑎𝑛𝑑 𝑟(𝑥) = 0 or 

 deg  𝑟(𝑥) < deg  𝑝(𝑥). 

Let  ℎ(𝑥) = 𝑓(𝑥)𝑔(𝑥) 

ℎఙ(𝑥) =  𝑝ఙ(𝑥) sఙ(𝑥) +  rఙ(𝑥)  

𝜂(𝑎𝑏) = 𝜂(𝑓(𝛼)𝑔(𝛼)) = 𝜂(ℎ(𝛼)) = 

𝜂(𝑟(𝛼)) = 𝑟ఙ(𝛽) =  𝑝ఙ(𝛽) 𝑠ఙ(𝛽) +  𝑟ఙ(𝛽) = ℎఙ(𝛽) = 𝑓ఙ(𝛽)𝑔ఙ(𝛽) = 𝜂(𝑎)𝜂(𝑏)  

 Therefore 𝜂: 𝐹(𝛼) → 𝐿 is a ring homomorphism and hence an embedding as 𝜂 ≠ 0. 

So, 𝜂: 𝐹(𝛼) → 𝐿 is an embedding and also an extension of 𝜎.  

Thus, with each root 𝛼 of 𝑝(𝑥),  we have an embedding 𝜂: 𝐸 → 𝐿, which is an extension of 

𝜎.Also, there is a one-to-one correspondence between the set of distinct roots of 𝑝ఙ(𝑥) in 

Land the set of embeddings 𝜂 of 𝐹(𝛼) into 𝐿, that extends 𝜎. Hence the number of such 

extensions is equal to the number of distinct roots of the minimal polynomial of 𝛼 as distinct 

roots give distinct embeddings into L. 
 

4.3.3Theorem: Let 𝐸 be an algebraic extension of a field 𝐹 and let 𝜎: 𝐹 → 𝐿 be an 

embedding of 𝐹 into an algebraically closed field 𝐿. Then 𝜎 can be extended to an embedding 

𝜂: 𝐸 → 𝐿 
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Proof: Let 𝐸 be an algebraic extension of a field 𝐹 and let σ: 𝐹 → 𝐿 be an embedding of 𝐹 

into an algebraically closed field 𝐿. 

Define S ={(𝐾 , 𝜃) / K is a subfield of E containing F and θ is an extension of σ 

to an embedding of K into L. } 

Since 𝐹 is the subfield of 𝐸 containing 𝐹 and 𝜎: 𝐹 → 𝐿 is an extension of 𝜎 itself, we have 

(𝐹, 𝜎) ∈ 𝑆 . Therefore 𝑆 is non-empty. 

Define a relation '⩽' on 𝑆 by(K, 𝜃) ⩽ (𝐾 ᇱ, 𝜃ᇱ) if and only if 𝐾 ⊂ 𝐾 ᇱ and 𝜃ᇱ is an extension 

of 𝜃. 

Now we show that‘⩽’is partial ordering on 𝑆. 

Reflexive: Let (𝐾 , 𝜃) ∈ 𝑆 

Since𝐾 ⊆ 𝐾  and 𝜃: 𝐾 → 𝐿 is an extension of 𝜃: 𝐾 → 𝐿, we have (𝐾, 𝜃) ⩽

(𝐾, 𝜃), ∀ (𝐾, 𝜃) ∈ 𝑆. 

Therefore ≤ is reflexive on 𝑆. 

Anti- Symmetric: Let (𝐾 ଵ, 𝜃ଵ), (𝐾 ଶ, 𝜃ଶ) ∈ 𝑆. 

Suppose, (𝐾 ଵ, 𝜃ଵ) ≤ (𝐾 ଶ, 𝜃ଶ) and (𝐾 ଶ, 𝜃ଶ) ≤ (𝐾 ଵ, 𝜃ଵ) 

So 𝐾 ଵ ⊆ 𝐾 ଶ; 𝜃ଶ is an extension of 𝜃ଵ and𝐾 ଶ ⊆ 𝐾 ଵ; 𝜃ଵ is an extension of 𝜃ଶ. 

⇒ 𝐾 ଵ = 𝐾 ଶ&  𝜃ଵ = 𝜃ଶ

⇒ (𝐾 ଵ, 𝜃ଵ) = (𝐾 ଶ, 𝜃ଶ)
 

Therefore' ⩽ ' is antisymmetric on 𝑆. 

Transitive: Let (𝐾 ଵ, 𝜃ଵ), (𝐾 ଶ, 𝜃ଶ), (𝐾 ଷ, 𝜃ଷ) ∈ 𝑆. 

Suppose (𝐾 ଵ, 𝜃ଵ) ⩽ (𝐾 ଶ, 𝜃ଶ) and (𝐾 ଶ, 𝜃ଶ) ⩽ (𝐾 ଷ, 𝜃ଷ) 

𝑆𝑜  𝐾 ଵ ⊆ 𝐾 ଶ; 𝜃ଶ is an extension of 𝜃ଵand 𝐾 ଶ ⊆ 𝐾 ଷ; 𝜃ଷ is an extension of 𝜃ଶ 

 𝑁𝑜𝑤       𝐾 ଵ ⊆ 𝐾 ଶ;  𝜃ଵ(𝑎) = 𝜃ଶ(𝑎); for all 𝑎 ∈ 𝐾 ଵ& 𝐾 ଶ ⊆ 𝐾 ଷ;  𝜃ଶ(𝑎) = 𝜃ଷ(𝑎); for all 𝑎 ∈ 𝐾 ଶ

𝑡ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒 𝐾 ଵ ⊆ 𝐾 ଷ;  𝜃ଵ(𝑎) = 𝜃ଷ(𝑎) for all 𝑎 ∈ 𝐾 ଵ 𝑎𝑛𝑑 𝑡ℎ𝑎𝑡
 

𝐾 ଵ ⊆ 𝐾 ଷ & 𝜃ଷ is an extension of 𝜃ଵ. So (𝐾 ଵ, 𝜃ଵ) ⩽ (𝐾 ଷ, 𝜃ଷ) 

Therefore ⩽ is transitive and hence (𝑆, ⩽) is a poset. 

Let {(𝐾 ௜ , 𝜃௜)} be a chain in S. 

Write 𝐾 = 𝑈𝐾 ௜; then 𝐾  is a subfield of 𝐸 containing 𝐹. 

Define 𝜃: 𝐾 → 𝐿 as follows: 

Let 𝑎 ∈ 𝐾 , then 𝑎 ∈ 𝐾 ௜ for some 𝑖. 

We define 𝜃(𝑎) = 𝜃௜(𝑎) 

Now we show that "𝜃" is well-defined. 

Let 𝑎 ∈ 𝐾  ௜&𝑎 ∈ 𝐾 ௝ 
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Then either 𝐾 ௜ ⊂ 𝐾 ௝& 𝐾 ௝ ⊂ 𝐾 ௜[Since{(𝐾 ௜ , 𝜃௜)} is a chain ] 

So, we get 𝜃௜(𝑎) = 𝜃௝(𝑎) 

Hence 𝜃 is well-defined. 

Clearly 𝜃 is an embedding of 𝐾  into 𝐿, which is an extension of 𝜃௜ for all 

𝑖. Therefore (𝐾 , 𝜃) ∈ 𝑆 and it is an upper bound of the chain {(𝐾 ௜, 𝜃௜)}. So, by Zorn's 

lemma 'S' has maximal element, Say (𝐾 , 𝜂). Therefore, 𝜂 is an embedding of 𝐾  into 𝐿, 

which is an extension of 𝜎. 

Now we claim 𝐾 = 𝐸.  

If possible, suppose that K ≠ E  . Then there exists 𝛼 ∈ 𝐸 such that 𝛼 ∉ K.  

Now 𝛼 is algebraic over 𝐹. (Since 𝐸 is an algebraic extension of 𝐹 ). Then by Lemma 4.3.2, 

the embedding 𝜂: 𝐾 → L has an extension 𝜂∗: 𝐾 (𝛼) → 𝐿. Hence (𝐾 (𝛼), 𝜂∗) ∈ 𝑆 and 

(𝐾 , 𝜂) < (𝐾 (𝛼), 𝜂∗), which is a contradiction(Since(𝐾 , 𝜂) is maximalelement in 𝑆. ) 

Therefore K = E. So, 𝜂: 𝐸 → 𝐿 is an embedding of 𝐸 into 𝐿, which is an extension of 𝜎. 
 

4.3.4 Theorem:  Let K and Kᇱ be algebraic closures of a field 𝐹. Then K ≅ Kᇱ under an 

isomorphism that is an identity on 𝐹.(Or) Any two algebraic closures of a field 𝐹 are 

isomorphic. 

Proof: Let 𝐹 be a fieldand K, Kᇱ be two algebraic closures of 𝐹. 

Consider 𝜆: 𝐹 → K be an embedding, given by  𝜆(𝑎) = 𝑎 ∀ 𝑎 ∈ 𝐹. 

Since 𝐾 ᇱ is an algebraic extension of 𝐹, and K is algebraically closed, by theorem 4.3.3  𝜆 

can be extended to an embedding 𝜆∗: 𝐾 ᇱ → 𝐾 .  So 𝐾 ᇱ ≅ 𝜆∗(𝐾 ᇱ) 

Since 𝐾 ᇱ is algebraically closed, we have 𝜆∗(𝐾 ᇱ) is also algebraically closed.Also 𝐾  is an 

algebraic extension of 𝐹. 

This implies K is an algebraic extension of 𝜆∗(𝐾 ᇱ)(Since 𝐹 ⊂ 𝜆∗(𝐾 ᇱ) ⊂ K) 

So, 𝜆∗(𝐾 ᇱ) = 𝐾 i.e. 𝜆∗: 𝐾 ᇱ → K is onto. 

Therefore 𝜆∗: 𝐾 ᇱ → K is an isomorphism.  

Thus 𝐾 ᇱ ≅ 𝐾 , under an isomorphism which acts as the identity on 𝐹. 

Note: From the above Theorem 4.3.4, an algebraic closure of a field 𝐹 is unique upto 

isomorphism and we denote the algebraic closure of F by F‾ . 
 

4.3.5 Definition:  let 𝐹 be a field and let 𝑆 = (𝑥௜)௜∈୼ be an infinite set of commuting 

indeterminants (or) variables. Then the elements of the form ∑  finite 𝑎௜𝑥௜భ
𝑥௜మ

⋯ 𝑥௜೙
, 𝑎௜ ∈

𝐹, 𝑥௜௝ ∈ 𝑆, with natural addition and multiplication form a ring 𝐹[𝑆],  called the polynomial 
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ring over 𝐹 in S. Note that for a polynomial ∑  finite 𝑎௜𝑥௜భ
𝑥௜మ

… 𝑥௜೙
 to be zero, each coefficient 

𝑎௜ of each monomial 𝑥௜భ
𝑥௜మ

… 𝑥௜೙

 must be zero. 
 

4.3.6 Theorem:  Let 𝐹 be a field. Then there exists an algebraically closed field 𝐾  

containing 𝐹 as a subfield. 

Proof: 

Part I: Let 𝐹 be a field. 

Let us first construct an extension 𝐾  of F in which every polynomial 𝑓(𝑥) ∈ 𝐹[𝑥] of degree 

⩾ 1 has a root. 

Let S be a set which is having one-to-one correspondence with the set of all polynomials in 

𝐹[𝑥] of degree ⩾ 1. 

We suppose that the element corresponding to a polynomial 𝑓 = 𝑓(𝑥) ∈ 𝐹[𝑥] of degree ⩾

1 is 𝑥௙ ∈ 𝑆. 

Consider the polynomial ring 𝐹[𝑆]. 

Part II: Now we show that if 𝐴 is an ideal in 𝐹[𝑆] generated by all polynomials 𝑓൫𝑥௙൯ of  

degree ⩾ 1, then 𝐴 ≠ 𝐹[𝑆] 

Suppose if possible 𝐴 = 𝐹[S], where 𝐴 is an ideal in 𝐹[𝑆] generated by all polynomials 

𝑓൫𝑥௙൯ in 𝐹[𝑆] are of degree ⩾ 1.  

Since 𝐴 = 𝐹[𝑆], we have 1 ∈ 𝐴 

1 = 𝑔ଵ𝑓ଵ൫𝑥௙భ
൯ + 𝑔ଶ𝑓ଶ൫𝑥௙మ

൯ + ⋯ 𝑔௡𝑓௡൫𝑥௙೙
൯ − − − (1)where 𝑔௜ ∈ 𝐹[𝑆], 𝑥௙భ

, 𝑥௙మ
, … 𝑥௙೙

∈ 𝑆 and 

each 𝑓௜൫𝑥௙೔
൯ is of degree ⩾ 1  

Since each 𝑔௜ ∈ 𝐹[𝑆] i.e., each 𝑔௜ is a polynomial in a finite no. of variable in 𝑆.  

Write 𝑥௙೔
= 𝑥௜, for each 𝑓௜ ∈ 𝐹[𝑥] 

After re-indexing we assume that 𝑥௙భ
= 𝑥ଵ, 𝑥௙మ

= 𝑥ଶ, … … 𝑥௙೙
= 𝑥௡ and the variables occur in 

all 𝑔௜; 1 ≤ 𝑖 ≤ 𝑛 are in the set{𝑥ଵ, 𝑥ଶ, … , 𝑥௡, 𝑥௡ାଵ, … , 𝑥௠} 

Then we can write (1) as ∑  𝑔௜(𝑥ଵ, 𝑥ଶ, … , 𝑥௠) ⋅ 𝑓௜(𝑥௜)---(2) 

Now 𝑓ଵ(𝑥), 𝑓ଶ(𝑥), … , 𝑓௡(𝑥) ∈ 𝐹[𝑥]. Then there exists an extension 𝐸 of 𝐹 in which every 

polynomial has a root. So let 𝛼௜ be the root of 𝑓௜(𝑥) in 𝐸; 𝑖 = 1, … 𝑛. 

Taking 𝑥௜ = 𝛼௜; 𝑖 = 1,2, … 𝑛 and 𝑥௜ = 0, 𝑖 = 𝑛 + 1, … 𝑚,  

we get 1 = ∑  ௠
௜ୀଵ 𝑔௜(𝛼ଵ, 𝛼ଶ, … , 𝛼௡, 0, … ,0)𝑓௜(𝛼௜) 

⇒ 1 = 0, which is contradiction (Since 𝛼௜ is a root of 𝑓௜(𝑥) 𝑎𝑛𝑑 𝑓௜(𝛼௜) = 0) 

Thus 𝐴 ≠ 𝐹[𝑆] 
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So A is a proper ideal in 𝐹[𝑆].Then by Zorn's Lemma, 𝐴 can be embedded in a maximal ideal 

say 𝑀 of 𝐹[𝑆]. 

 So, 
ி[ௌ]

ெ
 is a field containing 𝐹. 

Part III: let 𝑓 ∈ 𝐹[𝑥] be a polynomial of degree ⩾ 1. Then clearly 𝑓൫𝑥௙൯ ∈ 𝐴 ⊂ 𝑀 

Let 𝑓(𝑥) = 𝑎଴ + 𝑎ଵ𝑥 + ⋯ + 𝑎௠𝑥௠ , 𝑎௜ ∈ 𝐹. Let us denote the coset 𝑔 + 𝑀 by 𝑔‾ in 
ி[௦]

ெ
. 

Therefore 0‾= 𝑓൫x௙൯

= 𝑎଴ + 𝑎ଵ𝑥௙ + ⋯ + 𝑎௠𝑥௙
௠

= 𝑎‾଴ + 𝑎‾ଵ𝑥‾௙ + ⋯ + 𝑎‾௠𝑥௙
௠

= 𝑎଴ + 𝑎ଵ𝑥‾௙ + ⋯ + 𝑎௠𝑥‾௙
௠

 

Therefore 𝑥‾ ௙ is a root of 𝑓(𝑥) in 
ி[ௌ]

ெ
 

Thus we have constructed a field 𝐾 ଵ named by 
ி[ௌ]

ெ
 𝑖. 𝑒. an extension of 𝐹 in which every 

polynomial 𝑓(𝑥) ∈ 𝐹[𝑥] of degree ⩾ 1 has a root. 

Inductively we can now form a chain of fields 𝐾 ଵ ⊂ 𝐾 ଶ ⊂ 𝐾 ଷ ⊂ ⋯ every polynomials 

in 𝐾 ௡[𝑥] of degree ⩾ 1 has a root in 𝐾 ௡ାଵ . Let 𝐾 = ⋃  ௡
௜ୀଵ 𝐾 ௜.  Then clearly 𝐾  is a field 

and every polynomial in 𝐾[𝑥] of positive degree has a root in 𝐾 . 

By known result, K is an algebraically closed field containing 𝐹 as a subfield. 
 

4.3.7 Theorem: Let 𝐹 be a field. Then there exists an extension 𝐹 ‾  that is algebraic over 𝐹 

and is algebraically closed, that is, each field has an algebraic closure. 

Proof: By theorem 4.3.6, F has an extension K which is algebraically closed. 

Let 𝐹‾ = {𝑎 ∈ 𝐾|𝑎 is algebraic over 𝐹}. 

Let 𝐹‾  is a subfield of 𝐾  and it is an algebraic extension of 𝐹 … … … … … … …(1) 

Let 𝑓(x) ∈ F‾[x] be a polynomial of degree ⩾ 1. 

Note that 𝑓(𝑥) ∈ 𝐹‾[𝑥] ⊂ K[𝑥].  

Since K is algebraically closed, we have 𝑓(𝑥) has a root say, 𝑎 ∈ K. 

Therefore 𝑎 ∈ 𝐾 is algebraic over 𝐹.‾  So  𝑎 ∈ 𝐹‾ . 

Therefore every polynomial 𝑓(𝑥) ∈ 𝐹‾[𝑥] of positive degree has a root in 𝐹.‾  

Then by known result, 𝐹‾  is algebraically closed---(2) 

From (1) & (2), 𝐹‾  is an algebraic closure of 𝐹.  

Hence every field has an algebraic closure. 

Note: Let 𝜎: 𝐹 → 𝐿 be an embedding of 𝐹 into 𝐿. Then the mapping from 𝐹[𝑥] to 𝐿[𝑥] given 

by 𝑟଴ + 𝑟ଵ𝑥 + ⋯ + 𝑟௠𝑥௠ = 𝜎(𝑟଴) + 𝜎(𝑟ଵ)𝑥 + ⋯ + 𝜎(𝑟௡)𝑥௡ is a ring homomorphism. 
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Clearly this extends 𝜎 and we denote this extended mapping by 𝜎∗ so  𝜎∗: 𝐹[𝑥] → 𝐿[𝑥] is a 

homomorphism and image of 𝑓(𝑥) ∈ 𝐹[𝑥] under 𝜎∗ will be denoted by 𝑓ఙ. 

 
4.4  SUMMARY: 

An algebraically closed field is defined as a field in which every non-constant polynomial has 
at least one root within the field itself. This implies that every polynomial over such a field 
can be factored completely into linear factors. For instance, the field of complex numbers ℂ 
is algebraically closed because every polynomial with complex coefficients has all its roots in 
ℂ. This lesson emphasizes several equivalent characterizations of algebraically closed fields.  

An algebraic closure of a field F is an algebraic extension of F that is also algebraically 
closed. This means it contains all roots of all polynomials with coefficients in F. Any two 
algebraic closures are unique up to isomorphism. The construction of an algebraic closure of 
F involves extending the field F by successively adjoining roots of polynomials over F, 
ensuring that the resulting field is both an algebraic extension and algebraically closed. 

4.5 TECHNICAL TERMS: 
 
 Algebraically Closed Field: A field K is called an algebraically closed field if it possesses 

no proper algebraic extensions i.e. if every algebraic extension of K coincides with K. 
 Irreducible Polynomial over F: This is a polynomial 𝑓(𝑥) ∈ 𝐹[𝑥] that cannot be broken 

down into simpler (non-trivial) polynomials in 𝐹[𝑥] using multiplication. 
 Algebraic Element of 𝐹: This refers to an element 𝑢 is an extension E of F that is a 

solution of some polynomial with coefficients F. In other words, it satisfies a polynomial 
with coefficients only numbers from the field F. 

 Algebraic Extension E of F: This is a bigger field E built from a smaller one F, where 
every element of E is algebraic over the smaller field F. i.e, each element of E comes from 
solving a polynomial whose coefficients lie in the original field F. 

 Algebraic Closure of F: This is the largest possible algebraic extension of a field F that 
also contains all roots of all polynomials from the field F. 

4.6 SELF-ASSESSMENT QUESTIONS: 

Q1. Is the field R of real numbers, algebraically closed? Justify. 
Answer: No, R is not algebraically closed because polynomials like x2+1∈R[x] do not have 
real roots. Hence, not every non-constant polynomial over R has a root in R. 

Q2. Prove or disprove: “If a field is algebraically closed, then every irreducible polynomial 
over it is linear.” 

Answer: True. If a field F is algebraically closed, then every non-constant polynomial in F[x] 
splits completely into linear factors. Hence, irreducible polynomials must is of degree one. 

Q3. Let K⊆L and L be a field extension of K. If L is algebraically closed, what can be said 
about the algebraic closure of K? 

Answer: The algebraic closure of K is contained in L. Since L is algebraically closed, it 
contains all roots of algebraic polynomials over K, so the algebraic closure of K lies inside L. 
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Q4. Is it true that every algebraic extension of an algebraically closed field is trivial? Explain. 

Answer: Yes. If F is algebraically closed and K is an algebraic extension of F, then K=F. 
Since all algebraic elements over F already lie in F, there are no proper algebraic extensions 
of an algebraically closed field. 

Q5. Can a finite field be algebraically closed? Explain. 
Answer: No. A finite field cannot be algebraically closed because not all polynomials over it 
can have all their roots within the field.  

Q6: If 𝐹 is a subfield of an algebraically closed field 𝐾 , then is it true that  the algebraic 

closure  𝐹‾  of 𝐹 in 𝐾  is also algebraically closed. 

Answer: Let 𝐹 be a subfield of an algebraically closed field 𝐾 and let 𝐹‾  be an algebraic 

closure of 𝐹 in 𝐾 .     So 𝐹 ⊆ 𝐹‾ ⊆ 𝐾  

Let 𝑓(𝑥) ∈ 𝐹‾[𝑥] be any polynomial of positive degree. 

Let us recall, 𝐹‾ = {𝑢 ∈ K /  𝑢 is algebraic over 𝐹}.  Then 𝐹‾  is subfield of 𝐾  and is an 

algebraic extension of 𝐹. 

For 𝑓(𝑥) ∈ 𝐹‾[𝑥], we have 𝑓(𝑥) ∈ 𝐾 [𝑥]. Let 𝑑𝑒𝑔 𝑓(𝑥) ≥ 1 

Therefore 𝑓(𝑥) ∈ 𝐾 [𝑥] is a polynomial of positive degree. Since 𝐾  is algebraically closed, 

by theorem 4.2.2, we have 𝑓(𝑥) has a root, say 𝑢 in 𝐾 . 

So 𝑢 ∈ 𝐾  is algebraic over 𝐹  [Since 𝐹 ⊂ 𝐹‾ ⊂ 𝐾  such that 𝐹‾  is an algebraic extension of F.] 

𝑎𝑛𝑑 𝑡ℎ𝑎𝑡 𝑢 ∈ 𝐹‾  

Therefore by theorem 4.2.2, 𝐹‾  is algebraically closed. 
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LESSON- 5 

SPLITTING FIELDS 
 
OBJECTIVE: 
 
 To determine the extension K of F for a polynomial over a given field F: splitting field. 
 To investigate the existence and uniqueness of a splitting field of a polynomial over a 

given field. 
 To learn and study the construction of a splitting field for the polynomial over a given 

field. 
 
STRUCTURE: 
 
5.1   Introduction 

5.2   Splitting Fields 

5.3   Summary 

5.4   Technical terms 

5.5    Self- Assessment Questions 

5.6   Suggested Readings 

 
5.1  INTRODUCTION: 
 
The idea of splitting fields arose from the necessity to find roots of polynomials, especially 
those that do not have roots in the base field, and the first usage can be traced to Galois work 
in 1830’s specially in the context of solving congruences modulo a prime. For example, some 
polynomials, like  over the real numbers R, have no roots with the base field R. 
However, it splits in the field of complex numbers C where . 
Therefore, C is the splitting field of  over R. Splitting fields provide a way to extend 
the field to include these roots. 
 
5.2  SPLITTING FIELDS: 
 
We now give the definition of a splitting field and some examples on it. 
 

5.2.1: Definition: Let F be any field and  be a polynomial of degree . Then 
an extension  of  is called a splitting field of  over , if  

 can be factorized into linear factors in  that is, 

,  

, that is  is generated by  and the roots  of 

 in . 
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5.2.2: Examples: 

i) Consider . Then the field  is a 

splitting field of  over Q. 

ii)Consider  Then  is a splitting field of  over . 

5.2.3: Note: For a polynomial   in  of degree , a splitting field of  over  

always exists. This is because, for a field , since  has all its roots 

say  in  and that  is a splitting field of  over . 

5.2.4: Theorem: Let  be a field and  be a polynomial in  of degree . Then the 

degree of the splitting field  of  over  is finite and hence  is an algebraic extension 

of . 

Proof: Let  be a field and  be a polynomial of degree . 

Let  be the algebraic closure of . 

Now  has all its roots say  

Then  is a splitting field of  over . 

Since, each of  are algebraic over , the degree of  over  is finite and 

hence K is an algebraic extension of . 

5.2.5: Theorem (Uniqueness of the splitting field): Let  be a splitting field of a 

polynomial  over a field . If  is another splitting field of  over  then  an 

isomorphism  which is an identity on . 

Proof: Let  be a polynomial over F.  

Also, let  be a splitting field of  over  and  be another splitting field  over . 

Obviously,  is a subfield of  and . 

Let  be the algebraic closure of . 

Let  be an identity mapping. 

Now  defined by  for all  is an embedding of  into . 
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Since  is an algebraic extension of , by known theorem, can be extended to an 

embedding of  into . 

Now  can be factorized into linear factors in  as  

 and  

So,   

Let  where . 

Let us set   

   

So,  are the roots of  in . 

Then  as  is a splitting field of  over . 

We have  

         

        . 

Hence  is isomorphic to  by  which is an identity on . 

5.2.6: Examples: 

i) The degree of extension of the splitting field of  is 6 

Solution: Let  

Then  is irreducible over Q by Einstein’s criterion. 

Also  is the minimal polynomial of . 

Therefore,  with  

But  is not the splitting field of  

Now,  
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So,  has two complex roots say  and .      

The roots are  

Thus,  is irreducible over   

and is of degree 2. 

Hence  

Since  has degree 2 and its roots  and  are not in 

 

Now all the roots of , viz., . 

Hence,  is a splitting field of  over Q. 

Also,  = (2)(3) =6. 

Thus, the solution is completed.  

ii) Let  be a prime. Then  has a splitting field   where  and 

. Also .  

Solution: we have  where  is prime. 

Now  

  is an irreducible polynomial over Q.  

We get an extension field  of Q such that  contains a root  of  

 and  is irreducible over Q. 

Now  

So  and  as α is a root of  . 
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Now we assert that  are the p distinct roots of . 

Clearly  the integer   

Thus, we need to show that all these roots are distinct. 

Suppose that . 

Then . 

Since  is prime and , we have  

 for some integers  and  

Now  

  

  

  

, which is a contradiction.  

So,  are the  distinct roots of . 

Hence, the splitting field of  is . 

Since, the minimal polynomial of  is  and , 

We have . 

This completes the solution.  

iii) Let . The splitting field of  is a finite field with 8 elements. 

Solution: Let  where  (or) . 

Clearly  

Also  are not the roots of . 

Thus,  is irreducible over . 
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So, we get an extension  that contains a root  of . 

 is a subfield of . 

We now prove that  or  is a splitting field of  over . 

Since  is a root of , we have . 

 . 

Now  

  

So, all the roots of  are in  and hence   is a splitting field of  over . 

Now  

 Where  

So,  is a splitting field of  which contains 8 elements. 

iv) The splitting field of  over Q is  and its degree of 

extension is 8. 

Solution: we have  

Clearly  is irreducible over Q by Einstein’s Criterion and . 

Thus  is the minimal polynomial of  over Q. 

So  

Now  

 

 

Clearly   is irreducible over . 
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Thus, the root   has  as its minimal polynomial over . 

So . 

Now clearly  is the splitting field of   

and   

                                 = 2 × 4 = 8. 

This completes the solution. 
 

5.3  SUMMARY: 

This lesson presented the fundamental concept of constructing the splitting field of a given 
polynomial  over a field . In summary, a splitting field of a polynomial  
over a field  is the smallest extension  where  splits into linear factors. From 
uniqueness theorem, the reader can easily understand that, the splitting field of a polynomial 
is unique (up to isomorphism). Few examples of constructing a splitting field for a given 
polynomial and their corresponding degrees were also included for better understanding of 
the reader. While the concept of splitting fields might seem abstract, its underlying principles, 
particularly in Galois theory have real-world applications in areas like coding theory and 
cryptography, where they are applied to construct error-correcting codes and secure 
communication protocols. 
 

5.4  TECHNICAL TERMS: 

Splitting Field:  Let  be any field and  be a polynomial of degree . Then an 

extension  of  is called a splitting field of  over , if 

 can be factorized into linear factors in . That is,  

 . 

, that is  is generated by and the roots  of 

 in K. 

Irreducible polynomial: A polynomial  is called irreducible if the degree of 

 and whenever  where  then  (or) 

. If a polynomial is not irreducible, it is called reducible. 

Einstein criterion: Let , . 
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 If there is a prime  such that  and  then  is 

irreducible over Q. 

Algebraic element: Let  be an extension of a field F. An element  is said to be 

algebraic over  if there exists a non-constant polynomial  such that  

Minimal polynomial: The monic irreducible polynomial in  for which u is a root will be 

called the minimal polynomial of u over . 

Algebraic extension: An extension field  of  is called algebraic if each element of  is 

algebraic over . 

Algebraically Closed Field: A field  is algebraically closed if it possesses no proper 

algebraic extensions, that is, if every algebraic extension of  coincides with . 

Algebraic closure: If  is a subfield of  then  is called an algebraic closure of  if  

 is an algebraic extension of . 

 is algebraically closed. 

5.5  SELF- ASSESSMENT QUESTIONS:  

1. Find the splitting field of  over Q. 

Ans:  

            in  

By Eisenstein’s criterion,  are irreducible over Q. Their 

roots in C are  and .  

Thus, the splitting field of  over Q is . 

Here, clearly .  

2. Find the splitting field of  over . 

Ans: Over ,   

The roots are , where  is the root of the irreducible polynomial 

 over  
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Hence, the splitting field of  over  is . 

Also,  

3. Find the splitting field of  over Q. 

Ans: Given  

 Then,  

          in . 

So, the roots of  are  where . 

Hence, the splitting field of  over Q is Q  and 

 .  

4. Construct the splitting field of  over Q. 

Ans: Let                                                                                        

 

Let  be a cube root of 1.  

So, the roots of  are  where  

Hence, splitting field of  over Q is  

 = =  

Thus, splitting field  over Q is  

Also, the degree  over Q is  

 

5. Find a splitting field of  

Ans: Let  

Now  in  
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Thus, a splitting field of  is  

. 

6. Identify the splitting field of  over . 

Ans: Let  

The roots of  are . 

Hence  is the splitting field over itself. 

7. Define splitting field of a polynomial  over a field  with 2 examples. 

Ans: (Refer: Definition 5.2.1 and Examples 5.2.2). 

8. State and prove uniqueness theorem on splitting fields of a polynomial  over a field . 

Ans: (Refer: Theorem 5.2.5).  

5.6  SUGGESTED READINGS: 

1. P. B. Bhattacharya, S. K. Jain and S. R. Nag Paul, Basic Abstract Algebra, Second 

Edition, Cambridge University Press,1995. 

2. I. N. Herstein, Topics in Algebra, Second Edition, John Wiley & sons, Inc,1975.  

3. Thomas W. Hungerford, Algebra, Springer-Verlag, New York. 

 

- Dr. P. Vijaya Saradhi 

 



LESSON- 6 

NORMAL EXTENSIONS 
 
OBJECTIVE: 
 
 To know the splitting field of a family of polynomials of over a given field 
 To provide equivalent conditions for an extension E of F to be a splitting field of a family 

of polynomials over : Normal extension of a field . 
 To give illustrative examples which help us to understand how to exhibit an extension of 

a given field is either normal or not. 
 
STRUCTURE: 
 
6.1  Introduction 

6.2  Normal Extensions 

6.3  Summary 

6.4  Technical terms 

6.5  Self Assessment Questions 

6.6  Suggested Readings 

 

6.1  INTRODUCTION: 
 
The concept of normal extension of a field was developed by Evariste Galois in the 1830’s as 
a part of his work on Galois theory, which he introduced to solve the problem of finding 
general solutions to polynomial equations. In field theory, a normal extension is an algebraic 
field extension where every irreducible polynomial over the base field that has a root in the 
extension splits completely into linear factors within the extension. For example, the 
extension   over  is normal because the minimal polynomial splits in . 
A normal extension is also charecterised as the splitting field of a family of polynomials over 
the base field. This means that the extension contains all the roots of polynomials in that 
family. 
 
6.2  NORMAL EXTENSIONS: 
 
In lesson 5, we have defined the splitting field of a polynomial over a given field. Now we 
define the splitting field of a family of polynomials over a field F. Also, the proof of 
uniqueness (up to isomorphism) can be extended to prove the uniqueness of a splitting field 
of a family of polynomials over a given field. 
 

6.2.1 Definition: 

Let  be any field and  be a family of polynomials of degree  over . An 

extension  or  is said to be the splitting field of the family of polynomials  , if 

i) Each  splits into linear factors in . 

ii) E is generated over F by all the roots of the polynomials . 
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6.2.2  Theorem: Let  be an algebraic extension of a field  contained in algebraic closure 

of . Then the following conditions are equivalent. 

i) Every irreducible polynomial in   that has a root in  splits into linear factors in E. 

 is the splitting field of a family of polynomial in . 

iii) Every embedding  of  into  that keeps each element of  fixed maps  onto  (or,  

may be regarded as an automorphism of ). 

Proof: Let  be an algebraic extension of a field  contained in an algebraic closure of . 

(i)  (ii): Assume that every irreducible polynomial in  that has a root in  splits into 

linear facors in E. 

Let . Since  is an algebraic extension of ,   has a minimal polynomial  

such that = 0, where   is an irreducible polynomial over a field . 

By hypothesis,   splits into linear factors in  . Thus  is an algebraic extension of 

 such that the family of polynomials { | } splits into linear factors in E. 

Moreover,  is generated over  by all roots of the family of polynomials { | }. 

Hence  is the splitting field of the family of polynomials { | }, . 

This proves condition (ii). 

Thus, (i)  (ii). ------ (1). 

 (iii): Assume that  is a splitting field of a family of polynomials  in . 

Let  be any embedding of  into  such that . 

Note that if   is a root of ),  then  is also a root of . 

Thus  maps  into  as  is generated over  by the roots of the family of polynomials 

 in . 

Therefore  is an embedding of  into  such that . 

Now since  is an algebraic extension of ,  is an embedding of  into  

(i.e., ) and is an identity on , by known theorem is an automorphism of . 

This Proves condition(iii). 

Hence (ii) (iii). ------ (2). 

(iii) (i): Assume that every embedding  which is an identity on  maps  onto . 

Let  be an irreducible polynomial over  and  has a root . 
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Since all the roots of  are in , let  be another root of  

Since  is irreducible over , we have F- isomorphisms 

            

Therefore, . 

Let  be the above isomorphism. Then  and . 

Note that  is an embedding of  into an algebraically closed field . 

Now since  is an algebraic extension of ,  is also an algebraic extension of . 

Thus  can be extended to an embedding  such that  for all  

  

By hypothesis  is an automorphism of .  .  

 Also . 

Thus, all the roots of  are in  and hence  splits into linear factors in . 

Hence every irreducible polynomial that has a root in  splits into linear factors in . 

This proves condition (i). 

Hence (iii) (i). ------ (3). 

From (1), (2) and (3) we have,  

Thus, the conditions ( ), (ii) and (iii) are all equivalent. 

6.2.3: Note: The above theorem proves a set of equivalent conditions for an extension  of  

to be a splitting field of a family of polynomials over a given field . 

6.2.4: Definition: An extension  of a field  is called normal if  satisifies any one of the 

equivalent conditions of Theorem 6.2.2  

6.2.5: Examples of normal extensions: 

i) C is a normal extension of R. 
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Solution: We know that every irreducible polynomial over R have either a real root or a 

complex root or both. 

Hence any irreducible polynomial in  can split into linear factors in C. 

Therefore, C is a normal extension of R. 

ii) R is not a normal extension of . 

Solution: Consider a polynomial  

        

                       

                       

                       

Thus,  cannot split into linear factors in R as it has complex roots. 

Hence R is not a normal extension of . 

iii) Let  be an extension of a field  such that [ : ] = 2. Then  is a normal extension of . 

Solution: Let  be an extension of a field  such that [ : ] = 2.  

 is a finite extension of . 

Hence  is an algebraic extension.    

Let  

 There exists a minimal polynomial  such that  and . 

  

   

                      

                      

Therefore,   
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Thus  is a splitting field of the polynomial  

Hence  is a normal Extension of . 

iv) If   , then  is a normal extension of . 

Solution: Let  = . 

The polynomial in  having  as a root is .  

                  

                  

                  

                  

              

              

               

               

                

Thus, the polynomial in  having  as a root is  

Now =  

                       

Thus, the roots of  are . 

Since , all the roots of  are in Q . 

(In terms of , these roots are ). 

Therefore,  is a splitting field of   in ]. 
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Hence  is a normal extension of . 

v) Let  be a finite extension of . Then  is a normal extension of  if and only if  is a 

splitting field of a polynomial . 

Solution: Let  be a finite extension of . 

Then  =  ( ) where  

Note that each  is algebraic over . 

Let  be the minimal polynomial for  over  for all  = 1, 2, ……, n. 

Let  be a normal extension of . 

Then we have for each ,  is an irreducible polynomial over F with one root . 

Also  has all its roots in  as  is the normal extension of . 

Let  

Clearly  for all  =1, 2, ......, n. 

So, all the roots of  are in  and  is the smallest extension of  containing all the roots 

of  

Thus  =  ( ) is the splitting field of the polynomial  

Conversely, suppose that  is a splitting field of a polynomial  

Then  is a normal extension of  by the definition of normal extension. 

6.3  SUMMARY: 

This lecture imparted the basic concept of the splitting field of a family of polynomials over 
the base field namely the normal extension. In short normal extension contains all the roots of 
polynomials in that family. Some equivalent conditions were also given for an extension  of 
the base field  to be a splitting field of a family of polynomials over . Few illustrative 
examples were also given in this lesson for showing whether the given extension is normal or 
not for the benefit of reader. Normal extensions have applications in coding theory, 
cryptography and network security, primarily through their use in constructing and analysing 
error-correcting codes, building secure cryptographic systems and designing robust network 
protocols. In particular normal extensions are crucial in constructing algebraic codes, which 
are used for error detection and correction in data transmission and storage. 
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6.4  TECHNICAL TERMS: 

Splitting field: Let  be any field and  be any polynomial of degree . Then 

an extension  of  is called a splitting field of  over F, if 

 can be factorized into liner factors in  That is, 

     = ,   

 =  ( ). i.e.,  is generated by  and the roots   of  in . 

Irreducible polynomial: A polynomial  is called irreducible if the degree of 

and whenever , where  then  or 

. If a polynomial is not irreducible, it is called reducible. 

Algebraic element: Let  be an extension of a field F. An element  is called algebraic 

over  if there exists a non-constant polynomial  such that  

Minimal polynomial: The monic irreducible polynomial in  for which  will be a root is 

called the minimal polynomial of  over F. 

Algebraic Extension: An extension  of a field  is called algebraic if each element of  is 

algebraic over . 

Algebraically closed field: A field  is algebraically closed if it possesses no proper 

algebraic extensions. That is, if every algebraic extension of  coincides with . 

Normal extension: An extension  of a field  is called normal if  satisfies any one of the 

equivalent conditions of theorem 6.2.2 in this lesson. 

Splitting field of a family of polynomials: Let  be any field and  be a family 

of polynomials of degree  over . An extension  of  is said to be the splitting field of 

the family of polynomials , if 

 (i) Each  splits into linear factors in  

 (ii)  is generated over  by all the roots of the polynomials   

6.5  SELF- ASSESSMENT QUESTIONS: 

1. Show that  is a normal extension of . 



Centre for Distance Education   6.8      Acharya Nagarjuna University 

Ans: The minimal polynomial of  over  is . 

The polynomial splits completely in  as  

  =  

Therefore,  )is a normal extension of . 

2. Show that  ( ) is a normal extension of . 

Ans: The polynomial  has a root namely  =  in  ( ) and it splits completely 

 ( ) as  

Also, the polynomial  has a root namely  in  ( ) and it splits completely in 

( ) as =  

Thus  is a normal extension of . 

3. Show that  ( ) is not a normal extension of . 

Ans: The minimal polynomial of  over  is . 

     Also  

                           

This polynomial  has one real root  in ) and two complex roots.   

Since the complex roots are not in ), ) is not a normal extension. 

4. Show that ) is not a normal extension of . 

Ans: The minimal polynomial of  is . 

     Also -  

                         =   

Thus, the roots of -2 are   

Clearly  but the other two complex roots are not in  
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Therefore,  is not a normal extension of . 

5. Show that  ( ) is a normal extension of . 

Ans: The minimal polynomial of  over  is  

The roots of  in C are , -  and both of these two roots ). 

Hence  is a normal extension of . 

6. If  is not algebraic over  then show that  ( ) is not a normal extension of . 

Ans: Given  is not algebraic over  

Then  ( ) is not an algebraic extension of . 

Hence  ( ) is not a normal extension of . 

7. Find the smallest normal extension (up to isomorphism) of  ( ) in . 

Ans: The minimal polynomial of  is  and  

the minimal polynomial of  is . 

Thus, the smallest normal extension of  ( ) is the splitting field of 

 ( )( ).  

The splitting field of ( )( ) is  ( , i). 

Thus,  ( , i) is the smallest normal extension of  ( ) in . 

8. Define normal extension of a field  and give two examples. 

Ans: (Refer: Definition 6.2.4 and Examples 6.2.5) 

6.6  SUGGESTED READINGS: 

1. P. B. Bhattacharya, S. K. Jain and S. R. Nag Paul, Basic Abstract Algebra, Second 

Edition, Cambridge University Press,1995. 

2. I. N. Herstein, Topics in Algebra, Second Edition, John Wiley & sons, Inc,1975.  

3. Thomas W. Hungerford, Algebra, Springer-Verlag, New York. 

- Dr. P. Vijaya Saradhi 



LESSON- 7 

MULTIPLE ROOTS 
 
OBJECTIVE: 
 
 To find the multiplicity of the roots of a polynomial over a given field. 
 To construct some simple characterizations for an irreducible polynomial over a given 

field to have multiple roots. 
 To prove that over any given field all the roots of an irreducible polynomial have the 

same multiplicity.  
 
STRUCTURE: 
 
7.1   Introduction 

7.2  Multiple roots 

7.3  Summary 

7.4  Technical Terms 

7.5  Self Assessment Questions 

7.6  Suggested Readings 

 
7.1 INTRODUCTION:  
 
A multiple root (also called a repeated root) of a polynomial is a root that occur more than 
once in its factorization. For example, in the polynomial   is a 
double root (multiplicity 2) while  is a simple root (multiplicity 1). Mathematically a 
root r of a polynomial  is a multiple root if both  and  where  is the 
derivative of . Even through the study of polynomial equations started much earlier, it 
gained a formal algebraic structure through the works of Giralamo Cardino (solution of cubic 
equations) and Lodovico Ferrari (solution of quadratic equations). In the early 19th century, 
Evariste Galois developed a revolutionary frame work that connected field theory with group 
theory to explain the solvability of polynomial equations. One fundamental concept emerged 
in this context is the discriminant of a polynomial which closely relates to multiple roots. The 
discriminant of a polynomial is zero if and only if the polynomial has a multiple root. If the 
discriminant is not equal to zero, then the polynomial is separable. A polynomial is separable  
if it has no multiple roots. Multiple roots in Galois theory serve as a gateway to understand 
deeper structural properties of field extensions and the behaviour of polynomial equations. 
Practically this concept bridges abstract algebra with applications across modern 
mathematics, computer science and other fields. 
 
7.2  MULTIPLE ROOTS:  
 
In this lesson we discuss about the multiplicity of roots of a polynomial over a given field. 
First, we define the derivative of a polynomial. 
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7.2.1: Definition: Let  be a polynomial 

over a field F. We define the derivative of   denoted by  as .  

7.2.2: Remarks: 

1) We may have  but  need not be a constant always. For example, let 

  in a field of characteristic 2 then . 

2) The operation of derivative is a linear operation. 

7.2.3: Theorem:  where . 

Proof: Let  and be polynomials over a field F. 

Now where . Then                       

 

 

7.2.4: Theorem:  

Proof: Let  and be polynomials over a field F. 

Now .  

   

                                                                         

   

7.2.5: Definition: Let  be any polynomial over a field F and K be the splitting 

field of  over F. Let  be a root of . Then  in . If  is 

the highest power of  that divides  then  is called the multiplicity of .  

If , then  is called a simple root.  
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If , then  is called a multiple root.  

7.2.6: Theorem: Let  be a polynomial of degree   with  as a root. Then  is 

a multiple root if and only if . 

Proof: Let  be a polynomial of degree  with  as a root. 

Assume that  is a multiple root. 

Then  where  and  

  

. 

Therefore, . 

Converse: Suppose that . 

Since  is a root of , we have     (1) 

  

  

  

  

Thus,  is a root of  

Then , so that equation (1) becomes  

  

Therefore,   is a multiple root. 

7.2.7: Corollary1: Let  be an irreducible polynomial over F. Then  has a multiple 

root if and only if . 

Proof: Let  be irreducible over F. 

Assume that  has a multiple root, say . 

Then by above theorem 7.2.6, . 
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So,  is a root of both  and . 

To prove that  

If possible, suppose that  

Now since  is irreducible over ,  is the minimal polynomial of  over   

where a is the leading coefficient of .                                                                        

. 

Which is a contradiction ( , by definition of ). 

So, our assumption that  is wrong. 

Hence,  

Conversely, suppose that . 

  for all , a root of . 

Then by the above theorem, 7.2.6,  is a multiple root. 

7.2.8: Corollary 2: Any irreducible polynomial  over a field of characteristic zero has 

simple roots. Also, any irreducible polynomial over a field  of characteristic  has 

multiple roots if and only if there exists  such that  . 

Proof: Let  be an irreducible polynomial over . 

Suppose that  where  F 

To prove the corollary, we consider two cases. 

Case1: Let  be a field of characteristic zero. 

 no positive integer ‘n’ such that  for (i.e., ). 

To prove that  has simple roots. 

If possible, suppose that  is a multiple root of . 

Then by the above corollary 7.2,7, .                                                                                    
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 for all . 

 for all . ( ). 

Then  , a constant. 

Which is a contradiction to  is irreducible over  

So,  has no multiple roots when char  

Hence all the roots of  are simple when char  

Case 2: Let   be a field of characteristic . 

Then  is a least positive integer such that .  

Now since  is irreducible over  by corollary 7.2.7, we have that  is a multiple 

root of  

  

   

 either  (or)  

If , we get a contradiction.  

So,  for some positive integer k. 

    

So,  is a multiple root of  for some  when  

char F = . 

7.2.9: Theorem: If  is irreducible over , then all roots of  have the same 

multiplicity.  

Proof: Let  be an irreducible polynomial over . 

Let  be any two distinct roots of  with multiplicities  respectively. 

We prove that . 

Since   are the roots of an irreducible polynomial , we have  
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Let  be this isomorphism defined by                                                                                

  

Such that  and . 

Note that  is an embedding and can be extended to an embedding  

such that  and . 

Now  is fixed under  and  is an algebraic extension of . 

So  is an isomorphism. 

This isomorphism induces a ring homomorphism   

given by .  

Now . 

Let  

then   

 

=   =  

So,  and  

Now since  is a root of  with multiplicity , we have  

 

Now  
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 ( ).  

Similarly, we can prove that  by interchanging the roles of  

Therefore,  . 

Hence all the roots of  have the same multiplicity. 

7.2.10: Corollary: If  is irreducible over F,  then , where 

 are the roots of  in its splitting field over F , and k  is the multiplicity of each root. 

Proof: Let  be irreducible over . 

Also let  be the distinct roots of  in its splitting field over F  and a be the 

leading coefficient of  . 

Then by the above theorem 7.2.9 all the roots of  have the same multiplicity say . 

 . 

7.2.11: Example: Let  be the field of rational functions in one variable  over a 

field  of characteristic 3. (Indeed,  is the field of fractions of the polynomial ring ). 

Then the polynomial  in the polynomial ring  over  is irreducible over K  and 

has multiple roots. 

Solution: Let  and let char . 

Consider the polynomial . 

To show that  is irreducible over  and has multiple roots. 

Now . 

So  is reducible over  if and only if it has a root in . 

Let  be a root of . 

Then   where ,  and . 
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. This is a contradiction. 

 is not a root of  

 has no root in . 

 is irreducible over  

Let  be any two roots of  in its splitting field over . 

Then we have  and  

      

Thus, all the roots of  are same.  

Hence  has a multiple root of multiplicity 3.  

Therefore,  has multiple roots.  

7.3  SUMMARY: 

This lesson provided the concept of multiplicity of the roots of a polynomial over any given 
field. If the multiplicity of a root is one then it is called a simple root and if it is greater than 
one it is called a multiple root. The derivative of a polynomial is also defined, which plays a 
key role in the theory of multiple roots of a given polynomial. Some characterizations were 
also developed to decide whether a root  is a multiple root of the given polynomial or not 
based on the concept of a derivative of a polynomial. It was also shown that multiplicity of all 
the roots of an irreducible polynomial over a given field is same. Multiple roots have several 
significant applications in real life areas like cryptography, computer science and error 
correction especially when it intersects with the structure of polynomials over finite fields. 
Particularly in error correcting codes multiple roots affect the structure and decoding of 
certain codes. The codes like BCH and Reed-Solomon codes are constructed using 
polynomials over finite fields. If a generator polynomial has multiple roots, some algorithms 
fail or behave unpredictably. Ensuring distinct roots (i.e., square free polynomials) guarantees 
error detection and correction strength. 
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7.4  TECHNICAL TERMS: 

Derivative of a polynomial: Let   be a polynomial over a field. We define 

the derivative of  denoted by  as  . 

Splitting field: Let  be any field and  be any polynomial of degree . Then an 

extension  of  is called a splitting field of  over , if 

 can be factorized into linear factors in . That is, 

 ,   and . 

, that is  is generated by  and the roots  of  

in . 

Multiplicity of a root of a polynomial: Let   be any polynomial over a field  

and  be the splitting field of  over . Let  be a root of . Then  

in . If  is the highest power of  that divides  then  is called the 

multiplicity of . 

If  the  is called a simple root. 

If , then  is called a multiple root. 

Characteristic of a field: Let  be any field. If there exists a positive integer ‘ ’ such that 

, the smallest such positive integer is called the characteristic of a field F. If 

no such positive integer exists, then the characteristic of field  is zero. 

Irreducible polynomial: A polynomial  is called irreducible if the degree of 

 and whenever , where  then  or 

. If a polynomial is not irreducible, it is called reducible. 

Minimal polynomial: The monic irreducible polynomial in  for which u will be a root is 

called the minimal polynomial of u over . 

Algebraic element: Let  be an extension of F. An element  is called algebraic over  

if there exists a non-constant polynomial  such that . 

Algebraic Extension: An extension  of a field  is called algebraic if each element of  is 

algebraic over  
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7.5  SELF- ASSESSMENT QUESTIONS: 

1) Verify that  

Ans: Let   and    

Then  

          (where r= max {deg , deg  }) 

By definition of the derivative, 

  

      

    

2) Show that  has a repeated root and solve it. 

Ans: Let   

   . 

Now  

     

     . 

Thus  are the roots of . 

Now  

is a root of . 

Thus 1 is a common root of  and . 

 is a repeated root (or multiple root) of . 

Therefore, roots of  are 1, 1, . 

 is a factor of . 

 divides . 

Thus  

Hence the roots of  are 1, 1, and -1 and out of which 1 is a repeated root of . 
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3) Show that  has no multiple roots. 

Ans: Let                                                                                                                      
 

Now      . 

Thus 0, 2 are the roots of . 

Now  

   . 

So, 0, 2 are not the roots of . 

 and  have no common root.  

Hence  = 0 has no multiple roots. 

4) Solve the equation . given that it has a repeated 
root. 

Ans: Let   

  

Given that  has a repeated root. 

Therefore,  and  has at least one common root. 

Now  

      

   

   

   are the roots of . 

Now  

            

Thus -3 is a root of . 

  is a common root of  and .  

 is a multiple root of .  
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 is a factor of  (or)  divides . 

Thus, by ordinary method of division (or short division), we have 

. 

Hence the roots of  are  and 3. Also, -3 is a multiple root of  . 

5) Define the derivative of a polynomial over a field  and prove that                                           

i)  

. 

Ans: (Refer theorem 7.2.3 and theorem 7.2.4) 

6) If  is a polynomial of degree  over a field  with  as a root, then prove that  is a 
multiple root if and only if  

Ans: (Refer theorem 7.2.6). 

7) If   is an irreducible polynomial over a field , then show that all the roots of  
have the same multiplicity. 

Ans: (Refer theorem 7.2.9). 

8) If  is an irreducible polynomial over a field , then prove that   has a multiple 
root if and only if  

Ans: (Refer theorem 7.2.7).  

7.6  SUGGESTED READINGS: 

1. P. B. Bhattacharya, S. K. Jain and S. R. Nag Paul, Basic Abstract Algebra, Second 

Edition, Cambridge University Press,1995. 

2. I. N. Herstein, Topics in Algebra, Second Edition, John Wiley & sons, Inc,1975.  

3. Thomas W. Hungerford, Algebra, Springer-Verlag, New York. 

- Dr. P. Vijaya Saradhi 



LESSON- 8 

FINITE FIELDS 
 OBJECTIVE: 
 
 To understand the concepts of a prime field and a Galois field. 
 To show that finite fields (or Galois fields) are splitting fields of suitable polynomials over 

 

 To prove the existence of a field with  elements for any prime  and a positive integer 
. 

 
STRUCTURE: 
 
8.1   Introduction 

8.2   Finite fields 

8.3   Summary 

8.4   Technical Terms. 

8.5   Self Assessment Questions 

8.6   Suggested Readings. 

 
8.1 INTRODUCTION:  
 
It is quite interesting to study finite fields rather than infinite fields. Around 1830's, Galois 
introduced finite fields implicitly in his work on solving polynomial equations. At that time, 
he didn't call them as "fields" or "Galois fields". The terminology and formal Structure came 
later in the 19th century. Ferdinand Frobenius (1879) formally described the structure of 
finite fields. A finite field or a Galois field is a field with a finite number of elements. Every 
finite field has  elements where  is a prime number and  is a positive integer. For 
example,  is the simplest prime field with arithmetic mod 2. when , the field 

 is constructed as an extension of . It is built by using irreducible polynomial of degree 

 over . Finite fields have applications in various fields like Coding Theory, Cryptography 

and Computer Science etc.  
 
8.2  FINITE FIELDS:  
 
In this lesson we show that an irreducible polynomial over a finite field has only simple roots.  
We first define the concept of prime field for this purpose. 
 

8.2.1 Definition: 

A field  is called a prime field if it has no proper sub field. 

8.2.2: Examples 

i.  is a prime field. 

ii.  or  is a prime field where  is prime. 
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8.2.3 Remark: Every field  contains a prime field. 

Proof: Let  be any field. 

Case1: Suppose  has no proper sub field. 

Then  itself is a prime field. 

Case2: Suppose  has proper sub fields say , , …., , ….  

Let  be the intersection of the family of sub fields of .  

That is,  

Then  is the smallest sub field of F. 

Also  does not contain any proper sub field. 

So, K is a prime field of F. 

8.2.4: Theorem: The prime field of a field  is either isomorphic to Q or to  where  is a 

prime. 

Proof: Let  be a field. 

Define a mapping   by  is the unity of . 

Now for any ,                                                                                                        

                                                  

. 

Then f is a homomorphism of rings and                                                                                      

 

Case1: Suppose that  

So, char  

We know that  if and only if  is one-one. 

Then  is an embedding of  into . 

This embedding of  can be extended to an embedding  

 by defining  

Thus  embeds in  and the prime field of  is isomorphic to . 

Case2: Suppose that  

Then  is an ideal of   

Since  is a PID, every ideal in  is a principal ideal. 

 is a non-zero principal ideal in .  

 By fundamental theorem of homomorphism,  
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.  

As  has nonzero divisors. 

 has no nonzero divisors 

  is a prime number , say. 

 is a prime field. 

Therefore,  is a sub field of  and  

 is also a prime field of . 

Hence the prime field of a field  is isomorphic to  where  is a prime. 

8.2.5: Theorem: Let  be a finite field. Then   

i) The characteristic of  is a prime number  and  contains a sub field  . 

ii) The no. of elements in  is  for some positive integer . 

Proof: Let  be a finite field.   

i) We know that for any field , either char  or  where  is a prime number. 

Since  is a finite field, char . 

We know that every field contains a prime field. 

So,  contains a prime field denoted by . 

By Theorem 8.2.4 above   

Hence the characteristic of  is a prime number  and  contains a sub field   

This proves part (i) 

ii) By part(i), we have that  . 

So, the number of elements in  is  

To prove(ii), we regard  as a vector space over its prime field . 

Since  is finite,  is a finite dimensional vector space over . 

Then   for some positive integer . 

Let  be a basis of F over Fp.  

Any element  can be uniquely expressed as  

 where , . 
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Here each  in this expression for  can be chosen in  ways and there are  such s in 
this expression.  
Hence the no. of elements in  is  for some positive integer .  
8.2.6: Notation: A finite field  is also called a Galois field.  A Galois field with  elements 

is usually written as GF ( ) 

8.2.7: Theorem: A finite field  with  elements is the splitting field of  . 

Consequently, any two finite fields with   elements are isomorphic.  
Proof: Let  be a finite field with  elements.  
Then  is a multiplicative group of order  

  

 (or) . 

  satisfies the equation  and also  satisfies the equation 

 

Now because  has only  roots, it follows that  coincides with the set of 

roots of . 

F is the splitting field of  over . 

As a consequence of this now we will now prove that any two finite fields with  elements 

are isomorphic.  

Let  and  be two finite fields with elements. 

By Theorem 8.2.5.,  and  contains sub fields  and  such that  

  and  .  

This implies . 

Moreover, by the above part,  is the splitting field of nd  is the splitting 

field of  

But since , it follows that  by uniqueness of splitting fields.   

Hence any two finite fields with elements are isomorphic. 
8.2.8: Theorem: For each prime  and each positive integer , the roots of 

 in its splitting field over  are all distinct and form a field  with  

elements. Also  is the splitting field of  over  

Proof: Let  be any prime number and  be a positive integer. 

Consider the polynomial . 

Then  
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Let  be any root of  and  

. 

  is a simple root of . 

Thus, all the  roots of  are distinct. 

Let . 

Since  has  distinct roots,  contains  elements. i.e,  

Now we will show that  forms a field with  elements. 

For this it is enough to show that . 

Let  and  and  

    and . 

Now since,  are the roots of , we have . 

Consider  

  

         (1) 

Also . 

         (2) 

From (1) and (2)  and  are the roots of  over . 

 and . 

  is a field with  elements  

Thus, all the roots of  over  forms a field  with  elements. 

Hence, by above theorem 8.2.7,  is the splitting field of the polynomial  over .  

8.2.9: Theorem: If  is a field with  elements and m is a positive integer, then there exists 
an extension field  such that , and all such extensions are isomorphic. 
Proof: Let  be a finite field with  elements and  be any positive integer. 

Consider the polynomial . 

Note that for any   because the multiplicative group of  is of order 

. 

This implies  ( ) 

 (or)  

  satisfies the polynomial . 

  is a root of  
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Thus, every element of  is a root of . 

Now let  be the set of all  roots of  

Then by the above theorem 8.2.8, all the roots of  are distinct and forms a field. 

Therefore,  is a field with elements. 

Hence  is an extension of  and . 

Also, we have  

  

  

  

Let  be another extension of  such that . 

Then  will be a field with elements. 

Thus  are both finite fields with elements. 

Therefore,  

Hence all such extensions of  are isomorphic. 

8.2.10: Note: Let  and  be the elements of a finite abelian group  of orders  and  
respectively. Then there exists an element  whose order is the l.c.m of  and . 

8.2.11: Theorem: The multiplicative group of nonzero elements of a finite field is cyclic. 

Proof: Let  be a finite field. 

Consider the multiplicative group of nonzero elements of  namely,  

Now  is a finite group. 

Let   be the l.c.m of the orders of all elements in  

By the above note 4.2.10,  an element  such that  

Now by the choice of , we have that  

  

 Every element of  satisfies the polynomial .  

Since the polynomial  has at most  distinct roots in , it follows that the no.of 

elements in  that is, .       (1)  

Further note that as , we have  are all distinct and belong to  

i.e.,  

  ------------ (2). 

From (1) and (2),  
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Hence  is a cyclic group. 

8.2.12: Corollary: Let  be a finite extension of a finite field . Then  for some 

. 

Proof: Let  be a finite extension of a finite field . 

Then  is a finite field. 

By the above theorem 8.2.11 the multiplicative group  is cyclic where . 

i.e.,  for some   

Also   

 for some . 

8.2.13: Theorem: Let  be a finite field. Then there exists an irreducible polynomial of any 
given degree  over . 
Proof: Let  be a finite field and  be any positive integer. 

Then  an extension  of such that . 

Now since  is a finite extension of , by the above corollary 8.2.12,  

  for some . 

Also, because  is a finite extension of ,  is algebraic over . 

Let  be the nominal polynomial of   over . 

Then   

But since  and , we have   

  is an irreducible polynomial of degree  over . 

8.2.14: Examples: 
1) Show that a finite field  of  elements has exactly one subfield with  elements for 
each divisor  of .  
Solution: First we state a result in group theory: A cyclic group of order  has a unique 
subgroup of order ‘ ’ for each divisor  of . 
Let  be a finite field with  elements. 
Then  is a cyclic group of order .Now for each divisor  of , 

. 

 is a divisor of the order of the group  which is cyclic. 

 has a unique subgroup of order  say  (  by the result stated above) 

So, for all ,  (or) . 

 is a root of  . 

Hence  (say) is the set of all roots of which forms a field 

contained in . 
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 is a subfield of  with  elements i.e., . 

Now let  be any other subfield of  with  elements. 

Then  is a subgroup  of order  

 (  by the uniqueness of ) 

. 

Hence  has exactly one subfield with  elements for each divisor  of . 

2) If the multiplicative group  of nonzero elements of a field  is cyclic then  is finite. 

Solution: Let the multiplicative group   of nonzero elements of a field  be cyclic. 

Then  for some . 

If  is finite, then  is finite and the proof is complete. 

So assume that  is an infinite cyclic group. 

Case 1:  

Then we have  where  is the subfield  of . 

Consider the element  

Then  or  

If  the  is finite 

Which is a contradiction to  is infinite. 

If  then  

 where  is some positive or negative integer. 

If  is positive then  satisfies the polynomial . 

If  is negative, i.e., . 

Then . 

 satisfies the polynomial  

Thus, in both cases, either  is positive or negative, we have that the minimal polynomial of 

 over  is of finite degree. 

 degree of minimal polynomial of  over  = finite. 

 is finite. 

  is a finite field.  

  is finite, which is a contradiction to  is infinite. 

So, either the characteristic of  is zero or  must be finite. 

Case2: . 
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Then we have . 

So, we have . 

 where  is some positive or negative integer. 

 . 

 is finite. 

 is finite. 

 is finite, which is a contradiction to  is infinite. 

So, our assumption that  is infinite is wrong.  

 is finite. 

  is finite. 

Hence  is a finite field whenever  is cyclic. 

3) If  is an irreducible polynomial over a finite field , then all the roots of  

are distinct. 

Solution: Let  be a finite field with  elements. 

Also let  be an irreducible polynomial over . 

To prove that all the roots of  are distinct. 

If possible, suppose that  has multiple roots. 

We know that  has multiple roots if and only if 

        (*) 

Since ,  

Set  then  

  

 

Substituting  in (*), we have 

    

which is a contradiction, because  is irreducible. 

Hence,  must have distinct roots. 

4) The group of automorphisms of a field  with  elements is cyclic of order  and 

generated by , where  ( ). 

Solution: Let   be a finite field with  elements. 

Also let  denote the group of automorphisms of . 
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Define  as  

 is a homomorphism: For any , 

  

Similarly,  

 is a homomorphism. 

 is one-one: For every , 

  

    

    

    

 is one-one. 

 is onto: since ,  is one-one and  is finite, we have  is onto. 

Thus . 

Now consider  

    

    

    

                                                . 
    . 
    . 
   .  

  

  

Now we will show that . 

Note that as  is a finite field, the multiplicative group  of  is cyclic where  

Let  and we have  where  is a subfield of  with  elements. 

Let  be the minimal polynomial of  over . 

Then  is an embedding and may be extended to an embedding  (or) 

. 

Now since  is a splitting field of  over , we have that  is a normal 

extension of . 

Hence, the embedding  that fixes  is an automorphism of   
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This will then give us all the automorphisms of F, because any automorphism of F keeps each 
element of   fixed. 

Also, the number of such extensions of  is equal to the number of distinct roots of the 
minimal polynomial. 

Note that as  and , we have  

 ( ). 

 The number of distinct roots of  

Now since  is an irreducible polynomial over the finite field ,  has all simple roots. 

Hence, the number of extensions of  is equal to  and each of these  are 
automorphisms of . 

Thus, the order of the group  is . i.e., . 

In the beginning, we have showed that  an element  such that . 

Hence,  is a cyclic group generated by .i.e.,   

 

8.3  SUMMARY:  
 

This lesson provided the basic idea of prime fields and some properties of finite fields. We 
have shown that the number of elements in a finite field is  where  is a prime number and  

 is a positive integer. A finite field (or Galois field) with  elements is denoted by . 
It was proved that a finite field  with  elements is the splitting field of  

and hence any two finite fields with  elements are isomorphic. We have also established 
the existence of a finite field with  elements for any given prime  and any positive integer 

. It was also verified that the multiplicative group of nonzero elements of a finite field is 
cyclic. Finite fields have useful applications in various fields like Cryptography, Coding 
theory and Computer networks, Digital signal processing, Random number Generation and 
Quantum computing etc. In particular, these are fundamental in the design and analysis of 
error-correcting codes, which are used to ensure reliable data transmission. They also play a 
crucial role in various cryptographic algorithms, including elliptic curve cryptography and 
RSA, due to their unique properties.  
 

8.4  TECHNICAL TERMS: 

 

Prime field: A field  is called a prime field if it has no proper subfield. 

Notation: A finite field or Galois field with  elements is denoted by . 

Irreducible polynomial: A polynomial  is called irreducible if  and 

whenever , where  then  or . 

If a polynomial is not irreducible, it is called reducible. 

Splitting field: Let  be any field and  be any polynomial of . 
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Then an extension  of   is called a splitting field of  over , if  

i)  can be factorized into linear factors in . That is  

 and . 

ii) , that is  is generated by  and the roots  of  

in . 

Minimal polynomial: The monic irreducible polynomial in  for which  will be a root is 

called the minimal polynomial of . 

Algebraic element: Let  be an extension of F. An element  is called algebraic over  

if there exists a non-constant polynomial  such that . 

Algebraic extension: An extension  of a field  is called algebraic if each element of  is 

algebraic over . 

Normal extension: An extension  of a field  is called normal extension if  satisfies any 

one of the following equivalent conditions.  

i) Every irreducible polynomial in  that has a root in  splits into linear factors in E. 

 is the splitting field of a family of polynomial in . 

iii) Every embedding  of  into  that keeps each element of  fixed maps  onto  (or,  
may be regarded as an automorphism of ). 

Simple and multiple roots: Let  be any polynomial over a field  and  be the 

splitting field of  over . Let  be a root of . Then  in . 

If  is the highest power of  that divides  then  is called the multiplicity 

of . If , then  is called a simple root. If , then  is called a multiple root. 

 

8.5  SELF- ASSESSMENT QUESTIONS: 
 

1) If  is a finite field of characteristic , show that each element  of  has a unique pth root, 

 in . 

Ans: Let  be a finite field of characteristic . 

So, assume that  for some . 

Let . 

If , then  

If , then  since  is a field. 

Since  is a multiplicative group with  elements, we have . 

This implies  . 
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Let  

  

 is a pth root of  in . 

Moreover, this  is unique pth root of  in . 

For, let  be any other element such that . 

Then . 

Thus  is the unique pth root  in . 

Since,  was arbitrary, every element  has a unique pth root  in . 
 

2) Show that  is irreducible over .  

Ans: Let  

  

So, the roots of  are distinct. 

Let  be a root of  in the algebraic closure of . 

Then  is also a root of  

For,  

So, if  is a root of , then  is also a root of . 

Thus the  roots of  may be written as  . 

To prove that  is irreducible over . 

Let  

Then all the roots  lie in . 

 must be a root of  which is not true. 

Thus . 

This shows that  is a splitting field of  over  and  

Hence  is irreducible over . 
 

3) Find the generator for the multiplicative group of a field with 8 elements. 

Ans: By theorem 8.2.7, the Galois field with 8 elements is the splitting field of  over 
. 

Let . Then . 

Clearly  is a multiplicative group of order 7 which is cyclic and is generated by 
any element  (clearly  since ). 



Centre for Distance Education   8.14      Acharya Nagarjuna University 

So,  is a generator for the multiplicative group  of a field  with 
8 elements where  with  and 

. 
 

4) Construct a field with 4 elements. 

Ans: Consider the polynomial  

Clearly  has no root in . 

So,  is irreducible over . 

Hence the required field is  

                                                          

                               =  where  

5) Define a prime field and give two examples. 

Ans: (Refer Definition 8.2.1 and Examples 8.2.2). 

6) Prove that the prime field of a field  is either isomorphic to  or to  where  is a prime. 

Ans: (Refer theorem 8.2.4). 

7) Prove that any finite field  with  elements is the splitting field of  

Ans: (Refer theorem 8.2.7). 

8) Show that there exists a field with  elements for any prime  and positive integer . 

Ans: (Refer theorem 8.2.8). 

9) Show that there exists an irreducible polynomial of any given degree  over . 

Ans: (Refer theorem 8.2.13). 

10) Prove that the multiplicative group of non-zero elements of a finite field is cyclic.  

Ans: (Refer theorem 8.2.11). 
 

8.6  SUGGESTED READINGS: 
 

1. P. B. Bhattacharya, S. K. Jain and S. R. Nag Paul, Basic Abstract Algebra, Second 
Edition, Cambridge University Press,1995. 

2. I. N. Herstein, Topics in Algebra, Second Edition, John Wiley & sons, Inc,1975.  
3. Thomas W. Hungerford, Algebra, Springer-Verlag, New York. 
 

Dr. P. Vijaya Saradhi 

 

 



LESSON- 9  

SEPARABLE EXTENSIONS 
 

OBJECTIVE: 
 

 To know the concepts of separable extension and simple extension. 
 To get the idea of a perfect field. 
 To establish a necessary and sufficient condition for the finite extension to be a simple 

extension. 
 

STRUCTURE: 
 

9.1  Introduction 

9.2  Separable Extensions 

9.3  Summary 

9.4  Technical terms 

9.5  Self Assessment Questions 

9.6  Suggested Readings 
 

9.1  INTRODUCTION:  
 

The concept of separable extensions appeared indirectly during the time of Evariste Galois in 
1830 while studying the roots of polynomial equations. At that time, the formal term 
“separable” was not introduced. Later Steinitz around 1910 formally introduced separable 
elements and separable extensions in the study of field theory. An interesting question in 
solving polynomial equations is when do polynomials will have distinct roots. A separable 
polynomial is one whose roots are all distinct (i.e., no repeated roots) in its splitting field. An 
extension  of a field  is a separable extension if every element of E is a root of a separable 
polynomial over F. In fields of characteristic zero (like ) all extensions are separable. 

For example,  is a separable extension of Q. Separable extensions are used in the real-

world areas like Cryptography, Algebraic Geometry, Coding theory, Data Storage and 
Quantum Computing etc. 
 

9.2  SEPARABLE EXTENSIONS:   
 

9.2.1: Definition: An irreducible polynomial  is called a separable polynomial if 
all its roots are simple. Any polynomial  is called separable if all its irreducible 
factors are separable. A polynomial that is not separable is called inseparable. 
 

9.2.2: Definition: Let  be an extension of a field . An element  that is algebraic over 
 is called separable over  if its minimal polynomial over  is separable. 
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9.2.3 Definition: An algebraic extension of a field  is called a separable extension if each 
element of  is separable over . 

9.2.4: Remarks: 

1) Any polynomial over a field of characteristic zero is separable. 

Proof: Let  be a polynomial over a field  of characteristic zero. 

 where each  is an irreducible polynomial over . 

If char , then any irreducible polynomial over  has simple roots. 

  Each  has simple roots. 

 Each  is a separable irreducible polynomial. 

 is a separable polynomial. 

Hence any polynomial over a field of characteristic zero is separable. 

2) If  is a field of characteristic zero then any algebraic extension of  is separable. 

Proof: Let  be a field with char  and  be an algebraic extension of . 

 Every element of  is algebraic over . 

Let   

  is algebraic over . 

  a minimal polynomial  with  as a root. 

  is a separable polynomial. 

  is a separable element. 

  is a separable extension of .  

Hence any algebraic extension of  is separable when char F = 0. 

3) Any algebraic extension of a finite field is separable. 

Proof: Let  be an algebraic extension of a finite field  and let . 
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  is algebraic over .  

  a minimal polynomial  with  as a root. 

We know that all the roots of an irreducible polynomial over a finite field are distinct. 

 All the roots of  are simple. 

  is a separable polynomial. 

  is a separable. 

Hence  is a separable extension. 

Thus, any algebraic extension of a finite field is separable. 

9.2.5: Example: If  is the field of rational functions over a field  of characteristic 

3, then the polynomial  is irreducible over . Also  has all its roots 

equal, each being , say. Hence  is not a separable extension of . 

9.2.6: Definition: A field  is called perfect if each of its algebraic extensions is separable. 

9.2.7: Example:  is a perfect field. 

For, if  is any algebraic extension of , then for every ,  is separable over . 

 is a separable extension of   for every algebraic extension  of . 

Hence  is perfect. 

9.2.8: Note: Any field of characteristic zero is perfect and any finite field is also perfect. 

9.2.9: Definition: An extension  of a field  is called a simple extension if  for 

some  . 

9.2.10: Note: Any finite extension of a finite field is a simple extension. 

i.e., if  is a finite field and  be any finite extension of  then  for some . 

9.2.11: Theorem: If  is a finite separable extension of field  then  is a simple extension 

of . 

Proof: Let  be a finite field and  be a finite separable extension of . 
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First note that if  is a finite field then any finite extension  of  is simple. 

So, consider the case when  is infinite. 

Now as  is a finite extension, we have  where  are 

algebraic over , for each . 

Now we prove the result for  and then the result will follow by induction. 

So, let  where . 

Let  and  be the minimal polynomials for  respectively, over . 

Let the roots of  be  and the roots of  be . 

Since  is a separable extension of , all the roots of   and  are distinct. 

  are distinct and  are distinct. 

Since  is infinite,  such that  

 for  and  

 for  and  

Now  and . 

 for  and . 

Now we prove that . 

For this we define . 

Then  is a root of . 

Consider  for  and . 

Hence  is a root of  and no  is a root of . 

Also, we have  and  with  as the common root. 



Galois Theory      9.5          Separable Extensions 

Let  be the minimal polynomial of  over  then  and 

. 

Thus, any root of  is a root of  as well as a root of . 

But the only common root of  and  is . 

Therefore,  

  

 and  

 and  

 and  

  

By definition of , we have  

Therefore,  

By the above argument, we have proved the result for  

i.e., if  then  for some  

Thus, by induction, we have that if  then  for some  

Hence,  is a simple extension of . 

9.2.12: Theorem: Let  be a finite extension of a field , then the following are equivalent. 

 for some  

ii) There are only a finite number of intermediate fields between  and . 

Proof: Let  be a finite extension of a field . 

 : Assume (i). i.e.,  for some . 

         is a finite extension of . 

        is algebra over  . 
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       a minimal polynomial  of  over  with  as a root (i.e., ). 

Now let  be the subfield of  containing . 

i.e.,  is the intermediate field between  and . 

Let  be the minimal polynomial of  over . 

Then since  and , . 

 Let  be the subfield of  containing  and the coefficients of the polynomial  then 

, being irreducible over  is also reducible over  

 is the minimal polynomial of  over . 

Since , we get . 

Consider  

Also  

  

 

Now let  is a subfield of  containing  i.e., }. 

That is,  is the set of all intermediate fields between  and . 

Also let  be the set of all divisors of . i.e.,  

Because there are only finitely many divisors of , the set  is finite. i.e.,  is finite. 

Define a mapping  by , the minimal polynomial of  over  in . 

Then by the above argument  is one-one. i.e., ,  

Now since  is one-one, we have  and hence  is finite as  is finite. 

Hence there are only a finite number of intermediate fields between and  when  . 

Thus           (1) 
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: Assume that there are only a finite number of intermediate fields between  and 

. 

Then as  is a finite extension of ,  for some  by note 9.2.10. 

So, assume that  is infinite. 

We first prove that for any 2 elements  there exists  such that . 

For each , define  

Then for each of these , the fields  are the intermediate fields between  and . i.e.,     

 

Now as  is infinite, we have infinitely many such . 

Because there are only a finite number of intermediate fields between  and (by 

hypothesis), so all the fields  need not be distinct. 

  

  

  

  

  

Thus,  

             

By definition of ,  

Therefore,  and hence our assertion is proved. 

We now choose  such that  is as large as possible. 

Then we claim that . 

Otherwise, let  but  
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Then we can find an element  such that  contains both  and  with . 

This contradicts the choice of . 

Hence . 

Therefore,           (2) 

Thus from (1) and (2), the conditions  and  in the theorem are equivalent. 

9.2.13: Examples: 

1) Let  be an extension of a field  and let  be algebraic over . Then  is separable 

over  if and only if  is a separable extension of . 

Solution:  Let  be an extension of  and  be algebraic over . 

Assume that  is a separable extension of . 

Then as , we have  is separable over . 

Conversely, suppose that  is separable over . 

To show that  is a separable extension of . 

i.e., to show that ,   is separable over . 

Now let  

We show that  is separable over . 

We have . 

Let  be the minimal polynomial of  over  that has  distinct roots. 

Let  be an algebraically closed field and  be an embedding 

Note that  can be extended from  and no. of such extensions of  to , 

the no. of distinct roots of  over . 

So, there are  distinct extensions, say  of  to . 

Now  is algebraic over  and hence  is algebraic over . 
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  a minimal polynomial  of  over  such that . 

Suppose  has  distinct roots i.e., . 

Then by the same argument as above, each  has exactly  extensions  

 to . 

So clearly, the set of  embeddings  are the only possible 

embeddings from  to  that extend . 

Now since  is algebraic over ,  a minimal polynomial  of  over  such that 

 = no. of distinct roots of = no. of extensions of  to 

.  

  

= no. of distinct roots of . 

Thus  is a separable polynomial. 

Hence,  is separable over . 

  is separable over  

 is a separable extension of . 

2) If  is a field of characteristic , then  is perfect if and only if  (i.e., if and 

only if every element of has pth root in ). 

Solution: Let  be a field of characteristic  

Assume that  is perfect. 

 Every algebraic extension of  is a separable extension of . 

To prove that . 

It is enough to prove that , such that   

Let  and consider  
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Let  be a root of  in some extension field  of . 

Then  and  i.e.,  and    

Since  is a root of  is a factor of  in . i.e.,   

In , we have  

  and hence   

Since  is an algebraic extension of . 

 is a separable extension of  and . 

 is a separable element over  in . 

 has no multiple roots. 

 and  

Since , it follows that  

So,  an element  such that . 

Thus  such that . 

Hence . 

Conversely, suppose that . 

To prove that  is perfect. 

Let  be an algebraic extension of  and  

 is algebraic over . 

 a minimal polynomial  of  over  

It is enough to prove that all the roots of  are simple. 

Suppose  has a multiple root. 

  for some polynomial , i.e.,  . 



Galois Theory      9.11          Separable Extensions 

From hypothesis, for all   such that  

  

 is reducible, a contradiction to the minimality of . 

Thus, all the roots of  are simple. 

 is a separable element over  for all . 

 is a separable extension of  . 

Hence,  is perfect. 

3) Let  be three fields such that  is a finite separable extension of , and  is a 

finite separable extension of . Then  is a finite separable extension of . 

Solution: Let  be three fields such that  is a finite separable extension of , and 

 is a finite separable extension of . 

 is a finite extension of . 

To prove that  is a finite separable extension of . 

Now since  is a finite separable extension of ,   such that . 

Similarly, since  is a finite separable extension of ,  such that . 

  

Let  but  

We prove that  is separable over . 

Let  the minimal polynomial of   over  with degree  

  the minimal polynomial of   over  with degree  

  the minimal polynomial of  over  with degree  

  the minimal polynomial of   over  with degree  
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Let  be an embedding of  into an algebraically closed field .  

Because  is separable over  there are exactly  extensions ,   of  to .  

i.e.,  . 

Also, since  is separable over , there are exactly  extensions of each  to .  

i.e.,  . 

Let us call these extensions as  where . 

Thus, there are precisely  extensions of  to Where , 

 (these are via ). i.e., ------ (1) 

Now by considering extensions  to  via  we obtain similarly that there 

are precisely  extensions to . i.e.,  ---

(2) 

From (1) and (2),  

Suppose  is not separable over .  

Then the no. of elements of  to  is  

 the no. of extensions of  to  is , a contradiction. 

Thus  is separable over . 

Hence  is a finite separable extension of . 

9.3  SUMMARY: 

This lesson gives the basic idea of a separable polynomial over a field  and hence the 
concept of a separable extension of a given field . It was shown that any algebraic extension 
of a finite field is separable. The concept of a perfect field and a simple extension of a field  
are also given. It was also understood that perfect fields are fields of characteristic zero and 
finite fields. We have also remarked that infinite fields of characteristic have 
inseparable extensions and hence such fields are not perfect in general. A necessary and 
sufficient condition was also provided for a finite extension to be a simple extension. Some 
examples of separable and non-separable extensions are also given for better understanding 
of the reader. Even though field extensions and separability sound abstract, separable 
extensions matter a lot in the real-world areas like Cryptography, Error-Correcting Codes, 
Algebraic Geometry, Robotics, Coding Theory, Data Storage and Quantum computing etc. In 
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particular separable extensions are used in the construction of error correcting codes which 
are essential for reliable data transmission and storage. They also play a role in the 
development of secure communication protocols and algorithms ensuring confidentiality and 
integrity of data. 
 

9.4  TECHNICAL  TERMS: 

Irreducible polynomial: A polynomial  is called irreducible if  
and whenever , where  then  or . If a 
polynomial is not irreducible, it is called reducible. 

Minimal polynomial:  The monic irreducible polynomial in  for which  will be a root 
is called the minimal polynomial of  over . 

Algebraic element:  Let  be an extension of a field F. An element  is called algebraic 
over  if there exists a non-constant polynomial  such that . 

Algebraic Extension: An extension of a field  is called algebraic if each element of  is 
algebraic over . 

Separable polynomial: An irreducible polynomial  is called a separable 
polynomial if all its roots are simple. Any polynomial  is called separable if all 
its irreducible factors are separable. A polynomial that is not separable is called inseparable.  

Separable element:  Let  be an extension of a field . An element  that is algebraic 
over  is called separable over  if its minimal polynomial over  is separable. 

Separable Extension: An algebraic extension of a field  is called a separable extension if 
each element of  is separable over . 

Perfect field: A field  is called perfect if each of its algebraic extensions is separable. 

Simple Extension: An extension  of a field  is called a simple extension if  for 
some . 

Algebraically closed field: A field  is algebraically closed if it possesses no algebraic 
extensions. That is if every algebraic extension of  coincides with . 
 

9.5  SELF -ASSESSMENT QUESTIONS: 

 

1) Prove that   

Ans: clearly        (1) 

So, it is enough to show that  

Consider  
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So  

 and  

  and  

  and  and hence . (2) 

From (1) and (2),  

2)Prove that every extension of  is separable. 

Ans: We know that  is a field of characteristic zero and every irreducible polynomial over a 

field of characteristic zero is separable. 

Let  be any extension of . 

To prove that  is separable. 

Let  

Then  has a minimal polynomial  over . 

Since  has characteristic zero, every irreducible polynomial, including the minimal 

polynomial  of  is separable. 

Because the minimal polynomial of every element in  is separable, every element in  is 

separable over . 

Therefore, every extension of  is a separable extension. 

3)Define perfect field and give an example 

Ans: (Refer Definition 9.2.6 and Example 9.2.7) 

4)Give an example of a non-separable extension of a field. 

Ans: (Refer Example 9.2.5) 

5)If  is a finite separable extension of a field , show that  is a simple extension of . 
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Ans: (Refer Theorem 9.2.11) 

6)Define (i) Separable Extension (ii) Simple Extension 

Ans: (Refer Definition 9.2.3 and Definition 9.2.9) 

7)Prove that a finite extension of a finite field is separable 

Ans: Let  be a finite field and  be the finite extension of  

 is an algebraic extension of . 

To show that  is a separable extension of . 

Let  and  be the minimal polynomial of  over . 

Then  is irreducible over . 

We know that every irreducible polynomial over a finite field has all its roots distinct. 

Since,  is a finite field, all the roots of  are simple. 

Thus  is separable and hence  is separable over . 

8)Let  be a root of  over a field  of characteristic . Then show that  is a 

separable extension of . 

Ans: Let and let  be a root of   

To show that that  is a separable extension of .  

For this, it is enough to show that  is separable over .                                                                   

Let  be the minimal polynomial of  over . 

Then   

Now to show that is separable, it is enough to show that  does not 

have multiple roots.  

Let β be a root of  with multiplicity mβ then 1 ≤  ≤ p.   

If  then  which gives a contradiction.  
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Hence  < p. 

Then by known result,  = the smallest number k such that .  

But note that    

Therefore, k = 1 =  

Hence every root of   is simple as required.  

So, is a separable polynomial.  

Thus, α is separable over F.  

Hence F(α) is a separable extension of .  

9.6  SUGGESTED READINGS: 

1. P. B. Bhattacharya, S. K. Jain and S. R. Nag Paul, Basic Abstract Algebra, Second 

Edition, Cambridge University Press,1995. 

2. I. N. Herstein, Topics in Algebra, Second Edition, John Wiley & sons, Inc,1975.  

3. Thomas W. Hungerford, Algebra, Springer-Verlag, New York. 

 

- Dr. P. Vijaya Saradhi 

 



LESSON- 10 

AUTOMORPHISM GROUPS AND FIXED FIELDS 
 
OBJECTIVES: 
 
 To define the fixed field of a group of automorphism of a field. 
 To introduce the group 𝐺(E/F) 
 To compare 𝑂൫𝐺(E/F)൯ and [𝐸: 𝐹] under certain conditions 
 To introduce Dedekind Lemma 
 To obtain necessary and sufficient conditions under which 𝑂൫𝐺(E/F)൯ = [𝐸: 𝐹] where E 

is a finite separable extension of F. 
 
STRUCTURE: 
 
10.1  Introduction 
10.2  Automorphism groups and fixed fields 
10.3  Summary 
10.4  Technical terms 
10.5  Self assessment questions 
10.6  Suggested readings 
 
10.1 INTRODUCTION: 
 
In this lesson some basic results of Galois theory are presented. These results are used in 
proving the fundamental theorem of Galois theory. The results of this section and the 
fundamental theorem of Galois theory are used to give a simple algebraic proof for the 
fundamental theorem of algebra.  
 
10.2 AUTOMORPHISM GROUPS AND FIXED FIELDS: 
 
10.2.1 Definition: Let F be a filed and 𝐸 be an extension field of 𝐹. Then the set of 

automorphisms of 𝐸 each of which fixes each element of 𝐹, is denoted by 𝐺(E/F) that is 

𝐺(E/F) ={T / T is an automorphism of E and 𝑇(𝛼) = 𝛼 for all 𝛼 ∈ 𝐹}. Here each element of 

𝐺(E/F)  is also called an 𝐹-automorphism of 𝐸. 
 

10.2.2 Result: 𝐺(E/F) is a group under composition of mappings, where E is an extension of 

the field F. 

Proof: Let 𝑇ଵ, 𝑇ଶ ∈ 𝐺(E/F) 

(i) 𝑇ଵ𝑜𝑇ଶ ∈ 𝐺(E/F)  

(ii) (𝑇ଵ𝑜𝑇ଶ)𝑜𝑇ଷ = 𝑇ଵ𝑜(𝑇ଶ𝑜𝑇ଷ)  

(iii) 𝐼 ∈ 𝐺(E/F) and 𝑇ଵ𝑜𝐼 = 𝑇ଵ = 𝐼𝑜𝑇ଵ , I is the identity automorphism of E. 

(iv) Given 𝑇 ∈ 𝐺(E/F) there is a 𝑆 ∈ 𝐺(E/F) such that 𝑆𝑇 = 𝑇𝑆 = 𝐼ா;  𝑇ିଵ = 𝑆 

To prove (iv) 
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Let 𝑇 ∈ 𝐺(E/F). 

 ⇒T is an automorphism of 𝐸. 

 ⇒T is one-to-one and onto E. 

Therefore, T has inverse mapping 𝑇ିଵ: 𝐸 → 𝐸 which is also a bijection of E onto E where 

𝑇ିଵ(𝑣) = 𝑢 if and only if 𝑇(𝑢) = 𝑣. 

Let 𝑎, 𝑏 ∈ 𝐸. Then we get 𝑐, 𝑑 ∈ 𝐸 such that 𝑇(𝑐) = 𝑎 and 𝑇(𝑑) = 𝑏  

Now  𝑎 + 𝑏 = 𝑇(𝑐) + 𝑇(𝑑) = 𝑇(𝑐 + 𝑑) 

So 𝑇ିଵ(𝑎 + 𝑏) = 𝑐 + 𝑑 = 𝑇ିଵ(𝑎) + 𝑇ିଵ(𝑏) 

Also we have 𝑎𝑏 = 𝑇(𝑐). 𝑇(𝑑) = 𝑇(𝑐𝑑). So 𝑇ିଵ(𝑎𝑏) = 𝑐𝑑 = 𝑇ିଵ(𝑎)𝑇ିଵ(𝑏)  

Therefore  𝑇ିଵ is a homomorphism of E onto E. 

That is,  𝑇ିଵ is an automorphism of E. 

Let 𝑢 ∈ 𝐸 and 𝑇(𝑢) = 𝑣 

(𝑇𝑜𝑇ିଵ)𝑣 = 𝑇൫𝑇ିଵ(𝑣)൯ = 𝑇(𝑢) = 𝑣 = 𝐼(𝑢)   ∀  𝑢 ∈ 𝐸  

So, 𝑇ିଵ𝑜𝑇 = 𝐼. Similarly 𝑇𝑜𝑇ିଵ = 𝐼. 

Therefore, 𝑇ିଵ ∈ 𝐺(E/F) is the inverse of T. 

Hence 𝐺(E/F) is a group under composition of mappings. 
 

10.2.3 Definition: If F is a field and E is an extension field of F, then  𝐺(E/F) is called the 

group of F-automorphism of E. 
 

10.2.4 Theorem: Let E be a finite simple extension of the field F. Then 𝑂൫𝐺(E/F)൯ ≤ [𝐸: 𝐹] 

Proof: Let E be a finite simple (separable) extension of the field F. 

Since E is a simple extension of F we have 𝐸 = 𝐹(𝑢) for some 𝑢 ∈ 𝐸 

Let 𝑃(𝑥) be the minimal polynomial of u over F and deg  𝑝(𝑥)  = 𝑛 

Now [𝐸: 𝐹] = [𝐹(𝑢): 𝐹] = deg  𝑝(𝑥)  = 𝑛. 

Let k be the number of distinct roots of 𝑝(𝑥). Let 𝜎: 𝐹 → 𝐸ത be the identity map of 

 𝐹[𝜎(𝛼) = 𝛼    ∀    𝛼 ∈ 𝐹] 

𝜎 can be extended to exactly k embeddings of E into 𝐸ത namely 𝜎ଵ, 𝜎ଶ, . . . , 𝜎௄.  

Note that each element of 𝐺(E/F) is an extension of 𝜎 from E into 𝐸ത. So  

therefore 𝑂൫𝐺(E/F)൯ ≤ 𝑘 ≤ 𝑛 = [𝐸: 𝐹]. 

Hence the Result. 
 

10.2.5 Example: We find the automorphism group 𝐺(ℂ/ℝ) 

Let 𝑇 ∈ 𝐺(ℂ/ℝ).  
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Let 𝑐 ∈ ℂ 

Now 𝑐 = 𝑎 + 𝑖𝑏     𝑎, 𝑏 ∈ ℝ 

Now 𝑇(𝑐) = 𝑇(𝑎 + 𝑖𝑏) = 𝑇(𝑎) + 𝑇(𝑖)𝑇(𝑏) = 𝑎 + 𝑇(𝑖)𝑏  

(𝑇(𝑖))ଶ = 𝑇(𝑖)𝑇(𝑖) = 𝑇(𝑖ଶ) = 𝑇(−1) = −1  

So 𝑇(𝑖) = 𝑖 or −𝑖  

𝑇ଵ(𝑎 + 𝑖𝑏) = 𝑎 + 𝑖𝑏  ∀   𝑎 + 𝑖𝑏 ∈ ℂ  is identity automorphism  

𝑇ଶ(𝑎 + 𝑖𝑏) = 𝑎 + (−𝑖)𝑏   ∀  𝑎 + 𝑖𝑏 ∈ ℂ is also an automorphism 

Therefore 𝐺(ℂ/ℝ ) = {(𝐼 = 𝑇ଵ), 𝑇ଶ}  

Since 𝑓(𝑥) = 𝑥ଶ + 1 ∈ 𝑅[𝑥] is an irreducible polynomial over ℝ and 𝑖 is a root of 𝑓(𝑥), 

[𝑅(𝑖): 𝑅] = 2 that is [ℂ: 𝑅] = 2. So 𝑂(𝐺(ℂ/ℝ)) = [ℂ: 𝑅] = 2. 
 

10.2.6 Example: Let Q be the field of rational numbers  

Consider the field of 𝑄 ቀ2
ଵ

ଷൗ ቁ. We have that  

𝑔(𝑥) = 𝑥ଷ − 2 ∈ 𝑄[𝑥] is irreducible over Q and  

2
ଵ

ଷൗ  is a root of 𝑔(𝑥). So ቂ𝑄 ቀ2
ଵ

ଷൗ ቁ : 𝑄ቃ = 3 

The roots of 𝑔(𝑥) = 𝑥ଷ − 2 are 2
ଵ

ଷൗ , 2
ଵ

ଷൗ 𝜔, 2
ଵ

ଷൗ 𝜔ଶ, where  𝜔 is a primitive 3rd root of 

unity. 

Let 𝑎 ∈ 𝑄 ቀ2
ଵ

ଷൗ ቁ. Now 𝑎 = 𝛼଴ + 𝛼ଵ2
ଵ

ଷൗ + 𝛼ଶ ቀ2
ଵ

ଷൗ ቁ
ଶ

 

Let 𝑇 ∈ 𝐺 ቀ𝑄 ቀ2
ଵ

ଷൗ ቁ / 𝑄ቁ 

Now 𝑇(𝑎) = 𝑇 ൤𝛼଴ + 𝛼ଵ2
ଵ

ଷൗ + 𝛼ଶ ቀ2
ଵ

ଷൗ ቁ
ଶ

൨ 

= 𝑇(𝛼଴) + 𝑇(𝛼ଵ)2
ଵ

ଷൗ + 𝑇(𝛼ଶ)𝑇 ቀ2
ଵ

ଷൗ ቁ
ଶ

  

= 𝛼଴ + 𝛼ଵ𝑇(2
ଵ

ଷൗ ) + 𝛼ଶ𝑇 ቀ2
ଵ

ଷൗ ቁ
ଶ

  

𝑇 ቀ2
ଵ

ଷൗ ቁ
ଷ

 = 𝑇(2) = 2 

So 𝑇 ቀ2
ଵ

ଷൗ ቁ = 2
ଵ

ଷൗ  (𝑜𝑟) 2
ଵ

ଷൗ 𝜔   (𝑜𝑟)  2
ଵ

ଷൗ 𝜔ଶ 

Since 2
ଵ

ଷൗ 𝜔, 2
ଵ

ଷൗ 𝜔ଶ ∉ 𝑄 ቀ2
ଵ

ଷൗ ቁ, we have 𝑇 ቀ2
ଵ

ଷൗ ቁ = 2
ଵ

ଷൗ  

Therefore 𝑇 = 𝐼, that is, 𝐺 ቀ𝑄 ቀ2
ଵ

ଷൗ ቁ / 𝑄ቁ = {𝐼}. 

So 𝑂 ൬𝐺 ቀ𝑄 ቀ2
ଵ

ଷൗ ቁ /𝑄ቁ൰ = 1 < 3 = ቂ𝑄 ቀ2
ଵ

ଷൗ ቁ : 𝑄ቃ. 
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10.2.7 Definition: Let 𝐸 be a field and 𝐻 be a subgroup of the group of automorphisms of 𝐸. 

Then 𝐸ு: = {𝑎 ∈ 𝐸 / ℎ(𝑎) = 𝑎 for all ℎ ∈ 𝐻}  is called the fixed field of 𝐻 in E. 

Note: Note that 𝐸ு is always a subfield of E. 
 

10.2.8 Lemma: (Dedekind lemma) 

Let 𝐸 and 𝐹 be fields, and 𝜎ଵ, 𝜎ଶ, . . . . , 𝜎௡ be distinct embeddings of 𝐹 into 𝐸. 

 If 𝑎ଵ,  𝑎ଶ, . . . ., 𝑎௡ ∈ 𝐸 and 𝑎ଵ𝜎ଵ(𝑥) + 𝑎ଶ𝜎ଶ(𝑥)+. . . . +𝑎௡𝜎௡(𝑥) = 0   ∀   𝑥 ∈ 𝐹, then  

0 = 𝑎ଵ = 𝑎ଶ = ⋯ = 𝑎௡.  

Proof: Given that 𝐸 and 𝐹 are fields and 𝜎ଵ, 𝜎ଶ, . . . ., 𝜎௡ are distinct embeddings of F into 𝐸. 

We prove that if 𝑎ଵ, 𝑎ଶ, . . . ., 𝑎௡ ∈ 𝐸 and 

 𝑎ଵ𝜎ଵ(𝑥) + 𝑎ଶ𝜎ଶ(𝑥)+. . . . +𝑎௡𝜎௡(𝑥) = 0 for all 𝑥 ∈ 𝐹 then 

0 = 𝑎ଵ = 𝑎ଶ = ⋯ = 𝑎௡.  

Suppose we have 𝑎ଵ, 𝑎ଶ, . . . ., 𝑎௡ ∈ 𝐸 not all zero such that 

 𝑎ଵ𝜎ଵ(𝑥) + 𝑎ଶ𝜎ଶ(𝑥)+. . . . +𝑎௡𝜎௡(𝑥) = 0 for all 𝑥 ∈ 𝐹. Among all such equations we choose 

an equation having least number of non-zero terms, namely  

𝑏ଵ𝜎ଵ(𝑥) + 𝑏ଶ𝜎ଶ(𝑥)+. . . . +𝑏௞𝜎௞(𝑥) = 0 for all 𝑥 ∈ 𝐹  

and no 𝑏ଵ, 𝑏ଶ, . . . ., 𝑏௞ is 0.       (1) 

We have 𝜎ଵ ≠ 𝜎௞ . So we get 𝑦 ∈ 𝐹 such that 𝜎ଵ(𝑦) ≠ 𝜎௞(𝑦). Since 𝑦 ∈ 𝐹 ∀  𝑥 ∈ 𝐹, 

𝑏ଵ𝜎ଵ(𝑥𝑦) + 𝑏ଶ𝜎ଶ(𝑥𝑦)+. . . . +𝑏௞𝜎௞(𝑥𝑦) = 0 and that 

 𝑏ଵ𝜎ଵ(𝑥)𝜎ଵ(𝑦) + 𝑏ଶ𝜎ଶ(𝑥)𝜎ଶ(𝑦)+. . . . +𝑏௞𝜎௞(𝑥)𝜎௞(𝑦) = 0     (2) 

(1) x 𝜎ଵ(𝑦) gives 𝑏ଵ𝜎ଵ(𝑥)𝜎ଵ(𝑦) + 𝑏ଶ𝜎ଶ(𝑥)𝜎ଵ(𝑦)+. . . . +𝑏௞𝜎௞(𝑥)𝜎ଵ(𝑦) = 0     ∀ 𝑥 ∈ 𝐹      (3) 

(3) - (2) gives 𝑏ଶ𝜎ଶ(𝑥)[𝜎ଵ(𝑦) − 𝜎ଶ(𝑦)]+. . . . +𝑏௞𝜎௞(𝑥)[𝜎ଵ(𝑦) − 𝜎௞(𝑦)] = 0    ∀ 𝑥 ∈ 𝐹 (4)  

(4) is an equation with fewer terms than k as 𝑏௞[𝜎ଵ(𝑦) − 𝜎௞(𝑦)] ≠ 0 

This is a contradiction to our assumption. 

This establishes the lemma. 
 

10.2.9 Theorem: Let 𝐸 be a field and 𝐻 be a finite subgroup of the group of automorphisms 

of 𝐸. Then 𝑂(𝐻) = [𝐸: 𝐸ு]. 

Proof: Suppose  𝐸 is a field and 𝐻 is a finite subgroup of the group of automorphisms of 𝐸. 

Let 𝑂(𝐻) = 𝑛. We prove that  [𝐸: 𝐸ு] = 𝑛.  

Let 𝐻 = {𝑔ଵ, 𝑔ଶ, . . . ,   𝑔௡} where  𝑒 = 𝑔ଵ 

Case - I: Suppose that [𝐸: 𝐸ு] < 𝑛  

Let [𝐸: 𝐸ு] = 𝑚  and 

let {𝑎ଵ, 𝑎ଶ, . . . ., 𝑎௠} be the basis of 𝐸 over 𝐸ு      (A) 
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𝑔ଵ(𝑎ଵ)𝑥ଵ + 𝑔ଶ(𝑎ଵ)𝑥ଶ + ⋯ + 𝑔௡(𝑎ଵ)𝑥௡ = 0
 

𝑔ଵ(𝑎ଶ)𝑥ଵ + 𝑔ଶ(𝑎ଶ)𝑥ଶ + ⋯ + 𝑔௡(𝑎ଶ)𝑥௡ = 0
… … … … … … … 
… … … … … … … …

𝑔ଵ(𝑎௠)𝑥ଵ + 𝑔ଶ(𝑎௠)𝑥ଶ + ⋯ + 𝑔௡(𝑎௠)𝑥௡ = 0⎭
⎪
⎬

⎪
⎫

                                (𝐼)  

(I) is a system of 𝑚 equations in unknowns 𝑥ଵ,  𝑥ଶ, . . ., 𝑥௡ over 𝐸. 

Since 𝑚 < 𝑛, the above system (I) has a non-trivial solution 𝑦ଵ, 𝑦ଶ, . . ., 𝑦௡ ∈ 𝐸  

[not all 𝑦ଵ, 𝑦ଶ, . . ., 𝑦௡ are zero′s] 

So for 1 ≤ 𝑗 ≤ 𝑚, we have 

𝑔ଵ൫𝑎௝൯𝑦ଵ + 𝑔ଶ൫𝑎௝൯𝑦ଶ+. . . +𝑔௡൫𝑎௝൯𝑦௡ = 0        (II) 

Let 𝑎 ∈ 𝐸, From (A), 𝑎 = 𝛼ଵ𝑎ଵ + 𝛼ଶ𝑎ଶ+. . . +𝛼௠𝑎௠ for some 𝛼ଵ,   𝛼ଶ, . . ., 𝛼௠ ∈ 𝐸ு 

Now ∑  ௡
௜ୀଵ 𝑔௜(𝑎)𝑦௜ = ∑  ௡

௜ୀଵ 𝑔௜(𝛼ଵ𝑎ଵ + 𝛼ଶ𝑎ଶ+. . . +𝛼௠𝑎௠)𝑦௜ 

= ∑  ௡
௜ୀଵ [𝑔௜(𝛼ଵ𝑎ଵ) + 𝑔௜(𝛼ଶ𝑎ଶ)+. . . +𝑔௜(𝛼௠𝑎௠)]𝑦௜  

= ∑  ௡
௜ୀଵ [𝛼ଵ𝑔௜(𝑎ଵ) + 𝛼ଶ𝑔௜(𝑎ଶ)+. . . +𝛼௠𝑔௜(𝑎௠)]𝑦௜  

= 𝛼ଵ[∑  ௡
௜ୀଵ 𝑔௜(𝑎ଵ)𝑦௜] + 𝛼ଶ[∑  ௡

௜ୀଵ 𝑔௜(𝑎ଶ)𝑦௜]+. . . +𝛼௠[∑  ௡
௜ୀଵ 𝑔௜(𝑎௠)𝑦௜]  

= 𝛼ଵ. 0 + 𝛼ଶ. 0+. . . +𝛼௠ . 0 = 0        [from (II)] 

By lemma 10.2.8, we have 0 = 𝑦ଵ = 𝑦ଶ =. . . = 𝑦௡  as 𝑔ଵ,   𝑔ଶ, . . ., 𝑔௠  are distinct 

embeddings.  

This is a contradiction to not all 𝑦ଵ, 𝑦ଶ, . . ., 𝑦௡ are zero.  

Therefore 𝑚 ≮ 𝑛. 

Case II: Suppose that 𝑛 < 𝑚 

Since [𝐸: 𝐸ு] = 𝑚, we get 𝑛 + 1 linearly independent elements 𝑎ଵ,   𝑎ଶ, . . ., 𝑎௡ାଵ  of E over 

𝐸ு. 

𝑔ଵ(𝑎ଵ)𝑥ଵ + 𝑔ଵ(𝑎ଶ)𝑥ଶ + ⋯ + 𝑔ଵ(𝑎௡ାଵ)𝑥௡ାଵ = 0
 

𝑔ଶ(𝑎ଵ)𝑥ଵ + 𝑔ଶ(𝑎ଶ)𝑥ଶ + ⋯ + 𝑔ଶ(𝑎௡ାଵ)𝑥௡ାଵ = 0
… … … … … … … 
… … … … … … … …

𝑔௡(𝑎ଵ)𝑥ଵ + 𝑔௡(𝑎ଶ)𝑥ଶ + ⋯ + 𝑔௡(𝑎௡ାଵ)𝑥௡ାଵ = 0⎭
⎪
⎬

⎪
⎫

                                (𝐼𝐼𝐼) 

(III) is a system of n linear equations in n+1 unknowns over 𝐸.  

So (III) has non-trivial solution 𝑦ଵ, 𝑦ଶ, . . . ,   𝑦௡ାଵ. Such that 

𝑔௝(𝑎ଵ)𝑦ଵ + 𝑔௝(𝑎ଶ)𝑦ଶ + ⋯ . . +𝑔௝(𝑎௡ାଵ)𝑦௡ାଵ = 0     for 1 ≤ 𝑗 ≤ 𝑛,            (IV) 

w.l.g we may assume that 𝑦ଵ,   𝑦ଶ, . . ., 𝑦௥ are all non-zero and 

0 =  𝑦௥ାଵ =  𝑦௥ାଶ = . . .  =  𝑦௡ାଵ and 𝑦ଵ, 𝑦ଶ, . . . ,  𝑦௥ are least non-zero elements  

satisfying (IV) 



Centre for Distance Education   10.6       Acharya Nagarjuna University  

Now (IV) becomes 

 𝑔௝(𝑎ଵ)𝑦ଵ + 𝑔௝(𝑎ଶ)𝑦ଶ+. . . . +𝑔௝(𝑎௥)𝑦௥ = 0,  1 ≤ 𝑗 ≤ 𝑛     (V) 

For 𝑔 ∈ 𝐻, 𝑔ൣ𝑔௝(𝑎ଵ)𝑦ଵ + 𝑔௝(𝑎ଶ)𝑦ଶ+. . . . +𝑔௝(𝑎௥)𝑦௥ = 0൧ = 𝑔(0) = 0. As 𝑔𝐻 = 𝐻, 

𝑔௝(𝑎ଵ)𝑔(𝑦ଵ) + 𝑔௝(𝑎ଶ)𝑔(𝑦ଶ)+. . . . +𝑔௝(𝑎௥)𝑔(𝑦௥) = 0, 1 ≤ 𝑗 ≤ 𝑛               (VI) 

(V) x 𝑔(𝑦ଵ) – (VI) x 𝑦ଵ gives 

𝑔௝(𝑎ଶ)[𝑦ଶ𝑔(𝑦ଵ) − 𝑦ଵ𝑔(𝑦ଶ)]+. . . +𝑔௝(𝑎௥)[𝑦௥𝑔(𝑦ଵ) − 𝑦ଵ𝑔(𝑦௥)] = 0,    1 ≤ 𝑗 ≤ 𝑛     (VII)  

In view of our assumption, as (VII) consists of less than n terms, 

𝑦ଶ𝑔(𝑦ଵ) − 𝑦ଵ𝑔(𝑦ଶ) = 0, . . . . , 𝑦௥𝑔(𝑦ଵ) − 𝑦ଵ𝑔(𝑦௥) = 0  

That is,  𝑔(𝑦ଵ𝑦ଶ
ିଵ) = 𝑦ଵ𝑦ଶ

ିଵ, . . . , 𝑔(𝑦ଵ𝑦௥
ିଵ) = 𝑦ଵ𝑦௥

ିଵ 

That is,  𝑦ଶ𝑦ଵ
ିଵ. . . 𝑦௥𝑦ଵ

ିଵ ∈ 𝐸ு. 

So 𝑦ଶ𝑦ଵ
ିଵ = 𝑧ଶ,. . . . , 𝑦௥𝑦ଵ

ିଵ = 𝑧௥ and that 

 𝑦ଶ = 𝑦ଵ𝑧ଶ, . . . , 𝑦௥ = 𝑦ଵ𝑧௥, where  𝑧ଶ, . . ., 𝑧௡ ∈ 𝐸ு . 

Now from (V)    𝑔ଵ(𝑎ଵ)𝑦ଵ + 𝑔ଵ(𝑎ଶ)𝑦ଵ𝑧ଶ+. . . . +𝑔ଵ(𝑎௥)𝑦ଵ𝑧௥ = 0 

That is 𝑔ଵ[𝑎ଵ + 𝑧ଶ𝑎ଶ+. . . +𝑧௥𝑎௥] = 0  

That is 1. 𝑎ଵ + 𝑧ଶ𝑎ଶ+. . . +𝑧௥𝑎௥ = 0. Since  𝑎ଵ, 𝑎ଶ, … , 𝑎௡ are independent over 𝐸ு, 

0 = 1 = 𝑧ଶ = 𝑧ଷ =. . . = 𝑧௥  

So 0 = 𝑦ଶ = 𝑦ଷ =. . . = 𝑦௥,  a contradiction. 

Therefore 𝑛 ≮ 𝑚  

Hence 𝑛 = 𝑚. 
 

10.2.10 Theorem: Let 𝐸 be a finite separable extension of 𝐹 and 𝐻 be a subgroup of 𝐺(E/F). 

Then 𝐺(E/𝐸ு) = 𝐻 and [𝐸: 𝐸ு] = 𝑂൫𝐺(E/𝐸ு)൯. 

Proof: Suppose 𝐸 is a finite separable extension of 𝐹 and 𝐻 is a subgroup 𝐺(E/F) and 𝐸ு is 

the fixed field of 𝐻. We have 𝐻 ⊆ 𝐺(E/𝐸ு) and 

𝑂(𝐻) = [𝐸: 𝐸ு] ≥ 𝑂൫𝐺(E/𝐸ு)൯ ≥ 𝑂(𝐻)  

Therefore 𝑂൫𝐺(E/𝐸ு)൯ = 𝑂(𝐻) and that 𝐺(E/𝐸ு) =  𝐻 

Hence [𝐸: 𝐸ு] = 𝑂(𝐻) = 𝑂൫𝐺(E/𝐸ு)൯. 
 

10.2.11 Theorem: Let 𝐸 be a finite separable extension of a field 𝐹.Then the following 

conditions are equivalent:  

1. 𝐸 is a normal extension of 𝐹. 

2. 𝐹 is the fixed field of 𝐺(E/F) 

3. [𝐸: 𝐹]  = 𝑂൫𝐺(E/F)൯ 
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Proof: Given 𝐸 is a finite separable extension of 𝐹. 

So, 𝐸 = 𝐹(𝑢) for some 𝑢 ∈ 𝐸. 

Let 𝑝(𝑥) be the minimal polynomial of 𝑢 over 𝐹 and let  deg  𝑝(𝑥) = 𝑛 

So, 𝑝(𝑥) has n distinct roots as 𝑢 is separable over 𝐹.  

Now [𝐸: F] = [𝐹(𝑢): 𝐹] = 𝑛. 

Let 𝐸଴ be the fixed field of 𝐺(E/F). 

So, [𝐸: 𝐸଴] = 𝑂൫𝐺(E/F)൯ (by Theorem 10.2.9) 

(𝟏) ⇒ (𝟐): we have that 𝐸 is a normal extension of 𝐹.  

Let 𝜎: 𝐹 → 𝐸ത be an identity mapping of 𝐹. (𝜎(𝛼) = 𝛼  ∀  𝛼 ∈ 𝐹) 

Then 𝜎 is an embedding of 𝐹 into the algebraically closed field 𝐸ത. So, 𝜎 can be extended 

to 𝑛 embeddings 𝜎ଵ,   𝜎ଶ, . . ., 𝜎௡ of 𝐸 = 𝐹(𝑢) into 𝐸ത, where 𝑛 is the number of distinct 

roots of 𝑝(𝑥). Since 𝐸 is a normal extension of 𝐹, (by Theorem 1.1)  

each of 𝜎ଵ,   𝜎ଶ, . . ., 𝜎௡ is an automorphism of 𝐸. So 𝜎ଵ,   𝜎ଶ, . . ., 𝜎௡ ∈ 𝐺(E/F).  

More over, each 𝑔 ∈ 𝐺(E/F) is an extension of 𝜎. So 𝐺(E/F) = {𝜎ଵ, 𝜎ଶ, . . ., 𝜎௡} and 

that 𝑂൫𝐺(E/F)൯ = 𝑛. 

Now [𝐸: 𝐸௢][𝐸௢: 𝐹] = [𝐸: 𝐹] = 𝑛 = 𝑂൫𝐺(E/F)൯ = [𝐸: 𝐸௢] 

Therefore, [𝐸௢: 𝐹] = 1 ⇒ 𝐸௢ = 𝐹  

(𝟐) ⇒ (𝟏): we have that 𝐹 is the fixed field of 𝐺(E/F). 

Let 𝐺(E/F) =   {𝜎ଵ = 𝐼, 𝜎ଶ, . . ., 𝜎௡} 

Now 𝑂൫𝐺(E/F)൯ = [𝐸: 𝐹] = 𝑛  [By Theorem(10.2.10)] 

Consider 𝑓(𝑥) = (𝑥 − 𝑢)(𝑥 − 𝜎ଶ(𝑢)). . . ൫𝑥 − 𝜎௡(𝑢)൯ 

Note that 𝑢 = 𝜎ଵ(𝑢), 𝜎ଶ(𝑢), . . . , 𝜎௡(𝑢) ∈ 𝐸  

So, 𝑓(𝑥) ∈ 𝐸[𝑥]. 

Now 𝜎∗: 𝐸[𝑥] → 𝐸[𝑥] defined by  

𝜎∗(𝑔(𝑥) = 𝑏଴ + 𝑏ଵ𝑥+. . . +𝑏௞𝑥௞) = 𝑔ఙ∗
(𝑥) = 𝜎(𝑏଴) + 𝜎(𝑏ଵ)𝑥+. . . +𝜎(𝑏௞)𝑥௞  

is an automorphism of 𝐸[𝑥] for all   𝜎 ∈ 𝐺(E/F). 

For 𝜎 ∈ 𝐺(E/F), 

𝜎∗(𝑓(𝑥)) = ൫𝑥 − 𝜎(𝜎ଵ(𝑢))൯ ቀ𝑥 − 𝜎൫𝜎ଶ(𝑢)൯ቁ . . . . ቀ𝑥 − 𝜎൫𝜎௡(𝑢)൯ቁ  

=𝑓(𝑥) as {𝜎𝜎ଵ, 𝜎𝜎ଶ, . . ., 𝜎𝜎௡} = 𝐺(E/F). 

So the coefficients of 𝑓(𝑥) are fixed by all elements of 𝐺(E/F). So 𝑓(𝑥) ∈ 𝐹[𝑥]. 

Splitting field of 𝑓(𝑥) over 𝐹 is 𝐹൫𝜎ଵ(𝑢) = 𝑢, 𝜎ଶ(𝑢), . . . , 𝜎௡(𝑢)൯  = 𝐹(𝑢) = 𝐸 as 

𝜎ଶ(𝑢), 𝜎ଷ(𝑢) . . . 𝜎௡(𝑢) ∈ 𝐸 
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Therefore 𝐸 is a normal extension of 𝐹. 

(𝟐) ⇒ (𝟑): we have that 𝐹 is a fixed field of 𝐺(E/F) 

By theorem 10.2.10, 𝑂൫𝐺(E/F)൯ = [𝐸: 𝐹] 

(𝟑) ⇒ (𝟐): we have that [𝐸: 𝐹] = 𝑂൫𝐺(E/F)൯  

We have by theorem 10.2.10, [𝐸: 𝐸௢] = 𝑂൫𝐺(E/F)൯ 

⇒ [𝐸: 𝐸௢] = 𝑂൫𝐺(E/F)൯ = [𝐸: 𝐹] = [𝐸: 𝐸௢][𝐸௢: 𝐹]  

⇒ [𝐸௢: 𝐹] = 1, that is,  𝐸௢ = 𝐹 

Therefore, the fixed field of 𝐺(E/F) is 𝐹. 
 

10.2.12 Example: The group 𝐺(𝑄(𝛼)/𝑄) where 𝛼ହ = 1,  𝛼 ≠ 1 is a cyclic group of order 4. 

Solution: We have 𝛼ହ = 1 and 𝛼 ≠ 1 . Consider the group 𝐺(𝑄(𝛼)/𝑄) 

Let 𝑝(𝑥) = 1 + 𝑥 + 𝑥ଶ + 𝑥ଷ + 𝑥ସ ∈ 𝑄[𝑥]. 𝑇ℎ𝑒𝑛 𝑝(𝑥) is an irreducible polynomial over 𝑄. 

(By Eisenstein criterian). 

Since 𝑥ହ − 1 = (𝑥 − 1)𝑝(𝑥), we have that 𝛼 is a root of 𝑝(𝑥). Since 𝑝(𝑥) is irreducible over 

𝑄 (which is also monic), 𝑝(𝑥) is the minimal polynomial of 𝛼 over 𝑄. 

So, [𝑄(𝛼): 𝑄] = deg  𝑝(𝑥) = 4 

Now 𝑄(𝛼) is a finite separable extension of 𝑄 as 𝑄 is a field of characteristic ‘0’. 

Now 1, 𝛼, 𝛼ଶ, 𝛼ଷ, 𝛼ସ are roots of 𝑥ହ − 1 = (𝑥 − 1)𝑝(𝑥), and distinct as 𝛼 ≠ 1 and 

𝑂(𝛼) = 5 

Here 𝛼, 𝛼ଶ, 𝛼ଷ, 𝛼ସ are the roots of 𝑝(𝑥). 

So, 𝑄(𝛼) is the splitting field of 𝑝(𝑥) over 𝑄 and 

𝑄(𝛼,   𝛼ଶ, 𝛼ଷ, 𝛼ସ) = 𝑄(𝛼)  

By theorem 10.2.11, 4 = [𝑄(𝛼): 𝑄] = 𝑂൫𝐺(𝑄(𝛼)/𝑄)൯ 

We have that 𝛼 is a root of  

𝑝(𝑥) = 1 + 𝑥 + 𝑥ଶ + 𝑥ଷ + 𝑥ସ and that 0 = 1 + 𝛼 + 𝛼ଶ + 𝛼ଷ + 𝛼ସ 

Let 𝜎 ∈ 𝐺(𝑄(𝛼)/𝑄). 

Now 0 = 𝜎(0) = 𝜎(1 + 𝛼 + 𝛼ଶ + 𝛼ଷ + 𝛼ସ) 

= 𝜎(1) + 𝜎(𝛼) + 𝜎(𝛼ଶ) + 𝜎(𝛼ଷ) + 𝜎(𝛼ସ)  

= 1 + 𝜎(𝛼) + ൫𝜎(𝛼)൯
ଶ

+ ൫𝜎(𝛼)൯
ଷ

+ ൫𝜎(𝛼)൯
ସ
  

So, 𝜎(𝛼) is a root of 𝑝(𝑥) and that 𝜎(𝛼) = 𝛼 or 𝛼ଶ or 𝛼ଷ or 𝛼ସ. 

Note that 𝜎 is completely determined by 𝜎(𝛼). 

Let 𝜎ଵ(𝛼) = 𝛼, 𝜎ଶ(𝛼) = 𝛼ଶ, 𝜎ଷ(𝛼) = 𝛼ଷ,   𝜎ସ(𝛼) = 𝛼ସ.  Then 𝜎ଵ, 𝜎ଶ, 𝜎ଷ 𝑎𝑛𝑑 𝜎ସ 

are all distinct automorphisms of 𝑄(𝛼) as 𝛼,  𝛼ଶ,   𝛼ଷ,  𝛼ସ are distinct. 
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Therefore, 𝐺(𝑄(𝛼)/𝑄) = {𝜎ଵ = 𝐼, 𝜎ଶ, 𝜎ଷ, 𝜎ସ}. 

𝜎ଶ
ଶ(𝛼) = 𝜎ଶ൫𝜎ଶ(𝛼)൯ = 𝜎ଶ(𝛼ଶ) = ൫𝜎ଶ(𝛼)൯

ଶ
= (𝛼ଶ)ଶ = 𝛼ସ 

𝜎ଶ
ଷ(𝛼) = 𝜎ଶ൫𝜎ଶ

ଶ(𝛼)൯ = 𝜎ଶ(𝛼ସ) = ൫𝜎ଶ(𝛼)൯
ସ

= 𝛼଼ = 𝛼ଷ  

𝜎ଶ
ସ(𝛼) = 𝜎ଶ൫𝜎ଶ

ଷ(𝛼)൯ = 𝜎ଶ(𝛼ଷ) = ൫𝜎ଶ(𝛼)൯
ଷ

= (𝛼ଶ)ଷ = 𝛼଺ = 2 

So 𝜎ଶ
ସ(𝛼) = 𝐼  and that 𝑂(𝜎ଶ) = 4 

Therefore, 𝐺(𝑄(𝛼)/𝑄) is a cyclic group of order 4 generated by 𝜎ଶ(also by 𝜎ଷ). 

 

10.3  SUMMARY: 

 

In this lesson, comparison between 𝑂൫𝐺(E/F)൯ and [𝐸: 𝐹] is studied, where E is a finite 
separable extension of F. Moreover the equality between [𝐸: 𝐸ு] and 𝑂(𝐻) was established, 
where H is a finite subgroup of the group of automorphism of E and 𝐸ு is the fixed field of 
H. Also if E is a finite separable extension of F then some equivalent conditions presented 
under which E is a normal extension of F. An example was presented to identify the group 
𝐺(E/F)  for a given Galois extension E of F.  

 

10.4 TECHNICAL TERMS: 
 

1. F- automorphism 
2. Fixed field 
3. Dedekind lemma 

 

10.5  SELF- ASSESSMENT QUESTIONS: 
 

1. Show that 𝐺(𝑄(𝛽)/𝑄) is a group of order 2, where 𝛽ଷ = 1 and 𝛽 ≠ 1. 

2. Find 𝐺൫𝑄൫√2൯/𝑄൯. 

 

10.6 SUGGESTED READINGS: 
 

1. Bhattacharya P.B, S.K.Jain, S.R. Nagpaul. “Basic Abstract Algebra”, second Edition 

1997, Cambridge University press (Indian Edition). 

2. Hungerford, Thomas W., Abstract algebra, 1974, Springer – Verlag, New York. 

3. Lang S. Algebra third edition, Boston Addison-wesley Moss 1993. 

4. Ian stewart, Galois Theory, Chapman and Hall, CRC 2004. 

5. I.S.Luther and I.B.S.Passi, Algebra, Volume.IV- Field Theory, Narosa Publishing House 

2012. 

- Dr. K. Siva Prasad 

 



LESSON- 11 

FUNDAMENTAL THEOREM OF GALOIS 
THEORY 

 
OBJECTIVES: 
 
 To understand fundamental theorem of Galois theory. 
 To establish one-to-one correspondence between the subgroups of G(E/F) and the 

intermediate fields between F and E, E is a Galois extension of F. 
 To identify how normal subgroups correspond to normal extensions of fields. 

 
STRUCTURE: 
 
11.1  Introduction  

11.2  Fundamental Theorem of Galois Theory 

11.3  Summary 

11.4  Technical Terms 

11.5  Self-Assessment Questions 

11.6   Suggested Readings 

 
11.1 INTRODUCTION: 

 
The Fundamental Theorem of Galois Theory is a central result in abstract algebra that links 
field theory with group theory. It arises from the study of polynomial equations and their 
roots, first developed by Évariste Galois. The theorem applies to Galois extensions, which are 
both normal and separable. For such an extension, the group of automorphisms that fix the 
base field play a crucial role. The theorem sets up a one-to-one correspondence  between the 
subgroups of the G(E/F) and the intermediate fields lying between F and E, E is a Galois 
extension of F. This correspondence is inclusion-reversing, which means larger subgroups 
correspond to smaller fields. Normal subgroups of G(E/F) correspond to normal extensions 
of F. Moreover, the index of a subgroup G(E/K) of  G(E/F) is equal to the degree of K over F 
if K is a normal extension of F. 

 
11.2 FUNDAMENTAL THEOREM OF GALOIS THEORY:  
 
11.2.1 Definition:  Let f(x) ∈ F[x] be a polynomial and let K be its splitting field over F. 
Then the group G(K/F) of F-automorphisms of K is called the Galois group of f(x) over 𝐹.  
 
11.2.2 Definition: A finite, normal and separable extension 𝐸 of a field F is called a Galois 
extension of F. 
 

11.2.3 Theorem (Fundamental Theorem of Galois Theory): Let  E be a Galois extension 
of F. Let K be any subfield of E containing F. Then the mapping K  ↦ G(E/K) sets up a one-
to-one correspondence from the set of subfields of 𝐸 containing 𝐹 to the subgroups of 
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G(E/F) such that 
(i)  K = Eୋ(୉/୏)   

(ii) For any subgroup H of G(E/F),   H = G(E/Eୌ) 

(iii) [E: K] = O(G(E/K)) and [K: F] = index of G(E/K) in G(E/F) 

(iv) K is a normal extension of F if and only if G(E/K) is a normal subgroup of G(E/F). 

(v) If K is a normal extension of F, then G(K/F) ≅
ୋ(୉/୊)

ୋ(୉/୏)
 

Proof: Let E be a Galois extension of 𝐹.  

Then E is a finite, normal and separable extension of F.  

Let K be a subfield of E containing F.  

Let 𝐒 = {K/ K is a subfield of E  containing 𝐹} and 𝐒ᇱ = {H/H is a subgroup of G(E/F)}. 

Define a mapping ψ: 𝐒 → 𝐒ᇱ as follows: 

let K ∈ 𝐒. 

Then  K is a subfield of E containing F. 

Now we show that G(E/K) is a subgroup of G(E/F), where G(E/F) is the Galois group of F-
automorphisms of E. 

let 𝜎 ∈ G(E/K). 

Then 𝜎 is an automorphism of E that keeps every element of K fixed. 

This implies that 𝜎 is an automorphism of E that keeps every element of F fixed as F ⊂ K  

So, σ ∈ G(E/F). 

Therefore, G(E/K) ⊂ G(E/F) and hence G(E/K) is a subgroup of G(E/F). 

Now define ψ: 𝐒 → 𝐒ᇱ by ψ(K) = G(E/K). 

(i) Since 𝐸 is a Galois extension of 𝐹 and 𝐾 is a subfield of 𝐸 containing 𝐹, we have that 𝐸 is 

also a Galois extension of 𝐾. So, by a known theorem (10.2.11), 𝐾 is a fixed field of G(E/K). 

      Therefore K = Eୋ(୉/୏). 

      (ii) We show that for any subgroup H of G(E/F),   H = G(E/Eୌ). 

      Let H be a subgroup of G(E/F).  

      Since E is a Galois extension of F, we have E is a finite separable extension of F and H is a  

      subgroup of G(E/F).  

      By known theorem, H = G(E/Eୌ) 
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 From (i), the mapping ∅ is one-one. 

 From (ii), the mapping ∅ is onto. 

 Hence, ∅ is a bijection from 𝑺 onto 𝑺′ 

     (iii) Since E is a normal extension of F, we have E is a normal extension of K  

     By a known Theorem (10.2.11),  [E: F] = O(G(E/F)) and [E: K] = O(G(E/K)) 

     We know that [E:F] = [E:K][K:F]  

     Therefore O(G(E/F)) = O(G(E/K)) [K: F] 

So, [K: F] = 
୓(ୋ(୉/୊))

୓(ୋ(୉/୏))
. that is, [K: F] is the index of G(E/K) in G(E/F) 

(iv) First we show that K is a normal extension of 𝐹 iff 𝜎(K) ⊆ K  for all 𝜎 ∈ G(E/F) 

Suppose that K is a normal extension of F. 

Let 𝜎 ∈ G(E/F). 

Then 𝜎 ∶ E → E is an automorphism that keeps every element of F fixed.  

Let Fത be the algebraic closure of 𝐹 containing 𝐸.  

That is, 𝜎 : K → Fത is an embedding that keeps every element of F fixed. 

Let σ∗ be the restriction of σ to 𝐾. Now σ∗ is an embedding of K into Fത and σ∗ = 𝐼 𝑜𝑛 𝐹 

Since K is a normal extension of F, σ∗ is an automorphism of K. So, σ∗(𝐾) = 𝐾 and that 
𝜎(𝐾) = 𝐾 as σ∗ =  𝜎 on K. On the other hand suppose that 𝜎(𝐾) ⊆ 𝐾 for all 𝜎 ∈ G(E/F). 

Let 𝑇: K →  Fത be an embedding and 𝑇 = 𝐼 on 𝐹.  

Since 𝐸 is an algebraic extension of 𝐾, T can be extended to an embedding T∗ of 𝐸 into Fത. 

Since E is a normal extension of F, we have T∗ is an automorphism of E. 

Since T∗ = 𝑇 = 𝐼 𝑜𝑛 𝐹, T∗ ∈ G(E/F). 

By our assumption, T∗(𝐾)  ⊆ 𝐾 and that T∗is an automorphism of K as T∗(𝐾) = 𝐾 on K, T 
is an automorphism of K. 

That is, K is a normal extension of F. 

Suppose now that K is a normal extension of F. 

We prove that G(E/K) is a normal subgroup of G(E/F). It is clear that G(E/K) is a subgroup 

of G(E/F). Let σ ∈ 𝐺(𝐸/𝐹) and T ∈ 𝐺(𝐸/𝐾). 

(σିଵ T σ)(𝑘) = σିଵ ቀ𝑇൫σ(𝑘)൯ቁ = σିଵ൫σ(𝑘)൯ = 𝑘 ∀ 𝑘 ∈ 𝐾 as σ(𝑘) ∈ 𝐾  
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and 𝑇 = I on K.  

Therefore, σିଵ T σ ∈ 𝐺(𝐸/𝐾) and hence 𝐺(𝐸/𝐾) is a normal subgroup of G(E/F). 

On the other hand suppose that G(E/K) is a normal subgroup of G(E/F). 

We prove that K is a normal extension of F, that is σ(𝐾) ⊆ 𝐾 for all σ ∈ 𝐺(𝐸/𝐹). 

Let σ ∈ 𝐺(𝐸/𝐹), and let 𝑘 ∈ 𝐾. 

We have σିଵ T σ ∈ 𝐺(𝐸/𝐾) for all T ∈ 𝐺(𝐸/𝐾). 

Also we have 𝑘 = (σିଵ T σ)(𝑘) = σିଵ ቀ𝑇൫σ(𝑘)൯ቁ for all 𝑘 ∈ 𝐾.  

So, 𝑇൫σ(𝑘)൯ = σ(𝑘) 𝑓𝑜𝑟 𝑎𝑙𝑙 T ∈ 𝐺(𝐸/𝐾), 𝑘 ∈ 𝐾.  

Since the fixed field of 𝐺(𝐸/𝐾) is 𝐾, σ(𝑘) ∈ 𝐾 𝑎𝑠 σ(𝑘) is fixed by all T ∈ 𝐺(𝐸/𝐾).  

Therefore 𝜎(𝐾) ⊆ 𝐾, that is, 𝐾 is a normal extension of F. 

5) We have that K is a normal extension of F.  

We prove that 𝐺(𝐾/𝐹) ≅ 𝐺(𝐸/𝐹)/𝐺(𝐸/𝐾) 

Define ψ: 𝐺(𝐸/𝐹) → 𝐺(𝐾/𝐹) by ψ(σ) = σ∗, for all σ ∈ 𝐺(𝐸/𝐹),  

where σ∗ is the restriction of σ ∈ 𝐺(𝐸/𝐹) to 𝐾 and 𝜎∗ ∈ 𝐺(𝐸/𝐹)  

Let σଵ, σଶ ∈ 𝐺(𝐸/𝐹).  𝑇ℎ𝑒𝑛 σଵ 𝑜 σଶ ∈ 𝐺(𝐸/𝐹). 𝑆𝑜, ψ(σଵ o σଶ) = (σଵ 𝑜 σଶ)∗. 

Now (σଵ 𝑜 σଶ)∗(𝑘) = (σଵ(σଶ(𝑘)) = σଵ൫𝜎ଶ
∗(𝑘)൯ = 𝜎ଵ

∗൫σଶ
∗ (𝑘)൯  

= (σଵ
∗  o σଶ

∗ )(𝑘) for all 𝑘 ∈ 𝐾.  

This implies (σଵo σଶ)∗ = σଵ
∗  𝑜 σଶ

∗ .  

So, ψ(σଵ 𝑜 σଶ) = σଵ
∗  𝑜 σଶ

∗ = ψ(σଵ) o ψ(σଶ).  

Therefore,  ψ is a homomorphism of the group G(E/F) into the group G(K/F). 

Consider Ker ψ = {σ ∈ 𝐺(𝐸/𝐹)/ψ(σ) = I on K} 

= {σ ∈ 𝐺(𝐸/𝐹)/σ∗ = I on K}  

So, Kerψ ⊆  𝐺(𝐸/𝐾). Also for σ ∈ 𝐺(𝐸/𝐾), σ(𝑘) = 𝑘 for all 𝑘 ∈ 𝐾.  

This implies σ ∈ Ker ψ.  So, 𝐺(𝐸/𝐾) ⊆ Ker ψ.  

Hence, Ker ψ = 𝐺(𝐸/𝐾). 

Therefore, 𝐺(𝐸/𝐹)/𝐺(𝐸/𝐾) ≅ ψ൫𝐺(𝐸/𝐹)൯ and ψ൫𝐺(𝐸/𝐹)൯is a subgroup of 𝐺(𝐾/𝐹). 

We have [𝐸: 𝐹] = [𝐸: 𝐾][𝐾: 𝐹] and [𝐸: 𝐹] = 𝑂൫𝐺(𝐸/𝐹)൯  
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and [𝐸: 𝐾] = 𝑂൫𝐺(𝐸/𝐾)൯.  So, [𝐾: 𝐹] =
ை൫ீ(ா/ி)൯

ை൫ீ(ா/௄)൯
  

Now [𝐾: 𝐹] =
ை൫ீ(ா/ி)൯

ை൫ீ(ா/௄)൯
= 𝑂 ቀ

ீ(ா/ி)

ீ(௄/ி)
ቁ = 𝑂 ቀψ൫𝐺(𝐸/𝐹)൯ቁ 

Since K is a normal extension of F, we have 

[𝐾: 𝐹] = 𝑂൫𝐺(𝐾/𝐹)൯  

So, 𝑂൫𝐺(𝐾/𝐹)൯ = 𝑂 ቀψ൫𝐺(𝐸/𝐹)൯ቁ and that 𝐺(𝐾/𝐹)  =  ψ(𝐺(𝐸/𝐹))) 

Therefore,  𝐺(𝐸/𝐹)/𝐺(𝐸/𝐾) ≅ 𝐺(𝐾/𝐹)  

 

11.3  SUMMARY: 

 

The Fundamental Theorem of Galois Theory describes the deep relationship between fields 
and groups. If E is a finite Galois extension of F, then there is a one-to-one correspondence 
between the subgroups of 𝐺 =  𝐺(𝐸/𝐹) and the intermediate fields lying between F and E. 
This correspondence is inclusion-reversing, meaning that larger subgroups correspond to 
smaller fields. Each subgroup H of G gives a fixed field EH and each intermediate field K 
gives the subgroup G(E/K). Normal subgroups of 𝐺(𝐸/𝐹) correspond to normal extensions 
of F. For a normal extension K of F, the index of the subgroup 𝐺(𝐸/𝐾) equals the degree of 
the extension, of K over F. Thus, the subgroup structure of the 𝐺(𝐸/𝐹) mirrors the lattice of 
intermediate fields. This correspondence allows field-theoretic problems to be translated into 
group-theoretic ones, and it explains why certain polynomials are solvable while others are 
not. 
 

11.4 TECHNICAL TERMS: 

 Degree of Extension: The dimension of E as a vector space over F and it is denoted by 
[E:F] 

 Splitting Field: The smallest field in which a given polynomial splits completely into 
linear factors. 

 Separable Extension: A field extension in which every element is the root of a 
separable polynomial over the base field. 

 Normal Extension: An extension in which every irreducible polynomial over the base 
field that has one root in the extension splits completely in it. 

 Galois Extension: A finite extension that is both normal and separable. 

 Intermediate Field: A field K such that F⊆K⊆E, F is a subfield of K and K is a subfield 
of E. 
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11.5  SELF-ASSESSMENT QUESTIONS: 

Question 1. What is a Galois extension? 

Answer: A finite extension E of F is called a Galois extension if it is both normal and 
separable. 

Question 2. State the Fundamental Theorem of Galois Theory. 

Answer: If E/F is a finite Galois extension with Galois group G, then there is a one-to-one 
inclusion-reversing correspondence between the subgroups of G and the intermediate fields 
of E. 

Question 3. What type of field extensions correspond to normal subgroups of the Galois 
group? 
Answer: Normal subgroups of G correspond to intermediate fields that are normal over F. 

Question 4. Why is the correspondence inclusion-reversing? 
Answer: Because larger subgroups of 𝐺(𝐸/𝐹) fix fewer elements, resulting in smaller fields, 
and vice versa. 

Question 5. Give one application of the Fundamental Theorem of Galois Theory. 
Answer: It explains why general equations of degree five or higher over Q cannot always be 
solved by radicals. 

11.6 SUGGESTED READINGS: 
 

1. Bhattacharya, P. B., S. K. Jain and S. R. Nagpaul. 1997. Basic Abstract Algebra, 2nd 
edition. UK: Cambridge University Press (Indian Edition). 

2. Hungerford, Thomas W. Abstract Algebra, 1974, Springer-Verlag, New York 
3. Khanna, V. K. and S. K. Bhambari. A Course in Abstract Algebra, 3rd edition. New 

Delhi: Vikas Publishing House Pvt. Ltd. 
4. Lang, S. 1993. Algebra, 3rd edition. Boston: Addison-Wesley, Mass. 
5. I.S. Luther and I.B.S.Passi, Algebra, Vol. IV-Field Theory, Narosa Publishing 

House,2012. 
6. Ian Stewart, Galios Theory, Chapman and Hall/CRC, 2004.  

 

-  Dr. K. Siva Prasad 

 

 

 

 

 

 



LESSON- 12 

FUNDAMENTAL THEOREM OF ALGEBRA  
 
 OBJECTIVES: 
 
 To understand the statement of the fundamental theorem of Algebra that every non-

constant polynomial with complex coefficients has at least one root in the field of 
complex numbers. 

 To realize the importance of the field of complex numbers as an algebraically closed 
field. i.e., every polynomial equation over ℂ can be completely factorized into linear 
factors. 

 
STRUCTURE: 
 
12.1  Introduction  

12.2  Fundamental Theorem of Algebra 

12.3  Summary 

12.4  Technical Terms 

12.5   Self -Assessment Questions 

12.6   Suggested Readings 

 
12.1 INTRODUCTION: 
 
The Fundamental Theorem of Algebra is a central result in Algebra which states that every 
non-constant polynomial with complex coefficients has at least one root in the field of 
complex numbers. This establishes that the field of complex numbers is algebraically closed. 
Consequently, any polynomial of degree n over ℂ can be completely factorized into exactly n 
linear factors, counting multiplicities. The theorem highlights the distinction between ℝ and 
ℂ, since real numbers are not algebraically closed. Various proofs exist, ranging from 
analytic approaches using Liouville’s theorem to purely algebraic and topological methods. A 
direct outcome of the theorem is that over ℂ the only irreducible polynomials are linear. It 
also guarantees the completeness of polynomial solutions in the complex plane.   
 
12.2 FUNDAMENTAL THEOREM OF ALGEBRA: 
 
12.2.1 Note: Any field of characteristic zero is a perfect field. Since the characteristic of ℝ 
and ℂ are zero, the fields ℝ and ℂ are perfect fields. So any algebraic extension over them is a 
separable extension.  
 

12.2.2 Note: Let G be a finite group and let 𝑝 be a prime number. If 𝑝௠ ∣ 𝑜(𝐺), then G has a 
subgroup of order 𝑝௠. 
 
Theorem 12.2.3: (Fundamental Theorem of Algebra) 
Let 𝑓(𝑥) ∈ ℂ[𝑥] be a non-constant polynomial. Then 𝑓(𝑥) can be factored as linear factors in 

ℂ[𝑥].  
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Proof:  Let 𝑓(𝑥) ∈ ℂ[𝑥] be a non-constant polynomial. 

We prove that the splitting field of 𝑓(𝑥) over ℂ is ℂ, that is, all roots of 𝑓(𝑥) are in ℂ. 

Let 𝑓(𝑥) = 𝑎଴ + 𝑎ଵ𝑥 + 𝑎ଶ𝑥ଶ + ⋯ + 𝑎௡𝑥௡, 𝑎௡ ≠ 0. 

Consider 𝑔(𝑥) = (𝑥ଶ + 1)(𝑎଴ + 𝑎ଵ𝑥 + ⋯ + 𝑎௡𝑥௡)(𝑎଴തതത + 𝑎ଵതതത𝑥 + ⋯ + 𝑎௡തതത𝑥௡) 

Clearly 𝑔(𝑥) ∈ ℝ[𝑥]. Let E be the splitting field of 𝑔(𝑥) over ℝ. 

 Clearly ℂ is a subfield of  𝐸 and that ℝ ⊆ ℂ ⊆ 𝐸. 

We prove that 𝐸 = ℂ and that all roots of 𝑓(𝑥) will be in ℂ. We first prove that there is no 

subfield 𝐾 of 𝐸 containing ℂ such that [𝐾: ℂ] = 2. Suppose that 𝐾 is a subfield of E and          

ℂ ⊆ 𝐾 and [𝐾: ℂ] = 2. Since K is a finite separable extension of ℂ such that  𝐾 = ℂ(𝑢) for 

some       𝑢 ∈ 𝐾.   

Let  𝑝(𝑥) be the minimal polynomial of u over ℂ. 

Now 𝑑𝑒𝑔  𝑝(𝑥)  =  2 and 𝑝(𝑥) is irreducible monic polynomial in ℂ[𝑥].  

Suppose  𝑝(𝑥) = 𝑥ଶ + 2𝑎𝑥 + 𝑏, where 𝑎, 𝑏 ∈ ℂ. 

Now 𝑝(𝑥) = (𝑥 + 𝑎)ଶ − (𝑎ଶ − 𝑏) 

= (𝑥 + 𝑎)ଶ − ൫√𝑎ଶ − 𝑏൯
ଶ
   

=  ((𝑥 + 𝑎)  −  √𝑎ଶ − 𝑏) ((𝑥 + 𝑎)  +  √𝑎ଶ − 𝑏)   

= ቀ𝑥 − ൫√𝑎ଶ − 𝑏 − 𝑎൯ቁ ቀ𝑥 − ൫−𝑎 − √𝑎ଶ − 𝑏൯ቁ  

Since 𝑎ଶ − 𝑏 ∈ ℂ, 𝑤𝑒 ℎ𝑎𝑣𝑒 𝑡ℎ𝑎𝑡 √𝑎ଶ − 𝑏 ∈ ℂ and that both roots  

(√𝑎ଶ − 𝑏 − 𝑎), ൫−√𝑎ଶ − 𝑏 − 𝑎൯ are in ℂ. 

This is a contradiction to 𝑝(𝑥) is irreducible over ℂ. 

Therefore there is no subfield 𝐾 of 𝐸 containing ℂ such that [𝐾: ℂ] = 2. 

Consider the Galois group 𝐺(𝐸/ℝ) 𝑜𝑓 𝑔(𝑥) over ℝ. 
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Now 𝑂൫𝐺(𝐸/ℝ)൯ = 2௠𝑞, where m is a positive integer and q is an odd integer. 

Let 𝐺(𝐸/ℝ) has a 2-Sylow subgroup of H of order 2௠.  

Now H = G(E/L) for some subfield L of E containing ℝ. 

Now 2௠𝑞 = 𝑂൫𝐺(𝐸/ℝ)൯ = [𝐸: ℝ] = [𝐸: 𝐿][𝐿: ℝ] 

= 𝑂(𝐻)[𝐿: ℝ] = 2௠[𝐿: ℝ]  

So, [𝐿: ℝ] = 𝑞.  

Since L is a finite separable extension of ℝ, we have that 

𝐿 = ℝ(𝑣) for some 𝑣 ∈ 𝐿. 

Let 𝑞(𝑥) be the minimal polynomial of 𝑣 over ℝ, 

Now 𝑞(𝑥) ∈ ℝ[𝑥] is irreducible over ℝ, and its degree is q, an odd integer.  

We know that every equation of odd degree over the reals has a real root. 

So, 𝑞(𝑥) has a root in ℝ. Since 𝑞(𝑥) is irreducible over ℝ, and has a root in ℝ, it follows that 

deg 𝑞(𝑥)  =  1 and that 𝑞 = 1.  

So, 𝐿 = ℝ. Now 𝑂൫𝐺(𝐸/ℝ)൯ = 2௠ and ℝ ⊆ ℂ ⊆ 𝐸. 

 Since 2௠ = [𝐸: ℝ] = [𝐸: ℂ][ℂ: ℝ] = [𝐸: ℂ] x 2, we have that 

[𝐸: ℂ] = 2௠ିଵ.  

Since E is a Galois extension of ℂ, it follows that 

[𝐸: ℂ] = 𝑂൫𝐺(𝐸/ℂ)൯ = 2௠ିଵ.  

Suppose that 𝑚 > 1. So, 𝑚 − 1 ≥ 1. So, 𝐺(𝐸/ℂ) has a subgroup of order 2௠ିଶ as 2௠ିଶ/

2௠ିଵ.  

Now by the fundamental theorem of Galois theory,  

we get a subfield 𝐸଴ of E containing ℂ such that 
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𝐺(𝐸/𝐸଴) = 𝑇 and [𝐸: 𝐸଴] = 𝑂൫𝐺(𝐸/𝐸଴)൯   

Now 2௠ିଵ = [𝐸: ℂ] = [𝐸: 𝐸଴][𝐸଴: ℂ]  

= 𝑂(𝑇)[𝐸଴: ℂ]  

= 2௠ିଶ[𝐸଴: ℂ]  

Therefore, [𝐸଴: ℂ] = 2. This is a contradiction to the fact that 𝐸 has no subfield 𝐾 containing 

ℂ such that [𝐾: ℂ] = 2. Therefore 𝑚 ≯ 1, that is,  𝑚 =  1.  

So, [𝐸: ℂ] = 2௠ିଵ = 2ଵିଵ = 2଴ = 1. 

Hence, 𝐸 = ℂ as required. 

12.3  SUMMARY:  
 

The Fundamental Theorem of Algebra is one of the most celebrated results connecting 
algebra and analysis. It asserts that every non-constant polynomial with complex coefficients 
has at least one root in the field of complex numbers. This property makes the complex 
number system an algebraically closed field, a concept of fundamental importance in higher 
algebra. The necessity of the theorem arises from the fact that equations of degree higher than 
two cannot always be solved explicitly by radicals, yet we still require a guarantee of root 
existence. Without such a result, the theory of polynomial factorization would remain 
incomplete. The theorem provides the foundation for expressing any polynomial of degree n 
as a product of n linear factors over ℂ, ensuring completeness of algebraic equations.  
 

12.4  TECHNICAL TERMS: 

 

Fundamental theorem of algebra. 

 

12.5  SELF-ASSESSMENT QUESTIONS: 

Question 1. Why is the field of complex numbers called algebraically closed? 

Answer: Because every non-constant polynomial in ℂ[x] has at least one root in ℂ, and 
hence every polynomial splits completely into linear factors over ℂ. 

Question 2. What are the irreducible polynomials over ℂ? 

Answer: Over ℂ, the only irreducible polynomials are linear. 

Question 3. What is the necessity of the Fundamental Theorem of Algebra? 
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Answer: It guarantees the existence of roots for all complex polynomials, making 
factorization possible and ensuring completeness of algebraic equations. 

Question 4. How does the Fundamental Theorem of Algebra relate to Galois Theory? 

Answer: It ensures that the splitting field of a polynomials exists inside ℂ, which is essential 
for studying solvability of polynomials by radicals. 

Question 5. Why is the theorem not true over the field of real numbers? 

Answer: Because there exist real polynomials, like x2+1 which have no real roots, ℝ is not 
algebraically closed. 

12.6  SUGGESTED READINGS: 

1. Bhattacharya, P. B., S. K. Jain and S. R. Nagpaul. 1997. Basic Abstract Algebra, 2nd 
edition. UK: Cambridge University Press (Indian Edition). 

2. Hungerford, Thomas W. Abstract Algebra, 1974, Springer-Verlag, New York 
3. Khanna, V. K. and S. K. Bhambari. A Course in Abstract Algebra, 3rd edition. New 

Delhi: Vikas Publishing House Pvt. Ltd. 
4. Lang, S. 1993. Algebra, 3rd edition. Boston: Addison-Wesley, Mass. 
5. I.S. Luther and I.B.S.Passi, Algebra, Vol. IV-Field Theory, Narosa Publishing 

House,2012. 
6. Ian Stewart, Galios Theory, Chapman and Hall/CRC, 2004.  

-  

-  Dr. K. Siva Prasad 

 

 

 

 

 

 



LESSON- 13 

ROOTS OF UNITY AND CYCLOTOMIC 
POLYNOMIALS 

 
OBJECTIVES: 
 
 To understand the concept of roots of unity and its properties. 
 To derive the minimal polynomial of primitive roots of unity over the rationals. 
 To construct the nth cyclotomic polynomial, which is the minimal polynomial of a 

primitive  nth root of unity. 
 To investigate the irreducibility and degree of cyclotomic polynomials. 

 
STRUCTURE: 
 
13.1  Introduction  

13.2  Roots of Unity 

13.3  Cyclotomic Polynomials 

13.4   Summary 

13.5  Technical Terms 

13.6   Self- Assessment Questions 

13.7   Suggested Readings 

 
13.1 INTRODUCTION: 
 
In algebra, one of the central theme is understanding the roots of polynomials over fields. 
This lesson on roots of unity and cyclotomic polynomials introduces the fundamental 
concepts that link algebra, number theory, and geometry. It focuses on the study of the nth 
roots of unity, which are precisely the solutions to the equation xn= 1 in a suitable field.          
The concept of primitive roots of unity, construction and properties of cyclotomic 
polynomials is discussed. The elegant algebraic properties of cyclotomic polynomials 
including their irreducibility over Q is studied.  
 
13.2 ROOTS OF UNITY: 
 
13.2.1 Definition: Let E be a field and n be a positive integer. An element ω∈ E is called a 
primitive nth root of unity in E if ωn = 1 and ωm≠ 1, for any positive integer m< n. 
 
13.2.2 Note: The set of complex numbers satisfying xn = 1 form a finite subgroup H of the 
multiplicative group Ȼ = C – {0}, where C is the field of complex numbers. Also this H is 
cyclic group generated by a primitive nth root of unity. For any positive integer ‘n’, there are 
exactly φ(n) primitive nth roots of unity, where φ(n) is the number of positive integers less 
than n and are relatively prime to n. 
 

(i) If a finite group of order ‘n’ contains an element of order ‘n’, then it must be a 
cyclic group. 
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(ii) If A and B are cyclic groups of orders m and n respectively such that (m,n) =1, 
then A×B is a cyclic group. 

(iii) Let A be a finite abelian group of order pଵ
ୣభ .pଶ

ୣమ……p୩
ୣౡ where pଵ,pଶ,……..p୩ are 

distinct primes and ei>0 then A = S(p1)⊕S(p2)⊕……….⊕S(pK) where                  
|S(𝑝୧)| = p୧

ୣ౟  ∀i = 1,2,….., k and this decomposition of A is unique. 
 
13.2.3 Theorem: Let F be a field and let U be a finite subgroup of the multiplicative group  
F* = F – {0}. Then U is cyclic. In particular, roots of xn – 1 ∈ F[x] from a cyclic group. 
 
Proof: Let F be a field and F* = F – {0} be the multiplicative group of non-zero elements, 
which is abelian. 
Let U be a finite subgroup of F*. 

Suppose |U| = n>1 and n = pଵ
୰భ .pଶ

୰మ……p୩
୰ , where pଵ,pଶ,……..p୩ are distinct prime    numbers 

and rଵ,rଶ,……..r୩ are positive integers. 

Let S(pi) be a pi- sylow subgroup of U. 

Since U is finite abelian group, we have U = S(p1)×S(p2)×……….×S(pK) where |S(p୧)|= p୧
୰౟; 

1≤i≤k.   
Now we show that U is cyclic. 
For this first we show that each S(𝑝୧) is a cyclic group.  

Let a∈ S(𝑝୧) be an element such that O(a) is maximal, say p୧
ୱ౟. 

Since O(a)| O൫S(p୧)൯, we have p୧
ୱ౟| p୧

୰౟ 
This implies si≤ ri                                                                                                               (1) 
Let x ∈S(pi) with O(x) = p୧

୲౟  

By the selection of the element ‘a’ in S(pi), we have that p୧
୲౟ ≤ p୧

ୱ౟ 

This implies 𝑥௣೔
ೞ೔  = 1 . 

Then every element of S(pi) is a root of the polynomial 𝑥௣೔
ೞ೔  – 1. 

But we know that the number of roots of the polynomial 𝑥௣೔
ೞ೔  – 1 is p୧

ୱ౟ 

⇒ |S(p୧)| ≤ p୧
ୱ౟ 

⇒     p୧
୰౟ ≤ p୧

ୱ౟ 

⇒ ri ≤si                                                                              (2) 
From (1) and (2), we have ri=si 

⇒     p୧
୰౟ = p୧

ୱ౟ 

⇒ O(a) = p୧
୰౟ 

Therefore |S(p୧)| = O(a). 
So  S(pi) is cyclic for all i =1,2,…..,k. 

Therefore   S(p1), S(p2)……….S(pK) are cyclic groups of orders pଵ
୰భ , pଶ

୰మ ,……, p୩
୰  

Thus S(p1)×S(p2)×……….×S(pK) is cyclic and hence U is cyclic.  

Let H be the set of roots of xn – 1 ∈ F[x].   Let E be the splitting field of xn – 1. 

Then E* = E – {0} is a multiplicative group of non-zero elements. 

Let a,b∈ H.   Then an = 1 and bn = 1 
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Consider, (ab)n = anbn = 1. So, ab∈ H 

This shows that  H is a finite subgroup of E* and hence H is a cyclic group 

Therefore the set of  roots of xn – 1 is a  cyclic group. 
 

13.2.4 Theorem: Let F be a field and let n be a positive integer. Then there exists a primitive 

nth root of unity in some extension E of F if and only if either charF = 0 (or) charF∤n 

Proof: Given that F is a field and n is a positive integer. 

Consider the polynomial f(x) = xn – 1 ∈ F[x] 

Assume that char F = 0 or charF∤n 

Let E be the splitting field of f(x) over F.  

Let 𝛼 ∈ E be a root of f(x) ∈ F[x].    

Then f '(x) = nxn-1   (Since f(x) = xn – 1) 

This implies  f '(𝛼) = n𝛼 n-1≠ 0   (charF∤n) 

Since charF = 0 or charF∤n, we have f '(𝛼)≠ 0.   

i.e, Each root of the polynomial f(x) is simple. 

Therefore f(x) has n distinct roots. 

Let H be the set of all these ‘n’ roots of f(x).   

Then H ⊆ E , |H| = n and we know that H is a cyclic group of E* = E –{0}. 

Therefore H = (a).  

Here O(a) = n, an = 1 and  am≠1 for any positive integer m<n. 

So, a is primitive nth root of unity in E, where E is extension of F. 

Conversely, Assume that E is an extension of F and a ∈ E is a primitive nth root of unity. 

Then 1, a, a2, ……., an-1 are n distinct roots of the polynomial f(x) = xn – 1∈ F[x] 

Therefore all the roots of f(x) are simple.  

So,  f '(x) ≠ 0   i.e,  f '(x) = nx n-1≠ 0.  

Hence charF = 0 (or) charF∤n 

 
13.3  CYCLOTOMIC POLYNOMIALS: 

 

13.3.1 Definition: Let n be a positive integer. Let F be a field of characteristic zero or             

characteristic  p∤n. Then the polynomial φn(x) = πன(x −  ω) where the product runs over all 

the primitive nth roots ω of unity is called the nth cyclotomic polynomial. 

Example: φ1(x) = x -1, φ2(x) = x +1, φ3(x) = x2 +x+1, φ4(x) = x2 +1 are cyclotomic 

polynomials over Q. 
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13.3.2 Theorem: φn(x) = πன(x −  ω), ω is primitive nth root in C, is an irreducible 

polynomial of degree φ(n) in Z[x] 
 

Proof: 

Let E be the splitting field of xn – 1 over Q. 

Then E is a finite, normal and separable  extension of Q ( Since char Q = 0) 

Therefore the fixed field of G(E/Q) is Q.   

Let ω be any primitive nth root of unity. 

Then for any σ ∈ G(E/Q),  (σ (ω))௡ = σ (ω௡) = σ(1) = 1 & (σ (ω))௠= σ (ω௠) ≠ σ(1) = 1 

for positive integer m<n. 

Therefore for any σ ∈ G(E/Q), the induced mapping σ* : E[x] → E[x] keeps φn(x) unaltered. 

i.e., σ*(φn(x)) = φn(x) ∀σ ∈ G(E/Q) 

i.e, each coefficient of φn(x) remains unchanged for any σ ∈G(E/Q) 

This implies that all the coefficients of φn(x) are in the fixed field of G(E/Q) and hence all the 

coefficients of φn(x) are in Q.  (∵ fixed field of G(E/Q) is Q) 

Therefore φn(x) ∈ Q[x] 

Since φn(x) is a factor of xn –1 & φn(x) is monic, we have φn(x) ∈ Z[x]                               (1) 

We know that for any positive integer n, the number of primitive nth root of unity is φ(n)  

So the degree of φn(x) is φ(n).                                                                                                (2) 

Now we show that φn(x) is irreducible over Z 

Let f(x) ∈ Z[x] be an irreducible factor of φn(x) and ω be a root of f(x). 

Here ω is also a primitive nth root of unity. 

We shall now  prove that  ωp is also a root of f(x) for any prime number p such that  p ∤ n . 

Let p be any prime number such that p ∤ n.  

Clearly  ω௣ is also generator of  the cyclic group consisting of the roots of xn-1  (∵ (p,n) = 1) 

This implies that ω௣ is also a primitive nth root of unity. 

Since f(x) ∈ Z[x] is a factor of φn(x), there exists a polynomial h(x) ∈ Z[x]  such that            

φn(x) = f(x).h(x). 

If possible suppose that ω௣ is not a root of f(x). 

Then ω௣ is a root of h(x)       (∵ φn(x) = f(x).h(x)) 

This implies h(ωp) = 0. So, ω is a root of h(xp)   

Therefore f(x) and h(xp)  have a common factor over some extension of Q.  

By Euclid’s division algorithm, f(x) and h(xp)  have a common factor over Q. 

Since f(x) is irreducible in Z[x], we have f(x) is irreducible in Q[x] 
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Therefore  f(x)|h(x୮) in Q[x]. So, there exists g(x) ∈ Z[x] such that  h(xp) = f(x).g(x)  

Since h(xp) and f(x) are monic polynomials, it follows that g(x) is a monic polynomial over Z. 

Let f(̅x) and hത(x) be obtained by replacing the coefficients a ∈ Z by aത of   Z (𝑝)ൗ  

Since ap≡a(modp) for all integers a, we have (hത(x))p   = hത(xp)  

So hത(xp) = f(̅x).gത(x)  and hence  hത(x) and  f(̅x) have a common factor. 

But we know that φn(x) | x୬ − 1 and φn(x) = f(x).h(x) 

This implies x୬  −  1 has a multiple root, Say α. 

Then the derivative of  x୬  −  1 must vanish at α. 

⇒ nα୬ିଵ  = 0 

⇒ α୬ିଵ  = 0  (∵ char p∤ n) 

⇒ α = 0, which is contradiction (∵ 0 is not a root of  x୬  −  1) 

Therefore ω௣ is also a root of f(x).  

Thus if ω is a root of f(x), then ω௣ is also a root of f(x) for any prime p < n & p∤ n           (*) 

Since any primitive nth root of unity can be obtained by raising ω to a succession of prime 

powers  with primes not dividing n, we have that all the primitive nth roots of unity are roots 

of  f(x).  So, φ୬(x) = f(x) 

Therefore φ୬(x) is irreducible over Z. 
 

13.3.3 Theorem: Let ω be a primitive nth root of unity in C, then Q(ω) is the splitting   field 

of  φ୬തതതത(𝑥) and also of  x୬  −  1 ∈ Q[x]. Further [Q(ω):Q] = φ(n)= |G(Q(ω)/Q)| and 

G(Q(ω)/Q) ≅ ቀ
௓

ழ௡வ
ቁ

∗

, the multiplicative group formed by the units of 
௓

ழ௡வ
.  

Proof: Given that ω is a primitive nth root of unity in C.  

Let 1, ω, ω2, ……., ωn-1  be the n distinct roots of the polynomial xn-1.  

So Q(ω) is the splitting field of the polynomial xn-1. 

Since Q(ω) contains ω and ω is a primitive nth root of unity, we have that Q(ω)  contains all 

nth roots of unity. Hence Q(ω) is also the splitting field of  φ୬തതതത(𝑥). 

Now φ୬തതതത(𝑥) ∈ Q[x], and by Theorem 13.3.2, it is irreducible with leading coefficient 1 and ω 

is a root of φ୬തതതത(𝑥) .   Also we have φ୬തതതത(𝑥) is the minimal polynomial of ω over Q. 

⸫ [Q(ω):Q] = degφ୬തതതത(𝑥)  = φ(n)                                                                                 (1) 

 Since Q(ω) is a finite, normal and separable  extension of Q, by known theorem, we have 

|G(Q(ω)/Q)| = [Q(ω):Q]                                                                                             (2) 

Let 𝜎 ∈G(Q(ω)/Q) .  
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Since ω is a primitive nth root of unity, we have 𝜎(ω) is also a primitive nth root of unity. 

Therefore   𝜎(ω)  = ωk for k < n and  k is relatively prime to n. 

Denote  σ by σ୩. 

From (1) and (2), we have |G(Q(ω)/Q)| = [Q(ω):Q] =   φ(n) = degφ୬തതതത(𝑥) 

The number of such k’s are equal to φ(n) and they are precisely the elements of (Z/(n))* 

Now we show that the galois group G(Q(ω)/Q) is isomorphic to (Z/(n))*, where(Z/(n))* is   

the multiplicative group formed by the units of Z/(n). 

Define a mapping f: (Z/(n))* → G(Q(ω)/Q) as f(k) = σ୩, ∀ k ∈ (Z/(n))* 

It is easy to verify that  f is one-one and onto. 

Now  we show that f is a homomorphism. 

Let k1, k2∈ (Z/(n))* .Then  k1.k2= qn+r where r < n    

So k1. k2 +(n) = qn + r + (n) = r + (n)    (∵qn∈ (n)) 

This implies  k1.k2=  r . So ω௞భ௞మ  = ω௤௡ ା௥ = ω௥ 

Now  f(k1k2) = f(r) = σ୰ = σ௞భ௞మ
= σ୩భ

. σ୩మ
 = f(k1) .f(k2) 

Therefore f is homomorphism. 

 Hence ቀ
௓

ழ௡வ
ቁ

∗

≅   G(Q(ω)/Q) 

 
13.4  SUMMARY: 

The topic "Roots of Unity and Cyclotomic Polynomials" explores an essential area of algebra 
that links polynomial equations, field theory, and number theory. In particular the complex 
numbers that satisfying the equation xn = 1 form a cyclic group under multiplication. A 
primitive nth root of unity is one that generates all the nth roots of unity. The study of these 
roots is extended through cyclotomic polynomials, which are minimal polynomials of 
primitive nth roots of unity over the rationals. This polynomial denoted by φn(x) have integer 
coefficients, degree equal to φ(n) and are irreducible over Q. The cyclotomic polynomial 
φn(x) captures the structure of roots of unity and provides a factorization of xn - 1 into 
irreducible polynomials over Q. The construction of cyclotomic polynomials is recursive.  

13.5  TECHNICAL TERMS:  

Root of Unity: A solution to the equation xn = 1. 

Primitive nth Root of Unity: The primitive nth roots of unity are those that generate all the nth 
roots through their powers. 

Cyclotomic Polynomial: Let n be a positive integer. Let F be a field of characteristic zero or             

characteristic  p∤n. Then the polynomial φn(x) = πன(x −  ω) where the product runs over all 

the primitive nth roots ω of unity is called the nth cyclotomic polynomial. 
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Euler’s Totient Function φ(n): The number of positive integers k less than n  such that 
gcd(k,n)=1. 

Irreducible Polynomial: A nonconstant polynomial that cannot be factored into the product of 
two nonconstant polynomials over the field. 

13.6  SELF -ASSESSMENT QUESTIONS: 

Q1. How many primitive nth roots of unity exist in C? 
Answer: 
There are ϕ(n) primitive nth  roots of unity in C, where ϕ is Euler’s totient function. 

Q2. Are cyclotomic polynomials irreducible over Q? 
Answer:Yes, φn(x) is irreducible over Q for every positive integer n.  

Q3. Compute Φ3(x). 
Answer: 

We have x3−1=(x−1)(x2+x+1)  

So Φ3(x)=x2+x+1 which is the minimal polynomial of a primitive cube root of unity over Q. 

Q4. What is the degree of φn(x)? 
Answer: 
The degree of φn(x) is ϕ(n), where ϕ is Euler’s totient function. 

13.7  SUGGESTED READINGS: 
 
1. Bhattacharya, P. B., S. K. Jain and S. R. Nagpaul. 1997. Basic Abstract Algebra, 2nd 

edition. UK: Cambridge University Press (Indian Edition). 
2. Hungerford, Thomas W. Abstract Algebra, 1974, Springer-Verlag, New York 
3. Khanna, V. K. and S. K. Bhambari. A Course in Abstract Algebra, 3rd edition. New 

Delhi: Vikas Publishing House Pvt. Ltd. 
4. Lang, S. 1993. Algebra, 3rd edition. Boston: Addison-Wesley, Mass. 
5. I.S. Luther and I.B.S.Passi, Algebra, Vol. IV-Field Theory, Narosa Publishing 

House,2012. 
6. Ian Stewart, Galios Theory, Chapman and Hall/CRC, 2004.  

 

-  Dr. J.L Rama Prasad 



LESSON- 14 

CYCLIC EXTENSIONS 
 
OBJECTIVES:  
 
 To understand the structure and properties of cyclic extensions of fields. 
 To analyze Galois extensions with cyclic Galois groups. 
 To explore explicit examples and constructions of cyclic extensions. 
 To learn how cyclic extensions contribute to solvability of polynomial by radicals.  
 To apply cyclic extension theory to fundamental algebraic structures and their 

automorphisms. 
 
STRUCTURE: 
 
14.1   Introduction  

14.2   Cyclic Extensions  

14.3   Summary 

14.4   Technical Terms 

14.5   Self -Assessment Questions 

14.6   Suggested Readings 
 

14.1 INTRODUCTION: 
 
A cyclic extension of a field is a Galois extension whose Galois group is cyclic. This concept 
plays a crucial role in Galois theory, which connects field extensions with group theory. 
Cyclic extensions are particularly important for understanding the solvability of polynomials 
by radicals and the structure of field automorphisms. Cyclic extensions also illustrate the 
fundamental theorem of Galois theory, which describes a correspondence between subgroups 
of the Galois group and intermediate fields. In cyclic extensions, this correspondence is 
particularly simple because the Galois group is cyclic and its subgroups are easy to classify. 
 
14.2 CYCLIC EXTENSIONS: 

14.2.1 Definition: Let E be a Galois extension of F. Then E is called a cyclic extension of F 
if G(E/F) is a cyclic group. 

Example: 1. Let ω be a primitive nth root of unity in ℂ. Consider the polynomial xn -1 ∈ 
Q[x]. Then ω is a root of the polynomial x2 -1∈ Q[x]  which implies that Q(ω) is the splitting 
field of xn -1, If  E = Q(ω), then E is a Galois extension of Q  as xn -1 is a separable 
polynomial . Since G(E/Q) is a cyclic group by known theorem, we have  E is cyclic 
extension of Q. 

Example 2 : All finite extensions of finite fields are separable. Thus the splitting field E of a 
polynomial f(x) over a finite field F is a Galois extension. By known theorem, we have 
G(E/F) is cyclic. Thus all the splitting fields over finite fields are cyclic extensions. 
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14.2.2 Proposition: Let F be a field of non-zero characteristic p. Then for every positive 

integer k the mapping π୩ of F into itself, defined by π୩(x) = 𝑥௣ೖ
 for all elements x ∈ F is an 

embedding of F into itself. (The mapping π୩(x) = 𝑥௣ೖ
  is called Frobenius endomorphism). 

Proof: Given that F is a field of characteristic p≠0.  

Let k be a positive integer. 

Define a mapping π୩: F →F by π୩(x) = 𝑥௣ೖ
, ∀ x ∈ F. 

Now we show that π୩ is an embedding.  

Let x, y ∈ F .  

Then π୩(x + y) = (𝑥 + 𝑦)௣ೖ
= 𝑥௣ೖ

+ 𝑦௣ೖ
 = π୩(x) + π୩(y) and 

         π୩(x. y) = (𝑥. 𝑦)௣ೖ
= 𝑥௣ೖ

. 𝑦௣ೖ
 = π୩(x) .π୩(y) 

Therefore  π୩: F → F is homomorphism 

Let x, y ∈ F be such that  π୩(x)  =π୩(y).  

                                          ⟹ 𝑥௣ೖ
    =    𝑦௣ೖ

   

                               ⟹ (𝑥 − 𝑦)௣ೖ
 = 𝑥௣ೖ

 - 𝑦௣ೖ
 = 0 

                               ⟹ x = y  

Therefore   π୩ is one-one 

Hence π୩ is an embedding of F into itself. 
 

14.2.3 Lemma: Let E be a finite extension of F. Suppose f: G → E* where E* = E – {0} has 

the property that f(𝜎𝜂) = 𝜎(f(𝜂)) f(𝜎), ∀𝜎, 𝜂 ∈ G. Then there exists 𝛼 ∈ E* such that f(𝜎) = 

𝜎(𝛼ିଵ) 𝛼,  ∀𝜎 ∈ G ( The mapping f in the hypothesis of this lemma is called a crossed 

homomorphism). 

Proof:  Given that E is a finite extension of F and E* = E – {0} be the multiplicative group of 

non-zero elements and f is a mapping from G to E*  such that f(𝜎𝜂) = 𝜎(f(𝜂)) f(𝜎), ∀𝜎, 𝜂 ∈ G.  

By known theorem,  we have |𝐺(E/F)| ≤ [E:F] 

Consider, ∑ f(𝜎)𝜎(a),   ఙ∈ீ ∀𝑎 ∈ 𝐹 

If  ∑ f(𝜎)𝜎(a)ఙ∈ீ = 0, ∀𝑎 ∈ 𝐹 then by a known theorem, f(𝜎) = 0, which is a contradiction to 

f(𝜎) ∈ E* 

Therefore   ∑ f(𝜎)𝜎(a)ఙ∈ீ ≠ 0, for some a ∈ F 

Put α = ∑ f(𝜎)𝜎(a)ఙ∈ீ  .  Let 𝜂 ∈ G. 

Now 𝜂(𝛼) 

 = 𝜂(∑ f(𝜎)𝜎(a)ఙ∈ீ ) 

 = ∑ η஢∈ୋ (f(𝜎))η(𝜎(a))  [∵f(𝜎𝜂) = 𝜎(f(𝜂)) f(𝜎),f(𝜂𝜎) = 𝜂(f(𝜎)) f(𝜂)  ⇒f(ησ)(f(𝜂)) ିଵ = 𝜂(f(𝜎)) ] 
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 = ∑ f(𝜂𝜎) (f(𝜂)) ିଵ η(𝜎(a))஢∈ୋ     [ ∵ { 𝜂𝜎/𝜎 ∈ 𝐺}  = { 𝜎/𝜎 ∈ 𝐺}  ] 

 = ∑ f(𝜎) (f(𝜂)) ିଵ𝜎(a)஢∈ୋ  

 = (f(𝜂)) ିଵ ∑ f(𝜎)  𝜎(a)஢∈ୋ  

 = (f(𝜂)) ିଵ α 

Thus  𝜂(𝛼) = ൫f(𝜂)൯
ିଵ

 α        

       ⇒ 𝜂(𝛼)f(𝜂)  =  α           

      ⇒ f(𝜂) = (𝜂(𝛼) ) ିଵ α  = 𝜂(αିଵ )α. 

Therefore    f(𝜂)   =  𝜂(αିଵ )α , ∀𝜂 ∈ G 
 

14.2.4 Lemma: (Special Case of Hilbert’s Problem 90):  

Let E be a finite extension of F and let G = G(E/F) be a cyclic group of order n generated by 

𝜎.  If 𝜔 ∈  E is such that   ω. σ(ω). σଶ(ω)…σ୬ିଵ(ω)= 1, then there exists 𝛼 ∈ E*such that   

 ω= σ(𝛼)αିଵ. 

Proof: Given that E is a finite extension of F and G = G(E/F) is a cyclic group of order n 

generated by 𝜎 . 

Let ω ∈  E be such that ω. σ(ω). σଶ(ω)…σ୬ିଵ(ω) = 1 

        Let G = { I = σ୬, σ୬ିଵ, ……..σଶ, σ} 

        Define a mapping f: G →E*  by f(I) = 1, f(σ) = ω, f(σ୧) = σ୧ିଵ(ω)σ୧ିଶ(ω)………. σ(ω) ω                

for i = 2,3….n-1. 

Now we show that this mapping f is a crossed homomorphism. 

        Let σ୧, σ୨ ∈ G for 1≤i, j≤n 
       

 Case(i) : Suppose that i +j ≡ 0 mod n    i.e,  i + j = n q      i.e., i + j is a multiple of n 

        Now  f(σ୧σ୨) = f(σ୧ା୨) = f(σ୬) = f(I) = 1 

        Consider f(σ୧)σ୧ (f(σ୨)) 

                     = (σ୧ିଵ(ω)σ୧ିଶ(ω)………. σ(ω) ω)σ୧(σ୨ିଵ(ω)σ୨ିଶ(ω)………. σ(ω) ω) 

                     = σ୧ିଵ(ω)σ୧ିଶ(ω)………. σ(ω) ωσ୧ା୨ିଵ(ω)σ୧ା୨ିଶ(ω)………. σ୧ାଵ(ω)σ୧(ω) 

                     = σ୧ା୨ିଵ(ω)σ୧ା୨ିଶ(ω)………. σ୧ାଵ(ω) σ୧(ω)σ୧ିଵ(ω)σ୧ିଶ(ω)………. σ(ω) ω 

                     = f(σ୧ା୨) 

                     = f(σ୬)  

                     = f(I) 

                     = 1 

        Therefore f(σ୧σ୨)   =    f(σ୧)σ୧ (f(σ୨))     
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Case (ii): Suppose σ୧, σ୨ ∈ G be such that i +j is not a multiple of n.  

        Then  i + j = nq+r where r < n 

        Here f(σ୧σ୨)   = f(σ୧ା୨) = f(σ୬୯ ା୰ ) = f(σ୬୯  σ୰ )  = f((σ୬)௤σ୰ )  = f((I)௤σ୰ )  = f(σ୰) 

                             = σ୰ିଵ(ω)σ୰ିଶ(ω)………. σ(ω) ω 

So   f(σ୧)σ୧ (f(σ୨))     

           = (σ୧ିଵ(ω)σ୧ିଶ(ω)………. σ(ω) ω)σ୧(σ୨ିଵ(ω)σ୨ିଶ(ω)………. σ(ω) ω) 

           =  σ୧ିଵ(ω)σ୧ିଶ(ω)………. σ(ω) ωσ୧ା୨ିଵ(ω)σ୧ା୨ିଶ(ω)………. σ୧ାଵ(ω) σ୧(ω) 

           = σ୧ା୨ିଵ(ω)σ୧ା୨ିଶ(ω)………. σ୧ାଵ(ω) σ୧(ω)σ୧ିଵ(ω)σ୧ିଶ(ω)………. σ(ω) ω 

           = σ୰ିଵ(ω)σ୰ିଶ(ω)………. σ(ω) ω   as σ୧ା୨= σ୬ ୯ ା୰ = (σ୬)௤σ୰ = (I)௤σ୰  = σ୰  

          Therefore f(σ୧σ୨)   =    f(σ୧)σ୧ (f(σ୨))     

  Hence  f is a crossed homomorphism. 

  By lemma 14.2.3, there exists 𝛼 ∈ E* such that f(σ)  = σ(αିଵ) 𝛼 

            ⸫ ω = σ(𝛼)αିଵ         (By def  f(σ) = ω. Since 𝛼 ∈ E*, E* is a field, we have αିଵexists 

and we  can replace αିଵ by 𝛼 & 𝛼 by αିଵ) 

        Hence Proved. 
 

14.2.5 Theorem:  Let F contain a primitive nth root ω of unity. Then the following are 

equivalent. 

(i) E is a finite cyclic extension of degree n over F 

(ii) E is the splitting field of a irreducible polynomial xn – b ∈ F[x]. Further more note      E 

= F[𝛼] where α  is a root of  xn – b 

Proof: Given that the field F contains a primitive nth root  ω of unity.  

Assume (i) i.e, Suppose that E is a finite cyclic extension of degree n over F 

By def., of cyclic extension, we have E is a Galois Extension of F and G(E/F) is a  cyclic   

group. 

Since E is finite extension,  it implies [E:F] = n(say).  

Since G(E/F) is a cyclic group, we have G = G(E/F) = (σ)  i.e., G is generated by σ ∈ G 

By known theorem, we have  |𝐺(E/F)| = [E:F] = n and F is the fixed field of G(E/F). 

Since ω ∈ F, σ ∈ G  we have σ(ω) = ω 

Therefore  ω. σ(ω). σଶ(ω)………σ୬ିଵ(ω) = ω. ω…ω = ω௡ = 1 

By lemma 14.2.4, there exists 𝛼 ∈ E* such that ω = σ(𝛼)αିଵ   

Therefore  σ(𝛼)= ω𝛼  

                ⇒ σ௜(𝛼)= ω௜𝛼                                                  (1) 
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Now  σ(𝛼௡) = (σ(𝛼)௡) = (ω𝛼)௡ = ω௡𝛼௡ = 𝛼௡(  ∵ω௡ = 1) 

        Therefore  σ௜(𝛼௡) = 𝛼௡; ∀i = 1,2,….n 

So each element in G is fixing 𝛼௡   ⸫    𝛼௡ ∈ F. 

Put b = 𝛼௡.   

Consider the polynomial f(x) = xn – b∈ F[x].  

Let g(x) be a monic irreducible factor of the polynomial f(x) in F[x] 

Now α, ωα,  ωଶα, ………ω୬ିଵ(α) are the n distinct roots of the polynomial f(x) 

Suppose  ω௜𝛼  is a root of g(x), where i = 0, 1,…, n-1 

Suppose 0 ≤ j ≤ n-1   

Consider σ୨ି୧(ω୧α)= ω୧ω୨ି୧α  (from(1))  

                               = ω୨α          [we know that ω ∈ F . So ω୧ ∈ F, σ୨ି୧(ω୧) = ω ] 

We have   σ୨ି୧(ω୧α)= ω୨α  ; ∀ i = 0,1,2,….n-1. 

i.e., If ω୧α   is a root of g(x) ∈ F[x] then σ୨ି୧(ω୧α) is also a root of g(x). 

Therefore α, ωα,  ωଶα, ………ω୬ିଵ(α) are all the roots of g(x) and deg g(x) = deg f(x) = n 

So,  f(x) = g(x) .μ, where μ is a unit in F 

Since g(x) is irreducible over F, we have f(x) is also irreducible over F 

Therefore F(α, ωα,  ωଶα, ………ω୬ିଵ(α)) is the splitting field of f(x) over F 

       Clearly F ⊆F(α) ⊆ E and  n = [E:F] = [E:F(α)][F(α):F] =  [E:F(α)] n  

⇒[E:F(α)] = 1.  

Therefore E = F(α) . 

So, E is the splitting filed of f(x) over F  

Assume (ii) i.e., E is the splitting filed of an irreducible polynomial f(x) = xn – b∈ F[x] 

We show that E is a finite cyclic extension of F of degree n. 

Let c ∈ E be a root of f(x). So, b = cn 

Then c, ωc,  ωଶα, ………ω୬ିଵc are n-distinct roots of  f(x) in E [  ∵ω is primitive nth root of 

unity].  Since deg f(x) = n, we have f(x) is separable over F. 

So F(c) = F(c, ωc,  ωଶα, ………ω୬ିଵc) is the splitting field of f(x) over F and hence it is 

normal extension of F. 

Therefore E = F(c)  and [E:F] = [F(c):F] = n 

Since the minimal polynomial of c is separable over F, we have c is separable over F 

Therefore E is finite separable normal extension of F. 

i.e, E is a Galois extension of F and |𝐺(E/F)| = [E:F] = n      

Now it remains to show that G(E/F) is cyclic.  
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For this we show that ϕ : G(E/F) ⟶ Z/< n> is an isomorphism. 

We know that Z/< n> is cyclic group of order n under addition 

Let 𝜎 ∈ G(E/F).   

Since c is a root of f(x), we have 𝜎(c) is also a root of f(x) and 𝜎(c) = ω୧c ; 0 ≤ i ≤ n-1 

Define ϕ : G(E/F) ⟶ Z/< n> = {0+(n), 1+(n),…..(n-1)+(n)} by ϕ(𝜎) = i + (n) where 0 ≤  𝑖 ≤ 

n-1 

Now we show that ϕ is homomorphism, one-one and onto 

        Let σଵ, σଶ ∈ G(E/F) and σଵ(c) = ω୧c, σଶ(c) = ω୨c, 0 ≤ i,j ≤ n-1 and i + j = n q + r;  

                                                                                 where q,r∈ Z and 0 ≤ r < n-1 

        Then (σଵσଶ)(c) = σଵ(σଶ(c)) = σଵ(ω୨c) = ω୨σଵ(c)  = ω୨(ω୧c) = ω୨ା୧c 

       Now ϕ(σଵσଶ) = r + n = i+j+(n)                 (∵  i +j +(n) = nq +r +(n) = r +(n)) 

                              = (i +(n)) + (j +(n)) 

                              = ϕ(σଵ) + ϕ(σଶ)           

       Therefore  ϕ is homomorphism 

       Suppose ϕ(σଵ) =  ϕ(σଶ) 

           ⇒ i +(n) = j +(n) 

                    ⇒     i     =      j  

                    ⇒ ω୧c    = ω୨c 

          ⇒ σଵ(c)  = σଶ(c)  

                   ⇒ σଵ      = σଶ 

   ⸫    ϕ is one – one  

       Since |𝐺(E/F)| =  |Z/<  𝑛 >|= n, we have ϕ is onto. 

       Since Z/<  𝑛 > is cyclic group, we have 𝐺(E/F) is cyclic. 

       Therefore  E is cyclic extension of F 

       Hence  (ii) ⇒ (i) is proved. 

        

14.3  SUMMARY:  

 

       A cyclic extension of fields is a special type of field extension where the associated Galois 
group is a cyclic group, meaning it is generated by a single automorphism. In such 
extensions, the group of automorphisms has a simple and well-understood structure, making 
cyclic extensions an important concept in Galois theory. Cyclic extensions help describe how 
fields can be expanded by adjoining roots of polynomials, with the symmetry of these 
extensions captured by the cyclic structure of their Galois groups. They also demonstrate the 
link between field extensions and group theory, which is central to modern algebra. The study 
of cyclic extensions focuses on their construction, properties, and how they relate to the 
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solvability of polynomial equations. They play a key role in understanding radical extensions 
and are fundamental in applications such as the classification of intermediate fields. 

  
14.4  TECHNICAL TERMS: 
 
 Galois Group: Let F be a field and f(x) ∈ F[x] and K be the splitting field of f(x) over F 

then 𝐺(𝐾/F) is called the Galois group of f(x) over F. 
 Cyclic Group: A group G generated by a single element, denoted by ⟨g⟩. 
 Cyclic Extension: A Galois extension whose Galois group is cyclic. 
 Normal Extension: An extension E of F where every irreducible polynomial in F[x] that 

has a  root in E splits into linear factors in E. 
 Separable Extension: An extension E of a field F is a called a separable extension if each 

element of E is separable.  
 Splitting Field: Let f(x) be a polynomial over a field F. A splitting field of f(x) over F is 

an extension field K of F such that f(x) splits into linear factors over K and K is 
generated over F by the roots of f(x).  

 
14.5  SELF- ASSESSMENT QUESTIONS: 
 
Q1. What is a cyclic extension? 
Answer: A field extension E of a field F is called a cyclic extension if it is a Galois extension 
of F and G(E/F) is a cyclic group. 
Q2. When is a polynomial solvable by radicals in terms of cyclic extensions? 
Answer: A polynomial is solvable by radicals if its splitting field can be obtained by a tower 
of cyclic extensions, i.e., a sequence of field extensions where each intermediate extension is 
cyclic and corresponds to extracting radicals. 
Q3. Is every Galois extension a cyclic extension? Justify. 
Answer: No. A Galois extension E of F is cyclic only if G(E/F) is a cyclic group. Many 
Galois extensions E of F have the groups G(E/F)  which are non-cyclic, such as the Klein 
four-group. 
Q4. What condition must a finite field extension E of F satisfy to be a cyclic extension of 
degree n? 
Answer: Extension field E of F must be a normal and separable extension (i.e., Galois), and 
the group G(E/F) must be cyclic of order n. 
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LESSON- 15 

POLYNOMIALS SOLVABLE BY RADICALS 
 
OBJECTIVES: 
 
 To understand the concept of solving polynomial equations using radicals. 
 To explore conditions under which a polynomial is solvable by radicals. 
 To learn about radical extensions and their relation to field extensions. 
 To study the connection between solvability by radicals and the Galois group structure. 
 To apply Galois theory to determine the solvability of polynomials. 

 
STRUCTURE: 
 
15.1  Introduction  

15.2  Definitions and Notations 

15.3  Polynomials Solvable by Radicals 

15.4  Summary 

15.5  Technical Terms 

15.6   Self-Assessment Questions 

15.7  Suggested Readings 

 
15.1 INTRODUCTION : 
 
The study of polynomials solvable by radicals investigates the conditions under which the 
roots of a polynomial can be expressed using basic arithmetic operations and radical 
expressions involving nth roots. Historically, mathematicians sought general formulas for 
solving polynomial, succeeded for degrees two, three, and four. However, the general and 
higher-degree equations are not solvable by radicals in most cases. This realization led to the 
development of Galois theory, which examines how the symmetries of roots, encapsulated in 
the Galois group determine solvability. A key aspect of this topic is the concept of radical 
extensions, where a field is built by successively adjoining radical elements. Polynomials 
solvable by radicals correspond to extensions whose Galois groups are solvable, reflecting a 
deep interplay between group theory and field theory. In this lesson we find necessary and 
sufficient condition for a polynomial over a field F to be solvable by radicals using the 
fundamental theorem of Galois theory.   Also, we construct a polynomial of degree 5 that is 
not solvable by radicals.  
 
15.2 DEFINITIONS AND NOTATIONS: 
 
15.2.1 Definition: An extension E of a field F is called an extension by radical or radical 
extension if there exists elements αଵ, αଶ, ………α୬ ∈ E and positive integers n1,n2,……..,nr 

such that E = F(αଵ, αଶ, ………α୰); αଵ
୬భ ∈ F and α୧

୬౟ ∈ F(αଵ, αଶ, ………α୧ିଵ); 1 ≤ i ≤ r. 

Example: 1.  Q(2
ଵ

ଷൗ ) is a radical extension of Q. Also Q(2
ଵ

ଷൗ , 3
ଵ

ହൗ ) is a radical extension of 
Q. 
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Note: If E is a radical extension of F, then there exists a sequence of fields                                    

F = E0 ⊆E1 ⊆…….⊆Er  = E such that for every i, Ei = Ei-1(𝛼௜) for some 𝛼௜ ∈ Ei with the 

property that α୧
୬౟ ∈ Ei-1 for some positive integer ni≥ 1 

15.2.2 Result: If Er is a radical extension of F= E0 with intermediate fields  E1, E2,…….                  

Er-1(written in ascending order) then there exists radical extension Eୱ
ᇱ  of F = E0 with 

intermediate fields Eଵ
ᇱ , Eଶ

ᇱ ,…….Eୱିଵ
ᇱ ,(written in ascending order) such that 

(i) Eୱ
ᇱ ⊇ Er 

(ii) Eୱ
ᇱ  is a normal extension of F and  

(iii) E୧
ᇱ is a splitting filed of a polynomial of the form x୫౟ – bi∈ E୧ିଵ

ᇱ [x] for all i = 

1,2….s. 
 

15.2.3 Note: If E is a radical extension of F, then E is a finite algebraic extension of F. 

Verification: By definition, for each i, Ei = Ei-1(𝛼௜) and α୧
୬౟ ∈ Ei-1 which implies that 𝛼௜ is a 

root of the polynomial x୧
୬౟- α୧

୬౟ ∈ Ei-1 [x] and hence Ei is an algebraic extension of Ei-1 and 

[Ei:Ei-1] is finite for all i.  Therefore [E:F] = [Er:Er-1] ……..[E2:E1][E1:F] is finite and  E is a 

finite algebraic extension of F. 
 

15.2.4 Note : A polynomial f(x) ∈ F[x] is solvable by radicals if we can obtain every root of 

f(x) by using a finite sequence of operations of addition, subtraction, multiplication, division  

and taking nth roots starting with elements of F. 

Notation: In this section, we consider only the fields of characteristic zero unless otherwise 

stated. 
 

15.2.5 Result: Suppose n is a positive integer, and the field F contains all the nth roots of 

unity, and K is the splitting field of xn – a ∈ F[x], then  

(i) K = F(𝜆), 𝜆  is any root of xn – a 
(ii) The Galois group G(K/F) is abelian. 

 

15.2.6 Defnition: The subgroup 𝐺′ generated by the set of all commutators aba-1b-1 in a group 

G is called the derived group of G, 𝑎, 𝑏 ∈  𝐺 . For any positive integer n, the nth derived 

group of G is denoted by 𝐺(௡)  and is defined as follows 𝐺(ଵ)  =  𝐺ᇱ, 𝐺(௡) = (𝐺(௡ିଵ))′, 𝑛 > 1 
 

15.2.7 Defnition: A group G is said to be solvable if  G(k) = {e} for some positive integer, 

where G(k) is the kth derived group of G. 

Example: Every abelian group is solvable.   
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15.2.8 Normal Series: A sequence { G0,G1,………Gr} of subgroups of a group G is called 

normal series of a group G if {e} = G0 ⊲G1⊲………⊲Gr = G. The factors of normal series 

are Gi/Gi-1∀ i =1,2,…..r. 
 

15.2.9 Composition Series: A composition series of a group G is a normal series 

G0,G1,………Gr without repetition whose factors Gi/Gi-1 are simple groups. The factors Gi/Gi-

1 are called composition factors of G. 
 

15.2.10 Note:  

1. Every finite group has a composition series 
2. A group G is solvable ⇔ G has a normal series with abelian factors. 
3. A finite group is solvable ⇔ its composition factors are cyclic groups of prime orders, 
4. Any subgroup of a solvable group is solvable. 

 
15.3 POLYNOMIALS SOLVABLE BY RADICALS: 
 

15.3.1 Theorem:  Let E be the splitting field of xn – a ∈ F[x], then G(E/F) is a solvable 

group. 

Proof:  

Case(i): Suppose F contains a primitive nth root of unity. 

Then we can take the  primitive nth root as a generator of the group of all the nth roots of 

unity, and hence F contains all the nth roots of unity.   

Let 𝛼 be a root of xn – a . 

Since E is the splitting field of xn – a, we have E = F(𝛼) and G(E/F) is abelian     

So,  G(E/F) is solvable.    ( Since Every abelian group is solvable) 
 

Case(ii) :Suppose F does not contain any primitive nth root of unity.  

Let ω be a primitive nth root of unity in Fത,  Eഥ = Fത.  

Then ω ∉ F which implies F⊆ F(ω)  and F(ω) is the splitting field of xn – 1.  

Let b be a root of xn – a (i.e., bn = a).  

This implies  bω is also a root of xn – a   and hence bω ∈ E  

So  b-1(bω) ∈ E .  i.e,   ω ∈ E .  

Consider the sequence of fields F ⊆ F(ω) ⊆ E.  

Since F(ω)  is the splitting filed of xn – 1 ∈ F[x], we have F(ω)  is a normal extension of F. 

So, G(E/F(ω)) is a normal extension of G(E/F)  ( ∵ By fundamental theorem of Galois 

Theory) 

⸫ {e} ⊲ G(E/F(ω)) ⊲G(E/F) is a normal series of the group G(E/F)   
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Since F(ω) contains a primitive nth root of unity, we have G(E/F(ω)) is abelian.                  (1) 

By Fundamental Theorem of Galois Theory, we have 
ୋ(୉/୊) 

ୋ(୉/ ୊(ன))
≅ G(F(ω)/F) and 

By known theorem,  we have G(F(ω)/F) ≅ (Z/( n))∗, which is abelian 

Therefore   
ୋ(୉/୊) 

ୋ(୉/ ୊(ன))
   is abelian.                                                                                          (2) 

So the normal series {e} ⊲ G(E/F(ω)) ⊲G(E/F) of the group G(E/F) has  abelian factors.                 

Hence the group G(E/F) is solvable. 
 

15.3.2 Theorem:   A polynomial f(x) ∈ F[x] is solvable by radicals ⇔ its splitting field E 

over F has solvable galois group G(E/F). 

Proof:  Let f(x) ∈ F[x] be a polynomial and E be the splitting field of f(x) 

Then   G = G(E/F) is the Galois group of f(x). 

Suppose  that the Galois group G(E/F) is solvable. 

Now we show that f(x) is solvable by radicals over F.  

Since the characteristic of F is 0 and E is the splitting field of f(x) over F, we have that  E is 

finite separable and normal extension of F.  

Therefore   |G(E/F)| = [E:F] = n (say)  and  G = G(E/F) is a finite solvable group. 
 

Case-(i):Suppose F contains a primitive nth root of unity.  

Since G is a finite solvable group, there exists a sequence, G =G0 ⊇ G1 ⊇………⊇ Gr = {e} 

of subgroups of G such that  Gi ⊲ Gi-1and 
ீ೔షభ

ீ೔
  is cyclic, for each i.  

By Fundamental Theorem of Galois Theory, there exists subfields F0,F1,………Fr of E such 

that F = E0 ⊆E1 ⊆…….⊆Er  = E, Fi = Eୋ౟
 and G(E/Fi) = Gi ∀ i 

We know that G1 = G(E/F1) ⊲G(E/F) = G.  

This implies that F1 is a normal extension of F 

Now E can be regarded as the splitting field of f(x) over F1.  

So E is a finite normal extension of F1.  

Then G2⊲G1 implies that F2 is a normal extension of F1.  

Continuing this way, since Gi is a normal subgroup of Gi-1, we can show Fi is a normal 

extension of Fi-1 and also 
ୋ(୉/୊౟షభ) 

ୋ(୉/ ୊౟)
≅ G(F୧/F୧ିଵ)    (By Fundamental Theorem of Galois 

Theory) 

⇒
ீ೔షభ

ீ೔
≅ G(F୧/F୧ିଵ)      

⇒ G(F୧/F୧ିଵ)  is a cyclic group   (∵
ீ೔షభ

ீ೔
  is a cyclic group ) 
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Therefore Fi is a cyclic extension of Fi-1and we also know that Fi-1 contains a primitive nth 

root of unity. 

By known result,  Fi is the splitting filed of an irreducible polynomial 𝑥௡೔– bi i.e., α୧
୬౟  = bi ∈ 

Fi-1 This is true for every i =1,2,…..r 

Thus there exists elements αଵ, αଶ, ………α୬ ∈ E and positive integers n1,n2,……..,nr ∋                                         

E = F(αଵ, αଶ, ………α୰); αଵ
୬భ ∈ F and α୧

୬౟ ∈ Fi-1 = F(αଵ, αଶ, ………α୧ିଵ) 

Therefore   E is radical extension of F. So, the splitting field E of f(x) is contained in the 

radical extension of F. 

So,  f(x) is solvable by radicals over F. 
 

Case-(ii): Suppose F contains no primitive nth root of unity. 

Let ω be a primitive nth root of unity in Eഥ.   

Then E(ω) is the splitting field of f(x),   where f(x) is regarded as an element of F(ω)[x] 

Define ψ : G(E(ω) /F(ω)) ⟶ G(E/F)  as follows:  

Let 𝜎 ∈  G(E(ω) /F(ω)).  

Then 𝜎 is an automorphism of E(ω) that keeps every element of F(ω) fixed. 

Let 𝜎଴ be the restriction of 𝜎  to E.  

Since E is a normal extension of F, we have 𝜎଴ is an automorphism of E that keeps every 

element of F fixed.      So,  𝜎଴ ∈ G(E/F)   

Define ψ : G(E(ω) /F(ω)) ⟶ G(E/F)  as 𝜓(𝜎଴ )  = 𝜎଴ .  

Then ψ is a monomorphism. 

Therefore   G(E(ω) /F(ω)) ≅ ψ ( G(E(ω) /F(ω)) ) ⊆  G(E/F) 

This implies G(E(ω) /F(ω)) ≅ solvable group  (∵ Any subgroup of a solvable group is 

solvable) 

Therefore G(E(ω) /F(ω)) is solvable  

i.e,  E(ω) is the splitting field of f(x) ∈ F(ω) [x] and F(ω) contains a primitive nth root of 

unity such that G(E(ω) /F(ω)) is solvable. 

So by case-(i), E(ω) is a radical extension of F(ω), hence  E(ω) is a radical extension of F. 

In this case, the splitting field is contained in the radical extension E(ω) of F. 

Therefore  f(x) is solvable by radicals over F. 

Converse:  

Suppose that f(x) is solvable by radicals over F.  

Then its splitting field E is contained in some radical extension Er of F. 
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By Result 15.2.2, without loss of generality, we assume that E⊆Er, Er is a normal extension 

of F and there  exists intermediate fields E0 ,E1 ,…….,Er-1 such that each Ei is a splitting filed 

of a polynomial of the form 𝑥௡೔ – bi∈ Ei-1[x].  

So  Ei is a normal extension of Ei-1 and G(E୧/E୧ିଵ) is solvable for all i = 1 to r  (*)   

Since  Ei is a normal extension of Ei-1, by fundamental theory of Galois theory, we have  

G(E୰/E୧) is a normal subgroup of G(E୧/E୧ିଵ) for all i 

Therefore {e} ⊆ G(E୰/E୰ିଵ) ⊆ G(E୰/E୰ିଶ) ⊆.............⊆G(E୰/F) is a normal series of the group 

G(E୰/F)  

Now we show that  the factors of this normal series are solvable. 

By Fundamental Theorem of Galois Theory, we have  
ୋ(୉౨/ ୉౨ష౟)

ୋ(୉౨/ ୉౨ష౟శభ)
≅ G(E୰ି୧ାଵ)/E୰ି୧)    

This implies 
ୋ(୉౨/ ୉౨ష౟)

ୋ(୉౨/ ୉౨ష౟శభ)
  is solvable for all i ( ∵ R.H.S is solvable by (*)) 

 So   {e} ⊆ G(E୰/E୰ିଵ) ⊆ G(E୰/E୰ିଶ) ⊆.............⊆G(E୰/F) is a normal series of the group 

G(E୰/F) with solvable factors.    i.e,  G(E୰/F) is  solvable. 

Further, G(E/F) ≅
ୋ(୉౨/ ୊) 

ୋ(୉౨/ ୉) 
  ,   (∵  E is a normal extension of F)  which implies that  G(E/F) is 

the homomorphic image of   G(E୰/F).  

Hence G(E/F) is solvable.  (Since the homomorphic image of a solvable group is solvable) 
 

15.3.3 Definition: A subgroup H of Sn is said to be a transitive permutation group if for all  

 i,j ∈ {1,2,….n}, there exists 𝜎 ∈ H such that 𝜎(i) = j. 

Note: If p is a prime number and if a subgroup of Sp is a transitive group of permutations 

containing a transposition (a, b), then G ≅ Sp 
 

15.3.4 Theorem: Let f(x) be a polynomial over a field F with no multiple roots. Then f(x) is 

irreducible over F iff the Galois group G of F(x) is isomorphic to a transitive permutation 

group. 

Proof : Suppose that f(x) ∈ F[x] be a polynomial over a field F with no multiple roots and 

degree of f(x) is n.  

Let αଵ, αଶ, ………α୬ be the distinct roots of f(x) in some splitting field E and G be the Galois 

group of f(x).  

For any 𝜎 ∈ G, we have 𝜎(αଵ), 𝜎(αଶ),……… 𝜎(α୬) are also roots of f(x), which implies that 

{αଵ, αଶ, ………α୬} = { 𝜎(αଵ), 𝜎(αଶ),……… 𝜎(α୬)  

So  𝜎 is a permutation on {αଵ, αଶ, ………α୬} 
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Thus every element 𝜎 is a permutation on ‘n’ elements.  So, we treat G as subgroup of Sn. 

Suppose f(x) is irreducible over F 

For each i = 1,2,……n; F(α୧)  ≅
ி[௫]

ழ௙(௫)வ
 by an isomorphism which maps α୧ to x +(f(x)) and 

a ∈ F to a + (f(x)) .   

So F(α୧) is isomorphic to F(α୨) by an isomorphism say 𝜂 which maps α୧ to α୨  and 𝜂(a) = 

a ∀ a 𝑖𝑛 F.  

Since E is a normal extension of F, 𝜂 can be extended to an F- automorphism 𝜂∗: E→E 

Therefore  𝜂∗ ∈ G = G(E/F) and 𝜂∗(α୧) = α୨ .   

So for any α୧, α୨ there exists  𝜎 ∈ G such that 𝜎(α୧) = α୨. 

Therefore G is  a transitive permutation group. 

Converse:  

Suppose that G is a transitive permutation group. 

Let p(x) be the minimal polynomial of α୧ over F. 

Now we show that all the roots of f(x) are roots of p(x).  

Let α୧ be a root of f(x).   

Since G is a transitive permutation group, there exists 𝜎 ∈ G such that 𝜎(αଵ) = α୧ 

Now p(α୧) = p(𝜎(αଵ)) = 𝜎(p(α୧)) = 0             (∵𝜎is a homomorphism) 

i.e,  α୧ is a root of p(x) 

Therefore  all  the roots of f(x) are roots of p(x).  

Since p(x) is a minimal polynomial of α୧, and f(αଵ) = 0, we have p(x)|f(x) 

So f(x) = c p(x) for some c ∈ F 

Therefore f(x) is irreducible. 

15.3.5 Theorem: Let f(x) ∈ Q[x] be a monic irreducible polynomial over Q of degree p, 

where p is prime. If f(x) has exactly two non-real roots in Ȼ, then the Galois group of f(x) is 

isomorphic to Sp. 

Proof: Let E be the splitting field of f(x) over Q. 

Then E ⊆  Ȼ  (Since f(x) has exactly two non real roots) 

Since f(x) is irreducible, by Th. 15.3.4 the Galois group G(E/Q) of f(x) is isomorphic to a 

transitive permutation group which is a subgroup of Sp.  

Let αଵ, αଶ, ………α୮ be the roots of f(x).  

Let α୧ be a non-real root among these roots, which implies αనഥ  is also a root of f(x) (∵ f(x) ∈ 

Q[x]) 
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So,  αనഥ  = α୨ for some j ≠ i; 1 ≤ j ≤ p  

Define 𝜎 : E → Qഥ as 𝜎(z) = z ഥ .  

Then 𝜎 is an automorphism of E   (∵ E is a normal extension of Q), which implies that                    

𝜎 ∈ G(E/Q) ,  𝜎(α୧) = αనഥ  = α୨  and 𝜎(α୨) = α఩ഥ  = α୧ . 

 Moreover 𝜎(α୩) = α୩∀  k ≠ i, j 

Therefore 𝜎 is the transposition (α୧ , α୨ ) 

By using result after 15.3.3, we have G ≅ Sp 

 

15.4  SUMMARY:  

 

This lesson focuses on determining when polynomial equation can be solved by expressing 
their roots using radicals and arithmetic operations. It explores radical extensions, fields 
created by adjoining successive roots, and examines how these connect to solvability.      The 
key tool is Galois theory, which links the structure of the Galois group to the possibility of 
expressing roots in radicals. Specifically, a polynomial is solvable by radicals if and only if 
its Galois group is solvable. It also explains why general higher-degree polynomials are not 
solvable by radicals.  
 
15.5  TECHNICAL TERMS:  
 
 Radicals: Expressions involving roots (square roots, cube roots, etc.) used to represent 

solutions of polynomials. 
 Solvability by Radicals: A property of a polynomial equation whose roots can be 

expressed using arithmetic operations and radical operations. 
 Radical Extension:  A field extension built by successively adjoining radicals. 
 Normal Extension: An extension E of F where every irreducible polynomial in F[x] that 

has a  root in E splits into linear factors in E. 
 Splitting Field: Let f(x) be a polynomial over a field F. A splitting field of f(x) over F is 

an extension field K of F such that f(x) splits into linear factors over K and K is 
generated over F by the roots of f(x).  

 
15.6  SELF-ASSESSMENT QUESTIONS: 
 
Q1. What does it mean for a polynomial to be solvable by radicals? 

Answer: A polynomial f(x)∈F[x] is solvable by radicals if its roots can be expressed using a 
finite number of additions, subtractions, multiplications, divisions, and extractions of roots 
(radicals) starting from elements of the base field F. 

Q2. How is solvability by radicals connected to Galois theory? 

Answer: A polynomial is solvable by radicals if and only if its Galois group is a solvable 
group.  

Q3. Give an example of a polynomial that is solvable by radicals. 
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Answer: The quadratic polynomial x2−2 is solvable by radicals because its roots are ± √2, 
which can be expressed using radicals over Q. Its Galois group over Q is of order 2 and hence 
solvable. 

Q4. What role do radical extensions play in solving polynomials? 

Answer: Radical extensions are field extensions formed by adjoining nth roots of elements.           
A polynomial is solvable by radicals if its splitting field can be obtained by a tower of radical 
extensions over the base field. 

Q5: If an irreducible polynomial p(x) ∈ F[x] over a field F has a root in a radical extension of 
F, then show that p(x) is solvable by radicals over F. 

Answer: Suppose p(x) is an irreducible polynomial over a filed F and p(x) has a root in a  
radical extension E୰ of F.  By known result 15.2.2,  there exists radical extension Eୱ

ଵ of F such 
that Er⊆ Eୱ

ᇱand Eୱ
ᇱ  is a normal extension of F. 

Given that p(x) has a root in Er that implies p(x) has a root in Eୱ
ᇱ  and we know that Eୱ

ᇱ  is a 
normal extension of F.  So, Eୱ

ᇱ  is the splitting field of p(x)   ( ∵  By def.  of normal extension) 

Therefore the splitting field Eୱ
ᇱ  of p(x) is contained in some radical extension Eୱ

ᇱ  of F.  

Hence p(x) is solvable by radicals. 

Q6 : Show that polynomial x7 – 10x5 + 15x +5 is not solvable by radicals over Q 

Answer: Let f(x) = x7 – 10x5 + 15x +5 

By Eisenstein criterion, f(x) is irreducible over Q. Moreover by Descarte’s rule of signs, we 
know that  the number of positive real roots is ≤ the number of changes in signs in  f(x) = 2 
and  the number of negative real roots is ≤ the number of changes in signs in f(-x) = 3 

Therefore The number of real roots is ≤ 5 

Moreover, by intermediate value theorem, f(x) has five real roots one in each of the intervals           
(-4,-3) (-2,-1) (-1,0) (1,2) and (3,4) .   So f(x) has exactly two non-real roots.  

By Theorem 15.3.5, the Galois group G of f(x) is isomorphic to S7.  

This implies that G is not solvable   ( ∵ S7 is not solvable) 

By Theorem 15.3.2, f(x) is not solvable by radicals over Q.  
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LESSON- 16 

SYMMETRIC FUNCTIONS 
 
OBJECTIVES:  
 
 To understand the definition and properties of symmetric functions 
 To understand that every symmetric polynomial can be expressed as a polynomial in the 

elementary symmetric functions. 
 To lay the groundwork for the study of Galois theory by examining the symmetries of the 

roots of polynomials. 
 
STRUCTURE: 
 
16.1  Introduction  

16.2  Symmetric Functions  

16.3  Summary 

16.4  Technical Terms 

16.5  Self Assessment Questions 

16.6  Suggested Readings 

 

16.1 INTRODUCTION: 
 
The concept of symmetric functions holds a central place in algebra, especially in the study of 
polynomial equations and field extensions. A symmetric function is a polynomial in several 
variables that remains unchanged under any permutation of those variables. This invariance 
property leads to rich algebraic structures and plays a pivotal role in understanding the 
relationships among the roots of a polynomial. Elementary symmetric functions, which sum 
products of variables taken a specific number at a time, form the backbone of this theory. 
Remarkably, any symmetric polynomial can be expressed as a polynomial in the elementary 
symmetric functions, a fact known as the fundamental theorem of symmetric functions. This 
result not only simplifies the study of polynomials but also connects algebraic properties to 
the roots of equations. The theory of symmetric functions provides a pathway which relate 
the coefficients of a polynomial to sums and products of its roots. This linkage serves as a 
bridge to field theory, where one explores how the symmetries of roots influence field 
extensions and automorphisms.  
 
16.2  SYMMETRIC FUNCTIONS:  
 
Let F be a field, and let 𝑦ଵ … … … … 𝑦௡ be n indeterminates. Consider the field of rational 

functions F(𝑦ଵ, … … … … , 𝑦௡) over F. If 𝜎 is a permutation of {1, 2, 3, ...…., n}  i.e., 𝜎 ∈ Sn 

then             𝜎 gives rise to a natural map  𝜎 ഥ : F(𝑦ଵ … … … … 𝑦௡) →F(𝑦ଵ … … … … 𝑦௡) given by 

𝜎 ഥ ቀ
௙(௬భ…………௬೙)

௚(௬భ…………௬೙)
ቁ = 

௙(௬഑(భ)…………௬഑(భ))

௚(௬഑(భ)…………௬഑(భ))
,  where f(𝑦ଵ … … … … 𝑦௡), g(𝑦ଵ … … … … 𝑦௡) 

∈F[𝑦ଵ … … … … 𝑦௡] and g(𝑦ଵ … . . … 𝑦௡) ≠ 0 .  
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Here  𝜎 ഥ  is an automorphism of F(𝑦ଵ … … … … 𝑦௡) having each element of F fixed. 
 

16.2.1 Definition: An element f(𝑦ଵ … … … … 𝑦௡) / g(𝑦ଵ … … … … 𝑦௡) of F(𝑦ଵ … … … … 𝑦௡) is 

called a symmetric function in 𝑦ଵ, … … … … , 𝑦௡ over F if it is left fixed by all permutations of 

1,…..n, that is, ∀𝜎 ∈ Sn , that is ,  𝜎 ഥ ቀ
௙(௬భ…………௬೙

௚(௬భ…………௬೙
ቁ = 

௙(௬భ…………௬೙)

௚(௬భ…………௬೙)
 for all 𝜎 ∈ Sn. 

Note: Let Sത୬ be the group of all F-automorphisms 𝜎 ഥ  of F(𝑦ଵ … … … … 𝑦௡) corresponding to 

𝜎 ∈ Sn. Clearly, Sത୬ ≃ Sn. Let K be the fixed field of  Sത୬.  

Consider the polynomial f(x)  = ∏ (x −  y୧)
୬
୧ୀଵ ,     Here f(x) ∈F(𝑦ଵ … … … … 𝑦௡)[x] .  

Clearly the natural mapping F(𝑦ଵ … … … … 𝑦௡)[x] →F(𝑦ଵ … … … … 𝑦௡)[x] induced by each 𝜎 ഥ ∈

Sത୬ leaves f(x) unaltered. Thus the coefficients are unaltered by each 𝜎 ഥ ∈ Sത୬. Hence, the 

coefficients lie in the fixed field K. Let us write the polynomial f(x) as xn + 𝑎ଵxn-1 + 𝑎ଶxn-2 + 

………+ 𝑎௡, 𝑎௜ ∈ K 
 

16.2.2 Definition: If 𝑎௜ is the coefficient of 𝑥௡ି௜ in th polynomial f(x) = ∏ (x −  y୧)
୬
୧ୀଵ , then              

(-1)i𝑎௜ is called the ith elementary symmetric function in 𝑦ଵ … … … … 𝑦௡ and is denoted by 𝑠௜. 

Thus 𝑠ଵ = 𝑦ଵ +  𝑦ଶ +…………+ 𝑦௡,   𝑠ଶ = 𝑦ଵ𝑦ଶ +  𝑦ଵ𝑦ଷ +…………+ 𝑦௡ିଵ𝑦௡, ……. 

… … …    𝑠௡ = 𝑦ଵ𝑦ଶ … … … … . . 𝑦௡.  
 

16.2.3 Theorem: Let 𝑠ଵ,……..𝑠௡ be the elementary symmetric functions in the 

indeterminates 𝑦ଵ … … … … 𝑦௡. Then every symmetric function in 𝑦ଵ … … … … 𝑦௡ over F is a 

rational function of the elementary symmetric functions. Also, F(𝑦ଵ … … … … 𝑦௡) is a finite 

normal extension of F(𝑠ଵ … … … … 𝑠௡) of degree n! and the Galois group of this extension is 

isomorphic to Sn. 

Proof: Consider the field E = F(𝑠ଵ … … … … 𝑠௡).  

Since K is the field of all symmetric functions in 𝑦ଵ … … … … 𝑦௡ over F, we have E ⊂ K.  

Since F(𝑦ଵ … … … … 𝑦௡) is a splitting field of the polynomial f(x) = ∏ (x −  y୧)
୬
୧ୀଵ , of degree n 

over E, we have   [F(𝑦ଵ … … … … 𝑦௡): E] ≤ n!                                                                         (1) 

Also we have  [F(𝑦ଵ … … … … 𝑦௡): K] ≥ |Sത୬| = n!                                                                   (2) 

Since  E ⊂ K, from (1) and (2) we have E = K. 

Now F(x) is a separable polynomial over E, and F(𝑦ଵ … … … … 𝑦௡) is its splitting field. Thus, 

F(𝑦ଵ … … … … 𝑦௡) is a finite, separable, normal extension of E. 

[F(𝑦ଵ … … … … 𝑦௡): E] = |G(F(𝑦ଵ … … … … 𝑦௡)/ E|                                                                   (3) 

Since G(F(𝑦ଵ … … … … 𝑦௡)/ E) is embedded in Sn, and [F(𝑦ଵ … … … … 𝑦௡): E] = n!, we have 

from(3),  G(F(𝑦ଵ … … … … 𝑦௡)/ E) ≃Sn. 



Galois Theory     16.3          Symmetric Functions 

Finally, the fact K = E shows that every symmetric function can be expressed as a rational 

function of the elementary symmetric functions 𝑠ଵ … … … … 𝑠௡. 
 

16.2.4 Example: We express the following symmetric polynomials as rational functions of 

the elementary   symmetric functions: 

(a) 𝑥ଵ
ଶ + 𝑥ଶ

ଶ + 𝑥ଷ
ଶ 

(b) (𝑥ଵ −  𝑥ଶ)ଶ(𝑥ଶ −  𝑥ଷ)ଶ(𝑥ଷ −  𝑥ଵ)ଶ 

Verification:  

(a) (𝑥ଵ
ଶ + 𝑥ଶ

ଶ + 𝑥ଷ
ଶ) = (𝑥ଵ +  𝑥ଶ +  𝑥ଷ)ଶ − 2(𝑥ଵ𝑥ଶ +  𝑥ଶ𝑥ଷ + 𝑥ଷ𝑥ଵ) = 𝑠ଵ

ଶ − 2𝑠ଶ, 

 where 𝑠ଵ and 𝑠ଶ are elementary symmetric functions of 𝑥ଵ, 𝑥ଶ and 𝑥ଷ. 

(b) By simple computation it can be checked that  

𝑦ଵ = 𝑥ଵ −  
௦భ

ଷ
,      𝑦ଶ = 𝑥ଶ − 

௦భ

ଷ
,   𝑦ଷ = 𝑥ଷ −  

௦భ

ଷ
 are the roots of 𝑥ଷ + 3𝛼𝑥 + 𝛽 = 0,  

Where 𝛼 = −
௦భ

మ

ଷ
 + 𝑠ଶ,  𝛽 = − 𝑠ଷ −

ଶ௦భ
య

ଶ଻
 + 

௦భ௦మ

ଷ
 

Then the cubic equation whose roots are (𝑦ଵ −  𝑦ଶ)ଶ, (𝑦ଶ − 𝑦ଷ)ଶ   and (𝑦ଷ −  𝑦ଵ)ଶ 

is      (3𝛼 + y)3 + 9𝛼(3𝛼 + y)2 + 27𝛽ଶ = 0                                                             (1) 

Here (xଵ −  xଶ)ଶ(xଶ −  xଷ)ଶ(xଷ −  xଵ)ଶ = (yଵ −  yଶ)ଶ(yଶ − yଷ)ଶ(yଷ −  yଵ)ଶ 

                                                                            = product of all the roots of (1) 

                                                                            = - 27(𝛽ଶ + 4𝛼ଷ) 

where 𝛼 and 𝛽  are expressed in elementary symmetric functions 

 
16.3  SUMMARY:  
 
The topic of symmetric functions revolves around polynomials in several variables that 
remain unchanged under any permutation of these variables. These polynomials are called 
symmetric polynomials, and their study is crucial in understanding the relationship between a 
polynomial’s coefficients and its roots. The elementary symmetric functions are constructed 
as sums of products of variables taken 1,2,…,n at a time. The fundamental theorem of 
symmetric polynomials states that any symmetric polynomial can be expressed as a 
polynomial in the elementary symmetric functions. This provides a powerful tool for 
rewriting complex symmetric expressions in a simpler, standardized form. 
 
16.4  TECHNICAL TERMS: 
 
 Symmetric Polynomial / Function: A polynomial f(x1,x2,…,xn)  that remains unchanged 

under any permutation of its variables. 
 Degree of a Polynomial: The highest total degree of any term in the polynomial. 
 Monic Polynomial: A polynomial where the leading coefficient (the coefficient of the 

highest degree term) is 1. 
 Root of a Polynomial: A value of the variable that makes the polynomial equal to zero. 
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16.5  SELF-ASSESSMENT QUESTIONS: 
 
 

Q1. Is the polynomial x1
2+x2

2+x3
2 symmetric? Can it be expressed in terms of elementary 

symmetric polynomials?  

Answer: Yes, x1
2+x2

2+x3
2 is symmetric. It can be expressed in terms of elementary 

symmetric polynomials using the identity: x1
2+x2

2+x3
2 = s1

2−2s2 where s1=x1+x2+x3 and 

s2=x1x2+x1x3+x2x3. 

Q2. What is the significance of symmetric functions in the theory of equations? 

Answer: Symmetric functions play a crucial role in understanding the relationship between 

the roots and coefficients of a polynomial. According to Viète’s formulas, the coefficients of 

a polynomial are (up to sign) the elementary symmetric functions of its roots. This helps in 

solving polynomials and studying their properties without explicitly finding the roots. 

Q3. Is x1x2+x2x3+x3x1 a symmetric function? 

Answer: Yes. The expression is symmetric because it remains unchanged under any 

permutation of x1,x2,x3 . It is a symmetric polynomial of degree 2, and it equals the 

elementary symmetric function s2 for 3 variables. 

Q4. Can a non-symmetric polynomial be written in terms of elementary symmetric 

polynomials? 

Answer: No, only symmetric polynomials can be expressed in terms of the elementary 

symmetric polynomials. Non-symmetric polynomials do not satisfy the invariance under 

variable permutations required for such a representation. 

Q5. Give an example of a symmetric polynomial that is not elementary. 

Answer: The polynomial x1
2x2+x2

2x3+x3
2x1 is symmetric in x1,x2,x3, but it is not an 

elementary symmetric polynomial.  
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LESSON- 17 

RULER AND COMPASS CONSTRUCTIONS 
 
OBJECTIVES: 
  
 To define constructible numbers as lengths that can be constructed from the unit segment 

using a finite sequence of ruler and compass operations. 
 To explore the algebraic characterization of constructible numbers as elements of field 

extensions generated by square roots. 
 To explain how each construction step corresponds to a quadratic field extension over 

the rationals. 
 To demonstrate the limitations through the concept of irreducible polynomials and non-

quadratic extensions. 
 To understand how classical geometric constructions can be generalized using algebraic 

structures like fields and Galois theory. 

STRUCTURE: 
 

17.1  Introduction  

17.2  Constructible numbers 

17.3  Summary 

17.4  Technical Terms 

17.5  Self Assessment Questions 

17.6  Suggested Readings 
 

17.1 INTRODUCTION: 
 

The study of geometric constructions using a ruler and compass dates back to the ancient 
Greeks, who sought to solve various problems using these simple tools. While these 
constructions appear purely geometric, they are deeply connected to algebra. By translating 
geometric steps into algebraic language, we can represent constructed points and lengths 
using algebraic numbers—specifically, numbers obtained by repeatedly taking square roots, 
starting from rational numbers. This algebraic approach reveals the limitations of ruler and 
compass constructions, explaining why certain classical problems, such as angle trisection 
and doubling the cube, are impossible with these tools. The theory of constructible numbers 
and field extensions provides a rigorous framework for understanding these limitations.This 
approach not only enhances our understanding of classical geometry but also bridges it with 
modern algebra and number theory, highlighting the power of algebra in solving geometrical 
problems. In this section, we see how to find the solutions to some geometric problems using 
the Galois Theory. Such problems are given below 
 
(1) To construct by ruler and compass a square having the same area as that of a circle. 
(2) To construct by ruler and compass a cube having twice the volume of a given cube. 
(3) To trisect a given angle by ruler and compass. 
(4) To construct by ruler and compass a regular polygon having n – sides. 
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Translation of the geometric problem into an algebraic problem: 
 

Let R be the field of real numbers. 
      We consider the co-ordinate plane R2.  Suppose P0⊂ R2 

Assume that P0 has atleast two points then we construct an ascending chain of subsets Pi of R2 

for I = 0,1,….. inductively as follows. 

Let A be the set of points obtained by intersection of  

(i) two distinct circles each with its centre in Pi and passing through another point in Pi, 

(or) 

(ii) two distinct lines each passing through two distinct points in Pi, (or) 

(iii) a line and a circle of the types described in (i) & (ii) 

Let Pi+1  be the union of Pi and A. 

Suppose that the co-ordinates of points in P0 belong to a subfield K of R. 

Then the equation of the line passing through two distinct points in P0 is 𝑎x+by+ c = 0 → (1); 

where a, b, c ∈ K and the equation of a circle with centre in P0 and passing through another 

point in P0 is x2 + y2 +2gx + 2fy +d = 0                            (2), where g,f,d ∈ K 

Therefore the co-ordinates of point of intersection of the two such lines of the form (1) lie in 

K. Also, the co-ordinates of point of intersection of line (1) and a circle (2) lie in K(√𝛼ଵ) 

where 𝛼ଵ>0 and 𝛼ଵ ∈ K. 

Again the co-ordinates of point of intersection of two distinct circles of the form (2) also lie 

in K(√𝛼ଵ) where 𝛼ଵ> 0,  𝛼ଵ ∈ K. 

In similar manner, the co-ordinates of the points in Pi lie in K(√𝛼ଵ … … … . . ඥ𝛼௜) where 

𝛼ଵ, 𝛼ଶ, … … … . . 𝛼௜> 0, 𝛼ଵ ∈ K, 𝛼ଶ ∈ K(√𝛼ଵ), ………….𝛼௜ ∈ K(√𝛼ଵ … … … . . ඥ𝛼௜ିଵ) 

 So, A geometric problem can be translated into an algebraic problem. 
 

17.2  CONSTRUCTIBLE NUMBERS: 
 

17.2.1 Definition: A point x is constructible from P0 if x ∈Pi for some i ∈ {0,1,2,…..} 

(a) A line L is constructible from P0 if it passes through two distinct points in some Pi ,             

i ∈ {0,1,2,…..} 

(b) A circle C is constructible from P0, if its centre is in some Pi, and it passes through 

another point in Pi , i ∈ {0,1,2,…..} 

Note: If a point X or a line L or a circle C is constructible from Q×Q, then we say that the 

point X or the line L or the circle C is constructible. 
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17.2.2 Definition: A real number ‘u’ is constructible from Q if the point (u,0) is constructible 

from Q×Q, a subset of the plane R2. 

Note: If u ∈ R is constructible from Q, then there exists an ascending chain  

Q = K0 ⊂ K1⊂ K2⊂ …⊂ Kn of subfields K1 , K2 , …….. Kn of R such that 

(i) u ∈Kn 

(ii) Ki = Ki-1(𝛼௜) ; 0 ≤ i ≤ n, 𝛼௜
ଶ ∈Ki-1 

 

17.2.3 Theorem:  Let u ∈ R be constructible from Q, then there exists a subfield K of R 

containing u such that [K:Q] = 2m for some positive integer m. 

Proof: Since u∈ R is constructible from Q, we have (u,0) is constructible from Q×Q. 

By definition, there exists  an ascending chain G = K0 ⊂ K1⊂ K2⊂ ……..⊂ Kn such that u 

∈Kn and  Ki = Ki-1(α୧) for i = 1,2,…..n and 𝛼௜
ଶ ∈ Ki-1      So,    [Ki : Ki-1] ≤ 2,  i = 1, 2, ..., n 

Therefore  [K:Q] =  [Kn : Q] = [Kn : Kn-1] [Kn-1 : Kn-2] ………..[K1 : K0 = Q]  =  2m; m ≤ n 

                                                  (∵  [Ki : Ki-1] ≤ 2) where m is some positive integer. 
 

17.2.4 Lemma: The following are equivalent statements. 

(i) 𝑎 ∈ R is a constructible from Q 

(ii) (𝑎,0) is a constructible point from Q×Q 

(iii) (𝑎, 𝑎) is a constructible point from Q×Q 

(iv) (0, 𝑎) is a constructible point from Q×Q 
 

Proof:   

Assume (i) i.e., 𝑎 ∈ R is a constructible from Q 

Then by def., we have  (𝑎,0) is constructible from Q×Q. 

Therefore   (i) ⇒(ii) 

Assume (ii) i.e., (𝑎,0) is a constructible point from Q×Q 

Taking(𝑎,0) as centre  and ‘𝑎’ is radius, we can construct a circle (x- 𝑎)2 + y2 = 𝑎2 and  it 

passes through a constructible point (0,0).  

Also the line x = y is constructible because it passes through the constructible points (0,0) and 

(1,1). Now the point (𝑎, 𝑎) is a point of intersection of the circle and the line 

So, (𝑎, 𝑎) is a constructible point from Q×Q 

Therefore    (ii) ⇒(iii) 

Assume (iii) i.e., (𝑎, 𝑎) is a constructible point from Q×Q.  
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The circle x2 + y2 = 2 𝑎2 is constructible because its centre (0,0) is constructible and the circle 

passing through constructible point (𝑎, 𝑎).  

Also the line y = -x is constructible, since it passes through two distinct constructible points 

(0,0) and (1,-1).  

Now (-𝑎, 𝑎) is a point of intersection of the circle and the line.  

Now (0, 𝑎) is a constructible point which is the intersection of the line y = 1 which passes 

through two distinct constructible points (-𝑎, - 𝑎) and (𝑎, 𝑎), x = 0 

So, (0, 𝑎) is a constructible point from Q×Q. 

Therefore  (iii) ⇒(iv) 

Assume (iv) i.e., (0, 𝑎) is a constructible point from Q×Q.  

Then the line y = 𝑎 is constructible and the line x = 0 is constructible.  

Now, the line y = -x is constructible, and hence we have the point (𝑎,0) is  constructible . 

 So,   the real number  ‘𝑎’ is  constructible.  

 Therefore  (iv) ⇒(i) 

Note: A real number  ‘𝑎’ is  constructible means that 𝑎 is constructible from Q. 
 

17.2.5 Lemma:  If 𝑎 is constructible number, then x = 𝑎 and y = 𝑎 are constructible lines.  

Proof:  

Case (i): Suppose 𝑎 = 0.  

Clearly x = 0 and y = 0 are constructible lines. 

Case – (ii): Suppose 𝑎 ≠ 0 

Then the line x = 𝑎 passes through two distinct constructible points (𝑎, 0) and (-𝑎, 𝑎). 

Therefore    x = 𝑎 is constructible.   

Similarly y = 𝑎 is a line passing through two distinct constructible points (0, a) and   (𝑎, 𝑎) 

and   hence y = a is a constructible line. 
 

17.2.6 Lemma: If 𝑎 and b are constructible numbers, then (𝑎,b) is a  constructible point.  

Proof: By Lemma17.2.5, we have x = 𝑎 and y = b are constructible lines. 

Clearly the point (𝑎, b) is the intersection of the constructible lines x = 𝑎 and y = b. 

Therefore the point (𝑎, b) is constructible. 
 

17.2.7 Lemma: If 𝑎 and b are constructible numbers, then 𝑎 ±b are also constructible.  

Proof: Suppose 𝑎 & b are constructible numbers.  

Then by lemma 17.2.4, (𝑎, 0) is constructible. 
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So, the circle with centre (𝑎, 0) and radius ‘b’ i.e., (x- 𝑎)2 + y2 = b2 is constructible. 

Also, the line y = 0 is always constructible (∵ It is origin, it is always constructible). 

Therefore the point of intersection of the line and the circle are (𝑎 ±b, 0) are constructible. 

So, by lemma 17.2.4, we have 𝑎 ±b are constructible numbers. 
 

17.2.8 Lemma: If 𝑎 and b are constructible numbers, then 

(i) 𝑎b is constructible  

(ii) 𝑎/b; b ≠ 0 is constructible 

Proof: 

(i) Suppose a and b are constructible numbers. 

 Since b is constructible, by lemma 17.2.4, we have (0, b) is a constructible point. 

 Since b,1 are constructible numbers, by lemma 17.2.7, we have b-1 is constructible.  

 Since 𝑎, b-1 are constructible, we have (𝑎, b-1) is constructible (by lemma17.2.6) 

 The line passing through two constructible points (0, b) and (𝑎, b-1) is 

            y-b = 
௕ିଵି௕

௔ି଴
 (x-0)              i.e.,     𝑎y – 𝑎 b = -x 

          i.e.,     𝑎y  = -x +  𝑎b                            (1) is constructible 

So, the intersection of constructible line (1) and the constructible line y = 0 is the point            

(𝑎b,0) which is also a constructible point.  

Therefore by lemma 17.2.4,   ab is constructible.  
            

 (ii) Suppose b ≠ 0  

 Case-(i): If 𝑎 = 0, then 
௔

௕
 = 0 which is always a constructible number. 

 Case-(ii): Suppose 𝑎 ≠ 0 

 Since b is constructible, we have 1 – b is constructible ( by lemma 17.2.7) 

 So.  𝑎(1 – b) is constructible (from part – i) 

 Now a is constructible which implies that (0, a) is a constructible (by lemma 17.2.4) 

 So a is constructible and 𝑎(1 – b) is constructible.  

 This implies that (a, a(1-b)) is a constructible point  ( by lemma 17.2.6 ) 

 The line passing through two constructible points (0,b) and (a,b-1) is 

            y - 𝑎 = 
௔ି௔௕ି௔

௔ି଴
 (x - 0)     [ ∵   y – y1 = 

௬మି ௬భ

௫మି ௫భ
 (x – x1) ] 

         i.e.,     ay – 𝑎2 = -abx 

          i.e.,     y - 𝑎  = -bx (or) bx = 𝑎- y  is a constructible line                                           (2) 
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 So, the intersection of the constructible line (2) with the constructible line y = 0 is the           

point (
௔

௕
, 0) which is constructible. 

Hence 
௔

௕
 is constructible. 

 

17.2.9 Lemma: If 𝑎> 0 is constructible, then √𝑎 is constructible. 

Proof:  

Suppose a is constructible.  Then 1 + 𝑎 is constructible ( by lemma 17.2.7 ) 

Since 1+ 𝑎 and 2 ≠ 0 are constructible numbers, we have by lemma 17.2.8, ቀ
ଵା௔

ଶ
ቁ is a 

constructible number and by lemma 17.2.4 ቀ
ଵା௔

ଶ
 , 0ቁ is constructible point. 

The circle with centre ቀ
ଵା௔

ଶ
 , 0ቁ and radius 

ଵା௔

ଶ
 is (𝑥 −

ଵା௔

ଶ
)ଶ +y2 =(

ଵା௔

ଶ
)ଶ is constructible   (1) 

But we know that x = 1 is a constructible line ( by lemma 17.2.5) 

Therefore the point of intersection of the constructible circle (1) and the constructible line x = 

1 is ( 1 ±√𝑎)      

So, ( 1 ±√𝑎) is constructible point. 

Since (1, √𝑎) is constructible and a + 1 is constructible, the circle (x-1)2 + (y- √𝑎)2 = 𝑎 + 1 is 

constructible.                                                                                                                            (2) 

Clearly the point of intersection of constructible circle (2) and the constructible line  x = 0 is              

(-𝑎,0) or (0,2√𝑎) which is  constructible point. So, by lemma  17.2.4  we have 2√𝑎 is 

constructible number. 

Since 0 ≠ 2 is constructible, by lemma 17.2.8,  
ଶ√௔

ଶ
   = √𝑎 is constructible number. 

 

17.2.10 Theorem: Let K be the subset of R consisting of numbers constructible from Q. 

Then  K is a subfield containing square roots of all nonnegative numbers in K.  

Proof: Let K be a subset of R consisting of numbers constructible from Q. Then by lemma 

17.2.7 & 17.2.8 we have K is a subfield of constructible numbers. Also by lemma 17.2.9,                  

K contains square roots of all non-negative numbers of K. 

Therefore  K is a subfield containing square roots of all non-negative numbers in K. 

 

17.2.11: If u ∈ Km, where K0 = Q ⊂ K1⊂ K2⊂ ……..⊂ Km is an ascending chain of fields  

Ki∋  [Ki : Ki-1] = 2 then u is constructible. Equivalently if [Q(u): Q] = 2t for some t > 0 then u 

is constructible. 
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Proof: Let u ∈ Km, and K0 = Q ⊂ K1⊂ K2⊂ ……..⊂ Km is an ascending chain of fields Ki 

such that [Ki : Ki-1] = 2.     

Since K0 ⊂ K1⊂ K2⊂ ……..⊂ Kn,  we have there exists αଵ ∈ K1 -  K0 

So K1 =  K0(αଵ)     

Clearly  αଵ
ଶ ∈ K0 = Q 

So,   αଵ
ଶ is constructible   (∵ rationals are constructible) 

By lemma 17.2.9, we have √αଵ
ଶ = αଵ is constructible. 

Therefore K1 =  K0(αଵ) consists of constructible numbers. 

Continuing this process we get Km is a field of constructible numbers. Since u ∈ Km, we have 

u is constructible. 
 

17.2.12 Definition: An angle 𝛼 is constructible by ruler and compass if the point (cosα, sinα) 

is constructible from Q×Q. 
 

17.2.13 Proposition: The point (cosα, sinα) is constructible from Q×Q iff cosα is  a 

constructible iff sinα is a constructible number 

Proof :  

Suppose  that the point (cosα, sinα) is a constructible point.  

First we show that cosα is a constructible number.  

We know that the line y = 0 is always a constructible line and the circle (x - cosα)2  + (y - 

sinα)2  = 1 is constructible.  

               The point of intersection of this circle and the line y = 0 is (0,0) and (2cosα, 0) which are 

constructible points.  So,  (2cosα, 0) is constructible point. 

               By lemma 17.2.4, we have 2cosα is a constructible number.    

               Therefore  
ଶୡ୭ୱ஑

ଶ
 is a constructible number. 

               By lemma 17.2.8,  cosα is constructible number.  

              Conversely,  Suppose that cosα is a constructible number.  

              Then cosα . cosα = cosଶα is constructible.  

              Since 1 is a constructible number and cosଶα is a constructible number, we have (1 - cosଶα) is 

also constructible number.  

               By lemma 17.2.9, √(1 − cosଶα) = sinα  is constructible number, which implies (cosα,cosα 

), (sinα, sinα) are constructible points  

               Therefore  x = cosα is a constructible line and y = sinα is a constructible line.  
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               The point of intersection of these two constructible lines is (cosα, sinα) which is a 

constructible point. 
 

17.3  SUMMARY: 

 

The topic of Ruler and Compass Constructions explores how classical geometric 
constructions correspond to algebraic operations. Each construction using a straightedge and 
compass represents a point in the plane with coordinates satisfying certain algebraic 
equations. These constructed points correspond to numbers known as constructible numbers, 
which can be generated by starting with rational numbers and applying square roots 
successively. Algebraically, constructible numbers form a field extension of the rational 
numbers, built by adjoining square roots, and therefore correspond to extensions of degree a 
power of 2.This connection helps in understanding why some constructions, such as angle 
trisection or doubling the cube, are impossible: these involve solutions of cubic equations or 
higher degrees not solvable by square roots alone. Thus, constructions are limited to points 
whose coordinates can be expressed in terms of rational numbers and square roots.  
 

17.4  TECHNICAL TERMS: 
 

Constructible real numbers, Constructible line and Constructible circle. 
 
17.5  SELF- ASSESSMENT QUESTIONS: 
 

Problem of squaring a Circle: If we consider a circle with radius 1, then show that it is 

impossible to construct a square equal in area to the area of the circle. 

Answer:  Consider a circle with radius 1. Let ‘𝑎’ be the side of a square whose area is equal 

to the area of the circle.     So,  𝑎ଶ= 𝜋   

We know that 𝜋 is not algebraic over Q.    

Therefore  𝑎ଶ is not algebraic over Q and hence a is not algebraic over Q. 

So,  [Q(𝑎) : Q] ≠ 2m for any m ∈ Z+ 

By theorem 17.2.3, we have 𝑎 is not constructible by ruler and compass. 

Therefore we cannot construct a square whose area is 𝜋. 

Problem of duplicating a Cube: Show that it is impossible to construct a cube with volume 

equal to twice the volume of a given cube by ruler and compass. 

Answer : Assume that the side of the given cube is 1.  

Let x be the side of the cube which should be constructed.     

Let us suppose that   𝑥ଷ = 2.13        i.e., x3 – 2 = 0 

Now 21/3 is the real cube root of 2 which is a real root of the equation x3 – 2 = 0 

We know that the polynomial, f(x) = x3 – 2  is irreducible over Q. 

By known theorem, we have [Q(21/3 ) : Q] = degf(x) = 3, which is not a  power of 2. 
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By Theorem 17.2.3, 21/3 is not constructible from Q. 

Therefore a cube with volume equal to twice the volume of a given cube cannot be 

constructed by ruler and compass. 

Problem of Trisecting an Angle: Show that  there exists an angle that cannot be trisected by 

ruler and compass. 

Answer: Consider α = 600 is the given angle.  

Now we show that α cannot be trisected by ruler and compass.   

Suppose if possible α is  trisected by ruler and compass.  i.e., the number cos 200 is 

constructible number from Q.     Put a = 2cos20.  

We know that cos3θ = 4cos3θ – 3cos θ. 

Therefore (2cos20)3 = 8cos320  = 2(4cos320)  = 2(cos3.20 + 3cos20)  

i.e., 𝑎ଷ = 2cos 60 + 3.2cos20 

⇒ 𝑎ଷ = 2.
ଵ

ଶ
 + 3𝑎 

⇒ 𝑎ଷ - 3𝑎 – 1 = 0                                                                                             (1) 

So  f(x) = 𝑥ଷ - 3𝑥 – 1 ∈ Q[x] and it is irreducible over Q.  

From (1), a is a root of f(x).   

Therefore   [Q(21/3 ) : Q] = degf(x) = 3 ≠ 2m, for any positive integer.  

By theorem 17.2.3,  𝑎 = 2cos 20 is not constructible.  

Hence angle of 200 cannot be constructible by ruler and compass from Q 

Problem of constructing a regular n-gon: Show that a regular n-gon is constructible 

(equivalently, the angle 
ଶగ

௡
 is constructible) if and only if ϕ(n) is a power of 2.  

Answer: 

Let ω = cos 
ଶగ

௡
 + i sin

ଶగ

௡
, where ω is a primitive nth root of unity. 

Then ωഥ  = cos 
ଶగ

௡
 -  i sin

ଶగ

௡
 .     So,   ω + ωഥ  = 2cos 

ଶగ

௡
.  

Put cos 
ଶగ

௡
 = u.     

Since ω = cos 
ଶగ

௡
 + i sin

ଶగ

௡
,  we have ω - cos 

ଶగ

௡
 = i sin

ଶగ

௡
 

⇒ ቀω −  cos 
ଶగ

௡
ቁ

ଶ

= - sinଶ ଶ஠

୬
 

⇒ 𝜔ଶ - 2𝜔 cos 
ଶగ

௡
 + cosଶ ଶ஠

୬
 =  - sinଶ ଶ஠

୬
 

⇒ 𝜔ଶ - 2𝜔 cos 
ଶగ

௡
 + cosଶ ଶ஠

୬
  + sinଶ ଶ஠

୬
   = 0 

⇒ 𝜔ଶ - 2𝜔 cos 
ଶగ

௡
 + 1   = 0 
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Therefore   ω satisfies the polynomial f(x) = x2 - ቀ2cos 
ଶగ

௡
ቁx + 1 ∈ Q(u)[x]. 

Clearly the polynomial f(x) is irreducible over Q(u)   and [Q(𝜔) : Q] = [Q(ω) : Q(u)][Q(u) : 

Q] 

⇒ ϕ(n)  = 2. [Q(u) : Q] 

⇒ [Q(u) : Q] = 
ம(୬)  

ଶ
 

Therefore  u is constructible iff ϕ(n) is a power of 2 

 

Question 1. What is the connection between ruler and compass constructions and field 
theory? 
 
Answer: There is a deep algebraic connection: a point in the plane is constructible by ruler 
and compass if and only if its coordinates can be obtained from the rational numbers using a 
finite number of additions, subtractions, multiplications, divisions, and square roots. This 
means that constructible points lie in a field extension of Q of degree a power of 2. 
 
Question 2. What does it mean for a number to be constructible? 
 
Answer: A number is constructible if it can be represented as the coordinate (or distance) of a 
point that can be obtained through a finite sequence of ruler and compass constructions, 
starting from 0 on the real line. 
 
Question 3. Can cube roots be obtained by ruler and compass constructions? 
 
Answer: No. Cube roots generally cannot be obtained using only ruler and compass, because 
solving cubic equations requires constructing elements in field extensions of degree 3, which 
is not a power of 2. 
 
Question 4. What is the field of constructible numbers? 
 
Answer: The field of constructible numbers is the smallest subfield of R that contains Q and 
is closed under the operations of addition, subtraction, multiplication, division, and extraction 
of square roots. It contains all numbers that can be constructed using ruler and compass. 
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