
 

 

DATABASE MANAGEMENT SYSTEMS 
M.Sc. Computer Science 

First Year, Semester-II, Paper-I 
 

Lesson Writers 
 
 

Dr. Neelima Guntupalli 
Assistant Professor 

Department of CS&E 
Acharya Nagarjuna University 

Dr. Kampa Lavanya 
Assistant Professor 

Department of CS&E 
Acharya Nagarjuna University 

 
Dr. Vasantha Rudramalla 

Faculty,  
Department of CS&E 

Acharya Nagarjuna University  

 
Dr. U. Surya Kameswari 

Assistant Professor 
Department of CS&E 

Acharya Nagarjuna University 
 

Editor  
Dr. Kampa Lavanya 

Assistant Professor 
Department of CS&E 

University College of Sciences 
Acharya Nagarjuna University 

 
 

Academic Advisor 
Dr. Kampa Lavanya 

Assistant Professor 
Department of CS&E 

Acharya Nagarjuna University 

 
 

   DIRECTOR, I/c. 
PROF. V. VENKATESWARLU 

M.A., M.P.S., M.S.W., M.Phil., Ph.D. 
CENTRE FOR DISTANCE EDUCATION 
ACHARYA NAGARJUNA UNIVERSITY 

NAGARJUNA NAGAR 522 510 
Ph: 0863-2346222, 2346208 

   0863- 2346259 (Study Material) 
Website www.anucde.info 

E-mail: anucdedirector@gmail.com   



 

M.Sc., (Computer Science) : DATABASE MANAGEMENT SYSTEMS 

First Edition     :  2025 

No. of Copies    : 

 

 

© Acharya Nagarjuna University 

 

 

This book is exclusively prepared for the use of students of M.Sc. (Computer Science), 
Centre for Distance Education, Acharya Nagarjuna University and this book is meant 

for limited circulation only. 

 

 

 
Published by: 
 
Prof. V. VENKATESWARLU 
Director, I/c 
Centre for Distance Education, 
Acharya Nagarjuna University  
 
 

 

 

Printed at: 
 
 

 

 

 

  



 

FOREWORD 

Since its establishment in 1976, Acharya Nagarjuna University has been 

forging ahead in the path of progress and dynamism, offering a variety of courses 

and research contributions. I am extremely happy that by gaining ‘A+’ grade from 

the NAAC in the year 2024, Acharya Nagarjuna University is offering educational 

opportunities at the UG, PG levels apart from research degrees to students from 

over 221 affiliated colleges spread over the two districts of Guntur and Prakasam.  

The University has also started the Centre for Distance Education in 2003-

04 with the aim of taking higher education to the door step of all the sectors of the 

society. The centre will be a great help to those who cannot join in colleges, those 

who cannot afford the exorbitant fees as regular students, and even to housewives 

desirous of pursuing higher studies. Acharya Nagarjuna University has started 

offering B.Sc., B.A., B.B.A., and B.Com courses at the Degree level and M.A., 

M.Com., M.Sc., M.B.A., and L.L.M., courses at the PG level from the academic 

year 2003-2004 onwards.  

To facilitate easier understanding by students studying through the distance 

mode, these self-instruction materials have been prepared by eminent and 

experienced teachers. The lessons have been drafted with great care and expertise 

in the stipulated time by these teachers. Constructive ideas and scholarly 

suggestions are welcome from students and teachers involved respectively. Such 

ideas will be incorporated for the greater efficacy of this distance mode of 

education. For clarification of doubts and feedback, weekly classes and contact 

classes will be arranged at the UG and PG levels respectively.  

It is my aim that students getting higher education through the Centre for 

Distance Education should improve their qualification, have better employment 

opportunities and in turn be part of country’s progress. It is my fond desire that in 

the years to come, the Centre for Distance Education will go from strength to 

strength in the form of new courses and by catering to larger number of people. My 

congratulations to all the Directors, Academic Coordinators, Editors and Lesson-

writers of the Centre who have helped in these endeavors.  

Prof. K. Gangadhara Rao 

M.Tech., Ph.D., 

Vice-Chancellor I/c  

Acharya Nagarjuna University. 

  



 

M.Sc., (COMPUTER SCIENCE) 
FIRST YEAR, SEMESTER – II 

 
201CP24: DATABASE MANAGENT SYSTEMS 

 
SYLLABUS 

 
UNIT-I 

 
Databases and Database Users Introduction, Characteristics of the Database Approach, 
Actors on the Scene. Workers behind the scene, Advantages of the using the DBMS 
Approach. 
 
Database System Concepts and Architecture Data Models, Schemas and Instances, Three 
Schema architecture and Data Independence, Database Languages and Interfaces, Centralized 
and Client/Server Architecture for DBMS, Classification of Database Management Systems. 
 

UNIT-II 
 
Data Modeling Using the ER Model Conceptual Data models, Entity Types, Entity Sets, 
Attributes and Keys, Relationship types, Relationship sets, roles and structural Constraints, 
Weak Entity types, Relationship Types of Degree Higher than Two, Refining the ER Design 
for the COMPANY Database. 
 
The Enhanced Entity-Relationship Model Sub classes, Super classes and Inheritance, 
Specialization and Generalization, Constraints and Characteristics of Specialization and 
Generalization Hierarchies, Modeling of Union Types using Categories, An Example 
University ERR Schema, Design Choices and Formal Definitions. 

 
UNIT-III 

 
The Relational Data Model and Relational Database Constraints Relational Model 
Concepts, Relational Model Constraints and Relational Database Schemas, Update 
Operations, Transactions and Dealing with Constraint Violations. 
 
The Relational Algebra and Relational Calculus Unary Relational operations SELECT and 
PROJECT, Relational Algebra operations from set Theory, Binary Relational Operations 
JOIN and DIVISION, Additional Relational operations, Examples, The Tuple Calculus and 
Domain Calculus. 
 
SQL-99 Schema Definition, Constraints, Queries and Views SQL Data Definitions and 
Data Types, Specifying Constraints in SQL, Schena Change Statements on SQL, Basic 
Queries in SQL, More Complex SQL Queries, INSERT, DELETE and UPDATE statements 
in SQL, Triggers and Views. 

UNIT. IV 
 
Functional Dependencies and Normalization for Relational Databases Informal Design 
Guidelines for Relation Schemas, Functional dependencies, Normal Forms Based in primary 
Keys, General Definitions of Second and Third Normal Forms, Boyce-Codd Normal Form. 
 



 

Relational Database Design Algorithms and Further Dependencies Properties of 
Relational Decompositions, Algorithms from Relational Database Schema Design, 
Multivalued Dependencies and Fourth Normal Form, Join Dependencies and Fifth Normal 
Formo Inclusion Dependencies, Other Dependencies and Normal Forms. 
 

UNIT-V 
 

Document oriented data principles of schema design, designing an e-commerce data model, 
Nuts and bolts on databases collections and documents. 
 
Queries and Aggregation-commerce's queries, MongoDB's query language, aggregating 
orders, aggregating in detail. 
 
Updates atomic operations and deletes Document updates, e-commerce updates, atomic 
document processing, nuts and bolts Mongo DB updates and deletes. 
 
Prescribed Books 
 
Ramez Elmasri, Shamkant B. Navathe, "Fundamentals of Database Systems", Fifth 
Edition, Pearson Education (2007). 
Chapters 1.l to I .6,2,3.1to 3.6,4.1 to 4.5,5,6, 8, 10, ll 
 
MongoDB in Action, Kyle Banker, Manning Publication and Co.Chapters 4,5 and 6. 
 
Reference Books 
 

1. C.J. Date, A.Kannan, S. Swamynathan, "An Introduction to Database Systems", VII   
2. Edition Pearson Education (2006). 
3. Database system concepts, Silberschatz, Korth, Sudarshan, Mc-graw-hill,5th edition. 
4. MongoDBLearn MongoDB in a simple Way, Dan Warnock. 

 
  



 

201CP24 
M.Sc., (Computer Science) 

MODEL QUESTION PAPER 
201CP24 - DATABASE MANAG ENT SYSTEMS  

Time: 3 Hours                     Max. Marks: 70 
 
Answer ONE Question from Each Unit                                5 × 14 = 70 Marks 

 
UNIT – I 

1.  

a) Define Database and Database Management System. Explain the key characteristics of the database 

approach. (7M) 

b) Discuss various actors on the scene and workers behind the scene in a DBMS environment. (7M) 

OR 

2. 

a) Explain the three-schema architecture of a database system with a neat diagram. (7M) 

b) Discuss the data models, schemas, and instances used in database systems with examples. (7M) 

UNIT – II 

3.  

a) Define Entity, Attribute, and Relationship with suitable examples. Explain different types of 

attributes and keys. (7M) 

b) Explain Weak Entities and Higher-Degree Relationships with an example of the COMPANY 

database. (7M) 

OR 

4.  

a) Explain the concepts of Specialization, Generalization, and Inheritance in the Enhanced ER Model. 

(7M) 

b) Discuss the design choices and formal definitions used in the EER model. (7M) 

UNIT – III 

5.  

a) Explain Relational Model Concepts and discuss different types of Relational Constraints. (7M) 

b) Discuss Unary and Binary Operations in Relational Algebra with suitable examples. (7M) 

OR 

6. 

a) Describe DDL, DML, and DCL commands in SQL with syntax and examples. (7M) 

b) Write SQL queries for the following: 

 i) Create a table for STUDENT (SID, NAME, AGE, COURSE). 

 ii) Insert a record, update AGE, and delete a student record. 

 iii) Create a VIEW of all students enrolled in “DBMS”. (7M) 

 



 

 

UNIT – IV 

7.  

a) Define Functional Dependency and explain 1NF, 2NF, 3NF, and BCNF with examples. (7M) 

b) Discuss Design Guidelines for Relation Schemas and the problems of bad database design. (7M) 

OR 

8. 

a) Explain Multivalued Dependencies and Fourth Normal Form with examples. (7M) 

b) Describe Join Dependencies and Fifth Normal Form. Explain how they help achieve good database   

     design. (7M) 

UNIT – V 

9.  

a) Explain Document-oriented data and the principles of schema design in MongoDB. (7M) 

b) Design an e-commerce data model using document collections and explain its structure. (7M) 

 

OR 

 

10. 

a) Explain MongoDB’s query language and describe how aggregation is performed with examples.       

     (7M) 

b) Discuss atomic updates and delete operations in MongoDB. How are they useful in e-commerce   

     applications? (7M) 

  



 

 

CONTENTS 
 

S.No. TITLE PAGE No. 

1 DATABASES AND DATABASE USERS 1.1-1.9 

2 DATABASE SYSTEM CONCEPTS 2.1-2.9 

3 DATABASE ARCHITECTURE 3.1-3.8 

4 DATA MODELING USING THE ER MODEL 4.1-4.12 

5 THE ENHANCED ENTITY-RELATIONSHIP MODEL 5.1-5.11 

6 THE RELATIONAL MODEL CONCEPTS 6.1-6.10 

7 RELATIONAL DATABASE CONSTRAINTS 7.1-7.10 

8 THE RELATIONAL ALGEBRA 8.1-8.10 

9 THE RELATIONAL CALCULUS 9.1-9.7 

10 SQL-99 10.1-10.14 

11 FUNCTIONAL DEPENDENCIES 11.1-11.7 

12 NORMALIZATION 12.1-12.7 

13 RELATIONAL DATABASE DESIGN ALGORITHMS 13.1-13.9 

14 FURTHER DEPENDENCIES 14.1-14.9 

15 DOCUMENT ORIENTED DATA 15.1-15.9 

16 QUERIES AND AGGREGATIONE-COMMERCE'S 16.1-16.12 

17 UPDATES ATOMIC OPERATIONS AND DELETES 17.1-17.13 

 



LESSON- 01 

DATABASES AND DATABASE USERS 
 

AIMS AND OBJECTIVES 

 

The primary goal of this chapter is to understand the concept of Databases and Database 

Users. The chapter began with understanding of Characteristics of the Database Approach, 

Actors on the Scene, Workers behind the scene, Advantages of the using the DBMS 

Approach. After completing this chapter, the student will understand the complete idea about 

of Databases and Database Users. 

 

STRUCTURE 

 

1.1 INTRODUCTION 

1.2 CHARACTERISTICS OF THE DATABASE APPROACH 

            1.2.1 DATA ABSTRACTION 

 1.2.2 DATA INDEPENDENCE 

            1.2.3 DATA INTEGRITY AND SECURITY 

            1.2.4 CONCURRENCY CONTROL 

            1.2.5 DATA REDUNDANCY AND CONSISTENCY 

            1.2.6 TRANSACTION PROCESSING 

1.3       ACTORS ON THE SCENE 

            1.3.1 DATABASE ADMINISTRATORS 

            1.3.2 DATABASE DESIGNERS 

            1.3.3 END USERS 

            1.3.4 APPLICATION PROGRAMMERS 

            1.3.5 SYSTEM ANALYSTS 

 

1.4      ADVANTAGES OF DBMS APPROACH 

            1.4.1 ADVANTAGES OF DBMS  

            1.4.2 DISADVANTAGES OF DBMS  

1. 5   APPLICATIONS OF DBMS 

1.6      SUMMARY 

1.7       TECHNICAL TERMS  

1.8      SELF-ASSESSMENT QUESTIONS 

1.9      SUGGESTED READINGS 

 

 



Centre for Distance Education                  1.2                       Acharya Nagarjuna University 

1.1. INTRODUCTION 

 

Databases are integral to modern information systems, providing structured ways to store, 

retrieve, and manage data. A database is a collection of related data organized to be easily 

accessed, managed, and updated. Databases support a wide range of applications, from small 

personal projects to vast enterprise systems. This chapter explores the fundamentals of 

databases, the database management system (DBMS) approach, and the various roles 

involved in managing and using databases.  

 

The chapter first covered the Characteristics of the Database Approach, Actors on the Scene, 

Workers behind the scene, Advantages of the using the DBMS Approach and etc. 

 

1.2 CHARACTERISTICS OF THE DATABASE APPROACH 

 

The database approach offers several distinct characteristics that set it apart from traditional 

file systems: 

 

❖ Data Abstraction and Independence: Databases provide a level of abstraction that 

hides the complexity of data storage from users. This is achieved through three levels 

of abstraction: the physical level, the logical level, and the view level. Data 

independence allows changes in the schema at one level without affecting other 

levels. 

❖ Data Integrity and Security: DBMS enforces data integrity by ensuring accuracy 

and consistency of data through constraints and rules. Security measures such as 

authentication and authorization protect data from unauthorized access. 

❖ Data Sharing and Multi-user Transaction Processing: Databases support 

concurrent access by multiple users. Transactions ensure that operations are 

completed correctly and maintain data consistency even in the presence of concurrent 

access and system failures. 

❖ Data Redundancy and Inconsistency Minimization: Unlike file systems, databases 

minimize data redundancy and inconsistency by storing data in a centralized manner, 

reducing duplication and the chances of conflicting data. 

❖ Backup and Recovery: DBMS provide mechanisms for backing up data and 

recovering it in case of system failures, ensuring data durability and availability. 

 
Fig  1.2 Chrematistics of DBMS 



DBMS                                                          1.3                DATABASES AND DATABASE… 

 

 

1.3 ACTORS ON THE SCENE 

 

In the realm of databases, several key actors interact with the DBMS to perform various 

tasks: 

 

❖ Database Administrators (DBAs): DBAs are responsible for managing the DBMS, 

ensuring its availability, performance, and security. They handle tasks such as backup 

and recovery, tuning, and user management. 

❖ Database Designers: These professionals design the database schema, defining the 

structure of the database, including tables, relationships, and constraints. They work 

to ensure the database meets the requirements of the application and users. 

❖ End Users: End users interact with the database through applications to perform tasks 

such as querying, updating, and generating reports. They range from casual users with 

little database knowledge to sophisticated users who write complex queries. 

❖ Application Developers: Developers create applications that interact with the 

database. They write code to perform CRUD (Create, Read, Update, Delete) 

operations and implement business logic. 

 
Fig  1.3 Actors in DBMS 

 

Workers Behind the Scene 

 

Several important roles operate behind the scenes to ensure the smooth functioning of a 

database system: 

 

❖ System Designers and Architects: These professionals design the overall 

architecture of the database system, including hardware, software, and network 

components. They ensure that the system can handle the required workload and 

provide necessary scalability and reliability. 

❖ System Administrators: System administrators manage the hardware and operating 

systems on which the DBMS runs. They ensure that the underlying infrastructure 

supports the database's performance and availability needs. 



Centre for Distance Education                  1.4                       Acharya Nagarjuna University 

❖ Data Analysts and Scientists: These individuals analyze data to extract meaningful 

insights and support decision-making processes. They use various tools and 

techniques to process and interpret data stored in the database. 

❖ Support and Maintenance Staff: These team members provide ongoing support, 

troubleshoot issues, and perform routine maintenance tasks to ensure the database 

system operates smoothly. 

 

1.4 ADVANTAGES OF USING THE DBMS APPROACH 

 

The Database Management System (DBMS) approach offers numerous advantages over 

traditional file-based data management systems. These benefits significantly enhance data 

management efficiency, security, and accessibility, providing a robust framework for 

handling data in modern organizations. 

 

1.4.1 Advantages of DBMS  

 

❖ Improved Data Sharing 

• DBMS enables multiple users to access and share data simultaneously, promoting 

collaboration and information exchange within an organization. 

 

❖ Enhanced Data Security 

• DBMS provides robust security features to protect sensitive data from unauthorized 

 access and breaches. This includes user authentication, authorization, and encryption. 

 

❖ Better Data Integration 

• By centralizing data storage, DBMS ensures that data from different sources is 

integrated into a single, coherent database, facilitating comprehensive data. 

  

❖ Reduced Data Redundancy 

• The DBMS approach minimizes data redundancy by storing data in a single location, 

ensuring that there is only one version of the data. 

 

❖ Improved Data Consistency 

• Data consistency is maintained by ensuring that any updates to the data are 

immediately reflected throughout the database. 

 

❖ Enhanced Data Access 

• DBMS provides powerful query languages and tools that enable users to retrieve. 

  

❖ Increased Productivity 

• By automating routine tasks and providing powerful data management tools, DBMS 

increases the productivity of database users and administrators. 



DBMS                                                          1.5                DATABASES AND DATABASE… 

 

 
Fig 1.4  Advantages of DBMS Concept 

 

1.4.2 Disadvantages of DBMS 

 

While the Database Management System (DBMS) approach offers numerous benefits, it also 

comes with certain disadvantages. Understanding these drawbacks is essential for making 

informed decisions about the adoption and implementation of DBMS solutions. 

 

❖ Complexity 

o System Complexity 

o The design and implementation of a DBMS involve complex software and hardware 

components. This complexity can lead to longer development times and higher costs. 

o Maintenance Complexity 

o Maintaining a DBMS requires skilled personnel to manage updates, backups, 

performance tuning, and troubleshooting. This can add to the operational overhead 

and require continuous investment in training and hiring. 

 

❖ Cost 

o High Initial Investment 

o Implementing a DBMS involves significant initial costs, including purchasing 

software licenses, hardware, and additional resources for setup and integration. 

o Ongoing Costs 

o The ongoing expenses associated with a DBMS include maintenance, upgrades, 

technical support, and staff salaries. These costs can be substantial, especially for 

large-scale databases. 

 

 



Centre for Distance Education                  1.6                       Acharya Nagarjuna University 

❖ Performance 

o Performance Overheads 

o While DBMSs are designed for efficiency, they can introduce performance overheads, 

particularly for complex queries and large datasets. These overheads may impact 

system responsiveness and user experience. 

o Resource Intensive 

o DBMSs often require significant system resources (CPU, memory, disk space) to 

operate effectively. This can strain existing infrastructure and necessitate additional 

investment in hardware. 

 

❖ Vulnerability to Failure 

o Single Point of Failure 

o Centralized databases can become single points of failure. If the DBMS or the server 

hosting it fails, it can lead to significant downtime and loss of access to critical data. 

o Backup and Recovery Challenges 

 

o While DBMSs provide backup and recovery mechanisms, implementing and 

managing these systems can be challenging. Inadequate backup strategies can lead to 

data loss in the event of system failures or disasters. 

 

❖ Security Risks 

o Target for Attacks 

o Databases are prime targets for cyber-attacks due to the valuable information they 

hold. A successful breach can lead to severe consequences, including data theft and 

financial loss. 

o Complexity of Security Management 

o Managing security within a DBMS involves implementing various controls, such as 

user authentication, authorization, and encryption. This complexity can lead to 

potential vulnerabilities if not handled correctly. 

 

❖ Vendor Dependence 

o Proprietary Systems 

o Many DBMS solutions are proprietary, leading to vendor lock-in. Organizations may 

find it challenging to switch vendors or migrate to new systems due to compatibility 

issues and dependence on specific technologies. 

o Limited Flexibility 

o Dependence on a single vendor can limit the flexibility to customize or extend the 

DBMS to meet specific organizational needs, potentially stifling innovation and 

adaptability. 

 

❖ Data Migration Issues 

o Complexity of Migration 

o Migrating data from legacy systems or between different DBMSs can be complex and 

time-consuming. It requires careful planning and execution to ensure data integrity 

and consistency. 

o Risk of Data Loss 

o During migration processes, there is a risk of data loss or corruption. Ensuring a 

smooth and error-free migration necessitates thorough testing and validation. 

 



DBMS                                                          1.7                DATABASES AND DATABASE… 

o While the DBMS approach offers numerous advantages in terms of data management, 

security, and accessibility, it is essential to consider the associated disadvantages. The 

complexity, cost, performance issues, vulnerability to failure, security risks, vendor 

dependence, and data migration challenges must be weighed carefully. By 

understanding these drawbacks, organizations can make more informed decisions 

about the adoption and implementation of DBMS solutions, ensuring they meet their 

specific needs and constraints. 

 

1.5. APPLICATIONS OF DBMS 

 

The applications of DBMS are vast and varied, spanning across different sectors such as 

banking, airlines, telecommunications, education, healthcare, retail, government, 

manufacturing, finance, and social media. Each example illustrates how DBMS is used to 

manage and optimize data handling in these industries. 

Here is a list of common applications of DBMS along with examples for each: 

 

❖ Banking 

 

Example:  

Application: Customer Information Management 

Example DBMS: Oracle Database 

Description: Used by banks to manage customer accounts, transaction records, and loan 

information. 

 

❖ Airlines 

Example: 

Application: Flight Reservations 

Example DBMS: MySQL 

Description: Used by airlines to handle flight schedules, bookings, and cancellations. 

 

❖  Telecommunications 

Example: 

Application: Call Records 

Example DBMS: IBM Db2 

Description: Used to store and manage call detail records (CDRs), billing information, and 

customer data. 

 

❖ Education 

Example: 

Application: Student Information Systems 

Example DBMS: PostgreSQL 

Description: Used by educational institutions to manage student records, enrollment details, 

grades, and attendance. 

 

❖ Healthcare 

Example: 

Application: Patient Records 

Example DBMS: Microsoft SQL Server 

Description: Used to store patient information, medical histories, treatment plans, and 

appointment schedules. 



Centre for Distance Education                  1.8                       Acharya Nagarjuna University 

 

❖ Retail 

Example: 

Application: Inventory Management 

Example DBMS: SAP HANA 

Description: Used by retail businesses to track stock levels, manage orders, and automate 

restocking processes. 

 

❖  Government 

Example: 

Application: Public Records Management 

Example DBMS: Oracle Database 

Description: Used to manage citizen information, property records, tax details, and other 

public records. 

 

❖ Manufacturing 

Example: 

Application: Supply Chain Management 

Example DBMS: SAP HANA 

Description: Used to manage supplier information, procurement processes, inventory levels, 

and production planning. 

 

❖ Finance 

Example: 

Application: Financial Transactions Management 

Example DBMS: IBM Db2 

Description: Used by financial institutions to manage transaction records, account balances, 

and investment portfolios. 

 

❖ Social Media 

Example: 

Application: User Data Management 

Example DBMS: Cassandra 

Description: Used by social media platforms to store user profiles, posts, messages, and 

interaction data. 

 

1.6 SUMMARY 

 

Databases and their users form the backbone of modern information systems, playing a 

critical role in managing and organizing vast amounts of data efficiently. By leveraging the 

powerful capabilities of Database Management Systems (DBMS), organizations can ensure 

data integrity, security, and accessibility, which are essential for informed decision-making 

and operational efficiency. Understanding the various types of database users and the roles 

they play, from administrators and designers to end-users and behind-the-scenes workers, 

provides a comprehensive insight into the dynamic and interconnected world of databases. 

This foundational knowledge underscores the importance of DBMS in today’s data-driven 

landscape and its impact on diverse industries. The chapter discussed Characteristics of the 

Database Approach, Actors on the Scene, Workers behind the scene, Advantages 

,disadvantages of the using the DBMS Approach and applications with example. 

 



DBMS                                                          1.9                DATABASES AND DATABASE… 

 

1.7 TECHNICAL TERMS 

 

DBMS, Database User, System Administrator, End User, Reliability, Security, Privacy, 

Banking, Hospital, Airline and etc. 

 

1.8 SELF ASSESSMENT QUESTIONS 

 

Essay questions: 

 

1. Illustrate about characteristics of DBMS. 

2. Describe about applications of DBMS 

3. Explain about advantages and disadvantages of DBMS 

      

  Short Notes:  

  

1. Write about Database users 

2.   Define DBMS. 

3.   List out benefits of DBMS. 

 

1.9  SUGGESTED READINGS 

 

1. "Database System Concepts" by Abraham Silberschatz, Henry F. Korth, and S. 

Sudarshan 

2. "Fundamentals of Database Systems" by Ramez Elmasri and Shamkant B. 

Navathe 

3. "Database Management Systems" by Raghu Ramakrishnan and Johannes Gehrke 

4. "An Introduction to Database Systems" by C.J. Date 

5. "SQL and Relational Theory: How to Write Accurate SQL Code" by C.J. Date 

 

Dr. Neelima Guntupalli 



LESSON- 02 

DATABASE SYSTEM CONCEPTS 
  

AIMS AND OBJECTIVES 

 

The primary goal of this chapter is to understand the concept of Database system concepts. 

The chapter began with understanding of Data Models, Schemas and Instances, Data 

Independence, Database Languages and Interfaces. After completing this chapter, the student 

will understand the complete idea about Database system concepts. 

 

STRUCTURE 

 

2.1 INTRODUCTION 

2.2 DATA MODELS 

             2.2.1 HIERARCHICAL DATA MODEL 

  2.2.2 NETWORK DATA MODEL 

             2.2.3 RELATIONAL DATA MODEL 

             2.2.4 OBJECT-ORIENTED DATA MODEL 

             2.2.5 ENTITY-RELATIONSHIP MODEL              

2.3       SCHEMAS AND INSTANCES 

            2.3.1 SCHEMA 

            2.3.2 INSTANCE 

            2.3.3 SCHEMA VS. INSTANCE   

2.5.     DATABASE LANGUAGES AND INTERFACES 

           2.5.1 DATABASE LANGUAGES 

           2.5.2 INTERFACES 

2.6      SUMMARY 

2.7     TECHNICAL TERMS  

2.8    SELF-ASSESSMENT QUESTIONS 

2.9    SUGGESTED READINGS 

 

2.1. INTRODUCTION 

 

Databases are integral to modern information systems, providing structured ways to store, 

retrieve, and manage data. A database is a collection of related data organized to be easily 

accessed, managed, and updated. Databases support a wide range of applications, from small 

personal projects to vast enterprise systems. This chapter explores the fundamentals of 

databases, the database management system (DBMS) approach, and the various roles 

involved in managing and using databases.  

 



Centre for Distance Education                        2.2                    Acharya Nagarjuna University 

2.2 DATA MODELS 

 

Data models are abstract frameworks that describe the structure, manipulation, and integrity 

of data stored in a database. They are essential for defining how data is stored, connected, and 

accessed. Data models are fundamental components in the design and implementation of a 

Database Management System (DBMS). They provide a systematic way to define and 

structure data, relationships, and constraints.  

 

 

Here are the primary data models used in DBMS: 

 

2.2.1 Hierarchical Data Model 

• Organizes data in a tree-like structure with parent-child relationships. 

• Example: File systems, early IBM mainframe databases. 

 

Features: 

• Data is represented in a hierarchy. 

• Relationships are one-to-many. 

 

Advantages: 

• Simple to design and understand. 

• Efficient for queries that follow the hierarchical path. 

 

Disadvantages: 

• Inflexible: difficult to re-organize and expand. 

• Redundancy: requires duplication of data. 

 

2.2.2 Network Data Model 

• Represents data with records and relationships using a graph structure. 

• Example: IDMS (Integrated Database Management System). 

 

Features: 

• Data is represented using records and relationships. 

• Relationships are many-to-many. 

 

Advantages: 

• More flexible than the hierarchical model. 

• Can handle more complex relationships. 

 

Disadvantages: 

• Complexity in design and maintenance. 

• Navigation can be cumbersome. 

 

2.2.3 Relational Data Model 

• Uses tables (relations) to represent data and their relationships. 

• Example: MySQL, PostgreSQL. 

 

Features: 

• Data is organized into tables with rows (tuples) and columns (attributes). 

• Tables can be linked using keys (primary key, foreign key). 



DBMS                                                           2.3            DATABASE SYSTEM CONCEPTS 

 

Advantages: 

• Flexibility in query and data manipulation. 

• Data integrity and normalization to reduce redundancy. 

• Standardized query language (SQL). 

 

Disadvantages: 

• Performance issues with very large databases. 

• Complex joins can be computationally expensive. 

 

2.2.4 Object-Oriented Data Model 

• Integrates object-oriented programming principles with database technology. 

• Example: ObjectDB, db4o. 

 

Features: 

• Data is represented as objects with attributes and methods. 

• Supports inheritance, polymorphism, and encapsulation. 

 

Advantages: 

• Seamless integration with object-oriented programming languages. 

• Capable of handling complex data types and relationships. 

 

Disadvantages: 

• Complexity in design and implementation. 

• Less mature than relational databases in terms of tools and support. 

 

2.2.5 Entity-Relationship Model 

• Uses entities and relationships to model data, focusing on the logical structure. 

• Example: Used in database design phase to create ER diagrams. 

 

Features: 

• Entities represent objects or things in the real world. 

• Attributes are properties of entities. 

• Relationships represent associations between entities. 

 

Advantages: 

• Provides a clear and structured way to design databases. 

• Facilitates the transition from conceptual design to logical and physical design. 

 

Disadvantages: 

• Primarily a design tool, not used directly for database implementation. 

 

Understanding different data models is crucial for designing effective databases. Each model 

offers unique advantages and is suitable for specific applications and use cases. The 

hierarchical and network models are useful for specific legacy applications, while the 

relational model remains the most widely used due to its flexibility and robustness. The 

object-oriented model is ideal for applications requiring complex data representations, and 

the entity-relationship model is essential for conceptual database design. Selecting the 

appropriate data model is a fundamental step in ensuring efficient data management and 

retrieval in any DBMS. 



Centre for Distance Education                        2.4                    Acharya Nagarjuna University 

 

2.3 SCHEMAS AND INSTANCES  

 

In the context of Database Management Systems (DBMS), schemas and instances play 

crucial roles in defining and managing the structure and content of databases. Understanding 

these concepts is essential for database design and management. 

 

2.3.1 Schema 

• A schema is the logical structure that defines the organization of data in a database. It 

describes how data is organized and how the relationships among data are associated. 

• The overall logical structure of the database, defined during the design phase. 

 

Types of Schemas: 

• Physical Schema: Defines how data is physically stored in the database. It deals with 

storage devices, file structures, and indexes. 

• Logical Schema: Describes the logical structure of the entire database. It includes 

tables, views, and integrity constraints. 

• View Schema: Defines how data is presented to different users. It can include subsets 

of data from the logical schema. 

 

Characteristics: 

• Static: Schemas are typically defined at the design phase and do not change 

frequently. 

• Blueprint: Schemas serve as blueprints for the database structure and dictate how data 

is organized and accessed. 

 

Example: 

• A logical schema might define a database with tables such as Customers, Orders, and 

Products, specifying their attributes and relationships. 

 
Fig  Example of Schemas : Customers and Orders 

 

2.3.2 Instance 

• An instance is the actual data stored in the database at a particular moment in time. It 

represents a snapshot of the database's content. 

• The actual data stored in the database at a particular moment in time. 



DBMS                                                           2.5            DATABASE SYSTEM CONCEPTS 

 

Characteristics: 

• Dynamic: Instances change frequently as data is inserted, updated, and deleted. 

• Data Content: Instances reflect the current state of the data within the schema's 

structure. 

 

Example: 

• If a table named Customers is defined in the schema, an instance would include the 

actual rows of data in that table at any given time. 

 

INSERT INTO Customers (CustomerID, Name, Email) 

VALUES (1, 'John Doe', 'john.doe@example.com'); 

INSERT INTO Orders (OrderID, OrderDate, CustomerID) 

VALUES (101, '2024-07-21', 1); 

 

 
Fig The result of Insert Query 

 

2.3. 3 Schema vs. Instance 

 

Schema: 

• Static: Schemas are typically static and change infrequently. 

• Blueprint: Serves as a blueprint or framework for organizing data. 

• Definition: Includes definitions of tables, fields, data types, relationships, views, and 

constraints. 

• Levels: Can be divided into physical schema, logical schema, and view schema. 

 

Instance: 

• Dynamic: Instances are dynamic and change with database operations. 

• Snapshot: Represents a snapshot of the database at a specific point in time. 

• Data: Contains actual data entries, reflecting the current state of the database. 

• Temporal: Can vary from one moment to the next based on data operations. 

 



Centre for Distance Education                        2.6                    Acharya Nagarjuna University 

 
Fig Schema vs. Instance 

 

2.4 THREE-SCHEMA ARCHITECTURE AND DATA INDEPENDENCE 

 

The three-schema architecture is designed to separate the user applications from the physical 

database. 

 

2.4.1 Three-Schema Architecture 

 

The Three-Schema Architecture is a framework used in Database Management Systems 

(DBMS) to separate the user applications from the physical database. This separation 

provides a way to manage the complexity of data and ensures data independence. The 

architecture is divided into three levels: the internal schema, the conceptual schema, and the 

external schema. 

 

 
Fig Three-tier Architecture 

 



DBMS                                                           2.7            DATABASE SYSTEM CONCEPTS 

❖ Internal Schema 

 

Description: 

• The internal schema defines the physical storage structure of the database. It describes 

how data is stored in the database and includes data structures, indexing methods, and 

file organization techniques. 

 

Characteristics: 

• Storage Details: Includes details about physical storage, such as data files, indexes, 

and data blocks. 

• Optimization: Focuses on optimizing storage and access speed. 

• Data Independence: Provides physical data independence by allowing changes to the 

internal schema without affecting the conceptual schema. 

Example: 

• A table may be stored as a B-tree index for efficient retrieval. 

 

❖ Conceptual Schema 

Description: 

• The conceptual schema provides a unified and logical view of the entire database. It 

describes the structure of the whole database for a community of users, hiding the 

details of physical storage. 

 

Characteristics: 

• Unified View: Represents all entities, relationships, and constraints. 

• Logical Structure: Independent of how data is physically stored. 

• Data Independence: Provides logical data independence by allowing changes to the 

conceptual schema without affecting the external schemas. 

 

Example: 

• Defines entities like Customers and Orders, their attributes, and relationships between 

them 

CREATE TABLE Customers  

    (CustomerID INT PRIMARY KEY, 

    Name VARCHAR(100), 

    Email VARCHAR(100)); 

CREATE TABLE Orders  

    (OrderID INT PRIMARY KEY, 

    OrderDate DATE, 

    CustomerID INT, 

    FOREIGN KEY (CustomerID) REFERENCES Customers(CustomerID)); 

 

External Schema 

 

Description: 

• The external schema, also known as the view level, defines how individual users or 

user groups interact with the database. It provides a customized view of the database 

tailored to the needs of different users. 

Characteristics: 

• User Views: Can have multiple external schemas, each tailored to different user 

requirements. 



Centre for Distance Education                        2.8                    Acharya Nagarjuna University 

• Security: Helps in providing different access levels to different users. 

• Simplified Interaction: Allows users to interact with the database without needing to 

know its complete structure. 

 

Example: 

• An external schema for a salesperson might include only the customer names and 

contact information. 

 CREATE VIEW Salesperson View AS 

 SELECT Name, Email 

 FROM Customers; 

Benefits of Three-Schema Architecture 

 

1. Data Abstraction: 

• Separates the user applications from the physical data storage, providing a higher 

level of abstraction and simplifying database management. 

2. Data Independence: 

• Enhances both logical and physical data independence, making the database system 

more flexible and easier to maintain. 

3. Security: 

• Provides a mechanism to define multiple user views, enhancing data security by 

restricting access to sensitive data. 

4. Consistency: 

• Ensures that different user views are consistent with the overall conceptual schema, 

maintaining data integrity. 

 

The Three-Schema Architecture is a powerful framework in DBMS that provides a structured 

approach to data abstraction, independence, and security. By separating the internal, 

conceptual, and external schemas, it allows for more flexible, efficient, and secure database 

management. Understanding and implementing this architecture is crucial for designing 

robust and scalable database systems. 

 

2.4.2 Data Independence 

 

Data independence is a key concept in the realm of Database Management Systems (DBMS). 

It refers to the capacity to change the schema at one level of the database system without 

necessitating changes to the schema at the next higher level. This concept is pivotal in 

ensuring that the database system remains flexible and manageable over time. 

 

Types of Data Independence 

 

Data independence is broadly categorized into two types: logical data independence and 

physical data independence. 

 

❖ Logical Data Independence: Ability to change the conceptual schema without altering            

        the external schemas. 

 

 

 



DBMS                                                           2.9            DATABASE SYSTEM CONCEPTS 

Examples of Changes: 

• Adding or removing a new attribute (column) in a table. 

• Changing the data type of an existing attribute. 

• Merging two records into one or splitting one record into two. 

• Adding new relationships or altering existing relationships between tables. 

 

Importance: 

• Enhances flexibility and adaptability of the database. 

• Ensures that application programs do not need to be rewritten when changes are made 

to the logical structure of the database. 

 

Example: 

CREATE TABLE Customers  

    (CustomerID INT PRIMARY KEY, 

    Name VARCHAR(100), 

    Email VARCHAR(100)); 

 

If we decide to add a new attribute Phone Number, logical data independence ensures that 

user applications accessing Customers table don't need to change: 

ALTER TABLE Customers ADD Phone Number VARCHAR(15); 

 

❖ Physical Data Independence: Physical data independence is the ability to change the 

internal schema without needing to alter the conceptual schema. This means that changes to 

the physical storage of data do not impact the logical structure or the applications that interact 

with the database. 

  

Examples of Changes: 

• Changing the file organization or storage structures. 

• Using different storage devices. 

• Adding or modifying indexes to improve performance. 

• Changing the data compression techniques or storage paths. 

 

Importance: 

• Provides a layer of abstraction between the physical storage and the logical structure. 

• Allows for performance tuning and optimization without affecting the logical data 

model or the applications. 

 

Example: 

• Suppose we want to improve the performance of a Customers table by adding an 

index on the Email column: 

 

CREATE INDEX idx_email ON Customers(Email); 

 

Physical data independence ensures that this change does not affect the logical view or the 

applications accessing the Customers table. 

 

Data independence is a foundational principle in the design and management of DBMS, 

ensuring that databases remain flexible, manageable, and adaptable to changing requirements. 

By separating the logical and physical aspects of the database, data independence allows for 

efficient updates and maintenance, enhancing the overall robustness and functionality of the 



Centre for Distance Education                        2.10                    Acharya Nagarjuna University 

database system. Understanding and implementing data independence is crucial for database 

administrators and developers to create resilient and scalable database environments. 

 

2.5 DATABASE LANGUAGES AND INTERFACES 

 

2.5.1 Database Languages  

 

Database systems support various languages and interfaces for defining, manipulating, and 

querying data. Database languages are specialized languages used to define, manipulate, 

control, and manage data in a database. Each type of database language serves a specific 

purpose in the database management process. The primary categories of database languages 

include Data Definition Language (DDL), Data Manipulation Language (DML), Data 

Control Language (DCL), and Transaction Control Language (TCL). 

 

❖ Data Definition Language (DDL) 

• Used to define database schemas. 

• Example: CREATE TABLE, ALTER TABLE. 

 

CREATE TABLE Customers  

   (CustomerID INT PRIMARY KEY, 

    Name VARCHAR(100), 

    Email VARCHAR(100)); 

 

ALTER TABLE Customers ADD Phone Number VARCHAR(15); 

DROP TABLE Customers; 

TRUNCATE TABLE Customers; 

Establishes the framework and structure of the database, enabling efficient data storage and 

retrieval. 

 

❖ Data Manipulation Language (DML) 

• Used for data manipulation. 

• Example: SELECT, INSERT, UPDATE, DELETE. 

 

SELECT * FROM Customers; 

INSERT INTO Customers (CustomerID, Name, Email) VALUES (1, 'John Doe', 

'john.doe@example.com'); 

UPDATE Customers SET Email = 'john.new@example.com' WHERE CustomerID = 1; 

DELETE FROM Customers WHERE CustomerID = 1; 

Facilitates the manipulation and management of data, allowing users to perform various 

operations on the stored data. 

 

❖ Data Control Language (DCL) 

• Used to control access to data. 

• Example: GRANT, REVOKE. 

GRANT SELECT ON Customers TO user1; 

REVOKE SELECT ON Customers FROM user1; 

    Ensures data security and integrity by managing user permissions and access levels. 

❖ Transaction Control Language (TCL) 

• Used to manage transactions. 

• Example: COMMIT, ROLLBACK. 



DBMS                                                           2.11            DATABASE SYSTEM CONCEPTS 

 

2.5.2 Interfaces 

 

Database Management Systems (DBMS) offer various interfaces that allow users to interact 

with the database. These interfaces are designed to cater to different user requirements, 

ranging from database administrators and developers to end-users and application programs.  

 

Here are the primary types of interfaces provided by DBMS: 

 

❖ Command-Line Interface (CLI):  

A Command-Line Interface allows users to interact with the DBMS by typing commands in a 

text-based environment. This interface is powerful for experienced users who need precise 

control over database operations. Text-based interaction with the DBMS. 

 

Features: 

• Direct command execution. 

• Scripting capabilities for automated tasks. 

• Access to all DBMS functionalities. 

 

Example:  

 mysql> SELECT * FROM Customers; 

 

❖ Graphical User Interface (GUI): 

A Graphical User Interface provides a visual and user-friendly way to interact with the 

DBMS. It uses graphical elements such as windows, icons, and menus to simplify database 

operations. 

 

Features: 

• Visual representation of database schema. 

• Drag-and-drop functionalities. 

• Wizards and tools for database design, query building, and data management. 

 

Example: 

• Tools like MySQL Workbench, Microsoft SQL Server Management Studio (SSMS), 

and Oracle SQL Developer. 

 

❖ Application Program Interface (API): 

 

An API allows applications to interact with the DBMS programmatically. It provides a set of 

functions and protocols for accessing and manipulating the database. 

 

Features: 

• Language-specific libraries and drivers (e.g., JDBC for Java, ODBC for multiple 

languages). 

• Seamless integration with applications. 

• Support for various database operations like querying, updating, and transaction 

management. 

 

 

 



Centre for Distance Education                        2.12                    Acharya Nagarjuna University 

Example: 

• Using Python's SQLite3 library: 

 
Programming interfaces for database interaction. 

 

❖ Natural Language Interface:  

A natural language interface allows users to interact with the DBMS using natural language 

queries. This interface aims to make database interactions more intuitive and accessible to 

non-technical users.  

 

Features: 

• Natural language processing to interpret user queries. 

• Conversational interaction style. 

• Integration with virtual assistants and chatbots. 

 

2.6 SUMMARY 

 

In this chapter, we explored the fundamental concepts of data modeling and database 

structures, which serve as the foundation for understanding how data is logically represented 

and organized in a database system. We discussed several types of data models, including the 

Hierarchical Model, which organizes data in a tree-like structure; the Network Model, which 

allows complex many-to-many relationships; the Relational Model, which represents data in 

tables and uses keys to establish relationships; and the Object-Oriented Model, which 

integrates object-oriented programming concepts into databases. Additionally, the Entity-

Relationship (ER) Model was introduced as a high-level conceptual model used for database 

design through entities, attributes, and relationships. 

 

The chapter also distinguished between schemas and instances, where the schema represents 

the database structure (blueprint), and the instance represents the actual data stored at a given 

time. Furthermore, we reviewed database languages such as DDL (Data Definition 

Language), DML (Data Manipulation Language), and DCL (Data Control Language), along 

with various user interfaces like graphical, form-based, and natural language interfaces that 

facilitate user interaction with databases. Overall, this chapter provides a clear understanding 

of how data is modeled, stored, accessed, and managed within modern database systems, 

forming a conceptual bridge between real-world entities and their digital representation. 

 



DBMS                                                           2.13            DATABASE SYSTEM CONCEPTS 

2.7 TECHNICAL TERMS 

 

1. Data Model 

2. Hierarchical Data Model 

3. Network Data Model 

4. Relational Data Model 

5. Object-Oriented Data Model 

6. Entity-Relationship (ER) Model 

7. Schema 

8. Instance 

9. Data Independence 

10. Conceptual Schema 

 

2.8 SELF-ASSESSMENT QUESTIONS 

 

Essay Questions 

1. Explain different types of data models with suitable examples. 

2. Compare and contrast the hierarchical, network, and relational data models. 

3. Describe the components of an Entity-Relationship (ER) model. 

4. Discuss the difference between schema and instance with suitable examples. 

5. Explain the various types of database languages and their purposes. 

 

Short Questions 

1. What is a data model? 

2. List any four types of data models. 

3. What is the difference between hierarchical and network data models? 

4. Define the relational data model. 

5. What are the main features of an object-oriented data model? 

6. What is an entity in the ER model? 

 

2.9 SUGGESTED READINGS 

 

1. Ramez Elmasri and Shamkant B. Navathe, Fundamentals of Database Systems, 5th 

Edition, Pearson Education, 2007. 

2. Abraham Silberschatz, Henry F. Korth, and S. Sudarshan, Database System Concepts, 

6th Edition, McGraw Hill, 2011. 

3. C. J. Date, An Introduction to Database Systems, 8th Edition, Addison Wesley, 2003. 

4. Raghu Ramakrishnan and Johannes Gehrke, Database Management Systems, 3rd 

Edition, McGraw Hill, 2003. 

5. Peter Rob and Carlos Coronel, Database Systems: Design, Implementation, and 

Management, Cengage Learning, 2009. 

 

 Dr. Neelima Guntupalli  



LESSON- 03 

DATABASE ARCHITECTURE 
 

AIMS AND OBJECTIVES 

 

The primary goal of this chapter is to understand the concept of Database Architecture. The 

chapter began with understanding of Three Schema architecture. Later understand about 

Centralized and Client/Server Architecture for DBMS, Classification of Database 

Management Systems. After completing this chapter, the student will understand the 

complete idea about Database architecture. 

 

STRUCTURE 

 

3.1 INTRODUCTION 

3.2 THREE-SCHEMA ARCHITECTURE AND DATA INDEPENDENCE 

            3.2.1 THREE-SCHEMA ARCHITECTURE 

            3.2.2 DATA INDEPENDENCE 

3.3    CENTRALIZED AND CLIENT/SERVER ARCHITECTURE FOR DBMS 

           3.3.1 CENTRALIZED ARCHITECTURE 

           3.3.2 CLIENT/SERVER ARCHITECTURE 

3.4     CLASSIFICATION OF DATABASE MANAGEMENT SYSTEMS 

3.5      SUMMARY 

3.6     TECHNICAL TERMS  

3.7     SELF-ASSESSMENT QUESTIONS 

3.8    SUGGESTED READINGS 

 

3.1. INTRODUCTION 

 

Databases are integral to modern information systems, providing structured ways to store, 

retrieve, and manage data. A database is a collection of related data organized to be easily 

accessed, managed, and updated. Databases support a wide range of applications, from small 

personal projects to vast enterprise systems. This chapter explores the fundamentals of 

databases, the database management system (DBMS) approach, and the various roles 

involved in managing and using databases.  

 

The chapter first covered the Characteristics of the Database Approach, Actors on the Scene, 

Workers behind the scene, Advantages of the using the DBMS Approach and etc. 

 



Centre for Distance Education                        3.2                  Acharya Nagarjuna University 

3.1.1 THREE-SCHEMA ARCHITECTURE 

 

The Three-Schema Architecture is a framework used in Database Management Systems 

(DBMS) to separate the user applications from the physical database. This separation 

provides a way to manage the complexity of data and ensures data independence. The 

architecture is divided into three levels: the internal schema, the conceptual schema, and the 

external schema. 

 

 

 
 

Fig 3.1 Three-tier Architecture 

 

• Presentation Tier: 

This is the topmost layer that interacts with the user. It displays information and 

collects input using interfaces like web pages, mobile apps, or forms. 

• Application / Logic Tier: 

This middle layer contains the application’s business logic and processing rules. It 

acts as a mediator between the user interface and the database, sending queries and 

processing results. 

• Data Tier: 

The lowest layer consists of the database and DBMS where actual data is stored, 

managed, and retrieved. It ensures data consistency, integrity, and security. 

 

In a university database system: 

• The Presentation Tier is the student portal (browser interface). 

• The Application Tier is the web server handling registration and grade processing. 

• The Data Tier is the database storing student and course information. 



DBMS                                                             3.3                 DATABASE ARCHITECTURE 

This three-tier architecture enables easy updates, secure data access, and efficient 

distribution of workload between client and server components. 

❖ Internal Schema 

 

Description: 

• The internal schema defines the physical storage structure of the database. It describes 

how data is stored in the database and includes data structures, indexing methods, and 

file organization techniques. 

 

Characteristics: 

• Storage Details: Includes details about physical storage, such as data files, indexes, 

and data blocks. 

• Optimization: Focuses on optimizing storage and access speed. 

• Data Independence: Provides physical data independence by allowing changes to the 

internal schema without affecting the conceptual schema. 

Example: 

• A table may be stored as a B-tree index for efficient retrieval. 

 

❖ Conceptual Schema 

 

Description: 

• The conceptual schema provides a unified and logical view of the entire database. It 

describes the structure of the whole database for a community of users, hiding the 

details of physical storage. 

 

Characteristics: 

• Unified View: Represents all entities, relationships, and constraints. 

• Logical Structure: Independent of how data is physically stored. 

• Data Independence: Provides logical data independence by allowing changes to the 

conceptual schema without affecting the external schemas. 

 

Example: 

• Defines entities like Customers and Orders, their attributes, and relationships between 

them 

 

CREATE TABLE Customers ( 

    CustomerID INT PRIMARY KEY, 

    Name VARCHAR(100), 

    Email VARCHAR(100) 

); 

CREATE TABLE Orders ( 

    OrderID INT PRIMARY KEY, 

    OrderDate DATE, 

    CustomerID INT, 

    FOREIGN KEY (CustomerID) REFERENCES Customers(CustomerID) 

); 

 

 

 



Centre for Distance Education                        3.4                  Acharya Nagarjuna University 

❖ External Schema 

 

Description: 

• The external schema, also known as the view level, defines how individual users or 

user groups interact with the database. It provides a customized view of the database 

tailored to the needs of different users. 

 

Characteristics: 

• User Views: Can have multiple external schemas, each tailored to different user 

requirements. 

• Security: Helps in providing different access levels to different users. 

• Simplified Interaction: Allows users to interact with the database without needing to 

know its complete structure. 

 

Example: 

• An external schema for a salesperson might include only the customer names and 

contact information. 

 

CREATE VIEW SalespersonView AS 

SELECT Name, Email 

FROM Customers; 

 

Benefits of Three-Schema Architecture 

 

1. Data Abstraction: 

• Separates the user applications from the physical data storage, providing a higher 

level of abstraction and simplifying database management. 

2. Data Independence: 

• Enhances both logical and physical data independence, making the database system 

more flexible and easier to maintain. 

3. Security: 

• Provides a mechanism to define multiple user views, enhancing data security by 

restricting access to sensitive data. 

4. Consistency: 

• Ensures that different user views are consistent with the overall conceptual schema, 

maintaining data integrity. 

 

The Three-Schema Architecture is a powerful framework in DBMS that provides a structured 

approach to data abstraction, independence, and security. By separating the internal, 

conceptual, and external schemas, it allows for more flexible, efficient, and secure database 

management. Understanding and implementing this architecture is crucial for designing 

robust and scalable database systems. 

 

3.2.2 Data Independence 

 

Data independence is a key concept in the realm of Database Management Systems (DBMS). 

It refers to the capacity to change the schema at one level of the database system without 

necessitating changes to the schema at the next higher level. This concept is pivotal in 

ensuring that the database system remains flexible and manageable over time. 



DBMS                                                             3.5                 DATABASE ARCHITECTURE 

 

Types of Data Independence 

 

Data independence is broadly categorized into two types: logical data independence and 

physical data independence. 

 

❖ Logical Data Independence: Ability to change the conceptual schema without altering 

the external schemas. 

 

Examples of Changes: 

• Adding or removing a new attribute (column) in a table. 

• Changing the data type of an existing attribute. 

• Merging two records into one or splitting one record into two. 

• Adding new relationships or altering existing relationships between tables. 

 

Importance: 

• Enhances flexibility and adaptability of the database. 

• Ensures that application programs do not need to be rewritten when changes are made 

to the logical structure of the database. 

 

Example: 

CREATE TABLE Customers ( 

    CustomerID INT PRIMARY KEY, 

    Name VARCHAR(100), 

    Email VARCHAR(100) 

); 

 

If we decide to add a new attribute PhoneNumber, logical data independence ensures that 

user applications accessing Customers table don't need to change: 

ALTER TABLE Customers ADD PhoneNumber VARCHAR(15); 

 

❖ Physical Data Independence: Physical data independence is the ability to change the 

internal schema without needing to alter the conceptual schema. This means that changes to 

the physical storage of data do not impact the logical structure or the applications that interact 

with the database.  

 

Examples of Changes: 

• Changing the file organization or storage structures. 

• Using different storage devices. 

• Adding or modifying indexes to improve performance. 

• Changing the data compression techniques or storage paths. 

 

Importance: 

• Provides a layer of abstraction between the physical storage and the logical structure. 

• Allows for performance tuning and optimization without affecting the logical data 

model or the applications. 

 

 



Centre for Distance Education                        3.6                  Acharya Nagarjuna University 

Example: 

• Suppose we want to improve the performance of a Customers table by adding an 

index on the Email column: 

 

CREATE INDEX idx_email ON Customers(Email); 

Physical data independence ensures that this change does not affect the logical view or the 

applications accessing the Customers table. 

 

Data independence is a foundational principle in the design and management of DBMS, 

ensuring that databases remain flexible, manageable, and adaptable to changing requirements. 

By separating the logical and physical aspects of the database, data independence allows for 

efficient updates and maintenance, enhancing the overall robustness and functionality of the 

database system. Understanding and implementing data independence is crucial for database 

administrators and developers to create resilient and scalable database environments. 

 

3.3  CENTRALIZED AND CLIENT/SERVER ARCHITECTURE FOR DBMS 

 

3.3.1 Centralized Architecture 

 

Centralized architecture in Database Management Systems (DBMS) refers to a system where 

all database functionalities, including storage, processing, and management, are performed on 

a single central server. This server is responsible for handling all database requests and 

operations, serving as the main point of access for all users and applications.  

 

Key Characteristics 

1. Single Server System: 

• All data storage and processing are managed by one central server. 

• The central server handles all database operations, including querying, updating, and 

managing transactions. 

2. Centralized Control: 

• Database administration and management tasks are centralized, simplifying 

maintenance and oversight. 

• Consistent enforcement of security policies and data integrity rules. 

3. Unified Data Storage: 

• All data is stored in a single location, reducing redundancy and ensuring consistency. 

• Simplifies backup and recovery processes. 

4. Direct User Interaction: 

• Users and applications interact directly with the central server for all database 

operations. 

• Simplifies the client-side configuration as there is only one server to connect to. 

 

Advantages 

1. Simplified Management: 

• Easier to manage and maintain as all database operations are centralized. 

• Simplified backup, recovery, and security management. 

2. Consistent Performance: 

• Predictable performance characteristics as all operations are handled by a single 

server. 



DBMS                                                             3.7                 DATABASE ARCHITECTURE 

• Easier to monitor and optimize performance centrally. 

3. Reduced Data Redundancy: 

• Single storage location reduces data duplication and ensures data consistency. 

• Easier to enforce data integrity and validation rules. 

4. Enhanced Security: 

• Centralized control makes it easier to implement and manage security policies. 

• Simplifies access control and auditing. 

 

Disadvantages 

1. Scalability Limitations: 

• Limited by the capacity of the central server, making it challenging to scale as data 

volume and user load increase. 

• Upgrading the central server can be costly and disruptive. 

2. Single Point of Failure: 

• The central server is a single point of failure; if it goes down, the entire database 

system becomes unavailable. 

• Requires robust backup and disaster recovery plans. 

3. Performance Bottlenecks: 

• High demand on the central server can lead to performance bottlenecks. 

• All user requests must be processed by the central server, potentially leading to 

congestion and delays. 

4. Geographical Limitations: 

• Users located far from the central server may experience latency issues. 

• May not be suitable for applications requiring high-speed access from multiple 

geographic locations. 

 

Example: 

 

Consider a university management system where all student records, faculty data, course 

schedules, and examination results are stored in a single central server located in the 

university’s data center. All administrative departments (like Admissions, Accounts, and 

Examination Cell) access the same database through connected terminals. 

• If the Admissions Office updates a student’s record, the same change is instantly 

visible to the Accounts or Examination Cell. 

• The central server ensures that all users work with the same, up-to-date information. 

• However, if the server goes down, all users lose access, which is a major limitation of 

centralized systems. 

 

Advantages: 

• Easier database management and maintenance. 

• High data consistency and security. 

• Centralized backup and recovery control. 

 

Disadvantages: 

• Single point of failure (server outage affects all users). 

• Scalability issues with many simultaneous users. 

• Performance depends on network and server capacity. 

 



Centre for Distance Education                        3.8                  Acharya Nagarjuna University 

Centralized architecture in DBMS offers a simplified approach to database management, with 

all operations controlled by a single central server. This architecture is beneficial for small to 

medium-sized organizations or applications with moderate performance and scalability needs. 

However, it comes with limitations in terms of scalability, potential performance bottlenecks, 

and a single point of failure. Understanding the advantages and disadvantages of centralized 

architecture helps in determining its suitability for specific applications and organizational 

needs. 

 

3.3.2 Client/Server Architecture 

 

Client/Server architecture in Database Management Systems (DBMS) is a distributed 

application structure that partitions tasks between clients, which request services, and servers, 

which provide those services. This architecture enhances the efficiency, scalability, and 

manageability of database systems by distributing the workload across multiple machines. 

 

Key Characteristics 

 

1. Two-Tier Architecture: 

• Client Tier: Consists of client machines that run applications and user interfaces. 

Clients send requests to the server and present the results to the user. 

• Server Tier: Consists of a central server that processes requests from clients, 

performs database operations, and manages data storage. 

2. Three-Tier Architecture (Enhanced Client/Server): 

• Presentation Tier: The client-side interface where users interact with the application. 

• Application Logic Tier: The middle layer that processes business logic and 

communicates between the presentation and data tiers. 

• Data Tier: The server-side where the database is hosted and managed. 

3. Distributed Processing: 

• Workload is distributed between client and server, optimizing performance and 

resource utilization. 

• Clients handle presentation logic, while servers handle data processing and 

management. 

4. Network Communication: 

• Clients and servers communicate over a network using standardized protocols (e.g., 

TCP/IP). 

 

Advantages 

 

1. Scalability: 

• Easily scalable by adding more clients or servers as needed. 

• Supports large numbers of simultaneous users and high transaction volumes. 

2. Improved Performance: 

• Distributes processing load between clients and servers, reducing bottlenecks. 

• Clients handle user interfaces and local processing, while servers manage data-

intensive tasks. 

3. Flexibility: 

• Different clients (desktop, web, mobile) can interact with the same server. 

• Servers can be upgraded or replaced independently of clients. 



DBMS                                                             3.9                 DATABASE ARCHITECTURE 

4. Centralized Data Management: 

• Centralized control over data ensures consistency and integrity. 

• Easier to implement security, backup, and recovery policies. 

 

 

Disadvantages 

1. Complexity: 

• More complex to design, implement, and maintain compared to centralized 

architectures. 

• Requires robust network infrastructure and management. 

2. Network Dependency: 

• Performance and reliability depend on the underlying network. 

• Network failures can disrupt access to the database. 

3. Cost: 

• Higher initial setup and maintenance costs due to the need for multiple servers and 

network infrastructure. 

 

Example: 

 

Consider a banking system that uses a client/server architecture. 

• The client-side application (installed on teller or ATM terminals) allows users to 

perform operations such as balance inquiry, fund transfer, or cash withdrawal. 

• The server-side system (at the bank’s data center) runs the DBMS that stores and 

processes all account details, transactions, and authentication requests. 

• When a teller checks a customer’s account, the client sends an SQL query like: 

• SELECT balance FROM accounts WHERE account_no = 12345; 

 

The server executes this query and returns the result to the client for display. 

 

Advantages: 

• Efficient sharing of database resources among multiple users. 

• Reduced client workload since data processing occurs on the server. 

• Easier maintenance and scalability — new clients can be added without affecting the 

central database. 

 

Disadvantages: 

• Requires reliable network connectivity. 

• Security concerns if communication between client and server is not encrypted. 

• Higher initial setup and maintenance costs compared to centralized systems. 

 

Client/Server architecture in DBMS offers a robust and scalable solution for managing 

complex and distributed database systems. By dividing the workload between clients and 

servers, this architecture enhances performance, flexibility, and centralized data management. 

While it introduces some complexity and network dependency, the benefits make it suitable 

for a wide range of applications, especially in large enterprises and web-based environments. 

Understanding the client/server model is crucial for designing efficient and scalable database 

solutions. 

 



Centre for Distance Education                        3.10                  Acharya Nagarjuna University 

3.3.3  CLASSIFICATION OF DATABASE MANAGEMENT SYSTEMS 

 

❖ Based on Data Model 

• Relational DBMS (RDBMS): MySQL, PostgreSQL. 

• Object-Oriented DBMS (OODBMS): ObjectDB, db4o. 

• NoSQL DBMS: MongoDB, Cassandra. 

❖ Based on Number of Users 

• Single-user DBMS: Microsoft Access. 

• Multi-user DBMS: Oracle, SQL Server. 

❖ Based on Database Distribution 

• Centralized DBMS: Data stored in a single location. 

• Distributed DBMS: Data distributed across multiple locations. 

• Federated DBMS: Manages multiple autonomous databases. 

❖ Based on Cost 

• Open-source DBMS: MySQL, PostgreSQL. 

• Commercial DBMS: Oracle, SQL Server. 

❖ Based on Access Method 

• Navigational DBMS: Uses pointers to navigate between data. 

• SQL DBMS: Uses SQL for data access. 

 

Table 3.1: Classification of Database Management Systems 

 

Classification 

Criteria 

Type of DBMS Description / Example 

Based on Data 

Model 

Relational DBMS 

(RDBMS) 

Stores data in tables with rows and 

columns.  

Examples: MySQL, PostgreSQL 

Object-Oriented 

DBMS (OODBMS) 

Stores data in the form of objects, as in 

object-oriented programming.  

Examples: ObjectDB, db4o 

NoSQL DBMS Designed for unstructured or semi-

structured data; schema-free.  

Examples: MongoDB, Cassandra 

Based on Number of 

Users 

Single-User DBMS Supports one user at a time; simpler 

systems.  

Example: Microsoft Access 

Multi-User DBMS Allows multiple users to access the 

database simultaneously.  

Examples: Oracle, SQL Server 

Based on Database 

Distribution 

Centralized DBMS Entire database stored in one central 

location. 

Distributed DBMS Database distributed across multiple 

physical locations connected by a network. 

Federated DBMS Manages multiple autonomous databases 

under a single interface. 

 

 

  



DBMS                                                             3.11                 DATABASE ARCHITECTURE 

Based on Cost Open-Source DBMS Free to use and modify; community-

supported.  

Examples: MySQL, PostgreSQL 

Commercial DBMS Proprietary and licensed software with 

vendor support.  

Examples: Oracle, SQL Server 

Based on Access 

Method 

Navigational DBMS Accesses data using pointers or predefined 

paths. 

SQL DBMS Uses Structured Query Language (SQL) 

for defining and manipulating data. 

 

3.4  SUMMARY 

 

In this chapter, we explored the fundamental architectural concepts of Database Management 

Systems (DBMS). The three-schema architecture provides a clear separation between users’ 

views, the conceptual design, and the physical storage of data. It is organized into three levels 

— internal, conceptual, and external — which together help to manage complexity and 

ensure better data abstraction. A key benefit of this architecture is data independence, 

allowing changes at one level (such as storage structure) without affecting higher levels like 

application programs or user views. This separation ensures flexibility, maintainability, and 

scalability in modern database systems. 

 

The chapter also introduced different types of DBMS architectures, including centralized 

systems, where all data and DBMS software reside on a single server, and client/server 

systems, which divide tasks between clients (users) and a central server for better efficiency 

and concurrent access. Finally, we classified DBMSs based on various criteria such as data 

models (relational, object-oriented, hierarchical, etc.), number of users, and distribution of 

data. These architectural and classification principles form the foundation for understanding 

how databases are organized, managed, and accessed in both traditional and modern 

computing environments. 

 

3.5  TECHNICAL TERMS 

 

Data Models, Schema, Instances, Three schema architecture and Data Independence 

 

3.6   SELF ASSESSMENT QUESTIONS 

 

Essay questions: 

 

1. Illustrate about data models. 

2. Describe about Data Independence 

3. Explain about three tier architectures of DBMS 

      

  Short Notes:  

  

1. Write about Schema and Instances 

2. Define Data Interface 

3. List out benefits of Clint Server Architecture 



Centre for Distance Education                        3.12                  Acharya Nagarjuna University 

3.7  SUGGESTED READINGS 

 

1. "Database System Concepts" by Abraham Silberschatz, Henry F. Korth, and S. 

Sudarshan 

2. "Fundamentals of Database Systems" by Ramez Elmasri and Shamkant B. Navathe 

3. "Database Management Systems" by Raghu Ramakrishnan and Johannes Gehrke 

4. "An Introduction to Database Systems" by C.J. Date 

5. "SQL and Relational Theory: How to Write Accurate SQL Code" by C.J. Date 

 

                                                                                                   Dr. Neelima Guntupalli 



LESSON- 04 

DATA MODELING USING THE ER MODEL 
 

AIMS AND OBJECTIVES 

 

The primary goal of this chapter is to understand the concept of Data Modeling Using the ER 

Model. The chapter began with Conceptual Data models, Entity Types, Entity Sets, Attributes 

and Keys, Relationship types, Relationship sets, roles and structural Constraints, Weak Entity 

types, Relationship Types of Degree Higher than Two, Refining the ER Design for the 

COMPANY Database. After completing this chapter, the student will understand Data 

Modeling Using the ER Model. 

 

4.1 INTRODUCTION 

4.2 ENTITY TYPES AND ENTITY SETS 

            4.2.1 ENTITY TYPES 

            4.2.2 ENTITY SETS 

4.3       ATTRIBUTES AND KEYS 

            4.3.1 ATTRIBUTES 

            4.3.2 KEYS 

4.4      OTHER TYPES OF INDEXES. 

            4.4.1 BITMAP INDEXES 

            4.4.2 FULL-TEXT INDEXES 

            4.4.3  SPATIAL INDEXES 

4.5.     RELATIONSHIP TYPES, RELATIONSHIP SETS, AND ROLES  

 4.5.1 RELATIONSHIP TYPES 

 4.5.2 RELATIONSHIP SETS 

 4.5.3 ROLES 

4.6.     STRUCTURAL CONSTRAINTS 

 4.6.1 DOMAIN CONSTRAINTS 

 4.6.2 ENTITY INTEGRITY CONSTRAINTS 

 4.6.3 REFERENTIAL INTEGRITY CONSTRAINTS 

 4.6.4 UNIQUE CONSTRAINTS 

 4.6.5 CHECK CONSTRAINTS 

 4.6.6 NOT NULL CONSTRAINTS 

 4.6.7 DEFAULT CONSTRAINTS 

4.7     WEAK ENTITY TYPES 

 4.7.1 KEY CHARACTERISTICS OF WEAK ENTITY TYPES 

 4.7.2 EXAMPLE OF WEAK ENTITY TYPE 

4.8       RELATIONSHIP TYPES OF DEGREE HIGHER THAN TWO IN DBMS 

4.9       SUMMARY 

4.10     TECHNICAL TERMS  

4.11     SELF-ASSESSMENT QUESTIONS 

4.12     SUGGESTED READINGS 

 

 



Centre for Distance Education                         4.2                   Acharya Nagarjuna University  

4.1 INTRODUCTION 

 

Data modeling is a fundamental step in designing a database. It involves creating a visual 

representation of the data structures and their relationships, ensuring the database will 

efficiently support the required data management tasks. One of the most widely used 

techniques for data modeling is the Entity-Relationship (ER) Model. 

 

The ER Model was introduced by Peter Chen in 1976 and provides a high-level conceptual 

framework for database design. It uses a diagrammatic approach to represent data entities, 

their attributes, and the relationships between them. The primary components of the ER 

Model include entities, attributes, and relationships, each playing a critical role in defining 

the structure and constraints of the data. 

 

The chapter first covered began with understanding Conceptual Data models, Entity Types, 

Entity Sets, Attributes and Keys, Relationship types, Relationship sets, roles and structural 

Constraints, Weak Entity types, Relationship Types of Degree Higher than Two, Refining the 

ER Design for the COMPANY Database. 

 

4.2 ENTITY TYPES AND ENTITY SETS 

 

Entity Types and Entity Sets are foundational elements in the ER Model for DBMS. Entity 

Types provide the blueprint for defining the properties and structure of data objects, while 

Entity Sets represent the actual data instances in the database. By effectively utilizing these 

concepts, database designers can create structured, efficient, and scalable databases that 

accurately represent the real-world entities and their relationships. Understanding the 

distinction between entity types and entity sets is crucial for successful database modeling 

and implementation. Entities can be tangible, such as 'Customer' or 'Product,' or intangible, 

such as 'Order' or 'Transaction. Entities are represented by rectangles in ER diagrams. For 

example, in a library system, entities might include 'Book,' 'Member,' and 'Loan.' 

 

4.2.1 Entity Types 

 

An entity type is a collection of entities that share common properties or characteristics. It 

represents a category or class of objects in the real world with the same attributes. 

 

Characteristics: 

 

• Attributes: Properties that describe the entity type. Each entity within the type will 

have the same set of attributes, but the attribute values will differ. 

• Primary Key: An attribute or a set of attributes that uniquely identify each entity in 

the entity type. 

• Representation: In an ER diagram, an entity type is represented by a rectangle 

containing the entity type name. 

• Example: In a university database, an entity type could be Student, with attributes 

such as StudentID, Name, DateOfBirth, and Major. 

 

4.2.2 Entity Sets 

An entity set is a collection of all entities of a particular entity type at any point in time. It is 

essentially the table in a relational database where rows represent individual entities. 



Database Management Systems                      4.3           Data Modeling Using The Er Model  

Characteristics: 

 

• Homogeneous Collection: Contains entities of the same entity type. 

• Dynamic: The number of entities in an entity set can change over time as entities are 

added, modified, or removed. 

 

Representation: 

 

• In an ER diagram, the entity set is represented by the same rectangle used for the 

entity type. 

• Example: 

• The Student entity set in a university database would include all current students, each 

represented by a unique combination of attribute values. 

 

 
Fig 4.1 Entity Set of Student Object 

 

4.3 ATTRIBUTES AND KEYS 

 

Attributes and keys are fundamental concepts in Database Management Systems (DBMS) 

that help define and manage the structure of data within a database. Attributes provide the 

details about the data entities, while keys ensure the uniqueness and establish relationships 

between the data entities. 

 

4.3.1 Attributes 

 

Attributes are properties or characteristics that describe an entity in a database. Each attribute 

represents a data field and holds a value for every entity instance. 

 

Types of Attributes: 

• Simple Attribute: An attribute that cannot be divided into smaller components. For 

example, FirstName and LastName are simple attributes. 



Centre for Distance Education                         4.4                   Acharya Nagarjuna University  

• Composite Attribute: An attribute that can be subdivided into smaller components. 

For example, Address can be subdivided into Street, City, State, and ZIP Code. 

• Single-Valued Attribute: An attribute that holds a single value for a given entity 

instance. For example, DateOfBirth is typically single-valued. 

• Multi-Valued Attribute: An attribute that can hold multiple values for a given entity 

instance. For example, PhoneNumbers can store multiple phone numbers for a person. 

• Derived Attribute: An attribute whose value can be derived from other attributes. 

For example, Age can be derived from the DateOfBirth. 

• Stored Attribute: An attribute that is stored in the database and not derived from 

other attributes. For example, EmployeeID. 

 

Example: 

• For the entity Student, attributes might include StudentID, Name, DateOfBirth, 

Address, and PhoneNumbers. 

 

ER Diagram Representation: 

• Attributes are represented by ovals connected to their respective entities by lines. 

 

4.3.2 Keys 

 

Keys are special types of attributes or combinations of attributes that are used to uniquely 

identify records in a table and establish relationships between tables. 

 

Types of Keys: 

 

1. Primary Key: 

• Definition: A unique attribute or a combination of attributes that uniquely identifies each 

record in a table. 

• Characteristics: 

o Must contain unique values. 

o Cannot contain NULL values. 

o There can be only one primary key per table. 

Example: StudentID in the Student table. 

 

2. Composite Key: 

• Definition: A primary key that consists of two or more attributes to uniquely identify 

a record. 

• Example: OrderID and ProductID together can form a composite key for an 

OrderDetails table. 

 

3. Candidate Key: 

• Definition: An attribute or a set of attributes that can uniquely identify a record and 

could potentially be chosen as the primary key. 

• Example: Both Email and PhoneNumber in a Customer table can be candidate keys. 

 

4. Alternate Key: 

• Definition: A candidate key that is not chosen as the primary key. 

• Example: If Email is chosen as the primary key, then PhoneNumber would be an 

alternate key. 



Database Management Systems                      4.5           Data Modeling Using The Er Model  

5. Foreign Key: 

 

• Definition: An attribute or a set of attributes in one table that refers to the primary 

key in another table to establish a relationship between the two tables. 

• Characteristics: 

o Can contain duplicate values. 

o Can contain NULL values. 

• Example: StudentID in the Enrollment table can be a foreign key referencing 

StudentID in the Student table. 

 

6. Super Key: 

 

• Definition: A set of one or more attributes that can uniquely identify a record in a 

table. 

• Characteristics: Can contain additional attributes that are not necessary for unique 

identification. 

• Example: StudentID alone is a super key, and StudentID along with Name is also a 

super key. 

 

7. Unique Key: 

 

• Definition: An attribute or a set of attributes that ensures all values in a column or a 

group of columns are unique across the database. 

• Characteristics: 

o Similar to the primary key but can accept a single NULL value. 

• Example: Email in the Student table can be a unique key if each student has a unique 

email address. 

 

ER Diagram Representation: 

 

• Primary keys are underlined in entity representations. 

• Foreign keys are represented with a dashed line connecting the two related entities. 

 

Example Scenarios 

 

University Database: 

 

• Entity: Student 

o Attributes: StudentID (Primary Key), Name, DateOfBirth, Address, Email (Unique 

Key), PhoneNumbers 

• Entity: Course 

o Attributes: CourseID (Primary Key), CourseName, Credits 

• Entity: Enrollment 

o Attributes: EnrollmentID (Primary Key), StudentID (Foreign Key), CourseID 

(Foreign Key), EnrollmentDate 



Centre for Distance Education                         4.6                   Acharya Nagarjuna University  

 
Fig 4.2 University Database Example 

 

Attributes and keys are integral to defining the structure and relationships of data in a 

database. Attributes describe the properties of an entity, while keys ensure the uniqueness and 

integrity of data, facilitating efficient data retrieval and management. Understanding these 

concepts is crucial for designing robust and efficient databases that meet the requirements of 

complex data-driven applications. 

 

4.4 OTHER TYPES OF INDEXES 

 

In addition to the commonly used B-tree and hash indexes, modern database systems support 

several specialized indexing techniques tailored for specific data types and query patterns. 

These indexes improve performance for queries that involve low-cardinality attributes, text 

search, or spatial/geometric data. The following are three important types of specialized 

indexes. 

 

4.4.1 BITMAP INDEXES 

 

A bitmap index uses bit vectors (bitmaps) to represent the presence or absence of a value in 

each  row. 

 

It is especially efficient when: 



Database Management Systems                      4.7           Data Modeling Using The Er Model  

• The attribute has low cardinality (few distinct values), such as gender, status, 

category, or department code. 

• Queries involve complex Boolean conditions (AND, OR, NOT). 

 

How it works 

 

• For each distinct value of the attribute, a bitmap (array of bits) is created. 

• Bit = 1 → row contains that value 

• Bit = 0 → row does not contain that value 

• Bitwise operations make query evaluation very fast. 

 

Advantages 

• Very compact storage for low-cardinality columns. 

• Extremely fast for combining conditions using bitwise operations. 

• Good for read-heavy, analytical workloads (e.g., data warehouses). 

 

Limitations 

• Not suitable for high-cardinality columns. 

• Bitmap indexes increase overhead on updates (due to bitmaps needing modification). 

 

4.4.2 FULL-TEXT INDEXES 

 

A full-text index enables efficient searching of large text fields, documents, and unstructured 

text. 

 

Traditional indexes are inefficient for matching keywords, phrases, or natural-language 

queries—full-text indexes solve this. 

 

Features 

• Break text into tokens (words, stems). 

• Build an inverted index mapping terms → list of documents/rows containing them. 

• Support advanced text-search operations like: 

o Keyword search 

o Phrase search 

o Boolean text search 

o Relevance ranking 

o Stemming and stop-word filtering 

 

Applications 

• Searching in fields such as product descriptions, articles, emails, comments, etc. 

• Required in information retrieval systems, search engines, and content-heavy 

databases. 

 

Advantages 

• Very fast text-search queries. 

• Supports ranking and relevance-based search. 

 

 

 



Centre for Distance Education                         4.8                   Acharya Nagarjuna University  

Limitations 

 

• Index creation and maintenance can be expensive. 

• Performance depends on tokenizer and language-specific processing. 

 

4.4.3 SPATIAL INDEXES 

 

A spatial index is designed for storing and querying geometric and geographic data—such as 

points, lines, polygons, and regions. 

 

Examples of spatial data 

 

• GIS coordinates (latitude/longitude) 

• Maps, boundaries, routes 

• Locations of services (ATMs, hospitals) 

• Shapes and geometric figures 

 

Common spatial index structures 

 

• R-tree (most widely used) 

• R*-tree, Quad-trees, KD-trees (depending on the DBMS) 

 

Why spatial indexes are needed 

Spatial queries often involve operations such as: 

 

• “Find all points within a radius” 

• “Find regions that overlap this polygon” 

• “Locate the nearest neighbor” 

 

B-tree indexes cannot handle multi-dimensional data efficiently, whereas spatial indexes 

group nearby objects and improve search performance enormously. 

 

Advantages 

 

• Efficient multi-dimensional search (2D/3D). 

• Fast spatial operations (range queries, intersection, containment). 

 

Limitations 

 

• More complex structure than B-trees. 

• Maintenance overhead for frequently updated spatial data. 

 

4.5. RELATIONSHIP TYPES, RELATIONSHIP SETS, AND ROLES  

 

In Database Management Systems (DBMS), relationships between entities are crucial for 

representing how data interacts and is associated within the database. Understanding 

relationship types, relationship sets, and roles helps in accurately modeling these interactions 

within an Entity-Relationship (ER) model. 

 

 



Database Management Systems                      4.9           Data Modeling Using The Er Model  

 

4.5.1 Relationship Types 

 

• A relationship type defines the association between two or more entity types. It 

describes how entities of different types are related to each other. 

• Characteristics: 

• Degree of Relationship: Indicates the number of entity types involved in the 

relationship. 

o Unary Relationship: Involves one entity type (e.g., an employee supervises 

other employees). 

o Binary Relationship: Involves two entity types (e.g., students enroll in courses). 

o Ternary Relationship: Involves three entity types (e.g., a supplier supplies 

products to a warehouse). 

 

• Cardinality Constraints: Specifies the number of instances of one entity type that can be     

      associated with an instance of another entity type. 

 

o One-to-One (1:1): One instance of an entity is associated with one instance of 

another entity (e.g., each person has one passport). 

o One-to-Many (1): One instance of an entity is associated with multiple instances of 

another entity (e.g., a teacher teaches many students). 

o Many-to-Many (M): Multiple instances of an entity are associated with multiple 

instances of another entity (e.g., students enroll in multiple courses, and each course 

has multiple students). 

 

Example: 

 

• A Student entity type and a Course entity type can have an Enrolls relationship type 

indicating that students enroll in courses. 

 

ER Diagram Representation: 

 

• Relationships are represented by diamonds connecting the involved entities. 

 

4.5.2 Relationship Sets 

 

A relationship set is a collection of relationships of the same type. It represents the set of 

associations between instances of one entity set and instances of another (or the same) entity 

set. 

 

Characteristics: 

• Instance Collection: Contains all instances of a particular relationship type at any 

given time. 

• Dynamic: The number of relationships in the set can change over time as entities are 

added, modified, or removed. 

• Example: The Enrolls relationship set would include all instances where students 

have enrolled in courses. 

• ER Diagram Representation: Represented by the same diamond as the relationship 

type, with lines connecting to the involved entities. 

 



Centre for Distance Education                         4.10                   Acharya Nagarjuna University  

4.5.3 Roles 

 

• Roles specify the function that an entity plays in a relationship. Roles are especially 

important in relationships involving the same entity type more than once (recursive 

relationships). 

 

Characteristics: 

 

• Role Names: Identify the purpose of an entity within the relationship. Role names 

help clarify the participation of an entity in the relationship. 

• Recursive Relationships: Used to define roles in relationships where the same entity 

type participates more than once. 

 

Example: 

 

• In a Supervises relationship between the Employee entity type, roles can be 

Supervisor and Subordinate. 

• ER Diagram Representation: 

• Roles are often labeled on the connecting lines in the ER diagram to specify the 

function of each entity in the relationship. 

 

Employee Database: 

 

Entities: 

• Employee (EmployeeID, Name, Position) 

• Relationships: 

• Supervises (between Employee and Employee) 

o Roles: Supervisor, Subordinate 

o Cardinality: One-to-Many (1) 

 

 
Fig 4.3  ER Diagram of Employee representation of Relationship 



Database Management Systems                      4.11           Data Modeling Using The Er Model  

 

Understanding relationship types, relationship sets, and roles is essential for accurately 

modeling the interactions between data entities in a database. These concepts ensure that the 

relationships among entities are correctly represented, facilitating efficient data management 

and retrieval. Proper use of these elements in ER modeling leads to well-structured databases 

that accurately reflect real-world scenarios and support the required data operations. 

 

4.6. STRUCTURAL CONSTRAINTS 

 

Structural constraints in a Database Management System (DBMS) are rules that enforce 

restrictions on the relationships between entities to ensure the integrity and consistency of the 

data. These constraints play a crucial role in defining how entities interact with each other 

and what kind of relationships are permissible. 

 

4.6.1 Domain Constraints 

 

 Definition: Restrictions on the permissible values for a given attribute. 

  

Example: An attribute age should only accept integer values between 0 and 120. 

  

Implementation: Data types and value ranges 

 

CREATE TABLE  Person ( 

    age INT CHECK (age >= 0 AND age <= 120) 

); 

 

4.6.2 Entity Integrity Constraints 

 

Definition: Ensure each entity (row) is uniquely identifiable. 

 

Example: Every table should have a primary key, and no primary key value can be null. 

 

Implementation: Primary key constraints 

CREATE TABLE Employee ( 

    employee_id INT PRIMARY KEY, 

    name VARCHAR(50) 

); 

 

4.6.3 Referential Integrity Constraints 

Definition: Ensure that a foreign key value always points to an existing, valid record in 

another table. 

 

Example: An order table's customer_id must match a valid customer_id in the customers 

table. 

Implementation: Foreign key constraints 

CREATE TABLE Orders ( 

    order_id INT PRIMARY KEY, 

    customer_id INT, 

    FOREIGN KEY (customer_id) REFERENCES Customers(customer_id) 

); 



Centre for Distance Education                         4.12                   Acharya Nagarjuna University  

 

4.6.4 Unique Constraints 

 

Definition: Ensure that all values in a column or a set of columns are unique. 

 

Example: Email addresses in a users table must be unique. 

Implementation: Unique constraints. 

 

CREATE TABLE Users ( 

    user_id INT PRIMARY KEY, 

    email VARCHAR(100) UNIQUE 

); 

 

4.6.5 Check Constraints 

 

Definition: Specify a condition that each row must satisfy. 

 

Example: An employee’s salary must be greater than the minimum wage. 

 

Implementation: Check constraints 

 

CREATE TABLE Employees ( 

    employee_id INT PRIMARY KEY, 

    salary DECIMAL(10, 2), 

    CHECK (salary >= 1500) 

); 

 

4.6.6 Not Null Constraints 

 

 Definition: Ensure that a column cannot have null values. 

Example: An employee's name cannot be null. 

Implementation: Not null constraints 

CREATE TABLE Employees ( 

    employee_id INT PRIMARY KEY, 

    name VARCHAR(50) NOT NULL 

); 

 

4.6.7 Default Constraints 

 

Definition: Provide a default value for a column when no value is specified. 

 

Example: The status of an order should default to 'pending' if not specified. 

 

Implementation: Default constraints. 

CREATE TABLE Orders ( 

    order_id INT PRIMARY KEY, 

    status VARCHAR(20) DEFAULT 'pending' 

); 

 

 



Database Management Systems                      4.13           Data Modeling Using The Er Model  

4.7 WEAK ENTITY TYPES 

 

In a Database Management System (DBMS), a weak entity type is an entity type that cannot 

be uniquely identified by its own attributes alone. Instead, it relies on a "strong" or "owner" 

entity to ensure its unique identification. Weak entities typically have a partial key and are 

associated with a strong entity through a relationship. 

 

4.7.1 Key Characteristics of Weak Entity Types 

 

❖ Dependency on Strong Entity: 

o Weak entities do not have a primary key that can uniquely identify their instances 

independently. 

o They depend on the primary key of a strong entity for unique identification. 

❖ Partial Key (Discriminator): 

o A weak entity has a partial key, also known as a discriminator, which, when 

combined with the primary key of the strong entity, uniquely identifies each instance 

of the weak entity. 

❖ Existence Dependency: 

o Weak entities are existence-dependent on the strong entity. They cannot exist without 

being associated with an instance of the strong entity. 

❖ Identifying Relationship: 

o The relationship between a weak entity and its strong entity is called an identifying 

relationship. This relationship helps in linking the weak entity to the strong entity and 

ensures that the weak entity can be uniquely identified. 

 

4.7.2 Example of Weak Entity Type 

 

Consider a database for a university where each student (strong entity) can have multiple 

dependents (weak entity). The dependents cannot be uniquely identified without referencing 

the student. 

 

Strong Entity: Student 

 

o Attributes: StudentID (Primary Key), Name, DateOfBirth 

 

Weak Entity: Dependent 

o Attributes: DependentName, Age, Relationship 

o Partial Key: DependentName 

o Identifying Relationship: Each dependent is associated with a specific student. 

 

Weak Entity: Dependent representation in SQL: 

CREATE TABLE Dependents ( 

    DependentName VARCHAR(100), 

    Age INT, 

    Relationship VARCHAR(50), 

    StudentID INT, 

    PRIMARY KEY (DependentName, StudentID), 

    FOREIGN KEY (StudentID) REFERENCES Students(StudentID) 

); 

 



Centre for Distance Education                         4.14                   Acharya Nagarjuna University  

By understanding and correctly implementing weak entities, you can ensure that your 

database accurately models real-world relationships and maintains data integrity. 

 

4.8 RELATIONSHIP TYPES OF DEGREE HIGHER THAN TWO IN DBMS 

 

In a Database Management System (DBMS), relationships are used to establish associations 

between different entity types. Most relationships are binary, involving two entities, but there 

are cases where relationships involve three or more entities. These are called n-ary 

relationships, where "n" represents the degree of the relationship. Here are the key aspects 

and examples of relationship types of degree higher than two: 

 

Ternary Relationships (Degree 3) 

 

A ternary relationship involves three different entity types. It is used when a relationship 

cannot be decomposed into binary relationships without losing some essential semantics. 

 

Example: Supplier-Product-Project 

 

Consider a scenario where a company manages suppliers, products, and projects. A ternary 

relationship might be used to represent which supplier supplies which product to which 

project. 

 

Entities: 

 

• Supplier (SupplierID, SupplierName) 

• Product (ProductID, ProductName) 

• Project (ProjectID, ProjectName) 

 

Ternary Relationship: Supplies 

• Attributes: Quantity, Date 

CREATE TABLE Suppliers ( 

    SupplierID INT PRIMARY KEY, 

    SupplierName VARCHAR(100) 

); 

 

CREATE TABLE Products ( 

    ProductID INT PRIMARY KEY, 

    ProductName VARCHAR(100) 

); 

 

CREATE TABLE Projects ( 

    ProjectID INT PRIMARY KEY, 

    ProjectName VARCHAR(100) 

); 

 

CREATE TABLE Supplies ( 

    SupplierID INT, 

    ProductID INT, 

    ProjectID INT, 



Database Management Systems                      4.15           Data Modeling Using The Er Model  

    Quantity INT, 

    Date DATE, 

    PRIMARY KEY (SupplierID, ProductID, ProjectID), 

    FOREIGN KEY (SupplierID) REFERENCES Suppliers(SupplierID), 

    FOREIGN KEY (ProductID) REFERENCES Products(ProductID), 

    FOREIGN KEY (ProjectID) REFERENCES Projects(ProjectID) 

); 

 

4.9 SUMMARY 

 

Data modelling using the Entity-Relationship (ER) model involves creating a conceptual 

representation of a database's structure, focusing on entities (real-world objects or concepts), 

their attributes (properties), and the relationships between them. The ER model uses diagrams 

with rectangles for entities, ovals for attributes, and diamonds for relationships, connected by 

lines to illustrate the data structure clearly. This method helps in visualizing, communicating, 

and documenting the database design, ensuring that it accurately represents real-world 

scenarios and serves as a blueprint for creating an efficient and scalable database. 

 

4.10 TECHNICAL TERMS 

 

Entity, Attributes, Entity Type, Weak Entity, Relationship, Relationship Type, Constraint, ER 

model 

 

4.11    SELF ASSESSMENT QUESTIONS 

 

Essay questions: 

 

1. Illustrate about Entity and Entity Types 

2. Describe about Relationship Types 

3. Explain about Company Database ER Model 

      

Short questions:  

  

1. Write about Weak Entity 

2. Define Key Constraints 

 

4.12   SUGGESTED READINGS 

 

1. "Database System Concepts" by Abraham Silberschatz, Henry F. Korth, and S. 

Sudarshan 

2. "Fundamentals of Database Systems" by Ramez Elmasri and Shamkant B. Navathe 

3. "Database Management Systems" by Raghu Ramakrishnan and Johannes Gehrke 

4. "An Introduction to Database Systems" by C.J. Date 

5. "SQL and Relational Theory: How to Write Accurate SQL Code" by C.J. Date 

 

Dr. Neelima Guntupalli 



LESSON- 05 

THE ENHANCED ENTITY-RELATIONSHIP MODEL 
 

AIMS AND OBJECTIVES 

 

The primary goal of this chapter is to understand the concept of The Enhanced Entity-

Relationship Model. The chapter began with Sub classes, Super classes and Inheritance, 

Specialization and Generalization, Constraints and Characteristics of Specialization and 

Generalization Hierarchies, Modeling of Union Types using Categories, An Example 

University ERR Schema, Design Choices and Formal Definitions. After completing this 

chapter, the student will understand The Enhanced Entity-Relationship Model. 

 

5.1 INTRODUCTION 

5.2 SUBCLASSES, SUPERCLASSES, AND INHERITANCE 

            5.2.1 SUBCLASSES 

            5.2.2 SUPERCLASSES 

            5.2.3 INHERITANCE 

5.3       SPECIALIZATION AND GENERALIZATION 

            5.3.1 SPECIALIZATION  

            5.3.2 GENERALIZATION 

5.4  CONSTRAINTS AND CHARACTERISTICS OF SPECIALIZATION AND       

 GENERALIZATION HIERARCHIES 

            5.4.1 COMPLETENESS CONSTRAINT 

            5.4.2 DISJOINTNESS CONSTRAINT 

            5.4.3 COMBINING COMPLETENESS AND DISJOINTNESS CONSTRAINTS 

5.5     MODELLING OF UNION TYPES USING CATEGORIES 

5.6     EXAMPLE UNIVERSITY EER SCHEMA 

 5.5.1 ENTITIES AND RELATIONSHIPS 

 5.5.2 SCHEMA DIAGRAM 

5.7      DESIGN CHOICES AND FORMAL DEFINITIONS 

5.8      SUMMARY 

5.9      TECHNICAL TERMS  

5.10      SELF-ASSESSMENT QUESTIONS 

5.11     SUGGESTED READINGS 

 

 

 

 



Centre for Distance Education                       5.2                      Acharya Nagarjuna University 

5.1 INTRODUCTION 

 

The Enhanced Entity-Relationship (EER) model extends the original Entity-Relationship 

(ER) model to support more complex data representations and constraints. It introduces 

additional concepts like subclasses, superclasses, inheritance, specialization, generalization, 

and union types, making it a powerful tool for advanced database design.  

 

The chapter first covered began with understanding Sub classes, Super classes and 

Inheritance, Specialization and Generalization, Constraints and Characteristics of 

Specialization and Generalization Hierarchies, Modeling of Union Types using Categories, 

An Example University ERR Schema, Design Choices and Formal Definitions. 

 

5.2 SUBCLASSES, SUPERCLASSES, AND INHERITANCE 

 

5.2.1 Subclasses 

 

In the context of the Enhanced Entity-Relationship (EER) model, a subclass is a specialized 

form of an entity that inherits attributes and relationships from a parent entity, known as the 

superclass. The subclass can also have its own unique attributes and relationships that 

differentiate it from other subclasses and the superclass. This concept is essential for 

modeling complex data structures in database management systems (DBMS).  

 

Example: A Person entity can be specialized into Student and Teacher subclasses. While 

both Student and Teacher inherit attributes like Name and Date of Birth from Person, Student 

might have additional attributes such as StudentID and Major, and Teacher might have 

EmployeeID and Department. 

 

When creating subclasses in an EER diagram, it is essential to clearly define the superclass 

and identify the distinguishing characteristics that justify the creation of subclasses. 

 

Steps: 

 

1. Identify the Superclass: Determine the general entity that will serve as the 

superclass. 

2. Define Attributes and Relationships: List the attributes and relationships common 

to all subclasses. 

3. Identify Specializations: Determine the specific entities (subclasses) that will be 

derived from the superclass based on unique attributes or relationships. 

4. Draw Inheritance Arcs: Use arcs or lines to connect subclasses to the superclass, 

indicating inheritance. 

 



Database Management Systems                     5.3     The Enhanced Entity-Relationship Model 

 

 
Fig 5.1 Subclass in EER Diagram 

 

Advantages of Using Subclasses 

 

1. Reusability: Common attributes and relationships are defined once in the superclass 

and inherited by subclasses. 

2. Reduced Redundancy: Inheritance reduces the need to duplicate attributes across 

multiple entities. 

3. Clearer Modeling: Subclasses allow for more precise modeling of real-world entities 

and their unique characteristics. 

 

5.2.2 Superclasses 

 

A superclass is a higher-level entity that contains common attributes and relationships shared 

by one or more subclasses A superclass is a generalized entity from which subclasses are 

derived.  

 

Example:  

• Person is the superclass for Student and Teacher. 

• Vehicle as a superclass. It includes attributes common to all types of vehicles, such as 

license_plate_number, manufacturer, and model. 

 

5.2.3 Inheritance 

Inheritance allows a subclass to inherit attributes and relationships from its superclass. This 

promotes reusability and consistency within the data model. 

 

 



Centre for Distance Education                       5.4                      Acharya Nagarjuna University 

Example:  

• Attributes Name and DateOfBirth in Person are inherited by both Student and 

Teacher. 

 
Fig 5.2  Inheritance in EER Diagram 

 

Step-by-Step Process 

 

1. Identify Common Entities and Attributes: 

o Common entity: Vehicle 

o Common attributes: vehicle_id, license_plate_number, manufacturer, model 

2. Define the Superclass: 

o Superclass: Vehicle 

o Attributes: vehicle_id, license_plate_number, manufacturer, model 

3. Define the Subclasses: 

o Car: Attributes: number_of_doors, trunk_capacity 

o Truck: Attributes: payload_capacity, number_of_axles 

o Motorcycle: Attributes: type_of_handlebars, engine_capacity 

4. Establish Inheritance Relationships: 

o Draw Vehicle as the superclass. 

o Connect Vehicle to Car, Truck, and Motorcycle using lines. 

o Use a triangle symbol to represent the inheritance relationship, with the apex 

pointing towards Vehicle. 

5. Specify Constraints: 

o Disjoint Constraint: A vehicle can be either a Car, Truck, or Motorcycle, but 

not more than one (disjoint). 

o Total Participation: Every vehicle must be classified as one of the subclasses 

(total participation). 

 

By following these steps, you can effectively create an EER diagram that represents the 

inheritance of vehicles, ensuring a clear and structured data model. 

 



Database Management Systems                     5.5     The Enhanced Entity-Relationship Model 

5.3 SPECIALIZATION AND GENERALIZATION 

 

5.3.1 Specialization 

 

Specialization in EER (Extended Entity-Relationship) modeling involves creating lower-level 

entity types (subclasses) from a higher-level entity type (superclass) based on some 

distinguishing characteristics. This process is a top-down approach where a general entity is 

divided into more specific entities. 

 

Example: Person can be specialized into Student and Teacher based on roles within an 

educational institution. 

 

Specialization Constraints 

 

• Disjoint Constraint: Ensures that a Vehicle can be only one of the subclasses (Car, 

Truck, or Motorcycle). 

• Total Participation: Ensures that every Vehicle instance must be a member of one of 

the subclasses. 

 

Specialization in DBMS allows for the creation of a more structured and organized database 

by breaking down general entities into more specific entities based on distinguishing 

characteristics. This approach helps in managing and querying data more efficiently while 

maintaining data integrity and avoiding redundancy. 

 

5.3.2 GENERALIZATION 

 

Generalization in Database Management Systems (DBMS) is the process of combining 

multiple lower-level entity types into a higher-level entity type based on common attributes 

or relationships. It is the opposite of specialization and follows a bottom-up approach. This 

method is useful for simplifying and abstracting complex databases by identifying 

commonalities among various entities and representing them in a generalized manner. 

 

Key Concepts of Generalization 

 

• Higher-Level Entity (Superclass): The generalized entity that encompasses the 

shared attributes and relationships of the lower-level entities. 

• Lower-Level Entities (Subclasses): The specific entities that are combined to form 

the higher-level entity. Each subclass may have its own unique attributes and 

relationships. 

 

Example: Consider a scenario where you have different types of vehicles: cars, trucks, and 

motorcycles. Each type of vehicle has its own specific attributes, but they also share some 

common attributes. 

Step-by-Step Process 

1. Identify Common Attributes: 

o Common attributes: vehicle_id, license_plate_number, manufacturer, model 

2. Define the Higher-Level Entity (Superclass): 

o Superclass: Vehicle 

o Attributes: vehicle_id, license_plate_number, manufacturer, model 



Centre for Distance Education                       5.6                      Acharya Nagarjuna University 

3. Define Lower-Level Entities (Subclasses): 

o Car: Attributes: number_of_doors, trunk_capacity 

o Truck: Attributes: payload_capacity, number_of_axles 

o Motorcycle: Attributes: type_of_handlebars, engine_capacity 

4. Establish Generalization Relationships: 

o Connect Car, Truck, and Motorcycle to Vehicle using lines. 

o Use a triangle symbol to represent the generalization relationship, with the base 

pointing towards Car, Truck, and Motorcycle, and the apex pointing towards 

Vehicle. 

5. Specify Constraints: 

o Disjoint Constraint: Indicate that a Vehicle can be either a Car, Truck, or 

Motorcycle, but not more than one (disjoint). 

o Total Participation: Indicate that every Vehicle must be one of the specialized types 

(total participation). 

 
Fig 5.3Generalization in EER Diagram 

 

Generalization in DBMS is a powerful modeling technique that helps in abstracting and 

simplifying complex data structures by identifying commonalities among different entities 

and representing them as a generalized entity. This approach enhances data organization, 

reduces redundancy, and improves database maintainability and query efficiency. 

 

5.4 CONSTRAINTS AND CHARACTERISTICS OF SPECIALIZATION AND   

      GENERALIZATION HIERARCHIES 

 

5.4.1 Completeness Constraint 

 

The Completeness Constraint in the Extended Entity-Relationship (EER) model specifies 

whether every instance of a higher-level entity (superclass) must belong to at least one lower-

level entity (subclass). It ensures that all possible entity instances are accounted for in the 

specialization/generalization hierarchy. 

 

There are two types of completeness constraints: 

1. Total Completeness (Total Participation): 

o Every instance of the superclass must be a member of at least one subclass. 

o This is represented by a double line connecting the superclass to the subclasses in the 

EER diagram. 

o Example: If every Vehicle must be either a Car, Truck, or Motorcycle, then the 

specialization is totally complete. 



Database Management Systems                     5.7     The Enhanced Entity-Relationship Model 

2. Partial Completeness (Partial Participation): 

o Some instances of the superclass may not belong to any of the subclasses. 

o This is represented by a single line connecting the superclass to the subclasses in the 

EER diagram. 

o Example: If some Vehicles might not be classified as Car, Truck, or Motorcycle, then 

the specialization is partially complete. 

 

 

           
 

Fig  5.4 (a) Total Specialization (b) Partial Specialization 

 

The choice between total and partial specialization depends on the specific requirements of 

the domain being modeled. 

 

5.4.2 Disjointness Constraint 

 

This specifies whether an instance of a superclass can be a member of more than one 

subclass. 

 

• Disjoint Specialization: An instance of the superclass can belong to only one 

subclass. 

• Overlap Specialization: An instance of the superclass can belong to multiple 

subclasses. 

 

Example 

Consider an EER diagram for vehicles: 

• Superclass: Vehicle 

• Subclasses: Car, Truck, Motorcycle 

 

Disjoint (Exclusive) Constraint 

If a vehicle can be either a Car, Truck, or Motorcycle, but not more than one of these at the 

same time, the disjointness constraint is disjoint. This is shown by a "d" in the diagram. 

 

Overlapping Constraint 

If a vehicle can be classified as more than one subclass (e.g., a vehicle that is both a Car and a 

Truck), the disjointness constraint is overlapping. This is shown by an "o" in the diagram. 



Centre for Distance Education                       5.8                      Acharya Nagarjuna University 

                            
Fig  5.5 (a) Disjoint (Exclusive) Constraint                (b)      Overlapping Constraint 

 

5.4.3 Combining Completeness and Disjointness Constraints 

 

In practice, both completeness and disjointness constraints can be combined to provide a 

more precise definition of how instances of a superclass relate to its subclasses. 

 

Example with Total Completeness and Disjoint Constraint: 

 

If every vehicle must be either a Car, Truck, or Motorcycle, and cannot be more than one at 

the same time, it would be represented as: 

 

 
 

Fig 5.6 Total Completeness and Disjoint Constraint 

 

Example with Partial Completeness and Overlapping Constraint: 

 

If some vehicles may not be categorized as Car, Truck, or Motorcycle, but those that are can 

belong to more than one subclass, it would be represented as: 



Database Management Systems                     5.9     The Enhanced Entity-Relationship Model 

 
Fig 5.7 Partial Completeness and Overlapping Constraint 

 

These constraints help in accurately modeling real-world scenarios and ensuring data 

integrity in the database design. 

 

5.5  MODELING OF UNION TYPES USING CATEGORIES 

 

Union types (or categories) are used to represent a single superclass that is derived from 

multiple distinct superclasses. 

 

Example: A Member entity could be a union of Student, Teacher, and Alumni, allowing the 

Member to inherit attributes from any of these entities. 

To model union types using categories for the Vehicle entity in an Enhanced Entity-

Relationship (EER) diagram, we will follow a structured approach. We'll define the 

superclass Vehicle and its potential categories (subclasses) and establish a union entity to 

represent the different types of vehicles. 

 

Steps to Model Union Types Using Categories in EER: 

 

1. Identify the Superclass: Vehicle 

2. Identify the Subclasses: Car, Truck, Motorcycle 

3. Define the Union Entity: Create a union entity to represent the categories. 

4. Set Constraints: Specify completeness and disjointness constraints. 

 

Union Entity: 

 

Create a Vehicle Type entity that represents the union of Car, Truck, and Motorcycle. 

 

Modeling union types using categories for the Vehicle entity in an EER diagram involves 

defining the superclass Vehicle, its subclasses Car, Truck, and Motorcycle, and specifying the 

union entity with appropriate constraints. This method ensures a robust and flexible database 

design that can handle complex categorization requirements for vehicles. 

 

 

 

 

 

 



Centre for Distance Education                       5.10                      Acharya Nagarjuna University 

5.6 EXAMPLE UNIVERSITY EER SCHEMA 

 

Consider an EER schema for a university database, including entities such as Person, Student, 

Teacher, Course, and relationships like Enrolls, Teaches. 

 

5.5.1 Entities and Relationships 

 

Entities: 

 

• Student (StudentID, Name, DateOfBirth, Major, Year, GPA) 

• Professor (ProfessorID, Name, Department, Title, OfficeNumber) 

• Course (CourseID, CourseName, Credits, Department) 

• Department (DepartmentID, DepartmentName, Building) 

• Classroom (RoomNumber, Building, Capacity) 

• Enrollment (EnrollmentID, Grade) 

• Teaches (Semester, Year)  

 

Relationships: 

 

• Student 1:M Enrollment (Enrolls) 

• Course 1:M Enrollment (Contains) 

• Professor 1:M Teaches (Teaches) 

• Course 1:M Teaches (IsTaughtIn) 

• Department 1:M Course (Offers) 

• Department 1:M Professor (Has) 

• Classroom 1:M Course (Hosts)  

 

5.5.2 Schema Diagram 

 

A diagram representing the entities, their attributes, and relationships can be used to visualize 

the EER model. 

 

A schema diagram is a visual representation of the entities, their attributes, relationships, 

and the constraints that define the structure of the Enhanced Entity–Relationship (EER) 

model. 

 

It provides a high-level overview of the database design, showing how different entities are 

related and how specialization, generalization, and inheritance are represented. 

 

The schema diagram helps database designers and users to: 

• Understand the organization of data in the system. 

• Identify entity types, attributes, and relationships. 

• Visualize hierarchical structures formed through subclasses and superclasses. 

• Observe constraints such as disjointness, completeness, and participation. 

 

Components of an EER Schema Diagram 

1. Entities: 

o Represented by rectangles. 

o Each entity includes its attributes, and the primary key is underlined. 

 



Database Management Systems                     5.11     The Enhanced Entity-Relationship 

Model 

Example: 

Student(StudentID, Name, Age, Major) 

2. Attributes: 

o Shown as ovals connected to their entity. 

o Multivalued attributes are represented by double ovals, and derived attributes by 

dashed ovals. 

3. Relationships: 

o Depicted by diamonds connecting participating entities. 

o Cardinality ratios (1:1, 1:N, M:N) and participation constraints are shown on the 

connecting lines. 

4. Specialization and Generalization: 

o Represented using a triangle symbol. 

o A downward triangle indicates specialization (from superclass to subclasses). 

o An upward triangle indicates generalization (from subclasses to a superclass). 

o Disjointness and completeness constraints are labeled near the triangle: 

• d for disjoint 

• o for overlapping 

• T for total 

• P for partial 

5. Subclasses and Superclasses: 

o Superclasses appear as general entities from which common attributes are inherited. 

o Subclasses branch out and may have additional attributes or relationships. 

6. Categories (Union Types): 

o Represented by a circle connected to multiple superclasses. 

o Indicates that the subclass is formed as a union of different entity sets. 

 

Example: University EER Schema Diagram 

 

A University EER schema may include the following entities and relationships: 

• Entities: 

o Person(PersonID, Name, Address) 

o Student(StudentID, Program) 

o Faculty(FacultyID, Department) 

o Course(CourseID, Title, Credits) 

o Department(DeptID, DeptName) 

• Relationships: 

o EnrolledIn(Student, Course) 

o Teaches(Faculty, Course) 

o Advises(Faculty, Student) 

• Specialization: 

o Person is a superclass. 

o Student and Faculty are subclasses derived from Person. 

o Further specialization of Student into UndergraduateStudent and GraduateStudent. 

• Constraints: 

o The specialization of Person into Student and Faculty is total and disjoint — every 

person must be either a student or faculty, but not both. 

 



Centre for Distance Education                       5.12                      Acharya Nagarjuna University 

 
Fig 5.8 EER Diagram University Database 

 

In the diagram: 

 

• Rectangles represent entities such as Person, Student, and Course. 

• Diamonds represent relationships like Teaches and EnrolledIn. 

• Triangles represent specialization/generalization hierarchies. 

• Lines connecting entities show participation and cardinality. 

• Such a diagram allows database designers to visually validate: 

• Attribute inheritance from superclasses to subclasses. 

• Relationship participation across hierarchical levels. 

• Constraint enforcement between entities. 

Advantages of Schema Diagrams 

• Provides a clear and intuitive visual representation of complex EER designs. 

• Facilitates communication between designers, developers, and stakeholders. 

• Helps identify redundancies and inconsistencies early in the design process. 

• Serves as a blueprint for converting the conceptual model into a relational schema. 

 

5.7 DESIGN CHOICES AND FORMAL DEFINITIONS 

 

5.7.1 Design Choices 

Design choices involve decisions about which entities to include, how to structure them, and 

how to implement constraints and relationships. 



Database Management Systems                     5.13     The Enhanced Entity-Relationship 

Model 

 

Example: Deciding whether to use a total or partial specialization for Person can impact the 

flexibility and complexity of the database schema. 

 

5.7.2 Formal Definitions 

 

Formal definitions provide precise specifications for entities, attributes, relationships, and 

constraints within the EER model. 

 

Example: The definition of the Person entity might include formal specifications for 

attributes like PersonID, Name, and DateOfBirth. 

 

5.8 SUMMARY 

 

The Enhanced Entity-Relationship (EER) model extends the traditional ER model by 

incorporating more advanced features like subclasses, superclasses, inheritance, 

specialization, generalization, and union types. These enhancements enable more precise and 

flexible data modeling, making it suitable for complex database designs. By understanding 

and applying these concepts, database designers can create robust and efficient database 

schemas that accurately reflect real-world scenarios. 

 

This chapter provides a comprehensive overview of the Enhanced Entity-Relationship model, 

including its components, constraints, and applications in database design. The example 

university EER schema illustrates how these concepts can be practically applied to create a 

detailed and functional database schema. 

 

5.9 TECHNICAL TERMS 

 

Enhanced Entity, Relationship, Complete Constraint, Disjoint Constraint, Subclass, Super 

class , Inheritance, Specialization, Generalization. 

 

5.10    SELF ASSESSMENT QUESTIONS 

 

Essay questions: 

 

1. Illustrate about Specialization and Generalization 

2. Describe about University EER Schema 

3. Explain about Completeness Constraint 

            

Short questions:  

  

1. Write about Inheritance 

2. Define Disjointness Constraint 

3. Explain about Entities and Relationships 

 

 

 

 



Centre for Distance Education                       5.14                      Acharya Nagarjuna University 

5.11   SUGGESTED READINGS 

 

1. "Database System Concepts" by Abraham Silberschatz, Henry F. Korth, and S. 

Sudarshan 

2. "Fundamentals of Database Systems" by Ramez Elmasri and Shamkant B. Navathe 

3. "Database Management Systems" by Raghu Ramakrishnan and Johannes Gehrke 

4. "An Introduction to Database Systems" by C.J. Date 

5. "SQL and Relational Theory: How to Write Accurate SQL Code" by C.J. Date 

6. Elmasri, R., & Navathe, S. B. (2010). Fundamentals of Database Systems (6th ed.). 

Addison-Wesley. 

7. Silberschatz, A., Korth, H. F., & Sudarshan, S. (2011). Database System Concepts 

(6th ed.). McGraw-Hill. 

 

Dr. Kampa Lavanya 



LESSON- 06 

THE RELATIONAL MODEL CONCEPTS 
 

AIMS AND OBJECTIVES 

 

The primary goal of this chapter is to understand the concept of The Enhanced Entity-

Relationship Model. The chapter began with Sub classes, Super classes and Inheritance, 

Specialization and Generalization, Constraints and Characteristics of Specialization and 

Generalization Hierarchies, Modeling of Union Types using Categories, An Example 

University ERR Schema, Design Choices and Formal Definitions. After completing this 

chapter, the student will understand The Enhanced Entity-Relationship Model. 

 

6.1 INTRODUCTION 

6.2 RELATIONAL DATA MODEL CONCEPTS 

6.3       INTEGRITY CONSTRAINTS 

6.4      RELATIONAL OPERATIONS       

6.5      ER MODEL TO RELATION MAPPING 

6.5      MODELLING OF UNION TYPES USING CATEGORIES 

6.6      KEYS AND FOREIGN KEYS  

6.7       SUMMARY 

6.8       TECHNICAL TERMS  

6.9       SELF-ASSESSMENT QUESTIONS 

6.10     SUGGESTED READINGS 

 

6.1. INTRODUCTION 

 

In any relational database, maintaining data accuracy, consistency, and inter-table 

relationships is essential. The relational data model achieves this through a set of well-

defined rules and operations that govern how data is stored, manipulated, and related. 

Concepts such as integrity constraints ensure that only valid and consistent data is entered 

into the database, while relational operations provide powerful ways to query and transform 

data based on mathematical set theory and logic. 

 

Furthermore, real-world databases often originate from conceptual designs built using Entity–

Relationship (ER) models. To implement these models effectively, designers use ER-to-

Relation mapping to convert entities, attributes, and relationships into relational tables. More 

advanced concepts like modelling union types using categories and depicting keys and 

foreign keys through diagrams help in visualizing data dependencies and enforcing referential 

integrity across relations. Together, these topics form the foundation for reliable, structured, 

and logically consistent database design. 

 

 

 



Centre for Distance Education                        6.2                     Acharya Nagarjuna University 

In this chapter, we will explore the essential components of the relational data model — 

relations, attributes, tuples, schemas, and keys. We will also examine how integrity 

constraints are enforced and introduce relational algebra, the formal language for querying 

relational databases. 

 

6.2. RELATIONAL DATA MODEL CONCEPTS 

 

The relational data model, introduced by E. F. Codd in 1970, is the most widely used model 

for database design and implementation. It organizes data into relations, which are 

conceptualized as two-dimensional tables consisting of rows and columns. Each table 

represents a specific entity or relationship type, where rows (tuples) correspond to individual 

records and columns (attributes) represent properties of those records. This simple yet 

powerful structure makes the relational model easy to understand, flexible to use, and 

mathematically rigorous. 

 

The relational model emphasizes data independence, data integrity, and ease of manipulation 

through well-defined operations based on relational algebra. Its foundation lies in set theory, 

ensuring that all data manipulations follow consistent and predictable rules. In this section, 

we will discuss the fundamental components of the relational data model — relations, 

attributes, tuples, domains, schemas, and keys — along with their properties and constraints. 

These concepts provide the logical basis for building, querying, and maintaining structured 

databases in real-world applications. 

 

6.2.1 Relation: Structure and Properties 

 

A relation is the fundamental building block of the relational data model. It represents a table 

of data consisting of rows and columns, where each row corresponds to a unique record and 

each column corresponds to an attribute of that record. In formal terms, a relation is a set of 

tuples (rows) sharing the same set of attributes (columns). The structure of a relation provides 

a systematic and uniform way to store and organize data. 

 

Each relation in a database has a unique name and a fixed set of attributes, with each attribute 

having a distinct name and a defined domain of values. The order of attributes and tuples in a 

relation is not significant, since the relation is based on the mathematical concept of a set. 

However, the values contained in each tuple are atomic, meaning that every attribute holds a 

single, indivisible value—ensuring that no lists, arrays, or nested records are stored within a 

single field. 

 

Example Relation ‘Student’ 

 

StudentID Name Age Major 

1001 Alice 21 Computer Science 

1002 Bob 22 Mathematics 

1003 Carol 20 Physics 

 

 

 



Database Management Systems                     6.3                    The Relational Model Concepts 

Characteristics of a Relation: 

• Each attribute has a unique name within the relation. 

• Each tuple represents a distinct record or data instance. 

• Tuple order does not affect the meaning of the relation. 

• No duplicate tuples are allowed in a valid relation. 

• Attribute values are atomic, meaning they cannot be divided further. 

• The relation name distinguishes one relation from another within the database. 

 

Thus, a relation provides a structured and consistent method of representing data in tabular 

form. This tabular organization simplifies data retrieval and manipulation, enabling relational 

databases to maintain clarity, flexibility, and logical integrity. 

 

6.2.2 Attributes and Domains 

 

Each attribute in a relation describes one property or characteristic of the entity represented 

by the relation. Attributes are represented as columns in a table, and each attribute has an 

associated domain — the set of all possible or allowable values that the attribute can take. 

The domain defines the data type, format, and range of values, ensuring that all data stored in 

the attribute is valid and meaningful. 

 

A domain acts as a constraint on attribute values, preventing inconsistent or incorrect data 

from being entered into the database. For example, an Age attribute might be restricted to 

integer values between 16 and 100, while a Name attribute may only accept alphabetic 

strings. 

 

Example Attributes and Domains in the ‘Student’ Relation 

Attribute Domain Example Values 

StudentID Integer 1001, 1002, 1003 

Name String "Alice", "Bob", "Carol" 

Age Integer (16–100) 20, 21, 22 

Major Set of Strings "Physics", "Mathematics", … 

 

Key Points: 

• Each attribute has a clearly defined domain that specifies acceptable values. 

• Domains may restrict both the type (e.g., integer, string) and the range or format (e.g., 

valid age range or date format). 

• Domains promote data integrity by ensuring uniformity and preventing invalid 

entries. 

• When a value does not conform to its domain, the database system rejects it as an 

error. 

 

Hence, domains play a crucial role in maintaining the accuracy, consistency, and reliability of 

data stored in a relational database. 

 

 

 



Centre for Distance Education                        6.4                     Acharya Nagarjuna University 

6.2.3 Tuples 

 

A tuple represents a single record or instance in a relation. It is an ordered set of attribute 

values, where each value corresponds to one attribute of the relation. In tabular form, a tuple 

appears as a row in the relation table. Each tuple provides a complete description of an entity 

by combining values from each attribute’s domain. 

 

In the relational model, every tuple must contain exactly one value for each attribute of the 

relation, and these values must be atomic, meaning they cannot be further divided into 

smaller components. This ensures that the data remains consistent and easy to process during 

query operations. 

Example A Tuple from the ‘Student’ Relation 

 

StudentID Name Age Major 

1001 Alice 21 Computer Science 

 

In this example, the tuple (1001, Alice, 21, Computer Science) represents one student entity, 

where each value belongs to the domain of its corresponding attribute. 

 

Characteristics of a Tuple: 

 

• Contains one value for each attribute of the relation. 

• All attribute values are atomic (indivisible). 

• Each tuple is unique — no two tuples in the same relation are identical. 

• Represents a single, complete record within the relation. 

 

Thus, tuples serve as the fundamental data units in the relational model, capturing individual 

instances of entities and ensuring that all stored information is well-structured and logically 

consistent. 

 

6.2.4 Schema and Instance 

 

A relation schema defines the structure of a relation — it specifies the relation’s name and the 

names and domains of all its attributes. The schema acts as a blueprint or template that 

describes how data is organized in the relation. It remains relatively stable over time and 

forms part of the database’s overall design. 

 

Example Relation Schema 

 

Student(StudentID: Integer, Name: String, Age: Integer, Major: String) 

 

In this schema, 

• Student is the name of the relation. 

• StudentID, Name, Age, and Major are attributes. 

• Each attribute is associated with a domain (e.g., Integer, String). 

 

 

 



Database Management Systems                     6.5                    The Relational Model Concepts 

The relation instance, on the other hand, refers to the actual data stored in the relation at a 

particular point in time. It represents a collection of tuples that conform to the structure 

defined by the relation schema. The instance of a relation is dynamic — it changes whenever 

tuples are inserted, deleted, or updated. 

 

Example Relation Instance of ‘Student’ 

StudentID Name Age Major 

1001 Alice 21 Computer Science 

1002 Bob 22 Mathematics 

1003 Carol 20 Physics 

Key Points: 

 

• The schema defines the structure and constraints of a relation. 

• The instance represents the actual content or data of the relation at a given time. 

• While the schema is fixed, the instance changes as the database is modified. 

 

Hence, the relation schema provides a logical definition, and the relation instance provides a 

snapshot of data, together forming the foundation for representing information in a relational 

database. 

 

6.2.5 Characteristics of Relations 

 

A relation in the relational data model exhibits several important characteristics that define its 

structure and behavior. These characteristics ensure that data stored in relational databases 

remains well-organized, consistent, and compatible with the principles of set theory upon 

which the model is based. 

 

Key Characteristics: 

 

• Attribute names are unique within a relation: 

Each attribute (column) in a relation has a distinct name to avoid ambiguity when referring to 

data items. For example, a relation cannot contain two attributes both named ID. 

• Tuples are unordered sets (not lists): 

The order of tuples (rows) in a relation has no significance. Whether a tuple appears first or 

last in the table does not affect the meaning of the data. Each tuple is identified by the values 

it contains, not by its position. 

• Attribute values are atomic: 

Every attribute in a relation must contain only a single, indivisible value from its domain. 

Complex or composite values such as lists or arrays are not permitted, ensuring simplicity 

and consistency in data representation. 

• No duplicate tuples are allowed: 

A valid relation cannot contain two identical tuples. This uniqueness property ensures that 

each record represents a distinct real-world entity or fact. Relations are sets; hence, 

operations on relations obey set theory principles: 

 

Since a relation is defined as a set of tuples, all operations such as union, intersection, and 

difference follow the rules of set theory. This mathematical foundation enables relational 

algebra to provide powerful and logically sound data manipulation capabilities. 

 



Centre for Distance Education                        6.6                     Acharya Nagarjuna University 

6.2.6 Keys 

 

In a relational database, keys are essential for uniquely identifying tuples and establishing 

relationships between relations. A key is one or more attributes that together ensure that each 

tuple in a relation is unique. Keys not only prevent duplicate records but also play a vital role 

in enforcing data integrity and defining relationships among tables. 

 

There are several types of keys used in the relational model, each serving a specific 

purpose. 

 

Key Type Description Example 

Super Key Any set of one or more attributes that uniquely 

identifies a tuple in a relation. A relation may have 

multiple super keys. 

{StudentID, Name} 

Candidate 

Key 

A minimal super key — that is, a super key from 

which no attribute can be removed without losing the 

property of uniqueness. Each relation can have one or 

more candidate keys. 

{StudentID} 

Primary 

Key 

The chosen candidate key that uniquely identifies 

each tuple in a relation. The primary key must have 

unique values and cannot contain NULL entries. 

StudentID 

Foreign 

Key 

An attribute (or set of attributes) in one relation that 

refers to the primary key of another relation, thereby 

establishing a link between the two relations. 

Course.StudentID → 

Student.StudentID 

 

Example  Use of Keys 

Consider two relations:  

 

Student 

StudentID Name Age Major 

1001 Alice 21 Computer Science 

1002 Bob 22 Mathematics 

Course 

CourseID Title StudentID 

C101 DBMS 1001 

C102 Data Science 1002 

 

Here: 

• StudentID is the Primary Key in the Student relation. 

• StudentID in the Course relation is a Foreign Key that refers to Student.StudentID, 

establishing a relationship between the two tables. 

Key Points: 

• Every relation must have a primary key to uniquely identify its tuples. 

• A foreign key ensures referential integrity between related tables. 

• The use of keys maintains uniqueness, consistency, and linkage across database 

relations. 



Database Management Systems                     6.7                    The Relational Model Concepts 

 

Hence, keys form the foundation of relational database design by uniquely identifying data, 

preventing duplication, and connecting related entities through well-defined relationships. 

 

6.3 INTEGRITY CONSTRAINTS 

 

Integrity constraints are rules that ensure the accuracy, consistency, and validity of data 

stored in a relational database. They enforce logical conditions on the data to prevent invalid 

or inconsistent entries and maintain the overall correctness of the database state. 

In the relational model, integrity constraints are crucial for preserving data reliability across 

different relations. 

 

The main types of integrity constraints are as follows: 

 

• Domain Constraints: 

These ensure that the value of each attribute lies within its defined domain. 

Each attribute in a relation is associated with a specific data type and permissible range or 

format. Any value that does not conform to its domain is considered invalid. 

Example: The attribute Age may have a domain of integer values between 16 and 100. 

Entering Age = 'Twenty' would violate the domain constraint. 

• Entity Integrity: 

This constraint ensures that every tuple in a relation can be uniquely identified. 

The primary key of a relation must contain unique and non-null values. 

Example: In the Student relation, the StudentID (primary key) must have a value for every 

student record; a NULL StudentID would violate entity integrity. 

• Referential Integrity: 

This constraint maintains consistency among related relations. 

If a foreign key in one relation refers to a primary key in another, the foreign key value must 

either: 

 

1. Match an existing primary key value in the referenced relation, or 

2. Be NULL, if the relationship is optional. 

 

Example: In the Course relation, StudentID (foreign key) must correspond to a valid 

StudentID in the Student relation. 

 

6.4 RELATIONAL OPERATIONS  

 

Relational operations are the fundamental manipulative tools of the relational data model. 

They are used to retrieve, combine, and transform data stored in one or more relations. These 

operations are derived from relational algebra, a formal mathematical system that defines a 

set of operations on relations (tables) to produce new relations as results. 

 

Relational algebra operations enable users to query data precisely and efficiently without 

altering the underlying database structure. Each operation takes one or more relations as input 

and returns another relation as output, ensuring closure — one of the key properties of the 

relational model. 

 

 

 



Centre for Distance Education                        6.8                     Acharya Nagarjuna University 

Basic Relational Algebra Operations 

• Selection (σ): 

Selects tuples (rows) from a relation that satisfy a specified condition. 

Notation: σ<sub>condition</sub>(Relation) 

Example: σ<sub>Age > 20</sub>(Student) → selects students older than 20. 

• Projection (π): 

Selects specific attributes (columns) from a relation, eliminating duplicates. 

Notation: π<sub>attribute-list</sub>(Relation) 

Example: π<sub>Name, Major</sub>(Student) → displays only student names and majors. 

• Join (⋈): 

Combines related tuples from two relations based on a common attribute. 

Notation: Relation1 ⋈ Relation2 

Example: Student ⋈ Enrollment → merges records of students and their course enrollments 

based on matching StudentID values. 

• Set Operations: 

Since relations are based on set theory, traditional set operations apply: 

o Union (∪): Combines tuples from two relations, removing duplicates. 

o Intersection (∩): Returns tuples common to both relations. 

o Difference (−): Returns tuples present in one relation but not in the other. 

o Cartesian Product (×): Produces all possible combinations of tuples from two 

relations. 

 

Example: Relation ‘Student’ 

StudentID Name Age Major 

1001 Alice 21 Computer Science 

1002 Bob 22 Mathematics 

1003 Carol 20 Physics 

 

Illustrations: 

 

• Selection Example: σ<sub>Major = 'Mathematics'</sub>(Student) → retrieves only 

Bob’s record. 

• Projection Example: π<sub>Name, Age</sub>(Student) → returns columns Name 

and Age for all students. 

• Join Example: Student ⋈ Enrollment → merges student information with enrollment 

data using StudentID. 

 

6.5  ER MODEL TO RELATION MAPPING 

 

The Entity–Relationship (ER) model provides a high-level conceptual view of the data, while 

the relational model represents data in the form of tables (relations). The process of ER-to-

Relation mapping (also called schema transformation) involves converting entities, attributes, 

and relationships from an ER diagram into corresponding relational schemas. This step 

ensures that the conceptual database design is accurately translated into an implementable 

relational structure. 

 

 



Database Management Systems                     6.9                    The Relational Model Concepts 

In this mapping process: 

 

• Each entity in the ER model becomes a relation (table). 

• Each attribute of the entity becomes a column (field) in the relation. 

• The primary key of the entity becomes the primary key of the relation. 

• Relationships between entities are represented using foreign keys that reference 

primary keys in related tables. 

 

Example: ER Diagram — Entities and Relationships 

 

Consider an ER diagram with three entities: Student, Course, and Enrollment, where 

Enrollment represents the many-to-many relationship between Student and Course. 

Entities: 

• Student (StudentID, Name, Age, Major) 

• Course (CourseID, Title, Credits) 

• Enrollment (represents a relationship between Student and Course) 

 

Mapping to Relations 

1. Student Relation: 

Each entity becomes a table with its attributes. 

o Primary Key: StudentID 

 

StudentID Name Age Major 

1001 Alice 21 Computer Science 

1002 Bob 22 Mathematics 

 

2. Relational Schema: 

 

Student(StudentID, Name, Age, Major) 

 

2. Course Relation: 

 

Represents the Course entity. 

o Primary Key: CourseID 

 

CourseID Title Credits 

C101 Database Systems 4 

C102 Data Science 3 

3. Relational Schema: 

Course(CourseID, Title, Credits) 

 

3. Enrollment Relation: 

Represents the Enrollment relationship between Student and Course. 

o Primary Key: Combination of StudentID and CourseID (composite key). 

o Foreign Keys: 

• StudentID → references Student.StudentID 

• CourseID → references Course.CourseID 

 

 



Centre for Distance Education                        6.10                     Acharya Nagarjuna University 

 

StudentID CourseID Grade 

1001 C101 A 

1002 C102 B 

4. Relational Schema: 

 

Enrollment(StudentID, CourseID, Grade) 

Foreign Key Constraints: 

o Enrollment.StudentID → Student.StudentID 

o Enrollment.CourseID → Course.CourseID 

 

The Student and Course entities map directly to relations, each with a primary key. The 

Enrollment relation serves as a bridge table that establishes connections between students and 

the courses they take using foreign keys. This mapping maintains referential integrity and 

accurately represents real-world relationships in a relational database. 

 

6.6  KEYS AND FOREIGN KEYS  

 

In a relational database, keys play a crucial role in ensuring the uniqueness of data and 

defining relationships between tables. 

A primary key uniquely identifies each record within a relation, while a foreign key 

establishes a connection between related relations by referencing the primary key of another 

table. Together, they maintain entity integrity and referential integrity within the database 

system. 

 

Primary Key 

 

The primary key is an attribute (or a combination of attributes) that uniquely identifies each 

tuple in a relation. 

• It must contain unique and non-null values. 

• Each table should have exactly one primary key, which is underlined in schema 

representations. 

• The primary key ensures that no two tuples in a table can have the same identifier. 

 

Example: Student Table 

 

StudentID Name Age Major 

1001 Alice 21 Computer Science 

1002 Bob 22 Mathematics 

1003 Carol 20 Physics 

 

Here, StudentID is the Primary Key, uniquely identifying each student. It is often highlighted 

or underlined in the schema as: 

 

Student(StudentID, Name, Age, Major) 

 

 

 

 



Database Management Systems                     6.11                    The Relational Model Concepts 

Foreign Key 

 

A foreign key is an attribute in one relation that refers to the primary key of another relation. 

• It defines a referential relationship between two tables. 

• The foreign key value in the referencing table must either match an existing primary 

key value in the referenced table or be NULL (if the relationship is optional). 

• This constraint ensures consistency across tables, preventing orphaned or invalid 

references. 

 

Example: Enrollment Table 

StudentID CourseID Grade 

1001 C101 A 

1002 C102 B 

 

In this example: 

 

• StudentID is a Foreign Key referencing Student.StudentID. 

• CourseID is a Foreign Key referencing Course.CourseID. 

 

The Enrollment relation connects students to the courses they are enrolled in. Its relational 

schema can be expressed as: 

 

Enrollment(StudentID, CourseID, Grade) 

 

Foreign Keys: 

• StudentID → Student(StudentID) 

• CourseID → Course(CourseID) 

 

6.7 SUMMARY 

 

The relational data model provides a simple, logical, and mathematically sound framework 

for representing and managing data in databases. In this model, all data is organized into 

relations (tables) consisting of tuples (rows) and attributes (columns), which together form 

the foundation of modern database systems. 

 

• Relations represent data in a tabular structure, making it easy to understand, 

manipulate, and query. Each relation corresponds to an entity or a relationship type in 

the real world.Keys such as primary keys, candidate keys, and foreign keys ensure 

uniqueness, identification, and linkages among relations. They play a central role in 

maintaining entity integrity and referential integrity. 

• Integrity constraints (domain, entity, and referential) preserve the accuracy and 

consistency of data, ensuring that only valid values are stored in the 

database.Relational algebra provides a set of formal operations—such as selection, 

projection, join, and set operations—that enable powerful and flexible querying of 

data. 



Centre for Distance Education                        6.12                     Acharya Nagarjuna University 

• In conclusion, the relational model’s structure, constraints, and operations together 

offer a robust foundation for building reliable, consistent, and efficient database 

systems, forming the basis for the widely used Structured Query Language (SQL) 

and modern relational database technologies. 

 

6.8  TECHNICAL TERMS 

 

Relation, Tuple, Attribute, Domain, Schema, Instance, Primary Key, Foreign Key, Super 

Key, Candidate Key, Selection, Projection, Join, Union. 

 

6.9  SELF-ASSESSMENT QUESTIONS 

 

Short-Answer Questions  

1. Define a relation in the relational data model. 

2. What is the difference between a relation schema and a relation instance? 

3. How does a primary key differ from a candidate key? 

4. What are domain constraints? Give one example. 

5. Explain selection and join operations in relational algebra with simple examples. 

 

Essay-Type Questions  

1. Describe the structure and properties of a relation. Illustrate with an example. 

2. Explain in detail the different types of keys used in a relational model. Provide 

suitable examples for each. 

3. Discuss the integrity constraints in the relational model. How do they ensure data 

consistency? 

4. Explain the basic relational algebra operations — selection, projection, join, and set 

operations — with examples. 

5. Illustrate the process of mapping an ER model to a relational schema using the entities 

Student, Course, and Enrollment. 

 

6.10 SUGGESTED READINGS 

 

1. Elmasri, Ramez, and Shamkant B. Navathe. Fundamentals of Database Systems. 

Pearson Education. 

2. C. J. Date. An Introduction to Database Systems. Addison-Wesley. 

3. Korth, Henry F., Abraham Silberschatz, and S. Sudarshan. Database System 

Concepts. McGraw-Hill Education. 

4. Ramakrishnan, Raghu, and Johannes Gehrke. Database Management Systems. 

McGraw-Hill Education. 

5. Connolly, Thomas M., and Carolyn E. Begg. Database Systems: A Practical 

Approach to Design, Implementation, and Management. Pearson Education. 

 

Dr. Kampa Lavanya 



LESSON- 07 

RELATIONAL DATABASE CONSTRAINTS 
 

AIM 

 

To understand the types of constraints that govern the validity and consistency of data in a 

relational database, and to explore how update operations and transactions interact with these 

constraints to maintain database integrity. 

 

OBJECTIVES 

 

After completing this topic, students should be able to: 

 

1. Explain the concept and purpose of relational model constraints in maintaining data 

integrity. 

2. Identify and describe different types of constraints, including domain constraints, 

entity integrity, and referential integrity. 

3. Understand how relational database schemas define structure, relationships, and 

constraint specifications. 

4. Discuss the role of update operations (insert, delete, and modify) in relational 

databases and their effect on constraints. 

5. Analyze how transactions ensure database consistency through atomicity, consistency, 

isolation, and durability (ACID properties). 

6. Recognize and handle constraint violations that occur during update operations using 

appropriate database mechanisms. 

7. Apply theoretical concepts to design database schemas that enforce data integrity and 

consistency across multiple relations. 

 

STRUCTURE 

 

7.1  INTRODUCTION 

7.2  RELATIONAL MODEL CONSTRAINTS 

 7.2.1 DOMAIN CONSTRAINTS 

 7.2.2 ENTITY INTEGRITY CONSTRAINTS 

 7.2.3 REFERENTIAL INTEGRITY CONSTRAINTS 

 7.2.4 IMPORTANCE OF RELATIONAL CONSTRAINTS 

7.3  RELATIONAL DATABASE SCHEMAS 

 7.3.1 DEFINITION OF A DATABASE SCHEMA 

 7.3.2 DATABASE SCHEMA VS. DATABASE INSTANCE 

 7.3.3 ROLE OF SCHEMAS IN CONSTRAINT ENFORCEMENT 

 7.3.4 SCHEMA DIAGRAMS 

 7.3.5 IMPORTANCE OF DATABASE SCHEMAS 

7.4 UPDATE OPERATIONS AND CONSTRAINTS 

 7.4.1 TYPES OF UPDATE OPERATIONS 

    (A) INSERT OPERATION 

    (B) DELETE OPERATION 

    (C) UPDATE (MODIFY) OPERATION 



Centre for Distance Education                        7.2                     Acharya Nagarjuna University 

  

 7.4.2 EFFECTS OF UPDATE OPERATIONS ON CONSTRAINTS 

 7.4.3 HANDLING CONSTRAINT VIOLATIONS 

 7.4.4 IMPORTANCE OF ENFORCING CONSTRAINTS DURING UPDATES 

7.5  TRANSACTIONS AND DATABASE INTEGRITY 

 7.5.1 DEFINITION OF A TRANSACTION 

 7.5.2 ACID PROPERTIES 

 7.5.3 ROLE OF TRANSACTIONS IN MAINTAINING DATABASE INTEGRITY 

7.6 DEALING WITH CONSTRAINT VIOLATIONS 

 7.6.1 CAUSES OF CONSTRAINT VIOLATIONS 

 7.6.2 HANDLING CONSTRAINT VIOLATIONS 

 7.6.3 IMPORTANCE OF PROPER HANDLING 

7.7  SUMMARY 

7.8  TECHNICAL TERMS 

7.9  SELF-ASSESSMENT QUESTIONS 

7.10  SUGGESTED READINGS 

 

7.1 INTRODUCTION 

 

The reliability of a relational database depends on its ability to maintain data accuracy, 

consistency, and validity at all times. This is achieved through a set of well-defined rules 

known as relational database constraints. These constraints ensure that the data stored in the 

database remains logically correct and consistent with the real-world entities it represents. 

Without such rules, databases could easily contain inconsistent, incomplete, or meaningless 

information. 

 

In the relational model, constraints are an integral part of the database schema — they specify 

the conditions that data must satisfy to be considered valid. The most common types of 

constraints include domain constraints, entity integrity constraints, and referential integrity 

constraints. Together, they prevent invalid data entry, duplication, and broken relationships 

between tables. 

 

In addition to these constraints, update operations (such as insert, delete, and modify) and 

transactions play a crucial role in maintaining database integrity. Each update must be 

checked for possible constraint violations, and transactions must ensure that all operations are 

executed in a consistent and reliable manner. When violations occur, the database 

management system (DBMS) must take corrective actions — such as rejecting the operation, 

cascading changes, or rolling back the transaction — to preserve the correctness of the data. 

 

Thus, this lesson explores the nature of relational constraints, their enforcement through 

schemas, the impact of update operations, and the role of transactions in maintaining the 

overall integrity of a relational database. 

 

7.2 Relational Model Constraints 

 

In the relational data model, constraints are fundamental rules that ensure the validity and 

consistency of data stored in a database. They are part of the logical design of the database 



Database Management Systems                    7.3                      Relational Database Constraints 

and are enforced automatically by the Database Management System (DBMS). These 

constraints define the conditions that every relation (table) must satisfy, thereby preventing 

invalid or inconsistent data from entering the system. 

 

A constraint may apply to: 

• Individual attributes (columns), 

• Tuples (rows), 

• Or relationships between multiple relations. 

 

Relational model constraints can be broadly classified into three categories: 

 (1) Domain Constraints,  

(2) Entity Integrity Constraints, and  

(3) Referential Integrity Constraints. 

 

7.2.1 Domain Constraints 

 

Domain constraints specify that each attribute in a relation must take its value from a 

predefined set of permissible values — known as the domain of that attribute. 

Each domain is associated with a particular data type (e.g., Integer, String, Date) and may 

include restrictions such as valid ranges or specific formats. 

 

Example 7.1: Domain Constraint in the ‘Student’ Relation 

 

Attribute Domain Valid Examples Invalid Examples 

StudentID Integer (1000–9999) 1001, 1002 12, "A123" 

Name String (A–Z) "Alice", "Bob" 1234, " " 

Age Integer (16–100) 20, 22 –5, 200 

Major String (Valid Majors) "Physics", "Math" "XYZ" (invalid major) 

 

If a value entered for Age is 200 or Name is numeric, the domain constraint is violated. 

Such violations are automatically detected by the DBMS, which rejects the operation. 

 

Key Points: 

 

• Each attribute has a specific domain of allowed values. 

• Domain constraints prevent invalid, incomplete, or inconsistent data. 

• These are the most basic integrity rules in the relational model. 

 

7.2.2 Entity Integrity Constraints 

 

The entity integrity constraint ensures that every tuple (row) in a relation is uniquely 

identifiable. 

 

This is achieved through the use of a primary key — an attribute (or combination of 

attributes) whose value must be: 

• Unique for each tuple. 

• Non-null (no missing values allowed). 

 



Centre for Distance Education                        7.4                     Acharya Nagarjuna University 

This constraint guarantees that no two rows in a table represent the same real-world entity 

and that each record can be distinctly referenced. 

 

Example 7.2: Entity Integrity in the ‘Student’ Relation 

 

StudentID Name Age Major 

1001 Alice 21 Computer Science 

1002 Bob 22 Mathematics 

NULL     Carol 20 Physics 

 

Here, the third tuple violates entity integrity because the primary key (StudentID) is 

NULL — meaning the record cannot be uniquely identified. 

The DBMS would reject this insertion. 

 

Key Points: 

 

• Primary key values must be unique and non-null. 

• Ensures each entity (tuple) is distinguishable from others. 

• Protects the logical integrity of the relation. 

 

7.2.3 Referential Integrity Constraints 

 

The referential integrity constraint ensures consistency among related tables. 

It states that a foreign key in one relation must either: 

• Match a primary key value in another relation, or 

• Be NULL (if the relationship is optional). 

 

This rule ensures that references between relations remain valid — that is, there are no 

“orphan” records pointing to nonexistent entities. 

 

Example 7.3: Referential Integrity Between Student and Enrollment Relations 

Student Relation 

 

StudentID Name Major 

1001 Alice Computer Science 

1002 Bob Mathematics 

 

Enrollment Relation 

StudentID CourseID Grade 

1001 C101 A 

1002 C102 B 

1003     C103 A 



Database Management Systems                    7.5                      Relational Database Constraints 

 

Here, the StudentID = 1003 in the Enrollment relation violates referential integrity because 

there is no matching StudentID in the Student relation. The DBMS will detect this 

inconsistency and reject the operation or raise an error. 

 

Enforcement Rules: 

 

When a referenced record (parent) is deleted or updated, the DBMS can respond in one of 

several ways: 

 

1. Reject the operation (default action). 

2. Cascade the changes to dependent tuples (e.g., delete related records automatically). 

3. Set NULL for the foreign key in dependent tuples. 

4. Set Default to a predefined key value. 

 

Key Points: 

 

• Ensures that relationships between tables remain valid. 

• Prevents the creation of orphan records. 

• Maintains consistency across related data. 

 

7.2.4 Importance of Relational Constraints 

 

Relational constraints play a central role in maintaining data correctness and logical 

integrity across the database. 

They: 

• Prevent entry of incorrect, missing, or contradictory data. 

• Enforce valid relationships between entities. 

• Enable trustworthy data retrieval and accurate query results. 

• Form the foundation of transaction integrity and database reliability. 

 

Summary of Constraint Types 

Constraint Type Purpose Example of Violation 

Domain Attribute value must belong to 

its domain. 

Age = 200 

Entity Integrity Primary key must be unique and 

non-null. 

StudentID = NULL 

Referential 

Integrity 

Foreign key must match a valid 

primary key. 

Enrollment.StudentID = 1003 (not in 

Student) 

 

7.3 Relational Database Schemas 

 

A relational database schema defines the logical structure of the entire database. 

It describes how data is organized into relations (tables), what attributes each relation 

contains, and the various integrity constraints that must hold true. Essentially, the schema 

serves as a blueprint for how data is stored, related, and managed in a relational database 

system. 

 



Centre for Distance Education                        7.6                     Acharya Nagarjuna University 

The schema is specified during the database design phase and forms the foundation for 

creating and maintaining the actual database instance. Once defined, it helps ensure 

consistency, standardization, and integrity across all stored data. 

 

7.3.1 Definition of a Database Schema 

 

A database schema is a collection of relation schemas, each defining the structure of a 

relation. 

 

A relation schema specifies: 

• The name of the relation. 

• The names and domains of its attributes. 

• The keys and constraints associated with it. 

 

Formally, a relation schema can be represented as: 

 

R(A₁, A₂, A₃, ..., Aₙ) 

where R is the name of the relation, and A₁, A₂, A₃, ..., Aₙ are the attributes. 

 

Example 7.4: Relation Schemas for a University Database 

 

1. Student(StudentID: Integer, Name: String, Age: Integer, Major: String) 

2. Course(CourseID: String, Title: String, Credits: Integer) 

3. Enrollment(StudentID: Integer, CourseID: String, Grade: String) 

 

Here, the Student, Course, and Enrollment relations together form the database schema 

for the university system. 

 

7.3.2 Database Schema vs. Database Instance 

 

It is important to distinguish between a schema and an instance: 

 

Aspect Database Schema Database Instance 

Definition The logical description or structure of 

the database. 

The actual data stored in the database at 

a given point in time. 

Nature Relatively permanent (changes 

infrequently). 

Changes frequently as data is inserted, 

deleted, or updated. 

Example Student(StudentID, Name, Age, 

Major) 

(1001, "Alice", 21, "Computer 

Science") 

Purpose Defines data organization and 

constraints. 

Represents the current state of the data. 

Thus, the schema provides a stable design framework, while the instance represents the 

changing content of the database. 

 

7.3.3 Role of Schemas in Constraint Enforcement 

 

Database schemas not only define the structure of relations but also specify the constraints 

that maintain data integrity. These constraints are expressed as part of the schema definition 

using the Data Definition Language (DDL) in SQL. 



Database Management Systems                    7.7                      Relational Database Constraints 

Example 7.5: Schema with Constraints in SQL 

 

CREATE TABLE Student ( 

   StudentID INTEGER PRIMARY KEY, 

   Name VARCHAR(50) NOT NULL, 

   Age INTEGER CHECK (Age BETWEEN 16 AND 100), 

   Major VARCHAR(40) 

); 

 

CREATE TABLE Course ( 

   CourseID CHAR(5) PRIMARY KEY, 

   Title VARCHAR(50), 

   Credits INTEGER CHECK (Credits > 0) 

); 

 

CREATE TABLE Enrollment ( 

   StudentID INTEGER, 

   CourseID CHAR(5), 

   Grade CHAR(2), 

   PRIMARY KEY (StudentID, CourseID), 

   FOREIGN KEY (StudentID) REFERENCES Student(StudentID), 

   FOREIGN KEY (CourseID) REFERENCES Course(CourseID) 

); 

 

In this example: 

 

• Entity integrity is ensured through primary keys (StudentID, CourseID). 

• Domain constraints restrict valid values for Age and Credits. 

• Referential integrity is maintained through foreign keys linking Enrollment to 

Student and Course. 

Thus, the schema enforces structural correctness and logical consistency within the 

database. 

 

7.3.4 Schema Diagrams 

 

A schema diagram is a graphical representation of the database schema that shows: 

• Relations (tables), 

• Attributes (columns), 

• Primary keys (underlined or bolded), 

• Foreign key relationships (shown using arrows). 

 

Example: University Schema Diagram 

[STUDENT] ----------------------< [ENROLLMENT] >---------------------- [COURSE] 

 StudentID (PK)                     StudentID (FK) 

 Name                               CourseID (FK) 

 Age                                Grade 

 Major                              

 

 



Centre for Distance Education                        7.8                     Acharya Nagarjuna University 

 

Explanation: 

• The Student table has StudentID as its primary key. 

• The Course table has CourseID as its primary key. 

• The Enrollment table acts as a bridge relation, linking students and courses through 

foreign keys. 

• Arrows indicate referential dependencies — Enrollment.StudentID → 

Student.StudentID, and Enrollment.CourseID → Course.CourseID. 

 

Schema diagrams provide an at-a-glance view of how entities relate and how constraints are 

applied across relations. 

 

7.3.5 Importance of Database Schemas 

 

Relational database schemas are vital for the following reasons: 

• Define Structure: Describe how data is logically organized into relations. 

• Ensure Integrity: Enforce constraints and maintain consistency. 

• Provide Clarity: Serve as a clear reference for database designers, developers, and 

users. 

• Support Modularity: Enable changes to be made at the schema level without 

affecting applications directly. 

• Facilitate Query Design: Help users understand data relationships and write accurate 

queries. 

 

7.4 UPDATE OPERATIONS AND CONSTRAINTS 

 

In a relational database, data stored in relations is not static — it constantly changes as new 

records are added, existing ones are modified, or obsolete data is removed. These changes are 

performed through update operations, which form the core of data manipulation in the 

relational model. 

 

Each update operation must maintain the integrity constraints defined in the database 

schema. The Database Management System (DBMS) automatically checks these 

constraints whenever an update is attempted and either executes, modifies, or rejects the 

operation based on whether it preserves data consistency. 

 

7.4.1 Types of Update Operations 

The relational model supports three basic update operations: 

INSERT, DELETE, and UPDATE (MODIFY). 

Each of these operations affects the data stored in relations and can potentially cause 

constraint violations. 

 

(a) INSERT Operation 

The INSERT operation adds a new tuple (record) into a relation. 

When a new record is inserted, the DBMS must ensure that: 

• All attribute values conform to domain constraints. 

• The primary key value is unique and non-null (entity integrity). 

• All foreign key values, if present, match existing primary key values in the 

referenced tables (referential integrity). 



Database Management Systems                    7.9                      Relational Database Constraints 

 

Example 7.6: Inserting a Tuple 

 

INSERT INTO Student VALUES (1003, 'Carol', 20, 'Physics'); 

This operation will succeed only if: 

 

• The Age value is within its valid domain. 

• The StudentID does not already exist in the Student table. 

• The Major value conforms to allowed entries. 

 

Possible Violations: 

 

• Inserting a NULL in a primary key field. 

• Using an invalid Age value (outside domain). 

• Referencing a non-existent record in another table. 

 

If any constraint is violated, the DBMS rejects the insertion. 

 

(b) DELETE Operation 

 

The DELETE operation removes one or more tuples from a relation. 

While simple in concept, it can cause referential integrity violations if the deleted tuple is 

referenced by foreign keys in other relations. 

 

Example 7.7: Deleting a Tuple 

 

DELETE FROM Student WHERE StudentID = 1001; 

If StudentID = 1001 is referenced in the Enrollment table, deleting this record would create 

an orphaned reference, violating referential integrity. 

 

Possible Solutions: 

To handle such situations, most DBMSs provide options: 

 

1. RESTRICT / NO ACTION: Reject the deletion if it causes a violation. 

2. CASCADE: Automatically delete all related tuples in dependent tables. 

3. SET NULL: Replace the foreign key value in dependent records with NULL. 

4. SET DEFAULT: Assign a predefined default value to the foreign key. 

 

Example of CASCADE Deletion: 

ALTER TABLE Enrollment 

ADD CONSTRAINT FK_Student 

FOREIGN KEY (StudentID) 

REFERENCES Student(StudentID) 

ON DELETE CASCADE; 

This ensures that when a student record is deleted, all related enrollment records are also 

automatically removed. 

 

 

 

 



Centre for Distance Education                        7.10                     Acharya Nagarjuna University 

(c) UPDATE (MODIFY) Operation 

 

The UPDATE operation modifies attribute values in existing tuples. 

Although it does not add or remove records, it can still violate domain, entity, or referential 

integrity constraints. 

 

Example 7.8: Updating a Record 

UPDATE Student 

SET Age = 150 

WHERE StudentID = 1002; 

This violates the domain constraint since Age = 150 falls outside the allowed range (16–

100). 

 

Another example: 

UPDATE Enrollment 

SET StudentID = 2000 

WHERE CourseID = 'C101'; 

 

This may violate referential integrity if StudentID = 2000 does not exist in the Student 

table. 

 

Possible Violations: 

 

• Updating a primary key may break links with foreign keys. 

• Updating a foreign key may reference a non-existent record. 

• Modifying a domain attribute may introduce invalid values. 

 

The DBMS checks all constraints before applying the update and rejects any operation that 

causes inconsistency. 

 

7.4.2 Effects of Update Operations on Constraints 

 

Each update operation must preserve the following integrity rules: 

 

Operation Possible Violation Constraint Affected 

INSERT Inserting duplicate or NULL primary key; inserting 

invalid domain value; inserting foreign key not in 

referenced table. 

Entity Integrity, 

Domain, Referential 

Integrity 

DELETE Deleting a tuple referenced by another relation. Referential Integrity 

UPDATE Modifying primary key or foreign key values; 

updating with invalid domain values. 

Entity Integrity, 

Domain, Referential 

Integrity 

 

The DBMS automatically checks each constraint and enforces them by rejecting the violating 

operation, modifying related records, or triggering user-defined actions. 

 

7.4.3 Handling Constraint Violations 

When a constraint violation occurs, the DBMS can respond in one of the following ways: 

1. Reject the Operation (Default): 



Database Management Systems                    7.11                      Relational Database 

Constraints 

2. The update is canceled, and an error message is displayed to the user. 

3. Cascade the Changes: 

4. Changes are automatically propagated to maintain referential integrity. 

(e.g., deleting a student deletes all their enrollments.) 

5. Set NULL or Default: 

6. The foreign key values in dependent records are set to NULL or to a predefined 

default. 

7. Trigger Custom Action: 

             Database triggers can be defined to perform additional operations or validations    

             before completing an update. 

 

Example 7.9: Handling Violations using ON UPDATE CASCADE 

 

ALTER TABLE Enrollment 

ADD CONSTRAINT FK_Student 

FOREIGN KEY (StudentID) 

REFERENCES Student(StudentID) 

ON UPDATE CASCADE; 

If a student’s StudentID changes, the corresponding StudentID values in Enrollment are 

automatically updated. 

 

7.4.4 Importance of Enforcing Constraints During Updates 

 

Maintaining integrity during update operations ensures: 

 

• Data consistency across all relations. 

• Accuracy and validity of the information stored. 

• Reliability of query results and reports. 

• Protection against accidental data loss or orphaned records. 

 

Without constraint enforcement, the database may become inconsistent — leading to 

incorrect or misleading information that compromises decision-making and system reliability. 

 

7.5 TRANSACTIONS AND DATABASE INTEGRITY 

 

A transaction in a database is a logical unit of work that consists of one or more operations 

(such as insert, delete, or update) performed as a single, indivisible sequence. Transactions 

are essential for maintaining the consistency and reliability of the database, especially in 

multi-user environments where concurrent access occurs. 

 

Each transaction must preserve the integrity constraints of the database and leave it in a 

consistent state — whether the transaction completes successfully or fails midway. 

 

7.5.1 ACID Properties of Transactions 

 

To ensure reliability, every transaction must satisfy the ACID properties: 



Centre for Distance Education                        7.12                     Acharya Nagarjuna University 

1. Atomicity: 

All operations within a transaction are executed completely or not at all. 

If any operation fails, the entire transaction is rolled back. 

2. Consistency: 

The transaction must transform the database from one valid state to another, maintaining all 

integrity constraints. 

3. Isolation: 

Concurrent transactions must not interfere with each other. 

Each transaction behaves as if it is executed independently. 

4. Durability: 

Once a transaction is committed, its effects are permanent, even in the event of a system 

failure. 

 

7.5.2 Role in Maintaining Database Integrity 

 

• Transactions ensure that multiple related updates are treated as a single consistent 

unit. 

• If a constraint violation or system error occurs, the rollback mechanism restores the 

previous consistent state. 

• Together with constraints, transactions safeguard data correctness, consistency, and 

recoverability. 

 

Example: 

 

When a student enrolls in a course, two operations occur: 

1. Insert a record in Enrollment. 

2. Update the student’s record in Student. 

 

If either fails, both must be undone — preserving consistency across relations. 

 

7.6 Dealing with Constraint Violations 

 

A constraint violation occurs when a database operation (such as insert, delete, or update) 

attempts to store or modify data in a way that breaks one or more integrity rules defined in 

the schema. 

 

These violations can compromise the consistency and reliability of the database, so the 

DBMS must detect and handle them automatically. 

 

7.6.1 Causes of Constraint Violations 

 

Common causes include: 

Inserting values outside the defined domain (domain violation). 

Attempting to insert or update a NULL or duplicate primary key (entity integrity violation). 

Deleting or modifying a tuple referenced by another table (referential integrity violation). 

Updating a foreign key to a non-existent value in the parent table. 

 

7.6.2 Handling Constraint Violations 

When a violation occurs, the DBMS can respond in several ways: 

 



Database Management Systems                    7.13                      Relational Database 

Constraints 

1. Reject the Operation: 

 The default action — the DBMS cancels the operation and reports an error. 

2. Cascade the Changes: 

 Automatically applies the same action to dependent tuples (e.g., deleting all related 

 records). 

3. Set NULL or Default: 

 Replaces invalid foreign key values with NULL or a default value to maintain 

 consistency. 

4. Rollback the Transaction: 

 Reverses all changes made by the transaction to restore the database to its previous 

 valid state. 

 

7.6.3 Importance of Proper Handling 

 

Effective handling of constraint violations ensures that: 

 

• The database remains accurate and logically consistent. 

• Data dependencies across tables are preserved. 

• Users and applications receive predictable, reliable behavior from the database 

system. 

 

7.7  SUMMARY 

 

The relational database constraints play a crucial role in ensuring that the data stored 

within a relational database is accurate, consistent, and logically valid. These constraints 

define the rules that govern data entry, update, and deletion, thereby maintaining the overall 

integrity of the database. 

 

• Relational model constraints—such as domain, entity integrity, and referential 

integrity—ensure the correctness of data values and relationships between tables. 

• Database schemas define the logical structure of relations and embed constraints to 

enforce data validity at the structural level. 

• Update operations (insert, delete, modify) can affect data integrity; therefore, the 

DBMS checks and enforces constraints during these operations. 

• Transactions, governed by ACID properties, ensure that complex or multi-step 

operations maintain database consistency even in the presence of errors or concurrent 

access. 

• Proper handling of constraint violations—through rejection, cascading, setting 

defaults, or rollback—prevents inconsistencies and data loss. 

 

In conclusion, relational constraints, update operations, and transaction management together 

ensure that a database remains trustworthy, consistent, and dependable, providing a solid 

foundation for all data-driven applications. 

 



Centre for Distance Education                        7.14                     Acharya Nagarjuna University 

7.8 TECHNICAL TERMS 

 

• Constraint 

• Domain Constraint 

• Entity Integrity 

• Referential Integrity 

• Schema 

• Instance 

• Transaction 

• ACID Properties 

• Constraint Violation 

• Rollback 

 

7.9 SELF-ASSESSMENT QUESTIONS 

 

 Short-Answer Questions  

 

1. Define a relational model constraint and give one example. 

2. What is the purpose of a domain constraint in a relation? 

3. State the difference between entity integrity and referential integrity. 

4. List the three basic update operations in a relational database. 

5. What does atomicity mean in the context of transactions? 

 

 Essay-Type Questions  

 

1. Explain the different types of relational model constraints with suitable examples. 

2. Describe how update operations can cause constraint violations. How can these 

violations be handled by the DBMS? 

3. Discuss the ACID properties of transactions and their importance in maintaining 

database integrity. 

4. Explain the role of schemas in defining and enforcing database constraints. 

5. Write short notes on constraint violations and describe how cascading, setting 

NULL, or rollback actions maintain data consistency. 

 

7.10   SUGGESTED READINGS 

 

1. "Database System Concepts" by Abraham Silberschatz, Henry F. Korth, and S. 

Sudarshan 

2. "Fundamentals of Database Systems" by Ramez Elmasri and Shamkant B. Navathe 

3. "Database Management Systems" by Raghu Ramakrishnan and Johannes Gehrke 

4. "An Introduction to Database Systems" by C.J. Date 

5. "SQL and Relational Theory: How to Write Accurate SQL Code" by C.J. Date 

6. Elmasri, R., & Navathe, S. B. (2010). Fundamentals of Database Systems (6th ed.). 

Addison-Wesley. 

7. Silberschatz, A., Korth, H. F., & Sudarshan, S. (2011). Database System Concepts 

(6th ed.). McGraw-Hill. 

 

Dr. Kampa Lavanya 



LESSON- 08 

THE RELATIONAL ALGEBRA 
 

AIMS AND OBJECTIVES 

 

The aim of this chapter is to provide a comprehensive understanding of the formal query 

languages used in relational database systems in terms of Relational Algebra . These 

languages form the theoretical backbone of relational data manipulation and query processing, 

offering a foundation for understanding and applying practical query languages like SQL. By 

exploring the principles of relational databases, the chapter seeks to bridge the gap between 

theoretical concepts and their real-world applications in database systems. 

 

At the end of the lesson student will be able to, 

 

1. Understand Formal Languages in terms of Relational Algebra  

2. describe and apply unary operations like SELECT and PROJECT and binary operations 

like JOIN, UNION, and DIVISION. 

3. demonstrate how relational algebra operations translate into SQL constructs 

 

STRUCTURE 

 

8.1 INTRODUCTION 

8.2 UNARY RELATIONAL OPERATIONS 

8.3       RELATIONAL ALGEBRA OPERATIONS FROM SET THEORY  

8.4       BINARY RELATIONAL OPERATIONS 

8.5       ADDITIONAL RELATIONAL OPERATIONS  

8.6       EXAMPLES OF QUERIES IN RELATIONAL ALGEBRA 

8.7       SUMMARY 

8.8       TECHNICAL TERMS  

8.9       SELF-ASSESSMENT QUESTIONS 

8.10     SUGGESTED READINGS 

 

8.1. INTRODUCTION 

 

Relational databases are at the heart of modern data storage and retrieval systems, and their 

theoretical foundations lie in Relational Algebra . These formal query languages provide a 

mathematical framework for representing and manipulating data in a structured format. 

Relational Algebra is a procedural language that defines the step-by-step process to retrieve 

data.  

 

This chapter delves into the essential operations of relational algebra, including unary and 

binary operations such as SELECT, PROJECT, JOIN, and DIVISION, as well as set-based 

operations like UNION and INTERSECTION. By understanding these theoretical constructs, 



Centre for Distance Education                        8.2                  Acharya Nagarjuna University  

database practitioners can design more efficient systems and queries, bridging the gap between 

abstract mathematical concepts and real-world database implementations. 

8.2    UNARY RELATIONAL OPERATIONS 

 

❖ SELECT (σ): SELECT operation is used to select a subset of the tuples from a relation that 

satisfy a selection condition. It is a filter that keeps only those tuples that satisfy a qualifying 

condition – those satisfying the condition are selected while others are discarded. 

 

➢ Example-1: 

o σ SALARY > 30,000 (EMPLOYEE) retrieves employees earning more than 

30,000. 

o DNO = 4 (EMPLOYEE) 

➢ Can handle complex conditions using logical operators (AND, OR, NOT). 

➢ In general, the select operation is denoted by  < selection condition > (R) where the 

 symbol  (sigma) is used to denote the select operator, and the selection condition is a 

 Boolean expression specified on the attributes of relation R 

➢ Example-2: 

o σ (DNO=4 AND SALARY > 25000) OR (DNO=5 AND SALARY > 30000)  

(EMPLOYEE)  

 

 
Fig 8.1 The query result of Example 2 

 

❖ PROJECT (π): This operation selects certain columns from the table and discards the other 

columns. The PROJECT creates a vertical partitioning – one with the needed columns 

(attributes) containing results of the operation and other containing the discarded Columns. 

➢ Example-3: To list each employee‘s first and last name and salary, the following is used: 

o π FNAME, LNAME, SALARY(EMPLOYEE) retrieves names and salaries of 

 employees. 

➢ The general form of the project operation is <attribute list >(R) where  (pi) is the 

 symbol used to represent the project operation and   <attribute list > is the desired list 

 of attributes from the attributes of relation R. 

➢ The project operation removes any duplicate tuples, so the result of the project 

 operation is a set of tuples and hence a valid relation. 

➢ Example-4: π SEX, SALARY(EMPLOYEE) 

 
Fig 8.2 The query result of Example 3 & 4 



Database Management Systems                      8.3                                 The Relational Algebra  

❖ RENAME (ρ): We may want to apply several relational algebra operations one after the 

other. Either we can write the operations as a single relational algebra expression by nesting 

the operations, or we can apply one operation at a time and create intermediate result relations. 

In the latter case, we must give names to the relations that hold the intermediate results. 

 

Example: ρ(NEWNAME(EMPLOYEE)) renames the Employee relation to NewName. 

 

8.3    RELATIONAL ALGEBRA OPERATIONS FROM SET THEORY  

 

Relational algebra incorporates operations derived from set theory to manipulate and query 

relational data. These operations operate on relations (tables) treated as sets of tuples. Key set-

theoretic operations include: 

 

1. UNION Operation 

2. INTERSECTION Operation 

3. Set Difference (or MINUS) Operation 

4. CARTESIAN Operation 

 

❖ UNION Operation 

 

The result of this operation, denoted by R  S, is a relation that includes all tuples that are 

either in R or in S or in both R and S. Duplicate tuples are eliminated. 

DEP5_EMPS  DNO=5 (EMPLOYEE)  

RESULT1   SSN(DEP5_EMPS)  

RESULT2(SSN)   SUPERSSN(DEP5_EMPS)  

RESULT  RESULT1  RESULT2 

 

The union operation produces the tuples that are in either RESULT1 or RESULT2 or both. The 

two operands must be ―type compatible‖. 

 

 
Fig 8.1 Union Operation among STUDENT and INSTRUCTOR Relations 

 

❖ INTERSECTION Operation 

The result of this operation, denoted by R  S, is a relation that includes all tuples that are in 

both R and S. The two operands must be "type compatible". 

 



Centre for Distance Education                        8.4                  Acharya Nagarjuna University  

 
Fig 8.2 Intersection Operation among STUDENT and INSTRUCTOR Relations 

 

• Set Difference (or MINUS) Operation 

The result of this operation, denoted by R - S, is a relation that includes all tuples that are in R 

but not in S. The two operands must be "type compatible‖. 

 

Example: The figure shows the names of students who are not instructors, and the names of 

instructors who are not students. 

 

 
 

Fig 8.3 Set Difference Operation among STUDENT and INSTRUCTOR Relations 

 

• Notice that both union and intersection are commutative operations; that is  

                         R  S = S  R, and R  S = S  R  

•  Both union and intersection can be treated as n-ary operations applicable to any number 

of relations as both are associative operations; that is  

                         R  (S  T) = (R  S)  T, and (R  S)  T = R  (S  T)  

• The minus operation is not commutative; that is, in general 

                                R - S ≠ S – R 

 

❖ CARTESIAN (or cross product) Operation 

 

This operation is used to combine tuples from two relations in a combinatorial fashion. 

• In general, the result of R (A1 , A2 , . . ., An ) x S(B1 , B2 , . . ., Bm) is a relation Q with 

degree n + m attributes Q(A1 , A2 , . . ., An , B1 , B2 , . . ., Bm), in that order. 

• The resulting relation Q has one tuple for each combination of tuples—one from R and one 

from S. 

• Hence, if R has nR tuples (denoted as |R| = nR ), and S has nS tuples, then | R x S | will 

have nR * nS tuples.  

• The two operands do NOT have to be "type compatible”. 

 

 

 



Database Management Systems                      8.5                                 The Relational Algebra  

Example:  

FEMALE_EMPS   SEX=‘F‘(EMPLOYEE)  

EMPNAMES   FNAME, LNAME, SSN (FEMALE_EMPS)  

EMP_DEPENDENTS  EMPNAMES x DEPENDENT 

 

 
 

Fig 8.4 CATESIAN Product Operation Example. 

 

8.4    BINARY RELATIONAL OPERATIONS: JOIN AND DIVISION 

 

Binary relational operations work on two relations to produce a new relation. Among these, 

JOIN and DIVISION are crucial for relational algebra due to their unique roles in querying and 

manipulating data. 

 

❖ JOIN Operation 

 

The sequence of cartesian product followed by select is used quite commonly to identify and 

select related tuples from two relations, a special operation, called JOIN. This operation is very 

important for any relational database with more than a single relation, because it allows us to 

process relationships among relations.  

 



Centre for Distance Education                        8.6                  Acharya Nagarjuna University  

The general form of a join operation on two relations R(A1 , A2 , . . ., An ) and S(B1 , B2 , . . ., 

Bm) is: 

                 R  <join condition> S 

where R and S can be any relations that result from general relational algebra expressions. 

 

Example: Suppose that we want to retrieve the name of the manager of each department. To 

get the manager‘s name, we need to combine each DEPARTMENT tuple with the 

EMPLOYEE tuple whose SSN value matches the MGRSSN value in the department tuple. 

 
 

 
 

Fig 8.5  Result of Join Operation of above example. 

 

• EQUIJOIN Operation  

The most common use of join involves join conditions with equality comparisons only. Such 

a join, where the only comparison operator used is =, is called an EQUIJOIN. In the result of 

an EQUIJOIN we always have one or more pairs of attributes (whose names need not be 

identical) that have identical values in every tuple. The JOIN seen in the previous example was 

EQUIJOIN.  

 

• NATURAL JOIN Operation  

Because one of each pair of attributes with identical values is superfluous, a new operation 

called natural join—denoted by *—was created to get rid of the second (superfluous) attribute 

in an EQUIJOIN condition. The standard definition of natural join requires that the two join 

attributes, or each pair of corresponding join attributes, have the same name in both relations. 

If this is not the case, a renaming operation is applied first. 

 

Example: To apply a natural join on the DNUMBER attributes of DEPARTMENT and 

DEPT_LOCATIONS, it is sufficient to write: 

 

 
 

Fig 8.6 Result of Natural Join Operation of above example. 

 

Outer Join: 

• Extends JOIN by including tuples from one or both relations that do not satisfy the join 

condition, filling unmatched attributes with NULL. 



Database Management Systems                      8.7                                 The Relational Algebra  

o Left Outer Join: Includes unmatched tuples from the left relation. 

             R ⟕ S=(R⋈S)∪(R−πA,B(R⋈S)) 

TEMP ←− (EMPLOY EE    SSN=MGRSSN DEPARTMENT) 

 RESULT ←− π F NAME, MINIT, DNAME (TEMP) 

 

o Right Outer Join: Includes unmatched tuples from the right relation. 

              R ⟖ S=(R⋈S)∪(S−πB,C(R⋈S)) 

o Full Outer Join: Includes unmatched tuples from both relations. 

                                    R ⟗ S=(R⋈S)∪(R−πA,B(R⋈S))∪(S−πB,C(R⋈S)) 

 

❖ DIVISION Operation 

 

The DIVISION operation is used when a relation RRR (dividend) is divided by another 

relation SSS (divisor). It returns a relation containing tuples from RRR that are associated with 

all tuples in SSS. 

 

Conditions for Division: 

• RRR must have all attributes of SSS, and may have additional attributes. 

• The result contains these additional attributes, retaining tuples that satisfy the division. 

 

Example for DIVISION operation: 

• “Retrieve the names of employees who work on all the projects that ’John Smith’ works 

on. JSMITH_SSN(ESSN) ←− πSSN (σF NAME=’John’ AND LNAME=’Smith’ 

(EMPLOYEE)) JSMITH_PROJ ←− πP NO (JSMITH SSN ∗ WORKS_ON)  

WORKS_ON2 ←− πESSN, P_NO (WORKS_ON) 

DIV_HERE(SSN) ←− WORKS_ON2 ÷ JSMITH PROJ  

RESULT ←− πF NAME, LNAME (EMPLOYEE ∗ DIV HERE) 

 

 
 

Fig 8.7 Relational Algebra Operations 

 

 

 



Centre for Distance Education                        8.8                  Acharya Nagarjuna University  

8.5 ADDITIONAL RELATIONAL OPERATIONS 

 

Beyond the core operations (SELECT, PROJECT, UNION, JOIN, etc.), relational algebra 

includes additional operations that enhance querying and manipulation capabilities in 

relational databases. 

 

❖ Aggregate Functions 

 

A type of request that cannot be expressed in the basic relational algebra is to specify 

mathematical aggregate functions on collections of values from the database. – Examples of 

such functions include retrieving the average or total salary of all employees or the total number 

of employee tuples. These functions are used in simple statistical queries that summarize 

information from the database tuples.  

 

Common functions applied to collections of numeric values include  

• SUM: Calculates the sum of values in a column. 

• AVG: Computes the average of values. 

• COUNT: Counts the number of tuples. 

• MIN: Finds the minimum value in a column. 

• MAX: Finds the maximum value in a column. 

 

 
Fig 8.8 Result of AVG Aggregate Operation 

 

❖ OUTER JOIN  

• LEFT OUTER JOIN:  R3(A1, A2, . . . , An, B1, B2, . . . , Bm) ←− R1(A1, A2, . . . , 

An)  

 ⟕ <JOIN COND>  R2(B1, B2, . . . , Bm)  

 

✓ This operation keeps every tuple t in left relation R1 in R3, and fills “NULL” for 

attributes B1, B2, . . . , Bm if the join condition is not satisfied for t.  

✓ Example,  

TEMP ←− (EMPLOYEE ⟕ SSN=MGRSSN DEPARTMENT)  

RESULT ←− π F NAME, MINIT, DNAME (TEMP)  



Database Management Systems                      8.9                                 The Relational Algebra  

• RIGHT OUTER JOIN: similar to LEFT OUTER JOIN, but keeps every tuple t in 

right relation R2 in the resulting relation R3.  

              R ⟖ S=(R⋈S)∪(S−πB,C(R⋈S)) 

• FULL OUTER JOIN: Includes unmatched tuples from both relations. 

                                    R ⟗ S=(R⋈S)∪(R−πA,B(R⋈S))∪(S−πB,C(R⋈S)) 

 

 

❖ The OUTER UNION Operation  

o OUTER UNION: make union of two relations that are partially compatible.  

▪  R3(A1, A2, . . . , An, B1, B2, . . . , Bm, C1, C2, . . . , Cp) ←− R1(A1, A2, . . . , An, B1, 

B2, . . . , Bm) OUTER UNION R2(A1, A2, . . . , An, C1, C2, . . . , Cp)  

▪ The list of compatible attributes are represented only once in R3.  

▪ Tuples from R1 and R2 with the same values on the set of compitable attributes are 

represented only once in R3 

▪ In R3, fill “NULL” if necessary  

▪ Example STUDENT (NAME, SSN, DEPT, ADVISOR) and FACULTY(NAME, SSN, 

DEPT, RANK)  

 

The resulting relation schema after OUTER UNION will be R 3(NAME, SSN, DEPT, 

ADVISOR, RANK) 

 

8.6 EXAMPLES OF QUERIES IN RELATIONAL ALGEBRA 

 

• Retrieve the name and address of all employees who work for the ’Research’ 

department. 

• For every project located in ’Stafford’, list the project number, the controlling 

department number, and the department manager’s last name, address, and birthdate. 

• Find the names of employees who work on all the projects controlled by department 

• number 5. 

• Make a list of project numbers for projects that involve an employee whose last name 

• is ’Smith’, either as a worker or as a manager of the department that controls the 

• project. 

• List the names of all employees who have two or more dependents. 

• Retrieve the names of employees who have no dependents. 

• List the names of managers who have at least one dependent. 

• Retrieve the name of each employee who has a dependent with the same first name 

• and same sex as the employee. 

• Retrieve the names of all employees who do not have supervisors. 

• Find the sum of salary of all employees, the maximum salary, the minimum salary, 

and 

• the average salary for each department. 



Centre for Distance Education                        8.10                  Acharya Nagarjuna University  

 

 

 
 



Database Management Systems                      8.11                                 The Relational Algebra  

 
 

8.7  SUMMARY 

 

Relational Algebra explores foundational query languages in relational database theory. It 

begins with unary relational operations, SELECT and PROJECT, which allow filtering rows 

and choosing specific attributes, respectively. Set-theoretic operations like UNION, 

INTERSECTION, and DIFFERENCE are covered for combining and comparing relations. 

Binary relational operations such as JOIN (including natural joins and outer joins) and 

DIVISION enable complex queries by relating to tuples across tables. Additional operations 

like aggregation and renaming further enhance query capabilities.  

 

8.8 TECHNICAL TERMS 

 

• Relational Algebra 

• SELECT 

• PROJECT 



Centre for Distance Education                        8.12                  Acharya Nagarjuna University  

• JOIN 

• RENAME 

• Existential Quantifier 

• Universal Quantifier 

 

8.9 SELF-ASSESSMENT QUESTIONS 

 

 Short Questions 

1. Define the SELECT operation in relational algebra and its purpose. 

2. What is the difference between PROJECT and SELECT in relational algebra? 

3. Explain the purpose of the CARTESIAN PRODUCT operation in relational algebra. 

4. Describe the division operation in relational algebra and give one practical use case. 

 

Long Questions 

 

1. Explain with examples how set-theoretic operations (UNION, INTERSECTION, and 

DIFFERENCE) are used in relational algebra. 

2. Describe binary relational operations with a focus on different types of joins (natural 

join, equijoin, and outer join) and their applications. 

3. Discuss the role of additional relational operations such as aggregation and renaming 

in query optimization and simplification. 

4. Write a detailed query using relational algebra to find customers who have accounts in 

every branch of a bank and explain each step. 

 

8.10  SUGGESTED READINGS 

 

1. Codd, E. F. (1970). "A Relational Model of Data for Large Shared Data Banks." 

Communications of the ACM, 13(6), 377-387. 

2. Date, C. J. (2003). "An Introduction to Database Systems." 8th Edition. Addison-

Wesley. 

3. Silberschatz, A., Korth, H. F., & Sudarshan, S. (2010). "Database System Concepts." 

6th Edition. McGraw-Hill. 

4. Ullman, J. D., & Widom, J. (2008). "A First Course in Database Systems." 3rd Edition. 

Pearson. 

 

 

Dr. Kampa Lavanya  

 

 



LESSON- 09 

THE RELATIONAL CALCULUS 
 

AIMS AND OBJECTIVES 

 

The aim of this chapter is to provide a comprehensive understanding of the formal query 

languages used in relational database systems in terms of Relational Calculus. Relational 

calculus is a non-procedural query language used in database management systems (DBMS). 

Its objectives include: 

 

1. Declarative Query Specification: 

o Provide a means to describe what data to retrieve without specifying how to retrieve 

it. 

o Focus on the "what" rather than the "how" by defining desired results using logical 

predicates. 

 

2. Foundation for Query Languages: 

o Serve as a theoretical basis for SQL and other high-level query languages. 

o Ensure that query languages are both expressive and robust. 

 

3. Support for Logical Reasoning: 

o Allow users to express queries using logical expressions and constraints. 

o Enable reasoning about data relationships and structures. 

 

4. Abstraction: 

o Hide the complexities of query execution by focusing on the end result. 

o Enable users to write queries without needing to understand the underlying physical 

database design. 

 

5. Data Integrity and Consistency: 

o Facilitate querying in a way that respects the database's logical consistency. 

o Ensure that queries operate within the constraints and relationships defined by the 

database schema. 

 

These languages form the theoretical backbone of relational data manipulation and query 

processing, offering a foundation for understanding and applying practical query languages 

like SQL. By exploring the principles of relational databases, the chapter seeks to bridge the 

gap between theoretical concepts and their real-world applications in database systems. 

 

At the end of the lesson students will be able to: 

 

1. Understand Ability to Formulate Complex Queries 

2. Enhanced Understanding of Query Languages 

3. Know Logical and Formal Thinking 

4. Work on Validation of Query Equivalence 

5. develop the ability to write and analyze queries in Tuple Relational Calculus (TRC) and 

Domain Relational Calculus (DRC), emphasizing logical expressions. 

 

  



Centre for Distance Education                         9.2                    Acharya Nagarjuna University 

STRUCTURE 

 

9.1 INTRODUCTION 

9.2 THE TUPLE RELATIONAL CALCULUS (TRC)  

9.3       THE DOMAIN RELATIONAL CALCULUS (DRC) 

9.4       SUMMARY 

9.5       TECHNICAL TERMS  

9.6        SELF-ASSESSMENT QUESTIONS 

9.7        SUGGESTED READINGS   

 

9.1. INTRODUCTION 

   

Relational calculus is a non-procedural query language in database management systems 

(DBMS) that allows users to specify what data they want to retrieve without dictating how to 

retrieve it. Rooted in mathematical logic, relational calculus uses declarative expressions to 

define queries, focusing on logical relationships and constraints within the data. It contrasts 

with relational algebra, which is procedural, by emphasizing the "what" rather than the "how" 

of query formulation. Relational calculus serves as a theoretical foundation for high-level query 

languages like SQL, making it an essential concept in database theory and design.  Two primary 

forms of relational calculus are Tuple Relational Calculus (TRC) and Domain Relational 

Calculus (DRC). TRC focuses on specifying queries using variables that represent tuples in a 

relation, with logical predicates to filter the desired tuples. In contrast, DRC uses variables that 

represent individual domain values rather than entire tuples, allowing for a more granular 

approach to query definition. Both forms rely heavily on logical expressions, such as existential 

and universal quantifiers, to describe data constraints and retrieval criteria. Together, TRC and 

DRC provide powerful frameworks for expressing complex database queries in a logical and 

non-procedural manner. 

 

Relational Calculus is declarative, focusing on specifying what data to retrieve without 

detailing the process.  This chapter, additionally, it explores the principles of Tuple Relational 

Calculus (TRC) and Domain Relational Calculus (DRC), emphasizing logical expressions 

to define queries. By understanding these theoretical constructs, database practitioners can 

design more efficient systems and queries, bridging the gap between abstract mathematical 

concepts and real-world database implementations. 

 

9.2 THE TUPLE RELATIONAL CALCULUS  

 

Tuple Calculus and Domain Calculus are two formal query languages for relational databases. 

They are declarative, meaning they specify what data to retrieve without defining how to 

retrieve it, unlike procedural languages such as relational algebra. 

 

❖ The Tuple Relational Calculus 

o Nonprocedural Language: Specify what to do; Tuple (Relational) Calculus, Domain 

(Relational) Calculus. 



Database Management Systems                     9.3                               The Relational Calculus  

o Procedural Language: Specify how to do; Relational Algebra. 

o The expressive power of Relational Calculus and Relational Algebra is identical. 

o A relational query language L is considered relationally complete if we can express in 

L any query that can be expressed in Relational Calculus. 

o Most relational query language is relationally complete but have more expressive power 

than relational calculus (algebra) because of additional operations such as aggregate 

functions, grouping, and ordering. 

       

Queries in TRC are expressions of the form: 

                                                             
       where: 

• t is a tuple variable. 

• P(t)  is a predicate that describes the conditions the tuples must satisfy. 

 

A general expression form: 

•  
 

Where t1,t2, . . . ,tn,tn+1,tn+2, . . . ,tn+m are tuple variables, each Ai is an attribute of the 

relation on which ti ranges, and COND is a condition or formula 

 

Example: 

Find all employees working in the "HR" department: 

                           
 

A formula is made up one or more atoms connected via the logical operators and, or, not and 

is defined recursively as follows. 

 
 

➢ The Existential and Universal Quantifiers 

In relational calculus, existential and universal quantifiers are essential components of 

logical expressions used to define query conditions. These quantifiers enable precise 

specification of constraints and relationships in database queries. The existential quantifier 

(∃) asserts the existence of at least one value or tuple that satisfies a given condition. It is 

commonly used to verify if there is some data in the database that meets specific criteria. 

Conversely, the universal quantifier (∀) specifies that a condition must hold true for all values 

or tuples in a given domain or relation. By incorporating these quantifiers, relational calculus 



Centre for Distance Education                         9.4                    Acharya Nagarjuna University 

allows for expressive and flexible query formulations, enabling users to retrieve data with high 

precision while adhering to logical principles. 

 

Existential (∃) and universal (∀) quantifiers are fundamental concepts in logic and relational 

calculus. They are used to specify conditions for sets of values in queries or logical expressions. 

 

• Existential Quantifier (∃): Used to assert that at least one element in a domain satisfies a 

given condition. 

     Syntax:    

                            
This means there is at least one xxx for which the predicate P(x)P(x)P(x) is true. 

 

Example in Tuple Relational Calculus (TRC): 

Find employees working in the "HR" department: 

                  
 

• Universal Quantifier (∀) : Used to assert that a condition applies to all elements in a 

domain. 

              Syntax: 

                             
                This means the predicate P(x)P(x)P(x) is true for every xxx in the domain. 

               Example in Tuple Relational Calculus (TRC): 

                  Find employees who are in all departments: 

                                    
 

➢ Comparison Between Existential and Universal Quantifiers             

 
 



Database Management Systems                     9.5                               The Relational Calculus  

Both quantifiers are critical in relational calculus, enabling the formulation of comprehensive 

and logically precise queries. They complement each other, with existential quantifiers being 

ideal for selective queries and universal quantifiers ensuring universal conditions are met. 

 

➢ Example Queries Using the Existential Quantifier 

 
 

 

9.3 THE DOMAIN RELATIONAL CALCULUS 

 

Domain Relational Calculus (DRC) is a non-procedural query language used to express queries 

in a relational database management system (DBMS). It is a declarative language, meaning 

users specify what data they want to retrieve without describing the steps for data retrieval. In 

DRC, queries are constructed using domain variables, which represent individual values in the 

attributes (or domains) of a relation, rather than entire tuples (rows). This allows DRC to 

provide a more granular and flexible way to express data constraints and relationships. The 

query results in DRC are sets of domain values that satisfy specific conditions expressed in 

logical predicates. 

 

• Rather than having variables range over tuples in relations, the domain variables range 

over single values from domains of attributes, general form is : 

 
• A formula is made up of atoms. 



Centre for Distance Education                         9.6                    Acharya Nagarjuna University 

 
 

DRC makes use of logical operators such as conjunction (∧), disjunction (∨), negation (¬), and 

quantifiers like existential (∃) and universal (∀) to define constraints on the data. Unlike Tuple 

Relational Calculus (TRC), which uses tuple variables, DRC operates on domain variables and 

is more focused on individual attribute values. This characteristic makes DRC suitable for 

queries that require conditions on specific attributes rather than entire tuples. Although 

relational calculus in general is not commonly used in practical applications, its theoretical 

foundation is crucial for understanding the principles of query languages like SQL, which 

incorporate many of the ideas from relational calculus. 

 

Examples 

Consider a database with the following relations: 

 
 



Database Management Systems                     9.7                               The Relational Calculus  

Query: Find the names of employees who work in the "IT" department. 

{ e.name | ∃e_id ∃d_id (Employee(e_id, e.name, e.salary) ∧ Works(e_id, d_id) ∧ d_id = 'D2') } 

 

Explanation: 

• e.name: The result we want to retrieve, which is the employee's name. 

• ∃e_id ∃d_id: The existential quantifiers specifying that there exist some e_id (employee 

ID) and d_id (department ID). 

• Employee(e_id, e.name, e.salary): A condition that checks if the employee with ID e_id 

exists in the Employee relation. 

• Works(e_id, d_id): A condition that ensures there is a record in the Works relation 

linking the employee e_id to a department d_id. 

• d_id = 'D2': This specifies that the department ID should be 'D2', which corresponds to 

the "IT" department. 

 

Result: 

• The query returns the name of the employee(s) who work in the "IT" department. 

• Output: Alice 

 

 

➢ In this DRC query, we are using domain variables (e_id and d_id) to represent the 

 employee and department.  

➢ The query looks for employees whose e_id matches a record in the Works relation 

 where the department ID (d_id) is 'D2' (IT department).  

➢ The result includes the name of the employee who satisfies this condition.  

➢ This example demonstrates how DRC uses logical expressions with domain variables 

 to filter and retrieve specific data from the relations. 

 

Additional Queries: 

 
    

 



Centre for Distance Education                         9.8                    Acharya Nagarjuna University 

 

➢ Advantages of Domain Relational Calculus (DRC) 

1. Declarative Query Language: 

o Focuses on specifying what data to retrieve rather than how to retrieve it, making it more 

intuitive and user-friendly for non-technical users. 

2. Expressive Power: 

o Allows for complex queries involving logical operators (e.g., ∧, ∨, ¬) and quantifiers 

(∃, ∀), providing significant flexibility in data retrieval. 

3. Foundation for SQL: 

o Serves as a theoretical basis for SQL, helping in understanding and developing 

advanced database query languages. 

4. Granularity: 

o Operates at the domain level, enabling more precise data retrieval by focusing on 

individual attribute values rather than entire tuples. 

5. Logical Consistency: 

o Encourages logical and structured query design, ensuring queries are consistent with 

the database schema and relationships. 

 

➢ Disadvantages of Domain Relational Calculus (DRC) 

1. Complexity: 

o Writing queries can be challenging for beginners due to its reliance on formal logic, 

making it less accessible to users without a background in mathematical reasoning. 

2. Non-Procedural Nature: 

o While being declarative is an advantage, the lack of procedural constructs can make 

it harder to visualize how data will be retrieved. 

3. Performance Issues: 

o Queries written in DRC may not directly translate into efficient execution plans, 

potentially leading to performance bottlenecks during data retrieval. 

4. Limited Practical Use: 

o Unlike SQL, DRC is not widely used in real-world applications, which limits its 

practical utility and adoption. 

5. Potential for Ambiguity: 

o Misuse of quantifiers or logical expressions can lead to unintended results, especially 

in complex queries, making it prone to errors. 

6. Steeper Learning Curve: 

o Understanding and applying DRC requires familiarity with formal logic and database 

theory, which can deter its adoption by casual users. 

 

While DRC provides a strong theoretical framework for querying databases, its practical 

limitations and complexity make it less popular for everyday use compared to more user-

friendly query languages like SQL. 

 

9.4 SUMMARY 

 

Relational calculus is a non-procedural query language in database management systems 

(DBMS) that focuses on defining what data to retrieve rather than detailing how to retrieve it. 

Rooted in formal logic, it allows users to express queries through logical expressions and 

constraints, leveraging variables, predicates, and quantifiers. Relational calculus is divided into 

two main forms: Tuple Relational Calculus (TRC) and Domain Relational Calculus (DRC). 



Database Management Systems                     9.9                               The Relational Calculus  

TRC uses tuple variables to represent entire rows in a relation, while DRC operates at a more 

granular level, using domain variables to represent individual attribute values. Both forms 

utilize existential (∃) and universal (∀) quantifiers, along with logical operators like 

conjunction (∧), disjunction (∨), and negation (¬), to construct expressive and precise queries. 

As a theoretical foundation for query languages like SQL, relational calculus bridges the gap 

between formal database theory and practical database querying. It emphasizes logical 

consistency and declarative expression, allowing users to focus on specifying their desired 

outcomes without worrying about execution details. However, the complexity of its formal 

syntax and reliance on mathematical logic can pose a learning curve, making it more suitable 

for academic and theoretical purposes than widespread practical use. Nevertheless, its role in 

shaping the development of modern database query languages highlights its importance in 

understanding the principles of database management. 

 

9.5 TECHNICAL TERMS 

 

• Non-Procedural Query Language  

• Relational Calculus 

• Domain Relational Calculus 

• Tuple Relational Calculus  

• Existential Quantifier 

• Universal Quantifier 

 

9.6     SELF-ASSESSMENT QUESTIONS 

 

 Short Questions 

 

1. What is the difference between Tuple Relational Calculus (TRC) and Domain 

Relational Calculus (DRC)? 

2. Define existential and universal quantifiers in relational calculus. 

3. What are free and bound variables in relational calculus? 

4. How does relational calculus differ from relational algebra? 

5. What is meant by "safety" in relational calculus queries? 

 

Long Questions 

 

1. Explain the concept of relational calculus and its significance in database management 

systems. 

2. Describe Tuple Relational Calculus (TRC) with an example query and explain its 

components. 

3. Compare and contrast Tuple Relational Calculus (TRC) and Domain Relational Calculus 

(DRC), highlighting their differences and use cases. 

4. Write a relational calculus query to find employees who work in all departments and 

explain each part of the query. 

5. Discuss how relational calculus serves as a foundation for SQL and other high-level 

query languages, with examples illustrating its influence. 

 

 

 

 



Centre for Distance Education                         9.10                    Acharya Nagarjuna University 

9.7  SUGGESTED READINGS 

 

1. Codd, E. F. (1970). "A Relational Model of Data for Large Shared Data Banks." 

Communications of the ACM, 13(6), 377-387. 

2. Date, C. J. (2003). "An Introduction to Database Systems." 8th Edition. Addison-

Wesley. 

3. Silberschatz, A., Korth, H. F., & Sudarshan, S. (2010). "Database System Concepts." 

6th Edition. McGraw-Hill. 

4. Ullman, J. D., & Widom, J. (2008). "A First Course in Database Systems." 3rd Edition. 

Pearson. 

 

 

Dr. Vasantha Rudramalla 



DBMS                                                           10.1                                                     SQL-99 

LESSON- 10 

SQL-99 
 

AIMS AND OBJECTIVES 

 

The primary goal of this chapter is to understand the concept of Structure Query Language. 

The chapter began SQL Data Definitions and Data Types, Specifying Constraints in SQL, 

Schema Change Statements on SQL, Basic Queries in SQL, More Complex SQL Queries, 

INSERT, DELETE and UPDATE statements in SQL, Triggers and Views.After completing 

this chapter, the student will understand Structure Query Language. 

 

10.1 INTRODUCTION 

10.2        SQL 

10.3      SQL DATA DEFINITIONS AND DATA TYPES 

10.4      SPECIFYING CONSTRAINTS IN SQL 

10.5       SCHEMA CHANGE STATEMENTS IN SQL 

10.6      BASIC QUERIES IN SQL 

10.7       MORE COMPLEX SQL QUERIES 

10.8        INSERT, DELETE, AND UPDATE STATEMENTS IN SQL 

10.9       TRIGGERS IN SQL 

10.10       VIEWS IN SQL 

10.11      SUMMARY 

10.12      TECHNICAL TERMS  

10.13     SELF-ASSESSMENT QUESTIONS 

10.14     SUGGESTED READINGS 

 

10.1 INTRODUCTION 

 

SQL-99, also known as SQL3, is a significant update to the SQL standard that introduced 

several advanced features for schema definition, constraints, queries, and views. In terms of 

schema definition, SQL-99 expanded the capabilities for creating and modifying database 

structures, including more sophisticated data types and table constructs. It introduced 

comprehensive support for defining constraints, such as primary keys, foreign keys, unique 

constraints, and check constraints, enhancing data integrity and consistency. SQL-99 also 

improved query capabilities with new features like common table expressions (CTEs), 

recursive queries, and enhanced set operations, enabling more complex and efficient data 

retrieval. Additionally, SQL-99 provided robust support for views, allowing users to create 

virtual tables that simplify query operations and improve security by restricting direct access 

to underlying tables. These enhancements made SQL-99 a powerful and flexible standard for 

managing relational databases. 

 



Centre for Distance Education                        10.2                  Acharya Nagarjuna University 

The chapter first covered began with SQL Data Definitions and Data Types, Specifying 

Constraints in SQL, Schema Change Statements on SQL, Basic Queries in SQL, More 

Complex SQL Queries, INSERT, DELETE and UPDATE statements in SQL, Triggers and 

Views. 

 

10.2 SQL 

 

SQL (Structured Query Language) is the standard programming language used to manage 

and manipulate relational databases within a Database Management System (DBMS). It 

allows users to create, read, update, and delete (CRUD) data within the database. SQL is 

designed to handle structured data and is integral to tasks such as querying databases to 

retrieve specific information, defining database schema, and controlling access to the data. 

The language is composed of various commands, including SELECT, INSERT, UPDATE, 

DELETE, CREATE, and DROP, each serving different functions in database management. 

Its widespread adoption and robust capabilities make SQL an essential tool for database 

administrators and developers. 

 

10.2.1 Importance and uses in database management Importance: 

 

1. Standardization: SQL is a standardized language, which means that it can be used 

across different database systems, ensuring compatibility and ease of learning. 

2. Efficiency: SQL is optimized for managing large volumes of data, allowing for quick 

retrieval and manipulation. 

3. Ease of Use: With its relatively simple syntax, SQL is accessible to both technical 

and non-technical users, making it a versatile tool for various stakeholders. 

4. Integration: SQL seamlessly integrates with various programming languages and 

applications, making it a cornerstone of modern data-driven applications. 

5. Data Integrity: SQL supports constraints and transactions, ensuring data accuracy 

and consistency. 

 

Uses: 

 

1. Data Retrieval: SQL's SELECT statement allows users to query and retrieve specific 

data from databases based on defined criteria. 

2. Data Manipulation: Commands such as INSERT, UPDATE, and DELETE enable 

users to add, modify, and remove data within the database. 

3. Database Creation and Management: SQL commands like CREATE, ALTER, and 

DROP allow users to define and modify database schema, including tables, indexes, 

and views. 

4. Access Control: SQL provides mechanisms for setting permissions and roles, 

ensuring that only authorized users can access or modify the data. 

5. Data Analysis: SQL's powerful querying capabilities support complex data analysis 

tasks, including aggregation, sorting, and filtering, facilitating data-driven decision-

making. 

6. Automation: SQL can be used in scripts to automate routine database tasks, 

improving efficiency and reducing the likelihood of human error. 

7. Reporting: SQL queries can be used to generate detailed reports, extracting 

meaningful insights from the raw data stored in databases. 



DBMS                                                              10.3                                                     SQL-99 

10.2.2 Overview of SQL standards 

 

SQL:2011 

• Year: 2011 

• Overview: Introduced temporal data support, enabling better handling of time-based 

data. 

• Key Features: 

• Temporal tables (system-versioned and application-time period tables) 

• Enhanced period data types 

 

SQL:2016 

• Year: 2016 

• Overview: Focused on big data support, JSON integration, and other modern data 

handling capabilities. 

• Key Features: 

• JSON data types and functions 

• Enhanced polymorphic table functions 

• Row pattern recognition in result sets 

 

SQL:2019 

 

• Year: 2019 

• Overview: The most recent standard, incorporating incremental improvements and 

refinements. 

• Key Features: 

• Enhanced support for JSON 

• Improvements in window functions 

• Expanded capabilities for polymorphic table functions 

 

The evolution of SQL standards reflects the changing needs and advancements in database 

technology. Each iteration builds upon the previous ones, ensuring that SQL remains a 

powerful and versatile language for managing relational databases. The adherence to these 

standards by database vendors ensures compatibility and interoperability across different 

systems, providing a consistent experience for users. 

 

10.3  SQL DATA DEFINITIONS AND DATA TYPES 

 

SQL Data Definition Language (DDL) encompasses commands that define and manage the 

database schema. DDL commands like CREARE, ALTER, DROP and etc. ensure that the 

database structure is defined, organized, and maintained efficiently, setting the foundation for 

data storage and manipulation. SQL data types specify the kind of data that can be stored in a 

table's columns. Common SQL data types include: numeric, character, binary and etc. These 

data types ensure that the data is stored in a consistent, efficient, and appropriate format, 

facilitating accurate data processing and retrieval. 

 

 

 

 



Centre for Distance Education                        10.4                  Acharya Nagarjuna University 

10.3.1 Data Definition Language (DDL) 

 

Data Definition Language (DDL) is a subset of SQL used to define and manage the structure 

of a database. DDL commands are responsible for creating, modifying, and deleting database 

objects such as tables, indexes, views, and schemas.  

 

Here are the key DDL commands: 

❖ CREATE 

• Purpose: To create new database objects. 

• Examples: 

• Creating a Table 

• CREATE TABLE employees ( 

    employee_id INT PRIMARY KEY, 

    first_name VARCHAR(50), 

    last_name VARCHAR(50), hire_date DATE ); 

 

 

 
 

Fig 10.1  Table creation for COMPANY DATABASE using CREATE Command 

 

❖ ALTER 

• Purpose: To modify existing database objects. 

• Examples: 

• Adding a Column to a Table 

• ALTER TABLE employees ADD COLUMN email VARCHAR(100); 



DBMS                                                              10.5                                                     SQL-99 

 

❖ DROP 

• Purpose: To delete database objects. 

• Examples: 

• Dropping a Table: 

• DROP TABLE employees; 

 

❖ TRUNCATE 

• Purpose: To remove all rows from a table, quickly and efficiently. 

• Example 

• TRUNCATE TABLE employees; 

 

DDL commands provide the necessary tools to define, manage, and maintain the database 

schema, ensuring that the database structure aligns with the needs of the application and 

supports efficient data storage and retrieval. 

 

10.3.2 Data Types 

 

SQL data types specify the kind of data that can be stored in a table's columns. They ensure 

that data is stored in a consistent and efficient manner, facilitating accurate data processing 

and retrieval. Here are the primary SQL data types: 

 

❖ Numeric Data Types 

1. INTEGER: 

• Stores whole numbers. 

• Example: INTEGER, INT 

• Usage: employee_id INT 

 

2. SMALLINT: 

• Stores smaller range of whole numbers. 

• Usage: age SMALLINT 

 

3. BIGINT: 

• Stores larger range of whole numbers. 

• Usage: population BIGINT 

 

4. DECIMAL(p, s) or NUMERIC(p, s): 

• Stores fixed-point numbers with precision p and scale s. 

• Usage: salary DECIMAL(10, 2) 

 

5. FLOAT: 

• Stores floating-point numbers. 

• Usage: temperature FLOAT 

 

6. REAL and DOUBLE PRECISION: 

• Stores approximate numeric values. 

• Usage: measurement DOUBLE PRECISION 

 



Centre for Distance Education                        10.6                  Acharya Nagarjuna University 

❖ Character Data Types 

1. CHAR(n): 

• Stores fixed-length character strings. 

• Usage: gender CHAR(1) 

 

2. VARCHAR(n): 

• Stores variable-length character strings. 

• Usage: name VARCHAR(50) 

 

3. TEXT: 

• Stores large variable-length character strings. 

• Usage: description TEXT 

 

❖ Date and Time Data Types 

1. DATE: 

• Stores dates (year, month, day). 

• Usage: birthdate DATE 

 

2. TIME: 

• Stores time of day (hours, minutes, seconds). 

• Usage: appointment_time TIME 

 

3. TIMESTAMP: 

• Stores date and time. 

• Usage: order_timestamp TIMESTAMP 

 

4. INTERVAL: 

• Stores a time interval. 

• Usage: duration INTERVAL 

 

❖ Binary Data Types 

1. BINARY: 

• Stores fixed-length binary data. 

• Usage: binary_data BINARY(16) 

 

2. VARBINARY: 

• Stores variable-length binary data. 

• Usage: image VARBINARY(255) 

 

3. BLOB: 

• Stores large binary objects. 

• Usage: document BLOB 

 

❖ Boolean Data Type 

1. BOOLEAN: 

• Stores true or false values. 

• Usage: is_active BOOLEAN 

 



DBMS                                                              10.7                                                     SQL-99 

❖ Other Data Types 

1. ENUM: 

• Stores one value from a predefined list of values (MySQL specific). 

• Usage: status ENUM('active', 'inactive', 'pending') 

 

2. SET: 

• Stores a set of values (MySQL specific). 

• Usage: roles SET('admin', 'user', 'guest') 

 

3. JSON: 

• Stores JSON-formatted data. 

• Usage: preferences JSON 

 

Examples: 

CREATE TABLE employees ( 

    employee_id INT PRIMARY KEY, 

    first_name VARCHAR(50), 

    last_name VARCHAR(50), 

    hire_date DATE, 

    salary DECIMAL(10, 2), 

    is_active BOOLEAN); 

 

CREATE TABLE files ( 

    file_id INT PRIMARY KEY, 

    file_name VARCHAR(255), 

    file_data BLOB); 

 

These data types help define the kind of data each column can hold, ensuring data integrity 

and optimizing storage. 

 

10.4 SPECIFYING CONSTRAINTS IN SQL 

Specifying constraints in SQL is essential for enforcing rules and maintaining data integrity 

within a database. Constraints ensure that the data adheres to defined standards and prevents 

invalid data entry. 

 

10.4.1 Types of Constraints 

 

Key types of constraints include: 

• PRIMARY KEY: Ensures that each value in a column (or a combination of columns) 

is unique and not null, uniquely identifying each row in a table. 

• FOREIGN KEY: Establishes a relationship between columns in different tables, 

ensuring referential integrity by linking a column (or columns) to the primary key of 

another table. 

• UNIQUE: Ensures that all values in a column (or a combination of columns) are 

unique across the entire table. 

• NOT NULL: Ensures that a column cannot have a null value, requiring that every 

row must have a value for this column. 

• CHECK: Enforces a condition that each row must satisfy, restricting the values that 

can be stored in a column. 



Centre for Distance Education                        10.8                  Acharya Nagarjuna University 

10.4.2 Examples of Constraints in Table Definitions 

 

CREATE TABLE employees ( 

    employee_id INT PRIMARY KEY, 

    first_name VARCHAR(50) NOT NULL, 

    last_name VARCHAR(50) NOT NULL, 

    email VARCHAR(100) UNIQUE, 

    hire_date DATE CHECK (hire_date >= '2000-01-01')); 

 

CREATE TABLE orders ( 

    order_id INT PRIMARY KEY, 

    employee_id INT, 

    order_date DATE NOT NULL, 

    FOREIGN KEY (employee_id) REFERENCES employees(employee_id)); 

 

Constraints help maintain the accuracy, reliability, and integrity of the data within the 

database, ensuring that the database adheres to the specified business rules and logic. 

 

10.5 SCHEMA CHANGE STATEMENTS IN SQL 

 

Schema change statements in SQL are used to modify the structure of an existing database 

schema, allowing for the addition, alteration, or deletion of database objects such as tables, 

columns, indexes, and constraints. These changes are essential for adapting the database to 

evolving requirements. 

 

10.5.1 Altering Schemas 

 

Altering schemas in SQL involves modifying the structure of an existing database schema to 

accommodate changing requirements or to optimize performance. The primary SQL 

command used for altering schemas is the ALTER statement. This command allows users to 

add, modify, or delete database objects such as tables, columns, indexes, and constraints.  

Here are the key operations that can be performed with the ALTER statement: 

 

-- Add a new column 

ALTER TABLE employees ADD COLUMN birth_date DATE; 

 

-- Modify an existing column's data type 

ALTER TABLE employees ALTER COLUMN salary DECIMAL(10, 2); 

 

-- Drop a column 

ALTER TABLE employees DROP COLUMN temp_data; 

 

-- Add a new primary key constraint 

ALTER TABLE employees ADD CONSTRAINT pk_employee_id PRIMARY KEY 

(employee_id); 

 

-- Drop a unique constraint 

ALTER TABLE employees DROP CONSTRAINT email_unique; 

 

 



DBMS                                                              10.9                                                     SQL-99 

 

-- Rename a column 

ALTER TABLE employees RENAME COLUMN old_column_name TO 

new_column_name; 

 

-- Rename a table 

ALTER TABLE employees RENAME TO staff_members; 

Altering schemas is a fundamental aspect of database management, allowing administrators 

and developers to keep the database structure aligned with application requirements and data 

integrity rules. 

 

10.5.2 Managing Indexes 

 

Managing indexes in SQL involves creating, modifying, and deleting indexes to optimize 

query performance and maintain database efficiency. Indexes are special data structures that 

improve the speed of data retrieval operations on a database table.  

Here are the key operations for managing indexes: 

-- Create a single-column index 

 

CREATE INDEX idx_lastname ON employees(last_name); 

 

-- Create a composite index on first_name and birth_date 

CREATE INDEX idx_name_dob ON employees(first_name, birth_date); 

 

-- Create a unique index on email 

CREATE UNIQUE INDEX idx_unique_email ON employees(email); 

 

-- Drop an index 

DROP INDEX idx_lastname; 

 

-- MySQL-specific syntax to drop an index 

ALTER TABLE employees DROP INDEX idx_lastname; 

 

By effectively managing indexes, database administrators can significantly enhance query 

performance, ensuring efficient and fast data retrieval operations. 

 

10.6 BASIC QUERIES IN SQL 

 

Basic queries in SQL involve selecting, filtering, and retrieving data from one or more tables 

in a database. 

 

10.6.1 SELECT Statement 

 

The SELECT statement in SQL is used to retrieve data from a database. It allows you to 

specify the columns you want to retrieve and the table from which to retrieve them. The 

SELECT statement can include various clauses to filter, sort, and group the data. 

 

 

 

 



Centre for Distance Education                        10.10                  Acharya Nagarjuna University 

Basic Syntax: 

 

       SELECT column1, column2, ... 

FROM table_name 

WHERE condition 

ORDER BY column1, column2, ...; 

 

Example 

             SELECT first_name, last_name, department 

FROM employees 

WHERE hire_date > '2020-01-01' 

ORDER BY last_name ASC; 

 

This query will return a list of employees' first names, last names, and departments, filtered 

and sorted according to the specified criteria. 

 

10.6.2 INSERT statement 

 

The INSERT statement in SQL is used to add new rows of data into a table. You can insert 

values into all columns of a table or specify which columns to insert data into. 

 

Basic Syntax 

 

INSERT INTO table_name 

VALUES (value1, value2, ...); 

 

Example: 

 

INSERT INTO employees 

VALUES (101, 'John', 'Doe', 'Sales', '2024-07-22'); 

 

10.7 MORE COMPLEX SQL QUERIES 

 

More complex SQL queries often involve multiple tables, advanced filtering, subqueries, 

aggregation, and conditional logic to retrieve, manipulate, and analyze data in sophisticated 

ways. These queries can use various SQL clauses and functions, including JOIN operations, 

GROUP BY, HAVING, subqueries, CASE statements, and window functions. Complex 

queries are essential for in-depth data analysis, reporting, and ensuring that intricate business 

logic is accurately reflected in the data retrieved. 

 

10.7.1 JOIN Operations 

 

JOIN operations in SQL are used to combine rows from two or more tables based on a related 

column between them. The most common types of JOINs are INNER JOIN, LEFT JOIN, 

RIGHT JOIN, and FULL OUTER JOIN. 

 

INNER JOIN: Returns rows that have matching values in both tables. 

SELECT a.column1, b.column2 

FROM table1 a 

INNER JOIN table2 b ON a.common_column = b.common_column; 



DBMS                                                              10.11                                                     SQL-99 

 

LEFT JOIN (LEFT OUTER JOIN): Returns all rows from the left table and matched rows 

from the right table. Unmatched rows in the right table will have NULL values. 

SELECT a.column1, b.column2 

FROM table1 a 

LEFT JOIN table2 b ON a.common_column = b.common_column; 

 

RIGHT JOIN (RIGHT OUTER JOIN): Returns all rows from the right table and matched 

rows from the left table. Unmatched rows in the left table will have NULL values. 

SELECT a.column1, b.column2 

FROM table1 a 

RIGHT JOIN table2 b ON a.common_column = b.common_column; 

 

FULL OUTER JOIN: Returns rows when there is a match in one of the tables. Rows with 

no match in either table will have NULL values. 

 

SELECT a.column1, b.column2 

FROM table1 a 

FULL OUTER JOIN table2 b ON a.common_column = b.common_column; 

 

10.7.2 Subqueries 

 

Subqueries in SQL are queries nested within another SQL query. They allow you to perform 

operations that would otherwise be impossible or cumbersome with a single query. 

Subqueries can be used in various clauses, such as SELECT, FROM, WHERE, and 

HAVING, to provide intermediate results for the main query. They enhance the flexibility 

and power of SQL by enabling more complex queries and data manipulations. 

 

Types of Subqueries 

1. Scalar Subquery: Returns a single value. 

2. Row Subquery: Returns a single row with multiple columns. 

3. Table Subquery: Returns a set of rows and columns. 

 

Example 1: Subquery in a SELECT Clause 

To get the names of employees and their respective department names from employees and 

departments tables: 

SELECT e.first_name, e.last_name, 

       (SELECT d.department_name 

        FROM departments d 

        WHERE d.department_id = e.department_id) AS department_name 

FROM employees e; 

 

Example 2: Subquery in a FROM Clause 

To get the department-wise average salary: 

SELECT department_id, AVG(salary) AS avg_salary 

FROM employees 

GROUP BY department_id 

HAVING AVG(salary) > (SELECT AVG(salary) FROM employees); 

 

 



Centre for Distance Education                        10.12                  Acharya Nagarjuna University 

Subqueries can greatly enhance the capability of SQL queries by allowing more detailed and 

specific data retrieval, making them essential for complex data analysis and reporting tasks. 

 

10.7.3 Set Operations 

 

Set operations in SQL are used to combine the results of two or more SELECT queries. 

These operations include UNION, UNION ALL, INTERSECT, and EXCEPT (or MINUS in 

some databases). Set operations enable you to perform mathematical set operations on query 

results, allowing for powerful and flexible data manipulation. 

 

10.8 INSERT, DELETE, AND UPDATE STATEMENTS IN SQL 

 

The INSERT, DELETE, and UPDATE statements in SQL are essential for managing and 

manipulating data within a database. These Data Manipulation Language (DML) statements 

allow users to add new records, remove existing ones, and modify existing data, respectively. 

 

10.8.1 INSERT Statement 

 

The INSERT statement is used to add new rows to a table. You can insert values into all 

columns or specify which columns to insert data into. 

 

Example 

INSERT INTO employees (first_name, last_name, department) 

VALUES ('Jane', 'Doe', 'Marketing'); 

 

10.8.2 DELETE Statement 

 

The DELETE statement is used to remove existing rows from a table based on a specified 

condition. Without a condition, it will delete all rows in the table. 

DELETE FROM employees 

WHERE employee_id = 101; 

 

10.8.3 UPDATE Statement 

 

The UPDATE statement is used to modify existing data in a table. It allows you to set new 

values for one or more columns based on a specified condition. 

UPDATE employees 

SET department = 'Sales' 

WHERE employee_id = 101; 

 

10.9 TRIGGERS IN SQL 

 

Triggers in SQL are special types of stored procedures that automatically execute or "fire" 

when specific database events occur, such as INSERT, UPDATE, or DELETE operations on 

a table. Triggers are used to enforce business rules, maintain data integrity, audit changes, 

and synchronize tables. They can be set to execute before or after the event, allowing for pre-

processing or post-processing of data. For example, a trigger can be created to automatically 

log changes to an audit table whenever an employee's salary is updated. 

 

 



DBMS                                                              10.13                                                     SQL-99 

10.9.1 Types of Triggers 

In SQL, triggers can be categorized based on the timing of their execution and the events that 

activate them. 

 The main types of triggers are: 

 

Based on Timing: 

• BEFORE Triggers: Execute before the triggering event (INSERT, UPDATE, 

DELETE) occurs. These are typically used for validation or modification of data 

before it is committed to the database. 

• Example: BEFORE INSERT, BEFORE UPDATE, BEFORE DELETE 

• AFTER Triggers: Execute after the triggering event has occurred. These are 

often used for logging changes, enforcing referential integrity, or synchronizing 

data across tables. 

• Example: AFTER INSERT, AFTER UPDATE, AFTER DELETE 

 

Based on Event: 

 

Triggers based on events in SQL are designed to automatically execute a specified action 

when certain events—such as INSERT, UPDATE, or DELETE operations—occur on a table. 

These event-driven triggers help maintain data integrity, enforce business rules, and automate 

system tasks. 

 

Each type of event trigger serves a specific purpose: 

 

• INSERT Triggers: Execute when a new record is added to a table. They can be used 

to set default values, validate data, or log insert actions. 

CREATE TRIGGER before_insert_employee 

BEFORE INSERT ON employees 

FOR EACH ROW 

BEGIN 

    SET NEW.hire_date = NOW(); 

END; 

 

UPDATE Triggers: Execute when an existing record is modified. They are useful for 

tracking changes, maintaining history logs, or enforcing complex validation rules. 

CREATE TRIGGER after_update_employee 

AFTER UPDATE ON employees 

FOR EACH ROW 

BEGIN 

    INSERT INTO employees_audit (employee_id, old_salary, new_salary, change_date) 

    VALUES (OLD.employee_id, OLD.salary, NEW.salary, NOW()); 

END; 

 

• DELETE Triggers: Execute when a record is removed from a table. They can be 

employed to prevent accidental deletions, cascade deletions to related tables, or 

archive deleted data. 

 

 

 



Centre for Distance Education                        10.14                  Acharya Nagarjuna University 

CREATE TRIGGER before_delete_employee 

BEFORE DELETE ON employees 

FOR EACH ROW 

BEGIN 

    INSERT INTO employees_deleted (employee_id, first_name, last_name, department, 

deletion_date) 

    VALUES (OLD.employee_id, OLD.first_name, OLD.last_name, OLD.department, 

NOW()); 

END; 

Triggers enhance the robustness and reliability of database applications by providing 

automated responses to data changes. 

 

10.9.2 Creating and Dropping Triggers 

 

Creating triggers in SQL involves defining the specific event (INSERT, UPDATE, DELETE) 

that activates the trigger and the action that should be performed when the trigger fires. 

Triggers can be set to execute either before or after the specified event. 

Dropping a trigger involves removing it from the database, which means it will no longer 

execute when the specified event occurs. 

 

Example : To drop the previously created log_employee_deletion trigger: 

     DROP TRIGGER log_employee_deletion; 

 

SUMMARY 

 

• Creating Triggers: Use the CREATE TRIGGER statement to define when the 

trigger should fire (BEFORE or AFTER an event) and what actions it should perform. 

• Dropping Triggers: Use the DROP TRIGGER statement to remove an existing 

trigger, preventing it from executing in response to its associated event. 

 

10.9.3 Use Cases for Triggers 

 

1. Data Validation and Integrity 

• Ensure Data Consistency: Automatically enforce complex constraints and 

validation rules that standard constraints cannot handle. 

• Example: Prevent an employee's hire date from being earlier than their birth date. 

 

2. Auditing and Logging 

• Track Changes: Automatically log changes to critical data for audit trails, 

compliance, and monitoring purposes. 

• Example: Log every update to an employee's salary in an audit table. 

 

3. Enforcing Business Rules 

• Implement Business Logic: Ensure consistent application of business policies by 

automatically executing specific actions when certain conditions are met. 

• Example: Prevent the deletion of a customer record if the customer has pending 

orders. 

 

 



DBMS                                                              10.15                                                     SQL-99 

4. Synchronizing Tables 

• Maintain Data Synchronization: Automatically update or synchronize related 

tables to ensure data consistency across the database. 

• Example: Update the inventory stock count whenever an order is placed. 

 

5. Cascading Actions 

• Automate Related Operations: Perform additional related actions automatically 

when a certain event occurs, such as cascading deletions or updates. 

• Example: Automatically delete all orders related to a customer when the customer 

record is deleted. 

 

These use cases illustrate the powerful capabilities of triggers in automating and enforcing 

data management tasks, enhancing data integrity, and ensuring adherence to business rules. 

 

10.10 VIEWS IN SQL 

 

Views in SQL are virtual tables that provide a way to present and query data from one or 

more tables. They do not store data themselves but instead store a predefined SQL query that 

dynamically retrieves data from the underlying tables when accessed. Views can simplify 

complex queries, enhance security by restricting access to specific data, and provide a 

consistent, abstracted interface to the data. Users can perform SELECT operations on views 

as if they were actual tables, and in some cases, views can also support INSERT, UPDATE, 

and DELETE operations, depending on the database system and view definition. 

 

 

10.10.1  Creating and Managing Views 

 

Views in SQL are virtual tables that represent the result of a stored query. They simplify 

complex queries, enhance security, and provide a level of abstraction from the underlying 

table structures. Here’s how to create and manage views: 

 

❖ Creating Views 

Syntax 

CREATE VIEW view_name AS 

SELECT column1, column2, ... 

FROM table_name 

WHERE condition; 

 

Example 

To create a view that shows the full names and departments of employees: 

CREATE VIEW employee_overview AS 

SELECT first_name || ' ' || last_name AS full_name, department 

FROM employees; 

 

❖ Using Views 

         Once a view is created, you can query it just like a regular table: 

        SELECT * FROM employee_overview; 

 



Centre for Distance Education                        10.16                  Acharya Nagarjuna University 

❖ Modifying Views 

 

To modify an existing view, you use the CREATE OR REPLACE VIEW statement: 

CREATE OR REPLACE VIEW employee_overview AS 

SELECT first_name, last_name, department, hire_date 

FROM employees 

WHERE hire_date > '2020-01-01'; 

 

❖ Dropping Views 

To remove an existing view, you use the DROP VIEW statement: 

DROP VIEW employee_overview; 

 

Benefits of Using Views 

 

• Simplify Complex Queries: Encapsulate complex SQL logic within a view for easier 

reuse. 

• Enhance Security: Restrict user access to specific data by granting permissions on 

views rather than on the underlying tables. 

• Data Abstraction: Provide a consistent interface to data, even if the underlying 

schema changes. 

•  

Views are powerful tools for managing and abstracting data in SQL databases. By creating, 

modifying, and dropping views, you can simplify query operations, enhance security, and 

maintain consistent data access interfaces. 

 

10.10.2 Materialized Views 

 

Materialized views are a type of database object that store the result of a query physically, 

unlike regular views that store only the query itself and generate results dynamically each 

time they are accessed. Materialized views improve query performance, especially for 

complex and resource-intensive queries, by precomputing and storing the query results. They 

are periodically refreshed to stay up-to-date with the underlying data. 

 

❖ Creating Materialized Views 

 

Example 

To create a materialized view that stores the total sales per department: 

CREATE MATERIALIZED VIEW total_sales_per_department AS 

SELECT department_id, SUM(sale_amount) AS total_sales 

FROM sales 

GROUP BY department_id; 

 

❖ Refreshing Materialized Views 

 

Materialized views need to be refreshed to reflect changes in the underlying data. This can be 

done manually or automatically at specified intervals. 

Manual Refresh: 

 

 



DBMS                                                              10.17                                                     SQL-99 

 

           REFRESH MATERIALIZED VIEW view_name; 

Automatic Refresh (depends on the database system): 

CREATE MATERIALIZED VIEW view_name 

REFRESH FAST EVERY 1 HOUR 

AS 

SELECT column1, column2, ... 

FROM table_name 

WHERE condition; 

 

 

Benefits of Materialized Views 

 

• Improved Performance: Speeds up query performance by avoiding repeated 

execution of complex queries. 

• Data Pre-aggregation: Useful for pre-aggregating data, which can be directly 

queried for fast results. 

• Reduced Load: Decreases the load on the underlying tables during heavy read 

operations. 

 

Materialized views enhance query performance by storing precomputed results of complex 

queries. They are particularly beneficial for scenarios requiring frequent access to aggregated 

data, providing a significant performance boost while reducing the computational load on the 

database. Regular refreshes ensure the materialized view data remains current with the 

underlying tables. 

 

10.11 SUMMARY 

 

The chapter covers essential aspects of SQL, beginning with SQL Data Definitions and 

Data Types, which define the structure and nature of data in a database. It explains how to 

create tables and specify various data types like INTEGER, VARCHAR, and DATE. 

Specifying Constraints in SQL ensures data integrity through primary keys, foreign keys, 

unique constraints, and check constraints. Schema Change Statements such as ALTER 

TABLE, RENAME, and DROP allow modifications to the database schema. Basic Queries 

in SQL use the SELECT statement to retrieve data, while More Complex SQL Queries 

involve advanced filtering, joins, and subqueries for intricate data retrieval. The INSERT, 

DELETE, and UPDATE statements are fundamental for managing data within tables. 

Triggers are automated responses to specific events, enforcing business rules and 

maintaining data consistency. Finally, Views and Materialized Views provide virtual tables 

for simplified data access and improved query performance, respectively. This 

comprehensive overview equips readers with the foundational tools for effective database 

management and manipulation. 

 

10.12 TECHNICAL TERMS 

 

SQL, Shema, Data Types, Select, Insert, View, Materialized view, Trigger 

 

10.13    SELF ASSESSMENT QUESTIONS 

Essay questions: 



Centre for Distance Education                        10.18                  Acharya Nagarjuna University 

 

1. Illustrate about Views in SQL 

2. Describe about Triggers in SQL 

3. Explain about basic SQL operations 

      

 Short Notes:  

  

1. Write about insert statement  

2. Define Materalized View 

3. Explain about how to update view. 

 

 

10.14   SUGGESTED READINGS 

 

1. Codd, E. F. (1970). "A Relational Model of Data for Large Shared Data Banks." 

Communications of the ACM, 13(6), 377-387. 

2. Date, C. J. (2003). "An Introduction to Database Systems." 8th Edition. Addison-

Wesley. 

3. Silberschatz, A., Korth, H. F., & Sudarshan, S. (2010). "Database System Concepts." 

6th Edition. McGraw-Hill. 

4. Ullman, J. D., & Widom, J. (2008). "A First Course in Database Systems." 3rd 

Edition. Pearson. 

 

 

 Dr. Vasantha Rudramalla  



LESSON- 11 

FUNCTIONAL DEPENDENCIES 

AIMS AND OBJECTIVES 

The primary goal of this chapter is to understand the concept of Functional Dependencies for 

Relational Databases. The chapter began Informal Design Guidelines for Relation Schemas, 

Functional dependencies. After completing this chapter, the student will understand 

Functional Dependencies for Relational Databases. 

11.1 INTRODUCTION 

11.2        INFORMAL DESIGN GUIDELINES FOR RELATION SCHEMAS 

11.2.1 SEMANTICS OF THE RELATION ATTRIBUTES 

11.2.2 REDUNDANT INFORMATION IN TUPLES AND UPDATE 

ANOMALIES 

11.2.3 NULL VALUES IN TUPLES 

11.2.3 SPURIOUS TUPLES 

11.3        FUNCTIONAL DEPENDENCIES 

11.3.1 DEFINITION AND CONCEPT 

             11.3.2 TRIVIAL AND NON-TRIVIAL FUNCTIONAL DEPENDENCIES 

11.3.3 CLOSURE OF A SET OF FUNCTIONAL DEPENDENCIES 

11.3.4 ARMSTRONG’S AXIOMS 

11.3.5 DECOMPOSITION USING FUNCTIONAL DEPENDENCIES 

11.4     SUMMARY 

11.5     TECHNICAL TERMS  

11.6      SELF-ASSESSMENT QUESTIONS 

11.7     SUGGESTED READINGS 

11.1 INTRODUCTION 

The design of a relational database schema plays a crucial role in ensuring data consistency, 

integrity, and efficient query processing. A poorly designed schema can lead to problems such 

as data redundancy, update anomalies, insertion and deletion anomalies, and inconsistent data. 

To avoid these issues, database designers follow a set of informal design guidelines and apply 

formal methods like normalization and functional dependency analysis. These approaches help 

to organize data logically and eliminate unnecessary duplication while maintaining all 

necessary relationships among attributes. 



Centre for Distance Education                      11.2                  Acharya Nagarjuna University 

This chapter focuses on the principles and tools that guide relational schema design. It begins 

with informal design guidelines that address issues such as attribute semantics, redundancy, 

null values, and spurious tuples. Then, it introduces the concept of functional dependencies 

(FDs) — a key theoretical foundation in database normalization. FDs describe the relationship 

between attributes in a relation and are used to detect design flaws and refine schemas through 

decomposition. The chapter also explains Armstrong’s Axioms, closure of functional 

dependencies, and decomposition techniques, which together form the backbone of logical 

database design and normalization up to advanced normal forms. 

11.2 INFORMAL DESIGN GUIDELINES FOR RELATION SCHEMAS 

11.2.1 Semantics of the Relation Attributes Each relation schema should represent a single 

entity or concept, with attributes clearly defined to describe the entity's properties. This 

ensures that the data stored within the relation is meaningful and accurately reflects the real-

world scenario it models. 

To maintain clear semantics, the designer must ensure that: 

1. Each attribute directly corresponds to a property of the entity the relation represents. 

2. The naming of attributes is consistent and self-descriptive. 

3. The relation should avoid mixing entities or concepts that belong to different real-

world objects. 

Example 1: Correct Semantics 

A properly designed relation representing the STUDENT entity: 

STUDENT(Student_ID, Student_Name, Date_of_Birth, Department, Email) 

• Here, each attribute — Student_ID, Student_Name, Date_of_Birth, Department, and 

Email — directly describes a property of a student. 

• The meaning is clear, consistent, and corresponds to a single real-world concept — a 

student. 

Example 2: Poor Semantics 

An improperly designed relation mixing two different entities: 

STUDENT_COURSE(Student_ID, Student_Name, Course_Name, Instructor_Name, 

Instructor_Phone) 

• This table combines attributes of students, courses, and instructors into a single 

relation. 

• Attributes like Instructor_Name and Instructor_Phone describe a teacher, not a 

student — violating the rule of single-entity representation. 



DBMS                                                            11.3            FUNCTIONAL DEPENDENCIES 

Such a schema leads to redundancy (e.g., repeating instructor details for every student 

enrolled in the course) and update anomalies (if an instructor’s phone number changes, 

multiple records must be updated). 

Example 3: Clear Conceptual Separation 

To correct the above design, we separate the entities: 

STUDENT(Student_ID, Student_Name, Department) 

COURSE(Course_ID, Course_Name) 

INSTRUCTOR(Instructor_ID, Instructor_Name, Instructor_Phone) 

ENROLLMENT(Student_ID, Course_ID, Instructor_ID) 

• Each table now represents a distinct concept. 

• Relationships among students, courses, and instructors are maintained through 

foreign keys in the ENROLLMENT table. 

• This preserves semantic clarity, reduces redundancy, and ensures a more flexible and 

consistent database structure. 

Maintaining semantic clarity in relation schemas ensures that the database accurately models 

real-world entities and relationships. Each relation must represent a single, well-defined 

concept, and its attributes should be directly related to that concept — forming the foundation 

for reliable and meaningful data management. 

11.2.2 Redundant Information in Tuples and Update Anomalies Avoiding redundancy is 

crucial as it can lead to update anomalies such as insertion, deletion, and modification 

anomalies. Redundant data requires multiple updates for a single logical change, increasing 

the risk of inconsistencies. 

Redundancy in a relation occurs when the same piece of information is stored multiple times 

within the database. Although redundancy may sometimes seem harmless, it often leads to 

serious problems such as increased storage usage, data inconsistency, and various update 

anomalies during insert, update, or delete operations. In a well-designed database, each fact 

should be stored only once, ensuring that a single update reflects everywhere it is needed. 

When redundant information exists, a single logical change in the real world requires 

multiple updates in the database. If any of these updates are missed, the database becomes 

inconsistent — some tuples may show the old value, while others show the new one. This 

undermines the reliability and integrity of the data. 

 



Centre for Distance Education                      11.4                  Acharya Nagarjuna University 

Example of Redundancy 

Consider the relation: 

EMPLOYEE_DEPT(Emp_ID, Emp_Name, Dept_Name, Dept_Location) 

Emp_ID Emp_Name Dept_Name Dept_Location 

101 Ramesh IT Hyderabad 

102 Suresh IT Hyderabad 

103 Meena HR Chennai 

Here, the department location is repeated for every employee in the same department. This 

duplication leads to redundant information, making the system prone to anomalies. 

Types of Update Anomalies 

1. Insertion Anomaly 

Occurs when new information cannot be inserted into the database because other 

required data is missing. 

o Example: If a new department “Finance” is created but no employee is 

assigned yet, we cannot insert the department information into the above 

relation without leaving employee-related fields blank. 

Dept_Name = Finance → Cannot insert without Emp_ID or Emp_Name 

2. Update Anomaly 

Occurs when redundant data must be updated in multiple places, and one or more 

updates are missed, leading to inconsistencies. 

o Example: If the IT department relocates from Hyderabad to Bangalore, all 

tuples for employees in IT must be updated. If one record is missed, 

inconsistent department locations appear. 

Some IT employees show Hyderabad, others show Bangalore → inconsistency. 

3. Deletion Anomaly 

Occurs when deleting a record inadvertently removes useful information that should 

have been retained. 



DBMS                                                            11.5            FUNCTIONAL DEPENDENCIES 

o Example: If the only employee in the HR department (Meena) leaves and her 

record is deleted, the information about the HR department and its 

location (Chennai) is lost. 

Deleting Meena → also deletes HR department info. 

Corrective Measure 

To eliminate redundancy and prevent these anomalies, we can normalize the relation by 

splitting it into smaller, related tables: 

EMPLOYEE(Emp_ID, Emp_Name, Dept_Name) 

DEPARTMENT(Dept_Name, Dept_Location) 

Now, department details are stored once in the DEPARTMENT table, and employee 

information references it via Dept_Name. This ensures consistency, easy updates, and no 

accidental data loss. 

11.2.3 Null Values in Tuples Minimize the use of null values as they can complicate queries 

and interpretations. Null values often indicate missing or inapplicable information, which can 

lead to ambiguous results and complex query conditions. 

The presence of null values in database tuples generally indicates that certain information is 

missing, unknown, or not applicable. While nulls are sometimes unavoidable, excessive or 

improper use of them can lead to ambiguity, inconsistent interpretations, and complex query 

processing. Therefore, good database design practices aim to minimize the use of null values 

by refining the schema and ensuring that attributes are appropriately defined. 

A null value does not mean zero or an empty string—it represents the absence of a known 

value. However, nulls create challenges for query formulation and evaluation because they 

behave differently in logical operations. For example, any comparison involving a null (such 

as NULL = 5 or NULL != 5) evaluates to unknown rather than true or false, making query 

results less predictable. 

Example 1: Problem with Null Values 

Consider the relation: 

EMPLOYEE(Emp_ID, Emp_Name, Phone, Manager_ID) 

Emp_ID Emp_Name Phone Manager_ID 

101 Ravi 9876543210 201 

102 Meena NULL 201 

103 Arjun 8765432109 NULL 



Centre for Distance Education                      11.6                  Acharya Nagarjuna University 

• Employee 102 has a null in Phone, meaning the number is missing or not available. 

• Employee 103 has a null in Manager_ID, meaning this employee may not be assigned 

a manager yet (e.g., a department head). 

When performing queries like: 

SELECT * FROM EMPLOYEE WHERE Manager_ID = 201; 

The tuples with NULL in Manager_ID are ignored, as NULL values do not satisfy equality 

conditions. 

Example 2: Complex Query Conditions 

To include tuples with missing information, queries must use conditional logic: 

SELECT * FROM EMPLOYEE WHERE Manager_ID = 201 OR Manager_ID IS NULL; 

This makes queries longer, harder to maintain, and more error-prone. If nulls are overused, 

the interpretation of data becomes uncertain—does NULL mean “unknown,” “not 

applicable,” or “not yet assigned”? 

Ways to Minimize Null Values 

1. Refine the Schema – Split relations so that optional attributes are moved into 

separate tables. 

Example: 

Instead of storing all employee data in one table, use: 

EMPLOYEE(Emp_ID, Emp_Name) 

CONTACT(Emp_ID, Phone) 

            Now, only employees with phone numbers appear in the CONTACT table. 

2. Use Default Values Where Appropriate – Replace nulls with meaningful defaults, 

such as 'N/A' or 0, if it does not distort semantics. 

3. Apply Constraints – Use NOT NULL constraints in SQL for essential attributes that 

must always contain data. 

Null values are useful for representing unknown or inapplicable information, but their 

excessive use reduces data clarity and complicates operations. By minimizing nulls through 

schema design, default values, and proper constraints, database systems maintain 

consistency, simplicity, and accurate query results. 

 



DBMS                                                            11.7            FUNCTIONAL DEPENDENCIES 

11.2.4 Spurious Tuples Preventing spurious tuples, which are erroneous data combinations 

resulting from improper joins, is essential. Proper decomposition and careful schema design 

help avoid spurious tuples, ensuring that join operations yield meaningful and accurate 

results. 

Spurious tuples are erroneous or meaningless data combinations that appear in the result of a 

join operation when relations are improperly decomposed or incorrectly joined. They occur 

when two relations are joined on attributes that do not represent a valid or complete key 

relationship. The presence of spurious tuples leads to incorrect query results, data 

inconsistency, and loss of data integrity. 

To ensure accurate data retrieval, it is essential that every decomposition of a relation 

maintains the lossless join property—that is, when the decomposed relations are joined back 

together, they should reconstruct the original data without creating any extra (spurious) 

tuples. 

Example: Improper Decomposition Leading to Spurious Tuples 

Consider the relation: 

EMP_PROJECT(Emp_ID, Emp_Name, Project_ID, Project_Name) 

If this relation is decomposed incorrectly into: 

R1(Emp_ID, Emp_Name) 

R2(Emp_ID, Project_ID, Project_Name) 

and then joined using a non-key attribute such as Emp_Name instead of the primary key 

Emp_ID, spurious tuples may appear. 

Data in the original relation: 

Emp_ID Emp_Name Project_ID Project_Name 

101 Ravi P1 AI System 

102 Meena P2 Web Portal 

Decomposed Relations: 

R1(Emp_ID, Emp_Name) 

Emp_ID Emp_Name 

101 Ravi 

102 Meena 



Centre for Distance Education                      11.8                  Acharya Nagarjuna University 

R2(Emp_ID, Project_ID, Project_Name) 

Emp_ID Project_ID Project_Name 

101 P1 AI System 

102 P2 Web Portal 

If we mistakenly join them using Emp_Name instead of Emp_ID: 

SELECT *  

FROM R1, R2  

WHERE R1.Emp_Name = R2.Project_Name; 

This join could produce spurious tuples, creating invalid combinations of employees and 

projects that never existed in the original data. 

How to Prevent Spurious Tuples 

1. Use Lossless Decomposition: 

Decompose relations based on functional dependencies and primary keys to ensure 

that joins reconstruct the original relation correctly. 

2. Join on Proper Keys: 

Always perform joins on primary key–foreign key relationships rather than on 

arbitrary or non-key attributes. 

3. Verify with the Lossless Join Test: 

 

Before finalizing decomposition, check whether joining decomposed relations 

preserves all original tuples without adding spurious ones. 

4. Maintain Referential Integrity: 

 

Define proper constraints in the DBMS to ensure that key relationships are respected. 

Example of Lossless Decomposition 

If we correctly decompose the same relation as: 

EMPLOYEE(Emp_ID, Emp_Name) 

PROJECT(Project_ID, Project_Name) 

ASSIGNMENT(Emp_ID, Project_ID) 

 



DBMS                                                            11.9            FUNCTIONAL DEPENDENCIES 

Joining these tables on their key relationships (Emp_ID and Project_ID) reproduces the 

original data without spurious tuples, ensuring lossless and meaningful joins. 

Preventing spurious tuples is fundamental to reliable database design. By ensuring lossless 

decomposition, using correct join keys, and maintaining referential integrity, designers 

avoid erroneous data combinations. Together with other design principles—semantic clarity, 

reduced redundancy, and minimal nulls—this practice ensures that the resulting database 

schema is accurate, efficient, and anomaly-free. 

11.3 FUNCTIONAL DEPENDENCIES 

11.3.1 Definition and Concept 

A functional dependency (FD) is a constraint between two sets of attributes in a relation. For 

a relation R, an attribute Y is functionally dependent on attribute X (denoted as X → Y) if for 

every valid instance of X, that value of X uniquely determines the value of Y.   

 

11.3.2 Trivial and Non-trivial Functional Dependencies 

 

 

A functional dependency (FD) describes a relationship between two sets of attributes in a 

relation schema. It is expressed as: 

 
which means the value of attribute set X uniquely determines the value of attribute set Y. 

Functional dependencies are categorized into trivial and non-trivial, depending on whether 

the dependent attributes are already part of the determinant attributes. 

 

1. Trivial Functional Dependency 

A functional dependency X → Y is said to be trivial if Y is a subset of X. 

In other words, the dependency already exists by definition and adds no new information. 

 
Examples: 

• {Student_ID, Name} → Student_ID (trivial, since Student_ID ⊆ {Student_ID, 

Name}) 

• {Emp_ID} → Emp_ID (trivial) 

• {Course_ID, Title} → Title (trivial) 

 



Centre for Distance Education                      11.10                  Acharya Nagarjuna University 

 

The dependency holds for all possible data in a relation — it is true by the definition of 

attributes, so it does not affect normalization or decomposition. 

 

Non-Trivial Functional Dependency 

 

A functional dependency X → Y is non-trivial if Y is not a subset of X — meaning the 

dependent attribute(s) are not already included in the determinant. 

 
Examples: 

• Student_ID → Student_Name 

• Emp_ID → Department 

• {Course_ID} → Instructor 

11.3.3 Closure of a Set of Functional Dependencies 

The closure of a set of functional dependencies (FDs) is a crucial concept in relational 

database theory. It refers to the complete set of all functional dependencies that can be 

logically inferred from a given set of FDs using a set of inference rules, known as 

Armstrong's Axioms. The closure helps in understanding all the implications of a given set of 

FDs and is instrumental in the normalization process.  

The closure of a set of functional dependencies, denoted as F⁺, represents every dependency 

that can be derived logically from the original set F through repeated application of the 

inference rules (Armstrong’s Axioms: reflexivity, augmentation, and transitivity). Computing 

this closure is essential for several database design tasks, such as testing the equivalence of 

FD sets, finding candidate keys, and verifying the correctness of decompositions. 

For example, if we are given FDs like A → B and B → C, then by applying the transitivity 

rule, we can infer A → C, which is included in F⁺. Determining F⁺ helps database designers 

identify hidden dependencies that are not explicitly stated but can be inferred, thus providing 

a complete picture of the relationships between attributes. In practice, closure computation 

ensures that the database schema is logically sound, free from redundancy, and adheres to the 

principles of dependency preservation during normalization and decomposition. 

11.3.4 Armstrong’s Axioms 

Armstrong’s Axioms are a set of inference rules used to derive all possible FDs from a given 

set: 

• Reflexivity: If Y is a subset of X, then X → Y. 

• Augmentation: If X → Y, then XZ → YZ for any Z. 

• Transitivity: If X → Y and Y → Z, then X → Z. 



DBMS                                                            11.11            FUNCTIONAL DEPENDENCIES 

Finding the Closure 

The closure of a set of FDs, denoted as F+F^+F+, is found by repeatedly applying 

Armstrong's Axioms to the given set FFF until no new FDs can be derived. 

Example 

Consider a relation R(A,B,C)R(A, B, C)R(A,B,C) with the following FDs: 

1. A→BA \to BA→B 

2. B→CB \to CB→C 

To find the closure F+F^+F+ of the set F={A→B,B→C}F = \{ A \to B, B \to C 

\}F={A→B,B→C}: 

1. Start with the given FDs: 

o A→BA \to BA→B 

o B→CB \to CB→C 

2. Apply Transitivity to derive a new FD: 

o Since A→BA \to BA→B and B→CB \to CB→C, by Transitivity, A→CA \to 

CA→C. 

3. The closure F+F^+F+ includes: 

o A→BA \to BA→B 

o B→CB \to CB→C 

o A→CA \to CA→C 

The closure F+F^+F+ represents all the functional dependencies that can be inferred from the 

initial set FFF. It is a comprehensive set that captures all the relationships implied by the 

original FDs. 

Applications of Closure 

• Normalization: Helps in decomposing relations into normalized forms by identifying 

all possible FDs. 

• Attribute Closure: Useful for determining if a certain set of attributes can 

functionally determine another set of attributes. 

• Candidate Keys: Assists in identifying candidate keys by examining the attribute 

closure. 

Understanding the closure of a set of FDs is fundamental in database design and 

normalization, as it ensures that all potential data dependencies are considered when 

structuring the database schema. 



Centre for Distance Education                      11.12                  Acharya Nagarjuna University 

11.3.5 Decomposition Using Functional Dependencies 

Decomposition involves breaking down a relation into two or more relations based on 

functional dependencies to achieve a higher normal form. The decomposition should be 

lossless and dependency-preserving. 

Steps for Decomposition 

1. Identify Functional Dependencies: Determine the set of functional dependencies 

that hold for the relation. 

2. Check for Violation of Normal Forms: Identify if the relation violates any of the 

normal forms (1NF, 2NF, 3NF, BCNF). 

3. Decompose the Relation: Use functional dependencies to split the relation into 

smaller relations that conform to the desired normal form. 

Example 

Consider a relation R(A,B,C,D)R(A, B, C, D)R(A,B,C,D) with the following functional 

dependencies: 

1. A→BA \to BA→B 

2. C→DC \to DC→D 

To decompose this relation, we can follow these steps: 

1. Identify Functional Dependencies: The given FDs are A→BA \to BA→B and 

C→DC \to DC→D. 

2. Check Normal Form: Let's assume the relation RRR is not in BCNF because each 

FD does not have a superkey on the left-hand side. 

3. Decompose the Relation: 

o Based on A→BA \to BA→B: 

▪ Create R1(A,B)R1(A, B)R1(A,B). 

o Based on C→DC \to DC→D: 

▪ Create R2(C,D)R2(C, D)R2(C,D). 

o Ensure that remaining attributes are appropriately placed to preserve all 

functional dependencies: 

▪ Combine the remaining attributes into another relation if needed: 

R3(A,C)R3(A, C)R3(A,C). 

Thus, the original relation R(A,B,C,D)R(A, B, C, D)R(A,B,C,D) is decomposed into: 

• R1(A,B)R1(A, B)R1(A,B) 

• R2(C,D)R2(C, D)R2(C,D) 

• R3(A,C)R3(A, C)R3(A,C) 



DBMS                                                            11.13            FUNCTIONAL DEPENDENCIES 

Ensuring Lossless Join 

To ensure the decomposition is lossless, the join of the decomposed relations should yield the 

original relation without any loss of information. This can be verified using the following 

test: 

• For the decomposition RRR into R1R1R1 and R2R2R2: 

o The decomposition is lossless if R1∩R2R1 \cap R2R1∩R2 forms a superkey 

for either R1R1R1 or R2R2R2. 

Ensuring Dependency Preservation 

To ensure that the functional dependencies are preserved, the union of the projections of the 

decomposed relations should cover all the original functional dependencies. 

Example of Lossless Join and Dependency Preservation 

For the decomposed relations: 

• R1(A,B)R1(A, B)R1(A,B) 

• R2(C,D)R2(C, D)R2(C,D) 

• R3(A,C)R3(A, C)R3(A,C) 

• Lossless Join: R1∩R3={A}R1 \cap R3 = \{A\}R1∩R3={A} and R2∩R3={C}R2 \cap 

R3 = \{C\}R2∩R3={C}. Since AAA and CCC can act as keys in their respective 

decomposed relations, the join is lossless. 

• Dependency Preservation: The original dependencies A→BA \to BA→B and C→DC 

\to DC→D are maintained in R1R1R1 and R2R2R2. 

11.4 Summary 

This chapter discussed the key principles that guide the design of relation schemas in a 

database to ensure logical consistency, minimal redundancy, and reliable data management. It 

began with informal design guidelines, emphasizing that each relation should represent a 

single, well-defined concept with attributes that have clear semantics. The importance of 

avoiding redundant data, null values, and spurious tuples was highlighted, as these issues 

lead to data anomalies and inaccuracies during database operations. Proper decomposition 

and meaningful attribute relationships were shown to be essential in creating schemas that are 

easy to maintain and free from anomalies. 

The chapter also introduced the theoretical foundation of Functional Dependencies (FDs)—

a cornerstone of relational database design. Concepts such as trivial and non-trivial 

dependencies, closure of FDs, and Armstrong’s Axioms were explained, demonstrating 

their role in normalization and schema refinement. By understanding how attributes 

determine one another, designers can identify redundant data relationships and decompose 



Centre for Distance Education                      11.14                  Acharya Nagarjuna University 

relations effectively. Overall, the chapter establishes a strong basis for progressing toward 

normal forms, ensuring that relational databases are both efficient and logically sound. 

 

11.5 Technical Terms 

1. Relation Schema 

2. Functional Dependency (FD) 

3. Trivial Functional Dependency 

4. Non-Trivial Functional Dependency 

5. Closure of Functional Dependencies (F⁺) 

6. Armstrong’s Axioms 

7. Update Anomalies 

8. Lossless Decomposition 

9. Spurious Tuples 

10. Normalization 

11.6 Self-Assessment Questions 

Essay Questions 

1. Explain the importance of semantics in relation attributes with suitable examples. 

2. Discuss redundancy and different types of update anomalies in database design. 

3. Define Functional Dependencies and explain their significance in database 

normalization. 

4. Describe the concept of closure of functional dependencies and its applications. 

5. Explain Armstrong’s Axioms and show how they are used to derive new 

dependencies. 

Short Questions 

1. What is the difference between trivial and non-trivial functional dependencies? 

2. Define spurious tuples and explain how they can be prevented. 

3. What are null values, and why should their use be minimized? 

4. What is meant by lossless decomposition? 

5. List any two uses of closure in relational database design. 



DBMS                                                            11.15            FUNCTIONAL DEPENDENCIES 

 

11.7 Suggested Readings 

1. Ramez Elmasri and Shamkant B. Navathe, Fundamentals of Database Systems, 

Pearson Education. 

2. C. J. Date, An Introduction to Database Systems, Addison-Wesley. 

3. Abraham Silberschatz, Henry F. Korth, and S. Sudarshan, Database System Concepts, 

McGraw Hill. 

4. Raghu Ramakrishnan and Johannes Gehrke, Database Management Systems, 

McGraw Hill. 

5. Thomas Connolly and Carolyn Begg, Database Systems: A Practical Approach to 

Design, Implementation, and Management, Pearson. 

6. Bipin C. Desai, An Introduction to Database Systems, Galgotia Publications. 

7. Peter Rob and Carlos Coronel, Database Systems: Design, Implementation, and 

Management, Cengage Learning. 

8. Hector Garcia-Molina, Jeffrey D. Ullman, and Jennifer Widom, Database Systems: 

The Complete Book, Pearson. 

9. Alexis Leon and Mathews Leon, Database Management Systems, Vikas Publishing. 

10. Ivan Bayross, SQL, PL/SQL: The Programming Language of Oracle, BPB 

Publications. 

Dr. Vasantha Rudramalla 



LESSON- 12 

NORMALIZATION 
 

AIMS AND OBJECTIVES 

 

The primary goal of this chapter is to understand the concept of Normalization for Relational 

Databases. The chapter began Normal Forms Based in Primary Keys, General Definitions of 

Second and Third Normal Forms, Boyce-Codd Normal Form .After completing this chapter, 

the student will understand Normalization for Relational Databases. 

 

12.1 Introduction 

12.2     Normal Forms Based on Primary Keys 

     12.2.1 First Normal Form (1NF) 

 12.2.2 Second Normal Form (2NF) 

 12.2.3 Third Normal Form (3NF) 

12.3   Boyce-Codd Normal Form (BCNF) 

   12.3.1 Definition and Characteristics 

         12.3.2  Difference Between 3NF and BCNF 

    12.3.3 Examples and Decomposition into BCN 

12.4     Summary 

12.5     Technical Terms  

12.6      Self-Assessment Questions 

12.7    Suggested Readings 

 

12.1 INTRODUCTION 

 

Database normalization is a critical process in relational database design that organizes data 

to reduce redundancy and improve data integrity. By structuring data into smaller, related 

tables, normalization ensures that the database is efficient, scalable, and easier to maintain. 

This process not only optimizes storage space but also enhances the accuracy and consistency 

of the data by eliminating anomalies and minimizing the chances of data duplication.  

 

The primary goals of normalization are to eliminate redundant data, minimize update 

anomalies, and simplify data structures. By dividing large tables into smaller, more 

manageable ones and defining clear relationships between them, normalization aims to ensure 

that each piece of data is stored only once. This improves data consistency and integrity, 

making the database more reliable and easier to query and update. Ultimately, normalization 

contributes to a more efficient database system that can handle complex queries and data 

manipulation tasks with ease 

.  

12.2 NORMAL FORMS BASED ON PRIMARY KEYS 

 

Normal forms based on primary keys are standards used to organize database schemas to 

reduce redundancy and improve data integrity. These normal forms include the First Normal 

Form (1NF), Second Normal Form (2NF), and Third Normal Form (3NF). 

 

 

 

 



Centre for Distance Education                  12.1                    Acharya Nagarjuna University 

12.2.1 First Normal Form (1NF) 

 

It is the foundational stage of database normalization that ensures the table structure is 

simplified and data is stored in a tabular format with no repeating groups. A table is in 1NF if 

it meets the following criteria: 

 

1. Atomicity: Each column contains atomic (indivisible) values, meaning that each cell 

holds a single value rather than a set of values or a list. 

2. Uniqueness: Each column should have unique names, and the order in which data is 

stored does not matter. 

3. No Repeating Groups: Each record (row) should be unique, and no two rows should 

have the same combination of values in all columns. 

 

Example 

Consider a table Students before normalization: 

 
 

In this table, the Courses column contains multiple values, violating 1NF. 

To convert this table to 1NF, we split the multi-valued column into separate rows: 

 
 

In this normalized table: 

• Each cell contains only a single value. 

• The table structure is simplified. 

• No repeating groups exist. 

 

By ensuring the table is in 1NF, we have eliminated any repeating groups and made each 

column contain only atomic values, setting a solid foundation for further normalization 

processes. 

 

Algorithm: First Normal Form (1NF) 

1. Start. 

2. Identify the relation (table) — Examine the attributes (columns) and tuples 

(rows) in the given unnormalized table. 



DBMS                                   12.2                NORMALIZATION  

1. Check for repeating groups or multivalued attributes. 

a. If an attribute contains multiple values (e.g., a list or set), it violates 1NF. 

2. Eliminate repeating groups. 

a. For each repeating group, create a separate tuple for every unique value. 

b. Ensure each cell in the relation holds only a single atomic value. 

3. Assign proper attribute names to all data items, if not already done, ensuring clear 

 column definitions. 

4. Identify a primary key that uniquely identifies each tuple (row) in the table. 

5. Reorganize the table such that: 

a. Each column contains atomic values only. 

b. Each row is uniquely identified by the primary key. 

6. Check for data consistency — Ensure that no information has been lost or 

 duplicated during conversion. 

7. Stop. 

 

Example 

Unnormalized Table: 

Student_ID Student_Name Subjects 

101 Ravi Kumar DBMS, Java, Python 

102 Meena Sharma AI, ML 

 

After Applying 1NF: 

Student_ID Student_Name Subject 

101 Ravi Kumar DBMS 

101 Ravi Kumar Java 

101 Ravi Kumar Python 

102 Meena Sharma AI 

102 Meena Sharma ML 

 

Result: 

The relation is now in First Normal Form (1NF) — all values are atomic, and there are no 

repeating groups. 

First Normal Form (1NF) – Relational Algebra (Brief) 

Given Relation: 

 

STUDENT(Student_ID, Student_Name, Subjects) 

Here, Subjects is a multivalued attribute, violating 1NF. 

 

Relational Algebra Expression: 

 
Resulting Relation: 

STUDENT_1NF(Student_ID, Student_Name, Subject) 

 

Student_ID Student_Name Subject 

101 Ravi Kumar DBMS 

101 Ravi Kumar Java 

101 Ravi Kumar Python 



Centre for Distance Education                  12.1                    Acharya Nagarjuna University 

 

The UNNEST operation converts multivalued attributes into atomic values, producing one 

tuple per subject. Thus, the relation now satisfies First Normal Form (1NF) — all attributes 

hold single, indivisible values. 

 

12.2.2 Second Normal Form (2NF) 

 

It builds on the principles of First Normal Form (1NF) by further reducing redundancy and 

ensuring that every non-key attribute is fully functionally dependent on the entire primary 

key. A table is in 2NF if it meets the following criteria: 

 

1. First Normal Form (1NF): The table must already be in 1NF. 

2. Full Functional Dependency: Every non-key attribute must depend on the entire 

primary key, not just a part of it. This rule is particularly relevant for tables with 

composite primary keys. 

 

Example 

Consider a table Enrollments that is in 1NF but not in 2NF: 

 

 
 

In this table: 

• The primary key is the composite key (StudentID, CourseID). 

• StudentName depends only on StudentID. 

• CourseName and Instructor depend only on CourseID. 

 

To convert this table to 2NF, we need to remove partial dependencies by creating separate 

tables: 

1. Students Table: 

           CREATE TABLE Students ( 

 StudentID INT PRIMARY KEY, 

     StudentName VARCHAR(50) 

 ); 

 

 
 

 

 



DBMS                                   12.2                NORMALIZATION  

 

Courses Table: 

CREATE TABLE Courses  ( 

CourseID INT PRIMARY KEY, 

     CourseName VARCHAR(50), 

     Instructor VARCHAR(50) 

     ); 

 

 
 

Enrollments Table: 

 

CREATE TABLE Enrollments ( 

    StudentID INT, 

    CourseID INT, 

    PRIMARY KEY (StudentID, CourseID), 

    FOREIGN KEY (StudentID) REFERENCES Students(StudentID), 

    FOREIGN KEY (CourseID) REFERENCES Courses(CourseID) 

     ); 

 
 

In this normalized structure: 

• The Students table ensures that Student Name is fully dependent on Student ID. 

• The Courses table ensures that Course Name and Instructor are fully dependent on 

Course ID. 

• The Enrollments table links students to courses without any partial dependencies. 

 

By achieving 2NF, we have eliminated partial dependencies, thus further reducing 

redundancy and potential update anomalies. 

Algorithm: Conversion to 2NF 

1. Start with a relation in 1NF. 

2. Identify the primary key — if it is composite, check for partial dependencies. 

3. If any non-key attribute depends on only part of the key, move it to a new relation 

along with that part of the key. 

4. Keep attributes fully functionally dependent on the whole primary key in the 

original relation. 

5. The resulting set of relations are in 2NF.  



Centre for Distance Education                  12.1                    Acharya Nagarjuna University 

Relational Algebra Expression 

 
Example 

1NF Relation: 

COURSE(Course_ID, Student_ID, Student_Name, Marks) 

 

Functional Dependencies: 

• (Course_ID, Student_ID) → Marks 

• Student_ID → Student_Name 

 

Here, Student_Name depends only on part of the composite key (Student_ID) → Partial 

Dependency. 

 

Decompose into: 

1. STUDENT(Student_ID, Student_Name) 

2. COURSE_ENROLL(Course_ID, Student_ID, Marks) 

  

Now, all non-key attributes depend fully on their respective primary keys → 2NF. 

 

12.2.3 Third Normal Form (3NF) 

 

It builds on the principles of Second Normal Form (2NF) by further eliminating redundancy 

and ensuring that every non-key attribute is not only fully functionally dependent on the 

primary key but also non-transitively dependent on it. A table is in 3NF if it meets the 

following criteria: 

 

1. Second Normal Form (2NF): The table must already be in 2NF. 

2. No Transitive Dependency: No non-key attribute should depend on another non-key 

attribute. In other words, all non-key attributes must depend only on the primary key. 

 

Example 

Consider a table StudentEnrollments that is in 2NF but not in 3NF: 

 

 
 

In this table: 

• The primary key is the composite key (StudentID, CourseID). 

• InstructorName depends on InstructorID, which is a non-key attribute, creating a 

transitive dependency. 

 

To convert this table to 3NF, we need to remove the transitive dependency by creating 

separate tables: 

 



DBMS                                   12.2                NORMALIZATION  

1. Instructors Table: 

     CREATE TABLE Instructors ( 

    InstructorID INT PRIMARY KEY, 

    InstructorName VARCHAR(50) 

    ); 

 

 
 

Enrolments Table: 

 

CREATE TABLE Enrollments ( 

    StudentID INT, 

    CourseID INT, 

    InstructorID INT, 

    PRIMARY KEY (StudentID, CourseID), 

    FOREIGN KEY (InstructorID) REFERENCES Instructors(InstructorID) 

    ); 

 

 
 

In this normalized structure: 

• The Instructors table stores the instructor information, ensuring Instructor Name is 

fully dependent on Instructor ID. 

• The Enrollments table links students to courses and instructors without any transitive 

dependencies. 

 

By achieving 3NF, we have eliminated transitive dependencies, further reducing redundancy 

and potential anomalies in the database. This normalization ensures that all non-key attributes 

depend directly on the primary key and not on other non-key attributes 

 

Algorithm: Conversion to 3NF 

1. Start with relations in 2NF. 

2. Identify transitive dependencies — where a non-key attribute depends on another 

non-key attribute. 

3. Remove transitive dependencies by creating new relations: 

• Move the dependent attributes and the determinant to a separate table. 

4. Retain only attributes directly dependent on the primary key in the original table. 

5. The resulting relations are in 3NF. 

 

 



Centre for Distance Education                  12.1                    Acharya Nagarjuna University 

 

 

Relational Algebra Expression 

 
Example 

2NF Relation: 

EMPLOYEE(Emp_ID, Emp_Name, Dept_ID, Dept_Name) 

 

Functional Dependencies: 

• Emp_ID → Emp_Name, Dept_ID 

• Dept_ID → Dept_Name 

 

Dept_Name depends on Dept_ID (a non-key attribute) → Transitive Dependency. 

 

Decompose into: 

1. EMPLOYEE(Emp_ID, Emp_Name, Dept_ID) 

2. DEPARTMENT(Dept_ID, Dept_Name) 

 

No partial or transitive dependencies remain → 3NF achieved. 

 

Normal 

Form 

Removes Key Condition Result 

1NF Multivalued 

attributes 

Attributes must be atomic Flat, atomic relation 

2NF Partial dependency Non-key attributes fully depend 

on full key 

No partial 

dependency 

3NF Transitive 

dependency 

Non-key depends only on key No transitive 

dependency 

 

12.3 BOYCE-CODD NORMAL FORM (BCNF) 

 

12.3.1 Boyce-Codd Normal Form (BCNF) is an advanced version of the Third Normal 

Form (3NF) in database normalization. BCNF aims to eliminate redundancy and potential 

anomalies by ensuring that all functional dependencies in a relation are appropriately 

managed. 

 

A relation is in Boyce-Codd Normal Form (BCNF) if it satisfies the following conditions: 

1. It is in Third Normal Form (3NF): The relation must already meet all the 

requirements of 3NF. 

2. Every determinant is a candidate key: For every functional dependency X→YX \to 

YX→Y, XXX must be a superkey (a set of attributes that uniquely identify a tuple in 

a relation). 

 

12.3.2 Difference Between 3NF and BCNF 

 

While 3NF ensures that non-key attributes are non-transitively dependent on the primary key, 

BCNF takes this a step further by addressing situations where 3NF might still allow certain 



DBMS                                   12.2                NORMALIZATION  

types of redundancy. Specifically, BCNF ensures that even when a functional dependency 

involves a part of a candidate key, it does not violate normalization principles. 

Example 

Consider a table Courses with the following attributes: 

 

 
 

Functional dependencies in this table: 

1. CourseID→InstructorCourseID \to InstructorCourseID→Instructor 

2. Instructor→RoomInstructor \to RoomInstructor→Room 

 

The composite key here can be either CourseID CourseID CourseID or 

InstructorInstructorInstructor, as each uniquely identifies a course offering. 

 

Identifying BCNF Violation 

 

In this case, Instructor→RoomInstructor \to RoomInstructor→Room is problematic because 

Instructor is not a superkey. This means the table is in 3NF (as there are no transitive 

dependencies), but not in BCNF. 

 

Difference Between 3NF and BCNF 

 

Feature Third Normal Form (3NF) Boyce–Codd Normal 

Form (BCNF) 

Definition A relation is in 3NF if for every functional 

dependency X → Y, at least one of the 

following holds:1. X is a superkey, or2. Y is 

a prime attribute (part of some candidate 

key). 

A relation is in BCNF if 

for every functional 

dependency X → Y, X is a 

superkey. 

Condition 

Relaxation 

Allows non-superkey determinants if Y is a 

prime attribute. 

Stricter — every 

determinant must be a 

superkey. 

Anomaly 

Removal 

Removes partial and transitive 

dependencies but may still allow some 

anomalies. 

Removes all anomalies 

related to functional 

dependencies. 

Dependency 

Preservation 

Always possible — 3NF decomposition 

preserves all dependencies. 

May not preserve all 

dependencies after 

decomposition. 

Lossless Join 

Property 

Always ensures a lossless join. Also ensures a lossless 

join. 

Focus Balances dependency preservation and 

normalization. 

Focuses on eliminating 

redundancy completely. 

Level of Less restrictive than BCNF. More restrictive — special 



Centre for Distance Education                  12.1                    Acharya Nagarjuna University 

Restriction case of 3NF. 

Example 

(Violating 

3NF/BCNF) 

In 3NF: Relation may allow FD where 

determinant is not a key but dependent is a 

prime attribute. 

In BCNF: Such an FD is 

not allowed — 

determinant must be a key. 

Preferred 

When 

Dependency preservation is more important 

(e.g., in practical systems). 

Data integrity and anomaly 

elimination are more 

critical. 

 

12.3.3 Examples and Decomposition into BCNF 

To achieve BCNF, we decompose the table into two relations: 

 

Instructors Table: 

CREATE TABLE Instructors ( 

    Instructor VARCHAR(50) PRIMARY KEY, 

    Room VARCHAR(50) 

    ); 

 

 
Courses Table: 

 

CREATE TABLE Courses ( 

    CourseID INT PRIMARY KEY, 

    Instructor VARCHAR(50), 

    FOREIGN KEY (Instructor) REFERENCES Instructors(Instructor) 

    ); 

 

 
 

Importance 

 

Achieving BCNF ensures that all functional dependencies are properly managed, eliminating 

redundancy and potential update anomalies. BCNF is particularly useful in complex database 

designs where multiple candidate keys and intricate dependencies exist, providing a higher 

level of normalization than 3NF. 

By decomposing relations into BCNF, database designers can create more robust, reliable, 

and efficient database schemas that uphold data integrity and consistency. 

 

 

 

 



DBMS                                   12.2                NORMALIZATION  

 

 

Algorithm to decompose a relation into BCNF (high level) 

1. Input: relation with a set of functional dependencies . 

2. If every FD in has as a superkey of , then R is in BCNF — stop. 

3. Otherwise pick a violating FD where is not a superkey. 

4. Decompose into two relations: 

a. (attributes ) 

b. (attributes of with removed) 

5. Replace by and ; compute the projection of on these relations (i.e., 

relevant FDs). 

6. Recursively apply the algorithm to and until every relation is in BCNF. 

7. Output: set of BCNF relations (decomposition). 

 

 

 

• Use BCNF to eliminate anomalies caused by FDs whose determinants are not keys. 

• Expect possible loss of dependency preservation — if preserving all FDs is essential 

(e.g., for efficient enforcement), 3NF may be preferred because it always allows 

dependency preservation while removing many anomalies. 

 

12.4  SUMMARY 

 

This chapter, we explored the concept of normalization, a systematic approach to organizing 

data in a database to reduce redundancy and improve data integrity. The process of 

normalization involves dividing larger, complex tables into smaller, related ones using well-

defined rules known as normal forms. We began with First Normal Form (1NF), which 

eliminates repeating groups by ensuring that each attribute contains only atomic (indivisible) 

values. Second Normal Form (2NF) extends this by removing partial dependencies—

ensuring that all non-key attributes are fully functionally dependent on the entire primary key. 

Third Normal Form (3NF) further refines this by removing transitive dependencies, where 

non-key attributes depend on other non-key attributes. 

 

We also studied the Boyce–Codd Normal Form (BCNF), which is a stricter version of 3NF, 

ensuring that every determinant is a candidate key. BCNF provides a higher degree of data 

consistency by eliminating all possible anomalies related to functional dependencies. The 

chapter compared 3NF and BCNF, emphasizing that while 3NF allows some redundancy 

under certain conditions, BCNF enforces stricter dependency rules. Practical examples and 

decomposition steps illustrated how complex relations can be broken down into BCNF-

compliant structures without losing data. Overall, normalization ensures efficient, reliable, 



Centre for Distance Education                  12.1                    Acharya Nagarjuna University 

and logically structured databases that support easier maintenance and accurate query 

processing. 

 

12.5  TECHNICAL TERMS 

 

• Functional Dependency (FD) 

• Normalization 

• First Normal Form (1NF) 

• Second Normal Form (2NF) 

• Third Normal Form (3NF) 

• Boyce–Codd Normal Form (BCNF) 

• Anomaly 

• Decomposition 

• Lossless Decomposition 

• Reliability 

 

12.6    SELF ASSESSMENT QUESTIONS 

Essay questions: 

 

1. Illustrate about BCNF 

2. Describe about 2NF and 3NF 

3. Explain about Functional Dependency 

 

Short Notes:  

  

1. Write Transaction Dependency  

2. Define Full functional dependency 

3. Explain about Armstrong’s Axioms 

 

12.7   SUGGESTED READINGS 

 

1. Codd, E. F. (1970). "A Relational Model of Data for Large Shared Data Banks." 

Communications of the ACM, 13(6), 377-387. 

2. Date, C. J. (2003). "An Introduction to Database Systems." 8th Edition. Addison-

Wesley. 

3. Silberschatz, A., Korth, H. F., & Sudarshan, S. (2010). "Database System Concepts." 

6th Edition. McGraw-Hill. 

4. Ullman, J. D., & Widom, J. (2008). "A First Course in Database Systems." 3rd 

Edition. Pearson. 

 

Dr. Vasantha Rudramalla 



LESSON- 13 

RELATIONAL DATABASE DESIGN ALGORITHMS 
 

AIMS AND OBJECTIVES 

 

The primary goal of this chapter is to understand the concept of Relational Database Design 

Algorithms. The chapter began Informal Design Guidelines for Relation Schemas and 

Algorithms for Relational Database Schema Design with example. After completing this 

chapter, the student will understand Relational Database Design Algorithms. 

 

13.1 INTRODUCTION 

13.2 PROPERTIES OF RELATIONAL DECOMPOSITIONS 

  13.2.1 NEED FOR DECOMPOSITION 

  13.2.2 DESIRABLE PROPERTIES OF DECOMPOSITION 

    (A) ATTRIBUTE PRESERVATION 

    (B) LOSSLESS (NON-ADDITIVE) JOIN PROPERTY 

    (C) DEPENDENCY PRESERVATION 

  13.2.3 TRADE-OFFS IN DECOMPOSITION 

  13.2.4 EXAMPLE – DECOMPOSITION OF AN EMPLOYEE RELATION 

13.3 ALGORITHMS FOR RELATIONAL DATABASE SCHEMA DESIGN 

  13.3.1 ALGORITHM FOR TESTING LOSSLESS JOIN PROPERTY 

  13.3.2 ALGORITHM FOR TESTING DEPENDENCY PRESERVATION 

  13.3.3 ALGORITHM FOR FINDING CANONICAL COVER 

  13.3.4 ALGORITHM FOR 3NF DECOMPOSITION 

  13.3.5 ALGORITHM FOR BCNF DECOMPOSITION 

  13.3.6 ALGORITHM FOR COMPUTING ATTRIBUTE CLOSURE 

  13.3.7 EXAMPLE – STEP-BY-STEP APPLICATION ON A UNIVERSITY 

DATABASE 

13.4 NORMALIZATION AND SCHEMA REFINEMENT 

  13.4.1 STEPWISE NORMALIZATION USING FDS 

  13.4.2 FROM 1NF TO BCNF – ALGORITHMIC APPROACH 

  13.4.3 ADVANTAGES AND LIMITATIONS OF ALGORITHMIC 

NORMALIZATION 

13.5 DESIGN EXAMPLE: LIBRARY DATABASE SCHEMA 

  13.5.1 GIVEN FUNCTIONAL DEPENDENCIES 

  13.5.2 FINDING KEYS USING ATTRIBUTE CLOSURE 

  13.5.3 APPLYING 3NF DECOMPOSITION ALGORITHM 

  13.5.4 ENSURING DEPENDENCY PRESERVATION 

13.6 SUMMARY 

13.7 TECHNICAL TERMS 

13.8 SELF-ASSESSMENT QUESTIONS  

13.9 SUGGESTED READINGS  



Centre for Distance Education                    13.2                    Acharya Nagarjuna University 

13.1 INTRODUCTION 

 

Designing a good relational database schema is a crucial step in ensuring that data is stored 

efficiently, consistently, and without redundancy. Poorly designed schemas often lead to 

update anomalies, data inconsistency, and redundant information. To avoid these problems, 

designers apply systematic approaches such as normalization and decomposition algorithms 

that transform large, complex relations into smaller, well-structured relations. 

 

In relational database theory, decomposition refers to the process of breaking down a relation 

schema into multiple smaller schemas that satisfy certain desirable properties. The key goal is 

to simplify the database structure while preserving important characteristics such as data 

integrity, dependency preservation, and lossless join. These ensure that no data is lost or 

misrepresented during the decomposition process. 

 

For example, consider a relation EMP_DEPT(Emp_ID, Emp_Name, Dept_Name, 

Dept_Location). If multiple employees belong to the same department, repeating Dept_Name 

and Dept_Location causes redundancy. Decomposing this into: 

 

EMPLOYEE(Emp_ID, Emp_Name, Dept_Name) 

DEPARTMENT(Dept_Name, Dept_Location) 

 

removes redundancy while maintaining all relationships through a foreign key. 

Thus, relational design algorithms focus on identifying dependencies and decomposing 

relations so that the resulting schema is both efficient and logically sound. 

 

13.2     PROPERTIES OF RELATIONAL DECOMPOSITIONS 

 

Decomposition is an essential part of database design. However, not every decomposition is 

beneficial — an improper decomposition can lead to data loss or dependency violations. To 

evaluate the quality of a decomposition, we use specific properties that every good 

decomposition should satisfy. 

 

13.2.1 Need for Decomposition 

 

• A relation schema may contain data redundancy and anomalies (insertion, deletion, 

update). 

• Decomposition helps simplify complex relations into smaller ones, making them 

easier to manage. 

• Each resulting relation should maintain data integrity and consistency with the 

original schema. 

 

13.2.2 Desirable Properties of Decomposition 

 

Desirability of Decomposition refers to the benefits and considerations involved in breaking 

down a relational database schema into smaller, more manageable relations. Decomposition 

is often guided by the goals of eliminating redundancy, preventing anomalies, and ensuring 

data integrity. The key criteria for desirable decomposition include maintaining the lossless 

join property and preserving dependencies. 



DBMS                                                            13.3                                 Relational Database…   

Importance 

• Reduces Redundancy: Eliminates duplicate data, thereby saving storage space and 

ensuring that data updates are more efficient. 

• Prevents Anomalies: Helps avoid update, insertion, and deletion anomalies that can 

lead to inconsistent and unreliable data. 

• Enhances Data Integrity: Ensures that the integrity constraints of the original 

schema are maintained, thus preserving the accuracy and consistency of the data. 

• Improves Query Performance: By creating more focused and smaller tables, 

decomposition can enhance the performance of queries and updates. 

 

Example: 

Given FDs: 

Emp_ID → Emp_Name, Dept_ID 

Dept_ID → Dept_Name 

 

If decomposition allows each FD to be enforced locally in one of the decomposed relations, 

dependency preservation is satisfied. 

 

A good decomposition must satisfy three key properties: 

(a) Attribute Preservation 

All attributes from the original relation R must appear in at least one of the decomposed 

relations. 

Formally: 

 

where every attribute in appears in at least one . 

     Example: 

Original Relation: STUDENT(Student_ID, Name, Course, Instructor) 

Decomposed into: 

STUDENT_INFO(Student_ID, Name) 

COURSE_INFO(Course, Instructor) 

All attributes {Student_ID, Name, Course, Instructor} are preserved. 

 

(b) Lossless (Non-Additive) Join Property 

 

The Lossless Join Property is a critical feature in relational database design that ensures data 

integrity during the decomposition of a relation into smaller relations. A decomposition of a 

relation RRR into two or more relations R1,R2,...,RnR1, R2, ..., RnR1,R2,...,Rn is said to 

have the lossless join property if, by joining these decomposed relations, we can exactly 

recreate the original relation RRR without any loss of information or introduction of spurious 

tuples. 

 

Importance 

• Data Integrity: Ensures that the decomposed relations, when joined, yield the exact 

original dataset, preserving all data accurately. 

• Consistency: Prevents anomalies and inconsistencies that can arise from improper 

decomposition. 



Centre for Distance Education                    13.4                    Acharya Nagarjuna University 

• Database Efficiency: Enables effective normalization by decomposing tables to 

reduce redundancy while maintaining the ability to reconstruct the original data 

accurately. 

 

This ensures that no information is lost when decomposed relations are joined back together. 

For a decomposition of relation R into R₁ and R₂, the decomposition is lossless if: 

 
That is, joining R₁ and R₂ on their common attributes must reproduce the original relation 

exactly. 

 

     Example: 

If EMP(Emp_ID, Emp_Name, Dept_ID, Dept_Name) is decomposed into: 

EMPLOYEE(Emp_ID, Emp_Name, Dept_ID) 

DEPARTMENT(Dept_ID, Dept_Name) 

 

Then joining on Dept_ID gives back the original EMP relation without generating spurious 

tuples. 

 

(c) Dependency Preservation 

 

Dependency Preservation is a crucial property in relational database design that ensures all 

functional dependencies from the original relation are still enforceable after decomposition 

into smaller relations. A decomposition is said to preserve dependencies if every functional 

dependency in the original schema can be derived from the set of dependencies in the 

decomposed schema without requiring access to the original relation. 

 

Importance 

• Maintains Data Integrity: Ensures that all original constraints are preserved and can 

be enforced in the decomposed relations, preventing data anomalies. 

• Simplifies Constraint Management: Allows constraints to be checked and enforced 

locally within the decomposed relations without needing to join them back together. 

• Efficient Updates and Queries: Improves performance by enabling efficient updates 

and queries while maintaining the integrity constraints. 

 

Functional dependencies (FDs) describe constraints that must hold among attributes. 

A decomposition preserves dependencies if all FDs from the original schema can be checked 

using only the decomposed relations — without performing costly joins. 

 

13.2.3 Trade-offs in Decomposition 

• Sometimes, achieving lossless join and dependency preservation simultaneously is 

not possible. 

• BCNF decomposition ensures lossless join but may lose dependency preservation. 

• 3NF decomposition ensures both dependency preservation and lossless join but may 

retain minimal redundancy. 

 

Hence, database designers often balance between strict normalization and practical 

enforceability of constraints. 

 



DBMS                                                            13.5                                 Relational Database…   

13.2.4 Example – Decomposition of Employee Relation 

Given relation: 

EMP(Emp_ID, Emp_Name, Dept_ID, Dept_Name) 

FDs: Emp_ID → Emp_Name, Dept_ID 

     Dept_ID → Dept_Name 

 

Decompose into: 

EMPLOYEE(Emp_ID, Emp_Name, Dept_ID) 

DEPARTMENT(Dept_ID, Dept_Name) 

 

This decomposition: 

• Preserves attributes 

• Maintains lossless join (common key: Dept_ID) 

• Preserves dependencies 

 

     Hence, it is a good decomposition. 

 

13.3 ALGORITHMS FOR RELATIONAL DATABASE SCHEMA DESIGN 

 

Algorithms for Relational Database Schema Design are systematic methods used to 

transform a database schema into a normalized form. These algorithms ensure that the  

 

13.3.1 Algorithm for Testing Lossless Join Decomposition 

The algorithm for testing lossless join decomposition ensures that the join of decomposed 

relations results in the original relation. This involves checking if the common attributes in 

the decomposed relations form a superkey. 

 

Steps in the Algorithm 

1. Identify the Decomposition: 

• Let the original relation RRR be decomposed into two or more relations 

R1,R2,...,RnR1, R2, ..., RnR1,R2,...,Rn. 

2. Construct the Join Dependency Matrix: 

• Create a matrix where each row represents an attribute in the original relation RRR, 

and each column represents a decomposed relation RiRiRi. 

• Initialize the matrix with zeros. 

3. Mark the Attributes: 

• For each decomposed relation RiRiRi, mark the columns corresponding to the 

attributes present in RiRiRi. 

4. Propagation of Marks: 

• Propagate the marks across the matrix based on the common attributes between 

decomposed relations. 

5. Test for Lossless Join: 

• Check if each row in the matrix has at least one column that is fully marked. This 

indicates that the original relation can be perfectly reconstructed from the 

decomposed relations. 



Centre for Distance Education                    13.6                    Acharya Nagarjuna University 

 

Example 

1. Consider a relation R(A,B,C) with the following functional dependencies: 

 A→BA to BA→B 

 B→CB to CB→C 

2. Decompose R into R1(A,B) and R2(B,C). 

 

Identify the Decomposition: 

• R is decomposed into R1(A,B) and R2(B,C). 

 

Construct the Join Dependency Matrix: 

 
1. Mark the Attributes: 

• For R1(A,B): 

• Mark columns for attributes A and B. 

 
 

For R2(B,C): 

• Mark columns for attributes B and C. 

 
2. Propagation of Marks: 

• Propagate the marks based on the common attribute B. 

 

5. Test for Lossless Join: 

o Check each row: 

• Row for A has at least one mark in the column corresponding to R1. 

• Row for B has marks in both columns. 

• Row for C has at least one mark in the column corresponding to R2. 

 

Since each row has at least one column that is fully marked, the decomposition has the 

lossless join property. 



DBMS                                                            13.7                                 Relational Database…   

The algorithm for testing lossless join decomposition ensures that decomposing a relation 

into smaller relations does not result in the loss of any data. This property is essential for 

maintaining data integrity and consistency in a relational database schema. 

 

13.3.2Algorithm for Dependency Preservation 

This algorithm verifies that all functional dependencies are preserved in the decomposed 

schema. It involves checking if the closure of the functional dependencies in the decomposed 

relations includes all original dependencies. 

 

The Algorithm for Dependency Preservation is used to verify that all functional 

dependencies of the original relation are preserved in the decomposed schema. This ensures 

that the integrity constraints enforced by the functional dependencies can still be checked 

without needing to access the original relation. 

 

Steps in the Algorithm 

1. Identify the Functional Dependencies: 

• Let R be the original relation with a set of functional dependencies F. 

2. Decompose the Relation: 

• Decompose RRR into a set of relations R1,R2,...,Rn. 

3. Project Functional Dependencies: 

• For each decomposed relation Ri, compute the projection of F on Ri, denoted as Fi. 

The projection of F on Ri includes all functional dependencies in F that involve only 

attributes of Ri. 

4. Compute the Closure: 

• Compute the closure of the union of the projected dependencies F1∪F2∪...∪Fn , 

denoted as (F1∪F2∪...∪Fn)+. 

5. Check for Dependency Preservation: 

• Verify that every functional dependency in F is included in the closure 

(F1∪F2∪...∪Fn)+. If all dependencies in Fare present in the closure, then the 

decomposition preserves dependencies. 

 

Example 

Consider a relation R(A,B,C) with functional dependencies: 

1. A→B 

2. B→C 

 

Decompose RRR into R1(A,B)R1(A, B)R1(A,B) and R2(B,C)R2(B, C)R2(B,C). 

1. Identify the Functional Dependencies: 

• F={A→B,B→C} 

2. Decompose the Relation: 

• Decomposed relations are R1(A,B) and R2(B,C) 

3. Project Functional Dependencies: 

o For R1(A,B): 

• Projection F1={A→B} 

o For R2(B,C): 

▪ Projection F2={B→C} 

4. Compute the Closure: 

• F1∪F2={A→B,B→C}  

• Compute the closure (F1∪F2)+: 



Centre for Distance Education                    13.8                    Acharya Nagarjuna University 

• Start with {A→B,B→C} 

• From A→B and B→C, by transitivity, derive A→C 

• (F1∪F2)+={A→B,B→C,A→C} 

 

5. Check for Dependency Preservation: 

o Verify that every functional dependency in F is in (F1∪F2)+ : 

▪ A→B is in (F1∪F2)+ 

▪ B→C is in (F1∪F2)+ 

▪ All dependencies from F are preserved in the closure. 

 

Since all functional dependencies from the original set F are preserved in the closure of the 

projected dependencies, the decomposition is dependency-preserving. 

 

The algorithm for dependency preservation ensures that all functional dependencies of the 

original relation are maintained in the decomposed schema. This is essential for ensuring that 

the integrity constraints can still be enforced without requiring access to the original relation, 

thereby maintaining the consistency and reliability of the database schema. 

 

13.3.3 Algorithm for Finding Canonical Cover  

 

Purpose: 

To eliminate redundant attributes and FDs from a given set of dependencies. 

 

Steps: 

1. Split RHS of each FD so that each has a single attribute. 

2. Remove extraneous attributes from LHS and RHS using closure test. 

3. Remove redundant dependencies. 

 

Example: 

Given FDs: {A → BC, B → C, A → B} 

Canonical Cover: {A → B, B → C}. 

 

13.3.4 Algorithm for 3NF Decomposition 

Steps: 

1. Compute canonical cover Fc. 

2. For each FD X → Y in Fc, create a relation R(X ∪ Y). 

3. If none of these relations contain a key for R, add one relation with a key. 

4. Ensure lossless join. 

 

Produces a dependency-preserving, lossless decomposition. 

13.3.5 Algorithm for BCNF Decomposition 

Steps: 

1. Start with R and FDs. 

2. If R is not in BCNF, find dependency X → Y that violates BCNF. 

3. Decompose R into: 

 



DBMS                                                            13.9                                 Relational Database…   

R1 = X ∪ Y 

R2 = R – (Y – X) 

1. Repeat for R₁ and R₂ until all relations are in BCNF. 

 

13.3.6 Algorithm for Computing Attribute Closure 

Used to determine candidate keys or infer dependencies. 

 

Steps: 

1. Start with X⁺ = X. 

2. For each FD Y → Z in F, if Y ⊆ X⁺, add Z to X⁺. 

3. Repeat until X⁺ stops changing. 

4. X⁺ now represents all attributes functionally determined by X. 

 

Example: 

 

FDs: {A → B, B → C} 

Closure of A = {A, B, C}. 

 

13.3.7 Example – University Database Design 

 

Given Relation: 

COURSE(Course_ID, Title, Dept_ID, Instructor, Credits) 

 

FDs: 

• Course_ID → Title, Dept_ID, Credits 

• Dept_ID → Instructor 

 

Step 1: Identify redundancy — Instructor depends on Dept_ID. 

 

Step 2: Decompose into: 

COURSE(Course_ID, Title, Dept_ID, Credits) 

DEPARTMENT(Dept_ID, Instructor) 

 

Step 3: Verify: 

• Attribute preservation  

• Lossless join  (via Dept_ID) 

• Dependency preservation  

 

13.4 Normalization and Schema Refinement 

 

Algorithms provide a systematic foundation for schema normalization, ensuring all relations 

meet 1NF–BCNF standards through dependency testing and decomposition. 

Normalization improves clarity, reduces anomalies, and makes schema maintenance easier. 

However, over-normalization can fragment data and degrade query performance, so designers 

must strike a balance between theoretical perfection and practical efficiency. 

 

13.5 Design Example – Library Database 

Given Relation: 

 



Centre for Distance Education                    13.10                    Acharya Nagarjuna University 

LIBRARY(Book_ID, Title, Author, Category, Borrower_ID, Borrower_Name) 

FDs: 

• Book_ID → Title, Author, Category 

• Borrower_ID → Borrower_Name 

• Book_ID → Borrower_ID 

 

After decomposition: 

BOOK(Book_ID, Title, Author, Category) 

BORROWER(Borrower_ID, Borrower_Name) 

TRANSACTION(Book_ID, Borrower_ID) 

 

•  All anomalies removed 

•  Lossless join ensured 

•  Dependencies preserved 

 

13.6 Summary 

 

This lesson presented the formal foundation and algorithms of relational database design. 

You learned about key decomposition properties — attribute preservation, lossless join, 

and dependency preservation — and how to test them using algorithmic techniques. 

Design algorithms such as canonical cover, attribute closure, 3NF and BCNF 

decomposition enable structured schema refinement. 

The algorithms ensure that relational designs are robust, redundancy-free, and efficient, 

forming the backbone of modern database normalization and schema optimization. 

 

13.7 Technical Terms 

1. Decomposition 

2. Functional Dependency 

3. Canonical Cover 

4. Lossless Join 

5. Dependency Preservation 

6. Attribute Closure 

7. 3NF Decomposition 

8. BCNF Decomposition 

9. Redundancy 

10. Normalization 

 

13.8 Self-Assessment Questions 

 

Essay Questions 

1. Explain the properties of a good relational decomposition with suitable examples. 

2. Discuss the algorithm for testing lossless join decomposition. 

3. Describe how dependency preservation can be ensured during schema design. 

4. Explain the role and computation of the canonical cover. 

5. Differentiate between 3NF and BCNF decomposition algorithms. 

 



DBMS                                                            13.11                                 Relational Database…   

Short Questions 

 

1. Define lossless join property. 

2. What is attribute preservation? 

3. State the purpose of attribute closure. 

4. Write one difference between 3NF and BCNF. 

5. List the steps of the canonical cover algorithm. 

 

13.9 Suggested Readings 

 

1. Ramez Elmasri & Shamkant B. Navathe — Fundamentals of Database Systems, 

Pearson. 

2. C.J. Date — An Introduction to Database Systems, Addison-Wesley. 

3. Abraham Silberschatz, H.F. Korth, & S. Sudarshan — Database System Concepts, 

McGraw Hill. 

4. Raghu Ramakrishnan & Johannes Gehrke — Database Management Systems, 

McGraw Hill. 

5. Thomas Connolly & Carolyn Begg — Database Systems: A Practical Approach, 

Pearson. 

 

Dr. U. Surya Kameswari 



LESSON- 14 

FURTHER DEPENDENCIES 
 

AIMS AND OBJECTIVES 

 

The primary goal of this chapter is to understand the concept of Further Dependencies. The 

chapter began Functional dependencies, After completing this chapter, the student will 

understand Further Dependencies which includes 4NF,5NF,6NF and etc. 

 

14.1   INTRODUCTION 

14.2   MULTIVALUED DEPENDENCIES AND FOURTH NORMAL FORM 

14.3   JOIN DEPENDENCIES AND FIFTH NORMAL FORM 

14.4   INCLUSION DEPENDENCIES 

14.5   OTHER DEPENDENCIES AND NORMAL FORMS 

14.6    SUMMARY 

14.7    TECHNICAL TERMS  

14.8    SELF-ASSESSMENT QUESTIONS 

14.9     SUGGESTED READINGS 

 

14.1 INTRODUCTION 

 

As database systems grow in complexity, relations that already satisfy Boyce–Codd Normal 

Form (BCNF) may still exhibit subtle forms of redundancy. 

This residual redundancy often arises from multivalued or join dependencies that are not 

captured by functional dependencies alone. To address these, higher normal forms — the 

Fourth Normal Form (4NF) and the Fifth Normal Form (5NF) — are introduced. 

These advanced normal forms extend the principles of normalization by eliminating 

redundancies that occur due to the presence of independent multi-valued attributes or 

complex join relationships among multiple tables. 

 

In addition, other dependency types such as inclusion dependencies, temporal, and domain-

key constraints further refine schema design by imposing relationships across tables. 

The goal of this lesson is to understand: 

 

• How multivalued dependencies (MVDs) can cause redundancy even in BCNF 

relations, 

• How join dependencies (JDs) arise and how to achieve Fifth Normal Form (5NF), 

• The role of inclusion dependencies in maintaining referential integrity, and 

• The importance of other advanced dependencies for maintaining data accuracy and 

consistency. 

 

14.2 MULTIVALUED DEPENDENCIES AND FOURTH NORMAL FORM 

 

14.2.1 Concept of Multivalued Dependencies 

A multivalued dependency (MVD) occurs when one attribute in a relation determines a set of 

values for another attribute independently of other attributes.  

It is denoted as: 



Centre for Distance Education                       14.2                  Acharya Nagarjuna University 

 
This means that for each value of X, there exists a set of independent values of Y, unrelated 

to other attributes in the relation. 

An MVD is trivial if: 

• , or 

• . 

Otherwise, it is non-trivial. 

 

14.2.2 Example of MVD 

 

Consider the relation: 

 

COURSE(Course_ID, Textbook, Instructor) 

• A course may be taught by several instructors. 

• The same course may also have multiple textbooks. 

 

Hence, for a given Course_ID, the attributes Textbook and Instructor are independent 

multivalued attributes. 

Thus: 

 
and 

 
If we store all combinations in a single relation, redundancy appears: 

Course_ID Instructor Textbook 

C101 Dr. Meena DBMS 

C101 Dr. Meena SQL 

C101 Dr. Ramesh DBMS 

C101 Dr. Ramesh SQL 

 

Each instructor–textbook pair repeats unnecessarily. 

 

14.2.3 Decomposition into Fourth Normal Form 

To remove this redundancy, we decompose the relation based on MVDs: 

COURSE_INSTRUCTOR(Course_ID, Instructor) 

COURSE_TEXTBOOK(Course_ID, Textbook) 

Each now represents an independent multivalued relationship. 

 

When these relations are joined on Course_ID, we can reconstruct the original data without 

spurious tuples. 

 

14.2.4 Definition of Fourth Normal Form (4NF) 

A relation is in Fourth Normal Form (4NF) if it is in Boyce-Codd Normal Form (BCNF) and 

contains no non-trivial multivalued dependencies. Decomposing into 4NF involves removing 

MVDs by creating separate relations. 



DBMS                                                           14.3                                Further Dependencies  

Achieving 4NF 

 

To achieve 4NF, decompose the relation to eliminate MVDs while ensuring that the 

decomposition maintains the lossless join property. 

A relation R is in 4NF if and only if: 

• It is in Boyce–Codd Normal Form (BCNF), and 

• For every non-trivial multivalued dependency in R, 

 X is a superkey of R. 

 

Thus, 4NF eliminates redundancies arising from independent multivalued dependencies, 

ensuring that data is not duplicated across unrelated attributes. 

 

14.2.5 Example Summary 

 

Before 4NF: 

COURSE(Course_ID, Instructor, Textbook) 

After 4NF decomposition: 

COURSE_INSTRUCTOR(Course_ID, Instructor) 

COURSE_TEXTBOOK(Course_ID, Textbook) 

• Redundancy removed 

•  Lossless join maintained 

• Multivalued dependencies represented separately 

 

Example: 

Given the relation R(Student, Course, Hobby)  with MVDs Student→→Course  and 

Student→→Hobby : 

 



Centre for Distance Education                       14.4                  Acharya Nagarjuna University 

 

 

Fig 14.1 Result of 4NF 

 

These decomposed relations are now in 4NF, eliminating the multivalued dependencies and 

ensuring that each attribute is independently associated with the key attribute. 

Multivalued dependencies highlight situations where one attribute determines a set of values 

independently of others. Fourth Normal Form (4NF) addresses these dependencies, further 

refining the database schema to eliminate redundancy and improve data integrity. By 

decomposing relations to remove MVDs, 4NF ensures a more robust and efficient database 

design. 

 

14.3  JOIN DEPENDENCIES AND FIFTH NORMAL FORM 

 

14.3.1 Concept of Join Dependency 

 

A join dependency (JD) specifies that a relation can be reconstructed by joining several 

projections of the relation. It is a generalization of functional and multivalued dependencies. 

A join dependency (JD) generalizes both functional and multivalued dependencies. 

It specifies a constraint that a relation R can be reconstructed by joining multiple 

projections of itself. 

Formally, a join dependency holds on relation R if: 

 
That is, the join of these projections yields exactly R, with no extra or missing tuples. 

Every multivalued dependency is a special case of join dependency where . 

 

 

 



DBMS                                                           14.5                                Further Dependencies  

14.3.2 Fifth Normal Form (5NF) 

 

A relation is in Fifth Normal Form (5NF) if it is in 4NF and contains no non-trivial join 

dependencies. Decomposing into 5NF involves breaking down the relation into smaller 

relations that can be joined without loss of information.  

A relation R is in Fifth Normal Form (5NF), also called Project-Join Normal Form (PJNF), if: 

 

• It is in 4NF, and 

• Every non-trivial join dependency in R is implied by the candidate keys of R.5NF 

ensures that a relation cannot be decomposed further without losing information or 

introducing spurious tuples. 

 

14.3.3 Example of 5NF 

 

Consider the relation: 

SUPPLY(Supplier, Part, Project) 

Interpretation: 

• A supplier supplies certain parts. 

• Each part is used in certain projects. 

 

If these three facts are independent, redundancy appears because each combination of 

(Supplier, Part, Project) repeats values unnecessarily. 

 

Supplier Part Project 

S1 P1 J1 

S1 P2 J1 

S1 P1 J2 

 

This redundancy can be eliminated by decomposing into: 

SUPPLIER_PART(Supplier, Part) 

SUPPLIER_PROJECT(Supplier, Project) 

PART_PROJECT(Part, Project) 

Joining these three relations reconstructs the original data — a lossless join satisfying 5NF. 

 

Example  

Given the relation R(A,B,C)  with a join dependency: 

 
 



Centre for Distance Education                       14.6                  Acharya Nagarjuna University 

These decomposed relations are now in 5NF, eliminating the join dependencies and ensuring 

that the original relation can be reconstructed without loss of information. Join dependencies 

are a powerful concept in relational database theory, allowing for the reconstruction of a 

relation from its projections. Fifth Normal Form (5NF) addresses these dependencies, 

ensuring that the database schema is fully normalized, with no redundant data and all join 

dependencies preserved. Achieving 5NF guarantees the most refined and efficient database 

design, capable of handling complex data relationships with minimal redundancy and 

maximum data integrity. 

 

 
Fig 14.2 Result of 5NF 

 

14.3.4 Significance of 5NF 

 

5NF removes redundancies caused by complex join dependencies that cannot be expressed 

as simple functional or multivalued dependencies. 

It ensures the database schema represents independent facts only once, which is vital for 

large-scale distributed and analytical systems. 

 

 

 

 



DBMS                                                           14.7                                Further Dependencies  

 

14.4 Inclusion Dependencies 

 

Inclusion Dependencies (INDs) are constraints in a relational database that ensure values in 

certain columns (or sets of columns) of one relation must also appear in certain columns of 

another relation. This concept is fundamental in enforcing referential integrity, typically 

implemented through foreign key constraints.  

 

14.4.1 Definition 

An inclusion dependency (IND) specifies that a set of values in one relation must appear as 

values in another relation. 

It is denoted as: 

 
Meaning: The set of values of attribute(s) X in relation R₁ must exist as values of attribute(s) 

Y in relation R₂. 

Inclusion Dependencies can be formally defined as follows: Given two relations R1and R2, 

an inclusion dependency specifies that a set of attributes A in R1 must match a set of 

attributes B in R2. This is denoted as R1[A]⊆R2[B]. 

 

Types of Inclusion Dependencies: 

1. Simple Inclusion Dependencies: The dependency involves a single attribute or a simple 

set of attributes. 

• Example: The foreign key constraint where the DepartmentID in an Employees table 

must match the DepartmentID in a Departments table. 

2. Compound Inclusion Dependencies: The dependency involves a compound set of 

attributes. 

• Example: A dependency involving a combination of attributes such as (EmployeeID, 

ProjectID) in an Assignments table matching (EmployeeID, ProjectID) in a Projects 

table. 

 

14.4.2 Example 

 

In a university database: 

STUDENT(Student_ID, Name, Dept_ID) 

DEPARTMENT(Dept_ID, Dept_Name) 

 

We define an inclusion dependency: 

 
 

This ensures that every student’s department exists in the DEPARTMENT table — a form of 

referential integrity constraint. 

 

Example: In a Students and Enrollments schema, ensuring that every StudentID in the 

Enrollments table appears in the Students table. 

CREATE TABLE Students ( 

    StudentID INT PRIMARY KEY, 

    StudentName VARCHAR(100) 

); 



Centre for Distance Education                       14.8                  Acharya Nagarjuna University 

CREATE TABLE Enrollments ( 

    EnrollmentID INT PRIMARY KEY, 

    StudentID INT, 

    CourseID INT, 

    FOREIGN KEY (StudentID) REFERENCES Students(StudentID) 

); 

 

Data Consistency Across Relations: 

Example: Ensuring that all product IDs in an OrderDetails table exist in a Products table. 

CREATE TABLE Products ( 

    ProductID INT PRIMARY KEY, 

    ProductName VARCHAR(100) 

); 

 

CREATE TABLE OrderDetails ( 

    OrderDetailID INT PRIMARY KEY, 

    OrderID INT, 

    ProductID INT, 

    FOREIGN KEY (ProductID) REFERENCES Products(ProductID) 

); 

14.4.3 Role of Inclusion Dependencies 

• Enforce foreign key constraints. 

• Maintain consistency across relations. 

• Prevent insertion of invalid or orphan references. 

• Essential for distributed databases, where relations may span multiple sites. 

 

Enforcing inclusion dependencies involves defining foreign keys and other constraints to 

maintain consistency between related tables. 

 

Example of Enforcing Inclusion Dependencies: 

 
The foreign key constraint ensures that every DepartmentID in the Employees table must 

match a DepartmentID in the Departments table: 

CREATE TABLE Departments ( 

    DepartmentID INT PRIMARY KEY, 

    DepartmentName VARCHAR(100) 

); 



DBMS                                                           14.9                                Further Dependencies  

CREATE TABLE Employees ( 

    EmployeeID INT PRIMARY KEY, 

    EmployeeName VARCHAR(100), 

    DepartmentID INT, 

    FOREIGN KEY (DepartmentID) REFERENCES Departments(DepartmentID) 

); 

 

Inclusion Dependencies are crucial for maintaining referential integrity and consistency in 

relational databases. By ensuring that values in certain columns of one relation must appear 

in columns of another relation, INDs help prevent data anomalies and enforce relationships 

between different entities in the database schema. 

 

14.5 OTHER DEPENDENCIES AND NORMAL FORMS 

 

Beyond functional, multivalued, and join dependencies, there are other forms of constraints 

that play roles in advanced schema design. 

 

14.5.1 Domain-Key Normal Form (DKNF) 

 

A relation is in Domain-Key Normal Form if it meets all domain constraints and key 

constraints, ensuring that all possible constraints are captured by domain and key 

dependencies. 

A relation is in Domain-Key Normal Form (DKNF) if all constraints on the relation are a 

logical consequence of: 

• Domain constraints (allowable values for each attribute), and 

• Key constraints (uniqueness of primary keys). 

 

In DKNF, all anomalies are theoretically removed. However, it is difficult to achieve in 

practice because defining every constraint explicitly is complex. 

 

Achieving DKNF 

To achieve DKNF, a relation must be carefully designed to ensure that all constraints are 

captured through domain and key constraints. This often involves: 

1. Eliminating All Non-Domain, Non-Key Constraints: Ensure that there are no 

constraints other than those imposed by domains and keys. 

2. Redesigning Schema: If necessary, redesign the schema to incorporate all constraints into 

the domains and keys. 

 

Benefits 

• Eliminates All Anomalies: By only having domain and key constraints, the relation 

is free from update, insertion, and deletion anomalies. 

• Simplifies Constraint Management: Constraints are easier to understand, enforce, 

and manage since they are limited to domains and keys. 

 

Domain-Key Normal Form (DKNF) represents the highest level of normalization, ensuring 

that a database schema is free from all possible anomalies by relying solely on domain and 

key constraints. Achieving DKNF involves designing the schema in such a way that all 

necessary restrictions on data are captured by the permissible values of attributes and the 

uniqueness of tuples, resulting in a highly robust and reliable database structure. 



Centre for Distance Education                       14.10                  Acharya Nagarjuna University 

14.5.2 Sixth Normal Form (6NF) 

 

6NF is a rarely used, specialized normal form designed for temporal and data warehousing 

applications. 

A relation is in 6NF if it is in 5NF and cannot be decomposed further without losing 

information. 

Used mainly in time-dependent data systems where attributes vary independently over time. 

 

Example: 

EMP_SALARY(Emp_ID, Salary, Effective_Date) 

Each change in salary forms a new tuple — representing data evolution over time. 

 

14.5.3 Summary of Normal Forms 

 

Normal 

Form 

Based On Removes Key Concept 

1NF Atomic values Repeating groups Single-valued attributes 

2NF Functional 

dependency 

Partial dependency Full functional dependency 

3NF Functional 

dependency 

Transitive dependency Non-key → Non-key 

dependency 

BCNF Functional 

dependency 

Overlapping candidate 

keys 

Every determinant is key 

4NF Multivalued 

dependency 

Redundant multivalued 

data 

MVDs → Superkey 

5NF Join dependency Redundant joins Lossless join from 

projections 

DKNF All constraints All anomalies Domain + Key rules 

6NF Temporal / advanced Non-decomposable Time-varying data 

 

14.6 Summary 

 

This lesson expanded normalization beyond functional dependencies into multivalued and 

join dependencies, leading to the Fourth and Fifth Normal Forms. 

A relation in 4NF eliminates redundancy caused by independent multivalued attributes, while 

5NF ensures no redundant data exists even under complex join conditions. 

Additionally, inclusion dependencies and higher forms such as DKNF and 6NF were 

introduced to handle inter-table constraints and temporal data. 

These advanced dependencies provide a theoretical foundation for creating highly reliable, 

semantically accurate, and redundancy-free databases suitable for enterprise and analytical 

systems. 

 

14.7 Technical Terms 

1. Multivalued Dependency (MVD) 

2. Join Dependency (JD) 

3. Fourth Normal Form (4NF) 

4. Fifth Normal Form (5NF) 

5. Inclusion Dependency (IND) 

6. Domain-Key Normal Form (DKNF) 



DBMS                                                           14.11                                Further Dependencies  

7. Sixth Normal Form (6NF) 

8. Lossless Join 

9. Referential Integrity 

10. Projection-Join Normal Form (PJNF) 

 

14.8 Self-Assessment Questions 

 

Essay Questions 

1. Define Multivalued Dependency (MVD). Explain its role in Fourth Normal Form 

(4NF) with an example. 

2. Discuss Join Dependencies and describe how Fifth Normal Form (5NF) is achieved. 

3. Explain the importance of Inclusion Dependencies in relational database design. 

4. Differentiate between BCNF, 4NF, and 5NF with examples. 

5. What is Domain-Key Normal Form (DKNF)? Explain its advantages and limitations. 

 

Short Questions 

1. Write the notation used for multivalued dependency. 

2. Define trivial and non-trivial MVDs. 

3. What is a join dependency? 

4. Define Fifth Normal Form (5NF). 

5. What does inclusion dependency ensure? 

6. What is referential integrity? 

7. Mention one example of a 6NF relation. 

8. What is lossless decomposition? 

9. Define Domain Constraint. 

10. What is the practical use of 4NF in database design? 

 

14.9 Suggested Readings 

1. Ramez Elmasri & Shamkant B. Navathe, Fundamentals of Database Systems, Pearson 

Education. 

2. C.J. Date, An Introduction to Database Systems, Addison-Wesley. 

3. Abraham Silberschatz, Henry F. Korth & S. Sudarshan, Database System Concepts, 

McGraw Hill. 

4. Raghu Ramakrishnan & Johannes Gehrke, Database Management Systems, McGraw 

Hill. 

5. Thomas Connolly & Carolyn Begg, Database Systems: A Practical Approach to 

Design, Implementation, and Management, Pearson. 

6. Hector Garcia-Molina, Jeffrey Ullman & Jennifer Widom, Database Systems: The 

Complete Book, Pearson. 

7. Peter Rob & Carlos Coronel, Database Systems: Design, Implementation, and 

Management, Cengage Learning. 

8. Alexis Leon & Mathews Leon, Database Management Systems, Vikas Publishing. 

 

Dr. U. Surya Kameswari 



LESSON- 15 

DOCUMENT ORIENTED DATA 

 
AIMS AND OBJECTIVES 

 

The primary aim of this lesson is to provide a comprehensive understanding of document-

oriented data models and the principles underlying their schema design, focusing on how 

these differ from traditional relational database structures. The lesson aims to develop the 

learner’s ability to design efficient, scalable, and flexible document-based schemas for real-

world applications such as e-commerce platforms. 

 

After completing this lesson, learners will be able to: 

 

• Understand the fundamental concepts of document-oriented databases and their 

advantages over relational systems. 

• Explain the principles of schema design specific to document-based data models, 

including embedding, referencing, and denormalization. 

• Design and model data for an e-commerce application using document-oriented 

approaches. 

• Differentiate between databases, collections, and documents, and explain their roles in 

data organization. 

• Apply indexing, validation, and optimization techniques to improve query performance 

and maintain data integrity. 

• Evaluate trade-offs between flexibility, redundancy, and consistency in document-

oriented systems. 

• Implement best practices for scalability, schema evolution, and data security in 

document databases. 

• Compare and contrast document-oriented schema design with relational schema design 

principles. 

 

STRUCTURE: 

 

15.1 INTRODUCTION 

15.2 PRINCIPLES OF SCHEMA DESIGN IN DOCUMENT DATABASES 

15.3 DESIGNING AN E-COMMERCE DATA MODEL 

15.4 DATABASES, COLLECTIONS, AND DOCUMENTS 

15.5 OTHER DESIGN CONSIDERATIONS AND BEST PRACTICES 

15.6 SUMMARY 

15.7 TECHNICAL TERMS 

15.8 SELF-ASSESSMENT QUESTIONS 

15.9 SUGGESTED READINGS 

 

 

 



Centre for Distance Education                        15.2                   Acharya Nagarjuna University 

15.1 INTRODUCTION 

 

The rapid growth of unstructured and semi-structured data has led to the emergence of 

NoSQL (Not Only SQL) databases, which prioritize flexibility, scalability, and performance. 

Among the four major types of NoSQL systems—key-value stores, column stores, graph 

databases, and document-oriented databases—the document-oriented model has gained 

significant popularity for web-scale applications. 

 

15.1.1 What Are Document-Oriented Databases? 

A document-oriented database stores data as documents, usually in JSON (JavaScript Object 

Notation) or BSON (Binary JSON) format. Each document is a self-describing unit 

containing field-value pairs, arrays, and nested objects. 

Example: 

{ 

  "name": "Lavanya", 

  "email": "lavs@example.com", 

  "skills": ["Python", "MongoDB", "Data Modeling"], 

  "address": {"city": "Guntur", "state": "Andhra Pradesh"} 

} 

 

Unlike relational rows and columns, this representation supports hierarchical and flexible 

structures, allowing different documents to have varying fields. 

 

15.1.2 Characteristics of Document Databases 

 

• Schema flexibility: Fields can differ between documents. 

• Hierarchical structure: Supports nesting and arrays. 

• Indexing support: Enables fast query execution. 

• Horizontal scalability: Uses sharding for distributed storage. 

• Ease of evolution: Fields can be added or removed without schema migration. 

 

15.1.3 Popular Document Databases 

 

Database Description 

MongoDB Open-source, BSON-based, highly scalable document store. 

CouchDB JSON-based database using HTTP/REST API for access. 

Firebase Firestore Cloud-hosted document database for mobile/web apps. 

RavenDB ACID-compliant document store optimized for .NET applications. 

 

1. MongoDB 

 

Description: 

 

MongoDB is an open-source, NoSQL document-oriented database developed by MongoDB 

Inc. It stores data in BSON (Binary JSON) format, which supports richer data types (e.g., 

dates, binary data, and nested arrays). MongoDB is widely recognized as the most popular 

document database due to its simplicity, scalability, and community support. 

 

 



DBMS                                                           15.3                           Document Oriented Data 

Key Features: 

• Dynamic schema: No fixed table structure—documents in the same collection can 

vary in fields. 

• Rich query language: Supports filters, projections, aggregations, and text search. 

• Indexing and Aggregation Framework: Allows creation of multiple index types and 

complex data analysis pipelines. 

• Sharding and Replication: Enables horizontal scaling and high availability. 

• Driver Support: Available for all major programming languages including Python, 

Java, and C#. 

Architecture Overview: 

 

MongoDB uses a client–server architecture, where data is stored in collections within 

databases. It employs replica sets for fault tolerance and sharding for distributed data storage. 

 

Advantages: 

• High scalability and performance. 

• Easy integration with application frameworks (e.g., Node.js, Django). 

• Powerful aggregation pipeline for analytics. 

• Widely supported and documented. 

 

Typical Use Cases: 

• E-commerce platforms (product catalogs, orders). 

• Content management systems (CMS). 

• IoT applications collecting varied sensor data. 

• Real-time analytics dashboards. 

 

2. CouchDB 

 

CouchDB, developed by the Apache Software Foundation, is a JSON-based, schema-free 

document database that uses the HTTP/REST protocol for data access and manipulation. 

Each document is uniquely identified by an ID and revision number, making it ideal for 

synchronization and offline-first applications. 

 

Key Features: 

• RESTful API: Data is accessed and modified through HTTP requests (GET, PUT, 

POST, DELETE). 

• MVCC (Multi-Version Concurrency Control): Prevents conflicts without locking 

documents. 

• Replication and Synchronization: Data can be easily replicated across nodes or 

devices. 

• MapReduce Views: Query and aggregation mechanism using JavaScript functions. 

• Fault-tolerant and crash-only design: Ensures durability of data. 

 

Architecture Overview: 

 

CouchDB uses a single-node or clustered architecture, depending on deployment needs. Data 

is stored in documents that include metadata and revision information, allowing easy conflict 

resolution during replication. 

 

 



Centre for Distance Education                        15.4                   Acharya Nagarjuna University 

Advantages: 

• Perfect for offline-first mobile applications. 

• Simple, human-readable data access via REST API. 

• Strong data consistency with revision control. 

• Excellent for distributed and replicated environments. 

 

Typical Use Cases: 

• Offline mobile apps with synchronization (e.g., field data collection). 

• Web apps requiring replication across servers or regions. 

• Document versioning systems. 

• Configuration storage for distributed systems. 

 

3. Firebase Firestore 

 

Firebase Cloud Firestore, developed by Google, is a serverless, cloud-hosted document 

database that is part of the Firebase platform. It is designed for mobile and web applications, 

providing real-time synchronization and automatic scaling. 

 

Key Features: 

• Real-time data synchronization: Updates propagate instantly across connected clients. 

• Hierarchical data structure: Organizes documents in collections and subcollections. 

• Serverless environment: No infrastructure management required. 

• Offline data persistence: Supports caching for mobile devices. 

• Strong integration with Firebase Authentication and Cloud Functions. 

 

Architecture Overview: 

 

Firestore is a fully managed cloud service where data is replicated across multiple Google 

Cloud regions for reliability and low latency. Developers interact with it using SDKs or 

REST APIs. 

 

Advantages: 

• Real-time synchronization between web and mobile clients. 

• Automatic scaling and global availability. 

• Built-in security through Firebase rules and Google IAM. 

• Tight integration with analytics, authentication, and hosting services. 

 

Typical Use Cases: 

• Real-time chat or messaging applications. 

• Collaborative tools (e.g., shared whiteboards, note-taking apps). 

• Mobile gaming backends. 

• Event tracking and analytics storage. 

 

4. RavenDB 

 

RavenDB is a fully ACID-compliant, open-source document-oriented database written in C#, 

optimized for the .NET ecosystem. It combines the benefits of a document store with strong 

transactional guarantees, offering an ideal balance between performance and consistency. 

 

 



DBMS                                                           15.5                           Document Oriented Data 

Key Features: 

 

• ACID Transactions: Ensures atomicity and consistency across multiple documents. 

• Multi-Document Queries: Supports complex joins, projections, and full-text search. 

• Integrated ETL and Indexing Engine: Automatic indexing and data export to SQL or 

other stores. 

• Built-in GUI (Studio): Provides a visual management interface. 

• High Performance: Uses an internal storage engine optimized for SSDs. 

 

Architecture Overview: 

 

RavenDB supports both on-premises and cloud-based deployments. It uses safe-by-default 

design, meaning all operations are transactional and secure. It provides cluster replication, 

ensuring high availability. 

 

Advantages: 

 

• Full ACID compliance ensures strong consistency. 

• Simple setup and robust management tools. 

• Optimized for .NET developers using C# or ASP.NET Core. 

• Supports distributed clusters with automatic failover. 

 

Typical Use Cases: 

 

• Enterprise-grade business applications requiring data consistency. 

• Financial and transactional systems. 

• Document management platforms. 

• API backends for .NET-based systems. 

 

15.1.5 Comparative Summary 

Feature MongoDB CouchDB Firebase 

Firestore 

RavenDB 

Data Format BSON (Binary 

JSON) 

JSON JSON JSON 

Query 

Interface 

Rich query language 

& aggregation 

framework 

REST API 

(HTTP-based) 

SDKs & REST 

API 

LINQ & 

REST 

Transactions Multi-document 

(since v4.0) 

MVCC 

revision control 

ACID at 

document level 

Full ACID 

support 

Scalability High (sharding, 

replication) 

Horizontal 

replication 

Auto-scaling 

(serverless) 

Cluster 

replication 

Use Case 

Focus 

Web apps, analytics, 

e-commerce 

Offline sync, 

distributed apps 

Real-time 

mobile/web apps 

Enterprise & 

financial apps 

Hosting Model Self-hosted or 

managed Atlas 

Self-hosted Cloud-managed Self-hosted or 

cloud 

Developer 

Ecosystem 

Multi-language 

drivers 

REST-based 

integration 

Tight Firebase 

SDK integration 

Optimized for 

.NET stack 

 

 



Centre for Distance Education                        15.6                   Acharya Nagarjuna University 

 

15.2 Principles of Schema Design in Document Databases 

 

Schema design determines how data is structured, stored, and retrieved. In document 

databases, schema design is use-case driven rather than normalized as in relational systems. 

 

15.2.1 Schema Flexibility 

• Document databases allow documents within the same collection to have different 

structures. 

• This flexibility supports iterative development and agile data modeling. 

 

Example: 

// Document 1 

{"name": "Alice", "email": "alice@example.com"} 

 

// Document 2 

{"name": "Bob", "email": "bob@example.com", "phone": "9876543210"} 

Both documents coexist in the same collection, even though the second has an additional 

field. 

 

15.2.2 Modeling Philosophy 

 

Relational design focuses on normalization; document design focuses on application query 

patterns. 

 

Questions to consider before designing: 

• What data is accessed together most frequently? 

• Which queries are most common? 

• How frequently does data change? 

 

The goal is to reduce joins and retrieve complete data in a single query. 

 

15.2.3 Embedding vs. Referencing 

 

Pattern Description When to Use 

Embedding Store related data within a single 

document. 

When related data is small and accessed 

together. 

Referencing Use identifiers to link separate 

documents. 

When data is reused or large in size. 

 

Example (Embedding): 

{ 

  "student_id": "S001", 

  "name": "Anita", 

  "subjects": [ 

    {"code": "CS101", "name": "Data Structures"}, 

    {"code": "CS102", "name": "DBMS"} 

  ] 

} 



DBMS                                                           15.7                           Document Oriented Data 

Example (Referencing): 

{ 

  "student_id": "S001", 

  "name": "Anita", 

  "subject_ids": ["CS101", "CS102"] 

} 

 

15.2.4 Denormalization 

 

Denormalization is intentional data duplication to improve query performance. 

In document databases, it is preferred for read-heavy applications. 

Example: 

Instead of joining Product and Category collections, store category information directly 

inside each product document. 

{ 

  "product_id": "P101", 

  "name": "Bluetooth Speaker", 

  "category": {"id": "C10", "name": "Electronics"} 

} 

 

15.2.5 Schema Validation 

 

Modern databases like MongoDB support JSON schema validation: 

db.createCollection("users", { 

  validator: { 

    $jsonSchema: { 

      bsonType: "object", 

      required: ["name", "email"], 

      properties: { 

        email: { bsonType: "string", pattern: "^.+@.+$" } 

      } 

    } 

  } 

}) 

This enforces data consistency while preserving flexibility. 

 

15.2.6 Indexing Strategies 

Indexes improve query performance. Common types: 

• Single-field index (e.g., name) 

• Compound index (e.g., category + price) 

• Text index (for searching descriptions) 

• Geospatial index (for location-based data) 

 

Example: 

db.products.createIndex({ category: 1, price: -1 }) 

 

 

 

 

 



Centre for Distance Education                        15.8                   Acharya Nagarjuna University 

 

15.2.7 Trade-offs in Schema Design 

 

Concern Impact 

Flexibility Increases development agility 

Duplication Speeds reads, increases update complexity 

Referencing Saves space, adds query overhead 

Embedding Fast reads, slower updates if nested data changes 

 

15.3 Designing an E-Commerce Data Model 

 

E-commerce systems handle large-scale, interconnected data—making them ideal for 

document modeling. 

 

15.3.1 Key Entities 

• Users – customer details, addresses, preferences 

• Products – item catalog, categories, specifications 

• Orders – transaction records 

• Carts – temporary order details 

• Reviews – feedback and ratings 

• Payments – transaction metadata 

 

15.3.2 Sample Collections and Documents 

Users Collection 

{ 

  "_id": "U001", 

  "name": "Lavanya", 

  "email": "lavs@example.com", 

  "addresses": [ 

    {"type": "Home", "city": "Guntur"}, 

    {"type": "Work", "city": "Vijayawada"} 

  ] 

} 

 

Products Collection 

{ 

  "_id": "P101", 

  "name": "Wireless Mouse", 

  "category": "Electronics", 

  "price": 499, 

  "specs": {"brand": "Logitech", "color": "Black"}, 

  "stock": 100 

} 

 

Orders Collection 

{ 

  "_id": "O9001", 

  "user_id": "U001", 

  "order_date": "2025-11-01", 



DBMS                                                           15.9                           Document Oriented Data 

  "items": [ 

    {"product_id": "P101", "quantity": 2, "price": 499} 

  ], 

  "total_amount": 998, 

  "status": "Paid" 

} 

 

Reviews Collection 

{ 

  "_id": "R2001", 

  "user_id": "U001", 

  "product_id": "P101", 

  "rating": 5, 

  "comment": "Excellent quality!" 

} 

 

15.3.3 Query Examples 

 

Find all paid orders of a user: 

db.orders.find({ user_id: "U001", status: "Paid" }) 

List products below ₹1000 in Electronics: 

db.products.find({ category: "Electronics", price: { $lt: 1000 } }) 

Aggregate total sales by category: 

db.orders.aggregate([ 

  { $unwind: "$items" }, 

  { $lookup: { from: "products", localField: "items.product_id", foreignField: "_id", as: 

"product_info" } }, 

  { $group: { _id: "$product_info.category", totalSales: { $sum: "$items.price" } } } 

]) 

 

15.3.4 Performance and Scalability 

• Sharding: Distribute data across multiple servers. 

• Index frequently queried fields: e.g., user_id, category. 

• Use caching layers: Redis or in-memory caching for hot data. 

 

15.4 Databases, Collections, and Documents 

 

15.4.1 Databases 

Logical containers for collections. 

 

Example: 

use EcommerceDB 

 

15.4.2 Collections 

Equivalent to tables but schema-less. 

 

Example: 

db.createCollection("products") 

 

 



Centre for Distance Education                        15.10                   Acharya Nagarjuna University 

15.4.3 Documents 

Atomic units of storage, stored as JSON/BSON objects. 

Example: 

{ 

  "name": "Lavanya", 

  "cart": [ 

    {"product": "Mouse", "qty": 2}, 

    {"product": "Keyboard", "qty": 1} 

  ] 

} 

 

15.4.4 CRUD Operations 

Operation Command Description 

Create insertOne() Add new document 

Read find() Retrieve documents 

Update updateOne() Modify document 

Delete deleteOne() Remove document 

 

15.4.5 Aggregation Framework 

 

Used for analytics: 

db.orders.aggregate([ 

  { $match: { status: "Paid" } }, 

  { $group: { _id: "$user_id", totalSpent: { $sum: "$total_amount" } } } 

]) 

 

15.5 Other Design Considerations and Best Practices 

 

1. Design for Read Efficiency – Embed data for frequent reads. 

2. Maintain Data Integrity – Use JSON validation and atomic updates. 

3. Index Appropriately – Avoid over-indexing. 

4. Plan for Schema Evolution – Handle version changes in code. 

5. Implement Access Control – Use RBAC and field-level encryption. 

6. Monitor and Optimize – Regularly review performance metrics. 

 

15.6 Summary 

 

Document-oriented databases provide a flexible, scalable alternative to relational models. 

This lesson discussed: 

• Schema design principles (embedding, referencing, denormalization) 

• Modeling an e-commerce application 

• Database, collection, and document structures 

• Performance and design best practices 

 

 

 

 



DBMS                                                           15.11                           Document Oriented Data 

15.7 Technical Terms\ 

1. Document Database 

2. Collection 

3. Embedding 

4. Referencing 

5. Denormalization 

6. Sharding 

7. Indexing 

8. BSON 

 

15.8 Self-Assessment Questions 

 

Short Answer: 

1. Define document-oriented databases. 

2. What are the advantages of schema flexibility? 

3. Differentiate between embedding and referencing. 

4. Explain denormalization with an example. 

5. What is the purpose of sharding? 

 

Long Answer: 

 

1. Explain the principles of schema design in document databases. 

2. Design and describe an e-commerce schema using document-oriented techniques. 

3. Discuss the roles of databases, collections, and documents. 

4. Compare document-oriented and relational models. 

5. Discuss schema validation and indexing strategies in MongoDB. 

 

15.9 Suggested Readings 

 

1. Kristina Chodorow – MongoDB: The Definitive Guide, O’Reilly Media. 

2. Rick Copeland – MongoDB Applied Design Patterns, O’Reilly Media. 

3. Ramez Elmasri & Shamkant Navathe – Fundamentals of Database Systems, Pearson 

Education. 

4. Couchbase Documentation – Schema Design Principles. 

5. MongoDB University – Data Modeling Fundamentals. 

 

Dr. U. Surya Kameswari 



LESSON- 16 

QUERIES AND AGGREGATIONE-COMMERCE'S 
 

AIMS AND OBJECTIVES: 

Aim 

The aim of this lesson is to provide a comprehensive understanding of how queries and 

aggregation operations are performed in document-oriented databases, particularly 

MongoDB, within the context of e-commerce applications. 

 

This lesson focuses on teaching learners how to efficiently retrieve, filter, and summarize 

data from large datasets using MongoDB’s Query Language (MQL) and the Aggregation 

Framework, enabling effective analytics and reporting. 

 

After completing this lesson, learners will be able to: 

1. Understand the importance of querying and aggregation in document-oriented 

databases. 

2. Describe the MongoDB Query Language (MQL) and its syntax for data retrieval. 

3. Execute various query operations to filter, sort, and project data in e-commerce 

contexts. 

4. Apply conditional operators such as $and, $or, $in, $gt, $lt, and regular expressions in 

queries. 

5. Explain the concept and structure of the Aggregation Framework in MongoDB. 

6. Design and implement aggregation pipelines for computing totals, averages, counts, 

and grouped data. 

7. Perform real-world e-commerce analytics, such as aggregating total sales, identifying 

top-selling products, and summarizing customer activity. 

8. Differentiate between queries and aggregations, and understand when to use each. 

9. Optimize query and aggregation performance using indexing and pipeline 

optimization techniques. 

STRUCTURE: 

16.1  INTRODUCTION 

16.2  QUERYING IN E-COMMERCE APPLICATIONS 

16.3  MONGODB QUERY LANGUAGE (MQL) 

16.4  AGGREGATION FRAMEWORK 

16.5  AGGREGATING ORDERS IN E-COMMERCE 

16.6  AGGREGATION IN DETAIL 

16.7  PRACTICAL EXAMPLES AND CASE STUDIES 

16.8  BEST PRACTICES AND OPTIMIZATION TECHNIQUES 

16.9  SUMMARY 

16.10  TECHNICAL TERMS 

16.11  SELF-ASSESSMENT QUESTIONS 

16.12  SUGGESTED READINGS  

16.1.1  OVERVIEW 



Centre for Distance Education                     16.2                    Acharya Nagarjuna University 

 

16.1 INTRODUCTION  

 

16.1.1 Overview 

 

In modern data-driven applications such as e-commerce systems, the ability to query and 

aggregate information efficiently is vital for operational performance and business 

intelligence. 

 

While document-oriented databases like MongoDB provide flexible data storage, the real 

power lies in their ability to perform complex queries and aggregations on massive datasets 

without the need for predefined schemas or complex joins. 

 

Queries allow developers to retrieve specific pieces of information, such as all orders 

placed by a customer or all products under a certain price range, while aggregation enables 

the summarization and analysis of data, such as calculating total sales, average ratings, or 

daily revenue. 

 

This lesson introduces the principles of querying and aggregating data in document-oriented 

databases, focusing particularly on MongoDB’s Query Language (MQL) and Aggregation 

Framework within an e-commerce context. 

 

The rapid growth of unstructured and semi-structured data has led to the emergence of 

NoSQL (Not Only SQL) databases, which prioritize flexibility, scalability, and performance. 

Among the four major types of NoSQL systems—key-value stores, column stores, graph 

databases, and document-oriented databases—the document-oriented model has gained 

significant popularity for web-scale applications. 

 

16.1.2 Importance of Queries and Aggregation in E-Commerce 

E-commerce platforms deal with large volumes of data generated from multiple entities — 

users, products, orders, reviews, and payments. 

 

To manage and analyze this data effectively, two key operations are essential: 

• Queries – for fetching, filtering, and sorting specific data based on user-defined 

conditions. 

• Aggregations – for summarizing and computing statistics across large datasets. 

• For example: 

• Querying all pending orders placed by a specific user. 

• Aggregating total sales revenue for a particular product category. 

• Computing the average product rating from customer reviews. 

• Together, these operations enable data-driven insights, performance monitoring, 

and strategic decision-making for e-commerce businesses. 

 

16.1.3 Querying in Document Databases 

 

In document-oriented systems such as MongoDB, data is stored as JSON-like documents, 

which can be queried using field-value pairs and operators. 

Unlike SQL queries, which rely on predefined tables and joins, MongoDB queries operate 

directly on nested and hierarchical document structures. 



DBMS                                                         16.3                          Queries and Aggregatione… 

A basic MongoDB query uses the find() method: 

 

db.products.find({ category: "Electronics", price: { $lt: 1000 } }) 

This retrieves all documents from the products collection where the category is “Electronics” 

and the price is less than ₹1000. 

 

MongoDB also supports advanced query features such as: 

• Comparison operators ($gt, $lt, $eq) 

• Logical operators ($and, $or) 

• Array operators ($in, $all) 

• Regular expressions and text search 

 

This makes querying in MongoDB flexible, intuitive, and powerful for large datasets. 

 

16.1.4 Aggregation in Document Databases 

 

While queries focus on retrieving individual documents, aggregation is used for grouping 

and summarizing data. 

 

MongoDB’s Aggregation Framework allows performing complex analytical operations 

such as counting, averaging, summing, and grouping data — similar to SQL’s GROUP BY 

and aggregate functions but more flexible and scalable. 

 

Example: 

To compute total sales for each product category: 

db.orders.aggregate([ 

  { $unwind: "$items" }, 

  { $group: { _id: "$items.category", totalSales: { $sum: "$items.price" } } } 

]) 

 

This aggregation pipeline performs the following: 

• $unwind – breaks the array of items into individual documents. 

• $group – groups data by category and calculates total sales per category. 

 

Aggregation thus enables data transformation, reporting, and real-time analytics directly 

within the database layer. 

 

16.1.5 Query Optimization and Indexing 

 

Efficient query performance is essential in large-scale e-commerce systems. MongoDB uses 

indexes to accelerate query execution by avoiding full collection scans. 

Common index types include: 

• Single-field indexes – for frequent lookups on one field. 

• Compound indexes – for filtering on multiple fields (e.g., category + price). 

• Text indexes – for keyword-based product searches. 

• Geospatial indexes – for location-based queries (e.g., nearby stores or delivery 

zones). 

 

 



Centre for Distance Education                     16.4                    Acharya Nagarjuna University 

Well-designed indexes can drastically improve performance and scalability, especially when 

combined with properly structured queries and aggregation pipelines. 

 

16.1.6 Real-World Example: E-Commerce Query and Aggregation Use Cases 

 

Use Case 1: Retrieve all orders placed by a specific customer in the last 30 days. 

Use Case 2: Calculate total revenue per product category. 

Use Case 3: Find the top 10 best-selling products by sales volume. 

Use Case 4: Determine the average rating for each product. 

Use Case 5: Generate a monthly report of new customers and total transactions. 

These examples demonstrate how queries and aggregations power various operational and 

analytical functions of modern e-commerce systems — from recommendation engines to 

performance dashboards. 

 

16.2 QUERYING IN E-COMMERCE APPLICATIONS 

 

16.2.1 Overview of Querying in E-Commerce 

In an e-commerce system, querying enables the retrieval of data from various collections 

such as users, products, orders, and reviews. 

 

Effective queries ensure that customers can search products, track orders, and view 

personalized recommendations quickly. 

 

In document-oriented databases like MongoDB, querying is performed using the MongoDB 

Query Language (MQL), which uses a JSON-like syntax to filter and manipulate data. 

Queries are executed through methods like find(), findOne(), and aggregate(). 

 

Example basic query: 

db.products.find({ category: "Electronics" }) 

This retrieves all documents from the products collection where the category is Electronics. 

 

16.2.2 Common Query Scenarios in E-Commerce 

E-commerce data can be vast and dynamic. Some common query operations include: 

• Fetching user information for authentication or profile display. 

• Searching products by category, price range, or brand. 

• Listing orders placed by a customer. 

• Filtering reviews for a product. 

• Finding top-selling or newly added products. 

Each of these operations relies on structured query design using appropriate MongoDB 

operators. 

 

16.2.3 Querying Customer Information 

Customer data may be stored as: 

{ 

  "_id": "U101", 

  "name": "Lavanya", 

  "email": "lavs@example.com", 

  "city": "Guntur", 

  "loyalty_points": 1200 

} 



DBMS                                                         16.5                          Queries and Aggregatione… 

To find a customer by email: 

db.users.find({ email: "lavs@example.com" }) 

To find all customers with more than 1000 loyalty points: 

db.users.find({ loyalty_points: { $gt: 1000 } }) 

These queries are straightforward, readable, and efficient when indexes are applied to 

frequently queried fields like email or city. 

 

16.2.4 Querying Products 

Product data is the heart of any e-commerce platform. A typical product document might 

look like: 

{ 

  "_id": "P101", 

  "name": "Wireless Mouse", 

  "category": "Electronics", 

  "brand": "Logitech", 

  "price": 499, 

  "rating": 4.5 

} 

 

Examples of product queries: 

• Fetch all products under ₹1000: 

• db.products.find({ price: { $lt: 1000 } }) 

• Find all products in the “Electronics” category with a rating above 4: 

• db.products.find({ category: "Electronics", rating: { $gt: 4 } }) 

• Retrieve specific fields (projection): 

• db.products.find({ category: "Electronics" }, { name: 1, price: 1, _id: 0 }) 

 

16.2.5 Querying Orders 

 

Order data often includes nested documents and arrays: 

{ 

  "_id": "O9001", 

  "user_id": "U101", 

  "order_date": "2025-10-28", 

  "status": "Shipped", 

  "items": [ 

    { "product_id": "P101", "quantity": 2, "price": 499 }, 

    { "product_id": "P102", "quantity": 1, "price": 899 } 

  ] 

} 

 

Examples: 

• Retrieve all orders for a specific user: 

• db.orders.find({ user_id: "U101" }) 

• Find all “Shipped” orders: 

• db.orders.find({ status: "Shipped" }) 

• Retrieve all orders placed after a certain date: 

• db.orders.find({ order_date: { $gte: "2025-10-01" } }) 

MongoDB can efficiently query even deeply nested fields using dot notation, e.g., 

items.product_id. 



Centre for Distance Education                     16.6                    Acharya Nagarjuna University 

 

16.2.6 Querying Reviews 

Customer feedback and reviews are stored separately in a reviews collection: 

{ 

  "_id": "R301", 

  "product_id": "P101", 

  "user_id": "U101", 

  "rating": 5, 

  "comment": "Excellent product!" 

} 

Examples: 

• Fetch all reviews for a specific product: 

• db.reviews.find({ product_id: "P101" }) 

• Find reviews with rating less than 3 (to analyze negative feedback): 

• db.reviews.find({ rating: { $lt: 3 } }) 

 

16.2.7 Using Comparison and Logical Operators 

 

MongoDB provides rich query operators for filtering data precisely. 

Operator Description Example 

$gt Greater than { price: { $gt: 1000 } } 

$lt Less than { rating: { $lt: 4 } } 

$and Combine multiple 

conditions 

{ $and: [ { category: "Electronics" }, { price: { $lt: 

2000 } } ] } 

$or Match any condition { $or: [ { category: "Books" }, { category: 

"Stationery" } ] } 

$in Match values in an array { category: { $in: ["Electronics", "Appliances"] } } 

 

16.2.8 Sorting, Limiting, and Pagination 

 

When displaying product listings, queries often include sorting and pagination. 

• Sort products by price (ascending): 

• db.products.find().sort({ price: 1 }) 

• Get the top 5 most expensive products: 

• db.products.find().sort({ price: -1 }).limit(5) 

• Implement pagination (skip first 10 results and show next 5): 

• db.products.find().skip(10).limit(5) 

These are commonly used in e-commerce user interfaces where results are shown page by 

page. 

 

16.2.9 Querying Nested Arrays and Embedded Documents 

E-commerce documents often contain arrays of embedded documents (e.g., order items or 

multiple addresses). 

 

Example: 

db.orders.find({ "items.product_id": "P101" }) 

This query retrieves all orders containing a particular product ID within the items array. 

MongoDB also allows querying for array size or matching multiple elements: 

db.orders.find({ "items": { $size: 2 } }) 



DBMS                                                         16.7                          Queries and Aggregatione… 

 

16.2.10 Text Search Queries 

 

For product searches, MongoDB’s text index supports keyword-based search: 

db.products.createIndex({ name: "text", description: "text" }) 

db.products.find({ $text: { $search: "wireless keyboard" } }) 

This enables full-text search functionality similar to e-commerce site search bars. 

 

16.2.11 Query Performance and Indexing 

 

Efficient querying requires indexing on frequently used fields such as: 

• user_id in orders 

• category and price in products 

• product_id in reviews 

Index creation example: 

db.orders.createIndex({ user_id: 1 }) 

Indexes improve performance significantly by reducing scan time across large datasets. 

 

16.3 MONGODB QUERY LANGUAGE (MQL) 

 

16.3.1 Overview 

The MongoDB Query Language (MQL) is the primary mechanism used to retrieve, filter, 

and manipulate data stored in a MongoDB database. 

Unlike traditional SQL, MQL is document-oriented and operates on JSON-like structures, 

allowing developers to query nested documents and arrays with great flexibility. 

In e-commerce systems, MQL enables developers to: 

• Search for products by price, category, or availability. 

• Retrieve user orders and purchase histories. 

• Filter reviews and ratings. 

• Generate targeted marketing insights. 

Each query in MQL is expressed as a JSON document specifying the selection criteria and 

projection fields. 

 

Example: 

db.products.find({ category: "Electronics", price: { $lt: 2000 } }) 

This retrieves all products under the "Electronics" category that cost less than ₹2000. 

 

16.3.2 Basic Query Syntax 

 

The fundamental query operation in MongoDB is the find() method, which retrieves 

documents from a collection that match specified conditions. 

 

Syntax: 

db.collection.find(<query>, <projection>) 

• query – specifies filtering criteria (like a WHERE clause in SQL). 

• projection – specifies which fields to return (like SELECT columns). 

 

Example: 

db.users.find({ city: "Guntur" }, { name: 1, email: 1, _id: 0 }) 

This returns only the name and email fields for users located in Guntur. 



Centre for Distance Education                     16.8                    Acharya Nagarjuna University 

 

16.3.3 Comparison Operators 

 

MongoDB provides several comparison operators for filtering numeric and string values. 

Operator Meaning Example 

$eq Equal to { price: { $eq: 1000 } } 

$ne Not equal to { category: { $ne: "Books" } } 

$gt Greater than { price: { $gt: 500 } } 

$lt Less than { price: { $lt: 1000 } } 

$gte Greater than or equal { rating: { $gte: 4 } } 

$lte Less than or equal { quantity: { $lte: 10 } } 

 

Example Query: 

Fetch all products with a price between ₹500 and ₹1500: 

db.products.find({ price: { $gte: 500, $lte: 1500 } }) 

 

16.3.4 Logical Operators 

Logical operators allow combining multiple conditions in a single query. 

Operator Description Example 

$and Matches all conditions { $and: [ { category: "Electronics" }, { price: { $lt: 

2000 } } ] } 

$or Matches any condition { $or: [ { category: "Books" }, { category: 

"Stationery" } ] } 

$not Negates a condition { price: { $not: { $gt: 5000 } } } 

$nor None of the conditions 

match 

{ $nor: [ { category: "Toys" }, { category: "Gadgets" 

} ] } 

 

16.3.5 Querying Arrays 

 

E-commerce data often includes arrays (e.g., product tags, order items). 

Example: 

{ 

  "product_id": "P120", 

  "name": "Bluetooth Headphones", 

  "tags": ["wireless", "electronics", "audio"] 

} 

• Find products tagged as “audio”: 

o db.products.find({ tags: "audio" }) 

• Match any tag in a list: 

o db.products.find({ tags: { $in: ["wireless", "gaming"] } }) 

• Match all specified tags: 

o db.products.find({ tags: { $all: ["wireless", "electronics"] } }) 

 

16.3.6 Querying Embedded Documents 

Documents in MongoDB may contain nested structures. You can query embedded fields 

using dot notation. 

 

 

 



DBMS                                                         16.9                          Queries and Aggregatione… 

Example Order Document: 

{ 

  "_id": "O101", 

  "user_id": "U001", 

  "shipping": { 

    "address": "Main Street", 

    "city": "Vijayawada", 

    "pincode": "520001" 

  } 

} 

 

Find orders shipped to Vijayawada: 

db.orders.find({ "shipping.city": "Vijayawada" }) 

 

16.3.7 Projection – Selecting Specific Fields 

 

To limit the number of fields returned, MQL uses projection. 

 

Syntax: 

db.collection.find(<query>, <projection>) 

 

Example: 

db.products.find( 

  { category: "Electronics" }, 

  { name: 1, price: 1, _id: 0 } 

) 

This query returns only the product name and price fields. 

Projection reduces data transfer and improves query performance. 

 

16.3.8 Sorting and Limiting Results 

Sorting is achieved using the sort() method, and result count can be controlled with limit(). 

 

Examples: 

• Sort by ascending price: 

• db.products.find().sort({ price: 1 }) 

• Sort by descending rating: 

• db.products.find().sort({ rating: -1 }) 

• Get the top 10 most expensive products: 

• db.products.find().sort({ price: -1 }).limit(10) 

 

16.3.9 Using Regular Expressions and Text Search 

MongoDB supports pattern matching for partial searches using regular expressions. 

 

Example: 

db.products.find({ name: { $regex: "wireless", $options: "i" } }) 

This retrieves all products whose names contain “wireless” (case-insensitive). 

For advanced search, MongoDB provides text indexes: 

db.products.createIndex({ name: "text", description: "text" }) 

db.products.find({ $text: { $search: "Bluetooth Speaker" } }) 

 



Centre for Distance Education                     16.10                    Acharya Nagarjuna University 

16.3.10 Querying with $exists and $type 

You can check whether a field exists or verify its data type. 

 

Examples: 

• Find documents missing the “rating” field: 

• db.products.find({ rating: { $exists: false } }) 

• Find documents where “price” is of numeric type: 

• db.products.find({ price: { $type: "number" } }) 

 

16.3.11 Querying Orders by Date 

E-commerce systems frequently need date-based queries for reporting. 

 

Example Order Document: 

{ 

  "order_id": "O501", 

  "order_date": ISODate("2025-10-10T10:30:00Z"), 

  "status": "Delivered" 

} 

 

Query all orders in October 2025: 

 

db.orders.find({ 

  order_date: { $gte: ISODate("2025-10-01"), $lt: ISODate("2025-11-01") } 

}) 

 

16.3.12 Compound Queries 

Compound queries combine multiple filters to match complex criteria. 

 

Example: 

Find all “Electronics” products priced below ₹2000 and rated above 4: 

db.products.find({ 

  $and: [ 

    { category: "Electronics" }, 

    { price: { $lt: 2000 } }, 

    { rating: { $gt: 4 } } 

  ] 

}) 

 

16.3.13 Query Optimization 

MongoDB optimizes query performance through: 

• Index utilization 

• Covered queries (where all requested fields are in the index) 

• Explain plans to analyze query execution. 

 

Example: 

db.products.find({ category: "Electronics" }).explain("executionStats") 

This command provides insight into query efficiency and index usage. 

 

 

 



DBMS                                                         16.11                          Queries and Aggregatione… 

16.3.14 Example Queries in E-Commerce 

 

Purpose Example Query 

List all active customers in a city db.users.find({ city: "Guntur" }) 

Retrieve all paid orders db.orders.find({ status: "Paid" }) 

Display products under ₹1000 db.products.find({ price: { $lt: 1000 } }) 

Find top-rated products db.products.find({ rating: { $gte: 4.5 } }) 

Search reviews with “excellent” db.reviews.find({ comment: /excellent/i }) 

 

16.4 AGGREGATION FRAMEWORK 

 

16.4.1 Introduction 

 

While queries in MongoDB are used to retrieve individual documents, the Aggregation 

Framework is designed to perform data analysis and computation directly within the 

database. 

 

It allows you to process large datasets, transform documents, and generate summarized 

results — similar to SQL’s GROUP BY, SUM(), COUNT(), and AVG() operations, but with 

much greater flexibility and scalability. 

 

In e-commerce applications, aggregation is essential for tasks such as: 

• Calculating total revenue per product or category. 

• Finding average customer ratings. 

• Counting total orders or customers. 

• Generating sales reports by region or time period. 

 

MongoDB’s aggregation is pipeline-based, where data flows through multiple stages, each 

performing a specific transformation. 

 

16.4.2 What Is an Aggregation Pipeline? 

An aggregation pipeline is a sequence of stages that process data step-by-step. Each stage 

transforms documents and passes the results to the next stage. 

 

Pipeline Concept: 

Input Collection → Stage 1 ($match) → Stage 2 ($group) → Stage 3 ($sort) → Output 

Each stage performs an operation such as filtering, grouping, or sorting. 

The power of the aggregation framework lies in chaining multiple stages together for 

complex analytics. 

 

Basic Syntax: 

db.collection.aggregate([ 

  { <stage1> }, 

  { <stage2> }, 

  ... 

]) 

 

 

 



Centre for Distance Education                     16.12                    Acharya Nagarjuna University 

16.4.3 Key Aggregation Stages 

 

MongoDB provides several built-in stages. The most frequently used are listed below with 

examples. 

 

(a) $match – Filtering Documents 

This stage filters documents according to specified criteria, similar to the find() query. 

Example: Retrieve only “Paid” orders. 

{ $match: { status: "Paid" } } 

 

(b) $project – Selecting Specific Fields 

The $project stage reshapes documents by including, excluding, or computing new fields. 

 

Example: Show only product_id, quantity, and computed total_price: 

{  

  $project: {  

    product_id: 1,  

    quantity: 1,  

    total_price: { $multiply: ["$quantity", "$price"] }  

  }  

} 

 

(c) $group – Grouping and Summarizing Data 

 

This stage groups documents by a specified field and computes aggregate values such as 

totals or averages. 

 

Example: Calculate total sales for each product. 

{  

  $group: {  

    _id: "$product_id",  

    totalSales: { $sum: "$price" }  

  }  

} 

 

(d) $sort – Sorting Results 

Used to arrange output documents in ascending or descending order. 

 

Example: Sort categories by total revenue (descending). 

{ $sort: { totalRevenue: -1 } } 

 

(e) $limit – Restricting Output Count 

Limits the number of documents returned. 

Example: Show top 5 best-selling products. 

{ $limit: 5 } 

 

(f) $skip – Skipping Documents 

Used for pagination in analytics reports. 

Example: Skip first 10 records, return next 5. 

{ $skip: 10 } 



DBMS                                                         16.13                          Queries and Aggregatione… 

 

(g) $unwind – Deconstructing Arrays 

When a field contains an array (like multiple order items), $unwind splits the array elements 

into individual documents. 

 

Example: 

{ $unwind: "$items" } 

If each order contains multiple items, this stage processes each item separately. 

 

(h) $lookup – Performing Joins 

 

The $lookup stage performs a left outer join between two collections, similar to SQL joins. 

Example: Join orders with products to display product names in each order. 

{ 

  $lookup: { 

    from: "products", 

    localField: "items.product_id", 

    foreignField: "_id", 

    as: "product_details" 

  } 

} 

 

 

(i) $addFields / $set – Creating New Fields 

These stages add or modify fields dynamically. 

Example: Add a computed field total to each order. 

{ $addFields: { total: { $sum: "$items.price" } } } 

 

(j) $count – Counting Documents 

This stage outputs a count of all documents that passed previous stages. 

Example: 

{ $count: "totalOrders" } 

 

16.4.4 Example: Complete Aggregation Pipeline 

 

Let’s calculate the total sales revenue per product category from an e-commerce database. 

db.orders.aggregate([ 

  { $unwind: "$items" }, 

  { 

    $lookup: { 

      from: "products", 

      localField: "items.product_id", 

      foreignField: "_id", 

      as: "product_info" 

    } 

  }, 

  { $unwind: "$product_info" }, 

  { 

    $group: { 

      _id: "$product_info.category", 



Centre for Distance Education                     16.14                    Acharya Nagarjuna University 

      totalRevenue: { $sum: "$items.price" }, 

      totalQuantity: { $sum: "$items.quantity" } 

    } 

  }, 

  { $sort: { totalRevenue: -1 } } 

]) 

 

Explanation: 

1. $unwind — Expands each order’s items array. 

2. $lookup — Joins orders with products to get category info. 

3. $group — Calculates total revenue and quantity for each category. 

4. $sort — Sorts categories by descending revenue. 

 

Result Example: 

[ 

  { "_id": "Electronics", "totalRevenue": 350000, "totalQuantity": 900 }, 

  { "_id": "Home Appliances", "totalRevenue": 210000, "totalQuantity": 450 }, 

  { "_id": "Books", "totalRevenue": 90000, "totalQuantity": 1200 } 

] 

 

16.4.5 Aggregation Operators 

 

Aggregation operators are used within stages to perform calculations or transformations. 

Operator Purpose Example 

$sum Adds numeric values { $sum: "$amount" } 

$avg Computes average { $avg: "$rating" } 

$min Minimum value { $min: "$price" } 

$max Maximum value { $max: "$price" } 

$push Creates an array of values { $push: "$product_id" } 

$first / $last Returns first or last element in a group { $first: "$order_date" } 

 

16.4.6 Aggregation vs. Simple Queries 

 

Aspect Query (find()) Aggregation (aggregate()) 

Purpose Retrieve documents Transform and summarize data 

Output Individual records Computed summaries 

Complexity Simple filters Multi-stage pipelines 

Use Case Search for users or products Generate sales reports or averages 

 

16.4.7 Real-World E-Commerce Aggregation Use Cases 

1. Total Revenue per Product Category 

• { $group: { _id: "$category", total: { $sum: "$price" } } } 

2. Average Rating per Product 

• { $group: { _id: "$product_id", avgRating: { $avg: "$rating" } } } 

3. Number of Orders per Customer 

• { $group: { _id: "$user_id", orders: { $sum: 1 } } } 

 

4. Top 5 Selling Products 

• { $sort: { totalSales: -1 } }, { $limit: 5 } 



DBMS                                                         16.15                          Queries and Aggregatione… 

5. Daily Revenue Trends 

• { $group: { _id: "$order_date", dailyRevenue: { $sum: "$amount" } } } 

 

16.4.8 Performance Optimization in Aggregations 

• Use Indexes: Especially on fields used in $match and $sort. 

• Place $match Early: Filter data before grouping to reduce processing. 

• Use Projection ($project): Include only necessary fields. 

• Monitor Pipeline Performance: Use .explain() to analyze query execution. 

• Avoid Excessive $lookup: Large joins can slow down performance; denormalize if 

necessary. 

 

Example: 

db.orders.aggregate([ 

  { $match: { status: "Paid" } }, 

  { $group: { _id: "$user_id", totalSpent: { $sum: "$total_amount" } } } 

]).explain("executionStats") 

 

16.4.9 Advantages of Aggregation Framework 

• Performs real-time analytics directly in the database. 

• Reduces the need for external reporting tools. 

• Handles large volumes of data efficiently. 

• Offers flexibility through pipeline design. 

• Integrates easily with BI dashboards and APIs. 

 

16.5 AGGREGATING ORDERS IN E-COMMERCE 

 

16.5.1 Overview 

 

In an e-commerce database, the orders collection contains valuable information about 

products purchased, quantities, and amounts paid. 

Using the aggregation framework, we can summarize this data to obtain key business 

insights such as total revenue, number of orders, and top customers. 

 

16.5.2 Total Sales Per User 

 

To calculate how much each customer has spent: 

db.orders.aggregate([ 

  { $match: { status: "Paid" } }, 

  { $group: { _id: "$user_id", totalSpent: { $sum: "$total_amount" } } }, 

  { $sort: { totalSpent: -1 } } 

]) 

     Shows top-spending customers. 

 

16.5.3 Top-Selling Products 

 

To identify the most frequently purchased items: 

db.orders.aggregate([ 

  { $unwind: "$items" }, 

  { $group: { _id: "$items.product_id", totalSold: { $sum: "$items.quantity" } } }, 



Centre for Distance Education                     16.16                    Acharya Nagarjuna University 

  { $sort: { totalSold: -1 } }, 

  { $limit: 5 } 

]) 

     Lists the top 5 best-selling products. 

 

16.5.4 Total Revenue by Category 

Join the orders and products collections to summarize sales by category: 

db.orders.aggregate([ 

  { $unwind: "$items" }, 

  { 

    $lookup: { 

      from: "products", 

      localField: "items.product_id", 

      foreignField: "_id", 

      as: "product_info" 

    } 

  }, 

  { $unwind: "$product_info" }, 

  { 

    $group: { 

      _id: "$product_info.category", 

      totalRevenue: { $sum: "$items.price" } 

    } 

  }, 

  { $sort: { totalRevenue: -1 } } 

]) 

     Helps identify the highest-earning categories. 

 

16.5.5 Average Order Value (AOV) 

 

To measure the average purchase amount per order: 

db.orders.aggregate([ 

  { $group: { _id: null, avgOrderValue: { $avg: "$total_amount" } } } 

]) 

     Useful for evaluating customer spending behavior. 

 

16.5.6 Monthly Sales Trend 

To view revenue over time: 

db.orders.aggregate([ 

  { 

    $group: { 

      _id: { month: { $month: "$order_date" }, year: { $year: "$order_date" } }, 

      monthlyRevenue: { $sum: "$total_amount" } 

    } 

  }, 

  { $sort: { "_id.year": 1, "_id.month": 1 } } 

]) 

     Generates a monthly sales chart for performance tracking. 

 



DBMS                                                         16.17                          Queries and Aggregatione… 

16.6 AGGREGATION IN DETAIL 

 

16.6.1 Overview 

 

The aggregation framework in MongoDB provides a powerful way to analyze and 

transform data. It processes documents through multiple stages, where each stage performs a 

specific operation — such as filtering, grouping, or calculating totals. 

Aggregations are widely used in e-commerce analytics to compute sales summaries, 

customer metrics, and product trends. 

 

16.6.2 The $group Stage 

 

The $group stage groups documents by a key and performs aggregate operations like sum, 

average, or count. 

 

Example – Total Sales per Product: 

{  

  $group: {  

    _id: "$product_id",  

    totalSales: { $sum: "$total_amount" }  

  }  

} 

     Groups by product_id and sums total sales. 

 

16.6.3 Common Accumulators 

 

Operator Description Example Use 

$sum Adds values { $sum: "$amount" } 

$avg Averages values { $avg: "$rating" } 

$min Smallest value { $min: "$price" } 

$max Largest value { $max: "$price" } 

$count Counts documents { $sum: 1 } 

 

16.6.4 Using $lookup for Joins 

$lookup connects data from multiple collections, like orders and products. 

 

Example: 

{ 

  $lookup: { 

    from: "products", 

    localField: "items.product_id", 

    foreignField: "_id", 

    as: "product_info" 

  } 

} 

     Brings product details into order data. 

 

 

 



Centre for Distance Education                     16.18                    Acharya Nagarjuna University 

16.6.5 THE $PROJECT STAGE 

Used to select specific fields or create new computed fields. 

Example: 

{ 

  $project: { 

    product_name: 1, 

    total_value: { $multiply: ["$price", "$quantity"] } 

  } 

} 

     Computes a new field total_value. 

 

16.6.6 THE $UNWIND STAGE 

 

Splits arrays into separate documents — useful for analyzing order items. 

Example: 

{ $unwind: "$items" } 

     Processes each order item individually. 

 

16.6.7 COMBINING MULTIPLE STAGES 

 

Complex analytics can be performed by combining multiple stages in a pipeline. 

Example – Total Revenue per Category: 

db.orders.aggregate([ 

  { $unwind: "$items" }, 

  { $lookup: { 

      from: "products", 

      localField: "items.product_id", 

      foreignField: "_id", 

      as: "product_info" 

    } }, 

  { $unwind: "$product_info" }, 

  { $group: { 

      _id: "$product_info.category", 

      revenue: { $sum: "$items.price" } 

    } }, 

  { $sort: { revenue: -1 } } 

]) 

     Shows category-wise revenue ranking. 

 

16.7 PRACTICAL EXAMPLES AND CASE STUDIES 

 

16.7.1 Overview 

In real-world e-commerce systems, queries and aggregations are essential for generating 

reports, dashboards, and insights. 

MongoDB’s flexibility allows developers to extract meaningful information from large 

datasets to improve sales strategies, inventory planning, and customer engagement. 

 

16.7.2 Example 1 – Sales Dashboard 

A dashboard displays real-time sales metrics using aggregation pipelines. 



DBMS                                                         16.19                          Queries and Aggregatione… 

Pipeline: 

db.orders.aggregate([ 

  { $match: { status: "Paid" } }, 

  { $group: { _id: null, totalSales: { $sum: "$total_amount" }, totalOrders: { $sum: 1 } } } 

]) 

     Shows overall sales and total orders. 

 

16.7.3 Example 2 – Top 5 Selling Products 

 

Identify products with the highest sales volume. 

db.orders.aggregate([ 

  { $unwind: "$items" }, 

  { $group: { _id: "$items.product_id", totalQty: { $sum: "$items.quantity" } } }, 

  { $sort: { totalQty: -1 } }, 

  { $limit: 5 } 

]) 

     Useful for inventory and marketing planning. 

 

16.7.4 Example 3 – Customer Insights 

 

Determine top-spending customers. 

db.orders.aggregate([ 

  { $match: { status: "Paid" } }, 

  { $group: { _id: "$user_id", totalSpent: { $sum: "$total_amount" } } }, 

  { $sort: { totalSpent: -1 } } 

]) 

     Helps identify loyal or high-value customers. 

 

16.8 BEST PRACTICES AND OPTIMIZATION TECHNIQUES 

 

Efficient query and aggregation performance is crucial in large-scale e-commerce systems. 

As data grows, poorly designed queries or pipelines can slow down operations. 

Following best practices ensures faster results, optimized resource use, and a better user 

experience. 

Key optimization strategies include: 

• Indexing critical fields. 

• Filtering early in pipelines. 

• Using projections and limits. 

• Reducing $lookup usage. 

• Monitoring queries and caching results. 

 

16.9 SUMMARY 

 

This lesson explored how queries and aggregations are used in document-oriented 

databases, particularly MongoDB, to manage and analyze e-commerce data. 

Key points covered include: 

• The role of queries for retrieving and filtering data using MongoDB Query Language 

(MQL). 

• The concept and structure of the Aggregation Framework for data summarization. 



Centre for Distance Education                     16.20                    Acharya Nagarjuna University 

• Practical e-commerce examples, such as retrieving top-selling products, computing 

total revenue, and generating customer insights. 

• Optimization techniques like indexing, projection, and pipeline efficiency. 

• Efficient use of queries and aggregations allows e-commerce businesses to make 

data-driven decisions, improve performance, and gain actionable insights from 

large datasets. 

 

16.10 TECHNICAL TERMS 

 

1. MQL (MongoDB Query Language) 

2. Aggregation Framework 

3. Pipeline 

4. Stage 

5. Accumulator 

6. $match 

7. $group 

8. $lookup 

9. $unwind 

10. Projection 

11. Index 

12. Denormalization 

13. Sharding 

 

16.11 SELF-ASSESSMENT QUESTIONS 

 

Short Answer Questions 

 

1. What is MongoDB Query Language (MQL)? 

2. Differentiate between a query and an aggregation. 

3. What is the purpose of the $group stage in MongoDB? 

4. Define the term accumulator in the context of aggregations. 

5. List any three operators used in aggregation pipelines. 

 

Long Answer Questions 

 

1. Explain in detail the working of the MongoDB Query Language (MQL) with suitable 

e-commerce examples. 

2. Describe the stages of the Aggregation Framework and explain their roles with 

examples. 

3. Write a MongoDB aggregation pipeline to calculate total sales per product category. 

 

16.12 SUGGESTED READINGS 

 

1. Kristina Chodorow – MongoDB: The Definitive Guide, O’Reilly Media. 

2. Rick Copeland – MongoDB Applied Design Patterns, O’Reilly Media. 

3. Ramez Elmasri & Shamkant B. Navathe – Fundamentals of Database Systems, 

Pearson Education. 

4. MongoDB Documentation – Aggregation Pipeline Stages and Operators. 

5. MongoDB University – Data Modeling and Aggregation Framework. 



DBMS                                                         16.21                          Queries and Aggregatione… 

6. Google Cloud Documentation – Building E-Commerce Analytics with MongoDB 

Atlas. 

7. Alex Giamas – Practical MongoDB Aggregations, Leanpub. 

8. Amazon Web Services – NoSQL Design Patterns for Scalable Applications. 

9. Couchbase Documentation – Query and Indexing Best Practices. 

10. Michael Harrison – Mastering MongoDB 6.x: Expert Techniques for Data 

Aggregation and Performance Optimization. 

 

Dr. U. Surya Kameswari 



LESSON- 17 

UPDATES ATOMIC OPERATIONS AND DELETES 
 

AIMS AND OBJECTIVES: 

 

The aim of this lesson is to explain how updates, atomic operations, and deletions are 

performed in document-oriented databases, particularly in MongoDB, and how these 

operations ensure data consistency, accuracy, and reliability in dynamic applications such as 

e-commerce systems. 

This lesson emphasizes the principles behind modifying and maintaining data, introduces the 

concept of atomicity in document processing, and explores the practical usage of MongoDB’s 

update and delete operations in real-world business scenarios. 

 

After completing this lesson, learners will be able to: 

• Understand the principles of document update and delete operations in MongoDB. 

• Differentiate between update types — single, multiple, and replacement updates. 

• Apply update operators such as $set, $inc, $unset, $push, and $pull to modify specific 

fields. 

• Explain the concept of atomicity and its role in ensuring consistent data transactions. 

• Implement atomic operations for concurrent updates and multi-user environments. 

• Perform practical update operations in e-commerce applications, such as modifying 

prices, stock, and customer details. 

• Use transactions to maintain data integrity across multiple collections. 

• Execute and manage document deletions, both individually and in bulk. 

• Implement soft delete strategies to preserve historical or inactive data. 

• Optimize update and delete operations for high-performance e-commerce databases 

using indexing and bulk operations. 

STRUCTURE: 

17.1   INTRODUCTION 

17.2   UNDERSTANDING DOCUMENT UPDATES 

17.3   ATOMIC OPERATIONS 

17.4   E-COMMERCE UPDATE EXAMPLES 

17.5   NUTS AND BOLTS OF MONGODB UPDATES 

17.6   DELETING DOCUMENTS 

17.7   ATOMIC DOCUMENT PROCESSING 

17.8   E-COMMERCE CASE STUDY: INVENTORY AND ORDER     

          SYNCHRONIZATION 

17.9   PERFORMANCE AND OPTIMIZATION 

17.10  SUMMARY 

17.11  TECHNICAL TERMS 

17.12   SELF-ASSESSMENT QUESTIONS 

17.13   SUGGESTED READINGS 



Centre for Distance Education                      17.2                     Acharya Nagarjuna University 

 

17.1 INTRODUCTION 

 

17.1.1 Overview 

 

In a document-oriented database like MongoDB, updates and deletes are fundamental 

operations used to modify or remove data from collections. 

Unlike relational databases where updates affect rows in tables, MongoDB updates operate 

on JSON-like documents, providing greater flexibility in modifying nested structures and 

arrays. 

 

Updates enable applications to reflect real-time changes—for example, updating product 

prices, stock quantities, customer details, or order statuses—while deletes help maintain a 

clean and efficient database by removing outdated or redundant records. 

In addition, atomic operations ensure that updates to a document are applied completely or 

not at all, preserving data consistency even in concurrent environments where multiple users 

or processes may attempt to modify the same data. 

 

17.1.2 The Need for Updates in MongoDB 

 

E-commerce platforms and real-time applications require frequent updates to maintain 

accurate information. 

 

For example: 

• When a customer places an order, the stock quantity must be reduced. 

• If an order is canceled, the inventory must be restored. 

• When a user edits their profile, the corresponding document must be updated 

instantly. 

 

MongoDB provides efficient methods like updateOne(), updateMany(), and replaceOne() to 

modify documents selectively or entirely, without affecting other unrelated data. 

 

17.1.3 Understanding Deletes in MongoDB 

 

Delete operations are equally important to maintain data hygiene and relevance. 

For example, an e-commerce company may need to: 

• Delete products that are no longer sold. 

• Remove customer accounts upon request (to comply with data privacy regulations). 

• Purge old transaction records after a certain period for archival or compliance 

purposes. 

 

MongoDB provides the deleteOne() and deleteMany() methods to remove specific or 

multiple documents efficiently, ensuring that only targeted data is deleted. 

 

 

 

 

 



DBMS                                                          17.3        UPDATES ATOMIC OPERATIONS…  

17.1.4 Importance of Atomic Operations 

 

Atomic operations ensure that all changes to a document occur as a single, indivisible action. 

If multiple users attempt to update the same document simultaneously, MongoDB guarantees 

that each update is applied in isolation, preventing conflicts and data corruption. 

For instance, when two customers attempt to purchase the last available unit of a product 

simultaneously, MongoDB’s atomic update ensures that only one order is confirmed, and the 

stock value is adjusted correctly. 

 

Atomicity is particularly critical in e-commerce for: 

• Order management (preventing duplicate confirmations). 

• Inventory synchronization (avoiding negative stock). 

• Financial transactions (ensuring accurate billing and wallet updates). 

 

17.1.5 Updates and Deletes in E-Commerce Applications 

 

In an e-commerce context, updates and deletes occur constantly. 

Here are some real-world examples: 

 

Scenario Operation 

Type 

MongoDB 

Method 

Updating product prices or descriptions Update updateOne() 

Increasing loyalty points after purchase Atomic Update $inc 

Changing order status from “Pending” to 

“Delivered” 

Update updateMany() 

Removing expired offers or discount coupons Delete deleteMany() 

Deleting inactive user accounts Delete deleteOne() 

Restoring inventory after order cancellation Atomic Update $inc (reverse stock) 

 

Such operations ensure that the database remains accurate, responsive, and consistent with 

real-world changes. 

 

Example: 

 

An online store wants to update all “Winter Collection” products to offer a 10% discount. 

db.products.updateMany( 

  { category: "Winter Collection" }, 

  { $mul: { price: 0.9 } } 

) 

 

This single command reduces the price of all products in the specified category by 10%, 

illustrating the simplicity and power of MongoDB’s update capabilities. 

Similarly, to remove all expired discount codes, the following delete operation can be 

performed: 

 

 

 

 

 



Centre for Distance Education                      17.4                     Acharya Nagarjuna University 

db.coupons.deleteMany({ expiry_date: { $lt: new Date() } }) 

Both operations are efficient, atomic (per document), and ideal for real-time e-commerce    

 

17.2 UNDERSTANDING DOCUMENT UPDATES 

 

17.2.1 Overview 

 

In MongoDB, update operations modify existing documents in a collection. 

They can change single fields, multiple fields, or replace an entire document. 

Common methods include updateOne(), updateMany(), and replaceOne(). 

 

17.2.2 The updateOne() and updateMany() Methods 

• updateOne() modifies the first matching document. 

• updateMany() modifies all documents that match the filter. 

 

Example: 

db.products.updateOne({ _id: "P101" }, { $set: { price: 499 } }) 

db.products.updateMany({ category: "Books" }, { $inc: { stock: 10 } }) 

 

17.2.3 Replace Operation 

 

replaceOne() completely replaces an existing document with a new one. 

db.users.replaceOne({ _id: "U001" }, { name: "Lavanya", city: "Guntur" }) 

 

17.2.4 Common Update Operators 

• $set – Assigns a new value to a field. 

o { $set: { status: "Delivered" } } 

• $inc – Increases or decreases a numeric field. 

o { $inc: { loyalty_points: 100 } } 

• $unset – Removes a field. 

o { $unset: { discount: "" } } 

• $rename – Renames a field. 

o { $rename: { "old_field": "new_field" } } 

• $push / $pull – Adds or removes array elements. 

o { $push: { tags: "new-arrival" } } 

o { $pull: { tags: "outdated" } } 

• $addToSet – Adds a value to an array only if it doesn’t exist. 

o { $addToSet: { tags: "featured" } } 

 

17.2.5 Upsert Option 

An upsert updates a document if it exists; otherwise, it inserts a new one. 

db.products.updateOne( 

  { name: "Wireless Mouse" }, 

  { $set: { stock: 50 } }, 

  { upsert: true } 

) 

 

 

 



DBMS                                                          17.5        UPDATES ATOMIC OPERATIONS…  

17.2.6 Updating Embedded Documents 

Fields inside nested structures can be updated using dot notation. 

db.orders.updateOne( 

  { _id: "O1001" }, 

  { $set: { "shipping.city": "Vijayawada" } } 

) 

 

17.2.7 E-Commerce Examples 

• Update order status: 

• db.orders.updateOne({ _id: "O2001" }, { $set: { status: "Shipped" } }) 

• Increase stock after restock: 

• db.products.updateMany({ category: "Electronics" }, { $inc: { stock: 25 } }) 

• Add a new review to a product: 

db.products.updateOne({ _id: "P101" }, { $push: { reviews: "Excellent!" } }) 

 

17.3 ATOMIC OPERATIONS 

 

17.3.1 Overview 

 

Atomic operations in MongoDB ensure that updates to a document are completed entirely 

or not at all. 

Each document update is atomic by default, even when multiple clients are modifying data 

simultaneously. 

 

17.3.2 Single-Document Atomicity 

 

All updates to a single document (including embedded fields and arrays) are atomic. 

This prevents partial updates and maintains consistency. 

 

Example: 

When two users order the same item, MongoDB ensures only one successfully decreases the 

stock count. 

 

17.3.3 Common Atomic Operators 

• $inc – Adjusts numeric fields atomically. 

o db.products.updateOne({ _id: "P101" }, { $inc: { stock: -1 } }) 

• $set – Updates field values. 

o db.orders.updateOne({ _id: "O201" }, { $set: { status: "Delivered" } }) 

• $push / $pull – Modifies arrays atomically. 

o db.users.updateOne({ _id: "U001" }, { $push: { wishlist: "P205" } }) 

 

17.3.4 Atomicity in Embedded Documents 

 

Updates made to nested fields are applied atomically at the document level. 

db.orders.updateOne( 

  { _id: "O301" }, 

  { $set: { "payment.status": "Confirmed" } } 

) 

 

 



Centre for Distance Education                      17.6                     Acharya Nagarjuna University 

 

17.3.5 Multi-Document Transactions 

 

For operations spanning multiple documents or collections, MongoDB uses transactions to 

maintain atomicity. 

const session = db.getMongo().startSession() 

session.startTransaction() 

db.orders.updateOne({ _id: "O1001" }, { $set: { status: "Paid" } }, { session }) 

db.users.updateOne({ _id: "U1001" }, { $inc: { wallet: -500 } }, { session }) 

session.commitTransaction() 

 

17.3.6 Importance in E-Commerce 

• Prevents overselling of products. 

• Ensures consistent order and payment updates. 

• Maintains synchronization between user and inventory data. 

• Supports safe concurrent updates during high traffic. 

 

17.4 E-COMMERCE UPDATE EXAMPLES 

 

17.4.1 Overview 

 

E-commerce systems frequently perform update operations to manage inventory, customer 

information, and order statuses. 

MongoDB provides flexible update methods that allow changes to be made efficiently in 

real-time. 

 

17.4.2 Updating Product Details 

 

Example 1 – Changing Product Price: 

db.products.updateOne({ _id: "P101" }, { $set: { price: 999 } }) 

Example 2 – Increasing Stock: 

db.products.updateOne({ _id: "P101" }, { $inc: { stock: 20 } }) 

Example 3 – Adding Tags: 

db.products.updateOne({ _id: "P101" }, { $addToSet: { tags: "new-arrival" } }) 

 

17.4.3 Updating Customer Information 

 

Example – Change Address and Phone Number: 

db.users.updateOne( 

  { _id: "U201" }, 

  { $set: { "address.city": "Vijayawada", phone: "9876543210" } } 

) 

 

17.4.4 Updating Order Status 

 

Example – Change Order Status from Pending to Shipped: 

db.orders.updateOne( 

  { _id: "O501", status: "Pending" }, 

  { $set: { status: "Shipped", shipped_date: new Date() } } 

) 



DBMS                                                          17.7        UPDATES ATOMIC OPERATIONS…  

 

17.4.5 Updating Product Reviews 

 

Example – Add a New Review: 

db.products.updateOne( 

  { _id: "P301" }, 

  { $push: { reviews: { user: "U101", rating: 5, comment: "Excellent!" } } } 

) 

 

17.4.6 Bulk Updates for Promotions 

 

Example – Apply 10% Discount to All Electronics: 

db.products.updateMany( 

  { category: "Electronics" }, 

  { $mul: { price: 0.9 } } 

) 

 

17.4.7 Loyalty Points Update 

Example – Reward Customers After Purchase: 

db.users.updateMany( 

  { total_orders: { $gte: 5 } }, 

  { $inc: { loyalty_points: 50 } } 

) 

 

17.4.8 Inventory Adjustment after Return 

 

Example – Restock Returned Product: 

db.products.updateOne({ _id: "P205" }, { $inc: { stock: 1 } }) 

 

17.5 Nuts and Bolts of MongoDB Updates 

 

17.5.1 Overview 

 

MongoDB provides multiple update methods and operators that allow precise  modifications 

of documents. These updates can target single or multiple documents, and can also insert data 

when no match is found (upsert). 

 

17.5.2 The updateOne() Method 

Updates the first matching document. 

Syntax: 

db.collection.updateOne(filter, update, options) 

 

Example: 

db.products.updateOne({ _id: "P101" }, { $set: { price: 750 } }) 

 

17.5.3 The updateMany() Method 

Updates all matching documents. 

 

 

 



Centre for Distance Education                      17.8                     Acharya Nagarjuna University 

Example: 

db.products.updateMany({ category: "Books" }, { $inc: { stock: 5 } }) 

 

17.5.4 The replaceOne() Method 

 

Replaces an entire document with a new one. 

Example: 

db.users.replaceOne({ _id: "U101" }, { name: "Lavanya", city: "Guntur" }) 

 

17.5.5 The findOneAndUpdate() Method 

 

Finds and updates a document, returning the modified document. 

 

Example: 

db.orders.findOneAndUpdate( 

  { _id: "O101" }, 

  { $set: { status: "Delivered" } }, 

  { returnDocument: "after" } 

) 

 

17.5.6 Update Options 

• upsert: true → Inserts if no matching document exists. 

• arrayFilters → Filters array elements during updates. 

• multi → Allows updating multiple documents (for legacy use). 

Example (upsert): 

db.products.updateOne( 

  { name: "Smart Lamp" }, 

  { $set: { stock: 15 } }, 

  { upsert: true } 

) 

 

17.5.7 Using Date and Conditional Fields 

 

MongoDB provides operators for timestamps and conditional inserts. 

db.orders.updateOne( 

  { _id: "O201" }, 

  {  

    $currentDate: { updated_at: true }, 

    $setOnInsert: { created_at: new Date() } 

  }, 

  { upsert: true } 

) 

 

17.5.8 Performance Considerations 

• Use indexes on frequently updated fields. 

• Avoid frequent updates to large arrays. 

• Prefer $set for partial updates instead of replacing entire documents. 

• Use bulk operations for batch updates. 

 

 



DBMS                                                          17.9        UPDATES ATOMIC OPERATIONS…  

Example – Bulk Write: 

db.products.bulkWrite([ 

  { updateOne: { filter: { _id: "P101" }, update: { $inc: { stock: 5 } } } }, 

  { updateOne: { filter: { _id: "P102" }, update: { $set: { price: 899 } } } } 

]) 

 

17.6 Deleting Documents 

 

Aspect Description Example / Use Case 

Definition Removes documents from a 

MongoDB collection based on filter 

criteria. 

Deleting expired coupons or 

cancelled orders. 

Primary 

Methods 

deleteOne() – Deletes first matching 

document.deleteMany() – Deletes all 

matching documents. 

db.orders.deleteMany({ status: 

"Cancelled" }) 

Filter Use Ensures only targeted data is deleted 

to prevent data loss. 

db.users.deleteOne({ _id: "U501" 

}) 

Soft Delete Marks documents as inactive instead 

of removing them. 

db.products.updateOne({ _id: 

"P101" }, { $set: { is_deleted: true 

} }) 

Bulk Delete Removes multiple outdated or 

irrelevant records efficiently. 

db.logs.deleteMany({ created_at: 

{ $lt: ISODate("2025-01-01") } }) 

Precaution Avoid using empty filters (e.g., {}) to 

prevent accidental full deletion. 
    db.orders.deleteMany({}) 

Performance 

Tips 

Use indexes on filter fields and 

schedule deletions during low traffic. 

Improves efficiency in large 

datasets. 

Use in E-

Commerce 

Clean up old orders, remove expired 

offers, or deactivate discontinued 

products. 

Keeps database optimized and up 

to date. 

 

17.6 Deleting Documents  

 

Aspect Description Example / Use Case 

Definition Removes documents from a 

MongoDB collection based on 

filter criteria. 

Deleting expired coupons or cancelled 

orders. 

Primary 

Methods 

deleteOne() – Deletes first 

matching document. 

deleteMany() – Deletes all 

matching documents. 

db.orders.deleteMany({ status: 

"Cancelled" }) 

Filter Use Ensures only targeted data is 

deleted to prevent data loss. 

db.users.deleteOne({ _id: "U501" }) 

Soft Delete Marks documents as inactive 

instead of removing them. 

db.products.updateOne({ _id: "P101" 

}, { $set: { is_deleted: true } }) 

Bulk Delete Removes multiple outdated or 

irrelevant records efficiently. 

db.logs.deleteMany({ created_at: { $lt: 

ISODate("2025-01-01") } }) 

Precaution Avoid using empty filters (e.g., 

{}) to prevent accidental full 

deletion. 

    db.orders.deleteMany({}) 



Centre for Distance Education                      17.10                     Acharya Nagarjuna University 

Performance 

Tips 

Use indexes on filter fields and 

schedule deletions during low 

traffic. 

Improves efficiency in large datasets. 

Use in E-

Commerce 

Clean up old orders, remove 

expired offers, or deactivate 

discontinued products. 

Keep 

 

17.8 E-Commerce Case Study: Inventory and Order Synchronization 

  

Aspect Description Example / 

Implementatio

n 

Scenario Synchronizing inventory and order status during customer 

purchases. 

When a product 

is ordered, stock 

decreases and 

order status 

updates. 

Challenge Prevent inconsistent updates (e.g., overselling or duplicate 

orders). 

Two customers 

buying the last 

item 

simultaneously. 

Solution Use atomic updates or transactions to ensure 

consistency. 

Atomic 

decrement of 

stock and order 

creation in one 

step. 

Atomic 

Update 

Example 

js<br>db.products.updateOne({ _id: "P101", stock: { $gt: 

0 } }, { $inc: { stock: -1 } }) 

Reduces stock 

by one only if 

available. 

Transactiona

l Example 

js<br>session.startTransaction()<br>db.orders.updateOne

({ _id: "O101" }, { $set: { status: "Confirmed" } }, { 

session })<br>db.products.updateOne({ _id: "P101" }, { 

$inc: { stock: -1 } }, { session 

})<br>session.commitTransaction() 

Ensures both 

order 

confirmation 

and stock 

deduction occur 

together. 

Result Prevents partial or conflicting updates between orders and 

products. 

Maintains 

accurate stock 

and order data 

in real time. 

Benefits - Reliable order management. 

- Accurate inventory levels. 

- Seamless user experience. 

 

 

 

 

 

 

 

 



DBMS                                                          17.11        UPDATES ATOMIC 

OPERATIONS…  

17.9 Performance and Optimization  

 

Aspect Description Example / Recommendation 

Goal Improve the efficiency and 

reliability of update and delete 

operations in MongoDB. 

Ensures faster processing in large e-

commerce databases. 

Use Indexes Create indexes on frequently 

queried or updated fields. 

db.orders.createIndex({ user_id: 1 }) 

Use Projection Fetch or update only required 

fields. 

db.products.find({}, { name: 1, price: 

1 }) 

Batch Operations Perform multiple updates or 

deletes together for better 

efficiency. 

db.products.bulkWrite([...]) 

Avoid Large 

Array 

Modifications 

Minimize updates on 

documents with large arrays. 

Store reviews or logs in separate 

collections. 

Place $match 

Early 

Filter documents early in 

aggregation or bulk updates. 

Reduces memory usage and improves 

speed. 

Use Upserts 

Wisely 

Enable upsert only when 

necessary to prevent 

unintended inserts. 

updateOne({ name: "item" }, { $set: 

{...} }, { upsert: true }) 

Soft Deletes for 

History 

Mark documents as inactive 

instead of deleting. 

db.users.updateOne({ _id: "U101" }, 

{ $set: { is_deleted: true } }) 

Monitor with 

.explain() 

Analyze query plans and 

optimize indexes. 

db.orders.find({ status: "Paid" 

}).explain("executionStats") 

Hardware and 

Sharding 

Use replica sets and sharding 

for scalability and fault 

tolerance. 

Distribute data across multiple nodes. 

Automation Schedule cleanup and 

optimization tasks during off-

peak hours. 

Cron jobs for archiving and deleting 

old data. 

 

17.10 SUMMARY 

 

In this lesson, we explored how MongoDB handles updates, atomic operations, and deletions 

within document-oriented databases. Update operations allow partial or complete 

modification of documents using operators such as $set, $inc, $push, and $unset. Atomic 

operations ensure that each update to a document is executed completely or not at all, 

preventing conflicts in concurrent environments. We also discussed deletion operations using 

deleteOne() and deleteMany(), along with soft deletes for preserving data history. The lesson 

further examined how these operations apply to e-commerce systems—including order 

management, inventory synchronization, and data consistency across collections—supported 

by transactions and bulk operations for high performance. 

 

 

 

 

 



Centre for Distance Education                      17.12                     Acharya Nagarjuna University 

 

17.11 Technical Terms 

• Atomic Operation 

• Upsert 

• Soft Delete 

• Transaction 

• Bulk Write 

 

17.12 Self-Assessment Questions 

 

Short Answer Questions 

1. What is the difference between updateOne() and updateMany() in MongoDB? 

2. Define atomic operation and explain its importance in databases. 

3. What is an upsert operation? 

4. How does MongoDB handle deletion operations safely? 

5. What is the advantage of using soft deletes in e-commerce databases? 

 

Long Answer Questions 

 

1. Explain the concept of atomic operations in MongoDB with suitable e-commerce 

examples. 

2. Discuss different update operators in MongoDB and their use in real-world 

applications. 

3. Describe the process and advantages of using transactions in MongoDB for 

maintaining data consistency. 

4. Compare hard delete and soft delete strategies with examples from e-commerce 

applications. 

5. How can performance be optimized for frequent update and delete operations in large-

scale MongoDB systems? 

 

17.13 Suggested Readings 

 

1. Kristina Chodorow – MongoDB: The Definitive Guide, O’Reilly Media. 

2. Rick Copeland – MongoDB Applied Design Patterns, O’Reilly Media. 

3. MongoDB Documentation – Update, Delete, and Atomic Operations. 

4. Alex Giamas – Practical MongoDB Aggregations, Leanpub. 

5. Ramez Elmasri & Shamkant B. Navathe – Fundamentals of Database Systems, 

Pearson Education. 

6. MongoDB University – Transactions and Multi-Document Atomicity. 

7. AWS Whitepaper – Building Scalable NoSQL Applications Using MongoDB. 

 

Dr. U. Surya Kameswari 


