DATABASE MANAGEMENT SYSTEMS

M.Sc. Computer Science
First Year, Semester-11, Paper-I

Lesson Writers

Dr. Neelima Guntupalli
Assistant Professor
Department of CS&E
Acharya Nagarjuna University

Dr. Vasantha Rudramalla
Faculty,
Department of CS&E
Acharya Nagarjuna University

Dr. Kampa Lavanya

Assistant Professor
Department of CS&E
Acharya Nagarjuna University

Dr. U. Surya Kameswari
Assistant Professor
Department of CS&E
Acharya Nagarjuna University

Editor

Dr. Kampa Lavanya
Assistant Professor
Department of CS&E
University College of Sciences
Acharya Nagarjuna University

Academic Advisor

Dr. Kampa Lavanya
Assistant Professor
Department of CS&E
Acharya Nagarjuna University

DIRECTOR, I/c.

PROF. V. VENKATESWARLU
M.A., M.P.S., M.S.W., M.Phil., Ph.D.
CENTRE FOR DISTANCE EDUCATION
ACHARYA NAGARJUNA UNIVERSITY
NAGARJUNA NAGAR 522 510
Ph: 0863-2346222, 2346208

0863- 2346259 (Study Material)
Website www.anucde.info
E-mail: anucdedirector@gmail.com

M.Sc., (Computer Science) : DATABASE MANAGEMENT SYSTEMS
First Edition : 2025

No. of Copies

© Acharya Nagarjuna University

This book is exclusively prepared for the use of students of M.Sc. (Computer Science),
Centre for Distance Education, Acharya Nagarjuna University and this book is meant
for limited circulation only.

Published by:

Prof. V. VENKATESWARLU
Director, I/c

Centre for Distance Education,
Acharya Nagarjuna University

Printed at:

FOREWORD

Since its establishment in 1976, Acharya Nagarjuna University has been
forging ahead in the path of progress and dynamism, offering a variety of courses
and research contributions. I am extremely happy that by gaining ‘A+’ grade from
the NAAC in the year 2024, Acharya Nagarjuna University is offering educational
opportunities at the UG, PG levels apart from research degrees to students from

over 221 affiliated colleges spread over the two districts of Guntur and Prakasam.

The University has also started the Centre for Distance Education in 2003-
04 with the aim of taking higher education to the door step of all the sectors of the
society. The centre will be a great help to those who cannot join in colleges, those
who cannot afford the exorbitant fees as regular students, and even to housewives
desirous of pursuing higher studies. Acharya Nagarjuna University has started
offering B.Sc., B.A., B.B.A., and B.Com courses at the Degree level and M.A.,
M.Com., M.Sc., M.B.A., and L.L.M., courses at the PG level from the academic
year 2003-2004 onwards.

To facilitate easier understanding by students studying through the distance
mode, these self-instruction materials have been prepared by eminent and
experienced teachers. The lessons have been drafted with great care and expertise
in the stipulated time by these teachers. Constructive ideas and scholarly
suggestions are welcome from students and teachers involved respectively. Such
ideas will be incorporated for the greater efficacy of this distance mode of
education. For clarification of doubts and feedback, weekly classes and contact

classes will be arranged at the UG and PG levels respectively.

It is my aim that students getting higher education through the Centre for
Distance Education should improve their qualification, have better employment
opportunities and in turn be part of country’s progress. It is my fond desire that in
the years to come, the Centre for Distance Education will go from strength to
strength in the form of new courses and by catering to larger number of people. My
congratulations to all the Directors, Academic Coordinators, Editors and Lesson-

writers of the Centre who have helped in these endeavors.

Prof. K. Gangadhara Rao
M.Tech., Ph.D.,
Vice-Chancellor I/c
Acharya Nagarjuna University.

M.Sc., (COMPUTER SCIENCE)
FIRST YEAR, SEMESTER - 11

201CP24: DATABASE MANAGENT SYSTEMS
SYLLABUS
UNIT-1

Databases and Database Users Introduction, Characteristics of the Database Approach,
Actors on the Scene. Workers behind the scene, Advantages of the using the DBMS
Approach.

Database System Concepts and Architecture Data Models, Schemas and Instances, Three
Schema architecture and Data Independence, Database Languages and Interfaces, Centralized
and Client/Server Architecture for DBMS, Classification of Database Management Systems.

UNIT-1I

Data Modeling Using the ER Model Conceptual Data models, Entity Types, Entity Sets,
Attributes and Keys, Relationship types, Relationship sets, roles and structural Constraints,
Weak Entity types, Relationship Types of Degree Higher than Two, Refining the ER Design
for the COMPANY Database.

The Enhanced Entity-Relationship Model Sub classes, Super classes and Inheritance,
Specialization and Generalization, Constraints and Characteristics of Specialization and
Generalization Hierarchies, Modeling of Union Types using Categories, An Example
University ERR Schema, Design Choices and Formal Definitions.

UNIT-IT

The Relational Data Model and Relational Database Constraints Relational Model
Concepts, Relational Model Constraints and Relational Database Schemas, Update
Operations, Transactions and Dealing with Constraint Violations.

The Relational Algebra and Relational Calculus Unary Relational operations SELECT and
PROJECT, Relational Algebra operations from set Theory, Binary Relational Operations
JOIN and DIVISION, Additional Relational operations, Examples, The Tuple Calculus and
Domain Calculus.

SQL-99 Schema Definition, Constraints, Queries and Views SQL Data Definitions and
Data Types, Specifying Constraints in SQL, Schena Change Statements on SQL, Basic
Queries in SQL, More Complex SQL Queries, INSERT, DELETE and UPDATE statements
in SQL, Triggers and Views.

UNIT. IV

Functional Dependencies and Normalization for Relational Databases Informal Design
Guidelines for Relation Schemas, Functional dependencies, Normal Forms Based in primary
Keys, General Definitions of Second and Third Normal Forms, Boyce-Codd Normal Form.

Relational Database Design Algorithms and Further Dependencies Properties of
Relational Decompositions, Algorithms from Relational Database Schema Design,
Multivalued Dependencies and Fourth Normal Form, Join Dependencies and Fifth Normal
Formo Inclusion Dependencies, Other Dependencies and Normal Forms.

UNIT-V

Document oriented data principles of schema design, designing an e-commerce data model,
Nuts and bolts on databases collections and documents.

Queries and Aggregation-commerce's queries, MongoDB's query language, aggregating
orders, aggregating in detail.

Updates atomic operations and deletes Document updates, e-commerce updates, atomic
document processing, nuts and bolts Mongo DB updates and deletes.

Prescribed Books

Ramez Elmasri, Shamkant B. Navathe, "Fundamentals of Database Systems", Fifth
Edition, Pearson Education (2007).

Chapters 1.1to 1.6,2,3.1t0 3.6,4.1 to 4.5,5,6, 8, 10, 11

MongoDB in Action, Kyle Banker, Manning Publication and Co.Chapters 4,5 and 6.
Reference Books

C.J. Date, A.Kannan, S. Swamynathan, "An Introduction to Database Systems", VII
Edition Pearson Education (2006).

Database system concepts, Silberschatz, Korth, Sudarshan, Mc-graw-hill,5th edition.
MongoDBLearn MongoDB in a simple Way, Dan Warnock.

bl S

201CP24
M.Sc., (Computer Science)

MODEL QUESTION PAPER
201CP24 - DATABASE MANAG ENT SYSTEMS
Time: 3 Hours Max. Marks: 70
Answer ONE Question from Each Unit 5 x 14 =70 Marks
UNIT -1

1.
a) Define Database and Database Management System. Explain the key characteristics of the database
approach. (7M)
b) Discuss various actors on the scene and workers behind the scene in a DBMS environment. (7M)
OR
2.
a) Explain the three-schema architecture of a database system with a neat diagram. (7M)
b) Discuss the data models, schemas, and instances used in database systems with examples. (7M)
UNIT -1I
3.
a) Define Entity, Attribute, and Relationship with suitable examples. Explain different types of
attributes and keys. (7M)
b) Explain Weak Entities and Higher-Degree Relationships with an example of the COMPANY
database. (7M)
OR
4.
a) Explain the concepts of Specialization, Generalization, and Inheritance in the Enhanced ER Model.
(TM)
b) Discuss the design choices and formal definitions used in the EER model. (7M)
UNIT - 111
5.
a) Explain Relational Model Concepts and discuss different types of Relational Constraints. (7M)
b) Discuss Unary and Binary Operations in Relational Algebra with suitable examples. (7M)
OR
6.
a) Describe DDL, DML, and DCL commands in SQL with syntax and examples. (7M)
b) Write SQL queries for the following:
1) Create a table for STUDENT (SID, NAME, AGE, COURSE).
ii) Insert a record, update AGE, and delete a student record.

ii1) Create a VIEW of all students enrolled in “DBMS”. (7M)

UNIT -1V
7.
a) Define Functional Dependency and explain 1NF, 2NF, 3NF, and BCNF with examples. (7M)
b) Discuss Design Guidelines for Relation Schemas and the problems of bad database design. (7M)
OR
8.
a) Explain Multivalued Dependencies and Fourth Normal Form with examples. (7M)
b) Describe Join Dependencies and Fifth Normal Form. Explain how they help achieve good database
design. (7M)
UNIT-V
9.

a) Explain Document-oriented data and the principles of schema design in MongoDB. (7M)

b) Design an e-commerce data model using document collections and explain its structure. (7M)

OR

10.

a) Explain MongoDB’s query language and describe how aggregation is performed with examples.
(TM)

b) Discuss atomic updates and delete operations in MongoDB. How are they useful in e-commerce

applications? (7M)

CONTENTS

S.No. TITLE PAGE No.
1 DATABASES AND DATABASE USERS 1.1-1.9
2 DATABASE SYSTEM CONCEPTS 2.1-2.9
3 DATABASE ARCHITECTURE 3.1-3.8
4 | DATA MODELING USING THE ER MODEL 4.1-4.12
5 THE ENHANCED ENTITY-RELATIONSHIP MODEL 5.1-5.11
6 THE RELATIONAL MODEL CONCEPTS 6.1-6.10
7 | RELATIONAL DATABASE CONSTRAINTS 7.1-7.10
8 THE RELATIONAL ALGEBRA 8.1-8.10
9 THE RELATIONAL CALCULUS 9.1-9.7
10 | SQL-99 10.1-10.14
11 | FUNCTIONAL DEPENDENCIES 11.1-11.7
12 | NORMALIZATION 12.1-12.7
13 | RELATIONAL DATABASE DESIGN ALGORITHMS 13.1-13.9
14 | FURTHER DEPENDENCIES 14.1-14.9
15 | DOCUMENT ORIENTED DATA 15.1-15.9
16 | QUERIES AND AGGREGATIONE-COMMERCE'S 16.1-16.12
17 | UPDATES ATOMIC OPERATIONS AND DELETES 17.1-17.13

LESSON- 01
DATABASES AND DATABASE USERS

AIMS AND OBJECTIVES

The primary goal of this chapter is to understand the concept of Databases and Database
Users. The chapter began with understanding of Characteristics of the Database Approach,
Actors on the Scene, Workers behind the scene, Advantages of the using the DBMS

Approach. After completing this chapter, the student will understand the complete idea about
of Databases and Database Users.

STRUCTURE

1.1 INTRODUCTION
1.2 CHARACTERISTICS OF THE DATABASE APPROACH
1.2.1 DATA ABSTRACTION
1.2.2 DATA INDEPENDENCE
1.2.3 DATA INTEGRITY AND SECURITY
1.2.4 CONCURRENCY CONTROL
1.2.5 DATA REDUNDANCY AND CONSISTENCY
1.2.6 TRANSACTION PROCESSING
1.3 ACTORS ON THE SCENE
1.3.1 DATABASE ADMINISTRATORS
1.3.2 DATABASE DESIGNERS
1.3.3 END USERS
1.3.4 APPLICATION PROGRAMMERS
1.3.5 SYSTEM ANALYSTS

1.4 ADVANTAGES OF DBMS APPROACH
1.4.1 ADVANTAGES OF DBMS
1.4.2 DISADVANTAGES OF DBMS

1.5 APPLICATIONS OF DBMS

1.6 SUMMARY

1.7 TECHNICAL TERMS

1.8 SELF-ASSESSMENT QUESTIONS

1.9 SUGGESTED READINGS

Centre for Distance Education 1.2 Acharya Nagarjuna University

1.1. INTRODUCTION

Databases are integral to modern information systems, providing structured ways to store,
retrieve, and manage data. A database is a collection of related data organized to be easily
accessed, managed, and updated. Databases support a wide range of applications, from small
personal projects to vast enterprise systems. This chapter explores the fundamentals of
databases, the database management system (DBMS) approach, and the various roles
involved in managing and using databases.

The chapter first covered the Characteristics of the Database Approach, Actors on the Scene,
Workers behind the scene, Advantages of the using the DBMS Approach and etc.

1.2 CHARACTERISTICS OF THE DATABASE APPROACH

The database approach offers several distinct characteristics that set it apart from traditional
file systems:

7
L X4

Data Abstraction and Independence: Databases provide a level of abstraction that
hides the complexity of data storage from users. This is achieved through three levels
of abstraction: the physical level, the logical level, and the view level. Data
independence allows changes in the schema at one level without affecting other
levels.

Data Integrity and Security: DBMS enforces data integrity by ensuring accuracy
and consistency of data through constraints and rules. Security measures such as
authentication and authorization protect data from unauthorized access.

Data Sharing and Multi-user Transaction Processing: Databases support
concurrent access by multiple users. Transactions ensure that operations are
completed correctly and maintain data consistency even in the presence of concurrent
access and system failures.

Data Redundancy and Inconsistency Minimization: Unlike file systems, databases
minimize data redundancy and inconsistency by storing data in a centralized manner,
reducing duplication and the chances of conflicting data.

Backup and Recovery: DBMS provide mechanisms for backing up data and
recovering it in case of system failures, ensuring data durability and availability.

Characteristics of the Database Approach

(Data Abstraction and Independence)
(Data Integrity and Security >
@haring and Multi-user Transaction Proc@
@Redundancy and Inconsistency MinimizatioD
(Backup and Recovery >

Fig 1.2 Chrematistics of DBMS

DBMS 1.3 DATABASES AND DATABASE...

1.3 ACTORS ON THE SCENE

In the realm of databases, several key actors interact with the DBMS to perform various
tasks:

% Database Administrators (DBAs): DBAs are responsible for managing the DBMS,
ensuring its availability, performance, and security. They handle tasks such as backup
and recovery, tuning, and user management.

*» Database Designers: These professionals design the database schema, defining the
structure of the database, including tables, relationships, and constraints. They work
to ensure the database meets the requirements of the application and users.

¢ End Users: End users interact with the database through applications to perform tasks
such as querying, updating, and generating reports. They range from casual users with
little database knowledge to sophisticated users who write complex queries.

s Application Developers: Developers create applications that interact with the
database. They write code to perform CRUD (Create, Read, Update, Delete)
operations and implement business logic.

Actors on the Scene in DBMS

Database Administrators (DBAs)

Database Designers

End Users

Application Developers

ST
NV,

Fig 1.3 Actors in DBMS
Workers Behind the Scene

Several important roles operate behind the scenes to ensure the smooth functioning of a

database system:
% System Designers and Architects: These professionals design the overall
architecture of the database system, including hardware, software, and network
components. They ensure that the system can handle the required workload and
provide necessary scalability and reliability.

% System Administrators: System administrators manage the hardware and operating
systems on which the DBMS runs. They ensure that the underlying infrastructure
supports the database's performance and availability needs.

Centre for Distance Education 1.4 Acharya Nagarjuna University

R/
L X4

R/
A X4

Data Analysts and Scientists: These individuals analyze data to extract meaningful
insights and support decision-making processes. They use various tools and
techniques to process and interpret data stored in the database.

Support and Maintenance Staff: These team members provide ongoing support,
troubleshoot issues, and perform routine maintenance tasks to ensure the database
system operates smoothly.

1.4 ADVANTAGES OF USING THE DBMS APPROACH

The Database Management System (DBMS) approach offers numerous advantages over
traditional file-based data management systems. These benefits significantly enhance data
management efficiency, security, and accessibility, providing a robust framework for
handling data in modern organizations.

1.4.1 Advantages of DBMS

R/
o

X/
X4

L)

X/
X4

L)

7/
X4

L)

Improved Data Sharing
DBMS enables multiple users to access and share data simultaneously, promoting
collaboration and information exchange within an organization.

Enhanced Data Security
DBMS provides robust security features to protect sensitive data from unauthorized
access and breaches. This includes user authentication, authorization, and encryption.

Better Data Integration
By centralizing data storage, DBMS ensures that data from different sources is
integrated into a single, coherent database, facilitating comprehensive data.

Reduced Data Redundancy
The DBMS approach minimizes data redundancy by storing data in a single location,
ensuring that there is only one version of the data.

Improved Data Consistency
Data consistency is maintained by ensuring that any updates to the data are
immediately reflected throughout the database.

Enhanced Data Access
DBMS provides powerful query languages and tools that enable users to retrieve.

Increased Productivity
By automating routine tasks and providing powerful data management tools, DBMS
increases the productivity of database users and administrators.

DBMS

1.5 DATABASES AND DATABASE...

Advantage

Improved Data Sharing

Enhanced Data

Security

Better Data Integration

Reduced Data
Redundancy

Improved Data
Consistency
Enhanced Data Access

Increased Productivity

Better Decision Making

Description

Enables multiple users to access and share data simultaneously, promoting

collaboration.

Provides mechanisms for controlled access, user authentication, authorization, and

data encryption.

Centralizes data storage, integrating data from various sources for comprehensive

analysis.

Minimizes duplicate data entries by storing data in a single location.

Ensures data accuracy and consistency through integrity constraints and transaction

management.

Offers powerful query languages (e.g., SQL) and user-friendly interfaces for efficient

data retrieval.

Automates routine data management tasks, enhancing user efficiency and freeing up

time for strategic activities.

Provides access to accurate, up-to-date data, enabling better-informed decisions and

comprehensive analysis.

Fig 1.4 Advantages of DBMS Concept

1.4.2 Disadvantages of DBMS

While the Database Management System (DBMS) approach offers numerous benefits, it also
comes with certain disadvantages. Understanding these drawbacks is essential for making

informed decisions about the adoption and implementation of DBMS solutions.

% Complexity

o System Complexity

o The design and implementation of a DBMS involve complex software and hardware

components. This complexity can lead to longer development times and higher costs.
o Maintenance Complexity

o Maintaining a DBMS requires skilled personnel to manage updates, backups,
performance tuning, and troubleshooting. This can add to the operational overhead

and require continuous investment in training and hiring.

«»» Cost

o High Initial Investment

o Implementing a DBMS involves significant initial costs, including purchasing

software licenses, hardware, and additional resources for setup and integration.

o Ongoing Costs
o The ongoing expenses associated with a DBMS include maintenance, upgrades,
technical support, and staff salaries. These costs can be substantial, especially for

large-scale databases.

Centre for Distance Education 1.6 Acharya Nagarjuna University

«* Performance

@)
©)

Performance Overheads

While DBMSs are designed for efficiency, they can introduce performance overheads,
particularly for complex queries and large datasets. These overheads may impact
system responsiveness and user experience.

Resource Intensive

DBMSs often require significant system resources (CPU, memory, disk space) to
operate effectively. This can strain existing infrastructure and necessitate additional
investment in hardware.

¢ Vulnerability to Failure

@)
©)

Single Point of Failure

Centralized databases can become single points of failure. If the DBMS or the server
hosting it fails, it can lead to significant downtime and loss of access to critical data.
Backup and Recovery Challenges

While DBMSs provide backup and recovery mechanisms, implementing and
managing these systems can be challenging. Inadequate backup strategies can lead to
data loss in the event of system failures or disasters.

% Security Risks

@)
©)

Target for Attacks

Databases are prime targets for cyber-attacks due to the valuable information they
hold. A successful breach can lead to severe consequences, including data theft and
financial loss.

Complexity of Security Management

Managing security within a DBMS involves implementing various controls, such as
user authentication, authorization, and encryption. This complexity can lead to
potential vulnerabilities if not handled correctly.

% Vendor Dependence

@)
©)

Proprietary Systems

Many DBMS solutions are proprietary, leading to vendor lock-in. Organizations may
find it challenging to switch vendors or migrate to new systems due to compatibility
issues and dependence on specific technologies.

Limited Flexibility

Dependence on a single vendor can limit the flexibility to customize or extend the
DBMS to meet specific organizational needs, potentially stifling innovation and
adaptability.

% Data Migration Issues

©)
@)

Complexity of Migration

Migrating data from legacy systems or between different DBMSs can be complex and
time-consuming. It requires careful planning and execution to ensure data integrity
and consistency.

Risk of Data Loss

During migration processes, there is a risk of data loss or corruption. Ensuring a
smooth and error-free migration necessitates thorough testing and validation.

DBMS 1.7 DATABASES AND DATABASE...

o While the DBMS approach offers numerous advantages in terms of data management,
security, and accessibility, it is essential to consider the associated disadvantages. The
complexity, cost, performance issues, vulnerability to failure, security risks, vendor
dependence, and data migration challenges must be weighed carefully. By
understanding these drawbacks, organizations can make more informed decisions
about the adoption and implementation of DBMS solutions, ensuring they meet their
specific needs and constraints.

1.5. APPLICATIONS OF DBMS

The applications of DBMS are vast and varied, spanning across different sectors such as
banking, airlines, telecommunications, education, healthcare, retail, government,
manufacturing, finance, and social media. Each example illustrates how DBMS is used to
manage and optimize data handling in these industries.

Here is a list of common applications of DBMS along with examples for each:

 Banking

Example:

Application: Customer Information Management

Example DBMS: Oracle Database

Description: Used by banks to manage customer accounts, transaction records, and loan
information.

% Airlines

Example:

Application: Flight Reservations

Example DBMS: MySQL

Description: Used by airlines to handle flight schedules, bookings, and cancellations.

% Telecommunications

Example:

Application: Call Records

Example DBMS: IBM Db2

Description: Used to store and manage call detail records (CDRs), billing information, and
customer data.

% Education

Example:

Application: Student Information Systems

Example DBMS: PostgreSQL

Description: Used by educational institutions to manage student records, enrollment details,
grades, and attendance.

¢ Healthcare

Example:

Application: Patient Records

Example DBMS: Microsoft SQL Server

Description: Used to store patient information, medical histories, treatment plans, and
appointment schedules.

Centre for Distance Education 1.8 Acharya Nagarjuna University

% Retail

Example:

Application: Inventory Management

Example DBMS: SAP HANA

Description: Used by retail businesses to track stock levels, manage orders, and automate
restocking processes.

% Government

Example:

Application: Public Records Management

Example DBMS: Oracle Database

Description: Used to manage citizen information, property records, tax details, and other
public records.

% Manufacturing

Example:

Application: Supply Chain Management

Example DBMS: SAP HANA

Description: Used to manage supplier information, procurement processes, inventory levels,
and production planning.

% Finance

Example:

Application: Financial Transactions Management

Example DBMS: IBM Db2

Description: Used by financial institutions to manage transaction records, account balances,
and investment portfolios.

% Social Media

Example:

Application: User Data Management

Example DBMS: Cassandra

Description: Used by social media platforms to store user profiles, posts, messages, and
interaction data.

1.6 SUMMARY

Databases and their users form the backbone of modern information systems, playing a
critical role in managing and organizing vast amounts of data efficiently. By leveraging the
powerful capabilities of Database Management Systems (DBMS), organizations can ensure
data integrity, security, and accessibility, which are essential for informed decision-making
and operational efficiency. Understanding the various types of database users and the roles
they play, from administrators and designers to end-users and behind-the-scenes workers,
provides a comprehensive insight into the dynamic and interconnected world of databases.
This foundational knowledge underscores the importance of DBMS in today’s data-driven
landscape and its impact on diverse industries. The chapter discussed Characteristics of the
Database Approach, Actors on the Scene, Workers behind the scene, Advantages
,disadvantages of the using the DBMS Approach and applications with example.

DBMS

1.9 DATABASES AND DATABASE...

1.7 TECHNICAL TERMS

DBMS, Database User, System Administrator, End User, Reliability, Security, Privacy,
Banking, Hospital, Airline and etc.

1.8 SELF ASSESSMENT QUESTIONS

Essay questions:

1.

Illustrate about characteristics of DBMS.

2. Describe about applications of DBMS
3. Explain about advantages and disadvantages of DBMS

Short Notes:

1. Write about Database users
2. Define DBMS.
3. List out benefits of DBMS.

1.9 SUGGESTED READINGS

1.

nkhw

"Database System Concepts" by Abraham Silberschatz, Henry F. Korth, and S.
Sudarshan

"Fundamentals of Database Systems" by Ramez Elmasri and Shamkant B.
Navathe

"Database Management Systems" by Raghu Ramakrishnan and Johannes Gehrke
"An Introduction to Database Systems" by C.J. Date

"SQL and Relational Theory: How to Write Accurate SQL Code" by C.J. Date

Dr. Neelima Guntupalli

LESSON- 02

DATABASE SYSTEM CONCEPTS

AIMS AND OBJECTIVES

The primary goal of this chapter is to understand the concept of Database system concepts.
The chapter began with understanding of Data Models, Schemas and Instances, Data
Independence, Database Languages and Interfaces. After completing this chapter, the student
will understand the complete idea about Database system concepts.

STRUCTURE
2.1 INTRODUCTION
2.2 DATA MODELS

2.3

2.5.

2.6
2.7
2.8
2.9

2.2.1 HIERARCHICAL DATA MODEL
2.2.2 NETWORK DATA MODEL
2.2.3 RELATIONAL DATA MODEL
2.2.4 OBJECT-ORIENTED DATA MODEL
2.2.5 ENTITY-RELATIONSHIP MODEL
SCHEMAS AND INSTANCES
2.3.1 SCHEMA
2.3.2 INSTANCE
2.3.3 SCHEMA VS. INSTANCE
DATABASE LANGUAGES AND INTERFACES
2.5.1 DATABASE LANGUAGES
2.5.2 INTERFACES
SUMMARY
TECHNICAL TERMS
SELF-ASSESSMENT QUESTIONS
SUGGESTED READINGS

2.1. INTRODUCTION

Databases are integral to modern information systems, providing structured ways to store,
retrieve, and manage data. A database is a collection of related data organized to be easily
accessed, managed, and updated. Databases support a wide range of applications, from small
personal projects to vast enterprise systems. This chapter explores the fundamentals of
databases, the database management system (DBMS) approach, and the various roles

involved in managing and using databases.

Centre for Distance Education 2.2 Acharya Nagarjuna University

2.2 DATA MODELS

Data models are abstract frameworks that describe the structure, manipulation, and integrity
of data stored in a database. They are essential for defining how data is stored, connected, and
accessed. Data models are fundamental components in the design and implementation of a
Database Management System (DBMS). They provide a systematic way to define and
structure data, relationships, and constraints.

Here are the primary data models used in DBMS:

2.2.1 Hierarchical Data Model
e Organizes data in a tree-like structure with parent-child relationships.
o Example: File systems, early IBM mainframe databases.

Features:
o Data is represented in a hierarchy.
o Relationships are one-to-many.

Advantages:
o Simple to design and understand.
o Efficient for queries that follow the hierarchical path.

Disadvantages:
o Inflexible: difficult to re-organize and expand.
e Redundancy: requires duplication of data.

2.2.2 Network Data Model
e Represents data with records and relationships using a graph structure.
o Example: IDMS (Integrated Database Management System).

Features:
o Data is represented using records and relationships.
o Relationships are many-to-many.

Advantages:
e More flexible than the hierarchical model.
e Can handle more complex relationships.

Disadvantages:
o Complexity in design and maintenance.
e Navigation can be cumbersome.

2.2.3 Relational Data Model
o Uses tables (relations) to represent data and their relationships.
o Example: MySQL, PostgreSQL.

Features:
o Data is organized into tables with rows (tuples) and columns (attributes).
o Tables can be linked using keys (primary key, foreign key).

DBMS 23 DATABASE SYSTEM CONCEPTS

Advantages:
o Flexibility in query and data manipulation.
o Data integrity and normalization to reduce redundancy.
o Standardized query language (SQL).

Disadvantages:
e Performance issues with very large databases.
e Complex joins can be computationally expensive.

2.2.4 Object-Oriented Data Model
o Integrates object-oriented programming principles with database technology.
o Example: ObjectDB, db4o.

Features:
o Data is represented as objects with attributes and methods.
e Supports inheritance, polymorphism, and encapsulation.

Advantages:
e Seamless integration with object-oriented programming languages.
e Capable of handling complex data types and relationships.

Disadvantages:
e Complexity in design and implementation.
o Less mature than relational databases in terms of tools and support.

2.2.5 Entity-Relationship Model
o Uses entities and relationships to model data, focusing on the logical structure.
o Example: Used in database design phase to create ER diagrams.

Features:
o Entities represent objects or things in the real world.
e Attributes are properties of entities.
o Relationships represent associations between entities.

Advantages:
e Provides a clear and structured way to design databases.
o Facilitates the transition from conceptual design to logical and physical design.

Disadvantages:
e Primarily a design tool, not used directly for database implementation.

Understanding different data models is crucial for designing effective databases. Each model
offers unique advantages and is suitable for specific applications and use cases. The
hierarchical and network models are useful for specific legacy applications, while the
relational model remains the most widely used due to its flexibility and robustness. The
object-oriented model is ideal for applications requiring complex data representations, and
the entity-relationship model is essential for conceptual database design. Selecting the
appropriate data model is a fundamental step in ensuring efficient data management and
retrieval in any DBMS.

Centre for Distance Education 24 Acharya Nagarjuna University

2.3 SCHEMAS AND INSTANCES

In the context of Database Management Systems (DBMS), schemas and instances play
crucial roles in defining and managing the structure and content of databases. Understanding
these concepts is essential for database design and management.

2.3.1 Schema
e A schema is the logical structure that defines the organization of data in a database. It
describes how data is organized and how the relationships among data are associated.
o The overall logical structure of the database, defined during the design phase.

Types of Schemas:
o Physical Schema: Defines how data is physically stored in the database. It deals with
storage devices, file structures, and indexes.
o Logical Schema: Describes the logical structure of the entire database. It includes
tables, views, and integrity constraints.
e View Schema: Defines how data is presented to different users. It can include subsets
of data from the logical schema.

Characteristics:
o Static: Schemas are typically defined at the design phase and do not change
frequently.

o Blueprint: Schemas serve as blueprints for the database structure and dictate how data
is organized and accessed.

Example:
e A logical schema might define a database with tables such as Customers, Orders, and
Products, specifying their attributes and relationships.
Customers (

CustomerID
Name)

Email)

Orders (

OrderID
OrderDate N
CustomerID »

KEY (CustomerID) Customers(CustomerID)

Fig Example of Schemas : Customers and Orders

2.3.2 Instance
e An instance is the actual data stored in the database at a particular moment in time. It
represents a snapshot of the database's content.
o The actual data stored in the database at a particular moment in time.

DBMS 2.5 DATABASE SYSTEM CONCEPTS

Characteristics:
o Dynamic: Instances change frequently as data is inserted, updated, and deleted.
e Data Content: Instances reflect the current state of the data within the schema's
structure.

Example:
e If a table named Customers is defined in the schema, an instance would include the
actual rows of data in that table at any given time.

INSERT INTO Customers (CustomerID, Name, Email)
VALUES (1, John Doe', 'john.doe@example.com');
INSERT INTO Orders (OrderID, OrderDate, CustomerID)
VALUES (101, 2024-07-21", 1);

Customers Table

CustomerlD

Orders Table

OrderlD

Fig The result of Insert Query
2.3. 3 Schema vs. Instance

Schema:
o Static: Schemas are typically static and change infrequently.
e Blueprint: Serves as a blueprint or framework for organizing data.
o Definition: Includes definitions of tables, fields, data types, relationships, views, and
constraints.
e Levels: Can be divided into physical schema, logical schema, and view schema.

Instance:
o Dynamic: Instances are dynamic and change with database operations.
o Snapshot: Represents a snapshot of the database at a specific point in time.
o Data: Contains actual data entries, reflecting the current state of the database.
e Temporal: Can vary from one moment to the next based on data operations.

Centre for Distance Education 2.6

Acharya Nagarjuna University

Aspect
MNature

Role

Content

Analogy

Examples

Schema
Static, rarely changes

Defines structure and organization of the

database

Tables, fields, data types, relationships, views,

constraints

Blueprint of a building

Table definitions, constraints, view definitions

Instance
Dynamic, frequently changes

Represents the actual data in the database at a

given time

Actual data entries, records in tables

The actual building with its current occupants
and furniture

Rows in a table, current data in the database

Fig Schema vs. Instance

2.4 THREE-SCHEMA ARCHITECTURE AND DATA INDEPENDENCE

The three-schema architecture is designed to separate the user applications from the physical

database.

2.4.1 Three-Schema Architecture

The Three-Schema Architecture is a framework used in Database Management Systems
(DBMS) to separate the user applications from the physical database. This separation
provides a way to manage the complexity of data and ensures data independence. The
architecture is divided into three levels: the internal schema, the conceptual schema, and the
external schema.

Views

Schema |

Interfaces)

Conceptual Schema |

(Logical structure DB) |

Internal Schema |

(Physical Storage Details)|

Fig Three-tier Architecture

DBMS 2.7 DATABASE SYSTEM CONCEPTS

¢ Internal Schema

Description:
o The internal schema defines the physical storage structure of the database. It describes
how data is stored in the database and includes data structures, indexing methods, and
file organization techniques.

Characteristics:
o Storage Details: Includes details about physical storage, such as data files, indexes,
and data blocks.

e Optimization: Focuses on optimizing storage and access speed.
o Data Independence: Provides physical data independence by allowing changes to the
internal schema without affecting the conceptual schema.
Example:
e A table may be stored as a B-tree index for efficient retrieval.

< Conceptual Schema
Description:
e The conceptual schema provides a unified and logical view of the entire database. It
describes the structure of the whole database for a community of users, hiding the
details of physical storage.

Characteristics:
o Unified View: Represents all entities, relationships, and constraints.
o Logical Structure: Independent of how data is physically stored.
o Data Independence: Provides logical data independence by allowing changes to the
conceptual schema without affecting the external schemas.

Example:
o Defines entities like Customers and Orders, their attributes, and relationships between
them
CREATE TABLE Customers
(CustomerID INT PRIMARY KEY,
Name VARCHAR(100),
Email VARCHAR(100));
CREATE TABLE Orders
(OrderID INT PRIMARY KEY,
OrderDate DATE,
CustomerID INT,
FOREIGN KEY (CustomerID) REFERENCES Customers(CustomerID));

External Schema

Description:

e The external schema, also known as the view level, defines how individual users or
user groups interact with the database. It provides a customized view of the database
tailored to the needs of different users.

Characteristics:

e User Views: Can have multiple external schemas, each tailored to different user
requirements.

Centre for Distance Education 2.8 Acharya Nagarjuna University

e Security: Helps in providing different access levels to different users.
o Simplified Interaction: Allows users to interact with the database without needing to
know its complete structure.

Example:
e An external schema for a salesperson might include only the customer names and
contact information.
CREATE VIEW Salesperson View AS
SELECT Name, Email
FROM Customers;

Benefits of Three-Schema Architecture

1. Data Abstraction:

e Separates the user applications from the physical data storage, providing a higher
level of abstraction and simplifying database management.

2. Data Independence:

o Enhances both logical and physical data independence, making the database system
more flexible and easier to maintain.
Security:
Provides a mechanism to define multiple user views, enhancing data security by
restricting access to sensitive data.
Consistency:

e Ensures that different user views are consistent with the overall conceptual schema,
maintaining data integrity.

The Three-Schema Architecture is a powerful framework in DBMS that provides a structured
approach to data abstraction, independence, and security. By separating the internal,
conceptual, and external schemas, it allows for more flexible, efficient, and secure database
management. Understanding and implementing this architecture is crucial for designing
robust and scalable database systems.

2.4.2 Data Independence

Data independence is a key concept in the realm of Database Management Systems (DBMS).
It refers to the capacity to change the schema at one level of the database system without
necessitating changes to the schema at the next higher level. This concept is pivotal in
ensuring that the database system remains flexible and manageable over time.

Types of Data Independence

Data independence is broadly categorized into two types: logical data independence and
physical data independence.

< Logical Data Independence: Ability to change the conceptual schema without altering
the external schemas.

DBMS 2.9 DATABASE SYSTEM CONCEPTS

Examples of Changes:
e Adding or removing a new attribute (column) in a table.
o Changing the data type of an existing attribute.
e Merging two records into one or splitting one record into two.
e Adding new relationships or altering existing relationships between tables.

Importance:
o Enhances flexibility and adaptability of the database.
o Ensures that application programs do not need to be rewritten when changes are made
to the logical structure of the database.

Example:

CREATE TABLE Customers
(CustomerID INT PRIMARY KEY,
Name VARCHAR(100),

Email VARCHAR(100));

If we decide to add a new attribute Phone Number, logical data independence ensures that
user applications accessing Customers table don't need to change:
ALTER TABLE Customers ADD Phone Number VARCHAR(15);

< Physical Data Independence: Physical data independence is the ability to change the
internal schema without needing to alter the conceptual schema. This means that changes to
the physical storage of data do not impact the logical structure or the applications that interact
with the database.

Examples of Changes:
o Changing the file organization or storage structures.
o Using different storage devices.
e Adding or modifying indexes to improve performance.
o Changing the data compression techniques or storage paths.

Importance:
o Provides a layer of abstraction between the physical storage and the logical structure.
e Allows for performance tuning and optimization without affecting the logical data
model or the applications.

Example:
e Suppose we want to improve the performance of a Customers table by adding an
index on the Email column:

CREATE INDEX 1dx_email ON Customers(Email);

Physical data independence ensures that this change does not affect the logical view or the
applications accessing the Customers table.

Data independence is a foundational principle in the design and management of DBMS,
ensuring that databases remain flexible, manageable, and adaptable to changing requirements.
By separating the logical and physical aspects of the database, data independence allows for
efficient updates and maintenance, enhancing the overall robustness and functionality of the

Centre for Distance Education 2.10 Acharya Nagarjuna University

database system. Understanding and implementing data independence is crucial for database
administrators and developers to create resilient and scalable database environments.

2.5 DATABASE LANGUAGES AND INTERFACES
2.5.1 Database Languages

Database systems support various languages and interfaces for defining, manipulating, and
querying data. Database languages are specialized languages used to define, manipulate,
control, and manage data in a database. Each type of database language serves a specific
purpose in the database management process. The primary categories of database languages
include Data Definition Language (DDL), Data Manipulation Language (DML), Data
Control Language (DCL), and Transaction Control Language (TCL).

< Data Definition Language (DDL)
e Used to define database schemas.
o Example: CREATE TABLE, ALTER TABLE.

CREATE TABLE Customers
(CustomerID INT PRIMARY KEY,
Name VARCHAR(100),

Email VARCHAR(100));

ALTER TABLE Customers ADD Phone Number VARCHAR(15);

DROP TABLE Customers;

TRUNCATE TABLE Customers;

Establishes the framework and structure of the database, enabling efficient data storage and
retrieval.

% Data Manipulation Language (DML)
o Used for data manipulation.
o Example: SELECT, INSERT, UPDATE, DELETE.

SELECT * FROM Customers;

INSERT INTO Customers (CustomerID, Name, Email) VALUES (1, 'John Doe',
"john.doe@example.com');

UPDATE Customers SET Email = "john.new@example.com' WHERE CustomerID = 1;
DELETE FROM Customers WHERE CustomerID = 1;

Facilitates the manipulation and management of data, allowing users to perform various
operations on the stored data.

¢ Data Control Language (DCL)
e Used to control access to data.
o Example: GRANT, REVOKE.
GRANT SELECT ON Customers TO userl;
REVOKE SELECT ON Customers FROM userl;
Ensures data security and integrity by managing user permissions and access levels.
« Transaction Control Language (TCL)
e Used to manage transactions.
e Example: COMMIT, ROLLBACK.

DBMS 2.11 DATABASE SYSTEM CONCEPTS

2.5.2 Interfaces

Database Management Systems (DBMS) offer various interfaces that allow users to interact
with the database. These interfaces are designed to cater to different user requirements,
ranging from database administrators and developers to end-users and application programs.

Here are the primary types of interfaces provided by DBMS:

< Command-Line Interface (CLI):

A Command-Line Interface allows users to interact with the DBMS by typing commands in a
text-based environment. This interface is powerful for experienced users who need precise
control over database operations. Text-based interaction with the DBMS.

Features:
e Direct command execution.
e Scripting capabilities for automated tasks.
e Access to all DBMS functionalities.

Example:
mysql> SELECT * FROM Customers;

< Graphical User Interface (GUI):

A Graphical User Interface provides a visual and user-friendly way to interact with the
DBMS. It uses graphical elements such as windows, icons, and menus to simplify database
operations.

Features:
e Visual representation of database schema.
e Drag-and-drop functionalities.
e Wizards and tools for database design, query building, and data management.

Example:
e Tools like MySQL Workbench, Microsoft SQL Server Management Studio (SSMS),
and Oracle SQL Developer.
< Application Program Interface (API):

An API allows applications to interact with the DBMS programmatically. It provides a set of
functions and protocols for accessing and manipulating the database.

Features:
o Language-specific libraries and drivers (e.g., JDBC for Java, ODBC for multiple
languages).

o Seamless integration with applications.
e Support for various database operations like querying, updating, and transaction
management.

Centre for Distance Education 2.12 Acharya Nagarjuna University

Example:
e Using Python's SQLite3 library:
sglite3

conn = sqglite3.connect(
- = conn.cursor()
c.execute(
rows = c.fetchall()

row rows:

print(row)

conn.close()

Programming interfaces for database interaction.

< Natural Language Interface:

A natural language interface allows users to interact with the DBMS using natural language
queries. This interface aims to make database interactions more intuitive and accessible to
non-technical users.

Features:
o Natural language processing to interpret user queries.
o Conversational interaction style.
o Integration with virtual assistants and chatbots.

2.6 SUMMARY

In this chapter, we explored the fundamental concepts of data modeling and database
structures, which serve as the foundation for understanding how data is logically represented
and organized in a database system. We discussed several types of data models, including the
Hierarchical Model, which organizes data in a tree-like structure; the Network Model, which
allows complex many-to-many relationships; the Relational Model, which represents data in
tables and uses keys to establish relationships; and the Object-Oriented Model, which
integrates object-oriented programming concepts into databases. Additionally, the Entity-
Relationship (ER) Model was introduced as a high-level conceptual model used for database
design through entities, attributes, and relationships.

The chapter also distinguished between schemas and instances, where the schema represents
the database structure (blueprint), and the instance represents the actual data stored at a given
time. Furthermore, we reviewed database languages such as DDL (Data Definition
Language), DML (Data Manipulation Language), and DCL (Data Control Language), along
with various user interfaces like graphical, form-based, and natural language interfaces that
facilitate user interaction with databases. Overall, this chapter provides a clear understanding
of how data is modeled, stored, accessed, and managed within modern database systems,
forming a conceptual bridge between real-world entities and their digital representation.

DBMS 2.13 DATABASE SYSTEM CONCEPTS
2.7 TECHNICAL TERMS

1. Data Model

2. Hierarchical Data Model

3. Network Data Model

4. Relational Data Model

5. Object-Oriented Data Model

6. Entity-Relationship (ER) Model

7. Schema

8. Instance

9. Data Independence

10. Conceptual Schema

2.8 SELF-ASSESSMENT QUESTIONS

Essay Questions
1.

2
3.
4.
5

Explain different types of data models with suitable examples.

Compare and contrast the hierarchical, network, and relational data models.
Describe the components of an Entity-Relationship (ER) model.

Discuss the difference between schema and instance with suitable examples.
Explain the various types of database languages and their purposes.

Short Questions
1.

AT

What is a data model?

List any four types of data models.

What is the difference between hierarchical and network data models?
Define the relational data model.

What are the main features of an object-oriented data model?

What is an entity in the ER model?

2.9 SUGGESTED READINGS

1.

(98]

Ramez Elmasri and Shamkant B. Navathe, Fundamentals of Database Systems, 5th
Edition, Pearson Education, 2007.

Abraham Silberschatz, Henry F. Korth, and S. Sudarshan, Database System Concepts,
6th Edition, McGraw Hill, 2011.

C.J. Date, An Introduction to Database Systems, 8th Edition, Addison Wesley, 2003.
Raghu Ramakrishnan and Johannes Gehrke, Database Management Systems, 3rd
Edition, McGraw Hill, 2003.

Peter Rob and Carlos Coronel, Database Systems: Design, Implementation, and
Management, Cengage Learning, 2009.

Dr. Neelima Guntupalli

LESSON- 03
DATABASE ARCHITECTURE

AIMS AND OBJECTIVES

The primary goal of this chapter is to understand the concept of Database Architecture. The
chapter began with understanding of Three Schema architecture. Later understand about
Centralized and Client/Server Architecture for DBMS, Classification of Database
Management Systems. After completing this chapter, the student will understand the
complete idea about Database architecture.

STRUCTURE

3.1 INTRODUCTION

3.2 THREE-SCHEMA ARCHITECTURE AND DATA INDEPENDENCE
3.2.1 THREE-SCHEMA ARCHITECTURE
3.2.2 DATA INDEPENDENCE

3.3 CENTRALIZED AND CLIENT/SERVER ARCHITECTURE FOR DBMS
3.3.1 CENTRALIZED ARCHITECTURE
3.3.2 CLIENT/SERVER ARCHITECTURE

3.4 CLASSIFICATION OF DATABASE MANAGEMENT SYSTEMS

3.5 SUMMARY

3.6 TECHNICAL TERMS

3.7 SELF-ASSESSMENT QUESTIONS

3.8 SUGGESTED READINGS

3.1. INTRODUCTION

Databases are integral to modern information systems, providing structured ways to store,
retrieve, and manage data. A database is a collection of related data organized to be easily
accessed, managed, and updated. Databases support a wide range of applications, from small
personal projects to vast enterprise systems. This chapter explores the fundamentals of
databases, the database management system (DBMS) approach, and the various roles
involved in managing and using databases.

The chapter first covered the Characteristics of the Database Approach, Actors on the Scene,
Workers behind the scene, Advantages of the using the DBMS Approach and etc.

Centre for Distance Education 3.2 Acharya Nagarjuna University

3.1.1 THREE-SCHEMA ARCHITECTURE

The Three-Schema Architecture is a framework used in Database Management Systems
(DBMS) to separate the user applications from the physical database. This separation
provides a way to manage the complexity of data and ensures data independence. The
architecture is divided into three levels: the internal schema, the conceptual schema, and the
external schema.

Schema |

Views Interfaces)

Conceptual Schema |

(Logical Structure DB) |

Internal Schema |

(Physical Storage Details)|

Fig 3.1 Three-tier Architecture

e Presentation Tier:
This is the topmost layer that interacts with the user. It displays information and
collects input using interfaces like web pages, mobile apps, or forms.

e Application / Logic Tier:
This middle layer contains the application’s business logic and processing rules. It
acts as a mediator between the user interface and the database, sending queries and
processing results.

e Data Tier:
The lowest layer consists of the database and DBMS where actual data is stored,
managed, and retrieved. It ensures data consistency, integrity, and security.

In a university database system:
e The Presentation Tier is the student portal (browser interface).
o The Application Tier is the web server handling registration and grade processing.
o The Data Tier is the database storing student and course information.

DBMS 33 DATABASE ARCHITECTURE

This three-tier architecture enables easy updates, secure data access, and efficient
distribution of workload between client and server components.
+ Internal Schema

Description:
e The internal schema defines the physical storage structure of the database. It describes
how data is stored in the database and includes data structures, indexing methods, and
file organization techniques.

Characteristics:
e Storage Details: Includes details about physical storage, such as data files, indexes,
and data blocks.

e Optimization: Focuses on optimizing storage and access speed.
o Data Independence: Provides physical data independence by allowing changes to the
internal schema without affecting the conceptual schema.
Example:
o A table may be stored as a B-tree index for efficient retrieval.

< Conceptual Schema

Description:
e The conceptual schema provides a unified and logical view of the entire database. It
describes the structure of the whole database for a community of users, hiding the
details of physical storage.

Characteristics:
o Unified View: Represents all entities, relationships, and constraints.
e Logical Structure: Independent of how data is physically stored.
o Data Independence: Provides logical data independence by allowing changes to the
conceptual schema without affecting the external schemas.

Example:
e Defines entities like Customers and Orders, their attributes, and relationships between
them

CREATE TABLE Customers (
CustomerID INT PRIMARY KEY,
Name VARCHAR(100),
Email VARCHAR(100)
);
CREATE TABLE Orders (
OrderID INT PRIMARY KEY,
OrderDate DATE,
CustomerID INT,
FOREIGN KEY (CustomerID) REFERENCES Customers(CustomerID)

)i

Centre for Distance Education 34 Acharya Nagarjuna University

< External Schema

Description:
e The external schema, also known as the view level, defines how individual users or
user groups interact with the database. It provides a customized view of the database
tailored to the needs of different users.

Characteristics:
e User Views: Can have multiple external schemas, each tailored to different user
requirements.

e Security: Helps in providing different access levels to different users.
o Simplified Interaction: Allows users to interact with the database without needing to
know its complete structure.

Example:
e An external schema for a salesperson might include only the customer names and
contact information.

CREATE VIEW SalespersonView AS
SELECT Name, Email
FROM Customers;

Benefits of Three-Schema Architecture

1. Data Abstraction:
e Separates the user applications from the physical data storage, providing a higher
level of abstraction and simplifying database management.
2. Data Independence:
e Enhances both logical and physical data independence, making the database system
more flexible and easier to maintain.
3. Security:
e Provides a mechanism to define multiple user views, enhancing data security by
restricting access to sensitive data.
4. Consistency:
e Ensures that different user views are consistent with the overall conceptual schema,
maintaining data integrity.

The Three-Schema Architecture is a powerful framework in DBMS that provides a structured
approach to data abstraction, independence, and security. By separating the internal,
conceptual, and external schemas, it allows for more flexible, efficient, and secure database
management. Understanding and implementing this architecture is crucial for designing
robust and scalable database systems.

3.2.2 Data Independence

Data independence is a key concept in the realm of Database Management Systems (DBMS).
It refers to the capacity to change the schema at one level of the database system without
necessitating changes to the schema at the next higher level. This concept is pivotal in
ensuring that the database system remains flexible and manageable over time.

DBMS 3.5 DATABASE ARCHITECTURE

Types of Data Independence

Data independence is broadly categorized into two types: logical data independence and
physical data independence.

< Logical Data Independence: Ability to change the conceptual schema without altering
the external schemas.

Examples of Changes:
e Adding or removing a new attribute (column) in a table.
e Changing the data type of an existing attribute.
e Merging two records into one or splitting one record into two.
e Adding new relationships or altering existing relationships between tables.

Importance:
e Enhances flexibility and adaptability of the database.
e Ensures that application programs do not need to be rewritten when changes are made
to the logical structure of the database.

Example:

CREATE TABLE Customers (
CustomerID INT PRIMARY KEY,
Name VARCHAR(100),

Email VARCHAR(100)

)i

If we decide to add a new attribute PhoneNumber, logical data independence ensures that
user applications accessing Customers table don't need to change:
ALTER TABLE Customers ADD PhoneNumber VARCHAR(15);

< Physical Data Independence: Physical data independence is the ability to change the
internal schema without needing to alter the conceptual schema. This means that changes to
the physical storage of data do not impact the logical structure or the applications that interact
with the database.

Examples of Changes:
e Changing the file organization or storage structures.
e Using different storage devices.
e Adding or modifying indexes to improve performance.
e Changing the data compression techniques or storage paths.

Importance:
e Provides a layer of abstraction between the physical storage and the logical structure.
e Allows for performance tuning and optimization without affecting the logical data
model or the applications.

Centre for Distance Education 3.6 Acharya Nagarjuna University

Example:
e Suppose we want to improve the performance of a Customers table by adding an
index on the Email column:

CREATE INDEX idx_email ON Customers(Email);
Physical data independence ensures that this change does not affect the logical view or the
applications accessing the Customers table.

Data independence is a foundational principle in the design and management of DBMS,
ensuring that databases remain flexible, manageable, and adaptable to changing requirements.
By separating the logical and physical aspects of the database, data independence allows for
efficient updates and maintenance, enhancing the overall robustness and functionality of the
database system. Understanding and implementing data independence is crucial for database
administrators and developers to create resilient and scalable database environments.

3.3 CENTRALIZED AND CLIENT/SERVER ARCHITECTURE FOR DBMS

3.3.1 Centralized Architecture

Centralized architecture in Database Management Systems (DBMS) refers to a system where
all database functionalities, including storage, processing, and management, are performed on
a single central server. This server is responsible for handling all database requests and
operations, serving as the main point of access for all users and applications.

Key Characteristics
1. Single Server System:
e All data storage and processing are managed by one central server.
e The central server handles all database operations, including querying, updating, and
managing transactions.
2. Centralized Control:
e Database administration and management tasks are centralized, simplifying
maintenance and oversight.
e Consistent enforcement of security policies and data integrity rules.
3. Unified Data Storage:
e All data is stored in a single location, reducing redundancy and ensuring consistency.
e Simplifies backup and recovery processes.
4. Direct User Interaction:
e Users and applications interact directly with the central server for all database
operations.
e Simplifies the client-side configuration as there is only one server to connect to.

Advantages
1. Simplified Management:
e Easier to manage and maintain as all database operations are centralized.
e Simplified backup, recovery, and security management.
2. Consistent Performance:
e Predictable performance characteristics as all operations are handled by a single
server.

DBMS 3.7 DATABASE ARCHITECTURE

e Easier to monitor and optimize performance centrally.

3. Reduced Data Redundancy:
¢ Single storage location reduces data duplication and ensures data consistency.
e [Easier to enforce data integrity and validation rules.

4. Enhanced Security:
e (Centralized control makes it easier to implement and manage security policies.
e Simplifies access control and auditing.

Disadvantages
1. Scalability Limitations:
e Limited by the capacity of the central server, making it challenging to scale as data
volume and user load increase.
e Upgrading the central server can be costly and disruptive.
2. Single Point of Failure:
e The central server is a single point of failure; if it goes down, the entire database
system becomes unavailable.
e Requires robust backup and disaster recovery plans.
3. Performance Bottlenecks:
e High demand on the central server can lead to performance bottlenecks.
e All user requests must be processed by the central server, potentially leading to
congestion and delays.
4. Geographical Limitations:
e Users located far from the central server may experience latency issues.
e May not be suitable for applications requiring high-speed access from multiple
geographic locations.

Example:

Consider a university management system where all student records, faculty data, course
schedules, and examination results are stored in a single central server located in the
university’s data center. All administrative departments (like Admissions, Accounts, and
Examination Cell) access the same database through connected terminals.
e If the Admissions Office updates a student’s record, the same change is instantly
visible to the Accounts or Examination Cell.
e The central server ensures that all users work with the same, up-to-date information.
e However, if the server goes down, all users lose access, which is a major limitation of
centralized systems.

Advantages:
e FEasier database management and maintenance.
e High data consistency and security.
e (entralized backup and recovery control.

Disadvantages:
e Single point of failure (server outage affects all users).
e Scalability issues with many simultaneous users.
e Performance depends on network and server capacity.

Centre for Distance Education 3.8 Acharya Nagarjuna University

Centralized architecture in DBMS offers a simplified approach to database management, with
all operations controlled by a single central server. This architecture is beneficial for small to
medium-sized organizations or applications with moderate performance and scalability needs.
However, it comes with limitations in terms of scalability, potential performance bottlenecks,
and a single point of failure. Understanding the advantages and disadvantages of centralized
architecture helps in determining its suitability for specific applications and organizational
needs.

3.3.2 Client/Server Architecture

Client/Server architecture in Database Management Systems (DBMS) is a distributed
application structure that partitions tasks between clients, which request services, and servers,
which provide those services. This architecture enhances the efficiency, scalability, and
manageability of database systems by distributing the workload across multiple machines.

Key Characteristics

1. Two-Tier Architecture:
e Client Tier: Consists of client machines that run applications and user interfaces.
Clients send requests to the server and present the results to the user.
e Server Tier: Consists of a central server that processes requests from clients,
performs database operations, and manages data storage.
2. Three-Tier Architecture (Enhanced Client/Server):
e Presentation Tier: The client-side interface where users interact with the application.
e Application Logic Tier: The middle layer that processes business logic and
communicates between the presentation and data tiers.
e Data Tier: The server-side where the database is hosted and managed.
3. Distributed Processing:
e Workload is distributed between client and server, optimizing performance and
resource utilization.
e Clients handle presentation logic, while servers handle data processing and
management.
4. Network Communication:

e Clients and servers communicate over a network using standardized protocols (e.g.,
TCP/IP).

Advantages

1. Scalability:
e Easily scalable by adding more clients or servers as needed.
e Supports large numbers of simultaneous users and high transaction volumes.
2. Improved Performance:
e Distributes processing load between clients and servers, reducing bottlenecks.
e Clients handle user interfaces and local processing, while servers manage data-
intensive tasks.
3. Flexibility:
¢ Different clients (desktop, web, mobile) can interact with the same server.
e Servers can be upgraded or replaced independently of clients.

DBMS 3.9 DATABASE ARCHITECTURE

4. Centralized Data Management:
e (Centralized control over data ensures consistency and integrity.
e Easier to implement security, backup, and recovery policies.

Disadvantages
1. Complexity:
e More complex to design, implement, and maintain compared to centralized
architectures.
e Requires robust network infrastructure and management.
2. Network Dependency:
e Performance and reliability depend on the underlying network.
e Network failures can disrupt access to the database.
3. Cost:
e Higher initial setup and maintenance costs due to the need for multiple servers and
network infrastructure.

Example:

Consider a banking system that uses a client/server architecture.
e The client-side application (installed on teller or ATM terminals) allows users to
perform operations such as balance inquiry, fund transfer, or cash withdrawal.
e The server-side system (at the bank’s data center) runs the DBMS that stores and
processes all account details, transactions, and authentication requests.
e When a teller checks a customer’s account, the client sends an SQL query like:
e SELECT balance FROM accounts WHERE account_no = 12345;

The server executes this query and returns the result to the client for display.

Advantages:
e Efficient sharing of database resources among multiple users.
e Reduced client workload since data processing occurs on the server.
e Easier maintenance and scalability — new clients can be added without affecting the
central database.

Disadvantages:
e Requires reliable network connectivity.
e Security concerns if communication between client and server is not encrypted.
e Higher initial setup and maintenance costs compared to centralized systems.

Client/Server architecture in DBMS offers a robust and scalable solution for managing
complex and distributed database systems. By dividing the workload between clients and
servers, this architecture enhances performance, flexibility, and centralized data management.
While it introduces some complexity and network dependency, the benefits make it suitable
for a wide range of applications, especially in large enterprises and web-based environments.
Understanding the client/server model is crucial for designing efficient and scalable database
solutions.

Centre for Distance Education 3.10 Acharya Nagarjuna University

3.3.3 CLASSIFICATION OF DATABASE MANAGEMENT SYSTEMS

-

Based on Data Model
e Relational DBMS (RDBMS): MySQL, PostgreSQL.
e Object-Oriented DBMS (OODBMS): ObjectDB, db4o.
e NoSQL DBMS: MongoDB, Cassandra.
Based on Number of Users
e Single-user DBMS: Microsoft Access.
e Multi-user DBMS: Oracle, SQL Server.
Based on Database Distribution
e Centralized DBMS: Data stored in a single location.
e Distributed DBMS: Data distributed across multiple locations.
o Federated DBMS: Manages multiple autonomous databases.
X2 Based on Cost
e Open-source DBMS: MySQL, PostgreSQL.
o Commercial DBMS: Oracle, SQL Server.
<> Based on Access Method
o Navigational DBMS: Uses pointers to navigate between data.
e SQL DBMS: Uses SQL for data access.

8

X/
°e

X/
°e

Table 3.1: Classification of Database Management Systems

Classification Type of DBMS Description / Example
Criteria
Based on Data | Relational DBMS | Stores data in tables with rows and
Model (RDBMS) columns.
Examples: MySQL, PostgreSQL
Object-Oriented Stores data in the form of objects, as in
DBMS (OODBMS) object-oriented programming.
Examples: ObjectDB, db4o
NoSQL DBMS Designed for unstructured or semi-
structured data; schema-free.
Examples: MongoDB, Cassandra
Based on Number of | Single-User DBMS Supports one user at a time; simpler
Users systems.
Example: Microsoft Access
Multi-User DBMS Allows multiple users to access the
database simultaneously.
Examples: Oracle, SQL Server
Based on Database | Centralized DBMS Entire database stored in one central
Distribution location.
Distributed DBMS Database distributed across multiple
physical locations connected by a network.
Federated DBMS Manages multiple autonomous databases
under a single interface.

DBMS 3.11 DATABASE ARCHITECTURE

Based on Cost Open-Source DBMS Free to use and modify; community-
supported.
Examples: MySQL, PostgreSQL
Commercial DBMS Proprietary and licensed software with
vendor support.
Examples: Oracle, SQL Server
Based on Access | Navigational DBMS Accesses data using pointers or predefined
Method paths.
SQL DBMS Uses Structured Query Language (SQL)
for defining and manipulating data.

3.4 SUMMARY

In this chapter, we explored the fundamental architectural concepts of Database Management
Systems (DBMS). The three-schema architecture provides a clear separation between users’
views, the conceptual design, and the physical storage of data. It is organized into three levels
— internal, conceptual, and external — which together help to manage complexity and
ensure better data abstraction. A key benefit of this architecture is data independence,
allowing changes at one level (such as storage structure) without affecting higher levels like
application programs or user views. This separation ensures flexibility, maintainability, and
scalability in modern database systems.

The chapter also introduced different types of DBMS architectures, including centralized
systems, where all data and DBMS software reside on a single server, and client/server
systems, which divide tasks between clients (users) and a central server for better efficiency
and concurrent access. Finally, we classified DBMSs based on various criteria such as data
models (relational, object-oriented, hierarchical, etc.), number of users, and distribution of
data. These architectural and classification principles form the foundation for understanding
how databases are organized, managed, and accessed in both traditional and modern
computing environments.

3.5 TECHNICAL TERMS
Data Models, Schema, Instances, Three schema architecture and Data Independence
3.6 SELF ASSESSMENT QUESTIONS
Essay questions:
1. Tllustrate about data models.
2. Describe about Data Independence
3. Explain about three tier architectures of DBMS
Short Notes:
1. Write about Schema and Instances

2. Define Data Interface
3. List out benefits of Clint Server Architecture

Centre for Distance Education 3.12 Acharya Nagarjuna University

3.7 SUGGESTED READINGS

1.

Nk

"Database System Concepts" by Abraham Silberschatz, Henry F. Korth, and S.
Sudarshan

"Fundamentals of Database Systems" by Ramez Elmasri and Shamkant B. Navathe
"Database Management Systems" by Raghu Ramakrishnan and Johannes Gehrke

"An Introduction to Database Systems" by C.J. Date

"SQL and Relational Theory: How to Write Accurate SQL Code" by C.J. Date

Dr. Neelima Guntupalli

LESSON- 04
DATA MODELING USING THE ER MODEL

AIMS AND OBJECTIVES

The primary goal of this chapter is to understand the concept of Data Modeling Using the ER
Model. The chapter began with Conceptual Data models, Entity Types, Entity Sets, Attributes
and Keys, Relationship types, Relationship sets, roles and structural Constraints, Weak Entity
types, Relationship Types of Degree Higher than Two, Refining the ER Design for the
COMPANY Database. After completing this chapter, the student will understand Data
Modeling Using the ER Model.

4.1 INTRODUCTION
4.2 ENTITY TYPES AND ENTITY SETS
4.2.1 ENTITY TYPES
4.2.2 ENTITY SETS
43 ATTRIBUTES AND KEYS
4.3.1 ATTRIBUTES
43.2KEYS
4.4 OTHER TYPES OF INDEXES.
4.4.1 BITMAP INDEXES
4.4.2 FULL-TEXT INDEXES
4.4.3 SPATIAL INDEXES
4.5. RELATIONSHIP TYPES, RELATIONSHIP SETS, AND ROLES
4.5.1 RELATIONSHIP TYPES
4.5.2 RELATIONSHIP SETS
4.5.3 ROLES
4.6. STRUCTURAL CONSTRAINTS
4.6.1 DOMAIN CONSTRAINTS
4.6.2 ENTITY INTEGRITY CONSTRAINTS
4.6.3 REFERENTIAL INTEGRITY CONSTRAINTS
4.6.4 UNIQUE CONSTRAINTS
4.6.5 CHECK CONSTRAINTS
4.6.6 NOT NULL CONSTRAINTS
4.6.7 DEFAULT CONSTRAINTS
47 WEAKENTITY TYPES
4.7.1 KEY CHARACTERISTICS OF WEAK ENTITY TYPES
4.7.2 EXAMPLE OF WEAK ENTITY TYPE
4.8 RELATIONSHIP TYPES OF DEGREE HIGHER THAN TWO IN DBMS
4.9 SUMMARY
4.10 TECHNICAL TERMS
4.11 SELF-ASSESSMENT QUESTIONS
4.12 SUGGESTED READINGS

Centre for Distance Education 4.2 Acharya Nagarjuna University

4.1 INTRODUCTION

Data modeling is a fundamental step in designing a database. It involves creating a visual
representation of the data structures and their relationships, ensuring the database will
efficiently support the required data management tasks. One of the most widely used
techniques for data modeling is the Entity-Relationship (ER) Model.

The ER Model was introduced by Peter Chen in 1976 and provides a high-level conceptual
framework for database design. It uses a diagrammatic approach to represent data entities,
their attributes, and the relationships between them. The primary components of the ER
Model include entities, attributes, and relationships, each playing a critical role in defining
the structure and constraints of the data.

The chapter first covered began with understanding Conceptual Data models, Entity Types,
Entity Sets, Attributes and Keys, Relationship types, Relationship sets, roles and structural
Constraints, Weak Entity types, Relationship Types of Degree Higher than Two, Refining the
ER Design for the COMPANY Database.

4.2 ENTITY TYPES AND ENTITY SETS

Entity Types and Entity Sets are foundational elements in the ER Model for DBMS. Entity
Types provide the blueprint for defining the properties and structure of data objects, while
Entity Sets represent the actual data instances in the database. By effectively utilizing these
concepts, database designers can create structured, efficient, and scalable databases that
accurately represent the real-world entities and their relationships. Understanding the
distinction between entity types and entity sets is crucial for successful database modeling
and implementation. Entities can be tangible, such as 'Customer' or 'Product,' or intangible,
such as 'Order' or 'Transaction. Entities are represented by rectangles in ER diagrams. For
example, in a library system, entities might include 'Book,' Member,' and 'Loan.'

4.2.1 Entity Types

An entity type is a collection of entities that share common properties or characteristics. It
represents a category or class of objects in the real world with the same attributes.

Characteristics:

e Attributes: Properties that describe the entity type. Each entity within the type will
have the same set of attributes, but the attribute values will differ.

e Primary Key: An attribute or a set of attributes that uniquely identify each entity in
the entity type.

¢ Representation: In an ER diagram, an entity type is represented by a rectangle
containing the entity type name.

e Example: In a university database, an entity type could be Student, with attributes
such as StudentID, Name, DateOfBirth, and Major.

4.2.2 Entity Sets
An entity set is a collection of all entities of a particular entity type at any point in time. It is
essentially the table in a relational database where rows represent individual entities.

Database Management Systems 4.3 Data Modeling Using The Er Model

Characteristics:

e Homogeneous Collection: Contains entities of the same entity type.
e Dynamic: The number of entities in an entity set can change over time as entities are
added, modified, or removed.

Representation:

e In an ER diagram, the entity set is represented by the same rectangle used for the
entity type.

e Example:

e The Student entity set in a university database would include all current students, each
represented by a unique combination of attribute values.

Student

StudentiD | 1 |
Name | John|
DateOfBirth| ...
Major | cs |

StudentID | 2 |
Name | Jane|
DateofBirth| ...

Major | EE |

Fig 4.1 Entity Set of Student Object
4.3 ATTRIBUTES AND KEYS

Attributes and keys are fundamental concepts in Database Management Systems (DBMS)
that help define and manage the structure of data within a database. Attributes provide the
details about the data entities, while keys ensure the uniqueness and establish relationships
between the data entities.

4.3.1 Attributes

Attributes are properties or characteristics that describe an entity in a database. Each attribute
represents a data field and holds a value for every entity instance.

Types of Attributes:
e Simple Attribute: An attribute that cannot be divided into smaller components. For
example, FirstName and LastName are simple attributes.

Centre for Distance Education 4.4 Acharya Nagarjuna University

e Composite Attribute: An attribute that can be subdivided into smaller components.
For example, Address can be subdivided into Street, City, State, and ZIP Code.

e Single-Valued Attribute: An attribute that holds a single value for a given entity
instance. For example, DateOfBirth is typically single-valued.

e Multi-Valued Attribute: An attribute that can hold multiple values for a given entity
instance. For example, PhoneNumbers can store multiple phone numbers for a person.

e Derived Attribute: An attribute whose value can be derived from other attributes.
For example, Age can be derived from the DateOfBirth.

e Stored Attribute: An attribute that is stored in the database and not derived from
other attributes. For example, EmployeelD.

Example:
e For the entity Student, attributes might include StudentID, Name, DateOfBirth,
Address, and PhoneNumbers.

ER Diagram Representation:
e Attributes are represented by ovals connected to their respective entities by lines.

4.3.2 Keys

Keys are special types of attributes or combinations of attributes that are used to uniquely
identify records in a table and establish relationships between tables.

Types of Keys:

1. Primary Key:
o Definition: A unique attribute or a combination of attributes that uniquely identifies each
record in a table.
e Characteristics:
o Must contain unique values.
o Cannot contain NULL values.
o There can be only one primary key per table.
Example: StudentID in the Student table.

2. Composite Key:
e Definition: A primary key that consists of two or more attributes to uniquely identify

a record.
e Example: OrderID and ProductID together can form a composite key for an
OrderDetails table.

3. Candidate Key:
e Definition: An attribute or a set of attributes that can uniquely identify a record and
could potentially be chosen as the primary key.
e Example: Both Email and PhoneNumber in a Customer table can be candidate keys.

4. Alternate Key:
¢ Definition: A candidate key that is not chosen as the primary key.
e Example: If Email is chosen as the primary key, then PhoneNumber would be an
alternate key.

Database Management Systems 4.5 Data Modeling Using The Er Model

5. Foreign Key:

o Definition: An attribute or a set of attributes in one table that refers to the primary
key in another table to establish a relationship between the two tables.

o Characteristics:
o Can contain duplicate values.
o Can contain NULL values.

e Example: StudentID in the Enrollment table can be a foreign key referencing
StudentID in the Student table.

6. Super Key:
e Definition: A set of one or more attributes that can uniquely identify a record in a
table.
e Characteristics: Can contain additional attributes that are not necessary for unique
identification.
e Example: StudentID alone is a super key, and StudentID along with Name is also a
super key.

7. Unique Key:

o Definition: An attribute or a set of attributes that ensures all values in a column or a
group of columns are unique across the database.

o Characteristics:
o Similar to the primary key but can accept a single NULL value.

o Example: Email in the Student table can be a unique key if each student has a unique
email address.

ER Diagram Representation:

e Primary keys are underlined in entity representations.
o Foreign keys are represented with a dashed line connecting the two related entities.

Example Scenarios

University Database:

o Entity: Student
o Attributes: StudentID (Primary Key), Name, DateOfBirth, Address, Email (Unique
Key), PhoneNumbers
o Entity: Course
o Attributes: CourselD (Primary Key), CourseName, Credits
o Entity: Enrollment
o Attributes: EnrollmentID (Primary Key), StudentID (Foreign Key), CourselD
(Foreign Key), EnrollmentDate

Centre for Distance Education 4.6 Acharya Nagarjuna University

Student Course

StudentID {PK) | CourseID (PK)
Name | CourseName
DateCfBirth | Credits
Address +

Email (

PhoneNumbers

Enrolls

I
I
I
I
-

Enrollment

| EnrollmentID (PK) |
| StudentID (FK) |
| CourseID (FK) |
| EnrollmentDate |

+

Fig 4.2 University Database Example

Attributes and keys are integral to defining the structure and relationships of data in a
database. Attributes describe the properties of an entity, while keys ensure the uniqueness and
integrity of data, facilitating efficient data retrieval and management. Understanding these
concepts is crucial for designing robust and efficient databases that meet the requirements of
complex data-driven applications.

4.4 OTHER TYPES OF INDEXES

In addition to the commonly used B-tree and hash indexes, modern database systems support
several specialized indexing techniques tailored for specific data types and query patterns.
These indexes improve performance for queries that involve low-cardinality attributes, text
search, or spatial/geometric data. The following are three important types of specialized
indexes.

4.4.1 BITMAP INDEXES

A bitmap index uses bit vectors (bitmaps) to represent the presence or absence of a value in
each row.

It is especially efficient when:

Database Management Systems 4.7 Data Modeling Using The Er Model

e The attribute has low cardinality (few distinct values), such as gender, status,
category, or department code.
¢ Queries involve complex Boolean conditions (AND, OR, NOT).

How it works

e For each distinct value of the attribute, a bitmap (array of bits) is created.
e Bit=1 — row contains that value

e Bit=0 — row does not contain that value

e Bitwise operations make query evaluation very fast.

Advantages
e Very compact storage for low-cardinality columns.
e Extremely fast for combining conditions using bitwise operations.
e Good for read-heavy, analytical workloads (e.g., data warehouses).

Limitations
e Not suitable for high-cardinality columns.
e Bitmap indexes increase overhead on updates (due to bitmaps needing modification).

4.4.2 FULL-TEXT INDEXES

A full-text index enables efficient searching of large text fields, documents, and unstructured
text.

Traditional indexes are inefficient for matching keywords, phrases, or natural-language
queries—full-text indexes solve this.

Features
e Break text into tokens (words, stems).
e Build an inverted index mapping terms — list of documents/rows containing them.
e Support advanced text-search operations like:

Keyword search

Phrase search

Boolean text search

Relevance ranking

Stemming and stop-word filtering

0O O O O O

Applications
e Searching in fields such as product descriptions, articles, emails, comments, etc.
e Required in information retrieval systems, search engines, and content-heavy
databases.

Advantages
o Very fast text-search queries.
e Supports ranking and relevance-based search.

Centre for Distance Education 4.8 Acharya Nagarjuna University

Limitations

o Index creation and maintenance can be expensive.
e Performance depends on tokenizer and language-specific processing.

4.4.3 SPATIAL INDEXES

A spatial index is designed for storing and querying geometric and geographic data—such as
points, lines, polygons, and regions.

Examples of spatial data

e @IS coordinates (latitude/longitude)

e Maps, boundaries, routes

e Locations of services (ATMs, hospitals)
e Shapes and geometric figures

Common spatial index structures

e R-tree (most widely used)
e R*-tree, Quad-trees, KD-trees (depending on the DBMS)

Why spatial indexes are needed
Spatial queries often involve operations such as:

e “Find all points within a radius”
e “Find regions that overlap this polygon”
e “Locate the nearest neighbor”

B-tree indexes cannot handle multi-dimensional data efficiently, whereas spatial indexes
group nearby objects and improve search performance enormously.

Advantages

o Efficient multi-dimensional search (2D/3D).
o Fast spatial operations (range queries, intersection, containment).

Limitations

e More complex structure than B-trees.
e Maintenance overhead for frequently updated spatial data.

4.5. RELATIONSHIP TYPES, RELATIONSHIP SETS, AND ROLES

In Database Management Systems (DBMS), relationships between entities are crucial for
representing how data interacts and is associated within the database. Understanding
relationship types, relationship sets, and roles helps in accurately modeling these interactions
within an Entity-Relationship (ER) model.

Database Management Systems 4.9 Data Modeling Using The Er Model

4.5.1 Relationship Types

e A relationship type defines the association between two or more entity types. It
describes how entities of different types are related to each other.
o Characteristics:
e Degree of Relationship: Indicates the number of entity types involved in the
relationship.
o Unary Relationship: Involves one entity type (e.g., an employee supervises
other employees).
o Binary Relationship: Involves two entity types (e.g., students enroll in courses).
o Ternary Relationship: Involves three entity types (e.g., a supplier supplies
products to a warehouse).

o Cardinality Constraints: Specifies the number of instances of one entity type that can be
associated with an instance of another entity type.

o One-to-One (1:1): One instance of an entity is associated with one instance of
another entity (e.g., each person has one passport).

o One-to-Many (1): One instance of an entity is associated with multiple instances of
another entity (e.g., a teacher teaches many students).

o Many-to-Many (M): Multiple instances of an entity are associated with multiple
instances of another entity (e.g., students enroll in multiple courses, and each course
has multiple students).

Example:

e A Student entity type and a Course entity type can have an Enrolls relationship type
indicating that students enroll in courses.

ER Diagram Representation:
o Relationships are represented by diamonds connecting the involved entities.
4.5.2 Relationship Sets
A relationship set is a collection of relationships of the same type. It represents the set of

associations between instances of one entity set and instances of another (or the same) entity
set.

Characteristics:
o Instance Collection: Contains all instances of a particular relationship type at any
given time.

e Dynamic: The number of relationships in the set can change over time as entities are
added, modified, or removed.

o Example: The Enrolls relationship set would include all instances where students
have enrolled in courses.

o ER Diagram Representation: Represented by the same diamond as the relationship
type, with lines connecting to the involved entities.

Centre for Distance Education 4.10 Acharya Nagarjuna University

4.5.3 Roles

e Roles specify the function that an entity plays in a relationship. Roles are especially
important in relationships involving the same entity type more than once (recursive
relationships).

Characteristics:

e Role Names: Identify the purpose of an entity within the relationship. Role names
help clarify the participation of an entity in the relationship.

e Recursive Relationships: Used to define roles in relationships where the same entity
type participates more than once.

Example:

e In a Supervises relationship between the Employee entity type, roles can be
Supervisor and Subordinate.

o ER Diagram Representation:

e Roles are often labeled on the connecting lines in the ER diagram to specify the
function of each entity in the relationship.

Employee Database:

Entities:
o Employee (EmployeelD, Name, Position)
o Relationships:
e Supervises (between Employee and Employee)
o Roles: Supervisor, Subordinate
o Cardinality: One-to-Many (1)

Employee
EmployeeID {(PK)

Name

Position

I

I

I
W

Employee

EmployeeID (PK)
M.ame

Position

Fig 4.3 ER Diagram of Employee representation of Relationship

Database Management Systems 4.11 Data Modeling Using The Er Model

Understanding relationship types, relationship sets, and roles is essential for accurately
modeling the interactions between data entities in a database. These concepts ensure that the
relationships among entities are correctly represented, facilitating efficient data management
and retrieval. Proper use of these elements in ER modeling leads to well-structured databases
that accurately reflect real-world scenarios and support the required data operations.

4.6. STRUCTURAL CONSTRAINTS

Structural constraints in a Database Management System (DBMS) are rules that enforce
restrictions on the relationships between entities to ensure the integrity and consistency of the
data. These constraints play a crucial role in defining how entities interact with each other
and what kind of relationships are permissible.

4.6.1 Domain Constraints

Definition: Restrictions on the permissible values for a given attribute.
Example: An attribute age should only accept integer values between 0 and 120.
Implementation: Data types and value ranges

CREATE TABLE Person (
age INT CHECK (age >= 0 AND age <= 120)
);

4.6.2 Entity Integrity Constraints
Definition: Ensure each entity (row) is uniquely identifiable.
Example: Every table should have a primary key, and no primary key value can be null.

Implementation: Primary key constraints

CREATE TABLE Employee (
employee id INT PRIMARY KEY,
name VARCHAR(50)

);

4.6.3 Referential Integrity Constraints
Definition: Ensure that a foreign key value always points to an existing, valid record in
another table.

Example: An order table's customer id must match a valid customer id in the customers
table.
Implementation: Foreign key constraints
CREATE TABLE Orders (
order id INT PRIMARY KEY,
customer_id INT,
FOREIGN KEY (customer id) REFERENCES Customers(customer_id)

)

Centre for Distance Education 4.12 Acharya Nagarjuna University

4.6.4 Unique Constraints
Definition: Ensure that all values in a column or a set of columns are unique.

Example: Email addresses in a users table must be unique.
Implementation: Unique constraints.

CREATE TABLE Users (
user_id INT PRIMARY KEY,
email VARCHAR(100) UNIQUE

)i

4.6.5 Check Constraints

Definition: Specify a condition that each row must satisfy.

Example: An employee’s salary must be greater than the minimum wage.
Implementation: Check constraints

CREATE TABLE Employees (
employee id INT PRIMARY KEY,
salary DECIMAL(10, 2),

CHECK (salary >= 1500)

);

4.6.6 Not Null Constraints

Definition: Ensure that a column cannot have null values.
Example: An employee's name cannot be null.
Implementation: Not null constraints
CREATE TABLE Employees (

employee id INT PRIMARY KEY,

name VARCHAR(50) NOT NULL

)i

4.6.7 Default Constraints

Definition: Provide a default value for a column when no value is specified.
Example: The status of an order should default to 'pending' if not specified.
Implementation: Default constraints.

CREATE TABLE Orders (

order_id INT PRIMARY KEY,
status VARCHAR(20) DEFAULT 'pending'

);

Database Management Systems 4.13 Data Modeling Using The Er Model

4.7 WEAK ENTITY TYPES

In a Database Management System (DBMS), a weak entity type is an entity type that cannot
be uniquely identified by its own attributes alone. Instead, it relies on a "strong" or "owner"
entity to ensure its unique identification. Weak entities typically have a partial key and are
associated with a strong entity through a relationship.

4.7.1 Key Characteristics of Weak Entity Types

¢ Dependency on Strong Entity:

o Weak entities do not have a primary key that can uniquely identify their instances
independently.

o They depend on the primary key of a strong entity for unique identification.

+ Partial Key (Discriminator):

o A weak entity has a partial key, also known as a discriminator, which, when
combined with the primary key of the strong entity, uniquely identifies each instance
of the weak entity.

+ Existence Dependency:

o Weak entities are existence-dependent on the strong entity. They cannot exist without

being associated with an instance of the strong entity.
% Identifying Relationship:

o The relationship between a weak entity and its strong entity is called an identifying
relationship. This relationship helps in linking the weak entity to the strong entity and
ensures that the weak entity can be uniquely identified.

4.7.2 Example of Weak Entity Type

Consider a database for a university where each student (strong entity) can have multiple
dependents (weak entity). The dependents cannot be uniquely identified without referencing
the student.

Strong Entity: Student
o Attributes: StudentID (Primary Key), Name, DateOfBirth

Weak Entity: Dependent
o Attributes: DependentName, Age, Relationship
o Partial Key: DependentName
o Identifying Relationship: Each dependent is associated with a specific student.

Weak Entity: Dependent representation in SQL:
CREATE TABLE Dependents (
DependentName VARCHAR(100),
Age INT,
Relationship VARCHAR(50),
StudentID INT,
PRIMARY KEY (DependentName, StudentID),
FOREIGN KEY (StudentID) REFERENCES Students(StudentID)

)5

Centre for Distance Education 4.14 Acharya Nagarjuna University

By understanding and correctly implementing weak entities, you can ensure that your
database accurately models real-world relationships and maintains data integrity.

4.8 RELATIONSHIP TYPES OF DEGREE HIGHER THAN TWO IN DBMS

In a Database Management System (DBMS), relationships are used to establish associations
between different entity types. Most relationships are binary, involving two entities, but there
are cases where relationships involve three or more entities. These are called n-ary
relationships, where "n" represents the degree of the relationship. Here are the key aspects
and examples of relationship types of degree higher than two:

Ternary Relationships (Degree 3)

A ternary relationship involves three different entity types. It is used when a relationship
cannot be decomposed into binary relationships without losing some essential semantics.

Example: Supplier-Product-Project

Consider a scenario where a company manages suppliers, products, and projects. A ternary
relationship might be used to represent which supplier supplies which product to which
project.

Entities:

e Supplier (SupplierID, SupplierName)
e Product (ProductID, ProductName)
e Project (ProjectID, ProjectName)

Ternary Relationship: Supplies
e Attributes: Quantity, Date
CREATE TABLE Suppliers (
SupplierID INT PRIMARY KEY,
SupplierName VARCHAR(100)

)i

CREATE TABLE Products (
ProductID INT PRIMARY KEY,
ProductName VARCHAR(100)

)i

CREATE TABLE Projects (
ProjectID INT PRIMARY KEY,
ProjectName VARCHAR(100)

)i

CREATE TABLE Supplies (
SupplierID INT,
ProductID INT,

ProjectID INT,

‘ Database Management Systems 4.15 Data Modeling Using The Er Model

Quantity INT,

Date DATE,

PRIMARY KEY (SupplierID, ProductID, ProjectID),

FOREIGN KEY (SupplierID) REFERENCES Suppliers(SupplierID),
FOREIGN KEY (ProductID) REFERENCES Products(ProductID),
FOREIGN KEY (ProjectID) REFERENCES Projects(ProjectID)

);
4.9 SUMMARY

Data modelling using the Entity-Relationship (ER) model involves creating a conceptual
representation of a database's structure, focusing on entities (real-world objects or concepts),
their attributes (properties), and the relationships between them. The ER model uses diagrams
with rectangles for entities, ovals for attributes, and diamonds for relationships, connected by
lines to illustrate the data structure clearly. This method helps in visualizing, communicating,
and documenting the database design, ensuring that it accurately represents real-world
scenarios and serves as a blueprint for creating an efficient and scalable database.

4.10 TECHNICAL TERMS

Entity, Attributes, Entity Type, Weak Entity, Relationship, Relationship Type, Constraint, ER
model

4.11 SELF ASSESSMENT QUESTIONS
Essay questions:
1. Illustrate about Entity and Entity Types
2. Describe about Relationship Types
3. Explain about Company Database ER Model

Short questions:

1. Write about Weak Entity
2. Define Key Constraints

4.12 SUGGESTED READINGS

—

"Database System Concepts" by Abraham Silberschatz, Henry F. Korth, and S.
Sudarshan

"Fundamentals of Database Systems" by Ramez Elmasri and Shamkant B. Navathe
"Database Management Systems" by Raghu Ramakrishnan and Johannes Gehrke

"An Introduction to Database Systems" by C.J. Date

"SQL and Relational Theory: How to Write Accurate SQL Code" by C.J. Date

Nk

Dr. Neelima Guntupalli

LESSON- 05

THE ENHANCED ENTITY-RELATIONSHIP MODEL

AIMS AND OBJECTIVES

The primary goal of this chapter is to understand the concept of The Enhanced Entity-
Relationship Model. The chapter began with Sub classes, Super classes and Inheritance,
Specialization and Generalization, Constraints and Characteristics of Specialization and
Generalization Hierarchies, Modeling of Union Types using Categories, An Example
University ERR Schema, Design Choices and Formal Definitions. After completing this
chapter, the student will understand The Enhanced Entity-Relationship Model.

5.1
5.2

5.3

5.4

5.5

5.6

5.7
5.8
5.9

5.10
5.11

INTRODUCTION

SUBCLASSES, SUPERCLASSES, AND INHERITANCE

5.2.1 SUBCLASSES

5.2.2 SUPERCLASSES

5.2.3 INHERITANCE

SPECIALIZATION AND GENERALIZATION

5.3.1 SPECIALIZATION

5.3.2 GENERALIZATION

CONSTRAINTS AND CHARACTERISTICS OF SPECIALIZATION AND

GENERALIZATION HIERARCHIES

5.4.1 COMPLETENESS CONSTRAINT

5.4.2 DISJOINTNESS CONSTRAINT

5.4.3 COMBINING COMPLETENESS AND DISJOINTNESS CONSTRAINTS
MODELLING OF UNION TYPES USING CATEGORIES
EXAMPLE UNIVERSITY EER SCHEMA

5.5.1 ENTITIES AND RELATIONSHIPS

5.5.2 SCHEMA DIAGRAM

DESIGN CHOICES AND FORMAL DEFINITIONS
SUMMARY

TECHNICAL TERMS

SELF-ASSESSMENT QUESTIONS

SUGGESTED READINGS

Centre for Distance Education 5.2 Acharya Nagarjuna University

5.1 INTRODUCTION

The Enhanced Entity-Relationship (EER) model extends the original Entity-Relationship
(ER) model to support more complex data representations and constraints. It introduces
additional concepts like subclasses, superclasses, inheritance, specialization, generalization,
and union types, making it a powerful tool for advanced database design.

The chapter first covered began with understanding Sub classes, Super classes and
Inheritance, Specialization and Generalization, Constraints and Characteristics of
Specialization and Generalization Hierarchies, Modeling of Union Types using Categories,
An Example University ERR Schema, Design Choices and Formal Definitions.

5.2 SUBCLASSES, SUPERCLASSES, AND INHERITANCE

5.2.1 Subclasses

In the context of the Enhanced Entity-Relationship (EER) model, a subclass is a specialized
form of an entity that inherits attributes and relationships from a parent entity, known as the
superclass. The subclass can also have its own unique attributes and relationships that
differentiate it from other subclasses and the superclass. This concept is essential for
modeling complex data structures in database management systems (DBMS).

Example: A Person entity can be specialized into Student and Teacher subclasses. While
both Student and Teacher inherit attributes like Name and Date of Birth from Person, Student
might have additional attributes such as StudentID and Major, and Teacher might have
EmployeelD and Department.

When creating subclasses in an EER diagram, it is essential to clearly define the superclass
and identify the distinguishing characteristics that justify the creation of subclasses.

Steps:

1. Identify the Superclass: Determine the general entity that will serve as the
superclass.

2. Define Attributes and Relationships: List the attributes and relationships common
to all subclasses.

3. Identify Specializations: Determine the specific entities (subclasses) that will be
derived from the superclass based on unique attributes or relationships.

4. Draw Inheritance Arcs: Use arcs or lines to connect subclasses to the superclass,
indicating inheritance.

Database Management Systems 5.3 The Enhanced Entity-Relationship Model

Vehicle
"
| VehiclelID
| Make
| Model

| | Truck

| CarType | | PayloadCap. |

+

Fig 5.1 Subclass in EER Diagram

Advantages of Using Subclasses

1. Reusability: Common attributes and relationships are defined once in the superclass
and inherited by subclasses.

2. Reduced Redundancy: Inheritance reduces the need to duplicate attributes across
multiple entities.

3. Clearer Modeling: Subclasses allow for more precise modeling of real-world entities
and their unique characteristics.

5.2.2 Superclasses

A superclass is a higher-level entity that contains common attributes and relationships shared
by one or more subclasses A superclass is a generalized entity from which subclasses are
derived.

Example:
e Person is the superclass for Student and Teacher.

e Vehicle as a superclass. It includes attributes common to all types of vehicles, such as
license plate number, manufacturer, and model.

5.2.3 Inheritance
Inheritance allows a subclass to inherit attributes and relationships from its superclass. This
promotes reusability and consistency within the data model.

Centre for Distance Education 54 Acharya Nagarjuna University

Example:
e Attributes Name and DateOfBirth in Person are inherited by both Student and
Teacher.

Car Truck Motorcycle

Fig 5.2 Inheritance in EER Diagram

Step-by-Step Process

1. Identify Common Entities and Attributes:
o Common entity: Vehicle
o Common attributes: vehicle id, license plate number, manufacturer, model
2. Define the Superclass:
o Superclass: Vehicle
o Attributes: vehicle id, license plate number, manufacturer, model
3. Define the Subclasses:
o Car: Attributes: number of doors, trunk capacity
o Truck: Attributes: payload capacity, number of axles
o Motorcycle: Attributes: type of handlebars, engine capacity
4. Establish Inheritance Relationships:
o Draw Vehicle as the superclass.
o Connect Vehicle to Car, Truck, and Motorcycle using lines.
o Use a triangle symbol to represent the inheritance relationship, with the apex
pointing towards Vehicle.
5. Specify Constraints:
o Disjoint Constraint: A vehicle can be either a Car, Truck, or Motorcycle, but
not more than one (disjoint).
o Total Participation: Every vehicle must be classified as one of the subclasses
(total participation).

By following these steps, you can effectively create an EER diagram that represents the
inheritance of vehicles, ensuring a clear and structured data model.

Database Management Systems 5.5 The Enhanced Entity-Relationship Model

5.3 SPECIALIZATION AND GENERALIZATION
5.3.1 Specialization

Specialization in EER (Extended Entity-Relationship) modeling involves creating lower-level
entity types (subclasses) from a higher-level entity type (superclass) based on some
distinguishing characteristics. This process is a top-down approach where a general entity is
divided into more specific entities.

Example: Person can be specialized into Student and Teacher based on roles within an
educational institution.

Specialization Constraints

o Disjoint Constraint: Ensures that a Vehicle can be only one of the subclasses (Car,
Truck, or Motorcycle).

o Total Participation: Ensures that every Vehicle instance must be a member of one of
the subclasses.

Specialization in DBMS allows for the creation of a more structured and organized database
by breaking down general entities into more specific entities based on distinguishing
characteristics. This approach helps in managing and querying data more efficiently while
maintaining data integrity and avoiding redundancy.

5.3.2 GENERALIZATION

Generalization in Database Management Systems (DBMS) is the process of combining
multiple lower-level entity types into a higher-level entity type based on common attributes
or relationships. It is the opposite of specialization and follows a bottom-up approach. This
method is useful for simplifying and abstracting complex databases by identifying
commonalities among various entities and representing them in a generalized manner.

Key Concepts of Generalization

o Higher-Level Entity (Superclass): The generalized entity that encompasses the
shared attributes and relationships of the lower-level entities.

o Lower-Level Entities (Subclasses): The specific entities that are combined to form
the higher-level entity. Each subclass may have its own unique attributes and
relationships.

Example: Consider a scenario where you have different types of vehicles: cars, trucks, and
motorcycles. Each type of vehicle has its own specific attributes, but they also share some
common attributes.
Step-by-Step Process
1. Identify Common Attributes:

o Common attributes: vehicle id, license plate_number, manufacturer, model
2. Define the Higher-Level Entity (Superclass):

o Superclass: Vehicle

o Attributes: vehicle id, license plate number, manufacturer, model

Centre for Distance Education 5.6 Acharya Nagarjuna University

3. Define Lower-Level Entities (Subclasses):

o Car: Attributes: number of doors, trunk capacity

o Truck: Attributes: payload capacity, number of axles

o Motorcycle: Attributes: type of handlebars, engine capacity

4. Establish Generalization Relationships:

o Connect Car, Truck, and Motorcycle to Vehicle using lines.

o Use a triangle symbol to represent the generalization relationship, with the base
pointing towards Car, Truck, and Motorcycle, and the apex pointing towards
Vehicle.

5. Specify Constraints:
o Disjoint Constraint: Indicate that a Vehicle can be either a Car, Truck, or
Motorcycle, but not more than one (disjoint).
o Total Participation: Indicate that every Vehicle must be one of the specialized types
(total participation).

Car Truck Motorcycle

Fig 5.3Generalization in EER Diagram

Generalization in DBMS is a powerful modeling technique that helps in abstracting and
simplifying complex data structures by identifying commonalities among different entities
and representing them as a generalized entity. This approach enhances data organization,
reduces redundancy, and improves database maintainability and query efficiency.

5.4 CONSTRAINTS AND CHARACTERISTICS OF SPECIALIZATION AND
GENERALIZATION HIERARCHIES

5.4.1 Completeness Constraint

The Completeness Constraint in the Extended Entity-Relationship (EER) model specifies
whether every instance of a higher-level entity (superclass) must belong to at least one lower-
level entity (subclass). It ensures that all possible entity instances are accounted for in the
specialization/generalization hierarchy.

There are two types of completeness constraints:
1. Total Completeness (Total Participation):
o Every instance of the superclass must be a member of at least one subclass.
o This is represented by a double line connecting the superclass to the subclasses in the
EER diagram.
o Example: If every Vehicle must be either a Car, Truck, or Motorcycle, then the
specialization is totally complete.

Database Management Systems 5.7 The Enhanced Entity-Relationship Model

2. Partial Completeness (Partial Participation):
o Some instances of the superclass may not belong to any of the subclasses.
o This is represented by a single line connecting the superclass to the subclasses in the
EER diagram.
o Example: If some Vehicles might not be classified as Car, Truck, or Motorcycle, then
the specialization is partially complete.

Vehicle

Vehicle

Car Truck Motorcycle Car Truck Motorcycle

Fig 5.4 (a) Total Specialization (b) Partial Specialization

The choice between total and partial specialization depends on the specific requirements of
the domain being modeled.

5.4.2 Disjointness Constraint

This specifies whether an instance of a superclass can be a member of more than one
subclass.

o Disjoint Specialization: An instance of the superclass can belong to only one

subclass.
e Overlap Specialization: An instance of the superclass can belong to multiple
subclasses.
Example

Consider an EER diagram for vehicles:
e Superclass: Vehicle
e Subclasses: Car, Truck, Motorcycle

Disjoint (Exclusive) Constraint
If a vehicle can be either a Car, Truck, or Motorcycle, but not more than one of these at the
same time, the disjointness constraint is disjoint. This is shown by a "d" in the diagram.

Overlapping Constraint
If a vehicle can be classified as more than one subclass (e.g., a vehicle that is both a Car and a
Truck), the disjointness constraint is overlapping. This is shown by an "o" in the diagram.

Centre for Distance Education 5.8 Acharya Nagarjuna University

Fig 5.5 (a) Disjoint (Exclusive) Constraint (b) Overlapping Constraint
5.4.3 Combining Completeness and Disjointness Constraints

In practice, both completeness and disjointness constraints can be combined to provide a
more precise definition of how instances of a superclass relate to its subclasses.

Example with Total Completeness and Disjoint Constraint:

If every vehicle must be either a Car, Truck, or Motorcycle, and cannot be more than one at
the same time, it would be represented as:

Car Truck Motorcycle

Fig 5.6 Total Completeness and Disjoint Constraint

Example with Partial Completeness and Overlapping Constraint:

If some vehicles may not be categorized as Car, Truck, or Motorcycle, but those that are can
belong to more than one subclass, it would be represented as:

Database Management Systems 5.9 The Enhanced Entity-Relationship Model

Fig 5.7 Partial Completeness and Overlapping Constraint

These constraints help in accurately modeling real-world scenarios and ensuring data
integrity in the database design.

5.5 MODELING OF UNION TYPES USING CATEGORIES

Union types (or categories) are used to represent a single superclass that is derived from
multiple distinct superclasses.

Example: A Member entity could be a union of Student, Teacher, and Alumni, allowing the
Member to inherit attributes from any of these entities.

To model union types using categories for the Vehicle entity in an Enhanced Entity-
Relationship (EER) diagram, we will follow a structured approach. We'll define the
superclass Vehicle and its potential categories (subclasses) and establish a union entity to
represent the different types of vehicles.

Steps to Model Union Types Using Categories in EER:

1. Identify the Superclass: Vehicle

2. Identify the Subclasses: Car, Truck, Motorcycle

3. Define the Union Entity: Create a union entity to represent the categories.

4. Set Constraints: Specify completeness and disjointness constraints.
Union Entity:

Create a Vehicle Type entity that represents the union of Car, Truck, and Motorcycle.

Modeling union types using categories for the Vehicle entity in an EER diagram involves
defining the superclass Vehicle, its subclasses Car, Truck, and Motorcycle, and specifying the
union entity with appropriate constraints. This method ensures a robust and flexible database
design that can handle complex categorization requirements for vehicles.

Centre for Distance Education 5.10 Acharya Nagarjuna University

5.6 EXAMPLE UNIVERSITY EER SCHEMA

Consider an EER schema for a university database, including entities such as Person, Student,
Teacher, Course, and relationships like Enrolls, Teaches.

5.5.1 Entities and Relationships
Entities:

e Student (StudentID, Name, DateOfBirth, Major, Year, GPA)

e Professor (ProfessorID, Name, Department, Title, OfficeNumber)
e Course (CourselD, CourseName, Credits, Department)

e Department (DepartmentID, DepartmentName, Building)

e Classroom (RoomNumber, Building, Capacity)

e Enrollment (EnrollmentID, Grade)

e Teaches (Semester, Year)

Relationships:

e Student 1:M Enrollment (Enrolls)
e Course 1:M Enrollment (Contains)
e Professor 1:M Teaches (Teaches)
e Course 1:M Teaches (IsTaughtln)
e Department 1:M Course (Offers)

e Department 1:M Professor (Has)

e C(Classroom 1:M Course (Hosts)

5.5.2 Schema Diagram

A diagram representing the entities, their attributes, and relationships can be used to visualize
the EER model.

A schema diagram is a visual representation of the entities, their attributes, relationships,
and the constraints that define the structure of the Enhanced Entity—Relationship (EER)
model.

It provides a high-level overview of the database design, showing how different entities are
related and how specialization, generalization, and inheritance are represented.

The schema diagram helps database designers and users to:
e Understand the organization of data in the system.
o Identify entity types, attributes, and relationships.
e Visualize hierarchical structures formed through subclasses and superclasses.
o Observe constraints such as disjointness, completeness, and participation.

Components of an EER Schema Diagram
1. Entities:
o Represented by rectangles.
o Each entity includes its attributes, and the primary key is underlined.

Database Management Systems 5.11 The Enhanced Entity-Relationship
Model

Example:
Student(StudentID, Name, Age, Major)
2. Attributes:
o Shown as ovals connected to their entity.
o Multivalued attributes are represented by double ovals, and derived attributes by
dashed ovals.
3. Relationships:
o Depicted by diamonds connecting participating entities.
o Cardinality ratios (1:1, 1:N, M:N) and participation constraints are shown on the
connecting lines.
4. Specialization and Generalization:
o Represented using a triangle symbol.
o A downward triangle indicates specialization (from superclass to subclasses).
o An upward triangle indicates generalization (from subclasses to a superclass).
o Disjointness and completeness constraints are labeled near the triangle:
e d for disjoint
e 0 for overlapping
o T for total
e P for partial
5. Subclasses and Superclasses:
o Superclasses appear as general entities from which common attributes are inherited.
o Subclasses branch out and may have additional attributes or relationships.
6. Categories (Union Types):
o Represented by a circle connected to multiple superclasses.
o Indicates that the subclass is formed as a union of different entity sets.

Example: University EER Schema Diagram

A University EER schema may include the following entities and relationships:
o Entities:
Person(PersonID, Name, Address)
Student(StudentID, Program)
Faculty(FacultyID, Department)
Course(CourselD, Title, Credits)
Department(DeptID, DeptName)
e Relationships:
EnrolledIn(Student, Course)
Teaches(Faculty, Course)
o Advises(Faculty, Student)
e Specialization:
o Person is a superclass.
o Student and Faculty are subclasses derived from Person.
o Further specialization of Student into UndergraduateStudent and GraduateStudent.
o Constraints:
o The specialization of Person into Student and Faculty is total and disjoint — every
person must be either a student or faculty, but not both.

0O O O O O

O O

Centre for Distance Education 5.12 Acharya Nagarjuna University

Enrollment > Course
(1:M) (M:1) (PK)

Teaches Teaches
(M:N) /
| !
| / \
rofessor Classroom (PK)
(PK) (RoomNumber}

Department
(PK) (PK)

Fig 5.8 EER Diagram University Database
In the diagram:

Rectangles represent entities such as Person, Student, and Course.
Diamonds represent relationships like Teaches and Enrolledln.

Triangles represent specialization/generalization hierarchies.

Lines connecting entities show participation and cardinality.

Such a diagram allows database designers to visually validate:

Attribute inheritance from superclasses to subclasses.

Relationship participation across hierarchical levels.

Constraint enforcement between entities.

Advantages of Schema Diagrams

Provides a clear and intuitive visual representation of complex EER designs.
Facilitates communication between designers, developers, and stakeholders.
Helps identify redundancies and inconsistencies early in the design process.
Serves as a blueprint for converting the conceptual model into a relational schema.

5.7 DESIGN CHOICES AND FORMAL DEFINITIONS

5.7.1 Design Choices
Design choices involve decisions about which entities to include, how to structure them, and
how to implement constraints and relationships.

Database Management Systems 5.13 The Enhanced Entity-Relationship
Model

Example: Deciding whether to use a total or partial specialization for Person can impact the
flexibility and complexity of the database schema.

5.7.2 Formal Definitions

Formal definitions provide precise specifications for entities, attributes, relationships, and
constraints within the EER model.

Example: The definition of the Person entity might include formal specifications for
attributes like PersonID, Name, and DateOfBirth.

5.8 SUMMARY

The Enhanced Entity-Relationship (EER) model extends the traditional ER model by
incorporating more advanced features like subclasses, superclasses, inheritance,
specialization, generalization, and union types. These enhancements enable more precise and
flexible data modeling, making it suitable for complex database designs. By understanding
and applying these concepts, database designers can create robust and efficient database
schemas that accurately reflect real-world scenarios.

This chapter provides a comprehensive overview of the Enhanced Entity-Relationship model,
including its components, constraints, and applications in database design. The example
university EER schema illustrates how these concepts can be practically applied to create a
detailed and functional database schema.

5.9 TECHNICAL TERMS

Enhanced Entity, Relationship, Complete Constraint, Disjoint Constraint, Subclass, Super
class , Inheritance, Specialization, Generalization.

5.10 SELF ASSESSMENT QUESTIONS
Essay questions:
1. Ilustrate about Specialization and Generalization
2. Describe about University EER Schema
3. Explain about Completeness Constraint
Short questions:
1. Write about Inheritance

2. Define Disjointness Constraint
3. Explain about Entities and Relationships

Centre for Distance Education 5.14 Acharya Nagarjuna University

5.11 SUGGESTED READINGS

1.

SARNANE I el

"Database System Concepts" by Abraham Silberschatz, Henry F. Korth, and S.
Sudarshan

"Fundamentals of Database Systems" by Ramez Elmasri and Shamkant B. Navathe
"Database Management Systems" by Raghu Ramakrishnan and Johannes Gehrke

"An Introduction to Database Systems" by C.J. Date

"SQL and Relational Theory: How to Write Accurate SQL Code" by C.J. Date
Elmasri, R., & Navathe, S. B. (2010). Fundamentals of Database Systems (6th ed.).
Addison-Wesley.

Silberschatz, A., Korth, H. F., & Sudarshan, S. (2011). Database System Concepts
(6th ed.). McGraw-Hill.

Dr. Kampa Lavanya

LESSON- 06
THE RELATIONAL MODEL CONCEPTS

AIMS AND OBJECTIVES

The primary goal of this chapter is to understand the concept of The Enhanced Entity-
Relationship Model. The chapter began with Sub classes, Super classes and Inheritance,
Specialization and Generalization, Constraints and Characteristics of Specialization and
Generalization Hierarchies, Modeling of Union Types using Categories, An Example
University ERR Schema, Design Choices and Formal Definitions. After completing this
chapter, the student will understand The Enhanced Entity-Relationship Model.

6.1 INTRODUCTION

6.2 RELATIONAL DATA MODEL CONCEPTS
6.3 INTEGRITY CONSTRAINTS

6.4 RELATIONAL OPERATIONS

6.5 ER MODEL TO RELATION MAPPING

6.5 MODELLING OF UNION TYPES USING CATEGORIES
6.6 KEYS AND FOREIGN KEYS

6.7 SUMMARY

6.8 TECHNICAL TERMS

6.9 SELF-ASSESSMENT QUESTIONS

6.10 SUGGESTED READINGS

6.1. INTRODUCTION

In any relational database, maintaining data accuracy, consistency, and inter-table
relationships is essential. The relational data model achieves this through a set of well-
defined rules and operations that govern how data is stored, manipulated, and related.
Concepts such as integrity constraints ensure that only valid and consistent data is entered
into the database, while relational operations provide powerful ways to query and transform
data based on mathematical set theory and logic.

Furthermore, real-world databases often originate from conceptual designs built using Entity—
Relationship (ER) models. To implement these models effectively, designers use ER-to-
Relation mapping to convert entities, attributes, and relationships into relational tables. More
advanced concepts like modelling union types using categories and depicting keys and
foreign keys through diagrams help in visualizing data dependencies and enforcing referential
integrity across relations. Together, these topics form the foundation for reliable, structured,
and logically consistent database design.

Centre for Distance Education 6.2 Acharya Nagarjuna University

In this chapter, we will explore the essential components of the relational data model —
relations, attributes, tuples, schemas, and keys. We will also examine how integrity
constraints are enforced and introduce relational algebra, the formal language for querying
relational databases.

6.2. RELATIONAL DATA MODEL CONCEPTS

The relational data model, introduced by E. F. Codd in 1970, is the most widely used model
for database design and implementation. It organizes data into relations, which are
conceptualized as two-dimensional tables consisting of rows and columns. Each table
represents a specific entity or relationship type, where rows (tuples) correspond to individual
records and columns (attributes) represent properties of those records. This simple yet
powerful structure makes the relational model easy to understand, flexible to use, and
mathematically rigorous.

The relational model emphasizes data independence, data integrity, and ease of manipulation
through well-defined operations based on relational algebra. Its foundation lies in set theory,
ensuring that all data manipulations follow consistent and predictable rules. In this section,
we will discuss the fundamental components of the relational data model — relations,
attributes, tuples, domains, schemas, and keys — along with their properties and constraints.
These concepts provide the logical basis for building, querying, and maintaining structured
databases in real-world applications.

6.2.1 Relation: Structure and Properties

A relation is the fundamental building block of the relational data model. It represents a table
of data consisting of rows and columns, where each row corresponds to a unique record and
each column corresponds to an attribute of that record. In formal terms, a relation is a set of
tuples (rows) sharing the same set of attributes (columns). The structure of a relation provides
a systematic and uniform way to store and organize data.

Each relation in a database has a unique name and a fixed set of attributes, with each attribute
having a distinct name and a defined domain of values. The order of attributes and tuples in a
relation is not significant, since the relation is based on the mathematical concept of a set.
However, the values contained in each tuple are atomic, meaning that every attribute holds a
single, indivisible value—ensuring that no lists, arrays, or nested records are stored within a
single field.

Example Relation ‘Student’

StudentID Name Age Major
1001 Alice 21 Computer Science
1002 Bob 22 Mathematics

1003 Carol 20 Physics

Database Management Systems 6.3 The Relational Model Concepts

Characteristics of a Relation:
e Each attribute has a unique name within the relation.
Each tuple represents a distinct record or data instance.
Tuple order does not affect the meaning of the relation.
No duplicate tuples are allowed in a valid relation.
Attribute values are atomic, meaning they cannot be divided further.
The relation name distinguishes one relation from another within the database.

Thus, a relation provides a structured and consistent method of representing data in tabular
form. This tabular organization simplifies data retrieval and manipulation, enabling relational
databases to maintain clarity, flexibility, and logical integrity.

6.2.2 Attributes and Domains

Each attribute in a relation describes one property or characteristic of the entity represented
by the relation. Attributes are represented as columns in a table, and each attribute has an
associated domain — the set of all possible or allowable values that the attribute can take.
The domain defines the data type, format, and range of values, ensuring that all data stored in
the attribute is valid and meaningful.

A domain acts as a constraint on attribute values, preventing inconsistent or incorrect data
from being entered into the database. For example, an Age attribute might be restricted to
integer values between 16 and 100, while a Name attribute may only accept alphabetic
strings.

Example Attributes and Domains in the ‘Student’ Relation

Attribute Domain Example Values

StudentID Integer 1001, 1002, 1003

Name String "Alice", "Bob", "Carol"

Age Integer (16—-100) 20, 21, 22

Major Set of Strings "Physics", "Mathematics", ...
Key Points:

e FEach attribute has a clearly defined domain that specifies acceptable values.

e Domains may restrict both the type (e.g., integer, string) and the range or format (e.g.,
valid age range or date format).

e Domains promote data integrity by ensuring uniformity and preventing invalid
entries.

e When a value does not conform to its domain, the database system rejects it as an
error.

Hence, domains play a crucial role in maintaining the accuracy, consistency, and reliability of
data stored in a relational database.

Centre for Distance Education 6.4 Acharya Nagarjuna University

6.2.3 Tuples

A tuple represents a single record or instance in a relation. It is an ordered set of attribute
values, where each value corresponds to one attribute of the relation. In tabular form, a tuple
appears as a row in the relation table. Each tuple provides a complete description of an entity
by combining values from each attribute’s domain.

In the relational model, every tuple must contain exactly one value for each attribute of the
relation, and these values must be atomic, meaning they cannot be further divided into
smaller components. This ensures that the data remains consistent and easy to process during
query operations.

Example A Tuple from the ‘Student’ Relation

StudentID | Name | Age | Major
1001 Alice | 21 | Computer Science

In this example, the tuple (1001, Alice, 21, Computer Science) represents one student entity,
where each value belongs to the domain of its corresponding attribute.

Characteristics of a Tuple:

Contains one value for each attribute of the relation.

All attribute values are atomic (indivisible).

Each tuple is unique — no two tuples in the same relation are identical.
Represents a single, complete record within the relation.

Thus, tuples serve as the fundamental data units in the relational model, capturing individual
instances of entities and ensuring that all stored information is well-structured and logically
consistent.

6.2.4 Schema and Instance

A relation schema defines the structure of a relation — it specifies the relation’s name and the
names and domains of all its attributes. The schema acts as a blueprint or template that
describes how data is organized in the relation. It remains relatively stable over time and
forms part of the database’s overall design.

Example Relation Schema
Student(StudentID: Integer, Name: String, Age: Integer, Major: String)

In this schema,
e Student is the name of the relation.
e StudentID, Name, Age, and Major are attributes.
e [Each attribute is associated with a domain (e.g., Integer, String).

Database Management Systems 6.5 The Relational Model Concepts

The relation instance, on the other hand, refers to the actual data stored in the relation at a
particular point in time. It represents a collection of tuples that conform to the structure
defined by the relation schema. The instance of a relation is dynamic — it changes whenever
tuples are inserted, deleted, or updated.

Example Relation Instance of ‘Student’

StudentID | Name | Age | Major

1001 Alice |21 | Computer Science
1002 Bob 22 | Mathematics

1003 Carol | 20 | Physics

Key Points:

e The schema defines the structure and constraints of a relation.
e The instance represents the actual content or data of the relation at a given time.
e While the schema is fixed, the instance changes as the database is modified.

Hence, the relation schema provides a logical definition, and the relation instance provides a
snapshot of data, together forming the foundation for representing information in a relational
database.

6.2.5 Characteristics of Relations

A relation in the relational data model exhibits several important characteristics that define its
structure and behavior. These characteristics ensure that data stored in relational databases
remains well-organized, consistent, and compatible with the principles of set theory upon
which the model is based.

Key Characteristics:

e Attribute names are unique within a relation:

Each attribute (column) in a relation has a distinct name to avoid ambiguity when referring to
data items. For example, a relation cannot contain two attributes both named /D.

e Tuples are unordered sets (not lists):

The order of tuples (rows) in a relation has no significance. Whether a tuple appears first or
last in the table does not affect the meaning of the data. Each tuple is identified by the values
it contains, not by its position.

e Attribute values are atomic:

Every attribute in a relation must contain only a single, indivisible value from its domain.
Complex or composite values such as lists or arrays are not permitted, ensuring simplicity
and consistency in data representation.

o No duplicate tuples are allowed:

A valid relation cannot contain two identical tuples. This uniqueness property ensures that
each record represents a distinct real-world entity or fact. Relations are sets; hence,

operations on relations obey set theory principles:

Since a relation is defined as a set of tuples, all operations such as union, intersection, and
difference follow the rules of set theory. This mathematical foundation enables relational
algebra to provide powerful and logically sound data manipulation capabilities.

Centre for Distance Education 6.6

Acharya Nagarjuna University

6.2.6 Keys

In a relational database, keys are essential for uniquely identifying tuples and establishing
relationships between relations. A key is one or more attributes that together ensure that each
tuple in a relation is unique. Keys not only prevent duplicate records but also play a vital role
in enforcing data integrity and defining relationships among tables.

There are several types of keys used in the relational model, each serving a specific

purpose.
Key Type Description Example
Super Key | Any set of one or more attributes that uniquely {StudentID, Name}
identifies a tuple in a relation. A relation may have
multiple super keys.
Candidate | A minimal super key — that is, a super key from {StudentID}
Key which no attribute can be removed without losing the
property of uniqueness. Each relation can have one or
more candidate keys.
Primary The chosen candidate key that uniquely identifies StudentID
Key each tuple in a relation. The primary key must have
unique values and cannot contain NULL entries.
Foreign An attribute (or set of attributes) in one relation that Course.StudentID —
Key refers to the primary key of another relation, thereby | Student.StudentID

establishing a link between the two relations.

Example Use of Keys
Consider two relations:

Student

StudentID Name Age Major

1001 Alice 21 Computer Science

1002 Bob 22 Mathematics
Course

CourselD Title StudentID

C101 DBMS 1001

C102 Data Science 1002
Here:

e StudentID is the Primary Key in the Student relation.

e StudentID in the Course relation is a Foreign Key that refers to Student.StudentID,

establishing a relationship between the two tables.
Key Points:

e Every relation must have a primary key to uniquely identify its tuples.
e A foreign key ensures referential integrity between related tables.
e The use of keys maintains uniqueness, consistency, and linkage across database

relations.

Database Management Systems 6.7 The Relational Model Concepts

Hence, keys form the foundation of relational database design by uniquely identifying data,
preventing duplication, and connecting related entities through well-defined relationships.

6.3 INTEGRITY CONSTRAINTS

Integrity constraints are rules that ensure the accuracy, consistency, and validity of data
stored in a relational database. They enforce logical conditions on the data to prevent invalid
or inconsistent entries and maintain the overall correctness of the database state.
In the relational model, integrity constraints are crucial for preserving data reliability across
different relations.

The main types of integrity constraints are as follows:

e Domain Constraints:

These ensure that the value of each attribute lies within its defined domain.
Each attribute in a relation is associated with a specific data type and permissible range or
format. Any value that does not conform to its domain is considered invalid.
Example: The attribute 4ge may have a domain of integer values between 16 and 100.
Entering Age = 'Twenty’ would violate the domain constraint.

o Entity Integrity:

This constraint ensures that every tuple in a relation can be uniquely identified.
The primary key of a relation must contain unique and non-null values.
Example: In the Student relation, the StudentID (primary key) must have a value for every
student record; a NULL StudentID would violate entity integrity.

o Referential Integrity:

This constraint maintains consistency among related relations.

If a foreign key in one relation refers to a primary key in another, the foreign key value must
either:

1. Match an existing primary key value in the referenced relation, or
2. Be NULL, if the relationship is optional.

Example: In the Course relation, StudentID (foreign key) must correspond to a valid
StudentID in the Student relation.

6.4 RELATIONAL OPERATIONS

Relational operations are the fundamental manipulative tools of the relational data model.
They are used to retrieve, combine, and transform data stored in one or more relations. These
operations are derived from relational algebra, a formal mathematical system that defines a
set of operations on relations (tables) to produce new relations as results.

Relational algebra operations enable users to query data precisely and efficiently without
altering the underlying database structure. Each operation takes one or more relations as input
and returns another relation as output, ensuring closure — one of the key properties of the
relational model.

Centre for Distance Education 6.8 Acharya Nagarjuna University

Basic Relational Algebra Operations
e Selection (c):
Selects tuples (rows) from a relation that satisfy a specified condition.
Notation: c_{condition}(Relation)
Example: o_{Age > 20}(Student) — selects students older than 20.
e Projection (m):
Selects specific attributes (columns) from a relation, eliminating duplicates.
Notation: n_{attribute-list}(Relation)
Example: n_{Name, Major}(Student) — displays only student names and majors.
e Join (X):
Combines related tuples from two relations based on a common attribute.
Notation: Relation] x4 Relation2
Example: Student X Enrollment — merges records of students and their course enrollments
based on matching StudentID values.
e Set Operations:
Since relations are based on set theory, traditional set operations apply:
o Union (U): Combines tuples from two relations, removing duplicates.
o Intersection (N): Returns tuples common to both relations.
o Difference (—): Returns tuples present in one relation but not in the other.
o Cartesian Product (x): Produces all possible combinations of tuples from two
relations.

Example: Relation ‘Student’

StudentID Name Age Major

1001 Alice 21 Computer Science

1002 Bob 22 Mathematics

1003 Carol 20 Physics
Ilustrations:

e Selection Example: c_{Major = 'Mathematics'}(Student) — retrieves only
Bob’s record.

e Projection Example: n_{Name, Age}(Student) — returns columns Name
and Age for all students.

e Join Example: Student & Enrollment — merges student information with enrollment
data using StudentID.

6.5 ER MODEL TO RELATION MAPPING

The Entity—Relationship (ER) model provides a high-level conceptual view of the data, while
the relational model represents data in the form of tables (relations). The process of ER-to-
Relation mapping (also called schema transformation) involves converting entities, attributes,
and relationships from an ER diagram into corresponding relational schemas. This step
ensures that the conceptual database design is accurately translated into an implementable
relational structure.

Database Management Systems

6.9

The Relational Model Concepts

In this mapping process:

o Each entity in the ER model becomes a relation (table).

o Each attribute of the entity becomes a column (field) in the relation.
o The primary key of the entity becomes the primary key of the relation.
o Relationships between entities are represented using foreign keys that reference

primary keys in related tables.

Example: ER Diagram — Entities and Relationships

Consider an ER diagram with three entities: Student, Course, and Enrollment, where
Enrollment represents the many-to-many relationship between Student and Course.

Entities:

o Student (StudentID, Name, Age, Major)
e Course (CourselD, Title, Credits)

o Enrollment (represents a relationship between Student and Course)

Mapping to Relations
1. Student Relation:

Each entity becomes a table with its attributes.

o Primary Key: StudentID

StudentID | Name | Age | Major
1001 Alice |21 | Computer Science
1002 Bob |22 | Mathematics

2. Relational Schema:

Student(StudentID, Name, Age, Major)

2. Course Relation:

Represents the Course entity.
o Primary Key: CourselD

CourselD | Title

Credits

Cl101

Database Systems | 4

C102

Data Science 3

3. Relational Schema:
Course(CourselD, Title, Credits)

3. Enrollment Relation:

Represents the Enrollment relationship between Student and Course.

o Primary Key: Combination of StudentID and CourselD (composite key).

o Foreign Keys:

. StudentID — references Student.StudentID
° CourselD — references Course.CourselD

Centre for Distance Education 6.10 Acharya Nagarjuna University

StudentID | CourselD | Grade
1001 Cc101 A
1002 C102 B

4. Relational Schema:

Enrollment(StudentID, CourselD, Grade)

Foreign Key Constraints:
o Enrollment.StudentID — Student.StudentID
o Enrollment.CourselD — Course.CourselD

The Student and Course entities map directly to relations, each with a primary key. The
Enrollment relation serves as a bridge table that establishes connections between students and
the courses they take using foreign keys. This mapping maintains referential integrity and
accurately represents real-world relationships in a relational database.

6.6 KEYS AND FOREIGN KEYS

In a relational database, keys play a crucial role in ensuring the uniqueness of data and
defining relationships between tables.

A primary key uniquely identifies each record within a relation, while a foreign key
establishes a connection between related relations by referencing the primary key of another
table. Together, they maintain entity integrity and referential integrity within the database
system.

Primary Key

The primary key is an attribute (or a combination of attributes) that uniquely identifies each
tuple in a relation.
e It must contain unique and non-null values.
o Each table should have exactly one primary key, which is underlined in schema
representations.
o The primary key ensures that no two tuples in a table can have the same identifier.

Example: Student Table

StudentID | Name | Age | Major

1001 Alice | 21 | Computer Science
1002 Bob | 22 | Mathematics

1003 Carol | 20 | Physics

Here, StudentID is the Primary Key, uniquely identifying each student. It is often highlighted
or underlined in the schema as:

Student(StudentID, Name, Age, Major)

Database Management Systems 6.11 The Relational Model Concepts

Foreign Key

A foreign key is an attribute in one relation that refers to the primary key of another relation.

Exam

It defines a referential relationship between two tables.

The foreign key value in the referencing table must either match an existing primary
key value in the referenced table or be NULL (if the relationship is optional).

This constraint ensures consistency across tables, preventing orphaned or invalid
references.

le: Enrollment Table

StudentID CourselD Grade
1001 C101 A
1002 C102 B

In this example:

StudentID is a Foreign Key referencing Student.StudentID.
CourselD is a Foreign Key referencing Course.CourselD.

The Enrollment relation connects students to the courses they are enrolled in. Its relational
schema can be expressed as:

Enrollment(StudentID, CourselD, Grade)

Foreign Keys:

StudentID — Student(StudentID)
CourselD — Course(CourselD)

6.7 SUMMARY

The relational data model provides a simple, logical, and mathematically sound framework
for representing and managing data in databases. In this model, all data is organized into
relations (tables) consisting of tuples (rows) and attributes (columns), which together form
the foundation of modern database systems.

Relations represent data in a tabular structure, making it easy to understand,
manipulate, and query. Each relation corresponds to an entity or a relationship type in
the real world.Keys such as primary keys, candidate keys, and foreign keys ensure
uniqueness, identification, and linkages among relations. They play a central role in
maintaining entity integrity and referential integrity.

Integrity constraints (domain, entity, and referential) preserve the accuracy and
consistency of data, ensuring that only valid values are stored in the
database.Relational algebra provides a set of formal operations—such as selection,
projection, join, and set operations—that enable powerful and flexible querying of
data.

Centre for Distance Education 6.12 Acharya Nagarjuna University

In conclusion, the relational model’s structure, constraints, and operations together
offer a robust foundation for building reliable, consistent, and efficient database
systems, forming the basis for the widely used Structured Query Language (SQL)
and modern relational database technologies.

6.8 TECHNICAL TERMS

Relation, Tuple, Attribute, Domain, Schema, Instance, Primary Key, Foreign Key, Super
Key, Candidate Key, Selection, Projection, Join, Union.

6.9 SELF-ASSESSMENT QUESTIONS

Short-Answer Questions

1.

bl

Define a relation in the relational data model.

What is the difference between a relation schema and a relation instance?

How does a primary key differ from a candidate key?

What are domain constraints? Give one example.

Explain selection and join operations in relational algebra with simple examples.

Essay-Type Questions

1.

Describe the structure and properties of a relation. Illustrate with an example.

2. Explain in detail the different types of keys used in a relational model. Provide
suitable examples for each.

3. Discuss the integrity constraints in the relational model. How do they ensure data
consistency?

4. Explain the basic relational algebra operations — selection, projection, join, and set
operations — with examples.

5. Tllustrate the process of mapping an ER model to a relational schema using the entities
Student, Course, and Enrollment.

6.10 SUGGESTED READINGS

1. Elmasri, Ramez, and Shamkant B. Navathe. Fundamentals of Database Systems.
Pearson Education.

2. C.J. Date. An Introduction to Database Systems. Addison-Wesley.

3. Korth, Henry F., Abraham Silberschatz, and S. Sudarshan. Database System
Concepts. McGraw-Hill Education.

4. Ramakrishnan, Raghu, and Johannes Gehrke. Database Management Systems.
McGraw-Hill Education.

5. Connolly, Thomas M., and Carolyn E. Begg. Database Systems: A Practical

Approach to Design, Implementation, and Management. Pearson Education.

Dr. Kampa Lavanya

LESSON- 07

RELATIONAL DATABASE CONSTRAINTS

AIM

To understand the types of constraints that govern the validity and consistency of data in a
relational database, and to explore how update operations and transactions interact with these
constraints to maintain database integrity.

OBJECTIVES

After completing this topic, students should be able to:

1.

2.

Explain the concept and purpose of relational model constraints in maintaining data
integrity.

Identify and describe different types of constraints, including domain constraints,
entity integrity, and referential integrity.

Understand how relational database schemas define structure, relationships, and
constraint specifications.

Discuss the role of update operations (insert, delete, and modify) in relational
databases and their effect on constraints.

Analyze how transactions ensure database consistency through atomicity, consistency,
isolation, and durability (ACID properties).

Recognize and handle constraint violations that occur during update operations using
appropriate database mechanisms.

Apply theoretical concepts to design database schemas that enforce data integrity and
consistency across multiple relations.

STRUCTURE

71
7.2

7.3

INTRODUCTION

RELATIONAL MODEL CONSTRAINTS

7.2.1 DOMAIN CONSTRAINTS

7.2.2 ENTITY INTEGRITY CONSTRAINTS

7.2.3 REFERENTIAL INTEGRITY CONSTRAINTS

7.2.4 IMPORTANCE OF RELATIONAL CONSTRAINTS
RELATIONAL DATABASE SCHEMAS

7.3.1 DEFINITION OF A DATABASE SCHEMA

7.3.2 DATABASE SCHEMA VS. DATABASE INSTANCE
7.3.3 ROLE OF SCHEMAS IN CONSTRAINT ENFORCEMENT
7.3.4 SCHEMA DIAGRAMS

7.3.5 IMPORTANCE OF DATABASE SCHEMAS

7.4 UPDATE OPERATIONS AND CONSTRAINTS

7.4.1 TYPES OF UPDATE OPERATIONS
(A) INSERT OPERATION
(B) DELETE OPERATION
(C) UPDATE (MODIFY) OPERATION

Centre for Distance Education 7.2 Acharya Nagarjuna University

7.4.2 EFFECTS OF UPDATE OPERATIONS ON CONSTRAINTS

7.4.3 HANDLING CONSTRAINT VIOLATIONS

7.4.4 IMPORTANCE OF ENFORCING CONSTRAINTS DURING UPDATES
7.5 TRANSACTIONS AND DATABASE INTEGRITY

7.5.1 DEFINITION OF A TRANSACTION

7.5.2 ACID PROPERTIES

7.5.3 ROLE OF TRANSACTIONS IN MAINTAINING DATABASE INTEGRITY
7.6 DEALING WITH CONSTRAINT VIOLATIONS

7.6.1 CAUSES OF CONSTRAINT VIOLATIONS

7.6.2 HANDLING CONSTRAINT VIOLATIONS

7.6.3 IMPORTANCE OF PROPER HANDLING
7.7 SUMMARY
7.8 TECHNICAL TERMS
7.9 SELF-ASSESSMENT QUESTIONS
7.10 SUGGESTED READINGS

7.1 INTRODUCTION

The reliability of a relational database depends on its ability to maintain data accuracy,
consistency, and validity at all times. This is achieved through a set of well-defined rules
known as relational database constraints. These constraints ensure that the data stored in the
database remains logically correct and consistent with the real-world entities it represents.
Without such rules, databases could easily contain inconsistent, incomplete, or meaningless
information.

In the relational model, constraints are an integral part of the database schema — they specify
the conditions that data must satisfy to be considered valid. The most common types of
constraints include domain constraints, entity integrity constraints, and referential integrity
constraints. Together, they prevent invalid data entry, duplication, and broken relationships
between tables.

In addition to these constraints, update operations (such as insert, delete, and modify) and
transactions play a crucial role in maintaining database integrity. Each update must be
checked for possible constraint violations, and transactions must ensure that all operations are
executed in a consistent and reliable manner. When violations occur, the database
management system (DBMS) must take corrective actions — such as rejecting the operation,
cascading changes, or rolling back the transaction — to preserve the correctness of the data.

Thus, this lesson explores the nature of relational constraints, their enforcement through
schemas, the impact of update operations, and the role of transactions in maintaining the
overall integrity of a relational database.

7.2 Relational Model Constraints

In the relational data model, constraints are fundamental rules that ensure the validity and
consistency of data stored in a database. They are part of the logical design of the database

Database Management Systems 7.3 Relational Database Constraints

and are enforced automatically by the Database Management System (DBMS). These
constraints define the conditions that every relation (table) must satisfy, thereby preventing
invalid or inconsistent data from entering the system.

A constraint may apply to:
e Individual attributes (columns),
e Tuples (rows),
¢ Or relationships between multiple relations.

Relational model constraints can be broadly classified into three categories:
(1) Domain Constraints,
(2) Entity Integrity Constraints, and
(3) Referential Integrity Constraints.

7.2.1 Domain Constraints

Domain constraints specify that each attribute in a relation must take its value from a
predefined set of permissible values — known as the domain of that attribute.

Each domain is associated with a particular data type (e.g., Integer, String, Date) and may

include restrictions such as valid ranges or specific formats.

Example 7.1: Domain Constraint in the ‘Student’ Relation

Attribute Domain Valid Examples Invalid Examples
StudentID | Integer (1000-9999) | 1001, 1002 12, "A123"

Name String (A-Z) "Alice", "Bob" 1234," "

Age Integer (16—-100) 20,22 -5, 200

Major String (Valid Majors) | "Physics", "Math" | "XYZ" (invalid major)

If a value entered for Age is 200 or Name is numeric, the domain constraint is violated.
Such violations are automatically detected by the DBMS, which rejects the operation.

Key Points:

e Each attribute has a specific domain of allowed values.
e Domain constraints prevent invalid, incomplete, or inconsistent data.
e These are the most basic integrity rules in the relational model.

7.2.2 Entity Integrity Constraints

The entity integrity constraint ensures that every tuple (row) in a relation is uniquely
identifiable.

This is achieved through the use of a primary key — an attribute (or combination of
attributes) whose value must be:

e Unique for each tuple.

e Non-null (no missing values allowed).

Centre for Distance Education 7.4 Acharya Nagarjuna University

This constraint guarantees that no two rows in a table represent the same real-world entity
and that each record can be distinctly referenced.

Example 7.2: Entity Integrity in the ‘Student’ Relation

StudentID | Name | Age | Major
1001 Alice | 21 | Computer Science
1002 Bob |22 | Mathematics

NULL ¥ | Carol |20 | Physics

Here, the third tuple violates entity integrity because the primary key (StudentID) is
NULL — meaning the record cannot be uniquely identified.
The DBMS would reject this insertion.

Key Points:

e Primary key values must be unique and non-null.
e Ensures each entity (tuple) is distinguishable from others.
e Protects the logical integrity of the relation.

7.2.3 Referential Integrity Constraints

The referential integrity constraint ensures consistency among related tables.
It states that a foreign key in one relation must either:

e Match a primary key value in another relation, or

e Be NULL (if the relationship is optional).

This rule ensures that references between relations remain valid — that is, there are no
“orphan” records pointing to nonexistent entities.

Example 7.3: Referential Integrity Between Student and Enrollment Relations
Student Relation

StudentID Name Major
1001 Alice Computer Science
1002 Bob Mathematics

Enrollment Relation

StudentID CourselD Grade
1001 C101 A
1002 C102 B

1003 K C103 A

Database Management Systems 7.5 Relational Database Constraints

Here, the StudentID = 1003 in the Enrollment relation violates referential integrity because
there is no matching StudentID in the Student relation. The DBMS will detect this
inconsistency and reject the operation or raise an error.

Enforcement Rules:

When a referenced record (parent) is deleted or updated, the DBMS can respond in one of
several ways:

1. Reject the operation (default action).
2. Cascade the changes to dependent tuples (e.g., delete related records automatically).
3. Set NULL for the foreign key in dependent tuples.
4. Set Default to a predefined key value.
Key Points:

e Ensures that relationships between tables remain valid.
e Prevents the creation of orphan records.
e Maintains consistency across related data.

7.2.4 Importance of Relational Constraints

Relational constraints play a central role in maintaining data correctness and logical
integrity across the database.
They:

e Prevent entry of incorrect, missing, or contradictory data.

e Enforce valid relationships between entities.

e Enable trustworthy data retrieval and accurate query results.

e Form the foundation of transaction integrity and database reliability.

Summary of Constraint Types

Constraint Type Purpose Example of Violation
Domain Attribute value must belong to Age =200

its domain.
Entity Integrity | Primary key must be unique and | StudentID = NULL

non-null.
Referential Foreign key must match a valid | Enrollment.StudentID = 1003 (not in
Integrity primary key. Student)

7.3 Relational Database Schemas

A relational database schema defines the logical structure of the entire database.
It describes how data is organized into relations (tables), what attributes each relation
contains, and the various integrity constraints that must hold true. Essentially, the schema
serves as a blueprint for how data is stored, related, and managed in a relational database
system.

Centre for Distance Education 7.6 Acharya Nagarjuna University

The schema is specified during the database design phase and forms the foundation for
creating and maintaining the actual database instance. Once defined, it helps ensure
consistency, standardization, and integrity across all stored data.

7.3.1 Definition of a Database Schema

A database schema is a collection of relation schemas, each defining the structure of a
relation.

A relation schema specifies:
e The name of the relation.
e The names and domains of its attributes.
e The keys and constraints associated with it.

Formally, a relation schema can be represented as:

R(Ay, Az, As, ..., Ay)
where R is the name of the relation, and A1, Az, As, ..., A, are the attributes.

Example 7.4: Relation Schemas for a University Database
1. Student(StudentID: Integer, Name: String, Age: Integer, Major: String)
2. Course(CourselD: String, Title: String, Credits: Integer)
3. Enrollment(StudentID: Integer, CourselD: String, Grade: String)

Here, the Student, Course, and Enrollment relations together form the database schema
for the university system.

7.3.2 Database Schema vs. Database Instance

It is important to distinguish between a schema and an instance:

Aspect Database Schema Database Instance

Definition | The logical description or structure of | The actual data stored in the database at
the database. a given point in time.

Nature Relatively permanent (changes Changes frequently as data is inserted,
infrequently). deleted, or updated.

Example | Student(StudentID, Name, Age, (1001, "Alice", 21, "Computer
Major) Science")

Purpose | Defines data organization and Represents the current state of the data.
constraints.

Thus, the schema provides a stable design framework, while the instance represents the
changing content of the database.

7.3.3 Role of Schemas in Constraint Enforcement
Database schemas not only define the structure of relations but also specify the constraints

that maintain data integrity. These constraints are expressed as part of the schema definition
using the Data Definition Language (DDL) in SQL.

Database Management Systems 7.7 Relational Database Constraints

Example 7.5: Schema with Constraints in SQL

CREATE TABLE Student (
StudentID INTEGER PRIMARY KEY,
Name VARCHAR(50) NOT NULL,
Age INTEGER CHECK (Age BETWEEN 16 AND 100),
Major VARCHAR(40)

);

CREATE TABLE Course (
CourselD CHAR(5) PRIMARY KEY,
Title VARCHAR(50),
Credits INTEGER CHECK (Credits > 0)

);

CREATE TABLE Enrollment (
StudentID INTEGER,
CourselD CHAR(S),
Grade CHAR(2),
PRIMARY KEY (StudentID, CourselD),
FOREIGN KEY (StudentID) REFERENCES Student(StudentID),
FOREIGN KEY (CourselD) REFERENCES Course(CourselD)

);
In this example:

o Entity integrity is ensured through primary keys (StudentID, CourselD).
e Domain constraints restrict valid values for Age and Credits.
o Referential integrity is maintained through foreign keys linking Enrollment to
Student and Course.
Thus, the schema enforces structural correctness and logical consistency within the
database.

7.3.4 Schema Diagrams

A schema diagram is a graphical representation of the database schema that shows:
e Relations (tables),
e Attributes (columns),
e Primary keys (underlined or bolded),
e Foreign key relationships (shown using arrows).

Example: University Schema Diagram

[STUDENT] <[ENROLLMENT] >-------- [COURSE]
StudentID (PK) StudentID (FK)

Name CourselD (FK)

Age Grade

Major

Centre for Distance Education 7.8 Acharya Nagarjuna University

Explanation:
e The Student table has StudentID as its primary key.
e The Course table has CourselD as its primary key.
e The Enrollment table acts as a bridge relation, linking students and courses through
foreign keys.
e Arrows indicate referential dependencies — Enrollment.StudentID —
Student.StudentID, and Enrollment. CourselD — Course.CourselD.

Schema diagrams provide an at-a-glance view of how entities relate and how constraints are
applied across relations.

7.3.5 Importance of Database Schemas

Relational database schemas are vital for the following reasons:

e Define Structure: Describe how data is logically organized into relations.

¢ Ensure Integrity: Enforce constraints and maintain consistency.

e Provide Clarity: Serve as a clear reference for database designers, developers, and
users.

e Support Modularity: Enable changes to be made at the schema level without
affecting applications directly.

o Facilitate Query Design: Help users understand data relationships and write accurate
queries.

7.4 UPDATE OPERATIONS AND CONSTRAINTS

In a relational database, data stored in relations is not static — it constantly changes as new
records are added, existing ones are modified, or obsolete data is removed. These changes are
performed through update operations, which form the core of data manipulation in the
relational model.

Each update operation must maintain the integrity constraints defined in the database
schema. The Database Management System (DBMS) automatically checks these
constraints whenever an update is attempted and either executes, modifies, or rejects the
operation based on whether it preserves data consistency.

7.4.1 Types of Update Operations

The relational model supports three basic update operations:

INSERT, DELETE, and UPDATE (MODIFY).

Each of these operations affects the data stored in relations and can potentially cause
constraint violations.

(a) INSERT Operation
The INSERT operation adds a new tuple (record) into a relation.
When a new record is inserted, the DBMS must ensure that:
o All attribute values conform to domain constraints.
e The primary key value is unique and non-null (entity integrity).
e All foreign key values, if present, match existing primary key values in the
referenced tables (referential integrity).

Database Management Systems 7.9 Relational Database Constraints

Example 7.6: Inserting a Tuple

INSERT INTO Student VALUES (1003, 'Carol', 20, 'Physics');
This operation will succeed only if:

e The Age value is within its valid domain.
e The StudentID does not already exist in the Student table.
e The Major value conforms to allowed entries.

Possible Violations:

e Inserting a NULL in a primary key field.
e Using an invalid Age value (outside domain).
e Referencing a non-existent record in another table.

If any constraint is violated, the DBMS rejects the insertion.
(b) DELETE Operation

The DELETE operation removes one or more tuples from a relation.
While simple in concept, it can cause referential integrity violations if the deleted tuple is
referenced by foreign keys in other relations.

Example 7.7: Deleting a Tuple

DELETE FROM Student WHERE StudentID = 1001;
If StudentID = 1001 is referenced in the Enrollment table, deleting this record would create
an orphaned reference, violating referential integrity.

Possible Solutions:
To handle such situations, most DBMSs provide options:

RESTRICT / NO ACTION: Reject the deletion if it causes a violation.
CASCADE: Automatically delete all related tuples in dependent tables.

SET NULL: Replace the foreign key value in dependent records with NULL.
SET DEFAULT: Assign a predefined default value to the foreign key.

b S

Example of CASCADE Deletion:

ALTER TABLE Enrollment

ADD CONSTRAINT FK_Student

FOREIGN KEY (StudentID)

REFERENCES Student(StudentID)

ON DELETE CASCADE;

This ensures that when a student record is deleted, all related enrollment records are also
automatically removed.

Centre for Distance Education 7.10 Acharya Nagarjuna University

(¢) UPDATE (MODIFY) Operation

The UPDATE operation modifies attribute values in existing tuples.
Although it does not add or remove records, it can still violate domain, entity, or referential
integrity constraints.

Example 7.8: Updating a Record

UPDATE Student

SET Age =150

WHERE StudentID = 1002;

This violates the domain constraint since Age = 150 falls outside the allowed range (16—
100).

Another example:
UPDATE Enrollment

SET StudentID = 2000
WHERE CourselD ='C101";

This may violate referential integrity if StudentID = 2000 does not exist in the Student
table.

Possible Violations:
e Updating a primary key may break links with foreign keys.
o Updating a foreign key may reference a non-existent record.

e Modifying a domain attribute may introduce invalid values.

The DBMS checks all constraints before applying the update and rejects any operation that
causes inconsistency.

7.4.2 Effects of Update Operations on Constraints

Each update operation must preserve the following integrity rules:

Operation Possible Violation Constraint Affected

INSERT | Inserting duplicate or NULL primary key; inserting | Entity Integrity,
invalid domain value; inserting foreign key not in Domain, Referential
referenced table. Integrity

DELETE | Deleting a tuple referenced by another relation. Referential Integrity

UPDATE | Modifying primary key or foreign key values; Entity Integrity,
updating with invalid domain values. Domain, Referential

Integrity

The DBMS automatically checks each constraint and enforces them by rejecting the violating
operation, modifying related records, or triggering user-defined actions.

7.4.3 Handling Constraint Violations
When a constraint violation occurs, the DBMS can respond in one of the following ways:
1. Reject the Operation (Default):

Database Management Systems 7.11 Relational Database

Constraints

2. The update is canceled, and an error message is displayed to the user.

Cascade the Changes:

4. Changes are automatically propagated to maintain referential integrity.
(e.g., deleting a student deletes all their enrollments.)

[98)

5. Set NULL or Default:
6. The foreign key values in dependent records are set to NULL or to a predefined
default.

7. Trigger Custom Action:
Database triggers can be defined to perform additional operations or validations
before completing an update.

Example 7.9: Handling Violations using ON UPDATE CASCADE

ALTER TABLE Enrollment

ADD CONSTRAINT FK_Student

FOREIGN KEY (StudentID)

REFERENCES Student(StudentID)

ON UPDATE CASCADE;

If a student’s StudentID changes, the corresponding StudentID values in Enrollment are
automatically updated.

7.4.4 Importance of Enforcing Constraints During Updates
Maintaining integrity during update operations ensures:

o Data consistency across all relations.

e Accuracy and validity of the information stored.

e Reliability of query results and reports.

o Protection against accidental data loss or orphaned records.

Without constraint enforcement, the database may become inconsistent — leading to
incorrect or misleading information that compromises decision-making and system reliability.

7.5 TRANSACTIONS AND DATABASE INTEGRITY

A transaction in a database is a logical unit of work that consists of one or more operations
(such as insert, delete, or update) performed as a single, indivisible sequence. Transactions
are essential for maintaining the consistency and reliability of the database, especially in

multi-user environments where concurrent access 0ccurs.

Each transaction must preserve the integrity constraints of the database and leave it in a
consistent state — whether the transaction completes successfully or fails midway.

7.5.1 ACID Properties of Transactions

To ensure reliability, every transaction must satisty the ACID properties:

Centre for Distance Education 7.12 Acharya Nagarjuna University

1. Atomicity:

All operations within a transaction are executed completely or not at all.

If any operation fails, the entire transaction is rolled back.

2. Consistency:

The transaction must transform the database from one valid state to another, maintaining all
integrity constraints.

3. Isolation:

Concurrent transactions must not interfere with each other.

Each transaction behaves as if it is executed independently.

4. Durability:

Once a transaction is committed, its effects are permanent, even in the event of a system
failure.

7.5.2 Role in Maintaining Database Integrity

o Transactions ensure that multiple related updates are treated as a single consistent
unit.

o If a constraint violation or system error occurs, the rollback mechanism restores the
previous consistent state.

e Together with constraints, transactions safeguard data correctness, consistency, and
recoverability.

Example:

When a student enrolls in a course, two operations occur:
1. Insert a record in Enrollment.
2. Update the student’s record in Student.

If either fails, both must be undone — preserving consistency across relations.
7.6 Dealing with Constraint Violations

A constraint violation occurs when a database operation (such as insert, delete, or update)
attempts to store or modify data in a way that breaks one or more integrity rules defined in
the schema.

These violations can compromise the consistency and reliability of the database, so the
DBMS must detect and handle them automatically.

7.6.1 Causes of Constraint Violations

Common causes include:

Inserting values outside the defined domain (domain violation).

Attempting to insert or update a NULL or duplicate primary key (entity integrity violation).
Deleting or modifying a tuple referenced by another table (referential integrity violation).
Updating a foreign key to a non-existent value in the parent table.

7.6.2 Handling Constraint Violations
When a violation occurs, the DBMS can respond in several ways:

Database Management Systems 7.13 Relational Database

Constraints

1. Reject the Operation:
The default action — the DBMS cancels the operation and reports an error.

2. Cascade the Changes:
Automatically applies the same action to dependent tuples (e.g., deleting all related
records).

3. Set NULL or Default:
Replaces invalid foreign key values with NULL or a default value to maintain
consistency.

4. Rollback the Transaction:
Reverses all changes made by the transaction to restore the database to its previous
valid state.

7.6.3 Importance of Proper Handling
Effective handling of constraint violations ensures that:

e The database remains accurate and logically consistent.
e Data dependencies across tables are preserved.

e Users and applications receive predictable, reliable behavior from the database
system.

7.7 SUMMARY

The relational database constraints play a crucial role in ensuring that the data stored
within a relational database is accurate, consistent, and logically valid. These constraints
define the rules that govern data entry, update, and deletion, thereby maintaining the overall
integrity of the database.

e Relational model constraints—such as domain, entity integrity, and referential
integrity—ensure the correctness of data values and relationships between tables.

e Database schemas define the logical structure of relations and embed constraints to
enforce data validity at the structural level.

e Update operations (insert, delete, modify) can affect data integrity; therefore, the
DBMS checks and enforces constraints during these operations.

e Transactions, governed by ACID properties, ensure that complex or multi-step
operations maintain database consistency even in the presence of errors or concurrent
access.

e Proper handling of constraint violations—through rejection, cascading, setting
defaults, or rollback—prevents inconsistencies and data loss.

In conclusion, relational constraints, update operations, and transaction management together
ensure that a database remains trustworthy, consistent, and dependable, providing a solid
foundation for all data-driven applications.

Centre for Distance Education 7.14 Acharya Nagarjuna University

7.8 TECHNICAL TERMS

Constraint

Domain Constraint
Entity Integrity
Referential Integrity
Schema

Instance
Transaction

ACID Properties
Constraint Violation
Rollback

7.9 SELF-ASSESSMENT QUESTIONS

Short-Answer Questions

M

Define a relational model constraint and give one example.

What is the purpose of a domain constraint in a relation?

State the difference between entity integrity and referential integrity.
List the three basic update operations in a relational database.

What does atomicity mean in the context of transactions?

Essay-Type Questions

1.

Explain the different types of relational model constraints with suitable examples.

2. Describe how update operations can cause constraint violations. How can these

e

7.10

—

AN

violations be handled by the DBMS?

Discuss the ACID properties of transactions and their importance in maintaining
database integrity.

Explain the role of schemas in defining and enforcing database constraints.

Write short notes on constraint violations and describe how cascading, setting
NULL, or rollback actions maintain data consistency.

SUGGESTED READINGS

"Database System Concepts" by Abraham Silberschatz, Henry F. Korth, and S.
Sudarshan

"Fundamentals of Database Systems" by Ramez Elmasri and Shamkant B. Navathe
"Database Management Systems" by Raghu Ramakrishnan and Johannes Gehrke

"An Introduction to Database Systems" by C.J. Date

"SQL and Relational Theory: How to Write Accurate SQL Code" by C.J. Date
Elmasri, R., & Navathe, S. B. (2010). Fundamentals of Database Systems (6th ed.).
Addison-Wesley.

Silberschatz, A., Korth, H. F., & Sudarshan, S. (2011). Database System Concepts
(6th ed.). McGraw-Hill.

Dr. Kampa Lavanya

LESSON- 08
THE RELATIONAL ALGEBRA

AIMS AND OBJECTIVES

The aim of this chapter is to provide a comprehensive understanding of the formal query
languages used in relational database systems in terms of Relational Algebra . These
languages form the theoretical backbone of relational data manipulation and query processing,
offering a foundation for understanding and applying practical query languages like SQL. By
exploring the principles of relational databases, the chapter seeks to bridge the gap between
theoretical concepts and their real-world applications in database systems.

At the end of the lesson student will be able to,

1. Understand Formal Languages in terms of Relational Algebra

2. describe and apply unary operations like SELECT and PROJECT and binary operations
like JOIN, UNION, and DIVISION.

3. demonstrate how relational algebra operations translate into SQL constructs

STRUCTURE

8.1 INTRODUCTION

8.2 UNARY RELATIONAL OPERATIONS

8.3 RELATIONAL ALGEBRA OPERATIONS FROM SET THEORY
8.4 BINARY RELATIONAL OPERATIONS

8.5 ADDITIONAL RELATIONAL OPERATIONS

8.6 EXAMPLES OF QUERIES IN RELATIONAL ALGEBRA

8.7 SUMMARY

8.8 TECHNICAL TERMS

8.9 SELF-ASSESSMENT QUESTIONS

8.10 SUGGESTED READINGS

8.1. INTRODUCTION

Relational databases are at the heart of modern data storage and retrieval systems, and their
theoretical foundations lie in Relational Algebra . These formal query languages provide a
mathematical framework for representing and manipulating data in a structured format.
Relational Algebra is a procedural language that defines the step-by-step process to retrieve
data.

This chapter delves into the essential operations of relational algebra, including unary and
binary operations such as SELECT, PROJECT, JOIN, and DIVISION, as well as set-based
operations like UNION and INTERSECTION. By understanding these theoretical constructs,

Centre for Distance Education 8.2 Acharya Nagarjuna University

database practitioners can design more efficient systems and queries, bridging the gap between
abstract mathematical concepts and real-world database implementations.

8.2 UNARY RELATIONAL OPERATIONS

% SELECT (0): SELECT operation is used to select a subset of the tuples from a relation that
satisfy a selection condition. It is a filter that keeps only those tuples that satisfy a qualifying
condition — those satisfying the condition are selected while others are discarded.

> Example-1:
o o SALARY > 30,000 (EMPLOYEE) retrieves employees earning more than
30,000.

o oDNO =4 (EMPLOYEE)

> Can handle complex conditions using logical operators (AND, OR, NOT).

> In general, the select operation is denoted by o < selection condition > (R) where the
symbol ¢ (sigma) is used to denote the select operator, and the selection condition is a
Boolean expression specified on the attributes of relation R

> Example-2:
o o (DNO=4 AND SALARY > 25000) OR (DNO=5 AND SALARY > 30000)
(EMPLOYEE)
FNAME | MINIT |LNAME SSN BDATE ADDRESS SEX | SALARY | SUPERSSN | DNO
Frankin | T |Wong | 333445555 | 1955-1208 | 638 Voss,Housion,TX M 40000 | 888665555 | 5
Jennifer Wallace | 987654321 | 1941-06-20 | 201 BenryBellaire, TX F 43000 | 888665555 | 4
Ramesh Narayan | 666884444 | 1962-09-15 | 975 FireQak,Humble TX | M 38000 | 333445655 | 5

Fig 8.1 The query result of Example 2

% PROJECT (7): This operation selects certain columns from the table and discards the other

columns. The PROJECT creates a vertical partitioning — one with the needed columns

(attributes) containing results of the operation and other containing the discarded Columns.

> Example-3: To list each employee‘s first and last name and salary, the following is used:

o n FNAME, LNAME, SALARY(EMPLOYEE) retrieves names and salaries of
employees.

> The general form of the project operation is m<attribute list >(R) where m (pi) is the
symbol used to represent the project operation and <attribute list > is the desired list
of attributes from the attributes of relation R.

> The project operation removes any duplicate tuples, so the result of the project
operation is a set of tuples and hence a valid relation.

> Example-4: 1 SEX, SALARY(EMPLOYEE)

LNAME FNAME | SALARY SEX | SALARY
Smith Jaohn 350000 M 30000
Waong Frankdin 40000 M 40000
Zelaya Alicia 25000 F 25000
Wallace Jennifer 43000 F 43000
Narayan Ramesh 38000 M 38000
English Joyce 25000 M 25000
Jabbar Ahmad 25000 M 55000
Borg James 55000

Fig 8.2 The query result of Example 3 & 4

Database Management Systems 8.3 The Relational Algebra

“* RENAME (p): We may want to apply several relational algebra operations one after the
other. Either we can write the operations as a single relational algebra expression by nesting
the operations, or we can apply one operation at a time and create intermediate result relations.
In the latter case, we must give names to the relations that hold the intermediate results.

Example: pf(NEWNAME(EMPLOYEE)) renames the Employee relation to NewName.
8.3 RELATIONAL ALGEBRA OPERATIONS FROM SET THEORY
Relational algebra incorporates operations derived from set theory to manipulate and query

relational data. These operations operate on relations (tables) treated as sets of tuples. Key set-
theoretic operations include:

1. UNION Operation

2. INTERSECTION Operation

3. Set Difference (or MINUS) Operation
4. CARTESIAN Operation

% UNION Operation

The result of this operation, denoted by R U S, is a relation that includes all tuples that are
either in R or in S or in both R and S. Duplicate tuples are eliminated.

DEP5 _EMPS <« oDNO=5 (EMPLOYEE)

RESULTI1 « n SSN(DEP5_EMPS)

RESULT2(SSN) «— © SUPERSSN(DEP5_EMPS)

RESULT « RESULT1 u RESULT?2

The union operation produces the tuples that are in either RESULT1 or RESULT2 or both. The
two operands must be —type compatiblel.

| STUDENT | FN LN |_INSTRUCTOR | FNAME | LNAME FN N
Susan Yao John Smith Susan Yao
Ramesh Shah Ricardo Browne Ramesh Shah
Johnny Kohler Susan Yao Johnny Kohler
Barbara Jones Francis Johnson Barbara Jones
Amy Ford Ramesh Shah Amy Ford
Jimmy Wang Jimmy Wang
Emest Gilbert Emest Gilbert

John Smith
Ricardo Browne
Francis Johnson

Fig 8.1 Union Operation among STUDENT and INSTRUCTOR Relations

% INTERSECTION Operation
The result of this operation, denoted by R m S, is a relation that includes all tuples that are in
both R and S. The two operands must be "type compatible".

Centre for Distance Education 8.4 Acharya Nagarjuna University

FN LN
Susan Yao
Ramesh Shah

Fig 8.2 Intersection Operation among STUDENT and INSTRUCTOR Relations

e Set Difference (or MINUS) Operation
The result of this operation, denoted by R - S, is a relation that includes all tuples that are in R
but not in S. The two operands must be "type compatiblel.

Example: The figure shows the names of students who are not instructors, and the names of
instructors who are not students.

FN LN
Johnny Kohler
Barbara Jones STUDENT-INSTRUCTOR
STUDENT FN LN Amy Ford
Susan Yao Jimmy Wang
Ramesh Shah Emest Gilbert
Johnny Kohler
Barbara Jones
Amy Ford
Jimmy Wang FNAME LNAME
Emest Gilbert John Smith
= Browne INSTRUCTOR-STUDENT
Francis Johnson

Fig 8.3 Set Difference Operation among STUDENT and INSTRUCTOR Relations

o Notice that both union and intersection are commutative operations; that is
RuS=SuUR,andRNnS=SNR
. Both union and intersection can be treated as n-ary operations applicable to any number

of relations as both are associative operations; that is
RUBSUT) =RuUS)UT,and(RNS)NnT=RnN(SNT)
° The minus operation is not commutative; that is, in general
R-S#S-R

% CARTESIAN (or cross product) Operation

This operation is used to combine tuples from two relations in a combinatorial fashion.

e In general, the result of R (A1, A2,...,An)x S(B1,B2,... Bm)is arelation Q with
degree n + m attributes Q(Al1,A2,...,An,B1,B2, ..., Bm), in that order.

e The resulting relation Q has one tuple for each combination of tuples—one from R and one
from S.

e Hence, if R has nR tuples (denoted as [R| =nR), and S has nS tuples, then | R x S | will
have nR * nS tuples.

e The two operands do NOT have to be "type compatible”.

Database Management Systems 8.5 The Relational Algebra

Example:

FEMALE EMPS « ¢ SEX=F/(EMPLOYEE)

EMPNAMES <« n FNAME, LNAME, SSN (FEMALE EMPS)
EMP_DEPENDENTS < EMPNAMES x DEPENDENT

FEMALE | FaMe | MNT | LWME | SN | BOWTE ADCRESS SEX | SALARY | SUPERSSN | DND
Bicia 4 Tebinfs SREETTTT PRER-00-19 | 3G Casbe, Soang TH F prii] SRTESASE 4
oy 5 el SETESEN P) 610 2 Basry Bl e T E A3 BRSNS 4
ey A Englial 453453450 HT20T-3 | 5834 Aiss Housier TN F =0 AMASEEE, 5

[envetunaes | Framte [iuame | ssn
Bhon Iekirgm SEEERTTIT
Jnrndnr Walace EETEAT
Joye Bgnh | EERS
[EMP DEFEMDENTS FHAME | LMAME 58N ES= DEFENDENT NAME SB BOATE
[Zelng | GOORETTTT | SSMSESE fr. Fo| IeeBLS
Ak Zekyn EEETTTT | ACHASEER Thaadan M| mmwes
[Tenp | owmeTTrT | Sssbess oy F | wamn
[Zoop | wmesrrrr | ssvema Abner W @
Al Temn | GORATITT | 1ZMmeTER Wich ol W VORRD1-04
Alcda Zelayn HESETTTT | ZMEETES Al F | s
Alsa Zelmyn SRS FE TS Elkrabwt F VT AT 00
Jenier | Wailace | GETESEXN | AEMMARES Al F | teemos
Jernfee | Walas | OHTESAT | TERAMESS Tracwiom M| s
Jornfer | Wiilace | GEGSAR] | SRS Joy F [
Jerniler Walcn | BATESAEED | SETERAOEN Abner M| ieeEs
Jernfer | Whilas | UETBSECY | 1DsETED Wackanl M| 1ueBDI08
Jernier | Walsee | GRTESASZI | 12siEATED ™ Pl e
Jornfer | Whilwe | SRR | 1zwsarE Ebbeth F [reras
Joym Bl AEASSMEY | EMATRAR Al F VD0
Toycn & AEBIEMET | SAGMEEEE Treaden W [
Joea Englia ARSI EESTFECS oy F TRER-IE-03
Jnew Engheh | amanmm | oenesdazi Abner M| uezEEs
g Erght | ASSASMED | 1oMseTER Vel W 15880104
Joyen Engeh | ARBARMRS | 1ZMSETRC Aew F | wemun
Joem gl 4SS 1ZMEETRE Elaatwity F | V-0
[ACTUAL DEFEMDENTS FHAME | LMAME S5 ESSN DEPENDENT NAME | SEX | BDWIE
Jomier | Whleon | SETEREEN T Ao 7] M2 2R

lFm..I.T FAME | LNAME | DEPEMDENT NAME
Jowwky | Wildlaon Arer

Fig 8.4 CATESIAN Product Operation Example.
8.4 BINARY RELATIONAL OPERATIONS: JOIN AND DIVISION

Binary relational operations work on two relations to produce a new relation. Among these,
JOIN and DIVISION are crucial for relational algebra due to their unique roles in querying and
manipulating data.

% JOIN Operation

The sequence of cartesian product followed by select is used quite commonly to identify and
select related tuples from two relations, a special operation, called JOIN. This operation is very
important for any relational database with more than a single relation, because it allows us to
process relationships among relations.

Centre for Distance Education 8.6 Acharya Nagarjuna University

The general form of a join operation on two relations R(A1,A2,...,An)and S(B1,B2, ...,
Bm) is:

R X <join condition> S
where R and S can be any relations that result from general relational algebra expressions.

Example: Suppose that we want to retrieve the name of the manager of each department. To

get the manager's name, we need to combine each DEPARTMENT tuple with the
EMPLOYEE tuple whose SSN value matches the MGRSSN value in the department tuple.

DEPT _MGR <« DEPARTMENT N EMPLOYEE

MGRSSN=SSN

DEPT_MGR DNAME DNUMBER MGRSSN « + » | FNAME MINIT LNAME SSN

S Wallace 987654321

Fig 8.5 Result of Join Operation of above example.

e EQUIJOIN Operation

The most common use of join involves join conditions with equality comparisons only. Such
a join, where the only comparison operator used is =, is called an EQUIJOIN. In the result of
an EQUIJOIN we always have one or more pairs of attributes (whose names need not be
identical) that have identical values in every tuple. The JOIN seen in the previous example was

EQUIJOIN.,

e NATURAL JOIN Operation

Because one of each pair of attributes with identical values is superfluous, a new operation
called natural join—denoted by *—was created to get rid of the second (superfluous) attribute
in an EQUIJOIN condition. The standard definition of natural join requires that the two join
attributes, or each pair of corresponding join attributes, have the same name in both relations.
If this is not the case, a renaming operation is applied first.

Example: To apply a natural join on the DNUMBER attributes of DEPARTMENT and
DEPT _LOCATIONS, it is sufficient to write:

 DEPT_LOCS | DNAME | DNUMBER | MGRSSN | MGRSTARTDATE | LOCATION
T Headquarters 1 888665555 . 1981-06-19 - Houston ‘
: Administration 4 987654321 . 1995-01-01 . Stafford
' | 333445655 | 19880522 | Belaire
v RPN e 33445555 771*1&“‘ 05-22 "\‘ugd"‘.:’l(ir
S 333445555 . 1988-05-22 ' Houston

Fig 8.6 Result of Natural Join Operation of above example.

Outer Join:
e Extends JOIN by including tuples from one or both relations that do not satisfy the join
condition, filling unmatched attributes with NULL.

Database Management Systems 8.7 The Relational Algebra

o Left Outer Join: Includes unmatched tuples from the left relation.
R > S=(RxS)U(R—7A,B(RXS))

TEMP «—— (EMPLOY EE 1< ssn=mGgrssN DEPARTMENT)

RESULT «—— 7 r naME, MINIT, DNAME (TEMP)

o Right Outer Join: Includes unmatched tuples from the right relation.
R > S=(RxS)U(S—=B,C(RxS))
¢ Full Outer Join: Includes unmatched tuples from both relations.

R > S=(RxS)U(R—7A,B(RxS))U(S—nB,C(RxS))
+» DIVISION Operation

The DIVISION operation is used when a relation RRR (dividend) is divided by another
relation SSS (divisor). It returns a relation containing tuples from RRR that are associated with
all tuples in SSS.

Conditions for Division:
e RRR must have all attributes of SSS, and may have additional attributes.
o The result contains these additional attributes, retaining tuples that satisfy the division.

Example for DIVISION operation:

. “Retrieve the names of employees who work on all the projects that John Smith’ works
on. JSMITH SSN(ESSN) «— aSSN (oF NAME="John” AND LNAME="Smith’
(EMPLOYEE)) JSMITH_PROJ «—— nP NO (JSMITH SSN * WORKS ON)

WORKS ON2 «—aESSN, P NO (WORKS ON)

DIV_HERE(SSN) «— WORKS ON2 + JSMITH PROJ

RESULT «— nF NAME, LNAME (EMPLOYEE * DIV HERE)

UNION Produces a relation that includes all the tuples in R, R, UR,
or R, or both R, and R,; R, and R, must be union
compatible.

INTERSECTION Produces a relation that includes all the tuples in both R, " R,
R, and R; R, and R, must be union compatible.

DIFFERENCE Produces a relation that includes all the tuples in R, R, —R,
that are not in R,; R, and R, must be union compatible.

CARTESIAN Produces a relation that has the attributes of R, and R, X R,

PRODUCT R, and includes as tuples all possible combinations of)

tuples from R, and R,.

DIVISION Produces a relation R(X) that includes all tuples t[X] R,(Z) + Ry(Y)
in R,(Z) that appear in R, in combination with every
tuple from R,(Y), where Z=X U Y.

Fig 8.7 Relational Algebra Operations

Centre for Distance Education 8.8 Acharya Nagarjuna University

8.5 ADDITIONAL RELATIONAL OPERATIONS

Beyond the core operations (SELECT, PROJECT, UNION, JOIN, etc.), relational algebra
includes additional operations that enhance querying and manipulation capabilities in
relational databases.

% Aggregate Functions

A type of request that cannot be expressed in the basic relational algebra is to specify
mathematical aggregate functions on collections of values from the database. — Examples of
such functions include retrieving the average or total salary of all employees or the total number
of employee tuples. These functions are used in simple statistical queries that summarize
information from the database tuples.

Common functions applied to collections of numeric values include
e SUM: Calculates the sum of values in a column.
e AVG: Computes the average of values.
e COUNT: Counts the number of tuples.
e MIN: Finds the minimum value in a column.
e MAX: Finds the maximum value in a column.

(@) R | DNO | NO OF EMPLOYEES | AVERAGE SAL

5 4 33250
4 3 31000
1 1 55000

®) ["DNO | COUNT_SSN | AVERAGE_SALARY
5 4 33250
4 3 31000
1 1 55000
© COUNT _SSN AVERAGE_SALARY
8 35125

Fig 8.8 Result of AVG Aggregate Operation

s OUTER JOIN

° LEFT OUTER JOIN: R3(Al,A2,...,An,Bl,B2,...,Bm)«——RI1(Al, A2, ...,
An)

> <o conp> R2(B1, B2, ..., Bm)

v This operation keeps every tuple t in left relation R1 in R3, and fills “NULL” for
attributes B1, B2, . . ., Bm if the join condition is not satisfied for t.

v Example,

TEMP «—— (EMPLOYEE < ssn-mcrssn DEPARTMENT)

RESULT «—— 7 ¢ namE, MiNiT, DNAME (TEMP)

Database Management Systems 8.9 The Relational Algebra

J RIGHT OUTER JOIN: similar to LEFT OUTER JOIN, but keeps every tuple t in
right relation R2 in the resulting relation R3.
R > S=(RxS)U(S—B,C(R™S))
. FULL OUTER JOIN: Includes unmatched tuples from both relations.
R »>< S=(RxS)U(R—7A,B(RxS))U(S—nB,C(R™xS))

¢ The OUTER UNION Operation

¢ OUTER UNION: make union of two relations that are partially compatible.

. R3(A1,A2,...,An,B1,B2,...,Bm,CIl,C2,...,Cp) < RI1(Al, A2,..., An,Bl,
B2,...,Bm) OUTER UNION R2(A1, A2,...,An,C1,C2,...,Cp)

. The list of compatible attributes are represented only once in R3.

. Tuples from R1 and R2 with the same values on the set of compitable attributes are

represented only once in R3

. In R3, fill “NULL” if necessary

. Example STUDENT (NAME, SSN, DEPT, ADVISOR) and FACULTY(NAME, SSN,
DEPT, RANK)

The resulting relation schema after OUTER UNION will be R 3(NAME, SSN, DEPT,
ADVISOR, RANK)

8.6 EXAMPLES OF QUERIES IN RELATIONAL ALGEBRA

e Retrieve the name and address of all employees who work for the ’Research’
department.

e For every project located in ’Stafford’, list the project number, the controlling

department number, and the department manager’s last name, address, and birthdate.

Find the names of employees who work on all the projects controlled by department

number 5.

Make a list of project numbers for projects that involve an employee whose last name

is *Smith’, either as a worker or as a manager of the department that controls the

project.

List the names of all employees who have two or more dependents.

Retrieve the names of employees who have no dependents.

List the names of managers who have at least one dependent.

Retrieve the name of each employee who has a dependent with the same first name

and same sex as the employee.

Retrieve the names of all employees who do not have supervisors.

Find the sum of salary of all employees, the maximum salary, the minimum salary,

and

e the average salary for each department.

Centre for Distance Education 8.10 Acharya Nagarjuna University

e Retrieve the name and address of all employees who work for the 'Research’ depart-
ment.
RESEARCH_DEPT «— opxamE="Resecarcht (DEPARTMENT)
RESEARCH_EMPS «—— (RESEARCH_DEPT ipyuvmser=p~no (EMPLOY EE))
RESULT «— mpxamEe LN ameAappRESS(RESEARCH_EMPS)

e For every project located in "Stafford’, list the project number, the controlling depart-
ment number, and the department manager’s last name, address, and birthdate.
STAFFORD.PROJS «— oprocarion="staffora (PROJECT)

CONTR_DEPT «—— (STAFFORD_PROJS w<ipnxum=pnxvmser (DEPARTMENT))

RESULT +— TPNUMBET.DNUM,LNAM E.ADDRESS.BDATE(PR()I-DEPT-*‘]GR)

e I'ind the names of employees who work on all the projects controlled by department
number 5.
DEPT5-PRO.JS(PNQ) «— wpnumBeEr(opNnum=s(PROJECT))
EMP_PROJ(SSN,PNO) «— mgssn.pno(WORKS_ON)
RESULT_EMP.SSNS «—— EMP_PROJ +~ DEPT_PROJS
RESULT «— minyamername(RESULT _EMP_SSNS x EMPLOY EE)

e Make a list of project numbers for projects that involve an employee whose last name
is 'Smith’, either as a worker or as a manager of the department that controls the
project.

SMITHS(ESSN) «— mssn (0Lyant e smun(EMPLOY EE))

SMITH WORKER_PROJ «— mpnyo(WORKS_ON « SMITHS)

MGRS «— ?TLNAME,DJ\.'UMBER(EJWP LOY EE vaggn=nerssy DEPARTMEN T)
SMITH_MANAGED_DEPTS(DNUM) «— mpnvmper(oiyass—rsmin (MGRS))
SMITH MGR_PROJS(PNQ) «— wpyumper(SMITH_MANAGED_DEPTS *
PROJECT)

RESULT «— (SMITH WORKER_PROJSJUSMITH_MGR_PROJS)

e List the names of all employees who have two or more dependents.

TI(SSN, NOLOF_DEPTS) «—pgssy Scount perevpent_nvame(DEPENDENT)

Ty «— ONo_oF_DEPTS =2 (T,)

RESULT +— myname rnvane(ls * EMPLOY EE)

Database Management Systems 8.11 The Relational Algebra

¢ Retrieve the names of emplovees who have no dependents.
ALL_ EMPS «—— wgsny(EMPLOY EE)
EMPS_WITH_DEPS(SSN) «— npssn(DEPENDENT)
EMPS WITHOUT_DEPS «—— (ALL_EMPS — EMPS WITH_DEPS)
RESULT «— minamp rnans(EMPS_WITHOUT_DEPS + EMPLOY EE)

e List the names of managers who have at least one dependent.
MGRS(SSN) «— mygrssy (DEPARTMENT)
EMPS WITH_DEPS(S5N) «— mpssn(DEPENDENT)
MGRSWITH_DEPS «+— (MGRSNEMPS_ WITH_DEPS)
RESULT «— miyamername(MGRS WITH_DEPS « EMPLOY EE)

e Retrieve the name of each employee who has a dependent with the same first name
and same sex as the employee.
EMPS_DEPS «—
(EMPLOY EE tXigsn=ESSN AND SEX=SEX AND FNAME=DEPENDENT NAME DEPENDENT)

RESULT «— minamername(EMPS_DEPS)

e Retrieve the names of all employees who do not have supervisors.

RESULT «— winame rvamelosvrerssn=nviL(EMPLOY EE))

e Find the sum of salary of all emplovees, the maximum salary, the minimum salary, and
the average salary for each department.
RESULT —

C TSP i ol
D.-\"Ut-?.‘ﬁ",ﬂ SALARY, MAXIMUM SALARY, MINIMUM SALARY, AVERAGE .‘a'.-l.L;l.fl".‘r'(bJjj L()} t"t"]

8.7 SUMMARY

Relational Algebra explores foundational query languages in relational database theory. It
begins with unary relational operations, SELECT and PROJECT, which allow filtering rows
and choosing specific attributes, respectively. Set-theoretic operations like UNION,
INTERSECTION, and DIFFERENCE are covered for combining and comparing relations.
Binary relational operations such as JOIN (including natural joins and outer joins) and
DIVISION enable complex queries by relating to tuples across tables. Additional operations
like aggregation and renaming further enhance query capabilities.

8.8 TECHNICAL TERMS

e Relational Algebra
e SELECT
e PROJECT

Centre for Distance Education 8.12 Acharya Nagarjuna University

JOIN

RENAME
Existential Quantifier
Universal Quantifier

8.9 SELF-ASSESSMENT QUESTIONS

Short Questions

1

2.
3,
4,

Define the SELECT operation in relational algebra and its purpose.

What is the difference between PROJECT and SELECT in relational algebra?
Explain the purpose of the CARTESIAN PRODUCT operation in relational algebra.
Describe the division operation in relational algebra and give one practical use case.

Long Questions

1.

2.

Explain with examples how set-theoretic operations (UNION, INTERSECTION, and
DIFFERENCE) are used in relational algebra.

Describe binary relational operations with a focus on different types of joins (natural
join, equijoin, and outer join) and their applications.

Discuss the role of additional relational operations such as aggregation and renaming
in query optimization and simplification.

Write a detailed query using relational algebra to find customers who have accounts in
every branch of a bank and explain each step.

8.10 SUGGESTED READINGS

Codd, E. F. (1970). "A Relational Model of Data for Large Shared Data Banks."
Communications of the ACM, 13(6), 377-387.

Date, C. J. (2003). "An Introduction to Database Systems." 8th Edition. Addison-
Wesley.

Silberschatz, A., Korth, H. F., & Sudarshan, S. (2010). "Database System Concepts."
6th Edition. McGraw-Hill.

Ullman, J. D., & Widom, J. (2008). "A First Course in Database Systems." 3rd Edition.
Pearson.

Dr. Kampa Lavanya

LESSON- 09
THE RELATIONAL CALCULUS

AIMS AND OBJECTIVES

The aim of this chapter is to provide a comprehensive understanding of the formal query
languages used in relational database systems in terms of Relational Calculus. Relational
calculus is a non-procedural query language used in database management systems (DBMS).
Its objectives include:

1. Declarative Query Specification:
o Provide a means to describe what data to retrieve without specifying how to retrieve
it.
o Focus on the "what" rather than the "how" by defining desired results using logical
predicates.

2. Foundation for Query Languages:
o Serve as a theoretical basis for SQL and other high-level query languages.
o Ensure that query languages are both expressive and robust.

3. Support for Logical Reasoning:
o Allow users to express queries using logical expressions and constraints.
o Enable reasoning about data relationships and structures.

4. Abstraction:
o Hide the complexities of query execution by focusing on the end result.
o Enable users to write queries without needing to understand the underlying physical
database design.

5. Data Integrity and Consistency:
o Facilitate querying in a way that respects the database's logical consistency.
o Ensure that queries operate within the constraints and relationships defined by the
database schema.

These languages form the theoretical backbone of relational data manipulation and query
processing, offering a foundation for understanding and applying practical query languages
like SQL. By exploring the principles of relational databases, the chapter seeks to bridge the
gap between theoretical concepts and their real-world applications in database systems.

At the end of the lesson students will be able to:

Understand Ability to Formulate Complex Queries

Enhanced Understanding of Query Languages

Know Logical and Formal Thinking

Work on Validation of Query Equivalence

develop the ability to write and analyze queries in Tuple Relational Calculus (TRC) and
Domain Relational Calculus (DRC), emphasizing logical expressions.

MRS

Centre for Distance Education 9.2 Acharya Nagarjuna University

STRUCTURE

9.1 INTRODUCTION

9.2 THE TUPLE RELATIONAL CALCULUS (TRC)
9.3 THE DOMAIN RELATIONAL CALCULUS (DRC)
9.4 SUMMARY

9.5 TECHNICAL TERMS

9.6 SELF-ASSESSMENT QUESTIONS

9.7 SUGGESTED READINGS

9.1. INTRODUCTION

Relational calculus is a non-procedural query language in database management systems
(DBMS) that allows users to specify what data they want to retrieve without dictating how to
retrieve it. Rooted in mathematical logic, relational calculus uses declarative expressions to
define queries, focusing on logical relationships and constraints within the data. It contrasts
with relational algebra, which is procedural, by emphasizing the "what" rather than the "how"
of query formulation. Relational calculus serves as a theoretical foundation for high-level query
languages like SQL, making it an essential concept in database theory and design. Two primary
forms of relational calculus are Tuple Relational Calculus (TRC) and Domain Relational
Calculus (DRC). TRC focuses on specifying queries using variables that represent tuples in a
relation, with logical predicates to filter the desired tuples. In contrast, DRC uses variables that
represent individual domain values rather than entire tuples, allowing for a more granular
approach to query definition. Both forms rely heavily on logical expressions, such as existential
and universal quantifiers, to describe data constraints and retrieval criteria. Together, TRC and
DRC provide powerful frameworks for expressing complex database queries in a logical and
non-procedural manner.

Relational Calculus is declarative, focusing on specifying what data to retrieve without
detailing the process. This chapter, additionally, it explores the principles of Tuple Relational
Calculus (TRC) and Domain Relational Calculus (DRC), emphasizing logical expressions
to define queries. By understanding these theoretical constructs, database practitioners can
design more efficient systems and queries, bridging the gap between abstract mathematical
concepts and real-world database implementations.

9.2 THE TUPLE RELATIONAL CALCULUS

Tuple Calculus and Domain Calculus are two formal query languages for relational databases.
They are declarative, meaning they specify what data to retrieve without defining how to
retrieve it, unlike procedural languages such as relational algebra.

¢ The Tuple Relational Calculus
o Nonprocedural Language: Specify what to do; Tuple (Relational) Calculus, Domain
(Relational) Calculus.

Database Management Systems 9.3 The Relational Calculus

o Procedural Language: Specify how to do; Relational Algebra.

The expressive power of Relational Calculus and Relational Algebra is identical.

o A relational query language L is considered relationally complete if we can express in
L any query that can be expressed in Relational Calculus.

o Most relational query language is relationally complete but have more expressive power
than relational calculus (algebra) because of additional operations such as aggregate
functions, grouping, and ordering.

(@]

Queries in TRC are expressions of the form:
{t|P(t)}

where:
e tisa tuple variable.
e P(t) is a predicate that describes the conditions the tuples must satisfy.

A general expression form:
{t1. A1, 1. As, ot Ap | COND(ty,ta, ... s tn, tnsrtoso, - - -, tnsm)}

Where t1,t2, . . . ,tn,tn+1,tn+2, . . . ,tn+m are tuple variables, each Ai is an attribute of the
relation on which ti ranges, and COND is a condition or formula

Example:
Find all employees working in the "HR" department:
{t|t ¢ EMPLOYEE A t.dept —' HR'}

A formula is made up one or more atoms connected via the logical operators and, or, not and
is defined recursively as follows.

— Every atom is a formula.

— If F| and F; are formulas, then so are (Fy and F3), (F) or F,), not(Fy), not(F3).
And

* (Fy and F3) is TRUE if both F and F, are TRUE; otherwise, it is FALSE.
* (F} or F3) is FALSE if both F} and F, are FALSE; otherwise, it is TRUE.
+ not(Fy) is TRUE if F| is FALSE; it is FALSE if F; is TRUE.
+ not(Fy) is TRUE if F; is FALSE; it is FALSE if F; is TRUE.

» The Existential and Universal Quantifiers

In relational calculus, existential and universal quantifiers are essential components of
logical expressions used to define query conditions. These quantifiers enable precise
specification of constraints and relationships in database queries. The existential quantifier
(3) asserts the existence of at least one value or tuple that satisfies a given condition. It is
commonly used to verify if there is some data in the database that meets specific criteria.
Conversely, the universal quantifier (V) specifies that a condition must hold true for all values
or tuples in a given domain or relation. By incorporating these quantifiers, relational calculus

Centre for Distance Education 94 Acharya Nagarjuna University

allows for expressive and flexible query formulations, enabling users to retrieve data with high
precision while adhering to logical principles.

Existential (3) and universal (V) quantifiers are fundamental concepts in logic and relational
calculus. They are used to specify conditions for sets of values in queries or logical expressions.

¢ Existential Quantifier (3): Used to assert that at least one element in a domain satisfies a
given condition.
Syntax:

dz (P(z))
This means there is at least one xxx for which the predicate P(x)P(x)P(x) is true.

Example in Tuple Relational Calculus (TRC):
Find employees working in the "HR" department:

{t|t e EMPLOYEE A 3d (t.dept = d Ad =' HR')}

e Universal Quantifier (V) : Used to assert that a condition applies to all elements in a
domain.
Syntax:

vz (P(z))
This means the predicate P(x)P(x)P(x) is true for every xxx in the domain.
Example in Tuple Relational Calculus (TRC):

Find employees who are in all departments:

{t|t €« EMPLOYEE nVd (d €« DEPARTMENT — t.dept=d)}

> Comparison Between Existential and Universal Quantifiers

Aspect Existential Quantifier (3) Universal Quantifier (¥)

Definition Asserts the existence of at least one element States that a condition must be true for
that satisfies a condition. all elements in a domain.

Symbol Represented by 3 (e.g. Ix P(x) Represented by v (e.g. ¥Yx P(x)

Usage Used when querying if there is at least one Used to ensure a condition holds for
match in a dataset. every element in a dataset.

Logical "There exists" or "at least one.” "For all" or "every."

Meaning

Example in 3t (t & Employee ~ tsalary > 50000): Checks if %'t (t & Employee — t.age > 18): Ensures

TRC there exists an employes earning maore than all employees are clder than 18.
£50,000.

Mature Verifies the presence of specific instances. Verifies the universality of a condition.

Common Finding whether a particular condition is met at Ensuring that a rule or constraint is

Scenarios least once. consistently followed.

Negation The negation of 3x P(x) is Vx -Px). The negation of Vx P(x) is 3x ~P(x).

Relation

Complexity Simpler to evaluate as it stops upon finding Requires checking every instance,
one matching instance. making it computationally more

intensive.

Database Management Systems 9.5 The Relational Calculus

Both quantifiers are critical in relational calculus, enabling the formulation of comprehensive
and logically precise queries. They complement each other, with existential quantifiers being
ideal for selective queries and universal quantifiers ensuring universal conditions are met.

> Example Queries Using the Existential Quantifier
e Retrieve the name and address of all employees who work for the 'Research’ depart-
ment.
{t.FNAME t INAME. t. ADDRFESS | EMPLOY FFE(t) and (3 d)
(DEPARTMAMENT(d) and d. DN AME —' Research’ and d DNUMBER — ¢ D NO)}

e For every project located in "Stafford’, list the project namber, the controlling depart-
ment number, and the department manager’s last name, birthdate, and address.
{p.PNUMBIER. p DONUM, m.ILNAME . m. BDATE m. ADDRESS | PROJECT (p)
and EMPLOY EE(m) and p. PLOCATTON =" Staf ford arnd
() DEPARTAMENT(d) and p. DONUM = dDNUMBER and d.AMGRSSN =
m. . SSN))}

e For each employee, retrieve the employvee’s first and last name and the first and last
name of his or her immediate supervisor.
{e. FNAME e LNAMIF s FNAME, s LN AME | EMPLOY FFE(e) and
EMPLOY EF(s) and e SUPERSSN = s.S5N}

e Find the name of each emplovee who works on some project controlled by department

=4

number 5.

{e. LNAME e FNAME | EMPLOY EF(e) and ({(Zx)(3 w)
(PROJECT (x)and WORKS_ON(w) and x. DNUM = 5 and w. ESSN = e SSN and
. PNUMBFER — w. PNO))}

9.3 THE DOMAIN RELATIONAL CALCULUS

Domain Relational Calculus (DRC) is a non-procedural query language used to express queries
in a relational database management system (DBMS). It is a declarative language, meaning
users specify what data they want to retrieve without describing the steps for data retrieval. In
DRC, queries are constructed using domain variables, which represent individual values in the
attributes (or domains) of a relation, rather than entire tuples (rows). This allows DRC to
provide a more granular and flexible way to express data constraints and relationships. The
query results in DRC are sets of domain values that satisfy specific conditions expressed in
logical predicates.

o Rather than having variables range over tuples in relations, the domain variables range
over single values from domains of attributes, general form is :

{x1,29,...,2, | COND(x1, T2, ..., Tpy Tps1, Ts2s - - s Tptm) }
o A formula is made up of atoms.

Centre for Distance Education 9.6 Acharya Nagarjuna University

— An atom of the form R(xy,xs,...,x;) (or simply R(z,x5...x;)), where R is the
name of a relation of degree j and each z;, 1 < i < 7, is a domain variable.

This atom defines that < xy,xs,...,x; > must be a tuple in R, where the value

th

of x; is the value of the i** attribute of the tuple.

If the domain variables ,, ®2, ..., x; arc assigned values corresponding to a tuple

of ¥, then the atom is TRUE.

— An atom of the form z; op z;, where op is one of the comparison operators
{=><<2,#}
If the domain variables z; and x; are assigned values that satisfy the condition,

then the atom 1s TRUE.

— An atom of the form x; op ¢ or ¢ op x;, where ¢ is a constant value.

If the domain variables x; (or x;) is assigned a value that satisfies the condition,

then the atom is TRUE.

DRC makes use of logical operators such as conjunction (A), disjunction (V), negation (—), and
quantifiers like existential (3) and universal (V) to define constraints on the data. Unlike Tuple
Relational Calculus (TRC), which uses tuple variables, DRC operates on domain variables and
is more focused on individual attribute values. This characteristic makes DRC suitable for
queries that require conditions on specific attributes rather than entire tuples. Although
relational calculus in general is not commonly used in practical applications, its theoretical
foundation is crucial for understanding the principles of query languages like SQL, which
incorporate many of the ideas from relational calculus.

Examples

Consider a database with the following relations:
1. Employee:

emp_id name salary
E1 lohn 50000
E2 Alice 50000
E3 Bob 55000

2. Department:

dept_id dept_name
D1 HR
D2 IT
(K Finance
3. Works:
emp_id dept_id
E1 D1
E1 D2
E2 Dz

ES (B

Database Management Systems 9.7 The Relational Calculus

Query: Find the names of employees who work in the "IT" department.
{ e.name | e _id 3d_id (Employee(e id, e.name, e.salary) A Works(e id,d id)Ad id='D2'") }

Explanation:

e c.name: The result we want to retrieve, which is the employee's name.

e Je id 3d id: The existential quantifiers specifying that there exist some e id (employee
ID) and d_id (department ID).

e Employee(e _id, e.name, e.salary): A condition that checks if the employee with ID e _id
exists in the Employee relation.

e Works(e id, d id): A condition that ensures there is a record in the Works relation
linking the employee e id to a department d _id.

e d id ='D2" This specifies that the department ID should be 'D2', which corresponds to
the "IT" department.

Result:
e The query returns the name of the employee(s) who work in the "IT" department.

e Output: Alice

In this DRC query, we are using domain variables (e id and d_id) to represent the
employee and department.

The query looks for employees whose e id matches a record in the Works relation
where the department ID (d _id) is 'D2' (IT department).

The result includes the name of the employee who satisfies this condition.

This example demonstrates how DRC uses logical expressions with domain variables
to filter and retrieve specific data from the relations.

vVV VWV 'V

Additional Queries:

Retrieve the birthdate and address of the employvee whose name is "John B Smith’.
{uv | B)(EM(E)EDEw)(3)(3)(32)
(EMPLOY EE(grstuvwryz) and g =" John' and r =" B" and s =" Smith')}

Retrieve the name and address of all emplovees who work for the "Research’
department.

{gsv | (=TT m)(EAM PLOY FEE(grstevwryz) ard

D P ARTNAN I NT (Lrrnereo) arnd I —" Research’ and e — =)}

For every project located in "Stafford’, list the project mumber, the controlling
department number, and the department manager’s last nmame, birthdate, and
address.

{iksuvr | (AFN(Fm)(In) () PROJTECT (Rhijk) and EAMPTLOY EE(grstuvwryz)
ard DEPARTAMENT (Imno) and kB = m and n = ¢ and 7 =" Staf ford’)}

Find the names of emplovees who have no dependents.

{gs | (FEWENMPLOY EFE(grstevew oy =) arvd (oot 3D PN D NT (Drnaruop)
crreel = I)))}

IS EQUIVALENT TO:

{gs | (AN EMPLOY EFE(grstuvwryz) and ((vi)(not(DEPENDENT (Imnop))
or not(t = I))))}

List the names of managers who have at least one dependent.

{sg | (A FNWIDN(ENMMPLOY EF(grstuvwry=z) and DEPARTMAN ENT (higk)
and DEPENDENT(Imnop) and ¢+ —= 7 and [—)}

Centre for Distance Education 9.8 Acharya Nagarjuna University

> Advantages of Domain Relational Calculus (DRC)
1. Declarative Query Language:
o Focuses on specifying what data to retrieve rather than how to retrieve it, making it more
intuitive and user-friendly for non-technical users.
2. Expressive Power:
o Allows for complex queries involving logical operators (e.g., A, V,) and quantifiers
(3, V), providing significant flexibility in data retrieval.
3. Foundation for SQL:
o Serves as a theoretical basis for SQL, helping in understanding and developing
advanced database query languages.
4. Granularity:
o Operates at the domain level, enabling more precise data retrieval by focusing on
individual attribute values rather than entire tuples.
5. Logical Consistency:
o Encourages logical and structured query design, ensuring queries are consistent with
the database schema and relationships.

> Disadvantages of Domain Relational Calculus (DRC)
1. Complexity:
o Writing queries can be challenging for beginners due to its reliance on formal logic,
making it less accessible to users without a background in mathematical reasoning.
2. Non-Procedural Nature:
o While being declarative is an advantage, the lack of procedural constructs can make
it harder to visualize how data will be retrieved.
3. Performance Issues:
o Queries written in DRC may not directly translate into efficient execution plans,
potentially leading to performance bottlenecks during data retrieval.
4. Limited Practical Use:
o Unlike SQL, DRC is not widely used in real-world applications, which limits its
practical utility and adoption.
5. Potential for Ambiguity:
o Misuse of quantifiers or logical expressions can lead to unintended results, especially
in complex queries, making it prone to errors.
Steeper Learning Curve:
o Understanding and applying DRC requires familiarity with formal logic and database
theory, which can deter its adoption by casual users.

&

While DRC provides a strong theoretical framework for querying databases, its practical
limitations and complexity make it less popular for everyday use compared to more user-
friendly query languages like SQL.

9.4 SUMMARY

Relational calculus is a non-procedural query language in database management systems
(DBMS) that focuses on defining what data to retrieve rather than detailing how to retrieve it.
Rooted in formal logic, it allows users to express queries through logical expressions and
constraints, leveraging variables, predicates, and quantifiers. Relational calculus is divided into
two main forms: Tuple Relational Calculus (TRC) and Domain Relational Calculus (DRC).

Database Management Systems 9.9 The Relational Calculus

TRC uses tuple variables to represent entire rows in a relation, while DRC operates at a more
granular level, using domain variables to represent individual attribute values. Both forms
utilize existential (3) and universal (V) quantifiers, along with logical operators like
conjunction (A), disjunction (V), and negation (—), to construct expressive and precise queries.
As a theoretical foundation for query languages like SQL, relational calculus bridges the gap
between formal database theory and practical database querying. It emphasizes logical
consistency and declarative expression, allowing users to focus on specifying their desired
outcomes without worrying about execution details. However, the complexity of its formal
syntax and reliance on mathematical logic can pose a learning curve, making it more suitable
for academic and theoretical purposes than widespread practical use. Nevertheless, its role in
shaping the development of modern database query languages highlights its importance in
understanding the principles of database management.

9.5 TECHNICAL TERMS

Non-Procedural Query Language
Relational Calculus

Domain Relational Calculus
Tuple Relational Calculus
Existential Quantifier

Universal Quantifier

9.6 SELF-ASSESSMENT QUESTIONS
Short Questions

1. What is the difference between Tuple Relational Calculus (TRC) and Domain
Relational Calculus (DRC)?

Define existential and universal quantifiers in relational calculus.

What are free and bound variables in relational calculus?

How does relational calculus differ from relational algebra?

What is meant by "safety" in relational calculus queries?

nhkwn

Long Questions

1. Explain the concept of relational calculus and its significance in database management
systems.

2. Describe Tuple Relational Calculus (TRC) with an example query and explain its
components.

3. Compare and contrast Tuple Relational Calculus (TRC) and Domain Relational Calculus
(DRC), highlighting their differences and use cases.

4. Write a relational calculus query to find employees who work in all departments and
explain each part of the query.

5. Discuss how relational calculus serves as a foundation for SQL and other high-level
query languages, with examples illustrating its influence.

Centre for Distance Education 9.10 Acharya Nagarjuna University

9.7 SUGGESTED READINGS

1. Codd, E. F. (1970). "A Relational Model of Data for Large Shared Data Banks."
Communications of the ACM, 13(6), 377-387.

2. Date, C. J. (2003). "An Introduction to Database Systems." 8th Edition. Addison-
Wesley.

3. Silberschatz, A., Korth, H. F., & Sudarshan, S. (2010). "Database System Concepts."
6th Edition. McGraw-Hill.

4. Ullman, J. D., & Widom, J. (2008). "A First Course in Database Systems." 3rd Edition.
Pearson.

Dr. Vasantha Rudramalla

DBMS 10.1 SQL-99

LESSON- 10
SQL-99

AIMS AND OBJECTIVES

The primary goal of this chapter is to understand the concept of Structure Query Language.
The chapter began SQL Data Definitions and Data Types, Specifying Constraints in SQL,
Schema Change Statements on SQL, Basic Queries in SQL, More Complex SQL Queries,
INSERT, DELETE and UPDATE statements in SQL, Triggers and Views.After completing
this chapter, the student will understand Structure Query Language.

10.1 INTRODUCTION

10.2 SQL

10.3 SQL DATA DEFINITIONS AND DATA TYPES

104 SPECIFYING CONSTRAINTS IN SQL

10.5 SCHEMA CHANGE STATEMENTS IN SQL

10.6 BASIC QUERIES IN SQL

10.7 MORE COMPLEX SQL QUERIES

10.8 INSERT, DELETE, AND UPDATE STATEMENTS IN SQL

10.9 TRIGGERS IN SQL

10.10 VIEWSIN SQL

10.11 SUMMARY

10.12 TECHNICAL TERMS

10.13 SELF-ASSESSMENT QUESTIONS

10.14 SUGGESTED READINGS

10.1 INTRODUCTION

SQL-99, also known as SQL3, is a significant update to the SQL standard that introduced
several advanced features for schema definition, constraints, queries, and views. In terms of
schema definition, SQL-99 expanded the capabilities for creating and modifying database
structures, including more sophisticated data types and table constructs. It introduced
comprehensive support for defining constraints, such as primary keys, foreign keys, unique
constraints, and check constraints, enhancing data integrity and consistency. SQL-99 also
improved query capabilities with new features like common table expressions (CTEs),
recursive queries, and enhanced set operations, enabling more complex and efficient data
retrieval. Additionally, SQL-99 provided robust support for views, allowing users to create
virtual tables that simplify query operations and improve security by restricting direct access
to underlying tables. These enhancements made SQL-99 a powerful and flexible standard for
managing relational databases.

Centre for Distance Education 10.2 Acharya Nagarjuna University

The chapter first covered began with SQL Data Definitions and Data Types, Specifying
Constraints in SQL, Schema Change Statements on SQL, Basic Queries in SQL, More
Complex SQL Queries, INSERT, DELETE and UPDATE statements in SQL, Triggers and
Views.

10.2 SQL

SQL (Structured Query Language) is the standard programming language used to manage
and manipulate relational databases within a Database Management System (DBMS). It
allows users to create, read, update, and delete (CRUD) data within the database. SQL is
designed to handle structured data and is integral to tasks such as querying databases to
retrieve specific information, defining database schema, and controlling access to the data.
The language is composed of various commands, including SELECT, INSERT, UPDATE,
DELETE, CREATE, and DROP, each serving different functions in database management.
Its widespread adoption and robust capabilities make SQL an essential tool for database
administrators and developers.

10.2.1 Importance and uses in database management Importance:

1. Standardization: SQL is a standardized language, which means that it can be used
across different database systems, ensuring compatibility and ease of learning.

2. Efficiency: SQL is optimized for managing large volumes of data, allowing for quick
retrieval and manipulation.

3. Ease of Use: With its relatively simple syntax, SQL is accessible to both technical
and non-technical users, making it a versatile tool for various stakeholders.

4. Integration: SQL seamlessly integrates with various programming languages and
applications, making it a cornerstone of modern data-driven applications.

5. Data Integrity: SQL supports constraints and transactions, ensuring data accuracy
and consistency.

Uses:

1. Data Retrieval: SQL's SELECT statement allows users to query and retrieve specific
data from databases based on defined criteria.

2. Data Manipulation: Commands such as INSERT, UPDATE, and DELETE enable
users to add, modify, and remove data within the database.

3. Database Creation and Management: SQL commands like CREATE, ALTER, and
DROP allow users to define and modify database schema, including tables, indexes,
and views.

4. Access Control: SQL provides mechanisms for setting permissions and roles,
ensuring that only authorized users can access or modify the data.

5. Data Analysis: SQL's powerful querying capabilities support complex data analysis
tasks, including aggregation, sorting, and filtering, facilitating data-driven decision-
making.

6. Automation: SQL can be used in scripts to automate routine database tasks,
improving efficiency and reducing the likelihood of human error.

7. Reporting: SQL queries can be used to generate detailed reports, extracting
meaningful insights from the raw data stored in databases.

DBMS 10.3 SQL-99

10.2.2 Overview of SQL standards

SQL:2011
e Year: 2011
e Overview: Introduced temporal data support, enabling better handling of time-based
data.

e Key Features:
e Temporal tables (system-versioned and application-time period tables)
e Enhanced period data types

SQL:2016
e Year: 2016
e Overview: Focused on big data support, JSON integration, and other modern data
handling capabilities.
Key Features:
JSON data types and functions
Enhanced polymorphic table functions
Row pattern recognition in result sets

SQL:2019

e Year: 2019

Overview: The most recent standard, incorporating incremental improvements and
refinements.

Key Features:

Enhanced support for JSON

Improvements in window functions

Expanded capabilities for polymorphic table functions

The evolution of SQL standards reflects the changing needs and advancements in database
technology. Each iteration builds upon the previous ones, ensuring that SQL remains a
powerful and versatile language for managing relational databases. The adherence to these
standards by database vendors ensures compatibility and interoperability across different
systems, providing a consistent experience for users.

10.3 SQL DATA DEFINITIONS AND DATA TYPES

SQL Data Definition Language (DDL) encompasses commands that define and manage the
database schema. DDL commands like CREARE, ALTER, DROP and etc. ensure that the
database structure is defined, organized, and maintained efficiently, setting the foundation for
data storage and manipulation. SQL data types specify the kind of data that can be stored in a
table's columns. Common SQL data types include: numeric, character, binary and etc. These
data types ensure that the data is stored in a consistent, efficient, and appropriate format,
facilitating accurate data processing and retrieval.

Centre for Distance Education 10.4 Acharya Nagarjuna University

10.3.1 Data Definition Language (DDL)

Data Definition Language (DDL) is a subset of SQL used to define and manage the structure
of a database. DDL commands are responsible for creating, modifying, and deleting database
objects such as tables, indexes, views, and schemas.

Here are the key DDL commands:
< CREATE
e Purpose: To create new database objects.
e Examples:
e C(Creating a Table
e CREATE TABLE employees (
employee id INT PRIMARY KEY,
first name VARCHAR(50),
last name VARCHAR(50), hire_date DATE);

CREATE TABLE EMPLOYEE

(Fname VARCHAR(15) NOT NULL,
Minit CHAR,
Lname VARCHAR(15) NOT NULL,
Ssn CHAR(9) NOT NULL,
Bdate DATE,
Address VARCHAR(30),
Sex CHAR,
Salary DECIMAL(10,2),
Super_ssn CHAR(9),
Dno INT NOT NULL,

PRIMARY KEY (Ssn),
FOREIGN KEY (Super_ssn) REFERENCES EMPLOYEE(Ssn),
FOREIGN KEY (Dno) REFERENCES DEPARTMENT(Dnumber));

CREATE TABLE DEPARTMENT
(Dname VARCHAR(15) NOT NULL,
Dnumber INT NOT NULL,
Mgr_ssn CHAR(9) NOT NULL,
Mgr_start_date DATE,

PRIMARY KEY (Dnumber),
UNIQUE (Dname),
FOREIGN KEY (Mgr_ssn) REFERENCES EMPLOYEE(Ssn));

Fig 10.1 Table creation for COMPANY DATABASE using CREATE Command

X ALTER

Purpose: To modify existing database objects.

Examples:

Adding a Column to a Table

ALTER TABLE employees ADD COLUMN email VARCHAR(100);

DBMS

10.5

SQL-99

X/
°e

/7
A X4

DDL commands provide the necessary tools to define, manage, and maintain the database
schema, ensuring that the database structure aligns with the needs of the application and

DROP

Purpose: To delete database objects.
Examples:

Dropping a Table:

DROP TABLE employees;

TRUNCATE

Purpose: To remove all rows from a table, quickly and efficiently.

Example
TRUNCATE TABLE employees;

supports efficient data storage and retrieval.

10.3.2 Data Types

SQL data types specify the kind of data that can be stored in a table's columns. They ensure
that data is stored in a consistent and efficient manner, facilitating accurate data processing

and retrieval. Here are the primary SQL data types:

R/
o

Numeric Data Types
INTEGER:
e Stores whole numbers.
e Example: INTEGER, INT
e Usage: employee id INT

SMALLINT:
e Stores smaller range of whole numbers.
e Usage: age SMALLINT

BIGINT:
Stores larger range of whole numbers.
Usage: population BIGINT

DECIMAL(p, s) or NUMERIC(p, s):

e Stores fixed-point numbers with precision p and scale s.

e Usage: salary DECIMAL(10, 2)

FLOAT:
e Stores floating-point numbers.
e Usage: temperature FLOAT

REAL and DOUBLE PRECISION:
e Stores approximate numeric values.
e Usage: measurement DOUBLE PRECISION

Centre for Distance Education 10.6

Acharya Nagarjuna University

o
1

X/
X4

L)

—_—

Character Data Types

CHAR(n):
e Stores fixed-length character strings.
e Usage: gender CHAR(1)

VARCHAR(n):
e Stores variable-length character strings.
e Usage: name VARCHAR(50)

TEXT:

e Stores large variable-length character strings.

e Usage: description TEXT

Date and Time Data Types
DATE:

e Stores dates (year, month, day).
e Usage: birthdate DATE

TIME:

e Stores time of day (hours, minutes, seconds).

e Usage: appointment_time TIME

TIMESTAMP:
e Stores date and time.
e Usage: order timestamp TIMESTAMP

INTERVAL:
e Stores a time interval.
e Usage: duration INTERVAL

Binary Data Types
BINARY:
e Stores fixed-length binary data.
e Usage: binary data BINARY(16)

VARBINARY:
e Stores variable-length binary data.
e Usage: image VARBINARY(255)

BLOB:
e Stores large binary objects.
e Usage: document BLOB

Boolean Data Type
BOOLEAN:
e Stores true or false values.
e Usage: is_active BOOLEAN

DBMS 10.7 SQL-99

<> Other Data Types
1. ENUM:
e Stores one value from a predefined list of values (MySQL specific).
e Usage: status ENUM('active', 'inactive', 'pending')
2. SET:
e Stores a set of values (MySQL specific).
e Usage: roles SET('admin', 'user', 'guest’)
3. JSON:
e Stores JSON-formatted data.
e Usage: preferences JSON
Examples:

CREATE TABLE employees (
employee id INT PRIMARY KEY,
first name VARCHAR(50),
last name VARCHAR(50),
hire_date DATE,
salary DECIMAL(10, 2),
is_active BOOLEAN);

CREATE TABLE files (
file id INT PRIMARY KEY,
file name VARCHAR(255),
file_data BLOB);

These data types help define the kind of data each column can hold, ensuring data integrity
and optimizing storage.

10.4 SPECIFYING CONSTRAINTS IN SQL

Specifying constraints in SQL is essential for enforcing rules and maintaining data integrity
within a database. Constraints ensure that the data adheres to defined standards and prevents
invalid data entry.

10.4.1 Types of Constraints

Key types of constraints include:

e PRIMARY KEY: Ensures that each value in a column (or a combination of columns)
is unique and not null, uniquely identifying each row in a table.

e FOREIGN KEY: Establishes a relationship between columns in different tables,
ensuring referential integrity by linking a column (or columns) to the primary key of
another table.

e UNIQUE: Ensures that all values in a column (or a combination of columns) are
unique across the entire table.

e NOT NULL: Ensures that a column cannot have a null value, requiring that every
row must have a value for this column.

o CHECK: Enforces a condition that each row must satisfy, restricting the values that
can be stored in a column.

Centre for Distance Education 10.8 Acharya Nagarjuna University

10.4.2 Examples of Constraints in Table Definitions

CREATE TABLE employees (
employee id INT PRIMARY KEY,
first name VARCHAR(50) NOT NULL,
last name VARCHAR(50) NOT NULL,
email VARCHAR(100) UNIQUE,
hire_date DATE CHECK (hire date >='2000-01-01"));

CREATE TABLE orders (
order_id INT PRIMARY KEY,
employee id INT,
order_date DATE NOT NULL,
FOREIGN KEY (employee id) REFERENCES employees(employee id));

Constraints help maintain the accuracy, reliability, and integrity of the data within the
database, ensuring that the database adheres to the specified business rules and logic.

10.5 SCHEMA CHANGE STATEMENTS IN SQL

Schema change statements in SQL are used to modify the structure of an existing database
schema, allowing for the addition, alteration, or deletion of database objects such as tables,
columns, indexes, and constraints. These changes are essential for adapting the database to
evolving requirements.

10.5.1 Altering Schemas

Altering schemas in SQL involves modifying the structure of an existing database schema to
accommodate changing requirements or to optimize performance. The primary SQL
command used for altering schemas is the ALTER statement. This command allows users to
add, modify, or delete database objects such as tables, columns, indexes, and constraints.
Here are the key operations that can be performed with the ALTER statement:

-- Add a new column
ALTER TABLE employees ADD COLUMN birth_date DATE;

-- Modify an existing column's data type
ALTER TABLE employees ALTER COLUMN salary DECIMAL(10, 2);

-- Drop a column
ALTER TABLE employees DROP COLUMN temp_data;

-- Add a new primary key constraint
ALTER TABLE employees ADD CONSTRAINT pk employee id PRIMARY KEY
(employee _id);

-- Drop a unique constraint
ALTER TABLE employees DROP CONSTRAINT email unique;

DBMS 10.9 SQL-99

-- Rename a column
ALTER TABLE employees @ RENAME COLUMN old column name TO
new_column_name;

-- Rename a table

ALTER TABLE employees RENAME TO staff members;

Altering schemas is a fundamental aspect of database management, allowing administrators
and developers to keep the database structure aligned with application requirements and data
integrity rules.

10.5.2 Managing Indexes

Managing indexes in SQL involves creating, modifying, and deleting indexes to optimize
query performance and maintain database efficiency. Indexes are special data structures that
improve the speed of data retrieval operations on a database table.

Here are the key operations for managing indexes:

-- Create a single-column index

CREATE INDEX idx lastname ON employees(last name);

-- Create a composite index on first name and birth date
CREATE INDEX idx_name dob ON employees(first name, birth date);

-- Create a unique index on email
CREATE UNIQUE INDEX idx_unique _email ON employees(email);

-- Drop an index
DROP INDEX idx_lastname;

-- MySQL-specific syntax to drop an index
ALTER TABLE employees DROP INDEX idx_lastname;

By effectively managing indexes, database administrators can significantly enhance query
performance, ensuring efficient and fast data retrieval operations.

10.6 BASIC QUERIES IN SQL

Basic queries in SQL involve selecting, filtering, and retrieving data from one or more tables
in a database.

10.6.1 SELECT Statement
The SELECT statement in SQL is used to retrieve data from a database. It allows you to

specify the columns you want to retrieve and the table from which to retrieve them. The
SELECT statement can include various clauses to filter, sort, and group the data.

Centre for Distance Education 10.10 Acharya Nagarjuna University

Basic Syntax:

SELECT columnl, column2, ...
FROM table name
WHERE condition
ORDER BY columnl, column2, ...;

Example
SELECT first name, last name, department
FROM employees
WHERE hire_date >'2020-01-01'
ORDER BY last name ASC;

This query will return a list of employees' first names, last names, and departments, filtered
and sorted according to the specified criteria.

10.6.2 INSERT statement

The INSERT statement in SQL is used to add new rows of data into a table. You can insert
values into all columns of a table or specify which columns to insert data into.

Basic Syntax

INSERT INTO table name
VALUES (valuel, value2, ...);

Example:

INSERT INTO employees
VALUES (101, 'John', 'Doe', 'Sales', '2024-07-22");

10.7 MORE COMPLEX SQL QUERIES

More complex SQL queries often involve multiple tables, advanced filtering, subqueries,
aggregation, and conditional logic to retrieve, manipulate, and analyze data in sophisticated
ways. These queries can use various SQL clauses and functions, including JOIN operations,
GROUP BY, HAVING, subqueries, CASE statements, and window functions. Complex
queries are essential for in-depth data analysis, reporting, and ensuring that intricate business
logic is accurately reflected in the data retrieved.

10.7.1 JOIN Operations

JOIN operations in SQL are used to combine rows from two or more tables based on a related
column between them. The most common types of JOINs are INNER JOIN, LEFT JOIN,
RIGHT JOIN, and FULL OUTER JOIN.

INNER JOIN: Returns rows that have matching values in both tables.
SELECT a.columnl, b.column2

FROM tablel a

INNER JOIN table2 b ON a.common_column = b.common_column;

DBMS 10.11 SQL-99

LEFT JOIN (LEFT OUTER JOIN): Returns all rows from the left table and matched rows
from the right table. Unmatched rows in the right table will have NULL values.

SELECT a.columnl, b.column2

FROM tablel a

LEFT JOIN table2 b ON a.common_column = b.common_column;

RIGHT JOIN (RIGHT OUTER JOIN): Returns all rows from the right table and matched
rows from the left table. Unmatched rows in the left table will have NULL values.

SELECT a.columnl, b.column2

FROM tablel a

RIGHT JOIN table2 b ON a.common_column = b.common_column;

FULL OUTER JOIN: Returns rows when there is a match in one of the tables. Rows with
no match in either table will have NULL values.

SELECT a.columnl, b.column2
FROM tablel a
FULL OUTER JOIN table2 b ON a.common_column = b.common_column;

10.7.2 Subqueries

Subqueries in SQL are queries nested within another SQL query. They allow you to perform
operations that would otherwise be impossible or cumbersome with a single query.
Subqueries can be used in various clauses, such as SELECT, FROM, WHERE, and
HAVING, to provide intermediate results for the main query. They enhance the flexibility
and power of SQL by enabling more complex queries and data manipulations.

Types of Subqueries
1. Scalar Subquery: Returns a single value.
2. Row Subquery: Returns a single row with multiple columns.
3. Table Subquery: Returns a set of rows and columns.

Example 1: Subquery in a SELECT Clause
To get the names of employees and their respective department names from employees and
departments tables:
SELECT e.first name, e.last name,
(SELECT d.department_name
FROM departments d
WHERE d.department_id = e.department id) AS department name
FROM employees e;

Example 2: Subquery in a FROM Clause

To get the department-wise average salary:

SELECT department_id, AVG(salary) AS avg_salary

FROM employees

GROUP BY department_id

HAVING AVG(salary) > (SELECT AVG(salary) FROM employees);

Centre for Distance Education 10.12 Acharya Nagarjuna University

Subqueries can greatly enhance the capability of SQL queries by allowing more detailed and
specific data retrieval, making them essential for complex data analysis and reporting tasks.

10.7.3 Set Operations

Set operations in SQL are used to combine the results of two or more SELECT queries.
These operations include UNION, UNION ALL, INTERSECT, and EXCEPT (or MINUS in
some databases). Set operations enable you to perform mathematical set operations on query
results, allowing for powerful and flexible data manipulation.

10.8 INSERT, DELETE, AND UPDATE STATEMENTS IN SQL

The INSERT, DELETE, and UPDATE statements in SQL are essential for managing and
manipulating data within a database. These Data Manipulation Language (DML) statements
allow users to add new records, remove existing ones, and modify existing data, respectively.

10.8.1 INSERT Statement

The INSERT statement is used to add new rows to a table. You can insert values into all
columns or specify which columns to insert data into.

Example
INSERT INTO employees (first name, last name, department)
VALUES ('Jane', 'Doe', 'Marketing');

10.8.2 DELETE Statement

The DELETE statement is used to remove existing rows from a table based on a specified
condition. Without a condition, it will delete all rows in the table.

DELETE FROM employees

WHERE employee id = 101;

10.8.3 UPDATE Statement

The UPDATE statement is used to modify existing data in a table. It allows you to set new
values for one or more columns based on a specified condition.

UPDATE employees

SET department = 'Sales'

WHERE employee id = 101;

10.9 TRIGGERS IN SQL

Triggers in SQL are special types of stored procedures that automatically execute or "fire"
when specific database events occur, such as INSERT, UPDATE, or DELETE operations on
a table. Triggers are used to enforce business rules, maintain data integrity, audit changes,
and synchronize tables. They can be set to execute before or after the event, allowing for pre-
processing or post-processing of data. For example, a trigger can be created to automatically
log changes to an audit table whenever an employee's salary is updated.

DBMS 10.13 SQL-99

10.9.1 Types of Triggers

In SQL, triggers can be categorized based on the timing of their execution and the events that
activate them.

The main types of triggers are:

Based on Timing:

e BEFORE Triggers: Execute before the triggering event (INSERT, UPDATE,
DELETE) occurs. These are typically used for validation or modification of data
before it is committed to the database.

e Example: BEFORE INSERT, BEFORE UPDATE, BEFORE DELETE

e AFTER Triggers: Execute after the triggering event has occurred. These are
often used for logging changes, enforcing referential integrity, or synchronizing
data across tables.

e Example: AFTER INSERT, AFTER UPDATE, AFTER DELETE

Based on Event:

Triggers based on events in SQL are designed to automatically execute a specified action
when certain events—such as INSERT, UPDATE, or DELETE operations—occur on a table.
These event-driven triggers help maintain data integrity, enforce business rules, and automate
system tasks.

Each type of event trigger serves a specific purpose:

. INSERT Triggers: Execute when a new record is added to a table. They can be used
to set default values, validate data, or log insert actions.
CREATE TRIGGER before insert employee
BEFORE INSERT ON employees
FOR EACH ROW
BEGIN
SET NEW.hire date = NOW();
END;

UPDATE Triggers: Execute when an existing record is modified. They are useful for

tracking changes, maintaining history logs, or enforcing complex validation rules.

CREATE TRIGGER after update employee

AFTER UPDATE ON employees

FOR EACH ROW

BEGIN
INSERT INTO employees_audit (employee id, old salary, new_salary, change date)
VALUES (OLD.employee id, OLD.salary, NEW.salary, NOW());

END;

e DELETE Triggers: Execute when a record is removed from a table. They can be
employed to prevent accidental deletions, cascade deletions to related tables, or
archive deleted data.

Centre for Distance Education 10.14 Acharya Nagarjuna University

CREATE TRIGGER before delete employee
BEFORE DELETE ON employees
FOR EACH ROW
BEGIN

INSERT INTO employees deleted (employee id, first name, last name, department,
deletion_date)

VALUES (OLD.employee id, OLD.first name, OLD.last name, OLD.department,
NOW());
END;
Triggers enhance the robustness and reliability of database applications by providing
automated responses to data changes.

10.9.2 Creating and Dropping Triggers

Creating triggers in SQL involves defining the specific event (INSERT, UPDATE, DELETE)
that activates the trigger and the action that should be performed when the trigger fires.
Triggers can be set to execute either before or after the specified event.

Dropping a trigger involves removing it from the database, which means it will no longer
execute when the specified event occurs.

Example : To drop the previously created log_employee deletion trigger:
DROP TRIGGER log _employee deletion;

SUMMARY

e Creating Triggers: Use the CREATE TRIGGER statement to define when the
trigger should fire (BEFORE or AFTER an event) and what actions it should perform.

e Dropping Triggers: Use the DROP TRIGGER statement to remove an existing
trigger, preventing it from executing in response to its associated event.

10.9.3 Use Cases for Triggers

1. Data Validation and Integrity
e Ensure Data Consistency: Automatically enforce complex constraints and
validation rules that standard constraints cannot handle.
e Example: Prevent an employee's hire date from being earlier than their birth date.

2. Auditing and Logging
eTrack Changes: Automatically log changes to critical data for audit trails,
compliance, and monitoring purposes.
e Example: Log every update to an employee's salary in an audit table.

3. Enforcing Business Rules
e Implement Business Logic: Ensure consistent application of business policies by
automatically executing specific actions when certain conditions are met.
e Example: Prevent the deletion of a customer record if the customer has pending
orders.

DBMS 10.15 SQL-99

4. Synchronizing Tables
e Maintain Data Synchronization: Automatically update or synchronize related
tables to ensure data consistency across the database.
e Example: Update the inventory stock count whenever an order is placed.

5. Cascading Actions
e Automate Related Operations: Perform additional related actions automatically
when a certain event occurs, such as cascading deletions or updates.
e Example: Automatically delete all orders related to a customer when the customer
record is deleted.

These use cases illustrate the powerful capabilities of triggers in automating and enforcing
data management tasks, enhancing data integrity, and ensuring adherence to business rules.

10.10 VIEWS IN SQL

Views in SQL are virtual tables that provide a way to present and query data from one or
more tables. They do not store data themselves but instead store a predefined SQL query that
dynamically retrieves data from the underlying tables when accessed. Views can simplify
complex queries, enhance security by restricting access to specific data, and provide a
consistent, abstracted interface to the data. Users can perform SELECT operations on views
as if they were actual tables, and in some cases, views can also support INSERT, UPDATE,
and DELETE operations, depending on the database system and view definition.

10.10.1 Creating and Managing Views

Views in SQL are virtual tables that represent the result of a stored query. They simplify
complex queries, enhance security, and provide a level of abstraction from the underlying
table structures. Here’s how to create and manage views:

<> Creating Views

Syntax

CREATE VIEW view_name AS
SELECT columnl, column2, ...
FROM table name

WHERE condition;

Example

To create a view that shows the full names and departments of employees:
CREATE VIEW employee overview AS

SELECT first name || '' || last_ name AS full name, department

FROM employees;

% Using Views
Once a view is created, you can query it just like a regular table:
SELECT * FROM employee overview;

Centre for Distance Education 10.16 Acharya Nagarjuna University

¢ Modifying Views

To modify an existing view, you use the CREATE OR REPLACE VIEW statement:
CREATE OR REPLACE VIEW employee overview AS

SELECT first name, last name, department, hire date

FROM employees

WHERE hire_date >'2020-01-01";

<> Dropping Views
To remove an existing view, you use the DROP VIEW statement:
DROP VIEW employee overview;

Benefits of Using Views

o Simplify Complex Queries: Encapsulate complex SQL logic within a view for easier
reuse.
o Enhance Security: Restrict user access to specific data by granting permissions on
views rather than on the underlying tables.
o Data Abstraction: Provide a consistent interface to data, even if the underlying
schema changes.
[]
Views are powerful tools for managing and abstracting data in SQL databases. By creating,
modifying, and dropping views, you can simplify query operations, enhance security, and
maintain consistent data access interfaces.

10.10.2 Materialized Views

Materialized views are a type of database object that store the result of a query physically,
unlike regular views that store only the query itself and generate results dynamically each
time they are accessed. Materialized views improve query performance, especially for
complex and resource-intensive queries, by precomputing and storing the query results. They
are periodically refreshed to stay up-to-date with the underlying data.

% Creating Materialized Views

Example

To create a materialized view that stores the total sales per department:
CREATE MATERIALIZED VIEW total sales per department AS
SELECT department_id, SUM(sale amount) AS total sales

FROM sales

GROUP BY department_id;

% Refreshing Materialized Views
Materialized views need to be refreshed to reflect changes in the underlying data. This can be

done manually or automatically at specified intervals.
Manual Refresh:

DBMS 10.17 SQL-99

REFRESH MATERIALIZED VIEW view_ name;
Automatic Refresh (depends on the database system):
CREATE MATERIALIZED VIEW view_name
REFRESH FAST EVERY 1 HOUR
AS
SELECT columnl, column2, ...

FROM table name
WHERE condition;

Benefits of Materialized Views

e Improved Performance: Speeds up query performance by avoiding repeated
execution of complex queries.

o Data Pre-aggregation: Useful for pre-aggregating data, which can be directly
queried for fast results.

e Reduced Load: Decreases the load on the underlying tables during heavy read
operations.

Materialized views enhance query performance by storing precomputed results of complex
queries. They are particularly beneficial for scenarios requiring frequent access to aggregated
data, providing a significant performance boost while reducing the computational load on the
database. Regular refreshes ensure the materialized view data remains current with the
underlying tables.

10.11 SUMMARY

The chapter covers essential aspects of SQL, beginning with SQL Data Definitions and
Data Types, which define the structure and nature of data in a database. It explains how to
create tables and specify various data types like INTEGER, VARCHAR, and DATE.
Specifying Constraints in SQL ensures data integrity through primary keys, foreign keys,
unique constraints, and check constraints. Schema Change Statements such as ALTER
TABLE, RENAME, and DROP allow modifications to the database schema. Basic Queries
in SQL use the SELECT statement to retrieve data, while More Complex SQL Queries
involve advanced filtering, joins, and subqueries for intricate data retrieval. The INSERT,
DELETE, and UPDATE statements are fundamental for managing data within tables.
Triggers are automated responses to specific events, enforcing business rules and
maintaining data consistency. Finally, Views and Materialized Views provide virtual tables
for simplified data access and improved query performance, respectively. This
comprehensive overview equips readers with the foundational tools for effective database
management and manipulation.

10.12 TECHNICAL TERMS
SQL, Shema, Data Types, Select, Insert, View, Materialized view, Trigger

10.13 SELF ASSESSMENT QUESTIONS
Essay questions:

Centre for Distance Education 10.18 Acharya Nagarjuna University

1. Illustrate about Views in SQL
2. Describe about Triggers in SQL
3. Explain about basic SQL operations

Short Notes:

1. Write about insert statement
2. Define Materalized View
3. Explain about how to update view.

10.14 SUGGESTED READINGS

1. Codd, E. F. (1970). "A Relational Model of Data for Large Shared Data Banks."
Communications of the ACM, 13(6), 377-387.

2. Date, C. J. (2003). "An Introduction to Database Systems." 8th Edition. Addison-
Wesley.

3. Silberschatz, A., Korth, H. F., & Sudarshan, S. (2010). "Database System Concepts."
6th Edition. McGraw-Hill.

4. Ullman, J. D., & Widom, J. (2008). "A First Course in Database Systems." 3rd
Edition. Pearson.

Dr. Vasantha Rudramalla

LESSON- 11
FUNCTIONAL DEPENDENCIES

AIMS AND OBJECTIVES

The primary goal of this chapter is to understand the concept of Functional Dependencies for
Relational Databases. The chapter began Informal Design Guidelines for Relation Schemas,
Functional dependencies. After completing this chapter, the student will understand
Functional Dependencies for Relational Databases.
11.1 INTRODUCTION
11.2 INFORMAL DESIGN GUIDELINES FOR RELATION SCHEMAS
11.2.1 SEMANTICS OF THE RELATION ATTRIBUTES
11.2.2 REDUNDANT INFORMATION IN TUPLES AND UPDATE
ANOMALIES
11.2.3 NULL VALUES IN TUPLES
11.2.3 SPURIOUS TUPLES
11.3 FUNCTIONAL DEPENDENCIES
11.3.1 DEFINITION AND CONCEPT
11.3.2 TRIVIAL AND NON-TRIVIAL FUNCTIONAL DEPENDENCIES
11.3.3 CLOSURE OF A SET OF FUNCTIONAL DEPENDENCIES
11.3.4 ARMSTRONG’S AXIOMS
11.3.5 DECOMPOSITION USING FUNCTIONAL DEPENDENCIES
114 SUMMARY
11.5 TECHNICAL TERMS
11.6 SELF-ASSESSMENT QUESTIONS
11.7 SUGGESTED READINGS

11.1 INTRODUCTION

The design of a relational database schema plays a crucial role in ensuring data consistency,
integrity, and efficient query processing. A poorly designed schema can lead to problems such
as data redundancy, update anomalies, insertion and deletion anomalies, and inconsistent data.
To avoid these issues, database designers follow a set of informal design guidelines and apply
formal methods like normalization and functional dependency analysis. These approaches help
to organize data logically and eliminate unnecessary duplication while maintaining all
necessary relationships among attributes.

Centre for Distance Education 11.2 Acharya Nagarjuna University

This chapter focuses on the principles and tools that guide relational schema design. It begins
with informal design guidelines that address issues such as attribute semantics, redundancy,
null values, and spurious tuples. Then, it introduces the concept of functional dependencies
(FDs) — a key theoretical foundation in database normalization. FDs describe the relationship
between attributes in a relation and are used to detect design flaws and refine schemas through
decomposition. The chapter also explains Armstrong’s Axioms, closure of functional
dependencies, and decomposition techniques, which together form the backbone of logical
database design and normalization up to advanced normal forms.

11.2 INFORMAL DESIGN GUIDELINES FOR RELATION SCHEMAS

11.2.1 Semantics of the Relation Attributes Each relation schema should represent a single
entity or concept, with attributes clearly defined to describe the entity's properties. This
ensures that the data stored within the relation is meaningful and accurately reflects the real-
world scenario it models.

To maintain clear semantics, the designer must ensure that:

1. Each attribute directly corresponds to a property of the entity the relation represents.

2. The naming of attributes is consistent and self-descriptive.

3. The relation should avoid mixing entities or concepts that belong to different real-
world objects.

Example 1: Correct Semantics
A properly designed relation representing the STUDENT entity:
STUDENT(Student ID, Student Name, Date of Birth, Department, Email)

e Here, each attribute — Student ID, Student Name, Date of Birth, Department, and
Email — directly describes a property of a student.

e The meaning is clear, consistent, and corresponds to a single real-world concept — a
student.

Example 2: Poor Semantics
An improperly designed relation mixing two different entities:

STUDENT COURSE(Student ID, Student Name, Course Name, Instructor Name,
Instructor Phone)

o This table combines attributes of students, courses, and instructors into a single
relation.

o Attributes like Instructor Name and Instructor Phone describe a teacher, not a
student — violating the rule of single-entity representation.

DBMS 11.3 FUNCTIONAL DEPENDENCIES

Such a schema leads to redundancy (e.g., repeating instructor details for every student
enrolled in the course) and update anomalies (if an instructor’s phone number changes,
multiple records must be updated).

Example 3: Clear Conceptual Separation

To correct the above design, we separate the entities:
STUDENT(Student ID, Student Name, Department)
COURSE(Course ID, Course Name)
INSTRUCTOR((Instructor_ID, Instructor Name, Instructor Phone)
ENROLLMENT(Student ID, Course ID, Instructor ID)

e Each table now represents a distinct concept.

o Relationships among students, courses, and instructors are maintained through
foreign keys in the ENROLLMENT table.

o This preserves semantic clarity, reduces redundancy, and ensures a more flexible and
consistent database structure.

Maintaining semantic clarity in relation schemas ensures that the database accurately models
real-world entities and relationships. Each relation must represent a single, well-defined
concept, and its attributes should be directly related to that concept — forming the foundation
for reliable and meaningful data management.

11.2.2 Redundant Information in Tuples and Update Anomalies Avoiding redundancy is
crucial as it can lead to update anomalies such as insertion, deletion, and modification
anomalies. Redundant data requires multiple updates for a single logical change, increasing
the risk of inconsistencies.

Redundancy in a relation occurs when the same piece of information is stored multiple times
within the database. Although redundancy may sometimes seem harmless, it often leads to
serious problems such as increased storage usage, data inconsistency, and various update
anomalies during insert, update, or delete operations. In a well-designed database, each fact
should be stored only once, ensuring that a single update reflects everywhere it is needed.

When redundant information exists, a single logical change in the real world requires
multiple updates in the database. If any of these updates are missed, the database becomes
inconsistent — some tuples may show the old value, while others show the new one. This
undermines the reliability and integrity of the data.

Centre for Distance Education 11.4 Acharya Nagarjuna University

Example of Redundancy

Consider the relation:

EMPLOYEE DEPT(Emp ID, Emp Name, Dept Name, Dept Location)

Emp_ID | Emp_Name | Dept_Name | Dept_Location
101 Ramesh IT Hyderabad

102 Suresh IT Hyderabad

103 Meena HR Chennai

Here, the department location is repeated for every employee in the same department. This
duplication leads to redundant information, making the system prone to anomalies.

Types of Update Anomalies

1.

Insertion Anomaly

Occurs when new information cannot be inserted into the database because other
required data is missing.

o Example: If a new department “Finance” is created but no employee is
assigned yet, we cannot insert the department information into the above
relation without leaving employee-related fields blank.

Dept_Name = Finance — Cannot insert without Emp ID or Emp Name
Update Anomaly

Occurs when redundant data must be updated in multiple places, and one or more
updates are missed, leading to inconsistencies.

o Example: If the IT department relocates from Hyderabad to Bangalore, all
tuples for employees in IT must be updated. If one record is missed,
inconsistent department locations appear.

Some IT employees show Hyderabad, others show Bangalore — inconsistency.
Deletion Anomaly

Occurs when deleting a record inadvertently removes useful information that should
have been retained.

DBMS 11.5 FUNCTIONAL DEPENDENCIES

o Example: If the only employee in the HR department (Meena) leaves and her
record is deleted, the information about the HR department and its
location (Chennai) is lost.

Deleting Meena — also deletes HR department info.
Corrective Measure

To eliminate redundancy and prevent these anomalies, we can normalize the relation by
splitting it into smaller, related tables:

EMPLOYEE(Emp ID, Emp Name, Dept Name)
DEPARTMENT(Dept Name, Dept Location)

Now, department details are stored once in the DEPARTMENT table, and employee
information references it via Dept_ Name. This ensures consistency, easy updates, and no
accidental data loss.

11.2.3 Null Values in Tuples Minimize the use of null values as they can complicate queries
and interpretations. Null values often indicate missing or inapplicable information, which can
lead to ambiguous results and complex query conditions.

The presence of null values in database tuples generally indicates that certain information is
missing, unknown, or not applicable. While nulls are sometimes unavoidable, excessive or
improper use of them can lead to ambiguity, inconsistent interpretations, and complex query
processing. Therefore, good database design practices aim to minimize the use of null values
by refining the schema and ensuring that attributes are appropriately defined.

A null value does not mean zero or an empty string—it represents the absence of a known
value. However, nulls create challenges for query formulation and evaluation because they
behave differently in logical operations. For example, any comparison involving a null (such
as NULL = 5 or NULL != 5) evaluates to unknown rather than true or false, making query
results less predictable.

Example 1: Problem with Null Values
Consider the relation:

EMPLOYEE(Emp_ID, Emp Name, Phone, Manager ID)

Emp_ID | Emp_Name | Phone Manager_ID
101 Ravi 9876543210 | 201

102 Meena NULL 201

103 Arjun 8765432109 | NULL

Centre for Distance Education 11.6 Acharya Nagarjuna University

o Employee 102 has a null in Phone, meaning the number is missing or not available.
o Employee 103 has a null in Manager ID, meaning this employee may not be assigned
a manager yet (e.g., a department head).

When performing queries like:
SELECT * FROM EMPLOYEE WHERE Manager ID =201;

The tuples with NULL in Manager ID are ignored, as NULL values do not satisfy equality
conditions.

Example 2: Complex Query Conditions
To include tuples with missing information, queries must use conditional logic:
SELECT * FROM EMPLOYEE WHERE Manager ID =201 OR Manager ID IS NULL,;

This makes queries longer, harder to maintain, and more error-prone. If nulls are overused,
the interpretation of data becomes uncertain—does NULL mean “unknown,” *
applicable,” or “not yet assigned”?

not

Ways to Minimize Null Values

1. Refine the Schema — Split relations so that optional attributes are moved into
separate tables.

Example:

Instead of storing all employee data in one table, use:
EMPLOYEE(Emp ID, Emp Name)

CONTACT(Emp_ID, Phone)

Now, only employees with phone numbers appear in the CONTACT table.

2. Use Default Values Where Appropriate — Replace nulls with meaningful defaults,
such as 'N/A' or 0, if it does not distort semantics.

3. Apply Constraints — Use NOT NULL constraints in SQL for essential attributes that
must always contain data.

Null values are useful for representing unknown or inapplicable information, but their
excessive use reduces data clarity and complicates operations. By minimizing nulls through
schema design, default values, and proper constraints, database systems maintain
consistency, simplicity, and accurate query results.

DBMS 11.7 FUNCTIONAL DEPENDENCIES

11.2.4 Spurious Tuples Preventing spurious tuples, which are erroneous data combinations
resulting from improper joins, is essential. Proper decomposition and careful schema design
help avoid spurious tuples, ensuring that join operations yield meaningful and accurate
results.

Spurious tuples are erroneous or meaningless data combinations that appear in the result of a
join operation when relations are improperly decomposed or incorrectly joined. They occur
when two relations are joined on attributes that do not represent a valid or complete key
relationship. The presence of spurious tuples leads to incorrect query results, data
inconsistency, and loss of data integrity.

To ensure accurate data retrieval, it is essential that every decomposition of a relation
maintains the lossless join property—that is, when the decomposed relations are joined back
together, they should reconstruct the original data without creating any extra (spurious)
tuples.

Example: Improper Decomposition Leading to Spurious Tuples
Consider the relation:

EMP PROJECT(Emp ID, Emp Name, Project ID, Project Name)
If this relation is decomposed incorrectly into:

R1(Emp_ ID, Emp Name)

R2(Emp_ID, Project ID, Project Name)

and then joined using a non-key attribute such as Emp Name instead of the primary key
Emp_ID, spurious tuples may appear.

Data in the original relation:

Emp_ID | Emp_Name | Project_ID | Project Name

101 Ravi P1 Al System

102 Meena P2 Web Portal

Decomposed Relations:

R1(Emp_ID, Emp_Name)

Emp_ID | Emp_Name

101 Ravi

102 Meena

Centre for Distance Education 11.8 Acharya Nagarjuna University

R2(Emp_ID, Project_ID, Project Name)

Emp_ID | Project_ID | Project Name

101 Pl Al System

102 P2 Web Portal

If we mistakenly join them using Emp Name instead of Emp ID:
SELECT *
FROM R1, R2
WHERE R1.Emp Name = R2.Project Name;

This join could produce spurious tuples, creating invalid combinations of employees and
projects that never existed in the original data.

How to Prevent Spurious Tuples

1. Use Lossless Decomposition:
Decompose relations based on functional dependencies and primary keys to ensure
that joins reconstruct the original relation correctly.

2. Join on Proper Keys:
Always perform joins on primary key—foreign key relationships rather than on
arbitrary or non-key attributes.

3. Verify with the Lossless Join Test:

Before finalizing decomposition, check whether joining decomposed relations
preserves all original tuples without adding spurious ones.
4. Maintain Referential Integrity:

Define proper constraints in the DBMS to ensure that key relationships are respected.
Example of Lossless Decomposition
If we correctly decompose the same relation as:
EMPLOYEE(Emp_ID, Emp Name)
PROJECT(Project_ID, Project Name)

ASSIGNMENT(Emp_ID, Project ID)

DBMS 11.9 FUNCTIONAL DEPENDENCIES

Joining these tables on their key relationships (Emp ID and Project ID) reproduces the
original data without spurious tuples, ensuring lossless and meaningful joins.

Preventing spurious tuples is fundamental to reliable database design. By ensuring lossless
decomposition, using correct join keys, and maintaining referential integrity, designers
avoid erroneous data combinations. Together with other design principles—semantic clarity,
reduced redundancy, and minimal nulls—this practice ensures that the resulting database
schema is accurate, efficient, and anomaly-free.

11.3 FUNCTIONAL DEPENDENCIES

11.3.1 Definition and Concept

A functional dependency (FD) is a constraint between two sets of attributes in a relation. For
a relation R, an attribute Y is functionally dependent on attribute X (denoted as X — Y) if for
every valid instance of X, that value of X uniquely determines the value of Y.

11.3.2 Trivial and Non-trivial Functional Dependencies

A functional dependency (FD) describes a relationship between two sets of attributes in a
relation schema. It is expressed as:

XY

which means the value of attribute set X uniquely determines the value of attribute set Y.
Functional dependencies are categorized into trivial and non-trivial, depending on whether
the dependent attributes are already part of the determinant attributes.

1. Trivial Functional Dependency
A functional dependency X — Y is said to be trivial if Y is a subset of X.
In other words, the dependency already exists by definition and adds no new information.

IfY € X, then X — Y 1s trivial.

Examples:
e {Student ID, Name} — Student ID (trivial, since Student ID & {Student ID,
Name})

e {Emp ID} — Emp ID (trivial)
e {Course ID, Title} — Title (trivial)

Centre for Distance Education 11.10 Acharya Nagarjuna University

The dependency holds for all possible data in a relation — it is true by the definition of
attributes, so it does not affect normalization or decomposition.

Non-Trivial Functional Dependency

A functional dependency X — Y is non-trivial if Y is not a subset of X — meaning the
dependent attribute(s) are not already included in the determinant.

If Y ©/X, then X — Y 1s non-trivial.

Examples:
e Student ID — Student Name
e Emp ID — Department
e {Course ID} — Instructor

11.3.3 Closure of a Set of Functional Dependencies

The closure of a set of functional dependencies (FDs) is a crucial concept in relational
database theory. It refers to the complete set of all functional dependencies that can be
logically inferred from a given set of FDs using a set of inference rules, known as
Armstrong's Axioms. The closure helps in understanding all the implications of a given set of
FDs and is instrumental in the normalization process.

The closure of a set of functional dependencies, denoted as F*, represents every dependency
that can be derived logically from the original set F through repeated application of the
inference rules (Armstrong’s Axioms: reflexivity, augmentation, and transitivity). Computing
this closure is essential for several database design tasks, such as testing the equivalence of
FD sets, finding candidate keys, and verifying the correctness of decompositions.

For example, if we are given FDs like A — B and B — C, then by applying the transitivity
rule, we can infer A — C, which is included in F*. Determining F* helps database designers
identify hidden dependencies that are not explicitly stated but can be inferred, thus providing
a complete picture of the relationships between attributes. In practice, closure computation
ensures that the database schema is logically sound, free from redundancy, and adheres to the
principles of dependency preservation during normalization and decomposition.

11.3.4 Armstrong’s Axioms

Armstrong’s Axioms are a set of inference rules used to derive all possible FDs from a given
set:

o Reflexivity: If Y is a subset of X, then X — Y.
e Augmentation: If X — Y, then XZ — YZ for any Z.
e Transitivity: f X - Yand Y — Z, then X — Z.

DBMS 11.11 FUNCTIONAL DEPENDENCIES

Finding the Closure

The closure of a set of FDs, denoted as F+F"+F+, is found by repeatedly applying
Armstrong's Axioms to the given set FFF until no new FDs can be derived.

Example
Consider a relation R(A,B,C)R(A, B, C)R(A,B,C) with the following FDs:

1. A—»BA\to BA—B
2. B—CB \to CB—C

To find the closure F+F"+F+ of the set F={A—B,B—C}F = \{ A \to B, B \to C
\}F={A—B,B—C}:

1. Start with the given FDs:
o A—BA\to BA—B
o B—CB \to CB—C
2. Apply Transitivity to derive a new FD:
o Since A—BA \to BA—B and B—CB \to CB—C, by Transitivity, A—CA \to
CA—C.
3. The closure F+F~+F+ includes:
o A—BA\to BA—B
o B—CB \to CB—C
o A—CA\to CA—C

The closure F+F"+F+ represents all the functional dependencies that can be inferred from the
initial set FFF. It is a comprehensive set that captures all the relationships implied by the
original FDs.

Applications of Closure

o Normalization: Helps in decomposing relations into normalized forms by identifying
all possible FDs.

o Attribute Closure: Useful for determining if a certain set of attributes can
functionally determine another set of attributes.

o Candidate Keys: Assists in identifying candidate keys by examining the attribute
closure.

Understanding the closure of a set of FDs is fundamental in database design and
normalization, as it ensures that all potential data dependencies are considered when
structuring the database schema.

Centre for Distance Education 11.12 Acharya Nagarjuna University

11.3.5 Decomposition Using Functional Dependencies

Decomposition involves breaking down a relation into two or more relations based on
functional dependencies to achieve a higher normal form. The decomposition should be
lossless and dependency-preserving.

Steps for Decomposition

1. Identify Functional Dependencies: Determine the set of functional dependencies
that hold for the relation.

2. Check for Violation of Normal Forms: Identify if the relation violates any of the
normal forms (1NF, 2NF, 3NF, BCNF).

3. Decompose the Relation: Use functional dependencies to split the relation into
smaller relations that conform to the desired normal form.

Example

Consider a relation R(A,B,C,D)R(A, B, C, D)R(A,B,C,D) with the following functional
dependencies:

1. A—BA \to BA—B
2. C—DC \to DC—D

To decompose this relation, we can follow these steps:

1. Identify Functional Dependencies: The given FDs are A—BA \to BA—B and
C—DC \to DC—D.
2. Check Normal Form: Let's assume the relation RRR is not in BCNF because each
FD does not have a superkey on the left-hand side.
3. Decompose the Relation:
o Based on A—>BA \to BA—B:
= Create RI(A,B)RI(A, B)R1(A,B).
o Based on C—DC \to DC—D:
= Create R2(C,D)R2(C, D)R2(C,D).
o Ensure that remaining attributes are appropriately placed to preserve all
functional dependencies:
= Combine the remaining attributes into another relation if needed:
R3(A,C)R3(A, C)R3(A,C).

Thus, the original relation R(A,B,C,D)R(A, B, C, D)R(A,B,C,D) is decomposed into:
« RI(A,B)RI(A, B)R1(A,B)

« R2(C,D)R2(C, D)R2(C,D)
« R3(A,0)R3(A, O)R3(A,C)

DBMS 11.13 FUNCTIONAL DEPENDENCIES

Ensuring Lossless Join

To ensure the decomposition is lossless, the join of the decomposed relations should yield the
original relation without any loss of information. This can be verified using the following
test:

e For the decomposition RRR into RIR1R1 and R2R2R2:
o The decomposition is lossless if RINR2R1 \cap R2ZR1MNR2 forms a superkey
for either RIR1R1 or R2ZR2R2.

Ensuring Dependency Preservation

To ensure that the functional dependencies are preserved, the union of the projections of the
decomposed relations should cover all the original functional dependencies.

Example of Lossless Join and Dependency Preservation
For the decomposed relations:

e RI(A,B)RI(A, B)RI(A,B)

e R2(C,D)R2(C, D)R2(C,D)

e R3(A,C)R3(A, C)R3(A,C)

e Lossless Join: RINR3={A}R1 \cap R3 =\{A\}R1NR3={A} and R2NR3={C}R2 \cap
R3 = \{C\}R2NR3={C}. Since AAA and CCC can act as keys in their respective
decomposed relations, the join is lossless.

o Dependency Preservation: The original dependencies A—BA \to BA—B and C—DC
\to DC—D are maintained in RIR1R1 and R2R2R2.

11.4 Summary

This chapter discussed the key principles that guide the design of relation schemas in a
database to ensure logical consistency, minimal redundancy, and reliable data management. It
began with informal design guidelines, emphasizing that each relation should represent a
single, well-defined concept with attributes that have clear semantics. The importance of
avoiding redundant data, null values, and spurious tuples was highlighted, as these issues
lead to data anomalies and inaccuracies during database operations. Proper decomposition
and meaningful attribute relationships were shown to be essential in creating schemas that are
easy to maintain and free from anomalies.

The chapter also introduced the theoretical foundation of Functional Dependencies (FDs)—
a cornerstone of relational database design. Concepts such as trivial and non-trivial
dependencies, closure of FDs, and Armstrong’s Axioms were explained, demonstrating
their role in normalization and schema refinement. By understanding how attributes
determine one another, designers can identify redundant data relationships and decompose

Centre for Distance Education 11.14 Acharya Nagarjuna University

relations effectively. Overall, the chapter establishes a strong basis for progressing toward
normal forms, ensuring that relational databases are both efficient and logically sound.

11.5 Technical Terms

Relation Schema

Functional Dependency (FD)

Trivial Functional Dependency
Non-Trivial Functional Dependency
Closure of Functional Dependencies (F*)
Armstrong’s Axioms

Update Anomalies

Lossless Decomposition

. Spurious Tuples

10. Normalization

00 N AW~

11.6 Self-Assessment Questions
Essay Questions

1. Explain the importance of semantics in relation attributes with suitable examples.

2. Discuss redundancy and different types of update anomalies in database design.

3. Define Functional Dependencies and explain their significance in database
normalization.

4. Describe the concept of closure of functional dependencies and its applications.

5. Explain Armstrong’s Axioms and show how they are used to derive new
dependencies.

Short Questions

What is the difference between trivial and non-trivial functional dependencies?
Define spurious tuples and explain how they can be prevented.

What are null values, and why should their use be minimized?

What is meant by lossless decomposition?

List any two uses of closure in relational database design.

A e

DBMS

11.15 FUNCTIONAL DEPENDENCIES

11.7 Suggested Readings

1.

10.

Ramez Elmasri and Shamkant B. Navathe, Fundamentals of Database Systems,
Pearson Education.

C. J. Date, An Introduction to Database Systems, Addison-Wesley.

Abraham Silberschatz, Henry F. Korth, and S. Sudarshan, Database System Concepts,
McGraw Hill.

Raghu Ramakrishnan and Johannes Gehrke, Database Management Systems,
McGraw Hill.

Thomas Connolly and Carolyn Begg, Database Systems: A Practical Approach to
Design, Implementation, and Management, Pearson.

Bipin C. Desai, An Introduction to Database Systems, Galgotia Publications.

Peter Rob and Carlos Coronel, Database Systems: Design, Implementation, and
Management, Cengage Learning.

Hector Garcia-Molina, Jeffrey D. Ullman, and Jennifer Widom, Database Systems:
The Complete Book, Pearson.

Alexis Leon and Mathews Leon, Database Management Systems, Vikas Publishing.
Ivan Bayross, SQL, PL/SQL: The Programming Language of Oracle, BPB
Publications.

Dr. Vasantha Rudramalla

LESSON- 12
NORMALIZATION

AIMS AND OBJECTIVES

The primary goal of this chapter is to understand the concept of Normalization for Relational
Databases. The chapter began Normal Forms Based in Primary Keys, General Definitions of
Second and Third Normal Forms, Boyce-Codd Normal Form .After completing this chapter,
the student will understand Normalization for Relational Databases.

12.1 Introduction
12.2 Normal Forms Based on Primary Keys
12.2.1 First Normal Form (1NF)
12.2.2 Second Normal Form (2NF)
12.2.3 Third Normal Form (3NF)
12.3 Boyce-Codd Normal Form (BCNF)
12.3.1 Definition and Characteristics
12.3.2 Difference Between 3NF and BCNF
12.3.3 Examples and Decomposition into BCN
12.4 Summary
12.5 Technical Terms
12.6 Self-Assessment Questions
12.7 Suggested Readings

12.1 INTRODUCTION

Database normalization is a critical process in relational database design that organizes data
to reduce redundancy and improve data integrity. By structuring data into smaller, related
tables, normalization ensures that the database is efficient, scalable, and easier to maintain.
This process not only optimizes storage space but also enhances the accuracy and consistency
of the data by eliminating anomalies and minimizing the chances of data duplication.

The primary goals of normalization are to eliminate redundant data, minimize update
anomalies, and simplify data structures. By dividing large tables into smaller, more
manageable ones and defining clear relationships between them, normalization aims to ensure
that each piece of data is stored only once. This improves data consistency and integrity,
making the database more reliable and easier to query and update. Ultimately, normalization
contributes to a more efficient database system that can handle complex queries and data
manipulation tasks with ease

12.2 NORMAL FORMS BASED ON PRIMARY KEYS

Normal forms based on primary keys are standards used to organize database schemas to
reduce redundancy and improve data integrity. These normal forms include the First Normal
Form (INF), Second Normal Form (2NF), and Third Normal Form (3NF).

Centre for Distance Education 12.1 Acharya Nagarjuna University

12.2.1 First Normal Form (1NF)

It is the foundational stage of database normalization that ensures the table structure is
simplified and data is stored in a tabular format with no repeating groups. A table is in 1NF if
it meets the following criteria:

1. Atomicity: Each column contains atomic (indivisible) values, meaning that each cell
holds a single value rather than a set of values or a list.

2. Uniqueness: Each column should have unique names, and the order in which data is
stored does not matter.

3. No Repeating Groups: Each record (row) should be unique, and no two rows should
have the same combination of values in all columns.

Example
Consider a table Students before normalization:

StudentlD MName Courses
John Smith Math, Science
2 Jane Doe Math, History
3 Bob Brown Literature, Science

In this table, the Courses column contains multiple values, violating 1NF.
To convert this table to 1NF, we split the multi-valued column into separate rows:

StudentlD Name Course
lohn Smith Math
lohn Smith Science

2 Jane Dee Math

2 lane Dee History

3 Bob Brown Literature

3 Bob Brown Science

In this normalized table:
o Each cell contains only a single value.
e The table structure is simplified.
e No repeating groups exist.

By ensuring the table is in 1NF, we have eliminated any repeating groups and made each
column contain only atomic values, setting a solid foundation for further normalization
processes.

Algorithm: First Normal Form (1NF)
1. Start.
2. Identify the relation (table) — Examine the attributes (columns) and tuples
(rows) in the given unnormalized table.

DBMS

12.2 NORMALIZATION

I. Check for repeating groups or multivalued attributes.
a. If an attribute contains multiple values (e.g., a list or set), it violates 1NF.
2. Eliminate repeating groups.
a. For each repeating group, create a separate tuple for every unique value.
b. Ensure each cell in the relation holds only a single atomic value.
3. Assign proper attribute names to all data items, if not already done, ensuring clear
column definitions.
4. Identify a primary key that uniquely identifies each tuple (row) in the table.
5. Reorganize the table such that:
a. Each column contains atomic values only.
b. Each row is uniquely identified by the primary key.
6. Check for data consistency — Ensure that no information has been lost or
duplicated during conversion.
7. Stop.
Example

Unnormalized Table:

Student ID | Student Name | Subjects
101 Ravi Kumar DBMS, Java, Python
102 Meena Sharma | Al, ML

After Applying INF:

Student _ID Student Name Subject
101 Ravi Kumar DBMS
101 Ravi Kumar Java
101 Ravi Kumar Python
102 Meena Sharma Al
102 Meena Sharma ML
Result:
The relation is now in First Normal Form (INF) — all values are atomic, and there are no
repeating groups.
First Normal Form (1NF) — Relational Algebra (Brief)

Given Relation:

STUDENT(Student ID, Student Name, Subjects)
Here, Subjects is a multivalued attribute, violating 1NF.

Relatio

nal Algebra Expression:

STUDENT,yr = UNNESTs) ects(STUDENT)

Resulti

ng Relation:

STUDENT INF(Student ID, Student Name, Subject)

Student ID | Student Name | Subject
101 Ravi Kumar DBMS
101 Ravi Kumar Java
101 Ravi Kumar Python

Centre for Distance Education 12.1 Acharya Nagarjuna University

The UNNEST operation converts multivalued attributes into atomic values, producing one
tuple per subject. Thus, the relation now satisfies First Normal Form (1NF) — all attributes
hold single, indivisible values.

12.2.2 Second Normal Form (2NF)

It builds on the principles of First Normal Form (INF) by further reducing redundancy and
ensuring that every non-key attribute is fully functionally dependent on the entire primary
key. A table is in 2NF if it meets the following criteria:

1. First Normal Form (1NF): The table must already be in 1NF.
Full Functional Dependency: Every non-key attribute must depend on the entire
primary key, not just a part of it. This rule is particularly relevant for tables with
composite primary keys.

Example
Consider a table Enrollments that is in I1NF but not in 2NF:

StudentlD CourselD StudentName CourseMName Instructor
1m Jahn Smith Math Dr. Johnson
102 John Smith Science Dr. Smith

2 101 Jane Doe Math Dr. Johnson

3 103 Bob Brown History Dr. Adams

In this table:
o The primary key is the composite key (StudentID, CourselD).
e StudentName depends only on StudentID.
o CourseName and Instructor depend only on CourselD.

To convert this table to 2NF, we need to remove partial dependencies by creating separate
tables:
1. Students Table:
CREATE TABLE Students (
StudentID INT PRIMARY KEY,
StudentName VARCHAR(50)

);
StudentlD StudentMName
lohn Smith
2 lane Dos

3 Bob Brown

DBMS 12.2 NORMALIZATION
Courses Table:
CREATE TABLE Courses (
CourselD INT PRIMARY KEY,
CourseName VARCHAR(50),
Instructor VARCHAR(50)
);
CourselD CourseName Instructor
101 Math Dr. Johnson
102 Science Dr. Smith
103 History Or. Adams

Enrollments Table:

CREATE TABLE Enrollments (
StudentID INT,
CourselD INT,
PRIMARY KEY (StudentID, CourselD),
FOREIGN KEY (StudentID) REFERENCES Students(StudentID),
FOREIGN KEY (CourselD) REFERENCES Courses(CourselD)

);

StudentlD CourselD

[

In this normalized structure:

The Students table ensures that Student Name is fully dependent on Student ID.

The Courses table ensures that Course Name and Instructor are fully dependent on
Course ID.

The Enrollments table links students to courses without any partial dependencies.

By achieving 2NF, we have eliminated partial dependencies, thus further reducing
redundancy and potential update anomalies.
Algorithm: Conversion to 2NF

R
Start with a relation in 1NF.

1.
2. Identify the primary key — if it is composite, check for partial dependencies.
3. If any non-key attribute depends on only part of the key, move it to a new relation

along with that part of the key.

Keep attributes fully functionally dependent on the whole primary key in the
original relation.

The resulting set of relations are in 2NF.

Centre for Distance Education 12.1 Acharya Nagarjuna University

Relational Algebra Expression

RZNF = nPart:’aIKey.Dependent(R) U n-FuIIKey.RemainingAttr:’butes (R)

Example
INF Relation:
COURSE(Course_ID, Student ID, Student Name, Marks)

Functional Dependencies:
e (Course ID, Student ID) — Marks
e Student ID — Student Name

Here, Student Name depends only on part of the composite key (Student ID) — Partial
Dependency.

Decompose into:
1. STUDENT(Student ID, Student Name)
2. COURSE _ENROLL(Course ID, Student 1D, Marks)

Now, all non-key attributes depend fully on their respective primary keys — 2NF.
12.2.3 Third Normal Form (3NF)

It builds on the principles of Second Normal Form (2NF) by further eliminating redundancy
and ensuring that every non-key attribute is not only fully functionally dependent on the
primary key but also non-transitively dependent on it. A table is in 3NF if it meets the
following criteria:

1. Second Normal Form (2NF): The table must already be in 2NF.
2. No Transitive Dependency: No non-key attribute should depend on another non-key
attribute. In other words, all non-key attributes must depend only on the primary key.

Example
Consider a table StudentEnrollments that is in 2NF but not in 3NF:

StudentlD CourselD InstructorlD InstructorName
101 201 Dr. Johnson
2 102 202 Dr. Smith
3 101 201 Dr. Johnson
In this table:

e The primary key is the composite key (StudentID, CourselD).
e InstructorName depends on InstructorID, which is a non-key attribute, creating a
transitive dependency.

To convert this table to 3NF, we need to remove the transitive dependency by creating
separate tables:

DBMS 12.2 NORMALIZATION

1. Instructors Table:
CREATE TABLE Instructors (
InstructorID INT PRIMARY KEY,
InstructorName VARCHAR(50)

);
InstructorlD InstructorMame
201 Dr. Johnson
202 Dr. Smith

Enrolments Table:

CREATE TABLE Enrollments (
StudentID INT,
CourselD INT,
InstructorID INT,
PRIMARY KEY (StudentID, CourseID),
FOREIGN KEY (Instructor]D) REFERENCES Instructors(InstructorID)

);

StudentlD CourselD InstructorlD
101 201

2 102 202

3 101 201

In this normalized structure:
e The Instructors table stores the instructor information, ensuring Instructor Name is
fully dependent on Instructor ID.
e The Enrollments table links students to courses and instructors without any transitive
dependencies.

By achieving 3NF, we have eliminated transitive dependencies, further reducing redundancy
and potential anomalies in the database. This normalization ensures that all non-key attributes
depend directly on the primary key and not on other non-key attributes

Algorithm: Conversion to 3NF

1. Start with relations in 2NF.

2. Identify transitive dependencies — where a non-key attribute depends on another
non-key attribute.

3. Remove transitive dependencies by creating new relations:
e Move the dependent attributes and the determinant to a separate table.

4. Retain only attributes directly dependent on the primary key in the original table.

5. The resulting relations are in 3NF.

Centre for Distance Education

12.1 Acharya Nagarjuna University

Relational Algebra Expression

RSNF = nKey.DirectDependents (R) U HNonKe_vDeterminant.Dependent(R)

Example
2NF Relation:

EMPLOYEE(Emp ID, Emp Name, Dept ID, Dept Name)

Functional Dependencies:
e Emp ID — Emp Name, Dept ID
o Dept ID — Dept Name

Dept Name depends on Dept_ID (a non-key attribute) — Transitive Dependency.

Decompose into:
1. EMPLOYEE(Emp ID, Emp Name, Dept ID)
2. DEPARTMENT(Dept ID, Dept Name)

No partial or transitive dependencies remain — 3NF achieved.

Normal Removes Key Condition Result

Form

INF Multivalued Attributes must be atomic Flat, atomic relation
attributes

2NF Partial dependency | Non-key attributes fully depend | No partial

on full key dependency

3NF Transitive Non-key depends only on key No transitive

dependency dependency

12.3 BOYCE-CODD NORMAL FORM (BCNF)

12.3.1 Boyce-Codd Normal Form (BCNF) is an advanced version of the Third Normal
Form (3NF) in database normalization. BCNF aims to eliminate redundancy and potential
anomalies by ensuring that all functional dependencies in a relation are appropriately

managed.

A relation is in Boyce-Codd Normal Form (BCNF) if it satisfies the following conditions:
I. It is in Third Normal Form (3NF): The relation must already meet all the
requirements of 3NF.
2. Every determinant is a candidate key: For every functional dependency X—YX \to
YX—Y, XXX must be a superkey (a set of attributes that uniquely identify a tuple in
a relation).

12.3.2 Difference Between 3NF and BCNF

While 3NF ensures that non-key attributes are non-transitively dependent on the primary key,
BCNF takes this a step further by addressing situations where 3NF might still allow certain

DBMS 12.2 NORMALIZATION

types of redundancy. Specifically, BCNF ensures that even when a functional dependency
involves a part of a candidate key, it does not violate normalization principles.

Example

Consider a table Courses with the following attributes:

CourselD Instructor Room

101 Dr. Smith Room 1
102 Dr. Brown Room 2
103 Dr. Smith Room 2

Functional dependencies in this table:
1. CourselD—InstructorCourselD \to InstructorCourse]D— Instructor
2. Instructor—Roomlnstructor \to RoomInstructor-Room

The composite key here can be either CourseID CourseID CourselD or
InstructorInstructorInstructor, as each uniquely identifies a course offering.

Identifying BCNF Violation
In this case, Instructor—Roomlnstructor \to RoomInstructor—Room is problematic because
Instructor is not a superkey. This means the table is in 3NF (as there are no transitive

dependencies), but not in BCNF.

Difference Between 3NF and BCNF

Feature Third Normal Form (3NF) Boyce—Codd Normal
Form (BCNF)
Definition A relation is in 3NF if for every functional | A relation is in BCNF if
dependency X — Y, at least one of the | for every functional
following holds:1. X is a superkey, or2. Y is | dependency X — Y, X is a
a prime attribute (part of some candidate | superkey.
key).
Condition Allows non-superkey determinants if Y is a | Stricter — every
Relaxation prime attribute. determinant must be a
superkey.
Anomaly Removes partial and transitive | Removes all anomalies
Removal dependencies but may still allow some | related to functional
anomalies. dependencies.
Dependency Always possible — 3NF decomposition | May not preserve all
Preservation preserves all dependencies. dependencies after
decomposition.
Lossless Join Always ensures a lossless join. Also ensures a lossless
Property join.
Focus Balances dependency preservation and | Focuses on eliminating
normalization. redundancy completely.
Level of Less restrictive than BCNF. More restrictive — special

Centre for Distance Education 12.1

Acharya Nagarjuna University

Restriction case of 3NF.

Example In 3NF: Relation may allow FD where | In BCNF: Such an FD is

(Violating determinant is not a key but dependent is a | not allowed —

3NF/BCNF) prime attribute. determinant must be a key.

Preferred Dependency preservation is more important | Data integrity and anomaly

When (e.g., in practical systems). elimination are more
critical.

12.3.3 Examples and Decomposition into BCNF

To achieve BCNF, we decompose the table into two relations:

Instructors Table:
CREATE TABLE Instructors (
Instructor VARCHAR(50) PRIMARY KEY,

Room VARCHAR(50)

);
Instructor Room
Dr. Smith Room 2
Dr. Brown Room 2

Courses Table:

CREATE TABLE Courses (
CourselD INT PRIMARY KEY,
Instructor VARCHAR(50),

FOREIGN KEY (Instructor) REFERENCES Instructors(Instructor)

);

CourselD

101

102

103

Instructor

Dr. Smith

Dr. Brown

Dr. Smith

Importance

Achieving BCNF ensures that all functional dependencies are properly managed, eliminating
redundancy and potential update anomalies. BCNF is particularly useful in complex database
designs where multiple candidate keys and intricate dependencies exist, providing a higher

level of normalization than 3NF.

By decomposing relations into BCNF, database designers can create more robust, reliable,
and efficient database schemas that uphold data integrity and consistency.

DBMS 12.2 NORMALIZATION

Algorithm to decompose a relation into BCNF (high level)

R
1. Input: relation with a set of functional dependencies

X-Y Ft X R
2. Ifevery FD in has asasuperkey of ,then Risin BCNF — stop.

X-=Y X
3. Otherwise pick a violating FD where is not a superkey.

4. Decompose into two relations:

Ri=m R XUy
! xor()(attributes)

R; = TIR\[Y](R)) R Y
(attributes of with removed)

R R R
5. Replace by *and 2; compute the projection of on these relations (i.e.,
relevant FDs).

R R
6. Recursively apply the algorithm to *and " “until every relation is in BCNF.
7. Output: set of BCNF relations (decomposition).

o Use BCNEF to eliminate anomalies caused by FDs whose determinants are not keys.

e Expect possible loss of dependency preservation — if preserving all FDs is essential
(e.g., for efficient enforcement), 3NF may be preferred because it always allows
dependency preservation while removing many anomalies.

12.4 SUMMARY

This chapter, we explored the concept of normalization, a systematic approach to organizing
data in a database to reduce redundancy and improve data integrity. The process of
normalization involves dividing larger, complex tables into smaller, related ones using well-
defined rules known as normal forms. We began with First Normal Form (1NF), which
eliminates repeating groups by ensuring that each attribute contains only atomic (indivisible)
values. Second Normal Form (2NF) extends this by removing partial dependencies—
ensuring that all non-key attributes are fully functionally dependent on the entire primary key.
Third Normal Form (3NF) further refines this by removing transitive dependencies, where
non-key attributes depend on other non-key attributes.

We also studied the Boyce—Codd Normal Form (BCNF), which is a stricter version of 3NF,
ensuring that every determinant is a candidate key. BCNF provides a higher degree of data
consistency by eliminating all possible anomalies related to functional dependencies. The
chapter compared 3NF and BCNF, emphasizing that while 3NF allows some redundancy
under certain conditions, BCNF enforces stricter dependency rules. Practical examples and
decomposition steps illustrated how complex relations can be broken down into BCNF-
compliant structures without losing data. Overall, normalization ensures efficient, reliable,

Centre for Distance Education 12.1 Acharya Nagarjuna University

and logically structured databases that support easier maintenance and accurate query
processing.

12.5 TECHNICAL TERMS

o Functional Dependency (FD)

e Normalization

e First Normal Form (INF)

e Second Normal Form (2NF)

e Third Normal Form (3NF)

e Boyce—Codd Normal Form (BCNF)
e Anomaly

e Decomposition

e Lossless Decomposition

o Reliability

12.6 SELF ASSESSMENT QUESTIONS
Essay questions:

1. Illustrate about BCNF
2. Describe about 2NF and 3NF
3. Explain about Functional Dependency

Short Notes:

1. Write Transaction Dependency
2. Define Full functional dependency
3. Explain about Armstrong’s Axioms

12.7 SUGGESTED READINGS

1. Codd, E. F. (1970). "A Relational Model of Data for Large Shared Data Banks."
Communications of the ACM, 13(6), 377-387.

2. Date, C. J. (2003). "An Introduction to Database Systems." 8th Edition. Addison-
Wesley.

3. Silberschatz, A., Korth, H. F., & Sudarshan, S. (2010). "Database System Concepts."
6th Edition. McGraw-Hill.

4. Ullman, J. D., & Widom, J. (2008). "A First Course in Database Systems." 3rd
Edition. Pearson.

Dr. Vasantha Rudramalla

LESSON- 13
RELATIONAL DATABASE DESIGN ALGORITHMS

AIMS AND OBJECTIVES

The primary goal of this chapter is to understand the concept of Relational Database Design
Algorithms. The chapter began Informal Design Guidelines for Relation Schemas and
Algorithms for Relational Database Schema Design with example. After completing this
chapter, the student will understand Relational Database Design Algorithms.

13.1 INTRODUCTION
13.2 PROPERTIES OF RELATIONAL DECOMPOSITIONS
13.2.1 NEED FOR DECOMPOSITION
13.2.2 DESIRABLE PROPERTIES OF DECOMPOSITION
(A) ATTRIBUTE PRESERVATION
(B) LOSSLESS (NON-ADDITIVE) JOIN PROPERTY
(C) DEPENDENCY PRESERVATION
13.2.3 TRADE-OFFS IN DECOMPOSITION
13.2.4 EXAMPLE — DECOMPOSITION OF AN EMPLOYEE RELATION
13.3 ALGORITHMS FOR RELATIONAL DATABASE SCHEMA DESIGN
13.3.1 ALGORITHM FOR TESTING LOSSLESS JOIN PROPERTY
13.3.2 ALGORITHM FOR TESTING DEPENDENCY PRESERVATION
13.3.3 ALGORITHM FOR FINDING CANONICAL COVER
13.3.4 ALGORITHM FOR 3NF DECOMPOSITION
13.3.5 ALGORITHM FOR BCNF DECOMPOSITION
13.3.6 ALGORITHM FOR COMPUTING ATTRIBUTE CLOSURE
13.3.7 EXAMPLE - STEP-BY-STEP APPLICATION ON A UNIVERSITY
DATABASE
13.4 NORMALIZATION AND SCHEMA REFINEMENT
13.4.1 STEPWISE NORMALIZATION USING FDS
13.4.2 FROM INF TO BCNF — ALGORITHMIC APPROACH
13.43 ADVANTAGES AND LIMITATIONS OF ALGORITHMIC
NORMALIZATION
13.5 DESIGN EXAMPLE: LIBRARY DATABASE SCHEMA
13.5.1 GIVEN FUNCTIONAL DEPENDENCIES
13.5.2 FINDING KEYS USING ATTRIBUTE CLOSURE
13.5.3 APPLYING 3NF DECOMPOSITION ALGORITHM
13.5.4 ENSURING DEPENDENCY PRESERVATION
13.6 SUMMARY
13.7 TECHNICAL TERMS
13.8 SELF-ASSESSMENT QUESTIONS
13.9 SUGGESTED READINGS

Centre for Distance Education 13.2 Acharya Nagarjuna University

13.1 INTRODUCTION

Designing a good relational database schema is a crucial step in ensuring that data is stored
efficiently, consistently, and without redundancy. Poorly designed schemas often lead to
update anomalies, data inconsistency, and redundant information. To avoid these problems,
designers apply systematic approaches such as normalization and decomposition algorithms
that transform large, complex relations into smaller, well-structured relations.

In relational database theory, decomposition refers to the process of breaking down a relation
schema into multiple smaller schemas that satisfy certain desirable properties. The key goal is
to simplify the database structure while preserving important characteristics such as data
integrity, dependency preservation, and lossless join. These ensure that no data is lost or
misrepresented during the decomposition process.

For example, consider a relation EMP DEPT(Emp ID, Emp Name, Dept Name,
Dept_Location). If multiple employees belong to the same department, repeating Dept Name
and Dept_Location causes redundancy. Decomposing this into:

EMPLOYEE(Emp ID, Emp Name, Dept Name)
DEPARTMENT(Dept Name, Dept Location)

removes redundancy while maintaining all relationships through a foreign key.
Thus, relational design algorithms focus on identifying dependencies and decomposing
relations so that the resulting schema is both efficient and logically sound.

13.2 PROPERTIES OF RELATIONAL DECOMPOSITIONS

Decomposition is an essential part of database design. However, not every decomposition is
beneficial — an improper decomposition can lead to data loss or dependency violations. To
evaluate the quality of a decomposition, we use specific properties that every good
decomposition should satisfy.

13.2.1 Need for Decomposition

e A relation schema may contain data redundancy and anomalies (insertion, deletion,
update).

e Decomposition helps simplify complex relations into smaller ones, making them
easier to manage.

e Each resulting relation should maintain data integrity and consistency with the
original schema.

13.2.2 Desirable Properties of Decomposition

Desirability of Decomposition refers to the benefits and considerations involved in breaking
down a relational database schema into smaller, more manageable relations. Decomposition
is often guided by the goals of eliminating redundancy, preventing anomalies, and ensuring
data integrity. The key criteria for desirable decomposition include maintaining the lossless
join property and preserving dependencies.

DBMS 13.3 Relational Database...

Importance

e Reduces Redundancy: Eliminates duplicate data, thereby saving storage space and
ensuring that data updates are more efficient.

o Prevents Anomalies: Helps avoid update, insertion, and deletion anomalies that can
lead to inconsistent and unreliable data.

e Enhances Data Integrity: Ensures that the integrity constraints of the original
schema are maintained, thus preserving the accuracy and consistency of the data.

e Improves Query Performance: By creating more focused and smaller tables,
decomposition can enhance the performance of queries and updates.

Example:

Given FDs:

Emp ID — Emp Name, Dept ID
Dept ID — Dept Name

If decomposition allows each FD to be enforced locally in one of the decomposed relations,
dependency preservation is satisfied.

A good decomposition must satisfy three key properties:

(a) Attribute Preservation

All attributes from the original relation R must appear in at least one of the decomposed
relations.

Formally:

R :RIURZ U...u R]":

where every attribute in appears in at least one

Example:

Original Relation: STUDENT(Student ID, Name, Course, Instructor)
Decomposed into:

STUDENT INFO(Student ID, Name)

COURSE_INFO(Course, Instructor)

All attributes {Student ID, Name, Course, Instructor} are preserved.

(b) Lossless (Non-Additive) Join Property

The Lossless Join Property is a critical feature in relational database design that ensures data
integrity during the decomposition of a relation into smaller relations. A decomposition of a
relation RRR into two or more relations R1,R2,...RnR1, R2, ..., RnR1,R2,...,Rn is said to
have the lossless join property if, by joining these decomposed relations, we can exactly
recreate the original relation RRR without any loss of information or introduction of spurious
tuples.

Importance
o Data Integrity: Ensures that the decomposed relations, when joined, yield the exact
original dataset, preserving all data accurately.
o Consistency: Prevents anomalies and inconsistencies that can arise from improper
decomposition.

Centre for Distance Education 13.4 Acharya Nagarjuna University

o Database Efficiency: Enables effective normalization by decomposing tables to
reduce redundancy while maintaining the ability to reconstruct the original data
accurately.

This ensures that no information is lost when decomposed relations are joined back together.
For a decomposition of relation R into R1 and Rz, the decomposition is lossless if:

R,MR,=R

That is, joining R: and R2 on their common attributes must reproduce the original relation
exactly.

Example:

If EMP(Emp ID, Emp Name, Dept ID, Dept Name) is decomposed into:
EMPLOYEE(Emp ID, Emp Name, Dept ID)

DEPARTMENT(Dept ID, Dept Name)

Then joining on Dept ID gives back the original EMP relation without generating spurious
tuples.

(c) Dependency Preservation

Dependency Preservation is a crucial property in relational database design that ensures all
functional dependencies from the original relation are still enforceable after decomposition
into smaller relations. A decomposition is said to preserve dependencies if every functional
dependency in the original schema can be derived from the set of dependencies in the
decomposed schema without requiring access to the original relation.

Importance
e Maintains Data Integrity: Ensures that all original constraints are preserved and can
be enforced in the decomposed relations, preventing data anomalies.
o Simplifies Constraint Management: Allows constraints to be checked and enforced
locally within the decomposed relations without needing to join them back together.
o Efficient Updates and Queries: Improves performance by enabling efficient updates
and queries while maintaining the integrity constraints.

Functional dependencies (FDs) describe constraints that must hold among attributes.
A decomposition preserves dependencies if all FDs from the original schema can be checked
using only the decomposed relations — without performing costly joins.

13.2.3 Trade-offs in Decomposition
e Sometimes, achieving lossless join and dependency preservation simultaneously is
not possible.
o BCNF decomposition ensures lossless join but may lose dependency preservation.
e 3NF decomposition ensures both dependency preservation and lossless join but may
retain minimal redundancy.

Hence, database designers often balance between strict normalization and practical
enforceability of constraints.

DBMS 13.5

Relational Database...

13.2.4 Example — Decomposition of Employee Relation
Given relation:
EMP(Emp ID, Emp Name, Dept ID, Dept Name)
FDs: Emp ID — Emp Name, Dept ID
Dept ID — Dept Name

Decompose into:
EMPLOYEE(Emp ID, Emp Name, Dept ID)
DEPARTMENT(Dept ID, Dept Name)

This decomposition:
e Preserves attributes
e Maintains lossless join (common key: Dept ID)
e Preserves dependencies

Hence, it is a good decomposition.

13.3 ALGORITHMS FOR RELATIONAL DATABASE SCHEMA DESIGN

Algorithms for Relational Database Schema Design are systematic methods used to
transform a database schema into a normalized form. These algorithms ensure that the

13.3.1 Algorithm for Testing Lossless Join Decomposition

The algorithm for testing lossless join decomposition ensures that the join of decomposed
relations results in the original relation. This involves checking if the common attributes in

the decomposed relations form a superkey.

Steps in the Algorithm
1. Identify the Decomposition:

e Let the original relation RRR be decomposed into two or more relations

R1,R2,...RnR1, R2, ..., RnR1,R2,....Rn.
2. Construct the Join Dependency Matrix:

e Create a matrix where each row represents an attribute in the original relation RRR,

and each column represents a decomposed relation RiRiRi.

e Initialize the matrix with zeros.
3. Mark the Attributes:

e For each decomposed relation RiRiRi, mark the columns corresponding to the

attributes present in RiRiR1.
4. Propagation of Marks:

e Propagate the marks across the matrix based on the common attributes between

decomposed relations.
5. Test for Lossless Join:

e Check if each row in the matrix has at least one column that is fully marked. This
indicates that the original relation can be perfectly reconstructed from the

decomposed relations.

Centre for Distance Education 13.6 Acharya Nagarjuna University

Example
1. Consider a relation R(A,B,C) with the following functional dependencies:
A—BA to BA—B
B—CB to CB—C

2. Decompose R into R1(A,B) and R2(B,C).

Identify the Decomposition:
¢ R is decomposed into R1(A,B) and R2(B,C).

Construct the Join Dependency Matrix:

R1(A. B) R2(B. C)
A 0 0
B 0 a
C 4] Q

1. Mark the Attributes:
e For R1(A,B):
e Mark columns for attributes A and B.

R1(A., B) R2(B. C)
A 1 0
B 1 0
C 0 0

For R2(B,C):
e Mark columns for attributes B and C.
R1(A, B) R2(B, C)
A 1 0
B 1
C 0

2. Propagation of Marks:
e Propagate the marks based on the common attribute B.

5. Test for Lossless Join:

o Check each row:
e Row for A has at least one mark in the column corresponding to R1.
e Row for B has marks in both columns.
e Row for C has at least one mark in the column corresponding to R2.

Since each row has at least one column that is fully marked, the decomposition has the
lossless join property.

DBMS 13.7 Relational Database...

The algorithm for testing lossless join decomposition ensures that decomposing a relation
into smaller relations does not result in the loss of any data. This property is essential for
maintaining data integrity and consistency in a relational database schema.

13.3.2Algorithm for Dependency Preservation

This algorithm verifies that all functional dependencies are preserved in the decomposed
schema. It involves checking if the closure of the functional dependencies in the decomposed
relations includes all original dependencies.

The Algorithm for Dependency Preservation is used to verify that all functional
dependencies of the original relation are preserved in the decomposed schema. This ensures
that the integrity constraints enforced by the functional dependencies can still be checked
without needing to access the original relation.

Steps in the Algorithm
1. Identify the Functional Dependencies:
e Let R be the original relation with a set of functional dependencies F.
2. Decompose the Relation:
e Decompose RRR into a set of relations R1,R2,...,Rn.
3. Project Functional Dependencies:

e For each decomposed relation Ri, compute the projection of F on Ri, denoted as Fi.
The projection of F on Ri includes all functional dependencies in F that involve only
attributes of Ri.

4. Compute the Closure:

e Compute the closure of the union of the projected dependencies F1UF2U...UFn ,
denoted as (FIUF2U...UFn)+.

5. Check for Dependency Preservation:

e Verify that every functional dependency in F is included in the closure
(F1UF2U...UFn)+. If all dependencies in Fare present in the closure, then the
decomposition preserves dependencies.

Example

Consider a relation R(A,B,C) with functional dependencies:
1. A—B
2. B—C

Decompose RRR into R1(A,B)R1(A, B)R1(A,B) and R2(B,C)R2(B, C)R2(B,C).
1. Identify the Functional Dependencies:
e F={A—B,B—C}
2. Decompose the Relation:
e Decomposed relations are R1(A,B) and R2(B,C)
3. Project Functional Dependencies:
o For R1(A,B):
e Projection F1={A—B}
o For R2(B,C):
= Projection F2={B—C}
4. Compute the Closure:
e FIUF2={A—B,B—C}
e Compute the closure (F1UF2)+:

Centre for Distance Education 13.8 Acharya Nagarjuna University

e Start with {A—B,B—C}
e From A—B and B—C, by transitivity, derive A—C
e (F1UF2)+={A—B,B—C,A—C}

5. Check for Dependency Preservation:
o Verify that every functional dependency in F is in (F1UF2)+:
* A—Bisin (FIUF2)+
* B—Cisin (FIUF2)+
= All dependencies from F are preserved in the closure.

Since all functional dependencies from the original set F are preserved in the closure of the
projected dependencies, the decomposition is dependency-preserving.

The algorithm for dependency preservation ensures that all functional dependencies of the
original relation are maintained in the decomposed schema. This is essential for ensuring that
the integrity constraints can still be enforced without requiring access to the original relation,
thereby maintaining the consistency and reliability of the database schema.

13.3.3 Algorithm for Finding Canonical Cover

Purpose:
To eliminate redundant attributes and FDs from a given set of dependencies.

Steps:
1. Split RHS of each FD so that each has a single attribute.
2. Remove extraneous attributes from LHS and RHS using closure test.
3. Remove redundant dependencies.

Example:
Given FDs: {A — BC,B —» C, A — B}
Canonical Cover: {A — B, B — C}.

13.3.4 Algorithm for 3NF Decomposition
Steps:
1. Compute canonical cover Fc.
2. For each FD X — Y in Fc, create a relation R(X U Y).
3. Ifnone of these relations contain a key for R, add one relation with a key.
4. Ensure lossless join.

Produces a dependency-preserving, lossless decomposition.

13.3.5 Algorithm for BCNF Decomposition

Steps:
1. Start with R and FDs.
2. IfRis not in BCNF, find dependency X — Y that violates BCNF.
3. Decompose R into:

DBMS 13.9 Relational Database...

RI=XUY
R2=R—-(Y-X)
1. Repeat for R and R: until all relations are in BCNF.

13.3.6 Algorithm for Computing Attribute Closure
Used to determine candidate keys or infer dependencies.

Steps:
1. Start with X* =X.
2. ForeachFDY —» ZinF,if Y € X%, add Z to X".
3. Repeat until X* stops changing.
4. X*now represents all attributes functionally determined by X.

Example:

FDs: {A — B,B — C}
Closure of A = {A, B, C}.

13.3.7 Example — University Database Design

Given Relation:
COURSE(Course 1D, Title, Dept_ID, Instructor, Credits)

FDs:
e Course ID — Title, Dept ID, Credits
e Dept ID — Instructor

Step 1: Identify redundancy — Instructor depends on Dept_ID.

Step 2: Decompose into:
COURSE(Course_ID, Title, Dept_ID, Credits)
DEPARTMENT(Dept ID, Instructor)

Step 3: Verify:
e Attribute preservation
e Lossless join (via Dept ID)
e Dependency preservation

13.4 Normalization and Schema Refinement

Algorithms provide a systematic foundation for schema normalization, ensuring all relations
meet INF-BCNF standards through dependency testing and decomposition.
Normalization improves clarity, reduces anomalies, and makes schema maintenance easier.
However, over-normalization can fragment data and degrade query performance, so designers
must strike a balance between theoretical perfection and practical efficiency.

13.5 Design Example — Library Database
Given Relation:

Centre for Distance Education 13.10 Acharya Nagarjuna University

LIBRARY (Book ID, Title, Author, Category, Borrower ID, Borrower Name)
FDs:

e Book ID — Title, Author, Category

o Borrower ID — Borrower Name

e Book ID — Borrower ID

After decomposition:

BOOK(Book ID, Title, Author, Category)
BORROWER(Borrower ID, Borrower Name)
TRANSACTION(Book ID, Borrower ID)

e All anomalies removed
e Lossless join ensured
e Dependencies preserved

13.6 Summary

This lesson presented the formal foundation and algorithms of relational database design.
You learned about key decomposition properties — attribute preservation, lossless join,
and dependency preservation — and how to test them using algorithmic techniques.
Design algorithms such as canonical cover, attribute closure, 3NF and BCNF
decomposition enable structured schema refinement.

The algorithms ensure that relational designs are robust, redundancy-free, and efficient,
forming the backbone of modern database normalization and schema optimization.

13.7 Technical Terms
1. Decomposition

2. Functional Dependency

3. Canonical Cover

4. Lossless Join

5. Dependency Preservation

6. Attribute Closure

7. 3NF Decomposition

8. BCNF Decomposition

9. Redundancy

10. Normalization

13.8 Self-Assessment Questions

Essay Questions

Explain the properties of a good relational decomposition with suitable examples.
Discuss the algorithm for testing lossless join decomposition.

Describe how dependency preservation can be ensured during schema design.
Explain the role and computation of the canonical cover.

Differentiate between 3NF and BCNF decomposition algorithms.

Nk W=

DBMS 13.11 Relational Database...
Short Questions
1. Define lossless join property.
2. What is attribute preservation?
3. State the purpose of attribute closure.
4. Write one difference between 3NF and BCNF.
5. List the steps of the canonical cover algorithm.
13.9 Suggested Readings
1. Ramez Elmasri & Shamkant B. Navathe — Fundamentals of Database Systems,
Pearson.
2. C.J. Date — An Introduction to Database Systems, Addison-Wesley.
3. Abraham Silberschatz, H.F. Korth, & S. Sudarshan — Database System Concepts,
McGraw Hill.
4. Raghu Ramakrishnan & Johannes Gehrke — Database Management Systems,
McGraw Hill.
5. Thomas Connolly & Carolyn Begg — Database Systems: A Practical Approach,

Pearson.

Dr. U. Surya Kameswari

LESSON- 14
FURTHER DEPENDENCIES

AIMS AND OBJECTIVES

The primary goal of this chapter is to understand the concept of Further Dependencies. The
chapter began Functional dependencies, After completing this chapter, the student will
understand Further Dependencies which includes 4NF,5SNF,6NF and etc.

14.1 INTRODUCTION

14.2 MULTIVALUED DEPENDENCIES AND FOURTH NORMAL FORM
14.3 JOIN DEPENDENCIES AND FIFTH NORMAL FORM

14.4 INCLUSION DEPENDENCIES

14.5 OTHER DEPENDENCIES AND NORMAL FORMS

14.6 SUMMARY

14.7 TECHNICAL TERMS

14.8 SELF-ASSESSMENT QUESTIONS

14.9 SUGGESTED READINGS

14.1 INTRODUCTION

As database systems grow in complexity, relations that already satisfy Boyce—Codd Normal
Form (BCNF) may still exhibit subtle forms of redundancy.
This residual redundancy often arises from multivalued or join dependencies that are not
captured by functional dependencies alone. To address these, higher normal forms — the
Fourth Normal Form (4NF) and the Fifth Normal Form (SNF) — are introduced.

These advanced normal forms extend the principles of normalization by eliminating
redundancies that occur due to the presence of independent multi-valued attributes or
complex join relationships among multiple tables.

In addition, other dependency types such as inclusion dependencies, temporal, and domain-
key constraints further refine schema design by imposing relationships across tables.
The goal of this lesson is to understand:

e How multivalued dependencies (MVDs) can cause redundancy even in BCNF
relations,

e How join dependencies (JDs) arise and how to achieve Fifth Normal Form (5NF),

e Therole of inclusion dependencies in maintaining referential integrity, and

e The importance of other advanced dependencies for maintaining data accuracy and
consistency.

14.2 MULTIVALUED DEPENDENCIES AND FOURTH NORMAL FORM

14.2.1 Concept of Multivalued Dependencies

A multivalued dependency (MVD) occurs when one attribute in a relation determines a set of
values for another attribute independently of other attributes.

It is denoted as:

Centre for Distance Education 14.2 Acharya Nagarjuna University

X =Y

This means that for each value of X, there exists a set of independent values of Y, unrelated
to other attributes in the relation.
An MVD is trivial if:

YckX
. , Or

XUY =R

Otherwise, it is non-trivial.
14.2.2 Example of MVD
Consider the relation:

COURSE(Course 1D, Textbook, Instructor)
e A course may be taught by several instructors.
e The same course may also have multiple textbooks.

Hence, for a given Course_ID, the attributes Textbook and Instructor are independent
multivalued attributes.
Thus:

Course ID — Instructor
and
Course ID —» Texthook

If we store all combinations in a single relation, redundancy appears:

Course ID | Instructor Textbook
C101 Dr. Meena | DBMS
C101 Dr. Meena | SQL
C101 Dr. Ramesh | DBMS
C101 Dr. Ramesh | SQL

Each instructor—textbook pair repeats unnecessarily.

14.2.3 Decomposition into Fourth Normal Form

To remove this redundancy, we decompose the relation based on MVDs:
COURSE_INSTRUCTOR(Course_ID, Instructor)

COURSE _TEXTBOOK(Course_ID, Textbook)

Each now represents an independent multivalued relationship.

When these relations are joined on Course ID, we can reconstruct the original data without
spurious tuples.

14.2.4 Definition of Fourth Normal Form (4NF)

A relation is in Fourth Normal Form (4NF) if it is in Boyce-Codd Normal Form (BCNF) and
contains no non-trivial multivalued dependencies. Decomposing into 4NF involves removing
MVDs by creating separate relations.

DBMS 14.3 Further Dependencies

Achieving 4NF

To achieve 4NF, decompose the relation to eliminate MVDs while ensuring that the
decomposition maintains the lossless join property.
A relation R is in 4NF if and only if:
e Itis in Boyce—Codd Normal Form (BCNF), and
XY
e For every non-trivial multivalued dependency in R,
X is a superkey of R.

Thus, 4NF eliminates redundancies arising from independent multivalued dependencies,
ensuring that data is not duplicated across unrelated attributes.

14.2.5 Example Summary

Before 4NF:
COURSE(Course_ID, Instructor, Textbook)
After 4NF decomposition:
COURSE _INSTRUCTOR(Course_ID, Instructor)
COURSE_TEXTBOOK(Course_ID, Textbook)
e Redundancy removed
e Lossless join maintained
e Multivalued dependencies represented separately

Example:
Given the relation R(Student, Course, Hobby) with MVDs Student——Course and
Student——Hobby :

1. Original Relation:

Student Course Hobby
John Math Reading
John Math Swimming
John Science Reading

John Science Swimming

Centre for Distance Education 14.4 Acharya Nagarjuna University

2. Decompose into Two Relations:

e R1(Student, C'ourse):

Student Course
John Math
John science

e R2(Student, Hobby):

Student Hobby
John Reading
lohn Swimming

Fig 14.1 Result of 4NF

These decomposed relations are now in 4NF, eliminating the multivalued dependencies and
ensuring that each attribute is independently associated with the key attribute.

Multivalued dependencies highlight situations where one attribute determines a set of values
independently of others. Fourth Normal Form (4NF) addresses these dependencies, further
refining the database schema to eliminate redundancy and improve data integrity. By
decomposing relations to remove MVDs, 4NF ensures a more robust and efficient database
design.

14.3 JOIN DEPENDENCIES AND FIFTH NORMAL FORM
14.3.1 Concept of Join Dependency

A join dependency (JD) specifies that a relation can be reconstructed by joining several
projections of the relation. It is a generalization of functional and multivalued dependencies.
A join dependency (JD) generalizes both functional and multivalued dependencies.
It specifies a constraint that a relation R can be reconstructed by joining multiple
projections of itself.

- JD(R1, Ry, ..., Ry) . :
Formally, a join dependency holds on relation R if:

R=R; MR, M- XR,
That is, the join of these projections yields exactly R, with no extra or missing tuples.

n=2
Every multivalued dependency is a special case of join dependency where

DBMS 14.5 Further Dependencies

14.3.2 Fifth Normal Form (5NF)

A relation is in Fifth Normal Form (5NF) if it is in 4NF and contains no non-trivial join
dependencies. Decomposing into SNF involves breaking down the relation into smaller
relations that can be joined without loss of information.

A relation R is in Fifth Normal Form (5NF), also called Project-Join Normal Form (PJNF), if:

e Jtisin 4NF, and

e Every non-trivial join dependency in R is implied by the candidate keys of R.5SNF
ensures that a relation cannot be decomposed further without losing information or
introducing spurious tuples.

14.3.3 Example of SNF

Consider the relation:
SUPPLY (Supplier, Part, Project)
Interpretation:

e A supplier supplies certain parts.

e Each part is used in certain projects.

If these three facts are independent, redundancy appears because each combination of
(Supplier, Part, Project) repeats values unnecessarily.

Supplier | Part | Project
S1 Pl |J1
S1 P2 |J1
S1 Pl |]2

This redundancy can be eliminated by decomposing into:

SUPPLIER PART(Supplier, Part)

SUPPLIER PROJECT(Supplier, Project)

PART PROJECT(Part, Project)

Joining these three relations reconstructs the original data — a lossless join satisfying SNF.

Example
Given the relation R(A,B,C) with a join dependency:

1. Original Relation:

A B C
X 10

2 b 20
X 20

(]
-

10

Centre for Distance Education 14.6 Acharya Nagarjuna University

These decomposed relations are now in SNF, eliminating the join dependencies and ensuring
that the original relation can be reconstructed without loss of information. Join dependencies
are a powerful concept in relational database theory, allowing for the reconstruction of a
relation from its projections. Fifth Normal Form (5NF) addresses these dependencies,
ensuring that the database schema is fully normalized, with no redundant data and all join
dependencies preserved. Achieving SNF guarantees the most refined and efficient database
design, capable of handling complex data relationships with minimal redundancy and
maximum data integrity.

2. Decompose into Three Relations:

e« RI1(A B):

A B
X

2 W

e R2(B,C):

B C

bt 10

Y 20

X 20

Y 10

e R3(A CY):

A C

10

Pt

20

20

M

10

Fig 14.2 Result of SNF
14.3.4 Significance of SNF

SNF removes redundancies caused by complex join dependencies that cannot be expressed
as simple functional or multivalued dependencies.

It ensures the database schema represents independent facts only once, which is vital for
large-scale distributed and analytical systems.

DBMS 14.7 Further Dependencies

14.4 Inclusion Dependencies

Inclusion Dependencies (INDs) are constraints in a relational database that ensure values in
certain columns (or sets of columns) of one relation must also appear in certain columns of
another relation. This concept is fundamental in enforcing referential integrity, typically
implemented through foreign key constraints.

14.4.1 Definition

An inclusion dependency (IND) specifies that a set of values in one relation must appear as
values in another relation.

It is denoted as:

R1[X] € R,[Y]

Meaning: The set of values of attribute(s) X in relation R: must exist as values of attribute(s)
Y in relation Ra.

Inclusion Dependencies can be formally defined as follows: Given two relations Rland R2,
an inclusion dependency specifies that a set of attributes A in R1 must match a set of
attributes B in R2. This is denoted as R1[A]SR2[B].

Types of Inclusion Dependencies:
1. Simple Inclusion Dependencies: The dependency involves a single attribute or a simple
set of attributes.
e Example: The foreign key constraint where the DepartmentID in an Employees table
must match the DepartmentID in a Departments table.
2. Compound Inclusion Dependencies: The dependency involves a compound set of
attributes.
e Example: A dependency involving a combination of attributes such as (EmployeelD,
ProjectID) in an Assignments table matching (EmployeelD, ProjectID) in a Projects
table.

14.4.2 Example

In a university database:
STUDENT(Student ID, Name, Dept_ID)
DEPARTMENT(Dept ID, Dept Name)

We define an inclusion dependency:

STUDENT[Dept_ID] € DEPARTMENT [Dept_ID]

This ensures that every student’s department exists in the DEPARTMENT table — a form of
referential integrity constraint.

Example: In a Students and Enrollments schema, ensuring that every StudentID in the
Enrollments table appears in the Students table.
CREATE TABLE Students (

StudentID INT PRIMARY KEY,

StudentName VARCHAR(100)

)

Centre for Distance Education 14.8 Acharya Nagarjuna University

CREATE TABLE Enrollments (
EnrollmentID INT PRIMARY KEY,
StudentID INT,
CourselD INT,
FOREIGN KEY (StudentID) REFERENCES Students(StudentID)

);

Data Consistency Across Relations:
Example: Ensuring that all product IDs in an OrderDetails table exist in a Products table.
CREATE TABLE Products (

ProductID INT PRIMARY KEY,

ProductName VARCHAR(100)

)i

CREATE TABLE OrderDetails (
OrderDetaillD INT PRIMARY KEY,
OrderID INT,
ProductID INT,
FOREIGN KEY (ProductID) REFERENCES Products(ProductID)
)i
14.4.3 Role of Inclusion Dependencies
o Enforce foreign key constraints.
e Maintain consistency across relations.
e Prevent insertion of invalid or orphan references.
o Essential for distributed databases, where relations may span multiple sites.

Enforcing inclusion dependencies involves defining foreign keys and other constraints to
maintain consistency between related tables.

Example of Enforcing Inclusion Dependencies:

Departments:
DepartmentlD DepartmentMame
HR
2 T
Employees:
EmployeelD EmployeeMame DepartmentlD
101 Alice 1
102 Bob 2

The foreign key constraint ensures that every DepartmentID in the Employees table must
match a DepartmentID in the Departments table:
CREATE TABLE Departments (

DepartmentID INT PRIMARY KEY,

DepartmentName VARCHAR(100)

)

DBMS 14.9 Further Dependencies

CREATE TABLE Employees (
EmployeelD INT PRIMARY KEY,
EmployeeName VARCHAR(100),
DepartmentID INT,
FOREIGN KEY (DepartmentID) REFERENCES Departments(DepartmentID)

)i

Inclusion Dependencies are crucial for maintaining referential integrity and consistency in
relational databases. By ensuring that values in certain columns of one relation must appear
in columns of another relation, INDs help prevent data anomalies and enforce relationships
between different entities in the database schema.

14.5 OTHER DEPENDENCIES AND NORMAL FORMS

Beyond functional, multivalued, and join dependencies, there are other forms of constraints
that play roles in advanced schema design.

14.5.1 Domain-Key Normal Form (DKNF)

A relation is in Domain-Key Normal Form if it meets all domain constraints and key
constraints, ensuring that all possible constraints are captured by domain and key
dependencies.
A relation is in Domain-Key Normal Form (DKNF) if all constraints on the relation are a
logical consequence of:

o Domain constraints (allowable values for each attribute), and

o Key constraints (uniqueness of primary keys).

In DKNF, all anomalies are theoretically removed. However, it is difficult to achieve in
practice because defining every constraint explicitly is complex.

Achieving DKNF

To achieve DKNF, a relation must be carefully designed to ensure that all constraints are

captured through domain and key constraints. This often involves:

1. Eliminating All Non-Domain, Non-Key Constraints: Ensure that there are no
constraints other than those imposed by domains and keys.

2. Redesigning Schema: If necessary, redesign the schema to incorporate all constraints into
the domains and keys.

Benefits
o Eliminates All Anomalies: By only having domain and key constraints, the relation
is free from update, insertion, and deletion anomalies.
o Simplifies Constraint Management: Constraints are easier to understand, enforce,
and manage since they are limited to domains and keys.

Domain-Key Normal Form (DKNF) represents the highest level of normalization, ensuring
that a database schema is free from all possible anomalies by relying solely on domain and
key constraints. Achieving DKNF involves designing the schema in such a way that all
necessary restrictions on data are captured by the permissible values of attributes and the
uniqueness of tuples, resulting in a highly robust and reliable database structure.

Centre for Distance Education 14.10 Acharya Nagarjuna University

14.5.2 Sixth Normal Form (6NF)

6NF is a rarely used, specialized normal form designed for temporal and data warehousing
applications.

A relation is in 6NF if it is in SNF and cannot be decomposed further without losing
information.

Used mainly in time-dependent data systems where attributes vary independently over time.

Example:
EMP_SALARY(Emp_ ID, Salary, Effective Date)

Each change in salary forms a new tuple — representing data evolution over time.

14.5.3 Summary of Normal Forms

Normal Based On Removes Key Concept

Form

INF Atomic values Repeating groups Single-valued attributes

2NF Functional Partial dependency Full functional dependency
dependency

3NF Functional Transitive dependency | Non-key = — Non-key
dependency dependency

BCNF Functional Overlapping candidate | Every determinant is key
dependency keys

4NF Multivalued Redundant multivalued | MVDs — Superkey
dependency data

SNF Join dependency Redundant joins Lossless join from

projections
DKNF All constraints All anomalies Domain + Key rules
6NF Temporal / advanced | Non-decomposable Time-varying data

14.6 Summary

This lesson expanded normalization beyond functional dependencies into multivalued and
join dependencies, leading to the Fourth and Fifth Normal Forms.
A relation in 4NF eliminates redundancy caused by independent multivalued attributes, while
SNF ensures no redundant data exists even under complex join conditions.

Additionally, inclusion dependencies and higher forms such as DKNF and 6NF were
introduced to handle inter-table constraints and temporal data.
These advanced dependencies provide a theoretical foundation for creating highly reliable,
semantically accurate, and redundancy-free databases suitable for enterprise and analytical
systems.

14.7 Technical Terms

Inclusion Dependency (IND)
Domain-Key Normal Form (DKNF)

1. Multivalued Dependency (MVD)
2. Join Dependency (JD)

3. Fourth Normal Form (4NF)

4. Fifth Normal Form (5NF)

5.

6.

DBMS 14.11 Further Dependencies

7. Sixth Normal Form (6NF)

8. Lossless Join

0. Referential Integrity

10. Projection-Join Normal Form (PJNF)

14.8 Self-Assessment Questions

Essay Questions

1. Define Multivalued Dependency (MVD). Explain its role in Fourth Normal Form
(4NF) with an example.
Discuss Join Dependencies and describe how Fifth Normal Form (5NF) is achieved.
Explain the importance of Inclusion Dependencies in relational database design.
Differentiate between BCNF, 4NF, and SNF with examples.
What is Domain-Key Normal Form (DKNF)? Explain its advantages and limitations.

Nk

Short Questions
1. Write the notation used for multivalued dependency.
2. Define trivial and non-trivial MVDs.
3. What is a join dependency?
4. Define Fifth Normal Form (5NF).
5. What does inclusion dependency ensure?
6. What is referential integrity?
7. Mention one example of a 6NF relation.
8. What is lossless decomposition?
9. Define Domain Constraint.
10. What is the practical use of 4NF in database design?

14.9 Suggested Readings

1. Ramez Elmasri & Shamkant B. Navathe, Fundamentals of Database Systems, Pearson
Education.

2. C.J. Date, An Introduction to Database Systems, Addison-Wesley.

3. Abraham Silberschatz, Henry F. Korth & S. Sudarshan, Database System Concepts,
McGraw Hill.

4. Raghu Ramakrishnan & Johannes Gehrke, Database Management Systems, McGraw
Hill.

5. Thomas Connolly & Carolyn Begg, Database Systems: A Practical Approach to
Design, Implementation, and Management, Pearson.

6. Hector Garcia-Molina, Jeffrey Ullman & Jennifer Widom, Database Systems: The
Complete Book, Pearson.

7. Peter Rob & Carlos Coronel, Database Systems: Design, Implementation, and
Management, Cengage Learning.

8. Alexis Leon & Mathews Leon, Database Management Systems, Vikas Publishing.

Dr. U. Surya Kameswari

LESSON- 15
DOCUMENT ORIENTED DATA

AIMS AND OBJECTIVES

The primary aim of this lesson is to provide a comprehensive understanding of document-
oriented data models and the principles underlying their schema design, focusing on how
these differ from traditional relational database structures. The lesson aims to develop the
learner’s ability to design efficient, scalable, and flexible document-based schemas for real-
world applications such as e-commerce platforms.

After completing this lesson, learners will be able to:

e Understand the fundamental concepts of document-oriented databases and their
advantages over relational systems.

e Explain the principles of schema design specific to document-based data models,
including embedding, referencing, and denormalization.

e Design and model data for an e-commerce application using document-oriented
approaches.

e Differentiate between databases, collections, and documents, and explain their roles in
data organization.

e Apply indexing, validation, and optimization techniques to improve query performance
and maintain data integrity.

e Evaluate trade-offs between flexibility, redundancy, and consistency in document-
oriented systems.

e Implement best practices for scalability, schema evolution, and data security in
document databases.

e Compare and contrast document-oriented schema design with relational schema design
principles.

STRUCTURE:

15.1 INTRODUCTION

15.2 PRINCIPLES OF SCHEMA DESIGN IN DOCUMENT DATABASES
15.3 DESIGNING AN E-COMMERCE DATA MODEL

15.4 DATABASES, COLLECTIONS, AND DOCUMENTS

15.5 OTHER DESIGN CONSIDERATIONS AND BEST PRACTICES
15.6 SUMMARY

15.7 TECHNICAL TERMS

15.8 SELF-ASSESSMENT QUESTIONS

15.9 SUGGESTED READINGS

Centre for Distance Education 15.2 Acharya Nagarjuna University

15.1 INTRODUCTION

The rapid growth of unstructured and semi-structured data has led to the emergence of
NoSQL (Not Only SQL) databases, which prioritize flexibility, scalability, and performance.
Among the four major types of NoSQL systems—key-value stores, column stores, graph
databases, and document-oriented databases—the document-oriented model has gained
significant popularity for web-scale applications.

15.1.1 What Are Document-Oriented Databases?
A document-oriented database stores data as documents, usually in JSON (JavaScript Object
Notation) or BSON (Binary JSON) format. Each document is a self-describing unit
containing field-value pairs, arrays, and nested objects.
Example:
{

"name'": "Lavanya',

"email": "lavs@example.com",

"skills": ["Python", "MongoDB", "Data Modeling"|,

"address": {""city'": "Guntur", "state'": ""Andhra Pradesh"}

}

Unlike relational rows and columns, this representation supports hierarchical and flexible
structures, allowing different documents to have varying fields.

15.1.2 Characteristics of Document Databases

e Schema flexibility: Fields can differ between documents.

o Hierarchical structure: Supports nesting and arrays.

o Indexing support: Enables fast query execution.

o Horizontal scalability: Uses sharding for distributed storage.

o Ease of evolution: Fields can be added or removed without schema migration.

15.1.3 Popular Document Databases

Database Description
MongoDB Open-source, BSON-based, highly scalable document store.
CouchDB JSON-based database using HTTP/REST API for access.
Firebase Firestore | Cloud-hosted document database for mobile/web apps.
RavenDB ACID-compliant document store optimized for .NET applications.
1. MongoDB
Description:

MongoDB is an open-source, NoSQL document-oriented database developed by MongoDB
Inc. It stores data in BSON (Binary JSON) format, which supports richer data types (e.g.,
dates, binary data, and nested arrays). MongoDB is widely recognized as the most popular
document database due to its simplicity, scalability, and community support.

DBMS 15.3 Document Oriented Data

Key Features:
e Dynamic schema: No fixed table structure—documents in the same collection can
vary in fields.

e Rich query language: Supports filters, projections, aggregations, and text search.
e Indexing and Aggregation Framework: Allows creation of multiple index types and
complex data analysis pipelines.
o Sharding and Replication: Enables horizontal scaling and high availability.
e Driver Support: Available for all major programming languages including Python,
Java, and C#.
Architecture Overview:

MongoDB uses a client—server architecture, where data is stored in collections within
databases. It employs replica sets for fault tolerance and sharding for distributed data storage.

Advantages:
o High scalability and performance.
o Easy integration with application frameworks (e.g., Node.js, Django).
o Powerful aggregation pipeline for analytics.
e Widely supported and documented.

Typical Use Cases:
e E-commerce platforms (product catalogs, orders).
o Content management systems (CMS).
e IoT applications collecting varied sensor data.
e Real-time analytics dashboards.

2. CouchDB

CouchDB, developed by the Apache Software Foundation, is a JSON-based, schema-free
document database that uses the HTTP/REST protocol for data access and manipulation.
Each document is uniquely identified by an ID and revision number, making it ideal for
synchronization and offline-first applications.

Key Features:

o RESTful APIL: Data is accessed and modified through HTTP requests (GET, PUT,
POST, DELETE).

e MVCC (Multi-Version Concurrency Control): Prevents conflicts without locking
documents.

e Replication and Synchronization: Data can be easily replicated across nodes or
devices.

e MapReduce Views: Query and aggregation mechanism using JavaScript functions.

e Fault-tolerant and crash-only design: Ensures durability of data.

Architecture Overview:
CouchDB uses a single-node or clustered architecture, depending on deployment needs. Data

is stored in documents that include metadata and revision information, allowing easy conflict
resolution during replication.

Centre for Distance Education 15.4 Acharya Nagarjuna University

Advantages:
o Perfect for offline-first mobile applications.
e Simple, human-readable data access via REST API.
o Strong data consistency with revision control.
o Excellent for distributed and replicated environments.

Typical Use Cases:
o Offline mobile apps with synchronization (e.g., field data collection).
e Web apps requiring replication across servers or regions.
e Document versioning systems.
o Configuration storage for distributed systems.

3. Firebase Firestore

Firebase Cloud Firestore, developed by Google, is a serverless, cloud-hosted document
database that is part of the Firebase platform. It is designed for mobile and web applications,
providing real-time synchronization and automatic scaling.

Key Features:
e Real-time data synchronization: Updates propagate instantly across connected clients.
o Hierarchical data structure: Organizes documents in collections and subcollections.
e Serverless environment: No infrastructure management required.
o Offline data persistence: Supports caching for mobile devices.
o Strong integration with Firebase Authentication and Cloud Functions.

Architecture Overview:

Firestore is a fully managed cloud service where data is replicated across multiple Google
Cloud regions for reliability and low latency. Developers interact with it using SDKs or
REST APIs.

Advantages:
o Real-time synchronization between web and mobile clients.
e Automatic scaling and global availability.
e Built-in security through Firebase rules and Google IAM.
o Tight integration with analytics, authentication, and hosting services.

Typical Use Cases:
o Real-time chat or messaging applications.
e C(Collaborative tools (e.g., shared whiteboards, note-taking apps).
e Mobile gaming backends.
o Event tracking and analytics storage.

4. RavenDB
RavenDB is a fully ACID-compliant, open-source document-oriented database written in C#,

optimized for the .NET ecosystem. It combines the benefits of a document store with strong
transactional guarantees, offering an ideal balance between performance and consistency.

DBMS

15.5

Document Oriented Data

Key Features:

e ACID Transactions: Ensures atomicity and consistency across multiple documents.

e Multi-Document Queries: Supports complex joins, projections, and full-text search.

o Integrated ETL and Indexing Engine: Automatic indexing and data export to SQL or
other stores.

e Built-in GUI (Studio): Provides a visual management interface.

e High Performance: Uses an internal storage engine optimized for SSDs.

Architecture Overview:

RavenDB supports both on-premises and cloud-based deployments. It uses safe-by-default
design, meaning all operations are transactional and secure. It provides cluster replication,
ensuring high availability.

Advantages:

e Full ACID compliance ensures strong consistency.

e Simple setup and robust management tools.
e Optimized for .NET developers using C# or ASP.NET Core.
e Supports distributed clusters with automatic failover.

Typical Use Cases:

o Enterprise-grade business applications requiring data consistency.
o Financial and transactional systems.

e Document management platforms.

e API backends for .NET-based systems.

15.1.5 Comparative Summary

Feature MongoDB CouchDB Firebase RavenDB
Firestore
Data Format BSON (Binary | JSON JSON JSON
JSON)
Query Rich query language | REST API | SDKs & REST | LINQ &
Interface & aggregation | (HTTP-based) | API REST
framework
Transactions Multi-document MVCC ACID at | Full ACID
(since v4.0) revision control | document level | support
Scalability High (sharding, | Horizontal Auto-scaling Cluster
replication) replication (serverless) replication
Use Case | Web apps, analytics, | Offline sync, | Real-time Enterprise &
Focus e-commerce distributed apps | mobile/web apps | financial apps
Hosting Model | Self-hosted or | Self-hosted Cloud-managed | Self-hosted or
managed Atlas cloud
Developer Multi-language REST-based Tight Firebase | Optimized for
Ecosystem drivers integration SDK integration | .NET stack

Centre for Distance Education 15.6 Acharya Nagarjuna University

15.2 Principles of Schema Design in Document Databases

Schema design determines how data is structured, stored, and retrieved. In document
databases, schema design is use-case driven rather than normalized as in relational systems.

15.2.1 Schema Flexibility
e Document databases allow documents within the same collection to have different
structures.
o This flexibility supports iterative development and agile data modeling.

Example:
// Document 1
"name": "Alice", "email": "alice@example.com"}

// Document 2

"name": "Bob", "email": "bob@example.com", "phone": "9876543210"}
Both documents coexist in the same collection, even though the second has an additional
field.

15.2.2 Modeling Philosophy

Relational design focuses on normalization; document design focuses on application query
patterns.

Questions to consider before designing:
o What data is accessed together most frequently?
e Which queries are most common?
o How frequently does data change?

The goal is to reduce joins and retrieve complete data in a single query.

15.2.3 Embedding vs. Referencing

Pattern Description When to Use

Embedding | Store related data within a single | When related data is small and accessed
document. together.

Referencing | Use identifiers to link separate | When data is reused or large in size.
documents.

Example (Embedding):
{
"student _id": "S001",
"name": "Anita",
"subjects": [
{"code": "CS101", "name": "Data Structures"},
{"code": "CS102", "name": "DBMS"}

]
}

DBMS 15.7 Document Oriented Data

Example (Referencing):
{

"student id": "S001",

"name": "Anita",

"subject_ids": ["CS101", "CS102"]
}

15.2.4 Denormalization

Denormalization is intentional data duplication to improve query performance.
In document databases, it is preferred for read-heavy applications.
Example:
Instead of joining Product and Category collections, store category information directly
inside each product document.
{

"product id": "P101",

"name'": "Bluetooth Speaker",

"category': {"id": "C10", "name": "Electronics'}

}

15.2.5 Schema Validation

Modern databases like MongoDB support JSON schema validation:
db.createCollection("users", {
validator: {
$jsonSchema: {
bsonType: "object",
required: ["name", "email"],
properties: {
email: { bsonType: "string", pattern: "*+@.+$" }
h
}
§

)

This enforces data consistency while preserving flexibility.

15.2.6 Indexing Strategies
Indexes improve query performance. Common types:
o Single-field index (e.g., name)
e Compound index (e.g., category + price)
e Text index (for searching descriptions)
e Geospatial index (for location-based data)

Example:
db.products.createIndex({ category: 1, price: -1 })

Centre for Distance Education 15.8 Acharya Nagarjuna University

15.2.7 Trade-offs in Schema Design

Concern Impact

Flexibility | Increases development agility

Duplication | Speeds reads, increases update complexity

Referencing | Saves space, adds query overhead

Embedding | Fast reads, slower updates if nested data changes

15.3 Designing an E-Commerce Data Model

E-commerce systems handle large-scale, interconnected data—making them ideal for
document modeling.

15.3.1 Key Entities
o Users — customer details, addresses, preferences
e Products — item catalog, categories, specifications
e Orders — transaction records
e Carts — temporary order details
e Reviews — feedback and ratings
o Payments — transaction metadata

15.3.2 Sample Collections and Documents
Users Collection
{
" 1d": "U001",
"name": "Lavanya",
"email": "lavs@example.com",
"addresses": [
{"type": "Home", "city": "Guntur"},
{"type": "Work", "city": "Vijayawada"}
]
}

Products Collection

H_id": "PlOlH)
"name": "Wireless Mouse",
"category": "Electronics",

"price": 499,
"specs": {"brand": "Logitech", "color": "Black"},
"stock": 100

}

Orders Collection
{
" 1d": "O9001",
"user_id": "UOO1",
"order date": "2025-11-01",

DBMS 15.9 Document Oriented Data

"items": [
{"product _id": "P101", "quantity": 2, "price": 499}
I,
"total amount": 998,
"status": "Paid"

¥
Reviews Collection
{

H_idn: "R2001 "’

"user_id": "U001",

"product _id": "P101",

"rating": 5,

"comment": "Excellent quality!"

}

15.3.3 Query Examples

Find all paid orders of a user:
db.orders.find({ user_id: "U001", status: "Paid" })
List products below 1000 in Electronics:
db.products.find({ category: "Electronics", price: { $lt: 1000 } })
Aggregate total sales by category:
db.orders.aggregate(|
{ $unwind: "Sitems" },
{ S$lookup: { from: "products", localField: "items.product id", foreignField: " id", as:
"product_info" } },
{ $group: { id: "$product info.category", totalSales: { $sum: "Sitems.price" } } }

D

15.3.4 Performance and Scalability
e Sharding: Distribute data across multiple servers.
e Index frequently queried fields: e.g., user_id, category.
e Use caching layers: Redis or in-memory caching for hot data.

15.4 Databases, Collections, and Documents

15.4.1 Databases
Logical containers for collections.

Example:
use EcommerceDB

15.4.2 Collections
Equivalent to tables but schema-less.

Example:
db.createCollection("products")

Centre for Distance Education 15.10 Acharya Nagarjuna University

15.4.3 Documents
Atomic units of storage, stored as JSON/BSON objects.
Example:
{
"name": "Lavanya",
"cart": [
{"product": "Mouse", "qty": 2},
{"product": "Keyboard", "qty": 1}
]

}

15.4.4 CRUD Operations

Operation Command Description

Create insertOne() Add new document
Read find() Retrieve documents
Update updateOne() Modify document
Delete deleteOne() Remove document

15.4.5 Aggregation Framework

Used for analytics:
db.orders.aggregate([
{ $match: { status: "Paid" } },
{ $group: { id: "$user id", totalSpent: { $sum: "$total amount" } } }

D

15.5 Other Design Considerations and Best Practices

Design for Read Efficiency — Embed data for frequent reads.
Maintain Data Integrity — Use JSON validation and atomic updates.
Index Appropriately — Avoid over-indexing.

Plan for Schema Evolution — Handle version changes in code.
Implement Access Control — Use RBAC and field-level encryption.
Monitor and Optimize — Regularly review performance metrics.

A

15.6 Summary

Document-oriented databases provide a flexible, scalable alternative to relational models.
This lesson discussed:

e Schema design principles (embedding, referencing, denormalization)

e Modeling an e-commerce application

o Database, collection, and document structures

e Performance and design best practices

DBMS 15.11 Document Oriented Data

15.7 Technical Terms\
Document Database
Collection
Embedding
Referencing
Denormalization
Sharding

Indexing

BSON

S Aol

15.8 Self-Assessment Questions

Short Answer:

1. Define document-oriented databases.
What are the advantages of schema flexibility?
Differentiate between embedding and referencing.
Explain denormalization with an example.
What is the purpose of sharding?

bl

Long Answer:

Explain the principles of schema design in document databases.

Design and describe an e-commerce schema using document-oriented techniques.
Discuss the roles of databases, collections, and documents.

Compare document-oriented and relational models.

Discuss schema validation and indexing strategies in MongoDB.

kW=

15.9 Suggested Readings

1. Kiristina Chodorow — MongoDB: The Definitive Guide, O’Reilly Media.

2. Rick Copeland — MongoDB Applied Design Patterns, O’Reilly Media.

Ramez Elmasri & Shamkant Navathe — Fundamentals of Database Systems, Pearson
Education.

4. Couchbase Documentation — Schema Design Principles.

5. MongoDB University — Data Modeling Fundamentals.

[99)

Dr. U. Surya Kameswari

LESSON- 16

QUERIES AND AGGREGATIONE-COMMERCE'S

AIMS AND OBJECTIVES:

Aim

The aim of this lesson is to provide a comprehensive understanding of how queries and
aggregation operations are performed in document-oriented databases, particularly
MongoDB, within the context of e-commerce applications.

This lesson focuses on teaching learners how to efficiently retrieve, filter, and summarize
data from large datasets using MongoDB’s Query Language (MQL) and the Aggregation
Framework, enabling effective analytics and reporting.

After completing this lesson, learners will be able to:

1.

2.
3.

e

Understand the importance of querying and aggregation in document-oriented
databases.

Describe the MongoDB Query Language (MQL) and its syntax for data retrieval.
Execute various query operations to filter, sort, and project data in e-commerce
contexts.

Apply conditional operators such as $and, $or, $in, $gt, $1t, and regular expressions in
queries.

Explain the concept and structure of the Aggregation Framework in MongoDB.
Design and implement aggregation pipelines for computing totals, averages, counts,
and grouped data.

Perform real-world e-commerce analytics, such as aggregating total sales, identifying
top-selling products, and summarizing customer activity.

8. Differentiate between queries and aggregations, and understand when to use each.
9. Optimize query and aggregation performance using indexing and pipeline
optimization techniques.

STRUCTURE:

16.1 INTRODUCTION

16.2 QUERYING IN E-COMMERCE APPLICATIONS

16.3 MONGODB QUERY LANGUAGE (MQL)

164 AGGREGATION FRAMEWORK

16.5 AGGREGATING ORDERS IN E-COMMERCE

16.6 AGGREGATION IN DETAIL

16.7 PRACTICAL EXAMPLES AND CASE STUDIES

16.8 BEST PRACTICES AND OPTIMIZATION TECHNIQUES

16.9 SUMMARY

16.10 TECHNICAL TERMS

16.11 SELF-ASSESSMENT QUESTIONS

16.12 SUGGESTED READINGS

16.1.1 OVERVIEW

Centre for Distance Education 16.2 Acharya Nagarjuna University

16.1 INTRODUCTION
16.1.1 Overview

In modern data-driven applications such as e-commerce systems, the ability to query and
aggregate information ecfficiently is vital for operational performance and business
intelligence.

While document-oriented databases like MongoDB provide flexible data storage, the real
power lies in their ability to perform complex queries and aggregations on massive datasets
without the need for predefined schemas or complex joins.

Queries allow developers to retrieve specific pieces of information, such as all orders
placed by a customer or all products under a certain price range, while aggregation enables
the summarization and analysis of data, such as calculating total sales, average ratings, or
daily revenue.

This lesson introduces the principles of querying and aggregating data in document-oriented
databases, focusing particularly on MongoDB’s Query Language (MQL) and Aggregation
Framework within an e-commerce context.

The rapid growth of unstructured and semi-structured data has led to the emergence of
NoSQL (Not Only SQL) databases, which prioritize flexibility, scalability, and performance.
Among the four major types of NoSQL systems—key-value stores, column stores, graph
databases, and document-oriented databases—the document-oriented model has gained
significant popularity for web-scale applications.

16.1.2 Importance of Queries and Aggregation in E-Commerce
E-commerce platforms deal with large volumes of data generated from multiple entities —
users, products, orders, reviews, and payments.

To manage and analyze this data effectively, two key operations are essential:
e Queries — for fetching, filtering, and sorting specific data based on user-defined
conditions.
Aggregations — for summarizing and computing statistics across large datasets.
For example:
Querying all pending orders placed by a specific user.
Aggregating total sales revenue for a particular product category.
Computing the average product rating from customer reviews.
Together, these operations enable data-driven insights, performance monitoring,
and strategic decision-making for e-commerce businesses.

16.1.3 Querying in Document Databases

In document-oriented systems such as MongoDB, data is stored as JSON-like documents,
which can be queried using field-value pairs and operators.
Unlike SQL queries, which rely on predefined tables and joins, MongoDB queries operate
directly on nested and hierarchical document structures.

DBMS 16.3 Queries and Aggregatione...

A basic MongoDB query uses the find() method:

db.products.find({ category: "Electronics", price: { $lt: 1000 } })
This retrieves all documents from the products collection where the category is “Electronics”
and the price is less than X1000.

MongoDB also supports advanced query features such as:
e Comparison operators ($gt, $1t, $eq)
o Logical operators ($and, $or)
e Array operators ($in, $all)
o Regular expressions and text search

This makes querying in MongoDB flexible, intuitive, and powerful for large datasets.
16.1.4 Aggregation in Document Databases

While queries focus on retrieving individual documents, aggregation is used for grouping
and summarizing data.

MongoDB’s Aggregation Framework allows performing complex analytical operations
such as counting, averaging, summing, and grouping data — similar to SQL’s GROUP BY
and aggregate functions but more flexible and scalable.

Example:
To compute total sales for each product category:
db.orders.aggregate(|
{ $unwind: "Sitems" },
{ $group: { id: "$items.category", totalSales: { $sum: "$items.price" } } }

D

This aggregation pipeline performs the following:
e Sunwind — breaks the array of items into individual documents.
e S$group — groups data by category and calculates total sales per category.

Aggregation thus enables data transformation, reporting, and real-time analytics directly
within the database layer.

16.1.5 Query Optimization and Indexing

Efficient query performance is essential in large-scale e-commerce systems. MongoDB uses
indexes to accelerate query execution by avoiding full collection scans.
Common index types include:

o Single-field indexes — for frequent lookups on one field.

e Compound indexes — for filtering on multiple fields (e.g., category + price).

o Text indexes — for keyword-based product searches.

o Geospatial indexes — for location-based queries (e.g., nearby stores or delivery

Zones).

Centre for Distance Education 16.4 Acharya Nagarjuna University

Well-designed indexes can drastically improve performance and scalability, especially when
combined with properly structured queries and aggregation pipelines.

16.1.6 Real-World Example: E-Commerce Query and Aggregation Use Cases

Use Case 1: Retrieve all orders placed by a specific customer in the last 30 days.

Use Case 2: Calculate total revenue per product category.

Use Case 3: Find the top 10 best-selling products by sales volume.

Use Case 4: Determine the average rating for each product.

Use Case 5: Generate a monthly report of new customers and total transactions.

These examples demonstrate how queries and aggregations power various operational and
analytical functions of modern e-commerce systems — from recommendation engines to
performance dashboards.

16.2 QUERYING IN E-COMMERCE APPLICATIONS

16.2.1 Overview of Querying in E-Commerce
In an e-commerce system, querying enables the retrieval of data from various collections
such as users, products, orders, and reviews.

Effective queries ensure that customers can search products, track orders, and view
personalized recommendations quickly.

In document-oriented databases like MongoDB, querying is performed using the MongoDB
Query Language (MQL), which uses a JSON-like syntax to filter and manipulate data.
Queries are executed through methods like find(), findOne(), and aggregate().

Example basic query:
db.products.find({ category: "Electronics" })
This retrieves all documents from the products collection where the category is Electronics.

16.2.2 Common Query Scenarios in E-Commerce
E-commerce data can be vast and dynamic. Some common query operations include:
o Fetching user information for authentication or profile display.
o Searching products by category, price range, or brand.
o Listing orders placed by a customer.
 Filtering reviews for a product.
o Finding top-selling or newly added products.
Each of these operations relies on structured query design using appropriate MongoDB
operators.

16.2.3 Querying Customer Information
Customer data may be stored as:
{

" id": "uU101",

"name": "Lavanya",

"email": "lavs@example.com",

"city": "Guntur",

"loyalty points": 1200

DBMS 16.5 Queries and Aggregatione...

To find a customer by email:

db.users.find({ email: "lavs@example.com" })

To find all customers with more than 1000 loyalty points:

db.users.find({ loyalty points: { $gt: 1000 } })

These queries are straightforward, readable, and efficient when indexes are applied to
frequently queried fields like email or city.

16.2.4 Querying Products
Product data is the heart of any e-commerce platform. A typical product document might
look like:
{
" id": "P101",
"name": "Wireless Mouse",
"category": "Electronics",
"brand": "Logitech",
"price": 499,
"rating": 4.5
}

Examples of product queries:
o Fetch all products under X1000:
e db.products.find({ price: { $It: 1000 } })
e Find all products in the “Electronics” category with a rating above 4:
e db.products.find({ category: "Electronics", rating: { $gt: 4 } })
e Retrieve specific fields (projection):
e db.products.find({ category: "Electronics" }, { name: 1, price: 1, id: 0 })

16.2.5 Querying Orders

Order data often includes nested documents and arrays:
{
H_id": "09001115
"user_id": "U101",
"order date": "2025-10-28",
"status": "Shipped",
"items": [
{ "product_id": "P101", "quantity": 2, "price": 499 },
{ "product id": "P102", "quantity": 1, "price": 899 }
]
b

Examples:
Retrieve all orders for a specific user:
db.orders.find({ user_id: "U101" })
Find all “Shipped” orders:
db.orders.find({ status: "Shipped" })
Retrieve all orders placed after a certain date:
e db.orders.find({ order date: { $gte: "2025-10-01" } })
MongoDB can efficiently query even deeply nested fields using dot notation, e.g.,
items.product _id.

Centre for Distance Education 16.6 Acharya Nagarjuna University

16.2.6 Querying Reviews
Customer feedback and reviews are stored separately in a reviews collection:
{
" id": "R301",
"product _id": "P101",
"user_id": "U101",
"rating": 5,
"comment": "Excellent product!"
}
Examples:
o Fetch all reviews for a specific product:
e db.reviews.find({ product id: "P101" })
e Find reviews with rating less than 3 (to analyze negative feedback):
e db.reviews.find({ rating: { $It: 3 } })

16.2.7 Using Comparison and Logical Operators

MongoDB provides rich query operators for filtering data precisely.

Operator | Description Example

$at Greater than { price: { $gt: 1000 } }

$lt Less than {rating: { $It: 4 } }

$and Combine multiple | { $and: [{ category: "Electronics" }, { price: { $It:
conditions 2000} }]}

$or Match any condition { Sor: [{ category: "Books" }, { -category:

"Stationery" }] }
$in Match values in an array | { category: { $in: ["Electronics", "Appliances"] } }

16.2.8 Sorting, Limiting, and Pagination

When displaying product listings, queries often include sorting and pagination.
e Sort products by price (ascending):
e db.products.find().sort({ price: 1 })
e Get the top 5 most expensive products:
e db.products.find().sort({ price: -1 }).limit(5)
o Implement pagination (skip first 10 results and show next 5):
e db.products.find().skip(10).limit(5)
These are commonly used in e-commerce user interfaces where results are shown page by

page.

16.2.9 Querying Nested Arrays and Embedded Documents
E-commerce documents often contain arrays of embedded documents (e.g., order items or
multiple addresses).

Example:

db.orders.find({ "items.product_id": "P101" })

This query retrieves all orders containing a particular product ID within the items array.
MongoDB also allows querying for array size or matching multiple elements:
db.orders.find({ "items": { $size: 2 } })

DBMS 16.7 Queries and Aggregatione...

16.2.10 Text Search Queries

For product searches, MongoDB’s text index supports keyword-based search:
db.products.createIndex({ name: "text", description: "text" })

db.products.find({ $text: { $search: "wireless keyboard" } })

This enables full-text search functionality similar to e-commerce site search bars.

16.2.11 Query Performance and Indexing

Efficient querying requires indexing on frequently used fields such as:
e user id in orders
e category and price in products
e product id in reviews
Index creation example:
db.orders.createIndex({ user id: 1 })
Indexes improve performance significantly by reducing scan time across large datasets.

16.3 MONGODB QUERY LANGUAGE (MQL)

16.3.1 Overview
The MongoDB Query Language (MQL) is the primary mechanism used to retrieve, filter,
and manipulate data stored in a MongoDB database.
Unlike traditional SQL, MQL is document-oriented and operates on JSON-like structures,
allowing developers to query nested documents and arrays with great flexibility.
In e-commerce systems, MQL enables developers to:

o Search for products by price, category, or availability.

o Retrieve user orders and purchase histories.

o Filter reviews and ratings.

e Generate targeted marketing insights.
Each query in MQL is expressed as a JSON document specifying the selection criteria and
projection fields.

Example:
db.products.find({ category: "Electronics", price: { $it: 2000 } })
This retrieves all products under the "Electronics" category that cost less than X2000.

16.3.2 Basic Query Syntax

The fundamental query operation in MongoDB is the find() method, which retrieves
documents from a collection that match specified conditions.

Syntax:
db.collection.find(<query>, <projection>)
e query — specifies filtering criteria (like a WHERE clause in SQL).
e projection — specifies which fields to return (like SELECT columns).

Example:
db.users.find({ city: "Guntur" }, { name: 1, email: 1, id: 0 })
This returns only the name and email fields for users located in Guntur.

Centre for Distance Education

16.8 Acharya Nagarjuna University

16.3.3 Comparison Operators

MongoDB provides several comparison operators for filtering numeric and string values.

Example

Operator | Meaning Example

$eq Equal to { price: { $eq: 1000 } }

$ne Not equal to { category: { $ne: "Books" } }
$gt Greater than { price: { $gt: 500 } }

$lt Less than { price: { $1t: 1000 } }

$gte Greater than or equal | { rating: { $gte: 4 } }

$lte Less than or equal { quantity: { $lte: 10 } }

Query:

Fetch all products with a price between X500 and X1500:
db.products.find({ price: { $gte: 500, $lte: 1500 } })

16.3.4 Logical Operators
Logical operators allow combining multiple conditions in a single query.

Operator | Description Example

$and Matches all conditions { $and: [{ category: "Electronics" }, { price: { $It:
2000} }]}

$or Matches any condition { $or: [{ category: "Books" }, { category:
"Stationery" }] }

$not Negates a condition { price: { $not: { $gt: 5000 } } }

$nor None of the conditions | { $nor: [{ category: "Toys" }, { category: "Gadgets"

match 11}

16.3.5 Querying Arrays

E-commerce data often includes arrays (e.g., product tags, order items).

Example:

{

"product_id": "P120",
"name": "Bluetooth Headphones",

"tags": ["wireless",

Find products tagged as “audio”:

nn

electronics",

nn

audio"]

o db.products.find({ tags: "audio" })

. Match any tag in a list:
o db.products.find({ tags: { $in: ["wireless", "gaming"] } })
. Match all specified tags:

o db.products.find({ tags: { $all: ["wireless", "electronics"] } })

16.3.6 Querying Embedded Documents

Documents in MongoDB may contain nested structures. You can query embedded fields
using dot notation.

DBMS 16.9 Queries and Aggregatione...

Example Order Document:
{
" id": "O101",
"user_id": "UOO1",
"shipping": {
"address": "Main Street",
"city": "Vijayawada",
"pincode": "520001"
J
j

Find orders shipped to Vijayawada:
db.orders.find({ "shipping.city": "Vijayawada" })

16.3.7 Projection — Selecting Specific Fields
To limit the number of fields returned, MQL uses projection.

Syntax:
db.collection.find(<query>, <projection>)

Example:
db.products.find(
{ category: "Electronics" },
{ name: 1, price: 1, id: 0}
)
This query returns only the product name and price fields.
Projection reduces data transfer and improves query performance.

16.3.8 Sorting and Limiting Results
Sorting is achieved using the sort() method, and result count can be controlled with limit().

Examples:
e Sort by ascending price:
e db.products.find().sort({ price: 1 })
e Sort by descending rating:
e db.products.find().sort({ rating: -1 })
e QGet the top 10 most expensive products:
e db.products.find().sort({ price: -1 }).limit(10)

16.3.9 Using Regular Expressions and Text Search
MongoDB supports pattern matching for partial searches using regular expressions.

Example:

db.products.find({ name: { $regex: "wireless", $options: "i" } })

This retrieves all products whose names contain “wireless” (case-insensitive).
For advanced search, MongoDB provides text indexes:
db.products.createIndex({ name: "text", description: "text" })
db.products.find({ $text: { $search: "Bluetooth Speaker" } })

Centre for Distance Education 16.10 Acharya Nagarjuna University

16.3.10 Querying with Sexists and Stype
You can check whether a field exists or verify its data type.

Examples:
e Find documents missing the “rating” field:
e db.products.find({ rating: { $exists: false } })
e Find documents where “price” is of numeric type:
e db.products.find({ price: { $Stype: "number" } })

16.3.11 Querying Orders by Date
E-commerce systems frequently need date-based queries for reporting.

Example Order Document:

{
"order id": "O501",
"order date": ISODate("2025-10-10T10:30:00Z"),
"status": "Delivered"

}

Query all orders in October 2025:

db.orders.find({
order_date: { $gte: ISODate("2025-10-01"), $1t: ISODate("2025-11-01") }

})

16.3.12 Compound Queries
Compound queries combine multiple filters to match complex criteria.

Example:
Find all “Electronics” products priced below 32000 and rated above 4:
db.products.find({
$and: [
{ category: "Electronics" },
{ price: { $1t: 2000 } },
{ rating: { $gt: 4 } }
]
1)

16.3.13 Query Optimization

MongoDB optimizes query performance through:
o Index utilization
e Covered queries (where all requested fields are in the index)
o Explain plans to analyze query execution.

Example:
db.products.find({ category: "Electronics" }).explain("executionStats")
This command provides insight into query efficiency and index usage.

DBMS 16.11 Queries and Aggregatione...

16.3.14 Example Queries in E-Commerce

Purpose Example Query

List all active customers in a city | db.users.find({ city: "Guntur" })

Retrieve all paid orders db.orders.find({ status: "Paid" })

Display products under 21000 db.products.find({ price: { $it: 1000 } })
Find top-rated products db.products.find({ rating: { $gte: 4.5} })
Search reviews with “excellent” | db.reviews.find({ comment: /excellent/i })

16.4 AGGREGATION FRAMEWORK
16.4.1 Introduction

While queries in MongoDB are used to retrieve individual documents, the Aggregation
Framework is designed to perform data analysis and computation directly within the
database.

It allows you to process large datasets, transform documents, and generate summarized
results — similar to SQL’s GROUP BY, SUM(), COUNT(), and AVG() operations, but with
much greater flexibility and scalability.

In e-commerce applications, aggregation is essential for tasks such as:
o Calculating total revenue per product or category.
o Finding average customer ratings.
o Counting total orders or customers.
e Generating sales reports by region or time period.

MongoDB’s aggregation is pipeline-based, where data flows through multiple stages, each
performing a specific transformation.

16.4.2 What Is an Aggregation Pipeline?
An aggregation pipeline is a sequence of stages that process data step-by-step. Each stage
transforms documents and passes the results to the next stage.

Pipeline Concept:

Input Collection — Stage 1 ($match) — Stage 2 ($group) — Stage 3 ($sort) — Output

Each stage performs an operation such as filtering, grouping, or sorting.
The power of the aggregation framework lies in chaining multiple stages together for
complex analytics.

Basic Syntax:
db.collection.aggregate([|
{ <stagel> },
{ <stage2> },

D

Centre for Distance Education 16.12 Acharya Nagarjuna University

16.4.3 Key Aggregation Stages

MongoDB provides several built-in stages. The most frequently used are listed below with
examples.

(a) Smatch — Filtering Documents

This stage filters documents according to specified criteria, similar to the find() query.
Example: Retrieve only “Paid” orders.

{ $match: { status: "Paid" } }

(b) $project — Selecting Specific Fields
The $project stage reshapes documents by including, excluding, or computing new fields.

Example: Show only product id, quantity, and computed total price:
{

$project: {

product id: 1,

quantity: 1,

total price: { $Smultiply: ["$quantity", "S$price"] }

}
§

(c¢) $group — Grouping and Summarizing Data

This stage groups documents by a specified field and computes aggregate values such as
totals or averages.

Example: Calculate total sales for each product.
{
$group: {
_id: "$product_id",
totalSales: { $sum: "$price" }
}
¥

(d) $sort — Sorting Results
Used to arrange output documents in ascending or descending order.

Example: Sort categories by total revenue (descending).
{ $sort: { totalRevenue: -1 } }

(e) $Slimit — Restricting Output Count
Limits the number of documents returned.
Example: Show top 5 best-selling products.
{ $limit: 5 }

(f) $skip — Skipping Documents

Used for pagination in analytics reports.
Example: Skip first 10 records, return next 5.
{ $skip: 10 }

DBMS 16.13 Queries and Aggregatione...

(g) Sunwind — Deconstructing Arrays
When a field contains an array (like multiple order items), $unwind splits the array elements
into individual documents.

Example:
{ $unwind: "$items" }
If each order contains multiple items, this stage processes each item separately.

(h) Slookup — Performing Joins

The $lookup stage performs a left outer join between two collections, similar to SQL joins.
Example: Join orders with products to display product names in each order.
{
$lookup: {
from: "products",
localField: "items.product _id",
foreignField: " id",
as: "product_details"
}
}

(i) SaddFields / $set — Creating New Fields

These stages add or modify fields dynamically.
Example: Add a computed field total to each order.
{ $addFields: { total: { $sum: "Sitems.price" } } }

(j) $Scount — Counting Documents

This stage outputs a count of all documents that passed previous stages.
Example:

{ $count: "totalOrders" }

16.4.4 Example: Complete Aggregation Pipeline

Let’s calculate the total sales revenue per product category from an e-commerce database.
db.orders.aggregate([
{ $unwind: "Sitems" },
{
$lookup: {
from: "products",
localField: "items.product id",
foreignField: " id",
as: "product_info"
§
fs
{ $unwind: "$product_info" },
{
$group: {
_id: "$product_info.category",

Centre for Distance Education

16.14 Acharya Nagarjuna University

totalRevenue: { $sum: "Sitems.price" },

totalQuantity: { $sum: "$items.quantity" }

}
}s
{ $sort: { totalRevenue: -1 } }
),
Explanation:
1. $unwind — Expands each order’s items array.
2. Slookup — Joins orders with products to get category info.
3. $group — Calculates total revenue and quantity for each category.
4. $sort — Sorts categories by descending revenue.
Result Example:

[

{" 1d": "Electronics", "totalRevenue": 350000, "totalQuantity": 900 },
{" 1d": "Home Appliances", "totalRevenue": 210000, "totalQuantity": 450 },
{" 1d": "Books", "totalRevenue": 90000, "totalQuantity": 1200 }

]

16.4.5 Aggregation Operators

Aggregation operators are used within stages to perform calculations or transformations.

Operator | Purpose Example

$sum Adds numeric values { $sum: "$amount" }
$avg Computes average { $avg: "S$rating" }

$min Minimum value { $min: "$price" }

$max Maximum value { $max: "$price" }
$push Creates an array of values { $push: "$product id" }
$first / $last | Returns first or last element in a group | { $first: "S$order date" }

16.4.6 Aggregation vs. Simple Queries

Aspect Query (find()) Aggregation (aggregate())
Purpose Retrieve documents Transform and summarize data
Output Individual records Computed summaries
Complexity | Simple filters Multi-stage pipelines

Use Case Search for users or products | Generate sales reports or averages

16.4.7 Real-World E-Commerce Aggregation Use Cases
1. Total Revenue per Product Category
e {Sgroup: { id: "$category", total: { $sum: "Sprice" } } }
2. Average Rating per Product
e {Sgroup: { id: "$product id", avgRating: { $Savg: "$rating" } } }

3. Number of Orders per Customer

e {S$group: { id: "Suser id", orders: { $sum: 1} } }

4. Top S Selling Products
o { $sort: { totalSales: -1 } }, { $limit: 5 }

DBMS 16.15 Queries and Aggregatione...

5. Daily Revenue Trends
e { $group: { id: "Sorder date", dailyRevenue: { $sum: "$amount" } } }

16.4.8 Performance Optimization in Aggregations
o Use Indexes: Especially on fields used in $match and $sort.
e Place $Smatch Early: Filter data before grouping to reduce processing.
e Use Projection ($project): Include only necessary fields.
e Monitor Pipeline Performance: Use .explain() to analyze query execution.
e Avoid Excessive $lookup: Large joins can slow down performance; denormalize if
necessary.

Example:
db.orders.aggregate([

{ $match: { status: "Paid" } },

{ $group: { id: "$user id", totalSpent: { $sum: "$total amount" } } }
]).explain("executionStats")

16.4.9 Advantages of Aggregation Framework
o Performs real-time analytics directly in the database.
e Reduces the need for external reporting tools.
e Handles large volumes of data efficiently.
o Offers flexibility through pipeline design.
o Integrates easily with BI dashboards and APIs.

16.5 AGGREGATING ORDERS IN E-COMMERCE
16.5.1 Overview

In an e-commerce database, the orders collection contains valuable information about
products purchased, quantities, and amounts paid.
Using the aggregation framework, we can summarize this data to obtain key business
insights such as total revenue, number of orders, and top customers.

16.5.2 Total Sales Per User

To calculate how much each customer has spent:

db.orders.aggregate([
{ $match: { status: "Paid" } },
{ $group: { id: "Suser id", totalSpent: { $sum: "$total amount" } } },
{ $sort: { totalSpent: -1 } }

)
Shows top-spending customers.

16.5.3 Top-Selling Products

To identify the most frequently purchased items:
db.orders.aggregate([
{ $unwind: "Sitems" },
{ $group: { id: "Sitems.product id", totalSold: { $sum: "$items.quantity" } } },

Centre for Distance Education 16.16 Acharya Nagarjuna University

{ $sort: { totalSold: -1 } },
{ $limit: 5 }
)
Lists the top 5 best-selling products.

16.5.4 Total Revenue by Category
Join the orders and products collections to summarize sales by category:
db.orders.aggregate([
{ $unwind: "Sitems" },
{
$lookup: {
from: "products",
localField: "items.product id",
foreignField: " id",
as: "product_info"
}
'
{ $unwind: "$product info" },
{
$group: {
_id: "$product_info.category",
totalRevenue: { $sum: "Sitems.price" }
}
'
{ $sort: { totalRevenue: -1 } }
D

Helps identify the highest-earning categories.
16.5.5 Average Order Value (AOV)

To measure the average purchase amount per order:
db.orders.aggregate([
{ $group: { id: null, avgOrderValue: { $avg: "$total amount" } } }

)
Useful for evaluating customer spending behavior.

16.5.6 Monthly Sales Trend
To view revenue over time:
db.orders.aggregate([

{
$group: {
_id: { month: { $month: "$order date" }, year: { $year: "Sorder date" } },
monthlyRevenue: { $sum: "$total amount" }

b
fs
{ $sort: { " id.year": 1," id.month": 1} }
D

Generates a monthly sales chart for performance tracking.

DBMS 16.17 Queries and Aggregatione...

16.6 AGGREGATION IN DETAIL
16.6.1 Overview

The aggregation framework in MongoDB provides a powerful way to analyze and
transform data. It processes documents through multiple stages, where each stage performs a
specific operation — such as filtering, grouping, or calculating totals.
Aggregations are widely used in e-commerce analytics to compute sales summaries,
customer metrics, and product trends.

16.6.2 The $group Stage

The $group stage groups documents by a key and performs aggregate operations like sum,
average, or count.

Example — Total Sales per Product:
{
$group: {
_id: "$product_id",
totalSales: { $sum: "$total amount" }
§
}

Groups by product id and sums total sales.

16.6.3 Common Accumulators

Operator | Description Example Use

$sum Adds values { $sum: "$amount" }
$avg Averages values | { $avg: "$rating" }
$min Smallest value { $min: "$price" }
$max Largest value { $max: "Sprice" }
$count Counts documents | { $sum: 1 }

16.6.4 Using $lookup for Joins
$lookup connects data from multiple collections, like orders and products.

Example:
{
$lookup: {
from: "products",
localField: "items.product id",
foreignField: " id",
as: "product_info"
}
}

Brings product details into order data.

Centre for Distance Education 16.18 Acharya Nagarjuna University

16.6.5 THE SPROJECT STAGE
Used to select specific fields or create new computed fields.
Example:
{
$project: {
product name: 1,
total value: { $Smultiply: ["$price", "$quantity"] }
}
}

Computes a new field total value.
16.6.6 THE SUNWIND STAGE

Splits arrays into separate documents — useful for analyzing order items.
Example:

{ $unwind: "$items" }

Processes each order item individually.

16.6.7 COMBINING MULTIPLE STAGES

Complex analytics can be performed by combining multiple stages in a pipeline.
Example — Total Revenue per Category:
db.orders.aggregate([
{ $unwind: "Sitems" },
{ $lookup: {
from: "products",
localField: "items.product_id",
foreignField: " 1d",
as: "product_info"
5 b
{ $unwind: "$product_info" },
{ $group: {
_id: "$product _info.category",
revenue: { $sum: "Sitems.price" }

IR

{ $sort: { revenue: -1 } }
D

Shows category-wise revenue ranking.
16.7 PRACTICAL EXAMPLES AND CASE STUDIES

16.7.1 Overview

In real-world e-commerce systems, queries and aggregations are essential for generating
reports, dashboards, and insights.

MongoDB’s flexibility allows developers to extract meaningful information from large
datasets to improve sales strategies, inventory planning, and customer engagement.

16.7.2 Example 1 — Sales Dashboard
A dashboard displays real-time sales metrics using aggregation pipelines.

DBMS 16.19 Queries and Aggregatione...

Pipeline:
db.orders.aggregate([
{ $match: { status: "Paid" } },
{ $group: { id: null, totalSales: { $sum: "$total amount" }, totalOrders: { $sum: 1 } } }

)

Shows overall sales and total orders.
16.7.3 Example 2 — Top 5 Selling Products

Identify products with the highest sales volume.
db.orders.aggregate([
{ $unwind: "$items" },
{ $group: { id: "Sitems.product id", totalQty: { $sum: "Sitems.quantity" } } },
{ $sort: { totalQty: -1 } },
{ $limit: 5 }
)
Useful for inventory and marketing planning.

16.7.4 Example 3 — Customer Insights

Determine top-spending customers.

db.orders.aggregate(|
{ $match: { status: "Paid" } },
{ $group: { id: "Suser id", totalSpent: { $sum: "$total amount" } } },
{ $sort: { totalSpent: -1 } }

)
Helps identify loyal or high-value customers.

16.8 BEST PRACTICES AND OPTIMIZATION TECHNIQUES

Efficient query and aggregation performance is crucial in large-scale e-commerce systems.
As data grows, poorly designed queries or pipelines can slow down operations.
Following best practices ensures faster results, optimized resource use, and a better user
experience.
Key optimization strategies include:

e Indexing critical fields.

o Filtering early in pipelines.

e Using projections and limits.

e Reducing $lookup usage.

e Monitoring queries and caching results.

16.9 SUMMARY

This lesson explored how queries and aggregations are used in document-oriented
databases, particularly MongoDB, to manage and analyze e-commerce data.
Key points covered include:
o The role of queries for retrieving and filtering data using MongoDB Query Language
(MQL).

o The concept and structure of the Aggregation Framework for data summarization.

Centre for Distance Education 16.20 Acharya Nagarjuna University

Practical e-commerce examples, such as retrieving top-selling products, computing
total revenue, and generating customer insights.

Optimization techniques like indexing, projection, and pipeline efficiency.

Efficient use of queries and aggregations allows e-commerce businesses to make
data-driven decisions, improve performance, and gain actionable insights from
large datasets.

16.10 TECHNICAL TERMS
1. MQL (MongoDB Query Language)
2. Aggregation Framework
3. Pipeline
4. Stage
5. Accumulator
6. $match
7. S$group
8. S$lookup
9. S$unwind
10. Projection
11. Index
12. Denormalization
13. Sharding

16.11 SELF-ASSESSMENT QUESTIONS

Short Answer Questions

Nk W=

What is MongoDB Query Language (MQL)?

Differentiate between a query and an aggregation.

What is the purpose of the $group stage in MongoDB?
Define the term accumulator in the context of aggregations.
List any three operators used in aggregation pipelines.

Long Answer Questions

1.

2.

3.

Explain in detail the working of the MongoDB Query Language (MQL) with suitable
e-commerce examples.

Describe the stages of the Aggregation Framework and explain their roles with
examples.

Write a MongoDB aggregation pipeline to calculate total sales per product category.

16.12 SUGGESTED READINGS

1.

Kristina Chodorow — MongoDB: The Definitive Guide, O’Reilly Media.

. Rick Copeland — MongoDB Applied Design Patterns, O’Reilly Media.

Ramez Elmasri & Shamkant B. Navathe — Fundamentals of Database Systems,
Pearson Education.

MongoDB Documentation — Aggregation Pipeline Stages and Operators.

MongoDB University — Data Modeling and Aggregation Framework.

DBMS 16.21 Queries and Aggregatione...

6. Google Cloud Documentation — Building E-Commerce Analytics with MongoDB

Atlas.

Alex Giamas — Practical MongoDB Aggregations, Leanpub.

Amazon Web Services — NoSQOL Design Patterns for Scalable Applications.

Couchbase Documentation — Query and Indexing Best Practices.

0 Michael Harrison — Mastering MongoDB 6.x: Expert Techniques for Data
Aggregation and Performance Optimization.

S 0 o

Dr. U. Surya Kameswari

LESSON- 17

UPDATES ATOMIC OPERATIONS AND DELETES

AIMS AND OBJECTIVES:

The aim of this lesson is to explain how updates, atomic operations, and deletions are
performed in document-oriented databases, particularly in MongoDB, and how these
operations ensure data consistency, accuracy, and reliability in dynamic applications such as
e-commerce systems.

This lesson emphasizes the principles behind modifying and maintaining data, introduces the
concept of atomicity in document processing, and explores the practical usage of MongoDB’s
update and delete operations in real-world business scenarios.

After completing this lesson, learners will be able to:

Understand the principles of document update and delete operations in MongoDB.
Differentiate between update types — single, multiple, and replacement updates.
Apply update operators such as $set, $inc, Sunset, $push, and $pull to modify specific
fields.

Explain the concept of atomicity and its role in ensuring consistent data transactions.
Implement atomic operations for concurrent updates and multi-user environments.
Perform practical update operations in e-commerce applications, such as modifying
prices, stock, and customer details.

Use transactions to maintain data integrity across multiple collections.

Execute and manage document deletions, both individually and in bulk.

Implement soft delete strategies to preserve historical or inactive data.

Optimize update and delete operations for high-performance e-commerce databases
using indexing and bulk operations.

STRUCTURE:

17.1
17.2
17.3
17.4
17.5
17.6
17.7
17.8

17.9

INTRODUCTION

UNDERSTANDING DOCUMENT UPDATES

ATOMIC OPERATIONS

E-COMMERCE UPDATE EXAMPLES

NUTS AND BOLTS OF MONGODB UPDATES

DELETING DOCUMENTS

ATOMIC DOCUMENT PROCESSING

E-COMMERCE CASE STUDY: INVENTORY AND ORDER
SYNCHRONIZATION

PERFORMANCE AND OPTIMIZATION

17.10 SUMMARY

17.11 TECHNICAL TERMS

17.12 SELF-ASSESSMENT QUESTIONS
17.13 SUGGESTED READINGS

Centre for Distance Education 17.2 Acharya Nagarjuna University

17.1 INTRODUCTION

17.1.1 Overview

In a document-oriented database like MongoDB, updates and deletes are fundamental
operations used to modify or remove data from collections.
Unlike relational databases where updates affect rows in tables, MongoDB updates operate
on JSON-like documents, providing greater flexibility in modifying nested structures and
arrays.

Updates enable applications to reflect real-time changes—for example, updating product
prices, stock quantities, customer details, or order statuses—while deletes help maintain a
clean and efficient database by removing outdated or redundant records.

In addition, atomic operations ensure that updates to a document are applied completely or
not at all, preserving data consistency even in concurrent environments where multiple users
or processes may attempt to modify the same data.

17.1.2 The Need for Updates in MongoDB

E-commerce platforms and real-time applications require frequent updates to maintain
accurate information.

For example:
e When a customer places an order, the stock quantity must be reduced.
e Ifan order is canceled, the inventory must be restored.
e When a user edits their profile, the corresponding document must be updated
instantly.

MongoDB provides efficient methods like updateOne(), updateMany(), and replaceOne() to
modify documents selectively or entirely, without affecting other unrelated data.

17.1.3 Understanding Deletes in MongoDB

Delete operations are equally important to maintain data hygiene and relevance.
For example, an e-commerce company may need to:
e Delete products that are no longer sold.
e Remove customer accounts upon request (to comply with data privacy regulations).
e Purge old transaction records after a certain period for archival or compliance
purposes.

MongoDB provides the deleteOne() and deleteMany() methods to remove specific or
multiple documents efficiently, ensuring that only targeted data is deleted.

DBMS 17.3 UPDATES ATOMIC OPERATIONS...

17.1.4 Importance of Atomic Operations

Atomic operations ensure that all changes to a document occur as a single, indivisible action.
If multiple users attempt to update the same document simultaneously, MongoDB guarantees
that each update is applied in isolation, preventing conflicts and data corruption.

For instance, when two customers attempt to purchase the last available unit of a product
simultaneously, MongoDB’s atomic update ensures that only one order is confirmed, and the
stock value is adjusted correctly.

Atomicity is particularly critical in e-commerce for:
e Order management (preventing duplicate confirmations).
e Inventory synchronization (avoiding negative stock).
¢ Financial transactions (ensuring accurate billing and wallet updates).

17.1.5 Updates and Deletes in E-Commerce Applications

In an e-commerce context, updates and deletes occur constantly.
Here are some real-world examples:

Scenario Operation MongoDB

Type Method
Updating product prices or descriptions Update updateOne()
Increasing loyalty points after purchase Atomic Update | $inc
Changing order status from “Pending” to | Update updateMany()
“Delivered”
Removing expired offers or discount coupons Delete deleteMany()
Deleting inactive user accounts Delete deleteOne()
Restoring inventory after order cancellation Atomic Update | $inc (reverse stock)

Such operations ensure that the database remains accurate, responsive, and consistent with
real-world changes.

Example:

An online store wants to update all “Winter Collection” products to offer a 10% discount.
db.products.updateMany/(

{ category: "Winter Collection" },

{ $mul: { price: 0.9 } }

)

This single command reduces the price of all products in the specified category by 10%,
illustrating the simplicity and power of MongoDB’s update capabilities.

Similarly, to remove all expired discount codes, the following delete operation can be
performed:

Centre for Distance Education 17.4 Acharya Nagarjuna University

db.coupons.deleteMany({ expiry date: { $lt: new Date() } })
Both operations are efficient, atomic (per document), and ideal for real-time e-commerce

17.2 UNDERSTANDING DOCUMENT UPDATES

17.2.1 Overview

In MongoDB, update operations modify existing documents in a collection.
They can change single fields, multiple fields, or replace an entire document.

Common methods include updateOne(), updateMany(), and replaceOne().

17.2.2 The updateOne() and updateMany() Methods
e updateOne() modifies the first matching document.
e updateMany() modifies all documents that match the filter.

Example:

db.products.updateOne({ id: "P101" }, { $set: { price: 499 } })
db.products.updateMany({ category: "Books" }, { $inc: { stock: 10 } })
17.2.3 Replace Operation

replaceOne() completely replaces an existing document with a new one.
db.users.replaceOne({ id: "U001" }, { name: "Lavanya", city: "Guntur" })

17.2.4 Common Update Operators

. $set — Assigns a new value to a field.
o { $set: { status: "Delivered" } }
. $inc — Increases or decreases a numeric field.
o { $inc: { loyalty points: 100 } }
. $unset — Removes a field.
o { Sunset: { discount: "" } }
. $rename — Renames a field.
o { $rename: { "old_field": "new_field" } }
J $push / $pull — Adds or removes array elements.

o { S$push: { tags: "new-arrival" } }
o { $pull: { tags: "outdated" } }

. $addToSet — Adds a value to an array only if it doesn’t exist.
o {$%addToSet: { tags: "featured" } }

17.2.5 Upsert Option
An upsert updates a document if it exists; otherwise, it inserts a new one.
db.products.updateOne(

{ name: "Wireless Mouse" },

{ $set: { stock: 50 } },

{ upsert: true }

)

DBMS 17.5 UPDATES ATOMIC OPERATIONS...

17.2.6 Updating Embedded Documents
Fields inside nested structures can be updated using dot notation.
db.orders.updateOne(
{ id: "O1001" },
{ $set: { "shipping.city": "Vijayawada" } }
)

17.2.7 E-Commerce Examples
o Update order status:
e db.orders.updateOne({ id: "O2001" }, { $set: { status: "Shipped" } })
o Increase stock after restock:
e db.products.updateMany({ category: "Electronics" }, { $inc: { stock: 25 } })
e Add a new review to a product:
db.products.updateOne({ id: "P101" }, { $Spush: { reviews: "Excellent!" } })

17.3 ATOMIC OPERATIONS

17.3.1 Overview

Atomic operations in MongoDB ensure that updates to a document are completed entirely
or not at all.

Each document update is atomic by default, even when multiple clients are modifying data
simultaneously.

17.3.2 Single-Document Atomicity

All updates to a single document (including embedded fields and arrays) are atomic.
This prevents partial updates and maintains consistency.

Example:
When two users order the same item, MongoDB ensures only one successfully decreases the

stock count.

17.3.3 Common Atomic Operators

. $inc — Adjusts numeric fields atomically.

o db.products.updateOne({ id: "P101" }, { Sinc: { stock: -1 } })
. $set — Updates field values.

o db.orders.updateOne({ id: "O201" }, { $set: { status: "Delivered" } })
. $push / $pull — Modifies arrays atomically.

o db.users.updateOne({ id: "U001" }, { $push: { wishlist: "P205" } })
17.3.4 Atomicity in Embedded Documents

Updates made to nested fields are applied atomically at the document level.
db.orders.updateOne(

{ id:"0301" },

{ $set: { "payment.status": "Confirmed" } }

)

Centre for Distance Education 17.6 Acharya Nagarjuna University

17.3.5 Multi-Document Transactions

For operations spanning multiple documents or collections, MongoDB uses transactions to
maintain atomicity.

const session = db.getMongo().startSession()

session.startTransaction()

db.orders.updateOne({ id: "O1001" }, { $set: { status: "Paid" } }, { session })
db.users.updateOne({ id: "U1001" }, { $inc: { wallet: -500 } }, { session })
session.commitTransaction()

17.3.6 Importance in E-Commerce
e Prevents overselling of products.
o Ensures consistent order and payment updates.
e Maintains synchronization between user and inventory data.
e Supports safe concurrent updates during high traffic.

17.4 E-COMMERCE UPDATE EXAMPLES
17.4.1 Overview

E-commerce systems frequently perform update operations to manage inventory, customer
information, and order statuses.
MongoDB provides flexible update methods that allow changes to be made efficiently in
real-time.

17.4.2 Updating Product Details

Example 1 — Changing Product Price:

db.products.updateOne({ id: "P101" }, { $set: { price: 999 } })

Example 2 — Increasing Stock:

db.products.updateOne({ id: "P101" }, { $inc: { stock: 20 } })

Example 3 — Adding Tags:

db.products.updateOne({ id: "P101" }, { $addToSet: { tags: "new-arrival" } })

17.4.3 Updating Customer Information

Example — Change Address and Phone Number:
db.users.updateOne(

{ id: "U201" },

{ $set: { "address.city": "Vijayawada", phone: "9876543210" } }

)

17.4.4 Updating Order Status

Example — Change Order Status from Pending to Shipped:
db.orders.updateOne(

{ 1d: "O501", status: "Pending" },

{ $set: { status: "Shipped", shipped date: new Date() } }

)

DBMS 17.7 UPDATES ATOMIC OPERATIONS...

17.4.5 Updating Product Reviews

Example — Add a New Review:
db.products.updateOne(
{ _id: "P301" },
{ $push: { reviews: { user: "U101", rating: 5, comment: "Excellent!" } } }

)

17.4.6 Bulk Updates for Promotions

Example — Apply 10% Discount to All Electronics:
db.products.updateMany(

{ category: "Electronics" },

{ $mul: { price: 0.9 } }

)

17.4.7 Loyalty Points Update
Example — Reward Customers After Purchase:
db.users.updateMany(
{ total orders: { $gte: 5} },
{ $inc: { loyalty points: 50 } }
)

17.4.8 Inventory Adjustment after Return

Example — Restock Returned Product:
db.products.updateOne({ id: "P205" }, { Sinc: { stock: 1 } })

17.5 Nuts and Bolts of MongoDB Updates
17.5.1 Overview

MongoDB provides multiple update methods and operators that allow precise modifications
of documents. These updates can target single or multiple documents, and can also insert data
when no match is found (upsert).

17.5.2 The updateOne() Method

Updates the first matching document.
Syntax:

db.collection.updateOne(filter, update, options)

Example:
db.products.updateOne({ id: "P101" }, { $set: { price: 750 } })

17.5.3 The updateMany() Method
Updates all matching documents.

Centre for Distance Education 17.8 Acharya Nagarjuna University

Example:
db.products.updateMany({ category: "Books" }, { $inc: { stock: 5 } })

17.5.4 The replaceOne() Method

Replaces an entire document with a new one.
Example:
db.users.replaceOne({ id: "U101" }, { name: "Lavanya", city: "Guntur" })

17.5.5 The findOneAndUpdate() Method
Finds and wupdates a document, returning the modified document.

Example:
db.orders.findOneAndUpdate(
{ id:"O101" },
{ $set: { status: "Delivered" } },
{ returnDocument: "after" }

)

17.5.6 Update Options
e upsert: true — Inserts if no matching document exists.
o arrayFilters — Filters array elements during updates.
e multi — Allows updating multiple documents (for legacy use).
Example (upsert):
db.products.updateOne(
{ name: "Smart Lamp" },
{ $set: { stock: 15} },
{ upsert: true }

)

17.5.7 Using Date and Conditional Fields

MongoDB provides operators for timestamps and conditional inserts.
db.orders.updateOne(
{ id:"0201" },
{
$currentDate: { updated at: true },
$setOnlnsert: { created at: new Date() }
s
{ upsert: true }

)

17.5.8 Performance Considerations
o Use indexes on frequently updated fields.
e Avoid frequent updates to large arrays.
o Prefer $set for partial updates instead of replacing entire documents.
o Use bulk operations for batch updates.

DBMS

17.9

UPDATES ATOMIC OPERATIONS...

Example — Bulk Write:
db.products.bulk Write([

{ updateOne: { filter: { id: "P101" }, update: { $inc: { stock: 5} } } },
{ updateOne: { filter: { id: "P102" }, update: { $set: { price: 899 } } } }

),

17.6 Deleting Documents

Aspect Description Example / Use Case

Definition Removes documents from a | Deleting expired coupons or
MongoDB collection based on filter | cancelled orders.
criteria.

Primary deleteOne() — Deletes first matching | db.orders.deleteMany({ status:

Methods document.deleteMany() — Deletes all | "Cancelled" })
matching documents.

Filter Use Ensures only targeted data is deleted | db.users.deleteOne({ _id: "U501"
to prevent data loss. })

Soft Delete Marks documents as inactive instead | db.products.updateOne({ _id:
of removing them. "P101" }, { $set: { is_deleted: true

9]

Bulk Delete Removes multiple outdated or | db.logs.deleteMany({ created at:
irrelevant records efficiently. { $lt: ISODate("2025-01-01") } })

Precaution Avoid using empty filters (e.g., {}) to | 3§ db.orders.deleteMany({})
prevent accidental full deletion.

Performance | Use indexes on filter fields and | Improves efficiency in large

Tips schedule deletions during low traffic. | datasets.

Use in E-| Clean up old orders, remove expired | Keeps database optimized and up

Commerce offers, or deactivate discontinued | to date.
products.

17.6 Deleting Documents

Aspect Description Example / Use Case

Definition Removes documents from a | Deleting expired coupons or cancelled
MongoDB collection based on | orders.
filter criteria.

Primary deleteOne() — Deletes first | db.orders.deleteMany({ status:

Methods matching document. | "Cancelled" })
deleteMany() — Deletes all
matching documents.

Filter Use Ensures only targeted data is | db.users.deleteOne({ id: "U501" })
deleted to prevent data loss.

Soft Delete Marks documents as inactive | db.products.updateOne({ id: "P101"
instead of removing them. 1, { $set: {is deleted: true } })

Bulk Delete Removes multiple outdated or | db.logs.deleteMany({ created at: { $lt:
irrelevant records efficiently. ISODate("2025-01-01") } })

Precaution Avoid using empty filters (e.g., | 3¢ db.orders.deleteMany({})

{}) to prevent accidental full
deletion.

Centre for Distance Education

17.10

Acharya Nagarjuna University

Performance Use indexes on filter fields and | Improves efficiency in large datasets.
Tips schedule deletions during low
traffic.
Use in E-|Clean up old orders, remove | Keep
Commerce expired offers, or deactivate

discontinued products.

17.8 E-Commerce Case Study: Inventory and Order Synchronization

Aspect Description Example /
Implementatio
n
Scenario Synchronizing inventory and order status during customer | When a product
purchases. is ordered, stock
decreases and
order status
updates.
Challenge Prevent inconsistent updates (e.g., overselling or duplicate | Two customers
orders). buying the last
item
simultaneously.
Solution Use atomic updates or transactions to ensure | Atomic
consistency. decrement of
stock and order
creation in one
step.
Atomic js
db.products.updateOne({ id: "P101", stock: { $gt: | Reduces stock
Update 01} 3}, {Sinc: {stock: -1} }) by one only if
Example available.
Transactiona | js
session.startTransaction()
db.orders.updateOne | Ensures both
1 Example ({ _id: "O101" }, { $set: { status: "Confirmed" } }, { | order
session })
db.products.updateOne({ id: "P101" }, { | confirmation
$inc: { stock: -1 } }, { session | and stock
})
session.commitTransaction() deduction occur
together.
Result Prevents partial or conflicting updates between orders and | Maintains
products. accurate stock
and order data
in real time.
Benefits - Reliable order management.
- Accurate inventory levels.
- Seamless user experience.

DBMS
OPERATIONS...

17.11 UPDATES ATOMIC

17.9 Performance and Optimization

Aspect

Description

Example / Recommendation

Goal

Improve the efficiency and
reliability of update and delete
operations in MongoDB.

Ensures faster processing in large e-
commerce databases.

Use Indexes

Create indexes on frequently
queried or updated fields.

db.orders.createIndex({ user id: 1 })

Use Projection

Fetch or update only required
fields.

db.products.find({}, { name: 1, price:
1})

Batch Operations

Perform multiple updates or

db.products.bulkWrite([...])

deletes together for better

efficiency.
Avoid Large | Minimize updates on | Store reviews or logs in separate
Array documents with large arrays. collections.
Modifications
Place $match | Filter documents early in | Reduces memory usage and improves
Early aggregation or bulk updates. speed.
Use Upserts | Enable upsert only when | updateOne({ name: "item" }, { $set:
Wisely necessary to prevent | {...} }, { upsert: true })

unintended inserts.

Soft Deletes for

Mark documents as inactive

db.users.updateOne({ id: "UI01" },

History instead of deleting. { $set: { is deleted: true } })
Monitor with | Analyze query plans and | db.orders.find({ status: "Paid"
.explain() optimize indexes. }).explain("executionStats")
Hardware and | Use replica sets and sharding | Distribute data across multiple nodes.
Sharding for scalability and fault

tolerance.
Automation Schedule cleanup and | Cron jobs for archiving and deleting

optimization tasks during off-
peak hours.

old data.

17.10 SUMMARY

In this lesson, we explored how MongoDB handles updates, atomic operations, and deletions
within document-oriented databases. Update operations allow partial or complete
modification of documents using operators such as $set, $inc, $push, and $unset. Atomic
operations ensure that each update to a document is executed completely or not at all,
preventing conflicts in concurrent environments. We also discussed deletion operations using
deleteOne() and deleteMany(), along with soft deletes for preserving data history. The lesson
further examined how these operations apply to e-commerce systems—including order
management, inventory synchronization, and data consistency across collections—supported
by transactions and bulk operations for high performance.

Centre for Distance Education 17.12 Acharya Nagarjuna University

17.11 Technical Terms

Atomic Operation
Upsert

Soft Delete
Transaction

Bulk Write

17.12 Self-Assessment Questions

Short Answer Questions

1.

Nk

What is the difference between updateOne() and updateMany() in MongoDB?
Define atomic operation and explain its importance in databases.

What is an upsert operation?

How does MongoDB handle deletion operations safely?

What is the advantage of using soft deletes in e-commerce databases?

Long Answer Questions

1.

2.

Explain the concept of atomic operations in MongoDB with suitable e-commerce
examples.

Discuss different update operators in MongoDB and their use in real-world
applications.

Describe the process and advantages of using transactions in MongoDB for
maintaining data consistency.

Compare hard delete and soft delete strategies with examples from e-commerce
applications.

How can performance be optimized for frequent update and delete operations in large-
scale MongoDB systems?

17.13 Suggested Readings

MRS

N

Kristina Chodorow — MongoDB: The Definitive Guide, O’Reilly Media.

Rick Copeland — MongoDB Applied Design Patterns, O’Reilly Media.

MongoDB Documentation — Update, Delete, and Atomic Operations.

Alex Giamas — Practical MongoDB Aggregations, Leanpub.

Ramez Elmasri & Shamkant B. Navathe — Fundamentals of Database Systems,
Pearson Education.

MongoDB University — Transactions and Multi-Document Atomicity.

AWS Whitepaper — Building Scalable NoSQL Applications Using MongoDB.

Dr. U. Surya Kameswari

