

COMPUTER ORGANIZATION

M.Sc (COMPUTER SCIENCE)
SEMESTER-I, PAPER-V

 Lesson Writers:

Dr.U. Surya Kameswari Dr. Neelima Guntupalli
Asst.Professor, Asst. Professor
Dept. of CS&E Dept. of Comp.Science&Eng.,
Acharya Nagarjuna University, Acharya Nagarjuna University
Nagarjunanagar – 522 510 Nagarjunanagar – 522 510

Dr. Kampa Lavanya
Asst. Professor
Dept. of CS&E
Acharya Nagarjuna University
Nagarjunanagar – 522 510

 Editor

Dr. Neelima Guntupalli
Asst. Professor,

Dept. of Comp.Science & Eng.,
Acharya Nagarjuna University

Nagarjunanagar – 522 510.

Director, I/c.

Prof. V. Venkateswarlu
 M.A., M.P.S., M.S.W ., M.Phil., Ph.D.

Professor
Centre for Distance Education
Acharya Nagarjuna University

Nagarjuna Nagar 522 510

Ph: 0863-2346222, 2346208
 0863- 2346259 (Study Material)

Website www.anucde.info
E-mail: anucdedirector@gmail.com

M.Sc Computer Science

First Edition : 2025

No. of Copies :

© Acharya Nagarjuna University

This book is exclusively prepared for the use of students of M.Sc (Computer
Science), Centre for Distance Education, Acharya Nagarjuna University and this book
is meant for limited circulation only.

Published by:

 Director I/c

Prof. V. Venkateswarlu,
 M.A., M.P.S., M.S.W . M.Phil., Ph.D.
Centre for Distance Education,
Acharya Nagarjuna University

Printed at:

FOREWORD

Since its establishment in 1976, Acharya Nagarjuna University has been

forging ahead in the path of progress and dynamism, offering a variety of
courses and research contributions. I am extremely happy that by gaining 'A+'
grade from the NAAC in the year 2024, Acharya Nagarjuna University is
offering educational opportunities at the UG, PG levels apart from research
degrees to students from over 221 affiliated colleges spread over the two districts
of Guntur and Prakasam.

The University has also started the Centre for Distance Education in
2003-04 with the aim of taking higher education to the door step of all the
sectors of the society. The centre will be a great help to those who cannot join in
colleges, those who cannot afford the exorbitant fees as regular students, and
even to housewives desirous of pursuing higher studies. Acharya Nagarjuna
University has started offering B.Sc., B.A., B.B.A., and B.Com courses at the
Degree level and M.A., M.Com., M.Sc., M.B.A., and L.L.M., courses at the PG
level from the academic year 2003-2004 onwards.

To facilitate easier understanding by students studying through the
distance mode, these self-instruction materials have been prepared by eminent
and experienced teachers. The lessons have been drafted with great care and
expertise in the stipulated time by these teachers. Constructive ideas and
scholarly suggestions are welcome from students and teachers involved
respectively. Such ideas will be incorporated for the greater efficacy of this
distance mode of education. For clarification of doubts and feedback, weekly
classes and contact classes will be arranged at the UG and PG levels
respectively.

It is my aim that students getting higher education through the Centre for
Distance Education should improve their qualification, have better employment
opportunities and in turn be part of country's progress. It is my fond desire that
in the years to come, the Centre for Distance Education will go from strength to
strength in the form of new courses and by catering to larger number of people.
My congratulations to all the Directors, Academic Coordinators, Editors and
Lesson-writers of the Centre who have helped in these endeavors.

Prof. K. Gangadhara Rao

M.Tech., Ph.D.,
Vice-Chancellor I/c

 Acharya Nagarjuna University

M.Sc. Computer Science
Semester-I, Paper-V

Computer Organization

Syllabus

UNIT 1:

Digital logic circuits - Logic gates, Boolean algebra, Map simplification, Combinational
logic. circuits, Flip flops, Sequential logic circuits.
Digital Components - Integrated circuits, Decoders, Multiplexers, Registers, Shift registers,
Binary Counters, Memory unit.
Data Representation - Data types, Complements, Fixed & Floating point representation,
Other binary codes, Error Detection codes

UNIT II
Register Transfer and micro operations
Register transfer language, Register transfer, Bus and Memory transfers, Arithmetic micro
operations, Logical micro operations, shift micro operations, Arithmetic Logic shift unit.
Basic Computer Organization and Design - Instruction Codes. Computer Registers,
Computer Instructions, Timing and Control. Instruction Cycle, Memory Reference
Instructions, Input-output and Interrupt

UNIT III

Micro programmed Control control Memory, Address Sequencing, Micro program
example, Design of control unit.
Central Processing Unit General Register Organization, Stack Organization, Instruction
format, Addressing modes, Data Transfer and Manipulation, Program Control.

UNIT IV

Computer Arithmetic Introduction, Addition and Subtraction, Multiplication Algorithms,
Division Algorithms, Floating-Point Arithmetic Operations, Decimal Arithmetic Unit,
Decimal Arithmetic Operations.

UNIT V
Input-Output Organization Peripheral Devices, Input Output Interface, asynchronous Data
Transfer, Modes of Transfers, Priority Interrupt.
Memory Organization - Memory Hierarchy, Main memory, Auxiliary Memory, Associative
memory, Cache memory.

Prescribed Book
Morris Mano, "Computer System Architecture", 3rd Edition, PHI.

Reference Books
1. V. Rajaraman, T. Radha Krishnan, "Computer Organization and Architecture", PHI
2. Behrooz Parhami, "Computer Architecture", Oxford (2007)
3. ISRD group, "Computer Organization", ace series, TΜΗ (2007)
4. William Stallings, "Computer Organization and Architecture Performance", Pearson

Education (2005) Designing for

 (105CP24)

M.SC DEGREE EXAMINATION, Model QP
Computer Science – First Semester

Computer Organization

 Time: 3hours Max. Marks: 70

Answer ONE Question from each unit 5 x 14-70 M

UNIT-I
1. a) Simplify the following Boolean function in sum of products form by means of a four variable

map. Draw the logic diagram with a)AND-OR gates b)NAND gates
F(A,B,C,D)=∑(0,2,5,8,9,10,11,14,15)

 b) Show the circuit of a 5 by 32 decoder constructed with four 3 by 8 decoders one 2x4 decoder.
(OR)

 2. a) Explain the Working of JK Flip-flop with necessary circuit diagram.
 b) Write short notes on fixed point Integer representation.

UNIT-II
3. a) Design a combination circuit for 4 bit Adder subtractor.
 b) Give the block diagram of control unit of a basic computer.

(OR)
4. Write Register Transfer Language program for following Instructions of a Basic computer i)
 LDA ii)STA

UNIT-III
5. a) Draw and Explain the block diagram of a typical Micro program sequences for a control
 memory.
 b) Give the difference between Hardwire control and microgram control.

(OR)
 6. a) Explain any four Addressing modes.
 b) Explain about Memory Stack.

UNIT – IV

7. a) Explain Booth Multiplication Algorithm?
 b) Explain Hardware implementation for Signed-Magnitude Data?

(OR)
8. Explain briefly about Decimal Arithmetic Operations of Multiplication?

UNIT-V
9. a) Explain DMA Data transfer.
 b) write about Virtual Memory.

(OR)
10. a) Discuss about various types of cache memory mapping procedures.
 b) Explain Daisy chain priority Interrupt.

CONTENTS

 TITLE PAGE NO

1. Digital Logic Circuits 1.1- 1.16

2. Number System 2.1- 2.11

3. Flip Flops 3.1- 3.10

4. Digital Components 4.1- 4.19

5. Data Representation 5.1- 5.19

6. Register Transfer and Microoperations 6.1- 6.22

7. Basic Computer Organization & Design 7.1- 7.23

8. Micro Programmed Control 8.1- 8.16

9. Central Procession Unit 9.1- 9.24

10. Computer Arithmetic 10.-10.18

11. Input-Output Organization 11.1-11.13

12. Memory Organization 12.1-12.20

LESSON- 1

DIGITAL LOGIC CIRCUITS

OBJECTIVES:

After going through this lesson, you will be able to

 Understanding Digital Logic Fundamentals
 Mastering Boolean Algebra and Logic Simplification
 Analyzing Combinational Circuits
 Designing and Implementing Sequential Logic

STRUCTURE OF THE LESSION:

1.1 Digital Computers

1.2 Logic Gates

1.3 Boolean Algebra

1.4 Map Simplification

1.5 Combinational Circuits

1.6 Summary

1.7 Technical Terms

1.8 Self-Assessment Questions

1.9 Further Readings

1.1 DIGITAL COMPUTERS

Digital computers are digital systems that perform computational tasks using variables that
take a limited number of discrete values. These values are processed internally by
components that maintain a limited number of discrete states. The decimal digits 0, 1, 2, ... ,
9, for example, provide 10 discrete values. The term digital computer emerged from the use
of decimal digits for numerical computations. In practice, digital computers function more
reliably with only two states. Digital components constrained to take discrete values are
binary, as human logic tends to be binary.

Digital computers use the binary number system, consisting of 0 and 1 digits, and represent
information in groups of bits. These bits can be used to represent other discrete symbols like
decimal digits or alphabet letters. By judicious use of binary arrangements and coding
techniques, complete sets of instructions for computations are developed.

A computer system is divided into hardware and software, with hardware comprising
electronic components and electromechanical devices, and software containing instructions
and data for data-processing tasks.

Centre for Distance Education 1.2 Acharya Nagarjuna University

A program is a sequence of instructions for a computer, manipulated by data, and constitutes
the data base. A computer system consists of hardware and system software, which is a
collection of programs designed to make the computer more effective. The operating system,
or system software, is different from application programs, which are written by the user for
specific problems. A customer purchasing a computer system needs any available software
for effective operation, as system software compensates for differences between user needs
and hardware capabilities.

1.1.1 Computer Hardware

The hardware of the computer is usually divided into three major parts, as shown in Fig. 1-1.

Figure 1.1 Block diagram of a digital computer.

The central processing unit (CPU) contains an arithmetic and logic unit for manipulating
data, a number of registers for storing data, and control circuits for fetching and executing
instructions. The memory of a computer contains storage for instructions and data. It is called
a random access memory (RAM) because the CPU can access any location in memory at
random and retrieve the binary information within a fixed interval of time. The input and
output processor (lOP) contains electronic circuits for communicating and controlling the
transfer of information between the computer and the outside world. The input and output
devices connected to the computer include keyboards, printers, terminals, magnetic disk
drives, and other communication devices.

1.1.2 Computer organization , Design and Architecture

 Computer Organization:

Computer organization deals with the way a computer system is structured internally.
It includes topics such as data representation, instruction sets, addressing modes,
memory organization, and hardware components like processors, memory units,
input/output devices, etc and its goal is to understand how the hardware components
work together to execute instructions and process data efficiently.

Computer Organization 1.3 Digital Logic Circuits

 Computer Design:

Computer design (or digital design) involves the process of designing the structure
and organization of digital circuits to achieve a specific functionality or performance
goal. This includes designing components like arithmetic logic units (ALUs),
registers, multiplexers, etc.

It goes beyond just the architecture and includes detailed circuit design, logic design,
and the use of hardware description languages (HDLs) like Verilog or VHDL to
implement digital systems.

 Computer Architecture:

Computer architecture refers to the conceptual design and fundamental operational
structure of a computer system. It defines the instruction set architecture (ISA),
addressing modes, memory organization, and how various hardware components
interact to process information.

Architectural decisions impact performance, power consumption, scalability, and
overall system design. It is concerned with the interface between hardware and
software, specifying how software instructions are executed at the hardware level.

1.2 LOGIC GATES

Binary information is represented in digital computers by physical quantities called signals.
Electrical signals such as voltages exist throughout the computer in either one of two
recognizable states. The two states represent a binary variable that can be equal to 1 or 0. For
example, a particular digital computer may employ a signal of 3 volts to represent binary 1
and 0.5 volt to represent binary 0. The input terminals of digital circuits accept binary signals
of 3 and 0.5 volts and the circuits respond at the output terminals with signals of 3 and 0.5
volts to represent binary input and output corresponding to 1 and 0, respectively.

Binary logic deals with binary variables and with operations that assume a logical
meaning. It is used to describe, in algebraic or tabular form, the manipulation and processing
of binary information. The manipulation of binary information is done by logic circuits called
gates. Gates are blocks of hardware that produce signals of binary 1 or 0 when input logic
requirements are satisfied. A variety of logic gates are commonly used in digital computer
systems. Each gate has a distinct graphic symbol and its operation can be described by means
of an algebraic expression. The input-output relationship of the binary variables for each gate
can be represented in tabular form by a truth table.

Centre for Distance Education 1.4 Acharya Nagarjuna University

The names, graphic symbols, algebraic functions, and truth tables of eight logic gates

are listed in Figure 1.2. Each gate has one or two binary input variables designated by A and

Band one binary output variable designated by x.

The AND gate is named so because, if 0 is false and 1 is true, the gate acts in the same

way as the logical "and" operator. The following illustration and table show the circuit

symbol and logic combinations for an AND gate. (In the symbol, the input terminals are on

the left, and the output terminal is on the right.) The output is "true" when both inputs are

"true." Otherwise, the output is "false." In other words, the output is 1 only when both inputs

are 1.

The OR gate gets its name from behaving like the logical inclusive "or." The output is

true if one or both of the inputs are true. If both inputs are false, then the output is false. In

other words, for the output to be 1, at least one input must be 1.

A logical inverter, sometimes called a NOT gate to differentiate it from other types of

electronic inverter devices, has only one input. A NOT gate reverses the logic state. If the

input is 1, then the output is 0. If the input is 0, then the output is 1

The XOR (exclusive-OR) gate acts in the same way as the logical "either/or." The

output is true if either, but not both, of the inputs are true. The output is false if both inputs

are "false" or if both inputs are true. Similarly, the output is 1 if the inputs are different but 0

if the inputs are the same.

The NAND (Negated AND) gate operates as an AND gate followed by a NOT gate. It

acts in the manner of the logical operation "and" followed by negation. The output is false if

both inputs are true. Otherwise, the output is true. Another way to visualize it is that a NAND

gate inverts the output of an AND gate. The NAND gate symbol is an AND gate with the

circle of a NOT gate at the output.

The NOR (NOT OR) gate is a combination OR gate followed by an inverter. Its

output is true if both inputs are false. Otherwise, the output is false.

The XNOR (exclusive-NOR) gate is a combination of an XOR gate followed by an

inverter. Its output is true if the inputs are the same and false if the inputs are different.

Computer Organization 1.5 Digital Logic Circuits

1.3 BOOLEAN ALGEBRA

Boolean algebra is an algebra that deals with binary variables and logic operations.

The variables are designated by letters such as A, B, x, and y. The three basic logic

operations are AND, OR, and complement.

A Boolean function can be expressed algebraically with binary variables, the logic

operation symbols, parentheses, and equal sign. For a given value of the variables, the

Boolean function can be either 1 or 0. Consider, for example, the Boolean function

 F = x + y'z

The function F is equal to 1 if x is 1 or if both y' and z are equal to I; F is equal to 0

otherwise. But saying that y' = 1 is equivalent to saying that y = 0 since y' is the complement

of y. Therefore, we may say that F is equal to 1 if x = 1 or if yz = 01. The relationship

between a function and its binary variables can be represented in a truth table. To represent a

function in a truth table we need a list of the 2' combinations of then binary variables.

As shown in Figure l-3(a), there are eight possible distinct combinations for assigning bits to

the three variables x, y, and z. The function F is equal to 1 for those combinations where x =

1 or yz = 01; it is equal to 0 for all other combinations. A Boolean function can be

transformed from an algebraic expression into a logic diagram composed of AND, OR, and

inverter gates.

(a) Truth Table (b) Logic diagram

Figure 1.3 logic diagram F=x+y’z

Centre for Distance Education 1.6 Acharya Nagarjuna University

Figure 1.2 Logic Gates

The logic diagram for F is shown in Fig. l-3(b). There is an inverter for input y to generate its
complement y'. There is an AND gate for the term y'z, and an OR gate is used to combine the
two terms. In a logic diagram, the variables of the function are taken to be the inputs of the
circuit, and the variable symbol of the function is taken as the output of the circuit

Boolean algebra is a mathematical system used in digital logic and computer science, where
variables can only have two possible values: true (1) or false (0).

Boolean expressions can be manipulated algebraically to form simpler expressions that
implement the same logic. This may allow a simpler circuit to be produced with fewer logic

Computer Organization 1.7 Digital Logic Circuits

gates. This will reduce the cost of the circuit, the amount of heat generated, and the
processing time.

Here are some basic identities and rules of Boolean algebra:

Figure 1.4 Basic identities of Boolean Algebra

De Morgan’s Theorem

A theorem put out by the British mathematician Augustus De Morgan in the nineteenth
century, De Morgan's theorem consists of two rules. The AND, NOT, and OR rules are
utilised by the two statutes. One Boolean expression can be transformed from one form to
another by utilising the qualities of these functions. De Morgan’s theorem holds true for two
or more variables.

First Theorem: the inversion of the product is the same as the sum of the inversions

Centre for Distance Education 1.8 Acharya Nagarjuna University

Figure 1.5 Demorgans first theorem

Second Theorem: the inversion of the sum is the same as the product of the inversions.

Figure 1.6 Demorgan’s second theorem

Complement of a Function F: The complement of a function F when expressed in a truth
table is obtained by interchanging l's and D's in the values of F in the truth table. When the
function is expressed in algebraic form, the complement of the function can be derived by
means of DeMorgan's theorem. The general form of DeMorgan's theorem can be expressed
as follows:

 (𝑥ଵ + 𝑥ଶ + 𝑥ଷ+ + 𝑥)ᇱ = 𝑥ଵ
ᇱ 𝑥ଶ

ᇱ 𝑥ଷ
ᇱ . . . 𝑥

ᇱ

(𝑥ଵ𝑥ଶ𝑥ଷ. 𝑥)ᇱ = 𝑥ଵ
ᇱ + 𝑥ଶ

ᇱ + 𝑥 +ଷ
ᇱ + 𝑥

ᇱ

From the general DeMorgan's theorem we can derive a simple procedure for obtaining the
complement of an algebraic expression. This is done by changing all OR operations to AND
operations and all AND operations to OR operations and then complementing each individual
letter variable. As an example, consider the following expression and its complement:

F = AB + C'D' + B'D

F' = (A' + B')(C + D)(B + D')

1.4 MAP SIMPLIFICATION

The Karnaugh map (K-map) approach is a graphical tool used to simplify Boolean equations.

Computer Organization 1.9 Digital Logic Circuits

K-maps, often known as 2D truth tables, are an alternative way of displaying the values
found in a one-dimensional truth table. K-maps involve the process of placing the output
variable values in cells within a rectangular or square grid, following a specific pattern.

The number of cells in the K-map is determined by the number of input variables and is
mathematically expressed as two raised to the power of the number of input variables, i.e.,
2n, where the number of input variables is n.

Thus, to simplify a logical expression with two inputs, we require a K-map with 4 (= 22)
cells. A four-input logical expression would lead to a 16 (= 24) celled-K-map, and so on.

Gray Code:

Additionally, a method of encoding known as Grey code is utilised in order to assign a
specific place value to each individual cell that is contained within a K-map.

One of the most notable characteristics of this code is that the values of the adjacent codes
differ from one another by only one bit. In other words, if the code-word that is being used is
01, then the code-words that come before and after it can be either 11 or 00, in any order, but
they cannot be 10 under any circumstances.

In K-maps, the rows and columns of the table are labelled with grey code, which in turn
reflects the values of the input variables that correlate to those rows and columns with grey
code. Therefore, it is possible to address each K-map cell by utilising a Grey Code-Word that
is unique to that cell.

K-Map Rules:

The Karnaugh map uses the following rules for the simplification of expressions

by grouping together adjacent cells containing ones

Groups may not include any cell containing a zero

Centre for Distance Education 1.10 Acharya Nagarjuna University

Groups may be horizontal or vertical, but not diagonal.

Groups must contain 1, 2, 4, 8, or in general 2n cells. That is if n = 1, a group will contain
two 1's since 21 = 2. If n = 2, a group will contain four 1's since 22 = 4.

Each group should be as large as possible.

Each cell containing a one must be in at least one group.

Computer Organization 1.11 Digital Logic Circuits

Groups may overlap.

Groups may wrap around the table. The leftmost cell in a row may be grouped with the
rightmost cell and the top cell in a column may be grouped with the bottom cell.

There should be as few groups as possible, as long as this does not contradict any of the
previous rules.

Figure 1.7 K-map rules

Centre for Distance Education 1.12 Acharya Nagarjuna University

K-map can take two forms:

Sum of product (SOP)

Product of Sum (POS)

Steps to Solve Expression using K-map

 Select the K-map according to the number of variables.

 Identify minterms or maxterms as given in the problem.

 For SOP put 1’s in blocks of K-map respective to the minterms (0’s elsewhere).

 For POS put 0’s in blocks of K-map respective to the max terms (1’s elsewhere).

 Make rectangular groups containing total terms in power of two like 2,4,8 ..(except 1)
and try to cover as many elements as you can in one group.

 From the groups made in step 5 find the product terms and sum them up for SOP
form.

2-Variablle K-Map 3-Variable K-map 4-variable K-map

Figure 1.8 types of K-maps

Examples:

F(A, B, C) = (0, 2, 4, 5, 6)

The simplified function is

F = C'+AB'

F(A. B. C) = (3,4.6, 7).

Computer Organization 1.13 Digital Logic Circuits

The Simplified Function is

F = BC + AC'

1.5 COMBINATIONAL CIRCUITS

Combinational circuit is a circuit in which we combine the different gates in the circuit. A
logic gate is a basic building block of any electronic circuit. The output of the combinational
circuit depends on the values at the input at any given time. The circuits do not make use of
any memory or storage device

Examples are: encoder, decoder, multiplexer and demultiplexer.

Combinational logic is used in computer circuits to perform Boolean algebra on input signals
and on stored data.Other circuits used in computers, such as half adders, full adders, half
subtractors, full subtractors, multiplexers, demultiplexers, encoders and decoders are also
made by using combinational logic.

Some of the characteristics of combinational circuits are following:

 The output of a combinational circuit at any instant of time, depends only on the
levels present at input terminals.

 It does not use any memory. The previous state of input does not have any effect on
the present state of the circuit.

 It can have an n number of inputs and m number of outputs.

Figure 1.9 block diagram of Combinational Circuit

An adder is a circuit that can be integrated with many other circuits for a wide range of
applications. It is a kind of calculator used to add two binary numbers. There are two kinds of
adders;

1. Half adder

2. Full adder

Centre for Distance Education 1.14 Acharya Nagarjuna University

1.5.1 Half Adder

With the help of half adder, we can design circuits that are capable of performing simple
addition with the help of logic gates.

Example of the addition of single bits.

0+0 = 0

0+1 = 1

1+0 = 1

1+1 = 10

These are the possible single-bit combinations. But the result for 1+1 is 10. Though this
problem can be solved with the help of an EXOR Gate, the sum result must be re-written as a
2-bit output.

Thus the above equations can be written as:

0+0 = 00

0+1 = 01

1+0 = 01

1+1 = 10

A Half Adder is a combinational circuit with two binary inputs (augends and addend bits and
two binary outputs (sum and carry bits.) It adds the two inputs (x and y) and produces the
sum (S) and the carry (C) bits. It is an arithmetic operation of addition of two single bit
words.

Figure 1.10 Half - adder

The Sum(S) bit and the carry (C) bit, according to the rules of binary addition, the sum (S) is
the X-OR of x and y (It represents the LSB of the sum). Therefore,

𝑆 = 𝑥ᇱ𝑦 + 𝑥𝑦ᇱ = 𝑥 𝑦

The carry (C) is the AND of x and y (it is 0 unless both the inputs are 1).Therefore,

𝐶 = 𝑥𝑦

Computer Organization 1.15 Digital Logic Circuits

A half-adder can be realized by using one X-OR gate and one AND gate

1.5.2 Full Adder

A Full-adder is a combinational circuit that adds two bits and a carry and outputs a sum bit
and a carry bit. To add two binary numbers, each having two or more bits, the LSBs can be
added by using a half-adder. The carry resulted from the addition of the LSBs is carried over
to the next significant column and added to the two bits in that column. So, in the second and
higher columns, the two data bits of that column and the carry bit generated from the addition
in the previous column need to be added.

The full-adder adds the bits x and y and the carry from the previous column called the carry-
in Cin and outputs the sum bit S and the carry bit called the carry-out Cout . The variable S
gives the value of the least significant bit of the sum. The variable Cout gives the output carry.
The eight rows under the input variables designate all possible combinations of 1s and 0s that
these variables may have. The 1s and 0s for the output variables are determined from the
arithmetic sum of the input bits. When all the bits are 0s, the output is 0. The S output is
equal to 1 when only 1 input is equal to 1 or when all the inputs are equal to 1. The Cout has a
carry of 1 if two or three inputs are equal to 1.

From the truth table, a circuit that will produce the correct sum and carry bits in response to
every possible combination of x, y and z in is described by

 Logic diagram Truth Table

Figure 1.11 Half -adder

1.6 SUMMARY
The chapter on digital computers and circuits covers essential concepts in the field of

digital electronics. It begins with an introduction to digital computers, emphasizing their
reliance on binary representation and the role of logic gates in processing information.
Boolean Algebra is introduced as the mathematical foundation for expressing and simplifying
logical operations, crucial for designing efficient circuits. Map simplification techniques like
Karnaugh maps are explored to optimize Boolean expressions. Combinational circuits, which
derive outputs solely from present inputs, are detailed alongside examples such as adders and

Centre for Distance Education 1.16 Acharya Nagarjuna University

multiplexers. This comprehensive overview equips readers with a foundational understanding
of how digital systems are designed, from basic logic operations to sophisticated circuit
architectures.

1.7 TECHNICAL TERMS

 Digital Computers, Logic Gates, Boolean algebra, Map Simplification, Combinational
 Circuits, and Sequential Circuits

1.8 SELF ASSESSMENT QUESTIONS

Essay questions:

1. Explain the significance of Boolean algebra in digital circuit design. Provide
examples to illustrate its application.
2. Compare and contrast combinational and sequential circuits. Discuss their
respective uses and provide examples of each.
3. Simplify the following Boolean functions using three-variable maps.

a. F(x,y,z) = (0, 1,5, 7) b. F(x,y,z) = (1,2,3,6,7) c. F(x,y,z) = (3, 5, 6, 7)

 Short Questions:
1. Define a logic gate. Provide examples of common logic gates and their Boolean
expressions.
2. Simplify the Boolean expressions using boolean algebra
 a. AB + A(CD + CD') b. (BC' + A'D) (AB' + CD')

3. Simplify the following expressions in (1) sum-of-products form and (2) product-
of-sums form.
 a. x'z' + y'z' + y z' + xy b. AC' + B'D + A'CD + ABCD

4. Simplify the Boolean function F together with the don't-care conditions d in
 (1) sum-of-products form and (2) product-of-sums form.
 F(w,x, y, z) =I (0, 1,2, 3, 7, 8, 10) d(w,x,y ,z) =I (5 , 6, 11, 15)

1.9 FURTHER READINGS
1. M.Morris Mano, “Computer System Architecture”, 3rd Edition, Pearson Education

(2008).
2. V. Rajaraman, T. Radha Krishnan, “Computer Organization and Architecture”, PHI
3. BehroozParhami, “Computer Architecture”, Oxford (2007)
4. ISRD group, “Computer Organization”, ace series, TMH (2007)
5. William Stallings, “Computer Organization and Architecture – Designing for

Performance”, Pearson Education (2005)

 Dr. U Surya Kameswari

LESSON- 2
NUMBER SYSTEM

.
OBJECTIVE:

After going through this lesson, you will be able to
 Understand the fundamental concepts of different number systems,
 Convert numbers between these different number systems accurately.
 Explain the significance of each number system in the context of digital electronics

and computing.
 Analyze the advantages and disadvantages of using different number systems in

various applications.

STRUCTURE OF THE LESSION:
2.1 Introduction
2.2 Binary Number Systems
2.4 Decimal Number System
2.4 Hexa Decimal Number Systems
2.5 Number System conversions
2.6 Applications
2.7 Summary
2.8 Technical Terms
2.9 Self-Assessment Questions
2.10 Further Readings

2.1 INTRODUCTION

A number system of base, or radix, r is a system that uses distinct symbols for r digits.
Numbers are represented by a string of digit symbols. To determine the quantity that the
number represents, it is necessary to multiply each digit by an integer power of r and then
form the sum of all weighted digits.

The number system is fundamental in digital electronics as it provides a way to
represent and manipulate data. Different number systems are used to encode information,
perform arithmetic operations, and communicate between devices.

The primary number systems in digital electronics include:

2.2 BINARY NUMBER SYSTEM

The binary number system, also known as the base-2 system, is a fundamental numerical
system used extensively in digital electronics and computing. It consists of only two digits: 0
and 1. Each digit in a binary number represents a power of 2, with the rightmost digit
representing 20, the next 21, 22, and so forth.

Centre for Distance Education 2.2 Acharya Nagarjuna University

For example, the binary number 1011 translates to decimal as 1×23 + 0 × 22 + 1 × 21 +
1 × 2+ = 8 + 0 + 2 + 1 = 11. This simplicity allows computers and digital devices to
efficiently process and store data using two distinct states, which correspond to the on and off
states of electronic circuits.

The binary system is essential in the design and operation of digital systems, as it
aligns perfectly with the architecture of computers. Each bit (binary digit) can represent a
state either low (0) or high (1) enabling the implementation of logical operations and data
manipulation through combinations of bits. Moreover, larger binary numbers can be grouped
into bytes (typically 8 bits), facilitating more complex data representations. The binary
system's structure underpins everything from basic arithmetic operations in computer
algorithms to complex data structures and programming languages, making it a cornerstone
of modern computing technology.

2.3 DECIMAL NUMBER SYSTEM

The decimal number system, also known as the base-10 system, is the standard
system for denoting integer and non-integer numbers in everyday life. It employs ten digits,
from 0 to 9, to represent values. Each digit's position within a number signifies its weight,
which is determined by powers of 10. For example, in the number 345, the digit '3' is in the
hundreds place, '4' is in the tens place, and '5' is in the ones place. This positional notation
allows for the representation of large numbers using a compact form, making it intuitive for
human use.

The fundamental principle of the decimal system is that each place value represents a
power of 10. For instance, in the number 2,578, the digit '2' represents 2×103 (or 2000), '5'
represents 5×102 (or 500), '7' represents 7×101 (or 70), and '8' represents 8×100 (or 8). This
structure allows for the easy calculation of a number’s value by summing the contributions of
each digit based on its position, making arithmetic operations straightforward.

2.4 HEXADECIMAL NUMBER SYSTEM

The hexadecimal number system, also known as base-16, is a numerical system that
uses sixteen distinct symbols to represent values. These symbols include the digits 0 to 9,
which represent values zero to nine, and the letters A to F, which represent values ten to
fifteen. This compact representation allows for a more efficient encoding of large binary
numbers, as each hexadecimal digit corresponds to four binary digits (bits). For example, the
binary number 1010 translates to the hexadecimal digit A, while the binary number 1111
corresponds to F. This relationship makes it easy to convert between binary and hexadecimal,
as each group of four bits can be directly represented by a single hexadecimal digit.

Hexadecimal is widely used in computing and digital electronics for several reasons.
It simplifies the representation of binary data, making it easier for programmers and
engineers to read and interpret large numbers. For instance, a binary number like 11111111
can be succinctly expressed as FF in hexadecimal, which is much easier to work with.

Computer Organization 2.3 Number System

Hexadecimal is commonly used in programming languages, memory addressing, and color
codes in web design (e.g., HTML color values), where it enhances clarity and efficiency. Its
ability to represent large values in a compact form makes the hexadecimal system an essential
tool in various aspects of computer science and digital technology.

2.5 OCTAL NUMBER SYSTEM

The octal number system, also known as base-8, utilizes eight distinct digits: 0
through 7. Each digit in an octal number represents a power of 8, which allows for a more
compact representation of binary numbers compared to the decimal system. For example, the
octal number 157 can be interpreted as 1×82+5×81+7×80=64+40+7=1111 \times 8^2 + 5
\times 8^1 + 7 \times 8^0 = 64 + 40 + 7 = 1111×82+5×81+7×80=64+40+7=111 in decimal.
The octal system is particularly useful in computing, as each octal digit corresponds to three
binary digits (bits), making conversions between the two systems straightforward.

Historically, the octal system was more prominent in early computing systems and
programming languages, especially when dealing with file permissions in Unix-based
systems, where each octal digit represents a set of read, write, and execute permissions.
However, its use has diminished in favor of the hexadecimal system, which provides a more
compact representation for binary data. Despite this decline, octal remains relevant in specific
applications and provides a clear method for representing binary values in a more
manageable format, especially in contexts where space or simplicity is a concern.

2.6 NUMBER CONVERSION

The following number system conversion methods are mostly used in digital computers

 Decimal to Binary Number System

 Octal to Binary Number System

 Binary to Octal Number System

 Binary to Hexadecimal Number System

 Hexadecimal to Binary Number System

Number system conversions deal with the process of altering the numbers' base. For
instance, converting a base-10 decimal value to a base-2 binary number. On the number
system, we can also carry out arithmetic operations like addition, subtraction, and
multiplication. For each base number, the general representation of number system base
conversion is as follows:

 (Number)b = dn-1 dn-2 . . . d1 d0 . d-1 d-2 . . . d-m

In the above expression, dn-1 dn-2 . . . d1 d0 represents the value of integer part and d-1 d-2 . . .
d-m represents the fractional part.

Centre for Distance Education 2.4 Acharya Nagarjuna University

Also, dn-1 is the Most significant bit (MSB) and d-m is the Least significant bit (LSB).

2.6.1 Decimal to other Bases

2.6.1.1 Decimal to Binary Number:

If we need to convert a decimal number to binary, simply divide it by two.
Example 1. Convert (35)10 to binary number.

Operation Output Remainder

35 ÷ 2 17 1(LSB)

17 ÷ 2 8 1

8 ÷ 2 4 0

4 ÷ 2 2 0

2 ÷ 2 1 0

1 ÷ 2 1 1(MSB)

Therefore, from the above table, we can write,
(35)10 = (100011)2

2.6.1.2 Decimal to Octal Number:

To convert a decimal to an octal number, divide the given original value by 8 such that base
10 becomes base 8.
Example 2: Convert 21410 to octal number.

Operation Output Remainder

214÷8 26 6(LSB)

26÷8 3 2

3÷8 0 3(MSB)

Therefore, the equivalent octal number = 3268

2.6.1.3 Decimal to Hexadecimal:

Again in decimal to hex conversion, we have to divide the given decimal number by 16.
Example 3: Convert 94510 to hex.

Operation Output Remainder

945÷16 59 1 (LSB)

Computer Organization 2.5 Number System

59÷16 3 11

3÷16 0 3 (MSB)

Therefore, the equivalent hexadecimal number is 3B116

2.6.2 Binary to other Bases

2.6.2.1 Binary to Decimal:
In this conversion, binary number to a decimal number, we use multiplication method, in
such a way that, if a number with base n has to be converted into a number with base 10, then
each digit of the given number is multiplied from MSB to LSB with reducing the power of
the base. Let us understand this conversion with the help of an example.

Example 1. Convert (1101)2 into a decimal number.

Given a binary number (1101)2.
Now, multiplying each digit from MSB to LSB with reducing the power of the base number
2.
1 × 23 + 1 × 22 + 0 × 21 + 1 × 20
= 8 + 4 + 0 + 1
= 13
Therefore, (1101)2 = (13)10

2.6.2.2 Binary to Octal

There are several different forms of numbers in the number system, including binary,
octal, decimal, and hexadecimal. To convert binary numbers into octal numbers, follow the
instructions below.

 Take the provided binary number.

 Multiply each digit by 2n-1, where n is the digit's location from the decimal.

 The resultant is the equivalent decimal number to the given binary integer. \

 Divide the decimal number by eight.

 Note the remainder.

 Continue the preceding two procedures with the quotient until it reaches zero.

 Write the remaining in reverse order.

 The resulting is the required octal number for the given binary value.

Example:
Given binary number is 110101102
First, we convert given binary to decimal
Base 2 to decimal calculation:
(11010110)2 = (1 × 27) + (1 × 26) + (0 × 25) + (1 × 24) + (0 × 23) + (1 × 22) + (1 × 21) + (0 ×
20) = (214)10

Centre for Distance Education 2.6 Acharya Nagarjuna University

Now we will convert this decimal to octal form
Operation Output Remainder

214÷8 26 6(LSB)

26÷8 3 2

3÷8 0 3(MSB)

Therefore, the equivalent octal number = 3268

2.6.2.3 Binary to Hexadecimal
Given binary number is 110101102
First, we convert given binary to decimal
Base 2 to decimal calculation:
(11010110)2 = (1 × 27) + (1 × 26) + (0 × 25) + (1 × 24) + (0 × 23) + (1 × 22) + (1 × 21) + (0 ×
20) = (214)10

Now we will convert this decimal to hexadecimal form
Operation Output Remainder

214÷16 13 6 (LSB)

13÷16 0 13 (MSB)

Therefore, the equivalent hexadecimal number is D616

2.6.3 Octal to other Bases

2.6.3.1 Octal to Decimal
To convert binary numbers into octal numbers, follow the instructions below.

o Count the number of digits present in the given number. Assume the number of digits
to be ‘x’

o Multiply each of the numbers with 8x-1, and when the digit is in the xth position from
the right end of the number. If the number has a decimal part, multiply each digit in
the decimal part by 8-y when the digit is in the yth position from the decimal point.

o Now add all the terms after multiplication.
o The obtained answer is the decimal number.

Example:
Convert 3268 to decimal number
Base 8 to decimal calculation:
(326)8 = (3 × 82) + (2 × 81) + (6 × 80) = (214)10

Computer Organization 2.7 Number System

2.6.3.2 Octal to Binary
There are 2 methods to convert an octal number to a binary number:

o Method 1: Octal to Decimal and Then Decimal to Binary
o Method 2: Direct Method of Octal to Binary Conversion

Direct method of octal to binary conversion
There is a straightforward way to convert an octal number to a binary number. Because the
octal number system has just eight symbols (i.e., 0, 1, 2, 3, 4, 5, 6, 7), the base (i.e., 8) is
identical to 23 = 8. As a result, we may represent each digit of the octal number as a group of
three bits in binary.

 This method is straightforward and also serves as the inverse of binary to octal
conversion. The steps are outlined below:
Step 1: Use the provided octal number as input.
Step 2: Use the octal to binary table to convert each digit of the octal number to its binary
equivalent.
Step 3: Generate the equivalent binary number.

Example:
Convert (4321)8 = (?)2
Binary representation of each digit of 4321 is:
4 – 100
3 – 011
2 – 010
1 – 001
Therefore, (4321)8 = (100011010001)2

Octal to Hexadecimal
Two steps are required to change an octal number to hexadecimal.

Step: 1 We first convert the octal number into binary.
In order to convert an octal number to binary, we must write each octal digit's 3 bit binary
equivalent in the same order.
Step 2: The binary number is changed to hexadecimal in the following step.
The binary number divides into groups of four bits starting at the binary point. When dealing
with whole numbers, we move to the left, and when dealing with fractions, we move to the
right.

Example:
Covert the octal number (56)8 to a hexadecimal number.

Centre for Distance Education 2.8 Acharya Nagarjuna University

 Fist convert (56)8 into binary number
(56)8
= (101) (110)
 = (101110)2
Now convert (101110)2 in hexadecimal
(101110)2
= (10) (1110)
= (2) (14)
= (2E)16

2.6.4 Hexadecimal to other Bases
2.6.4.1 Hexadecimal to Decimal

The base number 16 is used to convert hexadecimal to decimal. To change a hexadecimal
number to a decimal one:

Step 1: Write each number's digit's decimal equivalent in hexadecimal form.

Step 2: Starting with the digit on the right, multiply the numbers from right to left using
exponents of 160, 161, 162,

Step 3: Next, add all the products. The resultant sum is the number in the decimal system

Example:

Convert (A4E)16 into Decimal

Base 16 to decimal calculation:

(A4E)16 = (10 × 162) + (4 × 161) + (14 × 160) = (2638)10

2.6.4.2 Hexadecimal to Binary

There are only 16 digits from 0 to 7 and A to F in the hexadecimal number system, so we can
represent any digit of the hexadecimal number system using only 4 bits as follows below.

Step 1: Divide the given hexadecimal number into individual digits.

Step 2: Assign binary equivalents to each hexadecimal digit. It’s important to keep track of
leading zeros when converting hexadecimal to binary to maintain the correct number of
digits.

Hexa 0 1 2 3 4 5 6 7

Binary 0000 0001 0010 0011 0100 0101 0110 0111

Hexa 8 9 A B C D E F

Binary 1000 1001 1010 1011 1100 1101 1110 1111

Computer Organization 2.9 Number System

Step 3: Replace each hexadecimal digit with its binary equivalent using the conversion table.

 Example:

hexadecimal number “2A” to binary:

“2” in hexadecimal is equivalent to “0010” in binary.

“A” in hexadecimal is equivalent to “1010” in binary.

Therefore, “2A” in hexadecimal is equivalent to “00101010” in binary.

2.6.4.3 Hexadecimal to Octal

This method is straightforward and the steps are outlined below:

1. For each given hexadecimal number digit, write the equivalent binary number. If any
of the binary equivalents are less than 4 digits, add 0’s to the left side.

2. Combine and make the groups of binary digits from right to left, each containing 3
digits. Add 0’s to the left if there are less than 3 digits in the last group.

3. Find the octal equivalent of each binary group.

Example: convert 1BC16 to Octal

Given, 1BC16 is a hexadecimal number.
1 → 0001, B → 1011, C →1100
Now group them from right to left, each having 3 digits.
000, 110, 111, 100
000→0, 110 →6, 111→7, 100→4
Hence, 1BC16 = 6748

2.7 APPLICATIONS OF NUMBER SYSTEMS

Number systems are fundamental to digital electronics, underpinning various applications
that range from data representation to arithmetic operations.

1. Data Representation

Digital systems use binary (base-2) to represent data because it aligns perfectly with the two
states of electronic circuits—on (1) and off (0). Each piece of data, whether a character,
number, or instruction, is encoded in binary format for processing and storage. For example,
ASCII characters are represented in binary, allowing computers to interpret text.

Centre for Distance Education 2.10 Acharya Nagarjuna University

2. Memory Addressing

Hexadecimal (base-16) is commonly used in computer memory addressing. Since one
hexadecimal digit represents four binary digits, it simplifies the representation of large binary
addresses. This makes it easier for programmers and engineers to work with memory
locations, as hexadecimal provides a more compact and readable format compared to binary.

3. Arithmetic Operations

Number systems are crucial for performing arithmetic operations in digital circuits. Binary
arithmetic, including addition, subtraction, multiplication, and division, is fundamental in
computer processing. Arithmetic Logic Units (ALUs) in CPUs perform calculations using
binary numbers, which are then interpreted or converted as needed into decimal or other
formats for output.

4. Digital Communication

In digital communication systems, data is often transmitted in binary form. Protocols such as
Ethernet and USB rely on binary encoding to ensure reliable data transfer. Furthermore, error
detection and correction methods, such as parity bits and checksums, utilize binary numbers
to identify and correct errors during transmission.

5. Control Systems

Octal (base-8) and hexadecimal systems are often used in control systems, especially in
programming and configuring devices. For instance, octal is used in Unix file permissions,
where each octal digit represents a set of access rights. Similarly, hexadecimal is used in
configuring microcontrollers, allowing for efficient setting of control registers and memory
addresses.

6. Color Representation in Graphics

Hexadecimal is widely used in web design and graphic applications to represent colors. In
this context, colors are often expressed as RGB (Red, Green, Blue) values, with each color
component ranging from 00 to FF in hexadecimal, facilitating a straightforward way to
specify colors in digital graphics.

7. Embedded Systems

Embedded systems often utilize binary and hexadecimal representations for efficient
programming and debugging. Many programming languages and assembly languages allow
developers to write and read code in hexadecimal, making it easier to interface with hardware
components and manage memory.

Computer Organization 2.11 Number System

2.8 SUMMARY

This chapter explores the various number systems used in digital electronics, emphasizing
their importance in data representation and processing. It covers the binary, decimal, octal,
and hexadecimal systems, detailing how each system functions and how to convert between
them. The binary system, with its two digits (0 and 1), forms the foundation of digital
computing, while octal and hexadecimal systems offer more compact representations of
binary data. Understanding these number systems is crucial for designing and working with
digital circuits, as they directly influence how data is stored, transmitted, and processed.

2.9 TECHNICAL TERMS

Number system, decimal, binary, octal, hexadecimal

2.10 SELF ASSESSMENT QUESTIONS

Essay Questions:
1. Explain the significance of the binary number system in digital electronics.
2. Discuss its advantages and applications in modern computing.
3. Compare and contrast the hexadecimal and octal number systems
4. Describe the process of converting a decimal number to binary and vice versa with

examples
5. Analyze the role of different number systems in computer programming and data

storage.

Short Questions:
1. What are the main digits used in the octal number system?
2. How does the hexadecimal system relate to binary in terms of data representation?
3. Convert the binary number 11010 to decimal.
4. What is the primary advantage of using the hexadecimal system over the binary

system in programming?
5. Explain how to convert the decimal number 25 to binary. What is the resulting binary

value?

2.11 FURTHER READINGS
1. M.Morris Mano, “Computer System Architecture”, 3rd Edition, Pearson Education

(2008).
2. V. Rajaraman, T. Radha Krishnan, “Computer Organization and Architecture”, PHI
3. BehroozParhami, “Computer Architecture”, Oxford (2007)
4. ISRD group, “Computer Organization”, ace series, TMH (2007)
5. William Stallings, “Computer Organization and Architecture – Designing for

Performance”, Pearson Education (2005)

Dr. U Surya Kameswari

LESSON- 3

FLIP FLOPS

OBJECTIVES:

After going through this lesson, you will be able to

 Understand the Fundamental Concepts
 Explore Types of Flip-Flops
 Analyze Characteristic Equations
 Examine Timing Diagrams
 Application in Sequential Logic

STRUCTURE OF THE LESSION:
3.1 Introduction
3.2 Flip Flop Vs Latch
3.3 SR Flip-Flop
3.4 D Flip Flop
3.5 T Flip Flop
3.6 JK Flip Flop
3.7 Applications
3.8 Summary
3.9 Technical Terms
3.10 Self-Assessment Questions
3.11 Further Readings

3.1 INTRODUCTION

The combinational circuit does not use any memory. Hence the previous state of input
does not have any effect on the present state of the circuit. But sequential circuit has memory
so output can vary based on input. This type of circuits uses previous input, output, clock and
a memory element.

Flip-flops are fundamental building blocks in digital electronics, serving as essential
components for data storage and processing in various electronic devices. These bistable
devices can exist in one of two stable states, making them ideal for holding binary
information. The ability of flip-flops to maintain their state until explicitly changed allows
them to function as memory elements, which are critical in sequential logic circuits.

At the core of flip-flop operation is the concept of triggering. Flip-flops are typically
controlled by clock signals, which synchronize the state changes in digital systems. This
synchronization is crucial in ensuring that data is processed and stored at the right times,
enabling the reliable functioning of complex systems. The clock signal provides a uniform
timing mechanism, allowing multiple flip-flops in a circuit to work in harmony.

Centre for Distance Education 3.2 Acharya Nagarjuna University

In addition to serving as memory elements, flip-flops play a pivotal role in the design
of state machines. These state machines are used in various applications, from simple control
systems to complex microprocessors. By enabling the representation of different states within
a system, flip-flops facilitate the implementation of algorithms and processes that require
sequential logic. This capability is vital for tasks such as counting, timing, and data handling.

Another important aspect of flip-flops is their role in implementing registers and
memory units. Registers are groups of flip-flops that work together to store multi-bit data.
This capability is crucial in microcontrollers and processors, where data needs to be
temporarily held for processing. The organization of flip-flops into registers allows for
efficient data manipulation and retrieval, which is fundamental to computing operations.

The versatility of flip-flops extends beyond basic memory functions; they can also be
employed in various applications, including frequency dividers, digital counters, and shift
registers. Their ability to be combined in different configurations enables engineers to create
complex digital systems tailored to specific requirements. This adaptability makes flip-flops
indispensable in the realm of digital design and engineering.

3.2 FLIP FLOP Vs LATCH

Latches and flip-flops are the basic elements for storing information. One latch or
flip-flop can store one bit of information. The main difference between latches and flip-flops
is that for latches, their outputs are constantly affected by their inputs as long as the enable
signal is asserted. In other words, when they are enabled, their content changes immediately
when their inputs change. Flip-flops, on the other hand, have their content change only either
at the rising or falling edge of the enable signal. This enable signal is usually the controlling
clock signal. After the rising or falling edge of the clock, the flip-flop content remains
constant even if the input changes. There are basically four main types of latches and flip-
flops: SR, D, JK, and T. The major differences in these flip-flop types are the number of
inputs they have and how they change state. For each type, there are also different variations
that enhance their operations.

Latches are level-sensitive devices, meaning they respond to input signals as long as
the control signal (enable or gate) is active. This allows them to continuously monitor their
inputs and change state whenever the input conditions are met. In contrast, flip-flops are
edge-sensitive devices; they change state only at specific moments dictated by a clock signal,
typically on the rising or falling edge. This makes flip-flops more suited for synchronous
applications.

Flip flop = latch + clock signal

Latches tend to be simpler in terms of design and implementation compared to flip-
flops. They can be constructed using fewer gates and require less power. Flip-flops, while
more complex, provide better control over data flow and timing, making them more suitable
for advanced digital systems that require reliability and precision.

Computer Organization 3.3 Flip Flops

The latch's characteristics:

 Latches can simultaneously store one or more bits of binary data

 They work by "latching" onto a specific binary value and holding it there until the
input changes

 Various gates can be used to construct latches, including NOR and NAND

 There are several types of latches: SR Latch, D Latch, JK Latch, etc

The Flip – flops characteristics

 Flip-flops are binary devices with two stable states: high and low.

 Numerous logic gates, such as NAND, NOR, and JK, can construct them.

 Flip-flops are used in digital electronic devices like computers, calculators, and
cell phones and are crucial in digital circuits.

 The performance of flip-flops affects the general functionality and speed of digital
circuits.

 Flip-flops are used in various sectors, such as signal processing, control systems,
and telecommunication.

 Flip-flops can switch between positive (rising edge) and negative (falling edge)
states in response to a clock signal.

 In digital circuits, flip-flops are devices used for storing binary data, and there are
four main types.

SR Latch SR Flip Flop
3.3 SR FLIP-FLOP

S-R flip-flop is a set-reset flip-flop. It is used in MP3 players, Home theatres, Portable audio
docks, and etc. S-R can be built with NAND gate or with NOR gate. Either of them will have
the input and output complemented to each other.

Centre for Distance Education 3.4 Acharya Nagarjuna University

Figure 3.12 SR Flip Flop

3.3.1 Operation:

The operation of the SR flip-flop is as follows. If there is no signal at the clock input C, the

output of the circuit cannot change irrespective of the values at inputs S and R. Only when

the clock signal changes from 0 to 1 can the output be affected according to the values in

inputs S and R. If S = 1 and R = 0 when C changes from 0 to 1, output Q is set to 3. If S = 0

and R = 1 when C changes from 0 to 1, output Q is cleared to 0. If both S and R are 0 during

the clock transition, the output does not change. When both 5 and R are equal to 1, the output

is unpredictable and may go to either 0 or 1, depending on internal timing delays that occur

within the circuit.

3.3.2 Timing Characteristics:

The characteristic table shown in Fig. 3-12(b) summarizes the operation of the SR flip-flop in
tabular form. The S and R columns give the binary values of the two inputs. Q(t) is the binary
state of the Q output at a given time (referred to as present state). Q(t + 1) is the binary state
of the Q output after the occurrence of a clock transition (referred to as next state). If S = R =
0, a clock transition produces no change of state [i.e., Q(t + 1) = Q(t)] . If S = 0 and R = 1, the
flip-flop goes to the 0 (clear) state. If S = 1 and R = 0, the flip-flop goes to the 1 (set) state.
The SR flip-flop should not be pulsed when S = R = 1 since it produces an indeterminate next
state. This indeterminate condition makes the SR flip-flop difficult to manage and therefore it
is seldom used in practice.

Characteristic equation is Q (t+1) = S + (Q (t) • R')

Computer Organization 3.5 Flip Flops

3.3.3 Applications

SR flip-flops are commonly used in applications that require basic memory storage, such as
data latches, and in circuits where control signals are needed to manage operations. They can
also be found in state machines, counters, and other sequential logic devices, providing a
simple means to implement basic state changes.

3.3.4. Limitations

While the SR flip-flop is straightforward and useful, it has limitations. The indeterminate
state that occurs when both inputs are high is a significant drawback in many designs. To
address this issue, more advanced flip-flops, like JK or D flip-flops, have been developed,
which provide a more robust approach to state management and eliminate the invalid state
condition.

3.4 D FLIP FLOP

The D (data) flip-flop is a slight modification of the SR flip-flop. An SR flip-flop is
converted to a D flip-flop by inserting an inverter between S and R and assigning the symbol
D to the single input. The D input is sampled during the occurrence of a clock transition from
0 to 3. If D = 1, the output of the flip-flop goes to the 1 state, but if D = 0, the output of the
flip-flop goes to the 0 state

Figure 3.13 D Flip Flop

3.4.1 Operation:

The D flip-flop operates on the principle of edge-triggering. When the clock signal
transitions—typically on the rising edge (from low to high)—the current value of the D input

Centre for Distance Education 3.6 Acharya Nagarjuna University

is captured and transferred to the Q output. This means that Q takes on the value of D at that
specific moment. If the D input is high (1) at the clock edge, Q will be set to high; if D is low
(0), Q will be reset to low. Between clock cycles, the output remains stable, effectively
"holding" the last value of D.

3.4.2 Timing Characteristics:

From the characteristic table we note that the next state Q(t + 1) is determined from the D
input. The relationship can be expressed by a characteristic equation:

Q(t + 1) = D

This means that the Q output of the flip-flop receives its value from the D input every time
that the clock signal goes through a transition from 0 to 3.

no input condition exists that will leave the state of the D flip-flop unchanged. Although a D
flip-flop has the advantage of having only one input (excluding C), it has the disadvantage
that its characteristic table does not have a "no change" condition Q(t + 1) = Q(t).

3.4.3 Applications

D flip-flops are commonly used in various applications, including data storage, shift registers,
and memory devices. They play a significant role in creating digital systems such as
microcontrollers and digital signal processors, where data needs to be captured and processed
in a controlled manner. The D flip-flop’s ability to delay data until a specific clock event also
makes it useful in timing applications.

3.4.4 Advantages

One of the primary advantages of the D flip-flop is its simplicity and reliability. It eliminates
the indeterminate states associated with other flip-flop types (like the SR flip-flop), providing
a clear and unambiguous output based on the input at the clock edge. This feature enhances
its robustness in digital design, making it a preferred choice in many applications.

3.5 JK FLIP FLOP

A JK flip-flop is a refinement of the SR flip-flop in that the indeterminate condition of the SR
type is defined in the JK type. Inputs J and K behave like inputs S and R to set and clear the
flip-flop, respectively. When inputs J and K are both equal to 1, a clock transition switches
the outputs of the flip-flop to their complement state.

The graphic symbol and characteristic table of the JK flip-flop are shown in Figure 3.14.

The J input is equivalent to the S (set) input of the SR flip-flop, and the K input is equivalent
to the R (clear) input.

Computer Organization 3.7 Flip Flops

3.5.1 Operation

The JK flip-flop operates based on the values of its J and K inputs at the moment of a clock
edge, typically the rising edge. The behavior of the JK flip-flop is defined by the following
rules:

 If J is high (1) and K is low (0), the flip-flop sets Q to high (1).
 If J is low (0) and K is high (1), it resets Q to low (0).
 If both J and K are low (0), the output Q retains its previous state.
 If both J and K are high (1), the flip-flop toggles its state (if Q was 0, it becomes 1,

and vice versa).

This toggle capability is a significant advantage of the JK flip-flop, making it ideal for
counting applications.

Figure 3.14 JK Flip Flop

3.5.2 Timing Characteristics

The JK flip-flop is an edge-triggered device, meaning it only changes its output state at the
moment of a clock edge. This feature allows for precise timing in synchronous circuits, where
multiple JK flip-flops can be coordinated to operate together. The edge-triggered behavior
ensures that state changes occur predictably, making it suitable for complex digital systems.

The characteristic function of JK Flip Flop is Q (t+1) = J + (Q (t) • K')

Centre for Distance Education 3.8 Acharya Nagarjuna University

3.5.3 Applications

The flexibility of the JK flip-flop makes it ideal for a variety of applications, including:

 Counters: The toggle feature allows JK flip-flops to function as binary counters,
where the state changes with each clock pulse.

 Shift Registers: They can be used in shift register designs to store and manipulate
data serially.

 State Machines: JK flip-flops are often used in finite state machines to represent and
transition between different states.

3.5.4 Advantages

One of the primary advantages of the JK flip-flop is its ability to toggle, which eliminates the
ambiguous state present in the SR flip-flop. This feature makes it more versatile for
applications where changing states is required. Additionally, its robust performance and
predictable behavior in synchronous designs enhance its reliability in various electronic
systems.

3.6 T FLIP FLOP

The T (Toggle) flip-flop is a type of bistable multivibrator widely used in digital electronics.
It is a simplified version of the JK flip-flop, designed specifically for toggling its output state
based on a single input. The T flip-flop has one input, labeled T (Toggle), and two outputs: Q
and Q̅ (the complement of Q). Its straightforward operation makes it particularly useful in
applications such as counters and frequency dividers.

3.6.1 Operation

The T flip-flop changes its output state based on the value of the T input at the moment of a
clock edge, typically the rising edge. The key characteristic of the T flip-flop is that:

 If T is high (1), the flip-flop toggles its output: if Q is currently 0, it becomes 1, and if
Q is currently 1, it becomes 0.

 If T is low (0), the output Q remains in its current state, effectively holding the value.

This toggling behavior is what distinguishes the T flip-flop from other types of flip-flops.

Computer Organization 3.9 Flip Flops

Figure 3.15 T Flip Flop

3.6.2 Timing Characteristics

The T flip-flop therefore has only two conditions. When T = 0 (J = K = 0) a clock transition
does not change the state of the flip-flop. When T = 1 (J = K = 1) a clock transition
complements the state of the flip-flop. These conditions can be expressed by a characteristic
equation:

Q(t + 1) = Q(t) T

3.6.3 Applications

The T flip-flop is particularly useful in various applications, including:

 Counters: It is commonly used in binary counters, where the T flip-flop toggles its
state with each clock pulse, effectively counting the number of pulses received.

 Frequency Dividers: T flip-flops can be used to create frequency dividers, reducing
the frequency of an input clock signal by half for each T flip-flop in the chain.

 State Machines: They are often employed in simple state machine designs where
toggling between states is necessary.

3.6.4 Advantages

The simplicity of the T flip-flop is one of its main advantages. With only one input, it
reduces design complexity compared to other flip-flops like JK and SR. This makes it easier
to implement in various digital systems. Additionally, the toggling feature allows for efficient
counting and frequency division, making it a versatile choice in many applications.

3.7 SUMMARY

This chapter focuses on flip-flops, the fundamental building blocks of sequential logic
circuits in digital electronics. It covers the various types of flip-flops—SR, D, JK, and T—
highlighting their unique operational characteristics, applications, and characteristic
equations. The chapter emphasizes the importance of timing diagrams in illustrating the
relationship between inputs and outputs and explores the roles flip-flops play in data storage,

Centre for Distance Education 3.10 Acharya Nagarjuna University

counting, and state machine design. Understanding flip-flops is crucial for mastering
sequential logic and its applications in modern electronic systems.

3.8 TECHNICAL TERMS

 Flip Flop, latch, sequential circuit, timing diagram, characteristic equation.

3.9 SELF ASSESSMENT QUESTIONS

Essay questions:
1. Explain the Role of Flip-Flops in Digital Electronics
2. Compare and Contrast Different Types of Flip-Flops
3. Analyze the Characteristic Equations of Flip-Flops
4. Describe the Implementation of Flip-Flops in Integrated Circuits
5. Explain various types of flip flops with neat diagrams.

 Short Questions:

1. What is the primary function of a flip-flop in digital electronics?
2. How does a D flip-flop differ from an SR flip-flop?
3. What is the characteristic equation for a JK flip-flop?
4. Describe the toggle behavior of a T flip-flop.
5. In what applications are flip-flops commonly used?

3.10 FURTHER READINGS
1. M.Morris Mano, “Computer System Architecture”, 3rd Edition, Pearson Education

(2008).
2. V. Rajaraman, T. Radha Krishnan, “Computer Organization and Architecture”, PHI
3. BehroozParhami, “Computer Architecture”, Oxford (2007)
4. ISRD group, “Computer Organization”, ace series, TMH (2007)
5. William Stallings, “Computer Organization and Architecture – Designing for

Performance”, Pearson Education (2005)

Dr. U Surya Kameswari

LESSON- 4

DIGITAL COMPONENTS

.OBJECTIVES:

After going through this lesson, you will be able to

 Understand the role and importance of Integrated Circuits (ICs) in modern digital
electronics:

 Describe the function and applications of Decoders and Multiplexers:
 Explain the purpose and operation of Registers:
 Discuss the concept and applications of Shift Registers:
 Explore the function and implementation of Binary Counters and Memory Units:

STRUCTURE OF THE LESSION:
4.1 Integrated Circuits
4.2 Decoders
4.3 Multiplexers
4.4 Registers
4.5 Shift Registers
4.6 Binary Counters
4.7 Memory Unit
4.8 Summary
4.9 Technical Terms
4.10 Self-Assessment Questions
4.11 Further Readings

4.1 INTEGRATED CIRCUITS

Integrated circuits are used to build digital circuits. An integrated circuit, or IC, is a chip,
which is a small silicon semiconductor crystal that holds the electronic parts for the digital
gates. Inside the chip, the different gates are linked together to make the circuit that is
needed. The chip is put in a clay or plastic case, and thin gold wires connect to pins on the
outside to make the integrated circuit. In a small IC package, there may be 14 pins. In a
bigger package, there may be 100 pins or more. The package of each integrated circuit has a
number written on it so that it can be found. Every company that makes ICs puts out a data
book or catalogue with full specifications and all the important details about those products.

The number of gates that can fit on a single chip has grown a lot as IC technology has gotten
better. An ordinary way to tell the difference between chips with a few internal gates and
chips with hundreds or thousands of gates is to call the box a small, medium, or large-scale
integration device.

Small-Scale Integration (SSI): Small-Scale Integration (SSI) refers to the integration of a
few transistors, typically up to hundreds, onto a single chip. This early stage of integrated

Centre for Distance Education 4.2 Acharya Nagarjuna University

circuit technology, prominent in the 1960s, allowed for the creation of basic logic gates and
simple functions, such as flip-flops and multiplexers. SSI circuits were foundational in the
development of early computers and electronic devices, significantly reducing the physical
size and power consumption compared to discrete component designs.

Medium-Scale Integration (MSI): Medium-Scale Integration (MSI) technology integrates
hundreds to a few thousand transistors onto a single chip. Emerging in the late 1960s and
1970s, MSI enabled more complex functions such as simple processors, memory units, and
digital adders. This advancement allowed for the creation of more sophisticated electronic
systems and was instrumental in the evolution of microprocessors and memory chips,
facilitating the development of early computing and telecommunications equipment.

Large-Scale Integration (LSI): Large-Scale Integration (LSI) involves integrating
thousands to tens of thousands of transistors on a single chip. This technology, which gained
prominence in the 1970s and 1980s, enabled the production of entire processors, memory
arrays, and complex logic circuits on a single chip. LSI significantly advanced the
capabilities of electronic devices, paving the way for the development of personal computers,
video game consoles, and a wide range of consumer electronics by providing greater
processing power and efficiency.

Very Large-Scale Integration (VLSI): Very Large-Scale Integration (VLSI) is the process
of creating integrated circuits by combining millions of transistors onto a single chip. This
technology, which began to emerge in the late 1980s and continues to evolve, revolutionized
the electronics industry by enabling the creation of highly complex and powerful
microprocessors, memory chips, and application-specific integrated circuits (ASICs). VLSI
technology is fundamental to modern computing, telecommunications, and a myriad of
digital devices, driving innovation in fields such as artificial intelligence, mobile
communications, and high-performance computing.

Ultra Large-Scale Integration (ULSI): Ultra Large-Scale Integration (ULSI) pushes the
boundaries of integration by incorporating billions of transistors on a single chip. This state-
of-the-art technology, which has been developing since the 2000s, supports the creation of
extremely powerful and compact integrated circuits. ULSI is essential for the development of
cutting-edge processors, advanced system-on-chip (SoC) solutions, and high-density
memory, enabling the exponential growth in performance, functionality, and energy
efficiency of modern electronic devices. It is a cornerstone of advancements in fields such as
cloud computing, Internet of Things (IoT), and next-generation artificial intelligence
applications.

Digital integrated circuits are classified not only by their logic operation but also by the
specific circuit technology to which they belong. The circuit technology is referred to as a
digital logic family.

Computer Organization 4.3 Digital Components

Transistor-Transistor Logic (TTL): Transistor-Transistor Logic (TTL) is a type of digital
circuit used in integrated circuits that was widely used in the 1960s and 1970s. TTL circuits
use bipolar junction transistors to perform logical operations. They are known for their speed
and robustness, making them suitable for a wide range of applications including early
computers, industrial controls, and consumer electronics. TTL logic levels are characterized
by relatively low voltage thresholds, and the circuits typically operate with a 5V power
supply. Despite being largely supplanted by more advanced technologies, TTL remains an
important foundational technology in digital electronics.

Emitter-Coupled Logic (ECL): Emitter-Coupled Logic (ECL) is a high-speed integrated
circuit technology that uses bipolar junction transistors. Unlike other logic families, ECL
operates by steering current through transistors without saturating them, which allows for
faster switching speeds. ECL circuits are known for their high performance and are typically
used in applications requiring very fast processing, such as high-speed computing,
telecommunications, and data processing systems. However, ECL's high power consumption
and heat generation are significant drawbacks compared to other logic families like CMOS.

Metal-Oxide-Semiconductor (MOS): Metal-Oxide-Semiconductor (MOS) technology is a
cornerstone of modern electronics, encompassing a family of field-effect transistors
(MOSFETs) that include both n-channel (NMOS) and p-channel (PMOS) devices. MOS
technology is characterized by its use of a metal gate, an insulating oxide layer, and a
semiconductor material (typically silicon) to control the flow of electricity. MOS transistors
are integral to the development of integrated circuits due to their low power consumption,
high density, and scalability. They form the basis of most digital circuits, including
microprocessors, memory chips, and sensors.

Complementary Metal-Oxide-Semiconductor (CMOS): Complementary Metal-Oxide-
Semiconductor (CMOS) technology combines NMOS and PMOS transistors to create logic
gates and other digital circuits. This complementary arrangement allows CMOS circuits to
have very low power consumption when idle, as current flows only during the switching of
states. CMOS technology is renowned for its energy efficiency, high noise immunity, and
scalability, making it the dominant technology for creating integrated circuits used in
microprocessors, memory devices, and a vast array of digital and analog applications. Its
widespread adoption underpins the advancement of modern electronics, from smartphones to
high-performance computing systems.

4.2 DECODERS

Discrete quantities of information are represented in digital computers with binary codes. A
binary code of n bits is capable of representing up to 2n distinct elements of the coded
information. A decoder is a combinational circuit that converts binary information from the n
coded inputs to a maximum of 2n unique outputs. If the n-bit coded information has unused
bit combinations, the decoder may have less than 2n outputs.

Centre for Distance Education 4.4 Acharya Nagarjuna University

The decoders presented in this section are called n-to-m-line decoders, where m ≤ 2n . Their
purpose is to generate the 2n (or fewer) binary combinations of the n input variables. A
decoder has n inputs and m outputs and is also referred to as an n x m decoder.

Figure 4.1 illustrates the logic diagram of a 3-to-8-line decoder. The three binary input
variables, Ao, A1, and A, are decoded into eight outputs, each of which represents one of the
combinations. The complement of the inputs is provided by the three inverters, and each of
the eight AND gates generates one of the binary combinations. A binary-to-octal conversion
is a specific application of this decoder. The outputs represent the eight integers of the octal
number system, while the input variables represent a binary number. Nevertheless, a 3-to-8-
line decoder can be employed to decode any 3-bit code, resulting in eight outputs, one for
each binary code combination.

Commercial decoders include one or more enable inputs to control the operation of the
circuit. The decoder of Fig. 4.1 has one enable input, E. The decoder is enabled when E is
equal to 1 and disabled when E is equal to 0.

The operation of the decoder can be clarified using the truth table listed in Figure 4.2 . When
the enable input E is equal to 0, all the outputs are equal to 0 regardless of the values of the
other three data inputs. The three x's in the table designate don't-care conditions. When the
enable input is equal to I, the decoder operates in a normal fashion. For each possible input
combination, there are seven outputs that are equal to 0 and only one that is equal to I. The
output variable whose value is equal to 1 represents the octal number equivalent of the binary
number that is available in the input data lines.

Figure 4.1: 3-to 8 line decoder

Computer Organization 4.5 Digital Components

Figure 4.4. Truth Table for 3-to-8-Line Decoder

4.3 MULTIPLEXERS

A multiplexer is a combinational circuit that receives binary information from one of 2n input
data lines and directs it to a single output line. The selection of a particular input data line for
the output is determined by a set of selection inputs. A 2n -to-1 multiplexer has 2n input data
lines and n input selection lines whose bit combinations determine which input data are
selected for the output.

A 4-to-1-line multiplexer is shown in Fig. 4.3. Each of the four data inputs I0 through I, is
applied to one input of an AND gate. The two selection inputs S1 and S0 are decoded to select
a particular AND gate. The outputs of the AND gates are applied to a single OR gate to
provide the single output. To demonstrate the circuit operation, consider the case when S1S0 =
10. The AND gate associated with input I, has two of its inputs equal to 1. The third input of
the gate is connected to I4. The other three AND gates have at least one input equal to 0,
which makes their outputs equal to 0. The OR gate output is now equal to the value of I2, thus
providing a path from the selected input to the output.

Figure 4.3: 4 – to 1 line multiplexer

Centre for Distance Education 4.6 Acharya Nagarjuna University

The 4-to-1 line multiplexer of Fig. 4.3 has six inputs and one output. A truth table describing
the circuit needs 64 rows since six input variables can have 26 binary combinations. This is an
excessively long table and will not be shown here. A more convenient way to describe the
operation of multiplexers is by means of a function table. The function table for the
multiplexer is shown in Figure 4.4. The table demonstrates the relationship between the four
data inputs and the single output as a function of the selection inputs S1 and S0

Figure 4.4 : Function table for 4 – to – 1 line multiplexer

The AND gates and inverters in the multiplexer resemble a decoder circuit, and indeed they
decode the input selection lines. In general, a 2n -to-1- line multiplexer is constructed from an
n-to-2n decoder by adding to it 2n input lines, one from each data input. The size of the
multiplexer is specified by the number 2" of its data inputs and the single output. It is then
implied that it also contains n input selection lines. The multiplexer is often abbreviated as
MUX. As in decoders, multiplexers may have an enable input to control the operation of the
unit. When the enable input is in the inactive state, the outputs are disabled, and when it is in
the active state, the circuit functions as a normal multiplexer. The enable input is useful for
expanding two or more multiplexers to a multiplexer with a larger number of inputs.

4.4 REGISTERS

A register is a collection of flip-flops, each of which is capable of storing a single bit
of information. An n-bit register is capable of storing any binary information of n bits and is
composed of a group of n flip-flops. In addition to the flip-flops, a register may contain
combinational gates that execute specific data-processing operations. A register is a
collection of flip-flops and gates that facilitate their transition in its most comprehensive
sense. The binary information is stored in the flip-flops, while the gates regulate the timing
and manner of introducing new information into the register.

 There is a wide variety of commercially available registers. The most basic register is
one that is composed solely of flip-flops and lacks any external gates. Such a register is
illustrated in Figure 4.5, which is composed of four D flip-flops. The binary data available at
the four inputs is transferred into the 4-bit register, and the common clock input activates all
flip-flops on the rising edge of each pulse. The binary information contained in the register
can be obtained by sampling the four outputs at any given moment. Each flip-flop has a
unique terminal that receives the clear input. Asynchronously, all flip-flops are reset when
this input reaches 0. The clear input is beneficial for erasing the register to all O's before it is

Computer Organization 4.7 Digital Components

clocked. The clear input must be maintained at logic 1 during normal clocked operation. It
should be noted that the D input is enabled by the clock signal, whereas the clear. input is not
affected by the clock.

Figure 4.5: 4 bit register

The transfer of new information into a register is referred to as loading the register. If all the
bits of the register are loaded simultaneously with a common clock pulse transition, we say
that the loading is done in parallel. A clock transition applied to the C inputs of the register of
Fig. 4.5 will load all four inputs 10 through 13 in parallel. In this configuration, the clock
must be inhibited from the circuit if the content of the register must be left unchanged.

The majority of digital systems are equipped with a master clock generator that generates a
consistent stream of clock pulses. The clock pulses are applied to all registers and flip-flops
in the system. A constant rhythm is supplied to all components of the system by the master
clock, which functions as a pump. In order to determine which specific clock pulse will
impact a specific register, a distinct control signal must be employed.

Register with parallel load

Fig. 4.6 illustrates a 4-bit register with a load control input that is directed through gates and
into the D inputs. Clock pulses are consistently transmitted to the C inputs. The power
requirement is reduced by the buffer gate in the port input. The output's subsequent state is
determined by the D input with each clock pulse. In order to maintain the output's current
value, it is imperative to set the D input to the output's present value.

Centre for Distance Education 4.8 Acharya Nagarjuna University

Please be advised that the clock pulses are consistently applied to the C inputs. The next
pulse's acceptance of new information or preservation of the information in the register is
contingent upon the load input. During a single pulse transition, all four bits are
simultaneously transferred from the inputs to the register.

Figure 4.6: 4 bit register with parallel load

4.5 SHIFT REGISTERS

A shift register is a register that has the capacity to modify its binary information in
either direction. The logical configuration of a shift register is a cascade of flip-flops, with the
output of one flip-flop connected to the input of the next. The transition from one stage to the
next is initiated by common clock pulses that are received by all flip-flops.

As illustrated in Figure 4-8, the most basic shift register is one that exclusively
employs flip-flops. The D input of the flip-flop located to the right of the provided flip-flop is
connected to its output. All flip-flops share a timepiece. What is placed in the leftmost
position during the transfer is determined by the serial input. The serial output is obtained
from the output of the rightmost flip-flop.

Sometimes, it is necessary to regulate the shift so that it occurs in conjunction with
specific clock frequencies but not with others. The clock can be inhibited from the register's

Computer Organization 4.9 Digital Components

input to prevent it from shifting. The shift can be regulated by connecting the clock to the
input of an AND gate when the shift register of Fig 4-7 is employed. Subsequently, the shift
can be regulated by inhibiting the clock at a second input of the AND gate. Nevertheless, it is
also feasible to incorporate additional circuits to regulate the shift operation by utilizing the D
inputs of the flip-flops, rather than the clock input.

Figure 4.7: 4 bit register with parallel load

Bidirectional Shift Register with Parallel Load

A register capable of shifting in one direction only is called a unldirectional shift register. A
register that can shift in both directions is called a bidirectional shift register. Some shift
registers provide the necessary input and output terminals for parallel transfer

A 4-bit bidirectional shift register with parallel load is shown in Fig. 4.8. Each stage consists
of a D flip-flop and a 4 x 1 multiplexer. The two selection inputs S1 and S0 select one of the
multiplexer data inputs for the D flip-flop.

The selection lines control the mode of operation of the register according to the function
table shown in Figure 4.9.

When the mode control S1S0 = 00, data input 0 of each multiplexer is selected. This condition
forms a path from the output of each flip-flop into the input of the same flip-flop. The next
clock transition transfers into each flip-flop the binary value it held previously, and no change
of state occurs.

When S1S0 = 01, the terminal marked 1 in each multiplexer has a path to the D input of the
corresponding flip-flop. This causes a shift-right operation, with the serial input data
transferred into flip-flop A0 and the content of each flip-flop Ai-1, transferred into flip-flop Ai
for i = 1, 2,3.

When S1S0 = 10 a shift-left operation results, with the other serial input data going into flip-
flop A3, and the content of flip-flop Ai+1, transferred into flip-flop Ai for i = 0, I, 4.

When S1S0 = 11, the binary information from each input I0 through I3, is transferred into the
corresponding flip-flop, resulting in a parallel load operation.

Centre for Distance Education 4.10 Acharya Nagarjuna University

Note that the way the diagram is drawn, the shift-right operation shifts the contents of the
register in the down direction while the shift left operation causes the contents of the register
to shift in the upward direction

Figure 4.8: Bi directional shift register with parallel load

Figure 4.9: Function table for the bi directional shift register with parallel load

Computer Organization 4.11 Digital Components

4.6 BINARY COUNTERS

A register that goes through a predetermined sequence of states upon the application

of input pulses is called a counter. The input pulses may be clock pulses or may originate

from an external source. They may occur at uniform intervals of time or at random. Counters

are found in almost all equipment containing digital logic. They are used for counting the

number of occurrences of an event and are useful for generating timing signals to control the

sequence of operations in digital computers. Of the various sequences a counter may follow,

the straight binary sequence is the simplest and most straightforward. A counter that follows

the binary number sequence is called a binary counter. An n-bit binary counter is a register of

n flip-flops and associated gates that follows a sequence of states according to the binary

count of n bits, from 0 to 2n - 1.

A simpler alternative design procedure may be carried out from a direct inspection of

the sequence of states that the register must undergo to achieve a straight binary count. Going

through a sequence of binary numbers such as 0000, 0001, 0010, 0011, and so on, we note

that the lower-order bit is complemented after every count and every other bit is

complemented from one count to the next if and only if all its lower-order bits are equal to 1.

For example, the binary count from 0111 (7) to 1000 (8) is obtained by (a) complementing

the low-order bit, (b) complementing the second-order bit because the first bit of 0111 is 1,

(c) complementing the third-order bit because the first two bits of 0111 are 1's, and (d)

complementing the fourth-order bit because the first three bits of 0111 are ali i's.

A counter circuit will usually employ flip-flops with complementing capabilities. Both T and

JK flip-flops have this property. Remember that a JK flip-flop is complemented if both its J

and K inputs are 1 and the clock goes through a positive transition. The output of the flip-flop

does not change if J = K = 0.

In addition, the counter may be controlled with an enable input that turns the counter on or

off without removing the clock signal from the flipflops. Synchronous binary counters have a

regular pattern, as can be seen from the 4-bit binary counter shown in Figure 4.10. The C

inputs of all flip-flops receive the common clock.

Centre for Distance Education 4.12 Acharya Nagarjuna University

Figure 4.10 : 4-bit synchronous binary counter

If the count enable is 0, all J and K inputs are maintained 4-bit-shift-registerat 0 and the
output of the counter does not change.The first stage A0 is complemented when the counter is
enabled and the clock goes through a positive transition. Each of the other three flip-flops are
complemented when all previous least significant flip-flops are equal to 1 and the count is
enabled. The chain of AND gates generate the required logic for the J and K inputs. The
output carry can be used to extend the counter to more stages, with each stage having an
additional flip-flop and an AND gate.

4.6.1 Binary Counter with Parallel Load

Counters employed in digital systems quite often require a parallel load capability for
transferring an initial binary number prior to the count operation.

Figure 4.11 shows the logic diagram of a binary counter that has a parallel load capability and
can also be cleared to 0 synchronous with the clock. When equal to 1, the clear input sets all
the K inputs to 1, thus clearing all flip-flops with the next clock transition. The input load
control when equal to 1, disables the count operation and causes a transfer of data from the

Computer Organization 4.13 Digital Components

four parallel inputs into the four flip-flops (provided that the clear input is 0). If the clear and
load inputs are both 0 and the increment input is 1, the circuit operates as a binary counter.

Figure 4.11 4-bit binary counter with parallel load and synchronous clear

The operation of the circuit is summarized in Table below.

Centre for Distance Education 4.14 Acharya Nagarjuna University

With the clear, load, and increment inputs all at 0, the outputs do not change even when

pulses are applied to the C terminals. If the clear and load inputs are maintained at logic 0, the

increment input controls the operation of the counter and the outputs change to the next

binary count for each positive transition of the clock. The input data are loaded into the flip-

flops when the load control input is equal to 1 provided that the clear is disabled, but the

increment input can be 0 or 1. The register is cleared to 0 with the clear control regardless of

the values in the load and increment inputs.

Counters with parallel load are very useful in the design of digital computers. In subsequent

chapters we refer to them as registers with load and increment operations. The increment

operation adds one to the content of a register. By enabling the count input during one clock

period, the content of the register can be incremented by one.

4.7 MEMORY UNIT

A memory unit is a collection of storage cells together with associated circuits needed to

transfer information in and out of storage. The memory stores binary information in groups of

bits called words. A word in memory is an entity of bits that move in and out of storage as a

unit. A memory word is a group of 1's and 0's and may represent a number, an instruction

code, one or more alphanumeric characters, or any other binary-coded information.

A group of byte eight bits is called a byte. Most computer memories use words whose

number of bits is a multiple of 8. Thus a 16-bit word contains two bytes, and a 34-bit word is

made up of four bytes. The capacity of memories in commercial computers is usually stated

as the total number of bytes that can be stored.

The internal structure of a memory unit is specified by the number of words it contains and

the number of bits in each word. Special input lines called address lines select one particular

word.

Each word in memory is assigned an identification number, called an address, starting from 0

and continuing with 1, 2, 3, up to 2k - 1 where k is the number of address lines. The selection

of a specific word inside the memory is done by applying the k-bit binary address to the

address lines.

A decoder inside the memory accepts this address and opens the paths needed to select the

bits of the specified word. Computer memories may range from 1024 words, requiring an

address of 10 bits, to 232 words, requiring 32 address bits.

Computer Organization 4.15 Digital Components

Two major types of memories are used in computer systems: randomaccess memory (RAM)
and read-only memory (ROM).

Random-Access Memory

In random-access memory (RAM) the memory cells can be accessed for information transfer
from any desired random location.

That is, the process of locating a word in memory is the same and requires an equal amount
of time no matter where the cells are located physically in memory: thus the name "random
access."

Communication between a memory and its environment is achieved through data input and
output lines, address selection lines, and control lines that specify the direction of transfer.

A block diagram of a RAM unit is shown in Figure 4.14. The n data input lines provide the
information to be stored in memory, and the n data output lines supply the information
coming out of memory.

4.12 Block diagram of random access memory (RAM)

Centre for Distance Education 4.16 Acharya Nagarjuna University

The k address lines provide a binary number of k bits that specify a particular word chosen
among the 2k available inside the memory. The two control inputs specify the direction of
transfer desired.

The two operations that a random-access memory can perform are the write and read
operations.

The write signal specifies a transfer-in operation and the read signal specifies a transfer-out
operation. On accepting one of these control signals, the internal circuits inside the memory
provide the desired function.

The steps that must be taken for the purpose of transferring a new word to be stored into
memory are as follows:

 Apply the binary address of the desired word into the address lines
 Apply the data bits that must be stored in memory into the data input lines.
 Activate the write input.

The memory unit will then take the bits presently available in the input data lines and store
them in the word specified by the address lines.

The steps that must be taken for the purpose of transferring a stored word out of memory are
as follows:

 Apply the binary address of the desired word into the address lines.
 Activate the read input.

The memory unit will then take the bits from the word that has been selected by the address
and apply them into the output data lines. The content of the selected word does not change
after reading.

Read-Only Memory

As the name implies, a read-only memory (ROM) is a memory unit that performs the read
operation only; it does not have a write capability.

This implies that the binary information stored in a ROM is made permanent during the
hardware production of the unit and cannot be altered by writing different words into it.

Whereas a RAM is a general-purpose device whose contents can be altered during the
computational process, a ROM is restricted to reading words that are permanently stored
within the unit. The binary information to be stored, specified by the designer, is then
embedded in the unit to form the reqttired interconnection pattern.

ROMs come with special internal electronic fuses that can be "programmed" for a
specific configuration. Once the pattern is established, it stays within the unit even when
power is turned off and on again. An m x n ROM is an array of binary cells organized into m
words of n bits each.

Computer Organization 4.17 Digital Components

Figure 4.13: Block diagram of read only memory (ROM).

As shown in the block diagram of Figure 4.13, a ROM has k address input lines to select one
of 2k = m words of memory, and n output lines, one for each bit of the word.

An integrated circuit ROM may also have one or more enable inputs for expanding a number
of packages into a ROM with larger capacity.

The ROM does not need a read-control line since at any given time, the output lines
automatically provide the n bits of the word selected by the address value. Because the
outputs are a function of only the present inputs (the address lines), a ROM is classified as a
combinational circuit. In fact, a ROM is constructed internally with decoders and a set of OR
gates.

There is no need for providing storage capabilities as in a RAM, since the values of the bits in
the ROM are permanently fixed. ROMs find a wide range of applications in the design of
digital systems. Basically, a ROM generates an input-output relation specified by a truth
table.

As such, it can implement any combinational circuit with k inputs and n outputs. When
employed in a computer system as a memory unit, the ROM is used for storing fixed
programs that are not to be altered and for tables of constants that are not subject to change.

ROM is also employed in the design of control units for digital computers. As such, they are
used to store coded information that represents the sequence of internal control variables
needed for enabling the various operations in the computer.

A control unit that utilizes a ROM to store binary control information is called a
microprogrammed control unit.

Centre for Distance Education 4.18 Acharya Nagarjuna University

Types of ROM

Masked ROM (MROM): Masked ROM is a type of ROM where the data is written during
the manufacturing process. This makes it highly reliable and cost-effective for mass
production, but it cannot be altered once fabricated. MROM is used in applications where the
data remains constant, such as embedded systems in consumer electronics.

Programmable ROM (PROM): Programmable ROM is a type of ROM that is programmed
after the manufacturing process. Using a special device called a PROM programmer, data can
be written once. PROM provides flexibility over MROM by allowing customization of the
data after production, but like MROM, it cannot be reprogrammed or erased once written. It's
used in applications where the data needs to be set once and never changed.

Erasable Programmable ROM (EPROM): EPROM allows data to be erased and
reprogrammed multiple times using ultraviolet (UV) light. The chip has a small quartz
window through which the UV light passes to erase the data. After erasing, new data can be
programmed using an EPROM programmer. EPROMs are used in development and
prototyping environments where the firmware needs to be updated frequently.

Electrically Erasable Programmable ROM (EEPROM): EEPROM is similar to EPROM
but allows data to be erased and reprogrammed electrically. This makes it more convenient
and versatile than EPROM, as it does not require UV light for erasure. EEPROM can be
reprogrammed in-circuit, making it ideal for applications requiring frequent updates, such as
BIOS chips in computers and firmware in embedded systems.

Flash Memory: Flash memory is a type of EEPROM that allows for block-wise erasure and
reprogramming, offering higher densities and faster access times. Flash memory is widely
used in applications requiring high storage capacity and frequent data updates, such as USB
flash drives, solid-state drives (SSDs), and memory cards. Its robustness and efficiency make
it a popular choice for a broad range of consumer electronics and industrial applications.

4.8 SUMMARY

The chapter on digital components provides an in-depth exploration of the fundamental
building blocks of digital systems. It begins with integrated circuits (ICs), which are essential
for modern electronics, encompassing a variety of components on a single chip. The chapter
then delves into decoders, which convert coded inputs into a set of outputs, and multiplexers,
which select data from multiple input lines and direct it to a single output line. Registers and
shift registers, crucial for data storage and transfer within a system, are examined in detail.
Binary counters, which are used to count occurrences of events in binary form, are also
covered, highlighting their role in timing and control applications. Finally, the chapter
discusses memory units, which are vital for storing data and instructions in digital systems.
Together, these components form the backbone of digital electronics, enabling complex
computations and functionalities in a wide range of applications.

Computer Organization 4.19 Digital Components

4.9 TECHNICAL TERMS

Integrated Circuit (IC), Decoders, Multiplexers, Registers, Shift Registers, Binary Counters,
Memory Unit.

4.10 SELF ASSESSMENT QUESTIONS

Essay questions:

1. Explain encoder with the help of diagram
2. Explain 4-bit register with parallel load with a neat diagram
3. Discuss about 4-bit binary counter with parallel load
4. Write about ROM and RAM Chips. And also design of the main memory of

capacity 1024 X 12 words with RAM Chips size as 128X12 words and ROM chip
size as 512X12 words and show how these ICs are interconnected with CPU.

Short Questions:
1. How does a binary decoder operate, and what are its typical applications?
4. Explain the function of a multiplexer and how it differs from a demultiplexer.
3. What are binary counters, and how are they used in digital electronics?
4. What are the primary differences between RAM and ROM?

4.11 FURTHER READINGS
1. M.Morris Mano, “Computer System Architecture”, 3rd Edition, Pearson Education

(2008).
2. V. Rajaraman, T. Radha Krishnan, “Computer Organization and Architecture”, PHI
3. BehroozParhami, “Computer Architecture”, Oxford (2007)
4. ISRD group, “Computer Organization”, ace series, TMH (2007)
5. William Stallings, “Computer Organization and Architecture – Designing for

Performance”, Pearson Education (2005)

Dr. U Surya Kameswari

LESSON- 5

DATA REPRESENTATION

.
OBJECTIVE:

After going through this lesson, you will be able to
 Understand Data Types
 Apply complements to perform arithmetic operations, particularly subtraction, in

binary systems
 Describe the fixed-point and floating-point representations of numbers
 Identify and explain various binary codes
 Understand the importance of error detection codes

STRUCTURE OF THE LESSION:
5.1 Data Types
5.2 Complements
5.3 Fixed-point Representation
5.4 Float-Point Representation
5.5 Other Binary codes
5.6 Error Detection Codes
5.7 Summary
5.8 Technical Terms
5.9 Self-Assessment Questions
5.10 Further Readings

5.1 DATA TYPES

Alphanumeric Representation

Many applications of digital computers require the handling of data that consist not only of
numbers, but also of the letters of the alphabet and certain special characters.

An alphanumeric character set is a set of elements that includes the 10 decimal digits, the 26
letters of the alphabet and a number of special characters, such as $, + , and =.

Such a set contains between 32 and 64 elements (if only uppercase letters are included) or
between 64 and 128 (if both uppercase and lowercase letters are included).

In the first case, the binary code will require six bits and in the second case, seven bits. The
standard alphanumeric binary code is the ASCII (American Standard Code for Information
Interchange), which uses seven bits to code 128 characters.

The binary code for the uppercase letters, the decimal digits, and a few special characters is
listed in Table below.

Note that the decimal digits in ASCII can be converted to BCD by removing the three high-
order bits, 011.

Centre for Distance Education 5.2 Acharya Nagarjuna University

Binary codes play an important part in digital computer operations. The codes must be in
binary because registers can only hold binary information. One must realize that binary codes
merely change the symbols, not the meaning of the discrete elements they represent.

The operations specified for digital computers must take into consideration the meaning of
the bits stored in registers so that operations are performed on operands of the same type.

5.2 COMPLEMENTS

Complements are used in digital computers for simplifying the subtraction operation and for
logical manipulation. There are two types of complements for each base r system: the r's
complement and the (r - 1)'s complement

When the value of the base r is substituted in the name, the two types are referred to as the 2's
and 1's complement for binary numbers and the 10's and 9's complement for decimal
numbers.

5.2.1 (r - 1)'s Complement

Given a number N in base r having n digits, the (r - 1)'s complement of N is defined as (rn - 1)
- N.

Computer Organization 5.3 Data Representation

9’s complement

For decimal numbers r = 10 and r - 1 = 9, so the 9's complement of N is (10n - 1) - N.

Now, 10n represents a number that consists of a single 1 followed by n 0's.

10n - 1 is a number represented by n 9's.

 For example, with n = 4 we have 104 = 10000 and 104 - 1 = 9999.

It follows that the 9's complement of a decimal number is obtained by subtracting each digit
from 9.

For example, the 9's complement of 546700 is 999999 - 546700 = 453299 and the 9's
complement of 12389 is 99999 - 12389 = 87610.

1's complement

For binary numbers, r = 2 and r - 1 = 1, so the 1's complement of N is (2n - 1) - N. Again,
2n is represented by a binary number that consists of a 1 followed by n 0's. 2n - 1 is a binary
number represented by n 1's.

For example, with n = 4, we have 24 = (10000)2 and 24 - 1 = (1111)2. Thus the 1's
complement of a binary number is obtained by subtracting each digit from 1.

However, the subtraction of a binary digit from 1 causes the bit to change from 0 to 1 or from
1 to 0. Therefore, the 1's complement of a binary number is formed by changing 1's into 0's
and 0's into 1's.

For example, the 1's complement of 1011001 is 0100110 and the 1's complement of 0001111
is 1110000.

The (r - 1)'s complement of octal or hexadecimal numbers are obtained by subtracting each
digit from 7 or F (decimal 15) respectively.

5.2.2 r's Complement :

The r's complement of an n-digit number N in base r is defined as rn - N for N ≠ 0 and 0 for N
= 0.

Comparing with the (r - 1)'s complement, we note that the r's complement is obtained by
adding 1 to the (r - 1)'s complement since rn - N = [(rn - 1) - N] + 1.

10's complement

Thus the 10's complement of the decimal 2389 is 7610 + 1 = 7611 and is obtained by adding
1 to the 9' s complement value.

Centre for Distance Education 5.4 Acharya Nagarjuna University

The 2's complement of binary 101100 is 010011 + 1 = 010100 and is obtained by adding 1 to
the 1's complement value.

Since 10n is a number represented by a 1 followed by n 0's, then 10n - N, which is the 10's
complement of N, can be formed also be leaving all least significant 0's unchanged,
subtracting the first nonzero least significant digit from 10, and then subtracting all higher
significant digits from 9.

The 10's complement of 246700 is 753300 and is obtained by leaving the two zeros
unchanged, subtracting 7 from 10, and subtracting the other three digits from 9.

2's complement

The 2's complement can be formed by leaving all least significant 0's and the first 1
unchanged, and then replacing 1's by 0's and 0's by 1's in all other higher significant bits.

The 2's complement of 1101100 is 0010100 and is obtained by leaving the two low-order 0's
and the first 1 unchanged, and then replacing 1's by 0's and 0's by 1's in the other four most
significant bits.

In the definitions above it was assumed that the numbers do not have a radix point.

If the original number N contains a radix point, it should be removed temporarily to form the
r's or (r - 1)'s complement.

The radix point is then restored to the complemented number in the same relative position.

It is also worth mentioning that the complement of the complement restores the number to its
original value.

The r's complement of N is rn - N.

The complement of the complement is rn - (rn - N) = N giving back the original number.

5.2.3 Subtraction of Unsigned Numbers

The subtraction of two n-digit unsigned numbers M - N (N ≠ 0) in base r can be done as
follows:

Add the minuend M to the r's complement of the subtrahend N. This performs M + (rn - N) =
M - N + rn.

If M ≥ N, the sum will produce an end carry rn which is discarded, and what is left is the
result M - N.

If M < N, the sum does not produce an end carry and is equal to rn - (N - M), which is the r's
complement of (N - M). To obtain the answer in a familiar form, take the r' s complement of
the sum and place a negative sign in front.

Computer Organization 5.5 Data Representation

Consider, for example, the subtraction 72532 - 13250 = 59282. The 10's complement of
13250 is 86750. Therefore:

Now consider an example with M < N. The subtraction 13250 - 72532 produces negative
59282. Using the procedure with complements, we have

There is no end carry. Answer is negative 59282 = 10's complement of 40718

Since we are dealing with unsigned numbers, there is really no way to get an unsigned result
for the second example.

When subtracting with complements, the negative answer is recognized by the absence of the
end carry and the complemented result.

Subtraction with complements is done with binary numbers in a similar manner using the
same procedure outlined above.

Using the two binary numbers X = 1010100 and Y = 1000011, we perform the subtraction X
- Y and Y - X using 2's complements:

There is no end carry. Answer is negative 0010001 = 2's complement of 1101111

5.3 FIXED-POINT REPRESENTATION

Positive integers, including zero, can be represented as unsigned numbers. However, to
represent negative integers, we need a notation for negative values.

Centre for Distance Education 5.6 Acharya Nagarjuna University

In ordinary arithmetic, a negative number is indicated by a minus sign and a positive number
by a plus sign. Because of hardware limitations, computers must represent everything with 1's
and 0's, including the sign of a number.

As a consequence, it is customary to represent the sign with a bit placed in the leftmost
position of the number. The convention is to make the sign bit equal to 0 for positive and to 1
for negative.

In addition to the sign, a number may have a binary (or decimal) point. The position of the
binary point is needed to represent fractions, integers, or mixed integer-fraction numbers.

The representation of the binary point in a register is complicated by the fact that it is
characterized by a position in the register.

There are two ways of specifying the position of the binary point in a register: by giving it a
fixed position or by employing a floating-point representation.

The fixed-point method assumes that the binary point is always fixed in one position. The
two positions most widely used are (1) a binary point in the extreme left of the register to
make the stored number a fraction, and (2) a binary point in the extreme right of the register
to make the stored number an integer.

In either case, the binary point is not actually present, but its presence is assumed from the
fact that the number stored in the register is treated as a fraction or as an integer.

The floating-point representation uses a second register to store a number that designates the
position of the decimal point in the first register.

Integer Representation

When an integer binary number is positive, the sign is represented by 0 and the magnitude by
a positive binary number. When the number is negative, the sign is represented by 1 but the
rest of the number may be represented in one of three possible ways:

1. Signed-magnitude representation

2. Signed-1's complement representation

5. Signed 2's complement representation

The signed-magnitude representation of a negative number consists of the magnitude and a
negative sign. In the other two representations, the negative number is represented in either
the 1's or 2's complement of its positive value.

As an example, consider the signed number 14 stored in an 8-bit register. + 14 is represented
by a sign bit of 0 in the leftmost position followed by the binary equivalent of 14: 00001110.

Note that each of the eight bits of the register must have a value and therefore 0' s must be
inserted in the most significant positions following the sign bit.

Computer Organization 5.7 Data Representation

Although there is only one way to represent + 14, there are three different ways to represent -
14 with eight bits.

In signed-magnitude representation 1 0001110

In signed-1's complement representation 1 1110001

In signed-2's complement representation 1 1110010

The signed-magnitude representation of - 14 is obtained from + 14 by complementing only
the sign bit.

The signed-1's complement representation of - 14 is obtained by complementing all the bits
of + 14, including the sign bit. The signed-2' s complement representation is obtained by
taking the 2' s complement of the positive number, including its sign bit.

The signed-magnitude system is used in ordinary arithmetic but is awkward when employed
in computer arithmetic.

Therefore, the signed-complement is normally used. The 1' s complement imposes difficulties
because it has two representations of 0 (+0 and - 0).

It is seldom used for arithmetic operations except in some older computers.

The 1's complement is useful as a logical operation since the change of 1 to 0 or 0 to 1 is
equivalent to a logical complement operation.

Arithmetic Addition

The addition of two numbers in the signed-magnitude system follows the rules of ordinary
arithmetic.

If the signs are the same, we add the two magnitudes and give the sum the common sign. If
the signs are different, we subtract the smaller magnitude from the larger and give the result
the sign of the larger magnitude.

For example, (+25) + (-37) = - (37 - 25) = - 12 and is done by subtracting the smaller
magnitude 25 from the larger magnitude 37 and using the sign of 37 for the sign of the result.

This is a process that requires the comparison of the signs and the magnitudes and then
performing either addition or subtraction. By contrast, the rule for adding numbers in the
signed-2's complement system does not require a comparison or subtraction, only addition
and complementation.

The procedure can be stated as follows: Add the two numbers, including their sign bits, and
discard any carry out of the sign (leftmost) bit position.

Centre for Distance Education 5.8 Acharya Nagarjuna University

Numerical examples for addition are shown below. Note that negative numbers must initially
be in 2' s complement and that if the sum obtained after the addition is negative, it is in 2's
complement form.

In each of the four cases, the operation performed is always addition, including the sign bits.
Any carry out of the sign bit position is discarded, and negative results are automatically in
2's complement form.

The complement form of representing negative numbers is unfamiliar to people used to the
signed-magnitude system.

To determine the value of a negative number when in signed-2's complement, it is necessary
to convert it to a positive number to place it in a more familiar form.

For example, the signed binary number 1111 1001 is negative because the leftmost bit is 1.

Its 2's complement is 00000111, which is the binary equivalent of +7. We therefore recognize
the original negative number to be equal to -7.

Arithmetic Subtraction

Subtraction of two signed binary numbers when negative numbers are in 2' s complement
form can be stated as follows:

Take the 2's complement of the subtrahend (including the sign bit) and add it to the minuend
(including the sign bit). A carry out of the sign bit position is discarded.

This procedure stems from the fact that a subtraction operation can be changed to an addition
operation if the sign of the subtrahend is changed. This is demonstrated by the following
relationship:

(±A) - (+B) = (±A) + (-B)

(±A) - (-B) = (±A) + (+B)

But changing a positive number to a negative number is easily done by taking its 2's
complement.

The reverse is also true because the complement of a negative number in complement form
produces the equivalent positive number.

Computer Organization 5.9 Data Representation

Consider the subtraction of (-6) - (- 13) = +7. In binary with eight bits this is written as
11111010 - 11110011.

The subtraction is changed to addition by taking the 2's complement of the subtrahend (- 13)
to give (+ 13). In binary this is 11111010 + 00001101 = 100000111. Removing the end carry,
we obtain the correct answer 00000111 (+ 7).

It is worth noting that binary numbers in the signed-2's complement system are added and
subtracted by the same basic addition and subtraction rules as unsigned numbers.

Therefore, computers need only one common hardware circuit to handle both types of
arithmetic.

The user or programmer must interpret the results of such addition or subtraction differently
depending on whether it is assumed that the numbers are signed or unsigned.

Overflow

When two numbers of n digits each are added and the sum occupies n + 1 digits, we say that
an overflow occurred.

An overflow is a problem in digital computers because the width of registers is finite. A
result that contains n + 1 bits cannot be accommodated in a register with a standard length of
n bits. For this reason, many computers detect the occurrence of an overflow, and when it
occurs, a corresponding flip-flop is set which can then be checked by the user.

The detection of an overflow after the addition of two binary numbers depends on whether
the numbers are considered to be signed or unsigned. When two unsigned numbers are added,
an overflow is detected from the end carry out of the most significant position.

In the case of signed numbers, the leftmost bit always represents the sign, and negative
numbers are in 2' s complement form.

When two signed numbers are added, the sign bit is treated as part of the number and the end
carry does not indicate an overflow.

An overflow cannot occur after an addition if one number is positive and the other is
negative, since adding a positive number to a negative number produces a result that is
smaller than the larger of the two original numbers.

An overflow may occur if the two numbers added are both positive or both negative. To see
how this can happen, consider the following example. Two signed binary numbers, + 70 and
+ 80, are stored in two 8-bit registers.

The range of numbers that each register can accommodate is from binary + 127 to binary -
128. Since the sum of the two numbers is + I50, it exceeds the capacity of the 8-bit register.

Centre for Distance Education 5.10 Acharya Nagarjuna University

This is true if the numbers are both positive or both negative. The two additions in binary are
shown below together with the last two carries.

Note that the 8-bit result that should have been positive has a negative sign bit and the 8-bit
result that should have been negative has a positive sign bit. If, however, the carry out of the
sign bit position is taken as the sign bit of the result, the 9-bit answer so obtained will be
correct.

Since the answer cannot be accommodated within 8 bits, we say that an overflow occurred.
An overflow condition can be detected by observing the carry into the sign bit position and
the carry out of the sign bit position. If these two carries are not equal, an overflow condition
is produced.

This is indicated in the examples where the two carries are explicitly shown. If the two
carries are applied to an exclusive-OR gate, an overflow will be detected when the output of
the gate is equal to 1.

Decimal Fixed-Point Representation

The representation of decimal numbers in registers is a function of the binary code used to
represent a decimal digit.

A 4-bit decimal code requires four flip-flops for each decimal digit. The representation of
4385 in BCD requires 16 flip-flops, four flip-flops for each digit. The number will be
represented in a register with 16 flip-flops as follows: 0100 0011 1000 0101

By representing numbers in decimal we are wasting a considerable amount of storage space
since the number of bits needed to store a decimal number in a binary code is greater than the
number of bits needed for its equivalent binary representation.

Also, the circuits required to perform decimal arithmetic are more complex. However, there
are some advantages in the use of decimal representation because computer input and output
data are generated by people who use the decimal system.

Some applications, such as business data processing, require small amounts of arithmetic
computations compared to the amount required for input and output of decimal data. For this
reason, some computers and all electronic calculators perform arithmetic operations directly
with the decimal data (in a binary code) and thus eliminate the need for conversion to binary
and back to decimal.

Some computer systems have hardware for arithmetic calculations with both binary and
decimal data. The representation of signed decimal numbers in BCD is similar to the
representation of signed numbers in binary.

Computer Organization 5.11 Data Representation

We can either use the familiar signed-magnitude system or the signed-complement system.
The sign of a decimal number is usually represented with four bits to conform with the 4-bit
code of the decimal digits.

It is customary to designate a plus with four 0' s and a minus with the BCD equivalent of 9,
which is 1001 .

The signed-magnitude system is difficult to use with computers. The signed-complement
system can be either the 9's or the 10's complement, but the 10's complement is the one most
often used.

To obtain the 10' s complement of a BCD number, we first take the 9's complement and then
add one to the least significant digit. The 9' s complement is calculated from the subtraction
of each digit from 9.

The procedures developed for the signed-2's complement system apply also to the signed-10's
complement system for decimal numbers. Addition is done by adding all digits, including the
sign digit, and discarding the end carry.

Obviously, this assumes that all negative numbers are in 10's complement form. Consider the
addition (+375) + (-240) = + 135 done in the signed 10's complement system.

The 9 in the leftmost position of the second number indicates that the number is negative.
9760 is the 10's complement of 0240. The two numbers are added and the end carry is
discarded to obtain + 135. Of course, the decimal numbers inside the computer must be in
BCD, including the sign digits. The addition is done with BCD adders

The subtraction of decimal numbers either unsigned or in the signed-10' s complement
system is the same as in the binary case. Take the 10' s complement of the subtrahend and
add it to the minuend.

5.4 FLOATING-POINT REPRESENTATION

The floating-point representation of a number has two parts. The first part represents a
signed, fixed-point number called the mantissa.

The second part designates the position of the decimal (or binary) point and is called the
exponent. The fixed-point mantissa may be a fraction or an integer.

For example, the decimal number + 6132.789 is represented in floating-point with a fraction
and an exponent as follows: Fraction : +0.6132789 ; Exponent : +04

Centre for Distance Education 5.12 Acharya Nagarjuna University

The value of the exponent indicates that the actual position of the decimal point is four
positions to the right of the indicated decimal point in the fraction.

This representation is equivalent to the scientific notation +0.6132789 X 10+4 .

Floating-point is always interpreted to represent a number in the following form: m * re

Only the mantissa m and the exponent e are physically represented in the register (including
their signs). The radix r and the radix-point position of the mantissa are always assumed. The
circuits that manipulate the floating-point numbers in registers conform with these two
assumptions in order to provide the correct computational results.

A floating-point binary number is represented in a similar manner except that it uses base 2
for the exponent. For example, the binary number + 1001 .11 is represented with an 8-bit
fraction and 6-bit exponent as follows: Fraction : 01001110 ; Exponent : 000100

The fraction has a 0 in the leftmost position to denote positive. The binary point ofthe
fraction follows the sign bit but is not shown in the register.

The exponent has the equivalent binary number +4. The floating-point number is equivalent
to m x 2e = +(.1001110)2 x 2+4

A floating-point number is said to be normalized if the most significant digit of the mantissa
is nonzero. For example, the decimal number 350 is normalized but 00035 is not.

Regardless of where the position of the radix point is assumed to be in the mantissa, the
number is normalized only if its leftmost digit is nonzero. For example, the 8-bit binary
number 00011010 is not normalized because of the three leading 0's.

The number can be normalized by shifting it three positions to the left and discarding the
leading 0's to obtain 11010000.

The three shifts multiply the number by 23 = 8. To keep the same value for the floating-point
number, the exponent must be subtracted by 5.

Normalized numbers provide the maximum possible precision for the floating-point number.
A zero cannot be normalized because it does not have a nonzero digit.

It is usually represented in floating-point by all 0's in the mantissa and exponent.

Arithmetic operations with floating-point numbers are more complicated than arithmetic
operations with fixed-point numbers and their execution takes longer and requires more
complex hardware.

5.5 OTHER BINARY CODES

5.5.1 Gray Code

Digital systems can process data in discrete form only. Many physical systems supply
continuous output data.

Computer Organization 5.13 Data Representation

The data must be converted into digital form before they can be used by a digital computer.
Continuous, or analog, information is converted into digital form by means of an analog-to-
digital converter.

The reflected binary or Gray code, shown in Table below, is sometimes used for the
converted digital data.

The advantage of the Gray code over straight binary numbers is that the Gray code changes
by only one bit as it sequences from one number to the next.

In other words, the change from any number to the next in sequence is recognized by a
change of only one bit from 0 to 1 or from 1 to 0. A typical application of the Gray code
occurs when the analog data are represented by the continuous change of a shaft position.

The shaft is partitioned into segments with each segment assigned a number. If adjacent
segments are made to correspond to adjacent Gray code numbers, ambiguity is reduced when
the shaft position is in the line that separates any two segments.

Gray code counters are sometimes used to provide the timing sequences that control the
operations in a digital system.

A Gray code counter is a counter whose flip-flops go through a sequence of states as
specified in Table above. Gray code counters remove the ambiguity during the change from
one state of the counter to the next because only one bit can change during the state
transition.

5.5.2 Other Decimal Codes

Binary codes for decimal digits require a minimum of four bits. Numerous different codes
can be formulated by arranging four or more bits in 10 distinct possible combinations. A few
possibilities are shown in Table below.

Centre for Distance Education 5.14 Acharya Nagarjuna University

The BCD (binary-coded decimal) uses a straight assignment of the binary equivalent of the
digit. The six unused bit combinations listed have no meaning when BCD is used, just as the
letter H has no meaning when decimal digit symbols are written down.

For example, saying that 1001 1110 is a decimal number in BCD is like saying that 9H is a
decimal number in the conventional symbol designation. Both cases contain an invalid
symbol and therefore designate a meaningless number.

One disadvantage of using BCD is the difficulty encountered when the 9's complement of the
number is to be computed. On the other hand, the 9's complement is easily obtained with the
2421 and the excess-3 codes listed self-complementing in Table above. These two codes have
a self-complementing property which means that the 9' s complement of a decimal number,
when represented in one of these codes, is easily obtained by changing 1's to 0's and 0's to 1's.

This property is useful when arithmetic operations are done in signed-complement
representation. weighted code The 2421 is an example of a weighted code. In a weighted
code, the bits are multiplied by the weights indicated and the sum of the weighted bits gives
the decimal digit.

For example, the bit combination 1101, when weighted by the respective digits 2421, gives
the decimal equivalent of 2 x 1 + 4 x 1 + 2 x 0 + 1 + 1 = 7. The BCD code can be assigned
the weights 8421 and for this reason it is sometimes called the 8421 code.

Computer Organization 5.15 Data Representation

The excess-3 code is a decimal code that has been used in older computers. This is an
unweighted code. Its binary code assignment is obtained from the corresponding BCD
equivalent binary number after the addition of binary 3 (0011).

From Table in gray code section we note that the Gray code is not suited for a decimal code if
we were to choose the first 10 entries in the table. This is because the transition from 9 back
to 0 involves a change of three bits (from 1101 to 0000). To overcome this difficulty, we
choose the 10 numbers starting from the third entry 0010 up to the twelfth entry 1010.

Now the transition from 1010 to 0010 involves a change of only one bit. Since the code has
been shifted up three numbers, it is called the excess-3 Gray. This code is listed with the
other decimal codes in Table above.

5.5.3 Other Alphanumeric Codes

The ASCII code (Table below) is the standard code commonly used for the transmission of
binary information.

Each character is represented by a 7-bit code and usually an eighth bit is inserted for parity.
The code consists of 128 characters. Ninety-five characters represent graphic symbols that
include upper- and lowercase letters, numerals zero to nine, punctuation marks, and special
symbols.

Twenty-three characters represent format effectors, which are functional characters for
controlling the layout of printing or display devices such as carriage return, line feed,
horizontal tabulation, and back space. The other 10 characters are used to direct the data
communication flow and report its status.

Centre for Distance Education 5.16 Acharya Nagarjuna University

Another alphanumeric (sometimes called alphameric) code used in IBM equipment is the
EBCDIC (Extended BCD Interchange Code). It uses eight bits for each character (and a ninth
bit for parity).

EBCDIC has the same character symbols as ASCII but the bit assignment to characters is
different.

When alphanumeric characters are used internally in a computer for data processing (not for
transmission purposes) it is more convenient to use a 6-bit code to represent 64 characters.

A 6-bit code can specify the 26 uppercase letters of the alphabet, numerals zero to nine, and
up to 28 special characters.

This set of characters is usually sufficient for data-processing purposes.

Using fewer bits to code characters has the advantage of reducing the memory space needed
to store large quantities of alphanumeric data.

5.6 ERROR DETECTION CODES

Binary information transmitted through some form of communication medium is subject to
external noise that could change bits from 1 to 0, and vice versa. An error detection code is a
binary code that detects digital errors during transmission. The detected errors cannot be
corrected but their presence is indicated.

The usual procedure is to observe the frequency of errors. If errors occur infrequently at
random, the particular erroneous information is transmitted again. If the error occurs too
often, the system is checked for malfunction. The most common error detection code used is
the parity bit.

A parity bit is an extra bit included with a binary message to make the total number of 1's
either odd or even. A message of three bits and two possible parity bits is shown in Table
below.

The P(odd) bit is chosen in such a way as to make the sum of 1's (in all four bits) odd. The
P(even) bit is chosen to make the sum of all 1's even. In either case, the sum is taken over the
message and the P bit.

In any particular application, one or the other type of parity will be adopted. The even-parity
scheme has the disadvantage of having a bit combination of all 0's, while in the odd parity
there is always one bit (of the four bits that constitute the message and P) that is 1.

Note that the P(odd) is the complement of the P(even). During transfer of information from
one location to another, the parity bit is handled as follows. At the sending end, the message
(in this case three bits) is applied to a parity generator, where the required parity bit is
generated.

Computer Organization 5.17 Data Representation

The message, including the parity bit, is transmitted to its destination. At the receiving end,
all the incoming bits (in this case, four) are applied to a parity checker that checks the proper
parity adopted (odd or even).

An error is detected if the checked parity does not conform to the adopted parity. The parity
method detects the presence of one, three, or any odd number of errors. An even number of
errors is not detected.

Parity generator and checker networks are logic circuits constructed with exclusive-OR
functions. This is because the exclusive-OR function of three or more variables is by
definition an odd function.

An odd function is a logic function whose value is binary 1 if, and only if, an odd function
number of variables are equal to 1.

According to this definition, the P(even) is the exclusive-OR of x, y and z because it is equal
to 1 when either one or all three of the variables are equal to 1 (Table above).

The P(odd) function is the complement of the P(even) function. As an example, consider a 3-
bit message to be transmitted with an odd parity bit.

At the sending end, the odd parity bit is generated by a parity generator circuit. As shown in
Fig. below, this circuit consists of one exclusive-OR and one exclusive-NOR gate.

Since P(even) is the exclusive-OR of x, y, z, and P(odd) is the complement of P(even), it is
necessary to employ an exclusive NOR gate for the needed complementation.

The message and the odd-parity bit are transmitted to their destination where they are applied
to a parity checker. An error has occurred during transmission if the parity of the four bits
received is even, since the binary information transmitted was originally odd.

The output of the parity checker would be 1 when an error occurs, that is, when the number
of 1's in the four inputs is even. Since the exclusive-OR function of the four inputs is an odd
function, we again need to complement the output by using an exclusive-NOR gate

Centre for Distance Education 5.18 Acharya Nagarjuna University

It is worth noting that the parity generator can use the same circuit as the parity checker if the
fourth input is permanently held at a logic-0 value.

The advantage of this is that the same circuit can be used for both parity generation and parity
checking.

It is evident from the example above that even-parity generators and checkers can be
implemented with exclusive-OR functions. Odd-parity networks need an exclusive-NOR at
the output to complement the function.

Figure 6.1 error detection code

5.7 SUMMARY
The chapter on data representation delves into the fundamental concepts of how

information is encoded and manipulated within digital systems. It begins with an overview of
various data types, including integers, floating-point numbers, and characters, explaining
their specific uses and representations. The chapter then explores complements, particularly
one's and two's complement, which are essential for performing binary arithmetic and
simplifying subtraction operations. Fixed-point representation is examined for its role in
representing integers and fractional numbers, while floating-point representation is discussed
in the context of handling a wide range of values with precision, adhering to the IEEE 754
standard. Additionally, the chapter covers other binary codes such as Binary Coded Decimal
(BCD), Gray code, and ASCII, which are crucial for specific encoding purposes. Lastly, it
addresses error detection codes, including parity bits and checksums, which are vital for
ensuring data integrity in digital communications by detecting and correcting errors during
data transmission.

Computer Organization 5.19 Data Representation

5.8 TECHNICAL TERMS

Binary Coded Decimal (BCD), IEEE, Parity bit, complement

5.9 SELF ASSESSMENT QUESTIONS

Essay Questions:
1. Describe the process of performing addition and subtraction using fixed-point numbers.
Floating Point Representation
2. What is the need of complement? Explain r-1s and rs complement with examples.
5. How does Gray code differ from traditional binary code, and what are its advantages?
4. What is a parity bit, and how is it used for error detection in digital communication?

Short Questions:
1. How is a character typically represented in a computer system, and what encoding standard
is commonly used?
2. Explain the concept of two's complement and how it is used for representing signed
integers.
5. What is fixed-point representation, and how does it differ from floating-point
representation?
4. How do you normalize a floating-point number, and why is normalization important?

5.10 FURTHER READINGS

1. M.Morris Mano, “Computer System Architecture”, 3rd Edition, Pearson Education
(2008).

2. V. Rajaraman, T. Radha Krishnan, “Computer Organization and Architecture”, PHI
3. BehroozParhami, “Computer Architecture”, Oxford (2007)
4. ISRD group, “Computer Organization”, ace series, TMH (2007)
5. William Stallings, “Computer Organization and Architecture – Designing for

Performance”, Pearson Education (2005)

Dr. Neelima Guntupalli

LESSON- 6

REGISTER TRANSFER AND
MICROOPERATIONS

OBJECTIVES:

After going through this lesson, you will be able to

 Understand Register Transfer Languages (RTL)
 Illustrate how data is transferred between different registers within the CPU.
 Comprehend Bus and Memory Transfers
 Describe different arithmetic,logic and shift operations
 Describe how the ALU performs arithmetic, logic, and shift operations.

STRUCTURE OF THE LESSION:
6.1 Register Transfer Languages

6.2 Register Transfer

6.3 Bus and Memory Transfer

6.4 Arithmetic Micro Operations

6.5 Logic Micro Operations

6.6 Shift Micro Operations

6.7 Arithmetic Logic Shift Unit

6.8 Summary

6.9 Technical Terms

6.10 Self-Assessment Questions

6.11 Further Readings

 A digital system is an interconnection of digital hardware modules. The modules are
registers, decoders, arithmetic elements, and control logic. The various modules are
interconnected with common data and control paths to form a digital computer system.

Digital modules are best defined by the registers they contain and the operations that are
performed on the data stored in them. The operations executed on data stored in registers are
called microoperations.

A microoperation is an elementary operation performed on the information stored in one or
more registers. The result of the operation may replace the previous binary information of a
register or may be transferred to another register.

Examples of microoperations are shift, count, clear, and load.

The internal hardware organization of a digital computer is best defined by specifying:

Centre for Distance Education 6.2 Acharya Nagarjuna University

1. The set of registers it contains and their function.
2. The sequence of microoperations performed on the binary information stored in

the registers.
3. The control that initiates the sequence of microoperations.

6.1 REGISTER TRANSFER LANGUAGE

The symbolic notation used to describe the micro-operation transfer among registers is called

RTL (Register Transfer Language).

The use of symbols instead of a narrative explanation provides an organized and concise

manner for listing the micro-operation sequences in registers and the control functions that

initiate them.

A register transfer language is a system for expressing in symbolic form the microoperation

sequences among the registers of a digital module.

It is a convenient tool for describing the internal organization of digital computers in concise

and precise manner.

Registers:

Computer registers are designated by upper case letters (and optionally followed by digits or

letters) to denote the function of the register.

For example, the register that holds an address for the memory unit is usually called a

memory address register and is designated by the name MAR.

Other designat ions for registers are PC (for program counter), IR (for instruction register, and

R1 (for processor register).

The individual flip-flops in an n-bit register are numbered in sequence from 0 through n-1,

starting from 0 in the rightmost position and increasing the numbers toward the left.

Figure 6. shows the representation of registers in block diagram form.

The most common way to represent a register is by a rectangular box with the name of the

register inside, as in Fig. 4-1(a).The individual bits can be distinguished as in (b). The

numbering of bits in a 16-bit register can be marked on top of the box as shown in (c). 16-bit

register is partitioned into two parts in (d). Bits 0 through 7 are assigned the symbol L (for

low byte) and bits 8 through 15 are assigned the symbol H (for high byte). The name of the

16-bit register is PC. The symbol PC (0-7) or PC (L) refers to the low-order byte and PC (8-

15) or PC (H) to the high-order byte.

Computer Organization 6.3 REGISTER TRANSFER AND MICROOPERATIONS

Figure 6.1 Block diagram of a Register

6.2 REGISTER TRANSFER
Information transfer from one register to another is designated in symbolic form by means of
a replacement operator.

The statement R2← R1 denotes a transfer of the content of register R1 into register R2.

It designates a replacement of the content of R2 by the content of R1.

By definition, the content of the source register R 1 does not change after the transfer. If we
want the transfer to occur only under a predetermined control condition then it can be shown
by an if-then statement.

if (P=1) then R2← R1

P is the control signal generated by a control section.

We can separate the control variables from the register transfer operation by specifying a
Control Function. Control function is a Boolean variable that is equal to 0 or 1.

Control function is included in the statement as

P: R2← R1

Control condition is terminated by a colon implies transfer operation be executed by the
hardware only if P=1.

Every statement written in a register transfer notation implies a hardware construction for
implementing the transfer.

Figure 6.2 shows the block diagram that depicts the transfer from R1 to R2.

Centre for Distance Education 6.4 Acharya Nagarjuna University

Figure 6.2 Transfer from R1 to R2 when P = 1

The n outputs of register R1 are connected to the n inputs of register R2. The letter n will be
used to indicate any number of bits for the register. It will be replaced by an actual number
when the length of the register is known. Register R2 has a load input that is activated by the
control variable P.

It is assumed that the control variable is synchronized with the same clock as the one applied
to the register. As shown in the timing diagram, P is activated in the control section by the
rising edge of a clock pulse at time t. The next positive transition of the clock at time t + 1
finds the load input active and the data inputs of R2 are then loaded into the register in
parallel.

P may go back to 0 at time t+1; otherwise, the transfer will occur with every clock pulse
transition while P remains active. Even though the control condition such as P becomes
active just after time t, the actual transfer does not occur until the register is triggered by the
next positive transition of the clock at time t +1.

The basic symbols of the register transfer notation are listed in below table

Table 6. basic symbols for register transfer

Computer Organization 6.5 REGISTER TRANSFER AND MICROOPERATIONS

A comma is used to separate two or more operations that are executed at the same time.

The statement

T : R2← R1, R1← R2

denotes an operation that exchanges the contents of two rgisters during one common clock
pulse provided that T=1.

6.3 BUS AND MEMORY TRANSFERS
A more efficient scheme for transferring information between registers in a multiple-register
configuration is a Common Bus System. A common bus consists of a set of common lines,
one for each bit of a register. Control signals determine which register is selected by the bus
during each particular register transfer.

Different ways of constructing a Common Bus System

 Using Multiplexers

 Using Tri-state Buffers

Common bus system is with multiplexers: The multiplexers select the source register whose
binary information is then placed on the bus. The construction of a bus system for four
registers is shown in below Figure.

Figure 6.3 : Bus system for 4 registers

Centre for Distance Education 6.6 Acharya Nagarjuna University

The bus consists of four 4 x 1 multiplexers each having four data inputs, 0 through 3, and two
selection inputs, S1 and S0. For example, output 1 of register A is connected to input 0 of
MUX 1 because this input is labelled A1. The diagram shows that the bits in the same
significant position in each register are connected to the data inputs of one multiplexer to
form one line of the bus.

Thus MUX 0 multiplexes the four 0 bits of the registers, MUX 1 multiplexes the four 1 bits
of the registers, and similarly for the other two bits. The two selection lines Si and So are
connected to the selection inputs of all four multiplexers. The selection lines choose the four
bits of one register and transfer them into the four-line common bus.

When S1S0 = 00, the 0 data inputs of all four multiplexers are selected and applied to the
outputs that form the bus.

This causes the bus lines to receive the content of register A since the outputs of this register
are connected to the 0 data inputs of the multiplexers.

Similarly, register B is selected if S1S0 = 01, and so on.

Table 6.2 shows the register that is selected by the bus for each of the four possible binary
value of the selection lines

Table 6.2 Function table for the bus

In general a bus system has multiplex “k” Registers, in each register of “n” bits

to produce “n-line bus”, no. of multiplexers required are n, then size of each multiplexer is

 k x 1

When the bus is includes in the statement, the register transfer is symbolized as follows:

BUS← C, R1← BUS

The content of register C is placed on the bus, and the content of the bus is loaded into
register R1 by activating its load control input. If the bus is known to exist in the system, it
may be convenient just to show the direct transfer.

R1← C

Computer Organization 6.7 REGISTER TRANSFER AND MICROOPERATIONS

Three-State Bus Buffers:

A bus system can be constructed with three-state gates instead of multiplexers. A three-state
gate is a digital circuit that exhibits three states. Two of the states are signals equivalent to
logic 1 and 0 as in a conventional gate.The third state is a high-impedance state.

The high-impedance state behaves like an open circuit, which means that the output is
disconnected and does not have logic significance.

Because of this feature, a large number of three-state gate outputs can be connected with
wires to form a common bus line without endangering loading effects.

The graphic symbol of a
three-state buffer gate is
shown in Fig. 6.6.

Figure 6..4 Graphic symbols for three state buffers

It is distinguished from a normal buffer by having both a normal input and a control input.
The control input determines the output state. When the control input is equal to 1, the output
is enabled and the gate behaves like any conventional buffer, with the output equal to the
normal input.

When the control input is 0, the output is disabled and the gate goes to a high-impedance
state, regardless of the value in the normal input. The construction of a bus system with three-
state buffers is shown in Fig. 6.5.

Figure 6.5 bus line with three state-buffers

Centre for Distance Education 6.8 Acharya Nagarjuna University

The outputs of four buffers are connected together to form a single bus line. The control
inputs to the buffers determine which of the four normal inputs will communicate with the
bus line.

No more than one buffer may be in the active state at any given time. The connected buffers
must be controlled so that only one three-state buffer has access to the bus line while all other
buffers are maintained in a high impedance state.

One way to ensure that no more than one control input is active at any given time is to use a
decoder, as shown in the diagram.

When the enable input of the decoder is 0, all of its four outputs are 0, and the bus line is in a
high-impedance state because all four buffers are disabled. When the enable input is active,
one of the three-state buffers will be active, depending on the binary value in the select inputs
of the decoder.

Memory Transfer:

The transfer of information from a memory word to the outside environment is called a read
operation. The transfer of new information to be stored into the memory is called a write
operation.

A memory word will be symbolized by the letter M. The particular memory word among the
many available is selected by the memory address during the transfer. It is necessary to
specify the address of M when writing memory transfer operations.

This will be done by enclosing the address in square brackets following the letter M.
Consider a memory unit that receives the address from a register, called the address register,
symbolized by AR.

The data are transferred to another register, called the data register, symbolized by DR.

The read operation can be stated as follows:

Read: DR M [AR]

This causes a transfer of information into DR from the memory word M selected by the
address in AR.

The write operation transfers the content of a data register to a memory word M selected by
the address. Assume that the input data are in register R1 and the address is in AR.

The write operation can be stated as follows:

Write: M [AR] R1

Computer Organization 6.9 REGISTER TRANSFER AND MICROOPERATIONS

Types of Micro-operations:

 Register Transfer Micro-operations: Transfer binary information from one register to
another.

 Arithmetic Micro-operations: Perform arithmetic operation on numeric data stored in
registers.

 Logical Micro-operations: Perform bit manipulation operations on data stored in
registers.

 Shift Micro-operations: Perform shift operations on data stored in registers.

Register Transfer Micro-operation doesn’t change the information content when the binary
information moves from source register to destination register.

Other three types of micro-operations change the information change the information content
during the transfer.

6.4 ARITHMETIC AND MICRO OPERATIONS

The basic arithmetic micro-operations are

 Addition

 Subtraction

 Increment

 Decrement

 Shift

The arithmetic Micro-operation defined by the statement below specifies the add micro-
operation.

R3 ← R1 + R2

It states that the contents of R1 are added to contents of R2 and sum is transferred to R3.

To implement this statement hardware requires 3 registers and digital component that
performs addition

Subtraction is most often implemented through complementation and addition. The subtract
operation is specified by the following statement

R3 ← R1 + R2 + 1

instead of minus operator, we can write as

R2 is the symbol for the 1’s complement of R2

Adding 1 to 1’s complement produces 2’s complement

Centre for Distance Education 6.10 Acharya Nagarjuna University

Adding the contents of R1 to the 2's complement of R2 is equivalent to R1-R2.

Binary Adder:

Digital circuit that forms the arithmetic sum of 2 bits and the previous carry is called Full
Adder. Digital circuit that generates the arithmetic sum of 2 binary numbers of any lengths is
called Binary Adder.

Figure 6.6 shows the interconnections of four full-adders (FA) to provide a 4-bit binary
adder.

Figure 6.6 4-bit binary adder

The augends bits of A and the addend bits of B are designated by subscript numbers from
right to left, with subscript 0 denoting the low-order bit.

The carries are connected in a chain through the full-adders. The input carry to the binary
adder is Co and the output carry is C6. The S outputs of the full-adders generate the required
sum bits. An n-bit binary adder requires n full-adders

Binary Adder – Subtractor:

The addition and subtraction operations can be combined into one common circuit by
including an exclusive-OR gate with each full-adder.

A 4-bit adder-subtractor circuit is shown in Fig. 6.7

Figure 6.7 4-bit adder subtractor

Computer Organization 6.11 REGISTER TRANSFER AND MICROOPERATIONS

The mode input M controls the operation. When M = 0 the circuit is an adder and when M =
1 the circuit becomes a subtractor.

Each exclusive-OR gate receives input M and one of the inputs of B

When M = 0, we have B 0 = B. The full-adders receive the value of B, the input carry is 0,
and the circuit performs A plus B.

When M = 1, we have B 1 = B' and C0 = 1.

The B inputs are all complemented and a 1 is added through the input carry.

The circuit performs the operation A plus the 2's complement of B.

Binary Incrementer:

The increment microoperation adds one to a number in a register.

For example, if a 4-bit register has a binary value 0110, it will go to 0111 after it is
incremented.

This can be accomplished by means of half-adders connected in cascade.

The diagram of a 4-bit 'combinational circuit incrementer is shown in Fig. 4-8.

Figure 6.8: 4-bit binary incrementer

One of the inputs to the least significant half-adder (HA) is connected to logic-1 and the other
input is connected to the least significant bit of the number to be incremented. The output
carry from one half-adder is connected to one of the inputs of the next-higher-order half-
adder.

Centre for Distance Education 6.12 Acharya Nagarjuna University

The circuit receives the four bits from A0 through A3, adds one to it, and generates the
incremented output in S0 through S3. The output carry C4 will be 1 only after incrementing
binary 1111. This also causes outputs S0 through S3 to go to 0.

The circuit of Fig. 6.8 can be extended to an n -bit binary incrementer by extending the
diagram to include n half-adders. The least significant bit must have one input connected to
logic-1. The other inputs receive the number to be incremented or the carry from the previous
stage.

Arithmetic Circuit:

The basic component of an arithmetic circuit is the parallel adder. By controlling the data
inputs to the adder, it is possible to obtain different types of arithmetic operations.

The diagram of a 4-bit arithmetic circuit is shown in Fig. 6.9. It has four full-adder circuits
that constitute the 4-bit adder and four multiplexers for choosing different operations.

Figure 6.9 : 4-bit arithmetic circuit

Computer Organization 6.13 REGISTER TRANSFER AND MICROOPERATIONS

There are two 4-bit inputs A and B and a 4-bit output D. The four inputs from A go directly
to the X inputs of the binary adder. Each of the four inputs from B are connected to the data
inputs of the multiplexers. The multiplexers data inputs also receive the complement of B.
The other two data inputs are connected to logic-0 and logic-1.

The four multiplexers are controlled by two selection inputs S1 and S0. The input carry Cin,
goes to the carry input of the FA in the least significant position. The other carries are
connected from one stage to the next.

By controlling the value of Y with the two selection inputs S1 and S0 and making Cin equal
to 0 or 1, it is possible to generate the eight arithmetic microoperations listed in Table 46.

Addition:

When S1S0= 00, the value of B is applied to the Y inputs of the adder.

 if Cin, = 0, the output D = A + B.

 if Cin = 1, output D=A + B + 1.

Both cases perform the add microoperation with or without adding the input carry.

Subtraction:

When S1S0 = 01, the complement of B is applied to the Y inputs of the adder.

 if Cin = 1, then D = A + B + 1. This produces A plus the 2's complement of B, which
is equivalent to a subtraction of A -B.

 When Cin = 0 then D = A + B. This is equivalent to a subtract with borrow, that is, A-
B-1.

Increment:

When S1S0 = 10, the inputs from B are neglected, and instead, all 0's are inserted into the Y
inputs.

 if Cin = 0, then D = A + 0 + Cin.

 if Cin = 1, then D = A + 1

In the first case we have a direct transfer from input A to output D. In the second case, the
value of A is incremented by 1.

Decrement:

When S1S0= 11, all l's are inserted into the Y inputs of the adder to produce the decrement
operation D = A -1 when Cin = 0.

Centre for Distance Education 6.14 Acharya Nagarjuna University

This is because a number with all 1's is equal to the 2's complement of 1 (the 2's complement
of binary 0001 is 1111). Adding a number A to the 2's complement of 1 produces F = A + 2's
complement of 1 = A — 1. When Cin = 1, then D = A -1 + 1=A, which causes a direct
transfer from input A to output D.

6.5 LOGIC MICROOPERATIONS

Logic microoperations specify binary operations for strings of bits stored in registers. These
operations consider each bit of the register separately and treat them as binary variables.

For example, the exclusive-OR microoperation with the contents of two registers RI and R2
is symbolized by the statement

P : R1 R1 R2

It specifies a logic microoperation to be executed on the individual bits of the registers
provided that the control variable P = 1.

List of Logic Microoperations:

There are 16 different logic operations that can be performed with two binary variables. They
can be determined from all possible truth tables obtained with two binary variables as shown
in Table 6.5.

Table 6.5 Truth table for 16 Functions of Two variables

The 16 Boolean functions of two variables x and y are expressed in algebraic form in the first
column of Table 6.6.

The 16 logic microoperations are derived from these functions by replacing variable x by the
binary content of register A and variable y by the binary content of register B.

The logic micro-operations listed in the second column represent a relationship between the
binary content of two registers A and B.

Computer Organization 6.15 REGISTER TRANSFER AND MICROOPERATIONS

Table 6.6: Sixteen logic microoperations

Hardware Implementation:

The hardware implementation of logic microoperations requires that logic gates be inserted
for each bit or pair of bits in the registers to perform the required logic function. Although
there are 16 logic microoperations, most computers use only four--AND, OR, XOR
(exclusive-OR), and complement from which all others can be derived.

Figure 6.0 shows one stage of a circuit that generates the four basic logic microoperations.

Figure 6.0 one stage of logic circuit

Centre for Distance Education 6.16 Acharya Nagarjuna University

It consists of four gates and a multiplexer. Each of the four logic operations is generated
through a gate that performs the required logic. The outputs of the gates are applied to the
data inputs of the multiplexer. The two selection inputs S1 and S0 choose one of the data
inputs of the multiplexer and direct its value to the output.

Some Applications:

Logic micro-operations are very useful for manipulating individual bits or a portion of a word
stored in a register.

They can be used to change bit values, delete a group of bits or insert new bits values into a
register.

The following example shows how the bits of one register (designated by A) are manipulated
by logic microoperations as a function of the bits of another register (designated by B).

Selective set

The selective-set operation sets to 1 the bits in register A where there are corresponding l's in
register B. It does not affect bit positions that have 0's in B. The following numerical example
clarifies this operation:

1010

1100

1110

A before

B (Logic operand)

A After

The OR microoperation can be used to selectively set bits of a register.

Selective complement

The selective-complement operation complements bits in A where there are corresponding 1's
in B. It does not affect bit positions that have 0's in B. For example:

1010

1100

0110

A before

B (Logic operand)

A After

The exclusive-OR microoperation can be used to selectively complement bits of a register.

Selective clear

The selective-clear operation clears to 0 the bits in A only where thereare corresponding l's in
B. For example:

Computer Organization 6.17 REGISTER TRANSFER AND MICROOPERATIONS

1010

1100

0010

A before

B (Logic operand)

A After

The corresponding logic microoperation is

Mask

The mask operation is similar to the selective-clear operation except that the bits of A are
cleared only where there are corresponding O's in B . The mask operation is an AND micro
operation as seen from the following numerical example:

1010

1100

1000

A before

B (Logic operand)

A After

Insert

The insert operation inserts a new value into a group of bits. This is done by first masking the
bits and then ORing them with the required value.

0110 1010

0000 1111

0000 1010

A before

B (mask)

A After

For example, suppose that an A register contains eight bits, 0110 1010. To replace the four
leftmost bits by the value 1001 we first mask the four unwanted bits:

0000 1010

1001 0000

1001 1010

A before

B (mask)

A After insertion

The mask operation is an AND microoperation and the insert operation is an OR
microoperation.

Clear

Centre for Distance Education 6.18 Acharya Nagarjuna University

The clear operation compares the words in A and B and produces an all 0's result if the two
numbers are equal. This operation is achieved by an exclusive-OR microoperation as shown
by the following example

1010

1010

0010

A before

B

A A B

6.6 SHIFT MICRO OPERATOINS
Shift microoperations are used for serial transfer of data. The contents of a register can be
shifted to the left or the right. During a shift-left operation the serial input transfers a bit into
the rightmost position. During a shift-right operation the serial input transfers a bit into the
leftmost position.

There are three types of shifts: logical, circular, and arithmetic.

The symbolic notation for the shift microoperations is shown in Table 6.7.

Table 6.7 Shift microoperations

Logical Shift:

A logical shift is one that transfers 0 through the serial input. The symbols shl and shr for
logical shift-left and shift-right microoperations.

The microoperations that specify a 1-bit shift to the left of the content of register R and a 1-
bit shift to the right of the content of register R shown in table 6.7. The bit transferred to the
end position through the serial input is assumed to be 0 during a logical shift.

R1 shl R1

R2 shr R2

Circular Shift:

The circular shift (also known as a rotate operation) circulates the bits of the register around
the two ends without loss of information. This is accomplished by connecting the serial

Computer Organization 6.19 REGISTER TRANSFER AND MICROOPERATIONS

output of the shift register to its serial input. We will use the symbols cil and cir for the
circular shift left and right, respectively.

Arithmetic Shift:

An arithmetic shift is a microoperation that shifts a signed binary number to the left or

right. An arithmetic shift-left multiplies a signed binary number by 2. An arithmetic shift-

right divides the number by 2. Arithmetic shifts must leave the sign bit unchanged because

the sign of the number remains the same when it is multiplied or divided by 2.

Hardware Implementation:

A combinational circuit shifter can be constructed with multiplexers as shown in Fig. 4-12.

The 4-bit shifter has four data inputs, A0 through A3, and four data outputs, H0 through H3.

There are two serial inputs, one for shift left (IL) and the other for shift right (IR).

When the selection input S=0 the input data are shifted right (down in the diagram).

When S = 1, the input data are shifted left (up in the diagram).

The function table in Fig. 4-12 shows which input goes to each output after the shift. A

shifter with n data inputs and outputs requires n multiplexers. The two serial inputs can be

controlled by another multiplexer to provide the three possible types of shifts.

6.7 ARITHMETIC LOGIC SHIFT UNIT:

Instead of having individual registers performing the microoperations directly, computer

systems employ a number of storage registers connected to a common operational unit called

an arithmetic logic unit, abbreviated ALU.

The ALU is a combinational circuit so that the entire register transfer operation from the

source registers through the ALU and into the destination register can be performed during

one clock pulse period. The shift microoperations are often performed in a separate unit, but

sometimes the shift unit is made part of the overall ALU.

The arithmetic, logic, and shift circuits introduced in previous sections can be combined into

one ALU with common selection variables. One stage of an arithmetic logic shift unit is

shown in Fig. 4- 13.

Centre for Distance Education 6.20 Acharya Nagarjuna University

Figure 6.3 one stage of arithmetic logic shift unit

Particular microoperation is selected with inputs S1 and S0. A 4 x 1 multiplexer at the output
chooses between an arithmetic output in Di and a logic output in Ei. The data in the
multiplexer are selected with inputs S3 and S2. The other two data inputs to the multiplexer
receive inputs Ai-1 for the shift-right operation and Ai+1 for the shift-left operation.

The circuit whose one stage is specified in Fig. 4-13 provides eight arithmetic operation, four
logic operations, and two shift operations. Each operation is selected with the five variables
S3, S2, S1, S0 and Cin. The input carry Cin is used for selecting an arithmetic operation only.

Table 6.3: Function table of Arithmetic logic shift unit

Table 4-8 lists the 14 operations of the ALU.

Computer Organization 6.21 REGISTER TRANSFER AND MICROOPERATIONS

The first eight are arithmetic operations and are selected with S3S2 = 00. The next four are
logic and are selected with S3S2 = 01. The input carry has no effect during the logic
operations and is marked with don't-care x’s. The last two operations are shift operations and
are selected with S3S2= 10 and 11. The other three selection inputs have no effect on the shift.

6.8 SUMMARY

The chapter on Register Transfer and Microoperations delves into the fundamental
mechanisms of data movement and transformation within a computer system. It begins with
an exploration of Register Transfer Languages (RTL), providing a framework for describing
data transfers between registers. The chapter then covers the concept of register transfers,
detailing how data is moved between various CPU registers. It discusses bus and memory
transfers, explaining the role of different types of buses in facilitating data movement
between the CPU, memory, and other components. Arithmetic microoperations, such as
addition and subtraction, are examined alongside logic microoperations like AND, OR, and
NOT, showcasing their importance in data manipulation. Shift microoperations, including
logical and arithmetic shifts, are explained for their role in altering data positioning. Finally,
the chapter introduces the Arithmetic Logic Shift Unit (ALU), illustrating its critical function
in performing arithmetic, logic, and shift operations, and integrating these processes to
execute instructions within the CPU.

6.9 TECHNICAL TERMS

RTL, Control signals, Bus, Arithmetic Logic Shift Unit (ALSU)

6.0 SELF ASSESSMENT QUESTIONS

Essay questions:

1. Define Register Transfer Language and explain its importance in computer

architecture.
2. Describe how data is transferred between the CPU, memory, and other

components using buses.
3. Describe various arithmetic operations
4. Demonstrate how logical operations are applied to binary data.

 Short Questions:
1. Define and explain the purpose of Register Transfer Languages.
2. Explain the concept of register transfer and its significance in computer

operations.
3. Explain the different types of buses and their functions.
4. Define shift microoperations and their uses

Centre for Distance Education 6.22 Acharya Nagarjuna University

6.1 FURTHER READINGS
1. M.Morris Mano, “Computer System Architecture”, 3rd Edition, Pearson Education

(2008).
2. V. Rajaraman, T. Radha Krishnan, “Computer Organization and Architecture”, PHI
3. BehroozParhami, “Computer Architecture”, Oxford (2007)
4. ISRD group, “Computer Organization”, ace series, TMH (2007)
5. William Stallings, “Computer Organization and Architecture – Designing for

Performance”, Pearson Education (2005)

Dr. Neelima Guntupalli

LESSON- 7

BASIC COMPUTER ORGANIZATION AND
DESIGN

OBJECTIVES:

After going through this lesson, you will be able to

▪ Identify and explain different types of instruction formats and registers
▪ Explain the execution of computer instructions
▪ Understand the role of the control unit
▪ Illustrate the sequence of events in the instruction cycle.
▪ Describe different types of memory reference instructions
▪ Understand the concept of interrupts

STRUCTURE OF THE LESSION:
7.1 Instruction Codes

7.2 Computer Registers

7.3 Computer Instructions

7.4 Timing and Control

7.7. Instruction Cycle

7.6 Memory Reference Instructions

7.7 Input-Output and Interrupt

7.8 Summary

7.9 Technical Terms

7.10 Self-Assessment Questions

7.11 Further Readings

7.1 INSTRUCTION CODES

The organization of the computer is defined by its internal registers, the timing and control
structure, and the set of instructions that it uses. Internal organization of a computer is
defined by the sequence of micro-operations it performs on data stored in its registers.

Computer can be instructed about the specific sequence of operations it must perform. User
controls this process by means of a Program.

Program: set of instructions that specify the operations, operands, and the sequence by which
processing has to occur.

Instruction: a binary code that specifies a sequence of micro-operations for the computer.

Centre for Distance Education 7.2 Acharya Nagarjuna University

The computer reads each instruction from memory and places it in a control register. The
control then interprets the binary code of the instruction and proceeds to execute it by issuing
a sequence of micro-operations. – Instruction Cycle

Instruction Code: group of bits that instruct the computer to perform specific operation.

Instruction code is usually divided into two parts: Opcode and address(operand)

Operation Code (opcode): group of bits that define the operation

Eg: add, subtract, multiply, shift, complement.

No. of bits required for opcode depends on no. of operations available in computer.

n bit opcode >= 2n (or less) operations

Address (operand): specifies the location of operands (registers or memory words). Memory
words are specified by their address.

Registers are specified by their k-bit binary code

k-bit address >= 2k registers

Stored Program Organization

The ability to store and execute instructions is the most important property of a general-
purpose computer. That type of stored program concept is called stored program
organization.

The simplest way to organize a computer is to have one processor register and an instruction
code format with two parts. The first part specifies the operation to be performed and the
second specifies an address.

The below figure 7.1 shows the stored program organization

Figure 7.1 stored program organization

Computer Organization 7.3 Basic Computer Organization and Design

Instructions are stored in one section of memory and data in another.

For a memory unit with 4096 words we need 12 bits to specify an address since 212 = 4096.

If we store each instruction code in one 16-bit memory word, we have available four bits for
the operation code (abbreviated opcode) to specify one out of 16 possible operations, and 12
bits to specify the address of an operand.

Accumulator (AC): Computers that have a single-processor register usually assign to it the
name accumulator and label it AC. The operation is performed with the memory operand and
the content of AC.

Indirect address:

Addressing of Operand: Sometimes convenient to use the address bits of an instruction code
not as an address but as the actual operand.

When the second part of an instruction code specifies an operand, the instruction is said to
have an immediate operand. When the second part specifies the address of an operand, the
instruction is said to have a direct address. When second part of the instruction designate an
address of a memory word in which the address of the operand is found such instruction have
indirect address.

One bit of the instruction code can be used to distinguish between a direct and an indirect
address.

Figure 7.2 Demonstration of direct and indirect address

Centre for Distance Education 7.4 Acharya Nagarjuna University

The instruction code format shown in Fig. 5-2(a). It consists of a 3-bit operation code, a 12-
bit address, and an indirect address mode bit designated by I. The mode bit is 0 for a direct
address and 1 for an indirect address.

A direct address instruction is shown in Fig. 5-2(b).

It is placed in address 22 in memory. The I bit is 0, so the instruction is recognized as a direct
address instruction. The opcode specifies an ADD instruction, and the address part is the
binary equivalent of 457. The control finds the operand in memory at address 457 and adds it
to the content of AC.

The instruction in address 35 shown in Fig. 5-2(c) has a mode bit I = 1. Therefore, it is
recognized as an indirect address instruction. The address part is the binary equivalent of 300.
The control goes to address 300 to find the address of the operand. The address of the
operand in this case is 1350. The operand found in address 1350 is then added to the content
of AC.

The effective address to be the address of the operand in a computation-type instruction or the
target address in a branch-type instruction.

Thus the effective address in the instruction of Fig. 5-2(b) is 457 and in the instruction of Fig
5-2(c) is 1350.

7.2.COMPUTER REGISTERS

The need of the registers in computer for

● Instruction sequencing needs a counter to calculate the address of the next instruction
after execution of the current instruction is completed (PC).

● Necessary to provide a register in the control unit for storing the instruction code after
it is read from memory (IR).

● Needs processor registers for manipulating data (AC and TR) and a register for
holding a memory address (AR).

The registers are also listed in Table 7.1 together with a brief description of their function and
the number of bits that they contain.

Computer Organization 7.5 Basic Computer Organization and Design

 The data register (DR) holds the operand read from memory.

The accumulator (AC) register is a general purpose processing register.

The instruction read from memory is placed in the instruction register (IR).

The temporary register (TR) is used for holding temporary data during the processing.

The memory address register (AR) has 12 bits since this is the width of a memory address.

The program counter (PC) also has 12 bits and it holds the address of the next instruction to
be read from memory after the current instruction is executed.

Two registers are used for input and output.

● The input register (INPR) receives an 8-bit character from an input device.
● The output register (OUTR) holds an 8-bit character for an output device.

The above requirements dictate the register configuration shown in Fig. 7.3.

Figure 7.3 Basic computer register and memory

Common Bus System:

The basic computer has eight registers, a memory unit, and a control unit. Paths must be
provided to transfer information from one register to another and between memory and
registers. A more efficient scheme for transferring information in a system with many
registers is to use a common bus.

The connection of the registers and memory of the basic computer to a common bus system is
shown in Fig. 7.4.

Centre for Distance Education 7.6 Acharya Nagarjuna University

Figure 7.4 basic computer registers connected to a common bus

The outputs of seven registers and memory are connected to the common bus. The specific
output that is selected for the bus lines at any given time is determined from the binary value
of the selection variables S2, S1, and S0. The number along each output shows the decimal
equivalent of the required binary selection.

For example, the number along the output of DR is 3. The 16-bit outputs of DR are placed on
the bus lines when S2S1S0 = 011. The lines from the common bus are connected to the inputs
of each register and the data inputs of the memory.

 The particular register whose LD (load) input is enabled receives the data from the bus
during the next clock pulse transition. The memory receives the contents of the bus when its
write input is activated. The memory places its 16-bit output onto the bus when the read
input is activated and S2S1S0 = 111.

Two registers, AR and PC, have 12 bits each since they hold a memory address. When the
contents of AR or PC are applied to the 16-bit common bus, the four most significant bits are

Computer Organization 7.7 Basic Computer Organization and Design

set to 0's. When AR or PC receives information from the bus, only the 12 least significant bits
are transferred into the register.

The input register INPR and the output register OUTR have 8 bits each. They communicate
with the eight least significant bits in the bus. INPR is connected to provide information to
the bus but OUTR can only receive information from the bus. This is because INPR receives
a character from an input device which is then transferred to AC. OUTR receives a character
from AC and delivers it to an output device.

Five registers have three control inputs: LD (load), INR (increment), and CLR (clear). This
type of register is equivalent to a binary counter with parallel load and synchronous clear.
Two registers have only a LD input. The input data and output data of the memory are
connected to the common bus, but the memory address is connected to AR. Therefore, AR
must always be used to specify a memory address.

The 16 inputs of AC come from an adder and logic circuit. This circuit has three sets of
inputs.

● One set of 16-bit inputs come from the outputs of AC.
● Another set of 16-bit inputs come from the data register DR.
● The result of an addition is transferred to AC and the end carry-out of the addition is

transferred to flip-flop E (extended AC bit).
● A third set of 8-bit inputs come from the input register INPR.

The content of any register can be applied onto the bus and an operation can be performed in
the adder and logic circuit during the same clock cycle.

For example, the two microoperations DR AC and AC DR can be executed at the same
time.

This can be done by placing the content of AC on the bus (with S2S1S0 = 100), enabling the
LD (load) input of DR, transferring the content of DR through the adder and logic circuit into
AC, and enabling the LD (load) input of AC, all during the same clock cycle.

7.3 COMPUTER INSTRUCTIONS

The basic computer has three instruction code formats, as shown in Fig. 5-7. Each format has
16 bits.

Figure 7.5 Basic computer instruction formats

Centre for Distance Education 7.8 Acharya Nagarjuna University

The operation code (opcode) part of the instruction contains three bits and the meaning of the
remaining 13 bits depends on the operation code encountered.

A memory-reference instruction uses 12 bits to specify an address and one bit to specify the
addressing mode I. I is equal to 0 for direct address and to 1 for indirect address.

The register-reference instructions are recognized by the operation code 111 with a 0 in the
leftmost bit (bit 15) of the instruction. A register-reference instruction specifies an operation
on the AC register. So an operand from memory is not needed. Therefore, the other 12 bits
are used to specify the operation to be executed.

An input-output instruction does not need a reference to memory and is recognized by the
operation code 111 with a 1 in the leftmost bit of the instruction. The remaining 12 bits are
used to specify the type of input-output operation.

The instructions for the computer are listed in Table 5-2.

The symbol designation is a three-letter word and represents an abbreviation intended for
programmers and users. The hexadecimal code is equal to the equivalent hexadecimal
number of the binary code used for the instruction.

Computer Organization 7.9 Basic Computer Organization and Design

Instruction Set Completeness:

A computer should have a set of instructions so that the user can construct machine language
programs to evaluate any function. The set of instructions are said to be complete if the
computer includes a sufficient number of instructions in each of the following categories:

● Arithmetic, logical, and shift instructions
● Data Instructions (for moving information to and from memory and processor

registers)
● Program control or Brach
● Input and output instructions

There is one arithmetic instruction, ADD, and two related instructions, complement
AC(CMA) and increment AC(INC). With these three instructions we can add and subtract
binary numbers when negative numbers are in signed-2's complement representation.

The circulate instructions, CIR and CIL; can be used for arithmetic shifts as well as any other
type of shifts desired.

There are three logic operations: AND, complement AC (CMA), and clear AC(CLA). The
AND and complement provide a NAND operation.

Moving information from memory to AC is accomplished with the load AC (LDA)
instruction. Storing information from AC into memory is done with the store AC (STA)
instruction.

The branch instructions BUN, BSA, and ISZ, together with the four skip instructions, provide
capabilities for program control and checking of status conditions.

The input (INP} and output (OUT) instructions cause information to be transferred between
the computer and external devices.

7.4 TIMING AND CONTROL

The timing for all registers in the basic computer is controlled by a master clock generator.
The clock pulses are applied to all flip-flops and registers in the system, including the flip-
flops and registers in the control unit. The clock pulses do not change the state of a register
unless the register is enabled by a control signal.

The control signals are generated in the control unit and provide control inputs for the
multiplexers in the common bus, control inputs in processor registers, and microoperations
for the accumulator.

There are two major types of control organization:

● Hardwired control
● Microprogrammed control

Centre for Distance Education 7.10 Acharya Nagarjuna University

The differences between hardwired and microprogrammed control are

Hardwired control Microprogrammed control

The control logic is implemented with gates, flip-flops, decoders, and other digital
circuits.The control information is stored in a control memory. The control memory is
programmed to initiate the required sequence of microoperations.

The advantage that it can be optimized to produce a fast mode of operation.Compared with
the hardwired control operation is slow. Requires changes in the wiring among the various
components if the design has to be modified or changed.Required changes or modifications
can be done by updating the microprogram in control memory.

 The block diagram of the hardwired control unit is shown in Fig. 7.6.

Figure 7.6 control unit of basic computer

It consists of two decoders, a sequence counter, and a number of control logic gates. An
instruction read from memory is placed in the instruction register (IR). It is divided into three
parts: The I bit, the operation code, and bits 0 through 11. The operation code in bits 12
through 14 are decoded with a 3 x 8 decoder. The eight outputs of the decoder are designated
by the symbols D0 through D7. Bit 15 of the instruction is transferred to a flip-flop
designated by the symbol I. Bits 0 through 11 are applied to the control logic gates.

The 4-bit sequence counter can count in binary from 0 through 17. The outputs of the counter
are decoded into 16 timing signals T0 through T17. The sequence counter SC can be
incremented or cleared synchronously. The counter is incremented to provide the sequence of
timing signals out of the 4 x 16 decoder.

Computer Organization 7.11 Basic Computer Organization and Design

As an example, consider the case where SC is incremented to provide timing signals T0, T1,
T2, T3 and T4 in sequence. At time T4, SC is cleared to 0 if decoder output D3 is active.

This is expressed symbolically by the statement

D3T4: SC 0

The timing diagram of Fig. 7.7 shows the time relationship of the control signals.

Figure 7.7 Example of control signal timings

The sequence counter SC responds to the positive transition of the clock.

Initially, the CLR input of SC is active. The first positive transition of the clock clears SC to
0, which in turn activates the timing signal T0 out of the decoder. T0 is active during one
clock cycle. SC is incremented with every positive clock transition, unless its CLR input is
active. This produces the sequence of timing signals T0, T1, T2, T3, T4and so on, as shown
in the diagram.

The last three waveforms in Fig.5-7 show how SC is cleared when D3T4 = 1.

Output D3 from the operation decoder becomes active at the end of timing signal T2. When
timing signal T4 becomes active, the output of the AND gate that implements the control
function D3T4 becomes active. This signal is applied to the CLR input of SC. On the next
positive clock transition (the one marked T4 in the diagram) the counter is cleared to 0.

Centre for Distance Education 7.12 Acharya Nagarjuna University

This causes the timing signal T0 to become active instead of T5 that would have been active
if SC were incremented instead of cleared.

 7.5 INSTRUCTION CYCLE

A program residing in the memory unit of the computer consists of a sequence of
instructions. The program is executed in the computer by going through a cycle for each
instruction.

Each instruction cycle in turn is subdivided into a sequence of sub cycles or phases. In the
basic computer each instruction cycle consists of the following phases:

1. Fetch an instruction from memory.
2. Decode the instruction.
3. Read the effective address from memory if the instruction has an indirect address.
4. Execute the instruction.

Upon the completion of step 4, the control goes back to step 1 to fetch, decode, and execute
the next instruction.

Fetch and Decode:

Initially, the program counter PC is loaded with the address of the first instruction in the
program. The sequence counter SC is cleared to 0, providing a decoded timing signal T0.

The microoperations for the fetch and decode phases can be specified by the following
register transfer statements.

 Figure 7.8 shows how the first two register transfer statements are implemented in the bus
system.

Figure 7.8 Registers Transfers for the fetch phase

Computer Organization 7.13 Basic Computer Organization and Design

To provide the data path for the transfer of PC to AR we must apply timing signal T0 to
achieve the following connection:

● Place the content of PC onto the bus by making the bus selection inputs S2, S1, S0
equal to 010.

● Transfer the content of the bus to AR by enabling the LD input of AR.

In order to implement the second statement it is necessary to use timing signal T1 to provide
the following connections in the bus system.

● Enable the read input of memory.
● Place the content of memory onto the bus by making S2S1S0=111.
● Transfer the content of the bus to IR by enabling the LD input of IR.
● Increment PC by enabling the INR input of PC.

Multiple input OR gates are included in the diagram because there are other control functions
that will initiate similar operations.

Determine the Type of Instruction:

The timing signal that is active after the decoding is T3. During time T3, the control unit
determine the type of instruction that was read from the memory.

The flowchart of fig.5-9 shows the initial configurations for the instruction cycle and also
how the control determines the instruction cycle type after the decoding.

Figure 7.9 Flowchart for instruction cycle

Centre for Distance Education 7.14 Acharya Nagarjuna University

Decoder output D7 is equal to 1 if the operation code is equal to binary 111. If D7=1, the
instruction must be a register-reference or input-output type. If D7 = 0, the operation code
must be one of the other seven values 000 through 110, specifying a memory-reference
instruction. Control then inspects the value of the first bit of the instruction, which is now
available in flip-flop I.

If D7 = 0 and I = 1, indicates a memory-reference instruction with an indirect address. So it is
then necessary to read the effective address from memory.

If D7 = 0 and I = 0, indicates a memory-reference instruction with a direct address.

If D7 = 1 and I = 0, indicates a register-reference instruction.

If D7 = 01and I = 1, indicates an input-output instruction.

The three instruction types are subdivided into four separate paths.

The selected operation is activated with the clock transition associated with timing signal T3.

This can be symbolized as follows:

 Register-Reference Instructions:

Register-reference instructions are recognized by the control when D7 = 1 and I=0. These
instructions use bits 0 through 11 of the instruction code to specify one of 12 instructions.
These 12 bits are available in IR (0-11).

The control functions and microoperations for the register-reference instructions are listed in
Table 5-3.

These instructions are executed with the clock transition associated with timing variable T3.
Control function needs the Boolean relation D7I’T3, which we designate for convenience by
the symbol r. By assigning the symbol Bi to bit i of IR, all control functions can be simply
denoted by rBi.

Computer Organization 7.15 Basic Computer Organization and Design

 For example, the instruction CLA has the hexadecimal code 7800, which gives the binary
equivalent 0111 1000 0000 0000. The first bit is a zero and is equivalent to I′. The next three
bits constitute the operation code and are recognized from decoder output D7.

Bit 11 in IR is 1 and is recognized from B11. The control function that initiates the
microoperation for this instruction is D7I′T3 B11 = rB11. The execution of a register-
reference instruction is completed at time T3. The sequence counter SC is cleared to 0 and
the control goes back to fetch the next instruction with timing signal T0. The first seven
register-reference instructions perform clear, complement, circular shift, and increment
microoperations on the AC or E registers.

The next four instructions cause a skip of the next instruction in sequence when a stated
condition is satisfied. The skipping of the instruction is achieved by incrementing PC once
again. The condition control statements must be recognized as part of the control conditions.
The AC is positive when the sign bit in AC(15) = 0; it is negative when AC(15) = 1. The
content of AC is zero (AC = 0) if all the flip-flops of the register are zero.

The HLT instruction clears a start-stop flip-flop S and stops the sequence counter from
counting.

7.6 MEMORY-REFERENCE INSTRUCTIONS

Table 5-4 lists the seven memory-reference instructions.

The decoded output Di for i = 0, 1, 2, 3, 4, 5, and 6 from the operation decoder that belongs
to each instruction is included in the table. The effective address of the instruction is in the
address register AR and was placed there during timing signal T2 when I= 0, or during timing
signal T3 when I = 1. The execution of the memory-reference instructions starts with timing
signal T4.

 The symbolic description of each instruction is specified in the table in terms of register
transfer notation.

AND to AC:

This is an instruction that performs the AND logic operation on pairs of bits in AC and the
memory word specified by the effective address.

Centre for Distance Education 7.16 Acharya Nagarjuna University

The result of the operation is transferred to AC.

The microoperations that execute this instruction are:

 D0T4: DR M[AR]

D0T5: AC AC /\ DR, SC 0

ADD to AC:

This instruction adds the content of the memory word specified by the effective address to the
value of AC.

The sum is transferred into AC and the output carry Cout is transferred to the E (extended
accumulator) flip-flop.

The microoperations needed to execute this instruction are

D1T4: DR M[AR]

D1T5: AC AC + DR, E Cout ,SC 0

 LDA: Load to AC

This instruction transfers the memory word specified by the effective address to AC.

The microoperations needed to execute this instruction are

D2T4: DR M [AR]

D2T5: AC DR, SC 0

STA: Store AC

This instruction stores the content of AC into the memory word specified by the effective
address.

Since the output of AC is applied to the bus and the data input of memory is connected to the
bus, we can execute this instruction with one microoperation.

D3T4: M [AR] AC, SC 0

BUN: Branch Unconditionally

This instruction transfers the program to the instruction specified by the effective address.
The BUN instruction allows the programmer to specify an instruction out of sequence and we
say that the program branches (or jumps) unconditionally. The instruction is executed with
one microoperation:

 D4T4: PC AR, SC 0

Computer Organization 7.17 Basic Computer Organization and Design

BSA: Branch and Save Return Address

This instruction is useful for branching to a portion of the program called a subroutine or
procedure. When executed, the BSA instruction stores the address of the next instruction in
sequence (which is available in PC) into a memory location specified by the effective
address.

The effective address plus one is then transferred to PC to serve as the address of the first
instruction in the subroutine.

This operation was specified with the following register transfer:

M[AR] PC, PC AR + I

A numerical example that demonstrates how this instruction is used with a subroutine is
shown in Fig. 5-10.

Figure 7.10 Example of BSA instruction execution

The BSA instruction is assumed to be in memory at address 20. The I bit is 0 and the address
part of the instruction has the binary equivalent of 137.

After the fetch and decode phases, PC contains 21, which is the address of the next
instruction in the program (referred to as the return address). AR holds the effective address
137. This is shown in part (a) of the figure. The BSA instruction performs the following
numerical operation:

 The result of this operation is shown in part (b) of the figure. The return address21 is stored
in memory location 135 and control continues with the subroutine program starting from
address 136. The return to the original program (at address 21) is accomplished by means of
an indirect BUN instruction placed at the end of the subroutine.

Centre for Distance Education 7.18 Acharya Nagarjuna University

 When this instruction is executed, control goes to the indirect phase to read the effective
address at location 135, where it finds the previously saved address 21. When the BUN
instruction is executed, the effective address 21 is transferred to PC. The next instruction
cycle finds PC with the value 21, so control continues to execute the instruction at the return
address.

The BSA instruction must be executed with a sequence of two microoperations:

 ISZ: Increment and Skip if Zero

This instruction increment the word specified by the effective address, and if the incremented
value is equal to 0, PC is incremented by 1 to skip the next instruction in the program. Since
it is not possible to increment a word inside the memory, it is necessary to read the word into
DR, increment DR, and store the word back into memory. This is done with the following
sequence of microoperations:

 D6T4: DR M [AR]

D6T5: DR DR + 1

D6T6: M[AR] DR, if (DR = 0) then (PC PC + 1), SC 0

Control Flowchart:

A flowchart showing all microoperations for the execution of the seven memory-reference
instructions is shown in Fig. 7.11.

Figure 7.11 flowchart for memory reference instructions

Computer Organization 7.19 Basic Computer Organization and Design

7.7.INPUT-OUTPUT AND INTERRUPT

Instructions and data stored in memory must come from some input device. Computational
results must be transmitted to the user through some output device. To demonstrate the most
basic requirements for input and output communication, we will use as an illustration a
terminal unit with a keyboard and printer.

Input-Output Configuration:

The terminal sends and receives serial information. Each quantity of information has eight
bits of an alphanumeric code. The serial information from the keyboard is shifted into the
input register INPR. The serial information for the printer is stored in the output register
OUTR. These two registers communicate with a communication interface serially and with
the AC in parallel.

The input—output configuration is shown in Fig. 7.12.

Figure 7.12 Input-output configuration

The input register INPR consists of eight bits and holds alphanumeric input information. The
1-bit input flag FGI is a control flip-flop. The flag bit is set to 1 when new information is
available in the input device and is cleared to 0 when the information is accepted by the
computer.

The output register OUTR works similarly but the direction of information flow is reversed.
Initially, the output flag FGO is set to 1. The computer checks the flag bit; if it is 1, the
information from AC is transferred in parallel to OUTR and FGO is cleared to 0.

The output device accepts the coded information, prints the corresponding character, and
when the operation is completed, it sets FGO to 1.

Centre for Distance Education 7.20 Acharya Nagarjuna University

Input-Output Instructions:

Input and output instructions are needed for transferring information to and from AC register,
for checking the flag bits, and for controlling the interrupt facility. Input-output instructions
have an operation code 1111 and are recognized by the control when D7 = 1 and I = 1. The
remaining bits of the instruction specify the particular operation.

 The control functions and microoperations for the input-output instructions are listed in
Table 5-7.

Table 7.5 Input-output instructions

These instructions are executed with the clock transition associated with timing signal T3.
Each control function needs a Boolean relation D7IT3, which we designate for convenience
by the symbol p.

The control function is distinguished by one of the bits in IR (6-11). By assigning the symbol
Bi to bit i of IR, all control functions can be denoted by pBi for i = 6 though 11. The
sequence counter SC is cleared to 0 when p = D7IT3 = 1. The last two instructions set and
clear an interrupt enable flip-flop IEN.

Program Interrupt:

The computer keeps checking the flag bit, and when it finds it set, it initiates an information
transfer. The difference of information flow rate between the computer and that of the
input—output device makes this type of transfer inefficient.

An alternative to the programmed controlled procedure is to let the external device inform the
computer when it is ready for the transfer. In the meantime the computer can be busy with
other tasks. This type of transfer uses the interrupt facility.

While the computer is running a program, it does not check the flags. When a flag is set, the
computer is momentarily interrupted from the current program. The computer deviates
momentarily from what it is doing to perform of the input or output transfer. It then returns to
the current program to continue what it was doing before the interrupt.

The interrupt enable flip-flop IEN can be set and cleared with two instructions.

Computer Organization 7.21 Basic Computer Organization and Design

● When IEN is cleared to 0 (with the IOF instruction), the flags cannot interrupt the
computer.

● When IEN is set to (with the ION instruction), the computer can be interrupted.

The way that the interrupt is handled by the computer can be explained by means of the
flowchart of Fig. 7.13.

Figure 7.13 Flowchart for interrupt cycle

An interrupt flip-flop R is included in the computer. When R = 0, the computer goes through
an instruction cycle. During the execute phase of the instruction cycle IEN is checked by the
control. If it is 0, it indicates that the programmer does not want to use the interrupt,so control
continues with the next instruction cycle.

If IEN is 1, control checks the flag bits. If both flags are 0, it indicates that neither the input
nor the output registers are ready for transfer of information. In this case, control continues
with the next instruction cycle. If either flag is set to 1 while 1EN = 1, flip-flop R is set to 1.
At the end of the execute phase, control checks the value of R, and if it is equal to 1, it goes
to an interrupt cycle instead of an instruction cycle.

 Interrupt cycle:

The interrupt cycle is a hardware implementation of a branch and save return address
operation. The return address available in PC is stored in a specific location. This location
may be a processor register, a memory stack, or a specific memory location.

T0T1T2(IEN) (FGI + FGO) : R 1

Centre for Distance Education 7.22 Acharya Nagarjuna University

An example that shows what happens during the interrupt cycle is shown in Fig. 5-14.

Figure 7.14 Demonstration of the interrupt cycle

When an interrupt occurs and R is set to 1 while the control is executing the instruction at
address 257. At this time, the returns address 256 is in PC. The programmer has previously
placed an input—output service program in memory starting from address 1120 and a BUN
1120 instruction at address 1. This is shown in Fig. 7.14(a).

When control reaches timing signal T0and finds that R = 1, it proceeds with the interrupt
cycle. The content of PC (256) is stored in memory location 0, PC is set to 1, and R is cleared
to 0. The branch instruction at address 1 causes the program to transfer to the input—output
service program at address 1120.

 This program checks the flags, determines which flag is set, and then transfers the required
input or output information. Once this is done, the instruction ION is executed to set IEN to 1
(to enable further interrupts), and the program returns to the location where it was interrupted.
This is shown in Fig. 5-14(b).

7.8 SUMMARY

The chapter on Basic Computer Organization and Design delves into the fundamental aspects
of how computers execute operations and manage data. It begins by exploring instruction
codes, which are essential for defining operations performed by the CPU. The chapter then
examines various types of computer registers that temporarily hold data and instructions,
followed by a discussion on the different categories of computer instructions such as data
transfer, arithmetic, and control instructions. The importance of timing and control
mechanisms is highlighted, detailing how control signals synchronize and manage the flow of
data and instructions. The instruction cycle, which encompasses the phases of fetching,
decoding, and executing instructions, is analyzed to illustrate the step-by-step execution
within the CPU. The chapter also covers memory reference instructions, explaining how the
CPU interacts with memory, and delves into input-output operations and the role of interrupts

Computer Organization 7.23 Basic Computer Organization and Design

in managing external devices and efficient data transfer. This comprehensive overview
provides a foundational understanding of the internal workings of a computer system.

7.9 TECHNICAL TERMS

7.10 SELF ASSESSMENT QUESTIONS

Essay questions:

1. Explain how a computer decodes and executes an arithmetic instruction.
2. Describe the role of timing signals in CPU operations and explain in detail
3. Outline the phases of the instruction cycle and describe what happens in each

phase.
4. What are memory reference instructions? Provide examples and explain their

functions.
5. Describe the concept of interrupt priority. How does it affect the handling of

multiple interrupts?

Short Questions:
1. Define an instruction code. What are the key components of an instruction code?
2. Differentiate between a direct and an indirect instruction code with examples
3. Explain the role of the program counter (PC) and instruction register (IR) during

the instruction cycle.
4. Compare and contrast programmed I/O, interrupt-driven I/O, and direct memory

access (DMA).

7.11 FURTHER READINGS
1. M.Morris Mano, “Computer System Architecture”, 3rd Edition, Pearson Education

(2008).
2. V. Rajaraman, T. Radha Krishnan, “Computer Organization and Architecture”, PHI
3. BehroozParhami, “Computer Architecture”, Oxford (2007)
4. ISRD group, “Computer Organization”, ace series, TMH (2007)
5. William Stallings, “Computer Organization and Architecture – Designing for

Performance”, Pearson Education (2005)

Dr. Neelima Guntupalli

LESSON- 8

MICROPROGRAMMED CONTROL

.OBJECTIVES:

After going through this lesson, you will be able to

 Describe the structure and content of control memory
 Explain the concept of address sequencing
 Examine a specific microprogram example
 Describe the steps involved in designing a microprogrammed control unit.
 Simulate the execution of a microprogram

STRUCTURE OF THE LESSION:

8.1 Control Memory

8.2 Address Sequencing

8.3 Micro Program Example

8.4 Design of Control Unit

8.5 Summary

8.6 Technical Terms

8.7 Self-Assessment Questions

8.8 Further Readings

8.1 CONTROL MEMORY

Hardwired Control Unit: When the control signals are generated by hardware using
conventional logic design techniques, the control unit is said to be hardwired.

Micro programmed control unit: A control unit whose binary control variables are stored in
memory is called a micro programmed control unit.

Dynamic microprogramming: A more advanced development known as dynamic
microprogramming permits a microprogram to be loaded initially from an auxiliary memory
such as a magnetic disk. Control units that use dynamic microprogramming employ a
writable control memory. This type of memory can be used for writing.

Control Memory: Control Memory is the storage in the microprogrammed control unit to
store the microprogram.

Writeable Control Memory: Control Storage whose contents can be modified, allow the
change in microprogram and Instruction set can be changed or modified is referred as
Writeable Control Memory.

Centre for Distance Education 8.2 Acharya Nagarjuna University

Control Word: The control variables at any given time can be represented by a control word
string of 1 's and 0's called a control word.

Microoperation, Microinstruction, Micro program, Microcode

Microoperations: In computer central processing units, micro-operations (also known as a
micro-ops or μops) are detailed low-level instructions used in some designs to implement
complex machine instructions (sometimes termed macro-instructions in this context).

Micro instruction: A symbolic microprogram can be translated into its binary equivalent by
means of an assembler. Each line of the assembly language microprogram defines a symbolic
microinstruction. Each symbolic microinstruction is divided into five fields: label,
microoperations, CD, BR, and AD.

Micro program: A sequence of microinstructions constitutes a microprogram. Since
alterations of the microprogram are not needed once the control unit is in operation, the
control memory can be a read-only memory (ROM). ROM words are made permanent during
the hardware production of the unit. The use of a micro program involves placing all control
variables in words of ROM for use by the control unit through successive read operations.
The content of the word in ROM at a given address specifies a microinstruction.

Microcode: Microinstructions can be saved by employing subroutines that use common
sections of microcode. For example, the sequence of micro operations needed to generate the
effective address of the operand for an instruction is common to all memory reference
instructions. This sequence could be a subroutine that is called from within many other
routines to execute the effective address computation.

Organization of micro programmed control unit

The general configuration of a micro-programmed control unit is demonstrated in the block
diagram of Figure 8.1. The control memory is assumed to be a ROM, within which all control
information is permanently stored.

Figure 8.1: Micro-programmed control organization

The control memory address register specifies the address of the microinstruction, and the
control data register holds the microinstruction read from memory. The microinstruction
contains a control word that specifies one or more microoperations for the data processor.
Once these operations are executed, the control must determine the next address.

Computer Organization 8.3 Microprogrammed Control

The location of the next microinstruction may be the one next in sequence, or it may be
located somewhere else in the control memory. While the microoperations are being
executed, the next address is computed in the next address generator circuit and then
transferred into the control address register to read the next microinstruction. Thus a
microinstruction contains bits for initiating microoperations in the data processor part and bits
that determine the address sequence for the control memory.

The next address generator is sometimes called a micro-program sequencer, as it determines
the address sequence that is read from control memory. Typical functions of a micro-program
sequencer are incrementing the control address register by one, loading into the control
address register an address from control memory, transferring an external address, or loading
an initial address to start the control operations.

The control data register holds the present microinstruction while the next address is
computed and read from memory. The data register is sometimes called a pipeline register. It
allows the execution of the microoperations specified by the control word simultaneously
with the generation of the next microinstruction.

This configuration requires a two-phase clock, with one clock applied to the address register
and the other to the data register. The main advantage of the micro programmed control is the
fact that once the hardware configuration is established; there should be no need for further
hardware or wiring changes. If we want to establish a different control sequence for the
system, all we need to do is specify a different set of microinstructions for control memory.

8.2 ADDRESS SEQUENCING

Microinstructions are stored in control memory in groups, with each group specifying a
routine. To appreciate the address sequencing in a micro-program control unit, let us specify
the steps that the control must undergo during the execution of a single computer instruction.

Step-1:

 An initial address is loaded into the control address register when power is turned on
in the computer.

 This address is usually the address of the first microinstruction that activates the
instruction fetch routine.

 The fetch routine may be sequenced by incrementing the control address register
through the rest of its microinstructions.

 At the end of the fetch routine, the instruction is in the instruction register of the
computer.

Step-2:

Centre for Distance Education 8.4 Acharya Nagarjuna University

 The control memory next must go through the routine that determines the effective
address of the operand.

 A machine instruction may have bits that specify various addressing modes, such as
indirect address and index registers.

 The effective address computation routine in control memory can be reached through
a branch microinstruction, which is conditioned on the status of the mode bits of the
instruction.

 When the effective address computation routine is completed, the address of the
operand is available in the memory address register.

Step-3:

 The next step is to generate the microoperations that execute the instruction fetched
from memory.

 The microoperation steps to be generated in processor registers depend on the
operation code part of the instruction.

 Each instruction has its own micro-program routine stored in a given location of
control memory.

 The transformation from the instruction code bits to an address in control memory
where the routine is located is referred to as a mapping process.

 A mapping procedure is a rule that transforms the instruction code into a control
memory address.

Step-4:

 Once the required routine is reached, the microinstructions that execute the instruction
may be sequenced by incrementing the control address register.

 Micro-programs that employ subroutines will require an external register for storing
the return address.

 Return addresses cannot be stored in ROM because the unit has no writing capability.

 When the execution of the instruction is completed, control must return to the fetch
routine.

 This is accomplished by executing an unconditional branch microinstruction to the
first address of the fetch routine.

Computer Organization 8.5 Microprogrammed Control

Figure 8.2: Selection of address for control memory

Conditional branching

Above Figure 8.2 shows a block diagram of a control memory and the associated hardware
needed for selecting the next microinstruction address.

The microinstruction in control memory contains a set of bits to initiate microoperations in
computer registers and other bits to specify the method by which the next address is obtained.
The diagram shows four different paths from which the control address register (CAR)
receives the address. The incrementer increments the content of the control address register
by one, to select the next microinstruction in sequence.

Branching is achieved by specifying the branch address in one of the fields of the
microinstruction. Conditional branching is obtained by using part of the microinstruction to
select a specific status bit in order to determine its condition.

Centre for Distance Education 8.6 Acharya Nagarjuna University

An external address is transferred into control memory via a mapping logic circuit. The return
address for a subroutine is stored in a special register whose value is then used when the
micro-program wishes to return from the subroutine. The branch logic of Figure 8.2 provides
decision-making capabilities in the control unit.

The status conditions are special bits in the system that provide parameter information such
as the carry-out of an adder, the sign bit of a number, the mode bits of an instruction, and
input or output status conditions. The status bits, together with the field in the
microinstruction that specifies a branch address, control the conditional branch decisions
generated in the branch logic.

A 1 output in the multiplexer generates a control signal to transfer the branch address from
the microinstruction into the control address register. A 0 output in the multiplexer causes the
address register to be incremented.

Mapping of an Instruction

A special type of branch exists when a microinstruction specifies a branch to the first word in
control memory where a microprogram routine for an instruction is located. The status bits
for this type of branch are the bits in the operation code part of the instruction.

For example, a computer with a simple instruction format as shown in Figure 8.3 has an
operation code of four bits which can specify up to 16 distinct instructions.

Assume further that the control memory has 128 words, requiring an address of seven bits.
One simple mapping process that converts the 4-bit operation code to a 7-bit address for
control memory is shown in Figure 8.3.

This mapping consists of placing a 0 in the most significant bit of the address, transferring the
four operation code bits, and clearing the two least significant bits of the control address
register. This provides for each computer instruction a microprogram routine with a capacity
of four microinstructions.

If the routine needs more than four microinstructions, it can use addresses 1000000 through
1111111. If it uses fewer than four microinstructions, the unused memory locations would be
available for other routines.

Figure 8.3: Mapping from instruction code to microinstruction address

Computer Organization 8.7 Microprogrammed Control

One can extend this concept to a more general mapping rule by using a ROM to specify the
mapping function. The contents of the mapping ROM give the bits for the control address
register.

 In this way the microprogram routine that executes the instruction can be placed in any
desired location in control memory. The mapping concept provides flexibility for adding
instructions for control memory as the need arises.

8.3 MICROPROGRAM EXAMPLE

Once the configuration of a computer and its microprogrammed control unit is established,
the designer's task is to generate the microcode for the control memory. This code generation
is called microprogramming and is a process similar to conventional machine language
programming.

Computer Configuration

Figure 8.4: Computer hardware configuration

The block diagram of the computer is shown in Figure 8.4. It consists of

1.Two memory units: Main memory for storing instructions and data, and Control memory
for storing the microprogram.

Centre for Distance Education 8.8 Acharya Nagarjuna University

2.Six Registers: Processor unit register: AC(accumulator),PC(Program Counter), AR(Address
Register), DR(Data Register) Control unit register: CAR (Control Address Register),
SBR(Subroutine Register)

3.Multiplexers: The transfer of information among the registers in the processor is done
through multiplexers rather than a common bus.

4.ALU: The arithmetic, logic, and shift unit performs microoperations with data from AC and
DR and places the result in AC.

DR can receive information from AC, PC, or memory. AR can receive information from PC
or DR. PC can receive information only from AR. Input data written to memory come from
DR, and data read from memory can go only to DR.

Microinstruction Format

The microinstruction format for the control memory is shown in Figure 8.5. The 20 bits of
the microinstruction are divided into four functional parts as follows:

 The three fields F1, F2, and F3 specify microoperations for the computer.

 The microoperations are subdivided into three fields of three bits each. The three bits
in each field are encoded to specify seven distinct microoperations. This gives a total
of 21 microoperations.

 2.The CD field selects status bit conditions.

 3.The BR field specifies the type of branch to be used.

 4.The AD field contains a branch address. The address field is seven bits wide, since
the control memory has 128 = 27 words.

Computer Organization 8.9 Microprogrammed Control

Figure 8.5: Microinstruction Format

As an example, a microinstruction can specify two simultaneous microoperations from F2
and F3 and none from F1.

DR M[AR] with F2 = 100 PC PC + 1 with F3 = 101

The nine bits of the microoperation fields will then be 000 100 101. The CD (condition) field
consists of two bits which are encoded to specify four status bit conditions as listed in Table
8.1.

Table 8.1: Condition Field

Centre for Distance Education 8.10 Acharya Nagarjuna University

The BR (branch) field consists of two bits. It is used, in conjunction with the address field
AD, to choose the address of the next microinstruction shown in Table 8.2.

Table 8.2: Branch Field

Symbolic Microinstructions

Each line of the assembly language microprogram defines a symbolic microinstruction. Each
symbolic microinstruction is divided into five fields: label, microoperations, CD, BR, and
AD. The fields specify the following Table 8.3.

1.Label: The label field may be empty or it may specify a symbolic address. A label is
terminated with a colon (:).

2.Microoperations: It consists of one, two, or three symbols, separated by commas, from
those defined in Table 5.3. There may be no more than one symbol from each F field. The
NOP symbol is used when the microinstruction has no microoperations.

This will be translated by the assembler to nine zeros.

3.CD: The CD field has one of the letters U, I, S, or Z.

4.BR; The BR field contains one of the four symbols defined in

Table 5.2.

5.AD: The AD field specifies a value for the address field of the microinstruction in one of
three possible ways:

i.With a symbolic address, this must also appear as a label.

ii.With the symbol NEXT to designate the next address in sequence.

iii.When the BR field contains a RET or MAP symbol, the AD field is left empty and
is converted to seven zeros by the assembler.

Computer Organization 8.11 Microprogrammed Control

Table 8.3: Symbolic Microinstruction

8.4 DESIGN OF CONTROL UNIT

The bits of the microinstruction are usually divided into fields, with each field defining a
distinct, separate function. The various fields encountered in instruction formats provide
control bits to initiate microoperations in the system, special bits to specify the way that the
next address is to be evaluated, and an address field for branching. The number of control bits
that initiate Microoperations can be reduced by grouping mutually exclusive variables into
fields and encoding the k bits in each field to provide 2k microoperations. Each field requires a
decoder to produce the corresponding control signals. This method reduces the size of the
microinstruction bits but requires additional hardware external to the control memory. It also
increases the delay time of the control signals because they must propagate through the
decoding circuits.

The encoding of control bits was demonstrated in the programming example of the preceding
section. The nine bits of the microoperation field are divided into three subfields of three bits

Centre for Distance Education 8.12 Acharya Nagarjuna University

each. The control memory output of each subfield must be decoded to provide the distinct
microoperations. The outputs of the decoders are connected to the appropriate inputs in the
processor unit.

Figure 7-7 shows the three decoders and some of the connections that must be made from
their outputs. Each of the three fields of the microinstruction presently available in the output
of control memory are decoded with a 3 X 8 decoder to provide eight outputs. Each of these
outputs must be connected to the proper circuit to initiate the corresponding microoperation
as specified in Table 7-1 . For example, when F1 = 101 (binary 5), the next clock pulse
transition transfers the content of DR(0-10) to AR (symbolized by DRTAR in Table 7-1).
Similarly, when F1=110 (binary 6) there is a transfer from PC to AR (symbolized by
PCTAR). As shown in Fig. 7-7, outputs 5 and 6 of decoder F1 are connected to the load input
of AR so that when either one of these outputs is active, information from the multiplexers is
transferred to AR . The multiplexers select the information from DR when output 5 is active
and from PC when output 5 is inactive. The transfer into AR occurs with a clock pulse
transition only when output 5 or output 6 of the decoder are active. The other outputs of te
decoders that initiate transfers between registers must be connected in a similar fashion.

Figure 8.6 Design of microprocessor fields

Microprogram Sequencer

The basic components of a microprogrammed control unit are the control memory and the
circuits that select the next address. The address selection part is called a microprogram
sequencer. A microprogram sequencer can be constructed with digital functions to suit a

Computer Organization 8.13 Microprogrammed Control

particular application. However, just as there are large ROM units available in integrated
circuit packages, so are general-purpose sequencers suited for the construction of
microprogram control units. To guarantee a wide range of acceptability, an integrated circuit
sequencer must provide an internal organization that can be adapted to a wide range of
applications. The purpose of a microprogram sequencer is to present an address to the control
memory so that a microinstruction may be read and executed. The next-address logic of the
sequencer determines the specific address source to be loaded into the control address
register. The choice of the address source is guided by the next-address information bits that
the sequencer receives from the present microinstruction. Commercial sequencers include
within the unit an internal register stack used for temporary storage of addresses during
microprogram looping and subroutine calls. Some sequencers provide an output register
which can function as the address register for the control memory.

To illustrate the internal structure of a typical microprogram sequencer we will show a
particular unit that is suitable for use in the microprogram computer example developed in
the preceding section. The block diagram of the microprogram sequencer is shown in Fig. 7-
8. The control memory is included in the diagram to show the interaction between the
sequencer and the memory attached to it. There are two multiplexers in the circuit. The first
multiplexer selects an address from one of four sources and routes it into a control address
register CAR . The second multiplexer tests the value of a selected status bit and the result of
the test is applied to an input logic circuit. The output from CAR provides the address for the
control memory. The content of CAR is incremented and applied to one of the multiplexer
inputs and to the subroutine register SBR . The other three inputs to multiplexer number 1
come from the address field of the present microinstruction, from the output of SBR, and
from an external source that maps the instruction. Although the diagram shows a single
subroutine register, a typical sequencer will have a register stack about four to eight levels
deep. In this way, a number of subroutines can be active at the same time. A push and pop
operation, in conjunction with a stack pointer, stores and retrieves the return address during
the call and return microinstructions.

The CD (condition) field of the microinstruction selectgs one of the status bits in the second
multiplexer. If the bit selected is equal to 1, the T (test) variable is equal to 1; otherwise, it is
equal to 0. The T value together with the two bits from the BR (branch) field go to an input
logic circuit. The input logic in a particular sequencer will determine the type of operations
that are available in the unit. Typical sequencer operations are: increment, branch or jump,
call and return from subroutine, load an external address, push or pop the stack, and other
address sequencing operations. With three inputs, the sequencer can provide up to eight
address sequencing operations. Some commercial sequencers have three or four inputs in
addition to the T input and thus provide a wider range of operations.

The input logic circuit in Fig. 7-8 has three inputs, I0, I1, and T, and three outputs, S0, S1, and
L. Variables So and S, select one of the source addresses for CAR . Variable L enables the
load input in SBR . The binary values of the two selection variables determine the path in the
multiplexer. For example, with S1S0 = 10, multiplexer input number 2 is selected and
establishes a transfer path from SBR to CAR. Note that each of the four inputs as well as the
output of MUX 1 contains a 7-bit address.

Centre for Distance Education 8.14 Acharya Nagarjuna University

Figure 8.7 Microprogram sequencer for control memory

The truth table for the input logic circuit is shown in Table 8.4. Inputs I1 and I0 are Identical
to the bit values in the BR field. The function listed in each entry was defined in Table 8.1.
The bit values for S1 and S0 are determined from the stated function and the path in the
multiplexer that establishes the required transfer. The subroutine register is loaded with the
incremented value of CAR during a call microinstruction (BR = 01) provided that the status
bit condition is satisfied (T = 1). The truth table can be used to obtain the simplified Boo lean
functions for the input logic circuit:

S1 = I1

S0 = I1I0 +I1T

L =I1I0T

Table 8.4 Input logic Truth Table for Microrogram Sequencer

Computer Organization 8.15 Microprogrammed Control

Note that the incrementer circuit in the sequencer of Fig. 8.8 is not a counter constructed with

flip-flops but rather a combinational circuit constructed with gates. A combinational circuit

incrementer can be designed by cascading a series of half-adder circuits. The output carry

from one stage must be applied to the input of the next stage. One input in the first least

significant stage must be equal to 1 to provide the increment-by-one operation.

8.5 SUMMARY

In this, the focus is on the intricacies of control unit design within digital systems. It covers

fundamental topics such as the role and structure of control memory, which stores

microinstructions that control the operation of the system's components. Address sequencing

within this memory is explored in detail, illustrating how instructions are fetched and

executed in a sequence that directs the flow of operations. A detailed micro program example

is provided to demonstrate how these concepts are applied in practice, emphasizing the

design principles behind efficient and effective control unit architectures.

8.6 TECHNICAL TERMS

Control Memory, Address Sequencing, Micro Program, Control Unit.

8.7 SELF ASSESSMENT QUESTIONS

Essay questions:

1. Demonstrate the general configuration of Micro programmed Control unit with a

neat block diagram.

2. Present a Simple digital computer and show how it can be micro programmed

with the help of necessary formats and notations.

3. Illustrate the phases involved in decoding of micro operation fields with necessary

diagrams.

4. Draw and explain the schematic of Micro program sequencer for a control memo.

Short Questions:

1. Explain about address sequencing in control memory with neat diagrams?

2. What is the difference between a micro-processor and a micro program?

3. Differentiate Hardwired and Micro programmed control unit.

4. Define i. Micro operation ii. Microinstruction iii. Micro program

Centre for Distance Education 8.16 Acharya Nagarjuna University

8.9 FURTHER READINGS
1. M.Morris Mano, “Computer System Architecture”, 3rd Edition, Pearson Education

(2008).
2. V. Rajaraman, T. Radha Krishnan, “Computer Organization and Architecture”, PHI
3. BehroozParhami, “Computer Architecture”, Oxford (2007)
4. ISRD group, “Computer Organization”, ace series, TMH (2007)
5. William Stallings, “Computer Organization and Architecture – Designing for

Performance”, Pearson Education (2005)

Dr. Neelima Guntupalli

LESSON- 9

CENTRAL PROCESSING UNIT

OBJECTIVES:

After going through this lesson, you will be able to

 Understanding the role of the CPU
 Exploring how registers are structured within the CPU
 Examining the stack-based memory structure
 Exploring how the CPU handles data movement between registers, memory, and I/O

devices
 Investigating mechanisms for controlling program flow and execution

STRUCTURE OF THE LESSION:

9.1 Introduction

9.2 General Register Organization

9.3 Stack Organization, Instruction Format

9.4 Addressing Modes

9.5 Data Transfer and Manipulation

9.6 Program Control

9.7 Summary

9.8 Technical Terms

9.9 Self-Assessment Questions

9.10 Further Readings

9.1 INTRODUCTION
The part of the computer that performs the bulk of data-processing operations is

called the central proofing unit and is refeired to as the CPU. The CPU is made up of three
major parts, as shown in Figure.

The register set stoics intermediate data used during the execution of the instructions.
The arithmetic logic unit (ALU) perfoims the required mkraoperations for executing the
instructions. The control unit supervises the transfe r of information among the registers and
instructs the ALU as to which operation to perform. The CPU performs a variety of functions
dictated by the type of instructions that are incorporated in the computer.

Centre for Distance Education 9.2 Acharya Nagarjuna University

Figure 9.1 major components of the CPU

Computer architecture is sometimes defined as the computer structure and behavior as
seen by the programmer that uses machine language instructions. This includes the
instruction formats, addressing modes, the instruction set, and the general organization of the
CPU registers. One boundary where the computer designer and the computer programmer see
the same machine is the part of the CPU associated with the instruction set. From the
designer's point of view the computer induction set provides the specifications for the design
of the CPU.

The design of a CPU is a task that in large part involves choosing the hardware for
implementing the machine instructions. The user who programs the computer in machine or
assembly language must be aware of the register set, the memory structure, the type of data
supported by the instructions, and the function that each instruction performs.

9.2 GENERAL REGISTER ORGANIZATION
In a CPU, some registers are very specific to their task hence they are used very frequently by
the control unit. Some anonymous registers are also used and operations of theses registers
are subject to the need and type of information stored in them.

Following is an organization of these registers in a CPU:

Figure 9.2 Register set with common ALU

Computer Organization 9.3 Central Processing Unit

As the diagram depicts, a block of seven registers is used for storing anonymous data. Two

multiplexers of 8 to 1 size are used to extract the contents of two registers at a time. Here

MUXes are of 8 to 1 size because we have another line for I/O devices along with seven

registers. The two extracted values are processed in AC with the help of ALU. Here to

specify the appropriate operation, five lines of OPR input are used. The computed output is

then ANDed with the outputs of a 3 to 8 decoder. Since a decoder activates only one output

line at a time, the computed output goes in only one register. The appropriate destination

register is specified by the 3 input lines of decoder.

For example, to perform the operation

R1 R2 + R3

The control must provide binary selection variables to the following selector inputs:

1. MUX A selector (SELA): to place the content of R2 into bus A.

2. MUX B selector (SELB): to place the content o f R 3 into bus B.

3. ALU operation selector (OPR): to provide the arithmetic addition A + B.

4. Decoder destination selector (SELD): to transfer the content of the output bus into R1.

Control Word:

The unit has 14 binary selection inputs, each of which defines a control word when their

values are added together. Figure 9.3 shows the 14-bit control word (b). There are four fields

in all. Each of the three fields has three bits, while one field has five bits. The three bits of

SELA are used to pick a source register for the ALU’s A input. The three bits of SELB are

used to choose a register for the ALU’s B input. Using the decoder’s seven load outputs, the

three bits of SELD choose a destination register. The five bits of OPR are used to pick one of

the ALU’s operations. When applied to the selection inputs, the 14-bit control word specifies

a specific micro operation.

Figure 9.3 control word

Centre for Distance Education 9.4 Acharya Nagarjuna University

Table 9.1 Encoding of Register Selection Fields

The binary code for each of the three fields is specified by the 3-bit binary code stated in the
table’s first column. The register chosen by fields SELA, SELB, and SELD is the one whose
decimal number equals the code’s binary number. When SELA or SELB is set to 000, the
external input data is selected by the appropriate multiplexer. No destination register is
selected when SELD = 000, however the contents of the output bus are available in the
external output. The ALU is a computer that performs arithmetic and logic operations.
Furthermore, the CPU must do shift operations. The shifter can be connected to the ALU’s
input to give preshifting capabilities or to the ALU’s output to provide postshifting capacity.
The shift operations are sometimes incorporated with the ALU. Table 9.2 shows the function
table for this ALU. Table 9.2 specifies the encoding of ALU operations for the CPU. Each
operation is given a symbolic name in the OPR field, which contains five bits.

Table 9.2: encoding of ALU operations

Computer Organization 9.5 Central Processing Unit

Examples of Microoperations

A control word of 14 bits is needed to specify a microoperation in the CPU. The control word
for a given microoperation can be derived from the selection variables. For example, the
subtract rnicrooperation given by the statement R1 ← R2 - R3 specifies R2 for the A input of
the ALU, R3 for the B input of the ALU, R1 for the destination register, and an ALU
operation to subtract A - B.

Thus the control word is specified by the four fields and the corresponding binary value for
each field is obtained from the encoding listed in Tables 9.1 and 9.2.

The binary control word for the subtract rnicrooperation is 010 011 001 00101 and is
obtained as follows:

The control word for this rnicrooperation and a few others are listed in Table 9.3.

The increment and transfer microoperations do not use the B input of the ALU.

For these cases, the B field is marked with a dash. We assign 000 to any unused field when
formulating the binary control word, although any other binary number may be used.

To place the content of a register into the output terminals we place the content of the register
into the A input of the ALU, but none of the registers are selected to accept the data.

The ALU operation TSFA places the data from the register, through the ALU, into the output
terminals.

The direct transfer from input to output is accomplished with a control word of all 0's
(making the B field 000). A register can be cleared to 0 with an exclusive-OR operation.
This is because x ⊕ x = 0.

Table 8.3 Examples for the Microoperations for the CPU

Centre for Distance Education 9.6 Acharya Nagarjuna University

It is apparent from these examples that many other microoperations can be generated in the
CPU. The most efficient way to generate control words with a large number of bits is to store
them in a memory unit. A memory unit that stores control words is referred to as a control
memory. By reading consecutive control words from memory, it is possible to initiate the
desired sequence of microoperations for the CPU. This type of control is referred to as
microprogrammed control.

9.3 STACK ORGANIZATION
A useful feature that is included in the CPU of most computers is a stack or last-in, first-out
(UFO) list. A stack is a storage device that stores information in such a manner that the item
stored last is the first item retrieved.

The stack in digital computers is essentially a memory unit with an address register that can
count only (after an initial value is loaded into it). The register that holds the address for the
stack is called a stack pointer (SP) because its value always points at the top item in the stack.
The two operations of a stack are the insertion and deletion of items. However, nothing is
pushed or popped in a computer stack. These operations are simulated by incrementing or
decrementing the stack pointer register.

Register Stack A stack can be placed in a portion of a large memory or it can be organized as
a collection of a finite number of memory words or registers. Figure 9.4 shows the
organization of a 64-word register stack. The stack pointer register SP contains a binary
number whose value is equal to the address of the word that is currently on top of the stack.
Three items are placed in the stack: A, B, and C, in that order. Item C is on top of the stack so
that the content of SP is now 3.

Figure9.4: computer memory with program, data, and stack segments

To remove the top item, the stack is popped by reading the memory word at address 3 and
decrementing the content of SP. Item B is now on top of the stack since SP holds address 2.
To insert a new item, the stack is pushed by incrementing SP and writing a word in the next-
higher location in the stack. Note that item C has been read out but not physically

Computer Organization 9.7 Central Processing Unit

removed.This does not matter because when the stack is pushed, a new item is written in its
place. In a 64-word stack, the stack pointer contains 6 bits because 26 = 64.

Since SP has only six bits, it cannot exceed a number greater than 63 (111111 in binary).
When 63 is incremented by 1, the result is 0 since 111111 + 1 = 1000000 in binary, but SP
can accommodate only the six least significant bits.

Similarly, when 000000 is decremented by 1, the result is 111111. The one-bit register FULL
is set to 1 when the stack is full, and the one-bit register EMTY is set to 1 when the stack is
empty of items. DR is the data register that holds the binary data to be written into or read out
of the stack. Initially, SP is cleared to 0, EMTY is set to 1, and FULL is cleared to 0, so that
SP points to the word at address 0 and the stack is marked empty and not full. If the stack is
not full (if FULL = 0), a new item is inserted with a push operation.

The push operation is implemented with the following sequence of microoperations;

SP ← SP + 1 Increment stack pointer

M[SP] ← DR Write item on top of the stack

If (SP = 0) then (FULL ←1) Check if stack is full

EMTY ← 0 Mark the stack not empty

The stack pointer is incremented so that it points to the address of the next-higher word. A
memory write operation inserts the word from DR into the top of the stack. Note that SP
holds the address of the top of the stack and that M[SP] denotes the memory word specified
by the address presently available in SP. The first item stored in the stack is at address L The
last item is stored at address 0.

If SP reaches 0, the stack is full of items, so FULL is set to L This condition is reached if the
top item prior to the last push was in location 63 and, after incrementing SP, the last item is
stored in location 0.

Once an item is stored in location 0, there are no more empty registers in the stack. If an item
is written in the stack, obviously the stack cannot be empty, so EMTY is cleared to 0. A new
item is deleted from the stack if the stack is not empty (if EMTY = 0). The pop operation
consists of the following sequence of microoperations:

DR ← M[SP] Read item from the top of stack

SP ← SP - 1 Decrement stack pointer

If (SP = 0) then (EMTY ← 1) Check if stack is empty

FULL ← 0 Mark the stack not full

Centre for Distance Education 9.8 Acharya Nagarjuna University

The top item is read from the stack into DR. The stack pointer is then decremented. If its
value reaches zero, the stack is empty, so EMTY is set to 1. This condition is reached if the
item read was in location 1. Once this item is read out, SP is decremented and reaches the
value 0, which is the initial value of SP. Note that if a pop operation reads the item from
location 0 and then SP is decremented, SP changes to 111111, which is equivalent to decimal
63. In this configuration, the word in address 0 receives the last item in the stack. Note also
that an erroneous operation will result if the stack is pushed when FULL = 1 or popped when
EMTY = 1.

Memory Stack

A stack can exist as a stand-alone unit as in Fig. 3 or can be implemented in a random-access
memory attached to a CPU. The implementation of a stack in the CPU is done by assigning a
portion of memory to a stack operation and using a processor register as a stack pointer.

Figure 9.5 shows a portion of computer memory partitioned into three segments: program,
data, and stack. The program counter PC points at the address of the next instruction in the
program. The address register AR points at an array of data.

Figure 9.5 computer memory with program, data, and stack segments

The stack pointer SP points at the top of the stack. The three registers are connected to a
common address bus, and either one can provide an address for memory. PC is used during
the fetch phase to read an instruction. AR is used during the execute phase to read an
operand. SP is used to push or pop items into or the stack. As shown in Fig. 4, the initial
value of SP is 4001 and the stack grows with decreasing addresses. Thus the first item stored
in the stack is at address 4000, the second item is stored at address 3999, and the last address
that can be used for the stack is 3000. No provisions are available for stack limjt checks.

Computer Organization 9.9 Central Processing Unit

We assume that the items in the stack communicate with a data register DR. A new item is
inserted with the push operation as follows:

SP ← SP - 1

M[SP] ← DR

The stack pointer is decremented so that it points at the address of the next word. A memory
write operation inserts the word from DR into the top of the stack. A new item is deleted with
a pop operation as follows:

DR ← M[SP]

SP ← SP + 1

The top item is read from the stack into DR. The stack pointer is then incremented to point at
the next item in the stack.

Most computers do not provide hardware to check for stack overflow (full stack) or
underflow (empty stack). The stack limits can be checked by using two processor registers:
one to hold the upper limit (3000 in this case), and the other to hold the lower limit (4001 in
this case). After a push operation, SP is compared with the upper-limit register and after a
pop operation, SP is compared with the lower-limit register. The two microoperations needed
for either the push or pop are (1) an access to memory through SP, and (2) updating SP.
Which of the two microoperations is done first and whether SP is updated by incrementing or
decrementing depends on the organization of the stack.

In Fig. 9.5 the stack grows by decreasing the memory address. The stack may be constructed
to grow by increasing the memory address as in Fig. 9.4. In such a case, SP is incremented
for the push operation and decremented for the pop operation. A stack may be constructed so
that SP points at the next empty location above the top of the stack. In this case the sequence
of microoperations must be interchanged. A stack pointer is loaded with an initial value. This
initial value must be the bottom address of an assigned stack in memory. Henceforth, SP is
automatically decremented or incremented with every push or pop operation.

The advantage of a memory stack is that the CPU can refer to it without having to specify an
address, since the address is always available and automatically updated in the stack pointer.

9.4 INSTRUCTION FORMAT
A computer will usually have a variety of instruction code formats. It is the function

of the control unit within the CPU to interpret each instruction code and provide the
necessary control functions needed to process the instruction. The format of an instruction is
usually depicted in a rectangular box symbolizing the bits of the instruction as they appear in
memory words or in a control register. The bits of the instruction are divided into groups
called fields. The most common fields found in instruction formats are:

Centre for Distance Education 9.10 Acharya Nagarjuna University

1. An operation code field that specifies the operation to be performed.

2. An address field that designates a memory address or a processor register.

3. A mode field that specifies the way the operand or the effective address is
determined.

Other special fields are sometimes employed under certain circumstances, as for example a
field that gives the number of shifts in a shift-type instruction. The operation code field of an
instruction is a group of bits that define various processor operations, such as add, subtract,
complement, and shift.

The bits that define the mode field of an instruction code specify a variety of alternatives for
choosing the operands from the given address. Operations specified by computer instructions
are executed on some data stored in memory or processor registers. Operands residing in
memory are specified by their memory address. Operands residing in processor registers are
specified with a register address.

A register address is a binary number of k bits that defines one of '2k' registers in the CPU.
Thus a CPU with 16 processor registers R0 through R15 will have a register address field of
four bits. The binary number 0101, for example, will designate register RS. Computers may
have instructions of several different lengths containing varying number of addresses. The
number of address fields in the instruction format of a computer depends on the internal
organization of its registers.

Most computers fall into one of three types of CPU organizations:

1. Single accumulator organization.

2. General register organization.

3. Stack organization.

In an accumulator-type organization all operations are performed with an implied
accumulator register. The instruction format in this type of computer uses one address field.

For example, the instruction that specifies an arithmetic addition is defined by an assembly
language instruction as ADD X where X is the address of the operand. The ADD instruction
in this case results in the operation AC ← AC + M [X].

AC is the accumulator register and M [X] symbolizes the memory word located at address X.

In a general register type of organization the instruction format in this type of computer needs
three register address fields.

Thus the instruction for an arithmetic addition may be written in an assembly language as
ADD R1 , R2 , R3 to denote the operation R1 ← R2 + R3.

Computer Organization 9.11 Central Processing Unit

The number of address fields in the instruction can be reduced from three to two if the
destination register is the same as one of the source registers.

Thus the instruction ADD R1 , R2 would denote the operation R1 ← R1 + R2. Only register
addresses for R1 and R2 need be specified in this instruction.

Computers with multiple processor registers use the move instruction with a mnemonic MOV
to symbolize a transfer instruction. Thus the instruction MOV R1 , R2 denotes the transfer R1
← R2 (or R2 ← R1, depending on the particular computer).

Thus transfer-type instructions need two address fields to specify the source and the
destination.

General register-type computers employ two or three address fields in the instruction.

Three-Address Instructions

Computers with three-address instruction formats can use each address field to specify either
a processor register or a memory operand. The program in assembly language that evaluates
X = (A + B) * (C + D) is shown below, together with comments that explain the register
transfer operation of each instruction.

ADD R1, A, B R1 ← M[A] + M[B]

ADD R2, C, D R2 ← M[C] + M[D]

MOL X, R1, R2 M[X] ← R1 * R2

It is assumed that the computer has two processor registers, R1 and R2. The symbol M[A]
denotes the operand at memory address symbolized by A.

The advantage of the three-address format is that it results in short programs when evaluating
arithmetic expressions. The disadvantage is that the binary-coded instructions require too
many bits to specify three addresses.

Two-Address Instructions

Two-address instructions are the most common in commercial computers. Here again each
address field can specify either a processor register or a memory word. The program to
evaluate X = (A + B) * (C + D) is as follows:

MOV R1, A R1 ← M[A]

ADD R1, B R1 ← R1 + M[B]

MOV R2, C R2 ← M[C]

ADD R2, D R2 ← R2 + M[D]

Centre for Distance Education 9.12 Acharya Nagarjuna University

MOL R1, R2 R1 ← R1 * R2

MOV X, R1 M[X] ← R1

The MOV instruction moves or transfers the operands to and from memory and processor
registers. The first symbol listed in an instruction is assumed to be both a source and the
destination where the result of the operation is transferred.

One-Address Instructions

One-address instructions use an implied accumulator (AC) register for all data manipulation.
For multiplication and division there is a need for a second register. However, here we will
neglect the second register and assume that the AC contains the result of all operations.

The program to evaluate X = (A + B) * (C + D) is

LOAD A AC ← M[AJ

ADD B AC ← AC + M[B]

STORE T M[T] ← AC

LOAD c AC ← M[C]

ADD D AC ← AC + M[D]

MOL T AC ← AC*M[T]

STORE X M[X] ← AC

All operations are done between the AC register and a memory operand. T is the address of a
temporary memory location required for storing the intermediate result.

Zero-Address Instructions

A stack-organized computer does not use an address field for the instructions ADD and
MUL. The PUSH and POP instructions, however, need an address field to specify the
operand that communicates with the stack. The following program shows how X = (A + B) *
(C + D) will be written for a stack organized computer. (TOS stands for top of stack.)

PUSH A TOS ← A

PUSH B TOS ← B

ADD TOS ← (A + B)

PUSH C TOS ← C

PUSH D TOS ← D

ADD TO S ← (C + D)

Computer Organization 9.13 Central Processing Unit

MOL TOS ← (C + D)*(A + B)

POP X M[X] ← TOS

To evaluate arithmetic expressions in a stack computer, it is necessary to convert the
expression into reverse Polish notation. The name "zero-address" is given to this type of
computer because of the absence of an address field in the computational instructions.

9.5 ADDRESSING MODES
The operation field of an instruction specifies the operation to be performed. This operation
must be executed on some data stored in computer registers or memory words. The way the
operands are chosen during program execution is dependent on the addressing mode of the
instruction. The addressing mode specifies a rule for interpreting or modifying the address
field of the instruction before the operand is actually referenced.

Computers use addressing mode techniques for the purpose of accommodating one or both of
the following provisions:

 To give programming versatility to the user by providing such facilities as pointers to
memory, counters for loop control, indexing of data, and program relocation.

 To reduce the number of bits in the addressing field of the instruction.

The availability of the addressing modes gives the experienced assembly language
programmer flexibility for writing programs that are more efficient with respect to the
number of instructions and execution time.

To understand the various addressing modes to be presented in this section, it is imperative
that we understand the basic operation cycle of the computer.

The control unit of a computer is designed to go through an instruction cycle that is divided
into three major phases:

1. Fetch the instruction from memory.

2. Decode the instruction.

3. Execute the instruction.

There is one register in the computer called the program counter or PC that keeps track of the
instructions in the program stored in memory. PC holds the address of the instruction to be
executed next and is incremented each time an instruction is fetched from memory.

The decoding done in step 2 determines the operation to be performed, the addressing mode
of the instruction, and the location of the operands. The computer then executes the
instruction and returns to step 1 to fetch the next instruction in sequence.

Centre for Distance Education 9.14 Acharya Nagarjuna University

In some computers the addressing mode of the instruction is specified with a distinct binary
code, just like the operation code is specified. Other computers use a single binary code that
designates both the operation and the mode of the instruction.

Instructions may be defined with a variety of addressing modes, and sometimes, two or more
addressing modes are combined in one instruction. An example of an instruction format with
a distinct addressing mode field is shown in Fig. 6. The operation code specifies the operation
to be permode field formed. The mode field is used to locate the operands needed for the
operation.

There may or may not be an address field in the instruction. If there is an address field, it may
designate a memory address or a processor register. Moreover, as discussed in the preceding
section, the instruction may have more than one address field, and each address field may be
associated with its own particular addressing mode.

Although most addressing modes modify the address field of the instruction, there are two
modes that need no address field at all. These are the implied and immediate modes.

Figure 9.6 stack operations to evaluate 3 * 4 + 5 * 6

Implied Mode

In this mode the operands are specified implicitly in the definition of the instruction. For
example, the instruction "complement accumulator" is an implied-mode instruction because
the operand in the accumulator register is implied in the definition of the instruction. In fact,
all register reference instructions that use an accumulator are implied-mode instructions.

Zero-address instructions in a stack-organized computer are implied-mode instructions since
the operands are implied to be on top of the stack.

Immediate Mode

In this mode the operand is specified in the instruction itself. In other words, an immediate-
mode instruction has an operand field rather than an address field.

The operand field contains the actual operand to be used in conjunction with the operation
specified in the instruction. Immediate-mode instructions are useful for initializing registers
to a constant value.

Computer Organization 9.15 Central Processing Unit

It was mentioned previously that the address field of an instruction may specify either a
memory word or a processor register. When the address field specifies a processor register,
the instruction is said to be in the register mode.

Register Mode

In this mode the operands are in registers that reside within the CPU. The particular register
is selected from a register field in the instruction.

A k-bit field can specify any one of 2k registers.

Register Indirect Mode

In this mode the instruction specifies a register in the CPU whose contents give the address of
the operand in memory. In other words, the selected register contains the address of the
operand rather than the operand itself.

Before using a register indirect mode instruction, the programmer must ensure that the
memory address of the operand is placed in the processor register with a previous instruction.
A reference to the register is then equivalent to specifying a memory address.

The advantage of a register indirect mode instruction is that the address field of the
instruction uses fewer bits to select a register than would have been required to specify a
memory address directly.

Autoincrement or Autodecrement Mode

This is similar to the register indirect mode except that the register is incremented or
decremented after (or before) its value is used to access memory. When the address stored in
the register refers to a table of data in memory, it is necessary to increment or decrement the
register after every access to the table. This can be achieved by using the increment or
decrement instruction.

However, because it is such a common requirement, some computers incorporate a special
mode that automatically increments or decrements the content of the register after data
access. The address field of an instruction is used by the control unit in the CPU to obtain the
operand from memory.

Sometimes the value given in the address field is the address of the operand, but sometimes it
is just an address from which the address of the operand is calculated. To differentiate among
the various addressing modes it is necessary to distinguish between the address part of the
instruction and the effective address used by the control when executing the instruction.

The effective address is defined to be the memory address obtained from the computation
dictated by the given addressing mode. The effective address is the address of the operand in
a computational- type instruction. It is the address where control branches in response to a
branch-type instruction.

Centre for Distance Education 9.16 Acharya Nagarjuna University

Direct Address Mode

In this mode the effective address is equal to the address part of the instruction. The operand
resides in memory and its address is given directly by the address field of the instruction. In
a branch-type instruction the address field specifies the actual branch address.

Indirect Address Mode

In this mode the address field of the instruction gives the address where the effective address
is stored in memory. Control fetches the instruction from memory and uses its address part to
access memory again to read the effective address. A few addressing modes require that the
address field of the instruction be added to the content of a specific register in the CPU.

The effective address in these modes is obtained from the following computation:

Effective address = address part of instruction + content of CPU register

The CPU register used in the computation may be the program counter, an index register, or a
base register. In either case we have a different addressing mode which is used for a different
application.

Relative Address Mode

In this mode the content of the program counter is added to the address part of the instruction
in order to obtain the effective address.

The address part of the instruction is usually a signed number (in 2' s complement
representation) which can be either positive or negative. When this number is added to the
content of the program counter, the result produces an effective address whose position in
memory is relative to the address of the next instruction.

To clarify with an example, assume that the program counter contains the number 825 and
the address part of the instruction contains the number 24.

The instruction at location 825 is read from memory during the fetch phase and the program
counter is then incremented by one to 826. The effective address computation for the relative
address mode is 826 + 24 = 850.

This is 24 memory locations forward from the address of the next instruction. Relative
addressing is often used with branch-type instructions when the branch address is in the area
surrounding the instruction word itself.

It results in a shorter address field in the instruction format since the relative address can be
specified with a smaller number of bits compared to the number of bits required to designate
the entire memory address.

Computer Organization 9.17 Central Processing Unit

Indexed Addressing Mode

In this mode the content of an index register is added to the address part of the instruction to
obtain the effective address. The index register is a special CPU register that contains an
index value. The address field of the instruction defines the beginning address of a data array
in memory. Each operand in the array is stored in memory relative to the beginning address.
The distance between the beginning address and the address of the operand is the index value
stored in the index register.

Any operand in the array can be accessed with the same instruction provided that the index
register contains the correct index value. The index register can be incremented to facilitate
access to consecutive operands. Note that if an indextype instruction does not include an
address field in its format, the instruction converts to the register indirect mode of operation.

Some computers dedicate one CPU register to function solely as an index register. This
register is involved implicitly when the index-mode instruction is used. In computers with
many processor registers, any one of the CPU registers can contain the index number. In such
a case the register must be specified explicitly in a register field within the instruction format.

Base Register Addressing Mode

In this mode the content of a base register is added to the address part of the instruction to
obtain the effective address. This is similar to the indexed addressing mode except that the
register is now called a base register instead of an index register.

The difference between the two modes is in the way they are used rather than in the way that
they are computed. An index register is assumed to hold an index number that is relative to
the address part of the instruction. A base register is assumed to hold a base address and the
address field of the instruction gives a displacement relative to this base address. The base
register addressing mode is used in computers to facilitate the relocation of programs in
memory.

When programs and data are moved from one segment of memory to another, as required in
multiprogramming systems, the address values of instructions must reflect this change of
position. With a base register, the displacement values of instructions do not have to change.
Only the value of the base register requires updating to reflect the beginning of a new
memory segment.

Numerical Example

To show the differences between the various modes, we will show the effect of the
addressing modes on the instruction defined in Fig. 9.

The two-word instruction at address 200 and 201 is a "load to AC" instruction with an
address field equal to 500. The first word of the instruction specifies the operation code and
mode, and the second word specifies the address part. PC has the value 200 for fetching this

Centre for Distance Education 9.18 Acharya Nagarjuna University

instruction. The content of processor register R1 is 400, and the content of an index register
XR is 100. AC receives the operand after the instruction is executed. The figure lists a few
pertinent addresses and shows the memory content at each of these addresses.

Figure 9.7 Numerical example for addressing modes

The mode field of the instruction can specify any one of a number of modes. For each
possible mode we calculate the effective address and the operand that must be loaded into
AC. In the direct address mode the effective address is the address part of the instruction 500
and the operand to be loaded into AC is 800. In the immediate mode the second word of the
instruction is taken as the operand rather than an address, so 500 is loaded into AC. (The
effective address in this case is 201.)

In the indirect mode the effective address is stored in memory at address 500. Therefore, the
effective address is 800 and the operand is 300. In the relative mode the effective address is
500 + 202 = 702 and the operand is 325.

(Note that the value in PC after the fetch phase and during the execute phase is 202.) In the
index mode the effective address is XR + 500 = 100 + 500 = 600 and the operand is 900. In
the register mode the operand is in R1 and 400 is loaded into AC.

(There is no effective address in this case.) In the register indirect mode the effective address
is 400, equal to the content of R1 and the operand loaded into AC is 700.

The autoincrement mode is the same as the register indirect mode except that R1 is
incremented to 401 after the execution of the instruction. The autodecrement mode
decrements R1 to 399 prior to the execution of the instruction.

The operand loaded into AC is now 450. Table 9.4 lists the values of the effective address
and the operand loaded into AC for the nine addressing modes.

Computer Organization 9.19 Central Processing Unit

Table 9.4 Tabular list of numerical example

9.6 DATA TRANSFER AND MANIPULATION

Most computer instructions can be classified into three categories:

1. Data transfer instructions

2. Data manipulation instructions

3. Program control instructions

 Data Transfer Instructions:

Data transfer instructions move data from one place in the computer to another without
changing the data content. The most common transfers are between memory and processor
registers, between processor registers and input or output, and between the processor registers
themselves.

Table 7-5 gives a list of eight data transfer instructions used in many computers.

The load instruction has been used mostly to designate a transfer from memory to a processor
register, usually an accumulator. The store instruction designates a transfer from a processor
register into memory.

Table 9.5 : Typical data transfer instructions

Centre for Distance Education 9.20 Acharya Nagarjuna University

The move instruction has been used in computers with multiple CPU registers to designate a
transfer from one register to another and also between CPU registers and memory or between
two memory words.

The exchange instruction swaps information between two registers or a register and a
memory word. The input and output instructions transfer data among processor registers and
input or output terminals.The push and pop instructions transfer data between processor
registers and a memory stack.

Different computers use different mnemonics symbols for differentiate the addressing modes.
As an example, consider the load to accumulator instruction when used with eight different
addressing modes.

Table 7-6 shows the recommended assembly language convention and actual transfer
accomplished in each case

Table 9.6 Eight addressing modes for the Load instruction

ADR stands for an address.

NBA a number or operand.

X is an index register.

R1 is a processor register.

AC is the accumulator register.

The @ character symbolizes an indirect addressing.

The $ character before an address makes the address relative to the program counter PC.

The # character precedes the operand in an immediate-mode instruction.

An indexed mode instruction is recognized by a register that placed in parentheses after the
symbolic address. The register mode is symbolized by giving the name of a processor
register. In the register indirect mode, the name of the register that holds the memory address

Computer Organization 9.21 Central Processing Unit

is enclosed in parentheses. The auto-increment mode is distinguished from the register
indirect mode by placing a plus after the parenthesized register. The auto-decrement mode
would use a minus instead.

 Data Manipulation Instructions:

Data manipulation instructions perform operations on data and provide the computational
capabilities for the computer.

The data manipulation instructions in a typical computer are usually divided into three basic
types:

1. Arithmetic instructions

2. Logical and bit manipulation instructions

3. Shift instructions

1. Arithmetic instructions

The four basic arithmetic operations are addition, subtraction, multiplication and division.
Most computers provide instructions for all four operations. Some small computers have only
addition and possibly subtraction instructions. The multiplication and division must then be
generated by mean software subroutines.

 A list of typical arithmetic instructions is given in Table 9.9.

Table 9.7: Typical arithmetic instructions

The increment instruction adds 1 to the value stored in a register or memory word. A number
with all 1's, when incremented, produces a number with all 0's. The decrement instruction
subtracts 1 from a value stored in a register or memory word. A number with all 0's, when
decremented, produces number with all 1's. Theadd, subtract, multiply, and divide
instructions may be use different types of data.

Centre for Distance Education 9.22 Acharya Nagarjuna University

The data type assumed to be in processor register during the execution of these arithmetic
operations is defined by an operation code. An arithmetic instruction may specify fixed-point
or floating-point data, binary or decimal data, single-precision or double-precision data.

The mnemonics for three add instructions that specify different data types are shown below.

ADDI Add two binary integer numbers

ADDF Add two floating-point numbers

ADDD Add two decimal numbers in BCD

A special carry flip-flop is used to store the carry from an operation.The instruction "add
carry" performs the addition on two operands plus the value of the carry the previous
computation. Similarly, the "subtract with borrow" instruction subtracts two words and
borrow which may have resulted from a previous subtract operation.The negate instruction
forms the 2's complement number, effectively reversing the sign of an integer when
represented it signed-2's complement form.

2. Logical and bit manipulation instructions

Logical instructions perform binary operations on strings of bits store, registers. They are
useful for manipulating individual bits or a group of that represent binary-coded information.
The logical instructions consider each bit of the operand separately and treat it as a Boolean
variable.

By proper application of the logical instructions it is possible to change bit values, to clear a
group of bits, or to insert new bit values into operands stored in register memory words.
Some typical logical and bit manipulation instructions are listed in Table 9.8.

Table 9.8 Typical Logical and Bit Manipulation Instructions

The clear instruction causes the specified operand to be replaced by 0’s. The complement
instruction produces the 1's complement by inverting all bits of the operand. The AND, OR,
and XOR instructions produce the corresponding logical operations on individual bits of the
operands.

Computer Organization 9.23 Central Processing Unit

 The logical instructions can also be used to performing bit manipulation operations. There
are three bit manipulation operations possible: a selected bit can cleared to 0, or can be set to
1, or can be complemented.

o The AND instruction is used to clear a bit or a selected group of bits of an operand.

o The OR instruction is used to set a bit or a selected group of bits of an operand.

o Similarly, the XOR instruction is used to selectively complement bits of an operand.

Other bit manipulations instructions are included in above table perform the operations on
individual bits such as a carry can be cleared, set, or complemented. Another example is a
flip-flop that controls the interrupt facility and is either enabled or disabled by means of bit
manipulation instructions.

3. Shift Instructions:

Shifts are operations in which the bits of a word are moved to the left or right. The bit shifted
in at the end of the word determines the type of shift used. Shift instructions may specify
logical shifts, arithmetic shifts, or rotate-type operations.In either case the shift may be to the
right or to the left.

Table 9.9 lists four types of shift instructions.

The logical shift inset to the end bit position. The end position is the leftmost bit position for
shift rights the rightmost bit position for the shift left. Arithmetic shifts usually conform to
the rules for signed-2's complement numbers. The arithmetic shift-right instruction must
preserve the sign bit in the leftmost position. The sign bit is shifted to the right together with
the rest of the number, but the sign bit itself remains unchanged.

This is a shift-right operation with the end bit remaining the same. The arithmetic shift-left
instruction inserts 0 to the end position and is identical to the logical shift-instruction.The
rotate instructions produce a circular shift. Bits shifted out at one of the word are not lost as
in a logical shift but are circulated back into the other end.

Centre for Distance Education 9.24 Acharya Nagarjuna University

The rotate through carry instruction treats a carry bit as an extension of the register whose
word is being rotated.Thus a rotate-left through carry instruction transfers the carry bit into
the rightmost bit position of the register, transfers the leftmost bit position into the carry, and
at the same time, shift the entire register to the left .

9.7 PROGRAM CONTROL

9.7 SUMMARY

This chapter covers essential aspects of computer architecture crucial to understanding its
operation. It begins with an introduction to the CPU as the core component responsible for
executing instructions and managing data within a computer system. General Register
Organization details the role and structure of registers for storing operands and intermediate
results during computation. Stack Organization explores the stack-based memory structure
used for managing subroutine calls and local variables. Instruction Format delves into the
structure of machine instructions, including opcodes and addressing modes that specify data
access methods. Addressing Modes further elaborate on how operands are accessed in
instructions, influencing program flexibility. Data Transfer and Manipulation elucidate how
the CPU processes data through operations like arithmetic, logic, and movement between
registers and memory. Program Control examines mechanisms governing program flow,
including branching, subroutine handling, and interrupt management, crucial for efficient
execution of instructions. Together, these topics provide a comprehensive foundation on the
CPU's internal mechanisms and its pivotal role in computing systems.

9.8 TECHNICAL TERMS

Central Processing Unit, Register, Stack, Addressing mode

9.9 SELF ASSESSMENT QUESTIONS

Essay questions:

 Short Questions:

9.10 FURTHER READINGS
1. M.Morris Mano, “Computer System Architecture”, 3rd Edition, Pearson Education

(2008).
2. V. Rajaraman, T. Radha Krishnan, “Computer Organization and Architecture”, PHI
3. BehroozParhami, “Computer Architecture”, Oxford (2007)
4. ISRD group, “Computer Organization”, ace series, TMH (2007)
5. William Stallings, “Computer Organization and Architecture – Designing for

Performance”, Pearson Education (2005)

Dr. Kampa Lavanya

LESSON- 10
COMPUTER ARITHMETIC

OBJECTIVES:

After going through this lesson, you will be able to

 Develop the ability to perform and implement basic arithmetic operations in both hardware
and software.
 Learn the rules for binary addition and subtraction
 Understand the process of binary multiplication.
 Understand the complexity of different division algorithms
 Perform arithmetic operations with floating-point numbers.

STRUCTURE OF THE LESSION:
10.1 Introduction

10.2 Addition and Subtraction

10.3 Multiplication Algorithm

10.4 Division Algorithm

10.5 Floating - Point Arithmetic Operations

10.6 Summary

10.7 Technical Terms

10.8 Self-Assessment Questions

10.9 Further Readings

10.1 INTRODUCTION

Data is manipulated by using the arithmetic instructions in digital computers. Data is manipulated to
produce results necessary to give solution for the computation problems. The Addition, subtraction,
multiplication and division are the four basic arithmetic operations. If we want then we can derive
other operations by using these four operations. To execute arithmetic operations there is a separate
section called arithmetic processing unit in central processing unit. The arithmetic instructions are
performed generally on binary or decimal data. Fixed-point numbers are used to represent integers
or fractions. We can have signed or unsigned negative numbers. Fixed-point addition is the simplest
arithmetic operation.

If we want to solve a problem then we use a sequence of well-defined steps. These steps are
collectively called algorithm. To solve various problems we give algorithms. In order to solve the
computational problems, arithmetic instructions are used in digital computers that manipulate data.

Centre for Distance Education 10.2 Acharya Nagarjuna University

These instructions perform arithmetic calculations. And these instructions perform a great activity in
processing data in a digital computer. As we already stated that with the four basic arithmetic
operations addition, subtraction, multiplication and division, it is possible to derive other arithmetic
operations and solve scientific problems by means of numerical analysis methods. A processor has
an arithmetic processor(as a sub part of it) that executes arithmetic operations. The data type,
assumed to reside in processor, registers during the execution of an arithmetic instruction. Negative
numbers may be in a signed magnitude or signed complement representation. There are three ways
of representing negative fixed point - binary numbers signed magnitude, signed 1’s complement or
signed 2’s complement. Most computers use the signed magnitude representation for the mantissa

10.2 ADDITION AND SUBTRACTION

10.2.1 Addition and Subtraction with Signed –Magnitude Data

We designate the magnitude of the two numbers by A and B. Where the signed numbers are added
or subtracted, we find that there are eight different conditions to consider, depending on the sign of
the numbers and the operation performed. These conditions are listed in the first column of Table.
The other columns in the table show the actual operation to be performed with the magnitude of the
numbers. The last column is needed to present a negative zero. In other words, when two equal
numbers are subtracted, the result should be +0 not -0.

The algorithms for addition and subtraction are derived from the table and can be stated as follows
(the words parentheses should be used for the subtraction algorithm).

Table 10.1 Addition and Subtraction of Signed·Magnitude Numbers

The algorithms for addition and subtraction are derived from the table and can be stated as follows
(the words parentheses should be used for the subtraction algorithm)

Hardware Implementation

Computer Organization 10.3 Computer Arithmetic

When the signs of A and B are same, add the two magnitudes and attach the sign of result is that of

A. When the signs of A and B are not same, compare the magnitudes and subtract the smaller

number from the larger. Choose the sign of the result to be the same as A, if A > B or the

complement of the sign of A if A < B. If the two magnitudes are equal, subtract B from A and make

the sign of the result will be positive.

Figure 10.1 : Hardware Architecture for Addition and Subtraction of Signed-Magnitude Numbers

The flowchart for the hardware algorithm is presented in Fig. 10.2.

The two signs A, and B,are compared by an exclusive-OR gate. If the output of the gate is 0, the

signs are identical; if it is 1, the signs are different. For an 0dd operation, identical signs dictate that

the magnitudes be added. For a subtraction operation, different signs dictate that the magnitudes be

added. The magnitudes are added with a microoperation EA A + B. where EA is a register that

combines E: and A. The carry in E: after the addition constitutes an overflow if it is equal to 1. The

value of E: is transferred into the add-overnow flip-flop AVF.

Figure 10.2 Flowchan for add and subtract operation

Centre for Distance Education 10.4 Acharya Nagarjuna University

The two magnitudes are subtracted if the signs are different for an odd operation or identical for a
subtract operation. The magnitudes are subtracted by adding A to the 2's complement of B. No
overflow can occur if the numbers are subtracted so AVF is cleared to 0. A 1 in E indicates that A ≥
B a.nd the number in A is the correct result. If this nu.mber i.s zero, the sign A, must be made
positive to avoid a negative zero. A 0 in E: indicates that A < B. For this case it is necessa ry to take
the 2's complement of the value in A. This operation can be done with one microoperation 𝐴 ← �̅�
+ 1. However, we assume that the A register has circuits for mlcrooperations complm.mt and
inlTtment, so the 2's complement is obtained from these two mlcroo perations. In other paths of the
flowchart, the sign of the result is the same as the sign of A, so no change in A, is required.
However, when A < B, the sign of the result is the complement of the original sign of A. It is then
necessary to complement A, to obtain the correct sign. The final result is found in register A and its
sign in As. The value inAVF provides an overflow indication. The final value of E is immaterial.

Addition and Subtraction with Signed-2's Complement Data

The signed-2's complement representation of numbers together with arithmetic algorithms for
addition and subtraction are summarized here for easy reference. The leftmost bit of a binary
number represents the sign bit: 0 for positive and 1 for negative. If the sign bit is 1, the entire
number is represented in 2's complement form. Thus +33 is represented as 00100001 and -33 as
11011111. Note that 11011111 is the 2's complement of 00100001, and vice versa. The addition of
two numbers in signed-2's complement form consists of adding the numbers with the sign bits
treated the same as the other bits of the number. A carry-out of the sign-bit position is discarded.
The subtraction consists of first taking the 2's complement of the subtrahend and then adding it to
the minuend. When two numbers of n digits each are added and the sum occupies n + 1 digits, we
say that an overflow occurred. An overflow can be detected by inspecting the last two carries out of
the addition. When the two carries are applied to an exclusive-OR gate, the overflow is detected
when the output of the gate is equal to 1. The register configuration for the hardware
implementation is shown in Figure. The sign bits are not separated from the rest of the registers. We
name the A register AC and the B register BR. The leftmost bit in AC and BR represent the sign
bits of the numbers. The two sign bits are added or subtracted together with the other bits in the
complementer and parallel adder. The overflow flip-flop V is set to 1 if there is an overflow. The
output carry in this case is discarded.

Figure 10.3 Hardware for signed-2's complement addition and subtraction

Computer Organization 10.5 Computer Arithmetic

The algorithm for adding and subtracting two binary numbers in signed-2's complement
representation is shown in the flowchart of Figure. The sum is obtained by adding the contents of
AC and BR (including their sign bits). The overflow bit V is set to 1 if the exclusive-OR of the last
two carries is 1, and it is cleared to 0 otherwise. The subtraction operation is accomplished by
adding the content of AC to the 2's complement of BR. Taking the 2's complement of BR has the
effect of changing a positive number to negative, and vice versa. An overflow must be checked
during this operation because the two numbers added could have the same sign. The programmer
must realize that if an overflow occurs, there will be an erroneous result in the AC register.

Comparing this algorithm with its signed-magnitude counterpart, we note that it is much simpler to
add and subtract numbers if negative numbers are maintained in signed-2's complement
representation. For this reason most computers adopt this representation over the more familiar
signed-magnitude.

Figure 10.4 Algorithm for adding and subtracting numbers in signed - 2's complement
representation

10.3 MULTIPLICATION ALGORITHM

Multiplication of two fixed-point binary numbers in signed-magnitude representation is done with
paper and pencil by a process of successive shift and add operations. This process is best illustrated
with a numerical example.

The process consists of looking at successive bits of the multiplier, least significant bit first. If the
muliplier bit is a 1, the multiplicand is copied down; otherwise, zeros are copied down. The
numbers copied down in successive lines are shifted one position to the left from the previous
number. Finally, the numbers are added and their sum forms the product. The sign of the product is
determined from the signs of the multiplicand and multiplier. If they are alike, the sign of the
product is positive. If they are unlike, the sign of the product is negative.

Centre for Distance Education 10.6 Acharya Nagarjuna University

Hardware Implementation for Signed-Magnitude Data

When multiplication is implemented in a digital computer, it is convenient to change the process
slightly. First, instead of providing registers to store and add simultaneously as many binary
numbers as there are bits in the multiplier, it is convenient to provide an adder for the summation of
only two binary numbers and successively accumulate the partial products in a register. Second,
instead of shifting the multiplicand to the left, the partial product is shifted to the right, which
results in leaving the partial product and the multiplicand in the required relative positions. Third,
when the corresponding bit of the multiplier is 0, there is no need to add all zeros to the partial
product since it will not alter its value.

The hardware for multiplication consists of the equipment shown in Figure.

Figure 10.5 hardware for multiply operation

The multiplier is stored in the Q register and its sign in Qs. The sequence counter SC is initially set
to a number equal to the number of bits in the multiplier. The counter is decremented by 1 after
forming each partial product. When the content of the counter reaches zero, the product is formed
and the process stops.

Initially, the multiplicand is in register B and the multiplier in Q. The sum of A and B forms a
partial product which is transferred to the EA register. Both partial product and multiplier are
shifted to the right. This shift will be denoted by the statement shr EAQ to designate the right shift
depicted in Figure. The least significant bit of A is shifted into the most significant position of Q,
the bit from E is shifted into the most significant position of A, and 0 is shifted into E. After the
shift, one bit of the partial product is shifted into Q, pushing the multiplier bits one position to the
right. In this manner, the rightmost flip-flop in register Q, designated by Q„, will hold the bit of the
multiplier, which must be inspected next.

Computer Organization 10.7 Computer Arithmetic

Hardware Algorithm

Figure shows a flowchart of the hardware multiply algorithm.

Figure 10.6 flowchart for multiply operation

Initially, the multiplicand is in B and the multiplier in Q. Their corresponding signs are in Bs and
Qs, respectively. The signs are compared, and both A and Q are set to correspond to the sign of the
product since a double- length product will be stored in registers A and Q. Registers A and E are
cleared and the sequence counter SC is set to a number equal to the number of bits of the multiplier.
We are assuming here that operands are transferred to registers from a memory unit that has words
of n bits. Since an operand must be stored with its sign, one bit of the word will be occupied by the
sign and the magnitude will consist of n-1 bits. After the initialization, the low-order bit of the
multiplier in Qn is tested. If it is a 1, the multiplicand in B is added to the present partial product in
A. If it is a 0, nothing is done. Register EAQ is then shifted once to the right to form the new partial
product. The sequence counter is decremented by 1 and its new value checked. If it is not equal to
zero, the process is repeated and a new partial product is formed. The process stops when SC = 0.
Note that the partial product formed in A is shifted into Q one bit at a time and eventually replaces
the multiplier. The final product is available in both A and Q, with A holding the most significant
bits and Q holding the least significant bits. The previous numerical example is repeated in Table is
shown to clarify the hardware multiplication process. The procedure follows the steps outlined in
the flowchart.

Centre for Distance Education 10.8 Acharya Nagarjuna University

Table 10.2 Numerical Example for Binary Multiplier

Booth Multiplication Algorithm

Booth algorithm gives a procedure for multiplying binary integers in signed-2’s complement
representation. It operates on the fact that strings of 0's in the multiplier require no addition but just
shifting, and a string of Ts in the multiplier from bit weight 2* to weight 2 m can be treated as 2 k+1 -
2m . For example, the binary number 001110 (+14) has a string of 1’s from 2k to 2m (k = 3, m = 1).
The number can be represented as 2 k+1 - 2m = 16 - 2 = 14. Therefore, the multiplication M x 14,
where M is the multiplicand and 14 the multiplier, can be done as M x 24 - M x 21

Thus the product can be obtained by shifting the binary multiplicand M four times to the left and
subtracting M shifted left once. As in all multiplication schemes. Booth algorithm requires
examination of the multiplier bits and shifting of the partial product. Prior to the shifting, the
multiplicand may be added to the partial product, subtracted from the partial product, or left
unchanged according to the following rules:

1. The multiplicand is subtracted from the partial product upon encountering the first least
significant 1 in a string of 1’s in the multiplier.

2. The multiplicand is added to the partial product upon encountering the first 0 (provided that there
was a previous 1) in a string of 0's in the multiplier.

3. 3. The partial product does not change when the multiplier bit is identical to the previous
multiplier bit.

Computer Organization 10.9 Computer Arithmetic

The algorithm works for positive or negative multipliers in 2's complement representation. This is
because a negative multiplier ends with a string of 1’s and the last operation will be a subtraction of
the appropriate weight. For example, a multiplier equal to -14 is represented in 2's complement as
110010 and is treated as -24 + 22 – 21 = –14.

The hardware implementation of Booth algorithm requires the register configuration shown in
Figure.

Figure 10.7 Hardware for Booth algorithm

We rename registers A, B, and Q, as AC, BR, and QR, respectively. Qn designates the least
significant bit of the multiplier in register QR. An extra flip-flop Qn+1 is appended to QR to
facilitate a double bit inspection of the multiplier. The flowchart for Booth algorithm is shown in
Figure.

AC and the appended bit Qn+1 are initially cleared to 0 and the sequence counter SC is set to a
number n equal to the number of bits in the multiplier. The two bits of the multiplier in Qn and
Qn+1 are inspected. If the two bits are equal to 10, it means that the first 1 in a string of l's has been
encountered. This requires a subtraction of the multiplicand from the partial product in AC. If the
two bits are equal to 01, it means that the first 0 in a string of 0's has been encountered.

This requires the addition of the multiplicand to the partial product in AC. When the two bits are
equal, the partial product does not change. An overflow cannot occur because the addition and
subtraction of the multiplicand follow each other. As a consequence, the two numbers that are added
always have opposite signs, a condition that excludes an overflow. The next step is to shift right the
partial product and the multiplier (including bit Qn+1). This is an arithmetic shift right (ashr)
operation which shifts AC and QR to the right and leaves the sign bit in AC unchanged. The
sequence counter is decremented and the computational loop is repeated n times.

Centre for Distance Education 10.10 Acharya Nagarjuna University

Figure 10.8 Booth algorithm for multiplication of signed-2's complement numbers

A numerical example of Booth algorithm is shown in Table for n = 5. It shows the step-by-step
multiplication of (-9) x (-13) = +117. Note that the multiplier in QR is negative and that the
multiplicand in BR is also negative. The 10-bit product appears in AC and QR and is positive. The
final value of Qn+1 is the original sign bit of the multiplier and should not be taken as part of the
product.

TABLE 8-3 Example of Multiplication with Booth Algorithm

Computer Organization 10.11 Computer Arithmetic

10.4 DIVISION ALGORITHM

Binary division – simpler because the quotient digits are either 0 or 1 and there is no need to
estimate how many times the dividend or partial remainder fits into the divisor

Division operation may result in a quotient with an overflow. Divide overflow flip flop (DVF) is
used to detect overflow Divisor – B register, Dividend – A and Q register
If the signs of divisor and dividend are alike, the sign of the quotient is plus. Otherwise it is minus.

Best way to avoid divide overflow is to use floating point data.

Example for binary division :

Figure 10.9 Example of binary division with digital hardware

Centre for Distance Education 10.12 Acharya Nagarjuna University

Fig. 10.10 Flow chart for divide operation

10.5 FLOATING - POINT ARITHMETIC OPERATIONS

 Numbers too large for standard integer representations or that have fractional components
are usually represented in scientific notation, a form used commonly by scientists and engineers.

 Examples: 4.25 x 101

 Addition and subtraction are more complex than multiplication and division

• Need to align mantissas

• Algorithm: — Check for zeros — Align significant (adjusting exponents) — Add or subtract
significant — Normalize result

F = m x re

Computer Organization 10.13 Computer Arithmetic

where m: Mantissa, r: Radix, e: Exponent

It is necessary to make two exponents be equal before the mantissas can be added. We can either
shift the first number three positions to the left, or shift the second number three positions to the
right. When we store the mantissas in registers, shifting to the left causes a loss of most significant
digits. Shifting to the right causes a loss of least significant digits. The second method is preferable
because it only reduces the accuracy, while the first method may cause an error. The usual
alignment procedure is to shift the mantissa that has the smaller exponent to the right by a number
of places equal to the difference between the exponents. Now, the mantissas can be added.

. 5372400 x 102

+ . 0001580 x 102

. 5373980 x 102

When two normalized mantissas are added, the sum may contain an overflow digit. An overflow
can be corrected easily by shifting the sum once to the right and incrementing the exponent. When
two numbers are subtracted, the result may contain most significant zeros as shown in the following
example:

An underflow occurs if a floating-point number that has a 0 in the most significant position of the
mantissa. To normalize a number that contains an underflow, we shift the mantissa to the left and
decrement the exponent until a nonzero digit appears in the first position. Here, it is necessary to
shift left twice to obtain .35000 x 103. In most computers a normalization procedure is performed
after each operation to ensure that all results are in a normalized form.

Floating-point multiplication and division need not do an alignment of the mantissas. Multiplying
the two mantissas and adding the exponents can form the product. Dividing the mantissas and
subtracting the exponents perform division.

Register Configuration:

Three registers are there, BR, AC, and QR. Each register is subdivided into two parts. The mantissa
part has the same uppercase letter symbols as in fixed-point representation. The exponent part may
use corresponding lower-case letter symbol.

Centre for Distance Education 10.14 Acharya Nagarjuna University

Fig. 10.11 Registers for floating point arithmetic operations

Assuming that each floating-point number has a mantissa in signed-magnitude representation and a
biased exponent. Thus the AC has a mantissa whose sign is in As, and a magnitude that is in A.
The diagram shows the most significant bit of A, labeled by A1. The bit in his position must be
a 1 to normalize the number. Note that the symbol AC represents the entire register, that is, the
concatenation of As, A and a. In the similar way, register BR is subdivided into Bs, B, and b and
QR into Qs, Q and q. A parallel-adder adds the two mantissas and loads the sum into A and the
carry into E.

Addition and Subtraction of Floating Point Numbers

During addition or subtraction, the two floating-point operands are kept in AC and BR. The sum or
difference is formed in the AC.

The algorithm can be divided into four consecutive parts:

1. Check for zeros.

2. Align the mantissas.
3. Add or subtract the mantissas
4. Normalize the result

A floating-point number cannot be normalized, if it is 0. If this number is used for computation, the
result may also be zero. Instead of checking for zeros during the normalization process we check for
zeros at the beginning and terminate the process if necessary. The alignment of the mantissas must
be carried out prior to their operation. After the mantissas are added or subtracted, the result may be
un-normalized. The normalization procedure ensures that the result is normalized before it is
transferred to memory.

For adding or subtracting two floating-point binary numbers, if BR is equal to zero, the operation is
stopped, with the value in the AC being the result. If AC = 0, we transfer the content of BR into AC

Computer Organization 10.15 Computer Arithmetic

and also complement its sign we have to subtract the numbers. If neither number is equal it to zero,
we proceed to align the mantissas. The magnitude comparator attached to exponents a and b gives
three outputs, which show their relative magnitudes.

If the two exponents are equal, we go to perform the arithmetic operation. If the exponents are not
equal, the mantissa having the smaller exponent is shifted to the right and its exponent incremented.
This process is repeated until two exponents are equal.

The addition and subtraction of the two mantissas is similar to the fixed-point addition and
subtraction algorithm presented in the Figure 2.15

Multiplication:
The algorithm can be divided into four consecutive parts:

1. Check for zeros.
2. Add the exponents.
3. Multiply the mantissas
4. Normalize the result

Fig. 2.15 Addition and subtraction of floating point numbers

Fig. 2.16 Multiplication of floating point numbers

Division:

The algorithm can be subdivided into five consecutive parts:

1. Check for zeros.

2. Initialize the register and evaluate the sign

3. Align the dividend

4. Subtract the exponents.

5. Divide the mantissa

Computer Organization 10.17 COMPUTER ARITHMETIC

Fig. 2.17 Division of floating point numbers

10.6 SUMMARY

The chapter on Computer Arithmetic explores fundamental operations crucial to digital
computation. It covers binary addition and subtraction, highlighting their simplicity and
efficiency in a base-2 system. Multiplication algorithms, such as binary multiplication and
Booth's algorithm, are discussed for their methods of efficiently calculating products.
Division algorithms, including binary division and non-restoring division, are detailed for
their approaches to computing quotients and remainders. Additionally, the chapter delves
into floating-point arithmetic, explaining how real numbers are represented and manipulated
using scientific notation, with emphasis on maintaining accuracy and precision through
normalization and denormalization techniques. Overall, the chapter provides a
comprehensive overview of the foundational arithmetic operations that underpin digital
computing systems, ensuring reliable and efficient numerical computations across various
applications.

Centre for Distance Education 10.18 Acharya Nagarjuna University

10.7 TECHNICAL TERMS

Computer arithmetic, Addition, Subtraction, Multiplication, Division Algorithms, Floating
Point Arithmetic Operation

10.8 SELF ASSESSMENT QUESTIONS

Essay questions:

1. Explain in detail about booth multiplication algorithm with an example?
2. Design a Decimal Arithmetic Unit to perform BCD addition and BCD Subtraction.
3. Design hardware for signed magnitude addition and subtraction?
4. Explain the process for signed magnitude addition and subtraction with flow chart.

Short Questions:
1. Write short notes on 2's complement addition and subtraction operations
2. Implement hardware for multiplying Two fixed- point binary numbers in signed-

magnitude representation along with its flowchart.
3. Describe the importance of BCD in digital system design
4. Design hardware for signed magnitude addition and subtraction?

10.9 FURTHER READINGS
1. M.Morris Mano, “Computer System Architecture”, 3rd Edition, Pearson Education
 (2008).
2. V. Rajaraman, T. Radha Krishnan, “Computer Organization and Architecture”, PHI
3. BehroozParhami, “Computer Architecture”, Oxford (2007)
4. ISRD group, “Computer Organization”, ace series, TMH (2007)
5. William Stallings, “Computer Organization and Architecture – Designing for
 Performance”, Pearson Education (2005)

Dr. Kampa Lavanya

LESSON- 11

INPUT-OUTPUT ORGANIZATION

OBJECTIVES:

After going through this lesson, you will be able to

 Recognize various types of peripheral devices
 Learn about different types of input-output interfaces and their design
 Understand the concept of asynchronous data transfer
 Explore various modes of data transfer
 Comprehend the concept of priority interrupt

STRUCTURE OF THE LESSION:

11.1 Peripheral Devices

11.2 Input-Output Interface

11.3 Asynchronous Data Transfer

11.4 Modes of Transfer

11.5 Priority Interrupt

11.6 Summary

11.7 Technical Terms

11.8 Self-Assessment Questions

11.9 Further Readings

11.1 PERIPHERAL DEVICES

The input and output devices that are attached to the computer are called peripheral devices.

Eg: Keyboard, printer, display unit.

Peripherals that provide auxiliary storage to the system are magnetic disks and tapes. Printers
provide a permanent record on paper of computer output data or text. The three types of
printers are Daisy wheel, Dot matrix and Laser

Magnetic tapes are used for storing files of data.

 Access – Sequential

 Slowest and cheapest method.

 Tapes can be removed when not in use.

Magnetic disks are used for bulk storage of programs and data.

 Access – by moving the read/write mechanism to a track in the magnetized surface.

Centre for Distance Education 11.2 Acharya Nagarjuna University

Input and output devices that communicate with people and the computer are usually
involved in the transfer of alphanumeric information to and from the device and the
computer. The standard binary code for the alphanumeric characters is ASCII (American
Standard Code for Information Interchange). It uses seven bits to code 128 characters The
seven bits of the code are designated by b1 through b7, with b, being the most significant bit.
The letter A, for example, is represented in ASCII as 1000001 (column 100, row 0001). The
ASCII code contains 94 characters that can be printed and 34 nonprinting characters used for
various control functions. The printing characters consist of the 26 uppercase letters A
through Z, the 26 lowercase letters,the 10 numerals 0 through 9, and 32 special printable
characters such as %, *, and $.

There are three types of control characters: format effectors, information separators, and
communication control characters

ASCII is a 7-bit code, but most computers manipulate an 8-bit quantity as a single unit called
a byte.

11.2 INPUT-OUTPUT INTERFACE

Input-output interface provides a method for transferring information between internal
storage and external I/O devices. Peripherals connected to a computer need special
communication links for interfacing them with the central processing unit.

The major differences are:

1. Peripherals are electromechanical and electromagnetic devices and their manner of
operation is different from the operation of the CPU and memory, which are electronic
devices. Therefore, a conversion of signal values may be required.

2. The data transfer rate of peripherals is usually slower than the transfer rate of the CPU, and
consequently, a synchronization mechanism may be needed.

3. Data codes and formats in peripherals differ from the word format in the CPU and
memory.

4. The operating modes of peripherals are different from each other and each must be
controlled so as not to disturb the operation of other peripherals connected to the CPU.

A typical communication link between the processor and several peripherals is shown in
Fig.11.1. The I/O bus consists of data lines, address lines, and control lines. The magnetic
disk, printer, and terminal are employed in practically any general-purpose computer. The
interface selected responds to the function code and proceeds to execute it. The function code
is referred to as an I/O command and is in essence an instruction that is executed in the
interface and its attached peripheral unit.

There are three ways that computer buses can be used to communicate with memory and I/O:

1. Use two separate buses, one for memory and the other for I/O.

Computer Organization 11.3 Input – Output organization

2. Use one common bus for both memory and I/O but have separate control lines for each.

3. Use one common bus for memory and I/O with common control lines.

Isolated I/O versus Memory-Mapped I/O

Many computers use one common bus to transfer information between memory or I/O and
the CPU. In the isolated I/O configuration, the CPU has distinct input and output instructions,
and each of these instructions is associated with the address of an interface register. The
isolated I/O method isolates memory and I/O addresses so that memory address values are
not affected by interface address assignment since each has its own address space. The other
alternative is to use the same address space for both memory and I/O. This is the case in
computers that employ only one set of read and write signals and do not distinguish between
memory and I/O addresses. This configuration is referred to as memory- mapped I/O. In a
memory-mapped I/O organization there is no specific input or output instructions. Computers
with memory-mapped I/O can use memory-type instructions to access I/O data.

Figure 11.1 Connection of input/output devices

An example of an I/O interface unit is shown in block diagram form in Fig. 11.2. It consists
of two data registers called ports, a control register, a status register, bus buffers, and timing
and control circuits. The interface communicates with the CPU through the data bus. The
chip select and register select inputs determine the address assigned to the interface. The I/O
read and write are two control lines that specify an input or output, respectively. The four
registers communicate directly with the I/O device attached to the interface.

Centre for Distance Education 11.4 Acharya Nagarjuna University

Figure 11.2 Example of I/O interface unit

11.3 ASYNCHRONOUS DATA TRANSFER

The internal operations in a digital system are synchronized by means of clock pulses
supplied by a common pulse generator. If the registers in the interface share a common clock
with the CPU registers, the transfer between the two units is said to be synchronous. In most
cases, the internal timing in each unit is independent from the other in that each uses its own
private clock for internal registers. In that case, the two units are said to be asynchronous to
each other. This approach is widely used in most computer systems. Asynchronous data
transfer between two independent units requires that control signals be transmitted between
the communicating units to indicate the time at which data is being transmitted.

Two way of achieving this:

 The strobe: pulse supplied by one of the units to indicate to the other unit when the
transfer has to occur.

 The handshaking: The unit receiving the data item responds with another control
signal to acknowledge receipt of the data.

The strobe pulse method and the handshaking method of asynchronous data transfer are not
restricted to I/O transfers.

Computer Organization 11.5 Input – Output organization

The strobe may be activated by either the source or the destination unit. Figure 38 shows a
source-initiated transfer and the timing diagram.

Figure: 11.3 Source initiated strobe for data transfer

Fig.11.4 shows the strobe of a memory-read control signal from the CPU to a memory

Figure 11.4 Destination initiated strobe for data transfer

Handshaking

The disadvantage of the strobe method is that the source unit that initiates the transfer has no
way of knowing whether the destination unit has actually received the data item that was
placed in the bus. The handshake method solves this problem by introducing a second control
signal that provides a reply to the unit that two-wire control initiates the transfer.

Figure 11.5 shows the data transfer procedure when initiated by the source. The two
handshaking lines are data valid, which is generated by the source unit, and data accepted,

Centre for Distance Education 11.6 Acharya Nagarjuna University

generated by the destination unit. The timing diagram shows the exchange of signals between
the two units.

Figure 11.6 the destination-initiated transfer using handshaking lines. Note that the name of
the signal generated by the destination unit has been changed to ready for data to reflect its
new meaning.

Asynchronous Serial Transfer

The transfer of data between two units may be done in parallel or serial. In parallel data
transmission, each bit of the message has its own path and the total message is transmitted at
the same time. This means that a w-bit message must be transmitted through n separate
conductor paths. In serial data transmission, each bit in the message is sent in sequence one at
a time. This method requires the use of one pair of conductors or one conductor and a
common ground. Parallel transmission is faster but requires many wires. It is used for short
distances and where speed is important. Serial transmission is slower but is less expensive
since it requires only one pair of conductors. Serial transmission can be synchronous or
asynchronous.

Figure 11.5 Source initiated transfer using handshaking

Computer Organization 11.7 Input – Output organization

 A transmitted character can be detected by the receiver from knowledge of the transmission
rules:

1. When a character is not being sent, the line is kept in the 1-state.

2. The initiation of a character transmission is detected from the start bit, which is always(0).

3. The character bits always follow the start bit.

4. After the last bit of the character is transmitted, a stop bit is detected when the line returns
to the 1-state for at least one bit time.

Figure 11.6 Destination initiated transfer using handshaking

An example of serial transmission format is shown in Fig. 11.7

Centre for Distance Education 11.8 Acharya Nagarjuna University

Figure 11.7 Asynchronous serial transmission

As an illustration, consider the serial transmission of a terminal whose transfer rate is 10
characters per second. Each transmitted character consists of a start bit, eight information
bits, and two stop bits, for a total of 11 bits. Ten characters per second means that each
character takes 0.1 s for transfer. Since there are 11 bits to be transmitted, it follows that the
bit time is 11.09 ms. The baud rate is defined as the rate at which serial information is
transmitted and is equivalent to the data transfer in bits per second. Ten characters per second
with an 11-bit format have a transfer rate of 110 baud. Integrated circuits are available which
are specifically designed to provide the interface between computer and similar interactive
terminals. Such a circuit is called an asynchronous communication interface or a universal
asynchronous receiver-transmitter (UART).

11.4 MODES OF TRANSFER

Binary information received from an external device is usually stored in memory for later
processing. Information transferred from the central computer into an external device
originates in the memory unit. The CPU merely executes the I/O instructions and may accept
the data temporarily, but the ultimate source or destination is the memory unit. Data transfer
between the central computer and I/O devices may be handled in a variety of modes. Some
modes use the CPU as an intermediate path; others transfer the data directly to and from the
memory unit.

 Data transfer to and from peripherals may be handled in one of three possible modes:

1. Programmed I/O

2. Interrupt-initiated I/O

3. Direct memory access (DMA)

Programmed I/O

Each data item is initiated by an instruction in the program. The transfer is to and from a CPU
register and peripheral. Transferring data under program control requires constant monitoring
of the peripheral by the CPU. The CPU stays in a program loop until the I/O unit indicates
that it is ready for data transfer. Time consuming process since it keeps the processor busy
needlessly.

Computer Organization 11.9 Input – Output organization

Interrupt initiated I/O

The interface monitors the device. When the device is ready for data transfer, the interface
generates an interrupt request to the computer. Upon detecting the external interrupt signal,
the CPU momentarily stops the task it is processing, branches to a service program to process
the I/O transfer and then returns to the task it was originally performing.

DMA

The interface transfers data into and out of the memory unit through the memory bus. The
CPU initiates the transfer by supplying the interface with the starting address and the number
of words needed to be transferred and then proceeds to execute other tasks. When the transfer
is made, the DMA requests memory cycles through the memory bus. When the request is
granted by the memory controller, the DMA transfers the data directly into memory. The
CPU delays its memory access operation to allow the direct memory I/O transfer.\

11.5 PRIORITY INTERRUPT

In a typical application, a number of I/O devices are attached to the computer, with each
device being able to originate an interrupt request. The first task of the interrupt system is to
identify the source of the interrupt. There is also the possibility that several sources will
request service simultaneously. In this case the system must also decide which device to
service first.

A priority interrupt is a system that establishes a priority over the various sources to
determine which condition is to be services first when two or more requests arise
simultaneously. Higher priority interrupt levels are assigned to requests which, if delayed or
interrupted could have serious consequences. Devices with high speed transfers such as
magnetic disks are given high priority and slow devices such as keyboards receive low
priority.

When two devices interrupt the computer at the same time, the computer services the devices
with the higher priority first.

Establishing the priority of simultaneous interrupts can be done by software or hardware:

Software: Polling

Hardware: Daisy chain, Parallel Priority

Polling: A polling procedure is used to identify the highest-priority source by software
means.

In this method, there is one common branch address for all interrupts. The program that takes
care of interrupts begins at the branch address and polls the interrupt sources in sequence.
The order in which they are tested determines the priority of each interrupt. The disadvantage
of the software method is that if there are many interrupts,the time required to poll them can

Centre for Distance Education 11.10 Acharya Nagarjuna University

exceed the time available to service the I/O device. A hardware priority interrupt unit can be
used to speed up the operation.

A hardware priority-interrupt unit functions as an overall manager in an interrupt system
environment. It accepts interrupt requests from many sources, determines which of the
incoming requests has the highest priority, and issues an interrupt request to the computer
based on the determination.

Daisy-Chaining Priority: The daisy-chaining method of establishing priority consists of a
serial connection of all devices that request an interrupt. The device with the highest priority
is placed in the first position, followed by the lower-priority devices up to the device with the
lowest priority, which is placed last in the chain.

Figure 11.8 Daisy chain priority interrupt

The interrupt request line is common to all devices and forms a wired logic connection. If any
device has an interrupt signal in the low-level state, the interrupt line goes to the low-level
state and enables the interrupt input in the CPU. When no interrupts are pending, the interrupt
line stays in the high-level state and no interrupts are recognized by the CPU.

This is equivalent to the negative logic OR operation.

The CPU responds to an interrupt request by enabling the interrupt acknowledge line. This
signal is received by device 1 at its PI (Priority In) input. The acknowledge signal passes on
to the next device through the PO (Priority Out) output only if device 1 is not requesting an
interrupt. If device 1 has a pending interrupt, it blocks the acknowledge signal from the next
device by placing a 0 in the PO output.

Parallel Priority Interrupt:

The parallel priority interrupt method uses a register whose bits are set separately by the
interrupt signal from each device. Priority is established according to the position of the bits
in the register. Mask register is used to provide facility for the higher priority devices to
interrupt when lower priority device is being serviced or disable all lower priority devices
when higher is being services.

Computer Organization 11.11 Input – Output organization

Figure 11.9 : Priority Interrupt Hardware

It consists of:

 An interrupt register whose individual bits are set by external conditions and cleared
by program instructions.

o The magnetic disk, being a high-speed device is given the highest priority.

 The mask register has the same number of bits as the interrupt register. By means of
program instructions, it is possible to set or reset any bit in the mask register.

 Each interrupt bit and it corresponding mask bit are applied to an AND gate to
produce the four inputs to a priority encoder.

In this way an interrupt is recognized only if its corresponding mask bit is set to 1 by the
program. The priority encoder generates two bits of the vector address, which is transferred to
the CPU.

 Another output from the encoder sets an interrupt status flip-flop IST when an
interrupt that is not masked occurs.

 The interrupt enable flip-flop IEN can be set or cleared by the program to
provide an overall control over the interrupt system.

 The outputs of IST ANDed with IEN provide a common interrupt signal for
the CPU.

Centre for Distance Education 11.12 Acharya Nagarjuna University

 The interrupt acknowledge INTACK signal from the CPU enables the bus
buffers in the output register and a vector address VAD is placed into the data
bus.

The priority encoder is a circuit that implements the priority function. The logic of the
priority encoder is such that if two or more inputs arrive at the same time, the input having
the highest priority will take precedence.

11.6 SUMMARY

This chapter examines the various components and processes involved in managing data
exchange between a computer and its external devices. It covers peripheral devices, which
serve as the primary means for input and output operations, and the input-output interface,
which facilitates communication between these devices and the central processing unit. The
chapter delves into asynchronous data transfer, highlighting methods to handle data
transmission without synchronized clocks. It also explores different modes of transfer, such
as programmed I/O, interrupt-driven I/O, and direct memory access (DMA), each offering
unique trade-offs in terms of efficiency and complexity. Lastly, it addresses priority
interrupts, mechanisms to prioritize and manage multiple simultaneous interrupt signals to
ensure efficient processing and system responsiveness.

11.7 TECHNICAL TERMS
Input-Output Interface, Asynchronous Data Transfer, Modes of Transfer, Priority Interrupt.

11.8 SELF ASSESSMENT QUESTIONS

Essay questions:
1. With practical Examples, Explain the connection of I/O bus to input-output

devices and its mapping Specifications.
2. What is the disadvantage of strobe method? Explain how handshake method

solves the problem?
3. Classify and describe the possible modes of data transfer to and from peripherals

with examples.
4. Explain Daisy-Chaining priority and Parallel priority Interrupt with its hardware

diagram
5. With a neat schematic, Explain about DMA controller and its mode of data

transfer

Short Questions:
1. List out the importance of interfacing.
2. Explain in detail about strobe control method of asynchronous data transfer?
3. List out the methodologies involved in handling Priority Interrupt
4. Elaborate how DMA bypasses CPU and speeds up the memory operation?

Computer Organization 11.13 Input – Output organization

11.9 FURTHER READINGS
1. M.Morris Mano, “Computer System Architecture”, 3rd Edition, Pearson Education

(2008).
2. V. Rajaraman, T. Radha Krishnan, “Computer Organization and Architecture”, PHI
3. BehroozParhami, “Computer Architecture”, Oxford (2007)
4. ISRD group, “Computer Organization”, ace series, TMH (2007)
5. William Stallings, “Computer Organization and Architecture – Designing for

Performance”, Pearson Education (2005)

Dr. Kampa Lavanya

LESSON- 12

MEMORY ORGANIZATION

OBJECTIVES:

After going through this lesson, you will be able to

 Grasp the concept and significance of the memory hierarchy

 Differentiate between various types of main memory

 Define auxiliary memory and its importance for long-term data storage.

 Identify scenarios and applications where associative memory is particularly
beneficial.

 Explore different cache mapping techniques

STRUCTURE OF THE LESSION:

12.1 Memory Hierarchy

12.2 Main Memory

12.3 Auxiliary memory

12.4 Associative Memory

12.5 Cache Memory

12.6 Summary

12.7 Technical Terms

12.8 Self-Assessment Questions

12.9 Further Readings

10.1 MEMORY HIERARCHY

Memory hierarchy in a computer system:

Memory hierarchy system consists of all storage devices employed in a computer system
from the slow but high capacity auxiliary memory to a relatively faster main memory, to an
even smaller and faster cache memory accessible to the high speed processing logic.

 Main Memory: memory unit that communicates directly with the CPU (RAM)
 Auxiliary Memory: device that provide backup storage (Disk Drives)
 Cache Memory: special very-high-speed memory to increase the processing
speed (Cache RAM)

Centre for Distance Education 12.2 Acharya Nagarjuna University

Figure 12.1 Memory hierarchy in computer system

Figure 12.1 illustrates the components in a typical memory hierarchy. At the bottom of the
hierarchy are the relatively slow magnetic tapes used to store removable files. the Magnetic
disks are used as backup storage. The main memory occupies a central position by being
able to communicate directly with CPU and with auxiliary memory devices through an I/O
process. Program not currently needed in main memory are transferred into auxiliary
memory to provide space for currently used programs and data.

The cache memory is used for storing segments of programs currently being executed in the
CPU. The I/O processor manages data transfer between auxiliary memory and main
memory. The auxiliary memory has a large storage capacity is relatively inexpensive, but
has low access speed compared to main memory. The cache memory is very small,
relatively expensive, and has very high access speed. The CPU has direct access to both
cache and main memory but not to auxiliary memory.

Multiprogramming:

Many operating systems are designed to enable the CPU to process a number of
independent programs concurrently.

Multiprogramming refers to the existence of 2 or more programs in different parts of the
memory hierarchy at the same time.

Memory management System:
The part of the computer system that supervises the flow of information between
auxiliary memory and main memory.

12.2 MAIN MEMORY

Main memory is the central storage unit in a computer system. It is a relatively large and
fast memory used to store programs and data during the computer operation. The principal
technology used for the main memory is based on semiconductor integrated circuits.
Integrated circuits RAM chips are available in two possible operating modes, static and
dynamic.

 Static RAM – Consists of internal flip flops that store the binary information.

 Dynamic RAM – Stores the binary information in the form of electric charges that are
 applied to capacitors.

Most of the main memory in a general purpose computer is made up of RAM integrated

Computer Organization 12.3 Memory organization

circuit chips, but a portion of the memory may be constructed with ROM chips.

 Read Only Memory –Store programs that are permanently resident in the computer
and for tables of constants that do not change in value once the production of the computer
is completed.
loade

The ROM portion of main memory is needed for storing an initial program called a Bootstrap

 Boot strap loader –function is start the computer software operating when power is
turned on.

 Boot strap program loads a portion of operating system from disc to main memory
and control is then transferred to operating system.

RAM and ROM CHIP

 RAM chip –utilizes bidirectional data bus with three state buffers to perform
communication with CPU

12.2 Typical RAM Chip

The block diagram of a RAM Chip is shown in Fig.12.2. The capacity of memory is 128
words of eight bits (one byte) per word. This requires a 7-bit address and an 8-bit
bidirectional data bus. The read and write inputs specify the memory operation and the two
chips select (CS) control inputs are enabling the chip only when it is selected by the
microprocessor. The read and write inputs are sometimes combined into one line labelled
R/W.

The function table listed in Fig. 12.2(b) specifies the operation of the RAM chip. The unit is
in operation only when CS1=1 and CS2=0.The bar on top of the second select variable

Centre for Distance Education 12.4 Acharya Nagarjuna University

indicates that this input is enabled when it is equal to 0. If the chip select inputs are not
enabled, or if they are enabled but the read or write inputs are not enabled, the memory is
inhibited and its data bus is in a high-impedance state. When CS1=1 and CS2=0, the
memory can be placed in a write or read mode. When the WR input is enabled, the memory
stores a byte from the data bus into a location specified by the address input lines. When the
RD input is enabled, the content of the selected byte is placed into the data bus. The RD and
WR signals control the memory operation as well as the bus buffers associated with the
bidirectional data bus.

Figure 12.3 Typical ROM chip

A ROM chip is organized externally in a similar manner. However, since a ROM can only
read, the data bus can only be in an output mode. The block diagram of a ROM chip is
shown in fig.12.3. The nine address lines in the ROM chip specify any one of the512 bytes
stored in it. The two chip select inputs must be CS1=1 and CS2=0 for the unit to operate.
Otherwise, the data bus is in a high-impedance state.

Memory Address Map

The interconnection between memory and processor is then established from knowledge of
the size of memory needed and the type of RAM and ROM chips available. The addressing
of memory can be established by means of a table that specify the memory address assigned
to each chip. The table called Memory address map, is a pictorial representation of assigned
address space for each chip in the system.

Table 12.1 Memory Address Map for Microprocessors

The memory address map for this configuration is shown in table 12.1. The component

Computer Organization 12.5 Memory organization

column specifies whether a RAM or a ROM chip is used. The hexadecimal address column
assigns a range of hexadecimal equivalent addresses for each chip. The address bus lines are
listed in the third column. The RAM chips have 128 bytes and need seven address lines. The
ROM chip has 512 bytes and needs 9 address lines.

Memory Connection to CPU:

RAM and ROM chips are connected to a CPU through the data and address buses. The low
order lines in the address bus select the byte within the chips and other lines in the address
bus select a particular chip through its chip select inputs.

Figure 12.4 Memory connection to the CPU

The connection of memory chips to the CPU is shown in Fig.12.4. This configuration gives
a memory capacity of 512 bytes of RAM and 512 bytes of ROM. Each RAM receives the

Centre for Distance Education 12.6 Acharya Nagarjuna University

seven low-order bits of the address bus to select one of 128 possible bytes. The particular
RAM chip selected is determined from lines 8 and 9 in the address bus. This is done through
a 2 X 4 decoder whose outputs go to the CS1 inputs in each RAM chip. Thus, when address
lines 8 and 9 are equal to 00, the first RAM chip is selected. When 01, the second RAM chip
is select, and so on. The RD and WR outputs from the microprocessor are applied to the
inputs of each RAM chip. The selection between RAM and ROM is achieved through bus
line 12. The RAMs are selected when the bit in this line is 0, and the ROM when the bit is
1. Address bus lines 1 to 9 are applied to the input address of ROM without going through
the decoder. The data bus of the ROM has only an output capability, whereas the data bus
connected to the RAMs can transfer information in both directions.

12.3 AUXILIARY MEMORY

An Auxiliary memory is known as the lowest-cost, highest-capacity and slowest-access
storage in a computer system. It is where programs and data are kept for long-term storage or
when not in immediate use. The most common examples of auxiliary memories are magnetic
tapes and magnetic disks.

Magnetic Disks

A magnetic disk is a type of memory constructed using a circular plate of metal or plastic
coated with magnetized materials. Usually, both sides of the disks are used to carry out
read/write operations. However, several disks may be stacked on one spindle with read/write
head available on each surface.

The following image shows the structural representation for a magnetic disk.

Figure 12.5 magnetic disk

The memory bits are stored in the magnetized surface in spots along the concentric circles
called tracks.

Computer Organization 12.7 Memory organization

The concentric circles (tracks) are commonly divided into sections called sectors.

Magnetic Tape

Magnetic tape is a storage medium that allows data archiving, collection, and backup for
different kinds of data. The magnetic tape is constructed using a plastic strip coated with a
magnetic recording medium.

The bits are recorded as magnetic spots on the tape along several tracks. Usually, seven or
nine bits are recorded simultaneously to form a character together with a parity bit.

Magnetic tape units can be halted, started to move forward or in reverse, or can be rewound.
However, they cannot be started or stopped fast enough between individual characters. For
this reason, information is recorded in blocks referred to as records.

12.4 ASSOCIATIVE MEMORY

The time required to find an item stored in memory can be reduced considerably if stored
data can be identified for access by the content of the data itself rather than by an address. A
memory unit accessed by content is called an associative memory or content addressable
memory (CAM).

 CAM is accessed simultaneously and in parallel on the basis of data content
rather than by specific address or location
 Associative memory is more expensive than a RAM because each cell must have
storage capability as well as logic circuits
 Argument register –holds an external argument for content matching

 Key register –mask for choosing a particular field or key in the argument word

Hardware Organization

Figure 12.6 Block diagram of associative memory

Centre for Distance Education 12.8 Acharya Nagarjuna University

It consists of a memory array and logic for m words with n bits per word. The argument
register A and key register K each have n bits, one for each bit of a word. The match register
M has m bits, one for each memory word. Each word in memory is compared in parallel
with the content of the argument register. The words that match the bits of the argument
register set a corresponding bit in the match register. After the matching process, those bits
in the match register that have been set bindicate the fact that their corresponding words
have been matched. Reading is accomplished by a sequential access to memory for those
words whose corresponding bits in the match register have been set.

Figure 12.7 Associative memory of m word, n cells per word

The relation between the memory array and external registers in an associative memory is
shown in Fig.12.7. The cells in the array are marked by the letter C with two subscripts. The
first subscript gives the word number and second specifies the bit position in the word.
Thus cell Cij is the cell for bit j in word
i. A bit Aj in the argument register is compared with all the bits in column j of the array
provided that kj

=1.This is done for all columns j=1,2,….n. If a match occurs between all the unmasked bits
of the argument and the bits in word I, the corresponding bit Mi in the match register is set
to 1. If one or more unmasked bits of the argument and the word do not match, Mi is cleared
to 0.

It consists of flip-flop storage element Fij and the circuits for reading, writing, and matching
the cell. The input bit is transferred into the storage cell during a write operation. The bit
stored is read out during a read operation. The match logic compares the content of the
storage cell with corresponding unmasked bit of the argument and provides an output for
the decision logic that sets the bit in Mi.

Computer Organization 12.9 Memory organization

Match Logic

Figure 12.8 One cell of associative memory

The match logic for each word can be derived from the comparison algorithm for two
binary numbers. First, neglect the key bits and compare the argument in A with the bits
stored in the cells of the words.

Word i is equal to the argument in A if Aj=F ijfor j=1,2,…..,n. Two bits are equal if they are
both 1 or both 0. The equality of two bits can be expressed logically by the Boolean
function

xj=Aj Fij + Aj Fij

where xj = 1 if the pair of bits in position j are equal;otherwise , xj =0. For a word i is equal
to the argument in A we must have all xj variables equal to 1. This is the condition for
setting the corresponding match bit Mi to 1. The Boolean function for this condition is

Mi = x1 x2 x3…… xn

Figure 12.9 Mathc logic for one word of associative memory

Centre for Distance Education 12.10 Acharya Nagarjuna University

Each cell requires two AND gate and one OR gate. The inverters for A and K are needed
once for each column and are used for all bits in the column. The output of all OR gates in
the cells of the same word go to the input of a common AND gate to generate the match
signal for Mi. Mi will be logic 1 if a match occurs and 0 if no match occurs.

Read and Write operation Read Operation

 If more than one word in memory matches the unmasked argument field , all the
matched words will have 1’s in the corresponding bit position of the match register
 In read operation all matched words are read in sequence by applying a read
signal to each word line whose corresponding Mi bit is a logic 1
 In applications where no two identical items are stored in the memory , only one word
may match

, in which case we can use Mi output directly as a read signal for the corresponding word

Write Operation
Can take two different forms

1. Entire memory may be loaded with new information

2. Unwanted words to be deleted and new words to be inserted

1. Entire memory : writing can be done by addressing each location in sequence – This
makes it random access memory for writing and content addressable memory for reading –
number of lines needed for decoding is d Where m = 2 d , m is number of words.

2. Unwanted words to be deleted and new words to be inserted :

 Tag register is used which has as many bits as there are words in memory

 For every active (valid) word in memory , the corresponding bit in tag register is set
 to 1

 When word is deleted the corresponding tag bit is reset to 0

 The word is stored in the memory by scanning the tag register until the first 0
bit is encountered After storing the word the bit is set to 1.

12.5 CACHE MEMORY

 Effectiveness of cache mechanism is based on a property of computer programs called
“locality of reference”
 The references to memory at any given time interval tend to be confined within a
localized areas

 Analysis of programs shows that most of their execution time is spent on routines in
 which instructions are executed repeatedly These instructions may be – loops, nested
 loops , or few procedures that call each other
 Many instructions in localized areas of program are executed

Computer Organization 12.11 Memory organization

 repeatedly during some time period and reminder of the program is accessed
infrequently This property is called “Locality of Reference”.

Locality of Reference
Locality of reference is manifested in two ways :

1. Temporal- means that a recently executed instruction is likely to be executed again
 very soon.

 The information which will be used in near future is likely to be in use already(e.g.
 reuse of information in loops)
2. Spatial- means that instructions in close proximity to a recently executed instruction
 are also likely to be executed soon
 If a word is accessed, adjacent (near) words are likely to be accessed soon (e.g.
 related data items (arrays) are usually stored together; instructions are executed
 sequentially)

3. If active segments of a program can be placed in afast (cache) memory , then total
 execution time can be reduced significantly
4. Temporal Locality of Reference suggests whenever an information (instruction or
 data) is needed first , this item should be brought in to cache
5. Spatial aspect of Locality of Reference suggests that instead of bringing just one
 item from the main memory to the cache ,it is wise to bring several items that
 reside at adjacent addresses as well (ie a block of information)

Principles of cache

Figure 12.10 Example of cache memory
The main memory can store 32k words of 12 bits each. The cache is capable of storing 512
of these words at any given time. For every word stored , there is a duplicate copy in main
memory. The Cpu communicates with both memories. It first sends a 15 bit address to
cahache. If there is a hit, the CPU accepts the 12 bit data from cache. If there is a miss, the
CPU reads the word from main memory and the word is then transferred to cache.

 When a read request is received from CPU, contents of a block of memory words
containing the location specified are transferred in to cache
 When the program references any of the locations in this block , the contents are read
from the cache Number of blocks in cache is smaller than number of blocks in main
memory
 Correspondence between main memory blocks and those in the cache is specified by a
mapping function

Centre for Distance Education 12.12 Acharya Nagarjuna University

 Assume cache is full and memory word not in cache is referenced

 Control hardware decides which block from cache is to be removed to create space for
new block containing referenced word from memory
 Collection of rules for making this decision is called “Replacement algorithm ”

Read/ Write operations on cache

 Cache Hit Operation

 CPU issues Read/Write requests using addresses that refer to locations in main
memory

 Cache control circuitry determines whether requested word currently exists in cache

 If it does, Read/Write operation is performed on the appropriate location in cache
(Read/Write Hit)

Read/Write operations on cache in case of Hit

 In Read operation main memory is not involved.

 In Write operation two things can happen.

1. Cache and main memory locations are updated simultaneously “ Write Through ”

2. Update only cache location and mark it as “ Dirty or Modified Bit ” and update main
memory location at the time of cache block removal (“ Write Back ” or “ Copy Back ”) .

Read/Write operations on cache in case of Miss Read Operation

 When addressed word is not in cache Read Miss occurs there are two ways this can
be dealt with
1. Entire block of words that contain the requested word is copied from main memory to
cache and the particular word requested is forwarded to CPU from the cache (Load
Through)

2. The requested word from memory is sent to CPU first and then the cache is updated
(Early Restart)

Write Operation

 If addressed word is not in cache Write Miss occurs

 If write through protocol is used information is directly written in to main memory

 In write back protocol , block containing the word is first brought in to cache , the
desired word is then overwritten.

Mapping Functions

Correspondence between main memory blocks and those in the cache is specified by a
memory mapping function. There are three techniques in memory mapping

Computer Organization 12.13 Memory organization

 Direct Mapping

 Associative Mapping

 Set Associative Mapping

Direct mapping:

A particular block of main memory can be brought to a particular block of cache
memory. So, it is not flexible.

Figure 12.12 Addressing relationships between main and cache memories

In fig 12.12. The CPU address of 15 bits is divided into two fields. The nine least significant
bits constitute the index field and remaining six bits form the tag field. The main memory
needs an address

that includes both the tag and the index bits. The number of bits in the index field is equal to
the number of address bits required to access the cache memory.

Figure 12.13 Direct mapping cache organization

Centre for Distance Education 12.14 Acharya Nagarjuna University

The direct mapping cache organization uses the n- bit address to access the main memory
and the k-bit index to access the cache.Each word in cache consists of the data word and
associated tag. When a new word is first brought into the cache, the tag bits are stored
alongside the data bits.When the CPU generates a memory request, the index field is used
the index field is used for the address to access the cache. The tag field of the CPU address
is compared with the tag in the word read from the cache. If the two tags match, there is a
hit anfd the desired data word is in cache. If there is no match, there is a miss and the
required word is read from main memory.

Figure 12.14 Direct mapping cache with block size of 8 words

In fig 12.14, The index field is now divided into two parts: Block field and The word field.
In a 512 word cache there are 64 blocks of 8 words each, since 64X8=512. The block
number is specified with a 6 bit field and the word with in the block is specified with a 3-bit
field. Th etag field stored within the the cache is common to all eight words of the same
block.

Associative mapping:
In this mapping function, any block of Main memory can potentially reside in any cache
block position. This is much more flexible mapping method.

Figure
1The associative memory stores both address and content(data) of the memory word. This
permits any location in cache to store any word from main memory.The diagram shows
three words presently stored in the cache. The address value of 15 bits is shown as a five-
digit ctal number and its corressponding 12.bit word is shown as a four-digit octal number.
A CPU address of 15-bits is placed in the argument register and the associative memory is
searched for a matching address. If address is found, the corresponding 12.bit data is read
and sent to the CPU. If no match occurs, the main memory is accessed for the word.

Computer Organization 12.15 Memory organization

Set-associative mapping:
In this method, blocks of cache are grouped into sets, and the mapping allows a block of
main memory to reside in any block of a specific set. From the flexibility point of view, it is
in between to the other two methods.

Figure 12.5 Two way set associative mapping cache

The octal numbers listed in Fig.12.15 are with reference to the main memory contents.
When the CPU generats a memory request, the index valus of the address is used to access
the cache. The tag field of the CPU address is then compared with both tags in the cache to
determine if a match occurs. The comparison logic dine by an associative search of the tags
in the set similar to anassociative memory search thus the name “Set Associative”.

Replacement Policies
 When the cache is full and there is necessity to bring new data to cache , then a
decision must be made as to which data from cache is to be removed
 The guideline for taking a decision about which data is to be removed is called
replacement policy Replacement policy depends on mapping
 There is no specific policy in case of Direct mapping as we have no choice of block
placement in cache Replacement Policies

In case of associative mapping
 A simple procedure is to replace cells of the cache in round robin order whenever a
new word is requested from memory
 This constitutes a First-in First-out (FIFO) replacement policy

In case of set associative mapping
 Random replacement

 First-in First-out (FIFO) (item chosen is the item that has been in the set longest)

 Least Recently Used (LRU)(item chosen is the item that has been least recently
used by CPU)

Centre for Distance Education 12.16 Acharya Nagarjuna University

12.5.1 VIRTUAL MEMORY

Early days memory was expensive – hence small. Programmers were using secondary
storage for overlaying Programmers were responsible for breaking programs in to overlays ,
decide where to keep in secondary memory, arranging for transfer of overlays between
main memory and secondary memory In 1961 Manchester University proposed a method
for performing overlay process automatically which has given rise to the concept of Virtual
memory today

Virtual Memory - Background
 Separate concept of address space and memory locations

 Programs reference instructions and data that is independent of available physical
memory Addresses issued by processor for Instructions or Data are called Virtual or
Logical addresses
 Virtual addresses are translated in to physical addresses by a combination of
Hardware and Software components

Types of Memory
 Real memory

 Main memory

 Virtual memory

 Memory on disk

 Allows for effective multiprogramming and relieves the user of tight constraints
of main memory

Address Space and Memory Space
 Address used by a programmer is called virtual address and set of such addresses
is called address space
 Address in main memory is called a location or physical address and set of
such locations is called the memory space
 The Address Space is allowed to be larger than the memory space in computers
with virtual memory

Figure 12.16 Relation between address and memory space in a virtual memory system

Computer Organization 12.17 Memory organization

In a multiprogram computer system, programs and data are transferred to and from
auxiliary memory and main memory based on demands imposed by the CPU. Suppose that
program1 is currently

being executed in the CPU. Program1 and a portion of its associated data are moved from
auxiliary memory into main memory as shown in fig. 12.16. Portions of programs and data
need not be in contiguous locations in memory since information is being moved in out, and
empty spaces may be available in scattered locations in memory.

Figure 12.17 Memory table for mapping a virtual address

In fig 12.17, To map a virtual address of 20 bits to a physical address of 15 bits. The
mapping is a dynamic operation, which means that every address is translated immediately
as a word is referenced by CPU. The mapping table may be stored in a separate memory. In
first case, an additional unit is required as well as one extra memory access time. In the
second case, the table takes space from main memoy and two accesses to memory are
required with program running at half speed. A third alternative is to use an associative
memory.

Address Mapping Using Pages
The physical memory is broken down into groups of equal size called blocks, which may
range from 64 to 4096 word each. The term page refers to groups of address space of the
same size. Portions of programs are moved from auxiliary memory to main memory in
records equal to the size of a page. The term “page frame” is sometimes used to denote a
block.

Centre for Distance Education 12.18 Acharya Nagarjuna University

Figure 12.18 Address space and memory space split into groups of 1K words

In fig 12.18, a virtual address has 13 bits. Since each page consists of 1024 words, the high
order three bits of virtual address will specify one of the eight pages and the low order 10
bits give the line address within the page.

Figure 12.19 Memory table in a paged system

The organization of the memory mapping table in a paged system is shown in Fig.12.19.
The memory page table consists of eight word , one for each page. The address in the page
tabledenotes the page number and the content of the word gives the block number where
that page is stored in main memory. The table showsthat pages 1,2,5 and 6 are now
available in main memory in blocks 3,0,1 and 2, respectively.

Associative Memory Page Table
A random-access memory page table is inefficient with respect to storage utilization.

Computer Organization 12.19 Memory organization

Figure 12.20 An associative memory page table

Replace the random access memory-page table with an associative memory of four words as
shown in Fig12.20. Each entry in the associative memory array consists of two fields. The
first three bits specify a field for storing the page number. The last two bits constitute a field
for storing the block number. The virtual address is placed in the argument register.

Address Translation

 A table is needed to map virtual address to a physical address (dynamic operation)
This table may be kept in
 a separate memory or

 main memory or

 associative memory

12.6 SUMMARY
The chapter on memory organization explores the structure and functionality of various
types of computer memory, highlighting the memory hierarchy, which prioritizes speed and
efficiency. It discusses main memory (RAM), essential for direct access by the CPU, and
auxiliary memory (like hard drives), used for long-term data storage. The chapter delves
into associative memory, also known as content-addressable memory, which allows for data
retrieval based on content rather than address. Additionally, it covers cache memory, a
smaller, faster type of volatile memory that stores copies of frequently accessed data to
improve overall system performance.

12.7 TECHNICAL TERMS
Memory Hierarchy, Main Memory, Auxiliary memory, Associative Memory, Cache

Memory.

Centre for Distance Education 12.20 Acharya Nagarjuna University

12.8 SELF ASSESSMENT QUESTIONS

Essay questions:

1. Define auxiliary memory and its primary functions in a computer system

2. Draw and explain the various types of secondary storage devices.

3. What is virtual memory? Why is it necessary to implement virtual memory?
Explain the virtual memory address translation

4. Discuss different cache mapping techniques such as direct mapping, associative
mapping, and set-associative mapping.

 Short Questions:
1. Explain the concept of memory hierarchy and its importance in computer

architecture.

2. Compare and contrast the different levels of the memory hierarchy

3. Discuss the differences between SRAM and DRAM

4. Describe the purpose of cache memory

12.10 FURTHER READINGS
1. M.Morris Mano, “Computer System Architecture”, 3rd Edition, Pearson Education
 (2008).
2. V. Rajaraman, T. Radha Krishnan, “Computer Organization and Architecture”, PHI
3. BehroozParhami, “Computer Architecture”, Oxford (2007)
4. ISRD group, “Computer Organization”, ace series, TMH (2007)
5. William Stallings, “Computer Organization and Architecture – Designing for
 Performance”, Pearson Education (2005)

Dr. Kampa Lavanya

