(DMSTT21)

Assignment-1 M.Sc. DEGREE EXAMINATION, MARCH – 2023 Second Year STATISTICS Statistical Quality Control MAXIMUM MARKS: 30 Answer ALL Questions

- **Q1)** a) Explain statistical basis of control charts. Explain the interpretation of \overline{X} chart.
 - b) Explain the construction of \overline{X} chart. Obtain OC and ARL for \overline{X} Chart.
- **Q2)** a) Explain the construction of Medium Chart and standard deviation control chart. Describe the patterns on \overline{X} and range control charts.
 - b) Explain the OC and ARL curves for \overline{X} chart. Explain their use.
- **Q3)** a) Explain the development and operation of control chart for number of defectives. How would you measure the sensitivity of the control chart?
 - b) Explain natural limits and specification limits. Explain their interpretation.
- *Q4)* a) Explain the construction and operation of control chart for number of defects per unit. Give any four applications of it.
 - b) Under what conditions in industry would you consider it economical to use the p-chart and the c-chart? Does a process in statistical control, ensure that all the product will be within specifications? Justify by means of an example.
- Q5) a) Explain the moving average control chart and its OC curve.
 - b) Explain Hotelling's T^2 Control Chart.

(DMSTT21)

Assignment-2 M.Sc. DEGREE EXAMINATION, MARCH – 2023 Second Year STATISTICS Statistical Quality Control MAXIMUM MARKS: 30 Answer ALL Questions

- *Q1)* a) What is V-mask? How do you use it for process control?
 - b) Discuss the ANOM for \overline{X} chart and p-Chart.
- *Q2)* a) Define simple sampling plan. Obtain the OC curve for the plan. Discuss the effect of n and c on the OC Curve.
 - b) Describe MIL STD 105E. Explain the procedure for using it.
- *Q3)* a) Distinguish between single sampling plan and double sampling plan. Derive the OC and ASN functions for double sampling plan.
 - b) Discuss the design of a single sampling plan for a specified OC curve. Describe sequential sampling plan.
- *Q4)* a) Explain the merits and demerits of variable sampling plan. Describe sequential sampling plan by variables.
 - b) Give the description of MIL STD 414. Describe CSP-2 and CSP-3.
- **Q5)** a) Explain the design of variable sampling plan with a specified OC curve. Explain 6σ and its uses.
 - b) Explain CSP-1. Discuss Process Flow Diagram and Quality Function Deployment. What are their uses?

(DMSTT22)

Assignment-1 M.Sc. DEGREE EXAMINATION, MARCH – 2023 Second Year STATISTICS Operations Research MAXIMUM MARKS: 30 Answer ALL Questions

Q1) a) Use simplex method to solve the following L.P.P: Min $Z = x_1 - 2x_2 - 3x_3$ Subject to : $-2x_1 + x_2 + 2x_3 = 2$ $2x_1 + 3x_2 + 4x_3 = 1$ and $x_1, x_2, x_3 \ge 0$.

b) Use dual simplex method to solve the following L.P.P:

Max. $Z = -3 x_1 - x_2$

Subject to $x_1 + x_2 \ge 1$

$$2 x_1 + 3 x_2 \ge 2$$

and $x_1, x_2 \ge 0$.

- (Q2) a) Use two phase simplex method to solve the following L.P.P: Min $Z = x_1 + x_2$ Subject to $2x_1 + x_2 \ge 4$ $x_1 + 7 x_2 \ge 7$ and $x_1, x_2 \ge 0$.
 - b) Use dual simplex method to solve the following L.P.P: Min Z = $6x_1 + x_2$ Subject to $2x_1 + x_2 \ge 3$ $x_1 - x_2 \ge 0$

and $x_1, x_2 \ge 0$.

- *Q3)* a) What are inventory models? Discuss the various costs involved in an inventory model.
 - b) Explain EOQ model with constant demand without shortages.

- **Q4)** a) Explain the problem of EOQ with finite rate of replenishment.
 - b) Explain individual replacement policy.

Q5) a) Explain

- i) two person zero sum game.
- ii) pure and mixed strategies.
- iii) maximum and minmax principle and.
- iv) dominance property.
- b) Solve the following game by graphical method:

		Player B	
		\mathbf{B}_1	B_2
Player	A_1	1	-3
А	A_2	3	5
	A_3	-1	6
	A_4	4	1
	A_5	2	2
	A_6	-5	0

(DMSTT22)

Assignment-2 M.Sc. DEGREE EXAMINATION, MARCH – 2023 Second Year STATISTICS Operations Research MAXIMUM MARKS: 30 Answer ALL Questions

		Player B			
Player	А	B_1	B_2	B_3	B_4
	A_1	3	2	4	0
	A_2	3	4	2	4
	A_3	4	2	4	0
	A_4	0	4	0	8

Q1) a) Use dominance to solve the following game:

b) Solve the following game by linear programming

		Player B		
Player	А	\mathbf{B}_1	B_2	B ₃
	A_1	1	-1	3
	A_2	3	5	-3
	A_3	6	2	-2

Q2) a) Explain Queuing system. Describe the characteristics of the system.

b) Explain M|G|1 Queuing system. Obtain its steady state solution.

Q3) a) Explain M|M|1 system. Obtain its steady state solution. Find the waiting time distribution for the system.

b) Explain $M|E_k|1$ system. Obtain its steady state solution. Find the expected number of phases in the system.

- Explain PERT|CPM network components and procedence relation **Q**4) a) ships. Summarize the rules for network construction.
 - Construct the network diagram and find the critical path from the b) following data pertaining to a small project:

	Immediate	Expected
Activity	Predecessor	time (days)
A	-	5
В	А	7
С	В	2
D	В	3
Е	С	1
F	D	2
G	С	1
Н	E,F	3
Ι	G,H	10
3371 (1	• • • • •	

What is the minimum time for completion of the project.

Q5) Distinguish between PERT and CPM. Explain the critical path a)

analysis.

b)

A small pr Activity	oject has the fol Immediate Predecessor	llowing details: Duration (Days)		
٨		Most likely	Optimistic	Pessimistic
<u>A</u> B	 A	6	2	14
Ċ	A	3	3	3
D	B,C	10	4	22
E	В	7	3	15
F	D,E	5	2	14
G	D	4	4	4

Draw the network and find the critical path. Find the project completion time. What project duration will have 99% confidence of completion.

+ + +

(DMSTT23)

Assignment-1 M.Sc. DEGREE EXAMINATION, MARCH – 2023 (Second Year) STATISTICS Econometrics MAXIMUM MARKS: 30 Answer ALL Questions

- *Q1*) a) Explain the simple linear model. Explain the properties of the model.
 - b) Obtain the least squares estimators of the constants in a simple linear model. Show that the estimators have minimum varianceproperty.
- **Q2)** a) Explain log-linear and reciprocal models. Give their applications one each.
 - b) Develop a test statistic for testing the significance of the slop parameter.
- **Q3)** a) Explain the general linear model. Obtain the OLS estimators of the parameters in the model.
 - b) State and prove Gauss Markov theorem. Obtain an estimate of variance of the disturbance term.
- **Q4)** a) Develop a test procedure for testing the significance of a subset of coefficients in the general linear model.
 - b) Explain the problem of prediction when the explanatory variables are uncertain.
- *Q5)* a) Develop a test procedure for testing the general linear hypothesis.b) Explain the role of dummy variables in regression models.

(DMSTT23)

Assignment-2 M.Sc. DEGREE EXAMINATION, MARCH – 2023 (Second Year) STATISTICS Econometrics MAXIMUM MARKS: 30 Answer ALL Questions

- *Q1)* a) Explain MWD test for choosing between linear and log-linear models.
 - b) Explain chow test.
- **Q2)** a) Explain the problem of multi collinearity. What are its consequences? How do you resolve it?
 - b) Explain the generalized linear model. Obtain Aitken estimators. Develop a test procedure for testing a set of linear hypotheses based on GLS.
- **Q3)** a) What is the problem of heteroscedasticity? What are its consequences?
 - b) Explain Goldfeld Quandt test.
- *Q4*) a) Define auto-correlation. Explain Durbin- Watson test.
 - b) Explain logit model. Explain a method of estimating it.
- **Q5)** a) Describe the estimation procedure if the disturbances of the linear model follow ARCD process.
 - b) Explain
 - i) Linear probability model and
 - ii) Probit model. Describe the methods of their estimation.

+ + +

(DMSTT24)

Assignment-1 M.Sc. DEGREE EXAMINATION, MARCH – 2023 Second Year STATISTICS Multivariate Analysis MAXIMUM MARKS: 30 Answer ALL Questions

- **Q1)** a) Define a p-variate normal distribution. Obtain its characteristic function.
 - b) Obtain the sampling distributions of sample mean vector and sample covariance matrix in a p-variate normal.
- **Q2)** a) Obtain the distribution of a linear combination of a p-variate normal random variable.
 - b) Obtain the maximum likelihood estimators of the mean vector and the covariance matrix in a p-variate normal.
- **Q3)** a) Derive the distribution of T^2 .
 - b) Develop a test statistic to test for the difference of mean vectors in p-variate normal distributions.
- *Q4)* a) Explain the mathematical model of M ANOVA for one-way classification. Explain the mathematical analysis of the model.
 - b) Explain the test to test the mean vector is a given vector in a multivariate normal.
- Q5) a) What do you mean by a dimension reduction technique. Derive the expressions for the first and second principal components.
 - b) Explain orthogonal factor model. Explain the principal component method of parameter estimation.

(DMSTT24)

Assignment-2 M.Sc. DEGREE EXAMINATION, MARCH – 2023 Second Year STATISTICS Multivariate Analysis MAXIMUM MARKS: 30 Answer ALL Questions

- *Q1)* a) Explain the purpose of factor rotation. Explain orthogonal factor rotation and varimax factor rotation.
 - b) State and prove the properties of principal components.
- **Q2)** a) Explain the problem of classification into one of two known multivariate normal populations.
 - b) Explain the problem of classification into one of several populations.
- **Q3)** a) Explain the problem of classification into one of two populations with known probability distributions.
 - b) Explain the problem of classification into one of several multivariate normal populations.
- **Q4)** a) Explain the concept of cluster analysis. Define similarity measures. Explain average linkage method.
 - b) Explain single linkage and K-means methods.
- **Q5)** a) Explain the difference between hierarchical and non-hierarchical methods of clustering. Explain k-means method.
 - b) Explain single linkage and average linkage methods of clustering.

+ + +