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ASSIGNMENT - 1 

M.Sc. DEGREE EXAMINATION, MARCH 2023 

. Second Year 

Mathematics 

TOPOLOGY AND FUNCTIONAL ANALYSIS 
MAXIMUM : 30 MARKS 

ANSWER ALL QUESTIONS 

1. (a) Let ƒ be a one-to-one mapping of one topological space onto another, and 

show that ƒ is a homomorphism   both ƒ  and 1ƒ  are continuous. 

 (b) Let X be a second countable space. Then any open base for X has a countable 
subclass which is also an open base. 

2. (a) Prove that any continuous image of a compact space is compact. 

 (b) State and prove generalised Heine-Borel theory. 

3. (a) Prove that every compact metric space has the Bolzano-Weierstrass property. 
 (b) Prove that a closed subspace of complete metric space is compact   it is 

totally bounded. 

4. (a) Prove that the product of any non-empty class of Hausdorff spaces is a 
Hausdorff space. 

 (b) Prove that every compact Hausdorff space is normal. 

5. (a) State an prove Urysohn’s theorem. 
 (b) Prove that a topological space is connected   every non empty proper 

subset has a non-empty bundary. 
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ASSIGNMENT - 2 

M.Sc. DEGREE EXAMINATION, MARCH 2023 

. Second Year 

Mathematics 

TOPOLOGY AND FUNCTIONAL ANALYSIS 
MAXIMUM : 30 MARKS 

ANSWER ALL QUESTIONS 

1.     (a) If M is a closed linear subspace of a normed linear space N, and if T is a 
natural mapping of N onto MN /  defined by MxxT )( , show that T is a continuous 

linear transformation for which 1T . 

 (b) State and prove the Hahn-Banach theorem. 

2. (a) Show that a linear subspace of a normed linear space is closed it is weakly 
closed. 

 (b) Explain the open mapping theorem. 

3. (a) Prove that if B is reflexive Banach space, then its closed unit sphere ‘S ’ is 
weakly compact. 

 (b) State and prove, the Uniform Boundedness theorem. 

4. (a) Prove that A closed convex subset ‘C ’ of a Hilbert space H contains a unique 
vector of smallest noun. 

 (b) If M and N are closed linear subspaces of a Hilbert space H such that 
NM  , then the linear subspace NM   is also closed 

5. (a) State and prove Bessel’s Inequality. 

 (b) Show that the adjoint operation is one-to-one as a mapping of fHB )(  into 

itself. 
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ASSIGNMENT - 1 

M.Sc. DEGREE EXAMINATION, MARCH 2023 

Second Year 

Mathematics 

MEASURE AND INTEGRATION 
MAXIMUM : 30 MARKS 

ANSWER ALL QUESTIONS 

1. (a) Let  nƒ  be a sequence of continuous functions defined on R. Show that the 

set C of points where this sequence converges in on Fab. 

 (b) Show that EE supinf   if and only if E  

2. (a) Prove that if 1E  and 2E  are measurable so is 21 EE  . 

 (b) Let  iE  be a sequence of disjoint measurable sets and A is any set then 
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3. (a) Prove that the product of two measurable extended real valued functions is 
measurable. 

 (b) State and prove Egoroff ’s theorem. 

4. (a) State and prove Bounded convergence theorem. 

 (b) Let ƒ be a non negative measurable function. Show that 0ƒ0ƒ   a.e.  

5. (a) Let  nƒ  be a sequence of integrable functions such that 0|ƒƒ|  n  if and 

only if |ƒ||ƒ|  n  

 (b) Explain convergence in measure. 
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ASSIGNMENT - 2 

M.Sc. DEGREE EXAMINATION, MARCH 2023 

Second Year 

Mathematics 

MEASURE AND INTEGRATION 
MAXIMUM : 30 MARKS 

ANSWER ALL QUESTIONS 

 

1.    (a) A function ƒ is of bounded variation on ],[ ba  if and only if ƒ is the difference 

of two monotone real valued functions on ],[ ba . 

 (b) Let ƒ be an integrable function on ],[ ba  and suppose that 


x

a

dttaFxF )ƒ()()(  

  then )ƒ()(' xxF   for almost all x in ],[ ba  

2.  (a) State and prove Minkowski inequality for 10  p . 

 (b) Prove that every convergence sequence is a Cauchy sequence. 

3. (a) Show that   is  -finite if and only if all but a countable number of the 2  

are zero and the remainder are  -finite. 

 (b) State and prove Monotone convergence theorem. 

4. (a) Show that if E  is any measurable set, then 

  EvvEvE t  and )(|||| EvvE   

 (b) Prove the uniquencess ascertain in the Lebsegue decompositon. 

5. (a) Show that an outer measure *  is regular if and only if it is induced by a 

measure of 
an algebra. 

 (b) Assume that  iE  is a sequence of disjoint measurable sets and iEE  . 

Then for any set A  we have )(*)(* iEAEA     
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ASSIGNMENT - 1 

M.Sc. DEGREE EXAMINATION, MARCH 2023 

Second Year 

Mathematics 

ANALYTICAL NUMBER THEORY AND 
GRAPH THEORY 

MAXIMUM : 30 MARKS 

ANSWER ALL QUESTIONS 

1. (a) If 1n , then prove that 
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 (b) Use Euler’s formula to deduce 










xn x
x

OAx
n
x log

log
2
1log 2 , where A is 

constant and 2x . 

2. (a) If 2n , prove that 
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 (b) The set of all lattice points visible from the origin has density 2  

3. (a) For 1n , the thn  prime p, satisfies the inequality. 
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 (b) Prove that, there is a constant A, such that 
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4. (a) Prove that for every 1n  there exist n  consecutive composite numbers. 

 (b) If 2x , Let 
x

t
dt

xLi
2

.
log

)(  Then prove that 
2log

2

loglog
)(

2
2

 
x

t

dt
x

x
nLi  

5. (a) Prove that a simple graph with ’‘n  vertices must be connected if it has move 
that 2)2)(1(  nn  Edges. 

 (b) In a graph G, Let 1P  and 2P  are two different paths between two given 

vertices, prove that 21 PP   is a circuit (or) a set of circuits in G . 
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ASSIGNMENT - 2 

M.Sc. DEGREE EXAMINATION, MARCH 2023 

Second Year 

Mathematics 

ANALYTICAL NUMBER THEORY AND 
GRAPH THEORY 

MAXIMUM : 30 MARKS 

ANSWER ALL QUESTIONS 

1.     (a) Explain Euler’s graph with an example. 

 (b) Prove that a connected graph G remains connected after removing an edge ie  

from G if and only if ie  is in same circuit in G. 

2. (a) Prove that a tree with ’‘n  vertices has exactly )1( n  Edges. 

 (b) Show that a Hamiltonian path is a spanning tree. 

3. (a) Prove that every circuit has an even number of edges in common with any 
cut-set. 

 (b) Explain cut point and cut Edge with examples. 

4. (a) Prove that a connected planar graph with n vertices has 2ne  regions. 

 (b) A complete bipartite graph nKm, ¸is planar if and only if 2m  or 2n . 

5. (a) Prove that the ring sum of two circuits in a graph G is either a circuit or an 
edge-disjoint union of circuits. 

 (b) Explain Basis vectors of a Graph. 



   

          (DM24) 
ASSIGNMENT - 1 

M.Sc. DEGREE EXAMINATION, MARCH 2023 

Second Year 

Mathematics 

RINGS AND MODULES 
MAXIMUM : 30 MARKS 

ANSWER ALL QUESTIONS 

1. (a) Show that a group may equivalently be defined as a system (S, 1, /), where / 

is a binary operation satisfying the identifies. 

  aa 1/ ,  1/ aa ,  bacbca /)/)(/(   

 (b) Prove that ,inf VTTSup   where  

  }/{ sTtSsT tV   

2. (a) If   is a homomorphic relation between R  and S and T  is a subring of S , 

show that }/{ tTtRrT r   is a subring of R. 

 (b) Prove that if a ring is a sum of ideals, then it is a finite sum. 

3. (a) Show that any Artivian or Noetherian module can be written as a direct sum 
of indecomposable modules. 

 (b) Prove that if ),( BAHomR  then OAA 1/   . 

4. (a) Determine all prime and maximal ideals as well as both radicals of Z(n), the 

ring of integers Modulo ‘n’. 

 (b) Prove that every ring is a sub direct product of sub directly irreducible rings. 

5. (a) If M is a maximal ideal in the ring R and n is any positive integer, show that 
nMR /  has a unique prime ideal. 

 (b) Prove that, if R  is a commutative ring, then the system 

)(),,,1,0,( RQF     is also a commutative ring. It extends R and will be 

called its complete ring of quotients. 
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ASSIGNMENT - 2 

M.Sc. DEGREE EXAMINATION, MARCH 2023 

Second Year 

Mathematics 

RINGS AND MODULES 
MAXIMUM : 30 MARKS 

ANSWER ALL QUESTIONS 

1.    (a) Show that R is a prime ring if and only if 01   and 0AB  for any two non 

zero right ideals A  and B  of R. 

 (b) State and prove Chinese Remainder theorem. 

2. (a) If R is a commutative ring, show that every dense ideal is large, and that 
conversely every large ideal is dense, if and only if R is semi primitive. 

 (b) Show that R is completely reducible if and only if no maximal right ideal is 
large. 

3. (a) If D  and 'D  are division rings and ''nDDn  show that 'DD   and 'nn  . 

 (b) Show that every factor ring of a right Noetherian (Artivian) ring is right 
Noetherian (Artivian). 

4. (a) Prove that every free module is projective. 

 (b) Prove that if FR  is a free module then *
RF  is injective. 

5. (a) Show that every R-module is injective if and only if R is completely reducible. 

 (b) Show that a ring is right hereditary if and only if every submodule of a 
projective module is projective. 


