(DPHY01)

ASSIGNMENT - 1 M.Sc. (Previous) DEGREE EXAMINATION, MAY – 2019

PHYSICS

First Year

Mathematical Physics

MAXIMUM: 30 MARKS ANSWER ALL QUESTIONS

- Q1) Obtain the series solution of Legendre differential equation.
- **Q2)** a) Using Hermite polynomial prove that

$$H_{n-1}(x) = (x-1)H_{n-2}(x) + \frac{1}{2}H_n(x)$$

- b) Obtain the generating function for Lagurre polynomial.
- **Q3)** a) State and prove Cauchy Reimann equations.
 - b) Prove that $x = e^{-x}(x \sin y y \cos y)$ is harmonic.
- **Q4)** a) State and prove Taylor's Theorem.
 - b) Expand $f(z) = \sin z$ in a Taylor series about $z = \frac{\pi}{4}$.
- **Q5)** a) Explain the classification of Cartesian tensors.
 - b) Explain the quotient law of tensor.

ASSIGNMENT - 2 M.Sc. (Previous) DEGREE EXAMINATION, MAY – 2019

PHYSICS

First Year

Mathematical Physics

MAXIMUM: 30 MARKS ANSWER ALL QUESTIONS

- **Q1)** a) Define contravariant covariant and mixed tensors with suitable examples.
 - b) Explain the derivatives of a tensor.
- **Q2)** a) Find the Laplace transform of
 - i) $t^2 + at + b$ and
 - ii) $\sinh^2 2t$
 - b) Evaluate $L^{-1}\left\{\frac{6s^2 + 22s + 18}{s^3 + 6s^2 + 11s + 6}\right\}$ using partial fraction method.
- **Q3)** a) Bring out the relation between Fourier Transform and Laplace Transform.
 - b) Find the Fourier series for f(x) in the interval $(-\pi, \pi)$ where

$$f(x) = \frac{\pi + x, -\pi < x < 0}{\pi - x, 0 < x < \pi}$$

- **Q4)** Write the following:
 - a) Prove the recurrence relation.

$$(n+1)L_{n+1}(x) = (2n+1-x)L_n(x) - nL_{n-1}(x)$$

- b) Jordan's inequality and Lemma.
- c) Curl of covariant vector.
- d) LT of Integral.

(DPHY02)

ASSIGNMENT - 1 M.Sc. (Previous) DEGREE EXAMINATION, MAY – 2019

First Year PHYSICS

Classical Mechanics and Statistical Mechanics MAXIMUM: 30 MARKS ANSWER ALL QUESTIONS

- **Q1)** a) What are constraints? Classify and give examples.
 - b) State and explain D'Alembert's principle.
- **Q2)** a) Explain angular momentum and kinetic energy of a rotating rigid body.
 - b) Derive Euler's equation of motion for a rigid body with fixed point.
- **Q3)** a) Derive Lorentz transformation equations for relativistic motion.
 - b) Write a note on Lagrange and poisson brackets.
- **Q4)** a) What are action angle variables? Solve kepler problem using action angle variables.
 - b) Formulate the theory of small oscillations.
- **Q5)** a) State and explain equi partition theorem.
 - b) Give a role of Gibb's paradox.

(DPHY02)

ASSIGNMENT - 2 M.Sc. (Previous) DEGREE EXAMINATION, MAY – 2019

First Year PHYSICS

Classical Mechanics and Statistical Mechanics MAXIMUM: 30 MARKS ANSWER ALL QUESTIONS

- **Q1)** a) Explain the energy fluctuations in the canonical ensemble.
 - b) Obtain the equivalence between the canonical ensemble and grand canonical ensemble.
- **Q2)** a) Explain the postulates of quantum statistical mechanics.
 - b) State and explain variational principle.
- **Q3)** a) Explain the theory of white dwarf stars.
 - b) Obtain an expression for the internal energy of an ideal Fermi gas.
- **Q4)** Write the following:
 - a) Lagranges equations from Hamilton principle.
 - b) Canonical invariance
 - c) Density fluctuations in grand canonical ensemble.
 - d) Bose Einstein condensation.

(DPHY03)

ASSIGNMENT - 1 M.Sc. (Previous) DEGREE EXAMINATION, MAY – 2019

First Year PHYSICS

Quantum Mechanics MAXIMUM: 30 MARKS ANSWER ALL QUESTIONS

- **Q1)** a) Explain the significance of wave functions and their interpretation.
 - b) Explain Dirac's bra and ket notations.
- **Q2)** a) What are stationary states? Explain.
 - b) Obtain the solution of wave equation for a rigid rotator.
- **Q3)** a) Explain the stark effect in hydrogen atom
 - b) Obtain the ground state of helium atom using Variation method.
- **Q4)** a) Briefly explain time dependent perturbation theory.
 - b) Write a note on Einstein transition probabilities.
- **Q5)** a) Define angular momentum operator and obtain the commutation relations between them.
 - b) Obtain Eigen values for L² and L_z

(DPHY03)

ASSIGNMENT - 2 M.Sc. (Previous) DEGREE EXAMINATION, MAY – 2019

First Year PHYSICS

Quantum Mechanics MAXIMUM: 30 MARKS ANSWER ALL QUESTIONS

- **Q1)** a) Derive pauli's spin matrices.
 - b) State and explain Wignas Eekart theorem.
- **Q2)** a) Obtain equation of motion in Heisen berg's picture.
 - b) Explain the correspondence between Schrodinger's and Heisenberg's pictures.
- **Q3)** a) Obtain the Dirac's relativistic equation for a free particle.
 - b) Write a note on Negative energy states.
- **Q4)** Write notes on the following:
 - a) Uncertainty principle
 - b) WKB method
 - c) CG coefficients
 - d) Probability and current densities.

(DPHY04)

ASSIGNMENT - 1 M.Sc. (Previous) DEGREE EXAMINATION, MAY – 2019

PHYSICS

First Year

Electronics

MAXIMUM: 30 MARKS ANSWER ALL QUESTIONS

- **Q1)** a) Explain the working of operational amplifier with block diagram.
 - b) What is CMRR? Explain.
- **Q2)** a) Explain the working of Wien's bridge oscillator with block diagram.
 - b) Give an account on the operation of class B push full amplifier with wave forms.
- **Q3)** a) Define microwaves and discuss the application of Maxwell's equations in the rectangular wave guides.
 - b) With a neat block diagram explain the working of Magic T attenuator.
- **Q4)** a) Define Frequency modulation and discuss the production and detection of FM waves
 - b) Discuss about the propagation of ground wave and sky wave.
- **Q5)** a) Draw the circuit diagrams of NAND, NOR and exclusive OR logic gates and explain its working with the help of truth tables.
 - b) Explain the working of a multiplexer encloser with neat diagram.

(DPHY04)

ASSIGNMENT - 1 M.Sc. (Previous) DEGREE EXAMINATION, MAY – 2019

PHYSICS

First Year

Electronics

MAXIMUM: 30 MARKS ANSWER ALL QUESTIONS

- **Q1)** a) Explain the working of RS and JK flip flops with block diagrams.
 - b) With a neat block diagram explain the operation of A/D converter.
- **Q2)** a) Explain the architecture and pin configuration of 8085.
 - b) Write an assembly language program for multiplication of two 8 bit numbers.
- **Q3)** a) Explain the architecture of 8086 and explain the operation of each pin.
 - b) Explain the instruction set of 8086.
- **Q4)** Write notes on the following:
 - a) Phase shift oscillator
 - b) Foster seelay discriminator
 - c) Shift register
 - d) Addressing modes of 8085.

