ASSIGNMENT-1
M.Sc. DEGREE EXAMINATION, JUNE 2022.

First Year
Mathematics
ALGEBRA
MAXIMUM MARKS :30
ANSWER ALL QUESTIONS

1. (a) If G is a finite abelian group of order n and m is positive integer prime to n, then show that the mapping $\sigma: x \rightarrow x^{m}$ is an automorphism of G.
(b) State and prove Sylow's theorem for abelian groups.
2. (a) Define a composition series of a finite group. Prove that any two composition series of a finite group are equivalent.
(b) Show that conjugacy is an equivalence relation on G.
3. (a) If R is a commutative ring with unity in which each ideal is prime, then prove that R is a field.
(b) Describe all finite abelian groups of order $2^{4} 3^{4}$.
4. (a) Find the non-trivial ideals of the ring $P=\left[\begin{array}{ll}Z & Q \\ 0 & 0\end{array}\right]$.
(b) Show that a finite integral domain is a field.
5. (a) If $p(x)$ is a polynomial in $F(x)$ of degree $n \geq 1$ and irreducible over F then show that there is an extension E of F such that $[E: F]=n$ in which $P(x)$ has a root.
(b) What is Euclidean ring? Explain a particular Euclidean ring.
(DM 01)
ASSIGNMENT-2
M.Sc. DEGREE EXAMINATION, JUNE 2022.

First Year
Mathematics
ALGEBRA
MAXIMUM MARKS :30
ANSWER ALL QUESTIONS

1. Show that every integral domain can be imbedded in a field.
2. (a) State and prove the division algorithm for polynomial rings over a commutative integral domain.
(b) Show that the polynomial $f(x) E F[x]$ has a multiple root if and only if $f(x)$ and $f^{\prime}(x)$ have a non-trivial common root.
3. (a) Show that a group G insolvable if and only if $G^{(k)}=e$ for some integer k.
(b) Show that the general polynomial $p(x)=x^{n}+a_{1} x^{n}+\ldots+a_{n}$ for $n \geq 5$ is not solvable by radicals.
4. (a) Prove that any totally ordered set is a distributive lattice.
(b) Show that a lattice of invariant sub groups of any group is modular.
5. (a) Prove that a partially ordered set with a least element O such that every non-empty subset has a least upper bound is a complete lattice.
(b) Prove that the complement Q^{\prime} of any element a of a, Boolean algebra B is uniquely determined and also, prove that $(a \vee b)^{\prime}-a^{\prime} \wedge b^{\prime} ;(a \wedge b)^{\prime}=a^{\prime} \vee b^{\prime}$ in B.

ASSIGNMENT-1
M.Sc. DEGREE EXAMINATION, JUNE 2022.

First Year
Mathematics
ANALYSIS
MAXIMUM MARKS :30
ANSWER ALL QUESTIONS

1. (a) Let $\left\{E_{n}\right\}, n=1,2,3 \ldots \ldots$, be the sequence of countable sets and $S=\bigcup_{n=1}^{\infty} E_{n}$. Then ' S ' is countable.
(b) Compact subsets of Metric spaces are closed.
2. (a) Prove that every k-cell is compact.
(b) If p is a limit point of a set E, then every neighbourhood of p contains infinitely main points of E.
3. (a) Let $\left\{P_{n}\right\}$ be a subsequence in a Metric space X
(i) $\left\{P_{n}\right\}$ converges to $P \in X$ if and only if every neighbourhood of p contains P_{n} for all but finitely many ' n '.
(ii) If $p \in X, p^{\prime} \in X$ and if $\left\{P_{n}\right\}$ converges to P and P^{\prime} then $P=P^{\prime}$.
(iii) If $\left\{P_{n}\right\}$ converges then $\left\{P_{n}\right\}$ is bounded
(b) If $\sum a_{n}$ converges and if $\left\{b_{n}\right\}$ is monotonic and bounded, prove that $\sum a_{n} b_{n}$ converges.
4. (a) Let ' f ' be a real uniformly continuous function on the bounded set E in R^{\prime}. Prove that f is bounded on E.
(b) Suppose f is a continuous mapping of a compact metric space X into a metric space Y. Then $f(X)$ is compact.
5. (a) Let $f \in R(\alpha)$ on $[a, b] \Leftrightarrow$ for every $\in>0$ there exists a partition ' p ' such that

$$
U(p, f, \alpha)-L(p, f, \alpha)<\epsilon
$$

(b) If f maps $[a, b]$ in R^{k} and if $f \in R(\alpha)$ for some monotonically increasing function ' α ' on $[a, b]$ then $|f| \in R(\alpha)$ and $\left|\int_{a}^{b} f d \alpha\right| \leq \int_{a}^{b}|f| d \alpha$.

DM 02)
ASSIGNMENT-2
M.Sc. DEGREE EXAMINATION, JUNE 2022.

First Year
Mathematics
ANALYSIS
MAXIMUM MARKS :30
ANSWER ALL QUESTIONS

1. (a) Suppose $f \geq 0$ is continuous on $[a, b]$ and $\int_{a}^{b} f(x) d x=0$, prove that $f(x)=0 \forall x \in[a, b]$.
(b) Suppose F and G are differentiable functions on $[a, b]$, $F^{\prime}=f \in R$ and $G^{\prime}=g \in R$ then

$$
\int_{a}^{b} F(x) G(x) d x=F(b) G(b)-F(a) G(a)-\int_{a}^{b} f(n) G(n) d x
$$

2. (a) The sequence of functions $\left\{f_{n}\right\}$ defined on E, converges uniformly on E if and only if for every $\in>0, \exists$ an integer N such that $M \geq N, n \geq N, x \in E$

$$
\Rightarrow\left|f_{n}(x)-f_{m}(x)\right| \leq \epsilon
$$

(b) State and prove Weierstrass approximation theorem.
3. (a) If K is a compact metric space, if $f_{n} \in \mathfrak{e}(K)$ for $k=1,2,3 \ldots$ and if $\left\{f_{n}\right\}$ converges uniformly on k, then $\left\{f_{n}\right]$ is equicontinuous on k.
(b) Let ' α be monotonically increasing on $[a, b]$. Suppose $f_{n} \in R(\alpha)$ on $[a, b]$ for $n=1,2,3, \ldots$ and suppose $f_{n} \rightarrow f$ uniformly on $[a, b]$, then $f \in R(\alpha)$ and $\int_{a}^{b} f d x=\lim _{n \rightarrow \infty} \int_{a}^{b} f_{n} d x$.
4. (a) State and prove Lebesgue's dominated Converges theorem.
(b) Suppose f is measurable and non negative on X, for $A \in \mathbb{R}$ define $\phi(A)=\int_{A} f d \mu$ then ϕ is countably additive on \mathbb{R}.
5. (a) State and prove Fatou's theorem.
(b) Let $\left\{f_{n}\right\}$ be a sequence of measurable functions. For $x \in X$ $g(x)=\sup f_{n}(x) \quad n=1,2,3, \ldots$ Then g and h are measurable. $h(x)=\lim _{n \rightarrow \infty} \sup f_{n}(x)$
(DM 03)

ASSIGNMENT-1

M.Sc. DEGREE EXAMINATION, JUNE 2022.

First Year
COMPLEX ANALYSIS AND SPE. FUNCTIONS AND PARTIAL DIF. EQU.
MAXIMUM MARKS :30
ANSWER ALL QUESTIONS
SECTION - A

1. (a) Find a power series solution of the Legendre's equation $\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+n(n+1) y=0$.
(b) State and prove Rodrigque's formula for Legendre's equation.
2. (a) Show that for any function $f(x)$, for which the $n^{\text {th }}$ derivative is continuous $\int_{-1}^{1} f(x) P_{n}(x) d x=\frac{1}{2^{n} n!} \int_{-1}^{1}\left(1-x^{2}\right)^{n} f^{n}(x) d x$.
(b) We shall prove that

$$
\int_{-1}^{1} P_{m}(x) P_{n}(x) d x=\left\{\begin{array}{cl}
0, & m \neq n \\
\frac{2}{2 n+1}, & m=n
\end{array} .\right.
$$

3. (a) Prove that

$$
\int_{0}^{1} x J_{n}(\alpha x) J_{n}(\beta x) d x=\left\{\begin{array}{cc}
0, & \alpha \neq \beta \\
\frac{1}{2}\left[J_{n}+(\alpha)\right]^{2}, & \alpha=\beta
\end{array}\right.
$$

Where α, β are the roots of $J_{n}(x)=0$.
(b) Prove that

$$
\frac{d}{d x}\left\{x J_{n}(x) J_{n+1}(x)\right\}=J_{n}^{2}(x)-J_{n+1}^{2}(x)
$$

4. (a) Solve $x^{2}(y-z) p+y^{2}(z-x) q=z^{2}(x-y)$.
(b) Find the general solutions of $\left(D^{2}-D D^{\prime}+D^{\prime}-1\right) Z=\cos (x+2 y)$.
5. (a) Solve $\left(D^{2}+D D^{\prime}-6{D^{\prime}}^{2}\right) z=\cos (2 x+y)$.
(b) Solve $\left(D^{2}-D^{\prime}\right) z=2 y-x^{2}$.
(DM 03)
ASSIGNMENT-2
M.Sc. DEGREE EXAMINATION, JUNE 2022.

First Year
COMPLEX ANALYSIS AND SPE. FUNCTIONS AND PARTIAL DIF. EQU.
MAXIMUM MARKS :30
ANSWER ALL QUESTIONS

1. (a) Use De Moivre's theorem to solve the equation $x^{5}+1=0$.
(b) Prove that if G is open and connected and $f: G \rightarrow C$ is differentiable with $f^{\prime}(z)=0$ for all z in G, then f is constant.
2. (a) State and prove the fundamental theorem of algebra.
(b) Let G be an open set and let $f: G \rightarrow C$ be a differentiable function. Then prove that f is analytic on G.
3. (a) Find the Laurent's expansion of $f(z)=\frac{7 z-2}{z(z+1)(z-2)}$ in the region $1<z+1<3$.
(b) State and prove the homotopic version of Cauchy's theorem.
4. (a) State and prove open mapping theorem.
(b) Expand $f(z)=\frac{1}{(z-1)(z-2)}$ in the region.
(i) $|z|<1$,
(ii) $1<|z|<2$.
5. (a) By integrating around a unit circle, evaluate $\int_{0}^{2 \pi} \frac{\cos 3 \theta}{5-4 \cos \theta} d \theta$.
(b) Show that $\int_{0}^{\infty} \frac{\sin x}{x} d x=\frac{\pi}{2}$.

Mathematics

THEORY OF ORDINARY DIFFERENTIAL EQUATIONS
MAXIMUM MARKS :30
ANSWER ALL QUESTIONS

1. (a) Let $\phi_{1}, \phi_{2}, \phi_{3} \ldots \phi_{n}$ be the n solution of $L(y)=0$ on I satisfying $\phi_{i}^{(i-1)}\left(x_{0}\right)=1$. $\phi_{i}^{(J-1)}\left(x_{0}\right)=0$ for $i \neq j$. If ϕ is any solution of $L(y)=0$ on I, there are n constants $c_{1}, c_{2}, c_{3} \ldots \ldots . . c_{n}$ such that $\phi=C_{1} \phi_{1}+C_{2} \phi_{2}+C_{3} \phi_{3} \ldots .+C_{n} \phi_{n}$.
(b) Consider the equation $L(y)=y^{\prime \prime}+a_{1}(x) y^{\prime}+a_{2}(x) y=0$, where a_{1}, a_{2} are continuous on same interval I. Let $\phi_{1} \phi_{2}$ and ψ_{1}, ψ_{2} be two bases for the solutions of $L(y)=0$. Show that there is a non zero constant ' k ' such that $W\left(\psi_{1}, \psi_{2}\right)(x)=k W\left(\phi_{1}, \phi_{2}\right)(x)$.
2. (a) One solution of $x^{2} y^{\prime \prime \prime}-3 x^{2} y^{\prime \prime}+6 x y^{\prime}-6 y=0$ for $x>0$ is $\phi_{1}(x)=x$. Find a basis for the solution $x>0$
(b) Find all solutions of the equation $y^{\prime \prime}-\frac{2}{x^{2}} y=x \quad 0<x<\infty$.
3. (a) Find a real valued solution of $y^{\prime}=\frac{e^{x-y}}{1+e^{x}}$.
(b) Prove that, the necessary and sufficient conditions for the equation
$M(x, y) d x+N(x, y) d y=0$ is exact is $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$.
4. (a) (i) Show that the function f is given by $f(x, y)=x^{2}|y|$ satisfies Lipschitz condition on $\mathrm{R}:|x| \leq 1,(y) \leq 1$
(ii) Show that $\frac{\partial f}{z y}$ does not exist $<t(x, 0)$ if $x \neq 0$.
(b) Show that every initial value problem $y^{\prime}=f(x, y), y(0)=y_{0},\left(\left|y_{0}\right|<\infty\right)$ has a solution which exists for $|x|<1$.
5. (a) Solve $y y^{\prime \prime}+4\left(y^{\prime}\right)^{2}=0$
(b) Give an example of a system of differential equations which arise in the study of dynamics of central forces and planetary motion.
(DM 04)
ASSIGNMENT-2
M.Sc. DEGREE EXAMINATION, JUNE 2022.

First Year
Mathematics
THEORY OF ORDINARY DIFFERENTIAL EQUATIONS
MAXIMUM MARKS :30
ANSWER ALL QUESTIONS

1(a) Find a solution ϕ of the system $y_{1}^{\prime}=y_{1}, y_{2}^{\prime}=y_{1}+y_{2}$ which satisfies $\phi(0)=(1,2)$.
(b) Find a solution ϕ of $y^{\prime \prime}=1+\left(y^{\prime}\right)^{2}$ satisfying $\phi(0)=1, \phi(0)=-1$.

2 (a) Show that

$$
G(x, t)=\frac{1}{\sin h 1} \begin{cases}\sin h(t-1) \sin h x & 0 \leq x \leq t \\ \sin h(-\sin h(x-1) & t \leq x \leq 1\end{cases}
$$

is the green function of the problem $y^{\prime \prime}-y=0, y(0)=0 \quad y(1)=0$. Hence solve the problem

$$
y^{\prime \prime}-y=2 \sin x, y(0)=0 y(1)=2 .
$$

(b) Find the general solution of $y^{\prime \prime}-3 y^{\prime}+2 y=f(x),-\infty<x<\infty$ where f is a continuous function and then evaluate the general solution when $f(x)=x$.

4(a) Show that if $z_{0}, z_{1}, z_{2}, z_{3}$ are any four different solutions of the Riccati equation

$$
\begin{aligned}
& z^{1}+a(x) z+b(x) z^{2}+c(x)=0 \text { then Show that } \\
& \frac{z-z_{2}}{z-z_{1}}=\frac{z_{3}-z_{1}}{z_{3}-z_{2}}=\text { constant. }
\end{aligned}
$$

(b) Suppose a particle moves on a circle through origin and is acted on by a central force $F(r)$. Show that $F(r)$ is proportional to r^{-5}.

5(a) State and prove strum's comparison theorem.
(b) Discuss the oscillations of the Bessel equation. $x^{2} y^{\prime \prime}-x y^{\prime}+\left(x^{2}-n^{2}\right) y=0$ where n is a constant.

6(a) State and prove Picone's Identity
(b) State and prove Abel's formula.

