(DM 01)

ASSIGNMENT-1 M.Sc. DEGREE EXAMINATION, JUNE 2022. First Year Mathematics ALGEBRA MAXIMUM MARKS :30 ANSWER ALL QUESTIONS

- 1. (a) If G is a finite abelian group of order n and m is positive integer prime to n, then show that the mapping $\sigma: x \to x^m$ is an automorphism of G.
 - (b) State and prove Sylow's theorem for abelian groups.
- 2. (a) Define a composition series of a finite group. Prove that any two composition series of a finite group are equivalent.
 - (b) Show that conjugacy is an equivalence relation on G.
- 3. (a) If R is a commutative ring with unity in which each ideal is prime, then prove that R is a field.
 - (b) Describe all finite abelian groups of order $2^{4}3^{4}$.
- 4. (a) Find the non-trivial ideals of the ring $P = \begin{bmatrix} Z & Q \\ 0 & 0 \end{bmatrix}$.
 - (b) Show that a finite integral domain is a field.
- 5. (a) If p(x) is a polynomial in F(x) of degree $n \ge 1$ and irreducible over F then show that there is an extension E of F such that [E:F] = n in which P(x) has a root.
 - (b) What is Euclidean ring? Explain a particular Euclidean ring.

(DM 01)

ASSIGNMENT-2 M.Sc. DEGREE EXAMINATION, JUNE 2022. First Year Mathematics ALGEBRA MAXIMUM MARKS :30 ANSWER ALL QUESTIONS

- 1. Show that every integral domain can be imbedded in a field.
- 2. (a) State and prove the division algorithm for polynomial rings over a commutative integral domain.
 - (b) Show that the polynomial f(x) EF[x] has a multiple root if and only if f(x) and f'(x) have a non-trivial common root.
- 3. (a) Show that a group G insolvable if and only if $G^{(k)} = e$ for some integer k.
 - (b) Show that the general polynomial $p(x) = x^n + a_1x^n + \dots + a_n$ for $n \ge 5$ is not solvable by radicals.
- 4. (a) Prove that any totally ordered set is a distributive lattice.
 - (b) Show that a lattice of invariant sub groups of any group is modular.
- 5. (a) Prove that a partially ordered set with a least element O such that every non-empty subset has a least upper bound is a complete lattice.
 - (b) Prove that the complement Q' of any element a of a, Boolean algebra B is uniquely determined and also, prove that $(a \lor b)' a' \land b'$; $(a \land b)' = a' \lor b'$ in B.

(DM 02)

ASSIGNMENT-1 M.Sc. DEGREE EXAMINATION, JUNE 2022. First Year Mathematics ANALYSIS MAXIMUM MARKS :30 ANSWER ALL QUESTIONS

- 1. (a) Let $\{E_n\}, n=1,2,3...$, be the sequence of countable sets and $S = \bigcup_{n=1}^{\infty} E_n$. Then 'S' is countable.
 - (b) Compact subsets of Metric spaces are closed.
- 2. (a) Prove that every *k*-cell is compact.
 - (b) If p is a limit point of a set E, then every neighbourhood of p contains infinitely main points of E.
- 3. (a) Let $\{P_n\}$ be a subsequence in a Metric space X
 - (i) $\{P_n\}$ converges to $P \in X$ if and only if every neighbourhood of p contains P_n for all but finitely many 'n'.
 - (ii) If $p \in X$, $p' \in X$ and if $\{P_n\}$ converges to P and P' then P = P'.
 - (iii) If $\{P_n\}$ converges then $\{P_n\}$ is bounded
 - (b) If $\sum a_n$ converges and if $\{b_n\}$ is monotonic and bounded, prove that $\sum a_n b_n$ converges.

- 4. (a) Let 'f' be a real uniformly continuous function on the bounded set E in R'. Prove that f is bounded on E.
 - (b) Suppose f is a continuous mapping of a compact metric space X into a metric space Y. Then f(X) is compact.
- 5. (a) Let $f \in R(\alpha)$ on $[a, b] \Leftrightarrow$ for every $\epsilon > 0$ there exists a partition 'p' such that

$$U(p,f,\alpha)\!-\!L(p,f,\alpha)\!<\!\in$$

(b) If *f* maps [*a*, *b*] in R^k and if $f \in R(\alpha)$ for some monotonically increasing function ' α ' on [*a*, *b*] then $|f| \in R(\alpha)$ and $\left| \int_{a}^{b} f d\alpha \right| \leq \int_{a}^{b} |f| d\alpha$.

DM 02)

ASSIGNMENT-2 M.Sc. DEGREE EXAMINATION, JUNE 2022. First Year Mathematics ANALYSIS MAXIMUM MARKS :30 ANSWER ALL QUESTIONS

1. (a) Suppose $f \ge 0$ is continuous on [a, b] and $\int_{a}^{b} f(x) dx = 0$, prove that $f(x) = 0 \forall x \in [a, b]$.

(b) Suppose *F* and *G* are differentiable functions on [a, b], $F' = f \in R$ and $G' = g \in R$ then

$$\int_{a}^{b} F(x) G(x) dx = F(b) G(b) - F(a) G(a) - \int_{a}^{b} f(n) G(n) dx$$

2. (a) The sequence of functions $\{f_n\}$ defined on E, converges uniformly on E if and only if for every $\epsilon > 0$, \exists an integer N such that $M \ge N$, $n \ge N$, $x \in E$

$$\Rightarrow \left| f_n(x) - f_m(x) \right| \leq \in$$

- (b) State and prove Weierstrass approximation theorem.
- 3. (a) If *K* is a compact metric space, if $f_n \in \mathcal{E}(K)$ for k = 1, 2, 3... and if $\{f_n\}$ converges uniformly on *k*, then $\{f_n\}$ is equicontinuous on *k*.
 - (b) Let ' α ' be monotonically increasing on [a, b]. Suppose $f_n \in R(\alpha)$ on [a, b] for n = 1, 2, 3, ... and suppose $f_n \to f$ uniformly on [a, b], then $f \in R(\alpha)$ and $\int_a^b f dx = \lim_{n \to \infty} \int_a^b f_n dx$.

- 4. (a) State and prove Lebesgue's dominated Converges theorem.
 - (b) Suppose f is measurable and non negative on X, for $A \in \mathcal{R}$ define $\phi(A) = \int_{A} f d \mu$ then ϕ is countably additive on \mathcal{R} .
- 5. (a) State and prove Fatou's theorem.
 - (b) Let $\{f_n\}$ be a sequence of measurable functions. For $x \in X$ $g(x) = \sup f_n(x)$ n = 1, 2, 3,... Then g and h are measurable. $h(x) = \limsup_{n \to \infty} f_n(x)$

(DM 03)

ASSIGNMENT-1 M.Sc. DEGREE EXAMINATION, JUNE 2022. First Year COMPLEX ANALYSIS AND SPE. FUNCTIONS AND PARTIAL DIF. EQU. MAXIMUM MARKS :30 ANSWER ALL QUESTIONS

SECTION — A

- 1. (a) Find a power series solution of the Legendre's equation $(1-x^2)y'' 2xy' + n(n+1)y = 0$.
 - (b) State and prove Rodrigque's formula for Legendre's equation.
- 2. (a) Show that for any function f(x), for which the n^{th} derivative is continuous $\int_{-1}^{1} f(x)P_n(x)dx = \frac{1}{2^n n!} \int_{-1}^{1} (1-x^2)^n f^n(x)dx$.
 - (b) We shall prove that

$$\int_{-1}^{1} P_m(x) P_n(x) dx = \begin{cases} 0, & m \neq n \\ \frac{2}{2n+1}, & m = n \end{cases}.$$

3. (a) Prove that

$$\int_{0}^{1} x J_{n}(\alpha x) J_{n}(\beta x) dx = \begin{cases} 0, & \alpha \neq \beta \\ \frac{1}{2} [J_{n} + (\alpha)]^{2}, & \alpha = \beta \end{cases}$$

Where α, β are the roots of $J_n(x) = 0$.

(b) Prove that

$$\frac{d}{dx}\{x J_n(x) J_{n+1}(x)\} = J_n^2(x) - J_{n+1}^2(x).$$

- 4. (a) Solve $x^2(y-z)p + y^2(z-x)q = z^2(x-y)$.
 - (b) Find the general solutions of $(D^2 DD' + D' 1) Z = \cos(x + 2y)$.

 $\mathbf{2}$

5. (a) Solve
$$(D^2 + DD' - 6 D'^2)z = \cos(2x + y)$$
.

(a) Solve
$$(D^2 + DD' - 6D')z =$$

(b) Solve $(D^2 - D')z = 2y - x^2$.

(DM 03)

ASSIGNMENT-2 M.Sc. DEGREE EXAMINATION, JUNE 2022. First Year COMPLEX ANALYSIS AND SPE. FUNCTIONS AND PARTIAL DIF. EQU. MAXIMUM MARKS :30 ANSWER ALL QUESTIONS

- 1. (a) Use De Moivre's theorem to solve the equation $x^5 + 1 = 0$.
 - (b) Prove that if G is open and connected and $f: G \to C$ is differentiable with f'(z) = 0 for all z in G, then f is constant.
- 2. (a) State and prove the fundamental theorem of algebra.
 - (b) Let G be an open set and let $f: G \to C$ be a differentiable function. Then prove that f is analytic on G.
- 3. (a) Find the Laurent's expansion of $f(z) = \frac{7z 2}{z(z+1)(z-2)}$ in the region 1 < z+1 < 3.
 - (b) State and prove the homotopic version of Cauchy's theorem.
- 4. (a) State and prove open mapping theorem.
 - (b) Expand $f(z) = \frac{1}{(z-1)(z-2)}$ in the region.
 - 3

- (i) |z| < 1,
- (ii) 1 < |z| < 2.

5. (a) By integrating around a unit circle, evaluate $\int_{0}^{2\pi} \frac{\cos 3\theta}{5 - 4\cos \theta} d\theta.$

4

(b) Show that
$$\int_{0}^{\infty} \frac{\sin x}{x} dx = \frac{\pi}{2}$$
.

(DM 04)

ASSIGNMENT-1 M.Sc. DEGREE EXAMINATION, JUNE 2022. First Year Mathematics THEORY OF ORDINARY DIFFERENTIAL EQUATIONS MAXIMUM MARKS :30 ANSWER ALL QUESTIONS

1. (a) Let $\phi_1, \phi_2, \phi_3 \dots \phi_n$ be the *n* solution of L(y)=0 on I satisfying $\phi_i^{(i-1)}(x_0)=1$. $\phi_i^{(J-1)}(x_0)=0$ for $i \neq j$. If ϕ is any solution of L(y)=0 on I, there are *n* constants $c_1, c_2, c_3 \dots c_n$ such that

 $\phi = C_1 \phi_1 + C_2 \phi_2 + C_3 \phi_3 \dots + C_n \phi_n \,.$

(b) Consider the equation

 $L(y) = y'' + a_1(x) y' + a_2(x) y = 0$, where a_1, a_2 are continuous on same interval I. Let $\phi_1 \phi_2$ and ψ_1, ψ_2 be two bases for the solutions of L(y) = 0. Show that there is a non zero constant 'k' such that $W(\psi_1, \psi_2)(x) = kW(\phi_1, \phi_2)(x)$.

- 2. (a) One solution of $x^2 y'' 3x^2 y'' + 6xy' 6y = 0$ for x > 0 is $\phi_1(x) = x$. Find a basis for the solution x > 0
 - (b) Find all solutions of the equation $y'' \frac{2}{x^2}y = x \quad 0 < x < \infty$.

- 3. (a) Find a real valued solution of $y' = \frac{e^{x-y}}{1+e^x}$.
 - (b) Prove that, the necessary and sufficient conditions for the equation

$$M(x, y)dx + N(x, y) dy = 0$$
 is exact is $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$

- 4. (a) (i) Show that the function f is given by f(x, y)=x²|y| satisfies Lipschitz condition on R : |x|≤1,(y)≤1
 (ii) Show that ∂f/y does not exist <t(x,0) if x ≠0.
 - (b) Show that every initial value problem y' = f(x, y), $y(0) = y_0$, $(|y_0| < \infty)$ has a solution which exists for |x| < 1.
- 5. (a) Solve $yy'' + 4(y')^2 = 0$
 - (b) Give an example of a system of differential equations which arise in the study of dynamics of central forces and planetary motion.

 $\mathbf{2}$

(DM 04)

ASSIGNMENT-2 M.Sc. DEGREE EXAMINATION, JUNE 2022. First Year Mathematics THEORY OF ORDINARY DIFFERENTIAL EQUATIONS MAXIMUM MARKS :30 ANSWER ALL QUESTIONS

1(a) Find a solution ϕ of the system

 $y'_1 = y_1, y'_2 = y_1 + y_2$ which satisfies $\phi(0) = (1, 2)$.

(b) Find a solution ϕ of $y''=1+(y')^2$ satisfying $\phi(0)=1$, $\phi(0)=-1$.

2 (a) Show that

 $G(x, t) = \frac{1}{\sin h 1} \begin{cases} \sin h (t-1) \sin h x & 0 \le x \le t \\ \sin h (-\sin h (x-1)) & t \le x \le 1 \end{cases}$

is the green function of the problem y''-y=0, y(0)=0 y(1)=0. Hence solve the problem

 $y''-y=2\sin x, y(0)=0 y(1)=2.$

3

(b) Find the general solution of y"-3y'+2y=f(x), -∞<x<∞ where f is a continuous function and then evaluate the general solution when f(x)=x.

4(a) Show that if z_0, z_1, z_2, z_3 are any four different solutions of the Riccati equation

 $z^{1} + a(x)z + b(x)z^{2} + c(x) = 0$ then Show that $z - z_{0} - z_{1} - z_{1}$

 $\frac{z-z_2}{z-z_1} = \frac{z_3 - z_1}{z_3 - z_2} = \text{constant.}$

- (b) Suppose a particle moves on a circle through origin and is acted on by a central force F(r). Show that F(r) is proportional to r^{-5} .
- 5(a) State and prove strum's comparison theorem.
 - (b) Discuss the oscillations of the Bessel equation. $x^2 y'' - xy' + (x^2 - n^2)y = 0$ where *n* is a constant.

4

6(a) State and prove Picone's Identity

(b) State and prove Abel's formula.