Assignment 1.

M.Sc. DEGREE EXAMINATION, DECEMBER 2020. Second Year Physics

ELECTROMAGNETIC THEORY AND MODERN OPTICS MAXIMUM MARKS: 30 ANSWER ALL QUESTIONS

- 1. (a) Explain the achievement of polarization by reflection and refraction.
 - (b) Explain the changes of phase on reflection.
- 2. (a) Explain the total internal reflection
 - (b) Discuss the preparation of EM waves obliquely to conducting surface
- 3. (a) Explain the absorption and emission process in Lasers.
 - (b) Write a note on amplification in a Laser medium.
- 4. (a) Write a note on collision and Doppler broadening mechanisms.
 - (b) Explain the working of Co₂ Gas Laser.
- 5. (a) Explain the principle and basic theory of Holography.
 - (b) Write a note on Hologram recording materials.

(DPHY 21)

M.Sc. DEGREE EXAMINATION, DECEMBER 2020. Second Year Physics

ELECTROMAGNETIC THEORY AND MODERN OPTICS MAXIMUM MARKS: 30 ANSWER ALL QUESTIONS

- 1. (a) Explain the applications of holography.
 - (b) Explain the ray optics representation in step index fiber structure.
- 2. (a) Obtain the wave guide equations for step index fibres.
 - (b) Explain the signal distortions on optical wave guides.
- 3. (a) Explain the material broadening in wave guide dispersion.
 - (b) Explain the mechanical properties of optical fibres and Fibre cabling.
- 4. Write any TWO of the following:
 - (a) Explain the boundary condition of dielectric surface.
 - (b) He-Ne Laser
 - (c) Characteristics of holograms
 - (d) Mode theory of circular wave guides

M.Sc. DEGREE EXAMINATION, DECEMBER 2020. Second Year Physics

NUCLEAR PHYSICS, MOLECULAR AND RESONANCE SPECTROSCOPY MAXIMUM MARKS: 30 ANSWER ALL QUESTIONS

- 1. (a) Explain the electric and magnetic moments of the nucleus.
 - (b) Explain the characteristics of nuclear forces.
- 2. (a) Explain the Meson theory of nuclear forces.
 - (b) Explain the shell model of the nucleur.
- 3. (a) Explain the threshold energy and cross section for nuclear reactions.
 - (b) Write a note on Nuclear isorrerism.
- 4. (a) Describe the classification of elementary particles.
 - (b) Explain the conservation laws among the elementary particles.

(DPHY 22)

M.Sc. DEGREE EXAMINATION, DECEMBER 2020. Second Year Physics

NUCLEAR PHYSICS, MOLECULAR AND RESONANCE SPECTROSCOPY MAXIMUM MARKS: 30 ANSWER ALL QUESTIONS

- 1. (a) Explain the basic principles and theory of NMR.
 - (b) Obtain Bloch equations.
- 2. (a) Explain the characteristics of 'A' and 'g' values in E.S.R.
 - (b) Describe the working of NQR spectrometer with block diagram.
- 3. (a) Explain the spectra of Non rigid rotator.
 - (b) Explain how diatomic molecule an a simple harmonic oscillation.
- 4. (a) Explain the energy levels of diatomic molecule.
 - (b) Write a note on PQR braches.
- 5. Write notes on the TWO of the following:
 - (a) Bohro wheeler theory
 - (b) Multiple radiation and selection rules.
 - (c) Hypertime structure of unpaired electrons.
 - (d) IR spectroscopy.

(DPHY 23)

Assignment 1

M.Sc. DEGREE EXAMINATION, DECEMBER 2020. Second Year Physics

SOLID STATE PHYSICS — I MAXIMUM MARKS: 30 ANSWER ALL QUESTIONS

- 1. (a) Briefly explain the symmetry operations in crystals.
 - (b) Explain the Millar indices of line direction and a lattice plane.
- 2. (a) Explain Bragg's law in X-ray diffraction
 - (b) Explain the construction of reciprocal lattice.
- 3. (a) Explain the elastic constants of crystal.
 - (b) Discuss the Normal nodes of one dimensional nano atomic chain.
- 4. (a) Explain the quantization of Lattice Vibrations.
 - (b) Discuss the measurement of phoron dispersion by inelastic neutron scattering.

(DPHY 23)

M.Sc. DEGREE EXAMINATION, DECEMBER 2020. Second Year Physics

SOLID STATE PHYSICS — I MAXIMUM MARKS: 30 ANSWER ALL QUESTIONS

- 1. (a) Briefly explain the quantum theory of heat capacity.
 - (b) Write a note on anhormonic effects.
- 2. (a) Explain the wave mechanical interpretation of energy bands.
 - (b) Briefly explain kroning penny model.
- 3. (a) Explain briefly the nearly free electron model.
 - (b) Describe the zone schemes for energy bands.
- 4. (a) Discuss the population of zonor and acceptor levels in the state of thermal equilibrium.
 - (b) Write a note on Magneto resistance.
- 5. Write notes on any TWO of the following:
 - (a) Explain unit cell, basis and primitive structures.
 - (b) General theory of harmonic approximation.
 - (c) Obtain an expression for heat capacity.
 - (d) P-n junction diode.

2

(DPHY 24)

Assignment 1

M.Sc. DEGREE EXAMINATION, DECEMBER 2020. Second Year Physics SOLID STATE PHYSICS – II

. MAXIMUM MARKS: 30

ANSWER ALL QUESTIONS

- 1. (a) Explain Local electric field in dielectrics.
 - (b) Explain the sources of polarizability.
- 2. (a) Explain the theory of ferroelectric displacive transitions.
 - (b) Write a note on ferroelectric domains.
- 3. (a) Define dislocations and explain the stress fields of dislocations.
 - (b) Write a note on grain boundaries.
- 4. (a) Briefly explain the quantum theory of magnetic susceptibility.
 - (b) Write a note on vanvlek paramagetism.
- 5. (a) Explain the Weiss theory of Ferromagnetism.
 - (b) Explain what exchange interaction is.

(DPHY 24)

M.Sc. DEGREE EXAMINATION,
DECEMBER 2020.
Second Year
Physics
SOLID STATE PHYSICS – II
MAXIMUM MARKS: 30
ANSWER ALL QUESTIONS

- 1. (a) Explain the Neel model of Anti ferromagnetism.
 - (b) Write a note on Spin Waves.
- 2. (a) Explain the quantization phenomena in superconductivity.
 - (b) Explain the effect of isotopes in superconductor.
- 3. (a) Explain BCS theory of superconductivity.
 - (b) Write a note on High TC superconductors.
- 4. Write notes on any TWO of the following:
 - (a) Dielectric losses
 - (b) Role of dislocations in crystal growth
 - (c) Heisenberg model in the ferromagnetism
 - (d) Ginzburg Landan theory.