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FOREWORD 

Since its establishment in 1976, Acharya Nagarjuna University has been forging 
ahead in the path of progress and dynamism, offering a variety of courses and 
research contributions. I am extremely happy that by gaining ‘A’ grade from the 
NAAC in the year 2016, Acharya Nagarjuna University is offering educational 
opportunities at the UG, PG levels apart from research degrees to students from 
over 443 affiliated colleges spread over the two districts of Guntur and Prakasam. 
 

 

The University has also started the Centre for Distance Education in 2003-04 
with the aim of taking higher education to the door step of all the sectors of the 
society. The centre will be a great help to those who cannot join in colleges, those 
who cannot afford the exorbitant fees as regular students, and even to housewives 
desirous of pursuing higher studies. Acharya Nagarjuna University has started 
offering B.A., and B.Com courses at the Degree level and M.A., M.Com., M.Sc., 
M.B.A., and L.L.M., courses at the PG level from the academic year 2003-2004 
onwards. 

 
 

To facilitate easier understanding by students studying through the distance 
mode, these self-instruction materials have been prepared by eminent and 
experienced teachers. The lessons have been drafted with great care and expertise 
in the stipulated time by these teachers. Constructive ideas and scholarly 
suggestions are welcome from students and teachers involved respectively. Such 
ideas will be incorporated for the greater efficacy of this distance mode of 
education. For clarification of doubts and feedback, weekly classes and contact 
classes will be arranged at the UG and PG levels respectively. 

 
It is my aim that students getting higher education through the Centre for 

Distance Education should improve their qualification, have better employment 
opportunities and in turn be part of country’s progress. It is my fond desire that in 
the years to come, the Centre for Distance Education will go from strength to 
strength in the form of new courses and by catering to larger number of people. My 
congratulations to all the Directors, Academic Coordinators, Editors and Lesson- 
writers of the Centre who have helped in these endeavours. 

 

 

                                                                                               Prof. K.Gangadhar Rao 
                                                                                                  Vice-Chancellor 
                                                                                       Acharya Nagarjuna University 
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LESSON- 1 

OVERVIEW OF DATA 

OBJECTIVES: 

After going through this lesson, you will be able to  

 Understand the importance of data 
 Describe the classification of data. 
 Explain why data is vital to success in today’s world  
 Discuss the characteristics of data.  

 

STRUCTURE OF THE LESSION: 

1.1 What is Data 
1.2 Types of Data 
1.3 Representing data in computers 
1.4 Classification of digital data 
 1.4.1 Structured data 
 1.4.2 Unstructured data 
 1.4.3 Semi structured data 
1.5 Characteristics of a data 
1.6 Summary 
1.7 Technical Terms 
1.8 Self-Assessment Questions 
1.9 Further Readings 
 

1.1 WHAT IS DATA 
Data, in simple terms, refers to pieces of information. Imagine data as small building blocks 
of information that computers use to do all sorts of things, like showing pictures on a screen, 
solving math problems, or sending messages to friends. These blocks can be numbers, like 
scores in a game or temperatures outside, or they can be words, like the text in a book or an 
email you write. Data can also be things we see and hear, like photos or music. Basically, 
data is anything that computers can understand and work with to help us do tasks, learn new 
things, and have fun. 

Data in a Computer is a stream of bits (0s and 1s) that are saved in computer memory. These 
bits of information can take the shape of text documents, images, videos, etc. The CPU 
(Central Processing Unit) performs this data processing and stores it in the computer’s 
memory. As a result, data in the computer can be generated, processed, and saved 

Data in computers refers to encoded information that computers process and manipulate to 
perform various tasks. It can take various forms, including text, numbers, multimedia files, 
and more. Essentially, data is the raw material that computers use to generate meaningful 
outputs through algorithms and computations. 

In simply way, data is a collection of raw facts. 
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Data  information  

Information  insight 

1.2 TYPES OF DATA 

1.2.1 Numerical data: 

One common form of data in computers is numeric data, which consists of numerical values 
used for calculations, measurements, and statistical analysis. For example, in a spreadsheet 
application, numeric data might include sales figures, inventory quantities, or financial 
metrics. These numbers can be manipulated using mathematical operations to derive insights 
or make informed decisions. 

Numeric data consists of numerical values used for quantitative analysis and calculations. 
Examples include: 

 Sales figures 
 Temperature readings 
 Stock prices 
 Sensor measurements (e.g., voltage, pressure, temperature) 

1.2.2 Text data: 

Another type of data prevalent in computers is text data, which comprises characters, words, 
sentences, and paragraphs. Text data is ubiquitous in documents, emails, web pages, and 
other textual content. For instance, in a word processing software, text data could include the 
contents of a report, a letter, or a blog post. Computers use algorithms for text processing 
tasks such as spell checking, grammar correction, and text summarization. 

Text data consists of characters, words, sentences, and paragraphs used to convey 
information. Examples include: 

 Documents (e.g., reports, articles, essays) 
 Emails 
 Social media posts 
 Website content 
 Chat transcripts 

1.2.3 Multimedia data: 

Furthermore, computers handle multimedia data, which encompasses images, audio, video, 
and other multimedia content. Multimedia data is prevalent in entertainment, communication, 
education, and various other domains. For instance, in a photo editing application, 
multimedia data might include digital images that users edit, enhance, or manipulate using 
various tools and filters. 

Multimedia data includes images, audio, video, and other forms of media. Examples include: 

 Digital photographs 
 Music files (e.g., MP3, WAV) 
 Video clips (e.g., MP4, AVI) 
 Animations 
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 Virtual reality simulations 

1.2.4 Real-time data 

Moreover, computers process real-time data, which refers to data generated or updated 
continuously, often in response to external events or sensor inputs. Real-time data is critical 
in applications such as financial trading, monitoring systems, and IoT (Internet of Things) 
devices. For example, in a weather forecasting system, real-time data from weather sensors 
and satellites is continuously analyzed to predict weather patterns and issue warnings. 
Overall, data in computers encompasses a wide range of formats and types, driving various 
applications and innovations in the digital age. 

Real-time data is generated or updated continuously and requires immediate processing or 
analysis. Examples include: 

 Stock market data 
 Weather sensor readings 
 GPS location data 
 Social media streams 
 IoT (Internet of Things) sensor data 

 

1.3 REPRESENTATION OF DATA IN COMPUTERS 

We have all seen computers do seemingly miraculous things with all kinds of sounds, 
pictures, graphics, numbers, and text. It seems that we can build a replica of parts of our 
world inside the computer. You might think that this amazing machine is also amazingly 
complicated - it really is not. In fact, all of the wonderful multi-media that we see on modern 
computers is all constructed from simple ON/OFF switches - millions of them - but really 
nothing much more complicated than a switch. The trick is to take all of the real-world sound, 
picture, number etc data that we want in the computer and convert it into the kind of data that 
can be represented in switches, as shown in Figure 1. 

 

Figure 1.1 data conversion 
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Computers Are Electronic Machines. The computer uses electricity, not mechanical parts, 
for its data processing and storage. Electricity is plentiful, moves very fast through wires, and 
electrical parts fail less much less frequently than mechanical parts. The computer does have 
some mechanical parts, like its disk drive (which are often the sources for computer failures), 
but the internal data processing and storage is electronic, which is fast and reliable (as long as 
the computer is plugged in). 

Electricity can flow through switches: if the switch is closed, the electricity flows; if the 
switch is open, the electricity does not flow. To process real-world data in the computer, we 
need a way to represent the data in switches. Computers do this representation using a binary 
coding system. 

Binary and Switches. Binary is a mathematical number system: a way of counting. We have 
all learned to count using ten digits: 0-9. One probable reason is that we have ten fingers to 
represent numbers. The computer has switches to represent data and switches have only two 
states: ON and OFF. Binary has two digits to do the counting: 0 and 1 - a natural fit to the 
two states of a switch (0 = OFF, 1 = ON). 

Bits and Bytes One binary digit (0 or 1) is referred to as a bit, which is short for binary digit. 
Thus, one bit can be implemented by one switch 

A single byte can represent many different kinds of data. What data it actually represents 
depends on how the computer ues the byte. 

 
1.4 CLASSIFICATION OF DIGITAL DATA 
1.4.1 Structured Data 

Structured data is generally tabular data that is represented by columns and rows in a 
database. Databases that hold tables in this form are called relational databases. The 
mathematical term “relation” specifies a formed set of data held as a table. In structured data, 
all row in a table has the same set of columns. SQL (Structured Query Language) 
programming language used for structured data. 

Structured data refers to information that is organized in a predefined and easily 
understandable format, typically within a database or spreadsheet. This format involves 
organizing data into categories, tables, or fields, with each piece of information labeled and 
arranged systematically. Structured data can include various types of data, such as numerical 
values, dates, text, and identifiers. Examples of structured data include databases of customer 
information, inventory lists, financial records, and schedules. 

Structured data is data that has a standardized format for efficient access by software and 
humans alike. It is typically tabular with rows and columns that clearly define data attributes. 
Computers can effectively process structured data for insights due to its quantitative nature. 
For example, a structured customer data table containing columns—name, address, and 
phone number—can provide insights like the total number of customers and the locality with 
the maximum number of customers. In contrast, unstructured data, like a list of social media 
posts, is more challenging to analyze. 
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Figure 1.2 Structured Data  

1.4.1.1 Benefits of structured data 

There are several benefits of using structured data. 

Ease of use 

Anyone can quickly comprehend and access structured data. Operations such as updating and 
amending structured data are straightforward. Storage is efficient, as fixed-length storage 
units can be allocated for data values. 

Scalability 

Structured data scales algorithmically. You can add storage and processing power as your 
data volume increases. Modern systems that process structured data can scale to several 
thousand TB of data.  

Analytics 

Machine learning algorithms can analyze structured data and identify common patterns for 
business intelligence. You can use structured query language (SQL) to generate reports as 
well as modify and maintain data. Structured data is also useful for big data analytics. 

1.4.1.2 Challenges of structured data 

While there are several advantages of using structured data for business, there are also some 
challenges. 

Limited usage 
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The predefined structure is a benefit but can also be a challenge. Structured data can only be 
utilized for its intended purpose. For example, booking data can give you information about 
booking system finances and booking popularity. But it can’t reveal which marketing 
campaigns were more effective in bringing in more bookings without further modification. 
You’ll have to add marketing campaign relational data to your bookings if you want the 
additional insights. 

Inflexibility 

It can be costly and resource-intensive to change the schema of structured data as 
circumstances change and new relationships or requirements emerge. 

1.4.2 Semi-Structured Data 
Semi-structured data is information that doesn’t consist of structured data (relational 
database) but still has some structure to it. Semi-structured data consists of documents held 
in JavaScript Object Notation (JSON) format. It also includes key-value stores 
and graph databases. 

Semi-structured data is also referred to as self-describing structure. This is the data which 
does not conform to a data model but has some structure. However, it is not in a form which 
can be used easily by a computer program. About 10% data of an organization is in this 
format; for example, HTML, XML, JSON, email data etc 

Semi-structured data refers to information that does not conform to the strict structure of 
traditional structured data (e.g., databases with fixed schemas) but still has some 
organizational properties that make it more structured than unstructured data. In semi-
structured data, elements within the dataset may have irregularities or variations in their 
format, yet they are organized in a way that retains some level of hierarchy or tagging. This 
type of data often lacks a rigid schema but may contain metadata or tags that provide some 
level of organization or context. 

One common example of semi-structured data is XML (eXtensible Markup Language), 
which allows users to define their own tags to structure data hierarchically. While XML 
documents may not adhere to a predefined schema like traditional databases, they still 
possess a degree of structure due to the nested nature of elements and the use of tags to 
delineate different types of information. 

<?xml version="1.0" encoding="ISO-8859-1"?>   
<note>   
  <to>Arya</to>   
  <from>Shourya</from>   
  <heading>Reminder</heading>   
  <body>Don't forget to attend the meeting</body>   
</note>   

Figure 1.3 Sample XML File 

Another example is JSON (JavaScript Object Notation), a lightweight data interchange 
format commonly used in web development. JSON data is organized into key-value pairs and 
nested objects, providing a flexible way to represent structured data in a format that is easy 
for humans to read and machines to parse. While JSON does not enforce a rigid schema, it 
typically follows a consistent structure within a given dataset. 
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Figure 1.4 Sample JSON File 

Semi-structured data presents both challenges and opportunities for data management and 
analysis. On one hand, its flexible nature allows for capturing and storing diverse types of 
information without the constraints of a fixed schema. On the other hand, processing and 
analyzing semi-structured data may require specialized tools and techniques to handle 
variations in format and structure. Nonetheless, semi-structured data is increasingly prevalent 
in modern data environments, particularly in contexts such as web data, IoT (Internet of 
Things) devices, and social media feeds, where flexibility and adaptability are paramount. 

1.4.3 Unstructured Data 
Unstructured data refers to information that does not have a predefined data model or 
organization, making it more challenging to analyze and process using traditional methods. 
Unlike structured data, which is organized into rows and columns or follows a specific 
schema, unstructured data lacks a consistent format and may include text documents, emails, 
images, videos, social media posts, audio recordings, and more. 

One characteristic of unstructured data is its variability in content and structure, as it can 
contain free-form text, multimedia files, or combinations thereof. This variability makes it 
difficult to apply traditional database techniques for storage and retrieval. Additionally, 
unstructured data often contains rich and valuable information, such as customer feedback, 
market trends, or insights from multimedia content, but extracting meaning from it requires 
advanced techniques like natural language processing, image recognition, or sentiment 
analysis. 

 

Figure 1.5unstructured data types 

 



Centre for Distance Education                      1.8                    Acharya Nagarjuna University  
 

Examples of unstructured data include legal documents, audio, chats, video, images, text on a 
web page, and much more. Discover some of the most common unstructured data examples 
below: 

Examples of unstructured data are: 

 Business Documents 
 Emails 
 Social Media 
 Customer Feedback 
 Webpages 
 Open Ended Survey Responses 
 Images, Audio, and Video 

 
1.5  CHARACTERISTICS OF A DATA 
Data has three key characteristics:  

1.5.1 Composition: 

Structure: Data composition refers to the arrangement and organization of elements 
within the dataset. Structured data has a predefined format with clear relationships 
between its components, such as tables in a database or fields in a spreadsheet. In 
contrast, unstructured data lacks a fixed structure and may contain text, images, 
videos, or other multimedia content with varying formats and arrangements. 

Granularity: Granularity describes the level of detail or specificity present in the 
data. Fine-grained data contains highly detailed information at a low level of 
abstraction, while coarse-grained data provides broader summaries or aggregates at a 
higher level of abstraction. 

Dimensionality: Dimensionality refers to the number of attributes or features that 
characterize each data point. High-dimensional data has a large number of variables 
or dimensions, which can pose challenges for visualization, analysis, and 
interpretation. 

1.5.2 Condition: 

Quality: Data condition relates to its quality and integrity. High-quality data is 
accurate, complete, consistent, and free from errors or biases that could impact its 
reliability or usefulness. Data quality measures include validity, accuracy, 
completeness, consistency, and timeliness. 

Freshness: The freshness of data indicates how recently it was collected or updated. 
Fresh data reflects the most current information available and is crucial for making 
timely decisions and insights. 

Currency: Currency refers to the relevance and applicability of the data within a 
specific timeframe or context. Currency is essential for ensuring that data remains 
relevant and actionable for decision-making processes. 
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1.5.3 Context: 

Relevance: Data relevance pertains to its significance and applicability to the problem 
or task at hand. Relevant data provides valuable insights and answers specific 
questions, aligning closely with the user's objectives and needs. 

Interpretation: Contextual information, such as metadata, annotations, or 
documentation, helps users interpret and understand the meaning of the data. 
Contextual cues provide additional context, background, or insights that aid in the 
interpretation and analysis of the data.Usage Context: The usage context refers to the 
environment or scenario in which the data is utilized. Understanding the usage context 
helps tailor data analysis, visualization, and interpretation to meet the specific 
requirements and expectations of users, ensuring the relevance and effectiveness of 
the insights derived from the data. 

These characteristics collectively influence how data is collected, stored, processed, analyzed, 
and interpreted to derive insights and support decision-making processes. By considering data 
composition, condition, and context, organizations can better understand and leverage the 
value of their data assets for achieving their objectives and gaining a competitive advantage. 

Small data (data as it existed prior to the big data revolution) is about certainty. It is about 
known data sources; it is about no major changes to the composition or context of data.  

Most often we have answers to queries like why this data was generated, where and when it 
was generated, exactly how we would like to use it, what questions will this data be able to 
answer, and so on. Big data is about complexity. Complexity in terms of multiple and 
unknown datasets, in terms of exploding volume, in terms of speed at which the data is being 
generated and the speed at which it needs to be processed and in terms of the variety of data 
(internal or external, behavioural or social) that is being generated 

1.6  SUMMARY 
This chapter delves into the fundamental concepts of data and its various types, including 
structured, unstructured, and semi-structured data. Data is defined as raw facts or information 
that can be processed to obtain meaningful insights. Understanding the different types of data 
is essential for effective data management and analysis in contemporary society. 
Understanding the distinctions between structured, unstructured, and semi-structured data is 
crucial for modern data management and analysis practices. Each type of data presents 
unique challenges and opportunities, and leveraging appropriate technologies and 
methodologies is essential for deriving actionable insights from diverse data sources. 

1.7  TECHNICAL TERMS 

Big data, structured data, unstructured data, semi-structured data 

1.8 SELF ASSESSMENT QUESTIONS 

Essay questions: 
1. Define data and discuss its significance in contemporary society. How does 

understanding the various types of data 
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2. What are the distinguishing characteristics of structured, unstructured, and semi-
structured data? Provide examples of each type. 

3. Discuss the significance of semi-structured data in the context of modern data 
ecosystems. How do formats like JSON, XML, and RDF facilitate interoperability 
and integration across diverse data sources and systems? 

 Short Notes:   

1. What is data? 
2. What are the main types of data? 
3. What is structured data? 
4. What is unstructured data? 
5. What is semi-structured data? 

 
1.9 SUGGESTED READINGS 

1. Seema Acharya , Subhashini Chellappan --- Big Data And Analytics secondedition, 
Wiley  

2. 2. Seema Acharya--Data Analytics using R, McGraw Hill education (India) Private 
Limited.  

3. 3. Big Data Analytics, Introduction to Hadoop, Spark, and Machine-Learning, 
Rajkamal, Preeti Saxena, McGraw Hill, 2018.  

4. 4. Big Data, Big Analytics: Emerging Business intelligence and Analytic trends 
forToday's Business, Michael Minelli, Michelle Chambers, and Ambiga Dhiraj, John 
Wiley &Sons, 2013 

 

AUTHOR: Dr. U. Surya Kameswari 
 



LESSON- 2 

INTRODUCTION TO BIG DATA 
 
OBJECTIVES: 
After going through this lesson, you will be able to  

 Understand what is Big Data 
 Understand Applications of Big Data  
 Known challenges in Big Data 
 Gain knowledge about characteristics of big data.  

 
STRUCTURE OF THE LESSION: 

2.1 Evaluation of big data 
2.2 Definition: Big Data 
2.3 Challenges of Big Data 
2.4 What is big data and why to use big data? 
2.5 Business intelligence Vs Big data 

2.5.1 Business Intelligence 
2.5.2 Differences between Business Intelligence and big data 

2.6 Characteristics of Big Data 
2.7 Summary 
2.8 Technical Terms 
2.9 Self-Assessment Questions 
2.10 Further Readings 

 
2.1 EVALUATOIN OF BIG DATA 
 
The quantity of data created by humans is quickly increasing every year as a result of the 
introduction of new technology, gadgets, and communication channels such as social 
networking sites.Big data is a group of enormous datasets that can't be handled with typical 
computer methods. It is no longer a single technique or tool; rather, it has evolved into a 
comprehensive subject including a variety of tools, techniques, and frameworks. Quantities, 
letters, or symbols on which a computer performs operations and which can be store 
 
The history of big data starts many years before the present buzz around Big Data. Seventy 
years ago the first attempt to quantify the growth rate of data in the terms of volume of data 
was encountered. That has popularly been known as “information explosion”. 
The following are the some major milestones in the evolution of “big data”. 
1944: 
 
Fremont Rider, based upon his observation, speculated that Yale Library in 2040 will have 
“approximately 200,000,000 volumes, which will occupy over 6,000 miles of shelves…a 
cataloguing staff of over six thousand persons.” 
 
From 1944 to 1980, many articles and presentations were presented that observed the 
‘information explosion’ and the arising needs for storage capacity. 
1980: 
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In 1980, the sociologist Charles Tilly uses the term big data in one sentence “none of the big 
questions has actually yielded to the bludgeoning of the big-data people.” in his article “The 
old-new social history and the new old social history”. 
 
But the term used in this sentence is not in the context of the present meaning of Big Data 
today. 
 
Now, moving fast to 1997-1998 where we see the actual use of big data in its present context. 
1997: 
 
In 1977, Michael Cox and David Ellsworth published the article “Application-controlled 
demand paging for out-of-core visualization” in the Proceedings of the IEEE 8th conference 
on Visualization. 
 
The article uses the big data term in the sentence “Visualization provides an interesting 
challenge for computer systems: data sets are generally quite large, taxing the capacities of 
main memory, local disk, and even remote disk. We call this the problem of big data. When 
data sets do not fit in main memory (in core), or when they do not fit even on local disk, the 
most common solution is to acquire more resources.” 
 
It was the first article in the ACM digital library that uses the term big data with its modern 
context.

 
Figure 2.1 Evolution of big data 1998: 

 
In 1998, John Mashey, who was Chief Scientist at SGI presented a paper titled “Big Data… 
and the Next Wave of Infrastress.” at a USENIX meeting. John Mashey used this term in his 
various speeches and that’s why he got the credit for coining the term Big Data. 
2000: 
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In 2000, Francis Diebold presented a paper titled “’ Big Data’ Dynamic Factor Models for 
Macroeconomic Measurement and Forecasting” to the Eighth World Congress of the 
Econometric Society. 
 
In the paper, he stated that “Recently, much good science, whether physical, biological, or 
social, has been forced to confront—and has often benefited from—the “Big Data” 
phenomenon. 
 
Big Data refers to the explosion in the quantity (and sometimes, quality) of available and 
potentially relevant data, largely the result of recent and unprecedented advancements in data 
recording and storage technology.” 
2001: 
 
In 2001, Doug Laney, who was an analyst with the Meta Group (Gartner), presented a 
research paper titled “3D Data Management: Controlling Data Volume, Velocity, and 
Variety.” The 3V’s have become the most accepted dimensions for defining big data. 
2005: 
 
In 2005, Tim O’Reilly published his groundbreaking article “What is Web 2.0?”. In this 
article, Tim O’Reilly states that the “data is the next Intel inside”. 
 
O’Reilly Media explicitly used the term ‘Big Data’ to refer to the large sets of data which is 
almost impossible to handle and process using the traditional business intelligence tools. 
This is for sure the current widely understood form of big data definition. 
 
In 2005 Yahoo used Hadoop to process petabytes of data which is now made open-source by 
Apache Software Foundation. Many companies are now using Hadoop to crunch Big Data. 
So we can say that 2005 is the year that the big data revolution has truly begun and the rest 
they say is history. 
 
2.2 DEFINITION: BIG DATA 
The definition of big data can vary depending on the context and the author's perspective.  
However, a commonly cited definition of big data was proposed by Doug Laney, a research 
vice president at Gartner, in 2001. This definition is often referred to as the "3Vs" model, 
which highlights three key characteristics of big data: volume, velocity, and variety. 
Big data is high-volume, high-velocity and/or high-variety information assets that demand 
cost-effective, innovative forms of information processing that enable enhanced insight, 
decision making, and process automation.  
 
2.3  CHALLENGES OF BIG DATA 
The major implementation barriers are going to be the challenges that Big Data presents. 
These require quick attention and need to be treated since, if they are not handled, the 
technology may fail, which can also lead to certain undesirable results. If they are not 
handled, then the technology may fail. The issues associated with big data include the storage 
and analysis of data that is both incredibly huge and rapidly expanding. 
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1. The necessity of attaining synchronization across a variety of data sources  
There is a significant obstacle to overcome in order to incorporate data sets into an analytical 
platform since data sets are consistently growing in size and variety. In the event that this is 
neglected, it will result in gaps, which will in turn lead to incorrect signals and insights.  
 
2. A severe lack of knowledgeable professionals who are able to analyses large amounts 
of data  
In order to make the vast amount of data that is being produced every minute meaningful, it is 
essential to do data analysis. The industry has seen a significant increase in the demand for 
big data scientists and big data analysts as a result of the exponential growth of data. Due to 
the fact that the job of a data scientist encompasses a wide range of disciplines, it is essential 
for businesses to select a data scientist who possesses a diverse set of talents. There is a 
shortage of personnel that are knowledgeable with Big Data analysis, which is another 
significant obstacle that firms must overcome. There is a significant lack of data scientists in 
relation to the enormous amount of data that is being produced.  
 
3. Obtaining Meaningful Insights through the Application of Big Data Analytics  
When it comes to corporate organizations, it is of the utmost importance to acquire valuable 
insights through the utilization of Big Data analytics. Additionally, it is additionally essential 
that only the right department has access to this information. When it comes to Big Data 
analytics, one of the most significant challenges that businesses confront is finding an 
efficient way to close this considerable gap.  
 
4. Bringing Massive Amounts of Data into the Big Data Technology Platform  
It should not come as a surprise that the amount of data is increasing with each passing day. 
A simple interpretation of this would be that corporate organizations are required to manage a 
substantial volume of data on a daily basis. The sheer volume and variety of data that is 
currently available can be overwhelming for any data engineer. For this reason, it is believed 
to be of the utmost importance to make data accessibility simple and convenient for 
entrepreneurs and managers of brands.  
 
5. The unpredictability of the landscape of data management  
Every single day, new businesses and technologies are being launched as a direct result of the 
proliferation of big data. Companies that are involved in Big Data analytics, on the other 
hand, are confronted with a significant obstacle, which is determining which technology will 
be most suitable for them without introducing any new problems or potentially dangerous 
situations.  
 
6. The Storage of Data and Its Quality  
There has been a remarkable increase in the number of business organizations. Companies 
and other large commercial organizations are experiencing enormous expansion, which has 
led to an increase in the amount of data that is being produced. Every single person is facing 
a significant obstacle in the form of the storage of this enormous volume of data. Frequently 
utilized data storage methods, such as data lakes and warehouses, are utilized for the purpose 
of collecting and storing vast volumes of unstructured and structured data in the format that it 
was originally stored in. When a data lake or warehouse attempts to combine unstructured 
and inconsistent data from a variety of sources, it runs into mistakes. This is the fundamental 
problem that develops. There are a number of factors that can lead to problems with data 
quality, including missing data, inconsistent data, logic conflicts, and duplicate data.  
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7. Protection of Personal Information and Data Security  
Once commercial organizations learn how to make use of big data, it opens up a wide variety 
of chances and possibilities for them. Nevertheless, it also contains the potential concerns that 
are connected with big data, particularly with regard to the privacy of the data and the 
security of the network. There are many different sources of data that are utilized by the Big 
Data technologies that are utilized for analysis and storage. In the long run, this results in a 
high danger of the data being exposed, which makes it susceptible to being compromised. 
Concerns regarding privacy and security are intensified as a result of the proliferation of large 
amounts of data. 
 
2.4  WHAT IS BIG DATA AND WHY TO USE BIG DATA 
The relevance of big data does not depend on the amount of data that a company possesses; 
rather, it is determined by how the organization makes use of the data that it has acquired. 
Each and every business makes use of data in its own unique manner; the more effectively a 
firm makes use of its data, the greater the potential for growth it possesses. The organization 
is able to collect data from any source and do analysis on it in order to discover solutions that 
will enable: 
 
1. Cost Savings: When huge amounts of data need to be stored, certain Big Data tools, such 
as Hadoop and Cloud-Based Analytics, can bring cost advantages to businesses. These tools 
also assist in determining more effective ways of conducting business, which provides 
additional cost savings.  
 
2. Time Reductions: The fast speed of tools such as Hadoop and in-memory analytics makes 
it simple to recognize new sources of data, which enables organizations to analyses data 
rapidly and make decisions based on the learning in a short amount of time.  
 
3. Gain an insight of the current market conditions: We can benefit from a better grasp of 
the current market conditions by doing an analysis of big data. An example of this would be a 
corporation performing an analysis of the purchase patterns of its clients in order to determine 
which products are the most popular and then producing products in accordance with this 
trend. By doing so, it is able to gain an advantage over its rivals.  
 
4. Management of one's internet reputation: instruments that work with big data can 
perform sentiment analysis. That being the case, you are able to obtain input regarding who is 
saying what about your organization. In the event that you are interested in monitoring and 
enhancing the internet presence of your company, then big data tools might be of assistance 
to you in all of this.  
 
5. Increasing the Retention and Acquisition of Customers:Through the Use of Big Data 
Analytics The client is the most crucial asset that any business depends on. There is not a 
single company that can safely assert that they have achieved success without first needing to 
build up a strong consumer base. The high level of competition that a company faces is 
something that it cannot afford to ignore, even if it already has a customer base. In the event 
that a company is sluggish to learn what it is that its clients are seeking for, it is quite simple 
for that company to start delivering products of inferior quality. When all is said and done, 
the loss of customers will be the end outcome, which will have a negative impact on the 
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overall success of the firm. With the use of big data, businesses are able to discover a variety 
of patterns and trends that are relevant to their customers. In order to instill loyalty in 
customers, it is essential to observe their behavior.  
 
6. The application of big data analytics to solve problems faced by advertisers and 
provide marketing insights:  
 
All corporate activities can be altered with the assistance of big data analytics. The ability to 
meet the expectations of customers, the modification of the product line offered by the 
company, and, of course, the guarantee that marketing campaigns are effective are all 
included in this.  
 
7. Big Data Analytics as a Driver of Innovations and Product: Development One further 
significant advantage of big data is its capacity to assist businesses in the process of 
innovating and redeveloping their products. 
 
2.5  BUSINESS INTELLIGENCE VS BIG DATA 
 
2.5.1 Business Intelligence:  
 
The term "Business Intelligence" (BI) refers to the utilization of various technologies, 
applications, and techniques for the purpose of gathering, integrating, analyzing, and 
presenting business data. In order to facilitate more effective decision-making around 
commerce, Commerce Insights was developed. Trade Insights frameworks are, in essence, 
Decision Support Systems (DSS) that are driven by analysis of data. The term "business 
intelligence" is sometimes used interchangeably with "briefing books," "reports and inquiry 
instruments," and "official data frameworks." The majority of the time, business intelligence 
frameworks make use of information that has been compiled into a data warehouse or a data 
store, and they may occasionally work from operational data. These frameworks provide 
authentic, up-to-date, and forward-looking perspectives of business operations.  
 
Business Intelligence has the following advantages:  
 
Business intelligence (BI) is primarily concerned with the provision of insights that are 
derived from historical data. This enables companies to comprehend patterns and trends in 
their operations.  
 
By providing a comprehensive perspective of the activities of the organization, business 
intelligence (BI) enables managers to comprehend performance across a variety of 
departments and roles for the organization.  
 
BI can assist in the identification of opportunities for the reduction of costs and the 
optimization of processes, which can ultimately lead to enhanced efficiency and profitability.  
Some of the drawbacks of using business intelligence:  
 
Due to the fact that business intelligence is centered on past data, it may not provide an 
accurate picture of the current or future conditions.  
 
A large investment in data gathering and processing, in addition to specialized software and 
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hardware, is required for business intelligence (BI), which can be a resource-intensive 
endeavor.  
 
The level of depth or granularity that is required to address particular business difficulties 
might not be provided by business intelligence. 
 
 
2.5.2 Differences between Business Intelligence and Big Data 
There are distinctions between Big Data and Business Intelligence, despite the fact that both 
of these technologies are utilized to analyses data in order to assist businesses in the process 
of decision-making. Both the manner in which they operate and the kinds of data that they 
analyses are distinct from one another.  
 
The gathering, examination, and presentation of data for the purpose of facilitating strategic 
decision-making inside an organization are the three main components that comprise business 
intelligence technology. Extraction of data from a variety of sources, transformation of that 
data into information that is relevant, and presentation of that information in the form of 
reports, dashboards, and visualizations are all components of this process. Through the use of 
business intelligence, executives, managers, and analysts are given the ability to monitor key 
performance indicators, recognize patterns, and acquire insights that can be put into action in 
order to ensure the growth and efficiency of their organizations. 
 
On the other hand, the term "Big Data" refers to enormous quantities of data that are 
particularly complicated and varied, and which cannot be simply managed by the 
conventional methods of data processing. It incorporates both structured and unstructured 
data from a variety of sources, including electronic transactions, social media platforms, 
sensors, and other sources. In order to draw important insights and find patterns, correlations, 
and trends that were not previously recognized, Big Data utilizes advanced analytics and 
processing methods. These approaches include data mining, predictive analytics, and 
machine learning. It gives businesses the ability to investigate opportunities that have not yet 
been exploited, learn about the preferences of their customers, improve their decision-making 
processes, and optimize their operations. Business Intelligence and Visualization courses will 
assist students in transforming data into opportunities through the use of BI and Visualization 
capabilities, as well as in preparing themselves for employment.  
 
Data Type 
Business Intelligence (BI) typically deals with structured data, which is organized and 
categorized into preset formats such as databases, spreadsheets, and data warehouses. This 
type of data involves the organization and categorization of information. This type of 
structured data is often generated internally within an organization and adheres to a schema 
that has been predefined. Using the tools and methods that are traditionally used for data 
processing, it is simple to query, aggregate, and analyses the data.  
 
Big Data comprises a wide variety of data formats, including organized, semi-structured, and 
unstructured variations of the same piece of information. Information that does not 
correspond to a fixed schema or a predefined format is included in Big Data, in addition to 
the structured data that is utilized in business intelligence. Included in this are posts on social 
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media platforms, reviews from customers, emails, photos, videos, sensor data, and other types 
of content. The applications of Big Data technology make it possible to store, process, and 
analyses a wide variety of data kinds.  
 
Volume of Data 
Business intelligence (BI) often works with moderate to large data sets that can be managed 
by employing the tools and procedures that are traditionally used for data processing. When it 
comes to business intelligence (BI), the size of the data volumes often falls within the range 
of what can be kept in a relational database or processed using traditional data warehouses. 
Extracting insights from relevant subsets of data in order to help decision-making is the 
primary focus of business intelligence (BI).  
 
Big Data is a term that describes datasets that are so enormous that they exceed the 
capabilities of conventional database management systems to process them. The volume of 
Big Data, which is typically measured in terabytes, petabytes, or even bigger scales, is one of 
its defining characteristics. The burden is distributed across numerous servers or clusters of 
machines in order to facilitate the storing, processing, and analysis of these enormous 
datasets. This is made possible by Big Data technology.  
 
Data Sources: 
The majority of business intelligence (BI) relies on the data sources that are already present 
within an organization. Transactional databases, enterprise resource planning (ERP) systems, 
data warehouses, customer relationship management (CRM) systems, spreadsheets, and other 
structured data repositories are some of the sources that fall under this category. In most 
cases, the data that is utilized in business intelligence is produced by the organization's very 
own systems and applications.  
 
Big Data comprises a wider variety of data sources than traditional data does. This system 
combines data from external sources in addition to data from internal sources. These external 
sources include social networking platforms (such as Twitter and Facebook), weblogs, 
machine sensors, geolocation data, public datasets, and other sources. Big Data places an 
emphasis on collecting and analyzing data from a wide variety of sources in order to achieve 
a more comprehensive perspective and more profound understanding.  
 
An Approach to Analysis  
The primary objective of business intelligence (BI) is to collect and examine structured data 
through the utilization of methods such as reporting, querying, and data visualization. 
Extracting insights from structured information is accomplished through the utilization of 
well-established techniques such as online analytical processing (OLAP) and data mining. 
Business intelligence (BI) tools and platforms offer users interactive dashboards, reports, and 
visualizations to assist them in comprehending the data and making decisions that are driven 
by the data.  
 
The examination of big data goes beyond the usual business intelligence methods. Data 
mining, machine learning, natural language processing, and predictive analytics are some of 
the advanced analytics technologies that are utilized and utilized by this system. Hadoop, 
Spark, and Nosily databases are examples of Big Data technologies that make it possible to 
process enormous datasets that are not simple to understand. In the context of business 
intelligence (BI), Big Data analytics seeks to identify patterns, correlations, and trends that 
may not be immediately obvious using more conventional methods. Exploratory analysis, 
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anomaly identification, and predictive modelling are frequently utilized in this process in 
order to get more profound understandings from extensive and unstructured data.  
 
Purpose: 
Within an organization, business intelligence is largely utilized to provide assistance with the 
process of making operational decisions. The ability to provide insights into corporate 
processes, performance metrics, and operational efficiency is the primary focus of this 
component. Through the use of business intelligence (BI), stakeholders such as executives, 
managers, and analysts are able to monitor and analyses the performance of the business, 
locate areas that could be improved, and make decisions that are informed by both historical 
and currently available data.  
 
The goal of Big Data analysis is to unearth useful insights and to obtain a deeper 
understanding of complicated processes. This objective drives the study. The purpose of this 
endeavor is to unearth previously concealed patterns, trends, and anomalies that have the 
potential to result in innovations, new possibilities, and strategic decision-making. Big data is 
centered on the exploration of data in order to derive insights that can be put into action and 
to drive corporate change. The ability to identify new markets, optimize operations, enhance 
customer experiences, and create products and services are all some of the benefits that it 
may provide to organizations.  
 
Time Sensitivity: Business Intelligence (BI) includes both real-time and historical analysis. 
Users are able to monitor and analyses data in real-time or near-real-time with the help of 
real-time business intelligence, which helps them gain immediate insights into ongoing 
operations. Real-time dashboards, for instance, are able to display live data on key 
performance indicators. This enables stakeholders to monitor metrics and take rapid actions 
based on information that is current at the moment. In business intelligence, historical 
analysis is the process of looking at data from the past in order to recognize patterns, trends, 
and historical performance over a certain period of time.  
 
Big Data processing frequently comprises data processing and analysis that is performed in 
real time or very close to real time. When organizations have the capability to handle and 
analyses massive amounts of data in a short amount of time, they are able to make choices in 
a timely manner and take prompt action based on emerging patterns or occurrences. 
Streaming data from sensors or social media, for instance, can be processed and analyzed in 
real time in order to identify abnormalities, keep track of trends, or initiate automatic 
responses.  
 
A User's Role  
A wide variety of users, such as executives, managers, analysts, and decision-makers across a 
variety of business departments, are intended to make advantage of business intelligence's 
capabilities. Users are able to access relevant data, generate reports, construct interactive 
dashboards, and run ad hoc searches with the help of business intelligence (BI) tools and 
platforms, which provide user-friendly features and intuitive interfaces. Business intelligence 
makes it possible for people with diverse degrees of technical expertise to investigate data, 
increase their level of insight, and work together on decision-making processes.  
In most cases, the analysis of Big Data calls for specialized knowledge and abilities, and it 
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frequently involves the participation of data scientists, analysts, and researchers. Experts in 
advanced analytics techniques, statistics, programming, and data manipulation, these people 
are extremely knowledgeable in these areas. They work with datasets that are both huge and 
complicated, and they extract important insights by applying machine learning algorithms, 
data mining approaches, and statistical models. The analysis of big data frequently entails the 
participation of multidisciplinary teams that work together to identify insights and formulate 
suggestions based on the data. 
 
2.6 CHARACTERISTICS OF BIG DATA 
 
“Big Data” is data whose scale, diversity, and complexityrequire new architecture, 
techniques, algorithms, andanalytics to manage it and extract value and hiddenknowledge 
from it. 
 
The characteristics of big data, encapsulated by the three Vs - Volume, Velocity, and Variety 
- along with additional dimensions like Veracity, Variability, and Value, underscore its 
profound impact on modern analytics and decision-making.  
 

 
Figure 2.2 Characteristics of Big Data  

 
2.6.1. Volume 
The volume of within the context of the current situation, the quantity of data that businesses 
possess is significant. It will be necessary for you to analyze larger amounts of structured and 
unstructured data in order to perform major data analytics. These datasets, such as those 
found on Facebook and Instagram, as well as the data found on a variety of web and mobile 
applications, can have an endless amount of value. The volume of data is expected to 
significantly increase in the next years, as shown by the trends in the industry, and there is a 
great deal of potential for extensive data analysis and the discovery of patterns through this 
process. 
 
2.6.2.Velocity  
The speed at which data is processed is indicated by the term "velocity." When it comes to 
the real-time evaluation and performance of any big data activity, getting a higher data 
processing rate is really important. In the future, users will have access to a greater quantity 
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of data; nevertheless, the processing speed will be of equal significance for businesses who 
wish to reap the benefits of big data analytics.  
 
2.6.3. Variety 
 
Variety is a term that relates to the various classifications of big data. Because of the 
influence it has on productivity, it is one of the most significant difficulties that the big data 
sector faces.  
The increasing utilization of big data has resulted in the emergence of new data groups. It is 
necessary to perform additional pre-processing on various data categories, such as text, audio, 
and video, in order to support metadata and determine increased value.  
 
2.6.4 Value  
Value refers to the benefits that your organization derives from the data that has been 
processed and examined. It communicates how the data corresponds to the goals that have 
been established for your organization and whether or not it helps your firm improve itself. In 
the realm of big data, it is among the most essential basic qualities.  
 
2.6.5 Veracity 
Veracity is a term that refers to the accuracy of your data. It is crucial because of the potential 
for low veracity to have a detrimental impact on the accuracy of the outcomes of your big 
data analytics.  
 
 
2.6.6. Validity 
The validity of the data is a measure of how useful and relevant information is for a firm to 
use in order to achieve the goals that have been envisioned and the purpose that has been 
established.  
 
2.6.7. Volatility  
Changes are constantly occurring in big data. The knowledge that you have gathered from a 
specific source at this moment can be different in a short period of time. Inconsistency in the 
data is indicated by this scenario, which also has an effect on the rate at which you 
accommodate and adapt to the data.  
 
2.6.8. Visualization 
Visualization, also known as data visualization, is the process of displaying the analytics and 
insights that have been generated by your big data through the use of visual drawings like as 
charts and graphs. As professionals in big data share their analytics and insights with non-
technical addressees, it has become increasingly significant. 
 
2.7  SUMMARY 
The chapter begins by defining big data, emphasizing its three key characteristics: volume, 
velocity, and variety. It explores the significance of big data in contemporary society, 
highlighting its role in enabling organizations to derive valuable insights and make data-
driven decisions. The challenges of big data, including managing its sheer volume, velocity, 
and variety, are discussed in detail, along with considerations of data quality, privacy, and 
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security. Additionally, the chapter compares big data with traditional business intelligence, 
illustrating how big data extends beyond structured data analysis to encompass diverse data 
types and advanced analytics techniques. By examining the evaluation, definition, challenges, 
and distinctions between big data and business intelligence, the chapter provides a 
comprehensive overview of the complexities and opportunities associated with harnessing big 
data for organizational success. 
 
2.8  TECHNICAL TERMS 

Big Data, Business Intelligence 
 

2.9   SELF ASSESSMENT QUESTIONS 
Essay questions: 
 
1. Identify and analyze the major challenges associated with big data 
2. Compare and contrast traditional business intelligence (BI) with big data analytics 
3. Provide examples of real-world applications where big data has been instrumental 

in driving transformation and creating value. 
 Short Questions:   
 

1. What are the key characteristics used to define big data according to the 
traditional "3Vs" model? 

2. What are some of the challenges organizations face when dealing with big data? 
3. Explain the concept of big data and its significance in modern business contexts. 
4. How does big data differ from traditional business intelligence approaches? 
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LESSON- 3 

BIG DATA ANALYTICS 

 

OBJECTIVES: 

After going through this lesson, you will be able to  

 Understand what is and what is not Big Data Analytics 
 Understand classification of Big Data Analytics 
 Known the challenges in Big Data Analytics 
 Explain the importance of big data analytics. 

STRUCTURE OF THE LESSION: 
3.1 What is and isn't big data analytics?  

 
3.2 Why hype around big data analytics? 

 
3.3 Classification of analytics 

 
3.4 Top challenges facing big data 

 
3.5 Importance of big data analytics 

 
3.6 Summary 

 
3.7 Technical Terms 

 
3.8 Self-Assessment Questions 

 
3.9 Further Readings 
 
 
3.1 WHAT IS AND ISN'T BIG DATA ANALYTICS?  
However, the RDBMS and the typical data warehouse are not going to be replaced by big 
data analytics. Data warehouses and relational database management systems are coexisting 
with big data analytics. It is not possible to characterize something as "big data" if it just 
consists of a massive volume of data. Extremely high volumes are a characteristic, but 
volume alone is not sufficient to justify big data. That is not to say that only large 
corporations make use of it; any company can make use of it.  
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Figure 3.1 What isn’t big data analytics 

3.1.1 Rather than RDBMs. 

Relational Database Management Systems (RDBMS) and big data don't directly replace each 
other. Instead, big data is a complementary tool that meets different data management needs. 
RDBMS work well in traditional database settings for storing structured data and processing 
transactions. They give you a solid and organised way to handle data with clear schemas, and 
their ACID (Atomicity, Consistency, Isolation, and Durability) features make sure that the 
data is correct. However, RDBMS might not be able to handle the huge amounts of data that 
modern applications create, as well as the variety and speed of data that is created in today's 
digital world.  

 
Big data systems, on the other hand, let you handle large amounts of structured, semi-
structured, and unstructured data in a way that is both scalable and flexible. Distributed 
computing systems are used by these platforms, like Hadoop and Spark, to process and 
analyse data across groups of standard hardware. The three Vs of big data are volume, 
velocity, and variety, and big data tools are great at handling all three. They let businesses 
keep, process, and look at very large datasets for things like real-time data processing, 
predictive analytics, and machine learning. There are some things that big data platforms can 
do that standard RDBMS can't, but they don't completely replace them. Instead, they add an 
extra layer to handle use cases and data types that RDBMS might not be able to handle well 
on its own. 

 
A method that combines both RDBMS and big data technologies to use the best features of 
each is often used by businesses. RDBMS are still needed for transactional processing, which 
makes sure that data is correct and consistent in important business processes. Meanwhile, 
big data platforms store and analyse huge amounts of data, which lets businesses get useful 
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information from many different sources of data. By putting these tools together, businesses 
can make a complete data management plan that covers all of their data needs, from 
structured transactional data to big data analytics on a large scale. 

 

3.1.2 Volume alone. 

One big difference between big data and RDBMS is how they handle large amounts of data. 
RDBMS can handle organized data that fits into schemas that have already been set up. The 
size of this data is usually between a gigabyte and a terabyte. They work well with traditional 
transactional systems that handle small amounts of data and put a lot of stress on keeping data 
correct and consistent. But RDBMS might not be able to handle data as well after a certain 
point, especially as the amount of data grows into the petabyte or exabyte range. 
 
 
Big data systems, on the other hand, are designed to handle huge amounts of data, from 
terabytes to petabytes and even more. You can use distributed storage and processing systems 
on these platforms to make them work with more cheap hardware in groups. It is easy for big 
data platforms to store, process, and analyze huge datasets because they break down data 
processing jobs into smaller, parallelizable units. They can handle a lot of data, which makes 
them perfect for web-scale analytics, real-time data processing, and large-scale machine 
learning. Traditional RDBMS would have a hard time keeping up with all that data. 

3.1.3 Technology alone. 

There are big technological changes between Relational Database Management Systems 
(RDBMS) and big data platforms. These differences show how they handle data differently. 
RDBMS use a centralized architecture to keep data in structured tables with predefined 
schemas. This is usually done on a single server or a small group of servers. Structured Query 
Language (SQL) is used to change and query data in these systems, which are designed to 
handle transactions quickly and keep data safe. Big data platforms, on the other hand, use 
distributed computer architectures that let hardware clusters of the same type be used to add 
more resources. They are made to handle very large amounts of data, like petabytes or 
exabytes, and can process data across many nodes at the same time. Big data platforms can 
handle structured, semi-structured, and unstructured data, as well as other data formats and 
structures. This means they can handle the wide range of data sources that are common in 
current applications.  

 
Also, big data technologies often use different structures and tools for processing data than 
RDBMS. RDBMS use SQL a lot to explore and change data, but big data platforms use 
distributed computing frameworks like Flink, Hadoop, and Spark. These tools make it 
possible to do machine learning, batch processing, and stream processing in real time. Big 
data platforms also often include NoSQL databases, like HBase and Cassandra, which make 
it easy to store and view semi-structured and unstructured data. Big data platforms can 
change with the times thanks to their wide range of technologies. They can be used for many 
things, from basic analytics to more complex methods like deep learning and natural 
language processing. 
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3.1.4 Reserved for large corporations. 

Relational Database Management Systems (RDBMS) and big data are both used by 
corporations for different reasons in their data management plans. Companies use RDBMS to 
handle organized data in transactional systems like OLTP, CRM, and ERP. Because these 
systems make sure that data is correct, consistent, and dependable, they can be used for 
important business tasks where structured data needs to be saved, accessed, and changed 
quickly. RDBMS are often the most important part of business applications that need to 
process data and handle transactions in real time.  

 
In contrast, big data technologies are being used more and more by businesses to deal with 
the problems that come up with handling huge amounts of data from sources like social 
media, sensor data, log files, and multimedia material. Big data platforms, such as Hadoop, 
Spark, and NoSQL databases, offer scalable storage and processing. This lets businesses 
collect, store, and analyze big datasets to gain insights and make decisions. Big data is used 
by businesses for jobs like fraud detection, customer segmentation, predictive analytics, and 
sentiment analysis. Traditional relational databases may not be able to handle the amount, 
type, and speed of data that is involved. Companies can get useful information from many 
different types of data thanks to big data tools. This helps them make better business 
decisions and gain market share. 

 
3.2  WHY HYPE AROUND BIG DATA ANALYTICS? 
The hype around big data analytics stems from several factors that collectively contribute to 
its significance and appeal in various industries: 

As digital tools have become more common, the amount of data that businesses produce has 
grown by a huge amount. Big data analytics lets you handle and learn from these huge 
datasets, which lets you access useful data that you couldn't get to before.  
Big data analytics can work with different kinds of data, such as organized, semi-structured, 
and unstructured data. This includes things like text, pictures, videos, posts on social media, 
sensing data, and more. By looking at this wide range of data, businesses can learn a lot about 
their processes, customers, and markets. Big data analytics lets businesses look at data in real 
time or very close to real time. This skill is very important in environments that are always 
changing and need quick insights to adjust to new issues, market trends, or changes in 
customer behavior. 

By finding patterns and trends in large datasets, big data analytics makes predictive modeling 
and predicting easier. This helps businesses guess what will happen in the future, make smart 
choices, and successfully lower their risks. Companies can make their goods, services, and 
marketing more relevant to each customer by looking at data about them from different 
sources. Big data analytics helps businesses understand what customers want, how they act, 
and how they feel, which lets them make products that fit each customer's needs and makes 
them happier.  

 
Cost savings can come from using big data analytics to improve resource distribution, 
streamline processes, and cut down on waste. Big data analytics also gives companies a 
competitive edge by letting them make decisions based on data, come up with new ideas 
faster, and stay ahead of market trends. Big data analytics has become more useful as 
technologies like machine learning, artificial intelligence, and natural language processing 
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have improved. These technologies make it possible to analyze data in more complex ways, 
automate chores, and get more useful information from data.  

Overall, the hype surrounding big data analytics shows how it has the ability to change the 
way businesses grow, come up with new ideas, and gain a competitive edge in today's data-
driven world. As companies keep putting money into big data analytics, the hype should turn 
into real results and broad use across all fields.  

 
Big Data isn't just a bunch of talk; it's a chance for people who know what they're doing. 
Some people are using analytics, rules engines, and machine learning on Big Data to make 
data research and search tools, even though this is still in its early stages. Big Data will 
change the game in more ways than one if it is used in the right way, with the right strategy, 
with knowledge of the business, and with the right technologies to back it up. 

 
3.3  CLASSIFICATION OF ANALYTICS 
Big data analytics encompasses various types of analysis techniques aimed at extracting 
insights, patterns, and valuable information from large and diverse datasets. Some of the key 
types of big data analytics include: 

Collecting, processing, and interpreting data to find insights and help with making choices is 
an important part of the field of data analytics. Data analytics is the study of looking at large 
amounts of raw data to find patterns, draw conclusions, and get useful information. To do 
this, different methods and tools are used to process and turn data into useful information that 
can be used to make decisions.  

 
Data analytics includes a lot of different ways to look at data and find useful information that 
can make different parts of a business better. Businesses can find patterns and metrics that 
they might not have seen otherwise by carefully looking at data. This lets them improve 
general efficiency and make processes run more smoothly. 

 
In manufacturing, for example, companies keep track of machine runtime, breaks, and work 
queues to better plan their workloads and make sure machines work at their best.  
 
Data analytics is used in many areas besides just optimizing output. Companies that make 
games use analytics to come up with reward systems that keep players interested. Companies 
that make content use analytics to improve the placement and appearance of their content, 
which in turn keeps users interested. 

There are four types of Data analytics 

1. Predictive  Analytics (What Happened in the past) 
2. Descriptive  Analytics (Why did it happened in the Past) 
3. Prescriptive  Analytics (What will happen in the Future) 
4. Diagnostic Analytics (How can we make it happen) 

 



Centre for Distance Education                  3.6                         Acharya Nagarjuna University  
 

3.3.1 Predictive Analytics 

With predictive analytics, the data is turned into useful information that can be used. 
Predictive analytics uses data to figure out what will probably happen or how likely it is that 
something will happen. A lot of different statistical methods, like modeling, machine 
learning, data mining, and game theory, are used in predictive analytics to look at past and 
present events and guess what will happen in the future.  

Descriptive analytics involves summarizing historical data to gain insights into past events 
and understand what has happened. It focuses on identifying patterns, trends, and correlations 
within the data. Descriptive analytics provides a foundation for further analysis and decision-
making. 

Techniques that are used for predictive analytics are Linear Regression, Time Series Analysis 
and Forecasting, Data Mining 

Basic Cornerstones of Predictive Analytics are Predictive modelling, Decision Analysis and 
optimization, Transaction profiling 

 
3.3.2 Descriptive Analytics 

Descriptive analytics looks at data and events that happened in the past to figure out how to 
handle events that will happen in the future. Looking at past performance and understanding 
performance by mining previous data to find out why things worked or didn't work in the 
past. This kind of research is used in almost all management reports, like those for sales, 
marketing, operations, and finances.  

The descriptive model counts the connections between pieces of data in a way that is often 
used to put customers or leads into groups. A predictive model tries to guess how one 
customer will act, but descriptive analytics looks at all the possible connections between a 
customer and a product.  

Common examples of Descriptive analytics are company reports that provide historic reviews 
like Data Queries, Reports, Descriptive Statistics, Data dashboard 

 
3.3.3 Prescriptive Analytics 

Prescriptive analytics takes predictive analytics a step further by providing recommendations 
or actions to optimize outcomes. It uses optimization and simulation techniques to suggest the 
best course of action based on predicted future scenarios. Prescriptive analytics helps 
organizations make data-driven decisions and take actions that lead to desired outcomes. 

Prescriptive analytics automatically combine large amounts of data, math, business rules, and 
machine learning to make a prediction. It then offers a decision that can be made based on the 
prediction.  
 
Prescriptive analytics does more than just guess what will happen in the future. It also 
suggests actions that will help the predictions come true and shows the person making the 
decision what each choice will mean. This type of analytics not only guesses what will 
happen and when, but also tries to figure out why it will happen. Prescriptive analytics can 
also offer different ways to make decisions about how to take advantage of a future 
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opportunity or reduce a future risk, and it can show what each choice would mean.  
 

For example, Prescriptive Analytics can benefit healthcare strategic planning by using 
analytics to leverage operational and usage data combined with data of external factors such 
as economic data, population demography, etc.  

 
3.3.4 Diagnostic Analytics 

For this research, we usually use historical data over other data to find the answer to any 
question or figure out how to fix any issue. We look at the problem's past data to see if there 
are any patterns or dependencies.  

For instance, businesses choose this type of analysis because it helps them understand a 
problem better and keep thorough records on what they have available. If they don't, 
collecting data for each problem individually would take a lot of time.  

Diagnostic analytics goes beyond descriptive analytics to answer the question of why certain 
events occurred. It aims to uncover the root causes of specific outcomes or trends observed in 
the data. By analyzing historical data in detail, diagnostic analytics helps organizations 
understand the factors influencing their performance or business operation 
 

Common techniques used for Diagnostic Analytics are Data discovery, Data mining, 
Correlations  

 

Figure 3.2 Types of Data Analytics 
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3.4   TOP CHALLENGES FACING BIG DATA 
Storage: 

The hardest part is storing all the data that is created every day, especially when it comes in 
different forms, in old systems. Databases that are used for organized data can't hold 
unstructured data. 

Processing: 

Processing "big data" means reading, changing, extracting, and organizing data so that it can 
be used. There are still problems with putting and receiving information in unified forms.  

Security: Organizations care a lot about security. Computer thieves could steal or damage 
information that isn't secured. So, people who work in data security have to find a balance 
between letting people access data and following strict security rules.  
 
Finding and Fixing Problems with Data Quality  

A lot of you are probably having problems because your data isn't very good, but there are 
ways to fix them.  

There are three ways to fix problems with data, which are:  

 The original database has the right details.  
 Any mistakes in the data must be fixed by fixing the original data source.  
 To figure out who someone is, you must use very accurate methods. 

 

Scaling Big Data Systems 

Moving to the cloud, splitting read-only and write-active databases, database sharing, and 
memory caching are all good ways to scale. They are all great on their own, but when you use 
them together, you'll get to the next level.  

Evaluation and Selecting Big Data Technologies  

Big data technologies cost a lot of money for businesses, and the market for these tools is 
growing very quickly. But in the last few years, the IT business has realized how useful big 
data and analytics can be.  

The following technologies are on the rise:  
 Hadoop Ecosystem 
 Apache Spark 
 NoSQL Databases 
 R Software 
 Predictive Analytics 
 Prescriptive Analytic 
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Figure 3.3 Big Data Challenges 

 

Environments for Big Data 

A large data set is more active than a data warehouse because it is always getting new data 
from different sources. The people who are in charge of big data will quickly forget where 
and what each set of data came from.  

Real-Time insights 

By analyzing data as it is being collected by a system, "real-time analytics" describe the 
process. Real-time analytics tools use logic and math to quickly give views on data, which 
helps people make decisions more quickly and with more accurate information.  
 

Validation of Data  

It is important to make sure that data is correct, complete, and organized before using it in a 
business process. What comes out of a data validation process can be used for more research, 
business intelligence, or even to teach a machine learning model what to do.  
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Healthcare Challenges 

Big data about health can come from a lot of different places, such as electronic health 
records (EHRs), genomic sequencing, medical studies, wearable tech, and medical imaging.  
 
Problems that make it hard to use big data effectively in healthcare  

 The price of implementation 
 Compiling and polishing data 
 Security 
 Disconnect in communication 

 

3.5 IMPORTANCE OF BIG DATA ANALYTICS 

It's impossible to overstate how important big data analytics is to businesses today; it's a key 
part of driving growth, making better decisions, and getting a competitive edge. First, big 
data analytics helps businesses find useful information in the huge amounts of data they 
create and store. Companies can get useful business information from this data by looking for 
patterns, trends, and correlations. These insights help businesses learn more about their 
customers, markets, and operations, which helps them make better goods and services that 
meet the needs of their customers.  

 
Big data analytics makes it easier to make decisions based on data, which means that 
companies can choose based on facts and analysis instead of gut feelings or guesswork. 
Organizations can predict future trends, risks, and opportunities by using predictive analytics. 
This lets them deal with problems before they happen and take advantage of new 
possibilities. This proactive method makes companies more flexible and resilient, which 
helps them stay ahead of the curve in markets that change quickly. 
 
 
Big data analytics helps businesses make better use of their resources and processes. 
Companies can find inefficiencies, streamline workflows, and boost output by looking at data 
on processes, supply chains, and resource use. This optimization not only cuts costs but also 
improves operational efficiency. This lets businesses give their customers better goods and 
services more quickly and easily.  

 
Big data analytics is a key part of making the customer experience better and getting them 
more involved. Companies can learn a lot about their customers' likes, dislikes, and feelings 
by looking at data from a lot of different places, like social media, website exchanges, and 
transaction histories. With this information, businesses can tailor their goods, services, and 
advertising to each customer, giving them more relevant and interesting experiences that 
make them loyal and happy.  

 
Lastly, big data analytics helps businesses come up with new ideas and stay competitive in 
the digital world we live in now. Companies can find new possibilities, make new products 
and services, and set themselves apart from competitors by using advanced analytics 
techniques like machine learning, artificial intelligence, and deep learning. Big data analytics 
also lets businesses try new things and make changes quickly, which lets them respond to 
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changing market conditions and take advantage of new possibilities as they appear. Overall, 
big data analytics is necessary for businesses that want to do well in a world that is becoming 
more and more data-driven. It helps them learn important things, make smart choices, 
improve customer experiences, and spur innovation and growth. 

1.6 SUMMARY 
The chapter delves into the realm of big data analytics, delineating its essence and clarifying 
what constitutes, as well as what doesn't, fall under its purview. It explores the hype 
surrounding big data analytics, attributing it to the transformative potential it holds in 
unlocking valuable insights from vast and varied datasets, driving innovation, and fostering 
competitive advantage. Classification of analytics is elucidated, delineating descriptive, 
diagnostic, predictive, prescriptive, text, spatial, and streaming analytics, each catering to 
distinct data analysis objectives and methodologies. The chapter also scrutinizes the top 
challenges facing big data analytics, ranging from data quality and security issues to the 
complexity of integrating disparate data sources. Ultimately, it underscores the paramount 
importance of big data analytics in today's digital landscape, elucidating its pivotal role in 
enhancing decision-making, optimizing operations, fostering innovation, and augmenting 
customer experiences, thereby enabling organizations to thrive in an increasingly data-driven 
world. 

 

1.7  TECHNICAL TERMS 

 Big Data Analytics, Predictive Analytics, Prescriptive Analytics, Descriptive Analytics, 
Diagnostic Analytics 

1.8  SELF ASSESSMENT QUESTIONS 

Essay questions: 
1. Discuss the factors contributing to the hype surrounding big data analytics 
2. Define and classify different types of analytics 
3. Identify and discuss the key challenges and obstacles associated with big data 

analytics, 
4. Evaluate the role of big data analytics in addressing complex business challenges. 

Short Questions:   
1. What factors contribute to the hype surrounding big data analytics? 
2. Describe the characteristics and applications of descriptive analytics. 
3. How does predictive analytics differ from prescriptive analytics? 
4. Why is big data analytics important for businesses and organizations? 
5. What are some of the major challenges organizations face in implementing big 

data analytics 

1.9  SUGGESTED READINGS 

1. Seema Acharya , Subhashini Chellappan --- Big Data And Analytics secondedition, 
Wiley  
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2. 2. Seema Acharya--Data Analytics using R, McGraw Hill education (India) Private 
Limited.  

3. 3. Big Data Analytics, Introduction to Hadoop, Spark, and Machine-Learning, 
Rajkamal, Preeti Saxena, McGraw Hill, 2018.  

4. 4. Big Data, Big Analytics: Emerging Business intelligence and Analytic trends 
forToday's Business, Michael Minelli, Michelle Chambers, and Ambiga Dhiraj, John 
Wiley &Sons, 2013 
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LESSON- 4 

BIG DATA TECHNOLOGIES 

 
OBJECTIVES: 
After going through this lesson, you will be able to  

 Understand the concept of big data and its significance in today's data-driven world. 
 Recognize the various technologies available for handling big data effectively. 
 Explain the role of NoSQL databases in addressing the challenges of big data storage 

and processing. 
 

STRUCTURE OF THE LESSION: 
 
4.1 No SQL 

4.1.1 Types of NoSQL Databases  
4.1.2 Advantages of NoSQL 
4.1.3 Use of NoSQLIn Industry 
4.1.4NoSQL Vendors 
4.1.5 SQLVs NoSQL 

4.2 Hadoop 
4.2.1 Features of Hadoop 
4.2.2 Key Advantages of Hadoop 
4.2.3 Versions of Hadoop 
4.2.4 Overview of Hadoop Ecosystem 
4.2.5 Hadoop Distribution 
4.2.6 Hadoop versus SQL 

4.3 Summary 
4.4 Technical Terms 
4.5 Self-Assessment Questions 
4.6  Further Readings 
 
4.1 No SQL 
The acronym NoSQL was first used in 1998 by Carlo Strozzi while naming his lightweight, 
open-source “relational” database that did not use SQL. The name came up again in 2009 
when Eric Evans and Johan Oskarsson used it to describe non-relational databases. Relational 
databases are often referred to as SQL systems. The term NoSQL can mean either “No SQL 
systems” or the more commonly accepted translation of “Not only SQL,” to emphasize the 
fact some systems might support SQL-like query languages. 
 
Big data is a term used to describe the enormous amount of data that organizations produce 
on a daily basis. Previously, the size and complexity of this data exceeded the capabilities of 
conventional data processing techniques. Several large data processing tools are accessible, 
such as Apache Hadoop, Apache Spark, and MongoDB. Each of these technologies possesses 
distinct advantages and disadvantages, although all of them can be utilized to extract valuable 
information from extensive data sets. Big data storage technologies refer to a computational 
and storage framework that is designed to gather and handle vast amounts of data. These 
technologies also enable the analysis of data in real-time. 
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Figure 4.1 Big Data Technologies  

 
Big data encompasses a wide range of technologies and tools that are used to store, process, 
analyze, and visualize large and complex datasets. Some of the key technologies used in big 
data include: 
 
Hadoop: Hadoop is an open-source framework for distributed storage and processing of 
large datasets across clusters of commodity hardware. It includes components such as 
Hadoop Distributed File System (HDFS) for storage and MapReduce for parallel processing. 
 
Apache Spark: Apache Spark is a fast and general-purpose distributed computing system 
that provides in-memory processing capabilities for big data analytics. It supports a wide 
range of programming languages and APIs for batch processing, streaming, machine 
learning, and graph processing. 
 
NoSQL Databases: NoSQL (Not Only SQL) databases are non-relational databases designed 
for scalable, high-performance storage and retrieval of unstructured and semi-structured data. 
Examples include MongoDB, Cassandra, HBase, Couchbase, and Redis. 
 
Apache Kafka: Apache Kafka is a distributed streaming platform that provides high-
throughput, fault-tolerant messaging for real-time data processing and analytics. It is 
commonly used for building real-time data pipelines and event-driven architectures. 
 
Apache Flink: Apache Flink is a stream processing framework for distributed, high-
throughput, and low-latency data processing. It supports event time processing, exactly-once 
semantics, and stateful computations for real-time analytics. 
 
Data Warehousing Solutions: Data warehousing solutions such as Amazon Redshift, 
Google BigQuery, and Snowflake provide scalable, cloud-based platforms for storing and 
analyzing structured data. They are optimized for high-performance analytics and business 
intelligence applications. 
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Machine Learning and AI: Machine learning and artificial intelligence techniques are used 
to extract insights, patterns, and predictions from big data. Frameworks such as TensorFlow, 
PyTorch, and scikit-learn are commonly used for building and deploying machine learning 
models on big data. 
 
Data Visualization Tools: Data visualization tools such as Tableau, Power BI, and D3.js are 
used to create interactive visualizations and dashboards for exploring and communicating 
insights from big data. 
 
Distributed Storage Systems: Distributed storage systems such as Amazon S3, Google 
Cloud Storage, and Apache HDFS provide scalable and durable storage for big data. They are 
optimized for storing large volumes of data across distributed nodes. 
 
Containerization and Orchestration: Containerization technologies such as Docker and 
container orchestration platforms such as Kubernetes are used to deploy and manage big data 
applications in scalable and portable environments. 
These technologies form the foundation of modern big data ecosystems, enabling 
organizations to harness the full potential of their data for decision-making, innovation, and 
competitive advantage. 
 
4.1.1TYPES OF No SQL DATA BASES  
A database is a collection of structured data or information which is stored in a computer 
system and can be accessed easily. A database is usually managed by a Database 
Management System (DBMS). 
NoSQL is a non-relational database that is used to store the data in the nontabular form. 
NoSQL stands for Not only SQL. The main types are documents, key-value, wide-column, 
and graphs.  
Types of NoSQL Database: 

 Document-based databases 
 Key-value stores 
 Column-oriented databases 
 Graph-based databases 

 
Figure 4.2 Types of No SQL 
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4.1.1.1 Document-Based Database: 
The document-based database is a nonrelational database. Instead of storing the data in rows 
and columns (tables), it uses the documents to store the data in the database. A document 
database stores data in JSON, BSON, or XML documents. 
 
Documents can be stored and retrieved in a form that is much closer to the data objects used 
in applications which means less translation is required to use these data in the applications. 
In the Document database, the particular elements can be accessed by using the index value 
that is assigned for faster querying. 
 
Collections are the group of documents that store documents that have similar contents. Not 
all the documents are in any collection as they require a similar schema because document 
databases have a flexible schema. 
 
Key features of documents database: 

 Flexible schema: Documents in the database has a flexible schema. It means the 
documents in the database need not be the same schema.  

 Faster creation and maintenance: the creation of documents is easy and minimal 
maintenance is required once we create the document.  

 No foreign keys: There is no dynamic relationship between two documents so 
documents can be independent of one another. So, there is no requirement for a 
foreign key in a document database. 

 Open formats: To build a document we use XML, JSON, and others. 
 
4.1.1.2 Key-Value Stores: 
A key-value store is a nonrelational database. The simplest form of a NoSQL database is a 
key-value store. Every data element in the database is stored in key-value pairs. The data can 
be retrieved by using a unique key allotted to each element in the database. The values can be 
simple data types like strings and numbers or complex objects. 
 
A key-value store is like a relational database with only two columns which is the key and the 
value.  
 
Key features of the key-value store: 

 Simplicity. 
 Scalability. 
 Speed. 

 
4.1.1.3 Column Oriented Databases: 
A column-oriented database is a non-relational database that stores the data in columns 
instead of rows. That means when we want to run analytics on a small number of columns, 
you can read those columns directly without consuming memory with the unwanted data. 
 
Columnar databases are designed to read data more efficiently and retrieve the data with 
greater speed. A columnar database is used to store a large amount of data.  
Key features of columnar oriented database: 

 Scalability. 
 Compression. 
 Very responsive. 
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4.1.1.4 Graph-Based databases: 
Graph-based databases focus on the relationship between the elements. It stores the data in 
the form of nodes in the database. The connections between the nodes are called links or 
relationships. 
 
Key features of graph database: 

 In a graph-based database, it is easy to identify the relationship between the data by 
using the links. 

 The Query’s output is real-time results. 
 The speed depends upon the number of relationships among the database elements.     
 Updating data is also easy, as adding a new node or edge to a graph database is a 

straightforward task that does not require significant schema changes. 
 
4.1.2 ADVANTAGES OF No SQL 
Scalability: 
NoSQL databases are designed for horizontal scalability, allowing organizations to handle 
large volumes of data by adding more nodes to the cluster. 
 
They distribute data across multiple nodes in a cluster, enabling parallel processing and 
efficient scaling without sacrificing performance. 
 
Flexibility: 
NoSQL databases offer flexible data models, including key-value, document, columnar, and 
graph databases, allowing organizations to choose the most suitable model for their data. 
 
They support dynamic schema design, enabling agile development and adaptation to 
changing data requirements without the need for schema migrations. 
 
Performance: 
NoSQL databases are optimized for high-performance data storage and retrieval operations, 
leveraging distributed architectures and parallel processing techniques. 
 
They provide low-latency query responses and high-throughput data processing, making 
them well-suited for real-time analytics and high-volume transactional systems. 
 
Availability and Fault Tolerance: 
NoSQL databases prioritize availability and fault tolerance, ensuring continuous access to 
data even in the event of hardware failures or network partitions. 
They employ replication, sharding, and automatic failover mechanisms to distribute data and 
workload across multiple nodes and ensure data redundancy and resilience. 
 
Schema Evolution: 
NoSQL databases support dynamic schema evolution, allowing organizations to adapt to 
changing data requirements and evolving business needs seamlessly. 
 
They enable flexible schema design and schema-less approaches, simplifying data modeling 
and application development and facilitating agile development and iteration. 
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Diverse Data Types: 
No SQL databases can handle various types of data, including structured, semi-structured, 
and unstructured data, without the need for predefined schemas or data mappings. 
 
They support diverse data models and data types, enabling organizations to store and process 
different types of data efficiently within a single database system. 
 
Cost-Effectiveness: 
NoSQL databases can be more cost-effective than traditional relational databases, particularly 
in large-scale deployments. 
 
They utilize commodity hardware and open-source software, reducing infrastructure costs 
and licensing fees compared to proprietary relational database solutions. 
 
Ease of Development: 
NoSQL databases offer simplified data modeling and application development, with support 
for modern programming languages and development frameworks. 
 
They provide flexible APIs and developer-friendly tools, enabling rapid prototyping, 
experimentation, and iteration in application development. 
 
These advantages make NoSQL databases a preferred choice for organizations seeking 
scalable, flexible, and high-performance solutions for managing large and diverse datasets in 
today's data-intensive environments. 
 
4.1.3 USE OF NoSQL IN INDUSTRY 
1. E-commerce: - NoSQL databases are employed for the management of product catalogs, 
customer profiles, and transactional data in e-commerce systems. 
   - They provide immediate inventory control, customized suggestions, and streamlined order 
fulfillment, thereby boosting the overall client shopping experience. 
 
2. Social Media: - NoSQL databases are utilized in social media platforms to store user 
profiles, postings, comments, and interactions. 
   No information provided. These platforms provide the processing of large amounts of data, 
the analysis of data in real-time, and the delivery of customized content. This allows social 
media firms to expand their operations and interact with millions of users at the same time. 
 
3. Gaming: - NoSQL databases are used in gaming systems for tasks such as managing 
player profiles, handling game state, and doing in-game analytics. 
   No information provided. They provide the capacity to easily increase in size without 
interruption, allow for quick access to data with minimal delay, and enable immediate 
changes to leaderboards, so improving the gaming experience and allowing interactions 
between several players. 
 
4. IoT (Internet of Things): - NoSQL databases are used to manage sensor data, telemetry 
streams, and device logs that are created by IoT devices in different sectors like 
manufacturing, healthcare, and smart cities. 
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   - They provide assistance for analyzing data in real-time, identifying anomalies, and 
conducting predictive maintenance. This allows enterprises to efficiently monitor and 
improve their IoT deployments. 
 
5. Financial Services:- NoSQL databases are utilized in financial services to handle 
customer transactions, conduct risk analytics, and detect fraudulent activities. 
   No information provided. They provide the immediate processing of financial data, 
reporting on compliance, and analysis of trends, so assisting enterprises in reducing risks and 
improving operational efficiency. 
 
6. Healthcare: - NoSQL databases are utilized in healthcare systems to hold electronic health 
records (EHRs), medical imaging data, and patient demographics. 
   - They provide assistance for the secure exchange of data, the ability for different systems 
to work together, and the analysis of data in real-time to aid in making clinical decisions, 
monitoring diseases, and managing the health of populations. 
 
7. Telecommunications: - NoSQL databases manage call detail records (CDRs), network 
logs, and subscriber data in telecommunications networks. 
   - They facilitate high-volume data processing, network optimization, and consumer 
segmentation, empowering telecom firms to enhance service quality and customer happiness. 
 
8. AdTech (Advertising Technology): - AdTech platforms utilize NoSQL databases to 
handle ad impressions, clickstream data, and user profiles. 
 
There is no text provided. Their platform facilitates real-time bidding, precise ad targeting, 
and campaign optimization, empowering marketers to deliver tailored advertisements to 
specific audiences and optimize their return on investment. 
 
These examples demonstrate the diverse applications of NoSQL databases in different 
industries to meet varied data management and analytics requirements. NoSQL databases 
offer the necessary scalability, flexibility, and performance to manage extensive and varied 
information in the current data-centric era. 
 
4.1.4 NoSQL VENDORS 
MongoDB: MongoDB is a popular document-oriented NoSQL database that provides 
flexible schema design, scalability, and high performance. It is widely used for a variety of 
use cases, including content management, real-time analytics, and mobile applications. 
 
Cassandra (Apache Cassandra): Cassandra is a distributed, wide-column store NoSQL 
database designed for high availability, fault tolerance, and linear scalability. It is well-suited 
for applications requiring real-time data processing, such as IoT, financial services, and 
messaging platforms. 
 
Couchbase: Couchbase is a distributed NoSQL database that combines key-value and 
document database capabilities. It provides low-latency data access, automatic data sharding, 
and support for distributed caching, making it suitable for high-performance applications, 
caching layers, and real-time analytics. 
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Amazon Dynamo DB: Dynamo DB is a fully managed NoSQL database service provided by 
Amazon Web Services (AWS). It offers seamless scalability, high availability, and low-
latency data access, making it ideal for web and mobile applications, gaming, and IoT use 
cases. 
 
Google Cloud Firestore: Firestore is a flexible, scalable NoSQL database service offered by 
Google Cloud Platform (GCP). It supports real-time data synchronization, offline support, 
and automatic scaling, making it suitable for mobile and web applications, collaborative 
workflows, and IoT deployments. 
 
Azure Cosmos DB: Cosmos DB is a globally distributed, multi-model NoSQL database 
service provided by Microsoft Azure. It supports multiple data models, including document, 
key-value, graph, and column-family, and offers automatic scaling, low-latency data access, 
and multi-region replication, making it suitable for a wide range of applications and 
industries. 
 
Redis: Redis is an in-memory data store NoSQL database that provides high-performance 
data caching, session management, and real-time analytics capabilities. It is commonly used 
for caching layers, message brokers, and real-time data processing in applications such as e-
commerce, gaming, and social media. 
 
Neo4j: Neo4j is a graph database NoSQL database that specializes in storing and querying 
graph data structures. It provides high-performance graph traversal, pattern matching, and 
graph analytics capabilities, making it ideal for applications such as social networks, 
recommendation engines, and network analysis. 
 
4.1.5 SQL VS NoSQL 
SQL (Structured Query Language) and NoSQL (Not Only SQL) databases differ primarily in 
their data models, scalability, and query languages. SQL databases, also known as relational 
databases, follow a structured data model based on tables with rows and columns. They 
enforce a rigid schema and provide ACID (Atomicity, Consistency, Isolation, Durability) 
transactions, ensuring data integrity and consistency for transactional processing. SQL 
databases use SQL for querying and manipulating data, providing a standardized syntax for 
expressing complex queries, joins, and transactions. They are well-suited for applications 
requiring structured data, complex transactions, and strict data integrity requirements, such as 
financial systems, ERP (Enterprise Resource Planning), and traditional OLTP (Online 
Transaction Processing) applications. 
 
In contrast, NoSQL databases support various data models, including key-value, document, 
columnar, and graph databases, offering flexibility in data modeling and schema design. They 
are designed for horizontal scalability, enabling organizations to scale out across distributed 
clusters of commodity hardware. NoSQL databases may sacrifice some ACID properties in 
favor of scalability and performance, providing eventual consistency or relaxed consistency 
models. They use different query languages or APIs depending on the data model, such as 
JSON-like queries for document databases or CQL (Cassandra Query Language) for wide-
column stores. NoSQL databases are suitable for handling large volumes of diverse and 
unstructured data, real-time data processing, and scalable web applications, including content 
management, social media analytics, IoT (Internet of Things), and real-time analytics. 
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Data Model: 
SQL databases, also known as relational databases, follow a structured data model based on 
tables with rows and columns. They enforce a rigid schema that defines the structure of the 
data. 
NoSQL databases, on the other hand, support various data models, including key-value, 
document, columnar, and graph databases. They offer flexibility in data modeling, allowing 
for schema-less or schema-flexible approaches. 
 
Scaling: 
SQL databases typically scale vertically by adding more resources (CPU, RAM) to a single 
server. Scaling beyond the capacity of a single server can be challenging and expensive. 
NoSQL databases are designed for horizontal scalability, enabling organizations to scale out 
across distributed clusters of commodity hardware. They can handle large volumes of data 
and increasing workloads by simply adding more nodes to the cluster. 
 
Transactions: 
SQL databases provide ACID (Atomicity, Consistency, Isolation, Durability) transactions, 
ensuring data integrity and consistency for transactional processing. 
NoSQL databases may sacrifice some ACID properties in favor of scalability and 
performance. They often provide eventual consistency or relaxed consistency models, which 
may be suitable for certain use cases but may not guarantee immediate consistency across 
distributed nodes. 
 
Query Language: 
SQL databases use Structured Query Language (SQL) for querying and manipulating data. 
SQL provides a standardized syntax for expressing complex queries, joins, and transactions. 
NoSQL databases use various query languages or APIs depending on the data model. For 
example, MongoDB uses JSON-like queries for document databases, while Cassandra uses 
CQL (Cassandra Query Language) for wide-column stores. 
 
Use Cases: 
SQL databases are well-suited for applications requiring structured data, complex 
transactions, and strict data integrity requirements. Common use cases include financial 
systems, ERP (Enterprise Resource Planning), and traditional OLTP (Online Transaction 
Processing) applications. 
NoSQL databases are suitable for handling large volumes of diverse and unstructured data, 
real-time data processing, and scalable web applications. Common use cases include content 
management, social media analytics, IoT (Internet of Things), and real-time analytics. 
 
Schema Design: 
SQL databases enforce a fixed schema, requiring predefined data mappings and schema 
migrations for schema changes. This can add complexity and overhead to application 
development. 
NoSQL databases support dynamic schema design, allowing for flexible data structures and 
adaptation to changing data requirements without the need for schema migrations. This 
simplifies data modeling and application development, facilitating agile development and 
iteration. 
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4.2 HADOOP 
Hadoop is an open-source distributed computing framework designed to store, process, and 
analyze large volumes of data across clusters of commodity hardware. Originally developed 
by Doug Cutting and Mike Cafarella in 2005, Hadoop has since become a cornerstone 
technology in the big data ecosystem, powering a wide range of applications and use cases in 
various industries. 
 
At its core, Hadoop consists of two main components: the Hadoop Distributed File System 
(HDFS) for distributed storage and the MapReduce programming model for parallel 
processing. HDFS divides large datasets into smaller blocks and distributes them across 
multiple nodes in a cluster, providing fault tolerance and high availability. MapReduce, 
inspired by functional programming concepts, enables parallel processing of data by dividing 
tasks into smaller, independent units called mappers and reducers, which execute in parallel 
across nodes in the cluster. 
 
Hadoop is an open-source software framework used for storing and processing Big Data in a 
distributed manner on large clusters of commodity hardware. Hadoop is licensed under 
Apache Software Foundation (ASF).  
 
Hadoop is written in the Java programming language and ranks among the highest-level 
Apache projects. Doug Cutting and Mike J. Cafarella developed Hadoop. By getting 
inspiration from Google, Hadoop is using technologies like Map-Reduce programming model 
as well as Google file system (GFS). 
 
It is optimized to handle massive quantities of data that could be structured, unstructured or 
semi-structured, using commodity hardware, that is, relatively inexpensive computers.  
It is intended to work upon from a single server to thousands of machines each offering local 
computation and storage. It supports the large collection of data set in a distributed 
computing environment. 
 
4.2.1 Features of Hadoop 
Hadoop provides a diverse set of capabilities that make it a flexible and robust framework for 
storing, manipulating, and examining large volumes of data.  
Notable characteristics of Hadoop encompass: 
 
Distributed Storage: Hadoop Distributed File System (HDFS) distributes large datasets 
across clusters of commodity hardware, providing fault tolerance and high availability. It 
enables scalable storage of data across multiple nodes in the cluster. 
 
Scalability: Hadoop is designed to scale horizontally, allowing organizations to handle 
growing volumes of data by adding more nodes to the cluster. This scalability ensures that 
Hadoop can efficiently process and analyze large datasets, regardless of size. 
 
Parallel Processing: Hadoop uses the MapReduce programming model for parallel 
processing of data. It divides data processing tasks into smaller, independent units called 
mappers and reducers, which execute in parallel across nodes in the cluster. This parallelism 
enables Hadoop to process large volumes of data quickly and efficiently. 
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Fault Tolerance: Hadoop provides fault tolerance by replicating data across multiple nodes 
in the cluster. If a node fails or becomes unavailable, Hadoop can automatically redistribute 
tasks to other nodes, ensuring that data processing continues uninterrupted. 
 
Cost-Effectiveness: Hadoop is built using open-source software and can run on commodity 
hardware, making it a cost-effective solution for storing and processing big data. 
Organizations can scale their Hadoop clusters as needed without incurring significant 
hardware or licensing costs. 
 
Flexibility: Hadoop supports a variety of data types and formats, including structured, semi-
structured, and unstructured data. It can process data in various formats, such as text, CSV, 
JSON, XML, and more, making it suitable for a wide range of use cases and applications. 
 
Ecosystem: Hadoop has a rich ecosystem of tools and technologies that extend its 
capabilities for data storage, processing, and analysis. These include Apache Hive for SQL-
like querying, Apache Pig for data processing, Apache Spark for in-memory processing, 
Apache HBase for real-time NoSQL database operations, Apache Kafka for real-time data 
streaming, and many others. 
 
Security: Hadoop provides robust security features, including authentication, authorization, 
and encryption, to protect data stored and processed in the cluster. It supports integration with 
authentication mechanisms such as Kerberos and LDAP, as well as data encryption at rest 
and in transit. 
 
4.2.2 Key Advantages of Hadoop 
Scalability: Hadoop is designed to scale horizontally, allowing organizations to expand their 
data storage and processing capabilities simply by adding more commodity hardware to the 
cluster. This scalability ensures that Hadoop can handle growing volumes of data without 
sacrificing performance or reliability. 
 
Cost-Effectiveness: Hadoop is built using open-source software and can run on commodity 
hardware, making it a cost-effective solution for storing, processing, and analyzing big data. 
Organizations can avoid the high costs associated with proprietary hardware and software 
licenses, while still achieving the scalability and performance required for their data needs. 
 
Fault Tolerance: Hadoop provides built-in fault tolerance mechanisms to ensure data 
reliability and availability. By replicating data across multiple nodes in the cluster, Hadoop 
can continue to operate even if individual nodes fail or become unavailable. This fault 
tolerance helps minimize the risk of data loss and ensures uninterrupted data processing and 
analysis. 
 
Flexibility: Hadoop supports a wide range of data types and formats, including structured, 
semi-structured, and unstructured data. It can handle diverse datasets, such as text, CSV, 
JSON, XML, and more, making it suitable for a variety of use cases and applications. 
Additionally, Hadoop's flexible data model allows organizations to adapt to changing data 
requirements and evolving business needs over time. 
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Parallel Processing: Hadoop uses the Map Reduce programming model for parallel 
processing of data, allowing tasks to be divided into smaller, independent units that can be 
executed in parallel across nodes in the cluster. This parallelism enables Hadoop to process 
large volumes of data quickly and efficiently, resulting in faster data analysis and insights. 
 
Rich Ecosystem: Hadoop has a rich ecosystem of tools and technologies that extend its 
capabilities for data storage, processing, and analysis. These include Apache Hive for SQL-
like querying, Apache Pig for data processing, Apache Spark for in-memory processing, 
Apache HBase for real-time NoSQL database operations, Apache Kafka for real-time data 
streaming, and many others. This ecosystem provides organizations with a wide range of 
options for building and deploying big data solutions tailored to their specific needs 
. 
4.2.3 Versions of Hadoop 
Hadoop is an open-source software framework that enables the storage and processing of data 
in a distributed network, allowing for parallel data processing instead of relying on a 
centralized system. Hadoop's capabilities allow it to function as a highly dependable batch 
processing engine and a system for managing tiered storage and resources. As the complexity 
of the stored and processed data rises, Hadoop also evolves with multiple versions to solve 
concerns such as bug patches and to simplify the complicated data processes. The updates are 
immediately incorporated as Hadoop development adheres to the trunk-branch approach, 
where the base code is continuously updated and fixes are implemented in separate branches.  
Hadoop has two versions: 
 a) Hadoop 1.x (Version 1) and  
b) Hadoop 2 (Version 2) 
 

 
Figure 4.3 Hadoop Versions 

Hadoop 0.1.0 (2006): This was the initial release of Hadoop, which included HDFS for 
distributed storage and Map Reduce for distributed processing. It was primarily used for 
experimental purposes. 
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Hadoop 0.20.0 (2009): This release marked significant improvements in stability, scalability, 
and performance. It introduced features such as support for append operations in HDFS and 
improvements in fault tolerance and job scheduling in Map Reduce. 
 
Hadoop 1.0.0 (2011): This release marked the transition of Hadoop from the 0.x series to the 
1.x series. It included several enhancements and stability improvements, making it suitable 
for production deployments. The primary components included HDFS, MapReduce, and 
Hadoop Common. 
 
Hadoop 2.0.0 (2012): This release introduced major architectural changes, including the 
introduction of YARN (Yet Another Resource Negotiator) as a resource management layer. 
YARN decoupled resource management and job scheduling from Map Reduce, allowing 
Hadoop to support multiple processing frameworks. It also included HDFS High Availability 
(HA) and NameNode Federation for improved scalability and reliability. 
 
Hadoop 2.x (2013-2019): The 2.x series saw several incremental releases with improvements 
in performance, scalability, and reliability. It introduced features such as HDFS snapshots, 
HDFS encryption, and enhancements to YARN for better resource management and job 
scheduling. It also saw the emergence of new processing frameworks like Apache Spark and 
Apache Flink alongside Map Reduce. 
 
Hadoop 3.0.0 (2017): This release introduced significant enhancements and new features, 
including support for erasure coding in HDFS for storage efficiency, containerization support 
in YARN for better resource isolation, and improvements in Hadoop Common for better 
compatibility with modern hardware and software ecosystems. 
 
Hadoop 3.x (2017-present): The 3.x series continues to receive incremental updates with 
improvements in performance, security, and usability. It includes features such as support for 
GPU acceleration, enhancements to HDFS for better scalability and reliability, and 
improvements to YARN for better resource utilization and management. 
 
4.2.4 Overview of Hadoop Ecosystem 
The Hadoop ecosystem refers to a collection of open-source software projects and tools that 
complement the core components of the Hadoop framework. The Hadoop ecosystem 
encompasses a wide range of technologies across various categories, including storage, 
processing, data ingestion, data governance, security, and analytics. 

HDFS   Hadoop Distributed File System 
 
YARN  

 Yet Another Resource Negotiator 

 
MapReduce 

 Data processing using programming 

 
Spark  

 Inmemory Data Processing 

 
PIG, HIVE 

 Data Przocessing Services using Query (SQL-Like) 

 
HBase 

NoSQL Database 

  Machine Learning 
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Mahout, Spark MLlib 
 
Apache Drill  

 SQL on Hadoop 

 
Zookeeper  
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 Job Scheduling 

 
Flume, Sqoop 

 Data Ingesting Services 

 
Solr&Lucene 

 Searching & Indexing  
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Figure 4.4 Hadoop Eco System 

 
4.2.4.1 HDFS 
Hadoop Distributed File System is the core component or you can say, the backbone of 
Hadoop Ecosystem. 
 
HDFS is the one, which makes it possible to store different types of large data sets (i.e. 
structured, unstructured and semi structured data). 
 
HDFS creates a level of abstraction over the resources, from where we can see the whole 
HDFS as a single unit. 
 
It helps us in storing our data across various nodes and maintaining the log file about the 
stored data (metadata). 
HDFS has two core components, i.e. Name Node and Data Node.  
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The Name Node is the main node and it doesn’t store the actual data. It contains metadata, 
just like a log file or you can say as a table of content. Therefore, it requires less storage and 
high computational resources. 
 
On the other hand, all your data is stored on the
storage resources. These Data 
desktops) in the distributed environment. That’s the reason, why Hadoop solutions are very 
cost effective. 
 
You always communicate to the Name
a request to the client to store and replicate data on various Data

4.2.4.2    YARN 
Consider YARN as the brain of your Had
activities by allocating resources and scheduling tasks.
 
It has two major components, i.e.
 
Resource Manager is again a main node in the processing department.
It receives the processing requests, and then passes the parts of requests to corresponding 
Node Managers accordingly, where the actual processing takes place.
 
Node Managers are installed on every Data
every single Data Node. 
 
Schedulers: Based on your application resource requirements, Schedulers perform 
scheduling algorithms and allocates the resources.
 
Applications Manager: While Applications
to containers (i.e. the Data node environment where process executes) for executing the 
application specific Application 
the deamons which reside on Data
tasks on each Data Nod
i.e. Schedulers and  Applications
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is the main node and it doesn’t store the actual data. It contains metadata, 
just like a log file or you can say as a table of content. Therefore, it requires less storage and 

other hand, all your data is stored on the Data Nodes and hence it requires more 
 Nodes are commodity hardware (like your laptops and 

desktops) in the distributed environment. That’s the reason, why Hadoop solutions are very 

You always communicate to the Name Node while writing the data. Then, it internally sends 
a request to the client to store and replicate data on various Data Nodes. 

 

 
Figure 4.4 HDFS nodes 

 

Consider YARN as the brain of your Hadoop Ecosystem. It performs all your processing 
activities by allocating resources and scheduling tasks. 

It has two major components, i.e. Resource Manager and Node Manager. 
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4.2.4.3. MAPREDUCE 
It is the core component of processing in a Hadoop Ecosystem as it provides the logic of 
processing. In other words, Map Reduce is a software framework which helps in writing 
applications that processes large data sets using distributed and parallel algorithms inside 
Hadoop environment. 
 
In a Map Reduce program, Map() and Reduce() are two functions. 
 
The Map function performs actions like filtering, grouping and sorting. 
While Reduce function aggregates and summarizes the result produced by map function. 
The result generated by the Map function is a key value pair (K, V) which acts as the input 
for Reduce function. 

 
Figure 4.5 output from the map function  

Let us take the above example to have a better understanding of a MapReduce program. 
We have a sample case of students and their respective departments. We want to calculate the 
number of students in each department. Initially, Map program will execute and calculate the 
students appearing in each department, producing the key value pair as mentioned 
above. This key value pair is the input to the Reduce function. The Reduce function will then 
aggregate each department and calculate the total number of students in each department and 
produce the given result. 

 
Figure 4.6 output from the reduce function  

 
 
4.2.4.4 APACHE PIG 
PIG has two parts: Pig Latin, the language and the pig runtime, for the execution 
environment. You can better understand it as Java and JVM. 
It supports pig latin language, which has SQL like command structure. 
As everyone does not belong from a programming background. So, Apache PIG relieves 
them. You might be curious to know how? 
Well, I will tell you an interesting fact: 
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10 line of pig latin = approx. 200 lines of Map-Reduce Java code 
But don’t be shocked when I say that at the back end of Pig job, a map-reduce job executes. 
The compiler internally converts pig latin to Map Reduce. It produces a sequential set of Map 
Reduce jobs, and that’s an abstraction (which works like black box). 
PIG was initially developed by Yahoo. 
It gives you a platform for building data flow for ETL (Extract, Transform and Load), 
processing and analyzing huge data sets. 
How Pig works? 
In PIG, first the load command, loads the data. Then we perform various functions on it like 
grouping, filtering, joining, sorting, etc. At last, either you can dump the data on the screen or 
you can store the result back in HDFS. 
 
4.2.4.5 APACHE HIVE 
Facebook created HIVE for people who are fluent with SQL. Thus, HIVE makes them feel at 
home while working in a Hadoop Ecosystem. 
 
Basically, HIVE is a data warehousing component which performs reading, writing and 
managing large data sets in a distributed environment using SQL-like interface. 
HIVE + SQL = HQL 
 
The query language of Hive is called Hive Query Language(HQL), which is very similar like 
SQL. 
It has 2 basic components: Hive Command Line and JDBC/ODBC driver. 
The Hive Command line interface is used to execute HQL commands. 
While, Java Database Connectivity (JDBC) and Object Database Connectivity (ODBC) is 
used to establish connection from data storage. 
 
Secondly, Hive is highly scalable. As, it can serve both the purposes, i.e. large data set 
processing (i.e. Batch query processing) and real time processing (i.e. Interactive query 
processing). 
It supports all primitive data types of SQL. 
 
You can use predefined functions, or write tailored user defined functions (UDF) also to 
accomplish your specific needs. 
 
4.2.4.6 APACHE MAHOUT 
Now, let us talk about Mahout which is renowned for machine learning. Mahout provides an 
environment for creating machine learning applications which are scalable.  
 
Machine learning algorithms allow us to build self-learning machines that evolve by itself 
without being explicitly programmed. Based on user behavior, data patterns and past 
experiences it makes important future decisions. You can call it a descendant of Artificial 
Intelligence (AI). 
What Mahout does? 
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It performs collaborative filtering, clustering and classification. Some people also 
consider frequent item set missing as Mahout’s function. Let us understand them 
individually: 
 
Collaborative filtering: Mahout mines user behaviors, their patterns and their characteristics 
and based on that it predicts and make recommendations to the users. The typical use case is 
E-commerce website. 
 
Clustering: It organizes a similar group of data together like articles can contain blogs, news, 
research papers etc. 
Classification: It means classifying and categorizing data into various sub-departments like 
articles can be categorized into blogs, news, essay, research papers and other categories. 
 
Frequent item set missing: Here Mahout checks, which objects are likely to be appearing 
together and make suggestions, if they are missing. For example, cell phone and cover are 
brought together in general. So, if you search for a cell phone, it will also recommend you the 
cover and cases. 
Mahout provides a command line to invoke various algorithms. It has a predefined set of 
library which already contains different inbuilt algorithms for different use cases. 
 
4.2.4.7 APACHE SPARK 
Apache Spark is a framework for real time data analytics in a distributed computing 
environment. The Spark is written in Scala and was originally developed at the University of 
California, Berkeley. 
 
It executes in-memory computations to increase speed of data processing over Map-Reduce. 
It is 100x faster than Hadoop for large scale data processing by exploiting in-memory 
computations and other optimizations. Therefore, it requires high processing power than 
Map-Reduce. 
 
Spark comes packed with high-level libraries, including support for R, SQL, Python, Scala, 
Java etc. These standard libraries increase the seamless integrations in complex 
workflow. Over this, it also allows various sets of services to integrate with it like MLlib, 
GraphX, SQL + Data Frames, Streaming services etc. to increase its capabilities. 
 
4.2.4.8 APACHE HBASE 
HBase is an open source, non-relational distributed database. In other words, it is a NoSQL 
database. 
 
It supports all types of data and that is why, it’s capable of handling anything and everything 
inside a Hadoop ecosystem.It is modelled after Google’s BigTable, which is a distributed 
storage system designed to cope up with large data sets. 
 
The HBase was designed to run on top of HDFS and provides BigTable like capabilities. 
It gives us a fault tolerant way of storing sparse data, which is common in most Big Data use 
cases.The HBase is written in Java, whereas HBase applications can be written in REST, 
Avro and Thrift APIs.  
 
For better understanding, let us take an example. You have billions of customer emails and 
you need to find out the number of customers who has used the word complaint in their 
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emails. The request needs to be processed quickly (i.e. at real time). So, here we are handling 
a large data set while retrieving a small amount of data. For solving these kind of problems, 
HBase was designed.  
 
4.2.4.9 APACHE DRILL 
As the name suggests, Apache Drill is used to drill into any kind of data. It’s an open source 
application which works with distributed environment to analyze large data sets. 
It is a replica of Google Dremel. 
It supports different kinds NoSQL databases and file systems, which is a powerful feature of 
Drill.  For example: Azure Blob Storage, Google Cloud Storage, HBase, MongoDB, MapR-
DB HDFS, MapR-FS, Amazon S3, Swift, NAS and local files. 
 
So, basically the main aim behind Apache Drill is to provide scalability so that we can 
process petabytes and exabytes of data efficiently (or you can say in minutes). 
The main power of Apache Drill lies in combining a variety of data stores just by using a 
single query. 
 
Apache Drill basically follows the ANSI SQL. 
It has a powerful scalability factor in supporting millions of users and serve their query 
requests over large scale data. 
 
4.2.4.10 APACHE ZOOKEEPER 
Apache Zookeeper is the coordinator of any Hadoop job which includes a combination of 
various services in a Hadoop Ecosystem. 
Apache Zookeeper coordinates with various services in a distributed environment. 
 
Before Zookeeper, it was very difficult and time consuming to coordinate between different 
services in Hadoop Ecosystem. The services earlier had many problems with interactions like 
common configuration while synchronizing data. Even if the services are configured, changes 
in the configurations of the services make it complex and difficult to handle. The grouping 
and naming was also a time-consuming factor. 
 
Due to the above problems, Zookeeper was introduced. It saves a lot of time by 
performing synchronization, configuration maintenance, grouping and naming. 
 
4.2.5 Hadoop Distribution 
Hadoop is a versatile technology solution that is open-source and offers exceptional 
scalability. It provides low-cost storage systems and enables fast-paced big data analytics. 
Additionally, it helps reduce server expenses. 
 
Hadoop vendor distributions address the limitations and problems associated with the open 
source version of Hadoop. These releases offer additional features that specifically target: 
 
Support  
The majority of Hadoop suppliers offer technical coaching and help to facilitate the adoption 
of Hadoop for enterprise-level workloads and mission-critical applications. 
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Reliability: 
Hadoop suppliers respond rapidly whenever an issue is identified. In order to enhance the 
stability of commercial systems, updates and fixes are promptly implemented. 
 
Completeness:  
Hadoop suppliers augment their distributions with a range of supplementary tools that enable 
clients to tailor the Hadoop application to suit their individual requirements. 
 
Fault Tolerance:  
Due to the default replication factor of three, the data is highly available and capable of 
withstanding faults. This makes commercial solutions more stable, as updates and changes 
are promptly provided. 
 
4.2.6 Hadoop versus SQL 
Data Processing 
Data processing refers to the conversion and manipulation of raw data into a more 
meaningful and useful format.  
 
The SQL processing capacity is insufficient for the volume of data. It performs exceptionally 
well with Gigabytes. However, when dealing with a substantial volume of data, such as 
processing Terabytes or Petabytes, SQL is unable to match the anticipated requirements. 
Hadoop is specifically built to effectively manage large volumes of diverse data commonly 
found in modern companies. For large-scale enterprises, Hadoop is the most suitable option.  
 
Processing Speed 
Hadoop comprises two fundamental components. The HDFS, also known as the Hadoop 
Distributed File System, utilises the Map Reduce framework and the Flat File System to 
handle data processing. It lacks the capability to handle data in real-time or support OLTP 
(Online Transaction Processing). It facilitates the efficient handling of vast amounts of data, a 
critical component in the field of data mining. OLAP facilitates the execution of complex 
tasks by utilising large-scale processing and performing aggregations. The processing speed 
varies depending on the data set you input. The duration can range from a few minutes to 
several hours.  
 
SQL enables real-time data processing, also known as online transaction processing (OLTP). 
SQL has faster processing performance due to its ability to handle normalised data, but it 
lacks capabilities for batch processing.  
 
ACID property 
It refers to a set of characteristics that ensure reliability and consistency in database 
transactions. The acronym ACID stands for Atomicity, Consistency, Isolation, and 
Durability.  
 
SQL provides support for the ACID properties of RDBMS, including Consistency, Isolation, 
Atomicity, and Durability. Conversely, in Hadoop, it is necessary to write code for all 
situations in order to do this. Undoubtedly, SQL is surpassing Hadoop in this regard.  
 
Fault Tolerance 
Fault tolerance refers to the ability of a system to continue functioning properly even in the 
presence of faults or failures.  
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In traditional Relational Database Management Systems (RDBMS), the process of recovering 
lost data due to network problems or corruption incurs significant expenses, time, and 
resource utilization. This is a case involving SQL. However, Hadoop employs a technique in 
which data is replicated across three distinct layers. Although it may appear to be a waste of 
effort, if the data stored in one node is lost, it may be quickly retrieved from the other data 
nodes.  
 
Cost 
The primary distinction between these two is that acquiring a SQL server requires a higher 
financial investment. The server incurs significant expenses, and in the event of storage 
depletion, more fees must be paid to acquire the necessary storage. However, Hadoop is a 
freely available open-source platform, meaning it does not require any payment. 
Additionally, for handling larger-scale data processing, Hadoop is considered the most 
optimal choice. This is why many businesses are choosing to use Hadoop.  
 
Architecture  
Hadoop possesses a flexible structure and has the capability to store and handle vast 
quantities of data. The system has the capability to store films, photos, sensor data, and 
various other sorts of data in real-time.  
Conversely, SQL has a fixed schema and is limited to storing data in a tabular or organised 
fashion.  
 
Functional programming  
Hadoop enables programming in languages such as Scala, Java, and Python. To obtain any 
additional functionality, you can acquire it by registering User-defined Functions or UDF in 
the HDFS. However, with a Relational Database Management System (RDBMS), you are not 
allowed to write User-Defined Functions (UDFs), which leads to a rise in the complexity of 
SQL. In addition, the data stored in Hadoop can be readily accessed via Pig, Hive, Sqoop, 
and other related ecosystems.  
 
Other differences 
Hadoop utilises the Hadoop Distributed File System (HDFS) to store data and employs the 
MapReduce technology to process the data, resulting in enhanced optimisation. However, 
SQL lacks any optimisation strategies.  
 
In SQL, data updates require numerous read and write operations, however in Hadoop, data 
just needs to be written once and can be read multiple times.  
 
SQL utilises proprietary hardware, whereas Hadoop utilises commodity gear. Upon observing 
the numerous disparities among the prevalent data management platforms, it becomes 
apparent that Hadoop is the optimal selection. To acquire expertise in Hadoop, you can 
enhance your skills by enrolling in one of the top-rated online training courses available.  
 
4.3  SUMMARY 
This chapter delves into the expansive landscape of big data technologies and ecosystems, 
elucidating the paradigm shift in data management ushered in by the proliferation of massive 
datasets. It navigates through the intricate web of tools and frameworks designed to tackle the 
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challenges posed by big data, highlighting the emergence of NoSQL databases as a scalable 
and flexible alternative to traditional relational databases. Furthermore, the chapter explores 
the foundational role of Hadoop in enabling distributed storage and processing of vast 
amounts of data across commodity hardware clusters, thus empowering organizations to 
harness the potential of big data for insights and innovation. Through a comprehensive 
examination of these pivotal technologies, the chapter underscores their collective 
significance in driving the evolution of modern data ecosystems towards greater efficiency 
and agility. 
 
4.4   TECHNICAL TERMS 

BigData, NoSQL, Hadoop, Hadoop EcoSystem.  
 

4.8  SELF ASSESSMENT QUESTIONS 
 
Essay questions: 
1. Provide examples of industries or domains where Big Data technologies have        

                   revolutionized traditional data management and analysis practices. 
2. Compare and contrast traditional relational database management systems 

(RDBMS) with NoSQL databases. Discuss the advantages and disadvantages of 
each approach 

3. Describe the Hadoop ecosystem, including its core components and their 
respective roles in distributed data storage and processing 

 
 Short Questions:   

1. What is the primary objective of Hadoop in the context of big data processing? 
2. Name two popular components of the Hadoop ecosystem and briefly explain their 

roles. 
3. What distinguishes NoSQL databases from traditional relational databases? 
4. Provide one example of a use case where NoSQL databases excel over traditional 

SQL databases. 
5. How does the Hadoop ecosystem facilitate the processing and analysis of large-

scale datasets? 
 
4.9  SUGGESTED READINGS 

1. Seema Acharya, SubhashiniChellappan --- Big Data And Analytics secondedition, 
Wiley  

2. Seema Acharya--Data Analytics using R, McGraw Hill education (India) Private 
Limited.  

3. Big Data Analytics, Introduction to Hadoop, Spark, and Machine-Learning, Rajkamal, 
PreetiSaxena, McGraw Hill, 2018.  

4. Big Data, Big Analytics: Emerging Business intelligence and Analytic trends 
forToday's Business, Michael Minelli, Michelle Chambers, and AmbigaDhiraj, John 
Wiley &Sons, 2013 
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LESSON- 5 

INTRODUCTION TO R 

OBJECTIVES: 

After going through this lesson, you will be able to  

 Understand the importance of data 
 students should have a solid understanding of the fundamentals of R 

programming 
 Understand R Programming purpose, advantages, data types, coercion, working 

with variables, and managing objects in the R workspace.  
 Equipped with the necessary knowledge to begin writing and executing basic R 

scripts for data analysis and statistical computing tasks. 

STRUCTURE OF THE LESSION: 
 
5.1  What and why is R? 
5.2 Advantages of R over the programming languages 
5.3 Data types in R 
5.4 Coercion 
5.5 ls() Command 
5.6 Expressions 
5.7 Variables 
5.8 Summary 
5.9 Technical Terms 
5.10 Self-Assessment Questions 
5.11 Further Readings 
 
5.1  WHAT AND WHY IS R 
R is a programming language and software environment that assists in the analysis of 
statistical data, the representation of images, and the generation of reports. R is a 
programming language that was initially developed by Ross Ihaka and Robert Gentleman at 
the University of Auckland in New Zealand. The R Development Core Team is currently 
expanding the capabilities of R.  

The core of R is an interpreted computer language that enables modular programming 
through the use of functions, as well as branching and looping. R makes it possible to 
integrate with procedures written in languages such as C, C++,.Net, Python, or FORTRAN, 
which leads to increased efficiency. 

The GNU General Public Licence makes R freely accessible to the public, and pre-compiled 
binary copies of the programme are made available for a variety of operating systems, 
including Linux, Windows, and Mac Operating Systems.  

R is a piece of free software that is shared under a copy left licence similar to that of GNU. It 
is also an official component of the GNU project known as GNU S. 

Starting from mid-1997, a central organisation known as the "R Core Team" has had the 
authority to make changes to the R source code archive. 
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5.1.1 Features of R 

Open-source:R is an open-source programming language, which means it is freely available 
for anyone to download, use, and modify. 

Statistical Computing and Graphics:R was initially developed for statistical computing and 
graphics, making it a powerful tool for data analysis, visualization, and modeling. 

Extensive Libraries (CRAN):R boasts a vast ecosystem of packages and libraries 
contributed by the community, available through the Comprehensive R Archive Network 
(CRAN).These packages cover a wide range of functionalities, including data manipulation, 
statistical modeling, machine learning, visualization, and more. 

Data Handling: R provides efficient data handling capabilities, allowing users to import, 
manipulate, clean, and transform data from various sources, including files, databases, and 
web APIs. 

Vectorized Operations: R is designed for vectorized operations, which means it can perform 
computations on entire vectors or matrices without the need for explicit looping. This feature 
enhances code efficiency and readability, particularly in statistical and numerical 
computations. 

Statistical Analysis: R offers a comprehensive suite of statistical functions and methods for 
descriptive statistics, hypothesis testing, regression analysis, time series analysis, clustering, 
and more. 

Graphics and Visualization: R provides extensive capabilities for creating high-quality 
static and interactive visualizations. Packages like ggplot2, lattice, and plotly offer flexible 
and customizable plotting functionalities for exploring and presenting data graphically. 

5.1.2 Applications of R 

Why would you use R programming in the real world?  

1. Statistical analysis and making sense of data:At its core, R is the same thing as 
statistical research. It comes with all the tools you need to do a wide range of statistical tests, 
from simple descriptive statistics to complex regression models. R is great for more than just 
numbers. It's also great for showing data visually. ggplot2 and other similar packages make it 
easy to make interesting graphs and charts that help you understand large datasets visually.  

 
2. Exploring and cleaning the data: Exploring and cleaning the data are the first steps in 
any data analysis process. Because of what it can do, R is a great choice for dealing with 
missing values and outliers and checking the quality of the data as a whole before doing more 
in-depth analysis. In real life, R's powerful data preparation tools make sure that datasets are 
carefully prepared and improved so that insights are correct and reliable.  
 
3. Predictive Modelling and Machine Learning: R has a lot of features for both predictive 
modelling and machine learning. It has many methods for regression, classification, and 
clustering, which makes it a great language for making models that can predict the future. R's 
machine learning features are very useful for real-time tasks like predicting stock prices, 
customer behaviour, or disease results, as they help make decisions based on data.  
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4. Biostatistics and Healthcare: R is a key tool in biostatistics; it is used to look at data from 
clinical trials, do epidemiological studies, and help healthcare workers make decisions based 
on data. Some of the ways it can be used in healthcare are in genomics, where it is very 
helpful for looking at genetic data, finding trends linked to diseases, and making personalised 
medicine possible.  

 
5. Finance and Risk Management: Risk modelling, portfolio optimisation, and analysing 
market trends are all things that the financial industry does with R. In financial analytics, 
where real-time insights can drive strategic decisions, R's ability to work with big datasets is 
very important.  

 
People who want to become data scientists can learn how to use R programming for financial 
research and risk management by taking a well-rounded Data Science course.  
 
6. Social Sciences and Market Research: R is used a lot in the social sciences to look at 
survey results, social media sentiment, and general opinion. Because it is so flexible, 
researchers can use it to learn from very large and different social datasets.  
 
7. Environmental Science and Climate Research: R makes a big difference in 
environmental science by looking at climate data, guessing what will happen to the 
environment, and figuring out how our actions affect environments. Its uses in climate studies 
are very important for understanding and solving problems related to the environment. As 
worries about the planet's future grow, data scientists are turning to R for environmental 
study and climate modelling. This shows how R can be used in the real world to solve 
problems. 

 
5.2 ADVANTAGES OF R OVER OTHER PROGRAMMING LANGUAGES 

R offers several advantages over other programming languages, particularly in the realm of 
statistical analysis and data visualization. Its specialized focus on statistics means that it 
comes equipped with a wide range of libraries and packages tailored specifically for these 
tasks. This makes R particularly efficient and effective for data manipulation, modeling, and 
generating insightful visualizations.  

Additionally, its open-source nature fosters a collaborative community of developers who 
continuously contribute new packages and provide support, ensuring that R remains cutting-
edge and adaptable to evolving needs. Its interoperability with other languages allows for 
seamless integration into existing workflows, further enhancing its utility. Overall, R's 
specialized features, robust community support, and interoperability make it a preferred 
choice for statisticians, data scientists, and researchers tackling complex data analysis tasks 
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Table 5.1 shows that how the R language is differentiate from python and Java 

R Programming Python Java 

It was stably released in 2014 it was stably released in 1996 It was stably released in 1995 

It has more functions and 
packages 

it has less functions and 
packages 

it has large number of inbuilt 
functions and packages 

it is an interpreter base language 
it is an interpreter base 
language 

it is interpreter and compiled 
based language 

It is statistical design and 
graphics programming language 

It is easy to understand. 
It is easy to learn and 
understand 

It is difficult to learn and 
understand 

It is easy to understand It is easy to lean and understand 

R ismostly use for data analysis 
Generic programming tasks 
like a design of software  

Java is mostly used in design of 
windows applications and web 
applications 

 
5.3 DATA TYPES IN R 

The data type of the R object that is assigned to a variable is the one that is assigned to the 
variable itself in R. A variable is not declared with any data type. Therefore, R is referred to 
as a dynamically typed language, which indicates that when we use it in a programme, we 
have the ability to alter the data type of the same variable several times with each new 
instance.  
 
It is the responsibility of the Data Types to determine the sort of value that a variable 
possesses and the kinds of mathematical, relational, or logical operations that can be 
performed on it without resulting in an error. 

5.3.1 Vectors 

Vectors are the most basic R data objects and there are six types of atomic vectors. Below are 
the six atomic vectors: 

Logical: It is used to store logical value like TRUE or FALSE. 

Numeric: It is used to store both positive and negative numbers including real number. 

Eg: 34, 3.5271 , 85138 

Integer: It holds all the integer values i.e. all the positive and negative whole numbers. 

Eg: 73278,91, -5623.7542 , 0 

Complex: These are of the form x + yi, where x and y are numeric and i represents the square 
root of -1. 

Eg: 8+5i 

Character: It is used to store either a single character, group of characters(words) or a group 
of words together. The characters may be defined in either single quotes or double quotes. 
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Eg: "Rohit Arya", 'Acharya Nagarjuna University’. 

In general, a vector is defined and initialized in the following manner: 

vect =  m(6, 1, 48 , 72)  
Or 

vect<- c(6, 1, 48, 72) 
 

5.3.2 List 

Lists are quite similar to vectors, but Lists are the R objects which can contain elements of 
different types like − numbers, strings, vectors and another list inside it. 

Eg:  

vect<- c("ANU", 'B.Com','Lakshmi Shourya') 
mylist <- list(vect, 66.3, 257192, TRUE)  
mylist 
Output: 
[[1]] 
[1] "ANU", 'B.Com','Lakshmi Shourya'  
[[2]] 
[1] 66.3 
[[3]] 
[1] 257192 
[[4]] 
[1] TRUE 
 

5.3.3 Matrix 

Matrix is the R object in which the elements are arranged in a two-dimensional rectangular 
layout. 

The basic syntax for creating a matrix in R is − 

matrix(data, nrow, ncol, byrow, dimnames) 

Where: 

data is the input vector which becomes the data elements of the matrix. 

nrow is the number of rows to be created. 

ncol is the number of columns to be created. 

byrow is a logical clue. If TRUE, then the input vector elements are arranged by row. 

dimname is the names assigned to the rows and columns. 

Example:  
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Mymatrix <- matrix(c(1:25), nrow = 5,  ncol = 5, byrow = TRUE) 
Mymatrix 
Output: 

[,1]   [,2]   [,3]   [,4]   [,5]  
[1,]     1      2       3   4    5 
[2,]    6      7       8     9    10 
[3,]     11     12     13    14     15 
[4,]     16     17     18    19     20 
[5,]     21     22     23    24     25 
 

5.3.4 Array 

Arrays in R are data objects which can be used to store data in more than two dimensions. It 
takes vectors as input and uses the values in the dim parameter to create an array. 

The basic syntax for creating an array in R is − 

array(data, dim, dimnames) 

Where: 

data is the input vector which becomes the data elements of the array. 

dim is the dimension of the array, where you pass the number of rows, column and the 
number of matrices to be created by mentioned dimensions. 

dimname is the names assigned to the rows and columns. 

Example: 

Myarray <- array( c(1:16), dim=(4,4,2)) 
Myarray 
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Output: 

, , 1 
 [,1] [,2] [,3] [,4] 
[1,]   1    5     9   13 
[2,]   2    6    10   14 
[3,]   3    7    11   15 
[4,]   4    8    12   16 
 
, , 2 
 [,1] [,2] [,3] [,4] 
[1,]   1    5    9    13 
[2,]   2    6    10   14 
[3,]   3    7    11   15 
[4,]   4    8  12   16 

 

5.3.5 Data Frame 

A Data Frame is a table or a two-dimensional array-like structure in which each column 
contains values of one variable and each row contains one set of values for each column. 
Below are some of the characteristics of a Data Frame that needs to be considered every time 
we work with them: 

The column names should be non-empty. 

Each column should contain the same amount of data items. 

The data stored in a data frame can be of numeric, factor or character type. 

The row names should be unique. 

Example: 

emp_id = c(201:205) 
emp_name = c("Surya","Sri","Arya","Nivas","Reddaiah") 
dept = c("CSE","EEE","ECE","Mechanical","Civil") 
emp.data <- data.frame(emp_id, emp_name, dept) 
emp.data 
 
Output: 
 
   emp_id    emp_name    dept 
1 201         Surya  CSE 
2 202         SriEEE 
3 203         Arya  ECE 
4 204          Nivas  Mechanical 
5 205         Reddaiah Civil 
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5.4 COERSION 
Coercion includes type conversion. Type conversion means change of one type of data into 
another type of data. We have to type of coercion occurs: 
 
 1. Implicit Coercion 
 2. Explicit Coercion 
 
5.4.1 Explicit Coercion: 
 
In explicit coercion , we can change one data type to another data type by applying function. 
We create an object “x” which stores integer values from 1 to 6. 

x<-0:6 
We can check data type of “x” object. 

class(x) 
We used as.numeric() to change integer data type to numeric data type. 

z<-as.numeric(x) 
We check data type of z. It shows “numeric” data type. 

class(z) 

 
We can also change character data to numeric data as: 

 

 
We also changed logical data to character data. 

 
We also changed integer data to Logical data as: 

 
 
When we changed numeric or integer to logical data , it will store 0 as FALSE and other 
values as TRUE. You can see here also . 
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Some exceptions of explicit coercion :- 

 
 
We are converting character data type to numeric data type. It will show NA . It will show 
missing in out object. It will not change character data to numeric because it includes values 
“a” which cannot be changed to numeric data. 
 
5.4.2 Implicit Coercion : 
 
When type conversion occurs by itself in R. 
 
We input numeric and character data in an object . R converts numeric data to character data 
by itself. 

 
 
We input logical and numeric data in an object . Logical data convert to numeric data 
implicitly. 

 

 
5.5  ls() COMMAND 
In R, the ls() function is used to list the objects (variables, functions, etc.) that are currently 
stored in the workspace. When you call ls(), it will return a character vector containing the 
names of all the objects present in the current environment. 

Variables whose names begin with a dot are, by default, not returned.  

Syntax:  

ls(name, pos = -1L, envir = as.environment(pos), 

all.names = FALSE, pattern, sorted = TRUE) 

where  
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name: This is the environment used in listing the available objects. 

pos: This is an alternative argument to the parameter name for specifying the environment as 
a position in the search list. 

envir: This is another alternative argument to name for specifying the environment. 

all.names: This takes a logical value (TRUE or FALSE) indicating whether all the object 
names are returned (if TRUE) or the object names beginning with a . are omitted (if FALSE.) 

pattern: Only names that match the pattern are returned. 

sorted: This takes a logical value (TRUE or FALSE) indicating if the output character should 
be sorted alphabetically or not. 

 
Example:  

# creating R variables and functions 
a <- 36 
b <- sqrt(a) 
c <-  a*b 
.hide <- "ls will not show this if all.names= FALSE" 
 
# implementing the ls() function by default 
ls() 
[1] "a" "b" "c" "r" 
 
# implementing the ls() function to omit variables begining with dot(.) 
ls(all.names='FALSE') 
[1] "a" "b" "c" "r" 
# implementing the ls() function to also return variables begining with (.) 
ls(all.names='TRUE') 
 [1] ".hide" "a" "b" "c" "r" 

5.6  EXPRESSIONS 
 
In R programming, expressions are combinations of variables, operators, functions, and other 
elements that produce a value when evaluated. Expressions can be simple, such as a single 
variable, or complex, involving multiple operations. Here are some examples of expressions 
in R: 
 
1. Arithmetic expressions: 
x <- 5 
y <- 3 
z <- x + y 
 
In this example, `x + y` is an arithmetic expression that adds the values of `x` and `y` and 
assigns the result to `z`. 
 
 
2. Function calls: 
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sqrt(16) 

 
Here, `sqrt()` is a function call expression that computes the square root of the number `16`. 
 
 
3. Logical expressions: 

a <- 10 
b <- 5 
a > b 

The expression `a > b` evaluates to `TRUE` because `a` is greater than `b`. 
 
 
4. Conditional expressions: 

if (a > b) {  
  print("a is greater than b") 
} else { 
  print("a is not greater than b") 
} 

The expression `a > b` is a condition that determines which branch of the if-else statement is 
executed. 
 
5. String concatenation: 

string1 <- "Hello" 
string2 <- "world" 
paste(string1, string2) 

The expression `paste(string1, string2)` concatenates `string1` and `string2` together. 
 
6. Vector operations: 

vector <- c(1, 2, 3, 4, 5) 
sum(vector) 

 
The expression `sum(vector)` calculates the sum of all elements in the vector. 
 
These are just a few examples of expressions in R. In general, an expression can consist of 
any combination of R objects, operators, and function calls that produce a value. 
 

5.8  VARIABLES 

A variable, as explained in the preceding section, reserves a memory location and stores 
values that can be changed. A suitable variable name must be comprised of alphanumeric 
characters, as well as dots or underscores. 
 

In R, variables are used to store data values. Variable names can consist of letters, numbers, 
periods, and underscores, but they cannot start with a number or a period followed by a 
number 
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Rules and conventions 

In R, variable names must follow certain rules and conventions. Here are the key rules for 
naming variables in R: 

1. Start with a letter or a period: Variable names must begin with a letter (either 
uppercase or lowercase) or a period. However, it's recommended to avoid starting 
variable names with a period as it has special meanings in R. 

2. Subsequent characters: After the initial letter or period, variable names can contain 
letters, numbers, periods, and underscores. 

3. Case sensitivity: R is case-sensitive, meaning uppercase and lowercase letters are 
considered distinct. For example, `myVariable`, `MyVariable`, and `MYVARIABLE` 
are all considered different variable names. 

4. Reserved words: Avoid using reserved words as variable names. These are words that 
have special meaning in R, such as `if`, `else`, `function`, `for`, `while`, etc. 

5. Special characters: While R allows the use of special characters like `+`, `-`, `*`, `/`, 
`%`, etc., in variable names, it's generally not recommended for clarity and ease of 
use. 

6. Length: Variable names can be of any length, but it's good practice to keep them 
concise and meaningful. 

Variables Assignment: Variables can be assigned in multiple ways  

Assignment (=): var1 = “ANU”  

Left ( ): var2  “,“  

Right (): “R Programmng”  var3 
 

Variable Name Valid Descrition 
stu_marks1. Valid  Contains letters, number, dot and 
Underscore   
1stu_marks Invalid  Starting with a number 
Stu_marks@ Invalid  Has special character (@). Only dot 
and underscore is allowed.   
.stu_marks, var.name Valid  Can start with a dot, which is followed by an 

alphabet. 
_stu_marks Invalid  Should not start with underscore. 
.2stu_marks Invalid Dot is followed by a number and hence invalid 

5.9 SUMMARY 
The chapter covers essential aspects of R programming, starting with an exploration of what 
R is and its significance. R stands out for its robust statistical and graphical capabilities, 
making it a preferred choice for data analysis and visualization tasks. It offers several 
advantages over other programming languages, such as its extensive collection of packages, 
active community support, and open-source nature. Understanding data types in R, including 
numeric, character, logical, and more, is crucial for effective data manipulation. Coercion is 
discussed as a process of converting data types in R, enabling seamless operations across 
different types. The ls() command is introduced for listing objects in the workspace, aiding in 
managing variables and expressions effectively. Overall, mastering expressions, variables, 
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and other fundamentals of R lays a solid foundation for proficient data analysis and 
programming in R. 

5.10 TECHNICAL TERMS 

Expressions, Variables, Python, Java 

5.11 SELF ASSESSMENT QUESTIONS 

Essay questions: 
 

1. Explain the significance of R in the field of data science and statistical analysis. 
2. Describe the various data types available in R and their significance in data analysis.  
3. Discuss the concept of coercion in R. Provide examples to illustrate how coercion 

affects data types and operations in R programming. 
4. Discuss the role of variables in R programming. How are variables defined, assigned, 

and utilized in data analysis tasks within the R environment? 

 Short Notes:   

1. Compare and contrast the advantages of R over other programming languages  
2. Explain the functionality and purpose of the `ls()` command in R.  
3. Define expressions in the context of R programming. 

5.12 SUGGESTED READINGS 

1. Seema Acharya , Data Analytics using R, McGraw Hill Education (India) pvt. ltd. 
2. Crawley, M. J. (2012). The R book. John Wiley & Sons. 
3. Albert, J. & Rizzo, M. (2012). R by Example. Springer 
4. Teetor, P. (2011). R Cookbook. O’REILLY 
5. Braun, W. j. & Murdoch, D. J. (2007). A First Course in Statistical Programming with 

R.Cambridge. 
 
 
 
AUTHOR: Mr. G V Suresh 

 
 



LESSON- 6 

CONTROL STRUCTURES  
OBJECTIVES: 

After going through this lesson, you will be able to  

 Write if-else statements to make decisions based on conditions 
 Understand the purpose and syntax of loops, including for and while loops. 
 Apply control structures to manipulate and analyze data efficiently. 
 Understanding the impact of different control structures on code performance and 

efficiency. 
 Applying control structures in solving practical problems 

STRUCTURE OF THE LESSION: 
 
6.1  Introduction 
6.2  The ifStatement 
6.3 The for Statement  
6.4  The switch statement 
6.5 The while Loop 
6.6  The repeat and break statements 
6.7 The next statement 
6.8  Summary 
6.9 Technical Terms 
6.10  Self-Assessment Questions 
6.11 Further Readings 

6.1  INTRODUCITON  
There are important ways to direct the flow of processing in programmes using R's control 
structures. There are conditional statements in these frameworks, such as if-else statements, 
that tell the programme what to do based on certain conditions. Loops, like for and while 
loops, let you run the same block of code over and over again. This makes it easier to do 
things like iterate over data items or do calculations over and over again. R also has switch 
lines for situations where you need to make decisions with more than one branch. Mastering 
control structures helps programmers write more flexible and effective code, which is 
important for many tasks, from working with data and analyzing it to solving algorithmic 
problems. Understanding these structures not only makes code easier to read and manage, but 
it also lets you make R programmes that are smarter and more flexible 

 

6.2 IF STATEMENT 
An expression that is a Boolean and a collection of statements make up this control statement, 
which is one of the control statements in the R programming language. The collection of 
statements is carried out in the event that the Boolean expression contains a value of TRUE.  

The sentences that come after the conclusion of the If statement are carried out if the Boolean 
expression is evaluated to show that it is false.  
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In the following, you will find the fundamental syntax for the If statement:: 

 

 

 

 

Example Program: 

m <-“Lakshmi Shourya” 
if(is.character(m)) { 
print("m is a Character") 
} 

 

6.2.1Else Statement 

In the If -Else statement, an If statement is followed by an Else statement, which contains a 
block of code to be executed when the Boolean expression in the If the statement evaluates to 
FALSE.’ 

The basic syntax of it is given below: 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                    Figure 6.1 if else statement control flow 

if(expression) 
{ 
# code to execute if condition is TRUE 
} 

if(expression)  
{   
This block of code executes if the Boolean 
expression returns TRUE. 
}  
else  
{   
This block of code executes if the Boolean 
expression returns FALSE. 
} 
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Example: 

s <-c("Acharya ","Nagarjuna","University") 
if("Nagarjuna"%in%s)  
{   
 print("Intellipaat") 
}  
else 
{   

print("Not found") 
} 

 

6.2.2 Else If Statement 

An "else if" statement is positioned between a "if" statement and a "else" statement. 
Successive Else-If statements can be appended to an initial If statement. If an If statement or 
an Else if statement evaluates to TRUE, none of the remaining else if or Else statements will 
be processed. 

Below is the fundamental syntax of it: 

  

if(expression1)  
{    

If this block of code executes if the expression 1 returns TRUE 
 }  
else if(expression2)  
{    
This block of code executes if the expression 2 returns TRUE 
}  
else if(expression3)  
{   This block of code executes if the expression returns TRUE 
}  
else  

{    
This block of code executes if none of the expression returns TRUE 
} 
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6.3 THE FOR STATEMENT  
A loop is defined as a situation where we need to execute a block of code several number of 
times. In the case of loops, the statements are executed sequentially. 

A for loop in R is used to iterate over a sequence of values or elements and perform a set of 
operations for each iteration.  

The basic syntax of a for loop is given below 

 

 

 

 

Figure 6.2for loop control flow 

Example: 

v <- c(1:10) 
for (i in v)  
{ 
     print(i) 
} 
 
Output: 
[1] 1 
[1] 2 
[1] 3 
[1] 4 
[1] 5 

 

We can also use the break statement inside a for-loop to break it out abruptly. 

Example: 

v <- c(1:5) 
for (i in v)  
{ 

for (value in vector)  
{ 
 statements 
} 
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     if(i == 3) 
    { 
          break 
   } 
print(i) 
} 
 
Output: 
[1] 1 
[1] 2 

 
6.4  THE SWITCH STATEMENT 
The switch statement is a control statement in R programming that is used to compare a 
variable with a set of values. Every individual value is referred to as a case. 

The basic syntax for a switch statement is as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.3 switch case statement flow 

 

Example: 

st <- switch( 3,"Acharya","Nagarjuna","University") ) 

print(st) 

Output:[1] “Nagarjuna” 

if the value supplied as an expression is not a character string, it is converted to an integer 
and compared with the indexes of cases specified in the switch statement. 

switch(expression, case1, case2, case3....) 
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m<- "11" 

b <- switch(y,"39" = "Srinivas","11"= "Rohit Arya",    "12" = 
"Shourya", "40"= "Lakshmi") 

print(b) 

Output:[1] “Rohit Arya” 

If an expression evaluates to a character string, it is compared (exactly) to the names of the 
cases specified in the switch statement. 

 If many matches are found, the first matching element is returned. 
 There is no default parameter available. 

 

6.5 THE WHILE LOOP 
A while loop is one of the control statements in R programming which executes a set of 
statements in a loop until the condition (the Boolean expression) evaluates to TRUE. 
 

The basic syntax of a while loop is given below 

 

 

 

 
 

4  
Figure 6.4 while loop control flow  

Example: 

while(expression)  
{ 
statement 
} 
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 i <- 1 
 while(i <= 10) 
 { 
 print( i ) 
   i  = i + 1 
 } 
[1] 1 
[1] 2 
[1] 3 
[1] 4 
[1] 5 
[1] 6 
[1] 7 
[1] 8 
[1] 9 
[1] 10 

 

6.6  THE REPEAT AND BREAK STATEMENTS 

6.6.1 Repeat 
The break statement is used to exit a loop prematurely. It can be used within loops such as 
for, while, or repeat loops to immediately terminate the loop's execution and continue with 
the code following the loop. The break statement is typically used in conjunction with a 
conditional statement to specify the condition under which the loop should be exited. 

Example: 

 
v <- c(0:6) 
 
for (i in v)  
{ 
     if(i == 3) 
    { 
         next 
    } 
    print(i) 
} 
 
Output: 
[1] 0 
[1] 1 
[1] 2 
[1] 4 
[1] 5 
[1] 6 
 
6.6.2 break 
The break statement can be used within while or repeat loops to achieve early termination 
based on certain conditions. It's important to use the break statement judiciously to avoid 
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unintended behavior, such as infinite loops. Additionally, the break statement only exits the 
innermost loop it is contained within; if nested loops are present, it will only exit the loop in 
which it is directly contained. 

A break statement is used for two purposes 

 To terminate a loop immediately and resume at the next statement following the loop. 
 To terminate a case in a switch statement. 

 

 
Figure 6.5  flow chart of break statement 
 

v <- c(0:6) 
for (i in v)  
{ 
if(i == 3) 
{ 
break 
} 
print(i) 
} 
 
Output: 
[1] 0 
[1] 1 
[1] 2 
 
 
6.7 THE NEXT STATEMENT 
In R programming, the "next" statement is a control statement that allows for the skipping of 
the current iteration of a loop, while still continuing the loop. When a "next" statement is 
reached, the code's further evaluation is eliminated, and the loop proceeds to the next 
iteration. 
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Figure 6.6  next statement flow chart 

 

Example: 

 

v <- c(0:6) 
for (i in v) { 
if(i == 3){ 
next 
} 
print(i) 
} 
Output: 
 
[1] 0 
[1] 1 
[1] 2 
[1] 4 
[1] 5 
[1] 6 
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6.8 SUMMARY 
This chapter explain about control structures are fundamental components of R programming, 
enabling the execution of code in a controlled manner based on specified conditions. Through 
the use of conditional statements such as if, else, and switch, along with iterative constructs 
like for, while, and repeat loops, R provides powerful mechanisms for flow control and 
algorithmic design. These structures allow for the creation of flexible and efficient scripts and 
functions, facilitating tasks ranging from simple decision-making to complex data processing 
and manipulation. By mastering R's control structures, programmers gain the ability to write 
expressive, scalable, and maintainable code, empowering them to tackle diverse analytical 
challenges across various domains with precision and effectiveness. 

1.7  TECHNICAL TERMS 

If, for, while, next, break, repeat 

1.8   SELF ASSESSMENT QUESTIONS 

Essay questions: 
1. What role do logical operators play in conditional statements, and how are 

they used in conjunction with if statements? 
2. How can control structures be combined to create complex decision-making 

and iterative processes in R scripts? 
3. Can you compare and contrast control structures in R with those in other 

programming languages, highlighting similarities and differences? 
 

Short Questions:   
1. What are control structures in R, and why are they important in programming? 
2. ow do else and else if statements extend the functionality of if 

statements in R? 
3. How does the repeat loop differ from while and for loops, and in what 

scenarios is it particularly useful? 
4. What is the syntax and usage of the while loop in R 

1.9SUGGESTED READINGS 

1. Seema Acharya , Data Analytics using R, McGraw Hill Education (India) pvt. ltd. 

2. An Introduction to R, Notes on R: A Programming Environment for Data 
Analysis and Graphics. W. N. Venables, D.M. Smith and the R Development Core 
Team 

3. Crawley, M. J. (2012). The R book. John Wiley & Sons. 

4. Albert, J. & Rizzo, M. (2012). R by Example. Springer 

5. Braun, W. j. & Murdoch, D. J. (2007). A First Course in Statistical Programming 
with R. Cambridge. 

 

AUTHOR: Dr. U. Surya Kameswari 
 



 

 

LESSON- 7 

FUNCTIONS  

OBJECTIVES: 

After going through this lesson, the student will be able to  

1 Able to define functions in R 
2 Comprehend the importance of functions in organizing code and facilitating code reuse 
3 How to handle parameters within functions 
4 Apply functions effectively in data analysis tasks 
5 Gain proficiency in debugging functions, identifying and resolving common errors 

STRUCTURE OF THE LESSION: 
7.1 Functions 
7.2 Function Definition 
7.3 Function Components 
7.4 Built-in Functions 
 7.4.1 Numeric Functions 
 7.4.2 Character Functions 
 7.4.3 Statistical Probability Functions 
 7.4.4. Other Statistical Functions 
7.5 User defined functions 
 7.5.1 Create a function 
 7.5.2 Call a Function 
 7.5.3 Pass Arguments 
 7.5.4 Named Arguments 
 7.5.5 Default Argument Value 
 7.5.6 Return a Value 
 7.5.7 Return Multiple Values 
 7.5.8 Lazy Evaluation 

7.5.9 Variable Length Argument 
7.6  Summary 
7.7 Technical Terms 
7.8 Self-Assessment Questions 
7.9  Further Readings 
 

7.1  FUNCTIONS 
A function in programming is a named block of code that performs a specific task or set of 
tasks. It encapsulates a sequence of statements and can accept inputs, called arguments or 
parameters, and optionally return an output. Functions allow programmers to modularize 
code, making it easier to manage, debug, and reuse. They promote code reusability and 
abstraction by encapsulating common operations or algorithms into self-contained units. 

Functions in R programming are essential components that encapsulate sets of instructions to 
perform specific tasks or calculations. Whether built-in or user-defined, functions play a 
crucial role in enabling code modularity, reusability, and abstraction. With R's rich set of 
built-in functions covering a wide range of operations, from basic arithmetic to advanced 
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statistical analysis, programmers can leverage these functions to streamline their coding 
processes and focus on higher-level problem-solving. Moreover, R allows users to define 
their own functions tailored to their unique requirements, enabling customization and 
flexibility in analytical workflows. By encapsulating code within functions, R programmers 
can create modular, maintainable, and efficient codebases that are easier to understand, 
debug, and extend. 

Furthermore, functions in R support a variety of advanced features, including the ability to 
accept multiple arguments, specify default parameter values, and return multiple outputs. 
This flexibility allows programmers to create versatile functions that can handle diverse input 
scenarios and produce customized outputs. Additionally, R functions support lexical scoping, 
enabling access to variables defined in their enclosing environments. This feature facilitates 
the creation of more complex and hierarchical functions, enhancing code organization and 
readability. Overall, functions are a cornerstone of R programming, empowering users to 
write clear, concise, and reusable code for data analysis, statistical modeling, and beyond. 

R has a large number of in-built functions and the user can create their own functions. 

In R, a function is an object so the R interpreter is able to pass control to the function, along 
with arguments that may be necessary for the function to accomplish the actions. 

The function in turn performs its task and returns control to the interpreter as well as any 
result which may be stored in other objects. 

7.2 FUNCTION DEFINITION  

A function definition in programming refers to the process of creating a named block of code 
that performs a specific task or set of tasks. This block of code encapsulates a sequence of 
statements and can accept inputs, known as arguments or parameters, to operate on. In the 
definition, We specify the function's name, the parameters it expects (if any), and the 
operations it performs. Additionally, We may specify the return type and value of the 
function, indicating what the function will produce as output when called. Overall, a function 
definition establishes the blueprint or structure of the function, outlining how it behaves and 
what it accomplishes when invoked within a program. 

An R function is created by using the keyword function. The basic syntax of an R function 
definition is as follows: 

The following is the syntax for a user-defined function in R: 

Function_name =  function(arguments){ 
   function_body 
   return (return) 
} 
 

Where function_name is the name of the function, 

arguments are the input arguments needed by the function, 

function_body is the body of the function, 

return is the return value of the function. 
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7.3 FUNCTION COMPONENTS 

The different parts of a function are: 

function_name: This is the name of the function, which should be descriptive and indicative 
of its purpose. 

arguments: These are the arguments or parameters that the function accepts as input. They 
represent the values that the function operates on. 

Body of the function: This is the sequence of statements or expressions that define the task 
the function performs. It contains the actual code that executes when the function is called. 

return(): This function is used to specify the value or result that the function will return when 
called. It is optional; if omitted, the function returns the result of the last evaluated 
expression. 

 

Figure 7.1 components of a function 

 

R has many in-built functions which can be directly called in the program without defining 
them first. We can also create and use our own functions referred as user defined functions. 
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Figure 7.2 types of functions 

7.4 BUILT-IN FUNCTIONS 

Simple examples of in-built functions are seq(), mean(), max(), sum(x)and paste(...) etc. They 
are directly called by user written programs.  

Built-in functions in R serve several important purposes that contribute to the efficiency and 
productivity of programming in the language: 

Basic Operations: Built-in functions provide essential functionality for performing basic 
operations such as arithmetic calculations (+, -, *, /), logical operations (&, |, !), and 
comparisons (==, <, >, <=, >=). These operations form the foundation of data manipulation 
and analysis in R. 

Data Manipulation: R's built-in functions offer powerful tools for manipulating data, such 
as sorting (sort()), filtering (subset()), merging (merge()), and aggregating (aggregate()). 
These functions enable users to preprocess and transform datasets efficiently. 

Statistical Analysis: R includes a vast array of built-in functions for statistical analysis, 
including descriptive statistics (mean(), median(), sd()), hypothesis testing (t.test(), 
wilcox.test()), regression analysis (lm()), and more. These functions facilitate comprehensive 
data analysis and modeling tasks. 

Data Visualization: R's built-in functions support data visualization through packages such 
as graphics, ggplot2, and lattice. These functions allow users to create a wide range of plots 
and visualizations to explore and communicate data effectively. 

File and Data I/O: R provides built-in functions for reading and writing data to various file 
formats, including CSV (read.csv(), write.csv()), Excel (read_excel(), write_excel()), and 
databases (dbReadTable(), dbWriteTable()). These functions simplify data import and export 
tasks. 

 
Examples:  
 
7.4.1 Numeric Functions 
 

Function Description 

abs(x) absolute value 
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sqrt(x) square root 

ceiling(x) ceiling(3.475) is 4 

floor(x) floor(3.475) is 3 

trunc(x) trunc(5.99) is 5 

round(x , digits= n) round(3.475, digits=2) is 3.48 

signif(x , digits= n) signif(3.475, digits=2) is 3.5 

cos(x), sin(x), tan(x) also acos(x), cosh(x), acosh(x), etc. 

log(x) natural logarithm 

log10(x) common logarithm 

exp(x) e^x 

 
Character Functions 

Function Description 

substr(x , start= n1 , stop= n2) Extract or replace substrings in a character vector. 
x <- "abcdef" 
substr(x, 2, 4) is "bcd" 
substr(x, 2, 4) <- "22222" is "a222ef" 

grep(pattern , x , 
ignore.case= FALSE , 
fixed= FALSE ) 

Search for pattern in x. If fixed =FALSE 
then pattern is a regular expression. If fixed=TRUE 
then pattern is a text string. Returns matching 
indices. 
grep("A", c("b","A","c"), fixed=TRUE) returns 2 

sub(pattern , replacement , x , 
ignore.case = FALSE , 
fixed= FALSE ) 

Find pattern in x and replace with replacement text. 
If fixed=FALSE then pattern is a regular 
expression. If fixed = T then pattern is a text string. 
sub("\s",".","Hello There") returns "Hello.There" 

strsplit(x , split) Split the elements of character vector x at split. 
strsplit("abc", "") returns 3 element vector 
"a","b","c" 

paste(..., sep="") Concatenate strings after using sep string to 
separate them. 
paste("x",1:3,sep="") returns c("x1","x2" "x3") 
paste("x",1:3,sep="M") returns c("xM1","xM2" 
"xM3") 
paste("Today is", date()) 

toupper(x) Uppercase 

tolower(x) Lowercase 
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Statistical Probability Functions 
 
 

Function Description 

dnorm(x) normal density function (by default m=0 sd=1) 
# plot standard normal curve 
x <- pretty(c(-3,3), 30) 
y <- dnorm(x) 
plot(x, y, type='l', xlab="Normal Deviate", ylab="Density", 
yaxs="i") 

pnorm(q) cumulative normal probability for q 
(area under the normal curve to the left of q) 
pnorm(1.96) is 0.975 

qnorm(p) normal quantile. 
value at the p percentile of normal distribution 
qnorm(.9) is 1.28 # 90th percentile 

rnorm(n, m=0, sd=1) n random normal deviates with mean m 
and standard deviation sd. 
#50 random normal variates with mean=50, sd=10 
x <- rnorm(50, m=50, sd=10) 

dbinom(x, size, prob) 
pbinom(x, size, prob) 
qbinom(p, size, prob) 
rbinom(n, size, prob) 

binomial distribution where size is the sample size 
and prob is the probability of a heads (pi) 
# prob of 0 to 5 heads of fair coin out of 10 flips 
dbinom(0:5, 10, .5) 
# prob of 5 or less heads of fair coin out of 10 flips 
pbinom(5, 10, .5) 

dpois(x,lamda) 
ppois(x,lamda) 
qpois(x,lamda) 
rpois(x,lamda) 

poisson distribution with m=std=lamda 
#probability of 0,1, or 2 events with lamda=4 
dpois(0:2, 4) 
# probability of at least 3 events with lamda=4 
1- ppois(2,4) 

dunif(x, min=0, max=1) 
punif(x, min=0, max=1) 
qunif(x, min=0, max=1) 
runif(x, min=0, max=1) 

uniform distribution, follows the same pattern 
as the normal distribution above. 
#10 uniform random variates 
x <- runif(10) 
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Other Statistical Functions 
 

Function Description 

mean(x , trim=0, 
na.rm= FALSE ) 

mean of object x 
# trimmed mean, removing any missing values and 
# 5 percent of highest and lowest scores 
mx <- mean(x,trim=.05,na.rm=TRUE) 

sd(x) standard deviation of object(x). also look at var(x) for variance 
and mad(x) for median absolute deviation. 

median(x) median 

quantile(x , probs) quantiles where x is the numeric vector whose quantiles are 
desired and probs is a numeric vector with 
probabilities in [0,1]. 
# 30th and 84th percentiles of x 
y <- quantile(x, c(.3,.84)) 

range(x) range 

sum(x) sum 

diff(x , lag= 1) lagged differences, with lag indicating which lag to use 

min(x) minimum 

max(x) maximum 

scale(x , center= TRUE , 
scale= TRUE ) 

column center or standardize a matrix. 

 
Other Useful Functions 

Function Description 

seq(from , to , by) generate a sequence 
indices <- seq(1,10,2) 
#indices is c(1, 3, 5, 7, 9) 

rep(x , ntimes) repeat x n times 
y <- rep(1:3, 2) 
# y is c(1, 2, 3, 1, 2, 3) 

cut(x , n) divide continuous variable in factor with n levels 
y <- cut(x, 5) 
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7.5 USER-DEFINED FUNCTION 

We can create user-defined functions in R. They are specific to what a user wants and once 
created they can be used like the built-in functions. Below is an example of how a function is 
created and used. 

7.5.1 Create a Function 
To define a function in R, use the function command and assign the results to a function 
name. 

 

 

 

* 

If We have only one statement to execute, We can skip curly braces. 

msgFunc <- function() print(‘Acharya Nagarjuna University') 
 
 
7.5.2 Call a Function 
We can call (run) the function by adding parentheses after the function’s name. 

msgFunc <- function() { 
  print(‘Acharya Nagarjuna University') 
} 
 
msgFunc() 
[1] "Acharya Nagarjuna University" 
 
 

7.5.3 Pass Arguments 
We can send information to a function through arguments. Arguments are declared after the 
function keyword in parentheses. 

We can send as many arguments as we like, just separate them by a comma. 

sum <- function(x, y)  
{ 
  x + y 
} 
 
sum(45, 89) 
[1] 134 
 
 
7.5.4 Named Arguments 
If we pass arguments to a function by name, we can put those arguments in any order. 

# Create a function 'msgFunc' 

msgFunc<- function() { 

  print(“Acharya Nagarjuna University'”) 
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pow <- function(x, y) { 
  x ^ y 
} 
 
# using argument names 
pow(x=2, y=3) 
[1] 8 
 
# changing the order 
pow(y=3, x=2) 
[1] 8 
 
 
 
7.5.5 Default Argument Value 
We can assign a default value to an argument. So, when We call the function without 
argument, it uses the default value. 

# Set default value ‘3’ to second argument 
pow <- function(x, y=3)  
{ 
  x ^ y 
} 
 
# function will use default y value 
pow(2) 
 
[1] 8 
 
# specifying a different y value 
pow(2, 4) 
 
[1] 16 
 
 

7.5.6 Return a Value 
To return a value from a function, simply use a return() function. 

sum <- function(x, y) { 
  return(x + y) 
} 
 
sum(2, 3) 
[1] 5 
If We do not include any return() function, it automatically returns 
the last expression. 
sum <- function(x, y) { 
  x + y 
} 
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sum(2, 3) 
[1] 5 
 
 
 
7.5.7 Return Multiple Values 
We can return multiple values by saving the results in a vector (or a list) and returning it. 

math <- function(x, y)  
{ 
  add <- x + y 
  sub <- x - y 
  mul <- x * y 
  div <- x / y 
  c(addition = add, subtraction = sub 
 multiplication = mul, division = div) 
} 
 
math(6, 3) 
      addition  subtraction   multiplication    division  
             9    3      18           2 
 
7.5.8 Lazy Evaluation 
+R functions perform lazy evaluation that dramatically extends the expressive power of 
functions. It is the technique of not evaluating arguments unless and until they are needed in 
the function. 

msgFunc <- function(x, y) { 
  if(!x){ 
    return(y) 
  } 
  else{ 
    return(x) 
  } 
} 
 
# y is not evaluated so not including it causes no harm 
msgFunc(6) 
[1] 6 
 
# y is evaluated so not including it raises error 
msgFunc(0) 
Error in msgFunc(0) : argument "y" is missing, with no default 
 
7.5.9 Variable Length Argument 
In R, it is often convenient to accept a variable number of arguments passed to the function. 
To do this, We specify an ellipsis (...) in the arguments when defining a function. 

It accepts variable number of arguments, in the sense that We do not know beforehand how 
many arguments can be passed to Wer function by the user. 

For example, below function prints the first argument and then passes all the other arguments 
to the summary() function. 
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msgFunc <- function(x,...) {print(x); summary(...)} 
t<- 1:10 
 
msgFunc("Summary of t:", t) 
[1] "Summary of t:" 
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
   1.00    3.25    5.50    5.50    7.75   10.00  
 

We can also directly refer to the arguments within the argument list (...) through the variables 
..1, ..2, to ..9. 

For example, ..1 refers to the first argument, ..2 refers to the second, and so on. 

msgFunc <- function(...) {cat(..1, ..2)} 
 
msgFunc("Acharya", "Nagarjuna University”) 
Hello World! 
 

It is also possible to read the arguments from the argument list by converting the object (...) to 
a list within the function body. 

For example, below function simply sums all its arguments: 

addAll <- function(x,...) { 
  args <- list(...) 
  for (a in args) x <- x + a 
  x 
} 
 
addAll(1,2) 
[1] 3 
 
addAll(1,2,3,4,5) 
[1] 15 
 

7.6  SUMMARY 
In the chapter on functions in R, fundamental concepts and techniques for creating and using 
functions within the R programming language are explored. Functions are essential tools for 
organizing code, encapsulating specific tasks, and facilitating code reuse. The chapter covers 
the syntax for defining functions, including parameter specifications and return values, as 
well as various techniques for enhancing function functionality, such as handling default 
parameter values, variable scope, and the use of control structures within functions. Overall, 
understanding functions in R is crucial for developing efficient and maintainable code in data 
analysis, statistical modeling, and other domains where R is used. 
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7.7 TECHNICAL TERMS 

Functions, Lazy evaluation, arguments 
 

7.8 SELF ASSESSMENT QUESTIONS 

Essay questions: 
1. List out some built-in functions. 
2. Explain Lazy evaluation 
3. Define Function? List out the function components 

 Short questions:   

1. What is a function in R and why are they important? 
2. How do you define a function in R? Provide an example. 
3. Compare the types of functions in R programming? 

7.9SUGGESTED READINGS 
1. Seema Acharya , Data Analytics using R, McGraw Hill Education (India) pvt. ltd. 
2. An Introduction to R, Notes on R: A Programming Environment for Data Analysis 

and Graphics. W. N. Venables, D.M. Smith and the R Development Core Team 
3. Crawley, M. J. (2012). The R book. John Wiley & Sons. 
4. Albert, J. & Rizzo, M. (2012). R by Example. Springer 
5. Braun, W. j. & Murdoch, D. J. (2007). A First Course in Statistical Programming with 

R. Cambridge. 

 

AUTHOR: Dr. U. Surya Kameswari 
 



LESSON- 8 

ARRAYS 

OBJECTIVES: 

After going through this lesson, you will be able to  
 Define the concept of arrays in programming. 
 Demonstrate the creation of arrays in R 
 Describe the significance of naming columns and rows in arrays. 
 Introduce techniques for accessing array elements using named columns and rows 
 Introduce methods for performing calculations across array elements 

STRUCTURE OF THE LESSION: 
 
8.1  What is an Array 

8.2  Array Creation 

8.3  Naming Columns and Rows 

8.4  Accessing Array Elements 

8.5 Manipulating Array Elements  

8.6 Calculation across array elements 

8.7 Summary 

8.8 Technical Terms 

8.9 Self-Assessment Questions 

8.10 Further Readings 

 
8.1  WHAT IS AN ARRAY 

Arrays provide a convenient way to store data that is organized in multiple dimensions, such 
as matrices or higher-dimensional data sets. This can include data from various sources such 
as experimental measurements, simulation outputs, or observational studies. 

Arrays in R are efficient in terms of memory usage and computational performance, 
especially for large datasets. They allow for fast access to elements and support vectorized 
operations, which can significantly speed up computations compared to using loops. They are 
compatible with various data formats commonly used in data analysis and scientific 
computing, such as CSV files, databases, and spreadsheets. This compatibility makes it easier 
to import and export data between R and external sources while preserving its 
multidimensional structure. 

Arrays allow for the representation and analysis of data in more than two dimensions, which 
is essential for certain types of analyses, such as image processing, time-series analysis, and 
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spatial data analysis. R's array handling capabilities make it well-suited for working with such 
complex data structures. 

They can store data in a structured format, making it easier to explore and visualize 
multidimensional datasets. R provides powerful tools for data visualization, and arrays can be 
directly used with these tools to create informative plots and visualizations. 

 
In R programming, an array is a data structure that can hold values of the same type 
organized in multiple dimensions. Arrays can be thought of as matrices extended to multiple 
dimensions. They are particularly useful for storing and manipulating multi-dimensional data, 
such as images, time series, or spatial data. In R, arrays can have two or more dimensions. 

The only difference between vectors, matrices, and arrays are 
 Vectors are uni-dimensional arrays 
 Matrices are two-dimensional arrays 
 Arrays can have more than two dimensions 

 
There are two types of arrays in R 

 Homogeneous Array: An array where all elements are of the same data type. 
 Heterogeneous Array: An array where elements can be of different data types. 

However, this is less common in R, as R typically enforces homogeneity in arrays. 
 

8.2  ARRAY CREATION 

In R, we use the array() function to create an array.  
 
The syntax of the array() function is 
 
 
Here, 
vector - the data items of same type 
nrow - number of rows 
ncol - number of columns 
nmat - the number of matrices of nrow * ncol dimension 
 
Example: Creation of 2 X 3 matrix 
 
array1 <- array(c(1:12), dim = c(2,3,2)) 
print(array1) 
 
Output 
 
, , 1 
 
     [,1] [,2] [,3] 
[1,]    1    3    5 
[2,]    2    4    6 
 
, , 2 
 
     [,1] [,2] [,3] 

array(vector, dim = c(nrow, ncol, nmat)) 
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[1,]    7    9   11 
[2,]    8   10   12 
 
 
In the above example, we have used the array() function to create an array named array1.  
 
Observe the arguments passed inside array(), 
 
array(c(1:15), dim = c(2,3,2)) 
where,  
c(1:12) - a vector with values from 1 to 12 
dim = c(2,3,2) - create two matrices of 2 by 3 dimension 
 
Finally, the numbers from 1 to 12 that are arranged in two 2 by 3 matrices are printed. 
 

8.3  NAMING COLUMNS AND ROWS 

In R programming, naming columns and rows of arrays (or matrices) can be helpful for 
several reasons: 

Giving meaningful names to columns and rows can make your code more readable and 
understandable. Named columns and rows serve as a form of self-documentation. By 
assigning names that describe the data they contain, we provide context and clarity to the 
structure of your array. This can reduce the need for additional comments in our code, as the 
names themselves convey important information about the data. 

Named rows and columns simplify the process of subsetting or accessing specific elements of 
the array. Instead of remembering or looking up the numeric indices, we can use the names 
directly, which can be more intuitive and less error-prone. If there's an issue with your code, 
having named columns and rows can aid in debugging. Error messages or warnings may refer 
to the named entities, making it easier to pinpoint the problem areas in your code. 

Many R functions support named arguments, allowing you to pass data using column or row 
names instead of numeric indices. When your array has named columns and rows, you can 
directly use these names when working with such functions, which can streamline your code 
and improve its readability. 

In R programming, we can name the columns and rows of arrays using the `dimnames()` 
function. Arrays in R can have two types of names: row names and column names. 

Here's how we can name the rows and columns of an array: 

# Create a 3x3 array 

my_array <- array(1:9, dim = c(3, 3)) 
 

# Define row and column names 
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row_names <- c("Row1", "Row2", "Row3") 
col_names <- c("Col1", "Col2", "Col3") 
 

# Assign names to rows and columns 

dimnames(my_array) <- list(row_names, col_names) 
 

# Print the array with row and column names 
print(my_array) 
 
Output: 

 

     Col1 Col2 Col3 
Row1    1    4    7 
Row2    2    5    8 
Row3    3    6    9 
 

In this example, `my_array` is a 3x3 array with row names "Row1", "Row2", and "Row3", 
and column names "Col1", "Col2", and "Col3". The `dimnames()` function is used to set 
these names for the rows and columns of the array. 

8.4 ACCESSING ARRAY ELEMENTS 

In R, there are several ways to access elements of an array, depending on the dimensionality 
of the array and the specific elements you want to retrieve. Here are the various methods for 
accessing array elements: 

8.4.1 Using Numeric Indices: we can access array elements using numeric indices, similar to 
accessing elements in vectors. For a one-dimensional array, you use a single index. For 
higher-dimensional arrays, you specify indices for each dimension. For example: 

# One-dimensional array 

a <- c(1, 2, 3, 4) 
a[3]  # Accessing the third element 
 

# Two-dimensional array 

b <- array(1:12, dim = c(3, 4)) 
b[2, 3]  # Accessing the element in the second row and third column 
 

8.4.2. Using Row and Column Names: If our array has named rows and columns, we can 
access elements using these names. This is particularly useful for improving code readability 
and making your code more self-explanatory.  

For example: 
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# Creating a named two-dimensional array 

c <- array(1:12, dim = c(3, 4), dimnames = list(c("row1", "row2", 
"row3"), c("col1", "col2", "col3", "col4"))) 
c["row2", "col3"]  # Accessing the element in the second row and 
third column 
 

8.4.3. Using Logical Indexing: You can use logical indexing to select elements based on 
certain conditions. This is useful for filtering elements that meet specific criteria. 

 For example: 

# Creating an array 

d <- array(1:12, dim = c(3, 4)) 
 

# Selecting elements greater than 5 

d[d > 5] 
 

8.4.4 . Using Partial Matching: In some cases, R allows you to use partial matching when 
accessing array elements using names. This can be done by specifying the `exact` parameter 
as `FALSE`. However, it's generally recommended to avoid partial matching to prevent 
potential errors and ambiguities. For example: 

 

# Accessing an element using partial matching 

c["ro", "co", exact = FALSE]  # Accessing the element in the row that starts with 
"ro" and column that starts with "co" 
 

These are some of the common methods for accessing elements of an array in R. Each 
method has its advantages and use cases, so choose the one that best fits your specific 
requirements and preferences. 

8.5  MANIPULATING ARRAY ELEMENTS  

In R, there are several ways to manipulate array elements, including accessing, modifying, 
and performing operations on them.  

 
The following are some common methods: 

8.5.1. Accessing Elements: 

   We can access individual elements or subsets of elements from an array using indexing. R 
uses square brackets `[ ]` for indexing. 
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   # Create an array 

   my_array <- array(1:12, dim = c(3, 4)) 
   # Access individual element 

   print(my_array[2, 3])  # Accesses element at row 2, column 3 
 

   # Access entire row or column 

   print(my_array[2, ])   # Accesses entire second row 
   print(my_array[, 3])   # Accesses entire third column 
 

2. Modifying Elements: 

   We can modify elements of an array by assigning new values to them using indexing. 

    # Modify an individual element 

   my_array[2, 3] <- 99   # Modifies element at row 2, column 3 to 99 
 

   # Modify entire row or column 

   my_array[2, ] <- c(10, 20, 30, 40)   # Modifies entire second row 
   my_array[, 3] <- 0       # Modifies entire third column to zeros 
 

3. Conditional Manipulation: 

   We can conditionally modify elements based on certain criteria using logical indexing. 

     # Set negative values to zero 

   my_array[my_array < 0] <- 0 
 

   # Double values greater than 5 

   my_array[my_array > 5] <- my_array[my_array > 5] * 2 
 

8.5.4. Applying Functions: 

   We can apply functions to elements of an array using functions like `apply()`, `lapply()`, 
`sapply()`, etc. 

     # Apply sum function to rows 

   row_sums <- apply(my_array, 1, sum)   # Calculates row sums 
 

   # Apply mean function to columns 

   col_means <- apply(my_array, 2, mean) # Calculates column means 
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8.5.5. Reshaping Arrays: 

We can reshape arrays using functions like `aperm()`, `array_reshape()` from packages like 
`reshape2`, or functions from the `tidyverse` ecosystem. 

   # Reshape array from 3D to 2D 

   reshaped_array <- array_reshape(my_array, c(3, 4)) 
 

6. Concatenating and Combining Arrays: 

   You can concatenate arrays along different dimensions or combine them using functions 
like `cbind()`, `rbind()`, `abind()` from the `abind` package, or functions from the `tidyverse` 
ecosystem. 

   # Concatenate arrays along rows 

   combined_array <- rbind(my_array, another_array) 
 

   # Concatenate arrays along columns 

   combined_array <- cbind(my_array, another_array) 
 

These are some common methods for manipulating array elements in R. Depending on the 
specific task and complexity of the operation, you may choose one or more of these methods 
to effectively manipulate array data in R. 

 
8.6  CALCULATION ACROSS ARRAY ELEMENTS 

In R, there are several ways to perform calculations across array elements, leveraging R's 
vectorized operations and functions designed for array manipulation. Here are some common 
methods along with examples: 

 
8.6.1. Using Arithmetic Operators: 

   R's arithmetic operators (`+`, `-`, `*`, `/`, `^`, etc.) can be applied directly to arrays, 
performing element-wise calculations. 

   # Create two arrays 

   arr1 <- array(1:9, dim = c(3, 3)) 
   arr2 <- array(9:1, dim = c(3, 3)) 
 

   # Element-wise addition 

   result_add <- arr1 + arr2 
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   # Element-wise multiplication 

   result_mult <- arr1 * arr2 
 
   print(result_add) 
   print(result_mult) 
 

8.6.2. Using Built-in Functions: 

   R provides a variety of built-in functions that operate on arrays, performing calculations 
across their elements. Examples include `sum()`, `mean()`, `sd()`, `max()`, `min()`, etc. 

      # Calculate sum across rows (apply function along rows) 

   row_sums <- apply(arr1, 1, sum) 
 

   # Calculate mean across columns (apply function along columns) 

   col_means <- apply(arr2, 2, mean) 
 

   print(row_sums) 
   print(col_means) 
 

8.6.3 Using Matrix Multiplication: 

   Matrix multiplication can be used to perform calculations across arrays. This is particularly 
useful for linear algebraic operations. 

      # Create matrices 

   mat1 <- matrix(1:6, nrow = 2, byrow = TRUE) 
   mat2 <- matrix(6:1, nrow = 2, byrow = TRUE) 
   # Perform matrix multiplication 

   result_matmul <- mat1 %*% mat2 
   print(result_matmul) 
 

4. Using ‘sapply()’ or ‘lapply()’: 

   These functions can be used to apply a function to each element of an array. They iterate 
over each element of the array, perform the specified operation, and return the result. 

   # Create an array 
   arr <- array(1:9, dim = c(3, 3)) 
 
   # Square each element using sapply 
   result_square <- sapply(arr, function(x) x^2) 
 
   # Take square root of each element using lapply 
   result_sqrt <- lapply(arr, sqrt) 
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   print(result_square) 
   print(result_sqrt) 
 

8.6.5. Using `rowSums()` and `colSums()`: 

   These functions calculate row-wise and column-wise sums, respectively, across the 
elements of an array. 

  # Calculate row-wise sums 
 row_sums <- rowSums(arr) 
 
   # Calculate column-wise sums 
   col_sums <- colSums(arr) 
 
   print(row_sums) 
   print(col_sums) 
 
These methods provide flexible ways to perform calculations across array elements in R, 
allowing for efficient and concise data manipulation and analysis. Depending on the specific 
task and requirements, you can choose the most appropriate method for your needs. 

8.7  SUMMARY 
The chapter delves into the fundamental concepts surrounding arrays in R programming, 
elucidating their significance and various operations associated with them. It begins by 
elucidating the essence of arrays, elucidating how they serve as indispensable data structures 
for storing collections of elements, which can be accessed via indices or keys. Array creation 
is then explored, shedding light on techniques for generating arrays and assigning names to 
their rows and columns, enhancing readability and facilitating subsequent operations. The 
chapter progresses to elucidate methods for accessing and manipulating array elements, 
elucidating diverse strategies for efficient data retrieval and modification. Furthermore, it 
delves into the intricate realm of conducting calculations across array elements, delineating 
diverse approaches such as arithmetic operators, built-in functions, matrix multiplication, and 
iterative processes, which empower users to perform complex computations with ease. 
Through elucidating these pivotal topics, the chapter equips readers with a comprehensive 
understanding of arrays in R programming and instills proficiency in array manipulation for 
diverse data analysis endeavors. 

8.8 TECHNICAL TERMS 

 Array,  R programming 

8.9  SELF ASSESSMENT QUESTIONS 

Essay questions: 
1. What is the definition of an array in programming? 
2. Describe the process of creating an array in R. 
3. How do you access a specific element in a multidimensional array? 
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 Short Questions:   

1. How can you perform calculations across array elements in R? 
2. Provide examples of using functions like apply(), sapply(), and lapply() for array 

manipulation. 
3. How can you perform matrix multiplication in R? 
4. Describe the process of manipulating array elements in R. 

 

8.10 SUGGESTED READINGS 

1. Seema Acharya , Data Analytics using R, McGraw Hill Education (India) pvt. ltd. 
2. Crawley, M. J. (2012). The R book. John Wiley & Sons. 
3. Albert, J. & Rizzo, M. (2012). R by Example. Springer 
4. Teetor, P. (2011). R Cookbook. O’REILLY 
5. Braun, W. j. & Murdoch, D. J. (2007). A First Course in Statistical Programming with 

R.Cambridge. 
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LESSON- 9 

VECTORS 

OBJECTIVES: 
After going through this lesson, you will be able to  

 Comprehend the concept of vectors as one-dimensional arrays for data storage and 
manipulation in R 

 Create vectors using various methods 
 Categorize vectors into different types based on their data content 
 Learn to access specific elements within vectors using indexing techniques 
 Gain proficiency in utilizing a range of built-in functions that operate on vectors 

 
 
STRUCTURE OF THE LESSION: 
 
9.1 Introduction 

9.2  Creation of Vector 

9.3 Types of Vectors 

9.4  Accessing elements of Vector 

9.5  Operations on Vectors 

9.6 Functions operated on Vectors 

9.7  Summary 

9.8 Technical Terms 

9.9 Self-Assessment Questions 

9.10 Further Readings 

 
9.1 INTRODUCTION 

In R programming, vectors serve as fundamental building blocks for data manipulation and 
analysis. A vector in R is a one-dimensional array that can hold elements of the same data 
type, such as numeric, character, or logical values. Understanding vectors is crucial because 
many operations in R are vectorized, meaning they are designed to work efficiently with 
entire vectors rather than individual elements. This vectorized approach enhances the speed 
and simplicity of data processing tasks, making R a powerful tool for statistical computing 
and data analysis. 

Furthermore, vectors in R support vectorized operations, meaning arithmetic operations and 
functions can be applied element-wise to entire vectors. This capability simplifies code and 
improves computational efficiency, as it eliminates the need for explicit looping constructs. 
For example, adding two vectors together with the `+` operator results in element-wise 
addition, making it straightforward to perform calculations on entire datasets at once. 
Understanding how to leverage vectorized operations is essential for writing efficient and 
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concise code in R, enabling analysts and programmers to streamline their workflows and 
focus on extracting insights from data. 

The Vectors in R is the simplest basic type of object that is used to store a sequence of data 
elements of the same type. Members of a Vector are called Components 

9.1.1 Features 

 Vector is a basic data structure in R. 
 It is a one-dimensional data structure. 
 It holds elements of the same type. 
 Members in the vector are called components. 
 It is not recursive. 
 We can easily convert vectors into data frames or matrices. 
 In DataFrame, each column is considered a vector. 

 

9.1.2 Applications: 
 

 The usage of vectors is common in machine learning for the purpose of principal 
component analysis. After that, they are utilized for the purpose of carrying out 
decomposition in vector spaces after being extended to include eigenvalues and 
eigenvectors. 
 

 It is in the form of vectors that the inputs that are provided to the deep learning model 
are.  

 The neural network's input layer receives these vectors, which are made up of 
standardized data. These vectors are delivered to the neural network.  
 

 Vectors are utilized in the process of working on the construction of support vector 
machine algorithms.  
 

 A wide variety of tasks, including image recognition and text processing, are carried 
out by neural networks through the utilization of vector operations.  

 
9.2  CREATION OF VECTOR 

In R, you can create a vector using the c() function, which stands for "combine" or 
"concatenate." This function allows you to combine individual elements into a vector. 

This function returns a one-dimensional array or simply vector. The c() function is a generic 
function which combines its argument. All arguments are restricted with a common data type 
which is the type of the returned value 

# create vector of string types 

employees <- c("Surya", "Shourya", "Arya") 
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print(employees) 
 
 
# Output: [1] "Surya" "Shourya" "Arya" 
 

In the above example, we have created a vector named employees with elements: Surya , 
Shourya and Arya. Here, the c() function creates a vector by combining three different 
elements of  employees together. 

 
There are various other ways to create a vector in R, which are as follows: 
 
9.2.1:  Using the colon(:) operator 
We can create a vector with the help of the colon operator. There is the following syntax to 
use colon operator: 
 
z<-x:y    
This operator creates a vector with elements from x to y and assigns it to z. 
 
Example: 
 
a<-4:-10   
a   
Output 
[1]   4   3   2   1   0   -1   -2   -3   -4   -5   -6   -7   -8   -9   
-10 
 
9.2.2 Using the seq() function 
 
In R, we can create a vector with the help of the seq() function. A sequence function creates a 
sequence of elements as a vector. The seq() function is used in two ways, i.e., by setting step 
size with ‘by' parameter or specifying the length of the vector with the 'length.out' 
feature. 
 
Example: 
 
seq_vec<-seq(1,4,by=0.5)   
seq_vec   
class(seq_vec)   
 
 
Output 
[1]   1.0   1.5   2.0   2.5   3.0   3.5   4.0 
 
Example: 
 
seq_vec<-seq(1,4,length.out=6)   
seq_vec   
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class(seq_vec)   
 
 
Output 
[1]   1.0   1.6   2.2   2.8   3.4   4.0
[1]   "numeric" 
 

9.2.3   Creating a vector with repeated 
 
The rep() method of base R is used to generate a replicated sequence from a specified vector, 
where each element of the vector can be repeated at any number of specified times. This 
method can take a character, floats, or integers
 
Example: 
 
# Repeat vectors 
v_rep = rep(c(2, 8), times = 5)
print(v_rep) 
 
# Output: 
#[1] 2 8 2 8 2 8 2 8 2 8  
 
 
9.3 TYPES OF VECTORS 

In R, there are several types of vectors, each with its own characteristics and uses. The main 
types of vectors are: 
 
 

 
9.3.1 Numeric Vectors: Numeric vectors are used to store numerical data, such as integers or 
decimal numbers. Numeric vectors are created using the 'c()' function or by specifying a 
sequence of numbers using the ':' operator. For example:
 
 
 Example: 
 

Education                      9.4                       Acharya Nagarjuna University 

[1]   1.0   1.6   2.2   2.8   3.4   4.0 

9.2.3   Creating a vector with repeated elements 

The rep() method of base R is used to generate a replicated sequence from a specified vector, 
where each element of the vector can be repeated at any number of specified times. This 
method can take a character, floats, or integers-type input vectors.   

v_rep = rep(c(2, 8), times = 5) 

#[1] 2 8 2 8 2 8 2 8 2 8   

 

In R, there are several types of vectors, each with its own characteristics and uses. The main 

 
Source: discdown.org 

Numeric vectors are used to store numerical data, such as integers or 
decimal numbers. Numeric vectors are created using the 'c()' function or by specifying a 
sequence of numbers using the ':' operator. For example: 
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The rep() method of base R is used to generate a replicated sequence from a specified vector, 
where each element of the vector can be repeated at any number of specified times. This 

In R, there are several types of vectors, each with its own characteristics and uses. The main 

Numeric vectors are used to store numerical data, such as integers or 
decimal numbers. Numeric vectors are created using the 'c()' function or by specifying a 
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vec1<- c(24, 57, 82, 90) 
# display type of vector 
typeof(vec1) 
 
Output: 
[1] "double" 
[1] "integer" 
 
 
2. Character Vectors: Character vectors are used to store text data, such as strings of 
characters. Character vectors are created using the 'c()' function with elements enclosed in 
double or single quotes. In character vectors, by default numeric values  are converted into 
characters. 
 
Example: 
 
v1<- c('surya kameswari',  'assistant professor', 'CSE', '20091')  
 
# displaying type of vector 

typeof(v1) 
 
Output: 

[1] "character" 

 
3. Logical Vectors: Logical vectors are used to store boolean values ('TRUE' or 'FALSE'). 
They are often generated as a result of logical operations or comparisons. Logical vectors are 
created using the 'c()' function or logical operations 
 
Example: 
 
v1<- c(TRUE, FALSE, TRUE, NA) 
 
# Displaying type of vector 
typeof(v1) 
 
Output: 
[1] "logical" 
 
4. Integer Vectors: Integer vectors are used to store integer values. They are a subtype of 
numeric vectors but differ in that they can only store whole numbers without any decimal 
places. Integer vectors are created by specifying the 'L' suffix after the number or by coercing 
numeric vectors using the 'as.integer()' function.  
 
Example: 
Vec1<- c(24L, 57L, 82L, 90L)  
# display type of vector 
typeof(vec1) 
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Output: 
 [1] "integer" 
 
 
9.4  ACCESSING ELEMENTS OF VECTOR 

In R, you can access elements in a vector using indexing. Indexing allows you to specify 
which elements of the vector you want to retrieve or manipulate. Here's how you can access 
elements in a vector: 

 

1. Single Element Access: To access a single element of a vector, you use square brackets `[ 
]` with the index of the element you want to retrieve. R uses 1-based indexing, meaning the 
first element of a vector has an index of 1. For example: 

my_vector <- c(10, 20, 30, 40, 50) 
first_element <- my_vector[1]  # Accessing the first element 
second_element <- my_vector[2]  # Accessing the second element 
 
Output: 
[1] 10 
[2] 20 
 

2. Multiple Elements Access: You can also access multiple elements of a vector by 
providing a vector of indices inside the square brackets. For example: 

# Accessing the first, third, and fifth elements 

my_vector <- c(10, 20, 30, 40, 50)  
selected_elements <- my_vector[c(1, 3, 5)]     
selected_elements 
 
output: 
[1] 10 30 50  
 

3. Logical Indexing: You can use logical vectors to subset a vector based on certain 
conditions. For example, you can create a logical vector indicating which elements meet a 
specific condition and use that to subset the original vector. For instance: 

 

# Creating a logical vector indicating elements greater than 20 

my_vector <- c(10, 20, 30, 40, 50)  
 
logical_vector <- my_vector > 20      
logical_vector 
 

# accessing elements greater than 20 



 
 
 
Big data analytics using R                            9.7                                                         Vectors 
 

 
 

elements_greater_than_20 <- my_vector[logical_vector]  
elements_greater_than_20 
 
Output: 

[1] FALSE FALSE  TRUE  TRUE  TRUE 
[1] 30 40 50 
 

4. Negative Indexing:We can use negative indices to exclude certain elements from the 
vector. For example: 

 

my_vector <- c(10, 20, 30, 40, 50)  
 
vector_except_first <- my_vector[-1]  # Excluding the first element 
vector_except_first 
vector_except_last <- my_vector[-length(my_vector)]  # Excluding the 
last element 
vector_except_last 
 
Output: 
[1] 20 30 40 50 
[1] 10 20 30 40 

 

9.5  VECTOR OPERATIONS 

In R, vectors support a wide range of operations, including arithmetic operations, logical 
operations, and various functions. Here are some common operations performed on vectors in 
R: 

 
9.5.1  Combining vectors 
 
The c() function is not only used to create a vector, but also it is also used to combine two 
vectors. By combining one or more vectors, it forms a new vector which contains all the 
elements of each vector. Let see an example to see how c() function combines the vectors. 
 
Example: 
 
p <- c(15,21,48,53,79,83)   
q <- c("Lakshmi", "Shourya" , "Rohit", "Arya", "Sri", "Nivas") 
r <- c(p,q)   
 
Output 

 
[1] "15"        "21"        "48"        "53"        "79"        "83" 
[7] "Lakshmi", "Shourya" , "Rohit", "Arya", "Sri", "Nivas" 
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9.5.2 Arithmetic operations 
 
We can perform all the arithmetic operation on vectors. The arithmetic operations are 
performed member-by-member on vectors. We can add, subtract, multiply, or divide two 
vectors. Let see an example to understand how arithmetic operations are performed on 
vectors. 
 
Example: 
 
a<-c(1,3,5,7)   
b<-c(2,4,6,8)   
a+b   
a-b   
a/b   
a%%b   
 
Output 
[1]  3  7 11 15  
[1] -1 -1 -1 -1 
[1]  2 12 30 56 
[1] 0.5000000 0.7500000 0.8333333 0.8750000 
[1] 1 3 5 7 
 
 
9.5.3 Length of R vector 
 
In R, the length of a vector is determined by the number of elements it contains. we can use 
the length() function to retrieve the length of a vector. 
 

# Create a numeric vector 

x <- c(1, 2, 3, 4, 5) 
 

# Find the length of the vector 

length(x) 
# Create a character vector 

y <- c("apple", "banana", "cherry") 
 
# Find the length of the vector 

length(y) 
# Create a logical vector 

z <- c(TRUE, FALSE, TRUE, TRUE) 
 
# Find the length of the vector 

length(z) 
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Output: 

 
> length(x) 
[1] 5 
 
> length(y) 
[1] 3 
 
> length(z) 
[1] 4 
 
 
 
9.5.4 Modifying a R vector 
 
Modification of a Vector is the process of applying some operation on an individual element 
of a vector to change its value in the vector. There are different ways through which we can 
modify a vector:  
 
 
# Creating a vector 
X<- c(32, 87, 90, 87, 98, 32) 
X1 <- c(65,80,34,27,18) 
# modify a specific element 
X[3] <- 21 
X[2] <- 90 
cat('subscript operator', X, '\n') 
 
# Modify using different logics. 
X[1:5]<- 0 
cat('Logical indexing', X, '\n') 
 
# Modify by specifying  the position or elements. 
X<- X1[c(3, 2, 1)] 
cat('combine() function', X) 
 
 
Output: 
subscript operator 32 90 21 87 98 32  
Logical indexing 0 0 0 0 0 32  
combine() function 34 80 65 
 
 
 
Deleting a R vector 
 
Deletion of a Vector is the process of deleting all of the elements of the vector. This can be 
done by assigning it to a NULL value.  
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# Creating a Vector 
M<- c(8, 10, 2, 5) 
 
# set NULL to the vector 
M<- NULL 
cat('Output vector', M) 
 
Output: 
Output vector NULL 
 
 
9.6  FUNCTIONS OPERATED ON VECTORS 

In R, a multitude of functions are designed to operate on vectors, allowing for efficient data 
manipulation, transformation, and analysis. The following  are some commonly used 
functions operated on vectors: 

 
9.6.1 Statistics Functions: These functions provide summary statistics of the elements 
within a vector: 

   - mean(): Computes the arithmetic mean of the elements. 

   - median(): Calculates the median value of the elements. 

   - sum(): Calculates the sum of the elements. 

   - min(): Finds the minimum value in the vector. 

   - max(): Finds the maximum value in the vector. 

   - range(): Computes the range (minimum and maximum values) of the vector. 

   - sd(): Computes the standard deviation of the elements. 

   - var(): Computes the variance of the elements. 

 

x <- c(3.16, 4.27, 9.21, 1.35, 8.04) 
max(x) 
min(x) 
mean(x) 
median(x) 
sum(x) 
range(x) 
sd(x) 
var(x) 
 
Output: 
[1] 9.21 
[1] 1.35 
[1] 5.206 
[1] 4.27 
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[1] 26.03 
[1] 1.35 9.21 
[1] 3.316418 
[1] 10.99863 

 

9.6.2 Mathematical Functions: These functions perform mathematical operations on the 
elements of a vector: 

   - sqrt(): Computes the square root of each element. 

   - log(): Computes the natural logarithm of each element. 

   - exp(): Computes the exponential of each element. 

   - abs(): Computes the absolute value of each element. 

   - round(): Rounds each element to the nearest integer or specified number of decimal 
places. 

Examples: 

x <- c(3.16, 4.27, 9.21, 1.35, 8.04) 
sort(x) 
log(x) 
exp(x) 
abs(x) 
round(x) 
 
Output: 
[1] 1.35 3.16 4.27 8.04 9.21 
[1] 1.1505720 1.4516138 2.2202899 0.3001046 2.0844291 
[1]   23.570596   71.521636 9996.596859    3.857426 3102.613190 
[1] 3.16 4.27 9.21 1.35 8.04 
[1] 3 4 9 1 8 
 

9.6.3 Logical Functions: These functions perform logical operations on vectors, returning 
logical values or indices: 

   - which(): Returns the indices of the elements that are TRUE. 

   - all() and any(): Check if all or any elements in a logical vector are TRUE. 

   - which.min() and which.max(): Returns the index of the minimum or maximum value in a 
vector. 

 

x <- c(23,56,76,32,78,45,39) 
 
#check if all values are less than 10 
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all(data < 50) 
 
Output: 

[1] FALSE 
 

#check if any values are less than 10 

any(data < 50) 
 

Output: 

[1] TRUE 
 
which.max(x) 
which.min(x) 
 
Output: 

[1] 5 
[1] 1 
 
9.6.4. Data Transformation Functions: These functions manipulate the structure or content 
of vectors: 

   - order(): Returns the indices that would sort a vector. 

   - unique(): Returns the unique elements of a vector. 

   - rev(): Reverses the order of elements in a vector. 

 

x <- c(23,56,76,32,78,45,39) 

x_rev <- rev(x)                      
x_rev  
 
Output: 

[1] 39 45 78 32 76 56 23 
 

order() function ordered the elements of the vector x according to its index 

order(x) 
 

Output: 

[1] 1 4 7 6 2 3 5 
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In this case, the output would be: 1 4 7 6 2 3 5, which indicates that the smallest value is at 
index 1, the next smallest is at index 4, and so on and also observe that that the original 
vector "x" is not modified by this function. 

#An input vector having duplicate values 

y<-c(45,40,3,40,38,6,45,6,84,91,84,6) 
 

#elimnates the duplicate values in the vector  

unique(y) 
 

Output: 

[1] 45 40 3 38 6 84 91 
 

9.7 SUMMARY 
The chapter on vectors in R provides a comprehensive overview of this fundamental data 
structure and its manipulation in the R programming language. It begins with an introduction 
to vectors, emphasizing their importance as one-dimensional arrays for storing data 
efficiently. The chapter covers the creation of vectors using various methods such as the c() 
function and sequence generation. Different types of vectors, including numeric, character, 
logical, integer, and complex, are discussed, highlighting their distinct characteristics and 
uses. Additionally, the chapter explains how to access elements within vectors using indexing 
techniques and explores a wide range of operations and functions that can be applied to 
vectors, including arithmetic and logical operations, statistical functions for data analysis, and 
transformation functions for data manipulation. Overall, this chapter serves as a 
comprehensive guide for understanding and working with vectors in R, essential for data 
manipulation and analysis tasks. 

9.8 TECHNICAL TERMS 
Vector, Operations, Functions 

 
9.9  SELF ASSESSMENT QUESTIONS 

Essay questions: 
1. What is a vector in the context of R programming, and why is it important? 
2. How can you create a vector in R? Provide examples using the `c()` function and 

sequence generation. 
3. What are the different types of vectors available in R, and what are their 

characteristics? 
4. How do you access elements within a vector in R? Explain indexing techniques 

with examples. 
5. What operations can be performed on vectors in R? Provide examples of 

arithmetic, logical, and statistical operations. 

 Short Questions:   
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1. What are some commonly used functions operated on vectors in R? Give 
examples of descriptive statistics, mathematical functions, and probability 
distributions. 

2. How can vectors be manipulated and transformed using functions in R? Provide 
examples of sorting, unique values, and reversing order. 

3. How does R handle vectorization, and why is it important for efficient data 
processing? 

4. Explain the concept of logical indexing in R. How can it be used to subset vectors 
based on certain conditions? 

5. What are some practical applications of vectors and vector operations in real-
world data analysis scenarios? 
 

9.10 SUGGESTED READINGS 
1. Seema Acharya , Data Analytics using R, McGraw Hill Education (India) pvt. ltd. 
2. Crawley, M. J. (2012). The R book. John Wiley & Sons. 
3. Albert, J. & Rizzo, M. (2012). R by Example. Springer 
4. Teetor, P. (2011). R Cookbook. O’REILLY 
5. Braun, W. j. & Murdoch, D. J. (2007). A First Course in Statistical Programming with 

R.Cambridge. 
 
 
 
 
AUTHOR: Mr. G V Suresh  
 



 

 

LESSON- 10 

PACKAGES  

OBJECTIVES: 

After going through this lesson, you will be able to  
 Grasp the concept of R packages as collections of functions, data, and documentation 
 Gain knowledge about R repositories, including CRAN, Bioconductor and GitHub. 
 Learn various methods for installing R packages 
 Differentiate between the terms "package" and "library" within the context of R 

programming 
 

STRUCTURE OF THE LESSION: 
10.1  What is an R package? 

10.2  What are R Repositories? 

10.3  How to install R packages 

10.4  How to Load Packages 

10.5  Package Vs Library 

10.6  Important R packages 

10.7 Summary 

10.8 Technical Terms 

10.9 Self-Assessment Questions 

10.10 Further Readings 

 

10.1 WHAT IS AN R PACKAGE 
An R package is a collection of R functions, data sets, and other resources bundled together 
for a specific purpose or task. These packages are created by developers to extend the 
functionality of R and make it easier for users to perform various tasks such as data 
manipulation, statistical analysis, machine learning, visualization, and more. 

R packages typically consist of: 

 Functions: R functions that perform specific tasks or computations. 
 Documentation: Documentation describing the package and its functions, often 

including examples and usage guidelines. 
 Data sets: Pre-loaded datasets that users can use to test functions or for demonstration 

purposes. 
 Vignettes: Comprehensive documents providing detailed examples and explanations 

of package usage. 
 Dependencies: Packages on which the package relies for functionality, often listed in 

the DESCRIPTION file. 
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Packages play a crucial role in the R ecosystem as they allow users to easily access and use 
specialized tools and functions without having to write code from scratch. Users can install 
packages from various repositories such as the Comprehensive R Archive Network (CRAN), 
GitHub, or Bioconductor, and then load them into their R sessions to access the functions and 
resources provided by the package. Additionally, users can also create their own packages to 
share their code and functionality with others. 

The basic information about a package is provided in the DESCRIPTION file, where you can 
find out what the package does, who the author is, what version the documentation belongs 
to, the date, the type of license its use, and the package dependencies. 

For example, for the “stats” package, these ways will be: 

packageDescription("stats") 
 
help(package = "stats") 
 

10.2  WHAT ARE R REPOSITORIES? 
A repository is a designated location where packages are stored, allowing users to easily 
install them.  In the context of R programming, repositories refer to online platforms or 
servers where R packages are stored and made available for installation and distribution. 
These repositories serve as centralized hubs for discovering, downloading, and managing R 
packages.The most commonly used R repositories include: 

These repositories collectively form the backbone of the R ecosystem, providing users with 
access to a vast array of packages for various purposes, from data analysis and visualization 
to machine learning and bioinformatics. 

 

10.2.1 CRAN: 

  

It is the official repository, is a network of FTP and web servers that is managed by the global 
R community. The R foundation oversees the coordination of package publication on CRAN. 
To be accepted for publication, a package must successfully pass multiple tests to guarantee 
compliance with CRAN regulations.  

 

10.2.2 Bioconductor 
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Bioconductor is a specialised repository designed for open-source software in the field of 
bioinformatics. CRAN operates with its own distinct submission and review procedures, and 
its community is highly engaged, organising many conferences and meetings year. 

 

10.2.3 Github 

 

 

Github, while not exclusive to the R programming language, is widely regarded as the most 
widely used platform for hosting open-source projects. The appeal of this software stems 
from its ability to provide infinite space for open source projects, seamless interaction with 
git, a version control software, and its user-friendly features for sharing and collaborating 
with others. However, it is important to note that there is no formal evaluation mechanism 
linked to it. 

 

10.3  How to install R packages 
10.3.1 Installing R Packages from the CRAN Repository 

The Comprehensive R Archive Network (CRAN) repository stores thousands of stable R 
packages designed for a variety of data-related tasks. Most often, we will use this repository 
to install various R packages. 

To install an R package from CRAN, we can use the install.packages() function: 

 

install.packages('readr') 
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Here, we have installed the readr R package used for reading data from the files of different 
types: comma-separated values (CSV), tab
Make sure that the name of the package is in quotation marks.

We can use the same function to install several R packages at once. In this case, we need to 
apply first the c() function to create a character vector conta
its items: 

install.packages(c('readr', 'ggplot2', 'tidyr'))

 

Install from:Above, we've installed three R packages: the already
ggplot2 (for data visualization), and tidyr (for data cleaning).

Alternative Method 

If we work with R in an IDE, we can use the menu instead of the install.packages() function 
to install the necessary modules from the CRAN repository. For example, in RStudio, the 
most popular IDE for R, we need to complete the following steps:

Click Tools → Install Packages
Select Repository (CRAN) 
Type the package name (or several package names, separated with a white space or comma)
Leave Install dependencies
Click Install 
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Here, we have installed the readr R package used for reading data from the files of different 
separated values (CSV), tab-separated values (TSV), fixed-width files, etc. 

Make sure that the name of the package is in quotation marks. 

We can use the same function to install several R packages at once. In this case, we need to 
apply first the c() function to create a character vector containing all the desired packages as 

c('readr', 'ggplot2', 'tidyr')) 

Above, we've installed three R packages: the already-familiar readr, 
ggplot2 (for data visualization), and tidyr (for data cleaning). 

If we work with R in an IDE, we can use the menu instead of the install.packages() function 
to install the necessary modules from the CRAN repository. For example, in RStudio, the 
most popular IDE for R, we need to complete the following steps: 

→ Install Packages 
 in the slot 

Type the package name (or several package names, separated with a white space or comma)
Install dependencies ticked as by default 
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Here, we have installed the readr R package used for reading data from the files of different 
width files, etc. 

We can use the same function to install several R packages at once. In this case, we need to 
ining all the desired packages as 

familiar readr, 

If we work with R in an IDE, we can use the menu instead of the install.packages() function 
to install the necessary modules from the CRAN repository. For example, in RStudio, the 

Type the package name (or several package names, separated with a white space or comma) 
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In the other IDEs for working with R, the buttons and commands will be called differently, 
but the logic behind them is the same, and all the steps are usually intuitive. 

10.3.2 Installing R packages from GitHub 

To install an R package from GitHub,  e should perform the following steps: 

 Install RTools if it hasn't been already installed (otherwise, skip this step) 
o Open https://cran.r-project.org/ 
o Select the necessary operating system for downloading the installer 

(e.g., Download R for Windows) 
o Select RTools 
o Select the latest version of RTools 
o Wait for the completion of downloading 
o Run the installer with all the options by default (here we may need to 

click Run anyway on the first pop-up window) 
o For the new versions of R (v4.0.0),  

add  PATH='${RTOOLS40_HOME}\usr\bin;${PATH}' to the .Renviron file 

install.packages(c(‘devtools’)) 

 
 Install the devtools package from CRAN: 

OR 

install.packages('devtools', lib='~/R/lib') 

 

Call the install_github() function from the devtools package (no need to download the 
whole package) using the following syntax: 

devtools::install_github(username/repo_name[/subdir]) 

For example: 

OR 

devtools::install_github('rstudio/shiny') 

 

The approach described above is applicable only for public GitHub repositories. To install an 
R package from a private repository, we need to set the auth_token optional parameter of 
the install_github()function with a token obtained from  https://github.com/settings/tokens. 
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10.3.1 Installing Bioconductor Packages 

In the case of Bioconductor, the standard way of installing a package is by first executing the 
following script: 

source("https://bioconductor.org/biocLite.R") 

 

This will install some basic functions needed to install bioconductor packages, such as the 
biocLite() function. If you want to install the core packages of Bioconductor, just type it 
without further arguments: 

biocLite() 
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If, however, you are interested in just a few particular packages from this repository, you can 
type their names directly as a character vector: 

biocLite(c("GenomicFeatures", "AnnotationDbi")) 

 

10.4  How to Load Packages 

R packages are comprised of a compilation of R functions, data sets, and compiled code that 
enhance the existing capabilities of R. The packages are placed in the 'library' directory 
within the R-environment and are produced by the community. An example of a regularly 
used package in R is "dplyr", which enhances the functionality of working with dataframes.  
Upon installing R, default packages are automatically included in the local directory 'library' 
on your workstation. We can load all the default packages by using the code: 'library()'. Prior 
to utilising it in the code, it is imperative to load the package.  

There are two methods to accomplish this: 

 Utilising the library() function 
 Utilising the need() method.  

The most commonly used function to load the package is library(). require() is only used 
when we have to use the logical values that it returns. It will return TRUE if the package is 
present and successfully loaded.  

 
10.5  PACKAGE Vs LIBRARY 

In R programming, the terms "libraries" and "packages" are often used interchangeably, but 
there are subtle differences between the two.  

10.5.1 Libraries: 

General Concept: In programming, a library typically refers to a collection of functions and 
routines that can be called upon to perform specific tasks or operations. 

Usage: Libraries are used to group related functions and data structures together for ease of 
use and organization within a programming language. 

In R: In R, a library can refer to a collection of R functions, data sets, and compiled code 
stored in a directory. It's a directory where R functions and other extensions are stored. 

Loading: In R, libraries are loaded using the library() function, or its shorthand form 
require(), to make the functions and data sets within the library available for use in the 
current R session. 

10.5.2 Packages: 

Specific to R: In R, a package is a specific type of library. It is a collection of R functions, 
data sets, and compiled code bundled together in a standardized format. 
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Structure: Packages in R have a specific structure adhering to the guidelines of the 
Comprehensive R Archive Network (CRAN) or other repositories. This structure includes 
metadata, documentation, and organized code directories.

Installation: Packages need to be installed before they can be used. They can be installed 
from CRAN, GitHub, or other sources using the install.packages() function or devtools 
package. 

Loading: Once installed, packages can be loaded into an R session using the library(
require() function, just like other libraries. Loading a package makes all the functions and 
datasets within that package available for use.

 
10.6  IMPORTANT R PACKAGES
There were over 17,000 packages available on the Comprehensive R Archive Network 
(CRAN), which is the primary repository for R packages. However, the number of packages 
continues to grow as new packages are developed and existing ones are updated. 
discuss some important packages here.

dplyr: The dplyr package offers a syntax th
data processing tasks. You are able to subset, transform, and summarise data frames in an 
effective manner thanks to its capabilities, which include filter, select, mutate, and summarise 
functionality. When it comes to data manipulation, dplyr is an indispensable tool for any data 
scientist because it allows for the effortless execution of complex operations.

 
ggplot2 is a strong data visualisation application that is well
aesthetically beautiful and customisable within the programme. You are able to build a broad 
variety of visualisations with ggplot2, which is based on the grammar of
visualisations range from simple scatter plots to complicated multilayered plots. Because of 
its adaptability and capacity to manage enormous datasets, ggplot2 is a vital tool for 
successfully studying and communicating data for scientific

Education                      10.8                       Acharya Nagarjuna University 

Packages in R have a specific structure adhering to the guidelines of the 
Comprehensive R Archive Network (CRAN) or other repositories. This structure includes 
metadata, documentation, and organized code directories. 

Packages need to be installed before they can be used. They can be installed 
from CRAN, GitHub, or other sources using the install.packages() function or devtools 

Once installed, packages can be loaded into an R session using the library(
require() function, just like other libraries. Loading a package makes all the functions and 
datasets within that package available for use. 

IMPORTANT R PACKAGES 
here were over 17,000 packages available on the Comprehensive R Archive Network 

CRAN), which is the primary repository for R packages. However, the number of packages 
continues to grow as new packages are developed and existing ones are updated. 
discuss some important packages here. 

The dplyr package offers a syntax that is both brief and easy to understand for doing 
data processing tasks. You are able to subset, transform, and summarise data frames in an 
effective manner thanks to its capabilities, which include filter, select, mutate, and summarise 

it comes to data manipulation, dplyr is an indispensable tool for any data 
scientist because it allows for the effortless execution of complex operations. 

 
 

 

is a strong data visualisation application that is well-known for its plots that are both 
aesthetically beautiful and customisable within the programme. You are able to build a broad 
variety of visualisations with ggplot2, which is based on the grammar of graphics. These 
visualisations range from simple scatter plots to complicated multilayered plots. Because of 
its adaptability and capacity to manage enormous datasets, ggplot2 is a vital tool for 
successfully studying and communicating data for scientific purposes.  
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Packages in R have a specific structure adhering to the guidelines of the 
Comprehensive R Archive Network (CRAN) or other repositories. This structure includes 

Packages need to be installed before they can be used. They can be installed 
from CRAN, GitHub, or other sources using the install.packages() function or devtools 

Once installed, packages can be loaded into an R session using the library() or 
require() function, just like other libraries. Loading a package makes all the functions and 

here were over 17,000 packages available on the Comprehensive R Archive Network 
CRAN), which is the primary repository for R packages. However, the number of packages 

continues to grow as new packages are developed and existing ones are updated.  We will 

at is both brief and easy to understand for doing 
data processing tasks. You are able to subset, transform, and summarise data frames in an 
effective manner thanks to its capabilities, which include filter, select, mutate, and summarise 

it comes to data manipulation, dplyr is an indispensable tool for any data 

known for its plots that are both 
aesthetically beautiful and customisable within the programme. You are able to build a broad 

graphics. These 
visualisations range from simple scatter plots to complicated multilayered plots. Because of 
its adaptability and capacity to manage enormous datasets, ggplot2 is a vital tool for 
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tidyr is the software that should be used before any other when it comes to reshaping and 
tidying up data. For the purpose of facilitating the transition of data between wide and long 
formats, tidyr offers functions such as gather, distribute, and separate. You will be able to 
effortlessly clean and organise your data with the help of tidyr, ensuring that it is in a 
structure that is ideal for analysis and visualisation. 

 
One of the most extensive toolkits for machine learning is the caret package, which is an 
abbreviation for the acronym "Classification And REgression Training." The workflow for 
tasks such as feature selection, model training, and hyperparameter tuning is simplified as a 
result of the provision of a unified interface for the construction and evaluation of predictive 
models. When it comes to applying machine learning algorithms to your data, caret is an 
invaluable asset to have at your disposal.  

 
randomForest one of the most popular packages for ensemble learning and the construction 
of decision tree-based models is called randomForest. randomForest is able to handle high-
dimensional datasets while still providing reliable and accurate predictions. This is 
accomplished through the use of random forests, which are a method that aggregates 
predictions from many decision trees. Problems involving classification and regression are 
particularly well-suited to its use.  

 
lubridate: Working with dates and times might be difficult, but the lubridate package makes 
this work much easier to accomplish. The lubridate library provides user-friendly functions 
that can be used to interpret, manipulate, and format dates and times. Lubridate provides 
handy tools for effectively managing temporal data, whether you need to extract certain 
components, calculate time differences, or handle time zones. These tools can be customised 
to meet your specific needs.  

 
stringr: Are you interested in learning about text mining and string manipulation? A stringr 
package is the only thing you need to look at. stringr offers a dependable and straightforward 
user interface for performing operations involving string manipulation. Pattern matching, 
string extraction, replacement, and other kinds of functions are all included in its capabilities. 
When working with unstructured text data or carrying out tasks involving text analysis, 
stringr is an indispensable tool on your machine.  

 
tidy: tidymodels is a collection of packages that were developed with the intention of 
simplifying the process of machine learning, beginning with the preprocessing stage and 
ending with the evaluation of the model. Recipes for data preprocessing, parsnip for model 
formulation, and yardstick for model evaluation are some of the packages that are included in 
this bundle. Using an approach that is both consistent and tidy, you are able to construct 
machine learning pipelines with the help of tidymodels.  

 
shiny: shiny is a cutting-edge software that enables you to develop interactive web apps 
directly from the statistical programming language R. Through the use of shiny, it is possible 
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to create interactive dashboards, data visualisations, and bespoke tools without the need for 
substantial expertise of web development. In addition to making your analyses more 
accessible and interactive, it lets you to share the outcomes of your data science research with 
other people.  

 
A functional programming toolset that allows for the iteration and manipulation of data 
structures is provided by the purrr package. You are able to apply operations on lists, data 
frames, and vectors with the help of its extensive collection of functions, which include map, 
reduce, filter, and many others. The fact that purrr makes it possible to build data processing 
workflows that are both efficient and elegant makes it an extremely useful package for 
managing complex data jobs. 

10.7 SUMMARY 
In conclusion, this chapter has provided a comprehensive overview of R packages, essential 
components within the R ecosystem. Starting with the definition of an R package as a 
collection of functions, datasets, and compiled code, the discussion elucidated the 
significance of packages in extending R's functionality and facilitating reproducible research. 
The exploration of R repositories, notably CRAN, highlighted the vast repository of packages 
available to users for diverse purposes. Moreover, the chapter elucidated the straightforward 
process of installing packages via the install.packages() function and the subsequent loading 
of packages into R sessions using library() or require(). Distinguishing between packages and 
libraries clarified that packages are a specific type of library adhering to standardized 
structures and conventions. Lastly, an overview of important R packages like dplyr, ggplot2, 
caret, tidyr, and randomForest showcased their pivotal roles across various domains, 
underscoring their indispensability in data analysis, visualization, machine learning, and 
more. Overall, understanding R packages and their utilization is foundational for leveraging 
the full potential of the R programming language in statistical computing and data science 
endeavors 

10.8 TECHNICAL TERMS 

CRAN,  Github, Bitconductor, randomForest 

10.9  SELF ASSESSMENT QUESTIONS 

Essay questions: 
 

1. How does CRAN (Comprehensive R Archive Network) function as a repository for R 
packages? 

2. What other repositories exist for R packages, and how do they differ from CRAN? 
3. What are the steps involved in installing an R package? 
4. What is the distinction between a package and a library in R? 
5. What are some important R packages commonly used for data manipulation? 

Short questions:  
1. What is the purpose of an R package? 
2. How are R packages beneficial for R users? 
3. What components typically make up an R package? 
4. How does the structure of an R package contribute to its functionality? 
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LESSON- 11 

INTRODUCTION TO DATA FRAMES 

 
OBJECTIVES: 
 
After going through this lesson, you will be able to  

 
 Understand the concept of DataFrames as a fundamental data structure in R for 

organizing tabular data. 
 Gain proficiency in performing various operations on DataFrames, including 

subsetting, filtering, sorting, and merging data. 
 Practice applying learned concepts through hands-on exercises and real-world 

examples  
 Evaluate and compare different approaches for working with DataFrames 

 
 
STRUCTURE OF THE LESSION: 
 
11.1 Introduction 
11.2  Creating a data frame 
11.3  operations on data frame 
11.4  Expanding a data frame 
11.5  Applying functions to data frame 
11.8 Summary 
11.9 Technical Terms 
11.10 Self-Assessment Questions 
11.11 Further Readings 
 
11.1  INTRODUCTION 
In R, a data frame is a fundamental data structure used for storing and organizing data in a 
tabular format, similar to a spreadsheet or a database table. It is a two-dimensional array-like 
structure where each column can contain different types of data, such as numeric, character, 
factor, or logical. Data frames are commonly used for data manipulation, analysis, and 
statistical modeling in R. 

They provide a structured format for storing data in a tabular manner, making it easier for 
data scientists to explore, clean, transform, and analyze datasets. Data frames enable data 
scientists to conduct various data manipulation operations, such as filtering, sorting, and 
aggregating data, as well as performing complex transformations and computations on 
columns or rows. Additionally, data frames facilitate the integration of diverse data sources 
and types, allowing data scientists to combine structured and unstructured data, time series 
data, spatial data, and more, into a unified framework for analysis. 

11.1.1 Features of data frames in R 

Rectangular Structure: A data frame has a rectangular structure, meaning that each column 
must have the same length, but different columns can contain different types of data. 
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Column Names: Each column in a data frame has a name, which allows you to access the 
data by column name. 

Row Names: Rows in a data frame are indexed with row names, which can be either integers 
or character strings. By default, row names are set to sequential integers starting from 1. 

Mixed Data Types: Data frames can hold mixed data types within columns. For example, 
one column might contain numeric values, while another might contain strings or factors. 

Subsetting: You can subset data frames to extract specific rows or columns based on various 
conditions using indexing, logical expressions, or column names. 

Data Manipulation: Data frames support various operations for data manipulation, such as 
adding or removing columns, merging with other data frames, reshaping, and transforming 
data. 

Integration with R Ecosystem: Data frames are seamlessly integrated with other R packages 
and functions commonly used for data analysis and visualization, such as ggplot2, dplyr, 
tidyr, and others. 

Importing and Exporting: R provides functions to import data from external sources, such 
as CSV files, Excel spreadsheets, databases, and APIs, into data frames. Similarly, you can 
export data frames to various formats, including CSV, Excel, and R data files. 

11.1.2 The role of data frames in data analysis 

Data frames serve as a fundamental tool in data analysis, providing a structured and versatile 
framework for organizing, manipulating, and exploring data. In data analysis tasks, data 
frames enable analysts to easily import and manage datasets from various sources, such as 
CSV files, databases, or APIs. Once the data is loaded into a data frame, analysts can perform 
a wide range of operations, including data cleaning, transformation, and aggregation. For 
instance, data frames allow analysts to handle missing values, remove duplicates, and convert 
data types to ensure the quality and consistency of the data. Additionally, data frames support 
advanced data manipulation techniques, such as merging, reshaping, and pivoting, which are 
essential for preparing data for analysis and generating insights. 

Furthermore, data frames play a crucial role in data exploration and visualization, allowing 
analysts to gain insights into the underlying patterns and relationships within the data. 
Analysts can use data frames to compute summary statistics, visualize distributions, and 
create informative plots and charts to understand the characteristics of the data. With the rich 
ecosystem of data analysis packages in R, such as ggplot2, dplyr, and tidyr, analysts can 
seamlessly integrate data frames into their analysis workflow and leverage powerful 
visualization and statistical techniques to explore complex datasets. By harnessing the 
capabilities of data frames, analysts can efficiently analyze data, uncover hidden trends and 
patterns, and derive actionable insights to support decision-making processes in various 
domains, from business and finance to healthcare and research. 

11.1.3 Characteristics of data frame 

 The column names should be non-empty. 
 The row names should be unique. 
 The data stored in a data frame can be of numeric, factor or character type. 
 Each column should contain same number of data items. 
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11.2  CREATING A DATA FRAME 
A data frame is a two-dimensional data structure which can store data in tabular format. 

Data frames have rows and columns and each column can be a different vector. And different 
vectors can be of different data types. 

In R, there are several ways to create a data frame. Here are some common methods: 
 
 
11.2.1. Using data.frame() Function: 
 
The most straightforward method is to use the ‘data.frame()’ functionavailable in the base 
package. We can specify the values for each column directly within the function call. 
  
The syntax of the data.frame() function is 
 
 
 
 
 
 
 
 
first_col - a vector with values val1, val2, ... of same data type 
second_col - another vector with values val1, val2, ... of same data type and so on 
 
Example:  
# Creating a data frame using data.frame() 
df<- data.frame( 
      Name = c("Arya", "Shourya", "Srinivas"), 
      Score = c(75, 32, 58), 
      Gender = c("Male", "Female", "F"), 
Result = c(TRUE, FALSE, TRUE) 
    ) 
       # displaying the data frame 
    Name    Age Gender  Married 

1  Arya     25   Male    TRUE 
2  Shourya  30 Female   FALSE 
3  Srinivas 28   Male    TRUE 

 
This code creates a data frame named df with four columns: "Name", "Age", "Gender", and 
"Married", and three rows of data. Each column contains different types of data, including 
character, numeric, and logical values. 

 
11.2.2. Combining Vectors or Lists: We can combine vectors or lists of equal lengths into a 
data frame using the ‘data.frame()’ function. 

dataframe1 <- data.frame 
( 
first_col  = c(val1, val2, ...), 
second_col = c(val1, val2, ...), 
   ... 
) 
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        # Creating vectors 
 
names<- c("Arya", "Shourya", "Srinivas") 
scores<- c(25, 30, 28) 
genders<- c("Male", "Female", "Male") 
results<- c(TRUE, FALSE, TRUE) 
 
 
# Combining vectors into a data frame 
 
df<- data.frame(Name = names, Age = ages, Gender = genders, Score = 
scores) 
 
 
11.2.3. Reading Data from External Files:We can read data from external files, such as 
CSV, Excel, or text files, into a data frame using functions like ‘read.csv()’, ‘read.table()’, or 
specialized functions from other packages. 
 
 
    # Reading data from a CSV file 
df<- read.csv("data.csv") 
 
 
11.2.4. Converting Other Data Structures:We can convert other data structures, such as 
matrices or lists, into data frames using functions like ‘as.data.frame()’. 
 
 
    # Creating a matrix 

mat<- matrix(1:12, nrow = 4) 
 
    # Converting matrix to data frame 

df<- as.data.frame(mat) 
 
 
11.2.5. Generating Data with Functions:We can generate data using functions like ‘seq()’, 
‘rep()’, or ‘rnorm()’ and then combine them into a data frame. 
 
 
    # generating data 

names<- c("Arya", "Shourya", "Srinivas") 
ages<- seq(34, 52, by = 1) 
genders<- rep(c("Male", "Female"), length.out = length(names)) 
scores<- sample(c(TRUE, FALSE), size = length(names), replace = 
TRUE) 
 

    # combining data into a data frame 
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df<- data.frame(Name = names, Age = ages, Gender = genders, Score = 
scores) 
 
 
These methods offer flexibility in creating data frames in R, allowing us to choose the most 
suitable approach based on our data source and requirements. 
 

11.3  OPERATIONS ON DATA FRAME 
In R, there are various operations that can be performed on data frames to manipulate, 
analyze, and visualize data. Here are some common operations on data frames: 
 
11.3.1. Subsetting Data:Subsetting allows you to extract specific rows or columns from a 
data frame based on certain conditions. We can subset data frames using indexing, logical 
expressions, or column names. We can use [ ], [[ ]], or $ to access specific column of a data 
frame 
 
# Selecting specific columns 
selected_columns<- df[, c("Name", "Age")] 
 
# Selecting rows based on a condition 
subset_data<- df[df$Age> 25,] 
 
# pass index number inside [ ]  
print(dataframe1[1]) 
 
# pass column name inside [[  ]]  
print(dataframe1[["Name"]]) 
 
# use $ operator and column name  
print(dataframe1$Name) 
 
Output: 
1 Arya 
2 Shourya 
3 Nivas 
[1] "Arya", "Shourya", "Srinivas" 
[1] "Arya", "Shourya", "Srinivas" 
 
 
11.3.2. Filtering Data: 
Filtering data frames in R involves selecting specific rows that meet certain conditions. There 
are several ways to filter data frames, including using indexing, logical conditions, or 
functions like subset() or dplyr package functions. 
 
 # Filtering data based on a condition 
filtered_data<- subset(df, Age > 25 & Result== TRUE) 
 
# Filtering data based on a condition using indexing 



Centre for Distance Education                    11.6                       Acharya Nagarjuna University  
 

 

filtered_data<- df[df$Age> 25 &df$Result == TRUE, ] 
 
# Filtering data based on a condition using logical expressions 
filtered_data<- df[df$Age> 25 &df$Result == TRUE, ] 
 
# Filtering data using subset() function 
filtered_data<- subset(df, Age > 25 & Result == TRUE) 
 
# Filtering data using dplyr package 
library(dplyr) 
filtered_data<- filter(df, Age > 25, Result == TRUE) 
 
11.3.3. Adding Columns:   
Adding new columns to a data frame in R can be done using various methods. 

We can directly assign values to a new column by referencing the data frame with the new 
column name. 
    # Adding a new column using assignment 
df$New_Column<- c("Value1", "Value2", "Value3") 
 
The mutate()function from the dplyr package allows you to add new columns while 
preserving the original data frame. 

# Adding a new column using mutate() function 
library(dplyr) 
df<- mutate(df, New_Column = c("Value1", "Value2", "Value3")) 
 
We can combine the existing data frame with a vector or matrix to add a new column using 
the cbind() function. 
 
# Adding a new column using cbind() 
new_column<- c("value1", "value2", "value3") 
df<- cbind(df, new_column) 
 
The transform() function allows you to add one or more new columns to a data frame. 
 
# Adding a new column using transform() 
df<- transform(df, new_column = c("value1", "value2", "value3")) 
 
11.3.4. Removing Columns: We can remove columns from a data frame using indexing or 
the ‘subset()’ function. 
Removing columns from a data frame in R can be achieved using several methods. Here are 
some common approaches: 
 
Example dataframe: 
df<- data.frame(Colors = c("red", "green", "blue", "yellow", "orange"), 
                 Shapes = c("square", "circle", "triangle", "rectangle", "cone"), 
                 Sizes = c("small", "medium", "large", "small", "medium"), 
                 Length = c(10, 25, 150, 5, 45) 
                ) 
print(df) 
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Output: 
  Colors    Shapes   Sizes  Length 
1    red    square   small      10 
2  green    circle  medium      25 
3   blue  triangle   large     150 
4 yellow rectangle   small       5 
5 orange      cone  medium      45 
 
1. Using Indexing: 
We can remove columns by indexing the columns you want to keep. 
 
    # Removing columns using indexing 
df<- df[, -c(2, 4)]  # Removes 2nd and 4th columns 
 
example: 
 df<- subset(df, select = -2) 
 it removes  Shapes column from the dataframedf. 
 
    2. Using Negative Indexing: 
We can use negative indexing to exclude specific columns. 
 
    # Removing columns using negative indexing 
df<- df[, -c(2, 4)]  # Removes 2nd and 4th columns 
 
3. Using Subset() Function: 
     The ‘subset()’ function can be used to select columns that you want to keep. 
 
    # Removing columns using subset() function  single column 
df<- subset(df, select = -column_name) 
 
    # Removing columns using subset() function 
df<- subset(df, select = -c(Column2, Column4)) 
 
Examples:  To remove the “Shapes” column using subset(): 
 df<- subset(df, select = -Shapes) 
 
 to remove multiple columns: 
 df<- subset(df, select = -c(Shapes, Sizes)) 
 
4. Using Dplyr Package: 
 
In R, the dplyr package is one of the most popular package for data manipulation. It makes 
data wrangling easy. You can install package by using the command below - 
 install.packages("dplyr") 
The ‘dplyr’ package provides a concise syntax for data manipulation tasks. We can use the 
‘select()’ function to remove columns. 
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    # Removing columns using dplyr package 
library(dplyr) 
df<- select(df, -Column2, -Column4) 
 
5. Using drop() Function: 
      Base R provides functions like ‘drop()’ and ‘subset()’ to remove columns. 
 
    # Using drop() function 
df<- df[, -which(names(df) %in% c("Column2", "Column4"))] 
 
6. Using the ‘$’ Operator: 
   We can remove columns directly by referencing them with the ‘$’ operator. 
 
    # Removing columns using $ 
df$Column2 <- NULL 
df$Column4 <- NULL    
 
Choose the method that fits your preference and integrates well with your code or workflow. 
All these methods will remove the specified columns from the data frame ‘df’. 
 
6. Merging Data: 
Merging data frames in R involves combining two or more data frames based on a common 
column or key. There are several functions and approaches available for merging data frames 
in R. Here are some common methods along with examples: 
 
1. Using ‘merge()’ Function: 
   The ‘merge()’ function in base R merges two data frames based on common column(s). 
 
        # Merging data frames using merge() function 
merged_df<- merge(df1, df2, by = "ID") 
       This will merge ‘df1’ and ‘df2’ based on the common column "ID". 
 
2. Using ‘rbind()’ Function: 
   If the data frames have the same structure (same columns), you can stack them vertically 
using the ‘rbind()’ function. 
 
    # Merging data frames vertically using rbind() function 
merged_df<- rbind(df1, df2) 
 
   This will concatenate ‘df1’ and ‘df2’ rows-wise. 
 
3. Using ‘bind_cols()’ Function from ‘dplyr’ Package: 
   The ‘bind_cols()’ function from the ‘dplyr’ package can be used to combine data frames 
column-wise. 
 
    # Merging data frames column-wise using bind_cols() function 
library(dplyr) 
merged_df<- bind_cols(df1, df2) 
 
   This will concatenate ‘df1’ and ‘df2’ side by side. 
4. Using Joins with ‘dplyr’ Package: 
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   The ‘dplyr’ package provides functions like ‘inner_join()’, ‘left_join()’, ‘right_join()’, and 
‘full_join()’ to perform different types of joins between data frames. 
 
    # performing a left join using dplyr 
library(dplyr) 
merged_df<- left_join(df1, df2, by = "ID") 
       This will perform a left join between ‘df1’ and ‘df2’ based on the common column "ID". 
 
 
11.4  EXPANDING A DATA FRAME 
Expanding a data frame in R typically refers to adding more rows or columns to an existing 
data frame. Here are ways to expand a data frame in both dimensions: 

 

1. Adding Rows: 

   To add more rows to an existing data frame, you can use functions like ‘rbind()’, 
‘bind_rows()’ from the ‘dplyr’ package, or simply indexing with the ‘[nrow()+1, ]’ notation. 

    # Using rbind() 

new_rows<- data.frame(Name = c("Shourya", "Arya"), Age = c(35, 40)) 
df<- rbind(df, new_rows) 
 

    # Using bind_rows() from dplyr 

library(dplyr) 
new_rows<- data.frame(Name = c("Shourya", "Arya"), Age = c(35, 40)) 
df<- bind_rows(df, new_rows) 
 
    # Using indexing 

df[nrow(df) + 1, ] <- c("Shourya", 35)  # Add a new row at the end 
 

2. Adding Columns: 

   To add more columns to an existing data frame, you can use functions like ‘cbind()’ or 
‘bind_cols()’ from the ‘dplyr’ package. 

    # Using cbind() 

new_columns<- data.frame(Salary = c(50000, 60000)) 
df<- cbind(df, new_columns) 
 

    # Using bind_cols() from dplyr 

library(dplyr) 
new_columns<- data.frame(Salary = c(50000, 60000)) 
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df<- bind_cols(df, new_columns) 
 

These methods allow us to expand our data frame either by adding more rows or more 
columns, depending on your data expansion needs. Remember to ensure that the dimensions 
of the data being added match the existing data frame's structure. 

 
11.5  APPLYING FUNCTIONS TO DATA FRAME 
Some common functions used with DataFrames in R: 

To understand these functions very well, here we are taking the following data frame of the 
admission data of the following six students to a specific programme of ANU taken as an 
example. 

#Creating and assigning a data frame 

 

>df<- data.frame( 
+ c("Srinivas","Surya","Shourya","Arya","Reddy","Sravani"), 
+ as.factor(c("Male", "Male", "Male", "Female", "Male","Female")), 
+ c(78,45,83,75,89,62), 
+ c(TRUE, FALSE,TRUE, FALSE, TRUE, TRUE)) 
 

#Setting the column names 

>names(df) <- c("Name","Gender","Score","Result") 
 

#Printing the data frame 

>print(df) 
 

 

 

 

 

11.5.1 str() 

#Internal structure of the data frame 

>str(Adm.data) 
'data.frame': 6 obs. of 4 variables: 
$ Name :chr ("Srinivas","Surya","Shourya","Arya”, … 
$ Gender : Factor w/ 2 levels "Female","Male": 2 2 2 1 2 1 
$ Score: num 78, 45, 83, 75, 89, … 
$  Result: logi TRUE FALSE FALSEFALSE TRUE FALSE 

 Name Gender Score Result 
1 Srinivas Male 78 TRUE 
2 Surya Male 45 FALSE 
3 Shourya Male 83 TRUE 
4 Arya Female 75 FALSE 
5 Reddy Male 89 TRUE 
6 Srvani Female 62 TRUE 
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From the internal structure, it is clear that the obtained information consists of the complete 
details on the 6 observations of 4 columns or variables (whose names are written after ‘$’ 
operator. The output depicts that the Name variable is a character variable (as it is specified 
by chr), the Gender variable is a factor variable with two levels (as it is specified by Factor), 
the Score variable is a numeric variable (as it is specified by num) and the last variable Result 
is a logical variable (as it is specified by logi). 

 
11.5.2. head() and tail(): 
The first argument of the head() and tail() functions is assigned as the name of the data frame 
and the second argument n is assigned as the number rows to be viewed. For the illustration 
purpose, we now supply df data frame as an argument to the head() and tail() functions to get 
default number of rows and specified number of rows as follows: 
 
#Getting first six rows (by default) 
 
>head(df) 
 Name Gender Score Result 
1 Srinivas Male 78 TRUE 
2 Surya Male 45 FALSE 
3 Shourya Male 83 TRUE 
4 Arya Female 75 FALSE 
5 Reddy Male 89 TRUE 
6 Srvani Female 62 TRUE 
 
 

Getting or viewing the first two rows 

>head(df,2) 
 Name Gender Score Result 
1 Srinivas Male 78 TRUE 
2 Surya Male 45 FALSE 
 
Getting last six rows (by default) 

>tail(df) 
 Name Gender Score Result 
1 Srinivas Male 78 TRUE 
2 Surya Male 45 FALSE 
3 Shourya Male 83 TRUE 
4 Arya Female 75 FALSE 
5 Reddy Male 89 TRUE 
6 Srvani Female 62 TRUE 
 
 

Getting last three rows (by default) 

>tail(df,3) 
 Name Gender Score Result 
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4 Arya Female 75 FALSE 
5 Reddy Male 89 TRUE 
6 Srvani Female 62 TRUE 

 
11.5.3 Summary() 

This function provides summary statistics of the data in a DataFrame. 

Syntax: summary(data_frame_name) 

This function gives us summary of 6 numbers, namely, minimum, 1st quartile, median, mean, 
3rd quartile and maximum for the numeric or integer type data. The length, class and mode 
for the character type data. Mode and count of TRUE and FALSE for logical type data. Count 
of levels for the factor type data. Observe that the summary() function also gives the count of 
NA’s. To verify it, we now supply the df data frame to get the summary on each column of 
df data frame as follows: 

#Getting summary of each column of the data frame 

>summary(df) 
 Name Gender Score Result 
Length:6 Female:2 Min. :65.04 Mode :logical 
Class :character Male :4 1st Qu.:75.22 FALSE:4 
Mode :character Median :80.13 TRUE :2 
Mean :78.85 
 3rd Qu.:85.31 
 Max. :88.55 
NA's :0 
 

Hence, the obtained output confirms the aforementioned statements. Since the Name variable 
is of character type, the Gender variable is of factor type, the score variable is of numeric 
type and the result variable is of logical type. 

11.5.4  dim():  

The dimension of R objects like matrices and data frames can be obtained using the dim() 
function. This function returns the dimensions (number of rows and columns) of a 
DataFrame. It returns the number of rows and columns of a matrix. 

#Getting the dimensions of a data frame 

>dim(df)  
[1] 6 4 

 
11.5.5. names() 

Names of the R objects can be set using the names() function available in the base package. 
Setting names are very useful for writing self-describing and readable code. When this 
function is used alone on an R object, it will return the names of the R object. Note that the 
names() function accepts different objects as argument such as vector, matrix, list and data 
frames 

Example:  Assign name to an object  
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# Creating a vector  

x <- c(23001, 23002, 23003, 23004, 23005)  
 
# Assigning names using names() function  

names(x) <- c("Vijaya", "Lakshmi", "Bala", "Namitha", "Gowri")  
 
# Printing name vector that is assigned   

names(x)  
  [1] "Vijaya", "Lakshmi", "Bala", "Namitha", "Gowri" 
# Printing updated vector  

print(x)  
Vijaya, Lakshmi, Bala,Namitha, Gowri 
23001, 23002, 23003, 23004, 23005 
 

11.5.6 nrow() and ncol 

The nrow() and ncol() functions find the number of rows and columns of a given data frame 
respectively. 

Both the nrow() and ncol() functions take the same parameter value. This value represents the 
data frame object whose number of rows and columns is to be determined. 

# number of rows 
nrow(df) 
[1]  6 
 
# number of columns 
ncol(df) 
[1]  4 

 

11.5.7 cbind() and rbind(): 

In R, while doing data manipulation and analysis, one might need to combine vectors and 
data frames to create a holistic data set. The cbind() and rbind() are powerful functions, 
allowing us to combine vectors and data frames efficiently. 

Example: 

Let’s start by creating two vectors, having first and last names of students, by using following 
commands. 

f_name<- c("Ganga","Satya","Ramesh") 
l_name<- c("kancharla","Ravi","Inampudi") 
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cbind() which is essentially stands for column bind. This function is used to bind vectors or 
matrices as columns to create a new matrix. So for the above vectors we just created, if we 
want to combine them by column, the following command is used 

 

full_names<- cbind(f_name,l_name) 
print(full_names) 
 
 f_name l_name 
1 Ganga Kancharla 
2 Satya Ravi 
3 Ramesh Inampudi 

 
rbind() combines the rows of vectors or data frames. It binds vectors, matrices, or data frames 
by rows to create a new vector, matrix, or data frame. 
 
 
full_namesr<- rbind(f_name,l_name) 
print(full_namesr) 
 
  V1  V2  V3 
f_name Ganga  Satya  Ramesh 
L_name Kancharla Ravi  Inampudi 
 
11.6 SUMMARY 
The chapter begins with an introduction to DataFrames, a fundamental data structure in R for 
organizing and manipulating data. It covers the creation of DataFrames using the 
data.frame()function and explores various operations that can be performed on 
DataFrames, such as subsetting, filtering, and merging. The chapter also delves into 
expanding DataFrames by adding new columns or rows and applying functions to 
DataFrames to perform calculations or transformations on the data. Through practical 
examples and explanations, readers gain a comprehensive understanding of how to 
effectively work with DataFrames in R, from basic creation to advanced data manipulation 
techniques. 

11.7 TECHNICAL TERMS 
 Data frame, R Eco system, data analysis, 

 

11.11 SELF ASSESSMENT QUESTIONS 
Essay questions: 

1. Explain the process of subsetting a DataFrame based on specific criteria. Give an 
example. 

2. Describe the process of expanding a DataFrame by adding new columns or rows. 
Give examples of each. 

3. Can you demonstrate how to apply a custom function to a DataFrame using the 
`apply()` function? Provide an example. 

4. Explain the concept of vectorized functions and how they can be applied to 
DataFrames for efficient computation. 
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Short Questions:   
1. What is a DataFrame and how does it differ from other data structures in R? 
2. What are some common operations that can be performed on a DataFrame, such as 

subsetting and filtering? 
3. How do you merge two DataFrames in R? Provide an example using the `merge()` 

function. 
4. What are some methods for applying functions to a DataFrame in R? How do these 

methods differ? 

 
11.12 SUGGESTED READINGS 

1. SeemaAcharya , Data Analytics using R, McGraw Hill Education (India) pvt. ltd. 

2. An Introduction to R, Notes on R: A Programming Environment for Data Analysis 
and Graphics. W. N. Venables, D.M. Smith and the R Development Core Team 

3. Crawley, M. J. (2012). The R book. John Wiley & Sons. 

4. Albert, J. & Rizzo, M. (2012). R by Example. Springer 

5. Braun, W. j. & Murdoch, D. J. (2007). A First Course in Statistical Programming with 
R.Cambridge. 
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LESSON- 12 

READING AND GETTING DATA INTO R 
INTERNAL DATA 

 

OBJECTIVES: 

After going through this lesson, you will be able to  
 How to read data from various file formats commonly encountered in data 

analysis tasks, such as CSV files, tab-separated value files, and Excel files 
 Proficient in using R functions like read.csv(), read.table(), and read_excel() to 

import data into R and create data frames 
 Equipped to handle real-world datasets and perform meaningful analyses using R 

programming. 
 Develop the ability to choose the appropriate file reading function and specify 

relevant parameters based on the format and structure of the data  

 
STRUCTURE OF THE LESSION:  
 
12.1  Introduction 
12.2 Load data frames 
12.3  Readingfrom .CSV files, 
12.4  Reading from tab separated value files 
12.5  Reading from Excel file 
12.6  Summary 
12.7 Technical Terms 
12.8 Self-Assessment Questions 
12.9 Further Readings 
 
12.1  INTRODUCTION 
Reading and importing data into R from the local system is a crucial skill for any data analyst 
or scientist. It serves as the initial step in the data analysis pipeline, allowing researchers to 
access, explore, and manipulate datasets for further investigation. Whether the data resides in 
a CSV file, Excel spreadsheet, text file, or other formats, being able to seamlessly import it 
into R provides analysts with the flexibility and control needed to conduct comprehensive 
analyses. By mastering this process, practitioners can harness the power of R's robust 
statistical and graphical capabilities to derive valuable insights and make informed decisions. 

Understanding how to read data into R from the local system is essential due to the diverse 
sources and formats in which data is stored. Real-world datasets often come from various 
sources such as research studies, surveys, government databases, and corporate systems, each 
with its own structure and encoding. Consequently, knowing how to handle different file 
types, handle missing values, and preprocess data is critical for ensuring data quality and 
integrity. Moreover, the ability to import data efficiently enables analysts to streamline their 
workflow and focus on exploring and analyzing data rather than spending excessive time on 
data wrangling tasks. 
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Furthermore, the need for reading and importing data into R extends beyond simple file 
manipulation; it encompasses the integration of data from multiple sources and the 
automation of data pipelines. Analysts often work with complex datasets spanning multiple 
files or databases, requiring them to merge, join, and clean data before analysis. Additionally, 
automating the data import process using scripts or functions allows analysts to maintain 
reproducibility, scalability, and efficiency in their work. Consequently, mastering the 
techniques for reading and importing data into R empowers analysts to tackle real-world data 
challenges effectively and unlock the full potential of their analyses. 

 

 

12.2 LOAD DATA FRAMES 
Loading data frames in R serves as the foundation for data analysis, enabling analysts to 
access and manipulate structured data efficiently. Data frames, being two-dimensional data 
structures, are particularly well-suited for representing tabular data, where rows correspond to 
observations and columns represent variables or attributes. By loading data frames into R, 
analysts gain the ability to perform a wide range of data manipulation tasks, including data 
cleaning, transformation, summarization, and visualization. This capability is essential for 
exploring and understanding the underlying patterns and relationships within the data, 
ultimately leading to informed decision-making and actionable insights. 

Moreover, loading data frames in R facilitates seamless integration with the vast ecosystem 
of statistical and graphical packages available in the R programming language. Once data is 
loaded into R, analysts can leverage specialized functions and techniques provided by these 
packages to conduct advanced analyses and visualizations. Whether it's fitting statistical 
models, performing hypothesis tests, or creating sophisticated plots, having data in the form 
of data frames allows analysts to apply these techniques directly to their datasets. This 
integration fosters a highly efficient and versatile analytical workflow, empowering analysts 
to tackle diverse data analysis tasks with ease and confidence. 

In R, you can read data from files outside of the R environment. One may also write data to 
files that the operating system can store and further access. There is a wide range of file 
formats, including CSV, Excel, binary, and XML, etc., R can read and write from. 
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12.3  READINGFROM .CSV FILES, 
 
12.3.1 Input as CSV File 

A CSV (Comma-Separated Values) file is a plain text file format commonly used for storing 
tabular data. In a CSV file, each line represents a row of data, and the values within each row 
are separated by commas (or other delimiters like tabs or semicolons). The first row often 
contains column headers, providing names for each column in the dataset.  

CSV files are widely used for exchanging data between different software applications 
because they are simple, lightweight, and can be easily read and written by both humans and 
machines. Additionally, CSV files can be opened and edited using spreadsheet software like 
Microsoft Excel, making them accessible to a wide range of users. Due to their simplicity and 
versatility, CSV files are a popular choice for storing and sharing structured data in various 
fields, including data analysis, research, and database management. 

To create a CSV (Comma-Separated Values) file, you can use a text editor or spreadsheet 
software. Here's how you can create a CSV file using both methods: 

1. Using a Text Editor: 
   - Open a text editor such as Notepad (Windows), TextEdit (Mac), or any other text editor of 
your choice. 
   - Enter your data in rows and columns, separating each value with a comma. 
   - Optionally, you can include a header row with column names. 
   - Save the file with a ‘.csv’ extension. For example, ‘StudentsPerformance.csv’. 
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2. Using Spreadsheet Software (e.g., Microsoft Excel) 

   - Open your spreadsheet software (e.g., Microsoft Excel). 
   - Enter your data into cells in rows and columns. 
   - Optionally, you can include a header row with column names. 
   - Once you have entered your data, go to the "File" menu and select "Save As". 
   - Choose the CSV file format from the available options. 
   - Save the file with a ‘.csv’ extension. For example, ‘data.csv’. 
 

 

After creating the CSV file, you can use it to import data into R or any other software 
application that supports CSV files. 

 
12.3.2   Reading a CSV File 
The read.sv()function is used to read data from a CSV (Comma-Separated Values) file 
and create a data frame. It is part of the base R package and is commonly used for importing 
tabular data stored in CSV format. 

Syntax: 

 
 

file: The path to the CSV file you want to read. 
header: A logical value indicating whether the first row of the CSV file contains column 
names. By default, it is set to TRUE. 
sep: The character used to separate values in the CSV file. By default, it is set to , (comma). 
quote: The character used to quote strings in the CSV file. By default, it is set to " (double 
quote). 
...: Additional arguments passed to read.csv(). 
 

read.csv(file, header = TRUE, sep = ",", quote = "\"", ...) 
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After reading the CSV file into R using read.csv(), you will have a data frame (df in the 
example) containing the data from the CSV file, which you can then analyze, manipulate, and 
visualize using various R functions and packages. 

 

# Read data from a CSV file named "StudentPerformance.csv" in the current directory 

data<- read.csv("StudentsPerformance.csv") 
 
 

# View the structure of the data frame 

str(df) 
 
 
'data.frame': 1000 obs. of  8 variables: 
 $ gender                     : Factor w/ 2 levels "female","male": 
1 1 1 2 2 1 1 2 2 1 ... 
 $ race.ethnicity             : Factor w/ 5 levels "group A","group 
B",..: 2 3 2 1 3 2 2 2 4 2 ... 
 $ parental.level.of.education: Factor w/ 6 levels "associate's 
degree",..: 2 5 4 1 5 1 5 5 3 3 ... 
x $ lunch                      : Factor w/ 2 levels 
"free/reduced",..: 2 2 2 1 2 2 2 1 1 1 ... 
 $ test.preparation.course    : Factor w/ 2 levels 
"completed","none": 2 1 2 2 2 2 1 2 1 2 ... 
 $ math.score                 : int  72 69 90 47 76 71 88 40 64 38 
... 
 $ reading.score              : int  72 90 95 57 78 83 95 43 64 60 
... 
 $ writing.score              : int  74 88 93 44 75 78 92 39 67 50 . 

 

# View the first few rows of the data frame 

head(df) 
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12.4  READING FROM TAB SEPARATED VALUE FILES 
12.4.1 Input as TSV File 

Tab-separated value (TSV) files are a type of text file used for storing structured data in a 
tabular format. In TSV files, each line represents a row of data, and the values within each 
row are separated by tab characters ("\t"). TSV files are similar to comma-separated value 
(CSV) files, but instead of using commas as delimiters, they utilize tabs. This format is 
particularly useful when dealing with data that may contain commas within the values 
themselves, as using tabs as separators avoids potential parsing issues. TSV files are widely 
used for data interchange and storage in various fields, including data analysis, 
bioinformatics, and database management, due to their simplicity, ease of creation, and 
compatibility with text-based editors and spreadsheet software. 

One of the advantages of TSV files is their compatibility with a wide range of software 
applications and programming languages. Since TSV files are essentially plain text files with 
tab-delimited values, they can be easily opened and edited using text editors like Notepad 
(Windows), TextEdit (Mac), or any other text editor. Additionally, TSV files can be imported 
into spreadsheet software such as Microsoft Excel, Google Sheets, or LibreOfficeCalc, where 
the tab-separated values are automatically parsed into rows and columns, facilitating data 
visualization and manipulation. Furthermore, TSV files can be processed programmatically 
using programming languages like R, Python, or Java, where they can be read, manipulated, 
and analyzed using specialized libraries and tools, making them a versatile and widely 
supported format for storing and exchanging structured data. 

To read data from a .tsv (tab-separated values) file in R, you can use the 
read.table()function, specifying the sep parameter as “\t” to indicate tab separation. 

 
1. Using a Text Editor: 

- Open a text editor such as Notepad (Windows), TextEdit (Mac), or any other text 
editor of your choice. 

- Enter your data in rows and columns, separating each value with a tab character (\t). 
- Optionally, you can include a header row with column names. 
- Save the file with a .tsvextension. For example, ‘StudentPerformance.tsv’. 

2. Using Spreadsheet Software (e.g., Microsoft Excel) 

- Open your spreadsheet software (e.g., Microsoft Excel). 
- Enter your data into cells in rows and columns. 
- Optionally, you can include a header row with column names. 
- Once you have entered your data, go to the "File" menu and select "Save As". 
- Choose the TSV file format from the available options. 
- Save the file with a ‘.tsv’ extension. For example, ‘StudentPerformance.tsv’. 

After creating the TSV file, you can use it to import data into R or any other software 
application that supports TSV files. 

12.4.2   Reading a TSV File 
Syntax: 

 
 read.table(file, header = FALSE, sep = "\t", ...) 
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file: The path to the .tsv file you want to read. 
header: A logical value indicating whether the first row of the .tsv file contains column 
names. By default, it is set to FALSE. 
sep: The character used to separate values in the .tsv file. In the case of .tsv files, it should be 
set to "\t" to indicate tab separation. 
...: Additional arguments passed to read.table(). 
 
After executing the above code, you will have a data frame (df in the example) containing the 
data from the .tsv file, which you can then analyze, manipulate, and visualize using various R 
functions and packages. 
 

# Read data from a TSV file named "StudentPerformance.tsv" in the current directory 

df<- read.table("StudentPerformance.tsv", header = TRUE, sep = "\t") 
 

# View the structure of the data frame 

str(df) 
 
 

 

# View the first few rows of the data frame 

head(df) 
 

 

 
12.5  READING FROM EXCEL  
12.5.1 Input as EXCEL File 

An Excel file is a digital spreadsheet created and maintained using Microsoft Excel, a widely 
used spreadsheet software application. These files are commonly employed for organizing, 
analyzing, and presenting tabular data in a structured format. Excel files typically consist of 
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one or more worksheets, each containing a grid of cells arranged in rows and columns. Users 
can enter data into these cells, which can include text, numbers, dates, or formulas, allowing 
for various calculations and manipulations. 

Excel files offer a multitude of features, including built-in formulas and functions, extensive 
formatting options, and charting tools. Users can utilize formulas and functions to perform 
calculations, manipulate data, and automate tasks within the spreadsheet. Furthermore, Excel 
provides a wide range of formatting options for customizing the appearance of data, such as 
fonts, colors, borders, and cell styles. Additionally, users can create visually appealing charts 
and graphs to visualize data trends and relationships, enhancing the clarity and impact of their 
presentations. Excel files are compatible with various software applications and platforms, 
enabling seamless data interchange and collaboration across different environments. 

12.5.2   Reading a EXCEL File 
To read data from an Excel file (.xlsx) into R, you can use the 'read_excel()' function from the 
'readxl' package. Here's how you can do it: 

First, make sure you have the 'readxl' package installed. If not, you can install it using: 

install.packages("readxl") 
 

Once the package is installed, you can use the 'read_excel()' function to read data from an 
Excel file: 

library(readxl) 
 

 Specify the path to your Excel file 

excel_file<- "path/to/your/file.xlsx" 
 

 

 

 Read data from the Excel file into a data frame 

df<- read_excel(excel_file) 
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 View the structure of the data frame 

str(df) 

 View the first few rows of the data frame 

head(df) 
Replace '"path/to/your/file.xlsx"' with the actual path to your Excel file. The 'read_excel()' 
function automatically detects the sheet name and reads the data from the first sheet by 
default. If you want to read data from a specific sheet, you can specify the sheet name or 
index using the 'sheet' parameter: 

 Read data from a specific sheet named "Sheet2" 

df<- read_excel(excel_file, sheet = "Sheet2") 
 

Or, you can specify the sheet index (1-based) instead of the sheet name: 

 Read data from the second sheet 

df<- read_excel(excel_file, sheet = 2) 
 

After executing the 'read_excel()' function, you will have a data frame ('df' in the examples) 
containing the data from the Excel file, which you can then analyze, manipulate, and 
visualize using various R functions and packages. 

1.6   SUMMARY 
In the chapter on R programming covering Introduction, Load data frames, and Reading from 
.CSV files, tab-separated value files, and Excel files, students are introduced to fundamental 
concepts and techniques for handling and manipulating tabular data in R. They start by 
understanding the basics of the R programming language and its capabilities for data analysis. 
They learn how to create, manipulate, and explore data frames, which serve as the primary 
data structure for organizing tabular data. Additionally, students acquire essential skills for 
importing data from external sources, including CSV files, tab-separated value files, and 
Excel files, using functions like ‘read.csv()’, ‘read.table()’, and ‘read_excel()’. Through 
practical examples and exercises, students gain proficiency in reading data into R, which 
forms the foundation for subsequent data analysis tasks. This chapter equips students with the 
necessary knowledge and skills to effectively handle and analyze tabular data in R, 
empowering them to tackle real-world data analysis challenges with confidence and 
efficiency. 

1.7   TECHNICAL TERMS 

Data frame, excel , CSV (Comma Separated Values) , TSV (Tab-Separated Values) 

1.8   SELF ASSESSMENT QUESTIONS 

Essay questions: 
1. 1. What is R programming, and why is it widely used in data analysis? 
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2. 2. How do you load data frames into R, and why are they important in data 
analysis? 

3. 3. What are tab-separated value files, and how do you read data from them in R? 
Provide an example. 

4. 4. How do you read data from Excel files in R? Which package and function do 
you use for this task? 

5. 5. How do you check the structure and dimensions of a data frame in R after 
loading it from an external file? 

 Short Questions:   

1. What are some common challenges or considerations when loading data into R 
from different files?  

2. Explain the process of reading data from .CSV files in R. What function do you 
use, and what are its parameters? 

3. Can you explain the difference between ‘read.table()’ and ‘read.csv()’ functions in 
R? 

4. Can you demonstrate how to load multiple sheets from an Excel file into separate 
data frames in R? 

1.9SUGGESTED READINGS 
1. SeemaAcharya , Data Analytics using R, McGraw Hill Education (India) pvt. ltd. 
2. An Introduction to R, Notes on R: A Programming Environment for Data 

Analysis and Graphics. W. N. Venables, D.M. Smith and the R Development Core 
Team 

3. Crawley, M. J. (2012). The R book. John Wiley & Sons. 
4. Albert, J. & Rizzo, M. (2012). R by Example. Springer 
5. Braun, W. j. & Murdoch, D. J. (2007). A First Course in Statistical Programming 

with R. Cambridge. 
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LESSON- 13 

READING AND GETTING DATA INTO R 
EXTERNAL DATA 

 

OBJECTIVES: 

After going through this lesson, you will be able to  

 Gain a comprehensive understanding of different data formats, including XML, JSON, 
and database formats.  

 Acquire skills in retrieving data from various sources, including web APIs, online 
databases, and local files such as XML and JSON files 

 Develop proficiency in parsing and processing different data formats, such as XML and 
JSON. 

 Learn how to use R packages such as RMySQL or RSQLite to access and manipulate 
data stored in relational databases. 

STRUCTURE OF THE LESSION:  
 
13.1 XML files 

13.2 Web Data 

13.3  JSON files 

13.4  Databases 

13.5 Summary 
13.6 Technical Terms 
13.7 Self-Assessment Questions 
13.8 Further Readings 
 

13.1 XML FILES 
XML (Extensible Markup Language) is a widely used markup language designed to store and 
transport structured data in a human-readable and machine-readable format. It provides a 
flexible and standardized way to represent hierarchical data, making it suitable for a wide 
range of applications, including data interchange, configuration files, web services, and 
document markup. XML documents consist of elements, attributes, and text content 
organized in a hierarchical tree-like structure. Each element can have nested child elements, 
and attributes provide additional metadata or properties associated with the elements. XML 
documents are typically defined by XML schemas or Document Type Definitions (DTDs), 
which specify the structure and constraints of the data being represented, ensuring 
interoperability and data integrity. 

One of the key advantages of XML is its platform-independent and language-neutral nature, 
which allows data to be exchanged and processed across different systems and programming 
languages seamlessly. XML documents can be easily parsed and manipulated using a variety 
of programming languages and tools, making them a versatile choice for data representation 
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and exchange in distributed computing environments. Furthermore, XML supports 
extensibility and customization through user-defined schemas and namespaces, enabling 
developers to define their own data structures and vocabularies tailored to specific use cases 
or domains. This flexibility and extensibility make XML a popular choice for implementing 
data-centric applications and standards in various industries, including web development, 
enterprise integration, and scientific data exchange. 

We can work with the XML files using the XML package provided by R. The package has to 
explicitly installed by the user 

The following command is used to install this package: 

 

 

13.1.1 Installing the r.xml Package 

To work with XML files in R, we need to install the r.xml package. This package provides 
essential functions for reading, parsing, and manipulating XML data. 

1. Installing from CRAN 

To install the r.xml package from CRAN, you can use the install. packages() function: 

 

Make sure to execute this command in your R environment, and the package will be 
downloaded and installed automatically. 

2. Loading the r.xml Package 

After successful installation, load the r.xml package into your R session using 
the library() function: 

 

By loading the package, you gain access to a variety of functions specifically designed for 
handling XML data efficiently. 

13.1.2  Creating sample XML file 

Before we dive into reading XML data in R using the r.xml package, let's create a sample 
XML file that we'll use for demonstration purposes. For this example, we'll continue with the 
bookstore theme from the previous section. 

For this example, let's create an XML file representing a bookstore with two books. Each 
book will have attributes like category, and elements like title, author, year, and price. 

 

install.packages("XML") 

Install.packages(“r.xml”) 

library(r.xml) 
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1. Example XML File (books.xml): 

 

 

 

 

 

 

 

 
In the above XML file, we have created a root element <books> that contains two child 
elements, <book>, representing individual books. Each <book> element has attributes like 
category, and several child elements, including <title>, <author>, <year>, and <price>, 
representing the book's details. 

2. Explaining the XML Structure: 

 : This is the XML declaration that specifies the XML version and encoding used in 
the document. 

 : This is the root element of our XML file that contains all the book elements. 
 : These are child elements under the <books> element, representing individual books. 

They have an attribute category to specify whether the book is fiction or non-fiction. 

13.1.3 Reading XML Data in R 

Now that we have our sample XML file, books.xml, created, let's dive into the process of 
reading and parsing XML data in R using the r.xml package. This step is crucial as it enables 
us to extract and work with the structured data stored within the XML file. 

1. Understanding XML Tree Structure in r.xml 

When an XML file is read and parsed using the r.xml package, it is transformed into a 
hierarchical tree-like structure known as the XML tree. Each element in the XML file 
becomes a node in the tree, and the relationships between elements are represented by parent-
child connections. 

To read and parse an XML file in R, we use the xmlTreeParse() function from 
the r.xml package. 

 

<?xml version="1.0" encoding="UTF-8"?> 
<bookstore> 
<book category="Science Fiction"> 
<title lang="en">Station Eleven</title> 
<author>Emily St. John Mandel</author> 
<year> 2020</year> 
<price>28.46</price> 
</book> 
<book category="Mystery"> 
<title lang="en">All the Dangerous Things. </title> 
<author> Stacy Willingham</author> 
<year> 2023 </year> 
<price>35.71</price> 
</book> 
</bookstore> 
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Example - Reading and Parsing XML Data in R: 

 

 

 

 

 

 

Output: 

Titles: Station Eleven 
Authors: Emily St. John Mandel   

In the above example, we load the package into our R session and specify the file path to our 
sample XML file, books.xml. The xmlTreeParse() function is then used to read and parse the 
XML data from the file, creating an XML tree structure. 

Navigating the XML Tree 

 

 

 

 

 

 

 

 

To extract specific information from the XML tree, we need to navigate through its nodes. 
The r.xml package provides several functions for this purpose. One common function 
is getNodeSet(), which allows us to retrieve nodes based on their paths or criteria. 

 

 

 

# Load the r.xml package 
library(r.xml) 
 
# Specify the file path of the XML data 
xml_file <- "path/to/books.xml"  # Replace with the actual file 
path 
 
# Parse the XML data and create a tree structure 
xml_tree <- xmlTreeParse(xml_file) 
 
# Print the XML tree 
print(xml_tree) 

<?xml version="1.0" encoding="UTF-8"?> 
<bookstore> 
<book category="Science Fiction"> 
<title lang="en">Station Eleven</title> 
<author>Emily St. John Mandel</author> 
<year> 2020</year> 
<price>28.46</price> 
</book> 
<book category="Mystery"> 
<title lang="en"> ”All the Dangerous Things.”</title> 
<author> Stacy Willingham</author> 
<year> 2023 </year> 
<price>35.71</price> 
</book> 
</bookstore> 
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Example - Extracting Book Titles and Authors: 

 

 

 

 

 

 

 

 

 

 

 
Output: 
In the above example, we use the getNodeSet() function to retrieve all the <book> elements 
from the XML tree. We then use sapply() to extract the titles and authors from 
each <book> element using xmlValue() and xmlChildren() functions. 
Accessing Element Attributes 
In addition to extracting element values, we can also access element attributes using 
the xmlGetAttr() function. 
Example - Extracting Book Categories: 

 

 

 

 

 

 

 

 

# Load the r.xml package 
library(r.xml) 
 
# Specify the file path of the XML data 
xml_file <- "path/to/books.xml"  # Replace with the actual 
file path 
 
# Parse the XML data and create a tree structure 
xml_tree <- xmlTreeParse(xml_file) 
 
# Get all the <book> elements from the XML 
book_elements <- getNodeSet(xml_tree, "//book") 
 
# Extract book titles and authors 
titles <- apply(book_elements, function(book) 
xmlValue(xmlChildren(book)$title)) 
authors <- apply(book_elements, function(book) 
xmlValue(xmlChildren(book)$author)) 
 
# Print the book titles and authors 
cat("Titles:", titles, "\n") 
cat("Authors:", authors, "\n") 

# Load the r.xml package 
library(r.xml) 
 
# Specify the file path of the XML data 
xml_file <- "path/to/books.xml"  # Replace with the actual file 
path 
 
# Parse the XML data and create a tree structure 
xml_tree <- xmlTreeParse(xml_file) 
 
# Get all the <book> elements from the XML 
book_elements <- getNodeSet(xml_tree, "//book") 
 
# Extract book categories 
categories <- sapply(book_elements, function(book) 
xmlGetAttr(book, "category")) 
 
# Print the book categories 
cat("Categories:", categories, "\n") 
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Output: 

 

In this example, we use xmlGetAttr() to access the category attribute of 
each <book> element, and sapply() to extract the category values from all 
the <book> elements. 
 
13.1.4 XML to Data Frame Conversion 
One of the most common tasks when working with XML data in R is converting it into a 
more familiar and tabular format, such as a data frame. Data frames are widely used in R for 
data manipulation and analysis, making it essential to learn how to convert XML data into 
this format. In this section, we will explore how to convert XML data into a data frame using 
the r.xml package. 
 
 
1. Understanding Data Frame 
A data frame is a two-dimensional tabular data structure in R, where rows represent 
observations and columns represent variables. Each column in a data frame can hold a 
different type of data, making it a versatile and powerful data structure for handling various 
types of data. 
 
 
2. Converting XML to Data Frame 
To convert XML data into a data frame, we first need to extract the relevant information from 
the XML elements and attributes. Once we have the data extracted, we can use 
the data.frame() function in R to create a data frame. 
 
Example - Converting XML to Data Frame: 
Let's consider the books.xml file we created earlier, which contains information about books 
in a books. We will convert this XML data into a data frame representing the book details. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Categories: Fiction Non-Fiction 
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Output: 

Title  Author Year Price Category 
1Station Eleven  Emily St. John Mandel  202028.46   Science Fiction 
2 All the Dangerous Things. Stacy Willingham 2023 35.71   Mystery 

In the above example, we first load the r.xml package and parse the XML data from 
the books.xml file. We then extract the book details and attributes (title, author, year, price, 
and category) from the <book> elements using the xmlValue() and xmlGetAttr() functions. 

# Load the r.xml package 
library(r.xml) 
 
# Specify the file path of the XML data 
xml_file <- "path/to/books.xml"  # Replace with the actual file path 
 
# Parse the XML data and create a tree structure 
xml_tree <- xmlTreeParse(xml_file) 
 
# Get all the <book> elements from the XML 
book_elements <- getNodeSet(xml_tree, "//book") 
 
# Initialize empty lists to store book details 
titles <- vector("character", length = length(book_elements)) 
authors <- vector("character", length = length(book_elements)) 
years <- vector("integer", length = length(book_elements)) 
prices <- vector("numeric", length = length(book_elements)) 
categories <- vector("character", length = length(book_elements)) 
 
# Extract book details and attributes 
for (i in seq_along(book_elements)) { 
  book <- book_elements[[i]] 
  titles[i] <- xmlValue(xmlFindNode(book, "//title")) 
  authors[i] <- xmlValue(xmlFindNode(book, "//author")) 
  years[i] <- as.integer(xmlValue(xmlFindNode(book, "//year"))) 
  prices[i] <- as.numeric(xmlValue(xmlFindNode(book, "//price"))) 
  categories[i] <- xmlGetAttr(book, "category") 
} 
 
# Create the data frame 
book_df <- data.frame( 
  Title = titles, 
  Author = authors, 
  Year = years, 
  Price = prices, 
  Category = categories 
) 
 
# Print the data frame 
print(book_df) 
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Next, we initialize empty lists to store the extracted data, and using a loop, we populate the 
lists with the respective values from each book element. Finally, we create a data frame 
named book_df using the data. frame() function, incorporating the extracted data and 
attributes as columns. 

13.2  WEB DATA 

Web data refers to any data that is sourced from the World Wide Web or internet. It 
encompasses a wide range of information that is publicly available on websites, web pages, 
social media platforms, online forums, and other online sources. Web data can include text, 
images, videos, structured data, metadata, user-generated content, and more. It is generated 
and consumed by individuals, organizations, and automated systems for various purposes, 
such as research, analysis, decision-making, and business intelligence. 

Web data is often unstructured or semi-structured, meaning that it does not adhere to a strict 
schema or format, making it challenging to process and analyze using traditional methods. 
However, advancements in web scraping, data extraction, and natural language processing 
(NLP) techniques have made it possible to extract, parse, and derive insights from web data 
at scale. Web data is valuable for a wide range of applications, including market research, 
competitive analysis, sentiment analysis, trend detection, recommendation systems, and 
personalized content delivery. As the volume and complexity of web data continue to grow, 
leveraging this rich source of information effectively can provide organizations with valuable 
insights and a competitive edge in today's data-driven world. 

In R, you can access web data using various packages and techniques, including web 
scraping, APIs, and direct file downloads. Here's a brief overview of each approach: 

13.2.1 Web Scraping: Web scraping involves extracting data directly from HTML web 
pages. You can use packages like `rvest`, `xml2`, or `httr` along with XPath or CSS selectors 
to scrape data from specific elements on web pages. For example, you can extract tables, text, 
or images from websites and convert them into R data structures like data frames. 

Web scraping using rvest: 
'rvest' is an R package that provides tools for web scraping. It allows you to extract data from 
HTML web pages using CSS selectors or XPath expressions.  

1. Installation: If you haven't already installed the 'rvest' package, you can do so from CRAN 
using the following command: 

install.packages("rvest") 
 

2. Loading the Package: After installation, load the 'rvest' package into your R session using 
the 'library()' function: 

library(rvest) 

 

3. Scraping Data: You can use the 'read_html()' function to retrieve the HTML content of a 
web page and then use CSS selectors or XPath expressions with functions like 'html_nodes()' 
and 'html_text()' to extract specific elements or text from the HTML. 
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# Read the HTML content of a web page

url <- "https://www.nytimes.com/"
page <- read_html(url) 
page 
 

# Extract text from all <p> elements on the page

paragraphs <- page %>% html_nodes("p") %>% html_text()

 

# Extract text from the first <h1> element on the page

heading <- page %>% html_nodes("h1") %>% html_text()
 

 
4. Further Processing: Once we
using R's built-in functions or other packages. For example, you can 
data into a data frame for analysis or visualization.

# Convert extracted data into a data frame

data_frame <- data.frame(Paragraphs = paragraphs, Heading = heading)
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# Read the HTML content of a web page 

"https://www.nytimes.com/" 

# Extract text from all <p> elements on the page 

page %>% html_nodes("p") %>% html_text() 

the first <h1> element on the page 

page %>% html_nodes("h1") %>% html_text() 

Once we've extracted the desired data, you can further process it 
in functions or other packages. For example, you can convert the extracted 

data into a data frame for analysis or visualization. 

# Convert extracted data into a data frame 

data.frame(Paragraphs = paragraphs, Heading = heading)

ding and Getting data into R (external data) 

 

've extracted the desired data, you can further process it 
convert the extracted 

data.frame(Paragraphs = paragraphs, Heading = heading) 



Centre for Distance Education                    13.10                      Acharya Nagarjuna University  
 

'rvest' provides a powerful and flexible way to scrape data from HTML web pages in R. 
However, it's important to be mindful of website terms of service and to scrape responsibly 
and ethically. Additionally, some websites may have rate limits or require authentication to 
access their content, so be sure to check the website's policies and documentation before 
scraping. 

13.2.2 APIs (Application Programming Interfaces): Many websites and online platforms 
offer APIs that allow developers to access and retrieve data in a structured format. We can 
use packages like `httr` or specialized API client packages (e.g., `twitteR` for Twitter API) to 
interact with APIs and fetch data directly into R. 

'httr' is an R package that provides tools for working with HTTP requests and responses. It 
allows you to interact with web APIs, download files from the web, and perform other 
HTTP-related tasks. Here's how you can use 'httr' in R: 

1. Installation: If you haven't already installed the 'httr' package, you can do so from CRAN 
using the following command: 

install.packages("httr") 
 

2. Loading the Package: After installation, load the 'httr' package into your R session using 
the 'library()' function: 

library(httr) 
 
3. Making HTTP Requests: You can use functions like 'GET()', 'POST()', 'PUT()', and 
'DELETE()' to make HTTP requests to web servers. These functions allow you to specify the 
URL, request headers, request body, and other parameters as needed. 

# Make a GET request to a web API 

response <- GET("https://api.example.com/data") 
 

# Make a POST request with JSON data 

response <- POST("https://api.example.com/submit", body = list(name = "John", age = 30), 
encode = "json") 

4. Handling Responses: After making a request, you can inspect the response object to 
access the response status code, headers, content, and other information. The 'content()' 
function allows you to extract the content of the response in various formats, such as text, 
JSON, or parsed XML. 

# Check the response status code 

status_code(response) 
 

# Extract JSON content from the response 

json_content <- content(response, "parsed") 
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5. Downloading Files: You can use the 'GET()' function to download files from the web. The 
'write_disk()' function allows you to save the downloaded content to a file on your local 
filesystem. 

# Download a file from a URL 

response <- GET("https://example.com/data.csv") 
 

# Save the downloaded content to a file 

write_disk(content(response), path = "data.csv") 
 

'httr' provides a flexible and powerful interface for working with HTTP requests and 
responses in R. It is commonly used for interacting with web APIs, accessing web resources, 
and downloading files from the web. 

5. Convert raw data to char format 

To convert raw data in char format we need to use rawToChar() and pass 
variable_name$content in it just like we did in this example 

# installing packages  
install.packages("httr")  
 
# importing packages  
library(httr)  
 
# GET() method will store the raw  
# data in r variable  
r < - GET("https://example.com")  
 
# rawToChar() will convert raw data  
# to char and store in response variable  
response < - rawToChar(r$content)  
 
# print response  
print(response)  

Output: 
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13.3  JSON FILES 

A JSON (JavaScript Object Notation) file is a text-based data format commonly used for 
storing and exchanging structured data between systems and applications. JSON files are 
human-readable and easy to understand, making them popular for data interchange over the 
internet. JSON is based on a subset of the JavaScript programming language, but it is 
language-independent, meaning it can be parsed and generated by virtually any programming 
language. 

JSON files consist of key-value pairs organized into objects and arrays. An object is an 
unordered collection of key-value pairs enclosed in curly braces {}, where each key is a 
string and each value can be a string, number, boolean, object, array, or null. An array is an 
ordered collection of values enclosed in square brackets [], where each value can be a string, 
number, boolean, object, array, or null. JSON files can also contain nested objects and arrays, 
allowing for complex data structures to be represented. 

To deal with JSON files in R language, the rjson package is required. You can install the 
rjson package through the following command: 

install.packages("rjson") 

 
The rjson library helps perform multiple tasks, like: 

 Reading JSON files. 
 Converting JSON into a dataframe or table. 

 
Reading JSON files 

To read a JSON file, you can use the from JSON() method of the rjson library. 

we have two files named main.r and data.json. main.r contains code to read the data.json file 
using the fromJSON() method. 
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main.r 

# Load the package required to read JSON files. 
install.packages("rjson") # Optional 
library("rjson") 
# Give the input file name to the function. 
myData <- fromJSON(file="data.json") 
# Print the result. 
print(myData) 

 

data.json 

{  
   "ID":["1","2","3","4","5","6","7","8" ], 
   
"Name":["James","Robert","Eric","Ryan","Daniel","Mark","Paul","Gary" 
], 
   "Age":["32","41","21","29","43","48","33","42" ], 
   "JoiningDate":[ 
"1/10/2013","9/22/2014","11/16/2015","5/13/2016","4/25/2017","4/11/2
018","8/20/2019","9/19/2020"], 
   "Dept":[ 
"Business","Operations","HR","IT","Accounts","Business","Operations"
,"Accounts"] 
} 

 
Output 

 

 



Centre for Distance Education                    13.14                      Acharya Nagarjuna University  
 

Convert JSON into a data frame 

To convert a JSON file to a data frame, you can use the as.data.frame() method. 

We simply use the fromJSON() function to read data from the data.json file and pass loaded 
data to the as.data.frame() method to convert into a data frame. 

we have two files named main.r and data.json. main.r contains code to read the data.json file 
to the myData variable. as.data.frame(myData) helps to convert raw JSON data into a data 
frame. 

main.r 

# Load the package  
# required to read JSON files. 
library("rjson") 
# Passing argument files 
myData <- fromJSON(file="data.json") 
# Convert JSON file to dataframe. 
json_data_frame <- as.data.frame(myData) 
print(json_data_frame) 

 

data.json 

{  
   "ID":["1","2","3","4","5","6","7","8" ], 
   
"Name":["Scott","Frank","Eric","Frank","Daniel","Mark","Paul","Gary" 
], 
   "Age":["32","41","21","29","43","48","33","42" ] 
} 

 

Output: 
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13.4  DATABASES 
Database systems that use relationships store data in a standardized manner. Therefore, in 
order to execute statistical computing, you will need to write very sophisticated and complex 
SQL queries. On the other hand, R can easily establish a connection and obtain records as a 
data frame from a variety of relational databases, including MySQL, Oracle, and SQL Server. 
When data enters the R environment, it becomes a typical R data set that can be worked with 
and examined using all of the advanced functions and packages available in R. 

Connecting R to MySQL 
`RMySQL` is an R package that provides an interface to MySQL databases. It allows you to 
connect to a MySQL database from within R, execute SQL queries, and retrieve data into R 
data structures for further analysis and manipulation. Here's a step-by-step guide on how to 
use `RMySQL`: 

1. Installation: If you haven't already installed the `RMySQL` package, you can do so from 
CRAN using the following command: 

install.packages("RMySQL") 
 
2. Loading the Package: After installation, load the `RMySQL` package into your R session 
using the `library()` function: 

library(RMySQL) 
 
3. Establishing a Connection: Use the `dbConnect()` function to establish a connection to 
your MySQL database. You'll need to provide the necessary connection details, such as the 
host, port, username, password, and database name. 

# Replace 'host', 'user', 'password', and 'dbname' with your actual connection details 

con <- dbConnect(MySQL(),  
                 host = 'localhost', 
                 user = 'root', 
                 password = 'password', 
                 dbname = 'mydatabase') 

 
4. Executing Queries: Once the connection is established, you can execute SQL queries 
using the `dbSendQuery()` function. This function sends the query to the database server but 
does not fetch the results immediately. 

# Execute an SQL query 
query <- "SELECT * FROM mytable" 
result <- dbSendQuery(con, query) 
  
5. Fetching Results: To retrieve the results of a query, you can use the `dbFetch()` function. 
This function fetches the results from the database server and returns them as an R data 
frame. 

# Fetch the results of the query into a data frame 



Centre for Distance Education                    13.16                      Acharya Nagarjuna University  
 

data <- dbFetch(result) 
 
6. Closing the Connection: After you've finished working with the database, it's a good 
practice to close the connection using the `dbDisconnect()` function. 

# Close the database connection 

dbDisconnect(con) 
By following these steps, you can connect to a MySQL database from R, execute SQL 
queries, and work with the data using `RMySQL`. This package is useful for accessing and 
analyzing data stored in MySQL databases directly from R. 

1.5 SUMMARY 
The chapter covers a comprehensive range of topics related to data acquisition and 
management, including XML files, web data, JSON files, and databases. It starts by 
introducing XML files as a structured data format commonly used for representing 
hierarchical data. Techniques for reading and processing XML files in R, such as using the 
XML package, are discussed. The chapter then delves into web data access, highlighting 
methods for web scraping, interacting with web APIs, and downloading files from the web 
using packages like rvest and httr. Additionally, it explores JSON files as a popular data 
interchange format and demonstrates how to read and manipulate JSON data in R using the 
jsonlite package. Furthermore, the chapter covers accessing and querying databases directly 
from R, with a focus on relational databases like MySQL and packages such as RMySQL for 
establishing connections and executing SQL queries. Overall, the chapter equips readers with 
the essential skills and techniques for acquiring, processing, and managing various types of 
data sources in R for analysis and visualization purposes. 

1.6 TECHNICAL TERMS 

XML, JSON, web data, SQL Queries 

1.7 SELF ASSESSMENT QUESTIONS 

Essay questions: 
1. What are some common applications of XML in web development and data 

interchange? 
2. How do you access and extract data from XML files using R, and what are some 

common challenges in working with XML data? 
3. What are APIs (Application Programming Interfaces), and how are they used to 

access web data? 
4. How do you read and parse JSON files in R, and what are some advantages of 

using the jsonlite package for this task? 
5. How do you connect to and query a database from R, and what are some common 

functions and packages used for database interaction? 

 Short Questions:   

1. What is XML, and how is it different from other data formats like JSON and 
CSV? 

2. Can you explain the structure of an XML file and how hierarchical data is 
represented within it? 
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3. What is web data, and how is it different from other types of data? 
4. Can you describe the process of web scraping and its applications in data 

collection and analysis? 
5. How do you make HTTP requests in R to interact with web APIs, and what are 

some common HTTP methods used for this purpose? 
6. What is JSON, and why is it commonly used for representing structured data on 

the web? 

1.8 SUGGESTED READINGS 
1. Seema Acharya , Data Analytics using R, McGraw Hill Education (India) pvt. ltd. 
2. An Introduction to R, Notes on R: A Programming Environment for Data 

Analysis and Graphics. W. N. Venables, D.M. Smith and the R Development Core 
Team 

3. Crawley, M. J. (2012). The R book. John Wiley & Sons. 
4. Albert, J. & Rizzo, M. (2012). R by Example. Springer 
5. Braun, W. j. & Murdoch, D. J. (2007). A First Course in Statistical Programming 
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LESSON- 14 
 

WORKING WITH R CHARTS AND GRAPHS 
 
OBJECTIVES: 
After going through this lesson, you will be able to  

 Comprehend the importance of data visualization in EDA 
 Gain familiarity with common plot types  
 How to create histograms in R to visualize the distribution of a single variable. 
 Learn to generate bar charts, line graphs, scater plots and pie charts 

 
STRUCTURE OF THE LESSION:  
 
14.1 Histograms 
14.2 Bar Charts 
14.3 Line Graphs, 
14.4 Scatter plots 
14.5 Pie Charts 
14.6 Summary 
14.7 Technical Terms 
14.8 Self-Assessment Questions 
14.9 Further Readings 
 
14.1 HISTOGRAMS 
In R, histograms are widely used for visualizing the distribution of data. They provide a quick 
and effective way to explore the shape and spread of a dataset.  
Bins: The range of data values is divided into intervals called "bins" or "buckets." These bins 
are usually of equal width, although they can vary depending on the context. 
Frequency: For each bin, the number of data points that fall within that bin's range is 
counted. This count is called the frequency. 
Bars: The frequencies are then represented as bars, with the height of each bar corresponding 
to the frequency of data points in that bin. 
 
1. Creating a Histogram: You can create a histogram using the 'hist()' function. This 
function takes a vector of numeric values as input and produces a histogram plot. 
# Create a vector of numeric values (e.g., a dataset) 
data<- c(23, 45, 67, 34, 56, 78, 89, 34, 56, 45) 
 
# Create a histogram of the data 
hist(data) 
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2. Customizing Histograms: You can customize various aspects of the histogram, such as 
the number of bins, axis labels, titles, colors, and more. 
# Customizing the histogram 
hist(data,  
breaks = 10,            # Number of bins 
col = "skyblue",       # Color of bars 
xlab = "Value",        # Label for x-axis 
ylab = "Frequency",    # Label for y-axis 
main = "Histogram of Data")  # Title 
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3. Overlaying Histograms: You can overlay multiple histograms on the same plot to 
compare different datasets or groups. 
# Create another dataset 
data2 <- c(12, 45, 67, 78, 34, 56, 90, 23, 45, 67) 
 
# Overlay two histograms 
hist(data, col = "skyblue", main = "Histogram Comparison") 
hist(data2, col = "salmon", add = TRUE) 
legend("topright", legend = c("data", "data2"), fill = c("skyblue", 
"salmon")) 
 

 
 
4. Density Histograms: Instead of plotting frequencies, you can plot probability densities 
using the 'freq = FALSE' argument. 
# Density histogram 
hist(data, freq = FALSE, col = "skyblue", main = "Density 
Histogram") 
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Histograms in R are incredibly versatile and provide valuable insights into the distribution of 
data, making them a fundamental tool in data analysis and visualization workflows. 
 
13.2 BAR CHARTS 
Creating bar charts in R is a common task and can be accomplished using various packages, 
but the base R 'barplot()' function is a good place to start. Here's a basic example: 
 
# Sample data 
data<- c(10, 20, 15, 25, 30) 
names<- c("A", "B", "C", "D", "E") 
 
# Create a bar plot  
barplot(data, names.arg = names, xlab = "Categories", ylab = 
"Values", main = "Bar Chart Example") 
 
This code creates a simple bar chart with the values specified in the 'data' vector and the 
corresponding labels provided in the 'names' vector. The 'names.arg' argument specifies the 
labels for each bar, while 'xlab', 'ylab', and 'main' are used to label the axes and title of the 
plot. 
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If you want to customize your bar chart further, you might want to explore additional 
parameters of the 'barplot()' function or use other packages like 'ggplot2' for more advanced 
and customizable plots. 
 
13.3 LINE GRAPHS, 
Creating line graphs in R is commonly done using the base R 'plot()' function or the more 
powerful and flexible 'ggplot2' package. Here's an example of both approaches: 
 
Using base R 'plot()' function: 
# Sample data 
x <- 1:10 
y <- x^2 
 
# Create a line plot 
plot(x, y, type = "l", xlab = "X-axis", ylab = "Y-axis", main = 
"Line Graph Example") 
 
In this example, 'x' and 'y' are vectors representing the x and y coordinates of the data points. 
The 'type = "l"' argument specifies that we want to plot lines. Other options for the 'type' 
argument include '"p"' for points, '"b"' for both points and lines, and more. 
 
Using 'ggplot2' package: 
# Load the ggplot2 package 
library(ggplot2) 
 
# Create a data frame 
data<- data.frame(x = 1:10, y = (1:10)^2) 
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# Create a line plot using ggplot2 
ggplot(data, aes(x = x, y = y)) + 
geom_line() + 
labs(x = "X-axis", y = "Y-axis", title = "Line Graph Example") 

 
In this 'ggplot2' example, we first create a data frame 'data' containing our x and y values. 
Then, using 'ggplot()', we specify the data and aesthetics (mapping our variables to x and y 
axes). 'geom_line()' adds the line layer to the plot, and 'labs()' is used to label the axes and 
title. 
Both methods produce line graphs, but 'ggplot2' offers more customization options and is 
generally more versatile for creating complex visualizations. 
13.4 SCATTER PLOTS 
Creating scatter plots in R can also be done using the base R 'plot()' function or the 'ggplot2' 
package. Here's an example of both: 
 
Using base R 'plot()' function: 
# Sample data 
x <- 1:10 
y <- x^2 
# Create a scatter plot 
plot(x, y, xlab = "X-axis", ylab = "Y-axis", main = "Scatter Plot 
Example") 
 



 
 
 
Big data analytics using R                        14.7                    Working with R charts and Graphs 
 

 
 

 
In this example, 'x' and 'y' are vectors representing the x and y coordinates of the data points. 
The 'plot()' function creates a scatter plot by default when given two vectors of data. 
 
Using 'ggplot2' package: 
 
# Load the ggplot2 package 
library(ggplot2) 
 
# Create a data frame 
data<- data.frame(x = 1:10, y = (1:10)^2) 
 
# Create a scatter plot using ggplot2 
ggplot(data, aes(x = x, y = y)) + 
geom_point() + 
labs(x = "X-axis", y = "Y-axis", title = "Scatter Plot Example") 
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In this 'ggplot2' example, we first create a data frame 'data' containing our x and y values. 
Then, using 'ggplot()', we specify the data and aesthetics (mapping our variables to x and y 
axes). 'geom_point()' adds the points layer to the plot, creating a scatter plot, and 'labs()' is 
used to label the axes and title. 
Both methods produce scatter plots, but 'ggplot2' offers more customization options and is 
generally more versatile for creating complex visualizations. 
13.5 PIE CHARTS 
Creating pie charts in R is straightforward, and you can use the base R 'pie()' function to 
generate them. Here's an example: 
 
# Sample data 
data<- c(30, 20, 15, 35) 
labels<- c("Category A", "Category B", "Category C", "Category D") 
 
# Create a pie chart 
pie(data, labels = labels, main = "Pie Chart Example") 
In this example, 'data' contains the numeric values for each slice of the pie chart, and 'labels' 
contains the corresponding labels for each slice. The 'pie()' function creates the pie chart, and 
you can specify additional parameters such as 'main' for the title of the chart. 
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While pie charts are commonly used, it's essential to note that they have limitations, 
especially when it comes to comparing the sizes of different categories accurately. In many 
cases, bar charts or other types of visualizations might be more suitable. 
 
13.6 SUMMARY 
The chapter delves into various visualization techniques, encompassing histograms, bar 
charts, line graphs, scatter plots, and pie charts. Each visualization method serves distinct 
purposes, enabling the representation and analysis of different types of data. Histograms 
provide insights into the distribution of continuous data by displaying frequency distributions 
across defined intervals. Bar charts are effective for comparing categorical data by depicting 
the frequencies or proportions of different categories using bars of varying heights. Line 
graphs elucidate trends and relationships in continuous data over time or another continuous 
variable. Scatter plots reveal patterns and relationships between two continuous variables, 
facilitating the identification of correlations or trends. Lastly, pie charts offer a simple yet 
intuitive way to represent the composition or proportions of categorical data, making them 
suitable for displaying parts of a whole. Through these visualization techniques, analysts and 
researchers can explore and communicate key insights derived from their data effectively. 
 
13.7 TECHNICAL TERMS 

Histograms, Bar Charts, Line Graphs,, Scatter plots, Pie Charts 
 

13.8 SELF ASSESSMENT QUESTIONS 
Essay questions: 
1. Explain the purpose of histograms in data visualization and provide an example of 

when they are useful. 
2. Describe the key components of a histogram and how they contribute to 

understanding the distribution of data. 
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3. Compare and contrast histograms with bar charts. When would you choose to use 
one over the other? 

4. Provide an example of a dataset where a histogram would be the most appropriate 
visualization method. 

5. What are the main steps involved in creating a histogram in R? Provide a code 
example. 

6. Explain the purpose of bar charts and provide real-world scenarios where they are 
commonly used. 

 Short Questions:   
1. Discuss the advantages and disadvantages of using bar charts in data visualization. 
2. Provide a code example in R for creating a bar chart using both base R and the 

ggplot2 package. 
3. Describe the characteristics of line graphs and when they are particularly useful 

for visualizing data. 
4. Provide an example of a dataset where a line graph would be an appropriate 

visualization method. 
5. Discuss the advantages of using scatter plots in data analysis and visualization. 
6. Describe the main components of a pie chart and when it is appropriate to use one. 
 

13.9SUGGESTED READINGS 
1. SeemaAcharya , Data Analytics using R, McGraw Hill Education (India) pvt. ltd. 
2. An Introduction to R, Notes on R: A Programming Environment for Data 

Analysis and Graphics. W. N. Venables, D.M. Smith and the R Development Core 
Team 

3. Crawley, M. J. (2012). The R book. John Wiley & Sons. 
4. Albert, J. & Rizzo, M. (2012). R by Example. Springer 
5. Braun, W. j. & Murdoch, D. J. (2007). A First Course in Statistical Programming 

with R. Cambridge. 
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